Page MenuHomeFreeBSD

No OneTemporary

This file is larger than 256 KB, so syntax highlighting was skipped.
diff --git a/sys/contrib/zstd/CHANGELOG b/sys/contrib/zstd/CHANGELOG
index 86092563177c..4e0045b950c9 100644
--- a/sys/contrib/zstd/CHANGELOG
+++ b/sys/contrib/zstd/CHANGELOG
@@ -1,616 +1,721 @@
+v1.5.2 (Jan, 2022)
+perf: Regain Minimal memset()-ing During Reuse of Compression Contexts (@Cyan4973, #2969)
+build: Build Zstd with `noexecstack` on All Architectures (@felixhandte, #2964)
+doc: Clarify Licensing (@terrelln, #2981)
+
+v1.5.1 (Dec, 2021)
+perf: rebalanced compression levels, to better match the intended speed/level curve, by @senhuang42
+perf: faster huffman decoder, using x64 assembly, by @terrelln
+perf: slightly faster high speed modes (strategies fast & dfast), by @felixhandte
+perf: improved binary size and faster compilation times, by @terrelln
+perf: new row64 mode, used notably in level 12, by @senhuang42
+perf: faster mid-level compression speed in presence of highly repetitive patterns, by @senhuang42
+perf: minor compression ratio improvements for small data at high levels, by @cyan4973
+perf: reduced stack usage (mostly useful for Linux Kernel), by @terrelln
+perf: faster compression speed on incompressible data, by @bindhvo
+perf: on-demand reduced ZSTD_DCtx state size, using build macro ZSTD_DECODER_INTERNAL_BUFFER, at a small cost of performance, by @bindhvo
+build: allows hiding static symbols in the dynamic library, using build macro, by @skitt
+build: support for m68k (Motorola 68000's), by @cyan4973
+build: improved AIX support, by @Helflym
+build: improved meson unofficial build, by @eli-schwartz
+cli : custom memory limit when training dictionary (#2925), by @embg
+cli : report advanced parameters information when compressing in very verbose mode (``-vv`), by @Svetlitski-FB
+
+v1.5.0 (May 11, 2021)
+api: Various functions promoted from experimental to stable API: (#2579-2581, @senhuang42)
+ `ZSTD_defaultCLevel()`
+ `ZSTD_getDictID_fromCDict()`
+api: Several experimental functions have been deprecated and will emit a compiler warning (#2582, @senhuang42)
+ `ZSTD_compress_advanced()`
+ `ZSTD_compress_usingCDict_advanced()`
+ `ZSTD_compressBegin_advanced()`
+ `ZSTD_compressBegin_usingCDict_advanced()`
+ `ZSTD_initCStream_srcSize()`
+ `ZSTD_initCStream_usingDict()`
+ `ZSTD_initCStream_usingCDict()`
+ `ZSTD_initCStream_advanced()`
+ `ZSTD_initCStream_usingCDict_advanced()`
+ `ZSTD_resetCStream()`
+api: ZSTDMT_NBWORKERS_MAX reduced to 64 for 32-bit environments (@Cyan4973)
+perf: Significant speed improvements for middle compression levels (#2494, @senhuang42 @terrelln)
+perf: Block splitter to improve compression ratio, enabled by default for high compression levels (#2447, @senhuang42)
+perf: Decompression loop refactor, speed improvements on `clang` and for `--long` modes (#2614 #2630, @Cyan4973)
+perf: Reduced stack usage during compression and decompression entropy stage (#2522 #2524, @terrelln)
+bug: Improve setting permissions of created files (#2525, @felixhandte)
+bug: Fix large dictionary non-determinism (#2607, @terrelln)
+bug: Fix non-determinism test failures on Linux i686 (#2606, @terrelln)
+bug: Fix various dedicated dictionary search bugs (#2540 #2586, @senhuang42 @felixhandte)
+bug: Ensure `ZSTD_estimateCCtxSize*() `monotonically increases with compression level (#2538, @senhuang42)
+bug: Fix --patch-from mode parameter bound bug with small files (#2637, @occivink)
+bug: Fix UBSAN error in decompression (#2625, @terrelln)
+bug: Fix superblock compression divide by zero bug (#2592, @senhuang42)
+bug: Make the number of physical CPU cores detection more robust (#2517, @PaulBone)
+doc: Improve `zdict.h` dictionary training API documentation (#2622, @terrelln)
+doc: Note that public `ZSTD_free*()` functions accept NULL pointers (#2521, @animalize)
+doc: Add style guide docs for open source contributors (#2626, @Cyan4973)
+tests: Better regression test coverage for different dictionary modes (#2559, @senhuang42)
+tests: Better test coverage of index reduction (#2603, @terrelln)
+tests: OSS-Fuzz coverage for seekable format (#2617, @senhuang42)
+tests: Test coverage for ZSTD threadpool API (#2604, @senhuang42)
+build: Dynamic library built multithreaded by default (#2584, @senhuang42)
+build: Move `zstd_errors.h` and `zdict.h` to `lib/` root (#2597, @terrelln)
+build: Allow `ZSTDMT_JOBSIZE_MIN` to be configured at compile-time, reduce default to 512KB (#2611, @Cyan4973)
+build: Single file library build script moved to `build/` directory (#2618, @felixhandte)
+build: `ZBUFF_*()` is no longer built by default (#2583, @senhuang42)
+build: Fixed Meson build (#2548, @SupervisedThinking @kloczek)
+build: Fix excessive compiler warnings with clang-cl and CMake (#2600, @nickhutchinson)
+build: Detect presence of `md5` on Darwin (#2609, @felixhandte)
+build: Avoid SIGBUS on armv6 (#2633, @bmwiedmann)
+cli: `--progress` flag added to always display progress bar (#2595, @senhuang42)
+cli: Allow reading from block devices with `--force` (#2613, @felixhandte)
+cli: Fix CLI filesize display bug (#2550, @Cyan4973)
+cli: Fix windows CLI `--filelist` end-of-line bug (#2620, @Cyan4973)
+contrib: Various fixes for linux kernel patch (#2539, @terrelln)
+contrib: Seekable format - Decompression hanging edge case fix (#2516, @senhuang42)
+contrib: Seekable format - New seek table-only API (#2113 #2518, @mdittmer @Cyan4973)
+contrib: Seekable format - Fix seek table descriptor check when loading (#2534, @foxeng)
+contrib: Seekable format - Decompression fix for large offsets, (#2594, @azat)
+misc: Automatically published release tarballs available on Github (#2535, @felixhandte)
+
+v1.4.9 (Mar 1, 2021)
+bug: Use `umask()` to Constrain Created File Permissions (#2495, @felixhandte)
+bug: Make Simple Single-Pass Functions Ignore Advanced Parameters (#2498, @terrelln)
+api: Add (De)Compression Tracing Functionality (#2482, @terrelln)
+api: Support References to Multiple DDicts (#2446, @senhuang42)
+api: Add Function to Generate Skippable Frame (#2439, @senhuang42)
+perf: New Algorithms for the Long Distance Matcher (#2483, @mpu)
+perf: Performance Improvements for Long Distance Matcher (#2464, @mpu)
+perf: Don't Shrink Window Log when Streaming with a Dictionary (#2451, @terrelln)
+cli: Fix `--output-dir-mirror`'s Rejection of `..`-Containing Paths (#2512, @felixhandte)
+cli: Allow Input From Console When `-f`/`--force` is Passed (#2466, @felixhandte)
+cli: Improve Help Message (#2500, @senhuang42)
+tests: Remove Flaky Tests (#2455, #2486, #2445, @Cyan4973)
+tests: Correctly Invoke md5 Utility on NetBSD (#2492, @niacat)
+tests: Avoid Using `stat -c` on NetBSD (#2513, @felixhandte)
+build: Zstd CLI Can Now be Linked to Dynamic `libzstd` (#2457, #2454 @Cyan4973)
+build: Hide and Avoid Using Static-Only Symbols (#2501, #2504, @skitt)
+build: CMake: Enable Only C for lib/ and programs/ Projects (#2498, @concatime)
+build: CMake: Use `configure_file()` to Create the `.pc` File (#2462, @lazka)
+build: Fix Fuzzer Compiler Detection & Update UBSAN Flags (#2503, @terrelln)
+build: Add Guards for `_LARGEFILE_SOURCE` and `_LARGEFILE64_SOURCE` (#2444, @indygreg)
+build: Improve `zlibwrapper` Makefile (#2437, @Cyan4973)
+contrib: Add `recover_directory` Program (#2473, @terrelln)
+doc: Change License Year to 2021 (#2452 & #2465, @terrelln & @senhuang42)
+doc: Fix Typos (#2459, @ThomasWaldmann)
+
v1.4.8 (Dec 18, 2020)
hotfix: wrong alignment of an internal buffer
v1.4.7 (Dec 16, 2020)
perf: stronger --long mode at high compression levels, by @senhuang42
perf: stronger --patch-from at high compression levels, thanks to --long improvements
perf: faster dictionary compression at medium compression levels, by @felixhandte
perf: small speed & memory usage improvements for ZSTD_compress2(), by @terrelln
perf: improved fast compression speeds with Visual Studio, by @animalize
cli : Set nb of threads with environment variable ZSTD_NBTHREADS, by @senhuang42
cli : accept decompressing files with *.zstd suffix
cli : provide a condensed summary by default when processing multiple files
cli : fix : stdin input no longer confused as user prompt
cli : improve accuracy of several error messages
api : new sequence ingestion API, by @senhuang42
api : shared thread pool: control total nb of threads used by multiple compression jobs, by @marxin
api : new ZSTD_getDictID_fromCDict(), by @LuAPi
api : zlibWrapper only uses public API, and is compatible with dynamic library, by @terrelln
api : fix : multithreaded compression has predictable output even in special cases (see #2327) (issue not accessible from cli)
api : fix : dictionary compression correctly respects dictionary compression level (see #2303) (issue not accessible from cli)
build: fix cmake script when using path with spaces, by @terrelln
build: improved compile-time detection of aarch64/neon platforms, by @bsdimp
build: Fix building on AIX 5.1, by @likema
build: compile paramgrill with cmake on Windows, requested by @mirh
doc : clarify repcode updates in format specification, by @felixhandte
v1.4.6
fix : Always return dstSize_tooSmall when that is the case
fix : Fix ZSTD_initCStream_advanced() with static allocation and no dictionary
perf: Improve small block decompression speed by 20%+, by @terrelln
perf: Reduce compression stack usage by 1 KB, by @terrelln
perf: Improve decompression speed by improving ZSTD_wildcopy, by @helloguo (#2252, #2256)
perf: Improve histogram construction, by @cyan4973 (#2253)
cli : Add --output-dir-mirror option, by @xxie24 (#2219)
cli : Warn when (de)compressing multiple files into a single output, by @senhuang42 (#2279)
cli : Improved progress bar and status summary when (de)compressing multiple files, by @senhuang42 (#2283)
cli : Call stat less often, by @felixhandte (#2262)
cli : Allow --patch-from XXX and --filelist XXX in addition to --patch-from=XXX and --filelist=XXX, by @cyan4973 (#2250)
cli : Allow --patch-from to compress stdin with --stream-size, by @bimbashrestha (#2206)
api : Do not install zbuff.h, since it has long been deprecated, by @cyan4973 (#2166).
api : Fix ZSTD_CCtx_setParameter() with ZSTD_c_compressionLevel to make 0 mean default level, by @i-do-cpp (#2291)
api : Rename ZSTDMT_NBTHREADS_MAX to ZSTDMT_NBWORKERS_MAX, by @marxin (#2228).
build: Install pkg-config file with CMake and MinGW, by @tonytheodore (#2183)
build: Install DLL with CMake on Windows, by @BioDataAnalysis (#2221)
build: Fix DLL install location with CMake, by @xantares and @bimbashrestha (#2186)
build: Add ZSTD_NO_UNUSED_FUNCTIONS macro to hide unused functions
build: Add ZSTD_NO_INTRINSICS macro to avoid explicit intrinsics
build: Add STATIC_BMI2 macro for compile time detection of BMI2 on MSVC, by @Niadb (#2258)
build: Fix -Wcomma warnings, by @cwoffenden
build: Remove distutils requirement for meson build, by @neheb (#2197)
build: Fix cli compilation with uclibc
build: Fix cli compilation without st_mtime, by @ffontaine (#2246)
build: Fix shadowing warnings in library
build: Fix single file library compilation with Enscripten, by @yoshihitoh (#2227)
misc: Improve single file library and include dictBuilder, by @cwoffenden
misc: Allow compression dictionaries with missing symbols
misc: Add freestanding translation script in contrib/freestanding_lib
misc: Collect all of zstd's libc dependencies into zstd_deps.h
doc : Add ZSTD_versionString() to manual, by @animalize
doc : Fix documentation for ZSTD_CCtxParams_setParameter(), by @felixhandte (#2270)
v1.4.5 (May 22, 2020)
fix : Compression ratio regression on huge files (> 3 GB) using high levels (--ultra) and multithreading, by @terrelln
perf: Improved decompression speed: x64 : +10% (clang) / +5% (gcc); ARM : from +15% to +50%, depending on SoC, by @terrelln
perf: Automatically downsizes ZSTD_DCtx when too large for too long (#2069, by @bimbashreshta)
perf: Improved fast compression speed on aarch64 (#2040, ~+3%, by @caoyzh)
perf: Small level 1 compression speed gains (depending on compiler)
cli : New --patch-from command, create and apply patches from files, by @bimbashreshta
cli : New --filelist= : Provide a list of files to operate upon from a file
cli : -b -d command can now benchmark decompression on multiple files
cli : New --no-content-size command
cli : New --show-default-cparams information command
api : ZDICT_finalizeDictionary() is promoted to stable (#2111)
api : new experimental parameter ZSTD_d_stableOutBuffer (#2094)
build: Generate a single-file libzstd library (#2065, by @cwoffenden)
build: Relative includes no longer require -I compiler flags for zstd lib subdirs (#2103, by @felixhandte)
build: zstd now compiles cleanly under -pedantic (#2099)
build: zstd now compiles with make-4.3
build: Support mingw cross-compilation from Linux, by @Ericson2314
build: Meson multi-thread build fix on windows
build: Some misc icc fixes backed by new ci test on travis
misc: bitflip analyzer tool, by @felixhandte
misc: Extend largeNbDicts benchmark to compression
misc: Edit-distance match finder in contrib/
doc : Improved beginner CONTRIBUTING.md docs
doc : New issue templates for zstd
v1.4.4 (Nov 6, 2019)
perf: Improved decompression speed, by > 10%, by @terrelln
perf: Better compression speed when re-using a context, by @felixhandte
perf: Fix compression ratio when compressing large files with small dictionary, by @senhuang42
perf: zstd reference encoder can generate RLE blocks, by @bimbashrestha
perf: minor generic speed optimization, by @davidbolvansky
api: new ability to extract sequences from the parser for analysis, by @bimbashrestha
api: fixed decoding of magic-less frames, by @terrelln
api: fixed ZSTD_initCStream_advanced() performance with fast modes, reported by @QrczakMK
cli: Named pipes support, by @bimbashrestha
cli: short tar's extension support, by @stokito
cli: command --output-dir-flat= , generates target files into requested directory, by @senhuang42
cli: commands --stream-size=# and --size-hint=#, by @nmagerko
cli: command --exclude-compressed, by @shashank0791
cli: faster `-t` test mode
cli: improved some error messages, by @vangyzen
cli: fix command `-D dictionary` on Windows, reported by @artyompetrov
cli: fix rare deadlock condition within dictionary builder, by @terrelln
build: single-file decoder with emscripten compilation script, by @cwoffenden
build: fixed zlibWrapper compilation on Visual Studio, reported by @bluenlive
build: fixed deprecation warning for certain gcc version, reported by @jasonma163
build: fix compilation on old gcc versions, by @cemeyer
build: improved installation directories for cmake script, by Dmitri Shubin
pack: modified pkgconfig, for better integration into openwrt, requested by @neheb
misc: Improved documentation : ZSTD_CLEVEL, DYNAMIC_BMI2, ZSTD_CDict, function deprecation, zstd format
misc: fixed educational decoder : accept larger literals section, and removed UNALIGNED() macro
v1.4.3 (Aug 20, 2019)
bug: Fix Dictionary Compression Ratio Regression by @cyan4973 (#1709)
bug: Fix Buffer Overflow in legacy v0.3 decompression by @felixhandte (#1722)
build: Add support for IAR C/C++ Compiler for Arm by @joseph0918 (#1705)
v1.4.2 (Jul 26, 2019)
bug: Fix bug in zstd-0.5 decoder by @terrelln (#1696)
bug: Fix seekable decompression in-memory API by @iburinoc (#1695)
misc: Validate blocks are smaller than size limit by @vivekmg (#1685)
misc: Restructure source files by @ephiepark (#1679)
v1.4.1 (Jul 20, 2019)
bug: Fix data corruption in niche use cases by @terrelln (#1659)
bug: Fuzz legacy modes, fix uncovered bugs by @terrelln (#1593, #1594, #1595)
bug: Fix out of bounds read by @terrelln (#1590)
perf: Improve decode speed by ~7% @mgrice (#1668)
perf: Slightly improved compression ratio of level 3 and 4 (ZSTD_dfast) by @cyan4973 (#1681)
perf: Slightly faster compression speed when re-using a context by @cyan4973 (#1658)
perf: Improve compression ratio for small windowLog by @cyan4973 (#1624)
perf: Faster compression speed in high compression mode for repetitive data by @terrelln (#1635)
api: Add parameter to generate smaller dictionaries by @tyler-tran (#1656)
cli: Recognize symlinks when built in C99 mode by @felixhandte (#1640)
cli: Expose cpu load indicator for each file on -vv mode by @ephiepark (#1631)
cli: Restrict read permissions on destination files by @chungy (#1644)
cli: zstdgrep: handle -f flag by @felixhandte (#1618)
cli: zstdcat: follow symlinks by @vejnar (#1604)
doc: Remove extra size limit on compressed blocks by @felixhandte (#1689)
doc: Fix typo by @yk-tanigawa (#1633)
doc: Improve documentation on streaming buffer sizes by @cyan4973 (#1629)
build: CMake: support building with LZ4 @leeyoung624 (#1626)
build: CMake: install zstdless and zstdgrep by @leeyoung624 (#1647)
build: CMake: respect existing uninstall target by @j301scott (#1619)
build: Make: skip multithread tests when built without support by @michaelforney (#1620)
build: Make: Fix examples/ test target by @sjnam (#1603)
build: Meson: rename options out of deprecated namespace by @lzutao (#1665)
build: Meson: fix build by @lzutao (#1602)
build: Visual Studio: don't export symbols in static lib by @scharan (#1650)
build: Visual Studio: fix linking by @absotively (#1639)
build: Fix MinGW-W64 build by @myzhang1029 (#1600)
misc: Expand decodecorpus coverage by @ephiepark (#1664)
v1.4.0 (Apr 17, 2019)
perf: Improve level 1 compression speed in most scenarios by 6% by @gbtucker and @terrelln
api: Move the advanced API, including all functions in the staging section, to the stable section
api: Make ZSTD_e_flush and ZSTD_e_end block for maximum forward progress
api: Rename ZSTD_CCtxParam_getParameter to ZSTD_CCtxParams_getParameter
api: Rename ZSTD_CCtxParam_setParameter to ZSTD_CCtxParams_setParameter
api: Don't export ZSTDMT functions from the shared library by default
api: Require ZSTD_MULTITHREAD to be defined to use ZSTDMT
api: Add ZSTD_decompressBound() to provide an upper bound on decompressed size by @shakeelrao
api: Fix ZSTD_decompressDCtx() corner cases with a dictionary
api: Move ZSTD_getDictID_*() functions to the stable section
api: Add ZSTD_c_literalCompressionMode flag to enable or disable literal compression by @terrelln
api: Allow compression parameters to be set when a dictionary is used
api: Allow setting parameters before or after ZSTD_CCtx_loadDictionary() is called
api: Fix ZSTD_estimateCStreamSize_usingCCtxParams()
api: Setting ZSTD_d_maxWindowLog to 0 means use the default
cli: Ensure that a dictionary is not used to compress itself by @shakeelrao
cli: Add --[no-]compress-literals flag to enable or disable literal compression
doc: Update the examples to use the advanced API
doc: Explain how to transition from old streaming functions to the advanced API in the header
build: Improve the Windows release packages
build: Improve CMake build by @hjmjohnson
build: Build fixes for FreeBSD by @lwhsu
build: Remove redundant warnings by @thatsafunnyname
build: Fix tests on OpenBSD by @bket
build: Extend fuzzer build system to work with the new clang engine
build: CMake now creates the libzstd.so.1 symlink
build: Improve Menson build by @lzutao
misc: Fix symbolic link detection on FreeBSD
misc: Use physical core count for -T0 on FreeBSD by @cemeyer
misc: Fix zstd --list on truncated files by @kostmo
misc: Improve logging in debug mode by @felixhandte
misc: Add CirrusCI tests by @lwhsu
misc: Optimize dictionary memory usage in corner cases
misc: Improve the dictionary builder on small or homogeneous data
misc: Fix spelling across the repo by @jsoref
v1.3.8 (Dec 28, 2018)
perf: better decompression speed on large files (+7%) and cold dictionaries (+15%)
perf: slightly better compression ratio at high compression modes
api : finalized advanced API, last stage before "stable" status
api : new --rsyncable mode, by @terrelln
api : support decompression of empty frames into NULL (used to be an error) (#1385)
build: new set of macros to build a minimal size decoder, by @felixhandte
build: fix compilation on MIPS32, reported by @clbr (#1441)
build: fix compilation with multiple -arch flags, by @ryandesign
build: highly upgraded meson build, by @lzutao
build: improved buck support, by @obelisk
build: fix cmake script : can create debug build, by @pitrou
build: Makefile : grep works on both colored consoles and systems without color support
build: fixed zstd-pgo, by @bmwiedemann
cli : support ZSTD_CLEVEL environment variable, by @yijinfb (#1423)
cli : --no-progress flag, preserving final summary (#1371), by @terrelln
cli : ensure destination file is not source file (#1422)
cli : clearer error messages, especially when input file not present
doc : clarified zstd_compression_format.md, by @ulikunitz
misc: fixed zstdgrep, returns 1 on failure, by @lzutao
misc: NEWS renamed as CHANGELOG, in accordance with fboss
v1.3.7 (Oct 20, 2018)
perf: slightly better decompression speed on clang (depending on hardware target)
fix : performance of dictionary compression for small input < 4 KB at levels 9 and 10
build: no longer build backtrace by default in release mode; restrict further automatic mode
build: control backtrace support through build macro BACKTRACE
misc: added man pages for zstdless and zstdgrep, by @samrussell
v1.3.6 (Oct 6, 2018)
perf: much faster dictionary builder, by @jenniferliu
perf: faster dictionary compression on small data when using multiple contexts, by @felixhandte
perf: faster dictionary decompression when using a very large number of dictionaries simultaneously
cli : fix : does no longer overwrite destination when source does not exist (#1082)
cli : new command --adapt, for automatic compression level adaptation
api : fix : block api can be streamed with > 4 GB, reported by @catid
api : reduced ZSTD_DDict size by 2 KB
api : minimum negative compression level is defined, and can be queried using ZSTD_minCLevel().
build: support Haiku target, by @korli
build: Read Legacy format is limited to v0.5+ by default. Can be changed at compile time with macro ZSTD_LEGACY_SUPPORT.
doc : zstd_compression_format.md updated to match wording in IETF RFC 8478
misc: tests/paramgrill, a parameter optimizer, by @GeorgeLu97
v1.3.5 (Jun 29, 2018)
perf: much faster dictionary compression, by @felixhandte
perf: small quality improvement for dictionary generation, by @terrelln
perf: slightly improved high compression levels (notably level 19)
mem : automatic memory release for long duration contexts
cli : fix : overlapLog can be manually set
cli : fix : decoding invalid lz4 frames
api : fix : performance degradation for dictionary compression when using advanced API, by @terrelln
api : change : clarify ZSTD_CCtx_reset() vs ZSTD_CCtx_resetParameters(), by @terrelln
build: select custom libzstd scope through control macros, by @GeorgeLu97
build: OpenBSD patch, by @bket
build: make and make all are compatible with -j
doc : clarify zstd_compression_format.md, updated for IETF RFC process
misc: pzstd compatible with reproducible compilation, by @lamby
v1.3.4 (Mar 27, 2018)
perf: faster speed (especially decoding speed) on recent cpus (haswell+)
perf: much better performance associating --long with multi-threading, by @terrelln
perf: better compression at levels 13-15
cli : asynchronous compression by default, for faster experience (use --single-thread for former behavior)
cli : smoother status report in multi-threading mode
cli : added command --fast=#, for faster compression modes
cli : fix crash when not overwriting existing files, by Pádraig Brady (@pixelb)
api : `nbThreads` becomes `nbWorkers` : 1 triggers asynchronous mode
api : compression levels can be negative, for even more speed
api : ZSTD_getFrameProgression() : get precise progress status of ZSTDMT anytime
api : ZSTDMT can accept new compression parameters during compression
api : implemented all advanced dictionary decompression prototypes
build: improved meson recipe, by Shawn Landden (@shawnl)
build: VS2017 scripts, by @HaydnTrigg
misc: all /contrib projects fixed
misc: added /contrib/docker script by @gyscos
v1.3.3 (Dec 21, 2017)
perf: faster zstd_opt strategy (levels 16-19)
fix : bug #944 : multithreading with shared ditionary and large data, reported by @gsliepen
cli : fix : content size written in header by default
cli : fix : improved LZ4 format support, by @felixhandte
cli : new : hidden command `-S`, to benchmark multiple files while generating one result per file
api : fix : support large skippable frames, by @terrelln
api : fix : streaming interface was adding a useless 3-bytes null block to small frames
api : change : when setting `pledgedSrcSize`, use `ZSTD_CONTENTSIZE_UNKNOWN` macro value to mean "unknown"
build: fix : compilation under rhel6 and centos6, reported by @pixelb
build: added `check` target
v1.3.2 (Oct 10, 2017)
new : long range mode, using --long command, by Stella Lau (@stellamplau)
new : ability to generate and decode magicless frames (#591)
changed : maximum nb of threads reduced to 200, to avoid address space exhaustion in 32-bits mode
fix : multi-threading compression works with custom allocators
fix : ZSTD_sizeof_CStream() was over-evaluating memory usage
fix : a rare compression bug when compression generates very large distances and bunch of other conditions (only possible at --ultra -22)
fix : 32-bits build can now decode large offsets (levels 21+)
cli : added LZ4 frame support by default, by Felix Handte (@felixhandte)
cli : improved --list output
cli : new : can split input file for dictionary training, using command -B#
cli : new : clean operation artefact on Ctrl-C interruption
cli : fix : do not change /dev/null permissions when using command -t with root access, reported by @mike155 (#851)
cli : fix : write file size in header in multiple-files mode
api : added macro ZSTD_COMPRESSBOUND() for static allocation
api : experimental : new advanced decompression API
api : fix : sizeof_CCtx() used to over-estimate
build: fix : no-multithread variant compiles without pool.c dependency, reported by Mitchell Blank Jr (@mitchblank) (#819)
build: better compatibility with reproducible builds, by Bernhard M. Wiedemann (@bmwiedemann) (#818)
example : added streaming_memory_usage
license : changed /examples license to BSD + GPLv2
license : fix a few header files to reflect new license (#825)
v1.3.1 (Aug 21, 2017)
New license : BSD + GPLv2
perf: substantially decreased memory usage in Multi-threading mode, thanks to reports by Tino Reichardt (@mcmilk)
perf: Multi-threading supports up to 256 threads. Cap at 256 when more are requested (#760)
cli : improved and fixed --list command, by @ib (#772)
cli : command -vV to list supported formats, by @ib (#771)
build : fixed binary variants, reported by @svenha (#788)
build : fix Visual compilation for non x86/x64 targets, reported by Greg Slazinski (@GregSlazinski) (#718)
API exp : breaking change : ZSTD_getframeHeader() provides more information
API exp : breaking change : pinned down values of error codes
doc : fixed huffman example, by Ulrich Kunitz (@ulikunitz)
new : contrib/adaptive-compression, I/O driven compression strength, by Paul Cruz (@paulcruz74)
new : contrib/long_distance_matching, statistics by Stella Lau (@stellamplau)
updated : contrib/linux-kernel, by Nick Terrell (@terrelln)
v1.3.0 (Jul 6, 2017)
cli : new : `--list` command, by Paul Cruz
cli : changed : xz/lzma support enabled by default
cli : changed : `-t *` continue processing list after a decompression error
API : added : ZSTD_versionString()
API : promoted to stable status : ZSTD_getFrameContentSize(), by Sean Purcell
API exp : new advanced API : ZSTD_compress_generic(), ZSTD_CCtx_setParameter()
API exp : new : API for static or external allocation : ZSTD_initStatic?Ctx()
API exp : added : ZSTD_decompressBegin_usingDDict(), requested by Guy Riddle (#700)
API exp : clarified memory estimation / measurement functions.
API exp : changed : strongest strategy renamed ZSTD_btultra, fastest strategy ZSTD_fast set to 1
tools : decodecorpus can generate random dictionary-compressed samples, by Paul Cruz
new : contrib/seekable_format, demo and API, by Sean Purcell
changed : contrib/linux-kernel, updated version and license, by Nick Terrell
v1.2.0 (May 5, 2017)
cli : changed : Multithreading enabled by default (use target zstd-nomt or HAVE_THREAD=0 to disable)
cli : new : command -T0 means "detect and use nb of cores", by Sean Purcell
cli : new : zstdmt symlink hardwired to `zstd -T0`
cli : new : command --threads=# (#671)
cli : changed : cover dictionary builder by default, for improved quality, by Nick Terrell
cli : new : commands --train-cover and --train-legacy, to select dictionary algorithm and parameters
cli : experimental targets `zstd4` and `xzstd4`, with support for lz4 format, by Sean Purcell
cli : fix : does not output compressed data on console
cli : fix : ignore symbolic links unless --force specified,
API : breaking change : ZSTD_createCDict_advanced(), only use compressionParameters as argument
API : added : prototypes ZSTD_*_usingCDict_advanced(), for direct control over frameParameters.
API : improved: ZSTDMT_compressCCtx() reduced memory usage
API : fix : ZSTDMT_compressCCtx() now provides srcSize in header (#634)
API : fix : src size stored in frame header is controlled at end of frame
API : fix : enforced consistent rules for pledgedSrcSize==0 (#641)
API : fix : error code "GENERIC" replaced by "dstSizeTooSmall" when appropriate
build: improved cmake script, by @Majlen
build: enabled Multi-threading support for *BSD, by Baptiste Daroussin
tools: updated Paramgrill. Command -O# provides best parameters for sample and speed target.
new : contrib/linux-kernel version, by Nick Terrell
v1.1.4 (Mar 18, 2017)
cli : new : can compress in *.gz format, using --format=gzip command, by Przemyslaw Skibinski
cli : new : advanced benchmark command --priority=rt
cli : fix : write on sparse-enabled file systems in 32-bits mode, by @ds77
cli : fix : --rm remains silent when input is stdin
cli : experimental : xzstd, with support for xz/lzma decoding, by Przemyslaw Skibinski
speed : improved decompression speed in streaming mode for single shot scenarios (+5%)
memory: DDict (decompression dictionary) memory usage down from 150 KB to 20 KB
arch: 32-bits variant able to generate and decode very long matches (>32 MB), by Sean Purcell
API : new : ZSTD_findFrameCompressedSize(), ZSTD_getFrameContentSize(), ZSTD_findDecompressedSize()
API : changed : dropped support of legacy versions <= v0.3 (can be changed by modifying ZSTD_LEGACY_SUPPORT value)
build : new: meson build system in contrib/meson, by Dima Krasner
build : improved cmake script, by @Majlen
build : added -Wformat-security flag, as recommended by Padraig Brady
doc : new : educational decoder, by Sean Purcell
v1.1.3 (Feb 7, 2017)
cli : zstd can decompress .gz files (can be disabled with `make zstd-nogz` or `make HAVE_ZLIB=0`)
cli : new : experimental target `make zstdmt`, with multi-threading support
cli : new : improved dictionary builder "cover" (experimental), by Nick Terrell, based on prior work by Giuseppe Ottaviano.
cli : new : advanced commands for detailed parameters, by Przemyslaw Skibinski
cli : fix zstdless on Mac OS-X, by Andrew Janke
cli : fix #232 "compress non-files"
dictBuilder : improved dictionary generation quality, thanks to Nick Terrell
API : new : lib/compress/ZSTDMT_compress.h multithreading API (experimental)
API : new : ZSTD_create?Dict_byReference(), requested by Bartosz Taudul
API : new : ZDICT_finalizeDictionary()
API : fix : ZSTD_initCStream_usingCDict() properly writes dictID into frame header, by Gregory Szorc (#511)
API : fix : all symbols properly exposed in libzstd, by Nick Terrell
build : support for Solaris target, by Przemyslaw Skibinski
doc : clarified specification, by Sean Purcell
v1.1.2 (Dec 15, 2016)
API : streaming : decompression : changed : automatic implicit reset when chain-decoding new frames without init
API : experimental : added : dictID retrieval functions, and ZSTD_initCStream_srcSize()
API : zbuff : changed : prototypes now generate deprecation warnings
lib : improved : faster decompression speed at ultra compression settings and 32-bits mode
lib : changed : only public ZSTD_ symbols are now exposed
lib : changed : reduced usage of stack memory
lib : fixed : several corner case bugs, by Nick Terrell
cli : new : gzstd, experimental version able to decode .gz files, by Przemyslaw Skibinski
cli : new : preserve file attributes
cli : new : added zstdless and zstdgrep tools
cli : fixed : status displays total amount decoded, even for file consisting of multiple frames (like pzstd)
cli : fixed : zstdcat
zlib_wrapper : added support for gz* functions, by Przemyslaw Skibinski
install : better compatibility with FreeBSD, by Dimitry Andric
source tree : changed : zbuff source files moved to lib/deprecated
v1.1.1 (Nov 2, 2016)
New : command -M#, --memory=, --memlimit=, --memlimit-decompress= to limit allowed memory consumption
New : doc/zstd_manual.html, by Przemyslaw Skibinski
Improved : slightly better compression ratio at --ultra levels (>= 20)
Improved : better memory usage when using streaming compression API, thanks to @Rogier-5 report
Added : API : ZSTD_initCStream_usingCDict(), ZSTD_initDStream_usingDDict() (experimental section)
Added : example/multiple_streaming_compression.c
Changed : zstd_errors.h is now installed within /include (and replaces errors_public.h)
Updated man page
Fixed : zstd-small, zstd-compress and zstd-decompress compilation targets
v1.1.0 (Sep 28, 2016)
New : contrib/pzstd, parallel version of zstd, by Nick Terrell
added : NetBSD install target (#338)
Improved : speed for batches of small files
Improved : speed of zlib wrapper, by Przemyslaw Skibinski
Changed : libzstd on Windows supports legacy formats, by Christophe Chevalier
Fixed : CLI -d output to stdout by default when input is stdin (#322)
Fixed : CLI correctly detects console on Mac OS-X
Fixed : CLI supports recursive mode `-r` on Mac OS-X
Fixed : Legacy decoders use unified error codes, reported by benrg (#341), fixed by Przemyslaw Skibinski
Fixed : compatibility with OpenBSD, reported by Juan Francisco Cantero Hurtado (#319)
Fixed : compatibility with Hurd, by Przemyslaw Skibinski (#365)
Fixed : zstd-pgo, reported by octoploid (#329)
v1.0.0 (Sep 1, 2016)
Change Licensing, all project is now BSD, Copyright Facebook
Small decompression speed improvement
API : Streaming API supports legacy format
API : ZDICT_getDictID(), ZSTD_sizeof_{CCtx, DCtx, CStream, DStream}(), ZSTD_setDStreamParameter()
CLI supports legacy formats v0.4+
Fixed : compression fails on certain huge files, reported by Jesse McGrew
Enhanced documentation, by Przemyslaw Skibinski
v0.8.1 (Aug 18, 2016)
New streaming API
Changed : --ultra now enables levels beyond 19
Changed : -i# now selects benchmark time in second
Fixed : ZSTD_compress* can now compress > 4 GB in a single pass, reported by Nick Terrell
Fixed : speed regression on specific patterns (#272)
Fixed : support for Z_SYNC_FLUSH, by Dmitry Krot (#291)
Fixed : ICC compilation, by Przemyslaw Skibinski
v0.8.0 (Aug 2, 2016)
Improved : better speed on clang and gcc -O2, thanks to Eric Biggers
New : Build on FreeBSD and DragonFly, thanks to JrMarino
Changed : modified API : ZSTD_compressEnd()
Fixed : legacy mode with ZSTD_HEAPMODE=0, by Christopher Bergqvist
Fixed : premature end of frame when zero-sized raw block, reported by Eric Biggers
Fixed : large dictionaries (> 384 KB), reported by Ilona Papava
Fixed : checksum correctly checked in single-pass mode
Fixed : combined --test amd --rm, reported by Andreas M. Nilsson
Modified : minor compression level adaptations
Updated : compression format specification to v0.2.0
changed : zstd.h moved to /lib directory
v0.7.5 (Aug 1, 2016)
Transition version, supporting decoding of v0.8.x
v0.7.4 (Jul 17, 2016)
Added : homebrew for Mac, by Daniel Cade
Added : more examples
Fixed : segfault when using small dictionaries, reported by Felix Handte
Modified : default compression level for CLI is now 3
Updated : specification, to v0.1.1
v0.7.3 (Jul 9, 2016)
New : compression format specification
New : `--` separator, stating that all following arguments are file names. Suggested by Chip Turner.
New : `ZSTD_getDecompressedSize()`
New : OpenBSD target, by Juan Francisco Cantero Hurtado
New : `examples` directory
fixed : dictBuilder using HC levels, reported by Bartosz Taudul
fixed : legacy support from ZSTD_decompress_usingDDict(), reported by Felix Handte
fixed : multi-blocks decoding with intermediate uncompressed blocks, reported by Greg Slazinski
modified : removed "mem.h" and "error_public.h" dependencies from "zstd.h" (experimental section)
modified : legacy functions no longer need magic number
v0.7.2 (Jul 4, 2016)
fixed : ZSTD_decompressBlock() using multiple consecutive blocks. Reported by Greg Slazinski.
fixed : potential segfault on very large files (many gigabytes). Reported by Chip Turner.
fixed : CLI displays system error message when destination file cannot be created (#231). Reported by Chip Turner.
v0.7.1 (Jun 23, 2016)
fixed : ZBUFF_compressEnd() called multiple times with too small `dst` buffer, reported by Christophe Chevalier
fixed : dictBuilder fails if first sample is too small, reported by Руслан Ковалёв
fixed : corruption issue, reported by cj
modified : checksum enabled by default in command line mode
v0.7.0 (Jun 17, 2016)
New : Support for directory compression, using `-r`, thanks to Przemyslaw Skibinski
New : Command `--rm`, to remove source file after successful de/compression
New : Visual build scripts, by Christophe Chevalier
New : Support for Sparse File-systems (do not use space for zero-filled sectors)
New : Frame checksum support
New : Support pass-through mode (when using `-df`)
API : more efficient Dictionary API : `ZSTD_compress_usingCDict()`, `ZSTD_decompress_usingDDict()`
API : create dictionary files from custom content, by Giuseppe Ottaviano
API : support for custom malloc/free functions
New : controllable Dictionary ID
New : Support for skippable frames
v0.6.1 (May 13, 2016)
New : zlib wrapper API, thanks to Przemyslaw Skibinski
New : Ability to compile compressor / decompressor separately
Changed : new lib directory structure
Fixed : Legacy codec v0.5 compatible with dictionary decompression
Fixed : Decoder corruption error (#173)
Fixed : null-string roundtrip (#176)
New : benchmark mode can select directory as input
Experimental : midipix support, VMS support
v0.6.0 (Apr 13, 2016)
Stronger high compression modes, thanks to Przemyslaw Skibinski
API : ZSTD_getFrameParams() provides size of decompressed content
New : highest compression modes require `--ultra` command to fully unleash their capacity
Fixed : zstd cli return error code > 0 and removes dst file artifact when decompression fails, thanks to Chip Turner
v0.5.1 (Feb 18, 2016)
New : Optimal parsing => Very high compression modes, thanks to Przemyslaw Skibinski
Changed : Dictionary builder integrated into libzstd and zstd cli
Changed (!) : zstd cli now uses "multiple input files" as default mode. See `zstd -h`.
Fix : high compression modes for big-endian platforms
New : zstd cli : `-t` | `--test` command
v0.5.0 (Feb 5, 2016)
New : dictionary builder utility
Changed : streaming & dictionary API
Improved : better compression of small data
v0.4.7 (Jan 22, 2016)
Improved : small compression speed improvement in HC mode
Changed : `zstd_decompress.c` has ZSTD_LEGACY_SUPPORT to 0 by default
fix : bt search bug
v0.4.6 (Jan 13, 2016)
fix : fast compression mode on Windows
New : cmake configuration file, thanks to Artyom Dymchenko
Improved : high compression mode on repetitive data
New : block-level API
New : ZSTD_duplicateCCtx()
v0.4.5 (Dec 18, 2015)
new : -m/--multiple : compress/decompress multiple files
v0.4.4 (Dec 14, 2015)
Fixed : high compression modes for Windows 32 bits
new : external dictionary API extended to buffered mode and accessible through command line
new : windows DLL project, thanks to Christophe Chevalier
v0.4.3 (Dec 7, 2015)
new : external dictionary API
new : zstd-frugal
v0.4.2 (Dec 2, 2015)
Generic minor improvements for small blocks
Fixed : big-endian compatibility, by Peter Harris (#85)
v0.4.1 (Dec 1, 2015)
Fixed : ZSTD_LEGACY_SUPPORT=0 build mode (reported by Luben)
removed `zstd.c`
v0.4.0 (Nov 29, 2015)
Command line utility compatible with high compression levels
Removed zstdhc => merged into zstd
Added : ZBUFF API (see zstd_buffered.h)
Rolling buffer support
v0.3.6 (Nov 10, 2015)
small blocks params
v0.3.5 (Nov 9, 2015)
minor generic compression improvements
v0.3.4 (Nov 6, 2015)
Faster fast cLevels
v0.3.3 (Nov 5, 2015)
Small compression ratio improvement
v0.3.2 (Nov 2, 2015)
Fixed Visual Studio
v0.3.1 (Nov 2, 2015)
Small compression ratio improvement
v0.3 (Oct 30, 2015)
HC mode : compression levels 2-26
v0.2.2 (Oct 28, 2015)
Fix : Visual Studio 2013 & 2015 release compilation, by Christophe Chevalier
v0.2.1 (Oct 24, 2015)
Fix : Read errors, advanced fuzzer tests, by Hanno Böck
v0.2.0 (Oct 22, 2015)
**Breaking format change**
Faster decompression speed
Can still decode v0.1 format
v0.1.3 (Oct 15, 2015)
fix uninitialization warning, reported by Evan Nemerson
v0.1.2 (Sep 11, 2015)
frame concatenation support
v0.1.1 (Aug 27, 2015)
fix compression bug
detects write-flush errors
v0.1.0 (Aug 25, 2015)
first release
diff --git a/sys/contrib/zstd/CONTRIBUTING.md b/sys/contrib/zstd/CONTRIBUTING.md
index 44f2393a2c15..e7e545129e51 100644
--- a/sys/contrib/zstd/CONTRIBUTING.md
+++ b/sys/contrib/zstd/CONTRIBUTING.md
@@ -1,406 +1,489 @@
# Contributing to Zstandard
We want to make contributing to this project as easy and transparent as
possible.
## Our Development Process
New versions are being developed in the "dev" branch,
or in their own feature branch.
When they are deemed ready for a release, they are merged into "release".
As a consequences, all contributions must stage first through "dev"
or their own feature branch.
## Pull Requests
We actively welcome your pull requests.
1. Fork the repo and create your branch from `dev`.
2. If you've added code that should be tested, add tests.
3. If you've changed APIs, update the documentation.
4. Ensure the test suite passes.
5. Make sure your code lints.
6. If you haven't already, complete the Contributor License Agreement ("CLA").
## Contributor License Agreement ("CLA")
In order to accept your pull request, we need you to submit a CLA. You only need
to do this once to work on any of Facebook's open source projects.
Complete your CLA here: <https://code.facebook.com/cla>
## Workflow
Zstd uses a branch-based workflow for making changes to the codebase. Typically, zstd
will use a new branch per sizable topic. For smaller changes, it is okay to lump multiple
related changes into a branch.
Our contribution process works in three main stages:
1. Local development
* Update:
* Checkout your fork of zstd if you have not already
```
git checkout https://github.com/<username>/zstd
cd zstd
```
* Update your local dev branch
```
git pull https://github.com/facebook/zstd dev
git push origin dev
```
* Topic and development:
* Make a new branch on your fork about the topic you're developing for
```
- # branch names should be consise but sufficiently informative
+ # branch names should be concise but sufficiently informative
git checkout -b <branch-name>
git push origin <branch-name>
```
* Make commits and push
```
# make some changes =
git add -u && git commit -m <message>
git push origin <branch-name>
```
* Note: run local tests to ensure that your changes didn't break existing functionality
* Quick check
```
make shortest
```
* Longer check
```
make test
```
2. Code Review and CI tests
* Ensure CI tests pass:
- * Before sharing anything to the community, make sure that all CI tests pass on your local fork.
- See our section on setting up your CI environment for more information on how to do this.
+ * Before sharing anything to the community, create a pull request in your own fork against the dev branch
+ and make sure that all GitHub Actions CI tests pass. See the Continuous Integration section below for more information.
* Ensure that static analysis passes on your development machine. See the Static Analysis section
below to see how to do this.
* Create a pull request:
* When you are ready to share you changes to the community, create a pull request from your branch
to facebook:dev. You can do this very easily by clicking 'Create Pull Request' on your fork's home
page.
* From there, select the branch where you made changes as your source branch and facebook:dev
as the destination.
* Examine the diff presented between the two branches to make sure there is nothing unexpected.
* Write a good pull request description:
* While there is no strict template that our contributors follow, we would like them to
sufficiently summarize and motivate the changes they are proposing. We recommend all pull requests,
at least indirectly, address the following points.
* Is this pull request important and why?
* Is it addressing an issue? If so, what issue? (provide links for convenience please)
* Is this a new feature? If so, why is it useful and/or necessary?
* Are there background references and documents that reviewers should be aware of to properly assess this change?
* Note: make sure to point out any design and architectural decisions that you made and the rationale behind them.
* Note: if you have been working with a specific user and would like them to review your work, make sure you mention them using (@<username>)
* Submit the pull request and iterate with feedback.
3. Merge and Release
* Getting approval:
* You will have to iterate on your changes with feedback from other collaborators to reach a point
where your pull request can be safely merged.
* To avoid too many comments on style and convention, make sure that you have a
look at our style section below before creating a pull request.
* Eventually, someone from the zstd team will approve your pull request and not long after merge it into
the dev branch.
* Housekeeping:
* Most PRs are linked with one or more Github issues. If this is the case for your PR, make sure
the corresponding issue is mentioned. If your change 'fixes' or completely addresses the
issue at hand, then please indicate this by requesting that an issue be closed by commenting.
* Just because your changes have been merged does not mean the topic or larger issue is complete. Remember
that the change must make it to an official zstd release for it to be meaningful. We recommend
- that contributers track the activity on their pull request and corresponding issue(s) page(s) until
+ that contributors track the activity on their pull request and corresponding issue(s) page(s) until
their change makes it to the next release of zstd. Users will often discover bugs in your code or
suggest ways to refine and improve your initial changes even after the pull request is merged.
## Static Analysis
Static analysis is a process for examining the correctness or validity of a program without actually
executing it. It usually helps us find many simple bugs. Zstd uses clang's `scan-build` tool for
static analysis. You can install it by following the instructions for your OS on https://clang-analyzer.llvm.org/scan-build.
Once installed, you can ensure that our static analysis tests pass on your local development machine
by running:
```
make staticAnalyze
```
In general, you can use `scan-build` to static analyze any build script. For example, to static analyze
just `contrib/largeNbDicts` and nothing else, you can run:
```
scan-build make -C contrib/largeNbDicts largeNbDicts
```
### Pitfalls of static analysis
`scan-build` is part of our regular CI suite. Other static analyzers are not.
It can be useful to look at additional static analyzers once in a while (and we do), but it's not a good idea to multiply the nb of analyzers run continuously at each commit and PR. The reasons are :
- Static analyzers are full of false positive. The signal to noise ratio is actually pretty low.
- A good CI policy is "zero-warning tolerance". That means that all issues must be solved, including false positives. This quickly becomes a tedious workload.
- Multiple static analyzers will feature multiple kind of false positives, sometimes applying to the same code but in different ways leading to :
+ torteous code, trying to please multiple constraints, hurting readability and therefore maintenance. Sometimes, such complexity introduce other more subtle bugs, that are just out of scope of the analyzers.
+ sometimes, these constraints are mutually exclusive : if one try to solve one, the other static analyzer will complain, they can't be both happy at the same time.
- As if that was not enough, the list of false positives change with each version. It's hard enough to follow one static analyzer, but multiple ones with their own update agenda, this quickly becomes a massive velocity reducer.
This is different from running a static analyzer once in a while, looking at the output, and __cherry picking__ a few warnings that seem helpful, either because they detected a genuine risk of bug, or because it helps expressing the code in a way which is more readable or more difficult to misuse. These kind of reports can be useful, and are accepted.
+## Continuous Integration
+CI tests run every time a pull request (PR) is created or updated. The exact tests
+that get run will depend on the destination branch you specify. Some tests take
+longer to run than others. Currently, our CI is set up to run a short
+series of tests when creating a PR to the dev branch and a longer series of tests
+when creating a PR to the release branch. You can look in the configuration files
+of the respective CI platform for more information on what gets run when.
+
+Most people will just want to create a PR with the destination set to their local dev
+branch of zstd. You can then find the status of the tests on the PR's page. You can also
+re-run tests and cancel running tests from the PR page or from the respective CI's dashboard.
+
+Almost all of zstd's CI runs on GitHub Actions (configured at `.github/workflows`), which will automatically run on PRs to your
+own fork. A small number of tests run on other services (e.g. Travis CI, Circle CI, Appveyor).
+These require work to set up on your local fork, and (at least for Travis CI) cost money.
+Therefore, if the PR on your local fork passes GitHub Actions, feel free to submit a PR
+against the main repo.
+
+### Third-party CI
+A small number of tests cannot run on GitHub Actions, or have yet to be migrated.
+For these, we use a variety of third-party services (listed below). It is not necessary to set
+these up on your fork in order to contribute to zstd; however, we do link to instructions for those
+who want earlier signal.
+
+| Service | Purpose | Setup Links | Config Path |
+|-----------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
+| Travis CI | Used for testing on non-x86 architectures such as PowerPC | https://docs.travis-ci.com/user/tutorial/#to-get-started-with-travis-ci-using-github <br> https://github.com/marketplace/travis-ci | `.travis.yml` |
+| AppVeyor | Used for some Windows testing (e.g. cygwin, mingw) | https://www.appveyor.com/blog/2018/10/02/github-apps-integration/ <br> https://github.com/marketplace/appveyor | `appveyor.yml` |
+| Cirrus CI | Used for testing on FreeBSD | https://github.com/marketplace/cirrus-ci/ | `.cirrus.yml` |
+| Circle CI | Historically was used to provide faster signal,<br/> but we may be able to migrate these to Github Actions | https://circleci.com/docs/2.0/getting-started/#setting-up-circleci <br> https://youtu.be/Js3hMUsSZ2c <br> https://circleci.com/docs/2.0/enable-checks/ | `.circleci/config.yml` |
+
+Note: the instructions linked above mostly cover how to set up a repository with CI from scratch.
+The general idea should be the same for setting up CI on your fork of zstd, but you may have to
+follow slightly different steps. In particular, please ignore any instructions related to setting up
+config files (since zstd already has configs for each of these services).
+
## Performance
Performance is extremely important for zstd and we only merge pull requests whose performance
landscape and corresponding trade-offs have been adequately analyzed, reproduced, and presented.
This high bar for performance means that every PR which has the potential to
impact performance takes a very long time for us to properly review. That being said, we
always welcome contributions to improve performance (or worsen performance for the trade-off of
something else). Please keep the following in mind before submitting a performance related PR:
1. Zstd isn't as old as gzip but it has been around for time now and its evolution is
very well documented via past Github issues and pull requests. It may be the case that your
particular performance optimization has already been considered in the past. Please take some
time to search through old issues and pull requests using keywords specific to your
would-be PR. Of course, just because a topic has already been discussed (and perhaps rejected
on some grounds) in the past, doesn't mean it isn't worth bringing up again. But even in that case,
it will be helpful for you to have context from that topic's history before contributing.
2. The distinction between noise and actual performance gains can unfortunately be very subtle
especially when microbenchmarking extremely small wins or losses. The only remedy to getting
something subtle merged is extensive benchmarking. You will be doing us a great favor if you
take the time to run extensive, long-duration, and potentially cross-(os, platform, process, etc)
benchmarks on your end before submitting a PR. Of course, you will not be able to benchmark
your changes on every single processor and os out there (and neither will we) but do that best
you can:) We've adding some things to think about when benchmarking below in the Benchmarking
Performance section which might be helpful for you.
3. Optimizing performance for a certain OS, processor vendor, compiler, or network system is a perfectly
legitimate thing to do as long as it does not harm the overall performance health of Zstd.
This is a hard balance to strike but please keep in mind other aspects of Zstd when
submitting changes that are clang-specific, windows-specific, etc.
## Benchmarking Performance
Performance microbenchmarking is a tricky subject but also essential for Zstd. We value empirical
testing over theoretical speculation. This guide it not perfect but for most scenarios, it
is a good place to start.
### Stability
Unfortunately, the most important aspect in being able to benchmark reliably is to have a stable
benchmarking machine. A virtual machine, a machine with shared resources, or your laptop
will typically not be stable enough to obtain reliable benchmark results. If you can get your
hands on a desktop, this is usually a better scenario.
Of course, benchmarking can be done on non-hyper-stable machines as well. You will just have to
do a little more work to ensure that you are in fact measuring the changes you've made not and
noise. Here are some things you can do to make your benchmarks more stable:
1. The most simple thing you can do to drastically improve the stability of your benchmark is
to run it multiple times and then aggregate the results of those runs. As a general rule of
thumb, the smaller the change you are trying to measure, the more samples of benchmark runs
you will have to aggregate over to get reliable results. Here are some additional things to keep in
mind when running multiple trials:
* How you aggregate your samples are important. You might be tempted to use the mean of your
results. While this is certainly going to be a more stable number than a raw single sample
benchmark number, you might have more luck by taking the median. The mean is not robust to
outliers whereas the median is. Better still, you could simply take the fastest speed your
benchmark achieved on each run since that is likely the fastest your process will be
capable of running your code. In our experience, this (aggregating by just taking the sample
with the fastest running time) has been the most stable approach.
* The more samples you have, the more stable your benchmarks should be. You can verify
your improved stability by looking at the size of your confidence intervals as you
increase your sample count. These should get smaller and smaller. Eventually hopefully
smaller than the performance win you are expecting.
* Most processors will take some time to get `hot` when running anything. The observations
you collect during that time period will very different from the true performance number. Having
a very large number of sample will help alleviate this problem slightly but you can also
address is directly by simply not including the first `n` iterations of your benchmark in
your aggregations. You can determine `n` by simply looking at the results from each iteration
and then hand picking a good threshold after which the variance in results seems to stabilize.
2. You cannot really get reliable benchmarks if your host machine is simultaneously running
another cpu/memory-intensive application in the background. If you are running benchmarks on your
personal laptop for instance, you should close all applications (including your code editor and
browser) before running your benchmarks. You might also have invisible background applications
running. You can see what these are by looking at either Activity Monitor on Mac or Task Manager
on Windows. You will get more stable benchmark results of you end those processes as well.
* If you have multiple cores, you can even run your benchmark on a reserved core to prevent
pollution from other OS and user processes. There are a number of ways to do this depending
on your OS:
* On linux boxes, you have use https://github.com/lpechacek/cpuset.
* On Windows, you can "Set Processor Affinity" using https://www.thewindowsclub.com/processor-affinity-windows
* On Mac, you can try to use their dedicated affinity API https://developer.apple.com/library/archive/releasenotes/Performance/RN-AffinityAPI/#//apple_ref/doc/uid/TP40006635-CH1-DontLinkElementID_2
3. To benchmark, you will likely end up writing a separate c/c++ program that will link libzstd.
Dynamically linking your library will introduce some added variation (not a large amount but
definitely some). Statically linking libzstd will be more stable. Static libraries should
be enabled by default when building zstd.
4. Use a profiler with a good high resolution timer. See the section below on profiling for
details on this.
5. Disable frequency scaling, turbo boost and address space randomization (this will vary by OS)
6. Try to avoid storage. On some systems you can use tmpfs. Putting the program, inputs and outputs on
tmpfs avoids touching a real storage system, which can have a pretty big variability.
Also check our LLVM's guide on benchmarking here: https://llvm.org/docs/Benchmarking.html
### Zstd benchmark
The fastest signal you can get regarding your performance changes is via the in-build zstd cli
bench option. You can run Zstd as you typically would for your scenario using some set of options
and then additionally also specify the `-b#` option. Doing this will run our benchmarking pipeline
for that options you have just provided. If you want to look at the internals of how this
benchmarking script works, you can check out programs/benchzstd.c
For example: say you have made a change that you believe improves the speed of zstd level 1. The
very first thing you should use to asses whether you actually achieved any sort of improvement
is `zstd -b`. You might try to do something like this. Note: you can use the `-i` option to
specify a running time for your benchmark in seconds (default is 3 seconds).
Usually, the longer the running time, the more stable your results will be.
```
$ git checkout <commit-before-your-change>
$ make && cp zstd zstd-old
$ git checkout <commit-after-your-change>
$ make && cp zstd zstd-new
$ zstd-old -i5 -b1 <your-test-data>
1<your-test-data> : 8990 -> 3992 (2.252), 302.6 MB/s , 626.4 MB/s
$ zstd-new -i5 -b1 <your-test-data>
1<your-test-data> : 8990 -> 3992 (2.252), 302.8 MB/s , 628.4 MB/s
```
Unless your performance win is large enough to be visible despite the intrinsic noise
on your computer, benchzstd alone will likely not be enough to validate the impact of your
changes. For example, the results of the example above indicate that effectively nothing
changed but there could be a small <3% improvement that the noise on the host machine
obscured. So unless you see a large performance win (10-15% consistently) using just
this method of evaluation will not be sufficient.
### Profiling
There are a number of great profilers out there. We're going to briefly mention how you can
profile your code using `instruments` on mac, `perf` on linux and `visual studio profiler`
on windows.
Say you have an idea for a change that you think will provide some good performance gains
for level 1 compression on Zstd. Typically this means, you have identified a section of
code that you think can be made to run faster.
The first thing you will want to do is make sure that the piece of code is actually taking up
-a notable amount of time to run. It is usually not worth optimzing something which accounts for less than
+a notable amount of time to run. It is usually not worth optimizing something which accounts for less than
0.0001% of the total running time. Luckily, there are tools to help with this.
Profilers will let you see how much time your code spends inside a particular function.
-If your target code snippit is only part of a function, it might be worth trying to
-isolate that snippit by moving it to its own function (this is usually not necessary but
+If your target code snippet is only part of a function, it might be worth trying to
+isolate that snippet by moving it to its own function (this is usually not necessary but
might be).
-Most profilers (including the profilers dicusssed below) will generate a call graph of
-functions for you. Your goal will be to find your function of interest in this call grapch
+Most profilers (including the profilers discussed below) will generate a call graph of
+functions for you. Your goal will be to find your function of interest in this call graph
and then inspect the time spent inside of it. You might also want to to look at the
annotated assembly which most profilers will provide you with.
#### Instruments
We will once again consider the scenario where you think you've identified a piece of code
whose performance can be improved upon. Follow these steps to profile your code using
Instruments.
1. Open Instruments
2. Select `Time Profiler` from the list of standard templates
3. Close all other applications except for your instruments window and your terminal
4. Run your benchmarking script from your terminal window
* You will want a benchmark that runs for at least a few seconds (5 seconds will
usually be long enough). This way the profiler will have something to work with
and you will have ample time to attach your profiler to this process:)
* I will just use benchzstd as my bencharmking script for this example:
```
$ zstd -b1 -i5 <my-data> # this will run for 5 seconds
```
5. Once you run your benchmarking script, switch back over to instruments and attach your
process to the time profiler. You can do this by:
* Clicking on the `All Processes` drop down in the top left of the toolbar.
- * Selecting your process from the dropdown. In my case, it is just going to be labled
+ * Selecting your process from the dropdown. In my case, it is just going to be labeled
`zstd`
* Hitting the bright red record circle button on the top left of the toolbar
-6. You profiler will now start collecting metrics from your bencharking script. Once
+6. You profiler will now start collecting metrics from your benchmarking script. Once
you think you have collected enough samples (usually this is the case after 3 seconds of
recording), stop your profiler.
7. Make sure that in toolbar of the bottom window, `profile` is selected.
8. You should be able to see your call graph.
* If you don't see the call graph or an incomplete call graph, make sure you have compiled
- zstd and your benchmarking scripg using debug flags. On mac and linux, this just means
+ zstd and your benchmarking script using debug flags. On mac and linux, this just means
you will have to supply the `-g` flag alone with your build script. You might also
have to provide the `-fno-omit-frame-pointer` flag
9. Dig down the graph to find your function call and then inspect it by double clicking
the list item. You will be able to see the annotated source code and the assembly side by
side.
#### Perf
This wiki has a pretty detailed tutorial on getting started working with perf so we'll
leave you to check that out of you're getting started:
https://perf.wiki.kernel.org/index.php/Tutorial
Some general notes on perf:
* Use `perf stat -r # <bench-program>` to quickly get some relevant timing and
counter statistics. Perf uses a high resolution timer and this is likely one
of the first things your team will run when assessing your PR.
* Perf has a long list of hardware counters that can be viewed with `perf --list`.
-When measuring optimizations, something worth trying is to make sure the handware
+When measuring optimizations, something worth trying is to make sure the hardware
counters you expect to be impacted by your change are in fact being so. For example,
if you expect the L1 cache misses to decrease with your change, you can look at the
counter `L1-dcache-load-misses`
* Perf hardware counters will not work on a virtual machine.
#### Visual Studio
TODO
-
-## Setting up continuous integration (CI) on your fork
-Zstd uses a number of different continuous integration (CI) tools to ensure that new changes
-are well tested before they make it to an official release. Specifically, we use the platforms
-travis-ci, circle-ci, and appveyor.
-
-Changes cannot be merged into the main dev branch unless they pass all of our CI tests.
-The easiest way to run these CI tests on your own before submitting a PR to our dev branch
-is to configure your personal fork of zstd with each of the CI platforms. Below, you'll find
-instructions for doing this.
-
-### travis-ci
-Follow these steps to link travis-ci with your github fork of zstd
-
-1. Make sure you are logged into your github account
-2. Go to https://travis-ci.org/
-3. Click 'Sign in with Github' on the top right
-4. Click 'Authorize travis-ci'
-5. Click 'Activate all repositories using Github Apps'
-6. Select 'Only select repositories' and select your fork of zstd from the drop down
-7. Click 'Approve and Install'
-8. Click 'Sign in with Github' again. This time, it will be for travis-pro (which will let you view your tests on the web dashboard)
-9. Click 'Authorize travis-pro'
-10. You should have travis set up on your fork now.
-
-### circle-ci
-TODO
-
-### appveyor
-Follow these steps to link circle-ci with your girhub fork of zstd
-
-1. Make sure you are logged into your github account
-2. Go to https://www.appveyor.com/
-3. Click 'Sign in' on the top right
-4. Select 'Github' on the left panel
-5. Click 'Authorize appveyor'
-6. You might be asked to select which repositories you want to give appveyor permission to. Select your fork of zstd if you're prompted
-7. You should have appveyor set up on your fork now.
-
-### General notes on CI
-CI tests run every time a pull request (PR) is created or updated. The exact tests
-that get run will depend on the destination branch you specify. Some tests take
-longer to run than others. Currently, our CI is set up to run a short
-series of tests when creating a PR to the dev branch and a longer series of tests
-when creating a PR to the release branch. You can look in the configuration files
-of the respective CI platform for more information on what gets run when.
-
-Most people will just want to create a PR with the destination set to their local dev
-branch of zstd. You can then find the status of the tests on the PR's page. You can also
-re-run tests and cancel running tests from the PR page or from the respective CI's dashboard.
-
## Issues
We use GitHub issues to track public bugs. Please ensure your description is
clear and has sufficient instructions to be able to reproduce the issue.
Facebook has a [bounty program](https://www.facebook.com/whitehat/) for the safe
disclosure of security bugs. In those cases, please go through the process
outlined on that page and do not file a public issue.
## Coding Style
+It's a pretty long topic, which is difficult to summarize in a single paragraph.
+As a rule of thumbs, try to imitate the coding style of
+similar lines of codes around your contribution.
+The following is a non-exhaustive list of rules employed in zstd code base:
+
+### C90
+This code base is following strict C90 standard,
+with 2 extensions : 64-bit `long long` types, and variadic macros.
+This rule is applied strictly to code within `lib/` and `programs/`.
+Sub-project in `contrib/` are allowed to use other conventions.
+
+### C++ direct compatibility : symbol mangling
+All public symbol declarations must be wrapped in `extern “C” { … }`,
+so that this project can be compiled as C++98 code,
+and linked into C++ applications.
+
+### Minimal Frugal
+This design requirement is fundamental to preserve the portability of the code base.
+#### Dependencies
+- Reduce dependencies to the minimum possible level.
+ Any dependency should be considered “bad” by default,
+ and only tolerated because it provides a service in a better way than can be achieved locally.
+ The only external dependencies this repository tolerates are
+ standard C libraries, and in rare cases, system level headers.
+- Within `lib/`, this policy is even more drastic.
+ The only external dependencies allowed are `<assert.h>`, `<stdlib.h>`, `<string.h>`,
+ and even then, not directly.
+ In particular, no function shall ever allocate on heap directly,
+ and must use instead `ZSTD_malloc()` and equivalent.
+ Other accepted non-symbol headers are `<stddef.h>` and `<limits.h>`.
+- Within the project, there is a strict hierarchy of dependencies that must be respected.
+ `programs/` is allowed to depend on `lib/`, but only its public API.
+ Within `lib/`, `lib/common` doesn't depend on any other directory.
+ `lib/compress` and `lib/decompress` shall not depend on each other.
+ `lib/dictBuilder` can depend on `lib/common` and `lib/compress`, but not `lib/decompress`.
+#### Resources
+- Functions in `lib/` must use very little stack space,
+ several dozens of bytes max.
+ Everything larger must use the heap allocator,
+ or require a scratch buffer to be emplaced manually.
+
+### Naming
+* All public symbols are prefixed with `ZSTD_`
+ + private symbols, with a scope limited to their own unit, are free of this restriction.
+ However, since `libzstd` source code can be amalgamated,
+ each symbol name must attempt to be (and remain) unique.
+ Avoid too generic names that could become ground for future collisions.
+ This generally implies usage of some form of prefix.
+* For symbols (functions and variables), naming convention is `PREFIX_camelCase`.
+ + In some advanced cases, one can also find :
+ - `PREFIX_prefix2_camelCase`
+ - `PREFIX_camelCase_extendedQualifier`
+* Multi-words names generally consist of an action followed by object:
+ - for example : `ZSTD_createCCtx()`
+* Prefer positive actions
+ - `goBackward` rather than `notGoForward`
+* Type names (`struct`, etc.) follow similar convention,
+ except that they are allowed and even invited to start by an Uppercase letter.
+ Example : `ZSTD_CCtx`, `ZSTD_CDict`
+* Macro names are all Capital letters.
+ The same composition rules (`PREFIX_NAME_QUALIFIER`) apply.
+* File names are all lowercase letters.
+ The convention is `snake_case`.
+ File names **must** be unique across the entire code base,
+ even when they stand in clearly separated directories.
+
+### Qualifiers
+* This code base is `const` friendly, if not `const` fanatical.
+ Any variable that can be `const` (aka. read-only) **must** be `const`.
+ Any pointer which content will not be modified must be `const`.
+ This property is then controlled at compiler level.
+ `const` variables are an important signal to readers that this variable isn’t modified.
+ Conversely, non-const variables are a signal to readers to watch out for modifications later on in the function.
+* If a function must be inlined, mention it explicitly,
+ using project's own portable macros, such as `FORCE_INLINE_ATTR`,
+ defined in `lib/common/compiler.h`.
+
+### Debugging
+* **Assertions** are welcome, and should be used very liberally,
+ to control any condition the code expects for its correct execution.
+ These assertion checks will be run in debug builds, and disabled in production.
+* For traces, this project provides its own debug macros,
+ in particular `DEBUGLOG(level, ...)`, defined in `lib/common/debug.h`.
+
+### Code documentation
+* Avoid code documentation that merely repeats what the code is already stating.
+ Whenever applicable, prefer employing the code as the primary way to convey explanations.
+ Example 1 : `int nbTokens = n;` instead of `int i = n; /* i is a nb of tokens *./`.
+ Example 2 : `assert(size > 0);` instead of `/* here, size should be positive */`.
+* At declaration level, the documentation explains how to use the function or variable
+ and when applicable why it's needed, of the scenarios where it can be useful.
+* At implementation level, the documentation explains the general outline of the algorithm employed,
+ and when applicable why this specific choice was preferred.
+
+### General layout
* 4 spaces for indentation rather than tabs
+* Code documentation shall directly precede function declaration or implementation
+* Function implementations and its code documentation should be preceded and followed by an empty line
+
## License
By contributing to Zstandard, you agree that your contributions will be licensed
under both the [LICENSE](LICENSE) file and the [COPYING](COPYING) file in the root directory of this source tree.
diff --git a/sys/contrib/zstd/Makefile b/sys/contrib/zstd/Makefile
index 2832fb4752b8..9b5451d3d748 100644
--- a/sys/contrib/zstd/Makefile
+++ b/sys/contrib/zstd/Makefile
@@ -1,420 +1,439 @@
# ################################################################
-# Copyright (c) 2015-2020, Yann Collet, Facebook, Inc.
+# Copyright (c) 2015-2021, Yann Collet, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under both the BSD-style license (found in the
# LICENSE file in the root directory of this source tree) and the GPLv2 (found
# in the COPYING file in the root directory of this source tree).
# You may select, at your option, one of the above-listed licenses.
# ################################################################
# verbose mode (print commands) on V=1 or VERBOSE=1
Q = $(if $(filter 1,$(V) $(VERBOSE)),,@)
PRGDIR = programs
ZSTDDIR = lib
BUILDIR = build
ZWRAPDIR = zlibWrapper
TESTDIR = tests
FUZZDIR = $(TESTDIR)/fuzz
# Define nul output
VOID = /dev/null
# When cross-compiling from linux to windows, you might
# need to specify this as "Windows." Fedora build fails
# without it.
#
# Note: mingw-w64 build from linux to windows does not
# fail on other tested distros (ubuntu, debian) even
# without manually specifying the TARGET_SYSTEM.
TARGET_SYSTEM ?= $(OS)
+CP ?= cp
ifneq (,$(filter Windows%,$(TARGET_SYSTEM)))
EXT =.exe
else
EXT =
endif
## default: Build lib-release and zstd-release
.PHONY: default
default: lib-release zstd-release
.PHONY: all
all: allmost examples manual contrib
.PHONY: allmost
allmost: allzstd zlibwrapper
# skip zwrapper, can't build that on alternate architectures without the proper zlib installed
.PHONY: allzstd
-allzstd: lib-all
+allzstd: lib
$(Q)$(MAKE) -C $(PRGDIR) all
$(Q)$(MAKE) -C $(TESTDIR) all
.PHONY: all32
all32:
$(MAKE) -C $(PRGDIR) zstd32
$(MAKE) -C $(TESTDIR) all32
-.PHONY: lib lib-release libzstd.a
-lib-all : lib
-lib lib-release lib-all :
+.PHONY: lib lib-release lib-mt lib-nomt
+lib lib-release lib-mt lib-nomt:
$(Q)$(MAKE) -C $(ZSTDDIR) $@
.PHONY: zstd zstd-release
zstd zstd-release:
$(Q)$(MAKE) -C $(PRGDIR) $@
$(Q)ln -sf $(PRGDIR)/zstd$(EXT) zstd$(EXT)
.PHONY: zstdmt
zstdmt:
$(Q)$(MAKE) -C $(PRGDIR) $@
- $(Q)cp $(PRGDIR)/zstd$(EXT) ./zstdmt$(EXT)
+ $(Q)$(CP) $(PRGDIR)/zstd$(EXT) ./zstdmt$(EXT)
.PHONY: zlibwrapper
zlibwrapper: lib
$(MAKE) -C $(ZWRAPDIR) all
## test: run long-duration tests
.PHONY: test
DEBUGLEVEL ?= 1
test: MOREFLAGS += -g -Werror
test:
DEBUGLEVEL=$(DEBUGLEVEL) MOREFLAGS="$(MOREFLAGS)" $(MAKE) -j -C $(PRGDIR) allVariants
$(MAKE) -C $(TESTDIR) $@
ZSTD=../../programs/zstd $(MAKE) -C doc/educational_decoder $@
## shortest: same as `make check`
.PHONY: shortest
shortest:
$(Q)$(MAKE) -C $(TESTDIR) $@
## check: run basic tests for `zstd` cli
.PHONY: check
check: shortest
.PHONY: automated_benchmarking
automated_benchmarking:
$(MAKE) -C $(TESTDIR) $@
.PHONY: benchmarking
benchmarking: automated_benchmarking
## examples: build all examples in `examples/` directory
.PHONY: examples
examples: lib
$(MAKE) -C examples all
## manual: generate API documentation in html format
.PHONY: manual
manual:
$(MAKE) -C contrib/gen_html $@
## man: generate man page
.PHONY: man
man:
$(MAKE) -C programs $@
## contrib: build all supported projects in `/contrib` directory
.PHONY: contrib
contrib: lib
$(MAKE) -C contrib/pzstd all
$(MAKE) -C contrib/seekable_format/examples all
$(MAKE) -C contrib/seekable_format/tests test
$(MAKE) -C contrib/largeNbDicts all
- cd contrib/single_file_libs/ ; ./build_decoder_test.sh
- cd contrib/single_file_libs/ ; ./build_library_test.sh
+ cd build/single_file_libs/ ; ./build_decoder_test.sh
+ cd build/single_file_libs/ ; ./build_library_test.sh
.PHONY: cleanTabs
cleanTabs:
cd contrib; ./cleanTabs
.PHONY: clean
clean:
$(Q)$(MAKE) -C $(ZSTDDIR) $@ > $(VOID)
$(Q)$(MAKE) -C $(PRGDIR) $@ > $(VOID)
$(Q)$(MAKE) -C $(TESTDIR) $@ > $(VOID)
$(Q)$(MAKE) -C $(ZWRAPDIR) $@ > $(VOID)
$(Q)$(MAKE) -C examples/ $@ > $(VOID)
$(Q)$(MAKE) -C contrib/gen_html $@ > $(VOID)
$(Q)$(MAKE) -C contrib/pzstd $@ > $(VOID)
$(Q)$(MAKE) -C contrib/seekable_format/examples $@ > $(VOID)
$(Q)$(MAKE) -C contrib/seekable_format/tests $@ > $(VOID)
$(Q)$(MAKE) -C contrib/largeNbDicts $@ > $(VOID)
$(Q)$(RM) zstd$(EXT) zstdmt$(EXT) tmp*
$(Q)$(RM) -r lz4
@echo Cleaning completed
#------------------------------------------------------------------------------
# make install is validated only for Linux, macOS, Hurd and some BSD targets
#------------------------------------------------------------------------------
-ifneq (,$(filter $(shell uname),Linux Darwin GNU/kFreeBSD GNU OpenBSD FreeBSD DragonFly NetBSD MSYS_NT Haiku))
+ifneq (,$(filter $(shell uname),Linux Darwin GNU/kFreeBSD GNU OpenBSD FreeBSD DragonFly NetBSD MSYS_NT Haiku AIX))
HOST_OS = POSIX
-CMAKE_PARAMS = -DZSTD_BUILD_CONTRIB:BOOL=ON -DZSTD_BUILD_STATIC:BOOL=ON -DZSTD_BUILD_TESTS:BOOL=ON -DZSTD_ZLIB_SUPPORT:BOOL=ON -DZSTD_LZMA_SUPPORT:BOOL=ON -DCMAKE_BUILD_TYPE=Release
+
+MKDIR ?= mkdir -p
HAVE_COLORNEVER = $(shell echo a | egrep --color=never a > /dev/null 2> /dev/null && echo 1 || echo 0)
EGREP_OPTIONS ?=
ifeq ($HAVE_COLORNEVER, 1)
EGREP_OPTIONS += --color=never
endif
EGREP = egrep $(EGREP_OPTIONS)
# Print a two column output of targets and their description. To add a target description, put a
# comment in the Makefile with the format "## <TARGET>: <DESCRIPTION>". For example:
#
## list: Print all targets and their descriptions (if provided)
.PHONY: list
list:
$(Q)TARGETS=$$($(MAKE) -pRrq -f $(lastword $(MAKEFILE_LIST)) : 2>/dev/null \
| awk -v RS= -F: '/^# File/,/^# Finished Make data base/ {if ($$1 !~ "^[#.]") {print $$1}}' \
| $(EGREP) -v -e '^[^[:alnum:]]' | sort); \
{ \
printf "Target Name\tDescription\n"; \
printf "%0.s-" {1..16}; printf "\t"; printf "%0.s-" {1..40}; printf "\n"; \
for target in $$TARGETS; do \
line=$$($(EGREP) "^##[[:space:]]+$$target:" $(lastword $(MAKEFILE_LIST))); \
description=$$(echo $$line | awk '{i=index($$0,":"); print substr($$0,i+1)}' | xargs); \
printf "$$target\t$$description\n"; \
done \
} | column -t -s $$'\t'
-.PHONY: install armtest usan asan uasan
+.PHONY: install armtest usan asan uasan msan asan32
install:
$(Q)$(MAKE) -C $(ZSTDDIR) $@
$(Q)$(MAKE) -C $(PRGDIR) $@
.PHONY: uninstall
uninstall:
$(Q)$(MAKE) -C $(ZSTDDIR) $@
$(Q)$(MAKE) -C $(PRGDIR) $@
.PHONY: travis-install
travis-install:
$(MAKE) install PREFIX=~/install_test_dir
-.PHONY: gcc5build
+.PHONY: gcc5build gcc6build gcc7build clangbuild m32build armbuild aarch64build ppcbuild ppc64build
gcc5build: clean
gcc-5 -v
CC=gcc-5 $(MAKE) all MOREFLAGS="-Werror"
-.PHONY: gcc6build
gcc6build: clean
gcc-6 -v
CC=gcc-6 $(MAKE) all MOREFLAGS="-Werror"
-.PHONY: gcc7build
gcc7build: clean
gcc-7 -v
CC=gcc-7 $(MAKE) all MOREFLAGS="-Werror"
-.PHONY: clangbuild
clangbuild: clean
clang -v
CXX=clang++ CC=clang CFLAGS="-Werror -Wconversion -Wno-sign-conversion -Wdocumentation" $(MAKE) all
m32build: clean
gcc -v
$(MAKE) all32
armbuild: clean
CC=arm-linux-gnueabi-gcc CFLAGS="-Werror" $(MAKE) allzstd
aarch64build: clean
- CC=aarch64-linux-gnu-gcc CFLAGS="-Werror" $(MAKE) allzstd
+ CC=aarch64-linux-gnu-gcc CFLAGS="-Werror -O0" $(MAKE) allzstd
ppcbuild: clean
- CC=powerpc-linux-gnu-gcc CFLAGS="-m32 -Wno-attributes -Werror" $(MAKE) allzstd
+ CC=powerpc-linux-gnu-gcc CFLAGS="-m32 -Wno-attributes -Werror" $(MAKE) -j allzstd
ppc64build: clean
- CC=powerpc-linux-gnu-gcc CFLAGS="-m64 -Werror" $(MAKE) allzstd
+ CC=powerpc-linux-gnu-gcc CFLAGS="-m64 -Werror" $(MAKE) -j allzstd
+.PHONY: armfuzz aarch64fuzz ppcfuzz ppc64fuzz
armfuzz: clean
CC=arm-linux-gnueabi-gcc QEMU_SYS=qemu-arm-static MOREFLAGS="-static" FUZZER_FLAGS=--no-big-tests $(MAKE) -C $(TESTDIR) fuzztest
aarch64fuzz: clean
ld -v
CC=aarch64-linux-gnu-gcc QEMU_SYS=qemu-aarch64-static MOREFLAGS="-static" FUZZER_FLAGS=--no-big-tests $(MAKE) -C $(TESTDIR) fuzztest
ppcfuzz: clean
CC=powerpc-linux-gnu-gcc QEMU_SYS=qemu-ppc-static MOREFLAGS="-static" FUZZER_FLAGS=--no-big-tests $(MAKE) -C $(TESTDIR) fuzztest
ppc64fuzz: clean
CC=powerpc-linux-gnu-gcc QEMU_SYS=qemu-ppc64-static MOREFLAGS="-m64 -static" FUZZER_FLAGS=--no-big-tests $(MAKE) -C $(TESTDIR) fuzztest
-.PHONY: cxxtest
+.PHONY: cxxtest gcc5test gcc6test armtest aarch64test ppctest ppc64test
cxxtest: CXXFLAGS += -Wall -Wextra -Wundef -Wshadow -Wcast-align -Werror
cxxtest: clean
$(MAKE) -C $(PRGDIR) all CC="$(CXX) -Wno-deprecated" CFLAGS="$(CXXFLAGS)" # adding -Wno-deprecated to avoid clang++ warning on dealing with C files directly
gcc5test: clean
gcc-5 -v
$(MAKE) all CC=gcc-5 MOREFLAGS="-Werror"
gcc6test: clean
gcc-6 -v
$(MAKE) all CC=gcc-6 MOREFLAGS="-Werror"
armtest: clean
$(MAKE) -C $(TESTDIR) datagen # use native, faster
$(MAKE) -C $(TESTDIR) test CC=arm-linux-gnueabi-gcc QEMU_SYS=qemu-arm-static ZSTDRTTEST= MOREFLAGS="-Werror -static" FUZZER_FLAGS=--no-big-tests
aarch64test:
$(MAKE) -C $(TESTDIR) datagen # use native, faster
$(MAKE) -C $(TESTDIR) test CC=aarch64-linux-gnu-gcc QEMU_SYS=qemu-aarch64-static ZSTDRTTEST= MOREFLAGS="-Werror -static" FUZZER_FLAGS=--no-big-tests
ppctest: clean
$(MAKE) -C $(TESTDIR) datagen # use native, faster
$(MAKE) -C $(TESTDIR) test CC=powerpc-linux-gnu-gcc QEMU_SYS=qemu-ppc-static ZSTDRTTEST= MOREFLAGS="-Werror -Wno-attributes -static" FUZZER_FLAGS=--no-big-tests
ppc64test: clean
$(MAKE) -C $(TESTDIR) datagen # use native, faster
$(MAKE) -C $(TESTDIR) test CC=powerpc-linux-gnu-gcc QEMU_SYS=qemu-ppc64-static ZSTDRTTEST= MOREFLAGS="-m64 -static" FUZZER_FLAGS=--no-big-tests
+.PHONY: arm-ppc-compilation
arm-ppc-compilation:
$(MAKE) -C $(PRGDIR) clean zstd CC=arm-linux-gnueabi-gcc QEMU_SYS=qemu-arm-static ZSTDRTTEST= MOREFLAGS="-Werror -static"
$(MAKE) -C $(PRGDIR) clean zstd CC=aarch64-linux-gnu-gcc QEMU_SYS=qemu-aarch64-static ZSTDRTTEST= MOREFLAGS="-Werror -static"
$(MAKE) -C $(PRGDIR) clean zstd CC=powerpc-linux-gnu-gcc QEMU_SYS=qemu-ppc-static ZSTDRTTEST= MOREFLAGS="-Werror -Wno-attributes -static"
$(MAKE) -C $(PRGDIR) clean zstd CC=powerpc-linux-gnu-gcc QEMU_SYS=qemu-ppc64-static ZSTDRTTEST= MOREFLAGS="-m64 -static"
regressiontest:
$(MAKE) -C $(FUZZDIR) regressiontest
uasanregressiontest:
$(MAKE) -C $(FUZZDIR) regressiontest CC=clang CXX=clang++ CFLAGS="-O3 -fsanitize=address,undefined" CXXFLAGS="-O3 -fsanitize=address,undefined"
msanregressiontest:
$(MAKE) -C $(FUZZDIR) regressiontest CC=clang CXX=clang++ CFLAGS="-O3 -fsanitize=memory" CXXFLAGS="-O3 -fsanitize=memory"
-# run UBsan with -fsanitize-recover=signed-integer-overflow
-# due to a bug in UBsan when doing pointer subtraction
-# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=63303
-
+update_regressionResults : REGRESS_RESULTS_DIR := /tmp/regress_results_dir/
+update_regressionResults:
+ $(MAKE) -C programs zstd
+ $(MAKE) -C tests/regression test
+ $(RM) -rf $(REGRESS_RESULTS_DIR)
+ $(MKDIR) $(REGRESS_RESULTS_DIR)
+ ./tests/regression/test \
+ --cache tests/regression/cache \
+ --output $(REGRESS_RESULTS_DIR)/results.csv \
+ --zstd programs/zstd
+ echo "Showing results differences"
+ ! diff tests/regression/results.csv $(REGRESS_RESULTS_DIR)/results.csv
+ echo "Updating results.csv"
+ $(CP) $(REGRESS_RESULTS_DIR)/results.csv tests/regression/results.csv
+
+
+# run UBsan with -fsanitize-recover=pointer-overflow
+# this only works with recent compilers such as gcc 8+
usan: clean
- $(MAKE) test CC=clang MOREFLAGS="-g -fno-sanitize-recover=all -fsanitize-recover=signed-integer-overflow -fsanitize=undefined -Werror"
+ $(MAKE) test CC=clang MOREFLAGS="-g -fno-sanitize-recover=all -fsanitize-recover=pointer-overflow -fsanitize=undefined -Werror"
asan: clean
$(MAKE) test CC=clang MOREFLAGS="-g -fsanitize=address -Werror"
asan-%: clean
LDFLAGS=-fuse-ld=gold MOREFLAGS="-g -fno-sanitize-recover=all -fsanitize=address -Werror" $(MAKE) -C $(TESTDIR) $*
msan: clean
$(MAKE) test CC=clang MOREFLAGS="-g -fsanitize=memory -fno-omit-frame-pointer -Werror" HAVE_LZMA=0 # datagen.c fails this test for no obvious reason
msan-%: clean
LDFLAGS=-fuse-ld=gold MOREFLAGS="-g -fno-sanitize-recover=all -fsanitize=memory -fno-omit-frame-pointer -Werror" FUZZER_FLAGS=--no-big-tests $(MAKE) -C $(TESTDIR) HAVE_LZMA=0 $*
asan32: clean
$(MAKE) -C $(TESTDIR) test32 CC=clang MOREFLAGS="-g -fsanitize=address"
uasan: clean
- $(MAKE) test CC=clang MOREFLAGS="-g -fno-sanitize-recover=all -fsanitize-recover=signed-integer-overflow -fsanitize=address,undefined -Werror"
+ $(MAKE) test CC=clang MOREFLAGS="-g -fno-sanitize-recover=all -fsanitize-recover=pointer-overflow -fsanitize=address,undefined -Werror"
uasan-%: clean
- LDFLAGS=-fuse-ld=gold MOREFLAGS="-g -fno-sanitize-recover=all -fsanitize-recover=signed-integer-overflow -fsanitize=address,undefined -Werror" $(MAKE) -C $(TESTDIR) $*
+ LDFLAGS=-fuse-ld=gold MOREFLAGS="-g -fno-sanitize-recover=all -fsanitize-recover=pointer-overflow -fsanitize=address,undefined -Werror" $(MAKE) -C $(TESTDIR) $*
tsan-%: clean
LDFLAGS=-fuse-ld=gold MOREFLAGS="-g -fno-sanitize-recover=all -fsanitize=thread -Werror" $(MAKE) -C $(TESTDIR) $* FUZZER_FLAGS=--no-big-tests
+.PHONY: apt-install
apt-install:
sudo apt-get -yq --no-install-suggests --no-install-recommends --force-yes install $(APT_PACKAGES)
+.PHONY: apt-add-repo
apt-add-repo:
sudo add-apt-repository -y ppa:ubuntu-toolchain-r/test
sudo apt-get update -y -qq
+.PHONY: ppcinstall arminstall valgrindinstall libc6install gcc6install gcc7install gcc8install gpp6install clang38install lz4install
ppcinstall:
APT_PACKAGES="qemu-system-ppc qemu-user-static gcc-powerpc-linux-gnu" $(MAKE) apt-install
arminstall:
APT_PACKAGES="qemu-system-arm qemu-user-static gcc-arm-linux-gnueabi libc6-dev-armel-cross gcc-aarch64-linux-gnu libc6-dev-arm64-cross" $(MAKE) apt-install
valgrindinstall:
APT_PACKAGES="valgrind" $(MAKE) apt-install
libc6install:
APT_PACKAGES="libc6-dev-i386 gcc-multilib" $(MAKE) apt-install
gcc6install: apt-add-repo
APT_PACKAGES="libc6-dev-i386 gcc-multilib gcc-6 gcc-6-multilib" $(MAKE) apt-install
gcc7install: apt-add-repo
APT_PACKAGES="libc6-dev-i386 gcc-multilib gcc-7 gcc-7-multilib" $(MAKE) apt-install
gcc8install: apt-add-repo
APT_PACKAGES="libc6-dev-i386 gcc-multilib gcc-8 gcc-8-multilib" $(MAKE) apt-install
gpp6install: apt-add-repo
APT_PACKAGES="libc6-dev-i386 g++-multilib gcc-6 g++-6 g++-6-multilib" $(MAKE) apt-install
clang38install:
APT_PACKAGES="clang-3.8" $(MAKE) apt-install
# Ubuntu 14.04 ships a too-old lz4
lz4install:
[ -e lz4 ] || git clone https://github.com/lz4/lz4 && sudo $(MAKE) -C lz4 install
endif
+CMAKE_PARAMS = -DZSTD_BUILD_CONTRIB:BOOL=ON -DZSTD_BUILD_STATIC:BOOL=ON -DZSTD_BUILD_TESTS:BOOL=ON -DZSTD_ZLIB_SUPPORT:BOOL=ON -DZSTD_LZMA_SUPPORT:BOOL=ON -DCMAKE_BUILD_TYPE=Release
+
ifneq (,$(filter MSYS%,$(shell uname)))
HOST_OS = MSYS
CMAKE_PARAMS = -G"MSYS Makefiles" -DCMAKE_BUILD_TYPE=Debug -DZSTD_MULTITHREAD_SUPPORT:BOOL=OFF -DZSTD_BUILD_STATIC:BOOL=ON -DZSTD_BUILD_TESTS:BOOL=ON
endif
-
#------------------------------------------------------------------------
# target specific tests
#------------------------------------------------------------------------
ifneq (,$(filter $(HOST_OS),MSYS POSIX))
+.PHONY: cmakebuild c89build gnu90build c99build gnu99build c11build bmix64build bmix32build bmi32build staticAnalyze
cmakebuild:
cmake --version
$(RM) -r $(BUILDIR)/cmake/build
- mkdir $(BUILDIR)/cmake/build
+ $(MKDIR) $(BUILDIR)/cmake/build
cd $(BUILDIR)/cmake/build; cmake -DCMAKE_INSTALL_PREFIX:PATH=~/install_test_dir $(CMAKE_PARAMS) ..
$(MAKE) -C $(BUILDIR)/cmake/build -j4;
$(MAKE) -C $(BUILDIR)/cmake/build install;
$(MAKE) -C $(BUILDIR)/cmake/build uninstall;
cd $(BUILDIR)/cmake/build; ctest -V -L Medium
c89build: clean
$(CC) -v
- CFLAGS="-std=c89 -Werror" $(MAKE) allmost # will fail, due to missing support for `long long`
+ CFLAGS="-std=c89 -Werror -O0" $(MAKE) allmost # will fail, due to missing support for `long long`
gnu90build: clean
$(CC) -v
- CFLAGS="-std=gnu90 -Werror" $(MAKE) allmost
+ CFLAGS="-std=gnu90 -Werror -O0" $(MAKE) allmost
c99build: clean
$(CC) -v
- CFLAGS="-std=c99 -Werror" $(MAKE) allmost
+ CFLAGS="-std=c99 -Werror -O0" $(MAKE) allmost
gnu99build: clean
$(CC) -v
- CFLAGS="-std=gnu99 -Werror" $(MAKE) allmost
+ CFLAGS="-std=gnu99 -Werror -O0" $(MAKE) allmost
c11build: clean
$(CC) -v
- CFLAGS="-std=c11 -Werror" $(MAKE) allmost
+ CFLAGS="-std=c11 -Werror -O0" $(MAKE) allmost
bmix64build: clean
$(CC) -v
CFLAGS="-O3 -mbmi -Werror" $(MAKE) -C $(TESTDIR) test
bmix32build: clean
$(CC) -v
CFLAGS="-O3 -mbmi -mx32 -Werror" $(MAKE) -C $(TESTDIR) test
bmi32build: clean
$(CC) -v
CFLAGS="-O3 -mbmi -m32 -Werror" $(MAKE) -C $(TESTDIR) test
# static analyzer test uses clang's scan-build
# does not analyze zlibWrapper, due to detected issues in zlib source code
staticAnalyze: SCANBUILD ?= scan-build
staticAnalyze:
$(CC) -v
- CC=$(CC) CPPFLAGS=-g $(SCANBUILD) --status-bugs -v $(MAKE) allzstd examples contrib
+ CC=$(CC) CPPFLAGS=-g $(SCANBUILD) --status-bugs -v $(MAKE) zstd
endif
diff --git a/sys/contrib/zstd/README.md b/sys/contrib/zstd/README.md
index dcca7662d2ff..69720ba2ccf8 100644
--- a/sys/contrib/zstd/README.md
+++ b/sys/contrib/zstd/README.md
@@ -1,199 +1,199 @@
<p align="center"><img src="https://raw.githubusercontent.com/facebook/zstd/dev/doc/images/zstd_logo86.png" alt="Zstandard"></p>
__Zstandard__, or `zstd` as short version, is a fast lossless compression algorithm,
targeting real-time compression scenarios at zlib-level and better compression ratios.
It's backed by a very fast entropy stage, provided by [Huff0 and FSE library](https://github.com/Cyan4973/FiniteStateEntropy).
-The project is provided as an open-source dual [BSD](LICENSE) and [GPLv2](COPYING) licensed **C** library,
+Zstandard's format is stable and documented in [RFC8878](https://datatracker.ietf.org/doc/html/rfc8878). Multiple independent implementations are already available.
+This repository represents the reference implementation, provided as an open-source dual [BSD](LICENSE) and [GPLv2](COPYING) licensed **C** library,
and a command line utility producing and decoding `.zst`, `.gz`, `.xz` and `.lz4` files.
Should your project require another programming language,
a list of known ports and bindings is provided on [Zstandard homepage](http://www.zstd.net/#other-languages).
**Development branch status:**
[![Build Status][travisDevBadge]][travisLink]
[![Build status][AppveyorDevBadge]][AppveyorLink]
[![Build status][CircleDevBadge]][CircleLink]
[![Build status][CirrusDevBadge]][CirrusLink]
[![Fuzzing Status][OSSFuzzBadge]][OSSFuzzLink]
-[travisDevBadge]: https://travis-ci.org/facebook/zstd.svg?branch=dev "Continuous Integration test suite"
-[travisLink]: https://travis-ci.org/facebook/zstd
+[travisDevBadge]: https://api.travis-ci.com/facebook/zstd.svg?branch=dev "Continuous Integration test suite"
+[travisLink]: https://travis-ci.com/facebook/zstd
[AppveyorDevBadge]: https://ci.appveyor.com/api/projects/status/xt38wbdxjk5mrbem/branch/dev?svg=true "Windows test suite"
[AppveyorLink]: https://ci.appveyor.com/project/YannCollet/zstd-p0yf0
[CircleDevBadge]: https://circleci.com/gh/facebook/zstd/tree/dev.svg?style=shield "Short test suite"
[CircleLink]: https://circleci.com/gh/facebook/zstd
[CirrusDevBadge]: https://api.cirrus-ci.com/github/facebook/zstd.svg?branch=dev
[CirrusLink]: https://cirrus-ci.com/github/facebook/zstd
[OSSFuzzBadge]: https://oss-fuzz-build-logs.storage.googleapis.com/badges/zstd.svg
[OSSFuzzLink]: https://bugs.chromium.org/p/oss-fuzz/issues/list?sort=-opened&can=1&q=proj:zstd
## Benchmarks
For reference, several fast compression algorithms were tested and compared
-on a server running Arch Linux (`Linux version 5.5.11-arch1-1`),
-with a Core i9-9900K CPU @ 5.0GHz,
+on a desktop running Ubuntu 20.04 (`Linux 5.11.0-41-generic`),
+with a Core i7-9700K CPU @ 4.9GHz,
using [lzbench], an open-source in-memory benchmark by @inikep
compiled with [gcc] 9.3.0,
on the [Silesia compression corpus].
[lzbench]: https://github.com/inikep/lzbench
[Silesia compression corpus]: http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
[gcc]: https://gcc.gnu.org/
| Compressor name | Ratio | Compression| Decompress.|
| --------------- | ------| -----------| ---------- |
-| **zstd 1.4.5 -1** | 2.884 | 500 MB/s | 1660 MB/s |
-| zlib 1.2.11 -1 | 2.743 | 90 MB/s | 400 MB/s |
-| brotli 1.0.7 -0 | 2.703 | 400 MB/s | 450 MB/s |
-| **zstd 1.4.5 --fast=1** | 2.434 | 570 MB/s | 2200 MB/s |
-| **zstd 1.4.5 --fast=3** | 2.312 | 640 MB/s | 2300 MB/s |
-| quicklz 1.5.0 -1 | 2.238 | 560 MB/s | 710 MB/s |
-| **zstd 1.4.5 --fast=5** | 2.178 | 700 MB/s | 2420 MB/s |
-| lzo1x 2.10 -1 | 2.106 | 690 MB/s | 820 MB/s |
-| lz4 1.9.2 | 2.101 | 740 MB/s | 4530 MB/s |
-| **zstd 1.4.5 --fast=7** | 2.096 | 750 MB/s | 2480 MB/s |
-| lzf 3.6 -1 | 2.077 | 410 MB/s | 860 MB/s |
-| snappy 1.1.8 | 2.073 | 560 MB/s | 1790 MB/s |
+| **zstd 1.5.1 -1** | 2.887 | 530 MB/s | 1700 MB/s |
+| [zlib] 1.2.11 -1 | 2.743 | 95 MB/s | 400 MB/s |
+| brotli 1.0.9 -0 | 2.702 | 395 MB/s | 450 MB/s |
+| **zstd 1.5.1 --fast=1** | 2.437 | 600 MB/s | 2150 MB/s |
+| **zstd 1.5.1 --fast=3** | 2.239 | 670 MB/s | 2250 MB/s |
+| quicklz 1.5.0 -1 | 2.238 | 540 MB/s | 760 MB/s |
+| **zstd 1.5.1 --fast=4** | 2.148 | 710 MB/s | 2300 MB/s |
+| lzo1x 2.10 -1 | 2.106 | 660 MB/s | 845 MB/s |
+| [lz4] 1.9.3 | 2.101 | 740 MB/s | 4500 MB/s |
+| lzf 3.6 -1 | 2.077 | 410 MB/s | 830 MB/s |
+| snappy 1.1.9 | 2.073 | 550 MB/s | 1750 MB/s |
[zlib]: http://www.zlib.net/
-[LZ4]: http://www.lz4.org/
+[lz4]: http://www.lz4.org/
The negative compression levels, specified with `--fast=#`,
-offer faster compression and decompression speed in exchange for some loss in
-compression ratio compared to level 1, as seen in the table above.
+offer faster compression and decompression speed
+at the cost of compression ratio (compared to level 1).
Zstd can also offer stronger compression ratios at the cost of compression speed.
Speed vs Compression trade-off is configurable by small increments.
Decompression speed is preserved and remains roughly the same at all settings,
a property shared by most LZ compression algorithms, such as [zlib] or lzma.
The following tests were run
on a server running Linux Debian (`Linux version 4.14.0-3-amd64`)
with a Core i7-6700K CPU @ 4.0GHz,
using [lzbench], an open-source in-memory benchmark by @inikep
compiled with [gcc] 7.3.0,
on the [Silesia compression corpus].
Compression Speed vs Ratio | Decompression Speed
---------------------------|--------------------
![Compression Speed vs Ratio](doc/images/CSpeed2.png "Compression Speed vs Ratio") | ![Decompression Speed](doc/images/DSpeed3.png "Decompression Speed")
A few other algorithms can produce higher compression ratios at slower speeds, falling outside of the graph.
For a larger picture including slow modes, [click on this link](doc/images/DCspeed5.png).
## The case for Small Data compression
Previous charts provide results applicable to typical file and stream scenarios (several MB). Small data comes with different perspectives.
The smaller the amount of data to compress, the more difficult it is to compress. This problem is common to all compression algorithms, and reason is, compression algorithms learn from past data how to compress future data. But at the beginning of a new data set, there is no "past" to build upon.
To solve this situation, Zstd offers a __training mode__, which can be used to tune the algorithm for a selected type of data.
Training Zstandard is achieved by providing it with a few samples (one file per sample). The result of this training is stored in a file called "dictionary", which must be loaded before compression and decompression.
Using this dictionary, the compression ratio achievable on small data improves dramatically.
The following example uses the `github-users` [sample set](https://github.com/facebook/zstd/releases/tag/v1.1.3), created from [github public API](https://developer.github.com/v3/users/#get-all-users).
It consists of roughly 10K records weighing about 1KB each.
Compression Ratio | Compression Speed | Decompression Speed
------------------|-------------------|--------------------
![Compression Ratio](doc/images/dict-cr.png "Compression Ratio") | ![Compression Speed](doc/images/dict-cs.png "Compression Speed") | ![Decompression Speed](doc/images/dict-ds.png "Decompression Speed")
These compression gains are achieved while simultaneously providing _faster_ compression and decompression speeds.
Training works if there is some correlation in a family of small data samples. The more data-specific a dictionary is, the more efficient it is (there is no _universal dictionary_).
Hence, deploying one dictionary per type of data will provide the greatest benefits.
Dictionary gains are mostly effective in the first few KB. Then, the compression algorithm will gradually use previously decoded content to better compress the rest of the file.
### Dictionary compression How To:
1. Create the dictionary
`zstd --train FullPathToTrainingSet/* -o dictionaryName`
2. Compress with dictionary
`zstd -D dictionaryName FILE`
3. Decompress with dictionary
`zstd -D dictionaryName --decompress FILE.zst`
## Build instructions
### Makefile
If your system is compatible with standard `make` (or `gmake`),
invoking `make` in root directory will generate `zstd` cli in root directory.
Other available options include:
- `make install` : create and install zstd cli, library and man pages
- `make check` : create and run `zstd`, tests its behavior on local platform
### cmake
A `cmake` project generator is provided within `build/cmake`.
It can generate Makefiles or other build scripts
to create `zstd` binary, and `libzstd` dynamic and static libraries.
By default, `CMAKE_BUILD_TYPE` is set to `Release`.
### Meson
A Meson project is provided within [`build/meson`](build/meson). Follow
build instructions in that directory.
You can also take a look at [`.travis.yml`](.travis.yml) file for an
example about how Meson is used to build this project.
Note that default build type is **release**.
### VCPKG
You can build and install zstd [vcpkg](https://github.com/Microsoft/vcpkg/) dependency manager:
git clone https://github.com/Microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.sh
./vcpkg integrate install
./vcpkg install zstd
The zstd port in vcpkg is kept up to date by Microsoft team members and community contributors.
If the version is out of date, please [create an issue or pull request](https://github.com/Microsoft/vcpkg) on the vcpkg repository.
### Visual Studio (Windows)
Going into `build` directory, you will find additional possibilities:
- Projects for Visual Studio 2005, 2008 and 2010.
+ VS2010 project is compatible with VS2012, VS2013, VS2015 and VS2017.
- Automated build scripts for Visual compiler by [@KrzysFR](https://github.com/KrzysFR), in `build/VS_scripts`,
which will build `zstd` cli and `libzstd` library without any need to open Visual Studio solution.
### Buck
You can build the zstd binary via buck by executing: `buck build programs:zstd` from the root of the repo.
The output binary will be in `buck-out/gen/programs/`.
## Testing
You can run quick local smoke tests by executing the `playTest.sh` script from the `src/tests` directory.
Two env variables `$ZSTD_BIN` and `$DATAGEN_BIN` are needed for the test script to locate the zstd and datagen binary.
For information on CI testing, please refer to TESTING.md
## Status
Zstandard is currently deployed within Facebook. It is used continuously to compress large amounts of data in multiple formats and use cases.
Zstandard is considered safe for production environments.
## License
Zstandard is dual-licensed under [BSD](LICENSE) and [GPLv2](COPYING).
## Contributing
The `dev` branch is the one where all contributions are merged before reaching `release`.
If you plan to propose a patch, please commit into the `dev` branch, or its own feature branch.
Direct commit to `release` are not permitted.
For more information, please read [CONTRIBUTING](CONTRIBUTING.md).
diff --git a/sys/contrib/zstd/TESTING.md b/sys/contrib/zstd/TESTING.md
index b851d1c8d71a..32b133b67bfd 100644
--- a/sys/contrib/zstd/TESTING.md
+++ b/sys/contrib/zstd/TESTING.md
@@ -1,44 +1,43 @@
Testing
=======
Zstandard CI testing is split up into three sections:
short, medium, and long tests.
Short Tests
-----------
Short tests run on CircleCI for new commits on every branch and pull request.
They consist of the following tests:
- Compilation on all supported targets (x86, x86_64, ARM, AArch64, PowerPC, and PowerPC64)
- Compilation on various versions of gcc, clang, and g++
- `tests/playTests.sh` on x86_64, without the tests on long data (CLI tests)
- Small tests (`tests/legacy.c`, `tests/longmatch.c`) on x64_64
Medium Tests
------------
Medium tests run on every commit and pull request to `dev` branch, on TravisCI.
They consist of the following tests:
- The following tests run with UBsan and Asan on x86_64 and x86, as well as with
Msan on x86_64
- `tests/playTests.sh --test-large-data`
- Fuzzer tests: `tests/fuzzer.c`, `tests/zstreamtest.c`, and `tests/decodecorpus.c`
- `tests/zstreamtest.c` under Tsan (streaming mode, including multithreaded mode)
- Valgrind Test (`make -C tests valgrindTest`) (testing CLI and fuzzer under valgrind)
- Fuzzer tests (see above) on ARM, AArch64, PowerPC, and PowerPC64
Long Tests
----------
Long tests run on all commits to `release` branch,
and once a day on the current version of `dev` branch,
on TravisCI.
They consist of the following tests:
- Entire test suite (including fuzzers and some other specialized tests) on:
- x86_64 and x86 with UBsan and Asan
- x86_64 with Msan
- ARM, AArch64, PowerPC, and PowerPC64
- Streaming mode fuzzer with Tsan (for the `zstdmt` testing)
- ZlibWrapper tests, including under valgrind
- Versions test (ensuring `zstd` can decode files from all previous versions)
- `pzstd` with asan and tsan, as well as in 32-bits mode
- Testing `zstd` with legacy mode off
-- Testing `zbuff` (old streaming API)
- Entire test suite and make install on macOS
diff --git a/sys/contrib/zstd/appveyor.yml b/sys/contrib/zstd/appveyor.yml
index 0e872557525a..c58ef91a1f23 100644
--- a/sys/contrib/zstd/appveyor.yml
+++ b/sys/contrib/zstd/appveyor.yml
@@ -1,292 +1,205 @@
# Following tests are run _only_ on `release` branch
# and on selected feature branch named `appveyorTest` or `visual*`
-
version: 1.0.{build}
branches:
only:
- release
- master
- /appveyor*/
- /visual*/
environment:
matrix:
- COMPILER: "gcc"
HOST: "mingw"
PLATFORM: "x64"
SCRIPT: "make allzstd MOREFLAGS=-static"
ARTIFACT: "true"
BUILD: "true"
- COMPILER: "gcc"
HOST: "mingw"
PLATFORM: "x86"
SCRIPT: "make allzstd MOREFLAGS=-static"
ARTIFACT: "true"
BUILD: "true"
- - COMPILER: "clang"
- HOST: "mingw"
- PLATFORM: "x64"
- SCRIPT: "MOREFLAGS='--target=x86_64-w64-mingw32 -Werror -Wconversion -Wno-sign-conversion' make allzstd"
- BUILD: "true"
- - COMPILER: "gcc"
- HOST: "mingw"
+ - COMPILER: "clang-cl"
+ HOST: "cmake-visual"
PLATFORM: "x64"
- SCRIPT: ""
- TEST: "cmake"
-
- - COMPILER: "visual"
- HOST: "visual"
- PLATFORM: "x64"
- CONFIGURATION: "Debug"
- - COMPILER: "visual"
- HOST: "visual"
- PLATFORM: "Win32"
- CONFIGURATION: "Debug"
- - COMPILER: "visual"
- HOST: "visual"
- PLATFORM: "x64"
- CONFIGURATION: "Release"
- - COMPILER: "visual"
- HOST: "visual"
- PLATFORM: "Win32"
CONFIGURATION: "Release"
+ CMAKE_GENERATOR: "Visual Studio 15 2017"
+ CMAKE_GENERATOR_PLATFORM: "x64"
+ CMAKE_GENERATOR_TOOLSET: "LLVM"
+ APPVEYOR_BUILD_WORKER_IMAGE: "Visual Studio 2017"
install:
- ECHO Installing %COMPILER% %PLATFORM% %CONFIGURATION%
- SET PATH_ORIGINAL=%PATH%
- if [%HOST%]==[mingw] (
SET "PATH_MINGW32=C:\mingw-w64\i686-6.3.0-posix-dwarf-rt_v5-rev1\mingw32\bin" &&
SET "PATH_MINGW64=C:\mingw-w64\x86_64-6.3.0-posix-seh-rt_v5-rev1\mingw64\bin" &&
COPY C:\msys64\usr\bin\make.exe C:\mingw-w64\i686-6.3.0-posix-dwarf-rt_v5-rev1\mingw32\bin\make.exe &&
COPY C:\msys64\usr\bin\make.exe C:\mingw-w64\x86_64-6.3.0-posix-seh-rt_v5-rev1\mingw64\bin\make.exe
)
- IF [%HOST%]==[visual] IF [%PLATFORM%]==[x64] (
SET ADDITIONALPARAM=/p:LibraryPath="C:\Program Files\Microsoft SDKs\Windows\v7.1\lib\x64;c:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\lib\amd64;C:\Program Files (x86)\Microsoft Visual Studio 10.0\;C:\Program Files (x86)\Microsoft Visual Studio 10.0\lib\amd64;"
)
build_script:
- if [%HOST%]==[mingw] (
( if [%PLATFORM%]==[x64] (
SET "PATH=%PATH_MINGW64%;%PATH_ORIGINAL%"
) else if [%PLATFORM%]==[x86] (
SET "PATH=%PATH_MINGW32%;%PATH_ORIGINAL%"
) )
)
- if [%HOST%]==[mingw] if [%BUILD%]==[true] (
make -v &&
sh -c "%COMPILER% -v" &&
ECHO Building zlib to static link &&
SET "CC=%COMPILER%" &&
sh -c "cd .. && git clone --depth 1 --branch v1.2.11 https://github.com/madler/zlib" &&
sh -c "cd ../zlib && make -f win32/Makefile.gcc libz.a"
ECHO Building zstd &&
SET "CPPFLAGS=-I../../zlib" &&
SET "LDFLAGS=../../zlib/libz.a" &&
sh -c "%SCRIPT%" &&
( if [%COMPILER%]==[gcc] if [%ARTIFACT%]==[true]
ECHO Creating artifacts &&
ECHO %cd% &&
lib\dll\example\build_package.bat &&
make -C programs DEBUGFLAGS= clean zstd &&
cd programs\ && 7z a -tzip -mx9 zstd-win-binary-%PLATFORM%.zip zstd.exe &&
appveyor PushArtifact zstd-win-binary-%PLATFORM%.zip &&
cp zstd.exe ..\bin\zstd.exe &&
git clone --depth 1 --branch release https://github.com/facebook/zstd &&
cd zstd &&
git archive --format=tar release -o zstd-src.tar &&
..\zstd -19 zstd-src.tar &&
appveyor PushArtifact zstd-src.tar.zst &&
certUtil -hashfile zstd-src.tar.zst SHA256 > zstd-src.tar.zst.sha256.sig &&
appveyor PushArtifact zstd-src.tar.zst.sha256.sig &&
cd ..\..\bin\ &&
7z a -tzip -mx9 zstd-win-release-%PLATFORM%.zip * &&
appveyor PushArtifact zstd-win-release-%PLATFORM%.zip
)
)
- - if [%HOST%]==[visual] (
- ECHO *** &&
- ECHO *** Building Visual Studio 2008 %PLATFORM%\%CONFIGURATION% in %APPVEYOR_BUILD_FOLDER% &&
- ECHO *** &&
- msbuild "build\VS2008\zstd.sln" /m /verbosity:minimal /property:PlatformToolset=v90 /t:Clean,Build /p:Platform=%PLATFORM% /p:Configuration=%CONFIGURATION% /logger:"C:\Program Files\AppVeyor\BuildAgent\Appveyor.MSBuildLogger.dll" &&
- DIR build\VS2008\bin\%PLATFORM%\%CONFIGURATION%\*.exe &&
- MD5sum build/VS2008/bin/%PLATFORM%/%CONFIGURATION%/*.exe &&
- COPY build\VS2008\bin\%PLATFORM%\%CONFIGURATION%\fuzzer.exe tests\fuzzer_VS2008_%PLATFORM%_%CONFIGURATION%.exe &&
- ECHO *** &&
- ECHO *** Building Visual Studio 2010 %PLATFORM%\%CONFIGURATION% &&
- ECHO *** &&
- msbuild "build\VS2010\zstd.sln" %ADDITIONALPARAM% /m /verbosity:minimal /property:PlatformToolset=v100 /p:ForceImportBeforeCppTargets=%APPVEYOR_BUILD_FOLDER%\build\VS2010\CompileAsCpp.props /t:Clean,Build /p:Platform=%PLATFORM% /p:Configuration=%CONFIGURATION% /logger:"C:\Program Files\AppVeyor\BuildAgent\Appveyor.MSBuildLogger.dll" &&
- DIR build\VS2010\bin\%PLATFORM%_%CONFIGURATION%\*.exe &&
- MD5sum build/VS2010/bin/%PLATFORM%_%CONFIGURATION%/*.exe &&
- msbuild "build\VS2010\zstd.sln" %ADDITIONALPARAM% /m /verbosity:minimal /property:PlatformToolset=v100 /t:Clean,Build /p:Platform=%PLATFORM% /p:Configuration=%CONFIGURATION% /logger:"C:\Program Files\AppVeyor\BuildAgent\Appveyor.MSBuildLogger.dll" &&
- DIR build\VS2010\bin\%PLATFORM%_%CONFIGURATION%\*.exe &&
- MD5sum build/VS2010/bin/%PLATFORM%_%CONFIGURATION%/*.exe &&
- COPY build\VS2010\bin\%PLATFORM%_%CONFIGURATION%\fuzzer.exe tests\fuzzer_VS2010_%PLATFORM%_%CONFIGURATION%.exe &&
- ECHO *** &&
- ECHO *** Building Visual Studio 2012 %PLATFORM%\%CONFIGURATION% &&
- ECHO *** &&
- msbuild "build\VS2010\zstd.sln" /m /verbosity:minimal /property:PlatformToolset=v110 /p:ForceImportBeforeCppTargets=%APPVEYOR_BUILD_FOLDER%\build\VS2010\CompileAsCpp.props /t:Clean,Build /p:Platform=%PLATFORM% /p:Configuration=%CONFIGURATION% /logger:"C:\Program Files\AppVeyor\BuildAgent\Appveyor.MSBuildLogger.dll" &&
- DIR build\VS2010\bin\%PLATFORM%_%CONFIGURATION%\*.exe &&
- MD5sum build/VS2010/bin/%PLATFORM%_%CONFIGURATION%/*.exe &&
- msbuild "build\VS2010\zstd.sln" /m /verbosity:minimal /property:PlatformToolset=v110 /t:Clean,Build /p:Platform=%PLATFORM% /p:Configuration=%CONFIGURATION% /logger:"C:\Program Files\AppVeyor\BuildAgent\Appveyor.MSBuildLogger.dll" &&
- DIR build\VS2010\bin\%PLATFORM%_%CONFIGURATION%\*.exe &&
- MD5sum build/VS2010/bin/%PLATFORM%_%CONFIGURATION%/*.exe &&
- COPY build\VS2010\bin\%PLATFORM%_%CONFIGURATION%\fuzzer.exe tests\fuzzer_VS2012_%PLATFORM%_%CONFIGURATION%.exe &&
- ECHO *** &&
- ECHO *** Building Visual Studio 2013 %PLATFORM%\%CONFIGURATION% &&
+ - if [%HOST%]==[cmake-visual] (
ECHO *** &&
- msbuild "build\VS2010\zstd.sln" /m /verbosity:minimal /property:PlatformToolset=v120 /p:ForceImportBeforeCppTargets=%APPVEYOR_BUILD_FOLDER%\build\VS2010\CompileAsCpp.props /t:Clean,Build /p:Platform=%PLATFORM% /p:Configuration=%CONFIGURATION% /logger:"C:\Program Files\AppVeyor\BuildAgent\Appveyor.MSBuildLogger.dll" &&
- DIR build\VS2010\bin\%PLATFORM%_%CONFIGURATION%\*.exe &&
- MD5sum build/VS2010/bin/%PLATFORM%_%CONFIGURATION%/*.exe &&
- msbuild "build\VS2010\zstd.sln" /m /verbosity:minimal /property:PlatformToolset=v120 /t:Clean,Build /p:Platform=%PLATFORM% /p:Configuration=%CONFIGURATION% /logger:"C:\Program Files\AppVeyor\BuildAgent\Appveyor.MSBuildLogger.dll" &&
- DIR build\VS2010\bin\%PLATFORM%_%CONFIGURATION%\*.exe &&
- MD5sum build/VS2010/bin/%PLATFORM%_%CONFIGURATION%/*.exe &&
- COPY build\VS2010\bin\%PLATFORM%_%CONFIGURATION%\fuzzer.exe tests\fuzzer_VS2013_%PLATFORM%_%CONFIGURATION%.exe &&
- ECHO *** &&
- ECHO *** Building Visual Studio 2015 %PLATFORM%\%CONFIGURATION% &&
- ECHO *** &&
- msbuild "build\VS2010\zstd.sln" /m /verbosity:minimal /property:PlatformToolset=v140 /p:ForceImportBeforeCppTargets=%APPVEYOR_BUILD_FOLDER%\build\VS2010\CompileAsCpp.props /t:Clean,Build /p:Platform=%PLATFORM% /p:Configuration=%CONFIGURATION% /logger:"C:\Program Files\AppVeyor\BuildAgent\Appveyor.MSBuildLogger.dll" &&
- DIR build\VS2010\bin\%PLATFORM%_%CONFIGURATION%\*.exe &&
- MD5sum build/VS2010/bin/%PLATFORM%_%CONFIGURATION%/*.exe &&
- msbuild "build\VS2010\zstd.sln" /m /verbosity:minimal /property:PlatformToolset=v140 /t:Clean,Build /p:Platform=%PLATFORM% /p:Configuration=%CONFIGURATION% /logger:"C:\Program Files\AppVeyor\BuildAgent\Appveyor.MSBuildLogger.dll" &&
- DIR build\VS2010\bin\%PLATFORM%_%CONFIGURATION%\*.exe &&
- MD5sum build/VS2010/bin/%PLATFORM%_%CONFIGURATION%/*.exe &&
- COPY build\VS2010\bin\%PLATFORM%_%CONFIGURATION%\fuzzer.exe tests\fuzzer_VS2015_%PLATFORM%_%CONFIGURATION%.exe &&
- COPY build\VS2010\bin\%PLATFORM%_%CONFIGURATION%\*.exe tests\
+ ECHO *** Building %CMAKE_GENERATOR% ^(%CMAKE_GENERATOR_TOOLSET%^) %PLATFORM%\%CONFIGURATION% &&
+ PUSHD build\cmake &&
+ cmake -DBUILD_TESTING=ON . &&
+ cmake --build . --config %CONFIGURATION% -j4 &&
+ POPD &&
+ ECHO ***
)
test_script:
- ECHO Testing %COMPILER% %PLATFORM% %CONFIGURATION%
- SET "CC=gcc"
- SET "CXX=g++"
- if [%TEST%]==[cmake] (
mkdir build\cmake\build &&
cd build\cmake\build &&
SET FUZZERTEST=-T2mn &&
SET ZSTREAM_TESTTIME=-T2mn &&
cmake -G "Visual Studio 14 2015 Win64" .. &&
cd ..\..\.. &&
make clean
)
- - SET "FUZZERTEST=-T30s"
- - if [%HOST%]==[visual] if [%CONFIGURATION%]==[Release] (
- CD tests &&
- SET ZSTD_BIN=./zstd.exe&&
- SET DATAGEN_BIN=./datagen.exe&&
- sh -e playTests.sh --test-large-data &&
- fullbench.exe -i1 &&
- fullbench.exe -i1 -P0 &&
- fuzzer_VS2012_%PLATFORM%_Release.exe %FUZZERTEST% &&
- fuzzer_VS2013_%PLATFORM%_Release.exe %FUZZERTEST% &&
- fuzzer_VS2015_%PLATFORM%_Release.exe %FUZZERTEST%
- )
# The following tests are for regular pushes
# into `dev` or some feature branch
# There run less tests, for shorter feedback loop
-
version: 1.0.{build}
environment:
matrix:
- - COMPILER: "gcc"
- HOST: "cygwin"
- PLATFORM: "x64"
- - COMPILER: "gcc"
- HOST: "mingw"
- PLATFORM: "x64"
- SCRIPT: "CFLAGS=-Werror make -j allzstd DEBUGLEVEL=2"
- - COMPILER: "gcc"
- HOST: "mingw"
- PLATFORM: "x86"
- SCRIPT: "CFLAGS=-Werror make -j allzstd"
- - COMPILER: "clang"
- HOST: "mingw"
- PLATFORM: "x64"
- SCRIPT: "CFLAGS='--target=x86_64-w64-mingw32 -Werror -Wconversion -Wno-sign-conversion' make -j allzstd"
-
- COMPILER: "visual"
HOST: "visual"
PLATFORM: "x64"
CONFIGURATION: "Debug"
- COMPILER: "visual"
HOST: "visual"
PLATFORM: "Win32"
CONFIGURATION: "Debug"
- COMPILER: "visual"
HOST: "visual"
PLATFORM: "x64"
CONFIGURATION: "Release"
- COMPILER: "visual"
HOST: "visual"
PLATFORM: "Win32"
CONFIGURATION: "Release"
+ - COMPILER: "gcc"
+ HOST: "cygwin"
+ PLATFORM: "x64"
+
+ - COMPILER: "clang-cl"
+ HOST: "cmake-visual"
+ PLATFORM: "x64"
+ CONFIGURATION: "Release"
+ CMAKE_GENERATOR: "Visual Studio 15 2017"
+ CMAKE_GENERATOR_PLATFORM: "x64"
+ CMAKE_GENERATOR_TOOLSET: "LLVM"
+ APPVEYOR_BUILD_WORKER_IMAGE: "Visual Studio 2017"
+
install:
- ECHO Installing %COMPILER% %PLATFORM% %CONFIGURATION%
- SET PATH_ORIGINAL=%PATH%
- if [%HOST%]==[cygwin] (
ECHO Installing Cygwin Packages &&
C:\cygwin64\setup-x86_64.exe -qnNdO -R "C:\cygwin64" -g -P ^
- gcc-g++,^
gcc,^
cmake,^
make
)
- - if [%HOST%]==[mingw] (
- SET "PATH_MINGW32=C:\mingw-w64\i686-6.3.0-posix-dwarf-rt_v5-rev1\mingw32\bin" &&
- SET "PATH_MINGW64=C:\mingw-w64\x86_64-6.3.0-posix-seh-rt_v5-rev1\mingw64\bin" &&
- COPY C:\msys64\usr\bin\make.exe C:\mingw-w64\i686-6.3.0-posix-dwarf-rt_v5-rev1\mingw32\bin\make.exe &&
- COPY C:\msys64\usr\bin\make.exe C:\mingw-w64\x86_64-6.3.0-posix-seh-rt_v5-rev1\mingw64\bin\make.exe
- )
- IF [%HOST%]==[visual] IF [%PLATFORM%]==[x64] (
SET ADDITIONALPARAM=/p:LibraryPath="C:\Program Files\Microsoft SDKs\Windows\v7.1\lib\x64;c:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\lib\amd64;C:\Program Files (x86)\Microsoft Visual Studio 10.0\;C:\Program Files (x86)\Microsoft Visual Studio 10.0\lib\amd64;"
)
build_script:
- ECHO Building %COMPILER% %PLATFORM% %CONFIGURATION%
- if [%HOST%]==[cygwin] (
set CHERE_INVOKING=yes &&
set CC=%COMPILER% &&
C:\cygwin64\bin\bash --login -c "
set -e;
cd build/cmake;
- CFLAGS='-Werror' cmake -G 'Unix Makefiles' -DCMAKE_BUILD_TYPE=Debug -DZSTD_BUILD_TESTS:BOOL=ON -DZSTD_FUZZER_FLAGS=-T30s -DZSTD_ZSTREAM_FLAGS=-T30s .;
- make -j4;
+ CFLAGS='-Werror' cmake -G 'Unix Makefiles' -DCMAKE_BUILD_TYPE=Debug -DZSTD_BUILD_TESTS:BOOL=ON -DZSTD_FUZZER_FLAGS=-T20s -DZSTD_ZSTREAM_FLAGS=-T20s -DZSTD_FULLBENCH_FLAGS=-i0 .;
+ make VERBOSE=1 -j;
ctest -V -L Medium;
"
)
- - if [%HOST%]==[mingw] (
- ( if [%PLATFORM%]==[x64] (
- SET "PATH=%PATH_MINGW64%;%PATH_ORIGINAL%"
- ) else if [%PLATFORM%]==[x86] (
- SET "PATH=%PATH_MINGW32%;%PATH_ORIGINAL%"
- ) ) &&
- make -v &&
- sh -c "%COMPILER% -v" &&
- set "CC=%COMPILER%" &&
- sh -c "%SCRIPT%"
+ - if [%HOST%]==[cmake-visual] (
+ ECHO *** &&
+ ECHO *** Building %CMAKE_GENERATOR% ^(%CMAKE_GENERATOR_TOOLSET%^) %PLATFORM%\%CONFIGURATION% &&
+ PUSHD build\cmake &&
+ cmake -DBUILD_TESTING=ON . &&
+ cmake --build . --config %CONFIGURATION% -j4 &&
+ POPD &&
+ ECHO ***
)
- if [%HOST%]==[visual] (
ECHO *** &&
- ECHO *** Building Visual Studio 2015 %PLATFORM%\%CONFIGURATION% &&
+ ECHO *** Building Visual Studio 2012 %PLATFORM%\%CONFIGURATION% &&
ECHO *** &&
- msbuild "build\VS2010\zstd.sln" /m /verbosity:minimal /property:PlatformToolset=v140 /p:ForceImportBeforeCppTargets=%APPVEYOR_BUILD_FOLDER%\build\VS2010\CompileAsCpp.props /t:Clean,Build /p:Platform=%PLATFORM% /p:Configuration=%CONFIGURATION% /logger:"C:\Program Files\AppVeyor\BuildAgent\Appveyor.MSBuildLogger.dll" &&
- DIR build\VS2010\bin\%PLATFORM%_%CONFIGURATION%\*.exe &&
- MD5sum build/VS2010/bin/%PLATFORM%_%CONFIGURATION%/*.exe &&
- msbuild "build\VS2010\zstd.sln" /m /verbosity:minimal /property:PlatformToolset=v140 /t:Clean,Build /p:Platform=%PLATFORM% /p:Configuration=%CONFIGURATION% /logger:"C:\Program Files\AppVeyor\BuildAgent\Appveyor.MSBuildLogger.dll" &&
+ msbuild "build\VS2010\zstd.sln" /m /verbosity:minimal /property:PlatformToolset=v110 /p:ForceImportBeforeCppTargets=%APPVEYOR_BUILD_FOLDER%\build\VS2010\CompileAsCpp.props /t:Clean,Build /p:Platform=%PLATFORM% /p:Configuration=%CONFIGURATION% /logger:"C:\Program Files\AppVeyor\BuildAgent\Appveyor.MSBuildLogger.dll" &&
DIR build\VS2010\bin\%PLATFORM%_%CONFIGURATION%\*.exe &&
- MD5sum build/VS2010/bin/%PLATFORM%_%CONFIGURATION%/*.exe &&
- COPY build\VS2010\bin\%PLATFORM%_%CONFIGURATION%\fuzzer.exe tests\fuzzer_VS2015_%PLATFORM%_%CONFIGURATION%.exe &&
- COPY build\VS2010\bin\%PLATFORM%_%CONFIGURATION%\*.exe tests\
+ msbuild "build\VS2010\zstd.sln" /m /verbosity:minimal /property:PlatformToolset=v110 /t:Clean,Build /p:Platform=%PLATFORM% /p:Configuration=%CONFIGURATION% /logger:"C:\Program Files\AppVeyor\BuildAgent\Appveyor.MSBuildLogger.dll" &&
+ DIR build\VS2010\bin\%PLATFORM%_%CONFIGURATION%\*.exe
)
test_script:
- ECHO Testing %COMPILER% %PLATFORM% %CONFIGURATION%
+ - SET "FUZZERTEST=-T10s"
- if [%HOST%]==[mingw] (
set "CC=%COMPILER%" &&
make clean &&
make check
- )
+ )
\ No newline at end of file
diff --git a/sys/contrib/zstd/doc/educational_decoder/Makefile b/sys/contrib/zstd/doc/educational_decoder/Makefile
index 316c6eadc4ac..a9c601ebca79 100644
--- a/sys/contrib/zstd/doc/educational_decoder/Makefile
+++ b/sys/contrib/zstd/doc/educational_decoder/Makefile
@@ -1,62 +1,62 @@
# ################################################################
-# Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+# Copyright (c) Yann Collet, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under both the BSD-style license (found in the
# LICENSE file in the root directory of this source tree) and the GPLv2 (found
# in the COPYING file in the root directory of this source tree).
# You may select, at your option, one of the above-listed licenses.
# ################################################################
ZSTD ?= zstd # note: requires zstd installation on local system
UNAME?= $(shell uname)
ifeq ($(UNAME), SunOS)
DIFF ?= gdiff
else
DIFF ?= diff
endif
HARNESS_FILES=*.c
MULTITHREAD_LDFLAGS = -pthread
DEBUGFLAGS= -g -DZSTD_DEBUG=1
CPPFLAGS += -I$(ZSTDDIR) -I$(ZSTDDIR)/common -I$(ZSTDDIR)/compress \
-I$(ZSTDDIR)/dictBuilder -I$(ZSTDDIR)/deprecated -I$(PRGDIR)
CFLAGS ?= -O2
CFLAGS += -Wall -Wextra -Wcast-qual -Wcast-align -Wshadow \
-Wstrict-aliasing=1 -Wswitch-enum \
-Wredundant-decls -Wstrict-prototypes -Wundef \
-Wvla -Wformat=2 -Winit-self -Wfloat-equal -Wwrite-strings \
-std=c99
CFLAGS += $(DEBUGFLAGS)
CFLAGS += $(MOREFLAGS)
FLAGS = $(CPPFLAGS) $(CFLAGS) $(LDFLAGS) $(MULTITHREAD_LDFLAGS)
harness: $(HARNESS_FILES)
$(CC) $(FLAGS) $^ -o $@
clean:
@$(RM) harness *.o
@$(RM) -rf harness.dSYM # MacOS specific
test: harness
#
# Testing single-file decompression with educational decoder
#
@$(ZSTD) -f README.md -o tmp.zst
@./harness tmp.zst tmp
@$(DIFF) -s tmp README.md
@$(RM) tmp*
#
# Testing dictionary decompression with education decoder
#
# note : files are presented multiple for training, to reach minimum threshold
@$(ZSTD) --train harness.c zstd_decompress.c zstd_decompress.h README.md \
harness.c zstd_decompress.c zstd_decompress.h README.md \
harness.c zstd_decompress.c zstd_decompress.h README.md \
-o dictionary
@$(ZSTD) -f README.md -D dictionary -o tmp.zst
@./harness tmp.zst tmp dictionary
@$(DIFF) -s tmp README.md
@$(RM) tmp* dictionary
diff --git a/sys/contrib/zstd/doc/educational_decoder/harness.c b/sys/contrib/zstd/doc/educational_decoder/harness.c
index 1403a6ed655b..935f60da87e8 100644
--- a/sys/contrib/zstd/doc/educational_decoder/harness.c
+++ b/sys/contrib/zstd/doc/educational_decoder/harness.c
@@ -1,119 +1,119 @@
/*
- * Copyright (c) 2017-2020, Facebook, Inc.
+ * Copyright (c) Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include <stdio.h>
#include <stdlib.h>
#include "zstd_decompress.h"
typedef unsigned char u8;
// If the data doesn't have decompressed size with it, fallback on assuming the
// compression ratio is at most 16
#define MAX_COMPRESSION_RATIO (16)
// Protect against allocating too much memory for output
#define MAX_OUTPUT_SIZE ((size_t)1024 * 1024 * 1024)
// Error message then exit
#define ERR_OUT(...) { fprintf(stderr, __VA_ARGS__); exit(1); }
typedef struct {
u8* address;
size_t size;
} buffer_s;
static void freeBuffer(buffer_s b) { free(b.address); }
static buffer_s read_file(const char *path)
{
FILE* const f = fopen(path, "rb");
if (!f) ERR_OUT("failed to open file %s \n", path);
fseek(f, 0L, SEEK_END);
size_t const size = (size_t)ftell(f);
rewind(f);
void* const ptr = malloc(size);
if (!ptr) ERR_OUT("failed to allocate memory to hold %s \n", path);
size_t const read = fread(ptr, 1, size, f);
if (read != size) ERR_OUT("error while reading file %s \n", path);
fclose(f);
buffer_s const b = { ptr, size };
return b;
}
static void write_file(const char* path, const u8* ptr, size_t size)
{
FILE* const f = fopen(path, "wb");
if (!f) ERR_OUT("failed to open file %s \n", path);
size_t written = 0;
while (written < size) {
written += fwrite(ptr+written, 1, size, f);
if (ferror(f)) ERR_OUT("error while writing file %s\n", path);
}
fclose(f);
}
int main(int argc, char **argv)
{
if (argc < 3)
ERR_OUT("usage: %s <file.zst> <out_path> [dictionary] \n", argv[0]);
buffer_s const input = read_file(argv[1]);
buffer_s dict = { NULL, 0 };
if (argc >= 4) {
dict = read_file(argv[3]);
}
size_t out_capacity = ZSTD_get_decompressed_size(input.address, input.size);
if (out_capacity == (size_t)-1) {
out_capacity = MAX_COMPRESSION_RATIO * input.size;
fprintf(stderr, "WARNING: Compressed data does not contain "
"decompressed size, going to assume the compression "
"ratio is at most %d (decompressed size of at most "
"%u) \n",
MAX_COMPRESSION_RATIO, (unsigned)out_capacity);
}
if (out_capacity > MAX_OUTPUT_SIZE)
ERR_OUT("Required output size too large for this implementation \n");
u8* const output = malloc(out_capacity);
if (!output) ERR_OUT("failed to allocate memory \n");
dictionary_t* const parsed_dict = create_dictionary();
if (dict.size) {
#if defined (ZDEC_NO_DICTIONARY)
printf("dict.size = %zu \n", dict.size);
ERR_OUT("no dictionary support \n");
#else
parse_dictionary(parsed_dict, dict.address, dict.size);
#endif
}
size_t const decompressed_size =
ZSTD_decompress_with_dict(output, out_capacity,
input.address, input.size,
parsed_dict);
free_dictionary(parsed_dict);
write_file(argv[2], output, decompressed_size);
freeBuffer(input);
freeBuffer(dict);
free(output);
return 0;
}
diff --git a/sys/contrib/zstd/doc/educational_decoder/zstd_decompress.c b/sys/contrib/zstd/doc/educational_decoder/zstd_decompress.c
index 605918b39f85..936407086631 100644
--- a/sys/contrib/zstd/doc/educational_decoder/zstd_decompress.c
+++ b/sys/contrib/zstd/doc/educational_decoder/zstd_decompress.c
@@ -1,2320 +1,2320 @@
/*
- * Copyright (c) 2017-2020, Facebook, Inc.
+ * Copyright (c) Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/// Zstandard educational decoder implementation
/// See https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md
#include <stdint.h> // uint8_t, etc.
#include <stdlib.h> // malloc, free, exit
#include <stdio.h> // fprintf
#include <string.h> // memset, memcpy
#include "zstd_decompress.h"
/******* IMPORTANT CONSTANTS *********************************************/
// Zstandard frame
// "Magic_Number
// 4 Bytes, little-endian format. Value : 0xFD2FB528"
#define ZSTD_MAGIC_NUMBER 0xFD2FB528U
// The size of `Block_Content` is limited by `Block_Maximum_Size`,
#define ZSTD_BLOCK_SIZE_MAX ((size_t)128 * 1024)
// literal blocks can't be larger than their block
#define MAX_LITERALS_SIZE ZSTD_BLOCK_SIZE_MAX
/******* UTILITY MACROS AND TYPES *********************************************/
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#if defined(ZDEC_NO_MESSAGE)
#define MESSAGE(...)
#else
#define MESSAGE(...) fprintf(stderr, "" __VA_ARGS__)
#endif
/// This decoder calls exit(1) when it encounters an error, however a production
/// library should propagate error codes
#define ERROR(s) \
do { \
MESSAGE("Error: %s\n", s); \
exit(1); \
} while (0)
#define INP_SIZE() \
ERROR("Input buffer smaller than it should be or input is " \
"corrupted")
#define OUT_SIZE() ERROR("Output buffer too small for output")
#define CORRUPTION() ERROR("Corruption detected while decompressing")
#define BAD_ALLOC() ERROR("Memory allocation error")
#define IMPOSSIBLE() ERROR("An impossibility has occurred")
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef uint64_t u64;
typedef int8_t i8;
typedef int16_t i16;
typedef int32_t i32;
typedef int64_t i64;
/******* END UTILITY MACROS AND TYPES *****************************************/
/******* IMPLEMENTATION PRIMITIVE PROTOTYPES **********************************/
/// The implementations for these functions can be found at the bottom of this
/// file. They implement low-level functionality needed for the higher level
/// decompression functions.
/*** IO STREAM OPERATIONS *************/
/// ostream_t/istream_t are used to wrap the pointers/length data passed into
/// ZSTD_decompress, so that all IO operations are safely bounds checked
/// They are written/read forward, and reads are treated as little-endian
/// They should be used opaquely to ensure safety
typedef struct {
u8 *ptr;
size_t len;
} ostream_t;
typedef struct {
const u8 *ptr;
size_t len;
// Input often reads a few bits at a time, so maintain an internal offset
int bit_offset;
} istream_t;
/// The following two functions are the only ones that allow the istream to be
/// non-byte aligned
/// Reads `num` bits from a bitstream, and updates the internal offset
static inline u64 IO_read_bits(istream_t *const in, const int num_bits);
/// Backs-up the stream by `num` bits so they can be read again
static inline void IO_rewind_bits(istream_t *const in, const int num_bits);
/// If the remaining bits in a byte will be unused, advance to the end of the
/// byte
static inline void IO_align_stream(istream_t *const in);
/// Write the given byte into the output stream
static inline void IO_write_byte(ostream_t *const out, u8 symb);
/// Returns the number of bytes left to be read in this stream. The stream must
/// be byte aligned.
static inline size_t IO_istream_len(const istream_t *const in);
/// Advances the stream by `len` bytes, and returns a pointer to the chunk that
/// was skipped. The stream must be byte aligned.
static inline const u8 *IO_get_read_ptr(istream_t *const in, size_t len);
/// Advances the stream by `len` bytes, and returns a pointer to the chunk that
/// was skipped so it can be written to.
static inline u8 *IO_get_write_ptr(ostream_t *const out, size_t len);
/// Advance the inner state by `len` bytes. The stream must be byte aligned.
static inline void IO_advance_input(istream_t *const in, size_t len);
/// Returns an `ostream_t` constructed from the given pointer and length.
static inline ostream_t IO_make_ostream(u8 *out, size_t len);
/// Returns an `istream_t` constructed from the given pointer and length.
static inline istream_t IO_make_istream(const u8 *in, size_t len);
/// Returns an `istream_t` with the same base as `in`, and length `len`.
/// Then, advance `in` to account for the consumed bytes.
/// `in` must be byte aligned.
static inline istream_t IO_make_sub_istream(istream_t *const in, size_t len);
/*** END IO STREAM OPERATIONS *********/
/*** BITSTREAM OPERATIONS *************/
/// Read `num` bits (up to 64) from `src + offset`, where `offset` is in bits,
/// and return them interpreted as a little-endian unsigned integer.
static inline u64 read_bits_LE(const u8 *src, const int num_bits,
const size_t offset);
/// Read bits from the end of a HUF or FSE bitstream. `offset` is in bits, so
/// it updates `offset` to `offset - bits`, and then reads `bits` bits from
/// `src + offset`. If the offset becomes negative, the extra bits at the
/// bottom are filled in with `0` bits instead of reading from before `src`.
static inline u64 STREAM_read_bits(const u8 *src, const int bits,
i64 *const offset);
/*** END BITSTREAM OPERATIONS *********/
/*** BIT COUNTING OPERATIONS **********/
/// Returns the index of the highest set bit in `num`, or `-1` if `num == 0`
static inline int highest_set_bit(const u64 num);
/*** END BIT COUNTING OPERATIONS ******/
/*** HUFFMAN PRIMITIVES ***************/
// Table decode method uses exponential memory, so we need to limit depth
#define HUF_MAX_BITS (16)
// Limit the maximum number of symbols to 256 so we can store a symbol in a byte
#define HUF_MAX_SYMBS (256)
/// Structure containing all tables necessary for efficient Huffman decoding
typedef struct {
u8 *symbols;
u8 *num_bits;
int max_bits;
} HUF_dtable;
/// Decode a single symbol and read in enough bits to refresh the state
static inline u8 HUF_decode_symbol(const HUF_dtable *const dtable,
u16 *const state, const u8 *const src,
i64 *const offset);
/// Read in a full state's worth of bits to initialize it
static inline void HUF_init_state(const HUF_dtable *const dtable,
u16 *const state, const u8 *const src,
i64 *const offset);
/// Decompresses a single Huffman stream, returns the number of bytes decoded.
/// `src_len` must be the exact length of the Huffman-coded block.
static size_t HUF_decompress_1stream(const HUF_dtable *const dtable,
ostream_t *const out, istream_t *const in);
/// Same as previous but decodes 4 streams, formatted as in the Zstandard
/// specification.
/// `src_len` must be the exact length of the Huffman-coded block.
static size_t HUF_decompress_4stream(const HUF_dtable *const dtable,
ostream_t *const out, istream_t *const in);
/// Initialize a Huffman decoding table using the table of bit counts provided
static void HUF_init_dtable(HUF_dtable *const table, const u8 *const bits,
const int num_symbs);
/// Initialize a Huffman decoding table using the table of weights provided
/// Weights follow the definition provided in the Zstandard specification
static void HUF_init_dtable_usingweights(HUF_dtable *const table,
const u8 *const weights,
const int num_symbs);
/// Free the malloc'ed parts of a decoding table
static void HUF_free_dtable(HUF_dtable *const dtable);
/*** END HUFFMAN PRIMITIVES ***********/
/*** FSE PRIMITIVES *******************/
/// For more description of FSE see
/// https://github.com/Cyan4973/FiniteStateEntropy/
// FSE table decoding uses exponential memory, so limit the maximum accuracy
#define FSE_MAX_ACCURACY_LOG (15)
// Limit the maximum number of symbols so they can be stored in a single byte
#define FSE_MAX_SYMBS (256)
/// The tables needed to decode FSE encoded streams
typedef struct {
u8 *symbols;
u8 *num_bits;
u16 *new_state_base;
int accuracy_log;
} FSE_dtable;
/// Return the symbol for the current state
static inline u8 FSE_peek_symbol(const FSE_dtable *const dtable,
const u16 state);
/// Read the number of bits necessary to update state, update, and shift offset
/// back to reflect the bits read
static inline void FSE_update_state(const FSE_dtable *const dtable,
u16 *const state, const u8 *const src,
i64 *const offset);
/// Combine peek and update: decode a symbol and update the state
static inline u8 FSE_decode_symbol(const FSE_dtable *const dtable,
u16 *const state, const u8 *const src,
i64 *const offset);
/// Read bits from the stream to initialize the state and shift offset back
static inline void FSE_init_state(const FSE_dtable *const dtable,
u16 *const state, const u8 *const src,
i64 *const offset);
/// Decompress two interleaved bitstreams (e.g. compressed Huffman weights)
/// using an FSE decoding table. `src_len` must be the exact length of the
/// block.
static size_t FSE_decompress_interleaved2(const FSE_dtable *const dtable,
ostream_t *const out,
istream_t *const in);
/// Initialize a decoding table using normalized frequencies.
static void FSE_init_dtable(FSE_dtable *const dtable,
const i16 *const norm_freqs, const int num_symbs,
const int accuracy_log);
/// Decode an FSE header as defined in the Zstandard format specification and
/// use the decoded frequencies to initialize a decoding table.
static void FSE_decode_header(FSE_dtable *const dtable, istream_t *const in,
const int max_accuracy_log);
/// Initialize an FSE table that will always return the same symbol and consume
/// 0 bits per symbol, to be used for RLE mode in sequence commands
static void FSE_init_dtable_rle(FSE_dtable *const dtable, const u8 symb);
/// Free the malloc'ed parts of a decoding table
static void FSE_free_dtable(FSE_dtable *const dtable);
/*** END FSE PRIMITIVES ***************/
/******* END IMPLEMENTATION PRIMITIVE PROTOTYPES ******************************/
/******* ZSTD HELPER STRUCTS AND PROTOTYPES ***********************************/
/// A small structure that can be reused in various places that need to access
/// frame header information
typedef struct {
// The size of window that we need to be able to contiguously store for
// references
size_t window_size;
// The total output size of this compressed frame
size_t frame_content_size;
// The dictionary id if this frame uses one
u32 dictionary_id;
// Whether or not the content of this frame has a checksum
int content_checksum_flag;
// Whether or not the output for this frame is in a single segment
int single_segment_flag;
} frame_header_t;
/// The context needed to decode blocks in a frame
typedef struct {
frame_header_t header;
// The total amount of data available for backreferences, to determine if an
// offset too large to be correct
size_t current_total_output;
const u8 *dict_content;
size_t dict_content_len;
// Entropy encoding tables so they can be repeated by future blocks instead
// of retransmitting
HUF_dtable literals_dtable;
FSE_dtable ll_dtable;
FSE_dtable ml_dtable;
FSE_dtable of_dtable;
// The last 3 offsets for the special "repeat offsets".
u64 previous_offsets[3];
} frame_context_t;
/// The decoded contents of a dictionary so that it doesn't have to be repeated
/// for each frame that uses it
struct dictionary_s {
// Entropy tables
HUF_dtable literals_dtable;
FSE_dtable ll_dtable;
FSE_dtable ml_dtable;
FSE_dtable of_dtable;
// Raw content for backreferences
u8 *content;
size_t content_size;
// Offset history to prepopulate the frame's history
u64 previous_offsets[3];
u32 dictionary_id;
};
/// A tuple containing the parts necessary to decode and execute a ZSTD sequence
/// command
typedef struct {
u32 literal_length;
u32 match_length;
u32 offset;
} sequence_command_t;
/// The decoder works top-down, starting at the high level like Zstd frames, and
/// working down to lower more technical levels such as blocks, literals, and
/// sequences. The high-level functions roughly follow the outline of the
/// format specification:
/// https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md
/// Before the implementation of each high-level function declared here, the
/// prototypes for their helper functions are defined and explained
/// Decode a single Zstd frame, or error if the input is not a valid frame.
