diff --git a/contrib/ipfilter/ip_fil_compat.c b/contrib/ipfilter/ip_fil_compat.c index fbcfc8a0088f..6184502e0f58 100644 --- a/contrib/ipfilter/ip_fil_compat.c +++ b/contrib/ipfilter/ip_fil_compat.c @@ -1,4811 +1,4811 @@ /* * Copyright (C) 2002-2012 by Darren Reed. * * See the IPFILTER.LICENCE file for details on licencing. */ #if defined(KERNEL) || defined(_KERNEL) # undef KERNEL # undef _KERNEL # define KERNEL 1 # define _KERNEL 1 #endif #include #include #include #include #include #if defined(__FreeBSD_version) && defined(_KERNEL) # include # include #else # include #endif #if !defined(_KERNEL) # include # define _KERNEL # include # undef _KERNEL #endif #include #include #if defined(__FreeBSD__) # include # include #endif #if defined(_KERNEL) # include # if !defined(__SVR4) # include # endif #endif #include #include "netinet/ip_compat.h" #include "netinet/ip_fil.h" #include "netinet/ip_pool.h" #include "netinet/ip_htable.h" #include "netinet/ip_lookup.h" #include "netinet/ip_nat.h" #include "netinet/ip_state.h" #include "netinet/ip_proxy.h" #include "netinet/ip_auth.h" /* END OF INCLUDES */ /* * NetBSD has moved to 64bit time_t for all architectures. * For some, such as sparc64, there is no change because long is already * 64bit, but for others (i386), there is... */ #ifdef IPFILTER_COMPAT # ifdef __NetBSD__ typedef struct timeval_l { long tv_sec; long tv_usec; } timeval_l_t; # endif /* ------------------------------------------------------------------------ */ typedef struct tcpinfo4 { u_short ts_sport; u_short ts_dport; tcpdata_t ts_data[2]; } tcpinfo4_t; static void ipf_v5tcpinfoto4(tcpinfo_t *, tcpinfo4_t *); static void ipf_v5tcpinfoto4(v5, v4) tcpinfo_t *v5; tcpinfo4_t *v4; { v4->ts_sport = v5->ts_sport; v4->ts_dport = v5->ts_dport; v4->ts_data[0] = v5->ts_data[0]; v4->ts_data[1] = v5->ts_data[1]; } typedef struct fr_ip4 { u_32_t fi_v:4; u_32_t fi_xx:4; u_32_t fi_tos:8; u_32_t fi_ttl:8; u_32_t fi_p:8; u_32_t fi_optmsk; i6addr_t fi_src; i6addr_t fi_dst; u_short ofi_secmsk; u_short ofi_auth; u_32_t fi_flx; u_32_t fi_tcpmsk; u_32_t fi_res1; } frip4_t; typedef struct frpcmp4 { int frp_cmp; u_short frp_port; u_short frp_top; } frpcmp4_t; typedef struct frtuc4 { u_char ftu_tcpfm; u_char ftu_tcpf; frpcmp4_t ftu_src; frpcmp4_t ftu_dst; } frtuc4_t; typedef struct fripf4 { frip4_t fri_ip; frip4_t fri_mip; u_short fri_icmpm; u_short fri_icmp; frtuc4_t fri_tuc; int fri_satype; int fri_datype; int fri_sifpidx; int fri_difpidx; } fripf4_t; typedef struct frdest_4 { void *fd_ifp; i6addr_t ofd_ip6; char fd_ifname[LIFNAMSIZ]; } frdest_4_t; /* ------------------------------------------------------------------------ */ /* 5.1.0 new release (current) * 4.1.34 changed the size of the time structure used for pps * 4.1.16 moved the location of fr_flineno * 4.1.0 base version */ typedef struct frentry_4_1_34 { ipfmutex_t fr_lock; struct frentry *fr_next; struct frentry **fr_grp; struct ipscan *fr_isc; void *fr_ifas[4]; void *fr_ptr; /* for use with fr_arg */ char *fr_comment; /* text comment for rule */ int fr_ref; /* reference count - for grouping */ int fr_statecnt; /* state count - for limit rules */ int fr_flineno; /* line number from conf file */ U_QUAD_T fr_hits; U_QUAD_T fr_bytes; union { struct timeval frp_lastpkt; char frp_bytes[12]; } fr_lpu; int fr_curpps; union { void *fru_data; char *fru_caddr; fripf4_t *fru_ipf; frentfunc_t fru_func; } fr_dun; ipfunc_t fr_func; /* call this function */ int fr_dsize; int fr_pps; int fr_statemax; /* max reference count */ u_32_t fr_type; u_32_t fr_flags; /* per-rule flags && options (see below) */ u_32_t fr_logtag; /* user defined log tag # */ u_32_t fr_collect; /* collection number */ u_int fr_arg; /* misc. numeric arg for rule */ u_int fr_loglevel; /* syslog log facility + priority */ u_int fr_age[2]; /* non-TCP timeouts */ u_char fr_v; u_char fr_icode; /* return ICMP code */ char fr_group[FR_GROUPLEN]; /* group to which this rule belongs */ char fr_grhead[FR_GROUPLEN]; /* group # which this rule starts */ ipftag_t fr_nattag; char fr_ifnames[4][LIFNAMSIZ]; char fr_isctag[16]; frdest_4_t fr_tifs[2]; /* "to"/"reply-to" interface */ frdest_4_t fr_dif; /* duplicate packet interface */ u_int fr_cksum; /* checksum on filter rules for performance */ } frentry_4_1_34_t; typedef struct frentry_4_1_16 { ipfmutex_t fr_lock; struct frentry *fr_next; struct frentry **fr_grp; struct ipscan *fr_isc; void *fr_ifas[4]; void *fr_ptr; char *fr_comment; int fr_ref; int fr_statecnt; int fr_flineno; U_QUAD_T fr_hits; U_QUAD_T fr_bytes; union { #ifdef __NetBSD__ timeval_l_t frp_lastpkt; #else struct timeval frp_lastpkt; #endif } fr_lpu; int fr_curpps; union { void *fru_data; caddr_t fru_caddr; fripf4_t *fru_ipf; frentfunc_t fru_func; } fr_dun; ipfunc_t fr_func; int fr_dsize; int fr_pps; int fr_statemax; u_32_t fr_type; u_32_t fr_flags; u_32_t fr_logtag; u_32_t fr_collect; u_int fr_arg; u_int fr_loglevel; u_int fr_age[2]; u_char fr_v; u_char fr_icode; char fr_group[FR_GROUPLEN]; char fr_grhead[FR_GROUPLEN]; ipftag_t fr_nattag; char fr_ifnames[4][LIFNAMSIZ]; char fr_isctag[16]; frdest_4_t fr_tifs[2]; frdest_4_t fr_dif; u_int fr_cksum; } frentry_4_1_16_t; typedef struct frentry_4_1_0 { ipfmutex_t fr_lock; struct frentry *fr_next; struct frentry **fr_grp; struct ipscan *fr_isc; void *fr_ifas[4]; void *fr_ptr; char *fr_comment; int fr_ref; int fr_statecnt; U_QUAD_T fr_hits; U_QUAD_T fr_bytes; union { #ifdef __NetBSD__ timeval_l_t frp_lastpkt; #else struct timeval frp_lastpkt; #endif } fr_lpu; int fr_curpps; union { void *fru_data; caddr_t fru_caddr; fripf4_t *fru_ipf; frentfunc_t fru_func; } fr_dun; /* * Fields after this may not change whilst in the kernel. */ ipfunc_t fr_func; int fr_dsize; int fr_pps; int fr_statemax; int fr_flineno; u_32_t fr_type; u_32_t fr_flags; u_32_t fr_logtag; u_32_t fr_collect; u_int fr_arg; u_int fr_loglevel; u_int fr_age[2]; u_char fr_v; u_char fr_icode; char fr_group[FR_GROUPLEN]; char fr_grhead[FR_GROUPLEN]; ipftag_t fr_nattag; char fr_ifnames[4][LIFNAMSIZ]; char fr_isctag[16]; frdest_4_t fr_tifs[2]; frdest_4_t fr_dif; u_int fr_cksum; } frentry_4_1_0_t; /* ------------------------------------------------------------------------ */ /* * 5.1.0 new release (current) * 4.1.32 removed both fin_state and fin_nat, added fin_pktnum * 4.1.24 added fin_cksum * 4.1.23 added fin_exthdr * 4.1.11 added fin_ifname * 4.1.4 added fin_hbuf */ typedef struct fr_info_4_1_32 { void *fin_ifp; /* interface packet is `on' */ frip4_t fin_fi; /* IP Packet summary */ union { u_short fid_16[2]; /* TCP/UDP ports, ICMP code/type */ u_32_t fid_32; } fin_dat; int fin_out; /* in or out ? 1 == out, 0 == in */ int fin_rev; /* state only: 1 = reverse */ u_short fin_hlen; /* length of IP header in bytes */ u_char ofin_tcpf; /* TCP header flags (SYN, ACK, etc) */ u_char fin_icode; /* ICMP error to return */ u_32_t fin_rule; /* rule # last matched */ char fin_group[FR_GROUPLEN]; /* group number, -1 for none */ struct frentry *fin_fr; /* last matching rule */ void *fin_dp; /* start of data past IP header */ int fin_dlen; /* length of data portion of packet */ int fin_plen; int fin_ipoff; /* # bytes from buffer start to hdr */ u_short fin_id; /* IP packet id field */ u_short fin_off; int fin_depth; /* Group nesting depth */ int fin_error; /* Error code to return */ int fin_cksum; /* -1 bad, 1 good, 0 not done */ u_int fin_pktnum; void *fin_nattag; void *fin_exthdr; ip_t *ofin_ip; mb_t **fin_mp; /* pointer to pointer to mbuf */ mb_t *fin_m; /* pointer to mbuf */ -#ifdef MENTAT +#if SOLARIS mb_t *fin_qfm; /* pointer to mblk where pkt starts */ void *fin_qpi; char fin_ifname[LIFNAMSIZ]; #endif } fr_info_4_1_32_t; typedef struct fr_info_4_1_24 { void *fin_ifp; frip4_t fin_fi; union { u_short fid_16[2]; u_32_t fid_32; } fin_dat; int fin_out; int fin_rev; u_short fin_hlen; u_char ofin_tcpf; u_char fin_icode; u_32_t fin_rule; char fin_group[FR_GROUPLEN]; struct frentry *fin_fr; void *fin_dp; int fin_dlen; int fin_plen; int fin_ipoff; u_short fin_id; u_short fin_off; int fin_depth; int fin_error; int fin_cksum; void *fin_state; void *fin_nat; void *fin_nattag; void *fin_exthdr; ip_t *ofin_ip; mb_t **fin_mp; mb_t *fin_m; -#ifdef MENTAT +#if SOLARIS mb_t *fin_qfm; void *fin_qpi; char fin_ifname[LIFNAMSIZ]; #endif } fr_info_4_1_24_t; typedef struct fr_info_4_1_23 { void *fin_ifp; frip4_t fin_fi; union { u_short fid_16[2]; u_32_t fid_32; } fin_dat; int fin_out; int fin_rev; u_short fin_hlen; u_char ofin_tcpf; u_char fin_icode; u_32_t fin_rule; char fin_group[FR_GROUPLEN]; struct frentry *fin_fr; void *fin_dp; int fin_dlen; int fin_plen; int fin_ipoff; u_short fin_id; u_short fin_off; int fin_depth; int fin_error; void *fin_state; void *fin_nat; void *fin_nattag; void *fin_exthdr; ip_t *ofin_ip; mb_t **fin_mp; mb_t *fin_m; -#ifdef MENTAT +#if SOLARIS mb_t *fin_qfm; void *fin_qpi; char fin_ifname[LIFNAMSIZ]; #endif } fr_info_4_1_23_t; typedef struct fr_info_4_1_11 { void *fin_ifp; frip4_t fin_fi; union { u_short fid_16[2]; u_32_t fid_32; } fin_dat; int fin_out; int fin_rev; u_short fin_hlen; u_char ofin_tcpf; u_char fin_icode; u_32_t fin_rule; char fin_group[FR_GROUPLEN]; struct frentry *fin_fr; void *fin_dp; int fin_dlen; int fin_plen; int fin_ipoff; u_short fin_id; u_short fin_off; int fin_depth; int fin_error; void *fin_state; void *fin_nat; void *fin_nattag; ip_t *ofin_ip; mb_t **fin_mp; mb_t *fin_m; -#ifdef MENTAT +#if SOLARIS mb_t *fin_qfm; void *fin_qpi; char fin_ifname[LIFNAMSIZ]; #endif } fr_info_4_1_11_t; /* ------------------------------------------------------------------------ */ typedef struct filterstats_4_1 { u_long fr_pass; /* packets allowed */ u_long fr_block; /* packets denied */ u_long fr_nom; /* packets which don't match any rule */ u_long fr_short; /* packets which are short */ u_long fr_ppkl; /* packets allowed and logged */ u_long fr_bpkl; /* packets denied and logged */ u_long fr_npkl; /* packets unmatched and logged */ u_long fr_pkl; /* packets logged */ u_long fr_skip; /* packets to be logged but buffer full */ u_long fr_ret; /* packets for which a return is sent */ u_long fr_acct; /* packets for which counting was performed */ u_long fr_bnfr; /* bad attempts to allocate fragment state */ u_long fr_nfr; /* new fragment state kept */ u_long fr_cfr; /* add new fragment state but complete pkt */ u_long fr_bads; /* bad attempts to allocate packet state */ u_long fr_ads; /* new packet state kept */ u_long fr_chit; /* cached hit */ u_long fr_tcpbad; /* TCP checksum check failures */ u_long fr_pull[2]; /* good and bad pullup attempts */ u_long fr_badsrc; /* source received doesn't match route */ u_long fr_badttl; /* TTL in packet doesn't reach minimum */ u_long fr_bad; /* bad IP packets to the filter */ u_long fr_ipv6; /* IPv6 packets in/out */ u_long fr_ppshit; /* dropped because of pps ceiling */ u_long fr_ipud; /* IP id update failures */ } filterstats_4_1_t; /* * 5.1.0 new release (current) * 4.1.33 changed the size of f_locks from IPL_LOGMAX to IPL_LOGSIZE */ typedef struct friostat_4_1_33 { struct filterstats_4_1 of_st[2]; struct frentry *f_ipf[2][2]; struct frentry *f_acct[2][2]; struct frentry *f_ipf6[2][2]; struct frentry *f_acct6[2][2]; struct frentry *f_auth; struct frgroup *f_groups[IPL_LOGSIZE][2]; u_long f_froute[2]; u_long f_ticks; int f_locks[IPL_LOGSIZE]; size_t f_kmutex_sz; size_t f_krwlock_sz; int f_defpass; /* default pass - from fr_pass */ int f_active; /* 1 or 0 - active rule set */ int f_running; /* 1 if running, else 0 */ int f_logging; /* 1 if enabled, else 0 */ int f_features; char f_version[32]; /* version string */ } friostat_4_1_33_t; typedef struct friostat_4_1_0 { struct filterstats_4_1 of_st[2]; struct frentry *f_ipf[2][2]; struct frentry *f_acct[2][2]; struct frentry *f_ipf6[2][2]; struct frentry *f_acct6[2][2]; struct frentry *f_auth; struct frgroup *f_groups[IPL_LOGSIZE][2]; u_long f_froute[2]; u_long f_ticks; int f_locks[IPL_LOGMAX]; size_t f_kmutex_sz; size_t f_krwlock_sz; int f_defpass; int f_active; int f_running; int f_logging; int f_features; char f_version[32]; } friostat_4_1_0_t; /* ------------------------------------------------------------------------ */ /* * 5.1.0 new release (current) * 4.1.14 added in_lock */ typedef struct ipnat_4_1_14 { ipfmutex_t in_lock; struct ipnat *in_next; /* NAT rule list next */ struct ipnat *in_rnext; /* rdr rule hash next */ struct ipnat **in_prnext; /* prior rdr next ptr */ struct ipnat *in_mnext; /* map rule hash next */ struct ipnat **in_pmnext; /* prior map next ptr */ struct ipftq *in_tqehead[2]; void *in_ifps[2]; void *in_apr; char *in_comment; i6addr_t in_next6; u_long in_space; u_long in_hits; u_int in_use; u_int in_hv; int in_flineno; /* conf. file line number */ u_short in_pnext; u_char in_v; u_char in_xxx; /* From here to the end is covered by IPN_CMPSIZ */ u_32_t in_flags; u_32_t in_mssclamp; /* if != 0 clamp MSS to this */ u_int in_age[2]; int in_redir; /* see below for values */ int in_p; /* protocol. */ i6addr_t in_in[2]; i6addr_t in_out[2]; i6addr_t in_src[2]; frtuc4_t in_tuc; u_short in_port[2]; u_short in_ppip; /* ports per IP. */ u_short in_ippip; /* IP #'s per IP# */ char in_ifnames[2][LIFNAMSIZ]; char in_plabel[APR_LABELLEN]; /* proxy label. */ ipftag_t in_tag; } ipnat_4_1_14_t; typedef struct ipnat_4_1_0 { struct ipnat *in_next; struct ipnat *in_rnext; struct ipnat **in_prnext; struct ipnat *in_mnext; struct ipnat **in_pmnext; struct ipftq *in_tqehead[2]; void *in_ifps[2]; void *in_apr; char *in_comment; i6addr_t in_next6; u_long in_space; u_long in_hits; u_int in_use; u_int in_hv; int in_flineno; u_short in_pnext; u_char in_v; u_char in_xxx; u_32_t in_flags; u_32_t in_mssclamp; u_int in_age[2]; int in_redir; int in_p; i6addr_t in_in[2]; i6addr_t in_out[2]; i6addr_t in_src[2]; frtuc4_t in_tuc; u_short in_port[2]; u_short in_ppip; u_short in_ippip; char in_ifnames[2][LIFNAMSIZ]; char in_plabel[APR_LABELLEN]; ipftag_t in_tag; } ipnat_4_1_0_t; /* ------------------------------------------------------------------------ */ typedef struct natlookup_4_1_1 { struct in_addr onl_inip; struct in_addr onl_outip; struct in_addr onl_realip; int nl_flags; u_short nl_inport; u_short nl_outport; u_short nl_realport; } natlookup_4_1_1_t; /* ------------------------------------------------------------------------ */ /* * 4.1.25 added nat_seqnext (current) * 4.1.14 added nat_redir * 4.1.3 moved nat_rev * 4.1.2 added nat_rev */ typedef struct nat_4_1_25 { ipfmutex_t nat_lock; struct nat_4_1_25 *nat_next; struct nat_4_1_25 **nat_pnext; struct nat_4_1_25 *nat_hnext[2]; struct nat_4_1_25 **nat_phnext[2]; struct hostmap *nat_hm; void *nat_data; struct nat_4_1_25 **nat_me; struct ipstate *nat_state; struct ap_session *nat_aps; frentry_t *nat_fr; struct ipnat_4_1_14 *nat_ptr; void *nat_ifps[2]; void *nat_sync; ipftqent_t nat_tqe; u_32_t nat_flags; u_32_t nat_sumd[2]; u_32_t nat_ipsumd; u_32_t nat_mssclamp; i6addr_t nat_inip6; i6addr_t nat_outip6; i6addr_t nat_oip6; U_QUAD_T nat_pkts[2]; U_QUAD_T nat_bytes[2]; union { udpinfo_t nat_unu; tcpinfo4_t nat_unt; icmpinfo_t nat_uni; greinfo_t nat_ugre; } nat_un; u_short nat_oport; u_short nat_use; u_char nat_p; int nat_dir; int nat_ref; int nat_hv[2]; char nat_ifnames[2][LIFNAMSIZ]; int nat_rev; int nat_redir; u_32_t nat_seqnext[2]; } nat_4_1_25_t; typedef struct nat_4_1_14 { ipfmutex_t nat_lock; struct nat *nat_next; struct nat **nat_pnext; struct nat *nat_hnext[2]; struct nat **nat_phnext[2]; struct hostmap *nat_hm; void *nat_data; struct nat **nat_me; struct ipstate *nat_state; struct ap_session *nat_aps; frentry_t *nat_fr; struct ipnat *nat_ptr; void *nat_ifps[2]; void *nat_sync; ipftqent_t nat_tqe; u_32_t nat_flags; u_32_t nat_sumd[2]; u_32_t nat_ipsumd; u_32_t nat_mssclamp; i6addr_t nat_inip6; i6addr_t nat_outip6; i6addr_t nat_oip6; U_QUAD_T nat_pkts[2]; U_QUAD_T nat_bytes[2]; union { udpinfo_t nat_unu; tcpinfo4_t nat_unt; icmpinfo_t nat_uni; greinfo_t nat_ugre; } nat_un; u_short nat_oport; u_short nat_use; u_char nat_p; int nat_dir; int nat_ref; int nat_hv[2]; char nat_ifnames[2][LIFNAMSIZ]; int nat_rev; int nat_redir; } nat_4_1_14_t; typedef struct nat_4_1_3 { ipfmutex_t nat_lock; struct nat *nat_next; struct nat **nat_pnext; struct nat *nat_hnext[2]; struct nat **nat_phnext[2]; struct hostmap *nat_hm; void *nat_data; struct nat **nat_me; struct ipstate *nat_state; struct ap_session *nat_aps; frentry_t *nat_fr; struct ipnat *nat_ptr; void *nat_ifps[2]; void *nat_sync; ipftqent_t nat_tqe; u_32_t nat_flags; u_32_t nat_sumd[2]; u_32_t nat_ipsumd; u_32_t nat_mssclamp; i6addr_t nat_inip6; i6addr_t nat_outip6; i6addr_t nat_oip6; U_QUAD_T nat_pkts[2]; U_QUAD_T nat_bytes[2]; union { udpinfo_t nat_unu; tcpinfo4_t nat_unt; icmpinfo_t nat_uni; greinfo_t nat_ugre; } nat_un; u_short nat_oport; u_short nat_use; u_char nat_p; int nat_dir; int nat_ref; int nat_hv[2]; char nat_ifnames[2][LIFNAMSIZ]; int nat_rev; } nat_4_1_3_t; typedef struct nat_save_4_1_34 { void *ipn_next; struct nat_4_1_25 ipn_nat; struct ipnat_4_1_14 ipn_ipnat; struct frentry_4_1_34 ipn_fr; int ipn_dsize; char ipn_data[4]; } nat_save_4_1_34_t; typedef struct nat_save_4_1_16 { void *ipn_next; nat_4_1_14_t ipn_nat; ipnat_t ipn_ipnat; frentry_4_1_16_t ipn_fr; int ipn_dsize; char ipn_data[4]; } nat_save_4_1_16_t; typedef struct nat_save_4_1_14 { void *ipn_next; nat_4_1_14_t ipn_nat; ipnat_t ipn_ipnat; frentry_4_1_0_t ipn_fr; int ipn_dsize; char ipn_data[4]; } nat_save_4_1_14_t; typedef struct nat_save_4_1_3 { void *ipn_next; nat_4_1_3_t ipn_nat; ipnat_4_1_0_t ipn_ipnat; frentry_4_1_0_t ipn_fr; int ipn_dsize; char ipn_data[4]; } nat_save_4_1_3_t; /* ------------------------------------------------------------------------ */ /* * 5.1.0 new release (current) * 4.1.32 added ns_uncreate * 4.1.27 added ns_orphans * 4.1.16 added ns_ticks */ typedef struct natstat_4_1_32 { u_long ns_mapped[2]; u_long ns_rules; u_long ns_added; u_long ns_expire; u_long ns_inuse; u_long ns_logged; u_long ns_logfail; u_long ns_memfail; u_long ns_badnat; u_long ns_addtrpnt; nat_t **ns_table[2]; hostmap_t **ns_maptable; ipnat_t *ns_list; void *ns_apslist; u_int ns_wilds; u_int ns_nattab_sz; u_int ns_nattab_max; u_int ns_rultab_sz; u_int ns_rdrtab_sz; u_int ns_trpntab_sz; u_int ns_hostmap_sz; nat_t *ns_instances; hostmap_t *ns_maplist; u_long *ns_bucketlen[2]; u_long ns_ticks; u_int ns_orphans; u_long ns_uncreate[2][2]; } natstat_4_1_32_t; typedef struct natstat_4_1_27 { u_long ns_mapped[2]; u_long ns_rules; u_long ns_added; u_long ns_expire; u_long ns_inuse; u_long ns_logged; u_long ns_logfail; u_long ns_memfail; u_long ns_badnat; u_long ns_addtrpnt; nat_t **ns_table[2]; hostmap_t **ns_maptable; ipnat_t *ns_list; void *ns_apslist; u_int ns_wilds; u_int ns_nattab_sz; u_int ns_nattab_max; u_int ns_rultab_sz; u_int ns_rdrtab_sz; u_int ns_trpntab_sz; u_int ns_hostmap_sz; nat_t *ns_instances; hostmap_t *ns_maplist; u_long *ns_bucketlen[2]; u_long ns_ticks; u_int ns_orphans; } natstat_4_1_27_t; typedef struct natstat_4_1_16 { u_long ns_mapped[2]; u_long ns_rules; u_long ns_added; u_long ns_expire; u_long ns_inuse; u_long ns_logged; u_long ns_logfail; u_long ns_memfail; u_long ns_badnat; u_long ns_addtrpnt; nat_t **ns_table[2]; hostmap_t **ns_maptable; ipnat_t *ns_list; void *ns_apslist; u_int ns_wilds; u_int ns_nattab_sz; u_int ns_nattab_max; u_int ns_rultab_sz; u_int ns_rdrtab_sz; u_int ns_trpntab_sz; u_int ns_hostmap_sz; nat_t *ns_instances; hostmap_t *ns_maplist; u_long *ns_bucketlen[2]; u_long ns_ticks; } natstat_4_1_16_t; typedef struct natstat_4_1_0 { u_long ns_mapped[2]; u_long ns_rules; u_long ns_added; u_long ns_expire; u_long ns_inuse; u_long ns_logged; u_long ns_logfail; u_long ns_memfail; u_long ns_badnat; u_long ns_addtrpnt; nat_t **ns_table[2]; hostmap_t **ns_maptable; ipnat_t *ns_list; void *ns_apslist; u_int ns_wilds; u_int ns_nattab_sz; u_int ns_nattab_max; u_int ns_rultab_sz; u_int ns_rdrtab_sz; u_int ns_trpntab_sz; u_int ns_hostmap_sz; nat_t *ns_instances; hostmap_t *ns_maplist; u_long *ns_bucketlen[2]; } natstat_4_1_0_t; /* ------------------------------------------------------------------------ */ /* * 5.1.0 new release (current) * 4.1.32 fra_info:removed both fin_state & fin_nat, added fin_pktnum * 4.1.29 added fra_flx * 4.1.24 fra_info:added fin_cksum * 4.1.23 fra_info:added fin_exthdr * 4.1.11 fra_info:added fin_ifname * 4.1.4 fra_info:added fin_hbuf */ typedef struct frauth_4_1_32 { int fra_age; int fra_len; int fra_index; u_32_t fra_pass; fr_info_4_1_32_t fra_info; char *fra_buf; u_32_t fra_flx; -#ifdef MENTAT +#if SOLARIS queue_t *fra_q; mb_t *fra_m; #endif } frauth_4_1_32_t; typedef struct frauth_4_1_29 { int fra_age; int fra_len; int fra_index; u_32_t fra_pass; fr_info_4_1_24_t fra_info; char *fra_buf; u_32_t fra_flx; -#ifdef MENTAT +#if SOLARIS queue_t *fra_q; mb_t *fra_m; #endif } frauth_4_1_29_t; typedef struct frauth_4_1_24 { int fra_age; int fra_len; int fra_index; u_32_t fra_pass; fr_info_4_1_24_t fra_info; char *fra_buf; -#ifdef MENTAT +#if SOLARIS queue_t *fra_q; mb_t *fra_m; #endif } frauth_4_1_24_t; typedef struct frauth_4_1_23 { int fra_age; int fra_len; int fra_index; u_32_t fra_pass; fr_info_4_1_23_t fra_info; char *fra_buf; -#ifdef MENTAT +#if SOLARIS queue_t *fra_q; mb_t *fra_m; #endif } frauth_4_1_23_t; typedef struct frauth_4_1_11 { int fra_age; int fra_len; int fra_index; u_32_t fra_pass; fr_info_4_1_11_t fra_info; char *fra_buf; -#ifdef MENTAT +#if SOLARIS queue_t *fra_q; mb_t *fra_m; #endif } frauth_4_1_11_t; /* ------------------------------------------------------------------------ */ /* * 5.1.0 new release (current) * 4.1.16 removed is_nat */ typedef struct ipstate_4_1_16 { ipfmutex_t is_lock; struct ipstate *is_next; struct ipstate **is_pnext; struct ipstate *is_hnext; struct ipstate **is_phnext; struct ipstate **is_me; void *is_ifp[4]; void *is_sync; frentry_t *is_rule; struct ipftq *is_tqehead[2]; struct ipscan *is_isc; U_QUAD_T is_pkts[4]; U_QUAD_T is_bytes[4]; U_QUAD_T is_icmppkts[4]; struct ipftqent is_sti; u_int is_frage[2]; int is_ref; /* reference count */ int is_isninc[2]; u_short is_sumd[2]; i6addr_t is_src; i6addr_t is_dst; u_int is_pass; u_char is_p; /* Protocol */ u_char is_v; u_32_t is_hv; u_32_t is_tag; u_32_t is_opt[2]; /* packet options set */ u_32_t is_optmsk[2]; /* " " mask */ u_short is_sec; /* security options set */ u_short is_secmsk; /* " " mask */ u_short is_auth; /* authentication options set */ u_short is_authmsk; /* " " mask */ union { icmpinfo_t is_ics; tcpinfo4_t is_ts; udpinfo_t is_us; greinfo_t is_ug; } is_ps; u_32_t is_flags; int is_flx[2][2]; u_32_t is_rulen; /* rule number when created */ u_32_t is_s0[2]; u_short is_smsk[2]; char is_group[FR_GROUPLEN]; char is_sbuf[2][16]; char is_ifname[4][LIFNAMSIZ]; } ipstate_4_1_16_t; typedef struct ipstate_4_1_0 { ipfmutex_t is_lock; struct ipstate *is_next; struct ipstate **is_pnext; struct ipstate *is_hnext; struct ipstate **is_phnext; struct ipstate **is_me; void *is_ifp[4]; void *is_sync; void *is_nat[2]; frentry_t *is_rule; struct ipftq *is_tqehead[2]; struct ipscan *is_isc; U_QUAD_T is_pkts[4]; U_QUAD_T is_bytes[4]; U_QUAD_T is_icmppkts[4]; struct ipftqent is_sti; u_int is_frage[2]; int is_ref; int is_isninc[2]; u_short is_sumd[2]; i6addr_t is_src; i6addr_t is_dst; u_int is_pass; u_char is_p; u_char is_v; u_32_t is_hv; u_32_t is_tag; u_32_t is_opt[2]; u_32_t is_optmsk[2]; u_short is_sec; u_short is_secmsk; u_short is_auth; u_short is_authmsk; union { icmpinfo_t is_ics; tcpinfo4_t is_ts; udpinfo_t is_us; greinfo_t is_ug; } is_ps; u_32_t is_flags; int is_flx[2][2]; u_32_t is_rulen; u_32_t is_s0[2]; u_short is_smsk[2]; char is_group[FR_GROUPLEN]; char is_sbuf[2][16]; char is_ifname[4][LIFNAMSIZ]; } ipstate_4_1_0_t; typedef struct ipstate_save_4_1_34 { void *ips_next; struct ipstate_4_1_16 ips_is; struct frentry_4_1_34 ips_fr; } ipstate_save_4_1_34_t; typedef struct ipstate_save_4_1_16 { void *ips_next; ipstate_4_1_0_t ips_is; frentry_4_1_16_t ips_fr; } ipstate_save_4_1_16_t; typedef struct ipstate_save_4_1_0 { void *ips_next; ipstate_4_1_0_t ips_is; frentry_4_1_0_t ips_fr; } ipstate_save_4_1_0_t; /* ------------------------------------------------------------------------ */ /* * 5.1.0 new release (current) * 4.1.21 added iss_tcptab */ typedef struct ips_stat_4_1_21 { u_long iss_hits; u_long iss_miss; u_long iss_max; u_long iss_maxref; u_long iss_tcp; u_long iss_udp; u_long iss_icmp; u_long iss_nomem; u_long iss_expire; u_long iss_fin; u_long iss_active; u_long iss_logged; u_long iss_logfail; u_long iss_inuse; u_long iss_wild; u_long iss_killed; u_long iss_ticks; u_long iss_bucketfull; int iss_statesize; int iss_statemax; ipstate_t **iss_table; ipstate_t *iss_list; u_long *iss_bucketlen; ipftq_t *iss_tcptab; } ips_stat_4_1_21_t; typedef struct ips_stat_4_1_0 { u_long iss_hits; u_long iss_miss; u_long iss_max; u_long iss_maxref; u_long iss_tcp; u_long iss_udp; u_long iss_icmp; u_long iss_nomem; u_long iss_expire; u_long iss_fin; u_long iss_active; u_long iss_logged; u_long iss_logfail; u_long iss_inuse; u_long iss_wild; u_long iss_killed; u_long iss_ticks; u_long iss_bucketfull; int iss_statesize; int iss_statemax; ipstate_t **iss_table; ipstate_t *iss_list; u_long *iss_bucketlen; } ips_stat_4_1_0_t; /* ------------------------------------------------------------------------ */ typedef struct ipfrstat_4_1_1 { u_long ifs_exists; /* add & already exists */ u_long ifs_nomem; u_long ifs_new; u_long ifs_hits; u_long ifs_expire; u_long ifs_inuse; u_long ifs_retrans0; u_long ifs_short; struct ipfr **ifs_table; struct ipfr **ifs_nattab; } ipfrstat_4_1_1_t; /* ------------------------------------------------------------------------ */ static int ipf_addfrstr(char *, int, char *, int); static void ipf_v4iptov5(frip4_t *, fr_ip_t *); static void ipf_v5iptov4(fr_ip_t *, frip4_t *); static void ipfv4tuctov5(frtuc4_t *, frtuc_t *); static void ipfv5tuctov4(frtuc_t *, frtuc4_t *); static int ipf_v4fripftov5(fripf4_t *, char *); static void ipf_v5fripftov4(fripf_t *, fripf4_t *); static int fr_frflags4to5(u_32_t); static int fr_frflags5to4(u_32_t); static void friostat_current_to_4_1_0(void *, friostat_4_1_0_t *, int); static void friostat_current_to_4_1_33(void *, friostat_4_1_33_t *, int); static void ipstate_current_to_4_1_0(void *, ipstate_4_1_0_t *); static void ipstate_current_to_4_1_16(void *, ipstate_4_1_16_t *); static void ipnat_current_to_4_1_0(void *, ipnat_4_1_0_t *); static void ipnat_current_to_4_1_14(void *, ipnat_4_1_14_t *); static void frauth_current_to_4_1_11(void *, frauth_4_1_11_t *); static void frauth_current_to_4_1_23(void *, frauth_4_1_23_t *); static void frauth_current_to_4_1_24(void *, frauth_4_1_24_t *); static void frauth_current_to_4_1_29(void *, frauth_4_1_29_t *); static void frentry_current_to_4_1_0(void *, frentry_4_1_0_t *); static void frentry_current_to_4_1_16(void *, frentry_4_1_16_t *); static void frentry_current_to_4_1_34(void *, frentry_4_1_34_t *); static void fr_info_current_to_4_1_11(void *, fr_info_4_1_11_t *); static void fr_info_current_to_4_1_23(void *, fr_info_4_1_23_t *); static void fr_info_current_to_4_1_24(void *, fr_info_4_1_24_t *); static void nat_save_current_to_4_1_3(void *, nat_save_4_1_3_t *); static void nat_save_current_to_4_1_14(void *, nat_save_4_1_14_t *); static void nat_save_current_to_4_1_16(void *, nat_save_4_1_16_t *); static void ipstate_save_current_to_4_1_0(void *, ipstate_save_4_1_0_t *); static void ipstate_save_current_to_4_1_16(void *, ipstate_save_4_1_16_t *); static void ips_stat_current_to_4_1_0(void *, ips_stat_4_1_0_t *); static void ips_stat_current_to_4_1_21(void *, ips_stat_4_1_21_t *); static void natstat_current_to_4_1_0(void *, natstat_4_1_0_t *); static void natstat_current_to_4_1_16(void *, natstat_4_1_16_t *); static void natstat_current_to_4_1_27(void *, natstat_4_1_27_t *); static void natstat_current_to_4_1_32(void *, natstat_4_1_32_t *); static void nat_current_to_4_1_3(void *, nat_4_1_3_t *); static void nat_current_to_4_1_14(void *, nat_4_1_14_t *); static void nat_current_to_4_1_25(void *, nat_4_1_25_t *); static void friostat_4_1_0_to_current(friostat_4_1_0_t *, void *); static void friostat_4_1_33_to_current(friostat_4_1_33_t *, void *); static void ipnat_4_1_0_to_current(ipnat_4_1_0_t *, void *, int); static void ipnat_4_1_14_to_current(ipnat_4_1_14_t *, void *, int); static void frauth_4_1_11_to_current(frauth_4_1_11_t *, void *); static void frauth_4_1_23_to_current(frauth_4_1_23_t *, void *); static void frauth_4_1_24_to_current(frauth_4_1_24_t *, void *); static void frauth_4_1_29_to_current(frauth_4_1_29_t *, void *); static void frauth_4_1_32_to_current(frauth_4_1_32_t *, void *); static void frentry_4_1_0_to_current(ipf_main_softc_t *, frentry_4_1_0_t *, void *, int); static void frentry_4_1_16_to_current(ipf_main_softc_t *, frentry_4_1_16_t *, void *, int); static void frentry_4_1_34_to_current(ipf_main_softc_t *, frentry_4_1_34_t *, void *, int); static void fr_info_4_1_11_to_current(fr_info_4_1_11_t *, void *); static void fr_info_4_1_23_to_current(fr_info_4_1_23_t *, void *); static void fr_info_4_1_24_to_current(fr_info_4_1_24_t *, void *); static void fr_info_4_1_32_to_current(fr_info_4_1_32_t *, void *); static void nat_save_4_1_3_to_current(ipf_main_softc_t *, nat_save_4_1_3_t *, void *); static void nat_save_4_1_14_to_current(ipf_main_softc_t *, nat_save_4_1_14_t *, void *); static void nat_save_4_1_16_to_current(ipf_main_softc_t *, nat_save_4_1_16_t *, void *); /* ------------------------------------------------------------------------ */ /* In this section is a series of short routines that deal with translating */ /* the smaller data structures used above as their internal changes make */ /* them inappropriate for simple assignment. */ /* ------------------------------------------------------------------------ */ static int ipf_addfrstr(char *names, int namelen, char *str, int maxlen) { char *t; int i; for (i = maxlen, t = str; (*t != '\0') && (i > 0); i--) { names[namelen++] = *t++; } names[namelen++] = '\0'; return namelen; } static void ipf_v4iptov5(v4, v5) frip4_t *v4; fr_ip_t *v5; { v5->fi_v = v4->fi_v; v5->fi_p = v4->fi_p; v5->fi_xx = v4->fi_xx; v5->fi_tos = v4->fi_tos; v5->fi_ttl = v4->fi_ttl; v5->fi_p = v4->fi_p; v5->fi_optmsk = v4->fi_optmsk; v5->fi_src = v4->fi_src; v5->fi_dst = v4->fi_dst; v5->fi_secmsk = v4->ofi_secmsk; v5->fi_auth = v4->ofi_auth; v5->fi_flx = v4->fi_flx; v5->fi_tcpmsk = v4->fi_tcpmsk; } static void ipf_v5iptov4(v5, v4) fr_ip_t *v5; frip4_t *v4; { v4->fi_v = v5->fi_v; v4->fi_p = v5->fi_p; v4->fi_xx = v5->fi_xx; v4->fi_tos = v5->fi_tos; v4->fi_ttl = v5->fi_ttl; v4->fi_p = v5->fi_p; v4->fi_optmsk = v5->fi_optmsk; v4->fi_src = v5->fi_src; v4->fi_dst = v5->fi_dst; v4->ofi_secmsk = v5->fi_secmsk; v4->ofi_auth = v5->fi_auth; v4->fi_flx = v5->fi_flx; v4->fi_tcpmsk = v5->fi_tcpmsk; } static void ipfv4tuctov5(v4, v5) frtuc4_t *v4; frtuc_t *v5; { v5->ftu_src.frp_cmp = v4->ftu_src.frp_cmp; v5->ftu_src.frp_port = v4->ftu_src.frp_port; v5->ftu_src.frp_top = v4->ftu_src.frp_top; v5->ftu_dst.frp_cmp = v4->ftu_dst.frp_cmp; v5->ftu_dst.frp_port = v4->ftu_dst.frp_port; v5->ftu_dst.frp_top = v4->ftu_dst.frp_top; } static void ipfv5tuctov4(v5, v4) frtuc_t *v5; frtuc4_t *v4; { v4->ftu_src.frp_cmp = v5->ftu_src.frp_cmp; v4->ftu_src.frp_port = v5->ftu_src.frp_port; v4->ftu_src.frp_top = v5->ftu_src.frp_top; v4->ftu_dst.frp_cmp = v5->ftu_dst.frp_cmp; v4->ftu_dst.frp_port = v5->ftu_dst.frp_port; v4->ftu_dst.frp_top = v5->ftu_dst.frp_top; } static int ipf_v4fripftov5(frp4, dst) fripf4_t *frp4; char *dst; { fripf_t *frp; frp = (fripf_t *)dst; ipf_v4iptov5(&frp4->fri_ip, &frp->fri_ip); ipf_v4iptov5(&frp4->fri_mip, &frp->fri_mip); frp->fri_icmpm = frp4->fri_icmpm; frp->fri_icmp = frp4->fri_icmp; frp->fri_tuc.ftu_tcpfm = frp4->fri_tuc.ftu_tcpfm; frp->fri_tuc.ftu_tcpf = frp4->fri_tuc.ftu_tcpf; ipfv4tuctov5(&frp4->fri_tuc, &frp->fri_tuc); frp->fri_satype = frp4->fri_satype; frp->fri_datype = frp4->fri_datype; frp->fri_sifpidx = frp4->fri_sifpidx; frp->fri_difpidx = frp4->fri_difpidx; return 0; } static void ipf_v5fripftov4(frp, frp4) fripf_t *frp; fripf4_t *frp4; { ipf_v5iptov4(&frp->fri_ip, &frp4->fri_ip); ipf_v5iptov4(&frp->fri_mip, &frp4->fri_mip); frp4->fri_icmpm = frp->fri_icmpm; frp4->fri_icmp = frp->fri_icmp; frp4->fri_tuc.ftu_tcpfm = frp->fri_tuc.ftu_tcpfm; frp4->fri_tuc.ftu_tcpf = frp->fri_tuc.ftu_tcpf; ipfv5tuctov4(&frp->fri_tuc, &frp4->fri_tuc); frp4->fri_satype = frp->fri_satype; frp4->fri_datype = frp->fri_datype; frp4->fri_sifpidx = frp->fri_sifpidx; frp4->fri_difpidx = frp->fri_difpidx; } /* ------------------------------------------------------------------------ */ /* ipf_in_compat is the first of two service routines. It is responsible for*/ /* converting data structures from user space into what's required by the */ /* kernel module. */ /* ------------------------------------------------------------------------ */ int ipf_in_compat(softc, obj, ptr, size) ipf_main_softc_t *softc; ipfobj_t *obj; void *ptr; int size; { int error; int sz; IPFERROR(140000); error = EINVAL; switch (obj->ipfo_type) { default : break; case IPFOBJ_FRENTRY : if (obj->ipfo_rev >= 4013400) { frentry_4_1_34_t *old; KMALLOC(old, frentry_4_1_34_t *); if (old == NULL) { IPFERROR(140001); error = ENOMEM; break; } error = COPYIN(obj->ipfo_ptr, old, sizeof(*old)); if (error == 0) { if (old->fr_type != FR_T_NONE && old->fr_type != FR_T_IPF) { IPFERROR(140002); error = EINVAL; KFREE(old); break; } frentry_4_1_34_to_current(softc, old, ptr, size); } else { IPFERROR(140003); } KFREE(old); } else if (obj->ipfo_rev >= 4011600) { frentry_4_1_16_t *old; KMALLOC(old, frentry_4_1_16_t *); if (old == NULL) { IPFERROR(140004); error = ENOMEM; break; } error = COPYIN(obj->ipfo_ptr, old, sizeof(*old)); if (error == 0) { if (old->fr_type != FR_T_NONE && old->fr_type != FR_T_IPF) { IPFERROR(140005); error = EINVAL; KFREE(old); break; } frentry_4_1_16_to_current(softc, old, ptr, size); } else { IPFERROR(140006); } KFREE(old); } else { frentry_4_1_0_t *old; KMALLOC(old, frentry_4_1_0_t *); if (old == NULL) { IPFERROR(140007); error = ENOMEM; break; } error = COPYIN(obj->ipfo_ptr, old, sizeof(*old)); if (error == 0) { if (old->fr_type != FR_T_NONE && old->fr_type != FR_T_IPF) { IPFERROR(140008); error = EINVAL; KFREE(old); break; } frentry_4_1_0_to_current(softc, old, ptr, size); } else { IPFERROR(140009); } KFREE(old); } break; case IPFOBJ_IPFSTAT : if (obj->ipfo_rev >= 4013300) { friostat_4_1_33_t *old; KMALLOC(old, friostat_4_1_33_t *); if (old == NULL) { IPFERROR(140010); error = ENOMEM; break; } error = COPYIN(obj->ipfo_ptr, old, sizeof(*old)); if (error == 0) { friostat_4_1_33_to_current(old, ptr); } else { IPFERROR(140011); } } else { friostat_4_1_0_t *old; KMALLOC(old, friostat_4_1_0_t *); if (old == NULL) { IPFERROR(140012); error = ENOMEM; break; } error = COPYIN(obj->ipfo_ptr, old, sizeof(*old)); if (error == 0) { friostat_4_1_0_to_current(old, ptr); } else { IPFERROR(140013); } } break; case IPFOBJ_IPFINFO : /* unused */ break; case IPFOBJ_IPNAT : if (obj->ipfo_rev >= 4011400) { ipnat_4_1_14_t *old; KMALLOC(old, ipnat_4_1_14_t *); if (old == NULL) { IPFERROR(140014); error = ENOMEM; break; } error = COPYIN(obj->ipfo_ptr, old, sizeof(*old)); if (error == 0) { ipnat_4_1_14_to_current(old, ptr, size); } else { IPFERROR(140015); } KFREE(old); } else { ipnat_4_1_0_t *old; KMALLOC(old, ipnat_4_1_0_t *); if (old == NULL) { IPFERROR(140016); error = ENOMEM; break; } error = COPYIN(obj->ipfo_ptr, old, sizeof(*old)); if (error == 0) { ipnat_4_1_0_to_current(old, ptr, size); } else { IPFERROR(140017); } KFREE(old); } break; case IPFOBJ_NATSTAT : /* * Statistics are not copied in. */ break; case IPFOBJ_NATSAVE : if (obj->ipfo_rev >= 4011600) { nat_save_4_1_16_t *old16; KMALLOC(old16, nat_save_4_1_16_t *); if (old16 == NULL) { IPFERROR(140018); error = ENOMEM; break; } error = COPYIN(obj->ipfo_ptr, old16, sizeof(*old16)); if (error == 0) { nat_save_4_1_16_to_current(softc, old16, ptr); } else { IPFERROR(140019); } KFREE(old16); } else if (obj->ipfo_rev >= 4011400) { nat_save_4_1_14_t *old14; KMALLOC(old14, nat_save_4_1_14_t *); if (old14 == NULL) { IPFERROR(140020); error = ENOMEM; break; } error = COPYIN(obj->ipfo_ptr, old14, sizeof(*old14)); if (error == 0) { nat_save_4_1_14_to_current(softc, old14, ptr); } else { IPFERROR(140021); } KFREE(old14); } else if (obj->ipfo_rev >= 4010300) { nat_save_4_1_3_t *old3; KMALLOC(old3, nat_save_4_1_3_t *); if (old3 == NULL) { IPFERROR(140022); error = ENOMEM; break; } error = COPYIN(obj->ipfo_ptr, old3, sizeof(*old3)); if (error == 0) { nat_save_4_1_3_to_current(softc, old3, ptr); } else { IPFERROR(140023); } KFREE(old3); } break; case IPFOBJ_STATESAVE : if (obj->ipfo_rev >= 4013400) { ipstate_save_4_1_34_t *old; KMALLOC(old, ipstate_save_4_1_34_t *); if (old == NULL) { IPFERROR(140024); error = ENOMEM; break; } error = COPYIN(obj->ipfo_ptr, old, sizeof(*old)); if (error != 0) { IPFERROR(140025); } KFREE(old); } else if (obj->ipfo_rev >= 4011600) { ipstate_save_4_1_16_t *old; KMALLOC(old, ipstate_save_4_1_16_t *); if (old == NULL) { IPFERROR(140026); error = ENOMEM; break; } error = COPYIN(obj->ipfo_ptr, old, sizeof(*old)); if (error != 0) { IPFERROR(140027); } KFREE(old); } else { ipstate_save_4_1_0_t *old; KMALLOC(old, ipstate_save_4_1_0_t *); if (old == NULL) { IPFERROR(140028); error = ENOMEM; break; } error = COPYIN(obj->ipfo_ptr, old, sizeof(*old)); if (error != 0) { IPFERROR(140029); } KFREE(old); } break; case IPFOBJ_IPSTATE : /* * This structure is not copied in by itself. */ break; case IPFOBJ_STATESTAT : /* * Statistics are not copied in. */ break; case IPFOBJ_FRAUTH : if (obj->ipfo_rev >= 4013200) { frauth_4_1_32_t *old32; KMALLOC(old32, frauth_4_1_32_t *); if (old32 == NULL) { IPFERROR(140030); error = ENOMEM; break; } error = COPYIN(obj->ipfo_ptr, old32, sizeof(*old32)); if (error == 0) { frauth_4_1_32_to_current(old32, ptr); } else { IPFERROR(140031); } KFREE(old32); } else if (obj->ipfo_rev >= 4012900) { frauth_4_1_29_t *old29; KMALLOC(old29, frauth_4_1_29_t *); if (old29 == NULL) { IPFERROR(140032); error = ENOMEM; break; } error = COPYIN(obj->ipfo_ptr, old29, sizeof(*old29)); if (error == 0) { frauth_4_1_29_to_current(old29, ptr); } else { IPFERROR(140033); } KFREE(old29); } else if (obj->ipfo_rev >= 4012400) { frauth_4_1_24_t *old24; KMALLOC(old24, frauth_4_1_24_t *); if (old24 == NULL) { IPFERROR(140034); error = ENOMEM; break; } error = COPYIN(obj->ipfo_ptr, old24, sizeof(*old24)); if (error == 0) { frauth_4_1_24_to_current(old24, ptr); } else { IPFERROR(140035); } KFREE(old24); } else if (obj->ipfo_rev >= 4012300) { frauth_4_1_23_t *old23; KMALLOC(old23, frauth_4_1_23_t *); if (old23 == NULL) { IPFERROR(140036); error = ENOMEM; break; } error = COPYIN(obj->ipfo_ptr, old23, sizeof(*old23)); if (error == 0) frauth_4_1_23_to_current(old23, ptr); KFREE(old23); } else if (obj->ipfo_rev >= 4011100) { frauth_4_1_11_t *old11; KMALLOC(old11, frauth_4_1_11_t *); if (old11 == NULL) { IPFERROR(140037); error = ENOMEM; break; } error = COPYIN(obj->ipfo_ptr, old11, sizeof(*old11)); if (error == 0) { frauth_4_1_11_to_current(old11, ptr); } else { IPFERROR(140038); } KFREE(old11); } break; case IPFOBJ_NAT : if (obj->ipfo_rev >= 4011400) { sz = sizeof(nat_4_1_14_t); } else if (obj->ipfo_rev >= 4010300) { sz = sizeof(nat_4_1_3_t); } else { break; } bzero(ptr, sizeof(nat_t)); error = COPYIN(obj->ipfo_ptr, ptr, sz); if (error != 0) { IPFERROR(140039); } break; case IPFOBJ_FRIPF : if (obj->ipfo_rev < 5000000) { fripf4_t *old; KMALLOC(old, fripf4_t *); if (old == NULL) { IPFERROR(140040); error = ENOMEM; break; } error = COPYIN(obj->ipfo_ptr, old, sizeof(*old)); if (error == 0) { ipf_v4fripftov5(old, ptr); } else { IPFERROR(140041); } KFREE(old); } break; } return error; } /* ------------------------------------------------------------------------ */ /* * flags is v4 flags, returns v5 flags. */ static int fr_frflags4to5(flags) u_32_t flags; { u_32_t nflags = 0; switch (flags & 0xf) { case 0x0 : nflags |= FR_CALL; break; case 0x1 : nflags |= FR_BLOCK; break; case 0x2 : nflags |= FR_PASS; break; case 0x3 : nflags |= FR_AUTH; break; case 0x4 : nflags |= FR_PREAUTH; break; case 0x5 : nflags |= FR_ACCOUNT; break; case 0x6 : nflags |= FR_SKIP; break; default : break; } if (flags & 0x00010) nflags |= FR_LOG; if (flags & 0x00020) nflags |= FR_CALLNOW; if (flags & 0x00080) nflags |= FR_NOTSRCIP; if (flags & 0x00040) nflags |= FR_NOTDSTIP; if (flags & 0x00100) nflags |= FR_QUICK; if (flags & 0x00200) nflags |= FR_KEEPFRAG; if (flags & 0x00400) nflags |= FR_KEEPSTATE; if (flags & 0x00800) nflags |= FR_FASTROUTE; if (flags & 0x01000) nflags |= FR_RETRST; if (flags & 0x02000) nflags |= FR_RETICMP; if (flags & 0x03000) nflags |= FR_FAKEICMP; if (flags & 0x04000) nflags |= FR_OUTQUE; if (flags & 0x08000) nflags |= FR_INQUE; if (flags & 0x10000) nflags |= FR_LOGBODY; if (flags & 0x20000) nflags |= FR_LOGFIRST; if (flags & 0x40000) nflags |= FR_LOGORBLOCK; if (flags & 0x100000) nflags |= FR_FRSTRICT; if (flags & 0x200000) nflags |= FR_STSTRICT; if (flags & 0x400000) nflags |= FR_NEWISN; if (flags & 0x800000) nflags |= FR_NOICMPERR; if (flags & 0x1000000) nflags |= FR_STATESYNC; if (flags & 0x8000000) nflags |= FR_NOMATCH; if (flags & 0x40000000) nflags |= FR_COPIED; if (flags & 0x80000000) nflags |= FR_INACTIVE; return nflags; } static void frentry_4_1_34_to_current(softc, old, current, size) ipf_main_softc_t *softc; frentry_4_1_34_t *old; void *current; int size; { frentry_t *fr = (frentry_t *)current; fr->fr_comment = -1; fr->fr_ref = old->fr_ref; fr->fr_statecnt = old->fr_statecnt; fr->fr_hits = old->fr_hits; fr->fr_bytes = old->fr_bytes; fr->fr_lastpkt.tv_sec = old->fr_lastpkt.tv_sec; fr->fr_lastpkt.tv_usec = old->fr_lastpkt.tv_usec; bcopy(&old->fr_dun, &fr->fr_dun, sizeof(old->fr_dun)); fr->fr_func = old->fr_func; fr->fr_dsize = old->fr_dsize; fr->fr_pps = old->fr_pps; fr->fr_statemax = old->fr_statemax; fr->fr_flineno = old->fr_flineno; fr->fr_type = old->fr_type; fr->fr_flags = fr_frflags4to5(old->fr_flags); fr->fr_logtag = old->fr_logtag; fr->fr_collect = old->fr_collect; fr->fr_arg = old->fr_arg; fr->fr_loglevel = old->fr_loglevel; fr->fr_age[0] = old->fr_age[0]; fr->fr_age[1] = old->fr_age[1]; fr->fr_tifs[0].fd_ip6 = old->fr_tifs[0].ofd_ip6; fr->fr_tifs[0].fd_type = FRD_NORMAL; fr->fr_tifs[1].fd_ip6 = old->fr_tifs[1].ofd_ip6; fr->fr_tifs[1].fd_type = FRD_NORMAL; fr->fr_dif.fd_ip6 = old->fr_dif.ofd_ip6; fr->fr_dif.fd_type = FRD_NORMAL; if (old->fr_v == 4) fr->fr_family = AF_INET; if (old->fr_v == 6) fr->fr_family = AF_INET6; fr->fr_icode = old->fr_icode; fr->fr_cksum = old->fr_cksum; fr->fr_namelen = 0; fr->fr_ifnames[0] = -1; fr->fr_ifnames[1] = -1; fr->fr_ifnames[2] = -1; fr->fr_ifnames[3] = -1; fr->fr_dif.fd_name = -1; fr->fr_tifs[0].fd_name = -1; fr->fr_tifs[1].fd_name = -1; fr->fr_group = -1; fr->fr_grhead = -1; fr->fr_icmphead = -1; if (size == 0) { fr->fr_size = sizeof(*fr) + LIFNAMSIZ * 7 + FR_GROUPLEN * 2; fr->fr_size += sizeof(fripf_t) + 16; fr->fr_size += 9; /* room for \0's */ } else { char *names = fr->fr_names; int nlen = fr->fr_namelen; fr->fr_size = size; if (old->fr_ifnames[0][0] != '\0') { fr->fr_ifnames[0] = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_ifnames[0], LIFNAMSIZ); } if (old->fr_ifnames[1][0] != '\0') { fr->fr_ifnames[1] = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_ifnames[1], LIFNAMSIZ); } if (old->fr_ifnames[2][0] != '\0') { fr->fr_ifnames[2] = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_ifnames[2], LIFNAMSIZ); } if (old->fr_ifnames[3][0] != '\0') { fr->fr_ifnames[3] = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_ifnames[3], LIFNAMSIZ); } if (old->fr_tifs[0].fd_ifname[0] != '\0') { fr->fr_tifs[0].fd_name = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_tifs[0].fd_ifname, LIFNAMSIZ); } if (old->fr_tifs[1].fd_ifname[0] != '\0') { fr->fr_tifs[1].fd_name = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_tifs[1].fd_ifname, LIFNAMSIZ); } if (old->fr_dif.fd_ifname[0] != '\0') { fr->fr_dif.fd_name = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_dif.fd_ifname, LIFNAMSIZ); } if (old->fr_group[0] != '\0') { fr->fr_group = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_group, LIFNAMSIZ); } if (old->fr_grhead[0] != '\0') { fr->fr_grhead = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_grhead, LIFNAMSIZ); } fr->fr_namelen = nlen; if (old->fr_type == FR_T_IPF) { int offset = fr->fr_namelen; ipfobj_t obj; int error; obj.ipfo_type = IPFOBJ_FRIPF; obj.ipfo_rev = 4010100; obj.ipfo_ptr = old->fr_data; if ((offset & 7) != 0) offset += 8 - (offset & 7); error = ipf_in_compat(softc, &obj, fr->fr_names + offset, 0); if (error == 0) { fr->fr_data = fr->fr_names + offset; fr->fr_dsize = sizeof(fripf_t); } } } } static void frentry_4_1_16_to_current(softc, old, current, size) ipf_main_softc_t *softc; frentry_4_1_16_t *old; void *current; int size; { frentry_t *fr = (frentry_t *)current; fr->fr_comment = -1; fr->fr_ref = old->fr_ref; fr->fr_statecnt = old->fr_statecnt; fr->fr_hits = old->fr_hits; fr->fr_bytes = old->fr_bytes; fr->fr_lastpkt.tv_sec = old->fr_lastpkt.tv_sec; fr->fr_lastpkt.tv_usec = old->fr_lastpkt.tv_usec; bcopy(&old->fr_dun, &fr->fr_dun, sizeof(old->fr_dun)); fr->fr_func = old->fr_func; fr->fr_dsize = old->fr_dsize; fr->fr_pps = old->fr_pps; fr->fr_statemax = old->fr_statemax; fr->fr_flineno = old->fr_flineno; fr->fr_type = old->fr_type; fr->fr_flags = fr_frflags4to5(old->fr_flags); fr->fr_logtag = old->fr_logtag; fr->fr_collect = old->fr_collect; fr->fr_arg = old->fr_arg; fr->fr_loglevel = old->fr_loglevel; fr->fr_age[0] = old->fr_age[0]; fr->fr_age[1] = old->fr_age[1]; fr->fr_tifs[0].fd_ip6 = old->fr_tifs[0].ofd_ip6; fr->fr_tifs[0].fd_type = FRD_NORMAL; fr->fr_tifs[1].fd_ip6 = old->fr_tifs[1].ofd_ip6; fr->fr_tifs[1].fd_type = FRD_NORMAL; fr->fr_dif.fd_ip6 = old->fr_dif.ofd_ip6; fr->fr_dif.fd_type = FRD_NORMAL; if (old->fr_v == 4) fr->fr_family = AF_INET; if (old->fr_v == 6) fr->fr_family = AF_INET6; fr->fr_icode = old->fr_icode; fr->fr_cksum = old->fr_cksum; fr->fr_namelen = 0; fr->fr_ifnames[0] = -1; fr->fr_ifnames[1] = -1; fr->fr_ifnames[2] = -1; fr->fr_ifnames[3] = -1; fr->fr_dif.fd_name = -1; fr->fr_tifs[0].fd_name = -1; fr->fr_tifs[1].fd_name = -1; fr->fr_group = -1; fr->fr_grhead = -1; fr->fr_icmphead = -1; if (size == 0) { fr->fr_size = sizeof(*fr) + LIFNAMSIZ * 7 + FR_GROUPLEN * 2; fr->fr_size += 9; /* room for \0's */ } else { char *names = fr->fr_names; int nlen = fr->fr_namelen; fr->fr_size = size; if (old->fr_ifnames[0][0] != '\0') { fr->fr_ifnames[0] = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_ifnames[0], LIFNAMSIZ); } if (old->fr_ifnames[1][0] != '\0') { fr->fr_ifnames[1] = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_ifnames[1], LIFNAMSIZ); } if (old->fr_ifnames[2][0] != '\0') { fr->fr_ifnames[2] = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_ifnames[2], LIFNAMSIZ); } if (old->fr_ifnames[3][0] != '\0') { fr->fr_ifnames[3] = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_ifnames[3], LIFNAMSIZ); } if (old->fr_tifs[0].fd_ifname[0] != '\0') { fr->fr_tifs[0].fd_name = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_tifs[0].fd_ifname, LIFNAMSIZ); } if (old->fr_tifs[1].fd_ifname[0] != '\0') { fr->fr_tifs[1].fd_name = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_tifs[1].fd_ifname, LIFNAMSIZ); } if (old->fr_dif.fd_ifname[0] != '\0') { fr->fr_dif.fd_name = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_dif.fd_ifname, LIFNAMSIZ); } if (old->fr_group[0] != '\0') { fr->fr_group = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_group, LIFNAMSIZ); } if (old->fr_grhead[0] != '\0') { fr->fr_grhead = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_grhead, LIFNAMSIZ); } fr->fr_namelen = nlen; if (old->fr_type == FR_T_IPF) { int offset = fr->fr_namelen; ipfobj_t obj; int error; obj.ipfo_type = IPFOBJ_FRIPF; obj.ipfo_rev = 4010100; obj.ipfo_ptr = old->fr_data; if ((offset & 7) != 0) offset += 8 - (offset & 7); error = ipf_in_compat(softc, &obj, fr->fr_names + offset, 0); if (error == 0) { fr->fr_data = fr->fr_names + offset; fr->fr_dsize = sizeof(fripf_t); } } } } static void frentry_4_1_0_to_current(softc, old, current, size) ipf_main_softc_t *softc; frentry_4_1_0_t *old; void *current; int size; { frentry_t *fr = (frentry_t *)current; fr->fr_size = sizeof(*fr); fr->fr_comment = -1; fr->fr_ref = old->fr_ref; fr->fr_statecnt = old->fr_statecnt; fr->fr_hits = old->fr_hits; fr->fr_bytes = old->fr_bytes; fr->fr_lastpkt.tv_sec = old->fr_lastpkt.tv_sec; fr->fr_lastpkt.tv_usec = old->fr_lastpkt.tv_usec; bcopy(&old->fr_dun, &fr->fr_dun, sizeof(old->fr_dun)); fr->fr_func = old->fr_func; fr->fr_dsize = old->fr_dsize; fr->fr_pps = old->fr_pps; fr->fr_statemax = old->fr_statemax; fr->fr_flineno = old->fr_flineno; fr->fr_type = old->fr_type; fr->fr_flags = fr_frflags4to5(old->fr_flags); fr->fr_logtag = old->fr_logtag; fr->fr_collect = old->fr_collect; fr->fr_arg = old->fr_arg; fr->fr_loglevel = old->fr_loglevel; fr->fr_age[0] = old->fr_age[0]; fr->fr_age[1] = old->fr_age[1]; fr->fr_tifs[0].fd_ip6 = old->fr_tifs[0].ofd_ip6; fr->fr_tifs[0].fd_type = FRD_NORMAL; fr->fr_tifs[1].fd_ip6 = old->fr_tifs[1].ofd_ip6; fr->fr_tifs[1].fd_type = FRD_NORMAL; fr->fr_dif.fd_ip6 = old->fr_dif.ofd_ip6; fr->fr_dif.fd_type = FRD_NORMAL; if (old->fr_v == 4) fr->fr_family = AF_INET; if (old->fr_v == 6) fr->fr_family = AF_INET6; fr->fr_icode = old->fr_icode; fr->fr_cksum = old->fr_cksum; fr->fr_namelen = 0; fr->fr_ifnames[0] = -1; fr->fr_ifnames[1] = -1; fr->fr_ifnames[2] = -1; fr->fr_ifnames[3] = -1; fr->fr_dif.fd_name = -1; fr->fr_tifs[0].fd_name = -1; fr->fr_tifs[1].fd_name = -1; fr->fr_group = -1; fr->fr_grhead = -1; fr->fr_icmphead = -1; if (size == 0) { fr->fr_size = sizeof(*fr) + LIFNAMSIZ * 7 + FR_GROUPLEN * 2; fr->fr_size += 9; /* room for \0's */ } else { char *names = fr->fr_names; int nlen = fr->fr_namelen; fr->fr_size = size; if (old->fr_ifnames[0][0] != '\0') { fr->fr_ifnames[0] = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_ifnames[0], LIFNAMSIZ); } if (old->fr_ifnames[1][0] != '\0') { fr->fr_ifnames[1] = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_ifnames[1], LIFNAMSIZ); } if (old->fr_ifnames[2][0] != '\0') { fr->fr_ifnames[2] = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_ifnames[2], LIFNAMSIZ); } if (old->fr_ifnames[3][0] != '\0') { fr->fr_ifnames[3] = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_ifnames[3], LIFNAMSIZ); } if (old->fr_tifs[0].fd_ifname[0] != '\0') { fr->fr_tifs[0].fd_name = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_tifs[0].fd_ifname, LIFNAMSIZ); } if (old->fr_tifs[1].fd_ifname[0] != '\0') { fr->fr_tifs[1].fd_name = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_tifs[1].fd_ifname, LIFNAMSIZ); } if (old->fr_dif.fd_ifname[0] != '\0') { fr->fr_dif.fd_name = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_dif.fd_ifname, LIFNAMSIZ); } if (old->fr_group[0] != '\0') { fr->fr_group = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_group, LIFNAMSIZ); } if (old->fr_grhead[0] != '\0') { fr->fr_grhead = nlen; nlen = ipf_addfrstr(names, nlen, old->fr_grhead, LIFNAMSIZ); } fr->fr_namelen = nlen; if (old->fr_type == FR_T_IPF) { int offset = fr->fr_namelen; ipfobj_t obj; int error; obj.ipfo_type = IPFOBJ_FRIPF; obj.ipfo_rev = 4010100; obj.ipfo_ptr = old->fr_data; if ((offset & 7) != 0) offset += 8 - (offset & 7); offset += 8 - (offset & 7); error = ipf_in_compat(softc, &obj, fr->fr_names + offset, 0); if (error == 0) { fr->fr_data = fr->fr_names + offset; fr->fr_dsize = sizeof(fripf_t); } } } } static void friostat_4_1_33_to_current(old, current) friostat_4_1_33_t *old; void *current; { friostat_t *fiop = (friostat_t *)current; bcopy(&old->of_st[0], &fiop->f_st[0].fr_pass, sizeof(old->of_st[0])); bcopy(&old->of_st[1], &fiop->f_st[1].fr_pass, sizeof(old->of_st[1])); fiop->f_ipf[0][0] = old->f_ipf[0][0]; fiop->f_ipf[0][1] = old->f_ipf[0][1]; fiop->f_ipf[1][0] = old->f_ipf[1][0]; fiop->f_ipf[1][1] = old->f_ipf[1][1]; fiop->f_acct[0][0] = old->f_acct[0][0]; fiop->f_acct[0][1] = old->f_acct[0][1]; fiop->f_acct[1][0] = old->f_acct[1][0]; fiop->f_acct[1][1] = old->f_acct[1][1]; fiop->f_auth = fiop->f_auth; bcopy(&old->f_groups, &fiop->f_groups, sizeof(old->f_groups)); bcopy(&old->f_froute, &fiop->f_froute, sizeof(old->f_froute)); fiop->f_ticks = old->f_ticks; bcopy(&old->f_locks, &fiop->f_locks, sizeof(old->f_locks)); fiop->f_defpass = old->f_defpass; fiop->f_active = old->f_active; fiop->f_running = old->f_running; fiop->f_logging = old->f_logging; fiop->f_features = old->f_features; bcopy(old->f_version, fiop->f_version, sizeof(old->f_version)); } static void friostat_4_1_0_to_current(old, current) friostat_4_1_0_t *old; void *current; { friostat_t *fiop = (friostat_t *)current; bcopy(&old->of_st[0], &fiop->f_st[0].fr_pass, sizeof(old->of_st[0])); bcopy(&old->of_st[1], &fiop->f_st[1].fr_pass, sizeof(old->of_st[1])); fiop->f_ipf[0][0] = old->f_ipf[0][0]; fiop->f_ipf[0][1] = old->f_ipf[0][1]; fiop->f_ipf[1][0] = old->f_ipf[1][0]; fiop->f_ipf[1][1] = old->f_ipf[1][1]; fiop->f_acct[0][0] = old->f_acct[0][0]; fiop->f_acct[0][1] = old->f_acct[0][1]; fiop->f_acct[1][0] = old->f_acct[1][0]; fiop->f_acct[1][1] = old->f_acct[1][1]; fiop->f_auth = fiop->f_auth; bcopy(&old->f_groups, &fiop->f_groups, sizeof(old->f_groups)); bcopy(&old->f_froute, &fiop->f_froute, sizeof(old->f_froute)); fiop->f_ticks = old->f_ticks; bcopy(&old->f_locks, &fiop->f_locks, sizeof(old->f_locks)); fiop->f_defpass = old->f_defpass; fiop->f_active = old->f_active; fiop->f_running = old->f_running; fiop->f_logging = old->f_logging; fiop->f_features = old->f_features; bcopy(old->f_version, fiop->f_version, sizeof(old->f_version)); } static void ipnat_4_1_14_to_current(old, current, size) ipnat_4_1_14_t *old; void *current; int size; { ipnat_t *np = (ipnat_t *)current; np->in_space = old->in_space; np->in_hv[0] = old->in_hv; np->in_hv[1] = old->in_hv; np->in_flineno = old->in_flineno; if (old->in_redir == NAT_REDIRECT) np->in_dpnext = old->in_pnext; else np->in_spnext = old->in_pnext; np->in_v[0] = old->in_v; np->in_v[1] = old->in_v; np->in_flags = old->in_flags; np->in_mssclamp = old->in_mssclamp; np->in_age[0] = old->in_age[0]; np->in_age[1] = old->in_age[1]; np->in_redir = old->in_redir; np->in_pr[0] = old->in_p; np->in_pr[1] = old->in_p; if (np->in_redir == NAT_REDIRECT) { np->in_ndst.na_nextaddr = old->in_next6; np->in_ndst.na_addr[0] = old->in_in[0]; np->in_ndst.na_addr[1] = old->in_in[1]; np->in_ndst.na_atype = FRI_NORMAL; np->in_odst.na_addr[0] = old->in_out[0]; np->in_odst.na_addr[1] = old->in_out[1]; np->in_odst.na_atype = FRI_NORMAL; np->in_osrc.na_addr[0] = old->in_src[0]; np->in_osrc.na_addr[1] = old->in_src[1]; np->in_osrc.na_atype = FRI_NORMAL; } else { np->in_nsrc.na_nextaddr = old->in_next6; np->in_nsrc.na_addr[0] = old->in_out[0]; np->in_nsrc.na_addr[1] = old->in_out[1]; np->in_nsrc.na_atype = FRI_NORMAL; np->in_osrc.na_addr[0] = old->in_in[0]; np->in_osrc.na_addr[1] = old->in_in[1]; np->in_osrc.na_atype = FRI_NORMAL; np->in_odst.na_addr[0] = old->in_src[0]; np->in_odst.na_addr[1] = old->in_src[1]; np->in_odst.na_atype = FRI_NORMAL; } ipfv4tuctov5(&old->in_tuc, &np->in_tuc); if (np->in_redir == NAT_REDIRECT) { np->in_dpmin = old->in_port[0]; np->in_dpmax = old->in_port[1]; } else { np->in_spmin = old->in_port[0]; np->in_spmax = old->in_port[1]; } np->in_ppip = old->in_ppip; np->in_ippip = old->in_ippip; np->in_tag = old->in_tag; np->in_namelen = 0; np->in_plabel = -1; np->in_ifnames[0] = -1; np->in_ifnames[1] = -1; if (size == 0) { np->in_size = sizeof(*np); np->in_size += LIFNAMSIZ * 2 + APR_LABELLEN; np->in_size += 3; } else { int nlen = np->in_namelen; char *names = np->in_names; if (old->in_ifnames[0][0] != '\0') { np->in_ifnames[0] = nlen; nlen = ipf_addfrstr(names, nlen, old->in_ifnames[0], LIFNAMSIZ); } if (old->in_ifnames[1][0] != '\0') { np->in_ifnames[0] = nlen; nlen = ipf_addfrstr(names, nlen, old->in_ifnames[1], LIFNAMSIZ); } if (old->in_plabel[0] != '\0') { np->in_plabel = nlen; nlen = ipf_addfrstr(names, nlen, old->in_plabel, LIFNAMSIZ); } np->in_namelen = nlen; np->in_size = size; } } static void ipnat_4_1_0_to_current(old, current, size) ipnat_4_1_0_t *old; void *current; int size; { ipnat_t *np = (ipnat_t *)current; np->in_space = old->in_space; np->in_hv[0] = old->in_hv; np->in_hv[1] = old->in_hv; np->in_flineno = old->in_flineno; if (old->in_redir == NAT_REDIRECT) np->in_dpnext = old->in_pnext; else np->in_spnext = old->in_pnext; np->in_v[0] = old->in_v; np->in_v[1] = old->in_v; np->in_flags = old->in_flags; np->in_mssclamp = old->in_mssclamp; np->in_age[0] = old->in_age[0]; np->in_age[1] = old->in_age[1]; np->in_redir = old->in_redir; np->in_pr[0] = old->in_p; np->in_pr[1] = old->in_p; if (np->in_redir == NAT_REDIRECT) { np->in_ndst.na_nextaddr = old->in_next6; bcopy(&old->in_in, &np->in_ndst.na_addr, sizeof(old->in_in)); bcopy(&old->in_out, &np->in_odst.na_addr, sizeof(old->in_out)); bcopy(&old->in_src, &np->in_osrc.na_addr, sizeof(old->in_src)); } else { np->in_nsrc.na_nextaddr = old->in_next6; bcopy(&old->in_in, &np->in_osrc.na_addr, sizeof(old->in_in)); bcopy(&old->in_out, &np->in_nsrc.na_addr, sizeof(old->in_out)); bcopy(&old->in_src, &np->in_odst.na_addr, sizeof(old->in_src)); } ipfv4tuctov5(&old->in_tuc, &np->in_tuc); if (np->in_redir == NAT_REDIRECT) { np->in_dpmin = old->in_port[0]; np->in_dpmax = old->in_port[1]; } else { np->in_spmin = old->in_port[0]; np->in_spmax = old->in_port[1]; } np->in_ppip = old->in_ppip; np->in_ippip = old->in_ippip; bcopy(&old->in_tag, &np->in_tag, sizeof(np->in_tag)); np->in_namelen = 0; np->in_plabel = -1; np->in_ifnames[0] = -1; np->in_ifnames[1] = -1; if (size == 0) { np->in_size = sizeof(*np); np->in_size += LIFNAMSIZ * 2 + APR_LABELLEN; np->in_size += 3; } else { int nlen = np->in_namelen; char *names = np->in_names; if (old->in_ifnames[0][0] != '\0') { np->in_ifnames[0] = nlen; nlen = ipf_addfrstr(names, nlen, old->in_ifnames[0], LIFNAMSIZ); } if (old->in_ifnames[1][0] != '\0') { np->in_ifnames[0] = nlen; nlen = ipf_addfrstr(names, nlen, old->in_ifnames[1], LIFNAMSIZ); } if (old->in_plabel[0] != '\0') { np->in_plabel = nlen; nlen = ipf_addfrstr(names, nlen, old->in_plabel, LIFNAMSIZ); } np->in_namelen = nlen; np->in_size = size; } } static void frauth_4_1_32_to_current(old, current) frauth_4_1_32_t *old; void *current; { frauth_t *fra = (frauth_t *)current; fra->fra_age = old->fra_age; fra->fra_len = old->fra_len; fra->fra_index = old->fra_index; fra->fra_pass = old->fra_pass; fr_info_4_1_32_to_current(&old->fra_info, &fra->fra_info); fra->fra_buf = old->fra_buf; fra->fra_flx = old->fra_flx; -#ifdef MENTAT +#if SOLARIS fra->fra_q = old->fra_q; fra->fra_m = old->fra_m; #endif } static void frauth_4_1_29_to_current(old, current) frauth_4_1_29_t *old; void *current; { frauth_t *fra = (frauth_t *)current; fra->fra_age = old->fra_age; fra->fra_len = old->fra_len; fra->fra_index = old->fra_index; fra->fra_pass = old->fra_pass; fr_info_4_1_24_to_current(&old->fra_info, &fra->fra_info); fra->fra_buf = old->fra_buf; fra->fra_flx = old->fra_flx; -#ifdef MENTAT +#if SOLARIS fra->fra_q = old->fra_q; fra->fra_m = old->fra_m; #endif } static void frauth_4_1_24_to_current(old, current) frauth_4_1_24_t *old; void *current; { frauth_t *fra = (frauth_t *)current; fra->fra_age = old->fra_age; fra->fra_len = old->fra_len; fra->fra_index = old->fra_index; fra->fra_pass = old->fra_pass; fr_info_4_1_24_to_current(&old->fra_info, &fra->fra_info); fra->fra_buf = old->fra_buf; -#ifdef MENTAT +#if SOLARIS fra->fra_q = old->fra_q; fra->fra_m = old->fra_m; #endif } static void frauth_4_1_23_to_current(old, current) frauth_4_1_23_t *old; void *current; { frauth_t *fra = (frauth_t *)current; fra->fra_age = old->fra_age; fra->fra_len = old->fra_len; fra->fra_index = old->fra_index; fra->fra_pass = old->fra_pass; fr_info_4_1_23_to_current(&old->fra_info, &fra->fra_info); fra->fra_buf = old->fra_buf; -#ifdef MENTAT +#if SOLARIS fra->fra_q = old->fra_q; fra->fra_m = old->fra_m; #endif } static void frauth_4_1_11_to_current(old, current) frauth_4_1_11_t *old; void *current; { frauth_t *fra = (frauth_t *)current; fra->fra_age = old->fra_age; fra->fra_len = old->fra_len; fra->fra_index = old->fra_index; fra->fra_pass = old->fra_pass; fr_info_4_1_11_to_current(&old->fra_info, &fra->fra_info); fra->fra_buf = old->fra_buf; -#ifdef MENTAT +#if SOLARIS fra->fra_q = old->fra_q; fra->fra_m = old->fra_m; #endif } static void fr_info_4_1_32_to_current(old, current) fr_info_4_1_32_t *old; void *current; { fr_info_t *fin = (fr_info_t *)current; fin->fin_ifp = old->fin_ifp; ipf_v4iptov5(&old->fin_fi, &fin->fin_fi); bcopy(&old->fin_dat, &fin->fin_dat, sizeof(old->fin_dat)); fin->fin_out = old->fin_out; fin->fin_rev = old->fin_rev; fin->fin_hlen = old->fin_hlen; fin->fin_tcpf = old->ofin_tcpf; fin->fin_icode = old->fin_icode; fin->fin_rule = old->fin_rule; bcopy(old->fin_group, fin->fin_group, sizeof(old->fin_group)); fin->fin_fr = old->fin_fr; fin->fin_dp = old->fin_dp; fin->fin_dlen = old->fin_dlen; fin->fin_plen = old->fin_plen; fin->fin_ipoff = old->fin_ipoff; fin->fin_id = old->fin_id; fin->fin_off = old->fin_off; fin->fin_depth = old->fin_depth; fin->fin_error = old->fin_error; fin->fin_cksum = old->fin_cksum; fin->fin_nattag = old->fin_nattag; fin->fin_ip = old->ofin_ip; fin->fin_mp = old->fin_mp; fin->fin_m = old->fin_m; -#ifdef MENTAT +#if SOLARIS fin->fin_qfm = old->fin_qfm; fin->fin_qpi = old->fin_qpi; #endif } static void fr_info_4_1_24_to_current(old, current) fr_info_4_1_24_t *old; void *current; { fr_info_t *fin = (fr_info_t *)current; fin->fin_ifp = old->fin_ifp; ipf_v4iptov5(&old->fin_fi, &fin->fin_fi); bcopy(&old->fin_dat, &fin->fin_dat, sizeof(old->fin_dat)); fin->fin_out = old->fin_out; fin->fin_rev = old->fin_rev; fin->fin_hlen = old->fin_hlen; fin->fin_tcpf = old->ofin_tcpf; fin->fin_icode = old->fin_icode; fin->fin_rule = old->fin_rule; bcopy(old->fin_group, fin->fin_group, sizeof(old->fin_group)); fin->fin_fr = old->fin_fr; fin->fin_dp = old->fin_dp; fin->fin_dlen = old->fin_dlen; fin->fin_plen = old->fin_plen; fin->fin_ipoff = old->fin_ipoff; fin->fin_id = old->fin_id; fin->fin_off = old->fin_off; fin->fin_depth = old->fin_depth; fin->fin_error = old->fin_error; fin->fin_cksum = old->fin_cksum; fin->fin_nattag = old->fin_nattag; fin->fin_ip = old->ofin_ip; fin->fin_mp = old->fin_mp; fin->fin_m = old->fin_m; -#ifdef MENTAT +#if SOLARIS fin->fin_qfm = old->fin_qfm; fin->fin_qpi = old->fin_qpi; #endif } static void fr_info_4_1_23_to_current(old, current) fr_info_4_1_23_t *old; void *current; { fr_info_t *fin = (fr_info_t *)current; fin->fin_ifp = old->fin_ifp; ipf_v4iptov5(&old->fin_fi, &fin->fin_fi); bcopy(&old->fin_dat, &fin->fin_dat, sizeof(old->fin_dat)); fin->fin_out = old->fin_out; fin->fin_rev = old->fin_rev; fin->fin_hlen = old->fin_hlen; fin->fin_tcpf = old->ofin_tcpf; fin->fin_icode = old->fin_icode; fin->fin_rule = old->fin_rule; bcopy(old->fin_group, fin->fin_group, sizeof(old->fin_group)); fin->fin_fr = old->fin_fr; fin->fin_dp = old->fin_dp; fin->fin_dlen = old->fin_dlen; fin->fin_plen = old->fin_plen; fin->fin_ipoff = old->fin_ipoff; fin->fin_id = old->fin_id; fin->fin_off = old->fin_off; fin->fin_depth = old->fin_depth; fin->fin_error = old->fin_error; fin->fin_nattag = old->fin_nattag; fin->fin_ip = old->ofin_ip; fin->fin_mp = old->fin_mp; fin->fin_m = old->fin_m; -#ifdef MENTAT +#if SOLARIS fin->fin_qfm = old->fin_qfm; fin->fin_qpi = old->fin_qpi; #endif } static void fr_info_4_1_11_to_current(old, current) fr_info_4_1_11_t *old; void *current; { fr_info_t *fin = (fr_info_t *)current; fin->fin_ifp = old->fin_ifp; ipf_v4iptov5(&old->fin_fi, &fin->fin_fi); bcopy(&old->fin_dat, &fin->fin_dat, sizeof(old->fin_dat)); fin->fin_out = old->fin_out; fin->fin_rev = old->fin_rev; fin->fin_hlen = old->fin_hlen; fin->fin_tcpf = old->ofin_tcpf; fin->fin_icode = old->fin_icode; fin->fin_rule = old->fin_rule; bcopy(old->fin_group, fin->fin_group, sizeof(old->fin_group)); fin->fin_fr = old->fin_fr; fin->fin_dp = old->fin_dp; fin->fin_dlen = old->fin_dlen; fin->fin_plen = old->fin_plen; fin->fin_ipoff = old->fin_ipoff; fin->fin_id = old->fin_id; fin->fin_off = old->fin_off; fin->fin_depth = old->fin_depth; fin->fin_error = old->fin_error; fin->fin_nattag = old->fin_nattag; fin->fin_ip = old->ofin_ip; fin->fin_mp = old->fin_mp; fin->fin_m = old->fin_m; -#ifdef MENTAT +#if SOLARIS fin->fin_qfm = old->fin_qfm; fin->fin_qpi = old->fin_qpi; #endif } static void nat_4_1_3_to_current(nat_4_1_3_t *old, nat_t *current) { bzero((void *)current, sizeof(*current)); bcopy((void *)old, (void *)current, sizeof(*old)); } static void nat_4_1_14_to_current(nat_4_1_14_t *old, nat_t *current) { bzero((void *)current, sizeof(*current)); bcopy((void *)old, (void *)current, sizeof(*old)); } static void nat_save_4_1_16_to_current(softc, old, current) ipf_main_softc_t *softc; nat_save_4_1_16_t *old; void *current; { nat_save_t *nats = (nat_save_t *)current; nats->ipn_next = old->ipn_next; nat_4_1_14_to_current(&old->ipn_nat, &nats->ipn_nat); bcopy(&old->ipn_ipnat, &nats->ipn_ipnat, sizeof(old->ipn_ipnat)); frentry_4_1_16_to_current(softc, &old->ipn_fr, &nats->ipn_fr, 0); nats->ipn_dsize = old->ipn_dsize; bcopy(old->ipn_data, nats->ipn_data, sizeof(nats->ipn_data)); } static void nat_save_4_1_14_to_current(softc, old, current) ipf_main_softc_t *softc; nat_save_4_1_14_t *old; void *current; { nat_save_t *nats = (nat_save_t *)current; nats->ipn_next = old->ipn_next; nat_4_1_14_to_current(&old->ipn_nat, &nats->ipn_nat); bcopy(&old->ipn_ipnat, &nats->ipn_ipnat, sizeof(old->ipn_ipnat)); frentry_4_1_0_to_current(softc, &old->ipn_fr, &nats->ipn_fr, 0); nats->ipn_dsize = old->ipn_dsize; bcopy(old->ipn_data, nats->ipn_data, sizeof(nats->ipn_data)); } static void nat_save_4_1_3_to_current(softc, old, current) ipf_main_softc_t *softc; nat_save_4_1_3_t *old; void *current; { nat_save_t *nats = (nat_save_t *)current; nats->ipn_next = old->ipn_next; nat_4_1_3_to_current(&old->ipn_nat, &nats->ipn_nat); ipnat_4_1_0_to_current(&old->ipn_ipnat, &nats->ipn_ipnat, 0); frentry_4_1_0_to_current(softc, &old->ipn_fr, &nats->ipn_fr, 0); nats->ipn_dsize = old->ipn_dsize; bcopy(old->ipn_data, nats->ipn_data, sizeof(nats->ipn_data)); } static void natstat_current_to_4_1_32(current, old) void *current; natstat_4_1_32_t *old; { natstat_t *ns = (natstat_t *)current; old->ns_mapped[0] = ns->ns_side[0].ns_translated; old->ns_mapped[1] = ns->ns_side[1].ns_translated; old->ns_rules = ns->ns_side[0].ns_inuse + ns->ns_side[1].ns_inuse; old->ns_added = ns->ns_side[0].ns_added + ns->ns_side[1].ns_added; old->ns_expire = ns->ns_expire; old->ns_inuse = ns->ns_side[0].ns_inuse + ns->ns_side[1].ns_inuse; old->ns_logged = ns->ns_log_ok; old->ns_logfail = ns->ns_log_fail; old->ns_memfail = ns->ns_side[0].ns_memfail + ns->ns_side[1].ns_memfail; old->ns_badnat = ns->ns_side[0].ns_badnat + ns->ns_side[1].ns_badnat; old->ns_addtrpnt = ns->ns_addtrpnt; old->ns_table[0] = ns->ns_side[0].ns_table; old->ns_table[1] = ns->ns_side[1].ns_table; old->ns_maptable = NULL; old->ns_list = ns->ns_list; old->ns_apslist = NULL; old->ns_wilds = ns->ns_wilds; old->ns_nattab_sz = ns->ns_nattab_sz; old->ns_nattab_max = ns->ns_nattab_max; old->ns_rultab_sz = ns->ns_rultab_sz; old->ns_rdrtab_sz = ns->ns_rdrtab_sz; old->ns_trpntab_sz = ns->ns_trpntab_sz; old->ns_hostmap_sz = 0; old->ns_instances = ns->ns_instances; old->ns_maplist = ns->ns_maplist; old->ns_bucketlen[0] = (u_long *)ns->ns_side[0].ns_bucketlen; old->ns_bucketlen[1] = (u_long *)ns->ns_side[1].ns_bucketlen; old->ns_ticks = ns->ns_ticks; old->ns_orphans = ns->ns_orphans; old->ns_uncreate[0][0] = ns->ns_side[0].ns_uncreate[0]; old->ns_uncreate[0][1] = ns->ns_side[0].ns_uncreate[1]; old->ns_uncreate[1][0] = ns->ns_side[1].ns_uncreate[0]; old->ns_uncreate[1][1] = ns->ns_side[1].ns_uncreate[1]; } static void natstat_current_to_4_1_27(current, old) void *current; natstat_4_1_27_t *old; { natstat_t *ns = (natstat_t *)current; old->ns_mapped[0] = ns->ns_side[0].ns_translated; old->ns_mapped[1] = ns->ns_side[1].ns_translated; old->ns_rules = ns->ns_side[0].ns_inuse + ns->ns_side[1].ns_inuse; old->ns_added = ns->ns_side[0].ns_added + ns->ns_side[1].ns_added; old->ns_expire = ns->ns_expire; old->ns_inuse = ns->ns_side[0].ns_inuse + ns->ns_side[1].ns_inuse; old->ns_logged = ns->ns_log_ok; old->ns_logfail = ns->ns_log_fail; old->ns_memfail = ns->ns_side[0].ns_memfail + ns->ns_side[1].ns_memfail; old->ns_badnat = ns->ns_side[0].ns_badnat + ns->ns_side[1].ns_badnat; old->ns_addtrpnt = ns->ns_addtrpnt; old->ns_table[0] = ns->ns_side[0].ns_table; old->ns_table[1] = ns->ns_side[1].ns_table; old->ns_maptable = NULL; old->ns_list = ns->ns_list; old->ns_apslist = NULL; old->ns_wilds = ns->ns_wilds; old->ns_nattab_sz = ns->ns_nattab_sz; old->ns_nattab_max = ns->ns_nattab_max; old->ns_rultab_sz = ns->ns_rultab_sz; old->ns_rdrtab_sz = ns->ns_rdrtab_sz; old->ns_trpntab_sz = ns->ns_trpntab_sz; old->ns_hostmap_sz = 0; old->ns_instances = ns->ns_instances; old->ns_maplist = ns->ns_maplist; old->ns_bucketlen[0] = (u_long *)ns->ns_side[0].ns_bucketlen; old->ns_bucketlen[1] = (u_long *)ns->ns_side[1].ns_bucketlen; old->ns_ticks = ns->ns_ticks; old->ns_orphans = ns->ns_orphans; } static void natstat_current_to_4_1_16(current, old) void *current; natstat_4_1_16_t *old; { natstat_t *ns = (natstat_t *)current; old->ns_mapped[0] = ns->ns_side[0].ns_translated; old->ns_mapped[1] = ns->ns_side[1].ns_translated; old->ns_rules = ns->ns_side[0].ns_inuse + ns->ns_side[1].ns_inuse; old->ns_added = ns->ns_side[0].ns_added + ns->ns_side[1].ns_added; old->ns_expire = ns->ns_expire; old->ns_inuse = ns->ns_side[0].ns_inuse + ns->ns_side[1].ns_inuse; old->ns_logged = ns->ns_log_ok; old->ns_logfail = ns->ns_log_fail; old->ns_memfail = ns->ns_side[0].ns_memfail + ns->ns_side[1].ns_memfail; old->ns_badnat = ns->ns_side[0].ns_badnat + ns->ns_side[1].ns_badnat; old->ns_addtrpnt = ns->ns_addtrpnt; old->ns_table[0] = ns->ns_side[0].ns_table; old->ns_table[1] = ns->ns_side[1].ns_table; old->ns_maptable = NULL; old->ns_list = ns->ns_list; old->ns_apslist = NULL; old->ns_wilds = ns->ns_wilds; old->ns_nattab_sz = ns->ns_nattab_sz; old->ns_nattab_max = ns->ns_nattab_max; old->ns_rultab_sz = ns->ns_rultab_sz; old->ns_rdrtab_sz = ns->ns_rdrtab_sz; old->ns_trpntab_sz = ns->ns_trpntab_sz; old->ns_hostmap_sz = 0; old->ns_instances = ns->ns_instances; old->ns_maplist = ns->ns_maplist; old->ns_bucketlen[0] = (u_long *)ns->ns_side[0].ns_bucketlen; old->ns_bucketlen[1] = (u_long *)ns->ns_side[1].ns_bucketlen; old->ns_ticks = ns->ns_ticks; } static void natstat_current_to_4_1_0(current, old) void *current; natstat_4_1_0_t *old; { natstat_t *ns = (natstat_t *)current; old->ns_mapped[0] = ns->ns_side[0].ns_translated; old->ns_mapped[1] = ns->ns_side[1].ns_translated; old->ns_rules = ns->ns_side[0].ns_inuse + ns->ns_side[1].ns_inuse; old->ns_added = ns->ns_side[0].ns_added + ns->ns_side[1].ns_added; old->ns_expire = ns->ns_expire; old->ns_inuse = ns->ns_side[0].ns_inuse + ns->ns_side[1].ns_inuse; old->ns_logged = ns->ns_log_ok; old->ns_logfail = ns->ns_log_fail; old->ns_memfail = ns->ns_side[0].ns_memfail + ns->ns_side[1].ns_memfail; old->ns_badnat = ns->ns_side[0].ns_badnat + ns->ns_side[1].ns_badnat; old->ns_addtrpnt = ns->ns_addtrpnt; old->ns_table[0] = ns->ns_side[0].ns_table; old->ns_table[1] = ns->ns_side[1].ns_table; old->ns_maptable = NULL; old->ns_list = ns->ns_list; old->ns_apslist = NULL; old->ns_wilds = ns->ns_wilds; old->ns_nattab_sz = ns->ns_nattab_sz; old->ns_nattab_max = ns->ns_nattab_max; old->ns_rultab_sz = ns->ns_rultab_sz; old->ns_rdrtab_sz = ns->ns_rdrtab_sz; old->ns_trpntab_sz = ns->ns_trpntab_sz; old->ns_hostmap_sz = 0; old->ns_instances = ns->ns_instances; old->ns_maplist = ns->ns_maplist; old->ns_bucketlen[0] = (u_long *)ns->ns_side[0].ns_bucketlen; old->ns_bucketlen[1] = (u_long *)ns->ns_side[1].ns_bucketlen; } static void ipstate_save_current_to_4_1_16(current, old) void *current; ipstate_save_4_1_16_t *old; { ipstate_save_t *ips = (ipstate_save_t *)current; old->ips_next = ips->ips_next; ipstate_current_to_4_1_0(&ips->ips_is, &old->ips_is); frentry_current_to_4_1_16(&ips->ips_fr, &old->ips_fr); } static void ipstate_save_current_to_4_1_0(current, old) void *current; ipstate_save_4_1_0_t *old; { ipstate_save_t *ips = (ipstate_save_t *)current; old->ips_next = ips->ips_next; ipstate_current_to_4_1_0(&ips->ips_is, &old->ips_is); frentry_current_to_4_1_0(&ips->ips_fr, &old->ips_fr); } int ipf_out_compat(softc, obj, ptr) ipf_main_softc_t *softc; ipfobj_t *obj; void *ptr; { frentry_t *fr; int error; IPFERROR(140042); error = EINVAL; switch (obj->ipfo_type) { default : break; case IPFOBJ_FRENTRY : if (obj->ipfo_rev >= 4013400) { frentry_4_1_34_t *old; KMALLOC(old, frentry_4_1_34_t *); if (old == NULL) { IPFERROR(140043); error = ENOMEM; break; } frentry_current_to_4_1_34(ptr, old); error = COPYOUT(old, obj->ipfo_ptr, sizeof(*old)); if (error == 0 && old->fr_dsize > 0) { char *dst = obj->ipfo_ptr; fr = ptr; dst += sizeof(*old); error = COPYOUT(fr->fr_data, dst, old->fr_dsize); if (error != 0) { IPFERROR(140044); } } KFREE(old); obj->ipfo_size = sizeof(*old); } else if (obj->ipfo_rev >= 4011600) { frentry_4_1_16_t *old; KMALLOC(old, frentry_4_1_16_t *); if (old == NULL) { IPFERROR(140045); error = ENOMEM; break; } frentry_current_to_4_1_16(ptr, old); error = COPYOUT(old, obj->ipfo_ptr, sizeof(*old)); if (error != 0) { IPFERROR(140046); } KFREE(old); obj->ipfo_size = sizeof(*old); } else { frentry_4_1_0_t *old; KMALLOC(old, frentry_4_1_0_t *); if (old == NULL) { IPFERROR(140047); error = ENOMEM; break; } frentry_current_to_4_1_0(ptr, old); error = COPYOUT(old, obj->ipfo_ptr, sizeof(*old)); if (error != 0) { IPFERROR(140048); } KFREE(old); obj->ipfo_size = sizeof(*old); } break; case IPFOBJ_IPFSTAT : if (obj->ipfo_rev >= 4013300) { friostat_4_1_33_t *old; KMALLOC(old, friostat_4_1_33_t *); if (old == NULL) { IPFERROR(140049); error = ENOMEM; break; } friostat_current_to_4_1_33(ptr, old, obj->ipfo_rev); error = COPYOUT(old, obj->ipfo_ptr, sizeof(*old)); if (error != 0) { IPFERROR(140050); } KFREE(old); } else { friostat_4_1_0_t *old; KMALLOC(old, friostat_4_1_0_t *); if (old == NULL) { IPFERROR(140051); error = ENOMEM; break; } friostat_current_to_4_1_0(ptr, old, obj->ipfo_rev); error = COPYOUT(old, obj->ipfo_ptr, sizeof(*old)); if (error != 0) { IPFERROR(140052); } KFREE(old); } break; case IPFOBJ_IPFINFO : /* unused */ break; case IPFOBJ_IPNAT : if (obj->ipfo_rev >= 4011400) { ipnat_4_1_14_t *old; KMALLOC(old, ipnat_4_1_14_t *); if (old == NULL) { IPFERROR(140053); error = ENOMEM; break; } ipnat_current_to_4_1_14(ptr, old); error = COPYOUT(old, obj->ipfo_ptr, sizeof(*old)); if (error != 0) { IPFERROR(140054); } KFREE(old); } else { ipnat_4_1_0_t *old; KMALLOC(old, ipnat_4_1_0_t *); if (old == NULL) { IPFERROR(140055); error = ENOMEM; break; } ipnat_current_to_4_1_0(ptr, old); error = COPYOUT(old, obj->ipfo_ptr, sizeof(*old)); if (error != 0) { IPFERROR(140056); } KFREE(old); } break; case IPFOBJ_NATSTAT : if (obj->ipfo_rev >= 4013200) { natstat_4_1_32_t *old; KMALLOC(old, natstat_4_1_32_t *); if (old == NULL) { IPFERROR(140057); error = ENOMEM; break; } natstat_current_to_4_1_32(ptr, old); error = COPYOUT(old, obj->ipfo_ptr, sizeof(*old)); if (error != 0) { IPFERROR(140058); } KFREE(old); } else if (obj->ipfo_rev >= 4012700) { natstat_4_1_27_t *old; KMALLOC(old, natstat_4_1_27_t *); if (old == NULL) { IPFERROR(140059); error = ENOMEM; break; } natstat_current_to_4_1_27(ptr, old); error = COPYOUT(old, obj->ipfo_ptr, sizeof(*old)); if (error != 0) { IPFERROR(140060); } KFREE(old); } else if (obj->ipfo_rev >= 4011600) { natstat_4_1_16_t *old; KMALLOC(old, natstat_4_1_16_t *); if (old == NULL) { IPFERROR(140061); error = ENOMEM; break; } natstat_current_to_4_1_16(ptr, old); error = COPYOUT(old, obj->ipfo_ptr, sizeof(*old)); if (error != 0) { IPFERROR(140062); } KFREE(old); } else { natstat_4_1_0_t *old; KMALLOC(old, natstat_4_1_0_t *); if (old == NULL) { IPFERROR(140063); error = ENOMEM; break; } natstat_current_to_4_1_0(ptr, old); error = COPYOUT(old, obj->ipfo_ptr, sizeof(*old)); if (error != 0) { IPFERROR(140064); } KFREE(old); } break; case IPFOBJ_STATESAVE : if (obj->ipfo_rev >= 4011600) { ipstate_save_4_1_16_t *old; KMALLOC(old, ipstate_save_4_1_16_t *); if (old == NULL) { IPFERROR(140065); error = ENOMEM; break; } ipstate_save_current_to_4_1_16(ptr, old); error = COPYOUT(old, obj->ipfo_ptr, sizeof(*old)); if (error != 0) { IPFERROR(140066); } KFREE(old); } else { ipstate_save_4_1_0_t *old; KMALLOC(old, ipstate_save_4_1_0_t *); if (old == NULL) { IPFERROR(140067); error = ENOMEM; break; } ipstate_save_current_to_4_1_0(ptr, old); error = COPYOUT(old, obj->ipfo_ptr, sizeof(*old)); if (error != 0) { IPFERROR(140068); } KFREE(old); } break; case IPFOBJ_NATSAVE : if (obj->ipfo_rev >= 4011600) { nat_save_4_1_16_t *old16; KMALLOC(old16, nat_save_4_1_16_t *); if (old16 == NULL) { IPFERROR(140069); error = ENOMEM; break; } nat_save_current_to_4_1_16(ptr, old16); error = COPYOUT(&old16, obj->ipfo_ptr, sizeof(*old16)); if (error != 0) { IPFERROR(140070); } KFREE(old16); } else if (obj->ipfo_rev >= 4011400) { nat_save_4_1_14_t *old14; KMALLOC(old14, nat_save_4_1_14_t *); if (old14 == NULL) { IPFERROR(140071); error = ENOMEM; break; } nat_save_current_to_4_1_14(ptr, old14); error = COPYOUT(&old14, obj->ipfo_ptr, sizeof(*old14)); if (error != 0) { IPFERROR(140072); } KFREE(old14); } else if (obj->ipfo_rev >= 4010300) { nat_save_4_1_3_t *old3; KMALLOC(old3, nat_save_4_1_3_t *); if (old3 == NULL) { IPFERROR(140073); error = ENOMEM; break; } nat_save_current_to_4_1_3(ptr, old3); error = COPYOUT(&old3, obj->ipfo_ptr, sizeof(*old3)); if (error != 0) { IPFERROR(140074); } KFREE(old3); } break; case IPFOBJ_IPSTATE : if (obj->ipfo_rev >= 4011600) { ipstate_4_1_16_t *old; KMALLOC(old, ipstate_4_1_16_t *); if (old == NULL) { IPFERROR(140075); error = ENOMEM; break; } ipstate_current_to_4_1_16(ptr, old); error = COPYOUT(old, obj->ipfo_ptr, sizeof(*old)); if (error != 0) { IPFERROR(140076); } KFREE(old); } else { ipstate_4_1_0_t *old; KMALLOC(old, ipstate_4_1_0_t *); if (old == NULL) { IPFERROR(140077); error = ENOMEM; break; } ipstate_current_to_4_1_0(ptr, old); error = COPYOUT(old, obj->ipfo_ptr, sizeof(*old)); if (error != 0) { IPFERROR(140078); } KFREE(old); } break; case IPFOBJ_STATESTAT : if (obj->ipfo_rev >= 4012100) { ips_stat_4_1_21_t *old; KMALLOC(old, ips_stat_4_1_21_t *); if (old == NULL) { IPFERROR(140079); error = ENOMEM; break; } ips_stat_current_to_4_1_21(ptr, old); error = COPYOUT(old, obj->ipfo_ptr, sizeof(*old)); if (error != 0) { IPFERROR(140080); } KFREE(old); } else { ips_stat_4_1_0_t *old; KMALLOC(old, ips_stat_4_1_0_t *); if (old == NULL) { IPFERROR(140081); error = ENOMEM; break; } ips_stat_current_to_4_1_0(ptr, old); error = COPYOUT(old, obj->ipfo_ptr, sizeof(*old)); if (error != 0) { IPFERROR(140082); } KFREE(old); } break; case IPFOBJ_FRAUTH : if (obj->ipfo_rev >= 4012900) { frauth_4_1_29_t *old29; KMALLOC(old29, frauth_4_1_29_t *); if (old29 == NULL) { IPFERROR(140083); error = ENOMEM; break; } frauth_current_to_4_1_29(ptr, old29); error = COPYOUT(old29, obj->ipfo_ptr, sizeof(*old29)); if (error != 0) { IPFERROR(140084); } KFREE(old29); } else if (obj->ipfo_rev >= 4012400) { frauth_4_1_24_t *old24; KMALLOC(old24, frauth_4_1_24_t *); if (old24 == NULL) { IPFERROR(140085); error = ENOMEM; break; } frauth_current_to_4_1_24(ptr, old24); error = COPYOUT(old24, obj->ipfo_ptr, sizeof(*old24)); if (error != 0) { IPFERROR(140086); } KFREE(old24); } else if (obj->ipfo_rev >= 4012300) { frauth_4_1_23_t *old23; KMALLOC(old23, frauth_4_1_23_t *); if (old23 == NULL) { IPFERROR(140087); error = ENOMEM; break; } frauth_current_to_4_1_23(ptr, old23); error = COPYOUT(old23, obj->ipfo_ptr, sizeof(*old23)); if (error != 0) { IPFERROR(140088); } KFREE(old23); } else if (obj->ipfo_rev >= 4011100) { frauth_4_1_11_t *old11; KMALLOC(old11, frauth_4_1_11_t *); if (old11 == NULL) { IPFERROR(140089); error = ENOMEM; break; } frauth_current_to_4_1_11(ptr, old11); error = COPYOUT(old11, obj->ipfo_ptr, sizeof(*old11)); if (error != 0) { IPFERROR(140090); } KFREE(old11); } break; case IPFOBJ_NAT : if (obj->ipfo_rev >= 4012500) { nat_4_1_25_t *old; KMALLOC(old, nat_4_1_25_t *); if (old == NULL) { IPFERROR(140091); error = ENOMEM; break; } nat_current_to_4_1_25(ptr, old); error = COPYOUT(old, obj->ipfo_ptr, sizeof(*old)); if (error != 0) { IPFERROR(140092); } KFREE(old); } else if (obj->ipfo_rev >= 4011400) { nat_4_1_14_t *old; KMALLOC(old, nat_4_1_14_t *); if (old == NULL) { IPFERROR(140093); error = ENOMEM; break; } nat_current_to_4_1_14(ptr, old); error = COPYOUT(old, obj->ipfo_ptr, sizeof(*old)); if (error != 0) { IPFERROR(140094); } KFREE(old); } else if (obj->ipfo_rev >= 4010300) { nat_4_1_3_t *old; KMALLOC(old, nat_4_1_3_t *); if (old == NULL) { IPFERROR(140095); error = ENOMEM; break; } nat_current_to_4_1_3(ptr, old); error = COPYOUT(old, obj->ipfo_ptr, sizeof(*old)); if (error != 0) { IPFERROR(140096); } KFREE(old); } break; case IPFOBJ_FRIPF : if (obj->ipfo_rev < 5000000) { fripf4_t *old; KMALLOC(old, fripf4_t *); if (old == NULL) { IPFERROR(140097); error = ENOMEM; break; } ipf_v5fripftov4(ptr, old); error = COPYOUT(old, obj->ipfo_ptr, sizeof(*old)); if (error != 0) { IPFERROR(140098); } KFREE(old); } break; } return error; } static void friostat_current_to_4_1_33(current, old, rev) void *current; friostat_4_1_33_t *old; int rev; { friostat_t *fiop = (friostat_t *)current; bcopy(&fiop->f_st[0].fr_pass, &old->of_st[0], sizeof(old->of_st[0])); bcopy(&fiop->f_st[1].fr_pass, &old->of_st[1], sizeof(old->of_st[1])); old->f_ipf[0][0] = fiop->f_ipf[0][0]; old->f_ipf[0][1] = fiop->f_ipf[0][1]; old->f_ipf[1][0] = fiop->f_ipf[1][0]; old->f_ipf[1][1] = fiop->f_ipf[1][1]; old->f_acct[0][0] = fiop->f_acct[0][0]; old->f_acct[0][1] = fiop->f_acct[0][1]; old->f_acct[1][0] = fiop->f_acct[1][0]; old->f_acct[1][1] = fiop->f_acct[1][1]; old->f_ipf6[0][0] = NULL; old->f_ipf6[0][1] = NULL; old->f_ipf6[1][0] = NULL; old->f_ipf6[1][1] = NULL; old->f_acct6[0][0] = NULL; old->f_acct6[0][1] = NULL; old->f_acct6[1][0] = NULL; old->f_acct6[1][1] = NULL; old->f_auth = fiop->f_auth; bcopy(&fiop->f_groups, &old->f_groups, sizeof(old->f_groups)); bcopy(&fiop->f_froute, &old->f_froute, sizeof(old->f_froute)); old->f_ticks = fiop->f_ticks; bcopy(&fiop->f_locks, &old->f_locks, sizeof(old->f_locks)); old->f_kmutex_sz = 0; old->f_krwlock_sz = 0; old->f_defpass = fiop->f_defpass; old->f_active = fiop->f_active; old->f_running = fiop->f_running; old->f_logging = fiop->f_logging; old->f_features = fiop->f_features; sprintf(old->f_version, "IP Filter: v%d.%d.%d", (rev / 1000000) % 100, (rev / 10000) % 100, (rev / 100) % 100); } static void friostat_current_to_4_1_0(current, old, rev) void *current; friostat_4_1_0_t *old; int rev; { friostat_t *fiop = (friostat_t *)current; bcopy(&fiop->f_st[0].fr_pass, &old->of_st[0], sizeof(old->of_st[0])); bcopy(&fiop->f_st[1].fr_pass, &old->of_st[1], sizeof(old->of_st[1])); old->f_ipf[0][0] = fiop->f_ipf[0][0]; old->f_ipf[0][1] = fiop->f_ipf[0][1]; old->f_ipf[1][0] = fiop->f_ipf[1][0]; old->f_ipf[1][1] = fiop->f_ipf[1][1]; old->f_acct[0][0] = fiop->f_acct[0][0]; old->f_acct[0][1] = fiop->f_acct[0][1]; old->f_acct[1][0] = fiop->f_acct[1][0]; old->f_acct[1][1] = fiop->f_acct[1][1]; old->f_ipf6[0][0] = NULL; old->f_ipf6[0][1] = NULL; old->f_ipf6[1][0] = NULL; old->f_ipf6[1][1] = NULL; old->f_acct6[0][0] = NULL; old->f_acct6[0][1] = NULL; old->f_acct6[1][0] = NULL; old->f_acct6[1][1] = NULL; old->f_auth = fiop->f_auth; bcopy(&fiop->f_groups, &old->f_groups, sizeof(old->f_groups)); bcopy(&fiop->f_froute, &old->f_froute, sizeof(old->f_froute)); old->f_ticks = fiop->f_ticks; old->f_ipf[0][0] = fiop->f_ipf[0][0]; old->f_ipf[0][1] = fiop->f_ipf[0][1]; old->f_ipf[1][0] = fiop->f_ipf[1][0]; old->f_ipf[1][1] = fiop->f_ipf[1][1]; old->f_acct[0][0] = fiop->f_acct[0][0]; old->f_acct[0][1] = fiop->f_acct[0][1]; old->f_acct[1][0] = fiop->f_acct[1][0]; old->f_acct[1][1] = fiop->f_acct[1][1]; old->f_ipf6[0][0] = NULL; old->f_ipf6[0][1] = NULL; old->f_ipf6[1][0] = NULL; old->f_ipf6[1][1] = NULL; old->f_acct6[0][0] = NULL; old->f_acct6[0][1] = NULL; old->f_acct6[1][0] = NULL; old->f_acct6[1][1] = NULL; old->f_auth = fiop->f_auth; bcopy(&fiop->f_groups, &old->f_groups, sizeof(old->f_groups)); bcopy(&fiop->f_froute, &old->f_froute, sizeof(old->f_froute)); old->f_ticks = fiop->f_ticks; bcopy(&fiop->f_locks, &old->f_locks, sizeof(old->f_locks)); old->f_kmutex_sz = 0; old->f_krwlock_sz = 0; old->f_defpass = fiop->f_defpass; old->f_active = fiop->f_active; old->f_running = fiop->f_running; old->f_logging = fiop->f_logging; old->f_features = fiop->f_features; sprintf(old->f_version, "IP Filter: v%d.%d.%d", (rev / 1000000) % 100, (rev / 10000) % 100, (rev / 100) % 100); } /* * nflags is v5 flags, returns v4 flags. */ static int fr_frflags5to4(nflags) u_32_t nflags; { u_32_t oflags = 0; switch (nflags & FR_CMDMASK) { case FR_CALL : oflags = 0x0; break; case FR_BLOCK : oflags = 0x1; break; case FR_PASS : oflags = 0x2; break; case FR_AUTH : oflags = 0x3; break; case FR_PREAUTH : oflags = 0x4; break; case FR_ACCOUNT : oflags = 0x5; break; case FR_SKIP : oflags = 0x6; break; default : break; } if (nflags & FR_LOG) oflags |= 0x00010; if (nflags & FR_CALLNOW) oflags |= 0x00020; if (nflags & FR_NOTSRCIP) oflags |= 0x00080; if (nflags & FR_NOTDSTIP) oflags |= 0x00040; if (nflags & FR_QUICK) oflags |= 0x00100; if (nflags & FR_KEEPFRAG) oflags |= 0x00200; if (nflags & FR_KEEPSTATE) oflags |= 0x00400; if (nflags & FR_FASTROUTE) oflags |= 0x00800; if (nflags & FR_RETRST) oflags |= 0x01000; if (nflags & FR_RETICMP) oflags |= 0x02000; if (nflags & FR_FAKEICMP) oflags |= 0x03000; if (nflags & FR_OUTQUE) oflags |= 0x04000; if (nflags & FR_INQUE) oflags |= 0x08000; if (nflags & FR_LOGBODY) oflags |= 0x10000; if (nflags & FR_LOGFIRST) oflags |= 0x20000; if (nflags & FR_LOGORBLOCK) oflags |= 0x40000; if (nflags & FR_FRSTRICT) oflags |= 0x100000; if (nflags & FR_STSTRICT) oflags |= 0x200000; if (nflags & FR_NEWISN) oflags |= 0x400000; if (nflags & FR_NOICMPERR) oflags |= 0x800000; if (nflags & FR_STATESYNC) oflags |= 0x1000000; if (nflags & FR_NOMATCH) oflags |= 0x8000000; if (nflags & FR_COPIED) oflags |= 0x40000000; if (nflags & FR_INACTIVE) oflags |= 0x80000000; return oflags; } static void frentry_current_to_4_1_34(current, old) void *current; frentry_4_1_34_t *old; { frentry_t *fr = (frentry_t *)current; old->fr_lock = fr->fr_lock; old->fr_next = fr->fr_next; old->fr_grp = (void *)fr->fr_grp; old->fr_isc = fr->fr_isc; old->fr_ifas[0] = fr->fr_ifas[0]; old->fr_ifas[1] = fr->fr_ifas[1]; old->fr_ifas[2] = fr->fr_ifas[2]; old->fr_ifas[3] = fr->fr_ifas[3]; old->fr_ptr = fr->fr_ptr; old->fr_comment = NULL; old->fr_ref = fr->fr_ref; old->fr_statecnt = fr->fr_statecnt; old->fr_hits = fr->fr_hits; old->fr_bytes = fr->fr_bytes; old->fr_lastpkt.tv_sec = fr->fr_lastpkt.tv_sec; old->fr_lastpkt.tv_usec = fr->fr_lastpkt.tv_usec; old->fr_curpps = fr->fr_curpps; old->fr_dun.fru_data = fr->fr_dun.fru_data; old->fr_func = fr->fr_func; old->fr_dsize = fr->fr_dsize; old->fr_pps = fr->fr_pps; old->fr_statemax = fr->fr_statemax; old->fr_flineno = fr->fr_flineno; old->fr_type = fr->fr_type; old->fr_flags = fr_frflags5to4(fr->fr_flags); old->fr_logtag = fr->fr_logtag; old->fr_collect = fr->fr_collect; old->fr_arg = fr->fr_arg; old->fr_loglevel = fr->fr_loglevel; old->fr_age[0] = fr->fr_age[0]; old->fr_age[1] = fr->fr_age[1]; if (fr->fr_family == AF_INET) old->fr_v = 4; if (fr->fr_family == AF_INET6) old->fr_v = 6; old->fr_icode = fr->fr_icode; old->fr_cksum = fr->fr_cksum; old->fr_tifs[0].ofd_ip6 = fr->fr_tifs[0].fd_ip6; old->fr_tifs[1].ofd_ip6 = fr->fr_tifs[0].fd_ip6; old->fr_dif.ofd_ip6 = fr->fr_dif.fd_ip6; if (fr->fr_ifnames[0] >= 0) { strncpy(old->fr_ifnames[0], fr->fr_names + fr->fr_ifnames[0], LIFNAMSIZ); old->fr_ifnames[0][LIFNAMSIZ - 1] = '\0'; } if (fr->fr_ifnames[1] >= 0) { strncpy(old->fr_ifnames[1], fr->fr_names + fr->fr_ifnames[1], LIFNAMSIZ); old->fr_ifnames[1][LIFNAMSIZ - 1] = '\0'; } if (fr->fr_ifnames[2] >= 0) { strncpy(old->fr_ifnames[2], fr->fr_names + fr->fr_ifnames[2], LIFNAMSIZ); old->fr_ifnames[2][LIFNAMSIZ - 1] = '\0'; } if (fr->fr_ifnames[3] >= 0) { strncpy(old->fr_ifnames[3], fr->fr_names + fr->fr_ifnames[3], LIFNAMSIZ); old->fr_ifnames[3][LIFNAMSIZ - 1] = '\0'; } if (fr->fr_tifs[0].fd_name >= 0) { strncpy(old->fr_tifs[0].fd_ifname, fr->fr_names + fr->fr_tifs[0].fd_name, LIFNAMSIZ); old->fr_tifs[0].fd_ifname[LIFNAMSIZ - 1] = '\0'; } if (fr->fr_tifs[1].fd_name >= 0) { strncpy(old->fr_tifs[1].fd_ifname, fr->fr_names + fr->fr_tifs[1].fd_name, LIFNAMSIZ); old->fr_tifs[1].fd_ifname[LIFNAMSIZ - 1] = '\0'; } if (fr->fr_dif.fd_name >= 0) { strncpy(old->fr_dif.fd_ifname, fr->fr_names + fr->fr_dif.fd_name, LIFNAMSIZ); old->fr_dif.fd_ifname[LIFNAMSIZ - 1] = '\0'; } if (fr->fr_group >= 0) { strncpy(old->fr_group, fr->fr_names + fr->fr_group, FR_GROUPLEN); old->fr_group[FR_GROUPLEN - 1] = '\0'; } if (fr->fr_grhead >= 0) { strncpy(old->fr_grhead, fr->fr_names + fr->fr_grhead, FR_GROUPLEN); old->fr_grhead[FR_GROUPLEN - 1] = '\0'; } } static void frentry_current_to_4_1_16(current, old) void *current; frentry_4_1_16_t *old; { frentry_t *fr = (frentry_t *)current; old->fr_lock = fr->fr_lock; old->fr_next = fr->fr_next; old->fr_grp = (void *)fr->fr_grp; old->fr_isc = fr->fr_isc; old->fr_ifas[0] = fr->fr_ifas[0]; old->fr_ifas[1] = fr->fr_ifas[1]; old->fr_ifas[2] = fr->fr_ifas[2]; old->fr_ifas[3] = fr->fr_ifas[3]; old->fr_ptr = fr->fr_ptr; old->fr_comment = NULL; old->fr_ref = fr->fr_ref; old->fr_statecnt = fr->fr_statecnt; old->fr_hits = fr->fr_hits; old->fr_bytes = fr->fr_bytes; old->fr_lastpkt.tv_sec = fr->fr_lastpkt.tv_sec; old->fr_lastpkt.tv_usec = fr->fr_lastpkt.tv_usec; old->fr_curpps = fr->fr_curpps; old->fr_dun.fru_data = fr->fr_dun.fru_data; old->fr_func = fr->fr_func; old->fr_dsize = fr->fr_dsize; old->fr_pps = fr->fr_pps; old->fr_statemax = fr->fr_statemax; old->fr_flineno = fr->fr_flineno; old->fr_type = fr->fr_type; old->fr_flags = fr_frflags5to4(fr->fr_flags); old->fr_logtag = fr->fr_logtag; old->fr_collect = fr->fr_collect; old->fr_arg = fr->fr_arg; old->fr_loglevel = fr->fr_loglevel; old->fr_age[0] = fr->fr_age[0]; old->fr_age[1] = fr->fr_age[1]; if (old->fr_v == 4) fr->fr_family = AF_INET; if (old->fr_v == 6) fr->fr_family = AF_INET6; old->fr_icode = fr->fr_icode; old->fr_cksum = fr->fr_cksum; old->fr_tifs[0].ofd_ip6 = fr->fr_tifs[0].fd_ip6; old->fr_tifs[1].ofd_ip6 = fr->fr_tifs[0].fd_ip6; old->fr_dif.ofd_ip6 = fr->fr_dif.fd_ip6; if (fr->fr_ifnames[0] >= 0) { strncpy(old->fr_ifnames[0], fr->fr_names + fr->fr_ifnames[0], LIFNAMSIZ); old->fr_ifnames[0][LIFNAMSIZ - 1] = '\0'; } if (fr->fr_ifnames[1] >= 0) { strncpy(old->fr_ifnames[1], fr->fr_names + fr->fr_ifnames[1], LIFNAMSIZ); old->fr_ifnames[1][LIFNAMSIZ - 1] = '\0'; } if (fr->fr_ifnames[2] >= 0) { strncpy(old->fr_ifnames[2], fr->fr_names + fr->fr_ifnames[2], LIFNAMSIZ); old->fr_ifnames[2][LIFNAMSIZ - 1] = '\0'; } if (fr->fr_ifnames[3] >= 0) { strncpy(old->fr_ifnames[3], fr->fr_names + fr->fr_ifnames[3], LIFNAMSIZ); old->fr_ifnames[3][LIFNAMSIZ - 1] = '\0'; } if (fr->fr_tifs[0].fd_name >= 0) { strncpy(old->fr_tifs[0].fd_ifname, fr->fr_names + fr->fr_tifs[0].fd_name, LIFNAMSIZ); old->fr_tifs[0].fd_ifname[LIFNAMSIZ - 1] = '\0'; } if (fr->fr_tifs[1].fd_name >= 0) { strncpy(old->fr_tifs[1].fd_ifname, fr->fr_names + fr->fr_tifs[1].fd_name, LIFNAMSIZ); old->fr_tifs[1].fd_ifname[LIFNAMSIZ - 1] = '\0'; } if (fr->fr_dif.fd_name >= 0) { strncpy(old->fr_dif.fd_ifname, fr->fr_names + fr->fr_dif.fd_name, LIFNAMSIZ); old->fr_dif.fd_ifname[LIFNAMSIZ - 1] = '\0'; } if (fr->fr_group >= 0) { strncpy(old->fr_group, fr->fr_names + fr->fr_group, FR_GROUPLEN); old->fr_group[FR_GROUPLEN - 1] = '\0'; } if (fr->fr_grhead >= 0) { strncpy(old->fr_grhead, fr->fr_names + fr->fr_grhead, FR_GROUPLEN); old->fr_grhead[FR_GROUPLEN - 1] = '\0'; } } static void frentry_current_to_4_1_0(current, old) void *current; frentry_4_1_0_t *old; { frentry_t *fr = (frentry_t *)current; old->fr_lock = fr->fr_lock; old->fr_next = fr->fr_next; old->fr_grp = (void *)fr->fr_grp; old->fr_isc = fr->fr_isc; old->fr_ifas[0] = fr->fr_ifas[0]; old->fr_ifas[1] = fr->fr_ifas[1]; old->fr_ifas[2] = fr->fr_ifas[2]; old->fr_ifas[3] = fr->fr_ifas[3]; old->fr_ptr = fr->fr_ptr; old->fr_comment = NULL; old->fr_ref = fr->fr_ref; old->fr_statecnt = fr->fr_statecnt; old->fr_hits = fr->fr_hits; old->fr_bytes = fr->fr_bytes; old->fr_lastpkt.tv_sec = fr->fr_lastpkt.tv_sec; old->fr_lastpkt.tv_usec = fr->fr_lastpkt.tv_usec; old->fr_curpps = fr->fr_curpps; old->fr_dun.fru_data = fr->fr_dun.fru_data; old->fr_func = fr->fr_func; old->fr_dsize = fr->fr_dsize; old->fr_pps = fr->fr_pps; old->fr_statemax = fr->fr_statemax; old->fr_flineno = fr->fr_flineno; old->fr_type = fr->fr_type; old->fr_flags = fr_frflags5to4(fr->fr_flags); old->fr_logtag = fr->fr_logtag; old->fr_collect = fr->fr_collect; old->fr_arg = fr->fr_arg; old->fr_loglevel = fr->fr_loglevel; old->fr_age[0] = fr->fr_age[0]; old->fr_age[1] = fr->fr_age[1]; if (old->fr_v == 4) fr->fr_family = AF_INET; if (old->fr_v == 6) fr->fr_family = AF_INET6; old->fr_icode = fr->fr_icode; old->fr_cksum = fr->fr_cksum; old->fr_tifs[0].ofd_ip6 = fr->fr_tifs[0].fd_ip6; old->fr_tifs[1].ofd_ip6 = fr->fr_tifs[0].fd_ip6; old->fr_dif.ofd_ip6 = fr->fr_dif.fd_ip6; if (fr->fr_ifnames[0] >= 0) { strncpy(old->fr_ifnames[0], fr->fr_names + fr->fr_ifnames[0], LIFNAMSIZ); old->fr_ifnames[0][LIFNAMSIZ - 1] = '\0'; } if (fr->fr_ifnames[1] >= 0) { strncpy(old->fr_ifnames[1], fr->fr_names + fr->fr_ifnames[1], LIFNAMSIZ); old->fr_ifnames[1][LIFNAMSIZ - 1] = '\0'; } if (fr->fr_ifnames[2] >= 0) { strncpy(old->fr_ifnames[2], fr->fr_names + fr->fr_ifnames[2], LIFNAMSIZ); old->fr_ifnames[2][LIFNAMSIZ - 1] = '\0'; } if (fr->fr_ifnames[3] >= 0) { strncpy(old->fr_ifnames[3], fr->fr_names + fr->fr_ifnames[3], LIFNAMSIZ); old->fr_ifnames[3][LIFNAMSIZ - 1] = '\0'; } if (fr->fr_tifs[0].fd_name >= 0) { strncpy(old->fr_tifs[0].fd_ifname, fr->fr_names + fr->fr_tifs[0].fd_name, LIFNAMSIZ); old->fr_tifs[0].fd_ifname[LIFNAMSIZ - 1] = '\0'; } if (fr->fr_tifs[1].fd_name >= 0) { strncpy(old->fr_tifs[1].fd_ifname, fr->fr_names + fr->fr_tifs[1].fd_name, LIFNAMSIZ); old->fr_tifs[1].fd_ifname[LIFNAMSIZ - 1] = '\0'; } if (fr->fr_dif.fd_name >= 0) { strncpy(old->fr_dif.fd_ifname, fr->fr_names + fr->fr_dif.fd_name, LIFNAMSIZ); old->fr_dif.fd_ifname[LIFNAMSIZ - 1] = '\0'; } if (fr->fr_group >= 0) { strncpy(old->fr_group, fr->fr_names + fr->fr_group, FR_GROUPLEN); old->fr_group[FR_GROUPLEN - 1] = '\0'; } if (fr->fr_grhead >= 0) { strncpy(old->fr_grhead, fr->fr_names + fr->fr_grhead, FR_GROUPLEN); old->fr_grhead[FR_GROUPLEN - 1] = '\0'; } } static void fr_info_current_to_4_1_24(current, old) void *current; fr_info_4_1_24_t *old; { fr_info_t *fin = (fr_info_t *)current; old->fin_ifp = fin->fin_ifp; ipf_v5iptov4(&fin->fin_fi, &old->fin_fi); bcopy(&fin->fin_dat, &old->fin_dat, sizeof(fin->fin_dat)); old->fin_out = fin->fin_out; old->fin_rev = fin->fin_rev; old->fin_hlen = fin->fin_hlen; old->ofin_tcpf = fin->fin_tcpf; old->fin_icode = fin->fin_icode; old->fin_rule = fin->fin_rule; bcopy(fin->fin_group, old->fin_group, sizeof(fin->fin_group)); old->fin_fr = fin->fin_fr; old->fin_dp = fin->fin_dp; old->fin_dlen = fin->fin_dlen; old->fin_plen = fin->fin_plen; old->fin_ipoff = fin->fin_ipoff; old->fin_id = fin->fin_id; old->fin_off = fin->fin_off; old->fin_depth = fin->fin_depth; old->fin_error = fin->fin_error; old->fin_cksum = fin->fin_cksum; old->fin_state = NULL; old->fin_nat = NULL; old->fin_nattag = fin->fin_nattag; old->fin_exthdr = NULL; old->ofin_ip = fin->fin_ip; old->fin_mp = fin->fin_mp; old->fin_m = fin->fin_m; -#ifdef MENTAT +#if SOLARIS old->fin_qfm = fin->fin_qfm; old->fin_qpi = fin->fin_qpi; old->fin_ifname[0] = '\0'; #endif } static void fr_info_current_to_4_1_23(current, old) void *current; fr_info_4_1_23_t *old; { fr_info_t *fin = (fr_info_t *)current; old->fin_ifp = fin->fin_ifp; ipf_v5iptov4(&fin->fin_fi, &old->fin_fi); bcopy(&fin->fin_dat, &old->fin_dat, sizeof(fin->fin_dat)); old->fin_out = fin->fin_out; old->fin_rev = fin->fin_rev; old->fin_hlen = fin->fin_hlen; old->ofin_tcpf = fin->fin_tcpf; old->fin_icode = fin->fin_icode; old->fin_rule = fin->fin_rule; bcopy(fin->fin_group, old->fin_group, sizeof(fin->fin_group)); old->fin_fr = fin->fin_fr; old->fin_dp = fin->fin_dp; old->fin_dlen = fin->fin_dlen; old->fin_plen = fin->fin_plen; old->fin_ipoff = fin->fin_ipoff; old->fin_id = fin->fin_id; old->fin_off = fin->fin_off; old->fin_depth = fin->fin_depth; old->fin_error = fin->fin_error; old->fin_state = NULL; old->fin_nat = NULL; old->fin_nattag = fin->fin_nattag; old->ofin_ip = fin->fin_ip; old->fin_mp = fin->fin_mp; old->fin_m = fin->fin_m; -#ifdef MENTAT +#if SOLARIS old->fin_qfm = fin->fin_qfm; old->fin_qpi = fin->fin_qpi; old->fin_ifname[0] = '\0'; #endif } static void fr_info_current_to_4_1_11(current, old) void *current; fr_info_4_1_11_t *old; { fr_info_t *fin = (fr_info_t *)current; old->fin_ifp = fin->fin_ifp; ipf_v5iptov4(&fin->fin_fi, &old->fin_fi); bcopy(&fin->fin_dat, &old->fin_dat, sizeof(fin->fin_dat)); old->fin_out = fin->fin_out; old->fin_rev = fin->fin_rev; old->fin_hlen = fin->fin_hlen; old->ofin_tcpf = fin->fin_tcpf; old->fin_icode = fin->fin_icode; old->fin_rule = fin->fin_rule; bcopy(fin->fin_group, old->fin_group, sizeof(fin->fin_group)); old->fin_fr = fin->fin_fr; old->fin_dp = fin->fin_dp; old->fin_dlen = fin->fin_dlen; old->fin_plen = fin->fin_plen; old->fin_ipoff = fin->fin_ipoff; old->fin_id = fin->fin_id; old->fin_off = fin->fin_off; old->fin_depth = fin->fin_depth; old->fin_error = fin->fin_error; old->fin_state = NULL; old->fin_nat = NULL; old->fin_nattag = fin->fin_nattag; old->ofin_ip = fin->fin_ip; old->fin_mp = fin->fin_mp; old->fin_m = fin->fin_m; -#ifdef MENTAT +#if SOLARIS old->fin_qfm = fin->fin_qfm; old->fin_qpi = fin->fin_qpi; old->fin_ifname[0] = '\0'; #endif } static void frauth_current_to_4_1_29(current, old) void *current; frauth_4_1_29_t *old; { frauth_t *fra = (frauth_t *)current; old->fra_age = fra->fra_age; old->fra_len = fra->fra_len; old->fra_index = fra->fra_index; old->fra_pass = fra->fra_pass; fr_info_current_to_4_1_24(&fra->fra_info, &old->fra_info); old->fra_buf = fra->fra_buf; old->fra_flx = fra->fra_flx; -#ifdef MENTAT +#if SOLARIS old->fra_q = fra->fra_q; old->fra_m = fra->fra_m; #endif } static void frauth_current_to_4_1_24(current, old) void *current; frauth_4_1_24_t *old; { frauth_t *fra = (frauth_t *)current; old->fra_age = fra->fra_age; old->fra_len = fra->fra_len; old->fra_index = fra->fra_index; old->fra_pass = fra->fra_pass; fr_info_current_to_4_1_24(&fra->fra_info, &old->fra_info); old->fra_buf = fra->fra_buf; -#ifdef MENTAT +#if SOLARIS old->fra_q = fra->fra_q; old->fra_m = fra->fra_m; #endif } static void frauth_current_to_4_1_23(current, old) void *current; frauth_4_1_23_t *old; { frauth_t *fra = (frauth_t *)current; old->fra_age = fra->fra_age; old->fra_len = fra->fra_len; old->fra_index = fra->fra_index; old->fra_pass = fra->fra_pass; fr_info_current_to_4_1_23(&fra->fra_info, &old->fra_info); old->fra_buf = fra->fra_buf; -#ifdef MENTAT +#if SOLARIS old->fra_q = fra->fra_q; old->fra_m = fra->fra_m; #endif } static void frauth_current_to_4_1_11(current, old) void *current; frauth_4_1_11_t *old; { frauth_t *fra = (frauth_t *)current; old->fra_age = fra->fra_age; old->fra_len = fra->fra_len; old->fra_index = fra->fra_index; old->fra_pass = fra->fra_pass; fr_info_current_to_4_1_11(&fra->fra_info, &old->fra_info); old->fra_buf = fra->fra_buf; -#ifdef MENTAT +#if SOLARIS old->fra_q = fra->fra_q; old->fra_m = fra->fra_m; #endif } static void ipnat_current_to_4_1_14(current, old) void *current; ipnat_4_1_14_t *old; { ipnat_t *np = (ipnat_t *)current; old->in_next = np->in_next; old->in_rnext = np->in_rnext; old->in_prnext = np->in_prnext; old->in_mnext = np->in_mnext; old->in_pmnext = np->in_pmnext; old->in_tqehead[0] = np->in_tqehead[0]; old->in_tqehead[1] = np->in_tqehead[1]; old->in_ifps[0] = np->in_ifps[0]; old->in_ifps[1] = np->in_ifps[1]; old->in_apr = np->in_apr; old->in_comment = np->in_comment; old->in_space = np->in_space; old->in_hits = np->in_hits; old->in_use = np->in_use; old->in_hv = np->in_hv[0]; old->in_flineno = np->in_flineno; if (old->in_redir == NAT_REDIRECT) old->in_pnext = np->in_dpnext; else old->in_pnext = np->in_spnext; old->in_v = np->in_v[0]; old->in_flags = np->in_flags; old->in_mssclamp = np->in_mssclamp; old->in_age[0] = np->in_age[0]; old->in_age[1] = np->in_age[1]; old->in_redir = np->in_redir; old->in_p = np->in_pr[0]; if (np->in_redir == NAT_REDIRECT) { old->in_next6 = np->in_ndst.na_nextaddr; old->in_in[0] = np->in_ndst.na_addr[0]; old->in_in[1] = np->in_ndst.na_addr[1]; old->in_out[0] = np->in_odst.na_addr[0]; old->in_out[1] = np->in_odst.na_addr[1]; old->in_src[0] = np->in_osrc.na_addr[0]; old->in_src[1] = np->in_osrc.na_addr[1]; } else { old->in_next6 = np->in_nsrc.na_nextaddr; old->in_out[0] = np->in_nsrc.na_addr[0]; old->in_out[1] = np->in_nsrc.na_addr[1]; old->in_in[0] = np->in_osrc.na_addr[0]; old->in_in[1] = np->in_osrc.na_addr[1]; old->in_src[0] = np->in_odst.na_addr[0]; old->in_src[1] = np->in_odst.na_addr[1]; } ipfv5tuctov4(&np->in_tuc, &old->in_tuc); if (np->in_redir == NAT_REDIRECT) { old->in_port[0] = np->in_dpmin; old->in_port[1] = np->in_dpmax; } else { old->in_port[0] = np->in_spmin; old->in_port[1] = np->in_spmax; } old->in_ppip = np->in_ppip; old->in_ippip = np->in_ippip; bcopy(&np->in_tag, &old->in_tag, sizeof(np->in_tag)); if (np->in_ifnames[0] >= 0) { strncpy(old->in_ifnames[0], np->in_names + np->in_ifnames[0], LIFNAMSIZ); old->in_ifnames[0][LIFNAMSIZ - 1] = '\0'; } if (np->in_ifnames[1] >= 0) { strncpy(old->in_ifnames[1], np->in_names + np->in_ifnames[1], LIFNAMSIZ); old->in_ifnames[1][LIFNAMSIZ - 1] = '\0'; } if (np->in_plabel >= 0) { strncpy(old->in_plabel, np->in_names + np->in_plabel, APR_LABELLEN); old->in_plabel[APR_LABELLEN - 1] = '\0'; } } static void ipnat_current_to_4_1_0(current, old) void *current; ipnat_4_1_0_t *old; { ipnat_t *np = (ipnat_t *)current; old->in_next = np->in_next; old->in_rnext = np->in_rnext; old->in_prnext = np->in_prnext; old->in_mnext = np->in_mnext; old->in_pmnext = np->in_pmnext; old->in_tqehead[0] = np->in_tqehead[0]; old->in_tqehead[1] = np->in_tqehead[1]; old->in_ifps[0] = np->in_ifps[0]; old->in_ifps[1] = np->in_ifps[1]; old->in_apr = np->in_apr; old->in_comment = np->in_comment; old->in_space = np->in_space; old->in_hits = np->in_hits; old->in_use = np->in_use; old->in_hv = np->in_hv[0]; old->in_flineno = np->in_flineno; if (old->in_redir == NAT_REDIRECT) old->in_pnext = np->in_dpnext; else old->in_pnext = np->in_spnext; old->in_v = np->in_v[0]; old->in_flags = np->in_flags; old->in_mssclamp = np->in_mssclamp; old->in_age[0] = np->in_age[0]; old->in_age[1] = np->in_age[1]; old->in_redir = np->in_redir; old->in_p = np->in_pr[0]; if (np->in_redir == NAT_REDIRECT) { old->in_next6 = np->in_ndst.na_nextaddr; old->in_in[0] = np->in_ndst.na_addr[0]; old->in_in[1] = np->in_ndst.na_addr[1]; old->in_out[0] = np->in_odst.na_addr[0]; old->in_out[1] = np->in_odst.na_addr[1]; old->in_src[0] = np->in_osrc.na_addr[0]; old->in_src[1] = np->in_osrc.na_addr[1]; } else { old->in_next6 = np->in_nsrc.na_nextaddr; old->in_out[0] = np->in_nsrc.na_addr[0]; old->in_out[1] = np->in_nsrc.na_addr[1]; old->in_in[0] = np->in_osrc.na_addr[0]; old->in_in[1] = np->in_osrc.na_addr[1]; old->in_src[0] = np->in_odst.na_addr[0]; old->in_src[1] = np->in_odst.na_addr[1]; } ipfv5tuctov4(&np->in_tuc, &old->in_tuc); if (np->in_redir == NAT_REDIRECT) { old->in_port[0] = np->in_dpmin; old->in_port[1] = np->in_dpmax; } else { old->in_port[0] = np->in_spmin; old->in_port[1] = np->in_spmax; } old->in_ppip = np->in_ppip; old->in_ippip = np->in_ippip; bcopy(&np->in_tag, &old->in_tag, sizeof(np->in_tag)); if (np->in_ifnames[0] >= 0) { strncpy(old->in_ifnames[0], np->in_names + np->in_ifnames[0], LIFNAMSIZ); old->in_ifnames[0][LIFNAMSIZ - 1] = '\0'; } if (np->in_ifnames[1] >= 0) { strncpy(old->in_ifnames[1], np->in_names + np->in_ifnames[1], LIFNAMSIZ); old->in_ifnames[1][LIFNAMSIZ - 1] = '\0'; } if (np->in_plabel >= 0) { strncpy(old->in_plabel, np->in_names + np->in_plabel, APR_LABELLEN); old->in_plabel[APR_LABELLEN - 1] = '\0'; } } static void ipstate_current_to_4_1_16(current, old) void *current; ipstate_4_1_16_t *old; { ipstate_t *is = (ipstate_t *)current; old->is_lock = is->is_lock; old->is_next = is->is_next; old->is_pnext = is->is_pnext; old->is_hnext = is->is_hnext; old->is_phnext = is->is_phnext; old->is_me = is->is_me; old->is_ifp[0] = is->is_ifp[0]; old->is_ifp[1] = is->is_ifp[1]; old->is_sync = is->is_sync; old->is_rule = is->is_rule; old->is_tqehead[0] = is->is_tqehead[0]; old->is_tqehead[1] = is->is_tqehead[1]; old->is_isc = is->is_isc; old->is_pkts[0] = is->is_pkts[0]; old->is_pkts[1] = is->is_pkts[1]; old->is_pkts[2] = is->is_pkts[2]; old->is_pkts[3] = is->is_pkts[3]; old->is_bytes[0] = is->is_bytes[0]; old->is_bytes[1] = is->is_bytes[1]; old->is_bytes[2] = is->is_bytes[2]; old->is_bytes[3] = is->is_bytes[3]; old->is_icmppkts[0] = is->is_icmppkts[0]; old->is_icmppkts[1] = is->is_icmppkts[1]; old->is_icmppkts[2] = is->is_icmppkts[2]; old->is_icmppkts[3] = is->is_icmppkts[3]; old->is_sti = is->is_sti; old->is_frage[0] = is->is_frage[0]; old->is_frage[1] = is->is_frage[1]; old->is_ref = is->is_ref; old->is_isninc[0] = is->is_isninc[0]; old->is_isninc[1] = is->is_isninc[1]; old->is_sumd[0] = is->is_sumd[0]; old->is_sumd[1] = is->is_sumd[1]; old->is_src = is->is_src; old->is_dst = is->is_dst; old->is_pass = is->is_pass; old->is_p = is->is_p; old->is_v = is->is_v; old->is_hv = is->is_hv; old->is_tag = is->is_tag; old->is_opt[0] = is->is_opt[0]; old->is_opt[1] = is->is_opt[1]; old->is_optmsk[0] = is->is_optmsk[0]; old->is_optmsk[1] = is->is_optmsk[1]; old->is_sec = is->is_sec; old->is_secmsk = is->is_secmsk; old->is_auth = is->is_auth; old->is_authmsk = is->is_authmsk; ipf_v5tcpinfoto4(&is->is_tcp, &old->is_tcp); old->is_flags = is->is_flags; old->is_flx[0][0] = is->is_flx[0][0]; old->is_flx[0][1] = is->is_flx[0][1]; old->is_flx[1][0] = is->is_flx[1][0]; old->is_flx[1][1] = is->is_flx[1][1]; old->is_rulen = is->is_rulen; old->is_s0[0] = is->is_s0[0]; old->is_s0[1] = is->is_s0[1]; old->is_smsk[0] = is->is_smsk[0]; old->is_smsk[1] = is->is_smsk[1]; bcopy(is->is_group, old->is_group, sizeof(is->is_group)); bcopy(is->is_sbuf, old->is_sbuf, sizeof(is->is_sbuf)); bcopy(is->is_ifname, old->is_ifname, sizeof(is->is_ifname)); } static void ipstate_current_to_4_1_0(current, old) void *current; ipstate_4_1_0_t *old; { ipstate_t *is = (ipstate_t *)current; old->is_lock = is->is_lock; old->is_next = is->is_next; old->is_pnext = is->is_pnext; old->is_hnext = is->is_hnext; old->is_phnext = is->is_phnext; old->is_me = is->is_me; old->is_ifp[0] = is->is_ifp[0]; old->is_ifp[1] = is->is_ifp[1]; old->is_sync = is->is_sync; bzero(&old->is_nat, sizeof(old->is_nat)); old->is_rule = is->is_rule; old->is_tqehead[0] = is->is_tqehead[0]; old->is_tqehead[1] = is->is_tqehead[1]; old->is_isc = is->is_isc; old->is_pkts[0] = is->is_pkts[0]; old->is_pkts[1] = is->is_pkts[1]; old->is_pkts[2] = is->is_pkts[2]; old->is_pkts[3] = is->is_pkts[3]; old->is_bytes[0] = is->is_bytes[0]; old->is_bytes[1] = is->is_bytes[1]; old->is_bytes[2] = is->is_bytes[2]; old->is_bytes[3] = is->is_bytes[3]; old->is_icmppkts[0] = is->is_icmppkts[0]; old->is_icmppkts[1] = is->is_icmppkts[1]; old->is_icmppkts[2] = is->is_icmppkts[2]; old->is_icmppkts[3] = is->is_icmppkts[3]; old->is_sti = is->is_sti; old->is_frage[0] = is->is_frage[0]; old->is_frage[1] = is->is_frage[1]; old->is_ref = is->is_ref; old->is_isninc[0] = is->is_isninc[0]; old->is_isninc[1] = is->is_isninc[1]; old->is_sumd[0] = is->is_sumd[0]; old->is_sumd[1] = is->is_sumd[1]; old->is_src = is->is_src; old->is_dst = is->is_dst; old->is_pass = is->is_pass; old->is_p = is->is_p; old->is_v = is->is_v; old->is_hv = is->is_hv; old->is_tag = is->is_tag; old->is_opt[0] = is->is_opt[0]; old->is_opt[1] = is->is_opt[1]; old->is_optmsk[0] = is->is_optmsk[0]; old->is_optmsk[1] = is->is_optmsk[1]; old->is_sec = is->is_sec; old->is_secmsk = is->is_secmsk; old->is_auth = is->is_auth; old->is_authmsk = is->is_authmsk; ipf_v5tcpinfoto4(&is->is_tcp, &old->is_tcp); old->is_flags = is->is_flags; old->is_flx[0][0] = is->is_flx[0][0]; old->is_flx[0][1] = is->is_flx[0][1]; old->is_flx[1][0] = is->is_flx[1][0]; old->is_flx[1][1] = is->is_flx[1][1]; old->is_rulen = is->is_rulen; old->is_s0[0] = is->is_s0[0]; old->is_s0[1] = is->is_s0[1]; old->is_smsk[0] = is->is_smsk[0]; old->is_smsk[1] = is->is_smsk[1]; bcopy(is->is_group, old->is_group, sizeof(is->is_group)); bcopy(is->is_sbuf, old->is_sbuf, sizeof(is->is_sbuf)); bcopy(is->is_ifname, old->is_ifname, sizeof(is->is_ifname)); } static void ips_stat_current_to_4_1_21(current, old) void *current; ips_stat_4_1_21_t *old; { ips_stat_t *st = (ips_stat_t *)current; old->iss_hits = st->iss_hits; old->iss_miss = st->iss_check_miss; old->iss_max = st->iss_max; old->iss_maxref = st->iss_max_ref; old->iss_tcp = st->iss_proto[IPPROTO_TCP]; old->iss_udp = st->iss_proto[IPPROTO_UDP]; old->iss_icmp = st->iss_proto[IPPROTO_ICMP]; old->iss_nomem = st->iss_nomem; old->iss_expire = st->iss_expire; old->iss_fin = st->iss_fin; old->iss_active = st->iss_active; old->iss_logged = st->iss_log_ok; old->iss_logfail = st->iss_log_fail; old->iss_inuse = st->iss_inuse; old->iss_wild = st->iss_wild; old->iss_ticks = st->iss_ticks; old->iss_bucketfull = st->iss_bucket_full; old->iss_statesize = st->iss_state_size; old->iss_statemax = st->iss_state_max; old->iss_table = st->iss_table; old->iss_list = st->iss_list; old->iss_bucketlen = (void *)st->iss_bucketlen; old->iss_tcptab = st->iss_tcptab; } static void ips_stat_current_to_4_1_0(current, old) void *current; ips_stat_4_1_0_t *old; { ips_stat_t *st = (ips_stat_t *)current; old->iss_hits = st->iss_hits; old->iss_miss = st->iss_check_miss; old->iss_max = st->iss_max; old->iss_maxref = st->iss_max_ref; old->iss_tcp = st->iss_proto[IPPROTO_TCP]; old->iss_udp = st->iss_proto[IPPROTO_UDP]; old->iss_icmp = st->iss_proto[IPPROTO_ICMP]; old->iss_nomem = st->iss_nomem; old->iss_expire = st->iss_expire; old->iss_fin = st->iss_fin; old->iss_active = st->iss_active; old->iss_logged = st->iss_log_ok; old->iss_logfail = st->iss_log_fail; old->iss_inuse = st->iss_inuse; old->iss_wild = st->iss_wild; old->iss_ticks = st->iss_ticks; old->iss_bucketfull = st->iss_bucket_full; old->iss_statesize = st->iss_state_size; old->iss_statemax = st->iss_state_max; old->iss_table = st->iss_table; old->iss_list = st->iss_list; old->iss_bucketlen = (void *)st->iss_bucketlen; } static void nat_save_current_to_4_1_16(current, old) void *current; nat_save_4_1_16_t *old; { nat_save_t *nats = (nat_save_t *)current; old->ipn_next = nats->ipn_next; bcopy(&nats->ipn_nat, &old->ipn_nat, sizeof(old->ipn_nat)); bcopy(&nats->ipn_ipnat, &old->ipn_ipnat, sizeof(old->ipn_ipnat)); frentry_current_to_4_1_16(&nats->ipn_fr, &old->ipn_fr); old->ipn_dsize = nats->ipn_dsize; bcopy(nats->ipn_data, old->ipn_data, sizeof(nats->ipn_data)); } static void nat_save_current_to_4_1_14(current, old) void *current; nat_save_4_1_14_t *old; { nat_save_t *nats = (nat_save_t *)current; old->ipn_next = nats->ipn_next; bcopy(&nats->ipn_nat, &old->ipn_nat, sizeof(old->ipn_nat)); bcopy(&nats->ipn_ipnat, &old->ipn_ipnat, sizeof(old->ipn_ipnat)); frentry_current_to_4_1_0(&nats->ipn_fr, &old->ipn_fr); old->ipn_dsize = nats->ipn_dsize; bcopy(nats->ipn_data, old->ipn_data, sizeof(nats->ipn_data)); } static void nat_save_current_to_4_1_3(current, old) void *current; nat_save_4_1_3_t *old; { nat_save_t *nats = (nat_save_t *)current; old->ipn_next = nats->ipn_next; bcopy(&nats->ipn_nat, &old->ipn_nat, sizeof(old->ipn_nat)); bcopy(&nats->ipn_ipnat, &old->ipn_ipnat, sizeof(old->ipn_ipnat)); frentry_current_to_4_1_0(&nats->ipn_fr, &old->ipn_fr); old->ipn_dsize = nats->ipn_dsize; bcopy(nats->ipn_data, old->ipn_data, sizeof(nats->ipn_data)); } static void nat_current_to_4_1_25(current, old) void *current; nat_4_1_25_t *old; { nat_t *nat = (nat_t *)current; old->nat_lock = nat->nat_lock; old->nat_next = (void *)nat->nat_next; old->nat_pnext = (void *)nat->nat_pnext; old->nat_hnext[0] = (void *)nat->nat_hnext[0]; old->nat_hnext[1] = (void *)nat->nat_hnext[1]; old->nat_phnext[0] = (void *)nat->nat_phnext[0]; old->nat_phnext[1] = (void *)nat->nat_phnext[1]; old->nat_hm = nat->nat_hm; old->nat_data = nat->nat_data; old->nat_me = (void *)nat->nat_me; old->nat_state = nat->nat_state; old->nat_aps = nat->nat_aps; old->nat_fr = nat->nat_fr; old->nat_ptr = (void *)nat->nat_ptr; old->nat_ifps[0] = nat->nat_ifps[0]; old->nat_ifps[1] = nat->nat_ifps[1]; old->nat_sync = nat->nat_sync; old->nat_tqe = nat->nat_tqe; old->nat_flags = nat->nat_flags; old->nat_sumd[0] = nat->nat_sumd[0]; old->nat_sumd[1] = nat->nat_sumd[1]; old->nat_ipsumd = nat->nat_ipsumd; old->nat_mssclamp = nat->nat_mssclamp; old->nat_pkts[0] = nat->nat_pkts[0]; old->nat_pkts[1] = nat->nat_pkts[1]; old->nat_bytes[0] = nat->nat_bytes[0]; old->nat_bytes[1] = nat->nat_bytes[1]; old->nat_ref = nat->nat_ref; old->nat_dir = nat->nat_dir; old->nat_p = nat->nat_pr[0]; old->nat_use = nat->nat_use; old->nat_hv[0] = nat->nat_hv[0]; old->nat_hv[1] = nat->nat_hv[1]; old->nat_rev = nat->nat_rev; old->nat_redir = nat->nat_redir; bcopy(nat->nat_ifnames[0], old->nat_ifnames[0], LIFNAMSIZ); bcopy(nat->nat_ifnames[1], old->nat_ifnames[1], LIFNAMSIZ); if (nat->nat_redir == NAT_REDIRECT) { old->nat_inip6 = nat->nat_ndst6; old->nat_outip6 = nat->nat_odst6; old->nat_oip6 = nat->nat_osrc6; old->nat_un.nat_unt.ts_sport = nat->nat_ndport; old->nat_un.nat_unt.ts_dport = nat->nat_odport; } else { old->nat_inip6 = nat->nat_osrc6; old->nat_outip6 = nat->nat_nsrc6; old->nat_oip6 = nat->nat_odst6; old->nat_un.nat_unt.ts_sport = nat->nat_osport; old->nat_un.nat_unt.ts_dport = nat->nat_nsport; } } static void nat_current_to_4_1_14(current, old) void *current; nat_4_1_14_t *old; { nat_t *nat = (nat_t *)current; old->nat_lock = nat->nat_lock; old->nat_next = nat->nat_next; old->nat_pnext = NULL; old->nat_hnext[0] = NULL; old->nat_hnext[1] = NULL; old->nat_phnext[0] = NULL; old->nat_phnext[1] = NULL; old->nat_hm = nat->nat_hm; old->nat_data = nat->nat_data; old->nat_me = (void *)nat->nat_me; old->nat_state = nat->nat_state; old->nat_aps = nat->nat_aps; old->nat_fr = nat->nat_fr; old->nat_ptr = nat->nat_ptr; old->nat_ifps[0] = nat->nat_ifps[0]; old->nat_ifps[1] = nat->nat_ifps[1]; old->nat_sync = nat->nat_sync; old->nat_tqe = nat->nat_tqe; old->nat_flags = nat->nat_flags; old->nat_sumd[0] = nat->nat_sumd[0]; old->nat_sumd[1] = nat->nat_sumd[1]; old->nat_ipsumd = nat->nat_ipsumd; old->nat_mssclamp = nat->nat_mssclamp; old->nat_pkts[0] = nat->nat_pkts[0]; old->nat_pkts[1] = nat->nat_pkts[1]; old->nat_bytes[0] = nat->nat_bytes[0]; old->nat_bytes[1] = nat->nat_bytes[1]; old->nat_ref = nat->nat_ref; old->nat_dir = nat->nat_dir; old->nat_p = nat->nat_pr[0]; old->nat_use = nat->nat_use; old->nat_hv[0] = nat->nat_hv[0]; old->nat_hv[1] = nat->nat_hv[1]; old->nat_rev = nat->nat_rev; bcopy(nat->nat_ifnames[0], old->nat_ifnames[0], LIFNAMSIZ); bcopy(nat->nat_ifnames[1], old->nat_ifnames[1], LIFNAMSIZ); if (nat->nat_redir == NAT_REDIRECT) { old->nat_inip6 = nat->nat_ndst6; old->nat_outip6 = nat->nat_odst6; old->nat_oip6 = nat->nat_osrc6; old->nat_un.nat_unt.ts_sport = nat->nat_ndport; old->nat_un.nat_unt.ts_dport = nat->nat_odport; } else { old->nat_inip6 = nat->nat_osrc6; old->nat_outip6 = nat->nat_nsrc6; old->nat_oip6 = nat->nat_odst6; old->nat_un.nat_unt.ts_sport = nat->nat_osport; old->nat_un.nat_unt.ts_dport = nat->nat_nsport; } } static void nat_current_to_4_1_3(current, old) void *current; nat_4_1_3_t *old; { nat_t *nat = (nat_t *)current; old->nat_lock = nat->nat_lock; old->nat_next = nat->nat_next; old->nat_pnext = NULL; old->nat_hnext[0] = NULL; old->nat_hnext[1] = NULL; old->nat_phnext[0] = NULL; old->nat_phnext[1] = NULL; old->nat_hm = nat->nat_hm; old->nat_data = nat->nat_data; old->nat_me = (void *)nat->nat_me; old->nat_state = nat->nat_state; old->nat_aps = nat->nat_aps; old->nat_fr = nat->nat_fr; old->nat_ptr = nat->nat_ptr; old->nat_ifps[0] = nat->nat_ifps[0]; old->nat_ifps[1] = nat->nat_ifps[1]; old->nat_sync = nat->nat_sync; old->nat_tqe = nat->nat_tqe; old->nat_flags = nat->nat_flags; old->nat_sumd[0] = nat->nat_sumd[0]; old->nat_sumd[1] = nat->nat_sumd[1]; old->nat_ipsumd = nat->nat_ipsumd; old->nat_mssclamp = nat->nat_mssclamp; old->nat_pkts[0] = nat->nat_pkts[0]; old->nat_pkts[1] = nat->nat_pkts[1]; old->nat_bytes[0] = nat->nat_bytes[0]; old->nat_bytes[1] = nat->nat_bytes[1]; old->nat_ref = nat->nat_ref; old->nat_dir = nat->nat_dir; old->nat_p = nat->nat_pr[0]; old->nat_use = nat->nat_use; old->nat_hv[0] = nat->nat_hv[0]; old->nat_hv[1] = nat->nat_hv[1]; old->nat_rev = nat->nat_rev; bcopy(nat->nat_ifnames[0], old->nat_ifnames[0], LIFNAMSIZ); bcopy(nat->nat_ifnames[1], old->nat_ifnames[1], LIFNAMSIZ); if (nat->nat_redir == NAT_REDIRECT) { old->nat_inip6 = nat->nat_ndst6; old->nat_outip6 = nat->nat_odst6; old->nat_oip6 = nat->nat_osrc6; old->nat_un.nat_unt.ts_sport = nat->nat_ndport; old->nat_un.nat_unt.ts_dport = nat->nat_odport; } else { old->nat_inip6 = nat->nat_osrc6; old->nat_outip6 = nat->nat_nsrc6; old->nat_oip6 = nat->nat_odst6; old->nat_un.nat_unt.ts_sport = nat->nat_osport; old->nat_un.nat_unt.ts_dport = nat->nat_nsport; } } #endif /* IPFILTER_COMPAT */ diff --git a/contrib/ipfilter/tools/ipmon.c b/contrib/ipfilter/tools/ipmon.c index 005cd316f91a..f14cef832722 100644 --- a/contrib/ipfilter/tools/ipmon.c +++ b/contrib/ipfilter/tools/ipmon.c @@ -1,1872 +1,1872 @@ /* $FreeBSD$ */ /* * Copyright (C) 2012 by Darren Reed. * * See the IPFILTER.LICENCE file for details on licencing. */ #include "ipf.h" #include "ipmon.h" #include #include #include #include #include #include #if !defined(lint) static const char sccsid[] = "@(#)ipmon.c 1.21 6/5/96 (C)1993-2000 Darren Reed"; static const char rcsid[] = "@(#)$Id$"; #endif #define STRERROR(x) strerror(x) extern int optind; extern char *optarg; extern ipmon_saver_t executesaver; extern ipmon_saver_t filesaver; extern ipmon_saver_t nothingsaver; extern ipmon_saver_t snmpv1saver; extern ipmon_saver_t snmpv2saver; extern ipmon_saver_t syslogsaver; struct flags { int value; char flag; }; typedef struct logsource { int fd; int logtype; char *file; int regular; size_t size; } logsource_t; typedef struct config { int opts; int maxfd; logsource_t logsrc[3]; fd_set fdmr; FILE *blog; char *bfile; FILE *log; char *file; char *cfile; } config_t; typedef struct icmp_subtype { int ist_val; char *ist_name; } icmp_subtype_t; typedef struct icmp_type { int it_val; struct icmp_subtype *it_subtable; size_t it_stsize; char *it_name; } icmp_type_t; #define IST_SZ(x) (sizeof(x)/sizeof(icmp_subtype_t)) struct flags tcpfl[] = { { TH_ACK, 'A' }, { TH_RST, 'R' }, { TH_SYN, 'S' }, { TH_FIN, 'F' }, { TH_URG, 'U' }, { TH_PUSH,'P' }, { TH_ECN, 'E' }, { TH_CWR, 'C' }, { 0, '\0' } }; char *reasons[] = { "filter-rule", "log-or-block_1", "pps-rate", "jumbogram", "makefrip-fail", "state_add-fail", "updateipid-fail", "log-or-block_2", "decap-fail", "auth_new-fail", "auth_captured", "coalesce-fail", "pullup-fail", "auth-feedback", "bad-frag", "natv4_out-fail", "natv4_in-fail", "natv6_out-fail", "natv6_in-fail", }; -#ifdef MENTAT +#if SOLARIS static char *pidfile = "/etc/opt/ipf/ipmon.pid"; #else static char *pidfile = "/var/run/ipmon.pid"; #endif static char line[2048]; static int donehup = 0; static void usage(char *); static void handlehup(int); static void flushlogs(char *, FILE *); static void print_log(config_t *, logsource_t *, char *, int); static void print_ipflog(config_t *, char *, int); static void print_natlog(config_t *, char *, int); static void print_statelog(config_t *, char *, int); static int read_log(int, int *, char *, int); static void write_pid(char *); static char *icmpname(u_int, u_int); static char *icmpname6(u_int, u_int); static icmp_type_t *find_icmptype(int, icmp_type_t *, size_t); static icmp_subtype_t *find_icmpsubtype(int, icmp_subtype_t *, size_t); static struct tm *get_tm(time_t); char *portlocalname(int, char *, u_int); int main(int, char *[]); static void logopts(int, char *); static void init_tabs(void); static char *getlocalproto(u_int); static void openlogs(config_t *conf); static int read_loginfo(config_t *conf); static void initconfig(config_t *conf); static char **protocols = NULL; static char **udp_ports = NULL; static char **tcp_ports = NULL; #define HOSTNAMEV4(b) hostname(AF_INET, (u_32_t *)&(b)) #ifndef LOGFAC #define LOGFAC LOG_LOCAL0 #endif int logfac = LOGFAC; int ipmonopts = 0; int opts = OPT_NORESOLVE; int use_inet6 = 0; static icmp_subtype_t icmpunreachnames[] = { { ICMP_UNREACH_NET, "net" }, { ICMP_UNREACH_HOST, "host" }, { ICMP_UNREACH_PROTOCOL, "protocol" }, { ICMP_UNREACH_PORT, "port" }, { ICMP_UNREACH_NEEDFRAG, "needfrag" }, { ICMP_UNREACH_SRCFAIL, "srcfail" }, { ICMP_UNREACH_NET_UNKNOWN, "net_unknown" }, { ICMP_UNREACH_HOST_UNKNOWN, "host_unknown" }, { ICMP_UNREACH_NET, "isolated" }, { ICMP_UNREACH_NET_PROHIB, "net_prohib" }, { ICMP_UNREACH_NET_PROHIB, "host_prohib" }, { ICMP_UNREACH_TOSNET, "tosnet" }, { ICMP_UNREACH_TOSHOST, "toshost" }, { ICMP_UNREACH_ADMIN_PROHIBIT, "admin_prohibit" }, { -2, NULL } }; static icmp_subtype_t redirectnames[] = { { ICMP_REDIRECT_NET, "net" }, { ICMP_REDIRECT_HOST, "host" }, { ICMP_REDIRECT_TOSNET, "tosnet" }, { ICMP_REDIRECT_TOSHOST, "toshost" }, { -2, NULL } }; static icmp_subtype_t timxceednames[] = { { ICMP_TIMXCEED_INTRANS, "transit" }, { ICMP_TIMXCEED_REASS, "reassem" }, { -2, NULL } }; static icmp_subtype_t paramnames[] = { { ICMP_PARAMPROB_ERRATPTR, "errata_pointer" }, { ICMP_PARAMPROB_OPTABSENT, "optmissing" }, { ICMP_PARAMPROB_LENGTH, "length" }, { -2, NULL } }; static icmp_type_t icmptypes4[] = { { ICMP_ECHOREPLY, NULL, 0, "echoreply" }, { -1, NULL, 0, NULL }, { -1, NULL, 0, NULL }, { ICMP_UNREACH, icmpunreachnames, IST_SZ(icmpunreachnames),"unreach" }, { ICMP_SOURCEQUENCH, NULL, 0, "sourcequench" }, { ICMP_REDIRECT, redirectnames, IST_SZ(redirectnames), "redirect" }, { -1, NULL, 0, NULL }, { -1, NULL, 0, NULL }, { ICMP_ECHO, NULL, 0, "echo" }, { ICMP_ROUTERADVERT, NULL, 0, "routeradvert" }, { ICMP_ROUTERSOLICIT, NULL, 0, "routersolicit" }, { ICMP_TIMXCEED, timxceednames, IST_SZ(timxceednames), "timxceed" }, { ICMP_PARAMPROB, paramnames, IST_SZ(paramnames), "paramprob" }, { ICMP_TSTAMP, NULL, 0, "timestamp" }, { ICMP_TSTAMPREPLY, NULL, 0, "timestampreply" }, { ICMP_IREQ, NULL, 0, "inforeq" }, { ICMP_IREQREPLY, NULL, 0, "inforeply" }, { ICMP_MASKREQ, NULL, 0, "maskreq" }, { ICMP_MASKREPLY, NULL, 0, "maskreply" }, { -2, NULL, 0, NULL } }; static icmp_subtype_t icmpredirect6[] = { { ICMP6_DST_UNREACH_NOROUTE, "noroute" }, { ICMP6_DST_UNREACH_ADMIN, "admin" }, { ICMP6_DST_UNREACH_NOTNEIGHBOR, "neighbour" }, { ICMP6_DST_UNREACH_ADDR, "address" }, { ICMP6_DST_UNREACH_NOPORT, "noport" }, { -2, NULL } }; static icmp_subtype_t icmptimexceed6[] = { { ICMP6_TIME_EXCEED_TRANSIT, "intransit" }, { ICMP6_TIME_EXCEED_REASSEMBLY, "reassem" }, { -2, NULL } }; static icmp_subtype_t icmpparamprob6[] = { { ICMP6_PARAMPROB_HEADER, "header" }, { ICMP6_PARAMPROB_NEXTHEADER, "nextheader" }, { ICMP6_PARAMPROB_OPTION, "option" }, { -2, NULL } }; static icmp_subtype_t icmpquerysubject6[] = { { ICMP6_NI_SUBJ_IPV6, "ipv6" }, { ICMP6_NI_SUBJ_FQDN, "fqdn" }, { ICMP6_NI_SUBJ_IPV4, "ipv4" }, { -2, NULL }, }; static icmp_subtype_t icmpnodeinfo6[] = { { ICMP6_NI_SUCCESS, "success" }, { ICMP6_NI_REFUSED, "refused" }, { ICMP6_NI_UNKNOWN, "unknown" }, { -2, NULL } }; static icmp_subtype_t icmprenumber6[] = { { ICMP6_ROUTER_RENUMBERING_COMMAND, "command" }, { ICMP6_ROUTER_RENUMBERING_RESULT, "result" }, { ICMP6_ROUTER_RENUMBERING_SEQNUM_RESET, "seqnum_reset" }, { -2, NULL } }; static icmp_type_t icmptypes6[] = { { 0, NULL, 0, NULL }, { ICMP6_DST_UNREACH, icmpredirect6, IST_SZ(icmpredirect6), "unreach" }, { ICMP6_PACKET_TOO_BIG, NULL, 0, "toobig" }, { ICMP6_TIME_EXCEEDED, icmptimexceed6, IST_SZ(icmptimexceed6), "timxceed" }, { ICMP6_PARAM_PROB, icmpparamprob6, IST_SZ(icmpparamprob6), "paramprob" }, { ICMP6_ECHO_REQUEST, NULL, 0, "echo" }, { ICMP6_ECHO_REPLY, NULL, 0, "echoreply" }, { ICMP6_MEMBERSHIP_QUERY, icmpquerysubject6, IST_SZ(icmpquerysubject6), "groupmemberquery" }, { ICMP6_MEMBERSHIP_REPORT,NULL, 0, "groupmemberreport" }, { ICMP6_MEMBERSHIP_REDUCTION,NULL, 0, "groupmemberterm" }, { ND_ROUTER_SOLICIT, NULL, 0, "routersolicit" }, { ND_ROUTER_ADVERT, NULL, 0, "routeradvert" }, { ND_NEIGHBOR_SOLICIT, NULL, 0, "neighborsolicit" }, { ND_NEIGHBOR_ADVERT, NULL, 0, "neighboradvert" }, { ND_REDIRECT, NULL, 0, "redirect" }, { ICMP6_ROUTER_RENUMBERING, icmprenumber6, IST_SZ(icmprenumber6), "routerrenumber" }, { ICMP6_WRUREQUEST, NULL, 0, "whoareyourequest" }, { ICMP6_WRUREPLY, NULL, 0, "whoareyoureply" }, { ICMP6_FQDN_QUERY, NULL, 0, "fqdnquery" }, { ICMP6_FQDN_REPLY, NULL, 0, "fqdnreply" }, { ICMP6_NI_QUERY, icmpnodeinfo6, IST_SZ(icmpnodeinfo6), "nodeinforequest" }, { ICMP6_NI_REPLY, NULL, 0, "nodeinforeply" }, { MLD6_MTRACE_RESP, NULL, 0, "mtraceresponse" }, { MLD6_MTRACE, NULL, 0, "mtracerequest" }, { -2, NULL, 0, NULL } }; static icmp_subtype_t *find_icmpsubtype(type, table, tablesz) int type; icmp_subtype_t *table; size_t tablesz; { icmp_subtype_t *ist; int i; if (tablesz < 2) return NULL; if ((type < 0) || (type > table[tablesz - 2].ist_val)) return NULL; i = type; if (table[type].ist_val == type) return table + type; for (i = 0, ist = table; ist->ist_val != -2; i++, ist++) if (ist->ist_val == type) return ist; return NULL; } static icmp_type_t *find_icmptype(type, table, tablesz) int type; icmp_type_t *table; size_t tablesz; { icmp_type_t *it; int i; if (tablesz < 2) return NULL; if ((type < 0) || (type > table[tablesz - 2].it_val)) return NULL; i = type; if (table[type].it_val == type) return table + type; for (i = 0, it = table; it->it_val != -2; i++, it++) if (it->it_val == type) return it; return NULL; } static void handlehup(sig) int sig; { signal(SIGHUP, handlehup); donehup = 1; } static void init_tabs() { struct protoent *p; struct servent *s; char *name, **tab; int port, i; if (protocols != NULL) { for (i = 0; i < 256; i++) if (protocols[i] != NULL) { free(protocols[i]); protocols[i] = NULL; } free(protocols); protocols = NULL; } protocols = (char **)malloc(256 * sizeof(*protocols)); if (protocols != NULL) { bzero((char *)protocols, 256 * sizeof(*protocols)); setprotoent(1); while ((p = getprotoent()) != NULL) if (p->p_proto >= 0 && p->p_proto <= 255 && p->p_name != NULL && protocols[p->p_proto] == NULL) protocols[p->p_proto] = strdup(p->p_name); endprotoent(); if (protocols[0]) free(protocols[0]); protocols[0] = strdup("ip"); } if (udp_ports != NULL) { for (i = 0; i < 65536; i++) if (udp_ports[i] != NULL) { free(udp_ports[i]); udp_ports[i] = NULL; } free(udp_ports); udp_ports = NULL; } udp_ports = (char **)malloc(65536 * sizeof(*udp_ports)); if (udp_ports != NULL) bzero((char *)udp_ports, 65536 * sizeof(*udp_ports)); if (tcp_ports != NULL) { for (i = 0; i < 65536; i++) if (tcp_ports[i] != NULL) { free(tcp_ports[i]); tcp_ports[i] = NULL; } free(tcp_ports); tcp_ports = NULL; } tcp_ports = (char **)malloc(65536 * sizeof(*tcp_ports)); if (tcp_ports != NULL) bzero((char *)tcp_ports, 65536 * sizeof(*tcp_ports)); setservent(1); while ((s = getservent()) != NULL) { if (s->s_proto == NULL) continue; else if (!strcmp(s->s_proto, "tcp")) { port = ntohs(s->s_port); name = s->s_name; tab = tcp_ports; } else if (!strcmp(s->s_proto, "udp")) { port = ntohs(s->s_port); name = s->s_name; tab = udp_ports; } else continue; if ((port < 0 || port > 65535) || (name == NULL)) continue; if (tab != NULL) tab[port] = strdup(name); } endservent(); } static char *getlocalproto(p) u_int p; { static char pnum[4]; char *s; p &= 0xff; s = protocols ? protocols[p] : NULL; if (s == NULL) { sprintf(pnum, "%u", p); s = pnum; } return s; } static int read_log(fd, lenp, buf, bufsize) int fd, bufsize, *lenp; char *buf; { int nr; if (bufsize > IPFILTER_LOGSIZE) bufsize = IPFILTER_LOGSIZE; nr = read(fd, buf, bufsize); if (!nr) return 2; if ((nr < 0) && (errno != EINTR)) return -1; *lenp = nr; return 0; } char *portlocalname(res, proto, port) int res; char *proto; u_int port; { static char pname[8]; char *s; port = ntohs(port); port &= 0xffff; sprintf(pname, "%u", port); if (!res || (ipmonopts & IPMON_PORTNUM)) return pname; s = NULL; if (!strcmp(proto, "tcp")) s = tcp_ports[port]; else if (!strcmp(proto, "udp")) s = udp_ports[port]; if (s == NULL) s = pname; return s; } static char *icmpname(type, code) u_int type; u_int code; { static char name[80]; icmp_subtype_t *ist; icmp_type_t *it; char *s; s = NULL; it = find_icmptype(type, icmptypes4, sizeof(icmptypes4) / sizeof(*it)); if (it != NULL) s = it->it_name; if (s == NULL) sprintf(name, "icmptype(%d)/", type); else sprintf(name, "%s/", s); ist = NULL; if (it != NULL && it->it_subtable != NULL) ist = find_icmpsubtype(code, it->it_subtable, it->it_stsize); if (ist != NULL && ist->ist_name != NULL) strcat(name, ist->ist_name); else sprintf(name + strlen(name), "%d", code); return name; } static char *icmpname6(type, code) u_int type; u_int code; { static char name[80]; icmp_subtype_t *ist; icmp_type_t *it; char *s; s = NULL; it = find_icmptype(type, icmptypes6, sizeof(icmptypes6) / sizeof(*it)); if (it != NULL) s = it->it_name; if (s == NULL) sprintf(name, "icmpv6type(%d)/", type); else sprintf(name, "%s/", s); ist = NULL; if (it != NULL && it->it_subtable != NULL) ist = find_icmpsubtype(code, it->it_subtable, it->it_stsize); if (ist != NULL && ist->ist_name != NULL) strcat(name, ist->ist_name); else sprintf(name + strlen(name), "%d", code); return name; } void dumphex(log, dopts, buf, len) FILE *log; int dopts; char *buf; int len; { char hline[80]; int i, j, k; u_char *s = (u_char *)buf, *t = (u_char *)hline; if (buf == NULL || len == 0) return; *hline = '\0'; for (i = len, j = 0; i; i--, j++, s++) { if (j && !(j & 0xf)) { *t++ = '\n'; *t = '\0'; if ((dopts & IPMON_SYSLOG)) syslog(LOG_INFO, "%s", hline); else if (log != NULL) fputs(hline, log); t = (u_char *)hline; *t = '\0'; } sprintf((char *)t, "%02x", *s & 0xff); t += 2; if (!((j + 1) & 0xf)) { s -= 15; sprintf((char *)t, " "); t += 8; for (k = 16; k; k--, s++) *t++ = (isprint(*s) ? *s : '.'); s--; } if ((j + 1) & 0xf) *t++ = ' ';; } if (j & 0xf) { for (k = 16 - (j & 0xf); k; k--) { *t++ = ' '; *t++ = ' '; *t++ = ' '; } sprintf((char *)t, " "); t += 7; s -= j & 0xf; for (k = j & 0xf; k; k--, s++) *t++ = (isprint(*s) ? *s : '.'); *t++ = '\n'; *t = '\0'; } if ((dopts & IPMON_SYSLOG) != 0) syslog(LOG_INFO, "%s", hline); else if (log != NULL) { fputs(hline, log); fflush(log); } } static struct tm *get_tm(sec) time_t sec; { struct tm *tm; time_t t; t = sec; tm = localtime(&t); return tm; } static void print_natlog(conf, buf, blen) config_t *conf; char *buf; int blen; { static u_32_t seqnum = 0; int res, i, len, family; struct natlog *nl; struct tm *tm; iplog_t *ipl; char *proto; int simple; char *t; t = line; simple = 0; ipl = (iplog_t *)buf; if (ipl->ipl_seqnum != seqnum) { if ((ipmonopts & IPMON_SYSLOG) != 0) { syslog(LOG_WARNING, "missed %u NAT log entries: %u %u", ipl->ipl_seqnum - seqnum, seqnum, ipl->ipl_seqnum); } else { (void) fprintf(conf->log, "missed %u NAT log entries: %u %u\n", ipl->ipl_seqnum - seqnum, seqnum, ipl->ipl_seqnum); } } seqnum = ipl->ipl_seqnum + ipl->ipl_count; nl = (struct natlog *)((char *)ipl + sizeof(*ipl)); res = (ipmonopts & IPMON_RESOLVE) ? 1 : 0; tm = get_tm(ipl->ipl_sec); len = sizeof(line); if (!(ipmonopts & IPMON_SYSLOG)) { (void) strftime(t, len, "%d/%m/%Y ", tm); i = strlen(t); len -= i; t += i; } (void) strftime(t, len, "%T", tm); t += strlen(t); sprintf(t, ".%-.6ld @%hd ", (long)ipl->ipl_usec, nl->nl_rule + 1); t += strlen(t); switch (nl->nl_action) { case NL_NEW : strcpy(t, "NAT:NEW"); break; case NL_FLUSH : strcpy(t, "NAT:FLUSH"); break; case NL_CLONE : strcpy(t, "NAT:CLONE"); break; case NL_EXPIRE : strcpy(t, "NAT:EXPIRE"); break; case NL_DESTROY : strcpy(t, "NAT:DESTROY"); break; case NL_PURGE : strcpy(t, "NAT:PURGE"); break; default : sprintf(t, "NAT:Action(%d)", nl->nl_action); break; } t += strlen(t); switch (nl->nl_type) { case NAT_MAP : strcpy(t, "-MAP "); simple = 1; break; case NAT_REDIRECT : strcpy(t, "-RDR "); simple = 1; break; case NAT_BIMAP : strcpy(t, "-BIMAP "); simple = 1; break; case NAT_MAPBLK : strcpy(t, "-MAPBLOCK "); simple = 1; break; case NAT_REWRITE|NAT_MAP : strcpy(t, "-RWR_MAP "); break; case NAT_REWRITE|NAT_REDIRECT : strcpy(t, "-RWR_RDR "); break; case NAT_ENCAP|NAT_MAP : strcpy(t, "-ENC_MAP "); break; case NAT_ENCAP|NAT_REDIRECT : strcpy(t, "-ENC_RDR "); break; case NAT_DIVERTUDP|NAT_MAP : strcpy(t, "-DIV_MAP "); break; case NAT_DIVERTUDP|NAT_REDIRECT : strcpy(t, "-DIV_RDR "); break; default : sprintf(t, "-Type(%d) ", nl->nl_type); break; } t += strlen(t); proto = getlocalproto(nl->nl_p[0]); family = vtof(nl->nl_v[0]); if (simple == 1) { sprintf(t, "%s,%s <- -> ", hostname(family, nl->nl_osrcip.i6), portlocalname(res, proto, (u_int)nl->nl_osrcport)); t += strlen(t); sprintf(t, "%s,%s ", hostname(family, nl->nl_nsrcip.i6), portlocalname(res, proto, (u_int)nl->nl_nsrcport)); t += strlen(t); sprintf(t, "[%s,%s] ", hostname(family, nl->nl_odstip.i6), portlocalname(res, proto, (u_int)nl->nl_odstport)); } else { sprintf(t, "%s,%s ", hostname(family, nl->nl_osrcip.i6), portlocalname(res, proto, (u_int)nl->nl_osrcport)); t += strlen(t); sprintf(t, "%s,%s <- -> ", hostname(family, nl->nl_odstip.i6), portlocalname(res, proto, (u_int)nl->nl_odstport)); t += strlen(t); sprintf(t, "%s,%s ", hostname(family, nl->nl_nsrcip.i6), portlocalname(res, proto, (u_int)nl->nl_nsrcport)); t += strlen(t); sprintf(t, "%s,%s ", hostname(family, nl->nl_ndstip.i6), portlocalname(res, proto, (u_int)nl->nl_ndstport)); } t += strlen(t); strcpy(t, getlocalproto(nl->nl_p[0])); t += strlen(t); if (nl->nl_action == NL_EXPIRE || nl->nl_action == NL_FLUSH) { #ifdef USE_QUAD_T # ifdef PRId64 sprintf(t, " Pkts %" PRId64 "/%" PRId64 " Bytes %" PRId64 "/%" PRId64, # else sprintf(t, " Pkts %qd/%qd Bytes %qd/%qd", # endif #else sprintf(t, " Pkts %ld/%ld Bytes %ld/%ld", #endif nl->nl_pkts[0], nl->nl_pkts[1], nl->nl_bytes[0], nl->nl_bytes[1]); t += strlen(t); } *t++ = '\n'; *t++ = '\0'; if (ipmonopts & IPMON_SYSLOG) syslog(LOG_INFO, "%s", line); else if (conf->log != NULL) (void) fprintf(conf->log, "%s", line); } static void print_statelog(conf, buf, blen) config_t *conf; char *buf; int blen; { static u_32_t seqnum = 0; int res, i, len, family; struct ipslog *sl; char *t, *proto; struct tm *tm; iplog_t *ipl; t = line; ipl = (iplog_t *)buf; if (ipl->ipl_seqnum != seqnum) { if ((ipmonopts & IPMON_SYSLOG) != 0) { syslog(LOG_WARNING, "missed %u state log entries: %u %u", ipl->ipl_seqnum - seqnum, seqnum, ipl->ipl_seqnum); } else { (void) fprintf(conf->log, "missed %u state log entries: %u %u\n", ipl->ipl_seqnum - seqnum, seqnum, ipl->ipl_seqnum); } } seqnum = ipl->ipl_seqnum + ipl->ipl_count; sl = (struct ipslog *)((char *)ipl + sizeof(*ipl)); res = (ipmonopts & IPMON_RESOLVE) ? 1 : 0; tm = get_tm(ipl->ipl_sec); len = sizeof(line); if (!(ipmonopts & IPMON_SYSLOG)) { (void) strftime(t, len, "%d/%m/%Y ", tm); i = strlen(t); len -= i; t += i; } (void) strftime(t, len, "%T", tm); t += strlen(t); sprintf(t, ".%-.6ld ", (long)ipl->ipl_usec); t += strlen(t); family = vtof(sl->isl_v); switch (sl->isl_type) { case ISL_NEW : strcpy(t, "STATE:NEW "); break; case ISL_CLONE : strcpy(t, "STATE:CLONED "); break; case ISL_EXPIRE : if ((sl->isl_p == IPPROTO_TCP) && (sl->isl_state[0] > IPF_TCPS_ESTABLISHED || sl->isl_state[1] > IPF_TCPS_ESTABLISHED)) strcpy(t, "STATE:CLOSE "); else strcpy(t, "STATE:EXPIRE "); break; case ISL_FLUSH : strcpy(t, "STATE:FLUSH "); break; case ISL_INTERMEDIATE : strcpy(t, "STATE:INTERMEDIATE "); break; case ISL_REMOVE : strcpy(t, "STATE:REMOVE "); break; case ISL_KILLED : strcpy(t, "STATE:KILLED "); break; case ISL_UNLOAD : strcpy(t, "STATE:UNLOAD "); break; default : sprintf(t, "Type: %d ", sl->isl_type); break; } t += strlen(t); proto = getlocalproto(sl->isl_p); if (sl->isl_p == IPPROTO_TCP || sl->isl_p == IPPROTO_UDP) { sprintf(t, "%s,%s -> ", hostname(family, (u_32_t *)&sl->isl_src), portlocalname(res, proto, (u_int)sl->isl_sport)); t += strlen(t); sprintf(t, "%s,%s PR %s", hostname(family, (u_32_t *)&sl->isl_dst), portlocalname(res, proto, (u_int)sl->isl_dport), proto); } else if (sl->isl_p == IPPROTO_ICMP) { sprintf(t, "%s -> ", hostname(family, (u_32_t *)&sl->isl_src)); t += strlen(t); sprintf(t, "%s PR icmp %d", hostname(family, (u_32_t *)&sl->isl_dst), sl->isl_itype); } else if (sl->isl_p == IPPROTO_ICMPV6) { sprintf(t, "%s -> ", hostname(family, (u_32_t *)&sl->isl_src)); t += strlen(t); sprintf(t, "%s PR icmpv6 %d", hostname(family, (u_32_t *)&sl->isl_dst), sl->isl_itype); } else { sprintf(t, "%s -> ", hostname(family, (u_32_t *)&sl->isl_src)); t += strlen(t); sprintf(t, "%s PR %s", hostname(family, (u_32_t *)&sl->isl_dst), proto); } t += strlen(t); if (sl->isl_tag != FR_NOLOGTAG) { sprintf(t, " tag %u", sl->isl_tag); t += strlen(t); } if (sl->isl_type != ISL_NEW) { sprintf(t, #ifdef USE_QUAD_T #ifdef PRId64 " Forward: Pkts in %" PRId64 " Bytes in %" PRId64 " Pkts out %" PRId64 " Bytes out %" PRId64 " Backward: Pkts in %" PRId64 " Bytes in %" PRId64 " Pkts out %" PRId64 " Bytes out %" PRId64, #else " Forward: Pkts in %qd Bytes in %qd Pkts out %qd Bytes out %qd Backward: Pkts in %qd Bytes in %qd Pkts out %qd Bytes out %qd", #endif /* PRId64 */ #else " Forward: Pkts in %ld Bytes in %ld Pkts out %ld Bytes out %ld Backward: Pkts in %ld Bytes in %ld Pkts out %ld Bytes out %ld", #endif sl->isl_pkts[0], sl->isl_bytes[0], sl->isl_pkts[1], sl->isl_bytes[1], sl->isl_pkts[2], sl->isl_bytes[2], sl->isl_pkts[3], sl->isl_bytes[3]); t += strlen(t); } *t++ = '\n'; *t++ = '\0'; if (ipmonopts & IPMON_SYSLOG) syslog(LOG_INFO, "%s", line); else if (conf->log != NULL) (void) fprintf(conf->log, "%s", line); } static void print_log(conf, log, buf, blen) config_t *conf; logsource_t *log; char *buf; int blen; { char *bp, *bpo; iplog_t *ipl; int psize; bp = NULL; bpo = NULL; while (blen > 0) { ipl = (iplog_t *)buf; if ((u_long)ipl & (sizeof(long)-1)) { if (bp) bpo = bp; bp = (char *)malloc(blen); bcopy((char *)ipl, bp, blen); if (bpo) { free(bpo); bpo = NULL; } buf = bp; continue; } psize = ipl->ipl_dsize; if (psize > blen) break; if (conf->blog != NULL) { fwrite(buf, psize, 1, conf->blog); fflush(conf->blog); } if (log->logtype == IPL_LOGIPF) { if (ipl->ipl_magic == IPL_MAGIC) print_ipflog(conf, buf, psize); } else if (log->logtype == IPL_LOGNAT) { if (ipl->ipl_magic == IPL_MAGIC_NAT) print_natlog(conf, buf, psize); } else if (log->logtype == IPL_LOGSTATE) { if (ipl->ipl_magic == IPL_MAGIC_STATE) print_statelog(conf, buf, psize); } blen -= psize; buf += psize; } if (bp) free(bp); return; } static void print_ipflog(conf, buf, blen) config_t *conf; char *buf; int blen; { static u_32_t seqnum = 0; int i, f, lvl, res, len, off, plen, ipoff, defaction; struct icmp *icmp; struct icmp *ic; char *t, *proto; ip_t *ipc, *ip; struct tm *tm; u_32_t *s, *d; u_short hl, p; ipflog_t *ipf; iplog_t *ipl; tcphdr_t *tp; #ifdef USE_INET6 struct ip6_ext *ehp; u_short ehl; ip6_t *ip6; int go; #endif ipl = (iplog_t *)buf; if (ipl->ipl_seqnum != seqnum) { if ((ipmonopts & IPMON_SYSLOG) != 0) { syslog(LOG_WARNING, "missed %u ipf log entries: %u %u", ipl->ipl_seqnum - seqnum, seqnum, ipl->ipl_seqnum); } else { (void) fprintf(conf->log, "missed %u ipf log entries: %u %u\n", ipl->ipl_seqnum - seqnum, seqnum, ipl->ipl_seqnum); } } seqnum = ipl->ipl_seqnum + ipl->ipl_count; ipf = (ipflog_t *)((char *)buf + sizeof(*ipl)); ip = (ip_t *)((char *)ipf + sizeof(*ipf)); f = ipf->fl_family; res = (ipmonopts & IPMON_RESOLVE) ? 1 : 0; t = line; *t = '\0'; tm = get_tm(ipl->ipl_sec); len = sizeof(line); if (!(ipmonopts & IPMON_SYSLOG)) { (void) strftime(t, len, "%d/%m/%Y ", tm); i = strlen(t); len -= i; t += i; } (void) strftime(t, len, "%T", tm); t += strlen(t); sprintf(t, ".%-.6ld ", (long)ipl->ipl_usec); t += strlen(t); if (ipl->ipl_count > 1) { sprintf(t, "%dx ", ipl->ipl_count); t += strlen(t); } { char ifname[sizeof(ipf->fl_ifname) + 1]; strncpy(ifname, ipf->fl_ifname, sizeof(ipf->fl_ifname)); ifname[sizeof(ipf->fl_ifname)] = '\0'; sprintf(t, "%s", ifname); t += strlen(t); -# if defined(MENTAT) +# if SOLARIS if (ISALPHA(*(t - 1))) { sprintf(t, "%d", ipf->fl_unit); t += strlen(t); } # endif } if ((ipf->fl_group[0] == (char)~0) && (ipf->fl_group[1] == '\0')) strcat(t, " @-1:"); else if (ipf->fl_group[0] == '\0') (void) strcpy(t, " @0:"); else sprintf(t, " @%s:", ipf->fl_group); t += strlen(t); if (ipf->fl_rule == 0xffffffff) strcat(t, "-1 "); else sprintf(t, "%u ", ipf->fl_rule + 1); t += strlen(t); lvl = LOG_NOTICE; if (ipf->fl_lflags & FI_SHORT) { *t++ = 'S'; lvl = LOG_ERR; } if (FR_ISPASS(ipf->fl_flags)) { if (ipf->fl_flags & FR_LOGP) *t++ = 'p'; else *t++ = 'P'; } else if (FR_ISBLOCK(ipf->fl_flags)) { if (ipf->fl_flags & FR_LOGB) *t++ = 'b'; else *t++ = 'B'; lvl = LOG_WARNING; } else if ((ipf->fl_flags & FR_LOGMASK) == FR_LOG) { *t++ = 'L'; lvl = LOG_INFO; } else if (ipf->fl_flags & FF_LOGNOMATCH) { *t++ = 'n'; } else { *t++ = '?'; lvl = LOG_EMERG; } if (ipf->fl_loglevel != 0xffff) lvl = ipf->fl_loglevel; *t++ = ' '; *t = '\0'; if (f == AF_INET) { hl = IP_HL(ip) << 2; ipoff = ntohs(ip->ip_off); off = ipoff & IP_OFFMASK; p = (u_short)ip->ip_p; s = (u_32_t *)&ip->ip_src; d = (u_32_t *)&ip->ip_dst; plen = ntohs(ip->ip_len); } else #ifdef USE_INET6 if (f == AF_INET6) { off = 0; ipoff = 0; hl = sizeof(ip6_t); ip6 = (ip6_t *)ip; p = (u_short)ip6->ip6_nxt; s = (u_32_t *)&ip6->ip6_src; d = (u_32_t *)&ip6->ip6_dst; plen = hl + ntohs(ip6->ip6_plen); go = 1; ehp = (struct ip6_ext *)((char *)ip6 + hl); while (go == 1) { switch (p) { case IPPROTO_HOPOPTS : case IPPROTO_MOBILITY : case IPPROTO_DSTOPTS : case IPPROTO_ROUTING : case IPPROTO_AH : p = ehp->ip6e_nxt; ehl = 8 + (ehp->ip6e_len << 3); hl += ehl; ehp = (struct ip6_ext *)((char *)ehp + ehl); break; case IPPROTO_FRAGMENT : hl += sizeof(struct ip6_frag); /* FALLTHROUGH */ default : go = 0; break; } } } else #endif { goto printipflog; } proto = getlocalproto(p); if ((p == IPPROTO_TCP || p == IPPROTO_UDP) && !off) { tp = (tcphdr_t *)((char *)ip + hl); if (!(ipf->fl_lflags & FI_SHORT)) { sprintf(t, "%s,%s -> ", hostname(f, s), portlocalname(res, proto, (u_int)tp->th_sport)); t += strlen(t); sprintf(t, "%s,%s PR %s len %hu %hu", hostname(f, d), portlocalname(res, proto, (u_int)tp->th_dport), proto, hl, plen); t += strlen(t); if (p == IPPROTO_TCP) { *t++ = ' '; *t++ = '-'; for (i = 0; tcpfl[i].value; i++) if (tp->th_flags & tcpfl[i].value) *t++ = tcpfl[i].flag; if (ipmonopts & IPMON_VERBOSE) { sprintf(t, " %lu %lu %hu", (u_long)(ntohl(tp->th_seq)), (u_long)(ntohl(tp->th_ack)), ntohs(tp->th_win)); t += strlen(t); } } *t = '\0'; } else { sprintf(t, "%s -> ", hostname(f, s)); t += strlen(t); sprintf(t, "%s PR %s len %hu %hu", hostname(f, d), proto, hl, plen); } #if defined(AF_INET6) && defined(IPPROTO_ICMPV6) } else if ((p == IPPROTO_ICMPV6) && !off && (f == AF_INET6)) { ic = (struct icmp *)((char *)ip + hl); sprintf(t, "%s -> ", hostname(f, s)); t += strlen(t); sprintf(t, "%s PR icmpv6 len %hu %hu icmpv6 %s", hostname(f, d), hl, plen, icmpname6(ic->icmp_type, ic->icmp_code)); #endif } else if ((p == IPPROTO_ICMP) && !off && (f == AF_INET)) { ic = (struct icmp *)((char *)ip + hl); sprintf(t, "%s -> ", hostname(f, s)); t += strlen(t); sprintf(t, "%s PR icmp len %hu %hu icmp %s", hostname(f, d), hl, plen, icmpname(ic->icmp_type, ic->icmp_code)); if (ic->icmp_type == ICMP_UNREACH || ic->icmp_type == ICMP_SOURCEQUENCH || ic->icmp_type == ICMP_PARAMPROB || ic->icmp_type == ICMP_REDIRECT || ic->icmp_type == ICMP_TIMXCEED) { ipc = &ic->icmp_ip; i = ntohs(ipc->ip_len); /* * XXX - try to guess endian of ip_len in ICMP * returned data. */ if (i > 1500) i = ipc->ip_len; ipoff = ntohs(ipc->ip_off); proto = getlocalproto(ipc->ip_p); if (!(ipoff & IP_OFFMASK) && ((ipc->ip_p == IPPROTO_TCP) || (ipc->ip_p == IPPROTO_UDP))) { tp = (tcphdr_t *)((char *)ipc + hl); t += strlen(t); sprintf(t, " for %s,%s -", HOSTNAMEV4(ipc->ip_src), portlocalname(res, proto, (u_int)tp->th_sport)); t += strlen(t); sprintf(t, " %s,%s PR %s len %hu %hu", HOSTNAMEV4(ipc->ip_dst), portlocalname(res, proto, (u_int)tp->th_dport), proto, IP_HL(ipc) << 2, i); } else if (!(ipoff & IP_OFFMASK) && (ipc->ip_p == IPPROTO_ICMP)) { icmp = (icmphdr_t *)((char *)ipc + hl); t += strlen(t); sprintf(t, " for %s -", HOSTNAMEV4(ipc->ip_src)); t += strlen(t); sprintf(t, " %s PR icmp len %hu %hu icmp %d/%d", HOSTNAMEV4(ipc->ip_dst), IP_HL(ipc) << 2, i, icmp->icmp_type, icmp->icmp_code); } else { t += strlen(t); sprintf(t, " for %s -", HOSTNAMEV4(ipc->ip_src)); t += strlen(t); sprintf(t, " %s PR %s len %hu (%hu)", HOSTNAMEV4(ipc->ip_dst), proto, IP_HL(ipc) << 2, i); t += strlen(t); if (ipoff & IP_OFFMASK) { sprintf(t, "(frag %d:%hu@%hu%s%s)", ntohs(ipc->ip_id), i - (IP_HL(ipc) << 2), (ipoff & IP_OFFMASK) << 3, ipoff & IP_MF ? "+" : "", ipoff & IP_DF ? "-" : ""); } } } } else { sprintf(t, "%s -> ", hostname(f, s)); t += strlen(t); sprintf(t, "%s PR %s len %hu (%hu)", hostname(f, d), proto, hl, plen); t += strlen(t); if (off & IP_OFFMASK) sprintf(t, " (frag %d:%hu@%hu%s%s)", ntohs(ip->ip_id), plen - hl, (off & IP_OFFMASK) << 3, ipoff & IP_MF ? "+" : "", ipoff & IP_DF ? "-" : ""); } t += strlen(t); printipflog: if (ipf->fl_flags & FR_KEEPSTATE) { (void) strcpy(t, " K-S"); t += strlen(t); } if (ipf->fl_flags & FR_KEEPFRAG) { (void) strcpy(t, " K-F"); t += strlen(t); } if (ipf->fl_dir == 0) strcpy(t, " IN"); else if (ipf->fl_dir == 1) strcpy(t, " OUT"); t += strlen(t); if (ipf->fl_logtag != 0) { sprintf(t, " log-tag %d", ipf->fl_logtag); t += strlen(t); } if (ipf->fl_nattag.ipt_num[0] != 0) { strcpy(t, " nat-tag "); t += strlen(t); strncpy(t, ipf->fl_nattag.ipt_tag, sizeof(ipf->fl_nattag)); t += strlen(t); } if ((ipf->fl_lflags & FI_LOWTTL) != 0) { strcpy(t, " low-ttl"); t += 8; } if ((ipf->fl_lflags & FI_OOW) != 0) { strcpy(t, " OOW"); t += 4; } if ((ipf->fl_lflags & FI_BAD) != 0) { strcpy(t, " bad"); t += 4; } if ((ipf->fl_lflags & FI_NATED) != 0) { strcpy(t, " NAT"); t += 4; } if ((ipf->fl_lflags & FI_BADNAT) != 0) { strcpy(t, " bad-NAT"); t += 8; } if ((ipf->fl_lflags & FI_BADSRC) != 0) { strcpy(t, " bad-src"); t += 8; } if ((ipf->fl_lflags & FI_MULTICAST) != 0) { strcpy(t, " multicast"); t += 10; } if ((ipf->fl_lflags & FI_BROADCAST) != 0) { strcpy(t, " broadcast"); t += 10; } if ((ipf->fl_lflags & (FI_MULTICAST|FI_BROADCAST|FI_MBCAST)) == FI_MBCAST) { strcpy(t, " mbcast"); t += 7; } if (ipf->fl_breason != 0) { strcpy(t, " reason:"); t += 8; strcpy(t, reasons[ipf->fl_breason]); t += strlen(reasons[ipf->fl_breason]); } *t++ = '\n'; *t++ = '\0'; defaction = 0; if (conf->cfile != NULL) defaction = check_action(buf, line, ipmonopts, lvl); if (defaction == 0) { if (ipmonopts & IPMON_SYSLOG) { syslog(lvl, "%s", line); } else if (conf->log != NULL) { (void) fprintf(conf->log, "%s", line); } if (ipmonopts & IPMON_HEXHDR) { dumphex(conf->log, ipmonopts, buf, sizeof(iplog_t) + sizeof(*ipf)); } if (ipmonopts & IPMON_HEXBODY) { dumphex(conf->log, ipmonopts, (char *)ip, ipf->fl_plen + ipf->fl_hlen); } else if ((ipmonopts & IPMON_LOGBODY) && (ipf->fl_flags & FR_LOGBODY)) { dumphex(conf->log, ipmonopts, (char *)ip + ipf->fl_hlen, ipf->fl_plen); } } } static void usage(prog) char *prog; { fprintf(stderr, "Usage: %s [ -abDFhnpstvxX ] [ -B ] [ -C ]\n" "\t[ -f ] [ -L ] [ -N ]\n" "\t[ -o [NSI] ] [ -O [NSI] ] [ -P ] [ -S ]\n" "\t[ ]\n", prog); exit(1); } static void write_pid(file) char *file; { FILE *fp = NULL; int fd; if ((fd = open(file, O_CREAT|O_TRUNC|O_WRONLY, 0644)) >= 0) { fp = fdopen(fd, "w"); if (fp == NULL) { close(fd); fprintf(stderr, "unable to open/create pid file: %s\n", file); return; } fprintf(fp, "%d", getpid()); fclose(fp); } } static void flushlogs(file, log) char *file; FILE *log; { int fd, flushed = 0; if ((fd = open(file, O_RDWR)) == -1) { (void) fprintf(stderr, "%s: open: %s\n", file, STRERROR(errno)); exit(1); } if (ioctl(fd, SIOCIPFFB, &flushed) == 0) { printf("%d bytes flushed from log buffer\n", flushed); fflush(stdout); } else ipferror(fd, "SIOCIPFFB"); (void) close(fd); if (flushed) { if (ipmonopts & IPMON_SYSLOG) { syslog(LOG_INFO, "%d bytes flushed from log\n", flushed); } else if ((log != stdout) && (log != NULL)) { fprintf(log, "%d bytes flushed from log\n", flushed); } } } static void logopts(turnon, options) int turnon; char *options; { int flags = 0; char *s; for (s = options; *s; s++) { switch (*s) { case 'N' : flags |= IPMON_NAT; break; case 'S' : flags |= IPMON_STATE; break; case 'I' : flags |= IPMON_FILTER; break; default : fprintf(stderr, "Unknown log option %c\n", *s); exit(1); } } if (turnon) ipmonopts |= flags; else ipmonopts &= ~(flags); } static void initconfig(config_t *conf) { int i; memset(conf, 0, sizeof(*conf)); conf->log = stdout; conf->maxfd = -1; for (i = 0; i < 3; i++) { conf->logsrc[i].fd = -1; conf->logsrc[i].logtype = -1; conf->logsrc[i].regular = -1; } conf->logsrc[0].file = IPL_NAME; conf->logsrc[1].file = IPNAT_NAME; conf->logsrc[2].file = IPSTATE_NAME; add_doing(&executesaver); add_doing(&snmpv1saver); add_doing(&snmpv2saver); add_doing(&syslogsaver); add_doing(&filesaver); add_doing(¬hingsaver); } int main(argc, argv) int argc; char *argv[]; { int doread, c, make_daemon = 0; char *prog; config_t config; prog = strrchr(argv[0], '/'); if (prog == NULL) prog = argv[0]; else prog++; initconfig(&config); while ((c = getopt(argc, argv, "?abB:C:Df:FhL:nN:o:O:pP:sS:tvxX")) != -1) switch (c) { case 'a' : ipmonopts |= IPMON_LOGALL; config.logsrc[0].logtype = IPL_LOGIPF; config.logsrc[1].logtype = IPL_LOGNAT; config.logsrc[2].logtype = IPL_LOGSTATE; break; case 'b' : ipmonopts |= IPMON_LOGBODY; break; case 'B' : config.bfile = optarg; config.blog = fopen(optarg, "a"); break; case 'C' : config.cfile = optarg; break; case 'D' : make_daemon = 1; break; case 'f' : case 'I' : ipmonopts |= IPMON_FILTER; config.logsrc[0].logtype = IPL_LOGIPF; config.logsrc[0].file = optarg; break; case 'F' : flushlogs(config.logsrc[0].file, config.log); flushlogs(config.logsrc[1].file, config.log); flushlogs(config.logsrc[2].file, config.log); break; case 'L' : logfac = fac_findname(optarg); if (logfac == -1) { fprintf(stderr, "Unknown syslog facility '%s'\n", optarg); exit(1); } break; case 'n' : ipmonopts |= IPMON_RESOLVE; opts &= ~OPT_NORESOLVE; break; case 'N' : ipmonopts |= IPMON_NAT; config.logsrc[1].logtype = IPL_LOGNAT; config.logsrc[1].file = optarg; break; case 'o' : case 'O' : logopts(c == 'o', optarg); if (ipmonopts & IPMON_FILTER) config.logsrc[0].logtype = IPL_LOGIPF; if (ipmonopts & IPMON_NAT) config.logsrc[1].logtype = IPL_LOGNAT; if (ipmonopts & IPMON_STATE) config.logsrc[2].logtype = IPL_LOGSTATE; break; case 'p' : ipmonopts |= IPMON_PORTNUM; break; case 'P' : pidfile = optarg; break; case 's' : ipmonopts |= IPMON_SYSLOG; config.log = NULL; break; case 'S' : ipmonopts |= IPMON_STATE; config.logsrc[2].logtype = IPL_LOGSTATE; config.logsrc[2].file = optarg; break; case 't' : ipmonopts |= IPMON_TAIL; break; case 'v' : ipmonopts |= IPMON_VERBOSE; break; case 'x' : ipmonopts |= IPMON_HEXBODY; break; case 'X' : ipmonopts |= IPMON_HEXHDR; break; default : case 'h' : case '?' : usage(argv[0]); } if (ipmonopts & IPMON_SYSLOG) openlog(prog, LOG_NDELAY|LOG_PID, logfac); init_tabs(); if (config.cfile) if (load_config(config.cfile) == -1) { unload_config(); exit(1); } /* * Default action is to only open the filter log file. */ if ((config.logsrc[0].logtype == -1) && (config.logsrc[0].logtype == -1) && (config.logsrc[0].logtype == -1)) config.logsrc[0].logtype = IPL_LOGIPF; openlogs(&config); if (!(ipmonopts & IPMON_SYSLOG)) { config.file = argv[optind]; config.log = config.file ? fopen(config.file, "a") : stdout; if (config.log == NULL) { (void) fprintf(stderr, "%s: fopen: %s\n", argv[optind], STRERROR(errno)); exit(1); /* NOTREACHED */ } setvbuf(config.log, NULL, _IONBF, 0); } else { config.log = NULL; } if (make_daemon && ((config.log != stdout) || (ipmonopts & IPMON_SYSLOG))) { #if BSD >= 199306 daemon(0, !(ipmonopts & IPMON_SYSLOG)); #else int pid; switch (fork()) { case -1 : (void) fprintf(stderr, "%s: fork() failed: %s\n", argv[0], STRERROR(errno)); exit(1); /* NOTREACHED */ case 0 : break; default : exit(0); } setsid(); if ((ipmonopts & IPMON_SYSLOG)) close(2); #endif /* !BSD */ close(0); close(1); write_pid(pidfile); } signal(SIGHUP, handlehup); for (doread = 1; doread; ) doread = read_loginfo(&config); unload_config(); return(0); /* NOTREACHED */ } static void openlogs(config_t *conf) { logsource_t *l; struct stat sb; int i; for (i = 0; i < 3; i++) { l = &conf->logsrc[i]; if (l->logtype == -1) continue; if (!strcmp(l->file, "-")) l->fd = 0; else { if ((l->fd= open(l->file, O_RDONLY)) == -1) { (void) fprintf(stderr, "%s: open: %s\n", l->file, STRERROR(errno)); exit(1); /* NOTREACHED */ } if (fstat(l->fd, &sb) == -1) { (void) fprintf(stderr, "%d: fstat: %s\n", l->fd, STRERROR(errno)); exit(1); /* NOTREACHED */ } l->regular = !S_ISCHR(sb.st_mode); if (l->regular) l->size = sb.st_size; FD_SET(l->fd, &conf->fdmr); if (l->fd > conf->maxfd) conf->maxfd = l->fd; } } } static int read_loginfo(config_t *conf) { iplog_t buf[DEFAULT_IPFLOGSIZE/sizeof(iplog_t)+1]; int n, tr, nr, i; logsource_t *l; fd_set fdr; fdr = conf->fdmr; n = select(conf->maxfd + 1, &fdr, NULL, NULL, NULL); if (n == 0) return 1; if (n == -1) { if (errno == EINTR) return 1; return -1; } for (i = 0, nr = 0; i < 3; i++) { l = &conf->logsrc[i]; if ((l->logtype == -1) || !FD_ISSET(l->fd, &fdr)) continue; tr = 0; if (l->regular) { tr = (lseek(l->fd, 0, SEEK_CUR) < l->size); if (!tr && !(ipmonopts & IPMON_TAIL)) return 0; } n = 0; tr = read_log(l->fd, &n, (char *)buf, sizeof(buf)); if (donehup) { if (conf->file != NULL) { if (conf->log != NULL) { fclose(conf->log); conf->log = NULL; } conf->log = fopen(conf->file, "a"); } if (conf->bfile != NULL) { if (conf->blog != NULL) { fclose(conf->blog); conf->blog = NULL; } conf->blog = fopen(conf->bfile, "a"); } init_tabs(); if (conf->cfile != NULL) load_config(conf->cfile); donehup = 0; } switch (tr) { case -1 : if (ipmonopts & IPMON_SYSLOG) syslog(LOG_CRIT, "read: %m\n"); else { ipferror(l->fd, "read"); } return 0; case 1 : if (ipmonopts & IPMON_SYSLOG) syslog(LOG_CRIT, "aborting logging\n"); else if (conf->log != NULL) fprintf(conf->log, "aborting logging\n"); return 0; case 2 : break; case 0 : nr += tr; if (n > 0) { print_log(conf, l, (char *)buf, n); if (!(ipmonopts & IPMON_SYSLOG)) fflush(conf->log); } break; } } if (!nr && (ipmonopts & IPMON_TAIL)) sleep(1); return 1; } diff --git a/sys/contrib/ipfilter/netinet/fil.c b/sys/contrib/ipfilter/netinet/fil.c index a79d441284bf..2dca1e754b9e 100644 --- a/sys/contrib/ipfilter/netinet/fil.c +++ b/sys/contrib/ipfilter/netinet/fil.c @@ -1,10277 +1,10277 @@ /* $FreeBSD$ */ /* * Copyright (C) 2012 by Darren Reed. * * See the IPFILTER.LICENCE file for details on licencing. * * Copyright 2008 Sun Microsystems. * * $Id$ * */ #if defined(KERNEL) || defined(_KERNEL) # undef KERNEL # undef _KERNEL # define KERNEL 1 # define _KERNEL 1 #endif #include #include #include #include #if defined(_KERNEL) && defined(__FreeBSD_version) # if !defined(IPFILTER_LKM) # include "opt_inet6.h" # endif # include #else # include #endif #if defined(__SVR4) || defined(sun) /* SOLARIS */ # include #endif # include #if defined(_KERNEL) # include # include #else # include # include # include # include # include # define _KERNEL # include # undef _KERNEL #endif #if !defined(__SVR4) # include #else # include # if (SOLARIS2 < 5) && defined(sun) # include # endif #endif # include #include #include #ifdef sun # include #endif #include #include #include #include # include # include #include "netinet/ip_compat.h" #ifdef USE_INET6 # include # if !SOLARIS && defined(_KERNEL) # include # endif #endif #include "netinet/ip_fil.h" #include "netinet/ip_nat.h" #include "netinet/ip_frag.h" #include "netinet/ip_state.h" #include "netinet/ip_proxy.h" #include "netinet/ip_auth.h" #ifdef IPFILTER_SCAN # include "netinet/ip_scan.h" #endif #include "netinet/ip_sync.h" #include "netinet/ip_lookup.h" #include "netinet/ip_pool.h" #include "netinet/ip_htable.h" #ifdef IPFILTER_COMPILED # include "netinet/ip_rules.h" #endif #if defined(IPFILTER_BPF) && defined(_KERNEL) # include #endif #if defined(__FreeBSD_version) # include #endif #include "netinet/ipl.h" #if defined(__NetBSD__) && (__NetBSD_Version__ >= 104230000) # include extern struct callout ipf_slowtimer_ch; #endif /* END OF INCLUDES */ #if !defined(lint) static const char sccsid[] = "@(#)fil.c 1.36 6/5/96 (C) 1993-2000 Darren Reed"; static const char rcsid[] = "@(#)$FreeBSD$"; /* static const char rcsid[] = "@(#)$Id: fil.c,v 2.243.2.125 2007/10/10 09:27:20 darrenr Exp $"; */ #endif #ifndef _KERNEL # include "ipf.h" # include "ipt.h" extern int opts; extern int blockreason; #endif /* _KERNEL */ #define FASTROUTE_RECURSION #define LBUMP(x) softc->x++ #define LBUMPD(x, y) do { softc->x.y++; DT(y); } while (0) static INLINE int ipf_check_ipf(fr_info_t *, frentry_t *, int); static u_32_t ipf_checkcipso(fr_info_t *, u_char *, int); static u_32_t ipf_checkripso(u_char *); static u_32_t ipf_decaps(fr_info_t *, u_32_t, int); #ifdef IPFILTER_LOG static frentry_t *ipf_dolog(fr_info_t *, u_32_t *); #endif static int ipf_flushlist(ipf_main_softc_t *, int *, frentry_t **); static int ipf_flush_groups(ipf_main_softc_t *, frgroup_t **, int); static ipfunc_t ipf_findfunc(ipfunc_t); static void *ipf_findlookup(ipf_main_softc_t *, int, frentry_t *, i6addr_t *, i6addr_t *); static frentry_t *ipf_firewall(fr_info_t *, u_32_t *); static int ipf_fr_matcharray(fr_info_t *, int *); static int ipf_frruleiter(ipf_main_softc_t *, void *, int, void *); static void ipf_funcfini(ipf_main_softc_t *, frentry_t *); static int ipf_funcinit(ipf_main_softc_t *, frentry_t *); static int ipf_geniter(ipf_main_softc_t *, ipftoken_t *, ipfgeniter_t *); static void ipf_getstat(ipf_main_softc_t *, struct friostat *, int); static int ipf_group_flush(ipf_main_softc_t *, frgroup_t *); static void ipf_group_free(frgroup_t *); static int ipf_grpmapfini(struct ipf_main_softc_s *, frentry_t *); static int ipf_grpmapinit(struct ipf_main_softc_s *, frentry_t *); static frentry_t *ipf_nextrule(ipf_main_softc_t *, int, int, frentry_t *, int); static int ipf_portcheck(frpcmp_t *, u_32_t); static INLINE int ipf_pr_ah(fr_info_t *); static INLINE void ipf_pr_esp(fr_info_t *); static INLINE void ipf_pr_gre(fr_info_t *); static INLINE void ipf_pr_udp(fr_info_t *); static INLINE void ipf_pr_tcp(fr_info_t *); static INLINE void ipf_pr_icmp(fr_info_t *); static INLINE void ipf_pr_ipv4hdr(fr_info_t *); static INLINE void ipf_pr_short(fr_info_t *, int); static INLINE int ipf_pr_tcpcommon(fr_info_t *); static INLINE int ipf_pr_udpcommon(fr_info_t *); static void ipf_rule_delete(ipf_main_softc_t *, frentry_t *f, int, int); static void ipf_rule_expire_insert(ipf_main_softc_t *, frentry_t *, int); static int ipf_synclist(ipf_main_softc_t *, frentry_t *, void *); static void ipf_token_flush(ipf_main_softc_t *); static void ipf_token_unlink(ipf_main_softc_t *, ipftoken_t *); static ipftuneable_t *ipf_tune_findbyname(ipftuneable_t *, const char *); static ipftuneable_t *ipf_tune_findbycookie(ipftuneable_t **, void *, void **); static int ipf_updateipid(fr_info_t *); static int ipf_settimeout(struct ipf_main_softc_s *, struct ipftuneable *, ipftuneval_t *); #if !defined(_KERNEL) || SOLARIS static int ppsratecheck(struct timeval *, int *, int); #endif /* * bit values for identifying presence of individual IP options * All of these tables should be ordered by increasing key value on the left * hand side to allow for binary searching of the array and include a trailer * with a 0 for the bitmask for linear searches to easily find the end with. */ static const struct optlist ipopts[] = { { IPOPT_NOP, 0x000001 }, { IPOPT_RR, 0x000002 }, { IPOPT_ZSU, 0x000004 }, { IPOPT_MTUP, 0x000008 }, { IPOPT_MTUR, 0x000010 }, { IPOPT_ENCODE, 0x000020 }, { IPOPT_TS, 0x000040 }, { IPOPT_TR, 0x000080 }, { IPOPT_SECURITY, 0x000100 }, { IPOPT_LSRR, 0x000200 }, { IPOPT_E_SEC, 0x000400 }, { IPOPT_CIPSO, 0x000800 }, { IPOPT_SATID, 0x001000 }, { IPOPT_SSRR, 0x002000 }, { IPOPT_ADDEXT, 0x004000 }, { IPOPT_VISA, 0x008000 }, { IPOPT_IMITD, 0x010000 }, { IPOPT_EIP, 0x020000 }, { IPOPT_FINN, 0x040000 }, { 0, 0x000000 } }; #ifdef USE_INET6 static const struct optlist ip6exthdr[] = { { IPPROTO_HOPOPTS, 0x000001 }, { IPPROTO_IPV6, 0x000002 }, { IPPROTO_ROUTING, 0x000004 }, { IPPROTO_FRAGMENT, 0x000008 }, { IPPROTO_ESP, 0x000010 }, { IPPROTO_AH, 0x000020 }, { IPPROTO_NONE, 0x000040 }, { IPPROTO_DSTOPTS, 0x000080 }, { IPPROTO_MOBILITY, 0x000100 }, { 0, 0 } }; #endif /* * bit values for identifying presence of individual IP security options */ static const struct optlist secopt[] = { { IPSO_CLASS_RES4, 0x01 }, { IPSO_CLASS_TOPS, 0x02 }, { IPSO_CLASS_SECR, 0x04 }, { IPSO_CLASS_RES3, 0x08 }, { IPSO_CLASS_CONF, 0x10 }, { IPSO_CLASS_UNCL, 0x20 }, { IPSO_CLASS_RES2, 0x40 }, { IPSO_CLASS_RES1, 0x80 } }; char ipfilter_version[] = IPL_VERSION; int ipf_features = 0 #ifdef IPFILTER_LKM | IPF_FEAT_LKM #endif #ifdef IPFILTER_LOG | IPF_FEAT_LOG #endif | IPF_FEAT_LOOKUP #ifdef IPFILTER_BPF | IPF_FEAT_BPF #endif #ifdef IPFILTER_COMPILED | IPF_FEAT_COMPILED #endif #ifdef IPFILTER_CKSUM | IPF_FEAT_CKSUM #endif | IPF_FEAT_SYNC #ifdef IPFILTER_SCAN | IPF_FEAT_SCAN #endif #ifdef USE_INET6 | IPF_FEAT_IPV6 #endif ; /* * Table of functions available for use with call rules. */ static ipfunc_resolve_t ipf_availfuncs[] = { { "srcgrpmap", ipf_srcgrpmap, ipf_grpmapinit, ipf_grpmapfini }, { "dstgrpmap", ipf_dstgrpmap, ipf_grpmapinit, ipf_grpmapfini }, { "", NULL, NULL, NULL } }; static ipftuneable_t ipf_main_tuneables[] = { { { (void *)offsetof(struct ipf_main_softc_s, ipf_flags) }, "ipf_flags", 0, 0xffffffff, stsizeof(ipf_main_softc_t, ipf_flags), 0, NULL, NULL }, { { (void *)offsetof(struct ipf_main_softc_s, ipf_active) }, "active", 0, 0, stsizeof(ipf_main_softc_t, ipf_active), IPFT_RDONLY, NULL, NULL }, { { (void *)offsetof(ipf_main_softc_t, ipf_control_forwarding) }, "control_forwarding", 0, 1, stsizeof(ipf_main_softc_t, ipf_control_forwarding), 0, NULL, NULL }, { { (void *)offsetof(ipf_main_softc_t, ipf_update_ipid) }, "update_ipid", 0, 1, stsizeof(ipf_main_softc_t, ipf_update_ipid), 0, NULL, NULL }, { { (void *)offsetof(ipf_main_softc_t, ipf_chksrc) }, "chksrc", 0, 1, stsizeof(ipf_main_softc_t, ipf_chksrc), 0, NULL, NULL }, { { (void *)offsetof(ipf_main_softc_t, ipf_minttl) }, "min_ttl", 0, 1, stsizeof(ipf_main_softc_t, ipf_minttl), 0, NULL, NULL }, { { (void *)offsetof(ipf_main_softc_t, ipf_icmpminfragmtu) }, "icmp_minfragmtu", 0, 1, stsizeof(ipf_main_softc_t, ipf_icmpminfragmtu), 0, NULL, NULL }, { { (void *)offsetof(ipf_main_softc_t, ipf_pass) }, "default_pass", 0, 0xffffffff, stsizeof(ipf_main_softc_t, ipf_pass), 0, NULL, NULL }, { { (void *)offsetof(ipf_main_softc_t, ipf_tcpidletimeout) }, "tcp_idle_timeout", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_tcpidletimeout), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosewait) }, "tcp_close_wait", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_tcpclosewait), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_tcplastack) }, "tcp_last_ack", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_tcplastack), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_tcptimeout) }, "tcp_timeout", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_tcptimeout), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynsent) }, "tcp_syn_sent", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_tcpsynsent), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynrecv) }, "tcp_syn_received", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_tcpsynrecv), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosed) }, "tcp_closed", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_tcpclosed), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_tcphalfclosed) }, "tcp_half_closed", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_tcphalfclosed), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_tcptimewait) }, "tcp_time_wait", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_tcptimewait), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_udptimeout) }, "udp_timeout", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_udptimeout), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_udpacktimeout) }, "udp_ack_timeout", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_udpacktimeout), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_icmptimeout) }, "icmp_timeout", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_icmptimeout), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_icmpacktimeout) }, "icmp_ack_timeout", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_icmpacktimeout), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_iptimeout) }, "ip_timeout", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_iptimeout), 0, NULL, ipf_settimeout }, #if defined(INSTANCES) && defined(_KERNEL) { { (void *)offsetof(ipf_main_softc_t, ipf_get_loopback) }, "intercept_loopback", 0, 1, stsizeof(ipf_main_softc_t, ipf_get_loopback), 0, NULL, ipf_set_loopback }, #endif { { 0 }, NULL, 0, 0, 0, 0, NULL, NULL } }; /* * The next section of code is a collection of small routines that set * fields in the fr_info_t structure passed based on properties of the * current packet. There are different routines for the same protocol * for each of IPv4 and IPv6. Adding a new protocol, for which there * will "special" inspection for setup, is now more easily done by adding * a new routine and expanding the ipf_pr_ipinit*() function rather than by * adding more code to a growing switch statement. */ #ifdef USE_INET6 static INLINE int ipf_pr_ah6(fr_info_t *); static INLINE void ipf_pr_esp6(fr_info_t *); static INLINE void ipf_pr_gre6(fr_info_t *); static INLINE void ipf_pr_udp6(fr_info_t *); static INLINE void ipf_pr_tcp6(fr_info_t *); static INLINE void ipf_pr_icmp6(fr_info_t *); static INLINE void ipf_pr_ipv6hdr(fr_info_t *); static INLINE void ipf_pr_short6(fr_info_t *, int); static INLINE int ipf_pr_hopopts6(fr_info_t *); static INLINE int ipf_pr_mobility6(fr_info_t *); static INLINE int ipf_pr_routing6(fr_info_t *); static INLINE int ipf_pr_dstopts6(fr_info_t *); static INLINE int ipf_pr_fragment6(fr_info_t *); static INLINE struct ip6_ext *ipf_pr_ipv6exthdr(fr_info_t *, int, int); /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_short6 */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* xmin(I) - minimum header size */ /* */ /* IPv6 Only */ /* This is function enforces the 'is a packet too short to be legit' rule */ /* for IPv6 and marks the packet with FI_SHORT if so. See function comment */ /* for ipf_pr_short() for more details. */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_short6(fin, xmin) fr_info_t *fin; int xmin; { if (fin->fin_dlen < xmin) fin->fin_flx |= FI_SHORT; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_ipv6hdr */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv6 Only */ /* Copy values from the IPv6 header into the fr_info_t struct and call the */ /* per-protocol analyzer if it exists. In validating the packet, a protocol*/ /* analyzer may pullup or free the packet itself so we need to be vigiliant */ /* of that possibility arising. */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_ipv6hdr(fin) fr_info_t *fin; { ip6_t *ip6 = (ip6_t *)fin->fin_ip; int p, go = 1, i, hdrcount; fr_ip_t *fi = &fin->fin_fi; fin->fin_off = 0; fi->fi_tos = 0; fi->fi_optmsk = 0; fi->fi_secmsk = 0; fi->fi_auth = 0; p = ip6->ip6_nxt; fin->fin_crc = p; fi->fi_ttl = ip6->ip6_hlim; fi->fi_src.in6 = ip6->ip6_src; fin->fin_crc += fi->fi_src.i6[0]; fin->fin_crc += fi->fi_src.i6[1]; fin->fin_crc += fi->fi_src.i6[2]; fin->fin_crc += fi->fi_src.i6[3]; fi->fi_dst.in6 = ip6->ip6_dst; fin->fin_crc += fi->fi_dst.i6[0]; fin->fin_crc += fi->fi_dst.i6[1]; fin->fin_crc += fi->fi_dst.i6[2]; fin->fin_crc += fi->fi_dst.i6[3]; fin->fin_id = 0; if (IN6_IS_ADDR_MULTICAST(&fi->fi_dst.in6)) fin->fin_flx |= FI_MULTICAST|FI_MBCAST; hdrcount = 0; while (go && !(fin->fin_flx & FI_SHORT)) { switch (p) { case IPPROTO_UDP : ipf_pr_udp6(fin); go = 0; break; case IPPROTO_TCP : ipf_pr_tcp6(fin); go = 0; break; case IPPROTO_ICMPV6 : ipf_pr_icmp6(fin); go = 0; break; case IPPROTO_GRE : ipf_pr_gre6(fin); go = 0; break; case IPPROTO_HOPOPTS : p = ipf_pr_hopopts6(fin); break; case IPPROTO_MOBILITY : p = ipf_pr_mobility6(fin); break; case IPPROTO_DSTOPTS : p = ipf_pr_dstopts6(fin); break; case IPPROTO_ROUTING : p = ipf_pr_routing6(fin); break; case IPPROTO_AH : p = ipf_pr_ah6(fin); break; case IPPROTO_ESP : ipf_pr_esp6(fin); go = 0; break; case IPPROTO_IPV6 : for (i = 0; ip6exthdr[i].ol_bit != 0; i++) if (ip6exthdr[i].ol_val == p) { fin->fin_flx |= ip6exthdr[i].ol_bit; break; } go = 0; break; case IPPROTO_NONE : go = 0; break; case IPPROTO_FRAGMENT : p = ipf_pr_fragment6(fin); /* * Given that the only fragments we want to let through * (where fin_off != 0) are those where the non-first * fragments only have data, we can safely stop looking * at headers if this is a non-leading fragment. */ if (fin->fin_off != 0) go = 0; break; default : go = 0; break; } hdrcount++; /* * It is important to note that at this point, for the * extension headers (go != 0), the entire header may not have * been pulled up when the code gets to this point. This is * only done for "go != 0" because the other header handlers * will all pullup their complete header. The other indicator * of an incomplete packet is that this was just an extension * header. */ if ((go != 0) && (p != IPPROTO_NONE) && (ipf_pr_pullup(fin, 0) == -1)) { p = IPPROTO_NONE; break; } } /* * Some of the above functions, like ipf_pr_esp6(), can call ipf_pullup * and destroy whatever packet was here. The caller of this function * expects us to return if there is a problem with ipf_pullup. */ if (fin->fin_m == NULL) { ipf_main_softc_t *softc = fin->fin_main_soft; LBUMPD(ipf_stats[fin->fin_out], fr_v6_bad); return; } fi->fi_p = p; /* * IPv6 fragment case 1 - see comment for ipf_pr_fragment6(). * "go != 0" imples the above loop hasn't arrived at a layer 4 header. */ if ((go != 0) && (fin->fin_flx & FI_FRAG) && (fin->fin_off == 0)) { ipf_main_softc_t *softc = fin->fin_main_soft; fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_ipv6_frag_1, fr_info_t *, fin, int, go); LBUMPD(ipf_stats[fin->fin_out], fr_v6_badfrag); LBUMP(ipf_stats[fin->fin_out].fr_v6_bad); } } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_ipv6exthdr */ /* Returns: struct ip6_ext * - pointer to the start of the next header */ /* or NULL if there is a prolblem. */ /* Parameters: fin(I) - pointer to packet information */ /* multiple(I) - flag indicating yes/no if multiple occurances */ /* of this extension header are allowed. */ /* proto(I) - protocol number for this extension header */ /* */ /* IPv6 Only */ /* This function embodies a number of common checks that all IPv6 extension */ /* headers must be subjected to. For example, making sure the packet is */ /* big enough for it to be in, checking if it is repeated and setting a */ /* flag to indicate its presence. */ /* ------------------------------------------------------------------------ */ static INLINE struct ip6_ext * ipf_pr_ipv6exthdr(fin, multiple, proto) fr_info_t *fin; int multiple, proto; { ipf_main_softc_t *softc = fin->fin_main_soft; struct ip6_ext *hdr; u_short shift; int i; fin->fin_flx |= FI_V6EXTHDR; /* 8 is default length of extension hdr */ if ((fin->fin_dlen - 8) < 0) { fin->fin_flx |= FI_SHORT; LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_short); return NULL; } if (ipf_pr_pullup(fin, 8) == -1) { LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_pullup); return NULL; } hdr = fin->fin_dp; switch (proto) { case IPPROTO_FRAGMENT : shift = 8; break; default : shift = 8 + (hdr->ip6e_len << 3); break; } if (shift > fin->fin_dlen) { /* Nasty extension header length? */ fin->fin_flx |= FI_BAD; DT3(ipf_fi_bad_pr_ipv6exthdr_len, fr_info_t *, fin, u_short, shift, u_short, fin->fin_dlen); LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_hlen); return NULL; } fin->fin_dp = (char *)fin->fin_dp + shift; fin->fin_dlen -= shift; /* * If we have seen a fragment header, do not set any flags to indicate * the presence of this extension header as it has no impact on the * end result until after it has been defragmented. */ if (fin->fin_flx & FI_FRAG) return hdr; for (i = 0; ip6exthdr[i].ol_bit != 0; i++) if (ip6exthdr[i].ol_val == proto) { /* * Most IPv6 extension headers are only allowed once. */ if ((multiple == 0) && ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0)) { fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_ipv6exthdr_once, fr_info_t *, fin, u_int, (fin->fin_optmsk & ip6exthdr[i].ol_bit)); } else fin->fin_optmsk |= ip6exthdr[i].ol_bit; break; } return hdr; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_hopopts6 */ /* Returns: int - value of the next header or IPPROTO_NONE if error */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv6 Only */ /* This is function checks pending hop by hop options extension header */ /* ------------------------------------------------------------------------ */ static INLINE int ipf_pr_hopopts6(fin) fr_info_t *fin; { struct ip6_ext *hdr; hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS); if (hdr == NULL) return IPPROTO_NONE; return hdr->ip6e_nxt; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_mobility6 */ /* Returns: int - value of the next header or IPPROTO_NONE if error */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv6 Only */ /* This is function checks the IPv6 mobility extension header */ /* ------------------------------------------------------------------------ */ static INLINE int ipf_pr_mobility6(fin) fr_info_t *fin; { struct ip6_ext *hdr; hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_MOBILITY); if (hdr == NULL) return IPPROTO_NONE; return hdr->ip6e_nxt; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_routing6 */ /* Returns: int - value of the next header or IPPROTO_NONE if error */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv6 Only */ /* This is function checks pending routing extension header */ /* ------------------------------------------------------------------------ */ static INLINE int ipf_pr_routing6(fin) fr_info_t *fin; { struct ip6_routing *hdr; hdr = (struct ip6_routing *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_ROUTING); if (hdr == NULL) return IPPROTO_NONE; switch (hdr->ip6r_type) { case 0 : /* * Nasty extension header length? */ if (((hdr->ip6r_len >> 1) < hdr->ip6r_segleft) || (hdr->ip6r_segleft && (hdr->ip6r_len & 1))) { ipf_main_softc_t *softc = fin->fin_main_soft; fin->fin_flx |= FI_BAD; DT1(ipf_fi_bad_routing6, fr_info_t *, fin); LBUMPD(ipf_stats[fin->fin_out], fr_v6_rh_bad); return IPPROTO_NONE; } break; default : break; } return hdr->ip6r_nxt; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_fragment6 */ /* Returns: int - value of the next header or IPPROTO_NONE if error */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv6 Only */ /* Examine the IPv6 fragment header and extract fragment offset information.*/ /* */ /* Fragments in IPv6 are extraordinarily difficult to deal with - much more */ /* so than in IPv4. There are 5 cases of fragments with IPv6 that all */ /* packets with a fragment header can fit into. They are as follows: */ /* */ /* 1. [IPv6][0-n EH][FH][0-n EH] (no L4HDR present) */ /* 2. [IPV6][0-n EH][FH][0-n EH][L4HDR part] (short) */ /* 3. [IPV6][0-n EH][FH][L4HDR part][0-n data] (short) */ /* 4. [IPV6][0-n EH][FH][0-n EH][L4HDR][0-n data] */ /* 5. [IPV6][0-n EH][FH][data] */ /* */ /* IPV6 = IPv6 header, FH = Fragment Header, */ /* 0-n EH = 0 or more extension headers, 0-n data = 0 or more bytes of data */ /* */ /* Packets that match 1, 2, 3 will be dropped as the only reasonable */ /* scenario in which they happen is in extreme circumstances that are most */ /* likely to be an indication of an attack rather than normal traffic. */ /* A type 3 packet may be sent by an attacked after a type 4 packet. There */ /* are two rules that can be used to guard against type 3 packets: L4 */ /* headers must always be in a packet that has the offset field set to 0 */ /* and no packet is allowed to overlay that where offset = 0. */ /* ------------------------------------------------------------------------ */ static INLINE int ipf_pr_fragment6(fin) fr_info_t *fin; { ipf_main_softc_t *softc = fin->fin_main_soft; struct ip6_frag *frag; fin->fin_flx |= FI_FRAG; frag = (struct ip6_frag *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT); if (frag == NULL) { LBUMPD(ipf_stats[fin->fin_out], fr_v6_frag_bad); return IPPROTO_NONE; } if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0) { /* * Any fragment that isn't the last fragment must have its * length as a multiple of 8. */ if ((fin->fin_plen & 7) != 0) { fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_frag_not_8, fr_info_t *, fin, u_int, (fin->fin_plen & 7)); } } fin->fin_fraghdr = frag; fin->fin_id = frag->ip6f_ident; fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK); if (fin->fin_off != 0) fin->fin_flx |= FI_FRAGBODY; /* * Jumbograms aren't handled, so the max. length is 64k */ if ((fin->fin_off << 3) + fin->fin_dlen > 65535) { fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_jumbogram, fr_info_t *, fin, u_int, ((fin->fin_off << 3) + fin->fin_dlen)); } /* * We don't know where the transport layer header (or whatever is next * is), as it could be behind destination options (amongst others) so * return the fragment header as the type of packet this is. Note that * this effectively disables the fragment cache for > 1 protocol at a * time. */ return frag->ip6f_nxt; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_dstopts6 */ /* Returns: int - value of the next header or IPPROTO_NONE if error */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv6 Only */ /* This is function checks pending destination options extension header */ /* ------------------------------------------------------------------------ */ static INLINE int ipf_pr_dstopts6(fin) fr_info_t *fin; { ipf_main_softc_t *softc = fin->fin_main_soft; struct ip6_ext *hdr; hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_DSTOPTS); if (hdr == NULL) { LBUMPD(ipf_stats[fin->fin_out], fr_v6_dst_bad); return IPPROTO_NONE; } return hdr->ip6e_nxt; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_icmp6 */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv6 Only */ /* This routine is mainly concerned with determining the minimum valid size */ /* for an ICMPv6 packet. */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_icmp6(fin) fr_info_t *fin; { int minicmpsz = sizeof(struct icmp6_hdr); struct icmp6_hdr *icmp6; if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) { ipf_main_softc_t *softc = fin->fin_main_soft; LBUMPD(ipf_stats[fin->fin_out], fr_v6_icmp6_pullup); return; } if (fin->fin_dlen > 1) { ip6_t *ip6; icmp6 = fin->fin_dp; fin->fin_data[0] = *(u_short *)icmp6; if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0) fin->fin_flx |= FI_ICMPQUERY; switch (icmp6->icmp6_type) { case ICMP6_ECHO_REPLY : case ICMP6_ECHO_REQUEST : if (fin->fin_dlen >= 6) fin->fin_data[1] = icmp6->icmp6_id; minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t); break; case ICMP6_DST_UNREACH : case ICMP6_PACKET_TOO_BIG : case ICMP6_TIME_EXCEEDED : case ICMP6_PARAM_PROB : fin->fin_flx |= FI_ICMPERR; minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t); if (fin->fin_plen < ICMP6ERR_IPICMPHLEN) break; if (M_LEN(fin->fin_m) < fin->fin_plen) { if (ipf_coalesce(fin) != 1) return; } if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN) == -1) return; /* * If the destination of this packet doesn't match the * source of the original packet then this packet is * not correct. */ icmp6 = fin->fin_dp; ip6 = (ip6_t *)((char *)icmp6 + ICMPERR_ICMPHLEN); if (IP6_NEQ(&fin->fin_fi.fi_dst, (i6addr_t *)&ip6->ip6_src)) { fin->fin_flx |= FI_BAD; DT1(ipf_fi_bad_icmp6, fr_info_t *, fin); } break; default : break; } } ipf_pr_short6(fin, minicmpsz); if ((fin->fin_flx & (FI_SHORT|FI_BAD)) == 0) { u_char p = fin->fin_p; fin->fin_p = IPPROTO_ICMPV6; ipf_checkv6sum(fin); fin->fin_p = p; } } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_udp6 */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv6 Only */ /* Analyse the packet for IPv6/UDP properties. */ /* Is not expected to be called for fragmented packets. */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_udp6(fin) fr_info_t *fin; { if (ipf_pr_udpcommon(fin) == 0) { u_char p = fin->fin_p; fin->fin_p = IPPROTO_UDP; ipf_checkv6sum(fin); fin->fin_p = p; } } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_tcp6 */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv6 Only */ /* Analyse the packet for IPv6/TCP properties. */ /* Is not expected to be called for fragmented packets. */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_tcp6(fin) fr_info_t *fin; { if (ipf_pr_tcpcommon(fin) == 0) { u_char p = fin->fin_p; fin->fin_p = IPPROTO_TCP; ipf_checkv6sum(fin); fin->fin_p = p; } } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_esp6 */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv6 Only */ /* Analyse the packet for ESP properties. */ /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */ /* even though the newer ESP packets must also have a sequence number that */ /* is 32bits as well, it is not possible(?) to determine the version from a */ /* simple packet header. */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_esp6(fin) fr_info_t *fin; { if ((fin->fin_off == 0) && (ipf_pr_pullup(fin, 8) == -1)) { ipf_main_softc_t *softc = fin->fin_main_soft; LBUMPD(ipf_stats[fin->fin_out], fr_v6_esp_pullup); return; } } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_ah6 */ /* Returns: int - value of the next header or IPPROTO_NONE if error */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv6 Only */ /* Analyse the packet for AH properties. */ /* The minimum length is taken to be the combination of all fields in the */ /* header being present and no authentication data (null algorithm used.) */ /* ------------------------------------------------------------------------ */ static INLINE int ipf_pr_ah6(fin) fr_info_t *fin; { authhdr_t *ah; fin->fin_flx |= FI_AH; ah = (authhdr_t *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS); if (ah == NULL) { ipf_main_softc_t *softc = fin->fin_main_soft; LBUMPD(ipf_stats[fin->fin_out], fr_v6_ah_bad); return IPPROTO_NONE; } ipf_pr_short6(fin, sizeof(*ah)); /* * No need for another pullup, ipf_pr_ipv6exthdr() will pullup * enough data to satisfy ah_next (the very first one.) */ return ah->ah_next; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_gre6 */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* Analyse the packet for GRE properties. */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_gre6(fin) fr_info_t *fin; { grehdr_t *gre; if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) { ipf_main_softc_t *softc = fin->fin_main_soft; LBUMPD(ipf_stats[fin->fin_out], fr_v6_gre_pullup); return; } gre = fin->fin_dp; if (GRE_REV(gre->gr_flags) == 1) fin->fin_data[0] = gre->gr_call; } #endif /* USE_INET6 */ /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_pullup */ /* Returns: int - 0 == pullup succeeded, -1 == failure */ /* Parameters: fin(I) - pointer to packet information */ /* plen(I) - length (excluding L3 header) to pullup */ /* */ /* Short inline function to cut down on code duplication to perform a call */ /* to ipf_pullup to ensure there is the required amount of data, */ /* consecutively in the packet buffer. */ /* */ /* This function pulls up 'extra' data at the location of fin_dp. fin_dp */ /* points to the first byte after the complete layer 3 header, which will */ /* include all of the known extension headers for IPv6 or options for IPv4. */ /* */ /* Since fr_pullup() expects the total length of bytes to be pulled up, it */ /* is necessary to add those we can already assume to be pulled up (fin_dp */ /* - fin_ip) to what is passed through. */ /* ------------------------------------------------------------------------ */ int ipf_pr_pullup(fin, plen) fr_info_t *fin; int plen; { ipf_main_softc_t *softc = fin->fin_main_soft; if (fin->fin_m != NULL) { if (fin->fin_dp != NULL) plen += (char *)fin->fin_dp - ((char *)fin->fin_ip + fin->fin_hlen); plen += fin->fin_hlen; if (M_LEN(fin->fin_m) < plen + fin->fin_ipoff) { #if defined(_KERNEL) if (ipf_pullup(fin->fin_m, fin, plen) == NULL) { DT(ipf_pullup_fail); LBUMP(ipf_stats[fin->fin_out].fr_pull[1]); return -1; } LBUMP(ipf_stats[fin->fin_out].fr_pull[0]); #else LBUMP(ipf_stats[fin->fin_out].fr_pull[1]); /* * Fake ipf_pullup failing */ fin->fin_reason = FRB_PULLUP; *fin->fin_mp = NULL; fin->fin_m = NULL; fin->fin_ip = NULL; return -1; #endif } } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_short */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* xmin(I) - minimum header size */ /* */ /* Check if a packet is "short" as defined by xmin. The rule we are */ /* applying here is that the packet must not be fragmented within the layer */ /* 4 header. That is, it must not be a fragment that has its offset set to */ /* start within the layer 4 header (hdrmin) or if it is at offset 0, the */ /* entire layer 4 header must be present (min). */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_short(fin, xmin) fr_info_t *fin; int xmin; { if (fin->fin_off == 0) { if (fin->fin_dlen < xmin) fin->fin_flx |= FI_SHORT; } else if (fin->fin_off < xmin) { fin->fin_flx |= FI_SHORT; } } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_icmp */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv4 Only */ /* Do a sanity check on the packet for ICMP (v4). In nearly all cases, */ /* except extrememly bad packets, both type and code will be present. */ /* The expected minimum size of an ICMP packet is very much dependent on */ /* the type of it. */ /* */ /* XXX - other ICMP sanity checks? */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_icmp(fin) fr_info_t *fin; { ipf_main_softc_t *softc = fin->fin_main_soft; int minicmpsz = sizeof(struct icmp); icmphdr_t *icmp; ip_t *oip; ipf_pr_short(fin, ICMPERR_ICMPHLEN); if (fin->fin_off != 0) { LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_frag); return; } if (ipf_pr_pullup(fin, ICMPERR_ICMPHLEN) == -1) { LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_pullup); return; } icmp = fin->fin_dp; fin->fin_data[0] = *(u_short *)icmp; fin->fin_data[1] = icmp->icmp_id; switch (icmp->icmp_type) { case ICMP_ECHOREPLY : case ICMP_ECHO : /* Router discovery messaes - RFC 1256 */ case ICMP_ROUTERADVERT : case ICMP_ROUTERSOLICIT : fin->fin_flx |= FI_ICMPQUERY; minicmpsz = ICMP_MINLEN; break; /* * type(1) + code(1) + cksum(2) + id(2) seq(2) + * 3 * timestamp(3 * 4) */ case ICMP_TSTAMP : case ICMP_TSTAMPREPLY : fin->fin_flx |= FI_ICMPQUERY; minicmpsz = 20; break; /* * type(1) + code(1) + cksum(2) + id(2) seq(2) + * mask(4) */ case ICMP_IREQ : case ICMP_IREQREPLY : case ICMP_MASKREQ : case ICMP_MASKREPLY : fin->fin_flx |= FI_ICMPQUERY; minicmpsz = 12; break; /* * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+) */ case ICMP_UNREACH : #ifdef icmp_nextmtu if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) { if (icmp->icmp_nextmtu < softc->ipf_icmpminfragmtu) { fin->fin_flx |= FI_BAD; DT3(ipf_fi_bad_icmp_nextmtu, fr_info_t *, fin, u_int, icmp->icmp_nextmtu, u_int, softc->ipf_icmpminfragmtu); } } #endif /* FALLTHROUGH */ case ICMP_SOURCEQUENCH : case ICMP_REDIRECT : case ICMP_TIMXCEED : case ICMP_PARAMPROB : fin->fin_flx |= FI_ICMPERR; if (ipf_coalesce(fin) != 1) { LBUMPD(ipf_stats[fin->fin_out], fr_icmp_coalesce); return; } /* * ICMP error packets should not be generated for IP * packets that are a fragment that isn't the first * fragment. */ oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN); if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0) { fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_icmp_err, fr_info_t, fin, u_int, (ntohs(oip->ip_off) & IP_OFFMASK)); } /* * If the destination of this packet doesn't match the * source of the original packet then this packet is * not correct. */ if (oip->ip_src.s_addr != fin->fin_daddr) { fin->fin_flx |= FI_BAD; DT1(ipf_fi_bad_src_ne_dst, fr_info_t *, fin); } break; default : break; } ipf_pr_short(fin, minicmpsz); ipf_checkv4sum(fin); } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_tcpcommon */ /* Returns: int - 0 = header ok, 1 = bad packet, -1 = buffer error */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* TCP header sanity checking. Look for bad combinations of TCP flags, */ /* and make some checks with how they interact with other fields. */ /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is */ /* valid and mark the packet as bad if not. */ /* ------------------------------------------------------------------------ */ static INLINE int ipf_pr_tcpcommon(fin) fr_info_t *fin; { ipf_main_softc_t *softc = fin->fin_main_soft; int flags, tlen; tcphdr_t *tcp; fin->fin_flx |= FI_TCPUDP; if (fin->fin_off != 0) { LBUMPD(ipf_stats[fin->fin_out], fr_tcp_frag); return 0; } if (ipf_pr_pullup(fin, sizeof(*tcp)) == -1) { LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup); return -1; } tcp = fin->fin_dp; if (fin->fin_dlen > 3) { fin->fin_sport = ntohs(tcp->th_sport); fin->fin_dport = ntohs(tcp->th_dport); } if ((fin->fin_flx & FI_SHORT) != 0) { LBUMPD(ipf_stats[fin->fin_out], fr_tcp_short); return 1; } /* * Use of the TCP data offset *must* result in a value that is at * least the same size as the TCP header. */ tlen = TCP_OFF(tcp) << 2; if (tlen < sizeof(tcphdr_t)) { LBUMPD(ipf_stats[fin->fin_out], fr_tcp_small); fin->fin_flx |= FI_BAD; DT3(ipf_fi_bad_tlen, fr_info_t, fin, u_int, tlen, u_int, sizeof(tcphdr_t)); return 1; } flags = tcp->th_flags; fin->fin_tcpf = tcp->th_flags; /* * If the urgent flag is set, then the urgent pointer must * also be set and vice versa. Good TCP packets do not have * just one of these set. */ if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) { fin->fin_flx |= FI_BAD; DT3(ipf_fi_bad_th_urg, fr_info_t*, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp); #if 0 } else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) { /* * Ignore this case (#if 0) as it shows up in "real" * traffic with bogus values in the urgent pointer field. */ fin->fin_flx |= FI_BAD; DT3(ipf_fi_bad_th_urg0, fr_info_t *, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp); #endif } else if (((flags & (TH_SYN|TH_FIN)) != 0) && ((flags & (TH_RST|TH_ACK)) == TH_RST)) { /* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */ fin->fin_flx |= FI_BAD; DT1(ipf_fi_bad_th_fin_rst_ack, fr_info_t, fin); #if 1 } else if (((flags & TH_SYN) != 0) && ((flags & (TH_URG|TH_PUSH)) != 0)) { /* * SYN with URG and PUSH set is not for normal TCP but it is * possible(?) with T/TCP...but who uses T/TCP? */ fin->fin_flx |= FI_BAD; DT1(ipf_fi_bad_th_syn_urg_psh, fr_info_t *, fin); #endif } else if (!(flags & TH_ACK)) { /* * If the ack bit isn't set, then either the SYN or * RST bit must be set. If the SYN bit is set, then * we expect the ACK field to be 0. If the ACK is * not set and if URG, PSH or FIN are set, consdier * that to indicate a bad TCP packet. */ if ((flags == TH_SYN) && (tcp->th_ack != 0)) { /* * Cisco PIX sets the ACK field to a random value. * In light of this, do not set FI_BAD until a patch * is available from Cisco to ensure that * interoperability between existing systems is * achieved. */ /*fin->fin_flx |= FI_BAD*/; /*DT1(ipf_fi_bad_th_syn_ack, fr_info_t *, fin);*/ } else if (!(flags & (TH_RST|TH_SYN))) { fin->fin_flx |= FI_BAD; DT1(ipf_fi_bad_th_rst_syn, fr_info_t *, fin); } else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) { fin->fin_flx |= FI_BAD; DT1(ipf_fi_bad_th_urg_push_fin, fr_info_t *, fin); } } if (fin->fin_flx & FI_BAD) { LBUMPD(ipf_stats[fin->fin_out], fr_tcp_bad_flags); return 1; } /* * At this point, it's not exactly clear what is to be gained by * marking up which TCP options are and are not present. The one we * are most interested in is the TCP window scale. This is only in * a SYN packet [RFC1323] so we don't need this here...? * Now if we were to analyse the header for passive fingerprinting, * then that might add some weight to adding this... */ if (tlen == sizeof(tcphdr_t)) { return 0; } if (ipf_pr_pullup(fin, tlen) == -1) { LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup); return -1; } #if 0 tcp = fin->fin_dp; ip = fin->fin_ip; s = (u_char *)(tcp + 1); off = IP_HL(ip) << 2; # ifdef _KERNEL if (fin->fin_mp != NULL) { mb_t *m = *fin->fin_mp; if (off + tlen > M_LEN(m)) return; } # endif for (tlen -= (int)sizeof(*tcp); tlen > 0; ) { opt = *s; if (opt == '\0') break; else if (opt == TCPOPT_NOP) ol = 1; else { if (tlen < 2) break; ol = (int)*(s + 1); if (ol < 2 || ol > tlen) break; } for (i = 9, mv = 4; mv >= 0; ) { op = ipopts + i; if (opt == (u_char)op->ol_val) { optmsk |= op->ol_bit; break; } } tlen -= ol; s += ol; } #endif /* 0 */ return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_udpcommon */ /* Returns: int - 0 = header ok, 1 = bad packet */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* Extract the UDP source and destination ports, if present. If compiled */ /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid. */ /* ------------------------------------------------------------------------ */ static INLINE int ipf_pr_udpcommon(fin) fr_info_t *fin; { udphdr_t *udp; fin->fin_flx |= FI_TCPUDP; if (!fin->fin_off && (fin->fin_dlen > 3)) { if (ipf_pr_pullup(fin, sizeof(*udp)) == -1) { ipf_main_softc_t *softc = fin->fin_main_soft; fin->fin_flx |= FI_SHORT; LBUMPD(ipf_stats[fin->fin_out], fr_udp_pullup); return 1; } udp = fin->fin_dp; fin->fin_sport = ntohs(udp->uh_sport); fin->fin_dport = ntohs(udp->uh_dport); } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_tcp */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv4 Only */ /* Analyse the packet for IPv4/TCP properties. */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_tcp(fin) fr_info_t *fin; { ipf_pr_short(fin, sizeof(tcphdr_t)); if (ipf_pr_tcpcommon(fin) == 0) ipf_checkv4sum(fin); } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_udp */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv4 Only */ /* Analyse the packet for IPv4/UDP properties. */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_udp(fin) fr_info_t *fin; { ipf_pr_short(fin, sizeof(udphdr_t)); if (ipf_pr_udpcommon(fin) == 0) ipf_checkv4sum(fin); } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_esp */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* Analyse the packet for ESP properties. */ /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */ /* even though the newer ESP packets must also have a sequence number that */ /* is 32bits as well, it is not possible(?) to determine the version from a */ /* simple packet header. */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_esp(fin) fr_info_t *fin; { if (fin->fin_off == 0) { ipf_pr_short(fin, 8); if (ipf_pr_pullup(fin, 8) == -1) { ipf_main_softc_t *softc = fin->fin_main_soft; LBUMPD(ipf_stats[fin->fin_out], fr_v4_esp_pullup); } } } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_ah */ /* Returns: int - value of the next header or IPPROTO_NONE if error */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* Analyse the packet for AH properties. */ /* The minimum length is taken to be the combination of all fields in the */ /* header being present and no authentication data (null algorithm used.) */ /* ------------------------------------------------------------------------ */ static INLINE int ipf_pr_ah(fin) fr_info_t *fin; { ipf_main_softc_t *softc = fin->fin_main_soft; authhdr_t *ah; int len; fin->fin_flx |= FI_AH; ipf_pr_short(fin, sizeof(*ah)); if (((fin->fin_flx & FI_SHORT) != 0) || (fin->fin_off != 0)) { LBUMPD(ipf_stats[fin->fin_out], fr_v4_ah_bad); return IPPROTO_NONE; } if (ipf_pr_pullup(fin, sizeof(*ah)) == -1) { DT(fr_v4_ah_pullup_1); LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup); return IPPROTO_NONE; } ah = (authhdr_t *)fin->fin_dp; len = (ah->ah_plen + 2) << 2; ipf_pr_short(fin, len); if (ipf_pr_pullup(fin, len) == -1) { DT(fr_v4_ah_pullup_2); LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup); return IPPROTO_NONE; } /* * Adjust fin_dp and fin_dlen for skipping over the authentication * header. */ fin->fin_dp = (char *)fin->fin_dp + len; fin->fin_dlen -= len; return ah->ah_next; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_gre */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* Analyse the packet for GRE properties. */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_gre(fin) fr_info_t *fin; { ipf_main_softc_t *softc = fin->fin_main_soft; grehdr_t *gre; ipf_pr_short(fin, sizeof(grehdr_t)); if (fin->fin_off != 0) { LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_frag); return; } if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) { LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_pullup); return; } gre = fin->fin_dp; if (GRE_REV(gre->gr_flags) == 1) fin->fin_data[0] = gre->gr_call; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_ipv4hdr */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv4 Only */ /* Analyze the IPv4 header and set fields in the fr_info_t structure. */ /* Check all options present and flag their presence if any exist. */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_ipv4hdr(fin) fr_info_t *fin; { u_short optmsk = 0, secmsk = 0, auth = 0; int hlen, ol, mv, p, i; const struct optlist *op; u_char *s, opt; u_short off; fr_ip_t *fi; ip_t *ip; fi = &fin->fin_fi; hlen = fin->fin_hlen; ip = fin->fin_ip; p = ip->ip_p; fi->fi_p = p; fin->fin_crc = p; fi->fi_tos = ip->ip_tos; fin->fin_id = ntohs(ip->ip_id); off = ntohs(ip->ip_off); /* Get both TTL and protocol */ fi->fi_p = ip->ip_p; fi->fi_ttl = ip->ip_ttl; /* Zero out bits not used in IPv6 address */ fi->fi_src.i6[1] = 0; fi->fi_src.i6[2] = 0; fi->fi_src.i6[3] = 0; fi->fi_dst.i6[1] = 0; fi->fi_dst.i6[2] = 0; fi->fi_dst.i6[3] = 0; fi->fi_saddr = ip->ip_src.s_addr; fin->fin_crc += fi->fi_saddr; fi->fi_daddr = ip->ip_dst.s_addr; fin->fin_crc += fi->fi_daddr; if (IN_CLASSD(ntohl(fi->fi_daddr))) fin->fin_flx |= FI_MULTICAST|FI_MBCAST; /* * set packet attribute flags based on the offset and * calculate the byte offset that it represents. */ off &= IP_MF|IP_OFFMASK; if (off != 0) { int morefrag = off & IP_MF; fi->fi_flx |= FI_FRAG; off &= IP_OFFMASK; if (off == 1 && p == IPPROTO_TCP) { fin->fin_flx |= FI_SHORT; /* RFC 3128 */ DT1(ipf_fi_tcp_frag_off_1, fr_info_t *, fin); } if (off != 0) { fin->fin_flx |= FI_FRAGBODY; off <<= 3; if ((off + fin->fin_dlen > 65535) || (fin->fin_dlen == 0) || ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) { /* * The length of the packet, starting at its * offset cannot exceed 65535 (0xffff) as the * length of an IP packet is only 16 bits. * * Any fragment that isn't the last fragment * must have a length greater than 0 and it * must be an even multiple of 8. */ fi->fi_flx |= FI_BAD; DT1(ipf_fi_bad_fragbody_gt_65535, fr_info_t *, fin); } } } fin->fin_off = off; /* * Call per-protocol setup and checking */ if (p == IPPROTO_AH) { /* * Treat AH differently because we expect there to be another * layer 4 header after it. */ p = ipf_pr_ah(fin); } switch (p) { case IPPROTO_UDP : ipf_pr_udp(fin); break; case IPPROTO_TCP : ipf_pr_tcp(fin); break; case IPPROTO_ICMP : ipf_pr_icmp(fin); break; case IPPROTO_ESP : ipf_pr_esp(fin); break; case IPPROTO_GRE : ipf_pr_gre(fin); break; } ip = fin->fin_ip; if (ip == NULL) return; /* * If it is a standard IP header (no options), set the flag fields * which relate to options to 0. */ if (hlen == sizeof(*ip)) { fi->fi_optmsk = 0; fi->fi_secmsk = 0; fi->fi_auth = 0; return; } /* * So the IP header has some IP options attached. Walk the entire * list of options present with this packet and set flags to indicate * which ones are here and which ones are not. For the somewhat out * of date and obscure security classification options, set a flag to * represent which classification is present. */ fi->fi_flx |= FI_OPTIONS; for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) { opt = *s; if (opt == '\0') break; else if (opt == IPOPT_NOP) ol = 1; else { if (hlen < 2) break; ol = (int)*(s + 1); if (ol < 2 || ol > hlen) break; } for (i = 9, mv = 4; mv >= 0; ) { op = ipopts + i; if ((opt == (u_char)op->ol_val) && (ol > 4)) { u_32_t doi; switch (opt) { case IPOPT_SECURITY : if (optmsk & op->ol_bit) { fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_ipopt_security, fr_info_t *, fin, u_short, (optmsk & op->ol_bit)); } else { doi = ipf_checkripso(s); secmsk = doi >> 16; auth = doi & 0xffff; } break; case IPOPT_CIPSO : if (optmsk & op->ol_bit) { fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_ipopt_cipso, fr_info_t *, fin, u_short, (optmsk & op->ol_bit)); } else { doi = ipf_checkcipso(fin, s, ol); secmsk = doi >> 16; auth = doi & 0xffff; } break; } optmsk |= op->ol_bit; } if (opt < op->ol_val) i -= mv; else i += mv; mv--; } hlen -= ol; s += ol; } /* * */ if (auth && !(auth & 0x0100)) auth &= 0xff00; fi->fi_optmsk = optmsk; fi->fi_secmsk = secmsk; fi->fi_auth = auth; } /* ------------------------------------------------------------------------ */ /* Function: ipf_checkripso */ /* Returns: void */ /* Parameters: s(I) - pointer to start of RIPSO option */ /* */ /* ------------------------------------------------------------------------ */ static u_32_t ipf_checkripso(s) u_char *s; { const struct optlist *sp; u_short secmsk = 0, auth = 0; u_char sec; int j, m; sec = *(s + 2); /* classification */ for (j = 3, m = 2; m >= 0; ) { sp = secopt + j; if (sec == sp->ol_val) { secmsk |= sp->ol_bit; auth = *(s + 3); auth *= 256; auth += *(s + 4); break; } if (sec < sp->ol_val) j -= m; else j += m; m--; } return (secmsk << 16) | auth; } /* ------------------------------------------------------------------------ */ /* Function: ipf_checkcipso */ /* Returns: u_32_t - 0 = failure, else the doi from the header */ /* Parameters: fin(IO) - pointer to packet information */ /* s(I) - pointer to start of CIPSO option */ /* ol(I) - length of CIPSO option field */ /* */ /* This function returns the domain of integrity (DOI) field from the CIPSO */ /* header and returns that whilst also storing the highest sensitivity */ /* value found in the fr_info_t structure. */ /* */ /* No attempt is made to extract the category bitmaps as these are defined */ /* by the user (rather than the protocol) and can be rather numerous on the */ /* end nodes. */ /* ------------------------------------------------------------------------ */ static u_32_t ipf_checkcipso(fin, s, ol) fr_info_t *fin; u_char *s; int ol; { ipf_main_softc_t *softc = fin->fin_main_soft; fr_ip_t *fi; u_32_t doi; u_char *t, tag, tlen, sensitivity; int len; if (ol < 6 || ol > 40) { LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_bad); fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_checkcipso_ol, fr_info_t *, fin, u_int, ol); return 0; } fi = &fin->fin_fi; fi->fi_sensitivity = 0; /* * The DOI field MUST be there. */ bcopy(s + 2, &doi, sizeof(doi)); t = (u_char *)s + 6; for (len = ol - 6; len >= 2; len -= tlen, t+= tlen) { tag = *t; tlen = *(t + 1); if (tlen > len || tlen < 4 || tlen > 34) { LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_tlen); fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_checkcipso_tlen, fr_info_t *, fin, u_int, tlen); return 0; } sensitivity = 0; /* * Tag numbers 0, 1, 2, 5 are laid out in the CIPSO Internet * draft (16 July 1992) that has expired. */ if (tag == 0) { fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_checkcipso_tag, fr_info_t *, fin, u_int, tag); continue; } else if (tag == 1) { if (*(t + 2) != 0) { fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_checkcipso_tag1_t2, fr_info_t *, fin, u_int, (*t + 2)); continue; } sensitivity = *(t + 3); /* Category bitmap for categories 0-239 */ } else if (tag == 4) { if (*(t + 2) != 0) { fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_checkcipso_tag4_t2, fr_info_t *, fin, u_int, (*t + 2)); continue; } sensitivity = *(t + 3); /* Enumerated categories, 16bits each, upto 15 */ } else if (tag == 5) { if (*(t + 2) != 0) { fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_checkcipso_tag5_t2, fr_info_t *, fin, u_int, (*t + 2)); continue; } sensitivity = *(t + 3); /* Range of categories (2*16bits), up to 7 pairs */ } else if (tag > 127) { /* Custom defined DOI */ ; } else { fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_checkcipso_tag127, fr_info_t *, fin, u_int, tag); continue; } if (sensitivity > fi->fi_sensitivity) fi->fi_sensitivity = sensitivity; } return doi; } /* ------------------------------------------------------------------------ */ /* Function: ipf_makefrip */ /* Returns: int - 0 == packet ok, -1 == packet freed */ /* Parameters: hlen(I) - length of IP packet header */ /* ip(I) - pointer to the IP header */ /* fin(IO) - pointer to packet information */ /* */ /* Compact the IP header into a structure which contains just the info. */ /* which is useful for comparing IP headers with and store this information */ /* in the fr_info_t structure pointer to by fin. At present, it is assumed */ /* this function will be called with either an IPv4 or IPv6 packet. */ /* ------------------------------------------------------------------------ */ int ipf_makefrip(hlen, ip, fin) int hlen; ip_t *ip; fr_info_t *fin; { ipf_main_softc_t *softc = fin->fin_main_soft; int v; fin->fin_depth = 0; fin->fin_hlen = (u_short)hlen; fin->fin_ip = ip; fin->fin_rule = 0xffffffff; fin->fin_group[0] = -1; fin->fin_group[1] = '\0'; fin->fin_dp = (char *)ip + hlen; v = fin->fin_v; if (v == 4) { fin->fin_plen = ntohs(ip->ip_len); fin->fin_dlen = fin->fin_plen - hlen; ipf_pr_ipv4hdr(fin); #ifdef USE_INET6 } else if (v == 6) { fin->fin_plen = ntohs(((ip6_t *)ip)->ip6_plen); fin->fin_dlen = fin->fin_plen; fin->fin_plen += hlen; ipf_pr_ipv6hdr(fin); #endif } if (fin->fin_ip == NULL) { LBUMP(ipf_stats[fin->fin_out].fr_ip_freed); return -1; } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_portcheck */ /* Returns: int - 1 == port matched, 0 == port match failed */ /* Parameters: frp(I) - pointer to port check `expression' */ /* pop(I) - port number to evaluate */ /* */ /* Perform a comparison of a port number against some other(s), using a */ /* structure with compare information stored in it. */ /* ------------------------------------------------------------------------ */ static INLINE int ipf_portcheck(frp, pop) frpcmp_t *frp; u_32_t pop; { int err = 1; u_32_t po; po = frp->frp_port; /* * Do opposite test to that required and continue if that succeeds. */ switch (frp->frp_cmp) { case FR_EQUAL : if (pop != po) /* EQUAL */ err = 0; break; case FR_NEQUAL : if (pop == po) /* NOTEQUAL */ err = 0; break; case FR_LESST : if (pop >= po) /* LESSTHAN */ err = 0; break; case FR_GREATERT : if (pop <= po) /* GREATERTHAN */ err = 0; break; case FR_LESSTE : if (pop > po) /* LT or EQ */ err = 0; break; case FR_GREATERTE : if (pop < po) /* GT or EQ */ err = 0; break; case FR_OUTRANGE : if (pop >= po && pop <= frp->frp_top) /* Out of range */ err = 0; break; case FR_INRANGE : if (pop <= po || pop >= frp->frp_top) /* In range */ err = 0; break; case FR_INCRANGE : if (pop < po || pop > frp->frp_top) /* Inclusive range */ err = 0; break; default : break; } return err; } /* ------------------------------------------------------------------------ */ /* Function: ipf_tcpudpchk */ /* Returns: int - 1 == protocol matched, 0 == check failed */ /* Parameters: fda(I) - pointer to packet information */ /* ft(I) - pointer to structure with comparison data */ /* */ /* Compares the current pcket (assuming it is TCP/UDP) information with a */ /* structure containing information that we want to match against. */ /* ------------------------------------------------------------------------ */ int ipf_tcpudpchk(fi, ft) fr_ip_t *fi; frtuc_t *ft; { int err = 1; /* * Both ports should *always* be in the first fragment. * So far, I cannot find any cases where they can not be. * * compare destination ports */ if (ft->ftu_dcmp) err = ipf_portcheck(&ft->ftu_dst, fi->fi_ports[1]); /* * compare source ports */ if (err && ft->ftu_scmp) err = ipf_portcheck(&ft->ftu_src, fi->fi_ports[0]); /* * If we don't have all the TCP/UDP header, then how can we * expect to do any sort of match on it ? If we were looking for * TCP flags, then NO match. If not, then match (which should * satisfy the "short" class too). */ if (err && (fi->fi_p == IPPROTO_TCP)) { if (fi->fi_flx & FI_SHORT) return !(ft->ftu_tcpf | ft->ftu_tcpfm); /* * Match the flags ? If not, abort this match. */ if (ft->ftu_tcpfm && ft->ftu_tcpf != (fi->fi_tcpf & ft->ftu_tcpfm)) { FR_DEBUG(("f. %#x & %#x != %#x\n", fi->fi_tcpf, ft->ftu_tcpfm, ft->ftu_tcpf)); err = 0; } } return err; } /* ------------------------------------------------------------------------ */ /* Function: ipf_check_ipf */ /* Returns: int - 0 == match, else no match */ /* Parameters: fin(I) - pointer to packet information */ /* fr(I) - pointer to filter rule */ /* portcmp(I) - flag indicating whether to attempt matching on */ /* TCP/UDP port data. */ /* */ /* Check to see if a packet matches an IPFilter rule. Checks of addresses, */ /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */ /* this function. */ /* ------------------------------------------------------------------------ */ static INLINE int ipf_check_ipf(fin, fr, portcmp) fr_info_t *fin; frentry_t *fr; int portcmp; { u_32_t *ld, *lm, *lip; fripf_t *fri; fr_ip_t *fi; int i; fi = &fin->fin_fi; fri = fr->fr_ipf; lip = (u_32_t *)fi; lm = (u_32_t *)&fri->fri_mip; ld = (u_32_t *)&fri->fri_ip; /* * first 32 bits to check coversion: * IP version, TOS, TTL, protocol */ i = ((*lip & *lm) != *ld); FR_DEBUG(("0. %#08x & %#08x != %#08x\n", ntohl(*lip), ntohl(*lm), ntohl(*ld))); if (i) return 1; /* * Next 32 bits is a constructed bitmask indicating which IP options * are present (if any) in this packet. */ lip++, lm++, ld++; i = ((*lip & *lm) != *ld); FR_DEBUG(("1. %#08x & %#08x != %#08x\n", ntohl(*lip), ntohl(*lm), ntohl(*ld))); if (i != 0) return 1; lip++, lm++, ld++; /* * Unrolled loops (4 each, for 32 bits) for address checks. */ /* * Check the source address. */ if (fr->fr_satype == FRI_LOOKUP) { i = (*fr->fr_srcfunc)(fin->fin_main_soft, fr->fr_srcptr, fi->fi_v, lip, fin->fin_plen); if (i == -1) return 1; lip += 3; lm += 3; ld += 3; } else { i = ((*lip & *lm) != *ld); FR_DEBUG(("2a. %#08x & %#08x != %#08x\n", ntohl(*lip), ntohl(*lm), ntohl(*ld))); if (fi->fi_v == 6) { lip++, lm++, ld++; i |= ((*lip & *lm) != *ld); FR_DEBUG(("2b. %#08x & %#08x != %#08x\n", ntohl(*lip), ntohl(*lm), ntohl(*ld))); lip++, lm++, ld++; i |= ((*lip & *lm) != *ld); FR_DEBUG(("2c. %#08x & %#08x != %#08x\n", ntohl(*lip), ntohl(*lm), ntohl(*ld))); lip++, lm++, ld++; i |= ((*lip & *lm) != *ld); FR_DEBUG(("2d. %#08x & %#08x != %#08x\n", ntohl(*lip), ntohl(*lm), ntohl(*ld))); } else { lip += 3; lm += 3; ld += 3; } } i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6; if (i != 0) return 1; /* * Check the destination address. */ lip++, lm++, ld++; if (fr->fr_datype == FRI_LOOKUP) { i = (*fr->fr_dstfunc)(fin->fin_main_soft, fr->fr_dstptr, fi->fi_v, lip, fin->fin_plen); if (i == -1) return 1; lip += 3; lm += 3; ld += 3; } else { i = ((*lip & *lm) != *ld); FR_DEBUG(("3a. %#08x & %#08x != %#08x\n", ntohl(*lip), ntohl(*lm), ntohl(*ld))); if (fi->fi_v == 6) { lip++, lm++, ld++; i |= ((*lip & *lm) != *ld); FR_DEBUG(("3b. %#08x & %#08x != %#08x\n", ntohl(*lip), ntohl(*lm), ntohl(*ld))); lip++, lm++, ld++; i |= ((*lip & *lm) != *ld); FR_DEBUG(("3c. %#08x & %#08x != %#08x\n", ntohl(*lip), ntohl(*lm), ntohl(*ld))); lip++, lm++, ld++; i |= ((*lip & *lm) != *ld); FR_DEBUG(("3d. %#08x & %#08x != %#08x\n", ntohl(*lip), ntohl(*lm), ntohl(*ld))); } else { lip += 3; lm += 3; ld += 3; } } i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7; if (i != 0) return 1; /* * IP addresses matched. The next 32bits contains: * mast of old IP header security & authentication bits. */ lip++, lm++, ld++; i = (*ld - (*lip & *lm)); FR_DEBUG(("4. %#08x & %#08x != %#08x\n", *lip, *lm, *ld)); /* * Next we have 32 bits of packet flags. */ lip++, lm++, ld++; i |= (*ld - (*lip & *lm)); FR_DEBUG(("5. %#08x & %#08x != %#08x\n", *lip, *lm, *ld)); if (i == 0) { /* * If a fragment, then only the first has what we're * looking for here... */ if (portcmp) { if (!ipf_tcpudpchk(&fin->fin_fi, &fr->fr_tuc)) i = 1; } else { if (fr->fr_dcmp || fr->fr_scmp || fr->fr_tcpf || fr->fr_tcpfm) i = 1; if (fr->fr_icmpm || fr->fr_icmp) { if (((fi->fi_p != IPPROTO_ICMP) && (fi->fi_p != IPPROTO_ICMPV6)) || fin->fin_off || (fin->fin_dlen < 2)) i = 1; else if ((fin->fin_data[0] & fr->fr_icmpm) != fr->fr_icmp) { FR_DEBUG(("i. %#x & %#x != %#x\n", fin->fin_data[0], fr->fr_icmpm, fr->fr_icmp)); i = 1; } } } } return i; } /* ------------------------------------------------------------------------ */ /* Function: ipf_scanlist */ /* Returns: int - result flags of scanning filter list */ /* Parameters: fin(I) - pointer to packet information */ /* pass(I) - default result to return for filtering */ /* */ /* Check the input/output list of rules for a match to the current packet. */ /* If a match is found, the value of fr_flags from the rule becomes the */ /* return value and fin->fin_fr points to the matched rule. */ /* */ /* This function may be called recusively upto 16 times (limit inbuilt.) */ /* When unwinding, it should finish up with fin_depth as 0. */ /* */ /* Could be per interface, but this gets real nasty when you don't have, */ /* or can't easily change, the kernel source code to . */ /* ------------------------------------------------------------------------ */ int ipf_scanlist(fin, pass) fr_info_t *fin; u_32_t pass; { ipf_main_softc_t *softc = fin->fin_main_soft; int rulen, portcmp, off, skip; struct frentry *fr, *fnext; u_32_t passt, passo; /* * Do not allow nesting deeper than 16 levels. */ if (fin->fin_depth >= 16) return pass; fr = fin->fin_fr; /* * If there are no rules in this list, return now. */ if (fr == NULL) return pass; skip = 0; portcmp = 0; fin->fin_depth++; fin->fin_fr = NULL; off = fin->fin_off; if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off) portcmp = 1; for (rulen = 0; fr; fr = fnext, rulen++) { fnext = fr->fr_next; if (skip != 0) { FR_VERBOSE(("SKIP %d (%#x)\n", skip, fr->fr_flags)); skip--; continue; } /* * In all checks below, a null (zero) value in the * filter struture is taken to mean a wildcard. * * check that we are working for the right interface */ #ifdef _KERNEL if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp) continue; #else if (opts & (OPT_VERBOSE|OPT_DEBUG)) printf("\n"); FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' : FR_ISPASS(pass) ? 'p' : FR_ISACCOUNT(pass) ? 'A' : FR_ISAUTH(pass) ? 'a' : (pass & FR_NOMATCH) ? 'n' :'b')); if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp) continue; FR_VERBOSE((":i")); #endif switch (fr->fr_type) { case FR_T_IPF : case FR_T_IPF_BUILTIN : if (ipf_check_ipf(fin, fr, portcmp)) continue; break; #if defined(IPFILTER_BPF) case FR_T_BPFOPC : case FR_T_BPFOPC_BUILTIN : { u_char *mc; int wlen; if (*fin->fin_mp == NULL) continue; if (fin->fin_family != fr->fr_family) continue; mc = (u_char *)fin->fin_m; wlen = fin->fin_dlen + fin->fin_hlen; if (!bpf_filter(fr->fr_data, mc, wlen, 0)) continue; break; } #endif case FR_T_CALLFUNC_BUILTIN : { frentry_t *f; f = (*fr->fr_func)(fin, &pass); if (f != NULL) fr = f; else continue; break; } case FR_T_IPFEXPR : case FR_T_IPFEXPR_BUILTIN : if (fin->fin_family != fr->fr_family) continue; if (ipf_fr_matcharray(fin, fr->fr_data) == 0) continue; break; default : break; } if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) { if (fin->fin_nattag == NULL) continue; if (ipf_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0) continue; } FR_VERBOSE(("=%d/%d.%d *", fr->fr_grhead, fr->fr_group, rulen)); passt = fr->fr_flags; /* * If the rule is a "call now" rule, then call the function * in the rule, if it exists and use the results from that. * If the function pointer is bad, just make like we ignore * it, except for increasing the hit counter. */ if ((passt & FR_CALLNOW) != 0) { frentry_t *frs; ATOMIC_INC64(fr->fr_hits); if ((fr->fr_func == NULL) || (fr->fr_func == (ipfunc_t)-1)) continue; frs = fin->fin_fr; fin->fin_fr = fr; fr = (*fr->fr_func)(fin, &passt); if (fr == NULL) { fin->fin_fr = frs; continue; } passt = fr->fr_flags; } fin->fin_fr = fr; #ifdef IPFILTER_LOG /* * Just log this packet... */ if ((passt & FR_LOGMASK) == FR_LOG) { if (ipf_log_pkt(fin, passt) == -1) { if (passt & FR_LOGORBLOCK) { DT(frb_logfail); passt &= ~FR_CMDMASK; passt |= FR_BLOCK|FR_QUICK; fin->fin_reason = FRB_LOGFAIL; } } } #endif /* IPFILTER_LOG */ MUTEX_ENTER(&fr->fr_lock); fr->fr_bytes += (U_QUAD_T)fin->fin_plen; fr->fr_hits++; MUTEX_EXIT(&fr->fr_lock); fin->fin_rule = rulen; passo = pass; if (FR_ISSKIP(passt)) { skip = fr->fr_arg; continue; } else if (((passt & FR_LOGMASK) != FR_LOG) && ((passt & FR_LOGMASK) != FR_DECAPSULATE)) { pass = passt; } if (passt & (FR_RETICMP|FR_FAKEICMP)) fin->fin_icode = fr->fr_icode; if (fr->fr_group != -1) { (void) strncpy(fin->fin_group, FR_NAME(fr, fr_group), strlen(FR_NAME(fr, fr_group))); } else { fin->fin_group[0] = '\0'; } FR_DEBUG(("pass %#x/%#x/%x\n", passo, pass, passt)); if (fr->fr_grphead != NULL) { fin->fin_fr = fr->fr_grphead->fg_start; FR_VERBOSE(("group %s\n", FR_NAME(fr, fr_grhead))); if (FR_ISDECAPS(passt)) passt = ipf_decaps(fin, pass, fr->fr_icode); else passt = ipf_scanlist(fin, pass); if (fin->fin_fr == NULL) { fin->fin_rule = rulen; if (fr->fr_group != -1) (void) strncpy(fin->fin_group, fr->fr_names + fr->fr_group, strlen(fr->fr_names + fr->fr_group)); fin->fin_fr = fr; passt = pass; } pass = passt; } if (pass & FR_QUICK) { /* * Finally, if we've asked to track state for this * packet, set it up. Add state for "quick" rules * here so that if the action fails we can consider * the rule to "not match" and keep on processing * filter rules. */ if ((pass & FR_KEEPSTATE) && !FR_ISAUTH(pass) && !(fin->fin_flx & FI_STATE)) { int out = fin->fin_out; fin->fin_fr = fr; if (ipf_state_add(softc, fin, NULL, 0) == 0) { LBUMPD(ipf_stats[out], fr_ads); } else { LBUMPD(ipf_stats[out], fr_bads); pass = passo; continue; } } break; } } fin->fin_depth--; return pass; } /* ------------------------------------------------------------------------ */ /* Function: ipf_acctpkt */ /* Returns: frentry_t* - always returns NULL */ /* Parameters: fin(I) - pointer to packet information */ /* passp(IO) - pointer to current/new filter decision (unused) */ /* */ /* Checks a packet against accounting rules, if there are any for the given */ /* IP protocol version. */ /* */ /* N.B.: this function returns NULL to match the prototype used by other */ /* functions called from the IPFilter "mainline" in ipf_check(). */ /* ------------------------------------------------------------------------ */ frentry_t * ipf_acctpkt(fin, passp) fr_info_t *fin; u_32_t *passp; { ipf_main_softc_t *softc = fin->fin_main_soft; char group[FR_GROUPLEN]; frentry_t *fr, *frsave; u_32_t pass, rulen; passp = passp; fr = softc->ipf_acct[fin->fin_out][softc->ipf_active]; if (fr != NULL) { frsave = fin->fin_fr; bcopy(fin->fin_group, group, FR_GROUPLEN); rulen = fin->fin_rule; fin->fin_fr = fr; pass = ipf_scanlist(fin, FR_NOMATCH); if (FR_ISACCOUNT(pass)) { LBUMPD(ipf_stats[0], fr_acct); } fin->fin_fr = frsave; bcopy(group, fin->fin_group, FR_GROUPLEN); fin->fin_rule = rulen; } return NULL; } /* ------------------------------------------------------------------------ */ /* Function: ipf_firewall */ /* Returns: frentry_t* - returns pointer to matched rule, if no matches */ /* were found, returns NULL. */ /* Parameters: fin(I) - pointer to packet information */ /* passp(IO) - pointer to current/new filter decision (unused) */ /* */ /* Applies an appropriate set of firewall rules to the packet, to see if */ /* there are any matches. The first check is to see if a match can be seen */ /* in the cache. If not, then search an appropriate list of rules. Once a */ /* matching rule is found, take any appropriate actions as defined by the */ /* rule - except logging. */ /* ------------------------------------------------------------------------ */ static frentry_t * ipf_firewall(fin, passp) fr_info_t *fin; u_32_t *passp; { ipf_main_softc_t *softc = fin->fin_main_soft; frentry_t *fr; u_32_t pass; int out; out = fin->fin_out; pass = *passp; /* * This rule cache will only affect packets that are not being * statefully filtered. */ fin->fin_fr = softc->ipf_rules[out][softc->ipf_active]; if (fin->fin_fr != NULL) pass = ipf_scanlist(fin, softc->ipf_pass); if ((pass & FR_NOMATCH)) { LBUMPD(ipf_stats[out], fr_nom); } fr = fin->fin_fr; /* * Apply packets per second rate-limiting to a rule as required. */ if ((fr != NULL) && (fr->fr_pps != 0) && !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) { DT2(frb_ppsrate, fr_info_t *, fin, frentry_t *, fr); pass &= ~(FR_CMDMASK|FR_RETICMP|FR_RETRST); pass |= FR_BLOCK; LBUMPD(ipf_stats[out], fr_ppshit); fin->fin_reason = FRB_PPSRATE; } /* * If we fail to add a packet to the authorization queue, then we * drop the packet later. However, if it was added then pretend * we've dropped it already. */ if (FR_ISAUTH(pass)) { if (ipf_auth_new(fin->fin_m, fin) != 0) { DT1(frb_authnew, fr_info_t *, fin); fin->fin_m = *fin->fin_mp = NULL; fin->fin_reason = FRB_AUTHNEW; fin->fin_error = 0; } else { IPFERROR(1); fin->fin_error = ENOSPC; } } if ((fr != NULL) && (fr->fr_func != NULL) && (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW)) (void) (*fr->fr_func)(fin, &pass); /* * If a rule is a pre-auth rule, check again in the list of rules * loaded for authenticated use. It does not particulary matter * if this search fails because a "preauth" result, from a rule, * is treated as "not a pass", hence the packet is blocked. */ if (FR_ISPREAUTH(pass)) { pass = ipf_auth_pre_scanlist(softc, fin, pass); } /* * If the rule has "keep frag" and the packet is actually a fragment, * then create a fragment state entry. */ if (pass & FR_KEEPFRAG) { if (fin->fin_flx & FI_FRAG) { if (ipf_frag_new(softc, fin, pass) == -1) { LBUMP(ipf_stats[out].fr_bnfr); } else { LBUMP(ipf_stats[out].fr_nfr); } } else { LBUMP(ipf_stats[out].fr_cfr); } } fr = fin->fin_fr; *passp = pass; return fr; } /* ------------------------------------------------------------------------ */ /* Function: ipf_check */ /* Returns: int - 0 == packet allowed through, */ /* User space: */ /* -1 == packet blocked */ /* 1 == packet not matched */ /* -2 == requires authentication */ /* Kernel: */ /* > 0 == filter error # for packet */ /* Parameters: ctx(I) - pointer to the instance context */ /* ip(I) - pointer to start of IPv4/6 packet */ /* hlen(I) - length of header */ /* ifp(I) - pointer to interface this packet is on */ /* out(I) - 0 == packet going in, 1 == packet going out */ /* mp(IO) - pointer to caller's buffer pointer that holds this */ /* IP packet. */ /* Solaris: */ /* qpi(I) - pointer to STREAMS queue information for this */ /* interface & direction. */ /* */ /* ipf_check() is the master function for all IPFilter packet processing. */ /* It orchestrates: Network Address Translation (NAT), checking for packet */ /* authorisation (or pre-authorisation), presence of related state info., */ /* generating log entries, IP packet accounting, routing of packets as */ /* directed by firewall rules and of course whether or not to allow the */ /* packet to be further processed by the kernel. */ /* */ /* For packets blocked, the contents of "mp" will be NULL'd and the buffer */ /* freed. Packets passed may be returned with the pointer pointed to by */ /* by "mp" changed to a new buffer. */ /* ------------------------------------------------------------------------ */ int ipf_check(ctx, ip, hlen, ifp, out -#if defined(_KERNEL) && defined(MENTAT) +#if defined(_KERNEL) && SOLARIS , qif, mp) void *qif; #else , mp) #endif mb_t **mp; ip_t *ip; int hlen; struct ifnet *ifp; int out; void *ctx; { /* * The above really sucks, but short of writing a diff */ ipf_main_softc_t *softc = ctx; fr_info_t frinfo; fr_info_t *fin = &frinfo; u_32_t pass = softc->ipf_pass; frentry_t *fr = NULL; int v = IP_V(ip); mb_t *mc = NULL; mb_t *m; /* * The first part of ipf_check() deals with making sure that what goes * into the filtering engine makes some sense. Information about the * the packet is distilled, collected into a fr_info_t structure and * the an attempt to ensure the buffer the packet is in is big enough * to hold all the required packet headers. */ #ifdef _KERNEL -# ifdef MENTAT +# if SOLARIS qpktinfo_t *qpi = qif; # ifdef __sparc if ((u_int)ip & 0x3) return 2; # endif # else SPL_INT(s); # endif if (softc->ipf_running <= 0) { return 0; } bzero((char *)fin, sizeof(*fin)); -# ifdef MENTAT +# if SOLARIS if (qpi->qpi_flags & QF_BROADCAST) fin->fin_flx |= FI_MBCAST|FI_BROADCAST; if (qpi->qpi_flags & QF_MULTICAST) fin->fin_flx |= FI_MBCAST|FI_MULTICAST; m = qpi->qpi_m; fin->fin_qfm = m; fin->fin_qpi = qpi; -# else /* MENTAT */ +# else /* SOLARIS */ m = *mp; # if defined(M_MCAST) if ((m->m_flags & M_MCAST) != 0) fin->fin_flx |= FI_MBCAST|FI_MULTICAST; # endif # if defined(M_MLOOP) if ((m->m_flags & M_MLOOP) != 0) fin->fin_flx |= FI_MBCAST|FI_MULTICAST; # endif # if defined(M_BCAST) if ((m->m_flags & M_BCAST) != 0) fin->fin_flx |= FI_MBCAST|FI_BROADCAST; # endif # ifdef M_CANFASTFWD /* * XXX For now, IP Filter and fast-forwarding of cached flows * XXX are mutually exclusive. Eventually, IP Filter should * XXX get a "can-fast-forward" filter rule. */ m->m_flags &= ~M_CANFASTFWD; # endif /* M_CANFASTFWD */ # if defined(CSUM_DELAY_DATA) && !defined(__FreeBSD_version) /* * disable delayed checksums. */ if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { in_delayed_cksum(m); m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; } # endif /* CSUM_DELAY_DATA */ -# endif /* MENTAT */ +# endif /* SOLARIS */ #else bzero((char *)fin, sizeof(*fin)); m = *mp; # if defined(M_MCAST) if ((m->m_flags & M_MCAST) != 0) fin->fin_flx |= FI_MBCAST|FI_MULTICAST; # endif # if defined(M_MLOOP) if ((m->m_flags & M_MLOOP) != 0) fin->fin_flx |= FI_MBCAST|FI_MULTICAST; # endif # if defined(M_BCAST) if ((m->m_flags & M_BCAST) != 0) fin->fin_flx |= FI_MBCAST|FI_BROADCAST; # endif #endif /* _KERNEL */ fin->fin_v = v; fin->fin_m = m; fin->fin_ip = ip; fin->fin_mp = mp; fin->fin_out = out; fin->fin_ifp = ifp; fin->fin_error = ENETUNREACH; fin->fin_hlen = (u_short)hlen; fin->fin_dp = (char *)ip + hlen; fin->fin_main_soft = softc; fin->fin_ipoff = (char *)ip - MTOD(m, char *); SPL_NET(s); #ifdef USE_INET6 if (v == 6) { LBUMP(ipf_stats[out].fr_ipv6); /* * Jumbo grams are quite likely too big for internal buffer * structures to handle comfortably, for now, so just drop * them. */ if (((ip6_t *)ip)->ip6_plen == 0) { DT1(frb_jumbo, ip6_t *, (ip6_t *)ip); pass = FR_BLOCK|FR_NOMATCH; fin->fin_reason = FRB_JUMBO; goto finished; } fin->fin_family = AF_INET6; } else #endif { fin->fin_family = AF_INET; } if (ipf_makefrip(hlen, ip, fin) == -1) { DT1(frb_makefrip, fr_info_t *, fin); pass = FR_BLOCK|FR_NOMATCH; fin->fin_reason = FRB_MAKEFRIP; goto finished; } /* * For at least IPv6 packets, if a m_pullup() fails then this pointer * becomes NULL and so we have no packet to free. */ if (*fin->fin_mp == NULL) goto finished; if (!out) { if (v == 4) { if (softc->ipf_chksrc && !ipf_verifysrc(fin)) { LBUMPD(ipf_stats[0], fr_v4_badsrc); fin->fin_flx |= FI_BADSRC; } if (fin->fin_ip->ip_ttl < softc->ipf_minttl) { LBUMPD(ipf_stats[0], fr_v4_badttl); fin->fin_flx |= FI_LOWTTL; } } #ifdef USE_INET6 else if (v == 6) { if (((ip6_t *)ip)->ip6_hlim < softc->ipf_minttl) { LBUMPD(ipf_stats[0], fr_v6_badttl); fin->fin_flx |= FI_LOWTTL; } } #endif } if (fin->fin_flx & FI_SHORT) { LBUMPD(ipf_stats[out], fr_short); } READ_ENTER(&softc->ipf_mutex); if (!out) { switch (fin->fin_v) { case 4 : if (ipf_nat_checkin(fin, &pass) == -1) { goto filterdone; } break; #ifdef USE_INET6 case 6 : if (ipf_nat6_checkin(fin, &pass) == -1) { goto filterdone; } break; #endif default : break; } } /* * Check auth now. * If a packet is found in the auth table, then skip checking * the access lists for permission but we do need to consider * the result as if it were from the ACL's. In addition, being * found in the auth table means it has been seen before, so do * not pass it through accounting (again), lest it be counted twice. */ fr = ipf_auth_check(fin, &pass); if (!out && (fr == NULL)) (void) ipf_acctpkt(fin, NULL); if (fr == NULL) { if ((fin->fin_flx & FI_FRAG) != 0) fr = ipf_frag_known(fin, &pass); if (fr == NULL) fr = ipf_state_check(fin, &pass); } if ((pass & FR_NOMATCH) || (fr == NULL)) fr = ipf_firewall(fin, &pass); /* * If we've asked to track state for this packet, set it up. * Here rather than ipf_firewall because ipf_checkauth may decide * to return a packet for "keep state" */ if ((pass & FR_KEEPSTATE) && (fin->fin_m != NULL) && !(fin->fin_flx & FI_STATE)) { if (ipf_state_add(softc, fin, NULL, 0) == 0) { LBUMP(ipf_stats[out].fr_ads); } else { LBUMP(ipf_stats[out].fr_bads); if (FR_ISPASS(pass)) { DT(frb_stateadd); pass &= ~FR_CMDMASK; pass |= FR_BLOCK; fin->fin_reason = FRB_STATEADD; } } } fin->fin_fr = fr; if ((fr != NULL) && !(fin->fin_flx & FI_STATE)) { fin->fin_dif = &fr->fr_dif; fin->fin_tif = &fr->fr_tifs[fin->fin_rev]; } /* * Only count/translate packets which will be passed on, out the * interface. */ if (out && FR_ISPASS(pass)) { (void) ipf_acctpkt(fin, NULL); switch (fin->fin_v) { case 4 : if (ipf_nat_checkout(fin, &pass) == -1) { ; } else if ((softc->ipf_update_ipid != 0) && (v == 4)) { if (ipf_updateipid(fin) == -1) { DT(frb_updateipid); LBUMP(ipf_stats[1].fr_ipud); pass &= ~FR_CMDMASK; pass |= FR_BLOCK; fin->fin_reason = FRB_UPDATEIPID; } else { LBUMP(ipf_stats[0].fr_ipud); } } break; #ifdef USE_INET6 case 6 : (void) ipf_nat6_checkout(fin, &pass); break; #endif default : break; } } filterdone: #ifdef IPFILTER_LOG if ((softc->ipf_flags & FF_LOGGING) || (pass & FR_LOGMASK)) { (void) ipf_dolog(fin, &pass); } #endif /* * The FI_STATE flag is cleared here so that calling ipf_state_check * will work when called from inside of fr_fastroute. Although * there is a similar flag, FI_NATED, for NAT, it does have the same * impact on code execution. */ fin->fin_flx &= ~FI_STATE; #if defined(FASTROUTE_RECURSION) /* * Up the reference on fr_lock and exit ipf_mutex. The generation of * a packet below can sometimes cause a recursive call into IPFilter. * On those platforms where that does happen, we need to hang onto * the filter rule just in case someone decides to remove or flush it * in the meantime. */ if (fr != NULL) { MUTEX_ENTER(&fr->fr_lock); fr->fr_ref++; MUTEX_EXIT(&fr->fr_lock); } RWLOCK_EXIT(&softc->ipf_mutex); #endif if ((pass & FR_RETMASK) != 0) { /* * Should we return an ICMP packet to indicate error * status passing through the packet filter ? * WARNING: ICMP error packets AND TCP RST packets should * ONLY be sent in repsonse to incoming packets. Sending * them in response to outbound packets can result in a * panic on some operating systems. */ if (!out) { if (pass & FR_RETICMP) { int dst; if ((pass & FR_RETMASK) == FR_FAKEICMP) dst = 1; else dst = 0; (void) ipf_send_icmp_err(ICMP_UNREACH, fin, dst); LBUMP(ipf_stats[0].fr_ret); } else if (((pass & FR_RETMASK) == FR_RETRST) && !(fin->fin_flx & FI_SHORT)) { if (((fin->fin_flx & FI_OOW) != 0) || (ipf_send_reset(fin) == 0)) { LBUMP(ipf_stats[1].fr_ret); } } /* * When using return-* with auth rules, the auth code * takes over disposing of this packet. */ if (FR_ISAUTH(pass) && (fin->fin_m != NULL)) { DT1(frb_authcapture, fr_info_t *, fin); fin->fin_m = *fin->fin_mp = NULL; fin->fin_reason = FRB_AUTHCAPTURE; m = NULL; } } else { if (pass & FR_RETRST) { fin->fin_error = ECONNRESET; } } } /* * After the above so that ICMP unreachables and TCP RSTs get * created properly. */ if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT)) ipf_nat_uncreate(fin); /* * If we didn't drop off the bottom of the list of rules (and thus * the 'current' rule fr is not NULL), then we may have some extra * instructions about what to do with a packet. * Once we're finished return to our caller, freeing the packet if * we are dropping it. */ if (fr != NULL) { frdest_t *fdp; /* * Generate a duplicated packet first because ipf_fastroute * can lead to fin_m being free'd... not good. */ fdp = fin->fin_dif; if ((fdp != NULL) && (fdp->fd_ptr != NULL) && (fdp->fd_ptr != (void *)-1)) { mc = M_COPY(fin->fin_m); if (mc != NULL) ipf_fastroute(mc, &mc, fin, fdp); } fdp = fin->fin_tif; if (!out && (pass & FR_FASTROUTE)) { /* * For fastroute rule, no destination interface defined * so pass NULL as the frdest_t parameter */ (void) ipf_fastroute(fin->fin_m, mp, fin, NULL); m = *mp = NULL; } else if ((fdp != NULL) && (fdp->fd_ptr != NULL) && (fdp->fd_ptr != (struct ifnet *)-1)) { /* this is for to rules: */ ipf_fastroute(fin->fin_m, mp, fin, fdp); m = *mp = NULL; } #if defined(FASTROUTE_RECURSION) (void) ipf_derefrule(softc, &fr); #endif } #if !defined(FASTROUTE_RECURSION) RWLOCK_EXIT(&softc->ipf_mutex); #endif finished: if (!FR_ISPASS(pass)) { LBUMP(ipf_stats[out].fr_block); if (*mp != NULL) { #ifdef _KERNEL FREE_MB_T(*mp); #endif m = *mp = NULL; } } else { LBUMP(ipf_stats[out].fr_pass); } SPL_X(s); #ifdef _KERNEL if (FR_ISPASS(pass)) return 0; LBUMP(ipf_stats[out].fr_blocked[fin->fin_reason]); return fin->fin_error; #else /* _KERNEL */ if (*mp != NULL) (*mp)->mb_ifp = fin->fin_ifp; blockreason = fin->fin_reason; FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass)); /*if ((pass & FR_CMDMASK) == (softc->ipf_pass & FR_CMDMASK))*/ if ((pass & FR_NOMATCH) != 0) return 1; if ((pass & FR_RETMASK) != 0) switch (pass & FR_RETMASK) { case FR_RETRST : return 3; case FR_RETICMP : return 4; case FR_FAKEICMP : return 5; } switch (pass & FR_CMDMASK) { case FR_PASS : return 0; case FR_BLOCK : return -1; case FR_AUTH : return -2; case FR_ACCOUNT : return -3; case FR_PREAUTH : return -4; } return 2; #endif /* _KERNEL */ } #ifdef IPFILTER_LOG /* ------------------------------------------------------------------------ */ /* Function: ipf_dolog */ /* Returns: frentry_t* - returns contents of fin_fr (no change made) */ /* Parameters: fin(I) - pointer to packet information */ /* passp(IO) - pointer to current/new filter decision (unused) */ /* */ /* Checks flags set to see how a packet should be logged, if it is to be */ /* logged. Adjust statistics based on its success or not. */ /* ------------------------------------------------------------------------ */ frentry_t * ipf_dolog(fin, passp) fr_info_t *fin; u_32_t *passp; { ipf_main_softc_t *softc = fin->fin_main_soft; u_32_t pass; int out; out = fin->fin_out; pass = *passp; if ((softc->ipf_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) { pass |= FF_LOGNOMATCH; LBUMPD(ipf_stats[out], fr_npkl); goto logit; } else if (((pass & FR_LOGMASK) == FR_LOGP) || (FR_ISPASS(pass) && (softc->ipf_flags & FF_LOGPASS))) { if ((pass & FR_LOGMASK) != FR_LOGP) pass |= FF_LOGPASS; LBUMPD(ipf_stats[out], fr_ppkl); goto logit; } else if (((pass & FR_LOGMASK) == FR_LOGB) || (FR_ISBLOCK(pass) && (softc->ipf_flags & FF_LOGBLOCK))) { if ((pass & FR_LOGMASK) != FR_LOGB) pass |= FF_LOGBLOCK; LBUMPD(ipf_stats[out], fr_bpkl); logit: if (ipf_log_pkt(fin, pass) == -1) { /* * If the "or-block" option has been used then * block the packet if we failed to log it. */ if ((pass & FR_LOGORBLOCK) && FR_ISPASS(pass)) { DT1(frb_logfail2, u_int, pass); pass &= ~FR_CMDMASK; pass |= FR_BLOCK; fin->fin_reason = FRB_LOGFAIL2; } } *passp = pass; } return fin->fin_fr; } #endif /* IPFILTER_LOG */ /* ------------------------------------------------------------------------ */ /* Function: ipf_cksum */ /* Returns: u_short - IP header checksum */ /* Parameters: addr(I) - pointer to start of buffer to checksum */ /* len(I) - length of buffer in bytes */ /* */ /* Calculate the two's complement 16 bit checksum of the buffer passed. */ /* */ /* N.B.: addr should be 16bit aligned. */ /* ------------------------------------------------------------------------ */ u_short ipf_cksum(addr, len) u_short *addr; int len; { u_32_t sum = 0; for (sum = 0; len > 1; len -= 2) sum += *addr++; /* mop up an odd byte, if necessary */ if (len == 1) sum += *(u_char *)addr; /* * add back carry outs from top 16 bits to low 16 bits */ sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */ sum += (sum >> 16); /* add carry */ return (u_short)(~sum); } /* ------------------------------------------------------------------------ */ /* Function: fr_cksum */ /* Returns: u_short - layer 4 checksum */ /* Parameters: fin(I) - pointer to packet information */ /* ip(I) - pointer to IP header */ /* l4proto(I) - protocol to caclulate checksum for */ /* l4hdr(I) - pointer to layer 4 header */ /* */ /* Calculates the TCP checksum for the packet held in "m", using the data */ /* in the IP header "ip" to seed it. */ /* */ /* NB: This function assumes we've pullup'd enough for all of the IP header */ /* and the TCP header. We also assume that data blocks aren't allocated in */ /* odd sizes. */ /* */ /* Expects ip_len and ip_off to be in network byte order when called. */ /* ------------------------------------------------------------------------ */ u_short fr_cksum(fin, ip, l4proto, l4hdr) fr_info_t *fin; ip_t *ip; int l4proto; void *l4hdr; { u_short *sp, slen, sumsave, *csump; u_int sum, sum2; int hlen; int off; #ifdef USE_INET6 ip6_t *ip6; #endif csump = NULL; sumsave = 0; sp = NULL; slen = 0; hlen = 0; sum = 0; sum = htons((u_short)l4proto); /* * Add up IP Header portion */ #ifdef USE_INET6 if (IP_V(ip) == 4) { #endif hlen = IP_HL(ip) << 2; off = hlen; sp = (u_short *)&ip->ip_src; sum += *sp++; /* ip_src */ sum += *sp++; sum += *sp++; /* ip_dst */ sum += *sp++; slen = fin->fin_plen - off; sum += htons(slen); #ifdef USE_INET6 } else if (IP_V(ip) == 6) { mb_t *m; m = fin->fin_m; ip6 = (ip6_t *)ip; off = ((caddr_t)ip6 - m->m_data) + sizeof(struct ip6_hdr); int len = ntohs(ip6->ip6_plen) - (off - sizeof(*ip6)); return(ipf_pcksum6(m, ip6, off, len)); } else { return 0xffff; } #endif switch (l4proto) { case IPPROTO_UDP : csump = &((udphdr_t *)l4hdr)->uh_sum; break; case IPPROTO_TCP : csump = &((tcphdr_t *)l4hdr)->th_sum; break; case IPPROTO_ICMP : csump = &((icmphdr_t *)l4hdr)->icmp_cksum; sum = 0; /* Pseudo-checksum is not included */ break; #ifdef USE_INET6 case IPPROTO_ICMPV6 : csump = &((struct icmp6_hdr *)l4hdr)->icmp6_cksum; break; #endif default : break; } if (csump != NULL) { sumsave = *csump; *csump = 0; } sum2 = ipf_pcksum(fin, off, sum); if (csump != NULL) *csump = sumsave; return sum2; } /* ------------------------------------------------------------------------ */ /* Function: ipf_findgroup */ /* Returns: frgroup_t * - NULL = group not found, else pointer to group */ /* Parameters: softc(I) - pointer to soft context main structure */ /* group(I) - group name to search for */ /* unit(I) - device to which this group belongs */ /* set(I) - which set of rules (inactive/inactive) this is */ /* fgpp(O) - pointer to place to store pointer to the pointer */ /* to where to add the next (last) group or where */ /* to delete group from. */ /* */ /* Search amongst the defined groups for a particular group number. */ /* ------------------------------------------------------------------------ */ frgroup_t * ipf_findgroup(softc, group, unit, set, fgpp) ipf_main_softc_t *softc; char *group; minor_t unit; int set; frgroup_t ***fgpp; { frgroup_t *fg, **fgp; /* * Which list of groups to search in is dependent on which list of * rules are being operated on. */ fgp = &softc->ipf_groups[unit][set]; while ((fg = *fgp) != NULL) { if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0) break; else fgp = &fg->fg_next; } if (fgpp != NULL) *fgpp = fgp; return fg; } /* ------------------------------------------------------------------------ */ /* Function: ipf_group_add */ /* Returns: frgroup_t * - NULL == did not create group, */ /* != NULL == pointer to the group */ /* Parameters: softc(I) - pointer to soft context main structure */ /* num(I) - group number to add */ /* head(I) - rule pointer that is using this as the head */ /* flags(I) - rule flags which describe the type of rule it is */ /* unit(I) - device to which this group will belong to */ /* set(I) - which set of rules (inactive/inactive) this is */ /* Write Locks: ipf_mutex */ /* */ /* Add a new group head, or if it already exists, increase the reference */ /* count to it. */ /* ------------------------------------------------------------------------ */ frgroup_t * ipf_group_add(softc, group, head, flags, unit, set) ipf_main_softc_t *softc; char *group; void *head; u_32_t flags; minor_t unit; int set; { frgroup_t *fg, **fgp; u_32_t gflags; if (group == NULL) return NULL; if (unit == IPL_LOGIPF && *group == '\0') return NULL; fgp = NULL; gflags = flags & FR_INOUT; fg = ipf_findgroup(softc, group, unit, set, &fgp); if (fg != NULL) { if (fg->fg_head == NULL && head != NULL) fg->fg_head = head; if (fg->fg_flags == 0) fg->fg_flags = gflags; else if (gflags != fg->fg_flags) return NULL; fg->fg_ref++; return fg; } KMALLOC(fg, frgroup_t *); if (fg != NULL) { fg->fg_head = head; fg->fg_start = NULL; fg->fg_next = *fgp; bcopy(group, fg->fg_name, strlen(group) + 1); fg->fg_flags = gflags; fg->fg_ref = 1; fg->fg_set = &softc->ipf_groups[unit][set]; *fgp = fg; } return fg; } /* ------------------------------------------------------------------------ */ /* Function: ipf_group_del */ /* Returns: int - number of rules deleted */ /* Parameters: softc(I) - pointer to soft context main structure */ /* group(I) - group name to delete */ /* fr(I) - filter rule from which group is referenced */ /* Write Locks: ipf_mutex */ /* */ /* This function is called whenever a reference to a group is to be dropped */ /* and thus its reference count needs to be lowered and the group free'd if */ /* the reference count reaches zero. Passing in fr is really for the sole */ /* purpose of knowing when the head rule is being deleted. */ /* ------------------------------------------------------------------------ */ void ipf_group_del(softc, group, fr) ipf_main_softc_t *softc; frgroup_t *group; frentry_t *fr; { if (group->fg_head == fr) group->fg_head = NULL; group->fg_ref--; if ((group->fg_ref == 0) && (group->fg_start == NULL)) ipf_group_free(group); } /* ------------------------------------------------------------------------ */ /* Function: ipf_group_free */ /* Returns: Nil */ /* Parameters: group(I) - pointer to filter rule group */ /* */ /* Remove the group from the list of groups and free it. */ /* ------------------------------------------------------------------------ */ static void ipf_group_free(group) frgroup_t *group; { frgroup_t **gp; for (gp = group->fg_set; *gp != NULL; gp = &(*gp)->fg_next) { if (*gp == group) { *gp = group->fg_next; break; } } KFREE(group); } /* ------------------------------------------------------------------------ */ /* Function: ipf_group_flush */ /* Returns: int - number of rules flush from group */ /* Parameters: softc(I) - pointer to soft context main structure */ /* Parameters: group(I) - pointer to filter rule group */ /* */ /* Remove all of the rules that currently are listed under the given group. */ /* ------------------------------------------------------------------------ */ static int ipf_group_flush(softc, group) ipf_main_softc_t *softc; frgroup_t *group; { int gone = 0; (void) ipf_flushlist(softc, &gone, &group->fg_start); return gone; } /* ------------------------------------------------------------------------ */ /* Function: ipf_getrulen */ /* Returns: frentry_t * - NULL == not found, else pointer to rule n */ /* Parameters: softc(I) - pointer to soft context main structure */ /* Parameters: unit(I) - device for which to count the rule's number */ /* flags(I) - which set of rules to find the rule in */ /* group(I) - group name */ /* n(I) - rule number to find */ /* */ /* Find rule # n in group # g and return a pointer to it. Return NULl if */ /* group # g doesn't exist or there are less than n rules in the group. */ /* ------------------------------------------------------------------------ */ frentry_t * ipf_getrulen(softc, unit, group, n) ipf_main_softc_t *softc; int unit; char *group; u_32_t n; { frentry_t *fr; frgroup_t *fg; fg = ipf_findgroup(softc, group, unit, softc->ipf_active, NULL); if (fg == NULL) return NULL; for (fr = fg->fg_start; fr && n; fr = fr->fr_next, n--) ; if (n != 0) return NULL; return fr; } /* ------------------------------------------------------------------------ */ /* Function: ipf_flushlist */ /* Returns: int - >= 0 - number of flushed rules */ /* Parameters: softc(I) - pointer to soft context main structure */ /* nfreedp(O) - pointer to int where flush count is stored */ /* listp(I) - pointer to list to flush pointer */ /* Write Locks: ipf_mutex */ /* */ /* Recursively flush rules from the list, descending groups as they are */ /* encountered. if a rule is the head of a group and it has lost all its */ /* group members, then also delete the group reference. nfreedp is needed */ /* to store the accumulating count of rules removed, whereas the returned */ /* value is just the number removed from the current list. The latter is */ /* needed to correctly adjust reference counts on rules that define groups. */ /* */ /* NOTE: Rules not loaded from user space cannot be flushed. */ /* ------------------------------------------------------------------------ */ static int ipf_flushlist(softc, nfreedp, listp) ipf_main_softc_t *softc; int *nfreedp; frentry_t **listp; { int freed = 0; frentry_t *fp; while ((fp = *listp) != NULL) { if ((fp->fr_type & FR_T_BUILTIN) || !(fp->fr_flags & FR_COPIED)) { listp = &fp->fr_next; continue; } *listp = fp->fr_next; if (fp->fr_next != NULL) fp->fr_next->fr_pnext = fp->fr_pnext; fp->fr_pnext = NULL; if (fp->fr_grphead != NULL) { freed += ipf_group_flush(softc, fp->fr_grphead); fp->fr_names[fp->fr_grhead] = '\0'; } if (fp->fr_icmpgrp != NULL) { freed += ipf_group_flush(softc, fp->fr_icmpgrp); fp->fr_names[fp->fr_icmphead] = '\0'; } if (fp->fr_srctrack.ht_max_nodes) ipf_rb_ht_flush(&fp->fr_srctrack); fp->fr_next = NULL; ASSERT(fp->fr_ref > 0); if (ipf_derefrule(softc, &fp) == 0) freed++; } *nfreedp += freed; return freed; } /* ------------------------------------------------------------------------ */ /* Function: ipf_flush */ /* Returns: int - >= 0 - number of flushed rules */ /* Parameters: softc(I) - pointer to soft context main structure */ /* unit(I) - device for which to flush rules */ /* flags(I) - which set of rules to flush */ /* */ /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */ /* and IPv6) as defined by the value of flags. */ /* ------------------------------------------------------------------------ */ int ipf_flush(softc, unit, flags) ipf_main_softc_t *softc; minor_t unit; int flags; { int flushed = 0, set; WRITE_ENTER(&softc->ipf_mutex); set = softc->ipf_active; if ((flags & FR_INACTIVE) == FR_INACTIVE) set = 1 - set; if (flags & FR_OUTQUE) { ipf_flushlist(softc, &flushed, &softc->ipf_rules[1][set]); ipf_flushlist(softc, &flushed, &softc->ipf_acct[1][set]); } if (flags & FR_INQUE) { ipf_flushlist(softc, &flushed, &softc->ipf_rules[0][set]); ipf_flushlist(softc, &flushed, &softc->ipf_acct[0][set]); } flushed += ipf_flush_groups(softc, &softc->ipf_groups[unit][set], flags & (FR_INQUE|FR_OUTQUE)); RWLOCK_EXIT(&softc->ipf_mutex); if (unit == IPL_LOGIPF) { int tmp; tmp = ipf_flush(softc, IPL_LOGCOUNT, flags); if (tmp >= 0) flushed += tmp; } return flushed; } /* ------------------------------------------------------------------------ */ /* Function: ipf_flush_groups */ /* Returns: int - >= 0 - number of flushed rules */ /* Parameters: softc(I) - soft context pointerto work with */ /* grhead(I) - pointer to the start of the group list to flush */ /* flags(I) - which set of rules to flush */ /* */ /* Walk through all of the groups under the given group head and remove all */ /* of those that match the flags passed in. The for loop here is bit more */ /* complicated than usual because the removal of a rule with ipf_derefrule */ /* may end up removing not only the structure pointed to by "fg" but also */ /* what is fg_next and fg_next after that. So if a filter rule is actually */ /* removed from the group then it is necessary to start again. */ /* ------------------------------------------------------------------------ */ static int ipf_flush_groups(softc, grhead, flags) ipf_main_softc_t *softc; frgroup_t **grhead; int flags; { frentry_t *fr, **frp; frgroup_t *fg, **fgp; int flushed = 0; int removed = 0; for (fgp = grhead; (fg = *fgp) != NULL; ) { while ((fg != NULL) && ((fg->fg_flags & flags) == 0)) fg = fg->fg_next; if (fg == NULL) break; removed = 0; frp = &fg->fg_start; while ((removed == 0) && ((fr = *frp) != NULL)) { if ((fr->fr_flags & flags) == 0) { frp = &fr->fr_next; } else { if (fr->fr_next != NULL) fr->fr_next->fr_pnext = fr->fr_pnext; *frp = fr->fr_next; fr->fr_pnext = NULL; fr->fr_next = NULL; (void) ipf_derefrule(softc, &fr); flushed++; removed++; } } if (removed == 0) fgp = &fg->fg_next; } return flushed; } /* ------------------------------------------------------------------------ */ /* Function: memstr */ /* Returns: char * - NULL if failed, != NULL pointer to matching bytes */ /* Parameters: src(I) - pointer to byte sequence to match */ /* dst(I) - pointer to byte sequence to search */ /* slen(I) - match length */ /* dlen(I) - length available to search in */ /* */ /* Search dst for a sequence of bytes matching those at src and extend for */ /* slen bytes. */ /* ------------------------------------------------------------------------ */ char * memstr(src, dst, slen, dlen) const char *src; char *dst; size_t slen, dlen; { char *s = NULL; while (dlen >= slen) { if (bcmp(src, dst, slen) == 0) { s = dst; break; } dst++; dlen--; } return s; } /* ------------------------------------------------------------------------ */ /* Function: ipf_fixskip */ /* Returns: Nil */ /* Parameters: listp(IO) - pointer to start of list with skip rule */ /* rp(I) - rule added/removed with skip in it. */ /* addremove(I) - adjustment (-1/+1) to make to skip count, */ /* depending on whether a rule was just added */ /* or removed. */ /* */ /* Adjust all the rules in a list which would have skip'd past the position */ /* where we are inserting to skip to the right place given the change. */ /* ------------------------------------------------------------------------ */ void ipf_fixskip(listp, rp, addremove) frentry_t **listp, *rp; int addremove; { int rules, rn; frentry_t *fp; rules = 0; for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next) rules++; if (fp == NULL) return; for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++) if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules)) fp->fr_arg += addremove; } #ifdef _KERNEL /* ------------------------------------------------------------------------ */ /* Function: count4bits */ /* Returns: int - >= 0 - number of consecutive bits in input */ /* Parameters: ip(I) - 32bit IP address */ /* */ /* IPv4 ONLY */ /* count consecutive 1's in bit mask. If the mask generated by counting */ /* consecutive 1's is different to that passed, return -1, else return # */ /* of bits. */ /* ------------------------------------------------------------------------ */ int count4bits(ip) u_32_t ip; { u_32_t ipn; int cnt = 0, i, j; ip = ipn = ntohl(ip); for (i = 32; i; i--, ipn *= 2) if (ipn & 0x80000000) cnt++; else break; ipn = 0; for (i = 32, j = cnt; i; i--, j--) { ipn *= 2; if (j > 0) ipn++; } if (ipn == ip) return cnt; return -1; } /* ------------------------------------------------------------------------ */ /* Function: count6bits */ /* Returns: int - >= 0 - number of consecutive bits in input */ /* Parameters: msk(I) - pointer to start of IPv6 bitmask */ /* */ /* IPv6 ONLY */ /* count consecutive 1's in bit mask. */ /* ------------------------------------------------------------------------ */ # ifdef USE_INET6 int count6bits(msk) u_32_t *msk; { int i = 0, k; u_32_t j; for (k = 3; k >= 0; k--) if (msk[k] == 0xffffffff) i += 32; else { for (j = msk[k]; j; j <<= 1) if (j & 0x80000000) i++; } return i; } # endif #endif /* _KERNEL */ /* ------------------------------------------------------------------------ */ /* Function: ipf_synclist */ /* Returns: int - 0 = no failures, else indication of first failure */ /* Parameters: fr(I) - start of filter list to sync interface names for */ /* ifp(I) - interface pointer for limiting sync lookups */ /* Write Locks: ipf_mutex */ /* */ /* Walk through a list of filter rules and resolve any interface names into */ /* pointers. Where dynamic addresses are used, also update the IP address */ /* used in the rule. The interface pointer is used to limit the lookups to */ /* a specific set of matching names if it is non-NULL. */ /* Errors can occur when resolving the destination name of to/dup-to fields */ /* when the name points to a pool and that pool doest not exist. If this */ /* does happen then it is necessary to check if there are any lookup refs */ /* that need to be dropped before returning with an error. */ /* ------------------------------------------------------------------------ */ static int ipf_synclist(softc, fr, ifp) ipf_main_softc_t *softc; frentry_t *fr; void *ifp; { frentry_t *frt, *start = fr; frdest_t *fdp; char *name; int error; void *ifa; int v, i; error = 0; for (; fr; fr = fr->fr_next) { if (fr->fr_family == AF_INET) v = 4; else if (fr->fr_family == AF_INET6) v = 6; else v = 0; /* * Lookup all the interface names that are part of the rule. */ for (i = 0; i < FR_NUM(fr->fr_ifas); i++) { if ((ifp != NULL) && (fr->fr_ifas[i] != ifp)) continue; if (fr->fr_ifnames[i] == -1) continue; name = FR_NAME(fr, fr_ifnames[i]); fr->fr_ifas[i] = ipf_resolvenic(softc, name, v); } if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) { if (fr->fr_satype != FRI_NORMAL && fr->fr_satype != FRI_LOOKUP) { ifa = ipf_resolvenic(softc, fr->fr_names + fr->fr_sifpidx, v); ipf_ifpaddr(softc, v, fr->fr_satype, ifa, &fr->fr_src6, &fr->fr_smsk6); } if (fr->fr_datype != FRI_NORMAL && fr->fr_datype != FRI_LOOKUP) { ifa = ipf_resolvenic(softc, fr->fr_names + fr->fr_sifpidx, v); ipf_ifpaddr(softc, v, fr->fr_datype, ifa, &fr->fr_dst6, &fr->fr_dmsk6); } } fdp = &fr->fr_tifs[0]; if ((ifp == NULL) || (fdp->fd_ptr == ifp)) { error = ipf_resolvedest(softc, fr->fr_names, fdp, v); if (error != 0) goto unwind; } fdp = &fr->fr_tifs[1]; if ((ifp == NULL) || (fdp->fd_ptr == ifp)) { error = ipf_resolvedest(softc, fr->fr_names, fdp, v); if (error != 0) goto unwind; } fdp = &fr->fr_dif; if ((ifp == NULL) || (fdp->fd_ptr == ifp)) { error = ipf_resolvedest(softc, fr->fr_names, fdp, v); if (error != 0) goto unwind; } if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) && (fr->fr_satype == FRI_LOOKUP) && (fr->fr_srcptr == NULL)) { fr->fr_srcptr = ipf_lookup_res_num(softc, fr->fr_srctype, IPL_LOGIPF, fr->fr_srcnum, &fr->fr_srcfunc); } if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) && (fr->fr_datype == FRI_LOOKUP) && (fr->fr_dstptr == NULL)) { fr->fr_dstptr = ipf_lookup_res_num(softc, fr->fr_dsttype, IPL_LOGIPF, fr->fr_dstnum, &fr->fr_dstfunc); } } return 0; unwind: for (frt = start; frt != fr; fr = fr->fr_next) { if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) && (frt->fr_satype == FRI_LOOKUP) && (frt->fr_srcptr != NULL)) ipf_lookup_deref(softc, frt->fr_srctype, frt->fr_srcptr); if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) && (frt->fr_datype == FRI_LOOKUP) && (frt->fr_dstptr != NULL)) ipf_lookup_deref(softc, frt->fr_dsttype, frt->fr_dstptr); } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_sync */ /* Returns: void */ /* Parameters: Nil */ /* */ /* ipf_sync() is called when we suspect that the interface list or */ /* information about interfaces (like IP#) has changed. Go through all */ /* filter rules, NAT entries and the state table and check if anything */ /* needs to be changed/updated. */ /* ------------------------------------------------------------------------ */ int ipf_sync(softc, ifp) ipf_main_softc_t *softc; void *ifp; { int i; #if !SOLARIS ipf_nat_sync(softc, ifp); ipf_state_sync(softc, ifp); ipf_lookup_sync(softc, ifp); #endif WRITE_ENTER(&softc->ipf_mutex); (void) ipf_synclist(softc, softc->ipf_acct[0][softc->ipf_active], ifp); (void) ipf_synclist(softc, softc->ipf_acct[1][softc->ipf_active], ifp); (void) ipf_synclist(softc, softc->ipf_rules[0][softc->ipf_active], ifp); (void) ipf_synclist(softc, softc->ipf_rules[1][softc->ipf_active], ifp); for (i = 0; i < IPL_LOGSIZE; i++) { frgroup_t *g; for (g = softc->ipf_groups[i][0]; g != NULL; g = g->fg_next) (void) ipf_synclist(softc, g->fg_start, ifp); for (g = softc->ipf_groups[i][1]; g != NULL; g = g->fg_next) (void) ipf_synclist(softc, g->fg_start, ifp); } RWLOCK_EXIT(&softc->ipf_mutex); return 0; } /* * In the functions below, bcopy() is called because the pointer being * copied _from_ in this instance is a pointer to a char buf (which could * end up being unaligned) and on the kernel's local stack. */ /* ------------------------------------------------------------------------ */ /* Function: copyinptr */ /* Returns: int - 0 = success, else failure */ /* Parameters: src(I) - pointer to the source address */ /* dst(I) - destination address */ /* size(I) - number of bytes to copy */ /* */ /* Copy a block of data in from user space, given a pointer to the pointer */ /* to start copying from (src) and a pointer to where to store it (dst). */ /* NB: src - pointer to user space pointer, dst - kernel space pointer */ /* ------------------------------------------------------------------------ */ int copyinptr(softc, src, dst, size) ipf_main_softc_t *softc; void *src, *dst; size_t size; { caddr_t ca; int error; #if SOLARIS error = COPYIN(src, &ca, sizeof(ca)); if (error != 0) return error; #else bcopy(src, (caddr_t)&ca, sizeof(ca)); #endif error = COPYIN(ca, dst, size); if (error != 0) { IPFERROR(3); error = EFAULT; } return error; } /* ------------------------------------------------------------------------ */ /* Function: copyoutptr */ /* Returns: int - 0 = success, else failure */ /* Parameters: src(I) - pointer to the source address */ /* dst(I) - destination address */ /* size(I) - number of bytes to copy */ /* */ /* Copy a block of data out to user space, given a pointer to the pointer */ /* to start copying from (src) and a pointer to where to store it (dst). */ /* NB: src - kernel space pointer, dst - pointer to user space pointer. */ /* ------------------------------------------------------------------------ */ int copyoutptr(softc, src, dst, size) ipf_main_softc_t *softc; void *src, *dst; size_t size; { caddr_t ca; int error; bcopy(dst, (caddr_t)&ca, sizeof(ca)); error = COPYOUT(src, ca, size); if (error != 0) { IPFERROR(4); error = EFAULT; } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_lock */ /* Returns: int - 0 = success, else error */ /* Parameters: data(I) - pointer to lock value to set */ /* lockp(O) - pointer to location to store old lock value */ /* */ /* Get the new value for the lock integer, set it and return the old value */ /* in *lockp. */ /* ------------------------------------------------------------------------ */ int ipf_lock(data, lockp) caddr_t data; int *lockp; { int arg, err; err = BCOPYIN(data, &arg, sizeof(arg)); if (err != 0) return EFAULT; err = BCOPYOUT(lockp, data, sizeof(*lockp)); if (err != 0) return EFAULT; *lockp = arg; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_getstat */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* fiop(I) - pointer to ipfilter stats structure */ /* rev(I) - version claim by program doing ioctl */ /* */ /* Stores a copy of current pointers, counters, etc, in the friostat */ /* structure. */ /* If IPFILTER_COMPAT is compiled, we pretend to be whatever version the */ /* program is looking for. This ensure that validation of the version it */ /* expects will always succeed. Thus kernels with IPFILTER_COMPAT will */ /* allow older binaries to work but kernels without it will not. */ /* ------------------------------------------------------------------------ */ /*ARGSUSED*/ static void ipf_getstat(softc, fiop, rev) ipf_main_softc_t *softc; friostat_t *fiop; int rev; { int i; bcopy((char *)softc->ipf_stats, (char *)fiop->f_st, sizeof(ipf_statistics_t) * 2); fiop->f_locks[IPL_LOGSTATE] = -1; fiop->f_locks[IPL_LOGNAT] = -1; fiop->f_locks[IPL_LOGIPF] = -1; fiop->f_locks[IPL_LOGAUTH] = -1; fiop->f_ipf[0][0] = softc->ipf_rules[0][0]; fiop->f_acct[0][0] = softc->ipf_acct[0][0]; fiop->f_ipf[0][1] = softc->ipf_rules[0][1]; fiop->f_acct[0][1] = softc->ipf_acct[0][1]; fiop->f_ipf[1][0] = softc->ipf_rules[1][0]; fiop->f_acct[1][0] = softc->ipf_acct[1][0]; fiop->f_ipf[1][1] = softc->ipf_rules[1][1]; fiop->f_acct[1][1] = softc->ipf_acct[1][1]; fiop->f_ticks = softc->ipf_ticks; fiop->f_active = softc->ipf_active; fiop->f_froute[0] = softc->ipf_frouteok[0]; fiop->f_froute[1] = softc->ipf_frouteok[1]; fiop->f_rb_no_mem = softc->ipf_rb_no_mem; fiop->f_rb_node_max = softc->ipf_rb_node_max; fiop->f_running = softc->ipf_running; for (i = 0; i < IPL_LOGSIZE; i++) { fiop->f_groups[i][0] = softc->ipf_groups[i][0]; fiop->f_groups[i][1] = softc->ipf_groups[i][1]; } #ifdef IPFILTER_LOG fiop->f_log_ok = ipf_log_logok(softc, IPL_LOGIPF); fiop->f_log_fail = ipf_log_failures(softc, IPL_LOGIPF); fiop->f_logging = 1; #else fiop->f_log_ok = 0; fiop->f_log_fail = 0; fiop->f_logging = 0; #endif fiop->f_defpass = softc->ipf_pass; fiop->f_features = ipf_features; #ifdef IPFILTER_COMPAT sprintf(fiop->f_version, "IP Filter: v%d.