/// Accepts a dict argument, which may be NULL indicating no dictionary.
/// See
/// https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md#frame-concatenation
static void decode_frame(ostream_t *const out, istream_t *const in,
const dictionary_t *const dict);
// Decode data in a compressed block
static void decompress_block(frame_context_t *const ctx, ostream_t *const out,
istream_t *const in);
// Decode the literals section of a block
static size_t decode_literals(frame_context_t *const ctx, istream_t *const in,
u8 **const literals);
// Decode the sequences part of a block
static size_t decode_sequences(frame_context_t *const ctx, istream_t *const in,
sequence_command_t **const sequences);
// Execute the decoded sequences on the literals block
static void execute_sequences(frame_context_t *const ctx, ostream_t *const out,
const u8 *const literals,
const size_t literals_len,
const sequence_command_t *const sequences,
const size_t num_sequences);
// Copies literals and returns the total literal length that was copied
static u32 copy_literals(const size_t seq, istream_t *litstream,
ostream_t *const out);
// Given an offset code from a sequence command (either an actual offset value
// or an index for previous offset), computes the correct offset and updates
// the offset history
static size_t compute_offset(sequence_command_t seq, u64 *const offset_hist);
// Given an offset, match length, and total output, as well as the frame
// context for the dictionary, determines if the dictionary is used and
// executes the copy operation
static void execute_match_copy(frame_context_t *const ctx, size_t offset,
size_t match_length, size_t total_output,
ostream_t *const out);
/******* END ZSTD HELPER STRUCTS AND PROTOTYPES *******************************/
size_t ZSTD_decompress(void *const dst, const size_t dst_len,
const void *const src, const size_t src_len) {
dictionary_t* const uninit_dict = create_dictionary();
size_t const decomp_size = ZSTD_decompress_with_dict(dst, dst_len, src,
src_len, uninit_dict);
free_dictionary(uninit_dict);
return decomp_size;
}
size_t ZSTD_decompress_with_dict(void *const dst, const size_t dst_len,
const void *const src, const size_t src_len,
dictionary_t* parsed_dict) {
istream_t in = IO_make_istream(src, src_len);
ostream_t out = IO_make_ostream(dst, dst_len);
// "A content compressed by Zstandard is transformed into a Zstandard frame.
// Multiple frames can be appended into a single file or stream. A frame is
// totally independent, has a defined beginning and end, and a set of
// parameters which tells the decoder how to decompress it."
/* this decoder assumes decompression of a single frame */
decode_frame(&out, &in, parsed_dict);
return (size_t)(out.ptr - (u8 *)dst);
}
/******* FRAME DECODING ******************************************************/
static void decode_data_frame(ostream_t *const out, istream_t *const in,
const dictionary_t *const dict);
static void init_frame_context(frame_context_t *const context,
istream_t *const in,
const dictionary_t *const dict);
static void free_frame_context(frame_context_t *const context);
static void parse_frame_header(frame_header_t *const header,
istream_t *const in);
static void frame_context_apply_dict(frame_context_t *const ctx,
const dictionary_t *const dict);
static void decompress_data(frame_context_t *const ctx, ostream_t *const out,
istream_t *const in);
static void decode_frame(ostream_t *const out, istream_t *const in,
const dictionary_t *const dict) {
const u32 magic_number = (u32)IO_read_bits(in, 32);
if (magic_number == ZSTD_MAGIC_NUMBER) {
// ZSTD frame
decode_data_frame(out, in, dict);
return;
}
// not a real frame or a skippable frame
ERROR("Tried to decode non-ZSTD frame");
}
/// Decode a frame that contains compressed data. Not all frames do as there
/// are skippable frames.
/// See
/// https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md#general-structure-of-zstandard-frame-format
static void decode_data_frame(ostream_t *const out, istream_t *const in,
const dictionary_t *const dict) {
frame_context_t ctx;
// Initialize the context that needs to be carried from block to block
init_frame_context(&ctx, in, dict);
if (ctx.header.frame_content_size != 0 &&
ctx.header.frame_content_size > out->len) {
OUT_SIZE();
}
decompress_data(&ctx, out, in);
free_frame_context(&ctx);
}
/// Takes the information provided in the header and dictionary, and initializes
/// the context for this frame
static void init_frame_context(frame_context_t *const context,
istream_t *const in,
const dictionary_t *const dict) {
// Most fields in context are correct when initialized to 0
memset(context, 0, sizeof(frame_context_t));
// Parse data from the frame header
parse_frame_header(&context->header, in);
// Set up the offset history for the repeat offset commands
context->previous_offsets[0] = 1;
context->previous_offsets[1] = 4;
context->previous_offsets[2] = 8;
// Apply details from the dict if it exists
frame_context_apply_dict(context, dict);
}
static void free_frame_context(frame_context_t *const context) {
HUF_free_dtable(&context->literals_dtable);
FSE_free_dtable(&context->ll_dtable);
FSE_free_dtable(&context->ml_dtable);
FSE_free_dtable(&context->of_dtable);
memset(context, 0, sizeof(frame_context_t));
}
static void parse_frame_header(frame_header_t *const header,
istream_t *const in) {
// "The first header's byte is called the Frame_Header_Descriptor. It tells
// which other fields are present. Decoding this byte is enough to tell the
// size of Frame_Header.
//
// Bit number Field name
// 7-6 Frame_Content_Size_flag
// 5 Single_Segment_flag
// 4 Unused_bit
// 3 Reserved_bit
// 2 Content_Checksum_flag
// 1-0 Dictionary_ID_flag"
const u8 descriptor = (u8)IO_read_bits(in, 8);
// decode frame header descriptor into flags
const u8 frame_content_size_flag = descriptor >> 6;
const u8 single_segment_flag = (descriptor >> 5) & 1;
const u8 reserved_bit = (descriptor >> 3) & 1;
const u8 content_checksum_flag = (descriptor >> 2) & 1;
const u8 dictionary_id_flag = descriptor & 3;
if (reserved_bit != 0) {
CORRUPTION();
}
header->single_segment_flag = single_segment_flag;
header->content_checksum_flag = content_checksum_flag;
// decode window size
if (!single_segment_flag) {
// "Provides guarantees on maximum back-reference distance that will be
// used within compressed data. This information is important for
// decoders to allocate enough memory.
//
// Bit numbers 7-3 2-0
// Field name Exponent Mantissa"
u8 window_descriptor = (u8)IO_read_bits(in, 8);
u8 exponent = window_descriptor >> 3;
u8 mantissa = window_descriptor & 7;
// Use the algorithm from the specification to compute window size
// https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md#window_descriptor
size_t window_base = (size_t)1 << (10 + exponent);
size_t window_add = (window_base / 8) * mantissa;
header->window_size = window_base + window_add;
}
// decode dictionary id if it exists
if (dictionary_id_flag) {
// "This is a variable size field, which contains the ID of the
// dictionary required to properly decode the frame. Note that this
// field is optional. When it's not present, it's up to the caller to
// make sure it uses the correct dictionary. Format is little-endian."
const int bytes_array[] = {0, 1, 2, 4};
const int bytes = bytes_array[dictionary_id_flag];
header->dictionary_id = (u32)IO_read_bits(in, bytes * 8);
} else {
header->dictionary_id = 0;
}
// decode frame content size if it exists
if (single_segment_flag || frame_content_size_flag) {
// "This is the original (uncompressed) size. This information is
// optional. The Field_Size is provided according to value of
// Frame_Content_Size_flag. The Field_Size can be equal to 0 (not
// present), 1, 2, 4 or 8 bytes. Format is little-endian."
//
// if frame_content_size_flag == 0 but single_segment_flag is set, we
// still have a 1 byte field
const int bytes_array[] = {1, 2, 4, 8};
const int bytes = bytes_array[frame_content_size_flag];
header->frame_content_size = IO_read_bits(in, bytes * 8);
if (bytes == 2) {
// "When Field_Size is 2, the offset of 256 is added."
header->frame_content_size += 256;
}
} else {
header->frame_content_size = 0;
}
if (single_segment_flag) {
// "The Window_Descriptor byte is optional. It is absent when
// Single_Segment_flag is set. In this case, the maximum back-reference
// distance is the content size itself, which can be any value from 1 to
// 2^64-1 bytes (16 EB)."
header->window_size = header->frame_content_size;
}
}
/// Decompress the data from a frame block by block
static void decompress_data(frame_context_t *const ctx, ostream_t *const out,
istream_t *const in) {
// "A frame encapsulates one or multiple blocks. Each block can be
// compressed or not, and has a guaranteed maximum content size, which
// depends on frame parameters. Unlike frames, each block depends on
// previous blocks for proper decoding. However, each block can be
// decompressed without waiting for its successor, allowing streaming
// operations."
int last_block = 0;
do {
// "Last_Block
//
// The lowest bit signals if this block is the last one. Frame ends
// right after this block.
//
// Block_Type and Block_Size
//
// The next 2 bits represent the Block_Type, while the remaining 21 bits
// represent the Block_Size. Format is little-endian."
last_block = (int)IO_read_bits(in, 1);
const int block_type = (int)IO_read_bits(in, 2);
const size_t block_len = IO_read_bits(in, 21);
switch (block_type) {
case 0: {
// "Raw_Block - this is an uncompressed block. Block_Size is the
// number of bytes to read and copy."
const u8 *const read_ptr = IO_get_read_ptr(in, block_len);
u8 *const write_ptr = IO_get_write_ptr(out, block_len);
// Copy the raw data into the output
memcpy(write_ptr, read_ptr, block_len);
ctx->current_total_output += block_len;
break;
}
case 1: {
// "RLE_Block - this is a single byte, repeated N times. In which
// case, Block_Size is the size to regenerate, while the
// "compressed" block is just 1 byte (the byte to repeat)."
const u8 *const read_ptr = IO_get_read_ptr(in, 1);
u8 *const write_ptr = IO_get_write_ptr(out, block_len);
// Copy `block_len` copies of `read_ptr[0]` to the output
memset(write_ptr, read_ptr[0], block_len);
ctx->current_total_output += block_len;
break;
}
case 2: {
// "Compressed_Block - this is a Zstandard compressed block,
// detailed in another section of this specification. Block_Size is
// the compressed size.
// Create a sub-stream for the block
istream_t block_stream = IO_make_sub_istream(in, block_len);
decompress_block(ctx, out, &block_stream);
break;
}
case 3:
// "Reserved - this is not a block. This value cannot be used with
// current version of this specification."
CORRUPTION();
break;
default:
IMPOSSIBLE();
}
} while (!last_block);
if (ctx->header.content_checksum_flag) {
// This program does not support checking the checksum, so skip over it
// if it's present
IO_advance_input(in, 4);
}
}
/******* END FRAME DECODING ***************************************************/
/******* BLOCK DECOMPRESSION **************************************************/
static void decompress_block(frame_context_t *const ctx, ostream_t *const out,
istream_t *const in) {
// "A compressed block consists of 2 sections :
//
// Literals_Section
// Sequences_Section"
// Part 1: decode the literals block
u8 *literals = NULL;
const size_t literals_size = decode_literals(ctx, in, &literals);
// Part 2: decode the sequences block
sequence_command_t *sequences = NULL;
const size_t num_sequences =
decode_sequences(ctx, in, &sequences);
// Part 3: combine literals and sequence commands to generate output
execute_sequences(ctx, out, literals, literals_size, sequences,
num_sequences);
free(literals);
free(sequences);
}
/******* END BLOCK DECOMPRESSION **********************************************/
/******* LITERALS DECODING ****************************************************/
static size_t decode_literals_simple(istream_t *const in, u8 **const literals,
const int block_type,
const int size_format);
static size_t decode_literals_compressed(frame_context_t *const ctx,
istream_t *const in,
u8 **const literals,
const int block_type,
const int size_format);
static void decode_huf_table(HUF_dtable *const dtable, istream_t *const in);
static void fse_decode_hufweights(ostream_t *weights, istream_t *const in,
int *const num_symbs);
static size_t decode_literals(frame_context_t *const ctx, istream_t *const in,
u8 **const literals) {
// "Literals can be stored uncompressed or compressed using Huffman prefix
// codes. When compressed, an optional tree description can be present,
// followed by 1 or 4 streams."
//
// "Literals_Section_Header
//
// Header is in charge of describing how literals are packed. It's a
// byte-aligned variable-size bitfield, ranging from 1 to 5 bytes, using
// little-endian convention."
//
// "Literals_Block_Type
//
// This field uses 2 lowest bits of first byte, describing 4 different block
// types"
//
// size_format takes between 1 and 2 bits
int block_type = (int)IO_read_bits(in, 2);
int size_format = (int)IO_read_bits(in, 2);
if (block_type <= 1) {
// Raw or RLE literals block
return decode_literals_simple(in, literals, block_type,
size_format);
} else {
// Huffman compressed literals
return decode_literals_compressed(ctx, in, literals, block_type,
size_format);
}
}
/// Decodes literals blocks in raw or RLE form
static size_t decode_literals_simple(istream_t *const in, u8 **const literals,
const int block_type,
const int size_format) {
size_t size;
switch (size_format) {
// These cases are in the form ?0
// In this case, the ? bit is actually part of the size field
case 0:
case 2:
// "Size_Format uses 1 bit. Regenerated_Size uses 5 bits (0-31)."
IO_rewind_bits(in, 1);
size = IO_read_bits(in, 5);
break;
case 1:
// "Size_Format uses 2 bits. Regenerated_Size uses 12 bits (0-4095)."
size = IO_read_bits(in, 12);
break;
case 3:
// "Size_Format uses 2 bits. Regenerated_Size uses 20 bits (0-1048575)."
size = IO_read_bits(in, 20);
break;
default:
// Size format is in range 0-3
IMPOSSIBLE();
}
if (size > MAX_LITERALS_SIZE) {
CORRUPTION();
}
*literals = malloc(size);
if (!*literals) {
BAD_ALLOC();
}
switch (block_type) {
case 0: {
// "Raw_Literals_Block - Literals are stored uncompressed."
const u8 *const read_ptr = IO_get_read_ptr(in, size);
memcpy(*literals, read_ptr, size);
break;
}
case 1: {
// "RLE_Literals_Block - Literals consist of a single byte value repeated N times."
const u8 *const read_ptr = IO_get_read_ptr(in, 1);
memset(*literals, read_ptr[0], size);
break;
}
default:
IMPOSSIBLE();
}
return size;
}
/// Decodes Huffman compressed literals
static size_t decode_literals_compressed(frame_context_t *const ctx,
istream_t *const in,
u8 **const literals,
const int block_type,
const int size_format) {
size_t regenerated_size, compressed_size;
// Only size_format=0 has 1 stream, so default to 4
int num_streams = 4;
switch (size_format) {
case 0:
// "A single stream. Both Compressed_Size and Regenerated_Size use 10
// bits (0-1023)."
num_streams = 1;
// Fall through as it has the same size format
/* fallthrough */
case 1:
// "4 streams. Both Compressed_Size and Regenerated_Size use 10 bits
// (0-1023)."
regenerated_size = IO_read_bits(in, 10);
compressed_size = IO_read_bits(in, 10);
break;
case 2:
// "4 streams. Both Compressed_Size and Regenerated_Size use 14 bits
// (0-16383)."
regenerated_size = IO_read_bits(in, 14);
compressed_size = IO_read_bits(in, 14);
break;
case 3:
// "4 streams. Both Compressed_Size and Regenerated_Size use 18 bits
// (0-262143)."
regenerated_size = IO_read_bits(in, 18);
compressed_size = IO_read_bits(in, 18);
break;
default:
// Impossible
IMPOSSIBLE();
}
if (regenerated_size > MAX_LITERALS_SIZE) {
CORRUPTION();
}
*literals = malloc(regenerated_size);
if (!*literals) {
BAD_ALLOC();
}
ostream_t lit_stream = IO_make_ostream(*literals, regenerated_size);
istream_t huf_stream = IO_make_sub_istream(in, compressed_size);
if (block_type == 2) {
// Decode the provided Huffman table
// "This section is only present when Literals_Block_Type type is
// Compressed_Literals_Block (2)."
HUF_free_dtable(&ctx->literals_dtable);
decode_huf_table(&ctx->literals_dtable, &huf_stream);
} else {
// If the previous Huffman table is being repeated, ensure it exists
if (!ctx->literals_dtable.symbols) {
CORRUPTION();
}
}
size_t symbols_decoded;
if (num_streams == 1) {
symbols_decoded = HUF_decompress_1stream(&ctx->literals_dtable, &lit_stream, &huf_stream);
} else {
symbols_decoded = HUF_decompress_4stream(&ctx->literals_dtable, &lit_stream, &huf_stream);
}
if (symbols_decoded != regenerated_size) {
CORRUPTION();
}
return regenerated_size;
}
// Decode the Huffman table description
static void decode_huf_table(HUF_dtable *const dtable, istream_t *const in) {
// "All literal values from zero (included) to last present one (excluded)
// are represented by Weight with values from 0 to Max_Number_of_Bits."
// "This is a single byte value (0-255), which describes how to decode the list of weights."
const u8 header = IO_read_bits(in, 8);
u8 weights[HUF_MAX_SYMBS];
memset(weights, 0, sizeof(weights));
int num_symbs;
if (header >= 128) {
// "This is a direct representation, where each Weight is written
// directly as a 4 bits field (0-15). The full representation occupies
// ((Number_of_Symbols+1)/2) bytes, meaning it uses a last full byte
// even if Number_of_Symbols is odd. Number_of_Symbols = headerByte -
// 127"
num_symbs = header - 127;
const size_t bytes = (num_symbs + 1) / 2;
const u8 *const weight_src = IO_get_read_ptr(in, bytes);
for (int i = 0; i < num_symbs; i++) {
// "They are encoded forward, 2
// weights to a byte with the first weight taking the top four bits
// and the second taking the bottom four (e.g. the following
// operations could be used to read the weights: Weight[0] =
// (Byte[0] >> 4), Weight[1] = (Byte[0] & 0xf), etc.)."
if (i % 2 == 0) {
weights[i] = weight_src[i / 2] >> 4;
} else {
weights[i] = weight_src[i / 2] & 0xf;
}
}
} else {
// The weights are FSE encoded, decode them before we can construct the
// table
istream_t fse_stream = IO_make_sub_istream(in, header);
ostream_t weight_stream = IO_make_ostream(weights, HUF_MAX_SYMBS);
fse_decode_hufweights(&weight_stream, &fse_stream, &num_symbs);
}
// Construct the table using the decoded weights
HUF_init_dtable_usingweights(dtable, weights, num_symbs);
}
static void fse_decode_hufweights(ostream_t *weights, istream_t *const in,
int *const num_symbs) {
const int MAX_ACCURACY_LOG = 7;
FSE_dtable dtable;
// "An FSE bitstream starts by a header, describing probabilities
// distribution. It will create a Decoding Table. For a list of Huffman
// weights, maximum accuracy is 7 bits."
FSE_decode_header(&dtable, in, MAX_ACCURACY_LOG);
// Decode the weights
*num_symbs = FSE_decompress_interleaved2(&dtable, weights, in);
FSE_free_dtable(&dtable);
}
/******* END LITERALS DECODING ************************************************/
/******* SEQUENCE DECODING ****************************************************/
/// The combination of FSE states needed to decode sequences
typedef struct {
FSE_dtable ll_table;
FSE_dtable of_table;
FSE_dtable ml_table;
u16 ll_state;
u16 of_state;
u16 ml_state;
} sequence_states_t;
/// Different modes to signal to decode_seq_tables what to do
typedef enum {
seq_literal_length = 0,
seq_offset = 1,
seq_match_length = 2,
} seq_part_t;
typedef enum {
seq_predefined = 0,
seq_rle = 1,
seq_fse = 2,
seq_repeat = 3,
} seq_mode_t;
/// The predefined FSE distribution tables for `seq_predefined` mode
static const i16 SEQ_LITERAL_LENGTH_DEFAULT_DIST[36] = {
4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2,
2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 1, 1, 1, 1, -1, -1, -1, -1};
static const i16 SEQ_OFFSET_DEFAULT_DIST[29] = {
1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1};
static const i16 SEQ_MATCH_LENGTH_DEFAULT_DIST[53] = {
1, 4, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1};
/// The sequence decoding baseline and number of additional bits to read/add
/// https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md#the-codes-for-literals-lengths-match-lengths-and-offsets
static const u32 SEQ_LITERAL_LENGTH_BASELINES[36] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 18, 20, 22, 24, 28, 32, 40,
48, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536};
static const u8 SEQ_LITERAL_LENGTH_EXTRA_BITS[36] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
static const u32 SEQ_MATCH_LENGTH_BASELINES[53] = {
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 37, 39, 41, 43, 47, 51, 59, 67, 83,
99, 131, 259, 515, 1027, 2051, 4099, 8195, 16387, 32771, 65539};
static const u8 SEQ_MATCH_LENGTH_EXTRA_BITS[53] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
2, 2, 3, 3, 4, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
/// Offset decoding is simpler so we just need a maximum code value
static const u8 SEQ_MAX_CODES[3] = {35, (u8)-1, 52};
static void decompress_sequences(frame_context_t *const ctx,
istream_t *const in,
sequence_command_t *const sequences,
const size_t num_sequences);
static sequence_command_t decode_sequence(sequence_states_t *const state,
const u8 *const src,
i64 *const offset);
static void decode_seq_table(FSE_dtable *const table, istream_t *const in,
const seq_part_t type, const seq_mode_t mode);
static size_t decode_sequences(frame_context_t *const ctx, istream_t *in,
sequence_command_t **const sequences) {
// "A compressed block is a succession of sequences . A sequence is a
// literal copy command, followed by a match copy command. A literal copy
// command specifies a length. It is the number of bytes to be copied (or
// extracted) from the literal section. A match copy command specifies an
// offset and a length. The offset gives the position to copy from, which
// can be within a previous block."
size_t num_sequences;
// "Number_of_Sequences
//
// This is a variable size field using between 1 and 3 bytes. Let's call its
// first byte byte0."
u8 header = IO_read_bits(in, 8);
if (header == 0) {
// "There are no sequences. The sequence section stops there.
// Regenerated content is defined entirely by literals section."
*sequences = NULL;
return 0;
} else if (header < 128) {
// "Number_of_Sequences = byte0 . Uses 1 byte."
num_sequences = header;
} else if (header < 255) {
// "Number_of_Sequences = ((byte0-128) << 8) + byte1 . Uses 2 bytes."
num_sequences = ((header - 128) << 8) + IO_read_bits(in, 8);
} else {
// "Number_of_Sequences = byte1 + (byte2<<8) + 0x7F00 . Uses 3 bytes."
num_sequences = IO_read_bits(in, 16) + 0x7F00;
}
*sequences = malloc(num_sequences * sizeof(sequence_command_t));
if (!*sequences) {
BAD_ALLOC();
}
decompress_sequences(ctx, in, *sequences, num_sequences);
return num_sequences;
}
/// Decompress the FSE encoded sequence commands
static void decompress_sequences(frame_context_t *const ctx, istream_t *in,
sequence_command_t *const sequences,
const size_t num_sequences) {
// "The Sequences_Section regroup all symbols required to decode commands.
// There are 3 symbol types : literals lengths, offsets and match lengths.
// They are encoded together, interleaved, in a single bitstream."
// "Symbol compression modes
//
// This is a single byte, defining the compression mode of each symbol
// type."
//
// Bit number : Field name
// 7-6 : Literals_Lengths_Mode
// 5-4 : Offsets_Mode
// 3-2 : Match_Lengths_Mode
// 1-0 : Reserved
u8 compression_modes = IO_read_bits(in, 8);
if ((compression_modes & 3) != 0) {
// Reserved bits set
CORRUPTION();
}
// "Following the header, up to 3 distribution tables can be described. When
// present, they are in this order :
//
// Literals lengths
// Offsets
// Match Lengths"
// Update the tables we have stored in the context
decode_seq_table(&ctx->ll_dtable, in, seq_literal_length,
(compression_modes >> 6) & 3);
decode_seq_table(&ctx->of_dtable, in, seq_offset,
(compression_modes >> 4) & 3);
decode_seq_table(&ctx->ml_dtable, in, seq_match_length,
(compression_modes >> 2) & 3);
sequence_states_t states;
// Initialize the decoding tables
{
states.ll_table = ctx->ll_dtable;
states.of_table = ctx->of_dtable;
states.ml_table = ctx->ml_dtable;
}
const size_t len = IO_istream_len(in);
const u8 *const src = IO_get_read_ptr(in, len);
// "After writing the last bit containing information, the compressor writes
// a single 1-bit and then fills the byte with 0-7 0 bits of padding."
const int padding = 8 - highest_set_bit(src[len - 1]);
// The offset starts at the end because FSE streams are read backwards
i64 bit_offset = (i64)(len * 8 - (size_t)padding);
// "The bitstream starts with initial state values, each using the required
// number of bits in their respective accuracy, decoded previously from
// their normalized distribution.
//
// It starts by Literals_Length_State, followed by Offset_State, and finally
// Match_Length_State."
FSE_init_state(&states.ll_table, &states.ll_state, src, &bit_offset);
FSE_init_state(&states.of_table, &states.of_state, src, &bit_offset);
FSE_init_state(&states.ml_table, &states.ml_state, src, &bit_offset);
for (size_t i = 0; i < num_sequences; i++) {
// Decode sequences one by one
sequences[i] = decode_sequence(&states, src, &bit_offset);
}
if (bit_offset != 0) {
CORRUPTION();
}
}
// Decode a single sequence and update the state
static sequence_command_t decode_sequence(sequence_states_t *const states,
const u8 *const src,
i64 *const offset) {
// "Each symbol is a code in its own context, which specifies Baseline and
// Number_of_Bits to add. Codes are FSE compressed, and interleaved with raw
// additional bits in the same bitstream."
// Decode symbols, but don't update states
const u8 of_code = FSE_peek_symbol(&states->of_table, states->of_state);
const u8 ll_code = FSE_peek_symbol(&states->ll_table, states->ll_state);
const u8 ml_code = FSE_peek_symbol(&states->ml_table, states->ml_state);
// Offset doesn't need a max value as it's not decoded using a table
if (ll_code > SEQ_MAX_CODES[seq_literal_length] ||
ml_code > SEQ_MAX_CODES[seq_match_length]) {
CORRUPTION();
}
// Read the interleaved bits
sequence_command_t seq;
// "Decoding starts by reading the Number_of_Bits required to decode Offset.
// It then does the same for Match_Length, and then for Literals_Length."
seq.offset = ((u32)1 << of_code) + STREAM_read_bits(src, of_code, offset);
seq.match_length =
SEQ_MATCH_LENGTH_BASELINES[ml_code] +
STREAM_read_bits(src, SEQ_MATCH_LENGTH_EXTRA_BITS[ml_code], offset);
seq.literal_length =
SEQ_LITERAL_LENGTH_BASELINES[ll_code] +
STREAM_read_bits(src, SEQ_LITERAL_LENGTH_EXTRA_BITS[ll_code], offset);
// "If it is not the last sequence in the block, the next operation is to
// update states. Using the rules pre-calculated in the decoding tables,
// Literals_Length_State is updated, followed by Match_Length_State, and
// then Offset_State."
// If the stream is complete don't read bits to update state
if (*offset != 0) {
FSE_update_state(&states->ll_table, &states->ll_state, src, offset);
FSE_update_state(&states->ml_table, &states->ml_state, src, offset);
FSE_update_state(&states->of_table, &states->of_state, src, offset);
}
return seq;
}
/// Given a sequence part and table mode, decode the FSE distribution
/// Errors if the mode is `seq_repeat` without a pre-existing table in `table`
static void decode_seq_table(FSE_dtable *const table, istream_t *const in,
const seq_part_t type, const seq_mode_t mode) {
// Constant arrays indexed by seq_part_t
const i16 *const default_distributions[] = {SEQ_LITERAL_LENGTH_DEFAULT_DIST,
SEQ_OFFSET_DEFAULT_DIST,
SEQ_MATCH_LENGTH_DEFAULT_DIST};
const size_t default_distribution_lengths[] = {36, 29, 53};
const size_t default_distribution_accuracies[] = {6, 5, 6};
const size_t max_accuracies[] = {9, 8, 9};
if (mode != seq_repeat) {
// Free old one before overwriting
FSE_free_dtable(table);
}
switch (mode) {
case seq_predefined: {
// "Predefined_Mode : uses a predefined distribution table."
const i16 *distribution = default_distributions[type];
const size_t symbs = default_distribution_lengths[type];
const size_t accuracy_log = default_distribution_accuracies[type];
FSE_init_dtable(table, distribution, symbs, accuracy_log);
break;
}
case seq_rle: {
// "RLE_Mode : it's a single code, repeated Number_of_Sequences times."
const u8 symb = IO_get_read_ptr(in, 1)[0];
FSE_init_dtable_rle(table, symb);
break;
}
case seq_fse: {
// "FSE_Compressed_Mode : standard FSE compression. A distribution table
// will be present "
FSE_decode_header(table, in, max_accuracies[type]);
break;
}
case seq_repeat:
// "Repeat_Mode : re-use distribution table from previous compressed
// block."
// Nothing to do here, table will be unchanged
if (!table->symbols) {
// This mode is invalid if we don't already have a table
CORRUPTION();
}
break;
default:
// Impossible, as mode is from 0-3
IMPOSSIBLE();
break;
}
}
/******* END SEQUENCE DECODING ************************************************/
/******* SEQUENCE EXECUTION ***************************************************/
static void execute_sequences(frame_context_t *const ctx, ostream_t *const out,
const u8 *const literals,
const size_t literals_len,
const sequence_command_t *const sequences,
const size_t num_sequences) {
istream_t litstream = IO_make_istream(literals, literals_len);
u64 *const offset_hist = ctx->previous_offsets;
size_t total_output = ctx->current_total_output;
for (size_t i = 0; i < num_sequences; i++) {
const sequence_command_t seq = sequences[i];
{
const u32 literals_size = copy_literals(seq.literal_length, &litstream, out);
total_output += literals_size;
}
size_t const offset = compute_offset(seq, offset_hist);
size_t const match_length = seq.match_length;
execute_match_copy(ctx, offset, match_length, total_output, out);
total_output += match_length;
}
// Copy any leftover literals
{
size_t len = IO_istream_len(&litstream);
copy_literals(len, &litstream, out);
total_output += len;
}
ctx->current_total_output = total_output;
}
static u32 copy_literals(const size_t literal_length, istream_t *litstream,
ostream_t *const out) {
// If the sequence asks for more literals than are left, the
// sequence must be corrupted
if (literal_length > IO_istream_len(litstream)) {
CORRUPTION();
}
u8 *const write_ptr = IO_get_write_ptr(out, literal_length);
const u8 *const read_ptr =
IO_get_read_ptr(litstream, literal_length);
// Copy literals to output
memcpy(write_ptr, read_ptr, literal_length);
return literal_length;
}
static size_t compute_offset(sequence_command_t seq, u64 *const offset_hist) {
size_t offset;
// Offsets are special, we need to handle the repeat offsets
if (seq.offset <= 3) {
// "The first 3 values define a repeated offset and we will call
// them Repeated_Offset1, Repeated_Offset2, and Repeated_Offset3.
// They are sorted in recency order, with Repeated_Offset1 meaning
// 'most recent one'".
// Use 0 indexing for the array
u32 idx = seq.offset - 1;
if (seq.literal_length == 0) {
// "There is an exception though, when current sequence's
// literals length is 0. In this case, repeated offsets are
// shifted by one, so Repeated_Offset1 becomes Repeated_Offset2,
// Repeated_Offset2 becomes Repeated_Offset3, and
// Repeated_Offset3 becomes Repeated_Offset1 - 1_byte."
idx++;
}
if (idx == 0) {
offset = offset_hist[0];
} else {
// If idx == 3 then literal length was 0 and the offset was 3,
// as per the exception listed above
offset = idx < 3 ? offset_hist[idx] : offset_hist[0] - 1;
// If idx == 1 we don't need to modify offset_hist[2], since
// we're using the second-most recent code
if (idx > 1) {
offset_hist[2] = offset_hist[1];
}
offset_hist[1] = offset_hist[0];
offset_hist[0] = offset;
}
} else {
// When it's not a repeat offset:
// "if (Offset_Value > 3) offset = Offset_Value - 3;"
offset = seq.offset - 3;
// Shift back history
offset_hist[2] = offset_hist[1];
offset_hist[1] = offset_hist[0];
offset_hist[0] = offset;
}
return offset;
}
static void execute_match_copy(frame_context_t *const ctx, size_t offset,
size_t match_length, size_t total_output,
ostream_t *const out) {
u8 *write_ptr = IO_get_write_ptr(out, match_length);
if (total_output <= ctx->header.window_size) {
// In this case offset might go back into the dictionary
if (offset > total_output + ctx->dict_content_len) {
// The offset goes beyond even the dictionary
CORRUPTION();
}
if (offset > total_output) {
// "The rest of the dictionary is its content. The content act
// as a "past" in front of data to compress or decompress, so it
// can be referenced in sequence commands."
const size_t dict_copy =
MIN(offset - total_output, match_length);
const size_t dict_offset =
ctx->dict_content_len - (offset - total_output);
memcpy(write_ptr, ctx->dict_content + dict_offset, dict_copy);
write_ptr += dict_copy;
match_length -= dict_copy;
}
} else if (offset > ctx->header.window_size) {
CORRUPTION();
}
// We must copy byte by byte because the match length might be larger
// than the offset
// ex: if the output so far was "abc", a command with offset=3 and
// match_length=6 would produce "abcabcabc" as the new output
for (size_t j = 0; j < match_length; j++) {
*write_ptr = *(write_ptr - offset);
write_ptr++;
}
}
/******* END SEQUENCE EXECUTION ***********************************************/
/******* OUTPUT SIZE COUNTING *************************************************/
/// Get the decompressed size of an input stream so memory can be allocated in
/// advance.
/// This implementation assumes `src` points to a single ZSTD-compressed frame
size_t ZSTD_get_decompressed_size(const void *src, const size_t src_len) {
istream_t in = IO_make_istream(src, src_len);
// get decompressed size from ZSTD frame header
{
const u32 magic_number = (u32)IO_read_bits(&in, 32);
if (magic_number == ZSTD_MAGIC_NUMBER) {
// ZSTD frame
frame_header_t header;
parse_frame_header(&header, &in);
if (header.frame_content_size == 0 && !header.single_segment_flag) {
// Content size not provided, we can't tell
return (size_t)-1;
}
return header.frame_content_size;
} else {
// not a real frame or skippable frame
ERROR("ZSTD frame magic number did not match");
}
}
}
/******* END OUTPUT SIZE COUNTING *********************************************/
/******* DICTIONARY PARSING ***************************************************/
dictionary_t* create_dictionary() {
dictionary_t* const dict = calloc(1, sizeof(dictionary_t));
if (!dict) {
BAD_ALLOC();
}
return dict;
}
/// Free an allocated dictionary
void free_dictionary(dictionary_t *const dict) {
HUF_free_dtable(&dict->literals_dtable);
FSE_free_dtable(&dict->ll_dtable);
FSE_free_dtable(&dict->of_dtable);
FSE_free_dtable(&dict->ml_dtable);
free(dict->content);
memset(dict, 0, sizeof(dictionary_t));
free(dict);
}
#if !defined(ZDEC_NO_DICTIONARY)
#define DICT_SIZE_ERROR() ERROR("Dictionary size cannot be less than 8 bytes")
#define NULL_SRC() ERROR("Tried to create dictionary with pointer to null src");
static void init_dictionary_content(dictionary_t *const dict,
istream_t *const in);
void parse_dictionary(dictionary_t *const dict, const void *src,
size_t src_len) {
const u8 *byte_src = (const u8 *)src;
memset(dict, 0, sizeof(dictionary_t));
if (src == NULL) { /* cannot initialize dictionary with null src */
NULL_SRC();
}
if (src_len < 8) {
DICT_SIZE_ERROR();
}
istream_t in = IO_make_istream(byte_src, src_len);
const u32 magic_number = IO_read_bits(&in, 32);
if (magic_number != 0xEC30A437) {
// raw content dict
IO_rewind_bits(&in, 32);
init_dictionary_content(dict, &in);
return;
}
dict->dictionary_id = IO_read_bits(&in, 32);
// "Entropy_Tables : following the same format as the tables in compressed
// blocks. They are stored in following order : Huffman tables for literals,
// FSE table for offsets, FSE table for match lengths, and FSE table for
// literals lengths. It's finally followed by 3 offset values, populating
// recent offsets (instead of using {1,4,8}), stored in order, 4-bytes
// little-endian each, for a total of 12 bytes. Each recent offset must have
// a value < dictionary size."
decode_huf_table(&dict->literals_dtable, &in);
decode_seq_table(&dict->of_dtable, &in, seq_offset, seq_fse);
decode_seq_table(&dict->ml_dtable, &in, seq_match_length, seq_fse);
decode_seq_table(&dict->ll_dtable, &in, seq_literal_length, seq_fse);
// Read in the previous offset history
dict->previous_offsets[0] = IO_read_bits(&in, 32);
dict->previous_offsets[1] = IO_read_bits(&in, 32);
dict->previous_offsets[2] = IO_read_bits(&in, 32);
// Ensure the provided offsets aren't too large
// "Each recent offset must have a value < dictionary size."
for (int i = 0; i < 3; i++) {
if (dict->previous_offsets[i] > src_len) {
ERROR("Dictionary corrupted");
}
}
// "Content : The rest of the dictionary is its content. The content act as
// a "past" in front of data to compress or decompress, so it can be
// referenced in sequence commands."
init_dictionary_content(dict, &in);
}
static void init_dictionary_content(dictionary_t *const dict,
istream_t *const in) {
// Copy in the content
dict->content_size = IO_istream_len(in);
dict->content = malloc(dict->content_size);
if (!dict->content) {
BAD_ALLOC();
}
const u8 *const content = IO_get_read_ptr(in, dict->content_size);
memcpy(dict->content, content, dict->content_size);
}
static void HUF_copy_dtable(HUF_dtable *const dst,
const HUF_dtable *const src) {
if (src->max_bits == 0) {
memset(dst, 0, sizeof(HUF_dtable));
return;
}
const size_t size = (size_t)1 << src->max_bits;
dst->max_bits = src->max_bits;
dst->symbols = malloc(size);
dst->num_bits = malloc(size);
if (!dst->symbols || !dst->num_bits) {
BAD_ALLOC();
}
memcpy(dst->symbols, src->symbols, size);
memcpy(dst->num_bits, src->num_bits, size);
}
static void FSE_copy_dtable(FSE_dtable *const dst, const FSE_dtable *const src) {
if (src->accuracy_log == 0) {
memset(dst, 0, sizeof(FSE_dtable));
return;
}
size_t size = (size_t)1 << src->accuracy_log;
dst->accuracy_log = src->accuracy_log;
dst->symbols = malloc(size);
dst->num_bits = malloc(size);
dst->new_state_base = malloc(size * sizeof(u16));
if (!dst->symbols || !dst->num_bits || !dst->new_state_base) {
BAD_ALLOC();
}
memcpy(dst->symbols, src->symbols, size);
memcpy(dst->num_bits, src->num_bits, size);
memcpy(dst->new_state_base, src->new_state_base, size * sizeof(u16));
}
/// A dictionary acts as initializing values for the frame context before
/// decompression, so we implement it by applying it's predetermined
/// tables and content to the context before beginning decompression
static void frame_context_apply_dict(frame_context_t *const ctx,
const dictionary_t *const dict) {
// If the content pointer is NULL then it must be an empty dict
if (!dict || !dict->content)
return;
// If the requested dictionary_id is non-zero, the correct dictionary must
// be present
if (ctx->header.dictionary_id != 0 &&
ctx->header.dictionary_id != dict->dictionary_id) {
ERROR("Wrong dictionary provided");
}
// Copy the dict content to the context for references during sequence
// execution
ctx->dict_content = dict->content;
ctx->dict_content_len = dict->content_size;
// If it's a formatted dict copy the precomputed tables in so they can
// be used in the table repeat modes
if (dict->dictionary_id != 0) {
// Deep copy the entropy tables so they can be freed independently of
// the dictionary struct
HUF_copy_dtable(&ctx->literals_dtable, &dict->literals_dtable);
FSE_copy_dtable(&ctx->ll_dtable, &dict->ll_dtable);
FSE_copy_dtable(&ctx->of_dtable, &dict->of_dtable);
FSE_copy_dtable(&ctx->ml_dtable, &dict->ml_dtable);
// Copy the repeated offsets
memcpy(ctx->previous_offsets, dict->previous_offsets,
sizeof(ctx->previous_offsets));
}
}
#else // ZDEC_NO_DICTIONARY is defined
static void frame_context_apply_dict(frame_context_t *const ctx,
const dictionary_t *const dict) {
(void)ctx;
if (dict && dict->content) ERROR("dictionary not supported");
}
#endif
/******* END DICTIONARY PARSING ***********************************************/
/******* IO STREAM OPERATIONS *************************************************/
/// Reads `num` bits from a bitstream, and updates the internal offset
static inline u64 IO_read_bits(istream_t *const in, const int num_bits) {
if (num_bits > 64 || num_bits <= 0) {
ERROR("Attempt to read an invalid number of bits");
}
const size_t bytes = (num_bits + in->bit_offset + 7) / 8;
const size_t full_bytes = (num_bits + in->bit_offset) / 8;
if (bytes > in->len) {
INP_SIZE();
}
const u64 result = read_bits_LE(in->ptr, num_bits, in->bit_offset);
in->bit_offset = (num_bits + in->bit_offset) % 8;
in->ptr += full_bytes;
in->len -= full_bytes;
return result;
}
/// If a non-zero number of bits have been read from the current byte, advance
/// the offset to the next byte
static inline void IO_rewind_bits(istream_t *const in, int num_bits) {
if (num_bits < 0) {
ERROR("Attempting to rewind stream by a negative number of bits");
}
// move the offset back by `num_bits` bits
const int new_offset = in->bit_offset - num_bits;
// determine the number of whole bytes we have to rewind, rounding up to an
// integer number (e.g. if `new_offset == -5`, `bytes == 1`)
const i64 bytes = -(new_offset - 7) / 8;
in->ptr -= bytes;
in->len += bytes;
// make sure the resulting `bit_offset` is positive, as mod in C does not
// convert numbers from negative to positive (e.g. -22 % 8 == -6)
in->bit_offset = ((new_offset % 8) + 8) % 8;
}
/// If the remaining bits in a byte will be unused, advance to the end of the
/// byte
static inline void IO_align_stream(istream_t *const in) {
if (in->bit_offset != 0) {
if (in->len == 0) {
INP_SIZE();
}
in->ptr++;
in->len--;
in->bit_offset = 0;
}
}
/// Write the given byte into the output stream
static inline void IO_write_byte(ostream_t *const out, u8 symb) {
if (out->len == 0) {
OUT_SIZE();
}
out->ptr[0] = symb;
out->ptr++;
out->len--;
}
/// Returns the number of bytes left to be read in this stream. The stream must
/// be byte aligned.
static inline size_t IO_istream_len(const istream_t *const in) {
return in->len;
}
/// Returns a pointer where `len` bytes can be read, and advances the internal
/// state. The stream must be byte aligned.
static inline const u8 *IO_get_read_ptr(istream_t *const in, size_t len) {
if (len > in->len) {
INP_SIZE();
}
if (in->bit_offset != 0) {
ERROR("Attempting to operate on a non-byte aligned stream");
}
const u8 *const ptr = in->ptr;
in->ptr += len;
in->len -= len;
return ptr;
}
/// Returns a pointer to write `len` bytes to, and advances the internal state
static inline u8 *IO_get_write_ptr(ostream_t *const out, size_t len) {
if (len > out->len) {
OUT_SIZE();
}
u8 *const ptr = out->ptr;
out->ptr += len;
out->len -= len;
return ptr;
}
/// Advance the inner state by `len` bytes
static inline void IO_advance_input(istream_t *const in, size_t len) {
if (len > in->len) {
INP_SIZE();
}
if (in->bit_offset != 0) {
ERROR("Attempting to operate on a non-byte aligned stream");
}
in->ptr += len;
in->len -= len;
}
/// Returns an `ostream_t` constructed from the given pointer and length
static inline ostream_t IO_make_ostream(u8 *out, size_t len) {
return (ostream_t) { out, len };
}
/// Returns an `istream_t` constructed from the given pointer and length
static inline istream_t IO_make_istream(const u8 *in, size_t len) {
return (istream_t) { in, len, 0 };
}
/// Returns an `istream_t` with the same base as `in`, and length `len`
/// Then, advance `in` to account for the consumed bytes
/// `in` must be byte aligned
static inline istream_t IO_make_sub_istream(istream_t *const in, size_t len) {
// Consume `len` bytes of the parent stream
const u8 *const ptr = IO_get_read_ptr(in, len);
// Make a substream using the pointer to those `len` bytes
return IO_make_istream(ptr, len);
}
/******* END IO STREAM OPERATIONS *********************************************/
/******* BITSTREAM OPERATIONS *************************************************/
/// Read `num` bits (up to 64) from `src + offset`, where `offset` is in bits
static inline u64 read_bits_LE(const u8 *src, const int num_bits,
const size_t offset) {
if (num_bits > 64) {
ERROR("Attempt to read an invalid number of bits");
}
// Skip over bytes that aren't in range
src += offset / 8;
size_t bit_offset = offset % 8;
u64 res = 0;
int shift = 0;
int left = num_bits;
while (left > 0) {
u64 mask = left >= 8 ? 0xff : (((u64)1 << left) - 1);
// Read the next byte, shift it to account for the offset, and then mask
// out the top part if we don't need all the bits
res += (((u64)*src++ >> bit_offset) & mask) << shift;
shift += 8 - bit_offset;
left -= 8 - bit_offset;
bit_offset = 0;
}
return res;
}
/// Read bits from the end of a HUF or FSE bitstream. `offset` is in bits, so
/// it updates `offset` to `offset - bits`, and then reads `bits` bits from
/// `src + offset`. If the offset becomes negative, the extra bits at the
/// bottom are filled in with `0` bits instead of reading from before `src`.
static inline u64 STREAM_read_bits(const u8 *const src, const int bits,
i64 *const offset) {
*offset = *offset - bits;
size_t actual_off = *offset;
size_t actual_bits = bits;
// Don't actually read bits from before the start of src, so if `*offset <
// 0` fix actual_off and actual_bits to reflect the quantity to read
if (*offset < 0) {
actual_bits += *offset;
actual_off = 0;
}
u64 res = read_bits_LE(src, actual_bits, actual_off);
if (*offset < 0) {
// Fill in the bottom "overflowed" bits with 0's
res = -*offset >= 64 ? 0 : (res << -*offset);
}
return res;
}
/******* END BITSTREAM OPERATIONS *********************************************/
/******* BIT COUNTING OPERATIONS **********************************************/
/// Returns `x`, where `2^x` is the largest power of 2 less than or equal to
/// `num`, or `-1` if `num == 0`.
static inline int highest_set_bit(const u64 num) {
for (int i = 63; i >= 0; i--) {
if (((u64)1 << i) <= num) {
return i;
}
}
return -1;
}
/******* END BIT COUNTING OPERATIONS ******************************************/
/******* HUFFMAN PRIMITIVES ***************************************************/
static inline u8 HUF_decode_symbol(const HUF_dtable *const dtable,
u16 *const state, const u8 *const src,
i64 *const offset) {
// Look up the symbol and number of bits to read
const u8 symb = dtable->symbols[*state];
const u8 bits = dtable->num_bits[*state];
const u16 rest = STREAM_read_bits(src, bits, offset);
// Shift `bits` bits out of the state, keeping the low order bits that
// weren't necessary to determine this symbol. Then add in the new bits
// read from the stream.
*state = ((*state << bits) + rest) & (((u16)1 << dtable->max_bits) - 1);
return symb;
}
static inline void HUF_init_state(const HUF_dtable *const dtable,
u16 *const state, const u8 *const src,
i64 *const offset) {
// Read in a full `dtable->max_bits` bits to initialize the state
const u8 bits = dtable->max_bits;
*state = STREAM_read_bits(src, bits, offset);
}
static size_t HUF_decompress_1stream(const HUF_dtable *const dtable,
ostream_t *const out,
istream_t *const in) {
const size_t len = IO_istream_len(in);
if (len == 0) {
INP_SIZE();
}
const u8 *const src = IO_get_read_ptr(in, len);
// "Each bitstream must be read backward, that is starting from the end down
// to the beginning. Therefore it's necessary to know the size of each
// bitstream.
//
// It's also necessary to know exactly which bit is the latest. This is
// detected by a final bit flag : the highest bit of latest byte is a
// final-bit-flag. Consequently, a last byte of 0 is not possible. And the
// final-bit-flag itself is not part of the useful bitstream. Hence, the
// last byte contains between 0 and 7 useful bits."
const int padding = 8 - highest_set_bit(src[len - 1]);
// Offset starts at the end because HUF streams are read backwards
i64 bit_offset = len * 8 - padding;
u16 state;
HUF_init_state(dtable, &state, src, &bit_offset);
size_t symbols_written = 0;
while (bit_offset > -dtable->max_bits) {
// Iterate over the stream, decoding one symbol at a time
IO_write_byte(out, HUF_decode_symbol(dtable, &state, src, &bit_offset));
symbols_written++;
}
// "The process continues up to reading the required number of symbols per
// stream. If a bitstream is not entirely and exactly consumed, hence
// reaching exactly its beginning position with all bits consumed, the
// decoding process is considered faulty."
// When all symbols have been decoded, the final state value shouldn't have
// any data from the stream, so it should have "read" dtable->max_bits from
// before the start of `src`
// Therefore `offset`, the edge to start reading new bits at, should be
// dtable->max_bits before the start of the stream
if (bit_offset != -dtable->max_bits) {
CORRUPTION();
}
return symbols_written;
}
static size_t HUF_decompress_4stream(const HUF_dtable *const dtable,
ostream_t *const out, istream_t *const in) {
// "Compressed size is provided explicitly : in the 4-streams variant,
// bitstreams are preceded by 3 unsigned little-endian 16-bits values. Each
// value represents the compressed size of one stream, in order. The last
// stream size is deducted from total compressed size and from previously
// decoded stream sizes"
const size_t csize1 = IO_read_bits(in, 16);
const size_t csize2 = IO_read_bits(in, 16);
const size_t csize3 = IO_read_bits(in, 16);
istream_t in1 = IO_make_sub_istream(in, csize1);
istream_t in2 = IO_make_sub_istream(in, csize2);
istream_t in3 = IO_make_sub_istream(in, csize3);
istream_t in4 = IO_make_sub_istream(in, IO_istream_len(in));
size_t total_output = 0;
// Decode each stream independently for simplicity
// If we wanted to we could decode all 4 at the same time for speed,
// utilizing more execution units
total_output += HUF_decompress_1stream(dtable, out, &in1);
total_output += HUF_decompress_1stream(dtable, out, &in2);
total_output += HUF_decompress_1stream(dtable, out, &in3);
total_output += HUF_decompress_1stream(dtable, out, &in4);
return total_output;
}
/// Initializes a Huffman table using canonical Huffman codes
/// For more explanation on canonical Huffman codes see
/// http://www.cs.uofs.edu/~mccloske/courses/cmps340/huff_canonical_dec2015.html
/// Codes within a level are allocated in symbol order (i.e. smaller symbols get
/// earlier codes)
static void HUF_init_dtable(HUF_dtable *const table, const u8 *const bits,
const int num_symbs) {
memset(table, 0, sizeof(HUF_dtable));
if (num_symbs > HUF_MAX_SYMBS) {
ERROR("Too many symbols for Huffman");
}
u8 max_bits = 0;
u16 rank_count[HUF_MAX_BITS + 1];
memset(rank_count, 0, sizeof(rank_count));
// Count the number of symbols for each number of bits, and determine the
// depth of the tree
for (int i = 0; i < num_symbs; i++) {
if (bits[i] > HUF_MAX_BITS) {
ERROR("Huffman table depth too large");
}
max_bits = MAX(max_bits, bits[i]);
rank_count[bits[i]]++;
}
const size_t table_size = 1 << max_bits;
table->max_bits = max_bits;
table->symbols = malloc(table_size);
table->num_bits = malloc(table_size);
if (!table->symbols || !table->num_bits) {
free(table->symbols);
free(table->num_bits);
BAD_ALLOC();
}
// "Symbols are sorted by Weight. Within same Weight, symbols keep natural
// order. Symbols with a Weight of zero are removed. Then, starting from
// lowest weight, prefix codes are distributed in order."
u32 rank_idx[HUF_MAX_BITS + 1];
// Initialize the starting codes for each rank (number of bits)
rank_idx[max_bits] = 0;
for (int i = max_bits; i >= 1; i--) {
rank_idx[i - 1] = rank_idx[i] + rank_count[i] * (1 << (max_bits - i));
// The entire range takes the same number of bits so we can memset it
memset(&table->num_bits[rank_idx[i]], i, rank_idx[i - 1] - rank_idx[i]);
}
if (rank_idx[0] != table_size) {
CORRUPTION();
}
// Allocate codes and fill in the table
for (int i = 0; i < num_symbs; i++) {
if (bits[i] != 0) {
// Allocate a code for this symbol and set its range in the table
const u16 code = rank_idx[bits[i]];
// Since the code doesn't care about the bottom `max_bits - bits[i]`
// bits of state, it gets a range that spans all possible values of
// the lower bits
const u16 len = 1 << (max_bits - bits[i]);
memset(&table->symbols[code], i, len);
rank_idx[bits[i]] += len;
}
}
}
static void HUF_init_dtable_usingweights(HUF_dtable *const table,
const u8 *const weights,
const int num_symbs) {
// +1 because the last weight is not transmitted in the header
if (num_symbs + 1 > HUF_MAX_SYMBS) {
ERROR("Too many symbols for Huffman");
}
u8 bits[HUF_MAX_SYMBS];
u64 weight_sum = 0;
for (int i = 0; i < num_symbs; i++) {
// Weights are in the same range as bit count
if (weights[i] > HUF_MAX_BITS) {
CORRUPTION();
}
weight_sum += weights[i] > 0 ? (u64)1 << (weights[i] - 1) : 0;
}
// Find the first power of 2 larger than the sum
const int max_bits = highest_set_bit(weight_sum) + 1;
const u64 left_over = ((u64)1 << max_bits) - weight_sum;
// If the left over isn't a power of 2, the weights are invalid
if (left_over & (left_over - 1)) {
CORRUPTION();
}
// left_over is used to find the last weight as it's not transmitted
// by inverting 2^(weight - 1) we can determine the value of last_weight
const int last_weight = highest_set_bit(left_over) + 1;
for (int i = 0; i < num_symbs; i++) {
// "Number_of_Bits = Number_of_Bits ? Max_Number_of_Bits + 1 - Weight : 0"
bits[i] = weights[i] > 0 ? (max_bits + 1 - weights[i]) : 0;
}
bits[num_symbs] =
max_bits + 1 - last_weight; // Last weight is always non-zero
HUF_init_dtable(table, bits, num_symbs + 1);
}
static void HUF_free_dtable(HUF_dtable *const dtable) {
free(dtable->symbols);
free(dtable->num_bits);
memset(dtable, 0, sizeof(HUF_dtable));
}
/******* END HUFFMAN PRIMITIVES ***********************************************/
/******* FSE PRIMITIVES *******************************************************/
/// For more description of FSE see
/// https://github.com/Cyan4973/FiniteStateEntropy/
/// Allow a symbol to be decoded without updating state
static inline u8 FSE_peek_symbol(const FSE_dtable *const dtable,
const u16 state) {
return dtable->symbols[state];
}
/// Consumes bits from the input and uses the current state to determine the
/// next state
static inline void FSE_update_state(const FSE_dtable *const dtable,
u16 *const state, const u8 *const src,
i64 *const offset) {
const u8 bits = dtable->num_bits[*state];
const u16 rest = STREAM_read_bits(src, bits, offset);
*state = dtable->new_state_base[*state] + rest;
}
/// Decodes a single FSE symbol and updates the offset
static inline u8 FSE_decode_symbol(const FSE_dtable *const dtable,
u16 *const state, const u8 *const src,
i64 *const offset) {
const u8 symb = FSE_peek_symbol(dtable, *state);
FSE_update_state(dtable, state, src, offset);
return symb;
}
static inline void FSE_init_state(const FSE_dtable *const dtable,
u16 *const state, const u8 *const src,
i64 *const offset) {
// Read in a full `accuracy_log` bits to initialize the state
const u8 bits = dtable->accuracy_log;
*state = STREAM_read_bits(src, bits, offset);
}
static size_t FSE_decompress_interleaved2(const FSE_dtable *const dtable,
ostream_t *const out,
istream_t *const in) {
const size_t len = IO_istream_len(in);
if (len == 0) {
INP_SIZE();
}
const u8 *const src = IO_get_read_ptr(in, len);
// "Each bitstream must be read backward, that is starting from the end down
// to the beginning. Therefore it's necessary to know the size of each
// bitstream.
//
// It's also necessary to know exactly which bit is the latest. This is
// detected by a final bit flag : the highest bit of latest byte is a
// final-bit-flag. Consequently, a last byte of 0 is not possible. And the
// final-bit-flag itself is not part of the useful bitstream. Hence, the
// last byte contains between 0 and 7 useful bits."
const int padding = 8 - highest_set_bit(src[len - 1]);
i64 offset = len * 8 - padding;
u16 state1, state2;
// "The first state (State1) encodes the even indexed symbols, and the
// second (State2) encodes the odd indexes. State1 is initialized first, and
// then State2, and they take turns decoding a single symbol and updating
// their state."
FSE_init_state(dtable, &state1, src, &offset);
FSE_init_state(dtable, &state2, src, &offset);
// Decode until we overflow the stream
// Since we decode in reverse order, overflowing the stream is offset going
// negative
size_t symbols_written = 0;
while (1) {
// "The number of symbols to decode is determined by tracking bitStream
// overflow condition: If updating state after decoding a symbol would
// require more bits than remain in the stream, it is assumed the extra
// bits are 0. Then, the symbols for each of the final states are
// decoded and the process is complete."
IO_write_byte(out, FSE_decode_symbol(dtable, &state1, src, &offset));
symbols_written++;
if (offset < 0) {
// There's still a symbol to decode in state2
IO_write_byte(out, FSE_peek_symbol(dtable, state2));
symbols_written++;
break;
}
IO_write_byte(out, FSE_decode_symbol(dtable, &state2, src, &offset));
symbols_written++;
if (offset < 0) {
// There's still a symbol to decode in state1
IO_write_byte(out, FSE_peek_symbol(dtable, state1));
symbols_written++;
break;
}
}
return symbols_written;
}
static void FSE_init_dtable(FSE_dtable *const dtable,
const i16 *const norm_freqs, const int num_symbs,
const int accuracy_log) {
if (accuracy_log > FSE_MAX_ACCURACY_LOG) {
ERROR("FSE accuracy too large");
}
if (num_symbs > FSE_MAX_SYMBS) {
ERROR("Too many symbols for FSE");
}
dtable->accuracy_log = accuracy_log;
const size_t size = (size_t)1 << accuracy_log;
dtable->symbols = malloc(size * sizeof(u8));
dtable->num_bits = malloc(size * sizeof(u8));
dtable->new_state_base = malloc(size * sizeof(u16));
if (!dtable->symbols || !dtable->num_bits || !dtable->new_state_base) {
BAD_ALLOC();
}
// Used to determine how many bits need to be read for each state,
// and where the destination range should start
// Needs to be u16 because max value is 2 * max number of symbols,
// which can be larger than a byte can store
u16 state_desc[FSE_MAX_SYMBS];
// "Symbols are scanned in their natural order for "less than 1"
// probabilities. Symbols with this probability are being attributed a
// single cell, starting from the end of the table. These symbols define a
// full state reset, reading Accuracy_Log bits."
int high_threshold = size;
for (int s = 0; s < num_symbs; s++) {
// Scan for low probability symbols to put at the top
if (norm_freqs[s] == -1) {
dtable->symbols[--high_threshold] = s;
state_desc[s] = 1;
}
}
// "All remaining symbols are sorted in their natural order. Starting from
// symbol 0 and table position 0, each symbol gets attributed as many cells
- // as its probability. Cell allocation is spreaded, not linear."
+ // as its probability. Cell allocation is spread, not linear."
// Place the rest in the table
const u16 step = (size >> 1) + (size >> 3) + 3;
const u16 mask = size - 1;
u16 pos = 0;
for (int s = 0; s < num_symbs; s++) {
if (norm_freqs[s] <= 0) {
continue;
}
state_desc[s] = norm_freqs[s];
for (int i = 0; i < norm_freqs[s]; i++) {
// Give `norm_freqs[s]` states to symbol s
dtable->symbols[pos] = s;
// "A position is skipped if already occupied, typically by a "less
// than 1" probability symbol."
do {
pos = (pos + step) & mask;
} while (pos >=
high_threshold);
// Note: no other collision checking is necessary as `step` is
// coprime to `size`, so the cycle will visit each position exactly
// once
}
}
if (pos != 0) {
CORRUPTION();
}
// Now we can fill baseline and num bits
for (size_t i = 0; i < size; i++) {
u8 symbol = dtable->symbols[i];
u16 next_state_desc = state_desc[symbol]++;
// Fills in the table appropriately, next_state_desc increases by symbol
// over time, decreasing number of bits
dtable->num_bits[i] = (u8)(accuracy_log - highest_set_bit(next_state_desc));
// Baseline increases until the bit threshold is passed, at which point
// it resets to 0
dtable->new_state_base[i] =
((u16)next_state_desc << dtable->num_bits[i]) - size;
}
}
/// Decode an FSE header as defined in the Zstandard format specification and
/// use the decoded frequencies to initialize a decoding table.
static void FSE_decode_header(FSE_dtable *const dtable, istream_t *const in,
const int max_accuracy_log) {
// "An FSE distribution table describes the probabilities of all symbols
// from 0 to the last present one (included) on a normalized scale of 1 <<
// Accuracy_Log .
//
// It's a bitstream which is read forward, in little-endian fashion. It's
// not necessary to know its exact size, since it will be discovered and
// reported by the decoding process.
if (max_accuracy_log > FSE_MAX_ACCURACY_LOG) {
ERROR("FSE accuracy too large");
}
// The bitstream starts by reporting on which scale it operates.
// Accuracy_Log = low4bits + 5. Note that maximum Accuracy_Log for literal
// and match lengths is 9, and for offsets is 8. Higher values are
// considered errors."
const int accuracy_log = 5 + IO_read_bits(in, 4);
if (accuracy_log > max_accuracy_log) {
ERROR("FSE accuracy too large");
}
// "Then follows each symbol value, from 0 to last present one. The number
// of bits used by each field is variable. It depends on :
//
// Remaining probabilities + 1 : example : Presuming an Accuracy_Log of 8,
// and presuming 100 probabilities points have already been distributed, the
// decoder may read any value from 0 to 255 - 100 + 1 == 156 (inclusive).
// Therefore, it must read log2sup(156) == 8 bits.
//
// Value decoded : small values use 1 less bit : example : Presuming values
// from 0 to 156 (inclusive) are possible, 255-156 = 99 values are remaining
// in an 8-bits field. They are used this way : first 99 values (hence from
// 0 to 98) use only 7 bits, values from 99 to 156 use 8 bits. "
i32 remaining = 1 << accuracy_log;
i16 frequencies[FSE_MAX_SYMBS];
int symb = 0;
while (remaining > 0 && symb < FSE_MAX_SYMBS) {
// Log of the number of possible values we could read
int bits = highest_set_bit(remaining + 1) + 1;
u16 val = IO_read_bits(in, bits);
// Try to mask out the lower bits to see if it qualifies for the "small
// value" threshold
const u16 lower_mask = ((u16)1 << (bits - 1)) - 1;
const u16 threshold = ((u16)1 << bits) - 1 - (remaining + 1);
if ((val & lower_mask) < threshold) {
IO_rewind_bits(in, 1);
val = val & lower_mask;
} else if (val > lower_mask) {
val = val - threshold;
}
// "Probability is obtained from Value decoded by following formula :
// Proba = value - 1"
const i16 proba = (i16)val - 1;
// "It means value 0 becomes negative probability -1. -1 is a special
// probability, which means "less than 1". Its effect on distribution
// table is described in next paragraph. For the purpose of calculating
// cumulated distribution, it counts as one."
remaining -= proba < 0 ? -proba : proba;
frequencies[symb] = proba;
symb++;
// "When a symbol has a probability of zero, it is followed by a 2-bits
// repeat flag. This repeat flag tells how many probabilities of zeroes
// follow the current one. It provides a number ranging from 0 to 3. If
// it is a 3, another 2-bits repeat flag follows, and so on."
if (proba == 0) {
// Read the next two bits to see how many more 0s
int repeat = IO_read_bits(in, 2);
while (1) {
for (int i = 0; i < repeat && symb < FSE_MAX_SYMBS; i++) {
frequencies[symb++] = 0;
}
if (repeat == 3) {
repeat = IO_read_bits(in, 2);
} else {
break;
}
}
}
}
IO_align_stream(in);
// "When last symbol reaches cumulated total of 1 << Accuracy_Log, decoding
// is complete. If the last symbol makes cumulated total go above 1 <<
// Accuracy_Log, distribution is considered corrupted."
if (remaining != 0 || symb >= FSE_MAX_SYMBS) {
CORRUPTION();
}
// Initialize the decoding table using the determined weights
FSE_init_dtable(dtable, frequencies, symb, accuracy_log);
}
static void FSE_init_dtable_rle(FSE_dtable *const dtable, const u8 symb) {
dtable->symbols = malloc(sizeof(u8));
dtable->num_bits = malloc(sizeof(u8));
dtable->new_state_base = malloc(sizeof(u16));
if (!dtable->symbols || !dtable->num_bits || !dtable->new_state_base) {
BAD_ALLOC();
}
// This setup will always have a state of 0, always return symbol `symb`,
// and never consume any bits
dtable->symbols[0] = symb;
dtable->num_bits[0] = 0;
dtable->new_state_base[0] = 0;
dtable->accuracy_log = 0;
}
static void FSE_free_dtable(FSE_dtable *const dtable) {
free(dtable->symbols);
free(dtable->num_bits);
free(dtable->new_state_base);
memset(dtable, 0, sizeof(FSE_dtable));
}
/******* END FSE PRIMITIVES ***************************************************/
diff --git a/sys/contrib/zstd/doc/educational_decoder/zstd_decompress.h b/sys/contrib/zstd/doc/educational_decoder/zstd_decompress.h
index 2b44eee95cec..d89c8352324a 100644
--- a/sys/contrib/zstd/doc/educational_decoder/zstd_decompress.h
+++ b/sys/contrib/zstd/doc/educational_decoder/zstd_decompress.h
@@ -1,61 +1,61 @@
/*
- * Copyright (c) 2016-2020, Facebook, Inc.
+ * Copyright (c) Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include <stddef.h> /* size_t */
/******* EXPOSED TYPES ********************************************************/
/*
* Contains the parsed contents of a dictionary
* This includes Huffman and FSE tables used for decoding and data on offsets
*/
typedef struct dictionary_s dictionary_t;
/******* END EXPOSED TYPES ****************************************************/
/******* DECOMPRESSION FUNCTIONS **********************************************/
/// Zstandard decompression functions.
/// `dst` must point to a space at least as large as the reconstructed output.
size_t ZSTD_decompress(void *const dst, const size_t dst_len,
const void *const src, const size_t src_len);
/// If `dict != NULL` and `dict_len >= 8`, does the same thing as
/// `ZSTD_decompress` but uses the provided dict
size_t ZSTD_decompress_with_dict(void *const dst, const size_t dst_len,
const void *const src, const size_t src_len,
dictionary_t* parsed_dict);
/// Get the decompressed size of an input stream so memory can be allocated in
/// advance
/// Returns -1 if the size can't be determined
/// Assumes decompression of a single frame
size_t ZSTD_get_decompressed_size(const void *const src, const size_t src_len);
/******* END DECOMPRESSION FUNCTIONS ******************************************/
/******* DICTIONARY MANAGEMENT ***********************************************/
/*
* Return a valid dictionary_t pointer for use with dictionary initialization
* or decompression
*/
dictionary_t* create_dictionary(void);
/*
* Parse a provided dictionary blob for use in decompression
* `src` -- must point to memory space representing the dictionary
* `src_len` -- must provide the dictionary size
* `dict` -- will contain the parsed contents of the dictionary and
* can be used for decompression
*/
void parse_dictionary(dictionary_t *const dict, const void *src,
size_t src_len);
/*
* Free internal Huffman tables, FSE tables, and dictionary content
*/
void free_dictionary(dictionary_t *const dict);
/******* END DICTIONARY MANAGEMENT *******************************************/
diff --git a/sys/contrib/zstd/doc/zstd_compression_format.md b/sys/contrib/zstd/doc/zstd_compression_format.md
index 0af6bf91a204..fc09bd5538c5 100644
--- a/sys/contrib/zstd/doc/zstd_compression_format.md
+++ b/sys/contrib/zstd/doc/zstd_compression_format.md
@@ -1,1692 +1,1692 @@
Zstandard Compression Format
============================
### Notices
-Copyright (c) 2016-2020 Yann Collet, Facebook, Inc.
+Copyright (c) 2016-2021 Yann Collet, Facebook, Inc.
Permission is granted to copy and distribute this document
for any purpose and without charge,
including translations into other languages
and incorporation into compilations,
provided that the copyright notice and this notice are preserved,
and that any substantive changes or deletions from the original
are clearly marked.
Distribution of this document is unlimited.
### Version
0.3.7 (2020-12-09)
Introduction
------------
The purpose of this document is to define a lossless compressed data format,
that is independent of CPU type, operating system,
file system and character set, suitable for
file compression, pipe and streaming compression,
using the [Zstandard algorithm](http://www.zstandard.org).
The text of the specification assumes a basic background in programming
at the level of bits and other primitive data representations.
The data can be produced or consumed,
even for an arbitrarily long sequentially presented input data stream,
using only an a priori bounded amount of intermediate storage,
and hence can be used in data communications.
The format uses the Zstandard compression method,
and optional [xxHash-64 checksum method](http://www.xxhash.org),
for detection of data corruption.
The data format defined by this specification
does not attempt to allow random access to compressed data.
Unless otherwise indicated below,
a compliant compressor must produce data sets
that conform to the specifications presented here.
It doesn’t need to support all options though.
A compliant decompressor must be able to decompress
at least one working set of parameters
that conforms to the specifications presented here.
It may also ignore informative fields, such as checksum.
Whenever it does not support a parameter defined in the compressed stream,
it must produce a non-ambiguous error code and associated error message
explaining which parameter is unsupported.
This specification is intended for use by implementers of software
to compress data into Zstandard format and/or decompress data from Zstandard format.
The Zstandard format is supported by an open source reference implementation,
written in portable C, and available at : https://github.com/facebook/zstd .
### Overall conventions
In this document:
- square brackets i.e. `[` and `]` are used to indicate optional fields or parameters.
- the naming convention for identifiers is `Mixed_Case_With_Underscores`
### Definitions
Content compressed by Zstandard is transformed into a Zstandard __frame__.
Multiple frames can be appended into a single file or stream.
A frame is completely independent, has a defined beginning and end,
and a set of parameters which tells the decoder how to decompress it.
A frame encapsulates one or multiple __blocks__.
Each block contains arbitrary content, which is described by its header,
and has a guaranteed maximum content size, which depends on frame parameters.
Unlike frames, each block depends on previous blocks for proper decoding.
However, each block can be decompressed without waiting for its successor,
allowing streaming operations.
Overview
---------
- [Frames](#frames)
- [Zstandard frames](#zstandard-frames)
- [Blocks](#blocks)
- [Literals Section](#literals-section)
- [Sequences Section](#sequences-section)
- [Sequence Execution](#sequence-execution)
- [Skippable frames](#skippable-frames)
- [Entropy Encoding](#entropy-encoding)
- [FSE](#fse)
- [Huffman Coding](#huffman-coding)
- [Dictionary Format](#dictionary-format)
Frames
------
Zstandard compressed data is made of one or more __frames__.
Each frame is independent and can be decompressed independently of other frames.
The decompressed content of multiple concatenated frames is the concatenation of
each frame decompressed content.
There are two frame formats defined by Zstandard:
Zstandard frames and Skippable frames.
Zstandard frames contain compressed data, while
skippable frames contain custom user metadata.
## Zstandard frames
The structure of a single Zstandard frame is following:
| `Magic_Number` | `Frame_Header` |`Data_Block`| [More data blocks] | [`Content_Checksum`] |
|:--------------:|:--------------:|:----------:| ------------------ |:--------------------:|
| 4 bytes | 2-14 bytes | n bytes | | 0-4 bytes |
__`Magic_Number`__
4 Bytes, __little-endian__ format.
Value : 0xFD2FB528
Note: This value was selected to be less probable to find at the beginning of some random file.
It avoids trivial patterns (0x00, 0xFF, repeated bytes, increasing bytes, etc.),
contains byte values outside of ASCII range,
and doesn't map into UTF8 space.
It reduces the chances that a text file represent this value by accident.
__`Frame_Header`__
2 to 14 Bytes, detailed in [`Frame_Header`](#frame_header).
__`Data_Block`__
Detailed in [`Blocks`](#blocks).
That’s where compressed data is stored.
__`Content_Checksum`__
An optional 32-bit checksum, only present if `Content_Checksum_flag` is set.
The content checksum is the result
of [xxh64() hash function](http://www.xxhash.org)
digesting the original (decoded) data as input, and a seed of zero.
The low 4 bytes of the checksum are stored in __little-endian__ format.
### `Frame_Header`
The `Frame_Header` has a variable size, with a minimum of 2 bytes,
and up to 14 bytes depending on optional parameters.
The structure of `Frame_Header` is following:
| `Frame_Header_Descriptor` | [`Window_Descriptor`] | [`Dictionary_ID`] | [`Frame_Content_Size`] |
| ------------------------- | --------------------- | ----------------- | ---------------------- |
| 1 byte | 0-1 byte | 0-4 bytes | 0-8 bytes |
#### `Frame_Header_Descriptor`
The first header's byte is called the `Frame_Header_Descriptor`.
It describes which other fields are present.
Decoding this byte is enough to tell the size of `Frame_Header`.
| Bit number | Field name |
| ---------- | ---------- |
| 7-6 | `Frame_Content_Size_flag` |
| 5 | `Single_Segment_flag` |
| 4 | `Unused_bit` |
| 3 | `Reserved_bit` |
| 2 | `Content_Checksum_flag` |
| 1-0 | `Dictionary_ID_flag` |
In this table, bit 7 is the highest bit, while bit 0 is the lowest one.
__`Frame_Content_Size_flag`__
This is a 2-bits flag (`= Frame_Header_Descriptor >> 6`),
specifying if `Frame_Content_Size` (the decompressed data size)
is provided within the header.
`Flag_Value` provides `FCS_Field_Size`,
which is the number of bytes used by `Frame_Content_Size`
according to the following table:
| `Flag_Value` | 0 | 1 | 2 | 3 |
| -------------- | ------ | --- | --- | --- |
|`FCS_Field_Size`| 0 or 1 | 2 | 4 | 8 |
When `Flag_Value` is `0`, `FCS_Field_Size` depends on `Single_Segment_flag` :
if `Single_Segment_flag` is set, `FCS_Field_Size` is 1.
Otherwise, `FCS_Field_Size` is 0 : `Frame_Content_Size` is not provided.
__`Single_Segment_flag`__
If this flag is set,
data must be regenerated within a single continuous memory segment.
In this case, `Window_Descriptor` byte is skipped,
but `Frame_Content_Size` is necessarily present.
As a consequence, the decoder must allocate a memory segment
of size equal or larger than `Frame_Content_Size`.
In order to preserve the decoder from unreasonable memory requirements,
a decoder is allowed to reject a compressed frame
which requests a memory size beyond decoder's authorized range.
For broader compatibility, decoders are recommended to support
memory sizes of at least 8 MB.
This is only a recommendation,
each decoder is free to support higher or lower limits,
depending on local limitations.
__`Unused_bit`__
A decoder compliant with this specification version shall not interpret this bit.
It might be used in any future version,
to signal a property which is transparent to properly decode the frame.
An encoder compliant with this specification version must set this bit to zero.
__`Reserved_bit`__
This bit is reserved for some future feature.
Its value _must be zero_.
A decoder compliant with this specification version must ensure it is not set.
This bit may be used in a future revision,
to signal a feature that must be interpreted to decode the frame correctly.
__`Content_Checksum_flag`__
If this flag is set, a 32-bits `Content_Checksum` will be present at frame's end.
See `Content_Checksum` paragraph.
__`Dictionary_ID_flag`__
This is a 2-bits flag (`= FHD & 3`),
telling if a dictionary ID is provided within the header.
It also specifies the size of this field as `DID_Field_Size`.
|`Flag_Value` | 0 | 1 | 2 | 3 |
| -------------- | --- | --- | --- | --- |
|`DID_Field_Size`| 0 | 1 | 2 | 4 |
#### `Window_Descriptor`
Provides guarantees on minimum memory buffer required to decompress a frame.
This information is important for decoders to allocate enough memory.
The `Window_Descriptor` byte is optional.
When `Single_Segment_flag` is set, `Window_Descriptor` is not present.
In this case, `Window_Size` is `Frame_Content_Size`,
which can be any value from 0 to 2^64-1 bytes (16 ExaBytes).
| Bit numbers | 7-3 | 2-0 |
| ----------- | ---------- | ---------- |
| Field name | `Exponent` | `Mantissa` |
The minimum memory buffer size is called `Window_Size`.
It is described by the following formulas :
```
windowLog = 10 + Exponent;
windowBase = 1 << windowLog;
windowAdd = (windowBase / 8) * Mantissa;
Window_Size = windowBase + windowAdd;
```
The minimum `Window_Size` is 1 KB.
The maximum `Window_Size` is `(1<<41) + 7*(1<<38)` bytes, which is 3.75 TB.
In general, larger `Window_Size` tend to improve compression ratio,
but at the cost of memory usage.
To properly decode compressed data,
a decoder will need to allocate a buffer of at least `Window_Size` bytes.
In order to preserve decoder from unreasonable memory requirements,
a decoder is allowed to reject a compressed frame
which requests a memory size beyond decoder's authorized range.
For improved interoperability,
it's recommended for decoders to support `Window_Size` of up to 8 MB,
and it's recommended for encoders to not generate frame requiring `Window_Size` larger than 8 MB.
It's merely a recommendation though,
decoders are free to support larger or lower limits,
depending on local limitations.
#### `Dictionary_ID`
This is a variable size field, which contains
the ID of the dictionary required to properly decode the frame.
`Dictionary_ID` field is optional. When it's not present,
it's up to the decoder to know which dictionary to use.
`Dictionary_ID` field size is provided by `DID_Field_Size`.
`DID_Field_Size` is directly derived from value of `Dictionary_ID_flag`.
1 byte can represent an ID 0-255.
2 bytes can represent an ID 0-65535.
4 bytes can represent an ID 0-4294967295.
Format is __little-endian__.
It's allowed to represent a small ID (for example `13`)
with a large 4-bytes dictionary ID, even if it is less efficient.
A value of `0` has same meaning as no `Dictionary_ID`,
in which case the frame may or may not need a dictionary to be decoded,
and the ID of such a dictionary is not specified.
The decoder must know this information by other means.
#### `Frame_Content_Size`
This is the original (uncompressed) size. This information is optional.
`Frame_Content_Size` uses a variable number of bytes, provided by `FCS_Field_Size`.
`FCS_Field_Size` is provided by the value of `Frame_Content_Size_flag`.
`FCS_Field_Size` can be equal to 0 (not present), 1, 2, 4 or 8 bytes.
| `FCS_Field_Size` | Range |
| ---------------- | ---------- |
| 0 | unknown |
| 1 | 0 - 255 |
| 2 | 256 - 65791|
| 4 | 0 - 2^32-1 |
| 8 | 0 - 2^64-1 |
`Frame_Content_Size` format is __little-endian__.
When `FCS_Field_Size` is 1, 4 or 8 bytes, the value is read directly.
When `FCS_Field_Size` is 2, _the offset of 256 is added_.
It's allowed to represent a small size (for example `18`) using any compatible variant.
Blocks
-------
After `Magic_Number` and `Frame_Header`, there are some number of blocks.
Each frame must have at least one block,
but there is no upper limit on the number of blocks per frame.
The structure of a block is as follows:
| `Block_Header` | `Block_Content` |
|:--------------:|:---------------:|
| 3 bytes | n bytes |
__`Block_Header`__
`Block_Header` uses 3 bytes, written using __little-endian__ convention.
It contains 3 fields :
| `Last_Block` | `Block_Type` | `Block_Size` |
|:------------:|:------------:|:------------:|
| bit 0 | bits 1-2 | bits 3-23 |
__`Last_Block`__
The lowest bit signals if this block is the last one.
The frame will end after this last block.
It may be followed by an optional `Content_Checksum`
(see [Zstandard Frames](#zstandard-frames)).
__`Block_Type`__
The next 2 bits represent the `Block_Type`.
`Block_Type` influences the meaning of `Block_Size`.
There are 4 block types :
| Value | 0 | 1 | 2 | 3 |
| ------------ | ----------- | ----------- | ------------------ | --------- |
| `Block_Type` | `Raw_Block` | `RLE_Block` | `Compressed_Block` | `Reserved`|
- `Raw_Block` - this is an uncompressed block.
`Block_Content` contains `Block_Size` bytes.
- `RLE_Block` - this is a single byte, repeated `Block_Size` times.
`Block_Content` consists of a single byte.
On the decompression side, this byte must be repeated `Block_Size` times.
- `Compressed_Block` - this is a [Zstandard compressed block](#compressed-blocks),
explained later on.
`Block_Size` is the length of `Block_Content`, the compressed data.
The decompressed size is not known,
but its maximum possible value is guaranteed (see below)
- `Reserved` - this is not a block.
This value cannot be used with current version of this specification.
If such a value is present, it is considered corrupted data.
__`Block_Size`__
The upper 21 bits of `Block_Header` represent the `Block_Size`.
When `Block_Type` is `Compressed_Block` or `Raw_Block`,
`Block_Size` is the size of `Block_Content` (hence excluding `Block_Header`).
When `Block_Type` is `RLE_Block`, since `Block_Content`’s size is always 1,
`Block_Size` represents the number of times this byte must be repeated.
`Block_Size` is limited by `Block_Maximum_Size` (see below).
__`Block_Content`__ and __`Block_Maximum_Size`__
The size of `Block_Content` is limited by `Block_Maximum_Size`,
which is the smallest of:
- `Window_Size`
- 128 KB
`Block_Maximum_Size` is constant for a given frame.
This maximum is applicable to both the decompressed size
and the compressed size of any block in the frame.
The reasoning for this limit is that a decoder can read this information
at the beginning of a frame and use it to allocate buffers.
The guarantees on the size of blocks ensure that
the buffers will be large enough for any following block of the valid frame.
Compressed Blocks
-----------------
To decompress a compressed block, the compressed size must be provided
from `Block_Size` field within `Block_Header`.
A compressed block consists of 2 sections :
- [Literals Section](#literals-section)
- [Sequences Section](#sequences-section)
The results of the two sections are then combined to produce the decompressed
data in [Sequence Execution](#sequence-execution)
#### Prerequisites
To decode a compressed block, the following elements are necessary :
- Previous decoded data, up to a distance of `Window_Size`,
or beginning of the Frame, whichever is smaller.
- List of "recent offsets" from previous `Compressed_Block`.
- The previous Huffman tree, required by `Treeless_Literals_Block` type
- Previous FSE decoding tables, required by `Repeat_Mode`
for each symbol type (literals lengths, match lengths, offsets)
Note that decoding tables aren't always from the previous `Compressed_Block`.
- Every decoding table can come from a dictionary.
- The Huffman tree comes from the previous `Compressed_Literals_Block`.
Literals Section
----------------
All literals are regrouped in the first part of the block.
They can be decoded first, and then copied during [Sequence Execution],
or they can be decoded on the flow during [Sequence Execution].
Literals can be stored uncompressed or compressed using Huffman prefix codes.
When compressed, an optional tree description can be present,
followed by 1 or 4 streams.
| `Literals_Section_Header` | [`Huffman_Tree_Description`] | [jumpTable] | Stream1 | [Stream2] | [Stream3] | [Stream4] |
| ------------------------- | ---------------------------- | ----------- | ------- | --------- | --------- | --------- |
### `Literals_Section_Header`
Header is in charge of describing how literals are packed.
It's a byte-aligned variable-size bitfield, ranging from 1 to 5 bytes,
using __little-endian__ convention.
| `Literals_Block_Type` | `Size_Format` | `Regenerated_Size` | [`Compressed_Size`] |
| --------------------- | ------------- | ------------------ | ------------------- |
| 2 bits | 1 - 2 bits | 5 - 20 bits | 0 - 18 bits |
In this representation, bits on the left are the lowest bits.
__`Literals_Block_Type`__
This field uses 2 lowest bits of first byte, describing 4 different block types :
| `Literals_Block_Type` | Value |
| --------------------------- | ----- |
| `Raw_Literals_Block` | 0 |
| `RLE_Literals_Block` | 1 |
| `Compressed_Literals_Block` | 2 |
| `Treeless_Literals_Block` | 3 |
- `Raw_Literals_Block` - Literals are stored uncompressed.
- `RLE_Literals_Block` - Literals consist of a single byte value
repeated `Regenerated_Size` times.
- `Compressed_Literals_Block` - This is a standard Huffman-compressed block,
starting with a Huffman tree description.
See details below.
- `Treeless_Literals_Block` - This is a Huffman-compressed block,
using Huffman tree _from previous Huffman-compressed literals block_.
`Huffman_Tree_Description` will be skipped.
Note: If this mode is triggered without any previous Huffman-table in the frame
(or [dictionary](#dictionary-format)), this should be treated as data corruption.
__`Size_Format`__
`Size_Format` is divided into 2 families :
- For `Raw_Literals_Block` and `RLE_Literals_Block`,
it's only necessary to decode `Regenerated_Size`.
There is no `Compressed_Size` field.
- For `Compressed_Block` and `Treeless_Literals_Block`,
it's required to decode both `Compressed_Size`
and `Regenerated_Size` (the decompressed size).
It's also necessary to decode the number of streams (1 or 4).
For values spanning several bytes, convention is __little-endian__.
__`Size_Format` for `Raw_Literals_Block` and `RLE_Literals_Block`__ :
`Size_Format` uses 1 _or_ 2 bits.
Its value is : `Size_Format = (Literals_Section_Header[0]>>2) & 3`
- `Size_Format` == 00 or 10 : `Size_Format` uses 1 bit.
`Regenerated_Size` uses 5 bits (0-31).
`Literals_Section_Header` uses 1 byte.
`Regenerated_Size = Literals_Section_Header[0]>>3`
- `Size_Format` == 01 : `Size_Format` uses 2 bits.
`Regenerated_Size` uses 12 bits (0-4095).
`Literals_Section_Header` uses 2 bytes.
`Regenerated_Size = (Literals_Section_Header[0]>>4) + (Literals_Section_Header[1]<<4)`
- `Size_Format` == 11 : `Size_Format` uses 2 bits.
`Regenerated_Size` uses 20 bits (0-1048575).
`Literals_Section_Header` uses 3 bytes.
`Regenerated_Size = (Literals_Section_Header[0]>>4) + (Literals_Section_Header[1]<<4) + (Literals_Section_Header[2]<<12)`
Only Stream1 is present for these cases.
Note : it's allowed to represent a short value (for example `13`)
using a long format, even if it's less efficient.
__`Size_Format` for `Compressed_Literals_Block` and `Treeless_Literals_Block`__ :
`Size_Format` always uses 2 bits.
- `Size_Format` == 00 : _A single stream_.
Both `Regenerated_Size` and `Compressed_Size` use 10 bits (0-1023).
`Literals_Section_Header` uses 3 bytes.
- `Size_Format` == 01 : 4 streams.
Both `Regenerated_Size` and `Compressed_Size` use 10 bits (0-1023).
`Literals_Section_Header` uses 3 bytes.
- `Size_Format` == 10 : 4 streams.
Both `Regenerated_Size` and `Compressed_Size` use 14 bits (0-16383).
`Literals_Section_Header` uses 4 bytes.
- `Size_Format` == 11 : 4 streams.
Both `Regenerated_Size` and `Compressed_Size` use 18 bits (0-262143).
`Literals_Section_Header` uses 5 bytes.
Both `Compressed_Size` and `Regenerated_Size` fields follow __little-endian__ convention.
Note: `Compressed_Size` __includes__ the size of the Huffman Tree description
_when_ it is present.
#### Raw Literals Block
The data in Stream1 is `Regenerated_Size` bytes long,
it contains the raw literals data to be used during [Sequence Execution].
#### RLE Literals Block
Stream1 consists of a single byte which should be repeated `Regenerated_Size` times
to generate the decoded literals.
#### Compressed Literals Block and Treeless Literals Block
Both of these modes contain Huffman encoded data.
For `Treeless_Literals_Block`,
the Huffman table comes from previously compressed literals block,
or from a dictionary.
### `Huffman_Tree_Description`
This section is only present when `Literals_Block_Type` type is `Compressed_Literals_Block` (`2`).
The format of the Huffman tree description can be found at [Huffman Tree description](#huffman-tree-description).
The size of `Huffman_Tree_Description` is determined during decoding process,
it must be used to determine where streams begin.
`Total_Streams_Size = Compressed_Size - Huffman_Tree_Description_Size`.
### Jump Table
The Jump Table is only present when there are 4 Huffman-coded streams.
Reminder : Huffman compressed data consists of either 1 or 4 Huffman-coded streams.
If only one stream is present, it is a single bitstream occupying the entire
remaining portion of the literals block, encoded as described within
[Huffman-Coded Streams](#huffman-coded-streams).
If there are four streams, `Literals_Section_Header` only provided
enough information to know the decompressed and compressed sizes
of all four streams _combined_.
The decompressed size of _each_ stream is equal to `(Regenerated_Size+3)/4`,
except for the last stream which may be up to 3 bytes smaller,
to reach a total decompressed size as specified in `Regenerated_Size`.
The compressed size of each stream is provided explicitly in the Jump Table.
Jump Table is 6 bytes long, and consist of three 2-byte __little-endian__ fields,
describing the compressed sizes of the first three streams.
`Stream4_Size` is computed from total `Total_Streams_Size` minus sizes of other streams.
`Stream4_Size = Total_Streams_Size - 6 - Stream1_Size - Stream2_Size - Stream3_Size`.
Note: if `Stream1_Size + Stream2_Size + Stream3_Size > Total_Streams_Size`,
data is considered corrupted.
Each of these 4 bitstreams is then decoded independently as a Huffman-Coded stream,
as described at [Huffman-Coded Streams](#huffman-coded-streams)
Sequences Section
-----------------
A compressed block is a succession of _sequences_ .
A sequence is a literal copy command, followed by a match copy command.
A literal copy command specifies a length.
It is the number of bytes to be copied (or extracted) from the Literals Section.
A match copy command specifies an offset and a length.
When all _sequences_ are decoded,
if there are literals left in the _literals section_,
these bytes are added at the end of the block.
This is described in more detail in [Sequence Execution](#sequence-execution).
The `Sequences_Section` regroup all symbols required to decode commands.
There are 3 symbol types : literals lengths, offsets and match lengths.
They are encoded together, interleaved, in a single _bitstream_.
The `Sequences_Section` starts by a header,
followed by optional probability tables for each symbol type,
followed by the bitstream.
| `Sequences_Section_Header` | [`Literals_Length_Table`] | [`Offset_Table`] | [`Match_Length_Table`] | bitStream |
| -------------------------- | ------------------------- | ---------------- | ---------------------- | --------- |
To decode the `Sequences_Section`, it's required to know its size.
Its size is deduced from the size of `Literals_Section`:
`Sequences_Section_Size = Block_Size - Literals_Section_Size`.
#### `Sequences_Section_Header`
Consists of 2 items:
- `Number_of_Sequences`
- Symbol compression modes
__`Number_of_Sequences`__
This is a variable size field using between 1 and 3 bytes.
Let's call its first byte `byte0`.
- `if (byte0 == 0)` : there are no sequences.
The sequence section stops there.
Decompressed content is defined entirely as Literals Section content.
The FSE tables used in `Repeat_Mode` aren't updated.
- `if (byte0 < 128)` : `Number_of_Sequences = byte0` . Uses 1 byte.
- `if (byte0 < 255)` : `Number_of_Sequences = ((byte0-128) << 8) + byte1` . Uses 2 bytes.
- `if (byte0 == 255)`: `Number_of_Sequences = byte1 + (byte2<<8) + 0x7F00` . Uses 3 bytes.
__Symbol compression modes__
This is a single byte, defining the compression mode of each symbol type.
|Bit number| 7-6 | 5-4 | 3-2 | 1-0 |
| -------- | ----------------------- | -------------- | -------------------- | ---------- |
|Field name| `Literals_Lengths_Mode` | `Offsets_Mode` | `Match_Lengths_Mode` | `Reserved` |
The last field, `Reserved`, must be all-zeroes.
`Literals_Lengths_Mode`, `Offsets_Mode` and `Match_Lengths_Mode` define the `Compression_Mode` of
literals lengths, offsets, and match lengths symbols respectively.
They follow the same enumeration :
| Value | 0 | 1 | 2 | 3 |
| ------------------ | ----------------- | ---------- | --------------------- | ------------- |
| `Compression_Mode` | `Predefined_Mode` | `RLE_Mode` | `FSE_Compressed_Mode` | `Repeat_Mode` |
- `Predefined_Mode` : A predefined FSE distribution table is used, defined in
[default distributions](#default-distributions).
No distribution table will be present.
- `RLE_Mode` : The table description consists of a single byte, which contains the symbol's value.
This symbol will be used for all sequences.
- `FSE_Compressed_Mode` : standard FSE compression.
A distribution table will be present.
The format of this distribution table is described in [FSE Table Description](#fse-table-description).
Note that the maximum allowed accuracy log for literals length and match length tables is 9,
and the maximum accuracy log for the offsets table is 8.
`FSE_Compressed_Mode` must not be used when only one symbol is present,
`RLE_Mode` should be used instead (although any other mode will work).
- `Repeat_Mode` : The table used in the previous `Compressed_Block` with `Number_of_Sequences > 0` will be used again,
or if this is the first block, table in the dictionary will be used.
Note that this includes `RLE_mode`, so if `Repeat_Mode` follows `RLE_Mode`, the same symbol will be repeated.
It also includes `Predefined_Mode`, in which case `Repeat_Mode` will have same outcome as `Predefined_Mode`.
No distribution table will be present.
If this mode is used without any previous sequence table in the frame
(nor [dictionary](#dictionary-format)) to repeat, this should be treated as corruption.
#### The codes for literals lengths, match lengths, and offsets.
Each symbol is a _code_ in its own context,
which specifies `Baseline` and `Number_of_Bits` to add.
_Codes_ are FSE compressed,
and interleaved with raw additional bits in the same bitstream.
##### Literals length codes
Literals length codes are values ranging from `0` to `35` included.
They define lengths from 0 to 131071 bytes.
The literals length is equal to the decoded `Baseline` plus
the result of reading `Number_of_Bits` bits from the bitstream,
as a __little-endian__ value.
| `Literals_Length_Code` | 0-15 |
| ---------------------- | ---------------------- |
| length | `Literals_Length_Code` |
| `Number_of_Bits` | 0 |
| `Literals_Length_Code` | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
| ---------------------- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- |
| `Baseline` | 16 | 18 | 20 | 22 | 24 | 28 | 32 | 40 |
| `Number_of_Bits` | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 3 |
| `Literals_Length_Code` | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
| ---------------------- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- |
| `Baseline` | 48 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 |
| `Number_of_Bits` | 4 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| `Literals_Length_Code` | 32 | 33 | 34 | 35 |
| ---------------------- | ---- | ---- | ---- | ---- |
| `Baseline` | 8192 |16384 |32768 |65536 |
| `Number_of_Bits` | 13 | 14 | 15 | 16 |
##### Match length codes
Match length codes are values ranging from `0` to `52` included.
They define lengths from 3 to 131074 bytes.
The match length is equal to the decoded `Baseline` plus
the result of reading `Number_of_Bits` bits from the bitstream,
as a __little-endian__ value.
| `Match_Length_Code` | 0-31 |
| ------------------- | ----------------------- |
| value | `Match_Length_Code` + 3 |
| `Number_of_Bits` | 0 |
| `Match_Length_Code` | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 |
| ------------------- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- |
| `Baseline` | 35 | 37 | 39 | 41 | 43 | 47 | 51 | 59 |
| `Number_of_Bits` | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 3 |
| `Match_Length_Code` | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |
| ------------------- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- |
| `Baseline` | 67 | 83 | 99 | 131 | 259 | 515 | 1027 | 2051 |
| `Number_of_Bits` | 4 | 4 | 5 | 7 | 8 | 9 | 10 | 11 |
| `Match_Length_Code` | 48 | 49 | 50 | 51 | 52 |
| ------------------- | ---- | ---- | ---- | ---- | ---- |
| `Baseline` | 4099 | 8195 |16387 |32771 |65539 |
| `Number_of_Bits` | 12 | 13 | 14 | 15 | 16 |
##### Offset codes
Offset codes are values ranging from `0` to `N`.
A decoder is free to limit its maximum `N` supported.
Recommendation is to support at least up to `22`.
For information, at the time of this writing.
the reference decoder supports a maximum `N` value of `31`.
An offset code is also the number of additional bits to read in __little-endian__ fashion,
and can be translated into an `Offset_Value` using the following formulas :
```
Offset_Value = (1 << offsetCode) + readNBits(offsetCode);
if (Offset_Value > 3) offset = Offset_Value - 3;
```
It means that maximum `Offset_Value` is `(2^(N+1))-1`
supporting back-reference distances up to `(2^(N+1))-4`,
but is limited by [maximum back-reference distance](#window_descriptor).
`Offset_Value` from 1 to 3 are special : they define "repeat codes".
This is described in more detail in [Repeat Offsets](#repeat-offsets).
#### Decoding Sequences
FSE bitstreams are read in reverse direction than written. In zstd,
the compressor writes bits forward into a block and the decompressor
must read the bitstream _backwards_.
To find the start of the bitstream it is therefore necessary to
know the offset of the last byte of the block which can be found
by counting `Block_Size` bytes after the block header.
After writing the last bit containing information, the compressor
writes a single `1`-bit and then fills the byte with 0-7 `0` bits of
padding. The last byte of the compressed bitstream cannot be `0` for
that reason.
When decompressing, the last byte containing the padding is the first
byte to read. The decompressor needs to skip 0-7 initial `0`-bits and
the first `1`-bit it occurs. Afterwards, the useful part of the bitstream
begins.
FSE decoding requires a 'state' to be carried from symbol to symbol.
For more explanation on FSE decoding, see the [FSE section](#fse).
For sequence decoding, a separate state keeps track of each
literal lengths, offsets, and match lengths symbols.
Some FSE primitives are also used.
For more details on the operation of these primitives, see the [FSE section](#fse).
##### Starting states
The bitstream starts with initial FSE state values,
each using the required number of bits in their respective _accuracy_,
decoded previously from their normalized distribution.
It starts by `Literals_Length_State`,
followed by `Offset_State`,
and finally `Match_Length_State`.
Reminder : always keep in mind that all values are read _backward_,
so the 'start' of the bitstream is at the highest position in memory,
immediately before the last `1`-bit for padding.
After decoding the starting states, a single sequence is decoded
`Number_Of_Sequences` times.
These sequences are decoded in order from first to last.
Since the compressor writes the bitstream in the forward direction,
this means the compressor must encode the sequences starting with the last
one and ending with the first.
##### Decoding a sequence
For each of the symbol types, the FSE state can be used to determine the appropriate code.
The code then defines the `Baseline` and `Number_of_Bits` to read for each type.
See the [description of the codes] for how to determine these values.
[description of the codes]: #the-codes-for-literals-lengths-match-lengths-and-offsets
Decoding starts by reading the `Number_of_Bits` required to decode `Offset`.
It then does the same for `Match_Length`, and then for `Literals_Length`.
This sequence is then used for [sequence execution](#sequence-execution).
If it is not the last sequence in the block,
the next operation is to update states.
Using the rules pre-calculated in the decoding tables,
`Literals_Length_State` is updated,
followed by `Match_Length_State`,
and then `Offset_State`.
See the [FSE section](#fse) for details on how to update states from the bitstream.
This operation will be repeated `Number_of_Sequences` times.
At the end, the bitstream shall be entirely consumed,
otherwise the bitstream is considered corrupted.
#### Default Distributions
If `Predefined_Mode` is selected for a symbol type,
its FSE decoding table is generated from a predefined distribution table defined here.
For details on how to convert this distribution into a decoding table, see the [FSE section].
[FSE section]: #from-normalized-distribution-to-decoding-tables
##### Literals Length
The decoding table uses an accuracy log of 6 bits (64 states).
```
short literalsLength_defaultDistribution[36] =
{ 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 1, 1, 1, 1,
-1,-1,-1,-1 };
```
##### Match Length
The decoding table uses an accuracy log of 6 bits (64 states).
```
short matchLengths_defaultDistribution[53] =
{ 1, 4, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,-1,-1,
-1,-1,-1,-1,-1 };
```
##### Offset Codes
The decoding table uses an accuracy log of 5 bits (32 states),
and supports a maximum `N` value of 28, allowing offset values up to 536,870,908 .
If any sequence in the compressed block requires a larger offset than this,
it's not possible to use the default distribution to represent it.
```
short offsetCodes_defaultDistribution[29] =
{ 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,-1,-1,-1,-1,-1 };
```
Sequence Execution
------------------
Once literals and sequences have been decoded,
they are combined to produce the decoded content of a block.
Each sequence consists of a tuple of (`literals_length`, `offset_value`, `match_length`),
decoded as described in the [Sequences Section](#sequences-section).
To execute a sequence, first copy `literals_length` bytes
from the decoded literals to the output.
Then `match_length` bytes are copied from previous decoded data.
The offset to copy from is determined by `offset_value`:
if `offset_value > 3`, then the offset is `offset_value - 3`.
If `offset_value` is from 1-3, the offset is a special repeat offset value.
See the [repeat offset](#repeat-offsets) section for how the offset is determined
in this case.
The offset is defined as from the current position, so an offset of 6
and a match length of 3 means that 3 bytes should be copied from 6 bytes back.
Note that all offsets leading to previously decoded data
must be smaller than `Window_Size` defined in `Frame_Header_Descriptor`.
#### Repeat offsets
As seen in [Sequence Execution](#sequence-execution),
the first 3 values define a repeated offset and we will call them
`Repeated_Offset1`, `Repeated_Offset2`, and `Repeated_Offset3`.
They are sorted in recency order, with `Repeated_Offset1` meaning "most recent one".
If `offset_value == 1`, then the offset used is `Repeated_Offset1`, etc.
There is an exception though, when current sequence's `literals_length = 0`.
In this case, repeated offsets are shifted by one,
so an `offset_value` of 1 means `Repeated_Offset2`,
an `offset_value` of 2 means `Repeated_Offset3`,
and an `offset_value` of 3 means `Repeated_Offset1 - 1_byte`.
For the first block, the starting offset history is populated with following values :
`Repeated_Offset1`=1, `Repeated_Offset2`=4, `Repeated_Offset3`=8,
unless a dictionary is used, in which case they come from the dictionary.
Then each block gets its starting offset history from the ending values of the most recent `Compressed_Block`.
Note that blocks which are not `Compressed_Block` are skipped, they do not contribute to offset history.
[Offset Codes]: #offset-codes
###### Offset updates rules
During the execution of the sequences of a `Compressed_Block`, the
`Repeated_Offsets`' values are kept up to date, so that they always represent
the three most-recently used offsets. In order to achieve that, they are
updated after executing each sequence in the following way:
When the sequence's `offset_value` does not refer to one of the
`Repeated_Offsets`--when it has value greater than 3, or when it has value 3
and the sequence's `literals_length` is zero--the `Repeated_Offsets`' values
are shifted back one, and `Repeated_Offset1` takes on the value of the
just-used offset.
Otherwise, when the sequence's `offset_value` refers to one of the
`Repeated_Offsets`--when it has value 1 or 2, or when it has value 3 and the
sequence's `literals_length` is non-zero--the `Repeated_Offsets` are re-ordered
so that `Repeated_Offset1` takes on the value of the used Repeated_Offset, and
the existing values are pushed back from the first `Repeated_Offset` through to
the `Repeated_Offset` selected by the `offset_value`. This effectively performs
a single-stepped wrapping rotation of the values of these offsets, so that
their order again reflects the recency of their use.
The following table shows the values of the `Repeated_Offsets` as a series of
sequences are applied to them:
| `offset_value` | `literals_length` | `Repeated_Offset1` | `Repeated_Offset2` | `Repeated_Offset3` | Comment |
|:--------------:|:-----------------:|:------------------:|:------------------:|:------------------:|:-----------------------:|
| | | 1 | 4 | 8 | starting values |
| 1114 | 11 | 1111 | 1 | 4 | non-repeat |
| 1 | 22 | 1111 | 1 | 4 | repeat 1; no change |
| 2225 | 22 | 2222 | 1111 | 1 | non-repeat |
| 1114 | 111 | 1111 | 2222 | 1111 | non-repeat |
| 3336 | 33 | 3333 | 1111 | 2222 | non-repeat |
| 2 | 22 | 1111 | 3333 | 2222 | repeat 2; swap 1 & 2 |
| 3 | 33 | 2222 | 1111 | 3333 | repeat 3; rotate 3 to 1 |
| 3 | 0 | 2221 | 2222 | 1111 | insert resolved offset |
| 1 | 0 | 2222 | 2221 | 3333 | repeat 2 |
Skippable Frames
----------------
| `Magic_Number` | `Frame_Size` | `User_Data` |
|:--------------:|:------------:|:-----------:|
| 4 bytes | 4 bytes | n bytes |
Skippable frames allow the insertion of user-defined metadata
into a flow of concatenated frames.
Skippable frames defined in this specification are compatible with [LZ4] ones.
[LZ4]:http://www.lz4.org
From a compliant decoder perspective, skippable frames need just be skipped,
and their content ignored, resuming decoding after the skippable frame.
It can be noted that a skippable frame
can be used to watermark a stream of concatenated frames
embedding any kind of tracking information (even just an UUID).
Users wary of such possibility should scan the stream of concatenated frames
in an attempt to detect such frame for analysis or removal.
__`Magic_Number`__
4 Bytes, __little-endian__ format.
Value : 0x184D2A5?, which means any value from 0x184D2A50 to 0x184D2A5F.
All 16 values are valid to identify a skippable frame.
This specification doesn't detail any specific tagging for skippable frames.
__`Frame_Size`__
This is the size, in bytes, of the following `User_Data`
(without including the magic number nor the size field itself).
This field is represented using 4 Bytes, __little-endian__ format, unsigned 32-bits.
This means `User_Data` can’t be bigger than (2^32-1) bytes.
__`User_Data`__
The `User_Data` can be anything. Data will just be skipped by the decoder.
Entropy Encoding
----------------
Two types of entropy encoding are used by the Zstandard format:
FSE, and Huffman coding.
Huffman is used to compress literals,
while FSE is used for all other symbols
(`Literals_Length_Code`, `Match_Length_Code`, offset codes)
and to compress Huffman headers.
FSE
---
FSE, short for Finite State Entropy, is an entropy codec based on [ANS].
FSE encoding/decoding involves a state that is carried over between symbols,
so decoding must be done in the opposite direction as encoding.
Therefore, all FSE bitstreams are read from end to beginning.
Note that the order of the bits in the stream is not reversed,
we just read the elements in the reverse order they are written.
For additional details on FSE, see [Finite State Entropy].
[Finite State Entropy]:https://github.com/Cyan4973/FiniteStateEntropy/
FSE decoding involves a decoding table which has a power of 2 size, and contain three elements:
`Symbol`, `Num_Bits`, and `Baseline`.
The `log2` of the table size is its `Accuracy_Log`.
An FSE state value represents an index in this table.
To obtain the initial state value, consume `Accuracy_Log` bits from the stream as a __little-endian__ value.
The next symbol in the stream is the `Symbol` indicated in the table for that state.
To obtain the next state value,
the decoder should consume `Num_Bits` bits from the stream as a __little-endian__ value and add it to `Baseline`.
[ANS]: https://en.wikipedia.org/wiki/Asymmetric_Numeral_Systems
### FSE Table Description
To decode FSE streams, it is necessary to construct the decoding table.
The Zstandard format encodes FSE table descriptions as follows:
An FSE distribution table describes the probabilities of all symbols
from `0` to the last present one (included)
on a normalized scale of `1 << Accuracy_Log` .
Note that there must be two or more symbols with nonzero probability.
It's a bitstream which is read forward, in __little-endian__ fashion.
It's not necessary to know bitstream exact size,
it will be discovered and reported by the decoding process.
The bitstream starts by reporting on which scale it operates.
Let's `low4Bits` designate the lowest 4 bits of the first byte :
`Accuracy_Log = low4bits + 5`.
Then follows each symbol value, from `0` to last present one.
The number of bits used by each field is variable.
It depends on :
- Remaining probabilities + 1 :
__example__ :
Presuming an `Accuracy_Log` of 8,
and presuming 100 probabilities points have already been distributed,
the decoder may read any value from `0` to `256 - 100 + 1 == 157` (inclusive).
Therefore, it must read `log2sup(157) == 8` bits.
- Value decoded : small values use 1 less bit :
__example__ :
Presuming values from 0 to 157 (inclusive) are possible,
255-157 = 98 values are remaining in an 8-bits field.
They are used this way :
first 98 values (hence from 0 to 97) use only 7 bits,
values from 98 to 157 use 8 bits.
This is achieved through this scheme :
| Value read | Value decoded | Number of bits used |
| ---------- | ------------- | ------------------- |
| 0 - 97 | 0 - 97 | 7 |
| 98 - 127 | 98 - 127 | 8 |
| 128 - 225 | 0 - 97 | 7 |
| 226 - 255 | 128 - 157 | 8 |
Symbols probabilities are read one by one, in order.
Probability is obtained from Value decoded by following formula :
`Proba = value - 1`
It means value `0` becomes negative probability `-1`.
`-1` is a special probability, which means "less than 1".
Its effect on distribution table is described in the [next section].
For the purpose of calculating total allocated probability points, it counts as one.
[next section]:#from-normalized-distribution-to-decoding-tables
When a symbol has a __probability__ of `zero`,
it is followed by a 2-bits repeat flag.
This repeat flag tells how many probabilities of zeroes follow the current one.
It provides a number ranging from 0 to 3.
If it is a 3, another 2-bits repeat flag follows, and so on.
When last symbol reaches cumulated total of `1 << Accuracy_Log`,
decoding is complete.
If the last symbol makes cumulated total go above `1 << Accuracy_Log`,
distribution is considered corrupted.
Then the decoder can tell how many bytes were used in this process,
and how many symbols are present.
The bitstream consumes a round number of bytes.
Any remaining bit within the last byte is just unused.
#### From normalized distribution to decoding tables
The distribution of normalized probabilities is enough
to create a unique decoding table.
It follows the following build rule :
The table has a size of `Table_Size = 1 << Accuracy_Log`.
Each cell describes the symbol decoded,
and instructions to get the next state (`Number_of_Bits` and `Baseline`).
Symbols are scanned in their natural order for "less than 1" probabilities.
Symbols with this probability are being attributed a single cell,
starting from the end of the table and retreating.
These symbols define a full state reset, reading `Accuracy_Log` bits.
Then, all remaining symbols, sorted in natural order, are allocated cells.
Starting from symbol `0` (if it exists), and table position `0`,
each symbol gets allocated as many cells as its probability.
-Cell allocation is spreaded, not linear :
+Cell allocation is spread, not linear :
each successor position follows this rule :
```
position += (tableSize>>1) + (tableSize>>3) + 3;
position &= tableSize-1;
```
A position is skipped if already occupied by a "less than 1" probability symbol.
`position` does not reset between symbols, it simply iterates through
each position in the table, switching to the next symbol when enough
states have been allocated to the current one.
The process guarantees that the table is entirely filled.
Each cell corresponds to a state value, which contains the symbol being decoded.
To add the `Number_of_Bits` and `Baseline` required to retrieve next state,
it's first necessary to sort all occurrences of each symbol in state order.
Lower states will need 1 more bit than higher ones.
The process is repeated for each symbol.
__Example__ :
Presuming a symbol has a probability of 5,
it receives 5 cells, corresponding to 5 state values.
These state values are then sorted in natural order.
Next power of 2 after 5 is 8.
Space of probabilities must be divided into 8 equal parts.
Presuming the `Accuracy_Log` is 7, it defines a space of 128 states.
Divided by 8, each share is 16 large.
In order to reach 8 shares, 8-5=3 lowest states will count "double",
doubling their shares (32 in width), hence requiring one more bit.
Baseline is assigned starting from the higher states using fewer bits,
increasing at each state, then resuming at the first state,
each state takes its allocated width from Baseline.
| state value | 1 | 39 | 77 | 84 | 122 |
| state order | 0 | 1 | 2 | 3 | 4 |
| ---------------- | ----- | ----- | ------ | ---- | ------ |
| width | 32 | 32 | 32 | 16 | 16 |
| `Number_of_Bits` | 5 | 5 | 5 | 4 | 4 |
| range number | 2 | 4 | 6 | 0 | 1 |
| `Baseline` | 32 | 64 | 96 | 0 | 16 |
| range | 32-63 | 64-95 | 96-127 | 0-15 | 16-31 |
During decoding, the next state value is determined from current state value,
by reading the required `Number_of_Bits`, and adding the specified `Baseline`.
See [Appendix A] for the results of this process applied to the default distributions.
[Appendix A]: #appendix-a---decoding-tables-for-predefined-codes
Huffman Coding
--------------
Zstandard Huffman-coded streams are read backwards,
similar to the FSE bitstreams.
Therefore, to find the start of the bitstream, it is therefore to
know the offset of the last byte of the Huffman-coded stream.
After writing the last bit containing information, the compressor
writes a single `1`-bit and then fills the byte with 0-7 `0` bits of
padding. The last byte of the compressed bitstream cannot be `0` for
that reason.
When decompressing, the last byte containing the padding is the first
byte to read. The decompressor needs to skip 0-7 initial `0`-bits and
the first `1`-bit it occurs. Afterwards, the useful part of the bitstream
begins.
The bitstream contains Huffman-coded symbols in __little-endian__ order,
with the codes defined by the method below.
### Huffman Tree Description
Prefix coding represents symbols from an a priori known alphabet
by bit sequences (codewords), one codeword for each symbol,
in a manner such that different symbols may be represented
by bit sequences of different lengths,
but a parser can always parse an encoded string
unambiguously symbol-by-symbol.
Given an alphabet with known symbol frequencies,
the Huffman algorithm allows the construction of an optimal prefix code
using the fewest bits of any possible prefix codes for that alphabet.
Prefix code must not exceed a maximum code length.
More bits improve accuracy but cost more header size,
and require more memory or more complex decoding operations.
This specification limits maximum code length to 11 bits.
#### Representation
All literal values from zero (included) to last present one (excluded)
are represented by `Weight` with values from `0` to `Max_Number_of_Bits`.
Transformation from `Weight` to `Number_of_Bits` follows this formula :
```
Number_of_Bits = Weight ? (Max_Number_of_Bits + 1 - Weight) : 0
```
The last symbol's `Weight` is deduced from previously decoded ones,
by completing to the nearest power of 2.
This power of 2 gives `Max_Number_of_Bits`, the depth of the current tree.
`Max_Number_of_Bits` must be <= 11,
otherwise the representation is considered corrupted.
__Example__ :
Let's presume the following Huffman tree must be described :
| literal value | 0 | 1 | 2 | 3 | 4 | 5 |
| ---------------- | --- | --- | --- | --- | --- | --- |
| `Number_of_Bits` | 1 | 2 | 3 | 0 | 4 | 4 |
The tree depth is 4, since its longest elements uses 4 bits
(longest elements are the one with smallest frequency).
Value `5` will not be listed, as it can be determined from values for 0-4,
nor will values above `5` as they are all 0.
Values from `0` to `4` will be listed using `Weight` instead of `Number_of_Bits`.
Weight formula is :
```
Weight = Number_of_Bits ? (Max_Number_of_Bits + 1 - Number_of_Bits) : 0
```
It gives the following series of weights :
| literal value | 0 | 1 | 2 | 3 | 4 |
| ------------- | --- | --- | --- | --- | --- |
| `Weight` | 4 | 3 | 2 | 0 | 1 |
The decoder will do the inverse operation :
having collected weights of literal symbols from `0` to `4`,
it knows the last literal, `5`, is present with a non-zero `Weight`.
The `Weight` of `5` can be determined by advancing to the next power of 2.
The sum of `2^(Weight-1)` (excluding 0's) is :
`8 + 4 + 2 + 0 + 1 = 15`.
Nearest larger power of 2 value is 16.
Therefore, `Max_Number_of_Bits = 4` and `Weight[5] = 16-15 = 1`.
#### Huffman Tree header
This is a single byte value (0-255),
which describes how the series of weights is encoded.
- if `headerByte` < 128 :
the series of weights is compressed using FSE (see below).
The length of the FSE-compressed series is equal to `headerByte` (0-127).
- if `headerByte` >= 128 :
+ the series of weights uses a direct representation,
where each `Weight` is encoded directly as a 4 bits field (0-15).
+ They are encoded forward, 2 weights to a byte,
first weight taking the top four bits and second one taking the bottom four.
* e.g. the following operations could be used to read the weights:
`Weight[0] = (Byte[0] >> 4), Weight[1] = (Byte[0] & 0xf)`, etc.
+ The full representation occupies `Ceiling(Number_of_Weights/2)` bytes,
meaning it uses only full bytes even if `Number_of_Weights` is odd.
+ `Number_of_Weights = headerByte - 127`.
* Note that maximum `Number_of_Weights` is 255-127 = 128,
therefore, only up to 128 `Weight` can be encoded using direct representation.
* Since the last non-zero `Weight` is _not_ encoded,
this scheme is compatible with alphabet sizes of up to 129 symbols,
hence including literal symbol 128.
* If any literal symbol > 128 has a non-zero `Weight`,
direct representation is not possible.
In such case, it's necessary to use FSE compression.
#### Finite State Entropy (FSE) compression of Huffman weights
In this case, the series of Huffman weights is compressed using FSE compression.
It's a single bitstream with 2 interleaved states,
sharing a single distribution table.
To decode an FSE bitstream, it is necessary to know its compressed size.
Compressed size is provided by `headerByte`.
It's also necessary to know its _maximum possible_ decompressed size,
which is `255`, since literal values span from `0` to `255`,
and last symbol's `Weight` is not represented.
An FSE bitstream starts by a header, describing probabilities distribution.
It will create a Decoding Table.
For a list of Huffman weights, the maximum accuracy log is 6 bits.
For more description see the [FSE header description](#fse-table-description)
The Huffman header compression uses 2 states,
which share the same FSE distribution table.
The first state (`State1`) encodes the even indexed symbols,
and the second (`State2`) encodes the odd indexed symbols.
`State1` is initialized first, and then `State2`, and they take turns
decoding a single symbol and updating their state.
For more details on these FSE operations, see the [FSE section](#fse).
The number of symbols to decode is determined
by tracking bitStream overflow condition:
If updating state after decoding a symbol would require more bits than
remain in the stream, it is assumed that extra bits are 0. Then,
symbols for each of the final states are decoded and the process is complete.
#### Conversion from weights to Huffman prefix codes
All present symbols shall now have a `Weight` value.
It is possible to transform weights into `Number_of_Bits`, using this formula:
```
Number_of_Bits = (Weight>0) ? Max_Number_of_Bits + 1 - Weight : 0
```
Symbols are sorted by `Weight`.
Within same `Weight`, symbols keep natural sequential order.
Symbols with a `Weight` of zero are removed.
Then, starting from lowest `Weight`, prefix codes are distributed in sequential order.
__Example__ :
Let's presume the following list of weights has been decoded :
| Literal | 0 | 1 | 2 | 3 | 4 | 5 |
| -------- | --- | --- | --- | --- | --- | --- |
| `Weight` | 4 | 3 | 2 | 0 | 1 | 1 |
Sorted by weight and then natural sequential order,
it gives the following distribution :
| Literal | 3 | 4 | 5 | 2 | 1 | 0 |
| ---------------- | --- | --- | --- | --- | --- | ---- |
| `Weight` | 0 | 1 | 1 | 2 | 3 | 4 |
| `Number_of_Bits` | 0 | 4 | 4 | 3 | 2 | 1 |
| prefix codes | N/A | 0000| 0001| 001 | 01 | 1 |
### Huffman-coded Streams
Given a Huffman decoding table,
it's possible to decode a Huffman-coded stream.
Each bitstream must be read _backward_,
that is starting from the end down to the beginning.
Therefore it's necessary to know the size of each bitstream.
It's also necessary to know exactly which _bit_ is the last one.
This is detected by a final bit flag :
the highest bit of latest byte is a final-bit-flag.
Consequently, a last byte of `0` is not possible.
And the final-bit-flag itself is not part of the useful bitstream.
Hence, the last byte contains between 0 and 7 useful bits.
Starting from the end,
it's possible to read the bitstream in a __little-endian__ fashion,
keeping track of already used bits. Since the bitstream is encoded in reverse
order, starting from the end read symbols in forward order.
For example, if the literal sequence "0145" was encoded using above prefix code,
it would be encoded (in reverse order) as:
|Symbol | 5 | 4 | 1 | 0 | Padding |
|--------|------|------|----|---|---------|
|Encoding|`0000`|`0001`|`01`|`1`| `00001` |
Resulting in following 2-bytes bitstream :
```
00010000 00001101
```
Here is an alternative representation with the symbol codes separated by underscore:
```
0001_0000 00001_1_01
```
Reading highest `Max_Number_of_Bits` bits,
it's possible to compare extracted value to decoding table,
determining the symbol to decode and number of bits to discard.
The process continues up to reading the required number of symbols per stream.
If a bitstream is not entirely and exactly consumed,
hence reaching exactly its beginning position with _all_ bits consumed,
the decoding process is considered faulty.
Dictionary Format
-----------------
Zstandard is compatible with "raw content" dictionaries,
free of any format restriction, except that they must be at least 8 bytes.
These dictionaries function as if they were just the `Content` part
of a formatted dictionary.
But dictionaries created by `zstd --train` follow a format, described here.
__Pre-requisites__ : a dictionary has a size,
defined either by a buffer limit, or a file size.
| `Magic_Number` | `Dictionary_ID` | `Entropy_Tables` | `Content` |
| -------------- | --------------- | ---------------- | --------- |
__`Magic_Number`__ : 4 bytes ID, value 0xEC30A437, __little-endian__ format
__`Dictionary_ID`__ : 4 bytes, stored in __little-endian__ format.
`Dictionary_ID` can be any value, except 0 (which means no `Dictionary_ID`).
It's used by decoders to check if they use the correct dictionary.
_Reserved ranges :_
If the dictionary is going to be distributed in a public environment,
the following ranges of `Dictionary_ID` are reserved for some future registrar
and shall not be used :
- low range : <= 32767
- high range : >= (2^31)
Outside of these ranges, any value of `Dictionary_ID`
which is both `>= 32768` and `< (1<<31)` can be used freely,
even in public environment.
__`Entropy_Tables`__ : follow the same format as tables in [compressed blocks].
See the relevant [FSE](#fse-table-description)
and [Huffman](#huffman-tree-description) sections for how to decode these tables.
They are stored in following order :
Huffman tables for literals, FSE table for offsets,
FSE table for match lengths, and FSE table for literals lengths.
These tables populate the Repeat Stats literals mode and
Repeat distribution mode for sequence decoding.
It's finally followed by 3 offset values, populating recent offsets (instead of using `{1,4,8}`),
stored in order, 4-bytes __little-endian__ each, for a total of 12 bytes.
Each recent offset must have a value <= dictionary content size, and cannot equal 0.
__`Content`__ : The rest of the dictionary is its content.
The content act as a "past" in front of data to compress or decompress,
so it can be referenced in sequence commands.
As long as the amount of data decoded from this frame is less than or
equal to `Window_Size`, sequence commands may specify offsets longer
than the total length of decoded output so far to reference back to the
dictionary, even parts of the dictionary with offsets larger than `Window_Size`.
After the total output has surpassed `Window_Size` however,
this is no longer allowed and the dictionary is no longer accessible.
[compressed blocks]: #the-format-of-compressed_block
If a dictionary is provided by an external source,
it should be loaded with great care, its content considered untrusted.
Appendix A - Decoding tables for predefined codes
-------------------------------------------------
This appendix contains FSE decoding tables
for the predefined literal length, match length, and offset codes.
The tables have been constructed using the algorithm as given above in chapter
"from normalized distribution to decoding tables".
The tables here can be used as examples
to crosscheck that an implementation build its decoding tables correctly.
#### Literal Length Code:
| State | Symbol | Number_Of_Bits | Base |
| ----- | ------ | -------------- | ---- |
| 0 | 0 | 4 | 0 |
| 1 | 0 | 4 | 16 |
| 2 | 1 | 5 | 32 |
| 3 | 3 | 5 | 0 |
| 4 | 4 | 5 | 0 |
| 5 | 6 | 5 | 0 |
| 6 | 7 | 5 | 0 |
| 7 | 9 | 5 | 0 |
| 8 | 10 | 5 | 0 |
| 9 | 12 | 5 | 0 |
| 10 | 14 | 6 | 0 |
| 11 | 16 | 5 | 0 |
| 12 | 18 | 5 | 0 |
| 13 | 19 | 5 | 0 |
| 14 | 21 | 5 | 0 |
| 15 | 22 | 5 | 0 |
| 16 | 24 | 5 | 0 |
| 17 | 25 | 5 | 32 |
| 18 | 26 | 5 | 0 |
| 19 | 27 | 6 | 0 |
| 20 | 29 | 6 | 0 |
| 21 | 31 | 6 | 0 |
| 22 | 0 | 4 | 32 |
| 23 | 1 | 4 | 0 |
| 24 | 2 | 5 | 0 |
| 25 | 4 | 5 | 32 |
| 26 | 5 | 5 | 0 |
| 27 | 7 | 5 | 32 |
| 28 | 8 | 5 | 0 |
| 29 | 10 | 5 | 32 |
| 30 | 11 | 5 | 0 |
| 31 | 13 | 6 | 0 |
| 32 | 16 | 5 | 32 |
| 33 | 17 | 5 | 0 |
| 34 | 19 | 5 | 32 |
| 35 | 20 | 5 | 0 |
| 36 | 22 | 5 | 32 |
| 37 | 23 | 5 | 0 |
| 38 | 25 | 4 | 0 |
| 39 | 25 | 4 | 16 |
| 40 | 26 | 5 | 32 |
| 41 | 28 | 6 | 0 |
| 42 | 30 | 6 | 0 |
| 43 | 0 | 4 | 48 |
| 44 | 1 | 4 | 16 |
| 45 | 2 | 5 | 32 |
| 46 | 3 | 5 | 32 |
| 47 | 5 | 5 | 32 |
| 48 | 6 | 5 | 32 |
| 49 | 8 | 5 | 32 |
| 50 | 9 | 5 | 32 |
| 51 | 11 | 5 | 32 |
| 52 | 12 | 5 | 32 |
| 53 | 15 | 6 | 0 |
| 54 | 17 | 5 | 32 |
| 55 | 18 | 5 | 32 |
| 56 | 20 | 5 | 32 |
| 57 | 21 | 5 | 32 |
| 58 | 23 | 5 | 32 |
| 59 | 24 | 5 | 32 |
| 60 | 35 | 6 | 0 |
| 61 | 34 | 6 | 0 |
| 62 | 33 | 6 | 0 |
| 63 | 32 | 6 | 0 |
#### Match Length Code:
| State | Symbol | Number_Of_Bits | Base |
| ----- | ------ | -------------- | ---- |
| 0 | 0 | 6 | 0 |
| 1 | 1 | 4 | 0 |
| 2 | 2 | 5 | 32 |
| 3 | 3 | 5 | 0 |
| 4 | 5 | 5 | 0 |
| 5 | 6 | 5 | 0 |
| 6 | 8 | 5 | 0 |
| 7 | 10 | 6 | 0 |
| 8 | 13 | 6 | 0 |
| 9 | 16 | 6 | 0 |
| 10 | 19 | 6 | 0 |
| 11 | 22 | 6 | 0 |
| 12 | 25 | 6 | 0 |
| 13 | 28 | 6 | 0 |
| 14 | 31 | 6 | 0 |
| 15 | 33 | 6 | 0 |
| 16 | 35 | 6 | 0 |
| 17 | 37 | 6 | 0 |
| 18 | 39 | 6 | 0 |
| 19 | 41 | 6 | 0 |
| 20 | 43 | 6 | 0 |
| 21 | 45 | 6 | 0 |
| 22 | 1 | 4 | 16 |
| 23 | 2 | 4 | 0 |
| 24 | 3 | 5 | 32 |
| 25 | 4 | 5 | 0 |
| 26 | 6 | 5 | 32 |
| 27 | 7 | 5 | 0 |
| 28 | 9 | 6 | 0 |
| 29 | 12 | 6 | 0 |
| 30 | 15 | 6 | 0 |
| 31 | 18 | 6 | 0 |
| 32 | 21 | 6 | 0 |
| 33 | 24 | 6 | 0 |
| 34 | 27 | 6 | 0 |
| 35 | 30 | 6 | 0 |
| 36 | 32 | 6 | 0 |
| 37 | 34 | 6 | 0 |
| 38 | 36 | 6 | 0 |
| 39 | 38 | 6 | 0 |
| 40 | 40 | 6 | 0 |
| 41 | 42 | 6 | 0 |
| 42 | 44 | 6 | 0 |
| 43 | 1 | 4 | 32 |
| 44 | 1 | 4 | 48 |
| 45 | 2 | 4 | 16 |
| 46 | 4 | 5 | 32 |
| 47 | 5 | 5 | 32 |
| 48 | 7 | 5 | 32 |
| 49 | 8 | 5 | 32 |
| 50 | 11 | 6 | 0 |
| 51 | 14 | 6 | 0 |
| 52 | 17 | 6 | 0 |
| 53 | 20 | 6 | 0 |
| 54 | 23 | 6 | 0 |
| 55 | 26 | 6 | 0 |
| 56 | 29 | 6 | 0 |
| 57 | 52 | 6 | 0 |
| 58 | 51 | 6 | 0 |
| 59 | 50 | 6 | 0 |
| 60 | 49 | 6 | 0 |
| 61 | 48 | 6 | 0 |
| 62 | 47 | 6 | 0 |
| 63 | 46 | 6 | 0 |
#### Offset Code:
| State | Symbol | Number_Of_Bits | Base |
| ----- | ------ | -------------- | ---- |
| 0 | 0 | 5 | 0 |
| 1 | 6 | 4 | 0 |
| 2 | 9 | 5 | 0 |
| 3 | 15 | 5 | 0 |
| 4 | 21 | 5 | 0 |
| 5 | 3 | 5 | 0 |
| 6 | 7 | 4 | 0 |
| 7 | 12 | 5 | 0 |
| 8 | 18 | 5 | 0 |
| 9 | 23 | 5 | 0 |
| 10 | 5 | 5 | 0 |
| 11 | 8 | 4 | 0 |
| 12 | 14 | 5 | 0 |
| 13 | 20 | 5 | 0 |
| 14 | 2 | 5 | 0 |
| 15 | 7 | 4 | 16 |
| 16 | 11 | 5 | 0 |
| 17 | 17 | 5 | 0 |
| 18 | 22 | 5 | 0 |
| 19 | 4 | 5 | 0 |
| 20 | 8 | 4 | 16 |
| 21 | 13 | 5 | 0 |
| 22 | 19 | 5 | 0 |
| 23 | 1 | 5 | 0 |
| 24 | 6 | 4 | 16 |
| 25 | 10 | 5 | 0 |
| 26 | 16 | 5 | 0 |
| 27 | 28 | 5 | 0 |
| 28 | 27 | 5 | 0 |
| 29 | 26 | 5 | 0 |
| 30 | 25 | 5 | 0 |
| 31 | 24 | 5 | 0 |
Appendix B - Resources for implementers
-------------------------------------------------
An open source reference implementation is available on :
https://github.com/facebook/zstd
The project contains a frame generator, called [decodeCorpus],
which can be used by any 3rd-party implementation
to verify that a tested decoder is compliant with the specification.
[decodeCorpus]: https://github.com/facebook/zstd/tree/v1.3.4/tests#decodecorpus---tool-to-generate-zstandard-frames-for-decoder-testing
`decodeCorpus` generates random valid frames.
A compliant decoder should be able to decode them all,
or at least provide a meaningful error code explaining for which reason it cannot
(memory limit restrictions for example).
Version changes
---------------
-- 0.3.7 : clarifications for Repeat_Offsets
+- 0.3.7 : clarifications for Repeat_Offsets, matching RFC8878
- 0.3.6 : clarifications for Dictionary_ID
- 0.3.5 : clarifications for Block_Maximum_Size
- 0.3.4 : clarifications for FSE decoding table
- 0.3.3 : clarifications for field Block_Size
- 0.3.2 : remove additional block size restriction on compressed blocks
- 0.3.1 : minor clarification regarding offset history update rules
- 0.3.0 : minor edits to match RFC8478
- 0.2.9 : clarifications for huffman weights direct representation, by Ulrich Kunitz
- 0.2.8 : clarifications for IETF RFC discuss
- 0.2.7 : clarifications from IETF RFC review, by Vijay Gurbani and Nick Terrell
- 0.2.6 : fixed an error in huffman example, by Ulrich Kunitz
- 0.2.5 : minor typos and clarifications
- 0.2.4 : section restructuring, by Sean Purcell
- 0.2.3 : clarified several details, by Sean Purcell
- 0.2.2 : added predefined codes, by Johannes Rudolph
- 0.2.1 : clarify field names, by Przemyslaw Skibinski
- 0.2.0 : numerous format adjustments for zstd v0.8+
- 0.1.2 : limit Huffman tree depth to 11 bits
- 0.1.1 : reserved dictID ranges
- 0.1.0 : initial release
diff --git a/sys/contrib/zstd/doc/zstd_manual.html b/sys/contrib/zstd/doc/zstd_manual.html
index 315488844ba6..9f73c4c815e6 100644
--- a/sys/contrib/zstd/doc/zstd_manual.html
+++ b/sys/contrib/zstd/doc/zstd_manual.html
@@ -1,1818 +1,1908 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
-<title>zstd 1.4.8 Manual</title>
+<title>zstd 1.5.2 Manual</title>
</head>
<body>
-<h1>zstd 1.4.8 Manual</h1>
+<h1>zstd 1.5.2 Manual</h1>
<hr>
<a name="Contents"></a><h2>Contents</h2>
<ol>
<li><a href="#Chapter1">Introduction</a></li>
<li><a href="#Chapter2">Version</a></li>
<li><a href="#Chapter3">Simple API</a></li>
<li><a href="#Chapter4">Explicit context</a></li>
-<li><a href="#Chapter5">Advanced compression API</a></li>
-<li><a href="#Chapter6">Advanced decompression API</a></li>
+<li><a href="#Chapter5">Advanced compression API (Requires v1.4.0+)</a></li>
+<li><a href="#Chapter6">Advanced decompression API (Requires v1.4.0+)</a></li>
<li><a href="#Chapter7">Streaming</a></li>
<li><a href="#Chapter8">Streaming compression - HowTo</a></li>
<li><a href="#Chapter9">Streaming decompression - HowTo</a></li>
<li><a href="#Chapter10">Simple dictionary API</a></li>
<li><a href="#Chapter11">Bulk processing dictionary API</a></li>
<li><a href="#Chapter12">Dictionary helper functions</a></li>
-<li><a href="#Chapter13">Advanced dictionary and prefix API</a></li>
+<li><a href="#Chapter13">Advanced dictionary and prefix API (Requires v1.4.0+)</a></li>
<li><a href="#Chapter14">experimental API (static linking only)</a></li>
<li><a href="#Chapter15">Frame size functions</a></li>
<li><a href="#Chapter16">Memory management</a></li>
<li><a href="#Chapter17">Advanced compression functions</a></li>
<li><a href="#Chapter18">Advanced decompression functions</a></li>
<li><a href="#Chapter19">Advanced streaming functions</a></li>
<li><a href="#Chapter20">Buffer-less and synchronous inner streaming functions</a></li>
<li><a href="#Chapter21">Buffer-less streaming compression (synchronous mode)</a></li>
<li><a href="#Chapter22">Buffer-less streaming decompression (synchronous mode)</a></li>
<li><a href="#Chapter23">Block level API</a></li>
</ol>
<hr>
<a name="Chapter1"></a><h2>Introduction</h2><pre>
zstd, short for Zstandard, is a fast lossless compression algorithm, targeting
real-time compression scenarios at zlib-level and better compression ratios.
The zstd compression library provides in-memory compression and decompression
functions.
The library supports regular compression levels from 1 up to ZSTD_maxCLevel(),
which is currently 22. Levels >= 20, labeled `--ultra`, should be used with
caution, as they require more memory. The library also offers negative
compression levels, which extend the range of speed vs. ratio preferences.
The lower the level, the faster the speed (at the cost of compression).
Compression can be done in:
- a single step (described as Simple API)
- a single step, reusing a context (described as Explicit context)
- unbounded multiple steps (described as Streaming compression)
The compression ratio achievable on small data can be highly improved using
a dictionary. Dictionary compression can be performed in:
- a single step (described as Simple dictionary API)
- a single step, reusing a dictionary (described as Bulk-processing
dictionary API)
Advanced experimental functions can be accessed using
`#define ZSTD_STATIC_LINKING_ONLY` before including zstd.h.
Advanced experimental APIs should never be used with a dynamically-linked
library. They are not "stable"; their definitions or signatures may change in
the future. Only static linking is allowed.
<BR></pre>
<a name="Chapter2"></a><h2>Version</h2><pre></pre>
<pre><b>unsigned ZSTD_versionNumber(void);
</b><p> Return runtime library version, the value is (MAJOR*100*100 + MINOR*100 + RELEASE).
</p></pre><BR>
<pre><b>const char* ZSTD_versionString(void);
</b><p> Return runtime library version, like "1.4.5". Requires v1.3.0+.
</p></pre><BR>
<a name="Chapter3"></a><h2>Simple API</h2><pre></pre>
<pre><b>size_t ZSTD_compress( void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
int compressionLevel);
</b><p> Compresses `src` content as a single zstd compressed frame into already allocated `dst`.
Hint : compression runs faster if `dstCapacity` >= `ZSTD_compressBound(srcSize)`.
@return : compressed size written into `dst` (<= `dstCapacity),
or an error code if it fails (which can be tested using ZSTD_isError()).
</p></pre><BR>
<pre><b>size_t ZSTD_decompress( void* dst, size_t dstCapacity,
const void* src, size_t compressedSize);
</b><p> `compressedSize` : must be the _exact_ size of some number of compressed and/or skippable frames.
`dstCapacity` is an upper bound of originalSize to regenerate.
If user cannot imply a maximum upper bound, it's better to use streaming mode to decompress data.
@return : the number of bytes decompressed into `dst` (<= `dstCapacity`),
or an errorCode if it fails (which can be tested using ZSTD_isError()).
</p></pre><BR>
<pre><b>#define ZSTD_CONTENTSIZE_UNKNOWN (0ULL - 1)
#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2)
unsigned long long ZSTD_getFrameContentSize(const void *src, size_t srcSize);
</b><p> `src` should point to the start of a ZSTD encoded frame.
`srcSize` must be at least as large as the frame header.
hint : any size >= `ZSTD_frameHeaderSize_max` is large enough.
@return : - decompressed size of `src` frame content, if known
- ZSTD_CONTENTSIZE_UNKNOWN if the size cannot be determined
- ZSTD_CONTENTSIZE_ERROR if an error occurred (e.g. invalid magic number, srcSize too small)
note 1 : a 0 return value means the frame is valid but "empty".
note 2 : decompressed size is an optional field, it may not be present, typically in streaming mode.
When `return==ZSTD_CONTENTSIZE_UNKNOWN`, data to decompress could be any size.
In which case, it's necessary to use streaming mode to decompress data.
Optionally, application can rely on some implicit limit,
as ZSTD_decompress() only needs an upper bound of decompressed size.
(For example, data could be necessarily cut into blocks <= 16 KB).
note 3 : decompressed size is always present when compression is completed using single-pass functions,
such as ZSTD_compress(), ZSTD_compressCCtx() ZSTD_compress_usingDict() or ZSTD_compress_usingCDict().
note 4 : decompressed size can be very large (64-bits value),
potentially larger than what local system can handle as a single memory segment.
In which case, it's necessary to use streaming mode to decompress data.
note 5 : If source is untrusted, decompressed size could be wrong or intentionally modified.
Always ensure return value fits within application's authorized limits.
Each application can set its own limits.
note 6 : This function replaces ZSTD_getDecompressedSize()
</p></pre><BR>
<pre><b>unsigned long long ZSTD_getDecompressedSize(const void* src, size_t srcSize);
</b><p> NOTE: This function is now obsolete, in favor of ZSTD_getFrameContentSize().
Both functions work the same way, but ZSTD_getDecompressedSize() blends
"empty", "unknown" and "error" results to the same return value (0),
while ZSTD_getFrameContentSize() gives them separate return values.
@return : decompressed size of `src` frame content _if known and not empty_, 0 otherwise.
</p></pre><BR>
<pre><b>size_t ZSTD_findFrameCompressedSize(const void* src, size_t srcSize);
</b><p> `src` should point to the start of a ZSTD frame or skippable frame.
`srcSize` must be >= first frame size
@return : the compressed size of the first frame starting at `src`,
suitable to pass as `srcSize` to `ZSTD_decompress` or similar,
or an error code if input is invalid
</p></pre><BR>
<h3>Helper functions</h3><pre></pre><b><pre>#define ZSTD_COMPRESSBOUND(srcSize) ((srcSize) + ((srcSize)>>8) + (((srcSize) < (128<<10)) ? (((128<<10) - (srcSize)) >> 11) </b>/* margin, from 64 to 0 */ : 0)) /* this formula ensures that bound(A) + bound(B) <= bound(A+B) as long as A and B >= 128 KB */<b>
size_t ZSTD_compressBound(size_t srcSize); </b>/*!< maximum compressed size in worst case single-pass scenario */<b>
unsigned ZSTD_isError(size_t code); </b>/*!< tells if a `size_t` function result is an error code */<b>
const char* ZSTD_getErrorName(size_t code); </b>/*!< provides readable string from an error code */<b>
-int ZSTD_minCLevel(void); </b>/*!< minimum negative compression level allowed */<b>
+int ZSTD_minCLevel(void); </b>/*!< minimum negative compression level allowed, requires v1.4.0+ */<b>
int ZSTD_maxCLevel(void); </b>/*!< maximum compression level available */<b>
+int ZSTD_defaultCLevel(void); </b>/*!< default compression level, specified by ZSTD_CLEVEL_DEFAULT, requires v1.5.0+ */<b>
</pre></b><BR>
<a name="Chapter4"></a><h2>Explicit context</h2><pre></pre>
<h3>Compression context</h3><pre> When compressing many times,
it is recommended to allocate a context just once,
and re-use it for each successive compression operation.
This will make workload friendlier for system's memory.
Note : re-using context is just a speed / resource optimization.
It doesn't change the compression ratio, which remains identical.
Note 2 : In multi-threaded environments,
use one different context per thread for parallel execution.
</pre><b><pre>typedef struct ZSTD_CCtx_s ZSTD_CCtx;
ZSTD_CCtx* ZSTD_createCCtx(void);
-size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx);
+size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx); </b>/* accept NULL pointer */<b>
</pre></b><BR>
<pre><b>size_t ZSTD_compressCCtx(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
int compressionLevel);
</b><p> Same as ZSTD_compress(), using an explicit ZSTD_CCtx.
Important : in order to behave similarly to `ZSTD_compress()`,
this function compresses at requested compression level,
__ignoring any other parameter__ .
If any advanced parameter was set using the advanced API,
they will all be reset. Only `compressionLevel` remains.
</p></pre><BR>
<h3>Decompression context</h3><pre> When decompressing many times,
it is recommended to allocate a context only once,
and re-use it for each successive compression operation.
This will make workload friendlier for system's memory.
Use one context per thread for parallel execution.
</pre><b><pre>typedef struct ZSTD_DCtx_s ZSTD_DCtx;
ZSTD_DCtx* ZSTD_createDCtx(void);
-size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx);
+size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx); </b>/* accept NULL pointer */<b>
</pre></b><BR>
<pre><b>size_t ZSTD_decompressDCtx(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize);
</b><p> Same as ZSTD_decompress(),
requires an allocated ZSTD_DCtx.
Compatible with sticky parameters.
</p></pre><BR>
-<a name="Chapter5"></a><h2>Advanced compression API</h2><pre></pre>
+<a name="Chapter5"></a><h2>Advanced compression API (Requires v1.4.0+)</h2><pre></pre>
<pre><b>typedef enum { ZSTD_fast=1,
ZSTD_dfast=2,
ZSTD_greedy=3,
ZSTD_lazy=4,
ZSTD_lazy2=5,
ZSTD_btlazy2=6,
ZSTD_btopt=7,
ZSTD_btultra=8,
ZSTD_btultra2=9
</b>/* note : new strategies _might_ be added in the future.<b>
Only the order (from fast to strong) is guaranteed */
} ZSTD_strategy;
</b></pre><BR>
<pre><b>typedef enum {
</b>/* compression parameters<b>
* Note: When compressing with a ZSTD_CDict these parameters are superseded
* by the parameters used to construct the ZSTD_CDict.
* See ZSTD_CCtx_refCDict() for more info (superseded-by-cdict). */
ZSTD_c_compressionLevel=100, </b>/* Set compression parameters according to pre-defined cLevel table.<b>
* Note that exact compression parameters are dynamically determined,
* depending on both compression level and srcSize (when known).
* Default level is ZSTD_CLEVEL_DEFAULT==3.
* Special: value 0 means default, which is controlled by ZSTD_CLEVEL_DEFAULT.
* Note 1 : it's possible to pass a negative compression level.
* Note 2 : setting a level does not automatically set all other compression parameters
* to default. Setting this will however eventually dynamically impact the compression
* parameters which have not been manually set. The manually set
* ones will 'stick'. */
</b>/* Advanced compression parameters :<b>
* It's possible to pin down compression parameters to some specific values.
* In which case, these values are no longer dynamically selected by the compressor */
ZSTD_c_windowLog=101, </b>/* Maximum allowed back-reference distance, expressed as power of 2.<b>
* This will set a memory budget for streaming decompression,
* with larger values requiring more memory
* and typically compressing more.
* Must be clamped between ZSTD_WINDOWLOG_MIN and ZSTD_WINDOWLOG_MAX.
* Special: value 0 means "use default windowLog".