%d.%d", (rev / 1000000) % 100, (rev / 10000) % 100, (rev / 100) % 100); #else rev = rev; (void) strncpy(fiop->f_version, ipfilter_version, sizeof(fiop->f_version)); #endif } #ifdef USE_INET6 int icmptoicmp6types[ICMP_MAXTYPE+1] = { ICMP6_ECHO_REPLY, /* 0: ICMP_ECHOREPLY */ -1, /* 1: UNUSED */ -1, /* 2: UNUSED */ ICMP6_DST_UNREACH, /* 3: ICMP_UNREACH */ -1, /* 4: ICMP_SOURCEQUENCH */ ND_REDIRECT, /* 5: ICMP_REDIRECT */ -1, /* 6: UNUSED */ -1, /* 7: UNUSED */ ICMP6_ECHO_REQUEST, /* 8: ICMP_ECHO */ -1, /* 9: UNUSED */ -1, /* 10: UNUSED */ ICMP6_TIME_EXCEEDED, /* 11: ICMP_TIMXCEED */ ICMP6_PARAM_PROB, /* 12: ICMP_PARAMPROB */ -1, /* 13: ICMP_TSTAMP */ -1, /* 14: ICMP_TSTAMPREPLY */ -1, /* 15: ICMP_IREQ */ -1, /* 16: ICMP_IREQREPLY */ -1, /* 17: ICMP_MASKREQ */ -1, /* 18: ICMP_MASKREPLY */ }; int icmptoicmp6unreach[ICMP_MAX_UNREACH] = { ICMP6_DST_UNREACH_ADDR, /* 0: ICMP_UNREACH_NET */ ICMP6_DST_UNREACH_ADDR, /* 1: ICMP_UNREACH_HOST */ -1, /* 2: ICMP_UNREACH_PROTOCOL */ ICMP6_DST_UNREACH_NOPORT, /* 3: ICMP_UNREACH_PORT */ -1, /* 4: ICMP_UNREACH_NEEDFRAG */ ICMP6_DST_UNREACH_NOTNEIGHBOR, /* 5: ICMP_UNREACH_SRCFAIL */ ICMP6_DST_UNREACH_ADDR, /* 6: ICMP_UNREACH_NET_UNKNOWN */ ICMP6_DST_UNREACH_ADDR, /* 7: ICMP_UNREACH_HOST_UNKNOWN */ -1, /* 8: ICMP_UNREACH_ISOLATED */ ICMP6_DST_UNREACH_ADMIN, /* 9: ICMP_UNREACH_NET_PROHIB */ ICMP6_DST_UNREACH_ADMIN, /* 10: ICMP_UNREACH_HOST_PROHIB */ -1, /* 11: ICMP_UNREACH_TOSNET */ -1, /* 12: ICMP_UNREACH_TOSHOST */ ICMP6_DST_UNREACH_ADMIN, /* 13: ICMP_UNREACH_ADMIN_PROHIBIT */ }; int icmpreplytype6[ICMP6_MAXTYPE + 1]; #endif int icmpreplytype4[ICMP_MAXTYPE + 1]; /* ------------------------------------------------------------------------ */ /* Function: ipf_matchicmpqueryreply */ /* Returns: int - 1 if "icmp" is a valid reply to "ic" else 0. */ /* Parameters: v(I) - IP protocol version (4 or 6) */ /* ic(I) - ICMP information */ /* icmp(I) - ICMP packet header */ /* rev(I) - direction (0 = forward/1 = reverse) of packet */ /* */ /* Check if the ICMP packet defined by the header pointed to by icmp is a */ /* reply to one as described by what's in ic. If it is a match, return 1, */ /* else return 0 for no match. */ /* ------------------------------------------------------------------------ */ int ipf_matchicmpqueryreply(v, ic, icmp, rev) int v; icmpinfo_t *ic; icmphdr_t *icmp; int rev; { int ictype; ictype = ic->ici_type; if (v == 4) { /* * If we matched its type on the way in, then when going out * it will still be the same type. */ if ((!rev && (icmp->icmp_type == ictype)) || (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) { if (icmp->icmp_type != ICMP_ECHOREPLY) return 1; if (icmp->icmp_id == ic->ici_id) return 1; } } #ifdef USE_INET6 else if (v == 6) { if ((!rev && (icmp->icmp_type == ictype)) || (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) { if (icmp->icmp_type != ICMP6_ECHO_REPLY) return 1; if (icmp->icmp_id == ic->ici_id) return 1; } } #endif return 0; } /* * IFNAMES are located in the variable length field starting at * frentry.fr_names. As pointers within the struct cannot be passed * to the kernel from ipf(8), an offset is used. An offset of -1 means it * is unused (invalid). If it is used (valid) it is an offset to the * character string of an interface name or a comment. The following * macros will assist those who follow to understand the code. */ #define IPF_IFNAME_VALID(_a) (_a != -1) #define IPF_IFNAME_INVALID(_a) (_a == -1) #define IPF_IFNAMES_DIFFERENT(_a) \ !((IPF_IFNAME_INVALID(fr1->_a) && \ IPF_IFNAME_INVALID(fr2->_a)) || \ (IPF_IFNAME_VALID(fr1->_a) && \ IPF_IFNAME_VALID(fr2->_a) && \ !strcmp(FR_NAME(fr1, _a), FR_NAME(fr2, _a)))) #define IPF_FRDEST_DIFFERENT(_a) \ (memcmp(&fr1->_a.fd_addr, &fr2->_a.fd_addr, \ offsetof(frdest_t, fd_name) - offsetof(frdest_t, fd_addr)) || \ IPF_IFNAMES_DIFFERENT(_a.fd_name)) /* ------------------------------------------------------------------------ */ /* Function: ipf_rule_compare */ /* Parameters: fr1(I) - first rule structure to compare */ /* fr2(I) - second rule structure to compare */ /* Returns: int - 0 == rules are the same, else mismatch */ /* */ /* Compare two rules and return 0 if they match or a number indicating */ /* which of the individual checks failed. */ /* ------------------------------------------------------------------------ */ static int ipf_rule_compare(frentry_t *fr1, frentry_t *fr2) { int i; if (fr1->fr_cksum != fr2->fr_cksum) return (1); if (fr1->fr_size != fr2->fr_size) return (2); if (fr1->fr_dsize != fr2->fr_dsize) return (3); if (bcmp((char *)&fr1->fr_func, (char *)&fr2->fr_func, FR_CMPSIZ) != 0) return (4); /* * XXX: There is still a bug here as different rules with the * the same interfaces but in a different order will compare * differently. But since multiple interfaces in a rule doesn't * work anyway a simple straightforward compare is performed * here. Ultimately frentry_t creation will need to be * revisited in ipf_y.y. While the other issue, recognition * of only the first interface in a list of interfaces will * need to be separately addressed along with why only four. */ for (i = 0; i < FR_NUM(fr1->fr_ifnames); i++) { /* * XXX: It's either the same index or uninitialized. * We assume this because multiple interfaces * referenced by the same rule doesn't work anyway. */ if (IPF_IFNAMES_DIFFERENT(fr_ifnames[i])) return(5); } if (IPF_FRDEST_DIFFERENT(fr_tif)) return (6); if (IPF_FRDEST_DIFFERENT(fr_rif)) return (7); if (IPF_FRDEST_DIFFERENT(fr_dif)) return (8); if (!fr1->fr_data && !fr2->fr_data) return (0); /* move along, nothing to see here */ if (fr1->fr_data && fr2->fr_data) { if (bcmp(fr1->fr_caddr, fr2->fr_caddr, fr1->fr_dsize) == 0) return (0); /* same */ } return (9); } /* ------------------------------------------------------------------------ */ /* Function: frrequest */ /* Returns: int - 0 == success, > 0 == errno value */ /* Parameters: unit(I) - device for which this is for */ /* req(I) - ioctl command (SIOC*) */ /* data(I) - pointr to ioctl data */ /* set(I) - 1 or 0 (filter set) */ /* makecopy(I) - flag indicating whether data points to a rule */ /* in kernel space & hence doesn't need copying. */ /* */ /* This function handles all the requests which operate on the list of */ /* filter rules. This includes adding, deleting, insertion. It is also */ /* responsible for creating groups when a "head" rule is loaded. Interface */ /* names are resolved here and other sanity checks are made on the content */ /* of the rule structure being loaded. If a rule has user defined timeouts */ /* then make sure they are created and initialised before exiting. */ /* ------------------------------------------------------------------------ */ int frrequest(softc, unit, req, data, set, makecopy) ipf_main_softc_t *softc; int unit; ioctlcmd_t req; int set, makecopy; caddr_t data; { int error = 0, in, family, need_free = 0; enum { OP_ADD, /* add rule */ OP_REM, /* remove rule */ OP_ZERO /* zero statistics and counters */ } addrem = OP_ADD; frentry_t frd, *fp, *f, **fprev, **ftail; void *ptr, *uptr, *cptr; u_int *p, *pp; frgroup_t *fg; char *group; ptr = NULL; cptr = NULL; fg = NULL; fp = &frd; if (makecopy != 0) { bzero(fp, sizeof(frd)); error = ipf_inobj(softc, data, NULL, fp, IPFOBJ_FRENTRY); if (error) { return error; } if ((fp->fr_type & FR_T_BUILTIN) != 0) { IPFERROR(6); return EINVAL; } KMALLOCS(f, frentry_t *, fp->fr_size); if (f == NULL) { IPFERROR(131); return ENOMEM; } bzero(f, fp->fr_size); error = ipf_inobjsz(softc, data, f, IPFOBJ_FRENTRY, fp->fr_size); if (error) { KFREES(f, fp->fr_size); return error; } fp = f; f = NULL; fp->fr_next = NULL; fp->fr_dnext = NULL; fp->fr_pnext = NULL; fp->fr_pdnext = NULL; fp->fr_grp = NULL; fp->fr_grphead = NULL; fp->fr_icmpgrp = NULL; fp->fr_isc = (void *)-1; fp->fr_ptr = NULL; fp->fr_ref = 0; fp->fr_flags |= FR_COPIED; } else { fp = (frentry_t *)data; if ((fp->fr_type & FR_T_BUILTIN) == 0) { IPFERROR(7); return EINVAL; } fp->fr_flags &= ~FR_COPIED; } if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) || ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) { IPFERROR(8); error = EINVAL; goto donenolock; } family = fp->fr_family; uptr = fp->fr_data; if (req == (ioctlcmd_t)SIOCINAFR || req == (ioctlcmd_t)SIOCINIFR || req == (ioctlcmd_t)SIOCADAFR || req == (ioctlcmd_t)SIOCADIFR) addrem = OP_ADD; /* Add rule */ else if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR) addrem = OP_REM; /* Remove rule */ else if (req == (ioctlcmd_t)SIOCZRLST) addrem = OP_ZERO; /* Zero statistics and counters */ else { IPFERROR(9); error = EINVAL; goto donenolock; } /* * Only filter rules for IPv4 or IPv6 are accepted. */ if (family == AF_INET) { /*EMPTY*/; #ifdef USE_INET6 } else if (family == AF_INET6) { /*EMPTY*/; #endif } else if (family != 0) { IPFERROR(10); error = EINVAL; goto donenolock; } /* * If the rule is being loaded from user space, i.e. we had to copy it * into kernel space, then do not trust the function pointer in the * rule. */ if ((makecopy == 1) && (fp->fr_func != NULL)) { if (ipf_findfunc(fp->fr_func) == NULL) { IPFERROR(11); error = ESRCH; goto donenolock; } if (addrem == OP_ADD) { error = ipf_funcinit(softc, fp); if (error != 0) goto donenolock; } } if ((fp->fr_flags & FR_CALLNOW) && ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) { IPFERROR(142); error = ESRCH; goto donenolock; } if (((fp->fr_flags & FR_CMDMASK) == FR_CALL) && ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) { IPFERROR(143); error = ESRCH; goto donenolock; } ptr = NULL; cptr = NULL; if (FR_ISACCOUNT(fp->fr_flags)) unit = IPL_LOGCOUNT; /* * Check that each group name in the rule has a start index that * is valid. */ if (fp->fr_icmphead != -1) { if ((fp->fr_icmphead < 0) || (fp->fr_icmphead >= fp->fr_namelen)) { IPFERROR(136); error = EINVAL; goto donenolock; } if (!strcmp(FR_NAME(fp, fr_icmphead), "0")) fp->fr_names[fp->fr_icmphead] = '\0'; } if (fp->fr_grhead != -1) { if ((fp->fr_grhead < 0) || (fp->fr_grhead >= fp->fr_namelen)) { IPFERROR(137); error = EINVAL; goto donenolock; } if (!strcmp(FR_NAME(fp, fr_grhead), "0")) fp->fr_names[fp->fr_grhead] = '\0'; } if (fp->fr_group != -1) { if ((fp->fr_group < 0) || (fp->fr_group >= fp->fr_namelen)) { IPFERROR(138); error = EINVAL; goto donenolock; } if ((req != (int)SIOCZRLST) && (fp->fr_group != -1)) { /* * Allow loading rules that are in groups to cause * them to be created if they don't already exit. */ group = FR_NAME(fp, fr_group); if (addrem == OP_ADD) { fg = ipf_group_add(softc, group, NULL, fp->fr_flags, unit, set); fp->fr_grp = fg; } else { fg = ipf_findgroup(softc, group, unit, set, NULL); if (fg == NULL) { IPFERROR(12); error = ESRCH; goto donenolock; } } if (fg->fg_flags == 0) { fg->fg_flags = fp->fr_flags & FR_INOUT; } else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) { IPFERROR(13); error = ESRCH; goto donenolock; } } } else { /* * If a rule is going to be part of a group then it does * not matter whether it is an in or out rule, but if it * isn't in a group, then it does... */ if ((fp->fr_flags & (FR_INQUE|FR_OUTQUE)) == 0) { IPFERROR(14); error = EINVAL; goto donenolock; } } in = (fp->fr_flags & FR_INQUE) ? 0 : 1; /* * Work out which rule list this change is being applied to. */ ftail = NULL; fprev = NULL; if (unit == IPL_LOGAUTH) { if ((fp->fr_tifs[0].fd_ptr != NULL) || (fp->fr_tifs[1].fd_ptr != NULL) || (fp->fr_dif.fd_ptr != NULL) || (fp->fr_flags & FR_FASTROUTE)) { softc->ipf_interror = 145; error = EINVAL; goto donenolock; } fprev = ipf_auth_rulehead(softc); } else { if (FR_ISACCOUNT(fp->fr_flags)) fprev = &softc->ipf_acct[in][set]; else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0) fprev = &softc->ipf_rules[in][set]; } if (fprev == NULL) { IPFERROR(15); error = ESRCH; goto donenolock; } if (fg != NULL) fprev = &fg->fg_start; /* * Copy in extra data for the rule. */ if (fp->fr_dsize != 0) { if (makecopy != 0) { KMALLOCS(ptr, void *, fp->fr_dsize); if (ptr == NULL) { IPFERROR(16); error = ENOMEM; goto donenolock; } /* * The bcopy case is for when the data is appended * to the rule by ipf_in_compat(). */ if (uptr >= (void *)fp && uptr < (void *)((char *)fp + fp->fr_size)) { bcopy(uptr, ptr, fp->fr_dsize); error = 0; } else { error = COPYIN(uptr, ptr, fp->fr_dsize); if (error != 0) { IPFERROR(17); error = EFAULT; goto donenolock; } } } else { ptr = uptr; } fp->fr_data = ptr; } else { fp->fr_data = NULL; } /* * Perform per-rule type sanity checks of their members. * All code after this needs to be aware that allocated memory * may need to be free'd before exiting. */ switch (fp->fr_type & ~FR_T_BUILTIN) { #if defined(IPFILTER_BPF) case FR_T_BPFOPC : if (fp->fr_dsize == 0) { IPFERROR(19); error = EINVAL; break; } if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) { IPFERROR(20); error = EINVAL; break; } break; #endif case FR_T_IPF : /* * Preparation for error case at the bottom of this function. */ if (fp->fr_datype == FRI_LOOKUP) fp->fr_dstptr = NULL; if (fp->fr_satype == FRI_LOOKUP) fp->fr_srcptr = NULL; if (fp->fr_dsize != sizeof(fripf_t)) { IPFERROR(21); error = EINVAL; break; } /* * Allowing a rule with both "keep state" and "with oow" is * pointless because adding a state entry to the table will * fail with the out of window (oow) flag set. */ if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) { IPFERROR(22); error = EINVAL; break; } switch (fp->fr_satype) { case FRI_BROADCAST : case FRI_DYNAMIC : case FRI_NETWORK : case FRI_NETMASKED : case FRI_PEERADDR : if (fp->fr_sifpidx < 0) { IPFERROR(23); error = EINVAL; } break; case FRI_LOOKUP : fp->fr_srcptr = ipf_findlookup(softc, unit, fp, &fp->fr_src6, &fp->fr_smsk6); if (fp->fr_srcfunc == NULL) { IPFERROR(132); error = ESRCH; break; } break; case FRI_NORMAL : break; default : IPFERROR(133); error = EINVAL; break; } if (error != 0) break; switch (fp->fr_datype) { case FRI_BROADCAST : case FRI_DYNAMIC : case FRI_NETWORK : case FRI_NETMASKED : case FRI_PEERADDR : if (fp->fr_difpidx < 0) { IPFERROR(24); error = EINVAL; } break; case FRI_LOOKUP : fp->fr_dstptr = ipf_findlookup(softc, unit, fp, &fp->fr_dst6, &fp->fr_dmsk6); if (fp->fr_dstfunc == NULL) { IPFERROR(134); error = ESRCH; } break; case FRI_NORMAL : break; default : IPFERROR(135); error = EINVAL; } break; case FR_T_NONE : case FR_T_CALLFUNC : case FR_T_COMPIPF : break; case FR_T_IPFEXPR : if (ipf_matcharray_verify(fp->fr_data, fp->fr_dsize) == -1) { IPFERROR(25); error = EINVAL; } break; default : IPFERROR(26); error = EINVAL; break; } if (error != 0) goto donenolock; if (fp->fr_tif.fd_name != -1) { if ((fp->fr_tif.fd_name < 0) || (fp->fr_tif.fd_name >= fp->fr_namelen)) { IPFERROR(139); error = EINVAL; goto donenolock; } } if (fp->fr_dif.fd_name != -1) { if ((fp->fr_dif.fd_name < 0) || (fp->fr_dif.fd_name >= fp->fr_namelen)) { IPFERROR(140); error = EINVAL; goto donenolock; } } if (fp->fr_rif.fd_name != -1) { if ((fp->fr_rif.fd_name < 0) || (fp->fr_rif.fd_name >= fp->fr_namelen)) { IPFERROR(141); error = EINVAL; goto donenolock; } } /* * Lookup all the interface names that are part of the rule. */ error = ipf_synclist(softc, fp, NULL); if (error != 0) goto donenolock; fp->fr_statecnt = 0; if (fp->fr_srctrack.ht_max_nodes != 0) ipf_rb_ht_init(&fp->fr_srctrack); /* * Look for an existing matching filter rule, but don't include the * next or interface pointer in the comparison (fr_next, fr_ifa). * This elminates rules which are indentical being loaded. Checksum * the constant part of the filter rule to make comparisons quicker * (this meaning no pointers are included). */ pp = (u_int *)(fp->fr_caddr + fp->fr_dsize); for (fp->fr_cksum = 0, p = (u_int *)fp->fr_data; p < pp; p++) fp->fr_cksum += *p; WRITE_ENTER(&softc->ipf_mutex); /* * Now that the filter rule lists are locked, we can walk the * chain of them without fear. */ ftail = fprev; for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) { if (fp->fr_collect <= f->fr_collect) { ftail = fprev; f = NULL; break; } fprev = ftail; } for (; (f = *ftail) != NULL; ftail = &f->fr_next) { if (ipf_rule_compare(fp, f) == 0) break; } /* * If zero'ing statistics, copy current to caller and zero. */ if (addrem == OP_ZERO) { if (f == NULL) { IPFERROR(27); error = ESRCH; } else { /* * Copy and reduce lock because of impending copyout. * Well we should, but if we do then the atomicity of * this call and the correctness of fr_hits and * fr_bytes cannot be guaranteed. As it is, this code * only resets them to 0 if they are successfully * copied out into user space. */ bcopy((char *)f, (char *)fp, f->fr_size); /* MUTEX_DOWNGRADE(&softc->ipf_mutex); */ /* * When we copy this rule back out, set the data * pointer to be what it was in user space. */ fp->fr_data = uptr; error = ipf_outobj(softc, data, fp, IPFOBJ_FRENTRY); if (error == 0) { if ((f->fr_dsize != 0) && (uptr != NULL)) { error = COPYOUT(f->fr_data, uptr, f->fr_dsize); if (error == 0) { f->fr_hits = 0; f->fr_bytes = 0; } else { IPFERROR(28); error = EFAULT; } } } } if (makecopy != 0) { if (ptr != NULL) { KFREES(ptr, fp->fr_dsize); } KFREES(fp, fp->fr_size); } RWLOCK_EXIT(&softc->ipf_mutex); return error; } if (f == NULL) { /* * At the end of this, ftail must point to the place where the * new rule is to be saved/inserted/added. * For SIOCAD*FR, this should be the last rule in the group of * rules that have equal fr_collect fields. * For SIOCIN*FR, ... */ if (req == (ioctlcmd_t)SIOCADAFR || req == (ioctlcmd_t)SIOCADIFR) { for (ftail = fprev; (f = *ftail) != NULL; ) { if (f->fr_collect > fp->fr_collect) break; ftail = &f->fr_next; fprev = ftail; } ftail = fprev; f = NULL; ptr = NULL; } else if (req == (ioctlcmd_t)SIOCINAFR || req == (ioctlcmd_t)SIOCINIFR) { while ((f = *fprev) != NULL) { if (f->fr_collect >= fp->fr_collect) break; fprev = &f->fr_next; } ftail = fprev; if (fp->fr_hits != 0) { while (fp->fr_hits && (f = *ftail)) { if (f->fr_collect != fp->fr_collect) break; fprev = ftail; ftail = &f->fr_next; fp->fr_hits--; } } f = NULL; ptr = NULL; } } /* * Request to remove a rule. */ if (addrem == OP_REM) { if (f == NULL) { IPFERROR(29); error = ESRCH; } else { /* * Do not allow activity from user space to interfere * with rules not loaded that way. */ if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) { IPFERROR(30); error = EPERM; goto done; } /* * Return EBUSY if the rule is being reference by * something else (eg state information.) */ if (f->fr_ref > 1) { IPFERROR(31); error = EBUSY; goto done; } #ifdef IPFILTER_SCAN if (f->fr_isctag != -1 && (f->fr_isc != (struct ipscan *)-1)) ipf_scan_detachfr(f); #endif if (unit == IPL_LOGAUTH) { error = ipf_auth_precmd(softc, req, f, ftail); goto done; } ipf_rule_delete(softc, f, unit, set); need_free = makecopy; } } else { /* * Not removing, so we must be adding/inserting a rule. */ if (f != NULL) { IPFERROR(32); error = EEXIST; goto done; } if (unit == IPL_LOGAUTH) { error = ipf_auth_precmd(softc, req, fp, ftail); goto done; } MUTEX_NUKE(&fp->fr_lock); MUTEX_INIT(&fp->fr_lock, "filter rule lock"); if (fp->fr_die != 0) ipf_rule_expire_insert(softc, fp, set); fp->fr_hits = 0; if (makecopy != 0) fp->fr_ref = 1; fp->fr_pnext = ftail; fp->fr_next = *ftail; if (fp->fr_next != NULL) fp->fr_next->fr_pnext = &fp->fr_next; *ftail = fp; ipf_fixskip(ftail, fp, 1); fp->fr_icmpgrp = NULL; if (fp->fr_icmphead != -1) { group = FR_NAME(fp, fr_icmphead); fg = ipf_group_add(softc, group, fp, 0, unit, set); fp->fr_icmpgrp = fg; } fp->fr_grphead = NULL; if (fp->fr_grhead != -1) { group = FR_NAME(fp, fr_grhead); fg = ipf_group_add(softc, group, fp, fp->fr_flags, unit, set); fp->fr_grphead = fg; } } done: RWLOCK_EXIT(&softc->ipf_mutex); donenolock: if (need_free || (error != 0)) { if ((fp->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) { if ((fp->fr_satype == FRI_LOOKUP) && (fp->fr_srcptr != NULL)) ipf_lookup_deref(softc, fp->fr_srctype, fp->fr_srcptr); if ((fp->fr_datype == FRI_LOOKUP) && (fp->fr_dstptr != NULL)) ipf_lookup_deref(softc, fp->fr_dsttype, fp->fr_dstptr); } if (fp->fr_grp != NULL) { WRITE_ENTER(&softc->ipf_mutex); ipf_group_del(softc, fp->fr_grp, fp); RWLOCK_EXIT(&softc->ipf_mutex); } if ((ptr != NULL) && (makecopy != 0)) { KFREES(ptr, fp->fr_dsize); } KFREES(fp, fp->fr_size); } return (error); } /* ------------------------------------------------------------------------ */ /* Function: ipf_rule_delete */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* f(I) - pointer to the rule being deleted */ /* ftail(I) - pointer to the pointer to f */ /* unit(I) - device for which this is for */ /* set(I) - 1 or 0 (filter set) */ /* */ /* This function attempts to do what it can to delete a filter rule: remove */ /* it from any linked lists and remove any groups it is responsible for. */ /* But in the end, removing a rule can only drop the reference count - we */ /* must use that as the guide for whether or not it can be freed. */ /* ------------------------------------------------------------------------ */ static void ipf_rule_delete(softc, f, unit, set) ipf_main_softc_t *softc; frentry_t *f; int unit, set; { /* * If fr_pdnext is set, then the rule is on the expire list, so * remove it from there. */ if (f->fr_pdnext != NULL) { *f->fr_pdnext = f->fr_dnext; if (f->fr_dnext != NULL) f->fr_dnext->fr_pdnext = f->fr_pdnext; f->fr_pdnext = NULL; f->fr_dnext = NULL; } ipf_fixskip(f->fr_pnext, f, -1); if (f->fr_pnext != NULL) *f->fr_pnext = f->fr_next; if (f->fr_next != NULL) f->fr_next->fr_pnext = f->fr_pnext; f->fr_pnext = NULL; f->fr_next = NULL; (void) ipf_derefrule(softc, &f); } /* ------------------------------------------------------------------------ */ /* Function: ipf_rule_expire_insert */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* f(I) - pointer to rule to be added to expire list */ /* set(I) - 1 or 0 (filter set) */ /* */ /* If the new rule has a given expiration time, insert it into the list of */ /* expiring rules with the ones to be removed first added to the front of */ /* the list. The insertion is O(n) but it is kept sorted for quick scans at */ /* expiration interval checks. */ /* ------------------------------------------------------------------------ */ static void ipf_rule_expire_insert(softc, f, set) ipf_main_softc_t *softc; frentry_t *f; int set; { frentry_t *fr; /* */ f->fr_die = softc->ipf_ticks + IPF_TTLVAL(f->fr_die); for (fr = softc->ipf_rule_explist[set]; fr != NULL; fr = fr->fr_dnext) { if (f->fr_die < fr->fr_die) break; if (fr->fr_dnext == NULL) { /* * We've got to the last rule and everything * wanted to be expired before this new node, * so we have to tack it on the end... */ fr->fr_dnext = f; f->fr_pdnext = &fr->fr_dnext; fr = NULL; break; } } if (softc->ipf_rule_explist[set] == NULL) { softc->ipf_rule_explist[set] = f; f->fr_pdnext = &softc->ipf_rule_explist[set]; } else if (fr != NULL) { f->fr_dnext = fr; f->fr_pdnext = fr->fr_pdnext; fr->fr_pdnext = &f->fr_dnext; } } /* ------------------------------------------------------------------------ */ /* Function: ipf_findlookup */ /* Returns: NULL = failure, else success */ /* Parameters: softc(I) - pointer to soft context main structure */ /* unit(I) - ipf device we want to find match for */ /* fp(I) - rule for which lookup is for */ /* addrp(I) - pointer to lookup information in address struct */ /* maskp(O) - pointer to lookup information for storage */ /* */ /* When using pools and hash tables to store addresses for matching in */ /* rules, it is necessary to resolve both the object referred to by the */ /* name or address (and return that pointer) and also provide the means by */ /* which to determine if an address belongs to that object to make the */ /* packet matching quicker. */ /* ------------------------------------------------------------------------ */ static void * ipf_findlookup(softc, unit, fr, addrp, maskp) ipf_main_softc_t *softc; int unit; frentry_t *fr; i6addr_t *addrp, *maskp; { void *ptr = NULL; switch (addrp->iplookupsubtype) { case 0 : ptr = ipf_lookup_res_num(softc, unit, addrp->iplookuptype, addrp->iplookupnum, &maskp->iplookupfunc); break; case 1 : if (addrp->iplookupname < 0) break; if (addrp->iplookupname >= fr->fr_namelen) break; ptr = ipf_lookup_res_name(softc, unit, addrp->iplookuptype, fr->fr_names + addrp->iplookupname, &maskp->iplookupfunc); break; default : break; } return ptr; } /* ------------------------------------------------------------------------ */ /* Function: ipf_funcinit */ /* Returns: int - 0 == success, else ESRCH: cannot resolve rule details */ /* Parameters: softc(I) - pointer to soft context main structure */ /* fr(I) - pointer to filter rule */ /* */ /* If a rule is a call rule, then check if the function it points to needs */ /* an init function to be called now the rule has been loaded. */ /* ------------------------------------------------------------------------ */ static int ipf_funcinit(softc, fr) ipf_main_softc_t *softc; frentry_t *fr; { ipfunc_resolve_t *ft; int err; IPFERROR(34); err = ESRCH; for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++) if (ft->ipfu_addr == fr->fr_func) { err = 0; if (ft->ipfu_init != NULL) err = (*ft->ipfu_init)(softc, fr); break; } return err; } /* ------------------------------------------------------------------------ */ /* Function: ipf_funcfini */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* fr(I) - pointer to filter rule */ /* */ /* For a given filter rule, call the matching "fini" function if the rule */ /* is using a known function that would have resulted in the "init" being */ /* called for ealier. */ /* ------------------------------------------------------------------------ */ static void ipf_funcfini(softc, fr) ipf_main_softc_t *softc; frentry_t *fr; { ipfunc_resolve_t *ft; for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++) if (ft->ipfu_addr == fr->fr_func) { if (ft->ipfu_fini != NULL) (void) (*ft->ipfu_fini)(softc, fr); break; } } /* ------------------------------------------------------------------------ */ /* Function: ipf_findfunc */ /* Returns: ipfunc_t - pointer to function if found, else NULL */ /* Parameters: funcptr(I) - function pointer to lookup */ /* */ /* Look for a function in the table of known functions. */ /* ------------------------------------------------------------------------ */ static ipfunc_t ipf_findfunc(funcptr) ipfunc_t funcptr; { ipfunc_resolve_t *ft; for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++) if (ft->ipfu_addr == funcptr) return funcptr; return NULL; } /* ------------------------------------------------------------------------ */ /* Function: ipf_resolvefunc */ /* Returns: int - 0 == success, else error */ /* Parameters: data(IO) - ioctl data pointer to ipfunc_resolve_t struct */ /* */ /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */ /* This will either be the function name (if the pointer is set) or the */ /* function pointer if the name is set. When found, fill in the other one */ /* so that the entire, complete, structure can be copied back to user space.*/ /* ------------------------------------------------------------------------ */ int ipf_resolvefunc(softc, data) ipf_main_softc_t *softc; void *data; { ipfunc_resolve_t res, *ft; int error; error = BCOPYIN(data, &res, sizeof(res)); if (error != 0) { IPFERROR(123); return EFAULT; } if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') { for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++) if (strncmp(res.ipfu_name, ft->ipfu_name, sizeof(res.ipfu_name)) == 0) { res.ipfu_addr = ft->ipfu_addr; res.ipfu_init = ft->ipfu_init; if (COPYOUT(&res, data, sizeof(res)) != 0) { IPFERROR(35); return EFAULT; } return 0; } } if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') { for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++) if (ft->ipfu_addr == res.ipfu_addr) { (void) strncpy(res.ipfu_name, ft->ipfu_name, sizeof(res.ipfu_name)); res.ipfu_init = ft->ipfu_init; if (COPYOUT(&res, data, sizeof(res)) != 0) { IPFERROR(36); return EFAULT; } return 0; } } IPFERROR(37); return ESRCH; } #if !defined(_KERNEL) || SOLARIS /* * From: NetBSD * ppsratecheck(): packets (or events) per second limitation. */ int ppsratecheck(lasttime, curpps, maxpps) struct timeval *lasttime; int *curpps; int maxpps; /* maximum pps allowed */ { struct timeval tv, delta; int rv; GETKTIME(&tv); delta.tv_sec = tv.tv_sec - lasttime->tv_sec; delta.tv_usec = tv.tv_usec - lasttime->tv_usec; if (delta.tv_usec < 0) { delta.tv_sec--; delta.tv_usec += 1000000; } /* * check for 0,0 is so that the message will be seen at least once. * if more than one second have passed since the last update of * lasttime, reset the counter. * * we do increment *curpps even in *curpps < maxpps case, as some may * try to use *curpps for stat purposes as well. */ if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) || delta.tv_sec >= 1) { *lasttime = tv; *curpps = 0; rv = 1; } else if (maxpps < 0) rv = 1; else if (*curpps < maxpps) rv = 1; else rv = 0; *curpps = *curpps + 1; return (rv); } #endif /* ------------------------------------------------------------------------ */ /* Function: ipf_derefrule */ /* Returns: int - 0 == rule freed up, else rule not freed */ /* Parameters: fr(I) - pointer to filter rule */ /* */ /* Decrement the reference counter to a rule by one. If it reaches zero, */ /* free it and any associated storage space being used by it. */ /* ------------------------------------------------------------------------ */ int ipf_derefrule(softc, frp) ipf_main_softc_t *softc; frentry_t **frp; { frentry_t *fr; frdest_t *fdp; fr = *frp; *frp = NULL; MUTEX_ENTER(&fr->fr_lock); fr->fr_ref--; if (fr->fr_ref == 0) { MUTEX_EXIT(&fr->fr_lock); MUTEX_DESTROY(&fr->fr_lock); ipf_funcfini(softc, fr); fdp = &fr->fr_tif; if (fdp->fd_type == FRD_DSTLIST) ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr); fdp = &fr->fr_rif; if (fdp->fd_type == FRD_DSTLIST) ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr); fdp = &fr->fr_dif; if (fdp->fd_type == FRD_DSTLIST) ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr); if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF && fr->fr_satype == FRI_LOOKUP) ipf_lookup_deref(softc, fr->fr_srctype, fr->fr_srcptr); if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF && fr->fr_datype == FRI_LOOKUP) ipf_lookup_deref(softc, fr->fr_dsttype, fr->fr_dstptr); if (fr->fr_grp != NULL) ipf_group_del(softc, fr->fr_grp, fr); if (fr->fr_grphead != NULL) ipf_group_del(softc, fr->fr_grphead, fr); if (fr->fr_icmpgrp != NULL) ipf_group_del(softc, fr->fr_icmpgrp, fr); if ((fr->fr_flags & FR_COPIED) != 0) { if (fr->fr_dsize) { KFREES(fr->fr_data, fr->fr_dsize); } KFREES(fr, fr->fr_size); return 0; } return 1; } else { MUTEX_EXIT(&fr->fr_lock); } return -1; } /* ------------------------------------------------------------------------ */ /* Function: ipf_grpmapinit */ /* Returns: int - 0 == success, else ESRCH because table entry not found*/ /* Parameters: fr(I) - pointer to rule to find hash table for */ /* */ /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr. */ /* fr_ptr is later used by ipf_srcgrpmap and ipf_dstgrpmap. */ /* ------------------------------------------------------------------------ */ static int ipf_grpmapinit(softc, fr) ipf_main_softc_t *softc; frentry_t *fr; { char name[FR_GROUPLEN]; iphtable_t *iph; #if defined(SNPRINTF) && defined(_KERNEL) SNPRINTF(name, sizeof(name), "%d", fr->fr_arg); #else (void) sprintf(name, "%d", fr->fr_arg); #endif iph = ipf_lookup_find_htable(softc, IPL_LOGIPF, name); if (iph == NULL) { IPFERROR(38); return ESRCH; } if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) { IPFERROR(39); return ESRCH; } iph->iph_ref++; fr->fr_ptr = iph; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_grpmapfini */ /* Returns: int - 0 == success, else ESRCH because table entry not found*/ /* Parameters: softc(I) - pointer to soft context main structure */ /* fr(I) - pointer to rule to release hash table for */ /* */ /* For rules that have had ipf_grpmapinit called, ipf_lookup_deref needs to */ /* be called to undo what ipf_grpmapinit caused to be done. */ /* ------------------------------------------------------------------------ */ static int ipf_grpmapfini(softc, fr) ipf_main_softc_t *softc; frentry_t *fr; { iphtable_t *iph; iph = fr->fr_ptr; if (iph != NULL) ipf_lookup_deref(softc, IPLT_HASH, iph); return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_srcgrpmap */ /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */ /* Parameters: fin(I) - pointer to packet information */ /* passp(IO) - pointer to current/new filter decision (unused) */ /* */ /* Look for a rule group head in a hash table, using the source address as */ /* the key, and descend into that group and continue matching rules against */ /* the packet. */ /* ------------------------------------------------------------------------ */ frentry_t * ipf_srcgrpmap(fin, passp) fr_info_t *fin; u_32_t *passp; { frgroup_t *fg; void *rval; rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr, &fin->fin_src); if (rval == NULL) return NULL; fg = rval; fin->fin_fr = fg->fg_start; (void) ipf_scanlist(fin, *passp); return fin->fin_fr; } /* ------------------------------------------------------------------------ */ /* Function: ipf_dstgrpmap */ /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */ /* Parameters: fin(I) - pointer to packet information */ /* passp(IO) - pointer to current/new filter decision (unused) */ /* */ /* Look for a rule group head in a hash table, using the destination */ /* address as the key, and descend into that group and continue matching */ /* rules against the packet. */ /* ------------------------------------------------------------------------ */ frentry_t * ipf_dstgrpmap(fin, passp) fr_info_t *fin; u_32_t *passp; { frgroup_t *fg; void *rval; rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr, &fin->fin_dst); if (rval == NULL) return NULL; fg = rval; fin->fin_fr = fg->fg_start; (void) ipf_scanlist(fin, *passp); return fin->fin_fr; } /* * Queue functions * =============== * These functions manage objects on queues for efficient timeouts. There * are a number of system defined queues as well as user defined timeouts. * It is expected that a lock is held in the domain in which the queue * belongs (i.e. either state or NAT) when calling any of these functions * that prevents ipf_freetimeoutqueue() from being called at the same time * as any other. */ /* ------------------------------------------------------------------------ */ /* Function: ipf_addtimeoutqueue */ /* Returns: struct ifqtq * - NULL if malloc fails, else pointer to */ /* timeout queue with given interval. */ /* Parameters: parent(I) - pointer to pointer to parent node of this list */ /* of interface queues. */ /* seconds(I) - timeout value in seconds for this queue. */ /* */ /* This routine first looks for a timeout queue that matches the interval */ /* being requested. If it finds one, increments the reference counter and */ /* returns a pointer to it. If none are found, it allocates a new one and */ /* inserts it at the top of the list. */ /* */ /* Locking. */ /* It is assumed that the caller of this function has an appropriate lock */ /* held (exclusively) in the domain that encompases 'parent'. */ /* ------------------------------------------------------------------------ */ ipftq_t * ipf_addtimeoutqueue(softc, parent, seconds) ipf_main_softc_t *softc; ipftq_t **parent; u_int seconds; { ipftq_t *ifq; u_int period; period = seconds * IPF_HZ_DIVIDE; MUTEX_ENTER(&softc->ipf_timeoutlock); for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) { if (ifq->ifq_ttl == period) { /* * Reset the delete flag, if set, so the structure * gets reused rather than freed and reallocated. */ MUTEX_ENTER(&ifq->ifq_lock); ifq->ifq_flags &= ~IFQF_DELETE; ifq->ifq_ref++; MUTEX_EXIT(&ifq->ifq_lock); MUTEX_EXIT(&softc->ipf_timeoutlock); return ifq; } } KMALLOC(ifq, ipftq_t *); if (ifq != NULL) { MUTEX_NUKE(&ifq->ifq_lock); IPFTQ_INIT(ifq, period, "ipftq mutex"); ifq->ifq_next = *parent; ifq->ifq_pnext = parent; ifq->ifq_flags = IFQF_USER; ifq->ifq_ref++; *parent = ifq; softc->ipf_userifqs++; } MUTEX_EXIT(&softc->ipf_timeoutlock); return ifq; } /* ------------------------------------------------------------------------ */ /* Function: ipf_deletetimeoutqueue */ /* Returns: int - new reference count value of the timeout queue */ /* Parameters: ifq(I) - timeout queue which is losing a reference. */ /* Locks: ifq->ifq_lock */ /* */ /* This routine must be called when we're discarding a pointer to a timeout */ /* queue object, taking care of the reference counter. */ /* */ /* Now that this just sets a DELETE flag, it requires the expire code to */ /* check the list of user defined timeout queues and call the free function */ /* below (currently commented out) to stop memory leaking. It is done this */ /* way because the locking may not be sufficient to safely do a free when */ /* this function is called. */ /* ------------------------------------------------------------------------ */ int ipf_deletetimeoutqueue(ifq) ipftq_t *ifq; { ifq->ifq_ref--; if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) { ifq->ifq_flags |= IFQF_DELETE; } return ifq->ifq_ref; } /* ------------------------------------------------------------------------ */ /* Function: ipf_freetimeoutqueue */ /* Parameters: ifq(I) - timeout queue which is losing a reference. */ /* Returns: Nil */ /* */ /* Locking: */ /* It is assumed that the caller of this function has an appropriate lock */ /* held (exclusively) in the domain that encompases the callers "domain". */ /* The ifq_lock for this structure should not be held. */ /* */ /* Remove a user defined timeout queue from the list of queues it is in and */ /* tidy up after this is done. */ /* ------------------------------------------------------------------------ */ void ipf_freetimeoutqueue(softc, ifq) ipf_main_softc_t *softc; ipftq_t *ifq; { if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) || ((ifq->ifq_flags & IFQF_USER) == 0)) { printf("ipf_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n", (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl, ifq->ifq_ref); return; } /* * Remove from its position in the list. */ *ifq->ifq_pnext = ifq->ifq_next; if (ifq->ifq_next != NULL) ifq->ifq_next->ifq_pnext = ifq->ifq_pnext; ifq->ifq_next = NULL; ifq->ifq_pnext = NULL; MUTEX_DESTROY(&ifq->ifq_lock); ATOMIC_DEC(softc->ipf_userifqs); KFREE(ifq); } /* ------------------------------------------------------------------------ */ /* Function: ipf_deletequeueentry */ /* Returns: Nil */ /* Parameters: tqe(I) - timeout queue entry to delete */ /* */ /* Remove a tail queue entry from its queue and make it an orphan. */ /* ipf_deletetimeoutqueue is called to make sure the reference count on the */ /* queue is correct. We can't, however, call ipf_freetimeoutqueue because */ /* the correct lock(s) may not be held that would make it safe to do so. */ /* ------------------------------------------------------------------------ */ void ipf_deletequeueentry(tqe) ipftqent_t *tqe; { ipftq_t *ifq; ifq = tqe->tqe_ifq; MUTEX_ENTER(&ifq->ifq_lock); if (tqe->tqe_pnext != NULL) { *tqe->tqe_pnext = tqe->tqe_next; if (tqe->tqe_next != NULL) tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; else /* we must be the tail anyway */ ifq->ifq_tail = tqe->tqe_pnext; tqe->tqe_pnext = NULL; tqe->tqe_ifq = NULL; } (void) ipf_deletetimeoutqueue(ifq); ASSERT(ifq->ifq_ref > 0); MUTEX_EXIT(&ifq->ifq_lock); } /* ------------------------------------------------------------------------ */ /* Function: ipf_queuefront */ /* Returns: Nil */ /* Parameters: tqe(I) - pointer to timeout queue entry */ /* */ /* Move a queue entry to the front of the queue, if it isn't already there. */ /* ------------------------------------------------------------------------ */ void ipf_queuefront(tqe) ipftqent_t *tqe; { ipftq_t *ifq; ifq = tqe->tqe_ifq; if (ifq == NULL) return; MUTEX_ENTER(&ifq->ifq_lock); if (ifq->ifq_head != tqe) { *tqe->tqe_pnext = tqe->tqe_next; if (tqe->tqe_next) tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; else ifq->ifq_tail = tqe->tqe_pnext; tqe->tqe_next = ifq->ifq_head; ifq->ifq_head->tqe_pnext = &tqe->tqe_next; ifq->ifq_head = tqe; tqe->tqe_pnext = &ifq->ifq_head; } MUTEX_EXIT(&ifq->ifq_lock); } /* ------------------------------------------------------------------------ */ /* Function: ipf_queueback */ /* Returns: Nil */ /* Parameters: ticks(I) - ipf tick time to use with this call */ /* tqe(I) - pointer to timeout queue entry */ /* */ /* Move a queue entry to the back of the queue, if it isn't already there. */ /* We use use ticks to calculate the expiration and mark for when we last */ /* touched the structure. */ /* ------------------------------------------------------------------------ */ void ipf_queueback(ticks, tqe) u_long ticks; ipftqent_t *tqe; { ipftq_t *ifq; ifq = tqe->tqe_ifq; if (ifq == NULL) return; tqe->tqe_die = ticks + ifq->ifq_ttl; tqe->tqe_touched = ticks; MUTEX_ENTER(&ifq->ifq_lock); if (tqe->tqe_next != NULL) { /* at the end already ? */ /* * Remove from list */ *tqe->tqe_pnext = tqe->tqe_next; tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; /* * Make it the last entry. */ tqe->tqe_next = NULL; tqe->tqe_pnext = ifq->ifq_tail; *ifq->ifq_tail = tqe; ifq->ifq_tail = &tqe->tqe_next; } MUTEX_EXIT(&ifq->ifq_lock); } /* ------------------------------------------------------------------------ */ /* Function: ipf_queueappend */ /* Returns: Nil */ /* Parameters: ticks(I) - ipf tick time to use with this call */ /* tqe(I) - pointer to timeout queue entry */ /* ifq(I) - pointer to timeout queue */ /* parent(I) - owing object pointer */ /* */ /* Add a new item to this queue and put it on the very end. */ /* We use use ticks to calculate the expiration and mark for when we last */ /* touched the structure. */ /* ------------------------------------------------------------------------ */ void ipf_queueappend(ticks, tqe, ifq, parent) u_long ticks; ipftqent_t *tqe; ipftq_t *ifq; void *parent; { MUTEX_ENTER(&ifq->ifq_lock); tqe->tqe_parent = parent; tqe->tqe_pnext = ifq->ifq_tail; *ifq->ifq_tail = tqe; ifq->ifq_tail = &tqe->tqe_next; tqe->tqe_next = NULL; tqe->tqe_ifq = ifq; tqe->tqe_die = ticks + ifq->ifq_ttl; tqe->tqe_touched = ticks; ifq->ifq_ref++; MUTEX_EXIT(&ifq->ifq_lock); } /* ------------------------------------------------------------------------ */ /* Function: ipf_movequeue */ /* Returns: Nil */ /* Parameters: tq(I) - pointer to timeout queue information */ /* oifp(I) - old timeout queue entry was on */ /* nifp(I) - new timeout queue to put entry on */ /* */ /* Move a queue entry from one timeout queue to another timeout queue. */ /* If it notices that the current entry is already last and does not need */ /* to move queue, the return. */ /* ------------------------------------------------------------------------ */ void ipf_movequeue(ticks, tqe, oifq, nifq) u_long ticks; ipftqent_t *tqe; ipftq_t *oifq, *nifq; { /* * If the queue hasn't changed and we last touched this entry at the * same ipf time, then we're not going to achieve anything by either * changing the ttl or moving it on the queue. */ if (oifq == nifq && tqe->tqe_touched == ticks) return; /* * For any of this to be outside the lock, there is a risk that two * packets entering simultaneously, with one changing to a different * queue and one not, could end up with things in a bizarre state. */ MUTEX_ENTER(&oifq->ifq_lock); tqe->tqe_touched = ticks; tqe->tqe_die = ticks + nifq->ifq_ttl; /* * Is the operation here going to be a no-op ? */ if (oifq == nifq) { if ((tqe->tqe_next == NULL) || (tqe->tqe_next->tqe_die == tqe->tqe_die)) { MUTEX_EXIT(&oifq->ifq_lock); return; } } /* * Remove from the old queue */ *tqe->tqe_pnext = tqe->tqe_next; if (tqe->tqe_next) tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; else oifq->ifq_tail = tqe->tqe_pnext; tqe->tqe_next = NULL; /* * If we're moving from one queue to another, release the * lock on the old queue and get a lock on the new queue. * For user defined queues, if we're moving off it, call * delete in case it can now be freed. */ if (oifq != nifq) { tqe->tqe_ifq = NULL; (void) ipf_deletetimeoutqueue(oifq); MUTEX_EXIT(&oifq->ifq_lock); MUTEX_ENTER(&nifq->ifq_lock); tqe->tqe_ifq = nifq; nifq->ifq_ref++; } /* * Add to the bottom of the new queue */ tqe->tqe_pnext = nifq->ifq_tail; *nifq->ifq_tail = tqe; nifq->ifq_tail = &tqe->tqe_next; MUTEX_EXIT(&nifq->ifq_lock); } /* ------------------------------------------------------------------------ */ /* Function: ipf_updateipid */ /* Returns: int - 0 == success, -1 == error (packet should be droppped) */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* When we are doing NAT, change the IP of every packet to represent a */ /* single sequence of packets coming from the host, hiding any host */ /* specific sequencing that might otherwise be revealed. If the packet is */ /* a fragment, then store the 'new' IPid in the fragment cache and look up */ /* the fragment cache for non-leading fragments. If a non-leading fragment */ /* has no match in the cache, return an error. */ /* ------------------------------------------------------------------------ */ static int ipf_updateipid(fin) fr_info_t *fin; { u_short id, ido, sums; u_32_t sumd, sum; ip_t *ip; ip = fin->fin_ip; ido = ntohs(ip->ip_id); if (fin->fin_off != 0) { sum = ipf_frag_ipidknown(fin); if (sum == 0xffffffff) return -1; sum &= 0xffff; id = (u_short)sum; ip->ip_id = htons(id); } else { ip_fillid(ip); id = ntohs(ip->ip_id); if ((fin->fin_flx & FI_FRAG) != 0) (void) ipf_frag_ipidnew(fin, (u_32_t)id); } if (id == ido) return 0; CALC_SUMD(ido, id, sumd); /* DESTRUCTIVE MACRO! id,ido change */ sum = (~ntohs(ip->ip_sum)) & 0xffff; sum += sumd; sum = (sum >> 16) + (sum & 0xffff); sum = (sum >> 16) + (sum & 0xffff); sums = ~(u_short)sum; ip->ip_sum = htons(sums); return 0; } #ifdef NEED_FRGETIFNAME /* ------------------------------------------------------------------------ */ /* Function: ipf_getifname */ /* Returns: char * - pointer to interface name */ /* Parameters: ifp(I) - pointer to network interface */ /* buffer(O) - pointer to where to store interface name */ /* */ /* Constructs an interface name in the buffer passed. The buffer passed is */ /* expected to be at least LIFNAMSIZ in bytes big. If buffer is passed in */ /* as a NULL pointer then return a pointer to a static array. */ /* ------------------------------------------------------------------------ */ char * ipf_getifname(ifp, buffer) struct ifnet *ifp; char *buffer; { static char namebuf[LIFNAMSIZ]; -# if defined(MENTAT) || defined(__FreeBSD__) +# if SOLARIS || defined(__FreeBSD__) int unit, space; char temp[20]; char *s; # endif if (buffer == NULL) buffer = namebuf; (void) strncpy(buffer, ifp->if_name, LIFNAMSIZ); buffer[LIFNAMSIZ - 1] = '\0'; -# if defined(MENTAT) || defined(__FreeBSD__) +# if SOLARIS || defined(__FreeBSD__) for (s = buffer; *s; s++) ; unit = ifp->if_unit; space = LIFNAMSIZ - (s - buffer); if ((space > 0) && (unit >= 0)) { # if defined(SNPRINTF) && defined(_KERNEL) SNPRINTF(temp, sizeof(temp), "%d", unit); # else (void) sprintf(temp, "%d", unit); # endif (void) strncpy(s, temp, space); } # endif return buffer; } #endif /* ------------------------------------------------------------------------ */ /* Function: ipf_ioctlswitch */ /* Returns: int - -1 continue processing, else ioctl return value */ /* Parameters: unit(I) - device unit opened */ /* data(I) - pointer to ioctl data */ /* cmd(I) - ioctl command */ /* mode(I) - mode value */ /* uid(I) - uid making the ioctl call */ /* ctx(I) - pointer to context data */ /* */ /* Based on the value of unit, call the appropriate ioctl handler or return */ /* EIO if ipfilter is not running. Also checks if write perms are req'd */ /* for the device in order to execute the ioctl. A special case is made */ /* SIOCIPFINTERROR so that the same code isn't required in every handler. */ /* The context data pointer is passed through as this is used as the key */ /* for locating a matching token for continued access for walking lists, */ /* etc. */ /* ------------------------------------------------------------------------ */ int ipf_ioctlswitch(softc, unit, data, cmd, mode, uid, ctx) ipf_main_softc_t *softc; int unit, mode, uid; ioctlcmd_t cmd; void *data, *ctx; { int error = 0; switch (cmd) { case SIOCIPFINTERROR : error = BCOPYOUT(&softc->ipf_interror, data, sizeof(softc->ipf_interror)); if (error != 0) { IPFERROR(40); error = EFAULT; } return error; default : break; } switch (unit) { case IPL_LOGIPF : error = ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx); break; case IPL_LOGNAT : if (softc->ipf_running > 0) { error = ipf_nat_ioctl(softc, data, cmd, mode, uid, ctx); } else { IPFERROR(42); error = EIO; } break; case IPL_LOGSTATE : if (softc->ipf_running > 0) { error = ipf_state_ioctl(softc, data, cmd, mode, uid, ctx); } else { IPFERROR(43); error = EIO; } break; case IPL_LOGAUTH : if (softc->ipf_running > 0) { error = ipf_auth_ioctl(softc, data, cmd, mode, uid, ctx); } else { IPFERROR(44); error = EIO; } break; case IPL_LOGSYNC : if (softc->ipf_running > 0) { error = ipf_sync_ioctl(softc, data, cmd, mode, uid, ctx); } else { error = EIO; IPFERROR(45); } break; case IPL_LOGSCAN : #ifdef IPFILTER_SCAN if (softc->ipf_running > 0) error = ipf_scan_ioctl(softc, data, cmd, mode, uid, ctx); else #endif { error = EIO; IPFERROR(46); } break; case IPL_LOGLOOKUP : if (softc->ipf_running > 0) { error = ipf_lookup_ioctl(softc, data, cmd, mode, uid, ctx); } else { error = EIO; IPFERROR(47); } break; default : IPFERROR(48); error = EIO; break; } return error; } /* * This array defines the expected size of objects coming into the kernel * for the various recognised object types. The first column is flags (see * below), 2nd column is current size, 3rd column is the version number of * when the current size became current. * Flags: * 1 = minimum size, not absolute size */ static const int ipf_objbytes[IPFOBJ_COUNT][3] = { { 1, sizeof(struct frentry), 5010000 }, /* 0 */ { 1, sizeof(struct friostat), 5010000 }, { 0, sizeof(struct fr_info), 5010000 }, { 0, sizeof(struct ipf_authstat), 4010100 }, { 0, sizeof(struct ipfrstat), 5010000 }, { 1, sizeof(struct ipnat), 5010000 }, /* 5 */ { 0, sizeof(struct natstat), 5010000 }, { 0, sizeof(struct ipstate_save), 5010000 }, { 1, sizeof(struct nat_save), 5010000 }, { 0, sizeof(struct natlookup), 5010000 }, { 1, sizeof(struct ipstate), 5010000 }, /* 10 */ { 0, sizeof(struct ips_stat), 5010000 }, { 0, sizeof(struct frauth), 5010000 }, { 0, sizeof(struct ipftune), 4010100 }, { 0, sizeof(struct nat), 5010000 }, { 0, sizeof(struct ipfruleiter), 4011400 }, /* 15 */ { 0, sizeof(struct ipfgeniter), 4011400 }, { 0, sizeof(struct ipftable), 4011400 }, { 0, sizeof(struct ipflookupiter), 4011400 }, { 0, sizeof(struct ipftq) * IPF_TCP_NSTATES }, { 1, 0, 0 }, /* IPFEXPR */ { 0, 0, 0 }, /* PROXYCTL */ { 0, sizeof (struct fripf), 5010000 } }; /* ------------------------------------------------------------------------ */ /* Function: ipf_inobj */ /* Returns: int - 0 = success, else failure */ /* Parameters: softc(I) - soft context pointerto work with */ /* data(I) - pointer to ioctl data */ /* objp(O) - where to store ipfobj structure */ /* ptr(I) - pointer to data to copy out */ /* type(I) - type of structure being moved */ /* */ /* Copy in the contents of what the ipfobj_t points to. In future, we */ /* add things to check for version numbers, sizes, etc, to make it backward */ /* compatible at the ABI for user land. */ /* If objp is not NULL then we assume that the caller wants to see what is */ /* in the ipfobj_t structure being copied in. As an example, this can tell */ /* the caller what version of ipfilter the ioctl program was written to. */ /* ------------------------------------------------------------------------ */ int ipf_inobj(softc, data, objp, ptr, type) ipf_main_softc_t *softc; void *data; ipfobj_t *objp; void *ptr; int type; { ipfobj_t obj; int error; int size; if ((type < 0) || (type >= IPFOBJ_COUNT)) { IPFERROR(49); return EINVAL; } if (objp == NULL) objp = &obj; error = BCOPYIN(data, objp, sizeof(*objp)); if (error != 0) { IPFERROR(124); return EFAULT; } if (objp->ipfo_type != type) { IPFERROR(50); return EINVAL; } if (objp->ipfo_rev >= ipf_objbytes[type][2]) { if ((ipf_objbytes[type][0] & 1) != 0) { if (objp->ipfo_size < ipf_objbytes[type][1]) { IPFERROR(51); return EINVAL; } size = ipf_objbytes[type][1]; } else if (objp->ipfo_size == ipf_objbytes[type][1]) { size = objp->ipfo_size; } else { IPFERROR(52); return EINVAL; } error = COPYIN(objp->ipfo_ptr, ptr, size); if (error != 0) { IPFERROR(55); error = EFAULT; } } else { #ifdef IPFILTER_COMPAT error = ipf_in_compat(softc, objp, ptr, 0); #else IPFERROR(54); error = EINVAL; #endif } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_inobjsz */ /* Returns: int - 0 = success, else failure */ /* Parameters: softc(I) - soft context pointerto work with */ /* data(I) - pointer to ioctl data */ /* ptr(I) - pointer to store real data in */ /* type(I) - type of structure being moved */ /* sz(I) - size of data to copy */ /* */ /* As per ipf_inobj, except the size of the object to copy in is passed in */ /* but it must not be smaller than the size defined for the type and the */ /* type must allow for varied sized objects. The extra requirement here is */ /* that sz must match the size of the object being passed in - this is not */ /* not possible nor required in ipf_inobj(). */ /* ------------------------------------------------------------------------ */ int ipf_inobjsz(softc, data, ptr, type, sz) ipf_main_softc_t *softc; void *data; void *ptr; int type, sz; { ipfobj_t obj; int error; if ((type < 0) || (type >= IPFOBJ_COUNT)) { IPFERROR(56); return EINVAL; } error = BCOPYIN(data, &obj, sizeof(obj)); if (error != 0) { IPFERROR(125); return EFAULT; } if (obj.ipfo_type != type) { IPFERROR(58); return EINVAL; } if (obj.ipfo_rev >= ipf_objbytes[type][2]) { if (((ipf_objbytes[type][0] & 1) == 0) || (sz < ipf_objbytes[type][1])) { IPFERROR(57); return EINVAL; } error = COPYIN(obj.ipfo_ptr, ptr, sz); if (error != 0) { IPFERROR(61); error = EFAULT; } } else { #ifdef IPFILTER_COMPAT error = ipf_in_compat(softc, &obj, ptr, sz); #else IPFERROR(60); error = EINVAL; #endif } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_outobjsz */ /* Returns: int - 0 = success, else failure */ /* Parameters: data(I) - pointer to ioctl data */ /* ptr(I) - pointer to store real data in */ /* type(I) - type of structure being moved */ /* sz(I) - size of data to copy */ /* */ /* As per ipf_outobj, except the size of the object to copy out is passed in*/ /* but it must not be smaller than the size defined for the type and the */ /* type must allow for varied sized objects. The extra requirement here is */ /* that sz must match the size of the object being passed in - this is not */ /* not possible nor required in ipf_outobj(). */ /* ------------------------------------------------------------------------ */ int ipf_outobjsz(softc, data, ptr, type, sz) ipf_main_softc_t *softc; void *data; void *ptr; int type, sz; { ipfobj_t obj; int error; if ((type < 0) || (type >= IPFOBJ_COUNT)) { IPFERROR(62); return EINVAL; } error = BCOPYIN(data, &obj, sizeof(obj)); if (error != 0) { IPFERROR(127); return EFAULT; } if (obj.ipfo_type != type) { IPFERROR(63); return EINVAL; } if (obj.ipfo_rev >= ipf_objbytes[type][2]) { if (((ipf_objbytes[type][0] & 1) == 0) || (sz < ipf_objbytes[type][1])) { IPFERROR(146); return EINVAL; } error = COPYOUT(ptr, obj.ipfo_ptr, sz); if (error != 0) { IPFERROR(66); error = EFAULT; } } else { #ifdef IPFILTER_COMPAT error = ipf_out_compat(softc, &obj, ptr); #else IPFERROR(65); error = EINVAL; #endif } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_outobj */ /* Returns: int - 0 = success, else failure */ /* Parameters: data(I) - pointer to ioctl data */ /* ptr(I) - pointer to store real data in */ /* type(I) - type of structure being moved */ /* */ /* Copy out the contents of what ptr is to where ipfobj points to. In */ /* future, we add things to check for version numbers, sizes, etc, to make */ /* it backward compatible at the ABI for user land. */ /* ------------------------------------------------------------------------ */ int ipf_outobj(softc, data, ptr, type) ipf_main_softc_t *softc; void *data; void *ptr; int type; { ipfobj_t obj; int error; if ((type < 0) || (type >= IPFOBJ_COUNT)) { IPFERROR(67); return EINVAL; } error = BCOPYIN(data, &obj, sizeof(obj)); if (error != 0) { IPFERROR(126); return EFAULT; } if (obj.ipfo_type != type) { IPFERROR(68); return EINVAL; } if (obj.ipfo_rev >= ipf_objbytes[type][2]) { if ((ipf_objbytes[type][0] & 1) != 0) { if (obj.ipfo_size < ipf_objbytes[type][1]) { IPFERROR(69); return EINVAL; } } else if (obj.ipfo_size != ipf_objbytes[type][1]) { IPFERROR(70); return EINVAL; } error = COPYOUT(ptr, obj.ipfo_ptr, obj.ipfo_size); if (error != 0) { IPFERROR(73); error = EFAULT; } } else { #ifdef IPFILTER_COMPAT error = ipf_out_compat(softc, &obj, ptr); #else IPFERROR(72); error = EINVAL; #endif } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_outobjk */ /* Returns: int - 0 = success, else failure */ /* Parameters: obj(I) - pointer to data description structure */ /* ptr(I) - pointer to kernel data to copy out */ /* */ /* In the above functions, the ipfobj_t structure is copied into the kernel,*/ /* telling ipfilter how to copy out data. In this instance, the ipfobj_t is */ /* already populated with information and now we just need to use it. */ /* There is no need for this function to have a "type" parameter as there */ /* is no point in validating information that comes from the kernel with */ /* itself. */ /* ------------------------------------------------------------------------ */ int ipf_outobjk(softc, obj, ptr) ipf_main_softc_t *softc; ipfobj_t *obj; void *ptr; { int type = obj->ipfo_type; int error; if ((type < 0) || (type >= IPFOBJ_COUNT)) { IPFERROR(147); return EINVAL; } if (obj->ipfo_rev >= ipf_objbytes[type][2]) { if ((ipf_objbytes[type][0] & 1) != 0) { if (obj->ipfo_size < ipf_objbytes[type][1]) { IPFERROR(148); return EINVAL; } } else if (obj->ipfo_size != ipf_objbytes[type][1]) { IPFERROR(149); return EINVAL; } error = COPYOUT(ptr, obj->ipfo_ptr, obj->ipfo_size); if (error != 0) { IPFERROR(150); error = EFAULT; } } else { #ifdef IPFILTER_COMPAT error = ipf_out_compat(softc, obj, ptr); #else IPFERROR(151); error = EINVAL; #endif } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_checkl4sum */ /* Returns: int - 0 = good, -1 = bad, 1 = cannot check */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* If possible, calculate the layer 4 checksum for the packet. If this is */ /* not possible, return without indicating a failure or success but in a */ /* way that is ditinguishable. This function should only be called by the */ /* ipf_checkv6sum() for each platform. */ /* ------------------------------------------------------------------------ */ INLINE int ipf_checkl4sum(fin) fr_info_t *fin; { u_short sum, hdrsum, *csump; udphdr_t *udp; int dosum; /* * If the TCP packet isn't a fragment, isn't too short and otherwise * isn't already considered "bad", then validate the checksum. If * this check fails then considered the packet to be "bad". */ if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0) return 1; DT2(l4sumo, int, fin->fin_out, int, (int)fin->fin_p); if (fin->fin_out == 1) { fin->fin_cksum = FI_CK_SUMOK; return 0; } csump = NULL; hdrsum = 0; dosum = 0; sum = 0; switch (fin->fin_p) { case IPPROTO_TCP : csump = &((tcphdr_t *)fin->fin_dp)->th_sum; dosum = 1; break; case IPPROTO_UDP : udp = fin->fin_dp; if (udp->uh_sum != 0) { csump = &udp->uh_sum; dosum = 1; } break; #ifdef USE_INET6 case IPPROTO_ICMPV6 : csump = &((struct icmp6_hdr *)fin->fin_dp)->icmp6_cksum; dosum = 1; break; #endif case IPPROTO_ICMP : csump = &((struct icmp *)fin->fin_dp)->icmp_cksum; dosum = 1; break; default : return 1; /*NOTREACHED*/ } if (csump != NULL) { hdrsum = *csump; if (fin->fin_p == IPPROTO_UDP && hdrsum == 0xffff) hdrsum = 0x0000; } if (dosum) { sum = fr_cksum(fin, fin->fin_ip, fin->fin_p, fin->fin_dp); } #if !defined(_KERNEL) if (sum == hdrsum) { FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum)); } else { FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum)); } #endif DT3(l4sums, u_short, hdrsum, u_short, sum, fr_info_t *, fin); #ifdef USE_INET6 if (hdrsum == sum || (sum == 0 && IP_V(fin->fin_ip) == 6)) { #else if (hdrsum == sum) { #endif fin->fin_cksum = FI_CK_SUMOK; return 0; } fin->fin_cksum = FI_CK_BAD; return -1; } /* ------------------------------------------------------------------------ */ /* Function: ipf_ifpfillv4addr */ /* Returns: int - 0 = address update, -1 = address not updated */ /* Parameters: atype(I) - type of network address update to perform */ /* sin(I) - pointer to source of address information */ /* mask(I) - pointer to source of netmask information */ /* inp(I) - pointer to destination address store */ /* inpmask(I) - pointer to destination netmask store */ /* */ /* Given a type of network address update (atype) to perform, copy */ /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */ /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */ /* which case the operation fails. For all values of atype other than */ /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */ /* value. */ /* ------------------------------------------------------------------------ */ int ipf_ifpfillv4addr(atype, sin, mask, inp, inpmask) int atype; struct sockaddr_in *sin, *mask; struct in_addr *inp, *inpmask; { if (inpmask != NULL && atype != FRI_NETMASKED) inpmask->s_addr = 0xffffffff; if (atype == FRI_NETWORK || atype == FRI_NETMASKED) { if (atype == FRI_NETMASKED) { if (inpmask == NULL) return -1; inpmask->s_addr = mask->sin_addr.s_addr; } inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr; } else { inp->s_addr = sin->sin_addr.s_addr; } return 0; } #ifdef USE_INET6 /* ------------------------------------------------------------------------ */ /* Function: ipf_ifpfillv6addr */ /* Returns: int - 0 = address update, -1 = address not updated */ /* Parameters: atype(I) - type of network address update to perform */ /* sin(I) - pointer to source of address information */ /* mask(I) - pointer to source of netmask information */ /* inp(I) - pointer to destination address store */ /* inpmask(I) - pointer to destination netmask store */ /* */ /* Given a type of network address update (atype) to perform, copy */ /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */ /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */ /* which case the operation fails. For all values of atype other than */ /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */ /* value. */ /* ------------------------------------------------------------------------ */ int ipf_ifpfillv6addr(atype, sin, mask, inp, inpmask) int atype; struct sockaddr_in6 *sin, *mask; i6addr_t *inp, *inpmask; { i6addr_t *src, *and; src = (i6addr_t *)&sin->sin6_addr; and = (i6addr_t *)&mask->sin6_addr; if (inpmask != NULL && atype != FRI_NETMASKED) { inpmask->i6[0] = 0xffffffff; inpmask->i6[1] = 0xffffffff; inpmask->i6[2] = 0xffffffff; inpmask->i6[3] = 0xffffffff; } if (atype == FRI_NETWORK || atype == FRI_NETMASKED) { if (atype == FRI_NETMASKED) { if (inpmask == NULL) return -1; inpmask->i6[0] = and->i6[0]; inpmask->i6[1] = and->i6[1]; inpmask->i6[2] = and->i6[2]; inpmask->i6[3] = and->i6[3]; } inp->i6[0] = src->i6[0] & and->i6[0]; inp->i6[1] = src->i6[1] & and->i6[1]; inp->i6[2] = src->i6[2] & and->i6[2]; inp->i6[3] = src->i6[3] & and->i6[3]; } else { inp->i6[0] = src->i6[0]; inp->i6[1] = src->i6[1]; inp->i6[2] = src->i6[2]; inp->i6[3] = src->i6[3]; } return 0; } #endif /* ------------------------------------------------------------------------ */ /* Function: ipf_matchtag */ /* Returns: 0 == mismatch, 1 == match. */ /* Parameters: tag1(I) - pointer to first tag to compare */ /* tag2(I) - pointer to second tag to compare */ /* */ /* Returns true (non-zero) or false(0) if the two tag structures can be */ /* considered to be a match or not match, respectively. The tag is 16 */ /* bytes long (16 characters) but that is overlayed with 4 32bit ints so */ /* compare the ints instead, for speed. tag1 is the master of the */ /* comparison. This function should only be called with both tag1 and tag2 */ /* as non-NULL pointers. */ /* ------------------------------------------------------------------------ */ int ipf_matchtag(tag1, tag2) ipftag_t *tag1, *tag2; { if (tag1 == tag2) return 1; if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0)) return 1; if ((tag1->ipt_num[0] == tag2->ipt_num[0]) && (tag1->ipt_num[1] == tag2->ipt_num[1]) && (tag1->ipt_num[2] == tag2->ipt_num[2]) && (tag1->ipt_num[3] == tag2->ipt_num[3])) return 1; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_coalesce */ /* Returns: 1 == success, -1 == failure, 0 == no change */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* Attempt to get all of the packet data into a single, contiguous buffer. */ /* If this call returns a failure then the buffers have also been freed. */ /* ------------------------------------------------------------------------ */ int ipf_coalesce(fin) fr_info_t *fin; { if ((fin->fin_flx & FI_COALESCE) != 0) return 1; /* * If the mbuf pointers indicate that there is no mbuf to work with, * return but do not indicate success or failure. */ if (fin->fin_m == NULL || fin->fin_mp == NULL) return 0; #if defined(_KERNEL) if (ipf_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) { ipf_main_softc_t *softc = fin->fin_main_soft; DT1(frb_coalesce, fr_info_t *, fin); LBUMP(ipf_stats[fin->fin_out].fr_badcoalesces); -# ifdef MENTAT +# if SOLARIS FREE_MB_T(*fin->fin_mp); # endif fin->fin_reason = FRB_COALESCE; *fin->fin_mp = NULL; fin->fin_m = NULL; return -1; } #else fin = fin; /* LINT */ #endif return 1; } /* * The following table lists all of the tunable variables that can be * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXt. The format of each row * in the table below is as follows: * * pointer to value, name of value, minimum, maximum, size of the value's * container, value attribute flags * * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED * means the value can only be written to when IPFilter is loaded but disabled. * The obvious implication is if neither of these are set then the value can be * changed at any time without harm. */ /* ------------------------------------------------------------------------ */ /* Function: ipf_tune_findbycookie */ /* Returns: NULL = search failed, else pointer to tune struct */ /* Parameters: cookie(I) - cookie value to search for amongst tuneables */ /* next(O) - pointer to place to store the cookie for the */ /* "next" tuneable, if it is desired. */ /* */ /* This function is used to walk through all of the existing tunables with */ /* successive calls. It searches the known tunables for the one which has */ /* a matching value for "cookie" - ie its address. When returning a match, */ /* the next one to be found may be returned inside next. */ /* ------------------------------------------------------------------------ */ static ipftuneable_t * ipf_tune_findbycookie(ptop, cookie, next) ipftuneable_t **ptop; void *cookie, **next; { ipftuneable_t *ta, **tap; for (ta = *ptop; ta->ipft_name != NULL; ta++) if (ta == cookie) { if (next != NULL) { /* * If the next entry in the array has a name * present, then return a pointer to it for * where to go next, else return a pointer to * the dynaminc list as a key to search there * next. This facilitates a weak linking of * the two "lists" together. */ if ((ta + 1)->ipft_name != NULL) *next = ta + 1; else *next = ptop; } return ta; } for (tap = ptop; (ta = *tap) != NULL; tap = &ta->ipft_next) if (tap == cookie) { if (next != NULL) *next = &ta->ipft_next; return ta; } if (next != NULL) *next = NULL; return NULL; } /* ------------------------------------------------------------------------ */ /* Function: ipf_tune_findbyname */ /* Returns: NULL = search failed, else pointer to tune struct */ /* Parameters: name(I) - name of the tuneable entry to find. */ /* */ /* Search the static array of tuneables and the list of dynamic tuneables */ /* for an entry with a matching name. If we can find one, return a pointer */ /* to the matching structure. */ /* ------------------------------------------------------------------------ */ static ipftuneable_t * ipf_tune_findbyname(top, name) ipftuneable_t *top; const char *name; { ipftuneable_t *ta; for (ta = top; ta != NULL; ta = ta->ipft_next) if (!strcmp(ta->ipft_name, name)) { return ta; } return NULL; } /* ------------------------------------------------------------------------ */ /* Function: ipf_tune_add_array */ /* Returns: int - 0 == success, else failure */ /* Parameters: newtune - pointer to new tune array to add to tuneables */ /* */ /* Appends tune structures from the array passed in (newtune) to the end of */ /* the current list of "dynamic" tuneable parameters. */ /* If any entry to be added is already present (by name) then the operation */ /* is aborted - entries that have been added are removed before returning. */ /* An entry with no name (NULL) is used as the indication that the end of */ /* the array has been reached. */ /* ------------------------------------------------------------------------ */ int ipf_tune_add_array(softc, newtune) ipf_main_softc_t *softc; ipftuneable_t *newtune; { ipftuneable_t *nt, *dt; int error = 0; for (nt = newtune; nt->ipft_name != NULL; nt++) { error = ipf_tune_add(softc, nt); if (error != 0) { for (dt = newtune; dt != nt; dt++) { (void) ipf_tune_del(softc, dt); } } } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_tune_array_link */ /* Returns: 0 == success, -1 == failure */ /* Parameters: softc(I) - soft context pointerto work with */ /* array(I) - pointer to an array of tuneables */ /* */ /* Given an array of tunables (array), append them to the current list of */ /* tuneables for this context (softc->ipf_tuners.) To properly prepare the */ /* the array for being appended to the list, initialise all of the next */ /* pointers so we don't need to walk parts of it with ++ and others with */ /* next. The array is expected to have an entry with a NULL name as the */ /* terminator. Trying to add an array with no non-NULL names will return as */ /* a failure. */ /* ------------------------------------------------------------------------ */ int ipf_tune_array_link(softc, array) ipf_main_softc_t *softc; ipftuneable_t *array; { ipftuneable_t *t, **p; t = array; if (t->ipft_name == NULL) return -1; for (; t[1].ipft_name != NULL; t++) t[0].ipft_next = &t[1]; t->ipft_next = NULL; /* * Since a pointer to the last entry isn't kept, we need to find it * each time we want to add new variables to the list. */ for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next) if (t->ipft_name == NULL) break; *p = array; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_tune_array_unlink */ /* Returns: 0 == success, -1 == failure */ /* Parameters: softc(I) - soft context pointerto work with */ /* array(I) - pointer to an array of tuneables */ /* */ /* ------------------------------------------------------------------------ */ int ipf_tune_array_unlink(softc, array) ipf_main_softc_t *softc; ipftuneable_t *array; { ipftuneable_t *t, **p; for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next) if (t == array) break; if (t == NULL) return -1; for (; t[1].ipft_name != NULL; t++) ; *p = t->ipft_next; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_tune_array_copy */ /* Returns: NULL = failure, else pointer to new array */ /* Parameters: base(I) - pointer to structure base */ /* size(I) - size of the array at template */ /* template(I) - original array to copy */ /* */ /* Allocate memory for a new set of tuneable values and copy everything */ /* from template into the new region of memory. The new region is full of */ /* uninitialised pointers (ipft_next) so set them up. Now, ipftp_offset... */ /* */ /* NOTE: the following assumes that sizeof(long) == sizeof(void *) */ /* In the array template, ipftp_offset is the offset (in bytes) of the */ /* location of the tuneable value inside the structure pointed to by base. */ /* As ipftp_offset is a union over the pointers to the tuneable values, if */ /* we add base to the copy's ipftp_offset, copy ends up with a pointer in */ /* ipftp_void that points to the stored value. */ /* ------------------------------------------------------------------------ */ ipftuneable_t * ipf_tune_array_copy(base, size, template) void *base; size_t size; ipftuneable_t *template; { ipftuneable_t *copy; int i; KMALLOCS(copy, ipftuneable_t *, size); if (copy == NULL) { return NULL; } bcopy(template, copy, size); for (i = 0; copy[i].ipft_name; i++) { copy[i].ipft_una.ipftp_offset += (u_long)base; copy[i].ipft_next = copy + i + 1; } return copy; } /* ------------------------------------------------------------------------ */ /* Function: ipf_tune_add */ /* Returns: int - 0 == success, else failure */ /* Parameters: newtune - pointer to new tune entry to add to tuneables */ /* */ /* Appends tune structures from the array passed in (newtune) to the end of */ /* the current list of "dynamic" tuneable parameters. Once added, the */ /* owner of the object is not expected to ever change "ipft_next". */ /* ------------------------------------------------------------------------ */ int ipf_tune_add(softc, newtune) ipf_main_softc_t *softc; ipftuneable_t *newtune; { ipftuneable_t *ta, **tap; ta = ipf_tune_findbyname(softc->ipf_tuners, newtune->ipft_name); if (ta != NULL) { IPFERROR(74); return EEXIST; } for (tap = &softc->ipf_tuners; *tap != NULL; tap = &(*tap)->ipft_next) ; newtune->ipft_next = NULL; *tap = newtune; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_tune_del */ /* Returns: int - 0 == success, else failure */ /* Parameters: oldtune - pointer to tune entry to remove from the list of */ /* current dynamic tuneables */ /* */ /* Search for the tune structure, by pointer, in the list of those that are */ /* dynamically added at run time. If found, adjust the list so that this */ /* structure is no longer part of it. */ /* ------------------------------------------------------------------------ */ int ipf_tune_del(softc, oldtune) ipf_main_softc_t *softc; ipftuneable_t *oldtune; { ipftuneable_t *ta, **tap; int error = 0; for (tap = &softc->ipf_tuners; (ta = *tap) != NULL; tap = &ta->ipft_next) { if (ta == oldtune) { *tap = oldtune->ipft_next; oldtune->ipft_next = NULL; break; } } if (ta == NULL) { error = ESRCH; IPFERROR(75); } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_tune_del_array */ /* Returns: int - 0 == success, else failure */ /* Parameters: oldtune - pointer to tuneables array */ /* */ /* Remove each tuneable entry in the array from the list of "dynamic" */ /* tunables. If one entry should fail to be found, an error will be */ /* returned and no further ones removed. */ /* An entry with a NULL name is used as the indicator of the last entry in */ /* the array. */ /* ------------------------------------------------------------------------ */ int ipf_tune_del_array(softc, oldtune) ipf_main_softc_t *softc; ipftuneable_t *oldtune; { ipftuneable_t *ot; int error = 0; for (ot = oldtune; ot->ipft_name != NULL; ot++) { error = ipf_tune_del(softc, ot); if (error != 0) break; } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_tune */ /* Returns: int - 0 == success, else failure */ /* Parameters: cmd(I) - ioctl command number */ /* data(I) - pointer to ioctl data structure */ /* */ /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET. These */ /* three ioctls provide the means to access and control global variables */ /* within IPFilter, allowing (for example) timeouts and table sizes to be */ /* changed without rebooting, reloading or recompiling. The initialisation */ /* and 'destruction' routines of the various components of ipfilter are all */ /* each responsible for handling their own values being too big. */ /* ------------------------------------------------------------------------ */ int ipf_ipftune(softc, cmd, data) ipf_main_softc_t *softc; ioctlcmd_t cmd; void *data; { ipftuneable_t *ta; ipftune_t tu; void *cookie; int error; error = ipf_inobj(softc, data, NULL, &tu, IPFOBJ_TUNEABLE); if (error != 0) return error; tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0'; cookie = tu.ipft_cookie; ta = NULL; switch (cmd) { case SIOCIPFGETNEXT : /* * If cookie is non-NULL, assume it to be a pointer to the last * entry we looked at, so find it (if possible) and return a * pointer to the next one after it. The last entry in the * the table is a NULL entry, so when we get to it, set cookie * to NULL and return that, indicating end of list, erstwhile * if we come in with cookie set to NULL, we are starting anew * at the front of the list. */ if (cookie != NULL) { ta = ipf_tune_findbycookie(&softc->ipf_tuners, cookie, &tu.ipft_cookie); } else { ta = softc->ipf_tuners; tu.ipft_cookie = ta + 1; } if (ta != NULL) { /* * Entry found, but does the data pointed to by that * row fit in what we can return? */ if (ta->ipft_sz > sizeof(tu.ipft_un)) { IPFERROR(76); return EINVAL; } tu.ipft_vlong = 0; if (ta->ipft_sz == sizeof(u_long)) tu.ipft_vlong = *ta->ipft_plong; else if (ta->ipft_sz == sizeof(u_int)) tu.ipft_vint = *ta->ipft_pint; else if (ta->ipft_sz == sizeof(u_short)) tu.ipft_vshort = *ta->ipft_pshort; else if (ta->ipft_sz == sizeof(u_char)) tu.ipft_vchar = *ta->ipft_pchar; tu.ipft_sz = ta->ipft_sz; tu.ipft_min = ta->ipft_min; tu.ipft_max = ta->ipft_max; tu.ipft_flags = ta->ipft_flags; bcopy(ta->ipft_name, tu.ipft_name, MIN(sizeof(tu.ipft_name), strlen(ta->ipft_name) + 1)); } error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE); break; case SIOCIPFGET : case SIOCIPFSET : /* * Search by name or by cookie value for a particular entry * in the tuning paramter table. */ IPFERROR(77); error = ESRCH; if (cookie != NULL) { ta = ipf_tune_findbycookie(&softc->ipf_tuners, cookie, NULL); if (ta != NULL) error = 0; } else if (tu.ipft_name[0] != '\0') { ta = ipf_tune_findbyname(softc->ipf_tuners, tu.ipft_name); if (ta != NULL) error = 0; } if (error != 0) break; if (cmd == (ioctlcmd_t)SIOCIPFGET) { /* * Fetch the tuning parameters for a particular value */ tu.ipft_vlong = 0; if (ta->ipft_sz == sizeof(u_long)) tu.ipft_vlong = *ta->ipft_plong; else if (ta->ipft_sz == sizeof(u_int)) tu.ipft_vint = *ta->ipft_pint; else if (ta->ipft_sz == sizeof(u_short)) tu.ipft_vshort = *ta->ipft_pshort; else if (ta->ipft_sz == sizeof(u_char)) tu.ipft_vchar = *ta->ipft_pchar; tu.ipft_cookie = ta; tu.ipft_sz = ta->ipft_sz; tu.ipft_min = ta->ipft_min; tu.ipft_max = ta->ipft_max; tu.ipft_flags = ta->ipft_flags; error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE); } else if (cmd == (ioctlcmd_t)SIOCIPFSET) { /* * Set an internal parameter. The hard part here is * getting the new value safely and correctly out of * the kernel (given we only know its size, not type.) */ u_long in; if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) && (softc->ipf_running > 0)) { IPFERROR(78); error = EBUSY; break; } in = tu.ipft_vlong; if (in < ta->ipft_min || in > ta->ipft_max) { IPFERROR(79); error = EINVAL; break; } if (ta->ipft_func != NULL) { SPL_INT(s); SPL_NET(s); error = (*ta->ipft_func)(softc, ta, &tu.ipft_un); SPL_X(s); } else if (ta->ipft_sz == sizeof(u_long)) { tu.ipft_vlong = *ta->ipft_plong; *ta->ipft_plong = in; } else if (ta->ipft_sz == sizeof(u_int)) { tu.ipft_vint = *ta->ipft_pint; *ta->ipft_pint = (u_int)(in & 0xffffffff); } else if (ta->ipft_sz == sizeof(u_short)) { tu.ipft_vshort = *ta->ipft_pshort; *ta->ipft_pshort = (u_short)(in & 0xffff); } else if (ta->ipft_sz == sizeof(u_char)) { tu.ipft_vchar = *ta->ipft_pchar; *ta->ipft_pchar = (u_char)(in & 0xff); } error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE); } break; default : IPFERROR(80); error = EINVAL; break; } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_zerostats */ /* Returns: int - 0 = success, else failure */ /* Parameters: data(O) - pointer to pointer for copying data back to */ /* */ /* Copies the current statistics out to userspace and then zero's the */ /* current ones in the kernel. The lock is only held across the bzero() as */ /* the copyout may result in paging (ie network activity.) */ /* ------------------------------------------------------------------------ */ int ipf_zerostats(softc, data) ipf_main_softc_t *softc; caddr_t data; { friostat_t fio; ipfobj_t obj; int error; error = ipf_inobj(softc, data, &obj, &fio, IPFOBJ_IPFSTAT); if (error != 0) return error; ipf_getstat(softc, &fio, obj.ipfo_rev); error = ipf_outobj(softc, data, &fio, IPFOBJ_IPFSTAT); if (error != 0) return error; WRITE_ENTER(&softc->ipf_mutex); bzero(&softc->ipf_stats, sizeof(softc->ipf_stats)); RWLOCK_EXIT(&softc->ipf_mutex); return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_resolvedest */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* base(I) - where strings are stored */ /* fdp(IO) - pointer to destination information to resolve */ /* v(I) - IP protocol version to match */ /* */ /* Looks up an interface name in the frdest structure pointed to by fdp and */ /* if a matching name can be found for the particular IP protocol version */ /* then store the interface pointer in the frdest struct. If no match is */ /* found, then set the interface pointer to be -1 as NULL is considered to */ /* indicate there is no information at all in the structure. */ /* ------------------------------------------------------------------------ */ int ipf_resolvedest(softc, base, fdp, v) ipf_main_softc_t *softc; char *base; frdest_t *fdp; int v; { int errval = 0; void *ifp; ifp = NULL; if (fdp->fd_name != -1) { if (fdp->fd_type == FRD_DSTLIST) { ifp = ipf_lookup_res_name(softc, IPL_LOGIPF, IPLT_DSTLIST, base + fdp->fd_name, NULL); if (ifp == NULL) { IPFERROR(144); errval = ESRCH; } } else { ifp = GETIFP(base + fdp->fd_name, v); if (ifp == NULL) ifp = (void *)-1; } } fdp->fd_ptr = ifp; return errval; } /* ------------------------------------------------------------------------ */ /* Function: ipf_resolvenic */ /* Returns: void* - NULL = wildcard name, -1 = failed to find NIC, else */ /* pointer to interface structure for NIC */ /* Parameters: softc(I)- pointer to soft context main structure */ /* name(I) - complete interface name */ /* v(I) - IP protocol version */ /* */ /* Look for a network interface structure that firstly has a matching name */ /* to that passed in and that is also being used for that IP protocol */ /* version (necessary on some platforms where there are separate listings */ /* for both IPv4 and IPv6 on the same physical NIC. */ /* ------------------------------------------------------------------------ */ void * ipf_resolvenic(softc, name, v) ipf_main_softc_t *softc; char *name; int v; { void *nic; softc = softc; /* gcc -Wextra */ if (name[0] == '\0') return NULL; if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) { return NULL; } nic = GETIFP(name, v); if (nic == NULL) nic = (void *)-1; return nic; } /* ------------------------------------------------------------------------ */ /* Function: ipf_token_expire */ /* Returns: None. */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* This function is run every ipf tick to see if there are any tokens that */ /* have been held for too long and need to be freed up. */ /* ------------------------------------------------------------------------ */ void ipf_token_expire(softc) ipf_main_softc_t *softc; { ipftoken_t *it; WRITE_ENTER(&softc->ipf_tokens); while ((it = softc->ipf_token_head) != NULL) { if (it->ipt_die > softc->ipf_ticks) break; ipf_token_deref(softc, it); } RWLOCK_EXIT(&softc->ipf_tokens); } /* ------------------------------------------------------------------------ */ /* Function: ipf_token_flush */ /* Returns: None. */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* Loop through all of the existing tokens and call deref to see if they */ /* can be freed. Normally a function like this might just loop on */ /* ipf_token_head but there is a chance that a token might have a ref count */ /* of greater than one and in that case the the reference would drop twice */ /* by code that is only entitled to drop it once. */ /* ------------------------------------------------------------------------ */ static void ipf_token_flush(softc) ipf_main_softc_t *softc; { ipftoken_t *it, *next; WRITE_ENTER(&softc->ipf_tokens); for (it = softc->ipf_token_head; it != NULL; it = next) { next = it->ipt_next; (void) ipf_token_deref(softc, it); } RWLOCK_EXIT(&softc->ipf_tokens); } /* ------------------------------------------------------------------------ */ /* Function: ipf_token_del */ /* Returns: int - 0 = success, else error */ /* Parameters: softc(I)- pointer to soft context main structure */ /* type(I) - the token type to match */ /* uid(I) - uid owning the token */ /* ptr(I) - context pointer for the token */ /* */ /* This function looks for a a token in the current list that matches up */ /* the fields (type, uid, ptr). If none is found, ESRCH is returned, else */ /* call ipf_token_dewref() to remove it from the list. In the event that */ /* the token has a reference held elsewhere, setting ipt_complete to 2 */ /* enables debugging to distinguish between the two paths that ultimately */ /* lead to a token to be deleted. */ /* ------------------------------------------------------------------------ */ int ipf_token_del(softc, type, uid, ptr) ipf_main_softc_t *softc; int type, uid; void *ptr; { ipftoken_t *it; int error; IPFERROR(82); error = ESRCH; WRITE_ENTER(&softc->ipf_tokens); for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) { if (ptr == it->ipt_ctx && type == it->ipt_type && uid == it->ipt_uid) { it->ipt_complete = 2; ipf_token_deref(softc, it); error = 0; break; } } RWLOCK_EXIT(&softc->ipf_tokens); return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_token_mark_complete */ /* Returns: None. */ /* Parameters: token(I) - pointer to token structure */ /* */ /* Mark a token as being ineligable for being found with ipf_token_find. */ /* ------------------------------------------------------------------------ */ void ipf_token_mark_complete(token) ipftoken_t *token; { if (token->ipt_complete == 0) token->ipt_complete = 1; } /* ------------------------------------------------------------------------ */ /* Function: ipf_token_find */ /* Returns: ipftoken_t * - NULL if no memory, else pointer to token */ /* Parameters: softc(I)- pointer to soft context main structure */ /* type(I) - the token type to match */ /* uid(I) - uid owning the token */ /* ptr(I) - context pointer for the token */ /* */ /* This function looks for a live token in the list of current tokens that */ /* matches the tuple (type, uid, ptr). If one cannot be found then one is */ /* allocated. If one is found then it is moved to the top of the list of */ /* currently active tokens. */ /* ------------------------------------------------------------------------ */ ipftoken_t * ipf_token_find(softc, type, uid, ptr) ipf_main_softc_t *softc; int type, uid; void *ptr; { ipftoken_t *it, *new; KMALLOC(new, ipftoken_t *); if (new != NULL) bzero((char *)new, sizeof(*new)); WRITE_ENTER(&softc->ipf_tokens); for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) { if ((ptr == it->ipt_ctx) && (type == it->ipt_type) && (uid == it->ipt_uid) && (it->ipt_complete < 2)) break; } if (it == NULL) { it = new; new = NULL; if (it == NULL) { RWLOCK_EXIT(&softc->ipf_tokens); return NULL; } it->ipt_ctx = ptr; it->ipt_uid = uid; it->ipt_type = type; it->ipt_ref = 1; } else { if (new != NULL) { KFREE(new); new = NULL; } if (it->ipt_complete > 0) it = NULL; else ipf_token_unlink(softc, it); } if (it != NULL) { it->ipt_pnext = softc->ipf_token_tail; *softc->ipf_token_tail = it; softc->ipf_token_tail = &it->ipt_next; it->ipt_next = NULL; it->ipt_ref++; it->ipt_die = softc->ipf_ticks + 20; } RWLOCK_EXIT(&softc->ipf_tokens); return it; } /* ------------------------------------------------------------------------ */ /* Function: ipf_token_unlink */ /* Returns: None. */ /* Parameters: softc(I) - pointer to soft context main structure */ /* token(I) - pointer to token structure */ /* Write Locks: ipf_tokens */ /* */ /* This function unlinks a token structure from the linked list of tokens */ /* that "own" it. The head pointer never needs to be explicitly adjusted */ /* but the tail does due to the linked list implementation. */ /* ------------------------------------------------------------------------ */ static void ipf_token_unlink(softc, token) ipf_main_softc_t *softc; ipftoken_t *token; { if (softc->ipf_token_tail == &token->ipt_next) softc->ipf_token_tail = token->ipt_pnext; *token->ipt_pnext = token->ipt_next; if (token->ipt_next != NULL) token->ipt_next->ipt_pnext = token->ipt_pnext; token->ipt_next = NULL; token->ipt_pnext = NULL; } /* ------------------------------------------------------------------------ */ /* Function: ipf_token_deref */ /* Returns: int - 0 == token freed, else reference count */ /* Parameters: softc(I) - pointer to soft context main structure */ /* token(I) - pointer to token structure */ /* Write Locks: ipf_tokens */ /* */ /* Drop the reference count on the token structure and if it drops to zero, */ /* call the dereference function for the token type because it is then */ /* possible to free the token data structure. */ /* ------------------------------------------------------------------------ */ int ipf_token_deref(softc, token) ipf_main_softc_t *softc; ipftoken_t *token; { void *data, **datap; ASSERT(token->ipt_ref > 0); token->ipt_ref--; if (token->ipt_ref > 0) return token->ipt_ref; data = token->ipt_data; datap = &data; if ((data != NULL) && (data != (void *)-1)) { switch (token->ipt_type) { case IPFGENITER_IPF : (void) ipf_derefrule(softc, (frentry_t **)datap); break; case IPFGENITER_IPNAT : WRITE_ENTER(&softc->ipf_nat); ipf_nat_rule_deref(softc, (ipnat_t **)datap); RWLOCK_EXIT(&softc->ipf_nat); break; case IPFGENITER_NAT : ipf_nat_deref(softc, (nat_t **)datap); break; case IPFGENITER_STATE : ipf_state_deref(softc, (ipstate_t **)datap); break; case IPFGENITER_FRAG : ipf_frag_pkt_deref(softc, (ipfr_t **)datap); break; case IPFGENITER_NATFRAG : ipf_frag_nat_deref(softc, (ipfr_t **)datap); break; case IPFGENITER_HOSTMAP : WRITE_ENTER(&softc->ipf_nat); ipf_nat_hostmapdel(softc, (hostmap_t **)datap); RWLOCK_EXIT(&softc->ipf_nat); break; default : ipf_lookup_iterderef(softc, token->ipt_type, data); break; } } ipf_token_unlink(softc, token); KFREE(token); return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nextrule */ /* Returns: frentry_t * - NULL == no more rules, else pointer to next */ /* Parameters: softc(I) - pointer to soft context main structure */ /* fr(I) - pointer to filter rule */ /* out(I) - 1 == out rules, 0 == input rules */ /* */ /* Starting with "fr", find the next rule to visit. This includes visiting */ /* the list of rule groups if either fr is NULL (empty list) or it is the */ /* last rule in the list. When walking rule lists, it is either input or */ /* output rules that are returned, never both. */ /* ------------------------------------------------------------------------ */ static frentry_t * ipf_nextrule(softc, active, unit, fr, out) ipf_main_softc_t *softc; int active, unit; frentry_t *fr; int out; { frentry_t *next; frgroup_t *fg; if (fr != NULL && fr->fr_group != -1) { fg = ipf_findgroup(softc, fr->fr_names + fr->fr_group, unit, active, NULL); if (fg != NULL) fg = fg->fg_next; } else { fg = softc->ipf_groups[unit][active]; } while (fg != NULL) { next = fg->fg_start; while (next != NULL) { if (out) { if (next->fr_flags & FR_OUTQUE) return next; } else if (next->fr_flags & FR_INQUE) { return next; } next = next->fr_next; } if (next == NULL) fg = fg->fg_next; } return NULL; } /* ------------------------------------------------------------------------ */ /* Function: ipf_getnextrule */ /* Returns: int - 0 = success, else error */ /* Parameters: softc(I)- pointer to soft context main structure */ /* t(I) - pointer to destination information to resolve */ /* ptr(I) - pointer to ipfobj_t to copyin from user space */ /* */ /* This function's first job is to bring in the ipfruleiter_t structure via */ /* the ipfobj_t structure to determine what should be the next rule to */ /* return. Once the ipfruleiter_t has been brought in, it then tries to */ /* find the 'next rule'. This may include searching rule group lists or */ /* just be as simple as looking at the 'next' field in the rule structure. */ /* When we have found the rule to return, increase its reference count and */ /* if we used an existing rule to get here, decrease its reference count. */ /* ------------------------------------------------------------------------ */ int ipf_getnextrule(softc, t, ptr) ipf_main_softc_t *softc; ipftoken_t *t; void *ptr; { frentry_t *fr, *next, zero; ipfruleiter_t it; int error, out; frgroup_t *fg; ipfobj_t obj; int predict; char *dst; int unit; if (t == NULL || ptr == NULL) { IPFERROR(84); return EFAULT; } error = ipf_inobj(softc, ptr, &obj, &it, IPFOBJ_IPFITER); if (error != 0) return error; if ((it.iri_inout < 0) || (it.iri_inout > 3)) { IPFERROR(85); return EINVAL; } if ((it.iri_active != 0) && (it.iri_active != 1)) { IPFERROR(86); return EINVAL; } if (it.iri_nrules == 0) { IPFERROR(87); return ENOSPC; } if (it.iri_rule == NULL) { IPFERROR(88); return EFAULT; } fg = NULL; fr = t->ipt_data; if ((it.iri_inout & F_OUT) != 0) out = 1; else out = 0; if ((it.iri_inout & F_ACIN) != 0) unit = IPL_LOGCOUNT; else unit = IPL_LOGIPF; READ_ENTER(&softc->ipf_mutex); if (fr == NULL) { if (*it.iri_group == '\0') { if (unit == IPL_LOGCOUNT) { next = softc->ipf_acct[out][it.iri_active]; } else { next = softc->ipf_rules[out][it.iri_active]; } if (next == NULL) next = ipf_nextrule(softc, it.iri_active, unit, NULL, out); } else { fg = ipf_findgroup(softc, it.iri_group, unit, it.iri_active, NULL); if (fg != NULL) next = fg->fg_start; else next = NULL; } } else { next = fr->fr_next; if (next == NULL) next = ipf_nextrule(softc, it.iri_active, unit, fr, out); } if (next != NULL && next->fr_next != NULL) predict = 1; else if (ipf_nextrule(softc, it.iri_active, unit, next, out) != NULL) predict = 1; else predict = 0; if (fr != NULL) (void) ipf_derefrule(softc, &fr); obj.ipfo_type = IPFOBJ_FRENTRY; dst = (char *)it.iri_rule; if (next != NULL) { obj.ipfo_size = next->fr_size; MUTEX_ENTER(&next->fr_lock); next->fr_ref++; MUTEX_EXIT(&next->fr_lock); t->ipt_data = next; } else { obj.ipfo_size = sizeof(frentry_t); bzero(&zero, sizeof(zero)); next = &zero; t->ipt_data = NULL; } it.iri_rule = predict ? next : NULL; if (predict == 0) ipf_token_mark_complete(t); RWLOCK_EXIT(&softc->ipf_mutex); obj.ipfo_ptr = dst; error = ipf_outobjk(softc, &obj, next); if (error == 0 && t->ipt_data != NULL) { dst += obj.ipfo_size; if (next->fr_data != NULL) { ipfobj_t dobj; if (next->fr_type == FR_T_IPFEXPR) dobj.ipfo_type = IPFOBJ_IPFEXPR; else dobj.ipfo_type = IPFOBJ_FRIPF; dobj.ipfo_size = next->fr_dsize; dobj.ipfo_rev = obj.ipfo_rev; dobj.ipfo_ptr = dst; error = ipf_outobjk(softc, &dobj, next->fr_data); } } if ((fr != NULL) && (next == &zero)) (void) ipf_derefrule(softc, &fr); return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_frruleiter */ /* Returns: int - 0 = success, else error */ /* Parameters: softc(I)- pointer to soft context main structure */ /* data(I) - the token type to match */ /* uid(I) - uid owning the token */ /* ptr(I) - context pointer for the token */ /* */ /* This function serves as a stepping stone between ipf_ipf_ioctl and */ /* ipf_getnextrule. It's role is to find the right token in the kernel for */ /* the process doing the ioctl and use that to ask for the next rule. */ /* ------------------------------------------------------------------------ */ static int ipf_frruleiter(softc, data, uid, ctx) ipf_main_softc_t *softc; void *data, *ctx; int uid; { ipftoken_t *token; ipfruleiter_t it; ipfobj_t obj; int error; token = ipf_token_find(softc, IPFGENITER_IPF, uid, ctx); if (token != NULL) { error = ipf_getnextrule(softc, token, data); WRITE_ENTER(&softc->ipf_tokens); ipf_token_deref(softc, token); RWLOCK_EXIT(&softc->ipf_tokens); } else { error = ipf_inobj(softc, data, &obj, &it, IPFOBJ_IPFITER); if (error != 0) return error; it.iri_rule = NULL; error = ipf_outobj(softc, data, &it, IPFOBJ_IPFITER); } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_geniter */ /* Returns: int - 0 = success, else error */ /* Parameters: softc(I) - pointer to soft context main structure */ /* token(I) - pointer to ipftoken_t structure */ /* itp(I) - pointer to iterator data */ /* */ /* Decide which iterator function to call using information passed through */ /* the ipfgeniter_t structure at itp. */ /* ------------------------------------------------------------------------ */ static int ipf_geniter(softc, token, itp) ipf_main_softc_t *softc; ipftoken_t *token; ipfgeniter_t *itp; { int error; switch (itp->igi_type) { case IPFGENITER_FRAG : error = ipf_frag_pkt_next(softc, token, itp); break; default : IPFERROR(92); error = EINVAL; break; } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_genericiter */ /* Returns: int - 0 = success, else error */ /* Parameters: softc(I)- pointer to soft context main structure */ /* data(I) - the token type to match */ /* uid(I) - uid owning the token */ /* ptr(I) - context pointer for the token */ /* */ /* Handle the SIOCGENITER ioctl for the ipfilter device. The primary role */ /* ------------------------------------------------------------------------ */ int ipf_genericiter(softc, data, uid, ctx) ipf_main_softc_t *softc; void *data, *ctx; int uid; { ipftoken_t *token; ipfgeniter_t iter; int error; error = ipf_inobj(softc, data, NULL, &iter, IPFOBJ_GENITER); if (error != 0) return error; token = ipf_token_find(softc, iter.igi_type, uid, ctx); if (token != NULL) { token->ipt_subtype = iter.igi_type; error = ipf_geniter(softc, token, &iter); WRITE_ENTER(&softc->ipf_tokens); ipf_token_deref(softc, token); RWLOCK_EXIT(&softc->ipf_tokens); } else { IPFERROR(93); error = 0; } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_ipf_ioctl */ /* Returns: int - 0 = success, else error */ /* Parameters: softc(I)- pointer to soft context main structure */ /* data(I) - the token type to match */ /* cmd(I) - the ioctl command number */ /* mode(I) - mode flags for the ioctl */ /* uid(I) - uid owning the token */ /* ptr(I) - context pointer for the token */ /* */ /* This function handles all of the ioctl command that are actually isssued */ /* to the /dev/ipl device. */ /* ------------------------------------------------------------------------ */ int ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx) ipf_main_softc_t *softc; caddr_t data; ioctlcmd_t cmd; int mode, uid; void *ctx; { friostat_t fio; int error, tmp; ipfobj_t obj; SPL_INT(s); switch (cmd) { case SIOCFRENB : if (!(mode & FWRITE)) { IPFERROR(94); error = EPERM; } else { error = BCOPYIN(data, &tmp, sizeof(tmp)); if (error != 0) { IPFERROR(95); error = EFAULT; break; } WRITE_ENTER(&softc->ipf_global); if (tmp) { if (softc->ipf_running > 0) error = 0; else error = ipfattach(softc); if (error == 0) softc->ipf_running = 1; else (void) ipfdetach(softc); } else { if (softc->ipf_running == 1) error = ipfdetach(softc); else error = 0; if (error == 0) softc->ipf_running = -1; } RWLOCK_EXIT(&softc->ipf_global); } break; case SIOCIPFSET : if (!(mode & FWRITE)) { IPFERROR(96); error = EPERM; break; } /* FALLTHRU */ case SIOCIPFGETNEXT : case SIOCIPFGET : error = ipf_ipftune(softc, cmd, (void *)data); break; case SIOCSETFF : if (!(mode & FWRITE)) { IPFERROR(97); error = EPERM; } else { error = BCOPYIN(data, &softc->ipf_flags, sizeof(softc->ipf_flags)); if (error != 0) { IPFERROR(98); error = EFAULT; } } break; case SIOCGETFF : error = BCOPYOUT(&softc->ipf_flags, data, sizeof(softc->ipf_flags)); if (error != 0) { IPFERROR(99); error = EFAULT; } break; case SIOCFUNCL : error = ipf_resolvefunc(softc, (void *)data); break; case SIOCINAFR : case SIOCRMAFR : case SIOCADAFR : case SIOCZRLST : if (!(mode & FWRITE)) { IPFERROR(100); error = EPERM; } else { error = frrequest(softc, IPL_LOGIPF, cmd, (caddr_t)data, softc->ipf_active, 1); } break; case SIOCINIFR : case SIOCRMIFR : case SIOCADIFR : if (!(mode & FWRITE)) { IPFERROR(101); error = EPERM; } else { error = frrequest(softc, IPL_LOGIPF, cmd, (caddr_t)data, 1 - softc->ipf_active, 1); } break; case SIOCSWAPA : if (!(mode & FWRITE)) { IPFERROR(102); error = EPERM; } else { WRITE_ENTER(&softc->ipf_mutex); error = BCOPYOUT(&softc->ipf_active, data, sizeof(softc->ipf_active)); if (error != 0) { IPFERROR(103); error = EFAULT; } else { softc->ipf_active = 1 - softc->ipf_active; } RWLOCK_EXIT(&softc->ipf_mutex); } break; case SIOCGETFS : error = ipf_inobj(softc, (void *)data, &obj, &fio, IPFOBJ_IPFSTAT); if (error != 0) break; ipf_getstat(softc, &fio, obj.ipfo_rev); error = ipf_outobj(softc, (void *)data, &fio, IPFOBJ_IPFSTAT); break; case SIOCFRZST : if (!(mode & FWRITE)) { IPFERROR(104); error = EPERM; } else error = ipf_zerostats(softc, (caddr_t)data); break; case SIOCIPFFL : if (!(mode & FWRITE)) { IPFERROR(105); error = EPERM; } else { error = BCOPYIN(data, &tmp, sizeof(tmp)); if (!error) { tmp = ipf_flush(softc, IPL_LOGIPF, tmp); error = BCOPYOUT(&tmp, data, sizeof(tmp)); if (error != 0) { IPFERROR(106); error = EFAULT; } } else { IPFERROR(107); error = EFAULT; } } break; #ifdef USE_INET6 case SIOCIPFL6 : if (!(mode & FWRITE)) { IPFERROR(108); error = EPERM; } else { error = BCOPYIN(data, &tmp, sizeof(tmp)); if (!error) { tmp = ipf_flush(softc, IPL_LOGIPF, tmp); error = BCOPYOUT(&tmp, data, sizeof(tmp)); if (error != 0) { IPFERROR(109); error = EFAULT; } } else { IPFERROR(110); error = EFAULT; } } break; #endif case SIOCSTLCK : if (!(mode & FWRITE)) { IPFERROR(122); error = EPERM; } else { error = BCOPYIN(data, &tmp, sizeof(tmp)); if (error == 0) { ipf_state_setlock(softc->ipf_state_soft, tmp); ipf_nat_setlock(softc->ipf_nat_soft, tmp); ipf_frag_setlock(softc->ipf_frag_soft, tmp); ipf_auth_setlock(softc->ipf_auth_soft, tmp); } else { IPFERROR(111); error = EFAULT; } } break; #ifdef IPFILTER_LOG case SIOCIPFFB : if (!(mode & FWRITE)) { IPFERROR(112); error = EPERM; } else { tmp = ipf_log_clear(softc, IPL_LOGIPF); error = BCOPYOUT(&tmp, data, sizeof(tmp)); if (error) { IPFERROR(113); error = EFAULT; } } break; #endif /* IPFILTER_LOG */ case SIOCFRSYN : if (!(mode & FWRITE)) { IPFERROR(114); error = EPERM; } else { WRITE_ENTER(&softc->ipf_global); -#if (defined(MENTAT) && defined(_KERNEL)) && !defined(INSTANCES) +#if (SOLARIS && defined(_KERNEL)) && !defined(INSTANCES) error = ipfsync(); #else ipf_sync(softc, NULL); error = 0; #endif RWLOCK_EXIT(&softc->ipf_global); } break; case SIOCGFRST : error = ipf_outobj(softc, (void *)data, ipf_frag_stats(softc->ipf_frag_soft), IPFOBJ_FRAGSTAT); break; #ifdef IPFILTER_LOG case FIONREAD : tmp = ipf_log_bytesused(softc, IPL_LOGIPF); error = BCOPYOUT(&tmp, data, sizeof(tmp)); break; #endif case SIOCIPFITER : SPL_SCHED(s); error = ipf_frruleiter(softc, data, uid, ctx); SPL_X(s); break; case SIOCGENITER : SPL_SCHED(s); error = ipf_genericiter(softc, data, uid, ctx); SPL_X(s); break; case SIOCIPFDELTOK : error = BCOPYIN(data, &tmp, sizeof(tmp)); if (error == 0) { SPL_SCHED(s); error = ipf_token_del(softc, tmp, uid, ctx); SPL_X(s); } break; default : IPFERROR(115); error = EINVAL; break; } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_decaps */ /* Returns: int - -1 == decapsulation failed, else bit mask of */ /* flags indicating packet filtering decision. */ /* Parameters: fin(I) - pointer to packet information */ /* pass(I) - IP protocol version to match */ /* l5proto(I) - layer 5 protocol to decode UDP data as. */ /* */ /* This function is called for packets that are wrapt up in other packets, */ /* for example, an IP packet that is the entire data segment for another IP */ /* packet. If the basic constraints for this are satisfied, change the */ /* buffer to point to the start of the inner packet and start processing */ /* rules belonging to the head group this rule specifies. */ /* ------------------------------------------------------------------------ */ u_32_t ipf_decaps(fin, pass, l5proto) fr_info_t *fin; u_32_t pass; int l5proto; { fr_info_t fin2, *fino = NULL; int elen, hlen, nh; grehdr_t gre; ip_t *ip; mb_t *m; if ((fin->fin_flx & FI_COALESCE) == 0) if (ipf_coalesce(fin) == -1) goto cantdecaps; m = fin->fin_m; hlen = fin->fin_hlen; switch (fin->fin_p) { case IPPROTO_UDP : /* * In this case, the specific protocol being decapsulated * inside UDP frames comes from the rule. */ nh = fin->fin_fr->fr_icode; break; case IPPROTO_GRE : /* 47 */ bcopy(fin->fin_dp, (char *)&gre, sizeof(gre)); hlen += sizeof(grehdr_t); if (gre.gr_R|gre.gr_s) goto cantdecaps; if (gre.gr_C) hlen += 4; if (gre.gr_K) hlen += 4; if (gre.gr_S) hlen += 4; nh = IPPROTO_IP; /* * If the routing options flag is set, validate that it is * there and bounce over it. */ #if 0 /* This is really heavy weight and lots of room for error, */ /* so for now, put it off and get the simple stuff right. */ if (gre.gr_R) { u_char off, len, *s; u_short af; int end; end = 0; s = fin->fin_dp; s += hlen; aplen = fin->fin_plen - hlen; while (aplen > 3) { af = (s[0] << 8) | s[1]; off = s[2]; len = s[3]; aplen -= 4; s += 4; if (af == 0 && len == 0) { end = 1; break; } if (aplen < len) break; s += len; aplen -= len; } if (end != 1) goto cantdecaps; hlen = s - (u_char *)fin->fin_dp; } #endif break; #ifdef IPPROTO_IPIP case IPPROTO_IPIP : /* 4 */ #endif nh = IPPROTO_IP; break; default : /* Includes ESP, AH is special for IPv4 */ goto cantdecaps; } switch (nh) { case IPPROTO_IP : case IPPROTO_IPV6 : break; default : goto cantdecaps; } bcopy((char *)fin, (char *)&fin2, sizeof(fin2)); fino = fin; fin = &fin2; elen = hlen; -#if defined(MENTAT) && defined(_KERNEL) +#if SOLARIS && defined(_KERNEL) m->b_rptr += elen; #else m->m_data += elen; m->m_len -= elen; #endif fin->fin_plen -= elen; ip = (ip_t *)((char *)fin->fin_ip + elen); /* * Make sure we have at least enough data for the network layer * header. */ if (IP_V(ip) == 4) hlen = IP_HL(ip) << 2; #ifdef USE_INET6 else if (IP_V(ip) == 6) hlen = sizeof(ip6_t); #endif else goto cantdecaps2; if (fin->fin_plen < hlen) goto cantdecaps2; fin->fin_dp = (char *)ip + hlen; if (IP_V(ip) == 4) { /* * Perform IPv4 header checksum validation. */ if (ipf_cksum((u_short *)ip, hlen)) goto cantdecaps2; } if (ipf_makefrip(hlen, ip, fin) == -1) { cantdecaps2: if (m != NULL) { -#if defined(MENTAT) && defined(_KERNEL) +#if SOLARIS && defined(_KERNEL) m->b_rptr -= elen; #else m->m_data -= elen; m->m_len += elen; #endif } cantdecaps: DT1(frb_decapfrip, fr_info_t *, fin); pass &= ~FR_CMDMASK; pass |= FR_BLOCK|FR_QUICK; fin->fin_reason = FRB_DECAPFRIP; return -1; } pass = ipf_scanlist(fin, pass); /* * Copy the packet filter "result" fields out of the fr_info_t struct * that is local to the decapsulation processing and back into the * one we were called with. */ fino->fin_flx = fin->fin_flx; fino->fin_rev = fin->fin_rev; fino->fin_icode = fin->fin_icode; fino->fin_rule = fin->fin_rule; (void) strncpy(fino->fin_group, fin->fin_group, FR_GROUPLEN); fino->fin_fr = fin->fin_fr; fino->fin_error = fin->fin_error; fino->fin_mp = fin->fin_mp; fino->fin_m = fin->fin_m; m = fin->fin_m; if (m != NULL) { -#if defined(MENTAT) && defined(_KERNEL) +#if SOLARIS && defined(_KERNEL) m->b_rptr -= elen; #else m->m_data -= elen; m->m_len += elen; #endif } return pass; } /* ------------------------------------------------------------------------ */ /* Function: ipf_matcharray_load */ /* Returns: int - 0 = success, else error */ /* Parameters: softc(I) - pointer to soft context main structure */ /* data(I) - pointer to ioctl data */ /* objp(I) - ipfobj_t structure to load data into */ /* arrayptr(I) - pointer to location to store array pointer */ /* */ /* This function loads in a mathing array through the ipfobj_t struct that */ /* describes it. Sanity checking and array size limitations are enforced */ /* in this function to prevent userspace from trying to load in something */ /* that is insanely big. Once the size of the array is known, the memory */ /* required is malloc'd and returned through changing *arrayptr. The */ /* contents of the array are verified before returning. Only in the event */ /* of a successful call is the caller required to free up the malloc area. */ /* ------------------------------------------------------------------------ */ int ipf_matcharray_load(softc, data, objp, arrayptr) ipf_main_softc_t *softc; caddr_t data; ipfobj_t *objp; int **arrayptr; { int arraysize, *array, error; *arrayptr = NULL; error = BCOPYIN(data, objp, sizeof(*objp)); if (error != 0) { IPFERROR(116); return EFAULT; } if (objp->ipfo_type != IPFOBJ_IPFEXPR) { IPFERROR(117); return EINVAL; } if (((objp->ipfo_size & 3) != 0) || (objp->ipfo_size == 0) || (objp->ipfo_size > 1024)) { IPFERROR(118); return EINVAL; } arraysize = objp->ipfo_size * sizeof(*array); KMALLOCS(array, int *, arraysize); if (array == NULL) { IPFERROR(119); return ENOMEM; } error = COPYIN(objp->ipfo_ptr, array, arraysize); if (error != 0) { KFREES(array, arraysize); IPFERROR(120); return EFAULT; } if (ipf_matcharray_verify(array, arraysize) != 0) { KFREES(array, arraysize); IPFERROR(121); return EINVAL; } *arrayptr = array; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_matcharray_verify */ /* Returns: Nil */ /* Parameters: array(I) - pointer to matching array */ /* arraysize(I) - number of elements in the array */ /* */ /* Verify the contents of a matching array by stepping through each element */ /* in it. The actual commands in the array are not verified for */ /* correctness, only that all of the sizes are correctly within limits. */ /* ------------------------------------------------------------------------ */ int ipf_matcharray_verify(array, arraysize) int *array, arraysize; { int i, nelem, maxidx; ipfexp_t *e; nelem = arraysize / sizeof(*array); /* * Currently, it makes no sense to have an array less than 6 * elements long - the initial size at the from, a single operation * (minimum 4 in length) and a trailer, for a total of 6. */ if ((array[0] < 6) || (arraysize < 24) || (arraysize > 4096)) { return -1; } /* * Verify the size of data pointed to by array with how long * the array claims to be itself. */ if (array[0] * sizeof(*array) != arraysize) { return -1; } maxidx = nelem - 1; /* * The last opcode in this array should be an IPF_EXP_END. */ if (array[maxidx] != IPF_EXP_END) { return -1; } for (i = 1; i < maxidx; ) { e = (ipfexp_t *)(array + i); /* * The length of the bits to check must be at least 1 * (or else there is nothing to comapre with!) and it * cannot exceed the length of the data present. */ if ((e->ipfe_size < 1 ) || (e->ipfe_size + i > maxidx)) { return -1; } i += e->ipfe_size; } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_fr_matcharray */ /* Returns: int - 0 = match failed, else positive match */ /* Parameters: fin(I) - pointer to packet information */ /* array(I) - pointer to matching array */ /* */ /* This function is used to apply a matching array against a packet and */ /* return an indication of whether or not the packet successfully matches */ /* all of the commands in it. */ /* ------------------------------------------------------------------------ */ static int ipf_fr_matcharray(fin, array) fr_info_t *fin; int *array; { int i, n, *x, rv, p; ipfexp_t *e; rv = 0; n = array[0]; x = array + 1; for (; n > 0; x += 3 + x[3], rv = 0) { e = (ipfexp_t *)x; if (e->ipfe_cmd == IPF_EXP_END) break; n -= e->ipfe_size; /* * The upper 16 bits currently store the protocol value. * This is currently used with TCP and UDP port compares and * allows "tcp.port = 80" without requiring an explicit " "ip.pr = tcp" first. */ p = e->ipfe_cmd >> 16; if ((p != 0) && (p != fin->fin_p)) break; switch (e->ipfe_cmd) { case IPF_EXP_IP_PR : for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= (fin->fin_p == e->ipfe_arg0[i]); } break; case IPF_EXP_IP_SRCADDR : if (fin->fin_v != 4) break; for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= ((fin->fin_saddr & e->ipfe_arg0[i * 2 + 1]) == e->ipfe_arg0[i * 2]); } break; case IPF_EXP_IP_DSTADDR : if (fin->fin_v != 4) break; for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= ((fin->fin_daddr & e->ipfe_arg0[i * 2 + 1]) == e->ipfe_arg0[i * 2]); } break; case IPF_EXP_IP_ADDR : if (fin->fin_v != 4) break; for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= ((fin->fin_saddr & e->ipfe_arg0[i * 2 + 1]) == e->ipfe_arg0[i * 2]) || ((fin->fin_daddr & e->ipfe_arg0[i * 2 + 1]) == e->ipfe_arg0[i * 2]); } break; #ifdef USE_INET6 case IPF_EXP_IP6_SRCADDR : if (fin->fin_v != 6) break; for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= IP6_MASKEQ(&fin->fin_src6, &e->ipfe_arg0[i * 8 + 4], &e->ipfe_arg0[i * 8]); } break; case IPF_EXP_IP6_DSTADDR : if (fin->fin_v != 6) break; for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= IP6_MASKEQ(&fin->fin_dst6, &e->ipfe_arg0[i * 8 + 4], &e->ipfe_arg0[i * 8]); } break; case IPF_EXP_IP6_ADDR : if (fin->fin_v != 6) break; for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= IP6_MASKEQ(&fin->fin_src6, &e->ipfe_arg0[i * 8 + 4], &e->ipfe_arg0[i * 8]) || IP6_MASKEQ(&fin->fin_dst6, &e->ipfe_arg0[i * 8 + 4], &e->ipfe_arg0[i * 8]); } break; #endif case IPF_EXP_UDP_PORT : case IPF_EXP_TCP_PORT : for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= (fin->fin_sport == e->ipfe_arg0[i]) || (fin->fin_dport == e->ipfe_arg0[i]); } break; case IPF_EXP_UDP_SPORT : case IPF_EXP_TCP_SPORT : for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= (fin->fin_sport == e->ipfe_arg0[i]); } break; case IPF_EXP_UDP_DPORT : case IPF_EXP_TCP_DPORT : for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= (fin->fin_dport == e->ipfe_arg0[i]); } break; case IPF_EXP_TCP_FLAGS : for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= ((fin->fin_tcpf & e->ipfe_arg0[i * 2 + 1]) == e->ipfe_arg0[i * 2]); } break; } rv ^= e->ipfe_not; if (rv == 0) break; } return rv; } /* ------------------------------------------------------------------------ */ /* Function: ipf_queueflush */ /* Returns: int - number of entries flushed (0 = none) */ /* Parameters: softc(I) - pointer to soft context main structure */ /* deletefn(I) - function to call to delete entry */ /* ipfqs(I) - top of the list of ipf internal queues */ /* userqs(I) - top of the list of user defined timeouts */ /* */ /* This fucntion gets called when the state/NAT hash tables fill up and we */ /* need to try a bit harder to free up some space. The algorithm used here */ /* split into two parts but both halves have the same goal: to reduce the */ /* number of connections considered to be "active" to the low watermark. */ /* There are two steps in doing this: */ /* 1) Remove any TCP connections that are already considered to be "closed" */ /* but have not yet been removed from the state table. The two states */ /* TCPS_TIME_WAIT and TCPS_CLOSED are considered to be the perfect */ /* candidates for this style of removal. If freeing up entries in */ /* CLOSED or both CLOSED and TIME_WAIT brings us to the low watermark, */ /* we do not go on to step 2. */ /* */ /* 2) Look for the oldest entries on each timeout queue and free them if */ /* they are within the given window we are considering. Where the */ /* window starts and the steps taken to increase its size depend upon */ /* how long ipf has been running (ipf_ticks.) Anything modified in the */ /* last 30 seconds is not touched. */ /* touched */ /* die ipf_ticks 30*1.5 1800*1.5 | 43200*1.5 */ /* | | | | | | */ /* future <--+----------+--------+-----------+-----+-----+-----------> past */ /* now \_int=30s_/ \_int=1hr_/ \_int=12hr */ /* */ /* Points to note: */ /* - tqe_die is the time, in the future, when entries die. */ /* - tqe_die - ipf_ticks is how long left the connection has to live in ipf */ /* ticks. */ /* - tqe_touched is when the entry was last used by NAT/state */ /* - the closer tqe_touched is to ipf_ticks, the further tqe_die will be */ /* ipf_ticks any given timeout queue and vice versa. */ /* - both tqe_die and tqe_touched increase over time */ /* - timeout queues are sorted with the highest value of tqe_die at the */ /* bottom and therefore the smallest values of each are at the top */ /* - the pointer passed in as ipfqs should point to an array of timeout */ /* queues representing each of the TCP states */ /* */ /* We start by setting up a maximum range to scan for things to move of */ /* iend (newest) to istart (oldest) in chunks of "interval". If nothing is */ /* found in that range, "interval" is adjusted (so long as it isn't 30) and */ /* we start again with a new value for "iend" and "istart". This is */ /* continued until we either finish the scan of 30 second intervals or the */ /* low water mark is reached. */ /* ------------------------------------------------------------------------ */ int ipf_queueflush(softc, deletefn, ipfqs, userqs, activep, size, low) ipf_main_softc_t *softc; ipftq_delete_fn_t deletefn; ipftq_t *ipfqs, *userqs; u_int *activep; int size, low; { u_long interval, istart, iend; ipftq_t *ifq, *ifqnext; ipftqent_t *tqe, *tqn; int removed = 0; for (tqn = ipfqs[IPF_TCPS_CLOSED].ifq_head; ((tqe = tqn) != NULL); ) { tqn = tqe->tqe_next; if ((*deletefn)(softc, tqe->tqe_parent) == 0) removed++; } if ((*activep * 100 / size) > low) { for (tqn = ipfqs[IPF_TCPS_TIME_WAIT].ifq_head; ((tqe = tqn) != NULL); ) { tqn = tqe->tqe_next; if ((*deletefn)(softc, tqe->tqe_parent) == 0) removed++; } } if ((*activep * 100 / size) <= low) { return removed; } /* * NOTE: Use of "* 15 / 10" is required here because if "* 1.5" is * used then the operations are upgraded to floating point * and kernels don't like floating point... */ if (softc->ipf_ticks > IPF_TTLVAL(43200 * 15 / 10)) { istart = IPF_TTLVAL(86400 * 4); interval = IPF_TTLVAL(43200); } else if (softc->ipf_ticks > IPF_TTLVAL(1800 * 15 / 10)) { istart = IPF_TTLVAL(43200); interval = IPF_TTLVAL(1800); } else if (softc->ipf_ticks > IPF_TTLVAL(30 * 15 / 10)) { istart = IPF_TTLVAL(1800); interval = IPF_TTLVAL(30); } else { return 0; } if (istart > softc->ipf_ticks) { if (softc->ipf_ticks - interval < interval) istart = interval; else istart = (softc->ipf_ticks / interval) * interval; } iend = softc->ipf_ticks - interval; while ((*activep * 100 / size) > low) { u_long try; try = softc->ipf_ticks - istart; for (ifq = ipfqs; ifq != NULL; ifq = ifq->ifq_next) { for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) { if (try < tqe->tqe_touched) break; tqn = tqe->tqe_next; if ((*deletefn)(softc, tqe->tqe_parent) == 0) removed++; } } for (ifq = userqs; ifq != NULL; ifq = ifqnext) { ifqnext = ifq->ifq_next; for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) { if (try < tqe->tqe_touched) break; tqn = tqe->tqe_next; if ((*deletefn)(softc, tqe->tqe_parent) == 0) removed++; } } if (try >= iend) { if (interval == IPF_TTLVAL(43200)) { interval = IPF_TTLVAL(1800); } else if (interval == IPF_TTLVAL(1800)) { interval = IPF_TTLVAL(30); } else { break; } if (interval >= softc->ipf_ticks) break; iend = softc->ipf_ticks - interval; } istart -= interval; } return removed; } /* ------------------------------------------------------------------------ */ /* Function: ipf_deliverlocal */ /* Returns: int - 1 = local address, 0 = non-local address */ /* Parameters: softc(I) - pointer to soft context main structure */ /* ipversion(I) - IP protocol version (4 or 6) */ /* ifp(I) - network interface pointer */ /* ipaddr(I) - IPv4/6 destination address */ /* */ /* This fucntion is used to determine in the address "ipaddr" belongs to */ /* the network interface represented by ifp. */ /* ------------------------------------------------------------------------ */ int ipf_deliverlocal(softc, ipversion, ifp, ipaddr) ipf_main_softc_t *softc; int ipversion; void *ifp; i6addr_t *ipaddr; { i6addr_t addr; int islocal = 0; if (ipversion == 4) { if (ipf_ifpaddr(softc, 4, FRI_NORMAL, ifp, &addr, NULL) == 0) { if (addr.in4.s_addr == ipaddr->in4.s_addr) islocal = 1; } #ifdef USE_INET6 } else if (ipversion == 6) { if (ipf_ifpaddr(softc, 6, FRI_NORMAL, ifp, &addr, NULL) == 0) { if (IP6_EQ(&addr, ipaddr)) islocal = 1; } #endif } return islocal; } /* ------------------------------------------------------------------------ */ /* Function: ipf_settimeout */ /* Returns: int - 0 = success, -1 = failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* t(I) - pointer to tuneable array entry */ /* p(I) - pointer to values passed in to apply */ /* */ /* This function is called to set the timeout values for each distinct */ /* queue timeout that is available. When called, it calls into both the */ /* state and NAT code, telling them to update their timeout queues. */ /* ------------------------------------------------------------------------ */ static int ipf_settimeout(softc, t, p) struct ipf_main_softc_s *softc; ipftuneable_t *t; ipftuneval_t *p; { /* * ipf_interror should be set by the functions called here, not * by this function - it's just a middle man. */ if (ipf_state_settimeout(softc, t, p) == -1) return -1; if (ipf_nat_settimeout(softc, t, p) == -1) return -1; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_apply_timeout */ /* Returns: int - 0 = success, -1 = failure */ /* Parameters: head(I) - pointer to tuneable array entry */ /* seconds(I) - pointer to values passed in to apply */ /* */ /* This function applies a timeout of "seconds" to the timeout queue that */ /* is pointed to by "head". All entries on this list have an expiration */ /* set to be the current tick value of ipf plus the ttl. Given that this */ /* function should only be called when the delta is non-zero, the task is */ /* to walk the entire list and apply the change. The sort order will not */ /* change. The only catch is that this is O(n) across the list, so if the */ /* queue has lots of entries (10s of thousands or 100s of thousands), it */ /* could take a relatively long time to work through them all. */ /* ------------------------------------------------------------------------ */ void ipf_apply_timeout(head, seconds) ipftq_t *head; u_int seconds; { u_int oldtimeout, newtimeout; ipftqent_t *tqe; int delta; MUTEX_ENTER(&head->ifq_lock); oldtimeout = head->ifq_ttl; newtimeout = IPF_TTLVAL(seconds); delta = oldtimeout - newtimeout; head->ifq_ttl = newtimeout; for (tqe = head->ifq_head; tqe != NULL; tqe = tqe->tqe_next) { tqe->tqe_die += delta; } MUTEX_EXIT(&head->ifq_lock); } /* ------------------------------------------------------------------------ */ /* Function: ipf_settimeout_tcp */ /* Returns: int - 0 = successfully applied, -1 = failed */ /* Parameters: t(I) - pointer to tuneable to change */ /* p(I) - pointer to new timeout information */ /* tab(I) - pointer to table of TCP queues */ /* */ /* This function applies the new timeout (p) to the TCP tunable (t) and */ /* updates all of the entries on the relevant timeout queue by calling */ /* ipf_apply_timeout(). */ /* ------------------------------------------------------------------------ */ int ipf_settimeout_tcp(t, p, tab) ipftuneable_t *t; ipftuneval_t *p; ipftq_t *tab; { if (!strcmp(t->ipft_name, "tcp_idle_timeout") || !strcmp(t->ipft_name, "tcp_established")) { ipf_apply_timeout(&tab[IPF_TCPS_ESTABLISHED], p->ipftu_int); } else if (!strcmp(t->ipft_name, "tcp_close_wait")) { ipf_apply_timeout(&tab[IPF_TCPS_CLOSE_WAIT], p->ipftu_int); } else if (!strcmp(t->ipft_name, "tcp_last_ack")) { ipf_apply_timeout(&tab[IPF_TCPS_LAST_ACK], p->ipftu_int); } else if (!strcmp(t->ipft_name, "tcp_timeout")) { ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int); ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int); ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int); } else if (!strcmp(t->ipft_name, "tcp_listen")) { ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int); } else if (!strcmp(t->ipft_name, "tcp_half_established")) { ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int); } else if (!strcmp(t->ipft_name, "tcp_closing")) { ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int); } else if (!strcmp(t->ipft_name, "tcp_syn_received")) { ipf_apply_timeout(&tab[IPF_TCPS_SYN_RECEIVED], p->ipftu_int); } else if (!strcmp(t->ipft_name, "tcp_syn_sent")) { ipf_apply_timeout(&tab[IPF_TCPS_SYN_SENT], p->ipftu_int); } else if (!strcmp(t->ipft_name, "tcp_closed")) { ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int); } else if (!strcmp(t->ipft_name, "tcp_half_closed")) { ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int); } else if (!strcmp(t->ipft_name, "tcp_time_wait")) { ipf_apply_timeout(&tab[IPF_TCPS_TIME_WAIT], p->ipftu_int); } else { /* * ipf_interror isn't set here because it should be set * by whatever called this function. */ return -1; } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_main_soft_create */ /* Returns: NULL = failure, else success */ /* Parameters: arg(I) - pointer to soft context structure if already allocd */ /* */ /* Create the foundation soft context structure. In circumstances where it */ /* is not required to dynamically allocate the context, a pointer can be */ /* passed in (rather than NULL) to a structure to be initialised. */ /* The main thing of interest is that a number of locks are initialised */ /* here instead of in the where might be expected - in the relevant create */ /* function elsewhere. This is done because the current locking design has */ /* some areas where these locks are used outside of their module. */ /* Possibly the most important exercise that is done here is setting of all */ /* the timeout values, allowing them to be changed before init(). */ /* ------------------------------------------------------------------------ */ void * ipf_main_soft_create(arg) void *arg; { ipf_main_softc_t *softc; if (arg == NULL) { KMALLOC(softc, ipf_main_softc_t *); if (softc == NULL) return NULL; } else { softc = arg; } bzero((char *)softc, sizeof(*softc)); /* * This serves as a flag as to whether or not the softc should be * free'd when _destroy is called. */ softc->ipf_dynamic_softc = (arg == NULL) ? 1 : 0; softc->ipf_tuners = ipf_tune_array_copy(softc, sizeof(ipf_main_tuneables), ipf_main_tuneables); if (softc->ipf_tuners == NULL) { ipf_main_soft_destroy(softc); return NULL; } MUTEX_INIT(&softc->ipf_rw, "ipf rw mutex"); MUTEX_INIT(&softc->ipf_timeoutlock, "ipf timeout lock"); RWLOCK_INIT(&softc->ipf_global, "ipf filter load/unload mutex"); RWLOCK_INIT(&softc->ipf_mutex, "ipf filter rwlock"); RWLOCK_INIT(&softc->ipf_tokens, "ipf token rwlock"); RWLOCK_INIT(&softc->ipf_state, "ipf state rwlock"); RWLOCK_INIT(&softc->ipf_nat, "ipf IP NAT rwlock"); RWLOCK_INIT(&softc->ipf_poolrw, "ipf pool rwlock"); RWLOCK_INIT(&softc->ipf_frag, "ipf frag rwlock"); softc->ipf_token_head = NULL; softc->ipf_token_tail = &softc->ipf_token_head; softc->ipf_tcpidletimeout = FIVE_DAYS; softc->ipf_tcpclosewait = IPF_TTLVAL(2 * TCP_MSL); softc->ipf_tcplastack = IPF_TTLVAL(30); softc->ipf_tcptimewait = IPF_TTLVAL(2 * TCP_MSL); softc->ipf_tcptimeout = IPF_TTLVAL(2 * TCP_MSL); softc->ipf_tcpsynsent = IPF_TTLVAL(2 * TCP_MSL); softc->ipf_tcpsynrecv = IPF_TTLVAL(2 * TCP_MSL); softc->ipf_tcpclosed = IPF_TTLVAL(30); softc->ipf_tcphalfclosed = IPF_TTLVAL(2 * 3600); softc->ipf_udptimeout = IPF_TTLVAL(120); softc->ipf_udpacktimeout = IPF_TTLVAL(12); softc->ipf_icmptimeout = IPF_TTLVAL(60); softc->ipf_icmpacktimeout = IPF_TTLVAL(6); softc->ipf_iptimeout = IPF_TTLVAL(60); #if defined(IPFILTER_DEFAULT_BLOCK) softc->ipf_pass = FR_BLOCK|FR_NOMATCH; #else softc->ipf_pass = (IPF_DEFAULT_PASS)|FR_NOMATCH; #endif softc->ipf_minttl = 4; softc->ipf_icmpminfragmtu = 68; softc->ipf_flags = IPF_LOGGING; return softc; } /* ------------------------------------------------------------------------ */ /* Function: ipf_main_soft_init */ /* Returns: 0 = success, -1 = failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* A null-op function that exists as a placeholder so that the flow in */ /* other functions is obvious. */ /* ------------------------------------------------------------------------ */ /*ARGSUSED*/ int ipf_main_soft_init(softc) ipf_main_softc_t *softc; { return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_main_soft_destroy */ /* Returns: void */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* Undo everything that we did in ipf_main_soft_create. */ /* */ /* The most important check that needs to be made here is whether or not */ /* the structure was allocated by ipf_main_soft_create() by checking what */ /* value is stored in ipf_dynamic_main. */ /* ------------------------------------------------------------------------ */ /*ARGSUSED*/ void ipf_main_soft_destroy(softc) ipf_main_softc_t *softc; { RW_DESTROY(&softc->ipf_frag); RW_DESTROY(&softc->ipf_poolrw); RW_DESTROY(&softc->ipf_nat); RW_DESTROY(&softc->ipf_state); RW_DESTROY(&softc->ipf_tokens); RW_DESTROY(&softc->ipf_mutex); RW_DESTROY(&softc->ipf_global); MUTEX_DESTROY(&softc->ipf_timeoutlock); MUTEX_DESTROY(&softc->ipf_rw); if (softc->ipf_tuners != NULL) { KFREES(softc->ipf_tuners, sizeof(ipf_main_tuneables)); } if (softc->ipf_dynamic_softc == 1) { KFREE(softc); } } /* ------------------------------------------------------------------------ */ /* Function: ipf_main_soft_fini */ /* Returns: 0 = success, -1 = failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* Clean out the rules which have been added since _init was last called, */ /* the only dynamic part of the mainline. */ /* ------------------------------------------------------------------------ */ int ipf_main_soft_fini(softc) ipf_main_softc_t *softc; { (void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE|FR_INACTIVE); (void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE); (void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE|FR_INACTIVE); (void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE); return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_main_load */ /* Returns: 0 = success, -1 = failure */ /* Parameters: none */ /* */ /* Handle global initialisation that needs to be done for the base part of */ /* IPFilter. At present this just amounts to initialising some ICMP lookup */ /* arrays that get used by the state/NAT code. */ /* ------------------------------------------------------------------------ */ int ipf_main_load() { int i; /* fill icmp reply type table */ for (i = 0; i <= ICMP_MAXTYPE; i++) icmpreplytype4[i] = -1; icmpreplytype4[ICMP_ECHO] = ICMP_ECHOREPLY; icmpreplytype4[ICMP_TSTAMP] = ICMP_TSTAMPREPLY; icmpreplytype4[ICMP_IREQ] = ICMP_IREQREPLY; icmpreplytype4[ICMP_MASKREQ] = ICMP_MASKREPLY; #ifdef USE_INET6 /* fill icmp reply type table */ for (i = 0; i <= ICMP6_MAXTYPE; i++) icmpreplytype6[i] = -1; icmpreplytype6[ICMP6_ECHO_REQUEST] = ICMP6_ECHO_REPLY; icmpreplytype6[ICMP6_MEMBERSHIP_QUERY] = ICMP6_MEMBERSHIP_REPORT; icmpreplytype6[ICMP6_NI_QUERY] = ICMP6_NI_REPLY; icmpreplytype6[ND_ROUTER_SOLICIT] = ND_ROUTER_ADVERT; icmpreplytype6[ND_NEIGHBOR_SOLICIT] = ND_NEIGHBOR_ADVERT; #endif return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_main_unload */ /* Returns: 0 = success, -1 = failure */ /* Parameters: none */ /* */ /* A null-op function that exists as a placeholder so that the flow in */ /* other functions is obvious. */ /* ------------------------------------------------------------------------ */ int ipf_main_unload() { return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_load_all */ /* Returns: 0 = success, -1 = failure */ /* Parameters: none */ /* */ /* Work through all of the subsystems inside IPFilter and call the load */ /* function for each in an order that won't lead to a crash :) */ /* ------------------------------------------------------------------------ */ int ipf_load_all() { if (ipf_main_load() == -1) return -1; if (ipf_state_main_load() == -1) return -1; if (ipf_nat_main_load() == -1) return -1; if (ipf_frag_main_load() == -1) return -1; if (ipf_auth_main_load() == -1) return -1; if (ipf_proxy_main_load() == -1) return -1; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_unload_all */ /* Returns: 0 = success, -1 = failure */ /* Parameters: none */ /* */ /* Work through all of the subsystems inside IPFilter and call the unload */ /* function for each in an order that won't lead to a crash :) */ /* ------------------------------------------------------------------------ */ int ipf_unload_all() { if (ipf_proxy_main_unload() == -1) return -1; if (ipf_auth_main_unload() == -1) return -1; if (ipf_frag_main_unload() == -1) return -1; if (ipf_nat_main_unload() == -1) return -1; if (ipf_state_main_unload() == -1) return -1; if (ipf_main_unload() == -1) return -1; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_create_all */ /* Returns: NULL = failure, else success */ /* Parameters: arg(I) - pointer to soft context main structure */ /* */ /* Work through all of the subsystems inside IPFilter and call the create */ /* function for each in an order that won't lead to a crash :) */ /* ------------------------------------------------------------------------ */ ipf_main_softc_t * ipf_create_all(arg) void *arg; { ipf_main_softc_t *softc; softc = ipf_main_soft_create(arg); if (softc == NULL) return NULL; #ifdef IPFILTER_LOG softc->ipf_log_soft = ipf_log_soft_create(softc); if (softc->ipf_log_soft == NULL) { ipf_destroy_all(softc); return NULL; } #endif softc->ipf_lookup_soft = ipf_lookup_soft_create(softc); if (softc->ipf_lookup_soft == NULL) { ipf_destroy_all(softc); return NULL; } softc->ipf_sync_soft = ipf_sync_soft_create(softc); if (softc->ipf_sync_soft == NULL) { ipf_destroy_all(softc); return NULL; } softc->ipf_state_soft = ipf_state_soft_create(softc); if (softc->ipf_state_soft == NULL) { ipf_destroy_all(softc); return NULL; } softc->ipf_nat_soft = ipf_nat_soft_create(softc); if (softc->ipf_nat_soft == NULL) { ipf_destroy_all(softc); return NULL; } softc->ipf_frag_soft = ipf_frag_soft_create(softc); if (softc->ipf_frag_soft == NULL) { ipf_destroy_all(softc); return NULL; } softc->ipf_auth_soft = ipf_auth_soft_create(softc); if (softc->ipf_auth_soft == NULL) { ipf_destroy_all(softc); return NULL; } softc->ipf_proxy_soft = ipf_proxy_soft_create(softc); if (softc->ipf_proxy_soft == NULL) { ipf_destroy_all(softc); return NULL; } return softc; } /* ------------------------------------------------------------------------ */ /* Function: ipf_destroy_all */ /* Returns: void */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* Work through all of the subsystems inside IPFilter and call the destroy */ /* function for each in an order that won't lead to a crash :) */ /* */ /* Every one of these functions is expected to succeed, so there is no */ /* checking of return values. */ /* ------------------------------------------------------------------------ */ void ipf_destroy_all(softc) ipf_main_softc_t *softc; { if (softc->ipf_state_soft != NULL) { ipf_state_soft_destroy(softc, softc->ipf_state_soft); softc->ipf_state_soft = NULL; } if (softc->ipf_nat_soft != NULL) { ipf_nat_soft_destroy(softc, softc->ipf_nat_soft); softc->ipf_nat_soft = NULL; } if (softc->ipf_frag_soft != NULL) { ipf_frag_soft_destroy(softc, softc->ipf_frag_soft); softc->ipf_frag_soft = NULL; } if (softc->ipf_auth_soft != NULL) { ipf_auth_soft_destroy(softc, softc->ipf_auth_soft); softc->ipf_auth_soft = NULL; } if (softc->ipf_proxy_soft != NULL) { ipf_proxy_soft_destroy(softc, softc->ipf_proxy_soft); softc->ipf_proxy_soft = NULL; } if (softc->ipf_sync_soft != NULL) { ipf_sync_soft_destroy(softc, softc->ipf_sync_soft); softc->ipf_sync_soft = NULL; } if (softc->ipf_lookup_soft != NULL) { ipf_lookup_soft_destroy(softc, softc->ipf_lookup_soft); softc->ipf_lookup_soft = NULL; } #ifdef IPFILTER_LOG if (softc->ipf_log_soft != NULL) { ipf_log_soft_destroy(softc, softc->ipf_log_soft); softc->ipf_log_soft = NULL; } #endif ipf_main_soft_destroy(softc); } /* ------------------------------------------------------------------------ */ /* Function: ipf_init_all */ /* Returns: 0 = success, -1 = failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* Work through all of the subsystems inside IPFilter and call the init */ /* function for each in an order that won't lead to a crash :) */ /* ------------------------------------------------------------------------ */ int ipf_init_all(softc) ipf_main_softc_t *softc; { if (ipf_main_soft_init(softc) == -1) return -1; #ifdef IPFILTER_LOG if (ipf_log_soft_init(softc, softc->ipf_log_soft) == -1) return -1; #endif if (ipf_lookup_soft_init(softc, softc->ipf_lookup_soft) == -1) return -1; if (ipf_sync_soft_init(softc, softc->ipf_sync_soft) == -1) return -1; if (ipf_state_soft_init(softc, softc->ipf_state_soft) == -1) return -1; if (ipf_nat_soft_init(softc, softc->ipf_nat_soft) == -1) return -1; if (ipf_frag_soft_init(softc, softc->ipf_frag_soft) == -1) return -1; if (ipf_auth_soft_init(softc, softc->ipf_auth_soft) == -1) return -1; if (ipf_proxy_soft_init(softc, softc->ipf_proxy_soft) == -1) return -1; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_fini_all */ /* Returns: 0 = success, -1 = failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* Work through all of the subsystems inside IPFilter and call the fini */ /* function for each in an order that won't lead to a crash :) */ /* ------------------------------------------------------------------------ */ int ipf_fini_all(softc) ipf_main_softc_t *softc; { ipf_token_flush(softc); if (ipf_proxy_soft_fini(softc, softc->ipf_proxy_soft) == -1) return -1; if (ipf_auth_soft_fini(softc, softc->ipf_auth_soft) == -1) return -1; if (ipf_frag_soft_fini(softc, softc->ipf_frag_soft) == -1) return -1; if (ipf_nat_soft_fini(softc, softc->ipf_nat_soft) == -1) return -1; if (ipf_state_soft_fini(softc, softc->ipf_state_soft) == -1) return -1; if (ipf_sync_soft_fini(softc, softc->ipf_sync_soft) == -1) return -1; if (ipf_lookup_soft_fini(softc, softc->ipf_lookup_soft) == -1) return -1; #ifdef IPFILTER_LOG if (ipf_log_soft_fini(softc, softc->ipf_log_soft) == -1) return -1; #endif if (ipf_main_soft_fini(softc) == -1) return -1; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_rule_expire */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* At present this function exists just to support temporary addition of */ /* firewall rules. Both inactive and active lists are scanned for items to */ /* purge, as by rights, the expiration is computed as soon as the rule is */ /* loaded in. */ /* ------------------------------------------------------------------------ */ void ipf_rule_expire(softc) ipf_main_softc_t *softc; { frentry_t *fr; if ((softc->ipf_rule_explist[0] == NULL) && (softc->ipf_rule_explist[1] == NULL)) return; WRITE_ENTER(&softc->ipf_mutex); while ((fr = softc->ipf_rule_explist[0]) != NULL) { /* * Because the list is kept sorted on insertion, the fist * one that dies in the future means no more work to do. */ if (fr->fr_die > softc->ipf_ticks) break; ipf_rule_delete(softc, fr, IPL_LOGIPF, 0); } while ((fr = softc->ipf_rule_explist[1]) != NULL) { /* * Because the list is kept sorted on insertion, the fist * one that dies in the future means no more work to do. */ if (fr->fr_die > softc->ipf_ticks) break; ipf_rule_delete(softc, fr, IPL_LOGIPF, 1); } RWLOCK_EXIT(&softc->ipf_mutex); } static int ipf_ht_node_cmp(struct host_node_s *, struct host_node_s *); static void ipf_ht_node_make_key(host_track_t *, host_node_t *, int, i6addr_t *); host_node_t RBI_ZERO(ipf_rb); RBI_CODE(ipf_rb, host_node_t, hn_entry, ipf_ht_node_cmp) /* ------------------------------------------------------------------------ */ /* Function: ipf_ht_node_cmp */ /* Returns: int - 0 == nodes are the same, .. */ /* Parameters: k1(I) - pointer to first key to compare */ /* k2(I) - pointer to second key to compare */ /* */ /* The "key" for the node is a combination of two fields: the address */ /* family and the address itself. */ /* */ /* Because we're not actually interpreting the address data, it isn't */ /* necessary to convert them to/from network/host byte order. The mask is */ /* just used to remove bits that aren't significant - it doesn't matter */ /* where they are, as long as they're always in the same place. */ /* */ /* As with IP6_EQ, comparing IPv6 addresses starts at the bottom because */ /* this is where individual ones will differ the most - but not true for */ /* for /48's, etc. */ /* ------------------------------------------------------------------------ */ static int ipf_ht_node_cmp(k1, k2) struct host_node_s *k1, *k2; { int i; i = (k2->hn_addr.adf_family - k1->hn_addr.adf_family); if (i != 0) return i; if (k1->hn_addr.adf_family == AF_INET) return (k2->hn_addr.adf_addr.in4.s_addr - k1->hn_addr.adf_addr.in4.s_addr); i = k2->hn_addr.adf_addr.i6[3] - k1->hn_addr.adf_addr.i6[3]; if (i != 0) return i; i = k2->hn_addr.adf_addr.i6[2] - k1->hn_addr.adf_addr.i6[2]; if (i != 0) return i; i = k2->hn_addr.adf_addr.i6[1] - k1->hn_addr.adf_addr.i6[1]; if (i != 0) return i; i = k2->hn_addr.adf_addr.i6[0] - k1->hn_addr.adf_addr.i6[0]; return i; } /* ------------------------------------------------------------------------ */ /* Function: ipf_ht_node_make_key */ /* Returns: Nil */ /* parameters: htp(I) - pointer to address tracking structure */ /* key(I) - where to store masked address for lookup */ /* family(I) - protocol family of address */ /* addr(I) - pointer to network address */ /* */ /* Using the "netmask" (number of bits) stored parent host tracking struct, */ /* copy the address passed in into the key structure whilst masking out the */ /* bits that we don't want. */ /* */ /* Because the parser will set ht_netmask to 128 if there is no protocol */ /* specified (the parser doesn't know if it should be a v4 or v6 rule), we */ /* have to be wary of that and not allow 32-128 to happen. */ /* ------------------------------------------------------------------------ */ static void ipf_ht_node_make_key(htp, key, family, addr) host_track_t *htp; host_node_t *key; int family; i6addr_t *addr; { key->hn_addr.adf_family = family; if (family == AF_INET) { u_32_t mask; int bits; key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in4); bits = htp->ht_netmask; if (bits >= 32) { mask = 0xffffffff; } else { mask = htonl(0xffffffff << (32 - bits)); } key->hn_addr.adf_addr.in4.s_addr = addr->in4.s_addr & mask; #ifdef USE_INET6 } else { int bits = htp->ht_netmask; key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in6); if (bits > 96) { key->hn_addr.adf_addr.i6[3] = addr->i6[3] & htonl(0xffffffff << (128 - bits)); key->hn_addr.adf_addr.i6[2] = addr->i6[2]; key->hn_addr.adf_addr.i6[1] = addr->i6[2]; key->hn_addr.adf_addr.i6[0] = addr->i6[2]; } else if (bits > 64) { key->hn_addr.adf_addr.i6[3] = 0; key->hn_addr.adf_addr.i6[2] = addr->i6[2] & htonl(0xffffffff << (96 - bits)); key->hn_addr.adf_addr.i6[1] = addr->i6[1]; key->hn_addr.adf_addr.i6[0] = addr->i6[0]; } else if (bits > 32) { key->hn_addr.adf_addr.i6[3] = 0; key->hn_addr.adf_addr.i6[2] = 0; key->hn_addr.adf_addr.i6[1] = addr->i6[1] & htonl(0xffffffff << (64 - bits)); key->hn_addr.adf_addr.i6[0] = addr->i6[0]; } else { key->hn_addr.adf_addr.i6[3] = 0; key->hn_addr.adf_addr.i6[2] = 0; key->hn_addr.adf_addr.i6[1] = 0; key->hn_addr.adf_addr.i6[0] = addr->i6[0] & htonl(0xffffffff << (32 - bits)); } #endif } } /* ------------------------------------------------------------------------ */ /* Function: ipf_ht_node_add */ /* Returns: int - 0 == success, -1 == failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* htp(I) - pointer to address tracking structure */ /* family(I) - protocol family of address */ /* addr(I) - pointer to network address */ /* */ /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS */ /* ipf_ht_node_del FROM RUNNING CONCURRENTLY ON THE SAME htp. */ /* */ /* After preparing the key with the address information to find, look in */ /* the red-black tree to see if the address is known. A successful call to */ /* this function can mean one of two things: a new node was added to the */ /* tree or a matching node exists and we're able to bump up its activity. */ /* ------------------------------------------------------------------------ */ int ipf_ht_node_add(softc, htp, family, addr) ipf_main_softc_t *softc; host_track_t *htp; int family; i6addr_t *addr; { host_node_t *h; host_node_t k; ipf_ht_node_make_key(htp, &k, family, addr); h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k); if (h == NULL) { if (htp->ht_cur_nodes >= htp->ht_max_nodes) return -1; KMALLOC(h, host_node_t *); if (h == NULL) { DT(ipf_rb_no_mem); LBUMP(ipf_rb_no_mem); return -1; } /* * If there was a macro to initialise the RB node then that * would get used here, but there isn't... */ bzero((char *)h, sizeof(*h)); h->hn_addr = k.hn_addr; h->hn_addr.adf_family = k.hn_addr.adf_family; RBI_INSERT(ipf_rb, &htp->ht_root, h); htp->ht_cur_nodes++; } else { if ((htp->ht_max_per_node != 0) && (h->hn_active >= htp->ht_max_per_node)) { DT(ipf_rb_node_max); LBUMP(ipf_rb_node_max); return -1; } } h->hn_active++; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_ht_node_del */ /* Returns: int - 0 == success, -1 == failure */ /* parameters: htp(I) - pointer to address tracking structure */ /* family(I) - protocol family of address */ /* addr(I) - pointer to network address */ /* */ /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS */ /* ipf_ht_node_add FROM RUNNING CONCURRENTLY ON THE SAME htp. */ /* */ /* Try and find the address passed in amongst the leavese on this tree to */ /* be friend. If found then drop the active account for that node drops by */ /* one. If that count reaches 0, it is time to free it all up. */ /* ------------------------------------------------------------------------ */ int ipf_ht_node_del(htp, family, addr) host_track_t *htp; int family; i6addr_t *addr; { host_node_t *h; host_node_t k; ipf_ht_node_make_key(htp, &k, family, addr); h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k); if (h == NULL) { return -1; } else { h->hn_active--; if (h->hn_active == 0) { (void) RBI_DELETE(ipf_rb, &htp->ht_root, h); htp->ht_cur_nodes--; KFREE(h); } } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_rb_ht_init */ /* Returns: Nil */ /* Parameters: head(I) - pointer to host tracking structure */ /* */ /* Initialise the host tracking structure to be ready for use above. */ /* ------------------------------------------------------------------------ */ void ipf_rb_ht_init(head) host_track_t *head; { RBI_INIT(ipf_rb, &head->ht_root); } /* ------------------------------------------------------------------------ */ /* Function: ipf_rb_ht_freenode */ /* Returns: Nil */ /* Parameters: head(I) - pointer to host tracking structure */ /* arg(I) - additional argument from walk caller */ /* */ /* Free an actual host_node_t structure. */ /* ------------------------------------------------------------------------ */ void ipf_rb_ht_freenode(node, arg) host_node_t *node; void *arg; { KFREE(node); } /* ------------------------------------------------------------------------ */ /* Function: ipf_rb_ht_flush */ /* Returns: Nil */ /* Parameters: head(I) - pointer to host tracking structure */ /* */ /* Remove all of the nodes in the tree tracking hosts by calling a walker */ /* and free'ing each one. */ /* ------------------------------------------------------------------------ */ void ipf_rb_ht_flush(head) host_track_t *head; { RBI_WALK(ipf_rb, &head->ht_root, ipf_rb_ht_freenode, NULL); } /* ------------------------------------------------------------------------ */ /* Function: ipf_slowtimer */ /* Returns: Nil */ /* Parameters: ptr(I) - pointer to main ipf soft context structure */ /* */ /* Slowly expire held state for fragments. Timeouts are set * in */ /* expectation of this being called twice per second. */ /* ------------------------------------------------------------------------ */ void ipf_slowtimer(softc) ipf_main_softc_t *softc; { ipf_token_expire(softc); ipf_frag_expire(softc); ipf_state_expire(softc); ipf_nat_expire(softc); ipf_auth_expire(softc); ipf_lookup_expire(softc); ipf_rule_expire(softc); ipf_sync_expire(softc); softc->ipf_ticks++; } /* ------------------------------------------------------------------------ */ /* Function: ipf_inet_mask_add */ /* Returns: Nil */ /* Parameters: bits(I) - pointer to nat context information */ /* mtab(I) - pointer to mask hash table structure */ /* */ /* When called, bits represents the mask of a new NAT rule that has just */ /* been added. This function inserts a bitmask into the array of masks to */ /* search when searching for a matching NAT rule for a packet. */ /* Prevention of duplicate masks is achieved by checking the use count for */ /* a given netmask. */ /* ------------------------------------------------------------------------ */ void ipf_inet_mask_add(bits, mtab) int bits; ipf_v4_masktab_t *mtab; { u_32_t mask; int i, j; mtab->imt4_masks[bits]++; if (mtab->imt4_masks[bits] > 1) return; if (bits == 0) mask = 0; else mask = 0xffffffff << (32 - bits); for (i = 0; i < 33; i++) { if (ntohl(mtab->imt4_active[i]) < mask) { for (j = 32; j > i; j--) mtab->imt4_active[j] = mtab->imt4_active[j - 1]; mtab->imt4_active[i] = htonl(mask); break; } } mtab->imt4_max++; } /* ------------------------------------------------------------------------ */ /* Function: ipf_inet_mask_del */ /* Returns: Nil */ /* Parameters: bits(I) - number of bits set in the netmask */ /* mtab(I) - pointer to mask hash table structure */ /* */ /* Remove the 32bit bitmask represented by "bits" from the collection of */ /* netmasks stored inside of mtab. */ /* ------------------------------------------------------------------------ */ void ipf_inet_mask_del(bits, mtab) int bits; ipf_v4_masktab_t *mtab; { u_32_t mask; int i, j; mtab->imt4_masks[bits]--; if (mtab->imt4_masks[bits] > 0) return; mask = htonl(0xffffffff << (32 - bits)); for (i = 0; i < 33; i++) { if (mtab->imt4_active[i] == mask) { for (j = i + 1; j < 33; j++) mtab->imt4_active[j - 1] = mtab->imt4_active[j]; break; } } mtab->imt4_max--; ASSERT(mtab->imt4_max >= 0); } #ifdef USE_INET6 /* ------------------------------------------------------------------------ */ /* Function: ipf_inet6_mask_add */ /* Returns: Nil */ /* Parameters: bits(I) - number of bits set in mask */ /* mask(I) - pointer to mask to add */ /* mtab(I) - pointer to mask hash table structure */ /* */ /* When called, bitcount represents the mask of a IPv6 NAT map rule that */ /* has just been added. This function inserts a bitmask into the array of */ /* masks to search when searching for a matching NAT rule for a packet. */ /* Prevention of duplicate masks is achieved by checking the use count for */ /* a given netmask. */ /* ------------------------------------------------------------------------ */ void ipf_inet6_mask_add(bits, mask, mtab) int bits; i6addr_t *mask; ipf_v6_masktab_t *mtab; { i6addr_t zero; int i, j; mtab->imt6_masks[bits]++; if (mtab->imt6_masks[bits] > 1) return; if (bits == 0) { mask = &zero; zero.i6[0] = 0; zero.i6[1] = 0; zero.i6[2] = 0; zero.i6[3] = 0; } for (i = 0; i < 129; i++) { if (IP6_LT(&mtab->imt6_active[i], mask)) { for (j = 128; j > i; j--) mtab->imt6_active[j] = mtab->imt6_active[j - 1]; mtab->imt6_active[i] = *mask; break; } } mtab->imt6_max++; } /* ------------------------------------------------------------------------ */ /* Function: ipf_inet6_mask_del */ /* Returns: Nil */ /* Parameters: bits(I) - number of bits set in mask */ /* mask(I) - pointer to mask to remove */ /* mtab(I) - pointer to mask hash table structure */ /* */ /* Remove the 128bit bitmask represented by "bits" from the collection of */ /* netmasks stored inside of mtab. */ /* ------------------------------------------------------------------------ */ void ipf_inet6_mask_del(bits, mask, mtab) int bits; i6addr_t *mask; ipf_v6_masktab_t *mtab; { i6addr_t zero; int i, j; mtab->imt6_masks[bits]--; if (mtab->imt6_masks[bits] > 0) return; if (bits == 0) mask = &zero; zero.i6[0] = 0; zero.i6[1] = 0; zero.i6[2] = 0; zero.i6[3] = 0; for (i = 0; i < 129; i++) { if (IP6_EQ(&mtab->imt6_active[i], mask)) { for (j = i + 1; j < 129; j++) { mtab->imt6_active[j - 1] = mtab->imt6_active[j]; if (IP6_EQ(&mtab->imt6_active[j - 1], &zero)) break; } break; } } mtab->imt6_max--; ASSERT(mtab->imt6_max >= 0); } #endif diff --git a/sys/contrib/ipfilter/netinet/ip_auth.c b/sys/contrib/ipfilter/netinet/ip_auth.c index 4864a8128494..c40bb1b435f2 100644 --- a/sys/contrib/ipfilter/netinet/ip_auth.c +++ b/sys/contrib/ipfilter/netinet/ip_auth.c @@ -1,1246 +1,1246 @@ /* $FreeBSD$ */ /* * Copyright (C) 2012 by Darren Reed. * * See the IPFILTER.LICENCE file for details on licencing. */ #if defined(KERNEL) || defined(_KERNEL) # undef KERNEL # undef _KERNEL # define KERNEL 1 # define _KERNEL 1 #endif #include #include #include #include #include #if !defined(_KERNEL) # include # include # ifdef _STDC_C99 # include # endif # include # define _KERNEL # include # undef _KERNEL #endif #if defined(_KERNEL) && defined(__FreeBSD_version) # include # include #else # include #endif # include #include #if defined(_KERNEL) # include # if !defined(__SVR4) # include # endif #endif #if defined(__SVR4) # include # include # ifdef _KERNEL # include # endif # include # include #endif #if defined(__FreeBSD_version) # include #endif #if defined(__NetBSD__) # include #endif #if defined(_KERNEL) && defined(__NetBSD__) && (__NetBSD_Version__ >= 104000000) # include #endif #if defined(__NetBSD_Version__) && (__NetBSD_Version__ >= 400000) && \ !defined(_KERNEL) # include #endif #include #ifdef sun # include #endif #include #include #include # include #if !defined(_KERNEL) # define KERNEL # define _KERNEL # define NOT_KERNEL #endif #ifdef NOT_KERNEL # undef _KERNEL # undef KERNEL #endif #include #if defined(__FreeBSD_version) # include # define IF_QFULL _IF_QFULL # define IF_DROP _IF_DROP #endif #include #include #include #include #include "netinet/ip_compat.h" #include #include "netinet/ip_fil.h" #include "netinet/ip_auth.h" -#if !defined(MENTAT) +#if !SOLARIS # include # ifdef __FreeBSD__ # include # endif #endif #if defined(__FreeBSD_version) # include # if defined(_KERNEL) && !defined(IPFILTER_LKM) # include # include # endif #endif /* END OF INCLUDES */ #if !defined(lint) static const char rcsid[] = "@(#)$FreeBSD$"; /* static const char rcsid[] = "@(#)$Id: ip_auth.c,v 2.73.2.24 2007/09/09 11:32:04 darrenr Exp $"; */ #endif static void ipf_auth_deref(frauthent_t **); static void ipf_auth_deref_unlocked(ipf_auth_softc_t *, frauthent_t **); static int ipf_auth_geniter(ipf_main_softc_t *, ipftoken_t *, ipfgeniter_t *, ipfobj_t *); static int ipf_auth_reply(ipf_main_softc_t *, ipf_auth_softc_t *, char *); static int ipf_auth_wait(ipf_main_softc_t *, ipf_auth_softc_t *, char *); static int ipf_auth_flush(void *); /* ------------------------------------------------------------------------ */ /* Function: ipf_auth_main_load */ /* Returns: int - 0 == success, else error */ /* Parameters: None */ /* */ /* A null-op function that exists as a placeholder so that the flow in */ /* other functions is obvious. */ /* ------------------------------------------------------------------------ */ int ipf_auth_main_load() { return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_auth_main_unload */ /* Returns: int - 0 == success, else error */ /* Parameters: None */ /* */ /* A null-op function that exists as a placeholder so that the flow in */ /* other functions is obvious. */ /* ------------------------------------------------------------------------ */ int ipf_auth_main_unload() { return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_auth_soft_create */ /* Returns: int - NULL = failure, else success */ /* Parameters: softc(I) - pointer to soft context data */ /* */ /* Create a structre to store all of the run-time data for packet auth in */ /* and initialise some fields to their defaults. */ /* ------------------------------------------------------------------------ */ void * ipf_auth_soft_create(softc) ipf_main_softc_t *softc; { ipf_auth_softc_t *softa; KMALLOC(softa, ipf_auth_softc_t *); if (softa == NULL) return NULL; bzero((char *)softa, sizeof(*softa)); softa->ipf_auth_size = FR_NUMAUTH; softa->ipf_auth_defaultage = 600; RWLOCK_INIT(&softa->ipf_authlk, "ipf IP User-Auth rwlock"); MUTEX_INIT(&softa->ipf_auth_mx, "ipf auth log mutex"); #if SOLARIS && defined(_KERNEL) cv_init(&softa->ipf_auth_wait, "ipf auth condvar", CV_DRIVER, NULL); #endif return softa; } /* ------------------------------------------------------------------------ */ /* Function: ipf_auth_soft_init */ /* Returns: int - 0 == success, else error */ /* Parameters: softc(I) - pointer to soft context data */ /* arg(I) - opaque pointer to auth context data */ /* */ /* Allocate memory and initialise data structures used in handling auth */ /* rules. */ /* ------------------------------------------------------------------------ */ int ipf_auth_soft_init(softc, arg) ipf_main_softc_t *softc; void *arg; { ipf_auth_softc_t *softa = arg; KMALLOCS(softa->ipf_auth, frauth_t *, softa->ipf_auth_size * sizeof(*softa->ipf_auth)); if (softa->ipf_auth == NULL) return -1; bzero((char *)softa->ipf_auth, softa->ipf_auth_size * sizeof(*softa->ipf_auth)); KMALLOCS(softa->ipf_auth_pkts, mb_t **, softa->ipf_auth_size * sizeof(*softa->ipf_auth_pkts)); if (softa->ipf_auth_pkts == NULL) return -2; bzero((char *)softa->ipf_auth_pkts, softa->ipf_auth_size * sizeof(*softa->ipf_auth_pkts)); return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_auth_soft_fini */ /* Returns: int - 0 == success, else error */ /* Parameters: softc(I) - pointer to soft context data */ /* arg(I) - opaque pointer to auth context data */ /* */ /* Free all network buffer memory used to keep saved packets that have been */ /* connectedd to the soft soft context structure *but* do not free that: it */ /* is free'd by _destroy(). */ /* ------------------------------------------------------------------------ */ int ipf_auth_soft_fini(softc, arg) ipf_main_softc_t *softc; void *arg; { ipf_auth_softc_t *softa = arg; frauthent_t *fae, **faep; frentry_t *fr, **frp; mb_t *m; int i; if (softa->ipf_auth != NULL) { KFREES(softa->ipf_auth, softa->ipf_auth_size * sizeof(*softa->ipf_auth)); softa->ipf_auth = NULL; } if (softa->ipf_auth_pkts != NULL) { for (i = 0; i < softa->ipf_auth_size; i++) { m = softa->ipf_auth_pkts[i]; if (m != NULL) { FREE_MB_T(m); softa->ipf_auth_pkts[i] = NULL; } } KFREES(softa->ipf_auth_pkts, softa->ipf_auth_size * sizeof(*softa->ipf_auth_pkts)); softa->ipf_auth_pkts = NULL; } faep = &softa->ipf_auth_entries; while ((fae = *faep) != NULL) { *faep = fae->fae_next; KFREE(fae); } softa->ipf_auth_ip = NULL; if (softa->ipf_auth_rules != NULL) { for (frp = &softa->ipf_auth_rules; ((fr = *frp) != NULL); ) { if (fr->fr_ref == 1) { *frp = fr->fr_next; MUTEX_DESTROY(&fr->fr_lock); KFREE(fr); } else frp = &fr->fr_next; } } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_auth_soft_destroy */ /* Returns: void */ /* Parameters: softc(I) - pointer to soft context data */ /* arg(I) - opaque pointer to auth context data */ /* */ /* Undo what was done in _create() - i.e. free the soft context data. */ /* ------------------------------------------------------------------------ */ void ipf_auth_soft_destroy(softc, arg) ipf_main_softc_t *softc; void *arg; { ipf_auth_softc_t *softa = arg; #if SOLARIS && defined(_KERNEL) cv_destroy(&softa->ipf_auth_wait); #endif MUTEX_DESTROY(&softa->ipf_auth_mx); RW_DESTROY(&softa->ipf_authlk); KFREE(softa); } /* ------------------------------------------------------------------------ */ /* Function: ipf_auth_setlock */ /* Returns: void */ /* Paramters: arg(I) - pointer to soft context data */ /* tmp(I) - value to assign to auth lock */ /* */ /* ------------------------------------------------------------------------ */ void ipf_auth_setlock(arg, tmp) void *arg; int tmp; { ipf_auth_softc_t *softa = arg; softa->ipf_auth_lock = tmp; } /* ------------------------------------------------------------------------ */ /* Function: ipf_auth_check */ /* Returns: frentry_t* - pointer to ipf rule if match found, else NULL */ /* Parameters: fin(I) - pointer to ipftoken structure */ /* passp(I) - pointer to ipfgeniter structure */ /* */ /* Check if a packet has authorization. If the packet is found to match an */ /* authorization result and that would result in a feedback loop (i.e. it */ /* will end up returning FR_AUTH) then return FR_BLOCK instead. */ /* ------------------------------------------------------------------------ */ frentry_t * ipf_auth_check(fin, passp) fr_info_t *fin; u_32_t *passp; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_auth_softc_t *softa = softc->ipf_auth_soft; frentry_t *fr; frauth_t *fra; u_32_t pass; u_short id; ip_t *ip; int i; if (softa->ipf_auth_lock || !softa->ipf_auth_used) return NULL; ip = fin->fin_ip; id = ip->ip_id; READ_ENTER(&softa->ipf_authlk); for (i = softa->ipf_auth_start; i != softa->ipf_auth_end; ) { /* * index becomes -2 only after an SIOCAUTHW. Check this in * case the same packet gets sent again and it hasn't yet been * auth'd. */ fra = softa->ipf_auth + i; if ((fra->fra_index == -2) && (id == fra->fra_info.fin_id) && !bcmp((char *)fin, (char *)&fra->fra_info, FI_CSIZE)) { /* * Avoid feedback loop. */ if (!(pass = fra->fra_pass) || (FR_ISAUTH(pass))) { pass = FR_BLOCK; fin->fin_reason = FRB_AUTHFEEDBACK; } /* * Create a dummy rule for the stateful checking to * use and return. Zero out any values we don't * trust from userland! */ if ((pass & FR_KEEPSTATE) || ((pass & FR_KEEPFRAG) && (fin->fin_flx & FI_FRAG))) { KMALLOC(fr, frentry_t *); if (fr) { bcopy((char *)fra->fra_info.fin_fr, (char *)fr, sizeof(*fr)); fr->fr_grp = NULL; fr->fr_ifa = fin->fin_ifp; fr->fr_func = NULL; fr->fr_ref = 1; fr->fr_flags = pass; fr->fr_ifas[1] = NULL; fr->fr_ifas[2] = NULL; fr->fr_ifas[3] = NULL; MUTEX_INIT(&fr->fr_lock, "ipf auth rule"); } } else fr = fra->fra_info.fin_fr; fin->fin_fr = fr; fin->fin_flx |= fra->fra_flx; RWLOCK_EXIT(&softa->ipf_authlk); WRITE_ENTER(&softa->ipf_authlk); /* * ipf_auth_rules is populated with the rules malloc'd * above and only those. */ if ((fr != NULL) && (fr != fra->fra_info.fin_fr)) { fr->fr_next = softa->ipf_auth_rules; softa->ipf_auth_rules = fr; } softa->ipf_auth_stats.fas_hits++; fra->fra_index = -1; softa->ipf_auth_used--; softa->ipf_auth_replies--; if (i == softa->ipf_auth_start) { while (fra->fra_index == -1) { i++; fra++; if (i == softa->ipf_auth_size) { i = 0; fra = softa->ipf_auth; } softa->ipf_auth_start = i; if (i == softa->ipf_auth_end) break; } if (softa->ipf_auth_start == softa->ipf_auth_end) { softa->ipf_auth_next = 0; softa->ipf_auth_start = 0; softa->ipf_auth_end = 0; } } RWLOCK_EXIT(&softa->ipf_authlk); if (passp != NULL) *passp = pass; softa->ipf_auth_stats.fas_hits++; return fr; } i++; if (i == softa->ipf_auth_size) i = 0; } RWLOCK_EXIT(&softa->ipf_authlk); softa->ipf_auth_stats.fas_miss++; return NULL; } /* ------------------------------------------------------------------------ */ /* Function: ipf_auth_new */ /* Returns: int - 1 == success, 0 = did not put packet on auth queue */ /* Parameters: m(I) - pointer to mb_t with packet in it */ /* fin(I) - pointer to packet information */ /* */ /* Check if we have room in the auth array to hold details for another */ /* packet. If we do, store it and wake up any user programs which are */ /* waiting to hear about these events. */ /* ------------------------------------------------------------------------ */ int ipf_auth_new(m, fin) mb_t *m; fr_info_t *fin; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_auth_softc_t *softa = softc->ipf_auth_soft; -#if defined(_KERNEL) && defined(MENTAT) +#if defined(_KERNEL) && SOLARIS qpktinfo_t *qpi = fin->fin_qpi; #endif frauth_t *fra; #if !defined(sparc) && !defined(m68k) ip_t *ip; #endif int i; if (softa->ipf_auth_lock) return 0; WRITE_ENTER(&softa->ipf_authlk); if (((softa->ipf_auth_end + 1) % softa->ipf_auth_size) == softa->ipf_auth_start) { softa->ipf_auth_stats.fas_nospace++; RWLOCK_EXIT(&softa->ipf_authlk); return 0; } softa->ipf_auth_stats.fas_added++; softa->ipf_auth_used++; i = softa->ipf_auth_end++; if (softa->ipf_auth_end == softa->ipf_auth_size) softa->ipf_auth_end = 0; fra = softa->ipf_auth + i; fra->fra_index = i; if (fin->fin_fr != NULL) fra->fra_pass = fin->fin_fr->fr_flags; else fra->fra_pass = 0; fra->fra_age = softa->ipf_auth_defaultage; bcopy((char *)fin, (char *)&fra->fra_info, sizeof(*fin)); fra->fra_flx = fra->fra_info.fin_flx & (FI_STATE|FI_NATED); fra->fra_info.fin_flx &= ~(FI_STATE|FI_NATED); #if !defined(sparc) && !defined(m68k) /* * No need to copyback here as we want to undo the changes, not keep * them. */ ip = fin->fin_ip; -# if defined(MENTAT) && defined(_KERNEL) +# if SOLARIS && defined(_KERNEL) if ((ip == (ip_t *)m->b_rptr) && (fin->fin_v == 4)) # endif { register u_short bo; bo = ip->ip_len; ip->ip_len = htons(bo); bo = ip->ip_off; ip->ip_off = htons(bo); } #endif #if SOLARIS && defined(_KERNEL) COPYIFNAME(fin->fin_v, fin->fin_ifp, fra->fra_info.fin_ifname); m->b_rptr -= qpi->qpi_off; fra->fra_q = qpi->qpi_q; /* The queue can disappear! */ fra->fra_m = *fin->fin_mp; fra->fra_info.fin_mp = &fra->fra_m; softa->ipf_auth_pkts[i] = *(mblk_t **)fin->fin_mp; RWLOCK_EXIT(&softa->ipf_authlk); cv_signal(&softa->ipf_auth_wait); pollwakeup(&softc->ipf_poll_head[IPL_LOGAUTH], POLLIN|POLLRDNORM); #else softa->ipf_auth_pkts[i] = m; RWLOCK_EXIT(&softa->ipf_authlk); WAKEUP(&softa->ipf_auth_next, 0); #endif return 1; } /* ------------------------------------------------------------------------ */ /* Function: ipf_auth_ioctl */ /* Returns: int - 0 == success, else error */ /* Parameters: data(IO) - pointer to ioctl data */ /* cmd(I) - ioctl command */ /* mode(I) - mode flags associated with open descriptor */ /* uid(I) - uid associatd with application making the call */ /* ctx(I) - pointer for context */ /* */ /* This function handles all of the ioctls recognised by the auth component */ /* in IPFilter - ie ioctls called on an open fd for /dev/ipf_auth */ /* ------------------------------------------------------------------------ */ int ipf_auth_ioctl(softc, data, cmd, mode, uid, ctx) ipf_main_softc_t *softc; caddr_t data; ioctlcmd_t cmd; int mode, uid; void *ctx; { ipf_auth_softc_t *softa = softc->ipf_auth_soft; int error = 0, i; SPL_INT(s); switch (cmd) { case SIOCGENITER : { ipftoken_t *token; ipfgeniter_t iter; ipfobj_t obj; error = ipf_inobj(softc, data, &obj, &iter, IPFOBJ_GENITER); if (error != 0) break; SPL_SCHED(s); token = ipf_token_find(softc, IPFGENITER_AUTH, uid, ctx); if (token != NULL) error = ipf_auth_geniter(softc, token, &iter, &obj); else { WRITE_ENTER(&softc->ipf_tokens); ipf_token_deref(softc, token); RWLOCK_EXIT(&softc->ipf_tokens); IPFERROR(10001); error = ESRCH; } SPL_X(s); break; } case SIOCADAFR : case SIOCRMAFR : if (!(mode & FWRITE)) { IPFERROR(10002); error = EPERM; } else error = frrequest(softc, IPL_LOGAUTH, cmd, data, softc->ipf_active, 1); break; case SIOCSTLCK : if (!(mode & FWRITE)) { IPFERROR(10003); error = EPERM; } else { error = ipf_lock(data, &softa->ipf_auth_lock); } break; case SIOCATHST: softa->ipf_auth_stats.fas_faelist = softa->ipf_auth_entries; error = ipf_outobj(softc, data, &softa->ipf_auth_stats, IPFOBJ_AUTHSTAT); break; case SIOCIPFFL: SPL_NET(s); WRITE_ENTER(&softa->ipf_authlk); i = ipf_auth_flush(softa); RWLOCK_EXIT(&softa->ipf_authlk); SPL_X(s); error = BCOPYOUT(&i, data, sizeof(i)); if (error != 0) { IPFERROR(10004); error = EFAULT; } break; case SIOCAUTHW: error = ipf_auth_wait(softc, softa, data); break; case SIOCAUTHR: error = ipf_auth_reply(softc, softa, data); break; default : IPFERROR(10005); error = EINVAL; break; } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_auth_expire */ /* Returns: None */ /* Parameters: None */ /* */ /* Slowly expire held auth records. Timeouts are set in expectation of */ /* this being called twice per second. */ /* ------------------------------------------------------------------------ */ void ipf_auth_expire(softc) ipf_main_softc_t *softc; { ipf_auth_softc_t *softa = softc->ipf_auth_soft; frauthent_t *fae, **faep; frentry_t *fr, **frp; frauth_t *fra; mb_t *m; int i; SPL_INT(s); if (softa->ipf_auth_lock) return; SPL_NET(s); WRITE_ENTER(&softa->ipf_authlk); for (i = 0, fra = softa->ipf_auth; i < softa->ipf_auth_size; i++, fra++) { fra->fra_age--; if ((fra->fra_age == 0) && (softa->ipf_auth[i].fra_index != -1)) { if ((m = softa->ipf_auth_pkts[i]) != NULL) { FREE_MB_T(m); softa->ipf_auth_pkts[i] = NULL; } else if (softa->ipf_auth[i].fra_index == -2) { softa->ipf_auth_replies--; } softa->ipf_auth[i].fra_index = -1; softa->ipf_auth_stats.fas_expire++; softa->ipf_auth_used--; } } /* * Expire pre-auth rules */ for (faep = &softa->ipf_auth_entries; ((fae = *faep) != NULL); ) { fae->fae_age--; if (fae->fae_age == 0) { ipf_auth_deref(&fae); softa->ipf_auth_stats.fas_expire++; } else faep = &fae->fae_next; } if (softa->ipf_auth_entries != NULL) softa->ipf_auth_ip = &softa->ipf_auth_entries->fae_fr; else softa->ipf_auth_ip = NULL; for (frp = &softa->ipf_auth_rules; ((fr = *frp) != NULL); ) { if (fr->fr_ref == 1) { *frp = fr->fr_next; MUTEX_DESTROY(&fr->fr_lock); KFREE(fr); } else frp = &fr->fr_next; } RWLOCK_EXIT(&softa->ipf_authlk); SPL_X(s); } /* ------------------------------------------------------------------------ */ /* Function: ipf_auth_precmd */ /* Returns: int - 0 == success, else error */ /* Parameters: cmd(I) - ioctl command for rule */ /* fr(I) - pointer to ipf rule */ /* fptr(I) - pointer to caller's 'fr' */ /* */ /* ------------------------------------------------------------------------ */ int ipf_auth_precmd(softc, cmd, fr, frptr) ipf_main_softc_t *softc; ioctlcmd_t cmd; frentry_t *fr, **frptr; { ipf_auth_softc_t *softa = softc->ipf_auth_soft; frauthent_t *fae, **faep; int error = 0; SPL_INT(s); if ((cmd != SIOCADAFR) && (cmd != SIOCRMAFR)) { IPFERROR(10006); return EIO; } for (faep = &softa->ipf_auth_entries; ((fae = *faep) != NULL); ) { if (&fae->fae_fr == fr) break; else faep = &fae->fae_next; } if (cmd == (ioctlcmd_t)SIOCRMAFR) { if (fr == NULL || frptr == NULL) { IPFERROR(10007); error = EINVAL; } else if (fae == NULL) { IPFERROR(10008); error = ESRCH; } else { SPL_NET(s); WRITE_ENTER(&softa->ipf_authlk); *faep = fae->fae_next; if (softa->ipf_auth_ip == &fae->fae_fr) softa->ipf_auth_ip = softa->ipf_auth_entries ? &softa->ipf_auth_entries->fae_fr : NULL; RWLOCK_EXIT(&softa->ipf_authlk); SPL_X(s); KFREE(fae); } } else if (fr != NULL && frptr != NULL) { KMALLOC(fae, frauthent_t *); if (fae != NULL) { bcopy((char *)fr, (char *)&fae->fae_fr, sizeof(*fr)); SPL_NET(s); WRITE_ENTER(&softa->ipf_authlk); fae->fae_age = softa->ipf_auth_defaultage; fae->fae_fr.fr_hits = 0; fae->fae_fr.fr_next = *frptr; fae->fae_ref = 1; *frptr = &fae->fae_fr; fae->fae_next = *faep; *faep = fae; softa->ipf_auth_ip = &softa->ipf_auth_entries->fae_fr; RWLOCK_EXIT(&softa->ipf_authlk); SPL_X(s); } else { IPFERROR(10009); error = ENOMEM; } } else { IPFERROR(10010); error = EINVAL; } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_auth_flush */ /* Returns: int - number of auth entries flushed */ /* Parameters: None */ /* Locks: WRITE(ipf_authlk) */ /* */ /* This function flushs the ipf_auth_pkts array of any packet data with */ /* references still there. */ /* It is expected that the caller has already acquired the correct locks or */ /* set the priority level correctly for this to block out other code paths */ /* into these data structures. */ /* ------------------------------------------------------------------------ */ static int ipf_auth_flush(arg) void *arg; { ipf_auth_softc_t *softa = arg; int i, num_flushed; mb_t *m; if (softa->ipf_auth_lock) return -1; num_flushed = 0; for (i = 0 ; i < softa->ipf_auth_size; i++) { if (softa->ipf_auth[i].fra_index != -1) { m = softa->ipf_auth_pkts[i]; if (m != NULL) { FREE_MB_T(m); softa->ipf_auth_pkts[i] = NULL; } softa->ipf_auth[i].fra_index = -1; /* perhaps add & use a flush counter inst.*/ softa->ipf_auth_stats.fas_expire++; num_flushed++; } } softa->ipf_auth_start = 0; softa->ipf_auth_end = 0; softa->ipf_auth_next = 0; softa->ipf_auth_used = 0; softa->ipf_auth_replies = 0; return num_flushed; } /* ------------------------------------------------------------------------ */ /* Function: ipf_auth_waiting */ /* Returns: int - number of packets in the auth queue */ /* Parameters: None */ /* */ /* Simple truth check to see if there are any packets waiting in the auth */ /* queue. */ /* ------------------------------------------------------------------------ */ int ipf_auth_waiting(softc) ipf_main_softc_t *softc; { ipf_auth_softc_t *softa = softc->ipf_auth_soft; return (softa->ipf_auth_used != 0); } /* ------------------------------------------------------------------------ */ /* Function: ipf_auth_geniter */ /* Returns: int - 0 == success, else error */ /* Parameters: token(I) - pointer to ipftoken structure */ /* itp(I) - pointer to ipfgeniter structure */ /* objp(I) - pointer to ipf object destription */ /* */ /* Iterate through the list of entries in the auth queue list. */ /* objp is used here to get the location of where to do the copy out to. */ /* Stomping over various fields with new information will not harm anything */ /* ------------------------------------------------------------------------ */ static int ipf_auth_geniter(softc, token, itp, objp) ipf_main_softc_t *softc; ipftoken_t *token; ipfgeniter_t *itp; ipfobj_t *objp; { ipf_auth_softc_t *softa = softc->ipf_auth_soft; frauthent_t *fae, *next, zero; int error; if (itp->igi_data == NULL) { IPFERROR(10011); return EFAULT; } if (itp->igi_type != IPFGENITER_AUTH) { IPFERROR(10012); return EINVAL; } objp->ipfo_type = IPFOBJ_FRAUTH; objp->ipfo_ptr = itp->igi_data; objp->ipfo_size = sizeof(frauth_t); READ_ENTER(&softa->ipf_authlk); fae = token->ipt_data; if (fae == NULL) { next = softa->ipf_auth_entries; } else { next = fae->fae_next; } /* * If we found an auth entry to use, bump its reference count * so that it can be used for is_next when we come back. */ if (next != NULL) { ATOMIC_INC(next->fae_ref); token->ipt_data = next; } else { bzero(&zero, sizeof(zero)); next = &zero; token->ipt_data = NULL; } RWLOCK_EXIT(&softa->ipf_authlk); error = ipf_outobjk(softc, objp, next); if (fae != NULL) ipf_auth_deref_unlocked(softa, &fae); if (next->fae_next == NULL) ipf_token_mark_complete(token); return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_auth_deref_unlocked */ /* Returns: None */ /* Parameters: faep(IO) - pointer to caller's frauthent_t pointer */ /* */ /* Wrapper for ipf_auth_deref for when a write lock on ipf_authlk is not */ /* held. */ /* ------------------------------------------------------------------------ */ static void ipf_auth_deref_unlocked(softa, faep) ipf_auth_softc_t *softa; frauthent_t **faep; { WRITE_ENTER(&softa->ipf_authlk); ipf_auth_deref(faep); RWLOCK_EXIT(&softa->ipf_authlk); } /* ------------------------------------------------------------------------ */ /* Function: ipf_auth_deref */ /* Returns: None */ /* Parameters: faep(IO) - pointer to caller's frauthent_t pointer */ /* Locks: WRITE(ipf_authlk) */ /* */ /* This function unconditionally sets the pointer in the caller to NULL, */ /* to make it clear that it should no longer use that pointer, and drops */ /* the reference count on the structure by 1. If it reaches 0, free it up. */ /* ------------------------------------------------------------------------ */ static void ipf_auth_deref(faep) frauthent_t **faep; { frauthent_t *fae; fae = *faep; *faep = NULL; fae->fae_ref--; if (fae->fae_ref == 0) { KFREE(fae); } } /* ------------------------------------------------------------------------ */ /* Function: ipf_auth_wait_pkt */ /* Returns: int - 0 == success, else error */ /* Parameters: data(I) - pointer to data from ioctl call */ /* */ /* This function is called when an application is waiting for a packet to */ /* match an "auth" rule by issuing an SIOCAUTHW ioctl. If there is already */ /* a packet waiting on the queue then we will return that _one_ immediately.*/ /* If there are no packets present in the queue (ipf_auth_pkts) then we go */ /* to sleep. */ /* ------------------------------------------------------------------------ */ static int ipf_auth_wait(softc, softa, data) ipf_main_softc_t *softc; ipf_auth_softc_t *softa; char *data; { frauth_t auth, *au = &auth; int error, len, i; mb_t *m; char *t; SPL_INT(s); ipf_auth_ioctlloop: error = ipf_inobj(softc, data, NULL, au, IPFOBJ_FRAUTH); if (error != 0) return error; /* * XXX Locks are held below over calls to copyout...a better * solution needs to be found so this isn't necessary. The situation * we are trying to guard against here is an error in the copyout * steps should not cause the packet to "disappear" from the queue. */ SPL_NET(s); READ_ENTER(&softa->ipf_authlk); /* * If ipf_auth_next is not equal to ipf_auth_end it will be because * there is a packet waiting to be delt with in the ipf_auth_pkts * array. We copy as much of that out to user space as requested. */ if (softa->ipf_auth_used > 0) { while (softa->ipf_auth_pkts[softa->ipf_auth_next] == NULL) { softa->ipf_auth_next++; if (softa->ipf_auth_next == softa->ipf_auth_size) softa->ipf_auth_next = 0; } error = ipf_outobj(softc, data, &softa->ipf_auth[softa->ipf_auth_next], IPFOBJ_FRAUTH); if (error != 0) { RWLOCK_EXIT(&softa->ipf_authlk); SPL_X(s); return error; } if (auth.fra_len != 0 && auth.fra_buf != NULL) { /* * Copy packet contents out to user space if * requested. Bail on an error. */ m = softa->ipf_auth_pkts[softa->ipf_auth_next]; len = MSGDSIZE(m); if (len > auth.fra_len) len = auth.fra_len; auth.fra_len = len; for (t = auth.fra_buf; m && (len > 0); ) { i = MIN(M_LEN(m), len); error = copyoutptr(softc, MTOD(m, char *), &t, i); len -= i; t += i; if (error != 0) { RWLOCK_EXIT(&softa->ipf_authlk); SPL_X(s); return error; } m = m->m_next; } } RWLOCK_EXIT(&softa->ipf_authlk); SPL_NET(s); WRITE_ENTER(&softa->ipf_authlk); softa->ipf_auth_next++; if (softa->ipf_auth_next == softa->ipf_auth_size) softa->ipf_auth_next = 0; RWLOCK_EXIT(&softa->ipf_authlk); SPL_X(s); return 0; } RWLOCK_EXIT(&softa->ipf_authlk); SPL_X(s); MUTEX_ENTER(&softa->ipf_auth_mx); #ifdef _KERNEL # if SOLARIS error = 0; if (!cv_wait_sig(&softa->ipf_auth_wait, &softa->ipf_auth_mx.ipf_lk)) { IPFERROR(10014); error = EINTR; } # else /* SOLARIS */ error = SLEEP(&softa->ipf_auth_next, "ipf_auth_next"); # endif /* SOLARIS */ #endif MUTEX_EXIT(&softa->ipf_auth_mx); if (error == 0) goto ipf_auth_ioctlloop; return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_auth_reply */ /* Returns: int - 0 == success, else error */ /* Parameters: data(I) - pointer to data from ioctl call */ /* */ /* This function is called by an application when it wants to return a */ /* decision on a packet using the SIOCAUTHR ioctl. This is after it has */ /* received information using an SIOCAUTHW. The decision returned in the */ /* form of flags, the same as those used in each rule. */ /* ------------------------------------------------------------------------ */ static int ipf_auth_reply(softc, softa, data) ipf_main_softc_t *softc; ipf_auth_softc_t *softa; char *data; { frauth_t auth, *au = &auth, *fra; fr_info_t fin; int error, i; mb_t *m; SPL_INT(s); error = ipf_inobj(softc, data, NULL, &auth, IPFOBJ_FRAUTH); if (error != 0) return error; SPL_NET(s); WRITE_ENTER(&softa->ipf_authlk); i = au->fra_index; fra = softa->ipf_auth + i; error = 0; /* * Check the validity of the information being returned with two simple * checks. First, the auth index value should be within the size of * the array and second the packet id being returned should also match. */ if ((i < 0) || (i >= softa->ipf_auth_size)) { RWLOCK_EXIT(&softa->ipf_authlk); SPL_X(s); IPFERROR(10015); return ESRCH; } if (fra->fra_info.fin_id != au->fra_info.fin_id) { RWLOCK_EXIT(&softa->ipf_authlk); SPL_X(s); IPFERROR(10019); return ESRCH; } m = softa->ipf_auth_pkts[i]; fra->fra_index = -2; fra->fra_pass = au->fra_pass; softa->ipf_auth_pkts[i] = NULL; softa->ipf_auth_replies++; bcopy(&fra->fra_info, &fin, sizeof(fin)); RWLOCK_EXIT(&softa->ipf_authlk); /* * Re-insert the packet back into the packet stream flowing through * the kernel in a manner that will mean IPFilter sees the packet * again. This is not the same as is done with fastroute, * deliberately, as we want to resume the normal packet processing * path for it. */ #ifdef _KERNEL if ((m != NULL) && (au->fra_info.fin_out != 0)) { error = ipf_inject(&fin, m); if (error != 0) { IPFERROR(10016); error = ENOBUFS; softa->ipf_auth_stats.fas_sendfail++; } else { softa->ipf_auth_stats.fas_sendok++; } } else if (m) { error = ipf_inject(&fin, m); if (error != 0) { IPFERROR(10017); error = ENOBUFS; softa->ipf_auth_stats.fas_quefail++; } else { softa->ipf_auth_stats.fas_queok++; } } else { IPFERROR(10018); error = EINVAL; } /* * If we experience an error which will result in the packet * not being processed, make sure we advance to the next one. */ if (error == ENOBUFS) { WRITE_ENTER(&softa->ipf_authlk); softa->ipf_auth_used--; fra->fra_index = -1; fra->fra_pass = 0; if (i == softa->ipf_auth_start) { while (fra->fra_index == -1) { i++; if (i == softa->ipf_auth_size) i = 0; softa->ipf_auth_start = i; if (i == softa->ipf_auth_end) break; } if (softa->ipf_auth_start == softa->ipf_auth_end) { softa->ipf_auth_next = 0; softa->ipf_auth_start = 0; softa->ipf_auth_end = 0; } } RWLOCK_EXIT(&softa->ipf_authlk); } #endif /* _KERNEL */ SPL_X(s); return 0; } u_32_t ipf_auth_pre_scanlist(softc, fin, pass) ipf_main_softc_t *softc; fr_info_t *fin; u_32_t pass; { ipf_auth_softc_t *softa = softc->ipf_auth_soft; if (softa->ipf_auth_ip != NULL) return ipf_scanlist(fin, softc->ipf_pass); return pass; } frentry_t ** ipf_auth_rulehead(softc) ipf_main_softc_t *softc; { ipf_auth_softc_t *softa = softc->ipf_auth_soft; return &softa->ipf_auth_ip; } diff --git a/sys/contrib/ipfilter/netinet/ip_auth.h b/sys/contrib/ipfilter/netinet/ip_auth.h index e914dacacdf0..17df74c31de6 100644 --- a/sys/contrib/ipfilter/netinet/ip_auth.h +++ b/sys/contrib/ipfilter/netinet/ip_auth.h @@ -1,92 +1,92 @@ /* $FreeBSD$ */ /* * Copyright (C) 2012 by Darren Reed. * * See the IPFILTER.LICENCE file for details on licencing. * * $FreeBSD$ * Id: ip_auth.h,v 2.16.2.2 2006/03/16 06:45:49 darrenr Exp $ * */ #ifndef __IP_AUTH_H__ #define __IP_AUTH_H__ #define FR_NUMAUTH 32 typedef struct frauth { int fra_age; int fra_len; int fra_index; u_32_t fra_pass; fr_info_t fra_info; char *fra_buf; u_32_t fra_flx; -#ifdef MENTAT +#if SOLARIS queue_t *fra_q; mb_t *fra_m; #endif } frauth_t; typedef struct frauthent { struct frentry fae_fr; struct frauthent *fae_next; struct frauthent **fae_pnext; u_long fae_age; int fae_ref; } frauthent_t; typedef struct ipf_authstat { U_QUAD_T fas_hits; U_QUAD_T fas_miss; u_long fas_nospace; u_long fas_added; u_long fas_sendfail; u_long fas_sendok; u_long fas_queok; u_long fas_quefail; u_long fas_expire; frauthent_t *fas_faelist; } ipf_authstat_t; typedef struct ipf_auth_softc_s { ipfrwlock_t ipf_authlk; ipfmutex_t ipf_auth_mx; int ipf_auth_size; int ipf_auth_used; int ipf_auth_replies; int ipf_auth_defaultage; int ipf_auth_lock; ipf_authstat_t ipf_auth_stats; frauth_t *ipf_auth; mb_t **ipf_auth_pkts; int ipf_auth_start; int ipf_auth_end; int ipf_auth_next; frauthent_t *ipf_auth_entries; frentry_t *ipf_auth_ip; frentry_t *ipf_auth_rules; } ipf_auth_softc_t; extern frentry_t *ipf_auth_check(fr_info_t *, u_32_t *); extern void ipf_auth_expire(ipf_main_softc_t *); extern int ipf_auth_ioctl(ipf_main_softc_t *, caddr_t, ioctlcmd_t, int, int, void *); extern int ipf_auth_init(void); extern int ipf_auth_main_load(void); extern int ipf_auth_main_unload(void); extern void ipf_auth_soft_destroy(ipf_main_softc_t *, void *); extern void *ipf_auth_soft_create(ipf_main_softc_t *); extern int ipf_auth_new(mb_t *, fr_info_t *); extern int ipf_auth_precmd(ipf_main_softc_t *, ioctlcmd_t, frentry_t *, frentry_t **); extern void ipf_auth_unload(ipf_main_softc_t *); extern int ipf_auth_waiting(ipf_main_softc_t *); extern void ipf_auth_setlock(void *, int); extern int ipf_auth_soft_init(ipf_main_softc_t *, void *); extern int ipf_auth_soft_fini(ipf_main_softc_t *, void *); extern u_32_t ipf_auth_pre_scanlist(ipf_main_softc_t *, fr_info_t *, u_32_t); extern frentry_t **ipf_auth_rulehead(ipf_main_softc_t *); #endif /* __IP_AUTH_H__ */ diff --git a/sys/contrib/ipfilter/netinet/ip_compat.h b/sys/contrib/ipfilter/netinet/ip_compat.h index 756731480836..490e939f7f37 100644 --- a/sys/contrib/ipfilter/netinet/ip_compat.h +++ b/sys/contrib/ipfilter/netinet/ip_compat.h @@ -1,1256 +1,1256 @@ /* * Copyright (C) 2012 by Darren Reed. * * See the IPFILTER.LICENCE file for details on licencing. * * @(#)ip_compat.h 1.8 1/14/96 * $FreeBSD$ * Id: ip_compat.h,v 2.142.2.57 2007/10/10 09:51:42 darrenr Exp $ */ #ifndef __IP_COMPAT_H__ #define __IP_COMPAT_H__ #if defined(_KERNEL) || defined(KERNEL) || defined(__KERNEL__) # undef KERNEL # undef _KERNEL # undef __KERNEL__ # define KERNEL # define _KERNEL # define __KERNEL__ #endif #ifndef SOLARIS # if defined(sun) && defined(__SVR4) # define SOLARIS 1 # else # define SOLARIS 0 # endif #endif #if defined(__SVR4) # define index strchr # if !defined(_KERNEL) # define bzero(a,b) memset(a,0,b) # define bcmp memcmp # define bcopy(a,b,c) memmove(b,a,c) # endif #endif #ifndef LIFNAMSIZ # ifdef IF_NAMESIZE # define LIFNAMSIZ IF_NAMESIZE # else # ifdef IFNAMSIZ # define LIFNAMSIZ IFNAMSIZ # else # define LIFNAMSIZ 16 # endif # endif #endif # define IPL_EXTERN(ep) ipl##ep /* * This is a workaround for troubles on FreeBSD and OpenBSD. */ #ifndef _KERNEL # define ADD_KERNEL # define _KERNEL # define KERNEL #endif #include #ifdef ADD_KERNEL # undef _KERNEL # undef KERNEL #endif #define NETBSD_GE_REV(x) (defined(__NetBSD_Version__) && \ (__NetBSD_Version__ >= (x))) #define NETBSD_GT_REV(x) (defined(__NetBSD_Version__) && \ (__NetBSD_Version__ > (x))) #define NETBSD_LT_REV(x) (defined(__NetBSD_Version__) && \ (__NetBSD_Version__ < (x))) /* ----------------------------------------------------------------------- */ /* F R E E B S D */ /* ----------------------------------------------------------------------- */ #define HAS_SYS_MD5_H 1 #if defined(_KERNEL) # include "opt_bpf.h" # include "opt_inet6.h" # if defined(INET6) && !defined(USE_INET6) # define USE_INET6 # endif #else # if !defined(USE_INET6) && !defined(NOINET6) # define USE_INET6 # endif #endif #if defined(_KERNEL) # include # define p_cred td_ucred # define p_uid td_ucred->cr_ruid /* * When #define'd, the 5.2.1 kernel panics when used with the ftp proxy. * There may be other, safe, kernels but this is not extensively tested yet. */ # define HAVE_M_PULLDOWN # if !defined(IPFILTER_LKM) && defined(__FreeBSD_version) # include "opt_ipfilter.h" # endif # define COPYIN(a,b,c) copyin((caddr_t)(a), (caddr_t)(b), (c)) # define COPYOUT(a,b,c) copyout((caddr_t)(a), (caddr_t)(b), (c)) #else # include #endif /* _KERNEL */ #include #include #include #include #define KRWLOCK_FILL_SZ 56 #define KMUTEX_FILL_SZ 56 #include #define KMUTEX_T struct mtx #define KRWLOCK_T struct rwlock #ifdef _KERNEL # define READ_ENTER(x) rw_rlock(&(x)->ipf_lk) # define WRITE_ENTER(x) rw_wlock(&(x)->ipf_lk) # define MUTEX_DOWNGRADE(x) rw_downgrade(&(x)->ipf_lk) # define MUTEX_TRY_UPGRADE(x) rw_try_upgrade(&(x)->ipf_lk) # define RWLOCK_INIT(x,y) rw_init(&(x)->ipf_lk, (y)) # define RW_DESTROY(x) rw_destroy(&(x)->ipf_lk) # define RWLOCK_EXIT(x) do { \ if (rw_wowned(&(x)->ipf_lk)) \ rw_wunlock(&(x)->ipf_lk); \ else \ rw_runlock(&(x)->ipf_lk); \ } while (0) # include # define GETKTIME(x) microtime((struct timeval *)x) # define if_addrlist if_addrhead # include # include # include # define USE_MUTEXES # define MUTEX_ENTER(x) mtx_lock(&(x)->ipf_lk) # define MUTEX_EXIT(x) mtx_unlock(&(x)->ipf_lk) # define MUTEX_INIT(x,y) mtx_init(&(x)->ipf_lk, (y), NULL,\ MTX_DEF) # define MUTEX_DESTROY(x) mtx_destroy(&(x)->ipf_lk) # define MUTEX_NUKE(x) bzero((x), sizeof(*(x))) /* * Whilst the sx(9) locks on FreeBSD have the right semantics and interface * for what we want to use them for, despite testing showing they work - * with a WITNESS kernel, it generates LOR messages. */ # include # define ATOMIC_INC(x) { mtx_lock(&softc->ipf_rw.ipf_lk); (x)++; \ mtx_unlock(&softc->ipf_rw.ipf_lk); } # define ATOMIC_DEC(x) { mtx_lock(&softc->ipf_rw.ipf_lk); (x)--; \ mtx_unlock(&softc->ipf_rw.ipf_lk); } # define ATOMIC_INCL(x) atomic_add_long(&(x), 1) # define ATOMIC_INC64(x) ATOMIC_INC(x) # define ATOMIC_INC32(x) atomic_add_32((u_int *)&(x), 1) # define ATOMIC_DECL(x) atomic_add_long(&(x), -1) # define ATOMIC_DEC64(x) ATOMIC_DEC(x) # define ATOMIC_DEC32(x) atomic_add_32((u_int *)&(x), -1) # define SPL_X(x) ; # define SPL_NET(x) ; # define SPL_IMP(x) ; # define SPL_SCHED(x) ; # define GET_MINOR dev2unit # define MSGDSIZE(m) mbufchainlen(m) # define M_LEN(m) (m)->m_len # define M_ADJ(m,x) m_adj(m, x) # define M_COPY(x) m_copym((x), 0, M_COPYALL, M_NOWAIT) # define M_DUP(m) m_dup(m, M_NOWAIT) # define IPF_PANIC(x,y) if (x) { printf y; panic("ipf_panic"); } typedef struct mbuf mb_t; #else /* !_KERNEL */ # ifndef _NET_IF_VAR_H_ /* * Userland emulation of struct ifnet. */ struct route; struct mbuf; struct ifnet { char if_xname[IFNAMSIZ]; STAILQ_HEAD(, ifaddr) if_addrlist; int (*if_output)(struct ifnet *, struct mbuf *, const struct sockaddr *, struct route *); }; # endif /* _NET_IF_VAR_H_ */ #endif /* _KERNEL */ #define IFNAME(x) ((struct ifnet *)x)->if_xname #define COPYIFNAME(v, x, b) \ (void) strncpy(b, \ ((struct ifnet *)x)->if_xname, \ LIFNAMSIZ) typedef u_long ioctlcmd_t; typedef struct uio uio_t; typedef int minor_t; typedef u_int32_t u_32_t; # define U_32_T 1 /* ----------------------------------------------------------------------- */ /* G E N E R I C */ /* ----------------------------------------------------------------------- */ /* * For BSD kernels, if bpf is in the kernel, enable ipfilter to use bpf in * filter rules. */ #if !defined(IPFILTER_BPF) # if (defined(NBPF) && (NBPF > 0)) || (defined(DEV_BPF) && (DEV_BPF > 0)) || \ (defined(NBPFILTER) && (NBPFILTER > 0)) # define IPFILTER_BPF # endif #endif /* * Userland locking primitives */ #ifndef _KERNEL # if !defined(KMUTEX_FILL_SZ) # define KMUTEX_FILL_SZ 1 # endif # if !defined(KRWLOCK_FILL_SZ) # define KRWLOCK_FILL_SZ 1 # endif #endif typedef struct { char *eMm_owner; char *eMm_heldin; u_int eMm_magic; int eMm_held; int eMm_heldat; } eMmutex_t; typedef struct { char *eMrw_owner; char *eMrw_heldin; u_int eMrw_magic; short eMrw_read; short eMrw_write; int eMrw_heldat; } eMrwlock_t; typedef union { char _fill[KMUTEX_FILL_SZ]; #ifdef KMUTEX_T struct { KMUTEX_T ipf_slk; const char *ipf_lname; } ipf_lkun_s; #endif eMmutex_t ipf_emu; } ipfmutex_t; typedef union { char _fill[KRWLOCK_FILL_SZ]; #ifdef KRWLOCK_T struct { KRWLOCK_T ipf_slk; const char *ipf_lname; int ipf_sr; int ipf_sw; u_int ipf_magic; } ipf_lkun_s; #endif eMrwlock_t ipf_emu; } ipfrwlock_t; #define ipf_lk ipf_lkun_s.ipf_slk #define ipf_lname ipf_lkun_s.ipf_lname #define ipf_isr ipf_lkun_s.ipf_sr #define ipf_isw ipf_lkun_s.ipf_sw #define ipf_magic ipf_lkun_s.ipf_magic #if !defined(__GNUC__) || defined(__FreeBSD_version) # ifndef INLINE # define INLINE # endif #else # define INLINE __inline__ #endif #if defined(__FreeBSD_version) && defined(_KERNEL) CTASSERT(sizeof(ipfrwlock_t) == KRWLOCK_FILL_SZ); CTASSERT(sizeof(ipfmutex_t) == KMUTEX_FILL_SZ); #endif /* * In a non-kernel environment, there are a lot of macros that need to be * filled in to be null-ops or to point to some compatibility function, * somewhere in userland. */ #ifndef _KERNEL typedef struct mb_s { struct mb_s *mb_next; char *mb_data; void *mb_ifp; int mb_len; int mb_flags; u_long mb_buf[2048]; } mb_t; # undef m_next # define m_next mb_next # undef m_len # define m_len mb_len # undef m_flags # define m_flags mb_flags # undef m_data # define m_data mb_data # undef M_MCAST # define M_MCAST 0x01 # undef M_BCAST # define M_BCAST 0x02 # undef M_MBCAST # define M_MBCAST 0x04 # define MSGDSIZE(m) msgdsize(m) # define M_LEN(m) (m)->mb_len # define M_ADJ(m,x) (m)->mb_len += x # define M_COPY(m) dupmbt(m) # define M_DUP(m) dupmbt(m) # define GETKTIME(x) gettimeofday((struct timeval *)(x), NULL) # define MTOD(m, t) ((t)(m)->mb_data) # define FREE_MB_T(m) freembt(m) # define ALLOC_MB_T(m,l) (m) = allocmbt(l) # define PREP_MB_T(f, m) do { \ (m)->mb_next = *(f)->fin_mp; \ *(fin)->fin_mp = (m); \ (f)->fin_m = (m); \ } while (0) # define SLEEP(x,y) 1; # define WAKEUP(x,y) ; # define POLLWAKEUP(y) ; # define IPF_PANIC(x,y) ; # define PANIC(x,y) ; # define SPL_SCHED(x) ; # define SPL_NET(x) ; # define SPL_IMP(x) ; # define SPL_X(x) ; # define KMALLOC(a,b) (a) = (b)malloc(sizeof(*a)) # define KMALLOCS(a,b,c) (a) = (b)malloc(c) # define KFREE(x) free(x) # define KFREES(x,s) free(x) # define GETIFP(x, v) get_unit(x,v) # define GETIFMTU_4(x) 2048 # define GETIFMTU_6(x) 2048 # define COPYIN(a,b,c) bcopywrap((a), (b), (c)) # define COPYOUT(a,b,c) bcopywrap((a), (b), (c)) # define COPYDATA(m, o, l, b) bcopy(MTOD((mb_t *)m, char *) + (o), \ (b), (l)) # define COPYBACK(m, o, l, b) bcopy((b), \ MTOD((mb_t *)m, char *) + (o), \ (l)) # define UIOMOVE(a,b,c,d) ipfuiomove((caddr_t)a,b,c,d) extern void m_copydata(mb_t *, int, int, caddr_t); extern int ipfuiomove(caddr_t, int, int, struct uio *); extern int bcopywrap(void *, void *, size_t); extern mb_t *allocmbt(size_t); extern mb_t *dupmbt(mb_t *); extern void freembt(mb_t *); # define MUTEX_DESTROY(x) eMmutex_destroy(&(x)->ipf_emu, \ __FILE__, __LINE__) # define MUTEX_ENTER(x) eMmutex_enter(&(x)->ipf_emu, \ __FILE__, __LINE__) # define MUTEX_EXIT(x) eMmutex_exit(&(x)->ipf_emu, \ __FILE__, __LINE__) # define MUTEX_INIT(x,y) eMmutex_init(&(x)->ipf_emu, y, \ __FILE__, __LINE__) # define MUTEX_NUKE(x) bzero((x), sizeof(*(x))) # define MUTEX_DOWNGRADE(x) eMrwlock_downgrade(&(x)->ipf_emu, \ __FILE__, __LINE__) # define MUTEX_TRY_UPGRADE(x) eMrwlock_try_upgrade(&(x)->ipf_emu, \ __FILE__, __LINE__) # define READ_ENTER(x) eMrwlock_read_enter(&(x)->ipf_emu, \ __FILE__, __LINE__) # define RWLOCK_INIT(x, y) eMrwlock_init(&(x)->ipf_emu, y) # define RWLOCK_EXIT(x) eMrwlock_exit(&(x)->ipf_emu) # define RW_DESTROY(x) eMrwlock_destroy(&(x)->ipf_emu) # define WRITE_ENTER(x) eMrwlock_write_enter(&(x)->ipf_emu, \ __FILE__, \ __LINE__) # define USE_MUTEXES 1 extern void eMmutex_destroy(eMmutex_t *, char *, int); extern void eMmutex_enter(eMmutex_t *, char *, int); extern void eMmutex_exit(eMmutex_t *, char *, int); extern void eMmutex_init(eMmutex_t *, char *, char *, int); extern void eMrwlock_destroy(eMrwlock_t *); extern void eMrwlock_exit(eMrwlock_t *); extern void eMrwlock_init(eMrwlock_t *, char *); extern void eMrwlock_read_enter(eMrwlock_t *, char *, int); extern void eMrwlock_write_enter(eMrwlock_t *, char *, int); extern void eMrwlock_downgrade(eMrwlock_t *, char *, int); #endif extern mb_t *allocmbt(size_t); #define MAX_IPV4HDR ((0xf << 2) + sizeof(struct icmp) + sizeof(ip_t) + 8) #ifndef IP_OFFMASK # define IP_OFFMASK 0x1fff #endif /* * On BSD's use quad_t as a guarantee for getting at least a 64bit sized * object. */ #if !defined(__amd64__) && !SOLARIS # define USE_QUAD_T # define U_QUAD_T unsigned long long # define QUAD_T long long #else /* BSD > 199306 */ # if !defined(U_QUAD_T) # define U_QUAD_T u_long # define QUAD_T long # endif #endif /* BSD > 199306 */ #ifdef USE_INET6 # if defined(__NetBSD__) || defined(__FreeBSD__) # include # include # if defined(_KERNEL) # include # endif typedef struct ip6_hdr ip6_t; # endif #endif #ifndef MAX # define MAX(a,b) (((a) > (b)) ? (a) : (b)) #endif #if defined(_KERNEL) -# if defined(MENTAT) && !defined(INSTANCES) +# if SOLARIS && !defined(INSTANCES) # define COPYDATA mb_copydata # define COPYBACK mb_copyback # else # define COPYDATA m_copydata # define COPYBACK m_copyback # endif # if (defined(__NetBSD_Version__) && (__NetBSD_Version__ < 105180000)) || \ defined(__FreeBSD__) # include # endif # if NETBSD_GE_REV(105180000) # include # else # include extern vm_map_t kmem_map; # endif # include # ifdef IPFILTER_M_IPFILTER # include MALLOC_DECLARE(M_IPFILTER); # define _M_IPF M_IPFILTER # else /* IPFILTER_M_IPFILTER */ # ifdef M_PFIL # define _M_IPF M_PFIL # else # ifdef M_IPFILTER # define _M_IPF M_IPFILTER # else # define _M_IPF M_TEMP # endif /* M_IPFILTER */ # endif /* M_PFIL */ # endif /* IPFILTER_M_IPFILTER */ # if !defined(KMALLOC) # define KMALLOC(a, b) (a) = (b)malloc(sizeof(*(a)), _M_IPF, M_NOWAIT) # endif # if !defined(KMALLOCS) # define KMALLOCS(a, b, c) (a) = (b)malloc((c), _M_IPF, M_NOWAIT) # endif # if !defined(KFREE) # define KFREE(x) free((x), _M_IPF) # endif # if !defined(KFREES) # define KFREES(x,s) free((x), _M_IPF) # endif # define UIOMOVE(a,b,c,d) uiomove((caddr_t)a,b,d) # define SLEEP(id, n) tsleep((id), PPAUSE|PCATCH, n, 0) # define WAKEUP(id,x) wakeup(id+x) # if !defined(POLLWAKEUP) # define POLLWAKEUP(x) selwakeup(softc->ipf_selwait+x) # endif # define GETIFP(n, v) ifunit(n) # define GETIFMTU_4(x) ((struct ifnet *)x)->if_mtu # define GETIFMTU_6(x) ((struct ifnet *)x)->if_mtu # if !defined(USE_MUTEXES) && !defined(SPL_NET) # define SPL_IMP(x) x = splimp() # define SPL_NET(x) x = splnet() # if !defined(SPL_SCHED) # define SPL_SCHED(x) x = splsched() # endif # define SPL_X(x) (void) splx(x) # endif /* !USE_MUTEXES */ # ifndef FREE_MB_T # define FREE_MB_T(m) m_freem(m) # endif # ifndef ALLOC_MB_T # ifdef MGETHDR # define ALLOC_MB_T(m,l) do { \ MGETHDR((m), M_NOWAIT, MT_HEADER); \ if ((m) != NULL) { \ (m)->m_len = (l); \ (m)->m_pkthdr.len = (l); \ } \ } while (0) # else # define ALLOC_MB_T(m,l) do { \ MGET((m), M_NOWAIT, MT_HEADER); \ if ((m) != NULL) { \ (m)->m_len = (l); \ (m)->m_pkthdr.len = (l); \ } \ } while (0) # endif # endif # ifndef PREP_MB_T # define PREP_MB_T(f, m) do { \ mb_t *_o = *(f)->fin_mp; \ (m)->m_next = _o; \ *(fin)->fin_mp = (m); \ if (_o->m_flags & M_PKTHDR) { \ (m)->m_pkthdr.len += \ _o->m_pkthdr.len; \ (m)->m_pkthdr.rcvif = \ _o->m_pkthdr.rcvif; \ } \ } while (0) # endif # ifndef M_DUP # ifdef M_COPYALL # define M_DUP(m) m_dup(m, 0, M_COPYALL, 0) # else # define M_DUP(m) m_dup(m) # endif # endif # ifndef MTOD # define MTOD(m,t) mtod(m,t) # endif # ifndef COPYIN # define COPYIN(a,b,c) (bcopy((caddr_t)(a), (caddr_t)(b), (c)), 0) # define COPYOUT(a,b,c) (bcopy((caddr_t)(a), (caddr_t)(b), (c)), 0) # endif # if SOLARIS && !defined(KMALLOC) # define KMALLOC(a,b) (a) = (b)new_kmem_alloc(sizeof(*(a)), \ KMEM_NOSLEEP) # define KMALLOCS(a,b,c) (a) = (b)new_kmem_alloc((c), KMEM_NOSLEEP) # endif # ifndef GET_MINOR # define GET_MINOR(x) dev2unit(x) # endif # define PANIC(x,y) if (x) panic y #endif /* _KERNEL */ #if !defined(IFNAME) && !defined(_KERNEL) # define IFNAME(x) get_ifname((struct ifnet *)x) #endif #ifndef COPYIFNAME # define NEED_FRGETIFNAME extern char *ipf_getifname(struct ifnet *, char *); # define COPYIFNAME(v, x, b) \ ipf_getifname((struct ifnet *)x, b) #endif #ifndef ASSERT # ifdef _KERNEL # define ASSERT(x) # else # define ASSERT(x) do { if (!(x)) abort(); } while (0) # endif #endif #ifndef BCOPYIN # define BCOPYIN(a,b,c) (bcopy((caddr_t)(a), (caddr_t)(b), (c)), 0) # define BCOPYOUT(a,b,c) (bcopy((caddr_t)(a), (caddr_t)(b), (c)), 0) #endif /* * Because the ctype(3) posix definition, if used "safely" in code everywhere, * would mean all normal code that walks through strings needed casts. Yuck. */ #define ISALNUM(x) isalnum((u_char)(x)) #define ISALPHA(x) isalpha((u_char)(x)) #define ISDIGIT(x) isdigit((u_char)(x)) #define ISSPACE(x) isspace((u_char)(x)) #define ISUPPER(x) isupper((u_char)(x)) #define ISXDIGIT(x) isxdigit((u_char)(x)) #define ISLOWER(x) islower((u_char)(x)) #define TOUPPER(x) toupper((u_char)(x)) #define TOLOWER(x) tolower((u_char)(x)) /* * If mutexes aren't being used, turn all the mutex functions into null-ops. */ #if !defined(USE_MUTEXES) # define USE_SPL 1 # undef RW_DESTROY # undef MUTEX_INIT # undef MUTEX_NUKE # undef MUTEX_DESTROY # define MUTEX_ENTER(x) ; # define READ_ENTER(x) ; # define WRITE_ENTER(x) ; # define MUTEX_DOWNGRADE(x) ; # define MUTEX_TRY_UPGRADE(x) ; # define RWLOCK_INIT(x, y) ; # define RWLOCK_EXIT(x) ; # define RW_DESTROY(x) ; # define MUTEX_EXIT(x) ; # define MUTEX_INIT(x,y) ; # define MUTEX_DESTROY(x) ; # define MUTEX_NUKE(x) ; #endif /* !USE_MUTEXES */ #ifndef ATOMIC_INC # define ATOMIC_INC(x) (x)++ # define ATOMIC_DEC(x) (x)-- #endif #if defined(USE_SPL) && defined(_KERNEL) # define SPL_INT(x) int x #else # define SPL_INT(x) #endif /* * If there are no atomic operations for bit sizes defined, define them to all * use a generic one that works for all sizes. */ #ifndef ATOMIC_INCL # define ATOMIC_INCL ATOMIC_INC # define ATOMIC_INC64 ATOMIC_INC # define ATOMIC_INC32 ATOMIC_INC # define ATOMIC_DECL ATOMIC_DEC # define ATOMIC_DEC64 ATOMIC_DEC # define ATOMIC_DEC32 ATOMIC_DEC #endif #ifndef HDR_T_PRIVATE typedef struct tcphdr tcphdr_t; typedef struct udphdr udphdr_t; #endif typedef struct icmp icmphdr_t; typedef struct ip ip_t; typedef struct ether_header ether_header_t; typedef struct tcpiphdr tcpiphdr_t; #ifndef FR_GROUPLEN # define FR_GROUPLEN 16 #endif #ifndef offsetof # define offsetof(t,m) (size_t)((&((t *)0L)->m)) #endif #ifndef stsizeof # define stsizeof(t,m) sizeof(((t *)0L)->m) #endif /* * This set of macros has been brought about because on Tru64 it is not * possible to easily assign or examine values in a structure that are * bit fields. */ #ifndef IP_V # define IP_V(x) (x)->ip_v #endif #ifndef IP_V_A # define IP_V_A(x,y) (x)->ip_v = (y) #endif #ifndef IP_HL # define IP_HL(x) (x)->ip_hl #endif #ifndef IP_HL_A # define IP_HL_A(x,y) (x)->ip_hl = ((y) & 0xf) #endif #ifndef TCP_X2 # define TCP_X2(x) (x)->th_x2 #endif #ifndef TCP_X2_A # define TCP_X2_A(x,y) (x)->th_x2 = (y) #endif #ifndef TCP_OFF # define TCP_OFF(x) (x)->th_off #endif #ifndef TCP_OFF_A # define TCP_OFF_A(x,y) (x)->th_off = (y) #endif #define IPMINLEN(i, h) ((i)->ip_len >= (IP_HL(i) * 4 + sizeof(struct h))) #define TCPF_ALL (TH_FIN|TH_SYN|TH_RST|TH_PUSH|TH_ACK|TH_URG|\ TH_ECN|TH_CWR) #if !SOLARIS && !defined(m_act) # define m_act m_nextpkt #endif /* * Security Options for Intenet Protocol (IPSO) as defined in RFC 1108. * * Basic Option * * 00000001 - (Reserved 4) * 00111101 - Top Secret * 01011010 - Secret * 10010110 - Confidential * 01100110 - (Reserved 3) * 11001100 - (Reserved 2) * 10101011 - Unclassified * 11110001 - (Reserved 1) */ #define IPSO_CLASS_RES4 0x01 #define IPSO_CLASS_TOPS 0x3d #define IPSO_CLASS_SECR 0x5a #define IPSO_CLASS_CONF 0x96 #define IPSO_CLASS_RES3 0x66 #define IPSO_CLASS_RES2 0xcc #define IPSO_CLASS_UNCL 0xab #define IPSO_CLASS_RES1 0xf1 #define IPSO_AUTH_GENSER 0x80 #define IPSO_AUTH_ESI 0x40 #define IPSO_AUTH_SCI 0x20 #define IPSO_AUTH_NSA 0x10 #define IPSO_AUTH_DOE 0x08 #define IPSO_AUTH_UN 0x06 #define IPSO_AUTH_FTE 0x01 /* * IP option #defines */ #undef IPOPT_RR #define IPOPT_RR 7 #undef IPOPT_ZSU #define IPOPT_ZSU 10 /* ZSU */ #undef IPOPT_MTUP #define IPOPT_MTUP 11 /* MTUP */ #undef IPOPT_MTUR #define IPOPT_MTUR 12 /* MTUR */ #undef IPOPT_ENCODE #define IPOPT_ENCODE 15 /* ENCODE */ #undef IPOPT_TS #define IPOPT_TS 68 #undef IPOPT_TR #define IPOPT_TR 82 /* TR */ #undef IPOPT_SECURITY #define IPOPT_SECURITY 130 #undef IPOPT_LSRR #define IPOPT_LSRR 131 #undef IPOPT_E_SEC #define IPOPT_E_SEC 133 /* E-SEC */ #undef IPOPT_CIPSO #define IPOPT_CIPSO 134 /* CIPSO */ #undef IPOPT_SATID #define IPOPT_SATID 136 #ifndef IPOPT_SID # define IPOPT_SID IPOPT_SATID #endif #undef IPOPT_SSRR #define IPOPT_SSRR 137 #undef IPOPT_ADDEXT #define IPOPT_ADDEXT 147 /* ADDEXT */ #undef IPOPT_VISA #define IPOPT_VISA 142 /* VISA */ #undef IPOPT_IMITD #define IPOPT_IMITD 144 /* IMITD */ #undef IPOPT_EIP #define IPOPT_EIP 145 /* EIP */ #undef IPOPT_RTRALRT #define IPOPT_RTRALRT 148 /* RTRALRT */ #undef IPOPT_SDB #define IPOPT_SDB 149 #undef IPOPT_NSAPA #define IPOPT_NSAPA 150 #undef IPOPT_DPS #define IPOPT_DPS 151 #undef IPOPT_UMP #define IPOPT_UMP 152 #undef IPOPT_FINN #define IPOPT_FINN 205 /* FINN */ #undef IPOPT_AH #define IPOPT_AH 256+IPPROTO_AH #define ICMP_UNREACH_ADMIN_PROHIBIT ICMP_UNREACH_FILTER_PROHIB #define ICMP_UNREACH_FILTER ICMP_UNREACH_FILTER_PROHIB #ifndef IPVERSION # define IPVERSION 4 #endif #ifndef IPOPT_MINOFF # define IPOPT_MINOFF 4 #endif #ifndef IPOPT_COPIED # define IPOPT_COPIED(x) ((x)&0x80) #endif #ifndef IPOPT_EOL # define IPOPT_EOL 0 #endif #ifndef IPOPT_NOP # define IPOPT_NOP 1 #endif #ifndef IP_MF # define IP_MF ((u_short)0x2000) #endif #ifndef ETHERTYPE_IP # define ETHERTYPE_IP ((u_short)0x0800) #endif #ifndef TH_FIN # define TH_FIN 0x01 #endif #ifndef TH_SYN # define TH_SYN 0x02 #endif #ifndef TH_RST # define TH_RST 0x04 #endif #ifndef TH_PUSH # define TH_PUSH 0x08 #endif #ifndef TH_ACK # define TH_ACK 0x10 #endif #ifndef TH_URG # define TH_URG 0x20 #endif #undef TH_ACKMASK #define TH_ACKMASK (TH_FIN|TH_SYN|TH_RST|TH_ACK) #ifndef IPOPT_EOL # define IPOPT_EOL 0 #endif #ifndef IPOPT_NOP # define IPOPT_NOP 1 #endif #ifndef IPOPT_RR # define IPOPT_RR 7 #endif #ifndef IPOPT_TS # define IPOPT_TS 68 #endif #ifndef IPOPT_SECURITY # define IPOPT_SECURITY 130 #endif #ifndef IPOPT_LSRR # define IPOPT_LSRR 131 #endif #ifndef IPOPT_SATID # define IPOPT_SATID 136 #endif #ifndef IPOPT_SSRR # define IPOPT_SSRR 137 #endif #ifndef IPOPT_SECUR_UNCLASS # define IPOPT_SECUR_UNCLASS ((u_short)0x0000) #endif #ifndef IPOPT_SECUR_CONFID # define IPOPT_SECUR_CONFID ((u_short)0xf135) #endif #ifndef IPOPT_SECUR_EFTO # define IPOPT_SECUR_EFTO ((u_short)0x789a) #endif #ifndef IPOPT_SECUR_MMMM # define IPOPT_SECUR_MMMM ((u_short)0xbc4d) #endif #ifndef IPOPT_SECUR_RESTR # define IPOPT_SECUR_RESTR ((u_short)0xaf13) #endif #ifndef IPOPT_SECUR_SECRET # define IPOPT_SECUR_SECRET ((u_short)0xd788) #endif #ifndef IPOPT_SECUR_TOPSECRET # define IPOPT_SECUR_TOPSECRET ((u_short)0x6bc5) #endif #ifndef IPOPT_OLEN # define IPOPT_OLEN 1 #endif #ifndef IPPROTO_HOPOPTS # define IPPROTO_HOPOPTS 0 #endif #ifndef IPPROTO_IPIP # define IPPROTO_IPIP 4 #endif #ifndef IPPROTO_ENCAP # define IPPROTO_ENCAP 98 #endif #ifndef IPPROTO_IPV6 # define IPPROTO_IPV6 41 #endif #ifndef IPPROTO_ROUTING # define IPPROTO_ROUTING 43 #endif #ifndef IPPROTO_FRAGMENT # define IPPROTO_FRAGMENT 44 #endif #ifndef IPPROTO_GRE # define IPPROTO_GRE 47 /* GRE encaps RFC 1701 */ #endif #ifndef IPPROTO_ESP # define IPPROTO_ESP 50 #endif #ifndef IPPROTO_AH # define IPPROTO_AH 51 #endif #ifndef IPPROTO_ICMPV6 # define IPPROTO_ICMPV6 58 #endif #ifndef IPPROTO_NONE # define IPPROTO_NONE 59 #endif #ifndef IPPROTO_DSTOPTS # define IPPROTO_DSTOPTS 60 #endif #ifndef IPPROTO_MOBILITY # define IPPROTO_MOBILITY 135 #endif #ifndef ICMP_ROUTERADVERT # define ICMP_ROUTERADVERT 9 #endif #ifndef ICMP_ROUTERSOLICIT # define ICMP_ROUTERSOLICIT 10 #endif #ifndef ICMP6_DST_UNREACH # define ICMP6_DST_UNREACH 1 #endif #ifndef ICMP6_PACKET_TOO_BIG # define ICMP6_PACKET_TOO_BIG 2 #endif #ifndef ICMP6_TIME_EXCEEDED # define ICMP6_TIME_EXCEEDED 3 #endif #ifndef ICMP6_PARAM_PROB # define ICMP6_PARAM_PROB 4 #endif #ifndef ICMP6_ECHO_REQUEST # define ICMP6_ECHO_REQUEST 128 #endif #ifndef ICMP6_ECHO_REPLY # define ICMP6_ECHO_REPLY 129 #endif #ifndef ICMP6_MEMBERSHIP_QUERY # define ICMP6_MEMBERSHIP_QUERY 130 #endif #ifndef MLD6_LISTENER_QUERY # define MLD6_LISTENER_QUERY 130 #endif #ifndef ICMP6_MEMBERSHIP_REPORT # define ICMP6_MEMBERSHIP_REPORT 131 #endif #ifndef MLD6_LISTENER_REPORT # define MLD6_LISTENER_REPORT 131 #endif #ifndef ICMP6_MEMBERSHIP_REDUCTION # define ICMP6_MEMBERSHIP_REDUCTION 132 #endif #ifndef MLD6_LISTENER_DONE # define MLD6_LISTENER_DONE 132 #endif #ifndef ND_ROUTER_SOLICIT # define ND_ROUTER_SOLICIT 133 #endif #ifndef ND_ROUTER_ADVERT # define ND_ROUTER_ADVERT 134 #endif #ifndef ND_NEIGHBOR_SOLICIT # define ND_NEIGHBOR_SOLICIT 135 #endif #ifndef ND_NEIGHBOR_ADVERT # define ND_NEIGHBOR_ADVERT 136 #endif #ifndef ND_REDIRECT # define ND_REDIRECT 137 #endif #ifndef ICMP6_ROUTER_RENUMBERING # define ICMP6_ROUTER_RENUMBERING 138 #endif #ifndef ICMP6_WRUREQUEST # define ICMP6_WRUREQUEST 139 #endif #ifndef ICMP6_WRUREPLY # define ICMP6_WRUREPLY 140 #endif #ifndef ICMP6_FQDN_QUERY # define ICMP6_FQDN_QUERY 139 #endif #ifndef ICMP6_FQDN_REPLY # define ICMP6_FQDN_REPLY 140 #endif #ifndef ICMP6_NI_QUERY # define ICMP6_NI_QUERY 139 #endif #ifndef ICMP6_NI_REPLY # define ICMP6_NI_REPLY 140 #endif #ifndef MLD6_MTRACE_RESP # define MLD6_MTRACE_RESP 200 #endif #ifndef MLD6_MTRACE # define MLD6_MTRACE 201 #endif #ifndef ICMP6_HADISCOV_REQUEST # define ICMP6_HADISCOV_REQUEST 202 #endif #ifndef ICMP6_HADISCOV_REPLY # define ICMP6_HADISCOV_REPLY 203 #endif #ifndef ICMP6_MOBILEPREFIX_SOLICIT # define ICMP6_MOBILEPREFIX_SOLICIT 204 #endif #ifndef ICMP6_MOBILEPREFIX_ADVERT # define ICMP6_MOBILEPREFIX_ADVERT 205 #endif #ifndef ICMP6_MAXTYPE # define ICMP6_MAXTYPE 205 #endif #ifndef ICMP6_DST_UNREACH_NOROUTE # define ICMP6_DST_UNREACH_NOROUTE 0 #endif #ifndef ICMP6_DST_UNREACH_ADMIN # define ICMP6_DST_UNREACH_ADMIN 1 #endif #ifndef ICMP6_DST_UNREACH_NOTNEIGHBOR # define ICMP6_DST_UNREACH_NOTNEIGHBOR 2 #endif #ifndef ICMP6_DST_UNREACH_BEYONDSCOPE # define ICMP6_DST_UNREACH_BEYONDSCOPE 2 #endif #ifndef ICMP6_DST_UNREACH_ADDR # define ICMP6_DST_UNREACH_ADDR 3 #endif #ifndef ICMP6_DST_UNREACH_NOPORT # define ICMP6_DST_UNREACH_NOPORT 4 #endif #ifndef ICMP6_TIME_EXCEED_TRANSIT # define ICMP6_TIME_EXCEED_TRANSIT 0 #endif #ifndef ICMP6_TIME_EXCEED_REASSEMBLY # define ICMP6_TIME_EXCEED_REASSEMBLY 1 #endif #ifndef ICMP6_NI_SUCCESS # define ICMP6_NI_SUCCESS 0 #endif #ifndef ICMP6_NI_REFUSED # define ICMP6_NI_REFUSED 1 #endif #ifndef ICMP6_NI_UNKNOWN # define ICMP6_NI_UNKNOWN 2 #endif #ifndef ICMP6_ROUTER_RENUMBERING_COMMAND # define ICMP6_ROUTER_RENUMBERING_COMMAND 0 #endif #ifndef ICMP6_ROUTER_RENUMBERING_RESULT # define ICMP6_ROUTER_RENUMBERING_RESULT 1 #endif #ifndef ICMP6_ROUTER_RENUMBERING_SEQNUM_RESET # define ICMP6_ROUTER_RENUMBERING_SEQNUM_RESET 255 #endif #ifndef ICMP6_PARAMPROB_HEADER # define ICMP6_PARAMPROB_HEADER 0 #endif #ifndef ICMP6_PARAMPROB_NEXTHEADER # define ICMP6_PARAMPROB_NEXTHEADER 1 #endif #ifndef ICMP6_PARAMPROB_OPTION # define ICMP6_PARAMPROB_OPTION 2 #endif #ifndef ICMP6_NI_SUBJ_IPV6 # define ICMP6_NI_SUBJ_IPV6 0 #endif #ifndef ICMP6_NI_SUBJ_FQDN # define ICMP6_NI_SUBJ_FQDN 1 #endif #ifndef ICMP6_NI_SUBJ_IPV4 # define ICMP6_NI_SUBJ_IPV4 2 #endif #ifndef MLD_MTRACE_RESP # define MLD_MTRACE_RESP 200 #endif #ifndef MLD_MTRACE # define MLD_MTRACE 201 #endif #ifndef MLD6_MTRACE_RESP # define MLD6_MTRACE_RESP MLD_MTRACE_RESP #endif #ifndef MLD6_MTRACE # define MLD6_MTRACE MLD_MTRACE #endif #if !defined(IPV6_FLOWINFO_MASK) # if (BYTE_ORDER == BIG_ENDIAN) || defined(_BIG_ENDIAN) # define IPV6_FLOWINFO_MASK 0x0fffffff /* flow info (28 bits) */ # else # if(BYTE_ORDER == LITTLE_ENDIAN) || !defined(_BIG_ENDIAN) # define IPV6_FLOWINFO_MASK 0xffffff0f /* flow info (28 bits) */ # endif /* LITTLE_ENDIAN */ # endif #endif #if !defined(IPV6_FLOWLABEL_MASK) # if (BYTE_ORDER == BIG_ENDIAN) || defined(_BIG_ENDIAN) # define IPV6_FLOWLABEL_MASK 0x000fffff /* flow label (20 bits) */ # else # if (BYTE_ORDER == LITTLE_ENDIAN) || !defined(_BIG_ENDIAN) # define IPV6_FLOWLABEL_MASK 0xffff0f00 /* flow label (20 bits) */ # endif /* LITTLE_ENDIAN */ # endif #endif /* * ECN is a new addition to TCP - RFC 2481 */ #ifndef TH_ECN # define TH_ECN 0x40 #endif #ifndef TH_CWR # define TH_CWR 0x80 #endif #define TH_ECNALL (TH_ECN|TH_CWR) /* * TCP States */ #define IPF_TCPS_LISTEN 0 /* listening for connection */ #define IPF_TCPS_SYN_SENT 1 /* active, have sent syn */ #define IPF_TCPS_SYN_RECEIVED 2 /* have send and received syn */ #define IPF_TCPS_HALF_ESTAB 3 /* for connections not fully "up" */ /* states < IPF_TCPS_ESTABLISHED are those where connections not established */ #define IPF_TCPS_ESTABLISHED 4 /* established */ #define IPF_TCPS_CLOSE_WAIT 5 /* rcvd fin, waiting for close */ /* states > IPF_TCPS_CLOSE_WAIT are those where user has closed */ #define IPF_TCPS_FIN_WAIT_1 6 /* have closed, sent fin */ #define IPF_TCPS_CLOSING 7 /* closed xchd FIN; await FIN ACK */ #define IPF_TCPS_LAST_ACK 8 /* had fin and close; await FIN ACK */ /* states > IPF_TCPS_CLOSE_WAIT && < IPF_TCPS_FIN_WAIT_2 await ACK of FIN */ #define IPF_TCPS_FIN_WAIT_2 9 /* have closed, fin is acked */ #define IPF_TCPS_TIME_WAIT 10 /* in 2*msl quiet wait after close */ #define IPF_TCPS_CLOSED 11 /* closed */ #define IPF_TCP_NSTATES 12 #define TCP_MSL 120 #undef ICMP_MAX_UNREACH #define ICMP_MAX_UNREACH 14 #undef ICMP_MAXTYPE #define ICMP_MAXTYPE 18 #ifndef LOG_FTP # define LOG_FTP (11<<3) #endif #ifndef LOG_AUTHPRIV # define LOG_AUTHPRIV (10<<3) #endif #ifndef LOG_AUDIT # define LOG_AUDIT (13<<3) #endif #ifndef LOG_NTP # define LOG_NTP (12<<3) #endif #ifndef LOG_SECURITY # define LOG_SECURITY (13<<3) #endif #ifndef LOG_LFMT # define LOG_LFMT (14<<3) #endif #ifndef LOG_CONSOLE # define LOG_CONSOLE (14<<3) #endif /* * ICMP error replies have an IP header (20 bytes), 8 bytes of ICMP data, * another IP header and then 64 bits of data, totalling 56. Of course, * the last 64 bits is dependent on that being available. */ #define ICMPERR_ICMPHLEN 8 #define ICMPERR_IPICMPHLEN (20 + 8) #define ICMPERR_MINPKTLEN (20 + 8 + 20) #define ICMPERR_MAXPKTLEN (20 + 8 + 20 + 8) #define ICMP6ERR_MINPKTLEN (40 + 8) #define ICMP6ERR_IPICMPHLEN (40 + 8 + 40) #ifndef MIN # define MIN(a,b) (((a)<(b))?(a):(b)) #endif #ifdef RESCUE # undef IPFILTER_BPF #endif #ifdef IPF_DEBUG # define DPRINT(x) printf x #else # define DPRINT(x) #endif #ifdef DTRACE_PROBE # ifdef _KERNEL # define DT(_n) DTRACE_PROBE(_n) # define DT1(_n,_a,_b) DTRACE_PROBE1(_n,_a,_b) # define DT2(_n,_a,_b,_c,_d) DTRACE_PROBE2(_n,_a,_b,_c,_d) # define DT3(_n,_a,_b,_c,_d,_e,_f) \ DTRACE_PROBE3(_n,_a,_b,_c,_d,_e,_f) # define DT4(_n,_a,_b,_c,_d,_e,_f,_g,_h) \ DTRACE_PROBE4(_n,_a,_b,_c,_d,_e,_f,_g,_h) # else # define DT(_n) # define DT1(_n,_a,_b) # define DT2(_n,_a,_b,_c,_d) # define DT3(_n,_a,_b,_c,_d,_e,_f) # define DT4(_n,_a,_b,_c,_d,_e,_f,_g,_h) # endif #else # define DT(_n) # define DT1(_n,_a,_b) # define DT2(_n,_a,_b,_c,_d) # define DT3(_n,_a,_b,_c,_d,_e,_f) # define DT4(_n,_a,_b,_c,_d,_e,_f,_g,_h) #endif struct ip6_routing { u_char ip6r_nxt; /* next header */ u_char ip6r_len; /* length in units of 8 octets */ u_char ip6r_type; /* always zero */ u_char ip6r_segleft; /* segments left */ u_32_t ip6r_reserved; /* reserved field */ }; #endif /* __IP_COMPAT_H__ */ diff --git a/sys/contrib/ipfilter/netinet/ip_fil.h b/sys/contrib/ipfilter/netinet/ip_fil.h index 0b5fc7285f93..72def439b3e8 100644 --- a/sys/contrib/ipfilter/netinet/ip_fil.h +++ b/sys/contrib/ipfilter/netinet/ip_fil.h @@ -1,1862 +1,1860 @@ /* * Copyright (C) 2012 by Darren Reed. * * See the IPFILTER.LICENCE file for details on licencing. * * @(#)ip_fil.h 1.35 6/5/96 * $FreeBSD$ * Id: ip_fil.h,v 2.170.2.51 2007/10/10 09:48:03 darrenr Exp $ */ #ifndef __IP_FIL_H__ #define __IP_FIL_H__ #include #include "netinet/ip_compat.h" #include "netinet/ipf_rb.h" #if NETBSD_GE_REV(104040000) # include #endif #if defined(BSD) && defined(_KERNEL) # include #endif #ifndef SOLARIS # if defined(sun) && defined(__SVR4) # define SOLARIS 1 # else # define SOLARIS 0 # endif #endif #ifndef __P # define __P(x) x #endif #define SIOCADAFR _IOW('r', 60, struct ipfobj) #define SIOCRMAFR _IOW('r', 61, struct ipfobj) #define SIOCSETFF _IOW('r', 62, u_int) #define SIOCGETFF _IOR('r', 63, u_int) #define SIOCGETFS _IOWR('r', 64, struct ipfobj) #define SIOCIPFFL _IOWR('r', 65, int) #define SIOCIPFFB _IOR('r', 66, int) #define SIOCADIFR _IOW('r', 67, struct ipfobj) #define SIOCRMIFR _IOW('r', 68, struct ipfobj) #define SIOCSWAPA _IOR('r', 69, u_int) #define SIOCINAFR _IOW('r', 70, struct ipfobj) #define SIOCINIFR _IOW('r', 71, struct ipfobj) #define SIOCFRENB _IOW('r', 72, u_int) #define SIOCFRSYN _IOW('r', 73, u_int) #define SIOCFRZST _IOWR('r', 74, struct ipfobj) #define SIOCZRLST _IOWR('r', 75, struct ipfobj) #define SIOCAUTHW _IOWR('r', 76, struct ipfobj) #define SIOCAUTHR _IOWR('r', 77, struct ipfobj) #define SIOCSTAT1 _IOWR('r', 78, struct ipfobj) #define SIOCSTLCK _IOWR('r', 79, u_int) #define SIOCSTPUT _IOWR('r', 80, struct ipfobj) #define SIOCSTGET _IOWR('r', 81, struct ipfobj) #define SIOCSTGSZ _IOWR('r', 82, struct ipfobj) #define SIOCSTAT2 _IOWR('r', 83, struct ipfobj) #define SIOCSETLG _IOWR('r', 84, int) #define SIOCGETLG _IOWR('r', 85, int) #define SIOCFUNCL _IOWR('r', 86, struct ipfunc_resolve) #define SIOCIPFGETNEXT _IOWR('r', 87, struct ipfobj) #define SIOCIPFGET _IOWR('r', 88, struct ipfobj) #define SIOCIPFSET _IOWR('r', 89, struct ipfobj) #define SIOCIPFL6 _IOWR('r', 90, int) #define SIOCIPFITER _IOWR('r', 91, struct ipfobj) #define SIOCGENITER _IOWR('r', 92, struct ipfobj) #define SIOCGTABL _IOWR('r', 93, struct ipfobj) #define SIOCIPFDELTOK _IOWR('r', 94, int) #define SIOCLOOKUPITER _IOWR('r', 95, struct ipfobj) #define SIOCGTQTAB _IOWR('r', 96, struct ipfobj) #define SIOCMATCHFLUSH _IOWR('r', 97, struct ipfobj) #define SIOCIPFINTERROR _IOR('r', 98, int) #define SIOCADDFR SIOCADAFR #define SIOCDELFR SIOCRMAFR #define SIOCINSFR SIOCINAFR #define SIOCATHST SIOCSTAT1 #define SIOCGFRST SIOCSTAT2 struct ipscan; struct ifnet; struct ipf_main_softc_s; typedef int (* lookupfunc_t)(struct ipf_main_softc_s *, void *, int, void *, u_int); /* * i6addr is used as a container for both IPv4 and IPv6 addresses, as well * as other types of objects, depending on its qualifier. */ typedef union i6addr { u_32_t i6[4]; struct in_addr in4; #ifdef USE_INET6 struct in6_addr in6; #endif void *vptr[2]; lookupfunc_t lptr[2]; struct { u_short type; u_short subtype; int name; } i6un; } i6addr_t; #define in4_addr in4.s_addr #define iplookupnum i6[1] #define iplookupname i6un.name #define iplookuptype i6un.type #define iplookupsubtype i6un.subtype /* * NOTE: These DO overlap the above on 64bit systems and this IS recognised. */ #define iplookupptr vptr[0] #define iplookupfunc lptr[1] #define I60(x) (((u_32_t *)(x))[0]) #define I61(x) (((u_32_t *)(x))[1]) #define I62(x) (((u_32_t *)(x))[2]) #define I63(x) (((u_32_t *)(x))[3]) #define HI60(x) ntohl(((u_32_t *)(x))[0]) #define HI61(x) ntohl(((u_32_t *)(x))[1]) #define HI62(x) ntohl(((u_32_t *)(x))[2]) #define HI63(x) ntohl(((u_32_t *)(x))[3]) #define IP6_EQ(a,b) ((I63(a) == I63(b)) && (I62(a) == I62(b)) && \ (I61(a) == I61(b)) && (I60(a) == I60(b))) #define IP6_NEQ(a,b) ((I63(a) != I63(b)) || (I62(a) != I62(b)) || \ (I61(a) != I61(b)) || (I60(a) != I60(b))) #define IP6_ISZERO(a) ((I60(a) | I61(a) | I62(a) | I63(a)) == 0) #define IP6_NOTZERO(a) ((I60(a) | I61(a) | I62(a) | I63(a)) != 0) #define IP6_ISONES(a) ((I63(a) == 0xffffffff) && (I62(a) == 0xffffffff) && \ (I61(a) == 0xffffffff) && (I60(a) == 0xffffffff)) #define IP6_GT(a,b) (ntohl(HI60(a)) > ntohl(HI60(b)) || \ (HI60(a) == HI60(b) && \ (ntohl(HI61(a)) > ntohl(HI61(b)) || \ (HI61(a) == HI61(b) && \ (ntohl(HI62(a)) > ntohl(HI62(b)) || \ (HI62(a) == HI62(b) && \ ntohl(HI63(a)) > ntohl(HI63(b)))))))) #define IP6_LT(a,b) (ntohl(HI60(a)) < ntohl(HI60(b)) || \ (HI60(a) == HI60(b) && \ (ntohl(HI61(a)) < ntohl(HI61(b)) || \ (HI61(a) == HI61(b) && \ (ntohl(HI62(a)) < ntohl(HI62(b)) || \ (HI62(a) == HI62(b) && \ ntohl(HI63(a)) < ntohl(HI63(b)))))))) #define NLADD(n,x) htonl(ntohl(n) + (x)) #define IP6_INC(a) \ do { u_32_t *_i6 = (u_32_t *)(a); \ _i6[3] = NLADD(_i6[3], 1); \ if (_i6[3] == 0) { \ _i6[2] = NLADD(_i6[2], 1); \ if (_i6[2] == 0) { \ _i6[1] = NLADD(_i6[1], 1); \ if (_i6[1] == 0) { \ _i6[0] = NLADD(_i6[0], 1); \ } \ } \ } \ } while (0) #define IP6_ADD(a,x,d) \ do { i6addr_t *_s = (i6addr_t *)(a); \ i6addr_t *_d = (i6addr_t *)(d); \ _d->i6[0] = NLADD(_s->i6[0], x); \ if (ntohl(_d->i6[0]) < ntohl(_s->i6[0])) { \ _d->i6[1] = NLADD(_d->i6[1], 1); \ if (ntohl(_d->i6[1]) < ntohl(_s->i6[1])) { \ _d->i6[2] = NLADD(_d->i6[2], 1); \ if (ntohl(_d->i6[2]) < ntohl(_s->i6[2])) { \ _d->i6[3] = NLADD(_d->i6[3], 1); \ } \ } \ } \ } while (0) #define IP6_AND(a,b,d) do { i6addr_t *_s1 = (i6addr_t *)(a); \ i6addr_t *_s2 = (i6addr_t *)(b); \ i6addr_t *_d = (i6addr_t *)(d); \ _d->i6[0] = _s1->i6[0] & _s2->i6[0]; \ _d->i6[1] = _s1->i6[1] & _s2->i6[1]; \ _d->i6[2] = _s1->i6[2] & _s2->i6[2]; \ _d->i6[3] = _s1->i6[3] & _s2->i6[3]; \ } while (0) #define IP6_ANDASSIGN(a,m) \ do { i6addr_t *_d = (i6addr_t *)(a); \ i6addr_t *_m = (i6addr_t *)(m); \ _d->i6[0] &= _m->i6[0]; \ _d->i6[1] &= _m->i6[1]; \ _d->i6[2] &= _m->i6[2]; \ _d->i6[3] &= _m->i6[3]; \ } while (0) #define IP6_MASKEQ(a,m,b) \ (((I60(a) & I60(m)) == I60(b)) && \ ((I61(a) & I61(m)) == I61(b)) && \ ((I62(a) & I62(m)) == I62(b)) && \ ((I63(a) & I63(m)) == I63(b))) #define IP6_MASKNEQ(a,m,b) \ (((I60(a) & I60(m)) != I60(b)) || \ ((I61(a) & I61(m)) != I61(b)) || \ ((I62(a) & I62(m)) != I62(b)) || \ ((I63(a) & I63(m)) != I63(b))) #define IP6_MERGE(a,b,c) \ do { i6addr_t *_d, *_s1, *_s2; \ _d = (i6addr_t *)(a); \ _s1 = (i6addr_t *)(b); \ _s2 = (i6addr_t *)(c); \ _d->i6[0] |= _s1->i6[0] & ~_s2->i6[0]; \ _d->i6[1] |= _s1->i6[1] & ~_s2->i6[1]; \ _d->i6[2] |= _s1->i6[2] & ~_s2->i6[2]; \ _d->i6[3] |= _s1->i6[3] & ~_s2->i6[3]; \ } while (0) #define IP6_MASK(a,b,c) \ do { i6addr_t *_d, *_s1, *_s2; \ _d = (i6addr_t *)(a); \ _s1 = (i6addr_t *)(b); \ _s2 = (i6addr_t *)(c); \ _d->i6[0] = _s1->i6[0] & ~_s2->i6[0]; \ _d->i6[1] = _s1->i6[1] & ~_s2->i6[1]; \ _d->i6[2] = _s1->i6[2] & ~_s2->i6[2]; \ _d->i6[3] = _s1->i6[3] & ~_s2->i6[3]; \ } while (0) #define IP6_SETONES(a) \ do { i6addr_t *_d = (i6addr_t *)(a); \ _d->i6[0] = 0xffffffff; \ _d->i6[1] = 0xffffffff; \ _d->i6[2] = 0xffffffff; \ _d->i6[3] = 0xffffffff; \ } while (0) typedef union ipso_u { u_short ipso_ripso[2]; u_32_t ipso_doi; } ipso_t; typedef struct fr_ip { u_32_t fi_v:4; /* IP version */ u_32_t fi_xx:4; /* spare */ u_32_t fi_tos:8; /* IP packet TOS */ u_32_t fi_ttl:8; /* IP packet TTL */ u_32_t fi_p:8; /* IP packet protocol */ u_32_t fi_optmsk; /* bitmask composed from IP options */ i6addr_t fi_src; /* source address from packet */ i6addr_t fi_dst; /* destination address from packet */ ipso_t fi_ipso; /* IP security options */ u_32_t fi_flx; /* packet flags */ u_32_t fi_tcpmsk; /* TCP options set/reset */ u_32_t fi_ports[2]; /* TCP ports */ u_char fi_tcpf; /* TCP flags */ u_char fi_sensitivity; u_char fi_xxx[2]; /* pad */ } fr_ip_t; /* * For use in fi_flx */ #define FI_TCPUDP 0x0001 /* TCP/UCP implied comparison*/ #define FI_OPTIONS 0x0002 #define FI_FRAG 0x0004 #define FI_SHORT 0x0008 #define FI_NATED 0x0010 #define FI_MULTICAST 0x0020 #define FI_BROADCAST 0x0040 #define FI_MBCAST 0x0080 #define FI_STATE 0x0100 #define FI_BADNAT 0x0200 #define FI_BAD 0x0400 #define FI_OOW 0x0800 /* Out of state window, else match */ #define FI_ICMPERR 0x1000 #define FI_FRAGBODY 0x2000 #define FI_BADSRC 0x4000 #define FI_LOWTTL 0x8000 #define FI_CMP 0x5cfe3 /* Not FI_FRAG,FI_NATED,FI_FRAGTAIL */ #define FI_ICMPCMP 0x0003 /* Flags we can check for ICMP error packets */ #define FI_WITH 0x5effe /* Not FI_TCPUDP */ #define FI_V6EXTHDR 0x10000 #define FI_COALESCE 0x20000 #define FI_NEWNAT 0x40000 #define FI_ICMPQUERY 0x80000 #define FI_ENCAP 0x100000 /* encap/decap with NAT */ #define FI_AH 0x200000 /* AH header present */ #define FI_DOCKSUM 0x10000000 /* Proxy wants L4 recalculation */ #define FI_NOCKSUM 0x20000000 /* don't do a L4 checksum validation */ #define FI_NOWILD 0x40000000 /* Do not do wildcard searches */ #define FI_IGNORE 0x80000000 #define fi_secmsk fi_ipso.ipso_ripso[0] #define fi_auth fi_ipso.ipso_ripso[1] #define fi_doi fi_ipso.ipso_doi #define fi_saddr fi_src.in4.s_addr #define fi_daddr fi_dst.in4.s_addr #define fi_srcnum fi_src.iplookupnum #define fi_dstnum fi_dst.iplookupnum #define fi_srcname fi_src.iplookupname #define fi_dstname fi_dst.iplookupname #define fi_srctype fi_src.iplookuptype #define fi_dsttype fi_dst.iplookuptype #define fi_srcsubtype fi_src.iplookupsubtype #define fi_dstsubtype fi_dst.iplookupsubtype #define fi_srcptr fi_src.iplookupptr #define fi_dstptr fi_dst.iplookupptr #define fi_srcfunc fi_src.iplookupfunc #define fi_dstfunc fi_dst.iplookupfunc /* * These are both used by the state and NAT code to indicate that one port or * the other should be treated as a wildcard. * NOTE: When updating, check bit masks in ip_state.h and update there too. */ #define SI_W_SPORT 0x00000100 #define SI_W_DPORT 0x00000200 #define SI_WILDP (SI_W_SPORT|SI_W_DPORT) #define SI_W_SADDR 0x00000400 #define SI_W_DADDR 0x00000800 #define SI_WILDA (SI_W_SADDR|SI_W_DADDR) #define SI_NEWFR 0x00001000 #define SI_CLONE 0x00002000 #define SI_CLONED 0x00004000 #define SI_NEWCLONE 0x00008000 typedef struct { u_short fda_ports[2]; u_char fda_tcpf; /* TCP header flags (SYN, ACK, etc) */ } frdat_t; typedef enum fr_breasons_e { FRB_BLOCKED = 0, FRB_LOGFAIL = 1, FRB_PPSRATE = 2, FRB_JUMBO = 3, FRB_MAKEFRIP = 4, FRB_STATEADD = 5, FRB_UPDATEIPID = 6, FRB_LOGFAIL2 = 7, FRB_DECAPFRIP = 8, FRB_AUTHNEW = 9, FRB_AUTHCAPTURE = 10, FRB_COALESCE = 11, FRB_PULLUP = 12, FRB_AUTHFEEDBACK = 13, FRB_BADFRAG = 14, FRB_NATV4 = 15, FRB_NATV6 = 16, } fr_breason_t; #define FRB_MAX_VALUE 16 typedef enum ipf_cksum_e { FI_CK_BAD = -1, FI_CK_NEEDED = 0, FI_CK_SUMOK = 1, FI_CK_L4PART = 2, FI_CK_L4FULL = 4 } ipf_cksum_t; typedef struct fr_info { void *fin_main_soft; void *fin_ifp; /* interface packet is `on' */ struct frentry *fin_fr; /* last matching rule */ int fin_out; /* in or out ? 1 == out, 0 == in */ fr_ip_t fin_fi; /* IP Packet summary */ frdat_t fin_dat; /* TCP/UDP ports, ICMP code/type */ int fin_dlen; /* length of data portion of packet */ int fin_plen; u_32_t fin_rule; /* rule # last matched */ u_short fin_hlen; /* length of IP header in bytes */ char fin_group[FR_GROUPLEN]; /* group number, -1 for none */ void *fin_dp; /* start of data past IP header */ /* * Fields after fin_dp aren't used for compression of log records. * fin_fi contains the IP version (fin_family) * fin_rule isn't included because adding a new rule can change it but * not change fin_fr. fin_rule is the rule number reported. * It isn't necessary to include fin_crc because that is checked * for explicitly, before calling bcmp. */ u_32_t fin_crc; /* Simple calculation for logging */ int fin_family; /* AF_INET, etc. */ int fin_icode; /* ICMP error to return */ int fin_mtu; /* MTU input for ICMP need-frag */ int fin_rev; /* state only: 1 = reverse */ int fin_ipoff; /* # bytes from buffer start to hdr */ u_32_t fin_id; /* IP packet id field */ u_short fin_l4hlen; /* length of L4 header, if known */ u_short fin_off; int fin_depth; /* Group nesting depth */ int fin_error; /* Error code to return */ ipf_cksum_t fin_cksum; /* -1 = bad, 1 = good, 0 = not done */ fr_breason_t fin_reason; /* why auto blocked */ u_int fin_pktnum; void *fin_nattag; struct frdest *fin_dif; struct frdest *fin_tif; union { ip_t *fip_ip; #ifdef USE_INET6 ip6_t *fip_ip6; #endif } fin_ipu; mb_t **fin_mp; /* pointer to pointer to mbuf */ mb_t *fin_m; /* pointer to mbuf */ -#ifdef MENTAT +#if SOLARIS mb_t *fin_qfm; /* pointer to mblk where pkt starts */ void *fin_qpi; char fin_ifname[LIFNAMSIZ]; #endif void *fin_fraghdr; /* pointer to start of ipv6 frag hdr */ } fr_info_t; #define fin_ip fin_ipu.fip_ip #define fin_ip6 fin_ipu.fip_ip6 #define fin_v fin_fi.fi_v #define fin_p fin_fi.fi_p #define fin_flx fin_fi.fi_flx #define fin_optmsk fin_fi.fi_optmsk #define fin_secmsk fin_fi.fi_secmsk #define fin_doi fin_fi.fi_doi #define fin_auth fin_fi.fi_auth #define fin_src fin_fi.fi_src.in4 #define fin_saddr fin_fi.fi_saddr #define fin_dst fin_fi.fi_dst.in4 #define fin_daddr fin_fi.fi_daddr #define fin_data fin_fi.fi_ports #define fin_sport fin_fi.fi_ports[0] #define fin_dport fin_fi.fi_ports[1] #define fin_tcpf fin_fi.fi_tcpf #define fin_src6 fin_fi.fi_src #define fin_dst6 fin_fi.fi_dst #define fin_srcip6 fin_fi.fi_src.in6 #define fin_dstip6 fin_fi.fi_dst.in6 #define IPF_IN 0 #define IPF_OUT 1 typedef struct frentry *(*ipfunc_t)(fr_info_t *, u_32_t *); typedef int (*ipfuncinit_t)(struct ipf_main_softc_s *, struct frentry *); typedef struct ipfunc_resolve { char ipfu_name[32]; ipfunc_t ipfu_addr; ipfuncinit_t ipfu_init; ipfuncinit_t ipfu_fini; } ipfunc_resolve_t; /* * Size for compares on fr_info structures */ #define FI_CSIZE offsetof(fr_info_t, fin_icode) #define FI_LCSIZE offsetof(fr_info_t, fin_dp) /* * Size for copying cache fr_info structure */ #define FI_COPYSIZE offsetof(fr_info_t, fin_dp) /* * Structure for holding IPFilter's tag information */ #define IPFTAG_LEN 16 typedef struct { union { u_32_t iptu_num[4]; char iptu_tag[IPFTAG_LEN]; } ipt_un; int ipt_not; } ipftag_t; #define ipt_tag ipt_un.iptu_tag #define ipt_num ipt_un.iptu_num /* * Structure to define address for pool lookups. */ typedef struct { u_char adf_len; sa_family_t adf_family; u_char adf_xxx[2]; i6addr_t adf_addr; } addrfamily_t; RBI_LINK(ipf_rb, host_node_s); typedef struct host_node_s { RBI_FIELD(ipf_rb) hn_entry; addrfamily_t hn_addr; int hn_active; } host_node_t; typedef RBI_HEAD(ipf_rb, host_node_s) ipf_rb_head_t; typedef struct host_track_s { ipf_rb_head_t ht_root; int ht_max_nodes; int ht_max_per_node; int ht_netmask; int ht_cur_nodes; } host_track_t; typedef enum fr_dtypes_e { FRD_NORMAL = 0, FRD_DSTLIST } fr_dtypes_t; /* * This structure is used to hold information about the next hop for where * to forward a packet. */ typedef struct frdest { void *fd_ptr; addrfamily_t fd_addr; fr_dtypes_t fd_type; int fd_name; } frdest_t; #define fd_ip6 fd_addr.adf_addr #define fd_ip fd_ip6.in4 typedef enum fr_ctypes_e { FR_NONE = 0, FR_EQUAL, FR_NEQUAL, FR_LESST, FR_GREATERT, FR_LESSTE, FR_GREATERTE, FR_OUTRANGE, FR_INRANGE, FR_INCRANGE } fr_ctypes_t; /* * This structure holds information about a port comparison. */ typedef struct frpcmp { fr_ctypes_t frp_cmp; /* data for port comparisons */ u_32_t frp_port; /* low port for <> and >< */ u_32_t frp_top; /* high port for <> and >< */ } frpcmp_t; /* * Structure containing all the relevant TCP/UDP things that can be checked in * a filter rule. */ typedef struct frtuc { u_char ftu_tcpfm; /* tcp flags mask */ u_char ftu_tcpf; /* tcp flags */ frpcmp_t ftu_src; /* source port */ frpcmp_t ftu_dst; /* destination port */ } frtuc_t; #define ftu_scmp ftu_src.frp_cmp #define ftu_dcmp ftu_dst.frp_cmp #define ftu_sport ftu_src.frp_port #define ftu_dport ftu_dst.frp_port #define ftu_stop ftu_src.frp_top #define ftu_dtop ftu_dst.frp_top #define FR_TCPFMAX 0x3f typedef enum fr_atypes_e { FRI_NONE = -1, /* For LHS of NAT */ FRI_NORMAL = 0, /* Normal address */ FRI_DYNAMIC, /* dynamic address */ FRI_LOOKUP, /* address is a pool # */ FRI_RANGE, /* address/mask is a range */ FRI_NETWORK, /* network address from if */ FRI_BROADCAST, /* broadcast address from if */ FRI_PEERADDR, /* Peer address for P-to-P */ FRI_NETMASKED, /* network address with netmask from if */ FRI_SPLIT, /* For NAT compatibility */ FRI_INTERFACE /* address is based on interface name */ } fr_atypes_t; /* * This structure makes up what is considered to be the IPFilter specific * matching components of a filter rule, as opposed to the data structures * used to define the result which are in frentry_t and not here. */ typedef struct fripf { fr_ip_t fri_ip; fr_ip_t fri_mip; /* mask structure */ u_short fri_icmpm; /* data for ICMP packets (mask) */ u_short fri_icmp; frtuc_t fri_tuc; fr_atypes_t fri_satype; /* addres type */ fr_atypes_t fri_datype; /* addres type */ int fri_sifpidx; /* doing dynamic addressing */ int fri_difpidx; /* index into fr_ifps[] to use when */ } fripf_t; #define fri_dlookup fri_mip.fi_dst #define fri_slookup fri_mip.fi_src #define fri_dstnum fri_mip.fi_dstnum #define fri_srcnum fri_mip.fi_srcnum #define fri_dstname fri_mip.fi_dstname #define fri_srcname fri_mip.fi_srcname #define fri_dstptr fri_mip.fi_dstptr #define fri_srcptr fri_mip.fi_srcptr typedef enum fr_rtypes_e { FR_T_NONE = 0, FR_T_IPF, /* IPF structures */ FR_T_BPFOPC, /* BPF opcode */ FR_T_CALLFUNC, /* callout to function in fr_func only */ FR_T_COMPIPF, /* compiled C code */ FR_T_IPFEXPR, /* IPF expression */ FR_T_BUILTIN = 0x40000000, /* rule is in kernel space */ FR_T_IPF_BUILTIN, FR_T_BPFOPC_BUILTIN, FR_T_CALLFUNC_BUILTIN, FR_T_COMPIPF_BUILTIN, FR_T_IPFEXPR_BUILTIN } fr_rtypes_t; typedef struct frentry * (* frentfunc_t)(fr_info_t *); typedef struct frentry { ipfmutex_t fr_lock; struct frentry *fr_next; struct frentry **fr_pnext; struct frgroup *fr_grp; struct frgroup *fr_grphead; struct frgroup *fr_icmpgrp; struct ipscan *fr_isc; struct frentry *fr_dnext; /* 2 fr_die linked list pointers */ struct frentry **fr_pdnext; void *fr_ifas[4]; void *fr_ptr; /* for use with fr_arg */ int fr_comment; /* text comment for rule */ int fr_size; /* size of this structure */ int fr_ref; /* reference count */ int fr_statecnt; /* state count - for limit rules */ u_32_t fr_die; /* only used on loading the rule */ u_int fr_cksum; /* checksum on filter rules for performance */ /* * The line number from a file is here because we need to be able to * match the rule generated with ``grep rule ipf.conf | ipf -rf -'' * with the rule loaded using ``ipf -f ipf.conf'' - thus it can't be * on the other side of fr_func. */ int fr_flineno; /* line number from conf file */ /* * These are only incremented when a packet matches this rule and * it is the last match */ U_QUAD_T fr_hits; U_QUAD_T fr_bytes; /* * For PPS rate limiting * fr_lpu is used to always have the same size for this field, * allocating 64bits for seconds and 32bits for milliseconds. */ union { struct timeval frp_lastpkt; char frp_bytes[12]; } fr_lpu; int fr_curpps; union { void *fru_data; char *fru_caddr; fripf_t *fru_ipf; frentfunc_t fru_func; } fr_dun; /* * Fields after this may not change whilst in the kernel. */ ipfunc_t fr_func; /* call this function */ int fr_dsize; int fr_pps; fr_rtypes_t fr_type; u_32_t fr_flags; /* per-rule flags && options (see below) */ u_32_t fr_logtag; /* user defined log tag # */ u_32_t fr_collect; /* collection number */ u_int fr_arg; /* misc. numeric arg for rule */ u_int fr_loglevel; /* syslog log facility + priority */ u_char fr_family; u_char fr_icode; /* return ICMP code */ int fr_group; /* group to which this rule belongs */ int fr_grhead; /* group # which this rule starts */ int fr_isctag; int fr_rpc; /* XID Filtering */ ipftag_t fr_nattag; /* * These are all options related to stateful filtering */ host_track_t fr_srctrack; int fr_nostatelog; int fr_statemax; /* max reference count */ int fr_icmphead; /* ICMP group for state options */ u_int fr_age[2]; /* non-TCP state timeouts */ /* * These are compared separately. */ int fr_ifnames[4]; frdest_t fr_tifs[2]; /* "to"/"reply-to" interface */ frdest_t fr_dif; /* duplicate packet interface */ /* * How big is the name buffer at the end? */ int fr_namelen; char fr_names[1]; } frentry_t; #define fr_lastpkt fr_lpu.frp_lastpkt #define fr_caddr fr_dun.fru_caddr #define fr_data fr_dun.fru_data #define fr_dfunc fr_dun.fru_func #define fr_ipf fr_dun.fru_ipf #define fr_ip fr_ipf->fri_ip #define fr_mip fr_ipf->fri_mip #define fr_icmpm fr_ipf->fri_icmpm #define fr_icmp fr_ipf->fri_icmp #define fr_tuc fr_ipf->fri_tuc #define fr_satype fr_ipf->fri_satype #define fr_datype fr_ipf->fri_datype #define fr_sifpidx fr_ipf->fri_sifpidx #define fr_difpidx fr_ipf->fri_difpidx #define fr_proto fr_ip.fi_p #define fr_mproto fr_mip.fi_p #define fr_ttl fr_ip.fi_ttl #define fr_mttl fr_mip.fi_ttl #define fr_tos fr_ip.fi_tos #define fr_mtos fr_mip.fi_tos #define fr_tcpfm fr_tuc.ftu_tcpfm #define fr_tcpf fr_tuc.ftu_tcpf #define fr_scmp fr_tuc.ftu_scmp #define fr_dcmp fr_tuc.ftu_dcmp #define fr_dport fr_tuc.ftu_dport #define fr_sport fr_tuc.ftu_sport #define fr_stop fr_tuc.ftu_stop #define fr_dtop fr_tuc.ftu_dtop #define fr_dst fr_ip.fi_dst.in4 #define fr_dst6 fr_ip.fi_dst #define fr_daddr fr_ip.fi_dst.in4.s_addr #define fr_src fr_ip.fi_src.in4 #define fr_src6 fr_ip.fi_src #define fr_saddr fr_ip.fi_src.in4.s_addr #define fr_dmsk fr_mip.fi_dst.in4 #define fr_dmsk6 fr_mip.fi_dst #define fr_dmask fr_mip.fi_dst.in4.s_addr #define fr_smsk fr_mip.fi_src.in4 #define fr_smsk6 fr_mip.fi_src #define fr_smask fr_mip.fi_src.in4.s_addr #define fr_dstnum fr_ip.fi_dstnum #define fr_srcnum fr_ip.fi_srcnum #define fr_dlookup fr_ip.fi_dst #define fr_slookup fr_ip.fi_src #define fr_dstname fr_ip.fi_dstname #define fr_srcname fr_ip.fi_srcname #define fr_dsttype fr_ip.fi_dsttype #define fr_srctype fr_ip.fi_srctype #define fr_dstsubtype fr_ip.fi_dstsubtype #define fr_srcsubtype fr_ip.fi_srcsubtype #define fr_dstptr fr_mip.fi_dstptr #define fr_srcptr fr_mip.fi_srcptr #define fr_dstfunc fr_mip.fi_dstfunc #define fr_srcfunc fr_mip.fi_srcfunc #define fr_optbits fr_ip.fi_optmsk #define fr_optmask fr_mip.fi_optmsk #define fr_secbits fr_ip.fi_secmsk #define fr_secmask fr_mip.fi_secmsk #define fr_authbits fr_ip.fi_auth #define fr_authmask fr_mip.fi_auth #define fr_doi fr_ip.fi_doi #define fr_doimask fr_mip.fi_doi #define fr_flx fr_ip.fi_flx #define fr_mflx fr_mip.fi_flx #define fr_ifa fr_ifas[0] #define fr_oifa fr_ifas[2] #define fr_tif fr_tifs[0] #define fr_rif fr_tifs[1] #define FR_NOLOGTAG 0 #define FR_CMPSIZ (offsetof(struct frentry, fr_ifnames) - \ offsetof(struct frentry, fr_func)) #define FR_NAME(_f, _n) (_f)->fr_names + (_f)->_n #define FR_NUM(_a) (sizeof(_a) / sizeof(*_a)) /* * fr_flags */ #define FR_BLOCK 0x00001 /* do not allow packet to pass */ #define FR_PASS 0x00002 /* allow packet to pass */ #define FR_AUTH 0x00003 /* use authentication */ #define FR_PREAUTH 0x00004 /* require preauthentication */ #define FR_ACCOUNT 0x00005 /* Accounting rule */ #define FR_SKIP 0x00006 /* skip rule */ #define FR_DECAPSULATE 0x00008 /* decapsulate rule */ #define FR_CALL 0x00009 /* call rule */ #define FR_CMDMASK 0x0000f #define FR_LOG 0x00010 /* Log */ #define FR_LOGB 0x00011 /* Log-fail */ #define FR_LOGP 0x00012 /* Log-pass */ #define FR_LOGMASK (FR_LOG|FR_CMDMASK) #define FR_CALLNOW 0x00020 /* call another function (fr_func) if matches */ #define FR_NOTSRCIP 0x00040 #define FR_NOTDSTIP 0x00080 #define FR_QUICK 0x00100 /* match & stop processing list */ #define FR_KEEPFRAG 0x00200 /* keep fragment information */ #define FR_KEEPSTATE 0x00400 /* keep `connection' state information */ #define FR_FASTROUTE 0x00800 /* bypass normal routing */ #define FR_RETRST 0x01000 /* Return TCP RST packet - reset connection */ #define FR_RETICMP 0x02000 /* Return ICMP unreachable packet */ #define FR_FAKEICMP 0x03000 /* Return ICMP unreachable with fake source */ #define FR_OUTQUE 0x04000 /* outgoing packets */ #define FR_INQUE 0x08000 /* ingoing packets */ #define FR_LOGBODY 0x10000 /* Log the body */ #define FR_LOGFIRST 0x20000 /* Log the first byte if state held */ #define FR_LOGORBLOCK 0x40000 /* block the packet if it can't be logged */ #define FR_STLOOSE 0x80000 /* loose state checking */ #define FR_FRSTRICT 0x100000 /* strict frag. cache */ #define FR_STSTRICT 0x200000 /* strict keep state */ #define FR_NEWISN 0x400000 /* new ISN for outgoing TCP */ #define FR_NOICMPERR 0x800000 /* do not match ICMP errors in state */ #define FR_STATESYNC 0x1000000 /* synchronize state to slave */ #define FR_COPIED 0x2000000 /* copied from user space */ #define FR_INACTIVE 0x4000000 /* only used when flush'ing rules */ #define FR_NOMATCH 0x8000000 /* no match occured */ /* 0x10000000 FF_LOGPASS */ /* 0x20000000 FF_LOGBLOCK */ /* 0x40000000 FF_LOGNOMATCH */ /* 0x80000000 FF_BLOCKNONIP */ #define FR_RETMASK (FR_RETICMP|FR_RETRST|FR_FAKEICMP) #define FR_ISBLOCK(x) (((x) & FR_CMDMASK) == FR_BLOCK) #define FR_ISPASS(x) (((x) & FR_CMDMASK) == FR_PASS) #define FR_ISAUTH(x) (((x) & FR_CMDMASK) == FR_AUTH) #define FR_ISPREAUTH(x) (((x) & FR_CMDMASK) == FR_PREAUTH) #define FR_ISACCOUNT(x) (((x) & FR_CMDMASK) == FR_ACCOUNT) #define FR_ISSKIP(x) (((x) & FR_CMDMASK) == FR_SKIP) #define FR_ISDECAPS(x) (((x) & FR_CMDMASK) == FR_DECAPSULATE) #define FR_ISNOMATCH(x) ((x) & FR_NOMATCH) #define FR_INOUT (FR_INQUE|FR_OUTQUE) /* * recognized flags for SIOCGETFF and SIOCSETFF, and get put in fr_flags */ #define FF_LOGPASS 0x10000000 #define FF_LOGBLOCK 0x20000000 #define FF_LOGNOMATCH 0x40000000 #define FF_LOGGING (FF_LOGPASS|FF_LOGBLOCK|FF_LOGNOMATCH) #define FF_BLOCKNONIP 0x80000000 /* Solaris2 Only */ /* * Structure that passes information on what/how to flush to the kernel. */ typedef struct ipfflush { int ipflu_how; int ipflu_arg; } ipfflush_t; /* * */ typedef struct ipfgetctl { u_int ipfg_min; /* min value */ u_int ipfg_current; /* current value */ u_int ipfg_max; /* max value */ u_int ipfg_default; /* default value */ u_int ipfg_steps; /* value increments */ char ipfg_name[40]; /* tag name for this control */ } ipfgetctl_t; typedef struct ipfsetctl { int ipfs_which; /* 0 = min 1 = current 2 = max 3 = default */ u_int ipfs_value; /* min value */ char ipfs_name[40]; /* tag name for this control */ } ipfsetctl_t; /* * Some of the statistics below are in their own counters, but most are kept * in this single structure so that they can all easily be collected and * copied back as required. */ typedef struct ipf_statistics { u_long fr_icmp_coalesce; u_long fr_tcp_frag; u_long fr_tcp_pullup; u_long fr_tcp_short; u_long fr_tcp_small; u_long fr_tcp_bad_flags; u_long fr_udp_pullup; u_long fr_ip_freed; u_long fr_v6_ah_bad; u_long fr_v6_bad; u_long fr_v6_badfrag; u_long fr_v6_dst_bad; u_long fr_v6_esp_pullup; u_long fr_v6_ext_short; u_long fr_v6_ext_pullup; u_long fr_v6_ext_hlen; u_long fr_v6_frag_bad; u_long fr_v6_frag_pullup; u_long fr_v6_frag_size; u_long fr_v6_gre_pullup; u_long fr_v6_icmp6_pullup; u_long fr_v6_rh_bad; u_long fr_v6_badttl; /* TTL in packet doesn't reach minimum */ u_long fr_v4_ah_bad; u_long fr_v4_ah_pullup; u_long fr_v4_esp_pullup; u_long fr_v4_cipso_bad; u_long fr_v4_cipso_tlen; u_long fr_v4_gre_frag; u_long fr_v4_gre_pullup; u_long fr_v4_icmp_frag; u_long fr_v4_icmp_pullup; u_long fr_v4_badttl; /* TTL in packet doesn't reach minimum */ u_long fr_v4_badsrc; /* source received doesn't match route */ u_long fr_l4_badcksum; /* layer 4 header checksum failure */ u_long fr_badcoalesces; u_long fr_pass; /* packets allowed */ u_long fr_block; /* packets denied */ u_long fr_nom; /* packets which don't match any rule */ u_long fr_short; /* packets which are short */ u_long fr_ppkl; /* packets allowed and logged */ u_long fr_bpkl; /* packets denied and logged */ u_long fr_npkl; /* packets unmatched and logged */ u_long fr_ret; /* packets for which a return is sent */ u_long fr_acct; /* packets for which counting was performed */ u_long fr_bnfr; /* bad attempts to allocate fragment state */ u_long fr_nfr; /* new fragment state kept */ u_long fr_cfr; /* add new fragment state but complete pkt */ u_long fr_bads; /* bad attempts to allocate packet state */ u_long fr_ads; /* new packet state kept */ u_long fr_chit; /* cached hit */ u_long fr_cmiss; /* cached miss */ u_long fr_tcpbad; /* TCP checksum check failures */ u_long fr_pull[2]; /* good and bad pullup attempts */ u_long fr_bad; /* bad IP packets to the filter */ u_long fr_ipv6; /* IPv6 packets in/out */ u_long fr_ppshit; /* dropped because of pps ceiling */ u_long fr_ipud; /* IP id update failures */ u_long fr_blocked[FRB_MAX_VALUE + 1]; } ipf_statistics_t; /* * Log structure. Each packet header logged is prepended by one of these. * Following this in the log records read from the device will be an ipflog * structure which is then followed by any packet data. */ typedef struct iplog { u_32_t ipl_magic; u_int ipl_count; u_32_t ipl_seqnum; struct timeval ipl_time; size_t ipl_dsize; struct iplog *ipl_next; } iplog_t; #define ipl_sec ipl_time.tv_sec #define ipl_usec ipl_time.tv_usec #define IPL_MAGIC 0x49504c4d /* 'IPLM' */ #define IPL_MAGIC_NAT 0x49504c4e /* 'IPLN' */ #define IPL_MAGIC_STATE 0x49504c53 /* 'IPLS' */ #define IPLOG_SIZE sizeof(iplog_t) typedef struct ipflog { u_int fl_unit; u_32_t fl_rule; u_32_t fl_flags; u_32_t fl_lflags; u_32_t fl_logtag; ipftag_t fl_nattag; u_short fl_plen; /* extra data after hlen */ u_short fl_loglevel; /* syslog log level */ char fl_group[FR_GROUPLEN]; u_char fl_hlen; /* length of IP headers saved */ u_char fl_dir; u_char fl_breason; /* from fin_reason */ u_char fl_family; /* address family of packet logged */ char fl_ifname[LIFNAMSIZ]; } ipflog_t; #ifndef IPF_LOGGING # define IPF_LOGGING 0 #endif #ifndef IPF_DEFAULT_PASS # define IPF_DEFAULT_PASS FR_PASS #endif #define DEFAULT_IPFLOGSIZE 32768 #ifndef IPFILTER_LOGSIZE # define IPFILTER_LOGSIZE DEFAULT_IPFLOGSIZE #else # if IPFILTER_LOGSIZE < 8192 # error IPFILTER_LOGSIZE too small. Must be >= 8192 # endif #endif #define IPF_OPTCOPY 0x07ff00 /* bit mask of copied options */ /* * Device filenames for reading log information. Use ipf on Solaris2 because * ipl is already a name used by something else. */ #ifndef IPL_NAME # if SOLARIS # define IPL_NAME "/dev/ipf" # else # define IPL_NAME "/dev/ipl" # endif #endif /* * Pathnames for various IP Filter control devices. Used by LKM * and userland, so defined here. */ #define IPNAT_NAME "/dev/ipnat" #define IPSTATE_NAME "/dev/ipstate" #define IPAUTH_NAME "/dev/ipauth" #define IPSYNC_NAME "/dev/ipsync" #define IPSCAN_NAME "/dev/ipscan" #define IPLOOKUP_NAME "/dev/iplookup" #define IPL_LOGIPF 0 /* Minor device #'s for accessing logs */ #define IPL_LOGNAT 1 #define IPL_LOGSTATE 2 #define IPL_LOGAUTH 3 #define IPL_LOGSYNC 4 #define IPL_LOGSCAN 5 #define IPL_LOGLOOKUP 6 #define IPL_LOGCOUNT 7 #define IPL_LOGMAX 7 #define IPL_LOGSIZE IPL_LOGMAX + 1 #define IPL_LOGALL -1 #define IPL_LOGNONE -2 /* * For SIOCGETFS */ typedef struct friostat { ipf_statistics_t f_st[2]; frentry_t *f_ipf[2][2]; frentry_t *f_acct[2][2]; frentry_t *f_auth; struct frgroup *f_groups[IPL_LOGSIZE][2]; u_long f_froute[2]; u_long f_log_ok; u_long f_log_fail; u_long f_rb_no_mem; u_long f_rb_node_max; u_32_t f_ticks; int f_locks[IPL_LOGSIZE]; int f_defpass; /* default pass - from fr_pass */ int f_active; /* 1 or 0 - active rule set */ int f_running; /* 1 if running, else 0 */ int f_logging; /* 1 if enabled, else 0 */ int f_features; char f_version[32]; /* version string */ } friostat_t; #define f_fin f_ipf[0] #define f_fout f_ipf[1] #define f_acctin f_acct[0] #define f_acctout f_acct[1] #define IPF_FEAT_LKM 0x001 #define IPF_FEAT_LOG 0x002 #define IPF_FEAT_LOOKUP 0x004 #define IPF_FEAT_BPF 0x008 #define IPF_FEAT_COMPILED 0x010 #define IPF_FEAT_CKSUM 0x020 #define IPF_FEAT_SYNC 0x040 #define IPF_FEAT_SCAN 0x080 #define IPF_FEAT_IPV6 0x100 typedef struct optlist { u_short ol_val; int ol_bit; } optlist_t; /* * Group list structure. */ typedef struct frgroup { struct frgroup *fg_next; struct frentry *fg_head; struct frentry *fg_start; struct frgroup **fg_set; u_32_t fg_flags; int fg_ref; char fg_name[FR_GROUPLEN]; } frgroup_t; #define FG_NAME(g) (*(g)->fg_name == '\0' ? "" : (g)->fg_name) /* * Used by state and NAT tables */ typedef struct icmpinfo { u_short ici_id; u_short ici_seq; u_char ici_type; } icmpinfo_t; typedef struct udpinfo { u_short us_sport; u_short us_dport; } udpinfo_t; typedef struct tcpdata { u_32_t td_end; u_32_t td_maxend; u_32_t td_maxwin; u_32_t td_winscale; u_32_t td_maxseg; int td_winflags; } tcpdata_t; #define TCP_WSCALE_MAX 14 #define TCP_WSCALE_SEEN 0x00000001 #define TCP_WSCALE_FIRST 0x00000002 #define TCP_SACK_PERMIT 0x00000004 typedef struct tcpinfo { u_32_t ts_sport; u_32_t ts_dport; tcpdata_t ts_data[2]; } tcpinfo_t; /* * Structures to define a GRE header as seen in a packet. */ struct grebits { #if defined(sparc) u_32_t grb_ver:3; u_32_t grb_flags:3; u_32_t grb_A:1; u_32_t grb_recur:1; u_32_t grb_s:1; u_32_t grb_S:1; u_32_t grb_K:1; u_32_t grb_R:1; u_32_t grb_C:1; #else u_32_t grb_C:1; u_32_t grb_R:1; u_32_t grb_K:1; u_32_t grb_S:1; u_32_t grb_s:1; u_32_t grb_recur:1; u_32_t grb_A:1; u_32_t grb_flags:3; u_32_t grb_ver:3; #endif u_short grb_ptype; }; typedef struct grehdr { union { struct grebits gru_bits; u_short gru_flags; } gr_un; u_short gr_len; u_short gr_call; } grehdr_t; #define gr_flags gr_un.gru_flags #define gr_bits gr_un.gru_bits #define gr_ptype gr_bits.grb_ptype #define gr_C gr_bits.grb_C #define gr_R gr_bits.grb_R #define gr_K gr_bits.grb_K #define gr_S gr_bits.grb_S #define gr_s gr_bits.grb_s #define gr_recur gr_bits.grb_recur #define gr_A gr_bits.grb_A #define gr_ver gr_bits.grb_ver /* * GRE information tracked by "keep state" */ typedef struct greinfo { u_short gs_call[2]; u_short gs_flags; u_short gs_ptype; } greinfo_t; #define GRE_REV(x) ((ntohs(x) >> 13) & 7) /* * Format of an Authentication header */ typedef struct authhdr { u_char ah_next; u_char ah_plen; u_short ah_reserved; u_32_t ah_spi; u_32_t ah_seq; /* Following the sequence number field is 0 or more bytes of */ /* authentication data, as specified by ah_plen - RFC 2402. */ } authhdr_t; /* * Timeout tail queue list member */ typedef struct ipftqent { struct ipftqent **tqe_pnext; struct ipftqent *tqe_next; struct ipftq *tqe_ifq; void *tqe_parent; /* pointer back to NAT/state struct */ u_32_t tqe_die; /* when this entriy is to die */ u_32_t tqe_touched; int tqe_flags; int tqe_state[2]; /* current state of this entry */ } ipftqent_t; #define TQE_RULEBASED 0x00000001 #define TQE_DELETE 0x00000002 /* * Timeout tail queue head for IPFilter */ typedef struct ipftq { ipfmutex_t ifq_lock; u_int ifq_ttl; ipftqent_t *ifq_head; ipftqent_t **ifq_tail; struct ipftq *ifq_next; struct ipftq **ifq_pnext; int ifq_ref; u_int ifq_flags; } ipftq_t; #define IFQF_USER 0x01 /* User defined aging */ #define IFQF_DELETE 0x02 /* Marked for deletion */ #define IFQF_PROXY 0x04 /* Timeout queue in use by a proxy */ #define IPFTQ_INIT(x,y,z) do { \ (x)->ifq_ttl = (y); \ (x)->ifq_head = NULL; \ (x)->ifq_ref = 1; \ (x)->ifq_tail = &(x)->ifq_head; \ MUTEX_INIT(&(x)->ifq_lock, (z)); \ } while (0) #define IPF_HZ_MULT 1 #define IPF_HZ_DIVIDE 2 /* How many times a second ipfilter */ /* checks its timeout queues. */ #define IPF_TTLVAL(x) (((x) / IPF_HZ_MULT) * IPF_HZ_DIVIDE) typedef int (*ipftq_delete_fn_t)(struct ipf_main_softc_s *, void *); /* * Object structure description. For passing through in ioctls. */ typedef struct ipfobj { u_32_t ipfo_rev; /* IPFilter version number */ u_32_t ipfo_size; /* size of object at ipfo_ptr */ void *ipfo_ptr; /* pointer to object */ int ipfo_type; /* type of object being pointed to */ int ipfo_offset; /* bytes from ipfo_ptr where to start */ int ipfo_retval; /* return value */ u_char ipfo_xxxpad[28]; /* reserved for future use */ } ipfobj_t; #define IPFOBJ_FRENTRY 0 /* struct frentry */ #define IPFOBJ_IPFSTAT 1 /* struct friostat */ #define IPFOBJ_IPFINFO 2 /* struct fr_info */ #define IPFOBJ_AUTHSTAT 3 /* struct fr_authstat */ #define IPFOBJ_FRAGSTAT 4 /* struct ipfrstat */ #define IPFOBJ_IPNAT 5 /* struct ipnat */ #define IPFOBJ_NATSTAT 6 /* struct natstat */ #define IPFOBJ_STATESAVE 7 /* struct ipstate_save */ #define IPFOBJ_NATSAVE 8 /* struct nat_save */ #define IPFOBJ_NATLOOKUP 9 /* struct natlookup */ #define IPFOBJ_IPSTATE 10 /* struct ipstate */ #define IPFOBJ_STATESTAT 11 /* struct ips_stat */ #define IPFOBJ_FRAUTH 12 /* struct frauth */ #define IPFOBJ_TUNEABLE 13 /* struct ipftune */ #define IPFOBJ_NAT 14 /* struct nat */ #define IPFOBJ_IPFITER 15 /* struct ipfruleiter */ #define IPFOBJ_GENITER 16 /* struct ipfgeniter */ #define IPFOBJ_GTABLE 17 /* struct ipftable */ #define IPFOBJ_LOOKUPITER 18 /* struct ipflookupiter */ #define IPFOBJ_STATETQTAB 19 /* struct ipftq * NSTATES */ #define IPFOBJ_IPFEXPR 20 #define IPFOBJ_PROXYCTL 21 /* strct ap_ctl */ #define IPFOBJ_FRIPF 22 /* structfripf */ #define IPFOBJ_COUNT 23 /* How many #defines are above this? */ typedef union ipftunevalptr { void *ipftp_void; u_long *ipftp_long; u_int *ipftp_int; u_short *ipftp_short; u_char *ipftp_char; u_long ipftp_offset; } ipftunevalptr_t; typedef union ipftuneval { u_long ipftu_long; u_int ipftu_int; u_short ipftu_short; u_char ipftu_char; } ipftuneval_t; struct ipftuneable; typedef int (* ipftunefunc_t)(struct ipf_main_softc_s *, struct ipftuneable *, ipftuneval_t *); typedef struct ipftuneable { ipftunevalptr_t ipft_una; const char *ipft_name; u_long ipft_min; u_long ipft_max; int ipft_sz; int ipft_flags; struct ipftuneable *ipft_next; ipftunefunc_t ipft_func; } ipftuneable_t; #define ipft_addr ipft_una.ipftp_void #define ipft_plong ipft_una.ipftp_long #define ipft_pint ipft_una.ipftp_int #define ipft_pshort ipft_una.ipftp_short #define ipft_pchar ipft_una.ipftp_char #define IPFT_RDONLY 1 /* read-only */ #define IPFT_WRDISABLED 2 /* write when disabled only */ typedef struct ipftune { void *ipft_cookie; ipftuneval_t ipft_un; u_long ipft_min; u_long ipft_max; int ipft_sz; int ipft_flags; char ipft_name[80]; } ipftune_t; #define ipft_vlong ipft_un.ipftu_long #define ipft_vint ipft_un.ipftu_int #define ipft_vshort ipft_un.ipftu_short #define ipft_vchar ipft_un.ipftu_char /* * Hash table header */ #define IPFHASH(x,y) typedef struct { \ ipfrwlock_t ipfh_lock; \ struct x *ipfh_head; \ } y /* ** HPUX Port */ #if !defined(CDEV_MAJOR) && defined (__FreeBSD_version) # define CDEV_MAJOR 79 #endif #ifdef _KERNEL # define FR_VERBOSE(verb_pr) # define FR_DEBUG(verb_pr) #else extern void ipfkdebug(char *, ...); extern void ipfkverbose(char *, ...); # define FR_VERBOSE(verb_pr) ipfkverbose verb_pr # define FR_DEBUG(verb_pr) ipfkdebug verb_pr #endif /* * */ typedef struct ipfruleiter { int iri_inout; char iri_group[FR_GROUPLEN]; int iri_active; int iri_nrules; int iri_v; /* No longer used (compatibility) */ frentry_t *iri_rule; } ipfruleiter_t; /* * Values for iri_inout */ #define F_IN 0 #define F_OUT 1 #define F_ACIN 2 #define F_ACOUT 3 typedef struct ipfgeniter { int igi_type; int igi_nitems; void *igi_data; } ipfgeniter_t; #define IPFGENITER_IPF 0 #define IPFGENITER_NAT 1 #define IPFGENITER_IPNAT 2 #define IPFGENITER_FRAG 3 #define IPFGENITER_AUTH 4 #define IPFGENITER_STATE 5 #define IPFGENITER_NATFRAG 6 #define IPFGENITER_HOSTMAP 7 #define IPFGENITER_LOOKUP 8 typedef struct ipftable { int ita_type; void *ita_table; } ipftable_t; #define IPFTABLE_BUCKETS 1 #define IPFTABLE_BUCKETS_NATIN 2 #define IPFTABLE_BUCKETS_NATOUT 3 typedef struct ipf_v4_masktab_s { u_32_t imt4_active[33]; int imt4_masks[33]; int imt4_max; } ipf_v4_masktab_t; typedef struct ipf_v6_masktab_s { i6addr_t imt6_active[129]; int imt6_masks[129]; int imt6_max; } ipf_v6_masktab_t; /* * */ typedef struct ipftoken { struct ipftoken *ipt_next; struct ipftoken **ipt_pnext; void *ipt_ctx; void *ipt_data; u_long ipt_die; int ipt_type; int ipt_uid; int ipt_subtype; int ipt_ref; int ipt_complete; } ipftoken_t; /* * */ typedef struct ipfexp { int ipfe_cmd; int ipfe_not; int ipfe_narg; int ipfe_size; int ipfe_arg0[1]; } ipfexp_t; /* * Currently support commands (ipfe_cmd) * 32bits is split up follows: * aabbcccc * aa = 0 = packet matching, 1 = meta data matching * bb = IP protocol number * cccc = command */ #define IPF_EXP_IP_PR 0x00000001 #define IPF_EXP_IP_ADDR 0x00000002 #define IPF_EXP_IP_SRCADDR 0x00000003 #define IPF_EXP_IP_DSTADDR 0x00000004 #define IPF_EXP_IP6_ADDR 0x00000005 #define IPF_EXP_IP6_SRCADDR 0x00000006 #define IPF_EXP_IP6_DSTADDR 0x00000007 #define IPF_EXP_TCP_FLAGS 0x00060001 #define IPF_EXP_TCP_PORT 0x00060002 #define IPF_EXP_TCP_SPORT 0x00060003 #define IPF_EXP_TCP_DPORT 0x00060004 #define IPF_EXP_UDP_PORT 0x00110002 #define IPF_EXP_UDP_SPORT 0x00110003 #define IPF_EXP_UDP_DPORT 0x00110004 #define IPF_EXP_IDLE_GT 0x01000001 #define IPF_EXP_TCP_STATE 0x01060002 #define IPF_EXP_END 0xffffffff #define ONE_DAY IPF_TTLVAL(1 * 86400) /* 1 day */ #define FIVE_DAYS (5 * ONE_DAY) typedef struct ipf_main_softc_s { struct ipf_main_softc_s *ipf_next; ipfmutex_t ipf_rw; ipfmutex_t ipf_timeoutlock; ipfrwlock_t ipf_mutex; ipfrwlock_t ipf_frag; ipfrwlock_t ipf_global; ipfrwlock_t ipf_tokens; ipfrwlock_t ipf_state; ipfrwlock_t ipf_nat; ipfrwlock_t ipf_natfrag; ipfrwlock_t ipf_poolrw; int ipf_dynamic_softc; int ipf_refcnt; int ipf_running; int ipf_flags; int ipf_active; int ipf_control_forwarding; int ipf_update_ipid; int ipf_chksrc; /* causes a system crash if enabled */ int ipf_pass; int ipf_minttl; int ipf_icmpminfragmtu; int ipf_interror; /* Should be in a struct that is per */ /* thread or process. Does not belong */ /* here but there's a lot more work */ /* in doing that properly. For now, */ /* it is squatting. */ u_int ipf_tcpidletimeout; u_int ipf_tcpclosewait; u_int ipf_tcplastack; u_int ipf_tcptimewait; u_int ipf_tcptimeout; u_int ipf_tcpsynsent; u_int ipf_tcpsynrecv; u_int ipf_tcpclosed; u_int ipf_tcphalfclosed; u_int ipf_udptimeout; u_int ipf_udpacktimeout; u_int ipf_icmptimeout; u_int ipf_icmpacktimeout; u_int ipf_iptimeout; u_long ipf_ticks; u_long ipf_userifqs; u_long ipf_rb_no_mem; u_long ipf_rb_node_max; u_long ipf_frouteok[2]; ipftuneable_t *ipf_tuners; void *ipf_frag_soft; void *ipf_nat_soft; void *ipf_state_soft; void *ipf_auth_soft; void *ipf_proxy_soft; void *ipf_sync_soft; void *ipf_lookup_soft; void *ipf_log_soft; struct frgroup *ipf_groups[IPL_LOGSIZE][2]; frentry_t *ipf_rules[2][2]; frentry_t *ipf_acct[2][2]; frentry_t *ipf_rule_explist[2]; ipftoken_t *ipf_token_head; ipftoken_t **ipf_token_tail; #if defined(__FreeBSD_version) && defined(_KERNEL) struct callout ipf_slow_ch; #endif #if NETBSD_GE_REV(104040000) struct callout ipf_slow_ch; #endif #if SOLARIS timeout_id_t ipf_slow_ch; #endif #if defined(_KERNEL) # if SOLARIS struct pollhead ipf_poll_head[IPL_LOGSIZE]; void *ipf_dip; # if defined(INSTANCES) int ipf_get_loopback; u_long ipf_idnum; net_handle_t ipf_nd_v4; net_handle_t ipf_nd_v6; hook_t *ipf_hk_v4_in; hook_t *ipf_hk_v4_out; hook_t *ipf_hk_v4_nic; hook_t *ipf_hk_v6_in; hook_t *ipf_hk_v6_out; hook_t *ipf_hk_v6_nic; hook_t *ipf_hk_loop_v4_in; hook_t *ipf_hk_loop_v4_out; hook_t *ipf_hk_loop_v6_in; hook_t *ipf_hk_loop_v6_out; # endif # else struct selinfo ipf_selwait[IPL_LOGSIZE]; # endif #endif void *ipf_slow; ipf_statistics_t ipf_stats[2]; u_char ipf_iss_secret[32]; u_short ipf_ip_id; } ipf_main_softc_t; #define IPFERROR(_e) do { softc->ipf_interror = (_e); \ DT1(user_error, int, _e); \ } while (0) #ifndef _KERNEL extern int ipf_check(void *, struct ip *, int, struct ifnet *, int, mb_t **); extern struct ifnet *get_unit(char *, int); extern char *get_ifname(struct ifnet *); extern int ipfioctl(ipf_main_softc_t *, int, ioctlcmd_t, caddr_t, int); extern void m_freem(mb_t *); extern size_t msgdsize(mb_t *); extern int bcopywrap(void *, void *, size_t); extern void ip_fillid(struct ip *); #else /* #ifndef _KERNEL */ # if defined(__NetBSD__) && defined(PFIL_HOOKS) extern void ipfilterattach(int); # endif extern int ipl_enable(void); extern int ipl_disable(void); -# ifdef MENTAT -/* XXX MENTAT is always defined for Solaris */ +# if SOLARIS extern int ipf_check(void *, struct ip *, int, struct ifnet *, int, void *, mblk_t **); # if SOLARIS extern void ipf_prependmbt(fr_info_t *, mblk_t *); extern int ipfioctl(dev_t, int, intptr_t, int, cred_t *, int *); # endif extern int ipf_qout(queue_t *, mblk_t *); -# else /* MENTAT */ -/* XXX MENTAT is never defined for FreeBSD & NetBSD */ +# else /* SOLARIS */ extern int ipf_check(void *, struct ip *, int, struct ifnet *, int, mb_t **); extern int (*fr_checkp)(ip_t *, int, void *, int, mb_t **); extern size_t mbufchainlen(mb_t *); # ifdef IPFILTER_LKM extern int ipf_identify(char *); # endif # if defined(__FreeBSD_version) extern int ipfioctl(struct cdev*, u_long, caddr_t, int, struct thread *); # elif defined(__NetBSD__) extern int ipfioctl(dev_t, u_long, void *, int, struct lwp *); # endif -# endif /* MENTAT */ +# endif /* SOLARIS */ # if defined(__FreeBSD_version) extern int ipf_pfil_hook(void); extern int ipf_pfil_unhook(void); extern void ipf_event_reg(void); extern void ipf_event_dereg(void); # endif # if defined(INSTANCES) extern ipf_main_softc_t *ipf_find_softc(u_long); extern int ipf_set_loopback(ipf_main_softc_t *, ipftuneable_t *, ipftuneval_t *); # endif #endif /* #ifndef _KERNEL */ extern char *memstr(const char *, char *, size_t, size_t); extern int count4bits(u_32_t); #ifdef USE_INET6 extern int count6bits(u_32_t *); #endif extern int frrequest(ipf_main_softc_t *, int, ioctlcmd_t, caddr_t, int, int); extern char *getifname(struct ifnet *); extern int ipfattach(ipf_main_softc_t *); extern int ipfdetach(ipf_main_softc_t *); extern u_short ipf_cksum(u_short *, int); extern int copyinptr(ipf_main_softc_t *, void *, void *, size_t); extern int copyoutptr(ipf_main_softc_t *, void *, void *, size_t); extern int ipf_fastroute(mb_t *, mb_t **, fr_info_t *, frdest_t *); extern int ipf_inject(fr_info_t *, mb_t *); extern int ipf_inobj(ipf_main_softc_t *, void *, ipfobj_t *, void *, int); extern int ipf_inobjsz(ipf_main_softc_t *, void *, void *, int , int); extern int ipf_ioctlswitch(ipf_main_softc_t *, int, void *, ioctlcmd_t, int, int, void *); extern int ipf_ipf_ioctl(ipf_main_softc_t *, caddr_t, ioctlcmd_t, int, int, void *); extern int ipf_ipftune(ipf_main_softc_t *, ioctlcmd_t, void *); extern int ipf_matcharray_load(ipf_main_softc_t *, caddr_t, ipfobj_t *, int **); extern int ipf_matcharray_verify(int *, int); extern int ipf_outobj(ipf_main_softc_t *, void *, void *, int); extern int ipf_outobjk(ipf_main_softc_t *, ipfobj_t *, void *); extern int ipf_outobjsz(ipf_main_softc_t *, void *, void *, int, int); extern void *ipf_pullup(mb_t *, fr_info_t *, int); extern int ipf_resolvedest(ipf_main_softc_t *, char *, struct frdest *, int); extern int ipf_resolvefunc(ipf_main_softc_t *, void *); extern void *ipf_resolvenic(ipf_main_softc_t *, char *, int); extern int ipf_send_icmp_err(int, fr_info_t *, int); extern int ipf_send_reset(fr_info_t *); extern void ipf_apply_timeout(ipftq_t *, u_int); extern ipftq_t *ipf_addtimeoutqueue(ipf_main_softc_t *, ipftq_t **, u_int); extern void ipf_deletequeueentry(ipftqent_t *); extern int ipf_deletetimeoutqueue(ipftq_t *); extern void ipf_freetimeoutqueue(ipf_main_softc_t *, ipftq_t *); extern void ipf_movequeue(u_long, ipftqent_t *, ipftq_t *, ipftq_t *); extern void ipf_queueappend(u_long, ipftqent_t *, ipftq_t *, void *); extern void ipf_queueback(u_long, ipftqent_t *); extern int ipf_queueflush(ipf_main_softc_t *, ipftq_delete_fn_t, ipftq_t *, ipftq_t *, u_int *, int, int); extern void ipf_queuefront(ipftqent_t *); extern int ipf_settimeout_tcp(ipftuneable_t *, ipftuneval_t *, ipftq_t *); extern int ipf_checkv4sum(fr_info_t *); extern int ipf_checkl4sum(fr_info_t *); extern int ipf_ifpfillv4addr(int, struct sockaddr_in *, struct sockaddr_in *, struct in_addr *, struct in_addr *); extern int ipf_coalesce(fr_info_t *); #ifdef USE_INET6 extern int ipf_checkv6sum(fr_info_t *); extern int ipf_ifpfillv6addr(int, struct sockaddr_in6 *, struct sockaddr_in6 *, i6addr_t *, i6addr_t *); #endif extern int ipf_tune_add(ipf_main_softc_t *, ipftuneable_t *); extern int ipf_tune_add_array(ipf_main_softc_t *, ipftuneable_t *); extern int ipf_tune_del(ipf_main_softc_t *, ipftuneable_t *); extern int ipf_tune_del_array(ipf_main_softc_t *, ipftuneable_t *); extern int ipf_tune_array_link(ipf_main_softc_t *, ipftuneable_t *); extern int ipf_tune_array_unlink(ipf_main_softc_t *, ipftuneable_t *); extern ipftuneable_t *ipf_tune_array_copy(void *, size_t, ipftuneable_t *); extern int ipf_pr_pullup(fr_info_t *, int); extern int ipf_flush(ipf_main_softc_t *, minor_t, int); extern frgroup_t *ipf_group_add(ipf_main_softc_t *, char *, void *, u_32_t, minor_t, int); extern void ipf_group_del(ipf_main_softc_t *, frgroup_t *, frentry_t *); extern int ipf_derefrule(ipf_main_softc_t *, frentry_t **); extern frgroup_t *ipf_findgroup(ipf_main_softc_t *, char *, minor_t, int, frgroup_t ***); extern int ipf_log_init(void); extern int ipf_log_bytesused(ipf_main_softc_t *, int); extern int ipf_log_canread(ipf_main_softc_t *, int); extern int ipf_log_clear(ipf_main_softc_t *, minor_t); extern u_long ipf_log_failures(ipf_main_softc_t *, int); extern int ipf_log_read(ipf_main_softc_t *, minor_t, uio_t *); extern int ipf_log_items(ipf_main_softc_t *, int, fr_info_t *, void **, size_t *, int *, int); extern u_long ipf_log_logok(ipf_main_softc_t *, int); extern void ipf_log_unload(ipf_main_softc_t *); extern int ipf_log_pkt(fr_info_t *, u_int); extern frentry_t *ipf_acctpkt(fr_info_t *, u_32_t *); extern u_short fr_cksum(fr_info_t *, ip_t *, int, void *); extern void ipf_deinitialise(ipf_main_softc_t *); extern int ipf_deliverlocal(ipf_main_softc_t *, int, void *, i6addr_t *); extern frentry_t *ipf_dstgrpmap(fr_info_t *, u_32_t *); extern void ipf_fixskip(frentry_t **, frentry_t *, int); extern void ipf_forgetifp(ipf_main_softc_t *, void *); extern frentry_t *ipf_getrulen(ipf_main_softc_t *, int, char *, u_32_t); extern int ipf_ifpaddr(ipf_main_softc_t *, int, int, void *, i6addr_t *, i6addr_t *); extern void ipf_inet_mask_add(int, ipf_v4_masktab_t *); extern void ipf_inet_mask_del(int, ipf_v4_masktab_t *); #ifdef USE_INET6 extern void ipf_inet6_mask_add(int, i6addr_t *, ipf_v6_masktab_t *); extern void ipf_inet6_mask_del(int, i6addr_t *, ipf_v6_masktab_t *); #endif extern int ipf_initialise(void); extern int ipf_lock(caddr_t, int *); extern int ipf_makefrip(int, ip_t *, fr_info_t *); extern int ipf_matchtag(ipftag_t *, ipftag_t *); extern int ipf_matchicmpqueryreply(int, icmpinfo_t *, struct icmp *, int); extern u_32_t ipf_newisn(fr_info_t *); extern u_int ipf_pcksum(fr_info_t *, int, u_int); #ifdef USE_INET6 extern u_int ipf_pcksum6(struct mbuf *, ip6_t *, u_int32_t, u_int32_t); #endif extern void ipf_rule_expire(ipf_main_softc_t *); extern int ipf_scanlist(fr_info_t *, u_32_t); extern frentry_t *ipf_srcgrpmap(fr_info_t *, u_32_t *); extern int ipf_tcpudpchk(fr_ip_t *, frtuc_t *); extern int ipf_verifysrc(fr_info_t *fin); extern int ipf_zerostats(ipf_main_softc_t *, char *); extern int ipf_getnextrule(ipf_main_softc_t *, ipftoken_t *, void *); extern int ipf_sync(ipf_main_softc_t *, void *); extern int ipf_token_deref(ipf_main_softc_t *, ipftoken_t *); extern void ipf_token_expire(ipf_main_softc_t *); extern ipftoken_t *ipf_token_find(ipf_main_softc_t *, int, int, void *); extern int ipf_token_del(ipf_main_softc_t *, int, int, void *); extern void ipf_token_mark_complete(ipftoken_t *); extern int ipf_genericiter(ipf_main_softc_t *, void *, int, void *); #ifdef IPFILTER_LOOKUP extern void *ipf_resolvelookup(int, u_int, u_int, lookupfunc_t *); #endif extern u_32_t ipf_random(void); extern int ipf_main_load(void); extern void *ipf_main_soft_create(void *); extern void ipf_main_soft_destroy(ipf_main_softc_t *); extern int ipf_main_soft_init(ipf_main_softc_t *); extern int ipf_main_soft_fini(ipf_main_softc_t *); extern int ipf_main_unload(void); extern int ipf_load_all(void); extern int ipf_unload_all(void); extern void ipf_destroy_all(ipf_main_softc_t *); extern ipf_main_softc_t *ipf_create_all(void *); extern int ipf_init_all(ipf_main_softc_t *); extern int ipf_fini_all(ipf_main_softc_t *); extern void ipf_log_soft_destroy(ipf_main_softc_t *, void *); extern void *ipf_log_soft_create(ipf_main_softc_t *); extern int ipf_log_soft_init(ipf_main_softc_t *, void *); extern int ipf_log_soft_fini(ipf_main_softc_t *, void *); extern int ipf_log_main_load(void); extern int ipf_log_main_unload(void); extern char ipfilter_version[]; #ifdef USE_INET6 extern int icmptoicmp6types[ICMP_MAXTYPE+1]; extern int icmptoicmp6unreach[ICMP_MAX_UNREACH]; extern int icmpreplytype6[ICMP6_MAXTYPE + 1]; #endif #ifdef IPFILTER_COMPAT extern int ipf_in_compat(ipf_main_softc_t *, ipfobj_t *, void *,int); extern int ipf_out_compat(ipf_main_softc_t *, ipfobj_t *, void *); #endif extern int icmpreplytype4[ICMP_MAXTYPE + 1]; extern int ipf_ht_node_add(ipf_main_softc_t *, host_track_t *, int, i6addr_t *); extern int ipf_ht_node_del(host_track_t *, int, i6addr_t *); extern void ipf_rb_ht_flush(host_track_t *); extern void ipf_rb_ht_freenode(host_node_t *, void *); extern void ipf_rb_ht_init(host_track_t *); #endif /* __IP_FIL_H__ */ diff --git a/sys/contrib/ipfilter/netinet/ip_irc_pxy.c b/sys/contrib/ipfilter/netinet/ip_irc_pxy.c index 304fe0c35351..4446b2100645 100644 --- a/sys/contrib/ipfilter/netinet/ip_irc_pxy.c +++ b/sys/contrib/ipfilter/netinet/ip_irc_pxy.c @@ -1,446 +1,446 @@ /* * Copyright (C) 2012 by Darren Reed. * * See the IPFILTER.LICENCE file for details on licencing. * * $Id$ */ #define IPF_IRC_PROXY #define IPF_IRCBUFSZ 96 /* This *MUST* be >= 64! */ void ipf_p_irc_main_load(void); void ipf_p_irc_main_unload(void); int ipf_p_irc_new(void *, fr_info_t *, ap_session_t *, nat_t *); int ipf_p_irc_out(void *, fr_info_t *, ap_session_t *, nat_t *); int ipf_p_irc_send(fr_info_t *, nat_t *); int ipf_p_irc_complete(ircinfo_t *, char *, size_t); u_short ipf_irc_atoi(char **); static frentry_t ircnatfr; int irc_proxy_init = 0; /* * Initialize local structures. */ void ipf_p_irc_main_load() { bzero((char *)&ircnatfr, sizeof(ircnatfr)); ircnatfr.fr_ref = 1; ircnatfr.fr_flags = FR_INQUE|FR_PASS|FR_QUICK|FR_KEEPSTATE; MUTEX_INIT(&ircnatfr.fr_lock, "IRC proxy rule lock"); irc_proxy_init = 1; } void ipf_p_irc_main_unload() { if (irc_proxy_init == 1) { MUTEX_DESTROY(&ircnatfr.fr_lock); irc_proxy_init = 0; } } const char *ipf_p_irc_dcctypes[] = { "CHAT ", /* CHAT chat ipnumber portnumber */ "SEND ", /* SEND filename ipnumber portnumber */ "MOVE ", "TSEND ", "SCHAT ", NULL, }; /* * :A PRIVMSG B :^ADCC CHAT chat 0 0^A\r\n * PRIVMSG B ^ADCC CHAT chat 0 0^A\r\n */ int ipf_p_irc_complete(ircp, buf, len) ircinfo_t *ircp; char *buf; size_t len; { register char *s, c; register size_t i; u_32_t l; int j, k; ircp->irc_ipnum = 0; ircp->irc_port = 0; if (len < 31) return 0; s = buf; c = *s++; i = len - 1; if ((c != ':') && (c != 'P')) return 0; if (c == ':') { /* * Loosely check that the source is a nickname of some sort */ s++; c = *s; ircp->irc_snick = s; if (!ISALPHA(c)) return 0; i--; for (c = *s; !ISSPACE(c) && (i > 0); i--) c = *s++; if (i < 31) return 0; if (c != 'P') return 0; } else ircp->irc_snick = NULL; /* * Check command string */ if (strncmp(s, "PRIVMSG ", 8)) return 0; i -= 8; s += 8; c = *s; ircp->irc_dnick = s; /* * Loosely check that the destination is a nickname of some sort */ if (!ISALPHA(c)) return 0; for (; !ISSPACE(c) && (i > 0); i--) c = *s++; if (i < 20) return 0; s++, i--; /* * Look for a ^A to start the DCC */ c = *s; if (c == ':') { s++; c = *s; } if (strncmp(s, "\001DCC ", 4)) return 0; i -= 4; s += 4; /* * Check for a recognised DCC command */ for (j = 0, k = 0; ipf_p_irc_dcctypes[j]; j++) { k = MIN(strlen(ipf_p_irc_dcctypes[j]), i); if (!strncmp(ipf_p_irc_dcctypes[j], s, k)) break; } if (!ipf_p_irc_dcctypes[j]) return 0; ircp->irc_type = s; i -= k; s += k; if (i < 11) return 0; /* * Check for the arg */ c = *s; if (ISSPACE(c)) return 0; ircp->irc_arg = s; for (; (c != ' ') && (c != '\001') && (i > 0); i--) c = *s++; if (c == '\001') /* In reality a ^A can quote another ^A...