* Note: Using a windowLog greater than ZSTD_WINDOWLOG_LIMIT_DEFAULT
* requires explicitly allowing such size at streaming decompression stage. */
ZSTD_c_hashLog=102, </b>/* Size of the initial probe table, as a power of 2.<b>
* Resulting memory usage is (1 << (hashLog+2)).
* Must be clamped between ZSTD_HASHLOG_MIN and ZSTD_HASHLOG_MAX.
* Larger tables improve compression ratio of strategies <= dFast,
* and improve speed of strategies > dFast.
* Special: value 0 means "use default hashLog". */
ZSTD_c_chainLog=103, </b>/* Size of the multi-probe search table, as a power of 2.<b>
* Resulting memory usage is (1 << (chainLog+2)).
* Must be clamped between ZSTD_CHAINLOG_MIN and ZSTD_CHAINLOG_MAX.
* Larger tables result in better and slower compression.
* This parameter is useless for "fast" strategy.
* It's still useful when using "dfast" strategy,
* in which case it defines a secondary probe table.
* Special: value 0 means "use default chainLog". */
ZSTD_c_searchLog=104, </b>/* Number of search attempts, as a power of 2.<b>
* More attempts result in better and slower compression.
* This parameter is useless for "fast" and "dFast" strategies.
* Special: value 0 means "use default searchLog". */
ZSTD_c_minMatch=105, </b>/* Minimum size of searched matches.<b>
* Note that Zstandard can still find matches of smaller size,
* it just tweaks its search algorithm to look for this size and larger.
* Larger values increase compression and decompression speed, but decrease ratio.
* Must be clamped between ZSTD_MINMATCH_MIN and ZSTD_MINMATCH_MAX.
* Note that currently, for all strategies < btopt, effective minimum is 4.
* , for all strategies > fast, effective maximum is 6.
* Special: value 0 means "use default minMatchLength". */
ZSTD_c_targetLength=106, </b>/* Impact of this field depends on strategy.<b>
* For strategies btopt, btultra & btultra2:
* Length of Match considered "good enough" to stop search.
* Larger values make compression stronger, and slower.
* For strategy fast:
* Distance between match sampling.
* Larger values make compression faster, and weaker.
* Special: value 0 means "use default targetLength". */
ZSTD_c_strategy=107, </b>/* See ZSTD_strategy enum definition.<b>
* The higher the value of selected strategy, the more complex it is,
* resulting in stronger and slower compression.
* Special: value 0 means "use default strategy". */
-
</b>/* LDM mode parameters */<b>
ZSTD_c_enableLongDistanceMatching=160, </b>/* Enable long distance matching.<b>
* This parameter is designed to improve compression ratio
* for large inputs, by finding large matches at long distance.
* It increases memory usage and window size.
* Note: enabling this parameter increases default ZSTD_c_windowLog to 128 MB
* except when expressly set to a different value.
* Note: will be enabled by default if ZSTD_c_windowLog >= 128 MB and
* compression strategy >= ZSTD_btopt (== compression level 16+) */
ZSTD_c_ldmHashLog=161, </b>/* Size of the table for long distance matching, as a power of 2.<b>
* Larger values increase memory usage and compression ratio,
* but decrease compression speed.
* Must be clamped between ZSTD_HASHLOG_MIN and ZSTD_HASHLOG_MAX
* default: windowlog - 7.
* Special: value 0 means "automatically determine hashlog". */
ZSTD_c_ldmMinMatch=162, </b>/* Minimum match size for long distance matcher.<b>
* Larger/too small values usually decrease compression ratio.
* Must be clamped between ZSTD_LDM_MINMATCH_MIN and ZSTD_LDM_MINMATCH_MAX.
* Special: value 0 means "use default value" (default: 64). */
ZSTD_c_ldmBucketSizeLog=163, </b>/* Log size of each bucket in the LDM hash table for collision resolution.<b>
* Larger values improve collision resolution but decrease compression speed.
* The maximum value is ZSTD_LDM_BUCKETSIZELOG_MAX.
* Special: value 0 means "use default value" (default: 3). */
ZSTD_c_ldmHashRateLog=164, </b>/* Frequency of inserting/looking up entries into the LDM hash table.<b>
* Must be clamped between 0 and (ZSTD_WINDOWLOG_MAX - ZSTD_HASHLOG_MIN).
* Default is MAX(0, (windowLog - ldmHashLog)), optimizing hash table usage.
* Larger values improve compression speed.
* Deviating far from default value will likely result in a compression ratio decrease.
* Special: value 0 means "automatically determine hashRateLog". */
</b>/* frame parameters */<b>
ZSTD_c_contentSizeFlag=200, </b>/* Content size will be written into frame header _whenever known_ (default:1)<b>
* Content size must be known at the beginning of compression.
* This is automatically the case when using ZSTD_compress2(),
* For streaming scenarios, content size must be provided with ZSTD_CCtx_setPledgedSrcSize() */
ZSTD_c_checksumFlag=201, </b>/* A 32-bits checksum of content is written at end of frame (default:0) */<b>
ZSTD_c_dictIDFlag=202, </b>/* When applicable, dictionary's ID is written into frame header (default:1) */<b>
</b>/* multi-threading parameters */<b>
</b>/* These parameters are only active if multi-threading is enabled (compiled with build macro ZSTD_MULTITHREAD).<b>
* Otherwise, trying to set any other value than default (0) will be a no-op and return an error.
* In a situation where it's unknown if the linked library supports multi-threading or not,
* setting ZSTD_c_nbWorkers to any value >= 1 and consulting the return value provides a quick way to check this property.
*/
ZSTD_c_nbWorkers=400, </b>/* Select how many threads will be spawned to compress in parallel.<b>
* When nbWorkers >= 1, triggers asynchronous mode when invoking ZSTD_compressStream*() :
* ZSTD_compressStream*() consumes input and flush output if possible, but immediately gives back control to caller,
* while compression is performed in parallel, within worker thread(s).
* (note : a strong exception to this rule is when first invocation of ZSTD_compressStream2() sets ZSTD_e_end :
* in which case, ZSTD_compressStream2() delegates to ZSTD_compress2(), which is always a blocking call).
* More workers improve speed, but also increase memory usage.
* Default value is `0`, aka "single-threaded mode" : no worker is spawned,
* compression is performed inside Caller's thread, and all invocations are blocking */
ZSTD_c_jobSize=401, </b>/* Size of a compression job. This value is enforced only when nbWorkers >= 1.<b>
* Each compression job is completed in parallel, so this value can indirectly impact the nb of active threads.
* 0 means default, which is dynamically determined based on compression parameters.
- * Job size must be a minimum of overlap size, or 1 MB, whichever is largest.
+ * Job size must be a minimum of overlap size, or ZSTDMT_JOBSIZE_MIN (= 512 KB), whichever is largest.
* The minimum size is automatically and transparently enforced. */
ZSTD_c_overlapLog=402, </b>/* Control the overlap size, as a fraction of window size.<b>
* The overlap size is an amount of data reloaded from previous job at the beginning of a new job.
* It helps preserve compression ratio, while each job is compressed in parallel.
* This value is enforced only when nbWorkers >= 1.
* Larger values increase compression ratio, but decrease speed.
* Possible values range from 0 to 9 :
* - 0 means "default" : value will be determined by the library, depending on strategy
* - 1 means "no overlap"
* - 9 means "full overlap", using a full window size.
* Each intermediate rank increases/decreases load size by a factor 2 :
* 9: full window; 8: w/2; 7: w/4; 6: w/8; 5:w/16; 4: w/32; 3:w/64; 2:w/128; 1:no overlap; 0:default
* default value varies between 6 and 9, depending on strategy */
</b>/* note : additional experimental parameters are also available<b>
* within the experimental section of the API.
* At the time of this writing, they include :
* ZSTD_c_rsyncable
* ZSTD_c_format
* ZSTD_c_forceMaxWindow
* ZSTD_c_forceAttachDict
* ZSTD_c_literalCompressionMode
* ZSTD_c_targetCBlockSize
* ZSTD_c_srcSizeHint
* ZSTD_c_enableDedicatedDictSearch
* ZSTD_c_stableInBuffer
* ZSTD_c_stableOutBuffer
* ZSTD_c_blockDelimiters
* ZSTD_c_validateSequences
+ * ZSTD_c_useBlockSplitter
+ * ZSTD_c_useRowMatchFinder
* Because they are not stable, it's necessary to define ZSTD_STATIC_LINKING_ONLY to access them.
* note : never ever use experimentalParam? names directly;
* also, the enums values themselves are unstable and can still change.
*/
ZSTD_c_experimentalParam1=500,
ZSTD_c_experimentalParam2=10,
ZSTD_c_experimentalParam3=1000,
ZSTD_c_experimentalParam4=1001,
ZSTD_c_experimentalParam5=1002,
ZSTD_c_experimentalParam6=1003,
ZSTD_c_experimentalParam7=1004,
ZSTD_c_experimentalParam8=1005,
ZSTD_c_experimentalParam9=1006,
ZSTD_c_experimentalParam10=1007,
ZSTD_c_experimentalParam11=1008,
- ZSTD_c_experimentalParam12=1009
+ ZSTD_c_experimentalParam12=1009,
+ ZSTD_c_experimentalParam13=1010,
+ ZSTD_c_experimentalParam14=1011,
+ ZSTD_c_experimentalParam15=1012
} ZSTD_cParameter;
</b></pre><BR>
<pre><b>typedef struct {
size_t error;
int lowerBound;
int upperBound;
} ZSTD_bounds;
</b></pre><BR>
<pre><b>ZSTD_bounds ZSTD_cParam_getBounds(ZSTD_cParameter cParam);
</b><p> All parameters must belong to an interval with lower and upper bounds,
otherwise they will either trigger an error or be automatically clamped.
@return : a structure, ZSTD_bounds, which contains
- an error status field, which must be tested using ZSTD_isError()
- lower and upper bounds, both inclusive
</p></pre><BR>
<pre><b>size_t ZSTD_CCtx_setParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, int value);
</b><p> Set one compression parameter, selected by enum ZSTD_cParameter.
All parameters have valid bounds. Bounds can be queried using ZSTD_cParam_getBounds().
Providing a value beyond bound will either clamp it, or trigger an error (depending on parameter).
Setting a parameter is generally only possible during frame initialization (before starting compression).
Exception : when using multi-threading mode (nbWorkers >= 1),
the following parameters can be updated _during_ compression (within same frame):
=> compressionLevel, hashLog, chainLog, searchLog, minMatch, targetLength and strategy.
new parameters will be active for next job only (after a flush()).
@return : an error code (which can be tested using ZSTD_isError()).
</p></pre><BR>
<pre><b>size_t ZSTD_CCtx_setPledgedSrcSize(ZSTD_CCtx* cctx, unsigned long long pledgedSrcSize);
</b><p> Total input data size to be compressed as a single frame.
Value will be written in frame header, unless if explicitly forbidden using ZSTD_c_contentSizeFlag.
This value will also be controlled at end of frame, and trigger an error if not respected.
@result : 0, or an error code (which can be tested with ZSTD_isError()).
Note 1 : pledgedSrcSize==0 actually means zero, aka an empty frame.
In order to mean "unknown content size", pass constant ZSTD_CONTENTSIZE_UNKNOWN.
ZSTD_CONTENTSIZE_UNKNOWN is default value for any new frame.
Note 2 : pledgedSrcSize is only valid once, for the next frame.
It's discarded at the end of the frame, and replaced by ZSTD_CONTENTSIZE_UNKNOWN.
Note 3 : Whenever all input data is provided and consumed in a single round,
for example with ZSTD_compress2(),
or invoking immediately ZSTD_compressStream2(,,,ZSTD_e_end),
this value is automatically overridden by srcSize instead.
</p></pre><BR>
<pre><b>typedef enum {
ZSTD_reset_session_only = 1,
ZSTD_reset_parameters = 2,
ZSTD_reset_session_and_parameters = 3
} ZSTD_ResetDirective;
</b></pre><BR>
<pre><b>size_t ZSTD_CCtx_reset(ZSTD_CCtx* cctx, ZSTD_ResetDirective reset);
</b><p> There are 2 different things that can be reset, independently or jointly :
- The session : will stop compressing current frame, and make CCtx ready to start a new one.
Useful after an error, or to interrupt any ongoing compression.
Any internal data not yet flushed is cancelled.
Compression parameters and dictionary remain unchanged.
They will be used to compress next frame.
Resetting session never fails.
- The parameters : changes all parameters back to "default".
This removes any reference to any dictionary too.
Parameters can only be changed between 2 sessions (i.e. no compression is currently ongoing)
otherwise the reset fails, and function returns an error value (which can be tested using ZSTD_isError())
- Both : similar to resetting the session, followed by resetting parameters.
</p></pre><BR>
<pre><b>size_t ZSTD_compress2( ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize);
</b><p> Behave the same as ZSTD_compressCCtx(), but compression parameters are set using the advanced API.
ZSTD_compress2() always starts a new frame.
Should cctx hold data from a previously unfinished frame, everything about it is forgotten.
- Compression parameters are pushed into CCtx before starting compression, using ZSTD_CCtx_set*()
- The function is always blocking, returns when compression is completed.
Hint : compression runs faster if `dstCapacity` >= `ZSTD_compressBound(srcSize)`.
@return : compressed size written into `dst` (<= `dstCapacity),
or an error code if it fails (which can be tested using ZSTD_isError()).
</p></pre><BR>
-<a name="Chapter6"></a><h2>Advanced decompression API</h2><pre></pre>
+<a name="Chapter6"></a><h2>Advanced decompression API (Requires v1.4.0+)</h2><pre></pre>
<pre><b>typedef enum {
ZSTD_d_windowLogMax=100, </b>/* Select a size limit (in power of 2) beyond which<b>
* the streaming API will refuse to allocate memory buffer
* in order to protect the host from unreasonable memory requirements.
* This parameter is only useful in streaming mode, since no internal buffer is allocated in single-pass mode.
* By default, a decompression context accepts window sizes <= (1 << ZSTD_WINDOWLOG_LIMIT_DEFAULT).
* Special: value 0 means "use default maximum windowLog". */
</b>/* note : additional experimental parameters are also available<b>
* within the experimental section of the API.
* At the time of this writing, they include :
* ZSTD_d_format
* ZSTD_d_stableOutBuffer
* ZSTD_d_forceIgnoreChecksum
+ * ZSTD_d_refMultipleDDicts
* Because they are not stable, it's necessary to define ZSTD_STATIC_LINKING_ONLY to access them.
* note : never ever use experimentalParam? names directly
*/
ZSTD_d_experimentalParam1=1000,
ZSTD_d_experimentalParam2=1001,
- ZSTD_d_experimentalParam3=1002
+ ZSTD_d_experimentalParam3=1002,
+ ZSTD_d_experimentalParam4=1003
} ZSTD_dParameter;
</b></pre><BR>
<pre><b>ZSTD_bounds ZSTD_dParam_getBounds(ZSTD_dParameter dParam);
</b><p> All parameters must belong to an interval with lower and upper bounds,
otherwise they will either trigger an error or be automatically clamped.
@return : a structure, ZSTD_bounds, which contains
- an error status field, which must be tested using ZSTD_isError()
- both lower and upper bounds, inclusive
</p></pre><BR>
<pre><b>size_t ZSTD_DCtx_setParameter(ZSTD_DCtx* dctx, ZSTD_dParameter param, int value);
</b><p> Set one compression parameter, selected by enum ZSTD_dParameter.
All parameters have valid bounds. Bounds can be queried using ZSTD_dParam_getBounds().
Providing a value beyond bound will either clamp it, or trigger an error (depending on parameter).
Setting a parameter is only possible during frame initialization (before starting decompression).
@return : 0, or an error code (which can be tested using ZSTD_isError()).
</p></pre><BR>
<pre><b>size_t ZSTD_DCtx_reset(ZSTD_DCtx* dctx, ZSTD_ResetDirective reset);
</b><p> Return a DCtx to clean state.
Session and parameters can be reset jointly or separately.
Parameters can only be reset when no active frame is being decompressed.
@return : 0, or an error code, which can be tested with ZSTD_isError()
</p></pre><BR>
<a name="Chapter7"></a><h2>Streaming</h2><pre></pre>
<pre><b>typedef struct ZSTD_inBuffer_s {
const void* src; </b>/**< start of input buffer */<b>
size_t size; </b>/**< size of input buffer */<b>
size_t pos; </b>/**< position where reading stopped. Will be updated. Necessarily 0 <= pos <= size */<b>
} ZSTD_inBuffer;
</b></pre><BR>
<pre><b>typedef struct ZSTD_outBuffer_s {
void* dst; </b>/**< start of output buffer */<b>
size_t size; </b>/**< size of output buffer */<b>
size_t pos; </b>/**< position where writing stopped. Will be updated. Necessarily 0 <= pos <= size */<b>
} ZSTD_outBuffer;
</b></pre><BR>
<a name="Chapter8"></a><h2>Streaming compression - HowTo</h2><pre>
A ZSTD_CStream object is required to track streaming operation.
Use ZSTD_createCStream() and ZSTD_freeCStream() to create/release resources.
ZSTD_CStream objects can be reused multiple times on consecutive compression operations.
It is recommended to re-use ZSTD_CStream since it will play nicer with system's memory, by re-using already allocated memory.
For parallel execution, use one separate ZSTD_CStream per thread.
note : since v1.3.0, ZSTD_CStream and ZSTD_CCtx are the same thing.
Parameters are sticky : when starting a new compression on the same context,
it will re-use the same sticky parameters as previous compression session.
When in doubt, it's recommended to fully initialize the context before usage.
Use ZSTD_CCtx_reset() to reset the context and ZSTD_CCtx_setParameter(),
ZSTD_CCtx_setPledgedSrcSize(), or ZSTD_CCtx_loadDictionary() and friends to
set more specific parameters, the pledged source size, or load a dictionary.
Use ZSTD_compressStream2() with ZSTD_e_continue as many times as necessary to
consume input stream. The function will automatically update both `pos`
fields within `input` and `output`.
Note that the function may not consume the entire input, for example, because
the output buffer is already full, in which case `input.pos < input.size`.
The caller must check if input has been entirely consumed.
If not, the caller must make some room to receive more compressed data,
and then present again remaining input data.
note: ZSTD_e_continue is guaranteed to make some forward progress when called,
but doesn't guarantee maximal forward progress. This is especially relevant
when compressing with multiple threads. The call won't block if it can
consume some input, but if it can't it will wait for some, but not all,
output to be flushed.
@return : provides a minimum amount of data remaining to be flushed from internal buffers
or an error code, which can be tested using ZSTD_isError().
At any moment, it's possible to flush whatever data might remain stuck within internal buffer,
using ZSTD_compressStream2() with ZSTD_e_flush. `output->pos` will be updated.
Note that, if `output->size` is too small, a single invocation with ZSTD_e_flush might not be enough (return code > 0).
In which case, make some room to receive more compressed data, and call again ZSTD_compressStream2() with ZSTD_e_flush.
You must continue calling ZSTD_compressStream2() with ZSTD_e_flush until it returns 0, at which point you can change the
operation.
note: ZSTD_e_flush will flush as much output as possible, meaning when compressing with multiple threads, it will
block until the flush is complete or the output buffer is full.
@return : 0 if internal buffers are entirely flushed,
>0 if some data still present within internal buffer (the value is minimal estimation of remaining size),
or an error code, which can be tested using ZSTD_isError().
Calling ZSTD_compressStream2() with ZSTD_e_end instructs to finish a frame.
It will perform a flush and write frame epilogue.
The epilogue is required for decoders to consider a frame completed.
flush operation is the same, and follows same rules as calling ZSTD_compressStream2() with ZSTD_e_flush.
You must continue calling ZSTD_compressStream2() with ZSTD_e_end until it returns 0, at which point you are free to
start a new frame.
note: ZSTD_e_end will flush as much output as possible, meaning when compressing with multiple threads, it will
block until the flush is complete or the output buffer is full.
@return : 0 if frame fully completed and fully flushed,
>0 if some data still present within internal buffer (the value is minimal estimation of remaining size),
or an error code, which can be tested using ZSTD_isError().
<BR></pre>
<pre><b>typedef ZSTD_CCtx ZSTD_CStream; </b>/**< CCtx and CStream are now effectively same object (>= v1.3.0) */<b>
</b></pre><BR>
<h3>ZSTD_CStream management functions</h3><pre></pre><b><pre>ZSTD_CStream* ZSTD_createCStream(void);
-size_t ZSTD_freeCStream(ZSTD_CStream* zcs);
+size_t ZSTD_freeCStream(ZSTD_CStream* zcs); </b>/* accept NULL pointer */<b>
</pre></b><BR>
<h3>Streaming compression functions</h3><pre></pre><b><pre>typedef enum {
ZSTD_e_continue=0, </b>/* collect more data, encoder decides when to output compressed result, for optimal compression ratio */<b>
ZSTD_e_flush=1, </b>/* flush any data provided so far,<b>
* it creates (at least) one new block, that can be decoded immediately on reception;
* frame will continue: any future data can still reference previously compressed data, improving compression.
* note : multithreaded compression will block to flush as much output as possible. */
ZSTD_e_end=2 </b>/* flush any remaining data _and_ close current frame.<b>
* note that frame is only closed after compressed data is fully flushed (return value == 0).
* After that point, any additional data starts a new frame.
* note : each frame is independent (does not reference any content from previous frame).
: note : multithreaded compression will block to flush as much output as possible. */
} ZSTD_EndDirective;
</pre></b><BR>
<pre><b>size_t ZSTD_compressStream2( ZSTD_CCtx* cctx,
ZSTD_outBuffer* output,
ZSTD_inBuffer* input,
ZSTD_EndDirective endOp);
</b><p> Behaves about the same as ZSTD_compressStream, with additional control on end directive.
- Compression parameters are pushed into CCtx before starting compression, using ZSTD_CCtx_set*()
- Compression parameters cannot be changed once compression is started (save a list of exceptions in multi-threading mode)
- output->pos must be <= dstCapacity, input->pos must be <= srcSize
- output->pos and input->pos will be updated. They are guaranteed to remain below their respective limit.
- endOp must be a valid directive
- When nbWorkers==0 (default), function is blocking : it completes its job before returning to caller.
- When nbWorkers>=1, function is non-blocking : it copies a portion of input, distributes jobs to internal worker threads, flush to output whatever is available,
and then immediately returns, just indicating that there is some data remaining to be flushed.
The function nonetheless guarantees forward progress : it will return only after it reads or write at least 1+ byte.
- Exception : if the first call requests a ZSTD_e_end directive and provides enough dstCapacity, the function delegates to ZSTD_compress2() which is always blocking.
- @return provides a minimum amount of data remaining to be flushed from internal buffers
or an error code, which can be tested using ZSTD_isError().
if @return != 0, flush is not fully completed, there is still some data left within internal buffers.
This is useful for ZSTD_e_flush, since in this case more flushes are necessary to empty all buffers.
For ZSTD_e_end, @return == 0 when internal buffers are fully flushed and frame is completed.
- after a ZSTD_e_end directive, if internal buffer is not fully flushed (@return != 0),
only ZSTD_e_end or ZSTD_e_flush operations are allowed.
Before starting a new compression job, or changing compression parameters,
it is required to fully flush internal buffers.
</p></pre><BR>
<pre><b>size_t ZSTD_CStreamInSize(void); </b>/**< recommended size for input buffer */<b>
</b></pre><BR>
<pre><b>size_t ZSTD_CStreamOutSize(void); </b>/**< recommended size for output buffer. Guarantee to successfully flush at least one complete compressed block. */<b>
</b></pre><BR>
<pre><b>size_t ZSTD_initCStream(ZSTD_CStream* zcs, int compressionLevel);
</b>/*!<b>
* Alternative for ZSTD_compressStream2(zcs, output, input, ZSTD_e_continue).
* NOTE: The return value is different. ZSTD_compressStream() returns a hint for
* the next read size (if non-zero and not an error). ZSTD_compressStream2()
* returns the minimum nb of bytes left to flush (if non-zero and not an error).
*/
size_t ZSTD_compressStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input);
</b>/*! Equivalent to ZSTD_compressStream2(zcs, output, &emptyInput, ZSTD_e_flush). */<b>
size_t ZSTD_flushStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output);
</b>/*! Equivalent to ZSTD_compressStream2(zcs, output, &emptyInput, ZSTD_e_end). */<b>
size_t ZSTD_endStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output);
</b><p>
ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
ZSTD_CCtx_refCDict(zcs, NULL); // clear the dictionary (if any)
ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel);
</p></pre><BR>
<a name="Chapter9"></a><h2>Streaming decompression - HowTo</h2><pre>
A ZSTD_DStream object is required to track streaming operations.
Use ZSTD_createDStream() and ZSTD_freeDStream() to create/release resources.
ZSTD_DStream objects can be re-used multiple times.
Use ZSTD_initDStream() to start a new decompression operation.
@return : recommended first input size
Alternatively, use advanced API to set specific properties.
Use ZSTD_decompressStream() repetitively to consume your input.
The function will update both `pos` fields.
If `input.pos < input.size`, some input has not been consumed.
It's up to the caller to present again remaining data.
The function tries to flush all data decoded immediately, respecting output buffer size.
If `output.pos < output.size`, decoder has flushed everything it could.
But if `output.pos == output.size`, there might be some data left within internal buffers.,
In which case, call ZSTD_decompressStream() again to flush whatever remains in the buffer.
Note : with no additional input provided, amount of data flushed is necessarily <= ZSTD_BLOCKSIZE_MAX.
@return : 0 when a frame is completely decoded and fully flushed,
or an error code, which can be tested using ZSTD_isError(),
or any other value > 0, which means there is still some decoding or flushing to do to complete current frame :
the return value is a suggested next input size (just a hint for better latency)
that will never request more than the remaining frame size.
<BR></pre>
<pre><b>typedef ZSTD_DCtx ZSTD_DStream; </b>/**< DCtx and DStream are now effectively same object (>= v1.3.0) */<b>
</b></pre><BR>
<h3>ZSTD_DStream management functions</h3><pre></pre><b><pre>ZSTD_DStream* ZSTD_createDStream(void);
-size_t ZSTD_freeDStream(ZSTD_DStream* zds);
+size_t ZSTD_freeDStream(ZSTD_DStream* zds); </b>/* accept NULL pointer */<b>
</pre></b><BR>
<h3>Streaming decompression functions</h3><pre></pre><b><pre></pre></b><BR>
<pre><b>size_t ZSTD_DStreamInSize(void); </b>/*!< recommended size for input buffer */<b>
</b></pre><BR>
<pre><b>size_t ZSTD_DStreamOutSize(void); </b>/*!< recommended size for output buffer. Guarantee to successfully flush at least one complete block in all circumstances. */<b>
</b></pre><BR>
<a name="Chapter10"></a><h2>Simple dictionary API</h2><pre></pre>
<pre><b>size_t ZSTD_compress_usingDict(ZSTD_CCtx* ctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize,
int compressionLevel);
</b><p> Compression at an explicit compression level using a Dictionary.
A dictionary can be any arbitrary data segment (also called a prefix),
- or a buffer with specified information (see dictBuilder/zdict.h).
+ or a buffer with specified information (see zdict.h).
Note : This function loads the dictionary, resulting in significant startup delay.
It's intended for a dictionary used only once.
Note 2 : When `dict == NULL || dictSize < 8` no dictionary is used.
</p></pre><BR>
<pre><b>size_t ZSTD_decompress_usingDict(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize);
</b><p> Decompression using a known Dictionary.
Dictionary must be identical to the one used during compression.
Note : This function loads the dictionary, resulting in significant startup delay.
It's intended for a dictionary used only once.
Note : When `dict == NULL || dictSize < 8` no dictionary is used.
</p></pre><BR>
<a name="Chapter11"></a><h2>Bulk processing dictionary API</h2><pre></pre>
<pre><b>ZSTD_CDict* ZSTD_createCDict(const void* dictBuffer, size_t dictSize,
int compressionLevel);
</b><p> When compressing multiple messages or blocks using the same dictionary,
it's recommended to digest the dictionary only once, since it's a costly operation.
ZSTD_createCDict() will create a state from digesting a dictionary.
The resulting state can be used for future compression operations with very limited startup cost.
ZSTD_CDict can be created once and shared by multiple threads concurrently, since its usage is read-only.
@dictBuffer can be released after ZSTD_CDict creation, because its content is copied within CDict.
Note 1 : Consider experimental function `ZSTD_createCDict_byReference()` if you prefer to not duplicate @dictBuffer content.
Note 2 : A ZSTD_CDict can be created from an empty @dictBuffer,
in which case the only thing that it transports is the @compressionLevel.
This can be useful in a pipeline featuring ZSTD_compress_usingCDict() exclusively,
expecting a ZSTD_CDict parameter with any data, including those without a known dictionary.
</p></pre><BR>
<pre><b>size_t ZSTD_freeCDict(ZSTD_CDict* CDict);
-</b><p> Function frees memory allocated by ZSTD_createCDict().
+</b><p> Function frees memory allocated by ZSTD_createCDict().
+ If a NULL pointer is passed, no operation is performed.
</p></pre><BR>
<pre><b>size_t ZSTD_compress_usingCDict(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTD_CDict* cdict);
</b><p> Compression using a digested Dictionary.
Recommended when same dictionary is used multiple times.
Note : compression level is _decided at dictionary creation time_,
and frame parameters are hardcoded (dictID=yes, contentSize=yes, checksum=no)
</p></pre><BR>
<pre><b>ZSTD_DDict* ZSTD_createDDict(const void* dictBuffer, size_t dictSize);
</b><p> Create a digested dictionary, ready to start decompression operation without startup delay.
dictBuffer can be released after DDict creation, as its content is copied inside DDict.
</p></pre><BR>
<pre><b>size_t ZSTD_freeDDict(ZSTD_DDict* ddict);
-</b><p> Function frees memory allocated with ZSTD_createDDict()
+</b><p> Function frees memory allocated with ZSTD_createDDict()
+ If a NULL pointer is passed, no operation is performed.
</p></pre><BR>
<pre><b>size_t ZSTD_decompress_usingDDict(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTD_DDict* ddict);
</b><p> Decompression using a digested Dictionary.
Recommended when same dictionary is used multiple times.
</p></pre><BR>
<a name="Chapter12"></a><h2>Dictionary helper functions</h2><pre></pre>
<pre><b>unsigned ZSTD_getDictID_fromDict(const void* dict, size_t dictSize);
</b><p> Provides the dictID stored within dictionary.
if @return == 0, the dictionary is not conformant with Zstandard specification.
It can still be loaded, but as a content-only dictionary.
</p></pre><BR>
+<pre><b>unsigned ZSTD_getDictID_fromCDict(const ZSTD_CDict* cdict);
+</b><p> Provides the dictID of the dictionary loaded into `cdict`.
+ If @return == 0, the dictionary is not conformant to Zstandard specification, or empty.
+ Non-conformant dictionaries can still be loaded, but as content-only dictionaries.
+</p></pre><BR>
+
<pre><b>unsigned ZSTD_getDictID_fromDDict(const ZSTD_DDict* ddict);
</b><p> Provides the dictID of the dictionary loaded into `ddict`.
If @return == 0, the dictionary is not conformant to Zstandard specification, or empty.
Non-conformant dictionaries can still be loaded, but as content-only dictionaries.
</p></pre><BR>
<pre><b>unsigned ZSTD_getDictID_fromFrame(const void* src, size_t srcSize);
</b><p> Provides the dictID required to decompressed the frame stored within `src`.
If @return == 0, the dictID could not be decoded.
This could for one of the following reasons :
- The frame does not require a dictionary to be decoded (most common case).
- The frame was built with dictID intentionally removed. Whatever dictionary is necessary is a hidden information.
Note : this use case also happens when using a non-conformant dictionary.
- `srcSize` is too small, and as a result, the frame header could not be decoded (only possible if `srcSize < ZSTD_FRAMEHEADERSIZE_MAX`).
- This is not a Zstandard frame.
When identifying the exact failure cause, it's possible to use ZSTD_getFrameHeader(), which will provide a more precise error code.
</p></pre><BR>
-<a name="Chapter13"></a><h2>Advanced dictionary and prefix API</h2><pre>
+<a name="Chapter13"></a><h2>Advanced dictionary and prefix API (Requires v1.4.0+)</h2><pre>
This API allows dictionaries to be used with ZSTD_compress2(),
- ZSTD_compressStream2(), and ZSTD_decompress(). Dictionaries are sticky, and
+ ZSTD_compressStream2(), and ZSTD_decompressDCtx(). Dictionaries are sticky, and
only reset with the context is reset with ZSTD_reset_parameters or
ZSTD_reset_session_and_parameters. Prefixes are single-use.
<BR></pre>
<pre><b>size_t ZSTD_CCtx_loadDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize);
</b><p> Create an internal CDict from `dict` buffer.
Decompression will have to use same dictionary.
@result : 0, or an error code (which can be tested with ZSTD_isError()).
Special: Loading a NULL (or 0-size) dictionary invalidates previous dictionary,
meaning "return to no-dictionary mode".
Note 1 : Dictionary is sticky, it will be used for all future compressed frames.
To return to "no-dictionary" situation, load a NULL dictionary (or reset parameters).
Note 2 : Loading a dictionary involves building tables.
It's also a CPU consuming operation, with non-negligible impact on latency.
Tables are dependent on compression parameters, and for this reason,
compression parameters can no longer be changed after loading a dictionary.
Note 3 :`dict` content will be copied internally.
Use experimental ZSTD_CCtx_loadDictionary_byReference() to reference content instead.
In such a case, dictionary buffer must outlive its users.
Note 4 : Use ZSTD_CCtx_loadDictionary_advanced()
to precisely select how dictionary content must be interpreted.
</p></pre><BR>
<pre><b>size_t ZSTD_CCtx_refCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict);
</b><p> Reference a prepared dictionary, to be used for all next compressed frames.
Note that compression parameters are enforced from within CDict,
and supersede any compression parameter previously set within CCtx.
- The parameters ignored are labled as "superseded-by-cdict" in the ZSTD_cParameter enum docs.
+ The parameters ignored are labelled as "superseded-by-cdict" in the ZSTD_cParameter enum docs.
The ignored parameters will be used again if the CCtx is returned to no-dictionary mode.
The dictionary will remain valid for future compressed frames using same CCtx.
@result : 0, or an error code (which can be tested with ZSTD_isError()).
Special : Referencing a NULL CDict means "return to no-dictionary mode".
Note 1 : Currently, only one dictionary can be managed.
Referencing a new dictionary effectively "discards" any previous one.
Note 2 : CDict is just referenced, its lifetime must outlive its usage within CCtx.
</p></pre><BR>
<pre><b>size_t ZSTD_CCtx_refPrefix(ZSTD_CCtx* cctx,
const void* prefix, size_t prefixSize);
</b><p> Reference a prefix (single-usage dictionary) for next compressed frame.
A prefix is **only used once**. Tables are discarded at end of frame (ZSTD_e_end).
Decompression will need same prefix to properly regenerate data.
Compressing with a prefix is similar in outcome as performing a diff and compressing it,
but performs much faster, especially during decompression (compression speed is tunable with compression level).
@result : 0, or an error code (which can be tested with ZSTD_isError()).
Special: Adding any prefix (including NULL) invalidates any previous prefix or dictionary
Note 1 : Prefix buffer is referenced. It **must** outlive compression.
Its content must remain unmodified during compression.
Note 2 : If the intention is to diff some large src data blob with some prior version of itself,
ensure that the window size is large enough to contain the entire source.
See ZSTD_c_windowLog.
Note 3 : Referencing a prefix involves building tables, which are dependent on compression parameters.
It's a CPU consuming operation, with non-negligible impact on latency.
If there is a need to use the same prefix multiple times, consider loadDictionary instead.
Note 4 : By default, the prefix is interpreted as raw content (ZSTD_dct_rawContent).
Use experimental ZSTD_CCtx_refPrefix_advanced() to alter dictionary interpretation.
</p></pre><BR>
<pre><b>size_t ZSTD_DCtx_loadDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize);
</b><p> Create an internal DDict from dict buffer,
to be used to decompress next frames.
The dictionary remains valid for all future frames, until explicitly invalidated.
@result : 0, or an error code (which can be tested with ZSTD_isError()).
Special : Adding a NULL (or 0-size) dictionary invalidates any previous dictionary,
meaning "return to no-dictionary mode".
Note 1 : Loading a dictionary involves building tables,
which has a non-negligible impact on CPU usage and latency.
It's recommended to "load once, use many times", to amortize the cost
Note 2 :`dict` content will be copied internally, so `dict` can be released after loading.
Use ZSTD_DCtx_loadDictionary_byReference() to reference dictionary content instead.
Note 3 : Use ZSTD_DCtx_loadDictionary_advanced() to take control of
how dictionary content is loaded and interpreted.
</p></pre><BR>
<pre><b>size_t ZSTD_DCtx_refDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict);
</b><p> Reference a prepared dictionary, to be used to decompress next frames.
The dictionary remains active for decompression of future frames using same DCtx.
+
+ If called with ZSTD_d_refMultipleDDicts enabled, repeated calls of this function
+ will store the DDict references in a table, and the DDict used for decompression
+ will be determined at decompression time, as per the dict ID in the frame.
+ The memory for the table is allocated on the first call to refDDict, and can be
+ freed with ZSTD_freeDCtx().
+
@result : 0, or an error code (which can be tested with ZSTD_isError()).
Note 1 : Currently, only one dictionary can be managed.
Referencing a new dictionary effectively "discards" any previous one.
Special: referencing a NULL DDict means "return to no-dictionary mode".
Note 2 : DDict is just referenced, its lifetime must outlive its usage from DCtx.
</p></pre><BR>
<pre><b>size_t ZSTD_DCtx_refPrefix(ZSTD_DCtx* dctx,
const void* prefix, size_t prefixSize);
</b><p> Reference a prefix (single-usage dictionary) to decompress next frame.
This is the reverse operation of ZSTD_CCtx_refPrefix(),
and must use the same prefix as the one used during compression.
Prefix is **only used once**. Reference is discarded at end of frame.
End of frame is reached when ZSTD_decompressStream() returns 0.
@result : 0, or an error code (which can be tested with ZSTD_isError()).
Note 1 : Adding any prefix (including NULL) invalidates any previously set prefix or dictionary
Note 2 : Prefix buffer is referenced. It **must** outlive decompression.
Prefix buffer must remain unmodified up to the end of frame,
reached when ZSTD_decompressStream() returns 0.
Note 3 : By default, the prefix is treated as raw content (ZSTD_dct_rawContent).
Use ZSTD_CCtx_refPrefix_advanced() to alter dictMode (Experimental section)
Note 4 : Referencing a raw content prefix has almost no cpu nor memory cost.
A full dictionary is more costly, as it requires building tables.
</p></pre><BR>
<pre><b>size_t ZSTD_sizeof_CCtx(const ZSTD_CCtx* cctx);
size_t ZSTD_sizeof_DCtx(const ZSTD_DCtx* dctx);
size_t ZSTD_sizeof_CStream(const ZSTD_CStream* zcs);
size_t ZSTD_sizeof_DStream(const ZSTD_DStream* zds);
size_t ZSTD_sizeof_CDict(const ZSTD_CDict* cdict);
size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict);
</b><p> These functions give the _current_ memory usage of selected object.
Note that object memory usage can evolve (increase or decrease) over time.
</p></pre><BR>
<a name="Chapter14"></a><h2>experimental API (static linking only)</h2><pre>
The following symbols and constants
are not planned to join "stable API" status in the near future.
They can still change in future versions.
Some of them are planned to remain in the static_only section indefinitely.
Some of them might be removed in the future (especially when redundant with existing stable functions)
<BR></pre>
<pre><b>typedef struct {
unsigned int offset; </b>/* The offset of the match. (NOT the same as the offset code)<b>
* If offset == 0 and matchLength == 0, this sequence represents the last
* literals in the block of litLength size.
*/
unsigned int litLength; </b>/* Literal length of the sequence. */<b>
unsigned int matchLength; </b>/* Match length of the sequence. */<b>
</b>/* Note: Users of this API may provide a sequence with matchLength == litLength == offset == 0.<b>
* In this case, we will treat the sequence as a marker for a block boundary.
*/
unsigned int rep; </b>/* Represents which repeat offset is represented by the field 'offset'.<b>
* Ranges from [0, 3].
*
* Repeat offsets are essentially previous offsets from previous sequences sorted in
* recency order. For more detail, see doc/zstd_compression_format.md
*
* If rep == 0, then 'offset' does not contain a repeat offset.
* If rep > 0:
* If litLength != 0:
* rep == 1 --> offset == repeat_offset_1
* rep == 2 --> offset == repeat_offset_2
* rep == 3 --> offset == repeat_offset_3
* If litLength == 0:
* rep == 1 --> offset == repeat_offset_2
* rep == 2 --> offset == repeat_offset_3
* rep == 3 --> offset == repeat_offset_1 - 1
*
* Note: This field is optional. ZSTD_generateSequences() will calculate the value of
* 'rep', but repeat offsets do not necessarily need to be calculated from an external
* sequence provider's perspective. For example, ZSTD_compressSequences() does not
* use this 'rep' field at all (as of now).
*/
} ZSTD_Sequence;
</b></pre><BR>
<pre><b>typedef struct {
unsigned windowLog; </b>/**< largest match distance : larger == more compression, more memory needed during decompression */<b>
unsigned chainLog; </b>/**< fully searched segment : larger == more compression, slower, more memory (useless for fast) */<b>
unsigned hashLog; </b>/**< dispatch table : larger == faster, more memory */<b>
unsigned searchLog; </b>/**< nb of searches : larger == more compression, slower */<b>
unsigned minMatch; </b>/**< match length searched : larger == faster decompression, sometimes less compression */<b>
unsigned targetLength; </b>/**< acceptable match size for optimal parser (only) : larger == more compression, slower */<b>
ZSTD_strategy strategy; </b>/**< see ZSTD_strategy definition above */<b>
} ZSTD_compressionParameters;
</b></pre><BR>
<pre><b>typedef struct {
int contentSizeFlag; </b>/**< 1: content size will be in frame header (when known) */<b>
int checksumFlag; </b>/**< 1: generate a 32-bits checksum using XXH64 algorithm at end of frame, for error detection */<b>
int noDictIDFlag; </b>/**< 1: no dictID will be saved into frame header (dictID is only useful for dictionary compression) */<b>
} ZSTD_frameParameters;
</b></pre><BR>
<pre><b>typedef struct {
ZSTD_compressionParameters cParams;
ZSTD_frameParameters fParams;
} ZSTD_parameters;
</b></pre><BR>
<pre><b>typedef enum {
ZSTD_dct_auto = 0, </b>/* dictionary is "full" when starting with ZSTD_MAGIC_DICTIONARY, otherwise it is "rawContent" */<b>
ZSTD_dct_rawContent = 1, </b>/* ensures dictionary is always loaded as rawContent, even if it starts with ZSTD_MAGIC_DICTIONARY */<b>
ZSTD_dct_fullDict = 2 </b>/* refuses to load a dictionary if it does not respect Zstandard's specification, starting with ZSTD_MAGIC_DICTIONARY */<b>
} ZSTD_dictContentType_e;
</b></pre><BR>
<pre><b>typedef enum {
ZSTD_dlm_byCopy = 0, </b>/**< Copy dictionary content internally */<b>
ZSTD_dlm_byRef = 1 </b>/**< Reference dictionary content -- the dictionary buffer must outlive its users. */<b>
} ZSTD_dictLoadMethod_e;
</b></pre><BR>
<pre><b>typedef enum {
ZSTD_f_zstd1 = 0, </b>/* zstd frame format, specified in zstd_compression_format.md (default) */<b>
ZSTD_f_zstd1_magicless = 1 </b>/* Variant of zstd frame format, without initial 4-bytes magic number.<b>
* Useful to save 4 bytes per generated frame.
* Decoder cannot recognise automatically this format, requiring this instruction. */
} ZSTD_format_e;
</b></pre><BR>
<pre><b>typedef enum {
</b>/* Note: this enum controls ZSTD_d_forceIgnoreChecksum */<b>
ZSTD_d_validateChecksum = 0,
ZSTD_d_ignoreChecksum = 1
} ZSTD_forceIgnoreChecksum_e;
</b></pre><BR>
+<pre><b>typedef enum {
+ </b>/* Note: this enum controls ZSTD_d_refMultipleDDicts */<b>
+ ZSTD_rmd_refSingleDDict = 0,
+ ZSTD_rmd_refMultipleDDicts = 1
+} ZSTD_refMultipleDDicts_e;
+</b></pre><BR>
<pre><b>typedef enum {
</b>/* Note: this enum and the behavior it controls are effectively internal<b>
* implementation details of the compressor. They are expected to continue
* to evolve and should be considered only in the context of extremely
* advanced performance tuning.
*
* Zstd currently supports the use of a CDict in three ways:
*
* - The contents of the CDict can be copied into the working context. This
* means that the compression can search both the dictionary and input
* while operating on a single set of internal tables. This makes
* the compression faster per-byte of input. However, the initial copy of
* the CDict's tables incurs a fixed cost at the beginning of the
* compression. For small compressions (< 8 KB), that copy can dominate
* the cost of the compression.
*
* - The CDict's tables can be used in-place. In this model, compression is
* slower per input byte, because the compressor has to search two sets of
* tables. However, this model incurs no start-up cost (as long as the
* working context's tables can be reused). For small inputs, this can be
* faster than copying the CDict's tables.
*
* - The CDict's tables are not used at all, and instead we use the working
* context alone to reload the dictionary and use params based on the source
* size. See ZSTD_compress_insertDictionary() and ZSTD_compress_usingDict().
* This method is effective when the dictionary sizes are very small relative
* to the input size, and the input size is fairly large to begin with.
*
* Zstd has a simple internal heuristic that selects which strategy to use
* at the beginning of a compression. However, if experimentation shows that
* Zstd is making poor choices, it is possible to override that choice with
* this enum.
*/
ZSTD_dictDefaultAttach = 0, </b>/* Use the default heuristic. */<b>
ZSTD_dictForceAttach = 1, </b>/* Never copy the dictionary. */<b>
ZSTD_dictForceCopy = 2, </b>/* Always copy the dictionary. */<b>
ZSTD_dictForceLoad = 3 </b>/* Always reload the dictionary */<b>
} ZSTD_dictAttachPref_e;
</b></pre><BR>
<pre><b>typedef enum {
ZSTD_lcm_auto = 0, </b>/**< Automatically determine the compression mode based on the compression level.<b>
* Negative compression levels will be uncompressed, and positive compression
* levels will be compressed. */
ZSTD_lcm_huffman = 1, </b>/**< Always attempt Huffman compression. Uncompressed literals will still be<b>
* emitted if Huffman compression is not profitable. */
ZSTD_lcm_uncompressed = 2 </b>/**< Always emit uncompressed literals. */<b>
} ZSTD_literalCompressionMode_e;
</b></pre><BR>
+<pre><b>typedef enum {
+ </b>/* Note: This enum controls features which are conditionally beneficial. Zstd typically will make a final<b>
+ * decision on whether or not to enable the feature (ZSTD_ps_auto), but setting the switch to ZSTD_ps_enable
+ * or ZSTD_ps_disable allow for a force enable/disable the feature.
+ */
+ ZSTD_ps_auto = 0, </b>/* Let the library automatically determine whether the feature shall be enabled */<b>
+ ZSTD_ps_enable = 1, </b>/* Force-enable the feature */<b>
+ ZSTD_ps_disable = 2 </b>/* Do not use the feature */<b>
+} ZSTD_paramSwitch_e;
+</b></pre><BR>
<a name="Chapter15"></a><h2>Frame size functions</h2><pre></pre>
-<pre><b>unsigned long long ZSTD_findDecompressedSize(const void* src, size_t srcSize);
+<pre><b>ZSTDLIB_STATIC_API unsigned long long ZSTD_findDecompressedSize(const void* src, size_t srcSize);
</b><p> `src` should point to the start of a series of ZSTD encoded and/or skippable frames
`srcSize` must be the _exact_ size of this series
(i.e. there should be a frame boundary at `src + srcSize`)
@return : - decompressed size of all data in all successive frames
- if the decompressed size cannot be determined: ZSTD_CONTENTSIZE_UNKNOWN
- if an error occurred: ZSTD_CONTENTSIZE_ERROR
note 1 : decompressed size is an optional field, that may not be present, especially in streaming mode.
When `return==ZSTD_CONTENTSIZE_UNKNOWN`, data to decompress could be any size.
In which case, it's necessary to use streaming mode to decompress data.
note 2 : decompressed size is always present when compression is done with ZSTD_compress()
note 3 : decompressed size can be very large (64-bits value),
potentially larger than what local system can handle as a single memory segment.
In which case, it's necessary to use streaming mode to decompress data.
note 4 : If source is untrusted, decompressed size could be wrong or intentionally modified.
Always ensure result fits within application's authorized limits.
Each application can set its own limits.
note 5 : ZSTD_findDecompressedSize handles multiple frames, and so it must traverse the input to
read each contained frame header. This is fast as most of the data is skipped,
however it does mean that all frame data must be present and valid.
</p></pre><BR>
-<pre><b>unsigned long long ZSTD_decompressBound(const void* src, size_t srcSize);
+<pre><b>ZSTDLIB_STATIC_API unsigned long long ZSTD_decompressBound(const void* src, size_t srcSize);
</b><p> `src` should point to the start of a series of ZSTD encoded and/or skippable frames
`srcSize` must be the _exact_ size of this series
(i.e. there should be a frame boundary at `src + srcSize`)
@return : - upper-bound for the decompressed size of all data in all successive frames
- - if an error occured: ZSTD_CONTENTSIZE_ERROR
+ - if an error occurred: ZSTD_CONTENTSIZE_ERROR
note 1 : an error can occur if `src` contains an invalid or incorrectly formatted frame.
note 2 : the upper-bound is exact when the decompressed size field is available in every ZSTD encoded frame of `src`.
in this case, `ZSTD_findDecompressedSize` and `ZSTD_decompressBound` return the same value.
note 3 : when the decompressed size field isn't available, the upper-bound for that frame is calculated by:
upper-bound = # blocks * min(128 KB, Window_Size)
</p></pre><BR>
-<pre><b>size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize);
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize);
</b><p> srcSize must be >= ZSTD_FRAMEHEADERSIZE_PREFIX.
@return : size of the Frame Header,
or an error code (if srcSize is too small)
</p></pre><BR>
<pre><b>typedef enum {
ZSTD_sf_noBlockDelimiters = 0, </b>/* Representation of ZSTD_Sequence has no block delimiters, sequences only */<b>
ZSTD_sf_explicitBlockDelimiters = 1 </b>/* Representation of ZSTD_Sequence contains explicit block delimiters */<b>
} ZSTD_sequenceFormat_e;
</b></pre><BR>
<pre><b></b><p> Generate sequences using ZSTD_compress2, given a source buffer.
Each block will end with a dummy sequence
with offset == 0, matchLength == 0, and litLength == length of last literals.
litLength may be == 0, and if so, then the sequence of (of: 0 ml: 0 ll: 0)
simply acts as a block delimiter.
zc can be used to insert custom compression params.
This function invokes ZSTD_compress2
The output of this function can be fed into ZSTD_compressSequences() with CCtx
setting of ZSTD_c_blockDelimiters as ZSTD_sf_explicitBlockDelimiters
@return : number of sequences generated
</p></pre><BR>
-<pre><b>size_t ZSTD_mergeBlockDelimiters(ZSTD_Sequence* sequences, size_t seqsSize);
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_mergeBlockDelimiters(ZSTD_Sequence* sequences, size_t seqsSize);
</b><p> Given an array of ZSTD_Sequence, remove all sequences that represent block delimiters/last literals
by merging them into into the literals of the next sequence.
As such, the final generated result has no explicit representation of block boundaries,
and the final last literals segment is not represented in the sequences.
The output of this function can be fed into ZSTD_compressSequences() with CCtx
setting of ZSTD_c_blockDelimiters as ZSTD_sf_noBlockDelimiters
@return : number of sequences left after merging
</p></pre><BR>
-<pre><b>size_t ZSTD_compressSequences(ZSTD_CCtx* const cctx, void* dst, size_t dstSize,
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_compressSequences(ZSTD_CCtx* const cctx, void* dst, size_t dstSize,
const ZSTD_Sequence* inSeqs, size_t inSeqsSize,
const void* src, size_t srcSize);
</b><p> Compress an array of ZSTD_Sequence, generated from the original source buffer, into dst.
If a dictionary is included, then the cctx should reference the dict. (see: ZSTD_CCtx_refCDict(), ZSTD_CCtx_loadDictionary(), etc.)
The entire source is compressed into a single frame.
The compression behavior changes based on cctx params. In particular:
If ZSTD_c_blockDelimiters == ZSTD_sf_noBlockDelimiters, the array of ZSTD_Sequence is expected to contain
no block delimiters (defined in ZSTD_Sequence). Block boundaries are roughly determined based on
the block size derived from the cctx, and sequences may be split. This is the default setting.
If ZSTD_c_blockDelimiters == ZSTD_sf_explicitBlockDelimiters, the array of ZSTD_Sequence is expected to contain
block delimiters (defined in ZSTD_Sequence). Behavior is undefined if no block delimiters are provided.
If ZSTD_c_validateSequences == 0, this function will blindly accept the sequences provided. Invalid sequences cause undefined
behavior. If ZSTD_c_validateSequences == 1, then if sequence is invalid (see doc/zstd_compression_format.md for
specifics regarding offset/matchlength requirements) then the function will bail out and return an error.
In addition to the two adjustable experimental params, there are other important cctx params.
- ZSTD_c_minMatch MUST be set as less than or equal to the smallest match generated by the match finder. It has a minimum value of ZSTD_MINMATCH_MIN.
- ZSTD_c_compressionLevel accordingly adjusts the strength of the entropy coder, as it would in typical compression.
- ZSTD_c_windowLog affects offset validation: this function will return an error at higher debug levels if a provided offset
is larger than what the spec allows for a given window log and dictionary (if present). See: doc/zstd_compression_format.md
Note: Repcodes are, as of now, always re-calculated within this function, so ZSTD_Sequence::rep is unused.
Note 2: Once we integrate ability to ingest repcodes, the explicit block delims mode must respect those repcodes exactly,
and cannot emit an RLE block that disagrees with the repcode history
@return : final compressed size or a ZSTD error.
</p></pre><BR>
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_writeSkippableFrame(void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize, unsigned magicVariant);
+</b><p> Generates a zstd skippable frame containing data given by src, and writes it to dst buffer.
+
+ Skippable frames begin with a a 4-byte magic number. There are 16 possible choices of magic number,
+ ranging from ZSTD_MAGIC_SKIPPABLE_START to ZSTD_MAGIC_SKIPPABLE_START+15.
+ As such, the parameter magicVariant controls the exact skippable frame magic number variant used, so
+ the magic number used will be ZSTD_MAGIC_SKIPPABLE_START + magicVariant.
+
+ Returns an error if destination buffer is not large enough, if the source size is not representable
+ with a 4-byte unsigned int, or if the parameter magicVariant is greater than 15 (and therefore invalid).
+
+ @return : number of bytes written or a ZSTD error.
+
+</p></pre><BR>
+
+<pre><b>size_t ZSTD_readSkippableFrame(void* dst, size_t dstCapacity, unsigned* magicVariant,
+ const void* src, size_t srcSize);
+</b><p> Retrieves a zstd skippable frame containing data given by src, and writes it to dst buffer.
+
+ The parameter magicVariant will receive the magicVariant that was supplied when the frame was written,
+ i.e. magicNumber - ZSTD_MAGIC_SKIPPABLE_START. This can be NULL if the caller is not interested
+ in the magicVariant.
+
+ Returns an error if destination buffer is not large enough, or if the frame is not skippable.
+
+ @return : number of bytes written or a ZSTD error.
+
+</p></pre><BR>
+
+<pre><b>unsigned ZSTD_isSkippableFrame(const void* buffer, size_t size);
+</b><p> Tells if the content of `buffer` starts with a valid Frame Identifier for a skippable frame.
+
+</p></pre><BR>
+
<a name="Chapter16"></a><h2>Memory management</h2><pre></pre>
-<pre><b>size_t ZSTD_estimateCCtxSize(int compressionLevel);
-size_t ZSTD_estimateCCtxSize_usingCParams(ZSTD_compressionParameters cParams);
-size_t ZSTD_estimateCCtxSize_usingCCtxParams(const ZSTD_CCtx_params* params);
-size_t ZSTD_estimateDCtxSize(void);
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_estimateCCtxSize(int compressionLevel);
+ZSTDLIB_STATIC_API size_t ZSTD_estimateCCtxSize_usingCParams(ZSTD_compressionParameters cParams);
+ZSTDLIB_STATIC_API size_t ZSTD_estimateCCtxSize_usingCCtxParams(const ZSTD_CCtx_params* params);
+ZSTDLIB_STATIC_API size_t ZSTD_estimateDCtxSize(void);
</b><p> These functions make it possible to estimate memory usage
of a future {D,C}Ctx, before its creation.
ZSTD_estimateCCtxSize() will provide a memory budget large enough
for any compression level up to selected one.
Note : Unlike ZSTD_estimateCStreamSize*(), this estimate
does not include space for a window buffer.
Therefore, the estimation is only guaranteed for single-shot compressions, not streaming.
The estimate will assume the input may be arbitrarily large,
which is the worst case.
When srcSize can be bound by a known and rather "small" value,
this fact can be used to provide a tighter estimation
because the CCtx compression context will need less memory.
This tighter estimation can be provided by more advanced functions
ZSTD_estimateCCtxSize_usingCParams(), which can be used in tandem with ZSTD_getCParams(),
and ZSTD_estimateCCtxSize_usingCCtxParams(), which can be used in tandem with ZSTD_CCtxParams_setParameter().
Both can be used to estimate memory using custom compression parameters and arbitrary srcSize limits.
Note 2 : only single-threaded compression is supported.
ZSTD_estimateCCtxSize_usingCCtxParams() will return an error code if ZSTD_c_nbWorkers is >= 1.
</p></pre><BR>
-<pre><b>size_t ZSTD_estimateCStreamSize(int compressionLevel);
-size_t ZSTD_estimateCStreamSize_usingCParams(ZSTD_compressionParameters cParams);
-size_t ZSTD_estimateCStreamSize_usingCCtxParams(const ZSTD_CCtx_params* params);
-size_t ZSTD_estimateDStreamSize(size_t windowSize);
-size_t ZSTD_estimateDStreamSize_fromFrame(const void* src, size_t srcSize);
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_estimateCStreamSize(int compressionLevel);
+ZSTDLIB_STATIC_API size_t ZSTD_estimateCStreamSize_usingCParams(ZSTD_compressionParameters cParams);
+ZSTDLIB_STATIC_API size_t ZSTD_estimateCStreamSize_usingCCtxParams(const ZSTD_CCtx_params* params);
+ZSTDLIB_STATIC_API size_t ZSTD_estimateDStreamSize(size_t windowSize);
+ZSTDLIB_STATIC_API size_t ZSTD_estimateDStreamSize_fromFrame(const void* src, size_t srcSize);
</b><p> ZSTD_estimateCStreamSize() will provide a budget large enough for any compression level up to selected one.
It will also consider src size to be arbitrarily "large", which is worst case.
If srcSize is known to always be small, ZSTD_estimateCStreamSize_usingCParams() can provide a tighter estimation.
ZSTD_estimateCStreamSize_usingCParams() can be used in tandem with ZSTD_getCParams() to create cParams from compressionLevel.
ZSTD_estimateCStreamSize_usingCCtxParams() can be used in tandem with ZSTD_CCtxParams_setParameter(). Only single-threaded compression is supported. This function will return an error code if ZSTD_c_nbWorkers is >= 1.
Note : CStream size estimation is only correct for single-threaded compression.
ZSTD_DStream memory budget depends on window Size.
This information can be passed manually, using ZSTD_estimateDStreamSize,
or deducted from a valid frame Header, using ZSTD_estimateDStreamSize_fromFrame();
Note : if streaming is init with function ZSTD_init?Stream_usingDict(),
an internal ?Dict will be created, which additional size is not estimated here.
In this case, get total size by adding ZSTD_estimate?DictSize
</p></pre><BR>
-<pre><b>size_t ZSTD_estimateCDictSize(size_t dictSize, int compressionLevel);
-size_t ZSTD_estimateCDictSize_advanced(size_t dictSize, ZSTD_compressionParameters cParams, ZSTD_dictLoadMethod_e dictLoadMethod);
-size_t ZSTD_estimateDDictSize(size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod);
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_estimateCDictSize(size_t dictSize, int compressionLevel);
+ZSTDLIB_STATIC_API size_t ZSTD_estimateCDictSize_advanced(size_t dictSize, ZSTD_compressionParameters cParams, ZSTD_dictLoadMethod_e dictLoadMethod);
+ZSTDLIB_STATIC_API size_t ZSTD_estimateDDictSize(size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod);
</b><p> ZSTD_estimateCDictSize() will bet that src size is relatively "small", and content is copied, like ZSTD_createCDict().
ZSTD_estimateCDictSize_advanced() makes it possible to control compression parameters precisely, like ZSTD_createCDict_advanced().
Note : dictionaries created by reference (`ZSTD_dlm_byRef`) are logically smaller.
</p></pre><BR>
-<pre><b>ZSTD_CCtx* ZSTD_initStaticCCtx(void* workspace, size_t workspaceSize);
-ZSTD_CStream* ZSTD_initStaticCStream(void* workspace, size_t workspaceSize); </b>/**< same as ZSTD_initStaticCCtx() */<b>
+<pre><b>ZSTDLIB_STATIC_API ZSTD_CCtx* ZSTD_initStaticCCtx(void* workspace, size_t workspaceSize);
+ZSTDLIB_STATIC_API ZSTD_CStream* ZSTD_initStaticCStream(void* workspace, size_t workspaceSize); </b>/**< same as ZSTD_initStaticCCtx() */<b>
</b><p> Initialize an object using a pre-allocated fixed-size buffer.
workspace: The memory area to emplace the object into.
Provided pointer *must be 8-bytes aligned*.
Buffer must outlive object.
workspaceSize: Use ZSTD_estimate*Size() to determine
how large workspace must be to support target scenario.
@return : pointer to object (same address as workspace, just different type),
or NULL if error (size too small, incorrect alignment, etc.)
Note : zstd will never resize nor malloc() when using a static buffer.
If the object requires more memory than available,
zstd will just error out (typically ZSTD_error_memory_allocation).
Note 2 : there is no corresponding "free" function.
Since workspace is allocated externally, it must be freed externally too.
Note 3 : cParams : use ZSTD_getCParams() to convert a compression level
into its associated cParams.
Limitation 1 : currently not compatible with internal dictionary creation, triggered by
ZSTD_CCtx_loadDictionary(), ZSTD_initCStream_usingDict() or ZSTD_initDStream_usingDict().
Limitation 2 : static cctx currently not compatible with multi-threading.
Limitation 3 : static dctx is incompatible with legacy support.
</p></pre><BR>
-<pre><b>ZSTD_DStream* ZSTD_initStaticDStream(void* workspace, size_t workspaceSize); </b>/**< same as ZSTD_initStaticDCtx() */<b>
+<pre><b>ZSTDLIB_STATIC_API ZSTD_DStream* ZSTD_initStaticDStream(void* workspace, size_t workspaceSize); </b>/**< same as ZSTD_initStaticDCtx() */<b>
</b></pre><BR>
<pre><b>typedef void* (*ZSTD_allocFunction) (void* opaque, size_t size);
typedef void (*ZSTD_freeFunction) (void* opaque, void* address);
typedef struct { ZSTD_allocFunction customAlloc; ZSTD_freeFunction customFree; void* opaque; } ZSTD_customMem;
static
#ifdef __GNUC__
__attribute__((__unused__))
#endif
ZSTD_customMem const ZSTD_defaultCMem = { NULL, NULL, NULL }; </b>/**< this constant defers to stdlib's functions */<b>
</b><p> These prototypes make it possible to pass your own allocation/free functions.
ZSTD_customMem is provided at creation time, using ZSTD_create*_advanced() variants listed below.
All allocation/free operations will be completed using these custom variants instead of regular <stdlib.h> ones.
</p></pre><BR>
+<pre><b>typedef struct POOL_ctx_s ZSTD_threadPool;
+ZSTDLIB_STATIC_API ZSTD_threadPool* ZSTD_createThreadPool(size_t numThreads);
+ZSTDLIB_STATIC_API void ZSTD_freeThreadPool (ZSTD_threadPool* pool); </b>/* accept NULL pointer */<b>
+ZSTDLIB_STATIC_API size_t ZSTD_CCtx_refThreadPool(ZSTD_CCtx* cctx, ZSTD_threadPool* pool);
+</b><p> These prototypes make it possible to share a thread pool among multiple compression contexts.
+ This can limit resources for applications with multiple threads where each one uses
+ a threaded compression mode (via ZSTD_c_nbWorkers parameter).
+ ZSTD_createThreadPool creates a new thread pool with a given number of threads.
+ Note that the lifetime of such pool must exist while being used.
+ ZSTD_CCtx_refThreadPool assigns a thread pool to a context (use NULL argument value
+ to use an internal thread pool).
+ ZSTD_freeThreadPool frees a thread pool, accepts NULL pointer.
+
+</p></pre><BR>
+
<a name="Chapter17"></a><h2>Advanced compression functions</h2><pre></pre>
-<pre><b>ZSTD_CDict* ZSTD_createCDict_byReference(const void* dictBuffer, size_t dictSize, int compressionLevel);
+<pre><b>ZSTDLIB_STATIC_API ZSTD_CDict* ZSTD_createCDict_byReference(const void* dictBuffer, size_t dictSize, int compressionLevel);
</b><p> Create a digested dictionary for compression
Dictionary content is just referenced, not duplicated.
As a consequence, `dictBuffer` **must** outlive CDict,
and its content must remain unmodified throughout the lifetime of CDict.
note: equivalent to ZSTD_createCDict_advanced(), with dictLoadMethod==ZSTD_dlm_byRef
</p></pre><BR>
-<pre><b>unsigned ZSTD_getDictID_fromCDict(const ZSTD_CDict* cdict);
-</b><p> Provides the dictID of the dictionary loaded into `cdict`.
- If @return == 0, the dictionary is not conformant to Zstandard specification, or empty.
- Non-conformant dictionaries can still be loaded, but as content-only dictionaries.
-</p></pre><BR>
-
-<pre><b>ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long estimatedSrcSize, size_t dictSize);
+<pre><b>ZSTDLIB_STATIC_API ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long estimatedSrcSize, size_t dictSize);
</b><p> @return ZSTD_compressionParameters structure for a selected compression level and estimated srcSize.
`estimatedSrcSize` value is optional, select 0 if not known
</p></pre><BR>
-<pre><b>ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long estimatedSrcSize, size_t dictSize);
+<pre><b>ZSTDLIB_STATIC_API ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long estimatedSrcSize, size_t dictSize);
</b><p> same as ZSTD_getCParams(), but @return a full `ZSTD_parameters` object instead of sub-component `ZSTD_compressionParameters`.
All fields of `ZSTD_frameParameters` are set to default : contentSize=1, checksum=0, noDictID=0
</p></pre><BR>
-<pre><b>size_t ZSTD_checkCParams(ZSTD_compressionParameters params);
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_checkCParams(ZSTD_compressionParameters params);
</b><p> Ensure param values remain within authorized range.
@return 0 on success, or an error code (can be checked with ZSTD_isError())
</p></pre><BR>
-<pre><b>ZSTD_compressionParameters ZSTD_adjustCParams(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize);
+<pre><b>ZSTDLIB_STATIC_API ZSTD_compressionParameters ZSTD_adjustCParams(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize);
</b><p> optimize params for a given `srcSize` and `dictSize`.
`srcSize` can be unknown, in which case use ZSTD_CONTENTSIZE_UNKNOWN.
`dictSize` must be `0` when there is no dictionary.
cPar can be invalid : all parameters will be clamped within valid range in the @return struct.
This function never fails (wide contract)
</p></pre><BR>
-<pre><b>size_t ZSTD_compress_advanced(ZSTD_CCtx* cctx,
+<pre><b>ZSTD_DEPRECATED("use ZSTD_compress2")
+size_t ZSTD_compress_advanced(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize,
ZSTD_parameters params);
</b><p> Note : this function is now DEPRECATED.
It can be replaced by ZSTD_compress2(), in combination with ZSTD_CCtx_setParameter() and other parameter setters.
- This prototype will be marked as deprecated and generate compilation warning on reaching v1.5.x
+ This prototype will generate compilation warnings.
</p></pre><BR>
-<pre><b>size_t ZSTD_compress_usingCDict_advanced(ZSTD_CCtx* cctx,
+<pre><b>ZSTD_DEPRECATED("use ZSTD_compress2 with ZSTD_CCtx_loadDictionary")
+size_t ZSTD_compress_usingCDict_advanced(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTD_CDict* cdict,
ZSTD_frameParameters fParams);
-</b><p> Note : this function is now REDUNDANT.
+</b><p> Note : this function is now DEPRECATED.
It can be replaced by ZSTD_compress2(), in combination with ZSTD_CCtx_loadDictionary() and other parameter setters.
- This prototype will be marked as deprecated and generate compilation warning in some future version
+ This prototype will generate compilation warnings.
</p></pre><BR>
-<pre><b>size_t ZSTD_CCtx_loadDictionary_byReference(ZSTD_CCtx* cctx, const void* dict, size_t dictSize);
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_CCtx_loadDictionary_byReference(ZSTD_CCtx* cctx, const void* dict, size_t dictSize);
</b><p> Same as ZSTD_CCtx_loadDictionary(), but dictionary content is referenced, instead of being copied into CCtx.
It saves some memory, but also requires that `dict` outlives its usage within `cctx`
</p></pre><BR>
-<pre><b>size_t ZSTD_CCtx_loadDictionary_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType);
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_CCtx_loadDictionary_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType);
</b><p> Same as ZSTD_CCtx_loadDictionary(), but gives finer control over
how to load the dictionary (by copy ? by reference ?)
and how to interpret it (automatic ? force raw mode ? full mode only ?)
</p></pre><BR>
-<pre><b>size_t ZSTD_CCtx_refPrefix_advanced(ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType);
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_CCtx_refPrefix_advanced(ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType);
</b><p> Same as ZSTD_CCtx_refPrefix(), but gives finer control over
how to interpret prefix content (automatic ? force raw mode (default) ? full mode only ?)
</p></pre><BR>
-<pre><b>size_t ZSTD_CCtx_getParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, int* value);
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_CCtx_getParameter(const ZSTD_CCtx* cctx, ZSTD_cParameter param, int* value);
</b><p> Get the requested compression parameter value, selected by enum ZSTD_cParameter,
and store it into int* value.
@return : 0, or an error code (which can be tested with ZSTD_isError()).
</p></pre><BR>
-<pre><b>ZSTD_CCtx_params* ZSTD_createCCtxParams(void);
-size_t ZSTD_freeCCtxParams(ZSTD_CCtx_params* params);
+<pre><b>ZSTDLIB_STATIC_API ZSTD_CCtx_params* ZSTD_createCCtxParams(void);
+ZSTDLIB_STATIC_API size_t ZSTD_freeCCtxParams(ZSTD_CCtx_params* params); </b>/* accept NULL pointer */<b>
</b><p> Quick howto :
- ZSTD_createCCtxParams() : Create a ZSTD_CCtx_params structure
- ZSTD_CCtxParams_setParameter() : Push parameters one by one into
an existing ZSTD_CCtx_params structure.
This is similar to
ZSTD_CCtx_setParameter().
- ZSTD_CCtx_setParametersUsingCCtxParams() : Apply parameters to
an existing CCtx.
These parameters will be applied to
all subsequent frames.
- ZSTD_compressStream2() : Do compression using the CCtx.
- - ZSTD_freeCCtxParams() : Free the memory.
+ - ZSTD_freeCCtxParams() : Free the memory, accept NULL pointer.
This can be used with ZSTD_estimateCCtxSize_advanced_usingCCtxParams()
for static allocation of CCtx for single-threaded compression.
</p></pre><BR>
-<pre><b>size_t ZSTD_CCtxParams_reset(ZSTD_CCtx_params* params);
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_CCtxParams_reset(ZSTD_CCtx_params* params);
</b><p> Reset params to default values.
</p></pre><BR>
-<pre><b>size_t ZSTD_CCtxParams_init(ZSTD_CCtx_params* cctxParams, int compressionLevel);
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_CCtxParams_init(ZSTD_CCtx_params* cctxParams, int compressionLevel);
</b><p> Initializes the compression parameters of cctxParams according to
compression level. All other parameters are reset to their default values.
</p></pre><BR>
-<pre><b>size_t ZSTD_CCtxParams_init_advanced(ZSTD_CCtx_params* cctxParams, ZSTD_parameters params);
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_CCtxParams_init_advanced(ZSTD_CCtx_params* cctxParams, ZSTD_parameters params);
</b><p> Initializes the compression and frame parameters of cctxParams according to
params. All other parameters are reset to their default values.
</p></pre><BR>
-<pre><b>size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* params, ZSTD_cParameter param, int value);
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* params, ZSTD_cParameter param, int value);
</b><p> Similar to ZSTD_CCtx_setParameter.
Set one compression parameter, selected by enum ZSTD_cParameter.
Parameters must be applied to a ZSTD_CCtx using
ZSTD_CCtx_setParametersUsingCCtxParams().
@result : a code representing success or failure (which can be tested with
ZSTD_isError()).
</p></pre><BR>
-<pre><b>size_t ZSTD_CCtxParams_getParameter(ZSTD_CCtx_params* params, ZSTD_cParameter param, int* value);
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_CCtxParams_getParameter(const ZSTD_CCtx_params* params, ZSTD_cParameter param, int* value);
</b><p> Similar to ZSTD_CCtx_getParameter.
Get the requested value of one compression parameter, selected by enum ZSTD_cParameter.
@result : 0, or an error code (which can be tested with ZSTD_isError()).
</p></pre><BR>
-<pre><b>size_t ZSTD_CCtx_setParametersUsingCCtxParams(
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_CCtx_setParametersUsingCCtxParams(
ZSTD_CCtx* cctx, const ZSTD_CCtx_params* params);
</b><p> Apply a set of ZSTD_CCtx_params to the compression context.
This can be done even after compression is started,
if nbWorkers==0, this will have no impact until a new compression is started.
if nbWorkers>=1, new parameters will be picked up at next job,
with a few restrictions (windowLog, pledgedSrcSize, nbWorkers, jobSize, and overlapLog are not updated).
</p></pre><BR>
-<pre><b>size_t ZSTD_compressStream2_simpleArgs (
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_compressStream2_simpleArgs (
ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity, size_t* dstPos,
const void* src, size_t srcSize, size_t* srcPos,
ZSTD_EndDirective endOp);
</b><p> Same as ZSTD_compressStream2(),
but using only integral types as arguments.
This variant might be helpful for binders from dynamic languages
which have troubles handling structures containing memory pointers.
</p></pre><BR>
<a name="Chapter18"></a><h2>Advanced decompression functions</h2><pre></pre>
-<pre><b>unsigned ZSTD_isFrame(const void* buffer, size_t size);
+<pre><b>ZSTDLIB_STATIC_API unsigned ZSTD_isFrame(const void* buffer, size_t size);
</b><p> Tells if the content of `buffer` starts with a valid Frame Identifier.
Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0.
Note 2 : Legacy Frame Identifiers are considered valid only if Legacy Support is enabled.
Note 3 : Skippable Frame Identifiers are considered valid.
</p></pre><BR>
-<pre><b>ZSTD_DDict* ZSTD_createDDict_byReference(const void* dictBuffer, size_t dictSize);
+<pre><b>ZSTDLIB_STATIC_API ZSTD_DDict* ZSTD_createDDict_byReference(const void* dictBuffer, size_t dictSize);
</b><p> Create a digested dictionary, ready to start decompression operation without startup delay.
Dictionary content is referenced, and therefore stays in dictBuffer.
It is important that dictBuffer outlives DDict,
it must remain read accessible throughout the lifetime of DDict
</p></pre><BR>
-<pre><b>size_t ZSTD_DCtx_loadDictionary_byReference(ZSTD_DCtx* dctx, const void* dict, size_t dictSize);
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_DCtx_loadDictionary_byReference(ZSTD_DCtx* dctx, const void* dict, size_t dictSize);
</b><p> Same as ZSTD_DCtx_loadDictionary(),
but references `dict` content instead of copying it into `dctx`.
This saves memory if `dict` remains around.,
However, it's imperative that `dict` remains accessible (and unmodified) while being used, so it must outlive decompression.
</p></pre><BR>
-<pre><b>size_t ZSTD_DCtx_loadDictionary_advanced(ZSTD_DCtx* dctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType);
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_DCtx_loadDictionary_advanced(ZSTD_DCtx* dctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType);
</b><p> Same as ZSTD_DCtx_loadDictionary(),
but gives direct control over
how to load the dictionary (by copy ? by reference ?)
and how to interpret it (automatic ? force raw mode ? full mode only ?).
</p></pre><BR>
-<pre><b>size_t ZSTD_DCtx_refPrefix_advanced(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType);
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_DCtx_refPrefix_advanced(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType);
</b><p> Same as ZSTD_DCtx_refPrefix(), but gives finer control over
how to interpret prefix content (automatic ? force raw mode (default) ? full mode only ?)
</p></pre><BR>
-<pre><b>size_t ZSTD_DCtx_setMaxWindowSize(ZSTD_DCtx* dctx, size_t maxWindowSize);
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_DCtx_setMaxWindowSize(ZSTD_DCtx* dctx, size_t maxWindowSize);
</b><p> Refuses allocating internal buffers for frames requiring a window size larger than provided limit.
This protects a decoder context from reserving too much memory for itself (potential attack scenario).
This parameter is only useful in streaming mode, since no internal buffer is allocated in single-pass mode.
By default, a decompression context accepts all window sizes <= (1 << ZSTD_WINDOWLOG_LIMIT_DEFAULT)
@return : 0, or an error code (which can be tested using ZSTD_isError()).
</p></pre><BR>
-<pre><b>size_t ZSTD_DCtx_getParameter(ZSTD_DCtx* dctx, ZSTD_dParameter param, int* value);
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_DCtx_getParameter(ZSTD_DCtx* dctx, ZSTD_dParameter param, int* value);
</b><p> Get the requested decompression parameter value, selected by enum ZSTD_dParameter,
and store it into int* value.
@return : 0, or an error code (which can be tested with ZSTD_isError()).
</p></pre><BR>
-<pre><b>size_t ZSTD_DCtx_setFormat(ZSTD_DCtx* dctx, ZSTD_format_e format);
-</b><p> Instruct the decoder context about what kind of data to decode next.
+<pre><b>ZSTD_DEPRECATED("use ZSTD_DCtx_setParameter() instead")
+size_t ZSTD_DCtx_setFormat(ZSTD_DCtx* dctx, ZSTD_format_e format);
+</b><p> This function is REDUNDANT. Prefer ZSTD_DCtx_setParameter().
+ Instruct the decoder context about what kind of data to decode next.
This instruction is mandatory to decode data without a fully-formed header,
such ZSTD_f_zstd1_magicless for example.
@return : 0, or an error code (which can be tested using ZSTD_isError()).
</p></pre><BR>
-<pre><b>size_t ZSTD_decompressStream_simpleArgs (
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_decompressStream_simpleArgs (
ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity, size_t* dstPos,
const void* src, size_t srcSize, size_t* srcPos);
</b><p> Same as ZSTD_decompressStream(),
but using only integral types as arguments.
This can be helpful for binders from dynamic languages
which have troubles handling structures containing memory pointers.
</p></pre><BR>
<a name="Chapter19"></a><h2>Advanced streaming functions</h2><pre> Warning : most of these functions are now redundant with the Advanced API.
Once Advanced API reaches "stable" status,
redundant functions will be deprecated, and then at some point removed.
<BR></pre>
<h3>Advanced Streaming compression functions</h3><pre></pre><b><pre></pre></b><BR>
-<pre><b>size_t
-ZSTD_initCStream_srcSize(ZSTD_CStream* zcs,
+<pre><b>ZSTD_DEPRECATED("use ZSTD_CCtx_reset, see zstd.h for detailed instructions")
+size_t ZSTD_initCStream_srcSize(ZSTD_CStream* zcs,
int compressionLevel,
unsigned long long pledgedSrcSize);
-</b><p> This function is deprecated, and equivalent to:
+</b><p> This function is DEPRECATED, and equivalent to:
ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
ZSTD_CCtx_refCDict(zcs, NULL); // clear the dictionary (if any)
ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel);
ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize);
pledgedSrcSize must be correct. If it is not known at init time, use
ZSTD_CONTENTSIZE_UNKNOWN. Note that, for compatibility with older programs,
"0" also disables frame content size field. It may be enabled in the future.
- Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x
+ This prototype will generate compilation warnings.
</p></pre><BR>
-<pre><b>size_t
-ZSTD_initCStream_usingDict(ZSTD_CStream* zcs,
+<pre><b>ZSTD_DEPRECATED("use ZSTD_CCtx_reset, see zstd.h for detailed instructions")
+size_t ZSTD_initCStream_usingDict(ZSTD_CStream* zcs,
const void* dict, size_t dictSize,
int compressionLevel);
-</b><p> This function is deprecated, and is equivalent to:
+</b><p> This function is DEPRECATED, and is equivalent to:
ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel);
ZSTD_CCtx_loadDictionary(zcs, dict, dictSize);
Creates of an internal CDict (incompatible with static CCtx), except if
dict == NULL or dictSize < 8, in which case no dict is used.
Note: dict is loaded with ZSTD_dct_auto (treated as a full zstd dictionary if
it begins with ZSTD_MAGIC_DICTIONARY, else as raw content) and ZSTD_dlm_byCopy.
- Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x
+ This prototype will generate compilation warnings.
</p></pre><BR>
-<pre><b>size_t
-ZSTD_initCStream_advanced(ZSTD_CStream* zcs,
+<pre><b>ZSTD_DEPRECATED("use ZSTD_CCtx_reset, see zstd.h for detailed instructions")
+size_t ZSTD_initCStream_advanced(ZSTD_CStream* zcs,
const void* dict, size_t dictSize,
ZSTD_parameters params,
unsigned long long pledgedSrcSize);
-</b><p> This function is deprecated, and is approximately equivalent to:
+</b><p> This function is DEPRECATED, and is approximately equivalent to:
ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
// Pseudocode: Set each zstd parameter and leave the rest as-is.
for ((param, value) : params) {
ZSTD_CCtx_setParameter(zcs, param, value);
}
ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize);
ZSTD_CCtx_loadDictionary(zcs, dict, dictSize);
dict is loaded with ZSTD_dct_auto and ZSTD_dlm_byCopy.
pledgedSrcSize must be correct.
If srcSize is not known at init time, use value ZSTD_CONTENTSIZE_UNKNOWN.
- Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x
+ This prototype will generate compilation warnings.
</p></pre><BR>
-<pre><b>size_t ZSTD_initCStream_usingCDict(ZSTD_CStream* zcs, const ZSTD_CDict* cdict);
-</b><p> This function is deprecated, and equivalent to:
+<pre><b>ZSTD_DEPRECATED("use ZSTD_CCtx_reset and ZSTD_CCtx_refCDict, see zstd.h for detailed instructions")
+size_t ZSTD_initCStream_usingCDict(ZSTD_CStream* zcs, const ZSTD_CDict* cdict);
+</b><p> This function is DEPRECATED, and equivalent to:
ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
ZSTD_CCtx_refCDict(zcs, cdict);
note : cdict will just be referenced, and must outlive compression session
- Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x
+ This prototype will generate compilation warnings.
</p></pre><BR>
-<pre><b>size_t
-ZSTD_initCStream_usingCDict_advanced(ZSTD_CStream* zcs,
+<pre><b>ZSTD_DEPRECATED("use ZSTD_CCtx_reset and ZSTD_CCtx_refCDict, see zstd.h for detailed instructions")
+size_t ZSTD_initCStream_usingCDict_advanced(ZSTD_CStream* zcs,
const ZSTD_CDict* cdict,
ZSTD_frameParameters fParams,
unsigned long long pledgedSrcSize);
</b><p> This function is DEPRECATED, and is approximately equivalent to:
ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
// Pseudocode: Set each zstd frame parameter and leave the rest as-is.
for ((fParam, value) : fParams) {
ZSTD_CCtx_setParameter(zcs, fParam, value);
}
ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize);
ZSTD_CCtx_refCDict(zcs, cdict);
same as ZSTD_initCStream_usingCDict(), with control over frame parameters.
pledgedSrcSize must be correct. If srcSize is not known at init time, use
value ZSTD_CONTENTSIZE_UNKNOWN.
- Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x
+ This prototype will generate compilation warnings.
</p></pre><BR>
-<pre><b>size_t ZSTD_resetCStream(ZSTD_CStream* zcs, unsigned long long pledgedSrcSize);
-</b><p> This function is deprecated, and is equivalent to:
+<pre><b>ZSTD_DEPRECATED("use ZSTD_CCtx_reset, see zstd.h for detailed instructions")
+size_t ZSTD_resetCStream(ZSTD_CStream* zcs, unsigned long long pledgedSrcSize);
+</b><p> This function is DEPRECATED, and is equivalent to:
ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize);
+ Note: ZSTD_resetCStream() interprets pledgedSrcSize == 0 as ZSTD_CONTENTSIZE_UNKNOWN, but
+ ZSTD_CCtx_setPledgedSrcSize() does not do the same, so ZSTD_CONTENTSIZE_UNKNOWN must be
+ explicitly specified.
start a new frame, using same parameters from previous frame.
This is typically useful to skip dictionary loading stage, since it will re-use it in-place.
Note that zcs must be init at least once before using ZSTD_resetCStream().
If pledgedSrcSize is not known at reset time, use macro ZSTD_CONTENTSIZE_UNKNOWN.
If pledgedSrcSize > 0, its value must be correct, as it will be written in header, and controlled at the end.
For the time being, pledgedSrcSize==0 is interpreted as "srcSize unknown" for compatibility with older programs,
but it will change to mean "empty" in future version, so use macro ZSTD_CONTENTSIZE_UNKNOWN instead.
@return : 0, or an error code (which can be tested using ZSTD_isError())
- Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x
+ This prototype will generate compilation warnings.
</p></pre><BR>
<pre><b>typedef struct {
unsigned long long ingested; </b>/* nb input bytes read and buffered */<b>
unsigned long long consumed; </b>/* nb input bytes actually compressed */<b>
unsigned long long produced; </b>/* nb of compressed bytes generated and buffered */<b>
unsigned long long flushed; </b>/* nb of compressed bytes flushed : not provided; can be tracked from caller side */<b>
unsigned currentJobID; </b>/* MT only : latest started job nb */<b>
unsigned nbActiveWorkers; </b>/* MT only : nb of workers actively compressing at probe time */<b>
} ZSTD_frameProgression;
</b></pre><BR>
-<pre><b>size_t ZSTD_toFlushNow(ZSTD_CCtx* cctx);
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_toFlushNow(ZSTD_CCtx* cctx);
</b><p> Tell how many bytes are ready to be flushed immediately.
Useful for multithreading scenarios (nbWorkers >= 1).
Probe the oldest active job, defined as oldest job not yet entirely flushed,
and check its output buffer.
@return : amount of data stored in oldest job and ready to be flushed immediately.
if @return == 0, it means either :
+ there is no active job (could be checked with ZSTD_frameProgression()), or
+ oldest job is still actively compressing data,
but everything it has produced has also been flushed so far,
therefore flush speed is limited by production speed of oldest job
irrespective of the speed of concurrent (and newer) jobs.
</p></pre><BR>
<h3>Advanced Streaming decompression functions</h3><pre></pre><b><pre></pre></b><BR>
-<pre><b>size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize);
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize);
</b><p>
ZSTD_DCtx_reset(zds, ZSTD_reset_session_only);
ZSTD_DCtx_loadDictionary(zds, dict, dictSize);
note: no dictionary will be used if dict == NULL or dictSize < 8
Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x
</p></pre><BR>
-<pre><b>size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* zds, const ZSTD_DDict* ddict);
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* zds, const ZSTD_DDict* ddict);
</b><p>
ZSTD_DCtx_reset(zds, ZSTD_reset_session_only);
ZSTD_DCtx_refDDict(zds, ddict);
note : ddict is referenced, it must outlive decompression session
Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x
</p></pre><BR>
-<pre><b>size_t ZSTD_resetDStream(ZSTD_DStream* zds);
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_resetDStream(ZSTD_DStream* zds);
</b><p>
ZSTD_DCtx_reset(zds, ZSTD_reset_session_only);
re-use decompression parameters from previous init; saves dictionary loading
Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x
</p></pre><BR>
<a name="Chapter20"></a><h2>Buffer-less and synchronous inner streaming functions</h2><pre>
This is an advanced API, giving full control over buffer management, for users which need direct control over memory.
But it's also a complex one, with several restrictions, documented below.
Prefer normal streaming API for an easier experience.
<BR></pre>
<a name="Chapter21"></a><h2>Buffer-less streaming compression (synchronous mode)</h2><pre>
A ZSTD_CCtx object is required to track streaming operations.
Use ZSTD_createCCtx() / ZSTD_freeCCtx() to manage resource.
ZSTD_CCtx object can be re-used multiple times within successive compression operations.
Start by initializing a context.
- Use ZSTD_compressBegin(), or ZSTD_compressBegin_usingDict() for dictionary compression,
- or ZSTD_compressBegin_advanced(), for finer parameter control.
+ Use ZSTD_compressBegin(), or ZSTD_compressBegin_usingDict() for dictionary compression.
It's also possible to duplicate a reference context which has already been initialized, using ZSTD_copyCCtx()
Then, consume your input using ZSTD_compressContinue().
There are some important considerations to keep in mind when using this advanced function :
- ZSTD_compressContinue() has no internal buffer. It uses externally provided buffers only.
- Interface is synchronous : input is consumed entirely and produces 1+ compressed blocks.
- Caller must ensure there is enough space in `dst` to store compressed data under worst case scenario.
Worst case evaluation is provided by ZSTD_compressBound().
ZSTD_compressContinue() doesn't guarantee recover after a failed compression.
- ZSTD_compressContinue() presumes prior input ***is still accessible and unmodified*** (up to maximum distance size, see WindowLog).
It remembers all previous contiguous blocks, plus one separated memory segment (which can itself consists of multiple contiguous blocks)
- ZSTD_compressContinue() detects that prior input has been overwritten when `src` buffer overlaps.
In which case, it will "discard" the relevant memory section from its history.
Finish a frame with ZSTD_compressEnd(), which will write the last block(s) and optional checksum.
It's possible to use srcSize==0, in which case, it will write a final empty block to end the frame.
Without last block mark, frames are considered unfinished (hence corrupted) by compliant decoders.
`ZSTD_CCtx` object can be re-used (ZSTD_compressBegin()) to compress again.
<BR></pre>
-<h3>Buffer-less streaming compression functions</h3><pre></pre><b><pre>size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel);
-size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel);
-size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_parameters params, unsigned long long pledgedSrcSize); </b>/**< pledgedSrcSize : If srcSize is not known at init time, use ZSTD_CONTENTSIZE_UNKNOWN */<b>
-size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict); </b>/**< note: fails if cdict==NULL */<b>
-size_t ZSTD_compressBegin_usingCDict_advanced(ZSTD_CCtx* const cctx, const ZSTD_CDict* const cdict, ZSTD_frameParameters const fParams, unsigned long long const pledgedSrcSize); </b>/* compression parameters are already set within cdict. pledgedSrcSize must be correct. If srcSize is not known, use macro ZSTD_CONTENTSIZE_UNKNOWN */<b>
-size_t ZSTD_copyCCtx(ZSTD_CCtx* cctx, const ZSTD_CCtx* preparedCCtx, unsigned long long pledgedSrcSize); </b>/**< note: if pledgedSrcSize is not known, use ZSTD_CONTENTSIZE_UNKNOWN */<b>
+<h3>Buffer-less streaming compression functions</h3><pre></pre><b><pre>ZSTDLIB_STATIC_API size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel);
+ZSTDLIB_STATIC_API size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel);
+ZSTDLIB_STATIC_API size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict); </b>/**< note: fails if cdict==NULL */<b>
+ZSTDLIB_STATIC_API size_t ZSTD_copyCCtx(ZSTD_CCtx* cctx, const ZSTD_CCtx* preparedCCtx, unsigned long long pledgedSrcSize); </b>/**< note: if pledgedSrcSize is not known, use ZSTD_CONTENTSIZE_UNKNOWN */<b>
</pre></b><BR>
+<pre><b>size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_parameters params, unsigned long long pledgedSrcSize); </b>/**< pledgedSrcSize : If srcSize is not known at init time, use ZSTD_CONTENTSIZE_UNKNOWN */<b>
+</b></pre><BR>
<a name="Chapter22"></a><h2>Buffer-less streaming decompression (synchronous mode)</h2><pre>
A ZSTD_DCtx object is required to track streaming operations.
Use ZSTD_createDCtx() / ZSTD_freeDCtx() to manage it.
A ZSTD_DCtx object can be re-used multiple times.
First typical operation is to retrieve frame parameters, using ZSTD_getFrameHeader().
Frame header is extracted from the beginning of compressed frame, so providing only the frame's beginning is enough.
Data fragment must be large enough to ensure successful decoding.
`ZSTD_frameHeaderSize_max` bytes is guaranteed to always be large enough.
@result : 0 : successful decoding, the `ZSTD_frameHeader` structure is correctly filled.
>0 : `srcSize` is too small, please provide at least @result bytes on next attempt.
errorCode, which can be tested using ZSTD_isError().
It fills a ZSTD_frameHeader structure with important information to correctly decode the frame,
such as the dictionary ID, content size, or maximum back-reference distance (`windowSize`).
Note that these values could be wrong, either because of data corruption, or because a 3rd party deliberately spoofs false information.
As a consequence, check that values remain within valid application range.
For example, do not allocate memory blindly, check that `windowSize` is within expectation.
Each application can set its own limits, depending on local restrictions.
For extended interoperability, it is recommended to support `windowSize` of at least 8 MB.
ZSTD_decompressContinue() needs previous data blocks during decompression, up to `windowSize` bytes.
ZSTD_decompressContinue() is very sensitive to contiguity,
if 2 blocks don't follow each other, make sure that either the compressor breaks contiguity at the same place,
or that previous contiguous segment is large enough to properly handle maximum back-reference distance.
There are multiple ways to guarantee this condition.
The most memory efficient way is to use a round buffer of sufficient size.
Sufficient size is determined by invoking ZSTD_decodingBufferSize_min(),
which can @return an error code if required value is too large for current system (in 32-bits mode).
In a round buffer methodology, ZSTD_decompressContinue() decompresses each block next to previous one,
up to the moment there is not enough room left in the buffer to guarantee decoding another full block,
which maximum size is provided in `ZSTD_frameHeader` structure, field `blockSizeMax`.
At which point, decoding can resume from the beginning of the buffer.
Note that already decoded data stored in the buffer should be flushed before being overwritten.
There are alternatives possible, for example using two or more buffers of size `windowSize` each, though they consume more memory.
Finally, if you control the compression process, you can also ignore all buffer size rules,
as long as the encoder and decoder progress in "lock-step",
aka use exactly the same buffer sizes, break contiguity at the same place, etc.
Once buffers are setup, start decompression, with ZSTD_decompressBegin().
If decompression requires a dictionary, use ZSTD_decompressBegin_usingDict() or ZSTD_decompressBegin_usingDDict().
Then use ZSTD_nextSrcSizeToDecompress() and ZSTD_decompressContinue() alternatively.
ZSTD_nextSrcSizeToDecompress() tells how many bytes to provide as 'srcSize' to ZSTD_decompressContinue().
ZSTD_decompressContinue() requires this _exact_ amount of bytes, or it will fail.
@result of ZSTD_decompressContinue() is the number of bytes regenerated within 'dst' (necessarily <= dstCapacity).
It can be zero : it just means ZSTD_decompressContinue() has decoded some metadata item.
It can also be an error code, which can be tested with ZSTD_isError().
A frame is fully decoded when ZSTD_nextSrcSizeToDecompress() returns zero.
Context can then be reset to start a new decompression.
Note : it's possible to know if next input to present is a header or a block, using ZSTD_nextInputType().
This information is not required to properly decode a frame.
== Special case : skippable frames
Skippable frames allow integration of user-defined data into a flow of concatenated frames.
Skippable frames will be ignored (skipped) by decompressor.
The format of skippable frames is as follows :
a) Skippable frame ID - 4 Bytes, Little endian format, any value from 0x184D2A50 to 0x184D2A5F
b) Frame Size - 4 Bytes, Little endian format, unsigned 32-bits
c) Frame Content - any content (User Data) of length equal to Frame Size
For skippable frames ZSTD_getFrameHeader() returns zfhPtr->frameType==ZSTD_skippableFrame.
For skippable frames ZSTD_decompressContinue() always returns 0 : it only skips the content.
<BR></pre>
<h3>Buffer-less streaming decompression functions</h3><pre></pre><b><pre>typedef enum { ZSTD_frame, ZSTD_skippableFrame } ZSTD_frameType_e;
typedef struct {
unsigned long long frameContentSize; </b>/* if == ZSTD_CONTENTSIZE_UNKNOWN, it means this field is not available. 0 means "empty" */<b>
unsigned long long windowSize; </b>/* can be very large, up to <= frameContentSize */<b>
unsigned blockSizeMax;
ZSTD_frameType_e frameType; </b>/* if == ZSTD_skippableFrame, frameContentSize is the size of skippable content */<b>
unsigned headerSize;
unsigned dictID;
unsigned checksumFlag;
} ZSTD_frameHeader;
</pre></b><BR>
-<pre><b>size_t ZSTD_getFrameHeader(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize); </b>/**< doesn't consume input */<b>
+<pre><b>ZSTDLIB_STATIC_API size_t ZSTD_getFrameHeader(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize); </b>/**< doesn't consume input */<b>
</b>/*! ZSTD_getFrameHeader_advanced() :<b>
* same as ZSTD_getFrameHeader(),
* with added capability to select a format (like ZSTD_f_zstd1_magicless) */
-size_t ZSTD_getFrameHeader_advanced(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize, ZSTD_format_e format);
-size_t ZSTD_decodingBufferSize_min(unsigned long long windowSize, unsigned long long frameContentSize); </b>/**< when frame content size is not known, pass in frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN */<b>
+ZSTDLIB_STATIC_API size_t ZSTD_getFrameHeader_advanced(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize, ZSTD_format_e format);
+ZSTDLIB_STATIC_API size_t ZSTD_decodingBufferSize_min(unsigned long long windowSize, unsigned long long frameContentSize); </b>/**< when frame content size is not known, pass in frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN */<b>
</b><p> decode Frame Header, or requires larger `srcSize`.
@return : 0, `zfhPtr` is correctly filled,
>0, `srcSize` is too small, value is wanted `srcSize` amount,
or an error code, which can be tested using ZSTD_isError()
</p></pre><BR>
<pre><b>typedef enum { ZSTDnit_frameHeader, ZSTDnit_blockHeader, ZSTDnit_block, ZSTDnit_lastBlock, ZSTDnit_checksum, ZSTDnit_skippableFrame } ZSTD_nextInputType_e;
</b></pre><BR>
<a name="Chapter23"></a><h2>Block level API</h2><pre></pre>
<pre><b></b><p> Frame metadata cost is typically ~12 bytes, which can be non-negligible for very small blocks (< 100 bytes).
But users will have to take in charge needed metadata to regenerate data, such as compressed and content sizes.
A few rules to respect :
- Compressing and decompressing require a context structure
+ Use ZSTD_createCCtx() and ZSTD_createDCtx()
- It is necessary to init context before starting
+ compression : any ZSTD_compressBegin*() variant, including with dictionary
+ decompression : any ZSTD_decompressBegin*() variant, including with dictionary
+ copyCCtx() and copyDCtx() can be used too
- Block size is limited, it must be <= ZSTD_getBlockSize() <= ZSTD_BLOCKSIZE_MAX == 128 KB
+ If input is larger than a block size, it's necessary to split input data into multiple blocks
+ For inputs larger than a single block, consider using regular ZSTD_compress() instead.
Frame metadata is not that costly, and quickly becomes negligible as source size grows larger than a block.
- When a block is considered not compressible enough, ZSTD_compressBlock() result will be 0 (zero) !
===> In which case, nothing is produced into `dst` !
+ User __must__ test for such outcome and deal directly with uncompressed data
+ A block cannot be declared incompressible if ZSTD_compressBlock() return value was != 0.
Doing so would mess up with statistics history, leading to potential data corruption.
+ ZSTD_decompressBlock() _doesn't accept uncompressed data as input_ !!
+ In case of multiple successive blocks, should some of them be uncompressed,
decoder must be informed of their existence in order to follow proper history.
Use ZSTD_insertBlock() for such a case.
</p></pre><BR>
-<h3>Raw zstd block functions</h3><pre></pre><b><pre>size_t ZSTD_getBlockSize (const ZSTD_CCtx* cctx);
-size_t ZSTD_compressBlock (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
-size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
-size_t ZSTD_insertBlock (ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize); </b>/**< insert uncompressed block into `dctx` history. Useful for multi-blocks decompression. */<b>
+<h3>Raw zstd block functions</h3><pre></pre><b><pre>ZSTDLIB_STATIC_API size_t ZSTD_getBlockSize (const ZSTD_CCtx* cctx);
+ZSTDLIB_STATIC_API size_t ZSTD_compressBlock (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+ZSTDLIB_STATIC_API size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+ZSTDLIB_STATIC_API size_t ZSTD_insertBlock (ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize); </b>/**< insert uncompressed block into `dctx` history. Useful for multi-blocks decompression. */<b>
</pre></b><BR>
</html>
</body>
diff --git a/sys/contrib/zstd/examples/Makefile b/sys/contrib/zstd/examples/Makefile
index f5e3274b1aab..8d7361dd8674 100644
--- a/sys/contrib/zstd/examples/Makefile
+++ b/sys/contrib/zstd/examples/Makefile
@@ -1,93 +1,93 @@
# ################################################################
-# Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+# Copyright (c) Yann Collet, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under both the BSD-style license (found in the
# LICENSE file in the root directory of this source tree) and the GPLv2 (found
# in the COPYING file in the root directory of this source tree).
# You may select, at your option, one of the above-listed licenses.
# ################################################################
LIBDIR =../lib
CPPFLAGS += -I$(LIBDIR)
LIB = $(LIBDIR)/libzstd.a
.PHONY: default
default: all
.PHONY: all
all: simple_compression simple_decompression \
multiple_simple_compression\
dictionary_compression dictionary_decompression \
streaming_compression streaming_decompression \
multiple_streaming_compression streaming_memory_usage
$(LIB) :
$(MAKE) -C $(LIBDIR) libzstd.a
simple_compression.o: common.h
simple_compression : $(LIB)
simple_decompression.o: common.h
simple_decompression : $(LIB)
multiple_simple_compression.o: common.h
multiple_simple_compression : $(LIB)
dictionary_compression.o: common.h
dictionary_compression : $(LIB)
dictionary_decompression.o: common.h
dictionary_decompression : $(LIB)
streaming_compression.o: common.h
streaming_compression : $(LIB)
multiple_streaming_compression.o: common.h
multiple_streaming_compression : $(LIB)
streaming_decompression.o: common.h
streaming_decompression : $(LIB)
streaming_memory_usage.o: common.h
streaming_memory_usage : $(LIB)
.PHONY:clean
clean:
@$(RM) core *.o tmp* result* *.zst \
simple_compression simple_decompression \
multiple_simple_compression \
dictionary_compression dictionary_decompression \
streaming_compression streaming_decompression \
multiple_streaming_compression streaming_memory_usage
@echo Cleaning completed
.PHONY:test
test: all
cp README.md tmp
cp Makefile tmp2
@echo -- Simple compression tests
./simple_compression tmp
./simple_decompression tmp.zst
./multiple_simple_compression *.c
./streaming_decompression tmp.zst > /dev/null
@echo -- Streaming memory usage
./streaming_memory_usage
@echo -- Streaming compression tests
./streaming_compression tmp
./streaming_decompression tmp.zst > /dev/null
@echo -- Edge cases detection
! ./streaming_decompression tmp # invalid input, must fail
! ./simple_decompression tmp # invalid input, must fail
touch tmpNull # create 0-size file
./simple_compression tmpNull
./simple_decompression tmpNull.zst # 0-size frame : must work
@echo -- Multiple streaming tests
./multiple_streaming_compression *.c
@echo -- Dictionary compression tests
./dictionary_compression tmp2 tmp README.md
./dictionary_decompression tmp2.zst tmp.zst README.md
$(RM) tmp* *.zst
@echo tests completed
diff --git a/sys/contrib/zstd/examples/common.h b/sys/contrib/zstd/examples/common.h
index 4492c7e4efa7..5f45b3406667 100644
--- a/sys/contrib/zstd/examples/common.h
+++ b/sys/contrib/zstd/examples/common.h
@@ -1,234 +1,234 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*
* This header file has common utility functions used in examples.
*/
#ifndef COMMON_H
#define COMMON_H
#include <stdlib.h> // malloc, free, exit
#include <stdio.h> // fprintf, perror, fopen, etc.
#include <string.h> // strerror
#include <errno.h> // errno
#include <sys/stat.h> // stat
#include <zstd.h>
/*
* Define the returned error code from utility functions.
*/
typedef enum {
ERROR_fsize = 1,
ERROR_fopen = 2,
ERROR_fclose = 3,
ERROR_fread = 4,
ERROR_fwrite = 5,
ERROR_loadFile = 6,
ERROR_saveFile = 7,
ERROR_malloc = 8,
ERROR_largeFile = 9,
} COMMON_ErrorCode;
/*! CHECK
* Check that the condition holds. If it doesn't print a message and die.
*/
#define CHECK(cond, ...) \
do { \
if (!(cond)) { \
fprintf(stderr, \
"%s:%d CHECK(%s) failed: ", \
__FILE__, \
__LINE__, \
#cond); \
fprintf(stderr, "" __VA_ARGS__); \
fprintf(stderr, "\n"); \
exit(1); \
} \
} while (0)
/*! CHECK_ZSTD
* Check the zstd error code and die if an error occurred after printing a
* message.
*/
-#define CHECK_ZSTD(fn, ...) \
+#define CHECK_ZSTD(fn) \
do { \
size_t const err = (fn); \
CHECK(!ZSTD_isError(err), "%s", ZSTD_getErrorName(err)); \
} while (0)
/*! fsize_orDie() :
* Get the size of a given file path.
*
* @return The size of a given file path.
*/
static size_t fsize_orDie(const char *filename)
{
struct stat st;
if (stat(filename, &st) != 0) {
/* error */
perror(filename);
exit(ERROR_fsize);
}
off_t const fileSize = st.st_size;
size_t const size = (size_t)fileSize;
/* 1. fileSize should be non-negative,
* 2. if off_t -> size_t type conversion results in discrepancy,
* the file size is too large for type size_t.
*/
if ((fileSize < 0) || (fileSize != (off_t)size)) {
fprintf(stderr, "%s : filesize too large \n", filename);
exit(ERROR_largeFile);
}
return size;
}
/*! fopen_orDie() :
* Open a file using given file path and open option.
*
* @return If successful this function will return a FILE pointer to an
* opened file otherwise it sends an error to stderr and exits.
*/
static FILE* fopen_orDie(const char *filename, const char *instruction)
{
FILE* const inFile = fopen(filename, instruction);
if (inFile) return inFile;
/* error */
perror(filename);
exit(ERROR_fopen);
}
/*! fclose_orDie() :
* Close an opened file using given FILE pointer.
*/
static void fclose_orDie(FILE* file)
{
if (!fclose(file)) { return; };
/* error */
perror("fclose");
exit(ERROR_fclose);
}
/*! fread_orDie() :
*
* Read sizeToRead bytes from a given file, storing them at the
* location given by buffer.
*
* @return The number of bytes read.
*/
static size_t fread_orDie(void* buffer, size_t sizeToRead, FILE* file)
{
size_t const readSize = fread(buffer, 1, sizeToRead, file);
if (readSize == sizeToRead) return readSize; /* good */
if (feof(file)) return readSize; /* good, reached end of file */
/* error */
perror("fread");
exit(ERROR_fread);
}
/*! fwrite_orDie() :
*
* Write sizeToWrite bytes to a file pointed to by file, obtaining
* them from a location given by buffer.
*
* Note: This function will send an error to stderr and exit if it
* cannot write data to the given file pointer.
*
* @return The number of bytes written.
*/
static size_t fwrite_orDie(const void* buffer, size_t sizeToWrite, FILE* file)
{
size_t const writtenSize = fwrite(buffer, 1, sizeToWrite, file);
if (writtenSize == sizeToWrite) return sizeToWrite; /* good */
/* error */
perror("fwrite");
exit(ERROR_fwrite);
}
/*! malloc_orDie() :
* Allocate memory.
*
* @return If successful this function returns a pointer to allo-
* cated memory. If there is an error, this function will send that
* error to stderr and exit.
*/
static void* malloc_orDie(size_t size)
{
void* const buff = malloc(size);
if (buff) return buff;
/* error */
perror("malloc");
exit(ERROR_malloc);
}
/*! loadFile_orDie() :
* load file into buffer (memory).
*
* Note: This function will send an error to stderr and exit if it
* cannot read data from the given file path.
*
* @return If successful this function will load file into buffer and
* return file size, otherwise it will printout an error to stderr and exit.
*/
static size_t loadFile_orDie(const char* fileName, void* buffer, size_t bufferSize)
{
size_t const fileSize = fsize_orDie(fileName);
CHECK(fileSize <= bufferSize, "File too large!");
FILE* const inFile = fopen_orDie(fileName, "rb");
size_t const readSize = fread(buffer, 1, fileSize, inFile);
if (readSize != (size_t)fileSize) {
fprintf(stderr, "fread: %s : %s \n", fileName, strerror(errno));
exit(ERROR_fread);
}
fclose(inFile); /* can't fail, read only */
return fileSize;
}
/*! mallocAndLoadFile_orDie() :
* allocate memory buffer and then load file into it.
*
* Note: This function will send an error to stderr and exit if memory allocation
* fails or it cannot read data from the given file path.
*
* @return If successful this function will return buffer and bufferSize(=fileSize),
* otherwise it will printout an error to stderr and exit.
*/
static void* mallocAndLoadFile_orDie(const char* fileName, size_t* bufferSize) {
size_t const fileSize = fsize_orDie(fileName);
*bufferSize = fileSize;
void* const buffer = malloc_orDie(*bufferSize);
loadFile_orDie(fileName, buffer, *bufferSize);
return buffer;
}
/*! saveFile_orDie() :
*
* Save buffSize bytes to a given file path, obtaining them from a location pointed
* to by buff.
*
* Note: This function will send an error to stderr and exit if it
* cannot write to a given file.
*/
static void saveFile_orDie(const char* fileName, const void* buff, size_t buffSize)
{
FILE* const oFile = fopen_orDie(fileName, "wb");
size_t const wSize = fwrite(buff, 1, buffSize, oFile);
if (wSize != (size_t)buffSize) {
fprintf(stderr, "fwrite: %s : %s \n", fileName, strerror(errno));
exit(ERROR_fwrite);
}
if (fclose(oFile)) {
perror(fileName);
exit(ERROR_fclose);
}
}
#endif
diff --git a/sys/contrib/zstd/examples/dictionary_compression.c b/sys/contrib/zstd/examples/dictionary_compression.c
index d9aad45a7b07..0eee6508e748 100644
--- a/sys/contrib/zstd/examples/dictionary_compression.c
+++ b/sys/contrib/zstd/examples/dictionary_compression.c
@@ -1,97 +1,97 @@
/*
- * Copyright (c) 2016-2020 Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include <stdio.h> // printf
#include <stdlib.h> // free
#include <string.h> // memset, strcat
#include <zstd.h> // presumes zstd library is installed
#include "common.h" // Helper functions, CHECK(), and CHECK_ZSTD()
/* createDict() :
`dictFileName` is supposed to have been created using `zstd --train` */
static ZSTD_CDict* createCDict_orDie(const char* dictFileName, int cLevel)
{
size_t dictSize;
printf("loading dictionary %s \n", dictFileName);
void* const dictBuffer = mallocAndLoadFile_orDie(dictFileName, &dictSize);
ZSTD_CDict* const cdict = ZSTD_createCDict(dictBuffer, dictSize, cLevel);
CHECK(cdict != NULL, "ZSTD_createCDict() failed!");
free(dictBuffer);
return cdict;
}
static void compress(const char* fname, const char* oname, const ZSTD_CDict* cdict)
{
size_t fSize;
void* const fBuff = mallocAndLoadFile_orDie(fname, &fSize);
size_t const cBuffSize = ZSTD_compressBound(fSize);
void* const cBuff = malloc_orDie(cBuffSize);
/* Compress using the dictionary.
* This function writes the dictionary id, and content size into the header.
* But, it doesn't use a checksum. You can control these options using the
* advanced API: ZSTD_CCtx_setParameter(), ZSTD_CCtx_refCDict(),
* and ZSTD_compress2().
*/
ZSTD_CCtx* const cctx = ZSTD_createCCtx();
CHECK(cctx != NULL, "ZSTD_createCCtx() failed!");
size_t const cSize = ZSTD_compress_usingCDict(cctx, cBuff, cBuffSize, fBuff, fSize, cdict);
CHECK_ZSTD(cSize);
saveFile_orDie(oname, cBuff, cSize);
/* success */
printf("%25s : %6u -> %7u - %s \n", fname, (unsigned)fSize, (unsigned)cSize, oname);
ZSTD_freeCCtx(cctx); /* never fails */
free(fBuff);
free(cBuff);
}
static char* createOutFilename_orDie(const char* filename)
{
size_t const inL = strlen(filename);
size_t const outL = inL + 5;
void* outSpace = malloc_orDie(outL);
memset(outSpace, 0, outL);
strcat(outSpace, filename);
strcat(outSpace, ".zst");
return (char*)outSpace;
}
int main(int argc, const char** argv)
{
const char* const exeName = argv[0];
int const cLevel = 3;
if (argc<3) {
fprintf(stderr, "wrong arguments\n");
fprintf(stderr, "usage:\n");
fprintf(stderr, "%s [FILES] dictionary\n", exeName);
return 1;
}
/* load dictionary only once */
const char* const dictName = argv[argc-1];
ZSTD_CDict* const dictPtr = createCDict_orDie(dictName, cLevel);
int u;
for (u=1; u<argc-1; u++) {
const char* inFilename = argv[u];
char* const outFilename = createOutFilename_orDie(inFilename);
compress(inFilename, outFilename, dictPtr);
free(outFilename);
}
ZSTD_freeCDict(dictPtr);
printf("All %u files compressed. \n", argc-2);
return 0;
}
diff --git a/sys/contrib/zstd/examples/dictionary_decompression.c b/sys/contrib/zstd/examples/dictionary_decompression.c
index 7e50986e37aa..107cfc1ee1a2 100644
--- a/sys/contrib/zstd/examples/dictionary_decompression.c
+++ b/sys/contrib/zstd/examples/dictionary_decompression.c
@@ -1,99 +1,99 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include <stdio.h> // printf
#include <stdlib.h> // free
#include <zstd.h> // presumes zstd library is installed
#include "common.h" // Helper functions, CHECK(), and CHECK_ZSTD()
/* createDict() :
`dictFileName` is supposed to have been created using `zstd --train` */
static ZSTD_DDict* createDict_orDie(const char* dictFileName)
{
size_t dictSize;
printf("loading dictionary %s \n", dictFileName);
void* const dictBuffer = mallocAndLoadFile_orDie(dictFileName, &dictSize);
ZSTD_DDict* const ddict = ZSTD_createDDict(dictBuffer, dictSize);
CHECK(ddict != NULL, "ZSTD_createDDict() failed!");
free(dictBuffer);
return ddict;
}
static void decompress(const char* fname, const ZSTD_DDict* ddict)
{
size_t cSize;
void* const cBuff = mallocAndLoadFile_orDie(fname, &cSize);
/* Read the content size from the frame header. For simplicity we require
* that it is always present. By default, zstd will write the content size
* in the header when it is known. If you can't guarantee that the frame
* content size is always written into the header, either use streaming
* decompression, or ZSTD_decompressBound().
*/
unsigned long long const rSize = ZSTD_getFrameContentSize(cBuff, cSize);
CHECK(rSize != ZSTD_CONTENTSIZE_ERROR, "%s: not compressed by zstd!", fname);
CHECK(rSize != ZSTD_CONTENTSIZE_UNKNOWN, "%s: original size unknown!", fname);
void* const rBuff = malloc_orDie((size_t)rSize);
/* Check that the dictionary ID matches.
* If a non-zstd dictionary is used, then both will be zero.
* By default zstd always writes the dictionary ID into the frame.
* Zstd will check if there is a dictionary ID mismatch as well.
*/
unsigned const expectedDictID = ZSTD_getDictID_fromDDict(ddict);
unsigned const actualDictID = ZSTD_getDictID_fromFrame(cBuff, cSize);
CHECK(actualDictID == expectedDictID,
"DictID mismatch: expected %u got %u",
expectedDictID,
actualDictID);
/* Decompress using the dictionary.
* If you need to control the decompression parameters, then use the
* advanced API: ZSTD_DCtx_setParameter(), ZSTD_DCtx_refDDict(), and
* ZSTD_decompressDCtx().
*/
ZSTD_DCtx* const dctx = ZSTD_createDCtx();
CHECK(dctx != NULL, "ZSTD_createDCtx() failed!");
size_t const dSize = ZSTD_decompress_usingDDict(dctx, rBuff, rSize, cBuff, cSize, ddict);
CHECK_ZSTD(dSize);
/* When zstd knows the content size, it will error if it doesn't match. */
CHECK(dSize == rSize, "Impossible because zstd will check this condition!");
/* success */
printf("%25s : %6u -> %7u \n", fname, (unsigned)cSize, (unsigned)rSize);
ZSTD_freeDCtx(dctx);
free(rBuff);
free(cBuff);
}
int main(int argc, const char** argv)
{
const char* const exeName = argv[0];
if (argc<3) {
printf("wrong arguments\n");
printf("usage:\n");
printf("%s [FILES] dictionary\n", exeName);
return 1;
}
/* load dictionary only once */
const char* const dictName = argv[argc-1];
ZSTD_DDict* const dictPtr = createDict_orDie(dictName);
int u;
for (u=1; u<argc-1; u++) decompress(argv[u], dictPtr);
ZSTD_freeDDict(dictPtr);
printf("All %u files correctly decoded (in memory) \n", argc-2);
return 0;
}
diff --git a/sys/contrib/zstd/examples/multiple_simple_compression.c b/sys/contrib/zstd/examples/multiple_simple_compression.c
index e409467b226b..5d2a28fcdca9 100644
--- a/sys/contrib/zstd/examples/multiple_simple_compression.c
+++ b/sys/contrib/zstd/examples/multiple_simple_compression.c
@@ -1,116 +1,116 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include <stdio.h> // printf
#include <stdlib.h> // free
#include <string.h> // memcpy, strlen
#include <zstd.h> // presumes zstd library is installed
#include "common.h" // Helper functions, CHECK(), and CHECK_ZSTD()
typedef struct {
void* fBuffer;
void* cBuffer;
size_t fBufferSize;
size_t cBufferSize;
ZSTD_CCtx* cctx;
} resources;
/*
* allocate memory for buffers big enough to compress all files
* as well as memory for output file name (ofn)
*/
static resources createResources_orDie(int argc, const char** argv, char **ofn, size_t* ofnBufferLen)
{
size_t maxFilenameLength=0;
size_t maxFileSize = 0;
int argNb;
for (argNb = 1; argNb < argc; argNb++) {
const char* const filename = argv[argNb];
size_t const filenameLength = strlen(filename);
size_t const fileSize = fsize_orDie(filename);
if (filenameLength > maxFilenameLength) maxFilenameLength = filenameLength;
if (fileSize > maxFileSize) maxFileSize = fileSize;
}
resources ress;
ress.fBufferSize = maxFileSize;
ress.cBufferSize = ZSTD_compressBound(maxFileSize);
*ofnBufferLen = maxFilenameLength + 5;
*ofn = (char*)malloc_orDie(*ofnBufferLen);
ress.fBuffer = malloc_orDie(ress.fBufferSize);
ress.cBuffer = malloc_orDie(ress.cBufferSize);
ress.cctx = ZSTD_createCCtx();
CHECK(ress.cctx != NULL, "ZSTD_createCCtx() failed!");
return ress;
}
static void freeResources(resources ress, char *outFilename)
{
free(ress.fBuffer);
free(ress.cBuffer);
ZSTD_freeCCtx(ress.cctx); /* never fails */
free(outFilename);
}
/* compress with pre-allocated context (ZSTD_CCtx) and input/output buffers*/
static void compressFile_orDie(resources ress, const char* fname, const char* oname)
{
size_t fSize = loadFile_orDie(fname, ress.fBuffer, ress.fBufferSize);
/* Compress using the context.
* If you need more control over parameters, use the advanced API:
* ZSTD_CCtx_setParameter(), and ZSTD_compress2().
*/
size_t const cSize = ZSTD_compressCCtx(ress.cctx, ress.cBuffer, ress.cBufferSize, ress.fBuffer, fSize, 1);
CHECK_ZSTD(cSize);
saveFile_orDie(oname, ress.cBuffer, cSize);
/* success */
printf("%25s : %6u -> %7u - %s \n", fname, (unsigned)fSize, (unsigned)cSize, oname);
}
int main(int argc, const char** argv)
{
const char* const exeName = argv[0];
if (argc<2) {
printf("wrong arguments\n");
printf("usage:\n");
printf("%s FILE(s)\n", exeName);
return 1;
}
/* memory allocation for outFilename and resources */
char* outFilename;
size_t outFilenameBufferLen;
resources const ress = createResources_orDie(argc, argv, &outFilename, &outFilenameBufferLen);
/* compress files with shared context, input and output buffers */
int argNb;
for (argNb = 1; argNb < argc; argNb++) {
const char* const inFilename = argv[argNb];
size_t const inFilenameLen = strlen(inFilename);
CHECK(inFilenameLen + 5 <= outFilenameBufferLen, "File name too long!");
memcpy(outFilename, inFilename, inFilenameLen);
memcpy(outFilename+inFilenameLen, ".zst", 5);
compressFile_orDie(ress, inFilename, outFilename);
}
/* free memory */
freeResources(ress,outFilename);
printf("compressed %i files \n", argc-1);
return 0;
}
diff --git a/sys/contrib/zstd/examples/multiple_streaming_compression.c b/sys/contrib/zstd/examples/multiple_streaming_compression.c
index 8a4dc96c1121..d4efc8e5773e 100644
--- a/sys/contrib/zstd/examples/multiple_streaming_compression.c
+++ b/sys/contrib/zstd/examples/multiple_streaming_compression.c
@@ -1,133 +1,133 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* The objective of this example is to show of to compress multiple successive files
* while preserving memory management.
* All structures and buffers will be created only once,
* and shared across all compression operations */
#include <stdio.h> // printf
#include <stdlib.h> // free
#include <string.h> // memset, strcat
#include <zstd.h> // presumes zstd library is installed
#include "common.h" // Helper functions, CHECK(), and CHECK_ZSTD()
typedef struct {
void* buffIn;
void* buffOut;
size_t buffInSize;
size_t buffOutSize;
ZSTD_CCtx* cctx;
} resources;
static resources createResources_orDie(int cLevel)
{
resources ress;
ress.buffInSize = ZSTD_CStreamInSize(); /* can always read one full block */
ress.buffOutSize= ZSTD_CStreamOutSize(); /* can always flush a full block */
ress.buffIn = malloc_orDie(ress.buffInSize);
ress.buffOut= malloc_orDie(ress.buffOutSize);
ress.cctx = ZSTD_createCCtx();
CHECK(ress.cctx != NULL, "ZSTD_createCCtx() failed!");
/* Set any compression parameters you want here.
* They will persist for every compression operation.
* Here we set the compression level, and enable the checksum.
*/
CHECK_ZSTD( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_compressionLevel, cLevel) );
CHECK_ZSTD( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_checksumFlag, 1) );
return ress;
}
static void freeResources(resources ress)
{
ZSTD_freeCCtx(ress.cctx);
free(ress.buffIn);
free(ress.buffOut);
}
static void compressFile_orDie(resources ress, const char* fname, const char* outName)
{
// Open the input and output files.
FILE* const fin = fopen_orDie(fname, "rb");
FILE* const fout = fopen_orDie(outName, "wb");
/* Reset the context to a clean state to start a new compression operation.
* The parameters are sticky, so we keep the compression level and extra
* parameters that we set in createResources_orDie().
*/
CHECK_ZSTD( ZSTD_CCtx_reset(ress.cctx, ZSTD_reset_session_only) );
size_t const toRead = ress.buffInSize;
size_t read;
while ( (read = fread_orDie(ress.buffIn, toRead, fin)) ) {
/* This loop is the same as streaming_compression.c.
* See that file for detailed comments.
*/
int const lastChunk = (read < toRead);
ZSTD_EndDirective const mode = lastChunk ? ZSTD_e_end : ZSTD_e_continue;
ZSTD_inBuffer input = { ress.buffIn, read, 0 };
int finished;
do {
ZSTD_outBuffer output = { ress.buffOut, ress.buffOutSize, 0 };
size_t const remaining = ZSTD_compressStream2(ress.cctx, &output, &input, mode);
CHECK_ZSTD(remaining);
fwrite_orDie(ress.buffOut, output.pos, fout);
finished = lastChunk ? (remaining == 0) : (input.pos == input.size);
} while (!finished);
CHECK(input.pos == input.size,
"Impossible: zstd only returns 0 when the input is completely consumed!");
}
fclose_orDie(fout);
fclose_orDie(fin);
}
int main(int argc, const char** argv)
{
const char* const exeName = argv[0];
if (argc<2) {
printf("wrong arguments\n");
printf("usage:\n");
printf("%s FILE(s)\n", exeName);
return 1;
}
int const cLevel = 7;
resources const ress = createResources_orDie(cLevel);
void* ofnBuffer = NULL;
size_t ofnbSize = 0;
int argNb;
for (argNb = 1; argNb < argc; argNb++) {
const char* const ifn = argv[argNb];
size_t const ifnSize = strlen(ifn);
size_t const ofnSize = ifnSize + 5;
if (ofnbSize <= ofnSize) {
ofnbSize = ofnSize + 16;
free(ofnBuffer);
ofnBuffer = malloc_orDie(ofnbSize);
}
memset(ofnBuffer, 0, ofnSize);
strcat(ofnBuffer, ifn);
strcat(ofnBuffer, ".zst");
compressFile_orDie(ress, ifn, ofnBuffer);
}
freeResources(ress);
free(ofnBuffer);
printf("compressed %i files \n", argc-1);
return 0;
}
diff --git a/sys/contrib/zstd/examples/simple_compression.c b/sys/contrib/zstd/examples/simple_compression.c
index 618080b338f7..27a65b17f500 100644
--- a/sys/contrib/zstd/examples/simple_compression.c
+++ b/sys/contrib/zstd/examples/simple_compression.c
@@ -1,68 +1,68 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include <stdio.h> // printf
#include <stdlib.h> // free
#include <string.h> // strlen, strcat, memset
#include <zstd.h> // presumes zstd library is installed
#include "common.h" // Helper functions, CHECK(), and CHECK_ZSTD()
static void compress_orDie(const char* fname, const char* oname)
{
size_t fSize;
void* const fBuff = mallocAndLoadFile_orDie(fname, &fSize);
size_t const cBuffSize = ZSTD_compressBound(fSize);
void* const cBuff = malloc_orDie(cBuffSize);
/* Compress.
* If you are doing many compressions, you may want to reuse the context.
* See the multiple_simple_compression.c example.
*/
size_t const cSize = ZSTD_compress(cBuff, cBuffSize, fBuff, fSize, 1);
CHECK_ZSTD(cSize);
saveFile_orDie(oname, cBuff, cSize);
/* success */
printf("%25s : %6u -> %7u - %s \n", fname, (unsigned)fSize, (unsigned)cSize, oname);
free(fBuff);
free(cBuff);
}
static char* createOutFilename_orDie(const char* filename)
{
size_t const inL = strlen(filename);
size_t const outL = inL + 5;
void* const outSpace = malloc_orDie(outL);
memset(outSpace, 0, outL);
strcat(outSpace, filename);
strcat(outSpace, ".zst");
return (char*)outSpace;
}
int main(int argc, const char** argv)
{
const char* const exeName = argv[0];
if (argc!=2) {
printf("wrong arguments\n");
printf("usage:\n");
printf("%s FILE\n", exeName);
return 1;
}
const char* const inFilename = argv[1];
char* const outFilename = createOutFilename_orDie(inFilename);
compress_orDie(inFilename, outFilename);
free(outFilename);
return 0;
}
diff --git a/sys/contrib/zstd/examples/simple_decompression.c b/sys/contrib/zstd/examples/simple_decompression.c
index e108987c625d..59c1fd414aa7 100644
--- a/sys/contrib/zstd/examples/simple_decompression.c
+++ b/sys/contrib/zstd/examples/simple_decompression.c
@@ -1,65 +1,65 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include <stdio.h> // printf
#include <stdlib.h> // free
#include <zstd.h> // presumes zstd library is installed
#include "common.h" // Helper functions, CHECK(), and CHECK_ZSTD()
static void decompress(const char* fname)
{
size_t cSize;
void* const cBuff = mallocAndLoadFile_orDie(fname, &cSize);
/* Read the content size from the frame header. For simplicity we require
* that it is always present. By default, zstd will write the content size
* in the header when it is known. If you can't guarantee that the frame
* content size is always written into the header, either use streaming
* decompression, or ZSTD_decompressBound().
*/
unsigned long long const rSize = ZSTD_getFrameContentSize(cBuff, cSize);
CHECK(rSize != ZSTD_CONTENTSIZE_ERROR, "%s: not compressed by zstd!", fname);
CHECK(rSize != ZSTD_CONTENTSIZE_UNKNOWN, "%s: original size unknown!", fname);
void* const rBuff = malloc_orDie((size_t)rSize);
/* Decompress.
* If you are doing many decompressions, you may want to reuse the context
* and use ZSTD_decompressDCtx(). If you want to set advanced parameters,
* use ZSTD_DCtx_setParameter().
*/
size_t const dSize = ZSTD_decompress(rBuff, rSize, cBuff, cSize);
CHECK_ZSTD(dSize);
/* When zstd knows the content size, it will error if it doesn't match. */
CHECK(dSize == rSize, "Impossible because zstd will check this condition!");
/* success */
printf("%25s : %6u -> %7u \n", fname, (unsigned)cSize, (unsigned)rSize);
free(rBuff);
free(cBuff);
}
int main(int argc, const char** argv)
{
const char* const exeName = argv[0];
if (argc!=2) {
printf("wrong arguments\n");
printf("usage:\n");
printf("%s FILE\n", exeName);
return 1;
}
decompress(argv[1]);
printf("%s correctly decoded (in memory). \n", argv[1]);
return 0;
}
diff --git a/sys/contrib/zstd/examples/streaming_compression.c b/sys/contrib/zstd/examples/streaming_compression.c
index 045437f2873d..ff1875829ea5 100644
--- a/sys/contrib/zstd/examples/streaming_compression.c
+++ b/sys/contrib/zstd/examples/streaming_compression.c
@@ -1,124 +1,140 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include <stdio.h> // printf
#include <stdlib.h> // free
#include <string.h> // memset, strcat, strlen
#include <zstd.h> // presumes zstd library is installed
#include "common.h" // Helper functions, CHECK(), and CHECK_ZSTD()
-
-static void compressFile_orDie(const char* fname, const char* outName, int cLevel)
+static void compressFile_orDie(const char* fname, const char* outName, int cLevel,
+ int nbThreads)
{
+ fprintf (stderr, "Starting compression of %s with level %d, using %d threads\n",
+ fname, cLevel, nbThreads);
+
/* Open the input and output files. */
FILE* const fin = fopen_orDie(fname, "rb");
FILE* const fout = fopen_orDie(outName, "wb");
/* Create the input and output buffers.
* They may be any size, but we recommend using these functions to size them.
* Performance will only suffer significantly for very tiny buffers.
*/
size_t const buffInSize = ZSTD_CStreamInSize();
void* const buffIn = malloc_orDie(buffInSize);
size_t const buffOutSize = ZSTD_CStreamOutSize();
void* const buffOut = malloc_orDie(buffOutSize);
/* Create the context. */
ZSTD_CCtx* const cctx = ZSTD_createCCtx();
CHECK(cctx != NULL, "ZSTD_createCCtx() failed!");
/* Set any parameters you want.
* Here we set the compression level, and enable the checksum.
*/
CHECK_ZSTD( ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, cLevel) );
CHECK_ZSTD( ZSTD_CCtx_setParameter(cctx, ZSTD_c_checksumFlag, 1) );
- ZSTD_CCtx_setParameter(cctx, ZSTD_c_nbWorkers, 4);
+ ZSTD_CCtx_setParameter(cctx, ZSTD_c_nbWorkers, nbThreads);
/* This loop read from the input file, compresses that entire chunk,
* and writes all output produced to the output file.
*/
size_t const toRead = buffInSize;
for (;;) {
size_t read = fread_orDie(buffIn, toRead, fin);
/* Select the flush mode.
* If the read may not be finished (read == toRead) we use
* ZSTD_e_continue. If this is the last chunk, we use ZSTD_e_end.
* Zstd optimizes the case where the first flush mode is ZSTD_e_end,
* since it knows it is compressing the entire source in one pass.
*/
int const lastChunk = (read < toRead);
ZSTD_EndDirective const mode = lastChunk ? ZSTD_e_end : ZSTD_e_continue;
/* Set the input buffer to what we just read.
* We compress until the input buffer is empty, each time flushing the
* output.
*/
ZSTD_inBuffer input = { buffIn, read, 0 };
int finished;
do {
/* Compress into the output buffer and write all of the output to
* the file so we can reuse the buffer next iteration.
*/
ZSTD_outBuffer output = { buffOut, buffOutSize, 0 };
size_t const remaining = ZSTD_compressStream2(cctx, &output , &input, mode);
CHECK_ZSTD(remaining);
fwrite_orDie(buffOut, output.pos, fout);
/* If we're on the last chunk we're finished when zstd returns 0,
* which means its consumed all the input AND finished the frame.
* Otherwise, we're finished when we've consumed all the input.
*/
finished = lastChunk ? (remaining == 0) : (input.pos == input.size);
} while (!finished);
CHECK(input.pos == input.size,
"Impossible: zstd only returns 0 when the input is completely consumed!");
if (lastChunk) {
break;
}
}
ZSTD_freeCCtx(cctx);
fclose_orDie(fout);
fclose_orDie(fin);
free(buffIn);
free(buffOut);
}
static char* createOutFilename_orDie(const char* filename)
{
size_t const inL = strlen(filename);
size_t const outL = inL + 5;
void* const outSpace = malloc_orDie(outL);
memset(outSpace, 0, outL);
strcat(outSpace, filename);
strcat(outSpace, ".zst");
return (char*)outSpace;
}
int main(int argc, const char** argv)
{
const char* const exeName = argv[0];
- if (argc!=2) {
+ if (argc < 2) {
printf("wrong arguments\n");
printf("usage:\n");
- printf("%s FILE\n", exeName);
+ printf("%s FILE [LEVEL] [THREADS]\n", exeName);
return 1;
}
+ int cLevel = 1;
+ int nbThreads = 4;
+
+ if (argc >= 3) {
+ cLevel = atoi (argv[2]);
+ CHECK(cLevel != 0, "can't parse LEVEL!");
+ }
+
+ if (argc >= 4) {
+ nbThreads = atoi (argv[3]);
+ CHECK(nbThreads != 0, "can't parse THREADS!");
+ }
+
const char* const inFilename = argv[1];
char* const outFilename = createOutFilename_orDie(inFilename);
- compressFile_orDie(inFilename, outFilename, 1);
+ compressFile_orDie(inFilename, outFilename, cLevel, nbThreads);
free(outFilename); /* not strictly required, since program execution stops there,
- * but some static analyzer main complain otherwise */
+ * but some static analyzer may complain otherwise */
return 0;
}
diff --git a/sys/contrib/zstd/examples/streaming_compression_thread_pool.c b/sys/contrib/zstd/examples/streaming_compression_thread_pool.c
index 22c3b2efacc9..21cb3d54999f 100644
--- a/sys/contrib/zstd/examples/streaming_compression_thread_pool.c
+++ b/sys/contrib/zstd/examples/streaming_compression_thread_pool.c
@@ -1,178 +1,180 @@
/*
- * Copyright (c) 2020, Martin Liska, SUSE, Facebook, Inc.
+ * Copyright (c) Martin Liska, SUSE, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include <stdio.h> // printf
#include <stdlib.h> // free
#include <string.h> // memset, strcat, strlen
#include <zstd.h> // presumes zstd library is installed
#include "common.h" // Helper functions, CHECK(), and CHECK_ZSTD()
#include <pthread.h>
typedef struct compress_args
{
const char *fname;
char *outName;
int cLevel;
#if defined(ZSTD_STATIC_LINKING_ONLY)
ZSTD_threadPool *pool;
#endif
} compress_args_t;
static void *compressFile_orDie(void *data)
{
+ const int nbThreads = 16;
+
compress_args_t *args = (compress_args_t *)data;
- fprintf (stderr, "Starting compression of %s with level %d\n", args->fname, args->cLevel);
+ fprintf (stderr, "Starting compression of %s with level %d, using %d threads\n", args->fname, args->cLevel, nbThreads);
/* Open the input and output files. */
FILE* const fin = fopen_orDie(args->fname, "rb");
FILE* const fout = fopen_orDie(args->outName, "wb");
/* Create the input and output buffers.
* They may be any size, but we recommend using these functions to size them.
* Performance will only suffer significantly for very tiny buffers.
*/
size_t const buffInSize = ZSTD_CStreamInSize();
void* const buffIn = malloc_orDie(buffInSize);
size_t const buffOutSize = ZSTD_CStreamOutSize();
void* const buffOut = malloc_orDie(buffOutSize);
/* Create the context. */
ZSTD_CCtx* const cctx = ZSTD_createCCtx();
CHECK(cctx != NULL, "ZSTD_createCCtx() failed!");
#if defined(ZSTD_STATIC_LINKING_ONLY)
size_t r = ZSTD_CCtx_refThreadPool(cctx, args->pool);
CHECK(r == 0, "ZSTD_CCtx_refThreadPool failed!");
#endif
/* Set any parameters you want.
* Here we set the compression level, and enable the checksum.
*/
CHECK_ZSTD( ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, args->cLevel) );
CHECK_ZSTD( ZSTD_CCtx_setParameter(cctx, ZSTD_c_checksumFlag, 1) );
- ZSTD_CCtx_setParameter(cctx, ZSTD_c_nbWorkers, 16);
+ ZSTD_CCtx_setParameter(cctx, ZSTD_c_nbWorkers, nbThreads);
- /* This loop read from the input file, compresses that entire chunk,
+ /* This loop reads from the input file, compresses that entire chunk,
* and writes all output produced to the output file.
*/
size_t const toRead = buffInSize;
for (;;) {
size_t read = fread_orDie(buffIn, toRead, fin);
/* Select the flush mode.
* If the read may not be finished (read == toRead) we use
* ZSTD_e_continue. If this is the last chunk, we use ZSTD_e_end.
* Zstd optimizes the case where the first flush mode is ZSTD_e_end,
* since it knows it is compressing the entire source in one pass.
*/
int const lastChunk = (read < toRead);
ZSTD_EndDirective const mode = lastChunk ? ZSTD_e_end : ZSTD_e_continue;
/* Set the input buffer to what we just read.
* We compress until the input buffer is empty, each time flushing the
* output.
*/
ZSTD_inBuffer input = { buffIn, read, 0 };
int finished;
do {
/* Compress into the output buffer and write all of the output to
* the file so we can reuse the buffer next iteration.
*/
ZSTD_outBuffer output = { buffOut, buffOutSize, 0 };
size_t const remaining = ZSTD_compressStream2(cctx, &output , &input, mode);
CHECK_ZSTD(remaining);
fwrite_orDie(buffOut, output.pos, fout);
/* If we're on the last chunk we're finished when zstd returns 0,
* which means its consumed all the input AND finished the frame.
* Otherwise, we're finished when we've consumed all the input.
*/
finished = lastChunk ? (remaining == 0) : (input.pos == input.size);
} while (!finished);
CHECK(input.pos == input.size,
"Impossible: zstd only returns 0 when the input is completely consumed!");
if (lastChunk) {
break;
}
}
fprintf (stderr, "Finishing compression of %s\n", args->outName);
ZSTD_freeCCtx(cctx);
fclose_orDie(fout);
fclose_orDie(fin);
free(buffIn);
free(buffOut);
free(args->outName);
return NULL;
}
static char* createOutFilename_orDie(const char* filename)
{
size_t const inL = strlen(filename);
size_t const outL = inL + 5;
void* const outSpace = malloc_orDie(outL);
memset(outSpace, 0, outL);
strcat(outSpace, filename);
strcat(outSpace, ".zst");
return (char*)outSpace;
}
int main(int argc, const char** argv)
{
const char* const exeName = argv[0];
if (argc<=3) {
printf("wrong arguments\n");
printf("usage:\n");
printf("%s POOL_SIZE LEVEL FILES\n", exeName);
return 1;
}
int pool_size = atoi (argv[1]);
CHECK(pool_size != 0, "can't parse POOL_SIZE!");
int level = atoi (argv[2]);
CHECK(level != 0, "can't parse LEVEL!");
argc -= 3;
argv += 3;
#if defined(ZSTD_STATIC_LINKING_ONLY)
ZSTD_threadPool *pool = ZSTD_createThreadPool (pool_size);
CHECK(pool != NULL, "ZSTD_createThreadPool() failed!");
fprintf (stderr, "Using shared thread pool of size %d\n", pool_size);
#else
fprintf (stderr, "All threads use its own thread pool\n");
#endif
pthread_t *threads = malloc_orDie(argc * sizeof(pthread_t));
compress_args_t *args = malloc_orDie(argc * sizeof(compress_args_t));
for (unsigned i = 0; i < argc; i++)
{
args[i].fname = argv[i];
args[i].outName = createOutFilename_orDie(args[i].fname);
args[i].cLevel = level;
#if defined(ZSTD_STATIC_LINKING_ONLY)
args[i].pool = pool;
#endif
pthread_create (&threads[i], NULL, compressFile_orDie, &args[i]);
}
for (unsigned i = 0; i < argc; i++)
pthread_join (threads[i], NULL);
#if defined(ZSTD_STATIC_LINKING_ONLY)
ZSTD_freeThreadPool (pool);
#endif
return 0;
}
diff --git a/sys/contrib/zstd/examples/streaming_decompression.c b/sys/contrib/zstd/examples/streaming_decompression.c
index 26eda3441b7f..6dc4c22677bf 100644
--- a/sys/contrib/zstd/examples/streaming_decompression.c
+++ b/sys/contrib/zstd/examples/streaming_decompression.c
@@ -1,100 +1,100 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include <stdio.h> // fprintf
#include <stdlib.h> // free
#include <zstd.h> // presumes zstd library is installed
#include "common.h" // Helper functions, CHECK(), and CHECK_ZSTD()
static void decompressFile_orDie(const char* fname)
{
FILE* const fin = fopen_orDie(fname, "rb");
size_t const buffInSize = ZSTD_DStreamInSize();
void* const buffIn = malloc_orDie(buffInSize);
FILE* const fout = stdout;
size_t const buffOutSize = ZSTD_DStreamOutSize(); /* Guarantee to successfully flush at least one complete compressed block in all circumstances. */
void* const buffOut = malloc_orDie(buffOutSize);
ZSTD_DCtx* const dctx = ZSTD_createDCtx();
CHECK(dctx != NULL, "ZSTD_createDCtx() failed!");
/* This loop assumes that the input file is one or more concatenated zstd
* streams. This example won't work if there is trailing non-zstd data at
* the end, but streaming decompression in general handles this case.
* ZSTD_decompressStream() returns 0 exactly when the frame is completed,
* and doesn't consume input after the frame.
*/
size_t const toRead = buffInSize;
size_t read;
size_t lastRet = 0;
int isEmpty = 1;
while ( (read = fread_orDie(buffIn, toRead, fin)) ) {
isEmpty = 0;
ZSTD_inBuffer input = { buffIn, read, 0 };
/* Given a valid frame, zstd won't consume the last byte of the frame
* until it has flushed all of the decompressed data of the frame.
* Therefore, instead of checking if the return code is 0, we can
* decompress just check if input.pos < input.size.
*/
while (input.pos < input.size) {
ZSTD_outBuffer output = { buffOut, buffOutSize, 0 };
/* The return code is zero if the frame is complete, but there may
* be multiple frames concatenated together. Zstd will automatically
* reset the context when a frame is complete. Still, calling
* ZSTD_DCtx_reset() can be useful to reset the context to a clean
* state, for instance if the last decompression call returned an
* error.
*/
size_t const ret = ZSTD_decompressStream(dctx, &output , &input);
CHECK_ZSTD(ret);
fwrite_orDie(buffOut, output.pos, fout);
lastRet = ret;
}
}
if (isEmpty) {
fprintf(stderr, "input is empty\n");
exit(1);
}
if (lastRet != 0) {
/* The last return value from ZSTD_decompressStream did not end on a
* frame, but we reached the end of the file! We assume this is an
* error, and the input was truncated.
*/
fprintf(stderr, "EOF before end of stream: %zu\n", lastRet);
exit(1);
}
ZSTD_freeDCtx(dctx);
fclose_orDie(fin);
fclose_orDie(fout);
free(buffIn);
free(buffOut);
}
int main(int argc, const char** argv)
{
const char* const exeName = argv[0];
if (argc!=2) {
fprintf(stderr, "wrong arguments\n");
fprintf(stderr, "usage:\n");
fprintf(stderr, "%s FILE\n", exeName);
return 1;
}
const char* const inFilename = argv[1];
decompressFile_orDie(inFilename);
return 0;
}
diff --git a/sys/contrib/zstd/examples/streaming_memory_usage.c b/sys/contrib/zstd/examples/streaming_memory_usage.c
index 37dd660e4a64..a5219ef1e471 100644
--- a/sys/contrib/zstd/examples/streaming_memory_usage.c
+++ b/sys/contrib/zstd/examples/streaming_memory_usage.c
@@ -1,137 +1,137 @@
/*
- * Copyright (c) 2017-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*=== Tuning parameter ===*/
#ifndef MAX_TESTED_LEVEL
#define MAX_TESTED_LEVEL 12
#endif
/*=== Dependencies ===*/
#include <stdio.h> // printf
#define ZSTD_STATIC_LINKING_ONLY
#include <zstd.h> // presumes zstd library is installed
#include "common.h" // Helper functions, CHECK(), and CHECK_ZSTD()
/*=== functions ===*/
/*! readU32FromChar() :
@return : unsigned integer value read from input in `char` format
allows and interprets K, KB, KiB, M, MB and MiB suffix.
Will also modify `*stringPtr`, advancing it to position where it stopped reading.
Note : function result can overflow if digit string > MAX_UINT */
static unsigned readU32FromChar(const char** stringPtr)
{
unsigned result = 0;
while ((**stringPtr >='0') && (**stringPtr <='9'))
result *= 10, result += **stringPtr - '0', (*stringPtr)++ ;
if ((**stringPtr=='K') || (**stringPtr=='M')) {
result <<= 10;
if (**stringPtr=='M') result <<= 10;
(*stringPtr)++ ;
if (**stringPtr=='i') (*stringPtr)++;
if (**stringPtr=='B') (*stringPtr)++;
}
return result;
}
int main(int argc, char const *argv[]) {
printf("\n Zstandard (v%s) memory usage for streaming : \n\n", ZSTD_versionString());
unsigned wLog = 0;
if (argc > 1) {
const char* valStr = argv[1];
wLog = readU32FromChar(&valStr);
}
int compressionLevel;
for (compressionLevel = 1; compressionLevel <= MAX_TESTED_LEVEL; compressionLevel++) {
#define INPUT_SIZE 5
#define COMPRESSED_SIZE 128
char const dataToCompress[INPUT_SIZE] = "abcde";
char compressedData[COMPRESSED_SIZE];
char decompressedData[INPUT_SIZE];
/* the ZSTD_CCtx_params structure is a way to save parameters and use
* them across multiple contexts. We use them here so we can call the
* function ZSTD_estimateCStreamSize_usingCCtxParams().