*/ return 0; if (i < 5) return 0; s++; i--; c = *s; if (!ISDIGIT(c)) return 0; ircp->irc_addr = s; /* * Get the IP# */ for (l = 0; ISDIGIT(c) && (i > 0); i--) { l *= 10; l += c - '0'; c = *s++; } if (i < 4) return 0; if (c != ' ') return 0; ircp->irc_ipnum = l; s++; i--; c = *s; if (!ISDIGIT(c)) return 0; /* * Get the port# */ for (l = 0; ISDIGIT(c) && (i > 0); i--) { l *= 10; l += c - '0'; c = *s++; } if (i < 3) return 0; if (strncmp(s, "\001\r\n", 3)) return 0; s += 3; ircp->irc_len = s - buf; ircp->irc_port = l; return 1; } int ipf_p_irc_new(arg, fin, aps, nat) void *arg; fr_info_t *fin; ap_session_t *aps; nat_t *nat; { ircinfo_t *irc; if (fin->fin_v != 4) return -1; KMALLOC(irc, ircinfo_t *); if (irc == NULL) return -1; nat = nat; /* LINT */ aps->aps_data = irc; aps->aps_psiz = sizeof(ircinfo_t); bzero((char *)irc, sizeof(*irc)); return 0; } int ipf_p_irc_send(fin, nat) fr_info_t *fin; nat_t *nat; { char ctcpbuf[IPF_IRCBUFSZ], newbuf[IPF_IRCBUFSZ]; tcphdr_t *tcp, tcph, *tcp2 = &tcph; int off, inc = 0, i, dlen; ipf_main_softc_t *softc; size_t nlen = 0, olen; struct in_addr swip; u_short a5, sp; ircinfo_t *irc; fr_info_t fi; nat_t *nat2; u_int a1; ip_t *ip; mb_t *m; -#ifdef MENTAT +#if SOLARIS mb_t *m1; #endif softc = fin->fin_main_soft; m = fin->fin_m; ip = fin->fin_ip; tcp = (tcphdr_t *)fin->fin_dp; bzero(ctcpbuf, sizeof(ctcpbuf)); off = (char *)tcp - (char *)ip + (TCP_OFF(tcp) << 2) + fin->fin_ipoff; dlen = MSGDSIZE(m) - off; if (dlen <= 0) return 0; COPYDATA(m, off, MIN(sizeof(ctcpbuf), dlen), ctcpbuf); if (dlen <= 0) return 0; ctcpbuf[sizeof(ctcpbuf) - 1] = '\0'; *newbuf = '\0'; irc = nat->nat_aps->aps_data; if (ipf_p_irc_complete(irc, ctcpbuf, dlen) == 0) return 0; /* * check that IP address in the DCC reply is the same as the * sender of the command - prevents use for port scanning. */ if (irc->irc_ipnum != ntohl(nat->nat_osrcaddr)) return 0; a5 = irc->irc_port; /* * Calculate new address parts for the DCC command */ a1 = ntohl(ip->ip_src.s_addr); olen = irc->irc_len; i = irc->irc_addr - ctcpbuf; i++; (void) strncpy(newbuf, ctcpbuf, i); /* DO NOT change these! */ #if defined(SNPRINTF) && defined(KERNEL) SNPRINTF(newbuf, sizeof(newbuf) - i, "%u %u\001\r\n", a1, a5); #else (void) sprintf(newbuf, "%u %u\001\r\n", a1, a5); #endif nlen = strlen(newbuf); inc = nlen - olen; if ((inc + fin->fin_plen) > 65535) return 0; -#ifdef MENTAT +#if SOLARIS for (m1 = m; m1->b_cont; m1 = m1->b_cont) ; if ((inc > 0) && (m1->b_datap->db_lim - m1->b_wptr < inc)) { mblk_t *nm; /* alloc enough to keep same trailer space for lower driver */ nm = allocb(nlen, BPRI_MED); PANIC((!nm),("ipf_p_irc_out: allocb failed")); nm->b_band = m1->b_band; nm->b_wptr += nlen; m1->b_wptr -= olen; PANIC((m1->b_wptr < m1->b_rptr), ("ipf_p_irc_out: cannot handle fragmented data block")); linkb(m1, nm); } else { # if SOLARIS && defined(ICK_VALID) if (m1->b_datap->db_struiolim == m1->b_wptr) m1->b_datap->db_struiolim += inc; m1->b_datap->db_struioflag &= ~STRUIO_IP; # endif m1->b_wptr += inc; } #else if (inc < 0) m_adj(m, inc); /* the mbuf chain will be extended if necessary by m_copyback() */ #endif COPYBACK(m, off, nlen, newbuf); fin->fin_flx |= FI_DOCKSUM; if (inc != 0) { -#if defined(MENTAT) +#if SOLARIS register u_32_t sum1, sum2; sum1 = fin->fin_plen; sum2 = fin->fin_plen + inc; /* Because ~1 == -2, We really need ~1 == -1 */ if (sum1 > sum2) sum2--; sum2 -= sum1; sum2 = (sum2 & 0xffff) + (sum2 >> 16); ipf_fix_outcksum(0, &ip->ip_sum, sum2, 0); #endif fin->fin_plen += inc; ip->ip_len = htons(fin->fin_plen); fin->fin_dlen += inc; } /* * Add skeleton NAT entry for connection which will come back the * other way. */ sp = htons(a5); /* * Don't allow the PORT command to specify a port < 1024 due to * security crap. */ if (ntohs(sp) < 1024) return 0; /* * The server may not make the connection back from port 20, but * it is the most likely so use it here to check for a conflicting * mapping. */ bcopy((caddr_t)fin, (caddr_t)&fi, sizeof(fi)); fi.fin_data[0] = sp; fi.fin_data[1] = fin->fin_data[1]; nat2 = ipf_nat_outlookup(fin, IPN_TCP, nat->nat_pr[1], nat->nat_nsrcip, ip->ip_dst); if (nat2 == NULL) { #ifdef USE_MUTEXES ipf_nat_softc_t *softn = softc->ipf_nat_soft; #endif bcopy((caddr_t)fin, (caddr_t)&fi, sizeof(fi)); bzero((char *)tcp2, sizeof(*tcp2)); tcp2->th_win = htons(8192); tcp2->th_sport = sp; tcp2->th_dport = 0; /* XXX - don't specify remote port */ fi.fin_data[0] = ntohs(sp); fi.fin_data[1] = 0; fi.fin_dp = (char *)tcp2; fi.fin_fr = &ircnatfr; fi.fin_dlen = sizeof(*tcp2); fi.fin_plen = fi.fin_hlen + sizeof(*tcp2); swip = ip->ip_src; ip->ip_src = nat->nat_nsrcip; MUTEX_ENTER(&softn->ipf_nat_new); nat2 = ipf_nat_add(&fi, nat->nat_ptr, NULL, NAT_SLAVE|IPN_TCP|SI_W_DPORT, NAT_OUTBOUND); MUTEX_EXIT(&softn->ipf_nat_new); if (nat2 != NULL) { (void) ipf_nat_proto(&fi, nat2, 0); MUTEX_ENTER(&nat2->nat_lock); ipf_nat_update(&fi, nat2); MUTEX_EXIT(&nat2->nat_lock); (void) ipf_state_add(softc, &fi, NULL, SI_W_DPORT); } ip->ip_src = swip; } return inc; } int ipf_p_irc_out(arg, fin, aps, nat) void *arg; fr_info_t *fin; ap_session_t *aps; nat_t *nat; { aps = aps; /* LINT */ return ipf_p_irc_send(fin, nat); } diff --git a/sys/contrib/ipfilter/netinet/ip_log.c b/sys/contrib/ipfilter/netinet/ip_log.c index 76d2e3def1fa..e5bf6a78bf1b 100644 --- a/sys/contrib/ipfilter/netinet/ip_log.c +++ b/sys/contrib/ipfilter/netinet/ip_log.c @@ -1,901 +1,901 @@ /* $FreeBSD$ */ /* * Copyright (C) 2012 by Darren Reed. * * See the IPFILTER.LICENCE file for details on licencing. * * $FreeBSD$ * Id: ip_log.c,v 2.75.2.19 2007/09/09 11:32:06 darrenr Exp $ */ #include #if defined(KERNEL) || defined(_KERNEL) # undef KERNEL # undef _KERNEL # define KERNEL 1 # define _KERNEL 1 #endif #if defined(__FreeBSD__) && !defined(_KERNEL) # include #endif #ifndef SOLARIS # if defined(sun) && defined(__SVR4) # define SOLARIS 1 # else # define SOLARIS 0 # endif #endif #include #include #include #ifndef _KERNEL # include # include # include # include # define _KERNEL # define KERNEL # include # undef _KERNEL # undef KERNEL #endif #if defined(__FreeBSD_version) && defined(_KERNEL) # include # include #else # include #endif #include #if defined(_KERNEL) # include # if (defined(NetBSD) && (__NetBSD_Version__ >= 104000000)) # include # endif #endif /* _KERNEL */ # if defined(NetBSD) || defined(__FreeBSD_version) # include # include # include # endif # if defined(__FreeBSD_version) # include # endif #if SOLARIS && defined(_KERNEL) # include # include # include # include # include # include # include # include # include #endif /* SOLARIS && _KERNEL */ # include #include #include #ifdef sun # include #endif #if defined(__FreeBSD_version) # include #endif #include # include #include #include #include #include #include #ifdef USE_INET6 # include #endif # include #ifndef _KERNEL # include #endif #include "netinet/ip_compat.h" #include #include "netinet/ip_fil.h" #include "netinet/ip_nat.h" #include "netinet/ip_frag.h" #include "netinet/ip_state.h" #include "netinet/ip_auth.h" #if defined(__FreeBSD_version) || defined(__NetBSD__) # include #endif /* END OF INCLUDES */ #ifdef IPFILTER_LOG # if defined(IPL_SELECT) # include # include # define READ_COLLISION 0x001 extern int selwait; # endif /* IPL_SELECT */ typedef struct ipf_log_softc_s { ipfmutex_t ipl_mutex[IPL_LOGSIZE]; # if SOLARIS && defined(_KERNEL) kcondvar_t ipl_wait[IPL_LOGSIZE]; # endif iplog_t **iplh[IPL_LOGSIZE]; iplog_t *iplt[IPL_LOGSIZE]; iplog_t *ipll[IPL_LOGSIZE]; u_long ipl_logfail[IPL_LOGSIZE]; u_long ipl_logok[IPL_LOGSIZE]; fr_info_t ipl_crc[IPL_LOGSIZE]; u_32_t ipl_counter[IPL_LOGSIZE]; int ipl_suppress; int ipl_logall; int ipl_log_init; int ipl_logsize; int ipl_used[IPL_LOGSIZE]; int ipl_magic[IPL_LOGSIZE]; ipftuneable_t *ipf_log_tune; int ipl_readers[IPL_LOGSIZE]; } ipf_log_softc_t; static int magic[IPL_LOGSIZE] = { IPL_MAGIC, IPL_MAGIC_NAT, IPL_MAGIC_STATE, IPL_MAGIC, IPL_MAGIC, IPL_MAGIC, IPL_MAGIC, IPL_MAGIC }; static ipftuneable_t ipf_log_tuneables[] = { /* log */ { { (void *)offsetof(ipf_log_softc_t, ipl_suppress) }, "log_suppress", 0, 1, stsizeof(ipf_log_softc_t, ipl_suppress), 0, NULL, NULL }, { { (void *)offsetof(ipf_log_softc_t, ipl_logall) }, "log_all", 0, 1, stsizeof(ipf_log_softc_t, ipl_logall), 0, NULL, NULL }, { { (void *)offsetof(ipf_log_softc_t, ipl_logsize) }, "log_size", 0, 0x80000, stsizeof(ipf_log_softc_t, ipl_logsize), 0, NULL, NULL }, { { NULL }, NULL, 0, 0, 0, 0, NULL, NULL } }; int ipf_log_main_load() { return 0; } int ipf_log_main_unload() { return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_log_soft_create */ /* Returns: void * - NULL = failure, else pointer to log context data */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* Initialise log buffers & pointers. Also iniialised the CRC to a local */ /* secret for use in calculating the "last log checksum". */ /* ------------------------------------------------------------------------ */ void * ipf_log_soft_create(softc) ipf_main_softc_t *softc; { ipf_log_softc_t *softl; int i; KMALLOC(softl, ipf_log_softc_t *); if (softl == NULL) return NULL; bzero((char *)softl, sizeof(*softl)); bcopy((char *)magic, (char *)softl->ipl_magic, sizeof(magic)); softl->ipf_log_tune = ipf_tune_array_copy(softl, sizeof(ipf_log_tuneables), ipf_log_tuneables); if (softl->ipf_log_tune == NULL) { ipf_log_soft_destroy(softc, softl); return NULL; } if (ipf_tune_array_link(softc, softl->ipf_log_tune) == -1) { ipf_log_soft_destroy(softc, softl); return NULL; } for (i = IPL_LOGMAX; i >= 0; i--) { MUTEX_INIT(&softl->ipl_mutex[i], "ipf log mutex"); } softl->ipl_suppress = 1; softl->ipl_logall = 0; softl->ipl_log_init = 0; softl->ipl_logsize = IPFILTER_LOGSIZE; return softl; } /* ------------------------------------------------------------------------ */ /* Function: ipf_log_soft_init */ /* Returns: int - 0 == success (always returned) */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* Initialise log buffers & pointers. Also iniialised the CRC to a local */ /* secret for use in calculating the "last log checksum". */ /* ------------------------------------------------------------------------ */ int ipf_log_soft_init(softc, arg) ipf_main_softc_t *softc; void *arg; { ipf_log_softc_t *softl = arg; int i; for (i = IPL_LOGMAX; i >= 0; i--) { softl->iplt[i] = NULL; softl->ipll[i] = NULL; softl->iplh[i] = &softl->iplt[i]; bzero((char *)&softl->ipl_crc[i], sizeof(softl->ipl_crc[i])); # ifdef IPL_SELECT softl->iplog_ss[i].read_waiter = 0; softl->iplog_ss[i].state = 0; # endif } softl->ipl_log_init = 1; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_log_soft_fini */ /* Parameters: softc(I) - pointer to soft context main structure */ /* arg(I) - pointer to log context structure */ /* */ /* Clean up any log data that has accumulated without being read. */ /* ------------------------------------------------------------------------ */ int ipf_log_soft_fini(softc, arg) ipf_main_softc_t *softc; void *arg; { ipf_log_softc_t *softl = arg; int i; if (softl->ipl_log_init == 0) return 0; softl->ipl_log_init = 0; for (i = IPL_LOGMAX; i >= 0; i--) { (void) ipf_log_clear(softc, i); /* * This is a busy-wait loop so as to avoid yet another lock * to wait on. */ MUTEX_ENTER(&softl->ipl_mutex[i]); while (softl->ipl_readers[i] > 0) { # if SOLARIS && defined(_KERNEL) cv_broadcast(&softl->ipl_wait[i]); MUTEX_EXIT(&softl->ipl_mutex[i]); delay(100); pollwakeup(&softc->ipf_poll_head[i], POLLRDNORM); # else MUTEX_EXIT(&softl->ipl_mutex[i]); WAKEUP(softl->iplh, i); POLLWAKEUP(i); # endif MUTEX_ENTER(&softl->ipl_mutex[i]); } MUTEX_EXIT(&softl->ipl_mutex[i]); } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_log_soft_destroy */ /* Parameters: softc(I) - pointer to soft context main structure */ /* arg(I) - pointer to log context structure */ /* */ /* When this function is called, it is expected that there are no longer */ /* any threads active in the reading code path or the logging code path. */ /* ------------------------------------------------------------------------ */ void ipf_log_soft_destroy(softc, arg) ipf_main_softc_t *softc; void *arg; { ipf_log_softc_t *softl = arg; int i; for (i = IPL_LOGMAX; i >= 0; i--) { # if SOLARIS && defined(_KERNEL) cv_destroy(&softl->ipl_wait[i]); # endif MUTEX_DESTROY(&softl->ipl_mutex[i]); } if (softl->ipf_log_tune != NULL) { ipf_tune_array_unlink(softc, softl->ipf_log_tune); KFREES(softl->ipf_log_tune, sizeof(ipf_log_tuneables)); softl->ipf_log_tune = NULL; } KFREE(softl); } /* ------------------------------------------------------------------------ */ /* Function: ipf_log_pkt */ /* Returns: int - 0 == success, -1 == failure */ /* Parameters: fin(I) - pointer to packet information */ /* flags(I) - flags from filter rules */ /* */ /* Create a log record for a packet given that it has been triggered by a */ /* rule (or the default setting). Calculate the transport protocol header */ /* size using predetermined size of a couple of popular protocols and thus */ /* how much data to copy into the log, including part of the data body if */ /* requested. */ /* ------------------------------------------------------------------------ */ int ipf_log_pkt(fin, flags) fr_info_t *fin; u_int flags; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_log_softc_t *softl = softc->ipf_log_soft; register size_t hlen; int types[2], mlen; size_t sizes[2]; void *ptrs[2]; ipflog_t ipfl; u_char p; mb_t *m; # if SOLARIS && defined(_KERNEL) && !defined(FW_HOOKS) qif_t *ifp; # else struct ifnet *ifp; # endif /* SOLARIS */ m = fin->fin_m; if (m == NULL) return -1; ipfl.fl_nattag.ipt_num[0] = 0; ifp = fin->fin_ifp; hlen = (char *)fin->fin_dp - (char *)fin->fin_ip; /* * calculate header size. */ if (fin->fin_off == 0) { p = fin->fin_fi.fi_p; if (p == IPPROTO_TCP) hlen += MIN(sizeof(tcphdr_t), fin->fin_dlen); else if (p == IPPROTO_UDP) hlen += MIN(sizeof(udphdr_t), fin->fin_dlen); else if (p == IPPROTO_ICMP) { struct icmp *icmp; icmp = (struct icmp *)fin->fin_dp; /* * For ICMP, if the packet is an error packet, also * include the information about the packet which * caused the error. */ switch (icmp->icmp_type) { case ICMP_UNREACH : case ICMP_SOURCEQUENCH : case ICMP_REDIRECT : case ICMP_TIMXCEED : case ICMP_PARAMPROB : hlen += MIN(sizeof(struct icmp) + 8, fin->fin_dlen); break; default : hlen += MIN(sizeof(struct icmp), fin->fin_dlen); break; } } # ifdef USE_INET6 else if (p == IPPROTO_ICMPV6) { struct icmp6_hdr *icmp; icmp = (struct icmp6_hdr *)fin->fin_dp; /* * For ICMPV6, if the packet is an error packet, also * include the information about the packet which * caused the error. */ if (icmp->icmp6_type < 128) { hlen += MIN(sizeof(struct icmp6_hdr) + 8, fin->fin_dlen); } else { hlen += MIN(sizeof(struct icmp6_hdr), fin->fin_dlen); } } # endif } /* * Get the interface number and name to which this packet is * currently associated. */ # if SOLARIS && defined(_KERNEL) # if !defined(FW_HOOKS) ipfl.fl_unit = (u_int)ifp->qf_ppa; # endif COPYIFNAME(fin->fin_v, ifp, ipfl.fl_ifname); # else # if (defined(NetBSD) && (NetBSD <= 1991011) && (NetBSD >= 199603)) || \ defined(__FreeBSD_version) COPYIFNAME(fin->fin_v, ifp, ipfl.fl_ifname); # else ipfl.fl_unit = (u_int)ifp->if_unit; # if defined(_KERNEL) if ((ipfl.fl_ifname[0] = ifp->if_name[0])) if ((ipfl.fl_ifname[1] = ifp->if_name[1])) if ((ipfl.fl_ifname[2] = ifp->if_name[2])) ipfl.fl_ifname[3] = ifp->if_name[3]; # else (void) strncpy(ipfl.fl_ifname, IFNAME(ifp), sizeof(ipfl.fl_ifname)); ipfl.fl_ifname[sizeof(ipfl.fl_ifname) - 1] = '\0'; # endif # endif # endif /* __hpux || SOLARIS */ mlen = fin->fin_plen - hlen; if (!softl->ipl_logall) { mlen = (flags & FR_LOGBODY) ? MIN(mlen, 128) : 0; } else if ((flags & FR_LOGBODY) == 0) { mlen = 0; } if (mlen < 0) mlen = 0; ipfl.fl_plen = (u_char)mlen; ipfl.fl_hlen = (u_char)hlen; ipfl.fl_rule = fin->fin_rule; (void) strncpy(ipfl.fl_group, fin->fin_group, FR_GROUPLEN); if (fin->fin_fr != NULL) { ipfl.fl_loglevel = fin->fin_fr->fr_loglevel; ipfl.fl_logtag = fin->fin_fr->fr_logtag; } else { ipfl.fl_loglevel = 0xffff; ipfl.fl_logtag = FR_NOLOGTAG; } if (fin->fin_nattag != NULL) bcopy(fin->fin_nattag, (void *)&ipfl.fl_nattag, sizeof(ipfl.fl_nattag)); ipfl.fl_flags = flags; ipfl.fl_breason = (fin->fin_reason & 0xff); ipfl.fl_dir = fin->fin_out; ipfl.fl_lflags = fin->fin_flx; ipfl.fl_family = fin->fin_family; ptrs[0] = (void *)&ipfl; sizes[0] = sizeof(ipfl); types[0] = 0; -# if defined(MENTAT) && defined(_KERNEL) +# if SOLARIS && defined(_KERNEL) /* * Are we copied from the mblk or an aligned array ? */ if (fin->fin_ip == (ip_t *)m->b_rptr) { ptrs[1] = m; sizes[1] = hlen + mlen; types[1] = 1; } else { ptrs[1] = fin->fin_ip; sizes[1] = hlen + mlen; types[1] = 0; } # else ptrs[1] = m; sizes[1] = hlen + mlen; types[1] = 1; -# endif /* MENTAT */ +# endif /* SOLARIS */ return ipf_log_items(softc, IPL_LOGIPF, fin, ptrs, sizes, types, 2); } /* ------------------------------------------------------------------------ */ /* Function: ipf_log_items */ /* Returns: int - 0 == success, -1 == failure */ /* Parameters: softc(I) - pointer to main soft context */ /* unit(I) - device we are reading from */ /* fin(I) - pointer to packet information */ /* items(I) - array of pointers to log data */ /* itemsz(I) - array of size of valid memory pointed to */ /* types(I) - type of data pointed to by items pointers */ /* cnt(I) - number of elements in arrays items/itemsz/types */ /* */ /* Takes an array of parameters and constructs one record to include the */ /* miscellaneous packet information, as well as packet data, for reading */ /* from the log device. */ /* ------------------------------------------------------------------------ */ int ipf_log_items(softc, unit, fin, items, itemsz, types, cnt) ipf_main_softc_t *softc; int unit; fr_info_t *fin; void **items; size_t *itemsz; int *types, cnt; { ipf_log_softc_t *softl = softc->ipf_log_soft; caddr_t buf, ptr; iplog_t *ipl; size_t len; int i; SPL_INT(s); /* * Get the total amount of data to be logged. */ for (i = 0, len = sizeof(iplog_t); i < cnt; i++) len += itemsz[i]; SPL_NET(s); MUTEX_ENTER(&softl->ipl_mutex[unit]); softl->ipl_counter[unit]++; /* * check that we have space to record this information and can * allocate that much. */ if ((softl->ipl_used[unit] + len) > softl->ipl_logsize) { softl->ipl_logfail[unit]++; MUTEX_EXIT(&softl->ipl_mutex[unit]); return -1; } KMALLOCS(buf, caddr_t, len); if (buf == NULL) { softl->ipl_logfail[unit]++; MUTEX_EXIT(&softl->ipl_mutex[unit]); return -1; } ipl = (iplog_t *)buf; ipl->ipl_magic = softl->ipl_magic[unit]; ipl->ipl_count = 1; ipl->ipl_seqnum = softl->ipl_counter[unit]; ipl->ipl_next = NULL; ipl->ipl_dsize = len; #ifdef _KERNEL GETKTIME(&ipl->ipl_sec); #else ipl->ipl_sec = 0; ipl->ipl_usec = 0; #endif /* * Loop through all the items to be logged, copying each one to the * buffer. Use bcopy for normal data or the mb_t copyout routine. */ for (i = 0, ptr = buf + sizeof(*ipl); i < cnt; i++) { if (types[i] == 0) { bcopy(items[i], ptr, itemsz[i]); } else if (types[i] == 1) { COPYDATA(items[i], 0, itemsz[i], ptr); } ptr += itemsz[i]; } /* * Check to see if this log record has a CRC which matches the last * record logged. If it does, just up the count on the previous one * rather than create a new one. */ if (softl->ipl_suppress) { if ((fin != NULL) && (fin->fin_off == 0)) { if ((softl->ipll[unit] != NULL) && (fin->fin_crc == softl->ipl_crc[unit].fin_crc) && bcmp((char *)fin, (char *)&softl->ipl_crc[unit], FI_LCSIZE) == 0) { softl->ipll[unit]->ipl_count++; MUTEX_EXIT(&softl->ipl_mutex[unit]); SPL_X(s); KFREES(buf, len); return 0; } bcopy((char *)fin, (char *)&softl->ipl_crc[unit], FI_LCSIZE); softl->ipl_crc[unit].fin_crc = fin->fin_crc; } else bzero((char *)&softl->ipl_crc[unit], FI_CSIZE); } /* * advance the log pointer to the next empty record and deduct the * amount of space we're going to use. */ softl->ipl_logok[unit]++; softl->ipll[unit] = ipl; *softl->iplh[unit] = ipl; softl->iplh[unit] = &ipl->ipl_next; softl->ipl_used[unit] += len; /* * Now that the log record has been completed and added to the queue, * wake up any listeners who may want to read it. */ # if SOLARIS && defined(_KERNEL) cv_signal(&softl->ipl_wait[unit]); MUTEX_EXIT(&softl->ipl_mutex[unit]); pollwakeup(&softc->ipf_poll_head[unit], POLLRDNORM); # else MUTEX_EXIT(&softl->ipl_mutex[unit]); WAKEUP(softl->iplh, unit); POLLWAKEUP(unit); # endif SPL_X(s); # ifdef IPL_SELECT iplog_input_ready(unit); # endif return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_log_read */ /* Returns: int - 0 == success, else error value. */ /* Parameters: softc(I) - pointer to main soft context */ /* unit(I) - device we are reading from */ /* uio(O) - pointer to information about where to store data */ /* */ /* Called to handle a read on an IPFilter device. Returns only complete */ /* log messages - will not partially copy a log record out to userland. */ /* */ /* NOTE: This function will block and wait for a signal to return data if */ /* there is none present. Asynchronous I/O is not implemented. */ /* ------------------------------------------------------------------------ */ int ipf_log_read(softc, unit, uio) ipf_main_softc_t *softc; minor_t unit; struct uio *uio; { ipf_log_softc_t *softl = softc->ipf_log_soft; size_t dlen, copied; int error = 0; iplog_t *ipl; SPL_INT(s); if (softl->ipl_log_init == 0) { IPFERROR(40007); return 0; } /* * Sanity checks. Make sure the minor # is valid and we're copying * a valid chunk of data. */ if (IPL_LOGMAX < unit) { IPFERROR(40001); return ENXIO; } if (uio->uio_resid == 0) return 0; if (uio->uio_resid < sizeof(iplog_t)) { IPFERROR(40002); return EINVAL; } if (uio->uio_resid > softl->ipl_logsize) { IPFERROR(40005); return EINVAL; } /* * Lock the log so we can snapshot the variables. Wait for a signal * if the log is empty. */ SPL_NET(s); MUTEX_ENTER(&softl->ipl_mutex[unit]); softl->ipl_readers[unit]++; while (softl->ipl_log_init == 1 && softl->iplt[unit] == NULL) { # if SOLARIS && defined(_KERNEL) if (!cv_wait_sig(&softl->ipl_wait[unit], &softl->ipl_mutex[unit].ipf_lk)) { softl->ipl_readers[unit]--; MUTEX_EXIT(&softl->ipl_mutex[unit]); IPFERROR(40003); return EINTR; } # else MUTEX_EXIT(&softl->ipl_mutex[unit]); SPL_X(s); error = SLEEP(unit + softl->iplh, "ipl sleep"); SPL_NET(s); MUTEX_ENTER(&softl->ipl_mutex[unit]); if (error) { softl->ipl_readers[unit]--; MUTEX_EXIT(&softl->ipl_mutex[unit]); IPFERROR(40004); return error; } # endif /* SOLARIS */ } if (softl->ipl_log_init != 1) { softl->ipl_readers[unit]--; MUTEX_EXIT(&softl->ipl_mutex[unit]); IPFERROR(40008); return EIO; } # if (defined(BSD) && (BSD >= 199101)) || defined(__FreeBSD__) uio->uio_rw = UIO_READ; # endif for (copied = 0; (ipl = softl->iplt[unit]) != NULL; copied += dlen) { dlen = ipl->ipl_dsize; if (dlen > uio->uio_resid) break; /* * Don't hold the mutex over the uiomove call. */ softl->iplt[unit] = ipl->ipl_next; softl->ipl_used[unit] -= dlen; MUTEX_EXIT(&softl->ipl_mutex[unit]); SPL_X(s); error = UIOMOVE(ipl, dlen, UIO_READ, uio); if (error) { SPL_NET(s); MUTEX_ENTER(&softl->ipl_mutex[unit]); IPFERROR(40006); ipl->ipl_next = softl->iplt[unit]; softl->iplt[unit] = ipl; softl->ipl_used[unit] += dlen; break; } MUTEX_ENTER(&softl->ipl_mutex[unit]); KFREES((caddr_t)ipl, dlen); SPL_NET(s); } if (!softl->iplt[unit]) { softl->ipl_used[unit] = 0; softl->iplh[unit] = &softl->iplt[unit]; softl->ipll[unit] = NULL; } softl->ipl_readers[unit]--; MUTEX_EXIT(&softl->ipl_mutex[unit]); SPL_X(s); return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_log_clear */ /* Returns: int - number of log bytes cleared. */ /* Parameters: softc(I) - pointer to main soft context */ /* unit(I) - device we are reading from */ /* */ /* Deletes all queued up log records for a given output device. */ /* ------------------------------------------------------------------------ */ int ipf_log_clear(softc, unit) ipf_main_softc_t *softc; minor_t unit; { ipf_log_softc_t *softl = softc->ipf_log_soft; iplog_t *ipl; int used; SPL_INT(s); SPL_NET(s); MUTEX_ENTER(&softl->ipl_mutex[unit]); while ((ipl = softl->iplt[unit]) != NULL) { softl->iplt[unit] = ipl->ipl_next; KFREES((caddr_t)ipl, ipl->ipl_dsize); } softl->iplh[unit] = &softl->iplt[unit]; softl->ipll[unit] = NULL; used = softl->ipl_used[unit]; softl->ipl_used[unit] = 0; bzero((char *)&softl->ipl_crc[unit], FI_CSIZE); MUTEX_EXIT(&softl->ipl_mutex[unit]); SPL_X(s); return used; } /* ------------------------------------------------------------------------ */ /* Function: ipf_log_canread */ /* Returns: int - 0 == no data to read, 1 = data present */ /* Parameters: softc(I) - pointer to main soft context */ /* unit(I) - device we are reading from */ /* */ /* Returns an indication of whether or not there is data present in the */ /* current buffer for the selected ipf device. */ /* ------------------------------------------------------------------------ */ int ipf_log_canread(softc, unit) ipf_main_softc_t *softc; int unit; { ipf_log_softc_t *softl = softc->ipf_log_soft; return softl->iplt[unit] != NULL; } /* ------------------------------------------------------------------------ */ /* Function: ipf_log_canread */ /* Returns: int - 0 == no data to read, 1 = data present */ /* Parameters: softc(I) - pointer to main soft context */ /* unit(I) - device we are reading from */ /* */ /* Returns how many bytes are currently held in log buffers for the */ /* selected ipf device. */ /* ------------------------------------------------------------------------ */ int ipf_log_bytesused(softc, unit) ipf_main_softc_t *softc; int unit; { ipf_log_softc_t *softl = softc->ipf_log_soft; if (softl == NULL) return 0; return softl->ipl_used[unit]; } /* ------------------------------------------------------------------------ */ /* Function: ipf_log_failures */ /* Returns: U_QUAD_T - number of log failures */ /* Parameters: softc(I) - pointer to main soft context */ /* unit(I) - device we are reading from */ /* */ /* Returns how many times we've tried to log a packet but failed to do so */ /* for the selected ipf device. */ /* ------------------------------------------------------------------------ */ u_long ipf_log_failures(softc, unit) ipf_main_softc_t *softc; int unit; { ipf_log_softc_t *softl = softc->ipf_log_soft; if (softl == NULL) return 0; return softl->ipl_logfail[unit]; } /* ------------------------------------------------------------------------ */ /* Function: ipf_log_logok */ /* Returns: U_QUAD_T - number of packets logged */ /* Parameters: softc(I) - pointer to main soft context */ /* unit(I) - device we are reading from */ /* */ /* Returns how many times we've successfully logged a packet for the */ /* selected ipf device. */ /* ------------------------------------------------------------------------ */ u_long ipf_log_logok(softc, unit) ipf_main_softc_t *softc; int unit; { ipf_log_softc_t *softl = softc->ipf_log_soft; if (softl == NULL) return 0; return softl->ipl_logok[unit]; } #endif /* IPFILTER_LOG */ diff --git a/sys/contrib/ipfilter/netinet/ip_nat.c b/sys/contrib/ipfilter/netinet/ip_nat.c index 3d272e1710df..8dfab21b7e26 100644 --- a/sys/contrib/ipfilter/netinet/ip_nat.c +++ b/sys/contrib/ipfilter/netinet/ip_nat.c @@ -1,8582 +1,8582 @@ /* $FreeBSD$ */ /* * Copyright (C) 2012 by Darren Reed. * * See the IPFILTER.LICENCE file for details on licencing. */ #if defined(KERNEL) || defined(_KERNEL) # undef KERNEL # undef _KERNEL # define KERNEL 1 # define _KERNEL 1 #endif #include #include #include #include #include #if defined(_KERNEL) && \ (defined(__NetBSD_Version) && (__NetBSD_Version >= 399002000)) # include #endif #if !defined(_KERNEL) # include # include # include # define KERNEL # ifdef _OpenBSD__ struct file; # endif # include # undef KERNEL #endif #if defined(_KERNEL) && defined(__FreeBSD_version) # include # include #else # include #endif # include # include #include #if defined(_KERNEL) # include # if !defined(__SVR4) # include # endif #endif #if defined(__SVR4) # include # include # ifdef KERNEL # include # endif # include # include #endif #if defined(__FreeBSD_version) # include #endif #include #if defined(__FreeBSD_version) # include #endif #ifdef sun # include #endif #include #include #include #ifdef RFC1825 # include # include extern struct ifnet vpnif; #endif # include #include #include #include #include "netinet/ip_compat.h" #include #include "netinet/ipl.h" #include "netinet/ip_fil.h" #include "netinet/ip_nat.h" #include "netinet/ip_frag.h" #include "netinet/ip_state.h" #include "netinet/ip_proxy.h" #include "netinet/ip_lookup.h" #include "netinet/ip_dstlist.h" #include "netinet/ip_sync.h" #if defined(__FreeBSD_version) # include #endif #ifdef HAS_SYS_MD5_H # include #else # include "md5.h" #endif /* END OF INCLUDES */ #undef SOCKADDR_IN #define SOCKADDR_IN struct sockaddr_in #if !defined(lint) static const char sccsid[] = "@(#)ip_nat.c 1.11 6/5/96 (C) 1995 Darren Reed"; static const char rcsid[] = "@(#)$FreeBSD$"; /* static const char rcsid[] = "@(#)$Id: ip_nat.c,v 2.195.2.102 2007/10/16 10:08:10 darrenr Exp $"; */ #endif #define NATFSUM(n,v,f) ((v) == 4 ? (n)->f.in4.s_addr : (n)->f.i6[0] + \ (n)->f.i6[1] + (n)->f.i6[2] + (n)->f.i6[3]) #define NBUMP(x) softn->(x)++ #define NBUMPD(x, y) do { \ softn->x.y++; \ DT(y); \ } while (0) #define NBUMPSIDE(y,x) softn->ipf_nat_stats.ns_side[y].x++ #define NBUMPSIDED(y,x) do { softn->ipf_nat_stats.ns_side[y].x++; \ DT(x); } while (0) #define NBUMPSIDEX(y,x,z) \ do { softn->ipf_nat_stats.ns_side[y].x++; \ DT(z); } while (0) #define NBUMPSIDEDF(y,x)do { softn->ipf_nat_stats.ns_side[y].x++; \ DT1(x, fr_info_t *, fin); } while (0) static ipftuneable_t ipf_nat_tuneables[] = { /* nat */ { { (void *)offsetof(ipf_nat_softc_t, ipf_nat_lock) }, "nat_lock", 0, 1, stsizeof(ipf_nat_softc_t, ipf_nat_lock), IPFT_RDONLY, NULL, NULL }, { { (void *)offsetof(ipf_nat_softc_t, ipf_nat_table_sz) }, "nat_table_size", 1, 0x7fffffff, stsizeof(ipf_nat_softc_t, ipf_nat_table_sz), 0, NULL, ipf_nat_rehash }, { { (void *)offsetof(ipf_nat_softc_t, ipf_nat_table_max) }, "nat_table_max", 1, 0x7fffffff, stsizeof(ipf_nat_softc_t, ipf_nat_table_max), 0, NULL, NULL }, { { (void *)offsetof(ipf_nat_softc_t, ipf_nat_maprules_sz) }, "nat_rules_size", 1, 0x7fffffff, stsizeof(ipf_nat_softc_t, ipf_nat_maprules_sz), 0, NULL, ipf_nat_rehash_rules }, { { (void *)offsetof(ipf_nat_softc_t, ipf_nat_rdrrules_sz) }, "rdr_rules_size", 1, 0x7fffffff, stsizeof(ipf_nat_softc_t, ipf_nat_rdrrules_sz), 0, NULL, ipf_nat_rehash_rules }, { { (void *)offsetof(ipf_nat_softc_t, ipf_nat_hostmap_sz) }, "hostmap_size", 1, 0x7fffffff, stsizeof(ipf_nat_softc_t, ipf_nat_hostmap_sz), 0, NULL, ipf_nat_hostmap_rehash }, { { (void *)offsetof(ipf_nat_softc_t, ipf_nat_maxbucket) }, "nat_maxbucket",1, 0x7fffffff, stsizeof(ipf_nat_softc_t, ipf_nat_maxbucket), 0, NULL, NULL }, { { (void *)offsetof(ipf_nat_softc_t, ipf_nat_logging) }, "nat_logging", 0, 1, stsizeof(ipf_nat_softc_t, ipf_nat_logging), 0, NULL, NULL }, { { (void *)offsetof(ipf_nat_softc_t, ipf_nat_doflush) }, "nat_doflush", 0, 1, stsizeof(ipf_nat_softc_t, ipf_nat_doflush), 0, NULL, NULL }, { { (void *)offsetof(ipf_nat_softc_t, ipf_nat_table_wm_low) }, "nat_table_wm_low", 1, 99, stsizeof(ipf_nat_softc_t, ipf_nat_table_wm_low), 0, NULL, NULL }, { { (void *)offsetof(ipf_nat_softc_t, ipf_nat_table_wm_high) }, "nat_table_wm_high", 2, 100, stsizeof(ipf_nat_softc_t, ipf_nat_table_wm_high), 0, NULL, NULL }, { { 0 }, NULL, 0, 0, 0, 0, NULL, NULL } }; /* ======================================================================== */ /* How the NAT is organised and works. */ /* */ /* Inside (interface y) NAT Outside (interface x) */ /* -------------------- -+- ------------------------------------- */ /* Packet going | out, processsed by ipf_nat_checkout() for x */ /* ------------> | ------------> */ /* src=10.1.1.1 | src=192.1.1.1 */ /* | */ /* | in, processed by ipf_nat_checkin() for x */ /* <------------ | <------------ */ /* dst=10.1.1.1 | dst=192.1.1.1 */ /* -------------------- -+- ------------------------------------- */ /* ipf_nat_checkout() - changes ip_src and if required, sport */ /* - creates a new mapping, if required. */ /* ipf_nat_checkin() - changes ip_dst and if required, dport */ /* */ /* In the NAT table, internal source is recorded as "in" and externally */ /* seen as "out". */ /* ======================================================================== */ #if SOLARIS && !defined(INSTANCES) extern int pfil_delayed_copy; #endif static int ipf_nat_flush_entry(ipf_main_softc_t *, void *); static int ipf_nat_getent(ipf_main_softc_t *, caddr_t, int); static int ipf_nat_getsz(ipf_main_softc_t *, caddr_t, int); static int ipf_nat_putent(ipf_main_softc_t *, caddr_t, int); static void ipf_nat_addmap(ipf_nat_softc_t *, ipnat_t *); static void ipf_nat_addrdr(ipf_nat_softc_t *, ipnat_t *); static int ipf_nat_builddivertmp(ipf_nat_softc_t *, ipnat_t *); static int ipf_nat_clearlist(ipf_main_softc_t *, ipf_nat_softc_t *); static int ipf_nat_cmp_rules(ipnat_t *, ipnat_t *); static int ipf_nat_decap(fr_info_t *, nat_t *); static void ipf_nat_delrule(ipf_main_softc_t *, ipf_nat_softc_t *, ipnat_t *, int); static int ipf_nat_extraflush(ipf_main_softc_t *, ipf_nat_softc_t *, int); static int ipf_nat_finalise(fr_info_t *, nat_t *); static int ipf_nat_flushtable(ipf_main_softc_t *, ipf_nat_softc_t *); static int ipf_nat_getnext(ipf_main_softc_t *, ipftoken_t *, ipfgeniter_t *, ipfobj_t *); static int ipf_nat_gettable(ipf_main_softc_t *, ipf_nat_softc_t *, char *); static hostmap_t *ipf_nat_hostmap(ipf_nat_softc_t *, ipnat_t *, struct in_addr, struct in_addr, struct in_addr, u_32_t); static int ipf_nat_icmpquerytype(int); static int ipf_nat_iterator(ipf_main_softc_t *, ipftoken_t *, ipfgeniter_t *, ipfobj_t *); static int ipf_nat_match(fr_info_t *, ipnat_t *); static int ipf_nat_matcharray(nat_t *, int *, u_long); static int ipf_nat_matchflush(ipf_main_softc_t *, ipf_nat_softc_t *, caddr_t); static void ipf_nat_mssclamp(tcphdr_t *, u_32_t, fr_info_t *, u_short *); static int ipf_nat_newmap(fr_info_t *, nat_t *, natinfo_t *); static int ipf_nat_newdivert(fr_info_t *, nat_t *, natinfo_t *); static int ipf_nat_newrdr(fr_info_t *, nat_t *, natinfo_t *); static int ipf_nat_newrewrite(fr_info_t *, nat_t *, natinfo_t *); static int ipf_nat_nextaddr(fr_info_t *, nat_addr_t *, u_32_t *, u_32_t *); static int ipf_nat_nextaddrinit(ipf_main_softc_t *, char *, nat_addr_t *, int, void *); static int ipf_nat_resolverule(ipf_main_softc_t *, ipnat_t *); static int ipf_nat_ruleaddrinit(ipf_main_softc_t *, ipf_nat_softc_t *, ipnat_t *); static void ipf_nat_rule_fini(ipf_main_softc_t *, ipnat_t *); static int ipf_nat_rule_init(ipf_main_softc_t *, ipf_nat_softc_t *, ipnat_t *); static int ipf_nat_siocaddnat(ipf_main_softc_t *, ipf_nat_softc_t *, ipnat_t *, int); static void ipf_nat_siocdelnat(ipf_main_softc_t *, ipf_nat_softc_t *, ipnat_t *, int); static void ipf_nat_tabmove(ipf_nat_softc_t *, nat_t *); /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_main_load */ /* Returns: int - 0 == success, -1 == failure */ /* Parameters: Nil */ /* */ /* The only global NAT structure that needs to be initialised is the filter */ /* rule that is used with blocking packets. */ /* ------------------------------------------------------------------------ */ int ipf_nat_main_load() { return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_main_unload */ /* Returns: int - 0 == success, -1 == failure */ /* Parameters: Nil */ /* */ /* A null-op function that exists as a placeholder so that the flow in */ /* other functions is obvious. */ /* ------------------------------------------------------------------------ */ int ipf_nat_main_unload() { return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_soft_create */ /* Returns: void * - NULL = failure, else pointer to NAT context */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* Allocate the initial soft context structure for NAT and populate it with */ /* some default values. Creating the tables is left until we call _init so */ /* that sizes can be changed before we get under way. */ /* ------------------------------------------------------------------------ */ void * ipf_nat_soft_create(softc) ipf_main_softc_t *softc; { ipf_nat_softc_t *softn; KMALLOC(softn, ipf_nat_softc_t *); if (softn == NULL) return NULL; bzero((char *)softn, sizeof(*softn)); softn->ipf_nat_tune = ipf_tune_array_copy(softn, sizeof(ipf_nat_tuneables), ipf_nat_tuneables); if (softn->ipf_nat_tune == NULL) { ipf_nat_soft_destroy(softc, softn); return NULL; } if (ipf_tune_array_link(softc, softn->ipf_nat_tune) == -1) { ipf_nat_soft_destroy(softc, softn); return NULL; } softn->ipf_nat_list_tail = &softn->ipf_nat_list; softn->ipf_nat_table_max = NAT_TABLE_MAX; softn->ipf_nat_table_sz = NAT_TABLE_SZ; softn->ipf_nat_maprules_sz = NAT_SIZE; softn->ipf_nat_rdrrules_sz = RDR_SIZE; softn->ipf_nat_hostmap_sz = HOSTMAP_SIZE; softn->ipf_nat_doflush = 0; #ifdef IPFILTER_LOG softn->ipf_nat_logging = 1; #else softn->ipf_nat_logging = 0; #endif softn->ipf_nat_defage = DEF_NAT_AGE; softn->ipf_nat_defipage = IPF_TTLVAL(60); softn->ipf_nat_deficmpage = IPF_TTLVAL(3); softn->ipf_nat_table_wm_high = 99; softn->ipf_nat_table_wm_low = 90; return softn; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_soft_destroy */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* ------------------------------------------------------------------------ */ void ipf_nat_soft_destroy(softc, arg) ipf_main_softc_t *softc; void *arg; { ipf_nat_softc_t *softn = arg; if (softn->ipf_nat_tune != NULL) { ipf_tune_array_unlink(softc, softn->ipf_nat_tune); KFREES(softn->ipf_nat_tune, sizeof(ipf_nat_tuneables)); softn->ipf_nat_tune = NULL; } KFREE(softn); } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_init */ /* Returns: int - 0 == success, -1 == failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* Initialise all of the NAT locks, tables and other structures. */ /* ------------------------------------------------------------------------ */ int ipf_nat_soft_init(softc, arg) ipf_main_softc_t *softc; void *arg; { ipf_nat_softc_t *softn = arg; ipftq_t *tq; int i; KMALLOCS(softn->ipf_nat_table[0], nat_t **, \ sizeof(nat_t *) * softn->ipf_nat_table_sz); if (softn->ipf_nat_table[0] != NULL) { bzero((char *)softn->ipf_nat_table[0], softn->ipf_nat_table_sz * sizeof(nat_t *)); } else { return -1; } KMALLOCS(softn->ipf_nat_table[1], nat_t **, \ sizeof(nat_t *) * softn->ipf_nat_table_sz); if (softn->ipf_nat_table[1] != NULL) { bzero((char *)softn->ipf_nat_table[1], softn->ipf_nat_table_sz * sizeof(nat_t *)); } else { return -2; } KMALLOCS(softn->ipf_nat_map_rules, ipnat_t **, \ sizeof(ipnat_t *) * softn->ipf_nat_maprules_sz); if (softn->ipf_nat_map_rules != NULL) { bzero((char *)softn->ipf_nat_map_rules, softn->ipf_nat_maprules_sz * sizeof(ipnat_t *)); } else { return -3; } KMALLOCS(softn->ipf_nat_rdr_rules, ipnat_t **, \ sizeof(ipnat_t *) * softn->ipf_nat_rdrrules_sz); if (softn->ipf_nat_rdr_rules != NULL) { bzero((char *)softn->ipf_nat_rdr_rules, softn->ipf_nat_rdrrules_sz * sizeof(ipnat_t *)); } else { return -4; } KMALLOCS(softn->ipf_hm_maptable, hostmap_t **, \ sizeof(hostmap_t *) * softn->ipf_nat_hostmap_sz); if (softn->ipf_hm_maptable != NULL) { bzero((char *)softn->ipf_hm_maptable, sizeof(hostmap_t *) * softn->ipf_nat_hostmap_sz); } else { return -5; } softn->ipf_hm_maplist = NULL; KMALLOCS(softn->ipf_nat_stats.ns_side[0].ns_bucketlen, u_int *, softn->ipf_nat_table_sz * sizeof(u_int)); if (softn->ipf_nat_stats.ns_side[0].ns_bucketlen == NULL) { return -6; } bzero((char *)softn->ipf_nat_stats.ns_side[0].ns_bucketlen, softn->ipf_nat_table_sz * sizeof(u_int)); KMALLOCS(softn->ipf_nat_stats.ns_side[1].ns_bucketlen, u_int *, softn->ipf_nat_table_sz * sizeof(u_int)); if (softn->ipf_nat_stats.ns_side[1].ns_bucketlen == NULL) { return -7; } bzero((char *)softn->ipf_nat_stats.ns_side[1].ns_bucketlen, softn->ipf_nat_table_sz * sizeof(u_int)); if (softn->ipf_nat_maxbucket == 0) { for (i = softn->ipf_nat_table_sz; i > 0; i >>= 1) softn->ipf_nat_maxbucket++; softn->ipf_nat_maxbucket *= 2; } ipf_sttab_init(softc, softn->ipf_nat_tcptq); /* * Increase this because we may have "keep state" following this too * and packet storms can occur if this is removed too quickly. */ softn->ipf_nat_tcptq[IPF_TCPS_CLOSED].ifq_ttl = softc->ipf_tcplastack; softn->ipf_nat_tcptq[IPF_TCP_NSTATES - 1].ifq_next = &softn->ipf_nat_udptq; IPFTQ_INIT(&softn->ipf_nat_udptq, softn->ipf_nat_defage, "nat ipftq udp tab"); softn->ipf_nat_udptq.ifq_next = &softn->ipf_nat_udpacktq; IPFTQ_INIT(&softn->ipf_nat_udpacktq, softn->ipf_nat_defage, "nat ipftq udpack tab"); softn->ipf_nat_udpacktq.ifq_next = &softn->ipf_nat_icmptq; IPFTQ_INIT(&softn->ipf_nat_icmptq, softn->ipf_nat_deficmpage, "nat icmp ipftq tab"); softn->ipf_nat_icmptq.ifq_next = &softn->ipf_nat_icmpacktq; IPFTQ_INIT(&softn->ipf_nat_icmpacktq, softn->ipf_nat_defage, "nat icmpack ipftq tab"); softn->ipf_nat_icmpacktq.ifq_next = &softn->ipf_nat_iptq; IPFTQ_INIT(&softn->ipf_nat_iptq, softn->ipf_nat_defipage, "nat ip ipftq tab"); softn->ipf_nat_iptq.ifq_next = &softn->ipf_nat_pending; IPFTQ_INIT(&softn->ipf_nat_pending, 1, "nat pending ipftq tab"); softn->ipf_nat_pending.ifq_next = NULL; for (i = 0, tq = softn->ipf_nat_tcptq; i < IPF_TCP_NSTATES; i++, tq++) { if (tq->ifq_ttl < softn->ipf_nat_deficmpage) tq->ifq_ttl = softn->ipf_nat_deficmpage; #ifdef LARGE_NAT else if (tq->ifq_ttl > softn->ipf_nat_defage) tq->ifq_ttl = softn->ipf_nat_defage; #endif } /* * Increase this because we may have "keep state" following * this too and packet storms can occur if this is removed * too quickly. */ softn->ipf_nat_tcptq[IPF_TCPS_CLOSED].ifq_ttl = softc->ipf_tcplastack; MUTEX_INIT(&softn->ipf_nat_new, "ipf nat new mutex"); MUTEX_INIT(&softn->ipf_nat_io, "ipf nat io mutex"); softn->ipf_nat_inited = 1; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_soft_fini */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* Free all memory used by NAT structures allocated at runtime. */ /* ------------------------------------------------------------------------ */ int ipf_nat_soft_fini(softc, arg) ipf_main_softc_t *softc; void *arg; { ipf_nat_softc_t *softn = arg; ipftq_t *ifq, *ifqnext; (void) ipf_nat_clearlist(softc, softn); (void) ipf_nat_flushtable(softc, softn); /* * Proxy timeout queues are not cleaned here because although they * exist on the NAT list, ipf_proxy_unload is called after unload * and the proxies actually are responsible for them being created. * Should the proxy timeouts have their own list? There's no real * justification as this is the only complication. */ for (ifq = softn->ipf_nat_utqe; ifq != NULL; ifq = ifqnext) { ifqnext = ifq->ifq_next; if (ipf_deletetimeoutqueue(ifq) == 0) ipf_freetimeoutqueue(softc, ifq); } if (softn->ipf_nat_table[0] != NULL) { KFREES(softn->ipf_nat_table[0], sizeof(nat_t *) * softn->ipf_nat_table_sz); softn->ipf_nat_table[0] = NULL; } if (softn->ipf_nat_table[1] != NULL) { KFREES(softn->ipf_nat_table[1], sizeof(nat_t *) * softn->ipf_nat_table_sz); softn->ipf_nat_table[1] = NULL; } if (softn->ipf_nat_map_rules != NULL) { KFREES(softn->ipf_nat_map_rules, sizeof(ipnat_t *) * softn->ipf_nat_maprules_sz); softn->ipf_nat_map_rules = NULL; } if (softn->ipf_nat_rdr_rules != NULL) { KFREES(softn->ipf_nat_rdr_rules, sizeof(ipnat_t *) * softn->ipf_nat_rdrrules_sz); softn->ipf_nat_rdr_rules = NULL; } if (softn->ipf_hm_maptable != NULL) { KFREES(softn->ipf_hm_maptable, sizeof(hostmap_t *) * softn->ipf_nat_hostmap_sz); softn->ipf_hm_maptable = NULL; } if (softn->ipf_nat_stats.ns_side[0].ns_bucketlen != NULL) { KFREES(softn->ipf_nat_stats.ns_side[0].ns_bucketlen, sizeof(u_int) * softn->ipf_nat_table_sz); softn->ipf_nat_stats.ns_side[0].ns_bucketlen = NULL; } if (softn->ipf_nat_stats.ns_side[1].ns_bucketlen != NULL) { KFREES(softn->ipf_nat_stats.ns_side[1].ns_bucketlen, sizeof(u_int) * softn->ipf_nat_table_sz); softn->ipf_nat_stats.ns_side[1].ns_bucketlen = NULL; } if (softn->ipf_nat_inited == 1) { softn->ipf_nat_inited = 0; ipf_sttab_destroy(softn->ipf_nat_tcptq); MUTEX_DESTROY(&softn->ipf_nat_new); MUTEX_DESTROY(&softn->ipf_nat_io); MUTEX_DESTROY(&softn->ipf_nat_udptq.ifq_lock); MUTEX_DESTROY(&softn->ipf_nat_udpacktq.ifq_lock); MUTEX_DESTROY(&softn->ipf_nat_icmptq.ifq_lock); MUTEX_DESTROY(&softn->ipf_nat_icmpacktq.ifq_lock); MUTEX_DESTROY(&softn->ipf_nat_iptq.ifq_lock); MUTEX_DESTROY(&softn->ipf_nat_pending.ifq_lock); } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_setlock */ /* Returns: Nil */ /* Parameters: arg(I) - pointer to soft state information */ /* tmp(I) - new lock value */ /* */ /* Set the "lock status" of NAT to the value in tmp. */ /* ------------------------------------------------------------------------ */ void ipf_nat_setlock(arg, tmp) void *arg; int tmp; { ipf_nat_softc_t *softn = arg; softn->ipf_nat_lock = tmp; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_addrdr */ /* Returns: Nil */ /* Parameters: n(I) - pointer to NAT rule to add */ /* */ /* Adds a redirect rule to the hash table of redirect rules and the list of */ /* loaded NAT rules. Updates the bitmask indicating which netmasks are in */ /* use by redirect rules. */ /* ------------------------------------------------------------------------ */ static void ipf_nat_addrdr(softn, n) ipf_nat_softc_t *softn; ipnat_t *n; { ipnat_t **np; u_32_t j; u_int hv; u_int rhv; int k; if (n->in_odstatype == FRI_NORMAL) { k = count4bits(n->in_odstmsk); ipf_inet_mask_add(k, &softn->ipf_nat_rdr_mask); j = (n->in_odstaddr & n->in_odstmsk); rhv = NAT_HASH_FN(j, 0, 0xffffffff); } else { ipf_inet_mask_add(0, &softn->ipf_nat_rdr_mask); j = 0; rhv = 0; } hv = rhv % softn->ipf_nat_rdrrules_sz; np = softn->ipf_nat_rdr_rules + hv; while (*np != NULL) np = &(*np)->in_rnext; n->in_rnext = NULL; n->in_prnext = np; n->in_hv[0] = hv; n->in_use++; *np = n; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_addmap */ /* Returns: Nil */ /* Parameters: n(I) - pointer to NAT rule to add */ /* */ /* Adds a NAT map rule to the hash table of rules and the list of loaded */ /* NAT rules. Updates the bitmask indicating which netmasks are in use by */ /* redirect rules. */ /* ------------------------------------------------------------------------ */ static void ipf_nat_addmap(softn, n) ipf_nat_softc_t *softn; ipnat_t *n; { ipnat_t **np; u_32_t j; u_int hv; u_int rhv; int k; if (n->in_osrcatype == FRI_NORMAL) { k = count4bits(n->in_osrcmsk); ipf_inet_mask_add(k, &softn->ipf_nat_map_mask); j = (n->in_osrcaddr & n->in_osrcmsk); rhv = NAT_HASH_FN(j, 0, 0xffffffff); } else { ipf_inet_mask_add(0, &softn->ipf_nat_map_mask); j = 0; rhv = 0; } hv = rhv % softn->ipf_nat_maprules_sz; np = softn->ipf_nat_map_rules + hv; while (*np != NULL) np = &(*np)->in_mnext; n->in_mnext = NULL; n->in_pmnext = np; n->in_hv[1] = rhv; n->in_use++; *np = n; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_delrdr */ /* Returns: Nil */ /* Parameters: n(I) - pointer to NAT rule to delete */ /* */ /* Removes a redirect rule from the hash table of redirect rules. */ /* ------------------------------------------------------------------------ */ void ipf_nat_delrdr(softn, n) ipf_nat_softc_t *softn; ipnat_t *n; { if (n->in_odstatype == FRI_NORMAL) { int k = count4bits(n->in_odstmsk); ipf_inet_mask_del(k, &softn->ipf_nat_rdr_mask); } else { ipf_inet_mask_del(0, &softn->ipf_nat_rdr_mask); } if (n->in_rnext) n->in_rnext->in_prnext = n->in_prnext; *n->in_prnext = n->in_rnext; n->in_use--; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_delmap */ /* Returns: Nil */ /* Parameters: n(I) - pointer to NAT rule to delete */ /* */ /* Removes a NAT map rule from the hash table of NAT map rules. */ /* ------------------------------------------------------------------------ */ void ipf_nat_delmap(softn, n) ipf_nat_softc_t *softn; ipnat_t *n; { if (n->in_osrcatype == FRI_NORMAL) { int k = count4bits(n->in_osrcmsk); ipf_inet_mask_del(k, &softn->ipf_nat_map_mask); } else { ipf_inet_mask_del(0, &softn->ipf_nat_map_mask); } if (n->in_mnext != NULL) n->in_mnext->in_pmnext = n->in_pmnext; *n->in_pmnext = n->in_mnext; n->in_use--; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_hostmap */ /* Returns: struct hostmap* - NULL if no hostmap could be created, */ /* else a pointer to the hostmapping to use */ /* Parameters: np(I) - pointer to NAT rule */ /* real(I) - real IP address */ /* map(I) - mapped IP address */ /* port(I) - destination port number */ /* Write Locks: ipf_nat */ /* */ /* Check if an ip address has already been allocated for a given mapping */ /* that is not doing port based translation. If is not yet allocated, then */ /* create a new entry if a non-NULL NAT rule pointer has been supplied. */ /* ------------------------------------------------------------------------ */ static struct hostmap * ipf_nat_hostmap(softn, np, src, dst, map, port) ipf_nat_softc_t *softn; ipnat_t *np; struct in_addr src; struct in_addr dst; struct in_addr map; u_32_t port; { hostmap_t *hm; u_int hv, rhv; hv = (src.s_addr ^ dst.s_addr); hv += src.s_addr; hv += dst.s_addr; rhv = hv; hv %= softn->ipf_nat_hostmap_sz; for (hm = softn->ipf_hm_maptable[hv]; hm; hm = hm->hm_hnext) if ((hm->hm_osrcip.s_addr == src.s_addr) && (hm->hm_odstip.s_addr == dst.s_addr) && ((np == NULL) || (np == hm->hm_ipnat)) && ((port == 0) || (port == hm->hm_port))) { softn->ipf_nat_stats.ns_hm_addref++; hm->hm_ref++; return hm; } if (np == NULL) { softn->ipf_nat_stats.ns_hm_nullnp++; return NULL; } KMALLOC(hm, hostmap_t *); if (hm) { hm->hm_next = softn->ipf_hm_maplist; hm->hm_pnext = &softn->ipf_hm_maplist; if (softn->ipf_hm_maplist != NULL) softn->ipf_hm_maplist->hm_pnext = &hm->hm_next; softn->ipf_hm_maplist = hm; hm->hm_hnext = softn->ipf_hm_maptable[hv]; hm->hm_phnext = softn->ipf_hm_maptable + hv; if (softn->ipf_hm_maptable[hv] != NULL) softn->ipf_hm_maptable[hv]->hm_phnext = &hm->hm_hnext; softn->ipf_hm_maptable[hv] = hm; hm->hm_ipnat = np; np->in_use++; hm->hm_osrcip = src; hm->hm_odstip = dst; hm->hm_nsrcip = map; hm->hm_ndstip.s_addr = 0; hm->hm_ref = 1; hm->hm_port = port; hm->hm_hv = rhv; hm->hm_v = 4; softn->ipf_nat_stats.ns_hm_new++; } else { softn->ipf_nat_stats.ns_hm_newfail++; } return hm; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_hostmapdel */ /* Returns: Nil */ /* Parameters: hmp(I) - pointer to hostmap structure pointer */ /* Write Locks: ipf_nat */ /* */ /* Decrement the references to this hostmap structure by one. If this */ /* reaches zero then remove it and free it. */ /* ------------------------------------------------------------------------ */ void ipf_nat_hostmapdel(softc, hmp) ipf_main_softc_t *softc; struct hostmap **hmp; { struct hostmap *hm; hm = *hmp; *hmp = NULL; hm->hm_ref--; if (hm->hm_ref == 0) { ipf_nat_rule_deref(softc, &hm->hm_ipnat); if (hm->hm_hnext) hm->hm_hnext->hm_phnext = hm->hm_phnext; *hm->hm_phnext = hm->hm_hnext; if (hm->hm_next) hm->hm_next->hm_pnext = hm->hm_pnext; *hm->hm_pnext = hm->hm_next; KFREE(hm); } } /* ------------------------------------------------------------------------ */ /* Function: ipf_fix_outcksum */ /* Returns: Nil */ /* Parameters: fin(I) - pointer to packet information */ /* sp(I) - location of 16bit checksum to update */ /* n((I) - amount to adjust checksum by */ /* */ /* Adjusts the 16bit checksum by "n" for packets going out. */ /* ------------------------------------------------------------------------ */ void ipf_fix_outcksum(cksum, sp, n, partial) int cksum; u_short *sp; u_32_t n, partial; { u_short sumshort; u_32_t sum1; if (n == 0) return; if (cksum == 4) { *sp = 0; return; } if (cksum == 2) { sum1 = partial; sum1 = (sum1 & 0xffff) + (sum1 >> 16); *sp = htons(sum1); return; } sum1 = (~ntohs(*sp)) & 0xffff; sum1 += (n); sum1 = (sum1 >> 16) + (sum1 & 0xffff); /* Again */ sum1 = (sum1 >> 16) + (sum1 & 0xffff); sumshort = ~(u_short)sum1; *(sp) = htons(sumshort); } /* ------------------------------------------------------------------------ */ /* Function: ipf_fix_incksum */ /* Returns: Nil */ /* Parameters: fin(I) - pointer to packet information */ /* sp(I) - location of 16bit checksum to update */ /* n((I) - amount to adjust checksum by */ /* */ /* Adjusts the 16bit checksum by "n" for packets going in. */ /* ------------------------------------------------------------------------ */ void ipf_fix_incksum(cksum, sp, n, partial) int cksum; u_short *sp; u_32_t n, partial; { u_short sumshort; u_32_t sum1; if (n == 0) return; if (cksum == 4) { *sp = 0; return; } if (cksum == 2) { sum1 = partial; sum1 = (sum1 & 0xffff) + (sum1 >> 16); *sp = htons(sum1); return; } sum1 = (~ntohs(*sp)) & 0xffff; sum1 += ~(n) & 0xffff; sum1 = (sum1 >> 16) + (sum1 & 0xffff); /* Again */ sum1 = (sum1 >> 16) + (sum1 & 0xffff); sumshort = ~(u_short)sum1; *(sp) = htons(sumshort); } /* ------------------------------------------------------------------------ */ /* Function: ipf_fix_datacksum */ /* Returns: Nil */ /* Parameters: sp(I) - location of 16bit checksum to update */ /* n((I) - amount to adjust checksum by */ /* */ /* Fix_datacksum is used *only* for the adjustments of checksums in the */ /* data section of an IP packet. */ /* */ /* The only situation in which you need to do this is when NAT'ing an */ /* ICMP error message. Such a message, contains in its body the IP header */ /* of the original IP packet, that causes the error. */ /* */ /* You can't use fix_incksum or fix_outcksum in that case, because for the */ /* kernel the data section of the ICMP error is just data, and no special */ /* processing like hardware cksum or ntohs processing have been done by the */ /* kernel on the data section. */ /* ------------------------------------------------------------------------ */ void ipf_fix_datacksum(sp, n) u_short *sp; u_32_t n; { u_short sumshort; u_32_t sum1; if (n == 0) return; sum1 = (~ntohs(*sp)) & 0xffff; sum1 += (n); sum1 = (sum1 >> 16) + (sum1 & 0xffff); /* Again */ sum1 = (sum1 >> 16) + (sum1 & 0xffff); sumshort = ~(u_short)sum1; *(sp) = htons(sumshort); } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_ioctl */ /* Returns: int - 0 == success, != 0 == failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* data(I) - pointer to ioctl data */ /* cmd(I) - ioctl command integer */ /* mode(I) - file mode bits used with open */ /* uid(I) - uid of calling process */ /* ctx(I) - pointer used as key for finding context */ /* */ /* Processes an ioctl call made to operate on the IP Filter NAT device. */ /* ------------------------------------------------------------------------ */ int ipf_nat_ioctl(softc, data, cmd, mode, uid, ctx) ipf_main_softc_t *softc; ioctlcmd_t cmd; caddr_t data; int mode, uid; void *ctx; { ipf_nat_softc_t *softn = softc->ipf_nat_soft; int error = 0, ret, arg, getlock; ipnat_t *nat, *nt, *n; ipnat_t natd; SPL_INT(s); #if !SOLARIS && defined(_KERNEL) # if NETBSD_GE_REV(399002000) if ((mode & FWRITE) && kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_FIREWALL, KAUTH_REQ_NETWORK_FIREWALL_FW, NULL, NULL, NULL)) # else # if defined(__FreeBSD_version) if (securelevel_ge(curthread->td_ucred, 3) && (mode & FWRITE)) # else if ((securelevel >= 3) && (mode & FWRITE)) # endif # endif { IPFERROR(60001); return EPERM; } #endif getlock = (mode & NAT_LOCKHELD) ? 0 : 1; n = NULL; nt = NULL; nat = NULL; if ((cmd == (ioctlcmd_t)SIOCADNAT) || (cmd == (ioctlcmd_t)SIOCRMNAT) || (cmd == (ioctlcmd_t)SIOCPURGENAT)) { if (mode & NAT_SYSSPACE) { bcopy(data, (char *)&natd, sizeof(natd)); nat = &natd; error = 0; } else { bzero(&natd, sizeof(natd)); error = ipf_inobj(softc, data, NULL, &natd, IPFOBJ_IPNAT); if (error != 0) goto done; if (natd.in_size < sizeof(ipnat_t)) { error = EINVAL; goto done; } KMALLOCS(nt, ipnat_t *, natd.in_size); if (nt == NULL) { IPFERROR(60070); error = ENOMEM; goto done; } bzero(nt, natd.in_size); error = ipf_inobjsz(softc, data, nt, IPFOBJ_IPNAT, natd.in_size); if (error) goto done; nat = nt; } /* * For add/delete, look to see if the NAT entry is * already present */ nat->in_flags &= IPN_USERFLAGS; if ((nat->in_redir & NAT_MAPBLK) == 0) { if (nat->in_osrcatype == FRI_NORMAL || nat->in_osrcatype == FRI_NONE) nat->in_osrcaddr &= nat->in_osrcmsk; if (nat->in_odstatype == FRI_NORMAL || nat->in_odstatype == FRI_NONE) nat->in_odstaddr &= nat->in_odstmsk; if ((nat->in_flags & (IPN_SPLIT|IPN_SIPRANGE)) == 0) { if (nat->in_nsrcatype == FRI_NORMAL) nat->in_nsrcaddr &= nat->in_nsrcmsk; if (nat->in_ndstatype == FRI_NORMAL) nat->in_ndstaddr &= nat->in_ndstmsk; } } error = ipf_nat_rule_init(softc, softn, nat); if (error != 0) goto done; MUTEX_ENTER(&softn->ipf_nat_io); for (n = softn->ipf_nat_list; n != NULL; n = n->in_next) if (ipf_nat_cmp_rules(nat, n) == 0) break; } switch (cmd) { #ifdef IPFILTER_LOG case SIOCIPFFB : { int tmp; if (!(mode & FWRITE)) { IPFERROR(60002); error = EPERM; } else { tmp = ipf_log_clear(softc, IPL_LOGNAT); error = BCOPYOUT(&tmp, data, sizeof(tmp)); if (error != 0) { IPFERROR(60057); error = EFAULT; } } break; } case SIOCSETLG : if (!(mode & FWRITE)) { IPFERROR(60003); error = EPERM; } else { error = BCOPYIN(data, &softn->ipf_nat_logging, sizeof(softn->ipf_nat_logging)); if (error != 0) error = EFAULT; } break; case SIOCGETLG : error = BCOPYOUT(&softn->ipf_nat_logging, data, sizeof(softn->ipf_nat_logging)); if (error != 0) { IPFERROR(60004); error = EFAULT; } break; case FIONREAD : arg = ipf_log_bytesused(softc, IPL_LOGNAT); error = BCOPYOUT(&arg, data, sizeof(arg)); if (error != 0) { IPFERROR(60005); error = EFAULT; } break; #endif case SIOCADNAT : if (!(mode & FWRITE)) { IPFERROR(60006); error = EPERM; } else if (n != NULL) { natd.in_flineno = n->in_flineno; (void) ipf_outobj(softc, data, &natd, IPFOBJ_IPNAT); IPFERROR(60007); error = EEXIST; } else if (nt == NULL) { IPFERROR(60008); error = ENOMEM; } if (error != 0) { MUTEX_EXIT(&softn->ipf_nat_io); break; } if (nat != nt) bcopy((char *)nat, (char *)nt, sizeof(*n)); error = ipf_nat_siocaddnat(softc, softn, nt, getlock); MUTEX_EXIT(&softn->ipf_nat_io); if (error == 0) { nat = NULL; nt = NULL; } break; case SIOCRMNAT : case SIOCPURGENAT : if (!(mode & FWRITE)) { IPFERROR(60009); error = EPERM; n = NULL; } else if (n == NULL) { IPFERROR(60010); error = ESRCH; } if (error != 0) { MUTEX_EXIT(&softn->ipf_nat_io); break; } if (cmd == (ioctlcmd_t)SIOCPURGENAT) { error = ipf_outobjsz(softc, data, n, IPFOBJ_IPNAT, n->in_size); if (error) { MUTEX_EXIT(&softn->ipf_nat_io); goto done; } n->in_flags |= IPN_PURGE; } ipf_nat_siocdelnat(softc, softn, n, getlock); MUTEX_EXIT(&softn->ipf_nat_io); n = NULL; break; case SIOCGNATS : { natstat_t *nsp = &softn->ipf_nat_stats; nsp->ns_side[0].ns_table = softn->ipf_nat_table[0]; nsp->ns_side[1].ns_table = softn->ipf_nat_table[1]; nsp->ns_list = softn->ipf_nat_list; nsp->ns_maptable = softn->ipf_hm_maptable; nsp->ns_maplist = softn->ipf_hm_maplist; nsp->ns_nattab_sz = softn->ipf_nat_table_sz; nsp->ns_nattab_max = softn->ipf_nat_table_max; nsp->ns_rultab_sz = softn->ipf_nat_maprules_sz; nsp->ns_rdrtab_sz = softn->ipf_nat_rdrrules_sz; nsp->ns_hostmap_sz = softn->ipf_nat_hostmap_sz; nsp->ns_instances = softn->ipf_nat_instances; nsp->ns_ticks = softc->ipf_ticks; #ifdef IPFILTER_LOGGING nsp->ns_log_ok = ipf_log_logok(softc, IPF_LOGNAT); nsp->ns_log_fail = ipf_log_failures(softc, IPF_LOGNAT); #else nsp->ns_log_ok = 0; nsp->ns_log_fail = 0; #endif error = ipf_outobj(softc, data, nsp, IPFOBJ_NATSTAT); break; } case SIOCGNATL : { natlookup_t nl; error = ipf_inobj(softc, data, NULL, &nl, IPFOBJ_NATLOOKUP); if (error == 0) { void *ptr; if (getlock) { READ_ENTER(&softc->ipf_nat); } switch (nl.nl_v) { case 4 : ptr = ipf_nat_lookupredir(&nl); break; #ifdef USE_INET6 case 6 : ptr = ipf_nat6_lookupredir(&nl); break; #endif default: ptr = NULL; break; } if (getlock) { RWLOCK_EXIT(&softc->ipf_nat); } if (ptr != NULL) { error = ipf_outobj(softc, data, &nl, IPFOBJ_NATLOOKUP); } else { IPFERROR(60011); error = ESRCH; } } break; } case SIOCIPFFL : /* old SIOCFLNAT & SIOCCNATL */ if (!(mode & FWRITE)) { IPFERROR(60012); error = EPERM; break; } if (getlock) { WRITE_ENTER(&softc->ipf_nat); } error = BCOPYIN(data, &arg, sizeof(arg)); if (error != 0) { IPFERROR(60013); error = EFAULT; } else { if (arg == 0) ret = ipf_nat_flushtable(softc, softn); else if (arg == 1) ret = ipf_nat_clearlist(softc, softn); else ret = ipf_nat_extraflush(softc, softn, arg); ipf_proxy_flush(softc->ipf_proxy_soft, arg); } if (getlock) { RWLOCK_EXIT(&softc->ipf_nat); } if (error == 0) { error = BCOPYOUT(&ret, data, sizeof(ret)); } break; case SIOCMATCHFLUSH : if (!(mode & FWRITE)) { IPFERROR(60014); error = EPERM; break; } if (getlock) { WRITE_ENTER(&softc->ipf_nat); } error = ipf_nat_matchflush(softc, softn, data); if (getlock) { RWLOCK_EXIT(&softc->ipf_nat); } break; case SIOCPROXY : error = ipf_proxy_ioctl(softc, data, cmd, mode, ctx); break; case SIOCSTLCK : if (!(mode & FWRITE)) { IPFERROR(60015); error = EPERM; } else { error = ipf_lock(data, &softn->ipf_nat_lock); } break; case SIOCSTPUT : if ((mode & FWRITE) != 0) { error = ipf_nat_putent(softc, data, getlock); } else { IPFERROR(60016); error = EACCES; } break; case SIOCSTGSZ : if (softn->ipf_nat_lock) { error = ipf_nat_getsz(softc, data, getlock); } else { IPFERROR(60017); error = EACCES; } break; case SIOCSTGET : if (softn->ipf_nat_lock) { error = ipf_nat_getent(softc, data, getlock); } else { IPFERROR(60018); error = EACCES; } break; case SIOCGENITER : { ipfgeniter_t iter; ipftoken_t *token; ipfobj_t obj; error = ipf_inobj(softc, data, &obj, &iter, IPFOBJ_GENITER); if (error != 0) break; SPL_SCHED(s); token = ipf_token_find(softc, iter.igi_type, uid, ctx); if (token != NULL) { error = ipf_nat_iterator(softc, token, &iter, &obj); WRITE_ENTER(&softc->ipf_tokens); ipf_token_deref(softc, token); RWLOCK_EXIT(&softc->ipf_tokens); } SPL_X(s); break; } case SIOCIPFDELTOK : error = BCOPYIN(data, &arg, sizeof(arg)); if (error == 0) { SPL_SCHED(s); error = ipf_token_del(softc, arg, uid, ctx); SPL_X(s); } else { IPFERROR(60019); error = EFAULT; } break; case SIOCGTQTAB : error = ipf_outobj(softc, data, softn->ipf_nat_tcptq, IPFOBJ_STATETQTAB); break; case SIOCGTABL : error = ipf_nat_gettable(softc, softn, data); break; default : IPFERROR(60020); error = EINVAL; break; } done: if (nat != NULL) ipf_nat_rule_fini(softc, nat); if (nt != NULL) KFREES(nt, nt->in_size); return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_siocaddnat */ /* Returns: int - 0 == success, != 0 == failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* softn(I) - pointer to NAT context structure */ /* n(I) - pointer to new NAT rule */ /* np(I) - pointer to where to insert new NAT rule */ /* getlock(I) - flag indicating if lock on is held */ /* Mutex Locks: ipf_nat_io */ /* */ /* Handle SIOCADNAT. Resolve and calculate details inside the NAT rule */ /* from information passed to the kernel, then add it to the appropriate */ /* NAT rule table(s). */ /* ------------------------------------------------------------------------ */ static int ipf_nat_siocaddnat(softc, softn, n, getlock) ipf_main_softc_t *softc; ipf_nat_softc_t *softn; ipnat_t *n; int getlock; { int error = 0; if (ipf_nat_resolverule(softc, n) != 0) { IPFERROR(60022); return ENOENT; } if ((n->in_age[0] == 0) && (n->in_age[1] != 0)) { IPFERROR(60023); return EINVAL; } if (n->in_redir == (NAT_DIVERTUDP|NAT_MAP)) { /* * Prerecord whether or not the destination of the divert * is local or not to the interface the packet is going * to be sent out. */ n->in_dlocal = ipf_deliverlocal(softc, n->in_v[1], n->in_ifps[1], &n->in_ndstip6); } if (getlock) { WRITE_ENTER(&softc->ipf_nat); } n->in_next = NULL; n->in_pnext = softn->ipf_nat_list_tail; *n->in_pnext = n; softn->ipf_nat_list_tail = &n->in_next; n->in_use++; if (n->in_redir & NAT_REDIRECT) { n->in_flags &= ~IPN_NOTDST; switch (n->in_v[0]) { case 4 : ipf_nat_addrdr(softn, n); break; #ifdef USE_INET6 case 6 : ipf_nat6_addrdr(softn, n); break; #endif default : break; } ATOMIC_INC32(softn->ipf_nat_stats.ns_rules_rdr); } if (n->in_redir & (NAT_MAP|NAT_MAPBLK)) { n->in_flags &= ~IPN_NOTSRC; switch (n->in_v[0]) { case 4 : ipf_nat_addmap(softn, n); break; #ifdef USE_INET6 case 6 : ipf_nat6_addmap(softn, n); break; #endif default : break; } ATOMIC_INC32(softn->ipf_nat_stats.ns_rules_map); } if (n->in_age[0] != 0) n->in_tqehead[0] = ipf_addtimeoutqueue(softc, &softn->ipf_nat_utqe, n->in_age[0]); if (n->in_age[1] != 0) n->in_tqehead[1] = ipf_addtimeoutqueue(softc, &softn->ipf_nat_utqe, n->in_age[1]); MUTEX_INIT(&n->in_lock, "ipnat rule lock"); n = NULL; ATOMIC_INC32(softn->ipf_nat_stats.ns_rules); #if SOLARIS && !defined(INSTANCES) pfil_delayed_copy = 0; #endif if (getlock) { RWLOCK_EXIT(&softc->ipf_nat); /* WRITE */ } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_ruleaddrinit */ /* Parameters: softc(I) - pointer to soft context main structure */ /* softn(I) - pointer to NAT context structure */ /* n(I) - pointer to NAT rule */ /* */ /* Initialise all of the NAT address structures in a NAT rule. */ /* ------------------------------------------------------------------------ */ static int ipf_nat_ruleaddrinit(softc, softn, n) ipf_main_softc_t *softc; ipf_nat_softc_t *softn; ipnat_t *n; { int idx, error; if ((n->in_ndst.na_atype == FRI_LOOKUP) && (n->in_ndst.na_type != IPLT_DSTLIST)) { IPFERROR(60071); return EINVAL; } if ((n->in_nsrc.na_atype == FRI_LOOKUP) && (n->in_nsrc.na_type != IPLT_DSTLIST)) { IPFERROR(60069); return EINVAL; } if (n->in_redir == NAT_BIMAP) { n->in_ndstaddr = n->in_osrcaddr; n->in_ndstmsk = n->in_osrcmsk; n->in_odstaddr = n->in_nsrcaddr; n->in_odstmsk = n->in_nsrcmsk; } if (n->in_redir & NAT_REDIRECT) idx = 1; else idx = 0; /* * Initialise all of the address fields. */ error = ipf_nat_nextaddrinit(softc, n->in_names, &n->in_osrc, 1, n->in_ifps[idx]); if (error != 0) return error; error = ipf_nat_nextaddrinit(softc, n->in_names, &n->in_odst, 1, n->in_ifps[idx]); if (error != 0) return error; error = ipf_nat_nextaddrinit(softc, n->in_names, &n->in_nsrc, 1, n->in_ifps[idx]); if (error != 0) return error; error = ipf_nat_nextaddrinit(softc, n->in_names, &n->in_ndst, 1, n->in_ifps[idx]); if (error != 0) return error; if (n->in_redir & NAT_DIVERTUDP) ipf_nat_builddivertmp(softn, n); return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_resolvrule */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* n(I) - pointer to NAT rule */ /* */ /* Handle SIOCADNAT. Resolve and calculate details inside the NAT rule */ /* from information passed to the kernel, then add it to the appropriate */ /* NAT rule table(s). */ /* ------------------------------------------------------------------------ */ static int ipf_nat_resolverule(softc, n) ipf_main_softc_t *softc; ipnat_t *n; { char *base; base = n->in_names; n->in_ifps[0] = ipf_resolvenic(softc, base + n->in_ifnames[0], n->in_v[0]); if (n->in_ifnames[1] == -1) { n->in_ifnames[1] = n->in_ifnames[0]; n->in_ifps[1] = n->in_ifps[0]; } else { n->in_ifps[1] = ipf_resolvenic(softc, base + n->in_ifnames[1], n->in_v[1]); } if (n->in_plabel != -1) { if (n->in_redir & NAT_REDIRECT) n->in_apr = ipf_proxy_lookup(softc->ipf_proxy_soft, n->in_pr[0], base + n->in_plabel); else n->in_apr = ipf_proxy_lookup(softc->ipf_proxy_soft, n->in_pr[1], base + n->in_plabel); if (n->in_apr == NULL) return -1; } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_siocdelnat */ /* Returns: int - 0 == success, != 0 == failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* softn(I) - pointer to NAT context structure */ /* n(I) - pointer to new NAT rule */ /* getlock(I) - flag indicating if lock on is held */ /* Mutex Locks: ipf_nat_io */ /* */ /* Handle SIOCADNAT. Resolve and calculate details inside the NAT rule */ /* from information passed to the kernel, then add it to the appropriate */ /* NAT rule table(s). */ /* ------------------------------------------------------------------------ */ static void ipf_nat_siocdelnat(softc, softn, n, getlock) ipf_main_softc_t *softc; ipf_nat_softc_t *softn; ipnat_t *n; int getlock; { if (getlock) { WRITE_ENTER(&softc->ipf_nat); } ipf_nat_delrule(softc, softn, n, 1); if (getlock) { RWLOCK_EXIT(&softc->ipf_nat); /* READ/WRITE */ } } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_getsz */ /* Returns: int - 0 == success, != 0 is the error value. */ /* Parameters: softc(I) - pointer to soft context main structure */ /* data(I) - pointer to natget structure with kernel */ /* pointer get the size of. */ /* getlock(I) - flag indicating whether or not the caller */ /* holds a lock on ipf_nat */ /* */ /* Handle SIOCSTGSZ. */ /* Return the size of the nat list entry to be copied back to user space. */ /* The size of the entry is stored in the ng_sz field and the enture natget */ /* structure is copied back to the user. */ /* ------------------------------------------------------------------------ */ static int ipf_nat_getsz(softc, data, getlock) ipf_main_softc_t *softc; caddr_t data; int getlock; { ipf_nat_softc_t *softn = softc->ipf_nat_soft; ap_session_t *aps; nat_t *nat, *n; natget_t ng; int error; error = BCOPYIN(data, &ng, sizeof(ng)); if (error != 0) { IPFERROR(60024); return EFAULT; } if (getlock) { READ_ENTER(&softc->ipf_nat); } nat = ng.ng_ptr; if (!nat) { nat = softn->ipf_nat_instances; ng.ng_sz = 0; /* * Empty list so the size returned is 0. Simple. */ if (nat == NULL) { if (getlock) { RWLOCK_EXIT(&softc->ipf_nat); } error = BCOPYOUT(&ng, data, sizeof(ng)); if (error != 0) { IPFERROR(60025); return EFAULT; } return 0; } } else { /* * Make sure the pointer we're copying from exists in the * current list of entries. Security precaution to prevent * copying of random kernel data. */ for (n = softn->ipf_nat_instances; n; n = n->nat_next) if (n == nat) break; if (n == NULL) { if (getlock) { RWLOCK_EXIT(&softc->ipf_nat); } IPFERROR(60026); return ESRCH; } } /* * Incluse any space required for proxy data structures. */ ng.ng_sz = sizeof(nat_save_t); aps = nat->nat_aps; if (aps != NULL) { ng.ng_sz += sizeof(ap_session_t) - 4; if (aps->aps_data != 0) ng.ng_sz += aps->aps_psiz; } if (getlock) { RWLOCK_EXIT(&softc->ipf_nat); } error = BCOPYOUT(&ng, data, sizeof(ng)); if (error != 0) { IPFERROR(60027); return EFAULT; } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_getent */ /* Returns: int - 0 == success, != 0 is the error value. */ /* Parameters: softc(I) - pointer to soft context main structure */ /* data(I) - pointer to natget structure with kernel pointer*/ /* to NAT structure to copy out. */ /* getlock(I) - flag indicating whether or not the caller */ /* holds a lock on ipf_nat */ /* */ /* Handle SIOCSTGET. */ /* Copies out NAT entry to user space. Any additional data held for a */ /* proxy is also copied, as to is the NAT rule which was responsible for it */ /* ------------------------------------------------------------------------ */ static int ipf_nat_getent(softc, data, getlock) ipf_main_softc_t *softc; caddr_t data; int getlock; { ipf_nat_softc_t *softn = softc->ipf_nat_soft; int error, outsize; ap_session_t *aps; nat_save_t *ipn, ipns; nat_t *n, *nat; error = ipf_inobj(softc, data, NULL, &ipns, IPFOBJ_NATSAVE); if (error != 0) return error; if ((ipns.ipn_dsize < sizeof(ipns)) || (ipns.ipn_dsize > 81920)) { IPFERROR(60028); return EINVAL; } KMALLOCS(ipn, nat_save_t *, ipns.ipn_dsize); if (ipn == NULL) { IPFERROR(60029); return ENOMEM; } if (getlock) { READ_ENTER(&softc->ipf_nat); } ipn->ipn_dsize = ipns.ipn_dsize; nat = ipns.ipn_next; if (nat == NULL) { nat = softn->ipf_nat_instances; if (nat == NULL) { if (softn->ipf_nat_instances == NULL) { IPFERROR(60030); error = ENOENT; } goto finished; } } else { /* * Make sure the pointer we're copying from exists in the * current list of entries. Security precaution to prevent * copying of random kernel data. */ for (n = softn->ipf_nat_instances; n; n = n->nat_next) if (n == nat) break; if (n == NULL) { IPFERROR(60031); error = ESRCH; goto finished; } } ipn->ipn_next = nat->nat_next; /* * Copy the NAT structure. */ bcopy((char *)nat, &ipn->ipn_nat, sizeof(*nat)); /* * If we have a pointer to the NAT rule it belongs to, save that too. */ if (nat->nat_ptr != NULL) bcopy((char *)nat->nat_ptr, (char *)&ipn->ipn_ipnat, ipn->ipn_ipnat.in_size); /* * If we also know the NAT entry has an associated filter rule, * save that too. */ if (nat->nat_fr != NULL) bcopy((char *)nat->nat_fr, (char *)&ipn->ipn_fr, sizeof(ipn->ipn_fr)); /* * Last but not least, if there is an application proxy session set * up for this NAT entry, then copy that out too, including any * private data saved along side it by the proxy. */ aps = nat->nat_aps; outsize = ipn->ipn_dsize - sizeof(*ipn) + sizeof(ipn->ipn_data); if (aps != NULL) { char *s; if (outsize < sizeof(*aps)) { IPFERROR(60032); error = ENOBUFS; goto finished; } s = ipn->ipn_data; bcopy((char *)aps, s, sizeof(*aps)); s += sizeof(*aps); outsize -= sizeof(*aps); if ((aps->aps_data != NULL) && (outsize >= aps->aps_psiz)) bcopy(aps->aps_data, s, aps->aps_psiz); else { IPFERROR(60033); error = ENOBUFS; } } if (error == 0) { error = ipf_outobjsz(softc, data, ipn, IPFOBJ_NATSAVE, ipns.ipn_dsize); } finished: if (ipn != NULL) { KFREES(ipn, ipns.ipn_dsize); } if (getlock) { RWLOCK_EXIT(&softc->ipf_nat); } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_putent */ /* Returns: int - 0 == success, != 0 is the error value. */ /* Parameters: softc(I) - pointer to soft context main structure */ /* data(I) - pointer to natget structure with NAT */ /* structure information to load into the kernel */ /* getlock(I) - flag indicating whether or not a write lock */ /* on is already held. */ /* */ /* Handle SIOCSTPUT. */ /* Loads a NAT table entry from user space, including a NAT rule, proxy and */ /* firewall rule data structures, if pointers to them indicate so. */ /* ------------------------------------------------------------------------ */ static int ipf_nat_putent(softc, data, getlock) ipf_main_softc_t *softc; caddr_t data; int getlock; { ipf_nat_softc_t *softn = softc->ipf_nat_soft; nat_save_t ipn, *ipnn; ap_session_t *aps; nat_t *n, *nat; frentry_t *fr; fr_info_t fin; ipnat_t *in; int error; error = ipf_inobj(softc, data, NULL, &ipn, IPFOBJ_NATSAVE); if (error != 0) return error; /* * Initialise early because of code at junkput label. */ n = NULL; in = NULL; aps = NULL; nat = NULL; ipnn = NULL; fr = NULL; /* * New entry, copy in the rest of the NAT entry if it's size is more * than just the nat_t structure. */ if (ipn.ipn_dsize > sizeof(ipn)) { if (ipn.ipn_dsize > 81920) { IPFERROR(60034); error = ENOMEM; goto junkput; } KMALLOCS(ipnn, nat_save_t *, ipn.ipn_dsize); if (ipnn == NULL) { IPFERROR(60035); return ENOMEM; } bzero(ipnn, ipn.ipn_dsize); error = ipf_inobjsz(softc, data, ipnn, IPFOBJ_NATSAVE, ipn.ipn_dsize); if (error != 0) { goto junkput; } } else ipnn = &ipn; KMALLOC(nat, nat_t *); if (nat == NULL) { IPFERROR(60037); error = ENOMEM; goto junkput; } bcopy((char *)&ipnn->ipn_nat, (char *)nat, sizeof(*nat)); switch (nat->nat_v[0]) { case 4: #ifdef USE_INET6 case 6 : #endif break; default : IPFERROR(60061); error = EPROTONOSUPPORT; goto junkput; /*NOTREACHED*/ } /* * Initialize all these so that ipf_nat_delete() doesn't cause a crash. */ bzero((char *)nat, offsetof(struct nat, nat_tqe)); nat->nat_tqe.tqe_pnext = NULL; nat->nat_tqe.tqe_next = NULL; nat->nat_tqe.tqe_ifq = NULL; nat->nat_tqe.tqe_parent = nat; /* * Restore the rule associated with this nat session */ in = ipnn->ipn_nat.nat_ptr; if (in != NULL) { KMALLOCS(in, ipnat_t *, ipnn->ipn_ipnat.in_size); nat->nat_ptr = in; if (in == NULL) { IPFERROR(60038); error = ENOMEM; goto junkput; } bcopy((char *)&ipnn->ipn_ipnat, (char *)in, ipnn->ipn_ipnat.in_size); in->in_use = 1; in->in_flags |= IPN_DELETE; ATOMIC_INC32(softn->ipf_nat_stats.ns_rules); if (ipf_nat_resolverule(softc, in) != 0) { IPFERROR(60039); error = ESRCH; goto junkput; } } /* * Check that the NAT entry doesn't already exist in the kernel. * * For NAT_OUTBOUND, we're lookup for a duplicate MAP entry. To do * this, we check to see if the inbound combination of addresses and * ports is already known. Similar logic is applied for NAT_INBOUND. * */ bzero((char *)&fin, sizeof(fin)); fin.fin_v = nat->nat_v[0]; fin.fin_p = nat->nat_pr[0]; fin.fin_rev = nat->nat_rev; fin.fin_ifp = nat->nat_ifps[0]; fin.fin_data[0] = ntohs(nat->nat_ndport); fin.fin_data[1] = ntohs(nat->nat_nsport); switch (nat->nat_dir) { case NAT_OUTBOUND : case NAT_DIVERTOUT : if (getlock) { READ_ENTER(&softc->ipf_nat); } fin.fin_v = nat->nat_v[1]; if (nat->nat_v[1] == 4) { n = ipf_nat_inlookup(&fin, nat->nat_flags, fin.fin_p, nat->nat_ndstip, nat->nat_nsrcip); #ifdef USE_INET6 } else if (nat->nat_v[1] == 6) { n = ipf_nat6_inlookup(&fin, nat->nat_flags, fin.fin_p, &nat->nat_ndst6.in6, &nat->nat_nsrc6.in6); #endif } if (getlock) { RWLOCK_EXIT(&softc->ipf_nat); } if (n != NULL) { IPFERROR(60040); error = EEXIST; goto junkput; } break; case NAT_INBOUND : case NAT_DIVERTIN : if (getlock) { READ_ENTER(&softc->ipf_nat); } if (fin.fin_v == 4) { n = ipf_nat_outlookup(&fin, nat->nat_flags, fin.fin_p, nat->nat_ndstip, nat->nat_nsrcip); #ifdef USE_INET6 } else if (fin.fin_v == 6) { n = ipf_nat6_outlookup(&fin, nat->nat_flags, fin.fin_p, &nat->nat_ndst6.in6, &nat->nat_nsrc6.in6); #endif } if (getlock) { RWLOCK_EXIT(&softc->ipf_nat); } if (n != NULL) { IPFERROR(60041); error = EEXIST; goto junkput; } break; default : IPFERROR(60042); error = EINVAL; goto junkput; } /* * Restore ap_session_t structure. Include the private data allocated * if it was there. */ aps = nat->nat_aps; if (aps != NULL) { KMALLOC(aps, ap_session_t *); nat->nat_aps = aps; if (aps == NULL) { IPFERROR(60043); error = ENOMEM; goto junkput; } bcopy(ipnn->ipn_data, (char *)aps, sizeof(*aps)); if (in != NULL) aps->aps_apr = in->in_apr; else aps->aps_apr = NULL; if (aps->aps_psiz != 0) { if (aps->aps_psiz > 81920) { IPFERROR(60044); error = ENOMEM; goto junkput; } KMALLOCS(aps->aps_data, void *, aps->aps_psiz); if (aps->aps_data == NULL) { IPFERROR(60045); error = ENOMEM; goto junkput; } bcopy(ipnn->ipn_data + sizeof(*aps), aps->aps_data, aps->aps_psiz); } else { aps->aps_psiz = 0; aps->aps_data = NULL; } } /* * If there was a filtering rule associated with this entry then * build up a new one. */ fr = nat->nat_fr; if (fr != NULL) { if ((nat->nat_flags & SI_NEWFR) != 0) { KMALLOC(fr, frentry_t *); nat->nat_fr = fr; if (fr == NULL) { IPFERROR(60046); error = ENOMEM; goto junkput; } ipnn->ipn_nat.nat_fr = fr; fr->fr_ref = 1; (void) ipf_outobj(softc, data, ipnn, IPFOBJ_NATSAVE); bcopy((char *)&ipnn->ipn_fr, (char *)fr, sizeof(*fr)); fr->fr_ref = 1; fr->fr_dsize = 0; fr->fr_data = NULL; fr->fr_type = FR_T_NONE; MUTEX_NUKE(&fr->fr_lock); MUTEX_INIT(&fr->fr_lock, "nat-filter rule lock"); } else { if (getlock) { READ_ENTER(&softc->ipf_nat); } for (n = softn->ipf_nat_instances; n; n = n->nat_next) if (n->nat_fr == fr) break; if (n != NULL) { MUTEX_ENTER(&fr->fr_lock); fr->fr_ref++; MUTEX_EXIT(&fr->fr_lock); } if (getlock) { RWLOCK_EXIT(&softc->ipf_nat); } if (n == NULL) { IPFERROR(60047); error = ESRCH; goto junkput; } } } if (ipnn != &ipn) { KFREES(ipnn, ipn.ipn_dsize); ipnn = NULL; } if (getlock) { WRITE_ENTER(&softc->ipf_nat); } if (fin.fin_v == 4) error = ipf_nat_finalise(&fin, nat); #ifdef USE_INET6 else error = ipf_nat6_finalise(&fin, nat); #endif if (getlock) { RWLOCK_EXIT(&softc->ipf_nat); } if (error == 0) return 0; IPFERROR(60048); error = ENOMEM; junkput: if (fr != NULL) { (void) ipf_derefrule(softc, &fr); } if ((ipnn != NULL) && (ipnn != &ipn)) { KFREES(ipnn, ipn.ipn_dsize); } if (nat != NULL) { if (aps != NULL) { if (aps->aps_data != NULL) { KFREES(aps->aps_data, aps->aps_psiz); } KFREE(aps); } if (in != NULL) { if (in->in_apr) ipf_proxy_deref(in->in_apr); KFREES(in, in->in_size); } KFREE(nat); } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_delete */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* nat(I) - pointer to NAT structure to delete */ /* logtype(I) - type of LOG record to create before deleting */ /* Write Lock: ipf_nat */ /* */ /* Delete a nat entry from the various lists and table. If NAT logging is */ /* enabled then generate a NAT log record for this event. */ /* ------------------------------------------------------------------------ */ void ipf_nat_delete(softc, nat, logtype) ipf_main_softc_t *softc; struct nat *nat; int logtype; { ipf_nat_softc_t *softn = softc->ipf_nat_soft; int madeorphan = 0, bkt, removed = 0; nat_stat_side_t *nss; struct ipnat *ipn; if (logtype != 0 && softn->ipf_nat_logging != 0) ipf_nat_log(softc, softn, nat, logtype); /* * Take it as a general indication that all the pointers are set if * nat_pnext is set. */ if (nat->nat_pnext != NULL) { removed = 1; bkt = nat->nat_hv[0] % softn->ipf_nat_table_sz; nss = &softn->ipf_nat_stats.ns_side[0]; if (nss->ns_bucketlen[bkt] > 0) nss->ns_bucketlen[bkt]--; if (nss->ns_bucketlen[bkt] == 0) { nss->ns_inuse--; } bkt = nat->nat_hv[1] % softn->ipf_nat_table_sz; nss = &softn->ipf_nat_stats.ns_side[1]; if (nss->ns_bucketlen[bkt] > 0) nss->ns_bucketlen[bkt]--; if (nss->ns_bucketlen[bkt] == 0) { nss->ns_inuse--; } *nat->nat_pnext = nat->nat_next; if (nat->nat_next != NULL) { nat->nat_next->nat_pnext = nat->nat_pnext; nat->nat_next = NULL; } nat->nat_pnext = NULL; *nat->nat_phnext[0] = nat->nat_hnext[0]; if (nat->nat_hnext[0] != NULL) { nat->nat_hnext[0]->nat_phnext[0] = nat->nat_phnext[0]; nat->nat_hnext[0] = NULL; } nat->nat_phnext[0] = NULL; *nat->nat_phnext[1] = nat->nat_hnext[1]; if (nat->nat_hnext[1] != NULL) { nat->nat_hnext[1]->nat_phnext[1] = nat->nat_phnext[1]; nat->nat_hnext[1] = NULL; } nat->nat_phnext[1] = NULL; if ((nat->nat_flags & SI_WILDP) != 0) { ATOMIC_DEC32(softn->ipf_nat_stats.ns_wilds); } madeorphan = 1; } if (nat->nat_me != NULL) { *nat->nat_me = NULL; nat->nat_me = NULL; nat->nat_ref--; ASSERT(nat->nat_ref >= 0); } if (nat->nat_tqe.tqe_ifq != NULL) { /* * No call to ipf_freetimeoutqueue() is made here, they are * garbage collected in ipf_nat_expire(). */ (void) ipf_deletequeueentry(&nat->nat_tqe); } if (nat->nat_sync) { ipf_sync_del_nat(softc->ipf_sync_soft, nat->nat_sync); nat->nat_sync = NULL; } if (logtype == NL_EXPIRE) softn->ipf_nat_stats.ns_expire++; MUTEX_ENTER(&nat->nat_lock); /* * NL_DESTROY should only be passed in when we've got nat_ref >= 2. * This happens when a nat'd packet is blocked and we want to throw * away the NAT session. */ if (logtype == NL_DESTROY) { if (nat->nat_ref > 2) { nat->nat_ref -= 2; MUTEX_EXIT(&nat->nat_lock); if (removed) softn->ipf_nat_stats.ns_orphans++; return; } } else if (nat->nat_ref > 1) { nat->nat_ref--; MUTEX_EXIT(&nat->nat_lock); if (madeorphan == 1) softn->ipf_nat_stats.ns_orphans++; return; } ASSERT(nat->nat_ref >= 0); MUTEX_EXIT(&nat->nat_lock); nat->nat_ref = 0; if (madeorphan == 0) softn->ipf_nat_stats.ns_orphans--; /* * At this point, nat_ref can be either 0 or -1 */ softn->ipf_nat_stats.ns_proto[nat->nat_pr[0]]--; if (nat->nat_fr != NULL) { (void) ipf_derefrule(softc, &nat->nat_fr); } if (nat->nat_hm != NULL) { ipf_nat_hostmapdel(softc, &nat->nat_hm); } /* * If there is an active reference from the nat entry to its parent * rule, decrement the rule's reference count and free it too if no * longer being used. */ ipn = nat->nat_ptr; nat->nat_ptr = NULL; if (ipn != NULL) { ipn->in_space++; ipf_nat_rule_deref(softc, &ipn); } if (nat->nat_aps != NULL) { ipf_proxy_free(softc, nat->nat_aps); nat->nat_aps = NULL; } MUTEX_DESTROY(&nat->nat_lock); softn->ipf_nat_stats.ns_active--; /* * If there's a fragment table entry too for this nat entry, then * dereference that as well. This is after nat_lock is released * because of Tru64. */ ipf_frag_natforget(softc, (void *)nat); KFREE(nat); } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_flushtable */ /* Returns: int - number of NAT rules deleted */ /* Parameters: softc(I) - pointer to soft context main structure */ /* softn(I) - pointer to NAT context structure */ /* Write Lock: ipf_nat */ /* */ /* Deletes all currently active NAT sessions. In deleting each NAT entry a */ /* log record should be emitted in ipf_nat_delete() if NAT logging is */ /* enabled. */ /* ------------------------------------------------------------------------ */ /* * nat_flushtable - clear the NAT table of all mapping entries. */ static int ipf_nat_flushtable(softc, softn) ipf_main_softc_t *softc; ipf_nat_softc_t *softn; { nat_t *nat; int j = 0; /* * ALL NAT mappings deleted, so lets just make the deletions * quicker. */ if (softn->ipf_nat_table[0] != NULL) bzero((char *)softn->ipf_nat_table[0], sizeof(softn->ipf_nat_table[0]) * softn->ipf_nat_table_sz); if (softn->ipf_nat_table[1] != NULL) bzero((char *)softn->ipf_nat_table[1], sizeof(softn->ipf_nat_table[1]) * softn->ipf_nat_table_sz); while ((nat = softn->ipf_nat_instances) != NULL) { ipf_nat_delete(softc, nat, NL_FLUSH); j++; } return j; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_clearlist */ /* Returns: int - number of NAT/RDR rules deleted */ /* Parameters: softc(I) - pointer to soft context main structure */ /* softn(I) - pointer to NAT context structure */ /* */ /* Delete all rules in the current list of rules. There is nothing elegant */ /* about this cleanup: simply free all entries on the list of rules and */ /* clear out the tables used for hashed NAT rule lookups. */ /* ------------------------------------------------------------------------ */ static int ipf_nat_clearlist(softc, softn) ipf_main_softc_t *softc; ipf_nat_softc_t *softn; { ipnat_t *n; int i = 0; if (softn->ipf_nat_map_rules != NULL) { bzero((char *)softn->ipf_nat_map_rules, sizeof(*softn->ipf_nat_map_rules) * softn->ipf_nat_maprules_sz); } if (softn->ipf_nat_rdr_rules != NULL) { bzero((char *)softn->ipf_nat_rdr_rules, sizeof(*softn->ipf_nat_rdr_rules) * softn->ipf_nat_rdrrules_sz); } while ((n = softn->ipf_nat_list) != NULL) { ipf_nat_delrule(softc, softn, n, 0); i++; } #if SOLARIS && !defined(INSTANCES) pfil_delayed_copy = 1; #endif return i; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_delrule */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* softn(I) - pointer to NAT context structure */ /* np(I) - pointer to NAT rule to delete */ /* purge(I) - 1 == allow purge, 0 == prevent purge */ /* Locks: WRITE(ipf_nat) */ /* */ /* Preventing "purge" from occuring is allowed because when all of the NAT */ /* rules are being removed, allowing the "purge" to walk through the list */ /* of NAT sessions, possibly multiple times, would be a large performance */ /* hit, on the order of O(N^2). */ /* ------------------------------------------------------------------------ */ static void ipf_nat_delrule(softc, softn, np, purge) ipf_main_softc_t *softc; ipf_nat_softc_t *softn; ipnat_t *np; int purge; { if (np->in_pnext != NULL) { *np->in_pnext = np->in_next; if (np->in_next != NULL) np->in_next->in_pnext = np->in_pnext; if (softn->ipf_nat_list_tail == &np->in_next) softn->ipf_nat_list_tail = np->in_pnext; } if ((purge == 1) && ((np->in_flags & IPN_PURGE) != 0)) { nat_t *next; nat_t *nat; for (next = softn->ipf_nat_instances; (nat = next) != NULL;) { next = nat->nat_next; if (nat->nat_ptr == np) ipf_nat_delete(softc, nat, NL_PURGE); } } if ((np->in_flags & IPN_DELETE) == 0) { if (np->in_redir & NAT_REDIRECT) { switch (np->in_v[0]) { case 4 : ipf_nat_delrdr(softn, np); break; #ifdef USE_INET6 case 6 : ipf_nat6_delrdr(softn, np); break; #endif } } if (np->in_redir & (NAT_MAPBLK|NAT_MAP)) { switch (np->in_v[0]) { case 4 : ipf_nat_delmap(softn, np); break; #ifdef USE_INET6 case 6 : ipf_nat6_delmap(softn, np); break; #endif } } } np->in_flags |= IPN_DELETE; ipf_nat_rule_deref(softc, &np); } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_newmap */ /* Returns: int - -1 == error, 0 == success */ /* Parameters: fin(I) - pointer to packet information */ /* nat(I) - pointer to NAT entry */ /* ni(I) - pointer to structure with misc. information needed */ /* to create new NAT entry. */ /* */ /* Given an empty NAT structure, populate it with new information about a */ /* new NAT session, as defined by the matching NAT rule. */ /* ni.nai_ip is passed in uninitialised and must be set, in host byte order,*/ /* to the new IP address for the translation. */ /* ------------------------------------------------------------------------ */ static int ipf_nat_newmap(fin, nat, ni) fr_info_t *fin; nat_t *nat; natinfo_t *ni; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; u_short st_port, dport, sport, port, sp, dp; struct in_addr in, inb; hostmap_t *hm; u_32_t flags; u_32_t st_ip; ipnat_t *np; nat_t *natl; int l; /* * If it's an outbound packet which doesn't match any existing * record, then create a new port */ l = 0; hm = NULL; np = ni->nai_np; st_ip = np->in_snip; st_port = np->in_spnext; flags = nat->nat_flags; if (flags & IPN_ICMPQUERY) { sport = fin->fin_data[1]; dport = 0; } else { sport = htons(fin->fin_data[0]); dport = htons(fin->fin_data[1]); } /* * Do a loop until we either run out of entries to try or we find * a NAT mapping that isn't currently being used. This is done * because the change to the source is not (usually) being fixed. */ do { port = 0; in.s_addr = htonl(np->in_snip); if (l == 0) { /* * Check to see if there is an existing NAT * setup for this IP address pair. */ hm = ipf_nat_hostmap(softn, np, fin->fin_src, fin->fin_dst, in, 0); if (hm != NULL) in.s_addr = hm->hm_nsrcip.s_addr; } else if ((l == 1) && (hm != NULL)) { ipf_nat_hostmapdel(softc, &hm); } in.s_addr = ntohl(in.s_addr); nat->nat_hm = hm; if ((np->in_nsrcmsk == 0xffffffff) && (np->in_spnext == 0)) { if (l > 0) { NBUMPSIDEX(1, ns_exhausted, ns_exhausted_1); DT4(ns_exhausted_1, fr_info_t *, fin, nat_t *, nat, natinfo_t *, ni, ipnat_t *, np); return -1; } } if (np->in_redir == NAT_BIMAP && np->in_osrcmsk == np->in_nsrcmsk) { /* * map the address block in a 1:1 fashion */ in.s_addr = np->in_nsrcaddr; in.s_addr |= fin->fin_saddr & ~np->in_osrcmsk; in.s_addr = ntohl(in.s_addr); } else if (np->in_redir & NAT_MAPBLK) { if ((l >= np->in_ppip) || ((l > 0) && !(flags & IPN_TCPUDP))) { NBUMPSIDEX(1, ns_exhausted, ns_exhausted_2); DT4(ns_exhausted_2, fr_info_t *, fin, nat_t *, nat, natinfo_t *, ni, ipnat_t *, np); return -1; } /* * map-block - Calculate destination address. */ in.s_addr = ntohl(fin->fin_saddr); in.s_addr &= ntohl(~np->in_osrcmsk); inb.s_addr = in.s_addr; in.s_addr /= np->in_ippip; in.s_addr &= ntohl(~np->in_nsrcmsk); in.s_addr += ntohl(np->in_nsrcaddr); /* * Calculate destination port. */ if ((flags & IPN_TCPUDP) && (np->in_ppip != 0)) { port = ntohs(sport) + l; port %= np->in_ppip; port += np->in_ppip * (inb.s_addr % np->in_ippip); port += MAPBLK_MINPORT; port = htons(port); } } else if ((np->in_nsrcaddr == 0) && (np->in_nsrcmsk == 0xffffffff)) { i6addr_t in6; /* * 0/32 - use the interface's IP address. */ if ((l > 0) || ipf_ifpaddr(softc, 4, FRI_NORMAL, fin->fin_ifp, &in6, NULL) == -1) { NBUMPSIDEX(1, ns_new_ifpaddr, ns_new_ifpaddr_1); DT4(ns_new_ifpaddr_1, fr_info_t *, fin, nat_t *, nat, natinfo_t *, ni, ipnat_t *, np); return -1; } in.s_addr = ntohl(in6.in4.s_addr); } else if ((np->in_nsrcaddr == 0) && (np->in_nsrcmsk == 0)) { /* * 0/0 - use the original source address/port. */ if (l > 0) { NBUMPSIDEX(1, ns_exhausted, ns_exhausted_3); DT4(ns_exhausted_3, fr_info_t *, fin, nat_t *, nat, natinfo_t *, ni, ipnat_t *, np); return -1; } in.s_addr = ntohl(fin->fin_saddr); } else if ((np->in_nsrcmsk != 0xffffffff) && (np->in_spnext == 0) && ((l > 0) || (hm == NULL))) np->in_snip++; natl = NULL; if ((flags & IPN_TCPUDP) && ((np->in_redir & NAT_MAPBLK) == 0) && (np->in_flags & IPN_AUTOPORTMAP)) { /* * "ports auto" (without map-block) */ if ((l > 0) && (l % np->in_ppip == 0)) { if ((l > np->in_ppip) && np->in_nsrcmsk != 0xffffffff) np->in_snip++; } if (np->in_ppip != 0) { port = ntohs(sport); port += (l % np->in_ppip); port %= np->in_ppip; port += np->in_ppip * (ntohl(fin->fin_saddr) % np->in_ippip); port += MAPBLK_MINPORT; port = htons(port); } } else if (((np->in_redir & NAT_MAPBLK) == 0) && (flags & IPN_TCPUDPICMP) && (np->in_spnext != 0)) { /* * Standard port translation. Select next port. */ if (np->in_flags & IPN_SEQUENTIAL) { port = np->in_spnext; } else { port = ipf_random() % (np->in_spmax - np->in_spmin + 1); port += np->in_spmin; } port = htons(port); np->in_spnext++; if (np->in_spnext > np->in_spmax) { np->in_spnext = np->in_spmin; if (np->in_nsrcmsk != 0xffffffff) np->in_snip++; } } if (np->in_flags & IPN_SIPRANGE) { if (np->in_snip > ntohl(np->in_nsrcmsk)) np->in_snip = ntohl(np->in_nsrcaddr); } else { if ((np->in_nsrcmsk != 0xffffffff) && ((np->in_snip + 1) & ntohl(np->in_nsrcmsk)) > ntohl(np->in_nsrcaddr)) np->in_snip = ntohl(np->in_nsrcaddr) + 1; } if ((port == 0) && (flags & (IPN_TCPUDPICMP|IPN_ICMPQUERY))) port = sport; /* * Here we do a lookup of the connection as seen from * the outside. If an IP# pair already exists, try * again. So if you have A->B becomes C->B, you can * also have D->E become C->E but not D->B causing * another C->B. Also take protocol and ports into * account when determining whether a pre-existing * NAT setup will cause an external conflict where * this is appropriate. */ inb.s_addr = htonl(in.s_addr); sp = fin->fin_data[0]; dp = fin->fin_data[1]; fin->fin_data[0] = fin->fin_data[1]; fin->fin_data[1] = ntohs(port); natl = ipf_nat_inlookup(fin, flags & ~(SI_WILDP|NAT_SEARCH), (u_int)fin->fin_p, fin->fin_dst, inb); fin->fin_data[0] = sp; fin->fin_data[1] = dp; /* * Has the search wrapped around and come back to the * start ? */ if ((natl != NULL) && (np->in_spnext != 0) && (st_port == np->in_spnext) && (np->in_snip != 0) && (st_ip == np->in_snip)) { NBUMPSIDED(1, ns_wrap); DT4(ns_wrap, fr_info_t *, fin, nat_t *, nat, natinfo_t *, ni, ipnat_t *, np); return -1; } l++; } while (natl != NULL); /* Setup the NAT table */ nat->nat_osrcip = fin->fin_src; nat->nat_nsrcaddr = htonl(in.s_addr); nat->nat_odstip = fin->fin_dst; nat->nat_ndstip = fin->fin_dst; if (nat->nat_hm == NULL) nat->nat_hm = ipf_nat_hostmap(softn, np, fin->fin_src, fin->fin_dst, nat->nat_nsrcip, 0); if (flags & IPN_TCPUDP) { nat->nat_osport = sport; nat->nat_nsport = port; /* sport */ nat->nat_odport = dport; nat->nat_ndport = dport; ((tcphdr_t *)fin->fin_dp)->th_sport = port; } else if (flags & IPN_ICMPQUERY) { nat->nat_oicmpid = fin->fin_data[1]; ((icmphdr_t *)fin->fin_dp)->icmp_id = port; nat->nat_nicmpid = port; } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_newrdr */ /* Returns: int - -1 == error, 0 == success (no move), 1 == success and */ /* allow rule to be moved if IPN_ROUNDR is set. */ /* Parameters: fin(I) - pointer to packet information */ /* nat(I) - pointer to NAT entry */ /* ni(I) - pointer to structure with misc. information needed */ /* to create new NAT entry. */ /* */ /* ni.nai_ip is passed in uninitialised and must be set, in host byte order,*/ /* to the new IP address for the translation. */ /* ------------------------------------------------------------------------ */ static int ipf_nat_newrdr(fin, nat, ni) fr_info_t *fin; nat_t *nat; natinfo_t *ni; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; u_short nport, dport, sport; struct in_addr in, inb; u_short sp, dp; hostmap_t *hm; u_32_t flags; ipnat_t *np; nat_t *natl; int move; move = 1; hm = NULL; in.s_addr = 0; np = ni->nai_np; flags = nat->nat_flags; if (flags & IPN_ICMPQUERY) { dport = fin->fin_data[1]; sport = 0; } else { sport = htons(fin->fin_data[0]); dport = htons(fin->fin_data[1]); } /* TRACE sport, dport */ /* * If the matching rule has IPN_STICKY set, then we want to have the * same rule kick in as before. Why would this happen? If you have * a collection of rdr rules with "round-robin sticky", the current * packet might match a different one to the previous connection but * we want the same destination to be used. */ if (((np->in_flags & (IPN_ROUNDR|IPN_SPLIT)) != 0) && ((np->in_flags & IPN_STICKY) != 0)) { hm = ipf_nat_hostmap(softn, NULL, fin->fin_src, fin->fin_dst, in, (u_32_t)dport); if (hm != NULL) { in.s_addr = ntohl(hm->hm_ndstip.s_addr); np = hm->hm_ipnat; ni->nai_np = np; move = 0; ipf_nat_hostmapdel(softc, &hm); } } /* * Otherwise, it's an inbound packet. Most likely, we don't * want to rewrite source ports and source addresses. Instead, * we want to rewrite to a fixed internal address and fixed * internal port. */ if (np->in_flags & IPN_SPLIT) { in.s_addr = np->in_dnip; inb.s_addr = htonl(in.s_addr); if ((np->in_flags & (IPN_ROUNDR|IPN_STICKY)) == IPN_STICKY) { hm = ipf_nat_hostmap(softn, NULL, fin->fin_src, fin->fin_dst, inb, (u_32_t)dport); if (hm != NULL) { in.s_addr = hm->hm_ndstip.s_addr; move = 0; } } if (hm == NULL || hm->hm_ref == 1) { if (np->in_ndstaddr == htonl(in.s_addr)) { np->in_dnip = ntohl(np->in_ndstmsk); move = 0; } else { np->in_dnip = ntohl(np->in_ndstaddr); } } if (hm != NULL) ipf_nat_hostmapdel(softc, &hm); } else if ((np->in_ndstaddr == 0) && (np->in_ndstmsk == 0xffffffff)) { i6addr_t in6; /* * 0/32 - use the interface's IP address. */ if (ipf_ifpaddr(softc, 4, FRI_NORMAL, fin->fin_ifp, &in6, NULL) == -1) { NBUMPSIDEX(0, ns_new_ifpaddr, ns_new_ifpaddr_2); DT3(ns_new_ifpaddr_2, fr_info_t *, fin, nat_t *, nat, natinfo_t, ni); return -1; } in.s_addr = ntohl(in6.in4.s_addr); } else if ((np->in_ndstaddr == 0) && (np->in_ndstmsk== 0)) { /* * 0/0 - use the original destination address/port. */ in.s_addr = ntohl(fin->fin_daddr); } else if (np->in_redir == NAT_BIMAP && np->in_ndstmsk == np->in_odstmsk) { /* * map the address block in a 1:1 fashion */ in.s_addr = np->in_ndstaddr; in.s_addr |= fin->fin_daddr & ~np->in_ndstmsk; in.s_addr = ntohl(in.s_addr); } else { in.s_addr = ntohl(np->in_ndstaddr); } if ((np->in_dpnext == 0) || ((flags & NAT_NOTRULEPORT) != 0)) nport = dport; else { /* * Whilst not optimized for the case where * pmin == pmax, the gain is not significant. */ if (((np->in_flags & IPN_FIXEDDPORT) == 0) && (np->in_odport != np->in_dtop)) { nport = ntohs(dport) - np->in_odport + np->in_dpmax; nport = htons(nport); } else { nport = htons(np->in_dpnext); np->in_dpnext++; if (np->in_dpnext > np->in_dpmax) np->in_dpnext = np->in_dpmin; } } /* * When the redirect-to address is set to 0.0.0.0, just * assume a blank `forwarding' of the packet. We don't * setup any translation for this either. */ if (in.s_addr == 0) { if (nport == dport) { NBUMPSIDED(0, ns_xlate_null); return -1; } in.s_addr = ntohl(fin->fin_daddr); } /* * Check to see if this redirect mapping already exists and if * it does, return "failure" (allowing it to be created will just * cause one or both of these "connections" to stop working.) */ inb.s_addr = htonl(in.s_addr); sp = fin->fin_data[0]; dp = fin->fin_data[1]; fin->fin_data[1] = fin->fin_data[0]; fin->fin_data[0] = ntohs(nport); natl = ipf_nat_outlookup(fin, flags & ~(SI_WILDP|NAT_SEARCH), (u_int)fin->fin_p, inb, fin->fin_src); fin->fin_data[0] = sp; fin->fin_data[1] = dp; if (natl != NULL) { DT2(ns_new_xlate_exists, fr_info_t *, fin, nat_t *, natl); NBUMPSIDE(0, ns_xlate_exists); return -1; } inb.s_addr = htonl(in.s_addr); nat->nat_ndstaddr = htonl(in.s_addr); nat->nat_odstip = fin->fin_dst; nat->nat_nsrcip = fin->fin_src; nat->nat_osrcip = fin->fin_src; if ((nat->nat_hm == NULL) && ((np->in_flags & IPN_STICKY) != 0)) nat->nat_hm = ipf_nat_hostmap(softn, np, fin->fin_src, fin->fin_dst, inb, (u_32_t)dport); if (flags & IPN_TCPUDP) { nat->nat_odport = dport; nat->nat_ndport = nport; nat->nat_osport = sport; nat->nat_nsport = sport; ((tcphdr_t *)fin->fin_dp)->th_dport = nport; } else if (flags & IPN_ICMPQUERY) { nat->nat_oicmpid = fin->fin_data[1]; ((icmphdr_t *)fin->fin_dp)->icmp_id = nport; nat->nat_nicmpid = nport; } return move; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_add */ /* Returns: nat_t* - NULL == failure to create new NAT structure, */ /* else pointer to new NAT structure */ /* Parameters: fin(I) - pointer to packet information */ /* np(I) - pointer to NAT rule */ /* natsave(I) - pointer to where to store NAT struct pointer */ /* flags(I) - flags describing the current packet */ /* direction(I) - direction of packet (in/out) */ /* Write Lock: ipf_nat */ /* */ /* Attempts to create a new NAT entry. Does not actually change the packet */ /* in any way. */ /* */ /* This function is in three main parts: (1) deal with creating a new NAT */ /* structure for a "MAP" rule (outgoing NAT translation); (2) deal with */ /* creating a new NAT structure for a "RDR" rule (incoming NAT translation) */ /* and (3) building that structure and putting it into the NAT table(s). */ /* */ /* NOTE: natsave should NOT be used to point back to an ipstate_t struct */ /* as it can result in memory being corrupted. */ /* ------------------------------------------------------------------------ */ nat_t * ipf_nat_add(fin, np, natsave, flags, direction) fr_info_t *fin; ipnat_t *np; nat_t **natsave; u_int flags; int direction; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; hostmap_t *hm = NULL; nat_t *nat, *natl; natstat_t *nsp; u_int nflags; natinfo_t ni; int move; nsp = &softn->ipf_nat_stats; if ((nsp->ns_active * 100 / softn->ipf_nat_table_max) > softn->ipf_nat_table_wm_high) { softn->ipf_nat_doflush = 1; } if (nsp->ns_active >= softn->ipf_nat_table_max) { NBUMPSIDED(fin->fin_out, ns_table_max); DT2(ns_table_max, nat_stat_t *, nsp, ipf_nat_softc_t *, softn); return NULL; } move = 1; nflags = np->in_flags & flags; nflags &= NAT_FROMRULE; ni.nai_np = np; ni.nai_dport = 0; ni.nai_sport = 0; /* Give me a new nat */ KMALLOC(nat, nat_t *); if (nat == NULL) { DT(ns_memfail); NBUMPSIDED(fin->fin_out, ns_memfail); /* * Try to automatically tune the max # of entries in the * table allowed to be less than what will cause kmem_alloc() * to fail and try to eliminate panics due to out of memory * conditions arising. */ if ((softn->ipf_nat_table_max > softn->ipf_nat_table_sz) && (nsp->ns_active > 100)) { softn->ipf_nat_table_max = nsp->ns_active - 100; printf("table_max reduced to %d\n", softn->ipf_nat_table_max); } return NULL; } if (flags & IPN_ICMPQUERY) { /* * In the ICMP query NAT code, we translate the ICMP id fields * to make them unique. This is indepedent of the ICMP type * (e.g. in the unlikely event that a host sends an echo and * an tstamp request with the same id, both packets will have * their ip address/id field changed in the same way). */ /* The icmp_id field is used by the sender to identify the * process making the icmp request. (the receiver justs * copies it back in its response). So, it closely matches * the concept of source port. We overlay sport, so we can * maximally reuse the existing code. */ ni.nai_sport = fin->fin_data[1]; ni.nai_dport = 0; } bzero((char *)nat, sizeof(*nat)); nat->nat_flags = flags; nat->nat_redir = np->in_redir; nat->nat_dir = direction; nat->nat_pr[0] = fin->fin_p; nat->nat_pr[1] = fin->fin_p; /* * Search the current table for a match and create a new mapping * if there is none found. */ if (np->in_redir & NAT_DIVERTUDP) { move = ipf_nat_newdivert(fin, nat, &ni); } else if (np->in_redir & NAT_REWRITE) { move = ipf_nat_newrewrite(fin, nat, &ni); } else if (direction == NAT_OUTBOUND) { /* * We can now arrange to call this for the same connection * because ipf_nat_new doesn't protect the code path into * this function. */ natl = ipf_nat_outlookup(fin, nflags, (u_int)fin->fin_p, fin->fin_src, fin->fin_dst); if (natl != NULL) { KFREE(nat); nat = natl; goto done; } move = ipf_nat_newmap(fin, nat, &ni); } else { /* * NAT_INBOUND is used for redirects rules */ natl = ipf_nat_inlookup(fin, nflags, (u_int)fin->fin_p, fin->fin_src, fin->fin_dst); if (natl != NULL) { KFREE(nat); nat = natl; goto done; } move = ipf_nat_newrdr(fin, nat, &ni); } if (move == -1) goto badnat; np = ni.nai_np; nat->nat_mssclamp = np->in_mssclamp; nat->nat_me = natsave; nat->nat_fr = fin->fin_fr; nat->nat_rev = fin->fin_rev; nat->nat_ptr = np; nat->nat_dlocal = np->in_dlocal; if ((np->in_apr != NULL) && ((nat->nat_flags & NAT_SLAVE) == 0)) { if (ipf_proxy_new(fin, nat) == -1) { NBUMPSIDED(fin->fin_out, ns_appr_fail); DT3(ns_appr_fail, fr_info_t *, fin, nat_t *, nat, ipnat_t *, np); goto badnat; } } nat->nat_ifps[0] = np->in_ifps[0]; if (np->in_ifps[0] != NULL) { COPYIFNAME(np->in_v[0], np->in_ifps[0], nat->nat_ifnames[0]); } nat->nat_ifps[1] = np->in_ifps[1]; if (np->in_ifps[1] != NULL) { COPYIFNAME(np->in_v[1], np->in_ifps[1], nat->nat_ifnames[1]); } if (ipf_nat_finalise(fin, nat) == -1) { goto badnat; } np->in_use++; if ((move == 1) && (np->in_flags & IPN_ROUNDR)) { if ((np->in_redir & (NAT_REDIRECT|NAT_MAP)) == NAT_REDIRECT) { ipf_nat_delrdr(softn, np); ipf_nat_addrdr(softn, np); } else if ((np->in_redir & (NAT_REDIRECT|NAT_MAP)) == NAT_MAP) { ipf_nat_delmap(softn, np); ipf_nat_addmap(softn, np); } } if (flags & SI_WILDP) nsp->ns_wilds++; nsp->ns_proto[nat->nat_pr[0]]++; goto done; badnat: DT3(ns_badnatnew, fr_info_t *, fin, nat_t *, nat, ipnat_t *, np); NBUMPSIDE(fin->fin_out, ns_badnatnew); if ((hm = nat->nat_hm) != NULL) ipf_nat_hostmapdel(softc, &hm); KFREE(nat); nat = NULL; done: if (nat != NULL && np != NULL) np->in_hits++; if (natsave != NULL) *natsave = nat; return nat; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_finalise */ /* Returns: int - 0 == sucess, -1 == failure */ /* Parameters: fin(I) - pointer to packet information */ /* nat(I) - pointer to NAT entry */ /* Write Lock: ipf_nat */ /* */ /* This is the tail end of constructing a new NAT entry and is the same */ /* for both IPv4 and IPv6. */ /* ------------------------------------------------------------------------ */ /*ARGSUSED*/ static int ipf_nat_finalise(fin, nat) fr_info_t *fin; nat_t *nat; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; u_32_t sum1, sum2, sumd; frentry_t *fr; u_32_t flags; #if SOLARIS && defined(_KERNEL) && defined(ICK_M_CTL_MAGIC) qpktinfo_t *qpi = fin->fin_qpi; #endif flags = nat->nat_flags; switch (nat->nat_pr[0]) { case IPPROTO_ICMP : sum1 = LONG_SUM(ntohs(nat->nat_oicmpid)); sum2 = LONG_SUM(ntohs(nat->nat_nicmpid)); CALC_SUMD(sum1, sum2, sumd); nat->nat_sumd[0] = (sumd & 0xffff) + (sumd >> 16); break; default : sum1 = LONG_SUM(ntohl(nat->nat_osrcaddr) + \ ntohs(nat->nat_osport)); sum2 = LONG_SUM(ntohl(nat->nat_nsrcaddr) + \ ntohs(nat->nat_nsport)); CALC_SUMD(sum1, sum2, sumd); nat->nat_sumd[0] = (sumd & 0xffff) + (sumd >> 16); sum1 = LONG_SUM(ntohl(nat->nat_odstaddr) + \ ntohs(nat->nat_odport)); sum2 = LONG_SUM(ntohl(nat->nat_ndstaddr) + \ ntohs(nat->nat_ndport)); CALC_SUMD(sum1, sum2, sumd); nat->nat_sumd[0] += (sumd & 0xffff) + (sumd >> 16); break; } /* * Compute the partial checksum, just in case. * This is only ever placed into outbound packets so care needs * to be taken over which pair of addresses are used. */ if (nat->nat_dir == NAT_OUTBOUND) { sum1 = LONG_SUM(ntohl(nat->nat_nsrcaddr)); sum1 += LONG_SUM(ntohl(nat->nat_ndstaddr)); } else { sum1 = LONG_SUM(ntohl(nat->nat_osrcaddr)); sum1 += LONG_SUM(ntohl(nat->nat_odstaddr)); } sum1 += nat->nat_pr[1]; nat->nat_sumd[1] = (sum1 & 0xffff) + (sum1 >> 16); sum1 = LONG_SUM(ntohl(nat->nat_osrcaddr)); sum2 = LONG_SUM(ntohl(nat->nat_nsrcaddr)); CALC_SUMD(sum1, sum2, sumd); nat->nat_ipsumd = (sumd & 0xffff) + (sumd >> 16); sum1 = LONG_SUM(ntohl(nat->nat_odstaddr)); sum2 = LONG_SUM(ntohl(nat->nat_ndstaddr)); CALC_SUMD(sum1, sum2, sumd); nat->nat_ipsumd += (sumd & 0xffff) + (sumd >> 16); nat->nat_v[0] = 4; nat->nat_v[1] = 4; if ((nat->nat_ifps[0] != NULL) && (nat->nat_ifps[0] != (void *)-1)) { nat->nat_mtu[0] = GETIFMTU_4(nat->nat_ifps[0]); } if ((nat->nat_ifps[1] != NULL) && (nat->nat_ifps[1] != (void *)-1)) { nat->nat_mtu[1] = GETIFMTU_4(nat->nat_ifps[1]); } if ((nat->nat_flags & SI_CLONE) == 0) nat->nat_sync = ipf_sync_new(softc, SMC_NAT, fin, nat); if (ipf_nat_insert(softc, softn, nat) == 0) { if (softn->ipf_nat_logging) ipf_nat_log(softc, softn, nat, NL_NEW); fr = nat->nat_fr; if (fr != NULL) { MUTEX_ENTER(&fr->fr_lock); fr->fr_ref++; MUTEX_EXIT(&fr->fr_lock); } return 0; } NBUMPSIDED(fin->fin_out, ns_unfinalised); DT2(ns_unfinalised, fr_info_t *, fin, nat_t *, nat); /* * nat_insert failed, so cleanup time... */ if (nat->nat_sync != NULL) ipf_sync_del_nat(softc->ipf_sync_soft, nat->nat_sync); return -1; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_insert */ /* Returns: int - 0 == sucess, -1 == failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* softn(I) - pointer to NAT context structure */ /* nat(I) - pointer to NAT structure */ /* Write Lock: ipf_nat */ /* */ /* Insert a NAT entry into the hash tables for searching and add it to the */ /* list of active NAT entries. Adjust global counters when complete. */ /* ------------------------------------------------------------------------ */ int ipf_nat_insert(softc, softn, nat) ipf_main_softc_t *softc; ipf_nat_softc_t *softn; nat_t *nat; { u_int hv0, hv1; u_int sp, dp; ipnat_t *in; int ret; /* * Try and return an error as early as possible, so calculate the hash * entry numbers first and then proceed. */ if ((nat->nat_flags & (SI_W_SPORT|SI_W_DPORT)) == 0) { if ((nat->nat_flags & IPN_TCPUDP) != 0) { sp = nat->nat_osport; dp = nat->nat_odport; } else if ((nat->nat_flags & IPN_ICMPQUERY) != 0) { sp = 0; dp = nat->nat_oicmpid; } else { sp = 0; dp = 0; } hv0 = NAT_HASH_FN(nat->nat_osrcaddr, sp, 0xffffffff); hv0 = NAT_HASH_FN(nat->nat_odstaddr, hv0 + dp, 0xffffffff); /* * TRACE nat_osrcaddr, nat_osport, nat_odstaddr, * nat_odport, hv0 */ if ((nat->nat_flags & IPN_TCPUDP) != 0) { sp = nat->nat_nsport; dp = nat->nat_ndport; } else if ((nat->nat_flags & IPN_ICMPQUERY) != 0) { sp = 0; dp = nat->nat_nicmpid; } else { sp = 0; dp = 0; } hv1 = NAT_HASH_FN(nat->nat_nsrcaddr, sp, 0xffffffff); hv1 = NAT_HASH_FN(nat->nat_ndstaddr, hv1 + dp, 0xffffffff); /* * TRACE nat_nsrcaddr, nat_nsport, nat_ndstaddr, * nat_ndport, hv1 */ } else { hv0 = NAT_HASH_FN(nat->nat_osrcaddr, 0, 0xffffffff); hv0 = NAT_HASH_FN(nat->nat_odstaddr, hv0, 0xffffffff); /* TRACE nat_osrcaddr, nat_odstaddr, hv0 */ hv1 = NAT_HASH_FN(nat->nat_nsrcaddr, 0, 0xffffffff); hv1 = NAT_HASH_FN(nat->nat_ndstaddr, hv1, 0xffffffff); /* TRACE nat_nsrcaddr, nat_ndstaddr, hv1 */ } nat->nat_hv[0] = hv0; nat->nat_hv[1] = hv1; MUTEX_INIT(&nat->nat_lock, "nat entry lock"); in = nat->nat_ptr; nat->nat_ref = nat->nat_me ? 2 : 1; nat->nat_ifnames[0][LIFNAMSIZ - 1] = '\0'; nat->nat_ifps[0] = ipf_resolvenic(softc, nat->nat_ifnames[0], 4); if (nat->nat_ifnames[1][0] != '\0') { nat->nat_ifnames[1][LIFNAMSIZ - 1] = '\0'; nat->nat_ifps[1] = ipf_resolvenic(softc, nat->nat_ifnames[1], 4); } else if (in->in_ifnames[1] != -1) { char *name; name = in->in_names + in->in_ifnames[1]; if (name[1] != '\0' && name[0] != '-' && name[0] != '*') { (void) strncpy(nat->nat_ifnames[1], nat->nat_ifnames[0], LIFNAMSIZ); nat->nat_ifnames[1][LIFNAMSIZ - 1] = '\0'; nat->nat_ifps[1] = nat->nat_ifps[0]; } } if ((nat->nat_ifps[0] != NULL) && (nat->nat_ifps[0] != (void *)-1)) { nat->nat_mtu[0] = GETIFMTU_4(nat->nat_ifps[0]); } if ((nat->nat_ifps[1] != NULL) && (nat->nat_ifps[1] != (void *)-1)) { nat->nat_mtu[1] = GETIFMTU_4(nat->nat_ifps[1]); } ret = ipf_nat_hashtab_add(softc, softn, nat); if (ret == -1) MUTEX_DESTROY(&nat->nat_lock); return ret; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_hashtab_add */ /* Returns: int - 0 == sucess, -1 == failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* softn(I) - pointer to NAT context structure */ /* nat(I) - pointer to NAT structure */ /* */ /* Handle the insertion of a NAT entry into the table/list. */ /* ------------------------------------------------------------------------ */ int ipf_nat_hashtab_add(softc, softn, nat) ipf_main_softc_t *softc; ipf_nat_softc_t *softn; nat_t *nat; { nat_t **natp; u_int hv0; u_int hv1; hv0 = nat->nat_hv[0] % softn->ipf_nat_table_sz; hv1 = nat->nat_hv[1] % softn->ipf_nat_table_sz; if (nat->nat_dir == NAT_INBOUND || nat->nat_dir == NAT_DIVERTIN) { u_int swap; swap = hv0; hv0 = hv1; hv1 = swap; } if (softn->ipf_nat_stats.ns_side[0].ns_bucketlen[hv0] >= softn->ipf_nat_maxbucket) { DT1(ns_bucket_max_0, int, softn->ipf_nat_stats.ns_side[0].ns_bucketlen[hv0]); NBUMPSIDE(0, ns_bucket_max); return -1; } if (softn->ipf_nat_stats.ns_side[1].ns_bucketlen[hv1] >= softn->ipf_nat_maxbucket) { DT1(ns_bucket_max_1, int, softn->ipf_nat_stats.ns_side[1].ns_bucketlen[hv1]); NBUMPSIDE(1, ns_bucket_max); return -1; } /* * The ordering of operations in the list and hash table insertion * is very important. The last operation for each task should be * to update the top of the list, after all the "nexts" have been * done so that walking the list while it is being done does not * find strange pointers. * * Global list of NAT instances */ nat->nat_next = softn->ipf_nat_instances; nat->nat_pnext = &softn->ipf_nat_instances; if (softn->ipf_nat_instances) softn->ipf_nat_instances->nat_pnext = &nat->nat_next; softn->ipf_nat_instances = nat; /* * Inbound hash table. */ natp = &softn->ipf_nat_table[0][hv0]; nat->nat_phnext[0] = natp; nat->nat_hnext[0] = *natp; if (*natp) { (*natp)->nat_phnext[0] = &nat->nat_hnext[0]; } else { NBUMPSIDE(0, ns_inuse); } *natp = nat; NBUMPSIDE(0, ns_bucketlen[hv0]); /* * Outbound hash table. */ natp = &softn->ipf_nat_table[1][hv1]; nat->nat_phnext[1] = natp; nat->nat_hnext[1] = *natp; if (*natp) (*natp)->nat_phnext[1] = &nat->nat_hnext[1]; else { NBUMPSIDE(1, ns_inuse); } *natp = nat; NBUMPSIDE(1, ns_bucketlen[hv1]); ipf_nat_setqueue(softc, softn, nat); if (nat->nat_dir & NAT_OUTBOUND) { NBUMPSIDE(1, ns_added); } else { NBUMPSIDE(0, ns_added); } softn->ipf_nat_stats.ns_active++; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_icmperrorlookup */ /* Returns: nat_t* - point to matching NAT structure */ /* Parameters: fin(I) - pointer to packet information */ /* dir(I) - direction of packet (in/out) */ /* */ /* Check if the ICMP error message is related to an existing TCP, UDP or */ /* ICMP query nat entry. It is assumed that the packet is already of the */ /* the required length. */ /* ------------------------------------------------------------------------ */ nat_t * ipf_nat_icmperrorlookup(fin, dir) fr_info_t *fin; int dir; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; int flags = 0, type, minlen; icmphdr_t *icmp, *orgicmp; nat_stat_side_t *nside; tcphdr_t *tcp = NULL; u_short data[2]; nat_t *nat; ip_t *oip; u_int p; icmp = fin->fin_dp; type = icmp->icmp_type; nside = &softn->ipf_nat_stats.ns_side[fin->fin_out]; /* * Does it at least have the return (basic) IP header ? * Only a basic IP header (no options) should be with an ICMP error * header. Also, if it's not an error type, then return. */ if ((fin->fin_hlen != sizeof(ip_t)) || !(fin->fin_flx & FI_ICMPERR)) { ATOMIC_INCL(nside->ns_icmp_basic); return NULL; } /* * Check packet size */ oip = (ip_t *)((char *)fin->fin_dp + 8); minlen = IP_HL(oip) << 2; if ((minlen < sizeof(ip_t)) || (fin->fin_plen < ICMPERR_IPICMPHLEN + minlen)) { ATOMIC_INCL(nside->ns_icmp_size); return NULL; } /* * Is the buffer big enough for all of it ? It's the size of the IP * header claimed in the encapsulated part which is of concern. It * may be too big to be in this buffer but not so big that it's * outside the ICMP packet, leading to TCP deref's causing problems. * This is possible because we don't know how big oip_hl is when we * do the pullup early in ipf_check() and thus can't gaurantee it is * all here now. */ #ifdef ipf_nat_KERNEL { mb_t *m; m = fin->fin_m; -# if defined(MENTAT) +# if SOLARIS if ((char *)oip + fin->fin_dlen - ICMPERR_ICMPHLEN > (char *)m->b_wptr) { ATOMIC_INCL(nside->ns_icmp_mbuf); return NULL; } # else if ((char *)oip + fin->fin_dlen - ICMPERR_ICMPHLEN > (char *)fin->fin_ip + M_LEN(m)) { ATOMIC_INCL(nside->ns_icmp_mbuf); return NULL; } # endif } #endif if (fin->fin_daddr != oip->ip_src.s_addr) { ATOMIC_INCL(nside->ns_icmp_address); return NULL; } p = oip->ip_p; if (p == IPPROTO_TCP) flags = IPN_TCP; else if (p == IPPROTO_UDP) flags = IPN_UDP; else if (p == IPPROTO_ICMP) { orgicmp = (icmphdr_t *)((char *)oip + (IP_HL(oip) << 2)); /* see if this is related to an ICMP query */ if (ipf_nat_icmpquerytype(orgicmp->icmp_type)) { data[0] = fin->fin_data[0]; data[1] = fin->fin_data[1]; fin->fin_data[0] = 0; fin->fin_data[1] = orgicmp->icmp_id; flags = IPN_ICMPERR|IPN_ICMPQUERY; /* * NOTE : dir refers to the direction of the original * ip packet. By definition the icmp error * message flows in the opposite direction. */ if (dir == NAT_INBOUND) nat = ipf_nat_inlookup(fin, flags, p, oip->ip_dst, oip->ip_src); else nat = ipf_nat_outlookup(fin, flags, p, oip->ip_dst, oip->ip_src); fin->fin_data[0] = data[0]; fin->fin_data[1] = data[1]; return nat; } } if (flags & IPN_TCPUDP) { minlen += 8; /* + 64bits of data to get ports */ /* TRACE (fin,minlen) */ if (fin->fin_plen < ICMPERR_IPICMPHLEN + minlen) { ATOMIC_INCL(nside->ns_icmp_short); return NULL; } data[0] = fin->fin_data[0]; data[1] = fin->fin_data[1]; tcp = (tcphdr_t *)((char *)oip + (IP_HL(oip) << 2)); fin->fin_data[0] = ntohs(tcp->th_dport); fin->fin_data[1] = ntohs(tcp->th_sport); if (dir == NAT_INBOUND) { nat = ipf_nat_inlookup(fin, flags, p, oip->ip_dst, oip->ip_src); } else { nat = ipf_nat_outlookup(fin, flags, p, oip->ip_dst, oip->ip_src); } fin->fin_data[0] = data[0]; fin->fin_data[1] = data[1]; return nat; } if (dir == NAT_INBOUND) nat = ipf_nat_inlookup(fin, 0, p, oip->ip_dst, oip->ip_src); else nat = ipf_nat_outlookup(fin, 0, p, oip->ip_dst, oip->ip_src); return nat; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_icmperror */ /* Returns: nat_t* - point to matching NAT structure */ /* Parameters: fin(I) - pointer to packet information */ /* nflags(I) - NAT flags for this packet */ /* dir(I) - direction of packet (in/out) */ /* */ /* Fix up an ICMP packet which is an error message for an existing NAT */ /* session. This will correct both packet header data and checksums. */ /* */ /* This should *ONLY* be used for incoming ICMP error packets to make sure */ /* a NAT'd ICMP packet gets correctly recognised. */ /* ------------------------------------------------------------------------ */ nat_t * ipf_nat_icmperror(fin, nflags, dir) fr_info_t *fin; u_int *nflags; int dir; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; u_32_t sum1, sum2, sumd, sumd2; struct in_addr a1, a2, a3, a4; int flags, dlen, odst; icmphdr_t *icmp; u_short *csump; tcphdr_t *tcp; nat_t *nat; ip_t *oip; void *dp; if ((fin->fin_flx & (FI_SHORT|FI_FRAGBODY))) { NBUMPSIDED(fin->fin_out, ns_icmp_short); return NULL; } /* * ipf_nat_icmperrorlookup() will return NULL for `defective' packets. */ if ((fin->fin_v != 4) || !(nat = ipf_nat_icmperrorlookup(fin, dir))) { NBUMPSIDED(fin->fin_out, ns_icmp_notfound); return NULL; } tcp = NULL; csump = NULL; flags = 0; sumd2 = 0; *nflags = IPN_ICMPERR; icmp = fin->fin_dp; oip = (ip_t *)&icmp->icmp_ip; dp = (((char *)oip) + (IP_HL(oip) << 2)); if (oip->ip_p == IPPROTO_TCP) { tcp = (tcphdr_t *)dp; csump = (u_short *)&tcp->th_sum; flags = IPN_TCP; } else if (oip->ip_p == IPPROTO_UDP) { udphdr_t *udp; udp = (udphdr_t *)dp; tcp = (tcphdr_t *)dp; csump = (u_short *)&udp->uh_sum; flags = IPN_UDP; } else if (oip->ip_p == IPPROTO_ICMP) flags = IPN_ICMPQUERY; dlen = fin->fin_plen - ((char *)dp - (char *)fin->fin_ip); /* * Need to adjust ICMP header to include the real IP#'s and * port #'s. Only apply a checksum change relative to the * IP address change as it will be modified again in ipf_nat_checkout * for both address and port. Two checksum changes are * necessary for the two header address changes. Be careful * to only modify the checksum once for the port # and twice * for the IP#. */ /* * Step 1 * Fix the IP addresses in the offending IP packet. You also need * to adjust the IP header checksum of that offending IP packet. * * Normally, you would expect that the ICMP checksum of the * ICMP error message needs to be adjusted as well for the * IP address change in oip. * However, this is a NOP, because the ICMP checksum is * calculated over the complete ICMP packet, which includes the * changed oip IP addresses and oip->ip_sum. However, these * two changes cancel each other out (if the delta for * the IP address is x, then the delta for ip_sum is minus x), * so no change in the icmp_cksum is necessary. * * Inbound ICMP * ------------ * MAP rule, SRC=a,DST=b -> SRC=c,DST=b * - response to outgoing packet (a,b)=>(c,b) (OIP_SRC=c,OIP_DST=b) * - OIP_SRC(c)=nat_newsrcip, OIP_DST(b)=nat_newdstip *=> OIP_SRC(c)=nat_oldsrcip, OIP_DST(b)=nat_olddstip * * RDR rule, SRC=a,DST=b -> SRC=a,DST=c * - response to outgoing packet (c,a)=>(b,a) (OIP_SRC=b,OIP_DST=a) * - OIP_SRC(b)=nat_olddstip, OIP_DST(a)=nat_oldsrcip *=> OIP_SRC(b)=nat_newdstip, OIP_DST(a)=nat_newsrcip * * REWRITE out rule, SRC=a,DST=b -> SRC=c,DST=d * - response to outgoing packet (a,b)=>(c,d) (OIP_SRC=c,OIP_DST=d) * - OIP_SRC(c)=nat_newsrcip, OIP_DST(d)=nat_newdstip *=> OIP_SRC(c)=nat_oldsrcip, OIP_DST(d)=nat_olddstip * * REWRITE in rule, SRC=a,DST=b -> SRC=c,DST=d * - response to outgoing packet (d,c)=>(b,a) (OIP_SRC=b,OIP_DST=a) * - OIP_SRC(b)=nat_olddstip, OIP_DST(a)=nat_oldsrcip *=> OIP_SRC(b)=nat_newdstip, OIP_DST(a)=nat_newsrcip * * Outbound ICMP * ------------- * MAP rule, SRC=a,DST=b -> SRC=c,DST=b * - response to incoming packet (b,c)=>(b,a) (OIP_SRC=b,OIP_DST=a) * - OIP_SRC(b)=nat_olddstip, OIP_DST(a)=nat_oldsrcip *=> OIP_SRC(b)=nat_newdstip, OIP_DST(a)=nat_newsrcip * * RDR rule, SRC=a,DST=b -> SRC=a,DST=c * - response to incoming packet (a,b)=>(a,c) (OIP_SRC=a,OIP_DST=c) * - OIP_SRC(a)=nat_newsrcip, OIP_DST(c)=nat_newdstip *=> OIP_SRC(a)=nat_oldsrcip, OIP_DST(c)=nat_olddstip * * REWRITE out rule, SRC=a,DST=b -> SRC=c,DST=d * - response to incoming packet (d,c)=>(b,a) (OIP_SRC=c,OIP_DST=d) * - OIP_SRC(c)=nat_olddstip, OIP_DST(d)=nat_oldsrcip *=> OIP_SRC(b)=nat_newdstip, OIP_DST(a)=nat_newsrcip * * REWRITE in rule, SRC=a,DST=b -> SRC=c,DST=d * - response to incoming packet (a,b)=>(c,d) (OIP_SRC=b,OIP_DST=a) * - OIP_SRC(b)=nat_newsrcip, OIP_DST(a)=nat_newdstip *=> OIP_SRC(a)=nat_oldsrcip, OIP_DST(c)=nat_olddstip */ if (((fin->fin_out == 0) && ((nat->nat_redir & NAT_MAP) != 0)) || ((fin->fin_out == 1) && ((nat->nat_redir & NAT_REDIRECT) != 0))) { a1.s_addr = ntohl(nat->nat_osrcaddr); a4.s_addr = ntohl(oip->ip_src.s_addr); a3.s_addr = ntohl(nat->nat_odstaddr); a2.s_addr = ntohl(oip->ip_dst.s_addr); oip->ip_src.s_addr = htonl(a1.s_addr); oip->ip_dst.s_addr = htonl(a3.s_addr); odst = 1; } else { a1.s_addr = ntohl(nat->nat_ndstaddr); a2.s_addr = ntohl(oip->ip_dst.s_addr); a3.s_addr = ntohl(nat->nat_nsrcaddr); a4.s_addr = ntohl(oip->ip_src.s_addr); oip->ip_dst.s_addr = htonl(a3.s_addr); oip->ip_src.s_addr = htonl(a1.s_addr); odst = 0; } sum1 = 0; sum2 = 0; sumd = 0; CALC_SUMD(a2.s_addr, a3.s_addr, sum1); CALC_SUMD(a4.s_addr, a1.s_addr, sum2); sumd = sum2 + sum1; if (sumd != 0) ipf_fix_datacksum(&oip->ip_sum, sumd); sumd2 = sumd; sum1 = 0; sum2 = 0; /* * Fix UDP pseudo header checksum to compensate for the * IP address change. */ if (((flags & IPN_TCPUDP) != 0) && (dlen >= 4)) { u_32_t sum3, sum4, sumt; /* * Step 2 : * For offending TCP/UDP IP packets, translate the ports as * well, based on the NAT specification. Of course such * a change may be reflected in the ICMP checksum as well. * * Since the port fields are part of the TCP/UDP checksum * of the offending IP packet, you need to adjust that checksum * as well... except that the change in the port numbers should * be offset by the checksum change. However, the TCP/UDP * checksum will also need to change if there has been an * IP address change. */ if (odst == 1) { sum1 = ntohs(nat->nat_osport); sum4 = ntohs(tcp->th_sport); sum3 = ntohs(nat->nat_odport); sum2 = ntohs(tcp->th_dport); tcp->th_sport = htons(sum1); tcp->th_dport = htons(sum3); } else { sum1 = ntohs(nat->nat_ndport); sum2 = ntohs(tcp->th_dport); sum3 = ntohs(nat->nat_nsport); sum4 = ntohs(tcp->th_sport); tcp->th_dport = htons(sum3); tcp->th_sport = htons(sum1); } CALC_SUMD(sum4, sum1, sumt); sumd += sumt; CALC_SUMD(sum2, sum3, sumt); sumd += sumt; if (sumd != 0 || sumd2 != 0) { /* * At this point, sumd is the delta to apply to the * TCP/UDP header, given the changes in both the IP * address and the ports and sumd2 is the delta to * apply to the ICMP header, given the IP address * change delta that may need to be applied to the * TCP/UDP checksum instead. * * If we will both the IP and TCP/UDP checksums * then the ICMP checksum changes by the address * delta applied to the TCP/UDP checksum. If we * do not change the TCP/UDP checksum them we * apply the delta in ports to the ICMP checksum. */ if (oip->ip_p == IPPROTO_UDP) { if ((dlen >= 8) && (*csump != 0)) { ipf_fix_datacksum(csump, sumd); } else { CALC_SUMD(sum1, sum4, sumd2); CALC_SUMD(sum3, sum2, sumt); sumd2 += sumt; } } else if (oip->ip_p == IPPROTO_TCP) { if (dlen >= 18) { ipf_fix_datacksum(csump, sumd); } else { CALC_SUMD(sum1, sum4, sumd2); CALC_SUMD(sum3, sum2, sumt); sumd2 += sumt; } } if (sumd2 != 0) { sumd2 = (sumd2 & 0xffff) + (sumd2 >> 16); sumd2 = (sumd2 & 0xffff) + (sumd2 >> 16); sumd2 = (sumd2 & 0xffff) + (sumd2 >> 16); ipf_fix_incksum(0, &icmp->icmp_cksum, sumd2, 0); } } } else if (((flags & IPN_ICMPQUERY) != 0) && (dlen >= 8)) { icmphdr_t *orgicmp; /* * XXX - what if this is bogus hl and we go off the end ? * In this case, ipf_nat_icmperrorlookup() will have * returned NULL. */ orgicmp = (icmphdr_t *)dp; if (odst == 1) { if (orgicmp->icmp_id != nat->nat_osport) { /* * Fix ICMP checksum (of the offening ICMP * query packet) to compensate the change * in the ICMP id of the offending ICMP * packet. * * Since you modify orgicmp->icmp_id with * a delta (say x) and you compensate that * in origicmp->icmp_cksum with a delta * minus x, you don't have to adjust the * overall icmp->icmp_cksum */ sum1 = ntohs(orgicmp->icmp_id); sum2 = ntohs(nat->nat_oicmpid); CALC_SUMD(sum1, sum2, sumd); orgicmp->icmp_id = nat->nat_oicmpid; ipf_fix_datacksum(&orgicmp->icmp_cksum, sumd); } } /* nat_dir == NAT_INBOUND is impossible for icmp queries */ } return nat; } /* * MAP-IN MAP-OUT RDR-IN RDR-OUT * osrc X == src == src X * odst X == dst == dst X * nsrc == dst X X == dst * ndst == src X X == src * MAP = NAT_OUTBOUND, RDR = NAT_INBOUND */ /* * NB: these lookups don't lock access to the list, it assumed that it has * already been done! */ /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_inlookup */ /* Returns: nat_t* - NULL == no match, */ /* else pointer to matching NAT entry */ /* Parameters: fin(I) - pointer to packet information */ /* flags(I) - NAT flags for this packet */ /* p(I) - protocol for this packet */ /* src(I) - source IP address */ /* mapdst(I) - destination IP address */ /* */ /* Lookup a nat entry based on the mapped destination ip address/port and */ /* real source address/port. We use this lookup when receiving a packet, */ /* we're looking for a table entry, based on the destination address. */ /* */ /* NOTE: THE PACKET BEING CHECKED (IF FOUND) HAS A MAPPING ALREADY. */ /* */ /* NOTE: IT IS ASSUMED THAT IS ONLY HELD WITH A READ LOCK WHEN */ /* THIS FUNCTION IS CALLED WITH NAT_SEARCH SET IN nflags. */ /* */ /* flags -> relevant are IPN_UDP/IPN_TCP/IPN_ICMPQUERY that indicate if */ /* the packet is of said protocol */ /* ------------------------------------------------------------------------ */ nat_t * ipf_nat_inlookup(fin, flags, p, src, mapdst) fr_info_t *fin; u_int flags, p; struct in_addr src , mapdst; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; u_short sport, dport; grehdr_t *gre; ipnat_t *ipn; u_int sflags; nat_t *nat; int nflags; u_32_t dst; void *ifp; u_int hv, rhv; ifp = fin->fin_ifp; gre = NULL; dst = mapdst.s_addr; sflags = flags & NAT_TCPUDPICMP; switch (p) { case IPPROTO_TCP : case IPPROTO_UDP : sport = htons(fin->fin_data[0]); dport = htons(fin->fin_data[1]); break; case IPPROTO_ICMP : sport = 0; dport = fin->fin_data[1]; break; default : sport = 0; dport = 0; break; } if ((flags & SI_WILDP) != 0) goto find_in_wild_ports; rhv = NAT_HASH_FN(dst, dport, 0xffffffff); rhv = NAT_HASH_FN(src.s_addr, rhv + sport, 0xffffffff); hv = rhv % softn->ipf_nat_table_sz; nat = softn->ipf_nat_table[1][hv]; /* TRACE dst, dport, src, sport, hv, nat */ for (; nat; nat = nat->nat_hnext[1]) { if (nat->nat_ifps[0] != NULL) { if ((ifp != NULL) && (ifp != nat->nat_ifps[0])) continue; } if (nat->nat_pr[0] != p) continue; switch (nat->nat_dir) { case NAT_INBOUND : case NAT_DIVERTIN : if (nat->nat_v[0] != 4) continue; if (nat->nat_osrcaddr != src.s_addr || nat->nat_odstaddr != dst) continue; if ((nat->nat_flags & IPN_TCPUDP) != 0) { if (nat->nat_osport != sport) continue; if (nat->nat_odport != dport) continue; } else if (p == IPPROTO_ICMP) { if (nat->nat_osport != dport) { continue; } } break; case NAT_DIVERTOUT : if (nat->nat_dlocal) continue; case NAT_OUTBOUND : if (nat->nat_v[1] != 4) continue; if (nat->nat_dlocal) continue; if (nat->nat_dlocal) continue; if (nat->nat_ndstaddr != src.s_addr || nat->nat_nsrcaddr != dst) continue; if ((nat->nat_flags & IPN_TCPUDP) != 0) { if (nat->nat_ndport != sport) continue; if (nat->nat_nsport != dport) continue; } else if (p == IPPROTO_ICMP) { if (nat->nat_osport != dport) { continue; } } break; } if ((nat->nat_flags & IPN_TCPUDP) != 0) { ipn = nat->nat_ptr; if ((ipn != NULL) && (nat->nat_aps != NULL)) if (ipf_proxy_match(fin, nat) != 0) continue; } if ((nat->nat_ifps[0] == NULL) && (ifp != NULL)) { nat->nat_ifps[0] = ifp; nat->nat_mtu[0] = GETIFMTU_4(ifp); } return nat; } /* * So if we didn't find it but there are wildcard members in the hash * table, go back and look for them. We do this search and update here * because it is modifying the NAT table and we want to do this only * for the first packet that matches. The exception, of course, is * for "dummy" (FI_IGNORE) lookups. */ find_in_wild_ports: if (!(flags & NAT_TCPUDP) || !(flags & NAT_SEARCH)) { NBUMPSIDEX(0, ns_lookup_miss, ns_lookup_miss_0); return NULL; } if (softn->ipf_nat_stats.ns_wilds == 0 || (fin->fin_flx & FI_NOWILD)) { NBUMPSIDEX(0, ns_lookup_nowild, ns_lookup_nowild_0); return NULL; } RWLOCK_EXIT(&softc->ipf_nat); hv = NAT_HASH_FN(dst, 0, 0xffffffff); hv = NAT_HASH_FN(src.s_addr, hv, softn->ipf_nat_table_sz); WRITE_ENTER(&softc->ipf_nat); nat = softn->ipf_nat_table[1][hv]; /* TRACE dst, src, hv, nat */ for (; nat; nat = nat->nat_hnext[1]) { if (nat->nat_ifps[0] != NULL) { if ((ifp != NULL) && (ifp != nat->nat_ifps[0])) continue; } if (nat->nat_pr[0] != fin->fin_p) continue; switch (nat->nat_dir & (NAT_INBOUND|NAT_OUTBOUND)) { case NAT_INBOUND : if (nat->nat_v[0] != 4) continue; if (nat->nat_osrcaddr != src.s_addr || nat->nat_odstaddr != dst) continue; break; case NAT_OUTBOUND : if (nat->nat_v[1] != 4) continue; if (nat->nat_ndstaddr != src.s_addr || nat->nat_nsrcaddr != dst) continue; break; } nflags = nat->nat_flags; if (!(nflags & (NAT_TCPUDP|SI_WILDP))) continue; if (ipf_nat_wildok(nat, (int)sport, (int)dport, nflags, NAT_INBOUND) == 1) { if ((fin->fin_flx & FI_IGNORE) != 0) break; if ((nflags & SI_CLONE) != 0) { nat = ipf_nat_clone(fin, nat); if (nat == NULL) break; } else { MUTEX_ENTER(&softn->ipf_nat_new); softn->ipf_nat_stats.ns_wilds--; MUTEX_EXIT(&softn->ipf_nat_new); } if (nat->nat_dir == NAT_INBOUND) { if (nat->nat_osport == 0) { nat->nat_osport = sport; nat->nat_nsport = sport; } if (nat->nat_odport == 0) { nat->nat_odport = dport; nat->nat_ndport = dport; } } else if (nat->nat_dir == NAT_OUTBOUND) { if (nat->nat_osport == 0) { nat->nat_osport = dport; nat->nat_nsport = dport; } if (nat->nat_odport == 0) { nat->nat_odport = sport; nat->nat_ndport = sport; } } if ((nat->nat_ifps[0] == NULL) && (ifp != NULL)) { nat->nat_ifps[0] = ifp; nat->nat_mtu[0] = GETIFMTU_4(ifp); } nat->nat_flags &= ~(SI_W_DPORT|SI_W_SPORT); ipf_nat_tabmove(softn, nat); break; } } MUTEX_DOWNGRADE(&softc->ipf_nat); if (nat == NULL) { NBUMPSIDE(0, ns_lookup_miss); } return nat; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_tabmove */ /* Returns: Nil */ /* Parameters: softn(I) - pointer to NAT context structure */ /* nat(I) - pointer to NAT structure */ /* Write Lock: ipf_nat */ /* */ /* This function is only called for TCP/UDP NAT table entries where the */ /* original was placed in the table without hashing on the ports and we now */ /* want to include hashing on port numbers. */ /* ------------------------------------------------------------------------ */ static void ipf_nat_tabmove(softn, nat) ipf_nat_softc_t *softn; nat_t *nat; { u_int hv0, hv1, rhv0, rhv1; natstat_t *nsp; nat_t **natp; if (nat->nat_flags & SI_CLONE) return; nsp = &softn->ipf_nat_stats; /* * Remove the NAT entry from the old location */ if (nat->nat_hnext[0]) nat->nat_hnext[0]->nat_phnext[0] = nat->nat_phnext[0]; *nat->nat_phnext[0] = nat->nat_hnext[0]; nsp->ns_side[0].ns_bucketlen[nat->nat_hv[0] % softn->ipf_nat_table_sz]--; if (nat->nat_hnext[1]) nat->nat_hnext[1]->nat_phnext[1] = nat->nat_phnext[1]; *nat->nat_phnext[1] = nat->nat_hnext[1]; nsp->ns_side[1].ns_bucketlen[nat->nat_hv[1] % softn->ipf_nat_table_sz]--; /* * Add into the NAT table in the new position */ rhv0 = NAT_HASH_FN(nat->nat_osrcaddr, nat->nat_osport, 0xffffffff); rhv0 = NAT_HASH_FN(nat->nat_odstaddr, rhv0 + nat->nat_odport, 0xffffffff); rhv1 = NAT_HASH_FN(nat->nat_nsrcaddr, nat->nat_nsport, 0xffffffff); rhv1 = NAT_HASH_FN(nat->nat_ndstaddr, rhv1 + nat->nat_ndport, 0xffffffff); hv0 = rhv0 % softn->ipf_nat_table_sz; hv1 = rhv1 % softn->ipf_nat_table_sz; if (nat->nat_dir == NAT_INBOUND || nat->nat_dir == NAT_DIVERTIN) { u_int swap; swap = hv0; hv0 = hv1; hv1 = swap; } /* TRACE nat_osrcaddr, nat_osport, nat_odstaddr, nat_odport, hv0 */ /* TRACE nat_nsrcaddr, nat_nsport, nat_ndstaddr, nat_ndport, hv1 */ nat->nat_hv[0] = rhv0; natp = &softn->ipf_nat_table[0][hv0]; if (*natp) (*natp)->nat_phnext[0] = &nat->nat_hnext[0]; nat->nat_phnext[0] = natp; nat->nat_hnext[0] = *natp; *natp = nat; nsp->ns_side[0].ns_bucketlen[hv0]++; nat->nat_hv[1] = rhv1; natp = &softn->ipf_nat_table[1][hv1]; if (*natp) (*natp)->nat_phnext[1] = &nat->nat_hnext[1]; nat->nat_phnext[1] = natp; nat->nat_hnext[1] = *natp; *natp = nat; nsp->ns_side[1].ns_bucketlen[hv1]++; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_outlookup */ /* Returns: nat_t* - NULL == no match, */ /* else pointer to matching NAT entry */ /* Parameters: fin(I) - pointer to packet information */ /* flags(I) - NAT flags for this packet */ /* p(I) - protocol for this packet */ /* src(I) - source IP address */ /* dst(I) - destination IP address */ /* rw(I) - 1 == write lock on held, 0 == read lock. */ /* */ /* Lookup a nat entry based on the source 'real' ip address/port and */ /* destination address/port. We use this lookup when sending a packet out, */ /* we're looking for a table entry, based on the source address. */ /* */ /* NOTE: THE PACKET BEING CHECKED (IF FOUND) HAS A MAPPING ALREADY. */ /* */ /* NOTE: IT IS ASSUMED THAT IS ONLY HELD WITH A READ LOCK WHEN */ /* THIS FUNCTION IS CALLED WITH NAT_SEARCH SET IN nflags. */ /* */ /* flags -> relevant are IPN_UDP/IPN_TCP/IPN_ICMPQUERY that indicate if */ /* the packet is of said protocol */ /* ------------------------------------------------------------------------ */ nat_t * ipf_nat_outlookup(fin, flags, p, src, dst) fr_info_t *fin; u_int flags, p; struct in_addr src , dst; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; u_short sport, dport; u_int sflags; ipnat_t *ipn; nat_t *nat; void *ifp; u_int hv; ifp = fin->fin_ifp; sflags = flags & IPN_TCPUDPICMP; switch (p) { case IPPROTO_TCP : case IPPROTO_UDP : sport = htons(fin->fin_data[0]); dport = htons(fin->fin_data[1]); break; case IPPROTO_ICMP : sport = 0; dport = fin->fin_data[1]; break; default : sport = 0; dport = 0; break; } if ((flags & SI_WILDP) != 0) goto find_out_wild_ports; hv = NAT_HASH_FN(src.s_addr, sport, 0xffffffff); hv = NAT_HASH_FN(dst.s_addr, hv + dport, softn->ipf_nat_table_sz); nat = softn->ipf_nat_table[0][hv]; /* TRACE src, sport, dst, dport, hv, nat */ for (; nat; nat = nat->nat_hnext[0]) { if (nat->nat_ifps[1] != NULL) { if ((ifp != NULL) && (ifp != nat->nat_ifps[1])) continue; } if (nat->nat_pr[1] != p) continue; switch (nat->nat_dir) { case NAT_INBOUND : case NAT_DIVERTIN : if (nat->nat_v[1] != 4) continue; if (nat->nat_ndstaddr != src.s_addr || nat->nat_nsrcaddr != dst.s_addr) continue; if ((nat->nat_flags & IPN_TCPUDP) != 0) { if (nat->nat_ndport != sport) continue; if (nat->nat_nsport != dport) continue; } else if (p == IPPROTO_ICMP) { if (nat->nat_osport != dport) { continue; } } break; case NAT_OUTBOUND : case NAT_DIVERTOUT : if (nat->nat_v[0] != 4) continue; if (nat->nat_osrcaddr != src.s_addr || nat->nat_odstaddr != dst.s_addr) continue; if ((nat->nat_flags & IPN_TCPUDP) != 0) { if (nat->nat_odport != dport) continue; if (nat->nat_osport != sport) continue; } else if (p == IPPROTO_ICMP) { if (nat->nat_osport != dport) { continue; } } break; } ipn = nat->nat_ptr; if ((ipn != NULL) && (nat->nat_aps != NULL)) if (ipf_proxy_match(fin, nat) != 0) continue; if ((nat->nat_ifps[1] == NULL) && (ifp != NULL)) { nat->nat_ifps[1] = ifp; nat->nat_mtu[1] = GETIFMTU_4(ifp); } return nat; } /* * So if we didn't find it but there are wildcard members in the hash * table, go back and look for them. We do this search and update here * because it is modifying the NAT table and we want to do this only * for the first packet that matches. The exception, of course, is * for "dummy" (FI_IGNORE) lookups. */ find_out_wild_ports: if (!(flags & NAT_TCPUDP) || !(flags & NAT_SEARCH)) { NBUMPSIDEX(1, ns_lookup_miss, ns_lookup_miss_1); return NULL; } if (softn->ipf_nat_stats.ns_wilds == 0 || (fin->fin_flx & FI_NOWILD)) { NBUMPSIDEX(1, ns_lookup_nowild, ns_lookup_nowild_1); return NULL; } RWLOCK_EXIT(&softc->ipf_nat); hv = NAT_HASH_FN(src.s_addr, 0, 0xffffffff); hv = NAT_HASH_FN(dst.s_addr, hv, softn->ipf_nat_table_sz); WRITE_ENTER(&softc->ipf_nat); nat = softn->ipf_nat_table[0][hv]; for (; nat; nat = nat->nat_hnext[0]) { if (nat->nat_ifps[1] != NULL) { if ((ifp != NULL) && (ifp != nat->nat_ifps[1])) continue; } if (nat->nat_pr[1] != fin->fin_p) continue; switch (nat->nat_dir & (NAT_INBOUND|NAT_OUTBOUND)) { case NAT_INBOUND : if (nat->nat_v[1] != 4) continue; if (nat->nat_ndstaddr != src.s_addr || nat->nat_nsrcaddr != dst.s_addr) continue; break; case NAT_OUTBOUND : if (nat->nat_v[0] != 4) continue; if (nat->nat_osrcaddr != src.s_addr || nat->nat_odstaddr != dst.s_addr) continue; break; } if (!(nat->nat_flags & (NAT_TCPUDP|SI_WILDP))) continue; if (ipf_nat_wildok(nat, (int)sport, (int)dport, nat->nat_flags, NAT_OUTBOUND) == 1) { if ((fin->fin_flx & FI_IGNORE) != 0) break; if ((nat->nat_flags & SI_CLONE) != 0) { nat = ipf_nat_clone(fin, nat); if (nat == NULL) break; } else { MUTEX_ENTER(&softn->ipf_nat_new); softn->ipf_nat_stats.ns_wilds--; MUTEX_EXIT(&softn->ipf_nat_new); } if (nat->nat_dir == NAT_OUTBOUND) { if (nat->nat_osport == 0) { nat->nat_osport = sport; nat->nat_nsport = sport; } if (nat->nat_odport == 0) { nat->nat_odport = dport; nat->nat_ndport = dport; } } else if (nat->nat_dir == NAT_INBOUND) { if (nat->nat_osport == 0) { nat->nat_osport = dport; nat->nat_nsport = dport; } if (nat->nat_odport == 0) { nat->nat_odport = sport; nat->nat_ndport = sport; } } if ((nat->nat_ifps[1] == NULL) && (ifp != NULL)) { nat->nat_ifps[1] = ifp; nat->nat_mtu[1] = GETIFMTU_4(ifp); } nat->nat_flags &= ~(SI_W_DPORT|SI_W_SPORT); ipf_nat_tabmove(softn, nat); break; } } MUTEX_DOWNGRADE(&softc->ipf_nat); if (nat == NULL) { NBUMPSIDE(1, ns_lookup_miss); } return nat; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_lookupredir */ /* Returns: nat_t* - NULL == no match, */ /* else pointer to matching NAT entry */ /* Parameters: np(I) - pointer to description of packet to find NAT table */ /* entry for. */ /* */ /* Lookup the NAT tables to search for a matching redirect */ /* The contents of natlookup_t should imitate those found in a packet that */ /* would be translated - ie a packet coming in for RDR or going out for MAP.*/ /* We can do the lookup in one of two ways, imitating an inbound or */ /* outbound packet. By default we assume outbound, unless IPN_IN is set. */ /* For IN, the fields are set as follows: */ /* nl_real* = source information */ /* nl_out* = destination information (translated) */ /* For an out packet, the fields are set like this: */ /* nl_in* = source information (untranslated) */ /* nl_out* = destination information (translated) */ /* ------------------------------------------------------------------------ */ nat_t * ipf_nat_lookupredir(np) natlookup_t *np; { fr_info_t fi; nat_t *nat; bzero((char *)&fi, sizeof(fi)); if (np->nl_flags & IPN_IN) { fi.fin_data[0] = ntohs(np->nl_realport); fi.fin_data[1] = ntohs(np->nl_outport); } else { fi.fin_data[0] = ntohs(np->nl_inport); fi.fin_data[1] = ntohs(np->nl_outport); } if (np->nl_flags & IPN_TCP) fi.fin_p = IPPROTO_TCP; else if (np->nl_flags & IPN_UDP) fi.fin_p = IPPROTO_UDP; else if (np->nl_flags & (IPN_ICMPERR|IPN_ICMPQUERY)) fi.fin_p = IPPROTO_ICMP; /* * We can do two sorts of lookups: * - IPN_IN: we have the `real' and `out' address, look for `in'. * - default: we have the `in' and `out' address, look for `real'. */ if (np->nl_flags & IPN_IN) { if ((nat = ipf_nat_inlookup(&fi, np->nl_flags, fi.fin_p, np->nl_realip, np->nl_outip))) { np->nl_inip = nat->nat_odstip; np->nl_inport = nat->nat_odport; } } else { /* * If nl_inip is non null, this is a lookup based on the real * ip address. Else, we use the fake. */ if ((nat = ipf_nat_outlookup(&fi, np->nl_flags, fi.fin_p, np->nl_inip, np->nl_outip))) { if ((np->nl_flags & IPN_FINDFORWARD) != 0) { fr_info_t fin; bzero((char *)&fin, sizeof(fin)); fin.fin_p = nat->nat_pr[0]; fin.fin_data[0] = ntohs(nat->nat_ndport); fin.fin_data[1] = ntohs(nat->nat_nsport); if (ipf_nat_inlookup(&fin, np->nl_flags, fin.fin_p, nat->nat_ndstip, nat->nat_nsrcip) != NULL) { np->nl_flags &= ~IPN_FINDFORWARD; } } np->nl_realip = nat->nat_odstip; np->nl_realport = nat->nat_odport; } } return nat; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_match */ /* Returns: int - 0 == no match, 1 == match */ /* Parameters: fin(I) - pointer to packet information */ /* np(I) - pointer to NAT rule */ /* */ /* Pull the matching of a packet against a NAT rule out of that complex */ /* loop inside ipf_nat_checkin() and lay it out properly in its own function. */ /* ------------------------------------------------------------------------ */ static int ipf_nat_match(fin, np) fr_info_t *fin; ipnat_t *np; { ipf_main_softc_t *softc = fin->fin_main_soft; frtuc_t *ft; int match; match = 0; switch (np->in_osrcatype) { case FRI_NORMAL : match = ((fin->fin_saddr & np->in_osrcmsk) != np->in_osrcaddr); break; case FRI_LOOKUP : match = (*np->in_osrcfunc)(softc, np->in_osrcptr, 4, &fin->fin_saddr, fin->fin_plen); break; } match ^= ((np->in_flags & IPN_NOTSRC) != 0); if (match) return 0; match = 0; switch (np->in_odstatype) { case FRI_NORMAL : match = ((fin->fin_daddr & np->in_odstmsk) != np->in_odstaddr); break; case FRI_LOOKUP : match = (*np->in_odstfunc)(softc, np->in_odstptr, 4, &fin->fin_daddr, fin->fin_plen); break; } match ^= ((np->in_flags & IPN_NOTDST) != 0); if (match) return 0; ft = &np->in_tuc; if (!(fin->fin_flx & FI_TCPUDP) || (fin->fin_flx & (FI_SHORT|FI_FRAGBODY))) { if (ft->ftu_scmp || ft->ftu_dcmp) return 0; return 1; } return ipf_tcpudpchk(&fin->fin_fi, ft); } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_update */ /* Returns: Nil */ /* Parameters: fin(I) - pointer to packet information */ /* nat(I) - pointer to NAT structure */ /* */ /* Updates the lifetime of a NAT table entry for non-TCP packets. Must be */ /* called with fin_rev updated - i.e. after calling ipf_nat_proto(). */ /* */ /* This *MUST* be called after ipf_nat_proto() as it expects fin_rev to */ /* already be set. */ /* ------------------------------------------------------------------------ */ void ipf_nat_update(fin, nat) fr_info_t *fin; nat_t *nat; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; ipftq_t *ifq, *ifq2; ipftqent_t *tqe; ipnat_t *np = nat->nat_ptr; tqe = &nat->nat_tqe; ifq = tqe->tqe_ifq; /* * We allow over-riding of NAT timeouts from NAT rules, even for * TCP, however, if it is TCP and there is no rule timeout set, * then do not update the timeout here. */ if (np != NULL) { np->in_bytes[fin->fin_rev] += fin->fin_plen; ifq2 = np->in_tqehead[fin->fin_rev]; } else { ifq2 = NULL; } if (nat->nat_pr[0] == IPPROTO_TCP && ifq2 == NULL) { (void) ipf_tcp_age(&nat->nat_tqe, fin, softn->ipf_nat_tcptq, 0, 2); } else { if (ifq2 == NULL) { if (nat->nat_pr[0] == IPPROTO_UDP) ifq2 = fin->fin_rev ? &softn->ipf_nat_udpacktq : &softn->ipf_nat_udptq; else if (nat->nat_pr[0] == IPPROTO_ICMP || nat->nat_pr[0] == IPPROTO_ICMPV6) ifq2 = fin->fin_rev ? &softn->ipf_nat_icmpacktq: &softn->ipf_nat_icmptq; else ifq2 = &softn->ipf_nat_iptq; } ipf_movequeue(softc->ipf_ticks, tqe, ifq, ifq2); } } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_checkout */ /* Returns: int - -1 == packet failed NAT checks so block it, */ /* 0 == no packet translation occurred, */ /* 1 == packet was successfully translated. */ /* Parameters: fin(I) - pointer to packet information */ /* passp(I) - pointer to filtering result flags */ /* */ /* Check to see if an outcoming packet should be changed. ICMP packets are */ /* first checked to see if they match an existing entry (if an error), */ /* otherwise a search of the current NAT table is made. If neither results */ /* in a match then a search for a matching NAT rule is made. Create a new */ /* NAT entry if a we matched a NAT rule. Lastly, actually change the */ /* packet header(s) as required. */ /* ------------------------------------------------------------------------ */ int ipf_nat_checkout(fin, passp) fr_info_t *fin; u_32_t *passp; { ipnat_t *np = NULL, *npnext; struct ifnet *ifp, *sifp; ipf_main_softc_t *softc; ipf_nat_softc_t *softn; icmphdr_t *icmp = NULL; tcphdr_t *tcp = NULL; int rval, natfailed; u_int nflags = 0; u_32_t ipa, iph; int natadd = 1; frentry_t *fr; nat_t *nat; if (fin->fin_v == 6) { #ifdef USE_INET6 return ipf_nat6_checkout(fin, passp); #else return 0; #endif } softc = fin->fin_main_soft; softn = softc->ipf_nat_soft; if (softn->ipf_nat_lock != 0) return 0; if (softn->ipf_nat_stats.ns_rules == 0 && softn->ipf_nat_instances == NULL) return 0; natfailed = 0; fr = fin->fin_fr; sifp = fin->fin_ifp; if (fr != NULL) { ifp = fr->fr_tifs[fin->fin_rev].fd_ptr; if ((ifp != NULL) && (ifp != (void *)-1)) fin->fin_ifp = ifp; } ifp = fin->fin_ifp; if (!(fin->fin_flx & FI_SHORT) && (fin->fin_off == 0)) { switch (fin->fin_p) { case IPPROTO_TCP : nflags = IPN_TCP; break; case IPPROTO_UDP : nflags = IPN_UDP; break; case IPPROTO_ICMP : icmp = fin->fin_dp; /* * This is an incoming packet, so the destination is * the icmp_id and the source port equals 0 */ if ((fin->fin_flx & FI_ICMPQUERY) != 0) nflags = IPN_ICMPQUERY; break; default : break; } if ((nflags & IPN_TCPUDP)) tcp = fin->fin_dp; } ipa = fin->fin_saddr; READ_ENTER(&softc->ipf_nat); if ((fin->fin_p == IPPROTO_ICMP) && !(nflags & IPN_ICMPQUERY) && (nat = ipf_nat_icmperror(fin, &nflags, NAT_OUTBOUND))) /*EMPTY*/; else if ((fin->fin_flx & FI_FRAG) && (nat = ipf_frag_natknown(fin))) natadd = 0; else if ((nat = ipf_nat_outlookup(fin, nflags|NAT_SEARCH, (u_int)fin->fin_p, fin->fin_src, fin->fin_dst))) { nflags = nat->nat_flags; } else if (fin->fin_off == 0) { u_32_t hv, msk, nmsk = 0; /* * If there is no current entry in the nat table for this IP#, * create one for it (if there is a matching rule). */ maskloop: msk = softn->ipf_nat_map_active_masks[nmsk]; iph = ipa & msk; hv = NAT_HASH_FN(iph, 0, softn->ipf_nat_maprules_sz); retry_roundrobin: for (np = softn->ipf_nat_map_rules[hv]; np; np = npnext) { npnext = np->in_mnext; if ((np->in_ifps[1] && (np->in_ifps[1] != ifp))) continue; if (np->in_v[0] != 4) continue; if (np->in_pr[1] && (np->in_pr[1] != fin->fin_p)) continue; if ((np->in_flags & IPN_RF) && !(np->in_flags & nflags)) continue; if (np->in_flags & IPN_FILTER) { switch (ipf_nat_match(fin, np)) { case 0 : continue; case -1 : rval = -3; goto outmatchfail; case 1 : default : break; } } else if ((ipa & np->in_osrcmsk) != np->in_osrcaddr) continue; if ((fr != NULL) && !ipf_matchtag(&np->in_tag, &fr->fr_nattag)) continue; if (np->in_plabel != -1) { if (((np->in_flags & IPN_FILTER) == 0) && (np->in_odport != fin->fin_data[1])) continue; if (ipf_proxy_ok(fin, tcp, np) == 0) continue; } if (np->in_flags & IPN_NO) { np->in_hits++; break; } MUTEX_ENTER(&softn->ipf_nat_new); /* * If we've matched a round-robin rule but it has * moved in the list since we got it, start over as * this is now no longer correct. */ if (npnext != np->in_mnext) { if ((np->in_flags & IPN_ROUNDR) != 0) { MUTEX_EXIT(&softn->ipf_nat_new); goto retry_roundrobin; } npnext = np->in_mnext; } nat = ipf_nat_add(fin, np, NULL, nflags, NAT_OUTBOUND); MUTEX_EXIT(&softn->ipf_nat_new); if (nat != NULL) { natfailed = 0; break; } natfailed = -2; } if ((np == NULL) && (nmsk < softn->ipf_nat_map_max)) { nmsk++; goto maskloop; } } if (nat != NULL) { rval = ipf_nat_out(fin, nat, natadd, nflags); if (rval == 1) { MUTEX_ENTER(&nat->nat_lock); ipf_nat_update(fin, nat); nat->nat_bytes[1] += fin->fin_plen; nat->nat_pkts[1]++; fin->fin_pktnum = nat->nat_pkts[1]; MUTEX_EXIT(&nat->nat_lock); } } else rval = natfailed; outmatchfail: RWLOCK_EXIT(&softc->ipf_nat); switch (rval) { case -3 : /* ipf_nat_match() failure */ /* FALLTHROUGH */ case -2 : /* retry_roundrobin loop failure */ /* FALLTHROUGH */ case -1 : /* proxy failure detected by ipf_nat_out() */ if (passp != NULL) { DT2(frb_natv4out, fr_info_t *, fin, int, rval); NBUMPSIDED(1, ns_drop); *passp = FR_BLOCK; fin->fin_reason = FRB_NATV4; } fin->fin_flx |= FI_BADNAT; NBUMPSIDED(1, ns_badnat); rval = -1; /* We only return -1 on error. */ break; case 0 : NBUMPSIDE(1, ns_ignored); break; case 1 : NBUMPSIDE(1, ns_translated); break; } fin->fin_ifp = sifp; return rval; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_out */ /* Returns: int - -1 == packet failed NAT checks so block it, */ /* 1 == packet was successfully translated. */ /* Parameters: fin(I) - pointer to packet information */ /* nat(I) - pointer to NAT structure */ /* natadd(I) - flag indicating if it is safe to add frag cache */ /* nflags(I) - NAT flags set for this packet */ /* */ /* Translate a packet coming "out" on an interface. */ /* ------------------------------------------------------------------------ */ int ipf_nat_out(fin, nat, natadd, nflags) fr_info_t *fin; nat_t *nat; int natadd; u_32_t nflags; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; icmphdr_t *icmp; tcphdr_t *tcp; ipnat_t *np; int skip; int i; tcp = NULL; icmp = NULL; np = nat->nat_ptr; if ((natadd != 0) && (fin->fin_flx & FI_FRAG) && (np != NULL)) (void) ipf_frag_natnew(softc, fin, 0, nat); /* * Fix up checksums, not by recalculating them, but * simply computing adjustments. * This is only done for STREAMS based IP implementations where the * checksum has already been calculated by IP. In all other cases, * IPFilter is called before the checksum needs calculating so there * is no call to modify whatever is in the header now. */ if (nflags == IPN_ICMPERR) { u_32_t s1, s2, sumd, msumd; s1 = LONG_SUM(ntohl(fin->fin_saddr)); if (nat->nat_dir == NAT_OUTBOUND) { s2 = LONG_SUM(ntohl(nat->nat_nsrcaddr)); } else { s2 = LONG_SUM(ntohl(nat->nat_odstaddr)); } CALC_SUMD(s1, s2, sumd); msumd = sumd; s1 = LONG_SUM(ntohl(fin->fin_daddr)); if (nat->nat_dir == NAT_OUTBOUND) { s2 = LONG_SUM(ntohl(nat->nat_ndstaddr)); } else { s2 = LONG_SUM(ntohl(nat->nat_osrcaddr)); } CALC_SUMD(s1, s2, sumd); msumd += sumd; ipf_fix_outcksum(0, &fin->fin_ip->ip_sum, msumd, 0); } -#if !defined(_KERNEL) || defined(MENTAT) || \ +#if !defined(_KERNEL) || SOLARIS || \ defined(BRIDGE_IPF) || defined(__FreeBSD__) else { /* * Strictly speaking, this isn't necessary on BSD * kernels because they do checksum calculation after * this code has run BUT if ipfilter is being used * to do NAT as a bridge, that code doesn't exist. */ switch (nat->nat_dir) { case NAT_OUTBOUND : ipf_fix_outcksum(fin->fin_cksum & FI_CK_L4PART, &fin->fin_ip->ip_sum, nat->nat_ipsumd, 0); break; case NAT_INBOUND : ipf_fix_incksum(fin->fin_cksum & FI_CK_L4PART, &fin->fin_ip->ip_sum, nat->nat_ipsumd, 0); break; default : break; } } #endif /* * Address assignment is after the checksum modification because * we are using the address in the packet for determining the * correct checksum offset (the ICMP error could be coming from * anyone...) */ switch (nat->nat_dir) { case NAT_OUTBOUND : fin->fin_ip->ip_src = nat->nat_nsrcip; fin->fin_saddr = nat->nat_nsrcaddr; fin->fin_ip->ip_dst = nat->nat_ndstip; fin->fin_daddr = nat->nat_ndstaddr; break; case NAT_INBOUND : fin->fin_ip->ip_src = nat->nat_odstip; fin->fin_saddr = nat->nat_ndstaddr; fin->fin_ip->ip_dst = nat->nat_osrcip; fin->fin_daddr = nat->nat_nsrcaddr; break; case NAT_DIVERTIN : { mb_t *m; skip = ipf_nat_decap(fin, nat); if (skip <= 0) { NBUMPSIDED(1, ns_decap_fail); return -1; } m = fin->fin_m; -#if defined(MENTAT) && defined(_KERNEL) +#if SOLARIS && defined(_KERNEL) m->b_rptr += skip; #else m->m_data += skip; m->m_len -= skip; # ifdef M_PKTHDR if (m->m_flags & M_PKTHDR) m->m_pkthdr.len -= skip; # endif #endif MUTEX_ENTER(&nat->nat_lock); ipf_nat_update(fin, nat); MUTEX_EXIT(&nat->nat_lock); fin->fin_flx |= FI_NATED; if (np != NULL && np->in_tag.ipt_num[0] != 0) fin->fin_nattag = &np->in_tag; return 1; /* NOTREACHED */ } case NAT_DIVERTOUT : { u_32_t s1, s2, sumd; udphdr_t *uh; ip_t *ip; mb_t *m; m = M_DUP(np->in_divmp); if (m == NULL) { NBUMPSIDED(1, ns_divert_dup); return -1; } ip = MTOD(m, ip_t *); ip_fillid(ip); s2 = ntohs(ip->ip_id); s1 = ip->ip_len; ip->ip_len = ntohs(ip->ip_len); ip->ip_len += fin->fin_plen; ip->ip_len = htons(ip->ip_len); s2 += ntohs(ip->ip_len); CALC_SUMD(s1, s2, sumd); uh = (udphdr_t *)(ip + 1); uh->uh_ulen += fin->fin_plen; uh->uh_ulen = htons(uh->uh_ulen); -#if !defined(_KERNEL) || defined(MENTAT) || \ +#if !defined(_KERNEL) || SOLARIS || \ defined(BRIDGE_IPF) || defined(__FreeBSD__) ipf_fix_outcksum(0, &ip->ip_sum, sumd, 0); #endif PREP_MB_T(fin, m); fin->fin_src = ip->ip_src; fin->fin_dst = ip->ip_dst; fin->fin_ip = ip; fin->fin_plen += sizeof(ip_t) + 8; /* UDP + IPv4 hdr */ fin->fin_dlen += sizeof(ip_t) + 8; /* UDP + IPv4 hdr */ nflags &= ~IPN_TCPUDPICMP; break; } default : break; } if (!(fin->fin_flx & FI_SHORT) && (fin->fin_off == 0)) { u_short *csump; if ((nat->nat_nsport != 0) && (nflags & IPN_TCPUDP)) { tcp = fin->fin_dp; switch (nat->nat_dir) { case NAT_OUTBOUND : tcp->th_sport = nat->nat_nsport; fin->fin_data[0] = ntohs(nat->nat_nsport); tcp->th_dport = nat->nat_ndport; fin->fin_data[1] = ntohs(nat->nat_ndport); break; case NAT_INBOUND : tcp->th_sport = nat->nat_odport; fin->fin_data[0] = ntohs(nat->nat_odport); tcp->th_dport = nat->nat_osport; fin->fin_data[1] = ntohs(nat->nat_osport); break; } } if ((nat->nat_nsport != 0) && (nflags & IPN_ICMPQUERY)) { icmp = fin->fin_dp; icmp->icmp_id = nat->nat_nicmpid; } csump = ipf_nat_proto(fin, nat, nflags); /* * The above comments do not hold for layer 4 (or higher) * checksums... */ if (csump != NULL) { if (nat->nat_dir == NAT_OUTBOUND) ipf_fix_outcksum(fin->fin_cksum, csump, nat->nat_sumd[0], nat->nat_sumd[1] + fin->fin_dlen); else ipf_fix_incksum(fin->fin_cksum, csump, nat->nat_sumd[0], nat->nat_sumd[1] + fin->fin_dlen); } } ipf_sync_update(softc, SMC_NAT, fin, nat->nat_sync); /* ------------------------------------------------------------- */ /* A few quick notes: */ /* Following are test conditions prior to calling the */ /* ipf_proxy_check routine. */ /* */ /* A NULL tcp indicates a non TCP/UDP packet. When dealing */ /* with a redirect rule, we attempt to match the packet's */ /* source port against in_dport, otherwise we'd compare the */ /* packet's destination. */ /* ------------------------------------------------------------- */ if ((np != NULL) && (np->in_apr != NULL)) { i = ipf_proxy_check(fin, nat); if (i == 0) { i = 1; } else if (i == -1) { NBUMPSIDED(1, ns_ipf_proxy_fail); } } else { i = 1; } fin->fin_flx |= FI_NATED; return i; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_checkin */ /* Returns: int - -1 == packet failed NAT checks so block it, */ /* 0 == no packet translation occurred, */ /* 1 == packet was successfully translated. */ /* Parameters: fin(I) - pointer to packet information */ /* passp(I) - pointer to filtering result flags */ /* */ /* Check to see if an incoming packet should be changed. ICMP packets are */ /* first checked to see if they match an existing entry (if an error), */ /* otherwise a search of the current NAT table is made. If neither results */ /* in a match then a search for a matching NAT rule is made. Create a new */ /* NAT entry if a we matched a NAT rule. Lastly, actually change the */ /* packet header(s) as required. */ /* ------------------------------------------------------------------------ */ int ipf_nat_checkin(fin, passp) fr_info_t *fin; u_32_t *passp; { ipf_main_softc_t *softc; ipf_nat_softc_t *softn; u_int nflags, natadd; ipnat_t *np, *npnext; int rval, natfailed; struct ifnet *ifp; struct in_addr in; icmphdr_t *icmp; tcphdr_t *tcp; u_short dport; nat_t *nat; u_32_t iph; softc = fin->fin_main_soft; softn = softc->ipf_nat_soft; if (softn->ipf_nat_lock != 0) return 0; if (softn->ipf_nat_stats.ns_rules == 0 && softn->ipf_nat_instances == NULL) return 0; tcp = NULL; icmp = NULL; dport = 0; natadd = 1; nflags = 0; natfailed = 0; ifp = fin->fin_ifp; if (!(fin->fin_flx & FI_SHORT) && (fin->fin_off == 0)) { switch (fin->fin_p) { case IPPROTO_TCP : nflags = IPN_TCP; break; case IPPROTO_UDP : nflags = IPN_UDP; break; case IPPROTO_ICMP : icmp = fin->fin_dp; /* * This is an incoming packet, so the destination is * the icmp_id and the source port equals 0 */ if ((fin->fin_flx & FI_ICMPQUERY) != 0) { nflags = IPN_ICMPQUERY; dport = icmp->icmp_id; } break; default : break; } if ((nflags & IPN_TCPUDP)) { tcp = fin->fin_dp; dport = fin->fin_data[1]; } } in = fin->fin_dst; READ_ENTER(&softc->ipf_nat); if ((fin->fin_p == IPPROTO_ICMP) && !(nflags & IPN_ICMPQUERY) && (nat = ipf_nat_icmperror(fin, &nflags, NAT_INBOUND))) /*EMPTY*/; else if ((fin->fin_flx & FI_FRAG) && (nat = ipf_frag_natknown(fin))) natadd = 0; else if ((nat = ipf_nat_inlookup(fin, nflags|NAT_SEARCH, (u_int)fin->fin_p, fin->fin_src, in))) { nflags = nat->nat_flags; } else if (fin->fin_off == 0) { u_32_t hv, msk, rmsk = 0; /* * If there is no current entry in the nat table for this IP#, * create one for it (if there is a matching rule). */ maskloop: msk = softn->ipf_nat_rdr_active_masks[rmsk]; iph = in.s_addr & msk; hv = NAT_HASH_FN(iph, 0, softn->ipf_nat_rdrrules_sz); retry_roundrobin: /* TRACE (iph,msk,rmsk,hv,softn->ipf_nat_rdrrules_sz) */ for (np = softn->ipf_nat_rdr_rules[hv]; np; np = npnext) { npnext = np->in_rnext; if (np->in_ifps[0] && (np->in_ifps[0] != ifp)) continue; if (np->in_v[0] != 4) continue; if (np->in_pr[0] && (np->in_pr[0] != fin->fin_p)) continue; if ((np->in_flags & IPN_RF) && !(np->in_flags & nflags)) continue; if (np->in_flags & IPN_FILTER) { switch (ipf_nat_match(fin, np)) { case 0 : continue; case -1 : rval = -3; goto inmatchfail; case 1 : default : break; } } else { if ((in.s_addr & np->in_odstmsk) != np->in_odstaddr) continue; if (np->in_odport && ((np->in_dtop < dport) || (dport < np->in_odport))) continue; } if (np->in_plabel != -1) { if (!ipf_proxy_ok(fin, tcp, np)) { continue; } } if (np->in_flags & IPN_NO) { np->in_hits++; break; } MUTEX_ENTER(&softn->ipf_nat_new); /* * If we've matched a round-robin rule but it has * moved in the list since we got it, start over as * this is now no longer correct. */ if (npnext != np->in_rnext) { if ((np->in_flags & IPN_ROUNDR) != 0) { MUTEX_EXIT(&softn->ipf_nat_new); goto retry_roundrobin; } npnext = np->in_rnext; } nat = ipf_nat_add(fin, np, NULL, nflags, NAT_INBOUND); MUTEX_EXIT(&softn->ipf_nat_new); if (nat != NULL) { natfailed = 0; break; } natfailed = -2; } if ((np == NULL) && (rmsk < softn->ipf_nat_rdr_max)) { rmsk++; goto maskloop; } } if (nat != NULL) { rval = ipf_nat_in(fin, nat, natadd, nflags); if (rval == 1) { MUTEX_ENTER(&nat->nat_lock); ipf_nat_update(fin, nat); nat->nat_bytes[0] += fin->fin_plen; nat->nat_pkts[0]++; fin->fin_pktnum = nat->nat_pkts[0]; MUTEX_EXIT(&nat->nat_lock); } } else rval = natfailed; inmatchfail: RWLOCK_EXIT(&softc->ipf_nat); switch (rval) { case -3 : /* ipf_nat_match() failure */ /* FALLTHROUGH */ case -2 : /* retry_roundrobin loop failure */ /* FALLTHROUGH */ case -1 : /* proxy failure detected by ipf_nat_in() */ if (passp != NULL) { DT2(frb_natv4in, fr_info_t *, fin, int, rval); NBUMPSIDED(0, ns_drop); *passp = FR_BLOCK; fin->fin_reason = FRB_NATV4; } fin->fin_flx |= FI_BADNAT; NBUMPSIDED(0, ns_badnat); rval = -1; /* We only return -1 on error. */ break; case 0 : NBUMPSIDE(0, ns_ignored); break; case 1 : NBUMPSIDE(0, ns_translated); break; } return rval; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_in */ /* Returns: int - -1 == packet failed NAT checks so block it, */ /* 1 == packet was successfully translated. */ /* Parameters: fin(I) - pointer to packet information */ /* nat(I) - pointer to NAT structure */ /* natadd(I) - flag indicating if it is safe to add frag cache */ /* nflags(I) - NAT flags set for this packet */ /* Locks Held: ipf_nat(READ) */ /* */ /* Translate a packet coming "in" on an interface. */ /* ------------------------------------------------------------------------ */ int ipf_nat_in(fin, nat, natadd, nflags) fr_info_t *fin; nat_t *nat; int natadd; u_32_t nflags; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; u_32_t sumd, ipsumd, sum1, sum2; icmphdr_t *icmp; tcphdr_t *tcp; ipnat_t *np; int skip; int i; tcp = NULL; np = nat->nat_ptr; fin->fin_fr = nat->nat_fr; if (np != NULL) { if ((natadd != 0) && (fin->fin_flx & FI_FRAG)) (void) ipf_frag_natnew(softc, fin, 0, nat); /* ------------------------------------------------------------- */ /* A few quick notes: */ /* Following are test conditions prior to calling the */ /* ipf_proxy_check routine. */ /* */ /* A NULL tcp indicates a non TCP/UDP packet. When dealing */ /* with a map rule, we attempt to match the packet's */ /* source port against in_dport, otherwise we'd compare the */ /* packet's destination. */ /* ------------------------------------------------------------- */ if (np->in_apr != NULL) { i = ipf_proxy_check(fin, nat); if (i == -1) { NBUMPSIDED(0, ns_ipf_proxy_fail); return -1; } } } ipf_sync_update(softc, SMC_NAT, fin, nat->nat_sync); ipsumd = nat->nat_ipsumd; /* * Fix up checksums, not by recalculating them, but * simply computing adjustments. * Why only do this for some platforms on inbound packets ? * Because for those that it is done, IP processing is yet to happen * and so the IPv4 header checksum has not yet been evaluated. * Perhaps it should always be done for the benefit of things like * fast forwarding (so that it doesn't need to be recomputed) but with * header checksum offloading, perhaps it is a moot point. */ switch (nat->nat_dir) { case NAT_INBOUND : if ((fin->fin_flx & FI_ICMPERR) == 0) { fin->fin_ip->ip_src = nat->nat_nsrcip; fin->fin_saddr = nat->nat_nsrcaddr; } else { sum1 = nat->nat_osrcaddr; sum2 = nat->nat_nsrcaddr; CALC_SUMD(sum1, sum2, sumd); ipsumd -= sumd; } fin->fin_ip->ip_dst = nat->nat_ndstip; fin->fin_daddr = nat->nat_ndstaddr; -#if !defined(_KERNEL) || defined(MENTAT) +#if !defined(_KERNEL) || SOLARIS ipf_fix_outcksum(0, &fin->fin_ip->ip_sum, ipsumd, 0); #endif break; case NAT_OUTBOUND : if ((fin->fin_flx & FI_ICMPERR) == 0) { fin->fin_ip->ip_src = nat->nat_odstip; fin->fin_saddr = nat->nat_odstaddr; } else { sum1 = nat->nat_odstaddr; sum2 = nat->nat_ndstaddr; CALC_SUMD(sum1, sum2, sumd); ipsumd -= sumd; } fin->fin_ip->ip_dst = nat->nat_osrcip; fin->fin_daddr = nat->nat_osrcaddr; -#if !defined(_KERNEL) || defined(MENTAT) +#if !defined(_KERNEL) || SOLARIS ipf_fix_incksum(0, &fin->fin_ip->ip_sum, ipsumd, 0); #endif break; case NAT_DIVERTIN : { udphdr_t *uh; ip_t *ip; mb_t *m; m = M_DUP(np->in_divmp); if (m == NULL) { NBUMPSIDED(0, ns_divert_dup); return -1; } ip = MTOD(m, ip_t *); ip_fillid(ip); sum1 = ntohs(ip->ip_len); ip->ip_len = ntohs(ip->ip_len); ip->ip_len += fin->fin_plen; ip->ip_len = htons(ip->ip_len); uh = (udphdr_t *)(ip + 1); uh->uh_ulen += fin->fin_plen; uh->uh_ulen = htons(uh->uh_ulen); sum2 = ntohs(ip->ip_id) + ntohs(ip->ip_len); sum2 += ntohs(ip->ip_off) & IP_DF; CALC_SUMD(sum1, sum2, sumd); -#if !defined(_KERNEL) || defined(MENTAT) +#if !defined(_KERNEL) || SOLARIS ipf_fix_outcksum(0, &ip->ip_sum, sumd, 0); #endif PREP_MB_T(fin, m); fin->fin_ip = ip; fin->fin_plen += sizeof(ip_t) + 8; /* UDP + new IPv4 hdr */ fin->fin_dlen += sizeof(ip_t) + 8; /* UDP + old IPv4 hdr */ nflags &= ~IPN_TCPUDPICMP; break; } case NAT_DIVERTOUT : { mb_t *m; skip = ipf_nat_decap(fin, nat); if (skip <= 0) { NBUMPSIDED(0, ns_decap_fail); return -1; } m = fin->fin_m; -#if defined(MENTAT) && defined(_KERNEL) +#if SOLARIS && defined(_KERNEL) m->b_rptr += skip; #else m->m_data += skip; m->m_len -= skip; # ifdef M_PKTHDR if (m->m_flags & M_PKTHDR) m->m_pkthdr.len -= skip; # endif #endif ipf_nat_update(fin, nat); nflags &= ~IPN_TCPUDPICMP; fin->fin_flx |= FI_NATED; if (np != NULL && np->in_tag.ipt_num[0] != 0) fin->fin_nattag = &np->in_tag; return 1; /* NOTREACHED */ } } if (nflags & IPN_TCPUDP) tcp = fin->fin_dp; if (!(fin->fin_flx & FI_SHORT) && (fin->fin_off == 0)) { u_short *csump; if ((nat->nat_odport != 0) && (nflags & IPN_TCPUDP)) { switch (nat->nat_dir) { case NAT_INBOUND : tcp->th_sport = nat->nat_nsport; fin->fin_data[0] = ntohs(nat->nat_nsport); tcp->th_dport = nat->nat_ndport; fin->fin_data[1] = ntohs(nat->nat_ndport); break; case NAT_OUTBOUND : tcp->th_sport = nat->nat_odport; fin->fin_data[0] = ntohs(nat->nat_odport); tcp->th_dport = nat->nat_osport; fin->fin_data[1] = ntohs(nat->nat_osport); break; } } if ((nat->nat_odport != 0) && (nflags & IPN_ICMPQUERY)) { icmp = fin->fin_dp; icmp->icmp_id = nat->nat_nicmpid; } csump = ipf_nat_proto(fin, nat, nflags); /* * The above comments do not hold for layer 4 (or higher) * checksums... */ if (csump != NULL) { if (nat->nat_dir == NAT_OUTBOUND) ipf_fix_incksum(0, csump, nat->nat_sumd[0], 0); else ipf_fix_outcksum(0, csump, nat->nat_sumd[0], 0); } } fin->fin_flx |= FI_NATED; if (np != NULL && np->in_tag.ipt_num[0] != 0) fin->fin_nattag = &np->in_tag; return 1; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_proto */ /* Returns: u_short* - pointer to transport header checksum to update, */ /* NULL if the transport protocol is not recognised */ /* as needing a checksum update. */ /* Parameters: fin(I) - pointer to packet information */ /* nat(I) - pointer to NAT structure */ /* nflags(I) - NAT flags set for this packet */ /* */ /* Return the pointer to the checksum field for each protocol so understood.*/ /* If support for making other changes to a protocol header is required, */ /* that is not strictly 'address' translation, such as clamping the MSS in */ /* TCP down to a specific value, then do it from here. */ /* ------------------------------------------------------------------------ */ u_short * ipf_nat_proto(fin, nat, nflags) fr_info_t *fin; nat_t *nat; u_int nflags; { icmphdr_t *icmp; u_short *csump; tcphdr_t *tcp; udphdr_t *udp; csump = NULL; if (fin->fin_out == 0) { fin->fin_rev = (nat->nat_dir & NAT_OUTBOUND); } else { fin->fin_rev = ((nat->nat_dir & NAT_OUTBOUND) == 0); } switch (fin->fin_p) { case IPPROTO_TCP : tcp = fin->fin_dp; if ((nflags & IPN_TCP) != 0) csump = &tcp->th_sum; /* * Do a MSS CLAMPING on a SYN packet, * only deal IPv4 for now. */ if ((nat->nat_mssclamp != 0) && (tcp->th_flags & TH_SYN) != 0) ipf_nat_mssclamp(tcp, nat->nat_mssclamp, fin, csump); break; case IPPROTO_UDP : udp = fin->fin_dp; if ((nflags & IPN_UDP) != 0) { if (udp->uh_sum != 0) csump = &udp->uh_sum; } break; case IPPROTO_ICMP : icmp = fin->fin_dp; if ((nflags & IPN_ICMPQUERY) != 0) { if (icmp->icmp_cksum != 0) csump = &icmp->icmp_cksum; } break; #ifdef USE_INET6 case IPPROTO_ICMPV6 : { struct icmp6_hdr *icmp6 = (struct icmp6_hdr *)fin->fin_dp; icmp6 = fin->fin_dp; if ((nflags & IPN_ICMPQUERY) != 0) { if (icmp6->icmp6_cksum != 0) csump = &icmp6->icmp6_cksum; } break; } #endif } return csump; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_expire */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* Check all of the timeout queues for entries at the top which need to be */ /* expired. */ /* ------------------------------------------------------------------------ */ void ipf_nat_expire(softc) ipf_main_softc_t *softc; { ipf_nat_softc_t *softn = softc->ipf_nat_soft; ipftq_t *ifq, *ifqnext; ipftqent_t *tqe, *tqn; int i; SPL_INT(s); SPL_NET(s); WRITE_ENTER(&softc->ipf_nat); for (ifq = softn->ipf_nat_tcptq, i = 0; ifq != NULL; ifq = ifq->ifq_next) { for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); i++) { if (tqe->tqe_die > softc->ipf_ticks) break; tqn = tqe->tqe_next; ipf_nat_delete(softc, tqe->tqe_parent, NL_EXPIRE); } } for (ifq = softn->ipf_nat_utqe; ifq != NULL; ifq = ifq->ifq_next) { for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); i++) { if (tqe->tqe_die > softc->ipf_ticks) break; tqn = tqe->tqe_next; ipf_nat_delete(softc, tqe->tqe_parent, NL_EXPIRE); } } for (ifq = softn->ipf_nat_utqe; ifq != NULL; ifq = ifqnext) { ifqnext = ifq->ifq_next; if (((ifq->ifq_flags & IFQF_DELETE) != 0) && (ifq->ifq_ref == 0)) { ipf_freetimeoutqueue(softc, ifq); } } if (softn->ipf_nat_doflush != 0) { ipf_nat_extraflush(softc, softn, 2); softn->ipf_nat_doflush = 0; } RWLOCK_EXIT(&softc->ipf_nat); SPL_X(s); } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_sync */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* ifp(I) - pointer to network interface */ /* */ /* Walk through all of the currently active NAT sessions, looking for those */ /* which need to have their translated address updated. */ /* ------------------------------------------------------------------------ */ void ipf_nat_sync(softc, ifp) ipf_main_softc_t *softc; void *ifp; { ipf_nat_softc_t *softn = softc->ipf_nat_soft; u_32_t sum1, sum2, sumd; i6addr_t in; ipnat_t *n; nat_t *nat; void *ifp2; int idx; SPL_INT(s); if (softc->ipf_running <= 0) return; /* * Change IP addresses for NAT sessions for any protocol except TCP * since it will break the TCP connection anyway. The only rules * which will get changed are those which are "map ... -> 0/32", * where the rule specifies the address is taken from the interface. */ SPL_NET(s); WRITE_ENTER(&softc->ipf_nat); if (softc->ipf_running <= 0) { RWLOCK_EXIT(&softc->ipf_nat); return; } for (nat = softn->ipf_nat_instances; nat; nat = nat->nat_next) { if ((nat->nat_flags & IPN_TCP) != 0) continue; n = nat->nat_ptr; if (n != NULL) { if (n->in_v[1] == 4) { if (n->in_redir & NAT_MAP) { if ((n->in_nsrcaddr != 0) || (n->in_nsrcmsk != 0xffffffff)) continue; } else if (n->in_redir & NAT_REDIRECT) { if ((n->in_ndstaddr != 0) || (n->in_ndstmsk != 0xffffffff)) continue; } } #ifdef USE_INET6 if (n->in_v[1] == 4) { if (n->in_redir & NAT_MAP) { if (!IP6_ISZERO(&n->in_nsrcaddr) || !IP6_ISONES(&n->in_nsrcmsk)) continue; } else if (n->in_redir & NAT_REDIRECT) { if (!IP6_ISZERO(&n->in_ndstaddr) || !IP6_ISONES(&n->in_ndstmsk)) continue; } } #endif } if (((ifp == NULL) || (ifp == nat->nat_ifps[0]) || (ifp == nat->nat_ifps[1]))) { nat->nat_ifps[0] = GETIFP(nat->nat_ifnames[0], nat->nat_v[0]); if ((nat->nat_ifps[0] != NULL) && (nat->nat_ifps[0] != (void *)-1)) { nat->nat_mtu[0] = GETIFMTU_4(nat->nat_ifps[0]); } if (nat->nat_ifnames[1][0] != '\0') { nat->nat_ifps[1] = GETIFP(nat->nat_ifnames[1], nat->nat_v[1]); } else { nat->nat_ifps[1] = nat->nat_ifps[0]; } if ((nat->nat_ifps[1] != NULL) && (nat->nat_ifps[1] != (void *)-1)) { nat->nat_mtu[1] = GETIFMTU_4(nat->nat_ifps[1]); } ifp2 = nat->nat_ifps[0]; if (ifp2 == NULL) continue; /* * Change the map-to address to be the same as the * new one. */ sum1 = NATFSUM(nat, nat->nat_v[1], nat_nsrc6); if (ipf_ifpaddr(softc, nat->nat_v[0], FRI_NORMAL, ifp2, &in, NULL) != -1) { if (nat->nat_v[0] == 4) nat->nat_nsrcip = in.in4; } sum2 = NATFSUM(nat, nat->nat_v[1], nat_nsrc6); if (sum1 == sum2) continue; /* * Readjust the checksum adjustment to take into * account the new IP#. */ CALC_SUMD(sum1, sum2, sumd); /* XXX - dont change for TCP when solaris does * hardware checksumming. */ sumd += nat->nat_sumd[0]; nat->nat_sumd[0] = (sumd & 0xffff) + (sumd >> 16); nat->nat_sumd[1] = nat->nat_sumd[0]; } } for (n = softn->ipf_nat_list; (n != NULL); n = n->in_next) { char *base = n->in_names; if ((ifp == NULL) || (n->in_ifps[0] == ifp)) n->in_ifps[0] = ipf_resolvenic(softc, base + n->in_ifnames[0], n->in_v[0]); if ((ifp == NULL) || (n->in_ifps[1] == ifp)) n->in_ifps[1] = ipf_resolvenic(softc, base + n->in_ifnames[1], n->in_v[1]); if (n->in_redir & NAT_REDIRECT) idx = 1; else idx = 0; if (((ifp == NULL) || (n->in_ifps[idx] == ifp)) && (n->in_ifps[idx] != NULL && n->in_ifps[idx] != (void *)-1)) { ipf_nat_nextaddrinit(softc, n->in_names, &n->in_osrc, 0, n->in_ifps[idx]); ipf_nat_nextaddrinit(softc, n->in_names, &n->in_odst, 0, n->in_ifps[idx]); ipf_nat_nextaddrinit(softc, n->in_names, &n->in_nsrc, 0, n->in_ifps[idx]); ipf_nat_nextaddrinit(softc, n->in_names, &n->in_ndst, 0, n->in_ifps[idx]); } } RWLOCK_EXIT(&softc->ipf_nat); SPL_X(s); } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_icmpquerytype */ /* Returns: int - 1 == success, 0 == failure */ /* Parameters: icmptype(I) - ICMP type number */ /* */ /* Tests to see if the ICMP type number passed is a query/response type or */ /* not. */ /* ------------------------------------------------------------------------ */ static int ipf_nat_icmpquerytype(icmptype) int icmptype; { /* * For the ICMP query NAT code, it is essential that both the query * and the reply match on the NAT rule. Because the NAT structure * does not keep track of the icmptype, and a single NAT structure * is used for all icmp types with the same src, dest and id, we * simply define the replies as queries as well. The funny thing is, * altough it seems silly to call a reply a query, this is exactly * as it is defined in the IPv4 specification */ switch (icmptype) { case ICMP_ECHOREPLY: case ICMP_ECHO: /* route advertisement/solicitation is currently unsupported: */ /* it would require rewriting the ICMP data section */ case ICMP_TSTAMP: case ICMP_TSTAMPREPLY: case ICMP_IREQ: case ICMP_IREQREPLY: case ICMP_MASKREQ: case ICMP_MASKREPLY: return 1; default: return 0; } } /* ------------------------------------------------------------------------ */ /* Function: nat_log */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* softn(I) - pointer to NAT context structure */ /* nat(I) - pointer to NAT structure */ /* action(I) - action related to NAT structure being performed */ /* */ /* Creates a NAT log entry. */ /* ------------------------------------------------------------------------ */ void ipf_nat_log(softc, softn, nat, action) ipf_main_softc_t *softc; ipf_nat_softc_t *softn; struct nat *nat; u_int action; { #ifdef IPFILTER_LOG # ifndef LARGE_NAT struct ipnat *np; int rulen; # endif struct natlog natl; void *items[1]; size_t sizes[1]; int types[1]; bcopy((char *)&nat->nat_osrc6, (char *)&natl.nl_osrcip, sizeof(natl.nl_osrcip)); bcopy((char *)&nat->nat_nsrc6, (char *)&natl.nl_nsrcip, sizeof(natl.nl_nsrcip)); bcopy((char *)&nat->nat_odst6, (char *)&natl.nl_odstip, sizeof(natl.nl_odstip)); bcopy((char *)&nat->nat_ndst6, (char *)&natl.nl_ndstip, sizeof(natl.nl_ndstip)); natl.nl_bytes[0] = nat->nat_bytes[0]; natl.nl_bytes[1] = nat->nat_bytes[1]; natl.nl_pkts[0] = nat->nat_pkts[0]; natl.nl_pkts[1] = nat->nat_pkts[1]; natl.nl_odstport = nat->nat_odport; natl.nl_osrcport = nat->nat_osport; natl.nl_nsrcport = nat->nat_nsport; natl.nl_ndstport = nat->nat_ndport; natl.nl_p[0] = nat->nat_pr[0]; natl.nl_p[1] = nat->nat_pr[1]; natl.nl_v[0] = nat->nat_v[0]; natl.nl_v[1] = nat->nat_v[1]; natl.nl_type = nat->nat_redir; natl.nl_action = action; natl.nl_rule = -1; bcopy(nat->nat_ifnames[0], natl.nl_ifnames[0], sizeof(nat->nat_ifnames[0])); bcopy(nat->nat_ifnames[1], natl.nl_ifnames[1], sizeof(nat->nat_ifnames[1])); # ifndef LARGE_NAT if (nat->nat_ptr != NULL) { for (rulen = 0, np = softn->ipf_nat_list; np != NULL; np = np->in_next, rulen++) if (np == nat->nat_ptr) { natl.nl_rule = rulen; break; } } # endif items[0] = &natl; sizes[0] = sizeof(natl); types[0] = 0; (void) ipf_log_items(softc, IPL_LOGNAT, NULL, items, sizes, types, 1); #endif } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_rule_deref */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* inp(I) - pointer to pointer to NAT rule */ /* Write Locks: ipf_nat */ /* */ /* Dropping the refernce count for a rule means that whatever held the */ /* pointer to this rule (*inp) is no longer interested in it and when the */ /* reference count drops to zero, any resources allocated for the rule can */ /* be released and the rule itself free'd. */ /* ------------------------------------------------------------------------ */ void ipf_nat_rule_deref(softc, inp) ipf_main_softc_t *softc; ipnat_t **inp; { ipf_nat_softc_t *softn = softc->ipf_nat_soft; ipnat_t *n; n = *inp; *inp = NULL; n->in_use--; if (n->in_use > 0) return; if (n->in_apr != NULL) ipf_proxy_deref(n->in_apr); ipf_nat_rule_fini(softc, n); if (n->in_redir & NAT_REDIRECT) { if ((n->in_flags & IPN_PROXYRULE) == 0) { ATOMIC_DEC32(softn->ipf_nat_stats.ns_rules_rdr); } } if (n->in_redir & (NAT_MAP|NAT_MAPBLK)) { if ((n->in_flags & IPN_PROXYRULE) == 0) { ATOMIC_DEC32(softn->ipf_nat_stats.ns_rules_map); } } if (n->in_tqehead[0] != NULL) { if (ipf_deletetimeoutqueue(n->in_tqehead[0]) == 0) { ipf_freetimeoutqueue(softc, n->in_tqehead[1]); } } if (n->in_tqehead[1] != NULL) { if (ipf_deletetimeoutqueue(n->in_tqehead[1]) == 0) { ipf_freetimeoutqueue(softc, n->in_tqehead[1]); } } if ((n->in_flags & IPN_PROXYRULE) == 0) { ATOMIC_DEC32(softn->ipf_nat_stats.ns_rules); } MUTEX_DESTROY(&n->in_lock); KFREES(n, n->in_size); #if SOLARIS && !defined(INSTANCES) if (softn->ipf_nat_stats.ns_rules == 0) pfil_delayed_copy = 1; #endif } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_deref */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* natp(I) - pointer to pointer to NAT table entry */ /* */ /* Decrement the reference counter for this NAT table entry and free it if */ /* there are no more things using it. */ /* */ /* IF nat_ref == 1 when this function is called, then we have an orphan nat */ /* structure *because* it only gets called on paths _after_ nat_ref has been*/ /* incremented. If nat_ref == 1 then we shouldn't decrement it here */ /* because nat_delete() will do that and send nat_ref to -1. */ /* */ /* Holding the lock on nat_lock is required to serialise nat_delete() being */ /* called from a NAT flush ioctl with a deref happening because of a packet.*/ /* ------------------------------------------------------------------------ */ void ipf_nat_deref(softc, natp) ipf_main_softc_t *softc; nat_t **natp; { nat_t *nat; nat = *natp; *natp = NULL; MUTEX_ENTER(&nat->nat_lock); if (nat->nat_ref > 1) { nat->nat_ref--; ASSERT(nat->nat_ref >= 0); MUTEX_EXIT(&nat->nat_lock); return; } MUTEX_EXIT(&nat->nat_lock); WRITE_ENTER(&softc->ipf_nat); ipf_nat_delete(softc, nat, NL_EXPIRE); RWLOCK_EXIT(&softc->ipf_nat); } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_clone */ /* Returns: ipstate_t* - NULL == cloning failed, */ /* else pointer to new state structure */ /* Parameters: fin(I) - pointer to packet information */ /* is(I) - pointer to master state structure */ /* Write Lock: ipf_nat */ /* */ /* Create a "duplcate" state table entry from the master. */ /* ------------------------------------------------------------------------ */ nat_t * ipf_nat_clone(fin, nat) fr_info_t *fin; nat_t *nat; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; frentry_t *fr; nat_t *clone; ipnat_t *np; KMALLOC(clone, nat_t *); if (clone == NULL) { NBUMPSIDED(fin->fin_out, ns_clone_nomem); return NULL; } bcopy((char *)nat, (char *)clone, sizeof(*clone)); MUTEX_NUKE(&clone->nat_lock); clone->nat_rev = fin->fin_rev; clone->nat_aps = NULL; /* * Initialize all these so that ipf_nat_delete() doesn't cause a crash. */ clone->nat_tqe.tqe_pnext = NULL; clone->nat_tqe.tqe_next = NULL; clone->nat_tqe.tqe_ifq = NULL; clone->nat_tqe.tqe_parent = clone; clone->nat_flags &= ~SI_CLONE; clone->nat_flags |= SI_CLONED; if (clone->nat_hm) clone->nat_hm->hm_ref++; if (ipf_nat_insert(softc, softn, clone) == -1) { KFREE(clone); NBUMPSIDED(fin->fin_out, ns_insert_fail); return NULL; } np = clone->nat_ptr; if (np != NULL) { if (softn->ipf_nat_logging) ipf_nat_log(softc, softn, clone, NL_CLONE); np->in_use++; } fr = clone->nat_fr; if (fr != NULL) { MUTEX_ENTER(&fr->fr_lock); fr->fr_ref++; MUTEX_EXIT(&fr->fr_lock); } /* * Because the clone is created outside the normal loop of things and * TCP has special needs in terms of state, initialise the timeout * state of the new NAT from here. */ if (clone->nat_pr[0] == IPPROTO_TCP) { (void) ipf_tcp_age(&clone->nat_tqe, fin, softn->ipf_nat_tcptq, clone->nat_flags, 2); } clone->nat_sync = ipf_sync_new(softc, SMC_NAT, fin, clone); if (softn->ipf_nat_logging) ipf_nat_log(softc, softn, clone, NL_CLONE); return clone; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_wildok */ /* Returns: int - 1 == packet's ports match wildcards */ /* 0 == packet's ports don't match wildcards */ /* Parameters: nat(I) - NAT entry */ /* sport(I) - source port */ /* dport(I) - destination port */ /* flags(I) - wildcard flags */ /* dir(I) - packet direction */ /* */ /* Use NAT entry and packet direction to determine which combination of */ /* wildcard flags should be used. */ /* ------------------------------------------------------------------------ */ int ipf_nat_wildok(nat, sport, dport, flags, dir) nat_t *nat; int sport, dport, flags, dir; { /* * When called by dir is set to * nat_inlookup NAT_INBOUND (0) * nat_outlookup NAT_OUTBOUND (1) * * We simply combine the packet's direction in dir with the original * "intended" direction of that NAT entry in nat->nat_dir to decide * which combination of wildcard flags to allow. */ switch ((dir << 1) | (nat->nat_dir & (NAT_INBOUND|NAT_OUTBOUND))) { case 3: /* outbound packet / outbound entry */ if (((nat->nat_osport == sport) || (flags & SI_W_SPORT)) && ((nat->nat_odport == dport) || (flags & SI_W_DPORT))) return 1; break; case 2: /* outbound packet / inbound entry */ if (((nat->nat_osport == dport) || (flags & SI_W_SPORT)) && ((nat->nat_odport == sport) || (flags & SI_W_DPORT))) return 1; break; case 1: /* inbound packet / outbound entry */ if (((nat->nat_osport == dport) || (flags & SI_W_SPORT)) && ((nat->nat_odport == sport) || (flags & SI_W_DPORT))) return 1; break; case 0: /* inbound packet / inbound entry */ if (((nat->nat_osport == sport) || (flags & SI_W_SPORT)) && ((nat->nat_odport == dport) || (flags & SI_W_DPORT))) return 1; break; default: break; } return(0); } /* ------------------------------------------------------------------------ */ /* Function: nat_mssclamp */ /* Returns: Nil */ /* Parameters: tcp(I) - pointer to TCP header */ /* maxmss(I) - value to clamp the TCP MSS to */ /* fin(I) - pointer to packet information */ /* csump(I) - pointer to TCP checksum */ /* */ /* Check for MSS option and clamp it if necessary. If found and changed, */ /* then the TCP header checksum will be updated to reflect the change in */ /* the MSS. */ /* ------------------------------------------------------------------------ */ static void ipf_nat_mssclamp(tcp, maxmss, fin, csump) tcphdr_t *tcp; u_32_t maxmss; fr_info_t *fin; u_short *csump; { u_char *cp, *ep, opt; int hlen, advance; u_32_t mss, sumd; hlen = TCP_OFF(tcp) << 2; if (hlen > sizeof(*tcp)) { cp = (u_char *)tcp + sizeof(*tcp); ep = (u_char *)tcp + hlen; while (cp < ep) { opt = cp[0]; if (opt == TCPOPT_EOL) break; else if (opt == TCPOPT_NOP) { cp++; continue; } if (cp + 1 >= ep) break; advance = cp[1]; if ((cp + advance > ep) || (advance <= 0)) break; switch (opt) { case TCPOPT_MAXSEG: if (advance != 4) break; mss = cp[2] * 256 + cp[3]; if (mss > maxmss) { cp[2] = maxmss / 256; cp[3] = maxmss & 0xff; CALC_SUMD(mss, maxmss, sumd); ipf_fix_outcksum(0, csump, sumd, 0); } break; default: /* ignore unknown options */ break; } cp += advance; } } } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_setqueue */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* softn(I) - pointer to NAT context structure */ /* nat(I)- pointer to NAT structure */ /* Locks: ipf_nat (read or write) */ /* */ /* Put the NAT entry on its default queue entry, using rev as a helped in */ /* determining which queue it should be placed on. */ /* ------------------------------------------------------------------------ */ void ipf_nat_setqueue(softc, softn, nat) ipf_main_softc_t *softc; ipf_nat_softc_t *softn; nat_t *nat; { ipftq_t *oifq, *nifq; int rev = nat->nat_rev; if (nat->nat_ptr != NULL) nifq = nat->nat_ptr->in_tqehead[rev]; else nifq = NULL; if (nifq == NULL) { switch (nat->nat_pr[0]) { case IPPROTO_UDP : nifq = &softn->ipf_nat_udptq; break; case IPPROTO_ICMP : nifq = &softn->ipf_nat_icmptq; break; case IPPROTO_TCP : nifq = softn->ipf_nat_tcptq + nat->nat_tqe.tqe_state[rev]; break; default : nifq = &softn->ipf_nat_iptq; break; } } oifq = nat->nat_tqe.tqe_ifq; /* * If it's currently on a timeout queue, move it from one queue to * another, else put it on the end of the newly determined queue. */ if (oifq != NULL) ipf_movequeue(softc->ipf_ticks, &nat->nat_tqe, oifq, nifq); else ipf_queueappend(softc->ipf_ticks, &nat->nat_tqe, nifq, nat); return; } /* ------------------------------------------------------------------------ */ /* Function: nat_getnext */ /* Returns: int - 0 == ok, else error */ /* Parameters: softc(I) - pointer to soft context main structure */ /* t(I) - pointer to ipftoken structure */ /* itp(I) - pointer to ipfgeniter_t structure */ /* */ /* Fetch the next nat/ipnat structure pointer from the linked list and */ /* copy it out to the storage space pointed to by itp_data. The next item */ /* in the list to look at is put back in the ipftoken struture. */ /* ------------------------------------------------------------------------ */ static int ipf_nat_getnext(softc, t, itp, objp) ipf_main_softc_t *softc; ipftoken_t *t; ipfgeniter_t *itp; ipfobj_t *objp; { ipf_nat_softc_t *softn = softc->ipf_nat_soft; hostmap_t *hm, *nexthm = NULL, zerohm; ipnat_t *ipn, *nextipnat = NULL, zeroipn; nat_t *nat, *nextnat = NULL, zeronat; int error = 0; void *nnext; if (itp->igi_nitems != 1) { IPFERROR(60075); return ENOSPC; } READ_ENTER(&softc->ipf_nat); switch (itp->igi_type) { case IPFGENITER_HOSTMAP : hm = t->ipt_data; if (hm == NULL) { nexthm = softn->ipf_hm_maplist; } else { nexthm = hm->hm_next; } if (nexthm != NULL) { ATOMIC_INC32(nexthm->hm_ref); t->ipt_data = nexthm; } else { bzero(&zerohm, sizeof(zerohm)); nexthm = &zerohm; t->ipt_data = NULL; } nnext = nexthm->hm_next; break; case IPFGENITER_IPNAT : ipn = t->ipt_data; if (ipn == NULL) { nextipnat = softn->ipf_nat_list; } else { nextipnat = ipn->in_next; } if (nextipnat != NULL) { ATOMIC_INC32(nextipnat->in_use); t->ipt_data = nextipnat; } else { bzero(&zeroipn, sizeof(zeroipn)); nextipnat = &zeroipn; t->ipt_data = NULL; } nnext = nextipnat->in_next; break; case IPFGENITER_NAT : nat = t->ipt_data; if (nat == NULL) { nextnat = softn->ipf_nat_instances; } else { nextnat = nat->nat_next; } if (nextnat != NULL) { MUTEX_ENTER(&nextnat->nat_lock); nextnat->nat_ref++; MUTEX_EXIT(&nextnat->nat_lock); t->ipt_data = nextnat; } else { bzero(&zeronat, sizeof(zeronat)); nextnat = &zeronat; t->ipt_data = NULL; } nnext = nextnat->nat_next; break; default : RWLOCK_EXIT(&softc->ipf_nat); IPFERROR(60055); return EINVAL; } RWLOCK_EXIT(&softc->ipf_nat); objp->ipfo_ptr = itp->igi_data; switch (itp->igi_type) { case IPFGENITER_HOSTMAP : error = COPYOUT(nexthm, objp->ipfo_ptr, sizeof(*nexthm)); if (error != 0) { IPFERROR(60049); error = EFAULT; } if (hm != NULL) { WRITE_ENTER(&softc->ipf_nat); ipf_nat_hostmapdel(softc, &hm); RWLOCK_EXIT(&softc->ipf_nat); } break; case IPFGENITER_IPNAT : objp->ipfo_size = nextipnat->in_size; objp->ipfo_type = IPFOBJ_IPNAT; error = ipf_outobjk(softc, objp, nextipnat); if (ipn != NULL) { WRITE_ENTER(&softc->ipf_nat); ipf_nat_rule_deref(softc, &ipn); RWLOCK_EXIT(&softc->ipf_nat); } break; case IPFGENITER_NAT : objp->ipfo_size = sizeof(nat_t); objp->ipfo_type = IPFOBJ_NAT; error = ipf_outobjk(softc, objp, nextnat); if (nat != NULL) ipf_nat_deref(softc, &nat); break; } if (nnext == NULL) ipf_token_mark_complete(t); return error; } /* ------------------------------------------------------------------------ */ /* Function: nat_extraflush */ /* Returns: int - 0 == success, -1 == failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* softn(I) - pointer to NAT context structure */ /* which(I) - how to flush the active NAT table */ /* Write Locks: ipf_nat */ /* */ /* Flush nat tables. Three actions currently defined: */ /* which == 0 : flush all nat table entries */ /* which == 1 : flush TCP connections which have started to close but are */ /* stuck for some reason. */ /* which == 2 : flush TCP connections which have been idle for a long time, */ /* starting at > 4 days idle and working back in successive half-*/ /* days to at most 12 hours old. If this fails to free enough */ /* slots then work backwards in half hour slots to 30 minutes. */ /* If that too fails, then work backwards in 30 second intervals */ /* for the last 30 minutes to at worst 30 seconds idle. */ /* ------------------------------------------------------------------------ */ static int ipf_nat_extraflush(softc, softn, which) ipf_main_softc_t *softc; ipf_nat_softc_t *softn; int which; { nat_t *nat, **natp; ipftqent_t *tqn; ipftq_t *ifq; int removed; SPL_INT(s); removed = 0; SPL_NET(s); switch (which) { case 0 : softn->ipf_nat_stats.ns_flush_all++; /* * Style 0 flush removes everything... */ for (natp = &softn->ipf_nat_instances; ((nat = *natp) != NULL); ) { ipf_nat_delete(softc, nat, NL_FLUSH); removed++; } break; case 1 : softn->ipf_nat_stats.ns_flush_closing++; /* * Since we're only interested in things that are closing, * we can start with the appropriate timeout queue. */ for (ifq = softn->ipf_nat_tcptq + IPF_TCPS_CLOSE_WAIT; ifq != NULL; ifq = ifq->ifq_next) { for (tqn = ifq->ifq_head; tqn != NULL; ) { nat = tqn->tqe_parent; tqn = tqn->tqe_next; if (nat->nat_pr[0] != IPPROTO_TCP || nat->nat_pr[1] != IPPROTO_TCP) break; ipf_nat_delete(softc, nat, NL_EXPIRE); removed++; } } /* * Also need to look through the user defined queues. */ for (ifq = softn->ipf_nat_utqe; ifq != NULL; ifq = ifq->ifq_next) { for (tqn = ifq->ifq_head; tqn != NULL; ) { nat = tqn->tqe_parent; tqn = tqn->tqe_next; if (nat->nat_pr[0] != IPPROTO_TCP || nat->nat_pr[1] != IPPROTO_TCP) continue; if ((nat->nat_tcpstate[0] > IPF_TCPS_ESTABLISHED) && (nat->nat_tcpstate[1] > IPF_TCPS_ESTABLISHED)) { ipf_nat_delete(softc, nat, NL_EXPIRE); removed++; } } } break; /* * Args 5-11 correspond to flushing those particular states * for TCP connections. */ case IPF_TCPS_CLOSE_WAIT : case IPF_TCPS_FIN_WAIT_1 : case IPF_TCPS_CLOSING : case IPF_TCPS_LAST_ACK : case IPF_TCPS_FIN_WAIT_2 : case IPF_TCPS_TIME_WAIT : case IPF_TCPS_CLOSED : softn->ipf_nat_stats.ns_flush_state++; tqn = softn->ipf_nat_tcptq[which].ifq_head; while (tqn != NULL) { nat = tqn->tqe_parent; tqn = tqn->tqe_next; ipf_nat_delete(softc, nat, NL_FLUSH); removed++; } break; default : if (which < 30) break; softn->ipf_nat_stats.ns_flush_timeout++; /* * Take a large arbitrary number to mean the number of seconds * for which which consider to be the maximum value we'll allow * the expiration to be. */ which = IPF_TTLVAL(which); for (natp = &softn->ipf_nat_instances; ((nat = *natp) != NULL); ) { if (softc->ipf_ticks - nat->nat_touched > which) { ipf_nat_delete(softc, nat, NL_FLUSH); removed++; } else natp = &nat->nat_next; } break; } if (which != 2) { SPL_X(s); return removed; } softn->ipf_nat_stats.ns_flush_queue++; /* * Asked to remove inactive entries because the table is full, try * again, 3 times, if first attempt failed with a different criteria * each time. The order tried in must be in decreasing age. * Another alternative is to implement random drop and drop N entries * at random until N have been freed up. */ if (softc->ipf_ticks - softn->ipf_nat_last_force_flush > IPF_TTLVAL(5)) { softn->ipf_nat_last_force_flush = softc->ipf_ticks; removed = ipf_queueflush(softc, ipf_nat_flush_entry, softn->ipf_nat_tcptq, softn->ipf_nat_utqe, &softn->ipf_nat_stats.ns_active, softn->ipf_nat_table_sz, softn->ipf_nat_table_wm_low); } SPL_X(s); return removed; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_flush_entry */ /* Returns: 0 - always succeeds */ /* Parameters: softc(I) - pointer to soft context main structure */ /* entry(I) - pointer to NAT entry */ /* Write Locks: ipf_nat */ /* */ /* This function is a stepping stone between ipf_queueflush() and */ /* nat_dlete(). It is used so we can provide a uniform interface via the */ /* ipf_queueflush() function. Since the nat_delete() function returns void */ /* we translate that to mean it always succeeds in deleting something. */ /* ------------------------------------------------------------------------ */ static int ipf_nat_flush_entry(softc, entry) ipf_main_softc_t *softc; void *entry; { ipf_nat_delete(softc, entry, NL_FLUSH); return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_iterator */ /* Returns: int - 0 == ok, else error */ /* Parameters: softc(I) - pointer to soft context main structure */ /* token(I) - pointer to ipftoken structure */ /* itp(I) - pointer to ipfgeniter_t structure */ /* obj(I) - pointer to data description structure */ /* */ /* This function acts as a handler for the SIOCGENITER ioctls that use a */ /* generic structure to iterate through a list. There are three different */ /* linked lists of NAT related information to go through: NAT rules, active */ /* NAT mappings and the NAT fragment cache. */ /* ------------------------------------------------------------------------ */ static int ipf_nat_iterator(softc, token, itp, obj) ipf_main_softc_t *softc; ipftoken_t *token; ipfgeniter_t *itp; ipfobj_t *obj; { int error; if (itp->igi_data == NULL) { IPFERROR(60052); return EFAULT; } switch (itp->igi_type) { case IPFGENITER_HOSTMAP : case IPFGENITER_IPNAT : case IPFGENITER_NAT : error = ipf_nat_getnext(softc, token, itp, obj); break; case IPFGENITER_NATFRAG : error = ipf_frag_nat_next(softc, token, itp); break; default : IPFERROR(60053); error = EINVAL; break; } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_setpending */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* nat(I) - pointer to NAT structure */ /* Locks: ipf_nat (read or write) */ /* */ /* Put the NAT entry on to the pending queue - this queue has a very short */ /* lifetime where items are put that can't be deleted straight away because */ /* of locking issues but we want to delete them ASAP, anyway. In calling */ /* this function, it is assumed that the owner (if there is one, as shown */ /* by nat_me) is no longer interested in it. */ /* ------------------------------------------------------------------------ */ void ipf_nat_setpending(softc, nat) ipf_main_softc_t *softc; nat_t *nat; { ipf_nat_softc_t *softn = softc->ipf_nat_soft; ipftq_t *oifq; oifq = nat->nat_tqe.tqe_ifq; if (oifq != NULL) ipf_movequeue(softc->ipf_ticks, &nat->nat_tqe, oifq, &softn->ipf_nat_pending); else ipf_queueappend(softc->ipf_ticks, &nat->nat_tqe, &softn->ipf_nat_pending, nat); if (nat->nat_me != NULL) { *nat->nat_me = NULL; nat->nat_me = NULL; nat->nat_ref--; ASSERT(nat->nat_ref >= 0); } } /* ------------------------------------------------------------------------ */ /* Function: nat_newrewrite */ /* Returns: int - -1 == error, 0 == success (no move), 1 == success and */ /* allow rule to be moved if IPN_ROUNDR is set. */ /* Parameters: fin(I) - pointer to packet information */ /* nat(I) - pointer to NAT entry */ /* ni(I) - pointer to structure with misc. information needed */ /* to create new NAT entry. */ /* Write Lock: ipf_nat */ /* */ /* This function is responsible for setting up an active NAT session where */ /* we are changing both the source and destination parameters at the same */ /* time. The loop in here works differently to elsewhere - each iteration */ /* is responsible for changing a single parameter that can be incremented. */ /* So one pass may increase the source IP#, next source port, next dest. IP#*/ /* and the last destination port for a total of 4 iterations to try each. */ /* This is done to try and exhaustively use the translation space available.*/ /* ------------------------------------------------------------------------ */ static int ipf_nat_newrewrite(fin, nat, nai) fr_info_t *fin; nat_t *nat; natinfo_t *nai; { int src_search = 1; int dst_search = 1; fr_info_t frnat; u_32_t flags; u_short swap; ipnat_t *np; nat_t *natl; int l = 0; int changed; natl = NULL; changed = -1; np = nai->nai_np; flags = nat->nat_flags; bcopy((char *)fin, (char *)&frnat, sizeof(*fin)); nat->nat_hm = NULL; do { changed = -1; /* TRACE (l, src_search, dst_search, np) */ DT4(ipf_nat_rewrite_1, int, l, int, src_search, int, dst_search, ipnat_t *, np); if ((src_search == 0) && (np->in_spnext == 0) && (dst_search == 0) && (np->in_dpnext == 0)) { if (l > 0) return -1; } /* * Find a new source address */ if (ipf_nat_nextaddr(fin, &np->in_nsrc, &frnat.fin_saddr, &frnat.fin_saddr) == -1) { return -1; } if ((np->in_nsrcaddr == 0) && (np->in_nsrcmsk == 0xffffffff)) { src_search = 0; if (np->in_stepnext == 0) np->in_stepnext = 1; } else if ((np->in_nsrcaddr == 0) && (np->in_nsrcmsk == 0)) { src_search = 0; if (np->in_stepnext == 0) np->in_stepnext = 1; } else if (np->in_nsrcmsk == 0xffffffff) { src_search = 0; if (np->in_stepnext == 0) np->in_stepnext = 1; } else if (np->in_nsrcmsk != 0xffffffff) { if (np->in_stepnext == 0 && changed == -1) { np->in_snip++; np->in_stepnext++; changed = 0; } } if ((flags & IPN_TCPUDPICMP) != 0) { if (np->in_spnext != 0) frnat.fin_data[0] = np->in_spnext; /* * Standard port translation. Select next port. */ if ((flags & IPN_FIXEDSPORT) != 0) { np->in_stepnext = 2; } else if ((np->in_stepnext == 1) && (changed == -1) && (natl != NULL)) { np->in_spnext++; np->in_stepnext++; changed = 1; if (np->in_spnext > np->in_spmax) np->in_spnext = np->in_spmin; } } else { np->in_stepnext = 2; } np->in_stepnext &= 0x3; /* * Find a new destination address */ /* TRACE (fin, np, l, frnat) */ DT4(ipf_nat_rewrite_2, frinfo_t *, fin, ipnat_t *, np, int, l, frinfo_t *, &frnat); if (ipf_nat_nextaddr(fin, &np->in_ndst, &frnat.fin_daddr, &frnat.fin_daddr) == -1) return -1; if ((np->in_ndstaddr == 0) && (np->in_ndstmsk == 0xffffffff)) { dst_search = 0; if (np->in_stepnext == 2) np->in_stepnext = 3; } else if ((np->in_ndstaddr == 0) && (np->in_ndstmsk == 0)) { dst_search = 0; if (np->in_stepnext == 2) np->in_stepnext = 3; } else if (np->in_ndstmsk == 0xffffffff) { dst_search = 0; if (np->in_stepnext == 2) np->in_stepnext = 3; } else if (np->in_ndstmsk != 0xffffffff) { if ((np->in_stepnext == 2) && (changed == -1) && (natl != NULL)) { changed = 2; np->in_stepnext++; np->in_dnip++; } } if ((flags & IPN_TCPUDPICMP) != 0) { if (np->in_dpnext != 0) frnat.fin_data[1] = np->in_dpnext; /* * Standard port translation. Select next port. */ if ((flags & IPN_FIXEDDPORT) != 0) { np->in_stepnext = 0; } else if (np->in_stepnext == 3 && changed == -1) { np->in_dpnext++; np->in_stepnext++; changed = 3; if (np->in_dpnext > np->in_dpmax) np->in_dpnext = np->in_dpmin; } } else { if (np->in_stepnext == 3) np->in_stepnext = 0; } /* TRACE (frnat) */ DT1(ipf_nat_rewrite_3, frinfo_t *, &frnat); /* * Here we do a lookup of the connection as seen from * the outside. If an IP# pair already exists, try * again. So if you have A->B becomes C->B, you can * also have D->E become C->E but not D->B causing * another C->B. Also take protocol and ports into * account when determining whether a pre-existing * NAT setup will cause an external conflict where * this is appropriate. * * fin_data[] is swapped around because we are doing a * lookup of the packet is if it were moving in the opposite * direction of the one we are working with now. */ if (flags & IPN_TCPUDP) { swap = frnat.fin_data[0]; frnat.fin_data[0] = frnat.fin_data[1]; frnat.fin_data[1] = swap; } if (fin->fin_out == 1) { natl = ipf_nat_inlookup(&frnat, flags & ~(SI_WILDP|NAT_SEARCH), (u_int)frnat.fin_p, frnat.fin_dst, frnat.fin_src); } else { natl = ipf_nat_outlookup(&frnat, flags & ~(SI_WILDP|NAT_SEARCH), (u_int)frnat.fin_p, frnat.fin_dst, frnat.fin_src); } if (flags & IPN_TCPUDP) { swap = frnat.fin_data[0]; frnat.fin_data[0] = frnat.fin_data[1]; frnat.fin_data[1] = swap; } /* TRACE natl, in_stepnext, l */ DT3(ipf_nat_rewrite_2, nat_t *, natl, ipnat_t *, np , int, l); if ((natl != NULL) && (l > 8)) /* XXX 8 is arbitrary */ return -1; np->in_stepnext &= 0x3; l++; changed = -1; } while (natl != NULL); nat->nat_osrcip = fin->fin_src; nat->nat_odstip = fin->fin_dst; nat->nat_nsrcip = frnat.fin_src; nat->nat_ndstip = frnat.fin_dst; if ((flags & IPN_TCPUDP) != 0) { nat->nat_osport = htons(fin->fin_data[0]); nat->nat_odport = htons(fin->fin_data[1]); nat->nat_nsport = htons(frnat.fin_data[0]); nat->nat_ndport = htons(frnat.fin_data[1]); } else if ((flags & IPN_ICMPQUERY) != 0) { nat->nat_oicmpid = fin->fin_data[1]; nat->nat_nicmpid = frnat.fin_data[1]; } return 0; } /* ------------------------------------------------------------------------ */ /* Function: nat_newdivert */ /* Returns: int - -1 == error, 0 == success */ /* Parameters: fin(I) - pointer to packet information */ /* nat(I) - pointer to NAT entry */ /* ni(I) - pointer to structure with misc. information needed */ /* to create new NAT entry. */ /* Write Lock: ipf_nat */ /* */ /* Create a new NAT divert session as defined by the NAT rule. This is */ /* somewhat different to other NAT session creation routines because we */ /* do not iterate through either port numbers or IP addresses, searching */ /* for a unique mapping, however, a complimentary duplicate check is made. */ /* ------------------------------------------------------------------------ */ static int ipf_nat_newdivert(fin, nat, nai) fr_info_t *fin; nat_t *nat; natinfo_t *nai; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; fr_info_t frnat; ipnat_t *np; nat_t *natl; int p; np = nai->nai_np; bcopy((char *)fin, (char *)&frnat, sizeof(*fin)); nat->nat_pr[0] = 0; nat->nat_osrcaddr = fin->fin_saddr; nat->nat_odstaddr = fin->fin_daddr; frnat.fin_saddr = htonl(np->in_snip); frnat.fin_daddr = htonl(np->in_dnip); if ((nat->nat_flags & IPN_TCPUDP) != 0) { nat->nat_osport = htons(fin->fin_data[0]); nat->nat_odport = htons(fin->fin_data[1]); } else if ((nat->nat_flags & IPN_ICMPQUERY) != 0) { nat->nat_oicmpid = fin->fin_data[1]; } if (np->in_redir & NAT_DIVERTUDP) { frnat.fin_data[0] = np->in_spnext; frnat.fin_data[1] = np->in_dpnext; frnat.fin_flx |= FI_TCPUDP; p = IPPROTO_UDP; } else { frnat.fin_flx &= ~FI_TCPUDP; p = IPPROTO_IPIP; } if (fin->fin_out == 1) { natl = ipf_nat_inlookup(&frnat, 0, p, frnat.fin_dst, frnat.fin_src); } else { natl = ipf_nat_outlookup(&frnat, 0, p, frnat.fin_dst, frnat.fin_src); } if (natl != NULL) { NBUMPSIDED(fin->fin_out, ns_divert_exist); DT3(ns_divert_exist, fr_info_t *, fin, nat_t *, nat, natinfo_t, nai); return -1; } nat->nat_nsrcaddr = frnat.fin_saddr; nat->nat_ndstaddr = frnat.fin_daddr; if ((nat->nat_flags & IPN_TCPUDP) != 0) { nat->nat_nsport = htons(frnat.fin_data[0]); nat->nat_ndport = htons(frnat.fin_data[1]); } else if ((nat->nat_flags & IPN_ICMPQUERY) != 0) { nat->nat_nicmpid = frnat.fin_data[1]; } nat->nat_pr[fin->fin_out] = fin->fin_p; nat->nat_pr[1 - fin->fin_out] = p; if (np->in_redir & NAT_REDIRECT) nat->nat_dir = NAT_DIVERTIN; else nat->nat_dir = NAT_DIVERTOUT; return 0; } /* ------------------------------------------------------------------------ */ /* Function: nat_builddivertmp */ /* Returns: int - -1 == error, 0 == success */ /* Parameters: softn(I) - pointer to NAT context structure */ /* np(I) - pointer to a NAT rule */ /* */ /* For divert rules, a skeleton packet representing what will be prepended */ /* to the real packet is created. Even though we don't have the full */ /* packet here, a checksum is calculated that we update later when we */ /* fill in the final details. At present a 0 checksum for UDP is being set */ /* here because it is expected that divert will be used for localhost. */ /* ------------------------------------------------------------------------ */ static int ipf_nat_builddivertmp(softn, np) ipf_nat_softc_t *softn; ipnat_t *np; { udphdr_t *uh; size_t len; ip_t *ip; if ((np->in_redir & NAT_DIVERTUDP) != 0) len = sizeof(ip_t) + sizeof(udphdr_t); else len = sizeof(ip_t); ALLOC_MB_T(np->in_divmp, len); if (np->in_divmp == NULL) { NBUMPD(ipf_nat_stats, ns_divert_build); return -1; } /* * First, the header to get the packet diverted to the new destination */ ip = MTOD(np->in_divmp, ip_t *); IP_V_A(ip, 4); IP_HL_A(ip, 5); ip->ip_tos = 0; if ((np->in_redir & NAT_DIVERTUDP) != 0) ip->ip_p = IPPROTO_UDP; else ip->ip_p = IPPROTO_IPIP; ip->ip_ttl = 255; ip->ip_off = 0; ip->ip_sum = 0; ip->ip_len = htons(len); ip->ip_id = 0; ip->ip_src.s_addr = htonl(np->in_snip); ip->ip_dst.s_addr = htonl(np->in_dnip); ip->ip_sum = ipf_cksum((u_short *)ip, sizeof(*ip)); if (np->in_redir & NAT_DIVERTUDP) { uh = (udphdr_t *)(ip + 1); uh->uh_sum = 0; uh->uh_ulen = 8; uh->uh_sport = htons(np->in_spnext); uh->uh_dport = htons(np->in_dpnext); } return 0; } #define MINDECAP (sizeof(ip_t) + sizeof(udphdr_t) + sizeof(ip_t)) /* ------------------------------------------------------------------------ */ /* Function: nat_decap */ /* Returns: int - -1 == error, 0 == success */ /* Parameters: fin(I) - pointer to packet information */ /* nat(I) - pointer to current NAT session */ /* */ /* This function is responsible for undoing a packet's encapsulation in the */ /* reverse of an encap/divert rule. After removing the outer encapsulation */ /* it is necessary to call ipf_makefrip() again so that the contents of 'fin'*/ /* match the "new" packet as it may still be used by IPFilter elsewhere. */ /* We use "dir" here as the basis for some of the expectations about the */ /* outer header. If we return an error, the goal is to leave the original */ /* packet information undisturbed - this falls short at the end where we'd */ /* need to back a backup copy of "fin" - expensive. */ /* ------------------------------------------------------------------------ */ static int ipf_nat_decap(fin, nat) fr_info_t *fin; nat_t *nat; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; char *hdr; int hlen; int skip; mb_t *m; if ((fin->fin_flx & FI_ICMPERR) != 0) { /* * ICMP packets don't get decapsulated, instead what we need * to do is change the ICMP reply from including (in the data * portion for errors) the encapsulated packet that we sent * out to something that resembles the original packet prior * to encapsulation. This isn't done here - all we're doing * here is changing the outer address to ensure that it gets * targetted back to the correct system. */ if (nat->nat_dir & NAT_OUTBOUND) { u_32_t sum1, sum2, sumd; sum1 = ntohl(fin->fin_daddr); sum2 = ntohl(nat->nat_osrcaddr); CALC_SUMD(sum1, sum2, sumd); fin->fin_ip->ip_dst = nat->nat_osrcip; fin->fin_daddr = nat->nat_osrcaddr; -#if !defined(_KERNEL) || defined(MENTAT) +#if !defined(_KERNEL) || SOLARIS ipf_fix_outcksum(0, &fin->fin_ip->ip_sum, sumd, 0); #endif } return 0; } m = fin->fin_m; skip = fin->fin_hlen; switch (nat->nat_dir) { case NAT_DIVERTIN : case NAT_DIVERTOUT : if (fin->fin_plen < MINDECAP) return -1; skip += sizeof(udphdr_t); break; case NAT_ENCAPIN : case NAT_ENCAPOUT : if (fin->fin_plen < (skip + sizeof(ip_t))) return -1; break; default : return -1; /* NOTREACHED */ } /* * The aim here is to keep the original packet details in "fin" for * as long as possible so that returning with an error is for the * original packet and there is little undoing work to do. */ if (M_LEN(m) < skip + sizeof(ip_t)) { if (ipf_pr_pullup(fin, skip + sizeof(ip_t)) == -1) return -1; } hdr = MTOD(fin->fin_m, char *); fin->fin_ip = (ip_t *)(hdr + skip); hlen = IP_HL(fin->fin_ip) << 2; if (ipf_pr_pullup(fin, skip + hlen) == -1) { NBUMPSIDED(fin->fin_out, ns_decap_pullup); return -1; } fin->fin_hlen = hlen; fin->fin_dlen -= skip; fin->fin_plen -= skip; fin->fin_ipoff += skip; if (ipf_makefrip(hlen, (ip_t *)hdr, fin) == -1) { NBUMPSIDED(fin->fin_out, ns_decap_bad); return -1; } return skip; } /* ------------------------------------------------------------------------ */ /* Function: nat_nextaddr */ /* Returns: int - -1 == bad input (no new address), */ /* 0 == success and dst has new address */ /* Parameters: fin(I) - pointer to packet information */ /* na(I) - how to generate new address */ /* old(I) - original address being replaced */ /* dst(O) - where to put the new address */ /* Write Lock: ipf_nat */ /* */ /* This function uses the contents of the "na" structure, in combination */ /* with "old" to produce a new address to store in "dst". Not all of the */ /* possible uses of "na" will result in a new address. */ /* ------------------------------------------------------------------------ */ static int ipf_nat_nextaddr(fin, na, old, dst) fr_info_t *fin; nat_addr_t *na; u_32_t *old, *dst; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; u_32_t amin, amax, new; i6addr_t newip; int error; new = 0; amin = na->na_addr[0].in4.s_addr; switch (na->na_atype) { case FRI_RANGE : amax = na->na_addr[1].in4.s_addr; break; case FRI_NETMASKED : case FRI_DYNAMIC : case FRI_NORMAL : /* * Compute the maximum address by adding the inverse of the * netmask to the minimum address. */ amax = ~na->na_addr[1].in4.s_addr; amax |= amin; break; case FRI_LOOKUP : break; case FRI_BROADCAST : case FRI_PEERADDR : case FRI_NETWORK : default : DT4(ns_na_atype, fr_info_t *, fin, nat_addr_t *, na, u_32_t *, old, u_32_t *, new); return -1; } error = -1; if (na->na_atype == FRI_LOOKUP) { if (na->na_type == IPLT_DSTLIST) { error = ipf_dstlist_select_node(fin, na->na_ptr, dst, NULL); } else { NBUMPSIDE(fin->fin_out, ns_badnextaddr); DT4(ns_badnextaddr_1, fr_info_t *, fin, nat_addr_t *, na, u_32_t *, old, u_32_t *, new); } } else if (na->na_atype == IPLT_NONE) { /* * 0/0 as the new address means leave it alone. */ if (na->na_addr[0].in4.s_addr == 0 && na->na_addr[1].in4.s_addr == 0) { new = *old; /* * 0/32 means get the interface's address */ } else if (na->na_addr[0].in4.s_addr == 0 && na->na_addr[1].in4.s_addr == 0xffffffff) { if (ipf_ifpaddr(softc, 4, na->na_atype, fin->fin_ifp, &newip, NULL) == -1) { NBUMPSIDED(fin->fin_out, ns_ifpaddrfail); DT4(ns_ifpaddrfail, fr_info_t *, fin, nat_addr_t *, na, u_32_t *, old, u_32_t *, new); return -1; } new = newip.in4.s_addr; } else { new = htonl(na->na_nextip); } *dst = new; error = 0; } else { NBUMPSIDE(fin->fin_out, ns_badnextaddr); DT4(ns_badnextaddr_2, fr_info_t *, fin, nat_addr_t *, na, u_32_t *, old, u_32_t *, new); } return error; } /* ------------------------------------------------------------------------ */ /* Function: nat_nextaddrinit */ /* Returns: int - 0 == success, else error number */ /* Parameters: softc(I) - pointer to soft context main structure */ /* na(I) - NAT address information for generating new addr*/ /* initial(I) - flag indicating if it is the first call for */ /* this "na" structure. */ /* ifp(I) - network interface to derive address */ /* information from. */ /* */ /* This function is expected to be called in two scenarious: when a new NAT */ /* rule is loaded into the kernel and when the list of NAT rules is sync'd */ /* up with the valid network interfaces (possibly due to them changing.) */ /* To distinguish between these, the "initial" parameter is used. If it is */ /* 1 then this indicates the rule has just been reloaded and 0 for when we */ /* are updating information. This difference is important because in */ /* instances where we are not updating address information associated with */ /* a network interface, we don't want to disturb what the "next" address to */ /* come out of ipf_nat_nextaddr() will be. */ /* ------------------------------------------------------------------------ */ static int ipf_nat_nextaddrinit(softc, base, na, initial, ifp) ipf_main_softc_t *softc; char *base; nat_addr_t *na; int initial; void *ifp; { switch (na->na_atype) { case FRI_LOOKUP : if (na->na_subtype == 0) { na->na_ptr = ipf_lookup_res_num(softc, IPL_LOGNAT, na->na_type, na->na_num, &na->na_func); } else if (na->na_subtype == 1) { na->na_ptr = ipf_lookup_res_name(softc, IPL_LOGNAT, na->na_type, base + na->na_num, &na->na_func); } if (na->na_func == NULL) { IPFERROR(60060); return ESRCH; } if (na->na_ptr == NULL) { IPFERROR(60056); return ESRCH; } break; case FRI_DYNAMIC : case FRI_BROADCAST : case FRI_NETWORK : case FRI_NETMASKED : case FRI_PEERADDR : if (ifp != NULL) (void )ipf_ifpaddr(softc, 4, na->na_atype, ifp, &na->na_addr[0], &na->na_addr[1]); break; case FRI_SPLIT : case FRI_RANGE : if (initial) na->na_nextip = ntohl(na->na_addr[0].in4.s_addr); break; case FRI_NONE : na->na_addr[0].in4.s_addr &= na->na_addr[1].in4.s_addr; return 0; case FRI_NORMAL : na->na_addr[0].in4.s_addr &= na->na_addr[1].in4.s_addr; break; default : IPFERROR(60054); return EINVAL; } if (initial && (na->na_atype == FRI_NORMAL)) { if (na->na_addr[0].in4.s_addr == 0) { if ((na->na_addr[1].in4.s_addr == 0xffffffff) || (na->na_addr[1].in4.s_addr == 0)) { return 0; } } if (na->na_addr[1].in4.s_addr == 0xffffffff) { na->na_nextip = ntohl(na->na_addr[0].in4.s_addr); } else { na->na_nextip = ntohl(na->na_addr[0].in4.s_addr) + 1; } } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_matchflush */ /* Returns: int - -1 == error, 0 == success */ /* Parameters: softc(I) - pointer to soft context main structure */ /* softn(I) - pointer to NAT context structure */ /* nat(I) - pointer to current NAT session */ /* */ /* ------------------------------------------------------------------------ */ static int ipf_nat_matchflush(softc, softn, data) ipf_main_softc_t *softc; ipf_nat_softc_t *softn; caddr_t data; { int *array, flushed, error; nat_t *nat, *natnext; ipfobj_t obj; error = ipf_matcharray_load(softc, data, &obj, &array); if (error != 0) return error; flushed = 0; for (nat = softn->ipf_nat_instances; nat != NULL; nat = natnext) { natnext = nat->nat_next; if (ipf_nat_matcharray(nat, array, softc->ipf_ticks) == 0) { ipf_nat_delete(softc, nat, NL_FLUSH); flushed++; } } obj.ipfo_retval = flushed; error = BCOPYOUT(&obj, data, sizeof(obj)); KFREES(array, array[0] * sizeof(*array)); return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_matcharray */ /* Returns: int - -1 == error, 0 == success */ /* Parameters: fin(I) - pointer to packet information */ /* nat(I) - pointer to current NAT session */ /* */ /* ------------------------------------------------------------------------ */ static int ipf_nat_matcharray(nat, array, ticks) nat_t *nat; int *array; u_long ticks; { int i, n, *x, e, p; e = 0; n = array[0]; x = array + 1; for (; n > 0; x += 3 + x[2]) { if (x[0] == IPF_EXP_END) break; e = 0; n -= x[2] + 3; if (n < 0) break; p = x[0] >> 16; if (p != 0 && p != nat->nat_pr[1]) break; switch (x[0]) { case IPF_EXP_IP_PR : for (i = 0; !e && i < x[2]; i++) { e |= (nat->nat_pr[1] == x[i + 3]); } break; case IPF_EXP_IP_SRCADDR : if (nat->nat_v[0] == 4) { for (i = 0; !e && i < x[2]; i++) { e |= ((nat->nat_osrcaddr & x[i + 4]) == x[i + 3]); } } if (nat->nat_v[1] == 4) { for (i = 0; !e && i < x[2]; i++) { e |= ((nat->nat_nsrcaddr & x[i + 4]) == x[i + 3]); } } break; case IPF_EXP_IP_DSTADDR : if (nat->nat_v[0] == 4) { for (i = 0; !e && i < x[2]; i++) { e |= ((nat->nat_odstaddr & x[i + 4]) == x[i + 3]); } } if (nat->nat_v[1] == 4) { for (i = 0; !e && i < x[2]; i++) { e |= ((nat->nat_ndstaddr & x[i + 4]) == x[i + 3]); } } break; case IPF_EXP_IP_ADDR : for (i = 0; !e && i < x[2]; i++) { if (nat->nat_v[0] == 4) { e |= ((nat->nat_osrcaddr & x[i + 4]) == x[i + 3]); } if (nat->nat_v[1] == 4) { e |= ((nat->nat_nsrcaddr & x[i + 4]) == x[i + 3]); } if (nat->nat_v[0] == 4) { e |= ((nat->nat_odstaddr & x[i + 4]) == x[i + 3]); } if (nat->nat_v[1] == 4) { e |= ((nat->nat_ndstaddr & x[i + 4]) == x[i + 3]); } } break; #ifdef USE_INET6 case IPF_EXP_IP6_SRCADDR : if (nat->nat_v[0] == 6) { for (i = 0; !e && i < x[3]; i++) { e |= IP6_MASKEQ(&nat->nat_osrc6, x + i + 7, x + i + 3); } } if (nat->nat_v[1] == 6) { for (i = 0; !e && i < x[3]; i++) { e |= IP6_MASKEQ(&nat->nat_nsrc6, x + i + 7, x + i + 3); } } break; case IPF_EXP_IP6_DSTADDR : if (nat->nat_v[0] == 6) { for (i = 0; !e && i < x[3]; i++) { e |= IP6_MASKEQ(&nat->nat_odst6, x + i + 7, x + i + 3); } } if (nat->nat_v[1] == 6) { for (i = 0; !e && i < x[3]; i++) { e |= IP6_MASKEQ(&nat->nat_ndst6, x + i + 7, x + i + 3); } } break; case IPF_EXP_IP6_ADDR : for (i = 0; !e && i < x[3]; i++) { if (nat->nat_v[0] == 6) { e |= IP6_MASKEQ(&nat->nat_osrc6, x + i + 7, x + i + 3); } if (nat->nat_v[0] == 6) { e |= IP6_MASKEQ(&nat->nat_odst6, x + i + 7, x + i + 3); } if (nat->nat_v[1] == 6) { e |= IP6_MASKEQ(&nat->nat_nsrc6, x + i + 7, x + i + 3); } if (nat->nat_v[1] == 6) { e |= IP6_MASKEQ(&nat->nat_ndst6, x + i + 7, x + i + 3); } } break; #endif case IPF_EXP_UDP_PORT : case IPF_EXP_TCP_PORT : for (i = 0; !e && i < x[2]; i++) { e |= (nat->nat_nsport == x[i + 3]) || (nat->nat_ndport == x[i + 3]); } break; case IPF_EXP_UDP_SPORT : case IPF_EXP_TCP_SPORT : for (i = 0; !e && i < x[2]; i++) { e |= (nat->nat_nsport == x[i + 3]); } break; case IPF_EXP_UDP_DPORT : case IPF_EXP_TCP_DPORT : for (i = 0; !e && i < x[2]; i++) { e |= (nat->nat_ndport == x[i + 3]); } break; case IPF_EXP_TCP_STATE : for (i = 0; !e && i < x[2]; i++) { e |= (nat->nat_tcpstate[0] == x[i + 3]) || (nat->nat_tcpstate[1] == x[i + 3]); } break; case IPF_EXP_IDLE_GT : e |= (ticks - nat->nat_touched > x[3]); break; } e ^= x[1]; if (!e) break; } return e; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_gettable */ /* Returns: int - 0 = success, else error */ /* Parameters: softc(I) - pointer to soft context main structure */ /* softn(I) - pointer to NAT context structure */ /* data(I) - pointer to ioctl data */ /* */ /* This function handles ioctl requests for tables of nat information. */ /* At present the only table it deals with is the hash bucket statistics. */ /* ------------------------------------------------------------------------ */ static int ipf_nat_gettable(softc, softn, data) ipf_main_softc_t *softc; ipf_nat_softc_t *softn; char *data; { ipftable_t table; int error; error = ipf_inobj(softc, data, NULL, &table, IPFOBJ_GTABLE); if (error != 0) return error; switch (table.ita_type) { case IPFTABLE_BUCKETS_NATIN : error = COPYOUT(softn->ipf_nat_stats.ns_side[0].ns_bucketlen, table.ita_table, softn->ipf_nat_table_sz * sizeof(u_int)); break; case IPFTABLE_BUCKETS_NATOUT : error = COPYOUT(softn->ipf_nat_stats.ns_side[1].ns_bucketlen, table.ita_table, softn->ipf_nat_table_sz * sizeof(u_int)); break; default : IPFERROR(60058); return EINVAL; } if (error != 0) { IPFERROR(60059); error = EFAULT; } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_settimeout */ /* Returns: int - 0 = success, else failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* t(I) - pointer to tunable */ /* p(I) - pointer to new tuning data */ /* */ /* Apply the timeout change to the NAT timeout queues. */ /* ------------------------------------------------------------------------ */ int ipf_nat_settimeout(softc, t, p) struct ipf_main_softc_s *softc; ipftuneable_t *t; ipftuneval_t *p; { ipf_nat_softc_t *softn = softc->ipf_nat_soft; if (!strncmp(t->ipft_name, "tcp_", 4)) return ipf_settimeout_tcp(t, p, softn->ipf_nat_tcptq); if (!strcmp(t->ipft_name, "udp_timeout")) { ipf_apply_timeout(&softn->ipf_nat_udptq, p->ipftu_int); } else if (!strcmp(t->ipft_name, "udp_ack_timeout")) { ipf_apply_timeout(&softn->ipf_nat_udpacktq, p->ipftu_int); } else if (!strcmp(t->ipft_name, "icmp_timeout")) { ipf_apply_timeout(&softn->ipf_nat_icmptq, p->ipftu_int); } else if (!strcmp(t->ipft_name, "icmp_ack_timeout")) { ipf_apply_timeout(&softn->ipf_nat_icmpacktq, p->ipftu_int); } else if (!strcmp(t->ipft_name, "ip_timeout")) { ipf_apply_timeout(&softn->ipf_nat_iptq, p->ipftu_int); } else { IPFERROR(60062); return ESRCH; } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_rehash */ /* Returns: int - 0 = success, else failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* t(I) - pointer to tunable */ /* p(I) - pointer to new tuning data */ /* */ /* To change the size of the basic NAT table, we need to first allocate the */ /* new tables (lest it fails and we've got nowhere to store all of the NAT */ /* sessions currently active) and then walk through the entire list and */ /* insert them into the table. There are two tables here: an inbound one */ /* and an outbound one. Each NAT entry goes into each table once. */ /* ------------------------------------------------------------------------ */ int ipf_nat_rehash(softc, t, p) ipf_main_softc_t *softc; ipftuneable_t *t; ipftuneval_t *p; { ipf_nat_softc_t *softn = softc->ipf_nat_soft; nat_t **newtab[2], *nat, **natp; u_int *bucketlens[2]; u_int maxbucket; u_int newsize; int error; u_int hv; int i; newsize = p->ipftu_int; /* * In case there is nothing to do... */ if (newsize == softn->ipf_nat_table_sz) return 0; newtab[0] = NULL; newtab[1] = NULL; bucketlens[0] = NULL; bucketlens[1] = NULL; /* * 4 tables depend on the NAT table size: the inbound looking table, * the outbound lookup table and the hash chain length for each. */ KMALLOCS(newtab[0], nat_t **, newsize * sizeof(nat_t *)); if (newtab[0] == NULL) { error = 60063; goto badrehash; } KMALLOCS(newtab[1], nat_t **, newsize * sizeof(nat_t *)); if (newtab[1] == NULL) { error = 60064; goto badrehash; } KMALLOCS(bucketlens[0], u_int *, newsize * sizeof(u_int)); if (bucketlens[0] == NULL) { error = 60065; goto badrehash; } KMALLOCS(bucketlens[1], u_int *, newsize * sizeof(u_int)); if (bucketlens[1] == NULL) { error = 60066; goto badrehash; } /* * Recalculate the maximum length based on the new size. */ for (maxbucket = 0, i = newsize; i > 0; i >>= 1) maxbucket++; maxbucket *= 2; bzero((char *)newtab[0], newsize * sizeof(nat_t *)); bzero((char *)newtab[1], newsize * sizeof(nat_t *)); bzero((char *)bucketlens[0], newsize * sizeof(u_int)); bzero((char *)bucketlens[1], newsize * sizeof(u_int)); WRITE_ENTER(&softc->ipf_nat); if (softn->ipf_nat_table[0] != NULL) { KFREES(softn->ipf_nat_table[0], softn->ipf_nat_table_sz * sizeof(*softn->ipf_nat_table[0])); } softn->ipf_nat_table[0] = newtab[0]; if (softn->ipf_nat_table[1] != NULL) { KFREES(softn->ipf_nat_table[1], softn->ipf_nat_table_sz * sizeof(*softn->ipf_nat_table[1])); } softn->ipf_nat_table[1] = newtab[1]; if (softn->ipf_nat_stats.ns_side[0].ns_bucketlen != NULL) { KFREES(softn->ipf_nat_stats.ns_side[0].ns_bucketlen, softn->ipf_nat_table_sz * sizeof(u_int)); } softn->ipf_nat_stats.ns_side[0].ns_bucketlen = bucketlens[0]; if (softn->ipf_nat_stats.ns_side[1].ns_bucketlen != NULL) { KFREES(softn->ipf_nat_stats.ns_side[1].ns_bucketlen, softn->ipf_nat_table_sz * sizeof(u_int)); } softn->ipf_nat_stats.ns_side[1].ns_bucketlen = bucketlens[1]; #ifdef USE_INET6 if (softn->ipf_nat_stats.ns_side6[0].ns_bucketlen != NULL) { KFREES(softn->ipf_nat_stats.ns_side6[0].ns_bucketlen, softn->ipf_nat_table_sz * sizeof(u_int)); } softn->ipf_nat_stats.ns_side6[0].ns_bucketlen = bucketlens[0]; if (softn->ipf_nat_stats.ns_side6[1].ns_bucketlen != NULL) { KFREES(softn->ipf_nat_stats.ns_side6[1].ns_bucketlen, softn->ipf_nat_table_sz * sizeof(u_int)); } softn->ipf_nat_stats.ns_side6[1].ns_bucketlen = bucketlens[1]; #endif softn->ipf_nat_maxbucket = maxbucket; softn->ipf_nat_table_sz = newsize; /* * Walk through the entire list of NAT table entries and put them * in the new NAT table, somewhere. Because we have a new table, * we need to restart the counter of how many chains are in use. */ softn->ipf_nat_stats.ns_side[0].ns_inuse = 0; softn->ipf_nat_stats.ns_side[1].ns_inuse = 0; #ifdef USE_INET6 softn->ipf_nat_stats.ns_side6[0].ns_inuse = 0; softn->ipf_nat_stats.ns_side6[1].ns_inuse = 0; #endif for (nat = softn->ipf_nat_instances; nat != NULL; nat = nat->nat_next) { nat->nat_hnext[0] = NULL; nat->nat_phnext[0] = NULL; hv = nat->nat_hv[0] % softn->ipf_nat_table_sz; natp = &softn->ipf_nat_table[0][hv]; if (*natp) { (*natp)->nat_phnext[0] = &nat->nat_hnext[0]; } else { NBUMPSIDE(0, ns_inuse); } nat->nat_phnext[0] = natp; nat->nat_hnext[0] = *natp; *natp = nat; NBUMPSIDE(0, ns_bucketlen[hv]); nat->nat_hnext[1] = NULL; nat->nat_phnext[1] = NULL; hv = nat->nat_hv[1] % softn->ipf_nat_table_sz; natp = &softn->ipf_nat_table[1][hv]; if (*natp) { (*natp)->nat_phnext[1] = &nat->nat_hnext[1]; } else { NBUMPSIDE(1, ns_inuse); } nat->nat_phnext[1] = natp; nat->nat_hnext[1] = *natp; *natp = nat; NBUMPSIDE(1, ns_bucketlen[hv]); } RWLOCK_EXIT(&softc->ipf_nat); return 0; badrehash: if (bucketlens[1] != NULL) { KFREES(bucketlens[0], newsize * sizeof(u_int)); } if (bucketlens[0] != NULL) { KFREES(bucketlens[0], newsize * sizeof(u_int)); } if (newtab[0] != NULL) { KFREES(newtab[0], newsize * sizeof(nat_t *)); } if (newtab[1] != NULL) { KFREES(newtab[1], newsize * sizeof(nat_t *)); } IPFERROR(error); return ENOMEM; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_rehash_rules */ /* Returns: int - 0 = success, else failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* t(I) - pointer to tunable */ /* p(I) - pointer to new tuning data */ /* */ /* All of the NAT rules hang off of a hash table that is searched with a */ /* hash on address after the netmask is applied. There is a different table*/ /* for both inbound rules (rdr) and outbound (map.) The resizing will only */ /* affect one of these two tables. */ /* ------------------------------------------------------------------------ */ int ipf_nat_rehash_rules(softc, t, p) ipf_main_softc_t *softc; ipftuneable_t *t; ipftuneval_t *p; { ipf_nat_softc_t *softn = softc->ipf_nat_soft; ipnat_t **newtab, *np, ***old, **npp; u_int newsize; u_int mask; u_int hv; newsize = p->ipftu_int; /* * In case there is nothing to do... */ if (newsize == *t->ipft_pint) return 0; /* * All inbound rules have the NAT_REDIRECT bit set in in_redir and * all outbound rules have either NAT_MAP or MAT_MAPBLK set. * This if statement allows for some more generic code to be below, * rather than two huge gobs of code that almost do the same thing. */ if (t->ipft_pint == &softn->ipf_nat_rdrrules_sz) { old = &softn->ipf_nat_rdr_rules; mask = NAT_REDIRECT; } else { old = &softn->ipf_nat_map_rules; mask = NAT_MAP|NAT_MAPBLK; } KMALLOCS(newtab, ipnat_t **, newsize * sizeof(ipnat_t *)); if (newtab == NULL) { IPFERROR(60067); return ENOMEM; } bzero((char *)newtab, newsize * sizeof(ipnat_t *)); WRITE_ENTER(&softc->ipf_nat); if (*old != NULL) { KFREES(*old, *t->ipft_pint * sizeof(ipnat_t **)); } *old = newtab; *t->ipft_pint = newsize; for (np = softn->ipf_nat_list; np != NULL; np = np->in_next) { if ((np->in_redir & mask) == 0) continue; if (np->in_redir & NAT_REDIRECT) { np->in_rnext = NULL; hv = np->in_hv[0] % newsize; for (npp = newtab + hv; *npp != NULL; ) npp = &(*npp)->in_rnext; np->in_prnext = npp; *npp = np; } if (np->in_redir & NAT_MAP) { np->in_mnext = NULL; hv = np->in_hv[1] % newsize; for (npp = newtab + hv; *npp != NULL; ) npp = &(*npp)->in_mnext; np->in_pmnext = npp; *npp = np; } } RWLOCK_EXIT(&softc->ipf_nat); return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_hostmap_rehash */ /* Returns: int - 0 = success, else failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* t(I) - pointer to tunable */ /* p(I) - pointer to new tuning data */ /* */ /* Allocate and populate a new hash table that will contain a reference to */ /* all of the active IP# translations currently in place. */ /* ------------------------------------------------------------------------ */ int ipf_nat_hostmap_rehash(softc, t, p) ipf_main_softc_t *softc; ipftuneable_t *t; ipftuneval_t *p; { ipf_nat_softc_t *softn = softc->ipf_nat_soft; hostmap_t *hm, **newtab; u_int newsize; u_int hv; newsize = p->ipftu_int; /* * In case there is nothing to do... */ if (newsize == *t->ipft_pint) return 0; KMALLOCS(newtab, hostmap_t **, newsize * sizeof(hostmap_t *)); if (newtab == NULL) { IPFERROR(60068); return ENOMEM; } bzero((char *)newtab, newsize * sizeof(hostmap_t *)); WRITE_ENTER(&softc->ipf_nat); if (softn->ipf_hm_maptable != NULL) { KFREES(softn->ipf_hm_maptable, softn->ipf_nat_hostmap_sz * sizeof(hostmap_t *)); } softn->ipf_hm_maptable = newtab; softn->ipf_nat_hostmap_sz = newsize; for (hm = softn->ipf_hm_maplist; hm != NULL; hm = hm->hm_next) { hv = hm->hm_hv % softn->ipf_nat_hostmap_sz; hm->hm_hnext = softn->ipf_hm_maptable[hv]; hm->hm_phnext = softn->ipf_hm_maptable + hv; if (softn->ipf_hm_maptable[hv] != NULL) softn->ipf_hm_maptable[hv]->hm_phnext = &hm->hm_hnext; softn->ipf_hm_maptable[hv] = hm; } RWLOCK_EXIT(&softc->ipf_nat); return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_add_tq */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* ------------------------------------------------------------------------ */ ipftq_t * ipf_nat_add_tq(softc, ttl) ipf_main_softc_t *softc; int ttl; { ipf_nat_softc_t *softs = softc->ipf_nat_soft; return ipf_addtimeoutqueue(softc, &softs->ipf_nat_utqe, ttl); } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_uncreate */ /* Returns: Nil */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* This function is used to remove a NAT entry from the NAT table when we */ /* decide that the create was actually in error. It is thus assumed that */ /* fin_flx will have both FI_NATED and FI_NATNEW set. Because we're dealing */ /* with the translated packet (not the original), we have to reverse the */ /* lookup. Although doing the lookup is expensive (relatively speaking), it */ /* is not anticipated that this will be a frequent occurance for normal */ /* traffic patterns. */ /* ------------------------------------------------------------------------ */ void ipf_nat_uncreate(fin) fr_info_t *fin; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; int nflags; nat_t *nat; switch (fin->fin_p) { case IPPROTO_TCP : nflags = IPN_TCP; break; case IPPROTO_UDP : nflags = IPN_UDP; break; default : nflags = 0; break; } WRITE_ENTER(&softc->ipf_nat); if (fin->fin_out == 0) { nat = ipf_nat_outlookup(fin, nflags, (u_int)fin->fin_p, fin->fin_dst, fin->fin_src); } else { nat = ipf_nat_inlookup(fin, nflags, (u_int)fin->fin_p, fin->fin_src, fin->fin_dst); } if (nat != NULL) { NBUMPSIDE(fin->fin_out, ns_uncreate[0]); ipf_nat_delete(softc, nat, NL_DESTROY); } else { NBUMPSIDE(fin->fin_out, ns_uncreate[1]); } RWLOCK_EXIT(&softc->ipf_nat); } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_cmp_rules */ /* Returns: int - 0 == success, else rules do not match. */ /* Parameters: n1(I) - first rule to compare */ /* n2(I) - first rule to compare */ /* */ /* Compare two rules using pointers to each rule. A straight bcmp will not */ /* work as some fields (such as in_dst, in_pkts) actually do change once */ /* the rule has been loaded into the kernel. Whilst this function returns */ /* various non-zero returns, they're strictly to aid in debugging. Use of */ /* this function should simply care if the result is zero or not. */ /* ------------------------------------------------------------------------ */ static int ipf_nat_cmp_rules(n1, n2) ipnat_t *n1, *n2; { if (n1->in_size != n2->in_size) return 1; if (bcmp((char *)&n1->in_v, (char *)&n2->in_v, offsetof(ipnat_t, in_ndst) - offsetof(ipnat_t, in_v)) != 0) return 2; if (bcmp((char *)&n1->in_tuc, (char *)&n2->in_tuc, n1->in_size - offsetof(ipnat_t, in_tuc)) != 0) return 3; if (n1->in_ndst.na_atype != n2->in_ndst.na_atype) return 5; if (n1->in_ndst.na_function != n2->in_ndst.na_function) return 6; if (bcmp((char *)&n1->in_ndst.na_addr, (char *)&n2->in_ndst.na_addr, sizeof(n1->in_ndst.na_addr))) return 7; if (n1->in_nsrc.na_atype != n2->in_nsrc.na_atype) return 8; if (n1->in_nsrc.na_function != n2->in_nsrc.na_function) return 9; if (bcmp((char *)&n1->in_nsrc.na_addr, (char *)&n2->in_nsrc.na_addr, sizeof(n1->in_nsrc.na_addr))) return 10; if (n1->in_odst.na_atype != n2->in_odst.na_atype) return 11; if (n1->in_odst.na_function != n2->in_odst.na_function) return 12; if (bcmp((char *)&n1->in_odst.na_addr, (char *)&n2->in_odst.na_addr, sizeof(n1->in_odst.na_addr))) return 13; if (n1->in_osrc.na_atype != n2->in_osrc.na_atype) return 14; if (n1->in_osrc.na_function != n2->in_osrc.na_function) return 15; if (bcmp((char *)&n1->in_osrc.na_addr, (char *)&n2->in_osrc.na_addr, sizeof(n1->in_osrc.na_addr))) return 16; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_rule_init */ /* Returns: int - 0 == success, else rules do not match. */ /* Parameters: softc(I) - pointer to soft context main structure */ /* softn(I) - pointer to NAT context structure */ /* n(I) - first rule to compare */ /* */ /* ------------------------------------------------------------------------ */ static int ipf_nat_rule_init(softc, softn, n) ipf_main_softc_t *softc; ipf_nat_softc_t *softn; ipnat_t *n; { int error = 0; if ((n->in_flags & IPN_SIPRANGE) != 0) n->in_nsrcatype = FRI_RANGE; if ((n->in_flags & IPN_DIPRANGE) != 0) n->in_ndstatype = FRI_RANGE; if ((n->in_flags & IPN_SPLIT) != 0) n->in_ndstatype = FRI_SPLIT; if ((n->in_redir & (NAT_MAP|NAT_REWRITE|NAT_DIVERTUDP)) != 0) n->in_spnext = n->in_spmin; if ((n->in_redir & (NAT_REWRITE|NAT_DIVERTUDP)) != 0) { n->in_dpnext = n->in_dpmin; } else if (n->in_redir == NAT_REDIRECT) { n->in_dpnext = n->in_dpmin; } n->in_stepnext = 0; switch (n->in_v[0]) { case 4 : error = ipf_nat_ruleaddrinit(softc, softn, n); if (error != 0) return error; break; #ifdef USE_INET6 case 6 : error = ipf_nat6_ruleaddrinit(softc, softn, n); if (error != 0) return error; break; #endif default : break; } if (n->in_redir == (NAT_DIVERTUDP|NAT_MAP)) { /* * Prerecord whether or not the destination of the divert * is local or not to the interface the packet is going * to be sent out. */ n->in_dlocal = ipf_deliverlocal(softc, n->in_v[1], n->in_ifps[1], &n->in_ndstip6); } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat_rule_fini */ /* Returns: int - 0 == success, else rules do not match. */ /* Parameters: softc(I) - pointer to soft context main structure */ /* n(I) - rule to work on */ /* */ /* This function is used to release any objects that were referenced during */ /* the rule initialisation. This is useful both when free'ing the rule and */ /* when handling ioctls that need to initialise these fields but not */ /* actually use them after the ioctl processing has finished. */ /* ------------------------------------------------------------------------ */ static void ipf_nat_rule_fini(softc, n) ipf_main_softc_t *softc; ipnat_t *n; { if (n->in_odst.na_atype == FRI_LOOKUP && n->in_odst.na_ptr != NULL) ipf_lookup_deref(softc, n->in_odst.na_type, n->in_odst.na_ptr); if (n->in_osrc.na_atype == FRI_LOOKUP && n->in_osrc.na_ptr != NULL) ipf_lookup_deref(softc, n->in_osrc.na_type, n->in_osrc.na_ptr); if (n->in_ndst.na_atype == FRI_LOOKUP && n->in_ndst.na_ptr != NULL) ipf_lookup_deref(softc, n->in_ndst.na_type, n->in_ndst.na_ptr); if (n->in_nsrc.na_atype == FRI_LOOKUP && n->in_nsrc.na_ptr != NULL) ipf_lookup_deref(softc, n->in_nsrc.na_type, n->in_nsrc.na_ptr); if (n->in_divmp != NULL) FREE_MB_T(n->in_divmp); } diff --git a/sys/contrib/ipfilter/netinet/ip_nat6.c b/sys/contrib/ipfilter/netinet/ip_nat6.c index 388ee9a67e73..b2713aec812a 100644 --- a/sys/contrib/ipfilter/netinet/ip_nat6.c +++ b/sys/contrib/ipfilter/netinet/ip_nat6.c @@ -1,4092 +1,4092 @@ /* * Copyright (C) 2012 by Darren Reed. * * See the IPFILTER.LICENCE file for details on licencing. */ #if defined(KERNEL) || defined(_KERNEL) # undef KERNEL # undef _KERNEL # define KERNEL 1 # define _KERNEL 1 #endif #include #include #include #include #include #if defined(_KERNEL) && defined(__NetBSD_Version__) && \ (__NetBSD_Version__ >= 399002000) # include #endif #if !defined(_KERNEL) # include # include # include # define _KERNEL # ifdef ipf_nat6__OpenBSD__ struct file; # endif # include # undef _KERNEL #endif #if defined(_KERNEL) && defined(__FreeBSD_version) # include # include #else # include #endif # include # include #include #if defined(_KERNEL) # include # if !defined(__SVR4) # include # endif #endif #if defined(__SVR4) # include # include # ifdef _KERNEL # include # endif # include # include #endif #if defined(__FreeBSD_version) # include #endif #include #if defined(__FreeBSD_version) # include #endif #ifdef sun # include #endif #include #include #include #include #ifdef RFC1825 # include # include extern struct ifnet vpnif; #endif # include #include #include #include #include "netinet/ip_compat.h" #include #include "netinet/ip_fil.h" #include "netinet/ip_nat.h" #include "netinet/ip_frag.h" #include "netinet/ip_state.h" #include "netinet/ip_proxy.h" #include "netinet/ip_lookup.h" #include "netinet/ip_dstlist.h" #include "netinet/ip_sync.h" #if defined(__FreeBSD_version) # include #endif #ifdef HAS_SYS_MD5_H # include #else # include "md5.h" #endif /* END OF INCLUDES */ #undef SOCKADDR_IN #define SOCKADDR_IN struct sockaddr_in #if !defined(lint) static const char rcsid[] = "@(#)$Id: ip_nat6.c,v 1.22.2.20 2012/07/22 08:04:23 darren_r Exp $"; #endif #ifdef USE_INET6 static struct hostmap *ipf_nat6_hostmap(ipf_nat_softc_t *, ipnat_t *, i6addr_t *, i6addr_t *, i6addr_t *, u_32_t); static int ipf_nat6_match(fr_info_t *, ipnat_t *); static void ipf_nat6_tabmove(ipf_nat_softc_t *, nat_t *); static int ipf_nat6_decap(fr_info_t *, nat_t *); static int ipf_nat6_nextaddr(fr_info_t *, nat_addr_t *, i6addr_t *, i6addr_t *); static int ipf_nat6_icmpquerytype(int); static int ipf_nat6_out(fr_info_t *, nat_t *, int, u_32_t); static int ipf_nat6_in(fr_info_t *, nat_t *, int, u_32_t); static int ipf_nat6_builddivertmp(ipf_nat_softc_t *, ipnat_t *); static int ipf_nat6_nextaddrinit(ipf_main_softc_t *, char *, nat_addr_t *, int, void *); static int ipf_nat6_insert(ipf_main_softc_t *, ipf_nat_softc_t *, nat_t *); #define NINCLSIDE6(y,x) ATOMIC_INCL(softn->ipf_nat_stats.ns_side6[y].x) #define NBUMPSIDE(y,x) softn->ipf_nat_stats.ns_side[y].x++ #define NBUMPSIDE6(y,x) softn->ipf_nat_stats.ns_side6[y].x++ #define NBUMPSIDE6D(y,x) \ do { \ softn->ipf_nat_stats.ns_side6[y].x++; \ DT(x); \ } while (0) #define NBUMPSIDE6DX(y,x,z) \ do { \ softn->ipf_nat_stats.ns_side6[y].x++; \ DT(z); \ } while (0) /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_ruleaddrinit */ /* Returns: int - 0 == success, else failure */ /* Parameters: in(I) - NAT rule that requires address fields to be init'd */ /* */ /* For each of the source/destination address fields in a NAT rule, call */ /* ipf_nat6_nextaddrinit() to prepare the structure for active duty. Other */ /* IPv6 specific actions can also be taken care of here. */ /* ------------------------------------------------------------------------ */ int ipf_nat6_ruleaddrinit(softc, softn, n) ipf_main_softc_t *softc; ipf_nat_softc_t *softn; ipnat_t *n; { int idx, error; if (n->in_redir == NAT_BIMAP) { n->in_ndstip6 = n->in_osrcip6; n->in_ndstmsk6 = n->in_osrcmsk6; n->in_odstip6 = n->in_nsrcip6; n->in_odstmsk6 = n->in_nsrcmsk6; } if (n->in_redir & NAT_REDIRECT) idx = 1; else idx = 0; /* * Initialise all of the address fields. */ error = ipf_nat6_nextaddrinit(softc, n->in_names, &n->in_osrc, 1, n->in_ifps[idx]); if (error != 0) return error; error = ipf_nat6_nextaddrinit(softc, n->in_names, &n->in_odst, 1, n->in_ifps[idx]); if (error != 0) return error; error = ipf_nat6_nextaddrinit(softc, n->in_names, &n->in_nsrc, 1, n->in_ifps[idx]); if (error != 0) return error; error = ipf_nat6_nextaddrinit(softc, n->in_names, &n->in_ndst, 1, n->in_ifps[idx]); if (error != 0) return error; if (n->in_redir & NAT_DIVERTUDP) ipf_nat6_builddivertmp(softn, n); return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_addrdr */ /* Returns: Nil */ /* Parameters: n(I) - pointer to NAT rule to add */ /* */ /* Adds a redirect rule to the hash table of redirect rules and the list of */ /* loaded NAT rules. Updates the bitmask indicating which netmasks are in */ /* use by redirect rules. */ /* ------------------------------------------------------------------------ */ void ipf_nat6_addrdr(softn, n) ipf_nat_softc_t *softn; ipnat_t *n; { i6addr_t *mask; ipnat_t **np; i6addr_t j; u_int hv; int k; if ((n->in_redir & NAT_BIMAP) == NAT_BIMAP) { k = count6bits(n->in_nsrcmsk6.i6); mask = &n->in_nsrcmsk6; IP6_AND(&n->in_odstip6, &n->in_odstmsk6, &j); hv = NAT_HASH_FN6(&j, 0, softn->ipf_nat_rdrrules_sz); } else if (n->in_odstatype == FRI_NORMAL) { k = count6bits(n->in_odstmsk6.i6); mask = &n->in_odstmsk6; IP6_AND(&n->in_odstip6, &n->in_odstmsk6, &j); hv = NAT_HASH_FN6(&j, 0, softn->ipf_nat_rdrrules_sz); } else { k = 0; hv = 0; mask = NULL; } ipf_inet6_mask_add(k, mask, &softn->ipf_nat6_rdr_mask); np = softn->ipf_nat_rdr_rules + hv; while (*np != NULL) np = &(*np)->in_rnext; n->in_rnext = NULL; n->in_prnext = np; n->in_hv[0] = hv; n->in_use++; *np = n; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_addmap */ /* Returns: Nil */ /* Parameters: n(I) - pointer to NAT rule to add */ /* */ /* Adds a NAT map rule to the hash table of rules and the list of loaded */ /* NAT rules. Updates the bitmask indicating which netmasks are in use by */ /* redirect rules. */ /* ------------------------------------------------------------------------ */ void ipf_nat6_addmap(softn, n) ipf_nat_softc_t *softn; ipnat_t *n; { i6addr_t *mask; ipnat_t **np; i6addr_t j; u_int hv; int k; if (n->in_osrcatype == FRI_NORMAL) { k = count6bits(n->in_osrcmsk6.i6); mask = &n->in_osrcmsk6; IP6_AND(&n->in_osrcip6, &n->in_osrcmsk6, &j); hv = NAT_HASH_FN6(&j, 0, softn->ipf_nat_maprules_sz); } else { k = 0; hv = 0; mask = NULL; } ipf_inet6_mask_add(k, mask, &softn->ipf_nat6_map_mask); np = softn->ipf_nat_map_rules + hv; while (*np != NULL) np = &(*np)->in_mnext; n->in_mnext = NULL; n->in_pmnext = np; n->in_hv[1] = hv; n->in_use++; *np = n; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_del_rdr */ /* Returns: Nil */ /* Parameters: n(I) - pointer to NAT rule to delete */ /* */ /* Removes a NAT rdr rule from the hash table of NAT rdr rules. */ /* ------------------------------------------------------------------------ */ void ipf_nat6_delrdr(softn, n) ipf_nat_softc_t *softn; ipnat_t *n; { i6addr_t *mask; int k; if ((n->in_redir & NAT_BIMAP) == NAT_BIMAP) { k = count6bits(n->in_nsrcmsk6.i6); mask = &n->in_nsrcmsk6; } else if (n->in_odstatype == FRI_NORMAL) { k = count6bits(n->in_odstmsk6.i6); mask = &n->in_odstmsk6; } else { k = 0; mask = NULL; } ipf_inet6_mask_del(k, mask, &softn->ipf_nat6_rdr_mask); if (n->in_rnext != NULL) n->in_rnext->in_prnext = n->in_prnext; *n->in_prnext = n->in_rnext; n->in_use--; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_delmap */ /* Returns: Nil */ /* Parameters: n(I) - pointer to NAT rule to delete */ /* */ /* Removes a NAT map rule from the hash table of NAT map rules. */ /* ------------------------------------------------------------------------ */ void ipf_nat6_delmap(softn, n) ipf_nat_softc_t *softn; ipnat_t *n; { i6addr_t *mask; int k; if (n->in_osrcatype == FRI_NORMAL) { k = count6bits(n->in_osrcmsk6.i6); mask = &n->in_osrcmsk6; } else { k = 0; mask = NULL; } ipf_inet6_mask_del(k, mask, &softn->ipf_nat6_map_mask); if (n->in_mnext != NULL) n->in_mnext->in_pmnext = n->in_pmnext; *n->in_pmnext = n->in_mnext; n->in_use--; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_hostmap */ /* Returns: struct hostmap* - NULL if no hostmap could be created, */ /* else a pointer to the hostmapping to use */ /* Parameters: np(I) - pointer to NAT rule */ /* real(I) - real IP address */ /* map(I) - mapped IP address */ /* port(I) - destination port number */ /* Write Locks: ipf_nat */ /* */ /* Check if an ip address has already been allocated for a given mapping */ /* that is not doing port based translation. If is not yet allocated, then */ /* create a new entry if a non-NULL NAT rule pointer has been supplied. */ /* ------------------------------------------------------------------------ */ static struct hostmap * ipf_nat6_hostmap(softn, np, src, dst, map, port) ipf_nat_softc_t *softn; ipnat_t *np; i6addr_t *src, *dst, *map; u_32_t port; { hostmap_t *hm; u_int hv; hv = (src->i6[3] ^ dst->i6[3]); hv += (src->i6[2] ^ dst->i6[2]); hv += (src->i6[1] ^ dst->i6[1]); hv += (src->i6[0] ^ dst->i6[0]); hv += src->i6[3]; hv += src->i6[2]; hv += src->i6[1]; hv += src->i6[0]; hv += dst->i6[3]; hv += dst->i6[2]; hv += dst->i6[1]; hv += dst->i6[0]; hv %= HOSTMAP_SIZE; for (hm = softn->ipf_hm_maptable[hv]; hm; hm = hm->hm_next) if (IP6_EQ(&hm->hm_osrc6, src) && IP6_EQ(&hm->hm_odst6, dst) && ((np == NULL) || (np == hm->hm_ipnat)) && ((port == 0) || (port == hm->hm_port))) { softn->ipf_nat_stats.ns_hm_addref++; hm->hm_ref++; return hm; } if (np == NULL) { softn->ipf_nat_stats.ns_hm_nullnp++; return NULL; } KMALLOC(hm, hostmap_t *); if (hm) { hm->hm_next = softn->ipf_hm_maplist; hm->hm_pnext = &softn->ipf_hm_maplist; if (softn->ipf_hm_maplist != NULL) softn->ipf_hm_maplist->hm_pnext = &hm->hm_next; softn->ipf_hm_maplist = hm; hm->hm_hnext = softn->ipf_hm_maptable[hv]; hm->hm_phnext = softn->ipf_hm_maptable + hv; if (softn->ipf_hm_maptable[hv] != NULL) softn->ipf_hm_maptable[hv]->hm_phnext = &hm->hm_hnext; softn->ipf_hm_maptable[hv] = hm; hm->hm_ipnat = np; np->in_use++; hm->hm_osrcip6 = *src; hm->hm_odstip6 = *dst; hm->hm_nsrcip6 = *map; hm->hm_ndstip6.i6[0] = 0; hm->hm_ndstip6.i6[1] = 0; hm->hm_ndstip6.i6[2] = 0; hm->hm_ndstip6.i6[3] = 0; hm->hm_ref = 1; hm->hm_port = port; hm->hm_hv = hv; hm->hm_v = 6; softn->ipf_nat_stats.ns_hm_new++; } else { softn->ipf_nat_stats.ns_hm_newfail++; } return hm; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_newmap */ /* Returns: int - -1 == error, 0 == success */ /* Parameters: fin(I) - pointer to packet information */ /* nat(I) - pointer to NAT entry */ /* ni(I) - pointer to structure with misc. information needed */ /* to create new NAT entry. */ /* */ /* Given an empty NAT structure, populate it with new information about a */ /* new NAT session, as defined by the matching NAT rule. */ /* ni.nai_ip is passed in uninitialised and must be set, in host byte order,*/ /* to the new IP address for the translation. */ /* ------------------------------------------------------------------------ */ int ipf_nat6_newmap(fin, nat, ni) fr_info_t *fin; nat_t *nat; natinfo_t *ni; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; u_short st_port, dport, sport, port, sp, dp; i6addr_t in, st_ip; hostmap_t *hm; u_32_t flags; ipnat_t *np; nat_t *natl; int l; /* * If it's an outbound packet which doesn't match any existing * record, then create a new port */ l = 0; hm = NULL; np = ni->nai_np; st_ip = np->in_snip6; st_port = np->in_spnext; flags = nat->nat_flags; if (flags & IPN_ICMPQUERY) { sport = fin->fin_data[1]; dport = 0; } else { sport = htons(fin->fin_data[0]); dport = htons(fin->fin_data[1]); } /* * Do a loop until we either run out of entries to try or we find * a NAT mapping that isn't currently being used. This is done * because the change to the source is not (usually) being fixed. */ do { port = 0; in = np->in_nsrc.na_nextaddr; if (l == 0) { /* * Check to see if there is an existing NAT * setup for this IP address pair. */ hm = ipf_nat6_hostmap(softn, np, &fin->fin_src6, &fin->fin_dst6, &in, 0); if (hm != NULL) in = hm->hm_nsrcip6; } else if ((l == 1) && (hm != NULL)) { ipf_nat_hostmapdel(softc, &hm); } nat->nat_hm = hm; if (IP6_ISONES(&np->in_nsrcmsk6) && (np->in_spnext == 0)) { if (l > 0) { NBUMPSIDE6DX(1, ns_exhausted, ns_exhausted_1); return -1; } } if ((np->in_redir == NAT_BIMAP) && IP6_EQ(&np->in_osrcmsk6, &np->in_nsrcmsk6)) { i6addr_t temp; /* * map the address block in a 1:1 fashion */ temp.i6[0] = fin->fin_src6.i6[0] & ~np->in_osrcmsk6.i6[0]; temp.i6[1] = fin->fin_src6.i6[1] & ~np->in_osrcmsk6.i6[1]; temp.i6[2] = fin->fin_src6.i6[2] & ~np->in_osrcmsk6.i6[0]; temp.i6[3] = fin->fin_src6.i6[3] & ~np->in_osrcmsk6.i6[3]; in = np->in_nsrcip6; IP6_MERGE(&in, &temp, &np->in_osrc); #ifdef NEED_128BIT_MATH } else if (np->in_redir & NAT_MAPBLK) { if ((l >= np->in_ppip) || ((l > 0) && !