*/
ZSTD_CCtx_params* const cctxParams = ZSTD_createCCtxParams();
CHECK(cctxParams != NULL, "ZSTD_createCCtxParams() failed!");
/* Set the compression level. */
CHECK_ZSTD( ZSTD_CCtxParams_setParameter(cctxParams, ZSTD_c_compressionLevel, compressionLevel) );
/* Set the window log.
* The value 0 means use the default window log, which is equivalent to
* not setting it.
*/
CHECK_ZSTD( ZSTD_CCtxParams_setParameter(cctxParams, ZSTD_c_windowLog, wLog) );
/* Force the compressor to allocate the maximum memory size for a given
* level by not providing the pledged source size, or calling
* ZSTD_compressStream2() with ZSTD_e_end.
*/
ZSTD_CCtx* const cctx = ZSTD_createCCtx();
CHECK(cctx != NULL, "ZSTD_createCCtx() failed!");
CHECK_ZSTD( ZSTD_CCtx_setParametersUsingCCtxParams(cctx, cctxParams) );
size_t compressedSize;
{
ZSTD_inBuffer inBuff = { dataToCompress, sizeof(dataToCompress), 0 };
ZSTD_outBuffer outBuff = { compressedData, sizeof(compressedData), 0 };
CHECK_ZSTD( ZSTD_compressStream(cctx, &outBuff, &inBuff) );
size_t const remaining = ZSTD_endStream(cctx, &outBuff);
CHECK_ZSTD(remaining);
CHECK(remaining == 0, "Frame not flushed!");
compressedSize = outBuff.pos;
}
ZSTD_DCtx* const dctx = ZSTD_createDCtx();
CHECK(dctx != NULL, "ZSTD_createDCtx() failed!");
/* Set the maximum allowed window log.
* The value 0 means use the default window log, which is equivalent to
* not setting it.
*/
CHECK_ZSTD( ZSTD_DCtx_setParameter(dctx, ZSTD_d_windowLogMax, wLog) );
/* forces decompressor to use maximum memory size, since the
* decompressed size is not stored in the frame header.
*/
{ ZSTD_inBuffer inBuff = { compressedData, compressedSize, 0 };
ZSTD_outBuffer outBuff = { decompressedData, sizeof(decompressedData), 0 };
size_t const remaining = ZSTD_decompressStream(dctx, &outBuff, &inBuff);
CHECK_ZSTD(remaining);
CHECK(remaining == 0, "Frame not complete!");
CHECK(outBuff.pos == sizeof(dataToCompress), "Bad decompression!");
}
size_t const cstreamSize = ZSTD_sizeof_CStream(cctx);
size_t const cstreamEstimatedSize = ZSTD_estimateCStreamSize_usingCCtxParams(cctxParams);
size_t const dstreamSize = ZSTD_sizeof_DStream(dctx);
size_t const dstreamEstimatedSize = ZSTD_estimateDStreamSize_fromFrame(compressedData, compressedSize);
CHECK(cstreamSize <= cstreamEstimatedSize, "Compression mem (%u) > estimated (%u)",
(unsigned)cstreamSize, (unsigned)cstreamEstimatedSize);
CHECK(dstreamSize <= dstreamEstimatedSize, "Decompression mem (%u) > estimated (%u)",
(unsigned)dstreamSize, (unsigned)dstreamEstimatedSize);
printf("Level %2i : Compression Mem = %5u KB (estimated : %5u KB) ; Decompression Mem = %4u KB (estimated : %5u KB)\n",
compressionLevel,
(unsigned)(cstreamSize>>10), (unsigned)(cstreamEstimatedSize>>10),
(unsigned)(dstreamSize>>10), (unsigned)(dstreamEstimatedSize>>10));
ZSTD_freeDCtx(dctx);
ZSTD_freeCCtx(cctx);
ZSTD_freeCCtxParams(cctxParams);
if (wLog) break; /* single test */
}
return 0;
}
diff --git a/sys/contrib/zstd/lib/BUCK b/sys/contrib/zstd/lib/BUCK
index 637c20d667c6..60c6bbb54d91 100644
--- a/sys/contrib/zstd/lib/BUCK
+++ b/sys/contrib/zstd/lib/BUCK
@@ -1,234 +1,232 @@
cxx_library(
name='zstd',
header_namespace='',
exported_headers=['zstd.h'],
visibility=['PUBLIC'],
deps=[
':common',
':compress',
':decompress',
':deprecated',
],
)
cxx_library(
name='compress',
header_namespace='',
visibility=['PUBLIC'],
exported_headers=subdir_glob([
('compress', 'zstd*.h'),
]),
srcs=glob(['compress/zstd*.c', 'compress/hist.c']),
deps=[':common'],
)
cxx_library(
name='decompress',
header_namespace='',
visibility=['PUBLIC'],
headers=subdir_glob([
('decompress', '*_impl.h'),
]),
srcs=glob(['decompress/zstd*.c']),
deps=[
':common',
':legacy',
],
)
cxx_library(
name='deprecated',
header_namespace='',
visibility=['PUBLIC'],
exported_headers=subdir_glob([
('deprecated', '*.h'),
]),
srcs=glob(['deprecated/*.c']),
deps=[':common'],
)
cxx_library(
name='legacy',
header_namespace='',
visibility=['PUBLIC'],
exported_headers=subdir_glob([
('legacy', '*.h'),
]),
srcs=glob(['legacy/*.c']),
deps=[':common'],
exported_preprocessor_flags=[
'-DZSTD_LEGACY_SUPPORT=4',
],
)
cxx_library(
name='zdict',
header_namespace='',
visibility=['PUBLIC'],
- exported_headers=subdir_glob([
- ('dictBuilder', 'zdict.h'),
- ]),
+ exported_headers=['zdict.h'],
headers=subdir_glob([
('dictBuilder', 'divsufsort.h'),
('dictBuilder', 'cover.h'),
]),
srcs=glob(['dictBuilder/*.c']),
deps=[':common'],
)
cxx_library(
name='compiler',
header_namespace='',
visibility=['PUBLIC'],
exported_headers=subdir_glob([
('common', 'compiler.h'),
]),
)
cxx_library(
name='cpu',
header_namespace='',
visibility=['PUBLIC'],
exported_headers=subdir_glob([
('common', 'cpu.h'),
]),
)
cxx_library(
name='bitstream',
header_namespace='',
visibility=['PUBLIC'],
exported_headers=subdir_glob([
('common', 'bitstream.h'),
]),
)
cxx_library(
name='entropy',
header_namespace='',
visibility=['PUBLIC'],
exported_headers=subdir_glob([
('common', 'fse.h'),
('common', 'huf.h'),
]),
srcs=[
'common/entropy_common.c',
'common/fse_decompress.c',
'compress/fse_compress.c',
'compress/huf_compress.c',
'decompress/huf_decompress.c',
],
deps=[
':debug',
':bitstream',
':compiler',
':errors',
':mem',
],
)
cxx_library(
name='errors',
header_namespace='',
visibility=['PUBLIC'],
- exported_headers=subdir_glob([
- ('common', 'error_private.h'),
- ('common', 'zstd_errors.h'),
- ]),
+ exported_headers=[
+ 'zstd_errors.h',
+ 'common/error_private.h',
+ ]
srcs=['common/error_private.c'],
)
cxx_library(
name='mem',
header_namespace='',
visibility=['PUBLIC'],
exported_headers=subdir_glob([
('common', 'mem.h'),
]),
)
cxx_library(
name='pool',
header_namespace='',
visibility=['PUBLIC'],
exported_headers=subdir_glob([
('common', 'pool.h'),
]),
srcs=['common/pool.c'],
deps=[
':threading',
':zstd_common',
],
)
cxx_library(
name='threading',
header_namespace='',
visibility=['PUBLIC'],
exported_headers=subdir_glob([
('common', 'threading.h'),
]),
srcs=['common/threading.c'],
exported_preprocessor_flags=[
'-DZSTD_MULTITHREAD',
],
exported_linker_flags=[
'-pthread',
],
)
cxx_library(
name='xxhash',
header_namespace='',
visibility=['PUBLIC'],
exported_headers=subdir_glob([
('common', 'xxhash.h'),
]),
srcs=['common/xxhash.c'],
exported_preprocessor_flags=[
'-DXXH_NAMESPACE=ZSTD_',
],
)
cxx_library(
name='zstd_common',
header_namespace='',
visibility=['PUBLIC'],
exported_headers=subdir_glob([
('', 'zstd.h'),
('common', 'zstd_internal.h'),
]),
srcs=['common/zstd_common.c'],
deps=[
':compiler',
':errors',
':mem',
],
)
cxx_library(
name='debug',
header_namespace='',
visibility=['PUBLIC'],
exported_headers=subdir_glob([
('common', 'debug.h'),
]),
srcs=['common/debug.c'],
)
cxx_library(
name='common',
deps=[
':debug',
':bitstream',
':compiler',
':cpu',
':entropy',
':errors',
':mem',
':pool',
':threading',
':xxhash',
':zstd_common',
]
)
diff --git a/sys/contrib/zstd/lib/Makefile b/sys/contrib/zstd/lib/Makefile
index 869d76630e68..ef202183d843 100644
--- a/sys/contrib/zstd/lib/Makefile
+++ b/sys/contrib/zstd/lib/Makefile
@@ -1,451 +1,357 @@
# ################################################################
-# Copyright (c) 2015-2020, Yann Collet, Facebook, Inc.
+# Copyright (c) Yann Collet, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under both the BSD-style license (found in the
# LICENSE file in the root directory of this source tree) and the GPLv2 (found
# in the COPYING file in the root directory of this source tree).
# You may select, at your option, one of the above-listed licenses.
# ################################################################
-.PHONY: default
-default: lib-release
-
-# define silent mode as default (verbose mode with V=1 or VERBOSE=1)
-$(V)$(VERBOSE).SILENT:
-
-# When cross-compiling from linux to windows,
-# one might need to specify TARGET_SYSTEM as "Windows."
-# Building from Fedora fails without it.
-# (but Ubuntu and Debian don't need to set anything)
-TARGET_SYSTEM ?= $(OS)
-
-# Version numbers
-LIBVER_MAJOR_SCRIPT:=`sed -n '/define ZSTD_VERSION_MAJOR/s/.*[[:blank:]]\([0-9][0-9]*\).*/\1/p' < ./zstd.h`
-LIBVER_MINOR_SCRIPT:=`sed -n '/define ZSTD_VERSION_MINOR/s/.*[[:blank:]]\([0-9][0-9]*\).*/\1/p' < ./zstd.h`
-LIBVER_PATCH_SCRIPT:=`sed -n '/define ZSTD_VERSION_RELEASE/s/.*[[:blank:]]\([0-9][0-9]*\).*/\1/p' < ./zstd.h`
-LIBVER_SCRIPT:= $(LIBVER_MAJOR_SCRIPT).$(LIBVER_MINOR_SCRIPT).$(LIBVER_PATCH_SCRIPT)
-LIBVER_MAJOR := $(shell echo $(LIBVER_MAJOR_SCRIPT))
-LIBVER_MINOR := $(shell echo $(LIBVER_MINOR_SCRIPT))
-LIBVER_PATCH := $(shell echo $(LIBVER_PATCH_SCRIPT))
-LIBVER := $(shell echo $(LIBVER_SCRIPT))
-VERSION?= $(LIBVER)
-CCVER := $(shell $(CC) --version)
-
-# ZSTD_LIB_MINIFY is a helper variable that
-# configures a bunch of other variables to space-optimized defaults.
-ZSTD_LIB_MINIFY ?= 0
-ifneq ($(ZSTD_LIB_MINIFY), 0)
- HAVE_CC_OZ ?= $(shell echo "" | $(CC) -Oz -x c -c - -o /dev/null 2> /dev/null && echo 1 || echo 0)
- ZSTD_LEGACY_SUPPORT ?= 0
- ZSTD_LIB_DEPRECATED ?= 0
- HUF_FORCE_DECOMPRESS_X1 ?= 1
- ZSTD_FORCE_DECOMPRESS_SHORT ?= 1
- ZSTD_NO_INLINE ?= 1
- ZSTD_STRIP_ERROR_STRINGS ?= 1
-ifneq ($(HAVE_CC_OZ), 0)
- # Some compilers (clang) support an even more space-optimized setting.
- CFLAGS += -Oz
-else
- CFLAGS += -Os
-endif
- CFLAGS += -fno-stack-protector -fomit-frame-pointer -fno-ident \
- -DDYNAMIC_BMI2=0 -DNDEBUG
-else
- CFLAGS += -O3
-endif
-
-DEBUGLEVEL ?= 0
-CPPFLAGS += -DXXH_NAMESPACE=ZSTD_ -DDEBUGLEVEL=$(DEBUGLEVEL)
-ifeq ($(TARGET_SYSTEM),Windows_NT) # MinGW assumed
- CPPFLAGS += -D__USE_MINGW_ANSI_STDIO # compatibility with %zu formatting
-endif
-DEBUGFLAGS= -Wall -Wextra -Wcast-qual -Wcast-align -Wshadow \
- -Wstrict-aliasing=1 -Wswitch-enum -Wdeclaration-after-statement \
- -Wstrict-prototypes -Wundef -Wpointer-arith \
- -Wvla -Wformat=2 -Winit-self -Wfloat-equal -Wwrite-strings \
- -Wredundant-decls -Wmissing-prototypes -Wc++-compat
-CFLAGS += $(DEBUGFLAGS) $(MOREFLAGS)
-FLAGS = $(CPPFLAGS) $(CFLAGS)
-
-HAVE_COLORNEVER = $(shell echo a | grep --color=never a > /dev/null 2> /dev/null && echo 1 || echo 0)
-GREP_OPTIONS ?=
-ifeq ($HAVE_COLORNEVER, 1)
- GREP_OPTIONS += --color=never
-endif
-GREP = grep $(GREP_OPTIONS)
-SED_ERE_OPT ?= -E
-
-ZSTDCOMMON_FILES := $(sort $(wildcard common/*.c))
-ZSTDCOMP_FILES := $(sort $(wildcard compress/*.c))
-ZSTDDECOMP_FILES := $(sort $(wildcard decompress/*.c))
-ZDICT_FILES := $(sort $(wildcard dictBuilder/*.c))
-ZDEPR_FILES := $(sort $(wildcard deprecated/*.c))
-ZSTD_FILES := $(ZSTDCOMMON_FILES)
-
-ifeq ($(findstring GCC,$(CCVER)),GCC)
-decompress/zstd_decompress_block.o : CFLAGS+=-fno-tree-vectorize
-endif
-
# Modules
ZSTD_LIB_COMPRESSION ?= 1
ZSTD_LIB_DECOMPRESSION ?= 1
ZSTD_LIB_DICTBUILDER ?= 1
-ZSTD_LIB_DEPRECATED ?= 1
-
-# Legacy support
-ZSTD_LEGACY_SUPPORT ?= 5
-ZSTD_LEGACY_MULTITHREADED_API ?= 0
-
-# Build size optimizations
-HUF_FORCE_DECOMPRESS_X1 ?= 0
-HUF_FORCE_DECOMPRESS_X2 ?= 0
-ZSTD_FORCE_DECOMPRESS_SHORT ?= 0
-ZSTD_FORCE_DECOMPRESS_LONG ?= 0
-ZSTD_NO_INLINE ?= 0
-ZSTD_STRIP_ERROR_STRINGS ?= 0
+ZSTD_LIB_DEPRECATED ?= 0
+# Input variables for libzstd.mk
ifeq ($(ZSTD_LIB_COMPRESSION), 0)
ZSTD_LIB_DICTBUILDER = 0
ZSTD_LIB_DEPRECATED = 0
endif
ifeq ($(ZSTD_LIB_DECOMPRESSION), 0)
ZSTD_LEGACY_SUPPORT = 0
ZSTD_LIB_DEPRECATED = 0
endif
+include libzstd.mk
+
+ZSTD_FILES := $(ZSTD_COMMON_FILES) $(ZSTD_LEGACY_FILES)
+
ifneq ($(ZSTD_LIB_COMPRESSION), 0)
- ZSTD_FILES += $(ZSTDCOMP_FILES)
+ ZSTD_FILES += $(ZSTD_COMPRESS_FILES)
endif
ifneq ($(ZSTD_LIB_DECOMPRESSION), 0)
- ZSTD_FILES += $(ZSTDDECOMP_FILES)
+ ZSTD_FILES += $(ZSTD_DECOMPRESS_FILES)
endif
ifneq ($(ZSTD_LIB_DEPRECATED), 0)
- ZSTD_FILES += $(ZDEPR_FILES)
+ ZSTD_FILES += $(ZSTD_DEPRECATED_FILES)
endif
ifneq ($(ZSTD_LIB_DICTBUILDER), 0)
- ZSTD_FILES += $(ZDICT_FILES)
-endif
-
-ifneq ($(HUF_FORCE_DECOMPRESS_X1), 0)
- CFLAGS += -DHUF_FORCE_DECOMPRESS_X1
-endif
-
-ifneq ($(HUF_FORCE_DECOMPRESS_X2), 0)
- CFLAGS += -DHUF_FORCE_DECOMPRESS_X2
-endif
-
-ifneq ($(ZSTD_FORCE_DECOMPRESS_SHORT), 0)
- CFLAGS += -DZSTD_FORCE_DECOMPRESS_SHORT
-endif
-
-ifneq ($(ZSTD_FORCE_DECOMPRESS_LONG), 0)
- CFLAGS += -DZSTD_FORCE_DECOMPRESS_LONG
-endif
-
-ifneq ($(ZSTD_NO_INLINE), 0)
- CFLAGS += -DZSTD_NO_INLINE
-endif
-
-ifneq ($(ZSTD_STRIP_ERROR_STRINGS), 0)
- CFLAGS += -DZSTD_STRIP_ERROR_STRINGS
-endif
-
-ifneq ($(ZSTD_LEGACY_MULTITHREADED_API), 0)
- CFLAGS += -DZSTD_LEGACY_MULTITHREADED_API
-endif
-
-ifneq ($(ZSTD_LEGACY_SUPPORT), 0)
-ifeq ($(shell test $(ZSTD_LEGACY_SUPPORT) -lt 8; echo $$?), 0)
- ZSTD_FILES += $(shell ls legacy/*.c | $(GREP) 'v0[$(ZSTD_LEGACY_SUPPORT)-7]')
-endif
+ ZSTD_FILES += $(ZSTD_DICTBUILDER_FILES)
endif
-CPPFLAGS += -DZSTD_LEGACY_SUPPORT=$(ZSTD_LEGACY_SUPPORT)
ZSTD_LOCAL_SRC := $(notdir $(ZSTD_FILES))
-ZSTD_LOCAL_OBJ := $(ZSTD_LOCAL_SRC:.c=.o)
+ZSTD_LOCAL_OBJ0 := $(ZSTD_LOCAL_SRC:.c=.o)
+ZSTD_LOCAL_OBJ := $(ZSTD_LOCAL_OBJ0:.S=.o)
-ZSTD_SUBDIR := common compress decompress dictBuilder legacy deprecated
-vpath %.c $(ZSTD_SUBDIR)
+VERSION := $(ZSTD_VERSION)
+
+# Note: by default, the static library is built single-threaded and dynamic library is built
+# multi-threaded. It is possible to force multi or single threaded builds by appending
+# -mt or -nomt to the build target (like lib-mt for multi-threaded, lib-nomt for single-threaded).
+.PHONY: default
+default: lib-release
-UNAME := $(shell uname)
+CPPFLAGS_DYNLIB += -DZSTD_MULTITHREAD # dynamic library build defaults to multi-threaded
+LDFLAGS_DYNLIB += -pthread
+CPPFLAGS_STATLIB += # static library build defaults to single-threaded
-ifndef BUILD_DIR
-ifeq ($(UNAME), Darwin)
- HASH ?= md5
-else ifeq ($(UNAME), FreeBSD)
- HASH ?= gmd5sum
-else ifeq ($(UNAME), OpenBSD)
- HASH ?= md5
-endif
-HASH ?= md5sum
-HASH_DIR = conf_$(shell echo $(CC) $(CPPFLAGS) $(CFLAGS) $(LDFLAGS) $(ZSTD_FILES) | $(HASH) | cut -f 1 -d " " )
-HAVE_HASH :=$(shell echo 1 | $(HASH) > /dev/null && echo 1 || echo 0)
-ifeq ($(HAVE_HASH),0)
- $(info warning : could not find HASH ($(HASH)), needed to differentiate builds using different flags)
- BUILD_DIR := obj/generic_noconf
+ifeq ($(findstring GCC,$(CCVER)),GCC)
+decompress/zstd_decompress_block.o : CFLAGS+=-fno-tree-vectorize
endif
-endif # BUILD_DIR
# macOS linker doesn't support -soname, and use different extension
# see : https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/DynamicLibraries/100-Articles/DynamicLibraryDesignGuidelines.html
ifeq ($(UNAME), Darwin)
SHARED_EXT = dylib
SHARED_EXT_MAJOR = $(LIBVER_MAJOR).$(SHARED_EXT)
SHARED_EXT_VER = $(LIBVER).$(SHARED_EXT)
SONAME_FLAGS = -install_name $(LIBDIR)/libzstd.$(SHARED_EXT_MAJOR) -compatibility_version $(LIBVER_MAJOR) -current_version $(LIBVER)
else
- SONAME_FLAGS = -Wl,-soname=libzstd.$(SHARED_EXT).$(LIBVER_MAJOR)
+ ifeq ($(UNAME), AIX)
+ SONAME_FLAGS =
+ else
+ SONAME_FLAGS = -Wl,-soname=libzstd.$(SHARED_EXT).$(LIBVER_MAJOR)
+ endif
SHARED_EXT = so
SHARED_EXT_MAJOR = $(SHARED_EXT).$(LIBVER_MAJOR)
SHARED_EXT_VER = $(SHARED_EXT).$(LIBVER)
endif
+
+.PHONY: all
+all: lib
+
+
+.PHONY: libzstd.a # must be run every time
+libzstd.a: CPPFLAGS += $(CPPFLAGS_STATLIB)
+
SET_CACHE_DIRECTORY = \
- $(MAKE) --no-print-directory $@ \
+ +$(MAKE) --no-print-directory $@ \
BUILD_DIR=obj/$(HASH_DIR) \
CPPFLAGS="$(CPPFLAGS)" \
CFLAGS="$(CFLAGS)" \
LDFLAGS="$(LDFLAGS)"
-
-.PHONY: lib-all all clean install uninstall
-
-# alias
-lib-all: all
-
-all: lib
-
-.PHONY: libzstd.a # must be run every time
-
ifndef BUILD_DIR
# determine BUILD_DIR from compilation flags
libzstd.a:
$(SET_CACHE_DIRECTORY)
else
# BUILD_DIR is defined
ZSTD_STATLIB_DIR := $(BUILD_DIR)/static
ZSTD_STATLIB := $(ZSTD_STATLIB_DIR)/libzstd.a
ZSTD_STATLIB_OBJ := $(addprefix $(ZSTD_STATLIB_DIR)/,$(ZSTD_LOCAL_OBJ))
$(ZSTD_STATLIB): ARFLAGS = rcs
$(ZSTD_STATLIB): | $(ZSTD_STATLIB_DIR)
$(ZSTD_STATLIB): $(ZSTD_STATLIB_OBJ)
- @echo compiling static library
+ # Check for multithread flag at target execution time
+ $(if $(filter -DZSTD_MULTITHREAD,$(CPPFLAGS)),\
+ @echo compiling multi-threaded static library $(LIBVER),\
+ @echo compiling single-threaded static library $(LIBVER))
$(AR) $(ARFLAGS) $@ $^
libzstd.a: $(ZSTD_STATLIB)
cp -f $< $@
endif
ifneq (,$(filter Windows%,$(TARGET_SYSTEM)))
LIBZSTD = dll/libzstd.dll
$(LIBZSTD): $(ZSTD_FILES)
@echo compiling dynamic library $(LIBVER)
$(CC) $(FLAGS) -DZSTD_DLL_EXPORT=1 -Wl,--out-implib,dll/libzstd.dll.a -shared $^ -o $@
else # not Windows
LIBZSTD = libzstd.$(SHARED_EXT_VER)
.PHONY: $(LIBZSTD) # must be run every time
-$(LIBZSTD): CFLAGS += -fPIC
-$(LIBZSTD): LDFLAGS += -shared -fvisibility=hidden
+$(LIBZSTD): CPPFLAGS += $(CPPFLAGS_DYNLIB)
+$(LIBZSTD): CFLAGS += -fPIC -fvisibility=hidden
+$(LIBZSTD): LDFLAGS += -shared $(LDFLAGS_DYNLIB)
ifndef BUILD_DIR
# determine BUILD_DIR from compilation flags
$(LIBZSTD):
$(SET_CACHE_DIRECTORY)
else
# BUILD_DIR is defined
ZSTD_DYNLIB_DIR := $(BUILD_DIR)/dynamic
ZSTD_DYNLIB := $(ZSTD_DYNLIB_DIR)/$(LIBZSTD)
ZSTD_DYNLIB_OBJ := $(addprefix $(ZSTD_DYNLIB_DIR)/,$(ZSTD_LOCAL_OBJ))
$(ZSTD_DYNLIB): | $(ZSTD_DYNLIB_DIR)
$(ZSTD_DYNLIB): $(ZSTD_DYNLIB_OBJ)
- @echo compiling dynamic library $(LIBVER)
+# Check for multithread flag at target execution time
+ $(if $(filter -DZSTD_MULTITHREAD,$(CPPFLAGS)),\
+ @echo compiling multi-threaded dynamic library $(LIBVER),\
+ @echo compiling single-threaded dynamic library $(LIBVER))
$(CC) $(FLAGS) $^ $(LDFLAGS) $(SONAME_FLAGS) -o $@
@echo creating versioned links
ln -sf $@ libzstd.$(SHARED_EXT_MAJOR)
ln -sf $@ libzstd.$(SHARED_EXT)
$(LIBZSTD): $(ZSTD_DYNLIB)
cp -f $< $@
endif # ifndef BUILD_DIR
endif # if windows
.PHONY: libzstd
libzstd : $(LIBZSTD)
.PHONY: lib
lib : libzstd.a libzstd
# note : do not define lib-mt or lib-release as .PHONY
# make does not consider implicit pattern rule for .PHONY target
-%-mt : CPPFLAGS += -DZSTD_MULTITHREAD
-%-mt : LDFLAGS += -pthread
+%-mt : CPPFLAGS_DYNLIB := -DZSTD_MULTITHREAD
+%-mt : CPPFLAGS_STATLIB := -DZSTD_MULTITHREAD
+%-mt : LDFLAGS_DYNLIB := -pthread
%-mt : %
- @echo multi-threading build completed
+ @echo multi-threaded build completed
+
+%-nomt : CPPFLAGS_DYNLIB :=
+%-nomt : LDFLAGS_DYNLIB :=
+%-nomt : CPPFLAGS_STATLIB :=
+%-nomt : %
+ @echo single-threaded build completed
%-release : DEBUGFLAGS :=
%-release : %
@echo release build completed
# Generate .h dependencies automatically
DEPFLAGS = -MT $@ -MMD -MP -MF
$(ZSTD_DYNLIB_DIR)/%.o : %.c $(ZSTD_DYNLIB_DIR)/%.d | $(ZSTD_DYNLIB_DIR)
@echo CC $@
$(COMPILE.c) $(DEPFLAGS) $(ZSTD_DYNLIB_DIR)/$*.d $(OUTPUT_OPTION) $<
$(ZSTD_STATLIB_DIR)/%.o : %.c $(ZSTD_STATLIB_DIR)/%.d | $(ZSTD_STATLIB_DIR)
@echo CC $@
$(COMPILE.c) $(DEPFLAGS) $(ZSTD_STATLIB_DIR)/$*.d $(OUTPUT_OPTION) $<
+$(ZSTD_DYNLIB_DIR)/%.o : %.S | $(ZSTD_DYNLIB_DIR)
+ @echo AS $@
+ $(COMPILE.S) $(OUTPUT_OPTION) $<
+
+$(ZSTD_STATLIB_DIR)/%.o : %.S | $(ZSTD_STATLIB_DIR)
+ @echo AS $@
+ $(COMPILE.S) $(OUTPUT_OPTION) $<
+
MKDIR ?= mkdir
$(BUILD_DIR) $(ZSTD_DYNLIB_DIR) $(ZSTD_STATLIB_DIR):
$(MKDIR) -p $@
DEPFILES := $(ZSTD_DYNLIB_OBJ:.o=.d) $(ZSTD_STATLIB_OBJ:.o=.d)
$(DEPFILES):
include $(wildcard $(DEPFILES))
# Special case : building library in single-thread mode _and_ without zstdmt_compress.c
ZSTDMT_FILES = compress/zstdmt_compress.c
ZSTD_NOMT_FILES = $(filter-out $(ZSTDMT_FILES),$(ZSTD_FILES))
-libzstd-nomt: LDFLAGS += -shared -fPIC -fvisibility=hidden
+libzstd-nomt: CFLAGS += -fPIC -fvisibility=hidden
+libzstd-nomt: LDFLAGS += -shared
libzstd-nomt: $(ZSTD_NOMT_FILES)
@echo compiling single-thread dynamic library $(LIBVER)
@echo files : $(ZSTD_NOMT_FILES)
$(CC) $(FLAGS) $^ $(LDFLAGS) $(SONAME_FLAGS) -o $@
+.PHONY: clean
clean:
$(RM) -r *.dSYM # macOS-specific
$(RM) core *.o *.a *.gcda *.$(SHARED_EXT) *.$(SHARED_EXT).* libzstd.pc
$(RM) dll/libzstd.dll dll/libzstd.lib libzstd-nomt*
$(RM) -r obj/*
@echo Cleaning library completed
#-----------------------------------------------------------------------------
# make install is validated only for below listed environments
#-----------------------------------------------------------------------------
-ifneq (,$(filter $(UNAME),Linux Darwin GNU/kFreeBSD GNU OpenBSD FreeBSD NetBSD DragonFly SunOS Haiku))
+ifneq (,$(filter $(UNAME),Linux Darwin GNU/kFreeBSD GNU OpenBSD FreeBSD NetBSD DragonFly SunOS Haiku AIX))
-all: libzstd.pc
+lib: libzstd.pc
HAS_EXPLICIT_EXEC_PREFIX := $(if $(or $(EXEC_PREFIX),$(exec_prefix)),1,)
DESTDIR ?=
# directory variables : GNU conventions prefer lowercase
# see https://www.gnu.org/prep/standards/html_node/Makefile-Conventions.html
# support both lower and uppercase (BSD), use uppercase in script
prefix ?= /usr/local
PREFIX ?= $(prefix)
exec_prefix ?= $(PREFIX)
EXEC_PREFIX ?= $(exec_prefix)
libdir ?= $(EXEC_PREFIX)/lib
LIBDIR ?= $(libdir)
includedir ?= $(PREFIX)/include
INCLUDEDIR ?= $(includedir)
PCINCDIR := $(patsubst $(PREFIX)%,%,$(INCLUDEDIR))
PCLIBDIR := $(patsubst $(EXEC_PREFIX)%,%,$(LIBDIR))
# If we successfully stripped off a prefix, we'll add a reference to the
# relevant pc variable.
PCINCPREFIX := $(if $(findstring $(INCLUDEDIR),$(PCINCDIR)),,$${prefix})
PCLIBPREFIX := $(if $(findstring $(LIBDIR),$(PCLIBDIR)),,$${exec_prefix})
# If no explicit EXEC_PREFIX was set by the caller, write it out as a reference
# to PREFIX, rather than as a resolved value.
PCEXEC_PREFIX := $(if $(HAS_EXPLICIT_EXEC_PREFIX),$(EXEC_PREFIX),$${prefix})
ifneq (,$(filter $(UNAME),FreeBSD NetBSD DragonFly))
PKGCONFIGDIR ?= $(PREFIX)/libdata/pkgconfig
else
PKGCONFIGDIR ?= $(LIBDIR)/pkgconfig
endif
ifneq (,$(filter $(UNAME),SunOS))
INSTALL ?= ginstall
else
INSTALL ?= install
endif
INSTALL_PROGRAM ?= $(INSTALL)
INSTALL_DATA ?= $(INSTALL) -m 644
-libzstd.pc:
libzstd.pc: libzstd.pc.in
@echo creating pkgconfig
@sed $(SED_ERE_OPT) \
-e 's|@PREFIX@|$(PREFIX)|' \
-e 's|@EXEC_PREFIX@|$(PCEXEC_PREFIX)|' \
- -e 's|@INCLUDEDIR@|$(PCINCPREFIX)$(PCINCDIR)|' \
- -e 's|@LIBDIR@|$(PCLIBPREFIX)$(PCLIBDIR)|' \
- -e 's|@VERSION@|$(VERSION)|' \
- $< >$@
+ -e 's|@INCLUDEDIR@|$(PCINCPREFIX)$(PCINCDIR)|' \
+ -e 's|@LIBDIR@|$(PCLIBPREFIX)$(PCLIBDIR)|' \
+ -e 's|@VERSION@|$(VERSION)|' \
+ -e 's|@LIBS_PRIVATE@|$(LDFLAGS_DYNLIB)|' \
+ $< >$@
+.PHONY: install
install: install-pc install-static install-shared install-includes
@echo zstd static and shared library installed
+.PHONY: install-pc
install-pc: libzstd.pc
[ -e $(DESTDIR)$(PKGCONFIGDIR) ] || $(INSTALL) -d -m 755 $(DESTDIR)$(PKGCONFIGDIR)/
$(INSTALL_DATA) libzstd.pc $(DESTDIR)$(PKGCONFIGDIR)/
+.PHONY: install-static
install-static:
# only generate libzstd.a if it's not already present
[ -e libzstd.a ] || $(MAKE) libzstd.a-release
[ -e $(DESTDIR)$(LIBDIR) ] || $(INSTALL) -d -m 755 $(DESTDIR)$(LIBDIR)/
@echo Installing static library
$(INSTALL_DATA) libzstd.a $(DESTDIR)$(LIBDIR)
+.PHONY: install-shared
install-shared:
# only generate libzstd.so if it's not already present
[ -e $(LIBZSTD) ] || $(MAKE) libzstd-release
[ -e $(DESTDIR)$(LIBDIR) ] || $(INSTALL) -d -m 755 $(DESTDIR)$(LIBDIR)/
@echo Installing shared library
$(INSTALL_PROGRAM) $(LIBZSTD) $(DESTDIR)$(LIBDIR)
ln -sf $(LIBZSTD) $(DESTDIR)$(LIBDIR)/libzstd.$(SHARED_EXT_MAJOR)
ln -sf $(LIBZSTD) $(DESTDIR)$(LIBDIR)/libzstd.$(SHARED_EXT)
+.PHONY: install-includes
install-includes:
[ -e $(DESTDIR)$(INCLUDEDIR) ] || $(INSTALL) -d -m 755 $(DESTDIR)$(INCLUDEDIR)/
@echo Installing includes
$(INSTALL_DATA) zstd.h $(DESTDIR)$(INCLUDEDIR)
- $(INSTALL_DATA) common/zstd_errors.h $(DESTDIR)$(INCLUDEDIR)
- $(INSTALL_DATA) dictBuilder/zdict.h $(DESTDIR)$(INCLUDEDIR)
+ $(INSTALL_DATA) zstd_errors.h $(DESTDIR)$(INCLUDEDIR)
+ $(INSTALL_DATA) zdict.h $(DESTDIR)$(INCLUDEDIR)
+.PHONY: uninstall
uninstall:
$(RM) $(DESTDIR)$(LIBDIR)/libzstd.a
$(RM) $(DESTDIR)$(LIBDIR)/libzstd.$(SHARED_EXT)
$(RM) $(DESTDIR)$(LIBDIR)/libzstd.$(SHARED_EXT_MAJOR)
$(RM) $(DESTDIR)$(LIBDIR)/$(LIBZSTD)
$(RM) $(DESTDIR)$(PKGCONFIGDIR)/libzstd.pc
$(RM) $(DESTDIR)$(INCLUDEDIR)/zstd.h
$(RM) $(DESTDIR)$(INCLUDEDIR)/zstd_errors.h
$(RM) $(DESTDIR)$(INCLUDEDIR)/zdict.h
@echo zstd libraries successfully uninstalled
endif
diff --git a/sys/contrib/zstd/lib/README.md b/sys/contrib/zstd/lib/README.md
index db9170a75c42..4c9d8f05912f 100644
--- a/sys/contrib/zstd/lib/README.md
+++ b/sys/contrib/zstd/lib/README.md
@@ -1,207 +1,217 @@
Zstandard library files
================================
The __lib__ directory is split into several sub-directories,
in order to make it easier to select or exclude features.
#### Building
`Makefile` script is provided, supporting [Makefile conventions](https://www.gnu.org/prep/standards/html_node/Makefile-Conventions.html#Makefile-Conventions),
including commands variables, staged install, directory variables and standard targets.
- `make` : generates both static and dynamic libraries
- `make install` : install libraries and headers in target system directories
`libzstd` default scope is pretty large, including compression, decompression, dictionary builder,
and support for decoding legacy formats >= v0.5.0.
The scope can be reduced on demand (see paragraph _modular build_).
#### Multithreading support
-Multithreading is disabled by default when building with `make`.
+When building with `make`, by default the dynamic library is multithreaded and static library is single-threaded (for compatibility reasons).
+
Enabling multithreading requires 2 conditions :
- set build macro `ZSTD_MULTITHREAD` (`-DZSTD_MULTITHREAD` for `gcc`)
- for POSIX systems : compile with pthread (`-pthread` compilation flag for `gcc`)
-Both conditions are automatically applied when invoking `make lib-mt` target.
+For convenience, we provide a build target to generate multi and single threaded libraries:
+- Force enable multithreading on both dynamic and static libraries by appending `-mt` to the target, e.g. `make lib-mt`.
+- Force disable multithreading on both dynamic and static libraries by appending `-nomt` to the target, e.g. `make lib-nomt`.
+- By default, as mentioned before, dynamic library is multithreaded, and static library is single-threaded, e.g. `make lib`.
When linking a POSIX program with a multithreaded version of `libzstd`,
note that it's necessary to invoke the `-pthread` flag during link stage.
Multithreading capabilities are exposed
via the [advanced API defined in `lib/zstd.h`](https://github.com/facebook/zstd/blob/v1.4.3/lib/zstd.h#L351).
#### API
Zstandard's stable API is exposed within [lib/zstd.h](zstd.h).
#### Advanced API
Optional advanced features are exposed via :
-- `lib/common/zstd_errors.h` : translates `size_t` function results
- into a `ZSTD_ErrorCode`, for accurate error handling.
+- `lib/zstd_errors.h` : translates `size_t` function results
+ into a `ZSTD_ErrorCode`, for accurate error handling.
- `ZSTD_STATIC_LINKING_ONLY` : if this macro is defined _before_ including `zstd.h`,
it unlocks access to the experimental API,
exposed in the second part of `zstd.h`.
All definitions in the experimental APIs are unstable,
they may still change in the future, or even be removed.
As a consequence, experimental definitions shall ___never be used with dynamic library___ !
Only static linking is allowed.
#### Modular build
It's possible to compile only a limited set of features within `libzstd`.
The file structure is designed to make this selection manually achievable for any build system :
- Directory `lib/common` is always required, for all variants.
- Compression source code lies in `lib/compress`
- Decompression source code lies in `lib/decompress`
- It's possible to include only `compress` or only `decompress`, they don't depend on each other.
- `lib/dictBuilder` : makes it possible to generate dictionaries from a set of samples.
The API is exposed in `lib/dictBuilder/zdict.h`.
This module depends on both `lib/common` and `lib/compress` .
- `lib/legacy` : makes it possible to decompress legacy zstd formats, starting from `v0.1.0`.
This module depends on `lib/common` and `lib/decompress`.
To enable this feature, define `ZSTD_LEGACY_SUPPORT` during compilation.
Specifying a number limits versions supported to that version onward.
For example, `ZSTD_LEGACY_SUPPORT=2` means : "support legacy formats >= v0.2.0".
Conversely, `ZSTD_LEGACY_SUPPORT=0` means "do __not__ support legacy formats".
By default, this build macro is set as `ZSTD_LEGACY_SUPPORT=5`.
Decoding supported legacy format is a transparent capability triggered within decompression functions.
It's also allowed to invoke legacy API directly, exposed in `lib/legacy/zstd_legacy.h`.
Each version does also provide its own set of advanced API.
For example, advanced API for version `v0.4` is exposed in `lib/legacy/zstd_v04.h` .
- While invoking `make libzstd`, it's possible to define build macros
`ZSTD_LIB_COMPRESSION, ZSTD_LIB_DECOMPRESSION`, `ZSTD_LIB_DICTBUILDER`,
and `ZSTD_LIB_DEPRECATED` as `0` to forgo compilation of the
corresponding features. This will also disable compilation of all
dependencies (eg. `ZSTD_LIB_COMPRESSION=0` will also disable
dictBuilder).
- There are a number of options that can help minimize the binary size of
`libzstd`.
The first step is to select the components needed (using the above-described
`ZSTD_LIB_COMPRESSION` etc.).
The next step is to set `ZSTD_LIB_MINIFY` to `1` when invoking `make`. This
disables various optional components and changes the compilation flags to
prioritize space-saving.
Detailed options: Zstandard's code and build environment is set up by default
to optimize above all else for performance. In pursuit of this goal, Zstandard
makes significant trade-offs in code size. For example, Zstandard often has
more than one implementation of a particular component, with each
implementation optimized for different scenarios. For example, the Huffman
decoder has complementary implementations that decode the stream one symbol at
a time or two symbols at a time. Zstd normally includes both (and dispatches
between them at runtime), but by defining `HUF_FORCE_DECOMPRESS_X1` or
`HUF_FORCE_DECOMPRESS_X2`, you can force the use of one or the other, avoiding
compilation of the other. Similarly, `ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT`
and `ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG` force the compilation and use of
only one or the other of two decompression implementations. The smallest
binary is achieved by using `HUF_FORCE_DECOMPRESS_X1` and
`ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT` (implied by `ZSTD_LIB_MINIFY`).
For squeezing the last ounce of size out, you can also define
`ZSTD_NO_INLINE`, which disables inlining, and `ZSTD_STRIP_ERROR_STRINGS`,
which removes the error messages that are otherwise returned by
`ZSTD_getErrorName` (implied by `ZSTD_LIB_MINIFY`).
Finally, when integrating into your application, make sure you're doing link-
- time optimation and unused symbol garbage collection (via some combination of,
+ time optimization and unused symbol garbage collection (via some combination of,
e.g., `-flto`, `-ffat-lto-objects`, `-fuse-linker-plugin`,
`-ffunction-sections`, `-fdata-sections`, `-fmerge-all-constants`,
`-Wl,--gc-sections`, `-Wl,-z,norelro`, and an archiver that understands
the compiler's intermediate representation, e.g., `AR=gcc-ar`). Consult your
compiler's documentation.
- While invoking `make libzstd`, the build macro `ZSTD_LEGACY_MULTITHREADED_API=1`
will expose the deprecated `ZSTDMT` API exposed by `zstdmt_compress.h` in
the shared library, which is now hidden by default.
- The build macro `DYNAMIC_BMI2` can be set to 1 or 0 in order to generate binaries
which can detect at runtime the presence of BMI2 instructions, and use them only if present.
These instructions contribute to better performance, notably on the decoder side.
By default, this feature is automatically enabled on detecting
the right instruction set (x64) and compiler (clang or gcc >= 5).
It's obviously disabled for different cpus,
or when BMI2 instruction set is _required_ by the compiler command line
(in this case, only the BMI2 code path is generated).
Setting this macro will either force to generate the BMI2 dispatcher (1)
or prevent it (0). It overrides automatic detection.
- The build macro `ZSTD_NO_UNUSED_FUNCTIONS` can be defined to hide the definitions of functions
that zstd does not use. Not all unused functions are hidden, but they can be if needed.
Currently, this macro will hide function definitions in FSE and HUF that use an excessive
amount of stack space.
- The build macro `ZSTD_NO_INTRINSICS` can be defined to disable all explicit intrinsics.
Compiler builtins are still used.
+- The build macro `ZSTD_DECODER_INTERNAL_BUFFER` can be set to control
+ the amount of extra memory used during decompression to store literals.
+ This defaults to 64kB. Reducing this value reduces the memory footprint of
+ `ZSTD_DCtx` decompression contexts,
+ but might also result in a small decompression speed cost.
+
#### Windows : using MinGW+MSYS to create DLL
DLL can be created using MinGW+MSYS with the `make libzstd` command.
This command creates `dll\libzstd.dll` and the import library `dll\libzstd.lib`.
The import library is only required with Visual C++.
The header file `zstd.h` and the dynamic library `dll\libzstd.dll` are required to
compile a project using gcc/MinGW.
The dynamic library has to be added to linking options.
It means that if a project that uses ZSTD consists of a single `test-dll.c`
file it should be linked with `dll\libzstd.dll`. For example:
```
gcc $(CFLAGS) -Iinclude/ test-dll.c -o test-dll dll\libzstd.dll
```
The compiled executable will require ZSTD DLL which is available at `dll\libzstd.dll`.
#### Advanced Build options
The build system requires a hash function in order to
separate object files created with different compilation flags.
By default, it tries to use `md5sum` or equivalent.
The hash function can be manually switched by setting the `HASH` variable.
For example : `make HASH=xxhsum`
The hash function needs to generate at least 64-bit using hexadecimal format.
When no hash function is found,
the Makefile just generates all object files into the same default directory,
irrespective of compilation flags.
This functionality only matters if `libzstd` is compiled multiple times
with different build flags.
The build directory, where object files are stored
can also be manually controlled using variable `BUILD_DIR`,
for example `make BUILD_DIR=objectDir/v1`.
In which case, the hash function doesn't matter.
#### Deprecated API
Obsolete API on their way out are stored in directory `lib/deprecated`.
At this stage, it contains older streaming prototypes, in `lib/deprecated/zbuff.h`.
These prototypes will be removed in some future version.
Consider migrating code towards supported streaming API exposed in `zstd.h`.
#### Miscellaneous
The other files are not source code. There are :
- `BUCK` : support for `buck` build system (https://buckbuild.com/)
- `Makefile` : `make` script to build and install zstd library (static and dynamic)
- `README.md` : this file
- `dll/` : resources directory for Windows compilation
- `libzstd.pc.in` : script for `pkg-config` (used in `make install`)
diff --git a/sys/contrib/zstd/lib/common/bitstream.h b/sys/contrib/zstd/lib/common/bitstream.h
index d9a2730104da..84b6062ff350 100644
--- a/sys/contrib/zstd/lib/common/bitstream.h
+++ b/sys/contrib/zstd/lib/common/bitstream.h
@@ -1,463 +1,478 @@
/* ******************************************************************
* bitstream
* Part of FSE library
- * Copyright (c) 2013-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
*
* You can contact the author at :
* - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
#ifndef BITSTREAM_H_MODULE
#define BITSTREAM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/*
* This API consists of small unitary functions, which must be inlined for best performance.
* Since link-time-optimization is not available for all compilers,
* these functions are defined into a .h to be included.
*/
/*-****************************************
* Dependencies
******************************************/
#include "mem.h" /* unaligned access routines */
#include "compiler.h" /* UNLIKELY() */
#include "debug.h" /* assert(), DEBUGLOG(), RAWLOG() */
#include "error_private.h" /* error codes and messages */
/*=========================================
* Target specific
=========================================*/
#ifndef ZSTD_NO_INTRINSICS
# if defined(__BMI__) && defined(__GNUC__)
# include <immintrin.h> /* support for bextr (experimental) */
# elif defined(__ICCARM__)
# include <intrinsics.h>
# endif
#endif
#define STREAM_ACCUMULATOR_MIN_32 25
#define STREAM_ACCUMULATOR_MIN_64 57
#define STREAM_ACCUMULATOR_MIN ((U32)(MEM_32bits() ? STREAM_ACCUMULATOR_MIN_32 : STREAM_ACCUMULATOR_MIN_64))
/*-******************************************
* bitStream encoding API (write forward)
********************************************/
/* bitStream can mix input from multiple sources.
* A critical property of these streams is that they encode and decode in **reverse** direction.
* So the first bit sequence you add will be the last to be read, like a LIFO stack.
*/
typedef struct {
size_t bitContainer;
unsigned bitPos;
char* startPtr;
char* ptr;
char* endPtr;
} BIT_CStream_t;
MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC, void* dstBuffer, size_t dstCapacity);
MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC, size_t value, unsigned nbBits);
MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC);
MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC);
/* Start with initCStream, providing the size of buffer to write into.
* bitStream will never write outside of this buffer.
* `dstCapacity` must be >= sizeof(bitD->bitContainer), otherwise @return will be an error code.
*
* bits are first added to a local register.
* Local register is size_t, hence 64-bits on 64-bits systems, or 32-bits on 32-bits systems.
* Writing data into memory is an explicit operation, performed by the flushBits function.
* Hence keep track how many bits are potentially stored into local register to avoid register overflow.
* After a flushBits, a maximum of 7 bits might still be stored into local register.
*
* Avoid storing elements of more than 24 bits if you want compatibility with 32-bits bitstream readers.
*
* Last operation is to close the bitStream.
* The function returns the final size of CStream in bytes.
* If data couldn't fit into `dstBuffer`, it will return a 0 ( == not storable)
*/
/*-********************************************
* bitStream decoding API (read backward)
**********************************************/
typedef struct {
size_t bitContainer;
unsigned bitsConsumed;
const char* ptr;
const char* start;
const char* limitPtr;
} BIT_DStream_t;
typedef enum { BIT_DStream_unfinished = 0,
BIT_DStream_endOfBuffer = 1,
BIT_DStream_completed = 2,
BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */
/* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits);
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD);
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);
/* Start by invoking BIT_initDStream().
* A chunk of the bitStream is then stored into a local register.
* Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
* You can then retrieve bitFields stored into the local register, **in reverse order**.
* Local register is explicitly reloaded from memory by the BIT_reloadDStream() method.
* A reload guarantee a minimum of ((8*sizeof(bitD->bitContainer))-7) bits when its result is BIT_DStream_unfinished.
* Otherwise, it can be less than that, so proceed accordingly.
* Checking if DStream has reached its end can be performed with BIT_endOfDStream().
*/
/*-****************************************
* unsafe API
******************************************/
MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC, size_t value, unsigned nbBits);
/* faster, but works only if value is "clean", meaning all high bits above nbBits are 0 */
MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC);
/* unsafe version; does not check buffer overflow */
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
/* faster, but works only if nbBits >= 1 */
/*-**************************************************************
* Internal functions
****************************************************************/
MEM_STATIC unsigned BIT_highbit32 (U32 val)
{
assert(val != 0);
{
# if defined(_MSC_VER) /* Visual */
# if STATIC_BMI2 == 1
- return _lzcnt_u32(val) ^ 31;
+ return _lzcnt_u32(val) ^ 31;
# else
- unsigned long r = 0;
- return _BitScanReverse(&r, val) ? (unsigned)r : 0;
+ if (val != 0) {
+ unsigned long r;
+ _BitScanReverse(&r, val);
+ return (unsigned)r;
+ } else {
+ /* Should not reach this code path */
+ __assume(0);
+ }
# endif
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
return __builtin_clz (val) ^ 31;
# elif defined(__ICCARM__) /* IAR Intrinsic */
return 31 - __CLZ(val);
# else /* Software version */
static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29,
11, 14, 16, 18, 22, 25, 3, 30,
8, 12, 20, 28, 15, 17, 24, 7,
19, 27, 23, 6, 26, 5, 4, 31 };
U32 v = val;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
return DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
# endif
}
}
/*===== Local Constants =====*/
static const unsigned BIT_mask[] = {
0, 1, 3, 7, 0xF, 0x1F,
0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF,
0xFFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF, 0x1FFFF,
0x3FFFF, 0x7FFFF, 0xFFFFF, 0x1FFFFF, 0x3FFFFF, 0x7FFFFF,
0xFFFFFF, 0x1FFFFFF, 0x3FFFFFF, 0x7FFFFFF, 0xFFFFFFF, 0x1FFFFFFF,
0x3FFFFFFF, 0x7FFFFFFF}; /* up to 31 bits */
#define BIT_MASK_SIZE (sizeof(BIT_mask) / sizeof(BIT_mask[0]))
/*-**************************************************************
* bitStream encoding
****************************************************************/
/*! BIT_initCStream() :
* `dstCapacity` must be > sizeof(size_t)
* @return : 0 if success,
* otherwise an error code (can be tested using ERR_isError()) */
MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC,
void* startPtr, size_t dstCapacity)
{
bitC->bitContainer = 0;
bitC->bitPos = 0;
bitC->startPtr = (char*)startPtr;
bitC->ptr = bitC->startPtr;
bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer);
if (dstCapacity <= sizeof(bitC->bitContainer)) return ERROR(dstSize_tooSmall);
return 0;
}
/*! BIT_addBits() :
* can add up to 31 bits into `bitC`.
* Note : does not check for register overflow ! */
MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC,
size_t value, unsigned nbBits)
{
DEBUG_STATIC_ASSERT(BIT_MASK_SIZE == 32);
assert(nbBits < BIT_MASK_SIZE);
assert(nbBits + bitC->bitPos < sizeof(bitC->bitContainer) * 8);
bitC->bitContainer |= (value & BIT_mask[nbBits]) << bitC->bitPos;
bitC->bitPos += nbBits;
}
/*! BIT_addBitsFast() :
* works only if `value` is _clean_,
* meaning all high bits above nbBits are 0 */
MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC,
size_t value, unsigned nbBits)
{
assert((value>>nbBits) == 0);
assert(nbBits + bitC->bitPos < sizeof(bitC->bitContainer) * 8);
bitC->bitContainer |= value << bitC->bitPos;
bitC->bitPos += nbBits;
}
/*! BIT_flushBitsFast() :
* assumption : bitContainer has not overflowed
* unsafe version; does not check buffer overflow */
MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC)
{
size_t const nbBytes = bitC->bitPos >> 3;
assert(bitC->bitPos < sizeof(bitC->bitContainer) * 8);
assert(bitC->ptr <= bitC->endPtr);
MEM_writeLEST(bitC->ptr, bitC->bitContainer);
bitC->ptr += nbBytes;
bitC->bitPos &= 7;
bitC->bitContainer >>= nbBytes*8;
}
/*! BIT_flushBits() :
* assumption : bitContainer has not overflowed
* safe version; check for buffer overflow, and prevents it.
* note : does not signal buffer overflow.
* overflow will be revealed later on using BIT_closeCStream() */
MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC)
{
size_t const nbBytes = bitC->bitPos >> 3;
assert(bitC->bitPos < sizeof(bitC->bitContainer) * 8);
assert(bitC->ptr <= bitC->endPtr);
MEM_writeLEST(bitC->ptr, bitC->bitContainer);
bitC->ptr += nbBytes;
if (bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr;
bitC->bitPos &= 7;
bitC->bitContainer >>= nbBytes*8;
}
/*! BIT_closeCStream() :
* @return : size of CStream, in bytes,
* or 0 if it could not fit into dstBuffer */
MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC)
{
BIT_addBitsFast(bitC, 1, 1); /* endMark */
BIT_flushBits(bitC);
if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */
return (bitC->ptr - bitC->startPtr) + (bitC->bitPos > 0);
}
/*-********************************************************
* bitStream decoding
**********************************************************/
/*! BIT_initDStream() :
* Initialize a BIT_DStream_t.
* `bitD` : a pointer to an already allocated BIT_DStream_t structure.
* `srcSize` must be the *exact* size of the bitStream, in bytes.
* @return : size of stream (== srcSize), or an errorCode if a problem is detected
*/
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
{
if (srcSize < 1) { ZSTD_memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
bitD->start = (const char*)srcBuffer;
bitD->limitPtr = bitD->start + sizeof(bitD->bitContainer);
if (srcSize >= sizeof(bitD->bitContainer)) { /* normal case */
bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(bitD->bitContainer);
bitD->bitContainer = MEM_readLEST(bitD->ptr);
{ BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0; /* ensures bitsConsumed is always set */
if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */ }
} else {
bitD->ptr = bitD->start;
bitD->bitContainer = *(const BYTE*)(bitD->start);
switch(srcSize)
{
case 7: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[6]) << (sizeof(bitD->bitContainer)*8 - 16);
- /* fall-through */
+ ZSTD_FALLTHROUGH;
case 6: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[5]) << (sizeof(bitD->bitContainer)*8 - 24);
- /* fall-through */
+ ZSTD_FALLTHROUGH;
case 5: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[4]) << (sizeof(bitD->bitContainer)*8 - 32);
- /* fall-through */
+ ZSTD_FALLTHROUGH;
case 4: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[3]) << 24;
- /* fall-through */
+ ZSTD_FALLTHROUGH;
case 3: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[2]) << 16;
- /* fall-through */
+ ZSTD_FALLTHROUGH;
case 2: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[1]) << 8;
- /* fall-through */
+ ZSTD_FALLTHROUGH;
default: break;
}
{ BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0;
if (lastByte == 0) return ERROR(corruption_detected); /* endMark not present */
}
bitD->bitsConsumed += (U32)(sizeof(bitD->bitContainer) - srcSize)*8;
}
return srcSize;
}
MEM_STATIC FORCE_INLINE_ATTR size_t BIT_getUpperBits(size_t bitContainer, U32 const start)
{
return bitContainer >> start;
}
MEM_STATIC FORCE_INLINE_ATTR size_t BIT_getMiddleBits(size_t bitContainer, U32 const start, U32 const nbBits)
{
U32 const regMask = sizeof(bitContainer)*8 - 1;
/* if start > regMask, bitstream is corrupted, and result is undefined */
assert(nbBits < BIT_MASK_SIZE);
+ /* x86 transform & ((1 << nbBits) - 1) to bzhi instruction, it is better
+ * than accessing memory. When bmi2 instruction is not present, we consider
+ * such cpus old (pre-Haswell, 2013) and their performance is not of that
+ * importance.
+ */
+#if defined(__x86_64__) || defined(_M_X86)
+ return (bitContainer >> (start & regMask)) & ((((U64)1) << nbBits) - 1);
+#else
return (bitContainer >> (start & regMask)) & BIT_mask[nbBits];
+#endif
}
MEM_STATIC FORCE_INLINE_ATTR size_t BIT_getLowerBits(size_t bitContainer, U32 const nbBits)
{
#if defined(STATIC_BMI2) && STATIC_BMI2 == 1
return _bzhi_u64(bitContainer, nbBits);
#else
assert(nbBits < BIT_MASK_SIZE);
return bitContainer & BIT_mask[nbBits];
#endif
}
/*! BIT_lookBits() :
* Provides next n bits from local register.
* local register is not modified.
* On 32-bits, maxNbBits==24.
* On 64-bits, maxNbBits==56.
* @return : value extracted */
MEM_STATIC FORCE_INLINE_ATTR size_t BIT_lookBits(const BIT_DStream_t* bitD, U32 nbBits)
{
/* arbitrate between double-shift and shift+mask */
#if 1
/* if bitD->bitsConsumed + nbBits > sizeof(bitD->bitContainer)*8,
* bitstream is likely corrupted, and result is undefined */
return BIT_getMiddleBits(bitD->bitContainer, (sizeof(bitD->bitContainer)*8) - bitD->bitsConsumed - nbBits, nbBits);
#else
/* this code path is slower on my os-x laptop */
U32 const regMask = sizeof(bitD->bitContainer)*8 - 1;
return ((bitD->bitContainer << (bitD->bitsConsumed & regMask)) >> 1) >> ((regMask-nbBits) & regMask);
#endif
}
/*! BIT_lookBitsFast() :
* unsafe version; only works if nbBits >= 1 */
MEM_STATIC size_t BIT_lookBitsFast(const BIT_DStream_t* bitD, U32 nbBits)
{
U32 const regMask = sizeof(bitD->bitContainer)*8 - 1;
assert(nbBits >= 1);
return (bitD->bitContainer << (bitD->bitsConsumed & regMask)) >> (((regMask+1)-nbBits) & regMask);
}
MEM_STATIC FORCE_INLINE_ATTR void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
{
bitD->bitsConsumed += nbBits;
}
/*! BIT_readBits() :
* Read (consume) next n bits from local register and update.
* Pay attention to not read more than nbBits contained into local register.
* @return : extracted value. */
MEM_STATIC FORCE_INLINE_ATTR size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits)
{
size_t const value = BIT_lookBits(bitD, nbBits);
BIT_skipBits(bitD, nbBits);
return value;
}
/*! BIT_readBitsFast() :
* unsafe version; only works only if nbBits >= 1 */
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits)
{
size_t const value = BIT_lookBitsFast(bitD, nbBits);
assert(nbBits >= 1);
BIT_skipBits(bitD, nbBits);
return value;
}
/*! BIT_reloadDStreamFast() :
* Similar to BIT_reloadDStream(), but with two differences:
* 1. bitsConsumed <= sizeof(bitD->bitContainer)*8 must hold!
* 2. Returns BIT_DStream_overflow when bitD->ptr < bitD->limitPtr, at this
* point you must use BIT_reloadDStream() to reload.
*/
MEM_STATIC BIT_DStream_status BIT_reloadDStreamFast(BIT_DStream_t* bitD)
{
if (UNLIKELY(bitD->ptr < bitD->limitPtr))
return BIT_DStream_overflow;
assert(bitD->bitsConsumed <= sizeof(bitD->bitContainer)*8);
bitD->ptr -= bitD->bitsConsumed >> 3;
bitD->bitsConsumed &= 7;
bitD->bitContainer = MEM_readLEST(bitD->ptr);
return BIT_DStream_unfinished;
}
/*! BIT_reloadDStream() :
* Refill `bitD` from buffer previously set in BIT_initDStream() .
* This function is safe, it guarantees it will not read beyond src buffer.
* @return : status of `BIT_DStream_t` internal register.
* when status == BIT_DStream_unfinished, internal register is filled with at least 25 or 57 bits */
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
{
if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* overflow detected, like end of stream */
return BIT_DStream_overflow;
if (bitD->ptr >= bitD->limitPtr) {
return BIT_reloadDStreamFast(bitD);
}
if (bitD->ptr == bitD->start) {
if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer;
return BIT_DStream_completed;
}
/* start < ptr < limitPtr */
{ U32 nbBytes = bitD->bitsConsumed >> 3;
BIT_DStream_status result = BIT_DStream_unfinished;
if (bitD->ptr - nbBytes < bitD->start) {
nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
result = BIT_DStream_endOfBuffer;
}
bitD->ptr -= nbBytes;
bitD->bitsConsumed -= nbBytes*8;
bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD->bitContainer), otherwise bitD->ptr == bitD->start */
return result;
}
}
/*! BIT_endOfDStream() :
* @return : 1 if DStream has _exactly_ reached its end (all bits consumed).
*/
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream)
{
return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
}
#if defined (__cplusplus)
}
#endif
#endif /* BITSTREAM_H_MODULE */
diff --git a/sys/contrib/zstd/lib/common/compiler.h b/sys/contrib/zstd/lib/common/compiler.h
index 3e454f38c12b..516930c01ec9 100644
--- a/sys/contrib/zstd/lib/common/compiler.h
+++ b/sys/contrib/zstd/lib/common/compiler.h
@@ -1,288 +1,335 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_COMPILER_H
#define ZSTD_COMPILER_H
+#include "portability_macros.h"
+
/*-*******************************************************
* Compiler specifics
*********************************************************/
/* force inlining */
#if !defined(ZSTD_NO_INLINE)
#if (defined(__GNUC__) && !defined(__STRICT_ANSI__)) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
# define INLINE_KEYWORD inline
#else
# define INLINE_KEYWORD
#endif
#if defined(__GNUC__) || defined(__ICCARM__)
# define FORCE_INLINE_ATTR __attribute__((always_inline))
#elif defined(_MSC_VER)
# define FORCE_INLINE_ATTR __forceinline
#else
# define FORCE_INLINE_ATTR
#endif
#else
#define INLINE_KEYWORD
#define FORCE_INLINE_ATTR
#endif
/**
On MSVC qsort requires that functions passed into it use the __cdecl calling conversion(CC).
- This explictly marks such functions as __cdecl so that the code will still compile
+ This explicitly marks such functions as __cdecl so that the code will still compile
if a CC other than __cdecl has been made the default.
*/
#if defined(_MSC_VER)
# define WIN_CDECL __cdecl
#else
# define WIN_CDECL
#endif
/**
* FORCE_INLINE_TEMPLATE is used to define C "templates", which take constant
* parameters. They must be inlined for the compiler to eliminate the constant
* branches.
*/
#define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR
/**
* HINT_INLINE is used to help the compiler generate better code. It is *not*
* used for "templates", so it can be tweaked based on the compilers
* performance.
*
* gcc-4.8 and gcc-4.9 have been shown to benefit from leaving off the
* always_inline attribute.
*
* clang up to 5.0.0 (trunk) benefit tremendously from the always_inline
* attribute.
*/
#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ >= 4 && __GNUC_MINOR__ >= 8 && __GNUC__ < 5
# define HINT_INLINE static INLINE_KEYWORD
#else
# define HINT_INLINE static INLINE_KEYWORD FORCE_INLINE_ATTR
#endif
/* UNUSED_ATTR tells the compiler it is okay if the function is unused. */
#if defined(__GNUC__)
# define UNUSED_ATTR __attribute__((unused))
#else
# define UNUSED_ATTR
#endif
/* force no inlining */
#ifdef _MSC_VER
# define FORCE_NOINLINE static __declspec(noinline)
#else
# if defined(__GNUC__) || defined(__ICCARM__)
# define FORCE_NOINLINE static __attribute__((__noinline__))
# else
# define FORCE_NOINLINE static
# endif
#endif
+
/* target attribute */
-#ifndef __has_attribute
- #define __has_attribute(x) 0 /* Compatibility with non-clang compilers. */
-#endif
#if defined(__GNUC__) || defined(__ICCARM__)
# define TARGET_ATTRIBUTE(target) __attribute__((__target__(target)))
#else
# define TARGET_ATTRIBUTE(target)
#endif
-/* Enable runtime BMI2 dispatch based on the CPU.
- * Enabled for clang & gcc >=4.8 on x86 when BMI2 isn't enabled by default.
+/* Target attribute for BMI2 dynamic dispatch.
+ * Enable lzcnt, bmi, and bmi2.
+ * We test for bmi1 & bmi2. lzcnt is included in bmi1.
*/
-#ifndef DYNAMIC_BMI2
- #if ((defined(__clang__) && __has_attribute(__target__)) \
- || (defined(__GNUC__) \
- && (__GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)))) \
- && (defined(__x86_64__) || defined(_M_X86)) \
- && !defined(__BMI2__)
- # define DYNAMIC_BMI2 1
- #else
- # define DYNAMIC_BMI2 0
- #endif
-#endif
+#define BMI2_TARGET_ATTRIBUTE TARGET_ATTRIBUTE("lzcnt,bmi,bmi2")
/* prefetch
* can be disabled, by declaring NO_PREFETCH build macro */
#if defined(NO_PREFETCH)
# define PREFETCH_L1(ptr) (void)(ptr) /* disabled */
# define PREFETCH_L2(ptr) (void)(ptr) /* disabled */
#else
# if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) /* _mm_prefetch() is not defined outside of x86/x64 */
# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
# define PREFETCH_L1(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
# define PREFETCH_L2(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T1)
# elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
# define PREFETCH_L1(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
# define PREFETCH_L2(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 2 /* locality */)
# elif defined(__aarch64__)
# define PREFETCH_L1(ptr) __asm__ __volatile__("prfm pldl1keep, %0" ::"Q"(*(ptr)))
# define PREFETCH_L2(ptr) __asm__ __volatile__("prfm pldl2keep, %0" ::"Q"(*(ptr)))
# else
# define PREFETCH_L1(ptr) (void)(ptr) /* disabled */
# define PREFETCH_L2(ptr) (void)(ptr) /* disabled */
# endif
#endif /* NO_PREFETCH */
#define CACHELINE_SIZE 64
#define PREFETCH_AREA(p, s) { \
const char* const _ptr = (const char*)(p); \
size_t const _size = (size_t)(s); \
size_t _pos; \
for (_pos=0; _pos<_size; _pos+=CACHELINE_SIZE) { \
PREFETCH_L2(_ptr + _pos); \
} \
}
/* vectorization
- * older GCC (pre gcc-4.3 picked as the cutoff) uses a different syntax */
-#if !defined(__INTEL_COMPILER) && !defined(__clang__) && defined(__GNUC__)
+ * older GCC (pre gcc-4.3 picked as the cutoff) uses a different syntax,
+ * and some compilers, like Intel ICC and MCST LCC, do not support it at all. */
+#if !defined(__INTEL_COMPILER) && !defined(__clang__) && defined(__GNUC__) && !defined(__LCC__)
# if (__GNUC__ == 4 && __GNUC_MINOR__ > 3) || (__GNUC__ >= 5)
# define DONT_VECTORIZE __attribute__((optimize("no-tree-vectorize")))
# else
# define DONT_VECTORIZE _Pragma("GCC optimize(\"no-tree-vectorize\")")
# endif
#else
# define DONT_VECTORIZE
#endif
/* Tell the compiler that a branch is likely or unlikely.
* Only use these macros if it causes the compiler to generate better code.
* If you can remove a LIKELY/UNLIKELY annotation without speed changes in gcc
* and clang, please do.
*/
#if defined(__GNUC__)
#define LIKELY(x) (__builtin_expect((x), 1))
#define UNLIKELY(x) (__builtin_expect((x), 0))
#else
#define LIKELY(x) (x)
#define UNLIKELY(x) (x)
#endif
/* disable warnings */
#ifdef _MSC_VER /* Visual Studio */
# include <intrin.h> /* For Visual 2005 */
# pragma warning(disable : 4100) /* disable: C4100: unreferenced formal parameter */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */
# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */
# pragma warning(disable : 4324) /* disable: C4324: padded structure */
#endif
/*Like DYNAMIC_BMI2 but for compile time determination of BMI2 support*/
#ifndef STATIC_BMI2
# if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86))
# ifdef __AVX2__ //MSVC does not have a BMI2 specific flag, but every CPU that supports AVX2 also supports BMI2
# define STATIC_BMI2 1
# endif
# endif
#endif
#ifndef STATIC_BMI2
#define STATIC_BMI2 0
#endif
-/* compat. with non-clang compilers */
-#ifndef __has_builtin
-# define __has_builtin(x) 0
+/* compile time determination of SIMD support */
+#if !defined(ZSTD_NO_INTRINSICS)
+# if defined(__SSE2__) || defined(_M_AMD64) || (defined (_M_IX86) && defined(_M_IX86_FP) && (_M_IX86_FP >= 2))
+# define ZSTD_ARCH_X86_SSE2
+# endif
+# if defined(__ARM_NEON) || defined(_M_ARM64)
+# define ZSTD_ARCH_ARM_NEON
+# endif
+#
+# if defined(ZSTD_ARCH_X86_SSE2)
+# include <emmintrin.h>
+# elif defined(ZSTD_ARCH_ARM_NEON)
+# include <arm_neon.h>
+# endif
+#endif
+
+/* C-language Attributes are added in C23. */
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ > 201710L) && defined(__has_c_attribute)
+# define ZSTD_HAS_C_ATTRIBUTE(x) __has_c_attribute(x)
+#else
+# define ZSTD_HAS_C_ATTRIBUTE(x) 0
#endif
-/* compat. with non-clang compilers */
-#ifndef __has_feature
-# define __has_feature(x) 0
+/* Only use C++ attributes in C++. Some compilers report support for C++
+ * attributes when compiling with C.
+ */
+#if defined(__cplusplus) && defined(__has_cpp_attribute)
+# define ZSTD_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
+#else
+# define ZSTD_HAS_CPP_ATTRIBUTE(x) 0
#endif
-/* detects whether we are being compiled under msan */
-#ifndef ZSTD_MEMORY_SANITIZER
-# if __has_feature(memory_sanitizer)
-# define ZSTD_MEMORY_SANITIZER 1
-# else
-# define ZSTD_MEMORY_SANITIZER 0
-# endif
+/* Define ZSTD_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute.
+ * - C23: https://en.cppreference.com/w/c/language/attributes/fallthrough
+ * - CPP17: https://en.cppreference.com/w/cpp/language/attributes/fallthrough
+ * - Else: __attribute__((__fallthrough__))
+ */
+#ifndef ZSTD_FALLTHROUGH
+# if ZSTD_HAS_C_ATTRIBUTE(fallthrough)
+# define ZSTD_FALLTHROUGH [[fallthrough]]
+# elif ZSTD_HAS_CPP_ATTRIBUTE(fallthrough)
+# define ZSTD_FALLTHROUGH [[fallthrough]]
+# elif __has_attribute(__fallthrough__)
+/* Leading semicolon is to satisfy gcc-11 with -pedantic. Without the semicolon
+ * gcc complains about: a label can only be part of a statement and a declaration is not a statement.
+ */
+# define ZSTD_FALLTHROUGH ; __attribute__((__fallthrough__))
+# else
+# define ZSTD_FALLTHROUGH
+# endif
#endif
+/*-**************************************************************
+* Alignment check
+*****************************************************************/
+
+/* this test was initially positioned in mem.h,
+ * but this file is removed (or replaced) for linux kernel
+ * so it's now hosted in compiler.h,
+ * which remains valid for both user & kernel spaces.
+ */
+
+#ifndef ZSTD_ALIGNOF
+# if defined(__GNUC__) || defined(_MSC_VER)
+/* covers gcc, clang & MSVC */
+/* note : this section must come first, before C11,
+ * due to a limitation in the kernel source generator */
+# define ZSTD_ALIGNOF(T) __alignof(T)
+
+# elif defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)
+/* C11 support */
+# include <stdalign.h>
+# define ZSTD_ALIGNOF(T) alignof(T)
+
+# else
+/* No known support for alignof() - imperfect backup */
+# define ZSTD_ALIGNOF(T) (sizeof(void*) < sizeof(T) ? sizeof(void*) : sizeof(T))
+
+# endif
+#endif /* ZSTD_ALIGNOF */
+
+/*-**************************************************************
+* Sanitizer
+*****************************************************************/
+
#if ZSTD_MEMORY_SANITIZER
/* Not all platforms that support msan provide sanitizers/msan_interface.h.
* We therefore declare the functions we need ourselves, rather than trying to
* include the header file... */
#include <stddef.h> /* size_t */
#define ZSTD_DEPS_NEED_STDINT
#include "zstd_deps.h" /* intptr_t */
/* Make memory region fully initialized (without changing its contents). */
void __msan_unpoison(const volatile void *a, size_t size);
/* Make memory region fully uninitialized (without changing its contents).
This is a legacy interface that does not update origin information. Use
__msan_allocated_memory() instead. */
void __msan_poison(const volatile void *a, size_t size);
/* Returns the offset of the first (at least partially) poisoned byte in the
memory range, or -1 if the whole range is good. */
intptr_t __msan_test_shadow(const volatile void *x, size_t size);
#endif
-/* detects whether we are being compiled under asan */
-#ifndef ZSTD_ADDRESS_SANITIZER
-# if __has_feature(address_sanitizer)
-# define ZSTD_ADDRESS_SANITIZER 1
-# elif defined(__SANITIZE_ADDRESS__)
-# define ZSTD_ADDRESS_SANITIZER 1
-# else
-# define ZSTD_ADDRESS_SANITIZER 0
-# endif
-#endif
-
#if ZSTD_ADDRESS_SANITIZER
/* Not all platforms that support asan provide sanitizers/asan_interface.h.
* We therefore declare the functions we need ourselves, rather than trying to
* include the header file... */
#include <stddef.h> /* size_t */
/**
* Marks a memory region (<c>[addr, addr+size)</c>) as unaddressable.
*
* This memory must be previously allocated by your program. Instrumented
* code is forbidden from accessing addresses in this region until it is
* unpoisoned. This function is not guaranteed to poison the entire region -
* it could poison only a subregion of <c>[addr, addr+size)</c> due to ASan
* alignment restrictions.
*
* \note This function is not thread-safe because no two threads can poison or
* unpoison memory in the same memory region simultaneously.
*
* \param addr Start of memory region.
* \param size Size of memory region. */
void __asan_poison_memory_region(void const volatile *addr, size_t size);
/**
* Marks a memory region (<c>[addr, addr+size)</c>) as addressable.
*
* This memory must be previously allocated by your program. Accessing
* addresses in this region is allowed until this region is poisoned again.
* This function could unpoison a super-region of <c>[addr, addr+size)</c> due
* to ASan alignment restrictions.
*
* \note This function is not thread-safe because no two threads can
* poison or unpoison memory in the same memory region simultaneously.
*
* \param addr Start of memory region.
* \param size Size of memory region. */
void __asan_unpoison_memory_region(void const volatile *addr, size_t size);
#endif
#endif /* ZSTD_COMPILER_H */
diff --git a/sys/contrib/zstd/lib/common/cpu.h b/sys/contrib/zstd/lib/common/cpu.h
index cb210593ead9..8acd33be3cd0 100644
--- a/sys/contrib/zstd/lib/common/cpu.h
+++ b/sys/contrib/zstd/lib/common/cpu.h
@@ -1,213 +1,213 @@
/*
- * Copyright (c) 2018-2020, Facebook, Inc.
+ * Copyright (c) Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_COMMON_CPU_H
#define ZSTD_COMMON_CPU_H
/**
* Implementation taken from folly/CpuId.h
* https://github.com/facebook/folly/blob/master/folly/CpuId.h
*/
#include "mem.h"
#ifdef _MSC_VER
#include <intrin.h>
#endif
typedef struct {
U32 f1c;
U32 f1d;
U32 f7b;
U32 f7c;
} ZSTD_cpuid_t;
MEM_STATIC ZSTD_cpuid_t ZSTD_cpuid(void) {
U32 f1c = 0;
U32 f1d = 0;
U32 f7b = 0;
U32 f7c = 0;
#if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86))
int reg[4];
__cpuid((int*)reg, 0);
{
int const n = reg[0];
if (n >= 1) {
__cpuid((int*)reg, 1);
f1c = (U32)reg[2];
f1d = (U32)reg[3];
}
if (n >= 7) {
__cpuidex((int*)reg, 7, 0);
f7b = (U32)reg[1];
f7c = (U32)reg[2];
}
}
#elif defined(__i386__) && defined(__PIC__) && !defined(__clang__) && defined(__GNUC__)
/* The following block like the normal cpuid branch below, but gcc
* reserves ebx for use of its pic register so we must specially
* handle the save and restore to avoid clobbering the register
*/
U32 n;
__asm__(
"pushl %%ebx\n\t"
"cpuid\n\t"
"popl %%ebx\n\t"
: "=a"(n)
: "a"(0)
: "ecx", "edx");
if (n >= 1) {
U32 f1a;
__asm__(
"pushl %%ebx\n\t"
"cpuid\n\t"
"popl %%ebx\n\t"
: "=a"(f1a), "=c"(f1c), "=d"(f1d)
: "a"(1));
}
if (n >= 7) {
__asm__(
"pushl %%ebx\n\t"
"cpuid\n\t"
"movl %%ebx, %%eax\n\t"
"popl %%ebx"
: "=a"(f7b), "=c"(f7c)
: "a"(7), "c"(0)
: "edx");
}
#elif defined(__x86_64__) || defined(_M_X64) || defined(__i386__)
U32 n;
__asm__("cpuid" : "=a"(n) : "a"(0) : "ebx", "ecx", "edx");
if (n >= 1) {
U32 f1a;
__asm__("cpuid" : "=a"(f1a), "=c"(f1c), "=d"(f1d) : "a"(1) : "ebx");
}
if (n >= 7) {
U32 f7a;
__asm__("cpuid"
: "=a"(f7a), "=b"(f7b), "=c"(f7c)
: "a"(7), "c"(0)
: "edx");
}
#endif
{
ZSTD_cpuid_t cpuid;
cpuid.f1c = f1c;
cpuid.f1d = f1d;
cpuid.f7b = f7b;
cpuid.f7c = f7c;
return cpuid;
}
}
#define X(name, r, bit) \
MEM_STATIC int ZSTD_cpuid_##name(ZSTD_cpuid_t const cpuid) { \
return ((cpuid.r) & (1U << bit)) != 0; \
}
/* cpuid(1): Processor Info and Feature Bits. */
#define C(name, bit) X(name, f1c, bit)
C(sse3, 0)
C(pclmuldq, 1)
C(dtes64, 2)
C(monitor, 3)
C(dscpl, 4)
C(vmx, 5)
C(smx, 6)
C(eist, 7)
C(tm2, 8)
C(ssse3, 9)
C(cnxtid, 10)
C(fma, 12)
C(cx16, 13)
C(xtpr, 14)
C(pdcm, 15)
C(pcid, 17)
C(dca, 18)
C(sse41, 19)
C(sse42, 20)
C(x2apic, 21)
C(movbe, 22)
C(popcnt, 23)
C(tscdeadline, 24)
C(aes, 25)
C(xsave, 26)
C(osxsave, 27)
C(avx, 28)
C(f16c, 29)
C(rdrand, 30)
#undef C
#define D(name, bit) X(name, f1d, bit)
D(fpu, 0)
D(vme, 1)
D(de, 2)
D(pse, 3)
D(tsc, 4)
D(msr, 5)
D(pae, 6)
D(mce, 7)
D(cx8, 8)
D(apic, 9)
D(sep, 11)
D(mtrr, 12)
D(pge, 13)
D(mca, 14)
D(cmov, 15)
D(pat, 16)
D(pse36, 17)
D(psn, 18)
D(clfsh, 19)
D(ds, 21)
D(acpi, 22)
D(mmx, 23)
D(fxsr, 24)
D(sse, 25)
D(sse2, 26)
D(ss, 27)
D(htt, 28)
D(tm, 29)
D(pbe, 31)
#undef D
/* cpuid(7): Extended Features. */
#define B(name, bit) X(name, f7b, bit)
B(bmi1, 3)
B(hle, 4)
B(avx2, 5)
B(smep, 7)
B(bmi2, 8)
B(erms, 9)
B(invpcid, 10)
B(rtm, 11)
B(mpx, 14)
B(avx512f, 16)
B(avx512dq, 17)
B(rdseed, 18)
B(adx, 19)
B(smap, 20)
B(avx512ifma, 21)
B(pcommit, 22)
B(clflushopt, 23)
B(clwb, 24)
B(avx512pf, 26)
B(avx512er, 27)
B(avx512cd, 28)
B(sha, 29)
B(avx512bw, 30)
B(avx512vl, 31)
#undef B
#define C(name, bit) X(name, f7c, bit)
C(prefetchwt1, 0)
C(avx512vbmi, 1)
#undef C
#undef X
#endif /* ZSTD_COMMON_CPU_H */
diff --git a/sys/contrib/zstd/lib/common/debug.c b/sys/contrib/zstd/lib/common/debug.c
index f303f4a2e530..bb863c9ea616 100644
--- a/sys/contrib/zstd/lib/common/debug.c
+++ b/sys/contrib/zstd/lib/common/debug.c
@@ -1,24 +1,24 @@
/* ******************************************************************
* debug
* Part of FSE library
- * Copyright (c) 2013-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
*
* You can contact the author at :
* - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/*
* This module only hosts one global variable
* which can be used to dynamically influence the verbosity of traces,
* such as DEBUGLOG and RAWLOG
*/
#include "debug.h"
int g_debuglevel = DEBUGLEVEL;
diff --git a/sys/contrib/zstd/lib/common/debug.h b/sys/contrib/zstd/lib/common/debug.h
index 8b5734366ca2..3b2a320a188d 100644
--- a/sys/contrib/zstd/lib/common/debug.h
+++ b/sys/contrib/zstd/lib/common/debug.h
@@ -1,107 +1,107 @@
/* ******************************************************************
* debug
* Part of FSE library
- * Copyright (c) 2013-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
*
* You can contact the author at :
* - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/*
* The purpose of this header is to enable debug functions.
* They regroup assert(), DEBUGLOG() and RAWLOG() for run-time,
* and DEBUG_STATIC_ASSERT() for compile-time.
*
* By default, DEBUGLEVEL==0, which means run-time debug is disabled.
*
* Level 1 enables assert() only.
* Starting level 2, traces can be generated and pushed to stderr.
* The higher the level, the more verbose the traces.
*
* It's possible to dynamically adjust level using variable g_debug_level,
* which is only declared if DEBUGLEVEL>=2,
* and is a global variable, not multi-thread protected (use with care)
*/
#ifndef DEBUG_H_12987983217
#define DEBUG_H_12987983217
#if defined (__cplusplus)
extern "C" {
#endif
/* static assert is triggered at compile time, leaving no runtime artefact.
* static assert only works with compile-time constants.
* Also, this variant can only be used inside a function. */
#define DEBUG_STATIC_ASSERT(c) (void)sizeof(char[(c) ? 1 : -1])
/* DEBUGLEVEL is expected to be defined externally,
* typically through compiler command line.
* Value must be a number. */
#ifndef DEBUGLEVEL
# define DEBUGLEVEL 0
#endif
/* recommended values for DEBUGLEVEL :
* 0 : release mode, no debug, all run-time checks disabled
* 1 : enables assert() only, no display
* 2 : reserved, for currently active debug path
* 3 : events once per object lifetime (CCtx, CDict, etc.)
* 4 : events once per frame
* 5 : events once per block
* 6 : events once per sequence (verbose)
* 7+: events at every position (*very* verbose)
*
* It's generally inconvenient to output traces > 5.
* In which case, it's possible to selectively trigger high verbosity levels
* by modifying g_debug_level.
*/
#if (DEBUGLEVEL>=1)
# define ZSTD_DEPS_NEED_ASSERT
# include "zstd_deps.h"
#else
# ifndef assert /* assert may be already defined, due to prior #include <assert.h> */
# define assert(condition) ((void)0) /* disable assert (default) */
# endif
#endif
#if (DEBUGLEVEL>=2)
# define ZSTD_DEPS_NEED_IO
# include "zstd_deps.h"
extern int g_debuglevel; /* the variable is only declared,
it actually lives in debug.c,
and is shared by the whole process.
It's not thread-safe.
It's useful when enabling very verbose levels
on selective conditions (such as position in src) */
# define RAWLOG(l, ...) { \
if (l<=g_debuglevel) { \
ZSTD_DEBUG_PRINT(__VA_ARGS__); \
} }
# define DEBUGLOG(l, ...) { \
if (l<=g_debuglevel) { \
ZSTD_DEBUG_PRINT(__FILE__ ": " __VA_ARGS__); \
ZSTD_DEBUG_PRINT(" \n"); \
} }
#else
# define RAWLOG(l, ...) {} /* disabled */
# define DEBUGLOG(l, ...) {} /* disabled */
#endif
#if defined (__cplusplus)
}
#endif
#endif /* DEBUG_H_12987983217 */
diff --git a/sys/contrib/zstd/lib/common/entropy_common.c b/sys/contrib/zstd/lib/common/entropy_common.c
index f9fcb1acfc36..4229b40c5eed 100644
--- a/sys/contrib/zstd/lib/common/entropy_common.c
+++ b/sys/contrib/zstd/lib/common/entropy_common.c
@@ -1,362 +1,368 @@
/* ******************************************************************
* Common functions of New Generation Entropy library
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
*
* You can contact the author at :
* - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
* - Public forum : https://groups.google.com/forum/#!forum/lz4c
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/* *************************************
* Dependencies
***************************************/
#include "mem.h"
#include "error_private.h" /* ERR_*, ERROR */
#define FSE_STATIC_LINKING_ONLY /* FSE_MIN_TABLELOG */
#include "fse.h"
#define HUF_STATIC_LINKING_ONLY /* HUF_TABLELOG_ABSOLUTEMAX */
#include "huf.h"
/*=== Version ===*/
unsigned FSE_versionNumber(void) { return FSE_VERSION_NUMBER; }
/*=== Error Management ===*/
unsigned FSE_isError(size_t code) { return ERR_isError(code); }
const char* FSE_getErrorName(size_t code) { return ERR_getErrorName(code); }
unsigned HUF_isError(size_t code) { return ERR_isError(code); }
const char* HUF_getErrorName(size_t code) { return ERR_getErrorName(code); }
/*-**************************************************************
* FSE NCount encoding-decoding
****************************************************************/
static U32 FSE_ctz(U32 val)
{
assert(val != 0);
{
# if defined(_MSC_VER) /* Visual */
- unsigned long r=0;
- return _BitScanForward(&r, val) ? (unsigned)r : 0;
+ if (val != 0) {
+ unsigned long r;
+ _BitScanForward(&r, val);
+ return (unsigned)r;
+ } else {
+ /* Should not reach this code path */
+ __assume(0);
+ }
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* GCC Intrinsic */
return __builtin_ctz(val);
# elif defined(__ICCARM__) /* IAR Intrinsic */
return __CTZ(val);
# else /* Software version */
U32 count = 0;
while ((val & 1) == 0) {
val >>= 1;
++count;
}
return count;
# endif
}
}
FORCE_INLINE_TEMPLATE
size_t FSE_readNCount_body(short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize)
{
const BYTE* const istart = (const BYTE*) headerBuffer;
const BYTE* const iend = istart + hbSize;
const BYTE* ip = istart;
int nbBits;
int remaining;
int threshold;
U32 bitStream;
int bitCount;
unsigned charnum = 0;
unsigned const maxSV1 = *maxSVPtr + 1;
int previous0 = 0;
if (hbSize < 8) {
/* This function only works when hbSize >= 8 */
char buffer[8] = {0};
ZSTD_memcpy(buffer, headerBuffer, hbSize);
{ size_t const countSize = FSE_readNCount(normalizedCounter, maxSVPtr, tableLogPtr,
buffer, sizeof(buffer));
if (FSE_isError(countSize)) return countSize;
if (countSize > hbSize) return ERROR(corruption_detected);
return countSize;
} }
assert(hbSize >= 8);
/* init */
ZSTD_memset(normalizedCounter, 0, (*maxSVPtr+1) * sizeof(normalizedCounter[0])); /* all symbols not present in NCount have a frequency of 0 */
bitStream = MEM_readLE32(ip);
nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */
if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
bitStream >>= 4;
bitCount = 4;
*tableLogPtr = nbBits;
remaining = (1<<nbBits)+1;
threshold = 1<<nbBits;
nbBits++;
for (;;) {
if (previous0) {
/* Count the number of repeats. Each time the
* 2-bit repeat code is 0b11 there is another
* repeat.
* Avoid UB by setting the high bit to 1.
*/
int repeats = FSE_ctz(~bitStream | 0x80000000) >> 1;
while (repeats >= 12) {
charnum += 3 * 12;
if (LIKELY(ip <= iend-7)) {
ip += 3;
} else {
bitCount -= (int)(8 * (iend - 7 - ip));
bitCount &= 31;
ip = iend - 4;
}
bitStream = MEM_readLE32(ip) >> bitCount;
repeats = FSE_ctz(~bitStream | 0x80000000) >> 1;
}
charnum += 3 * repeats;
bitStream >>= 2 * repeats;
bitCount += 2 * repeats;
/* Add the final repeat which isn't 0b11. */
assert((bitStream & 3) < 3);
charnum += bitStream & 3;
bitCount += 2;
/* This is an error, but break and return an error
* at the end, because returning out of a loop makes
* it harder for the compiler to optimize.
*/
if (charnum >= maxSV1) break;
/* We don't need to set the normalized count to 0
* because we already memset the whole buffer to 0.
*/
if (LIKELY(ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
assert((bitCount >> 3) <= 3); /* For first condition to work */
ip += bitCount>>3;
bitCount &= 7;
} else {
bitCount -= (int)(8 * (iend - 4 - ip));
bitCount &= 31;
ip = iend - 4;
}
bitStream = MEM_readLE32(ip) >> bitCount;
}
{
int const max = (2*threshold-1) - remaining;
int count;
if ((bitStream & (threshold-1)) < (U32)max) {
count = bitStream & (threshold-1);
bitCount += nbBits-1;
} else {
count = bitStream & (2*threshold-1);
if (count >= threshold) count -= max;
bitCount += nbBits;
}
count--; /* extra accuracy */
/* When it matters (small blocks), this is a
* predictable branch, because we don't use -1.
*/
if (count >= 0) {
remaining -= count;
} else {
assert(count == -1);
remaining += count;
}
normalizedCounter[charnum++] = (short)count;
previous0 = !count;
assert(threshold > 1);
if (remaining < threshold) {
/* This branch can be folded into the
* threshold update condition because we
* know that threshold > 1.
*/
if (remaining <= 1) break;
nbBits = BIT_highbit32(remaining) + 1;
threshold = 1 << (nbBits - 1);
}
if (charnum >= maxSV1) break;
if (LIKELY(ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
ip += bitCount>>3;
bitCount &= 7;
} else {
bitCount -= (int)(8 * (iend - 4 - ip));
bitCount &= 31;
ip = iend - 4;
}
bitStream = MEM_readLE32(ip) >> bitCount;
} }
if (remaining != 1) return ERROR(corruption_detected);
/* Only possible when there are too many zeros. */
if (charnum > maxSV1) return ERROR(maxSymbolValue_tooSmall);
if (bitCount > 32) return ERROR(corruption_detected);
*maxSVPtr = charnum-1;
ip += (bitCount+7)>>3;
return ip-istart;
}
/* Avoids the FORCE_INLINE of the _body() function. */
static size_t FSE_readNCount_body_default(
short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize)
{
return FSE_readNCount_body(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize);
}
#if DYNAMIC_BMI2
-TARGET_ATTRIBUTE("bmi2") static size_t FSE_readNCount_body_bmi2(
+BMI2_TARGET_ATTRIBUTE static size_t FSE_readNCount_body_bmi2(
short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize)
{
return FSE_readNCount_body(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize);
}
#endif
size_t FSE_readNCount_bmi2(
short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize, int bmi2)
{
#if DYNAMIC_BMI2
if (bmi2) {
return FSE_readNCount_body_bmi2(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize);
}
#endif
(void)bmi2;
return FSE_readNCount_body_default(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize);
}
size_t FSE_readNCount(
short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize)
{
return FSE_readNCount_bmi2(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize, /* bmi2 */ 0);
}
/*! HUF_readStats() :
Read compact Huffman tree, saved by HUF_writeCTable().
`huffWeight` is destination buffer.
`rankStats` is assumed to be a table of at least HUF_TABLELOG_MAX U32.
@return : size read from `src` , or an error Code .
Note : Needed by HUF_readCTable() and HUF_readDTableX?() .
*/
size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize)
{
U32 wksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
return HUF_readStats_wksp(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, wksp, sizeof(wksp), /* bmi2 */ 0);
}
FORCE_INLINE_TEMPLATE size_t
HUF_readStats_body(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize,
void* workSpace, size_t wkspSize,
int bmi2)
{
U32 weightTotal;
const BYTE* ip = (const BYTE*) src;
size_t iSize;
size_t oSize;
if (!srcSize) return ERROR(srcSize_wrong);
iSize = ip[0];
/* ZSTD_memset(huffWeight, 0, hwSize); *//* is not necessary, even though some analyzer complain ... */
if (iSize >= 128) { /* special header */
oSize = iSize - 127;
iSize = ((oSize+1)/2);
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
if (oSize >= hwSize) return ERROR(corruption_detected);
ip += 1;
{ U32 n;
for (n=0; n<oSize; n+=2) {
huffWeight[n] = ip[n/2] >> 4;
huffWeight[n+1] = ip[n/2] & 15;
} } }
else { /* header compressed with FSE (normal case) */
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
/* max (hwSize-1) values decoded, as last one is implied */
oSize = FSE_decompress_wksp_bmi2(huffWeight, hwSize-1, ip+1, iSize, 6, workSpace, wkspSize, bmi2);
if (FSE_isError(oSize)) return oSize;
}
/* collect weight stats */
ZSTD_memset(rankStats, 0, (HUF_TABLELOG_MAX + 1) * sizeof(U32));
weightTotal = 0;
{ U32 n; for (n=0; n<oSize; n++) {
- if (huffWeight[n] >= HUF_TABLELOG_MAX) return ERROR(corruption_detected);
+ if (huffWeight[n] > HUF_TABLELOG_MAX) return ERROR(corruption_detected);
rankStats[huffWeight[n]]++;
weightTotal += (1 << huffWeight[n]) >> 1;
} }
if (weightTotal == 0) return ERROR(corruption_detected);
/* get last non-null symbol weight (implied, total must be 2^n) */
{ U32 const tableLog = BIT_highbit32(weightTotal) + 1;
if (tableLog > HUF_TABLELOG_MAX) return ERROR(corruption_detected);
*tableLogPtr = tableLog;
/* determine last weight */
{ U32 const total = 1 << tableLog;
U32 const rest = total - weightTotal;
U32 const verif = 1 << BIT_highbit32(rest);
U32 const lastWeight = BIT_highbit32(rest) + 1;
if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
huffWeight[oSize] = (BYTE)lastWeight;
rankStats[lastWeight]++;
} }
/* check tree construction validity */
if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
/* results */
*nbSymbolsPtr = (U32)(oSize+1);
return iSize+1;
}
/* Avoids the FORCE_INLINE of the _body() function. */
static size_t HUF_readStats_body_default(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize,
void* workSpace, size_t wkspSize)
{
return HUF_readStats_body(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize, 0);
}
#if DYNAMIC_BMI2
-static TARGET_ATTRIBUTE("bmi2") size_t HUF_readStats_body_bmi2(BYTE* huffWeight, size_t hwSize, U32* rankStats,
+static BMI2_TARGET_ATTRIBUTE size_t HUF_readStats_body_bmi2(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize,
void* workSpace, size_t wkspSize)
{
return HUF_readStats_body(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize, 1);
}
#endif
size_t HUF_readStats_wksp(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize,
void* workSpace, size_t wkspSize,
int bmi2)
{
#if DYNAMIC_BMI2
if (bmi2) {
return HUF_readStats_body_bmi2(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize);
}
#endif
(void)bmi2;
return HUF_readStats_body_default(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize);
}
diff --git a/sys/contrib/zstd/lib/common/error_private.c b/sys/contrib/zstd/lib/common/error_private.c
index 45bba5305b5a..6d1135f8c373 100644
--- a/sys/contrib/zstd/lib/common/error_private.c
+++ b/sys/contrib/zstd/lib/common/error_private.c
@@ -1,56 +1,56 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* The purpose of this file is to have a single list of error strings embedded in binary */
#include "error_private.h"
const char* ERR_getErrorString(ERR_enum code)
{
#ifdef ZSTD_STRIP_ERROR_STRINGS
(void)code;
return "Error strings stripped";
#else
static const char* const notErrorCode = "Unspecified error code";
switch( code )
{
case PREFIX(no_error): return "No error detected";
case PREFIX(GENERIC): return "Error (generic)";
case PREFIX(prefix_unknown): return "Unknown frame descriptor";
case PREFIX(version_unsupported): return "Version not supported";
case PREFIX(frameParameter_unsupported): return "Unsupported frame parameter";
case PREFIX(frameParameter_windowTooLarge): return "Frame requires too much memory for decoding";
case PREFIX(corruption_detected): return "Corrupted block detected";
case PREFIX(checksum_wrong): return "Restored data doesn't match checksum";
case PREFIX(parameter_unsupported): return "Unsupported parameter";
case PREFIX(parameter_outOfBound): return "Parameter is out of bound";
case PREFIX(init_missing): return "Context should be init first";
case PREFIX(memory_allocation): return "Allocation error : not enough memory";
case PREFIX(workSpace_tooSmall): return "workSpace buffer is not large enough";
case PREFIX(stage_wrong): return "Operation not authorized at current processing stage";
case PREFIX(tableLog_tooLarge): return "tableLog requires too much memory : unsupported";
case PREFIX(maxSymbolValue_tooLarge): return "Unsupported max Symbol Value : too large";
case PREFIX(maxSymbolValue_tooSmall): return "Specified maxSymbolValue is too small";
case PREFIX(dictionary_corrupted): return "Dictionary is corrupted";
case PREFIX(dictionary_wrong): return "Dictionary mismatch";
case PREFIX(dictionaryCreation_failed): return "Cannot create Dictionary from provided samples";
case PREFIX(dstSize_tooSmall): return "Destination buffer is too small";
case PREFIX(srcSize_wrong): return "Src size is incorrect";
case PREFIX(dstBuffer_null): return "Operation on NULL destination buffer";
/* following error codes are not stable and may be removed or changed in a future version */
case PREFIX(frameIndex_tooLarge): return "Frame index is too large";
case PREFIX(seekableIO): return "An I/O error occurred when reading/seeking";
case PREFIX(dstBuffer_wrong): return "Destination buffer is wrong";
case PREFIX(srcBuffer_wrong): return "Source buffer is wrong";
case PREFIX(maxCode):
default: return notErrorCode;
}
#endif
}
diff --git a/sys/contrib/zstd/lib/common/error_private.h b/sys/contrib/zstd/lib/common/error_private.h
index 71b37b8dfa43..007d81066abd 100644
--- a/sys/contrib/zstd/lib/common/error_private.h
+++ b/sys/contrib/zstd/lib/common/error_private.h
@@ -1,80 +1,159 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* Note : this module is expected to remain private, do not expose it */
#ifndef ERROR_H_MODULE
#define ERROR_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/* ****************************************
* Dependencies
******************************************/
-#include "zstd_deps.h" /* size_t */
-#include "zstd_errors.h" /* enum list */
+#include "../zstd_errors.h" /* enum list */
+#include "compiler.h"
+#include "debug.h"
+#include "zstd_deps.h" /* size_t */
/* ****************************************
* Compiler-specific
******************************************/
#if defined(__GNUC__)
# define ERR_STATIC static __attribute__((unused))
#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define ERR_STATIC static inline
#elif defined(_MSC_VER)
# define ERR_STATIC static __inline
#else
# define ERR_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
#endif
/*-****************************************
* Customization (error_public.h)
******************************************/
typedef ZSTD_ErrorCode ERR_enum;
#define PREFIX(name) ZSTD_error_##name
/*-****************************************
* Error codes handling
******************************************/
#undef ERROR /* already defined on Visual Studio */
#define ERROR(name) ZSTD_ERROR(name)
#define ZSTD_ERROR(name) ((size_t)-PREFIX(name))
ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); }
ERR_STATIC ERR_enum ERR_getErrorCode(size_t code) { if (!ERR_isError(code)) return (ERR_enum)0; return (ERR_enum) (0-code); }
/* check and forward error code */
#define CHECK_V_F(e, f) size_t const e = f; if (ERR_isError(e)) return e
#define CHECK_F(f) { CHECK_V_F(_var_err__, f); }
/*-****************************************
* Error Strings
******************************************/
const char* ERR_getErrorString(ERR_enum code); /* error_private.c */
ERR_STATIC const char* ERR_getErrorName(size_t code)
{
return ERR_getErrorString(ERR_getErrorCode(code));
}
+/**
+ * Ignore: this is an internal helper.
+ *
+ * This is a helper function to help force C99-correctness during compilation.
+ * Under strict compilation modes, variadic macro arguments can't be empty.
+ * However, variadic function arguments can be. Using a function therefore lets
+ * us statically check that at least one (string) argument was passed,
+ * independent of the compilation flags.
+ */
+static INLINE_KEYWORD UNUSED_ATTR
+void _force_has_format_string(const char *format, ...) {
+ (void)format;
+}
+
+/**
+ * Ignore: this is an internal helper.
+ *
+ * We want to force this function invocation to be syntactically correct, but
+ * we don't want to force runtime evaluation of its arguments.
+ */
+#define _FORCE_HAS_FORMAT_STRING(...) \
+ if (0) { \
+ _force_has_format_string(__VA_ARGS__); \
+ }
+
+#define ERR_QUOTE(str) #str
+
+/**
+ * Return the specified error if the condition evaluates to true.
+ *
+ * In debug modes, prints additional information.
+ * In order to do that (particularly, printing the conditional that failed),
+ * this can't just wrap RETURN_ERROR().
+ */
+#define RETURN_ERROR_IF(cond, err, ...) \
+ if (cond) { \
+ RAWLOG(3, "%s:%d: ERROR!: check %s failed, returning %s", \
+ __FILE__, __LINE__, ERR_QUOTE(cond), ERR_QUOTE(ERROR(err))); \
+ _FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
+ RAWLOG(3, ": " __VA_ARGS__); \
+ RAWLOG(3, "\n"); \
+ return ERROR(err); \
+ }
+
+/**
+ * Unconditionally return the specified error.
+ *
+ * In debug modes, prints additional information.
+ */
+#define RETURN_ERROR(err, ...) \
+ do { \
+ RAWLOG(3, "%s:%d: ERROR!: unconditional check failed, returning %s", \
+ __FILE__, __LINE__, ERR_QUOTE(ERROR(err))); \
+ _FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
+ RAWLOG(3, ": " __VA_ARGS__); \
+ RAWLOG(3, "\n"); \
+ return ERROR(err); \
+ } while(0);
+
+/**
+ * If the provided expression evaluates to an error code, returns that error code.
+ *
+ * In debug modes, prints additional information.
+ */
+#define FORWARD_IF_ERROR(err, ...) \
+ do { \
+ size_t const err_code = (err); \
+ if (ERR_isError(err_code)) { \
+ RAWLOG(3, "%s:%d: ERROR!: forwarding error in %s: %s", \
+ __FILE__, __LINE__, ERR_QUOTE(err), ERR_getErrorName(err_code)); \
+ _FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
+ RAWLOG(3, ": " __VA_ARGS__); \
+ RAWLOG(3, "\n"); \
+ return err_code; \
+ } \
+ } while(0);
+
#if defined (__cplusplus)
}
#endif
#endif /* ERROR_H_MODULE */
diff --git a/sys/contrib/zstd/lib/common/fse.h b/sys/contrib/zstd/lib/common/fse.h
index dd5fc44e8092..714bfd3e7f22 100644
--- a/sys/contrib/zstd/lib/common/fse.h
+++ b/sys/contrib/zstd/lib/common/fse.h
@@ -1,716 +1,717 @@
/* ******************************************************************
* FSE : Finite State Entropy codec
* Public Prototypes declaration
- * Copyright (c) 2013-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
*
* You can contact the author at :
* - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef FSE_H
#define FSE_H
/*-*****************************************
* Dependencies
******************************************/
#include "zstd_deps.h" /* size_t, ptrdiff_t */
/*-*****************************************
* FSE_PUBLIC_API : control library symbols visibility
******************************************/
#if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4)
# define FSE_PUBLIC_API __attribute__ ((visibility ("default")))
#elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) /* Visual expected */
# define FSE_PUBLIC_API __declspec(dllexport)
#elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1)
# define FSE_PUBLIC_API __declspec(dllimport) /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
#else
# define FSE_PUBLIC_API
#endif
/*------ Version ------*/
#define FSE_VERSION_MAJOR 0
#define FSE_VERSION_MINOR 9
#define FSE_VERSION_RELEASE 0
#define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE
#define FSE_QUOTE(str) #str
#define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str)
#define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION)
#define FSE_VERSION_NUMBER (FSE_VERSION_MAJOR *100*100 + FSE_VERSION_MINOR *100 + FSE_VERSION_RELEASE)
FSE_PUBLIC_API unsigned FSE_versionNumber(void); /**< library version number; to be used when checking dll version */
/*-****************************************
* FSE simple functions
******************************************/
/*! FSE_compress() :
Compress content of buffer 'src', of size 'srcSize', into destination buffer 'dst'.
'dst' buffer must be already allocated. Compression runs faster is dstCapacity >= FSE_compressBound(srcSize).
@return : size of compressed data (<= dstCapacity).
Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression instead.
if FSE_isError(return), compression failed (more details using FSE_getErrorName())
*/
FSE_PUBLIC_API size_t FSE_compress(void* dst, size_t dstCapacity,
const void* src, size_t srcSize);
/*! FSE_decompress():
Decompress FSE data from buffer 'cSrc', of size 'cSrcSize',
into already allocated destination buffer 'dst', of size 'dstCapacity'.
@return : size of regenerated data (<= maxDstSize),
or an error code, which can be tested using FSE_isError() .
** Important ** : FSE_decompress() does not decompress non-compressible nor RLE data !!!
Why ? : making this distinction requires a header.
Header management is intentionally delegated to the user layer, which can better manage special cases.
*/
FSE_PUBLIC_API size_t FSE_decompress(void* dst, size_t dstCapacity,
const void* cSrc, size_t cSrcSize);
/*-*****************************************
* Tool functions
******************************************/
FSE_PUBLIC_API size_t FSE_compressBound(size_t size); /* maximum compressed size */
/* Error Management */
FSE_PUBLIC_API unsigned FSE_isError(size_t code); /* tells if a return value is an error code */
FSE_PUBLIC_API const char* FSE_getErrorName(size_t code); /* provides error code string (useful for debugging) */
/*-*****************************************
* FSE advanced functions
******************************************/
/*! FSE_compress2() :
Same as FSE_compress(), but allows the selection of 'maxSymbolValue' and 'tableLog'
Both parameters can be defined as '0' to mean : use default value
@return : size of compressed data
Special values : if return == 0, srcData is not compressible => Nothing is stored within cSrc !!!
if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression.
if FSE_isError(return), it's an error code.
*/
FSE_PUBLIC_API size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
/*-*****************************************
* FSE detailed API
******************************************/
/*!
FSE_compress() does the following:
1. count symbol occurrence from source[] into table count[] (see hist.h)
2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
3. save normalized counters to memory buffer using writeNCount()
4. build encoding table 'CTable' from normalized counters
5. encode the data stream using encoding table 'CTable'
FSE_decompress() does the following:
1. read normalized counters with readNCount()
2. build decoding table 'DTable' from normalized counters
3. decode the data stream using decoding table 'DTable'
The following API allows targeting specific sub-functions for advanced tasks.
For example, it's possible to compress several blocks using the same 'CTable',
or to save and provide normalized distribution using external method.
*/
/* *** COMPRESSION *** */
/*! FSE_optimalTableLog():
dynamically downsize 'tableLog' when conditions are met.
It saves CPU time, by using smaller tables, while preserving or even improving compression ratio.
@return : recommended tableLog (necessarily <= 'maxTableLog') */
FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
/*! FSE_normalizeCount():
normalize counts so that sum(count[]) == Power_of_2 (2^tableLog)
'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1).
useLowProbCount is a boolean parameter which trades off compressed size for
faster header decoding. When it is set to 1, the compressed data will be slightly
smaller. And when it is set to 0, FSE_readNCount() and FSE_buildDTable() will be
faster. If you are compressing a small amount of data (< 2 KB) then useLowProbCount=0
is a good default, since header deserialization makes a big speed difference.
Otherwise, useLowProbCount=1 is a good default, since the speed difference is small.
@return : tableLog,
or an errorCode, which can be tested using FSE_isError() */
FSE_PUBLIC_API size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog,
const unsigned* count, size_t srcSize, unsigned maxSymbolValue, unsigned useLowProbCount);
/*! FSE_NCountWriteBound():
Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'.
Typically useful for allocation purpose. */
FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog);
/*! FSE_writeNCount():
Compactly save 'normalizedCounter' into 'buffer'.
@return : size of the compressed table,
or an errorCode, which can be tested using FSE_isError(). */
FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize,
const short* normalizedCounter,
unsigned maxSymbolValue, unsigned tableLog);
/*! Constructor and Destructor of FSE_CTable.
Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */
FSE_PUBLIC_API FSE_CTable* FSE_createCTable (unsigned maxSymbolValue, unsigned tableLog);
FSE_PUBLIC_API void FSE_freeCTable (FSE_CTable* ct);
/*! FSE_buildCTable():
Builds `ct`, which must be already allocated, using FSE_createCTable().
@return : 0, or an errorCode, which can be tested using FSE_isError() */
FSE_PUBLIC_API size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
/*! FSE_compress_usingCTable():
Compress `src` using `ct` into `dst` which must be already allocated.
@return : size of compressed data (<= `dstCapacity`),
or 0 if compressed data could not fit into `dst`,
or an errorCode, which can be tested using FSE_isError() */
FSE_PUBLIC_API size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct);
/*!
Tutorial :
----------
The first step is to count all symbols. FSE_count() does this job very fast.
Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells.
'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0]
maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value)
FSE_count() will return the number of occurrence of the most frequent symbol.
This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility.
If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
The next step is to normalize the frequencies.
FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'.
It also guarantees a minimum of 1 to any Symbol with frequency >= 1.
You can use 'tableLog'==0 to mean "use default tableLog value".
If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(),
which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default").
The result of FSE_normalizeCount() will be saved into a table,
called 'normalizedCounter', which is a table of signed short.
'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells.
The return value is tableLog if everything proceeded as expected.
It is 0 if there is a single symbol within distribution.
If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount().
'buffer' must be already allocated.
For guaranteed success, buffer size must be at least FSE_headerBound().
The result of the function is the number of bytes written into 'buffer'.
If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small).
'normalizedCounter' can then be used to create the compression table 'CTable'.
The space required by 'CTable' must be already allocated, using FSE_createCTable().
You can then use FSE_buildCTable() to fill 'CTable'.
If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()).
'CTable' can then be used to compress 'src', with FSE_compress_usingCTable().
Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize'
The function returns the size of compressed data (without header), necessarily <= `dstCapacity`.
If it returns '0', compressed data could not fit into 'dst'.
If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
*/
/* *** DECOMPRESSION *** */
/*! FSE_readNCount():
Read compactly saved 'normalizedCounter' from 'rBuffer'.
@return : size read from 'rBuffer',
or an errorCode, which can be tested using FSE_isError().
maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
FSE_PUBLIC_API size_t FSE_readNCount (short* normalizedCounter,
unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
const void* rBuffer, size_t rBuffSize);
/*! FSE_readNCount_bmi2():
* Same as FSE_readNCount() but pass bmi2=1 when your CPU supports BMI2 and 0 otherwise.
*/
FSE_PUBLIC_API size_t FSE_readNCount_bmi2(short* normalizedCounter,
unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
const void* rBuffer, size_t rBuffSize, int bmi2);
/*! Constructor and Destructor of FSE_DTable.
Note that its size depends on 'tableLog' */
typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
FSE_PUBLIC_API FSE_DTable* FSE_createDTable(unsigned tableLog);
FSE_PUBLIC_API void FSE_freeDTable(FSE_DTable* dt);
/*! FSE_buildDTable():
Builds 'dt', which must be already allocated, using FSE_createDTable().
return : 0, or an errorCode, which can be tested using FSE_isError() */
FSE_PUBLIC_API size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
/*! FSE_decompress_usingDTable():
Decompress compressed source `cSrc` of size `cSrcSize` using `dt`
into `dst` which must be already allocated.
@return : size of regenerated data (necessarily <= `dstCapacity`),
or an errorCode, which can be tested using FSE_isError() */
FSE_PUBLIC_API size_t FSE_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt);
/*!
Tutorial :
----------
(Note : these functions only decompress FSE-compressed blocks.
If block is uncompressed, use memcpy() instead
If block is a single repeated byte, use memset() instead )
The first step is to obtain the normalized frequencies of symbols.
This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
or size the table to handle worst case situations (typically 256).
FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
If there is an error, the function will return an error code, which can be tested using FSE_isError().
The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
This is performed by the function FSE_buildDTable().
The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
If there is an error, the function will return an error code, which can be tested using FSE_isError().
`FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable().
`cSrcSize` must be strictly correct, otherwise decompression will fail.
FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
*/
#endif /* FSE_H */
#if defined(FSE_STATIC_LINKING_ONLY) && !defined(FSE_H_FSE_STATIC_LINKING_ONLY)
#define FSE_H_FSE_STATIC_LINKING_ONLY
/* *** Dependency *** */
#include "bitstream.h"
/* *****************************************
* Static allocation
*******************************************/
/* FSE buffer bounds */
#define FSE_NCOUNTBOUND 512
#define FSE_BLOCKBOUND(size) ((size) + ((size)>>7) + 4 /* fse states */ + sizeof(size_t) /* bitContainer */)
#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
/* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */
#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<((maxTableLog)-1)) + (((maxSymbolValue)+1)*2))
#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<(maxTableLog)))
/* or use the size to malloc() space directly. Pay attention to alignment restrictions though */
#define FSE_CTABLE_SIZE(maxTableLog, maxSymbolValue) (FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(FSE_CTable))
#define FSE_DTABLE_SIZE(maxTableLog) (FSE_DTABLE_SIZE_U32(maxTableLog) * sizeof(FSE_DTable))
/* *****************************************
* FSE advanced API
***************************************** */
unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
/**< same as FSE_optimalTableLog(), which used `minus==2` */
/* FSE_compress_wksp() :
* Same as FSE_compress2(), but using an externally allocated scratch buffer (`workSpace`).
* FSE_COMPRESS_WKSP_SIZE_U32() provides the minimum size required for `workSpace` as a table of FSE_CTable.
*/
#define FSE_COMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ( FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) + ((maxTableLog > 12) ? (1 << (maxTableLog - 2)) : 1024) )
size_t FSE_compress_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits);
/**< build a fake FSE_CTable, designed for a flat distribution, where each symbol uses nbBits */
size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue);
/**< build a fake FSE_CTable, designed to compress always the same symbolValue */
/* FSE_buildCTable_wksp() :
* Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
* `wkspSize` must be >= `FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)` of `unsigned`.
+ * See FSE_buildCTable_wksp() for breakdown of workspace usage.
*/
-#define FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog) (maxSymbolValue + 2 + (1ull << (tableLog - 2)))
+#define FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog) (((maxSymbolValue + 2) + (1ull << (tableLog)))/2 + sizeof(U64)/sizeof(U32) /* additional 8 bytes for potential table overwrite */)
#define FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) (sizeof(unsigned) * FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog))
size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
#define FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) (sizeof(short) * (maxSymbolValue + 1) + (1ULL << maxTableLog) + 8)
#define FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ((FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) + sizeof(unsigned) - 1) / sizeof(unsigned))
FSE_PUBLIC_API size_t FSE_buildDTable_wksp(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
/**< Same as FSE_buildDTable(), using an externally allocated `workspace` produced with `FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxSymbolValue)` */
size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
/**< build a fake FSE_DTable, designed to read a flat distribution where each symbol uses nbBits */
size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
/**< build a fake FSE_DTable, designed to always generate the same symbolValue */
-#define FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) (FSE_DTABLE_SIZE_U32(maxTableLog) + FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue))
+#define FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) (FSE_DTABLE_SIZE_U32(maxTableLog) + FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) + (FSE_MAX_SYMBOL_VALUE + 1) / 2 + 1)
#define FSE_DECOMPRESS_WKSP_SIZE(maxTableLog, maxSymbolValue) (FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(unsigned))
size_t FSE_decompress_wksp(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize);
/**< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DECOMPRESS_WKSP_SIZE_U32(maxLog, maxSymbolValue)` */
size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize, int bmi2);
/**< Same as FSE_decompress_wksp() but with dynamic BMI2 support. Pass 1 if your CPU supports BMI2 or 0 if it doesn't. */
typedef enum {
FSE_repeat_none, /**< Cannot use the previous table */
FSE_repeat_check, /**< Can use the previous table but it must be checked */
FSE_repeat_valid /**< Can use the previous table and it is assumed to be valid */
} FSE_repeat;
/* *****************************************
* FSE symbol compression API
*******************************************/
/*!
This API consists of small unitary functions, which highly benefit from being inlined.
Hence their body are included in next section.
*/
typedef struct {
ptrdiff_t value;
const void* stateTable;
const void* symbolTT;
unsigned stateLog;
} FSE_CState_t;
static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct);
static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol);
static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr);
/**<
These functions are inner components of FSE_compress_usingCTable().
They allow the creation of custom streams, mixing multiple tables and bit sources.
A key property to keep in mind is that encoding and decoding are done **in reverse direction**.
So the first symbol you will encode is the last you will decode, like a LIFO stack.
You will need a few variables to track your CStream. They are :
FSE_CTable ct; // Provided by FSE_buildCTable()
BIT_CStream_t bitStream; // bitStream tracking structure
FSE_CState_t state; // State tracking structure (can have several)
The first thing to do is to init bitStream and state.
size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize);
FSE_initCState(&state, ct);
Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError();
You can then encode your input data, byte after byte.
FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time.
Remember decoding will be done in reverse direction.
FSE_encodeByte(&bitStream, &state, symbol);
At any time, you can also add any bit sequence.
Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders
BIT_addBits(&bitStream, bitField, nbBits);
The above methods don't commit data to memory, they just store it into local register, for speed.
Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
Writing data to memory is a manual operation, performed by the flushBits function.
BIT_flushBits(&bitStream);
Your last FSE encoding operation shall be to flush your last state value(s).
FSE_flushState(&bitStream, &state);
Finally, you must close the bitStream.
The function returns the size of CStream in bytes.
If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible)
If there is an error, it returns an errorCode (which can be tested using FSE_isError()).
size_t size = BIT_closeCStream(&bitStream);
*/
/* *****************************************
* FSE symbol decompression API
*******************************************/
typedef struct {
size_t state;
const void* table; /* precise table may vary, depending on U16 */
} FSE_DState_t;
static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
/**<
Let's now decompose FSE_decompress_usingDTable() into its unitary components.
You will decode FSE-encoded symbols from the bitStream,
and also any other bitFields you put in, **in reverse order**.
You will need a few variables to track your bitStream. They are :
BIT_DStream_t DStream; // Stream context
FSE_DState_t DState; // State context. Multiple ones are possible
FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable()
The first thing to do is to init the bitStream.
errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
You should then retrieve your initial state(s)
(in reverse flushing order if you have several ones) :
errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
You can then decode your data, symbol after symbol.
For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
Note : maximum allowed nbBits is 25, for 32-bits compatibility
size_t bitField = BIT_readBits(&DStream, nbBits);
All above operations only read from local register (which size depends on size_t).
Refueling the register from memory is manually performed by the reload method.
endSignal = FSE_reloadDStream(&DStream);
BIT_reloadDStream() result tells if there is still some more data to read from DStream.
BIT_DStream_unfinished : there is still some data left into the DStream.
BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
to properly detect the exact end of stream.
After each decoded symbol, check if DStream is fully consumed using this simple test :
BIT_reloadDStream(&DStream) >= BIT_DStream_completed
When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
Checking if DStream has reached its end is performed by :
BIT_endOfDStream(&DStream);
Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
FSE_endOfDState(&DState);
*/
/* *****************************************
* FSE unsafe API
*******************************************/
static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
/* *****************************************
* Implementation of inlined functions
*******************************************/
typedef struct {
int deltaFindState;
U32 deltaNbBits;
} FSE_symbolCompressionTransform; /* total 8 bytes */
MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct)
{
const void* ptr = ct;
const U16* u16ptr = (const U16*) ptr;
const U32 tableLog = MEM_read16(ptr);
statePtr->value = (ptrdiff_t)1<<tableLog;
statePtr->stateTable = u16ptr+2;
statePtr->symbolTT = ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1);
statePtr->stateLog = tableLog;
}
/*! FSE_initCState2() :
* Same as FSE_initCState(), but the first symbol to include (which will be the last to be read)
* uses the smallest state value possible, saving the cost of this symbol */
MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol)
{
FSE_initCState(statePtr, ct);
{ const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
const U16* stateTable = (const U16*)(statePtr->stateTable);
U32 nbBitsOut = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16);
statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits;
statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
}
}
MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, unsigned symbol)
{
FSE_symbolCompressionTransform const symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
const U16* const stateTable = (const U16*)(statePtr->stateTable);
U32 const nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16);
BIT_addBits(bitC, statePtr->value, nbBitsOut);
statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
}
MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr)
{
BIT_addBits(bitC, statePtr->value, statePtr->stateLog);
BIT_flushBits(bitC);
}
/* FSE_getMaxNbBits() :
* Approximate maximum cost of a symbol, in bits.
* Fractional get rounded up (i.e : a symbol with a normalized frequency of 3 gives the same result as a frequency of 2)
* note 1 : assume symbolValue is valid (<= maxSymbolValue)
* note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
MEM_STATIC U32 FSE_getMaxNbBits(const void* symbolTTPtr, U32 symbolValue)
{
const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
return (symbolTT[symbolValue].deltaNbBits + ((1<<16)-1)) >> 16;
}
/* FSE_bitCost() :
* Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits)
* note 1 : assume symbolValue is valid (<= maxSymbolValue)
* note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
MEM_STATIC U32 FSE_bitCost(const void* symbolTTPtr, U32 tableLog, U32 symbolValue, U32 accuracyLog)
{
const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
U32 const minNbBits = symbolTT[symbolValue].deltaNbBits >> 16;
U32 const threshold = (minNbBits+1) << 16;
assert(tableLog < 16);
assert(accuracyLog < 31-tableLog); /* ensure enough room for renormalization double shift */
{ U32 const tableSize = 1 << tableLog;
U32 const deltaFromThreshold = threshold - (symbolTT[symbolValue].deltaNbBits + tableSize);
U32 const normalizedDeltaFromThreshold = (deltaFromThreshold << accuracyLog) >> tableLog; /* linear interpolation (very approximate) */
U32 const bitMultiplier = 1 << accuracyLog;
assert(symbolTT[symbolValue].deltaNbBits + tableSize <= threshold);
assert(normalizedDeltaFromThreshold <= bitMultiplier);
return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold;
}
}
/* ====== Decompression ====== */
typedef struct {
U16 tableLog;
U16 fastMode;
} FSE_DTableHeader; /* sizeof U32 */
typedef struct
{
unsigned short newState;
unsigned char symbol;
unsigned char nbBits;
} FSE_decode_t; /* size == U32 */
MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
{
const void* ptr = dt;
const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr;
DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
BIT_reloadDStream(bitD);
DStatePtr->table = dt + 1;
}
MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr)
{
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
return DInfo.symbol;
}
MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
{
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
U32 const nbBits = DInfo.nbBits;
size_t const lowBits = BIT_readBits(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
}
MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
{
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
U32 const nbBits = DInfo.nbBits;
BYTE const symbol = DInfo.symbol;
size_t const lowBits = BIT_readBits(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
/*! FSE_decodeSymbolFast() :
unsafe, only works if no symbol has a probability > 50% */
MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
{
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
U32 const nbBits = DInfo.nbBits;
BYTE const symbol = DInfo.symbol;
size_t const lowBits = BIT_readBitsFast(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
{
return DStatePtr->state == 0;
}
#ifndef FSE_COMMONDEFS_ONLY
/* **************************************************************
* Tuning parameters
****************************************************************/
/*!MEMORY_USAGE :
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
* Increasing memory usage improves compression ratio
* Reduced memory usage can improve speed, due to cache effect
* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
#ifndef FSE_MAX_MEMORY_USAGE
# define FSE_MAX_MEMORY_USAGE 14
#endif
#ifndef FSE_DEFAULT_MEMORY_USAGE
# define FSE_DEFAULT_MEMORY_USAGE 13
#endif
#if (FSE_DEFAULT_MEMORY_USAGE > FSE_MAX_MEMORY_USAGE)
# error "FSE_DEFAULT_MEMORY_USAGE must be <= FSE_MAX_MEMORY_USAGE"
#endif
/*!FSE_MAX_SYMBOL_VALUE :
* Maximum symbol value authorized.
* Required for proper stack allocation */
#ifndef FSE_MAX_SYMBOL_VALUE
# define FSE_MAX_SYMBOL_VALUE 255
#endif
/* **************************************************************
* template functions type & suffix
****************************************************************/
#define FSE_FUNCTION_TYPE BYTE
#define FSE_FUNCTION_EXTENSION
#define FSE_DECODE_TYPE FSE_decode_t
#endif /* !FSE_COMMONDEFS_ONLY */
/* ***************************************************************
* Constants
*****************************************************************/
#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2)
#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
#define FSE_MIN_TABLELOG 5
#define FSE_TABLELOG_ABSOLUTE_MAX 15
#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
# error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
#endif
#define FSE_TABLESTEP(tableSize) (((tableSize)>>1) + ((tableSize)>>3) + 3)
#endif /* FSE_STATIC_LINKING_ONLY */
#if defined (__cplusplus)
}
#endif
diff --git a/sys/contrib/zstd/lib/common/fse_decompress.c b/sys/contrib/zstd/lib/common/fse_decompress.c
index c164430f9905..a5a358015fc9 100644
--- a/sys/contrib/zstd/lib/common/fse_decompress.c
+++ b/sys/contrib/zstd/lib/common/fse_decompress.c
@@ -1,393 +1,403 @@
/* ******************************************************************
* FSE : Finite State Entropy decoder
- * Copyright (c) 2013-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
*
* You can contact the author at :
* - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
* - Public forum : https://groups.google.com/forum/#!forum/lz4c
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/* **************************************************************
* Includes
****************************************************************/
#include "debug.h" /* assert */
#include "bitstream.h"
#include "compiler.h"
#define FSE_STATIC_LINKING_ONLY
#include "fse.h"
#include "error_private.h"
#define ZSTD_DEPS_NEED_MALLOC
#include "zstd_deps.h"
/* **************************************************************
* Error Management
****************************************************************/
#define FSE_isError ERR_isError
#define FSE_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */
/* **************************************************************
* Templates
****************************************************************/
/*
designed to be included
for type-specific functions (template emulation in C)
Objective is to write these functions only once, for improved maintenance
*/
/* safety checks */
#ifndef FSE_FUNCTION_EXTENSION
# error "FSE_FUNCTION_EXTENSION must be defined"
#endif
#ifndef FSE_FUNCTION_TYPE
# error "FSE_FUNCTION_TYPE must be defined"
#endif
/* Function names */
#define FSE_CAT(X,Y) X##Y
#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
/* Function templates */
FSE_DTable* FSE_createDTable (unsigned tableLog)
{
if (tableLog > FSE_TABLELOG_ABSOLUTE_MAX) tableLog = FSE_TABLELOG_ABSOLUTE_MAX;
return (FSE_DTable*)ZSTD_malloc( FSE_DTABLE_SIZE_U32(tableLog) * sizeof (U32) );
}
void FSE_freeDTable (FSE_DTable* dt)
{
ZSTD_free(dt);
}
static size_t FSE_buildDTable_internal(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize)
{
void* const tdPtr = dt+1; /* because *dt is unsigned, 32-bits aligned on 32-bits */
FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*) (tdPtr);
U16* symbolNext = (U16*)workSpace;
BYTE* spread = (BYTE*)(symbolNext + maxSymbolValue + 1);
U32 const maxSV1 = maxSymbolValue + 1;
U32 const tableSize = 1 << tableLog;
U32 highThreshold = tableSize-1;
/* Sanity Checks */
if (FSE_BUILD_DTABLE_WKSP_SIZE(tableLog, maxSymbolValue) > wkspSize) return ERROR(maxSymbolValue_tooLarge);
if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
/* Init, lay down lowprob symbols */
{ FSE_DTableHeader DTableH;
DTableH.tableLog = (U16)tableLog;
DTableH.fastMode = 1;
{ S16 const largeLimit= (S16)(1 << (tableLog-1));
U32 s;
for (s=0; s<maxSV1; s++) {
if (normalizedCounter[s]==-1) {
tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
symbolNext[s] = 1;
} else {
if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
symbolNext[s] = normalizedCounter[s];
} } }
ZSTD_memcpy(dt, &DTableH, sizeof(DTableH));
}
/* Spread symbols */
if (highThreshold == tableSize - 1) {
size_t const tableMask = tableSize-1;
size_t const step = FSE_TABLESTEP(tableSize);
/* First lay down the symbols in order.
* We use a uint64_t to lay down 8 bytes at a time. This reduces branch
* misses since small blocks generally have small table logs, so nearly
* all symbols have counts <= 8. We ensure we have 8 bytes at the end of
* our buffer to handle the over-write.
*/
{
U64 const add = 0x0101010101010101ull;
size_t pos = 0;
U64 sv = 0;
U32 s;
for (s=0; s<maxSV1; ++s, sv += add) {
int i;
int const n = normalizedCounter[s];
MEM_write64(spread + pos, sv);
for (i = 8; i < n; i += 8) {
MEM_write64(spread + pos + i, sv);
}
pos += n;
}
}
/* Now we spread those positions across the table.
* The benefit of doing it in two stages is that we avoid the the
* variable size inner loop, which caused lots of branch misses.
* Now we can run through all the positions without any branch misses.
* We unroll the loop twice, since that is what emperically worked best.
*/
{
size_t position = 0;
size_t s;
size_t const unroll = 2;
assert(tableSize % unroll == 0); /* FSE_MIN_TABLELOG is 5 */
for (s = 0; s < (size_t)tableSize; s += unroll) {
size_t u;
for (u = 0; u < unroll; ++u) {
size_t const uPosition = (position + (u * step)) & tableMask;
tableDecode[uPosition].symbol = spread[s + u];
}
position = (position + (unroll * step)) & tableMask;
}
assert(position == 0);
}
} else {
U32 const tableMask = tableSize-1;
U32 const step = FSE_TABLESTEP(tableSize);
U32 s, position = 0;
for (s=0; s<maxSV1; s++) {
int i;
for (i=0; i<normalizedCounter[s]; i++) {
tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
position = (position + step) & tableMask;
while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
} }
if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
}
/* Build Decoding table */
{ U32 u;
for (u=0; u<tableSize; u++) {
FSE_FUNCTION_TYPE const symbol = (FSE_FUNCTION_TYPE)(tableDecode[u].symbol);
U32 const nextState = symbolNext[symbol]++;
tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32(nextState) );
tableDecode[u].newState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
} }
return 0;
}
size_t FSE_buildDTable_wksp(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize)
{
return FSE_buildDTable_internal(dt, normalizedCounter, maxSymbolValue, tableLog, workSpace, wkspSize);
}
#ifndef FSE_COMMONDEFS_ONLY
/*-*******************************************************
* Decompression (Byte symbols)
*********************************************************/
size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue)
{
void* ptr = dt;
FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
void* dPtr = dt + 1;
FSE_decode_t* const cell = (FSE_decode_t*)dPtr;
DTableH->tableLog = 0;
DTableH->fastMode = 0;
cell->newState = 0;
cell->symbol = symbolValue;
cell->nbBits = 0;
return 0;
}
size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits)
{
void* ptr = dt;
FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
void* dPtr = dt + 1;
FSE_decode_t* const dinfo = (FSE_decode_t*)dPtr;
const unsigned tableSize = 1 << nbBits;
const unsigned tableMask = tableSize - 1;
const unsigned maxSV1 = tableMask+1;
unsigned s;
/* Sanity checks */
if (nbBits < 1) return ERROR(GENERIC); /* min size */
/* Build Decoding Table */
DTableH->tableLog = (U16)nbBits;
DTableH->fastMode = 1;
for (s=0; s<maxSV1; s++) {
dinfo[s].newState = 0;
dinfo[s].symbol = (BYTE)s;
dinfo[s].nbBits = (BYTE)nbBits;
}
return 0;
}
FORCE_INLINE_TEMPLATE size_t FSE_decompress_usingDTable_generic(
void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const FSE_DTable* dt, const unsigned fast)
{
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const omax = op + maxDstSize;
BYTE* const olimit = omax-3;
BIT_DStream_t bitD;
FSE_DState_t state1;
FSE_DState_t state2;
/* Init */
CHECK_F(BIT_initDStream(&bitD, cSrc, cSrcSize));
FSE_initDState(&state1, &bitD, dt);
FSE_initDState(&state2, &bitD, dt);
#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD)
/* 4 symbols per loop */
for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) & (op<olimit) ; op+=4) {
op[0] = FSE_GETSYMBOL(&state1);
if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
BIT_reloadDStream(&bitD);
op[1] = FSE_GETSYMBOL(&state2);
if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
{ if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } }
op[2] = FSE_GETSYMBOL(&state1);
if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
BIT_reloadDStream(&bitD);
op[3] = FSE_GETSYMBOL(&state2);
}
/* tail */
/* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */
while (1) {
if (op>(omax-2)) return ERROR(dstSize_tooSmall);
*op++ = FSE_GETSYMBOL(&state1);
if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) {
*op++ = FSE_GETSYMBOL(&state2);
break;
}
if (op>(omax-2)) return ERROR(dstSize_tooSmall);
*op++ = FSE_GETSYMBOL(&state2);
if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) {
*op++ = FSE_GETSYMBOL(&state1);
break;
} }
return op-ostart;
}
size_t FSE_decompress_usingDTable(void* dst, size_t originalSize,
const void* cSrc, size_t cSrcSize,
const FSE_DTable* dt)
{
const void* ptr = dt;
const FSE_DTableHeader* DTableH = (const FSE_DTableHeader*)ptr;
const U32 fastMode = DTableH->fastMode;
/* select fast mode (static) */
if (fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
}
size_t FSE_decompress_wksp(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize)
{
return FSE_decompress_wksp_bmi2(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize, /* bmi2 */ 0);
}
+typedef struct {
+ short ncount[FSE_MAX_SYMBOL_VALUE + 1];
+ FSE_DTable dtable[1]; /* Dynamically sized */
+} FSE_DecompressWksp;
+
+
FORCE_INLINE_TEMPLATE size_t FSE_decompress_wksp_body(
void* dst, size_t dstCapacity,
const void* cSrc, size_t cSrcSize,
unsigned maxLog, void* workSpace, size_t wkspSize,
int bmi2)
{
const BYTE* const istart = (const BYTE*)cSrc;
const BYTE* ip = istart;
- short counting[FSE_MAX_SYMBOL_VALUE+1];
unsigned tableLog;
unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
- FSE_DTable* const dtable = (FSE_DTable*)workSpace;
+ FSE_DecompressWksp* const wksp = (FSE_DecompressWksp*)workSpace;
+
+ DEBUG_STATIC_ASSERT((FSE_MAX_SYMBOL_VALUE + 1) % 2 == 0);
+ if (wkspSize < sizeof(*wksp)) return ERROR(GENERIC);
/* normal FSE decoding mode */
- size_t const NCountLength = FSE_readNCount_bmi2(counting, &maxSymbolValue, &tableLog, istart, cSrcSize, bmi2);
- if (FSE_isError(NCountLength)) return NCountLength;
- if (tableLog > maxLog) return ERROR(tableLog_tooLarge);
- assert(NCountLength <= cSrcSize);
- ip += NCountLength;
- cSrcSize -= NCountLength;
+ {
+ size_t const NCountLength = FSE_readNCount_bmi2(wksp->ncount, &maxSymbolValue, &tableLog, istart, cSrcSize, bmi2);
+ if (FSE_isError(NCountLength)) return NCountLength;
+ if (tableLog > maxLog) return ERROR(tableLog_tooLarge);
+ assert(NCountLength <= cSrcSize);
+ ip += NCountLength;
+ cSrcSize -= NCountLength;
+ }
if (FSE_DECOMPRESS_WKSP_SIZE(tableLog, maxSymbolValue) > wkspSize) return ERROR(tableLog_tooLarge);
- workSpace = dtable + FSE_DTABLE_SIZE_U32(tableLog);
- wkspSize -= FSE_DTABLE_SIZE(tableLog);
+ workSpace = wksp->dtable + FSE_DTABLE_SIZE_U32(tableLog);
+ wkspSize -= sizeof(*wksp) + FSE_DTABLE_SIZE(tableLog);
- CHECK_F( FSE_buildDTable_internal(dtable, counting, maxSymbolValue, tableLog, workSpace, wkspSize) );
+ CHECK_F( FSE_buildDTable_internal(wksp->dtable, wksp->ncount, maxSymbolValue, tableLog, workSpace, wkspSize) );
{
- const void* ptr = dtable;
+ const void* ptr = wksp->dtable;
const FSE_DTableHeader* DTableH = (const FSE_DTableHeader*)ptr;
const U32 fastMode = DTableH->fastMode;
/* select fast mode (static) */
- if (fastMode) return FSE_decompress_usingDTable_generic(dst, dstCapacity, ip, cSrcSize, dtable, 1);
- return FSE_decompress_usingDTable_generic(dst, dstCapacity, ip, cSrcSize, dtable, 0);
+ if (fastMode) return FSE_decompress_usingDTable_generic(dst, dstCapacity, ip, cSrcSize, wksp->dtable, 1);
+ return FSE_decompress_usingDTable_generic(dst, dstCapacity, ip, cSrcSize, wksp->dtable, 0);
}
}
/* Avoids the FORCE_INLINE of the _body() function. */
static size_t FSE_decompress_wksp_body_default(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize)
{
return FSE_decompress_wksp_body(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize, 0);
}
#if DYNAMIC_BMI2
-TARGET_ATTRIBUTE("bmi2") static size_t FSE_decompress_wksp_body_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize)
+BMI2_TARGET_ATTRIBUTE static size_t FSE_decompress_wksp_body_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize)
{
return FSE_decompress_wksp_body(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize, 1);
}
#endif
size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize, int bmi2)
{
#if DYNAMIC_BMI2
if (bmi2) {
return FSE_decompress_wksp_body_bmi2(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize);
}
#endif
(void)bmi2;
return FSE_decompress_wksp_body_default(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize);
}
typedef FSE_DTable DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)];
#ifndef ZSTD_NO_UNUSED_FUNCTIONS
size_t FSE_buildDTable(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog) {
U32 wksp[FSE_BUILD_DTABLE_WKSP_SIZE_U32(FSE_TABLELOG_ABSOLUTE_MAX, FSE_MAX_SYMBOL_VALUE)];
return FSE_buildDTable_wksp(dt, normalizedCounter, maxSymbolValue, tableLog, wksp, sizeof(wksp));
}
size_t FSE_decompress(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize)
{
/* Static analyzer seems unable to understand this table will be properly initialized later */
U32 wksp[FSE_DECOMPRESS_WKSP_SIZE_U32(FSE_MAX_TABLELOG, FSE_MAX_SYMBOL_VALUE)];
return FSE_decompress_wksp(dst, dstCapacity, cSrc, cSrcSize, FSE_MAX_TABLELOG, wksp, sizeof(wksp));
}
#endif
#endif /* FSE_COMMONDEFS_ONLY */
diff --git a/sys/contrib/zstd/lib/common/huf.h b/sys/contrib/zstd/lib/common/huf.h
index 1afef90c7ca1..85518481ec63 100644
--- a/sys/contrib/zstd/lib/common/huf.h
+++ b/sys/contrib/zstd/lib/common/huf.h
@@ -1,361 +1,364 @@
/* ******************************************************************
* huff0 huffman codec,
* part of Finite State Entropy library
- * Copyright (c) 2013-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
*
* You can contact the author at :
* - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef HUF_H_298734234
#define HUF_H_298734234
/* *** Dependencies *** */
#include "zstd_deps.h" /* size_t */
/* *** library symbols visibility *** */
/* Note : when linking with -fvisibility=hidden on gcc, or by default on Visual,
* HUF symbols remain "private" (internal symbols for library only).
* Set macro FSE_DLL_EXPORT to 1 if you want HUF symbols visible on DLL interface */
#if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4)
# define HUF_PUBLIC_API __attribute__ ((visibility ("default")))
#elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) /* Visual expected */
# define HUF_PUBLIC_API __declspec(dllexport)
#elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1)
# define HUF_PUBLIC_API __declspec(dllimport) /* not required, just to generate faster code (saves a function pointer load from IAT and an indirect jump) */
#else
# define HUF_PUBLIC_API
#endif
/* ========================== */
/* *** simple functions *** */
/* ========================== */
/** HUF_compress() :
* Compress content from buffer 'src', of size 'srcSize', into buffer 'dst'.
* 'dst' buffer must be already allocated.
* Compression runs faster if `dstCapacity` >= HUF_compressBound(srcSize).
* `srcSize` must be <= `HUF_BLOCKSIZE_MAX` == 128 KB.
* @return : size of compressed data (<= `dstCapacity`).
* Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
* if HUF_isError(return), compression failed (more details using HUF_getErrorName())
*/
HUF_PUBLIC_API size_t HUF_compress(void* dst, size_t dstCapacity,
const void* src, size_t srcSize);
/** HUF_decompress() :
* Decompress HUF data from buffer 'cSrc', of size 'cSrcSize',
* into already allocated buffer 'dst', of minimum size 'dstSize'.
* `originalSize` : **must** be the ***exact*** size of original (uncompressed) data.
* Note : in contrast with FSE, HUF_decompress can regenerate
* RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data,
* because it knows size to regenerate (originalSize).
* @return : size of regenerated data (== originalSize),
* or an error code, which can be tested using HUF_isError()
*/
HUF_PUBLIC_API size_t HUF_decompress(void* dst, size_t originalSize,
const void* cSrc, size_t cSrcSize);
/* *** Tool functions *** */
#define HUF_BLOCKSIZE_MAX (128 * 1024) /**< maximum input size for a single block compressed with HUF_compress */
HUF_PUBLIC_API size_t HUF_compressBound(size_t size); /**< maximum compressed size (worst case) */
/* Error Management */
HUF_PUBLIC_API unsigned HUF_isError(size_t code); /**< tells if a return value is an error code */
HUF_PUBLIC_API const char* HUF_getErrorName(size_t code); /**< provides error code string (useful for debugging) */
/* *** Advanced function *** */
/** HUF_compress2() :
* Same as HUF_compress(), but offers control over `maxSymbolValue` and `tableLog`.
* `maxSymbolValue` must be <= HUF_SYMBOLVALUE_MAX .
* `tableLog` must be `<= HUF_TABLELOG_MAX` . */
HUF_PUBLIC_API size_t HUF_compress2 (void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned tableLog);
/** HUF_compress4X_wksp() :
* Same as HUF_compress2(), but uses externally allocated `workSpace`.
- * `workspace` must have minimum alignment of 4, and be at least as large as HUF_WORKSPACE_SIZE */
-#define HUF_WORKSPACE_SIZE ((6 << 10) + 256)
-#define HUF_WORKSPACE_SIZE_U32 (HUF_WORKSPACE_SIZE / sizeof(U32))
+ * `workspace` must be at least as large as HUF_WORKSPACE_SIZE */
+#define HUF_WORKSPACE_SIZE ((8 << 10) + 512 /* sorting scratch space */)
+#define HUF_WORKSPACE_SIZE_U64 (HUF_WORKSPACE_SIZE / sizeof(U64))
HUF_PUBLIC_API size_t HUF_compress4X_wksp (void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned tableLog,
void* workSpace, size_t wkspSize);
#endif /* HUF_H_298734234 */
/* ******************************************************************
* WARNING !!
* The following section contains advanced and experimental definitions
* which shall never be used in the context of a dynamic library,
* because they are not guaranteed to remain stable in the future.
* Only consider them in association with static linking.