(flags & IPN_TCPUDP))) { NBUMPSIDE6DX(1, ns_exhausted, ns_exhausted_2); return -1; } /* * map-block - Calculate destination address. */ IP6_MASK(&in, &fin->fin_src6, &np->in_osrcmsk6); in = ntohl(in); inb = in; in.s_addr /= np->in_ippip; in.s_addr &= ntohl(~np->in_nsrcmsk6); in.s_addr += ntohl(np->in_nsrcaddr6); /* * Calculate destination port. */ if ((flags & IPN_TCPUDP) && (np->in_ppip != 0)) { port = ntohs(sport) + l; port %= np->in_ppip; port += np->in_ppip * (inb.s_addr % np->in_ippip); port += MAPBLK_MINPORT; port = htons(port); } #endif } else if (IP6_ISZERO(&np->in_nsrcaddr) && IP6_ISONES(&np->in_nsrcmsk)) { /* * 0/32 - use the interface's IP address. */ if ((l > 0) || ipf_ifpaddr(softc, 6, FRI_NORMAL, fin->fin_ifp, &in, NULL) == -1) { NBUMPSIDE6DX(1, ns_new_ifpaddr, ns_new_ifpaddr_1); return -1; } } else if (IP6_ISZERO(&np->in_nsrcip6) && IP6_ISZERO(&np->in_nsrcmsk6)) { /* * 0/0 - use the original source address/port. */ if (l > 0) { NBUMPSIDE6DX(1, ns_exhausted, ns_exhausted_3); return -1; } in = fin->fin_src6; } else if (!IP6_ISONES(&np->in_nsrcmsk6) && (np->in_spnext == 0) && ((l > 0) || (hm == NULL))) { IP6_INC(&np->in_snip6); } natl = NULL; if ((flags & IPN_TCPUDP) && ((np->in_redir & NAT_MAPBLK) == 0) && (np->in_flags & IPN_AUTOPORTMAP)) { #ifdef NEED_128BIT_MATH /* * "ports auto" (without map-block) */ if ((l > 0) && (l % np->in_ppip == 0)) { if ((l > np->in_ppip) && !IP6_ISONES(&np->in_nsrcmsk)) { IP6_INC(&np->in_snip6) } } if (np->in_ppip != 0) { port = ntohs(sport); port += (l % np->in_ppip); port %= np->in_ppip; port += np->in_ppip * (ntohl(fin->fin_src6) % np->in_ippip); port += MAPBLK_MINPORT; port = htons(port); } #endif } else if (((np->in_redir & NAT_MAPBLK) == 0) && (flags & IPN_TCPUDPICMP) && (np->in_spnext != 0)) { /* * Standard port translation. Select next port. */ if (np->in_flags & IPN_SEQUENTIAL) { port = np->in_spnext; } else { port = ipf_random() % (np->in_spmax - np->in_spmin + 1); port += np->in_spmin; } port = htons(port); np->in_spnext++; if (np->in_spnext > np->in_spmax) { np->in_spnext = np->in_spmin; if (!IP6_ISONES(&np->in_nsrcmsk6)) { IP6_INC(&np->in_snip6); } } } if (np->in_flags & IPN_SIPRANGE) { if (IP6_GT(&np->in_snip, &np->in_nsrcmsk)) np->in_snip6 = np->in_nsrcip6; } else { i6addr_t a1, a2; a1 = np->in_snip6; IP6_INC(&a1); IP6_AND(&a1, &np->in_nsrcmsk6, &a2); if (!IP6_ISONES(&np->in_nsrcmsk6) && IP6_GT(&a2, &np->in_nsrcip6)) { IP6_ADD(&np->in_nsrcip6, 1, &np->in_snip6); } } if ((port == 0) && (flags & (IPN_TCPUDPICMP|IPN_ICMPQUERY))) port = sport; /* * Here we do a lookup of the connection as seen from * the outside. If an IP# pair already exists, try * again. So if you have A->B becomes C->B, you can * also have D->E become C->E but not D->B causing * another C->B. Also take protocol and ports into * account when determining whether a pre-existing * NAT setup will cause an external conflict where * this is appropriate. */ sp = fin->fin_data[0]; dp = fin->fin_data[1]; fin->fin_data[0] = fin->fin_data[1]; fin->fin_data[1] = ntohs(port); natl = ipf_nat6_inlookup(fin, flags & ~(SI_WILDP|NAT_SEARCH), (u_int)fin->fin_p, &fin->fin_dst6.in6, &in.in6); fin->fin_data[0] = sp; fin->fin_data[1] = dp; /* * Has the search wrapped around and come back to the * start ? */ if ((natl != NULL) && (np->in_spnext != 0) && (st_port == np->in_spnext) && (!IP6_ISZERO(&np->in_snip6) && IP6_EQ(&st_ip, &np->in_snip6))) { NBUMPSIDE6D(1, ns_wrap); return -1; } l++; } while (natl != NULL); /* Setup the NAT table */ nat->nat_osrc6 = fin->fin_src6; nat->nat_nsrc6 = in; nat->nat_odst6 = fin->fin_dst6; nat->nat_ndst6 = fin->fin_dst6; if (nat->nat_hm == NULL) nat->nat_hm = ipf_nat6_hostmap(softn, np, &fin->fin_src6, &fin->fin_dst6, &nat->nat_nsrc6, 0); if (flags & IPN_TCPUDP) { nat->nat_osport = sport; nat->nat_nsport = port; /* sport */ nat->nat_odport = dport; nat->nat_ndport = dport; ((tcphdr_t *)fin->fin_dp)->th_sport = port; } else if (flags & IPN_ICMPQUERY) { nat->nat_oicmpid = fin->fin_data[1]; ((struct icmp6_hdr *)fin->fin_dp)->icmp6_id = port; nat->nat_nicmpid = port; } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_newrdr */ /* Returns: int - -1 == error, 0 == success (no move), 1 == success and */ /* allow rule to be moved if IPN_ROUNDR is set. */ /* Parameters: fin(I) - pointer to packet information */ /* nat(I) - pointer to NAT entry */ /* ni(I) - pointer to structure with misc. information needed */ /* to create new NAT entry. */ /* */ /* ni.nai_ip is passed in uninitialised and must be set, in host byte order,*/ /* to the new IP address for the translation. */ /* ------------------------------------------------------------------------ */ int ipf_nat6_newrdr(fin, nat, ni) fr_info_t *fin; nat_t *nat; natinfo_t *ni; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; u_short nport, dport, sport; u_short sp, dp; hostmap_t *hm; u_32_t flags; i6addr_t in; ipnat_t *np; nat_t *natl; int move; move = 1; hm = NULL; in.i6[0] = 0; in.i6[1] = 0; in.i6[2] = 0; in.i6[3] = 0; np = ni->nai_np; flags = nat->nat_flags; if (flags & IPN_ICMPQUERY) { dport = fin->fin_data[1]; sport = 0; } else { sport = htons(fin->fin_data[0]); dport = htons(fin->fin_data[1]); } /* TRACE sport, dport */ /* * If the matching rule has IPN_STICKY set, then we want to have the * same rule kick in as before. Why would this happen? If you have * a collection of rdr rules with "round-robin sticky", the current * packet might match a different one to the previous connection but * we want the same destination to be used. */ if (((np->in_flags & (IPN_ROUNDR|IPN_SPLIT)) != 0) && ((np->in_flags & IPN_STICKY) != 0)) { hm = ipf_nat6_hostmap(softn, NULL, &fin->fin_src6, &fin->fin_dst6, &in, (u_32_t)dport); if (hm != NULL) { in = hm->hm_ndstip6; np = hm->hm_ipnat; ni->nai_np = np; move = 0; } } /* * Otherwise, it's an inbound packet. Most likely, we don't * want to rewrite source ports and source addresses. Instead, * we want to rewrite to a fixed internal address and fixed * internal port. */ if (np->in_flags & IPN_SPLIT) { in = np->in_dnip6; if ((np->in_flags & (IPN_ROUNDR|IPN_STICKY)) == IPN_STICKY) { hm = ipf_nat6_hostmap(softn, NULL, &fin->fin_src6, &fin->fin_dst6, &in, (u_32_t)dport); if (hm != NULL) { in = hm->hm_ndstip6; move = 0; } } if (hm == NULL || hm->hm_ref == 1) { if (IP6_EQ(&np->in_ndstip6, &in)) { np->in_dnip6 = np->in_ndstmsk6; move = 0; } else { np->in_dnip6 = np->in_ndstip6; } } } else if (IP6_ISZERO(&np->in_ndstaddr) && IP6_ISONES(&np->in_ndstmsk)) { /* * 0/32 - use the interface's IP address. */ if (ipf_ifpaddr(softc, 6, FRI_NORMAL, fin->fin_ifp, &in, NULL) == -1) { NBUMPSIDE6DX(0, ns_new_ifpaddr, ns_new_ifpaddr_2); return -1; } } else if (IP6_ISZERO(&np->in_ndstip6) && IP6_ISZERO(&np->in_ndstmsk6)) { /* * 0/0 - use the original destination address/port. */ in = fin->fin_dst6; } else if (np->in_redir == NAT_BIMAP && IP6_EQ(&np->in_ndstmsk6, &np->in_odstmsk6)) { i6addr_t temp; /* * map the address block in a 1:1 fashion */ temp.i6[0] = fin->fin_dst6.i6[0] & ~np->in_osrcmsk6.i6[0]; temp.i6[1] = fin->fin_dst6.i6[1] & ~np->in_osrcmsk6.i6[1]; temp.i6[2] = fin->fin_dst6.i6[2] & ~np->in_osrcmsk6.i6[0]; temp.i6[3] = fin->fin_dst6.i6[3] & ~np->in_osrcmsk6.i6[3]; in = np->in_ndstip6; IP6_MERGE(&in, &temp, &np->in_ndstmsk6); } else { in = np->in_ndstip6; } if ((np->in_dpnext == 0) || ((flags & NAT_NOTRULEPORT) != 0)) nport = dport; else { /* * Whilst not optimized for the case where * pmin == pmax, the gain is not significant. */ if (((np->in_flags & IPN_FIXEDDPORT) == 0) && (np->in_odport != np->in_dtop)) { nport = ntohs(dport) - np->in_odport + np->in_dpmax; nport = htons(nport); } else { nport = htons(np->in_dpnext); np->in_dpnext++; if (np->in_dpnext > np->in_dpmax) np->in_dpnext = np->in_dpmin; } } /* * When the redirect-to address is set to 0.0.0.0, just * assume a blank `forwarding' of the packet. We don't * setup any translation for this either. */ if (IP6_ISZERO(&in)) { if (nport == dport) { NBUMPSIDE6D(0, ns_xlate_null); return -1; } in = fin->fin_dst6; } /* * Check to see if this redirect mapping already exists and if * it does, return "failure" (allowing it to be created will just * cause one or both of these "connections" to stop working.) */ sp = fin->fin_data[0]; dp = fin->fin_data[1]; fin->fin_data[1] = fin->fin_data[0]; fin->fin_data[0] = ntohs(nport); natl = ipf_nat6_outlookup(fin, flags & ~(SI_WILDP|NAT_SEARCH), (u_int)fin->fin_p, &in.in6, &fin->fin_src6.in6); fin->fin_data[0] = sp; fin->fin_data[1] = dp; if (natl != NULL) { NBUMPSIDE6D(0, ns_xlate_exists); return -1; } nat->nat_ndst6 = in; nat->nat_odst6 = fin->fin_dst6; nat->nat_nsrc6 = fin->fin_src6; nat->nat_osrc6 = fin->fin_src6; if ((nat->nat_hm == NULL) && ((np->in_flags & IPN_STICKY) != 0)) nat->nat_hm = ipf_nat6_hostmap(softn, np, &fin->fin_src6, &fin->fin_dst6, &in, (u_32_t)dport); if (flags & IPN_TCPUDP) { nat->nat_odport = dport; nat->nat_ndport = nport; nat->nat_osport = sport; nat->nat_nsport = sport; ((tcphdr_t *)fin->fin_dp)->th_dport = nport; } else if (flags & IPN_ICMPQUERY) { nat->nat_oicmpid = fin->fin_data[1]; ((struct icmp6_hdr *)fin->fin_dp)->icmp6_id = nport; nat->nat_nicmpid = nport; } return move; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_add */ /* Returns: nat6_t* - NULL == failure to create new NAT structure, */ /* else pointer to new NAT structure */ /* Parameters: fin(I) - pointer to packet information */ /* np(I) - pointer to NAT rule */ /* natsave(I) - pointer to where to store NAT struct pointer */ /* flags(I) - flags describing the current packet */ /* direction(I) - direction of packet (in/out) */ /* Write Lock: ipf_nat */ /* */ /* Attempts to create a new NAT entry. Does not actually change the packet */ /* in any way. */ /* */ /* This fucntion is in three main parts: (1) deal with creating a new NAT */ /* structure for a "MAP" rule (outgoing NAT translation); (2) deal with */ /* creating a new NAT structure for a "RDR" rule (incoming NAT translation) */ /* and (3) building that structure and putting it into the NAT table(s). */ /* */ /* NOTE: natsave should NOT be used top point back to an ipstate_t struct */ /* as it can result in memory being corrupted. */ /* ------------------------------------------------------------------------ */ nat_t * ipf_nat6_add(fin, np, natsave, flags, direction) fr_info_t *fin; ipnat_t *np; nat_t **natsave; u_int flags; int direction; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; hostmap_t *hm = NULL; nat_t *nat, *natl; natstat_t *nsp; u_int nflags; natinfo_t ni; int move; #if SOLARIS && defined(_KERNEL) && defined(ICK_M_CTL_MAGIC) qpktinfo_t *qpi = fin->fin_qpi; #endif nsp = &softn->ipf_nat_stats; if ((nsp->ns_active * 100 / softn->ipf_nat_table_max) > softn->ipf_nat_table_wm_high) { softn->ipf_nat_doflush = 1; } if (nsp->ns_active >= softn->ipf_nat_table_max) { NBUMPSIDE6(fin->fin_out, ns_table_max); return NULL; } move = 1; nflags = np->in_flags & flags; nflags &= NAT_FROMRULE; ni.nai_np = np; ni.nai_dport = 0; ni.nai_sport = 0; /* Give me a new nat */ KMALLOC(nat, nat_t *); if (nat == NULL) { NBUMPSIDE6(fin->fin_out, ns_memfail); /* * Try to automatically tune the max # of entries in the * table allowed to be less than what will cause kmem_alloc() * to fail and try to eliminate panics due to out of memory * conditions arising. */ if ((softn->ipf_nat_table_max > softn->ipf_nat_table_sz) && (nsp->ns_active > 100)) { softn->ipf_nat_table_max = nsp->ns_active - 100; printf("table_max reduced to %d\n", softn->ipf_nat_table_max); } return NULL; } if (flags & IPN_ICMPQUERY) { /* * In the ICMP query NAT code, we translate the ICMP id fields * to make them unique. This is indepedent of the ICMP type * (e.g. in the unlikely event that a host sends an echo and * an tstamp request with the same id, both packets will have * their ip address/id field changed in the same way). */ /* The icmp6_id field is used by the sender to identify the * process making the icmp request. (the receiver justs * copies it back in its response). So, it closely matches * the concept of source port. We overlay sport, so we can * maximally reuse the existing code. */ ni.nai_sport = fin->fin_data[1]; ni.nai_dport = 0; } bzero((char *)nat, sizeof(*nat)); nat->nat_flags = flags; nat->nat_redir = np->in_redir; nat->nat_dir = direction; nat->nat_pr[0] = fin->fin_p; nat->nat_pr[1] = fin->fin_p; /* * Search the current table for a match and create a new mapping * if there is none found. */ if (np->in_redir & NAT_DIVERTUDP) { move = ipf_nat6_newdivert(fin, nat, &ni); } else if (np->in_redir & NAT_REWRITE) { move = ipf_nat6_newrewrite(fin, nat, &ni); } else if (direction == NAT_OUTBOUND) { /* * We can now arrange to call this for the same connection * because ipf_nat6_new doesn't protect the code path into * this function. */ natl = ipf_nat6_outlookup(fin, nflags, (u_int)fin->fin_p, &fin->fin_src6.in6, &fin->fin_dst6.in6); if (natl != NULL) { KFREE(nat); nat = natl; goto done; } move = ipf_nat6_newmap(fin, nat, &ni); } else { /* * NAT_INBOUND is used for redirects rules */ natl = ipf_nat6_inlookup(fin, nflags, (u_int)fin->fin_p, &fin->fin_src6.in6, &fin->fin_dst6.in6); if (natl != NULL) { KFREE(nat); nat = natl; goto done; } move = ipf_nat6_newrdr(fin, nat, &ni); } if (move == -1) goto badnat; np = ni.nai_np; nat->nat_mssclamp = np->in_mssclamp; nat->nat_me = natsave; nat->nat_fr = fin->fin_fr; nat->nat_rev = fin->fin_rev; nat->nat_ptr = np; nat->nat_dlocal = np->in_dlocal; if ((np->in_apr != NULL) && ((nat->nat_flags & NAT_SLAVE) == 0)) { if (ipf_proxy_new(fin, nat) == -1) { NBUMPSIDE6D(fin->fin_out, ns_appr_fail); goto badnat; } } nat->nat_ifps[0] = np->in_ifps[0]; if (np->in_ifps[0] != NULL) { COPYIFNAME(np->in_v[0], np->in_ifps[0], nat->nat_ifnames[0]); } nat->nat_ifps[1] = np->in_ifps[1]; if (np->in_ifps[1] != NULL) { COPYIFNAME(np->in_v[1], np->in_ifps[1], nat->nat_ifnames[1]); } if (ipf_nat6_finalise(fin, nat) == -1) { goto badnat; } np->in_use++; if ((move == 1) && (np->in_flags & IPN_ROUNDR)) { if ((np->in_redir & (NAT_REDIRECT|NAT_MAP)) == NAT_REDIRECT) { ipf_nat6_delrdr(softn, np); ipf_nat6_addrdr(softn, np); } else if ((np->in_redir & (NAT_REDIRECT|NAT_MAP)) == NAT_MAP) { ipf_nat6_delmap(softn, np); ipf_nat6_addmap(softn, np); } } if (flags & SI_WILDP) nsp->ns_wilds++; softn->ipf_nat_stats.ns_proto[nat->nat_pr[0]]++; goto done; badnat: NBUMPSIDE6(fin->fin_out, ns_badnatnew); if ((hm = nat->nat_hm) != NULL) ipf_nat_hostmapdel(softc, &hm); KFREE(nat); nat = NULL; done: if (nat != NULL && np != NULL) np->in_hits++; if (natsave != NULL) *natsave = nat; return nat; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_finalise */ /* Returns: int - 0 == sucess, -1 == failure */ /* Parameters: fin(I) - pointer to packet information */ /* nat(I) - pointer to NAT entry */ /* Write Lock: ipf_nat */ /* */ /* This is the tail end of constructing a new NAT entry and is the same */ /* for both IPv4 and IPv6. */ /* ------------------------------------------------------------------------ */ /*ARGSUSED*/ int ipf_nat6_finalise(fin, nat) fr_info_t *fin; nat_t *nat; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; u_32_t sum1, sum2, sumd; frentry_t *fr; u_32_t flags; flags = nat->nat_flags; switch (fin->fin_p) { case IPPROTO_ICMPV6 : sum1 = LONG_SUM6(&nat->nat_osrc6); sum1 += ntohs(nat->nat_oicmpid); sum2 = LONG_SUM6(&nat->nat_nsrc6); sum2 += ntohs(nat->nat_nicmpid); CALC_SUMD(sum1, sum2, sumd); nat->nat_sumd[0] = (sumd & 0xffff) + (sumd >> 16); sum1 = LONG_SUM6(&nat->nat_odst6); sum2 = LONG_SUM6(&nat->nat_ndst6); CALC_SUMD(sum1, sum2, sumd); nat->nat_sumd[0] += (sumd & 0xffff) + (sumd >> 16); break; case IPPROTO_TCP : case IPPROTO_UDP : sum1 = LONG_SUM6(&nat->nat_osrc6); sum1 += ntohs(nat->nat_osport); sum2 = LONG_SUM6(&nat->nat_nsrc6); sum2 += ntohs(nat->nat_nsport); CALC_SUMD(sum1, sum2, sumd); nat->nat_sumd[0] = (sumd & 0xffff) + (sumd >> 16); sum1 = LONG_SUM6(&nat->nat_odst6); sum1 += ntohs(nat->nat_odport); sum2 = LONG_SUM6(&nat->nat_ndst6); sum2 += ntohs(nat->nat_ndport); CALC_SUMD(sum1, sum2, sumd); nat->nat_sumd[0] += (sumd & 0xffff) + (sumd >> 16); break; default : sum1 = LONG_SUM6(&nat->nat_osrc6); sum2 = LONG_SUM6(&nat->nat_nsrc6); CALC_SUMD(sum1, sum2, sumd); nat->nat_sumd[0] = (sumd & 0xffff) + (sumd >> 16); sum1 = LONG_SUM6(&nat->nat_odst6); sum2 = LONG_SUM6(&nat->nat_ndst6); CALC_SUMD(sum1, sum2, sumd); nat->nat_sumd[0] += (sumd & 0xffff) + (sumd >> 16); break; } /* * Compute the partial checksum, just in case. * This is only ever placed into outbound packets so care needs * to be taken over which pair of addresses are used. */ if (nat->nat_dir == NAT_OUTBOUND) { sum1 = LONG_SUM6(&nat->nat_nsrc6); sum1 += LONG_SUM6(&nat->nat_ndst6); } else { sum1 = LONG_SUM6(&nat->nat_osrc6); sum1 += LONG_SUM6(&nat->nat_odst6); } sum1 += nat->nat_pr[1]; nat->nat_sumd[1] = (sum1 & 0xffff) + (sum1 >> 16); if ((nat->nat_flags & SI_CLONE) == 0) nat->nat_sync = ipf_sync_new(softc, SMC_NAT, fin, nat); if ((nat->nat_ifps[0] != NULL) && (nat->nat_ifps[0] != (void *)-1)) { nat->nat_mtu[0] = GETIFMTU_6(nat->nat_ifps[0]); } if ((nat->nat_ifps[1] != NULL) && (nat->nat_ifps[1] != (void *)-1)) { nat->nat_mtu[1] = GETIFMTU_6(nat->nat_ifps[1]); } nat->nat_v[0] = 6; nat->nat_v[1] = 6; if (ipf_nat6_insert(softc, softn, nat) == 0) { if (softn->ipf_nat_logging) ipf_nat_log(softc, softn, nat, NL_NEW); fr = nat->nat_fr; if (fr != NULL) { MUTEX_ENTER(&fr->fr_lock); fr->fr_ref++; MUTEX_EXIT(&fr->fr_lock); } return 0; } NBUMPSIDE6D(fin->fin_out, ns_unfinalised); /* * nat6_insert failed, so cleanup time... */ if (nat->nat_sync != NULL) ipf_sync_del_nat(softc->ipf_sync_soft, nat->nat_sync); return -1; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_insert */ /* Returns: int - 0 == sucess, -1 == failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* softn(I) - pointer to NAT context structure */ /* nat(I) - pointer to NAT structure */ /* Write Lock: ipf_nat */ /* */ /* Insert a NAT entry into the hash tables for searching and add it to the */ /* list of active NAT entries. Adjust global counters when complete. */ /* ------------------------------------------------------------------------ */ static int ipf_nat6_insert(softc, softn, nat) ipf_main_softc_t *softc; ipf_nat_softc_t *softn; nat_t *nat; { u_int hv1, hv2; u_32_t sp, dp; ipnat_t *in; /* * Try and return an error as early as possible, so calculate the hash * entry numbers first and then proceed. */ if ((nat->nat_flags & (SI_W_SPORT|SI_W_DPORT)) == 0) { if ((nat->nat_flags & IPN_TCPUDP) != 0) { sp = nat->nat_osport; dp = nat->nat_odport; } else if ((nat->nat_flags & IPN_ICMPQUERY) != 0) { sp = 0; dp = nat->nat_oicmpid; } else { sp = 0; dp = 0; } hv1 = NAT_HASH_FN6(&nat->nat_osrc6, sp, 0xffffffff); hv1 = NAT_HASH_FN6(&nat->nat_odst6, hv1 + dp, softn->ipf_nat_table_sz); /* * TRACE nat6_osrc6, nat6_osport, nat6_odst6, * nat6_odport, hv1 */ if ((nat->nat_flags & IPN_TCPUDP) != 0) { sp = nat->nat_nsport; dp = nat->nat_ndport; } else if ((nat->nat_flags & IPN_ICMPQUERY) != 0) { sp = 0; dp = nat->nat_nicmpid; } else { sp = 0; dp = 0; } hv2 = NAT_HASH_FN6(&nat->nat_nsrc6, sp, 0xffffffff); hv2 = NAT_HASH_FN6(&nat->nat_ndst6, hv2 + dp, softn->ipf_nat_table_sz); /* * TRACE nat6_nsrcaddr, nat6_nsport, nat6_ndstaddr, * nat6_ndport, hv1 */ } else { hv1 = NAT_HASH_FN6(&nat->nat_osrc6, 0, 0xffffffff); hv1 = NAT_HASH_FN6(&nat->nat_odst6, hv1, softn->ipf_nat_table_sz); /* TRACE nat6_osrcip6, nat6_odstip6, hv1 */ hv2 = NAT_HASH_FN6(&nat->nat_nsrc6, 0, 0xffffffff); hv2 = NAT_HASH_FN6(&nat->nat_ndst6, hv2, softn->ipf_nat_table_sz); /* TRACE nat6_nsrcip6, nat6_ndstip6, hv2 */ } nat->nat_hv[0] = hv1; nat->nat_hv[1] = hv2; MUTEX_INIT(&nat->nat_lock, "nat entry lock"); in = nat->nat_ptr; nat->nat_ref = nat->nat_me ? 2 : 1; nat->nat_ifnames[0][LIFNAMSIZ - 1] = '\0'; nat->nat_ifps[0] = ipf_resolvenic(softc, nat->nat_ifnames[0], nat->nat_v[0]); if (nat->nat_ifnames[1][0] != '\0') { nat->nat_ifnames[1][LIFNAMSIZ - 1] = '\0'; nat->nat_ifps[1] = ipf_resolvenic(softc, nat->nat_ifnames[1], nat->nat_v[1]); } else if (in->in_ifnames[1] != -1) { char *name; name = in->in_names + in->in_ifnames[1]; if (name[1] != '\0' && name[0] != '-' && name[0] != '*') { (void) strncpy(nat->nat_ifnames[1], nat->nat_ifnames[0], LIFNAMSIZ); nat->nat_ifnames[1][LIFNAMSIZ - 1] = '\0'; nat->nat_ifps[1] = nat->nat_ifps[0]; } } if ((nat->nat_ifps[0] != NULL) && (nat->nat_ifps[0] != (void *)-1)) { nat->nat_mtu[0] = GETIFMTU_6(nat->nat_ifps[0]); } if ((nat->nat_ifps[1] != NULL) && (nat->nat_ifps[1] != (void *)-1)) { nat->nat_mtu[1] = GETIFMTU_6(nat->nat_ifps[1]); } return ipf_nat_hashtab_add(softc, softn, nat); } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_icmperrorlookup */ /* Returns: nat6_t* - point to matching NAT structure */ /* Parameters: fin(I) - pointer to packet information */ /* dir(I) - direction of packet (in/out) */ /* */ /* Check if the ICMP error message is related to an existing TCP, UDP or */ /* ICMP query nat entry. It is assumed that the packet is already of the */ /* the required length. */ /* ------------------------------------------------------------------------ */ nat_t * ipf_nat6_icmperrorlookup(fin, dir) fr_info_t *fin; int dir; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; struct icmp6_hdr *icmp6, *orgicmp; int flags = 0, type, minlen; nat_stat_side_t *nside; tcphdr_t *tcp = NULL; u_short data[2]; ip6_t *oip6; nat_t *nat; u_int p; minlen = 40; icmp6 = fin->fin_dp; type = icmp6->icmp6_type; nside = &softn->ipf_nat_stats.ns_side6[fin->fin_out]; /* * Does it at least have the return (basic) IP header ? * Only a basic IP header (no options) should be with an ICMP error * header. Also, if it's not an error type, then return. */ if (!(fin->fin_flx & FI_ICMPERR)) { ATOMIC_INCL(nside->ns_icmp_basic); return NULL; } /* * Check packet size */ if (fin->fin_plen < ICMP6ERR_IPICMPHLEN) { ATOMIC_INCL(nside->ns_icmp_size); return NULL; } oip6 = (ip6_t *)((char *)fin->fin_dp + 8); /* * Is the buffer big enough for all of it ? It's the size of the IP * header claimed in the encapsulated part which is of concern. It * may be too big to be in this buffer but not so big that it's * outside the ICMP packet, leading to TCP deref's causing problems. * This is possible because we don't know how big oip_hl is when we * do the pullup early in ipf_check() and thus can't gaurantee it is * all here now. */ #ifdef _KERNEL { mb_t *m; m = fin->fin_m; -# if defined(MENTAT) +# if SOLARIS if ((char *)oip6 + fin->fin_dlen - ICMPERR_ICMPHLEN > (char *)m->b_wptr) { ATOMIC_INCL(nside->ns_icmp_mbuf); return NULL; } # else if ((char *)oip6 + fin->fin_dlen - ICMPERR_ICMPHLEN > (char *)fin->fin_ip + M_LEN(m)) { ATOMIC_INCL(nside->ns_icmp_mbuf); return NULL; } # endif } #endif if (IP6_NEQ(&fin->fin_dst6, &oip6->ip6_src)) { ATOMIC_INCL(nside->ns_icmp_address); return NULL; } p = oip6->ip6_nxt; if (p == IPPROTO_TCP) flags = IPN_TCP; else if (p == IPPROTO_UDP) flags = IPN_UDP; else if (p == IPPROTO_ICMPV6) { orgicmp = (struct icmp6_hdr *)(oip6 + 1); /* see if this is related to an ICMP query */ if (ipf_nat6_icmpquerytype(orgicmp->icmp6_type)) { data[0] = fin->fin_data[0]; data[1] = fin->fin_data[1]; fin->fin_data[0] = 0; fin->fin_data[1] = orgicmp->icmp6_id; flags = IPN_ICMPERR|IPN_ICMPQUERY; /* * NOTE : dir refers to the direction of the original * ip packet. By definition the icmp error * message flows in the opposite direction. */ if (dir == NAT_INBOUND) nat = ipf_nat6_inlookup(fin, flags, p, &oip6->ip6_dst, &oip6->ip6_src); else nat = ipf_nat6_outlookup(fin, flags, p, &oip6->ip6_dst, &oip6->ip6_src); fin->fin_data[0] = data[0]; fin->fin_data[1] = data[1]; return nat; } } if (flags & IPN_TCPUDP) { minlen += 8; /* + 64bits of data to get ports */ /* TRACE (fin,minlen) */ if (fin->fin_plen < ICMPERR_IPICMPHLEN + minlen) { ATOMIC_INCL(nside->ns_icmp_short); return NULL; } data[0] = fin->fin_data[0]; data[1] = fin->fin_data[1]; tcp = (tcphdr_t *)(oip6 + 1); fin->fin_data[0] = ntohs(tcp->th_dport); fin->fin_data[1] = ntohs(tcp->th_sport); if (dir == NAT_INBOUND) { nat = ipf_nat6_inlookup(fin, flags, p, &oip6->ip6_dst, &oip6->ip6_src); } else { nat = ipf_nat6_outlookup(fin, flags, p, &oip6->ip6_dst, &oip6->ip6_src); } fin->fin_data[0] = data[0]; fin->fin_data[1] = data[1]; return nat; } if (dir == NAT_INBOUND) nat = ipf_nat6_inlookup(fin, 0, p, &oip6->ip6_dst, &oip6->ip6_src); else nat = ipf_nat6_outlookup(fin, 0, p, &oip6->ip6_dst, &oip6->ip6_src); return nat; } /* result = ip1 - ip2 */ u_32_t ipf_nat6_ip6subtract(ip1, ip2) i6addr_t *ip1, *ip2; { i6addr_t l1, l2, d; u_short *s1, *s2, *ds; u_32_t r; int i, neg; neg = 0; l1 = *ip1; l2 = *ip2; s1 = (u_short *)&l1; s2 = (u_short *)&l2; ds = (u_short *)&d; for (i = 7; i > 0; i--) { if (s1[i] > s2[i]) { ds[i] = s2[i] + 0x10000 - s1[i]; s2[i - 1] += 0x10000; } else { ds[i] = s2[i] - s1[i]; } } if (s2[0] > s1[0]) { ds[0] = s2[0] + 0x10000 - s1[0]; neg = 1; } else { ds[0] = s2[0] - s1[0]; } for (i = 0, r = 0; i < 8; i++) { r += ds[i]; } return r; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_icmperror */ /* Returns: nat6_t* - point to matching NAT structure */ /* Parameters: fin(I) - pointer to packet information */ /* nflags(I) - NAT flags for this packet */ /* dir(I) - direction of packet (in/out) */ /* */ /* Fix up an ICMP packet which is an error message for an existing NAT */ /* session. This will correct both packet header data and checksums. */ /* */ /* This should *ONLY* be used for incoming ICMP error packets to make sure */ /* a NAT'd ICMP packet gets correctly recognised. */ /* ------------------------------------------------------------------------ */ nat_t * ipf_nat6_icmperror(fin, nflags, dir) fr_info_t *fin; u_int *nflags; int dir; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; u_32_t sum1, sum2, sumd, sumd2; i6addr_t a1, a2, a3, a4; struct icmp6_hdr *icmp6; int flags, dlen, odst; u_short *csump; tcphdr_t *tcp; ip6_t *oip6; nat_t *nat; void *dp; if ((fin->fin_flx & (FI_SHORT|FI_FRAGBODY))) { NBUMPSIDE6D(fin->fin_out, ns_icmp_short); return NULL; } /* * ipf_nat6_icmperrorlookup() will return NULL for `defective' packets. */ if ((fin->fin_v != 6) || !(nat = ipf_nat6_icmperrorlookup(fin, dir))) { NBUMPSIDE6D(fin->fin_out, ns_icmp_notfound); return NULL; } tcp = NULL; csump = NULL; flags = 0; sumd2 = 0; *nflags = IPN_ICMPERR; icmp6 = fin->fin_dp; oip6 = (ip6_t *)((u_char *)icmp6 + sizeof(*icmp6)); dp = (u_char *)oip6 + sizeof(*oip6); if (oip6->ip6_nxt == IPPROTO_TCP) { tcp = (tcphdr_t *)dp; csump = (u_short *)&tcp->th_sum; flags = IPN_TCP; } else if (oip6->ip6_nxt == IPPROTO_UDP) { udphdr_t *udp; udp = (udphdr_t *)dp; tcp = (tcphdr_t *)dp; csump = (u_short *)&udp->uh_sum; flags = IPN_UDP; } else if (oip6->ip6_nxt == IPPROTO_ICMPV6) flags = IPN_ICMPQUERY; dlen = fin->fin_plen - ((char *)dp - (char *)fin->fin_ip); /* * Need to adjust ICMP header to include the real IP#'s and * port #'s. Only apply a checksum change relative to the * IP address change as it will be modified again in ipf_nat6_checkout * for both address and port. Two checksum changes are * necessary for the two header address changes. Be careful * to only modify the checksum once for the port # and twice * for the IP#. */ /* * Step 1 * Fix the IP addresses in the offending IP packet. You also need * to adjust the IP header checksum of that offending IP packet. * * Normally, you would expect that the ICMP checksum of the * ICMP error message needs to be adjusted as well for the * IP address change in oip. * However, this is a NOP, because the ICMP checksum is * calculated over the complete ICMP packet, which includes the * changed oip IP addresses and oip6->ip6_sum. However, these * two changes cancel each other out (if the delta for * the IP address is x, then the delta for ip_sum is minus x), * so no change in the icmp_cksum is necessary. * * Inbound ICMP * ------------ * MAP rule, SRC=a,DST=b -> SRC=c,DST=b * - response to outgoing packet (a,b)=>(c,b) (OIP_SRC=c,OIP_DST=b) * - OIP_SRC(c)=nat6_newsrcip, OIP_DST(b)=nat6_newdstip *=> OIP_SRC(c)=nat6_oldsrcip, OIP_DST(b)=nat6_olddstip * * RDR rule, SRC=a,DST=b -> SRC=a,DST=c * - response to outgoing packet (c,a)=>(b,a) (OIP_SRC=b,OIP_DST=a) * - OIP_SRC(b)=nat6_olddstip, OIP_DST(a)=nat6_oldsrcip *=> OIP_SRC(b)=nat6_newdstip, OIP_DST(a)=nat6_newsrcip * * REWRITE out rule, SRC=a,DST=b -> SRC=c,DST=d * - response to outgoing packet (a,b)=>(c,d) (OIP_SRC=c,OIP_DST=d) * - OIP_SRC(c)=nat6_newsrcip, OIP_DST(d)=nat6_newdstip *=> OIP_SRC(c)=nat6_oldsrcip, OIP_DST(d)=nat6_olddstip * * REWRITE in rule, SRC=a,DST=b -> SRC=c,DST=d * - response to outgoing packet (d,c)=>(b,a) (OIP_SRC=b,OIP_DST=a) * - OIP_SRC(b)=nat6_olddstip, OIP_DST(a)=nat6_oldsrcip *=> OIP_SRC(b)=nat6_newdstip, OIP_DST(a)=nat6_newsrcip * * Outbound ICMP * ------------- * MAP rule, SRC=a,DST=b -> SRC=c,DST=b * - response to incoming packet (b,c)=>(b,a) (OIP_SRC=b,OIP_DST=a) * - OIP_SRC(b)=nat6_olddstip, OIP_DST(a)=nat6_oldsrcip *=> OIP_SRC(b)=nat6_newdstip, OIP_DST(a)=nat6_newsrcip * * RDR rule, SRC=a,DST=b -> SRC=a,DST=c * - response to incoming packet (a,b)=>(a,c) (OIP_SRC=a,OIP_DST=c) * - OIP_SRC(a)=nat6_newsrcip, OIP_DST(c)=nat6_newdstip *=> OIP_SRC(a)=nat6_oldsrcip, OIP_DST(c)=nat6_olddstip * * REWRITE out rule, SRC=a,DST=b -> SRC=c,DST=d * - response to incoming packet (d,c)=>(b,a) (OIP_SRC=c,OIP_DST=d) * - OIP_SRC(c)=nat6_olddstip, OIP_DST(d)=nat6_oldsrcip *=> OIP_SRC(b)=nat6_newdstip, OIP_DST(a)=nat6_newsrcip * * REWRITE in rule, SRC=a,DST=b -> SRC=c,DST=d * - response to incoming packet (a,b)=>(c,d) (OIP_SRC=b,OIP_DST=a) * - OIP_SRC(b)=nat6_newsrcip, OIP_DST(a)=nat6_newdstip *=> OIP_SRC(a)=nat6_oldsrcip, OIP_DST(c)=nat6_olddstip */ if (((fin->fin_out == 0) && ((nat->nat_redir & NAT_MAP) != 0)) || ((fin->fin_out == 1) && ((nat->nat_redir & NAT_REDIRECT) != 0))) { a1 = nat->nat_osrc6; a4.in6 = oip6->ip6_src; a3 = nat->nat_odst6; a2.in6 = oip6->ip6_dst; oip6->ip6_src = a1.in6; oip6->ip6_dst = a3.in6; odst = 1; } else { a1 = nat->nat_ndst6; a2.in6 = oip6->ip6_dst; a3 = nat->nat_nsrc6; a4.in6 = oip6->ip6_src; oip6->ip6_dst = a3.in6; oip6->ip6_src = a1.in6; odst = 0; } sumd = 0; if (IP6_NEQ(&a3, &a2) || IP6_NEQ(&a1, &a4)) { if (IP6_GT(&a3, &a2)) { sumd = ipf_nat6_ip6subtract(&a2, &a3); sumd--; } else { sumd = ipf_nat6_ip6subtract(&a2, &a3); } if (IP6_GT(&a1, &a4)) { sumd += ipf_nat6_ip6subtract(&a4, &a1); sumd--; } else { sumd += ipf_nat6_ip6subtract(&a4, &a1); } sumd = ~sumd; } sumd2 = sumd; sum1 = 0; sum2 = 0; /* * Fix UDP pseudo header checksum to compensate for the * IP address change. */ if (((flags & IPN_TCPUDP) != 0) && (dlen >= 4)) { u_32_t sum3, sum4; /* * Step 2 : * For offending TCP/UDP IP packets, translate the ports as * well, based on the NAT specification. Of course such * a change may be reflected in the ICMP checksum as well. * * Since the port fields are part of the TCP/UDP checksum * of the offending IP packet, you need to adjust that checksum * as well... except that the change in the port numbers should * be offset by the checksum change. However, the TCP/UDP * checksum will also need to change if there has been an * IP address change. */ if (odst == 1) { sum1 = ntohs(nat->nat_osport); sum4 = ntohs(tcp->th_sport); sum3 = ntohs(nat->nat_odport); sum2 = ntohs(tcp->th_dport); tcp->th_sport = htons(sum1); tcp->th_dport = htons(sum3); } else { sum1 = ntohs(nat->nat_ndport); sum2 = ntohs(tcp->th_dport); sum3 = ntohs(nat->nat_nsport); sum4 = ntohs(tcp->th_sport); tcp->th_dport = htons(sum3); tcp->th_sport = htons(sum1); } sumd += sum1 - sum4; sumd += sum3 - sum2; if (sumd != 0 || sumd2 != 0) { /* * At this point, sumd is the delta to apply to the * TCP/UDP header, given the changes in both the IP * address and the ports and sumd2 is the delta to * apply to the ICMP header, given the IP address * change delta that may need to be applied to the * TCP/UDP checksum instead. * * If we will both the IP and TCP/UDP checksums * then the ICMP checksum changes by the address * delta applied to the TCP/UDP checksum. If we * do not change the TCP/UDP checksum them we * apply the delta in ports to the ICMP checksum. */ if (oip6->ip6_nxt == IPPROTO_UDP) { if ((dlen >= 8) && (*csump != 0)) { ipf_fix_datacksum(csump, sumd); } else { sumd2 = sum4 - sum1; if (sum1 > sum4) sumd2--; sumd2 += sum2 - sum3; if (sum3 > sum2) sumd2--; } } else if (oip6->ip6_nxt == IPPROTO_TCP) { if (dlen >= 18) { ipf_fix_datacksum(csump, sumd); } else { sumd2 = sum4 - sum1; if (sum1 > sum4) sumd2--; sumd2 += sum2 - sum3; if (sum3 > sum2) sumd2--; } } if (sumd2 != 0) { sumd2 = (sumd2 & 0xffff) + (sumd2 >> 16); sumd2 = (sumd2 & 0xffff) + (sumd2 >> 16); sumd2 = (sumd2 & 0xffff) + (sumd2 >> 16); ipf_fix_incksum(0, &icmp6->icmp6_cksum, sumd2, 0); } } } else if (((flags & IPN_ICMPQUERY) != 0) && (dlen >= 8)) { struct icmp6_hdr *orgicmp; /* * XXX - what if this is bogus hl and we go off the end ? * In this case, ipf_nat6_icmperrorlookup() will have * returned NULL. */ orgicmp = (struct icmp6_hdr *)dp; if (odst == 1) { if (orgicmp->icmp6_id != nat->nat_osport) { /* * Fix ICMP checksum (of the offening ICMP * query packet) to compensate the change * in the ICMP id of the offending ICMP * packet. * * Since you modify orgicmp->icmp6_id with * a delta (say x) and you compensate that * in origicmp->icmp6_cksum with a delta * minus x, you don't have to adjust the * overall icmp->icmp6_cksum */ sum1 = ntohs(orgicmp->icmp6_id); sum2 = ntohs(nat->nat_osport); CALC_SUMD(sum1, sum2, sumd); orgicmp->icmp6_id = nat->nat_oicmpid; ipf_fix_datacksum(&orgicmp->icmp6_cksum, sumd); } } /* nat6_dir == NAT_INBOUND is impossible for icmp queries */ } return nat; } /* * MAP-IN MAP-OUT RDR-IN RDR-OUT * osrc X == src == src X * odst X == dst == dst X * nsrc == dst X X == dst * ndst == src X X == src * MAP = NAT_OUTBOUND, RDR = NAT_INBOUND */ /* * NB: these lookups don't lock access to the list, it assumed that it has * already been done! */ /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_inlookup */ /* Returns: nat6_t* - NULL == no match, */ /* else pointer to matching NAT entry */ /* Parameters: fin(I) - pointer to packet information */ /* flags(I) - NAT flags for this packet */ /* p(I) - protocol for this packet */ /* src(I) - source IP address */ /* mapdst(I) - destination IP address */ /* */ /* Lookup a nat entry based on the mapped destination ip address/port and */ /* real source address/port. We use this lookup when receiving a packet, */ /* we're looking for a table entry, based on the destination address. */ /* */ /* NOTE: THE PACKET BEING CHECKED (IF FOUND) HAS A MAPPING ALREADY. */ /* */ /* NOTE: IT IS ASSUMED THAT IS ONLY HELD WITH A READ LOCK WHEN */ /* THIS FUNCTION IS CALLED WITH NAT_SEARCH SET IN nflags. */ /* */ /* flags -> relevant are IPN_UDP/IPN_TCP/IPN_ICMPQUERY that indicate if */ /* the packet is of said protocol */ /* ------------------------------------------------------------------------ */ nat_t * ipf_nat6_inlookup(fin, flags, p, src, mapdst) fr_info_t *fin; u_int flags, p; struct in6_addr *src , *mapdst; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; u_short sport, dport; grehdr_t *gre; ipnat_t *ipn; u_int sflags; nat_t *nat; int nflags; i6addr_t dst; void *ifp; u_int hv; ifp = fin->fin_ifp; sport = 0; dport = 0; gre = NULL; dst.in6 = *mapdst; sflags = flags & NAT_TCPUDPICMP; switch (p) { case IPPROTO_TCP : case IPPROTO_UDP : sport = htons(fin->fin_data[0]); dport = htons(fin->fin_data[1]); break; case IPPROTO_ICMPV6 : if (flags & IPN_ICMPERR) sport = fin->fin_data[1]; else dport = fin->fin_data[1]; break; default : break; } if ((flags & SI_WILDP) != 0) goto find_in_wild_ports; hv = NAT_HASH_FN6(&dst, dport, 0xffffffff); hv = NAT_HASH_FN6(src, hv + sport, softn->ipf_nat_table_sz); nat = softn->ipf_nat_table[1][hv]; /* TRACE dst, dport, src, sport, hv, nat */ for (; nat; nat = nat->nat_hnext[1]) { if (nat->nat_ifps[0] != NULL) { if ((ifp != NULL) && (ifp != nat->nat_ifps[0])) continue; } if (nat->nat_pr[0] != p) continue; switch (nat->nat_dir) { case NAT_INBOUND : if (nat->nat_v[0] != 6) continue; if (IP6_NEQ(&nat->nat_osrc6, src) || IP6_NEQ(&nat->nat_odst6, &dst)) continue; if ((nat->nat_flags & IPN_TCPUDP) != 0) { if (nat->nat_osport != sport) continue; if (nat->nat_odport != dport) continue; } else if (p == IPPROTO_ICMPV6) { if (nat->nat_osport != dport) { continue; } } break; case NAT_OUTBOUND : if (nat->nat_v[1] != 6) continue; if (IP6_NEQ(&nat->nat_ndst6, src) || IP6_NEQ(&nat->nat_nsrc6, &dst)) continue; if ((nat->nat_flags & IPN_TCPUDP) != 0) { if (nat->nat_ndport != sport) continue; if (nat->nat_nsport != dport) continue; } else if (p == IPPROTO_ICMPV6) { if (nat->nat_osport != dport) { continue; } } break; } if ((nat->nat_flags & IPN_TCPUDP) != 0) { ipn = nat->nat_ptr; #ifdef IPF_V6_PROXIES if ((ipn != NULL) && (nat->nat_aps != NULL)) if (appr_match(fin, nat) != 0) continue; #endif } if ((nat->nat_ifps[0] == NULL) && (ifp != NULL)) { nat->nat_ifps[0] = ifp; nat->nat_mtu[0] = GETIFMTU_6(ifp); } return nat; } /* * So if we didn't find it but there are wildcard members in the hash * table, go back and look for them. We do this search and update here * because it is modifying the NAT table and we want to do this only * for the first packet that matches. The exception, of course, is * for "dummy" (FI_IGNORE) lookups. */ find_in_wild_ports: if (!(flags & NAT_TCPUDP) || !(flags & NAT_SEARCH)) { NBUMPSIDE6DX(0, ns_lookup_miss, ns_lookup_miss_1); return NULL; } if (softn->ipf_nat_stats.ns_wilds == 0 || (fin->fin_flx & FI_NOWILD)) { NBUMPSIDE6D(0, ns_lookup_nowild); return NULL; } RWLOCK_EXIT(&softc->ipf_nat); hv = NAT_HASH_FN6(&dst, 0, 0xffffffff); hv = NAT_HASH_FN6(src, hv, softn->ipf_nat_table_sz); WRITE_ENTER(&softc->ipf_nat); nat = softn->ipf_nat_table[1][hv]; /* TRACE dst, src, hv, nat */ for (; nat; nat = nat->nat_hnext[1]) { if (nat->nat_ifps[0] != NULL) { if ((ifp != NULL) && (ifp != nat->nat_ifps[0])) continue; } if (nat->nat_pr[0] != fin->fin_p) continue; switch (nat->nat_dir) { case NAT_INBOUND : if (nat->nat_v[0] != 6) continue; if (IP6_NEQ(&nat->nat_osrc6, src) || IP6_NEQ(&nat->nat_odst6, &dst)) continue; break; case NAT_OUTBOUND : if (nat->nat_v[1] != 6) continue; if (IP6_NEQ(&nat->nat_ndst6, src) || IP6_NEQ(&nat->nat_nsrc6, &dst)) continue; break; } nflags = nat->nat_flags; if (!(nflags & (NAT_TCPUDP|SI_WILDP))) continue; if (ipf_nat_wildok(nat, (int)sport, (int)dport, nflags, NAT_INBOUND) == 1) { if ((fin->fin_flx & FI_IGNORE) != 0) break; if ((nflags & SI_CLONE) != 0) { nat = ipf_nat_clone(fin, nat); if (nat == NULL) break; } else { MUTEX_ENTER(&softn->ipf_nat_new); softn->ipf_nat_stats.ns_wilds--; MUTEX_EXIT(&softn->ipf_nat_new); } if (nat->nat_dir == NAT_INBOUND) { if (nat->nat_osport == 0) { nat->nat_osport = sport; nat->nat_nsport = sport; } if (nat->nat_odport == 0) { nat->nat_odport = dport; nat->nat_ndport = dport; } } else { if (nat->nat_osport == 0) { nat->nat_osport = dport; nat->nat_nsport = dport; } if (nat->nat_odport == 0) { nat->nat_odport = sport; nat->nat_ndport = sport; } } if ((nat->nat_ifps[0] == NULL) && (ifp != NULL)) { nat->nat_ifps[0] = ifp; nat->nat_mtu[0] = GETIFMTU_6(ifp); } nat->nat_flags &= ~(SI_W_DPORT|SI_W_SPORT); ipf_nat6_tabmove(softn, nat); break; } } MUTEX_DOWNGRADE(&softc->ipf_nat); if (nat == NULL) { NBUMPSIDE6DX(0, ns_lookup_miss, ns_lookup_miss_2); } return nat; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_tabmove */ /* Returns: Nil */ /* Parameters: nat(I) - pointer to NAT structure */ /* Write Lock: ipf_nat */ /* */ /* This function is only called for TCP/UDP NAT table entries where the */ /* original was placed in the table without hashing on the ports and we now */ /* want to include hashing on port numbers. */ /* ------------------------------------------------------------------------ */ static void ipf_nat6_tabmove(softn, nat) ipf_nat_softc_t *softn; nat_t *nat; { nat_t **natp; u_int hv0, hv1; if (nat->nat_flags & SI_CLONE) return; /* * Remove the NAT entry from the old location */ if (nat->nat_hnext[0]) nat->nat_hnext[0]->nat_phnext[0] = nat->nat_phnext[0]; *nat->nat_phnext[0] = nat->nat_hnext[0]; softn->ipf_nat_stats.ns_side[0].ns_bucketlen[nat->nat_hv[0]]--; if (nat->nat_hnext[1]) nat->nat_hnext[1]->nat_phnext[1] = nat->nat_phnext[1]; *nat->nat_phnext[1] = nat->nat_hnext[1]; softn->ipf_nat_stats.ns_side[1].ns_bucketlen[nat->nat_hv[1]]--; /* * Add into the NAT table in the new position */ hv0 = NAT_HASH_FN6(&nat->nat_osrc6, nat->nat_osport, 0xffffffff); hv0 = NAT_HASH_FN6(&nat->nat_odst6, hv0 + nat->nat_odport, softn->ipf_nat_table_sz); hv1 = NAT_HASH_FN6(&nat->nat_nsrc6, nat->nat_nsport, 0xffffffff); hv1 = NAT_HASH_FN6(&nat->nat_ndst6, hv1 + nat->nat_ndport, softn->ipf_nat_table_sz); if (nat->nat_dir == NAT_INBOUND || nat->nat_dir == NAT_DIVERTIN) { u_int swap; swap = hv0; hv0 = hv1; hv1 = swap; } /* TRACE nat_osrc6, nat_osport, nat_odst6, nat_odport, hv0 */ /* TRACE nat_nsrc6, nat_nsport, nat_ndst6, nat_ndport, hv1 */ nat->nat_hv[0] = hv0; natp = &softn->ipf_nat_table[0][hv0]; if (*natp) (*natp)->nat_phnext[0] = &nat->nat_hnext[0]; nat->nat_phnext[0] = natp; nat->nat_hnext[0] = *natp; *natp = nat; softn->ipf_nat_stats.ns_side[0].ns_bucketlen[hv0]++; nat->nat_hv[1] = hv1; natp = &softn->ipf_nat_table[1][hv1]; if (*natp) (*natp)->nat_phnext[1] = &nat->nat_hnext[1]; nat->nat_phnext[1] = natp; nat->nat_hnext[1] = *natp; *natp = nat; softn->ipf_nat_stats.ns_side[1].ns_bucketlen[hv1]++; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_outlookup */ /* Returns: nat6_t* - NULL == no match, */ /* else pointer to matching NAT entry */ /* Parameters: fin(I) - pointer to packet information */ /* flags(I) - NAT flags for this packet */ /* p(I) - protocol for this packet */ /* src(I) - source IP address */ /* dst(I) - destination IP address */ /* rw(I) - 1 == write lock on held, 0 == read lock. */ /* */ /* Lookup a nat entry based on the source 'real' ip address/port and */ /* destination address/port. We use this lookup when sending a packet out, */ /* we're looking for a table entry, based on the source address. */ /* */ /* NOTE: THE PACKET BEING CHECKED (IF FOUND) HAS A MAPPING ALREADY. */ /* */ /* NOTE: IT IS ASSUMED THAT IS ONLY HELD WITH A READ LOCK WHEN */ /* THIS FUNCTION IS CALLED WITH NAT_SEARCH SET IN nflags. */ /* */ /* flags -> relevant are IPN_UDP/IPN_TCP/IPN_ICMPQUERY that indicate if */ /* the packet is of said protocol */ /* ------------------------------------------------------------------------ */ nat_t * ipf_nat6_outlookup(fin, flags, p, src, dst) fr_info_t *fin; u_int flags, p; struct in6_addr *src , *dst; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; u_short sport, dport; u_int sflags; ipnat_t *ipn; nat_t *nat; void *ifp; u_int hv; ifp = fin->fin_ifp; sflags = flags & IPN_TCPUDPICMP; sport = 0; dport = 0; switch (p) { case IPPROTO_TCP : case IPPROTO_UDP : sport = htons(fin->fin_data[0]); dport = htons(fin->fin_data[1]); break; case IPPROTO_ICMPV6 : if (flags & IPN_ICMPERR) sport = fin->fin_data[1]; else dport = fin->fin_data[1]; break; default : break; } if ((flags & SI_WILDP) != 0) goto find_out_wild_ports; hv = NAT_HASH_FN6(src, sport, 0xffffffff); hv = NAT_HASH_FN6(dst, hv + dport, softn->ipf_nat_table_sz); nat = softn->ipf_nat_table[0][hv]; /* TRACE src, sport, dst, dport, hv, nat */ for (; nat; nat = nat->nat_hnext[0]) { if (nat->nat_ifps[1] != NULL) { if ((ifp != NULL) && (ifp != nat->nat_ifps[1])) continue; } if (nat->nat_pr[1] != p) continue; switch (nat->nat_dir) { case NAT_INBOUND : if (nat->nat_v[1] != 6) continue; if (IP6_NEQ(&nat->nat_ndst6, src) || IP6_NEQ(&nat->nat_nsrc6, dst)) continue; if ((nat->nat_flags & IPN_TCPUDP) != 0) { if (nat->nat_ndport != sport) continue; if (nat->nat_nsport != dport) continue; } else if (p == IPPROTO_ICMPV6) { if (nat->nat_osport != dport) { continue; } } break; case NAT_OUTBOUND : if (nat->nat_v[0] != 6) continue; if (IP6_NEQ(&nat->nat_osrc6, src) || IP6_NEQ(&nat->nat_odst6, dst)) continue; if ((nat->nat_flags & IPN_TCPUDP) != 0) { if (nat->nat_odport != dport) continue; if (nat->nat_osport != sport) continue; } else if (p == IPPROTO_ICMPV6) { if (nat->nat_osport != dport) { continue; } } break; } ipn = nat->nat_ptr; #ifdef IPF_V6_PROXIES if ((ipn != NULL) && (nat->nat_aps != NULL)) if (appr_match(fin, nat) != 0) continue; #endif if ((nat->nat_ifps[1] == NULL) && (ifp != NULL)) { nat->nat_ifps[1] = ifp; nat->nat_mtu[1] = GETIFMTU_6(ifp); } return nat; } /* * So if we didn't find it but there are wildcard members in the hash * table, go back and look for them. We do this search and update here * because it is modifying the NAT table and we want to do this only * for the first packet that matches. The exception, of course, is * for "dummy" (FI_IGNORE) lookups. */ find_out_wild_ports: if (!(flags & NAT_TCPUDP) || !(flags & NAT_SEARCH)) { NBUMPSIDE6DX(1, ns_lookup_miss, ns_lookup_miss_3); return NULL; } if (softn->ipf_nat_stats.ns_wilds == 0 || (fin->fin_flx & FI_NOWILD)) { NBUMPSIDE6D(1, ns_lookup_nowild); return NULL; } RWLOCK_EXIT(&softc->ipf_nat); hv = NAT_HASH_FN6(src, 0, 0xffffffff); hv = NAT_HASH_FN6(dst, hv, softn->ipf_nat_table_sz); WRITE_ENTER(&softc->ipf_nat); nat = softn->ipf_nat_table[0][hv]; for (; nat; nat = nat->nat_hnext[0]) { if (nat->nat_ifps[1] != NULL) { if ((ifp != NULL) && (ifp != nat->nat_ifps[1])) continue; } if (nat->nat_pr[1] != fin->fin_p) continue; switch (nat->nat_dir) { case NAT_INBOUND : if (nat->nat_v[1] != 6) continue; if (IP6_NEQ(&nat->nat_ndst6, src) || IP6_NEQ(&nat->nat_nsrc6, dst)) continue; break; case NAT_OUTBOUND : if (nat->nat_v[0] != 6) continue; if (IP6_NEQ(&nat->nat_osrc6, src) || IP6_NEQ(&nat->nat_odst6, dst)) continue; break; } if (!(nat->nat_flags & (NAT_TCPUDP|SI_WILDP))) continue; if (ipf_nat_wildok(nat, (int)sport, (int)dport, nat->nat_flags, NAT_OUTBOUND) == 1) { if ((fin->fin_flx & FI_IGNORE) != 0) break; if ((nat->nat_flags & SI_CLONE) != 0) { nat = ipf_nat_clone(fin, nat); if (nat == NULL) break; } else { MUTEX_ENTER(&softn->ipf_nat_new); softn->ipf_nat_stats.ns_wilds--; MUTEX_EXIT(&softn->ipf_nat_new); } if (nat->nat_dir == NAT_OUTBOUND) { if (nat->nat_osport == 0) { nat->nat_osport = sport; nat->nat_nsport = sport; } if (nat->nat_odport == 0) { nat->nat_odport = dport; nat->nat_ndport = dport; } } else { if (nat->nat_osport == 0) { nat->nat_osport = dport; nat->nat_nsport = dport; } if (nat->nat_odport == 0) { nat->nat_odport = sport; nat->nat_ndport = sport; } } if ((nat->nat_ifps[1] == NULL) && (ifp != NULL)) { nat->nat_ifps[1] = ifp; nat->nat_mtu[1] = GETIFMTU_6(ifp); } nat->nat_flags &= ~(SI_W_DPORT|SI_W_SPORT); ipf_nat6_tabmove(softn, nat); break; } } MUTEX_DOWNGRADE(&softc->ipf_nat); if (nat == NULL) { NBUMPSIDE6DX(1, ns_lookup_miss, ns_lookup_miss_4); } return nat; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_lookupredir */ /* Returns: nat6_t* - NULL == no match, */ /* else pointer to matching NAT entry */ /* Parameters: np(I) - pointer to description of packet to find NAT table */ /* entry for. */ /* */ /* Lookup the NAT tables to search for a matching redirect */ /* The contents of natlookup_t should imitate those found in a packet that */ /* would be translated - ie a packet coming in for RDR or going out for MAP.*/ /* We can do the lookup in one of two ways, imitating an inbound or */ /* outbound packet. By default we assume outbound, unless IPN_IN is set. */ /* For IN, the fields are set as follows: */ /* nl_real* = source information */ /* nl_out* = destination information (translated) */ /* For an out packet, the fields are set like this: */ /* nl_in* = source information (untranslated) */ /* nl_out* = destination information (translated) */ /* ------------------------------------------------------------------------ */ nat_t * ipf_nat6_lookupredir(np) natlookup_t *np; { fr_info_t fi; nat_t *nat; bzero((char *)&fi, sizeof(fi)); if (np->nl_flags & IPN_IN) { fi.fin_data[0] = ntohs(np->nl_realport); fi.fin_data[1] = ntohs(np->nl_outport); } else { fi.fin_data[0] = ntohs(np->nl_inport); fi.fin_data[1] = ntohs(np->nl_outport); } if (np->nl_flags & IPN_TCP) fi.fin_p = IPPROTO_TCP; else if (np->nl_flags & IPN_UDP) fi.fin_p = IPPROTO_UDP; else if (np->nl_flags & (IPN_ICMPERR|IPN_ICMPQUERY)) fi.fin_p = IPPROTO_ICMPV6; /* * We can do two sorts of lookups: * - IPN_IN: we have the `real' and `out' address, look for `in'. * - default: we have the `in' and `out' address, look for `real'. */ if (np->nl_flags & IPN_IN) { if ((nat = ipf_nat6_inlookup(&fi, np->nl_flags, fi.fin_p, &np->nl_realip6, &np->nl_outip6))) { np->nl_inip6 = nat->nat_odst6.in6; np->nl_inport = nat->nat_odport; } } else { /* * If nl_inip is non null, this is a lookup based on the real * ip address. Else, we use the fake. */ if ((nat = ipf_nat6_outlookup(&fi, np->nl_flags, fi.fin_p, &np->nl_inip6, &np->nl_outip6))) { if ((np->nl_flags & IPN_FINDFORWARD) != 0) { fr_info_t fin; bzero((char *)&fin, sizeof(fin)); fin.fin_p = nat->nat_pr[0]; fin.fin_data[0] = ntohs(nat->nat_ndport); fin.fin_data[1] = ntohs(nat->nat_nsport); if (ipf_nat6_inlookup(&fin, np->nl_flags, fin.fin_p, &nat->nat_ndst6.in6, &nat->nat_nsrc6.in6) != NULL) { np->nl_flags &= ~IPN_FINDFORWARD; } } np->nl_realip6 = nat->nat_odst6.in6; np->nl_realport = nat->nat_odport; } } return nat; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_match */ /* Returns: int - 0 == no match, 1 == match */ /* Parameters: fin(I) - pointer to packet information */ /* np(I) - pointer to NAT rule */ /* */ /* Pull the matching of a packet against a NAT rule out of that complex */ /* loop inside ipf_nat6_checkin() and lay it out properly in its own */ /* function. */ /* ------------------------------------------------------------------------ */ static int ipf_nat6_match(fin, np) fr_info_t *fin; ipnat_t *np; { frtuc_t *ft; int match; match = 0; switch (np->in_osrcatype) { case FRI_NORMAL : match = IP6_MASKNEQ(&fin->fin_src6, &np->in_osrcmsk6, &np->in_osrcip6); break; case FRI_LOOKUP : match = (*np->in_osrcfunc)(fin->fin_main_soft, np->in_osrcptr, 6, &fin->fin_src6, fin->fin_plen); break; } match ^= ((np->in_flags & IPN_NOTSRC) != 0); if (match) return 0; match = 0; switch (np->in_odstatype) { case FRI_NORMAL : match = IP6_MASKNEQ(&fin->fin_dst6, &np->in_odstmsk6, &np->in_odstip6); break; case FRI_LOOKUP : match = (*np->in_odstfunc)(fin->fin_main_soft, np->in_odstptr, 6, &fin->fin_dst6, fin->fin_plen); break; } match ^= ((np->in_flags & IPN_NOTDST) != 0); if (match) return 0; ft = &np->in_tuc; if (!(fin->fin_flx & FI_TCPUDP) || (fin->fin_flx & (FI_SHORT|FI_FRAGBODY))) { if (ft->ftu_scmp || ft->ftu_dcmp) return 0; return 1; } return ipf_tcpudpchk(&fin->fin_fi, ft); } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_checkout */ /* Returns: int - -1 == packet failed NAT checks so block it, */ /* 0 == no packet translation occurred, */ /* 1 == packet was successfully translated. */ /* Parameters: fin(I) - pointer to packet information */ /* passp(I) - pointer to filtering result flags */ /* */ /* Check to see if an outcoming packet should be changed. ICMP packets are */ /* first checked to see if they match an existing entry (if an error), */ /* otherwise a search of the current NAT table is made. If neither results */ /* in a match then a search for a matching NAT rule is made. Create a new */ /* NAT entry if a we matched a NAT rule. Lastly, actually change the */ /* packet header(s) as required. */ /* ------------------------------------------------------------------------ */ int ipf_nat6_checkout(fin, passp) fr_info_t *fin; u_32_t *passp; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; struct icmp6_hdr *icmp6 = NULL; struct ifnet *ifp, *sifp; tcphdr_t *tcp = NULL; int rval, natfailed; ipnat_t *np = NULL; u_int nflags = 0; i6addr_t ipa, iph; int natadd = 1; frentry_t *fr; nat_t *nat; if (softn->ipf_nat_stats.ns_rules == 0 || softn->ipf_nat_lock != 0) return 0; icmp6 = NULL; natfailed = 0; fr = fin->fin_fr; sifp = fin->fin_ifp; if (fr != NULL) { ifp = fr->fr_tifs[fin->fin_rev].fd_ptr; if ((ifp != NULL) && (ifp != (void *)-1)) fin->fin_ifp = ifp; } ifp = fin->fin_ifp; if (!(fin->fin_flx & FI_SHORT) && (fin->fin_off == 0)) { switch (fin->fin_p) { case IPPROTO_TCP : nflags = IPN_TCP; break; case IPPROTO_UDP : nflags = IPN_UDP; break; case IPPROTO_ICMPV6 : icmp6 = fin->fin_dp; /* * Apart from ECHO request and reply, all other * informational messages should not be translated * so as to keep IPv6 working. */ if (icmp6->icmp6_type > ICMP6_ECHO_REPLY) return 0; /* * This is an incoming packet, so the destination is * the icmp6_id and the source port equals 0 */ if ((fin->fin_flx & FI_ICMPQUERY) != 0) nflags = IPN_ICMPQUERY; break; default : break; } if ((nflags & IPN_TCPUDP)) tcp = fin->fin_dp; } ipa = fin->fin_src6; READ_ENTER(&softc->ipf_nat); if ((fin->fin_p == IPPROTO_ICMPV6) && !(nflags & IPN_ICMPQUERY) && (nat = ipf_nat6_icmperror(fin, &nflags, NAT_OUTBOUND))) /*EMPTY*/; else if ((fin->fin_flx & FI_FRAG) && (nat = ipf_frag_natknown(fin))) natadd = 0; else if ((nat = ipf_nat6_outlookup(fin, nflags|NAT_SEARCH, (u_int)fin->fin_p, &fin->fin_src6.in6, &fin->fin_dst6.in6))) { nflags = nat->nat_flags; } else if (fin->fin_off == 0) { u_32_t hv, nmsk = 0; i6addr_t *msk; /* * If there is no current entry in the nat table for this IP#, * create one for it (if there is a matching rule). */ maskloop: msk = &softn->ipf_nat6_map_active_masks[nmsk]; IP6_AND(&ipa, msk, &iph); hv = NAT_HASH_FN6(&iph, 0, softn->ipf_nat_maprules_sz); for (np = softn->ipf_nat_map_rules[hv]; np; np = np->in_mnext) { if ((np->in_ifps[1] && (np->in_ifps[1] != ifp))) continue; if (np->in_v[0] != 6) continue; if (np->in_pr[1] && (np->in_pr[1] != fin->fin_p)) continue; if ((np->in_flags & IPN_RF) && !(np->in_flags & nflags)) continue; if (np->in_flags & IPN_FILTER) { switch (ipf_nat6_match(fin, np)) { case 0 : continue; case -1 : rval = -1; goto outmatchfail; case 1 : default : break; } } else if (!IP6_MASKEQ(&ipa, &np->in_osrcmsk, &np->in_osrcip6)) continue; if ((fr != NULL) && !ipf_matchtag(&np->in_tag, &fr->fr_nattag)) continue; #ifdef IPF_V6_PROXIES if (np->in_plabel != -1) { if (((np->in_flags & IPN_FILTER) == 0) && (np->in_odport != fin->fin_data[1])) continue; if (appr_ok(fin, tcp, np) == 0) continue; } #endif if (np->in_flags & IPN_NO) { np->in_hits++; break; } MUTEX_ENTER(&softn->ipf_nat_new); nat = ipf_nat6_add(fin, np, NULL, nflags, NAT_OUTBOUND); MUTEX_EXIT(&softn->ipf_nat_new); if (nat != NULL) { np->in_hits++; break; } natfailed = -1; } if ((np == NULL) && (nmsk < softn->ipf_nat6_map_max)) { nmsk++; goto maskloop; } } if (nat != NULL) { rval = ipf_nat6_out(fin, nat, natadd, nflags); if (rval == 1) { MUTEX_ENTER(&nat->nat_lock); ipf_nat_update(fin, nat); nat->nat_bytes[1] += fin->fin_plen; nat->nat_pkts[1]++; MUTEX_EXIT(&nat->nat_lock); } } else rval = natfailed; outmatchfail: RWLOCK_EXIT(&softc->ipf_nat); switch (rval) { case -1 : if (passp != NULL) { NBUMPSIDE6D(1, ns_drop); *passp = FR_BLOCK; fin->fin_reason = FRB_NATV6; } fin->fin_flx |= FI_BADNAT; NBUMPSIDE6D(1, ns_badnat); break; case 0 : NBUMPSIDE6D(1, ns_ignored); break; case 1 : NBUMPSIDE6D(1, ns_translated); break; } fin->fin_ifp = sifp; return rval; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_out */ /* Returns: int - -1 == packet failed NAT checks so block it, */ /* 1 == packet was successfully translated. */ /* Parameters: fin(I) - pointer to packet information */ /* nat(I) - pointer to NAT structure */ /* natadd(I) - flag indicating if it is safe to add frag cache */ /* nflags(I) - NAT flags set for this packet */ /* */ /* Translate a packet coming "out" on an interface. */ /* ------------------------------------------------------------------------ */ static int ipf_nat6_out(fin, nat, natadd, nflags) fr_info_t *fin; nat_t *nat; int natadd; u_32_t nflags; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; struct icmp6_hdr *icmp6; tcphdr_t *tcp; ipnat_t *np; int skip; int i; tcp = NULL; icmp6 = NULL; np = nat->nat_ptr; if ((natadd != 0) && (fin->fin_flx & FI_FRAG) && (np != NULL)) (void) ipf_frag_natnew(softc, fin, 0, nat); /* * Address assignment is after the checksum modification because * we are using the address in the packet for determining the * correct checksum offset (the ICMP error could be coming from * anyone...) */ switch (nat->nat_dir) { case NAT_OUTBOUND : fin->fin_ip6->ip6_src = nat->nat_nsrc6.in6; fin->fin_src6 = nat->nat_nsrc6; fin->fin_ip6->ip6_dst = nat->nat_ndst6.in6; fin->fin_dst6 = nat->nat_ndst6; break; case NAT_INBOUND : fin->fin_ip6->ip6_src = nat->nat_odst6.in6; fin->fin_src6 = nat->nat_ndst6; fin->fin_ip6->ip6_dst = nat->nat_osrc6.in6; fin->fin_dst6 = nat->nat_nsrc6; break; case NAT_DIVERTIN : { mb_t *m; skip = ipf_nat6_decap(fin, nat); if (skip <= 0) { NBUMPSIDE6D(1, ns_decap_fail); return -1; } m = fin->fin_m; -#if defined(MENTAT) && defined(_KERNEL) +#if SOLARIS && defined(_KERNEL) m->b_rptr += skip; #else m->m_data += skip; m->m_len -= skip; # ifdef M_PKTHDR if (m->m_flags & M_PKTHDR) m->m_pkthdr.len -= skip; # endif #endif MUTEX_ENTER(&nat->nat_lock); ipf_nat_update(fin, nat); MUTEX_EXIT(&nat->nat_lock); fin->fin_flx |= FI_NATED; if (np != NULL && np->in_tag.ipt_num[0] != 0) fin->fin_nattag = &np->in_tag; return 1; /* NOTREACHED */ } case NAT_DIVERTOUT : { udphdr_t *uh; ip6_t *ip6; mb_t *m; m = M_DUP(np->in_divmp); if (m == NULL) { NBUMPSIDE6D(1, ns_divert_dup); return -1; } ip6 = MTOD(m, ip6_t *); ip6->ip6_plen = htons(fin->fin_plen + 8); uh = (udphdr_t *)(ip6 + 1); uh->uh_ulen = htons(fin->fin_plen); PREP_MB_T(fin, m); fin->fin_ip6 = ip6; fin->fin_plen += sizeof(ip6_t) + 8; /* UDP + new IPv4 hdr */ fin->fin_dlen += sizeof(ip6_t) + 8; /* UDP + old IPv4 hdr */ nflags &= ~IPN_TCPUDPICMP; break; } default : break; } if (!(fin->fin_flx & FI_SHORT) && (fin->fin_off == 0)) { u_short *csump; if ((nat->nat_nsport != 0) && (nflags & IPN_TCPUDP)) { tcp = fin->fin_dp; switch (nat->nat_dir) { case NAT_OUTBOUND : tcp->th_sport = nat->nat_nsport; fin->fin_data[0] = ntohs(nat->nat_nsport); tcp->th_dport = nat->nat_ndport; fin->fin_data[1] = ntohs(nat->nat_ndport); break; case NAT_INBOUND : tcp->th_sport = nat->nat_odport; fin->fin_data[0] = ntohs(nat->nat_odport); tcp->th_dport = nat->nat_osport; fin->fin_data[1] = ntohs(nat->nat_osport); break; } } if ((nat->nat_nsport != 0) && (nflags & IPN_ICMPQUERY)) { icmp6 = fin->fin_dp; icmp6->icmp6_id = nat->nat_nicmpid; } csump = ipf_nat_proto(fin, nat, nflags); /* * The above comments do not hold for layer 4 (or higher) * checksums... */ if (csump != NULL) { if (nat->nat_dir == NAT_OUTBOUND) ipf_fix_outcksum(fin->fin_cksum, csump, nat->nat_sumd[0], nat->nat_sumd[1] + fin->fin_dlen); else ipf_fix_incksum(fin->fin_cksum, csump, nat->nat_sumd[0], nat->nat_sumd[1] + fin->fin_dlen); } } ipf_sync_update(softc, SMC_NAT, fin, nat->nat_sync); /* ------------------------------------------------------------- */ /* A few quick notes: */ /* Following are test conditions prior to calling the */ /* ipf_proxy_check routine. */ /* */ /* A NULL tcp indicates a non TCP/UDP packet. When dealing */ /* with a redirect rule, we attempt to match the packet's */ /* source port against in_dport, otherwise we'd compare the */ /* packet's destination. */ /* ------------------------------------------------------------- */ if ((np != NULL) && (np->in_apr != NULL)) { i = ipf_proxy_check(fin, nat); if (i == 0) { i = 1; } else if (i == -1) { NBUMPSIDE6D(1, ns_ipf_proxy_fail); } } else { i = 1; } fin->fin_flx |= FI_NATED; return i; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_checkin */ /* Returns: int - -1 == packet failed NAT checks so block it, */ /* 0 == no packet translation occurred, */ /* 1 == packet was successfully translated. */ /* Parameters: fin(I) - pointer to packet information */ /* passp(I) - pointer to filtering result flags */ /* */ /* Check to see if an incoming packet should be changed. ICMP packets are */ /* first checked to see if they match an existing entry (if an error), */ /* otherwise a search of the current NAT table is made. If neither results */ /* in a match then a search for a matching NAT rule is made. Create a new */ /* NAT entry if a we matched a NAT rule. Lastly, actually change the */ /* packet header(s) as required. */ /* ------------------------------------------------------------------------ */ int ipf_nat6_checkin(fin, passp) fr_info_t *fin; u_32_t *passp; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; struct icmp6_hdr *icmp6; u_int nflags, natadd; int rval, natfailed; struct ifnet *ifp; i6addr_t ipa, iph; tcphdr_t *tcp; u_short dport; ipnat_t *np; nat_t *nat; if (softn->ipf_nat_stats.ns_rules == 0 || softn->ipf_nat_lock != 0) return 0; tcp = NULL; icmp6 = NULL; dport = 0; natadd = 1; nflags = 0; natfailed = 0; ifp = fin->fin_ifp; if (!(fin->fin_flx & FI_SHORT) && (fin->fin_off == 0)) { switch (fin->fin_p) { case IPPROTO_TCP : nflags = IPN_TCP; break; case IPPROTO_UDP : nflags = IPN_UDP; break; case IPPROTO_ICMPV6 : icmp6 = fin->fin_dp; /* * Apart from ECHO request and reply, all other * informational messages should not be translated * so as to keep IPv6 working. */ if (icmp6->icmp6_type > ICMP6_ECHO_REPLY) return 0; /* * This is an incoming packet, so the destination is * the icmp6_id and the source port equals 0 */ if ((fin->fin_flx & FI_ICMPQUERY) != 0) { nflags = IPN_ICMPQUERY; dport = icmp6->icmp6_id; } break; default : break; } if ((nflags & IPN_TCPUDP)) { tcp = fin->fin_dp; dport = fin->fin_data[1]; } } ipa = fin->fin_dst6; READ_ENTER(&softc->ipf_nat); if ((fin->fin_p == IPPROTO_ICMPV6) && !(nflags & IPN_ICMPQUERY) && (nat = ipf_nat6_icmperror(fin, &nflags, NAT_INBOUND))) /*EMPTY*/; else if ((fin->fin_flx & FI_FRAG) && (nat = ipf_frag_natknown(fin))) natadd = 0; else if ((nat = ipf_nat6_inlookup(fin, nflags|NAT_SEARCH, (u_int)fin->fin_p, &fin->fin_src6.in6, &ipa.in6))) { nflags = nat->nat_flags; } else if (fin->fin_off == 0) { u_32_t hv, rmsk = 0; i6addr_t *msk; /* * If there is no current entry in the nat table for this IP#, * create one for it (if there is a matching rule). */ maskloop: msk = &softn->ipf_nat6_rdr_active_masks[rmsk]; IP6_AND(&ipa, msk, &iph); hv = NAT_HASH_FN6(&iph, 0, softn->ipf_nat_rdrrules_sz); for (np = softn->ipf_nat_rdr_rules[hv]; np; np = np->in_rnext) { if (np->in_ifps[0] && (np->in_ifps[0] != ifp)) continue; if (np->in_v[0] != 6) continue; if (np->in_pr[0] && (np->in_pr[0] != fin->fin_p)) continue; if ((np->in_flags & IPN_RF) && !(np->in_flags & nflags)) continue; if (np->in_flags & IPN_FILTER) { switch (ipf_nat6_match(fin, np)) { case 0 : continue; case -1 : rval = -1; goto inmatchfail; case 1 : default : break; } } else { if (!IP6_MASKEQ(&ipa, &np->in_odstmsk6, &np->in_odstip6)) { continue; } if (np->in_odport && ((np->in_dtop < dport) || (dport < np->in_odport))) continue; } #ifdef IPF_V6_PROXIES if (np->in_plabel != -1) { if (!appr_ok(fin, tcp, np)) { continue; } } #endif if (np->in_flags & IPN_NO) { np->in_hits++; break; } MUTEX_ENTER(&softn->ipf_nat_new); nat = ipf_nat6_add(fin, np, NULL, nflags, NAT_INBOUND); MUTEX_EXIT(&softn->ipf_nat_new); if (nat != NULL) { np->in_hits++; break; } natfailed = -1; } if ((np == NULL) && (rmsk < softn->ipf_nat6_rdr_max)) { rmsk++; goto maskloop; } } if (nat != NULL) { rval = ipf_nat6_in(fin, nat, natadd, nflags); if (rval == 1) { MUTEX_ENTER(&nat->nat_lock); ipf_nat_update(fin, nat); nat->nat_bytes[0] += fin->fin_plen; nat->nat_pkts[0]++; MUTEX_EXIT(&nat->nat_lock); } } else rval = natfailed; inmatchfail: RWLOCK_EXIT(&softc->ipf_nat); switch (rval) { case -1 : if (passp != NULL) { NBUMPSIDE6D(0, ns_drop); *passp = FR_BLOCK; fin->fin_reason = FRB_NATV6; } fin->fin_flx |= FI_BADNAT; NBUMPSIDE6D(0, ns_badnat); break; case 0 : NBUMPSIDE6D(0, ns_ignored); break; case 1 : NBUMPSIDE6D(0, ns_translated); break; } return rval; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_in */ /* Returns: int - -1 == packet failed NAT checks so block it, */ /* 1 == packet was successfully translated. */ /* Parameters: fin(I) - pointer to packet information */ /* nat(I) - pointer to NAT structure */ /* natadd(I) - flag indicating if it is safe to add frag cache */ /* nflags(I) - NAT flags set for this packet */ /* Locks Held: (READ) */ /* */ /* Translate a packet coming "in" on an interface. */ /* ------------------------------------------------------------------------ */ static int ipf_nat6_in(fin, nat, natadd, nflags) fr_info_t *fin; nat_t *nat; int natadd; u_32_t nflags; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; struct icmp6_hdr *icmp6; u_short *csump; tcphdr_t *tcp; ipnat_t *np; int skip; int i; tcp = NULL; csump = NULL; np = nat->nat_ptr; fin->fin_fr = nat->nat_fr; if (np != NULL) { if ((natadd != 0) && (fin->fin_flx & FI_FRAG)) (void) ipf_frag_natnew(softc, fin, 0, nat); /* ------------------------------------------------------------- */ /* A few quick notes: */ /* Following are test conditions prior to calling the */ /* ipf_proxy_check routine. */ /* */ /* A NULL tcp indicates a non TCP/UDP packet. When dealing */ /* with a map rule, we attempt to match the packet's */ /* source port against in_dport, otherwise we'd compare the */ /* packet's destination. */ /* ------------------------------------------------------------- */ if (np->in_apr != NULL) { i = ipf_proxy_check(fin, nat); if (i == -1) { NBUMPSIDE6D(0, ns_ipf_proxy_fail); return -1; } } } ipf_sync_update(softc, SMC_NAT, fin, nat->nat_sync); /* * Fix up checksums, not by recalculating them, but * simply computing adjustments. * Why only do this for some platforms on inbound packets ? * Because for those that it is done, IP processing is yet to happen * and so the IPv4 header checksum has not yet been evaluated. * Perhaps it should always be done for the benefit of things like * fast forwarding (so that it doesn't need to be recomputed) but with * header checksum offloading, perhaps it is a moot point. */ switch (nat->nat_dir) { case NAT_INBOUND : if ((fin->fin_flx & FI_ICMPERR) == 0) { fin->fin_ip6->ip6_src = nat->nat_nsrc6.in6; fin->fin_src6 = nat->nat_nsrc6; } fin->fin_ip6->ip6_dst = nat->nat_ndst6.in6; fin->fin_dst6 = nat->nat_ndst6; break; case NAT_OUTBOUND : if ((fin->fin_flx & FI_ICMPERR) == 0) { fin->fin_ip6->ip6_src = nat->nat_odst6.in6; fin->fin_src6 = nat->nat_odst6; } fin->fin_ip6->ip6_dst = nat->nat_osrc6.in6; fin->fin_dst6 = nat->nat_osrc6; break; case NAT_DIVERTIN : { udphdr_t *uh; ip6_t *ip6; mb_t *m; m = M_DUP(np->in_divmp); if (m == NULL) { NBUMPSIDE6D(0, ns_divert_dup); return -1; } ip6 = MTOD(m, ip6_t *); ip6->ip6_plen = htons(fin->fin_plen + sizeof(udphdr_t)); uh = (udphdr_t *)(ip6 + 1); uh->uh_ulen = ntohs(fin->fin_plen); PREP_MB_T(fin, m); fin->fin_ip6 = ip6; fin->fin_plen += sizeof(ip6_t) + 8; /* UDP + new IPv6 hdr */ fin->fin_dlen += sizeof(ip6_t) + 8; /* UDP + old IPv6 hdr */ nflags &= ~IPN_TCPUDPICMP; break; } case NAT_DIVERTOUT : { mb_t *m; skip = ipf_nat6_decap(fin, nat); if (skip <= 0) { NBUMPSIDE6D(0, ns_decap_fail); return -1; } m = fin->fin_m; -#if defined(MENTAT) && defined(_KERNEL) +#if SOLARIS && defined(_KERNEL) m->b_rptr += skip; #else m->m_data += skip; m->m_len -= skip; # ifdef M_PKTHDR if (m->m_flags & M_PKTHDR) m->m_pkthdr.len -= skip; # endif #endif ipf_nat_update(fin, nat); fin->fin_flx |= FI_NATED; if (np != NULL && np->in_tag.ipt_num[0] != 0) fin->fin_nattag = &np->in_tag; return 1; /* NOTREACHED */ } } if (nflags & IPN_TCPUDP) tcp = fin->fin_dp; if (!(fin->fin_flx & FI_SHORT) && (fin->fin_off == 0)) { if ((nat->nat_odport != 0) && (nflags & IPN_TCPUDP)) { switch (nat->nat_dir) { case NAT_INBOUND : tcp->th_sport = nat->nat_nsport; fin->fin_data[0] = ntohs(nat->nat_nsport); tcp->th_dport = nat->nat_ndport; fin->fin_data[1] = ntohs(nat->nat_ndport); break; case NAT_OUTBOUND : tcp->th_sport = nat->nat_odport; fin->fin_data[0] = ntohs(nat->nat_odport); tcp->th_dport = nat->nat_osport; fin->fin_data[1] = ntohs(nat->nat_osport); break; } } if ((nat->nat_odport != 0) && (nflags & IPN_ICMPQUERY)) { icmp6 = fin->fin_dp; icmp6->icmp6_id = nat->nat_nicmpid; } csump = ipf_nat_proto(fin, nat, nflags); } /* * The above comments do not hold for layer 4 (or higher) checksums... */ if (csump != NULL) { if (nat->nat_dir == NAT_OUTBOUND) ipf_fix_incksum(0, csump, nat->nat_sumd[0], 0); else ipf_fix_outcksum(0, csump, nat->nat_sumd[0], 0); } fin->fin_flx |= FI_NATED; if (np != NULL && np->in_tag.ipt_num[0] != 0) fin->fin_nattag = &np->in_tag; return 1; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_newrewrite */ /* Returns: int - -1 == error, 0 == success (no move), 1 == success and */ /* allow rule to be moved if IPN_ROUNDR is set. */ /* Parameters: fin(I) - pointer to packet information */ /* nat(I) - pointer to NAT entry */ /* ni(I) - pointer to structure with misc. information needed */ /* to create new NAT entry. */ /* Write Lock: ipf_nat */ /* */ /* This function is responsible for setting up an active NAT session where */ /* we are changing both the source and destination parameters at the same */ /* time. The loop in here works differently to elsewhere - each iteration */ /* is responsible for changing a single parameter that can be incremented. */ /* So one pass may increase the source IP#, next source port, next dest. IP#*/ /* and the last destination port for a total of 4 iterations to try each. */ /* This is done to try and exhaustively use the translation space available.*/ /* ------------------------------------------------------------------------ */ int ipf_nat6_newrewrite(fin, nat, nai) fr_info_t *fin; nat_t *nat; natinfo_t *nai; { int src_search = 1; int dst_search = 1; fr_info_t frnat; u_32_t flags; u_short swap; ipnat_t *np; nat_t *natl; int l = 0; int changed; natl = NULL; changed = -1; np = nai->nai_np; flags = nat->nat_flags; bcopy((char *)fin, (char *)&frnat, sizeof(*fin)); nat->nat_hm = NULL; do { changed = -1; /* TRACE (l, src_search, dst_search, np) */ if ((src_search == 0) && (np->in_spnext == 0) && (dst_search == 0) && (np->in_dpnext == 0)) { if (l > 0) return -1; } /* * Find a new source address */ if (ipf_nat6_nextaddr(fin, &np->in_nsrc, &frnat.fin_src6, &frnat.fin_src6) == -1) { return -1; } if (IP6_ISZERO(&np->in_nsrcip6) && IP6_ISONES(&np->in_nsrcmsk6)) { src_search = 0; if (np->in_stepnext == 0) np->in_stepnext = 1; } else if (IP6_ISZERO(&np->in_nsrcip6) && IP6_ISZERO(&np->in_nsrcmsk6)) { src_search = 0; if (np->in_stepnext == 0) np->in_stepnext = 1; } else if (IP6_ISONES(&np->in_nsrcmsk)) { src_search = 0; if (np->in_stepnext == 0) np->in_stepnext = 1; } else if (!IP6_ISONES(&np->in_nsrcmsk6)) { if (np->in_stepnext == 0 && changed == -1) { IP6_INC(&np->in_snip); np->in_stepnext++; changed = 0; } } if ((flags & IPN_TCPUDPICMP) != 0) { if (np->in_spnext != 0) frnat.fin_data[0] = np->in_spnext; /* * Standard port translation. Select next port. */ if ((flags & IPN_FIXEDSPORT) != 0) { np->in_stepnext = 2; } else if ((np->in_stepnext == 1) && (changed == -1) && (natl != NULL)) { np->in_spnext++; np->in_stepnext++; changed = 1; if (np->in_spnext > np->in_spmax) np->in_spnext = np->in_spmin; } } else { np->in_stepnext = 2; } np->in_stepnext &= 0x3; /* * Find a new destination address */ /* TRACE (fin, np, l, frnat) */ if (ipf_nat6_nextaddr(fin, &np->in_ndst, &frnat.fin_dst6, &frnat.fin_dst6) == -1) return -1; if (IP6_ISZERO(&np->in_ndstip6) && IP6_ISONES(&np->in_ndstmsk6)) { dst_search = 0; if (np->in_stepnext == 2) np->in_stepnext = 3; } else if (IP6_ISZERO(&np->in_ndstip6) && IP6_ISZERO(&np->in_ndstmsk6)) { dst_search = 0; if (np->in_stepnext == 2) np->in_stepnext = 3; } else if (IP6_ISONES(&np->in_ndstmsk6)) { dst_search = 0; if (np->in_stepnext == 2) np->in_stepnext = 3; } else if (!IP6_ISONES(&np->in_ndstmsk6)) { if ((np->in_stepnext == 2) && (changed == -1) && (natl != NULL)) { changed = 2; np->in_stepnext++; IP6_INC(&np->in_dnip6); } } if ((flags & IPN_TCPUDPICMP) != 0) { if (np->in_dpnext != 0) frnat.fin_data[1] = np->in_dpnext; /* * Standard port translation. Select next port. */ if ((flags & IPN_FIXEDDPORT) != 0) { np->in_stepnext = 0; } else if (np->in_stepnext == 3 && changed == -1) { np->in_dpnext++; np->in_stepnext++; changed = 3; if (np->in_dpnext > np->in_dpmax) np->in_dpnext = np->in_dpmin; } } else { if (np->in_stepnext == 3) np->in_stepnext = 0; } /* TRACE (frnat) */ /* * Here we do a lookup of the connection as seen from * the outside. If an IP# pair already exists, try * again. So if you have A->B becomes C->B, you can * also have D->E become C->E but not D->B causing * another C->B. Also take protocol and ports into * account when determining whether a pre-existing * NAT setup will cause an external conflict where * this is appropriate. * * fin_data[] is swapped around because we are doing a * lookup of the packet is if it were moving in the opposite * direction of the one we are working with now. */ if (flags & IPN_TCPUDP) { swap = frnat.fin_data[0]; frnat.fin_data[0] = frnat.fin_data[1]; frnat.fin_data[1] = swap; } if (fin->fin_out == 1) { natl = ipf_nat6_inlookup(&frnat, flags & ~(SI_WILDP|NAT_SEARCH), (u_int)frnat.fin_p, &frnat.fin_dst6.in6, &frnat.fin_src6.in6); } else { natl = ipf_nat6_outlookup(&frnat, flags & ~(SI_WILDP|NAT_SEARCH), (u_int)frnat.fin_p, &frnat.fin_dst6.in6, &frnat.fin_src6.in6); } if (flags & IPN_TCPUDP) { swap = frnat.fin_data[0]; frnat.fin_data[0] = frnat.fin_data[1]; frnat.fin_data[1] = swap; } /* TRACE natl, in_stepnext, l */ if ((natl != NULL) && (l > 8)) /* XXX 8 is arbitrary */ return -1; np->in_stepnext &= 0x3; l++; changed = -1; } while (natl != NULL); nat->nat_osrc6 = fin->fin_src6; nat->nat_odst6 = fin->fin_dst6; nat->nat_nsrc6 = frnat.fin_src6; nat->nat_ndst6 = frnat.fin_dst6; if ((flags & IPN_TCPUDP) != 0) { nat->nat_osport = htons(fin->fin_data[0]); nat->nat_odport = htons(fin->fin_data[1]); nat->nat_nsport = htons(frnat.fin_data[0]); nat->nat_ndport = htons(frnat.fin_data[1]); } else if ((flags & IPN_ICMPQUERY) != 0) { nat->nat_oicmpid = fin->fin_data[1]; nat->nat_nicmpid = frnat.fin_data[1]; } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_newdivert */ /* Returns: int - -1 == error, 0 == success */ /* Parameters: fin(I) - pointer to packet information */ /* nat(I) - pointer to NAT entry */ /* ni(I) - pointer to structure with misc. information needed */ /* to create new NAT entry. */ /* Write Lock: ipf_nat */ /* */ /* Create a new NAT divert session as defined by the NAT rule. This is */ /* somewhat different to other NAT session creation routines because we */ /* do not iterate through either port numbers or IP addresses, searching */ /* for a unique mapping, however, a complimentary duplicate check is made. */ /* ------------------------------------------------------------------------ */ int ipf_nat6_newdivert(fin, nat, nai) fr_info_t *fin; nat_t *nat; natinfo_t *nai; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; fr_info_t frnat; ipnat_t *np; nat_t *natl; int p; np = nai->nai_np; bcopy((char *)fin, (char *)&frnat, sizeof(*fin)); nat->nat_pr[0] = 0; nat->nat_osrc6 = fin->fin_src6; nat->nat_odst6 = fin->fin_dst6; nat->nat_osport = htons(fin->fin_data[0]); nat->nat_odport = htons(fin->fin_data[1]); frnat.fin_src6 = np->in_snip6; frnat.fin_dst6 = np->in_dnip6; if (np->in_redir & NAT_DIVERTUDP) { frnat.fin_data[0] = np->in_spnext; frnat.fin_data[1] = np->in_dpnext; frnat.fin_flx |= FI_TCPUDP; p = IPPROTO_UDP; } else { frnat.fin_flx &= ~FI_TCPUDP; p = IPPROTO_IPIP; } if (fin->fin_out == 1) { natl = ipf_nat6_inlookup(&frnat, 0, p, &frnat.fin_dst6.in6, &frnat.fin_src6.in6); } else { natl = ipf_nat6_outlookup(&frnat, 0, p, &frnat.fin_dst6.in6, &frnat.fin_src6.in6); } if (natl != NULL) { NBUMPSIDE6D(fin->fin_out, ns_divert_exist); return -1; } nat->nat_nsrc6 = frnat.fin_src6; nat->nat_ndst6 = frnat.fin_dst6; if (np->in_redir & NAT_DIVERTUDP) { nat->nat_nsport = htons(frnat.fin_data[0]); nat->nat_ndport = htons(frnat.fin_data[1]); } nat->nat_pr[fin->fin_out] = fin->fin_p; nat->nat_pr[1 - fin->fin_out] = p; if (np->in_redir & NAT_REDIRECT) nat->nat_dir = NAT_DIVERTIN; else nat->nat_dir = NAT_DIVERTOUT; return 0; } /* ------------------------------------------------------------------------ */ /* Function: nat6_builddivertmp */ /* Returns: int - -1 == error, 0 == success */ /* Parameters: np(I) - pointer to a NAT rule */ /* */ /* For divert rules, a skeleton packet representing what will be prepended */ /* to the real packet is created. Even though we don't have the full */ /* packet here, a checksum is calculated that we update later when we */ /* fill in the final details. At present a 0 checksum for UDP is being set */ /* here because it is expected that divert will be used for localhost. */ /* ------------------------------------------------------------------------ */ static int ipf_nat6_builddivertmp(softn, np) ipf_nat_softc_t *softn; ipnat_t *np; { udphdr_t *uh; size_t len; ip6_t *ip6; if ((np->in_redir & NAT_DIVERTUDP) != 0) len = sizeof(ip6_t) + sizeof(udphdr_t); else len = sizeof(ip6_t); ALLOC_MB_T(np->in_divmp, len); if (np->in_divmp == NULL) { ATOMIC_INCL(softn->ipf_nat_stats.ns_divert_build); return -1; } /* * First, the header to get the packet diverted to the new destination */ ip6 = MTOD(np->in_divmp, ip6_t *); ip6->ip6_vfc = 0x60; if ((np->in_redir & NAT_DIVERTUDP) != 0) ip6->ip6_nxt = IPPROTO_UDP; else ip6->ip6_nxt = IPPROTO_IPIP; ip6->ip6_hlim = 255; ip6->ip6_plen = 0; ip6->ip6_src = np->in_snip6.in6; ip6->ip6_dst = np->in_dnip6.in6; if (np->in_redir & NAT_DIVERTUDP) { uh = (udphdr_t *)((u_char *)ip6 + sizeof(*ip6)); uh->uh_sum = 0; uh->uh_ulen = 8; uh->uh_sport = htons(np->in_spnext); uh->uh_dport = htons(np->in_dpnext); } return 0; } #define MINDECAP (sizeof(ip6_t) + sizeof(udphdr_t) + sizeof(ip6_t)) /* ------------------------------------------------------------------------ */ /* Function: nat6_decap */ /* Returns: int - -1 == error, 0 == success */ /* Parameters: fin(I) - pointer to packet information */ /* nat(I) - pointer to current NAT session */ /* */ /* This function is responsible for undoing a packet's encapsulation in the */ /* reverse of an encap/divert rule. After removing the outer encapsulation */ /* it is necessary to call ipf_makefrip() again so that the contents of 'fin'*/ /* match the "new" packet as it may still be used by IPFilter elsewhere. */ /* We use "dir" here as the basis for some of the expectations about the */ /* outer header. If we return an error, the goal is to leave the original */ /* packet information undisturbed - this falls short at the end where we'd */ /* need to back a backup copy of "fin" - expensive. */ /* ------------------------------------------------------------------------ */ static int ipf_nat6_decap(fin, nat) fr_info_t *fin; nat_t *nat; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; char *hdr; int skip; mb_t *m; if ((fin->fin_flx & FI_ICMPERR) != 0) { return 0; } m = fin->fin_m; skip = fin->fin_hlen; switch (nat->nat_dir) { case NAT_DIVERTIN : case NAT_DIVERTOUT : if (fin->fin_plen < MINDECAP) return -1; skip += sizeof(udphdr_t); break; case NAT_ENCAPIN : case NAT_ENCAPOUT : if (fin->fin_plen < (skip + sizeof(ip6_t))) return -1; break; default : return -1; /* NOTREACHED */ } /* * The aim here is to keep the original packet details in "fin" for * as long as possible so that returning with an error is for the * original packet and there is little undoing work to do. */ if (M_LEN(m) < skip + sizeof(ip6_t)) { if (ipf_pr_pullup(fin, skip + sizeof(ip6_t)) == -1) return -1; } hdr = MTOD(fin->fin_m, char *); fin->fin_ip6 = (ip6_t *)(hdr + skip); if (ipf_pr_pullup(fin, skip + sizeof(ip6_t)) == -1) { NBUMPSIDE6D(fin->fin_out, ns_decap_pullup); return -1; } fin->fin_hlen = sizeof(ip6_t); fin->fin_dlen -= skip; fin->fin_plen -= skip; fin->fin_ipoff += skip; if (ipf_makefrip(sizeof(ip6_t), (ip_t *)hdr, fin) == -1) { NBUMPSIDE6D(fin->fin_out, ns_decap_bad); return -1; } return skip; } /* ------------------------------------------------------------------------ */ /* Function: nat6_nextaddr */ /* Returns: int - -1 == bad input (no new address), */ /* 0 == success and dst has new address */ /* Parameters: fin(I) - pointer to packet information */ /* na(I) - how to generate new address */ /* old(I) - original address being replaced */ /* dst(O) - where to put the new address */ /* Write Lock: ipf_nat */ /* */ /* This function uses the contents of the "na" structure, in combination */ /* with "old" to produce a new address to store in "dst". Not all of the */ /* possible uses of "na" will result in a new address. */ /* ------------------------------------------------------------------------ */ static int ipf_nat6_nextaddr(fin, na, old, dst) fr_info_t *fin; nat_addr_t *na; i6addr_t *old, *dst; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_nat_softc_t *softn = softc->ipf_nat_soft; i6addr_t newip, new; u_32_t amin, amax; int error; new.i6[0] = 0; new.i6[1] = 0; new.i6[2] = 0; new.i6[3] = 0; amin = na->na_addr[0].in4.s_addr; switch (na->na_atype) { case FRI_RANGE : amax = na->na_addr[1].in4.s_addr; break; case FRI_NETMASKED : case FRI_DYNAMIC : case FRI_NORMAL : /* * Compute the maximum address by adding the inverse of the * netmask to the minimum address. */ amax = ~na->na_addr[1].in4.s_addr; amax |= amin; break; case FRI_LOOKUP : break; case FRI_BROADCAST : case FRI_PEERADDR : case FRI_NETWORK : default : return -1; } error = -1; switch (na->na_function) { case IPLT_DSTLIST : error = ipf_dstlist_select_node(fin, na->na_ptr, dst->i6, NULL); break; case IPLT_NONE : /* * 0/0 as the new address means leave it alone. */ if (na->na_addr[0].in4.s_addr == 0 && na->na_addr[1].in4.s_addr == 0) { new = *old; /* * 0/32 means get the interface's address */ } else if (IP6_ISZERO(&na->na_addr[0].in6) && IP6_ISONES(&na->na_addr[1].in6)) { if (ipf_ifpaddr(softc, 6, na->na_atype, fin->fin_ifp, &newip, NULL) == -1) { NBUMPSIDE6(fin->fin_out, ns_ifpaddrfail); return -1; } new = newip; } else { new.in6 = na->na_nextip6; } *dst = new; error = 0; break; default : NBUMPSIDE6(fin->fin_out, ns_badnextaddr); break; } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_nextaddrinit */ /* Returns: int - 0 == success, else error number */ /* Parameters: na(I) - NAT address information for generating new addr*/ /* base(I) - start of where to find strings */ /* initial(I) - flag indicating if it is the first call for */ /* this "na" structure. */ /* ifp(I) - network interface to derive address */ /* information from. */ /* */ /* This function is expected to be called in two scenarious: when a new NAT */ /* rule is loaded into the kernel and when the list of NAT rules is sync'd */ /* up with the valid network interfaces (possibly due to them changing.) */ /* To distinguish between these, the "initial" parameter is used. If it is */ /* 1 then this indicates the rule has just been reloaded and 0 for when we */ /* are updating information. This difference is important because in */ /* instances where we are not updating address information associated with */ /* a network interface, we don't want to disturb what the "next" address to */ /* come out of ipf_nat6_nextaddr() will be. */ /* ------------------------------------------------------------------------ */ static int ipf_nat6_nextaddrinit(softc, base, na, initial, ifp) ipf_main_softc_t *softc; char *base; nat_addr_t *na; int initial; void *ifp; { switch (na->na_atype) { case FRI_LOOKUP : if (na->na_subtype == 0) { na->na_ptr = ipf_lookup_res_num(softc, IPL_LOGNAT, na->na_type, na->na_num, &na->na_func); } else if (na->na_subtype == 1) { na->na_ptr = ipf_lookup_res_name(softc, IPL_LOGNAT, na->na_type, base + na->na_num, &na->na_func); } if (na->na_func == NULL) { IPFERROR(60072); return ESRCH; } if (na->na_ptr == NULL) { IPFERROR(60073); return ESRCH; } break; case FRI_DYNAMIC : case FRI_BROADCAST : case FRI_NETWORK : case FRI_NETMASKED : case FRI_PEERADDR : if (ifp != NULL) (void )ipf_ifpaddr(softc, 6, na->na_atype, ifp, &na->na_addr[0], &na->na_addr[1]); break; case FRI_SPLIT : case FRI_RANGE : if (initial) na->na_nextip6 = na->na_addr[0].in6; break; case FRI_NONE : IP6_ANDASSIGN(&na->na_addr[0].in6, &na->na_addr[1].in6); return 0; case FRI_NORMAL : IP6_ANDASSIGN(&na->na_addr[0].in6, &na->na_addr[1].in6); break; default : IPFERROR(60074); return EINVAL; } if (initial && (na->na_atype == FRI_NORMAL)) { if (IP6_ISZERO(&na->na_addr[0].in6)) { if (IP6_ISONES(&na->na_addr[1].in6) || IP6_ISZERO(&na->na_addr[1].in6)) { return 0; } } na->na_nextip6 = na->na_addr[0].in6; if (!IP6_ISONES(&na->na_addr[1].in6)) { IP6_INC(&na->na_nextip6); } } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nat6_icmpquerytype */ /* Returns: int - 1 == success, 0 == failure */ /* Parameters: icmptype(I) - ICMP type number */ /* */ /* Tests to see if the ICMP type number passed is a query/response type or */ /* not. */ /* ------------------------------------------------------------------------ */ static int ipf_nat6_icmpquerytype(icmptype) int icmptype; { /* * For the ICMP query NAT code, it is essential that both the query * and the reply match on the NAT rule. Because the NAT structure * does not keep track of the icmptype, and a single NAT structure * is used for all icmp types with the same src, dest and id, we * simply define the replies as queries as well. The funny thing is, * altough it seems silly to call a reply a query, this is exactly * as it is defined in the IPv4 specification */ switch (icmptype) { case ICMP6_ECHO_REPLY: case ICMP6_ECHO_REQUEST: /* route aedvertisement/solliciation is currently unsupported: */ /* it would require rewriting the ICMP data section */ case ICMP6_MEMBERSHIP_QUERY: case ICMP6_MEMBERSHIP_REPORT: case ICMP6_MEMBERSHIP_REDUCTION: case ICMP6_WRUREQUEST: case ICMP6_WRUREPLY: case MLD6_MTRACE_RESP: case MLD6_MTRACE: return 1; default: return 0; } } #endif /* USE_INET6 */ diff --git a/sys/contrib/ipfilter/netinet/ip_proxy.c b/sys/contrib/ipfilter/netinet/ip_proxy.c index 227ca817f6e4..2c6b4eb6369d 100644 --- a/sys/contrib/ipfilter/netinet/ip_proxy.c +++ b/sys/contrib/ipfilter/netinet/ip_proxy.c @@ -1,1466 +1,1466 @@ /* $FreeBSD$ */ /* * Copyright (C) 2012 by Darren Reed. * * See the IPFILTER.LICENCE file for details on licencing. */ #if defined(KERNEL) || defined(_KERNEL) # undef KERNEL # undef _KERNEL # define KERNEL 1 # define _KERNEL 1 #endif #include #include #include #include #include # include #if !defined(_KERNEL) && !defined(__KERNEL__) # include # include # include # include # define _KERNEL # include # undef _KERNEL #endif # include #include #if defined(_KERNEL) #ifdef __FreeBSD_version # include # endif # include # if !defined(__SVR4) # include # endif #endif #if defined(_KERNEL) && defined(__FreeBSD_version) # include # include #else # include #endif #if defined(__SVR4) # include # ifdef _KERNEL # include # endif # include # include #endif #ifdef __FreeBSD_version # include #endif #include #if defined(__FreeBSD_version) && defined(_KERNEL) #include #else #define CURVNET_SET(arg) #define CURVNET_RESTORE() #define VNET_DEFINE(_t, _v) _t _v #define VNET_DECLARE(_t, _v) extern _t _v #define VNET(arg) arg #endif #ifdef sun # include #endif #include #include #include # include #include #include #include #include "netinet/ip_compat.h" #include #include "netinet/ip_fil.h" #include "netinet/ip_nat.h" #include "netinet/ip_state.h" #include "netinet/ip_proxy.h" #if defined(__FreeBSD_version) # include #endif /* END OF INCLUDES */ #include "netinet/ip_ftp_pxy.c" #include "netinet/ip_tftp_pxy.c" #include "netinet/ip_rcmd_pxy.c" #include "netinet/ip_pptp_pxy.c" #if defined(_KERNEL) # include "netinet/ip_irc_pxy.c" # include "netinet/ip_raudio_pxy.c" # include "netinet/ip_netbios_pxy.c" #endif #include "netinet/ip_ipsec_pxy.c" #include "netinet/ip_rpcb_pxy.c" #if !defined(lint) static const char rcsid[] = "@(#)$Id$"; #endif #define AP_SESS_SIZE 53 static int ipf_proxy_fixseqack(fr_info_t *, ip_t *, ap_session_t *, int ); static aproxy_t *ipf_proxy_create_clone(ipf_main_softc_t *, aproxy_t *); typedef struct ipf_proxy_softc_s { int ips_proxy_debug; int ips_proxy_session_size; ap_session_t **ips_sess_tab; ap_session_t *ips_sess_list; aproxy_t *ips_proxies; int ips_init_run; ipftuneable_t *ipf_proxy_tune; } ipf_proxy_softc_t; static ipftuneable_t ipf_proxy_tuneables[] = { { { (void *)offsetof(ipf_proxy_softc_t, ips_proxy_debug) }, "proxy_debug", 0, 0x1f, stsizeof(ipf_proxy_softc_t, ips_proxy_debug), 0, NULL, NULL }, { { NULL }, NULL, 0, 0, 0, 0, NULL, NULL} }; static aproxy_t *ap_proxylist = NULL; static aproxy_t ips_proxies[] = { #ifdef IPF_FTP_PROXY { NULL, NULL, "ftp", (char)IPPROTO_TCP, 0, 0, 0, ipf_p_ftp_main_load, ipf_p_ftp_main_unload, ipf_p_ftp_soft_create, ipf_p_ftp_soft_destroy, NULL, NULL, ipf_p_ftp_new, ipf_p_ftp_del, ipf_p_ftp_in, ipf_p_ftp_out, NULL, NULL, NULL, NULL, NULL }, #endif #ifdef IPF_TFTP_PROXY { NULL, NULL, "tftp", (char)IPPROTO_UDP, 0, 0, 0, ipf_p_tftp_main_load, ipf_p_tftp_main_unload, ipf_p_tftp_soft_create, ipf_p_tftp_soft_destroy, NULL, NULL, ipf_p_tftp_new, ipf_p_tftp_del, ipf_p_tftp_in, ipf_p_tftp_out, NULL, NULL, NULL, NULL, NULL }, #endif #ifdef IPF_IRC_PROXY { NULL, NULL, "irc", (char)IPPROTO_TCP, 0, 0, 0, ipf_p_irc_main_load, ipf_p_irc_main_unload, NULL, NULL, NULL, NULL, ipf_p_irc_new, NULL, NULL, ipf_p_irc_out, NULL, NULL, NULL, NULL, NULL }, #endif #ifdef IPF_RCMD_PROXY { NULL, NULL, "rcmd", (char)IPPROTO_TCP, 0, 0, 0, ipf_p_rcmd_main_load, ipf_p_rcmd_main_unload, NULL, NULL, NULL, NULL, ipf_p_rcmd_new, ipf_p_rcmd_del, ipf_p_rcmd_in, ipf_p_rcmd_out, NULL, NULL, NULL, NULL, NULL }, #endif #ifdef IPF_RAUDIO_PROXY { NULL, NULL, "raudio", (char)IPPROTO_TCP, 0, 0, 0, ipf_p_raudio_main_load, ipf_p_raudio_main_unload, NULL, NULL, NULL, NULL, ipf_p_raudio_new, NULL, ipf_p_raudio_in, ipf_p_raudio_out, NULL, NULL, NULL, NULL, NULL }, #endif #ifdef IPF_MSNRPC_PROXY { NULL, NULL, "msnrpc", (char)IPPROTO_TCP, 0, 0, 0, ipf_p_msnrpc_init, ipf_p_msnrpc_fini, NULL, NULL, NULL, NULL, ipf_p_msnrpc_new, NULL, ipf_p_msnrpc_in, ipf_p_msnrpc_out, NULL, NULL, NULL, NULL, NULL }, #endif #ifdef IPF_NETBIOS_PROXY { NULL, NULL, "netbios", (char)IPPROTO_UDP, 0, 0, 0, ipf_p_netbios_main_load, ipf_p_netbios_main_unload, NULL, NULL, NULL, NULL, NULL, NULL, NULL, ipf_p_netbios_out, NULL, NULL, NULL, NULL, NULL }, #endif #ifdef IPF_IPSEC_PROXY { NULL, NULL, "ipsec", (char)IPPROTO_UDP, 0, 0, 0, NULL, NULL, ipf_p_ipsec_soft_create, ipf_p_ipsec_soft_destroy, ipf_p_ipsec_soft_init, ipf_p_ipsec_soft_fini, ipf_p_ipsec_new, ipf_p_ipsec_del, ipf_p_ipsec_inout, ipf_p_ipsec_inout, ipf_p_ipsec_match, NULL, NULL, NULL, NULL }, #endif #ifdef IPF_DNS_PROXY { NULL, NULL, "dns", (char)IPPROTO_UDP, 0, 0, 0, NULL, NULL, ipf_p_dns_soft_create, ipf_p_dns_soft_destroy, NULL, NULL, ipf_p_dns_new, ipf_p_ipsec_del, ipf_p_dns_inout, ipf_p_dns_inout, ipf_p_dns_match, ipf_p_dns_ctl, NULL, NULL, NULL }, #endif #ifdef IPF_PPTP_PROXY { NULL, NULL, "pptp", (char)IPPROTO_TCP, 0, 0, 0, ipf_p_pptp_main_load, ipf_p_pptp_main_unload, NULL, NULL, NULL, NULL, ipf_p_pptp_new, ipf_p_pptp_del, ipf_p_pptp_inout, ipf_p_pptp_inout, NULL, NULL, NULL, NULL, NULL }, #endif #ifdef IPF_RPCB_PROXY # ifndef _KERNEL { NULL, NULL, "rpcbt", (char)IPPROTO_TCP, 0, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, ipf_p_rpcb_new, ipf_p_rpcb_del, ipf_p_rpcb_in, ipf_p_rpcb_out, NULL, NULL, NULL, NULL, NULL }, # endif { NULL, NULL, "rpcbu", (char)IPPROTO_UDP, 0, 0, 0, ipf_p_rpcb_main_load, ipf_p_rpcb_main_unload, NULL, NULL, NULL, NULL, ipf_p_rpcb_new, ipf_p_rpcb_del, ipf_p_rpcb_in, ipf_p_rpcb_out, NULL, NULL, NULL, NULL, NULL }, #endif { NULL, NULL, "", '\0', 0, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL } }; /* ------------------------------------------------------------------------ */ /* Function: ipf_proxy_main_load */ /* Returns: int - 0 == success, else failure. */ /* Parameters: Nil */ /* */ /* Initialise hook for kernel application proxies. */ /* Call the initialise routine for all the compiled in kernel proxies. */ /* ------------------------------------------------------------------------ */ int ipf_proxy_main_load() { aproxy_t *ap; for (ap = ips_proxies; ap->apr_p; ap++) { if (ap->apr_load != NULL) (*ap->apr_load)(); } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_proxy_main_unload */ /* Returns: int - 0 == success, else failure. */ /* Parameters: Nil */ /* */ /* Unload hook for kernel application proxies. */ /* Call the finialise routine for all the compiled in kernel proxies. */ /* ------------------------------------------------------------------------ */ int ipf_proxy_main_unload() { aproxy_t *ap; for (ap = ips_proxies; ap->apr_p; ap++) if (ap->apr_unload != NULL) (*ap->apr_unload)(); for (ap = ap_proxylist; ap; ap = ap->apr_next) if (ap->apr_unload != NULL) (*ap->apr_unload)(); return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_proxy_soft_create */ /* Returns: void * - */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* Build the structure to hold all of the run time data to support proxies. */ /* ------------------------------------------------------------------------ */ void * ipf_proxy_soft_create(softc) ipf_main_softc_t *softc; { ipf_proxy_softc_t *softp; aproxy_t *last; aproxy_t *apn; aproxy_t *ap; KMALLOC(softp, ipf_proxy_softc_t *); if (softp == NULL) return softp; bzero((char *)softp, sizeof(*softp)); #if defined(_KERNEL) softp->ips_proxy_debug = 0; #else softp->ips_proxy_debug = 2; #endif softp->ips_proxy_session_size = AP_SESS_SIZE; softp->ipf_proxy_tune = ipf_tune_array_copy(softp, sizeof(ipf_proxy_tuneables), ipf_proxy_tuneables); if (softp->ipf_proxy_tune == NULL) { ipf_proxy_soft_destroy(softc, softp); return NULL; } if (ipf_tune_array_link(softc, softp->ipf_proxy_tune) == -1) { ipf_proxy_soft_destroy(softc, softp); return NULL; } last = NULL; for (ap = ips_proxies; ap->apr_p; ap++) { apn = ipf_proxy_create_clone(softc, ap); if (apn == NULL) goto failed; if (last != NULL) last->apr_next = apn; else softp->ips_proxies = apn; last = apn; } for (ap = ips_proxies; ap != NULL; ap = ap->apr_next) { apn = ipf_proxy_create_clone(softc, ap); if (apn == NULL) goto failed; if (last != NULL) last->apr_next = apn; else softp->ips_proxies = apn; last = apn; } return softp; failed: ipf_proxy_soft_destroy(softc, softp); return NULL; } /* ------------------------------------------------------------------------ */ /* Function: ipf_proxy_soft_create */ /* Returns: void * - */ /* Parameters: softc(I) - pointer to soft context main structure */ /* orig(I) - pointer to proxy definition to copy */ /* */ /* This function clones a proxy definition given by orig and returns a */ /* a pointer to that copy. */ /* ------------------------------------------------------------------------ */ static aproxy_t * ipf_proxy_create_clone(softc, orig) ipf_main_softc_t *softc; aproxy_t *orig; { aproxy_t *apn; KMALLOC(apn, aproxy_t *); if (apn == NULL) return NULL; bcopy((char *)orig, (char *)apn, sizeof(*apn)); apn->apr_next = NULL; apn->apr_soft = NULL; if (apn->apr_create != NULL) { apn->apr_soft = (*apn->apr_create)(softc); if (apn->apr_soft == NULL) { KFREE(apn); return NULL; } } apn->apr_parent = orig; orig->apr_clones++; return apn; } /* ------------------------------------------------------------------------ */ /* Function: ipf_proxy_soft_create */ /* Returns: int - 0 == success, else failure. */ /* Parameters: softc(I) - pointer to soft context main structure */ /* arg(I) - pointer to proxy contect data */ /* */ /* Initialise the proxy context and walk through each of the proxies and */ /* call its initialisation function. This allows for proxies to do any */ /* local setup prior to actual use. */ /* ------------------------------------------------------------------------ */ int ipf_proxy_soft_init(softc, arg) ipf_main_softc_t *softc; void *arg; { ipf_proxy_softc_t *softp; aproxy_t *ap; u_int size; int err; softp = arg; size = softp->ips_proxy_session_size * sizeof(ap_session_t *); KMALLOCS(softp->ips_sess_tab, ap_session_t **, size); if (softp->ips_sess_tab == NULL) return -1; bzero(softp->ips_sess_tab, size); for (ap = softp->ips_proxies; ap != NULL; ap = ap->apr_next) { if (ap->apr_init != NULL) { err = (*ap->apr_init)(softc, ap->apr_soft); if (err != 0) return -2; } } softp->ips_init_run = 1; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_proxy_soft_create */ /* Returns: int - 0 == success, else failure. */ /* Parameters: softc(I) - pointer to soft context main structure */ /* arg(I) - pointer to proxy contect data */ /* */ /* This function should always succeed. It is responsible for ensuring that */ /* the proxy context can be safely called when ipf_proxy_soft_destroy is */ /* called and suring all of the proxies have similarly been instructed. */ /* ------------------------------------------------------------------------ */ int ipf_proxy_soft_fini(softc, arg) ipf_main_softc_t *softc; void *arg; { ipf_proxy_softc_t *softp = arg; aproxy_t *ap; for (ap = softp->ips_proxies; ap != NULL; ap = ap->apr_next) { if (ap->apr_fini != NULL) { (*ap->apr_fini)(softc, ap->apr_soft); } } if (softp->ips_sess_tab != NULL) { KFREES(softp->ips_sess_tab, softp->ips_proxy_session_size * sizeof(ap_session_t *)); softp->ips_sess_tab = NULL; } softp->ips_init_run = 0; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_proxy_soft_destroy */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* arg(I) - pointer to proxy contect data */ /* */ /* Free up all of the local data structures allocated during creation. */ /* ------------------------------------------------------------------------ */ void ipf_proxy_soft_destroy(softc, arg) ipf_main_softc_t *softc; void *arg; { ipf_proxy_softc_t *softp = arg; aproxy_t *ap; while ((ap = softp->ips_proxies) != NULL) { softp->ips_proxies = ap->apr_next; if (ap->apr_destroy != NULL) (*ap->apr_destroy)(softc, ap->apr_soft); ap->apr_parent->apr_clones--; KFREE(ap); } if (softp->ipf_proxy_tune != NULL) { ipf_tune_array_unlink(softc, softp->ipf_proxy_tune); KFREES(softp->ipf_proxy_tune, sizeof(ipf_proxy_tuneables)); softp->ipf_proxy_tune = NULL; } KFREE(softp); } /* ------------------------------------------------------------------------ */ /* Function: ipf_proxy_flush */ /* Returns: Nil */ /* Parameters: arg(I) - pointer to proxy contect data */ /* how(I) - indicates the type of flush operation */ /* */ /* Walk through all of the proxies and pass on the flush command as either */ /* a flush or a clear. */ /* ------------------------------------------------------------------------ */ void ipf_proxy_flush(arg, how) void *arg; int how; { ipf_proxy_softc_t *softp = arg; aproxy_t *ap; switch (how) { case 0 : for (ap = softp->ips_proxies; ap; ap = ap->apr_next) if (ap->apr_flush != NULL) (*ap->apr_flush)(ap, how); break; case 1 : for (ap = softp->ips_proxies; ap; ap = ap->apr_next) if (ap->apr_clear != NULL) (*ap->apr_clear)(ap); break; default : break; } } /* ------------------------------------------------------------------------ */ /* Function: ipf_proxy_add */ /* Returns: int - 0 == success, else failure. */ /* Parameters: ap(I) - pointer to proxy structure */ /* */ /* Dynamically add a new kernel proxy. Ensure that it is unique in the */ /* collection compiled in and dynamically added. */ /* ------------------------------------------------------------------------ */ int ipf_proxy_add(arg, ap) void *arg; aproxy_t *ap; { ipf_proxy_softc_t *softp = arg; aproxy_t *a; for (a = ips_proxies; a->apr_p; a++) if ((a->apr_p == ap->apr_p) && !strncmp(a->apr_label, ap->apr_label, sizeof(ap->apr_label))) { if (softp->ips_proxy_debug & 0x01) printf("ipf_proxy_add: %s/%d present (B)\n", a->apr_label, a->apr_p); return -1; } for (a = ap_proxylist; (a != NULL); a = a->apr_next) if ((a->apr_p == ap->apr_p) && !strncmp(a->apr_label, ap->apr_label, sizeof(ap->apr_label))) { if (softp->ips_proxy_debug & 0x01) printf("ipf_proxy_add: %s/%d present (D)\n", a->apr_label, a->apr_p); return -1; } ap->apr_next = ap_proxylist; ap_proxylist = ap; if (ap->apr_load != NULL) (*ap->apr_load)(); return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_proxy_ctl */ /* Returns: int - 0 == success, else error */ /* Parameters: softc(I) - pointer to soft context main structure */ /* arg(I) - pointer to proxy context */ /* ctl(I) - pointer to proxy control structure */ /* */ /* Check to see if the proxy this control request has come through for */ /* exists, and if it does and it has a control function then invoke that */ /* control function. */ /* ------------------------------------------------------------------------ */ int ipf_proxy_ctl(softc, arg, ctl) ipf_main_softc_t *softc; void *arg; ap_ctl_t *ctl; { ipf_proxy_softc_t *softp = arg; aproxy_t *a; int error; a = ipf_proxy_lookup(arg, ctl->apc_p, ctl->apc_label); if (a == NULL) { if (softp->ips_proxy_debug & 0x01) printf("ipf_proxy_ctl: can't find %s/%d\n", ctl->apc_label, ctl->apc_p); IPFERROR(80001); error = ESRCH; } else if (a->apr_ctl == NULL) { if (softp->ips_proxy_debug & 0x01) printf("ipf_proxy_ctl: no ctl function for %s/%d\n", ctl->apc_label, ctl->apc_p); IPFERROR(80002); error = ENXIO; } else { error = (*a->apr_ctl)(softc, a->apr_soft, ctl); if ((error != 0) && (softp->ips_proxy_debug & 0x02)) printf("ipf_proxy_ctl: %s/%d ctl error %d\n", a->apr_label, a->apr_p, error); } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_proxy_del */ /* Returns: int - 0 == success, else failure. */ /* Parameters: ap(I) - pointer to proxy structure */ /* */ /* Delete a proxy that has been added dynamically from those available. */ /* If it is in use, return 1 (do not destroy NOW), not in use 0 or -1 */ /* if it cannot be matched. */ /* ------------------------------------------------------------------------ */ int ipf_proxy_del(ap) aproxy_t *ap; { aproxy_t *a, **app; for (app = &ap_proxylist; ((a = *app) != NULL); app = &a->apr_next) { if (a == ap) { a->apr_flags |= APR_DELETE; if (ap->apr_ref == 0 && ap->apr_clones == 0) { *app = a->apr_next; return 0; } return 1; } } return -1; } /* ------------------------------------------------------------------------ */ /* Function: ipf_proxy_ok */ /* Returns: int - 1 == good match else not. */ /* Parameters: fin(I) - pointer to packet information */ /* tcp(I) - pointer to TCP/UDP header */ /* nat(I) - pointer to current NAT session */ /* */ /* This function extends the NAT matching to ensure that a packet that has */ /* arrived matches the proxy information attached to the NAT rule. Notably, */ /* if the proxy is scheduled to be deleted then packets will not match the */ /* rule even if the rule is still active. */ /* ------------------------------------------------------------------------ */ int ipf_proxy_ok(fin, tcp, np) fr_info_t *fin; tcphdr_t *tcp; ipnat_t *np; { aproxy_t *apr = np->in_apr; u_short dport = np->in_odport; if ((apr == NULL) || (apr->apr_flags & APR_DELETE) || (fin->fin_p != apr->apr_p)) return 0; if ((tcp == NULL) && dport) return 0; return 1; } /* ------------------------------------------------------------------------ */ /* Function: ipf_proxy_ioctl */ /* Returns: int - 0 == success, else error */ /* Parameters: softc(I) - pointer to soft context main structure */ /* data(I) - pointer to ioctl data */ /* cmd(I) - ioctl command */ /* mode(I) - mode bits for device */ /* ctx(I) - pointer to context information */ /* */ /* ------------------------------------------------------------------------ */ int ipf_proxy_ioctl(softc, data, cmd, mode, ctx) ipf_main_softc_t *softc; caddr_t data; ioctlcmd_t cmd; int mode; void *ctx; { ap_ctl_t ctl; caddr_t ptr; int error; mode = mode; /* LINT */ switch (cmd) { case SIOCPROXY : error = ipf_inobj(softc, data, NULL, &ctl, IPFOBJ_PROXYCTL); if (error != 0) { return error; } ptr = NULL; if (ctl.apc_dsize > 0) { KMALLOCS(ptr, caddr_t, ctl.apc_dsize); if (ptr == NULL) { IPFERROR(80003); error = ENOMEM; } else { error = copyinptr(softc, ctl.apc_data, ptr, ctl.apc_dsize); if (error == 0) ctl.apc_data = ptr; } } else { ctl.apc_data = NULL; error = 0; } if (error == 0) error = ipf_proxy_ctl(softc, softc->ipf_proxy_soft, &ctl); if ((error != 0) && (ptr != NULL)) { KFREES(ptr, ctl.apc_dsize); } break; default : IPFERROR(80004); error = EINVAL; } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_proxy_match */ /* Returns: int - 0 == success, else error */ /* Parameters: fin(I) - pointer to packet information */ /* nat(I) - pointer to current NAT session */ /* */ /* If a proxy has a match function, call that to do extended packet */ /* matching. Whilst other parts of the NAT code are rather lenient when it */ /* comes to the quality of the packet that it will transform, the proxy */ /* matching is not because they need to work with data, not just headers. */ /* ------------------------------------------------------------------------ */ int ipf_proxy_match(fin, nat) fr_info_t *fin; nat_t *nat; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_proxy_softc_t *softp = softc->ipf_proxy_soft; aproxy_t *apr; ipnat_t *ipn; int result; ipn = nat->nat_ptr; if (softp->ips_proxy_debug & 0x04) printf("ipf_proxy_match(%lx,%lx) aps %lx ptr %lx\n", (u_long)fin, (u_long)nat, (u_long)nat->nat_aps, (u_long)ipn); if ((fin->fin_flx & (FI_SHORT|FI_BAD)) != 0) { if (softp->ips_proxy_debug & 0x08) printf("ipf_proxy_match: flx 0x%x (BAD|SHORT)\n", fin->fin_flx); return -1; } apr = ipn->in_apr; if ((apr == NULL) || (apr->apr_flags & APR_DELETE)) { if (softp->ips_proxy_debug & 0x08) printf("ipf_proxy_match:apr %lx apr_flags 0x%x\n", (u_long)apr, apr ? apr->apr_flags : 0); return -1; } if (apr->apr_match != NULL) { result = (*apr->apr_match)(fin, nat->nat_aps, nat); if (result != 0) { if (softp->ips_proxy_debug & 0x08) printf("ipf_proxy_match: result %d\n", result); return -1; } } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_proxy_new */ /* Returns: int - 0 == success, else error */ /* Parameters: fin(I) - pointer to packet information */ /* nat(I) - pointer to current NAT session */ /* */ /* Allocate a new application proxy structure and fill it in with the */ /* relevant details. call the init function once complete, prior to */ /* returning. */ /* ------------------------------------------------------------------------ */ int ipf_proxy_new(fin, nat) fr_info_t *fin; nat_t *nat; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_proxy_softc_t *softp = softc->ipf_proxy_soft; register ap_session_t *aps; aproxy_t *apr; if (softp->ips_proxy_debug & 0x04) printf("ipf_proxy_new(%lx,%lx) \n", (u_long)fin, (u_long)nat); if ((nat->nat_ptr == NULL) || (nat->nat_aps != NULL)) { if (softp->ips_proxy_debug & 0x08) printf("ipf_proxy_new: nat_ptr %lx nat_aps %lx\n", (u_long)nat->nat_ptr, (u_long)nat->nat_aps); return -1; } apr = nat->nat_ptr->in_apr; if ((apr->apr_flags & APR_DELETE) || (fin->fin_p != apr->apr_p)) { if (softp->ips_proxy_debug & 0x08) printf("ipf_proxy_new: apr_flags 0x%x p %d/%d\n", apr->apr_flags, fin->fin_p, apr->apr_p); return -1; } KMALLOC(aps, ap_session_t *); if (!aps) { if (softp->ips_proxy_debug & 0x08) printf("ipf_proxy_new: malloc failed (%lu)\n", (u_long)sizeof(ap_session_t)); return -1; } bzero((char *)aps, sizeof(*aps)); aps->aps_data = NULL; aps->aps_apr = apr; aps->aps_psiz = 0; if (apr->apr_new != NULL) if ((*apr->apr_new)(apr->apr_soft, fin, aps, nat) == -1) { if ((aps->aps_data != NULL) && (aps->aps_psiz != 0)) { KFREES(aps->aps_data, aps->aps_psiz); } KFREE(aps); if (softp->ips_proxy_debug & 0x08) printf("ipf_proxy_new: new(%lx) failed\n", (u_long)apr->apr_new); return -1; } aps->aps_nat = nat; aps->aps_next = softp->ips_sess_list; softp->ips_sess_list = aps; nat->nat_aps = aps; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_proxy_check */ /* Returns: int - -1 == error, 0 == success */ /* Parameters: fin(I) - pointer to packet information */ /* nat(I) - pointer to current NAT session */ /* */ /* Check to see if a packet should be passed through an active proxy */ /* routine if one has been setup for it. We don't need to check the */ /* checksum here if IPFILTER_CKSUM is defined because if it is, a failed */ /* check causes FI_BAD to be set. */ /* ------------------------------------------------------------------------ */ int ipf_proxy_check(fin, nat) fr_info_t *fin; nat_t *nat; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_proxy_softc_t *softp = softc->ipf_proxy_soft; #if SOLARIS && defined(_KERNEL) && defined(ICK_VALID) mb_t *m; #endif tcphdr_t *tcp = NULL; udphdr_t *udp = NULL; ap_session_t *aps; aproxy_t *apr; short adjlen; int dosum; ip_t *ip; short rv; int err; -#if !defined(_KERNEL) || defined(MENTAT) +#if !defined(_KERNEL) || SOLARIS u_32_t s1, s2, sd; #endif if (fin->fin_flx & FI_BAD) { if (softp->ips_proxy_debug & 0x08) printf("ipf_proxy_check: flx 0x%x (BAD)\n", fin->fin_flx); return -1; } #ifndef IPFILTER_CKSUM if ((fin->fin_out == 0) && (ipf_checkl4sum(fin) == -1)) { if (softp->ips_proxy_debug & 0x08) printf("ipf_proxy_check: l4 checksum failure %d\n", fin->fin_p); if (fin->fin_p == IPPROTO_TCP) softc->ipf_stats[fin->fin_out].fr_tcpbad++; return -1; } #endif aps = nat->nat_aps; if (aps != NULL) { /* * If there is data in this packet to be proxied then try and * get it all into the one buffer, else drop it. */ -#if defined(MENTAT) || defined(HAVE_M_PULLDOWN) +#if SOLARIS || defined(HAVE_M_PULLDOWN) if ((fin->fin_dlen > 0) && !(fin->fin_flx & FI_COALESCE)) if (ipf_coalesce(fin) == -1) { if (softp->ips_proxy_debug & 0x08) printf("ipf_proxy_check: %s %x\n", "coalesce failed", fin->fin_flx); return -1; } #endif ip = fin->fin_ip; if (fin->fin_cksum > FI_CK_SUMOK) dosum = 0; else dosum = 1; switch (fin->fin_p) { case IPPROTO_TCP : tcp = (tcphdr_t *)fin->fin_dp; #if SOLARIS && defined(_KERNEL) && defined(ICK_VALID) m = fin->fin_qfm; if (dohwcksum && (m->b_ick_flag == ICK_VALID)) dosum = 0; #endif break; case IPPROTO_UDP : udp = (udphdr_t *)fin->fin_dp; break; default : break; } apr = aps->aps_apr; err = 0; if (fin->fin_out != 0) { if (apr->apr_outpkt != NULL) err = (*apr->apr_outpkt)(apr->apr_soft, fin, aps, nat); } else { if (apr->apr_inpkt != NULL) err = (*apr->apr_inpkt)(apr->apr_soft, fin, aps, nat); } rv = APR_EXIT(err); if (((softp->ips_proxy_debug & 0x08) && (rv != 0)) || (softp->ips_proxy_debug & 0x04)) printf("ipf_proxy_check: out %d err %x rv %d\n", fin->fin_out, err, rv); if (rv == 1) return -1; if (rv == 2) { ipf_proxy_deref(apr); nat->nat_aps = NULL; return -1; } /* * If err != 0 then the data size of the packet has changed * so we need to recalculate the header checksums for the * packet. */ adjlen = APR_INC(err); -#if !defined(_KERNEL) || defined(MENTAT) +#if !defined(_KERNEL) || SOLARIS s1 = LONG_SUM(fin->fin_plen - adjlen); s2 = LONG_SUM(fin->fin_plen); CALC_SUMD(s1, s2, sd); if ((err != 0) && (fin->fin_cksum < FI_CK_L4PART) && fin->fin_v == 4) ipf_fix_outcksum(0, &ip->ip_sum, sd, 0); #endif if (fin->fin_flx & FI_DOCKSUM) dosum = 1; /* * For TCP packets, we may need to adjust the sequence and * acknowledgement numbers to reflect changes in size of the * data stream. * * For both TCP and UDP, recalculate the layer 4 checksum, * regardless, as we can't tell (here) if data has been * changed or not. */ if (tcp != NULL) { err = ipf_proxy_fixseqack(fin, ip, aps, adjlen); if (fin->fin_cksum == FI_CK_L4PART) { u_short sum = ntohs(tcp->th_sum); sum += adjlen; tcp->th_sum = htons(sum); } else if (fin->fin_cksum < FI_CK_L4PART) { tcp->th_sum = fr_cksum(fin, ip, IPPROTO_TCP, tcp); } } else if ((udp != NULL) && (udp->uh_sum != 0)) { if (fin->fin_cksum == FI_CK_L4PART) { u_short sum = ntohs(udp->uh_sum); sum += adjlen; udp->uh_sum = htons(sum); } else if (dosum) { udp->uh_sum = fr_cksum(fin, ip, IPPROTO_UDP, udp); } } aps->aps_bytes += fin->fin_plen; aps->aps_pkts++; return 1; } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_proxy_lookup */ /* Returns: int - -1 == error, 0 == success */ /* Parameters: arg(I) - pointer to proxy context information */ /* pr(I) - protocol number for proxy */ /* name(I) - proxy name */ /* */ /* Search for an proxy by the protocol it is being used with and its name. */ /* ------------------------------------------------------------------------ */ aproxy_t * ipf_proxy_lookup(arg, pr, name) void *arg; u_int pr; char *name; { ipf_proxy_softc_t *softp = arg; aproxy_t *ap; if (softp->ips_proxy_debug & 0x04) printf("ipf_proxy_lookup(%d,%s)\n", pr, name); for (ap = softp->ips_proxies; ap != NULL; ap = ap->apr_next) if ((ap->apr_p == pr) && !strncmp(name, ap->apr_label, sizeof(ap->apr_label))) { ap->apr_ref++; return ap; } if (softp->ips_proxy_debug & 0x08) printf("ipf_proxy_lookup: failed for %d/%s\n", pr, name); return NULL; } /* ------------------------------------------------------------------------ */ /* Function: ipf_proxy_deref */ /* Returns: Nil */ /* Parameters: ap(I) - pointer to proxy structure */ /* */ /* Drop the reference counter associated with the proxy. */ /* ------------------------------------------------------------------------ */ void ipf_proxy_deref(ap) aproxy_t *ap; { ap->apr_ref--; } /* ------------------------------------------------------------------------ */ /* Function: ipf_proxy_free */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* aps(I) - pointer to current proxy session */ /* Locks Held: ipf_nat_new, ipf_nat(W) */ /* */ /* Free up proxy session information allocated to be used with a NAT */ /* session. */ /* ------------------------------------------------------------------------ */ void ipf_proxy_free(softc, aps) ipf_main_softc_t *softc; ap_session_t *aps; { ipf_proxy_softc_t *softp = softc->ipf_proxy_soft; ap_session_t *a, **ap; aproxy_t *apr; if (!aps) return; for (ap = &softp->ips_sess_list; ((a = *ap) != NULL); ap = &a->aps_next) if (a == aps) { *ap = a->aps_next; break; } apr = aps->aps_apr; if ((apr != NULL) && (apr->apr_del != NULL)) (*apr->apr_del)(softc, aps); if ((aps->aps_data != NULL) && (aps->aps_psiz != 0)) KFREES(aps->aps_data, aps->aps_psiz); KFREE(aps); } /* ------------------------------------------------------------------------ */ /* Function: ipf_proxy_fixseqack */ /* Returns: int - 2 if TCP ack/seq is changed, else 0 */ /* Parameters: fin(I) - pointer to packet information */ /* ip(I) - pointer to IP header */ /* nat(I) - pointer to current NAT session */ /* inc(I) - delta to apply to TCP sequence numbering */ /* */ /* Adjust the TCP sequence/acknowledge numbers in the TCP header based on */ /* whether or not the new header is past the point at which an adjustment */ /* occurred. This might happen because of (say) an FTP string being changed */ /* and the new string being a different length to the old. */ /* ------------------------------------------------------------------------ */ static int ipf_proxy_fixseqack(fin, ip, aps, inc) fr_info_t *fin; ip_t *ip; ap_session_t *aps; int inc; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_proxy_softc_t *softp = softc->ipf_proxy_soft; int sel, ch = 0, out, nlen; u_32_t seq1, seq2; tcphdr_t *tcp; short inc2; tcp = (tcphdr_t *)fin->fin_dp; out = fin->fin_out; /* * ip_len has already been adjusted by 'inc'. */ nlen = fin->fin_dlen; nlen -= (TCP_OFF(tcp) << 2); inc2 = inc; inc = (int)inc2; if (out != 0) { seq1 = (u_32_t)ntohl(tcp->th_seq); sel = aps->aps_sel[out]; /* switch to other set ? */ if ((aps->aps_seqmin[!sel] > aps->aps_seqmin[sel]) && (seq1 > aps->aps_seqmin[!sel])) { if (softp->ips_proxy_debug & 0x10) printf("proxy out switch set seq %d -> %d %x > %x\n", sel, !sel, seq1, aps->aps_seqmin[!sel]); sel = aps->aps_sel[out] = !sel; } if (aps->aps_seqoff[sel]) { seq2 = aps->aps_seqmin[sel] - aps->aps_seqoff[sel]; if (seq1 > seq2) { seq2 = aps->aps_seqoff[sel]; seq1 += seq2; tcp->th_seq = htonl(seq1); ch = 1; } } if (inc && (seq1 > aps->aps_seqmin[!sel])) { aps->aps_seqmin[sel] = seq1 + nlen - 1; aps->aps_seqoff[sel] = aps->aps_seqoff[sel] + inc; if (softp->ips_proxy_debug & 0x10) printf("proxy seq set %d at %x to %d + %d\n", sel, aps->aps_seqmin[sel], aps->aps_seqoff[sel], inc); } /***/ seq1 = ntohl(tcp->th_ack); sel = aps->aps_sel[1 - out]; /* switch to other set ? */ if ((aps->aps_ackmin[!sel] > aps->aps_ackmin[sel]) && (seq1 > aps->aps_ackmin[!sel])) { if (softp->ips_proxy_debug & 0x10) printf("proxy out switch set ack %d -> %d %x > %x\n", sel, !sel, seq1, aps->aps_ackmin[!sel]); sel = aps->aps_sel[1 - out] = !sel; } if (aps->aps_ackoff[sel] && (seq1 > aps->aps_ackmin[sel])) { seq2 = aps->aps_ackoff[sel]; tcp->th_ack = htonl(seq1 - seq2); ch = 1; } } else { seq1 = ntohl(tcp->th_seq); sel = aps->aps_sel[out]; /* switch to other set ? */ if ((aps->aps_ackmin[!sel] > aps->aps_ackmin[sel]) && (seq1 > aps->aps_ackmin[!sel])) { if (softp->ips_proxy_debug & 0x10) printf("proxy in switch set ack %d -> %d %x > %x\n", sel, !sel, seq1, aps->aps_ackmin[!sel]); sel = aps->aps_sel[out] = !sel; } if (aps->aps_ackoff[sel]) { seq2 = aps->aps_ackmin[sel] - aps->aps_ackoff[sel]; if (seq1 > seq2) { seq2 = aps->aps_ackoff[sel]; seq1 += seq2; tcp->th_seq = htonl(seq1); ch = 1; } } if (inc && (seq1 > aps->aps_ackmin[!sel])) { aps->aps_ackmin[!sel] = seq1 + nlen - 1; aps->aps_ackoff[!sel] = aps->aps_ackoff[sel] + inc; if (softp->ips_proxy_debug & 0x10) printf("proxy ack set %d at %x to %d + %d\n", !sel, aps->aps_seqmin[!sel], aps->aps_seqoff[sel], inc); } /***/ seq1 = ntohl(tcp->th_ack); sel = aps->aps_sel[1 - out]; /* switch to other set ? */ if ((aps->aps_seqmin[!sel] > aps->aps_seqmin[sel]) && (seq1 > aps->aps_seqmin[!sel])) { if (softp->ips_proxy_debug & 0x10) printf("proxy in switch set seq %d -> %d %x > %x\n", sel, !sel, seq1, aps->aps_seqmin[!sel]); sel = aps->aps_sel[1 - out] = !sel; } if (aps->aps_seqoff[sel] != 0) { if (softp->ips_proxy_debug & 0x10) printf("sel %d seqoff %d seq1 %x seqmin %x\n", sel, aps->aps_seqoff[sel], seq1, aps->aps_seqmin[sel]); if (seq1 > aps->aps_seqmin[sel]) { seq2 = aps->aps_seqoff[sel]; tcp->th_ack = htonl(seq1 - seq2); ch = 1; } } } if (softp->ips_proxy_debug & 0x10) printf("ipf_proxy_fixseqack: seq %u ack %u\n", (u_32_t)ntohl(tcp->th_seq), (u_32_t)ntohl(tcp->th_ack)); return ch ? 