* *****************************************************************/
#if defined(HUF_STATIC_LINKING_ONLY) && !defined(HUF_H_HUF_STATIC_LINKING_ONLY)
#define HUF_H_HUF_STATIC_LINKING_ONLY
/* *** Dependencies *** */
#include "mem.h" /* U32 */
#define FSE_STATIC_LINKING_ONLY
#include "fse.h"
/* *** Constants *** */
-#define HUF_TABLELOG_MAX 12 /* max runtime value of tableLog (due to static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
+#define HUF_TABLELOG_MAX 12 /* max runtime value of tableLog (due to static allocation); can be modified up to HUF_TABLELOG_ABSOLUTEMAX */
#define HUF_TABLELOG_DEFAULT 11 /* default tableLog value when none specified */
#define HUF_SYMBOLVALUE_MAX 255
-#define HUF_TABLELOG_ABSOLUTEMAX 15 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
+#define HUF_TABLELOG_ABSOLUTEMAX 12 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
#if (HUF_TABLELOG_MAX > HUF_TABLELOG_ABSOLUTEMAX)
# error "HUF_TABLELOG_MAX is too large !"
#endif
/* ****************************************
* Static allocation
******************************************/
/* HUF buffer bounds */
#define HUF_CTABLEBOUND 129
#define HUF_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true when incompressible is pre-filtered with fast heuristic */
#define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
/* static allocation of HUF's Compression Table */
/* this is a private definition, just exposed for allocation and strict aliasing purpose. never EVER access its members directly */
-struct HUF_CElt_s {
- U16 val;
- BYTE nbBits;
-}; /* typedef'd to HUF_CElt */
-typedef struct HUF_CElt_s HUF_CElt; /* consider it an incomplete type */
-#define HUF_CTABLE_SIZE_U32(maxSymbolValue) ((maxSymbolValue)+1) /* Use tables of U32, for proper alignment */
-#define HUF_CTABLE_SIZE(maxSymbolValue) (HUF_CTABLE_SIZE_U32(maxSymbolValue) * sizeof(U32))
+typedef size_t HUF_CElt; /* consider it an incomplete type */
+#define HUF_CTABLE_SIZE_ST(maxSymbolValue) ((maxSymbolValue)+2) /* Use tables of size_t, for proper alignment */
+#define HUF_CTABLE_SIZE(maxSymbolValue) (HUF_CTABLE_SIZE_ST(maxSymbolValue) * sizeof(size_t))
#define HUF_CREATE_STATIC_CTABLE(name, maxSymbolValue) \
- HUF_CElt name[HUF_CTABLE_SIZE_U32(maxSymbolValue)] /* no final ; */
+ HUF_CElt name[HUF_CTABLE_SIZE_ST(maxSymbolValue)] /* no final ; */
/* static allocation of HUF's DTable */
typedef U32 HUF_DTable;
#define HUF_DTABLE_SIZE(maxTableLog) (1 + (1<<(maxTableLog)))
#define HUF_CREATE_STATIC_DTABLEX1(DTable, maxTableLog) \
HUF_DTable DTable[HUF_DTABLE_SIZE((maxTableLog)-1)] = { ((U32)((maxTableLog)-1) * 0x01000001) }
#define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
HUF_DTable DTable[HUF_DTABLE_SIZE(maxTableLog)] = { ((U32)(maxTableLog) * 0x01000001) }
/* ****************************************
* Advanced decompression functions
******************************************/
size_t HUF_decompress4X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
#ifndef HUF_FORCE_DECOMPRESS_X1
size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
#endif
size_t HUF_decompress4X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< decodes RLE and uncompressed */
size_t HUF_decompress4X_hufOnly(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< considers RLE and uncompressed as errors */
size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< considers RLE and uncompressed as errors */
size_t HUF_decompress4X1_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< single-symbol decoder */
#ifndef HUF_FORCE_DECOMPRESS_X1
size_t HUF_decompress4X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< double-symbols decoder */
#endif
/* ****************************************
* HUF detailed API
* ****************************************/
/*! HUF_compress() does the following:
* 1. count symbol occurrence from source[] into table count[] using FSE_count() (exposed within "fse.h")
* 2. (optional) refine tableLog using HUF_optimalTableLog()
* 3. build Huffman table from count using HUF_buildCTable()
* 4. save Huffman table to memory buffer using HUF_writeCTable()
* 5. encode the data stream using HUF_compress4X_usingCTable()
*
* The following API allows targeting specific sub-functions for advanced tasks.
* For example, it's possible to compress several blocks using the same 'CTable',
* or to save and regenerate 'CTable' using external methods.
*/
unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
size_t HUF_buildCTable (HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits); /* @return : maxNbBits; CTable and count can overlap. In which case, CTable will overwrite count content */
size_t HUF_writeCTable (void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog);
+size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog, void* workspace, size_t workspaceSize);
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
+size_t HUF_compress4X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2);
size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue);
int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue);
typedef enum {
HUF_repeat_none, /**< Cannot use the previous table */
HUF_repeat_check, /**< Can use the previous table but it must be checked. Note : The previous table must have been constructed by HUF_compress{1, 4}X_repeat */
HUF_repeat_valid /**< Can use the previous table and it is assumed to be valid */
} HUF_repeat;
/** HUF_compress4X_repeat() :
* Same as HUF_compress4X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
* If it uses hufTable it does not modify hufTable or repeat.
* If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
- * If preferRepeat then the old table will always be used if valid. */
+ * If preferRepeat then the old table will always be used if valid.
+ * If suspectUncompressible then some sampling checks will be run to potentially skip huffman coding */
size_t HUF_compress4X_repeat(void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned tableLog,
void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */
- HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2);
+ HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2, unsigned suspectUncompressible);
/** HUF_buildCTable_wksp() :
* Same as HUF_buildCTable(), but using externally allocated scratch buffer.
* `workSpace` must be aligned on 4-bytes boundaries, and its size must be >= HUF_CTABLE_WORKSPACE_SIZE.
*/
#define HUF_CTABLE_WORKSPACE_SIZE_U32 (2*HUF_SYMBOLVALUE_MAX +1 +1)
#define HUF_CTABLE_WORKSPACE_SIZE (HUF_CTABLE_WORKSPACE_SIZE_U32 * sizeof(unsigned))
size_t HUF_buildCTable_wksp (HUF_CElt* tree,
const unsigned* count, U32 maxSymbolValue, U32 maxNbBits,
void* workSpace, size_t wkspSize);
/*! HUF_readStats() :
* Read compact Huffman tree, saved by HUF_writeCTable().
* `huffWeight` is destination buffer.
* @return : size read from `src` , or an error Code .
* Note : Needed by HUF_readCTable() and HUF_readDTableXn() . */
size_t HUF_readStats(BYTE* huffWeight, size_t hwSize,
U32* rankStats, U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize);
/*! HUF_readStats_wksp() :
* Same as HUF_readStats() but takes an external workspace which must be
* 4-byte aligned and its size must be >= HUF_READ_STATS_WORKSPACE_SIZE.
* If the CPU has BMI2 support, pass bmi2=1, otherwise pass bmi2=0.
*/
#define HUF_READ_STATS_WORKSPACE_SIZE_U32 FSE_DECOMPRESS_WKSP_SIZE_U32(6, HUF_TABLELOG_MAX-1)
#define HUF_READ_STATS_WORKSPACE_SIZE (HUF_READ_STATS_WORKSPACE_SIZE_U32 * sizeof(unsigned))
size_t HUF_readStats_wksp(BYTE* huffWeight, size_t hwSize,
U32* rankStats, U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize,
void* workspace, size_t wkspSize,
int bmi2);
/** HUF_readCTable() :
* Loading a CTable saved with HUF_writeCTable() */
size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned *hasZeroWeights);
-/** HUF_getNbBits() :
+/** HUF_getNbBitsFromCTable() :
* Read nbBits from CTable symbolTable, for symbol `symbolValue` presumed <= HUF_SYMBOLVALUE_MAX
- * Note 1 : is not inlined, as HUF_CElt definition is private
- * Note 2 : const void* used, so that it can provide a statically allocated table as argument (which uses type U32) */
-U32 HUF_getNbBits(const void* symbolTable, U32 symbolValue);
+ * Note 1 : is not inlined, as HUF_CElt definition is private */
+U32 HUF_getNbBitsFromCTable(const HUF_CElt* symbolTable, U32 symbolValue);
/*
* HUF_decompress() does the following:
* 1. select the decompression algorithm (X1, X2) based on pre-computed heuristics
* 2. build Huffman table from save, using HUF_readDTableX?()
* 3. decode 1 or 4 segments in parallel using HUF_decompress?X?_usingDTable()
*/
/** HUF_selectDecoder() :
* Tells which decoder is likely to decode faster,
* based on a set of pre-computed metrics.
* @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 .
* Assumption : 0 < dstSize <= 128 KB */
U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize);
/**
* The minimum workspace size for the `workSpace` used in
* HUF_readDTableX1_wksp() and HUF_readDTableX2_wksp().
*
* The space used depends on HUF_TABLELOG_MAX, ranging from ~1500 bytes when
* HUF_TABLE_LOG_MAX=12 to ~1850 bytes when HUF_TABLE_LOG_MAX=15.
* Buffer overflow errors may potentially occur if code modifications result in
* a required workspace size greater than that specified in the following
* macro.
*/
-#define HUF_DECOMPRESS_WORKSPACE_SIZE (2 << 10)
+#define HUF_DECOMPRESS_WORKSPACE_SIZE ((2 << 10) + (1 << 9))
#define HUF_DECOMPRESS_WORKSPACE_SIZE_U32 (HUF_DECOMPRESS_WORKSPACE_SIZE / sizeof(U32))
#ifndef HUF_FORCE_DECOMPRESS_X2
size_t HUF_readDTableX1 (HUF_DTable* DTable, const void* src, size_t srcSize);
size_t HUF_readDTableX1_wksp (HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize);
#endif
#ifndef HUF_FORCE_DECOMPRESS_X1
size_t HUF_readDTableX2 (HUF_DTable* DTable, const void* src, size_t srcSize);
size_t HUF_readDTableX2_wksp (HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize);
#endif
size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
#ifndef HUF_FORCE_DECOMPRESS_X2
size_t HUF_decompress4X1_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
#endif
#ifndef HUF_FORCE_DECOMPRESS_X1
size_t HUF_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
#endif
/* ====================== */
/* single stream variants */
/* ====================== */
size_t HUF_compress1X (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
-size_t HUF_compress1X_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); /**< `workSpace` must be a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */
+size_t HUF_compress1X_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); /**< `workSpace` must be a table of at least HUF_WORKSPACE_SIZE_U64 U64 */
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
+size_t HUF_compress1X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2);
/** HUF_compress1X_repeat() :
* Same as HUF_compress1X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
* If it uses hufTable it does not modify hufTable or repeat.
* If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
- * If preferRepeat then the old table will always be used if valid. */
+ * If preferRepeat then the old table will always be used if valid.
+ * If suspectUncompressible then some sampling checks will be run to potentially skip huffman coding */
size_t HUF_compress1X_repeat(void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned tableLog,
void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */
- HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2);
+ HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2, unsigned suspectUncompressible);
size_t HUF_decompress1X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
#ifndef HUF_FORCE_DECOMPRESS_X1
size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbol decoder */
#endif
size_t HUF_decompress1X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
size_t HUF_decompress1X_DCtx_wksp (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize);
#ifndef HUF_FORCE_DECOMPRESS_X2
size_t HUF_decompress1X1_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< single-symbol decoder */
#endif
#ifndef HUF_FORCE_DECOMPRESS_X1
size_t HUF_decompress1X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< double-symbols decoder */
#endif
size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable); /**< automatic selection of sing or double symbol decoder, based on DTable */
#ifndef HUF_FORCE_DECOMPRESS_X2
size_t HUF_decompress1X1_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
#endif
#ifndef HUF_FORCE_DECOMPRESS_X1
size_t HUF_decompress1X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
#endif
/* BMI2 variants.
* If the CPU has BMI2 support, pass bmi2=1, otherwise pass bmi2=0.
*/
size_t HUF_decompress1X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2);
#ifndef HUF_FORCE_DECOMPRESS_X2
size_t HUF_decompress1X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2);
#endif
size_t HUF_decompress4X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2);
size_t HUF_decompress4X_hufOnly_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2);
#ifndef HUF_FORCE_DECOMPRESS_X2
size_t HUF_readDTableX1_wksp_bmi2(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int bmi2);
#endif
+#ifndef HUF_FORCE_DECOMPRESS_X1
+size_t HUF_readDTableX2_wksp_bmi2(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int bmi2);
+#endif
#endif /* HUF_STATIC_LINKING_ONLY */
#if defined (__cplusplus)
}
#endif
diff --git a/sys/contrib/zstd/lib/common/mem.h b/sys/contrib/zstd/lib/common/mem.h
index 4728ef767bf0..85581c38478e 100644
--- a/sys/contrib/zstd/lib/common/mem.h
+++ b/sys/contrib/zstd/lib/common/mem.h
@@ -1,426 +1,442 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef MEM_H_MODULE
#define MEM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/*-****************************************
* Dependencies
******************************************/
#include <stddef.h> /* size_t, ptrdiff_t */
#include "compiler.h" /* __has_builtin */
#include "debug.h" /* DEBUG_STATIC_ASSERT */
#include "zstd_deps.h" /* ZSTD_memcpy */
/*-****************************************
* Compiler specifics
******************************************/
#if defined(_MSC_VER) /* Visual Studio */
# include <stdlib.h> /* _byteswap_ulong */
# include <intrin.h> /* _byteswap_* */
#endif
#if defined(__GNUC__)
# define MEM_STATIC static __inline __attribute__((unused))
#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define MEM_STATIC static inline
#elif defined(_MSC_VER)
# define MEM_STATIC static __inline
#else
# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
#endif
/*-**************************************************************
* Basic Types
*****************************************************************/
#if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
# if defined(_AIX)
# include <inttypes.h>
# else
# include <stdint.h> /* intptr_t */
# endif
typedef uint8_t BYTE;
+ typedef uint8_t U8;
+ typedef int8_t S8;
typedef uint16_t U16;
typedef int16_t S16;
typedef uint32_t U32;
typedef int32_t S32;
typedef uint64_t U64;
typedef int64_t S64;
#else
# include <limits.h>
#if CHAR_BIT != 8
# error "this implementation requires char to be exactly 8-bit type"
#endif
typedef unsigned char BYTE;
+ typedef unsigned char U8;
+ typedef signed char S8;
#if USHRT_MAX != 65535
# error "this implementation requires short to be exactly 16-bit type"
#endif
typedef unsigned short U16;
typedef signed short S16;
#if UINT_MAX != 4294967295
# error "this implementation requires int to be exactly 32-bit type"
#endif
typedef unsigned int U32;
typedef signed int S32;
/* note : there are no limits defined for long long type in C90.
* limits exist in C99, however, in such case, <stdint.h> is preferred */
typedef unsigned long long U64;
typedef signed long long S64;
#endif
/*-**************************************************************
* Memory I/O API
*****************************************************************/
/*=== Static platform detection ===*/
MEM_STATIC unsigned MEM_32bits(void);
MEM_STATIC unsigned MEM_64bits(void);
MEM_STATIC unsigned MEM_isLittleEndian(void);
/*=== Native unaligned read/write ===*/
MEM_STATIC U16 MEM_read16(const void* memPtr);
MEM_STATIC U32 MEM_read32(const void* memPtr);
MEM_STATIC U64 MEM_read64(const void* memPtr);
MEM_STATIC size_t MEM_readST(const void* memPtr);
MEM_STATIC void MEM_write16(void* memPtr, U16 value);
MEM_STATIC void MEM_write32(void* memPtr, U32 value);
MEM_STATIC void MEM_write64(void* memPtr, U64 value);
/*=== Little endian unaligned read/write ===*/
MEM_STATIC U16 MEM_readLE16(const void* memPtr);
MEM_STATIC U32 MEM_readLE24(const void* memPtr);
MEM_STATIC U32 MEM_readLE32(const void* memPtr);
MEM_STATIC U64 MEM_readLE64(const void* memPtr);
MEM_STATIC size_t MEM_readLEST(const void* memPtr);
MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val);
MEM_STATIC void MEM_writeLE24(void* memPtr, U32 val);
MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32);
MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64);
MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val);
/*=== Big endian unaligned read/write ===*/
MEM_STATIC U32 MEM_readBE32(const void* memPtr);
MEM_STATIC U64 MEM_readBE64(const void* memPtr);
MEM_STATIC size_t MEM_readBEST(const void* memPtr);
MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32);
MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64);
MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val);
/*=== Byteswap ===*/
MEM_STATIC U32 MEM_swap32(U32 in);
MEM_STATIC U64 MEM_swap64(U64 in);
MEM_STATIC size_t MEM_swapST(size_t in);
/*-**************************************************************
* Memory I/O Implementation
*****************************************************************/
/* MEM_FORCE_MEMORY_ACCESS :
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
* The below switch allow to select different access method for improved performance.
* Method 0 (default) : use `memcpy()`. Safe and portable.
* Method 1 : `__packed` statement. It depends on compiler extension (i.e., not portable).
* This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
* Method 2 : direct access. This method is portable but violate C standard.
* It can generate buggy code on targets depending on alignment.
* In some circumstances, it's the only known way to get the most performance (i.e. GCC + ARMv6)
* See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
* Prefer these methods in priority order (0 > 1 > 2)
*/
#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
-# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
-# define MEM_FORCE_MEMORY_ACCESS 2
-# elif defined(__INTEL_COMPILER) || defined(__GNUC__) || defined(__ICCARM__)
+# if defined(__INTEL_COMPILER) || defined(__GNUC__) || defined(__ICCARM__)
# define MEM_FORCE_MEMORY_ACCESS 1
# endif
#endif
MEM_STATIC unsigned MEM_32bits(void) { return sizeof(size_t)==4; }
MEM_STATIC unsigned MEM_64bits(void) { return sizeof(size_t)==8; }
MEM_STATIC unsigned MEM_isLittleEndian(void)
{
+#if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
+ return 1;
+#elif defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
+ return 0;
+#elif defined(__clang__) && __LITTLE_ENDIAN__
+ return 1;
+#elif defined(__clang__) && __BIG_ENDIAN__
+ return 0;
+#elif defined(_MSC_VER) && (_M_AMD64 || _M_IX86)
+ return 1;
+#elif defined(__DMC__) && defined(_M_IX86)
+ return 1;
+#else
const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
return one.c[0];
+#endif
}
#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
/* violates C standard, by lying on structure alignment.
Only use if no other choice to achieve best performance on target platform */
MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
MEM_STATIC size_t MEM_readST(const void* memPtr) { return *(const size_t*) memPtr; }
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(U32*)memPtr = value; }
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(U64*)memPtr = value; }
#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
/* currently only defined for gcc and icc */
#if defined(_MSC_VER) || (defined(__INTEL_COMPILER) && defined(WIN32))
__pragma( pack(push, 1) )
typedef struct { U16 v; } unalign16;
typedef struct { U32 v; } unalign32;
typedef struct { U64 v; } unalign64;
typedef struct { size_t v; } unalignArch;
__pragma( pack(pop) )
#else
typedef struct { U16 v; } __attribute__((packed)) unalign16;
typedef struct { U32 v; } __attribute__((packed)) unalign32;
typedef struct { U64 v; } __attribute__((packed)) unalign64;
typedef struct { size_t v; } __attribute__((packed)) unalignArch;
#endif
MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign16*)ptr)->v; }
MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign32*)ptr)->v; }
MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign64*)ptr)->v; }
MEM_STATIC size_t MEM_readST(const void* ptr) { return ((const unalignArch*)ptr)->v; }
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign16*)memPtr)->v = value; }
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { ((unalign32*)memPtr)->v = value; }
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { ((unalign64*)memPtr)->v = value; }
#else
/* default method, safe and standard.
can sometimes prove slower */
MEM_STATIC U16 MEM_read16(const void* memPtr)
{
U16 val; ZSTD_memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U32 MEM_read32(const void* memPtr)
{
U32 val; ZSTD_memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U64 MEM_read64(const void* memPtr)
{
U64 val; ZSTD_memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC size_t MEM_readST(const void* memPtr)
{
size_t val; ZSTD_memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC void MEM_write16(void* memPtr, U16 value)
{
ZSTD_memcpy(memPtr, &value, sizeof(value));
}
MEM_STATIC void MEM_write32(void* memPtr, U32 value)
{
ZSTD_memcpy(memPtr, &value, sizeof(value));
}
MEM_STATIC void MEM_write64(void* memPtr, U64 value)
{
ZSTD_memcpy(memPtr, &value, sizeof(value));
}
#endif /* MEM_FORCE_MEMORY_ACCESS */
MEM_STATIC U32 MEM_swap32(U32 in)
{
#if defined(_MSC_VER) /* Visual Studio */
return _byteswap_ulong(in);
#elif (defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)) \
|| (defined(__clang__) && __has_builtin(__builtin_bswap32))
return __builtin_bswap32(in);
#else
return ((in << 24) & 0xff000000 ) |
((in << 8) & 0x00ff0000 ) |
((in >> 8) & 0x0000ff00 ) |
((in >> 24) & 0x000000ff );
#endif
}
MEM_STATIC U64 MEM_swap64(U64 in)
{
#if defined(_MSC_VER) /* Visual Studio */
return _byteswap_uint64(in);
#elif (defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)) \
|| (defined(__clang__) && __has_builtin(__builtin_bswap64))
return __builtin_bswap64(in);
#else
return ((in << 56) & 0xff00000000000000ULL) |
((in << 40) & 0x00ff000000000000ULL) |
((in << 24) & 0x0000ff0000000000ULL) |
((in << 8) & 0x000000ff00000000ULL) |
((in >> 8) & 0x00000000ff000000ULL) |
((in >> 24) & 0x0000000000ff0000ULL) |
((in >> 40) & 0x000000000000ff00ULL) |
((in >> 56) & 0x00000000000000ffULL);
#endif
}
MEM_STATIC size_t MEM_swapST(size_t in)
{
if (MEM_32bits())
return (size_t)MEM_swap32((U32)in);
else
return (size_t)MEM_swap64((U64)in);
}
/*=== Little endian r/w ===*/
MEM_STATIC U16 MEM_readLE16(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read16(memPtr);
else {
const BYTE* p = (const BYTE*)memPtr;
return (U16)(p[0] + (p[1]<<8));
}
}
MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
{
if (MEM_isLittleEndian()) {
MEM_write16(memPtr, val);
} else {
BYTE* p = (BYTE*)memPtr;
p[0] = (BYTE)val;
p[1] = (BYTE)(val>>8);
}
}
MEM_STATIC U32 MEM_readLE24(const void* memPtr)
{
- return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16);
+ return (U32)MEM_readLE16(memPtr) + ((U32)(((const BYTE*)memPtr)[2]) << 16);
}
MEM_STATIC void MEM_writeLE24(void* memPtr, U32 val)
{
MEM_writeLE16(memPtr, (U16)val);
((BYTE*)memPtr)[2] = (BYTE)(val>>16);
}
MEM_STATIC U32 MEM_readLE32(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read32(memPtr);
else
return MEM_swap32(MEM_read32(memPtr));
}
MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32)
{
if (MEM_isLittleEndian())
MEM_write32(memPtr, val32);
else
MEM_write32(memPtr, MEM_swap32(val32));
}
MEM_STATIC U64 MEM_readLE64(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read64(memPtr);
else
return MEM_swap64(MEM_read64(memPtr));
}
MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64)
{
if (MEM_isLittleEndian())
MEM_write64(memPtr, val64);
else
MEM_write64(memPtr, MEM_swap64(val64));
}
MEM_STATIC size_t MEM_readLEST(const void* memPtr)
{
if (MEM_32bits())
return (size_t)MEM_readLE32(memPtr);
else
return (size_t)MEM_readLE64(memPtr);
}
MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val)
{
if (MEM_32bits())
MEM_writeLE32(memPtr, (U32)val);
else
MEM_writeLE64(memPtr, (U64)val);
}
/*=== Big endian r/w ===*/
MEM_STATIC U32 MEM_readBE32(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_swap32(MEM_read32(memPtr));
else
return MEM_read32(memPtr);
}
MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32)
{
if (MEM_isLittleEndian())
MEM_write32(memPtr, MEM_swap32(val32));
else
MEM_write32(memPtr, val32);
}
MEM_STATIC U64 MEM_readBE64(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_swap64(MEM_read64(memPtr));
else
return MEM_read64(memPtr);
}
MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64)
{
if (MEM_isLittleEndian())
MEM_write64(memPtr, MEM_swap64(val64));
else
MEM_write64(memPtr, val64);
}
MEM_STATIC size_t MEM_readBEST(const void* memPtr)
{
if (MEM_32bits())
return (size_t)MEM_readBE32(memPtr);
else
return (size_t)MEM_readBE64(memPtr);
}
MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val)
{
if (MEM_32bits())
MEM_writeBE32(memPtr, (U32)val);
else
MEM_writeBE64(memPtr, (U64)val);
}
/* code only tested on 32 and 64 bits systems */
MEM_STATIC void MEM_check(void) { DEBUG_STATIC_ASSERT((sizeof(size_t)==4) || (sizeof(size_t)==8)); }
#if defined (__cplusplus)
}
#endif
#endif /* MEM_H_MODULE */
diff --git a/sys/contrib/zstd/lib/common/pool.c b/sys/contrib/zstd/lib/common/pool.c
index 4c1b83376f4e..2e37cdd73c81 100644
--- a/sys/contrib/zstd/lib/common/pool.c
+++ b/sys/contrib/zstd/lib/common/pool.c
@@ -1,350 +1,355 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* ====== Dependencies ======= */
#include "zstd_deps.h" /* size_t */
#include "debug.h" /* assert */
#include "zstd_internal.h" /* ZSTD_customMalloc, ZSTD_customFree */
#include "pool.h"
/* ====== Compiler specifics ====== */
#if defined(_MSC_VER)
# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */
#endif
#ifdef ZSTD_MULTITHREAD
#include "threading.h" /* pthread adaptation */
/* A job is a function and an opaque argument */
typedef struct POOL_job_s {
POOL_function function;
void *opaque;
} POOL_job;
struct POOL_ctx_s {
ZSTD_customMem customMem;
/* Keep track of the threads */
ZSTD_pthread_t* threads;
size_t threadCapacity;
size_t threadLimit;
/* The queue is a circular buffer */
POOL_job *queue;
size_t queueHead;
size_t queueTail;
size_t queueSize;
/* The number of threads working on jobs */
size_t numThreadsBusy;
/* Indicates if the queue is empty */
int queueEmpty;
/* The mutex protects the queue */
ZSTD_pthread_mutex_t queueMutex;
/* Condition variable for pushers to wait on when the queue is full */
ZSTD_pthread_cond_t queuePushCond;
/* Condition variables for poppers to wait on when the queue is empty */
ZSTD_pthread_cond_t queuePopCond;
/* Indicates if the queue is shutting down */
int shutdown;
};
/* POOL_thread() :
* Work thread for the thread pool.
* Waits for jobs and executes them.
* @returns : NULL on failure else non-null.
*/
static void* POOL_thread(void* opaque) {
POOL_ctx* const ctx = (POOL_ctx*)opaque;
if (!ctx) { return NULL; }
for (;;) {
/* Lock the mutex and wait for a non-empty queue or until shutdown */
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
while ( ctx->queueEmpty
|| (ctx->numThreadsBusy >= ctx->threadLimit) ) {
if (ctx->shutdown) {
/* even if !queueEmpty, (possible if numThreadsBusy >= threadLimit),
* a few threads will be shutdown while !queueEmpty,
* but enough threads will remain active to finish the queue */
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
return opaque;
}
ZSTD_pthread_cond_wait(&ctx->queuePopCond, &ctx->queueMutex);
}
/* Pop a job off the queue */
{ POOL_job const job = ctx->queue[ctx->queueHead];
ctx->queueHead = (ctx->queueHead + 1) % ctx->queueSize;
ctx->numThreadsBusy++;
- ctx->queueEmpty = ctx->queueHead == ctx->queueTail;
+ ctx->queueEmpty = (ctx->queueHead == ctx->queueTail);
/* Unlock the mutex, signal a pusher, and run the job */
ZSTD_pthread_cond_signal(&ctx->queuePushCond);
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
job.function(job.opaque);
/* If the intended queue size was 0, signal after finishing job */
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
ctx->numThreadsBusy--;
if (ctx->queueSize == 1) {
ZSTD_pthread_cond_signal(&ctx->queuePushCond);
}
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
}
} /* for (;;) */
assert(0); /* Unreachable */
}
+/* ZSTD_createThreadPool() : public access point */
POOL_ctx* ZSTD_createThreadPool(size_t numThreads) {
return POOL_create (numThreads, 0);
}
POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) {
return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem);
}
POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize,
- ZSTD_customMem customMem) {
+ ZSTD_customMem customMem)
+{
POOL_ctx* ctx;
/* Check parameters */
if (!numThreads) { return NULL; }
/* Allocate the context and zero initialize */
ctx = (POOL_ctx*)ZSTD_customCalloc(sizeof(POOL_ctx), customMem);
if (!ctx) { return NULL; }
/* Initialize the job queue.
* It needs one extra space since one space is wasted to differentiate
* empty and full queues.
*/
ctx->queueSize = queueSize + 1;
ctx->queue = (POOL_job*)ZSTD_customMalloc(ctx->queueSize * sizeof(POOL_job), customMem);
ctx->queueHead = 0;
ctx->queueTail = 0;
ctx->numThreadsBusy = 0;
ctx->queueEmpty = 1;
{
int error = 0;
error |= ZSTD_pthread_mutex_init(&ctx->queueMutex, NULL);
error |= ZSTD_pthread_cond_init(&ctx->queuePushCond, NULL);
error |= ZSTD_pthread_cond_init(&ctx->queuePopCond, NULL);
if (error) { POOL_free(ctx); return NULL; }
}
ctx->shutdown = 0;
/* Allocate space for the thread handles */
ctx->threads = (ZSTD_pthread_t*)ZSTD_customMalloc(numThreads * sizeof(ZSTD_pthread_t), customMem);
ctx->threadCapacity = 0;
ctx->customMem = customMem;
/* Check for errors */
if (!ctx->threads || !ctx->queue) { POOL_free(ctx); return NULL; }
/* Initialize the threads */
{ size_t i;
for (i = 0; i < numThreads; ++i) {
if (ZSTD_pthread_create(&ctx->threads[i], NULL, &POOL_thread, ctx)) {
ctx->threadCapacity = i;
POOL_free(ctx);
return NULL;
} }
ctx->threadCapacity = numThreads;
ctx->threadLimit = numThreads;
}
return ctx;
}
/*! POOL_join() :
Shutdown the queue, wake any sleeping threads, and join all of the threads.
*/
static void POOL_join(POOL_ctx* ctx) {
/* Shut down the queue */
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
ctx->shutdown = 1;
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
/* Wake up sleeping threads */
ZSTD_pthread_cond_broadcast(&ctx->queuePushCond);
ZSTD_pthread_cond_broadcast(&ctx->queuePopCond);
/* Join all of the threads */
{ size_t i;
for (i = 0; i < ctx->threadCapacity; ++i) {
ZSTD_pthread_join(ctx->threads[i], NULL); /* note : could fail */
} }
}
void POOL_free(POOL_ctx *ctx) {
if (!ctx) { return; }
POOL_join(ctx);
ZSTD_pthread_mutex_destroy(&ctx->queueMutex);
ZSTD_pthread_cond_destroy(&ctx->queuePushCond);
ZSTD_pthread_cond_destroy(&ctx->queuePopCond);
ZSTD_customFree(ctx->queue, ctx->customMem);
ZSTD_customFree(ctx->threads, ctx->customMem);
ZSTD_customFree(ctx, ctx->customMem);
}
void ZSTD_freeThreadPool (ZSTD_threadPool* pool) {
POOL_free (pool);
}
-size_t POOL_sizeof(POOL_ctx *ctx) {
+size_t POOL_sizeof(const POOL_ctx* ctx) {
if (ctx==NULL) return 0; /* supports sizeof NULL */
return sizeof(*ctx)
+ ctx->queueSize * sizeof(POOL_job)
+ ctx->threadCapacity * sizeof(ZSTD_pthread_t);
}
/* @return : 0 on success, 1 on error */
static int POOL_resize_internal(POOL_ctx* ctx, size_t numThreads)
{
if (numThreads <= ctx->threadCapacity) {
if (!numThreads) return 1;
ctx->threadLimit = numThreads;
return 0;
}
/* numThreads > threadCapacity */
{ ZSTD_pthread_t* const threadPool = (ZSTD_pthread_t*)ZSTD_customMalloc(numThreads * sizeof(ZSTD_pthread_t), ctx->customMem);
if (!threadPool) return 1;
/* replace existing thread pool */
ZSTD_memcpy(threadPool, ctx->threads, ctx->threadCapacity * sizeof(*threadPool));
ZSTD_customFree(ctx->threads, ctx->customMem);
ctx->threads = threadPool;
/* Initialize additional threads */
{ size_t threadId;
for (threadId = ctx->threadCapacity; threadId < numThreads; ++threadId) {
if (ZSTD_pthread_create(&threadPool[threadId], NULL, &POOL_thread, ctx)) {
ctx->threadCapacity = threadId;
return 1;
} }
} }
/* successfully expanded */
ctx->threadCapacity = numThreads;
ctx->threadLimit = numThreads;
return 0;
}
/* @return : 0 on success, 1 on error */
int POOL_resize(POOL_ctx* ctx, size_t numThreads)
{
int result;
if (ctx==NULL) return 1;
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
result = POOL_resize_internal(ctx, numThreads);
ZSTD_pthread_cond_broadcast(&ctx->queuePopCond);
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
return result;
}
/**
* Returns 1 if the queue is full and 0 otherwise.
*
* When queueSize is 1 (pool was created with an intended queueSize of 0),
* then a queue is empty if there is a thread free _and_ no job is waiting.
*/
static int isQueueFull(POOL_ctx const* ctx) {
if (ctx->queueSize > 1) {
return ctx->queueHead == ((ctx->queueTail + 1) % ctx->queueSize);
} else {
return (ctx->numThreadsBusy == ctx->threadLimit) ||
!ctx->queueEmpty;
}
}
-static void POOL_add_internal(POOL_ctx* ctx, POOL_function function, void *opaque)
+static void
+POOL_add_internal(POOL_ctx* ctx, POOL_function function, void *opaque)
{
POOL_job const job = {function, opaque};
assert(ctx != NULL);
if (ctx->shutdown) return;
ctx->queueEmpty = 0;
ctx->queue[ctx->queueTail] = job;
ctx->queueTail = (ctx->queueTail + 1) % ctx->queueSize;
ZSTD_pthread_cond_signal(&ctx->queuePopCond);
}
void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque)
{
assert(ctx != NULL);
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
/* Wait until there is space in the queue for the new job */
while (isQueueFull(ctx) && (!ctx->shutdown)) {
ZSTD_pthread_cond_wait(&ctx->queuePushCond, &ctx->queueMutex);
}
POOL_add_internal(ctx, function, opaque);
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
}
int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque)
{
assert(ctx != NULL);
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
if (isQueueFull(ctx)) {
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
return 0;
}
POOL_add_internal(ctx, function, opaque);
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
return 1;
}
#else /* ZSTD_MULTITHREAD not defined */
/* ========================== */
/* No multi-threading support */
/* ========================== */
/* We don't need any data, but if it is empty, malloc() might return NULL. */
struct POOL_ctx_s {
int dummy;
};
static POOL_ctx g_poolCtx;
POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) {
return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem);
}
-POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize, ZSTD_customMem customMem) {
+POOL_ctx*
+POOL_create_advanced(size_t numThreads, size_t queueSize, ZSTD_customMem customMem)
+{
(void)numThreads;
(void)queueSize;
(void)customMem;
return &g_poolCtx;
}
void POOL_free(POOL_ctx* ctx) {
assert(!ctx || ctx == &g_poolCtx);
(void)ctx;
}
int POOL_resize(POOL_ctx* ctx, size_t numThreads) {
(void)ctx; (void)numThreads;
return 0;
}
void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque) {
(void)ctx;
function(opaque);
}
int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque) {
(void)ctx;
function(opaque);
return 1;
}
-size_t POOL_sizeof(POOL_ctx* ctx) {
+size_t POOL_sizeof(const POOL_ctx* ctx) {
if (ctx==NULL) return 0; /* supports sizeof NULL */
assert(ctx == &g_poolCtx);
return sizeof(*ctx);
}
#endif /* ZSTD_MULTITHREAD */
diff --git a/sys/contrib/zstd/lib/common/pool.h b/sys/contrib/zstd/lib/common/pool.h
index 63954ca6ca4d..0ebde1805db5 100644
--- a/sys/contrib/zstd/lib/common/pool.h
+++ b/sys/contrib/zstd/lib/common/pool.h
@@ -1,84 +1,84 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef POOL_H
#define POOL_H
#if defined (__cplusplus)
extern "C" {
#endif
#include "zstd_deps.h"
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_customMem */
#include "../zstd.h"
typedef struct POOL_ctx_s POOL_ctx;
/*! POOL_create() :
* Create a thread pool with at most `numThreads` threads.
* `numThreads` must be at least 1.
* The maximum number of queued jobs before blocking is `queueSize`.
* @return : POOL_ctx pointer on success, else NULL.
*/
POOL_ctx* POOL_create(size_t numThreads, size_t queueSize);
POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize,
ZSTD_customMem customMem);
/*! POOL_free() :
* Free a thread pool returned by POOL_create().
*/
void POOL_free(POOL_ctx* ctx);
/*! POOL_resize() :
* Expands or shrinks pool's number of threads.
* This is more efficient than releasing + creating a new context,
* since it tries to preserve and re-use existing threads.
* `numThreads` must be at least 1.
* @return : 0 when resize was successful,
* !0 (typically 1) if there is an error.
* note : only numThreads can be resized, queueSize remains unchanged.
*/
int POOL_resize(POOL_ctx* ctx, size_t numThreads);
/*! POOL_sizeof() :
* @return threadpool memory usage
* note : compatible with NULL (returns 0 in this case)
*/
-size_t POOL_sizeof(POOL_ctx* ctx);
+size_t POOL_sizeof(const POOL_ctx* ctx);
/*! POOL_function :
* The function type that can be added to a thread pool.
*/
typedef void (*POOL_function)(void*);
/*! POOL_add() :
* Add the job `function(opaque)` to the thread pool. `ctx` must be valid.
* Possibly blocks until there is room in the queue.
* Note : The function may be executed asynchronously,
* therefore, `opaque` must live until function has been completed.
*/
void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque);
/*! POOL_tryAdd() :
- * Add the job `function(opaque)` to thread pool _if_ a worker is available.
+ * Add the job `function(opaque)` to thread pool _if_ a queue slot is available.
* Returns immediately even if not (does not block).
* @return : 1 if successful, 0 if not.
*/
int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque);
#if defined (__cplusplus)
}
#endif
#endif
diff --git a/sys/contrib/zstd/lib/common/portability_macros.h b/sys/contrib/zstd/lib/common/portability_macros.h
new file mode 100644
index 000000000000..2143817f5747
--- /dev/null
+++ b/sys/contrib/zstd/lib/common/portability_macros.h
@@ -0,0 +1,137 @@
+/*
+ * Copyright (c) Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_PORTABILITY_MACROS_H
+#define ZSTD_PORTABILITY_MACROS_H
+
+/**
+ * This header file contains macro defintions to support portability.
+ * This header is shared between C and ASM code, so it MUST only
+ * contain macro definitions. It MUST not contain any C code.
+ *
+ * This header ONLY defines macros to detect platforms/feature support.
+ *
+ */
+
+
+/* compat. with non-clang compilers */
+#ifndef __has_attribute
+ #define __has_attribute(x) 0
+#endif
+
+/* compat. with non-clang compilers */
+#ifndef __has_builtin
+# define __has_builtin(x) 0
+#endif
+
+/* compat. with non-clang compilers */
+#ifndef __has_feature
+# define __has_feature(x) 0
+#endif
+
+/* detects whether we are being compiled under msan */
+#ifndef ZSTD_MEMORY_SANITIZER
+# if __has_feature(memory_sanitizer)
+# define ZSTD_MEMORY_SANITIZER 1
+# else
+# define ZSTD_MEMORY_SANITIZER 0
+# endif
+#endif
+
+/* detects whether we are being compiled under asan */
+#ifndef ZSTD_ADDRESS_SANITIZER
+# if __has_feature(address_sanitizer)
+# define ZSTD_ADDRESS_SANITIZER 1
+# elif defined(__SANITIZE_ADDRESS__)
+# define ZSTD_ADDRESS_SANITIZER 1
+# else
+# define ZSTD_ADDRESS_SANITIZER 0
+# endif
+#endif
+
+/* detects whether we are being compiled under dfsan */
+#ifndef ZSTD_DATAFLOW_SANITIZER
+# if __has_feature(dataflow_sanitizer)
+# define ZSTD_DATAFLOW_SANITIZER 1
+# else
+# define ZSTD_DATAFLOW_SANITIZER 0
+# endif
+#endif
+
+/* Mark the internal assembly functions as hidden */
+#ifdef __ELF__
+# define ZSTD_HIDE_ASM_FUNCTION(func) .hidden func
+#else
+# define ZSTD_HIDE_ASM_FUNCTION(func)
+#endif
+
+/* Enable runtime BMI2 dispatch based on the CPU.
+ * Enabled for clang & gcc >=4.8 on x86 when BMI2 isn't enabled by default.
+ */
+#ifndef DYNAMIC_BMI2
+ #if ((defined(__clang__) && __has_attribute(__target__)) \
+ || (defined(__GNUC__) \
+ && (__GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)))) \
+ && (defined(__x86_64__) || defined(_M_X64)) \
+ && !defined(__BMI2__)
+ # define DYNAMIC_BMI2 1
+ #else
+ # define DYNAMIC_BMI2 0
+ #endif
+#endif
+
+/**
+ * Only enable assembly for GNUC comptabile compilers,
+ * because other platforms may not support GAS assembly syntax.
+ *
+ * Only enable assembly for Linux / MacOS, other platforms may
+ * work, but they haven't been tested. This could likely be
+ * extended to BSD systems.
+ *
+ * Disable assembly when MSAN is enabled, because MSAN requires
+ * 100% of code to be instrumented to work.
+ */
+#if defined(__GNUC__)
+# if defined(__linux__) || defined(__linux) || defined(__APPLE__)
+# if ZSTD_MEMORY_SANITIZER
+# define ZSTD_ASM_SUPPORTED 0
+# elif ZSTD_DATAFLOW_SANITIZER
+# define ZSTD_ASM_SUPPORTED 0
+# else
+# define ZSTD_ASM_SUPPORTED 1
+# endif
+# else
+# define ZSTD_ASM_SUPPORTED 0
+# endif
+#else
+# define ZSTD_ASM_SUPPORTED 0
+#endif
+
+/**
+ * Determines whether we should enable assembly for x86-64
+ * with BMI2.
+ *
+ * Enable if all of the following conditions hold:
+ * - ASM hasn't been explicitly disabled by defining ZSTD_DISABLE_ASM
+ * - Assembly is supported
+ * - We are compiling for x86-64 and either:
+ * - DYNAMIC_BMI2 is enabled
+ * - BMI2 is supported at compile time
+ */
+#if !defined(ZSTD_DISABLE_ASM) && \
+ ZSTD_ASM_SUPPORTED && \
+ defined(__x86_64__) && \
+ (DYNAMIC_BMI2 || defined(__BMI2__))
+# define ZSTD_ENABLE_ASM_X86_64_BMI2 1
+#else
+# define ZSTD_ENABLE_ASM_X86_64_BMI2 0
+#endif
+
+#endif /* ZSTD_PORTABILITY_MACROS_H */
diff --git a/sys/contrib/zstd/lib/common/xxhash.c b/sys/contrib/zstd/lib/common/xxhash.c
index e708df3c3389..d49497cf1cfa 100644
--- a/sys/contrib/zstd/lib/common/xxhash.c
+++ b/sys/contrib/zstd/lib/common/xxhash.c
@@ -1,826 +1,24 @@
/*
* xxHash - Fast Hash algorithm
- * Copyright (c) 2012-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
*
* You can contact the author at :
* - xxHash homepage: http://www.xxhash.com
* - xxHash source repository : https://github.com/Cyan4973/xxHash
- *
+ *
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
-/* *************************************
-* Tuning parameters
-***************************************/
-/*!XXH_FORCE_MEMORY_ACCESS :
- * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
- * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
- * The below switch allow to select different access method for improved performance.
- * Method 0 (default) : use `memcpy()`. Safe and portable.
- * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
- * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
- * Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
- * It can generate buggy code on targets which do not support unaligned memory accesses.
- * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
- * See http://stackoverflow.com/a/32095106/646947 for details.
- * Prefer these methods in priority order (0 > 1 > 2)
- */
-#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
-# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
-# define XXH_FORCE_MEMORY_ACCESS 2
-# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
- (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) || \
- defined(__ICCARM__)
-# define XXH_FORCE_MEMORY_ACCESS 1
-# endif
-#endif
-
-/*!XXH_ACCEPT_NULL_INPUT_POINTER :
- * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
- * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
- * By default, this option is disabled. To enable it, uncomment below define :
- */
-/* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
-
-/*!XXH_FORCE_NATIVE_FORMAT :
- * By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
- * Results are therefore identical for little-endian and big-endian CPU.
- * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
- * Should endian-independence be of no importance for your application, you may set the #define below to 1,
- * to improve speed for Big-endian CPU.
- * This option has no impact on Little_Endian CPU.
- */
-#ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */
-# define XXH_FORCE_NATIVE_FORMAT 0
-#endif
-/*!XXH_FORCE_ALIGN_CHECK :
- * This is a minor performance trick, only useful with lots of very small keys.
- * It means : check for aligned/unaligned input.
- * The check costs one initial branch per hash; set to 0 when the input data
- * is guaranteed to be aligned.
+/*
+ * xxhash.c instantiates functions defined in xxhash.h
*/
-#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
-# if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
-# define XXH_FORCE_ALIGN_CHECK 0
-# else
-# define XXH_FORCE_ALIGN_CHECK 1
-# endif
-#endif
-
-/* *************************************
-* Includes & Memory related functions
-***************************************/
-/* Modify the local functions below should you wish to use some other memory routines */
-/* for ZSTD_malloc(), ZSTD_free() */
-#define ZSTD_DEPS_NEED_MALLOC
-#include "zstd_deps.h" /* size_t, ZSTD_malloc, ZSTD_free, ZSTD_memcpy */
-static void* XXH_malloc(size_t s) { return ZSTD_malloc(s); }
-static void XXH_free (void* p) { ZSTD_free(p); }
-static void* XXH_memcpy(void* dest, const void* src, size_t size) { return ZSTD_memcpy(dest,src,size); }
+#define XXH_STATIC_LINKING_ONLY /* access advanced declarations */
+#define XXH_IMPLEMENTATION /* access definitions */
-#ifndef XXH_STATIC_LINKING_ONLY
-# define XXH_STATIC_LINKING_ONLY
-#endif
#include "xxhash.h"
-
-
-/* *************************************
-* Compiler Specific Options
-***************************************/
-#include "compiler.h"
-
-
-/* *************************************
-* Basic Types
-***************************************/
-#include "mem.h" /* BYTE, U32, U64, size_t */
-
-#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
-
-/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
-static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
-static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
-
-#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
-
-/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
-/* currently only defined for gcc and icc */
-typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign;
-
-static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
-static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
-
-#else
-
-/* portable and safe solution. Generally efficient.
- * see : http://stackoverflow.com/a/32095106/646947
- */
-
-static U32 XXH_read32(const void* memPtr)
-{
- U32 val;
- ZSTD_memcpy(&val, memPtr, sizeof(val));
- return val;
-}
-
-static U64 XXH_read64(const void* memPtr)
-{
- U64 val;
- ZSTD_memcpy(&val, memPtr, sizeof(val));
- return val;
-}
-
-#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
-
-
-/* ****************************************
-* Compiler-specific Functions and Macros
-******************************************/
-#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
-
-/* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
-#if defined(_MSC_VER)
-# define XXH_rotl32(x,r) _rotl(x,r)
-# define XXH_rotl64(x,r) _rotl64(x,r)
-#else
-#if defined(__ICCARM__)
-# include <intrinsics.h>
-# define XXH_rotl32(x,r) __ROR(x,(32 - r))
-#else
-# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
-#endif
-# define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
-#endif
-
-#if defined(_MSC_VER) /* Visual Studio */
-# define XXH_swap32 _byteswap_ulong
-# define XXH_swap64 _byteswap_uint64
-#elif GCC_VERSION >= 403
-# define XXH_swap32 __builtin_bswap32
-# define XXH_swap64 __builtin_bswap64
-#else
-static U32 XXH_swap32 (U32 x)
-{
- return ((x << 24) & 0xff000000 ) |
- ((x << 8) & 0x00ff0000 ) |
- ((x >> 8) & 0x0000ff00 ) |
- ((x >> 24) & 0x000000ff );
-}
-static U64 XXH_swap64 (U64 x)
-{
- return ((x << 56) & 0xff00000000000000ULL) |
- ((x << 40) & 0x00ff000000000000ULL) |
- ((x << 24) & 0x0000ff0000000000ULL) |
- ((x << 8) & 0x000000ff00000000ULL) |
- ((x >> 8) & 0x00000000ff000000ULL) |
- ((x >> 24) & 0x0000000000ff0000ULL) |
- ((x >> 40) & 0x000000000000ff00ULL) |
- ((x >> 56) & 0x00000000000000ffULL);
-}
-#endif
-
-
-/* *************************************
-* Architecture Macros
-***************************************/
-typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
-
-/* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
-#ifndef XXH_CPU_LITTLE_ENDIAN
- static const int g_one = 1;
-# define XXH_CPU_LITTLE_ENDIAN (*(const char*)(&g_one))
-#endif
-
-
-/* ***************************
-* Memory reads
-*****************************/
-typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
-
-FORCE_INLINE_TEMPLATE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
-{
- if (align==XXH_unaligned)
- return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
- else
- return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
-}
-
-FORCE_INLINE_TEMPLATE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
-{
- return XXH_readLE32_align(ptr, endian, XXH_unaligned);
-}
-
-static U32 XXH_readBE32(const void* ptr)
-{
- return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
-}
-
-FORCE_INLINE_TEMPLATE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
-{
- if (align==XXH_unaligned)
- return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
- else
- return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
-}
-
-FORCE_INLINE_TEMPLATE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
-{
- return XXH_readLE64_align(ptr, endian, XXH_unaligned);
-}
-
-static U64 XXH_readBE64(const void* ptr)
-{
- return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
-}
-
-
-/* *************************************
-* Macros
-***************************************/
-#define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
-
-
-/* *************************************
-* Constants
-***************************************/
-static const U32 PRIME32_1 = 2654435761U;
-static const U32 PRIME32_2 = 2246822519U;
-static const U32 PRIME32_3 = 3266489917U;
-static const U32 PRIME32_4 = 668265263U;
-static const U32 PRIME32_5 = 374761393U;
-
-static const U64 PRIME64_1 = 11400714785074694791ULL;
-static const U64 PRIME64_2 = 14029467366897019727ULL;
-static const U64 PRIME64_3 = 1609587929392839161ULL;
-static const U64 PRIME64_4 = 9650029242287828579ULL;
-static const U64 PRIME64_5 = 2870177450012600261ULL;
-
-XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
-
-
-/* **************************
-* Utils
-****************************/
-XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState)
-{
- ZSTD_memcpy(dstState, srcState, sizeof(*dstState));
-}
-
-XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState)
-{
- ZSTD_memcpy(dstState, srcState, sizeof(*dstState));
-}
-
-
-/* ***************************
-* Simple Hash Functions
-*****************************/
-
-static U32 XXH32_round(U32 seed, U32 input)
-{
- seed += input * PRIME32_2;
- seed = XXH_rotl32(seed, 13);
- seed *= PRIME32_1;
- return seed;
-}
-
-FORCE_INLINE_TEMPLATE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
-{
- const BYTE* p = (const BYTE*)input;
- const BYTE* bEnd = p + len;
- U32 h32;
-#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
-
-#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
- if (p==NULL) {
- len=0;
- bEnd=p=(const BYTE*)(size_t)16;
- }
-#endif
-
- if (len>=16) {
- const BYTE* const limit = bEnd - 16;
- U32 v1 = seed + PRIME32_1 + PRIME32_2;
- U32 v2 = seed + PRIME32_2;
- U32 v3 = seed + 0;
- U32 v4 = seed - PRIME32_1;
-
- do {
- v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
- v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
- v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
- v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
- } while (p<=limit);
-
- h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
- } else {
- h32 = seed + PRIME32_5;
- }
-
- h32 += (U32) len;
-
- while (p+4<=bEnd) {
- h32 += XXH_get32bits(p) * PRIME32_3;
- h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
- p+=4;
- }
-
- while (p<bEnd) {
- h32 += (*p) * PRIME32_5;
- h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
- p++;
- }
-
- h32 ^= h32 >> 15;
- h32 *= PRIME32_2;
- h32 ^= h32 >> 13;
- h32 *= PRIME32_3;
- h32 ^= h32 >> 16;
-
- return h32;
-}
-
-
-XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
-{
-#if 0
- /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
- XXH32_CREATESTATE_STATIC(state);
- XXH32_reset(state, seed);
- XXH32_update(state, input, len);
- return XXH32_digest(state);
-#else
- XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
-
- if (XXH_FORCE_ALIGN_CHECK) {
- if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
- if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
- return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
- else
- return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
- } }
-
- if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
- return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
- else
- return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
-#endif
-}
-
-
-static U64 XXH64_round(U64 acc, U64 input)
-{
- acc += input * PRIME64_2;
- acc = XXH_rotl64(acc, 31);
- acc *= PRIME64_1;
- return acc;
-}
-
-static U64 XXH64_mergeRound(U64 acc, U64 val)
-{
- val = XXH64_round(0, val);
- acc ^= val;
- acc = acc * PRIME64_1 + PRIME64_4;
- return acc;
-}
-
-FORCE_INLINE_TEMPLATE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
-{
- const BYTE* p = (const BYTE*)input;
- const BYTE* const bEnd = p + len;
- U64 h64;
-#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
-
-#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
- if (p==NULL) {
- len=0;
- bEnd=p=(const BYTE*)(size_t)32;
- }
-#endif
-
- if (len>=32) {
- const BYTE* const limit = bEnd - 32;
- U64 v1 = seed + PRIME64_1 + PRIME64_2;
- U64 v2 = seed + PRIME64_2;
- U64 v3 = seed + 0;
- U64 v4 = seed - PRIME64_1;
-
- do {
- v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
- v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
- v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
- v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
- } while (p<=limit);
-
- h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
- h64 = XXH64_mergeRound(h64, v1);
- h64 = XXH64_mergeRound(h64, v2);
- h64 = XXH64_mergeRound(h64, v3);
- h64 = XXH64_mergeRound(h64, v4);
-
- } else {
- h64 = seed + PRIME64_5;
- }
-
- h64 += (U64) len;
-
- while (p+8<=bEnd) {
- U64 const k1 = XXH64_round(0, XXH_get64bits(p));
- h64 ^= k1;
- h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
- p+=8;
- }
-
- if (p+4<=bEnd) {
- h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
- h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
- p+=4;
- }
-
- while (p<bEnd) {
- h64 ^= (*p) * PRIME64_5;
- h64 = XXH_rotl64(h64, 11) * PRIME64_1;
- p++;
- }
-
- h64 ^= h64 >> 33;
- h64 *= PRIME64_2;
- h64 ^= h64 >> 29;
- h64 *= PRIME64_3;
- h64 ^= h64 >> 32;
-
- return h64;
-}
-
-
-XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
-{
-#if 0
- /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
- XXH64_CREATESTATE_STATIC(state);
- XXH64_reset(state, seed);
- XXH64_update(state, input, len);
- return XXH64_digest(state);
-#else
- XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
-
- if (XXH_FORCE_ALIGN_CHECK) {
- if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
- if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
- return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
- else
- return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
- } }
-
- if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
- return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
- else
- return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
-#endif
-}
-
-
-/* **************************************************
-* Advanced Hash Functions
-****************************************************/
-
-XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
-{
- return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
-}
-XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
-{
- XXH_free(statePtr);
- return XXH_OK;
-}
-
-XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
-{
- return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
-}
-XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
-{
- XXH_free(statePtr);
- return XXH_OK;
-}
-
-
-/*** Hash feed ***/
-
-XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
-{
- XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
- ZSTD_memset(&state, 0, sizeof(state)-4); /* do not write into reserved, for future removal */
- state.v1 = seed + PRIME32_1 + PRIME32_2;
- state.v2 = seed + PRIME32_2;
- state.v3 = seed + 0;
- state.v4 = seed - PRIME32_1;
- ZSTD_memcpy(statePtr, &state, sizeof(state));
- return XXH_OK;
-}
-
-
-XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
-{
- XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
- ZSTD_memset(&state, 0, sizeof(state)-8); /* do not write into reserved, for future removal */
- state.v1 = seed + PRIME64_1 + PRIME64_2;
- state.v2 = seed + PRIME64_2;
- state.v3 = seed + 0;
- state.v4 = seed - PRIME64_1;
- ZSTD_memcpy(statePtr, &state, sizeof(state));
- return XXH_OK;
-}
-
-
-FORCE_INLINE_TEMPLATE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
-{
- const BYTE* p = (const BYTE*)input;
- const BYTE* const bEnd = p + len;
-
-#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
- if (input==NULL) return XXH_ERROR;
-#endif
-
- state->total_len_32 += (unsigned)len;
- state->large_len |= (len>=16) | (state->total_len_32>=16);
-
- if (state->memsize + len < 16) { /* fill in tmp buffer */
- XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
- state->memsize += (unsigned)len;
- return XXH_OK;
- }
-
- if (state->memsize) { /* some data left from previous update */
- XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
- { const U32* p32 = state->mem32;
- state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
- state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
- state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
- state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++;
- }
- p += 16-state->memsize;
- state->memsize = 0;
- }
-
- if (p <= bEnd-16) {
- const BYTE* const limit = bEnd - 16;
- U32 v1 = state->v1;
- U32 v2 = state->v2;
- U32 v3 = state->v3;
- U32 v4 = state->v4;
-
- do {
- v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
- v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
- v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
- v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
- } while (p<=limit);
-
- state->v1 = v1;
- state->v2 = v2;
- state->v3 = v3;
- state->v4 = v4;
- }
-
- if (p < bEnd) {
- XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
- state->memsize = (unsigned)(bEnd-p);
- }
-
- return XXH_OK;
-}
-
-XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
-{
- XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
-
- if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
- return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
- else
- return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
-}
-
-
-
-FORCE_INLINE_TEMPLATE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
-{
- const BYTE * p = (const BYTE*)state->mem32;
- const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
- U32 h32;
-
- if (state->large_len) {
- h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
- } else {
- h32 = state->v3 /* == seed */ + PRIME32_5;
- }
-
- h32 += state->total_len_32;
-
- while (p+4<=bEnd) {
- h32 += XXH_readLE32(p, endian) * PRIME32_3;
- h32 = XXH_rotl32(h32, 17) * PRIME32_4;
- p+=4;
- }
-
- while (p<bEnd) {
- h32 += (*p) * PRIME32_5;
- h32 = XXH_rotl32(h32, 11) * PRIME32_1;
- p++;
- }
-
- h32 ^= h32 >> 15;
- h32 *= PRIME32_2;
- h32 ^= h32 >> 13;
- h32 *= PRIME32_3;
- h32 ^= h32 >> 16;
-
- return h32;
-}
-
-
-XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
-{
- XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
-
- if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
- return XXH32_digest_endian(state_in, XXH_littleEndian);
- else
- return XXH32_digest_endian(state_in, XXH_bigEndian);
-}
-
-
-
-/* **** XXH64 **** */
-
-FORCE_INLINE_TEMPLATE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
-{
- const BYTE* p = (const BYTE*)input;
- const BYTE* const bEnd = p + len;
-
-#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
- if (input==NULL) return XXH_ERROR;
-#endif
-
- state->total_len += len;
-
- if (state->memsize + len < 32) { /* fill in tmp buffer */
- if (input != NULL) {
- XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
- }
- state->memsize += (U32)len;
- return XXH_OK;
- }
-
- if (state->memsize) { /* tmp buffer is full */
- XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
- state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
- state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
- state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
- state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
- p += 32-state->memsize;
- state->memsize = 0;
- }
-
- if (p+32 <= bEnd) {
- const BYTE* const limit = bEnd - 32;
- U64 v1 = state->v1;
- U64 v2 = state->v2;
- U64 v3 = state->v3;
- U64 v4 = state->v4;
-
- do {
- v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
- v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
- v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
- v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
- } while (p<=limit);
-
- state->v1 = v1;
- state->v2 = v2;
- state->v3 = v3;
- state->v4 = v4;
- }
-
- if (p < bEnd) {
- XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
- state->memsize = (unsigned)(bEnd-p);
- }
-
- return XXH_OK;
-}
-
-XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
-{
- XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
-
- if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
- return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
- else
- return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
-}
-
-
-
-FORCE_INLINE_TEMPLATE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
-{
- const BYTE * p = (const BYTE*)state->mem64;
- const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
- U64 h64;
-
- if (state->total_len >= 32) {
- U64 const v1 = state->v1;
- U64 const v2 = state->v2;
- U64 const v3 = state->v3;
- U64 const v4 = state->v4;
-
- h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
- h64 = XXH64_mergeRound(h64, v1);
- h64 = XXH64_mergeRound(h64, v2);
- h64 = XXH64_mergeRound(h64, v3);
- h64 = XXH64_mergeRound(h64, v4);
- } else {
- h64 = state->v3 + PRIME64_5;
- }
-
- h64 += (U64) state->total_len;
-
- while (p+8<=bEnd) {
- U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
- h64 ^= k1;
- h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
- p+=8;
- }
-
- if (p+4<=bEnd) {
- h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
- h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
- p+=4;
- }
-
- while (p<bEnd) {
- h64 ^= (*p) * PRIME64_5;
- h64 = XXH_rotl64(h64, 11) * PRIME64_1;
- p++;
- }
-
- h64 ^= h64 >> 33;
- h64 *= PRIME64_2;
- h64 ^= h64 >> 29;
- h64 *= PRIME64_3;
- h64 ^= h64 >> 32;
-
- return h64;
-}
-
-
-XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
-{
- XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
-
- if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
- return XXH64_digest_endian(state_in, XXH_littleEndian);
- else
- return XXH64_digest_endian(state_in, XXH_bigEndian);
-}
-
-
-/* **************************
-* Canonical representation
-****************************/
-
-/*! Default XXH result types are basic unsigned 32 and 64 bits.
-* The canonical representation follows human-readable write convention, aka big-endian (large digits first).
-* These functions allow transformation of hash result into and from its canonical format.
-* This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
-*/
-
-XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
-{
- XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
- if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
- ZSTD_memcpy(dst, &hash, sizeof(*dst));
-}
-
-XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
-{
- XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
- if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
- ZSTD_memcpy(dst, &hash, sizeof(*dst));
-}
-
-XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
-{
- return XXH_readBE32(src);
-}
-
-XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
-{
- return XXH_readBE64(src);
-}
diff --git a/sys/contrib/zstd/lib/common/xxhash.h b/sys/contrib/zstd/lib/common/xxhash.h
index ff1fafe4cd22..60fe033a91cb 100644
--- a/sys/contrib/zstd/lib/common/xxhash.h
+++ b/sys/contrib/zstd/lib/common/xxhash.h
@@ -1,288 +1,5689 @@
/*
- * xxHash - Extremely Fast Hash algorithm
- * Header File
- * Copyright (c) 2012-2020, Yann Collet, Facebook, Inc.
+ * xxHash - Fast Hash algorithm
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ *
+ * You can contact the author at :
+ * - xxHash homepage: http://www.xxhash.com
+ * - xxHash source repository : https://github.com/Cyan4973/xxHash
*
- * You can contact the author at :
- * - xxHash source repository : https://github.com/Cyan4973/xxHash
- *
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
-/* Notice extracted from xxHash homepage :
-xxHash is an extremely fast Hash algorithm, running at RAM speed limits.
+#ifndef XXH_NO_XXH3
+# define XXH_NO_XXH3
+#endif
+
+#ifndef XXH_NAMESPACE
+# define XXH_NAMESPACE ZSTD_
+#endif
+
+/*!
+ * @mainpage xxHash
+ *
+ * @file xxhash.h
+ * xxHash prototypes and implementation
+ */
+/* TODO: update */
+/* Notice extracted from xxHash homepage:
+
+xxHash is an extremely fast hash algorithm, running at RAM speed limits.
It also successfully passes all tests from the SMHasher suite.
Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz)
Name Speed Q.Score Author
xxHash 5.4 GB/s 10
CrapWow 3.2 GB/s 2 Andrew
-MumurHash 3a 2.7 GB/s 10 Austin Appleby
+MurmurHash 3a 2.7 GB/s 10 Austin Appleby
SpookyHash 2.0 GB/s 10 Bob Jenkins
SBox 1.4 GB/s 9 Bret Mulvey
Lookup3 1.2 GB/s 9 Bob Jenkins
SuperFastHash 1.2 GB/s 1 Paul Hsieh
CityHash64 1.05 GB/s 10 Pike & Alakuijala
FNV 0.55 GB/s 5 Fowler, Noll, Vo
CRC32 0.43 GB/s 9
MD5-32 0.33 GB/s 10 Ronald L. Rivest
SHA1-32 0.28 GB/s 10
Q.Score is a measure of quality of the hash function.
It depends on successfully passing SMHasher test set.
10 is a perfect score.
-A 64-bits version, named XXH64, is available since r35.
-It offers much better speed, but for 64-bits applications only.
+Note: SMHasher's CRC32 implementation is not the fastest one.
+Other speed-oriented implementations can be faster,
+especially in combination with PCLMUL instruction:
+https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html?showComment=1552696407071#c3490092340461170735
+
+A 64-bit version, named XXH64, is available since r35.
+It offers much better speed, but for 64-bit applications only.
Name Speed on 64 bits Speed on 32 bits
XXH64 13.8 GB/s 1.9 GB/s
XXH32 6.8 GB/s 6.0 GB/s
*/
#if defined (__cplusplus)
extern "C" {
#endif
-#ifndef XXHASH_H_5627135585666179
-#define XXHASH_H_5627135585666179 1
-
-
-/* ****************************
-* Definitions
-******************************/
-#include "zstd_deps.h"
-typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
-
-
/* ****************************
-* API modifier
-******************************/
-/** XXH_PRIVATE_API
-* This is useful if you want to include xxhash functions in `static` mode
-* in order to inline them, and remove their symbol from the public list.
-* Methodology :
-* #define XXH_PRIVATE_API
-* #include "xxhash.h"
-* `xxhash.c` is automatically included.
-* It's not useful to compile and link it as a separate module anymore.
-*/
-#ifdef XXH_PRIVATE_API
-# ifndef XXH_STATIC_LINKING_ONLY
-# define XXH_STATIC_LINKING_ONLY
-# endif
+ * INLINE mode
+ ******************************/
+/*!
+ * XXH_INLINE_ALL (and XXH_PRIVATE_API)
+ * Use these build macros to inline xxhash into the target unit.
+ * Inlining improves performance on small inputs, especially when the length is
+ * expressed as a compile-time constant:
+ *
+ * https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html
+ *
+ * It also keeps xxHash symbols private to the unit, so they are not exported.
+ *
+ * Usage:
+ * #define XXH_INLINE_ALL
+ * #include "xxhash.h"
+ *
+ * Do not compile and link xxhash.o as a separate object, as it is not useful.
+ */
+#if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \
+ && !defined(XXH_INLINE_ALL_31684351384)
+ /* this section should be traversed only once */
+# define XXH_INLINE_ALL_31684351384
+ /* give access to the advanced API, required to compile implementations */
+# undef XXH_STATIC_LINKING_ONLY /* avoid macro redef */
+# define XXH_STATIC_LINKING_ONLY
+ /* make all functions private */
+# undef XXH_PUBLIC_API
# if defined(__GNUC__)
# define XXH_PUBLIC_API static __inline __attribute__((unused))
# elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define XXH_PUBLIC_API static inline
# elif defined(_MSC_VER)
# define XXH_PUBLIC_API static __inline
# else
-# define XXH_PUBLIC_API static /* this version may generate warnings for unused static functions; disable the relevant warning */
+ /* note: this version may generate warnings for unused static functions */
+# define XXH_PUBLIC_API static
# endif
-#else
-# define XXH_PUBLIC_API /* do nothing */
-#endif /* XXH_PRIVATE_API */
-/*!XXH_NAMESPACE, aka Namespace Emulation :
+ /*
+ * This part deals with the special case where a unit wants to inline xxHash,
+ * but "xxhash.h" has previously been included without XXH_INLINE_ALL,
+ * such as part of some previously included *.h header file.
+ * Without further action, the new include would just be ignored,
+ * and functions would effectively _not_ be inlined (silent failure).
+ * The following macros solve this situation by prefixing all inlined names,
+ * avoiding naming collision with previous inclusions.
+ */
+ /* Before that, we unconditionally #undef all symbols,
+ * in case they were already defined with XXH_NAMESPACE.
+ * They will then be redefined for XXH_INLINE_ALL
+ */
+# undef XXH_versionNumber
+ /* XXH32 */
+# undef XXH32
+# undef XXH32_createState
+# undef XXH32_freeState
+# undef XXH32_reset
+# undef XXH32_update
+# undef XXH32_digest
+# undef XXH32_copyState
+# undef XXH32_canonicalFromHash
+# undef XXH32_hashFromCanonical
+ /* XXH64 */
+# undef XXH64
+# undef XXH64_createState
+# undef XXH64_freeState
+# undef XXH64_reset
+# undef XXH64_update
+# undef XXH64_digest
+# undef XXH64_copyState
+# undef XXH64_canonicalFromHash
+# undef XXH64_hashFromCanonical
+ /* XXH3_64bits */
+# undef XXH3_64bits
+# undef XXH3_64bits_withSecret
+# undef XXH3_64bits_withSeed
+# undef XXH3_64bits_withSecretandSeed
+# undef XXH3_createState
+# undef XXH3_freeState
+# undef XXH3_copyState
+# undef XXH3_64bits_reset
+# undef XXH3_64bits_reset_withSeed
+# undef XXH3_64bits_reset_withSecret
+# undef XXH3_64bits_update
+# undef XXH3_64bits_digest
+# undef XXH3_generateSecret
+ /* XXH3_128bits */
+# undef XXH128
+# undef XXH3_128bits
+# undef XXH3_128bits_withSeed
+# undef XXH3_128bits_withSecret
+# undef XXH3_128bits_reset
+# undef XXH3_128bits_reset_withSeed
+# undef XXH3_128bits_reset_withSecret
+# undef XXH3_128bits_reset_withSecretandSeed
+# undef XXH3_128bits_update
+# undef XXH3_128bits_digest
+# undef XXH128_isEqual
+# undef XXH128_cmp
+# undef XXH128_canonicalFromHash
+# undef XXH128_hashFromCanonical
+ /* Finally, free the namespace itself */
+# undef XXH_NAMESPACE
-If you want to include _and expose_ xxHash functions from within your own library,
-but also want to avoid symbol collisions with another library which also includes xxHash,
+ /* employ the namespace for XXH_INLINE_ALL */
+# define XXH_NAMESPACE XXH_INLINE_
+ /*
+ * Some identifiers (enums, type names) are not symbols,
+ * but they must nonetheless be renamed to avoid redeclaration.
+ * Alternative solution: do not redeclare them.
+ * However, this requires some #ifdefs, and has a more dispersed impact.
+ * Meanwhile, renaming can be achieved in a single place.
+ */
+# define XXH_IPREF(Id) XXH_NAMESPACE ## Id
+# define XXH_OK XXH_IPREF(XXH_OK)
+# define XXH_ERROR XXH_IPREF(XXH_ERROR)
+# define XXH_errorcode XXH_IPREF(XXH_errorcode)
+# define XXH32_canonical_t XXH_IPREF(XXH32_canonical_t)
+# define XXH64_canonical_t XXH_IPREF(XXH64_canonical_t)
+# define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t)
+# define XXH32_state_s XXH_IPREF(XXH32_state_s)
+# define XXH32_state_t XXH_IPREF(XXH32_state_t)
+# define XXH64_state_s XXH_IPREF(XXH64_state_s)
+# define XXH64_state_t XXH_IPREF(XXH64_state_t)
+# define XXH3_state_s XXH_IPREF(XXH3_state_s)
+# define XXH3_state_t XXH_IPREF(XXH3_state_t)
+# define XXH128_hash_t XXH_IPREF(XXH128_hash_t)
+ /* Ensure the header is parsed again, even if it was previously included */
+# undef XXHASH_H_5627135585666179
+# undef XXHASH_H_STATIC_13879238742
+#endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */
-you can use XXH_NAMESPACE, to automatically prefix any public symbol from xxhash library
-with the value of XXH_NAMESPACE (so avoid to keep it NULL and avoid numeric values).
-Note that no change is required within the calling program as long as it includes `xxhash.h` :
-regular symbol name will be automatically translated by this header.
-*/
+
+/* ****************************************************************
+ * Stable API
+ *****************************************************************/
+#ifndef XXHASH_H_5627135585666179
+#define XXHASH_H_5627135585666179 1
+
+
+/*!
+ * @defgroup public Public API
+ * Contains details on the public xxHash functions.
+ * @{
+ */
+/* specific declaration modes for Windows */
+#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
+# if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
+# ifdef XXH_EXPORT
+# define XXH_PUBLIC_API __declspec(dllexport)
+# elif XXH_IMPORT
+# define XXH_PUBLIC_API __declspec(dllimport)
+# endif
+# else
+# define XXH_PUBLIC_API /* do nothing */
+# endif
+#endif
+
+#ifdef XXH_DOXYGEN
+/*!
+ * @brief Emulate a namespace by transparently prefixing all symbols.
+ *
+ * If you want to include _and expose_ xxHash functions from within your own
+ * library, but also want to avoid symbol collisions with other libraries which
+ * may also include xxHash, you can use XXH_NAMESPACE to automatically prefix
+ * any public symbol from xxhash library with the value of XXH_NAMESPACE
+ * (therefore, avoid empty or numeric values).
+ *
+ * Note that no change is required within the calling program as long as it
+ * includes `xxhash.h`: Regular symbol names will be automatically translated
+ * by this header.
+ */
+# define XXH_NAMESPACE /* YOUR NAME HERE */
+# undef XXH_NAMESPACE
+#endif
+
#ifdef XXH_NAMESPACE
# define XXH_CAT(A,B) A##B
# define XXH_NAME2(A,B) XXH_CAT(A,B)
-# define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
-# define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
# define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
+/* XXH32 */
+# define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
# define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
-# define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
# define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
-# define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
# define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset)
-# define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
# define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update)
-# define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
# define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest)
-# define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
# define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
-# define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
# define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
-# define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
# define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
+/* XXH64 */
+# define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
+# define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
+# define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
+# define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
+# define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
+# define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
+# define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
+# define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
# define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
+/* XXH3_64bits */
+# define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
+# define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
+# define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
+# define XXH3_64bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecretandSeed)
+# define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
+# define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
+# define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
+# define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
+# define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
+# define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
+# define XXH3_64bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecretandSeed)
+# define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
+# define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
+# define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret)
+# define XXH3_generateSecret_fromSeed XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret_fromSeed)
+/* XXH3_128bits */
+# define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
+# define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
+# define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
+# define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
+# define XXH3_128bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecretandSeed)
+# define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
+# define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
+# define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
+# define XXH3_128bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecretandSeed)
+# define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
+# define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
+# define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
+# define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
+# define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
+# define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
#endif
/* *************************************
* Version
***************************************/
#define XXH_VERSION_MAJOR 0
-#define XXH_VERSION_MINOR 6
-#define XXH_VERSION_RELEASE 2
+#define XXH_VERSION_MINOR 8
+#define XXH_VERSION_RELEASE 1
#define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
+
+/*!
+ * @brief Obtains the xxHash version.
+ *
+ * This is mostly useful when xxHash is compiled as a shared library,
+ * since the returned value comes from the library, as opposed to header file.
+ *
+ * @return `XXH_VERSION_NUMBER` of the invoked library.
+ */
XXH_PUBLIC_API unsigned XXH_versionNumber (void);
/* ****************************
-* Simple Hash Functions
+* Common basic types
******************************/
-typedef unsigned int XXH32_hash_t;
-typedef unsigned long long XXH64_hash_t;
+#include <stddef.h> /* size_t */
+typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
-XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, unsigned int seed);
-/* Begin FreeBSD - This symbol is needed by dll-linked CLI zstd(1). */
-__attribute__((visibility ("default")))
-/* End FreeBSD */
-XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t length, unsigned long long seed);
-
-/*!
-XXH32() :
- Calculate the 32-bits hash of sequence "length" bytes stored at memory address "input".
- The memory between input & input+length must be valid (allocated and read-accessible).
- "seed" can be used to alter the result predictably.
- Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark) : 5.4 GB/s
-XXH64() :
- Calculate the 64-bits hash of sequence of length "len" stored at memory address "input".
- "seed" can be used to alter the result predictably.
- This function runs 2x faster on 64-bits systems, but slower on 32-bits systems (see benchmark).
-*/
+/*-**********************************************************************
+* 32-bit hash
+************************************************************************/
+#if defined(XXH_DOXYGEN) /* Don't show <stdint.h> include */
+/*!
+ * @brief An unsigned 32-bit integer.
+ *
+ * Not necessarily defined to `uint32_t` but functionally equivalent.
+ */
+typedef uint32_t XXH32_hash_t;
-/* ****************************
-* Streaming Hash Functions
-******************************/
-typedef struct XXH32_state_s XXH32_state_t; /* incomplete type */
-typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */
+#elif !defined (__VMS) \
+ && (defined (__cplusplus) \
+ || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
+# include <stdint.h>
+ typedef uint32_t XXH32_hash_t;
-/*! State allocation, compatible with dynamic libraries */
+#else
+# include <limits.h>
+# if UINT_MAX == 0xFFFFFFFFUL
+ typedef unsigned int XXH32_hash_t;
+# else
+# if ULONG_MAX == 0xFFFFFFFFUL
+ typedef unsigned long XXH32_hash_t;
+# else
+# error "unsupported platform: need a 32-bit type"
+# endif
+# endif
+#endif
-XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void);
-XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr);
+/*!
+ * @}
+ *
+ * @defgroup xxh32_family XXH32 family
+ * @ingroup public
+ * Contains functions used in the classic 32-bit xxHash algorithm.
+ *
+ * @note
+ * XXH32 is useful for older platforms, with no or poor 64-bit performance.
+ * Note that @ref xxh3_family provides competitive speed
+ * for both 32-bit and 64-bit systems, and offers true 64/128 bit hash results.
+ *
+ * @see @ref xxh64_family, @ref xxh3_family : Other xxHash families
+ * @see @ref xxh32_impl for implementation details
+ * @{
+ */
-XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void);
-XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr);
+/*!
+ * @brief Calculates the 32-bit hash of @p input using xxHash32.
+ *
+ * Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s
+ *
+ * @param input The block of data to be hashed, at least @p length bytes in size.
+ * @param length The length of @p input, in bytes.
+ * @param seed The 32-bit seed to alter the hash's output predictably.
+ *
+ * @pre
+ * The memory between @p input and @p input + @p length must be valid,
+ * readable, contiguous memory. However, if @p length is `0`, @p input may be
+ * `NULL`. In C++, this also must be *TriviallyCopyable*.
+ *
+ * @return The calculated 32-bit hash value.
+ *
+ * @see
+ * XXH64(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128():
+ * Direct equivalents for the other variants of xxHash.
+ * @see
+ * XXH32_createState(), XXH32_update(), XXH32_digest(): Streaming version.
+ */
+XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);
+
+/*!
+ * Streaming functions generate the xxHash value from an incremental input.
+ * This method is slower than single-call functions, due to state management.
+ * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
+ *
+ * An XXH state must first be allocated using `XXH*_createState()`.
+ *
+ * Start a new hash by initializing the state with a seed using `XXH*_reset()`.
+ *
+ * Then, feed the hash state by calling `XXH*_update()` as many times as necessary.
+ *
+ * The function returns an error code, with 0 meaning OK, and any other value
+ * meaning there is an error.
+ *
+ * Finally, a hash value can be produced anytime, by using `XXH*_digest()`.
+ * This function returns the nn-bits hash as an int or long long.
+ *
+ * It's still possible to continue inserting input into the hash state after a
+ * digest, and generate new hash values later on by invoking `XXH*_digest()`.
+ *
+ * When done, release the state using `XXH*_freeState()`.
+ *
+ * Example code for incrementally hashing a file:
+ * @code{.c}
+ * #include <stdio.h>
+ * #include <xxhash.h>
+ * #define BUFFER_SIZE 256
+ *
+ * // Note: XXH64 and XXH3 use the same interface.
+ * XXH32_hash_t
+ * hashFile(FILE* stream)
+ * {
+ * XXH32_state_t* state;
+ * unsigned char buf[BUFFER_SIZE];
+ * size_t amt;
+ * XXH32_hash_t hash;
+ *
+ * state = XXH32_createState(); // Create a state
+ * assert(state != NULL); // Error check here
+ * XXH32_reset(state, 0xbaad5eed); // Reset state with our seed
+ * while ((amt = fread(buf, 1, sizeof(buf), stream)) != 0) {
+ * XXH32_update(state, buf, amt); // Hash the file in chunks
+ * }
+ * hash = XXH32_digest(state); // Finalize the hash
+ * XXH32_freeState(state); // Clean up
+ * return hash;
+ * }
+ * @endcode
+ */
+
+/*!
+ * @typedef struct XXH32_state_s XXH32_state_t
+ * @brief The opaque state struct for the XXH32 streaming API.
+ *
+ * @see XXH32_state_s for details.
+ */
+typedef struct XXH32_state_s XXH32_state_t;
+/*!
+ * @brief Allocates an @ref XXH32_state_t.
+ *
+ * Must be freed with XXH32_freeState().
+ * @return An allocated XXH32_state_t on success, `NULL` on failure.
+ */
+XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void);
+/*!
+ * @brief Frees an @ref XXH32_state_t.
+ *
+ * Must be allocated with XXH32_createState().
+ * @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState().
+ * @return XXH_OK.
+ */
+XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr);
+/*!
+ * @brief Copies one @ref XXH32_state_t to another.
+ *
+ * @param dst_state The state to copy to.
+ * @param src_state The state to copy from.
+ * @pre
+ * @p dst_state and @p src_state must not be `NULL` and must not overlap.
+ */
+XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state);
-/* hash streaming */
+/*!
+ * @brief Resets an @ref XXH32_state_t to begin a new hash.
+ *
+ * This function resets and seeds a state. Call it before @ref XXH32_update().
+ *
+ * @param statePtr The state struct to reset.
+ * @param seed The 32-bit seed to alter the hash result predictably.
+ *
+ * @pre
+ * @p statePtr must not be `NULL`.
+ *
+ * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
+ */
+XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t seed);
-XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, unsigned int seed);
+/*!
+ * @brief Consumes a block of @p input to an @ref XXH32_state_t.
+ *
+ * Call this to incrementally consume blocks of data.
+ *
+ * @param statePtr The state struct to update.
+ * @param input The block of data to be hashed, at least @p length bytes in size.
+ * @param length The length of @p input, in bytes.
+ *
+ * @pre
+ * @p statePtr must not be `NULL`.
+ * @pre
+ * The memory between @p input and @p input + @p length must be valid,
+ * readable, contiguous memory. However, if @p length is `0`, @p input may be
+ * `NULL`. In C++, this also must be *TriviallyCopyable*.
+ *
+ * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
+ */
XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
+
+/*!
+ * @brief Returns the calculated hash value from an @ref XXH32_state_t.
+ *
+ * @note
+ * Calling XXH32_digest() will not affect @p statePtr, so you can update,
+ * digest, and update again.
+ *
+ * @param statePtr The state struct to calculate the hash from.
+ *
+ * @pre
+ * @p statePtr must not be `NULL`.
+ *
+ * @return The calculated xxHash32 value from that state.
+ */
XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
-XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, unsigned long long seed);
-XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length);
-XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* statePtr);
+/******* Canonical representation *******/
/*
-These functions generate the xxHash of an input provided in multiple segments.
-Note that, for small input, they are slower than single-call functions, due to state management.
-For small input, prefer `XXH32()` and `XXH64()` .
+ * The default return values from XXH functions are unsigned 32 and 64 bit
+ * integers.
+ * This the simplest and fastest format for further post-processing.
+ *
+ * However, this leaves open the question of what is the order on the byte level,
+ * since little and big endian conventions will store the same number differently.
+ *
+ * The canonical representation settles this issue by mandating big-endian
+ * convention, the same convention as human-readable numbers (large digits first).
+ *
+ * When writing hash values to storage, sending them over a network, or printing
+ * them, it's highly recommended to use the canonical representation to ensure
+ * portability across a wider range of systems, present and future.
+ *
+ * The following functions allow transformation of hash values to and from
+ * canonical format.
+ */
-XXH state must first be allocated, using XXH*_createState() .
+/*!
+ * @brief Canonical (big endian) representation of @ref XXH32_hash_t.
+ */
+typedef struct {
+ unsigned char digest[4]; /*!< Hash bytes, big endian */
+} XXH32_canonical_t;
+
+/*!
+ * @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t.
+ *
+ * @param dst The @ref XXH32_canonical_t pointer to be stored to.
+ * @param hash The @ref XXH32_hash_t to be converted.
+ *
+ * @pre
+ * @p dst must not be `NULL`.
+ */
+XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
+
+/*!
+ * @brief Converts an @ref XXH32_canonical_t to a native @ref XXH32_hash_t.
+ *
+ * @param src The @ref XXH32_canonical_t to convert.
+ *
+ * @pre
+ * @p src must not be `NULL`.
+ *
+ * @return The converted hash.
+ */
+XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
-Start a new hash by initializing state with a seed, using XXH*_reset().
-Then, feed the hash state by calling XXH*_update() as many times as necessary.
-Obviously, input must be allocated and read accessible.
-The function returns an error code, with 0 meaning OK, and any other value meaning there is an error.
+#ifdef __has_attribute
+# define XXH_HAS_ATTRIBUTE(x) __has_attribute(x)
+#else
+# define XXH_HAS_ATTRIBUTE(x) 0
+#endif
-Finally, a hash value can be produced anytime, by using XXH*_digest().
-This function returns the nn-bits hash as an int or long long.
+/* C-language Attributes are added in C23. */
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ > 201710L) && defined(__has_c_attribute)
+# define XXH_HAS_C_ATTRIBUTE(x) __has_c_attribute(x)
+#else
+# define XXH_HAS_C_ATTRIBUTE(x) 0
+#endif
-It's still possible to continue inserting input into the hash state after a digest,
-and generate some new hashes later on, by calling again XXH*_digest().
+#if defined(__cplusplus) && defined(__has_cpp_attribute)
+# define XXH_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
+#else
+# define XXH_HAS_CPP_ATTRIBUTE(x) 0
+#endif
-When done, free XXH state space if it was allocated dynamically.
+/*
+Define XXH_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute
+introduced in CPP17 and C23.
+CPP17 : https://en.cppreference.com/w/cpp/language/attributes/fallthrough
+C23 : https://en.cppreference.com/w/c/language/attributes/fallthrough
*/
+#if XXH_HAS_C_ATTRIBUTE(x)
+# define XXH_FALLTHROUGH [[fallthrough]]
+#elif XXH_HAS_CPP_ATTRIBUTE(x)
+# define XXH_FALLTHROUGH [[fallthrough]]
+#elif XXH_HAS_ATTRIBUTE(__fallthrough__)
+# define XXH_FALLTHROUGH __attribute__ ((fallthrough))
+#else
+# define XXH_FALLTHROUGH
+#endif
+/*!
+ * @}
+ * @ingroup public
+ * @{
+ */
-/* **************************
-* Utils
-****************************/
-#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* ! C99 */
-# define restrict /* disable restrict */
+#ifndef XXH_NO_LONG_LONG
+/*-**********************************************************************
+* 64-bit hash
+************************************************************************/
+#if defined(XXH_DOXYGEN) /* don't include <stdint.h> */
+/*!
+ * @brief An unsigned 64-bit integer.
+ *
+ * Not necessarily defined to `uint64_t` but functionally equivalent.
+ */
+typedef uint64_t XXH64_hash_t;
+#elif !defined (__VMS) \
+ && (defined (__cplusplus) \
+ || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
+# include <stdint.h>
+ typedef uint64_t XXH64_hash_t;
+#else
+# include <limits.h>
+# if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL
+ /* LP64 ABI says uint64_t is unsigned long */
+ typedef unsigned long XXH64_hash_t;
+# else
+ /* the following type must have a width of 64-bit */
+ typedef unsigned long long XXH64_hash_t;
+# endif
#endif
-XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dst_state, const XXH32_state_t* restrict src_state);
-XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dst_state, const XXH64_state_t* restrict src_state);
+/*!
+ * @}
+ *
+ * @defgroup xxh64_family XXH64 family
+ * @ingroup public
+ * @{
+ * Contains functions used in the classic 64-bit xxHash algorithm.
+ *
+ * @note
+ * XXH3 provides competitive speed for both 32-bit and 64-bit systems,
+ * and offers true 64/128 bit hash results.
+ * It provides better speed for systems with vector processing capabilities.
+ */
-/* **************************
-* Canonical representation
-****************************/
-/* Default result type for XXH functions are primitive unsigned 32 and 64 bits.
-* The canonical representation uses human-readable write convention, aka big-endian (large digits first).
-* These functions allow transformation of hash result into and from its canonical format.
-* This way, hash values can be written into a file / memory, and remain comparable on different systems and programs.
-*/
-typedef struct { unsigned char digest[4]; } XXH32_canonical_t;
-typedef struct { unsigned char digest[8]; } XXH64_canonical_t;
+/*!
+ * @brief Calculates the 64-bit hash of @p input using xxHash64.
+ *
+ * This function usually runs faster on 64-bit systems, but slower on 32-bit
+ * systems (see benchmark).
+ *
+ * @param input The block of data to be hashed, at least @p length bytes in size.
+ * @param length The length of @p input, in bytes.
+ * @param seed The 64-bit seed to alter the hash's output predictably.
+ *
+ * @pre
+ * The memory between @p input and @p input + @p length must be valid,
+ * readable, contiguous memory. However, if @p length is `0`, @p input may be
+ * `NULL`. In C++, this also must be *TriviallyCopyable*.
+ *
+ * @return The calculated 64-bit hash.
+ *
+ * @see
+ * XXH32(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128():
+ * Direct equivalents for the other variants of xxHash.
+ * @see
+ * XXH64_createState(), XXH64_update(), XXH64_digest(): Streaming version.
+ */
+/* Begin FreeBSD - This symbol is needed by dll-linked CLI zstd(1). */
+__attribute__((visibility ("default")))
+/* End FreeBSD */
+XXH_PUBLIC_API XXH64_hash_t XXH64(const void* input, size_t length, XXH64_hash_t seed);
-XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
-XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash);
+/******* Streaming *******/
+/*!
+ * @brief The opaque state struct for the XXH64 streaming API.
+ *
+ * @see XXH64_state_s for details.
+ */
+typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */
+XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void);
+XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr);
+XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dst_state, const XXH64_state_t* src_state);
-XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
+XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, XXH64_hash_t seed);
+XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length);
+XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* statePtr);
+
+/******* Canonical representation *******/
+typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t;
+XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash);
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src);
+#ifndef XXH_NO_XXH3
+/*!
+ * @}
+ * ************************************************************************
+ * @defgroup xxh3_family XXH3 family
+ * @ingroup public
+ * @{
+ *
+ * XXH3 is a more recent hash algorithm featuring:
+ * - Improved speed for both small and large inputs
+ * - True 64-bit and 128-bit outputs
+ * - SIMD acceleration
+ * - Improved 32-bit viability
+ *
+ * Speed analysis methodology is explained here:
+ *
+ * https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
+ *
+ * Compared to XXH64, expect XXH3 to run approximately
+ * ~2x faster on large inputs and >3x faster on small ones,
+ * exact differences vary depending on platform.
+ *
+ * XXH3's speed benefits greatly from SIMD and 64-bit arithmetic,
+ * but does not require it.
+ * Any 32-bit and 64-bit targets that can run XXH32 smoothly
+ * can run XXH3 at competitive speeds, even without vector support.
+ * Further details are explained in the implementation.
+ *
+ * Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, POWER8,
+ * ZVector and scalar targets. This can be controlled via the XXH_VECTOR macro.
+ *
+ * XXH3 implementation is portable:
+ * it has a generic C90 formulation that can be compiled on any platform,
+ * all implementations generage exactly the same hash value on all platforms.
+ * Starting from v0.8.0, it's also labelled "stable", meaning that
+ * any future version will also generate the same hash value.
+ *
+ * XXH3 offers 2 variants, _64bits and _128bits.
+ *
+ * When only 64 bits are needed, prefer invoking the _64bits variant, as it
+ * reduces the amount of mixing, resulting in faster speed on small inputs.
+ * It's also generally simpler to manipulate a scalar return type than a struct.
+ *
+ * The API supports one-shot hashing, streaming mode, and custom secrets.
+ */
+
+/*-**********************************************************************
+* XXH3 64-bit variant
+************************************************************************/
+
+/* XXH3_64bits():
+ * default 64-bit variant, using default secret and default seed of 0.
+ * It's the fastest variant. */
+XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len);
+
+/*
+ * XXH3_64bits_withSeed():
+ * This variant generates a custom secret on the fly
+ * based on default secret altered using the `seed` value.
+ * While this operation is decently fast, note that it's not completely free.
+ * Note: seed==0 produces the same results as XXH3_64bits().
+ */
+XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
+
+/*!
+ * The bare minimum size for a custom secret.
+ *
+ * @see
+ * XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(),
+ * XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret().
+ */
+#define XXH3_SECRET_SIZE_MIN 136
+
+/*
+ * XXH3_64bits_withSecret():
+ * It's possible to provide any blob of bytes as a "secret" to generate the hash.
+ * This makes it more difficult for an external actor to prepare an intentional collision.
+ * The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN).
+ * However, the quality of the secret impacts the dispersion of the hash algorithm.
+ * Therefore, the secret _must_ look like a bunch of random bytes.
+ * Avoid "trivial" or structured data such as repeated sequences or a text document.
+ * Whenever in doubt about the "randomness" of the blob of bytes,
+ * consider employing "XXH3_generateSecret()" instead (see below).
+ * It will generate a proper high entropy secret derived from the blob of bytes.
+ * Another advantage of using XXH3_generateSecret() is that
+ * it guarantees that all bits within the initial blob of bytes
+ * will impact every bit of the output.
+ * This is not necessarily the case when using the blob of bytes directly
+ * because, when hashing _small_ inputs, only a portion of the secret is employed.
+ */
+XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
+
+
+/******* Streaming *******/
+/*
+ * Streaming requires state maintenance.
+ * This operation costs memory and CPU.
+ * As a consequence, streaming is slower than one-shot hashing.
+ * For better performance, prefer one-shot functions whenever applicable.
+ */
+
+/*!
+ * @brief The state struct for the XXH3 streaming API.
+ *
+ * @see XXH3_state_s for details.
+ */
+typedef struct XXH3_state_s XXH3_state_t;
+XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void);
+XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr);
+XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state);
+
+/*
+ * XXH3_64bits_reset():
+ * Initialize with default parameters.
+ * digest will be equivalent to `XXH3_64bits()`.
+ */
+XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr);
+/*
+ * XXH3_64bits_reset_withSeed():
+ * Generate a custom secret from `seed`, and store it into `statePtr`.
+ * digest will be equivalent to `XXH3_64bits_withSeed()`.
+ */
+XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
+/*
+ * XXH3_64bits_reset_withSecret():
+ * `secret` is referenced, it _must outlive_ the hash streaming session.
+ * Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`,
+ * and the quality of produced hash values depends on secret's entropy
+ * (secret's content should look like a bunch of random bytes).
+ * When in doubt about the randomness of a candidate `secret`,
+ * consider employing `XXH3_generateSecret()` instead (see below).
+ */
+XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
+
+XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
+XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* statePtr);
+
+/* note : canonical representation of XXH3 is the same as XXH64
+ * since they both produce XXH64_hash_t values */
+
+
+/*-**********************************************************************
+* XXH3 128-bit variant
+************************************************************************/
+
+/*!
+ * @brief The return value from 128-bit hashes.
+ *
+ * Stored in little endian order, although the fields themselves are in native
+ * endianness.
+ */
+typedef struct {
+ XXH64_hash_t low64; /*!< `value & 0xFFFFFFFFFFFFFFFF` */
+ XXH64_hash_t high64; /*!< `value >> 64` */
+} XXH128_hash_t;
+
+XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len);
+XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
+XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
+
+/******* Streaming *******/
+/*
+ * Streaming requires state maintenance.
+ * This operation costs memory and CPU.
+ * As a consequence, streaming is slower than one-shot hashing.
+ * For better performance, prefer one-shot functions whenever applicable.
+ *
+ * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits().
+ * Use already declared XXH3_createState() and XXH3_freeState().
+ *
+ * All reset and streaming functions have same meaning as their 64-bit counterpart.
+ */
+
+XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr);
+XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
+XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
+
+XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
+XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* statePtr);
+
+/* Following helper functions make it possible to compare XXH128_hast_t values.
+ * Since XXH128_hash_t is a structure, this capability is not offered by the language.
+ * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */
+
+/*!
+ * XXH128_isEqual():
+ * Return: 1 if `h1` and `h2` are equal, 0 if they are not.
+ */
+XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2);
+
+/*!
+ * XXH128_cmp():
+ *
+ * This comparator is compatible with stdlib's `qsort()`/`bsearch()`.
+ *
+ * return: >0 if *h128_1 > *h128_2
+ * =0 if *h128_1 == *h128_2
+ * <0 if *h128_1 < *h128_2
+ */
+XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2);
+
+
+/******* Canonical representation *******/
+typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t;
+XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash);
+XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src);
+
+
+#endif /* !XXH_NO_XXH3 */
+#endif /* XXH_NO_LONG_LONG */
+
+/*!
+ * @}
+ */
#endif /* XXHASH_H_5627135585666179 */
-/* ================================================================================================
- This section contains definitions which are not guaranteed to remain stable.
- They may change in future versions, becoming incompatible with a different version of the library.
- They shall only be used with static linking.
- Never use these definitions in association with dynamic linking !
-=================================================================================================== */
-#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXH_STATIC_H_3543687687345)
-#define XXH_STATIC_H_3543687687345
-
-/* These definitions are only meant to allow allocation of XXH state
- statically, on stack, or in a struct for example.
- Do not use members directly. */
-
- struct XXH32_state_s {
- unsigned total_len_32;
- unsigned large_len;
- unsigned v1;
- unsigned v2;
- unsigned v3;
- unsigned v4;
- unsigned mem32[4]; /* buffer defined as U32 for alignment */
- unsigned memsize;
- unsigned reserved; /* never read nor write, will be removed in a future version */
- }; /* typedef'd to XXH32_state_t */
-
- struct XXH64_state_s {
- unsigned long long total_len;
- unsigned long long v1;
- unsigned long long v2;
- unsigned long long v3;
- unsigned long long v4;
- unsigned long long mem64[4]; /* buffer defined as U64 for alignment */
- unsigned memsize;
- unsigned reserved[2]; /* never read nor write, will be removed in a future version */
- }; /* typedef'd to XXH64_state_t */
-
-
-# ifdef XXH_PRIVATE_API
-# include "xxhash.c" /* include xxhash functions as `static`, for inlining */
-# endif
+#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
+#define XXHASH_H_STATIC_13879238742
+/* ****************************************************************************
+ * This section contains declarations which are not guaranteed to remain stable.
+ * They may change in future versions, becoming incompatible with a different
+ * version of the library.
+ * These declarations should only be used with static linking.
+ * Never use them in association with dynamic linking!
+ ***************************************************************************** */
+
+/*
+ * These definitions are only present to allow static allocation
+ * of XXH states, on stack or in a struct, for example.
+ * Never **ever** access their members directly.
+ */
-#endif /* XXH_STATIC_LINKING_ONLY && XXH_STATIC_H_3543687687345 */
+/*!
+ * @internal
+ * @brief Structure for XXH32 streaming API.
+ *
+ * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
+ * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
+ * an opaque type. This allows fields to safely be changed.
+ *
+ * Typedef'd to @ref XXH32_state_t.
+ * Do not access the members of this struct directly.
+ * @see XXH64_state_s, XXH3_state_s
+ */
+struct XXH32_state_s {
+ XXH32_hash_t total_len_32; /*!< Total length hashed, modulo 2^32 */
+ XXH32_hash_t large_len; /*!< Whether the hash is >= 16 (handles @ref total_len_32 overflow) */
+ XXH32_hash_t v[4]; /*!< Accumulator lanes */
+ XXH32_hash_t mem32[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[16]. */
+ XXH32_hash_t memsize; /*!< Amount of data in @ref mem32 */
+ XXH32_hash_t reserved; /*!< Reserved field. Do not read nor write to it. */
+}; /* typedef'd to XXH32_state_t */
+
+
+#ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */
+
+/*!
+ * @internal
+ * @brief Structure for XXH64 streaming API.
+ *
+ * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
+ * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
+ * an opaque type. This allows fields to safely be changed.
+ *
+ * Typedef'd to @ref XXH64_state_t.
+ * Do not access the members of this struct directly.
+ * @see XXH32_state_s, XXH3_state_s
+ */
+struct XXH64_state_s {
+ XXH64_hash_t total_len; /*!< Total length hashed. This is always 64-bit. */
+ XXH64_hash_t v[4]; /*!< Accumulator lanes */
+ XXH64_hash_t mem64[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[32]. */
+ XXH32_hash_t memsize; /*!< Amount of data in @ref mem64 */
+ XXH32_hash_t reserved32; /*!< Reserved field, needed for padding anyways*/
+ XXH64_hash_t reserved64; /*!< Reserved field. Do not read or write to it. */
+}; /* typedef'd to XXH64_state_t */
+
+
+#ifndef XXH_NO_XXH3
+
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* >= C11 */
+# include <stdalign.h>
+# define XXH_ALIGN(n) alignas(n)
+#elif defined(__cplusplus) && (__cplusplus >= 201103L) /* >= C++11 */
+/* In C++ alignas() is a keyword */
+# define XXH_ALIGN(n) alignas(n)
+#elif defined(__GNUC__)
+# define XXH_ALIGN(n) __attribute__ ((aligned(n)))
+#elif defined(_MSC_VER)
+# define XXH_ALIGN(n) __declspec(align(n))
+#else
+# define XXH_ALIGN(n) /* disabled */
+#endif
+
+/* Old GCC versions only accept the attribute after the type in structures. */
+#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \
+ && ! (defined(__cplusplus) && (__cplusplus >= 201103L)) /* >= C++11 */ \
+ && defined(__GNUC__)
+# define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
+#else
+# define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
+#endif
+
+/*!
+ * @brief The size of the internal XXH3 buffer.
+ *
+ * This is the optimal update size for incremental hashing.
+ *
+ * @see XXH3_64b_update(), XXH3_128b_update().
+ */
+#define XXH3_INTERNALBUFFER_SIZE 256
+
+/*!
+ * @brief Default size of the secret buffer (and @ref XXH3_kSecret).
+ *
+ * This is the size used in @ref XXH3_kSecret and the seeded functions.
+ *
+ * Not to be confused with @ref XXH3_SECRET_SIZE_MIN.
+ */
+#define XXH3_SECRET_DEFAULT_SIZE 192
+
+/*!
+ * @internal
+ * @brief Structure for XXH3 streaming API.
+ *
+ * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
+ * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined.
+ * Otherwise it is an opaque type.
+ * Never use this definition in combination with dynamic library.
+ * This allows fields to safely be changed in the future.
+ *
+ * @note ** This structure has a strict alignment requirement of 64 bytes!! **
+ * Do not allocate this with `malloc()` or `new`,
+ * it will not be sufficiently aligned.
+ * Use @ref XXH3_createState() and @ref XXH3_freeState(), or stack allocation.
+ *
+ * Typedef'd to @ref XXH3_state_t.
+ * Do never access the members of this struct directly.
+ *
+ * @see XXH3_INITSTATE() for stack initialization.
+ * @see XXH3_createState(), XXH3_freeState().
+ * @see XXH32_state_s, XXH64_state_s
+ */
+struct XXH3_state_s {
+ XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
+ /*!< The 8 accumulators. Similar to `vN` in @ref XXH32_state_s::v1 and @ref XXH64_state_s */
+ XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
+ /*!< Used to store a custom secret generated from a seed. */
+ XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
+ /*!< The internal buffer. @see XXH32_state_s::mem32 */
+ XXH32_hash_t bufferedSize;
+ /*!< The amount of memory in @ref buffer, @see XXH32_state_s::memsize */
+ XXH32_hash_t useSeed;
+ /*!< Reserved field. Needed for padding on 64-bit. */
+ size_t nbStripesSoFar;
+ /*!< Number or stripes processed. */
+ XXH64_hash_t totalLen;
+ /*!< Total length hashed. 64-bit even on 32-bit targets. */
+ size_t nbStripesPerBlock;
+ /*!< Number of stripes per block. */
+ size_t secretLimit;
+ /*!< Size of @ref customSecret or @ref extSecret */
+ XXH64_hash_t seed;
+ /*!< Seed for _withSeed variants. Must be zero otherwise, @see XXH3_INITSTATE() */
+ XXH64_hash_t reserved64;
+ /*!< Reserved field. */
+ const unsigned char* extSecret;
+ /*!< Reference to an external secret for the _withSecret variants, NULL
+ * for other variants. */
+ /* note: there may be some padding at the end due to alignment on 64 bytes */
+}; /* typedef'd to XXH3_state_t */
+
+#undef XXH_ALIGN_MEMBER
+
+/*!
+ * @brief Initializes a stack-allocated `XXH3_state_s`.
+ *
+ * When the @ref XXH3_state_t structure is merely emplaced on stack,
+ * it should be initialized with XXH3_INITSTATE() or a memset()
+ * in case its first reset uses XXH3_NNbits_reset_withSeed().
+ * This init can be omitted if the first reset uses default or _withSecret mode.
+ * This operation isn't necessary when the state is created with XXH3_createState().
+ * Note that this doesn't prepare the state for a streaming operation,
+ * it's still necessary to use XXH3_NNbits_reset*() afterwards.
+ */
+#define XXH3_INITSTATE(XXH3_state_ptr) { (XXH3_state_ptr)->seed = 0; }
+
+
+/* XXH128() :
+ * simple alias to pre-selected XXH3_128bits variant
+ */
+XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed);
+
+
+/* === Experimental API === */
+/* Symbols defined below must be considered tied to a specific library version. */
+
+/*
+ * XXH3_generateSecret():
+ *
+ * Derive a high-entropy secret from any user-defined content, named customSeed.
+ * The generated secret can be used in combination with `*_withSecret()` functions.
+ * The `_withSecret()` variants are useful to provide a higher level of protection than 64-bit seed,
+ * as it becomes much more difficult for an external actor to guess how to impact the calculation logic.
+ *
+ * The function accepts as input a custom seed of any length and any content,
+ * and derives from it a high-entropy secret of length @secretSize
+ * into an already allocated buffer @secretBuffer.
+ * @secretSize must be >= XXH3_SECRET_SIZE_MIN
+ *
+ * The generated secret can then be used with any `*_withSecret()` variant.
+ * Functions `XXH3_128bits_withSecret()`, `XXH3_64bits_withSecret()`,
+ * `XXH3_128bits_reset_withSecret()` and `XXH3_64bits_reset_withSecret()`
+ * are part of this list. They all accept a `secret` parameter
+ * which must be large enough for implementation reasons (>= XXH3_SECRET_SIZE_MIN)
+ * _and_ feature very high entropy (consist of random-looking bytes).
+ * These conditions can be a high bar to meet, so
+ * XXH3_generateSecret() can be employed to ensure proper quality.
+ *
+ * customSeed can be anything. It can have any size, even small ones,
+ * and its content can be anything, even "poor entropy" sources such as a bunch of zeroes.
+ * The resulting `secret` will nonetheless provide all required qualities.
+ *
+ * When customSeedSize > 0, supplying NULL as customSeed is undefined behavior.
+ */
+XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(void* secretBuffer, size_t secretSize, const void* customSeed, size_t customSeedSize);
+
+
+/*
+ * XXH3_generateSecret_fromSeed():
+ *
+ * Generate the same secret as the _withSeed() variants.
+ *
+ * The resulting secret has a length of XXH3_SECRET_DEFAULT_SIZE (necessarily).
+ * @secretBuffer must be already allocated, of size at least XXH3_SECRET_DEFAULT_SIZE bytes.
+ *
+ * The generated secret can be used in combination with
+ *`*_withSecret()` and `_withSecretandSeed()` variants.
+ * This generator is notably useful in combination with `_withSecretandSeed()`,
+ * as a way to emulate a faster `_withSeed()` variant.
+ */
+XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed);
+
+/*
+ * *_withSecretandSeed() :
+ * These variants generate hash values using either
+ * @seed for "short" keys (< XXH3_MIDSIZE_MAX = 240 bytes)
+ * or @secret for "large" keys (>= XXH3_MIDSIZE_MAX).
+ *
+ * This generally benefits speed, compared to `_withSeed()` or `_withSecret()`.
+ * `_withSeed()` has to generate the secret on the fly for "large" keys.
+ * It's fast, but can be perceptible for "not so large" keys (< 1 KB).
+ * `_withSecret()` has to generate the masks on the fly for "small" keys,
+ * which requires more instructions than _withSeed() variants.
+ * Therefore, _withSecretandSeed variant combines the best of both worlds.
+ *
+ * When @secret has been generated by XXH3_generateSecret_fromSeed(),
+ * this variant produces *exactly* the same results as `_withSeed()` variant,
+ * hence offering only a pure speed benefit on "large" input,
+ * by skipping the need to regenerate the secret for every large input.
+ *
+ * Another usage scenario is to hash the secret to a 64-bit hash value,
+ * for example with XXH3_64bits(), which then becomes the seed,
+ * and then employ both the seed and the secret in _withSecretandSeed().
+ * On top of speed, an added benefit is that each bit in the secret
+ * has a 50% chance to swap each bit in the output,
+ * via its impact to the seed.
+ * This is not guaranteed when using the secret directly in "small data" scenarios,
+ * because only portions of the secret are employed for small data.
+ */
+XXH_PUBLIC_API XXH64_hash_t
+XXH3_64bits_withSecretandSeed(const void* data, size_t len,
+ const void* secret, size_t secretSize,
+ XXH64_hash_t seed);
+
+XXH_PUBLIC_API XXH128_hash_t
+XXH3_128bits_withSecretandSeed(const void* data, size_t len,
+ const void* secret, size_t secretSize,
+ XXH64_hash_t seed64);
+
+XXH_PUBLIC_API XXH_errorcode
+XXH3_64bits_reset_withSecretandSeed(XXH3_state_t* statePtr,
+ const void* secret, size_t secretSize,
+ XXH64_hash_t seed64);
+
+XXH_PUBLIC_API XXH_errorcode
+XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr,
+ const void* secret, size_t secretSize,
+ XXH64_hash_t seed64);
+
+
+#endif /* XXH_NO_XXH3 */
+#endif /* XXH_NO_LONG_LONG */
+#if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
+# define XXH_IMPLEMENTATION
+#endif
+
+#endif /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */
+
+
+/* ======================================================================== */
+/* ======================================================================== */
+/* ======================================================================== */
+
+
+/*-**********************************************************************
+ * xxHash implementation
+ *-**********************************************************************
+ * xxHash's implementation used to be hosted inside xxhash.c.
+ *
+ * However, inlining requires implementation to be visible to the compiler,
+ * hence be included alongside the header.
+ * Previously, implementation was hosted inside xxhash.c,
+ * which was then #included when inlining was activated.
+ * This construction created issues with a few build and install systems,
+ * as it required xxhash.c to be stored in /include directory.
+ *
+ * xxHash implementation is now directly integrated within xxhash.h.
+ * As a consequence, xxhash.c is no longer needed in /include.
+ *
+ * xxhash.c is still available and is still useful.
+ * In a "normal" setup, when xxhash is not inlined,
+ * xxhash.h only exposes the prototypes and public symbols,
+ * while xxhash.c can be built into an object file xxhash.o
+ * which can then be linked into the final binary.
+ ************************************************************************/
+
+#if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \
+ || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387)
+# define XXH_IMPLEM_13a8737387
+
+/* *************************************
+* Tuning parameters
+***************************************/
+
+/*!
+ * @defgroup tuning Tuning parameters
+ * @{
+ *
+ * Various macros to control xxHash's behavior.
+ */
+#ifdef XXH_DOXYGEN
+/*!
+ * @brief Define this to disable 64-bit code.
+ *
+ * Useful if only using the @ref xxh32_family and you have a strict C90 compiler.
+ */
+# define XXH_NO_LONG_LONG
+# undef XXH_NO_LONG_LONG /* don't actually */
+/*!
+ * @brief Controls how unaligned memory is accessed.
+ *
+ * By default, access to unaligned memory is controlled by `memcpy()`, which is
+ * safe and portable.
+ *
+ * Unfortunately, on some target/compiler combinations, the generated assembly
+ * is sub-optimal.
+ *
+ * The below switch allow selection of a different access method
+ * in the search for improved performance.
+ *
+ * @par Possible options:
+ *
+ * - `XXH_FORCE_MEMORY_ACCESS=0` (default): `memcpy`
+ * @par
+ * Use `memcpy()`. Safe and portable. Note that most modern compilers will
+ * eliminate the function call and treat it as an unaligned access.
+ *
+ * - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((packed))`
+ * @par
+ * Depends on compiler extensions and is therefore not portable.
+ * This method is safe _if_ your compiler supports it,
+ * and *generally* as fast or faster than `memcpy`.
+ *
+ * - `XXH_FORCE_MEMORY_ACCESS=2`: Direct cast
+ * @par
+ * Casts directly and dereferences. This method doesn't depend on the
+ * compiler, but it violates the C standard as it directly dereferences an
+ * unaligned pointer. It can generate buggy code on targets which do not
+ * support unaligned memory accesses, but in some circumstances, it's the
+ * only known way to get the most performance.
+ *
+ * - `XXH_FORCE_MEMORY_ACCESS=3`: Byteshift
+ * @par
+ * Also portable. This can generate the best code on old compilers which don't
+ * inline small `memcpy()` calls, and it might also be faster on big-endian
+ * systems which lack a native byteswap instruction. However, some compilers
+ * will emit literal byteshifts even if the target supports unaligned access.
+ * .
+ *
+ * @warning
+ * Methods 1 and 2 rely on implementation-defined behavior. Use these with
+ * care, as what works on one compiler/platform/optimization level may cause
+ * another to read garbage data or even crash.
+ *
+ * See http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details.
+ *
+ * Prefer these methods in priority order (0 > 3 > 1 > 2)
+ */
+# define XXH_FORCE_MEMORY_ACCESS 0
+
+/*!
+ * @def XXH_FORCE_ALIGN_CHECK
+ * @brief If defined to non-zero, adds a special path for aligned inputs (XXH32()
+ * and XXH64() only).
+ *
+ * This is an important performance trick for architectures without decent
+ * unaligned memory access performance.
+ *
+ * It checks for input alignment, and when conditions are met, uses a "fast
+ * path" employing direct 32-bit/64-bit reads, resulting in _dramatically
+ * faster_ read speed.
+ *
+ * The check costs one initial branch per hash, which is generally negligible,
+ * but not zero.
+ *
+ * Moreover, it's not useful to generate an additional code path if memory
+ * access uses the same instruction for both aligned and unaligned
+ * addresses (e.g. x86 and aarch64).
+ *
+ * In these cases, the alignment check can be removed by setting this macro to 0.
+ * Then the code will always use unaligned memory access.
+ * Align check is automatically disabled on x86, x64 & arm64,
+ * which are platforms known to offer good unaligned memory accesses performance.
+ *
+ * This option does not affect XXH3 (only XXH32 and XXH64).
+ */
+# define XXH_FORCE_ALIGN_CHECK 0
+
+/*!
+ * @def XXH_NO_INLINE_HINTS
+ * @brief When non-zero, sets all functions to `static`.
+ *
+ * By default, xxHash tries to force the compiler to inline almost all internal
+ * functions.
+ *
+ * This can usually improve performance due to reduced jumping and improved
+ * constant folding, but significantly increases the size of the binary which
+ * might not be favorable.
+ *
+ * Additionally, sometimes the forced inlining can be detrimental to performance,
+ * depending on the architecture.
+ *
+ * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the
+ * compiler full control on whether to inline or not.
+ *
+ * When not optimizing (-O0), optimizing for size (-Os, -Oz), or using
+ * -fno-inline with GCC or Clang, this will automatically be defined.
+ */
+# define XXH_NO_INLINE_HINTS 0
+
+/*!
+ * @def XXH32_ENDJMP
+ * @brief Whether to use a jump for `XXH32_finalize`.
+ *
+ * For performance, `XXH32_finalize` uses multiple branches in the finalizer.
+ * This is generally preferable for performance,
+ * but depending on exact architecture, a jmp may be preferable.
+ *
+ * This setting is only possibly making a difference for very small inputs.
+ */
+# define XXH32_ENDJMP 0
+
+/*!
+ * @internal
+ * @brief Redefines old internal names.
+ *
+ * For compatibility with code that uses xxHash's internals before the names
+ * were changed to improve namespacing. There is no other reason to use this.
+ */
+# define XXH_OLD_NAMES
+# undef XXH_OLD_NAMES /* don't actually use, it is ugly. */
+#endif /* XXH_DOXYGEN */
+/*!
+ * @}
+ */
+
+#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
+ /* prefer __packed__ structures (method 1) for gcc on armv7+ and mips */
+# if !defined(__clang__) && \
+( \
+ (defined(__INTEL_COMPILER) && !defined(_WIN32)) || \
+ ( \
+ defined(__GNUC__) && ( \
+ (defined(__ARM_ARCH) && __ARM_ARCH >= 7) || \
+ ( \
+ defined(__mips__) && \
+ (__mips <= 5 || __mips_isa_rev < 6) && \
+ (!defined(__mips16) || defined(__mips_mips16e2)) \
+ ) \
+ ) \
+ ) \
+)
+# define XXH_FORCE_MEMORY_ACCESS 1
+# endif
+#endif
+
+#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
+# if defined(__i386) || defined(__x86_64__) || defined(__aarch64__) \
+ || defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) /* visual */
+# define XXH_FORCE_ALIGN_CHECK 0
+# else
+# define XXH_FORCE_ALIGN_CHECK 1
+# endif
+#endif
+
+#ifndef XXH_NO_INLINE_HINTS
+# if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \
+ || defined(__NO_INLINE__) /* -O0, -fno-inline */
+# define XXH_NO_INLINE_HINTS 1
+# else
+# define XXH_NO_INLINE_HINTS 0
+# endif
+#endif
+
+#ifndef XXH32_ENDJMP
+/* generally preferable for performance */
+# define XXH32_ENDJMP 0
+#endif
+
+/*!
+ * @defgroup impl Implementation
+ * @{
+ */
+
+
+/* *************************************
+* Includes & Memory related functions
+***************************************/
+/* Modify the local functions below should you wish to use some other memory routines */
+/* for ZSTD_malloc(), ZSTD_free() */
+#define ZSTD_DEPS_NEED_MALLOC
+#include "zstd_deps.h" /* size_t, ZSTD_malloc, ZSTD_free, ZSTD_memcpy */
+static void* XXH_malloc(size_t s) { return ZSTD_malloc(s); }
+static void XXH_free (void* p) { ZSTD_free(p); }
+static void* XXH_memcpy(void* dest, const void* src, size_t size) { return ZSTD_memcpy(dest,src,size); }
+
+
+/* *************************************
+* Compiler Specific Options
+***************************************/
+#ifdef _MSC_VER /* Visual Studio warning fix */
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+#endif
+
+#if XXH_NO_INLINE_HINTS /* disable inlining hints */
+# if defined(__GNUC__) || defined(__clang__)
+# define XXH_FORCE_INLINE static __attribute__((unused))
+# else
+# define XXH_FORCE_INLINE static
+# endif
+# define XXH_NO_INLINE static
+/* enable inlining hints */
+#elif defined(__GNUC__) || defined(__clang__)
+# define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused))
+# define XXH_NO_INLINE static __attribute__((noinline))
+#elif defined(_MSC_VER) /* Visual Studio */
+# define XXH_FORCE_INLINE static __forceinline
+# define XXH_NO_INLINE static __declspec(noinline)
+#elif defined (__cplusplus) \
+ || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* C99 */
+# define XXH_FORCE_INLINE static inline
+# define XXH_NO_INLINE static
+#else
+# define XXH_FORCE_INLINE static
+# define XXH_NO_INLINE static
+#endif
+
+
+
+/* *************************************
+* Debug
+***************************************/
+/*!
+ * @ingroup tuning
+ * @def XXH_DEBUGLEVEL
+ * @brief Sets the debugging level.
+ *
+ * XXH_DEBUGLEVEL is expected to be defined externally, typically via the
+ * compiler's command line options. The value must be a number.
+ */
+#ifndef XXH_DEBUGLEVEL
+# ifdef DEBUGLEVEL /* backwards compat */
+# define XXH_DEBUGLEVEL DEBUGLEVEL
+# else
+# define XXH_DEBUGLEVEL 0
+# endif
+#endif
+
+#if (XXH_DEBUGLEVEL>=1)
+# include <assert.h> /* note: can still be disabled with NDEBUG */
+# define XXH_ASSERT(c) assert(c)
+#else
+# define XXH_ASSERT(c) ((void)0)
+#endif
+
+/* note: use after variable declarations */
+#ifndef XXH_STATIC_ASSERT
+# if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11 */
+# include <assert.h>
+# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0)
+# elif defined(__cplusplus) && (__cplusplus >= 201103L) /* C++11 */
+# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0)
+# else
+# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { struct xxh_sa { char x[(c) ? 1 : -1]; }; } while(0)
+# endif
+# define XXH_STATIC_ASSERT(c) XXH_STATIC_ASSERT_WITH_MESSAGE((c),#c)
+#endif
+
+/*!
+ * @internal
+ * @def XXH_COMPILER_GUARD(var)
+ * @brief Used to prevent unwanted optimizations for @p var.
+ *
+ * It uses an empty GCC inline assembly statement with a register constraint
+ * which forces @p var into a general purpose register (eg eax, ebx, ecx
+ * on x86) and marks it as modified.
+ *
+ * This is used in a few places to avoid unwanted autovectorization (e.g.
+ * XXH32_round()). All vectorization we want is explicit via intrinsics,
+ * and _usually_ isn't wanted elsewhere.
+ *
+ * We also use it to prevent unwanted constant folding for AArch64 in
+ * XXH3_initCustomSecret_scalar().
+ */
+#if defined(__GNUC__) || defined(__clang__)
+# define XXH_COMPILER_GUARD(var) __asm__ __volatile__("" : "+r" (var))
+#else
+# define XXH_COMPILER_GUARD(var) ((void)0)
+#endif
+
+/* *************************************
+* Basic Types
+***************************************/
+#if !defined (__VMS) \
+ && (defined (__cplusplus) \
+ || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
+# include <stdint.h>
+ typedef uint8_t xxh_u8;
+#else
+ typedef unsigned char xxh_u8;
+#endif
+typedef XXH32_hash_t xxh_u32;
+
+#ifdef XXH_OLD_NAMES
+# define BYTE xxh_u8
+# define U8 xxh_u8
+# define U32 xxh_u32
+#endif
+
+/* *** Memory access *** */
+
+/*!
+ * @internal
+ * @fn xxh_u32 XXH_read32(const void* ptr)
+ * @brief Reads an unaligned 32-bit integer from @p ptr in native endianness.
+ *
+ * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
+ *
+ * @param ptr The pointer to read from.
+ * @return The 32-bit native endian integer from the bytes at @p ptr.
+ */
+
+/*!
+ * @internal
+ * @fn xxh_u32 XXH_readLE32(const void* ptr)
+ * @brief Reads an unaligned 32-bit little endian integer from @p ptr.
+ *
+ * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
+ *
+ * @param ptr The pointer to read from.
+ * @return The 32-bit little endian integer from the bytes at @p ptr.
+ */
+
+/*!
+ * @internal
+ * @fn xxh_u32 XXH_readBE32(const void* ptr)
+ * @brief Reads an unaligned 32-bit big endian integer from @p ptr.
+ *
+ * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
+ *
+ * @param ptr The pointer to read from.
+ * @return The 32-bit big endian integer from the bytes at @p ptr.
+ */
+
+/*!
+ * @internal
+ * @fn xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align)
+ * @brief Like @ref XXH_readLE32(), but has an option for aligned reads.
+ *
+ * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
+ * Note that when @ref XXH_FORCE_ALIGN_CHECK == 0, the @p align parameter is
+ * always @ref XXH_alignment::XXH_unaligned.
+ *
+ * @param ptr The pointer to read from.
+ * @param align Whether @p ptr is aligned.
+ * @pre
+ * If @p align == @ref XXH_alignment::XXH_aligned, @p ptr must be 4 byte
+ * aligned.
+ * @return The 32-bit little endian integer from the bytes at @p ptr.
+ */
+
+#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
+/*
+ * Manual byteshift. Best for old compilers which don't inline memcpy.
+ * We actually directly use XXH_readLE32 and XXH_readBE32.
+ */
+#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
+
+/*
+ * Force direct memory access. Only works on CPU which support unaligned memory
+ * access in hardware.
+ */
+static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; }
+
+#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
+
+/*
+ * __pack instructions are safer but compiler specific, hence potentially
+ * problematic for some compilers.
+ *
+ * Currently only defined for GCC and ICC.
+ */
+#ifdef XXH_OLD_NAMES
+typedef union { xxh_u32 u32; } __attribute__((packed)) unalign;
+#endif
+static xxh_u32 XXH_read32(const void* ptr)
+{
+ typedef union { xxh_u32 u32; } __attribute__((packed)) xxh_unalign;
+ return ((const xxh_unalign*)ptr)->u32;
+}
+
+#else
+
+/*
+ * Portable and safe solution. Generally efficient.
+ * see: http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
+ */
+static xxh_u32 XXH_read32(const void* memPtr)
+{
+ xxh_u32 val;
+ XXH_memcpy(&val, memPtr, sizeof(val));
+ return val;
+}
+
+#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
+
+
+/* *** Endianness *** */
+
+/*!
+ * @ingroup tuning
+ * @def XXH_CPU_LITTLE_ENDIAN
+ * @brief Whether the target is little endian.
+ *
+ * Defined to 1 if the target is little endian, or 0 if it is big endian.
+ * It can be defined externally, for example on the compiler command line.
+ *
+ * If it is not defined,
+ * a runtime check (which is usually constant folded) is used instead.
+ *
+ * @note
+ * This is not necessarily defined to an integer constant.
+ *
+ * @see XXH_isLittleEndian() for the runtime check.
+ */
+#ifndef XXH_CPU_LITTLE_ENDIAN
+/*
+ * Try to detect endianness automatically, to avoid the nonstandard behavior
+ * in `XXH_isLittleEndian()`
+ */
+# if defined(_WIN32) /* Windows is always little endian */ \
+ || defined(__LITTLE_ENDIAN__) \
+ || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
+# define XXH_CPU_LITTLE_ENDIAN 1
+# elif defined(__BIG_ENDIAN__) \
+ || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
+# define XXH_CPU_LITTLE_ENDIAN 0
+# else
+/*!
+ * @internal
+ * @brief Runtime check for @ref XXH_CPU_LITTLE_ENDIAN.
+ *
+ * Most compilers will constant fold this.
+ */
+static int XXH_isLittleEndian(void)
+{
+ /*
+ * Portable and well-defined behavior.
+ * Don't use static: it is detrimental to performance.
+ */
+ const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 };
+ return one.c[0];
+}
+# define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian()
+# endif
+#endif
+
+
+
+
+/* ****************************************
+* Compiler-specific Functions and Macros
+******************************************/
+#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
+
+#ifdef __has_builtin
+# define XXH_HAS_BUILTIN(x) __has_builtin(x)
+#else
+# define XXH_HAS_BUILTIN(x) 0
+#endif
+
+/*!
+ * @internal
+ * @def XXH_rotl32(x,r)
+ * @brief 32-bit rotate left.
+ *
+ * @param x The 32-bit integer to be rotated.
+ * @param r The number of bits to rotate.
+ * @pre
+ * @p r > 0 && @p r < 32
+ * @note
+ * @p x and @p r may be evaluated multiple times.
+ * @return The rotated result.
+ */
+#if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \
+ && XXH_HAS_BUILTIN(__builtin_rotateleft64)
+# define XXH_rotl32 __builtin_rotateleft32
+# define XXH_rotl64 __builtin_rotateleft64
+/* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */
+#elif defined(_MSC_VER)
+# define XXH_rotl32(x,r) _rotl(x,r)
+# define XXH_rotl64(x,r) _rotl64(x,r)
+#else
+# define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
+# define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
+#endif
+
+/*!
+ * @internal
+ * @fn xxh_u32 XXH_swap32(xxh_u32 x)
+ * @brief A 32-bit byteswap.
+ *
+ * @param x The 32-bit integer to byteswap.
+ * @return @p x, byteswapped.
+ */
+#if defined(_MSC_VER) /* Visual Studio */
+# define XXH_swap32 _byteswap_ulong
+#elif XXH_GCC_VERSION >= 403
+# define XXH_swap32 __builtin_bswap32
+#else
+static xxh_u32 XXH_swap32 (xxh_u32 x)
+{
+ return ((x << 24) & 0xff000000 ) |
+ ((x << 8) & 0x00ff0000 ) |
+ ((x >> 8) & 0x0000ff00 ) |
+ ((x >> 24) & 0x000000ff );
+}
+#endif
+
+
+/* ***************************
+* Memory reads
+*****************************/
+
+/*!
+ * @internal
+ * @brief Enum to indicate whether a pointer is aligned.
+ */
+typedef enum {
+ XXH_aligned, /*!< Aligned */
+ XXH_unaligned /*!< Possibly unaligned */
+} XXH_alignment;
+
+/*
+ * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load.
+ *
+ * This is ideal for older compilers which don't inline memcpy.
+ */
+#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
+
+XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr)
+{
+ const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
+ return bytePtr[0]
+ | ((xxh_u32)bytePtr[1] << 8)
+ | ((xxh_u32)bytePtr[2] << 16)
+ | ((xxh_u32)bytePtr[3] << 24);
+}
+
+XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr)
+{
+ const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
+ return bytePtr[3]
+ | ((xxh_u32)bytePtr[2] << 8)
+ | ((xxh_u32)bytePtr[1] << 16)
+ | ((xxh_u32)bytePtr[0] << 24);
+}
+
+#else
+XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr)
+{
+ return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
+}
+
+static xxh_u32 XXH_readBE32(const void* ptr)
+{
+ return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
+}
+#endif
+
+XXH_FORCE_INLINE xxh_u32
+XXH_readLE32_align(const void* ptr, XXH_alignment align)
+{
+ if (align==XXH_unaligned) {
+ return XXH_readLE32(ptr);
+ } else {
+ return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr);
+ }
+}
+
+
+/* *************************************
+* Misc
+***************************************/
+/*! @ingroup public */
+XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
+
+
+/* *******************************************************************
+* 32-bit hash functions
+*********************************************************************/
+/*!
+ * @}
+ * @defgroup xxh32_impl XXH32 implementation
+ * @ingroup impl
+ * @{
+ */
+ /* #define instead of static const, to be used as initializers */
+#define XXH_PRIME32_1 0x9E3779B1U /*!< 0b10011110001101110111100110110001 */
+#define XXH_PRIME32_2 0x85EBCA77U /*!< 0b10000101111010111100101001110111 */
+#define XXH_PRIME32_3 0xC2B2AE3DU /*!< 0b11000010101100101010111000111101 */
+#define XXH_PRIME32_4 0x27D4EB2FU /*!< 0b00100111110101001110101100101111 */
+#define XXH_PRIME32_5 0x165667B1U /*!< 0b00010110010101100110011110110001 */
+
+#ifdef XXH_OLD_NAMES
+# define PRIME32_1 XXH_PRIME32_1
+# define PRIME32_2 XXH_PRIME32_2
+# define PRIME32_3 XXH_PRIME32_3
+# define PRIME32_4 XXH_PRIME32_4
+# define PRIME32_5 XXH_PRIME32_5
+#endif
+
+/*!
+ * @internal
+ * @brief Normal stripe processing routine.
+ *
+ * This shuffles the bits so that any bit from @p input impacts several bits in
+ * @p acc.
+ *
+ * @param acc The accumulator lane.
+ * @param input The stripe of input to mix.
+ * @return The mixed accumulator lane.
+ */
+static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
+{
+ acc += input * XXH_PRIME32_2;
+ acc = XXH_rotl32(acc, 13);
+ acc *= XXH_PRIME32_1;
+#if (defined(__SSE4_1__) || defined(__aarch64__)) && !defined(XXH_ENABLE_AUTOVECTORIZE)
+ /*
+ * UGLY HACK:
+ * A compiler fence is the only thing that prevents GCC and Clang from
+ * autovectorizing the XXH32 loop (pragmas and attributes don't work for some
+ * reason) without globally disabling SSE4.1.
+ *
+ * The reason we want to avoid vectorization is because despite working on
+ * 4 integers at a time, there are multiple factors slowing XXH32 down on
+ * SSE4:
+ * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on
+ * newer chips!) making it slightly slower to multiply four integers at
+ * once compared to four integers independently. Even when pmulld was
+ * fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE
+ * just to multiply unless doing a long operation.
+ *
+ * - Four instructions are required to rotate,
+ * movqda tmp, v // not required with VEX encoding
+ * pslld tmp, 13 // tmp <<= 13
+ * psrld v, 19 // x >>= 19
+ * por v, tmp // x |= tmp
+ * compared to one for scalar:
+ * roll v, 13 // reliably fast across the board
+ * shldl v, v, 13 // Sandy Bridge and later prefer this for some reason
+ *
+ * - Instruction level parallelism is actually more beneficial here because
+ * the SIMD actually serializes this operation: While v1 is rotating, v2
+ * can load data, while v3 can multiply. SSE forces them to operate
+ * together.
+ *
+ * This is also enabled on AArch64, as Clang autovectorizes it incorrectly
+ * and it is pointless writing a NEON implementation that is basically the
+ * same speed as scalar for XXH32.
+ */
+ XXH_COMPILER_GUARD(acc);
+#endif
+ return acc;
+}
+
+/*!
+ * @internal
+ * @brief Mixes all bits to finalize the hash.
+ *
+ * The final mix ensures that all input bits have a chance to impact any bit in
+ * the output digest, resulting in an unbiased distribution.
+ *
+ * @param h32 The hash to avalanche.
+ * @return The avalanched hash.
+ */
+static xxh_u32 XXH32_avalanche(xxh_u32 h32)
+{
+ h32 ^= h32 >> 15;
+ h32 *= XXH_PRIME32_2;
+ h32 ^= h32 >> 13;
+ h32 *= XXH_PRIME32_3;
+ h32 ^= h32 >> 16;
+ return(h32);
+}
+
+#define XXH_get32bits(p) XXH_readLE32_align(p, align)
+
+/*!
+ * @internal
+ * @brief Processes the last 0-15 bytes of @p ptr.
+ *
+ * There may be up to 15 bytes remaining to consume from the input.
+ * This final stage will digest them to ensure that all input bytes are present
+ * in the final mix.
+ *
+ * @param h32 The hash to finalize.
+ * @param ptr The pointer to the remaining input.
+ * @param len The remaining length, modulo 16.
+ * @param align Whether @p ptr is aligned.
+ * @return The finalized hash.
+ */
+static xxh_u32
+XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align)
+{
+#define XXH_PROCESS1 do { \
+ h32 += (*ptr++) * XXH_PRIME32_5; \
+ h32 = XXH_rotl32(h32, 11) * XXH_PRIME32_1; \
+} while (0)
+
+#define XXH_PROCESS4 do { \
+ h32 += XXH_get32bits(ptr) * XXH_PRIME32_3; \
+ ptr += 4; \
+ h32 = XXH_rotl32(h32, 17) * XXH_PRIME32_4; \
+} while (0)
+
+ if (ptr==NULL) XXH_ASSERT(len == 0);
+
+ /* Compact rerolled version; generally faster */
+ if (!XXH32_ENDJMP) {
+ len &= 15;
+ while (len >= 4) {
+ XXH_PROCESS4;
+ len -= 4;
+ }
+ while (len > 0) {
+ XXH_PROCESS1;
+ --len;
+ }
+ return XXH32_avalanche(h32);
+ } else {
+ switch(len&15) /* or switch(bEnd - p) */ {
+ case 12: XXH_PROCESS4;
+ XXH_FALLTHROUGH;
+ case 8: XXH_PROCESS4;
+ XXH_FALLTHROUGH;
+ case 4: XXH_PROCESS4;
+ return XXH32_avalanche(h32);
+
+ case 13: XXH_PROCESS4;
+ XXH_FALLTHROUGH;
+ case 9: XXH_PROCESS4;
+ XXH_FALLTHROUGH;
+ case 5: XXH_PROCESS4;
+ XXH_PROCESS1;
+ return XXH32_avalanche(h32);
+
+ case 14: XXH_PROCESS4;
+ XXH_FALLTHROUGH;
+ case 10: XXH_PROCESS4;
+ XXH_FALLTHROUGH;
+ case 6: XXH_PROCESS4;
+ XXH_PROCESS1;
+ XXH_PROCESS1;
+ return XXH32_avalanche(h32);
+
+ case 15: XXH_PROCESS4;
+ XXH_FALLTHROUGH;
+ case 11: XXH_PROCESS4;
+ XXH_FALLTHROUGH;
+ case 7: XXH_PROCESS4;
+ XXH_FALLTHROUGH;
+ case 3: XXH_PROCESS1;
+ XXH_FALLTHROUGH;
+ case 2: XXH_PROCESS1;
+ XXH_FALLTHROUGH;
+ case 1: XXH_PROCESS1;
+ XXH_FALLTHROUGH;
+ case 0: return XXH32_avalanche(h32);
+ }
+ XXH_ASSERT(0);
+ return h32; /* reaching this point is deemed impossible */
+ }
+}
+
+#ifdef XXH_OLD_NAMES
+# define PROCESS1 XXH_PROCESS1
+# define PROCESS4 XXH_PROCESS4
+#else
+# undef XXH_PROCESS1
+# undef XXH_PROCESS4
+#endif
+
+/*!
+ * @internal
+ * @brief The implementation for @ref XXH32().
+ *
+ * @param input , len , seed Directly passed from @ref XXH32().
+ * @param align Whether @p input is aligned.
+ * @return The calculated hash.
+ */
+XXH_FORCE_INLINE xxh_u32
+XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align)
+{
+ xxh_u32 h32;
+
+ if (input==NULL) XXH_ASSERT(len == 0);
+
+ if (len>=16) {
+ const xxh_u8* const bEnd = input + len;
+ const xxh_u8* const limit = bEnd - 15;
+ xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
+ xxh_u32 v2 = seed + XXH_PRIME32_2;
+ xxh_u32 v3 = seed + 0;
+ xxh_u32 v4 = seed - XXH_PRIME32_1;
+
+ do {
+ v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4;
+ v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4;
+ v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4;
+ v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4;
+ } while (input < limit);
+
+ h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7)
+ + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
+ } else {
+ h32 = seed + XXH_PRIME32_5;
+ }
+
+ h32 += (xxh_u32)len;
+
+ return XXH32_finalize(h32, input, len&15, align);
+}
+
+/*! @ingroup xxh32_family */
+XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed)
+{
+#if 0
+ /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
+ XXH32_state_t state;
+ XXH32_reset(&state, seed);
+ XXH32_update(&state, (const xxh_u8*)input, len);
+ return XXH32_digest(&state);
+#else
+ if (XXH_FORCE_ALIGN_CHECK) {
+ if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
+ return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
+ } }
+
+ return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
+#endif
+}
+
+
+
+/******* Hash streaming *******/
+/*!
+ * @ingroup xxh32_family
+ */
+XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
+{
+ return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
+}
+/*! @ingroup xxh32_family */
+XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
+{
+ XXH_free(statePtr);
+ return XXH_OK;
+}
+
+/*! @ingroup xxh32_family */
+XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
+{
+ XXH_memcpy(dstState, srcState, sizeof(*dstState));
+}
+
+/*! @ingroup xxh32_family */
+XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed)
+{
+ XXH_ASSERT(statePtr != NULL);
+ memset(statePtr, 0, sizeof(*statePtr));
+ statePtr->v[0] = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
+ statePtr->v[1] = seed + XXH_PRIME32_2;
+ statePtr->v[2] = seed + 0;
+ statePtr->v[3] = seed - XXH_PRIME32_1;
+ return XXH_OK;
+}
+
+
+/*! @ingroup xxh32_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH32_update(XXH32_state_t* state, const void* input, size_t len)
+{
+ if (input==NULL) {
+ XXH_ASSERT(len == 0);
+ return XXH_OK;
+ }
+
+ { const xxh_u8* p = (const xxh_u8*)input;
+ const xxh_u8* const bEnd = p + len;
+
+ state->total_len_32 += (XXH32_hash_t)len;
+ state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16));
+
+ if (state->memsize + len < 16) { /* fill in tmp buffer */
+ XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len);
+ state->memsize += (XXH32_hash_t)len;
+ return XXH_OK;
+ }
+
+ if (state->memsize) { /* some data left from previous update */
+ XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize);
+ { const xxh_u32* p32 = state->mem32;
+ state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p32)); p32++;
+ state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p32)); p32++;
+ state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p32)); p32++;
+ state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p32));
+ }
+ p += 16-state->memsize;
+ state->memsize = 0;
+ }
+
+ if (p <= bEnd-16) {
+ const xxh_u8* const limit = bEnd - 16;
+
+ do {
+ state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p)); p+=4;
+ state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p)); p+=4;
+ state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p)); p+=4;
+ state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p)); p+=4;
+ } while (p<=limit);
+
+ }
+
+ if (p < bEnd) {
+ XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
+ state->memsize = (unsigned)(bEnd-p);
+ }
+ }
+
+ return XXH_OK;
+}
+
+
+/*! @ingroup xxh32_family */
+XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state)
+{
+ xxh_u32 h32;
+
+ if (state->large_len) {
+ h32 = XXH_rotl32(state->v[0], 1)
+ + XXH_rotl32(state->v[1], 7)
+ + XXH_rotl32(state->v[2], 12)
+ + XXH_rotl32(state->v[3], 18);
+ } else {
+ h32 = state->v[2] /* == seed */ + XXH_PRIME32_5;
+ }
+
+ h32 += state->total_len_32;
+
+ return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned);
+}
+
+
+/******* Canonical representation *******/
+
+/*!
+ * @ingroup xxh32_family
+ * The default return values from XXH functions are unsigned 32 and 64 bit
+ * integers.
+ *
+ * The canonical representation uses big endian convention, the same convention
+ * as human-readable numbers (large digits first).
+ *
+ * This way, hash values can be written into a file or buffer, remaining
+ * comparable across different systems.
+ *
+ * The following functions allow transformation of hash values to and from their
+ * canonical format.
+ */
+XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
+{
+ /* XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); */
+ if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
+ XXH_memcpy(dst, &hash, sizeof(*dst));
+}
+/*! @ingroup xxh32_family */
+XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
+{
+ return XXH_readBE32(src);
+}
+
+
+#ifndef XXH_NO_LONG_LONG
+
+/* *******************************************************************
+* 64-bit hash functions
+*********************************************************************/
+/*!
+ * @}
+ * @ingroup impl
+ * @{
+ */
+/******* Memory access *******/
+
+typedef XXH64_hash_t xxh_u64;
+
+#ifdef XXH_OLD_NAMES
+# define U64 xxh_u64
+#endif
+
+#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
+/*
+ * Manual byteshift. Best for old compilers which don't inline memcpy.
+ * We actually directly use XXH_readLE64 and XXH_readBE64.
+ */
+#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
+
+/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
+static xxh_u64 XXH_read64(const void* memPtr)
+{
+ return *(const xxh_u64*) memPtr;
+}
+
+#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
+
+/*
+ * __pack instructions are safer, but compiler specific, hence potentially
+ * problematic for some compilers.
+ *
+ * Currently only defined for GCC and ICC.
+ */
+#ifdef XXH_OLD_NAMES
+typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64;
+#endif
+static xxh_u64 XXH_read64(const void* ptr)
+{
+ typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) xxh_unalign64;
+ return ((const xxh_unalign64*)ptr)->u64;
+}
+
+#else
+
+/*
+ * Portable and safe solution. Generally efficient.
+ * see: http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
+ */
+static xxh_u64 XXH_read64(const void* memPtr)
+{
+ xxh_u64 val;
+ XXH_memcpy(&val, memPtr, sizeof(val));
+ return val;
+}
+
+#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
+
+#if defined(_MSC_VER) /* Visual Studio */
+# define XXH_swap64 _byteswap_uint64
+#elif XXH_GCC_VERSION >= 403
+# define XXH_swap64 __builtin_bswap64
+#else
+static xxh_u64 XXH_swap64(xxh_u64 x)
+{
+ return ((x << 56) & 0xff00000000000000ULL) |
+ ((x << 40) & 0x00ff000000000000ULL) |
+ ((x << 24) & 0x0000ff0000000000ULL) |
+ ((x << 8) & 0x000000ff00000000ULL) |
+ ((x >> 8) & 0x00000000ff000000ULL) |
+ ((x >> 24) & 0x0000000000ff0000ULL) |
+ ((x >> 40) & 0x000000000000ff00ULL) |
+ ((x >> 56) & 0x00000000000000ffULL);
+}
+#endif
+
+
+/* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */
+#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
+
+XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr)
+{
+ const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
+ return bytePtr[0]
+ | ((xxh_u64)bytePtr[1] << 8)
+ | ((xxh_u64)bytePtr[2] << 16)
+ | ((xxh_u64)bytePtr[3] << 24)
+ | ((xxh_u64)bytePtr[4] << 32)
+ | ((xxh_u64)bytePtr[5] << 40)
+ | ((xxh_u64)bytePtr[6] << 48)
+ | ((xxh_u64)bytePtr[7] << 56);
+}
+
+XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr)
+{
+ const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
+ return bytePtr[7]
+ | ((xxh_u64)bytePtr[6] << 8)
+ | ((xxh_u64)bytePtr[5] << 16)
+ | ((xxh_u64)bytePtr[4] << 24)
+ | ((xxh_u64)bytePtr[3] << 32)
+ | ((xxh_u64)bytePtr[2] << 40)
+ | ((xxh_u64)bytePtr[1] << 48)
+ | ((xxh_u64)bytePtr[0] << 56);
+}
+
+#else
+XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr)
+{
+ return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
+}
+
+static xxh_u64 XXH_readBE64(const void* ptr)
+{
+ return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
+}
+#endif
+
+XXH_FORCE_INLINE xxh_u64
+XXH_readLE64_align(const void* ptr, XXH_alignment align)
+{
+ if (align==XXH_unaligned)
+ return XXH_readLE64(ptr);
+ else
+ return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr);
+}
+
+
+/******* xxh64 *******/
+/*!
+ * @}
+ * @defgroup xxh64_impl XXH64 implementation
+ * @ingroup impl
+ * @{
+ */
+/* #define rather that static const, to be used as initializers */
+#define XXH_PRIME64_1 0x9E3779B185EBCA87ULL /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */
+#define XXH_PRIME64_2 0xC2B2AE3D27D4EB4FULL /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */
+#define XXH_PRIME64_3 0x165667B19E3779F9ULL /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */
+#define XXH_PRIME64_4 0x85EBCA77C2B2AE63ULL /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */
+#define XXH_PRIME64_5 0x27D4EB2F165667C5ULL /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */
+
+#ifdef XXH_OLD_NAMES
+# define PRIME64_1 XXH_PRIME64_1
+# define PRIME64_2 XXH_PRIME64_2
+# define PRIME64_3 XXH_PRIME64_3
+# define PRIME64_4 XXH_PRIME64_4
+# define PRIME64_5 XXH_PRIME64_5
+#endif
+
+static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input)
+{
+ acc += input * XXH_PRIME64_2;
+ acc = XXH_rotl64(acc, 31);
+ acc *= XXH_PRIME64_1;
+ return acc;
+}
+
+static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val)
+{
+ val = XXH64_round(0, val);
+ acc ^= val;
+ acc = acc * XXH_PRIME64_1 + XXH_PRIME64_4;
+ return acc;
+}
+
+static xxh_u64 XXH64_avalanche(xxh_u64 h64)
+{
+ h64 ^= h64 >> 33;
+ h64 *= XXH_PRIME64_2;
+ h64 ^= h64 >> 29;
+ h64 *= XXH_PRIME64_3;
+ h64 ^= h64 >> 32;
+ return h64;
+}
+
+
+#define XXH_get64bits(p) XXH_readLE64_align(p, align)
+
+static xxh_u64
+XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align)
+{
+ if (ptr==NULL) XXH_ASSERT(len == 0);
+ len &= 31;
+ while (len >= 8) {
+ xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr));
+ ptr += 8;
+ h64 ^= k1;
+ h64 = XXH_rotl64(h64,27) * XXH_PRIME64_1 + XXH_PRIME64_4;
+ len -= 8;
+ }
+ if (len >= 4) {
+ h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1;
+ ptr += 4;
+ h64 = XXH_rotl64(h64, 23) * XXH_PRIME64_2 + XXH_PRIME64_3;
+ len -= 4;
+ }
+ while (len > 0) {
+ h64 ^= (*ptr++) * XXH_PRIME64_5;
+ h64 = XXH_rotl64(h64, 11) * XXH_PRIME64_1;
+ --len;
+ }
+ return XXH64_avalanche(h64);
+}
+
+#ifdef XXH_OLD_NAMES
+# define PROCESS1_64 XXH_PROCESS1_64
+# define PROCESS4_64 XXH_PROCESS4_64
+# define PROCESS8_64 XXH_PROCESS8_64
+#else
+# undef XXH_PROCESS1_64
+# undef XXH_PROCESS4_64
+# undef XXH_PROCESS8_64
+#endif
+
+XXH_FORCE_INLINE xxh_u64
+XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align)
+{
+ xxh_u64 h64;
+ if (input==NULL) XXH_ASSERT(len == 0);
+
+ if (len>=32) {
+ const xxh_u8* const bEnd = input + len;
+ const xxh_u8* const limit = bEnd - 31;
+ xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
+ xxh_u64 v2 = seed + XXH_PRIME64_2;
+ xxh_u64 v3 = seed + 0;
+ xxh_u64 v4 = seed - XXH_PRIME64_1;
+
+ do {
+ v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8;
+ v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8;
+ v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8;
+ v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8;
+ } while (input<limit);
+
+ h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
+ h64 = XXH64_mergeRound(h64, v1);
+ h64 = XXH64_mergeRound(h64, v2);
+ h64 = XXH64_mergeRound(h64, v3);
+ h64 = XXH64_mergeRound(h64, v4);
+
+ } else {
+ h64 = seed + XXH_PRIME64_5;
+ }
+
+ h64 += (xxh_u64) len;
+
+ return XXH64_finalize(h64, input, len, align);
+}
+
+
+/*! @ingroup xxh64_family */
+XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t seed)
+{
+#if 0
+ /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
+ XXH64_state_t state;
+ XXH64_reset(&state, seed);
+ XXH64_update(&state, (const xxh_u8*)input, len);
+ return XXH64_digest(&state);
+#else
+ if (XXH_FORCE_ALIGN_CHECK) {
+ if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
+ return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
+ } }
+
+ return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
+
+#endif
+}
+
+/******* Hash Streaming *******/
+
+/*! @ingroup xxh64_family*/
+XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
+{
+ return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
+}
+/*! @ingroup xxh64_family */
+XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
+{
+ XXH_free(statePtr);
+ return XXH_OK;
+}
+
+/*! @ingroup xxh64_family */
+XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState)
+{
+ XXH_memcpy(dstState, srcState, sizeof(*dstState));
+}
+
+/*! @ingroup xxh64_family */
+XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed)
+{
+ XXH_ASSERT(statePtr != NULL);
+ memset(statePtr, 0, sizeof(*statePtr));
+ statePtr->v[0] = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
+ statePtr->v[1] = seed + XXH_PRIME64_2;
+ statePtr->v[2] = seed + 0;
+ statePtr->v[3] = seed - XXH_PRIME64_1;
+ return XXH_OK;
+}
+
+/*! @ingroup xxh64_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH64_update (XXH64_state_t* state, const void* input, size_t len)
+{
+ if (input==NULL) {
+ XXH_ASSERT(len == 0);
+ return XXH_OK;
+ }
+
+ { const xxh_u8* p = (const xxh_u8*)input;
+ const xxh_u8* const bEnd = p + len;
+
+ state->total_len += len;
+
+ if (state->memsize + len < 32) { /* fill in tmp buffer */
+ XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len);
+ state->memsize += (xxh_u32)len;
+ return XXH_OK;
+ }
+
+ if (state->memsize) { /* tmp buffer is full */
+ XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize);
+ state->v[0] = XXH64_round(state->v[0], XXH_readLE64(state->mem64+0));
+ state->v[1] = XXH64_round(state->v[1], XXH_readLE64(state->mem64+1));
+ state->v[2] = XXH64_round(state->v[2], XXH_readLE64(state->mem64+2));
+ state->v[3] = XXH64_round(state->v[3], XXH_readLE64(state->mem64+3));
+ p += 32 - state->memsize;
+ state->memsize = 0;
+ }
+
+ if (p+32 <= bEnd) {
+ const xxh_u8* const limit = bEnd - 32;
+
+ do {
+ state->v[0] = XXH64_round(state->v[0], XXH_readLE64(p)); p+=8;
+ state->v[1] = XXH64_round(state->v[1], XXH_readLE64(p)); p+=8;
+ state->v[2] = XXH64_round(state->v[2], XXH_readLE64(p)); p+=8;
+ state->v[3] = XXH64_round(state->v[3], XXH_readLE64(p)); p+=8;
+ } while (p<=limit);
+
+ }
+
+ if (p < bEnd) {
+ XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
+ state->memsize = (unsigned)(bEnd-p);
+ }
+ }
+
+ return XXH_OK;
+}
+
+
+/*! @ingroup xxh64_family */
+XXH_PUBLIC_API XXH64_hash_t XXH64_digest(const XXH64_state_t* state)
+{
+ xxh_u64 h64;
+
+ if (state->total_len >= 32) {
+ h64 = XXH_rotl64(state->v[0], 1) + XXH_rotl64(state->v[1], 7) + XXH_rotl64(state->v[2], 12) + XXH_rotl64(state->v[3], 18);
+ h64 = XXH64_mergeRound(h64, state->v[0]);
+ h64 = XXH64_mergeRound(h64, state->v[1]);
+ h64 = XXH64_mergeRound(h64, state->v[2]);
+ h64 = XXH64_mergeRound(h64, state->v[3]);
+ } else {
+ h64 = state->v[2] /*seed*/ + XXH_PRIME64_5;
+ }
+
+ h64 += (xxh_u64) state->total_len;
+
+ return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned);
+}
+
+
+/******* Canonical representation *******/
+
+/*! @ingroup xxh64_family */
+XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
+{
+ /* XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); */
+ if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
+ XXH_memcpy(dst, &hash, sizeof(*dst));
+}
+
+/*! @ingroup xxh64_family */
+XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
+{
+ return XXH_readBE64(src);
+}
+
+#ifndef XXH_NO_XXH3
+
+/* *********************************************************************
+* XXH3
+* New generation hash designed for speed on small keys and vectorization
+************************************************************************ */
+/*!
+ * @}
+ * @defgroup xxh3_impl XXH3 implementation
+ * @ingroup impl
+ * @{
+ */
+
+/* === Compiler specifics === */
+
+#if ((defined(sun) || defined(__sun)) && __cplusplus) /* Solaris includes __STDC_VERSION__ with C++. Tested with GCC 5.5 */
+# define XXH_RESTRICT /* disable */
+#elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */
+# define XXH_RESTRICT restrict
+#else
+/* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */
+# define XXH_RESTRICT /* disable */
+#endif
+
+#if (defined(__GNUC__) && (__GNUC__ >= 3)) \
+ || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \
+ || defined(__clang__)
+# define XXH_likely(x) __builtin_expect(x, 1)
+# define XXH_unlikely(x) __builtin_expect(x, 0)
+#else
+# define XXH_likely(x) (x)
+# define XXH_unlikely(x) (x)
+#endif
+
+#if defined(__GNUC__) || defined(__clang__)
+# if defined(__ARM_NEON__) || defined(__ARM_NEON) \
+ || defined(__aarch64__) || defined(_M_ARM) \
+ || defined(_M_ARM64) || defined(_M_ARM64EC)
+# define inline __inline__ /* circumvent a clang bug */
+# include <arm_neon.h>
+# undef inline
+# elif defined(__AVX2__)
+# include <immintrin.h>
+# elif defined(__SSE2__)
+# include <emmintrin.h>
+# endif
+#endif
+
+#if defined(_MSC_VER)
+# include <intrin.h>
+#endif
+
+/*
+ * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
+ * remaining a true 64-bit/128-bit hash function.
+ *
+ * This is done by prioritizing a subset of 64-bit operations that can be
+ * emulated without too many steps on the average 32-bit machine.
+ *
+ * For example, these two lines seem similar, and run equally fast on 64-bit:
+ *
+ * xxh_u64 x;
+ * x ^= (x >> 47); // good
+ * x ^= (x >> 13); // bad
+ *
+ * However, to a 32-bit machine, there is a major difference.
+ *
+ * x ^= (x >> 47) looks like this:
+ *
+ * x.lo ^= (x.hi >> (47 - 32));
+ *
+ * while x ^= (x >> 13) looks like this:
+ *
+ * // note: funnel shifts are not usually cheap.
+ * x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
+ * x.hi ^= (x.hi >> 13);
+ *
+ * The first one is significantly faster than the second, simply because the
+ * shift is larger than 32. This means:
+ * - All the bits we need are in the upper 32 bits, so we can ignore the lower
+ * 32 bits in the shift.
+ * - The shift result will always fit in the lower 32 bits, and therefore,
+ * we can ignore the upper 32 bits in the xor.
+ *
+ * Thanks to this optimization, XXH3 only requires these features to be efficient:
+ *
+ * - Usable unaligned access
+ * - A 32-bit or 64-bit ALU
+ * - If 32-bit, a decent ADC instruction
+ * - A 32 or 64-bit multiply with a 64-bit result
+ * - For the 128-bit variant, a decent byteswap helps short inputs.
+ *
+ * The first two are already required by XXH32, and almost all 32-bit and 64-bit
+ * platforms which can run XXH32 can run XXH3 efficiently.
+ *
+ * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
+ * notable exception.
+ *
+ * First of all, Thumb-1 lacks support for the UMULL instruction which
+ * performs the important long multiply. This means numerous __aeabi_lmul
+ * calls.
+ *
+ * Second of all, the 8 functional registers are just not enough.
+ * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
+ * Lo registers, and this shuffling results in thousands more MOVs than A32.
+ *
+ * A32 and T32 don't have this limitation. They can access all 14 registers,
+ * do a 32->64 multiply with UMULL, and the flexible operand allowing free
+ * shifts is helpful, too.
+ *
+ * Therefore, we do a quick sanity check.
+ *
+ * If compiling Thumb-1 for a target which supports ARM instructions, we will
+ * emit a warning, as it is not a "sane" platform to compile for.
+ *
+ * Usually, if this happens, it is because of an accident and you probably need
+ * to specify -march, as you likely meant to compile for a newer architecture.
+ *
+ * Credit: large sections of the vectorial and asm source code paths
+ * have been contributed by @easyaspi314
+ */
+#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
+# warning "XXH3 is highly inefficient without ARM or Thumb-2."
+#endif
+
+/* ==========================================
+ * Vectorization detection
+ * ========================================== */
+
+#ifdef XXH_DOXYGEN
+/*!
+ * @ingroup tuning
+ * @brief Overrides the vectorization implementation chosen for XXH3.
+ *
+ * Can be defined to 0 to disable SIMD or any of the values mentioned in
+ * @ref XXH_VECTOR_TYPE.
+ *
+ * If this is not defined, it uses predefined macros to determine the best
+ * implementation.
+ */
+# define XXH_VECTOR XXH_SCALAR
+/*!
+ * @ingroup tuning
+ * @brief Possible values for @ref XXH_VECTOR.
+ *
+ * Note that these are actually implemented as macros.
+ *
+ * If this is not defined, it is detected automatically.
+ * @ref XXH_X86DISPATCH overrides this.
+ */
+enum XXH_VECTOR_TYPE /* fake enum */ {
+ XXH_SCALAR = 0, /*!< Portable scalar version */
+ XXH_SSE2 = 1, /*!<
+ * SSE2 for Pentium 4, Opteron, all x86_64.
+ *
+ * @note SSE2 is also guaranteed on Windows 10, macOS, and
+ * Android x86.
+ */
+ XXH_AVX2 = 2, /*!< AVX2 for Haswell and Bulldozer */
+ XXH_AVX512 = 3, /*!< AVX512 for Skylake and Icelake */
+ XXH_NEON = 4, /*!< NEON for most ARMv7-A and all AArch64 */
+ XXH_VSX = 5, /*!< VSX and ZVector for POWER8/z13 (64-bit) */
+};
+/*!
+ * @ingroup tuning
+ * @brief Selects the minimum alignment for XXH3's accumulators.
+ *
+ * When using SIMD, this should match the alignment reqired for said vector
+ * type, so, for example, 32 for AVX2.
+ *
+ * Default: Auto detected.
+ */
+# define XXH_ACC_ALIGN 8
+#endif
+
+/* Actual definition */
+#ifndef XXH_DOXYGEN
+# define XXH_SCALAR 0
+# define XXH_SSE2 1
+# define XXH_AVX2 2
+# define XXH_AVX512 3
+# define XXH_NEON 4
+# define XXH_VSX 5
+#endif
+
+#ifndef XXH_VECTOR /* can be defined on command line */
+# if ( \
+ defined(__ARM_NEON__) || defined(__ARM_NEON) /* gcc */ \
+ || defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC) /* msvc */ \
+ ) && ( \
+ defined(_WIN32) || defined(__LITTLE_ENDIAN__) /* little endian only */ \
+ || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
+ )
+# define XXH_VECTOR XXH_NEON
+# elif defined(__AVX512F__)
+# define XXH_VECTOR XXH_AVX512
+# elif defined(__AVX2__)
+# define XXH_VECTOR XXH_AVX2
+# elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
+# define XXH_VECTOR XXH_SSE2
+# elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \
+ || (defined(__s390x__) && defined(__VEC__)) \
+ && defined(__GNUC__) /* TODO: IBM XL */
+# define XXH_VECTOR XXH_VSX
+# else
+# define XXH_VECTOR XXH_SCALAR
+# endif
+#endif
+
+/*
+ * Controls the alignment of the accumulator,
+ * for compatibility with aligned vector loads, which are usually faster.
+ */
+#ifndef XXH_ACC_ALIGN
+# if defined(XXH_X86DISPATCH)
+# define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */
+# elif XXH_VECTOR == XXH_SCALAR /* scalar */
+# define XXH_ACC_ALIGN 8
+# elif XXH_VECTOR == XXH_SSE2 /* sse2 */
+# define XXH_ACC_ALIGN 16
+# elif XXH_VECTOR == XXH_AVX2 /* avx2 */
+# define XXH_ACC_ALIGN 32
+# elif XXH_VECTOR == XXH_NEON /* neon */
+# define XXH_ACC_ALIGN 16
+# elif XXH_VECTOR == XXH_VSX /* vsx */
+# define XXH_ACC_ALIGN 16
+# elif XXH_VECTOR == XXH_AVX512 /* avx512 */
+# define XXH_ACC_ALIGN 64
+# endif
+#endif
+
+#if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \
+ || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512
+# define XXH_SEC_ALIGN XXH_ACC_ALIGN
+#else
+# define XXH_SEC_ALIGN 8
+#endif
+
+/*
+ * UGLY HACK:
+ * GCC usually generates the best code with -O3 for xxHash.
+ *
+ * However, when targeting AVX2, it is overzealous in its unrolling resulting
+ * in code roughly 3/4 the speed of Clang.
+ *
+ * There are other issues, such as GCC splitting _mm256_loadu_si256 into
+ * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
+ * only applies to Sandy and Ivy Bridge... which don't even support AVX2.
+ *
+ * That is why when compiling the AVX2 version, it is recommended to use either
+ * -O2 -mavx2 -march=haswell
+ * or
+ * -O2 -mavx2 -mno-avx256-split-unaligned-load
+ * for decent performance, or to use Clang instead.
+ *
+ * Fortunately, we can control the first one with a pragma that forces GCC into
+ * -O2, but the other one we can't control without "failed to inline always
+ * inline function due to target mismatch" warnings.
+ */
+#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
+ && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
+ && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
+# pragma GCC push_options
+# pragma GCC optimize("-O2")
+#endif
+
+
+#if XXH_VECTOR == XXH_NEON
+/*
+ * NEON's setup for vmlal_u32 is a little more complicated than it is on
+ * SSE2, AVX2, and VSX.
+ *
+ * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast.
+ *
+ * To do the same operation, the 128-bit 'Q' register needs to be split into
+ * two 64-bit 'D' registers, performing this operation::
+ *
+ * [ a | b ]
+ * | '---------. .--------' |
+ * | x |
+ * | .---------' '--------. |
+ * [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[ a >> 32 | b >> 32 ]
+ *
+ * Due to significant changes in aarch64, the fastest method for aarch64 is
+ * completely different than the fastest method for ARMv7-A.
+ *
+ * ARMv7-A treats D registers as unions overlaying Q registers, so modifying
+ * D11 will modify the high half of Q5. This is similar to how modifying AH
+ * will only affect bits 8-15 of AX on x86.
+ *
+ * VZIP takes two registers, and puts even lanes in one register and odd lanes
+ * in the other.
+ *
+ * On ARMv7-A, this strangely modifies both parameters in place instead of
+ * taking the usual 3-operand form.
+ *
+ * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the
+ * lower and upper halves of the Q register to end up with the high and low
+ * halves where we want - all in one instruction.
+ *
+ * vzip.32 d10, d11 @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] }
+ *
+ * Unfortunately we need inline assembly for this: Instructions modifying two
+ * registers at once is not possible in GCC or Clang's IR, and they have to
+ * create a copy.
+ *
+ * aarch64 requires a different approach.
+ *
+ * In order to make it easier to write a decent compiler for aarch64, many
+ * quirks were removed, such as conditional execution.
+ *
+ * NEON was also affected by this.
+ *
+ * aarch64 cannot access the high bits of a Q-form register, and writes to a
+ * D-form register zero the high bits, similar to how writes to W-form scalar
+ * registers (or DWORD registers on x86_64) work.
+ *
+ * The formerly free vget_high intrinsics now require a vext (with a few
+ * exceptions)
+ *
+ * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent
+ * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one
+ * operand.
+ *
+ * The equivalent of the VZIP.32 on the lower and upper halves would be this
+ * mess:
+ *
+ * ext v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] }
+ * zip1 v1.2s, v0.2s, v2.2s // v1 = { v0[0], v2[0] }
+ * zip2 v0.2s, v0.2s, v1.2s // v0 = { v0[1], v2[1] }
+ *
+ * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN):
+ *
+ * shrn v1.2s, v0.2d, #32 // v1 = (uint32x2_t)(v0 >> 32);
+ * xtn v0.2s, v0.2d // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF);
+ *
+ * This is available on ARMv7-A, but is less efficient than a single VZIP.32.
+ */
+
+/*!
+ * Function-like macro:
+ * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi)
+ * {
+ * outLo = (uint32x2_t)(in & 0xFFFFFFFF);
+ * outHi = (uint32x2_t)(in >> 32);
+ * in = UNDEFINED;
+ * }
+ */
+# if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \
+ && (defined(__GNUC__) || defined(__clang__)) \
+ && (defined(__arm__) || defined(__thumb__) || defined(_M_ARM))
+# define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
+ do { \
+ /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \
+ /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */ \
+ /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \
+ __asm__("vzip.32 %e0, %f0" : "+w" (in)); \
+ (outLo) = vget_low_u32 (vreinterpretq_u32_u64(in)); \
+ (outHi) = vget_high_u32(vreinterpretq_u32_u64(in)); \
+ } while (0)
+# else
+# define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
+ do { \
+ (outLo) = vmovn_u64 (in); \
+ (outHi) = vshrn_n_u64 ((in), 32); \
+ } while (0)
+# endif
+
+/*!
+ * @ingroup tuning
+ * @brief Controls the NEON to scalar ratio for XXH3
+ *
+ * On AArch64 when not optimizing for size, XXH3 will run 6 lanes using NEON and
+ * 2 lanes on scalar by default.
+ *
+ * This can be set to 2, 4, 6, or 8. ARMv7 will default to all 8 NEON lanes, as the
+ * emulated 64-bit arithmetic is too slow.
+ *
+ * Modern ARM CPUs are _very_ sensitive to how their pipelines are used.
+ *
+ * For example, the Cortex-A73 can dispatch 3 micro-ops per cycle, but it can't
+ * have more than 2 NEON (F0/F1) micro-ops. If you are only using NEON instructions,
+ * you are only using 2/3 of the CPU bandwidth.
+ *
+ * This is even more noticable on the more advanced cores like the A76 which
+ * can dispatch 8 micro-ops per cycle, but still only 2 NEON micro-ops at once.
+ *
+ * Therefore, @ref XXH3_NEON_LANES lanes will be processed using NEON, and the
+ * remaining lanes will use scalar instructions. This improves the bandwidth
+ * and also gives the integer pipelines something to do besides twiddling loop
+ * counters and pointers.
+ *
+ * This change benefits CPUs with large micro-op buffers without negatively affecting
+ * other CPUs:
+ *
+ * | Chipset | Dispatch type | NEON only | 6:2 hybrid | Diff. |
+ * |:----------------------|:--------------------|----------:|-----------:|------:|
+ * | Snapdragon 730 (A76) | 2 NEON/8 micro-ops | 8.8 GB/s | 10.1 GB/s | ~16% |
+ * | Snapdragon 835 (A73) | 2 NEON/3 micro-ops | 5.1 GB/s | 5.3 GB/s | ~5% |
+ * | Marvell PXA1928 (A53) | In-order dual-issue | 1.9 GB/s | 1.9 GB/s | 0% |
+ *
+ * It also seems to fix some bad codegen on GCC, making it almost as fast as clang.
+ *
+ * @see XXH3_accumulate_512_neon()
+ */
+# ifndef XXH3_NEON_LANES
+# if (defined(__aarch64__) || defined(__arm64__) || defined(_M_ARM64) || defined(_M_ARM64EC)) \
+ && !defined(__OPTIMIZE_SIZE__)
+# define XXH3_NEON_LANES 6
+# else
+# define XXH3_NEON_LANES XXH_ACC_NB
+# endif
+# endif
+#endif /* XXH_VECTOR == XXH_NEON */
+
+/*
+ * VSX and Z Vector helpers.
+ *
+ * This is very messy, and any pull requests to clean this up are welcome.
+ *
+ * There are a lot of problems with supporting VSX and s390x, due to
+ * inconsistent intrinsics, spotty coverage, and multiple endiannesses.
+ */
+#if XXH_VECTOR == XXH_VSX
+# if defined(__s390x__)
+# include <s390intrin.h>
+# else
+/* gcc's altivec.h can have the unwanted consequence to unconditionally
+ * #define bool, vector, and pixel keywords,
+ * with bad consequences for programs already using these keywords for other purposes.
+ * The paragraph defining these macros is skipped when __APPLE_ALTIVEC__ is defined.
+ * __APPLE_ALTIVEC__ is _generally_ defined automatically by the compiler,
+ * but it seems that, in some cases, it isn't.
+ * Force the build macro to be defined, so that keywords are not altered.
+ */
+# if defined(__GNUC__) && !defined(__APPLE_ALTIVEC__)
+# define __APPLE_ALTIVEC__
+# endif
+# include <altivec.h>
+# endif
+
+typedef __vector unsigned long long xxh_u64x2;
+typedef __vector unsigned char xxh_u8x16;
+typedef __vector unsigned xxh_u32x4;
+
+# ifndef XXH_VSX_BE
+# if defined(__BIG_ENDIAN__) \
+ || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
+# define XXH_VSX_BE 1
+# elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
+# warning "-maltivec=be is not recommended. Please use native endianness."
+# define XXH_VSX_BE 1
+# else
+# define XXH_VSX_BE 0
+# endif
+# endif /* !defined(XXH_VSX_BE) */
+
+# if XXH_VSX_BE
+# if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
+# define XXH_vec_revb vec_revb
+# else
+/*!
+ * A polyfill for POWER9's vec_revb().
+ */
+XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val)
+{
+ xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
+ 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
+ return vec_perm(val, val, vByteSwap);
+}
+# endif
+# endif /* XXH_VSX_BE */
+
+/*!
+ * Performs an unaligned vector load and byte swaps it on big endian.
+ */
+XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr)
+{
+ xxh_u64x2 ret;
+ XXH_memcpy(&ret, ptr, sizeof(xxh_u64x2));
+# if XXH_VSX_BE
+ ret = XXH_vec_revb(ret);
+# endif
+ return ret;
+}
+
+/*
+ * vec_mulo and vec_mule are very problematic intrinsics on PowerPC
+ *
+ * These intrinsics weren't added until GCC 8, despite existing for a while,
+ * and they are endian dependent. Also, their meaning swap depending on version.
+ * */
+# if defined(__s390x__)
+ /* s390x is always big endian, no issue on this platform */
+# define XXH_vec_mulo vec_mulo
+# define XXH_vec_mule vec_mule
+# elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw)
+/* Clang has a better way to control this, we can just use the builtin which doesn't swap. */
+# define XXH_vec_mulo __builtin_altivec_vmulouw
+# define XXH_vec_mule __builtin_altivec_vmuleuw
+# else
+/* gcc needs inline assembly */
+/* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
+XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b)
+{
+ xxh_u64x2 result;
+ __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
+ return result;
+}
+XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b)
+{
+ xxh_u64x2 result;
+ __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
+ return result;
+}
+# endif /* XXH_vec_mulo, XXH_vec_mule */
+#endif /* XXH_VECTOR == XXH_VSX */
+
+
+/* prefetch
+ * can be disabled, by declaring XXH_NO_PREFETCH build macro */
+#if defined(XXH_NO_PREFETCH)
+# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
+#else
+# if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86)) /* _mm_prefetch() not defined outside of x86/x64 */
+# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
+# define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
+# elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
+# define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
+# else
+# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
+# endif
+#endif /* XXH_NO_PREFETCH */
+
+
+/* ==========================================
+ * XXH3 default settings
+ * ========================================== */
+
+#define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */
+
+#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
+# error "default keyset is not large enough"
+#endif
+
+/*! Pseudorandom secret taken directly from FARSH. */
+XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = {
+ 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
+ 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
+ 0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
+ 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
+ 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
+ 0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
+ 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
+ 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
+ 0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
+ 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
+ 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
+ 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
+};
+
+
+#ifdef XXH_OLD_NAMES
+# define kSecret XXH3_kSecret
+#endif
+
+#ifdef XXH_DOXYGEN
+/*!
+ * @brief Calculates a 32-bit to 64-bit long multiply.
+ *
+ * Implemented as a macro.
+ *
+ * Wraps `__emulu` on MSVC x86 because it tends to call `__allmul` when it doesn't
+ * need to (but it shouldn't need to anyways, it is about 7 instructions to do
+ * a 64x64 multiply...). Since we know that this will _always_ emit `MULL`, we
+ * use that instead of the normal method.
+ *
+ * If you are compiling for platforms like Thumb-1 and don't have a better option,
+ * you may also want to write your own long multiply routine here.
+ *
+ * @param x, y Numbers to be multiplied
+ * @return 64-bit product of the low 32 bits of @p x and @p y.
+ */
+XXH_FORCE_INLINE xxh_u64
+XXH_mult32to64(xxh_u64 x, xxh_u64 y)
+{
+ return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
+}
+#elif defined(_MSC_VER) && defined(_M_IX86)
+# define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
+#else
+/*
+ * Downcast + upcast is usually better than masking on older compilers like
+ * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
+ *
+ * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands
+ * and perform a full 64x64 multiply -- entirely redundant on 32-bit.
+ */
+# define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
+#endif
+
+/*!
+ * @brief Calculates a 64->128-bit long multiply.
+ *
+ * Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar
+ * version.
+ *
+ * @param lhs , rhs The 64-bit integers to be multiplied
+ * @return The 128-bit result represented in an @ref XXH128_hash_t.
+ */
+static XXH128_hash_t
+XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
+{
+ /*
+ * GCC/Clang __uint128_t method.
+ *
+ * On most 64-bit targets, GCC and Clang define a __uint128_t type.
+ * This is usually the best way as it usually uses a native long 64-bit
+ * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
+ *
+ * Usually.
+ *
+ * Despite being a 32-bit platform, Clang (and emscripten) define this type
+ * despite not having the arithmetic for it. This results in a laggy
+ * compiler builtin call which calculates a full 128-bit multiply.
+ * In that case it is best to use the portable one.
+ * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
+ */
+#if (defined(__GNUC__) || defined(__clang__)) && !defined(__wasm__) \
+ && defined(__SIZEOF_INT128__) \
+ || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
+
+ __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
+ XXH128_hash_t r128;
+ r128.low64 = (xxh_u64)(product);
+ r128.high64 = (xxh_u64)(product >> 64);
+ return r128;
+
+ /*
+ * MSVC for x64's _umul128 method.
+ *
+ * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
+ *
+ * This compiles to single operand MUL on x64.
+ */
+#elif (defined(_M_X64) || defined(_M_IA64)) && !defined(_M_ARM64EC)
+
+#ifndef _MSC_VER
+# pragma intrinsic(_umul128)
+#endif
+ xxh_u64 product_high;
+ xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
+ XXH128_hash_t r128;
+ r128.low64 = product_low;
+ r128.high64 = product_high;
+ return r128;
+
+ /*
+ * MSVC for ARM64's __umulh method.
+ *
+ * This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method.
+ */
+#elif defined(_M_ARM64) || defined(_M_ARM64EC)
+
+#ifndef _MSC_VER
+# pragma intrinsic(__umulh)
+#endif
+ XXH128_hash_t r128;
+ r128.low64 = lhs * rhs;
+ r128.high64 = __umulh(lhs, rhs);
+ return r128;
+
+#else
+ /*
+ * Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
+ *
+ * This is a fast and simple grade school multiply, which is shown below
+ * with base 10 arithmetic instead of base 0x100000000.
+ *
+ * 9 3 // D2 lhs = 93
+ * x 7 5 // D2 rhs = 75
+ * ----------
+ * 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
+ * 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
+ * 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
+ * + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
+ * ---------
+ * 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
+ * + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
+ * ---------
+ * 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
+ *
+ * The reasons for adding the products like this are:
+ * 1. It avoids manual carry tracking. Just like how
+ * (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
+ * This avoids a lot of complexity.
+ *
+ * 2. It hints for, and on Clang, compiles to, the powerful UMAAL
+ * instruction available in ARM's Digital Signal Processing extension
+ * in 32-bit ARMv6 and later, which is shown below:
+ *
+ * void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
+ * {
+ * xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
+ * *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
+ * *RdHi = (xxh_u32)(product >> 32);
+ * }
+ *
+ * This instruction was designed for efficient long multiplication, and
+ * allows this to be calculated in only 4 instructions at speeds
+ * comparable to some 64-bit ALUs.
+ *
+ * 3. It isn't terrible on other platforms. Usually this will be a couple
+ * of 32-bit ADD/ADCs.
+ */
+
+ /* First calculate all of the cross products. */
+ xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
+ xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF);
+ xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
+ xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32);
+
+ /* Now add the products together. These will never overflow. */
+ xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
+ xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
+ xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
+
+ XXH128_hash_t r128;
+ r128.low64 = lower;
+ r128.high64 = upper;
+ return r128;
+#endif
+}
+
+/*!
+ * @brief Calculates a 64-bit to 128-bit multiply, then XOR folds it.
+ *
+ * The reason for the separate function is to prevent passing too many structs
+ * around by value. This will hopefully inline the multiply, but we don't force it.
+ *
+ * @param lhs , rhs The 64-bit integers to multiply
+ * @return The low 64 bits of the product XOR'd by the high 64 bits.
+ * @see XXH_mult64to128()
+ */
+static xxh_u64
+XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
+{
+ XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
+ return product.low64 ^ product.high64;
+}
+
+/*! Seems to produce slightly better code on GCC for some reason. */
+XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
+{
+ XXH_ASSERT(0 <= shift && shift < 64);
+ return v64 ^ (v64 >> shift);
+}
+
+/*
+ * This is a fast avalanche stage,
+ * suitable when input bits are already partially mixed
+ */
+static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
+{
+ h64 = XXH_xorshift64(h64, 37);
+ h64 *= 0x165667919E3779F9ULL;
+ h64 = XXH_xorshift64(h64, 32);
+ return h64;
+}
+
+/*
+ * This is a stronger avalanche,
+ * inspired by Pelle Evensen's rrmxmx
+ * preferable when input has not been previously mixed
+ */
+static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len)
+{
+ /* this mix is inspired by Pelle Evensen's rrmxmx */
+ h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24);
+ h64 *= 0x9FB21C651E98DF25ULL;
+ h64 ^= (h64 >> 35) + len ;
+ h64 *= 0x9FB21C651E98DF25ULL;
+ return XXH_xorshift64(h64, 28);
+}
+
+
+/* ==========================================
+ * Short keys
+ * ==========================================
+ * One of the shortcomings of XXH32 and XXH64 was that their performance was
+ * sub-optimal on short lengths. It used an iterative algorithm which strongly
+ * favored lengths that were a multiple of 4 or 8.
+ *
+ * Instead of iterating over individual inputs, we use a set of single shot
+ * functions which piece together a range of lengths and operate in constant time.
+ *
+ * Additionally, the number of multiplies has been significantly reduced. This
+ * reduces latency, especially when emulating 64-bit multiplies on 32-bit.
+ *
+ * Depending on the platform, this may or may not be faster than XXH32, but it
+ * is almost guaranteed to be faster than XXH64.
+ */
+
+/*
+ * At very short lengths, there isn't enough input to fully hide secrets, or use
+ * the entire secret.
+ *
+ * There is also only a limited amount of mixing we can do before significantly
+ * impacting performance.
+ *
+ * Therefore, we use different sections of the secret and always mix two secret
+ * samples with an XOR. This should have no effect on performance on the
+ * seedless or withSeed variants because everything _should_ be constant folded
+ * by modern compilers.
+ *
+ * The XOR mixing hides individual parts of the secret and increases entropy.
+ *
+ * This adds an extra layer of strength for custom secrets.
+ */
+XXH_FORCE_INLINE XXH64_hash_t
+XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+ XXH_ASSERT(input != NULL);
+ XXH_ASSERT(1 <= len && len <= 3);
+ XXH_ASSERT(secret != NULL);
+ /*
+ * len = 1: combined = { input[0], 0x01, input[0], input[0] }
+ * len = 2: combined = { input[1], 0x02, input[0], input[1] }
+ * len = 3: combined = { input[2], 0x03, input[0], input[1] }
+ */
+ { xxh_u8 const c1 = input[0];
+ xxh_u8 const c2 = input[len >> 1];
+ xxh_u8 const c3 = input[len - 1];
+ xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24)
+ | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
+ xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
+ xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
+ return XXH64_avalanche(keyed);
+ }
+}
+
+XXH_FORCE_INLINE XXH64_hash_t
+XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+ XXH_ASSERT(input != NULL);
+ XXH_ASSERT(secret != NULL);
+ XXH_ASSERT(4 <= len && len <= 8);
+ seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
+ { xxh_u32 const input1 = XXH_readLE32(input);
+ xxh_u32 const input2 = XXH_readLE32(input + len - 4);
+ xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed;
+ xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
+ xxh_u64 const keyed = input64 ^ bitflip;
+ return XXH3_rrmxmx(keyed, len);
+ }
+}
+
+XXH_FORCE_INLINE XXH64_hash_t
+XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+ XXH_ASSERT(input != NULL);
+ XXH_ASSERT(secret != NULL);
+ XXH_ASSERT(9 <= len && len <= 16);
+ { xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed;
+ xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed;
+ xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1;
+ xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
+ xxh_u64 const acc = len
+ + XXH_swap64(input_lo) + input_hi
+ + XXH3_mul128_fold64(input_lo, input_hi);
+ return XXH3_avalanche(acc);
+ }
+}
+
+XXH_FORCE_INLINE XXH64_hash_t
+XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+ XXH_ASSERT(len <= 16);
+ { if (XXH_likely(len > 8)) return XXH3_len_9to16_64b(input, len, secret, seed);
+ if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed);
+ if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
+ return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64)));
+ }
+}
+
+/*
+ * DISCLAIMER: There are known *seed-dependent* multicollisions here due to
+ * multiplication by zero, affecting hashes of lengths 17 to 240.
+ *
+ * However, they are very unlikely.
+ *
+ * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
+ * unseeded non-cryptographic hashes, it does not attempt to defend itself
+ * against specially crafted inputs, only random inputs.
+ *
+ * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
+ * cancelling out the secret is taken an arbitrary number of times (addressed
+ * in XXH3_accumulate_512), this collision is very unlikely with random inputs
+ * and/or proper seeding:
+ *
+ * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
+ * function that is only called up to 16 times per hash with up to 240 bytes of
+ * input.
+ *
+ * This is not too bad for a non-cryptographic hash function, especially with
+ * only 64 bit outputs.
+ *
+ * The 128-bit variant (which trades some speed for strength) is NOT affected
+ * by this, although it is always a good idea to use a proper seed if you care
+ * about strength.
+ */
+XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input,
+ const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64)
+{
+#if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
+ && defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \
+ && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */
+ /*
+ * UGLY HACK:
+ * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
+ * slower code.
+ *
+ * By forcing seed64 into a register, we disrupt the cost model and
+ * cause it to scalarize. See `XXH32_round()`
+ *
+ * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
+ * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
+ * GCC 9.2, despite both emitting scalar code.
+ *
+ * GCC generates much better scalar code than Clang for the rest of XXH3,
+ * which is why finding a more optimal codepath is an interest.
+ */
+ XXH_COMPILER_GUARD(seed64);
+#endif
+ { xxh_u64 const input_lo = XXH_readLE64(input);
+ xxh_u64 const input_hi = XXH_readLE64(input+8);
+ return XXH3_mul128_fold64(
+ input_lo ^ (XXH_readLE64(secret) + seed64),
+ input_hi ^ (XXH_readLE64(secret+8) - seed64)
+ );
+ }
+}
+
+/* For mid range keys, XXH3 uses a Mum-hash variant. */
+XXH_FORCE_INLINE XXH64_hash_t
+XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
+ const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
+ XXH64_hash_t seed)
+{
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
+ XXH_ASSERT(16 < len && len <= 128);
+
+ { xxh_u64 acc = len * XXH_PRIME64_1;
+ if (len > 32) {
+ if (len > 64) {
+ if (len > 96) {
+ acc += XXH3_mix16B(input+48, secret+96, seed);
+ acc += XXH3_mix16B(input+len-64, secret+112, seed);
+ }
+ acc += XXH3_mix16B(input+32, secret+64, seed);
+ acc += XXH3_mix16B(input+len-48, secret+80, seed);
+ }
+ acc += XXH3_mix16B(input+16, secret+32, seed);
+ acc += XXH3_mix16B(input+len-32, secret+48, seed);
+ }
+ acc += XXH3_mix16B(input+0, secret+0, seed);
+ acc += XXH3_mix16B(input+len-16, secret+16, seed);
+
+ return XXH3_avalanche(acc);
+ }
+}
+
+#define XXH3_MIDSIZE_MAX 240
+
+XXH_NO_INLINE XXH64_hash_t
+XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
+ const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
+ XXH64_hash_t seed)
+{
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
+ XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
+
+ #define XXH3_MIDSIZE_STARTOFFSET 3
+ #define XXH3_MIDSIZE_LASTOFFSET 17
+
+ { xxh_u64 acc = len * XXH_PRIME64_1;
+ int const nbRounds = (int)len / 16;
+ int i;
+ for (i=0; i<8; i++) {
+ acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed);
+ }
+ acc = XXH3_avalanche(acc);
+ XXH_ASSERT(nbRounds >= 8);
+#if defined(__clang__) /* Clang */ \
+ && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
+ && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
+ /*
+ * UGLY HACK:
+ * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
+ * In everywhere else, it uses scalar code.
+ *
+ * For 64->128-bit multiplies, even if the NEON was 100% optimal, it
+ * would still be slower than UMAAL (see XXH_mult64to128).
+ *
+ * Unfortunately, Clang doesn't handle the long multiplies properly and
+ * converts them to the nonexistent "vmulq_u64" intrinsic, which is then
+ * scalarized into an ugly mess of VMOV.32 instructions.
+ *
+ * This mess is difficult to avoid without turning autovectorization
+ * off completely, but they are usually relatively minor and/or not
+ * worth it to fix.
+ *
+ * This loop is the easiest to fix, as unlike XXH32, this pragma
+ * _actually works_ because it is a loop vectorization instead of an
+ * SLP vectorization.
+ */
+ #pragma clang loop vectorize(disable)
+#endif
+ for (i=8 ; i < nbRounds; i++) {
+ acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
+ }
+ /* last bytes */
+ acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
+ return XXH3_avalanche(acc);
+ }
+}
+
+
+/* ======= Long Keys ======= */
+
+#define XXH_STRIPE_LEN 64
+#define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */
+#define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64))
+
+#ifdef XXH_OLD_NAMES
+# define STRIPE_LEN XXH_STRIPE_LEN
+# define ACC_NB XXH_ACC_NB
+#endif
+
+XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
+{
+ if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
+ XXH_memcpy(dst, &v64, sizeof(v64));
+}
+
+/* Several intrinsic functions below are supposed to accept __int64 as argument,
+ * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ .
+ * However, several environments do not define __int64 type,
+ * requiring a workaround.
+ */
+#if !defined (__VMS) \
+ && (defined (__cplusplus) \
+ || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
+ typedef int64_t xxh_i64;
+#else
+ /* the following type must have a width of 64-bit */
+ typedef long long xxh_i64;
+#endif
+
+
+/*
+ * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized.
+ *
+ * It is a hardened version of UMAC, based off of FARSH's implementation.
+ *
+ * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
+ * implementations, and it is ridiculously fast.
+ *
+ * We harden it by mixing the original input to the accumulators as well as the product.
+ *
+ * This means that in the (relatively likely) case of a multiply by zero, the
+ * original input is preserved.
+ *
+ * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
+ * cross-pollination, as otherwise the upper and lower halves would be
+ * essentially independent.
+ *
+ * This doesn't matter on 64-bit hashes since they all get merged together in
+ * the end, so we skip the extra step.
+ *
+ * Both XXH3_64bits and XXH3_128bits use this subroutine.
+ */
+
+#if (XXH_VECTOR == XXH_AVX512) \
+ || (defined(XXH_DISPATCH_AVX512) && XXH_DISPATCH_AVX512 != 0)
+
+#ifndef XXH_TARGET_AVX512
+# define XXH_TARGET_AVX512 /* disable attribute target */
+#endif
+
+XXH_FORCE_INLINE XXH_TARGET_AVX512 void
+XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc,
+ const void* XXH_RESTRICT input,
+ const void* XXH_RESTRICT secret)
+{
+ __m512i* const xacc = (__m512i *) acc;
+ XXH_ASSERT((((size_t)acc) & 63) == 0);
+ XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
+
+ {
+ /* data_vec = input[0]; */
+ __m512i const data_vec = _mm512_loadu_si512 (input);
+ /* key_vec = secret[0]; */
+ __m512i const key_vec = _mm512_loadu_si512 (secret);
+ /* data_key = data_vec ^ key_vec; */
+ __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec);
+ /* data_key_lo = data_key >> 32; */
+ __m512i const data_key_lo = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
+ /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
+ __m512i const product = _mm512_mul_epu32 (data_key, data_key_lo);
+ /* xacc[0] += swap(data_vec); */
+ __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2));
+ __m512i const sum = _mm512_add_epi64(*xacc, data_swap);
+ /* xacc[0] += product; */
+ *xacc = _mm512_add_epi64(product, sum);
+ }
+}
+
+/*
+ * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
+ *
+ * Multiplication isn't perfect, as explained by Google in HighwayHash:
+ *
+ * // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
+ * // varying degrees. In descending order of goodness, bytes
+ * // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
+ * // As expected, the upper and lower bytes are much worse.
+ *
+ * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
+ *
+ * Since our algorithm uses a pseudorandom secret to add some variance into the
+ * mix, we don't need to (or want to) mix as often or as much as HighwayHash does.
+ *
+ * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
+ * extraction.
+ *
+ * Both XXH3_64bits and XXH3_128bits use this subroutine.
+ */
+
+XXH_FORCE_INLINE XXH_TARGET_AVX512 void
+XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
+{
+ XXH_ASSERT((((size_t)acc) & 63) == 0);
+ XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
+ { __m512i* const xacc = (__m512i*) acc;
+ const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1);
+
+ /* xacc[0] ^= (xacc[0] >> 47) */
+ __m512i const acc_vec = *xacc;
+ __m512i const shifted = _mm512_srli_epi64 (acc_vec, 47);
+ __m512i const data_vec = _mm512_xor_si512 (acc_vec, shifted);
+ /* xacc[0] ^= secret; */
+ __m512i const key_vec = _mm512_loadu_si512 (secret);
+ __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec);
+
+ /* xacc[0] *= XXH_PRIME32_1; */
+ __m512i const data_key_hi = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
+ __m512i const prod_lo = _mm512_mul_epu32 (data_key, prime32);
+ __m512i const prod_hi = _mm512_mul_epu32 (data_key_hi, prime32);
+ *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32));
+ }
+}
+
+XXH_FORCE_INLINE XXH_TARGET_AVX512 void
+XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
+{
+ XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0);
+ XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64);
+ XXH_ASSERT(((size_t)customSecret & 63) == 0);
+ (void)(&XXH_writeLE64);
+ { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i);
+ __m512i const seed = _mm512_mask_set1_epi64(_mm512_set1_epi64((xxh_i64)seed64), 0xAA, (xxh_i64)(0U - seed64));
+
+ const __m512i* const src = (const __m512i*) ((const void*) XXH3_kSecret);
+ __m512i* const dest = ( __m512i*) customSecret;
+ int i;
+ XXH_ASSERT(((size_t)src & 63) == 0); /* control alignment */
+ XXH_ASSERT(((size_t)dest & 63) == 0);
+ for (i=0; i < nbRounds; ++i) {
+ /* GCC has a bug, _mm512_stream_load_si512 accepts 'void*', not 'void const*',
+ * this will warn "discards 'const' qualifier". */
+ union {
+ const __m512i* cp;
+ void* p;
+ } remote_const_void;
+ remote_const_void.cp = src + i;
+ dest[i] = _mm512_add_epi64(_mm512_stream_load_si512(remote_const_void.p), seed);
+ } }
+}
+
+#endif
+
+#if (XXH_VECTOR == XXH_AVX2) \
+ || (defined(XXH_DISPATCH_AVX2) && XXH_DISPATCH_AVX2 != 0)
+
+#ifndef XXH_TARGET_AVX2
+# define XXH_TARGET_AVX2 /* disable attribute target */
+#endif
+
+XXH_FORCE_INLINE XXH_TARGET_AVX2 void
+XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc,
+ const void* XXH_RESTRICT input,
+ const void* XXH_RESTRICT secret)
+{
+ XXH_ASSERT((((size_t)acc) & 31) == 0);
+ { __m256i* const xacc = (__m256i *) acc;
+ /* Unaligned. This is mainly for pointer arithmetic, and because
+ * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
+ const __m256i* const xinput = (const __m256i *) input;
+ /* Unaligned. This is mainly for pointer arithmetic, and because
+ * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
+ const __m256i* const xsecret = (const __m256i *) secret;
+
+ size_t i;
+ for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
+ /* data_vec = xinput[i]; */
+ __m256i const data_vec = _mm256_loadu_si256 (xinput+i);
+ /* key_vec = xsecret[i]; */
+ __m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
+ /* data_key = data_vec ^ key_vec; */
+ __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
+ /* data_key_lo = data_key >> 32; */
+ __m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
+ /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
+ __m256i const product = _mm256_mul_epu32 (data_key, data_key_lo);
+ /* xacc[i] += swap(data_vec); */
+ __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
+ __m256i const sum = _mm256_add_epi64(xacc[i], data_swap);
+ /* xacc[i] += product; */
+ xacc[i] = _mm256_add_epi64(product, sum);
+ } }
+}
+
+XXH_FORCE_INLINE XXH_TARGET_AVX2 void
+XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
+{
+ XXH_ASSERT((((size_t)acc) & 31) == 0);
+ { __m256i* const xacc = (__m256i*) acc;
+ /* Unaligned. This is mainly for pointer arithmetic, and because
+ * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
+ const __m256i* const xsecret = (const __m256i *) secret;
+ const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1);
+
+ size_t i;
+ for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
+ /* xacc[i] ^= (xacc[i] >> 47) */
+ __m256i const acc_vec = xacc[i];
+ __m256i const shifted = _mm256_srli_epi64 (acc_vec, 47);
+ __m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted);
+ /* xacc[i] ^= xsecret; */
+ __m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
+ __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
+
+ /* xacc[i] *= XXH_PRIME32_1; */
+ __m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
+ __m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32);
+ __m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32);
+ xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
+ }
+ }
+}
+
+XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
+{
+ XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0);
+ XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6);
+ XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64);
+ (void)(&XXH_writeLE64);
+ XXH_PREFETCH(customSecret);
+ { __m256i const seed = _mm256_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64, (xxh_i64)(0U - seed64), (xxh_i64)seed64);
+
+ const __m256i* const src = (const __m256i*) ((const void*) XXH3_kSecret);
+ __m256i* dest = ( __m256i*) customSecret;
+
+# if defined(__GNUC__) || defined(__clang__)
+ /*
+ * On GCC & Clang, marking 'dest' as modified will cause the compiler:
+ * - do not extract the secret from sse registers in the internal loop
+ * - use less common registers, and avoid pushing these reg into stack
+ */
+ XXH_COMPILER_GUARD(dest);
+# endif
+ XXH_ASSERT(((size_t)src & 31) == 0); /* control alignment */
+ XXH_ASSERT(((size_t)dest & 31) == 0);
+
+ /* GCC -O2 need unroll loop manually */
+ dest[0] = _mm256_add_epi64(_mm256_stream_load_si256(src+0), seed);
+ dest[1] = _mm256_add_epi64(_mm256_stream_load_si256(src+1), seed);
+ dest[2] = _mm256_add_epi64(_mm256_stream_load_si256(src+2), seed);
+ dest[3] = _mm256_add_epi64(_mm256_stream_load_si256(src+3), seed);
+ dest[4] = _mm256_add_epi64(_mm256_stream_load_si256(src+4), seed);
+ dest[5] = _mm256_add_epi64(_mm256_stream_load_si256(src+5), seed);
+ }
+}
+
+#endif
+
+/* x86dispatch always generates SSE2 */
+#if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH)
+
+#ifndef XXH_TARGET_SSE2
+# define XXH_TARGET_SSE2 /* disable attribute target */
+#endif
+
+XXH_FORCE_INLINE XXH_TARGET_SSE2 void
+XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc,
+ const void* XXH_RESTRICT input,
+ const void* XXH_RESTRICT secret)
+{
+ /* SSE2 is just a half-scale version of the AVX2 version. */
+ XXH_ASSERT((((size_t)acc) & 15) == 0);
+ { __m128i* const xacc = (__m128i *) acc;
+ /* Unaligned. This is mainly for pointer arithmetic, and because
+ * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
+ const __m128i* const xinput = (const __m128i *) input;
+ /* Unaligned. This is mainly for pointer arithmetic, and because
+ * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
+ const __m128i* const xsecret = (const __m128i *) secret;
+
+ size_t i;
+ for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
+ /* data_vec = xinput[i]; */
+ __m128i const data_vec = _mm_loadu_si128 (xinput+i);
+ /* key_vec = xsecret[i]; */
+ __m128i const key_vec = _mm_loadu_si128 (xsecret+i);
+ /* data_key = data_vec ^ key_vec; */
+ __m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
+ /* data_key_lo = data_key >> 32; */
+ __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
+ /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
+ __m128i const product = _mm_mul_epu32 (data_key, data_key_lo);
+ /* xacc[i] += swap(data_vec); */
+ __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
+ __m128i const sum = _mm_add_epi64(xacc[i], data_swap);
+ /* xacc[i] += product; */
+ xacc[i] = _mm_add_epi64(product, sum);
+ } }
+}
+
+XXH_FORCE_INLINE XXH_TARGET_SSE2 void
+XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
+{
+ XXH_ASSERT((((size_t)acc) & 15) == 0);
+ { __m128i* const xacc = (__m128i*) acc;
+ /* Unaligned. This is mainly for pointer arithmetic, and because
+ * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
+ const __m128i* const xsecret = (const __m128i *) secret;
+ const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1);
+
+ size_t i;
+ for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
+ /* xacc[i] ^= (xacc[i] >> 47) */
+ __m128i const acc_vec = xacc[i];
+ __m128i const shifted = _mm_srli_epi64 (acc_vec, 47);
+ __m128i const data_vec = _mm_xor_si128 (acc_vec, shifted);
+ /* xacc[i] ^= xsecret[i]; */
+ __m128i const key_vec = _mm_loadu_si128 (xsecret+i);
+ __m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
+
+ /* xacc[i] *= XXH_PRIME32_1; */
+ __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
+ __m128i const prod_lo = _mm_mul_epu32 (data_key, prime32);
+ __m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32);
+ xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
+ }
+ }
+}
+
+XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
+{
+ XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
+ (void)(&XXH_writeLE64);
+ { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i);
+
+# if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900
+ /* MSVC 32bit mode does not support _mm_set_epi64x before 2015 */
+ XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, (xxh_i64)(0U - seed64) };
+ __m128i const seed = _mm_load_si128((__m128i const*)seed64x2);
+# else
+ __m128i const seed = _mm_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64);
+# endif
+ int i;
+
+ const void* const src16 = XXH3_kSecret;
+ __m128i* dst16 = (__m128i*) customSecret;
+# if defined(__GNUC__) || defined(__clang__)
+ /*
+ * On GCC & Clang, marking 'dest' as modified will cause the compiler:
+ * - do not extract the secret from sse registers in the internal loop
+ * - use less common registers, and avoid pushing these reg into stack
+ */
+ XXH_COMPILER_GUARD(dst16);
+# endif
+ XXH_ASSERT(((size_t)src16 & 15) == 0); /* control alignment */
+ XXH_ASSERT(((size_t)dst16 & 15) == 0);
+
+ for (i=0; i < nbRounds; ++i) {
+ dst16[i] = _mm_add_epi64(_mm_load_si128((const __m128i *)src16+i), seed);
+ } }
+}
+
+#endif
+
+#if (XXH_VECTOR == XXH_NEON)
+
+/* forward declarations for the scalar routines */
+XXH_FORCE_INLINE void
+XXH3_scalarRound(void* XXH_RESTRICT acc, void const* XXH_RESTRICT input,
+ void const* XXH_RESTRICT secret, size_t lane);
+
+XXH_FORCE_INLINE void
+XXH3_scalarScrambleRound(void* XXH_RESTRICT acc,
+ void const* XXH_RESTRICT secret, size_t lane);
+
+/*!
+ * @internal
+ * @brief The bulk processing loop for NEON.
+ *
+ * The NEON code path is actually partially scalar when running on AArch64. This
+ * is to optimize the pipelining and can have up to 15% speedup depending on the
+ * CPU, and it also mitigates some GCC codegen issues.
+ *
+ * @see XXH3_NEON_LANES for configuring this and details about this optimization.
+ */
+XXH_FORCE_INLINE void
+XXH3_accumulate_512_neon( void* XXH_RESTRICT acc,
+ const void* XXH_RESTRICT input,
+ const void* XXH_RESTRICT secret)
+{
+ XXH_ASSERT((((size_t)acc) & 15) == 0);
+ XXH_STATIC_ASSERT(XXH3_NEON_LANES > 0 && XXH3_NEON_LANES <= XXH_ACC_NB && XXH3_NEON_LANES % 2 == 0);
+ {
+ uint64x2_t* const xacc = (uint64x2_t *) acc;
+ /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
+ uint8_t const* const xinput = (const uint8_t *) input;
+ uint8_t const* const xsecret = (const uint8_t *) secret;
+
+ size_t i;
+ /* NEON for the first few lanes (these loops are normally interleaved) */
+ for (i=0; i < XXH3_NEON_LANES / 2; i++) {
+ /* data_vec = xinput[i]; */
+ uint8x16_t data_vec = vld1q_u8(xinput + (i * 16));
+ /* key_vec = xsecret[i]; */
+ uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16));
+ uint64x2_t data_key;
+ uint32x2_t data_key_lo, data_key_hi;
+ /* xacc[i] += swap(data_vec); */
+ uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec);
+ uint64x2_t const swapped = vextq_u64(data64, data64, 1);
+ xacc[i] = vaddq_u64 (xacc[i], swapped);
+ /* data_key = data_vec ^ key_vec; */
+ data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec));
+ /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF);
+ * data_key_hi = (uint32x2_t) (data_key >> 32);
+ * data_key = UNDEFINED; */
+ XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
+ /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */
+ xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi);
+
+ }
+ /* Scalar for the remainder. This may be a zero iteration loop. */
+ for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) {
+ XXH3_scalarRound(acc, input, secret, i);
+ }
+ }
+}
+
+XXH_FORCE_INLINE void
+XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
+{
+ XXH_ASSERT((((size_t)acc) & 15) == 0);
+
+ { uint64x2_t* xacc = (uint64x2_t*) acc;
+ uint8_t const* xsecret = (uint8_t const*) secret;
+ uint32x2_t prime = vdup_n_u32 (XXH_PRIME32_1);
+
+ size_t i;
+ /* NEON for the first few lanes (these loops are normally interleaved) */
+ for (i=0; i < XXH3_NEON_LANES / 2; i++) {
+ /* xacc[i] ^= (xacc[i] >> 47); */
+ uint64x2_t acc_vec = xacc[i];
+ uint64x2_t shifted = vshrq_n_u64 (acc_vec, 47);
+ uint64x2_t data_vec = veorq_u64 (acc_vec, shifted);
+
+ /* xacc[i] ^= xsecret[i]; */
+ uint8x16_t key_vec = vld1q_u8 (xsecret + (i * 16));
+ uint64x2_t data_key = veorq_u64 (data_vec, vreinterpretq_u64_u8(key_vec));
+
+ /* xacc[i] *= XXH_PRIME32_1 */
+ uint32x2_t data_key_lo, data_key_hi;
+ /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF);
+ * data_key_hi = (uint32x2_t) (xacc[i] >> 32);
+ * xacc[i] = UNDEFINED; */
+ XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
+ { /*
+ * prod_hi = (data_key >> 32) * XXH_PRIME32_1;
+ *
+ * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will
+ * incorrectly "optimize" this:
+ * tmp = vmul_u32(vmovn_u64(a), vmovn_u64(b));
+ * shifted = vshll_n_u32(tmp, 32);
+ * to this:
+ * tmp = "vmulq_u64"(a, b); // no such thing!
+ * shifted = vshlq_n_u64(tmp, 32);
+ *
+ * However, unlike SSE, Clang lacks a 64-bit multiply routine
+ * for NEON, and it scalarizes two 64-bit multiplies instead.
+ *
+ * vmull_u32 has the same timing as vmul_u32, and it avoids
+ * this bug completely.
+ * See https://bugs.llvm.org/show_bug.cgi?id=39967
+ */
+ uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime);
+ /* xacc[i] = prod_hi << 32; */
+ xacc[i] = vshlq_n_u64(prod_hi, 32);
+ /* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */
+ xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime);
+ }
+ }
+ /* Scalar for the remainder. This may be a zero iteration loop. */
+ for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) {
+ XXH3_scalarScrambleRound(acc, secret, i);
+ }
+ }
+}
+
+#endif
+
+#if (XXH_VECTOR == XXH_VSX)
+
+XXH_FORCE_INLINE void
+XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc,
+ const void* XXH_RESTRICT input,
+ const void* XXH_RESTRICT secret)
+{
+ /* presumed aligned */
+ unsigned int* const xacc = (unsigned int*) acc;
+ xxh_u64x2 const* const xinput = (xxh_u64x2 const*) input; /* no alignment restriction */
+ xxh_u64x2 const* const xsecret = (xxh_u64x2 const*) secret; /* no alignment restriction */
+ xxh_u64x2 const v32 = { 32, 32 };
+ size_t i;
+ for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
+ /* data_vec = xinput[i]; */
+ xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i);
+ /* key_vec = xsecret[i]; */
+ xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
+ xxh_u64x2 const data_key = data_vec ^ key_vec;
+ /* shuffled = (data_key << 32) | (data_key >> 32); */
+ xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
+ /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */
+ xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
+ /* acc_vec = xacc[i]; */
+ xxh_u64x2 acc_vec = (xxh_u64x2)vec_xl(0, xacc + 4 * i);
+ acc_vec += product;
+
+ /* swap high and low halves */
+#ifdef __s390x__
+ acc_vec += vec_permi(data_vec, data_vec, 2);
+#else
+ acc_vec += vec_xxpermdi(data_vec, data_vec, 2);
+#endif
+ /* xacc[i] = acc_vec; */
+ vec_xst((xxh_u32x4)acc_vec, 0, xacc + 4 * i);
+ }
+}
+
+XXH_FORCE_INLINE void
+XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
+{
+ XXH_ASSERT((((size_t)acc) & 15) == 0);
+
+ { xxh_u64x2* const xacc = (xxh_u64x2*) acc;
+ const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret;
+ /* constants */
+ xxh_u64x2 const v32 = { 32, 32 };
+ xxh_u64x2 const v47 = { 47, 47 };
+ xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 };
+ size_t i;
+ for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
+ /* xacc[i] ^= (xacc[i] >> 47); */
+ xxh_u64x2 const acc_vec = xacc[i];
+ xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
+
+ /* xacc[i] ^= xsecret[i]; */
+ xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
+ xxh_u64x2 const data_key = data_vec ^ key_vec;
+
+ /* xacc[i] *= XXH_PRIME32_1 */
+ /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF); */
+ xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime);
+ /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */
+ xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime);
+ xacc[i] = prod_odd + (prod_even << v32);
+ } }
+}
+
+#endif
+
+/* scalar variants - universal */
+
+/*!
+ * @internal
+ * @brief Scalar round for @ref XXH3_accumulate_512_scalar().
+ *
+ * This is extracted to its own function because the NEON path uses a combination
+ * of NEON and scalar.
+ */
+XXH_FORCE_INLINE void
+XXH3_scalarRound(void* XXH_RESTRICT acc,
+ void const* XXH_RESTRICT input,
+ void const* XXH_RESTRICT secret,
+ size_t lane)
+{
+ xxh_u64* xacc = (xxh_u64*) acc;
+ xxh_u8 const* xinput = (xxh_u8 const*) input;
+ xxh_u8 const* xsecret = (xxh_u8 const*) secret;
+ XXH_ASSERT(lane < XXH_ACC_NB);
+ XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0);
+ {
+ xxh_u64 const data_val = XXH_readLE64(xinput + lane * 8);
+ xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + lane * 8);
+ xacc[lane ^ 1] += data_val; /* swap adjacent lanes */
+ xacc[lane] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32);
+ }
+}
+
+/*!
+ * @internal
+ * @brief Processes a 64 byte block of data using the scalar path.
+ */
+XXH_FORCE_INLINE void
+XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc,
+ const void* XXH_RESTRICT input,
+ const void* XXH_RESTRICT secret)
+{
+ size_t i;
+ for (i=0; i < XXH_ACC_NB; i++) {
+ XXH3_scalarRound(acc, input, secret, i);
+ }
+}
+
+/*!
+ * @internal
+ * @brief Scalar scramble step for @ref XXH3_scrambleAcc_scalar().
+ *
+ * This is extracted to its own function because the NEON path uses a combination
+ * of NEON and scalar.
+ */
+XXH_FORCE_INLINE void
+XXH3_scalarScrambleRound(void* XXH_RESTRICT acc,
+ void const* XXH_RESTRICT secret,
+ size_t lane)
+{
+ xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */
+ const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */
+ XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0);
+ XXH_ASSERT(lane < XXH_ACC_NB);
+ {
+ xxh_u64 const key64 = XXH_readLE64(xsecret + lane * 8);
+ xxh_u64 acc64 = xacc[lane];
+ acc64 = XXH_xorshift64(acc64, 47);
+ acc64 ^= key64;
+ acc64 *= XXH_PRIME32_1;
+ xacc[lane] = acc64;
+ }
+}
+
+/*!
+ * @internal
+ * @brief Scrambles the accumulators after a large chunk has been read
+ */
+XXH_FORCE_INLINE void
+XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
+{
+ size_t i;
+ for (i=0; i < XXH_ACC_NB; i++) {
+ XXH3_scalarScrambleRound(acc, secret, i);
+ }
+}
+
+XXH_FORCE_INLINE void
+XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
+{
+ /*
+ * We need a separate pointer for the hack below,
+ * which requires a non-const pointer.
+ * Any decent compiler will optimize this out otherwise.
+ */
+ const xxh_u8* kSecretPtr = XXH3_kSecret;
+ XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
+
+#if defined(__clang__) && defined(__aarch64__)
+ /*
+ * UGLY HACK:
+ * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are
+ * placed sequentially, in order, at the top of the unrolled loop.
+ *
+ * While MOVK is great for generating constants (2 cycles for a 64-bit
+ * constant compared to 4 cycles for LDR), it fights for bandwidth with
+ * the arithmetic instructions.
+ *
+ * I L S
+ * MOVK
+ * MOVK
+ * MOVK
+ * MOVK
+ * ADD
+ * SUB STR
+ * STR
+ * By forcing loads from memory (as the asm line causes Clang to assume
+ * that XXH3_kSecretPtr has been changed), the pipelines are used more
+ * efficiently:
+ * I L S
+ * LDR
+ * ADD LDR
+ * SUB STR
+ * STR
+ *
+ * See XXH3_NEON_LANES for details on the pipsline.
+ *
+ * XXH3_64bits_withSeed, len == 256, Snapdragon 835
+ * without hack: 2654.4 MB/s
+ * with hack: 3202.9 MB/s
+ */
+ XXH_COMPILER_GUARD(kSecretPtr);
+#endif
+ /*
+ * Note: in debug mode, this overrides the asm optimization
+ * and Clang will emit MOVK chains again.
+ */
+ XXH_ASSERT(kSecretPtr == XXH3_kSecret);
+
+ { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
+ int i;
+ for (i=0; i < nbRounds; i++) {
+ /*
+ * The asm hack causes Clang to assume that kSecretPtr aliases with
+ * customSecret, and on aarch64, this prevented LDP from merging two
+ * loads together for free. Putting the loads together before the stores
+ * properly generates LDP.
+ */
+ xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i) + seed64;
+ xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64;
+ XXH_writeLE64((xxh_u8*)customSecret + 16*i, lo);
+ XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi);
+ } }
+}
+
+
+typedef void (*XXH3_f_accumulate_512)(void* XXH_RESTRICT, const void*, const void*);
+typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*);
+typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64);
+
+
+#if (XXH_VECTOR == XXH_AVX512)
+
+#define XXH3_accumulate_512 XXH3_accumulate_512_avx512
+#define XXH3_scrambleAcc XXH3_scrambleAcc_avx512
+#define XXH3_initCustomSecret XXH3_initCustomSecret_avx512
+
+#elif (XXH_VECTOR == XXH_AVX2)
+
+#define XXH3_accumulate_512 XXH3_accumulate_512_avx2
+#define XXH3_scrambleAcc XXH3_scrambleAcc_avx2
+#define XXH3_initCustomSecret XXH3_initCustomSecret_avx2
+
+#elif (XXH_VECTOR == XXH_SSE2)
+
+#define XXH3_accumulate_512 XXH3_accumulate_512_sse2
+#define XXH3_scrambleAcc XXH3_scrambleAcc_sse2
+#define XXH3_initCustomSecret XXH3_initCustomSecret_sse2
+
+#elif (XXH_VECTOR == XXH_NEON)
+
+#define XXH3_accumulate_512 XXH3_accumulate_512_neon
+#define XXH3_scrambleAcc XXH3_scrambleAcc_neon
+#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
+
+#elif (XXH_VECTOR == XXH_VSX)
+
+#define XXH3_accumulate_512 XXH3_accumulate_512_vsx
+#define XXH3_scrambleAcc XXH3_scrambleAcc_vsx
+#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
+
+#else /* scalar */
+
+#define XXH3_accumulate_512 XXH3_accumulate_512_scalar
+#define XXH3_scrambleAcc XXH3_scrambleAcc_scalar
+#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
+
+#endif
+
+
+
+#ifndef XXH_PREFETCH_DIST
+# ifdef __clang__
+# define XXH_PREFETCH_DIST 320
+# else
+# if (XXH_VECTOR == XXH_AVX512)
+# define XXH_PREFETCH_DIST 512
+# else
+# define XXH_PREFETCH_DIST 384
+# endif
+# endif /* __clang__ */
+#endif /* XXH_PREFETCH_DIST */
+
+/*
+ * XXH3_accumulate()
+ * Loops over XXH3_accumulate_512().
+ * Assumption: nbStripes will not overflow the secret size
+ */
+XXH_FORCE_INLINE void
+XXH3_accumulate( xxh_u64* XXH_RESTRICT acc,
+ const xxh_u8* XXH_RESTRICT input,
+ const xxh_u8* XXH_RESTRICT secret,
+ size_t nbStripes,
+ XXH3_f_accumulate_512 f_acc512)
+{
+ size_t n;
+ for (n = 0; n < nbStripes; n++ ) {
+ const xxh_u8* const in = input + n*XXH_STRIPE_LEN;
+ XXH_PREFETCH(in + XXH_PREFETCH_DIST);
+ f_acc512(acc,
+ in,
+ secret + n*XXH_SECRET_CONSUME_RATE);
+ }
+}
+
+XXH_FORCE_INLINE void
+XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc,
+ const xxh_u8* XXH_RESTRICT input, size_t len,
+ const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
+ XXH3_f_accumulate_512 f_acc512,
+ XXH3_f_scrambleAcc f_scramble)
+{
+ size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
+ size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
+ size_t const nb_blocks = (len - 1) / block_len;
+
+ size_t n;
+
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
+
+ for (n = 0; n < nb_blocks; n++) {
+ XXH3_accumulate(acc, input + n*block_len, secret, nbStripesPerBlock, f_acc512);
+ f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN);
+ }
+
+ /* last partial block */
+ XXH_ASSERT(len > XXH_STRIPE_LEN);
+ { size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
+ XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
+ XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, f_acc512);
+
+ /* last stripe */
+ { const xxh_u8* const p = input + len - XXH_STRIPE_LEN;
+#define XXH_SECRET_LASTACC_START 7 /* not aligned on 8, last secret is different from acc & scrambler */
+ f_acc512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START);
+ } }
+}
+
+XXH_FORCE_INLINE xxh_u64
+XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret)
+{
+ return XXH3_mul128_fold64(
+ acc[0] ^ XXH_readLE64(secret),
+ acc[1] ^ XXH_readLE64(secret+8) );
+}
+
+static XXH64_hash_t
+XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start)
+{
+ xxh_u64 result64 = start;
+ size_t i = 0;
+
+ for (i = 0; i < 4; i++) {
+ result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i);
+#if defined(__clang__) /* Clang */ \
+ && (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \
+ && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
+ && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
+ /*
+ * UGLY HACK:
+ * Prevent autovectorization on Clang ARMv7-a. Exact same problem as
+ * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b.
+ * XXH3_64bits, len == 256, Snapdragon 835:
+ * without hack: 2063.7 MB/s
+ * with hack: 2560.7 MB/s
+ */
+ XXH_COMPILER_GUARD(result64);
+#endif
+ }
+
+ return XXH3_avalanche(result64);
+}
+
+#define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \
+ XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 }
+
+XXH_FORCE_INLINE XXH64_hash_t
+XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len,
+ const void* XXH_RESTRICT secret, size_t secretSize,
+ XXH3_f_accumulate_512 f_acc512,
+ XXH3_f_scrambleAcc f_scramble)
+{
+ XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
+
+ XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc512, f_scramble);
+
+ /* converge into final hash */
+ XXH_STATIC_ASSERT(sizeof(acc) == 64);
+ /* do not align on 8, so that the secret is different from the accumulator */
+#define XXH_SECRET_MERGEACCS_START 11
+ XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
+ return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1);
+}
+
+/*
+ * It's important for performance to transmit secret's size (when it's static)
+ * so that the compiler can properly optimize the vectorized loop.
+ * This makes a big performance difference for "medium" keys (<1 KB) when using AVX instruction set.
+ */
+XXH_FORCE_INLINE XXH64_hash_t
+XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len,
+ XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
+{
+ (void)seed64;
+ return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate_512, XXH3_scrambleAcc);
+}
+
+/*
+ * It's preferable for performance that XXH3_hashLong is not inlined,
+ * as it results in a smaller function for small data, easier to the instruction cache.
+ * Note that inside this no_inline function, we do inline the internal loop,
+ * and provide a statically defined secret size to allow optimization of vector loop.
+ */
+XXH_NO_INLINE XXH64_hash_t
+XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len,
+ XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
+{
+ (void)seed64; (void)secret; (void)secretLen;
+ return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate_512, XXH3_scrambleAcc);
+}
+
+/*
+ * XXH3_hashLong_64b_withSeed():
+ * Generate a custom key based on alteration of default XXH3_kSecret with the seed,
+ * and then use this key for long mode hashing.
+ *
+ * This operation is decently fast but nonetheless costs a little bit of time.
+ * Try to avoid it whenever possible (typically when seed==0).
+ *
+ * It's important for performance that XXH3_hashLong is not inlined. Not sure
+ * why (uop cache maybe?), but the difference is large and easily measurable.
+ */
+XXH_FORCE_INLINE XXH64_hash_t
+XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len,
+ XXH64_hash_t seed,
+ XXH3_f_accumulate_512 f_acc512,
+ XXH3_f_scrambleAcc f_scramble,
+ XXH3_f_initCustomSecret f_initSec)
+{
+ if (seed == 0)
+ return XXH3_hashLong_64b_internal(input, len,
+ XXH3_kSecret, sizeof(XXH3_kSecret),
+ f_acc512, f_scramble);
+ { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
+ f_initSec(secret, seed);
+ return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret),
+ f_acc512, f_scramble);
+ }
+}
+
+/*
+ * It's important for performance that XXH3_hashLong is not inlined.
+ */
+XXH_NO_INLINE XXH64_hash_t
+XXH3_hashLong_64b_withSeed(const void* input, size_t len,
+ XXH64_hash_t seed, const xxh_u8* secret, size_t secretLen)
+{
+ (void)secret; (void)secretLen;
+ return XXH3_hashLong_64b_withSeed_internal(input, len, seed,
+ XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
+}
+
+
+typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t,
+ XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t);
+
+XXH_FORCE_INLINE XXH64_hash_t
+XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len,
+ XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
+ XXH3_hashLong64_f f_hashLong)
+{
+ XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
+ /*
+ * If an action is to be taken if `secretLen` condition is not respected,
+ * it should be done here.
+ * For now, it's a contract pre-condition.
+ * Adding a check and a branch here would cost performance at every hash.
+ * Also, note that function signature doesn't offer room to return an error.
+ */
+ if (len <= 16)
+ return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
+ if (len <= 128)
+ return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
+ if (len <= XXH3_MIDSIZE_MAX)
+ return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
+ return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen);
+}
+
+
+/* === Public entry point === */
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len)
+{
+ return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default);
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH64_hash_t
+XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
+{
+ return XXH3_64bits_internal(input, len, 0, secret, secretSize, XXH3_hashLong_64b_withSecret);
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH64_hash_t
+XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
+{
+ return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed);
+}
+
+XXH_PUBLIC_API XXH64_hash_t
+XXH3_64bits_withSecretandSeed(const void* input, size_t len, const void* secret, size_t secretSize, XXH64_hash_t seed)
+{
+ if (len <= XXH3_MIDSIZE_MAX)
+ return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
+ return XXH3_hashLong_64b_withSecret(input, len, seed, (const xxh_u8*)secret, secretSize);
+}
+
+
+/* === XXH3 streaming === */
+
+/*
+ * Malloc's a pointer that is always aligned to align.
+ *
+ * This must be freed with `XXH_alignedFree()`.
+ *
+ * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
+ * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
+ * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
+ *
+ * This underalignment previously caused a rather obvious crash which went
+ * completely unnoticed due to XXH3_createState() not actually being tested.
+ * Credit to RedSpah for noticing this bug.
+ *
+ * The alignment is done manually: Functions like posix_memalign or _mm_malloc
+ * are avoided: To maintain portability, we would have to write a fallback
+ * like this anyways, and besides, testing for the existence of library
+ * functions without relying on external build tools is impossible.
+ *
+ * The method is simple: Overallocate, manually align, and store the offset
+ * to the original behind the returned pointer.
+ *
+ * Align must be a power of 2 and 8 <= align <= 128.
+ */
+static void* XXH_alignedMalloc(size_t s, size_t align)
+{
+ XXH_ASSERT(align <= 128 && align >= 8); /* range check */
+ XXH_ASSERT((align & (align-1)) == 0); /* power of 2 */
+ XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */
+ { /* Overallocate to make room for manual realignment and an offset byte */
+ xxh_u8* base = (xxh_u8*)XXH_malloc(s + align);
+ if (base != NULL) {
+ /*
+ * Get the offset needed to align this pointer.
+ *
+ * Even if the returned pointer is aligned, there will always be
+ * at least one byte to store the offset to the original pointer.
+ */
+ size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
+ /* Add the offset for the now-aligned pointer */
+ xxh_u8* ptr = base + offset;
+
+ XXH_ASSERT((size_t)ptr % align == 0);
+
+ /* Store the offset immediately before the returned pointer. */
+ ptr[-1] = (xxh_u8)offset;
+ return ptr;
+ }
+ return NULL;
+ }
+}
+/*
+ * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
+ * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
+ */
+static void XXH_alignedFree(void* p)
+{
+ if (p != NULL) {
+ xxh_u8* ptr = (xxh_u8*)p;
+ /* Get the offset byte we added in XXH_malloc. */
+ xxh_u8 offset = ptr[-1];
+ /* Free the original malloc'd pointer */
+ xxh_u8* base = ptr - offset;
+ XXH_free(base);
+ }
+}
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
+{
+ XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
+ if (state==NULL) return NULL;
+ XXH3_INITSTATE(state);
+ return state;
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
+{
+ XXH_alignedFree(statePtr);
+ return XXH_OK;
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API void
+XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state)
+{
+ XXH_memcpy(dst_state, src_state, sizeof(*dst_state));
+}
+
+static void
+XXH3_reset_internal(XXH3_state_t* statePtr,
+ XXH64_hash_t seed,
+ const void* secret, size_t secretSize)
+{
+ size_t const initStart = offsetof(XXH3_state_t, bufferedSize);
+ size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart;
+ XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart);
+ XXH_ASSERT(statePtr != NULL);
+ /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */
+ memset((char*)statePtr + initStart, 0, initLength);
+ statePtr->acc[0] = XXH_PRIME32_3;
+ statePtr->acc[1] = XXH_PRIME64_1;
+ statePtr->acc[2] = XXH_PRIME64_2;
+ statePtr->acc[3] = XXH_PRIME64_3;
+ statePtr->acc[4] = XXH_PRIME64_4;
+ statePtr->acc[5] = XXH_PRIME32_2;
+ statePtr->acc[6] = XXH_PRIME64_5;
+ statePtr->acc[7] = XXH_PRIME32_1;
+ statePtr->seed = seed;
+ statePtr->useSeed = (seed != 0);
+ statePtr->extSecret = (const unsigned char*)secret;
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
+ statePtr->secretLimit = secretSize - XXH_STRIPE_LEN;
+ statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_64bits_reset(XXH3_state_t* statePtr)
+{
+ if (statePtr == NULL) return XXH_ERROR;
+ XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
+ return XXH_OK;
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
+{
+ if (statePtr == NULL) return XXH_ERROR;
+ XXH3_reset_internal(statePtr, 0, secret, secretSize);
+ if (secret == NULL) return XXH_ERROR;
+ if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
+ return XXH_OK;
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
+{
+ if (statePtr == NULL) return XXH_ERROR;
+ if (seed==0) return XXH3_64bits_reset(statePtr);
+ if ((seed != statePtr->seed) || (statePtr->extSecret != NULL))
+ XXH3_initCustomSecret(statePtr->customSecret, seed);
+ XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
+ return XXH_OK;
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_64bits_reset_withSecretandSeed(XXH3_state_t* statePtr, const void* secret, size_t secretSize, XXH64_hash_t seed64)
+{
+ if (statePtr == NULL) return XXH_ERROR;
+ if (secret == NULL) return XXH_ERROR;
+ if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
+ XXH3_reset_internal(statePtr, seed64, secret, secretSize);
+ statePtr->useSeed = 1; /* always, even if seed64==0 */
+ return XXH_OK;
+}
+
+/* Note : when XXH3_consumeStripes() is invoked,
+ * there must be a guarantee that at least one more byte must be consumed from input
+ * so that the function can blindly consume all stripes using the "normal" secret segment */
+XXH_FORCE_INLINE void
+XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc,
+ size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock,
+ const xxh_u8* XXH_RESTRICT input, size_t nbStripes,
+ const xxh_u8* XXH_RESTRICT secret, size_t secretLimit,
+ XXH3_f_accumulate_512 f_acc512,
+ XXH3_f_scrambleAcc f_scramble)
+{
+ XXH_ASSERT(nbStripes <= nbStripesPerBlock); /* can handle max 1 scramble per invocation */
+ XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock);
+ if (nbStripesPerBlock - *nbStripesSoFarPtr <= nbStripes) {
+ /* need a scrambling operation */
+ size_t const nbStripesToEndofBlock = nbStripesPerBlock - *nbStripesSoFarPtr;
+ size_t const nbStripesAfterBlock = nbStripes - nbStripesToEndofBlock;
+ XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripesToEndofBlock, f_acc512);
+ f_scramble(acc, secret + secretLimit);
+ XXH3_accumulate(acc, input + nbStripesToEndofBlock * XXH_STRIPE_LEN, secret, nbStripesAfterBlock, f_acc512);
+ *nbStripesSoFarPtr = nbStripesAfterBlock;
+ } else {
+ XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, f_acc512);
+ *nbStripesSoFarPtr += nbStripes;
+ }
+}
+
+#ifndef XXH3_STREAM_USE_STACK
+# ifndef __clang__ /* clang doesn't need additional stack space */
+# define XXH3_STREAM_USE_STACK 1
+# endif
+#endif
+/*
+ * Both XXH3_64bits_update and XXH3_128bits_update use this routine.
+ */
+XXH_FORCE_INLINE XXH_errorcode
+XXH3_update(XXH3_state_t* XXH_RESTRICT const state,
+ const xxh_u8* XXH_RESTRICT input, size_t len,
+ XXH3_f_accumulate_512 f_acc512,
+ XXH3_f_scrambleAcc f_scramble)
+{
+ if (input==NULL) {
+ XXH_ASSERT(len == 0);
+ return XXH_OK;
+ }
+
+ XXH_ASSERT(state != NULL);
+ { const xxh_u8* const bEnd = input + len;
+ const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
+#if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
+ /* For some reason, gcc and MSVC seem to suffer greatly
+ * when operating accumulators directly into state.
+ * Operating into stack space seems to enable proper optimization.
+ * clang, on the other hand, doesn't seem to need this trick */
+ XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8]; memcpy(acc, state->acc, sizeof(acc));
+#else
+ xxh_u64* XXH_RESTRICT const acc = state->acc;
+#endif
+ state->totalLen += len;
+ XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE);
+
+ /* small input : just fill in tmp buffer */
+ if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) {
+ XXH_memcpy(state->buffer + state->bufferedSize, input, len);
+ state->bufferedSize += (XXH32_hash_t)len;
+ return XXH_OK;
+ }
+
+ /* total input is now > XXH3_INTERNALBUFFER_SIZE */
+ #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN)
+ XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0); /* clean multiple */
+
+ /*
+ * Internal buffer is partially filled (always, except at beginning)
+ * Complete it, then consume it.
+ */
+ if (state->bufferedSize) {
+ size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
+ XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
+ input += loadSize;
+ XXH3_consumeStripes(acc,
+ &state->nbStripesSoFar, state->nbStripesPerBlock,
+ state->buffer, XXH3_INTERNALBUFFER_STRIPES,
+ secret, state->secretLimit,
+ f_acc512, f_scramble);
+ state->bufferedSize = 0;
+ }
+ XXH_ASSERT(input < bEnd);
+
+ /* large input to consume : ingest per full block */
+ if ((size_t)(bEnd - input) > state->nbStripesPerBlock * XXH_STRIPE_LEN) {
+ size_t nbStripes = (size_t)(bEnd - 1 - input) / XXH_STRIPE_LEN;
+ XXH_ASSERT(state->nbStripesPerBlock >= state->nbStripesSoFar);
+ /* join to current block's end */
+ { size_t const nbStripesToEnd = state->nbStripesPerBlock - state->nbStripesSoFar;
+ XXH_ASSERT(nbStripesToEnd <= nbStripes);
+ XXH3_accumulate(acc, input, secret + state->nbStripesSoFar * XXH_SECRET_CONSUME_RATE, nbStripesToEnd, f_acc512);
+ f_scramble(acc, secret + state->secretLimit);
+ state->nbStripesSoFar = 0;
+ input += nbStripesToEnd * XXH_STRIPE_LEN;
+ nbStripes -= nbStripesToEnd;
+ }
+ /* consume per entire blocks */
+ while(nbStripes >= state->nbStripesPerBlock) {
+ XXH3_accumulate(acc, input, secret, state->nbStripesPerBlock, f_acc512);
+ f_scramble(acc, secret + state->secretLimit);
+ input += state->nbStripesPerBlock * XXH_STRIPE_LEN;
+ nbStripes -= state->nbStripesPerBlock;
+ }
+ /* consume last partial block */
+ XXH3_accumulate(acc, input, secret, nbStripes, f_acc512);
+ input += nbStripes * XXH_STRIPE_LEN;
+ XXH_ASSERT(input < bEnd); /* at least some bytes left */
+ state->nbStripesSoFar = nbStripes;
+ /* buffer predecessor of last partial stripe */
+ XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
+ XXH_ASSERT(bEnd - input <= XXH_STRIPE_LEN);
+ } else {
+ /* content to consume <= block size */
+ /* Consume input by a multiple of internal buffer size */
+ if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) {
+ const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE;
+ do {
+ XXH3_consumeStripes(acc,
+ &state->nbStripesSoFar, state->nbStripesPerBlock,
+ input, XXH3_INTERNALBUFFER_STRIPES,
+ secret, state->secretLimit,
+ f_acc512, f_scramble);
+ input += XXH3_INTERNALBUFFER_SIZE;
+ } while (input<limit);
+ /* buffer predecessor of last partial stripe */
+ XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
+ }
+ }
+
+ /* Some remaining input (always) : buffer it */
+ XXH_ASSERT(input < bEnd);
+ XXH_ASSERT(bEnd - input <= XXH3_INTERNALBUFFER_SIZE);
+ XXH_ASSERT(state->bufferedSize == 0);
+ XXH_memcpy(state->buffer, input, (size_t)(bEnd-input));
+ state->bufferedSize = (XXH32_hash_t)(bEnd-input);
+#if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
+ /* save stack accumulators into state */
+ memcpy(state->acc, acc, sizeof(acc));
+#endif
+ }
+
+ return XXH_OK;
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len)
+{
+ return XXH3_update(state, (const xxh_u8*)input, len,
+ XXH3_accumulate_512, XXH3_scrambleAcc);
+}
+
+
+XXH_FORCE_INLINE void
+XXH3_digest_long (XXH64_hash_t* acc,
+ const XXH3_state_t* state,
+ const unsigned char* secret)
+{
+ /*
+ * Digest on a local copy. This way, the state remains unaltered, and it can
+ * continue ingesting more input afterwards.
+ */
+ XXH_memcpy(acc, state->acc, sizeof(state->acc));
+ if (state->bufferedSize >= XXH_STRIPE_LEN) {
+ size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN;
+ size_t nbStripesSoFar = state->nbStripesSoFar;
+ XXH3_consumeStripes(acc,
+ &nbStripesSoFar, state->nbStripesPerBlock,
+ state->buffer, nbStripes,
+ secret, state->secretLimit,
+ XXH3_accumulate_512, XXH3_scrambleAcc);
+ /* last stripe */
+ XXH3_accumulate_512(acc,
+ state->buffer + state->bufferedSize - XXH_STRIPE_LEN,
+ secret + state->secretLimit - XXH_SECRET_LASTACC_START);
+ } else { /* bufferedSize < XXH_STRIPE_LEN */
+ xxh_u8 lastStripe[XXH_STRIPE_LEN];
+ size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize;
+ XXH_ASSERT(state->bufferedSize > 0); /* there is always some input buffered */
+ XXH_memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
+ XXH_memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
+ XXH3_accumulate_512(acc,
+ lastStripe,
+ secret + state->secretLimit - XXH_SECRET_LASTACC_START);
+ }
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state)
+{
+ const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
+ if (state->totalLen > XXH3_MIDSIZE_MAX) {
+ XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
+ XXH3_digest_long(acc, state, secret);
+ return XXH3_mergeAccs(acc,
+ secret + XXH_SECRET_MERGEACCS_START,
+ (xxh_u64)state->totalLen * XXH_PRIME64_1);
+ }
+ /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */
+ if (state->useSeed)
+ return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
+ return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
+ secret, state->secretLimit + XXH_STRIPE_LEN);
+}
+
+
+
+/* ==========================================
+ * XXH3 128 bits (a.k.a XXH128)
+ * ==========================================
+ * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant,
+ * even without counting the significantly larger output size.
+ *
+ * For example, extra steps are taken to avoid the seed-dependent collisions
+ * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
+ *
+ * This strength naturally comes at the cost of some speed, especially on short
+ * lengths. Note that longer hashes are about as fast as the 64-bit version
+ * due to it using only a slight modification of the 64-bit loop.
+ *
+ * XXH128 is also more oriented towards 64-bit machines. It is still extremely
+ * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
+ */
+
+XXH_FORCE_INLINE XXH128_hash_t
+XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+ /* A doubled version of 1to3_64b with different constants. */
+ XXH_ASSERT(input != NULL);
+ XXH_ASSERT(1 <= len && len <= 3);
+ XXH_ASSERT(secret != NULL);
+ /*
+ * len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
+ * len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
+ * len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
+ */
+ { xxh_u8 const c1 = input[0];
+ xxh_u8 const c2 = input[len >> 1];
+ xxh_u8 const c3 = input[len - 1];
+ xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24)
+ | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
+ xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
+ xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
+ xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed;
+ xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
+ xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
+ XXH128_hash_t h128;
+ h128.low64 = XXH64_avalanche(keyed_lo);
+ h128.high64 = XXH64_avalanche(keyed_hi);
+ return h128;
+ }
+}
+
+XXH_FORCE_INLINE XXH128_hash_t
+XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+ XXH_ASSERT(input != NULL);
+ XXH_ASSERT(secret != NULL);
+ XXH_ASSERT(4 <= len && len <= 8);
+ seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
+ { xxh_u32 const input_lo = XXH_readLE32(input);
+ xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
+ xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
+ xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed;
+ xxh_u64 const keyed = input_64 ^ bitflip;
+
+ /* Shift len to the left to ensure it is even, this avoids even multiplies. */
+ XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2));
+
+ m128.high64 += (m128.low64 << 1);
+ m128.low64 ^= (m128.high64 >> 3);
+
+ m128.low64 = XXH_xorshift64(m128.low64, 35);
+ m128.low64 *= 0x9FB21C651E98DF25ULL;
+ m128.low64 = XXH_xorshift64(m128.low64, 28);
+ m128.high64 = XXH3_avalanche(m128.high64);
+ return m128;
+ }
+}
+
+XXH_FORCE_INLINE XXH128_hash_t
+XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+ XXH_ASSERT(input != NULL);
+ XXH_ASSERT(secret != NULL);
+ XXH_ASSERT(9 <= len && len <= 16);
+ { xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed;
+ xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed;
+ xxh_u64 const input_lo = XXH_readLE64(input);
+ xxh_u64 input_hi = XXH_readLE64(input + len - 8);
+ XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1);
+ /*
+ * Put len in the middle of m128 to ensure that the length gets mixed to
+ * both the low and high bits in the 128x64 multiply below.
+ */
+ m128.low64 += (xxh_u64)(len - 1) << 54;
+ input_hi ^= bitfliph;
+ /*
+ * Add the high 32 bits of input_hi to the high 32 bits of m128, then
+ * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to
+ * the high 64 bits of m128.
+ *
+ * The best approach to this operation is different on 32-bit and 64-bit.
+ */
+ if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */
+ /*
+ * 32-bit optimized version, which is more readable.
+ *
+ * On 32-bit, it removes an ADC and delays a dependency between the two
+ * halves of m128.high64, but it generates an extra mask on 64-bit.
+ */
+ m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2);
+ } else {
+ /*
+ * 64-bit optimized (albeit more confusing) version.
+ *
+ * Uses some properties of addition and multiplication to remove the mask:
+ *
+ * Let:
+ * a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
+ * b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
+ * c = XXH_PRIME32_2
+ *
+ * a + (b * c)
+ * Inverse Property: x + y - x == y
+ * a + (b * (1 + c - 1))
+ * Distributive Property: x * (y + z) == (x * y) + (x * z)
+ * a + (b * 1) + (b * (c - 1))
+ * Identity Property: x * 1 == x
+ * a + b + (b * (c - 1))
+ *
+ * Substitute a, b, and c:
+ * input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
+ *
+ * Since input_hi.hi + input_hi.lo == input_hi, we get this:
+ * input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
+ */
+ m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1);
+ }
+ /* m128 ^= XXH_swap64(m128 >> 64); */
+ m128.low64 ^= XXH_swap64(m128.high64);
+
+ { /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */
+ XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2);
+ h128.high64 += m128.high64 * XXH_PRIME64_2;
+
+ h128.low64 = XXH3_avalanche(h128.low64);
+ h128.high64 = XXH3_avalanche(h128.high64);
+ return h128;
+ } }
+}
+
+/*
+ * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
+ */
+XXH_FORCE_INLINE XXH128_hash_t
+XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+ XXH_ASSERT(len <= 16);
+ { if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
+ if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
+ if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
+ { XXH128_hash_t h128;
+ xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72);
+ xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88);
+ h128.low64 = XXH64_avalanche(seed ^ bitflipl);
+ h128.high64 = XXH64_avalanche( seed ^ bitfliph);
+ return h128;
+ } }
+}
+
+/*
+ * A bit slower than XXH3_mix16B, but handles multiply by zero better.
+ */
+XXH_FORCE_INLINE XXH128_hash_t
+XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2,
+ const xxh_u8* secret, XXH64_hash_t seed)
+{
+ acc.low64 += XXH3_mix16B (input_1, secret+0, seed);
+ acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
+ acc.high64 += XXH3_mix16B (input_2, secret+16, seed);
+ acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
+ return acc;
+}
+
+
+XXH_FORCE_INLINE XXH128_hash_t
+XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
+ const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
+ XXH64_hash_t seed)
+{
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
+ XXH_ASSERT(16 < len && len <= 128);
+
+ { XXH128_hash_t acc;
+ acc.low64 = len * XXH_PRIME64_1;
+ acc.high64 = 0;
+ if (len > 32) {
+ if (len > 64) {
+ if (len > 96) {
+ acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed);
+ }
+ acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed);
+ }
+ acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed);
+ }
+ acc = XXH128_mix32B(acc, input, input+len-16, secret, seed);
+ { XXH128_hash_t h128;
+ h128.low64 = acc.low64 + acc.high64;
+ h128.high64 = (acc.low64 * XXH_PRIME64_1)
+ + (acc.high64 * XXH_PRIME64_4)
+ + ((len - seed) * XXH_PRIME64_2);
+ h128.low64 = XXH3_avalanche(h128.low64);
+ h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
+ return h128;
+ }
+ }
+}
+
+XXH_NO_INLINE XXH128_hash_t
+XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
+ const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
+ XXH64_hash_t seed)
+{
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
+ XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
+
+ { XXH128_hash_t acc;
+ int const nbRounds = (int)len / 32;
+ int i;
+ acc.low64 = len * XXH_PRIME64_1;
+ acc.high64 = 0;
+ for (i=0; i<4; i++) {
+ acc = XXH128_mix32B(acc,
+ input + (32 * i),
+ input + (32 * i) + 16,
+ secret + (32 * i),
+ seed);
+ }
+ acc.low64 = XXH3_avalanche(acc.low64);
+ acc.high64 = XXH3_avalanche(acc.high64);
+ XXH_ASSERT(nbRounds >= 4);
+ for (i=4 ; i < nbRounds; i++) {
+ acc = XXH128_mix32B(acc,
+ input + (32 * i),
+ input + (32 * i) + 16,
+ secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)),
+ seed);
+ }
+ /* last bytes */
+ acc = XXH128_mix32B(acc,
+ input + len - 16,
+ input + len - 32,
+ secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
+ 0ULL - seed);
+
+ { XXH128_hash_t h128;
+ h128.low64 = acc.low64 + acc.high64;
+ h128.high64 = (acc.low64 * XXH_PRIME64_1)
+ + (acc.high64 * XXH_PRIME64_4)
+ + ((len - seed) * XXH_PRIME64_2);
+ h128.low64 = XXH3_avalanche(h128.low64);
+ h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
+ return h128;
+ }
+ }
+}
+
+XXH_FORCE_INLINE XXH128_hash_t
+XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len,
+ const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
+ XXH3_f_accumulate_512 f_acc512,
+ XXH3_f_scrambleAcc f_scramble)
+{
+ XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
+
+ XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc512, f_scramble);
+
+ /* converge into final hash */
+ XXH_STATIC_ASSERT(sizeof(acc) == 64);
+ XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
+ { XXH128_hash_t h128;
+ h128.low64 = XXH3_mergeAccs(acc,
+ secret + XXH_SECRET_MERGEACCS_START,
+ (xxh_u64)len * XXH_PRIME64_1);
+ h128.high64 = XXH3_mergeAccs(acc,
+ secret + secretSize
+ - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
+ ~((xxh_u64)len * XXH_PRIME64_2));
+ return h128;
+ }
+}
+
+/*
+ * It's important for performance that XXH3_hashLong is not inlined.
+ */
+XXH_NO_INLINE XXH128_hash_t
+XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len,
+ XXH64_hash_t seed64,
+ const void* XXH_RESTRICT secret, size_t secretLen)
+{
+ (void)seed64; (void)secret; (void)secretLen;
+ return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret),
+ XXH3_accumulate_512, XXH3_scrambleAcc);
+}
+
+/*
+ * It's important for performance to pass @secretLen (when it's static)
+ * to the compiler, so that it can properly optimize the vectorized loop.
+ */
+XXH_FORCE_INLINE XXH128_hash_t
+XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len,
+ XXH64_hash_t seed64,
+ const void* XXH_RESTRICT secret, size_t secretLen)
+{
+ (void)seed64;
+ return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen,
+ XXH3_accumulate_512, XXH3_scrambleAcc);
+}
+
+XXH_FORCE_INLINE XXH128_hash_t
+XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len,
+ XXH64_hash_t seed64,
+ XXH3_f_accumulate_512 f_acc512,
+ XXH3_f_scrambleAcc f_scramble,
+ XXH3_f_initCustomSecret f_initSec)
+{
+ if (seed64 == 0)
+ return XXH3_hashLong_128b_internal(input, len,
+ XXH3_kSecret, sizeof(XXH3_kSecret),
+ f_acc512, f_scramble);
+ { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
+ f_initSec(secret, seed64);
+ return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret),
+ f_acc512, f_scramble);
+ }
+}
+
+/*
+ * It's important for performance that XXH3_hashLong is not inlined.
+ */
+XXH_NO_INLINE XXH128_hash_t
+XXH3_hashLong_128b_withSeed(const void* input, size_t len,
+ XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen)
+{
+ (void)secret; (void)secretLen;
+ return XXH3_hashLong_128b_withSeed_internal(input, len, seed64,
+ XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
+}
+
+typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t,
+ XXH64_hash_t, const void* XXH_RESTRICT, size_t);
+
+XXH_FORCE_INLINE XXH128_hash_t
+XXH3_128bits_internal(const void* input, size_t len,
+ XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
+ XXH3_hashLong128_f f_hl128)
+{
+ XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
+ /*
+ * If an action is to be taken if `secret` conditions are not respected,
+ * it should be done here.
+ * For now, it's a contract pre-condition.
+ * Adding a check and a branch here would cost performance at every hash.
+ */
+ if (len <= 16)
+ return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
+ if (len <= 128)
+ return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
+ if (len <= XXH3_MIDSIZE_MAX)
+ return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
+ return f_hl128(input, len, seed64, secret, secretLen);
+}
+
+
+/* === Public XXH128 API === */
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len)
+{
+ return XXH3_128bits_internal(input, len, 0,
+ XXH3_kSecret, sizeof(XXH3_kSecret),
+ XXH3_hashLong_128b_default);
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH128_hash_t
+XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
+{
+ return XXH3_128bits_internal(input, len, 0,
+ (const xxh_u8*)secret, secretSize,
+ XXH3_hashLong_128b_withSecret);
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH128_hash_t
+XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
+{
+ return XXH3_128bits_internal(input, len, seed,
+ XXH3_kSecret, sizeof(XXH3_kSecret),
+ XXH3_hashLong_128b_withSeed);
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH128_hash_t
+XXH3_128bits_withSecretandSeed(const void* input, size_t len, const void* secret, size_t secretSize, XXH64_hash_t seed)
+{
+ if (len <= XXH3_MIDSIZE_MAX)
+ return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
+ return XXH3_hashLong_128b_withSecret(input, len, seed, secret, secretSize);
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH128_hash_t
+XXH128(const void* input, size_t len, XXH64_hash_t seed)
+{
+ return XXH3_128bits_withSeed(input, len, seed);
+}
+
+
+/* === XXH3 128-bit streaming === */
+
+/*
+ * All initialization and update functions are identical to 64-bit streaming variant.
+ * The only difference is the finalization routine.
+ */
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_128bits_reset(XXH3_state_t* statePtr)
+{
+ return XXH3_64bits_reset(statePtr);
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
+{
+ return XXH3_64bits_reset_withSecret(statePtr, secret, secretSize);
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
+{
+ return XXH3_64bits_reset_withSeed(statePtr, seed);
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr, const void* secret, size_t secretSize, XXH64_hash_t seed)
+{
+ return XXH3_64bits_reset_withSecretandSeed(statePtr, secret, secretSize, seed);
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len)
+{
+ return XXH3_update(state, (const xxh_u8*)input, len,
+ XXH3_accumulate_512, XXH3_scrambleAcc);
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state)
+{
+ const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
+ if (state->totalLen > XXH3_MIDSIZE_MAX) {
+ XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
+ XXH3_digest_long(acc, state, secret);
+ XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
+ { XXH128_hash_t h128;
+ h128.low64 = XXH3_mergeAccs(acc,
+ secret + XXH_SECRET_MERGEACCS_START,
+ (xxh_u64)state->totalLen * XXH_PRIME64_1);
+ h128.high64 = XXH3_mergeAccs(acc,
+ secret + state->secretLimit + XXH_STRIPE_LEN
+ - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
+ ~((xxh_u64)state->totalLen * XXH_PRIME64_2));
+ return h128;
+ }
+ }
+ /* len <= XXH3_MIDSIZE_MAX : short code */
+ if (state->seed)
+ return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
+ return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
+ secret, state->secretLimit + XXH_STRIPE_LEN);
+}
+
+/* 128-bit utility functions */
+
+#include <string.h> /* memcmp, memcpy */
+
+/* return : 1 is equal, 0 if different */
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
+{
+ /* note : XXH128_hash_t is compact, it has no padding byte */
+ return !(memcmp(&h1, &h2, sizeof(h1)));
+}
+
+/* This prototype is compatible with stdlib's qsort().
+ * return : >0 if *h128_1 > *h128_2
+ * <0 if *h128_1 < *h128_2
+ * =0 if *h128_1 == *h128_2 */
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2)
+{
+ XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
+ XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
+ int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
+ /* note : bets that, in most cases, hash values are different */
+ if (hcmp) return hcmp;
+ return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
+}
+
+
+/*====== Canonical representation ======*/
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API void
+XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash)
+{
+ XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
+ if (XXH_CPU_LITTLE_ENDIAN) {
+ hash.high64 = XXH_swap64(hash.high64);
+ hash.low64 = XXH_swap64(hash.low64);
+ }
+ XXH_memcpy(dst, &hash.high64, sizeof(hash.high64));
+ XXH_memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH128_hash_t
+XXH128_hashFromCanonical(const XXH128_canonical_t* src)
+{
+ XXH128_hash_t h;
+ h.high64 = XXH_readBE64(src);
+ h.low64 = XXH_readBE64(src->digest + 8);
+ return h;
+}
+
+
+
+/* ==========================================
+ * Secret generators
+ * ==========================================
+ */
+#define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x))
+
+XXH_FORCE_INLINE void XXH3_combine16(void* dst, XXH128_hash_t h128)
+{
+ XXH_writeLE64( dst, XXH_readLE64(dst) ^ h128.low64 );
+ XXH_writeLE64( (char*)dst+8, XXH_readLE64((char*)dst+8) ^ h128.high64 );
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_generateSecret(void* secretBuffer, size_t secretSize, const void* customSeed, size_t customSeedSize)
+{
+#if (XXH_DEBUGLEVEL >= 1)
+ XXH_ASSERT(secretBuffer != NULL);
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
+#else
+ /* production mode, assert() are disabled */
+ if (secretBuffer == NULL) return XXH_ERROR;
+ if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
+#endif
+
+ if (customSeedSize == 0) {
+ customSeed = XXH3_kSecret;
+ customSeedSize = XXH_SECRET_DEFAULT_SIZE;
+ }
+#if (XXH_DEBUGLEVEL >= 1)
+ XXH_ASSERT(customSeed != NULL);
+#else
+ if (customSeed == NULL) return XXH_ERROR;
+#endif
+
+ /* Fill secretBuffer with a copy of customSeed - repeat as needed */
+ { size_t pos = 0;
+ while (pos < secretSize) {
+ size_t const toCopy = XXH_MIN((secretSize - pos), customSeedSize);
+ memcpy((char*)secretBuffer + pos, customSeed, toCopy);
+ pos += toCopy;
+ } }
+
+ { size_t const nbSeg16 = secretSize / 16;
+ size_t n;
+ XXH128_canonical_t scrambler;
+ XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0));
+ for (n=0; n<nbSeg16; n++) {
+ XXH128_hash_t const h128 = XXH128(&scrambler, sizeof(scrambler), n);
+ XXH3_combine16((char*)secretBuffer + n*16, h128);
+ }
+ /* last segment */
+ XXH3_combine16((char*)secretBuffer + secretSize - 16, XXH128_hashFromCanonical(&scrambler));
+ }
+ return XXH_OK;
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API void
+XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed)
+{
+ XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
+ XXH3_initCustomSecret(secret, seed);
+ XXH_ASSERT(secretBuffer != NULL);
+ memcpy(secretBuffer, secret, XXH_SECRET_DEFAULT_SIZE);
+}
+
+
+
+/* Pop our optimization override from above */
+#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
+ && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
+ && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
+# pragma GCC pop_options
+#endif
+
+#endif /* XXH_NO_LONG_LONG */
+
+#endif /* XXH_NO_XXH3 */
+
+/*!
+ * @}
+ */
+#endif /* XXH_IMPLEMENTATION */
#if defined (__cplusplus)
}
#endif
diff --git a/sys/contrib/zstd/lib/common/zstd_common.c b/sys/contrib/zstd/lib/common/zstd_common.c
index 939e9f08fad7..3d7e35b309b5 100644
--- a/sys/contrib/zstd/lib/common/zstd_common.c
+++ b/sys/contrib/zstd/lib/common/zstd_common.c
@@ -1,83 +1,83 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Dependencies
***************************************/
#define ZSTD_DEPS_NEED_MALLOC
#include "zstd_deps.h" /* ZSTD_malloc, ZSTD_calloc, ZSTD_free, ZSTD_memset */
#include "error_private.h"
#include "zstd_internal.h"
/*-****************************************
* Version
******************************************/
unsigned ZSTD_versionNumber(void) { return ZSTD_VERSION_NUMBER; }
const char* ZSTD_versionString(void) { return ZSTD_VERSION_STRING; }
/*-****************************************
* ZSTD Error Management
******************************************/
#undef ZSTD_isError /* defined within zstd_internal.h */
/*! ZSTD_isError() :
* tells if a return value is an error code
* symbol is required for external callers */
unsigned ZSTD_isError(size_t code) { return ERR_isError(code); }
/*! ZSTD_getErrorName() :
* provides error code string from function result (useful for debugging) */
const char* ZSTD_getErrorName(size_t code) { return ERR_getErrorName(code); }
/*! ZSTD_getError() :
* convert a `size_t` function result into a proper ZSTD_errorCode enum */
ZSTD_ErrorCode ZSTD_getErrorCode(size_t code) { return ERR_getErrorCode(code); }
/*! ZSTD_getErrorString() :
* provides error code string from enum */
const char* ZSTD_getErrorString(ZSTD_ErrorCode code) { return ERR_getErrorString(code); }
/*=**************************************************************
* Custom allocator
****************************************************************/
void* ZSTD_customMalloc(size_t size, ZSTD_customMem customMem)
{
if (customMem.customAlloc)
return customMem.customAlloc(customMem.opaque, size);
return ZSTD_malloc(size);
}
void* ZSTD_customCalloc(size_t size, ZSTD_customMem customMem)
{
if (customMem.customAlloc) {
/* calloc implemented as malloc+memset;
* not as efficient as calloc, but next best guess for custom malloc */
void* const ptr = customMem.customAlloc(customMem.opaque, size);
ZSTD_memset(ptr, 0, size);
return ptr;
}
return ZSTD_calloc(1, size);
}
void ZSTD_customFree(void* ptr, ZSTD_customMem customMem)
{
if (ptr!=NULL) {
if (customMem.customFree)
customMem.customFree(customMem.opaque, ptr);
else
ZSTD_free(ptr);
}
}
diff --git a/sys/contrib/zstd/lib/common/zstd_deps.h b/sys/contrib/zstd/lib/common/zstd_deps.h
index 0fb8b7818b8f..14211344a02b 100644
--- a/sys/contrib/zstd/lib/common/zstd_deps.h
+++ b/sys/contrib/zstd/lib/common/zstd_deps.h
@@ -1,111 +1,111 @@
/*
- * Copyright (c) 2016-2020, Facebook, Inc.
+ * Copyright (c) Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* This file provides common libc dependencies that zstd requires.
* The purpose is to allow replacing this file with a custom implementation
* to compile zstd without libc support.
*/
/* Need:
* NULL
* INT_MAX
* UINT_MAX
* ZSTD_memcpy()
* ZSTD_memset()
* ZSTD_memmove()
*/
#ifndef ZSTD_DEPS_COMMON
#define ZSTD_DEPS_COMMON
#include <limits.h>
#include <stddef.h>
#include <string.h>
#if defined(__GNUC__) && __GNUC__ >= 4
# define ZSTD_memcpy(d,s,l) __builtin_memcpy((d),(s),(l))
# define ZSTD_memmove(d,s,l) __builtin_memmove((d),(s),(l))
# define ZSTD_memset(p,v,l) __builtin_memset((p),(v),(l))
#else
# define ZSTD_memcpy(d,s,l) memcpy((d),(s),(l))
# define ZSTD_memmove(d,s,l) memmove((d),(s),(l))
# define ZSTD_memset(p,v,l) memset((p),(v),(l))
#endif
#endif /* ZSTD_DEPS_COMMON */
/* Need:
* ZSTD_malloc()
* ZSTD_free()
* ZSTD_calloc()
*/
#ifdef ZSTD_DEPS_NEED_MALLOC
#ifndef ZSTD_DEPS_MALLOC
#define ZSTD_DEPS_MALLOC
#include <stdlib.h>
#define ZSTD_malloc(s) malloc(s)
#define ZSTD_calloc(n,s) calloc((n), (s))
#define ZSTD_free(p) free((p))
#endif /* ZSTD_DEPS_MALLOC */
#endif /* ZSTD_DEPS_NEED_MALLOC */
/*
* Provides 64-bit math support.
* Need:
* U64 ZSTD_div64(U64 dividend, U32 divisor)
*/
#ifdef ZSTD_DEPS_NEED_MATH64
#ifndef ZSTD_DEPS_MATH64
#define ZSTD_DEPS_MATH64
#define ZSTD_div64(dividend, divisor) ((dividend) / (divisor))
#endif /* ZSTD_DEPS_MATH64 */
#endif /* ZSTD_DEPS_NEED_MATH64 */
/* Need:
* assert()
*/
#ifdef ZSTD_DEPS_NEED_ASSERT
#ifndef ZSTD_DEPS_ASSERT
#define ZSTD_DEPS_ASSERT
#include <assert.h>
#endif /* ZSTD_DEPS_ASSERT */
#endif /* ZSTD_DEPS_NEED_ASSERT */
/* Need:
* ZSTD_DEBUG_PRINT()
*/
#ifdef ZSTD_DEPS_NEED_IO
#ifndef ZSTD_DEPS_IO
#define ZSTD_DEPS_IO
#include <stdio.h>
#define ZSTD_DEBUG_PRINT(...) fprintf(stderr, __VA_ARGS__)
#endif /* ZSTD_DEPS_IO */
#endif /* ZSTD_DEPS_NEED_IO */
/* Only requested when <stdint.h> is known to be present.
* Need:
* intptr_t
*/
#ifdef ZSTD_DEPS_NEED_STDINT
#ifndef ZSTD_DEPS_STDINT
#define ZSTD_DEPS_STDINT
#include <stdint.h>
#endif /* ZSTD_DEPS_STDINT */
#endif /* ZSTD_DEPS_NEED_STDINT */
diff --git a/sys/contrib/zstd/lib/common/zstd_internal.h b/sys/contrib/zstd/lib/common/zstd_internal.h
index 0991f20a086e..e4d36ce09051 100644
--- a/sys/contrib/zstd/lib/common/zstd_internal.h
+++ b/sys/contrib/zstd/lib/common/zstd_internal.h
@@ -1,478 +1,493 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_CCOMMON_H_MODULE
#define ZSTD_CCOMMON_H_MODULE
/* this module contains definitions which must be identical
* across compression, decompression and dictBuilder.
* It also contains a few functions useful to at least 2 of them
* and which benefit from being inlined */
/*-*************************************
* Dependencies
***************************************/
-#if !defined(ZSTD_NO_INTRINSICS) && defined(__ARM_NEON)
-#include <arm_neon.h>
-#endif
#include "compiler.h"
+#include "cpu.h"
#include "mem.h"
#include "debug.h" /* assert, DEBUGLOG, RAWLOG, g_debuglevel */
#include "error_private.h"
#define ZSTD_STATIC_LINKING_ONLY
#include "../zstd.h"
#define FSE_STATIC_LINKING_ONLY
#include "fse.h"
#define HUF_STATIC_LINKING_ONLY
#include "huf.h"
#ifndef XXH_STATIC_LINKING_ONLY
# define XXH_STATIC_LINKING_ONLY /* XXH64_state_t */
#endif
#include "xxhash.h" /* XXH_reset, update, digest */
+#ifndef ZSTD_NO_TRACE
+# include "zstd_trace.h"
+#else
+# define ZSTD_TRACE 0
+#endif
#if defined (__cplusplus)
extern "C" {
#endif
/* ---- static assert (debug) --- */
#define ZSTD_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c)
#define ZSTD_isError ERR_isError /* for inlining */
#define FSE_isError ERR_isError
#define HUF_isError ERR_isError
/*-*************************************
* shared macros
***************************************/
#undef MIN
#undef MAX
#define MIN(a,b) ((a)<(b) ? (a) : (b))
#define MAX(a,b) ((a)>(b) ? (a) : (b))
-
-/**
- * Ignore: this is an internal helper.
- *
- * This is a helper function to help force C99-correctness during compilation.
- * Under strict compilation modes, variadic macro arguments can't be empty.
- * However, variadic function arguments can be. Using a function therefore lets
- * us statically check that at least one (string) argument was passed,
- * independent of the compilation flags.
- */
-static INLINE_KEYWORD UNUSED_ATTR
-void _force_has_format_string(const char *format, ...) {
- (void)format;
-}
-
-/**
- * Ignore: this is an internal helper.
- *
- * We want to force this function invocation to be syntactically correct, but
- * we don't want to force runtime evaluation of its arguments.
- */
-#define _FORCE_HAS_FORMAT_STRING(...) \
- if (0) { \
- _force_has_format_string(__VA_ARGS__); \
- }
-
-/**
- * Return the specified error if the condition evaluates to true.
- *
- * In debug modes, prints additional information.
- * In order to do that (particularly, printing the conditional that failed),
- * this can't just wrap RETURN_ERROR().
- */
-#define RETURN_ERROR_IF(cond, err, ...) \
- if (cond) { \
- RAWLOG(3, "%s:%d: ERROR!: check %s failed, returning %s", \
- __FILE__, __LINE__, ZSTD_QUOTE(cond), ZSTD_QUOTE(ERROR(err))); \
- _FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
- RAWLOG(3, ": " __VA_ARGS__); \
- RAWLOG(3, "\n"); \
- return ERROR(err); \
- }
-
-/**
- * Unconditionally return the specified error.
- *
- * In debug modes, prints additional information.
- */
-#define RETURN_ERROR(err, ...) \
- do { \
- RAWLOG(3, "%s:%d: ERROR!: unconditional check failed, returning %s", \
- __FILE__, __LINE__, ZSTD_QUOTE(ERROR(err))); \
- _FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
- RAWLOG(3, ": " __VA_ARGS__); \
- RAWLOG(3, "\n"); \
- return ERROR(err); \
- } while(0);
-
-/**
- * If the provided expression evaluates to an error code, returns that error code.
- *
- * In debug modes, prints additional information.
- */
-#define FORWARD_IF_ERROR(err, ...) \
- do { \
- size_t const err_code = (err); \
- if (ERR_isError(err_code)) { \
- RAWLOG(3, "%s:%d: ERROR!: forwarding error in %s: %s", \
- __FILE__, __LINE__, ZSTD_QUOTE(err), ERR_getErrorName(err_code)); \
- _FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
- RAWLOG(3, ": " __VA_ARGS__); \
- RAWLOG(3, "\n"); \
- return err_code; \
- } \
- } while(0);
+#define BOUNDED(min,val,max) (MAX(min,MIN(val,max)))
/*-*************************************
* Common constants
***************************************/
#define ZSTD_OPT_NUM (1<<12)
#define ZSTD_REP_NUM 3 /* number of repcodes */
-#define ZSTD_REP_MOVE (ZSTD_REP_NUM-1)
static UNUSED_ATTR const U32 repStartValue[ZSTD_REP_NUM] = { 1, 4, 8 };
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)
#define BIT7 128
#define BIT6 64
#define BIT5 32
#define BIT4 16
#define BIT1 2
#define BIT0 1
#define ZSTD_WINDOWLOG_ABSOLUTEMIN 10
static UNUSED_ATTR const size_t ZSTD_fcs_fieldSize[4] = { 0, 2, 4, 8 };
static UNUSED_ATTR const size_t ZSTD_did_fieldSize[4] = { 0, 1, 2, 4 };
#define ZSTD_FRAMEIDSIZE 4 /* magic number size */
#define ZSTD_BLOCKHEADERSIZE 3 /* C standard doesn't allow `static const` variable to be init using another `static const` variable */
static UNUSED_ATTR const size_t ZSTD_blockHeaderSize = ZSTD_BLOCKHEADERSIZE;
typedef enum { bt_raw, bt_rle, bt_compressed, bt_reserved } blockType_e;
#define ZSTD_FRAMECHECKSUMSIZE 4
#define MIN_SEQUENCES_SIZE 1 /* nbSeq==0 */
#define MIN_CBLOCK_SIZE (1 /*litCSize*/ + 1 /* RLE or RAW */ + MIN_SEQUENCES_SIZE /* nbSeq==0 */) /* for a non-null block */
#define HufLog 12
typedef enum { set_basic, set_rle, set_compressed, set_repeat } symbolEncodingType_e;
#define LONGNBSEQ 0x7F00
#define MINMATCH 3
#define Litbits 8
#define MaxLit ((1<<Litbits) - 1)
#define MaxML 52
#define MaxLL 35
#define DefaultMaxOff 28
#define MaxOff 31
#define MaxSeq MAX(MaxLL, MaxML) /* Assumption : MaxOff < MaxLL,MaxML */
#define MLFSELog 9
#define LLFSELog 9
#define OffFSELog 8
#define MaxFSELog MAX(MAX(MLFSELog, LLFSELog), OffFSELog)
#define ZSTD_MAX_HUF_HEADER_SIZE 128 /* header + <= 127 byte tree description */
/* Each table cannot take more than #symbols * FSELog bits */
#define ZSTD_MAX_FSE_HEADERS_SIZE (((MaxML + 1) * MLFSELog + (MaxLL + 1) * LLFSELog + (MaxOff + 1) * OffFSELog + 7) / 8)
-static UNUSED_ATTR const U32 LL_bits[MaxLL+1] = {
+static UNUSED_ATTR const U8 LL_bits[MaxLL+1] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 2, 2, 3, 3,
4, 6, 7, 8, 9,10,11,12,
13,14,15,16
};
static UNUSED_ATTR const S16 LL_defaultNorm[MaxLL+1] = {
4, 3, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2,
2, 3, 2, 1, 1, 1, 1, 1,
-1,-1,-1,-1
};
#define LL_DEFAULTNORMLOG 6 /* for static allocation */
static UNUSED_ATTR const U32 LL_defaultNormLog = LL_DEFAULTNORMLOG;
-static UNUSED_ATTR const U32 ML_bits[MaxML+1] = {
+static UNUSED_ATTR const U8 ML_bits[MaxML+1] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 2, 2, 3, 3,
4, 4, 5, 7, 8, 9,10,11,
12,13,14,15,16
};
static UNUSED_ATTR const S16 ML_defaultNorm[MaxML+1] = {
1, 4, 3, 2, 2, 2, 2, 2,
2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1,-1,-1,
-1,-1,-1,-1,-1
};
#define ML_DEFAULTNORMLOG 6 /* for static allocation */
static UNUSED_ATTR const U32 ML_defaultNormLog = ML_DEFAULTNORMLOG;
static UNUSED_ATTR const S16 OF_defaultNorm[DefaultMaxOff+1] = {
1, 1, 1, 1, 1, 1, 2, 2,
2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
-1,-1,-1,-1,-1
};
#define OF_DEFAULTNORMLOG 5 /* for static allocation */
static UNUSED_ATTR const U32 OF_defaultNormLog = OF_DEFAULTNORMLOG;
/*-*******************************************
* Shared functions to include for inlining
*********************************************/
static void ZSTD_copy8(void* dst, const void* src) {
-#if !defined(ZSTD_NO_INTRINSICS) && defined(__ARM_NEON)
+#if defined(ZSTD_ARCH_ARM_NEON)
vst1_u8((uint8_t*)dst, vld1_u8((const uint8_t*)src));
#else
ZSTD_memcpy(dst, src, 8);
#endif
}
-
#define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; }
+
+/* Need to use memmove here since the literal buffer can now be located within
+ the dst buffer. In circumstances where the op "catches up" to where the
+ literal buffer is, there can be partial overlaps in this call on the final
+ copy if the literal is being shifted by less than 16 bytes. */
static void ZSTD_copy16(void* dst, const void* src) {
-#if !defined(ZSTD_NO_INTRINSICS) && defined(__ARM_NEON)
+#if defined(ZSTD_ARCH_ARM_NEON)
vst1q_u8((uint8_t*)dst, vld1q_u8((const uint8_t*)src));
+#elif defined(ZSTD_ARCH_X86_SSE2)
+ _mm_storeu_si128((__m128i*)dst, _mm_loadu_si128((const __m128i*)src));
+#elif defined(__clang__)
+ ZSTD_memmove(dst, src, 16);
#else
- ZSTD_memcpy(dst, src, 16);
+ /* ZSTD_memmove is not inlined properly by gcc */
+ BYTE copy16_buf[16];
+ ZSTD_memcpy(copy16_buf, src, 16);
+ ZSTD_memcpy(dst, copy16_buf, 16);
#endif
}
#define COPY16(d,s) { ZSTD_copy16(d,s); d+=16; s+=16; }
#define WILDCOPY_OVERLENGTH 32
#define WILDCOPY_VECLEN 16
typedef enum {
ZSTD_no_overlap,
ZSTD_overlap_src_before_dst
/* ZSTD_overlap_dst_before_src, */
} ZSTD_overlap_e;
/*! ZSTD_wildcopy() :
* Custom version of ZSTD_memcpy(), can over read/write up to WILDCOPY_OVERLENGTH bytes (if length==0)
* @param ovtype controls the overlap detection
* - ZSTD_no_overlap: The source and destination are guaranteed to be at least WILDCOPY_VECLEN bytes apart.
* - ZSTD_overlap_src_before_dst: The src and dst may overlap, but they MUST be at least 8 bytes apart.
* The src buffer must be before the dst buffer.
*/
MEM_STATIC FORCE_INLINE_ATTR
void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length, ZSTD_overlap_e const ovtype)
{
ptrdiff_t diff = (BYTE*)dst - (const BYTE*)src;
const BYTE* ip = (const BYTE*)src;
BYTE* op = (BYTE*)dst;
BYTE* const oend = op + length;
- assert(diff >= 8 || (ovtype == ZSTD_no_overlap && diff <= -WILDCOPY_VECLEN));
-
if (ovtype == ZSTD_overlap_src_before_dst && diff < WILDCOPY_VECLEN) {
/* Handle short offset copies. */
do {
COPY8(op, ip)
} while (op < oend);
} else {
assert(diff >= WILDCOPY_VECLEN || diff <= -WILDCOPY_VECLEN);
/* Separate out the first COPY16() call because the copy length is
* almost certain to be short, so the branches have different
* probabilities. Since it is almost certain to be short, only do
* one COPY16() in the first call. Then, do two calls per loop since
* at that point it is more likely to have a high trip count.
*/
#ifdef __aarch64__
do {
COPY16(op, ip);
}
while (op < oend);
#else
ZSTD_copy16(op, ip);
if (16 >= length) return;
op += 16;
ip += 16;
do {
COPY16(op, ip);
COPY16(op, ip);
}
while (op < oend);
#endif
}
}
MEM_STATIC size_t ZSTD_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
size_t const length = MIN(dstCapacity, srcSize);
if (length > 0) {
ZSTD_memcpy(dst, src, length);
}
return length;
}
/* define "workspace is too large" as this number of times larger than needed */
#define ZSTD_WORKSPACETOOLARGE_FACTOR 3
/* when workspace is continuously too large
* during at least this number of times,
* context's memory usage is considered wasteful,
* because it's sized to handle a worst case scenario which rarely happens.
* In which case, resize it down to free some memory */
#define ZSTD_WORKSPACETOOLARGE_MAXDURATION 128
/* Controls whether the input/output buffer is buffered or stable. */
typedef enum {
ZSTD_bm_buffered = 0, /* Buffer the input/output */
ZSTD_bm_stable = 1 /* ZSTD_inBuffer/ZSTD_outBuffer is stable */
} ZSTD_bufferMode_e;
/*-*******************************************
* Private declarations
*********************************************/
typedef struct seqDef_s {
- U32 offset; /* Offset code of the sequence */
+ U32 offBase; /* offBase == Offset + ZSTD_REP_NUM, or repcode 1,2,3 */
U16 litLength;
- U16 matchLength;
+ U16 mlBase; /* mlBase == matchLength - MINMATCH */
} seqDef;
+/* Controls whether seqStore has a single "long" litLength or matchLength. See seqStore_t. */
+typedef enum {
+ ZSTD_llt_none = 0, /* no longLengthType */
+ ZSTD_llt_literalLength = 1, /* represents a long literal */
+ ZSTD_llt_matchLength = 2 /* represents a long match */
+} ZSTD_longLengthType_e;
+
typedef struct {
seqDef* sequencesStart;
seqDef* sequences; /* ptr to end of sequences */
BYTE* litStart;
BYTE* lit; /* ptr to end of literals */
BYTE* llCode;
BYTE* mlCode;
BYTE* ofCode;
size_t maxNbSeq;
size_t maxNbLit;
- /* longLengthPos and longLengthID to allow us to represent either a single litLength or matchLength
+ /* longLengthPos and longLengthType to allow us to represent either a single litLength or matchLength
* in the seqStore that has a value larger than U16 (if it exists). To do so, we increment
- * the existing value of the litLength or matchLength by 0x10000.
+ * the existing value of the litLength or matchLength by 0x10000.
*/
- U32 longLengthID; /* 0 == no longLength; 1 == Represent the long literal; 2 == Represent the long match; */
- U32 longLengthPos; /* Index of the sequence to apply long length modification to */
+ ZSTD_longLengthType_e longLengthType;
+ U32 longLengthPos; /* Index of the sequence to apply long length modification to */
} seqStore_t;
typedef struct {
U32 litLength;
U32 matchLength;
} ZSTD_sequenceLength;
/**
* Returns the ZSTD_sequenceLength for the given sequences. It handles the decoding of long sequences
- * indicated by longLengthPos and longLengthID, and adds MINMATCH back to matchLength.
+ * indicated by longLengthPos and longLengthType, and adds MINMATCH back to matchLength.
*/
MEM_STATIC ZSTD_sequenceLength ZSTD_getSequenceLength(seqStore_t const* seqStore, seqDef const* seq)
{
ZSTD_sequenceLength seqLen;
seqLen.litLength = seq->litLength;
- seqLen.matchLength = seq->matchLength + MINMATCH;
+ seqLen.matchLength = seq->mlBase + MINMATCH;
if (seqStore->longLengthPos == (U32)(seq - seqStore->sequencesStart)) {
- if (seqStore->longLengthID == 1) {
+ if (seqStore->longLengthType == ZSTD_llt_literalLength) {
seqLen.litLength += 0xFFFF;
}
- if (seqStore->longLengthID == 2) {
+ if (seqStore->longLengthType == ZSTD_llt_matchLength) {
seqLen.matchLength += 0xFFFF;
}
}
return seqLen;
}
/**
* Contains the compressed frame size and an upper-bound for the decompressed frame size.
* Note: before using `compressedSize`, check for errors using ZSTD_isError().
* similarly, before using `decompressedBound`, check for errors using:
* `decompressedBound != ZSTD_CONTENTSIZE_ERROR`
*/
typedef struct {
size_t compressedSize;
unsigned long long decompressedBound;
} ZSTD_frameSizeInfo; /* decompress & legacy */
const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx); /* compress & dictBuilder */
void ZSTD_seqToCodes(const seqStore_t* seqStorePtr); /* compress, dictBuilder, decodeCorpus (shouldn't get its definition from here) */
/* custom memory allocation functions */
void* ZSTD_customMalloc(size_t size, ZSTD_customMem customMem);
void* ZSTD_customCalloc(size_t size, ZSTD_customMem customMem);
void ZSTD_customFree(void* ptr, ZSTD_customMem customMem);
MEM_STATIC U32 ZSTD_highbit32(U32 val) /* compress, dictBuilder, decodeCorpus */
{
assert(val != 0);
{
# if defined(_MSC_VER) /* Visual */
# if STATIC_BMI2 == 1
return _lzcnt_u32(val)^31;
# else
- unsigned long r=0;
- return _BitScanReverse(&r, val) ? (unsigned)r : 0;
+ if (val != 0) {
+ unsigned long r;
+ _BitScanReverse(&r, val);
+ return (unsigned)r;
+ } else {
+ /* Should not reach this code path */
+ __assume(0);
+ }
# endif
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* GCC Intrinsic */
return __builtin_clz (val) ^ 31;
# elif defined(__ICCARM__) /* IAR Intrinsic */
return 31 - __CLZ(val);
# else /* Software version */
static const U32 DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
U32 v = val;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
return DeBruijnClz[(v * 0x07C4ACDDU) >> 27];
# endif
}
}
+/**
+ * Counts the number of trailing zeros of a `size_t`.
+ * Most compilers should support CTZ as a builtin. A backup
+ * implementation is provided if the builtin isn't supported, but
+ * it may not be terribly efficient.
+ */
+MEM_STATIC unsigned ZSTD_countTrailingZeros(size_t val)
+{
+ if (MEM_64bits()) {
+# if defined(_MSC_VER) && defined(_WIN64)
+# if STATIC_BMI2
+ return _tzcnt_u64(val);
+# else
+ if (val != 0) {
+ unsigned long r;
+ _BitScanForward64(&r, (U64)val);
+ return (unsigned)r;
+ } else {
+ /* Should not reach this code path */
+ __assume(0);
+ }
+# endif
+# elif defined(__GNUC__) && (__GNUC__ >= 4)
+ return __builtin_ctzll((U64)val);
+# else
+ static const int DeBruijnBytePos[64] = { 0, 1, 2, 7, 3, 13, 8, 19,
+ 4, 25, 14, 28, 9, 34, 20, 56,
+ 5, 17, 26, 54, 15, 41, 29, 43,
+ 10, 31, 38, 35, 21, 45, 49, 57,
+ 63, 6, 12, 18, 24, 27, 33, 55,
+ 16, 53, 40, 42, 30, 37, 44, 48,
+ 62, 11, 23, 32, 52, 39, 36, 47,
+ 61, 22, 51, 46, 60, 50, 59, 58 };
+ return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
+# endif
+ } else { /* 32 bits */
+# if defined(_MSC_VER)
+ if (val != 0) {
+ unsigned long r;
+ _BitScanForward(&r, (U32)val);
+ return (unsigned)r;
+ } else {
+ /* Should not reach this code path */
+ __assume(0);
+ }
+# elif defined(__GNUC__) && (__GNUC__ >= 3)
+ return __builtin_ctz((U32)val);
+# else
+ static const int DeBruijnBytePos[32] = { 0, 1, 28, 2, 29, 14, 24, 3,
+ 30, 22, 20, 15, 25, 17, 4, 8,
+ 31, 27, 13, 23, 21, 19, 16, 7,
+ 26, 12, 18, 6, 11, 5, 10, 9 };
+ return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
+# endif
+ }
+}
+
/* ZSTD_invalidateRepCodes() :
* ensures next compression will not use repcodes from previous block.
* Note : only works with regular variant;
* do not use with extDict variant ! */
void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx); /* zstdmt, adaptive_compression (shouldn't get this definition from here) */
typedef struct {
blockType_e blockType;
U32 lastBlock;
U32 origSize;
} blockProperties_t; /* declared here for decompress and fullbench */
/*! ZSTD_getcBlockSize() :
* Provides the size of compressed block from block header `src` */
/* Used by: decompress, fullbench (does not get its definition from here) */
size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
blockProperties_t* bpPtr);
/*! ZSTD_decodeSeqHeaders() :
* decode sequence header from src */
/* Used by: decompress, fullbench (does not get its definition from here) */
size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
const void* src, size_t srcSize);
+/**
+ * @returns true iff the CPU supports dynamic BMI2 dispatch.
+ */
+MEM_STATIC int ZSTD_cpuSupportsBmi2(void)
+{
+ ZSTD_cpuid_t cpuid = ZSTD_cpuid();
+ return ZSTD_cpuid_bmi1(cpuid) && ZSTD_cpuid_bmi2(cpuid);
+}
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_CCOMMON_H_MODULE */
diff --git a/sys/contrib/zstd/lib/common/zstd_trace.h b/sys/contrib/zstd/lib/common/zstd_trace.h
new file mode 100644
index 000000000000..f9121f7d8ed5
--- /dev/null
+++ b/sys/contrib/zstd/lib/common/zstd_trace.h
@@ -0,0 +1,163 @@
+/*
+ * Copyright (c) Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_TRACE_H
+#define ZSTD_TRACE_H
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+#include <stddef.h>
+
+/* weak symbol support
+ * For now, enable conservatively:
+ * - Only GNUC
+ * - Only ELF
+ * - Only x86-64 and i386
+ * Also, explicitly disable on platforms known not to work so they aren't
+ * forgotten in the future.
+ */
+#if !defined(ZSTD_HAVE_WEAK_SYMBOLS) && \
+ defined(__GNUC__) && defined(__ELF__) && \
+ (defined(__x86_64__) || defined(_M_X64) || defined(__i386__) || defined(_M_IX86)) && \
+ !defined(__APPLE__) && !defined(_WIN32) && !defined(__MINGW32__) && \
+ !defined(__CYGWIN__) && !defined(_AIX)
+# define ZSTD_HAVE_WEAK_SYMBOLS 1
+#else
+# define ZSTD_HAVE_WEAK_SYMBOLS 0
+#endif
+#if ZSTD_HAVE_WEAK_SYMBOLS
+# define ZSTD_WEAK_ATTR __attribute__((__weak__))
+#else
+# define ZSTD_WEAK_ATTR
+#endif
+
+/* Only enable tracing when weak symbols are available. */
+#ifndef ZSTD_TRACE
+# define ZSTD_TRACE ZSTD_HAVE_WEAK_SYMBOLS
+#endif
+
+#if ZSTD_TRACE
+
+struct ZSTD_CCtx_s;
+struct ZSTD_DCtx_s;
+struct ZSTD_CCtx_params_s;
+
+typedef struct {
+ /**
+ * ZSTD_VERSION_NUMBER
+ *
+ * This is guaranteed to be the first member of ZSTD_trace.
+ * Otherwise, this struct is not stable between versions. If
+ * the version number does not match your expectation, you
+ * should not interpret the rest of the struct.
+ */
+ unsigned version;
+ /**
+ * Non-zero if streaming (de)compression is used.
+ */
+ unsigned streaming;
+ /**
+ * The dictionary ID.
+ */
+ unsigned dictionaryID;
+ /**
+ * Is the dictionary cold?
+ * Only set on decompression.
+ */
+ unsigned dictionaryIsCold;
+ /**
+ * The dictionary size or zero if no dictionary.
+ */
+ size_t dictionarySize;
+ /**
+ * The uncompressed size of the data.
+ */
+ size_t uncompressedSize;
+ /**
+ * The compressed size of the data.
+ */
+ size_t compressedSize;
+ /**
+ * The fully resolved CCtx parameters (NULL on decompression).
+ */
+ struct ZSTD_CCtx_params_s const* params;
+ /**
+ * The ZSTD_CCtx pointer (NULL on decompression).
+ */
+ struct ZSTD_CCtx_s const* cctx;
+ /**
+ * The ZSTD_DCtx pointer (NULL on compression).
+ */
+ struct ZSTD_DCtx_s const* dctx;
+} ZSTD_Trace;
+
+/**
+ * A tracing context. It must be 0 when tracing is disabled.
+ * Otherwise, any non-zero value returned by a tracing begin()
+ * function is presented to any subsequent calls to end().
+ *
+ * Any non-zero value is treated as tracing is enabled and not
+ * interpreted by the library.
+ *
+ * Two possible uses are:
+ * * A timestamp for when the begin() function was called.
+ * * A unique key identifying the (de)compression, like the
+ * address of the [dc]ctx pointer if you need to track
+ * more information than just a timestamp.
+ */
+typedef unsigned long long ZSTD_TraceCtx;
+
+/**
+ * Trace the beginning of a compression call.
+ * @param cctx The dctx pointer for the compression.
+ * It can be used as a key to map begin() to end().
+ * @returns Non-zero if tracing is enabled. The return value is
+ * passed to ZSTD_trace_compress_end().
+ */
+ZSTD_WEAK_ATTR ZSTD_TraceCtx ZSTD_trace_compress_begin(
+ struct ZSTD_CCtx_s const* cctx);
+
+/**
+ * Trace the end of a compression call.
+ * @param ctx The return value of ZSTD_trace_compress_begin().
+ * @param trace The zstd tracing info.
+ */
+ZSTD_WEAK_ATTR void ZSTD_trace_compress_end(
+ ZSTD_TraceCtx ctx,
+ ZSTD_Trace const* trace);
+
+/**
+ * Trace the beginning of a decompression call.
+ * @param dctx The dctx pointer for the decompression.
+ * It can be used as a key to map begin() to end().
+ * @returns Non-zero if tracing is enabled. The return value is
+ * passed to ZSTD_trace_compress_end().
+ */
+ZSTD_WEAK_ATTR ZSTD_TraceCtx ZSTD_trace_decompress_begin(
+ struct ZSTD_DCtx_s const* dctx);
+
+/**
+ * Trace the end of a decompression call.
+ * @param ctx The return value of ZSTD_trace_decompress_begin().
+ * @param trace The zstd tracing info.