2 : 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_proxy_rule_rev */ /* Returns: ipnat_t * - NULL = failure, else pointer to new rule */ /* Parameters: nat(I) - pointer to NAT session to create rule from */ /* */ /* This function creates a NAT rule that is based upon the reverse packet */ /* flow associated with this NAT session. Thus if this NAT session was */ /* created with a map rule then this function will create a rdr rule. */ /* Only address fields and network interfaces are assigned in this function */ /* and the address fields are formed such that an exact is required. If the */ /* original rule had a netmask, that is not replicated here not is it */ /* desired. The ultimate goal here is to create a NAT rule to support a NAT */ /* session being created that does not have a user configured rule. The */ /* classic example is supporting the FTP proxy, where a data channel needs */ /* to be setup, based on the addresses used for the control connection. In */ /* that case, this function is used to handle creating NAT rules to support */ /* data connections with the PORT and EPRT commands. */ /* ------------------------------------------------------------------------ */ ipnat_t * ipf_proxy_rule_rev(nat) nat_t *nat; { ipnat_t *old; ipnat_t *ipn; int size; old = nat->nat_ptr; size = old->in_size; KMALLOCS(ipn, ipnat_t *, size); if (ipn == NULL) return NULL; bzero((char *)ipn, size); ipn->in_use = 1; ipn->in_hits = 1; ipn->in_ippip = 1; ipn->in_apr = NULL; ipn->in_size = size; ipn->in_pr[0] = old->in_pr[1]; ipn->in_pr[1] = old->in_pr[0]; ipn->in_v[0] = old->in_v[1]; ipn->in_v[1] = old->in_v[0]; ipn->in_ifps[0] = old->in_ifps[1]; ipn->in_ifps[1] = old->in_ifps[0]; ipn->in_flags = (old->in_flags | IPN_PROXYRULE); ipn->in_nsrcip6 = nat->nat_odst6; ipn->in_osrcip6 = nat->nat_ndst6; if ((old->in_redir & NAT_REDIRECT) != 0) { ipn->in_redir = NAT_MAP; if (ipn->in_v[0] == 4) { ipn->in_snip = ntohl(nat->nat_odstaddr); ipn->in_dnip = ntohl(nat->nat_nsrcaddr); } else { #ifdef USE_INET6 ipn->in_snip6 = nat->nat_odst6; ipn->in_dnip6 = nat->nat_nsrc6; #endif } ipn->in_ndstip6 = nat->nat_nsrc6; ipn->in_odstip6 = nat->nat_osrc6; } else { ipn->in_redir = NAT_REDIRECT; if (ipn->in_v[0] == 4) { ipn->in_snip = ntohl(nat->nat_odstaddr); ipn->in_dnip = ntohl(nat->nat_osrcaddr); } else { #ifdef USE_INET6 ipn->in_snip6 = nat->nat_odst6; ipn->in_dnip6 = nat->nat_osrc6; #endif } ipn->in_ndstip6 = nat->nat_osrc6; ipn->in_odstip6 = nat->nat_nsrc6; } IP6_SETONES(&ipn->in_osrcmsk6); IP6_SETONES(&ipn->in_nsrcmsk6); IP6_SETONES(&ipn->in_odstmsk6); IP6_SETONES(&ipn->in_ndstmsk6); ipn->in_namelen = old->in_namelen; ipn->in_ifnames[0] = old->in_ifnames[1]; ipn->in_ifnames[1] = old->in_ifnames[0]; bcopy(old->in_names, ipn->in_names, ipn->in_namelen); MUTEX_INIT(&ipn->in_lock, "ipnat rev rule lock"); return ipn; } /* ------------------------------------------------------------------------ */ /* Function: ipf_proxy_rule_fwd */ /* Returns: ipnat_t * - NULL = failure, else pointer to new rule */ /* Parameters: nat(I) - pointer to NAT session to create rule from */ /* */ /* The purpose and rationale of this function is much the same as the above */ /* function, ipf_proxy_rule_rev, except that a rule is created that matches */ /* the same direction as that of the existing NAT session. Thus if this NAT */ /* session was created with a map rule then this function will also create */ /* a data structure to represent a map rule. Whereas ipf_proxy_rule_rev is */ /* used to support PORT/EPRT, this function supports PASV/EPSV. */ /* ------------------------------------------------------------------------ */ ipnat_t * ipf_proxy_rule_fwd(nat) nat_t *nat; { ipnat_t *old; ipnat_t *ipn; int size; old = nat->nat_ptr; size = old->in_size; KMALLOCS(ipn, ipnat_t *, size); if (ipn == NULL) return NULL; bzero((char *)ipn, size); ipn->in_use = 1; ipn->in_hits = 1; ipn->in_ippip = 1; ipn->in_apr = NULL; ipn->in_size = size; ipn->in_pr[0] = old->in_pr[0]; ipn->in_pr[1] = old->in_pr[1]; ipn->in_v[0] = old->in_v[0]; ipn->in_v[1] = old->in_v[1]; ipn->in_ifps[0] = nat->nat_ifps[0]; ipn->in_ifps[1] = nat->nat_ifps[1]; ipn->in_flags = (old->in_flags | IPN_PROXYRULE); ipn->in_nsrcip6 = nat->nat_nsrc6; ipn->in_osrcip6 = nat->nat_osrc6; ipn->in_ndstip6 = nat->nat_ndst6; ipn->in_odstip6 = nat->nat_odst6; ipn->in_redir = old->in_redir; if (ipn->in_v[0] == 4) { ipn->in_snip = ntohl(nat->nat_nsrcaddr); ipn->in_dnip = ntohl(nat->nat_ndstaddr); } else { #ifdef USE_INET6 ipn->in_snip6 = nat->nat_nsrc6; ipn->in_dnip6 = nat->nat_ndst6; #endif } IP6_SETONES(&ipn->in_osrcmsk6); IP6_SETONES(&ipn->in_nsrcmsk6); IP6_SETONES(&ipn->in_odstmsk6); IP6_SETONES(&ipn->in_ndstmsk6); ipn->in_namelen = old->in_namelen; ipn->in_ifnames[0] = old->in_ifnames[0]; ipn->in_ifnames[1] = old->in_ifnames[1]; bcopy(old->in_names, ipn->in_names, ipn->in_namelen); MUTEX_INIT(&ipn->in_lock, "ipnat fwd rule lock"); return ipn; } diff --git a/sys/contrib/ipfilter/netinet/ip_state.c b/sys/contrib/ipfilter/netinet/ip_state.c index 45a641fd86a2..a050a2d324d2 100644 --- a/sys/contrib/ipfilter/netinet/ip_state.c +++ b/sys/contrib/ipfilter/netinet/ip_state.c @@ -1,5394 +1,5394 @@ /* $FreeBSD$ */ /* * Copyright (C) 2012 by Darren Reed. * * See the IPFILTER.LICENCE file for details on licencing. * * Copyright 2008 Sun Microsystems. * * $Id$ */ #if defined(KERNEL) || defined(_KERNEL) # undef KERNEL # undef _KERNEL # define KERNEL 1 # define _KERNEL 1 #endif #include #include #include #include #if defined(_KERNEL) && defined(__FreeBSD_version) && \ !defined(KLD_MODULE) #include "opt_inet6.h" #endif #if !defined(_KERNEL) && !defined(__KERNEL__) # include # include # include # define _KERNEL # include # undef _KERNEL #endif #if defined(_KERNEL) && defined(__FreeBSD_version) # include # include #else # include #endif #include # include #include #if defined(_KERNEL) # include # if !defined(__SVR4) # include # endif #endif #if defined(__SVR4) # include # include # ifdef _KERNEL # include # endif # include # include #endif #include #ifdef sun # include #endif #include #include #include #include # include #include #include #if !defined(_KERNEL) # include "ipf.h" #endif #include "netinet/ip_compat.h" #include "netinet/ip_fil.h" #include "netinet/ip_nat.h" #include "netinet/ip_frag.h" #include "netinet/ip_state.h" #include "netinet/ip_proxy.h" #include "netinet/ip_lookup.h" #include "netinet/ip_dstlist.h" #include "netinet/ip_sync.h" #ifdef USE_INET6 #include #endif #ifdef __FreeBSD_version # include # if defined(_KERNEL) && !defined(IPFILTER_LKM) # include # include # endif #endif /* END OF INCLUDES */ #if !defined(lint) static const char sccsid[] = "@(#)ip_state.c 1.8 6/5/96 (C) 1993-2000 Darren Reed"; static const char rcsid[] = "@(#)$Id$"; #endif static ipftuneable_t ipf_state_tuneables[] = { { { (void *)offsetof(ipf_state_softc_t, ipf_state_max) }, "state_max", 1, 0x7fffffff, stsizeof(ipf_state_softc_t, ipf_state_max), 0, NULL, NULL }, { { (void *)offsetof(ipf_state_softc_t, ipf_state_size) }, "state_size", 1, 0x7fffffff, stsizeof(ipf_state_softc_t, ipf_state_size), 0, NULL, ipf_state_rehash }, { { (void *)offsetof(ipf_state_softc_t, ipf_state_lock) }, "state_lock", 0, 1, stsizeof(ipf_state_softc_t, ipf_state_lock), IPFT_RDONLY, NULL, NULL }, { { (void *)offsetof(ipf_state_softc_t, ipf_state_maxbucket) }, "state_maxbucket", 1, 0x7fffffff, stsizeof(ipf_state_softc_t, ipf_state_maxbucket), 0, NULL, NULL }, { { (void *)offsetof(ipf_state_softc_t, ipf_state_logging) }, "state_logging",0, 1, stsizeof(ipf_state_softc_t, ipf_state_logging), 0, NULL, NULL }, { { (void *)offsetof(ipf_state_softc_t, ipf_state_wm_high) }, "state_wm_high",2, 100, stsizeof(ipf_state_softc_t, ipf_state_wm_high), 0, NULL, NULL }, { { (void *)offsetof(ipf_state_softc_t, ipf_state_wm_low) }, "state_wm_low", 1, 99, stsizeof(ipf_state_softc_t, ipf_state_wm_low), 0, NULL, NULL }, { { (void *)offsetof(ipf_state_softc_t, ipf_state_wm_freq) }, "state_wm_freq",2, 999999, stsizeof(ipf_state_softc_t, ipf_state_wm_freq), 0, NULL, NULL }, { { NULL }, NULL, 0, 0, 0, 0, NULL, NULL } }; #define SINCL(x) ATOMIC_INCL(softs->x) #define SBUMP(x) (softs->x)++ #define SBUMPD(x, y) do { (softs->x.y)++; DT(y); } while (0) #define SBUMPDX(x, y, z)do { (softs->x.y)++; DT(z); } while (0) #ifdef USE_INET6 static ipstate_t *ipf_checkicmp6matchingstate(fr_info_t *); #endif static int ipf_allowstateicmp(fr_info_t *, ipstate_t *, i6addr_t *); static ipstate_t *ipf_matchsrcdst(fr_info_t *, ipstate_t *, i6addr_t *, i6addr_t *, tcphdr_t *, u_32_t); static ipstate_t *ipf_checkicmpmatchingstate(fr_info_t *); static int ipf_state_flush_entry(ipf_main_softc_t *, void *); static ips_stat_t *ipf_state_stats(ipf_main_softc_t *); static int ipf_state_del(ipf_main_softc_t *, ipstate_t *, int); static int ipf_state_remove(ipf_main_softc_t *, caddr_t); static int ipf_state_match(ipstate_t *is1, ipstate_t *is2); static int ipf_state_matchaddresses(ipstate_t *is1, ipstate_t *is2); static int ipf_state_matchipv4addrs(ipstate_t *is1, ipstate_t *is2); static int ipf_state_matchipv6addrs(ipstate_t *is1, ipstate_t *is2); static int ipf_state_matchisps(ipstate_t *is1, ipstate_t *is2); static int ipf_state_matchports(udpinfo_t *is1, udpinfo_t *is2); static int ipf_state_matcharray(ipstate_t *, int *, u_long); static void ipf_ipsmove(ipf_state_softc_t *, ipstate_t *, u_int); static int ipf_state_tcp(ipf_main_softc_t *, ipf_state_softc_t *, fr_info_t *, tcphdr_t *, ipstate_t *); static int ipf_tcpoptions(ipf_state_softc_t *, fr_info_t *, tcphdr_t *, tcpdata_t *); static ipstate_t *ipf_state_clone(fr_info_t *, tcphdr_t *, ipstate_t *); static void ipf_fixinisn(fr_info_t *, ipstate_t *); static void ipf_fixoutisn(fr_info_t *, ipstate_t *); static void ipf_checknewisn(fr_info_t *, ipstate_t *); static int ipf_state_iter(ipf_main_softc_t *, ipftoken_t *, ipfgeniter_t *, ipfobj_t *); static int ipf_state_gettable(ipf_main_softc_t *, ipf_state_softc_t *, char *); static int ipf_state_tcpinwindow(struct fr_info *, struct tcpdata *, struct tcpdata *, tcphdr_t *, int); static int ipf_state_getent(ipf_main_softc_t *, ipf_state_softc_t *, caddr_t); static int ipf_state_putent(ipf_main_softc_t *, ipf_state_softc_t *, caddr_t); #define ONE_DAY IPF_TTLVAL(1 * 86400) /* 1 day */ #define FIVE_DAYS (5 * ONE_DAY) #define DOUBLE_HASH(x) (((x) + softs->ipf_state_seed[(x) % \ softs->ipf_state_size]) % softs->ipf_state_size) /* ------------------------------------------------------------------------ */ /* Function: ipf_state_main_load */ /* Returns: int - 0 == success, -1 == failure */ /* Parameters: Nil */ /* */ /* A null-op function that exists as a placeholder so that the flow in */ /* other functions is obvious. */ /* ------------------------------------------------------------------------ */ int ipf_state_main_load() { return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_main_unload */ /* Returns: int - 0 == success, -1 == failure */ /* Parameters: Nil */ /* */ /* A null-op function that exists as a placeholder so that the flow in */ /* other functions is obvious. */ /* ------------------------------------------------------------------------ */ int ipf_state_main_unload() { return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_soft_create */ /* Returns: void * - NULL = failure, else pointer to soft context */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* Create a new state soft context structure and populate it with the list */ /* of tunables and other default settings. */ /* ------------------------------------------------------------------------ */ void * ipf_state_soft_create(softc) ipf_main_softc_t *softc; { ipf_state_softc_t *softs; KMALLOC(softs, ipf_state_softc_t *); if (softs == NULL) return NULL; bzero((char *)softs, sizeof(*softs)); softs->ipf_state_tune = ipf_tune_array_copy(softs, sizeof(ipf_state_tuneables), ipf_state_tuneables); if (softs->ipf_state_tune == NULL) { ipf_state_soft_destroy(softc, softs); return NULL; } if (ipf_tune_array_link(softc, softs->ipf_state_tune) == -1) { ipf_state_soft_destroy(softc, softs); return NULL; } #ifdef IPFILTER_LOG softs->ipf_state_logging = 1; #else softs->ipf_state_logging = 0; #endif softs->ipf_state_size = IPSTATE_SIZE, softs->ipf_state_maxbucket = 0; softs->ipf_state_wm_freq = IPF_TTLVAL(10); softs->ipf_state_max = IPSTATE_MAX; softs->ipf_state_wm_last = 0; softs->ipf_state_wm_high = 99; softs->ipf_state_wm_low = 90; softs->ipf_state_inited = 0; softs->ipf_state_lock = 0; softs->ipf_state_doflush = 0; return softs; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_soft_destroy */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* arg(I) - pointer to local context to use */ /* */ /* Undo only what we did in soft create: unlink and free the tunables and */ /* free the soft context structure itself. */ /* ------------------------------------------------------------------------ */ void ipf_state_soft_destroy(softc, arg) ipf_main_softc_t *softc; void *arg; { ipf_state_softc_t *softs = arg; if (softs->ipf_state_tune != NULL) { ipf_tune_array_unlink(softc, softs->ipf_state_tune); KFREES(softs->ipf_state_tune, sizeof(ipf_state_tuneables)); softs->ipf_state_tune = NULL; } KFREE(softs); } static void * ipf_state_seed_alloc(u_int state_size, u_int state_max) { u_int i; u_long *state_seed; KMALLOCS(state_seed, u_long *, state_size * sizeof(*state_seed)); if (state_seed == NULL) return NULL; for (i = 0; i < state_size; i++) { /* * XXX - ipf_state_seed[X] should be a random number of sorts. */ #ifdef __FreeBSD_version state_seed[i] = arc4random(); #else state_seed[i] = ((u_long)state_seed + i) * state_size; state_seed[i] ^= 0xa5a55a5a; state_seed[i] *= (u_long)state_seed; state_seed[i] ^= 0x5a5aa5a5; state_seed[i] *= state_max; #endif } return state_seed; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_soft_init */ /* Returns: int - 0 == success, -1 == failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* arg(I) - pointer to local context to use */ /* */ /* Initialise the state soft context structure so it is ready for use. */ /* This involves: */ /* - allocating a hash table and zero'ing it out */ /* - building a secondary table of seeds for double hashing to make it more */ /* difficult to attempt to attack the hash table itself (for DoS) */ /* - initialise all of the timeout queues, including a table for TCP, some */ /* pairs of query/response for UDP and other IP protocols (typically the */ /* reply queue has a shorter timeout than the query) */ /* ------------------------------------------------------------------------ */ int ipf_state_soft_init(softc, arg) ipf_main_softc_t *softc; void *arg; { ipf_state_softc_t *softs = arg; int i; KMALLOCS(softs->ipf_state_table, ipstate_t **, softs->ipf_state_size * sizeof(ipstate_t *)); if (softs->ipf_state_table == NULL) return -1; bzero((char *)softs->ipf_state_table, softs->ipf_state_size * sizeof(ipstate_t *)); softs->ipf_state_seed = ipf_state_seed_alloc(softs->ipf_state_size, softs->ipf_state_max); if (softs->ipf_state_seed == NULL) return -2; KMALLOCS(softs->ipf_state_stats.iss_bucketlen, u_int *, softs->ipf_state_size * sizeof(u_int)); if (softs->ipf_state_stats.iss_bucketlen == NULL) return -3; bzero((char *)softs->ipf_state_stats.iss_bucketlen, softs->ipf_state_size * sizeof(u_int)); if (softs->ipf_state_maxbucket == 0) { for (i = softs->ipf_state_size; i > 0; i >>= 1) softs->ipf_state_maxbucket++; softs->ipf_state_maxbucket *= 2; } ipf_sttab_init(softc, softs->ipf_state_tcptq); softs->ipf_state_stats.iss_tcptab = softs->ipf_state_tcptq; softs->ipf_state_tcptq[IPF_TCP_NSTATES - 1].ifq_next = &softs->ipf_state_udptq; IPFTQ_INIT(&softs->ipf_state_udptq, softc->ipf_udptimeout, "ipftq udp tab"); softs->ipf_state_udptq.ifq_next = &softs->ipf_state_udpacktq; IPFTQ_INIT(&softs->ipf_state_udpacktq, softc->ipf_udpacktimeout, "ipftq udpack tab"); softs->ipf_state_udpacktq.ifq_next = &softs->ipf_state_icmptq; IPFTQ_INIT(&softs->ipf_state_icmptq, softc->ipf_icmptimeout, "ipftq icmp tab"); softs->ipf_state_icmptq.ifq_next = &softs->ipf_state_icmpacktq; IPFTQ_INIT(&softs->ipf_state_icmpacktq, softc->ipf_icmpacktimeout, "ipftq icmpack tab"); softs->ipf_state_icmpacktq.ifq_next = &softs->ipf_state_iptq; IPFTQ_INIT(&softs->ipf_state_iptq, softc->ipf_iptimeout, "ipftq iptimeout tab"); softs->ipf_state_iptq.ifq_next = &softs->ipf_state_pending; IPFTQ_INIT(&softs->ipf_state_pending, IPF_HZ_DIVIDE, "ipftq pending"); softs->ipf_state_pending.ifq_next = &softs->ipf_state_deletetq; IPFTQ_INIT(&softs->ipf_state_deletetq, 1, "ipftq delete"); softs->ipf_state_deletetq.ifq_next = NULL; MUTEX_INIT(&softs->ipf_stinsert, "ipf state insert mutex"); softs->ipf_state_wm_last = softc->ipf_ticks; softs->ipf_state_inited = 1; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_soft_fini */ /* Returns: int - 0 = success, -1 = failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* arg(I) - pointer to local context to use */ /* */ /* Release and destroy any resources acquired or initialised so that */ /* IPFilter can be unloaded or re-initialised. */ /* ------------------------------------------------------------------------ */ int ipf_state_soft_fini(softc, arg) ipf_main_softc_t *softc; void *arg; { ipf_state_softc_t *softs = arg; ipftq_t *ifq, *ifqnext; ipstate_t *is; while ((is = softs->ipf_state_list) != NULL) ipf_state_del(softc, is, ISL_UNLOAD); /* * Proxy timeout queues are not cleaned here because although they * exist on the state list, appr_unload is called after * ipf_state_unload and the proxies actually are responsible for them * being created. Should the proxy timeouts have their own list? * There's no real justification as this is the only complication. */ for (ifq = softs->ipf_state_usertq; ifq != NULL; ifq = ifqnext) { ifqnext = ifq->ifq_next; if (ipf_deletetimeoutqueue(ifq) == 0) ipf_freetimeoutqueue(softc, ifq); } softs->ipf_state_stats.iss_inuse = 0; softs->ipf_state_stats.iss_active = 0; if (softs->ipf_state_inited == 1) { softs->ipf_state_inited = 0; ipf_sttab_destroy(softs->ipf_state_tcptq); MUTEX_DESTROY(&softs->ipf_state_udptq.ifq_lock); MUTEX_DESTROY(&softs->ipf_state_icmptq.ifq_lock); MUTEX_DESTROY(&softs->ipf_state_udpacktq.ifq_lock); MUTEX_DESTROY(&softs->ipf_state_icmpacktq.ifq_lock); MUTEX_DESTROY(&softs->ipf_state_iptq.ifq_lock); MUTEX_DESTROY(&softs->ipf_state_deletetq.ifq_lock); MUTEX_DESTROY(&softs->ipf_state_pending.ifq_lock); MUTEX_DESTROY(&softs->ipf_stinsert); } if (softs->ipf_state_table != NULL) { KFREES(softs->ipf_state_table, softs->ipf_state_size * sizeof(*softs->ipf_state_table)); softs->ipf_state_table = NULL; } if (softs->ipf_state_seed != NULL) { KFREES(softs->ipf_state_seed, softs->ipf_state_size * sizeof(*softs->ipf_state_seed)); softs->ipf_state_seed = NULL; } if (softs->ipf_state_stats.iss_bucketlen != NULL) { KFREES(softs->ipf_state_stats.iss_bucketlen, softs->ipf_state_size * sizeof(u_int)); softs->ipf_state_stats.iss_bucketlen = NULL; } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_setlock */ /* Returns: Nil */ /* Parameters: arg(I) - pointer to local context to use */ /* tmp(I) - new value for lock */ /* */ /* Stub function that allows for external manipulation of ipf_state_lock */ /* ------------------------------------------------------------------------ */ void ipf_state_setlock(arg, tmp) void *arg; int tmp; { ipf_state_softc_t *softs = arg; softs->ipf_state_lock = tmp; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_stats */ /* Returns: ips_state_t* - pointer to state stats structure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* Put all the current numbers and pointers into a single struct and return */ /* a pointer to it. */ /* ------------------------------------------------------------------------ */ static ips_stat_t * ipf_state_stats(softc) ipf_main_softc_t *softc; { ipf_state_softc_t *softs = softc->ipf_state_soft; ips_stat_t *issp = &softs->ipf_state_stats; issp->iss_state_size = softs->ipf_state_size; issp->iss_state_max = softs->ipf_state_max; issp->iss_table = softs->ipf_state_table; issp->iss_list = softs->ipf_state_list; issp->iss_ticks = softc->ipf_ticks; #ifdef IPFILTER_LOGGING issp->iss_log_ok = ipf_log_logok(softc, IPF_LOGSTATE); issp->iss_log_fail = ipf_log_failures(softc, IPF_LOGSTATE); #else issp->iss_log_ok = 0; issp->iss_log_fail = 0; #endif return issp; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_remove */ /* Returns: int - 0 == success, != 0 == failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* data(I) - pointer to state structure to delete from table */ /* */ /* Search for a state structure that matches the one passed, according to */ /* the IP addresses and other protocol specific information. */ /* ------------------------------------------------------------------------ */ static int ipf_state_remove(softc, data) ipf_main_softc_t *softc; caddr_t data; { ipf_state_softc_t *softs = softc->ipf_state_soft; ipstate_t *sp, st; int error; sp = &st; error = ipf_inobj(softc, data, NULL, &st, IPFOBJ_IPSTATE); if (error) return EFAULT; WRITE_ENTER(&softc->ipf_state); for (sp = softs->ipf_state_list; sp; sp = sp->is_next) if ((sp->is_p == st.is_p) && (sp->is_v == st.is_v) && !bcmp((caddr_t)&sp->is_src, (caddr_t)&st.is_src, sizeof(st.is_src)) && !bcmp((caddr_t)&sp->is_dst, (caddr_t)&st.is_dst, sizeof(st.is_dst)) && !bcmp((caddr_t)&sp->is_ps, (caddr_t)&st.is_ps, sizeof(st.is_ps))) { ipf_state_del(softc, sp, ISL_REMOVE); RWLOCK_EXIT(&softc->ipf_state); return 0; } RWLOCK_EXIT(&softc->ipf_state); IPFERROR(100001); return ESRCH; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_ioctl */ /* Returns: int - 0 == success, != 0 == failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* data(I) - pointer to ioctl data */ /* cmd(I) - ioctl command integer */ /* mode(I) - file mode bits used with open */ /* uid(I) - uid of process making the ioctl call */ /* ctx(I) - pointer specific to context of the call */ /* */ /* Processes an ioctl call made to operate on the IP Filter state device. */ /* ------------------------------------------------------------------------ */ int ipf_state_ioctl(softc, data, cmd, mode, uid, ctx) ipf_main_softc_t *softc; caddr_t data; ioctlcmd_t cmd; int mode, uid; void *ctx; { ipf_state_softc_t *softs = softc->ipf_state_soft; int arg, ret, error = 0; SPL_INT(s); switch (cmd) { /* * Delete an entry from the state table. */ case SIOCDELST : error = ipf_state_remove(softc, data); break; /* * Flush the state table */ case SIOCIPFFL : error = BCOPYIN(data, &arg, sizeof(arg)); if (error != 0) { IPFERROR(100002); error = EFAULT; } else { WRITE_ENTER(&softc->ipf_state); ret = ipf_state_flush(softc, arg, 4); RWLOCK_EXIT(&softc->ipf_state); error = BCOPYOUT(&ret, data, sizeof(ret)); if (error != 0) { IPFERROR(100003); error = EFAULT; } } break; #ifdef USE_INET6 case SIOCIPFL6 : error = BCOPYIN(data, &arg, sizeof(arg)); if (error != 0) { IPFERROR(100004); error = EFAULT; } else { WRITE_ENTER(&softc->ipf_state); ret = ipf_state_flush(softc, arg, 6); RWLOCK_EXIT(&softc->ipf_state); error = BCOPYOUT(&ret, data, sizeof(ret)); if (error != 0) { IPFERROR(100005); error = EFAULT; } } break; #endif case SIOCMATCHFLUSH : WRITE_ENTER(&softc->ipf_state); error = ipf_state_matchflush(softc, data); RWLOCK_EXIT(&softc->ipf_state); break; #ifdef IPFILTER_LOG /* * Flush the state log. */ case SIOCIPFFB : if (!(mode & FWRITE)) { IPFERROR(100008); error = EPERM; } else { int tmp; tmp = ipf_log_clear(softc, IPL_LOGSTATE); error = BCOPYOUT(&tmp, data, sizeof(tmp)); if (error != 0) { IPFERROR(100009); error = EFAULT; } } break; /* * Turn logging of state information on/off. */ case SIOCSETLG : if (!(mode & FWRITE)) { IPFERROR(100010); error = EPERM; } else { error = BCOPYIN(data, &softs->ipf_state_logging, sizeof(softs->ipf_state_logging)); if (error != 0) { IPFERROR(100011); error = EFAULT; } } break; /* * Return the current state of logging. */ case SIOCGETLG : error = BCOPYOUT(&softs->ipf_state_logging, data, sizeof(softs->ipf_state_logging)); if (error != 0) { IPFERROR(100012); error = EFAULT; } break; /* * Return the number of bytes currently waiting to be read. */ case FIONREAD : arg = ipf_log_bytesused(softc, IPL_LOGSTATE); error = BCOPYOUT(&arg, data, sizeof(arg)); if (error != 0) { IPFERROR(100013); error = EFAULT; } break; #endif /* * Get the current state statistics. */ case SIOCGETFS : error = ipf_outobj(softc, data, ipf_state_stats(softc), IPFOBJ_STATESTAT); break; /* * Lock/Unlock the state table. (Locking prevents any changes, which * means no packets match). */ case SIOCSTLCK : if (!(mode & FWRITE)) { IPFERROR(100014); error = EPERM; } else { error = ipf_lock(data, &softs->ipf_state_lock); } break; /* * Add an entry to the current state table. */ case SIOCSTPUT : if (!softs->ipf_state_lock || !(mode &FWRITE)) { IPFERROR(100015); error = EACCES; break; } error = ipf_state_putent(softc, softs, data); break; /* * Get a state table entry. */ case SIOCSTGET : if (!softs->ipf_state_lock) { IPFERROR(100016); error = EACCES; break; } error = ipf_state_getent(softc, softs, data); break; /* * Return a copy of the hash table bucket lengths */ case SIOCSTAT1 : error = BCOPYOUT(softs->ipf_state_stats.iss_bucketlen, data, softs->ipf_state_size * sizeof(u_int)); if (error != 0) { IPFERROR(100017); error = EFAULT; } break; case SIOCGENITER : { ipftoken_t *token; ipfgeniter_t iter; ipfobj_t obj; error = ipf_inobj(softc, data, &obj, &iter, IPFOBJ_GENITER); if (error != 0) break; SPL_SCHED(s); token = ipf_token_find(softc, IPFGENITER_STATE, uid, ctx); if (token != NULL) { error = ipf_state_iter(softc, token, &iter, &obj); WRITE_ENTER(&softc->ipf_tokens); ipf_token_deref(softc, token); RWLOCK_EXIT(&softc->ipf_tokens); } else { IPFERROR(100018); error = ESRCH; } SPL_X(s); break; } case SIOCGTABL : error = ipf_state_gettable(softc, softs, data); break; case SIOCIPFDELTOK : error = BCOPYIN(data, &arg, sizeof(arg)); if (error != 0) { IPFERROR(100019); error = EFAULT; } else { SPL_SCHED(s); error = ipf_token_del(softc, arg, uid, ctx); SPL_X(s); } break; case SIOCGTQTAB : error = ipf_outobj(softc, data, softs->ipf_state_tcptq, IPFOBJ_STATETQTAB); break; default : IPFERROR(100020); error = EINVAL; break; } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_getent */ /* Returns: int - 0 == success, != 0 == failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* softs(I) - pointer to state context structure */ /* data(I) - pointer to state structure to retrieve from table*/ /* */ /* Copy out state information from the kernel to a user space process. If */ /* there is a filter rule associated with the state entry, copy that out */ /* as well. The entry to copy out is taken from the value of "ips_next" in */ /* the struct passed in and if not null and not found in the list of current*/ /* state entries, the retrieval fails. */ /* ------------------------------------------------------------------------ */ static int ipf_state_getent(softc, softs, data) ipf_main_softc_t *softc; ipf_state_softc_t *softs; caddr_t data; { ipstate_t *is, *isn; ipstate_save_t ips; int error; error = ipf_inobj(softc, data, NULL, &ips, IPFOBJ_STATESAVE); if (error) return EFAULT; READ_ENTER(&softc->ipf_state); isn = ips.ips_next; if (isn == NULL) { isn = softs->ipf_state_list; if (isn == NULL) { if (ips.ips_next == NULL) { RWLOCK_EXIT(&softc->ipf_state); IPFERROR(100021); return ENOENT; } return 0; } } else { /* * Make sure the pointer we're copying from exists in the * current list of entries. Security precaution to prevent * copying of random kernel data. */ for (is = softs->ipf_state_list; is; is = is->is_next) if (is == isn) break; if (!is) { RWLOCK_EXIT(&softc->ipf_state); IPFERROR(100022); return ESRCH; } } ips.ips_next = isn->is_next; bcopy((char *)isn, (char *)&ips.ips_is, sizeof(ips.ips_is)); ips.ips_rule = isn->is_rule; if (isn->is_rule != NULL) bcopy((char *)isn->is_rule, (char *)&ips.ips_fr, sizeof(ips.ips_fr)); RWLOCK_EXIT(&softc->ipf_state); error = ipf_outobj(softc, data, &ips, IPFOBJ_STATESAVE); return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_putent */ /* Returns: int - 0 == success, != 0 == failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* softs(I) - pointer to state context structure */ /* data(I) - pointer to state information struct */ /* */ /* This function implements the SIOCSTPUT ioctl: insert a state entry into */ /* the state table. If the state info. includes a pointer to a filter rule */ /* then also add in an orphaned rule (will not show up in any "ipfstat -io" */ /* output. */ /* ------------------------------------------------------------------------ */ int ipf_state_putent(softc, softs, data) ipf_main_softc_t *softc; ipf_state_softc_t *softs; caddr_t data; { ipstate_t *is, *isn; ipstate_save_t ips; int error, out, i; frentry_t *fr; char *name; error = ipf_inobj(softc, data, NULL, &ips, IPFOBJ_STATESAVE); if (error != 0) return error; KMALLOC(isn, ipstate_t *); if (isn == NULL) { IPFERROR(100023); return ENOMEM; } bcopy((char *)&ips.ips_is, (char *)isn, sizeof(*isn)); bzero((char *)isn, offsetof(struct ipstate, is_pkts)); isn->is_sti.tqe_pnext = NULL; isn->is_sti.tqe_next = NULL; isn->is_sti.tqe_ifq = NULL; isn->is_sti.tqe_parent = isn; isn->is_ifp[0] = NULL; isn->is_ifp[1] = NULL; isn->is_ifp[2] = NULL; isn->is_ifp[3] = NULL; isn->is_sync = NULL; fr = ips.ips_rule; if (fr == NULL) { int inserr; READ_ENTER(&softc->ipf_state); inserr = ipf_state_insert(softc, isn, 0); MUTEX_EXIT(&isn->is_lock); RWLOCK_EXIT(&softc->ipf_state); return inserr; } if (isn->is_flags & SI_NEWFR) { KMALLOC(fr, frentry_t *); if (fr == NULL) { KFREE(isn); IPFERROR(100024); return ENOMEM; } bcopy((char *)&ips.ips_fr, (char *)fr, sizeof(*fr)); out = fr->fr_flags & FR_OUTQUE ? 1 : 0; isn->is_rule = fr; ips.ips_is.is_rule = fr; MUTEX_NUKE(&fr->fr_lock); MUTEX_INIT(&fr->fr_lock, "state filter rule lock"); /* * Look up all the interface names in the rule. */ for (i = 0; i < FR_NUM(fr->fr_ifnames); i++) { if (fr->fr_ifnames[i] == -1) { fr->fr_ifas[i] = NULL; continue; } name = FR_NAME(fr, fr_ifnames[i]); fr->fr_ifas[i] = ipf_resolvenic(softc, name, fr->fr_family); } for (i = 0; i < FR_NUM(isn->is_ifname); i++) { name = isn->is_ifname[i]; isn->is_ifp[i] = ipf_resolvenic(softc, name, isn->is_v); } fr->fr_ref = 0; fr->fr_dsize = 0; fr->fr_data = NULL; fr->fr_type = FR_T_NONE; (void) ipf_resolvedest(softc, fr->fr_names, &fr->fr_tifs[0], fr->fr_family); (void) ipf_resolvedest(softc, fr->fr_names, &fr->fr_tifs[1], fr->fr_family); (void) ipf_resolvedest(softc, fr->fr_names, &fr->fr_dif, fr->fr_family); /* * send a copy back to userland of what we ended up * to allow for verification. */ error = ipf_outobj(softc, data, &ips, IPFOBJ_STATESAVE); if (error != 0) { KFREE(isn); MUTEX_DESTROY(&fr->fr_lock); KFREE(fr); IPFERROR(100025); return EFAULT; } READ_ENTER(&softc->ipf_state); error = ipf_state_insert(softc, isn, 0); MUTEX_EXIT(&isn->is_lock); RWLOCK_EXIT(&softc->ipf_state); } else { READ_ENTER(&softc->ipf_state); for (is = softs->ipf_state_list; is; is = is->is_next) if (is->is_rule == fr) { error = ipf_state_insert(softc, isn, 0); MUTEX_EXIT(&isn->is_lock); break; } if (is == NULL) { KFREE(isn); isn = NULL; } RWLOCK_EXIT(&softc->ipf_state); if (isn == NULL) { IPFERROR(100033); error = ESRCH; } } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_insert */ /* Returns: int - 0 == success, -1 == failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* Parameters: is(I) - pointer to state structure */ /* rev(I) - flag indicating direction of packet */ /* */ /* Inserts a state structure into the hash table (for lookups) and the list */ /* of state entries (for enumeration). Resolves all of the interface names */ /* to pointers and adjusts running stats for the hash table as appropriate. */ /* */ /* This function can fail if the filter rule has had a population policy of */ /* IP addresses used with stateful filtering assigned to it. */ /* */ /* Locking: it is assumed that some kind of lock on ipf_state is held. */ /* Exits with is_lock initialised and held - *EVEN IF ERROR*. */ /* ------------------------------------------------------------------------ */ int ipf_state_insert(softc, is, rev) ipf_main_softc_t *softc; ipstate_t *is; int rev; { ipf_state_softc_t *softs = softc->ipf_state_soft; frentry_t *fr; u_int hv; int i; /* * Look up all the interface names in the state entry. */ for (i = 0; i < FR_NUM(is->is_ifp); i++) { if (is->is_ifp[i] != NULL) continue; is->is_ifp[i] = ipf_resolvenic(softc, is->is_ifname[i], is->is_v); } /* * If we could trust is_hv, then the modulus would not be needed, * but when running with IPFILTER_SYNC, this stops bad values. */ hv = is->is_hv % softs->ipf_state_size; /* TRACE is, hv */ is->is_hv = hv; /* * We need to get both of these locks...the first because it is * possible that once the insert is complete another packet might * come along, match the entry and want to update it. */ MUTEX_INIT(&is->is_lock, "ipf state entry"); MUTEX_ENTER(&is->is_lock); MUTEX_ENTER(&softs->ipf_stinsert); fr = is->is_rule; if (fr != NULL) { if ((fr->fr_srctrack.ht_max_nodes != 0) && (ipf_ht_node_add(softc, &fr->fr_srctrack, is->is_family, &is->is_src) == -1)) { SBUMPD(ipf_state_stats, iss_max_track); MUTEX_EXIT(&softs->ipf_stinsert); return -1; } MUTEX_ENTER(&fr->fr_lock); fr->fr_ref++; MUTEX_EXIT(&fr->fr_lock); fr->fr_statecnt++; } if (is->is_flags & (SI_WILDP|SI_WILDA)) { DT(iss_wild_plus_one); SINCL(ipf_state_stats.iss_wild); } SBUMP(ipf_state_stats.iss_proto[is->is_p]); SBUMP(ipf_state_stats.iss_active_proto[is->is_p]); /* * add into list table. */ if (softs->ipf_state_list != NULL) softs->ipf_state_list->is_pnext = &is->is_next; is->is_pnext = &softs->ipf_state_list; is->is_next = softs->ipf_state_list; softs->ipf_state_list = is; if (softs->ipf_state_table[hv] != NULL) softs->ipf_state_table[hv]->is_phnext = &is->is_hnext; else softs->ipf_state_stats.iss_inuse++; is->is_phnext = softs->ipf_state_table + hv; is->is_hnext = softs->ipf_state_table[hv]; softs->ipf_state_table[hv] = is; softs->ipf_state_stats.iss_bucketlen[hv]++; softs->ipf_state_stats.iss_active++; MUTEX_EXIT(&softs->ipf_stinsert); ipf_state_setqueue(softc, is, rev); return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_matchipv4addrs */ /* Returns: int - 2 addresses match (strong match), 1 reverse match, */ /* 0 no match */ /* Parameters: is1, is2 pointers to states we are checking */ /* */ /* Function matches IPv4 addresses it returns strong match for ICMP proto */ /* even there is only reverse match */ /* ------------------------------------------------------------------------ */ static int ipf_state_matchipv4addrs(is1, is2) ipstate_t *is1, *is2; { int rv; if (is1->is_saddr == is2->is_saddr && is1->is_daddr == is2->is_daddr) rv = 2; else if (is1->is_saddr == is2->is_daddr && is1->is_daddr == is2->is_saddr) { /* force strong match for ICMP protocol */ rv = (is1->is_p == IPPROTO_ICMP) ? 2 : 1; } else rv = 0; return (rv); } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_matchipv6addrs */ /* Returns: int - 2 addresses match (strong match), 1 reverse match, */ /* 0 no match */ /* Parameters: is1, is2 pointers to states we are checking */ /* */ /* Function matches IPv6 addresses it returns strong match for ICMP proto */ /* even there is only reverse match */ /* ------------------------------------------------------------------------ */ static int ipf_state_matchipv6addrs(is1, is2) ipstate_t *is1, *is2; { int rv; if (IP6_EQ(&is1->is_src, &is2->is_src) && IP6_EQ(&is1->is_dst, &is2->is_dst)) rv = 2; else if (IP6_EQ(&is1->is_src, &is2->is_dst) && IP6_EQ(&is1->is_dst, &is2->is_src)) { /* force strong match for ICMPv6 protocol */ rv = (is1->is_p == IPPROTO_ICMPV6) ? 2 : 1; } else rv = 0; return (rv); } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_matchaddresses */ /* Returns: int - 2 addresses match, 1 reverse match, zero no match */ /* Parameters: is1, is2 pointers to states we are checking */ /* */ /* function retruns true if two pairs of addresses belong to single */ /* connection. suppose there are two endpoints: */ /* endpoint1 1.1.1.1 */ /* endpoint2 1.1.1.2 */ /* */ /* the state is established by packet flying from .1 to .2 so we see: */ /* is1->src = 1.1.1.1 */ /* is1->dst = 1.1.1.2 */ /* now endpoint 1.1.1.2 sends answer */ /* retreives is1 record created by first packat and compares it with is2 */ /* temporal record, is2 is initialized as follows: */ /* is2->src = 1.1.1.2 */ /* is2->dst = 1.1.1.1 */ /* in this case 1 will be returned */ /* */ /* the ipf_matchaddresses() assumes those two records to be same. of course */ /* the ipf_matchaddresses() also assume records are same in case you pass */ /* identical arguments (i.e. ipf_matchaddress(is1, is1) would return 2 */ /* ------------------------------------------------------------------------ */ static int ipf_state_matchaddresses(is1, is2) ipstate_t *is1, *is2; { int rv; if (is1->is_v == 4) { rv = ipf_state_matchipv4addrs(is1, is2); } else { rv = ipf_state_matchipv6addrs(is1, is2); } return (rv); } /* ------------------------------------------------------------------------ */ /* Function: ipf_matchports */ /* Returns: int - 2 match, 1 rverse match, 0 no match */ /* Parameters: ppairs1, ppairs - src, dst ports we want to match */ /* */ /* performs the same match for isps members as for addresses */ /* ------------------------------------------------------------------------ */ static int ipf_state_matchports(ppairs1, ppairs2) udpinfo_t *ppairs1, *ppairs2; { int rv; if (ppairs1->us_sport == ppairs2->us_sport && ppairs1->us_dport == ppairs2->us_dport) rv = 2; else if (ppairs1->us_sport == ppairs2->us_dport && ppairs1->us_dport == ppairs2->us_sport) rv = 1; else rv = 0; return (rv); } /* ------------------------------------------------------------------------ */ /* Function: ipf_matchisps */ /* Returns: int - nonzero if isps members match, 0 nomatch */ /* Parameters: is1, is2 - states we want to match */ /* */ /* performs the same match for isps members as for addresses */ /* ------------------------------------------------------------------------ */ static int ipf_state_matchisps(is1, is2) ipstate_t *is1, *is2; { int rv; if (is1->is_p == is2->is_p) { switch (is1->is_p) { case IPPROTO_TCP : case IPPROTO_UDP : case IPPROTO_GRE : /* greinfo_t can be also interprted as port pair */ rv = ipf_state_matchports(&is1->is_ps.is_us, &is2->is_ps.is_us); break; case IPPROTO_ICMP : case IPPROTO_ICMPV6 : /* force strong match for ICMP datagram. */ if (bcmp(&is1->is_ps, &is2->is_ps, sizeof(icmpinfo_t)) == 0) { rv = 2; } else { rv = 0; } break; default: rv = 0; } } else { rv = 0; } return (rv); } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_match */ /* Returns: int - nonzero match, zero no match */ /* Parameters: is1, is2 - states we want to match */ /* */ /* ------------------------------------------------------------------------ */ static int ipf_state_match(is1, is2) ipstate_t *is1, *is2; { int rv; int amatch; int pomatch; if (bcmp(&is1->is_pass, &is2->is_pass, offsetof(struct ipstate, is_authmsk) - offsetof(struct ipstate, is_pass)) == 0) { pomatch = ipf_state_matchisps(is1, is2); amatch = ipf_state_matchaddresses(is1, is2); rv = (amatch != 0) && (amatch == pomatch); } else { rv = 0; } return (rv); } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_add */ /* Returns: ipstate_t - 0 = success */ /* Parameters: softc(I) - pointer to soft context main structure */ /* fin(I) - pointer to packet information */ /* stsave(O) - pointer to place to save pointer to created */ /* state structure. */ /* flags(I) - flags to use when creating the structure */ /* */ /* Creates a new IP state structure from the packet information collected. */ /* Inserts it into the state table and appends to the bottom of the active */ /* list. If the capacity of the table has reached the maximum allowed then */ /* the call will fail and a flush is scheduled for the next timeout call. */ /* */ /* NOTE: The use of stsave to point to nat_state will result in memory */ /* corruption. It should only be used to point to objects that will */ /* either outlive this (not expired) or will deref the ip_state_t */ /* when they are deleted. */ /* ------------------------------------------------------------------------ */ int ipf_state_add(softc, fin, stsave, flags) ipf_main_softc_t *softc; fr_info_t *fin; ipstate_t **stsave; u_int flags; { ipf_state_softc_t *softs = softc->ipf_state_soft; ipstate_t *is, ips; struct icmp *ic; u_int pass, hv; frentry_t *fr; tcphdr_t *tcp; frdest_t *fdp; int out; /* * If a locally created packet is trying to egress but it * does not match because of this lock, it is likely that * the policy will block it and return network unreachable further * up the stack. To mitigate this error, EAGAIN is returned instead, * telling the IP stack to try sending this packet again later. */ if (softs->ipf_state_lock) { SBUMPD(ipf_state_stats, iss_add_locked); fin->fin_error = EAGAIN; return -1; } if (fin->fin_flx & (FI_SHORT|FI_STATE|FI_FRAGBODY|FI_BAD)) { SBUMPD(ipf_state_stats, iss_add_bad); return -1; } if ((fin->fin_flx & FI_OOW) && !(fin->fin_tcpf & TH_SYN)) { SBUMPD(ipf_state_stats, iss_add_oow); return -1; } if ((softs->ipf_state_stats.iss_active * 100 / softs->ipf_state_max) > softs->ipf_state_wm_high) { softs->ipf_state_doflush = 1; } /* * If a "keep state" rule has reached the maximum number of references * to it, then schedule an automatic flush in case we can clear out * some "dead old wood". Note that because the lock isn't held on * fr it is possible that we could overflow. The cost of overflowing * is being ignored here as the number by which it can overflow is * a product of the number of simultaneous threads that could be * executing in here, so a limit of 100 won't result in 200, but could * result in 101 or 102. */ fr = fin->fin_fr; if (fr != NULL) { if ((softs->ipf_state_stats.iss_active >= softs->ipf_state_max) && (fr->fr_statemax == 0)) { SBUMPD(ipf_state_stats, iss_max); return 1; } if ((fr->fr_statemax != 0) && (fr->fr_statecnt >= fr->fr_statemax)) { SBUMPD(ipf_state_stats, iss_max_ref); return 2; } } is = &ips; if (fr == NULL) { pass = softc->ipf_flags; is->is_tag = FR_NOLOGTAG; } else { pass = fr->fr_flags; } ic = NULL; tcp = NULL; out = fin->fin_out; bzero((char *)is, sizeof(*is)); is->is_die = 1 + softc->ipf_ticks; /* * We want to check everything that is a property of this packet, * but we don't (automatically) care about its fragment status as * this may change. */ is->is_pass = pass; is->is_v = fin->fin_v; is->is_sec = fin->fin_secmsk; is->is_secmsk = 0xffff; is->is_auth = fin->fin_auth; is->is_authmsk = 0xffff; is->is_family = fin->fin_family; is->is_opt[0] = fin->fin_optmsk; is->is_optmsk[0] = 0xffffffff; if (is->is_v == 6) { is->is_opt[0] &= ~0x8; is->is_optmsk[0] &= ~0x8; } /* * Copy and calculate... */ hv = (is->is_p = fin->fin_fi.fi_p); is->is_src = fin->fin_fi.fi_src; hv += is->is_saddr; is->is_dst = fin->fin_fi.fi_dst; hv += is->is_daddr; #ifdef USE_INET6 if (fin->fin_v == 6) { /* * For ICMPv6, we check to see if the destination address is * a multicast address. If it is, do not include it in the * calculation of the hash because the correct reply will come * back from a real address, not a multicast address. */ if ((is->is_p == IPPROTO_ICMPV6) && IN6_IS_ADDR_MULTICAST(&is->is_dst.in6)) { /* * So you can do keep state with neighbour discovery. * * Here we could use the address from the neighbour * solicit message to put in the state structure and * we could use that without a wildcard flag too... */ flags |= SI_W_DADDR; hv -= is->is_daddr; } else { hv += is->is_dst.i6[1]; hv += is->is_dst.i6[2]; hv += is->is_dst.i6[3]; } hv += is->is_src.i6[1]; hv += is->is_src.i6[2]; hv += is->is_src.i6[3]; } #endif if ((fin->fin_v == 4) && (fin->fin_flx & (FI_MULTICAST|FI_BROADCAST|FI_MBCAST))) { flags |= SI_W_DADDR; hv -= is->is_daddr; } switch (is->is_p) { #ifdef USE_INET6 case IPPROTO_ICMPV6 : ic = fin->fin_dp; switch (ic->icmp_type) { case ICMP6_ECHO_REQUEST : hv += (is->is_icmp.ici_id = ic->icmp_id); /*FALLTHROUGH*/ case ICMP6_MEMBERSHIP_QUERY : case ND_ROUTER_SOLICIT : case ND_NEIGHBOR_SOLICIT : case ICMP6_NI_QUERY : is->is_icmp.ici_type = ic->icmp_type; break; default : SBUMPD(ipf_state_stats, iss_icmp6_notquery); return -2; } break; #endif case IPPROTO_ICMP : ic = fin->fin_dp; switch (ic->icmp_type) { case ICMP_ECHO : case ICMP_TSTAMP : case ICMP_IREQ : case ICMP_MASKREQ : is->is_icmp.ici_type = ic->icmp_type; hv += (is->is_icmp.ici_id = ic->icmp_id); break; default : SBUMPD(ipf_state_stats, iss_icmp_notquery); return -3; } break; #if 0 case IPPROTO_GRE : gre = fin->fin_dp; is->is_gre.gs_flags = gre->gr_flags; is->is_gre.gs_ptype = gre->gr_ptype; if (GRE_REV(is->is_gre.gs_flags) == 1) { is->is_call[0] = fin->fin_data[0]; is->is_call[1] = fin->fin_data[1]; } break; #endif case IPPROTO_TCP : tcp = fin->fin_dp; if (tcp->th_flags & TH_RST) { SBUMPD(ipf_state_stats, iss_tcp_rstadd); return -4; } /* TRACE is, flags, hv */ /* * The endian of the ports doesn't matter, but the ack and * sequence numbers do as we do mathematics on them later. */ is->is_sport = htons(fin->fin_data[0]); is->is_dport = htons(fin->fin_data[1]); if ((flags & (SI_W_DPORT|SI_W_SPORT)) == 0) { hv += is->is_sport; hv += is->is_dport; } /* TRACE is, flags, hv */ /* * If this is a real packet then initialise fields in the * state information structure from the TCP header information. */ is->is_maxdwin = 1; is->is_maxswin = ntohs(tcp->th_win); if (is->is_maxswin == 0) is->is_maxswin = 1; if ((fin->fin_flx & FI_IGNORE) == 0) { is->is_send = ntohl(tcp->th_seq) + fin->fin_dlen - (TCP_OFF(tcp) << 2) + ((tcp->th_flags & TH_SYN) ? 1 : 0) + ((tcp->th_flags & TH_FIN) ? 1 : 0); is->is_maxsend = is->is_send; /* * Window scale option is only present in * SYN/SYN-ACK packet. */ if ((tcp->th_flags & ~(TH_FIN|TH_ACK|TH_ECNALL)) == TH_SYN && (TCP_OFF(tcp) > (sizeof(tcphdr_t) >> 2))) { if (ipf_tcpoptions(softs, fin, tcp, &is->is_tcp.ts_data[0]) == -1) { fin->fin_flx |= FI_BAD; DT1(ipf_fi_bad_tcpoptions_th_fin_ack_ecnall, fr_info_t *, fin); } } if ((fin->fin_out != 0) && (pass & FR_NEWISN) != 0) { ipf_checknewisn(fin, is); ipf_fixoutisn(fin, is); } if ((tcp->th_flags & TH_OPENING) == TH_SYN) flags |= IS_TCPFSM; else { is->is_maxdwin = is->is_maxswin * 2; is->is_dend = ntohl(tcp->th_ack); is->is_maxdend = ntohl(tcp->th_ack); is->is_maxdwin *= 2; } } /* * If we're creating state for a starting connection, start * the timer on it as we'll never see an error if it fails * to connect. */ break; case IPPROTO_UDP : tcp = fin->fin_dp; is->is_sport = htons(fin->fin_data[0]); is->is_dport = htons(fin->fin_data[1]); if ((flags & (SI_W_DPORT|SI_W_SPORT)) == 0) { hv += tcp->th_dport; hv += tcp->th_sport; } break; default : break; } hv = DOUBLE_HASH(hv); is->is_hv = hv; /* * Look for identical state. */ for (is = softs->ipf_state_table[hv % softs->ipf_state_size]; is != NULL; is = is->is_hnext) { if (ipf_state_match(&ips, is) == 1) break; } if (is != NULL) { SBUMPD(ipf_state_stats, iss_add_dup); return 3; } if (softs->ipf_state_stats.iss_bucketlen[hv] >= softs->ipf_state_maxbucket) { SBUMPD(ipf_state_stats, iss_bucket_full); return 4; } /* * No existing state; create new */ KMALLOC(is, ipstate_t *); if (is == NULL) { SBUMPD(ipf_state_stats, iss_nomem); return 5; } bcopy((char *)&ips, (char *)is, sizeof(*is)); is->is_flags = flags & IS_INHERITED; is->is_rulen = fin->fin_rule; is->is_rule = fr; /* * Do not do the modulus here, it is done in ipf_state_insert(). */ if (fr != NULL) { ipftq_t *tq; (void) strncpy(is->is_group, FR_NAME(fr, fr_group), FR_GROUPLEN); if (fr->fr_age[0] != 0) { tq = ipf_addtimeoutqueue(softc, &softs->ipf_state_usertq, fr->fr_age[0]); is->is_tqehead[0] = tq; is->is_sti.tqe_flags |= TQE_RULEBASED; } if (fr->fr_age[1] != 0) { tq = ipf_addtimeoutqueue(softc, &softs->ipf_state_usertq, fr->fr_age[1]); is->is_tqehead[1] = tq; is->is_sti.tqe_flags |= TQE_RULEBASED; } is->is_tag = fr->fr_logtag; } /* * It may seem strange to set is_ref to 2, but if stsave is not NULL * then a copy of the pointer is being stored somewhere else and in * the end, it will expect to be able to do something with it. */ is->is_me = stsave; if (stsave != NULL) { *stsave = is; is->is_ref = 2; } else { is->is_ref = 1; } is->is_pkts[0] = 0, is->is_bytes[0] = 0; is->is_pkts[1] = 0, is->is_bytes[1] = 0; is->is_pkts[2] = 0, is->is_bytes[2] = 0; is->is_pkts[3] = 0, is->is_bytes[3] = 0; if ((fin->fin_flx & FI_IGNORE) == 0) { is->is_pkts[out] = 1; fin->fin_pktnum = 1; is->is_bytes[out] = fin->fin_plen; is->is_flx[out][0] = fin->fin_flx & FI_CMP; is->is_flx[out][0] &= ~FI_OOW; } if (pass & FR_STLOOSE) is->is_flags |= IS_LOOSE; if (pass & FR_STSTRICT) is->is_flags |= IS_STRICT; if (pass & FR_STATESYNC) is->is_flags |= IS_STATESYNC; if (pass & FR_LOGFIRST) is->is_pass &= ~(FR_LOGFIRST|FR_LOG); READ_ENTER(&softc->ipf_state); if (ipf_state_insert(softc, is, fin->fin_rev) == -1) { RWLOCK_EXIT(&softc->ipf_state); /* * This is a bit more manual than it should be but * ipf_state_del cannot be called. */ MUTEX_EXIT(&is->is_lock); MUTEX_DESTROY(&is->is_lock); if (is->is_tqehead[0] != NULL) { if (ipf_deletetimeoutqueue(is->is_tqehead[0]) == 0) ipf_freetimeoutqueue(softc, is->is_tqehead[0]); is->is_tqehead[0] = NULL; } if (is->is_tqehead[1] != NULL) { if (ipf_deletetimeoutqueue(is->is_tqehead[1]) == 0) ipf_freetimeoutqueue(softc, is->is_tqehead[1]); is->is_tqehead[1] = NULL; } KFREE(is); return -1; } /* * Filling in the interface name is after the insert so that an * event (such as add/delete) of an interface that is referenced * by this rule will see this state entry. */ if (fr != NULL) { /* * The name '-' is special for network interfaces and causes * a NULL name to be present, always, allowing packets to * match it, regardless of their interface. */ if ((fin->fin_ifp == NULL) || (fr->fr_ifnames[out << 1] != -1 && fr->fr_names[fr->fr_ifnames[out << 1] + 0] == '-' && fr->fr_names[fr->fr_ifnames[out << 1] + 1] == '\0')) { is->is_ifp[out << 1] = fr->fr_ifas[0]; strncpy(is->is_ifname[out << 1], FR_NAME(fr, fr_ifnames[0]), sizeof(fr->fr_ifnames[0])); } else { is->is_ifp[out << 1] = fin->fin_ifp; COPYIFNAME(fin->fin_v, fin->fin_ifp, is->is_ifname[out << 1]); } is->is_ifp[(out << 1) + 1] = fr->fr_ifas[1]; if (fr->fr_ifnames[1] != -1) { strncpy(is->is_ifname[(out << 1) + 1], FR_NAME(fr, fr_ifnames[1]), sizeof(fr->fr_ifnames[1])); } is->is_ifp[(1 - out) << 1] = fr->fr_ifas[2]; if (fr->fr_ifnames[2] != -1) { strncpy(is->is_ifname[((1 - out) << 1)], FR_NAME(fr, fr_ifnames[2]), sizeof(fr->fr_ifnames[2])); } is->is_ifp[((1 - out) << 1) + 1] = fr->fr_ifas[3]; if (fr->fr_ifnames[3] != -1) { strncpy(is->is_ifname[((1 - out) << 1) + 1], FR_NAME(fr, fr_ifnames[3]), sizeof(fr->fr_ifnames[3])); } } else { if (fin->fin_ifp != NULL) { is->is_ifp[out << 1] = fin->fin_ifp; COPYIFNAME(fin->fin_v, fin->fin_ifp, is->is_ifname[out << 1]); } } if (fin->fin_p == IPPROTO_TCP) { /* * If we're creating state for a starting connection, start the * timer on it as we'll never see an error if it fails to * connect. */ (void) ipf_tcp_age(&is->is_sti, fin, softs->ipf_state_tcptq, is->is_flags, 2); } MUTEX_EXIT(&is->is_lock); if ((is->is_flags & IS_STATESYNC) && ((is->is_flags & SI_CLONE) == 0)) is->is_sync = ipf_sync_new(softc, SMC_STATE, fin, is); if (softs->ipf_state_logging) ipf_state_log(softc, is, ISL_NEW); RWLOCK_EXIT(&softc->ipf_state); fin->fin_flx |= FI_STATE; if (fin->fin_flx & FI_FRAG) (void) ipf_frag_new(softc, fin, pass); fdp = &fr->fr_tifs[0]; if (fdp->fd_type == FRD_DSTLIST) { ipf_dstlist_select_node(fin, fdp->fd_ptr, NULL, &is->is_tifs[0]); } else { bcopy(fdp, &is->is_tifs[0], sizeof(*fdp)); } fdp = &fr->fr_tifs[1]; if (fdp->fd_type == FRD_DSTLIST) { ipf_dstlist_select_node(fin, fdp->fd_ptr, NULL, &is->is_tifs[1]); } else { bcopy(fdp, &is->is_tifs[1], sizeof(*fdp)); } fin->fin_tif = &is->is_tifs[fin->fin_rev]; fdp = &fr->fr_dif; if (fdp->fd_type == FRD_DSTLIST) { ipf_dstlist_select_node(fin, fdp->fd_ptr, NULL, &is->is_dif); } else { bcopy(fdp, &is->is_dif, sizeof(*fdp)); } fin->fin_dif = &is->is_dif; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_tcpoptions */ /* Returns: int - 1 == packet matches state entry, 0 == it does not, */ /* -1 == packet has bad TCP options data */ /* Parameters: softs(I) - pointer to state context structure */ /* fin(I) - pointer to packet information */ /* tcp(I) - pointer to TCP packet header */ /* td(I) - pointer to TCP data held as part of the state */ /* */ /* Look after the TCP header for any options and deal with those that are */ /* present. Record details about those that we recogise. */ /* ------------------------------------------------------------------------ */ static int ipf_tcpoptions(softs, fin, tcp, td) ipf_state_softc_t *softs; fr_info_t *fin; tcphdr_t *tcp; tcpdata_t *td; { int off, mlen, ol, i, len, retval; char buf[64], *s, opt; mb_t *m = NULL; len = (TCP_OFF(tcp) << 2); if (fin->fin_dlen < len) { SBUMPD(ipf_state_stats, iss_tcp_toosmall); return 0; } len -= sizeof(*tcp); off = fin->fin_plen - fin->fin_dlen + sizeof(*tcp) + fin->fin_ipoff; m = fin->fin_m; mlen = MSGDSIZE(m) - off; if (len > mlen) { len = mlen; retval = 0; } else { retval = 1; } COPYDATA(m, off, len, buf); for (s = buf; len > 0; ) { opt = *s; if (opt == TCPOPT_EOL) break; else if (opt == TCPOPT_NOP) ol = 1; else { if (len < 2) break; ol = (int)*(s + 1); if (ol < 2 || ol > len) break; /* * Extract the TCP options we are interested in out of * the header and store them in the the tcpdata struct. */ switch (opt) { case TCPOPT_WINDOW : if (ol == TCPOLEN_WINDOW) { i = (int)*(s + 2); if (i > TCP_WSCALE_MAX) i = TCP_WSCALE_MAX; else if (i < 0) i = 0; td->td_winscale = i; td->td_winflags |= TCP_WSCALE_SEEN| TCP_WSCALE_FIRST; } else retval = -1; break; case TCPOPT_MAXSEG : /* * So, if we wanted to set the TCP MAXSEG, * it should be done here... */ if (ol == TCPOLEN_MAXSEG) { i = (int)*(s + 2); i <<= 8; i += (int)*(s + 3); td->td_maxseg = i; } else retval = -1; break; case TCPOPT_SACK_PERMITTED : if (ol == TCPOLEN_SACK_PERMITTED) td->td_winflags |= TCP_SACK_PERMIT; else retval = -1; break; } } len -= ol; s += ol; } if (retval == -1) { SBUMPD(ipf_state_stats, iss_tcp_badopt); } return retval; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_tcp */ /* Returns: int - 1 == packet matches state entry, 0 == it does not */ /* Parameters: softc(I) - pointer to soft context main structure */ /* softs(I) - pointer to state context structure */ /* fin(I) - pointer to packet information */ /* tcp(I) - pointer to TCP packet header */ /* is(I) - pointer to master state structure */ /* */ /* Check to see if a packet with TCP headers fits within the TCP window. */ /* Change timeout depending on whether new packet is a SYN-ACK returning */ /* for a SYN or a RST or FIN which indicate time to close up shop. */ /* ------------------------------------------------------------------------ */ static int ipf_state_tcp(softc, softs, fin, tcp, is) ipf_main_softc_t *softc; ipf_state_softc_t *softs; fr_info_t *fin; tcphdr_t *tcp; ipstate_t *is; { tcpdata_t *fdata, *tdata; int source, ret, flags; source = !fin->fin_rev; if (((is->is_flags & IS_TCPFSM) != 0) && (source == 1) && (ntohs(is->is_sport) != fin->fin_data[0])) source = 0; fdata = &is->is_tcp.ts_data[!source]; tdata = &is->is_tcp.ts_data[source]; MUTEX_ENTER(&is->is_lock); /* * If a SYN packet is received for a connection that is on the way out * but hasn't yet departed then advance this session along the way. */ if ((tcp->th_flags & TH_OPENING) == TH_SYN) { if ((is->is_state[0] > IPF_TCPS_ESTABLISHED) && (is->is_state[1] > IPF_TCPS_ESTABLISHED)) { is->is_state[!source] = IPF_TCPS_CLOSED; ipf_movequeue(softc->ipf_ticks, &is->is_sti, is->is_sti.tqe_ifq, &softs->ipf_state_deletetq); MUTEX_EXIT(&is->is_lock); DT1(iss_tcp_closing, ipstate_t *, is); SBUMP(ipf_state_stats.iss_tcp_closing); return 0; } } if (is->is_flags & IS_LOOSE) ret = 1; else ret = ipf_state_tcpinwindow(fin, fdata, tdata, tcp, is->is_flags); if (ret > 0) { /* * Nearing end of connection, start timeout. */ ret = ipf_tcp_age(&is->is_sti, fin, softs->ipf_state_tcptq, is->is_flags, ret); if (ret == 0) { MUTEX_EXIT(&is->is_lock); DT2(iss_tcp_fsm, fr_info_t *, fin, ipstate_t *, is); SBUMP(ipf_state_stats.iss_tcp_fsm); return 0; } if (softs->ipf_state_logging > 4) ipf_state_log(softc, is, ISL_STATECHANGE); /* * set s0's as appropriate. Use syn-ack packet as it * contains both pieces of required information. */ /* * Window scale option is only present in SYN/SYN-ACK packet. * Compare with ~TH_FIN to mask out T/TCP setups. */ flags = tcp->th_flags & ~(TH_FIN|TH_ECNALL); if (flags == (TH_SYN|TH_ACK)) { is->is_s0[source] = ntohl(tcp->th_ack); is->is_s0[!source] = ntohl(tcp->th_seq) + 1; if ((TCP_OFF(tcp) > (sizeof(tcphdr_t) >> 2))) { if (ipf_tcpoptions(softs, fin, tcp, fdata) == -1) { fin->fin_flx |= FI_BAD; DT1(ipf_fi_bad_winscale_syn_ack, fr_info_t *, fin); } } if ((fin->fin_out != 0) && (is->is_pass & FR_NEWISN)) ipf_checknewisn(fin, is); } else if (flags == TH_SYN) { is->is_s0[source] = ntohl(tcp->th_seq) + 1; if ((TCP_OFF(tcp) > (sizeof(tcphdr_t) >> 2))) { if (ipf_tcpoptions(softs, fin, tcp, fdata) == -1) { fin->fin_flx |= FI_BAD; DT1(ipf_fi_bad_winscale_syn, fr_info_t *, fin); } } if ((fin->fin_out != 0) && (is->is_pass & FR_NEWISN)) ipf_checknewisn(fin, is); } ret = 1; } else { DT2(iss_tcp_oow, fr_info_t *, fin, ipstate_t *, is); SBUMP(ipf_state_stats.iss_tcp_oow); ret = 0; } MUTEX_EXIT(&is->is_lock); return ret; } /* ------------------------------------------------------------------------ */ /* Function: ipf_checknewisn */ /* Returns: Nil */ /* Parameters: fin(I) - pointer to packet information */ /* is(I) - pointer to master state structure */ /* */ /* Check to see if this TCP connection is expecting and needs a new */ /* sequence number for a particular direction of the connection. */ /* */ /* NOTE: This does not actually change the sequence numbers, only gets new */ /* one ready. */ /* ------------------------------------------------------------------------ */ static void ipf_checknewisn(fin, is) fr_info_t *fin; ipstate_t *is; { u_32_t sumd, old, new; tcphdr_t *tcp; int i; i = fin->fin_rev; tcp = fin->fin_dp; if (((i == 0) && !(is->is_flags & IS_ISNSYN)) || ((i == 1) && !(is->is_flags & IS_ISNACK))) { old = ntohl(tcp->th_seq); new = ipf_newisn(fin); is->is_isninc[i] = new - old; CALC_SUMD(old, new, sumd); is->is_sumd[i] = (sumd & 0xffff) + (sumd >> 16); is->is_flags |= ((i == 0) ? IS_ISNSYN : IS_ISNACK); } } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_tcpinwindow */ /* Returns: int - 1 == packet inside TCP "window", 0 == not inside. */ /* Parameters: fin(I) - pointer to packet information */ /* fdata(I) - pointer to tcp state informatio (forward) */ /* tdata(I) - pointer to tcp state informatio (reverse) */ /* tcp(I) - pointer to TCP packet header */ /* */ /* Given a packet has matched addresses and ports, check to see if it is */ /* within the TCP data window. In a show of generosity, allow packets that */ /* are within the window space behind the current sequence # as well. */ /* ------------------------------------------------------------------------ */ static int ipf_state_tcpinwindow(fin, fdata, tdata, tcp, flags) fr_info_t *fin; tcpdata_t *fdata, *tdata; tcphdr_t *tcp; int flags; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_state_softc_t *softs = softc->ipf_state_soft; tcp_seq seq, ack, end; int ackskew, tcpflags; u_32_t win, maxwin; int dsize, inseq; /* * Find difference between last checked packet and this packet. */ tcpflags = tcp->th_flags; seq = ntohl(tcp->th_seq); ack = ntohl(tcp->th_ack); if (tcpflags & TH_SYN) win = ntohs(tcp->th_win); else win = ntohs(tcp->th_win) << fdata->td_winscale; /* * A window of 0 produces undesirable behaviour from this function. */ if (win == 0) win = 1; dsize = fin->fin_dlen - (TCP_OFF(tcp) << 2) + ((tcpflags & TH_SYN) ? 1 : 0) + ((tcpflags & TH_FIN) ? 1 : 0); /* * if window scaling is present, the scaling is only allowed * for windows not in the first SYN packet. In that packet the * window is 65535 to specify the largest window possible * for receivers not implementing the window scale option. * Currently, we do not assume TTCP here. That means that * if we see a second packet from a host (after the initial * SYN), we can assume that the receiver of the SYN did * already send back the SYN/ACK (and thus that we know if * the receiver also does window scaling) */ if (!(tcpflags & TH_SYN) && (fdata->td_winflags & TCP_WSCALE_FIRST)) { fdata->td_winflags &= ~TCP_WSCALE_FIRST; fdata->td_maxwin = win; } end = seq + dsize; if ((fdata->td_end == 0) && (!(flags & IS_TCPFSM) || ((tcpflags & TH_OPENING) == TH_OPENING))) { /* * Must be a (outgoing) SYN-ACK in reply to a SYN. */ fdata->td_end = end - 1; fdata->td_maxwin = 1; fdata->td_maxend = end + win; } if (!(tcpflags & TH_ACK)) { /* Pretend an ack was sent */ ack = tdata->td_end; } else if (((tcpflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) && (ack == 0)) { /* gross hack to get around certain broken tcp stacks */ ack = tdata->td_end; } maxwin = tdata->td_maxwin; ackskew = tdata->td_end - ack; /* * Strict sequencing only allows in-order delivery. */ if ((flags & IS_STRICT) != 0) { if (seq != fdata->td_end) { DT2(iss_tcp_struct, tcpdata_t *, fdata, int, seq); SBUMP(ipf_state_stats.iss_tcp_strict); fin->fin_flx |= FI_OOW; return 0; } } #define SEQ_GE(a,b) ((int)((a) - (b)) >= 0) #define SEQ_GT(a,b) ((int)((a) - (b)) > 0) inseq = 0; if ((SEQ_GE(fdata->td_maxend, end)) && (SEQ_GE(seq, fdata->td_end - maxwin)) && /* XXX what about big packets */ #define MAXACKWINDOW 66000 (-ackskew <= (MAXACKWINDOW)) && ( ackskew <= (MAXACKWINDOW << fdata->td_winscale))) { inseq = 1; /* * Microsoft Windows will send the next packet to the right of the * window if SACK is in use. */ } else if ((seq == fdata->td_maxend) && (ackskew == 0) && (fdata->td_winflags & TCP_SACK_PERMIT) && (tdata->td_winflags & TCP_SACK_PERMIT)) { DT2(iss_sinsack, tcpdata_t *, fdata, int, seq); SBUMP(ipf_state_stats.iss_winsack); inseq = 1; /* * Sometimes a TCP RST will be generated with only the ACK field * set to non-zero. */ } else if ((seq == 0) && (tcpflags == (TH_RST|TH_ACK)) && (ackskew >= -1) && (ackskew <= 1)) { inseq = 1; } else if (!(flags & IS_TCPFSM)) { int i; i = (fin->fin_rev << 1) + fin->fin_out; #if 0 if (is_pkts[i]0 == 0) { /* * Picking up a connection in the middle, the "next" * packet seen from a direction that is new should be * accepted, even if it appears out of sequence. */ inseq = 1; } else #endif if (!(fdata->td_winflags & (TCP_WSCALE_SEEN|TCP_WSCALE_FIRST))) { /* * No TCPFSM and no window scaling, so make some * extra guesses. */ if ((seq == fdata->td_maxend) && (ackskew == 0)) inseq = 1; else if (SEQ_GE(seq + maxwin, fdata->td_end - maxwin)) inseq = 1; } } /* TRACE(inseq, fdata, tdata, seq, end, ack, ackskew, win, maxwin) */ if (inseq) { /* if ackskew < 0 then this should be due to fragmented * packets. There is no way to know the length of the * total packet in advance. * We do know the total length from the fragment cache though. * Note however that there might be more sessions with * exactly the same source and destination parameters in the * state cache (and source and destination is the only stuff * that is saved in the fragment cache). Note further that * some TCP connections in the state cache are hashed with * sport and dport as well which makes it not worthwhile to * look for them. * Thus, when ackskew is negative but still seems to belong * to this session, we bump up the destinations end value. */ if (ackskew < 0) tdata->td_end = ack; /* update max window seen */ if (fdata->td_maxwin < win) fdata->td_maxwin = win; if (SEQ_GT(end, fdata->td_end)) fdata->td_end = end; if (SEQ_GE(ack + win, tdata->td_maxend)) tdata->td_maxend = ack + win; return 1; } SBUMP(ipf_state_stats.iss_oow); fin->fin_flx |= FI_OOW; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_clone */ /* Returns: ipstate_t* - NULL == cloning failed, */ /* else pointer to new state structure */ /* Parameters: fin(I) - pointer to packet information */ /* tcp(I) - pointer to TCP/UDP header */ /* is(I) - pointer to master state structure */ /* */ /* Create a "duplcate" state table entry from the master. */ /* ------------------------------------------------------------------------ */ static ipstate_t * ipf_state_clone(fin, tcp, is) fr_info_t *fin; tcphdr_t *tcp; ipstate_t *is; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_state_softc_t *softs = softc->ipf_state_soft; ipstate_t *clone; u_32_t send; if (softs->ipf_state_stats.iss_active == softs->ipf_state_max) { SBUMPD(ipf_state_stats, iss_max); softs->ipf_state_doflush = 1; return NULL; } KMALLOC(clone, ipstate_t *); if (clone == NULL) { SBUMPD(ipf_state_stats, iss_clone_nomem); return NULL; } bcopy((char *)is, (char *)clone, sizeof(*clone)); MUTEX_NUKE(&clone->is_lock); /* * It has not yet been placed on any timeout queue, so make sure * all of that data is zero'd out. */ clone->is_sti.tqe_pnext = NULL; clone->is_sti.tqe_next = NULL; clone->is_sti.tqe_ifq = NULL; clone->is_sti.tqe_parent = clone; clone->is_die = ONE_DAY + softc->ipf_ticks; clone->is_state[0] = 0; clone->is_state[1] = 0; send = ntohl(tcp->th_seq) + fin->fin_dlen - (TCP_OFF(tcp) << 2) + ((tcp->th_flags & TH_SYN) ? 1 : 0) + ((tcp->th_flags & TH_FIN) ? 1 : 0); if (fin->fin_rev == 1) { clone->is_dend = send; clone->is_maxdend = send; clone->is_send = 0; clone->is_maxswin = 1; clone->is_maxdwin = ntohs(tcp->th_win); if (clone->is_maxdwin == 0) clone->is_maxdwin = 1; } else { clone->is_send = send; clone->is_maxsend = send; clone->is_dend = 0; clone->is_maxdwin = 1; clone->is_maxswin = ntohs(tcp->th_win); if (clone->is_maxswin == 0) clone->is_maxswin = 1; } clone->is_flags &= ~SI_CLONE; clone->is_flags |= SI_CLONED; if (ipf_state_insert(softc, clone, fin->fin_rev) == -1) { KFREE(clone); return NULL; } clone->is_ref = 1; if (clone->is_p == IPPROTO_TCP) { (void) ipf_tcp_age(&clone->is_sti, fin, softs->ipf_state_tcptq, clone->is_flags, 2); } MUTEX_EXIT(&clone->is_lock); if (is->is_flags & IS_STATESYNC) clone->is_sync = ipf_sync_new(softc, SMC_STATE, fin, clone); DT2(iss_clone, ipstate_t *, is, ipstate_t *, clone); SBUMP(ipf_state_stats.iss_cloned); return clone; } /* ------------------------------------------------------------------------ */ /* Function: ipf_matchsrcdst */ /* Returns: Nil */ /* Parameters: fin(I) - pointer to packet information */ /* is(I) - pointer to state structure */ /* src(I) - pointer to source address */ /* dst(I) - pointer to destination address */ /* tcp(I) - pointer to TCP/UDP header */ /* cmask(I) - mask of FI_* bits to check */ /* */ /* Match a state table entry against an IP packet. The logic below is that */ /* ret gets set to one if the match succeeds, else remains 0. If it is */ /* still 0 after the test. no match. */ /* ------------------------------------------------------------------------ */ static ipstate_t * ipf_matchsrcdst(fin, is, src, dst, tcp, cmask) fr_info_t *fin; ipstate_t *is; i6addr_t *src, *dst; tcphdr_t *tcp; u_32_t cmask; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_state_softc_t *softs = softc->ipf_state_soft; int ret = 0, rev, out, flags, flx = 0, idx; u_short sp, dp; u_32_t cflx; void *ifp; /* * If a connection is about to be deleted, no packets * are allowed to match it. */ if (is->is_sti.tqe_ifq == &softs->ipf_state_deletetq) return NULL; rev = IP6_NEQ(&is->is_dst, dst); ifp = fin->fin_ifp; out = fin->fin_out; flags = is->is_flags; sp = 0; dp = 0; if (tcp != NULL) { sp = htons(fin->fin_sport); dp = ntohs(fin->fin_dport); } if (!rev) { if (tcp != NULL) { if (!(flags & SI_W_SPORT) && (sp != is->is_sport)) rev = 1; else if (!(flags & SI_W_DPORT) && (dp != is->is_dport)) rev = 1; } } idx = (out << 1) + rev; /* * If the interface for this 'direction' is set, make sure it matches. * An interface name that is not set matches any, as does a name of *. */ if ((is->is_ifp[idx] == ifp) || (is->is_ifp[idx] == NULL && (*is->is_ifname[idx] == '\0' || *is->is_ifname[idx] == '-' || *is->is_ifname[idx] == '*'))) ret = 1; if (ret == 0) { DT2(iss_lookup_badifp, fr_info_t *, fin, ipstate_t *, is); SBUMP(ipf_state_stats.iss_lookup_badifp); /* TRACE is, out, rev, idx */ return NULL; } ret = 0; /* * Match addresses and ports. */ if (rev == 0) { if ((IP6_EQ(&is->is_dst, dst) || (flags & SI_W_DADDR)) && (IP6_EQ(&is->is_src, src) || (flags & SI_W_SADDR))) { if (tcp) { if ((sp == is->is_sport || flags & SI_W_SPORT) && (dp == is->is_dport || flags & SI_W_DPORT)) ret = 1; } else { ret = 1; } } } else { if ((IP6_EQ(&is->is_dst, src) || (flags & SI_W_DADDR)) && (IP6_EQ(&is->is_src, dst) || (flags & SI_W_SADDR))) { if (tcp) { if ((dp == is->is_sport || flags & SI_W_SPORT) && (sp == is->is_dport || flags & SI_W_DPORT)) ret = 1; } else { ret = 1; } } } if (ret == 0) { SBUMP(ipf_state_stats.iss_lookup_badport); DT2(iss_lookup_badport, fr_info_t *, fin, ipstate_t *, is); /* TRACE rev, is, sp, dp, src, dst */ return NULL; } /* * Whether or not this should be here, is questionable, but the aim * is to get this out of the main line. */ if (tcp == NULL) flags = is->is_flags & ~(SI_WILDP|SI_NEWFR|SI_CLONE|SI_CLONED); /* * Only one of the source or destination address can be flaged as a * wildcard. Fill in the missing address, if set. * For IPv6, if the address being copied in is multicast, then * don't reset the wild flag - multicast causes it to be set in the * first place! */ if ((flags & (SI_W_SADDR|SI_W_DADDR))) { fr_ip_t *fi = &fin->fin_fi; if ((flags & SI_W_SADDR) != 0) { if (rev == 0) { is->is_src = fi->fi_src; is->is_flags &= ~SI_W_SADDR; } else { if (!(fin->fin_flx & (FI_MULTICAST|FI_MBCAST))){ is->is_src = fi->fi_dst; is->is_flags &= ~SI_W_SADDR; } } } else if ((flags & SI_W_DADDR) != 0) { if (rev == 0) { if (!(fin->fin_flx & (FI_MULTICAST|FI_MBCAST))){ is->is_dst = fi->fi_dst; is->is_flags &= ~SI_W_DADDR; } } else { is->is_dst = fi->fi_src; is->is_flags &= ~SI_W_DADDR; } } if ((is->is_flags & (SI_WILDA|SI_WILDP)) == 0) { ATOMIC_DECL(softs->ipf_state_stats.iss_wild); } } flx = fin->fin_flx & cmask; cflx = is->is_flx[out][rev]; /* * Match up any flags set from IP options. */ if ((cflx && (flx != (cflx & cmask))) || ((fin->fin_optmsk & is->is_optmsk[rev]) != is->is_opt[rev]) || ((fin->fin_secmsk & is->is_secmsk) != is->is_sec) || ((fin->fin_auth & is->is_authmsk) != is->is_auth)) { SBUMPD(ipf_state_stats, iss_miss_mask); return NULL; } if ((fin->fin_flx & FI_IGNORE) != 0) { fin->fin_rev = rev; return is; } /* * Only one of the source or destination port can be flagged as a * wildcard. When filling it in, fill in a copy of the matched entry * if it has the cloning flag set. */ if ((flags & (SI_W_SPORT|SI_W_DPORT))) { if ((flags & SI_CLONE) != 0) { ipstate_t *clone; clone = ipf_state_clone(fin, tcp, is); if (clone == NULL) return NULL; is = clone; } else { ATOMIC_DECL(softs->ipf_state_stats.iss_wild); } if ((flags & SI_W_SPORT) != 0) { if (rev == 0) { is->is_sport = sp; is->is_send = ntohl(tcp->th_seq); } else { is->is_sport = dp; is->is_send = ntohl(tcp->th_ack); } is->is_maxsend = is->is_send + 1; } else if ((flags & SI_W_DPORT) != 0) { if (rev == 0) { is->is_dport = dp; is->is_dend = ntohl(tcp->th_ack); } else { is->is_dport = sp; is->is_dend = ntohl(tcp->th_seq); } is->is_maxdend = is->is_dend + 1; } is->is_flags &= ~(SI_W_SPORT|SI_W_DPORT); if ((flags & SI_CLONED) && softs->ipf_state_logging) ipf_state_log(softc, is, ISL_CLONE); } ret = -1; if (is->is_flx[out][rev] == 0) { is->is_flx[out][rev] = flx; if (rev == 1 && is->is_optmsk[1] == 0) { is->is_opt[1] = fin->fin_optmsk; is->is_optmsk[1] = 0xffffffff; if (is->is_v == 6) { is->is_opt[1] &= ~0x8; is->is_optmsk[1] &= ~0x8; } } } /* * Check if the interface name for this "direction" is set and if not, * fill it in. */ if (is->is_ifp[idx] == NULL && (*is->is_ifname[idx] == '\0' || *is->is_ifname[idx] == '*')) { is->is_ifp[idx] = ifp; COPYIFNAME(fin->fin_v, ifp, is->is_ifname[idx]); } fin->fin_rev = rev; return is; } /* ------------------------------------------------------------------------ */ /* Function: ipf_checkicmpmatchingstate */ /* Returns: Nil */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* If we've got an ICMP error message, using the information stored in the */ /* ICMP packet, look for a matching state table entry. */ /* */ /* If we return NULL then no lock on ipf_state is held. */ /* If we return non-null then a read-lock on ipf_state is held. */ /* ------------------------------------------------------------------------ */ static ipstate_t * ipf_checkicmpmatchingstate(fin) fr_info_t *fin; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_state_softc_t *softs = softc->ipf_state_soft; ipstate_t *is, **isp; i6addr_t dst, src; struct icmp *ic; u_short savelen; icmphdr_t *icmp; fr_info_t ofin; tcphdr_t *tcp; int type, len; u_char pr; ip_t *oip; u_int hv; /* * Does it at least have the return (basic) IP header ? * Is it an actual recognised ICMP error type? * Only a basic IP header (no options) should be with * an ICMP error header. */ if ((fin->fin_v != 4) || (fin->fin_hlen != sizeof(ip_t)) || (fin->fin_plen < ICMPERR_MINPKTLEN) || !(fin->fin_flx & FI_ICMPERR)) { SBUMPD(ipf_state_stats, iss_icmp_bad); return NULL; } ic = fin->fin_dp; type = ic->icmp_type; oip = (ip_t *)((char *)ic + ICMPERR_ICMPHLEN); /* * Check if the at least the old IP header (with options) and * 8 bytes of payload is present. */ if (fin->fin_plen < ICMPERR_MAXPKTLEN + ((IP_HL(oip) - 5) << 2)) { SBUMPDX(ipf_state_stats, iss_icmp_short, iss_icmp_short_1); return NULL; } /* * Sanity Checks. */ len = fin->fin_dlen - ICMPERR_ICMPHLEN; if ((len <= 0) || ((IP_HL(oip) << 2) > len)) { DT2(iss_icmp_len, fr_info_t *, fin, struct ip*, oip); SBUMPDX(ipf_state_stats, iss_icmp_short, iss_icmp_short_1); return NULL; } /* * Is the buffer big enough for all of it ? It's the size of the IP * header claimed in the encapsulated part which is of concern. It * may be too big to be in this buffer but not so big that it's * outside the ICMP packet, leading to TCP deref's causing problems. * This is possible because we don't know how big oip_hl is when we * do the pullup early in ipf_check() and thus can't guarantee it is * all here now. */ #ifdef _KERNEL { mb_t *m; m = fin->fin_m; -# if defined(MENTAT) +# if SOLARIS if ((char *)oip + len > (char *)m->b_wptr) { SBUMPDX(ipf_state_stats, iss_icmp_short, iss_icmp_short_2); return NULL; } # else if ((char *)oip + len > (char *)fin->fin_ip + m->m_len) { SBUMPDX(ipf_state_stats, iss_icmp_short, iss_icmp_short_3); return NULL; } # endif } #endif bcopy((char *)fin, (char *)&ofin, sizeof(*fin)); /* * in the IPv4 case we must zero the i6addr union otherwise * the IP6_EQ and IP6_NEQ macros produce the wrong results because * of the 'junk' in the unused part of the union */ bzero((char *)&src, sizeof(src)); bzero((char *)&dst, sizeof(dst)); /* * we make an fin entry to be able to feed it to * matchsrcdst note that not all fields are encessary * but this is the cleanest way. Note further we fill * in fin_mp such that if someone uses it we'll get * a kernel panic. ipf_matchsrcdst does not use this. * * watch out here, as ip is in host order and oip in network * order. Any change we make must be undone afterwards, like * oip->ip_len. */ savelen = oip->ip_len; oip->ip_len = htons(len); ofin.fin_flx = FI_NOCKSUM; ofin.fin_v = 4; ofin.fin_ip = oip; ofin.fin_m = NULL; /* if dereferenced, panic XXX */ ofin.fin_mp = NULL; /* if dereferenced, panic XXX */ (void) ipf_makefrip(IP_HL(oip) << 2, oip, &ofin); ofin.fin_ifp = fin->fin_ifp; ofin.fin_out = !fin->fin_out; hv = (pr = oip->ip_p); src.in4 = oip->ip_src; hv += src.in4.s_addr; dst.in4 = oip->ip_dst; hv += dst.in4.s_addr; /* * Reset the short and bad flag here because in ipf_matchsrcdst() * the flags for the current packet (fin_flx) are compared against * those for the existing session. */ ofin.fin_flx &= ~(FI_BAD|FI_SHORT); /* * Put old values of ip_len back as we don't know * if we have to forward the packet or process it again. */ oip->ip_len = savelen; switch (oip->ip_p) { case IPPROTO_ICMP : /* * an ICMP error can only be generated as a result of an * ICMP query, not as the response on an ICMP error * * XXX theoretically ICMP_ECHOREP and the other reply's are * ICMP query's as well, but adding them here seems strange XXX */ if ((ofin.fin_flx & FI_ICMPERR) != 0) { DT1(iss_icmp_icmperr, fr_info_t *, &ofin); SBUMP(ipf_state_stats.iss_icmp_icmperr); return NULL; } /* * perform a lookup of the ICMP packet in the state table */ icmp = (icmphdr_t *)((char *)oip + (IP_HL(oip) << 2)); hv += icmp->icmp_id; hv = DOUBLE_HASH(hv); READ_ENTER(&softc->ipf_state); for (isp = &softs->ipf_state_table[hv]; ((is = *isp) != NULL); ) { isp = &is->is_hnext; if ((is->is_p != pr) || (is->is_v != 4)) continue; if (is->is_pass & FR_NOICMPERR) continue; is = ipf_matchsrcdst(&ofin, is, &src, &dst, NULL, FI_ICMPCMP); if ((is != NULL) && !ipf_allowstateicmp(fin, is, &src)) return is; } RWLOCK_EXIT(&softc->ipf_state); SBUMPDX(ipf_state_stats, iss_icmp_miss, iss_icmp_miss_1); return NULL; case IPPROTO_TCP : case IPPROTO_UDP : break; default : SBUMPDX(ipf_state_stats, iss_icmp_miss, iss_icmp_miss_2); return NULL; } tcp = (tcphdr_t *)((char *)oip + (IP_HL(oip) << 2)); hv += tcp->th_dport;; hv += tcp->th_sport;; hv = DOUBLE_HASH(hv); READ_ENTER(&softc->ipf_state); for (isp = &softs->ipf_state_table[hv]; ((is = *isp) != NULL); ) { isp = &is->is_hnext; /* * Only allow this icmp though if the * encapsulated packet was allowed through the * other way around. Note that the minimal amount * of info present does not allow for checking against * tcp internals such as seq and ack numbers. Only the * ports are known to be present and can be even if the * short flag is set. */ if ((is->is_p == pr) && (is->is_v == 4) && (is = ipf_matchsrcdst(&ofin, is, &src, &dst, tcp, FI_ICMPCMP))) { if (ipf_allowstateicmp(fin, is, &src) == 0) return is; } } RWLOCK_EXIT(&softc->ipf_state); SBUMPDX(ipf_state_stats, iss_icmp_miss, iss_icmp_miss_3); return NULL; } /* ------------------------------------------------------------------------ */ /* Function: ipf_allowstateicmp */ /* Returns: int - 1 = packet denied, 0 = packet allowed */ /* Parameters: fin(I) - pointer to packet information */ /* is(I) - pointer to state table entry */ /* src(I) - source address to check permission for */ /* */ /* For an ICMP packet that has so far matched a state table entry, check if */ /* there are any further refinements that might mean we want to block this */ /* packet. This code isn't specific to either IPv4 or IPv6. */ /* ------------------------------------------------------------------------ */ static int ipf_allowstateicmp(fin, is, src) fr_info_t *fin; ipstate_t *is; i6addr_t *src; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_state_softc_t *softs = softc->ipf_state_soft; frentry_t *savefr; frentry_t *fr; u_32_t ipass; int backward; int oi; int i; fr = is->is_rule; if (fr != NULL && fr->fr_icmpgrp != NULL) { savefr = fin->fin_fr; fin->fin_fr = fr->fr_icmpgrp->fg_start; ipass = ipf_scanlist(fin, softc->ipf_pass); fin->fin_fr = savefr; if (FR_ISBLOCK(ipass)) { SBUMPD(ipf_state_stats, iss_icmp_headblock); return 1; } } /* * i : the index of this packet (the icmp unreachable) * oi : the index of the original packet found in the * icmp header (i.e. the packet causing this icmp) * backward : original packet was backward compared to * the state */ backward = IP6_NEQ(&is->is_src, src); fin->fin_rev = !backward; i = (!backward << 1) + fin->fin_out; oi = (backward << 1) + !fin->fin_out; if (is->is_pass & FR_NOICMPERR) { SBUMPD(ipf_state_stats, iss_icmp_banned); return 1; } if (is->is_icmppkts[i] > is->is_pkts[oi]) { SBUMPD(ipf_state_stats, iss_icmp_toomany); return 1; } DT2(iss_icmp_hits, fr_info_t *, fin, ipstate_t *, is); SBUMP(ipf_state_stats.iss_icmp_hits); is->is_icmppkts[i]++; /* * we deliberately do not touch the timeouts * for the accompanying state table entry. * It remains to be seen if that is correct. XXX */ return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_ipsmove */ /* Returns: Nil */ /* Parameters: is(I) - pointer to state table entry */ /* hv(I) - new hash value for state table entry */ /* Write Locks: ipf_state */ /* */ /* Move a state entry from one position in the hash table to another. */ /* ------------------------------------------------------------------------ */ static void ipf_ipsmove(softs, is, hv) ipf_state_softc_t *softs; ipstate_t *is; u_int hv; { ipstate_t **isp; u_int hvm; hvm = is->is_hv; /* TRACE is, is_hv, hvm */ /* * Remove the hash from the old location... */ isp = is->is_phnext; if (is->is_hnext) is->is_hnext->is_phnext = isp; *isp = is->is_hnext; if (softs->ipf_state_table[hvm] == NULL) softs->ipf_state_stats.iss_inuse--; softs->ipf_state_stats.iss_bucketlen[hvm]--; /* * ...and put the hash in the new one. */ hvm = DOUBLE_HASH(hv); is->is_hv = hvm; /* TRACE is, hv, is_hv, hvm */ isp = &softs->ipf_state_table[hvm]; if (*isp) (*isp)->is_phnext = &is->is_hnext; else softs->ipf_state_stats.iss_inuse++; softs->ipf_state_stats.iss_bucketlen[hvm]++; is->is_phnext = isp; is->is_hnext = *isp; *isp = is; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_lookup */ /* Returns: ipstate_t* - NULL == no matching state found, */ /* else pointer to state information is returned */ /* Parameters: fin(I) - pointer to packet information */ /* tcp(I) - pointer to TCP/UDP header. */ /* ifqp(O) - pointer for storing tailq timeout */ /* */ /* Search the state table for a matching entry to the packet described by */ /* the contents of *fin. For certain protocols, when a match is found the */ /* timeout queue is also selected and stored in ifpq if it is non-NULL. */ /* */ /* If we return NULL then no lock on ipf_state is held. */ /* If we return non-null then a read-lock on ipf_state is held. */ /* ------------------------------------------------------------------------ */ ipstate_t * ipf_state_lookup(fin, tcp, ifqp) fr_info_t *fin; tcphdr_t *tcp; ipftq_t **ifqp; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_state_softc_t *softs = softc->ipf_state_soft; u_int hv, hvm, pr, v, tryagain; ipstate_t *is, **isp; u_short dport, sport; i6addr_t src, dst; struct icmp *ic; ipftq_t *ifq; int oow; is = NULL; ifq = NULL; tcp = fin->fin_dp; ic = (struct icmp *)tcp; hv = (pr = fin->fin_fi.fi_p); src = fin->fin_fi.fi_src; dst = fin->fin_fi.fi_dst; hv += src.in4.s_addr; hv += dst.in4.s_addr; v = fin->fin_fi.fi_v; #ifdef USE_INET6 if (v == 6) { hv += fin->fin_fi.fi_src.i6[1]; hv += fin->fin_fi.fi_src.i6[2]; hv += fin->fin_fi.fi_src.i6[3]; if ((fin->fin_p == IPPROTO_ICMPV6) && IN6_IS_ADDR_MULTICAST(&fin->fin_fi.fi_dst.in6)) { hv -= dst.in4.s_addr; } else { hv += fin->fin_fi.fi_dst.i6[1]; hv += fin->fin_fi.fi_dst.i6[2]; hv += fin->fin_fi.fi_dst.i6[3]; } } #endif if ((v == 4) && (fin->fin_flx & (FI_MULTICAST|FI_BROADCAST|FI_MBCAST))) { if (fin->fin_out == 0) { hv -= src.in4.s_addr; } else { hv -= dst.in4.s_addr; } } /* TRACE fin_saddr, fin_daddr, hv */ /* * Search the hash table for matching packet header info. */ switch (pr) { #ifdef USE_INET6 case IPPROTO_ICMPV6 : tryagain = 0; if (v == 6) { if ((ic->icmp_type == ICMP6_ECHO_REQUEST) || (ic->icmp_type == ICMP6_ECHO_REPLY)) { hv += ic->icmp_id; } } READ_ENTER(&softc->ipf_state); icmp6again: hvm = DOUBLE_HASH(hv); for (isp = &softs->ipf_state_table[hvm]; ((is = *isp) != NULL); ) { isp = &is->is_hnext; if ((is->is_p != pr) || (is->is_v != v)) continue; is = ipf_matchsrcdst(fin, is, &src, &dst, NULL, FI_CMP); if (is != NULL && ipf_matchicmpqueryreply(v, &is->is_icmp, ic, fin->fin_rev)) { if (fin->fin_rev) ifq = &softs->ipf_state_icmpacktq; else ifq = &softs->ipf_state_icmptq; break; } } if (is != NULL) { if ((tryagain != 0) && !(is->is_flags & SI_W_DADDR)) { hv += fin->fin_fi.fi_src.i6[0]; hv += fin->fin_fi.fi_src.i6[1]; hv += fin->fin_fi.fi_src.i6[2]; hv += fin->fin_fi.fi_src.i6[3]; ipf_ipsmove(softs, is, hv); MUTEX_DOWNGRADE(&softc->ipf_state); } break; } RWLOCK_EXIT(&softc->ipf_state); /* * No matching icmp state entry. Perhaps this is a * response to another state entry. * * XXX With some ICMP6 packets, the "other" address is already * in the packet, after the ICMP6 header, and this could be * used in place of the multicast address. However, taking * advantage of this requires some significant code changes * to handle the specific types where that is the case. */ if ((softs->ipf_state_stats.iss_wild != 0) && ((fin->fin_flx & FI_NOWILD) == 0) && (v == 6) && (tryagain == 0)) { hv -= fin->fin_fi.fi_src.i6[0]; hv -= fin->fin_fi.fi_src.i6[1]; hv -= fin->fin_fi.fi_src.i6[2]; hv -= fin->fin_fi.fi_src.i6[3]; tryagain = 1; WRITE_ENTER(&softc->ipf_state); goto icmp6again; } is = ipf_checkicmp6matchingstate(fin); if (is != NULL) return is; break; #endif case IPPROTO_ICMP : if (v == 4) { hv += ic->icmp_id; } hv = DOUBLE_HASH(hv); READ_ENTER(&softc->ipf_state); for (isp = &softs->ipf_state_table[hv]; ((is = *isp) != NULL); ) { isp = &is->is_hnext; if ((is->is_p != pr) || (is->is_v != v)) continue; is = ipf_matchsrcdst(fin, is, &src, &dst, NULL, FI_CMP); if ((is != NULL) && (ic->icmp_id == is->is_icmp.ici_id) && ipf_matchicmpqueryreply(v, &is->is_icmp, ic, fin->fin_rev)) { if (fin->fin_rev) ifq = &softs->ipf_state_icmpacktq; else ifq = &softs->ipf_state_icmptq; break; } } if (is == NULL) { RWLOCK_EXIT(&softc->ipf_state); } break; case IPPROTO_TCP : case IPPROTO_UDP : ifqp = NULL; sport = htons(fin->fin_data[0]); hv += sport; dport = htons(fin->fin_data[1]); hv += dport; oow = 0; tryagain = 0; READ_ENTER(&softc->ipf_state); retry_tcpudp: hvm = DOUBLE_HASH(hv); /* TRACE hv, hvm */ for (isp = &softs->ipf_state_table[hvm]; ((is = *isp) != NULL); ) { isp = &is->is_hnext; if ((is->is_p != pr) || (is->is_v != v)) continue; fin->fin_flx &= ~FI_OOW; is = ipf_matchsrcdst(fin, is, &src, &dst, tcp, FI_CMP); if (is != NULL) { if (pr == IPPROTO_TCP) { if (!ipf_state_tcp(softc, softs, fin, tcp, is)) { oow |= fin->fin_flx & FI_OOW; continue; } } break; } } if (is != NULL) { if (tryagain && !(is->is_flags & (SI_CLONE|SI_WILDP|SI_WILDA))) { hv += dport; hv += sport; ipf_ipsmove(softs, is, hv); MUTEX_DOWNGRADE(&softc->ipf_state); } break; } RWLOCK_EXIT(&softc->ipf_state); if ((softs->ipf_state_stats.iss_wild != 0) && ((fin->fin_flx & FI_NOWILD) == 0)) { if (tryagain == 0) { hv -= dport; hv -= sport; } else if (tryagain == 1) { hv = fin->fin_fi.fi_p; /* * If we try to pretend this is a reply to a * multicast/broadcast packet then we need to * exclude part of the address from the hash * calculation. */ if (fin->fin_out == 0) { hv += src.in4.s_addr; } else { hv += dst.in4.s_addr; } hv += dport; hv += sport; } tryagain++; if (tryagain <= 2) { WRITE_ENTER(&softc->ipf_state); goto retry_tcpudp; } } fin->fin_flx |= oow; break; #if 0 case IPPROTO_GRE : gre = fin->fin_dp; if (GRE_REV(gre->gr_flags) == 1) { hv += gre->gr_call; } /* FALLTHROUGH */ #endif default : ifqp = NULL; hvm = DOUBLE_HASH(hv); READ_ENTER(&softc->ipf_state); for (isp = &softs->ipf_state_table[hvm]; ((is = *isp) != NULL); ) { isp = &is->is_hnext; if ((is->is_p != pr) || (is->is_v != v)) continue; is = ipf_matchsrcdst(fin, is, &src, &dst, NULL, FI_CMP); if (is != NULL) { ifq = &softs->ipf_state_iptq; break; } } if (is == NULL) { RWLOCK_EXIT(&softc->ipf_state); } break; } if (is != NULL) { if (((is->is_sti.tqe_flags & TQE_RULEBASED) != 0) && (is->is_tqehead[fin->fin_rev] != NULL)) ifq = is->is_tqehead[fin->fin_rev]; if (ifq != NULL && ifqp != NULL) *ifqp = ifq; } else { SBUMP(ipf_state_stats.iss_lookup_miss); } return is; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_check */ /* Returns: frentry_t* - NULL == search failed, */ /* else pointer to rule for matching state */ /* Parameters: fin(I) - pointer to packet information */ /* passp(I) - pointer to filtering result flags */ /* */ /* Check if a packet is associated with an entry in the state table. */ /* ------------------------------------------------------------------------ */ frentry_t * ipf_state_check(fin, passp) fr_info_t *fin; u_32_t *passp; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_state_softc_t *softs = softc->ipf_state_soft; ipftqent_t *tqe; ipstate_t *is; frentry_t *fr; tcphdr_t *tcp; ipftq_t *ifq; u_int pass; int inout; if (softs->ipf_state_lock || (softs->ipf_state_list == NULL)) return NULL; if (fin->fin_flx & (FI_SHORT|FI_FRAGBODY|FI_BAD)) { SBUMPD(ipf_state_stats, iss_check_bad); return NULL; } if ((fin->fin_flx & FI_TCPUDP) || (fin->fin_fi.fi_p == IPPROTO_ICMP) #ifdef USE_INET6 || (fin->fin_fi.fi_p == IPPROTO_ICMPV6) #endif ) tcp = fin->fin_dp; else tcp = NULL; ifq = NULL; /* * Search the hash table for matching packet header info. */ is = ipf_state_lookup(fin, tcp, &ifq); switch (fin->fin_p) { #ifdef USE_INET6 case IPPROTO_ICMPV6 : if (is != NULL) break; if (fin->fin_v == 6) { is = ipf_checkicmp6matchingstate(fin); } break; #endif case IPPROTO_ICMP : if (is != NULL) break; /* * No matching icmp state entry. Perhaps this is a * response to another state entry. */ is = ipf_checkicmpmatchingstate(fin); break; case IPPROTO_TCP : if (is == NULL) break; if (is->is_pass & FR_NEWISN) { if (fin->fin_out == 0) ipf_fixinisn(fin, is); else if (fin->fin_out == 1) ipf_fixoutisn(fin, is); } break; default : if (fin->fin_rev) ifq = &softs->ipf_state_udpacktq; else ifq = &softs->ipf_state_udptq; break; } if (is == NULL) { SBUMP(ipf_state_stats.iss_check_miss); return NULL; } fr = is->is_rule; if (fr != NULL) { if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) { if (fin->fin_nattag == NULL) { RWLOCK_EXIT(&softc->ipf_state); SBUMPD(ipf_state_stats, iss_check_notag); return NULL; } if (ipf_matchtag(&fr->fr_nattag, fin->fin_nattag)!=0) { RWLOCK_EXIT(&softc->ipf_state); SBUMPD(ipf_state_stats, iss_check_nattag); return NULL; } } (void) strncpy(fin->fin_group, FR_NAME(fr, fr_group), FR_GROUPLEN); fin->fin_icode = fr->fr_icode; } fin->fin_rule = is->is_rulen; fin->fin_fr = fr; /* * If this packet is a fragment and the rule says to track fragments, * then create a new fragment cache entry. */ if (fin->fin_flx & FI_FRAG && FR_ISPASS(is->is_pass) && is->is_pass & FR_KEEPFRAG) (void) ipf_frag_new(softc, fin, is->is_pass); /* * For TCP packets, ifq == NULL. For all others, check if this new * queue is different to the last one it was on and move it if so. */ tqe = &is->is_sti; if ((tqe->tqe_flags & TQE_RULEBASED) != 0) ifq = is->is_tqehead[fin->fin_rev]; MUTEX_ENTER(&is->is_lock); if (ifq != NULL) ipf_movequeue(softc->ipf_ticks, tqe, tqe->tqe_ifq, ifq); inout = (fin->fin_rev << 1) + fin->fin_out; is->is_pkts[inout]++; is->is_bytes[inout] += fin->fin_plen; fin->fin_pktnum = is->is_pkts[inout] + is->is_icmppkts[inout]; MUTEX_EXIT(&is->is_lock); pass = is->is_pass; if (is->is_flags & IS_STATESYNC) ipf_sync_update(softc, SMC_STATE, fin, is->is_sync); RWLOCK_EXIT(&softc->ipf_state); SBUMP(ipf_state_stats.iss_hits); fin->fin_dif = &is->is_dif; fin->fin_tif = &is->is_tifs[fin->fin_rev]; fin->fin_flx |= FI_STATE; if ((pass & FR_LOGFIRST) != 0) pass &= ~(FR_LOGFIRST|FR_LOG); *passp = pass; return fr; } /* ------------------------------------------------------------------------ */ /* Function: ipf_fixoutisn */ /* Returns: Nil */ /* Parameters: fin(I) - pointer to packet information */ /* is(I) - pointer to master state structure */ /* */ /* Called only for outbound packets, adjusts the sequence number and the */ /* TCP checksum to match that change. */ /* ------------------------------------------------------------------------ */ static void ipf_fixoutisn(fin, is) fr_info_t *fin; ipstate_t *is; { tcphdr_t *tcp; int rev; u_32_t seq; tcp = fin->fin_dp; rev = fin->fin_rev; if ((is->is_flags & IS_ISNSYN) != 0) { if ((rev == 0) && (fin->fin_cksum < FI_CK_L4PART)) { seq = ntohl(tcp->th_seq); seq += is->is_isninc[0]; tcp->th_seq = htonl(seq); ipf_fix_outcksum(0, &tcp->th_sum, is->is_sumd[0], 0); } } if ((is->is_flags & IS_ISNACK) != 0) { if ((rev == 1) && (fin->fin_cksum < FI_CK_L4PART)) { seq = ntohl(tcp->th_seq); seq += is->is_isninc[1]; tcp->th_seq = htonl(seq); ipf_fix_outcksum(0, &tcp->th_sum, is->is_sumd[1], 0); } } } /* ------------------------------------------------------------------------ */ /* Function: ipf_fixinisn */ /* Returns: Nil */ /* Parameters: fin(I) - pointer to packet information */ /* is(I) - pointer to master state structure */ /* */ /* Called only for inbound packets, adjusts the acknowledge number and the */ /* TCP checksum to match that change. */ /* ------------------------------------------------------------------------ */ static void ipf_fixinisn(fin, is) fr_info_t *fin; ipstate_t *is; { tcphdr_t *tcp; int rev; u_32_t ack; tcp = fin->fin_dp; rev = fin->fin_rev; if ((is->is_flags & IS_ISNSYN) != 0) { if ((rev == 1) && (fin->fin_cksum < FI_CK_L4PART)) { ack = ntohl(tcp->th_ack); ack -= is->is_isninc[0]; tcp->th_ack = htonl(ack); ipf_fix_incksum(0, &tcp->th_sum, is->is_sumd[0], 0); } } if ((is->is_flags & IS_ISNACK) != 0) { if ((rev == 0) && (fin->fin_cksum < FI_CK_L4PART)) { ack = ntohl(tcp->th_ack); ack -= is->is_isninc[1]; tcp->th_ack = htonl(ack); ipf_fix_incksum(0, &tcp->th_sum, is->is_sumd[1], 0); } } } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_sync */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* ifp(I) - pointer to interface */ /* */ /* Walk through all state entries and if an interface pointer match is */ /* found then look it up again, based on its name in case the pointer has */ /* changed since last time. */ /* */ /* If ifp is passed in as being non-null then we are only doing updates for */ /* existing, matching, uses of it. */ /* ------------------------------------------------------------------------ */ void ipf_state_sync(softc, ifp) ipf_main_softc_t *softc; void *ifp; { ipf_state_softc_t *softs = softc->ipf_state_soft; ipstate_t *is; int i; if (softc->ipf_running <= 0) return; WRITE_ENTER(&softc->ipf_state); if (softc->ipf_running <= 0) { RWLOCK_EXIT(&softc->ipf_state); return; } for (is = softs->ipf_state_list; is; is = is->is_next) { /* * Look up all the interface names in the state entry. */ for (i = 0; i < FR_NUM(is->is_ifp); i++) { if (ifp == NULL || ifp == is->is_ifp[i]) is->is_ifp[i] = ipf_resolvenic(softc, is->is_ifname[i], is->is_v); } } RWLOCK_EXIT(&softc->ipf_state); } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_del */ /* Returns: int - 0 = deleted, else refernce count on active struct */ /* Parameters: softc(I) - pointer to soft context main structure */ /* is(I) - pointer to state structure to delete */ /* why(I) - if not 0, log reason why it was deleted */ /* Write Locks: ipf_state */ /* */ /* Deletes a state entry from the enumerated list as well as the hash table */ /* and timeout queue lists. Make adjustments to hash table statistics and */ /* global counters as required. */ /* ------------------------------------------------------------------------ */ static int ipf_state_del(softc, is, why) ipf_main_softc_t *softc; ipstate_t *is; int why; { ipf_state_softc_t *softs = softc->ipf_state_soft; int orphan = 1; frentry_t *fr; /* * Since we want to delete this, remove it from the state table, * where it can be found & used, first. */ if (is->is_phnext != NULL) { *is->is_phnext = is->is_hnext; if (is->is_hnext != NULL) is->is_hnext->is_phnext = is->is_phnext; if (softs->ipf_state_table[is->is_hv] == NULL) softs->ipf_state_stats.iss_inuse--; softs->ipf_state_stats.iss_bucketlen[is->is_hv]--; is->is_phnext = NULL; is->is_hnext = NULL; orphan = 0; } /* * Because ipf_state_stats.iss_wild is a count of entries in the state * table that have wildcard flags set, only decerement it once * and do it here. */ if (is->is_flags & (SI_WILDP|SI_WILDA)) { if (!(is->is_flags & SI_CLONED)) { ATOMIC_DECL(softs->ipf_state_stats.iss_wild); } is->is_flags &= ~(SI_WILDP|SI_WILDA); } /* * Next, remove it from the timeout queue it is in. */ if (is->is_sti.tqe_ifq != NULL) ipf_deletequeueentry(&is->is_sti); /* * If it is still in use by something else, do not go any further, * but note that at this point it is now an orphan. How can this * be? ipf_state_flush() calls ipf_delete() directly because it wants * to empty the table out and if something has a hold on a state * entry (such as ipfstat), it'll do the deref path that'll bring * us back here to do the real delete & free. */ MUTEX_ENTER(&is->is_lock); if (is->is_me != NULL) { *is->is_me = NULL; is->is_me = NULL; is->is_ref--; } is->is_ref--; if (is->is_ref > 0) { int refs; refs = is->is_ref; MUTEX_EXIT(&is->is_lock); if (!orphan) softs->ipf_state_stats.iss_orphan++; return refs; } fr = is->is_rule; is->is_rule = NULL; if (fr != NULL) { if (fr->fr_srctrack.ht_max_nodes != 0) { (void) ipf_ht_node_del(&fr->fr_srctrack, is->is_family, &is->is_src); } } ASSERT(is->is_ref == 0); MUTEX_EXIT(&is->is_lock); if (is->is_tqehead[0] != NULL) { if (ipf_deletetimeoutqueue(is->is_tqehead[0]) == 0) ipf_freetimeoutqueue(softc, is->is_tqehead[0]); } if (is->is_tqehead[1] != NULL) { if (ipf_deletetimeoutqueue(is->is_tqehead[1]) == 0) ipf_freetimeoutqueue(softc, is->is_tqehead[1]); } if (is->is_sync) ipf_sync_del_state(softc->ipf_sync_soft, is->is_sync); /* * Now remove it from the linked list of known states */ if (is->is_pnext != NULL) { *is->is_pnext = is->is_next; if (is->is_next != NULL) is->is_next->is_pnext = is->is_pnext; is->is_pnext = NULL; is->is_next = NULL; } if (softs->ipf_state_logging != 0 && why != 0) ipf_state_log(softc, is, why); if (is->is_p == IPPROTO_TCP) softs->ipf_state_stats.iss_fin++; else softs->ipf_state_stats.iss_expire++; if (orphan) softs->ipf_state_stats.iss_orphan--; if (fr != NULL) { fr->fr_statecnt--; (void) ipf_derefrule(softc, &fr); } softs->ipf_state_stats.iss_active_proto[is->is_p]--; MUTEX_DESTROY(&is->is_lock); KFREE(is); softs->ipf_state_stats.iss_active--; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_expire */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* Slowly expire held state for thingslike UDP and ICMP. The algorithm */ /* used here is to keep the queue sorted with the oldest things at the top */ /* and the youngest at the bottom. So if the top one doesn't need to be */ /* expired then neither will any under it. */ /* ------------------------------------------------------------------------ */ void ipf_state_expire(softc) ipf_main_softc_t *softc; { ipf_state_softc_t *softs = softc->ipf_state_soft; ipftq_t *ifq, *ifqnext; ipftqent_t *tqe, *tqn; ipstate_t *is; SPL_INT(s); SPL_NET(s); WRITE_ENTER(&softc->ipf_state); for (ifq = softs->ipf_state_tcptq; ifq != NULL; ifq = ifq->ifq_next) for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) { if (tqe->tqe_die > softc->ipf_ticks) break; tqn = tqe->tqe_next; is = tqe->tqe_parent; ipf_state_del(softc, is, ISL_EXPIRE); } for (ifq = softs->ipf_state_usertq; ifq != NULL; ifq = ifqnext) { ifqnext = ifq->ifq_next; for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) { if (tqe->tqe_die > softc->ipf_ticks) break; tqn = tqe->tqe_next; is = tqe->tqe_parent; ipf_state_del(softc, is, ISL_EXPIRE); } } for (ifq = softs->ipf_state_usertq; ifq != NULL; ifq = ifqnext) { ifqnext = ifq->ifq_next; if (((ifq->ifq_flags & IFQF_DELETE) != 0) && (ifq->ifq_ref == 0)) { ipf_freetimeoutqueue(softc, ifq); } } if (softs->ipf_state_doflush) { (void) ipf_state_flush(softc, 2, 0); softs->ipf_state_doflush = 0; softs->ipf_state_wm_last = softc->ipf_ticks; } RWLOCK_EXIT(&softc->ipf_state); SPL_X(s); } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_flush */ /* Returns: int - 0 == success, -1 == failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* which(I) - which flush action to perform */ /* proto(I) - which protocol to flush (0 == ALL) */ /* Write Locks: ipf_state */ /* */ /* Flush state tables. Three actions currently defined: */ /* which == 0 : flush all state table entries */ /* which == 1 : flush TCP connections which have started to close but are */ /* stuck for some reason. */ /* which == 2 : flush TCP connections which have been idle for a long time, */ /* starting at > 4 days idle and working back in successive half-*/ /* days to at most 12 hours old. If this fails to free enough */ /* slots then work backwards in half hour slots to 30 minutes. */ /* If that too fails, then work backwards in 30 second intervals */ /* for the last 30 minutes to at worst 30 seconds idle. */ /* ------------------------------------------------------------------------ */ int ipf_state_flush(softc, which, proto) ipf_main_softc_t *softc; int which, proto; { ipf_state_softc_t *softs = softc->ipf_state_soft; ipftqent_t *tqe, *tqn; ipstate_t *is, **isp; ipftq_t *ifq; int removed; SPL_INT(s); removed = 0; SPL_NET(s); switch (which) { case 0 : SBUMP(ipf_state_stats.iss_flush_all); /* * Style 0 flush removes everything... */ for (isp = &softs->ipf_state_list; ((is = *isp) != NULL); ) { if ((proto != 0) && (is->is_v != proto)) { isp = &is->is_next; continue; } if (ipf_state_del(softc, is, ISL_FLUSH) == 0) removed++; else isp = &is->is_next; } break; case 1 : SBUMP(ipf_state_stats.iss_flush_closing); /* * Since we're only interested in things that are closing, * we can start with the appropriate timeout queue. */ for (ifq = softs->ipf_state_tcptq + IPF_TCPS_CLOSE_WAIT; ifq != NULL; ifq = ifq->ifq_next) { for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) { tqn = tqe->tqe_next; is = tqe->tqe_parent; if (is->is_p != IPPROTO_TCP) break; if (ipf_state_del(softc, is, ISL_FLUSH) == 0) removed++; } } /* * Also need to look through the user defined queues. */ for (ifq = softs->ipf_state_usertq; ifq != NULL; ifq = ifq->ifq_next) { for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) { tqn = tqe->tqe_next; is = tqe->tqe_parent; if (is->is_p != IPPROTO_TCP) continue; if ((is->is_state[0] > IPF_TCPS_ESTABLISHED) && (is->is_state[1] > IPF_TCPS_ESTABLISHED)) { if (ipf_state_del(softc, is, ISL_FLUSH) == 0) removed++; } } } break; case 2 : break; /* * Args 5-11 correspond to flushing those particular states * for TCP connections. */ case IPF_TCPS_CLOSE_WAIT : case IPF_TCPS_FIN_WAIT_1 : case IPF_TCPS_CLOSING : case IPF_TCPS_LAST_ACK : case IPF_TCPS_FIN_WAIT_2 : case IPF_TCPS_TIME_WAIT : case IPF_TCPS_CLOSED : SBUMP(ipf_state_stats.iss_flush_queue); tqn = softs->ipf_state_tcptq[which].ifq_head; while (tqn != NULL) { tqe = tqn; tqn = tqe->tqe_next; is = tqe->tqe_parent; if (ipf_state_del(softc, is, ISL_FLUSH) == 0) removed++; } break; default : if (which < 30) break; SBUMP(ipf_state_stats.iss_flush_state); /* * Take a large arbitrary number to mean the number of seconds * for which which consider to be the maximum value we'll allow * the expiration to be. */ which = IPF_TTLVAL(which); for (isp = &softs->ipf_state_list; ((is = *isp) != NULL); ) { if ((proto == 0) || (is->is_v == proto)) { if (softc->ipf_ticks - is->is_touched > which) { if (ipf_state_del(softc, is, ISL_FLUSH) == 0) { removed++; continue; } } } isp = &is->is_next; } break; } if (which != 2) { SPL_X(s); return removed; } SBUMP(ipf_state_stats.iss_flush_timeout); /* * Asked to remove inactive entries because the table is full, try * again, 3 times, if first attempt failed with a different criteria * each time. The order tried in must be in decreasing age. * Another alternative is to implement random drop and drop N entries * at random until N have been freed up. */ if (softc->ipf_ticks - softs->ipf_state_wm_last > softs->ipf_state_wm_freq) { removed = ipf_queueflush(softc, ipf_state_flush_entry, softs->ipf_state_tcptq, softs->ipf_state_usertq, &softs->ipf_state_stats.iss_active, softs->ipf_state_size, softs->ipf_state_wm_low); softs->ipf_state_wm_last = softc->ipf_ticks; } SPL_X(s); return removed; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_flush_entry */ /* Returns: int - 0 = entry deleted, else not deleted */ /* Parameters: softc(I) - pointer to soft context main structure */ /* entry(I) - pointer to state structure to delete */ /* Write Locks: ipf_state */ /* */ /* This function is a stepping stone between ipf_queueflush() and */ /* ipf_state_del(). It is used so we can provide a uniform interface via */ /* the ipf_queueflush() function. */ /* ------------------------------------------------------------------------ */ static int ipf_state_flush_entry(softc, entry) ipf_main_softc_t *softc; void *entry; { return ipf_state_del(softc, entry, ISL_FLUSH); } /* ------------------------------------------------------------------------ */ /* Function: ipf_tcp_age */ /* Returns: int - 1 == state transition made, 0 == no change (rejected) */ /* Parameters: tqe(I) - pointer to timeout queue information */ /* fin(I) - pointer to packet information */ /* tqtab(I) - TCP timeout queue table this is in */ /* flags(I) - flags from state/NAT entry */ /* ok(I) - can we advance state */ /* */ /* Rewritten by Arjan de Vet , 2000-07-29: */ /* */ /* - (try to) base state transitions on real evidence only, */ /* i.e. packets that are sent and have been received by ipfilter; */ /* diagram 18.12 of TCP/IP volume 1 by W. Richard Stevens was used. */ /* */ /* - deal with half-closed connections correctly; */ /* */ /* - store the state of the source in state[0] such that ipfstat */ /* displays the state as source/dest instead of dest/source; the calls */ /* to ipf_tcp_age have been changed accordingly. */ /* */ /* Internal Parameters: */ /* */ /* state[0] = state of source (host that initiated connection) */ /* state[1] = state of dest (host that accepted the connection) */ /* */ /* dir == 0 : a packet from source to dest */ /* dir == 1 : a packet from dest to source */ /* */ /* A typical procession for a connection is as follows: */ /* */ /* +--------------+-------------------+ */ /* | Side '0' | Side '1' | */ /* +--------------+-------------------+ */ /* | 0 -> 1 (SYN) | | */ /* | | 0 -> 2 (SYN-ACK) | */ /* | 1 -> 3 (ACK) | | */ /* | | 2 -> 4 (ACK-PUSH) | */ /* | 3 -> 4 (ACK) | | */ /* | ... | ... | */ /* | | 4 -> 6 (FIN-ACK) | */ /* | 4 -> 5 (ACK) | | */ /* | | 6 -> 6 (ACK-PUSH) | */ /* | 5 -> 5 (ACK) | | */ /* | 5 -> 8 (FIN) | | */ /* | | 6 -> 10 (ACK) | */ /* +--------------+-------------------+ */ /* */ /* Locking: it is assumed that the parent of the tqe structure is locked. */ /* ------------------------------------------------------------------------ */ int ipf_tcp_age(tqe, fin, tqtab, flags, ok) ipftqent_t *tqe; fr_info_t *fin; ipftq_t *tqtab; int flags, ok; { ipf_main_softc_t *softc = fin->fin_main_soft; int dlen, ostate, nstate, rval, dir; u_char tcpflags; tcphdr_t *tcp; tcp = fin->fin_dp; rval = 0; dir = fin->fin_rev; tcpflags = tcp->th_flags; dlen = fin->fin_dlen - (TCP_OFF(tcp) << 2); ostate = tqe->tqe_state[1 - dir]; nstate = tqe->tqe_state[dir]; if (tcpflags & TH_RST) { if (!(tcpflags & TH_PUSH) && !dlen) nstate = IPF_TCPS_CLOSED; else nstate = IPF_TCPS_CLOSE_WAIT; if (ostate <= IPF_TCPS_ESTABLISHED) { tqe->tqe_state[1 - dir] = IPF_TCPS_CLOSE_WAIT; } rval = 1; } else { switch (nstate) { case IPF_TCPS_LISTEN: /* 0 */ if ((tcpflags & TH_OPENING) == TH_OPENING) { /* * 'dir' received an S and sends SA in * response, LISTEN -> SYN_RECEIVED */ nstate = IPF_TCPS_SYN_RECEIVED; rval = 1; } else if ((tcpflags & TH_OPENING) == TH_SYN) { /* 'dir' sent S, LISTEN -> SYN_SENT */ nstate = IPF_TCPS_SYN_SENT; rval = 1; } /* * the next piece of code makes it possible to get * already established connections into the state table * after a restart or reload of the filter rules; this * does not work when a strict 'flags S keep state' is * used for tcp connections of course */ if (((flags & IS_TCPFSM) == 0) && ((tcpflags & TH_ACKMASK) == TH_ACK)) { /* * we saw an A, guess 'dir' is in ESTABLISHED * mode */ switch (ostate) { case IPF_TCPS_LISTEN : case IPF_TCPS_SYN_RECEIVED : nstate = IPF_TCPS_HALF_ESTAB; rval = 1; break; case IPF_TCPS_HALF_ESTAB : case IPF_TCPS_ESTABLISHED : nstate = IPF_TCPS_ESTABLISHED; rval = 1; break; default : break; } } /* * TODO: besides regular ACK packets we can have other * packets as well; it is yet to be determined how we * should initialize the states in those cases */ break; case IPF_TCPS_SYN_SENT: /* 1 */ if ((tcpflags & ~(TH_ECN|TH_CWR)) == TH_SYN) { /* * A retransmitted SYN packet. We do not reset * the timeout here to ipf_tcptimeout because a * connection connect timeout does not renew * after every packet that is sent. We need to * set rval so as to indicate the packet has * passed the check for its flags being valid * in the TCP FSM. Setting rval to 2 has the * result of not resetting the timeout. */ rval = 2; } else if ((tcpflags & (TH_SYN|TH_FIN|TH_ACK)) == TH_ACK) { /* * we see an A from 'dir' which is in SYN_SENT * state: 'dir' sent an A in response to an SA * which it received, SYN_SENT -> ESTABLISHED */ nstate = IPF_TCPS_ESTABLISHED; rval = 1; } else if (tcpflags & TH_FIN) { /* * we see an F from 'dir' which is in SYN_SENT * state and wants to close its side of the * connection; SYN_SENT -> FIN_WAIT_1 */ nstate = IPF_TCPS_FIN_WAIT_1; rval = 1; } else if ((tcpflags & TH_OPENING) == TH_OPENING) { /* * we see an SA from 'dir' which is already in * SYN_SENT state, this means we have a * simultaneous open; SYN_SENT -> SYN_RECEIVED */ nstate = IPF_TCPS_SYN_RECEIVED; rval = 1; } break; case IPF_TCPS_SYN_RECEIVED: /* 2 */ if ((tcpflags & (TH_SYN|TH_FIN|TH_ACK)) == TH_ACK) { /* * we see an A from 'dir' which was in * SYN_RECEIVED state so it must now be in * established state, SYN_RECEIVED -> * ESTABLISHED */ nstate = IPF_TCPS_ESTABLISHED; rval = 1; } else if ((tcpflags & ~(TH_ECN|TH_CWR)) == TH_OPENING) { /* * We see an SA from 'dir' which is already in * SYN_RECEIVED state. */ rval = 2; } else if (tcpflags & TH_FIN) { /* * we see an F from 'dir' which is in * SYN_RECEIVED state and wants to close its * side of the connection; SYN_RECEIVED -> * FIN_WAIT_1 */ nstate = IPF_TCPS_FIN_WAIT_1; rval = 1; } break; case IPF_TCPS_HALF_ESTAB: /* 3 */ if (tcpflags & TH_FIN) { nstate = IPF_TCPS_FIN_WAIT_1; rval = 1; } else if ((tcpflags & TH_ACKMASK) == TH_ACK) { /* * If we've picked up a connection in mid * flight, we could be looking at a follow on * packet from the same direction as the one * that created this state. Recognise it but * do not advance the entire connection's * state. */ switch (ostate) { case IPF_TCPS_LISTEN : case IPF_TCPS_SYN_SENT : case IPF_TCPS_SYN_RECEIVED : rval = 1; break; case IPF_TCPS_HALF_ESTAB : case IPF_TCPS_ESTABLISHED : nstate = IPF_TCPS_ESTABLISHED; rval = 1; break; default : break; } } break; case IPF_TCPS_ESTABLISHED: /* 4 */ rval = 1; if (tcpflags & TH_FIN) { /* * 'dir' closed its side of the connection; * this gives us a half-closed connection; * ESTABLISHED -> FIN_WAIT_1 */ if (ostate == IPF_TCPS_FIN_WAIT_1) { nstate = IPF_TCPS_CLOSING; } else { nstate = IPF_TCPS_FIN_WAIT_1; } } else if (tcpflags & TH_ACK) { /* * an ACK, should we exclude other flags here? */ if (ostate == IPF_TCPS_FIN_WAIT_1) { /* * We know the other side did an active * close, so we are ACKing the recvd * FIN packet (does the window matching * code guarantee this?) and go into * CLOSE_WAIT state; this gives us a * half-closed connection */ nstate = IPF_TCPS_CLOSE_WAIT; } else if (ostate < IPF_TCPS_CLOSE_WAIT) { /* * still a fully established * connection reset timeout */ nstate = IPF_TCPS_ESTABLISHED; } } break; case IPF_TCPS_CLOSE_WAIT: /* 5 */ rval = 1; if (tcpflags & TH_FIN) { /* * application closed and 'dir' sent a FIN, * we're now going into LAST_ACK state */ nstate = IPF_TCPS_LAST_ACK; } else { /* * we remain in CLOSE_WAIT because the other * side has closed already and we did not * close our side yet; reset timeout */ nstate = IPF_TCPS_CLOSE_WAIT; } break; case IPF_TCPS_FIN_WAIT_1: /* 6 */ rval = 1; if ((tcpflags & TH_ACK) && ostate > IPF_TCPS_CLOSE_WAIT) { /* * if the other side is not active anymore * it has sent us a FIN packet that we are * ack'ing now with an ACK; this means both * sides have now closed the connection and * we go into TIME_WAIT */ /* * XXX: how do we know we really are ACKing * the FIN packet here? does the window code * guarantee that? */ nstate = IPF_TCPS_LAST_ACK; } else { /* * we closed our side of the connection * already but the other side is still active * (ESTABLISHED/CLOSE_WAIT); continue with * this half-closed connection */ nstate = IPF_TCPS_FIN_WAIT_1; } break; case IPF_TCPS_CLOSING: /* 7 */ if ((tcpflags & (TH_FIN|TH_ACK)) == TH_ACK) { nstate = IPF_TCPS_TIME_WAIT; } rval = 1; break; case IPF_TCPS_LAST_ACK: /* 8 */ if (tcpflags & TH_ACK) { rval = 1; } /* * we cannot detect when we go out of LAST_ACK state * to CLOSED because that is based on the reception * of ACK packets; ipfilter can only detect that a * packet has been sent by a host */ break; case IPF_TCPS_FIN_WAIT_2: /* 9 */ /* NOT USED */ break; case IPF_TCPS_TIME_WAIT: /* 10 */ /* we're in 2MSL timeout now */ if (ostate == IPF_TCPS_LAST_ACK) { nstate = IPF_TCPS_CLOSED; rval = 1; } else { rval = 2; } break; case IPF_TCPS_CLOSED: /* 11 */ rval = 2; break; default : #if !defined(_KERNEL) abort(); #endif break; } } /* * If rval == 2 then do not update the queue position, but treat the * packet as being ok. */ if (rval == 2) rval = 1; else if (rval == 1) { if (ok) tqe->tqe_state[dir] = nstate; if ((tqe->tqe_flags & TQE_RULEBASED) == 0) ipf_movequeue(softc->ipf_ticks, tqe, tqe->tqe_ifq, tqtab + nstate); } return rval; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_log */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* is(I) - pointer to state structure */ /* type(I) - type of log entry to create */ /* */ /* Creates a state table log entry using the state structure and type info. */ /* passed in. Log packet/byte counts, source/destination address and other */ /* protocol specific information. */ /* ------------------------------------------------------------------------ */ void ipf_state_log(softc, is, type) ipf_main_softc_t *softc; struct ipstate *is; u_int type; { #ifdef IPFILTER_LOG struct ipslog ipsl; size_t sizes[1]; void *items[1]; int types[1]; /* * Copy information out of the ipstate_t structure and into the * structure used for logging. */ ipsl.isl_type = type; ipsl.isl_pkts[0] = is->is_pkts[0] + is->is_icmppkts[0]; ipsl.isl_bytes[0] = is->is_bytes[0]; ipsl.isl_pkts[1] = is->is_pkts[1] + is->is_icmppkts[1]; ipsl.isl_bytes[1] = is->is_bytes[1]; ipsl.isl_pkts[2] = is->is_pkts[2] + is->is_icmppkts[2]; ipsl.isl_bytes[2] = is->is_bytes[2]; ipsl.isl_pkts[3] = is->is_pkts[3] + is->is_icmppkts[3]; ipsl.isl_bytes[3] = is->is_bytes[3]; ipsl.isl_src = is->is_src; ipsl.isl_dst = is->is_dst; ipsl.isl_p = is->is_p; ipsl.isl_v = is->is_v; ipsl.isl_flags = is->is_flags; ipsl.isl_tag = is->is_tag; ipsl.isl_rulen = is->is_rulen; (void) strncpy(ipsl.isl_group, is->is_group, FR_GROUPLEN); if (ipsl.isl_p == IPPROTO_TCP || ipsl.isl_p == IPPROTO_UDP) { ipsl.isl_sport = is->is_sport; ipsl.isl_dport = is->is_dport; if (ipsl.isl_p == IPPROTO_TCP) { ipsl.isl_state[0] = is->is_state[0]; ipsl.isl_state[1] = is->is_state[1]; } } else if (ipsl.isl_p == IPPROTO_ICMP) { ipsl.isl_itype = is->is_icmp.ici_type; } else if (ipsl.isl_p == IPPROTO_ICMPV6) { ipsl.isl_itype = is->is_icmp.ici_type; } else { ipsl.isl_ps.isl_filler[0] = 0; ipsl.isl_ps.isl_filler[1] = 0; } items[0] = &ipsl; sizes[0] = sizeof(ipsl); types[0] = 0; (void) ipf_log_items(softc, IPL_LOGSTATE, NULL, items, sizes, types, 1); #endif } #ifdef USE_INET6 /* ------------------------------------------------------------------------ */ /* Function: ipf_checkicmp6matchingstate */ /* Returns: ipstate_t* - NULL == no match found, */ /* else pointer to matching state entry */ /* Parameters: fin(I) - pointer to packet information */ /* Locks: NULL == no locks, else Read Lock on ipf_state */ /* */ /* If we've got an ICMPv6 error message, using the information stored in */ /* the ICMPv6 packet, look for a matching state table entry. */ /* ------------------------------------------------------------------------ */ static ipstate_t * ipf_checkicmp6matchingstate(fin) fr_info_t *fin; { ipf_main_softc_t *softc = fin->fin_main_soft; ipf_state_softc_t *softs = softc->ipf_state_soft; struct icmp6_hdr *ic6, *oic; ipstate_t *is, **isp; u_short sport, dport; i6addr_t dst, src; u_short savelen; icmpinfo_t *ic; fr_info_t ofin; tcphdr_t *tcp; ip6_t *oip6; u_char pr; u_int hv; int type; /* * Does it at least have the return (basic) IP header ? * Is it an actual recognised ICMP error type? * Only a basic IP header (no options) should be with * an ICMP error header. */ if ((fin->fin_v != 6) || (fin->fin_plen < ICMP6ERR_MINPKTLEN) || !(fin->fin_flx & FI_ICMPERR)) { SBUMPD(ipf_state_stats, iss_icmp_bad); return NULL; } ic6 = fin->fin_dp; type = ic6->icmp6_type; oip6 = (ip6_t *)((char *)ic6 + ICMPERR_ICMPHLEN); if (fin->fin_plen < sizeof(*oip6)) { SBUMPD(ipf_state_stats, iss_icmp_short); return NULL; } bcopy((char *)fin, (char *)&ofin, sizeof(*fin)); ofin.fin_v = 6; ofin.fin_ifp = fin->fin_ifp; ofin.fin_out = !fin->fin_out; ofin.fin_m = NULL; /* if dereferenced, panic XXX */ ofin.fin_mp = NULL; /* if dereferenced, panic XXX */ /* * We make a fin entry to be able to feed it to * matchsrcdst. Note that not all fields are necessary * but this is the cleanest way. Note further we fill * in fin_mp such that if someone uses it we'll get * a kernel panic. ipf_matchsrcdst does not use this. * * watch out here, as ip is in host order and oip6 in network * order. Any change we make must be undone afterwards. */ savelen = oip6->ip6_plen; oip6->ip6_plen = htons(fin->fin_dlen - ICMPERR_ICMPHLEN); ofin.fin_flx = FI_NOCKSUM; ofin.fin_ip = (ip_t *)oip6; (void) ipf_makefrip(sizeof(*oip6), (ip_t *)oip6, &ofin); ofin.fin_flx &= ~(FI_BAD|FI_SHORT); oip6->ip6_plen = savelen; pr = ofin.fin_p; /* * an ICMP error can never generate an ICMP error in response. */ if (ofin.fin_flx & FI_ICMPERR) { DT1(iss_icmp6_icmperr, fr_info_t *, &ofin); SBUMP(ipf_state_stats.iss_icmp6_icmperr); return NULL; } if (oip6->ip6_nxt == IPPROTO_ICMPV6) { oic = ofin.fin_dp; /* * an ICMP error can only be generated as a result of an * ICMP query, not as the response on an ICMP error * * XXX theoretically ICMP_ECHOREP and the other reply's are * ICMP query's as well, but adding them here seems strange XXX */ if (!(oic->icmp6_type & ICMP6_INFOMSG_MASK)) { DT1(iss_icmp6_notinfo, fr_info_t *, &ofin); SBUMP(ipf_state_stats.iss_icmp6_notinfo); return NULL; } /* * perform a lookup of the ICMP packet in the state table */ hv = (pr = oip6->ip6_nxt); src.in6 = oip6->ip6_src; hv += src.in4.s_addr; dst.in6 = oip6->ip6_dst; hv += dst.in4.s_addr; hv += oic->icmp6_id; hv += oic->icmp6_seq; hv = DOUBLE_HASH(hv); READ_ENTER(&softc->ipf_state); for (isp = &softs->ipf_state_table[hv]; ((is = *isp) != NULL); ) { ic = &is->is_icmp; isp = &is->is_hnext; if ((is->is_p == pr) && !(is->is_pass & FR_NOICMPERR) && (oic->icmp6_id == ic->ici_id) && (oic->icmp6_seq == ic->ici_seq) && (is = ipf_matchsrcdst(&ofin, is, &src, &dst, NULL, FI_ICMPCMP))) { /* * in the state table ICMP query's are stored * with the type of the corresponding ICMP * response. Correct here */ if (((ic->ici_type == ICMP6_ECHO_REPLY) && (oic->icmp6_type == ICMP6_ECHO_REQUEST)) || (ic->ici_type - 1 == oic->icmp6_type )) { if (!ipf_allowstateicmp(fin, is, &src)) return is; } } } RWLOCK_EXIT(&softc->ipf_state); SBUMPD(ipf_state_stats, iss_icmp6_miss); return NULL; } hv = (pr = oip6->ip6_nxt); src.in6 = oip6->ip6_src; hv += src.i6[0]; hv += src.i6[1]; hv += src.i6[2]; hv += src.i6[3]; dst.in6 = oip6->ip6_dst; hv += dst.i6[0]; hv += dst.i6[1]; hv += dst.i6[2]; hv += dst.i6[3]; tcp = NULL; switch (oip6->ip6_nxt) { case IPPROTO_TCP : case IPPROTO_UDP : tcp = (tcphdr_t *)(oip6 + 1); dport = tcp->th_dport; sport = tcp->th_sport; hv += dport; hv += sport; break; case IPPROTO_ICMPV6 : oic = (struct icmp6_hdr *)(oip6 + 1); hv += oic->icmp6_id; hv += oic->icmp6_seq; break; default : break; } hv = DOUBLE_HASH(hv); READ_ENTER(&softc->ipf_state); for (isp = &softs->ipf_state_table[hv]; ((is = *isp) != NULL); ) { isp = &is->is_hnext; /* * Only allow this icmp though if the * encapsulated packet was allowed through the * other way around. Note that the minimal amount * of info present does not allow for checking against * tcp internals such as seq and ack numbers. */ if ((is->is_p != pr) || (is->is_v != 6) || (is->is_pass & FR_NOICMPERR)) continue; is = ipf_matchsrcdst(&ofin, is, &src, &dst, tcp, FI_ICMPCMP); if ((is != NULL) && (ipf_allowstateicmp(fin, is, &src) == 0)) return is; } RWLOCK_EXIT(&softc->ipf_state); SBUMPD(ipf_state_stats, iss_icmp_miss); return NULL; } #endif /* ------------------------------------------------------------------------ */ /* Function: ipf_sttab_init */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* tqp(I) - pointer to an array of timeout queues for TCP */ /* */ /* Initialise the array of timeout queues for TCP. */ /* ------------------------------------------------------------------------ */ void ipf_sttab_init(softc, tqp) ipf_main_softc_t *softc; ipftq_t *tqp; { int i; for (i = IPF_TCP_NSTATES - 1; i >= 0; i--) { IPFTQ_INIT(&tqp[i], 0, "ipftq tcp tab"); tqp[i].ifq_next = tqp + i + 1; } tqp[IPF_TCP_NSTATES - 1].ifq_next = NULL; tqp[IPF_TCPS_CLOSED].ifq_ttl = softc->ipf_tcpclosed; tqp[IPF_TCPS_LISTEN].ifq_ttl = softc->ipf_tcptimeout; tqp[IPF_TCPS_SYN_SENT].ifq_ttl = softc->ipf_tcpsynsent; tqp[IPF_TCPS_SYN_RECEIVED].ifq_ttl = softc->ipf_tcpsynrecv; tqp[IPF_TCPS_ESTABLISHED].ifq_ttl = softc->ipf_tcpidletimeout; tqp[IPF_TCPS_CLOSE_WAIT].ifq_ttl = softc->ipf_tcphalfclosed; tqp[IPF_TCPS_FIN_WAIT_1].ifq_ttl = softc->ipf_tcphalfclosed; tqp[IPF_TCPS_CLOSING].ifq_ttl = softc->ipf_tcptimeout; tqp[IPF_TCPS_LAST_ACK].ifq_ttl = softc->ipf_tcplastack; tqp[IPF_TCPS_FIN_WAIT_2].ifq_ttl = softc->ipf_tcpclosewait; tqp[IPF_TCPS_TIME_WAIT].ifq_ttl = softc->ipf_tcptimewait; tqp[IPF_TCPS_HALF_ESTAB].ifq_ttl = softc->ipf_tcptimeout; } /* ------------------------------------------------------------------------ */ /* Function: ipf_sttab_destroy */ /* Returns: Nil */ /* Parameters: tqp(I) - pointer to an array of timeout queues for TCP */ /* */ /* Do whatever is necessary to "destroy" each of the entries in the array */ /* of timeout queues for TCP. */ /* ------------------------------------------------------------------------ */ void ipf_sttab_destroy(tqp) ipftq_t *tqp; { int i; for (i = IPF_TCP_NSTATES - 1; i >= 0; i--) MUTEX_DESTROY(&tqp[i].ifq_lock); } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_deref */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* isp(I) - pointer to pointer to state table entry */ /* */ /* Decrement the reference counter for this state table entry and free it */ /* if there are no more things using it. */ /* */ /* This function is only called when cleaning up after increasing is_ref by */ /* one earlier in the 'code path' so if is_ref is 1 when entering, we do */ /* have an orphan, otherwise not. However there is a possible race between */ /* the entry being deleted via flushing with an ioctl call (that calls the */ /* delete function directly) and the tail end of packet processing so we */ /* need to grab is_lock before doing the check to synchronise the two code */ /* paths. */ /* */ /* When operating in userland (ipftest), we have no timers to clear a state */ /* entry. Therefore, we make a few simple tests before deleting an entry */ /* outright. We compare states on each side looking for a combination of */ /* TIME_WAIT (should really be FIN_WAIT_2?) and LAST_ACK. Then we factor */ /* in packet direction with the interface list to make sure we don't */ /* prematurely delete an entry on a final inbound packet that's we're also */ /* supposed to route elsewhere. */ /* */ /* Internal parameters: */ /* state[0] = state of source (host that initiated connection) */ /* state[1] = state of dest (host that accepted the connection) */ /* */ /* dir == 0 : a packet from source to dest */ /* dir == 1 : a packet from dest to source */ /* ------------------------------------------------------------------------ */ void ipf_state_deref(softc, isp) ipf_main_softc_t *softc; ipstate_t **isp; { ipstate_t *is = *isp; is = *isp; *isp = NULL; MUTEX_ENTER(&is->is_lock); if (is->is_ref > 1) { is->is_ref--; MUTEX_EXIT(&is->is_lock); #ifndef _KERNEL if ((is->is_sti.tqe_state[0] > IPF_TCPS_ESTABLISHED) || (is->is_sti.tqe_state[1] > IPF_TCPS_ESTABLISHED)) { ipf_state_del(softc, is, ISL_EXPIRE); } #endif return; } MUTEX_EXIT(&is->is_lock); WRITE_ENTER(&softc->ipf_state); ipf_state_del(softc, is, ISL_ORPHAN); RWLOCK_EXIT(&softc->ipf_state); } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_setqueue */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* is(I) - pointer to state structure */ /* rev(I) - forward(0) or reverse(1) direction */ /* Locks: ipf_state (read or write) */ /* */ /* Put the state entry on its default queue entry, using rev as a helped in */ /* determining which queue it should be placed on. */ /* ------------------------------------------------------------------------ */ void ipf_state_setqueue(softc, is, rev) ipf_main_softc_t *softc; ipstate_t *is; int rev; { ipf_state_softc_t *softs = softc->ipf_state_soft; ipftq_t *oifq, *nifq; if ((is->is_sti.tqe_flags & TQE_RULEBASED) != 0) nifq = is->is_tqehead[rev]; else nifq = NULL; if (nifq == NULL) { switch (is->is_p) { #ifdef USE_INET6 case IPPROTO_ICMPV6 : if (rev == 1) nifq = &softs->ipf_state_icmpacktq; else nifq = &softs->ipf_state_icmptq; break; #endif case IPPROTO_ICMP : if (rev == 1) nifq = &softs->ipf_state_icmpacktq; else nifq = &softs->ipf_state_icmptq; break; case IPPROTO_TCP : nifq = softs->ipf_state_tcptq + is->is_state[rev]; break; case IPPROTO_UDP : if (rev == 1) nifq = &softs->ipf_state_udpacktq; else nifq = &softs->ipf_state_udptq; break; default : nifq = &softs->ipf_state_iptq; break; } } oifq = is->is_sti.tqe_ifq; /* * If it's currently on a timeout queue, move it from one queue to * another, else put it on the end of the newly determined queue. */ if (oifq != NULL) ipf_movequeue(softc->ipf_ticks, &is->is_sti, oifq, nifq); else ipf_queueappend(softc->ipf_ticks, &is->is_sti, nifq, is); return; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_iter */ /* Returns: int - 0 == success, else error */ /* Parameters: softc(I) - pointer to main soft context */ /* token(I) - pointer to ipftoken structure */ /* itp(I) - pointer to ipfgeniter structure */ /* obj(I) - pointer to data description structure */ /* */ /* This function handles the SIOCGENITER ioctl for the state tables and */ /* walks through the list of entries in the state table list (softs->ipf_state_list.) */ /* ------------------------------------------------------------------------ */ static int ipf_state_iter(softc, token, itp, obj) ipf_main_softc_t *softc; ipftoken_t *token; ipfgeniter_t *itp; ipfobj_t *obj; { ipf_state_softc_t *softs = softc->ipf_state_soft; ipstate_t *is, *next, zero; int error; if (itp->igi_data == NULL) { IPFERROR(100026); return EFAULT; } if (itp->igi_nitems < 1) { IPFERROR(100027); return ENOSPC; } if (itp->igi_type != IPFGENITER_STATE) { IPFERROR(100028); return EINVAL; } is = token->ipt_data; if (is == (void *)-1) { IPFERROR(100029); return ESRCH; } error = 0; obj->ipfo_type = IPFOBJ_IPSTATE; obj->ipfo_size = sizeof(ipstate_t); READ_ENTER(&softc->ipf_state); is = token->ipt_data; if (is == NULL) { next = softs->ipf_state_list; } else { next = is->is_next; } /* * If we find a state entry to use, bump its reference count so that * it can be used for is_next when we come back. */ if (next != NULL) { MUTEX_ENTER(&next->is_lock); next->is_ref++; MUTEX_EXIT(&next->is_lock); token->ipt_data = next; } else { bzero(&zero, sizeof(zero)); next = &zero; token->ipt_data = NULL; } if (next->is_next == NULL) ipf_token_mark_complete(token); RWLOCK_EXIT(&softc->ipf_state); obj->ipfo_ptr = itp->igi_data; error = ipf_outobjk(softc, obj, next); if (is != NULL) ipf_state_deref(softc, &is); return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_gettable */ /* Returns: int - 0 = success, else error */ /* Parameters: softc(I) - pointer to main soft context */ /* softs(I) - pointer to state context structure */ /* data(I) - pointer to ioctl data */ /* */ /* This function handles ioctl requests for tables of state information. */ /* At present the only table it deals with is the hash bucket statistics. */ /* ------------------------------------------------------------------------ */ static int ipf_state_gettable(softc, softs, data) ipf_main_softc_t *softc; ipf_state_softc_t *softs; char *data; { ipftable_t table; int error; error = ipf_inobj(softc, data, NULL, &table, IPFOBJ_GTABLE); if (error != 0) return error; if (table.ita_type != IPFTABLE_BUCKETS) { IPFERROR(100031); return EINVAL; } error = COPYOUT(softs->ipf_state_stats.iss_bucketlen, table.ita_table, softs->ipf_state_size * sizeof(u_int)); if (error != 0) { IPFERROR(100032); error = EFAULT; } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_setpending */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to main soft context */ /* is(I) - pointer to state structure */ /* Locks: ipf_state (read or write) */ /* */ /* Put the state entry on to the pending queue - this queue has a very */ /* short lifetime where items are put that can't be deleted straight away */ /* because of locking issues but we want to delete them ASAP, anyway. */ /* ------------------------------------------------------------------------ */ void ipf_state_setpending(softc, is) ipf_main_softc_t *softc; ipstate_t *is; { ipf_state_softc_t *softs = softc->ipf_state_soft; ipftq_t *oifq; oifq = is->is_sti.tqe_ifq; if (oifq != NULL) ipf_movequeue(softc->ipf_ticks, &is->is_sti, oifq, &softs->ipf_state_pending); else ipf_queueappend(softc->ipf_ticks, &is->is_sti, &softs->ipf_state_pending, is); MUTEX_ENTER(&is->is_lock); if (is->is_me != NULL) { *is->is_me = NULL; is->is_me = NULL; is->is_ref--; } MUTEX_EXIT(&is->is_lock); } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_matchflush */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to main soft context */ /* data(I) - pointer to state structure */ /* Locks: ipf_state (read or write) */ /* */ /* Flush all entries from the list of state entries that match the */ /* properties in the array loaded. */ /* ------------------------------------------------------------------------ */ int ipf_state_matchflush(softc, data) ipf_main_softc_t *softc; caddr_t data; { ipf_state_softc_t *softs = softc->ipf_state_soft; int *array, flushed, error; ipstate_t *state, *statenext; ipfobj_t obj; error = ipf_matcharray_load(softc, data, &obj, &array); if (error != 0) return error; flushed = 0; for (state = softs->ipf_state_list; state != NULL; state = statenext) { statenext = state->is_next; if (ipf_state_matcharray(state, array, softc->ipf_ticks) == 0) { ipf_state_del(softc, state, ISL_FLUSH); flushed++; } } obj.ipfo_retval = flushed; error = BCOPYOUT(&obj, data, sizeof(obj)); KFREES(array, array[0] * sizeof(*array)); return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_matcharray */ /* Returns: int - 0 = no match, 1 = match */ /* Parameters: state(I) - pointer to state structure */ /* array(I) - pointer to ipf matching expression */ /* ticks(I) - current value of ipfilter tick timer */ /* Locks: ipf_state (read or write) */ /* */ /* Compare a state entry with the match array passed in and return a value */ /* to indicate whether or not the matching was successful. */ /* ------------------------------------------------------------------------ */ static int ipf_state_matcharray(state, array, ticks) ipstate_t *state; int *array; u_long ticks; { int i, n, *x, rv, p; ipfexp_t *e; rv = 0; n = array[0]; x = array + 1; for (; n > 0; x += 3 + x[3], rv = 0) { e = (ipfexp_t *)x; n -= e->ipfe_size; if (x[0] == IPF_EXP_END) break; /* * If we need to match the protocol and that doesn't match, * don't even both with the instruction array. */ p = e->ipfe_cmd >> 16; if ((p != 0) && (p != state->is_p)) break; switch (e->ipfe_cmd) { case IPF_EXP_IP_PR : for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= (state->is_p == e->ipfe_arg0[i]); } break; case IPF_EXP_IP_SRCADDR : if (state->is_v != 4) break; for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= ((state->is_saddr & e->ipfe_arg0[i * 2 + 1]) == e->ipfe_arg0[i * 2]); } break; case IPF_EXP_IP_DSTADDR : if (state->is_v != 4) break; for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= ((state->is_daddr & e->ipfe_arg0[i * 2 + 1]) == e->ipfe_arg0[i * 2]); } break; case IPF_EXP_IP_ADDR : if (state->is_v != 4) break; for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= ((state->is_saddr & e->ipfe_arg0[i * 2 + 1]) == e->ipfe_arg0[i * 2]) || ((state->is_daddr & e->ipfe_arg0[i * 2 + 1]) == e->ipfe_arg0[i * 2]); } break; #ifdef USE_INET6 case IPF_EXP_IP6_SRCADDR : if (state->is_v != 6) break; for (i = 0; !rv && i < x[3]; i++) { rv |= IP6_MASKEQ(&state->is_src.in6, &e->ipfe_arg0[i * 8 + 4], &e->ipfe_arg0[i * 8]); } break; case IPF_EXP_IP6_DSTADDR : if (state->is_v != 6) break; for (i = 0; !rv && i < x[3]; i++) { rv |= IP6_MASKEQ(&state->is_dst.in6, &e->ipfe_arg0[i * 8 + 4], &e->ipfe_arg0[i * 8]); } break; case IPF_EXP_IP6_ADDR : if (state->is_v != 6) break; for (i = 0; !rv && i < x[3]; i++) { rv |= IP6_MASKEQ(&state->is_src.in6, &e->ipfe_arg0[i * 8 + 4], &e->ipfe_arg0[i * 8]) || IP6_MASKEQ(&state->is_dst.in6, &e->ipfe_arg0[i * 8 + 4], &e->ipfe_arg0[i * 8]); } break; #endif case IPF_EXP_UDP_PORT : case IPF_EXP_TCP_PORT : for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= (state->is_sport == e->ipfe_arg0[i]) || (state->is_dport == e->ipfe_arg0[i]); } break; case IPF_EXP_UDP_SPORT : case IPF_EXP_TCP_SPORT : for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= (state->is_sport == e->ipfe_arg0[i]); } break; case IPF_EXP_UDP_DPORT : case IPF_EXP_TCP_DPORT : for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= (state->is_dport == e->ipfe_arg0[i]); } break; case IPF_EXP_TCP_STATE : for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= (state->is_state[0] == e->ipfe_arg0[i]) || (state->is_state[1] == e->ipfe_arg0[i]); } break; case IPF_EXP_IDLE_GT : rv |= (ticks - state->is_touched > e->ipfe_arg0[0]); break; } /* * Factor in doing a negative match. */ rv ^= e->ipfe_not; if (rv == 0) break; } return rv; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_settimeout */ /* Returns: int 0 = success, else failure */ /* Parameters: softc(I) - pointer to main soft context */ /* t(I) - pointer to tuneable being changed */ /* p(I) - pointer to the new value */ /* */ /* Sets a timeout value for one of the many timeout queues. We find the */ /* correct queue using a somewhat manual process of comparing the timeout */ /* names for each specific value available and calling ipf_apply_timeout on */ /* that queue so that all of the items on it are updated accordingly. */ /* ------------------------------------------------------------------------ */ int ipf_state_settimeout(softc, t, p) struct ipf_main_softc_s *softc; ipftuneable_t *t; ipftuneval_t *p; { ipf_state_softc_t *softs = softc->ipf_state_soft; /* * In case there is nothing to do... */ if (*t->ipft_pint == p->ipftu_int) return 0; if (!strncmp(t->ipft_name, "tcp_", 4)) return ipf_settimeout_tcp(t, p, softs->ipf_state_tcptq); if (!strcmp(t->ipft_name, "udp_timeout")) { ipf_apply_timeout(&softs->ipf_state_udptq, p->ipftu_int); } else if (!strcmp(t->ipft_name, "udp_ack_timeout")) { ipf_apply_timeout(&softs->ipf_state_udpacktq, p->ipftu_int); } else if (!strcmp(t->ipft_name, "icmp_timeout")) { ipf_apply_timeout(&softs->ipf_state_icmptq, p->ipftu_int); } else if (!strcmp(t->ipft_name, "icmp_ack_timeout")) { ipf_apply_timeout(&softs->ipf_state_icmpacktq, p->ipftu_int); } else if (!strcmp(t->ipft_name, "ip_timeout")) { ipf_apply_timeout(&softs->ipf_state_iptq, p->ipftu_int); } else { IPFERROR(100034); return ESRCH; } /* * Update the tuneable being set. */ *t->ipft_pint = p->ipftu_int; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_rehash */ /* Returns: int 0 = success, else failure */ /* Parameters: softc(I) - pointer to main soft context */ /* t(I) - pointer to tuneable being changed */ /* p(I) - pointer to the new value */ /* */ /* To change the size of the state hash table at runtime, a new table has */ /* to be allocated and then all of the existing entries put in it, bumping */ /* up the bucketlength for it as we go along. */ /* ------------------------------------------------------------------------ */ int ipf_state_rehash(softc, t, p) ipf_main_softc_t *softc; ipftuneable_t *t; ipftuneval_t *p; { ipf_state_softc_t *softs = softc->ipf_state_soft; ipstate_t **newtab, *is; u_long *newseed; u_int *bucketlens; u_int maxbucket; u_int newsize; u_int hv; int i; newsize = p->ipftu_int; /* * In case there is nothing to do... */ if (newsize == softs->ipf_state_size) return 0; KMALLOCS(newtab, ipstate_t **, newsize * sizeof(ipstate_t *)); if (newtab == NULL) { IPFERROR(100035); return ENOMEM; } KMALLOCS(bucketlens, u_int *, newsize * sizeof(u_int)); if (bucketlens == NULL) { KFREES(newtab, newsize * sizeof(*softs->ipf_state_table)); IPFERROR(100036); return ENOMEM; } newseed = ipf_state_seed_alloc(newsize, softs->ipf_state_max); if (newseed == NULL) { KFREES(bucketlens, newsize * sizeof(*bucketlens)); KFREES(newtab, newsize * sizeof(*newtab)); IPFERROR(100037); return ENOMEM; } for (maxbucket = 0, i = newsize; i > 0; i >>= 1) maxbucket++; maxbucket *= 2; bzero((char *)newtab, newsize * sizeof(ipstate_t *)); bzero((char *)bucketlens, newsize * sizeof(u_int)); WRITE_ENTER(&softc->ipf_state); if (softs->ipf_state_table != NULL) { KFREES(softs->ipf_state_table, softs->ipf_state_size * sizeof(*softs->ipf_state_table)); } softs->ipf_state_table = newtab; if (softs->ipf_state_seed != NULL) { KFREES(softs->ipf_state_seed, softs->ipf_state_size * sizeof(*softs->ipf_state_seed)); } softs->ipf_state_seed = newseed; if (softs->ipf_state_stats.iss_bucketlen != NULL) { KFREES(softs->ipf_state_stats.iss_bucketlen, softs->ipf_state_size * sizeof(u_int)); } softs->ipf_state_stats.iss_bucketlen = bucketlens; softs->ipf_state_maxbucket = maxbucket; softs->ipf_state_size = newsize; /* * Walk through the entire list of state table entries and put them * in the new state table, somewhere. Because we have a new table, * we need to restart the counter of how many chains are in use. */ softs->ipf_state_stats.iss_inuse = 0; for (is = softs->ipf_state_list; is != NULL; is = is->is_next) { is->is_hnext = NULL; is->is_phnext = NULL; hv = is->is_hv % softs->ipf_state_size; if (softs->ipf_state_table[hv] != NULL) softs->ipf_state_table[hv]->is_phnext = &is->is_hnext; else softs->ipf_state_stats.iss_inuse++; is->is_phnext = softs->ipf_state_table + hv; is->is_hnext = softs->ipf_state_table[hv]; softs->ipf_state_table[hv] = is; softs->ipf_state_stats.iss_bucketlen[hv]++; } RWLOCK_EXIT(&softc->ipf_state); return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_state_add_tq */ /* Returns: ipftq_t * - NULL = failure, else pointer to new timeout */ /* queue */ /* Parameters: softc(I) - pointer to main soft context */ /* ttl(I) - pointer to the ttl for the new queue */ /* */ /* Request a pointer to a timeout queue that has a ttl as given by the */ /* value being passed in. The timeout queue is added tot the list of those */ /* used internally for stateful filtering. */ /* ------------------------------------------------------------------------ */ ipftq_t * ipf_state_add_tq(softc, ttl) ipf_main_softc_t *softc; int ttl; { ipf_state_softc_t *softs = softc->ipf_state_soft; return ipf_addtimeoutqueue(softc, &softs->ipf_state_usertq, ttl); } #ifndef _KERNEL /* * Display the built up state table rules and mapping entries. */ void ipf_state_dump(softc, arg) ipf_main_softc_t *softc; void *arg; { ipf_state_softc_t *softs = arg; ipstate_t *ips; printf("List of active state sessions:\n"); for (ips = softs->ipf_state_list; ips != NULL; ) ips = printstate(ips, opts & (OPT_DEBUG|OPT_VERBOSE), softc->ipf_ticks); } #endif