+ */
+ZSTD_WEAK_ATTR void ZSTD_trace_decompress_end(
+ ZSTD_TraceCtx ctx,
+ ZSTD_Trace const* trace);
+
+#endif /* ZSTD_TRACE */
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* ZSTD_TRACE_H */
diff --git a/sys/contrib/zstd/lib/compress/clevels.h b/sys/contrib/zstd/lib/compress/clevels.h
new file mode 100644
index 000000000000..7ed2e00490bf
--- /dev/null
+++ b/sys/contrib/zstd/lib/compress/clevels.h
@@ -0,0 +1,134 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_CLEVELS_H
+#define ZSTD_CLEVELS_H
+
+#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_compressionParameters */
+#include "../zstd.h"
+
+/*-===== Pre-defined compression levels =====-*/
+
+#define ZSTD_MAX_CLEVEL 22
+
+#ifdef __GNUC__
+__attribute__((__unused__))
+#endif
+
+static const ZSTD_compressionParameters ZSTD_defaultCParameters[4][ZSTD_MAX_CLEVEL+1] = {
+{ /* "default" - for any srcSize > 256 KB */
+ /* W, C, H, S, L, TL, strat */
+ { 19, 12, 13, 1, 6, 1, ZSTD_fast }, /* base for negative levels */
+ { 19, 13, 14, 1, 7, 0, ZSTD_fast }, /* level 1 */
+ { 20, 15, 16, 1, 6, 0, ZSTD_fast }, /* level 2 */
+ { 21, 16, 17, 1, 5, 0, ZSTD_dfast }, /* level 3 */
+ { 21, 18, 18, 1, 5, 0, ZSTD_dfast }, /* level 4 */
+ { 21, 18, 19, 3, 5, 2, ZSTD_greedy }, /* level 5 */
+ { 21, 18, 19, 3, 5, 4, ZSTD_lazy }, /* level 6 */
+ { 21, 19, 20, 4, 5, 8, ZSTD_lazy }, /* level 7 */
+ { 21, 19, 20, 4, 5, 16, ZSTD_lazy2 }, /* level 8 */
+ { 22, 20, 21, 4, 5, 16, ZSTD_lazy2 }, /* level 9 */
+ { 22, 21, 22, 5, 5, 16, ZSTD_lazy2 }, /* level 10 */
+ { 22, 21, 22, 6, 5, 16, ZSTD_lazy2 }, /* level 11 */
+ { 22, 22, 23, 6, 5, 32, ZSTD_lazy2 }, /* level 12 */
+ { 22, 22, 22, 4, 5, 32, ZSTD_btlazy2 }, /* level 13 */
+ { 22, 22, 23, 5, 5, 32, ZSTD_btlazy2 }, /* level 14 */
+ { 22, 23, 23, 6, 5, 32, ZSTD_btlazy2 }, /* level 15 */
+ { 22, 22, 22, 5, 5, 48, ZSTD_btopt }, /* level 16 */
+ { 23, 23, 22, 5, 4, 64, ZSTD_btopt }, /* level 17 */
+ { 23, 23, 22, 6, 3, 64, ZSTD_btultra }, /* level 18 */
+ { 23, 24, 22, 7, 3,256, ZSTD_btultra2}, /* level 19 */
+ { 25, 25, 23, 7, 3,256, ZSTD_btultra2}, /* level 20 */
+ { 26, 26, 24, 7, 3,512, ZSTD_btultra2}, /* level 21 */
+ { 27, 27, 25, 9, 3,999, ZSTD_btultra2}, /* level 22 */
+},
+{ /* for srcSize <= 256 KB */
+ /* W, C, H, S, L, T, strat */
+ { 18, 12, 13, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
+ { 18, 13, 14, 1, 6, 0, ZSTD_fast }, /* level 1 */
+ { 18, 14, 14, 1, 5, 0, ZSTD_dfast }, /* level 2 */
+ { 18, 16, 16, 1, 4, 0, ZSTD_dfast }, /* level 3 */
+ { 18, 16, 17, 3, 5, 2, ZSTD_greedy }, /* level 4.*/
+ { 18, 17, 18, 5, 5, 2, ZSTD_greedy }, /* level 5.*/
+ { 18, 18, 19, 3, 5, 4, ZSTD_lazy }, /* level 6.*/
+ { 18, 18, 19, 4, 4, 4, ZSTD_lazy }, /* level 7 */
+ { 18, 18, 19, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */
+ { 18, 18, 19, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */
+ { 18, 18, 19, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */
+ { 18, 18, 19, 5, 4, 12, ZSTD_btlazy2 }, /* level 11.*/
+ { 18, 19, 19, 7, 4, 12, ZSTD_btlazy2 }, /* level 12.*/
+ { 18, 18, 19, 4, 4, 16, ZSTD_btopt }, /* level 13 */
+ { 18, 18, 19, 4, 3, 32, ZSTD_btopt }, /* level 14.*/
+ { 18, 18, 19, 6, 3,128, ZSTD_btopt }, /* level 15.*/
+ { 18, 19, 19, 6, 3,128, ZSTD_btultra }, /* level 16.*/
+ { 18, 19, 19, 8, 3,256, ZSTD_btultra }, /* level 17.*/
+ { 18, 19, 19, 6, 3,128, ZSTD_btultra2}, /* level 18.*/
+ { 18, 19, 19, 8, 3,256, ZSTD_btultra2}, /* level 19.*/
+ { 18, 19, 19, 10, 3,512, ZSTD_btultra2}, /* level 20.*/
+ { 18, 19, 19, 12, 3,512, ZSTD_btultra2}, /* level 21.*/
+ { 18, 19, 19, 13, 3,999, ZSTD_btultra2}, /* level 22.*/
+},
+{ /* for srcSize <= 128 KB */
+ /* W, C, H, S, L, T, strat */
+ { 17, 12, 12, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
+ { 17, 12, 13, 1, 6, 0, ZSTD_fast }, /* level 1 */
+ { 17, 13, 15, 1, 5, 0, ZSTD_fast }, /* level 2 */
+ { 17, 15, 16, 2, 5, 0, ZSTD_dfast }, /* level 3 */
+ { 17, 17, 17, 2, 4, 0, ZSTD_dfast }, /* level 4 */
+ { 17, 16, 17, 3, 4, 2, ZSTD_greedy }, /* level 5 */
+ { 17, 16, 17, 3, 4, 4, ZSTD_lazy }, /* level 6 */
+ { 17, 16, 17, 3, 4, 8, ZSTD_lazy2 }, /* level 7 */
+ { 17, 16, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */
+ { 17, 16, 17, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */
+ { 17, 16, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */
+ { 17, 17, 17, 5, 4, 8, ZSTD_btlazy2 }, /* level 11 */
+ { 17, 18, 17, 7, 4, 12, ZSTD_btlazy2 }, /* level 12 */
+ { 17, 18, 17, 3, 4, 12, ZSTD_btopt }, /* level 13.*/
+ { 17, 18, 17, 4, 3, 32, ZSTD_btopt }, /* level 14.*/
+ { 17, 18, 17, 6, 3,256, ZSTD_btopt }, /* level 15.*/
+ { 17, 18, 17, 6, 3,128, ZSTD_btultra }, /* level 16.*/
+ { 17, 18, 17, 8, 3,256, ZSTD_btultra }, /* level 17.*/
+ { 17, 18, 17, 10, 3,512, ZSTD_btultra }, /* level 18.*/
+ { 17, 18, 17, 5, 3,256, ZSTD_btultra2}, /* level 19.*/
+ { 17, 18, 17, 7, 3,512, ZSTD_btultra2}, /* level 20.*/
+ { 17, 18, 17, 9, 3,512, ZSTD_btultra2}, /* level 21.*/
+ { 17, 18, 17, 11, 3,999, ZSTD_btultra2}, /* level 22.*/
+},
+{ /* for srcSize <= 16 KB */
+ /* W, C, H, S, L, T, strat */
+ { 14, 12, 13, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
+ { 14, 14, 15, 1, 5, 0, ZSTD_fast }, /* level 1 */
+ { 14, 14, 15, 1, 4, 0, ZSTD_fast }, /* level 2 */
+ { 14, 14, 15, 2, 4, 0, ZSTD_dfast }, /* level 3 */
+ { 14, 14, 14, 4, 4, 2, ZSTD_greedy }, /* level 4 */
+ { 14, 14, 14, 3, 4, 4, ZSTD_lazy }, /* level 5.*/
+ { 14, 14, 14, 4, 4, 8, ZSTD_lazy2 }, /* level 6 */
+ { 14, 14, 14, 6, 4, 8, ZSTD_lazy2 }, /* level 7 */
+ { 14, 14, 14, 8, 4, 8, ZSTD_lazy2 }, /* level 8.*/
+ { 14, 15, 14, 5, 4, 8, ZSTD_btlazy2 }, /* level 9.*/
+ { 14, 15, 14, 9, 4, 8, ZSTD_btlazy2 }, /* level 10.*/
+ { 14, 15, 14, 3, 4, 12, ZSTD_btopt }, /* level 11.*/
+ { 14, 15, 14, 4, 3, 24, ZSTD_btopt }, /* level 12.*/
+ { 14, 15, 14, 5, 3, 32, ZSTD_btultra }, /* level 13.*/
+ { 14, 15, 15, 6, 3, 64, ZSTD_btultra }, /* level 14.*/
+ { 14, 15, 15, 7, 3,256, ZSTD_btultra }, /* level 15.*/
+ { 14, 15, 15, 5, 3, 48, ZSTD_btultra2}, /* level 16.*/
+ { 14, 15, 15, 6, 3,128, ZSTD_btultra2}, /* level 17.*/
+ { 14, 15, 15, 7, 3,256, ZSTD_btultra2}, /* level 18.*/
+ { 14, 15, 15, 8, 3,256, ZSTD_btultra2}, /* level 19.*/
+ { 14, 15, 15, 8, 3,512, ZSTD_btultra2}, /* level 20.*/
+ { 14, 15, 15, 9, 3,512, ZSTD_btultra2}, /* level 21.*/
+ { 14, 15, 15, 10, 3,999, ZSTD_btultra2}, /* level 22.*/
+},
+};
+
+
+
+#endif /* ZSTD_CLEVELS_H */
diff --git a/sys/contrib/zstd/lib/compress/fse_compress.c b/sys/contrib/zstd/lib/compress/fse_compress.c
index 304a82b3cc47..5547b4ac099e 100644
--- a/sys/contrib/zstd/lib/compress/fse_compress.c
+++ b/sys/contrib/zstd/lib/compress/fse_compress.c
@@ -1,705 +1,741 @@
/* ******************************************************************
* FSE : Finite State Entropy encoder
- * Copyright (c) 2013-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
*
* You can contact the author at :
* - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
* - Public forum : https://groups.google.com/forum/#!forum/lz4c
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/* **************************************************************
* Includes
****************************************************************/
#include "../common/compiler.h"
#include "../common/mem.h" /* U32, U16, etc. */
#include "../common/debug.h" /* assert, DEBUGLOG */
#include "hist.h" /* HIST_count_wksp */
#include "../common/bitstream.h"
#define FSE_STATIC_LINKING_ONLY
#include "../common/fse.h"
#include "../common/error_private.h"
#define ZSTD_DEPS_NEED_MALLOC
#define ZSTD_DEPS_NEED_MATH64
#include "../common/zstd_deps.h" /* ZSTD_malloc, ZSTD_free, ZSTD_memcpy, ZSTD_memset */
/* **************************************************************
* Error Management
****************************************************************/
#define FSE_isError ERR_isError
/* **************************************************************
* Templates
****************************************************************/
/*
designed to be included
for type-specific functions (template emulation in C)
Objective is to write these functions only once, for improved maintenance
*/
/* safety checks */
#ifndef FSE_FUNCTION_EXTENSION
# error "FSE_FUNCTION_EXTENSION must be defined"
#endif
#ifndef FSE_FUNCTION_TYPE
# error "FSE_FUNCTION_TYPE must be defined"
#endif
/* Function names */
#define FSE_CAT(X,Y) X##Y
#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
/* Function templates */
/* FSE_buildCTable_wksp() :
* Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
* wkspSize should be sized to handle worst case situation, which is `1<<max_tableLog * sizeof(FSE_FUNCTION_TYPE)`
* workSpace must also be properly aligned with FSE_FUNCTION_TYPE requirements
*/
size_t FSE_buildCTable_wksp(FSE_CTable* ct,
const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog,
void* workSpace, size_t wkspSize)
{
U32 const tableSize = 1 << tableLog;
U32 const tableMask = tableSize - 1;
void* const ptr = ct;
U16* const tableU16 = ( (U16*) ptr) + 2;
void* const FSCT = ((U32*)ptr) + 1 /* header */ + (tableLog ? tableSize>>1 : 1) ;
FSE_symbolCompressionTransform* const symbolTT = (FSE_symbolCompressionTransform*) (FSCT);
U32 const step = FSE_TABLESTEP(tableSize);
+ U32 const maxSV1 = maxSymbolValue+1;
- U32* cumul = (U32*)workSpace;
- FSE_FUNCTION_TYPE* tableSymbol = (FSE_FUNCTION_TYPE*)(cumul + (maxSymbolValue + 2));
+ U16* cumul = (U16*)workSpace; /* size = maxSV1 */
+ FSE_FUNCTION_TYPE* const tableSymbol = (FSE_FUNCTION_TYPE*)(cumul + (maxSV1+1)); /* size = tableSize */
U32 highThreshold = tableSize-1;
- if ((size_t)workSpace & 3) return ERROR(GENERIC); /* Must be 4 byte aligned */
+ assert(((size_t)workSpace & 1) == 0); /* Must be 2 bytes-aligned */
if (FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) > wkspSize) return ERROR(tableLog_tooLarge);
/* CTable header */
tableU16[-2] = (U16) tableLog;
tableU16[-1] = (U16) maxSymbolValue;
assert(tableLog < 16); /* required for threshold strategy to work */
/* For explanations on how to distribute symbol values over the table :
* http://fastcompression.blogspot.fr/2014/02/fse-distributing-symbol-values.html */
#ifdef __clang_analyzer__
ZSTD_memset(tableSymbol, 0, sizeof(*tableSymbol) * tableSize); /* useless initialization, just to keep scan-build happy */
#endif
/* symbol start positions */
{ U32 u;
cumul[0] = 0;
- for (u=1; u <= maxSymbolValue+1; u++) {
+ for (u=1; u <= maxSV1; u++) {
if (normalizedCounter[u-1]==-1) { /* Low proba symbol */
cumul[u] = cumul[u-1] + 1;
tableSymbol[highThreshold--] = (FSE_FUNCTION_TYPE)(u-1);
} else {
- cumul[u] = cumul[u-1] + normalizedCounter[u-1];
+ assert(normalizedCounter[u-1] >= 0);
+ cumul[u] = cumul[u-1] + (U16)normalizedCounter[u-1];
+ assert(cumul[u] >= cumul[u-1]); /* no overflow */
} }
- cumul[maxSymbolValue+1] = tableSize+1;
+ cumul[maxSV1] = (U16)(tableSize+1);
}
/* Spread symbols */
- { U32 position = 0;
+ if (highThreshold == tableSize - 1) {
+ /* Case for no low prob count symbols. Lay down 8 bytes at a time
+ * to reduce branch misses since we are operating on a small block
+ */
+ BYTE* const spread = tableSymbol + tableSize; /* size = tableSize + 8 (may write beyond tableSize) */
+ { U64 const add = 0x0101010101010101ull;
+ size_t pos = 0;
+ U64 sv = 0;
+ U32 s;
+ for (s=0; s<maxSV1; ++s, sv += add) {
+ int i;
+ int const n = normalizedCounter[s];
+ MEM_write64(spread + pos, sv);
+ for (i = 8; i < n; i += 8) {
+ MEM_write64(spread + pos + i, sv);
+ }
+ assert(n>=0);
+ pos += (size_t)n;
+ }
+ }
+ /* Spread symbols across the table. Lack of lowprob symbols means that
+ * we don't need variable sized inner loop, so we can unroll the loop and
+ * reduce branch misses.
+ */
+ { size_t position = 0;
+ size_t s;
+ size_t const unroll = 2; /* Experimentally determined optimal unroll */
+ assert(tableSize % unroll == 0); /* FSE_MIN_TABLELOG is 5 */
+ for (s = 0; s < (size_t)tableSize; s += unroll) {
+ size_t u;
+ for (u = 0; u < unroll; ++u) {
+ size_t const uPosition = (position + (u * step)) & tableMask;
+ tableSymbol[uPosition] = spread[s + u];
+ }
+ position = (position + (unroll * step)) & tableMask;
+ }
+ assert(position == 0); /* Must have initialized all positions */
+ }
+ } else {
+ U32 position = 0;
U32 symbol;
- for (symbol=0; symbol<=maxSymbolValue; symbol++) {
+ for (symbol=0; symbol<maxSV1; symbol++) {
int nbOccurrences;
int const freq = normalizedCounter[symbol];
for (nbOccurrences=0; nbOccurrences<freq; nbOccurrences++) {
tableSymbol[position] = (FSE_FUNCTION_TYPE)symbol;
position = (position + step) & tableMask;
while (position > highThreshold)
position = (position + step) & tableMask; /* Low proba area */
} }
-
assert(position==0); /* Must have initialized all positions */
}
/* Build table */
{ U32 u; for (u=0; u<tableSize; u++) {
FSE_FUNCTION_TYPE s = tableSymbol[u]; /* note : static analyzer may not understand tableSymbol is properly initialized */
tableU16[cumul[s]++] = (U16) (tableSize+u); /* TableU16 : sorted by symbol order; gives next state value */
} }
/* Build Symbol Transformation Table */
{ unsigned total = 0;
unsigned s;
for (s=0; s<=maxSymbolValue; s++) {
switch (normalizedCounter[s])
{
case 0:
/* filling nonetheless, for compatibility with FSE_getMaxNbBits() */
symbolTT[s].deltaNbBits = ((tableLog+1) << 16) - (1<<tableLog);
break;
case -1:
case 1:
symbolTT[s].deltaNbBits = (tableLog << 16) - (1<<tableLog);
- symbolTT[s].deltaFindState = total - 1;
+ assert(total <= INT_MAX);
+ symbolTT[s].deltaFindState = (int)(total - 1);
total ++;
break;
default :
- {
- U32 const maxBitsOut = tableLog - BIT_highbit32 (normalizedCounter[s]-1);
- U32 const minStatePlus = normalizedCounter[s] << maxBitsOut;
+ assert(normalizedCounter[s] > 1);
+ { U32 const maxBitsOut = tableLog - BIT_highbit32 ((U32)normalizedCounter[s]-1);
+ U32 const minStatePlus = (U32)normalizedCounter[s] << maxBitsOut;
symbolTT[s].deltaNbBits = (maxBitsOut << 16) - minStatePlus;
- symbolTT[s].deltaFindState = total - normalizedCounter[s];
- total += normalizedCounter[s];
+ symbolTT[s].deltaFindState = (int)(total - (unsigned)normalizedCounter[s]);
+ total += (unsigned)normalizedCounter[s];
} } } }
#if 0 /* debug : symbol costs */
DEBUGLOG(5, "\n --- table statistics : ");
{ U32 symbol;
for (symbol=0; symbol<=maxSymbolValue; symbol++) {
DEBUGLOG(5, "%3u: w=%3i, maxBits=%u, fracBits=%.2f",
symbol, normalizedCounter[symbol],
FSE_getMaxNbBits(symbolTT, symbol),
(double)FSE_bitCost(symbolTT, tableLog, symbol, 8) / 256);
- }
- }
+ } }
#endif
return 0;
}
-#ifndef ZSTD_NO_UNUSED_FUNCTIONS
-size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
-{
- FSE_FUNCTION_TYPE tableSymbol[FSE_MAX_TABLESIZE]; /* memset() is not necessary, even if static analyzer complain about it */
- return FSE_buildCTable_wksp(ct, normalizedCounter, maxSymbolValue, tableLog, tableSymbol, sizeof(tableSymbol));
-}
-#endif
-
#ifndef FSE_COMMONDEFS_ONLY
-
/*-**************************************************************
* FSE NCount encoding
****************************************************************/
size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog)
{
- size_t const maxHeaderSize = (((maxSymbolValue+1) * tableLog) >> 3) + 3;
+ size_t const maxHeaderSize = (((maxSymbolValue+1) * tableLog
+ + 4 /* bitCount initialized at 4 */
+ + 2 /* first two symbols may use one additional bit each */) / 8)
+ + 1 /* round up to whole nb bytes */
+ + 2 /* additional two bytes for bitstream flush */;
return maxSymbolValue ? maxHeaderSize : FSE_NCOUNTBOUND; /* maxSymbolValue==0 ? use default */
}
static size_t
FSE_writeNCount_generic (void* header, size_t headerBufferSize,
const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog,
unsigned writeIsSafe)
{
BYTE* const ostart = (BYTE*) header;
BYTE* out = ostart;
BYTE* const oend = ostart + headerBufferSize;
int nbBits;
const int tableSize = 1 << tableLog;
int remaining;
int threshold;
U32 bitStream = 0;
int bitCount = 0;
unsigned symbol = 0;
unsigned const alphabetSize = maxSymbolValue + 1;
int previousIs0 = 0;
/* Table Size */
bitStream += (tableLog-FSE_MIN_TABLELOG) << bitCount;
bitCount += 4;
/* Init */
remaining = tableSize+1; /* +1 for extra accuracy */
threshold = tableSize;
nbBits = tableLog+1;
while ((symbol < alphabetSize) && (remaining>1)) { /* stops at 1 */
if (previousIs0) {
unsigned start = symbol;
while ((symbol < alphabetSize) && !normalizedCounter[symbol]) symbol++;
if (symbol == alphabetSize) break; /* incorrect distribution */
while (symbol >= start+24) {
start+=24;
bitStream += 0xFFFFU << bitCount;
if ((!writeIsSafe) && (out > oend-2))
return ERROR(dstSize_tooSmall); /* Buffer overflow */
out[0] = (BYTE) bitStream;
out[1] = (BYTE)(bitStream>>8);
out+=2;
bitStream>>=16;
}
while (symbol >= start+3) {
start+=3;
bitStream += 3 << bitCount;
bitCount += 2;
}
bitStream += (symbol-start) << bitCount;
bitCount += 2;
if (bitCount>16) {
if ((!writeIsSafe) && (out > oend - 2))
return ERROR(dstSize_tooSmall); /* Buffer overflow */
out[0] = (BYTE)bitStream;
out[1] = (BYTE)(bitStream>>8);
out += 2;
bitStream >>= 16;
bitCount -= 16;
} }
{ int count = normalizedCounter[symbol++];
int const max = (2*threshold-1) - remaining;
remaining -= count < 0 ? -count : count;
count++; /* +1 for extra accuracy */
if (count>=threshold)
count += max; /* [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ */
bitStream += count << bitCount;
bitCount += nbBits;
bitCount -= (count<max);
previousIs0 = (count==1);
if (remaining<1) return ERROR(GENERIC);
while (remaining<threshold) { nbBits--; threshold>>=1; }
}
if (bitCount>16) {
if ((!writeIsSafe) && (out > oend - 2))
return ERROR(dstSize_tooSmall); /* Buffer overflow */
out[0] = (BYTE)bitStream;
out[1] = (BYTE)(bitStream>>8);
out += 2;
bitStream >>= 16;
bitCount -= 16;
} }
if (remaining != 1)
return ERROR(GENERIC); /* incorrect normalized distribution */
assert(symbol <= alphabetSize);
/* flush remaining bitStream */
if ((!writeIsSafe) && (out > oend - 2))
return ERROR(dstSize_tooSmall); /* Buffer overflow */
out[0] = (BYTE)bitStream;
out[1] = (BYTE)(bitStream>>8);
out+= (bitCount+7) /8;
return (out-ostart);
}
size_t FSE_writeNCount (void* buffer, size_t bufferSize,
const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
{
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Unsupported */
if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC); /* Unsupported */
if (bufferSize < FSE_NCountWriteBound(maxSymbolValue, tableLog))
return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 0);
return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 1 /* write in buffer is safe */);
}
/*-**************************************************************
* FSE Compression Code
****************************************************************/
FSE_CTable* FSE_createCTable (unsigned maxSymbolValue, unsigned tableLog)
{
size_t size;
if (tableLog > FSE_TABLELOG_ABSOLUTE_MAX) tableLog = FSE_TABLELOG_ABSOLUTE_MAX;
size = FSE_CTABLE_SIZE_U32 (tableLog, maxSymbolValue) * sizeof(U32);
return (FSE_CTable*)ZSTD_malloc(size);
}
void FSE_freeCTable (FSE_CTable* ct) { ZSTD_free(ct); }
/* provides the minimum logSize to safely represent a distribution */
static unsigned FSE_minTableLog(size_t srcSize, unsigned maxSymbolValue)
{
U32 minBitsSrc = BIT_highbit32((U32)(srcSize)) + 1;
U32 minBitsSymbols = BIT_highbit32(maxSymbolValue) + 2;
U32 minBits = minBitsSrc < minBitsSymbols ? minBitsSrc : minBitsSymbols;
assert(srcSize > 1); /* Not supported, RLE should be used instead */
return minBits;
}
unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus)
{
U32 maxBitsSrc = BIT_highbit32((U32)(srcSize - 1)) - minus;
U32 tableLog = maxTableLog;
U32 minBits = FSE_minTableLog(srcSize, maxSymbolValue);
assert(srcSize > 1); /* Not supported, RLE should be used instead */
if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG;
if (maxBitsSrc < tableLog) tableLog = maxBitsSrc; /* Accuracy can be reduced */
if (minBits > tableLog) tableLog = minBits; /* Need a minimum to safely represent all symbol values */
if (tableLog < FSE_MIN_TABLELOG) tableLog = FSE_MIN_TABLELOG;
if (tableLog > FSE_MAX_TABLELOG) tableLog = FSE_MAX_TABLELOG;
return tableLog;
}
unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
{
return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 2);
}
/* Secondary normalization method.
To be used when primary method fails. */
static size_t FSE_normalizeM2(short* norm, U32 tableLog, const unsigned* count, size_t total, U32 maxSymbolValue, short lowProbCount)
{
short const NOT_YET_ASSIGNED = -2;
U32 s;
U32 distributed = 0;
U32 ToDistribute;
/* Init */
U32 const lowThreshold = (U32)(total >> tableLog);
U32 lowOne = (U32)((total * 3) >> (tableLog + 1));
for (s=0; s<=maxSymbolValue; s++) {
if (count[s] == 0) {
norm[s]=0;
continue;
}
if (count[s] <= lowThreshold) {
norm[s] = lowProbCount;
distributed++;
total -= count[s];
continue;
}
if (count[s] <= lowOne) {
norm[s] = 1;
distributed++;
total -= count[s];
continue;
}
norm[s]=NOT_YET_ASSIGNED;
}
ToDistribute = (1 << tableLog) - distributed;
if (ToDistribute == 0)
return 0;
if ((total / ToDistribute) > lowOne) {
/* risk of rounding to zero */
lowOne = (U32)((total * 3) / (ToDistribute * 2));
for (s=0; s<=maxSymbolValue; s++) {
if ((norm[s] == NOT_YET_ASSIGNED) && (count[s] <= lowOne)) {
norm[s] = 1;
distributed++;
total -= count[s];
continue;
} }
ToDistribute = (1 << tableLog) - distributed;
}
if (distributed == maxSymbolValue+1) {
/* all values are pretty poor;
probably incompressible data (should have already been detected);
find max, then give all remaining points to max */
U32 maxV = 0, maxC = 0;
for (s=0; s<=maxSymbolValue; s++)
if (count[s] > maxC) { maxV=s; maxC=count[s]; }
norm[maxV] += (short)ToDistribute;
return 0;
}
if (total == 0) {
/* all of the symbols were low enough for the lowOne or lowThreshold */
for (s=0; ToDistribute > 0; s = (s+1)%(maxSymbolValue+1))
if (norm[s] > 0) { ToDistribute--; norm[s]++; }
return 0;
}
{ U64 const vStepLog = 62 - tableLog;
U64 const mid = (1ULL << (vStepLog-1)) - 1;
U64 const rStep = ZSTD_div64((((U64)1<<vStepLog) * ToDistribute) + mid, (U32)total); /* scale on remaining */
U64 tmpTotal = mid;
for (s=0; s<=maxSymbolValue; s++) {
if (norm[s]==NOT_YET_ASSIGNED) {
U64 const end = tmpTotal + (count[s] * rStep);
U32 const sStart = (U32)(tmpTotal >> vStepLog);
U32 const sEnd = (U32)(end >> vStepLog);
U32 const weight = sEnd - sStart;
if (weight < 1)
return ERROR(GENERIC);
norm[s] = (short)weight;
tmpTotal = end;
} } }
return 0;
}
size_t FSE_normalizeCount (short* normalizedCounter, unsigned tableLog,
const unsigned* count, size_t total,
unsigned maxSymbolValue, unsigned useLowProbCount)
{
/* Sanity checks */
if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG;
if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC); /* Unsupported size */
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Unsupported size */
if (tableLog < FSE_minTableLog(total, maxSymbolValue)) return ERROR(GENERIC); /* Too small tableLog, compression potentially impossible */
{ static U32 const rtbTable[] = { 0, 473195, 504333, 520860, 550000, 700000, 750000, 830000 };
short const lowProbCount = useLowProbCount ? -1 : 1;
U64 const scale = 62 - tableLog;
U64 const step = ZSTD_div64((U64)1<<62, (U32)total); /* <== here, one division ! */
U64 const vStep = 1ULL<<(scale-20);
int stillToDistribute = 1<<tableLog;
unsigned s;
unsigned largest=0;
short largestP=0;
U32 lowThreshold = (U32)(total >> tableLog);
for (s=0; s<=maxSymbolValue; s++) {
if (count[s] == total) return 0; /* rle special case */
if (count[s] == 0) { normalizedCounter[s]=0; continue; }
if (count[s] <= lowThreshold) {
normalizedCounter[s] = lowProbCount;
stillToDistribute--;
} else {
short proba = (short)((count[s]*step) >> scale);
if (proba<8) {
U64 restToBeat = vStep * rtbTable[proba];
proba += (count[s]*step) - ((U64)proba<<scale) > restToBeat;
}
if (proba > largestP) { largestP=proba; largest=s; }
normalizedCounter[s] = proba;
stillToDistribute -= proba;
} }
if (-stillToDistribute >= (normalizedCounter[largest] >> 1)) {
/* corner case, need another normalization method */
size_t const errorCode = FSE_normalizeM2(normalizedCounter, tableLog, count, total, maxSymbolValue, lowProbCount);
if (FSE_isError(errorCode)) return errorCode;
}
else normalizedCounter[largest] += (short)stillToDistribute;
}
#if 0
{ /* Print Table (debug) */
U32 s;
U32 nTotal = 0;
for (s=0; s<=maxSymbolValue; s++)
RAWLOG(2, "%3i: %4i \n", s, normalizedCounter[s]);
for (s=0; s<=maxSymbolValue; s++)
nTotal += abs(normalizedCounter[s]);
if (nTotal != (1U<<tableLog))
RAWLOG(2, "Warning !!! Total == %u != %u !!!", nTotal, 1U<<tableLog);
getchar();
}
#endif
return tableLog;
}
/* fake FSE_CTable, for raw (uncompressed) input */
size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits)
{
const unsigned tableSize = 1 << nbBits;
const unsigned tableMask = tableSize - 1;
const unsigned maxSymbolValue = tableMask;
void* const ptr = ct;
U16* const tableU16 = ( (U16*) ptr) + 2;
void* const FSCT = ((U32*)ptr) + 1 /* header */ + (tableSize>>1); /* assumption : tableLog >= 1 */
FSE_symbolCompressionTransform* const symbolTT = (FSE_symbolCompressionTransform*) (FSCT);
unsigned s;
/* Sanity checks */
if (nbBits < 1) return ERROR(GENERIC); /* min size */
/* header */
tableU16[-2] = (U16) nbBits;
tableU16[-1] = (U16) maxSymbolValue;
/* Build table */
for (s=0; s<tableSize; s++)
tableU16[s] = (U16)(tableSize + s);
/* Build Symbol Transformation Table */
{ const U32 deltaNbBits = (nbBits << 16) - (1 << nbBits);
for (s=0; s<=maxSymbolValue; s++) {
symbolTT[s].deltaNbBits = deltaNbBits;
symbolTT[s].deltaFindState = s-1;
} }
return 0;
}
/* fake FSE_CTable, for rle input (always same symbol) */
size_t FSE_buildCTable_rle (FSE_CTable* ct, BYTE symbolValue)
{
void* ptr = ct;
U16* tableU16 = ( (U16*) ptr) + 2;
void* FSCTptr = (U32*)ptr + 2;
FSE_symbolCompressionTransform* symbolTT = (FSE_symbolCompressionTransform*) FSCTptr;
/* header */
tableU16[-2] = (U16) 0;
tableU16[-1] = (U16) symbolValue;
/* Build table */
tableU16[0] = 0;
tableU16[1] = 0; /* just in case */
/* Build Symbol Transformation Table */
symbolTT[symbolValue].deltaNbBits = 0;
symbolTT[symbolValue].deltaFindState = 0;
return 0;
}
static size_t FSE_compress_usingCTable_generic (void* dst, size_t dstSize,
const void* src, size_t srcSize,
const FSE_CTable* ct, const unsigned fast)
{
const BYTE* const istart = (const BYTE*) src;
const BYTE* const iend = istart + srcSize;
const BYTE* ip=iend;
BIT_CStream_t bitC;
FSE_CState_t CState1, CState2;
/* init */
if (srcSize <= 2) return 0;
{ size_t const initError = BIT_initCStream(&bitC, dst, dstSize);
if (FSE_isError(initError)) return 0; /* not enough space available to write a bitstream */ }
#define FSE_FLUSHBITS(s) (fast ? BIT_flushBitsFast(s) : BIT_flushBits(s))
if (srcSize & 1) {
FSE_initCState2(&CState1, ct, *--ip);
FSE_initCState2(&CState2, ct, *--ip);
FSE_encodeSymbol(&bitC, &CState1, *--ip);
FSE_FLUSHBITS(&bitC);
} else {
FSE_initCState2(&CState2, ct, *--ip);
FSE_initCState2(&CState1, ct, *--ip);
}
/* join to mod 4 */
srcSize -= 2;
if ((sizeof(bitC.bitContainer)*8 > FSE_MAX_TABLELOG*4+7 ) && (srcSize & 2)) { /* test bit 2 */
FSE_encodeSymbol(&bitC, &CState2, *--ip);
FSE_encodeSymbol(&bitC, &CState1, *--ip);
FSE_FLUSHBITS(&bitC);
}
/* 2 or 4 encoding per loop */
while ( ip>istart ) {
FSE_encodeSymbol(&bitC, &CState2, *--ip);
if (sizeof(bitC.bitContainer)*8 < FSE_MAX_TABLELOG*2+7 ) /* this test must be static */
FSE_FLUSHBITS(&bitC);
FSE_encodeSymbol(&bitC, &CState1, *--ip);
if (sizeof(bitC.bitContainer)*8 > FSE_MAX_TABLELOG*4+7 ) { /* this test must be static */
FSE_encodeSymbol(&bitC, &CState2, *--ip);
FSE_encodeSymbol(&bitC, &CState1, *--ip);
}
FSE_FLUSHBITS(&bitC);
}
FSE_flushCState(&bitC, &CState2);
FSE_flushCState(&bitC, &CState1);
return BIT_closeCStream(&bitC);
}
size_t FSE_compress_usingCTable (void* dst, size_t dstSize,
const void* src, size_t srcSize,
const FSE_CTable* ct)
{
unsigned const fast = (dstSize >= FSE_BLOCKBOUND(srcSize));
if (fast)
return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 1);
else
return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 0);
}
size_t FSE_compressBound(size_t size) { return FSE_COMPRESSBOUND(size); }
#ifndef ZSTD_NO_UNUSED_FUNCTIONS
/* FSE_compress_wksp() :
* Same as FSE_compress2(), but using an externally allocated scratch buffer (`workSpace`).
* `wkspSize` size must be `(1<<tableLog)`.
*/
size_t FSE_compress_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize)
{
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const oend = ostart + dstSize;
unsigned count[FSE_MAX_SYMBOL_VALUE+1];
S16 norm[FSE_MAX_SYMBOL_VALUE+1];
FSE_CTable* CTable = (FSE_CTable*)workSpace;
size_t const CTableSize = FSE_CTABLE_SIZE_U32(tableLog, maxSymbolValue);
void* scratchBuffer = (void*)(CTable + CTableSize);
size_t const scratchBufferSize = wkspSize - (CTableSize * sizeof(FSE_CTable));
/* init conditions */
if (wkspSize < FSE_COMPRESS_WKSP_SIZE_U32(tableLog, maxSymbolValue)) return ERROR(tableLog_tooLarge);
if (srcSize <= 1) return 0; /* Not compressible */
if (!maxSymbolValue) maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
if (!tableLog) tableLog = FSE_DEFAULT_TABLELOG;
/* Scan input and build symbol stats */
{ CHECK_V_F(maxCount, HIST_count_wksp(count, &maxSymbolValue, src, srcSize, scratchBuffer, scratchBufferSize) );
if (maxCount == srcSize) return 1; /* only a single symbol in src : rle */
if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */
if (maxCount < (srcSize >> 7)) return 0; /* Heuristic : not compressible enough */
}
tableLog = FSE_optimalTableLog(tableLog, srcSize, maxSymbolValue);
CHECK_F( FSE_normalizeCount(norm, tableLog, count, srcSize, maxSymbolValue, /* useLowProbCount */ srcSize >= 2048) );
/* Write table description header */
{ CHECK_V_F(nc_err, FSE_writeNCount(op, oend-op, norm, maxSymbolValue, tableLog) );
op += nc_err;
}
/* Compress */
CHECK_F( FSE_buildCTable_wksp(CTable, norm, maxSymbolValue, tableLog, scratchBuffer, scratchBufferSize) );
{ CHECK_V_F(cSize, FSE_compress_usingCTable(op, oend - op, src, srcSize, CTable) );
if (cSize == 0) return 0; /* not enough space for compressed data */
op += cSize;
}
/* check compressibility */
if ( (size_t)(op-ostart) >= srcSize-1 ) return 0;
return op-ostart;
}
typedef struct {
FSE_CTable CTable_max[FSE_CTABLE_SIZE_U32(FSE_MAX_TABLELOG, FSE_MAX_SYMBOL_VALUE)];
union {
U32 hist_wksp[HIST_WKSP_SIZE_U32];
BYTE scratchBuffer[1 << FSE_MAX_TABLELOG];
} workspace;
} fseWkspMax_t;
size_t FSE_compress2 (void* dst, size_t dstCapacity, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog)
{
fseWkspMax_t scratchBuffer;
DEBUG_STATIC_ASSERT(sizeof(scratchBuffer) >= FSE_COMPRESS_WKSP_SIZE_U32(FSE_MAX_TABLELOG, FSE_MAX_SYMBOL_VALUE)); /* compilation failures here means scratchBuffer is not large enough */
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
return FSE_compress_wksp(dst, dstCapacity, src, srcSize, maxSymbolValue, tableLog, &scratchBuffer, sizeof(scratchBuffer));
}
size_t FSE_compress (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
return FSE_compress2(dst, dstCapacity, src, srcSize, FSE_MAX_SYMBOL_VALUE, FSE_DEFAULT_TABLELOG);
}
#endif
#endif /* FSE_COMMONDEFS_ONLY */
diff --git a/sys/contrib/zstd/lib/compress/hist.c b/sys/contrib/zstd/lib/compress/hist.c
index a9659d11ad0c..073c57e7527d 100644
--- a/sys/contrib/zstd/lib/compress/hist.c
+++ b/sys/contrib/zstd/lib/compress/hist.c
@@ -1,181 +1,181 @@
/* ******************************************************************
* hist : Histogram functions
* part of Finite State Entropy project
- * Copyright (c) 2013-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
*
* You can contact the author at :
* - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
* - Public forum : https://groups.google.com/forum/#!forum/lz4c
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/* --- dependencies --- */
#include "../common/mem.h" /* U32, BYTE, etc. */
#include "../common/debug.h" /* assert, DEBUGLOG */
#include "../common/error_private.h" /* ERROR */
#include "hist.h"
/* --- Error management --- */
unsigned HIST_isError(size_t code) { return ERR_isError(code); }
/*-**************************************************************
* Histogram functions
****************************************************************/
unsigned HIST_count_simple(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize)
{
const BYTE* ip = (const BYTE*)src;
const BYTE* const end = ip + srcSize;
unsigned maxSymbolValue = *maxSymbolValuePtr;
unsigned largestCount=0;
ZSTD_memset(count, 0, (maxSymbolValue+1) * sizeof(*count));
if (srcSize==0) { *maxSymbolValuePtr = 0; return 0; }
while (ip<end) {
assert(*ip <= maxSymbolValue);
count[*ip++]++;
}
while (!count[maxSymbolValue]) maxSymbolValue--;
*maxSymbolValuePtr = maxSymbolValue;
{ U32 s;
for (s=0; s<=maxSymbolValue; s++)
if (count[s] > largestCount) largestCount = count[s];
}
return largestCount;
}
typedef enum { trustInput, checkMaxSymbolValue } HIST_checkInput_e;
/* HIST_count_parallel_wksp() :
* store histogram into 4 intermediate tables, recombined at the end.
* this design makes better use of OoO cpus,
* and is noticeably faster when some values are heavily repeated.
* But it needs some additional workspace for intermediate tables.
* `workSpace` must be a U32 table of size >= HIST_WKSP_SIZE_U32.
* @return : largest histogram frequency,
* or an error code (notably when histogram's alphabet is larger than *maxSymbolValuePtr) */
static size_t HIST_count_parallel_wksp(
unsigned* count, unsigned* maxSymbolValuePtr,
const void* source, size_t sourceSize,
HIST_checkInput_e check,
U32* const workSpace)
{
const BYTE* ip = (const BYTE*)source;
const BYTE* const iend = ip+sourceSize;
size_t const countSize = (*maxSymbolValuePtr + 1) * sizeof(*count);
unsigned max=0;
U32* const Counting1 = workSpace;
U32* const Counting2 = Counting1 + 256;
U32* const Counting3 = Counting2 + 256;
U32* const Counting4 = Counting3 + 256;
/* safety checks */
assert(*maxSymbolValuePtr <= 255);
if (!sourceSize) {
ZSTD_memset(count, 0, countSize);
*maxSymbolValuePtr = 0;
return 0;
}
ZSTD_memset(workSpace, 0, 4*256*sizeof(unsigned));
/* by stripes of 16 bytes */
{ U32 cached = MEM_read32(ip); ip += 4;
while (ip < iend-15) {
U32 c = cached; cached = MEM_read32(ip); ip += 4;
Counting1[(BYTE) c ]++;
Counting2[(BYTE)(c>>8) ]++;
Counting3[(BYTE)(c>>16)]++;
Counting4[ c>>24 ]++;
c = cached; cached = MEM_read32(ip); ip += 4;
Counting1[(BYTE) c ]++;
Counting2[(BYTE)(c>>8) ]++;
Counting3[(BYTE)(c>>16)]++;
Counting4[ c>>24 ]++;
c = cached; cached = MEM_read32(ip); ip += 4;
Counting1[(BYTE) c ]++;
Counting2[(BYTE)(c>>8) ]++;
Counting3[(BYTE)(c>>16)]++;
Counting4[ c>>24 ]++;
c = cached; cached = MEM_read32(ip); ip += 4;
Counting1[(BYTE) c ]++;
Counting2[(BYTE)(c>>8) ]++;
Counting3[(BYTE)(c>>16)]++;
Counting4[ c>>24 ]++;
}
ip-=4;
}
/* finish last symbols */
while (ip<iend) Counting1[*ip++]++;
{ U32 s;
for (s=0; s<256; s++) {
Counting1[s] += Counting2[s] + Counting3[s] + Counting4[s];
if (Counting1[s] > max) max = Counting1[s];
} }
{ unsigned maxSymbolValue = 255;
while (!Counting1[maxSymbolValue]) maxSymbolValue--;
if (check && maxSymbolValue > *maxSymbolValuePtr) return ERROR(maxSymbolValue_tooSmall);
*maxSymbolValuePtr = maxSymbolValue;
ZSTD_memmove(count, Counting1, countSize); /* in case count & Counting1 are overlapping */
}
return (size_t)max;
}
/* HIST_countFast_wksp() :
* Same as HIST_countFast(), but using an externally provided scratch buffer.
* `workSpace` is a writable buffer which must be 4-bytes aligned,
* `workSpaceSize` must be >= HIST_WKSP_SIZE
*/
size_t HIST_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
const void* source, size_t sourceSize,
void* workSpace, size_t workSpaceSize)
{
if (sourceSize < 1500) /* heuristic threshold */
return HIST_count_simple(count, maxSymbolValuePtr, source, sourceSize);
if ((size_t)workSpace & 3) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
if (workSpaceSize < HIST_WKSP_SIZE) return ERROR(workSpace_tooSmall);
return HIST_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, trustInput, (U32*)workSpace);
}
/* HIST_count_wksp() :
* Same as HIST_count(), but using an externally provided scratch buffer.
* `workSpace` size must be table of >= HIST_WKSP_SIZE_U32 unsigned */
size_t HIST_count_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
const void* source, size_t sourceSize,
void* workSpace, size_t workSpaceSize)
{
if ((size_t)workSpace & 3) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
if (workSpaceSize < HIST_WKSP_SIZE) return ERROR(workSpace_tooSmall);
if (*maxSymbolValuePtr < 255)
return HIST_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, checkMaxSymbolValue, (U32*)workSpace);
*maxSymbolValuePtr = 255;
return HIST_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, workSpace, workSpaceSize);
}
#ifndef ZSTD_NO_UNUSED_FUNCTIONS
/* fast variant (unsafe : won't check if src contains values beyond count[] limit) */
size_t HIST_countFast(unsigned* count, unsigned* maxSymbolValuePtr,
const void* source, size_t sourceSize)
{
unsigned tmpCounters[HIST_WKSP_SIZE_U32];
return HIST_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, tmpCounters, sizeof(tmpCounters));
}
size_t HIST_count(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize)
{
unsigned tmpCounters[HIST_WKSP_SIZE_U32];
return HIST_count_wksp(count, maxSymbolValuePtr, src, srcSize, tmpCounters, sizeof(tmpCounters));
}
#endif
diff --git a/sys/contrib/zstd/lib/compress/hist.h b/sys/contrib/zstd/lib/compress/hist.h
index fb9ead6834f6..228ed48a71de 100644
--- a/sys/contrib/zstd/lib/compress/hist.h
+++ b/sys/contrib/zstd/lib/compress/hist.h
@@ -1,75 +1,75 @@
/* ******************************************************************
* hist : Histogram functions
* part of Finite State Entropy project
- * Copyright (c) 2013-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
*
* You can contact the author at :
* - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
* - Public forum : https://groups.google.com/forum/#!forum/lz4c
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/* --- dependencies --- */
#include "../common/zstd_deps.h" /* size_t */
/* --- simple histogram functions --- */
/*! HIST_count():
* Provides the precise count of each byte within a table 'count'.
* 'count' is a table of unsigned int, of minimum size (*maxSymbolValuePtr+1).
* Updates *maxSymbolValuePtr with actual largest symbol value detected.
* @return : count of the most frequent symbol (which isn't identified).
* or an error code, which can be tested using HIST_isError().
* note : if return == srcSize, there is only one symbol.
*/
size_t HIST_count(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize);
unsigned HIST_isError(size_t code); /**< tells if a return value is an error code */
/* --- advanced histogram functions --- */
#define HIST_WKSP_SIZE_U32 1024
#define HIST_WKSP_SIZE (HIST_WKSP_SIZE_U32 * sizeof(unsigned))
/** HIST_count_wksp() :
* Same as HIST_count(), but using an externally provided scratch buffer.
* Benefit is this function will use very little stack space.
* `workSpace` is a writable buffer which must be 4-bytes aligned,
* `workSpaceSize` must be >= HIST_WKSP_SIZE
*/
size_t HIST_count_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize,
void* workSpace, size_t workSpaceSize);
/** HIST_countFast() :
* same as HIST_count(), but blindly trusts that all byte values within src are <= *maxSymbolValuePtr.
* This function is unsafe, and will segfault if any value within `src` is `> *maxSymbolValuePtr`
*/
size_t HIST_countFast(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize);
/** HIST_countFast_wksp() :
* Same as HIST_countFast(), but using an externally provided scratch buffer.
* `workSpace` is a writable buffer which must be 4-bytes aligned,
* `workSpaceSize` must be >= HIST_WKSP_SIZE
*/
size_t HIST_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize,
void* workSpace, size_t workSpaceSize);
/*! HIST_count_simple() :
* Same as HIST_countFast(), this function is unsafe,
* and will segfault if any value within `src` is `> *maxSymbolValuePtr`.
* It is also a bit slower for large inputs.
* However, it does not need any additional memory (not even on stack).
* @return : count of the most frequent symbol.
* Note this function doesn't produce any error (i.e. it must succeed).
*/
unsigned HIST_count_simple(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize);
diff --git a/sys/contrib/zstd/lib/compress/huf_compress.c b/sys/contrib/zstd/lib/compress/huf_compress.c
index 302e08864dac..2b3d6adc2a20 100644
--- a/sys/contrib/zstd/lib/compress/huf_compress.c
+++ b/sys/contrib/zstd/lib/compress/huf_compress.c
@@ -1,914 +1,1370 @@
/* ******************************************************************
* Huffman encoder, part of New Generation Entropy library
- * Copyright (c) 2013-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
*
* You can contact the author at :
* - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
* - Public forum : https://groups.google.com/forum/#!forum/lz4c
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/* **************************************************************
* Compiler specifics
****************************************************************/
#ifdef _MSC_VER /* Visual Studio */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
#endif
/* **************************************************************
* Includes
****************************************************************/
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */
#include "../common/compiler.h"
#include "../common/bitstream.h"
#include "hist.h"
#define FSE_STATIC_LINKING_ONLY /* FSE_optimalTableLog_internal */
#include "../common/fse.h" /* header compression */
#define HUF_STATIC_LINKING_ONLY
#include "../common/huf.h"
#include "../common/error_private.h"
/* **************************************************************
* Error Management
****************************************************************/
#define HUF_isError ERR_isError
#define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */
/* **************************************************************
* Utils
****************************************************************/
unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
{
return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
}
/* *******************************************************
* HUF : Huffman block compression
*********************************************************/
+#define HUF_WORKSPACE_MAX_ALIGNMENT 8
+
+static void* HUF_alignUpWorkspace(void* workspace, size_t* workspaceSizePtr, size_t align)
+{
+ size_t const mask = align - 1;
+ size_t const rem = (size_t)workspace & mask;
+ size_t const add = (align - rem) & mask;
+ BYTE* const aligned = (BYTE*)workspace + add;
+ assert((align & (align - 1)) == 0); /* pow 2 */
+ assert(align <= HUF_WORKSPACE_MAX_ALIGNMENT);
+ if (*workspaceSizePtr >= add) {
+ assert(add < align);
+ assert(((size_t)aligned & mask) == 0);
+ *workspaceSizePtr -= add;
+ return aligned;
+ } else {
+ *workspaceSizePtr = 0;
+ return NULL;
+ }
+}
+
+
/* HUF_compressWeights() :
* Same as FSE_compress(), but dedicated to huff0's weights compression.
* The use case needs much less stack memory.
* Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
*/
#define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
-static size_t HUF_compressWeights (void* dst, size_t dstSize, const void* weightTable, size_t wtSize)
+
+typedef struct {
+ FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)];
+ U32 scratchBuffer[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(HUF_TABLELOG_MAX, MAX_FSE_TABLELOG_FOR_HUFF_HEADER)];
+ unsigned count[HUF_TABLELOG_MAX+1];
+ S16 norm[HUF_TABLELOG_MAX+1];
+} HUF_CompressWeightsWksp;
+
+static size_t HUF_compressWeights(void* dst, size_t dstSize, const void* weightTable, size_t wtSize, void* workspace, size_t workspaceSize)
{
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const oend = ostart + dstSize;
unsigned maxSymbolValue = HUF_TABLELOG_MAX;
U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;
+ HUF_CompressWeightsWksp* wksp = (HUF_CompressWeightsWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32));
- FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)];
- U32 scratchBuffer[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(HUF_TABLELOG_MAX, MAX_FSE_TABLELOG_FOR_HUFF_HEADER)];
-
- unsigned count[HUF_TABLELOG_MAX+1];
- S16 norm[HUF_TABLELOG_MAX+1];
+ if (workspaceSize < sizeof(HUF_CompressWeightsWksp)) return ERROR(GENERIC);
/* init conditions */
if (wtSize <= 1) return 0; /* Not compressible */
/* Scan input and build symbol stats */
- { unsigned const maxCount = HIST_count_simple(count, &maxSymbolValue, weightTable, wtSize); /* never fails */
+ { unsigned const maxCount = HIST_count_simple(wksp->count, &maxSymbolValue, weightTable, wtSize); /* never fails */
if (maxCount == wtSize) return 1; /* only a single symbol in src : rle */
if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */
}
tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
- CHECK_F( FSE_normalizeCount(norm, tableLog, count, wtSize, maxSymbolValue, /* useLowProbCount */ 0) );
+ CHECK_F( FSE_normalizeCount(wksp->norm, tableLog, wksp->count, wtSize, maxSymbolValue, /* useLowProbCount */ 0) );
/* Write table description header */
- { CHECK_V_F(hSize, FSE_writeNCount(op, (size_t)(oend-op), norm, maxSymbolValue, tableLog) );
+ { CHECK_V_F(hSize, FSE_writeNCount(op, (size_t)(oend-op), wksp->norm, maxSymbolValue, tableLog) );
op += hSize;
}
/* Compress */
- CHECK_F( FSE_buildCTable_wksp(CTable, norm, maxSymbolValue, tableLog, scratchBuffer, sizeof(scratchBuffer)) );
- { CHECK_V_F(cSize, FSE_compress_usingCTable(op, (size_t)(oend - op), weightTable, wtSize, CTable) );
+ CHECK_F( FSE_buildCTable_wksp(wksp->CTable, wksp->norm, maxSymbolValue, tableLog, wksp->scratchBuffer, sizeof(wksp->scratchBuffer)) );
+ { CHECK_V_F(cSize, FSE_compress_usingCTable(op, (size_t)(oend - op), weightTable, wtSize, wksp->CTable) );
if (cSize == 0) return 0; /* not enough space for compressed data */
op += cSize;
}
return (size_t)(op-ostart);
}
+static size_t HUF_getNbBits(HUF_CElt elt)
+{
+ return elt & 0xFF;
+}
-/*! HUF_writeCTable() :
- `CTable` : Huffman tree to save, using huf representation.
- @return : size of saved CTable */
-size_t HUF_writeCTable (void* dst, size_t maxDstSize,
- const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog)
+static size_t HUF_getNbBitsFast(HUF_CElt elt)
{
+ return elt;
+}
+
+static size_t HUF_getValue(HUF_CElt elt)
+{
+ return elt & ~0xFF;
+}
+
+static size_t HUF_getValueFast(HUF_CElt elt)
+{
+ return elt;
+}
+
+static void HUF_setNbBits(HUF_CElt* elt, size_t nbBits)
+{
+ assert(nbBits <= HUF_TABLELOG_ABSOLUTEMAX);
+ *elt = nbBits;
+}
+
+static void HUF_setValue(HUF_CElt* elt, size_t value)
+{
+ size_t const nbBits = HUF_getNbBits(*elt);
+ if (nbBits > 0) {
+ assert((value >> nbBits) == 0);
+ *elt |= value << (sizeof(HUF_CElt) * 8 - nbBits);
+ }
+}
+
+typedef struct {
+ HUF_CompressWeightsWksp wksp;
BYTE bitsToWeight[HUF_TABLELOG_MAX + 1]; /* precomputed conversion table */
BYTE huffWeight[HUF_SYMBOLVALUE_MAX];
+} HUF_WriteCTableWksp;
+
+size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize,
+ const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog,
+ void* workspace, size_t workspaceSize)
+{
+ HUF_CElt const* const ct = CTable + 1;
BYTE* op = (BYTE*)dst;
U32 n;
+ HUF_WriteCTableWksp* wksp = (HUF_WriteCTableWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32));
- /* check conditions */
+ /* check conditions */
+ if (workspaceSize < sizeof(HUF_WriteCTableWksp)) return ERROR(GENERIC);
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
/* convert to weight */
- bitsToWeight[0] = 0;
+ wksp->bitsToWeight[0] = 0;
for (n=1; n<huffLog+1; n++)
- bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
+ wksp->bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
for (n=0; n<maxSymbolValue; n++)
- huffWeight[n] = bitsToWeight[CTable[n].nbBits];
+ wksp->huffWeight[n] = wksp->bitsToWeight[HUF_getNbBits(ct[n])];
/* attempt weights compression by FSE */
- { CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, huffWeight, maxSymbolValue) );
+ if (maxDstSize < 1) return ERROR(dstSize_tooSmall);
+ { CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, wksp->huffWeight, maxSymbolValue, &wksp->wksp, sizeof(wksp->wksp)) );
if ((hSize>1) & (hSize < maxSymbolValue/2)) { /* FSE compressed */
op[0] = (BYTE)hSize;
return hSize+1;
} }
/* write raw values as 4-bits (max : 15) */
if (maxSymbolValue > (256-128)) return ERROR(GENERIC); /* should not happen : likely means source cannot be compressed */
if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall); /* not enough space within dst buffer */
op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1));
- huffWeight[maxSymbolValue] = 0; /* to be sure it doesn't cause msan issue in final combination */
+ wksp->huffWeight[maxSymbolValue] = 0; /* to be sure it doesn't cause msan issue in final combination */
for (n=0; n<maxSymbolValue; n+=2)
- op[(n/2)+1] = (BYTE)((huffWeight[n] << 4) + huffWeight[n+1]);
+ op[(n/2)+1] = (BYTE)((wksp->huffWeight[n] << 4) + wksp->huffWeight[n+1]);
return ((maxSymbolValue+1)/2) + 1;
}
+/*! HUF_writeCTable() :
+ `CTable` : Huffman tree to save, using huf representation.
+ @return : size of saved CTable */
+size_t HUF_writeCTable (void* dst, size_t maxDstSize,
+ const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog)
+{
+ HUF_WriteCTableWksp wksp;
+ return HUF_writeCTable_wksp(dst, maxDstSize, CTable, maxSymbolValue, huffLog, &wksp, sizeof(wksp));
+}
+
size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* hasZeroWeights)
{
BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1]; /* init not required, even though some static analyzer may complain */
U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; /* large enough for values from 0 to 16 */
U32 tableLog = 0;
U32 nbSymbols = 0;
+ HUF_CElt* const ct = CTable + 1;
/* get symbol weights */
CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize));
*hasZeroWeights = (rankVal[0] > 0);
/* check result */
if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall);
+ CTable[0] = tableLog;
+
/* Prepare base value per rank */
{ U32 n, nextRankStart = 0;
for (n=1; n<=tableLog; n++) {
U32 curr = nextRankStart;
nextRankStart += (rankVal[n] << (n-1));
rankVal[n] = curr;
} }
/* fill nbBits */
{ U32 n; for (n=0; n<nbSymbols; n++) {
const U32 w = huffWeight[n];
- CTable[n].nbBits = (BYTE)(tableLog + 1 - w) & -(w != 0);
+ HUF_setNbBits(ct + n, (BYTE)(tableLog + 1 - w) & -(w != 0));
} }
/* fill val */
{ U16 nbPerRank[HUF_TABLELOG_MAX+2] = {0}; /* support w=0=>n=tableLog+1 */
U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
- { U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[CTable[n].nbBits]++; }
+ { U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[HUF_getNbBits(ct[n])]++; }
/* determine stating value per rank */
valPerRank[tableLog+1] = 0; /* for w==0 */
{ U16 min = 0;
U32 n; for (n=tableLog; n>0; n--) { /* start at n=tablelog <-> w=1 */
valPerRank[n] = min; /* get starting value within each rank */
min += nbPerRank[n];
min >>= 1;
} }
/* assign value within rank, symbol order */
- { U32 n; for (n=0; n<nbSymbols; n++) CTable[n].val = valPerRank[CTable[n].nbBits]++; }
+ { U32 n; for (n=0; n<nbSymbols; n++) HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++); }
}
*maxSymbolValuePtr = nbSymbols - 1;
return readSize;
}
-U32 HUF_getNbBits(const void* symbolTable, U32 symbolValue)
+U32 HUF_getNbBitsFromCTable(HUF_CElt const* CTable, U32 symbolValue)
{
- const HUF_CElt* table = (const HUF_CElt*)symbolTable;
+ const HUF_CElt* ct = CTable + 1;
assert(symbolValue <= HUF_SYMBOLVALUE_MAX);
- return table[symbolValue].nbBits;
+ return (U32)HUF_getNbBits(ct[symbolValue]);
}
typedef struct nodeElt_s {
U32 count;
U16 parent;
BYTE byte;
BYTE nbBits;
} nodeElt;
/**
* HUF_setMaxHeight():
* Enforces maxNbBits on the Huffman tree described in huffNode.
*
* It sets all nodes with nbBits > maxNbBits to be maxNbBits. Then it adjusts
* the tree to so that it is a valid canonical Huffman tree.
*
* @pre The sum of the ranks of each symbol == 2^largestBits,
* where largestBits == huffNode[lastNonNull].nbBits.
* @post The sum of the ranks of each symbol == 2^largestBits,
* where largestBits is the return value <= maxNbBits.
*
* @param huffNode The Huffman tree modified in place to enforce maxNbBits.
* @param lastNonNull The symbol with the lowest count in the Huffman tree.
* @param maxNbBits The maximum allowed number of bits, which the Huffman tree
* may not respect. After this function the Huffman tree will
* respect maxNbBits.
* @return The maximum number of bits of the Huffman tree after adjustment,
* necessarily no more than maxNbBits.
*/
static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
{
const U32 largestBits = huffNode[lastNonNull].nbBits;
/* early exit : no elt > maxNbBits, so the tree is already valid. */
if (largestBits <= maxNbBits) return largestBits;
/* there are several too large elements (at least >= 2) */
{ int totalCost = 0;
const U32 baseCost = 1 << (largestBits - maxNbBits);
int n = (int)lastNonNull;
/* Adjust any ranks > maxNbBits to maxNbBits.
* Compute totalCost, which is how far the sum of the ranks is
* we are over 2^largestBits after adjust the offending ranks.
*/
while (huffNode[n].nbBits > maxNbBits) {
totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
huffNode[n].nbBits = (BYTE)maxNbBits;
n--;
}
/* n stops at huffNode[n].nbBits <= maxNbBits */
assert(huffNode[n].nbBits <= maxNbBits);
/* n end at index of smallest symbol using < maxNbBits */
while (huffNode[n].nbBits == maxNbBits) --n;
/* renorm totalCost from 2^largestBits to 2^maxNbBits
* note : totalCost is necessarily a multiple of baseCost */
assert((totalCost & (baseCost - 1)) == 0);
totalCost >>= (largestBits - maxNbBits);
assert(totalCost > 0);
/* repay normalized cost */
{ U32 const noSymbol = 0xF0F0F0F0;
U32 rankLast[HUF_TABLELOG_MAX+2];
/* Get pos of last (smallest = lowest cum. count) symbol per rank */
ZSTD_memset(rankLast, 0xF0, sizeof(rankLast));
{ U32 currentNbBits = maxNbBits;
int pos;
for (pos=n ; pos >= 0; pos--) {
if (huffNode[pos].nbBits >= currentNbBits) continue;
currentNbBits = huffNode[pos].nbBits; /* < maxNbBits */
rankLast[maxNbBits-currentNbBits] = (U32)pos;
} }
while (totalCost > 0) {
/* Try to reduce the next power of 2 above totalCost because we
* gain back half the rank.
*/
U32 nBitsToDecrease = BIT_highbit32((U32)totalCost) + 1;
for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
U32 const highPos = rankLast[nBitsToDecrease];
U32 const lowPos = rankLast[nBitsToDecrease-1];
if (highPos == noSymbol) continue;
/* Decrease highPos if no symbols of lowPos or if it is
* not cheaper to remove 2 lowPos than highPos.
*/
if (lowPos == noSymbol) break;
{ U32 const highTotal = huffNode[highPos].count;
U32 const lowTotal = 2 * huffNode[lowPos].count;
if (highTotal <= lowTotal) break;
} }
/* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
assert(rankLast[nBitsToDecrease] != noSymbol || nBitsToDecrease == 1);
/* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol))
nBitsToDecrease++;
assert(rankLast[nBitsToDecrease] != noSymbol);
/* Increase the number of bits to gain back half the rank cost. */
totalCost -= 1 << (nBitsToDecrease-1);
huffNode[rankLast[nBitsToDecrease]].nbBits++;
/* Fix up the new rank.
* If the new rank was empty, this symbol is now its smallest.
* Otherwise, this symbol will be the largest in the new rank so no adjustment.
*/
if (rankLast[nBitsToDecrease-1] == noSymbol)
rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease];
/* Fix up the old rank.
* If the symbol was at position 0, meaning it was the highest weight symbol in the tree,
* it must be the only symbol in its rank, so the old rank now has no symbols.
* Otherwise, since the Huffman nodes are sorted by count, the previous position is now
* the smallest node in the rank. If the previous position belongs to a different rank,
* then the rank is now empty.
*/
if (rankLast[nBitsToDecrease] == 0) /* special case, reached largest symbol */
rankLast[nBitsToDecrease] = noSymbol;
else {
rankLast[nBitsToDecrease]--;
if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease)
rankLast[nBitsToDecrease] = noSymbol; /* this rank is now empty */
}
} /* while (totalCost > 0) */
/* If we've removed too much weight, then we have to add it back.
* To avoid overshooting again, we only adjust the smallest rank.
* We take the largest nodes from the lowest rank 0 and move them
* to rank 1. There's guaranteed to be enough rank 0 symbols because
* TODO.
*/
while (totalCost < 0) { /* Sometimes, cost correction overshoot */
/* special case : no rank 1 symbol (using maxNbBits-1);
* let's create one from largest rank 0 (using maxNbBits).
*/
if (rankLast[1] == noSymbol) {
while (huffNode[n].nbBits == maxNbBits) n--;
huffNode[n+1].nbBits--;
assert(n >= 0);
rankLast[1] = (U32)(n+1);
totalCost++;
continue;
}
huffNode[ rankLast[1] + 1 ].nbBits--;
rankLast[1]++;
totalCost ++;
}
} /* repay normalized cost */
} /* there are several too large elements (at least >= 2) */
return maxNbBits;
}
typedef struct {
- U32 base;
- U32 curr;
+ U16 base;
+ U16 curr;
} rankPos;
typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32];
-#define RANK_POSITION_TABLE_SIZE 32
+/* Number of buckets available for HUF_sort() */
+#define RANK_POSITION_TABLE_SIZE 192
typedef struct {
huffNodeTable huffNodeTbl;
rankPos rankPosition[RANK_POSITION_TABLE_SIZE];
} HUF_buildCTable_wksp_tables;
+/* RANK_POSITION_DISTINCT_COUNT_CUTOFF == Cutoff point in HUF_sort() buckets for which we use log2 bucketing.
+ * Strategy is to use as many buckets as possible for representing distinct
+ * counts while using the remainder to represent all "large" counts.
+ *
+ * To satisfy this requirement for 192 buckets, we can do the following:
+ * Let buckets 0-166 represent distinct counts of [0, 166]
+ * Let buckets 166 to 192 represent all remaining counts up to RANK_POSITION_MAX_COUNT_LOG using log2 bucketing.
+ */
+#define RANK_POSITION_MAX_COUNT_LOG 32
+#define RANK_POSITION_LOG_BUCKETS_BEGIN (RANK_POSITION_TABLE_SIZE - 1) - RANK_POSITION_MAX_COUNT_LOG - 1 /* == 158 */
+#define RANK_POSITION_DISTINCT_COUNT_CUTOFF RANK_POSITION_LOG_BUCKETS_BEGIN + BIT_highbit32(RANK_POSITION_LOG_BUCKETS_BEGIN) /* == 166 */
+
+/* Return the appropriate bucket index for a given count. See definition of
+ * RANK_POSITION_DISTINCT_COUNT_CUTOFF for explanation of bucketing strategy.
+ */
+static U32 HUF_getIndex(U32 const count) {
+ return (count < RANK_POSITION_DISTINCT_COUNT_CUTOFF)
+ ? count
+ : BIT_highbit32(count) + RANK_POSITION_LOG_BUCKETS_BEGIN;
+}
+
+/* Helper swap function for HUF_quickSortPartition() */
+static void HUF_swapNodes(nodeElt* a, nodeElt* b) {
+ nodeElt tmp = *a;
+ *a = *b;
+ *b = tmp;
+}
+
+/* Returns 0 if the huffNode array is not sorted by descending count */
+MEM_STATIC int HUF_isSorted(nodeElt huffNode[], U32 const maxSymbolValue1) {
+ U32 i;
+ for (i = 1; i < maxSymbolValue1; ++i) {
+ if (huffNode[i].count > huffNode[i-1].count) {
+ return 0;
+ }
+ }
+ return 1;
+}
+
+/* Insertion sort by descending order */
+HINT_INLINE void HUF_insertionSort(nodeElt huffNode[], int const low, int const high) {
+ int i;
+ int const size = high-low+1;
+ huffNode += low;
+ for (i = 1; i < size; ++i) {
+ nodeElt const key = huffNode[i];
+ int j = i - 1;
+ while (j >= 0 && huffNode[j].count < key.count) {
+ huffNode[j + 1] = huffNode[j];
+ j--;
+ }
+ huffNode[j + 1] = key;
+ }
+}
+
+/* Pivot helper function for quicksort. */
+static int HUF_quickSortPartition(nodeElt arr[], int const low, int const high) {
+ /* Simply select rightmost element as pivot. "Better" selectors like
+ * median-of-three don't experimentally appear to have any benefit.
+ */
+ U32 const pivot = arr[high].count;
+ int i = low - 1;
+ int j = low;
+ for ( ; j < high; j++) {
+ if (arr[j].count > pivot) {
+ i++;
+ HUF_swapNodes(&arr[i], &arr[j]);
+ }
+ }
+ HUF_swapNodes(&arr[i + 1], &arr[high]);
+ return i + 1;
+}
+
+/* Classic quicksort by descending with partially iterative calls
+ * to reduce worst case callstack size.
+ */
+static void HUF_simpleQuickSort(nodeElt arr[], int low, int high) {
+ int const kInsertionSortThreshold = 8;
+ if (high - low < kInsertionSortThreshold) {
+ HUF_insertionSort(arr, low, high);
+ return;
+ }
+ while (low < high) {
+ int const idx = HUF_quickSortPartition(arr, low, high);
+ if (idx - low < high - idx) {
+ HUF_simpleQuickSort(arr, low, idx - 1);
+ low = idx + 1;
+ } else {
+ HUF_simpleQuickSort(arr, idx + 1, high);
+ high = idx - 1;
+ }
+ }
+}
+
/**
* HUF_sort():
* Sorts the symbols [0, maxSymbolValue] by count[symbol] in decreasing order.
+ * This is a typical bucket sorting strategy that uses either quicksort or insertion sort to sort each bucket.
*
* @param[out] huffNode Sorted symbols by decreasing count. Only members `.count` and `.byte` are filled.
* Must have (maxSymbolValue + 1) entries.
* @param[in] count Histogram of the symbols.
* @param[in] maxSymbolValue Maximum symbol value.
* @param rankPosition This is a scratch workspace. Must have RANK_POSITION_TABLE_SIZE entries.
*/
-static void HUF_sort(nodeElt* huffNode, const unsigned* count, U32 maxSymbolValue, rankPos* rankPosition)
-{
- int n;
- int const maxSymbolValue1 = (int)maxSymbolValue + 1;
+static void HUF_sort(nodeElt huffNode[], const unsigned count[], U32 const maxSymbolValue, rankPos rankPosition[]) {
+ U32 n;
+ U32 const maxSymbolValue1 = maxSymbolValue+1;
/* Compute base and set curr to base.
- * For symbol s let lowerRank = BIT_highbit32(count[n]+1) and rank = lowerRank + 1.
- * Then 2^lowerRank <= count[n]+1 <= 2^rank.
+ * For symbol s let lowerRank = HUF_getIndex(count[n]) and rank = lowerRank + 1.
+ * See HUF_getIndex to see bucketing strategy.
* We attribute each symbol to lowerRank's base value, because we want to know where
* each rank begins in the output, so for rank R we want to count ranks R+1 and above.
*/
ZSTD_memset(rankPosition, 0, sizeof(*rankPosition) * RANK_POSITION_TABLE_SIZE);
for (n = 0; n < maxSymbolValue1; ++n) {
- U32 lowerRank = BIT_highbit32(count[n] + 1);
+ U32 lowerRank = HUF_getIndex(count[n]);
+ assert(lowerRank < RANK_POSITION_TABLE_SIZE - 1);
rankPosition[lowerRank].base++;
}
+
assert(rankPosition[RANK_POSITION_TABLE_SIZE - 1].base == 0);
+ /* Set up the rankPosition table */
for (n = RANK_POSITION_TABLE_SIZE - 1; n > 0; --n) {
rankPosition[n-1].base += rankPosition[n].base;
rankPosition[n-1].curr = rankPosition[n-1].base;
}
- /* Sort */
+
+ /* Insert each symbol into their appropriate bucket, setting up rankPosition table. */
for (n = 0; n < maxSymbolValue1; ++n) {
U32 const c = count[n];
- U32 const r = BIT_highbit32(c+1) + 1;
- U32 pos = rankPosition[r].curr++;
- /* Insert into the correct position in the rank.
- * We have at most 256 symbols, so this insertion should be fine.
- */
- while ((pos > rankPosition[r].base) && (c > huffNode[pos-1].count)) {
- huffNode[pos] = huffNode[pos-1];
- pos--;
- }
+ U32 const r = HUF_getIndex(c) + 1;
+ U32 const pos = rankPosition[r].curr++;
+ assert(pos < maxSymbolValue1);
huffNode[pos].count = c;
huffNode[pos].byte = (BYTE)n;
}
-}
+ /* Sort each bucket. */
+ for (n = RANK_POSITION_DISTINCT_COUNT_CUTOFF; n < RANK_POSITION_TABLE_SIZE - 1; ++n) {
+ U32 const bucketSize = rankPosition[n].curr-rankPosition[n].base;
+ U32 const bucketStartIdx = rankPosition[n].base;
+ if (bucketSize > 1) {
+ assert(bucketStartIdx < maxSymbolValue1);
+ HUF_simpleQuickSort(huffNode + bucketStartIdx, 0, bucketSize-1);
+ }
+ }
+
+ assert(HUF_isSorted(huffNode, maxSymbolValue1));
+}
/** HUF_buildCTable_wksp() :
* Same as HUF_buildCTable(), but using externally allocated scratch buffer.
* `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as sizeof(HUF_buildCTable_wksp_tables).
*/
#define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
/* HUF_buildTree():
* Takes the huffNode array sorted by HUF_sort() and builds an unlimited-depth Huffman tree.
*
* @param huffNode The array sorted by HUF_sort(). Builds the Huffman tree in this array.
* @param maxSymbolValue The maximum symbol value.
* @return The smallest node in the Huffman tree (by count).
*/
static int HUF_buildTree(nodeElt* huffNode, U32 maxSymbolValue)
{
nodeElt* const huffNode0 = huffNode - 1;
int nonNullRank;
int lowS, lowN;
int nodeNb = STARTNODE;
int n, nodeRoot;
/* init for parents */
nonNullRank = (int)maxSymbolValue;
while(huffNode[nonNullRank].count == 0) nonNullRank--;
lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
huffNode[lowS].parent = huffNode[lowS-1].parent = (U16)nodeNb;
nodeNb++; lowS-=2;
for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
huffNode0[0].count = (U32)(1U<<31); /* fake entry, strong barrier */
/* create parents */
while (nodeNb <= nodeRoot) {
int const n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
int const n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
huffNode[n1].parent = huffNode[n2].parent = (U16)nodeNb;
nodeNb++;
}
/* distribute weights (unlimited tree height) */
huffNode[nodeRoot].nbBits = 0;
for (n=nodeRoot-1; n>=STARTNODE; n--)
huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
for (n=0; n<=nonNullRank; n++)
huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
return nonNullRank;
}
/**
* HUF_buildCTableFromTree():
* Build the CTable given the Huffman tree in huffNode.
*
* @param[out] CTable The output Huffman CTable.
* @param huffNode The Huffman tree.
* @param nonNullRank The last and smallest node in the Huffman tree.
* @param maxSymbolValue The maximum symbol value.
* @param maxNbBits The exact maximum number of bits used in the Huffman tree.
*/
static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, int nonNullRank, U32 maxSymbolValue, U32 maxNbBits)
{
+ HUF_CElt* const ct = CTable + 1;
/* fill result into ctable (val, nbBits) */
int n;
U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
int const alphabetSize = (int)(maxSymbolValue + 1);
for (n=0; n<=nonNullRank; n++)
nbPerRank[huffNode[n].nbBits]++;
/* determine starting value per rank */
{ U16 min = 0;
for (n=(int)maxNbBits; n>0; n--) {
valPerRank[n] = min; /* get starting value within each rank */
min += nbPerRank[n];
min >>= 1;
} }
for (n=0; n<alphabetSize; n++)
- CTable[huffNode[n].byte].nbBits = huffNode[n].nbBits; /* push nbBits per symbol, symbol order */
+ HUF_setNbBits(ct + huffNode[n].byte, huffNode[n].nbBits); /* push nbBits per symbol, symbol order */
for (n=0; n<alphabetSize; n++)
- CTable[n].val = valPerRank[CTable[n].nbBits]++; /* assign value within rank, symbol order */
+ HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++); /* assign value within rank, symbol order */
+ CTable[0] = maxNbBits;
}
-size_t HUF_buildCTable_wksp (HUF_CElt* tree, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize)
+size_t HUF_buildCTable_wksp (HUF_CElt* CTable, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize)
{
- HUF_buildCTable_wksp_tables* const wksp_tables = (HUF_buildCTable_wksp_tables*)workSpace;
+ HUF_buildCTable_wksp_tables* const wksp_tables = (HUF_buildCTable_wksp_tables*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(U32));
nodeElt* const huffNode0 = wksp_tables->huffNodeTbl;
nodeElt* const huffNode = huffNode0+1;
int nonNullRank;
/* safety checks */
- if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
if (wkspSize < sizeof(HUF_buildCTable_wksp_tables))
return ERROR(workSpace_tooSmall);
if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX)
return ERROR(maxSymbolValue_tooLarge);
ZSTD_memset(huffNode0, 0, sizeof(huffNodeTable));
/* sort, decreasing order */
HUF_sort(huffNode, count, maxSymbolValue, wksp_tables->rankPosition);
/* build tree */
nonNullRank = HUF_buildTree(huffNode, maxSymbolValue);
/* enforce maxTableLog */
maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits);
if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC); /* check fit into table */
- HUF_buildCTableFromTree(tree, huffNode, nonNullRank, maxSymbolValue, maxNbBits);
+ HUF_buildCTableFromTree(CTable, huffNode, nonNullRank, maxSymbolValue, maxNbBits);
return maxNbBits;
}
size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue)
{
+ HUF_CElt const* ct = CTable + 1;
size_t nbBits = 0;
int s;
for (s = 0; s <= (int)maxSymbolValue; ++s) {
- nbBits += CTable[s].nbBits * count[s];
+ nbBits += HUF_getNbBits(ct[s]) * count[s];
}
return nbBits >> 3;
}
int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
+ HUF_CElt const* ct = CTable + 1;
int bad = 0;
int s;
for (s = 0; s <= (int)maxSymbolValue; ++s) {
- bad |= (count[s] != 0) & (CTable[s].nbBits == 0);
+ bad |= (count[s] != 0) & (HUF_getNbBits(ct[s]) == 0);
}
return !bad;
}
size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
+/** HUF_CStream_t:
+ * Huffman uses its own BIT_CStream_t implementation.
+ * There are three major differences from BIT_CStream_t:
+ * 1. HUF_addBits() takes a HUF_CElt (size_t) which is
+ * the pair (nbBits, value) in the format:
+ * format:
+ * - Bits [0, 4) = nbBits
+ * - Bits [4, 64 - nbBits) = 0
+ * - Bits [64 - nbBits, 64) = value
+ * 2. The bitContainer is built from the upper bits and
+ * right shifted. E.g. to add a new value of N bits
+ * you right shift the bitContainer by N, then or in
+ * the new value into the N upper bits.
+ * 3. The bitstream has two bit containers. You can add
+ * bits to the second container and merge them into
+ * the first container.
+ */
+
+#define HUF_BITS_IN_CONTAINER (sizeof(size_t) * 8)
+
+typedef struct {
+ size_t bitContainer[2];
+ size_t bitPos[2];
+
+ BYTE* startPtr;
+ BYTE* ptr;
+ BYTE* endPtr;
+} HUF_CStream_t;
+
+/**! HUF_initCStream():
+ * Initializes the bitstream.
+ * @returns 0 or an error code.
+ */
+static size_t HUF_initCStream(HUF_CStream_t* bitC,
+ void* startPtr, size_t dstCapacity)
+{
+ ZSTD_memset(bitC, 0, sizeof(*bitC));
+ bitC->startPtr = (BYTE*)startPtr;
+ bitC->ptr = bitC->startPtr;
+ bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer[0]);
+ if (dstCapacity <= sizeof(bitC->bitContainer[0])) return ERROR(dstSize_tooSmall);
+ return 0;
+}
+
+/*! HUF_addBits():
+ * Adds the symbol stored in HUF_CElt elt to the bitstream.
+ *
+ * @param elt The element we're adding. This is a (nbBits, value) pair.
+ * See the HUF_CStream_t docs for the format.
+ * @param idx Insert into the bitstream at this idx.
+ * @param kFast This is a template parameter. If the bitstream is guaranteed
+ * to have at least 4 unused bits after this call it may be 1,
+ * otherwise it must be 0. HUF_addBits() is faster when fast is set.
+ */
+FORCE_INLINE_TEMPLATE void HUF_addBits(HUF_CStream_t* bitC, HUF_CElt elt, int idx, int kFast)
+{
+ assert(idx <= 1);
+ assert(HUF_getNbBits(elt) <= HUF_TABLELOG_ABSOLUTEMAX);
+ /* This is efficient on x86-64 with BMI2 because shrx
+ * only reads the low 6 bits of the register. The compiler
+ * knows this and elides the mask. When fast is set,
+ * every operation can use the same value loaded from elt.
+ */
+ bitC->bitContainer[idx] >>= HUF_getNbBits(elt);
+ bitC->bitContainer[idx] |= kFast ? HUF_getValueFast(elt) : HUF_getValue(elt);
+ /* We only read the low 8 bits of bitC->bitPos[idx] so it
+ * doesn't matter that the high bits have noise from the value.
+ */
+ bitC->bitPos[idx] += HUF_getNbBitsFast(elt);
+ assert((bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER);
+ /* The last 4-bits of elt are dirty if fast is set,
+ * so we must not be overwriting bits that have already been
+ * inserted into the bit container.
+ */
+#if DEBUGLEVEL >= 1
+ {
+ size_t const nbBits = HUF_getNbBits(elt);
+ size_t const dirtyBits = nbBits == 0 ? 0 : BIT_highbit32((U32)nbBits) + 1;
+ (void)dirtyBits;
+ /* Middle bits are 0. */
+ assert(((elt >> dirtyBits) << (dirtyBits + nbBits)) == 0);
+ /* We didn't overwrite any bits in the bit container. */
+ assert(!kFast || (bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER);
+ (void)dirtyBits;
+ }
+#endif
+}
+
+FORCE_INLINE_TEMPLATE void HUF_zeroIndex1(HUF_CStream_t* bitC)
+{
+ bitC->bitContainer[1] = 0;
+ bitC->bitPos[1] = 0;
+}
+
+/*! HUF_mergeIndex1() :
+ * Merges the bit container @ index 1 into the bit container @ index 0
+ * and zeros the bit container @ index 1.
+ */
+FORCE_INLINE_TEMPLATE void HUF_mergeIndex1(HUF_CStream_t* bitC)
+{
+ assert((bitC->bitPos[1] & 0xFF) < HUF_BITS_IN_CONTAINER);
+ bitC->bitContainer[0] >>= (bitC->bitPos[1] & 0xFF);
+ bitC->bitContainer[0] |= bitC->bitContainer[1];
+ bitC->bitPos[0] += bitC->bitPos[1];
+ assert((bitC->bitPos[0] & 0xFF) <= HUF_BITS_IN_CONTAINER);
+}
+
+/*! HUF_flushBits() :
+* Flushes the bits in the bit container @ index 0.
+*
+* @post bitPos will be < 8.
+* @param kFast If kFast is set then we must know a-priori that
+* the bit container will not overflow.
+*/
+FORCE_INLINE_TEMPLATE void HUF_flushBits(HUF_CStream_t* bitC, int kFast)
+{
+ /* The upper bits of bitPos are noisy, so we must mask by 0xFF. */
+ size_t const nbBits = bitC->bitPos[0] & 0xFF;
+ size_t const nbBytes = nbBits >> 3;
+ /* The top nbBits bits of bitContainer are the ones we need. */
+ size_t const bitContainer = bitC->bitContainer[0] >> (HUF_BITS_IN_CONTAINER - nbBits);
+ /* Mask bitPos to account for the bytes we consumed. */
+ bitC->bitPos[0] &= 7;
+ assert(nbBits > 0);
+ assert(nbBits <= sizeof(bitC->bitContainer[0]) * 8);
+ assert(bitC->ptr <= bitC->endPtr);
+ MEM_writeLEST(bitC->ptr, bitContainer);
+ bitC->ptr += nbBytes;
+ assert(!kFast || bitC->ptr <= bitC->endPtr);
+ if (!kFast && bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr;
+ /* bitContainer doesn't need to be modified because the leftover
+ * bits are already the top bitPos bits. And we don't care about
+ * noise in the lower values.
+ */
+}
+
+/*! HUF_endMark()
+ * @returns The Huffman stream end mark: A 1-bit value = 1.
+ */
+static HUF_CElt HUF_endMark(void)
+{
+ HUF_CElt endMark;
+ HUF_setNbBits(&endMark, 1);
+ HUF_setValue(&endMark, 1);
+ return endMark;
+}
+
+/*! HUF_closeCStream() :
+ * @return Size of CStream, in bytes,
+ * or 0 if it could not fit into dstBuffer */
+static size_t HUF_closeCStream(HUF_CStream_t* bitC)
+{
+ HUF_addBits(bitC, HUF_endMark(), /* idx */ 0, /* kFast */ 0);
+ HUF_flushBits(bitC, /* kFast */ 0);
+ {
+ size_t const nbBits = bitC->bitPos[0] & 0xFF;
+ if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */
+ return (bitC->ptr - bitC->startPtr) + (nbBits > 0);
+ }
+}
+
FORCE_INLINE_TEMPLATE void
-HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable)
+HUF_encodeSymbol(HUF_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable, int idx, int fast)
{
- BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits);
+ HUF_addBits(bitCPtr, CTable[symbol], idx, fast);
}
-#define HUF_FLUSHBITS(s) BIT_flushBits(s)
+FORCE_INLINE_TEMPLATE void
+HUF_compress1X_usingCTable_internal_body_loop(HUF_CStream_t* bitC,
+ const BYTE* ip, size_t srcSize,
+ const HUF_CElt* ct,
+ int kUnroll, int kFastFlush, int kLastFast)
+{
+ /* Join to kUnroll */
+ int n = (int)srcSize;
+ int rem = n % kUnroll;
+ if (rem > 0) {
+ for (; rem > 0; --rem) {
+ HUF_encodeSymbol(bitC, ip[--n], ct, 0, /* fast */ 0);
+ }
+ HUF_flushBits(bitC, kFastFlush);
+ }
+ assert(n % kUnroll == 0);
-#define HUF_FLUSHBITS_1(stream) \
- if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*2+7) HUF_FLUSHBITS(stream)
+ /* Join to 2 * kUnroll */
+ if (n % (2 * kUnroll)) {
+ int u;
+ for (u = 1; u < kUnroll; ++u) {
+ HUF_encodeSymbol(bitC, ip[n - u], ct, 0, 1);
+ }
+ HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, 0, kLastFast);
+ HUF_flushBits(bitC, kFastFlush);
+ n -= kUnroll;
+ }
+ assert(n % (2 * kUnroll) == 0);
+
+ for (; n>0; n-= 2 * kUnroll) {
+ /* Encode kUnroll symbols into the bitstream @ index 0. */
+ int u;
+ for (u = 1; u < kUnroll; ++u) {
+ HUF_encodeSymbol(bitC, ip[n - u], ct, /* idx */ 0, /* fast */ 1);
+ }
+ HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, /* idx */ 0, /* fast */ kLastFast);
+ HUF_flushBits(bitC, kFastFlush);
+ /* Encode kUnroll symbols into the bitstream @ index 1.
+ * This allows us to start filling the bit container
+ * without any data dependencies.
+ */
+ HUF_zeroIndex1(bitC);
+ for (u = 1; u < kUnroll; ++u) {
+ HUF_encodeSymbol(bitC, ip[n - kUnroll - u], ct, /* idx */ 1, /* fast */ 1);
+ }
+ HUF_encodeSymbol(bitC, ip[n - kUnroll - kUnroll], ct, /* idx */ 1, /* fast */ kLastFast);
+ /* Merge bitstream @ index 1 into the bitstream @ index 0 */
+ HUF_mergeIndex1(bitC);
+ HUF_flushBits(bitC, kFastFlush);
+ }
+ assert(n == 0);
+
+}
+
+/**
+ * Returns a tight upper bound on the output space needed by Huffman
+ * with 8 bytes buffer to handle over-writes. If the output is at least
+ * this large we don't need to do bounds checks during Huffman encoding.
+ */
+static size_t HUF_tightCompressBound(size_t srcSize, size_t tableLog)
+{
+ return ((srcSize * tableLog) >> 3) + 8;
+}
-#define HUF_FLUSHBITS_2(stream) \
- if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*4+7) HUF_FLUSHBITS(stream)
FORCE_INLINE_TEMPLATE size_t
HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize,
const void* src, size_t srcSize,
const HUF_CElt* CTable)
{
+ U32 const tableLog = (U32)CTable[0];
+ HUF_CElt const* ct = CTable + 1;
const BYTE* ip = (const BYTE*) src;
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstSize;
BYTE* op = ostart;
- size_t n;
- BIT_CStream_t bitC;
+ HUF_CStream_t bitC;
/* init */
if (dstSize < 8) return 0; /* not enough space to compress */
- { size_t const initErr = BIT_initCStream(&bitC, op, (size_t)(oend-op));
+ { size_t const initErr = HUF_initCStream(&bitC, op, (size_t)(oend-op));
if (HUF_isError(initErr)) return 0; }
- n = srcSize & ~3; /* join to mod 4 */
- switch (srcSize & 3)
- {
- case 3 : HUF_encodeSymbol(&bitC, ip[n+ 2], CTable);
- HUF_FLUSHBITS_2(&bitC);
- /* fall-through */
- case 2 : HUF_encodeSymbol(&bitC, ip[n+ 1], CTable);
- HUF_FLUSHBITS_1(&bitC);
- /* fall-through */
- case 1 : HUF_encodeSymbol(&bitC, ip[n+ 0], CTable);
- HUF_FLUSHBITS(&bitC);
- /* fall-through */
- case 0 : /* fall-through */
- default: break;
- }
-
- for (; n>0; n-=4) { /* note : n&3==0 at this stage */
- HUF_encodeSymbol(&bitC, ip[n- 1], CTable);
- HUF_FLUSHBITS_1(&bitC);
- HUF_encodeSymbol(&bitC, ip[n- 2], CTable);
- HUF_FLUSHBITS_2(&bitC);
- HUF_encodeSymbol(&bitC, ip[n- 3], CTable);
- HUF_FLUSHBITS_1(&bitC);
- HUF_encodeSymbol(&bitC, ip[n- 4], CTable);
- HUF_FLUSHBITS(&bitC);
+ if (dstSize < HUF_tightCompressBound(srcSize, (size_t)tableLog) || tableLog > 11)
+ HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ MEM_32bits() ? 2 : 4, /* kFast */ 0, /* kLastFast */ 0);
+ else {
+ if (MEM_32bits()) {
+ switch (tableLog) {
+ case 11:
+ HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 0);
+ break;
+ case 10: ZSTD_FALLTHROUGH;
+ case 9: ZSTD_FALLTHROUGH;
+ case 8:
+ HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 1);
+ break;
+ case 7: ZSTD_FALLTHROUGH;
+ default:
+ HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 3, /* kFastFlush */ 1, /* kLastFast */ 1);
+ break;
+ }
+ } else {
+ switch (tableLog) {
+ case 11:
+ HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 0);
+ break;
+ case 10:
+ HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 1);
+ break;
+ case 9:
+ HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 6, /* kFastFlush */ 1, /* kLastFast */ 0);
+ break;
+ case 8:
+ HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 7, /* kFastFlush */ 1, /* kLastFast */ 0);
+ break;
+ case 7:
+ HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 8, /* kFastFlush */ 1, /* kLastFast */ 0);
+ break;
+ case 6: ZSTD_FALLTHROUGH;
+ default:
+ HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 9, /* kFastFlush */ 1, /* kLastFast */ 1);
+ break;
+ }
+ }
}
+ assert(bitC.ptr <= bitC.endPtr);
- return BIT_closeCStream(&bitC);
+ return HUF_closeCStream(&bitC);
}
#if DYNAMIC_BMI2
-static TARGET_ATTRIBUTE("bmi2") size_t
+static BMI2_TARGET_ATTRIBUTE size_t
HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize,
const void* src, size_t srcSize,
const HUF_CElt* CTable)
{
return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
}
static size_t
HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize,
const void* src, size_t srcSize,
const HUF_CElt* CTable)
{
return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
}
static size_t
HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
const void* src, size_t srcSize,
const HUF_CElt* CTable, const int bmi2)
{
if (bmi2) {
return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable);
}
return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable);
}
#else
static size_t
HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
const void* src, size_t srcSize,
const HUF_CElt* CTable, const int bmi2)
{
(void)bmi2;
return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
}
#endif
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
{
- return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
+ return HUF_compress1X_usingCTable_bmi2(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
}
+size_t HUF_compress1X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2)
+{
+ return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, bmi2);
+}
static size_t
HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
const void* src, size_t srcSize,
const HUF_CElt* CTable, int bmi2)
{
size_t const segmentSize = (srcSize+3)/4; /* first 3 segments */
const BYTE* ip = (const BYTE*) src;
const BYTE* const iend = ip + srcSize;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
BYTE* op = ostart;
if (dstSize < 6 + 1 + 1 + 1 + 8) return 0; /* minimum space to compress successfully */
if (srcSize < 12) return 0; /* no saving possible : too small input */
op += 6; /* jumpTable */
assert(op <= oend);
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
- if (cSize==0) return 0;
- assert(cSize <= 65535);
+ if (cSize == 0 || cSize > 65535) return 0;
MEM_writeLE16(ostart, (U16)cSize);
op += cSize;
}
ip += segmentSize;
assert(op <= oend);
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
- if (cSize==0) return 0;
- assert(cSize <= 65535);
+ if (cSize == 0 || cSize > 65535) return 0;
MEM_writeLE16(ostart+2, (U16)cSize);
op += cSize;
}
ip += segmentSize;
assert(op <= oend);
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
- if (cSize==0) return 0;
- assert(cSize <= 65535);
+ if (cSize == 0 || cSize > 65535) return 0;
MEM_writeLE16(ostart+4, (U16)cSize);
op += cSize;
}
ip += segmentSize;
assert(op <= oend);
assert(ip <= iend);
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, bmi2) );
- if (cSize==0) return 0;
+ if (cSize == 0 || cSize > 65535) return 0;
op += cSize;
}
return (size_t)(op-ostart);
}
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
{
- return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
+ return HUF_compress4X_usingCTable_bmi2(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
+}
+
+size_t HUF_compress4X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2)
+{
+ return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, bmi2);
}
typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e;
static size_t HUF_compressCTable_internal(
BYTE* const ostart, BYTE* op, BYTE* const oend,
const void* src, size_t srcSize,
HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int bmi2)
{
size_t const cSize = (nbStreams==HUF_singleStream) ?
HUF_compress1X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2) :
HUF_compress4X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2);
if (HUF_isError(cSize)) { return cSize; }
if (cSize==0) { return 0; } /* uncompressible */
op += cSize;
/* check compressibility */
assert(op >= ostart);
if ((size_t)(op-ostart) >= srcSize-1) { return 0; }
return (size_t)(op-ostart);
}
typedef struct {
unsigned count[HUF_SYMBOLVALUE_MAX + 1];
- HUF_CElt CTable[HUF_SYMBOLVALUE_MAX + 1];
- HUF_buildCTable_wksp_tables buildCTable_wksp;
+ HUF_CElt CTable[HUF_CTABLE_SIZE_ST(HUF_SYMBOLVALUE_MAX)];
+ union {
+ HUF_buildCTable_wksp_tables buildCTable_wksp;
+ HUF_WriteCTableWksp writeCTable_wksp;
+ U32 hist_wksp[HIST_WKSP_SIZE_U32];
+ } wksps;
} HUF_compress_tables_t;
+#define SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE 4096
+#define SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO 10 /* Must be >= 2 */
+
/* HUF_compress_internal() :
* `workSpace_align4` must be aligned on 4-bytes boundaries,
- * and occupies the same space as a table of HUF_WORKSPACE_SIZE_U32 unsigned */
+ * and occupies the same space as a table of HUF_WORKSPACE_SIZE_U64 unsigned */
static size_t
HUF_compress_internal (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog,
HUF_nbStreams_e nbStreams,
- void* workSpace_align4, size_t wkspSize,
+ void* workSpace, size_t wkspSize,
HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat,
- const int bmi2)
+ const int bmi2, unsigned suspectUncompressible)
{
- HUF_compress_tables_t* const table = (HUF_compress_tables_t*)workSpace_align4;
+ HUF_compress_tables_t* const table = (HUF_compress_tables_t*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(size_t));
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstSize;
BYTE* op = ostart;
- HUF_STATIC_ASSERT(sizeof(*table) <= HUF_WORKSPACE_SIZE);
- assert(((size_t)workSpace_align4 & 3) == 0); /* must be aligned on 4-bytes boundaries */
+ HUF_STATIC_ASSERT(sizeof(*table) + HUF_WORKSPACE_MAX_ALIGNMENT <= HUF_WORKSPACE_SIZE);
/* checks & inits */
- if (wkspSize < HUF_WORKSPACE_SIZE) return ERROR(workSpace_tooSmall);
+ if (wkspSize < sizeof(*table)) return ERROR(workSpace_tooSmall);
if (!srcSize) return 0; /* Uncompressed */
if (!dstSize) return 0; /* cannot fit anything within dst budget */
if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong); /* current block size limit */
if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;
/* Heuristic : If old table is valid, use it for small inputs */
if (preferRepeat && repeat && *repeat == HUF_repeat_valid) {
return HUF_compressCTable_internal(ostart, op, oend,
src, srcSize,
nbStreams, oldHufTable, bmi2);
}
+ /* If uncompressible data is suspected, do a smaller sampling first */
+ DEBUG_STATIC_ASSERT(SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO >= 2);
+ if (suspectUncompressible && srcSize >= (SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE * SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO)) {
+ size_t largestTotal = 0;
+ { unsigned maxSymbolValueBegin = maxSymbolValue;
+ CHECK_V_F(largestBegin, HIST_count_simple (table->count, &maxSymbolValueBegin, (const BYTE*)src, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) );
+ largestTotal += largestBegin;
+ }
+ { unsigned maxSymbolValueEnd = maxSymbolValue;
+ CHECK_V_F(largestEnd, HIST_count_simple (table->count, &maxSymbolValueEnd, (const BYTE*)src + srcSize - SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) );
+ largestTotal += largestEnd;
+ }
+ if (largestTotal <= ((2 * SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) >> 7)+4) return 0; /* heuristic : probably not compressible enough */
+ }
+
/* Scan input and build symbol stats */
- { CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, workSpace_align4, wkspSize) );
+ { CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, table->wksps.hist_wksp, sizeof(table->wksps.hist_wksp)) );
if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; } /* single symbol, rle */
if (largest <= (srcSize >> 7)+4) return 0; /* heuristic : probably not compressible enough */
}
/* Check validity of previous table */
if ( repeat
&& *repeat == HUF_repeat_check
&& !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) {
*repeat = HUF_repeat_none;
}
/* Heuristic : use existing table for small inputs */
if (preferRepeat && repeat && *repeat != HUF_repeat_none) {
return HUF_compressCTable_internal(ostart, op, oend,
src, srcSize,
nbStreams, oldHufTable, bmi2);
}
/* Build Huffman Tree */
huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
{ size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count,
maxSymbolValue, huffLog,
- &table->buildCTable_wksp, sizeof(table->buildCTable_wksp));
+ &table->wksps.buildCTable_wksp, sizeof(table->wksps.buildCTable_wksp));
CHECK_F(maxBits);
huffLog = (U32)maxBits;
- /* Zero unused symbols in CTable, so we can check it for validity */
- ZSTD_memset(table->CTable + (maxSymbolValue + 1), 0,
- sizeof(table->CTable) - ((maxSymbolValue + 1) * sizeof(HUF_CElt)));
+ }
+ /* Zero unused symbols in CTable, so we can check it for validity */
+ {
+ size_t const ctableSize = HUF_CTABLE_SIZE_ST(maxSymbolValue);
+ size_t const unusedSize = sizeof(table->CTable) - ctableSize * sizeof(HUF_CElt);
+ ZSTD_memset(table->CTable + ctableSize, 0, unusedSize);
}
/* Write table description header */
- { CHECK_V_F(hSize, HUF_writeCTable (op, dstSize, table->CTable, maxSymbolValue, huffLog) );
+ { CHECK_V_F(hSize, HUF_writeCTable_wksp(op, dstSize, table->CTable, maxSymbolValue, huffLog,
+ &table->wksps.writeCTable_wksp, sizeof(table->wksps.writeCTable_wksp)) );
/* Check if using previous huffman table is beneficial */
if (repeat && *repeat != HUF_repeat_none) {
size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue);
size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue);
if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
return HUF_compressCTable_internal(ostart, op, oend,
src, srcSize,
nbStreams, oldHufTable, bmi2);
} }
/* Use the new huffman table */
if (hSize + 12ul >= srcSize) { return 0; }
op += hSize;
if (repeat) { *repeat = HUF_repeat_none; }
if (oldHufTable)
ZSTD_memcpy(oldHufTable, table->CTable, sizeof(table->CTable)); /* Save new table */
}
return HUF_compressCTable_internal(ostart, op, oend,
src, srcSize,
nbStreams, table->CTable, bmi2);
}
size_t HUF_compress1X_wksp (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog,
void* workSpace, size_t wkspSize)
{
return HUF_compress_internal(dst, dstSize, src, srcSize,
maxSymbolValue, huffLog, HUF_singleStream,
workSpace, wkspSize,
- NULL, NULL, 0, 0 /*bmi2*/);
+ NULL, NULL, 0, 0 /*bmi2*/, 0);
}
size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog,
void* workSpace, size_t wkspSize,
- HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
+ HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat,
+ int bmi2, unsigned suspectUncompressible)
{
return HUF_compress_internal(dst, dstSize, src, srcSize,
maxSymbolValue, huffLog, HUF_singleStream,
workSpace, wkspSize, hufTable,
- repeat, preferRepeat, bmi2);
+ repeat, preferRepeat, bmi2, suspectUncompressible);
}
/* HUF_compress4X_repeat():
* compress input using 4 streams.
* provide workspace to generate compression tables */
size_t HUF_compress4X_wksp (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog,
void* workSpace, size_t wkspSize)
{
return HUF_compress_internal(dst, dstSize, src, srcSize,
maxSymbolValue, huffLog, HUF_fourStreams,
workSpace, wkspSize,
- NULL, NULL, 0, 0 /*bmi2*/);
+ NULL, NULL, 0, 0 /*bmi2*/, 0);
}
/* HUF_compress4X_repeat():
* compress input using 4 streams.
+ * consider skipping quickly
* re-use an existing huffman compression table */
size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog,
void* workSpace, size_t wkspSize,
- HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
+ HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2, unsigned suspectUncompressible)
{
return HUF_compress_internal(dst, dstSize, src, srcSize,
maxSymbolValue, huffLog, HUF_fourStreams,
workSpace, wkspSize,
- hufTable, repeat, preferRepeat, bmi2);
+ hufTable, repeat, preferRepeat, bmi2, suspectUncompressible);
}
#ifndef ZSTD_NO_UNUSED_FUNCTIONS
/** HUF_buildCTable() :
* @return : maxNbBits
* Note : count is used before tree is written, so they can safely overlap
*/
size_t HUF_buildCTable (HUF_CElt* tree, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits)
{
HUF_buildCTable_wksp_tables workspace;
return HUF_buildCTable_wksp(tree, count, maxSymbolValue, maxNbBits, &workspace, sizeof(workspace));
}
size_t HUF_compress1X (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog)
{
- unsigned workSpace[HUF_WORKSPACE_SIZE_U32];
+ U64 workSpace[HUF_WORKSPACE_SIZE_U64];
return HUF_compress1X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
}
size_t HUF_compress2 (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog)
{
- unsigned workSpace[HUF_WORKSPACE_SIZE_U32];
+ U64 workSpace[HUF_WORKSPACE_SIZE_U64];
return HUF_compress4X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
}
size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
return HUF_compress2(dst, maxDstSize, src, srcSize, 255, HUF_TABLELOG_DEFAULT);
}
#endif
diff --git a/sys/contrib/zstd/lib/compress/zstd_compress.c b/sys/contrib/zstd/lib/compress/zstd_compress.c
index 386b051df635..f06456af9265 100644
--- a/sys/contrib/zstd/lib/compress/zstd_compress.c
+++ b/sys/contrib/zstd/lib/compress/zstd_compress.c
@@ -1,5208 +1,6327 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Dependencies
***************************************/
#include "../common/zstd_deps.h" /* INT_MAX, ZSTD_memset, ZSTD_memcpy */
-#include "../common/cpu.h"
#include "../common/mem.h"
#include "hist.h" /* HIST_countFast_wksp */
#define FSE_STATIC_LINKING_ONLY /* FSE_encodeSymbol */
#include "../common/fse.h"
#define HUF_STATIC_LINKING_ONLY
#include "../common/huf.h"
#include "zstd_compress_internal.h"
#include "zstd_compress_sequences.h"
#include "zstd_compress_literals.h"
#include "zstd_fast.h"
#include "zstd_double_fast.h"
#include "zstd_lazy.h"
#include "zstd_opt.h"
#include "zstd_ldm.h"
#include "zstd_compress_superblock.h"
/* ***************************************************************
* Tuning parameters
*****************************************************************/
/*!
* COMPRESS_HEAPMODE :
* Select how default decompression function ZSTD_compress() allocates its context,
* on stack (0, default), or into heap (1).
* Note that functions with explicit context such as ZSTD_compressCCtx() are unaffected.
*/
#ifndef ZSTD_COMPRESS_HEAPMODE
# define ZSTD_COMPRESS_HEAPMODE 0
#endif
+/*!
+ * ZSTD_HASHLOG3_MAX :
+ * Maximum size of the hash table dedicated to find 3-bytes matches,
+ * in log format, aka 17 => 1 << 17 == 128Ki positions.
+ * This structure is only used in zstd_opt.
+ * Since allocation is centralized for all strategies, it has to be known here.
+ * The actual (selected) size of the hash table is then stored in ZSTD_matchState_t.hashLog3,
+ * so that zstd_opt.c doesn't need to know about this constant.
+ */
+#ifndef ZSTD_HASHLOG3_MAX
+# define ZSTD_HASHLOG3_MAX 17
+#endif
/*-*************************************
* Helper functions
***************************************/
/* ZSTD_compressBound()
* Note that the result from this function is only compatible with the "normal"
* full-block strategy.
* When there are a lot of small blocks due to frequent flush in streaming mode
* the overhead of headers can make the compressed data to be larger than the
* return value of ZSTD_compressBound().
*/
size_t ZSTD_compressBound(size_t srcSize) {
return ZSTD_COMPRESSBOUND(srcSize);
}
/*-*************************************
* Context memory management
***************************************/
struct ZSTD_CDict_s {
const void* dictContent;
size_t dictContentSize;
ZSTD_dictContentType_e dictContentType; /* The dictContentType the CDict was created with */
U32* entropyWorkspace; /* entropy workspace of HUF_WORKSPACE_SIZE bytes */
ZSTD_cwksp workspace;
ZSTD_matchState_t matchState;
ZSTD_compressedBlockState_t cBlockState;
ZSTD_customMem customMem;
U32 dictID;
int compressionLevel; /* 0 indicates that advanced API was used to select CDict params */
+ ZSTD_paramSwitch_e useRowMatchFinder; /* Indicates whether the CDict was created with params that would use
+ * row-based matchfinder. Unless the cdict is reloaded, we will use
+ * the same greedy/lazy matchfinder at compression time.
+ */
}; /* typedef'd to ZSTD_CDict within "zstd.h" */
ZSTD_CCtx* ZSTD_createCCtx(void)
{
return ZSTD_createCCtx_advanced(ZSTD_defaultCMem);
}
static void ZSTD_initCCtx(ZSTD_CCtx* cctx, ZSTD_customMem memManager)
{
assert(cctx != NULL);
ZSTD_memset(cctx, 0, sizeof(*cctx));
cctx->customMem = memManager;
- cctx->bmi2 = ZSTD_cpuid_bmi2(ZSTD_cpuid());
+ cctx->bmi2 = ZSTD_cpuSupportsBmi2();
{ size_t const err = ZSTD_CCtx_reset(cctx, ZSTD_reset_parameters);
assert(!ZSTD_isError(err));
(void)err;
}
}
ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem)
{
ZSTD_STATIC_ASSERT(zcss_init==0);
ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN==(0ULL - 1));
if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL;
{ ZSTD_CCtx* const cctx = (ZSTD_CCtx*)ZSTD_customMalloc(sizeof(ZSTD_CCtx), customMem);
if (!cctx) return NULL;
ZSTD_initCCtx(cctx, customMem);
return cctx;
}
}
ZSTD_CCtx* ZSTD_initStaticCCtx(void* workspace, size_t workspaceSize)
{
ZSTD_cwksp ws;
ZSTD_CCtx* cctx;
if (workspaceSize <= sizeof(ZSTD_CCtx)) return NULL; /* minimum size */
if ((size_t)workspace & 7) return NULL; /* must be 8-aligned */
ZSTD_cwksp_init(&ws, workspace, workspaceSize, ZSTD_cwksp_static_alloc);
cctx = (ZSTD_CCtx*)ZSTD_cwksp_reserve_object(&ws, sizeof(ZSTD_CCtx));
if (cctx == NULL) return NULL;
ZSTD_memset(cctx, 0, sizeof(ZSTD_CCtx));
ZSTD_cwksp_move(&cctx->workspace, &ws);
cctx->staticSize = workspaceSize;
/* statically sized space. entropyWorkspace never moves (but prev/next block swap places) */
if (!ZSTD_cwksp_check_available(&cctx->workspace, ENTROPY_WORKSPACE_SIZE + 2 * sizeof(ZSTD_compressedBlockState_t))) return NULL;
cctx->blockState.prevCBlock = (ZSTD_compressedBlockState_t*)ZSTD_cwksp_reserve_object(&cctx->workspace, sizeof(ZSTD_compressedBlockState_t));
cctx->blockState.nextCBlock = (ZSTD_compressedBlockState_t*)ZSTD_cwksp_reserve_object(&cctx->workspace, sizeof(ZSTD_compressedBlockState_t));
cctx->entropyWorkspace = (U32*)ZSTD_cwksp_reserve_object(&cctx->workspace, ENTROPY_WORKSPACE_SIZE);
cctx->bmi2 = ZSTD_cpuid_bmi2(ZSTD_cpuid());
return cctx;
}
/**
* Clears and frees all of the dictionaries in the CCtx.
*/
static void ZSTD_clearAllDicts(ZSTD_CCtx* cctx)
{
ZSTD_customFree(cctx->localDict.dictBuffer, cctx->customMem);
ZSTD_freeCDict(cctx->localDict.cdict);
ZSTD_memset(&cctx->localDict, 0, sizeof(cctx->localDict));
ZSTD_memset(&cctx->prefixDict, 0, sizeof(cctx->prefixDict));
cctx->cdict = NULL;
}
static size_t ZSTD_sizeof_localDict(ZSTD_localDict dict)
{
size_t const bufferSize = dict.dictBuffer != NULL ? dict.dictSize : 0;
size_t const cdictSize = ZSTD_sizeof_CDict(dict.cdict);
return bufferSize + cdictSize;
}
static void ZSTD_freeCCtxContent(ZSTD_CCtx* cctx)
{
assert(cctx != NULL);
assert(cctx->staticSize == 0);
ZSTD_clearAllDicts(cctx);
#ifdef ZSTD_MULTITHREAD
ZSTDMT_freeCCtx(cctx->mtctx); cctx->mtctx = NULL;
#endif
ZSTD_cwksp_free(&cctx->workspace, cctx->customMem);
}
size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx)
{
if (cctx==NULL) return 0; /* support free on NULL */
RETURN_ERROR_IF(cctx->staticSize, memory_allocation,
"not compatible with static CCtx");
{
int cctxInWorkspace = ZSTD_cwksp_owns_buffer(&cctx->workspace, cctx);
ZSTD_freeCCtxContent(cctx);
if (!cctxInWorkspace) {
ZSTD_customFree(cctx, cctx->customMem);
}
}
return 0;
}
static size_t ZSTD_sizeof_mtctx(const ZSTD_CCtx* cctx)
{
#ifdef ZSTD_MULTITHREAD
return ZSTDMT_sizeof_CCtx(cctx->mtctx);
#else
(void)cctx;
return 0;
#endif
}
size_t ZSTD_sizeof_CCtx(const ZSTD_CCtx* cctx)
{
if (cctx==NULL) return 0; /* support sizeof on NULL */
/* cctx may be in the workspace */
return (cctx->workspace.workspace == cctx ? 0 : sizeof(*cctx))
+ ZSTD_cwksp_sizeof(&cctx->workspace)
+ ZSTD_sizeof_localDict(cctx->localDict)
+ ZSTD_sizeof_mtctx(cctx);
}
size_t ZSTD_sizeof_CStream(const ZSTD_CStream* zcs)
{
return ZSTD_sizeof_CCtx(zcs); /* same object */
}
/* private API call, for dictBuilder only */
const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx) { return &(ctx->seqStore); }
+/* Returns true if the strategy supports using a row based matchfinder */
+static int ZSTD_rowMatchFinderSupported(const ZSTD_strategy strategy) {
+ return (strategy >= ZSTD_greedy && strategy <= ZSTD_lazy2);
+}
+
+/* Returns true if the strategy and useRowMatchFinder mode indicate that we will use the row based matchfinder
+ * for this compression.
+ */
+static int ZSTD_rowMatchFinderUsed(const ZSTD_strategy strategy, const ZSTD_paramSwitch_e mode) {
+ assert(mode != ZSTD_ps_auto);
+ return ZSTD_rowMatchFinderSupported(strategy) && (mode == ZSTD_ps_enable);
+}
+
+/* Returns row matchfinder usage given an initial mode and cParams */
+static ZSTD_paramSwitch_e ZSTD_resolveRowMatchFinderMode(ZSTD_paramSwitch_e mode,
+ const ZSTD_compressionParameters* const cParams) {
+#if defined(ZSTD_ARCH_X86_SSE2) || defined(ZSTD_ARCH_ARM_NEON)
+ int const kHasSIMD128 = 1;
+#else
+ int const kHasSIMD128 = 0;
+#endif
+ if (mode != ZSTD_ps_auto) return mode; /* if requested enabled, but no SIMD, we still will use row matchfinder */
+ mode = ZSTD_ps_disable;
+ if (!ZSTD_rowMatchFinderSupported(cParams->strategy)) return mode;
+ if (kHasSIMD128) {
+ if (cParams->windowLog > 14) mode = ZSTD_ps_enable;
+ } else {
+ if (cParams->windowLog > 17) mode = ZSTD_ps_enable;
+ }
+ return mode;
+}
+
+/* Returns block splitter usage (generally speaking, when using slower/stronger compression modes) */
+static ZSTD_paramSwitch_e ZSTD_resolveBlockSplitterMode(ZSTD_paramSwitch_e mode,
+ const ZSTD_compressionParameters* const cParams) {
+ if (mode != ZSTD_ps_auto) return mode;
+ return (cParams->strategy >= ZSTD_btopt && cParams->windowLog >= 17) ? ZSTD_ps_enable : ZSTD_ps_disable;
+}
+
+/* Returns 1 if the arguments indicate that we should allocate a chainTable, 0 otherwise */
+static int ZSTD_allocateChainTable(const ZSTD_strategy strategy,
+ const ZSTD_paramSwitch_e useRowMatchFinder,
+ const U32 forDDSDict) {
+ assert(useRowMatchFinder != ZSTD_ps_auto);
+ /* We always should allocate a chaintable if we are allocating a matchstate for a DDS dictionary matchstate.
+ * We do not allocate a chaintable if we are using ZSTD_fast, or are using the row-based matchfinder.
+ */
+ return forDDSDict || ((strategy != ZSTD_fast) && !ZSTD_rowMatchFinderUsed(strategy, useRowMatchFinder));
+}
+
/* Returns 1 if compression parameters are such that we should
* enable long distance matching (wlog >= 27, strategy >= btopt).
* Returns 0 otherwise.
*/
-static U32 ZSTD_CParams_shouldEnableLdm(const ZSTD_compressionParameters* const cParams) {
- return cParams->strategy >= ZSTD_btopt && cParams->windowLog >= 27;
+static ZSTD_paramSwitch_e ZSTD_resolveEnableLdm(ZSTD_paramSwitch_e mode,
+ const ZSTD_compressionParameters* const cParams) {
+ if (mode != ZSTD_ps_auto) return mode;
+ return (cParams->strategy >= ZSTD_btopt && cParams->windowLog >= 27) ? ZSTD_ps_enable : ZSTD_ps_disable;
}
static ZSTD_CCtx_params ZSTD_makeCCtxParamsFromCParams(
ZSTD_compressionParameters cParams)
{
ZSTD_CCtx_params cctxParams;
/* should not matter, as all cParams are presumed properly defined */
ZSTD_CCtxParams_init(&cctxParams, ZSTD_CLEVEL_DEFAULT);
cctxParams.cParams = cParams;
- if (ZSTD_CParams_shouldEnableLdm(&cParams)) {
- DEBUGLOG(4, "ZSTD_makeCCtxParamsFromCParams(): Including LDM into cctx params");
- cctxParams.ldmParams.enableLdm = 1;
- /* LDM is enabled by default for optimal parser and window size >= 128MB */
+ /* Adjust advanced params according to cParams */
+ cctxParams.ldmParams.enableLdm = ZSTD_resolveEnableLdm(cctxParams.ldmParams.enableLdm, &cParams);
+ if (cctxParams.ldmParams.enableLdm == ZSTD_ps_enable) {
ZSTD_ldm_adjustParameters(&cctxParams.ldmParams, &cParams);
assert(cctxParams.ldmParams.hashLog >= cctxParams.ldmParams.bucketSizeLog);
assert(cctxParams.ldmParams.hashRateLog < 32);
}
-
+ cctxParams.useBlockSplitter = ZSTD_resolveBlockSplitterMode(cctxParams.useBlockSplitter, &cParams);
+ cctxParams.useRowMatchFinder = ZSTD_resolveRowMatchFinderMode(cctxParams.useRowMatchFinder, &cParams);
assert(!ZSTD_checkCParams(cParams));
return cctxParams;
}
static ZSTD_CCtx_params* ZSTD_createCCtxParams_advanced(
ZSTD_customMem customMem)
{
ZSTD_CCtx_params* params;
if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL;
params = (ZSTD_CCtx_params*)ZSTD_customCalloc(
sizeof(ZSTD_CCtx_params), customMem);
if (!params) { return NULL; }
ZSTD_CCtxParams_init(params, ZSTD_CLEVEL_DEFAULT);
params->customMem = customMem;
return params;
}
ZSTD_CCtx_params* ZSTD_createCCtxParams(void)
{
return ZSTD_createCCtxParams_advanced(ZSTD_defaultCMem);
}
size_t ZSTD_freeCCtxParams(ZSTD_CCtx_params* params)
{
if (params == NULL) { return 0; }
ZSTD_customFree(params, params->customMem);
return 0;
}
size_t ZSTD_CCtxParams_reset(ZSTD_CCtx_params* params)
{
return ZSTD_CCtxParams_init(params, ZSTD_CLEVEL_DEFAULT);
}
size_t ZSTD_CCtxParams_init(ZSTD_CCtx_params* cctxParams, int compressionLevel) {
RETURN_ERROR_IF(!cctxParams, GENERIC, "NULL pointer!");
ZSTD_memset(cctxParams, 0, sizeof(*cctxParams));
cctxParams->compressionLevel = compressionLevel;
cctxParams->fParams.contentSizeFlag = 1;
return 0;
}
+#define ZSTD_NO_CLEVEL 0
+
+/**
+ * Initializes the cctxParams from params and compressionLevel.
+ * @param compressionLevel If params are derived from a compression level then that compression level, otherwise ZSTD_NO_CLEVEL.
+ */
+static void ZSTD_CCtxParams_init_internal(ZSTD_CCtx_params* cctxParams, ZSTD_parameters const* params, int compressionLevel)
+{
+ assert(!ZSTD_checkCParams(params->cParams));
+ ZSTD_memset(cctxParams, 0, sizeof(*cctxParams));
+ cctxParams->cParams = params->cParams;
+ cctxParams->fParams = params->fParams;
+ /* Should not matter, as all cParams are presumed properly defined.
+ * But, set it for tracing anyway.
+ */
+ cctxParams->compressionLevel = compressionLevel;
+ cctxParams->useRowMatchFinder = ZSTD_resolveRowMatchFinderMode(cctxParams->useRowMatchFinder, &params->cParams);
+ cctxParams->useBlockSplitter = ZSTD_resolveBlockSplitterMode(cctxParams->useBlockSplitter, &params->cParams);
+ cctxParams->ldmParams.enableLdm = ZSTD_resolveEnableLdm(cctxParams->ldmParams.enableLdm, &params->cParams);
+ DEBUGLOG(4, "ZSTD_CCtxParams_init_internal: useRowMatchFinder=%d, useBlockSplitter=%d ldm=%d",
+ cctxParams->useRowMatchFinder, cctxParams->useBlockSplitter, cctxParams->ldmParams.enableLdm);
+}
+
size_t ZSTD_CCtxParams_init_advanced(ZSTD_CCtx_params* cctxParams, ZSTD_parameters params)
{
RETURN_ERROR_IF(!cctxParams, GENERIC, "NULL pointer!");
FORWARD_IF_ERROR( ZSTD_checkCParams(params.cParams) , "");
- ZSTD_memset(cctxParams, 0, sizeof(*cctxParams));
- assert(!ZSTD_checkCParams(params.cParams));
- cctxParams->cParams = params.cParams;
- cctxParams->fParams = params.fParams;
- cctxParams->compressionLevel = ZSTD_CLEVEL_DEFAULT; /* should not matter, as all cParams are presumed properly defined */
+ ZSTD_CCtxParams_init_internal(cctxParams, &params, ZSTD_NO_CLEVEL);
return 0;
}
-/* ZSTD_assignParamsToCCtxParams() :
- * params is presumed valid at this stage */
-static ZSTD_CCtx_params ZSTD_assignParamsToCCtxParams(
- const ZSTD_CCtx_params* cctxParams, const ZSTD_parameters* params)
+/**
+ * Sets cctxParams' cParams and fParams from params, but otherwise leaves them alone.
+ * @param param Validated zstd parameters.
+ */
+static void ZSTD_CCtxParams_setZstdParams(
+ ZSTD_CCtx_params* cctxParams, const ZSTD_parameters* params)
{
- ZSTD_CCtx_params ret = *cctxParams;
assert(!ZSTD_checkCParams(params->cParams));
- ret.cParams = params->cParams;
- ret.fParams = params->fParams;
- ret.compressionLevel = ZSTD_CLEVEL_DEFAULT; /* should not matter, as all cParams are presumed properly defined */
- return ret;
+ cctxParams->cParams = params->cParams;
+ cctxParams->fParams = params->fParams;
+ /* Should not matter, as all cParams are presumed properly defined.
+ * But, set it for tracing anyway.
+ */
+ cctxParams->compressionLevel = ZSTD_NO_CLEVEL;
}
ZSTD_bounds ZSTD_cParam_getBounds(ZSTD_cParameter param)
{
ZSTD_bounds bounds = { 0, 0, 0 };
switch(param)
{
case ZSTD_c_compressionLevel:
bounds.lowerBound = ZSTD_minCLevel();
bounds.upperBound = ZSTD_maxCLevel();
return bounds;
case ZSTD_c_windowLog:
bounds.lowerBound = ZSTD_WINDOWLOG_MIN;
bounds.upperBound = ZSTD_WINDOWLOG_MAX;
return bounds;
case ZSTD_c_hashLog:
bounds.lowerBound = ZSTD_HASHLOG_MIN;
bounds.upperBound = ZSTD_HASHLOG_MAX;
return bounds;
case ZSTD_c_chainLog:
bounds.lowerBound = ZSTD_CHAINLOG_MIN;
bounds.upperBound = ZSTD_CHAINLOG_MAX;
return bounds;
case ZSTD_c_searchLog:
bounds.lowerBound = ZSTD_SEARCHLOG_MIN;
bounds.upperBound = ZSTD_SEARCHLOG_MAX;
return bounds;
case ZSTD_c_minMatch:
bounds.lowerBound = ZSTD_MINMATCH_MIN;
bounds.upperBound = ZSTD_MINMATCH_MAX;
return bounds;
case ZSTD_c_targetLength:
bounds.lowerBound = ZSTD_TARGETLENGTH_MIN;
bounds.upperBound = ZSTD_TARGETLENGTH_MAX;
return bounds;
case ZSTD_c_strategy:
bounds.lowerBound = ZSTD_STRATEGY_MIN;
bounds.upperBound = ZSTD_STRATEGY_MAX;
return bounds;
case ZSTD_c_contentSizeFlag:
bounds.lowerBound = 0;
bounds.upperBound = 1;
return bounds;
case ZSTD_c_checksumFlag:
bounds.lowerBound = 0;
bounds.upperBound = 1;
return bounds;
case ZSTD_c_dictIDFlag:
bounds.lowerBound = 0;
bounds.upperBound = 1;
return bounds;
case ZSTD_c_nbWorkers:
bounds.lowerBound = 0;
#ifdef ZSTD_MULTITHREAD
bounds.upperBound = ZSTDMT_NBWORKERS_MAX;
#else
bounds.upperBound = 0;
#endif
return bounds;
case ZSTD_c_jobSize:
bounds.lowerBound = 0;
#ifdef ZSTD_MULTITHREAD
bounds.upperBound = ZSTDMT_JOBSIZE_MAX;
#else
bounds.upperBound = 0;
#endif
return bounds;
case ZSTD_c_overlapLog:
#ifdef ZSTD_MULTITHREAD
bounds.lowerBound = ZSTD_OVERLAPLOG_MIN;
bounds.upperBound = ZSTD_OVERLAPLOG_MAX;
#else
bounds.lowerBound = 0;
bounds.upperBound = 0;
#endif
return bounds;
case ZSTD_c_enableDedicatedDictSearch:
bounds.lowerBound = 0;
bounds.upperBound = 1;
return bounds;
case ZSTD_c_enableLongDistanceMatching:
bounds.lowerBound = 0;
bounds.upperBound = 1;
return bounds;
case ZSTD_c_ldmHashLog:
bounds.lowerBound = ZSTD_LDM_HASHLOG_MIN;
bounds.upperBound = ZSTD_LDM_HASHLOG_MAX;
return bounds;
case ZSTD_c_ldmMinMatch:
bounds.lowerBound = ZSTD_LDM_MINMATCH_MIN;
bounds.upperBound = ZSTD_LDM_MINMATCH_MAX;
return bounds;
case ZSTD_c_ldmBucketSizeLog:
bounds.lowerBound = ZSTD_LDM_BUCKETSIZELOG_MIN;
bounds.upperBound = ZSTD_LDM_BUCKETSIZELOG_MAX;
return bounds;
case ZSTD_c_ldmHashRateLog:
bounds.lowerBound = ZSTD_LDM_HASHRATELOG_MIN;
bounds.upperBound = ZSTD_LDM_HASHRATELOG_MAX;
return bounds;
/* experimental parameters */
case ZSTD_c_rsyncable:
bounds.lowerBound = 0;
bounds.upperBound = 1;
return bounds;
case ZSTD_c_forceMaxWindow :
bounds.lowerBound = 0;
bounds.upperBound = 1;
return bounds;
case ZSTD_c_format:
ZSTD_STATIC_ASSERT(ZSTD_f_zstd1 < ZSTD_f_zstd1_magicless);
bounds.lowerBound = ZSTD_f_zstd1;
bounds.upperBound = ZSTD_f_zstd1_magicless; /* note : how to ensure at compile time that this is the highest value enum ? */
return bounds;
case ZSTD_c_forceAttachDict:
ZSTD_STATIC_ASSERT(ZSTD_dictDefaultAttach < ZSTD_dictForceLoad);
bounds.lowerBound = ZSTD_dictDefaultAttach;
bounds.upperBound = ZSTD_dictForceLoad; /* note : how to ensure at compile time that this is the highest value enum ? */
return bounds;
case ZSTD_c_literalCompressionMode:
- ZSTD_STATIC_ASSERT(ZSTD_lcm_auto < ZSTD_lcm_huffman && ZSTD_lcm_huffman < ZSTD_lcm_uncompressed);
- bounds.lowerBound = ZSTD_lcm_auto;
- bounds.upperBound = ZSTD_lcm_uncompressed;
+ ZSTD_STATIC_ASSERT(ZSTD_ps_auto < ZSTD_ps_enable && ZSTD_ps_enable < ZSTD_ps_disable);
+ bounds.lowerBound = (int)ZSTD_ps_auto;
+ bounds.upperBound = (int)ZSTD_ps_disable;
return bounds;
case ZSTD_c_targetCBlockSize:
bounds.lowerBound = ZSTD_TARGETCBLOCKSIZE_MIN;
bounds.upperBound = ZSTD_TARGETCBLOCKSIZE_MAX;
return bounds;
case ZSTD_c_srcSizeHint:
bounds.lowerBound = ZSTD_SRCSIZEHINT_MIN;
bounds.upperBound = ZSTD_SRCSIZEHINT_MAX;
return bounds;
case ZSTD_c_stableInBuffer:
case ZSTD_c_stableOutBuffer:
bounds.lowerBound = (int)ZSTD_bm_buffered;
bounds.upperBound = (int)ZSTD_bm_stable;
return bounds;
case ZSTD_c_blockDelimiters:
bounds.lowerBound = (int)ZSTD_sf_noBlockDelimiters;
bounds.upperBound = (int)ZSTD_sf_explicitBlockDelimiters;
return bounds;
case ZSTD_c_validateSequences:
bounds.lowerBound = 0;
bounds.upperBound = 1;
return bounds;
+ case ZSTD_c_useBlockSplitter:
+ bounds.lowerBound = (int)ZSTD_ps_auto;
+ bounds.upperBound = (int)ZSTD_ps_disable;
+ return bounds;
+
+ case ZSTD_c_useRowMatchFinder:
+ bounds.lowerBound = (int)ZSTD_ps_auto;
+ bounds.upperBound = (int)ZSTD_ps_disable;
+ return bounds;
+
+ case ZSTD_c_deterministicRefPrefix:
+ bounds.lowerBound = 0;
+ bounds.upperBound = 1;
+ return bounds;
+
default:
bounds.error = ERROR(parameter_unsupported);
return bounds;
}
}
/* ZSTD_cParam_clampBounds:
* Clamps the value into the bounded range.
*/
static size_t ZSTD_cParam_clampBounds(ZSTD_cParameter cParam, int* value)
{
ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam);
if (ZSTD_isError(bounds.error)) return bounds.error;
if (*value < bounds.lowerBound) *value = bounds.lowerBound;
if (*value > bounds.upperBound) *value = bounds.upperBound;
return 0;
}
#define BOUNDCHECK(cParam, val) { \
RETURN_ERROR_IF(!ZSTD_cParam_withinBounds(cParam,val), \
parameter_outOfBound, "Param out of bounds"); \
}
static int ZSTD_isUpdateAuthorized(ZSTD_cParameter param)
{
switch(param)
{
case ZSTD_c_compressionLevel:
case ZSTD_c_hashLog:
case ZSTD_c_chainLog:
case ZSTD_c_searchLog:
case ZSTD_c_minMatch:
case ZSTD_c_targetLength:
case ZSTD_c_strategy:
return 1;
case ZSTD_c_format:
case ZSTD_c_windowLog:
case ZSTD_c_contentSizeFlag:
case ZSTD_c_checksumFlag:
case ZSTD_c_dictIDFlag:
case ZSTD_c_forceMaxWindow :
case ZSTD_c_nbWorkers:
case ZSTD_c_jobSize:
case ZSTD_c_overlapLog:
case ZSTD_c_rsyncable:
case ZSTD_c_enableDedicatedDictSearch:
case ZSTD_c_enableLongDistanceMatching:
case ZSTD_c_ldmHashLog:
case ZSTD_c_ldmMinMatch:
case ZSTD_c_ldmBucketSizeLog:
case ZSTD_c_ldmHashRateLog:
case ZSTD_c_forceAttachDict:
case ZSTD_c_literalCompressionMode:
case ZSTD_c_targetCBlockSize:
case ZSTD_c_srcSizeHint:
case ZSTD_c_stableInBuffer:
case ZSTD_c_stableOutBuffer:
case ZSTD_c_blockDelimiters:
case ZSTD_c_validateSequences:
+ case ZSTD_c_useBlockSplitter:
+ case ZSTD_c_useRowMatchFinder:
+ case ZSTD_c_deterministicRefPrefix:
default:
return 0;
}
}
size_t ZSTD_CCtx_setParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, int value)
{
DEBUGLOG(4, "ZSTD_CCtx_setParameter (%i, %i)", (int)param, value);
if (cctx->streamStage != zcss_init) {
if (ZSTD_isUpdateAuthorized(param)) {
cctx->cParamsChanged = 1;
} else {
RETURN_ERROR(stage_wrong, "can only set params in ctx init stage");
} }
switch(param)
{
case ZSTD_c_nbWorkers:
RETURN_ERROR_IF((value!=0) && cctx->staticSize, parameter_unsupported,
"MT not compatible with static alloc");
break;
case ZSTD_c_compressionLevel:
case ZSTD_c_windowLog:
case ZSTD_c_hashLog:
case ZSTD_c_chainLog:
case ZSTD_c_searchLog:
case ZSTD_c_minMatch:
case ZSTD_c_targetLength:
case ZSTD_c_strategy:
case ZSTD_c_ldmHashRateLog:
case ZSTD_c_format:
case ZSTD_c_contentSizeFlag:
case ZSTD_c_checksumFlag:
case ZSTD_c_dictIDFlag:
case ZSTD_c_forceMaxWindow:
case ZSTD_c_forceAttachDict:
case ZSTD_c_literalCompressionMode:
case ZSTD_c_jobSize:
case ZSTD_c_overlapLog:
case ZSTD_c_rsyncable:
case ZSTD_c_enableDedicatedDictSearch:
case ZSTD_c_enableLongDistanceMatching:
case ZSTD_c_ldmHashLog:
case ZSTD_c_ldmMinMatch:
case ZSTD_c_ldmBucketSizeLog:
case ZSTD_c_targetCBlockSize:
case ZSTD_c_srcSizeHint:
case ZSTD_c_stableInBuffer:
case ZSTD_c_stableOutBuffer:
case ZSTD_c_blockDelimiters:
case ZSTD_c_validateSequences:
+ case ZSTD_c_useBlockSplitter:
+ case ZSTD_c_useRowMatchFinder:
+ case ZSTD_c_deterministicRefPrefix:
break;
default: RETURN_ERROR(parameter_unsupported, "unknown parameter");
}
return ZSTD_CCtxParams_setParameter(&cctx->requestedParams, param, value);
}
size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* CCtxParams,
ZSTD_cParameter param, int value)
{
DEBUGLOG(4, "ZSTD_CCtxParams_setParameter (%i, %i)", (int)param, value);
switch(param)
{
case ZSTD_c_format :
BOUNDCHECK(ZSTD_c_format, value);
CCtxParams->format = (ZSTD_format_e)value;
return (size_t)CCtxParams->format;
case ZSTD_c_compressionLevel : {
FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(param, &value), "");
if (value == 0)
CCtxParams->compressionLevel = ZSTD_CLEVEL_DEFAULT; /* 0 == default */
else
CCtxParams->compressionLevel = value;
if (CCtxParams->compressionLevel >= 0) return (size_t)CCtxParams->compressionLevel;
return 0; /* return type (size_t) cannot represent negative values */
}
case ZSTD_c_windowLog :
if (value!=0) /* 0 => use default */
BOUNDCHECK(ZSTD_c_windowLog, value);
CCtxParams->cParams.windowLog = (U32)value;
return CCtxParams->cParams.windowLog;
case ZSTD_c_hashLog :
if (value!=0) /* 0 => use default */
BOUNDCHECK(ZSTD_c_hashLog, value);
CCtxParams->cParams.hashLog = (U32)value;
return CCtxParams->cParams.hashLog;
case ZSTD_c_chainLog :
if (value!=0) /* 0 => use default */
BOUNDCHECK(ZSTD_c_chainLog, value);
CCtxParams->cParams.chainLog = (U32)value;
return CCtxParams->cParams.chainLog;
case ZSTD_c_searchLog :
if (value!=0) /* 0 => use default */
BOUNDCHECK(ZSTD_c_searchLog, value);
CCtxParams->cParams.searchLog = (U32)value;
return (size_t)value;
case ZSTD_c_minMatch :
if (value!=0) /* 0 => use default */
BOUNDCHECK(ZSTD_c_minMatch, value);
CCtxParams->cParams.minMatch = value;
return CCtxParams->cParams.minMatch;
case ZSTD_c_targetLength :
BOUNDCHECK(ZSTD_c_targetLength, value);
CCtxParams->cParams.targetLength = value;
return CCtxParams->cParams.targetLength;
case ZSTD_c_strategy :
if (value!=0) /* 0 => use default */
BOUNDCHECK(ZSTD_c_strategy, value);
CCtxParams->cParams.strategy = (ZSTD_strategy)value;
return (size_t)CCtxParams->cParams.strategy;
case ZSTD_c_contentSizeFlag :
/* Content size written in frame header _when known_ (default:1) */
DEBUGLOG(4, "set content size flag = %u", (value!=0));
CCtxParams->fParams.contentSizeFlag = value != 0;
return CCtxParams->fParams.contentSizeFlag;
case ZSTD_c_checksumFlag :
/* A 32-bits content checksum will be calculated and written at end of frame (default:0) */
CCtxParams->fParams.checksumFlag = value != 0;
return CCtxParams->fParams.checksumFlag;
case ZSTD_c_dictIDFlag : /* When applicable, dictionary's dictID is provided in frame header (default:1) */
DEBUGLOG(4, "set dictIDFlag = %u", (value!=0));
CCtxParams->fParams.noDictIDFlag = !value;
return !CCtxParams->fParams.noDictIDFlag;
case ZSTD_c_forceMaxWindow :
CCtxParams->forceWindow = (value != 0);
return CCtxParams->forceWindow;
case ZSTD_c_forceAttachDict : {
const ZSTD_dictAttachPref_e pref = (ZSTD_dictAttachPref_e)value;
BOUNDCHECK(ZSTD_c_forceAttachDict, pref);
CCtxParams->attachDictPref = pref;
return CCtxParams->attachDictPref;
}
case ZSTD_c_literalCompressionMode : {
- const ZSTD_literalCompressionMode_e lcm = (ZSTD_literalCompressionMode_e)value;
+ const ZSTD_paramSwitch_e lcm = (ZSTD_paramSwitch_e)value;
BOUNDCHECK(ZSTD_c_literalCompressionMode, lcm);
CCtxParams->literalCompressionMode = lcm;
return CCtxParams->literalCompressionMode;
}
case ZSTD_c_nbWorkers :
#ifndef ZSTD_MULTITHREAD
RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading");
return 0;
#else
FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(param, &value), "");
CCtxParams->nbWorkers = value;
return CCtxParams->nbWorkers;
#endif
case ZSTD_c_jobSize :
#ifndef ZSTD_MULTITHREAD
RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading");
return 0;
#else
/* Adjust to the minimum non-default value. */
if (value != 0 && value < ZSTDMT_JOBSIZE_MIN)
value = ZSTDMT_JOBSIZE_MIN;
FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(param, &value), "");
assert(value >= 0);
CCtxParams->jobSize = value;
return CCtxParams->jobSize;
#endif
case ZSTD_c_overlapLog :
#ifndef ZSTD_MULTITHREAD
RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading");
return 0;
#else
FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(ZSTD_c_overlapLog, &value), "");
CCtxParams->overlapLog = value;
return CCtxParams->overlapLog;
#endif
case ZSTD_c_rsyncable :
#ifndef ZSTD_MULTITHREAD
RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading");
return 0;
#else
FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(ZSTD_c_overlapLog, &value), "");
CCtxParams->rsyncable = value;
return CCtxParams->rsyncable;
#endif
case ZSTD_c_enableDedicatedDictSearch :
CCtxParams->enableDedicatedDictSearch = (value!=0);
return CCtxParams->enableDedicatedDictSearch;
case ZSTD_c_enableLongDistanceMatching :
- CCtxParams->ldmParams.enableLdm = (value!=0);
+ CCtxParams->ldmParams.enableLdm = (ZSTD_paramSwitch_e)value;
return CCtxParams->ldmParams.enableLdm;
case ZSTD_c_ldmHashLog :
if (value!=0) /* 0 ==> auto */
BOUNDCHECK(ZSTD_c_ldmHashLog, value);
CCtxParams->ldmParams.hashLog = value;
return CCtxParams->ldmParams.hashLog;
case ZSTD_c_ldmMinMatch :
if (value!=0) /* 0 ==> default */
BOUNDCHECK(ZSTD_c_ldmMinMatch, value);
CCtxParams->ldmParams.minMatchLength = value;
return CCtxParams->ldmParams.minMatchLength;
case ZSTD_c_ldmBucketSizeLog :
if (value!=0) /* 0 ==> default */
BOUNDCHECK(ZSTD_c_ldmBucketSizeLog, value);
CCtxParams->ldmParams.bucketSizeLog = value;
return CCtxParams->ldmParams.bucketSizeLog;
case ZSTD_c_ldmHashRateLog :
- RETURN_ERROR_IF(value > ZSTD_WINDOWLOG_MAX - ZSTD_HASHLOG_MIN,
- parameter_outOfBound, "Param out of bounds!");
+ if (value!=0) /* 0 ==> default */
+ BOUNDCHECK(ZSTD_c_ldmHashRateLog, value);
CCtxParams->ldmParams.hashRateLog = value;
return CCtxParams->ldmParams.hashRateLog;
case ZSTD_c_targetCBlockSize :
if (value!=0) /* 0 ==> default */
BOUNDCHECK(ZSTD_c_targetCBlockSize, value);
CCtxParams->targetCBlockSize = value;
return CCtxParams->targetCBlockSize;
case ZSTD_c_srcSizeHint :
if (value!=0) /* 0 ==> default */
BOUNDCHECK(ZSTD_c_srcSizeHint, value);
CCtxParams->srcSizeHint = value;
return CCtxParams->srcSizeHint;
case ZSTD_c_stableInBuffer:
BOUNDCHECK(ZSTD_c_stableInBuffer, value);
CCtxParams->inBufferMode = (ZSTD_bufferMode_e)value;
return CCtxParams->inBufferMode;
case ZSTD_c_stableOutBuffer:
BOUNDCHECK(ZSTD_c_stableOutBuffer, value);
CCtxParams->outBufferMode = (ZSTD_bufferMode_e)value;
return CCtxParams->outBufferMode;
case ZSTD_c_blockDelimiters:
BOUNDCHECK(ZSTD_c_blockDelimiters, value);
CCtxParams->blockDelimiters = (ZSTD_sequenceFormat_e)value;
return CCtxParams->blockDelimiters;
case ZSTD_c_validateSequences:
BOUNDCHECK(ZSTD_c_validateSequences, value);
CCtxParams->validateSequences = value;
return CCtxParams->validateSequences;
+ case ZSTD_c_useBlockSplitter:
+ BOUNDCHECK(ZSTD_c_useBlockSplitter, value);
+ CCtxParams->useBlockSplitter = (ZSTD_paramSwitch_e)value;
+ return CCtxParams->useBlockSplitter;
+
+ case ZSTD_c_useRowMatchFinder:
+ BOUNDCHECK(ZSTD_c_useRowMatchFinder, value);
+ CCtxParams->useRowMatchFinder = (ZSTD_paramSwitch_e)value;
+ return CCtxParams->useRowMatchFinder;
+
+ case ZSTD_c_deterministicRefPrefix:
+ BOUNDCHECK(ZSTD_c_deterministicRefPrefix, value);
+ CCtxParams->deterministicRefPrefix = !!value;
+ return CCtxParams->deterministicRefPrefix;
+
default: RETURN_ERROR(parameter_unsupported, "unknown parameter");
}
}
-size_t ZSTD_CCtx_getParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, int* value)
+size_t ZSTD_CCtx_getParameter(ZSTD_CCtx const* cctx, ZSTD_cParameter param, int* value)
{
return ZSTD_CCtxParams_getParameter(&cctx->requestedParams, param, value);
}
size_t ZSTD_CCtxParams_getParameter(
- ZSTD_CCtx_params* CCtxParams, ZSTD_cParameter param, int* value)
+ ZSTD_CCtx_params const* CCtxParams, ZSTD_cParameter param, int* value)
{
switch(param)
{
case ZSTD_c_format :
*value = CCtxParams->format;
break;
case ZSTD_c_compressionLevel :
*value = CCtxParams->compressionLevel;
break;
case ZSTD_c_windowLog :
*value = (int)CCtxParams->cParams.windowLog;
break;
case ZSTD_c_hashLog :
*value = (int)CCtxParams->cParams.hashLog;
break;
case ZSTD_c_chainLog :
*value = (int)CCtxParams->cParams.chainLog;
break;
case ZSTD_c_searchLog :
*value = CCtxParams->cParams.searchLog;
break;
case ZSTD_c_minMatch :
*value = CCtxParams->cParams.minMatch;
break;
case ZSTD_c_targetLength :
*value = CCtxParams->cParams.targetLength;
break;
case ZSTD_c_strategy :
*value = (unsigned)CCtxParams->cParams.strategy;
break;
case ZSTD_c_contentSizeFlag :
*value = CCtxParams->fParams.contentSizeFlag;
break;
case ZSTD_c_checksumFlag :
*value = CCtxParams->fParams.checksumFlag;
break;
case ZSTD_c_dictIDFlag :
*value = !CCtxParams->fParams.noDictIDFlag;
break;
case ZSTD_c_forceMaxWindow :
*value = CCtxParams->forceWindow;
break;
case ZSTD_c_forceAttachDict :
*value = CCtxParams->attachDictPref;
break;
case ZSTD_c_literalCompressionMode :
*value = CCtxParams->literalCompressionMode;
break;
case ZSTD_c_nbWorkers :
#ifndef ZSTD_MULTITHREAD
assert(CCtxParams->nbWorkers == 0);
#endif
*value = CCtxParams->nbWorkers;
break;
case ZSTD_c_jobSize :
#ifndef ZSTD_MULTITHREAD
RETURN_ERROR(parameter_unsupported, "not compiled with multithreading");
#else
assert(CCtxParams->jobSize <= INT_MAX);
*value = (int)CCtxParams->jobSize;
break;
#endif
case ZSTD_c_overlapLog :
#ifndef ZSTD_MULTITHREAD
RETURN_ERROR(parameter_unsupported, "not compiled with multithreading");
#else
*value = CCtxParams->overlapLog;
break;
#endif
case ZSTD_c_rsyncable :
#ifndef ZSTD_MULTITHREAD
RETURN_ERROR(parameter_unsupported, "not compiled with multithreading");
#else
*value = CCtxParams->rsyncable;
break;
#endif
case ZSTD_c_enableDedicatedDictSearch :
*value = CCtxParams->enableDedicatedDictSearch;
break;
case ZSTD_c_enableLongDistanceMatching :
*value = CCtxParams->ldmParams.enableLdm;
break;
case ZSTD_c_ldmHashLog :
*value = CCtxParams->ldmParams.hashLog;
break;
case ZSTD_c_ldmMinMatch :
*value = CCtxParams->ldmParams.minMatchLength;
break;
case ZSTD_c_ldmBucketSizeLog :
*value = CCtxParams->ldmParams.bucketSizeLog;
break;
case ZSTD_c_ldmHashRateLog :
*value = CCtxParams->ldmParams.hashRateLog;
break;
case ZSTD_c_targetCBlockSize :
*value = (int)CCtxParams->targetCBlockSize;
break;
case ZSTD_c_srcSizeHint :
*value = (int)CCtxParams->srcSizeHint;
break;
case ZSTD_c_stableInBuffer :
*value = (int)CCtxParams->inBufferMode;
break;
case ZSTD_c_stableOutBuffer :
*value = (int)CCtxParams->outBufferMode;
break;
case ZSTD_c_blockDelimiters :
*value = (int)CCtxParams->blockDelimiters;
break;
case ZSTD_c_validateSequences :
*value = (int)CCtxParams->validateSequences;
break;
+ case ZSTD_c_useBlockSplitter :
+ *value = (int)CCtxParams->useBlockSplitter;
+ break;
+ case ZSTD_c_useRowMatchFinder :
+ *value = (int)CCtxParams->useRowMatchFinder;
+ break;
+ case ZSTD_c_deterministicRefPrefix:
+ *value = (int)CCtxParams->deterministicRefPrefix;
+ break;
default: RETURN_ERROR(parameter_unsupported, "unknown parameter");
}
return 0;
}
/** ZSTD_CCtx_setParametersUsingCCtxParams() :
* just applies `params` into `cctx`
* no action is performed, parameters are merely stored.
* If ZSTDMT is enabled, parameters are pushed to cctx->mtctx.
* This is possible even if a compression is ongoing.
* In which case, new parameters will be applied on the fly, starting with next compression job.
*/
size_t ZSTD_CCtx_setParametersUsingCCtxParams(
ZSTD_CCtx* cctx, const ZSTD_CCtx_params* params)
{
DEBUGLOG(4, "ZSTD_CCtx_setParametersUsingCCtxParams");
RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong,
"The context is in the wrong stage!");
RETURN_ERROR_IF(cctx->cdict, stage_wrong,
"Can't override parameters with cdict attached (some must "
"be inherited from the cdict).");
cctx->requestedParams = *params;
return 0;
}
-ZSTDLIB_API size_t ZSTD_CCtx_setPledgedSrcSize(ZSTD_CCtx* cctx, unsigned long long pledgedSrcSize)
+size_t ZSTD_CCtx_setPledgedSrcSize(ZSTD_CCtx* cctx, unsigned long long pledgedSrcSize)
{
DEBUGLOG(4, "ZSTD_CCtx_setPledgedSrcSize to %u bytes", (U32)pledgedSrcSize);
RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong,
"Can't set pledgedSrcSize when not in init stage.");
cctx->pledgedSrcSizePlusOne = pledgedSrcSize+1;
return 0;
}
static ZSTD_compressionParameters ZSTD_dedicatedDictSearch_getCParams(
int const compressionLevel,
size_t const dictSize);
static int ZSTD_dedicatedDictSearch_isSupported(
const ZSTD_compressionParameters* cParams);
static void ZSTD_dedicatedDictSearch_revertCParams(
ZSTD_compressionParameters* cParams);
/**
* Initializes the local dict using the requested parameters.
* NOTE: This does not use the pledged src size, because it may be used for more
* than one compression.
*/
static size_t ZSTD_initLocalDict(ZSTD_CCtx* cctx)
{
ZSTD_localDict* const dl = &cctx->localDict;
if (dl->dict == NULL) {
/* No local dictionary. */
assert(dl->dictBuffer == NULL);
assert(dl->cdict == NULL);
assert(dl->dictSize == 0);
return 0;
}
if (dl->cdict != NULL) {
assert(cctx->cdict == dl->cdict);
/* Local dictionary already initialized. */
return 0;
}
assert(dl->dictSize > 0);
assert(cctx->cdict == NULL);
assert(cctx->prefixDict.dict == NULL);
dl->cdict = ZSTD_createCDict_advanced2(
dl->dict,
dl->dictSize,
ZSTD_dlm_byRef,
dl->dictContentType,
&cctx->requestedParams,
cctx->customMem);
RETURN_ERROR_IF(!dl->cdict, memory_allocation, "ZSTD_createCDict_advanced failed");
cctx->cdict = dl->cdict;
return 0;
}
size_t ZSTD_CCtx_loadDictionary_advanced(
ZSTD_CCtx* cctx, const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType)
{
RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong,
"Can't load a dictionary when ctx is not in init stage.");
DEBUGLOG(4, "ZSTD_CCtx_loadDictionary_advanced (size: %u)", (U32)dictSize);
ZSTD_clearAllDicts(cctx); /* in case one already exists */
if (dict == NULL || dictSize == 0) /* no dictionary mode */
return 0;
if (dictLoadMethod == ZSTD_dlm_byRef) {
cctx->localDict.dict = dict;
} else {
void* dictBuffer;
RETURN_ERROR_IF(cctx->staticSize, memory_allocation,
"no malloc for static CCtx");
dictBuffer = ZSTD_customMalloc(dictSize, cctx->customMem);
RETURN_ERROR_IF(!dictBuffer, memory_allocation, "NULL pointer!");
ZSTD_memcpy(dictBuffer, dict, dictSize);
cctx->localDict.dictBuffer = dictBuffer;
cctx->localDict.dict = dictBuffer;
}
cctx->localDict.dictSize = dictSize;
cctx->localDict.dictContentType = dictContentType;
return 0;
}
-ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary_byReference(
+size_t ZSTD_CCtx_loadDictionary_byReference(
ZSTD_CCtx* cctx, const void* dict, size_t dictSize)
{
return ZSTD_CCtx_loadDictionary_advanced(
cctx, dict, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto);
}
-ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize)
+size_t ZSTD_CCtx_loadDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize)
{
return ZSTD_CCtx_loadDictionary_advanced(
cctx, dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto);
}
size_t ZSTD_CCtx_refCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict)
{
RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong,
"Can't ref a dict when ctx not in init stage.");
/* Free the existing local cdict (if any) to save memory. */
ZSTD_clearAllDicts(cctx);
cctx->cdict = cdict;
return 0;
}
size_t ZSTD_CCtx_refThreadPool(ZSTD_CCtx* cctx, ZSTD_threadPool* pool)
{
RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong,
"Can't ref a pool when ctx not in init stage.");
cctx->pool = pool;
return 0;
}
size_t ZSTD_CCtx_refPrefix(ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize)
{
return ZSTD_CCtx_refPrefix_advanced(cctx, prefix, prefixSize, ZSTD_dct_rawContent);
}
size_t ZSTD_CCtx_refPrefix_advanced(
ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType)
{
RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong,
"Can't ref a prefix when ctx not in init stage.");
ZSTD_clearAllDicts(cctx);
if (prefix != NULL && prefixSize > 0) {
cctx->prefixDict.dict = prefix;
cctx->prefixDict.dictSize = prefixSize;
cctx->prefixDict.dictContentType = dictContentType;
}
return 0;
}
/*! ZSTD_CCtx_reset() :
* Also dumps dictionary */
size_t ZSTD_CCtx_reset(ZSTD_CCtx* cctx, ZSTD_ResetDirective reset)
{
if ( (reset == ZSTD_reset_session_only)
|| (reset == ZSTD_reset_session_and_parameters) ) {
cctx->streamStage = zcss_init;
cctx->pledgedSrcSizePlusOne = 0;
}
if ( (reset == ZSTD_reset_parameters)
|| (reset == ZSTD_reset_session_and_parameters) ) {
RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong,
"Can't reset parameters only when not in init stage.");
ZSTD_clearAllDicts(cctx);
return ZSTD_CCtxParams_reset(&cctx->requestedParams);
}
return 0;
}
/** ZSTD_checkCParams() :
control CParam values remain within authorized range.
@return : 0, or an error code if one value is beyond authorized range */
size_t ZSTD_checkCParams(ZSTD_compressionParameters cParams)
{
BOUNDCHECK(ZSTD_c_windowLog, (int)cParams.windowLog);
BOUNDCHECK(ZSTD_c_chainLog, (int)cParams.chainLog);
BOUNDCHECK(ZSTD_c_hashLog, (int)cParams.hashLog);
BOUNDCHECK(ZSTD_c_searchLog, (int)cParams.searchLog);
BOUNDCHECK(ZSTD_c_minMatch, (int)cParams.minMatch);
BOUNDCHECK(ZSTD_c_targetLength,(int)cParams.targetLength);
BOUNDCHECK(ZSTD_c_strategy, cParams.strategy);
return 0;
}
/** ZSTD_clampCParams() :
* make CParam values within valid range.
* @return : valid CParams */
static ZSTD_compressionParameters
ZSTD_clampCParams(ZSTD_compressionParameters cParams)
{
# define CLAMP_TYPE(cParam, val, type) { \
ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam); \
if ((int)val<bounds.lowerBound) val=(type)bounds.lowerBound; \
else if ((int)val>bounds.upperBound) val=(type)bounds.upperBound; \
}
# define CLAMP(cParam, val) CLAMP_TYPE(cParam, val, unsigned)
CLAMP(ZSTD_c_windowLog, cParams.windowLog);
CLAMP(ZSTD_c_chainLog, cParams.chainLog);
CLAMP(ZSTD_c_hashLog, cParams.hashLog);
CLAMP(ZSTD_c_searchLog, cParams.searchLog);
CLAMP(ZSTD_c_minMatch, cParams.minMatch);
CLAMP(ZSTD_c_targetLength,cParams.targetLength);
CLAMP_TYPE(ZSTD_c_strategy,cParams.strategy, ZSTD_strategy);
return cParams;
}
/** ZSTD_cycleLog() :
* condition for correct operation : hashLog > 1 */
U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat)
{
U32 const btScale = ((U32)strat >= (U32)ZSTD_btlazy2);
return hashLog - btScale;
}
/** ZSTD_dictAndWindowLog() :
* Returns an adjusted window log that is large enough to fit the source and the dictionary.
* The zstd format says that the entire dictionary is valid if one byte of the dictionary
* is within the window. So the hashLog and chainLog should be large enough to reference both
* the dictionary and the window. So we must use this adjusted dictAndWindowLog when downsizing
* the hashLog and windowLog.
* NOTE: srcSize must not be ZSTD_CONTENTSIZE_UNKNOWN.
*/
static U32 ZSTD_dictAndWindowLog(U32 windowLog, U64 srcSize, U64 dictSize)
{
const U64 maxWindowSize = 1ULL << ZSTD_WINDOWLOG_MAX;
/* No dictionary ==> No change */
if (dictSize == 0) {
return windowLog;
}
assert(windowLog <= ZSTD_WINDOWLOG_MAX);
assert(srcSize != ZSTD_CONTENTSIZE_UNKNOWN); /* Handled in ZSTD_adjustCParams_internal() */
{
U64 const windowSize = 1ULL << windowLog;
U64 const dictAndWindowSize = dictSize + windowSize;
/* If the window size is already large enough to fit both the source and the dictionary
* then just use the window size. Otherwise adjust so that it fits the dictionary and
* the window.
*/
if (windowSize >= dictSize + srcSize) {
return windowLog; /* Window size large enough already */
} else if (dictAndWindowSize >= maxWindowSize) {
return ZSTD_WINDOWLOG_MAX; /* Larger than max window log */
} else {
return ZSTD_highbit32((U32)dictAndWindowSize - 1) + 1;
}
}
}
/** ZSTD_adjustCParams_internal() :
* optimize `cPar` for a specified input (`srcSize` and `dictSize`).
* mostly downsize to reduce memory consumption and initialization latency.
* `srcSize` can be ZSTD_CONTENTSIZE_UNKNOWN when not known.
* `mode` is the mode for parameter adjustment. See docs for `ZSTD_cParamMode_e`.
* note : `srcSize==0` means 0!
* condition : cPar is presumed validated (can be checked using ZSTD_checkCParams()). */
static ZSTD_compressionParameters
ZSTD_adjustCParams_internal(ZSTD_compressionParameters cPar,
unsigned long long srcSize,
size_t dictSize,
ZSTD_cParamMode_e mode)
{
const U64 minSrcSize = 513; /* (1<<9) + 1 */
const U64 maxWindowResize = 1ULL << (ZSTD_WINDOWLOG_MAX-1);
assert(ZSTD_checkCParams(cPar)==0);
- if (dictSize && srcSize == ZSTD_CONTENTSIZE_UNKNOWN)
- srcSize = minSrcSize;
-
switch (mode) {
- case ZSTD_cpm_noAttachDict:
case ZSTD_cpm_unknown:
+ case ZSTD_cpm_noAttachDict:
+ /* If we don't know the source size, don't make any
+ * assumptions about it. We will already have selected
+ * smaller parameters if a dictionary is in use.
+ */
+ break;
case ZSTD_cpm_createCDict:
+ /* Assume a small source size when creating a dictionary
+ * with an unknown source size.
+ */
+ if (dictSize && srcSize == ZSTD_CONTENTSIZE_UNKNOWN)
+ srcSize = minSrcSize;
break;
case ZSTD_cpm_attachDict:
+ /* Dictionary has its own dedicated parameters which have
+ * already been selected. We are selecting parameters
+ * for only the source.
+ */
dictSize = 0;
break;
default:
assert(0);
break;
}
/* resize windowLog if input is small enough, to use less memory */
if ( (srcSize < maxWindowResize)
&& (dictSize < maxWindowResize) ) {
U32 const tSize = (U32)(srcSize + dictSize);
static U32 const hashSizeMin = 1 << ZSTD_HASHLOG_MIN;
U32 const srcLog = (tSize < hashSizeMin) ? ZSTD_HASHLOG_MIN :
ZSTD_highbit32(tSize-1) + 1;
if (cPar.windowLog > srcLog) cPar.windowLog = srcLog;
}
- { U32 const dictAndWindowLog = ZSTD_dictAndWindowLog(cPar.windowLog, (U64)srcSize, (U64)dictSize);
+ if (srcSize != ZSTD_CONTENTSIZE_UNKNOWN) {
+ U32 const dictAndWindowLog = ZSTD_dictAndWindowLog(cPar.windowLog, (U64)srcSize, (U64)dictSize);
U32 const cycleLog = ZSTD_cycleLog(cPar.chainLog, cPar.strategy);
if (cPar.hashLog > dictAndWindowLog+1) cPar.hashLog = dictAndWindowLog+1;
if (cycleLog > dictAndWindowLog)
cPar.chainLog -= (cycleLog - dictAndWindowLog);
}
if (cPar.windowLog < ZSTD_WINDOWLOG_ABSOLUTEMIN)
cPar.windowLog = ZSTD_WINDOWLOG_ABSOLUTEMIN; /* minimum wlog required for valid frame header */
return cPar;
}
ZSTD_compressionParameters
ZSTD_adjustCParams(ZSTD_compressionParameters cPar,
unsigned long long srcSize,
size_t dictSize)
{
cPar = ZSTD_clampCParams(cPar); /* resulting cPar is necessarily valid (all parameters within range) */
if (srcSize == 0) srcSize = ZSTD_CONTENTSIZE_UNKNOWN;
return ZSTD_adjustCParams_internal(cPar, srcSize, dictSize, ZSTD_cpm_unknown);
}
static ZSTD_compressionParameters ZSTD_getCParams_internal(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode);
static ZSTD_parameters ZSTD_getParams_internal(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode);
static void ZSTD_overrideCParams(
ZSTD_compressionParameters* cParams,
const ZSTD_compressionParameters* overrides)
{
if (overrides->windowLog) cParams->windowLog = overrides->windowLog;
if (overrides->hashLog) cParams->hashLog = overrides->hashLog;
if (overrides->chainLog) cParams->chainLog = overrides->chainLog;
if (overrides->searchLog) cParams->searchLog = overrides->searchLog;
if (overrides->minMatch) cParams->minMatch = overrides->minMatch;
if (overrides->targetLength) cParams->targetLength = overrides->targetLength;
if (overrides->strategy) cParams->strategy = overrides->strategy;
}
ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams(
const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode)
{
ZSTD_compressionParameters cParams;
if (srcSizeHint == ZSTD_CONTENTSIZE_UNKNOWN && CCtxParams->srcSizeHint > 0) {
srcSizeHint = CCtxParams->srcSizeHint;
}
cParams = ZSTD_getCParams_internal(CCtxParams->compressionLevel, srcSizeHint, dictSize, mode);
- if (CCtxParams->ldmParams.enableLdm) cParams.windowLog = ZSTD_LDM_DEFAULT_WINDOW_LOG;
+ if (CCtxParams->ldmParams.enableLdm == ZSTD_ps_enable) cParams.windowLog = ZSTD_LDM_DEFAULT_WINDOW_LOG;
ZSTD_overrideCParams(&cParams, &CCtxParams->cParams);
assert(!ZSTD_checkCParams(cParams));
/* srcSizeHint == 0 means 0 */
return ZSTD_adjustCParams_internal(cParams, srcSizeHint, dictSize, mode);
}
static size_t
ZSTD_sizeof_matchState(const ZSTD_compressionParameters* const cParams,
+ const ZSTD_paramSwitch_e useRowMatchFinder,
+ const U32 enableDedicatedDictSearch,
const U32 forCCtx)
{
- size_t const chainSize = (cParams->strategy == ZSTD_fast) ? 0 : ((size_t)1 << cParams->chainLog);
+ /* chain table size should be 0 for fast or row-hash strategies */
+ size_t const chainSize = ZSTD_allocateChainTable(cParams->strategy, useRowMatchFinder, enableDedicatedDictSearch && !forCCtx)
+ ? ((size_t)1 << cParams->chainLog)
+ : 0;
size_t const hSize = ((size_t)1) << cParams->hashLog;
U32 const hashLog3 = (forCCtx && cParams->minMatch==3) ? MIN(ZSTD_HASHLOG3_MAX, cParams->windowLog) : 0;
size_t const h3Size = hashLog3 ? ((size_t)1) << hashLog3 : 0;
/* We don't use ZSTD_cwksp_alloc_size() here because the tables aren't
* surrounded by redzones in ASAN. */
size_t const tableSpace = chainSize * sizeof(U32)
+ hSize * sizeof(U32)
+ h3Size * sizeof(U32);
size_t const optPotentialSpace =
- ZSTD_cwksp_alloc_size((MaxML+1) * sizeof(U32))
- + ZSTD_cwksp_alloc_size((MaxLL+1) * sizeof(U32))
- + ZSTD_cwksp_alloc_size((MaxOff+1) * sizeof(U32))
- + ZSTD_cwksp_alloc_size((1<<Litbits) * sizeof(U32))
- + ZSTD_cwksp_alloc_size((ZSTD_OPT_NUM+1) * sizeof(ZSTD_match_t))
- + ZSTD_cwksp_alloc_size((ZSTD_OPT_NUM+1) * sizeof(ZSTD_optimal_t));
+ ZSTD_cwksp_aligned_alloc_size((MaxML+1) * sizeof(U32))
+ + ZSTD_cwksp_aligned_alloc_size((MaxLL+1) * sizeof(U32))
+ + ZSTD_cwksp_aligned_alloc_size((MaxOff+1) * sizeof(U32))
+ + ZSTD_cwksp_aligned_alloc_size((1<<Litbits) * sizeof(U32))
+ + ZSTD_cwksp_aligned_alloc_size((ZSTD_OPT_NUM+1) * sizeof(ZSTD_match_t))
+ + ZSTD_cwksp_aligned_alloc_size((ZSTD_OPT_NUM+1) * sizeof(ZSTD_optimal_t));
+ size_t const lazyAdditionalSpace = ZSTD_rowMatchFinderUsed(cParams->strategy, useRowMatchFinder)
+ ? ZSTD_cwksp_aligned_alloc_size(hSize*sizeof(U16))
+ : 0;
size_t const optSpace = (forCCtx && (cParams->strategy >= ZSTD_btopt))
? optPotentialSpace
: 0;
+ size_t const slackSpace = ZSTD_cwksp_slack_space_required();
+
+ /* tables are guaranteed to be sized in multiples of 64 bytes (or 16 uint32_t) */
+ ZSTD_STATIC_ASSERT(ZSTD_HASHLOG_MIN >= 4 && ZSTD_WINDOWLOG_MIN >= 4 && ZSTD_CHAINLOG_MIN >= 4);
+ assert(useRowMatchFinder != ZSTD_ps_auto);
+
DEBUGLOG(4, "chainSize: %u - hSize: %u - h3Size: %u",
(U32)chainSize, (U32)hSize, (U32)h3Size);
- return tableSpace + optSpace;
+ return tableSpace + optSpace + slackSpace + lazyAdditionalSpace;
}
static size_t ZSTD_estimateCCtxSize_usingCCtxParams_internal(
const ZSTD_compressionParameters* cParams,
const ldmParams_t* ldmParams,
const int isStatic,
+ const ZSTD_paramSwitch_e useRowMatchFinder,
const size_t buffInSize,
const size_t buffOutSize,
const U64 pledgedSrcSize)
{
- size_t const windowSize = MAX(1, (size_t)MIN(((U64)1 << cParams->windowLog), pledgedSrcSize));
+ size_t const windowSize = (size_t) BOUNDED(1ULL, 1ULL << cParams->windowLog, pledgedSrcSize);
size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, windowSize);
U32 const divider = (cParams->minMatch==3) ? 3 : 4;
size_t const maxNbSeq = blockSize / divider;
size_t const tokenSpace = ZSTD_cwksp_alloc_size(WILDCOPY_OVERLENGTH + blockSize)
- + ZSTD_cwksp_alloc_size(maxNbSeq * sizeof(seqDef))
+ + ZSTD_cwksp_aligned_alloc_size(maxNbSeq * sizeof(seqDef))
+ 3 * ZSTD_cwksp_alloc_size(maxNbSeq * sizeof(BYTE));
size_t const entropySpace = ZSTD_cwksp_alloc_size(ENTROPY_WORKSPACE_SIZE);
size_t const blockStateSpace = 2 * ZSTD_cwksp_alloc_size(sizeof(ZSTD_compressedBlockState_t));
- size_t const matchStateSize = ZSTD_sizeof_matchState(cParams, /* forCCtx */ 1);
+ size_t const matchStateSize = ZSTD_sizeof_matchState(cParams, useRowMatchFinder, /* enableDedicatedDictSearch */ 0, /* forCCtx */ 1);
size_t const ldmSpace = ZSTD_ldm_getTableSize(*ldmParams);
size_t const maxNbLdmSeq = ZSTD_ldm_getMaxNbSeq(*ldmParams, blockSize);
- size_t const ldmSeqSpace = ldmParams->enableLdm ?
- ZSTD_cwksp_alloc_size(maxNbLdmSeq * sizeof(rawSeq)) : 0;
+ size_t const ldmSeqSpace = ldmParams->enableLdm == ZSTD_ps_enable ?
+ ZSTD_cwksp_aligned_alloc_size(maxNbLdmSeq * sizeof(rawSeq)) : 0;
size_t const bufferSpace = ZSTD_cwksp_alloc_size(buffInSize)
+ ZSTD_cwksp_alloc_size(buffOutSize);
size_t const cctxSpace = isStatic ? ZSTD_cwksp_alloc_size(sizeof(ZSTD_CCtx)) : 0;
size_t const neededSpace =
cctxSpace +
entropySpace +
blockStateSpace +
ldmSpace +
ldmSeqSpace +
matchStateSize +
tokenSpace +
bufferSpace;
DEBUGLOG(5, "estimate workspace : %u", (U32)neededSpace);
return neededSpace;
}
size_t ZSTD_estimateCCtxSize_usingCCtxParams(const ZSTD_CCtx_params* params)
{
ZSTD_compressionParameters const cParams =
ZSTD_getCParamsFromCCtxParams(params, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict);
+ ZSTD_paramSwitch_e const useRowMatchFinder = ZSTD_resolveRowMatchFinderMode(params->useRowMatchFinder,
+ &cParams);
RETURN_ERROR_IF(params->nbWorkers > 0, GENERIC, "Estimate CCtx size is supported for single-threaded compression only.");
/* estimateCCtxSize is for one-shot compression. So no buffers should
* be needed. However, we still allocate two 0-sized buffers, which can
* take space under ASAN. */
return ZSTD_estimateCCtxSize_usingCCtxParams_internal(
- &cParams, &params->ldmParams, 1, 0, 0, ZSTD_CONTENTSIZE_UNKNOWN);
+ &cParams, &params->ldmParams, 1, useRowMatchFinder, 0, 0, ZSTD_CONTENTSIZE_UNKNOWN);
}
size_t ZSTD_estimateCCtxSize_usingCParams(ZSTD_compressionParameters cParams)
{
- ZSTD_CCtx_params const params = ZSTD_makeCCtxParamsFromCParams(cParams);
- return ZSTD_estimateCCtxSize_usingCCtxParams(&params);
+ ZSTD_CCtx_params initialParams = ZSTD_makeCCtxParamsFromCParams(cParams);
+ if (ZSTD_rowMatchFinderSupported(cParams.strategy)) {
+ /* Pick bigger of not using and using row-based matchfinder for greedy and lazy strategies */
+ size_t noRowCCtxSize;
+ size_t rowCCtxSize;
+ initialParams.useRowMatchFinder = ZSTD_ps_disable;
+ noRowCCtxSize = ZSTD_estimateCCtxSize_usingCCtxParams(&initialParams);
+ initialParams.useRowMatchFinder = ZSTD_ps_enable;
+ rowCCtxSize = ZSTD_estimateCCtxSize_usingCCtxParams(&initialParams);
+ return MAX(noRowCCtxSize, rowCCtxSize);
+ } else {
+ return ZSTD_estimateCCtxSize_usingCCtxParams(&initialParams);
+ }
}
static size_t ZSTD_estimateCCtxSize_internal(int compressionLevel)
{
- ZSTD_compressionParameters const cParams = ZSTD_getCParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict);
- return ZSTD_estimateCCtxSize_usingCParams(cParams);
+ int tier = 0;
+ size_t largestSize = 0;
+ static const unsigned long long srcSizeTiers[4] = {16 KB, 128 KB, 256 KB, ZSTD_CONTENTSIZE_UNKNOWN};
+ for (; tier < 4; ++tier) {
+ /* Choose the set of cParams for a given level across all srcSizes that give the largest cctxSize */
+ ZSTD_compressionParameters const cParams = ZSTD_getCParams_internal(compressionLevel, srcSizeTiers[tier], 0, ZSTD_cpm_noAttachDict);
+ largestSize = MAX(ZSTD_estimateCCtxSize_usingCParams(cParams), largestSize);
+ }
+ return largestSize;
}
size_t ZSTD_estimateCCtxSize(int compressionLevel)
{
int level;
size_t memBudget = 0;
for (level=MIN(compressionLevel, 1); level<=compressionLevel; level++) {
+ /* Ensure monotonically increasing memory usage as compression level increases */
size_t const newMB = ZSTD_estimateCCtxSize_internal(level);
if (newMB > memBudget) memBudget = newMB;
}
return memBudget;
}
size_t ZSTD_estimateCStreamSize_usingCCtxParams(const ZSTD_CCtx_params* params)
{
RETURN_ERROR_IF(params->nbWorkers > 0, GENERIC, "Estimate CCtx size is supported for single-threaded compression only.");
{ ZSTD_compressionParameters const cParams =
ZSTD_getCParamsFromCCtxParams(params, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict);
size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, (size_t)1 << cParams.windowLog);
size_t const inBuffSize = (params->inBufferMode == ZSTD_bm_buffered)
? ((size_t)1 << cParams.windowLog) + blockSize
: 0;
size_t const outBuffSize = (params->outBufferMode == ZSTD_bm_buffered)
? ZSTD_compressBound(blockSize) + 1
: 0;
+ ZSTD_paramSwitch_e const useRowMatchFinder = ZSTD_resolveRowMatchFinderMode(params->useRowMatchFinder, &params->cParams);
return ZSTD_estimateCCtxSize_usingCCtxParams_internal(
- &cParams, &params->ldmParams, 1, inBuffSize, outBuffSize,
+ &cParams, &params->ldmParams, 1, useRowMatchFinder, inBuffSize, outBuffSize,
ZSTD_CONTENTSIZE_UNKNOWN);
}
}
size_t ZSTD_estimateCStreamSize_usingCParams(ZSTD_compressionParameters cParams)
{
- ZSTD_CCtx_params const params = ZSTD_makeCCtxParamsFromCParams(cParams);
- return ZSTD_estimateCStreamSize_usingCCtxParams(&params);
+ ZSTD_CCtx_params initialParams = ZSTD_makeCCtxParamsFromCParams(cParams);
+ if (ZSTD_rowMatchFinderSupported(cParams.strategy)) {
+ /* Pick bigger of not using and using row-based matchfinder for greedy and lazy strategies */
+ size_t noRowCCtxSize;
+ size_t rowCCtxSize;
+ initialParams.useRowMatchFinder = ZSTD_ps_disable;
+ noRowCCtxSize = ZSTD_estimateCStreamSize_usingCCtxParams(&initialParams);
+ initialParams.useRowMatchFinder = ZSTD_ps_enable;
+ rowCCtxSize = ZSTD_estimateCStreamSize_usingCCtxParams(&initialParams);
+ return MAX(noRowCCtxSize, rowCCtxSize);
+ } else {
+ return ZSTD_estimateCStreamSize_usingCCtxParams(&initialParams);
+ }
}
static size_t ZSTD_estimateCStreamSize_internal(int compressionLevel)
{
ZSTD_compressionParameters const cParams = ZSTD_getCParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict);
return ZSTD_estimateCStreamSize_usingCParams(cParams);
}
size_t ZSTD_estimateCStreamSize(int compressionLevel)
{
int level;
size_t memBudget = 0;
for (level=MIN(compressionLevel, 1); level<=compressionLevel; level++) {
size_t const newMB = ZSTD_estimateCStreamSize_internal(level);
if (newMB > memBudget) memBudget = newMB;
}
return memBudget;
}
/* ZSTD_getFrameProgression():
* tells how much data has been consumed (input) and produced (output) for current frame.
* able to count progression inside worker threads (non-blocking mode).
*/
ZSTD_frameProgression ZSTD_getFrameProgression(const ZSTD_CCtx* cctx)
{
#ifdef ZSTD_MULTITHREAD
if (cctx->appliedParams.nbWorkers > 0) {
return ZSTDMT_getFrameProgression(cctx->mtctx);
}
#endif
{ ZSTD_frameProgression fp;
size_t const buffered = (cctx->inBuff == NULL) ? 0 :
cctx->inBuffPos - cctx->inToCompress;
if (buffered) assert(cctx->inBuffPos >= cctx->inToCompress);
assert(buffered <= ZSTD_BLOCKSIZE_MAX);
fp.ingested = cctx->consumedSrcSize + buffered;
fp.consumed = cctx->consumedSrcSize;
fp.produced = cctx->producedCSize;
fp.flushed = cctx->producedCSize; /* simplified; some data might still be left within streaming output buffer */
fp.currentJobID = 0;
fp.nbActiveWorkers = 0;
return fp;
} }
/*! ZSTD_toFlushNow()
* Only useful for multithreading scenarios currently (nbWorkers >= 1).
*/
size_t ZSTD_toFlushNow(ZSTD_CCtx* cctx)
{
#ifdef ZSTD_MULTITHREAD
if (cctx->appliedParams.nbWorkers > 0) {
return ZSTDMT_toFlushNow(cctx->mtctx);
}
#endif
(void)cctx;
return 0; /* over-simplification; could also check if context is currently running in streaming mode, and in which case, report how many bytes are left to be flushed within output buffer */
}
static void ZSTD_assertEqualCParams(ZSTD_compressionParameters cParams1,
ZSTD_compressionParameters cParams2)
{
(void)cParams1;
(void)cParams2;
assert(cParams1.windowLog == cParams2.windowLog);
assert(cParams1.chainLog == cParams2.chainLog);
assert(cParams1.hashLog == cParams2.hashLog);
assert(cParams1.searchLog == cParams2.searchLog);
assert(cParams1.minMatch == cParams2.minMatch);
assert(cParams1.targetLength == cParams2.targetLength);
assert(cParams1.strategy == cParams2.strategy);
}
void ZSTD_reset_compressedBlockState(ZSTD_compressedBlockState_t* bs)
{
int i;
for (i = 0; i < ZSTD_REP_NUM; ++i)
bs->rep[i] = repStartValue[i];
bs->entropy.huf.repeatMode = HUF_repeat_none;
bs->entropy.fse.offcode_repeatMode = FSE_repeat_none;
bs->entropy.fse.matchlength_repeatMode = FSE_repeat_none;
bs->entropy.fse.litlength_repeatMode = FSE_repeat_none;
}
/*! ZSTD_invalidateMatchState()
* Invalidate all the matches in the match finder tables.
* Requires nextSrc and base to be set (can be NULL).
*/
static void ZSTD_invalidateMatchState(ZSTD_matchState_t* ms)
{
ZSTD_window_clear(&ms->window);
ms->nextToUpdate = ms->window.dictLimit;
ms->loadedDictEnd = 0;
ms->opt.litLengthSum = 0; /* force reset of btopt stats */
ms->dictMatchState = NULL;
}
/**
* Controls, for this matchState reset, whether the tables need to be cleared /
* prepared for the coming compression (ZSTDcrp_makeClean), or whether the
* tables can be left unclean (ZSTDcrp_leaveDirty), because we know that a
* subsequent operation will overwrite the table space anyways (e.g., copying
* the matchState contents in from a CDict).
*/
typedef enum {
ZSTDcrp_makeClean,
ZSTDcrp_leaveDirty
} ZSTD_compResetPolicy_e;
/**
* Controls, for this matchState reset, whether indexing can continue where it
* left off (ZSTDirp_continue), or whether it needs to be restarted from zero
* (ZSTDirp_reset).
*/
typedef enum {
ZSTDirp_continue,
ZSTDirp_reset
} ZSTD_indexResetPolicy_e;
typedef enum {
ZSTD_resetTarget_CDict,
ZSTD_resetTarget_CCtx
} ZSTD_resetTarget_e;
+
static size_t
ZSTD_reset_matchState(ZSTD_matchState_t* ms,
ZSTD_cwksp* ws,
const ZSTD_compressionParameters* cParams,
+ const ZSTD_paramSwitch_e useRowMatchFinder,
const ZSTD_compResetPolicy_e crp,
const ZSTD_indexResetPolicy_e forceResetIndex,
const ZSTD_resetTarget_e forWho)
{
- size_t const chainSize = (cParams->strategy == ZSTD_fast) ? 0 : ((size_t)1 << cParams->chainLog);
+ /* disable chain table allocation for fast or row-based strategies */
+ size_t const chainSize = ZSTD_allocateChainTable(cParams->strategy, useRowMatchFinder,
+ ms->dedicatedDictSearch && (forWho == ZSTD_resetTarget_CDict))
+ ? ((size_t)1 << cParams->chainLog)
+ : 0;
size_t const hSize = ((size_t)1) << cParams->hashLog;
U32 const hashLog3 = ((forWho == ZSTD_resetTarget_CCtx) && cParams->minMatch==3) ? MIN(ZSTD_HASHLOG3_MAX, cParams->windowLog) : 0;
size_t const h3Size = hashLog3 ? ((size_t)1) << hashLog3 : 0;
DEBUGLOG(4, "reset indices : %u", forceResetIndex == ZSTDirp_reset);
+ assert(useRowMatchFinder != ZSTD_ps_auto);
if (forceResetIndex == ZSTDirp_reset) {
ZSTD_window_init(&ms->window);
ZSTD_cwksp_mark_tables_dirty(ws);
}
ms->hashLog3 = hashLog3;
ZSTD_invalidateMatchState(ms);
assert(!ZSTD_cwksp_reserve_failed(ws)); /* check that allocation hasn't already failed */
ZSTD_cwksp_clear_tables(ws);
DEBUGLOG(5, "reserving table space");
/* table Space */
ms->hashTable = (U32*)ZSTD_cwksp_reserve_table(ws, hSize * sizeof(U32));
ms->chainTable = (U32*)ZSTD_cwksp_reserve_table(ws, chainSize * sizeof(U32));
ms->hashTable3 = (U32*)ZSTD_cwksp_reserve_table(ws, h3Size * sizeof(U32));
RETURN_ERROR_IF(ZSTD_cwksp_reserve_failed(ws), memory_allocation,
"failed a workspace allocation in ZSTD_reset_matchState");
DEBUGLOG(4, "reset table : %u", crp!=ZSTDcrp_leaveDirty);
if (crp!=ZSTDcrp_leaveDirty) {
/* reset tables only */
ZSTD_cwksp_clean_tables(ws);
}
/* opt parser space */
if ((forWho == ZSTD_resetTarget_CCtx) && (cParams->strategy >= ZSTD_btopt)) {
DEBUGLOG(4, "reserving optimal parser space");
ms->opt.litFreq = (unsigned*)ZSTD_cwksp_reserve_aligned(ws, (1<<Litbits) * sizeof(unsigned));
ms->opt.litLengthFreq = (unsigned*)ZSTD_cwksp_reserve_aligned(ws, (MaxLL+1) * sizeof(unsigned));
ms->opt.matchLengthFreq = (unsigned*)ZSTD_cwksp_reserve_aligned(ws, (MaxML+1) * sizeof(unsigned));
ms->opt.offCodeFreq = (unsigned*)ZSTD_cwksp_reserve_aligned(ws, (MaxOff+1) * sizeof(unsigned));
ms->opt.matchTable = (ZSTD_match_t*)ZSTD_cwksp_reserve_aligned(ws, (ZSTD_OPT_NUM+1) * sizeof(ZSTD_match_t));
ms->opt.priceTable = (ZSTD_optimal_t*)ZSTD_cwksp_reserve_aligned(ws, (ZSTD_OPT_NUM+1) * sizeof(ZSTD_optimal_t));
}
+ if (ZSTD_rowMatchFinderUsed(cParams->strategy, useRowMatchFinder)) {
+ { /* Row match finder needs an additional table of hashes ("tags") */
+ size_t const tagTableSize = hSize*sizeof(U16);
+ ms->tagTable = (U16*)ZSTD_cwksp_reserve_aligned(ws, tagTableSize);
+ if (ms->tagTable) ZSTD_memset(ms->tagTable, 0, tagTableSize);
+ }
+ { /* Switch to 32-entry rows if searchLog is 5 (or more) */
+ U32 const rowLog = BOUNDED(4, cParams->searchLog, 6);
+ assert(cParams->hashLog >= rowLog);
+ ms->rowHashLog = cParams->hashLog - rowLog;
+ }
+ }
+
ms->cParams = *cParams;
RETURN_ERROR_IF(ZSTD_cwksp_reserve_failed(ws), memory_allocation,
"failed a workspace allocation in ZSTD_reset_matchState");
-
return 0;
}
/* ZSTD_indexTooCloseToMax() :
* minor optimization : prefer memset() rather than reduceIndex()
* which is measurably slow in some circumstances (reported for Visual Studio).
* Works when re-using a context for a lot of smallish inputs :
* if all inputs are smaller than ZSTD_INDEXOVERFLOW_MARGIN,
* memset() will be triggered before reduceIndex().
*/
#define ZSTD_INDEXOVERFLOW_MARGIN (16 MB)
static int ZSTD_indexTooCloseToMax(ZSTD_window_t w)
{
return (size_t)(w.nextSrc - w.base) > (ZSTD_CURRENT_MAX - ZSTD_INDEXOVERFLOW_MARGIN);
}
+/** ZSTD_dictTooBig():
+ * When dictionaries are larger than ZSTD_CHUNKSIZE_MAX they can't be loaded in
+ * one go generically. So we ensure that in that case we reset the tables to zero,
+ * so that we can load as much of the dictionary as possible.
+ */
+static int ZSTD_dictTooBig(size_t const loadedDictSize)
+{
+ return loadedDictSize > ZSTD_CHUNKSIZE_MAX;
+}
+
/*! ZSTD_resetCCtx_internal() :
- note : `params` are assumed fully validated at this stage */
+ * @param loadedDictSize The size of the dictionary to be loaded
+ * into the context, if any. If no dictionary is used, or the
+ * dictionary is being attached / copied, then pass 0.
+ * note : `params` are assumed fully validated at this stage.
+ */
static size_t ZSTD_resetCCtx_internal(ZSTD_CCtx* zc,
- ZSTD_CCtx_params params,
+ ZSTD_CCtx_params const* params,
U64 const pledgedSrcSize,
+ size_t const loadedDictSize,
ZSTD_compResetPolicy_e const crp,
ZSTD_buffered_policy_e const zbuff)
{
ZSTD_cwksp* const ws = &zc->workspace;
- DEBUGLOG(4, "ZSTD_resetCCtx_internal: pledgedSrcSize=%u, wlog=%u",
- (U32)pledgedSrcSize, params.cParams.windowLog);
- assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
+ DEBUGLOG(4, "ZSTD_resetCCtx_internal: pledgedSrcSize=%u, wlog=%u, useRowMatchFinder=%d useBlockSplitter=%d",
+ (U32)pledgedSrcSize, params->cParams.windowLog, (int)params->useRowMatchFinder, (int)params->useBlockSplitter);
+ assert(!ZSTD_isError(ZSTD_checkCParams(params->cParams)));
zc->isFirstBlock = 1;
- if (params.ldmParams.enableLdm) {
+ /* Set applied params early so we can modify them for LDM,
+ * and point params at the applied params.
+ */
+ zc->appliedParams = *params;
+ params = &zc->appliedParams;
+
+ assert(params->useRowMatchFinder != ZSTD_ps_auto);
+ assert(params->useBlockSplitter != ZSTD_ps_auto);
+ assert(params->ldmParams.enableLdm != ZSTD_ps_auto);
+ if (params->ldmParams.enableLdm == ZSTD_ps_enable) {
/* Adjust long distance matching parameters */
- ZSTD_ldm_adjustParameters(&params.ldmParams, &params.cParams);
- assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog);
- assert(params.ldmParams.hashRateLog < 32);
- zc->ldmState.hashPower = ZSTD_rollingHash_primePower(params.ldmParams.minMatchLength);
+ ZSTD_ldm_adjustParameters(&zc->appliedParams.ldmParams, &params->cParams);
+ assert(params->ldmParams.hashLog >= params->ldmParams.bucketSizeLog);
+ assert(params->ldmParams.hashRateLog < 32);
}
- { size_t const windowSize = MAX(1, (size_t)MIN(((U64)1 << params.cParams.windowLog), pledgedSrcSize));
+ { size_t const windowSize = MAX(1, (size_t)MIN(((U64)1 << params->cParams.windowLog), pledgedSrcSize));
size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, windowSize);
- U32 const divider = (params.cParams.minMatch==3) ? 3 : 4;
+ U32 const divider = (params->cParams.minMatch==3) ? 3 : 4;
size_t const maxNbSeq = blockSize / divider;
- size_t const buffOutSize = (zbuff == ZSTDb_buffered && params.outBufferMode == ZSTD_bm_buffered)
+ size_t const buffOutSize = (zbuff == ZSTDb_buffered && params->outBufferMode == ZSTD_bm_buffered)
? ZSTD_compressBound(blockSize) + 1
: 0;
- size_t const buffInSize = (zbuff == ZSTDb_buffered && params.inBufferMode == ZSTD_bm_buffered)
+ size_t const buffInSize = (zbuff == ZSTDb_buffered && params->inBufferMode == ZSTD_bm_buffered)
? windowSize + blockSize
: 0;
- size_t const maxNbLdmSeq = ZSTD_ldm_getMaxNbSeq(params.ldmParams, blockSize);
+ size_t const maxNbLdmSeq = ZSTD_ldm_getMaxNbSeq(params->ldmParams, blockSize);
int const indexTooClose = ZSTD_indexTooCloseToMax(zc->blockState.matchState.window);
+ int const dictTooBig = ZSTD_dictTooBig(loadedDictSize);
ZSTD_indexResetPolicy_e needsIndexReset =
- (!indexTooClose && zc->initialized) ? ZSTDirp_continue : ZSTDirp_reset;
+ (indexTooClose || dictTooBig || !zc->initialized) ? ZSTDirp_reset : ZSTDirp_continue;
size_t const neededSpace =
ZSTD_estimateCCtxSize_usingCCtxParams_internal(
- &params.cParams, &params.ldmParams, zc->staticSize != 0,
+ &params->cParams, &params->ldmParams, zc->staticSize != 0, params->useRowMatchFinder,
buffInSize, buffOutSize, pledgedSrcSize);
+ int resizeWorkspace;
+
FORWARD_IF_ERROR(neededSpace, "cctx size estimate failed!");
if (!zc->staticSize) ZSTD_cwksp_bump_oversized_duration(ws, 0);
- /* Check if workspace is large enough, alloc a new one if needed */
- {
+ { /* Check if workspace is large enough, alloc a new one if needed */
int const workspaceTooSmall = ZSTD_cwksp_sizeof(ws) < neededSpace;
int const workspaceWasteful = ZSTD_cwksp_check_wasteful(ws, neededSpace);
-
+ resizeWorkspace = workspaceTooSmall || workspaceWasteful;
DEBUGLOG(4, "Need %zu B workspace", neededSpace);
DEBUGLOG(4, "windowSize: %zu - blockSize: %zu", windowSize, blockSize);
- if (workspaceTooSmall || workspaceWasteful) {
+ if (resizeWorkspace) {
DEBUGLOG(4, "Resize workspaceSize from %zuKB to %zuKB",
ZSTD_cwksp_sizeof(ws) >> 10,
neededSpace >> 10);
RETURN_ERROR_IF(zc->staticSize, memory_allocation, "static cctx : no resize");
needsIndexReset = ZSTDirp_reset;
ZSTD_cwksp_free(ws, zc->customMem);
FORWARD_IF_ERROR(ZSTD_cwksp_create(ws, neededSpace, zc->customMem), "");
DEBUGLOG(5, "reserving object space");
/* Statically sized space.
* entropyWorkspace never moves,
* though prev/next block swap places */
assert(ZSTD_cwksp_check_available(ws, 2 * sizeof(ZSTD_compressedBlockState_t)));
zc->blockState.prevCBlock = (ZSTD_compressedBlockState_t*) ZSTD_cwksp_reserve_object(ws, sizeof(ZSTD_compressedBlockState_t));
RETURN_ERROR_IF(zc->blockState.prevCBlock == NULL, memory_allocation, "couldn't allocate prevCBlock");
zc->blockState.nextCBlock = (ZSTD_compressedBlockState_t*) ZSTD_cwksp_reserve_object(ws, sizeof(ZSTD_compressedBlockState_t));
RETURN_ERROR_IF(zc->blockState.nextCBlock == NULL, memory_allocation, "couldn't allocate nextCBlock");
zc->entropyWorkspace = (U32*) ZSTD_cwksp_reserve_object(ws, ENTROPY_WORKSPACE_SIZE);
- RETURN_ERROR_IF(zc->blockState.nextCBlock == NULL, memory_allocation, "couldn't allocate entropyWorkspace");
+ RETURN_ERROR_IF(zc->entropyWorkspace == NULL, memory_allocation, "couldn't allocate entropyWorkspace");
} }
ZSTD_cwksp_clear(ws);
/* init params */
- zc->appliedParams = params;
- zc->blockState.matchState.cParams = params.cParams;
+ zc->blockState.matchState.cParams = params->cParams;
zc->pledgedSrcSizePlusOne = pledgedSrcSize+1;
zc->consumedSrcSize = 0;
zc->producedCSize = 0;
if (pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN)
zc->appliedParams.fParams.contentSizeFlag = 0;
DEBUGLOG(4, "pledged content size : %u ; flag : %u",
(unsigned)pledgedSrcSize, zc->appliedParams.fParams.contentSizeFlag);
zc->blockSize = blockSize;
XXH64_reset(&zc->xxhState, 0);
zc->stage = ZSTDcs_init;
zc->dictID = 0;
+ zc->dictContentSize = 0;
ZSTD_reset_compressedBlockState(zc->blockState.prevCBlock);
/* ZSTD_wildcopy() is used to copy into the literals buffer,
* so we have to oversize the buffer by WILDCOPY_OVERLENGTH bytes.
*/
zc->seqStore.litStart = ZSTD_cwksp_reserve_buffer(ws, blockSize + WILDCOPY_OVERLENGTH);
zc->seqStore.maxNbLit = blockSize;
/* buffers */
zc->bufferedPolicy = zbuff;
zc->inBuffSize = buffInSize;
zc->inBuff = (char*)ZSTD_cwksp_reserve_buffer(ws, buffInSize);
zc->outBuffSize = buffOutSize;
zc->outBuff = (char*)ZSTD_cwksp_reserve_buffer(ws, buffOutSize);
/* ldm bucketOffsets table */
- if (params.ldmParams.enableLdm) {
+ if (params->ldmParams.enableLdm == ZSTD_ps_enable) {
/* TODO: avoid memset? */
- size_t const ldmBucketSize =
- ((size_t)1) << (params.ldmParams.hashLog -
- params.ldmParams.bucketSizeLog);
- zc->ldmState.bucketOffsets = ZSTD_cwksp_reserve_buffer(ws, ldmBucketSize);
- ZSTD_memset(zc->ldmState.bucketOffsets, 0, ldmBucketSize);
+ size_t const numBuckets =
+ ((size_t)1) << (params->ldmParams.hashLog -
+ params->ldmParams.bucketSizeLog);
+ zc->ldmState.bucketOffsets = ZSTD_cwksp_reserve_buffer(ws, numBuckets);
+ ZSTD_memset(zc->ldmState.bucketOffsets, 0, numBuckets);
}
/* sequences storage */
ZSTD_referenceExternalSequences(zc, NULL, 0);
zc->seqStore.maxNbSeq = maxNbSeq;
zc->seqStore.llCode = ZSTD_cwksp_reserve_buffer(ws, maxNbSeq * sizeof(BYTE));
zc->seqStore.mlCode = ZSTD_cwksp_reserve_buffer(ws, maxNbSeq * sizeof(BYTE));
zc->seqStore.ofCode = ZSTD_cwksp_reserve_buffer(ws, maxNbSeq * sizeof(BYTE));
zc->seqStore.sequencesStart = (seqDef*)ZSTD_cwksp_reserve_aligned(ws, maxNbSeq * sizeof(seqDef));
FORWARD_IF_ERROR(ZSTD_reset_matchState(
&zc->blockState.matchState,
ws,
- &params.cParams,
+ &params->cParams,
+ params->useRowMatchFinder,
crp,
needsIndexReset,
ZSTD_resetTarget_CCtx), "");
/* ldm hash table */
- if (params.ldmParams.enableLdm) {
+ if (params->ldmParams.enableLdm == ZSTD_ps_enable) {
/* TODO: avoid memset? */
- size_t const ldmHSize = ((size_t)1) << params.ldmParams.hashLog;
+ size_t const ldmHSize = ((size_t)1) << params->ldmParams.hashLog;
zc->ldmState.hashTable = (ldmEntry_t*)ZSTD_cwksp_reserve_aligned(ws, ldmHSize * sizeof(ldmEntry_t));
ZSTD_memset(zc->ldmState.hashTable, 0, ldmHSize * sizeof(ldmEntry_t));
zc->ldmSequences = (rawSeq*)ZSTD_cwksp_reserve_aligned(ws, maxNbLdmSeq * sizeof(rawSeq));
zc->maxNbLdmSequences = maxNbLdmSeq;
ZSTD_window_init(&zc->ldmState.window);
- ZSTD_window_clear(&zc->ldmState.window);
zc->ldmState.loadedDictEnd = 0;
}
- /* Due to alignment, when reusing a workspace, we can actually consume
- * up to 3 extra bytes for alignment. See the comments in zstd_cwksp.h
- */
- assert(ZSTD_cwksp_used(ws) >= neededSpace &&
- ZSTD_cwksp_used(ws) <= neededSpace + 3);
-
DEBUGLOG(3, "wksp: finished allocating, %zd bytes remain available", ZSTD_cwksp_available_space(ws));
+ assert(ZSTD_cwksp_estimated_space_within_bounds(ws, neededSpace, resizeWorkspace));
+
zc->initialized = 1;
return 0;
}
}
/* ZSTD_invalidateRepCodes() :
* ensures next compression will not use repcodes from previous block.
* Note : only works with regular variant;
* do not use with extDict variant ! */
void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx) {
int i;
for (i=0; i<ZSTD_REP_NUM; i++) cctx->blockState.prevCBlock->rep[i] = 0;
assert(!ZSTD_window_hasExtDict(cctx->blockState.matchState.window));
}
/* These are the approximate sizes for each strategy past which copying the
* dictionary tables into the working context is faster than using them
* in-place.
*/
static const size_t attachDictSizeCutoffs[ZSTD_STRATEGY_MAX+1] = {
8 KB, /* unused */
8 KB, /* ZSTD_fast */
16 KB, /* ZSTD_dfast */
32 KB, /* ZSTD_greedy */
32 KB, /* ZSTD_lazy */
32 KB, /* ZSTD_lazy2 */
32 KB, /* ZSTD_btlazy2 */
32 KB, /* ZSTD_btopt */
8 KB, /* ZSTD_btultra */
8 KB /* ZSTD_btultra2 */
};
static int ZSTD_shouldAttachDict(const ZSTD_CDict* cdict,
const ZSTD_CCtx_params* params,
U64 pledgedSrcSize)
{
size_t cutoff = attachDictSizeCutoffs[cdict->matchState.cParams.strategy];
int const dedicatedDictSearch = cdict->matchState.dedicatedDictSearch;
return dedicatedDictSearch
|| ( ( pledgedSrcSize <= cutoff
|| pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN
|| params->attachDictPref == ZSTD_dictForceAttach )
&& params->attachDictPref != ZSTD_dictForceCopy
&& !params->forceWindow ); /* dictMatchState isn't correctly
* handled in _enforceMaxDist */
}
static size_t
ZSTD_resetCCtx_byAttachingCDict(ZSTD_CCtx* cctx,
const ZSTD_CDict* cdict,
ZSTD_CCtx_params params,
U64 pledgedSrcSize,
ZSTD_buffered_policy_e zbuff)
{
+ DEBUGLOG(4, "ZSTD_resetCCtx_byAttachingCDict() pledgedSrcSize=%llu",
+ (unsigned long long)pledgedSrcSize);
{
ZSTD_compressionParameters adjusted_cdict_cParams = cdict->matchState.cParams;
unsigned const windowLog = params.cParams.windowLog;
assert(windowLog != 0);
/* Resize working context table params for input only, since the dict
* has its own tables. */
/* pledgedSrcSize == 0 means 0! */
if (cdict->matchState.dedicatedDictSearch) {
ZSTD_dedicatedDictSearch_revertCParams(&adjusted_cdict_cParams);
}
params.cParams = ZSTD_adjustCParams_internal(adjusted_cdict_cParams, pledgedSrcSize,
cdict->dictContentSize, ZSTD_cpm_attachDict);
params.cParams.windowLog = windowLog;
- FORWARD_IF_ERROR(ZSTD_resetCCtx_internal(cctx, params, pledgedSrcSize,
+ params.useRowMatchFinder = cdict->useRowMatchFinder; /* cdict overrides */
+ FORWARD_IF_ERROR(ZSTD_resetCCtx_internal(cctx, &params, pledgedSrcSize,
+ /* loadedDictSize */ 0,
ZSTDcrp_makeClean, zbuff), "");
assert(cctx->appliedParams.cParams.strategy == adjusted_cdict_cParams.strategy);
}
{ const U32 cdictEnd = (U32)( cdict->matchState.window.nextSrc
- cdict->matchState.window.base);
const U32 cdictLen = cdictEnd - cdict->matchState.window.dictLimit;
if (cdictLen == 0) {
/* don't even attach dictionaries with no contents */
DEBUGLOG(4, "skipping attaching empty dictionary");
} else {
DEBUGLOG(4, "attaching dictionary into context");
cctx->blockState.matchState.dictMatchState = &cdict->matchState;
/* prep working match state so dict matches never have negative indices
* when they are translated to the working context's index space. */
if (cctx->blockState.matchState.window.dictLimit < cdictEnd) {
cctx->blockState.matchState.window.nextSrc =
cctx->blockState.matchState.window.base + cdictEnd;
ZSTD_window_clear(&cctx->blockState.matchState.window);
}
/* loadedDictEnd is expressed within the referential of the active context */
cctx->blockState.matchState.loadedDictEnd = cctx->blockState.matchState.window.dictLimit;
} }
cctx->dictID = cdict->dictID;
+ cctx->dictContentSize = cdict->dictContentSize;
/* copy block state */
ZSTD_memcpy(cctx->blockState.prevCBlock, &cdict->cBlockState, sizeof(cdict->cBlockState));
return 0;
}
static size_t ZSTD_resetCCtx_byCopyingCDict(ZSTD_CCtx* cctx,
const ZSTD_CDict* cdict,
ZSTD_CCtx_params params,
U64 pledgedSrcSize,
ZSTD_buffered_policy_e zbuff)
{
const ZSTD_compressionParameters *cdict_cParams = &cdict->matchState.cParams;
assert(!cdict->matchState.dedicatedDictSearch);
-
- DEBUGLOG(4, "copying dictionary into context");
+ DEBUGLOG(4, "ZSTD_resetCCtx_byCopyingCDict() pledgedSrcSize=%llu",
+ (unsigned long long)pledgedSrcSize);
{ unsigned const windowLog = params.cParams.windowLog;
assert(windowLog != 0);
/* Copy only compression parameters related to tables. */
params.cParams = *cdict_cParams;
params.cParams.windowLog = windowLog;
- FORWARD_IF_ERROR(ZSTD_resetCCtx_internal(cctx, params, pledgedSrcSize,
+ params.useRowMatchFinder = cdict->useRowMatchFinder;
+ FORWARD_IF_ERROR(ZSTD_resetCCtx_internal(cctx, &params, pledgedSrcSize,
+ /* loadedDictSize */ 0,
ZSTDcrp_leaveDirty, zbuff), "");
assert(cctx->appliedParams.cParams.strategy == cdict_cParams->strategy);
assert(cctx->appliedParams.cParams.hashLog == cdict_cParams->hashLog);
assert(cctx->appliedParams.cParams.chainLog == cdict_cParams->chainLog);
}
ZSTD_cwksp_mark_tables_dirty(&cctx->workspace);
+ assert(params.useRowMatchFinder != ZSTD_ps_auto);
/* copy tables */
- { size_t const chainSize = (cdict_cParams->strategy == ZSTD_fast) ? 0 : ((size_t)1 << cdict_cParams->chainLog);
+ { size_t const chainSize = ZSTD_allocateChainTable(cdict_cParams->strategy, cdict->useRowMatchFinder, 0 /* DDS guaranteed disabled */)
+ ? ((size_t)1 << cdict_cParams->chainLog)
+ : 0;
size_t const hSize = (size_t)1 << cdict_cParams->hashLog;
ZSTD_memcpy(cctx->blockState.matchState.hashTable,
cdict->matchState.hashTable,
hSize * sizeof(U32));
- ZSTD_memcpy(cctx->blockState.matchState.chainTable,
+ /* Do not copy cdict's chainTable if cctx has parameters such that it would not use chainTable */
+ if (ZSTD_allocateChainTable(cctx->appliedParams.cParams.strategy, cctx->appliedParams.useRowMatchFinder, 0 /* forDDSDict */)) {
+ ZSTD_memcpy(cctx->blockState.matchState.chainTable,
cdict->matchState.chainTable,
chainSize * sizeof(U32));
+ }
+ /* copy tag table */
+ if (ZSTD_rowMatchFinderUsed(cdict_cParams->strategy, cdict->useRowMatchFinder)) {
+ size_t const tagTableSize = hSize*sizeof(U16);
+ ZSTD_memcpy(cctx->blockState.matchState.tagTable,
+ cdict->matchState.tagTable,
+ tagTableSize);
+ }
}
/* Zero the hashTable3, since the cdict never fills it */
{ int const h3log = cctx->blockState.matchState.hashLog3;
size_t const h3Size = h3log ? ((size_t)1 << h3log) : 0;
assert(cdict->matchState.hashLog3 == 0);
ZSTD_memset(cctx->blockState.matchState.hashTable3, 0, h3Size * sizeof(U32));
}
ZSTD_cwksp_mark_tables_clean(&cctx->workspace);
/* copy dictionary offsets */
{ ZSTD_matchState_t const* srcMatchState = &cdict->matchState;
ZSTD_matchState_t* dstMatchState = &cctx->blockState.matchState;
dstMatchState->window = srcMatchState->window;
dstMatchState->nextToUpdate = srcMatchState->nextToUpdate;
dstMatchState->loadedDictEnd= srcMatchState->loadedDictEnd;
}
cctx->dictID = cdict->dictID;
+ cctx->dictContentSize = cdict->dictContentSize;
/* copy block state */
ZSTD_memcpy(cctx->blockState.prevCBlock, &cdict->cBlockState, sizeof(cdict->cBlockState));
return 0;
}
/* We have a choice between copying the dictionary context into the working
* context, or referencing the dictionary context from the working context
* in-place. We decide here which strategy to use. */
static size_t ZSTD_resetCCtx_usingCDict(ZSTD_CCtx* cctx,
const ZSTD_CDict* cdict,
const ZSTD_CCtx_params* params,
U64 pledgedSrcSize,
ZSTD_buffered_policy_e zbuff)
{
DEBUGLOG(4, "ZSTD_resetCCtx_usingCDict (pledgedSrcSize=%u)",
(unsigned)pledgedSrcSize);
if (ZSTD_shouldAttachDict(cdict, params, pledgedSrcSize)) {
return ZSTD_resetCCtx_byAttachingCDict(
cctx, cdict, *params, pledgedSrcSize, zbuff);
} else {
return ZSTD_resetCCtx_byCopyingCDict(
cctx, cdict, *params, pledgedSrcSize, zbuff);
}
}
/*! ZSTD_copyCCtx_internal() :
* Duplicate an existing context `srcCCtx` into another one `dstCCtx`.
* Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()).
* The "context", in this case, refers to the hash and chain tables,
* entropy tables, and dictionary references.
* `windowLog` value is enforced if != 0, otherwise value is copied from srcCCtx.
* @return : 0, or an error code */
static size_t ZSTD_copyCCtx_internal(ZSTD_CCtx* dstCCtx,
const ZSTD_CCtx* srcCCtx,
ZSTD_frameParameters fParams,
U64 pledgedSrcSize,
ZSTD_buffered_policy_e zbuff)
{
- DEBUGLOG(5, "ZSTD_copyCCtx_internal");
RETURN_ERROR_IF(srcCCtx->stage!=ZSTDcs_init, stage_wrong,
"Can't copy a ctx that's not in init stage.");
-
+ DEBUGLOG(5, "ZSTD_copyCCtx_internal");
ZSTD_memcpy(&dstCCtx->customMem, &srcCCtx->customMem, sizeof(ZSTD_customMem));
{ ZSTD_CCtx_params params = dstCCtx->requestedParams;
/* Copy only compression parameters related to tables. */
params.cParams = srcCCtx->appliedParams.cParams;
+ assert(srcCCtx->appliedParams.useRowMatchFinder != ZSTD_ps_auto);
+ assert(srcCCtx->appliedParams.useBlockSplitter != ZSTD_ps_auto);
+ assert(srcCCtx->appliedParams.ldmParams.enableLdm != ZSTD_ps_auto);
+ params.useRowMatchFinder = srcCCtx->appliedParams.useRowMatchFinder;
+ params.useBlockSplitter = srcCCtx->appliedParams.useBlockSplitter;
+ params.ldmParams = srcCCtx->appliedParams.ldmParams;
params.fParams = fParams;
- ZSTD_resetCCtx_internal(dstCCtx, params, pledgedSrcSize,
+ ZSTD_resetCCtx_internal(dstCCtx, &params, pledgedSrcSize,
+ /* loadedDictSize */ 0,
ZSTDcrp_leaveDirty, zbuff);
assert(dstCCtx->appliedParams.cParams.windowLog == srcCCtx->appliedParams.cParams.windowLog);
assert(dstCCtx->appliedParams.cParams.strategy == srcCCtx->appliedParams.cParams.strategy);
assert(dstCCtx->appliedParams.cParams.hashLog == srcCCtx->appliedParams.cParams.hashLog);
assert(dstCCtx->appliedParams.cParams.chainLog == srcCCtx->appliedParams.cParams.chainLog);
assert(dstCCtx->blockState.matchState.hashLog3 == srcCCtx->blockState.matchState.hashLog3);
}
ZSTD_cwksp_mark_tables_dirty(&dstCCtx->workspace);
/* copy tables */
- { size_t const chainSize = (srcCCtx->appliedParams.cParams.strategy == ZSTD_fast) ? 0 : ((size_t)1 << srcCCtx->appliedParams.cParams.chainLog);
+ { size_t const chainSize = ZSTD_allocateChainTable(srcCCtx->appliedParams.cParams.strategy,
+ srcCCtx->appliedParams.useRowMatchFinder,
+ 0 /* forDDSDict */)
+ ? ((size_t)1 << srcCCtx->appliedParams.cParams.chainLog)
+ : 0;
size_t const hSize = (size_t)1 << srcCCtx->appliedParams.cParams.hashLog;
int const h3log = srcCCtx->blockState.matchState.hashLog3;
size_t const h3Size = h3log ? ((size_t)1 << h3log) : 0;
ZSTD_memcpy(dstCCtx->blockState.matchState.hashTable,
srcCCtx->blockState.matchState.hashTable,
hSize * sizeof(U32));
ZSTD_memcpy(dstCCtx->blockState.matchState.chainTable,
srcCCtx->blockState.matchState.chainTable,
chainSize * sizeof(U32));
ZSTD_memcpy(dstCCtx->blockState.matchState.hashTable3,
srcCCtx->blockState.matchState.hashTable3,
h3Size * sizeof(U32));
}
ZSTD_cwksp_mark_tables_clean(&dstCCtx->workspace);
/* copy dictionary offsets */
{
const ZSTD_matchState_t* srcMatchState = &srcCCtx->blockState.matchState;
ZSTD_matchState_t* dstMatchState = &dstCCtx->blockState.matchState;
dstMatchState->window = srcMatchState->window;
dstMatchState->nextToUpdate = srcMatchState->nextToUpdate;
dstMatchState->loadedDictEnd= srcMatchState->loadedDictEnd;
}
dstCCtx->dictID = srcCCtx->dictID;
+ dstCCtx->dictContentSize = srcCCtx->dictContentSize;
/* copy block state */
ZSTD_memcpy(dstCCtx->blockState.prevCBlock, srcCCtx->blockState.prevCBlock, sizeof(*srcCCtx->blockState.prevCBlock));
return 0;
}
/*! ZSTD_copyCCtx() :
* Duplicate an existing context `srcCCtx` into another one `dstCCtx`.
* Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()).
* pledgedSrcSize==0 means "unknown".
* @return : 0, or an error code */
size_t ZSTD_copyCCtx(ZSTD_CCtx* dstCCtx, const ZSTD_CCtx* srcCCtx, unsigned long long pledgedSrcSize)
{
ZSTD_frameParameters fParams = { 1 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ };
ZSTD_buffered_policy_e const zbuff = srcCCtx->bufferedPolicy;
ZSTD_STATIC_ASSERT((U32)ZSTDb_buffered==1);
if (pledgedSrcSize==0) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN;
fParams.contentSizeFlag = (pledgedSrcSize != ZSTD_CONTENTSIZE_UNKNOWN);
return ZSTD_copyCCtx_internal(dstCCtx, srcCCtx,
fParams, pledgedSrcSize,
zbuff);
}
#define ZSTD_ROWSIZE 16
/*! ZSTD_reduceTable() :
* reduce table indexes by `reducerValue`, or squash to zero.
* PreserveMark preserves "unsorted mark" for btlazy2 strategy.
* It must be set to a clear 0/1 value, to remove branch during inlining.
* Presume table size is a multiple of ZSTD_ROWSIZE
* to help auto-vectorization */
FORCE_INLINE_TEMPLATE void
ZSTD_reduceTable_internal (U32* const table, U32 const size, U32 const reducerValue, int const preserveMark)
{
int const nbRows = (int)size / ZSTD_ROWSIZE;
int cellNb = 0;
int rowNb;
+ /* Protect special index values < ZSTD_WINDOW_START_INDEX. */
+ U32 const reducerThreshold = reducerValue + ZSTD_WINDOW_START_INDEX;
assert((size & (ZSTD_ROWSIZE-1)) == 0); /* multiple of ZSTD_ROWSIZE */
assert(size < (1U<<31)); /* can be casted to int */
#if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE)
/* To validate that the table re-use logic is sound, and that we don't
* access table space that we haven't cleaned, we re-"poison" the table
* space every time we mark it dirty.
*
* This function however is intended to operate on those dirty tables and
* re-clean them. So when this function is used correctly, we can unpoison
* the memory it operated on. This introduces a blind spot though, since
* if we now try to operate on __actually__ poisoned memory, we will not
* detect that. */
__msan_unpoison(table, size * sizeof(U32));
#endif
for (rowNb=0 ; rowNb < nbRows ; rowNb++) {
int column;
for (column=0; column<ZSTD_ROWSIZE; column++) {
- if (preserveMark) {
- U32 const adder = (table[cellNb] == ZSTD_DUBT_UNSORTED_MARK) ? reducerValue : 0;
- table[cellNb] += adder;
+ U32 newVal;
+ if (preserveMark && table[cellNb] == ZSTD_DUBT_UNSORTED_MARK) {
+ /* This write is pointless, but is required(?) for the compiler
+ * to auto-vectorize the loop. */
+ newVal = ZSTD_DUBT_UNSORTED_MARK;
+ } else if (table[cellNb] < reducerThreshold) {
+ newVal = 0;
+ } else {
+ newVal = table[cellNb] - reducerValue;
}
- if (table[cellNb] < reducerValue) table[cellNb] = 0;
- else table[cellNb] -= reducerValue;
+ table[cellNb] = newVal;
cellNb++;
} }
}
static void ZSTD_reduceTable(U32* const table, U32 const size, U32 const reducerValue)
{
ZSTD_reduceTable_internal(table, size, reducerValue, 0);
}
static void ZSTD_reduceTable_btlazy2(U32* const table, U32 const size, U32 const reducerValue)
{
ZSTD_reduceTable_internal(table, size, reducerValue, 1);
}
/*! ZSTD_reduceIndex() :
* rescale all indexes to avoid future overflow (indexes are U32) */
static void ZSTD_reduceIndex (ZSTD_matchState_t* ms, ZSTD_CCtx_params const* params, const U32 reducerValue)
{
{ U32 const hSize = (U32)1 << params->cParams.hashLog;
ZSTD_reduceTable(ms->hashTable, hSize, reducerValue);
}
- if (params->cParams.strategy != ZSTD_fast) {
+ if (ZSTD_allocateChainTable(params->cParams.strategy, params->useRowMatchFinder, (U32)ms->dedicatedDictSearch)) {
U32 const chainSize = (U32)1 << params->cParams.chainLog;
if (params->cParams.strategy == ZSTD_btlazy2)
ZSTD_reduceTable_btlazy2(ms->chainTable, chainSize, reducerValue);
else
ZSTD_reduceTable(ms->chainTable, chainSize, reducerValue);
}
if (ms->hashLog3) {
U32 const h3Size = (U32)1 << ms->hashLog3;
ZSTD_reduceTable(ms->hashTable3, h3Size, reducerValue);
}
}
/*-*******************************************************
* Block entropic compression
*********************************************************/
/* See doc/zstd_compression_format.md for detailed format description */
void ZSTD_seqToCodes(const seqStore_t* seqStorePtr)
{
const seqDef* const sequences = seqStorePtr->sequencesStart;
BYTE* const llCodeTable = seqStorePtr->llCode;
BYTE* const ofCodeTable = seqStorePtr->ofCode;
BYTE* const mlCodeTable = seqStorePtr->mlCode;
U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
U32 u;
assert(nbSeq <= seqStorePtr->maxNbSeq);
for (u=0; u<nbSeq; u++) {
U32 const llv = sequences[u].litLength;
- U32 const mlv = sequences[u].matchLength;
+ U32 const mlv = sequences[u].mlBase;
llCodeTable[u] = (BYTE)ZSTD_LLcode(llv);
- ofCodeTable[u] = (BYTE)ZSTD_highbit32(sequences[u].offset);
+ ofCodeTable[u] = (BYTE)ZSTD_highbit32(sequences[u].offBase);
mlCodeTable[u] = (BYTE)ZSTD_MLcode(mlv);
}
- if (seqStorePtr->longLengthID==1)
+ if (seqStorePtr->longLengthType==ZSTD_llt_literalLength)
llCodeTable[seqStorePtr->longLengthPos] = MaxLL;
- if (seqStorePtr->longLengthID==2)
+ if (seqStorePtr->longLengthType==ZSTD_llt_matchLength)
mlCodeTable[seqStorePtr->longLengthPos] = MaxML;
}
/* ZSTD_useTargetCBlockSize():
* Returns if target compressed block size param is being used.
* If used, compression will do best effort to make a compressed block size to be around targetCBlockSize.
* Returns 1 if true, 0 otherwise. */
static int ZSTD_useTargetCBlockSize(const ZSTD_CCtx_params* cctxParams)
{
DEBUGLOG(5, "ZSTD_useTargetCBlockSize (targetCBlockSize=%zu)", cctxParams->targetCBlockSize);
return (cctxParams->targetCBlockSize != 0);
}
-/* ZSTD_entropyCompressSequences_internal():
- * actually compresses both literals and sequences */
+/* ZSTD_blockSplitterEnabled():
+ * Returns if block splitting param is being used
+ * If used, compression will do best effort to split a block in order to improve compression ratio.
+ * At the time this function is called, the parameter must be finalized.
+ * Returns 1 if true, 0 otherwise. */
+static int ZSTD_blockSplitterEnabled(ZSTD_CCtx_params* cctxParams)
+{
+ DEBUGLOG(5, "ZSTD_blockSplitterEnabled (useBlockSplitter=%d)", cctxParams->useBlockSplitter);
+ assert(cctxParams->useBlockSplitter != ZSTD_ps_auto);
+ return (cctxParams->useBlockSplitter == ZSTD_ps_enable);
+}
+
+/* Type returned by ZSTD_buildSequencesStatistics containing finalized symbol encoding types
+ * and size of the sequences statistics
+ */
+typedef struct {
+ U32 LLtype;
+ U32 Offtype;
+ U32 MLtype;
+ size_t size;
+ size_t lastCountSize; /* Accounts for bug in 1.3.4. More detail in ZSTD_entropyCompressSeqStore_internal() */
+} ZSTD_symbolEncodingTypeStats_t;
+
+/* ZSTD_buildSequencesStatistics():
+ * Returns a ZSTD_symbolEncodingTypeStats_t, or a zstd error code in the `size` field.
+ * Modifies `nextEntropy` to have the appropriate values as a side effect.
+ * nbSeq must be greater than 0.
+ *
+ * entropyWkspSize must be of size at least ENTROPY_WORKSPACE_SIZE - (MaxSeq + 1)*sizeof(U32)
+ */
+static ZSTD_symbolEncodingTypeStats_t
+ZSTD_buildSequencesStatistics(seqStore_t* seqStorePtr, size_t nbSeq,
+ const ZSTD_fseCTables_t* prevEntropy, ZSTD_fseCTables_t* nextEntropy,
+ BYTE* dst, const BYTE* const dstEnd,
+ ZSTD_strategy strategy, unsigned* countWorkspace,
+ void* entropyWorkspace, size_t entropyWkspSize) {
+ BYTE* const ostart = dst;
+ const BYTE* const oend = dstEnd;
+ BYTE* op = ostart;
+ FSE_CTable* CTable_LitLength = nextEntropy->litlengthCTable;
+ FSE_CTable* CTable_OffsetBits = nextEntropy->offcodeCTable;
+ FSE_CTable* CTable_MatchLength = nextEntropy->matchlengthCTable;
+ const BYTE* const ofCodeTable = seqStorePtr->ofCode;
+ const BYTE* const llCodeTable = seqStorePtr->llCode;
+ const BYTE* const mlCodeTable = seqStorePtr->mlCode;
+ ZSTD_symbolEncodingTypeStats_t stats;
+
+ stats.lastCountSize = 0;
+ /* convert length/distances into codes */
+ ZSTD_seqToCodes(seqStorePtr);
+ assert(op <= oend);
+ assert(nbSeq != 0); /* ZSTD_selectEncodingType() divides by nbSeq */
+ /* build CTable for Literal Lengths */
+ { unsigned max = MaxLL;
+ size_t const mostFrequent = HIST_countFast_wksp(countWorkspace, &max, llCodeTable, nbSeq, entropyWorkspace, entropyWkspSize); /* can't fail */
+ DEBUGLOG(5, "Building LL table");
+ nextEntropy->litlength_repeatMode = prevEntropy->litlength_repeatMode;
+ stats.LLtype = ZSTD_selectEncodingType(&nextEntropy->litlength_repeatMode,
+ countWorkspace, max, mostFrequent, nbSeq,
+ LLFSELog, prevEntropy->litlengthCTable,
+ LL_defaultNorm, LL_defaultNormLog,
+ ZSTD_defaultAllowed, strategy);
+ assert(set_basic < set_compressed && set_rle < set_compressed);
+ assert(!(stats.LLtype < set_compressed && nextEntropy->litlength_repeatMode != FSE_repeat_none)); /* We don't copy tables */
+ { size_t const countSize = ZSTD_buildCTable(
+ op, (size_t)(oend - op),
+ CTable_LitLength, LLFSELog, (symbolEncodingType_e)stats.LLtype,
+ countWorkspace, max, llCodeTable, nbSeq,
+ LL_defaultNorm, LL_defaultNormLog, MaxLL,
+ prevEntropy->litlengthCTable,
+ sizeof(prevEntropy->litlengthCTable),
+ entropyWorkspace, entropyWkspSize);
+ if (ZSTD_isError(countSize)) {
+ DEBUGLOG(3, "ZSTD_buildCTable for LitLens failed");
+ stats.size = countSize;
+ return stats;
+ }
+ if (stats.LLtype == set_compressed)
+ stats.lastCountSize = countSize;
+ op += countSize;
+ assert(op <= oend);
+ } }
+ /* build CTable for Offsets */
+ { unsigned max = MaxOff;
+ size_t const mostFrequent = HIST_countFast_wksp(
+ countWorkspace, &max, ofCodeTable, nbSeq, entropyWorkspace, entropyWkspSize); /* can't fail */
+ /* We can only use the basic table if max <= DefaultMaxOff, otherwise the offsets are too large */
+ ZSTD_defaultPolicy_e const defaultPolicy = (max <= DefaultMaxOff) ? ZSTD_defaultAllowed : ZSTD_defaultDisallowed;
+ DEBUGLOG(5, "Building OF table");
+ nextEntropy->offcode_repeatMode = prevEntropy->offcode_repeatMode;
+ stats.Offtype = ZSTD_selectEncodingType(&nextEntropy->offcode_repeatMode,
+ countWorkspace, max, mostFrequent, nbSeq,
+ OffFSELog, prevEntropy->offcodeCTable,
+ OF_defaultNorm, OF_defaultNormLog,
+ defaultPolicy, strategy);
+ assert(!(stats.Offtype < set_compressed && nextEntropy->offcode_repeatMode != FSE_repeat_none)); /* We don't copy tables */
+ { size_t const countSize = ZSTD_buildCTable(
+ op, (size_t)(oend - op),
+ CTable_OffsetBits, OffFSELog, (symbolEncodingType_e)stats.Offtype,
+ countWorkspace, max, ofCodeTable, nbSeq,
+ OF_defaultNorm, OF_defaultNormLog, DefaultMaxOff,
+ prevEntropy->offcodeCTable,
+ sizeof(prevEntropy->offcodeCTable),
+ entropyWorkspace, entropyWkspSize);
+ if (ZSTD_isError(countSize)) {
+ DEBUGLOG(3, "ZSTD_buildCTable for Offsets failed");
+ stats.size = countSize;
+ return stats;
+ }
+ if (stats.Offtype == set_compressed)
+ stats.lastCountSize = countSize;
+ op += countSize;
+ assert(op <= oend);
+ } }
+ /* build CTable for MatchLengths */
+ { unsigned max = MaxML;
+ size_t const mostFrequent = HIST_countFast_wksp(
+ countWorkspace, &max, mlCodeTable, nbSeq, entropyWorkspace, entropyWkspSize); /* can't fail */
+ DEBUGLOG(5, "Building ML table (remaining space : %i)", (int)(oend-op));
+ nextEntropy->matchlength_repeatMode = prevEntropy->matchlength_repeatMode;
+ stats.MLtype = ZSTD_selectEncodingType(&nextEntropy->matchlength_repeatMode,
+ countWorkspace, max, mostFrequent, nbSeq,
+ MLFSELog, prevEntropy->matchlengthCTable,
+ ML_defaultNorm, ML_defaultNormLog,
+ ZSTD_defaultAllowed, strategy);
+ assert(!(stats.MLtype < set_compressed && nextEntropy->matchlength_repeatMode != FSE_repeat_none)); /* We don't copy tables */
+ { size_t const countSize = ZSTD_buildCTable(
+ op, (size_t)(oend - op),
+ CTable_MatchLength, MLFSELog, (symbolEncodingType_e)stats.MLtype,
+ countWorkspace, max, mlCodeTable, nbSeq,
+ ML_defaultNorm, ML_defaultNormLog, MaxML,
+ prevEntropy->matchlengthCTable,
+ sizeof(prevEntropy->matchlengthCTable),
+ entropyWorkspace, entropyWkspSize);
+ if (ZSTD_isError(countSize)) {
+ DEBUGLOG(3, "ZSTD_buildCTable for MatchLengths failed");
+ stats.size = countSize;
+ return stats;
+ }
+ if (stats.MLtype == set_compressed)
+ stats.lastCountSize = countSize;
+ op += countSize;
+ assert(op <= oend);
+ } }
+ stats.size = (size_t)(op-ostart);
+ return stats;
+}
+
+/* ZSTD_entropyCompressSeqStore_internal():
+ * compresses both literals and sequences
+ * Returns compressed size of block, or a zstd error.
+ */
+#define SUSPECT_UNCOMPRESSIBLE_LITERAL_RATIO 20
MEM_STATIC size_t
-ZSTD_entropyCompressSequences_internal(seqStore_t* seqStorePtr,
+ZSTD_entropyCompressSeqStore_internal(seqStore_t* seqStorePtr,
const ZSTD_entropyCTables_t* prevEntropy,
ZSTD_entropyCTables_t* nextEntropy,
const ZSTD_CCtx_params* cctxParams,
void* dst, size_t dstCapacity,
void* entropyWorkspace, size_t entropyWkspSize,
const int bmi2)
{
const int longOffsets = cctxParams->cParams.windowLog > STREAM_ACCUMULATOR_MIN;
ZSTD_strategy const strategy = cctxParams->cParams.strategy;
unsigned* count = (unsigned*)entropyWorkspace;
FSE_CTable* CTable_LitLength = nextEntropy->fse.litlengthCTable;
FSE_CTable* CTable_OffsetBits = nextEntropy->fse.offcodeCTable;
FSE_CTable* CTable_MatchLength = nextEntropy->fse.matchlengthCTable;
- U32 LLtype, Offtype, MLtype; /* compressed, raw or rle */
const seqDef* const sequences = seqStorePtr->sequencesStart;
+ const size_t nbSeq = seqStorePtr->sequences - seqStorePtr->sequencesStart;
const BYTE* const ofCodeTable = seqStorePtr->ofCode;
const BYTE* const llCodeTable = seqStorePtr->llCode;
const BYTE* const mlCodeTable = seqStorePtr->mlCode;
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstCapacity;
BYTE* op = ostart;
- size_t const nbSeq = (size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
- BYTE* seqHead;
- BYTE* lastNCount = NULL;
+ size_t lastCountSize;
entropyWorkspace = count + (MaxSeq + 1);
entropyWkspSize -= (MaxSeq + 1) * sizeof(*count);
- DEBUGLOG(4, "ZSTD_entropyCompressSequences_internal (nbSeq=%zu)", nbSeq);
+ DEBUGLOG(4, "ZSTD_entropyCompressSeqStore_internal (nbSeq=%zu)", nbSeq);
ZSTD_STATIC_ASSERT(HUF_WORKSPACE_SIZE >= (1<<MAX(MLFSELog,LLFSELog)));
assert(entropyWkspSize >= HUF_WORKSPACE_SIZE);
/* Compress literals */
{ const BYTE* const literals = seqStorePtr->litStart;
+ size_t const numSequences = seqStorePtr->sequences - seqStorePtr->sequencesStart;
+ size_t const numLiterals = seqStorePtr->lit - seqStorePtr->litStart;
+ /* Base suspicion of uncompressibility on ratio of literals to sequences */
+ unsigned const suspectUncompressible = (numSequences == 0) || (numLiterals / numSequences >= SUSPECT_UNCOMPRESSIBLE_LITERAL_RATIO);
size_t const litSize = (size_t)(seqStorePtr->lit - literals);
size_t const cSize = ZSTD_compressLiterals(
&prevEntropy->huf, &nextEntropy->huf,
cctxParams->cParams.strategy,
- ZSTD_disableLiteralsCompression(cctxParams),
+ ZSTD_literalsCompressionIsDisabled(cctxParams),
op, dstCapacity,
literals, litSize,
entropyWorkspace, entropyWkspSize,
- bmi2);
+ bmi2, suspectUncompressible);
FORWARD_IF_ERROR(cSize, "ZSTD_compressLiterals failed");
assert(cSize <= dstCapacity);
op += cSize;
}
/* Sequences Header */
RETURN_ERROR_IF((oend-op) < 3 /*max nbSeq Size*/ + 1 /*seqHead*/,
dstSize_tooSmall, "Can't fit seq hdr in output buf!");
if (nbSeq < 128) {
*op++ = (BYTE)nbSeq;
} else if (nbSeq < LONGNBSEQ) {
op[0] = (BYTE)((nbSeq>>8) + 0x80);
op[1] = (BYTE)nbSeq;
op+=2;
} else {
op[0]=0xFF;
MEM_writeLE16(op+1, (U16)(nbSeq - LONGNBSEQ));
op+=3;
}
assert(op <= oend);
if (nbSeq==0) {
/* Copy the old tables over as if we repeated them */
ZSTD_memcpy(&nextEntropy->fse, &prevEntropy->fse, sizeof(prevEntropy->fse));
return (size_t)(op - ostart);
}
-
- /* seqHead : flags for FSE encoding type */
- seqHead = op++;
- assert(op <= oend);
-
- /* convert length/distances into codes */
- ZSTD_seqToCodes(seqStorePtr);
- /* build CTable for Literal Lengths */
- { unsigned max = MaxLL;
- size_t const mostFrequent = HIST_countFast_wksp(count, &max, llCodeTable, nbSeq, entropyWorkspace, entropyWkspSize); /* can't fail */
- DEBUGLOG(5, "Building LL table");
- nextEntropy->fse.litlength_repeatMode = prevEntropy->fse.litlength_repeatMode;
- LLtype = ZSTD_selectEncodingType(&nextEntropy->fse.litlength_repeatMode,
- count, max, mostFrequent, nbSeq,
- LLFSELog, prevEntropy->fse.litlengthCTable,
- LL_defaultNorm, LL_defaultNormLog,
- ZSTD_defaultAllowed, strategy);
- assert(set_basic < set_compressed && set_rle < set_compressed);
- assert(!(LLtype < set_compressed && nextEntropy->fse.litlength_repeatMode != FSE_repeat_none)); /* We don't copy tables */
- { size_t const countSize = ZSTD_buildCTable(
- op, (size_t)(oend - op),
- CTable_LitLength, LLFSELog, (symbolEncodingType_e)LLtype,
- count, max, llCodeTable, nbSeq,
- LL_defaultNorm, LL_defaultNormLog, MaxLL,
- prevEntropy->fse.litlengthCTable,
- sizeof(prevEntropy->fse.litlengthCTable),
- entropyWorkspace, entropyWkspSize);
- FORWARD_IF_ERROR(countSize, "ZSTD_buildCTable for LitLens failed");
- if (LLtype == set_compressed)
- lastNCount = op;
- op += countSize;
- assert(op <= oend);
- } }
- /* build CTable for Offsets */
- { unsigned max = MaxOff;
- size_t const mostFrequent = HIST_countFast_wksp(
- count, &max, ofCodeTable, nbSeq, entropyWorkspace, entropyWkspSize); /* can't fail */
- /* We can only use the basic table if max <= DefaultMaxOff, otherwise the offsets are too large */
- ZSTD_defaultPolicy_e const defaultPolicy = (max <= DefaultMaxOff) ? ZSTD_defaultAllowed : ZSTD_defaultDisallowed;
- DEBUGLOG(5, "Building OF table");
- nextEntropy->fse.offcode_repeatMode = prevEntropy->fse.offcode_repeatMode;
- Offtype = ZSTD_selectEncodingType(&nextEntropy->fse.offcode_repeatMode,
- count, max, mostFrequent, nbSeq,
- OffFSELog, prevEntropy->fse.offcodeCTable,
- OF_defaultNorm, OF_defaultNormLog,
- defaultPolicy, strategy);
- assert(!(Offtype < set_compressed && nextEntropy->fse.offcode_repeatMode != FSE_repeat_none)); /* We don't copy tables */
- { size_t const countSize = ZSTD_buildCTable(
- op, (size_t)(oend - op),
- CTable_OffsetBits, OffFSELog, (symbolEncodingType_e)Offtype,
- count, max, ofCodeTable, nbSeq,
- OF_defaultNorm, OF_defaultNormLog, DefaultMaxOff,
- prevEntropy->fse.offcodeCTable,
- sizeof(prevEntropy->fse.offcodeCTable),
- entropyWorkspace, entropyWkspSize);
- FORWARD_IF_ERROR(countSize, "ZSTD_buildCTable for Offsets failed");
- if (Offtype == set_compressed)
- lastNCount = op;
- op += countSize;
- assert(op <= oend);
- } }
- /* build CTable for MatchLengths */
- { unsigned max = MaxML;
- size_t const mostFrequent = HIST_countFast_wksp(
- count, &max, mlCodeTable, nbSeq, entropyWorkspace, entropyWkspSize); /* can't fail */
- DEBUGLOG(5, "Building ML table (remaining space : %i)", (int)(oend-op));
- nextEntropy->fse.matchlength_repeatMode = prevEntropy->fse.matchlength_repeatMode;
- MLtype = ZSTD_selectEncodingType(&nextEntropy->fse.matchlength_repeatMode,
- count, max, mostFrequent, nbSeq,
- MLFSELog, prevEntropy->fse.matchlengthCTable,
- ML_defaultNorm, ML_defaultNormLog,
- ZSTD_defaultAllowed, strategy);
- assert(!(MLtype < set_compressed && nextEntropy->fse.matchlength_repeatMode != FSE_repeat_none)); /* We don't copy tables */
- { size_t const countSize = ZSTD_buildCTable(
- op, (size_t)(oend - op),
- CTable_MatchLength, MLFSELog, (symbolEncodingType_e)MLtype,
- count, max, mlCodeTable, nbSeq,
- ML_defaultNorm, ML_defaultNormLog, MaxML,
- prevEntropy->fse.matchlengthCTable,
- sizeof(prevEntropy->fse.matchlengthCTable),
- entropyWorkspace, entropyWkspSize);
- FORWARD_IF_ERROR(countSize, "ZSTD_buildCTable for MatchLengths failed");
- if (MLtype == set_compressed)
- lastNCount = op;
- op += countSize;
- assert(op <= oend);
- } }
-
- *seqHead = (BYTE)((LLtype<<6) + (Offtype<<4) + (MLtype<<2));
+ {
+ ZSTD_symbolEncodingTypeStats_t stats;
+ BYTE* seqHead = op++;
+ /* build stats for sequences */
+ stats = ZSTD_buildSequencesStatistics(seqStorePtr, nbSeq,
+ &prevEntropy->fse, &nextEntropy->fse,
+ op, oend,
+ strategy, count,
+ entropyWorkspace, entropyWkspSize);
+ FORWARD_IF_ERROR(stats.size, "ZSTD_buildSequencesStatistics failed!");
+ *seqHead = (BYTE)((stats.LLtype<<6) + (stats.Offtype<<4) + (stats.MLtype<<2));
+ lastCountSize = stats.lastCountSize;
+ op += stats.size;
+ }
{ size_t const bitstreamSize = ZSTD_encodeSequences(
op, (size_t)(oend - op),
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq,
longOffsets, bmi2);
FORWARD_IF_ERROR(bitstreamSize, "ZSTD_encodeSequences failed");
op += bitstreamSize;
assert(op <= oend);
/* zstd versions <= 1.3.4 mistakenly report corruption when
* FSE_readNCount() receives a buffer < 4 bytes.
* Fixed by https://github.com/facebook/zstd/pull/1146.
* This can happen when the last set_compressed table present is 2
* bytes and the bitstream is only one byte.
* In this exceedingly rare case, we will simply emit an uncompressed
* block, since it isn't worth optimizing.
*/
- if (lastNCount && (op - lastNCount) < 4) {
- /* NCountSize >= 2 && bitstreamSize > 0 ==> lastCountSize == 3 */
- assert(op - lastNCount == 3);
+ if (lastCountSize && (lastCountSize + bitstreamSize) < 4) {
+ /* lastCountSize >= 2 && bitstreamSize > 0 ==> lastCountSize == 3 */
+ assert(lastCountSize + bitstreamSize == 3);
DEBUGLOG(5, "Avoiding bug in zstd decoder in versions <= 1.3.4 by "
"emitting an uncompressed block.");
return 0;
}
}
DEBUGLOG(5, "compressed block size : %u", (unsigned)(op - ostart));
return (size_t)(op - ostart);
}
MEM_STATIC size_t
-ZSTD_entropyCompressSequences(seqStore_t* seqStorePtr,
+ZSTD_entropyCompressSeqStore(seqStore_t* seqStorePtr,
const ZSTD_entropyCTables_t* prevEntropy,
ZSTD_entropyCTables_t* nextEntropy,
const ZSTD_CCtx_params* cctxParams,
void* dst, size_t dstCapacity,
size_t srcSize,
void* entropyWorkspace, size_t entropyWkspSize,
int bmi2)
{
- size_t const cSize = ZSTD_entropyCompressSequences_internal(
+ size_t const cSize = ZSTD_entropyCompressSeqStore_internal(
seqStorePtr, prevEntropy, nextEntropy, cctxParams,
dst, dstCapacity,
entropyWorkspace, entropyWkspSize, bmi2);
if (cSize == 0) return 0;
/* When srcSize <= dstCapacity, there is enough space to write a raw uncompressed block.
* Since we ran out of space, block must be not compressible, so fall back to raw uncompressed block.
*/
if ((cSize == ERROR(dstSize_tooSmall)) & (srcSize <= dstCapacity))
return 0; /* block not compressed */
- FORWARD_IF_ERROR(cSize, "ZSTD_entropyCompressSequences_internal failed");
+ FORWARD_IF_ERROR(cSize, "ZSTD_entropyCompressSeqStore_internal failed");
/* Check compressibility */
{ size_t const maxCSize = srcSize - ZSTD_minGain(srcSize, cctxParams->cParams.strategy);
if (cSize >= maxCSize) return 0; /* block not compressed */
}
- DEBUGLOG(4, "ZSTD_entropyCompressSequences() cSize: %zu\n", cSize);
+ DEBUGLOG(4, "ZSTD_entropyCompressSeqStore() cSize: %zu", cSize);
return cSize;
}
/* ZSTD_selectBlockCompressor() :
* Not static, but internal use only (used by long distance matcher)
* assumption : strat is a valid strategy */
-ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_dictMode_e dictMode)
+ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_paramSwitch_e useRowMatchFinder, ZSTD_dictMode_e dictMode)
{
static const ZSTD_blockCompressor blockCompressor[4][ZSTD_STRATEGY_MAX+1] = {
{ ZSTD_compressBlock_fast /* default for 0 */,
ZSTD_compressBlock_fast,
ZSTD_compressBlock_doubleFast,
ZSTD_compressBlock_greedy,
ZSTD_compressBlock_lazy,
ZSTD_compressBlock_lazy2,
ZSTD_compressBlock_btlazy2,
ZSTD_compressBlock_btopt,
ZSTD_compressBlock_btultra,
ZSTD_compressBlock_btultra2 },
{ ZSTD_compressBlock_fast_extDict /* default for 0 */,
ZSTD_compressBlock_fast_extDict,
ZSTD_compressBlock_doubleFast_extDict,
ZSTD_compressBlock_greedy_extDict,
ZSTD_compressBlock_lazy_extDict,
ZSTD_compressBlock_lazy2_extDict,
ZSTD_compressBlock_btlazy2_extDict,
ZSTD_compressBlock_btopt_extDict,
ZSTD_compressBlock_btultra_extDict,
ZSTD_compressBlock_btultra_extDict },
{ ZSTD_compressBlock_fast_dictMatchState /* default for 0 */,
ZSTD_compressBlock_fast_dictMatchState,
ZSTD_compressBlock_doubleFast_dictMatchState,
ZSTD_compressBlock_greedy_dictMatchState,
ZSTD_compressBlock_lazy_dictMatchState,
ZSTD_compressBlock_lazy2_dictMatchState,
ZSTD_compressBlock_btlazy2_dictMatchState,
ZSTD_compressBlock_btopt_dictMatchState,
ZSTD_compressBlock_btultra_dictMatchState,
ZSTD_compressBlock_btultra_dictMatchState },
{ NULL /* default for 0 */,
NULL,
NULL,
ZSTD_compressBlock_greedy_dedicatedDictSearch,
ZSTD_compressBlock_lazy_dedicatedDictSearch,
ZSTD_compressBlock_lazy2_dedicatedDictSearch,
NULL,
NULL,
NULL,
NULL }
};
ZSTD_blockCompressor selectedCompressor;
ZSTD_STATIC_ASSERT((unsigned)ZSTD_fast == 1);
assert(ZSTD_cParam_withinBounds(ZSTD_c_strategy, strat));
- selectedCompressor = blockCompressor[(int)dictMode][(int)strat];
+ DEBUGLOG(4, "Selected block compressor: dictMode=%d strat=%d rowMatchfinder=%d", (int)dictMode, (int)strat, (int)useRowMatchFinder);
+ if (ZSTD_rowMatchFinderUsed(strat, useRowMatchFinder)) {
+ static const ZSTD_blockCompressor rowBasedBlockCompressors[4][3] = {
+ { ZSTD_compressBlock_greedy_row,
+ ZSTD_compressBlock_lazy_row,
+ ZSTD_compressBlock_lazy2_row },
+ { ZSTD_compressBlock_greedy_extDict_row,
+ ZSTD_compressBlock_lazy_extDict_row,
+ ZSTD_compressBlock_lazy2_extDict_row },
+ { ZSTD_compressBlock_greedy_dictMatchState_row,
+ ZSTD_compressBlock_lazy_dictMatchState_row,
+ ZSTD_compressBlock_lazy2_dictMatchState_row },
+ { ZSTD_compressBlock_greedy_dedicatedDictSearch_row,
+ ZSTD_compressBlock_lazy_dedicatedDictSearch_row,
+ ZSTD_compressBlock_lazy2_dedicatedDictSearch_row }
+ };
+ DEBUGLOG(4, "Selecting a row-based matchfinder");
+ assert(useRowMatchFinder != ZSTD_ps_auto);
+ selectedCompressor = rowBasedBlockCompressors[(int)dictMode][(int)strat - (int)ZSTD_greedy];
+ } else {
+ selectedCompressor = blockCompressor[(int)dictMode][(int)strat];
+ }
assert(selectedCompressor != NULL);
return selectedCompressor;
}
static void ZSTD_storeLastLiterals(seqStore_t* seqStorePtr,
const BYTE* anchor, size_t lastLLSize)
{
ZSTD_memcpy(seqStorePtr->lit, anchor, lastLLSize);
seqStorePtr->lit += lastLLSize;
}
void ZSTD_resetSeqStore(seqStore_t* ssPtr)
{
ssPtr->lit = ssPtr->litStart;
ssPtr->sequences = ssPtr->sequencesStart;
- ssPtr->longLengthID = 0;
+ ssPtr->longLengthType = ZSTD_llt_none;
}
typedef enum { ZSTDbss_compress, ZSTDbss_noCompress } ZSTD_buildSeqStore_e;
static size_t ZSTD_buildSeqStore(ZSTD_CCtx* zc, const void* src, size_t srcSize)
{
ZSTD_matchState_t* const ms = &zc->blockState.matchState;
DEBUGLOG(5, "ZSTD_buildSeqStore (srcSize=%zu)", srcSize);
assert(srcSize <= ZSTD_BLOCKSIZE_MAX);
/* Assert that we have correctly flushed the ctx params into the ms's copy */
ZSTD_assertEqualCParams(zc->appliedParams.cParams, ms->cParams);
if (srcSize < MIN_CBLOCK_SIZE+ZSTD_blockHeaderSize+1) {
if (zc->appliedParams.cParams.strategy >= ZSTD_btopt) {
ZSTD_ldm_skipRawSeqStoreBytes(&zc->externSeqStore, srcSize);
} else {
ZSTD_ldm_skipSequences(&zc->externSeqStore, srcSize, zc->appliedParams.cParams.minMatch);
}
return ZSTDbss_noCompress; /* don't even attempt compression below a certain srcSize */
}
ZSTD_resetSeqStore(&(zc->seqStore));
/* required for optimal parser to read stats from dictionary */
ms->opt.symbolCosts = &zc->blockState.prevCBlock->entropy;
/* tell the optimal parser how we expect to compress literals */
ms->opt.literalCompressionMode = zc->appliedParams.literalCompressionMode;
/* a gap between an attached dict and the current window is not safe,
* they must remain adjacent,
* and when that stops being the case, the dict must be unset */
assert(ms->dictMatchState == NULL || ms->loadedDictEnd == ms->window.dictLimit);
/* limited update after a very long match */
{ const BYTE* const base = ms->window.base;
const BYTE* const istart = (const BYTE*)src;
const U32 curr = (U32)(istart-base);
if (sizeof(ptrdiff_t)==8) assert(istart - base < (ptrdiff_t)(U32)(-1)); /* ensure no overflow */
if (curr > ms->nextToUpdate + 384)
ms->nextToUpdate = curr - MIN(192, (U32)(curr - ms->nextToUpdate - 384));
}
/* select and store sequences */
{ ZSTD_dictMode_e const dictMode = ZSTD_matchState_dictMode(ms);
size_t lastLLSize;
{ int i;
for (i = 0; i < ZSTD_REP_NUM; ++i)
zc->blockState.nextCBlock->rep[i] = zc->blockState.prevCBlock->rep[i];
}
if (zc->externSeqStore.pos < zc->externSeqStore.size) {
- assert(!zc->appliedParams.ldmParams.enableLdm);
+ assert(zc->appliedParams.ldmParams.enableLdm == ZSTD_ps_disable);
/* Updates ldmSeqStore.pos */
lastLLSize =
ZSTD_ldm_blockCompress(&zc->externSeqStore,
ms, &zc->seqStore,
zc->blockState.nextCBlock->rep,
+ zc->appliedParams.useRowMatchFinder,
src, srcSize);
assert(zc->externSeqStore.pos <= zc->externSeqStore.size);
- } else if (zc->appliedParams.ldmParams.enableLdm) {
+ } else if (zc->appliedParams.ldmParams.enableLdm == ZSTD_ps_enable) {
rawSeqStore_t ldmSeqStore = kNullRawSeqStore;
ldmSeqStore.seq = zc->ldmSequences;
ldmSeqStore.capacity = zc->maxNbLdmSequences;
/* Updates ldmSeqStore.size */
FORWARD_IF_ERROR(ZSTD_ldm_generateSequences(&zc->ldmState, &ldmSeqStore,
&zc->appliedParams.ldmParams,
src, srcSize), "");
/* Updates ldmSeqStore.pos */
lastLLSize =
ZSTD_ldm_blockCompress(&ldmSeqStore,
ms, &zc->seqStore,
zc->blockState.nextCBlock->rep,
+ zc->appliedParams.useRowMatchFinder,
src, srcSize);
assert(ldmSeqStore.pos == ldmSeqStore.size);
} else { /* not long range mode */
- ZSTD_blockCompressor const blockCompressor = ZSTD_selectBlockCompressor(zc->appliedParams.cParams.strategy, dictMode);
+ ZSTD_blockCompressor const blockCompressor = ZSTD_selectBlockCompressor(zc->appliedParams.cParams.strategy,
+ zc->appliedParams.useRowMatchFinder,
+ dictMode);
ms->ldmSeqStore = NULL;
lastLLSize = blockCompressor(ms, &zc->seqStore, zc->blockState.nextCBlock->rep, src, srcSize);
}
{ const BYTE* const lastLiterals = (const BYTE*)src + srcSize - lastLLSize;
ZSTD_storeLastLiterals(&zc->seqStore, lastLiterals, lastLLSize);
} }
return ZSTDbss_compress;
}
static void ZSTD_copyBlockSequences(ZSTD_CCtx* zc)
{
const seqStore_t* seqStore = ZSTD_getSeqStore(zc);
const seqDef* seqStoreSeqs = seqStore->sequencesStart;
size_t seqStoreSeqSize = seqStore->sequences - seqStoreSeqs;
size_t seqStoreLiteralsSize = (size_t)(seqStore->lit - seqStore->litStart);
size_t literalsRead = 0;
size_t lastLLSize;
ZSTD_Sequence* outSeqs = &zc->seqCollector.seqStart[zc->seqCollector.seqIndex];
size_t i;
repcodes_t updatedRepcodes;
assert(zc->seqCollector.seqIndex + 1 < zc->seqCollector.maxSequences);
/* Ensure we have enough space for last literals "sequence" */
assert(zc->seqCollector.maxSequences >= seqStoreSeqSize + 1);
ZSTD_memcpy(updatedRepcodes.rep, zc->blockState.prevCBlock->rep, sizeof(repcodes_t));
for (i = 0; i < seqStoreSeqSize; ++i) {
- U32 rawOffset = seqStoreSeqs[i].offset - ZSTD_REP_NUM;
+ U32 rawOffset = seqStoreSeqs[i].offBase - ZSTD_REP_NUM;
outSeqs[i].litLength = seqStoreSeqs[i].litLength;
- outSeqs[i].matchLength = seqStoreSeqs[i].matchLength + MINMATCH;
+ outSeqs[i].matchLength = seqStoreSeqs[i].mlBase + MINMATCH;
outSeqs[i].rep = 0;
if (i == seqStore->longLengthPos) {
- if (seqStore->longLengthID == 1) {
+ if (seqStore->longLengthType == ZSTD_llt_literalLength) {
outSeqs[i].litLength += 0x10000;
- } else if (seqStore->longLengthID == 2) {
+ } else if (seqStore->longLengthType == ZSTD_llt_matchLength) {
outSeqs[i].matchLength += 0x10000;
}
}
- if (seqStoreSeqs[i].offset <= ZSTD_REP_NUM) {
+ if (seqStoreSeqs[i].offBase <= ZSTD_REP_NUM) {
/* Derive the correct offset corresponding to a repcode */
- outSeqs[i].rep = seqStoreSeqs[i].offset;
+ outSeqs[i].rep = seqStoreSeqs[i].offBase;
if (outSeqs[i].litLength != 0) {
rawOffset = updatedRepcodes.rep[outSeqs[i].rep - 1];
} else {
if (outSeqs[i].rep == 3) {
rawOffset = updatedRepcodes.rep[0] - 1;
} else {
rawOffset = updatedRepcodes.rep[outSeqs[i].rep];
}
}
}
outSeqs[i].offset = rawOffset;
/* seqStoreSeqs[i].offset == offCode+1, and ZSTD_updateRep() expects offCode
so we provide seqStoreSeqs[i].offset - 1 */
- updatedRepcodes = ZSTD_updateRep(updatedRepcodes.rep,
- seqStoreSeqs[i].offset - 1,
- seqStoreSeqs[i].litLength == 0);
+ ZSTD_updateRep(updatedRepcodes.rep,
+ seqStoreSeqs[i].offBase - 1,
+ seqStoreSeqs[i].litLength == 0);
literalsRead += outSeqs[i].litLength;
}
/* Insert last literals (if any exist) in the block as a sequence with ml == off == 0.
* If there are no last literals, then we'll emit (of: 0, ml: 0, ll: 0), which is a marker
* for the block boundary, according to the API.
*/
assert(seqStoreLiteralsSize >= literalsRead);
lastLLSize = seqStoreLiteralsSize - literalsRead;
outSeqs[i].litLength = (U32)lastLLSize;
outSeqs[i].matchLength = outSeqs[i].offset = outSeqs[i].rep = 0;
seqStoreSeqSize++;
zc->seqCollector.seqIndex += seqStoreSeqSize;
}
size_t ZSTD_generateSequences(ZSTD_CCtx* zc, ZSTD_Sequence* outSeqs,
size_t outSeqsSize, const void* src, size_t srcSize)
{
const size_t dstCapacity = ZSTD_compressBound(srcSize);
void* dst = ZSTD_customMalloc(dstCapacity, ZSTD_defaultCMem);
SeqCollector seqCollector;
RETURN_ERROR_IF(dst == NULL, memory_allocation, "NULL pointer!");
seqCollector.collectSequences = 1;
seqCollector.seqStart = outSeqs;
seqCollector.seqIndex = 0;
seqCollector.maxSequences = outSeqsSize;
zc->seqCollector = seqCollector;
ZSTD_compress2(zc, dst, dstCapacity, src, srcSize);
ZSTD_customFree(dst, ZSTD_defaultCMem);
return zc->seqCollector.seqIndex;
}
size_t ZSTD_mergeBlockDelimiters(ZSTD_Sequence* sequences, size_t seqsSize) {
size_t in = 0;
size_t out = 0;
for (; in < seqsSize; ++in) {
if (sequences[in].offset == 0 && sequences[in].matchLength == 0) {
if (in != seqsSize - 1) {
sequences[in+1].litLength += sequences[in].litLength;
}
} else {
sequences[out] = sequences[in];
++out;
}
}
return out;
}
/* Unrolled loop to read four size_ts of input at a time. Returns 1 if is RLE, 0 if not. */
static int ZSTD_isRLE(const BYTE* src, size_t length) {
const BYTE* ip = src;
const BYTE value = ip[0];
const size_t valueST = (size_t)((U64)value * 0x0101010101010101ULL);
const size_t unrollSize = sizeof(size_t) * 4;
const size_t unrollMask = unrollSize - 1;
const size_t prefixLength = length & unrollMask;
size_t i;
size_t u;
if (length == 1) return 1;
/* Check if prefix is RLE first before using unrolled loop */
if (prefixLength && ZSTD_count(ip+1, ip, ip+prefixLength) != prefixLength-1) {
return 0;
}
for (i = prefixLength; i != length; i += unrollSize) {
for (u = 0; u < unrollSize; u += sizeof(size_t)) {
if (MEM_readST(ip + i + u) != valueST) {
return 0;
}
}
}
return 1;
}
/* Returns true if the given block may be RLE.
* This is just a heuristic based on the compressibility.
* It may return both false positives and false negatives.
*/
static int ZSTD_maybeRLE(seqStore_t const* seqStore)
{
size_t const nbSeqs = (size_t)(seqStore->sequences - seqStore->sequencesStart);
size_t const nbLits = (size_t)(seqStore->lit - seqStore->litStart);
return nbSeqs < 4 && nbLits < 10;
}
-static void ZSTD_confirmRepcodesAndEntropyTables(ZSTD_CCtx* zc)
+static void ZSTD_blockState_confirmRepcodesAndEntropyTables(ZSTD_blockState_t* const bs)
+{
+ ZSTD_compressedBlockState_t* const tmp = bs->prevCBlock;
+ bs->prevCBlock = bs->nextCBlock;
+ bs->nextCBlock = tmp;
+}
+
+/* Writes the block header */
+static void writeBlockHeader(void* op, size_t cSize, size_t blockSize, U32 lastBlock) {
+ U32 const cBlockHeader = cSize == 1 ?
+ lastBlock + (((U32)bt_rle)<<1) + (U32)(blockSize << 3) :
+ lastBlock + (((U32)bt_compressed)<<1) + (U32)(cSize << 3);
+ MEM_writeLE24(op, cBlockHeader);
+ DEBUGLOG(3, "writeBlockHeader: cSize: %zu blockSize: %zu lastBlock: %u", cSize, blockSize, lastBlock);
+}
+
+/** ZSTD_buildBlockEntropyStats_literals() :
+ * Builds entropy for the literals.
+ * Stores literals block type (raw, rle, compressed, repeat) and
+ * huffman description table to hufMetadata.
+ * Requires ENTROPY_WORKSPACE_SIZE workspace
+ * @return : size of huffman description table or error code */
+static size_t ZSTD_buildBlockEntropyStats_literals(void* const src, size_t srcSize,
+ const ZSTD_hufCTables_t* prevHuf,
+ ZSTD_hufCTables_t* nextHuf,
+ ZSTD_hufCTablesMetadata_t* hufMetadata,
+ const int literalsCompressionIsDisabled,
+ void* workspace, size_t wkspSize)
+{
+ BYTE* const wkspStart = (BYTE*)workspace;
+ BYTE* const wkspEnd = wkspStart + wkspSize;
+ BYTE* const countWkspStart = wkspStart;
+ unsigned* const countWksp = (unsigned*)workspace;
+ const size_t countWkspSize = (HUF_SYMBOLVALUE_MAX + 1) * sizeof(unsigned);
+ BYTE* const nodeWksp = countWkspStart + countWkspSize;
+ const size_t nodeWkspSize = wkspEnd-nodeWksp;
+ unsigned maxSymbolValue = HUF_SYMBOLVALUE_MAX;
+ unsigned huffLog = HUF_TABLELOG_DEFAULT;
+ HUF_repeat repeat = prevHuf->repeatMode;
+ DEBUGLOG(5, "ZSTD_buildBlockEntropyStats_literals (srcSize=%zu)", srcSize);
+
+ /* Prepare nextEntropy assuming reusing the existing table */
+ ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
+
+ if (literalsCompressionIsDisabled) {
+ DEBUGLOG(5, "set_basic - disabled");
+ hufMetadata->hType = set_basic;
+ return 0;
+ }
+
+ /* small ? don't even attempt compression (speed opt) */
+#ifndef COMPRESS_LITERALS_SIZE_MIN
+#define COMPRESS_LITERALS_SIZE_MIN 63
+#endif
+ { size_t const minLitSize = (prevHuf->repeatMode == HUF_repeat_valid) ? 6 : COMPRESS_LITERALS_SIZE_MIN;
+ if (srcSize <= minLitSize) {
+ DEBUGLOG(5, "set_basic - too small");
+ hufMetadata->hType = set_basic;
+ return 0;
+ }
+ }
+
+ /* Scan input and build symbol stats */
+ { size_t const largest = HIST_count_wksp (countWksp, &maxSymbolValue, (const BYTE*)src, srcSize, workspace, wkspSize);
+ FORWARD_IF_ERROR(largest, "HIST_count_wksp failed");
+ if (largest == srcSize) {
+ DEBUGLOG(5, "set_rle");
+ hufMetadata->hType = set_rle;
+ return 0;
+ }
+ if (largest <= (srcSize >> 7)+4) {
+ DEBUGLOG(5, "set_basic - no gain");
+ hufMetadata->hType = set_basic;
+ return 0;
+ }
+ }
+
+ /* Validate the previous Huffman table */
+ if (repeat == HUF_repeat_check && !HUF_validateCTable((HUF_CElt const*)prevHuf->CTable, countWksp, maxSymbolValue)) {
+ repeat = HUF_repeat_none;
+ }
+
+ /* Build Huffman Tree */
+ ZSTD_memset(nextHuf->CTable, 0, sizeof(nextHuf->CTable));
+ huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
+ { size_t const maxBits = HUF_buildCTable_wksp((HUF_CElt*)nextHuf->CTable, countWksp,
+ maxSymbolValue, huffLog,
+ nodeWksp, nodeWkspSize);
+ FORWARD_IF_ERROR(maxBits, "HUF_buildCTable_wksp");
+ huffLog = (U32)maxBits;
+ { /* Build and write the CTable */
+ size_t const newCSize = HUF_estimateCompressedSize(
+ (HUF_CElt*)nextHuf->CTable, countWksp, maxSymbolValue);
+ size_t const hSize = HUF_writeCTable_wksp(
+ hufMetadata->hufDesBuffer, sizeof(hufMetadata->hufDesBuffer),
+ (HUF_CElt*)nextHuf->CTable, maxSymbolValue, huffLog,
+ nodeWksp, nodeWkspSize);
+ /* Check against repeating the previous CTable */
+ if (repeat != HUF_repeat_none) {
+ size_t const oldCSize = HUF_estimateCompressedSize(
+ (HUF_CElt const*)prevHuf->CTable, countWksp, maxSymbolValue);
+ if (oldCSize < srcSize && (oldCSize <= hSize + newCSize || hSize + 12 >= srcSize)) {
+ DEBUGLOG(5, "set_repeat - smaller");
+ ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
+ hufMetadata->hType = set_repeat;
+ return 0;
+ }
+ }
+ if (newCSize + hSize >= srcSize) {
+ DEBUGLOG(5, "set_basic - no gains");
+ ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
+ hufMetadata->hType = set_basic;
+ return 0;
+ }
+ DEBUGLOG(5, "set_compressed (hSize=%u)", (U32)hSize);
+ hufMetadata->hType = set_compressed;
+ nextHuf->repeatMode = HUF_repeat_check;
+ return hSize;
+ }
+ }
+}
+
+
+/* ZSTD_buildDummySequencesStatistics():
+ * Returns a ZSTD_symbolEncodingTypeStats_t with all encoding types as set_basic,
+ * and updates nextEntropy to the appropriate repeatMode.
+ */
+static ZSTD_symbolEncodingTypeStats_t
+ZSTD_buildDummySequencesStatistics(ZSTD_fseCTables_t* nextEntropy) {
+ ZSTD_symbolEncodingTypeStats_t stats = {set_basic, set_basic, set_basic, 0, 0};
+ nextEntropy->litlength_repeatMode = FSE_repeat_none;
+ nextEntropy->offcode_repeatMode = FSE_repeat_none;
+ nextEntropy->matchlength_repeatMode = FSE_repeat_none;
+ return stats;
+}
+
+/** ZSTD_buildBlockEntropyStats_sequences() :
+ * Builds entropy for the sequences.
+ * Stores symbol compression modes and fse table to fseMetadata.
+ * Requires ENTROPY_WORKSPACE_SIZE wksp.
+ * @return : size of fse tables or error code */
+static size_t ZSTD_buildBlockEntropyStats_sequences(seqStore_t* seqStorePtr,
+ const ZSTD_fseCTables_t* prevEntropy,
+ ZSTD_fseCTables_t* nextEntropy,
+ const ZSTD_CCtx_params* cctxParams,
+ ZSTD_fseCTablesMetadata_t* fseMetadata,
+ void* workspace, size_t wkspSize)
+{
+ ZSTD_strategy const strategy = cctxParams->cParams.strategy;
+ size_t const nbSeq = seqStorePtr->sequences - seqStorePtr->sequencesStart;
+ BYTE* const ostart = fseMetadata->fseTablesBuffer;
+ BYTE* const oend = ostart + sizeof(fseMetadata->fseTablesBuffer);
+ BYTE* op = ostart;
+ unsigned* countWorkspace = (unsigned*)workspace;
+ unsigned* entropyWorkspace = countWorkspace + (MaxSeq + 1);
+ size_t entropyWorkspaceSize = wkspSize - (MaxSeq + 1) * sizeof(*countWorkspace);
+ ZSTD_symbolEncodingTypeStats_t stats;
+
+ DEBUGLOG(5, "ZSTD_buildBlockEntropyStats_sequences (nbSeq=%zu)", nbSeq);
+ stats = nbSeq != 0 ? ZSTD_buildSequencesStatistics(seqStorePtr, nbSeq,
+ prevEntropy, nextEntropy, op, oend,
+ strategy, countWorkspace,
+ entropyWorkspace, entropyWorkspaceSize)
+ : ZSTD_buildDummySequencesStatistics(nextEntropy);
+ FORWARD_IF_ERROR(stats.size, "ZSTD_buildSequencesStatistics failed!");
+ fseMetadata->llType = (symbolEncodingType_e) stats.LLtype;
+ fseMetadata->ofType = (symbolEncodingType_e) stats.Offtype;
+ fseMetadata->mlType = (symbolEncodingType_e) stats.MLtype;
+ fseMetadata->lastCountSize = stats.lastCountSize;
+ return stats.size;
+}
+
+
+/** ZSTD_buildBlockEntropyStats() :
+ * Builds entropy for the block.
+ * Requires workspace size ENTROPY_WORKSPACE_SIZE
+ *
+ * @return : 0 on success or error code
+ */
+size_t ZSTD_buildBlockEntropyStats(seqStore_t* seqStorePtr,
+ const ZSTD_entropyCTables_t* prevEntropy,
+ ZSTD_entropyCTables_t* nextEntropy,
+ const ZSTD_CCtx_params* cctxParams,
+ ZSTD_entropyCTablesMetadata_t* entropyMetadata,
+ void* workspace, size_t wkspSize)
+{
+ size_t const litSize = seqStorePtr->lit - seqStorePtr->litStart;
+ entropyMetadata->hufMetadata.hufDesSize =
+ ZSTD_buildBlockEntropyStats_literals(seqStorePtr->litStart, litSize,
+ &prevEntropy->huf, &nextEntropy->huf,
+ &entropyMetadata->hufMetadata,
+ ZSTD_literalsCompressionIsDisabled(cctxParams),
+ workspace, wkspSize);
+ FORWARD_IF_ERROR(entropyMetadata->hufMetadata.hufDesSize, "ZSTD_buildBlockEntropyStats_literals failed");
+ entropyMetadata->fseMetadata.fseTablesSize =
+ ZSTD_buildBlockEntropyStats_sequences(seqStorePtr,
+ &prevEntropy->fse, &nextEntropy->fse,
+ cctxParams,
+ &entropyMetadata->fseMetadata,
+ workspace, wkspSize);
+ FORWARD_IF_ERROR(entropyMetadata->fseMetadata.fseTablesSize, "ZSTD_buildBlockEntropyStats_sequences failed");
+ return 0;
+}
+
+/* Returns the size estimate for the literals section (header + content) of a block */
+static size_t ZSTD_estimateBlockSize_literal(const BYTE* literals, size_t litSize,
+ const ZSTD_hufCTables_t* huf,
+ const ZSTD_hufCTablesMetadata_t* hufMetadata,
+ void* workspace, size_t wkspSize,
+ int writeEntropy)
+{
+ unsigned* const countWksp = (unsigned*)workspace;
+ unsigned maxSymbolValue = HUF_SYMBOLVALUE_MAX;
+ size_t literalSectionHeaderSize = 3 + (litSize >= 1 KB) + (litSize >= 16 KB);
+ U32 singleStream = litSize < 256;
+
+ if (hufMetadata->hType == set_basic) return litSize;
+ else if (hufMetadata->hType == set_rle) return 1;
+ else if (hufMetadata->hType == set_compressed || hufMetadata->hType == set_repeat) {
+ size_t const largest = HIST_count_wksp (countWksp, &maxSymbolValue, (const BYTE*)literals, litSize, workspace, wkspSize);
+ if (ZSTD_isError(largest)) return litSize;
+ { size_t cLitSizeEstimate = HUF_estimateCompressedSize((const HUF_CElt*)huf->CTable, countWksp, maxSymbolValue);
+ if (writeEntropy) cLitSizeEstimate += hufMetadata->hufDesSize;
+ if (!singleStream) cLitSizeEstimate += 6; /* multi-stream huffman uses 6-byte jump table */
+ return cLitSizeEstimate + literalSectionHeaderSize;
+ } }
+ assert(0); /* impossible */
+ return 0;
+}
+
+/* Returns the size estimate for the FSE-compressed symbols (of, ml, ll) of a block */
+static size_t ZSTD_estimateBlockSize_symbolType(symbolEncodingType_e type,
+ const BYTE* codeTable, size_t nbSeq, unsigned maxCode,
+ const FSE_CTable* fseCTable,
+ const U8* additionalBits,
+ short const* defaultNorm, U32 defaultNormLog, U32 defaultMax,
+ void* workspace, size_t wkspSize)
+{
+ unsigned* const countWksp = (unsigned*)workspace;
+ const BYTE* ctp = codeTable;
+ const BYTE* const ctStart = ctp;
+ const BYTE* const ctEnd = ctStart + nbSeq;
+ size_t cSymbolTypeSizeEstimateInBits = 0;
+ unsigned max = maxCode;
+
+ HIST_countFast_wksp(countWksp, &max, codeTable, nbSeq, workspace, wkspSize); /* can't fail */
+ if (type == set_basic) {
+ /* We selected this encoding type, so it must be valid. */
+ assert(max <= defaultMax);
+ (void)defaultMax;
+ cSymbolTypeSizeEstimateInBits = ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, countWksp, max);
+ } else if (type == set_rle) {
+ cSymbolTypeSizeEstimateInBits = 0;
+ } else if (type == set_compressed || type == set_repeat) {
+ cSymbolTypeSizeEstimateInBits = ZSTD_fseBitCost(fseCTable, countWksp, max);
+ }
+ if (ZSTD_isError(cSymbolTypeSizeEstimateInBits)) {
+ return nbSeq * 10;
+ }
+ while (ctp < ctEnd) {
+ if (additionalBits) cSymbolTypeSizeEstimateInBits += additionalBits[*ctp];
+ else cSymbolTypeSizeEstimateInBits += *ctp; /* for offset, offset code is also the number of additional bits */
+ ctp++;
+ }
+ return cSymbolTypeSizeEstimateInBits >> 3;
+}
+
+/* Returns the size estimate for the sequences section (header + content) of a block */
+static size_t ZSTD_estimateBlockSize_sequences(const BYTE* ofCodeTable,
+ const BYTE* llCodeTable,
+ const BYTE* mlCodeTable,
+ size_t nbSeq,
+ const ZSTD_fseCTables_t* fseTables,
+ const ZSTD_fseCTablesMetadata_t* fseMetadata,
+ void* workspace, size_t wkspSize,
+ int writeEntropy)
+{
+ size_t sequencesSectionHeaderSize = 1 /* seqHead */ + 1 /* min seqSize size */ + (nbSeq >= 128) + (nbSeq >= LONGNBSEQ);
+ size_t cSeqSizeEstimate = 0;
+ cSeqSizeEstimate += ZSTD_estimateBlockSize_symbolType(fseMetadata->ofType, ofCodeTable, nbSeq, MaxOff,
+ fseTables->offcodeCTable, NULL,
+ OF_defaultNorm, OF_defaultNormLog, DefaultMaxOff,
+ workspace, wkspSize);
+ cSeqSizeEstimate += ZSTD_estimateBlockSize_symbolType(fseMetadata->llType, llCodeTable, nbSeq, MaxLL,
+ fseTables->litlengthCTable, LL_bits,
+ LL_defaultNorm, LL_defaultNormLog, MaxLL,
+ workspace, wkspSize);
+ cSeqSizeEstimate += ZSTD_estimateBlockSize_symbolType(fseMetadata->mlType, mlCodeTable, nbSeq, MaxML,
+ fseTables->matchlengthCTable, ML_bits,
+ ML_defaultNorm, ML_defaultNormLog, MaxML,
+ workspace, wkspSize);
+ if (writeEntropy) cSeqSizeEstimate += fseMetadata->fseTablesSize;
+ return cSeqSizeEstimate + sequencesSectionHeaderSize;
+}
+
+/* Returns the size estimate for a given stream of literals, of, ll, ml */
+static size_t ZSTD_estimateBlockSize(const BYTE* literals, size_t litSize,
+ const BYTE* ofCodeTable,
+ const BYTE* llCodeTable,
+ const BYTE* mlCodeTable,
+ size_t nbSeq,
+ const ZSTD_entropyCTables_t* entropy,
+ const ZSTD_entropyCTablesMetadata_t* entropyMetadata,
+ void* workspace, size_t wkspSize,
+ int writeLitEntropy, int writeSeqEntropy) {
+ size_t const literalsSize = ZSTD_estimateBlockSize_literal(literals, litSize,
+ &entropy->huf, &entropyMetadata->hufMetadata,
+ workspace, wkspSize, writeLitEntropy);
+ size_t const seqSize = ZSTD_estimateBlockSize_sequences(ofCodeTable, llCodeTable, mlCodeTable,
+ nbSeq, &entropy->fse, &entropyMetadata->fseMetadata,
+ workspace, wkspSize, writeSeqEntropy);
+ return seqSize + literalsSize + ZSTD_blockHeaderSize;
+}
+
+/* Builds entropy statistics and uses them for blocksize estimation.
+ *
+ * Returns the estimated compressed size of the seqStore, or a zstd error.
+ */
+static size_t ZSTD_buildEntropyStatisticsAndEstimateSubBlockSize(seqStore_t* seqStore, ZSTD_CCtx* zc) {
+ ZSTD_entropyCTablesMetadata_t* entropyMetadata = &zc->blockSplitCtx.entropyMetadata;
+ DEBUGLOG(6, "ZSTD_buildEntropyStatisticsAndEstimateSubBlockSize()");
+ FORWARD_IF_ERROR(ZSTD_buildBlockEntropyStats(seqStore,
+ &zc->blockState.prevCBlock->entropy,
+ &zc->blockState.nextCBlock->entropy,
+ &zc->appliedParams,
+ entropyMetadata,
+ zc->entropyWorkspace, ENTROPY_WORKSPACE_SIZE /* statically allocated in resetCCtx */), "");
+ return ZSTD_estimateBlockSize(seqStore->litStart, (size_t)(seqStore->lit - seqStore->litStart),
+ seqStore->ofCode, seqStore->llCode, seqStore->mlCode,
+ (size_t)(seqStore->sequences - seqStore->sequencesStart),
+ &zc->blockState.nextCBlock->entropy, entropyMetadata, zc->entropyWorkspace, ENTROPY_WORKSPACE_SIZE,
+ (int)(entropyMetadata->hufMetadata.hType == set_compressed), 1);
+}
+
+/* Returns literals bytes represented in a seqStore */
+static size_t ZSTD_countSeqStoreLiteralsBytes(const seqStore_t* const seqStore) {
+ size_t literalsBytes = 0;
+ size_t const nbSeqs = seqStore->sequences - seqStore->sequencesStart;
+ size_t i;
+ for (i = 0; i < nbSeqs; ++i) {
+ seqDef seq = seqStore->sequencesStart[i];
+ literalsBytes += seq.litLength;
+ if (i == seqStore->longLengthPos && seqStore->longLengthType == ZSTD_llt_literalLength) {
+ literalsBytes += 0x10000;
+ }
+ }
+ return literalsBytes;
+}
+
+/* Returns match bytes represented in a seqStore */
+static size_t ZSTD_countSeqStoreMatchBytes(const seqStore_t* const seqStore) {
+ size_t matchBytes = 0;
+ size_t const nbSeqs = seqStore->sequences - seqStore->sequencesStart;
+ size_t i;
+ for (i = 0; i < nbSeqs; ++i) {
+ seqDef seq = seqStore->sequencesStart[i];
+ matchBytes += seq.mlBase + MINMATCH;
+ if (i == seqStore->longLengthPos && seqStore->longLengthType == ZSTD_llt_matchLength) {
+ matchBytes += 0x10000;
+ }
+ }
+ return matchBytes;
+}
+
+/* Derives the seqStore that is a chunk of the originalSeqStore from [startIdx, endIdx).
+ * Stores the result in resultSeqStore.
+ */
+static void ZSTD_deriveSeqStoreChunk(seqStore_t* resultSeqStore,
+ const seqStore_t* originalSeqStore,
+ size_t startIdx, size_t endIdx) {
+ BYTE* const litEnd = originalSeqStore->lit;
+ size_t literalsBytes;
+ size_t literalsBytesPreceding = 0;
+
+ *resultSeqStore = *originalSeqStore;
+ if (startIdx > 0) {
+ resultSeqStore->sequences = originalSeqStore->sequencesStart + startIdx;
+ literalsBytesPreceding = ZSTD_countSeqStoreLiteralsBytes(resultSeqStore);
+ }
+
+ /* Move longLengthPos into the correct position if necessary */
+ if (originalSeqStore->longLengthType != ZSTD_llt_none) {
+ if (originalSeqStore->longLengthPos < startIdx || originalSeqStore->longLengthPos > endIdx) {
+ resultSeqStore->longLengthType = ZSTD_llt_none;
+ } else {
+ resultSeqStore->longLengthPos -= (U32)startIdx;
+ }
+ }
+ resultSeqStore->sequencesStart = originalSeqStore->sequencesStart + startIdx;
+ resultSeqStore->sequences = originalSeqStore->sequencesStart + endIdx;
+ literalsBytes = ZSTD_countSeqStoreLiteralsBytes(resultSeqStore);
+ resultSeqStore->litStart += literalsBytesPreceding;
+ if (endIdx == (size_t)(originalSeqStore->sequences - originalSeqStore->sequencesStart)) {
+ /* This accounts for possible last literals if the derived chunk reaches the end of the block */
+ resultSeqStore->lit = litEnd;
+ } else {
+ resultSeqStore->lit = resultSeqStore->litStart+literalsBytes;
+ }
+ resultSeqStore->llCode += startIdx;
+ resultSeqStore->mlCode += startIdx;
+ resultSeqStore->ofCode += startIdx;
+}
+
+/**
+ * Returns the raw offset represented by the combination of offCode, ll0, and repcode history.
+ * offCode must represent a repcode in the numeric representation of ZSTD_storeSeq().
+ */
+static U32
+ZSTD_resolveRepcodeToRawOffset(const U32 rep[ZSTD_REP_NUM], const U32 offCode, const U32 ll0)
{
- ZSTD_compressedBlockState_t* const tmp = zc->blockState.prevCBlock;
- zc->blockState.prevCBlock = zc->blockState.nextCBlock;
- zc->blockState.nextCBlock = tmp;
+ U32 const adjustedOffCode = STORED_REPCODE(offCode) - 1 + ll0; /* [ 0 - 3 ] */
+ assert(STORED_IS_REPCODE(offCode));
+ if (adjustedOffCode == ZSTD_REP_NUM) {
+ /* litlength == 0 and offCode == 2 implies selection of first repcode - 1 */
+ assert(rep[0] > 0);
+ return rep[0] - 1;
+ }
+ return rep[adjustedOffCode];
+}
+
+/**
+ * ZSTD_seqStore_resolveOffCodes() reconciles any possible divergences in offset history that may arise
+ * due to emission of RLE/raw blocks that disturb the offset history,
+ * and replaces any repcodes within the seqStore that may be invalid.
+ *
+ * dRepcodes are updated as would be on the decompression side.
+ * cRepcodes are updated exactly in accordance with the seqStore.
+ *
+ * Note : this function assumes seq->offBase respects the following numbering scheme :
+ * 0 : invalid
+ * 1-3 : repcode 1-3
+ * 4+ : real_offset+3
+ */
+static void ZSTD_seqStore_resolveOffCodes(repcodes_t* const dRepcodes, repcodes_t* const cRepcodes,
+ seqStore_t* const seqStore, U32 const nbSeq) {
+ U32 idx = 0;
+ for (; idx < nbSeq; ++idx) {
+ seqDef* const seq = seqStore->sequencesStart + idx;
+ U32 const ll0 = (seq->litLength == 0);
+ U32 const offCode = OFFBASE_TO_STORED(seq->offBase);
+ assert(seq->offBase > 0);
+ if (STORED_IS_REPCODE(offCode)) {
+ U32 const dRawOffset = ZSTD_resolveRepcodeToRawOffset(dRepcodes->rep, offCode, ll0);
+ U32 const cRawOffset = ZSTD_resolveRepcodeToRawOffset(cRepcodes->rep, offCode, ll0);
+ /* Adjust simulated decompression repcode history if we come across a mismatch. Replace
+ * the repcode with the offset it actually references, determined by the compression
+ * repcode history.
+ */
+ if (dRawOffset != cRawOffset) {
+ seq->offBase = cRawOffset + ZSTD_REP_NUM;
+ }
+ }
+ /* Compression repcode history is always updated with values directly from the unmodified seqStore.
+ * Decompression repcode history may use modified seq->offset value taken from compression repcode history.
+ */
+ ZSTD_updateRep(dRepcodes->rep, OFFBASE_TO_STORED(seq->offBase), ll0);
+ ZSTD_updateRep(cRepcodes->rep, offCode, ll0);
+ }
}
-static size_t ZSTD_compressBlock_internal(ZSTD_CCtx* zc,
- void* dst, size_t dstCapacity,
- const void* src, size_t srcSize, U32 frame)
+/* ZSTD_compressSeqStore_singleBlock():
+ * Compresses a seqStore into a block with a block header, into the buffer dst.
+ *
+ * Returns the total size of that block (including header) or a ZSTD error code.
+ */
+static size_t
+ZSTD_compressSeqStore_singleBlock(ZSTD_CCtx* zc, seqStore_t* const seqStore,
+ repcodes_t* const dRep, repcodes_t* const cRep,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ U32 lastBlock, U32 isPartition)
+{
+ const U32 rleMaxLength = 25;
+ BYTE* op = (BYTE*)dst;
+ const BYTE* ip = (const BYTE*)src;
+ size_t cSize;
+ size_t cSeqsSize;
+
+ /* In case of an RLE or raw block, the simulated decompression repcode history must be reset */
+ repcodes_t const dRepOriginal = *dRep;
+ DEBUGLOG(5, "ZSTD_compressSeqStore_singleBlock");
+ if (isPartition)
+ ZSTD_seqStore_resolveOffCodes(dRep, cRep, seqStore, (U32)(seqStore->sequences - seqStore->sequencesStart));
+
+ RETURN_ERROR_IF(dstCapacity < ZSTD_blockHeaderSize, dstSize_tooSmall, "Block header doesn't fit");
+ cSeqsSize = ZSTD_entropyCompressSeqStore(seqStore,
+ &zc->blockState.prevCBlock->entropy, &zc->blockState.nextCBlock->entropy,
+ &zc->appliedParams,
+ op + ZSTD_blockHeaderSize, dstCapacity - ZSTD_blockHeaderSize,
+ srcSize,
+ zc->entropyWorkspace, ENTROPY_WORKSPACE_SIZE /* statically allocated in resetCCtx */,
+ zc->bmi2);
+ FORWARD_IF_ERROR(cSeqsSize, "ZSTD_entropyCompressSeqStore failed!");
+
+ if (!zc->isFirstBlock &&
+ cSeqsSize < rleMaxLength &&
+ ZSTD_isRLE((BYTE const*)src, srcSize)) {
+ /* We don't want to emit our first block as a RLE even if it qualifies because
+ * doing so will cause the decoder (cli only) to throw a "should consume all input error."
+ * This is only an issue for zstd <= v1.4.3
+ */
+ cSeqsSize = 1;
+ }
+
+ if (zc->seqCollector.collectSequences) {
+ ZSTD_copyBlockSequences(zc);
+ ZSTD_blockState_confirmRepcodesAndEntropyTables(&zc->blockState);
+ return 0;
+ }
+
+ if (cSeqsSize == 0) {
+ cSize = ZSTD_noCompressBlock(op, dstCapacity, ip, srcSize, lastBlock);
+ FORWARD_IF_ERROR(cSize, "Nocompress block failed");
+ DEBUGLOG(4, "Writing out nocompress block, size: %zu", cSize);
+ *dRep = dRepOriginal; /* reset simulated decompression repcode history */
+ } else if (cSeqsSize == 1) {
+ cSize = ZSTD_rleCompressBlock(op, dstCapacity, *ip, srcSize, lastBlock);
+ FORWARD_IF_ERROR(cSize, "RLE compress block failed");
+ DEBUGLOG(4, "Writing out RLE block, size: %zu", cSize);
+ *dRep = dRepOriginal; /* reset simulated decompression repcode history */
+ } else {
+ ZSTD_blockState_confirmRepcodesAndEntropyTables(&zc->blockState);
+ writeBlockHeader(op, cSeqsSize, srcSize, lastBlock);
+ cSize = ZSTD_blockHeaderSize + cSeqsSize;
+ DEBUGLOG(4, "Writing out compressed block, size: %zu", cSize);
+ }
+
+ if (zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid)
+ zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check;
+
+ return cSize;
+}
+
+/* Struct to keep track of where we are in our recursive calls. */
+typedef struct {
+ U32* splitLocations; /* Array of split indices */
+ size_t idx; /* The current index within splitLocations being worked on */
+} seqStoreSplits;
+
+#define MIN_SEQUENCES_BLOCK_SPLITTING 300
+
+/* Helper function to perform the recursive search for block splits.
+ * Estimates the cost of seqStore prior to split, and estimates the cost of splitting the sequences in half.
+ * If advantageous to split, then we recurse down the two sub-blocks. If not, or if an error occurred in estimation, then
+ * we do not recurse.
+ *
+ * Note: The recursion depth is capped by a heuristic minimum number of sequences, defined by MIN_SEQUENCES_BLOCK_SPLITTING.
+ * In theory, this means the absolute largest recursion depth is 10 == log2(maxNbSeqInBlock/MIN_SEQUENCES_BLOCK_SPLITTING).
+ * In practice, recursion depth usually doesn't go beyond 4.
+ *
+ * Furthermore, the number of splits is capped by ZSTD_MAX_NB_BLOCK_SPLITS. At ZSTD_MAX_NB_BLOCK_SPLITS == 196 with the current existing blockSize
+ * maximum of 128 KB, this value is actually impossible to reach.
+ */
+static void
+ZSTD_deriveBlockSplitsHelper(seqStoreSplits* splits, size_t startIdx, size_t endIdx,
+ ZSTD_CCtx* zc, const seqStore_t* origSeqStore)
+{
+ seqStore_t* fullSeqStoreChunk = &zc->blockSplitCtx.fullSeqStoreChunk;
+ seqStore_t* firstHalfSeqStore = &zc->blockSplitCtx.firstHalfSeqStore;
+ seqStore_t* secondHalfSeqStore = &zc->blockSplitCtx.secondHalfSeqStore;
+ size_t estimatedOriginalSize;
+ size_t estimatedFirstHalfSize;
+ size_t estimatedSecondHalfSize;
+ size_t midIdx = (startIdx + endIdx)/2;
+
+ if (endIdx - startIdx < MIN_SEQUENCES_BLOCK_SPLITTING || splits->idx >= ZSTD_MAX_NB_BLOCK_SPLITS) {
+ DEBUGLOG(6, "ZSTD_deriveBlockSplitsHelper: Too few sequences");
+ return;
+ }
+ DEBUGLOG(4, "ZSTD_deriveBlockSplitsHelper: startIdx=%zu endIdx=%zu", startIdx, endIdx);
+ ZSTD_deriveSeqStoreChunk(fullSeqStoreChunk, origSeqStore, startIdx, endIdx);
+ ZSTD_deriveSeqStoreChunk(firstHalfSeqStore, origSeqStore, startIdx, midIdx);
+ ZSTD_deriveSeqStoreChunk(secondHalfSeqStore, origSeqStore, midIdx, endIdx);
+ estimatedOriginalSize = ZSTD_buildEntropyStatisticsAndEstimateSubBlockSize(fullSeqStoreChunk, zc);
+ estimatedFirstHalfSize = ZSTD_buildEntropyStatisticsAndEstimateSubBlockSize(firstHalfSeqStore, zc);
+ estimatedSecondHalfSize = ZSTD_buildEntropyStatisticsAndEstimateSubBlockSize(secondHalfSeqStore, zc);
+ DEBUGLOG(4, "Estimated original block size: %zu -- First half split: %zu -- Second half split: %zu",
+ estimatedOriginalSize, estimatedFirstHalfSize, estimatedSecondHalfSize);
+ if (ZSTD_isError(estimatedOriginalSize) || ZSTD_isError(estimatedFirstHalfSize) || ZSTD_isError(estimatedSecondHalfSize)) {
+ return;
+ }
+ if (estimatedFirstHalfSize + estimatedSecondHalfSize < estimatedOriginalSize) {
+ ZSTD_deriveBlockSplitsHelper(splits, startIdx, midIdx, zc, origSeqStore);
+ splits->splitLocations[splits->idx] = (U32)midIdx;
+ splits->idx++;
+ ZSTD_deriveBlockSplitsHelper(splits, midIdx, endIdx, zc, origSeqStore);
+ }
+}
+
+/* Base recursive function. Populates a table with intra-block partition indices that can improve compression ratio.
+ *
+ * Returns the number of splits made (which equals the size of the partition table - 1).
+ */
+static size_t ZSTD_deriveBlockSplits(ZSTD_CCtx* zc, U32 partitions[], U32 nbSeq) {
+ seqStoreSplits splits = {partitions, 0};
+ if (nbSeq <= 4) {
+ DEBUGLOG(4, "ZSTD_deriveBlockSplits: Too few sequences to split");
+ /* Refuse to try and split anything with less than 4 sequences */
+ return 0;
+ }
+ ZSTD_deriveBlockSplitsHelper(&splits, 0, nbSeq, zc, &zc->seqStore);
+ splits.splitLocations[splits.idx] = nbSeq;
+ DEBUGLOG(5, "ZSTD_deriveBlockSplits: final nb partitions: %zu", splits.idx+1);
+ return splits.idx;
+}
+
+/* ZSTD_compressBlock_splitBlock():
+ * Attempts to split a given block into multiple blocks to improve compression ratio.
+ *
+ * Returns combined size of all blocks (which includes headers), or a ZSTD error code.
+ */
+static size_t
+ZSTD_compressBlock_splitBlock_internal(ZSTD_CCtx* zc, void* dst, size_t dstCapacity,
+ const void* src, size_t blockSize, U32 lastBlock, U32 nbSeq)
+{
+ size_t cSize = 0;
+ const BYTE* ip = (const BYTE*)src;
+ BYTE* op = (BYTE*)dst;
+ size_t i = 0;
+ size_t srcBytesTotal = 0;
+ U32* partitions = zc->blockSplitCtx.partitions; /* size == ZSTD_MAX_NB_BLOCK_SPLITS */
+ seqStore_t* nextSeqStore = &zc->blockSplitCtx.nextSeqStore;
+ seqStore_t* currSeqStore = &zc->blockSplitCtx.currSeqStore;
+ size_t numSplits = ZSTD_deriveBlockSplits(zc, partitions, nbSeq);
+
+ /* If a block is split and some partitions are emitted as RLE/uncompressed, then repcode history
+ * may become invalid. In order to reconcile potentially invalid repcodes, we keep track of two
+ * separate repcode histories that simulate repcode history on compression and decompression side,
+ * and use the histories to determine whether we must replace a particular repcode with its raw offset.
+ *
+ * 1) cRep gets updated for each partition, regardless of whether the block was emitted as uncompressed
+ * or RLE. This allows us to retrieve the offset value that an invalid repcode references within
+ * a nocompress/RLE block.
+ * 2) dRep gets updated only for compressed partitions, and when a repcode gets replaced, will use
+ * the replacement offset value rather than the original repcode to update the repcode history.
+ * dRep also will be the final repcode history sent to the next block.
+ *
+ * See ZSTD_seqStore_resolveOffCodes() for more details.
+ */
+ repcodes_t dRep;
+ repcodes_t cRep;
+ ZSTD_memcpy(dRep.rep, zc->blockState.prevCBlock->rep, sizeof(repcodes_t));
+ ZSTD_memcpy(cRep.rep, zc->blockState.prevCBlock->rep, sizeof(repcodes_t));
+ ZSTD_memset(nextSeqStore, 0, sizeof(seqStore_t));
+
+ DEBUGLOG(4, "ZSTD_compressBlock_splitBlock_internal (dstCapacity=%u, dictLimit=%u, nextToUpdate=%u)",
+ (unsigned)dstCapacity, (unsigned)zc->blockState.matchState.window.dictLimit,
+ (unsigned)zc->blockState.matchState.nextToUpdate);
+
+ if (numSplits == 0) {
+ size_t cSizeSingleBlock = ZSTD_compressSeqStore_singleBlock(zc, &zc->seqStore,
+ &dRep, &cRep,
+ op, dstCapacity,
+ ip, blockSize,
+ lastBlock, 0 /* isPartition */);
+ FORWARD_IF_ERROR(cSizeSingleBlock, "Compressing single block from splitBlock_internal() failed!");
+ DEBUGLOG(5, "ZSTD_compressBlock_splitBlock_internal: No splits");
+ assert(cSizeSingleBlock <= ZSTD_BLOCKSIZE_MAX + ZSTD_blockHeaderSize);
+ return cSizeSingleBlock;
+ }
+
+ ZSTD_deriveSeqStoreChunk(currSeqStore, &zc->seqStore, 0, partitions[0]);
+ for (i = 0; i <= numSplits; ++i) {
+ size_t srcBytes;
+ size_t cSizeChunk;
+ U32 const lastPartition = (i == numSplits);
+ U32 lastBlockEntireSrc = 0;
+
+ srcBytes = ZSTD_countSeqStoreLiteralsBytes(currSeqStore) + ZSTD_countSeqStoreMatchBytes(currSeqStore);
+ srcBytesTotal += srcBytes;
+ if (lastPartition) {
+ /* This is the final partition, need to account for possible last literals */
+ srcBytes += blockSize - srcBytesTotal;
+ lastBlockEntireSrc = lastBlock;
+ } else {
+ ZSTD_deriveSeqStoreChunk(nextSeqStore, &zc->seqStore, partitions[i], partitions[i+1]);
+ }
+
+ cSizeChunk = ZSTD_compressSeqStore_singleBlock(zc, currSeqStore,
+ &dRep, &cRep,
+ op, dstCapacity,
+ ip, srcBytes,
+ lastBlockEntireSrc, 1 /* isPartition */);
+ DEBUGLOG(5, "Estimated size: %zu actual size: %zu", ZSTD_buildEntropyStatisticsAndEstimateSubBlockSize(currSeqStore, zc), cSizeChunk);
+ FORWARD_IF_ERROR(cSizeChunk, "Compressing chunk failed!");
+
+ ip += srcBytes;
+ op += cSizeChunk;
+ dstCapacity -= cSizeChunk;
+ cSize += cSizeChunk;
+ *currSeqStore = *nextSeqStore;
+ assert(cSizeChunk <= ZSTD_BLOCKSIZE_MAX + ZSTD_blockHeaderSize);
+ }
+ /* cRep and dRep may have diverged during the compression. If so, we use the dRep repcodes
+ * for the next block.
+ */
+ ZSTD_memcpy(zc->blockState.prevCBlock->rep, dRep.rep, sizeof(repcodes_t));
+ return cSize;
+}
+
+static size_t
+ZSTD_compressBlock_splitBlock(ZSTD_CCtx* zc,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize, U32 lastBlock)
+{
+ const BYTE* ip = (const BYTE*)src;
+ BYTE* op = (BYTE*)dst;
+ U32 nbSeq;
+ size_t cSize;
+ DEBUGLOG(4, "ZSTD_compressBlock_splitBlock");
+ assert(zc->appliedParams.useBlockSplitter == ZSTD_ps_enable);
+
+ { const size_t bss = ZSTD_buildSeqStore(zc, src, srcSize);
+ FORWARD_IF_ERROR(bss, "ZSTD_buildSeqStore failed");
+ if (bss == ZSTDbss_noCompress) {
+ if (zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid)
+ zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check;
+ cSize = ZSTD_noCompressBlock(op, dstCapacity, ip, srcSize, lastBlock);
+ FORWARD_IF_ERROR(cSize, "ZSTD_noCompressBlock failed");
+ DEBUGLOG(4, "ZSTD_compressBlock_splitBlock: Nocompress block");
+ return cSize;
+ }
+ nbSeq = (U32)(zc->seqStore.sequences - zc->seqStore.sequencesStart);
+ }
+
+ cSize = ZSTD_compressBlock_splitBlock_internal(zc, dst, dstCapacity, src, srcSize, lastBlock, nbSeq);
+ FORWARD_IF_ERROR(cSize, "Splitting blocks failed!");
+ return cSize;
+}
+
+static size_t
+ZSTD_compressBlock_internal(ZSTD_CCtx* zc,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize, U32 frame)
{
/* This the upper bound for the length of an rle block.
* This isn't the actual upper bound. Finding the real threshold
* needs further investigation.
*/
const U32 rleMaxLength = 25;
size_t cSize;
const BYTE* ip = (const BYTE*)src;
BYTE* op = (BYTE*)dst;
DEBUGLOG(5, "ZSTD_compressBlock_internal (dstCapacity=%u, dictLimit=%u, nextToUpdate=%u)",
(unsigned)dstCapacity, (unsigned)zc->blockState.matchState.window.dictLimit,
(unsigned)zc->blockState.matchState.nextToUpdate);
{ const size_t bss = ZSTD_buildSeqStore(zc, src, srcSize);
FORWARD_IF_ERROR(bss, "ZSTD_buildSeqStore failed");
if (bss == ZSTDbss_noCompress) { cSize = 0; goto out; }
}
if (zc->seqCollector.collectSequences) {
ZSTD_copyBlockSequences(zc);
- ZSTD_confirmRepcodesAndEntropyTables(zc);
+ ZSTD_blockState_confirmRepcodesAndEntropyTables(&zc->blockState);
return 0;
}
/* encode sequences and literals */
- cSize = ZSTD_entropyCompressSequences(&zc->seqStore,
+ cSize = ZSTD_entropyCompressSeqStore(&zc->seqStore,
&zc->blockState.prevCBlock->entropy, &zc->blockState.nextCBlock->entropy,
&zc->appliedParams,
dst, dstCapacity,
srcSize,
zc->entropyWorkspace, ENTROPY_WORKSPACE_SIZE /* statically allocated in resetCCtx */,
zc->bmi2);
- if (zc->seqCollector.collectSequences) {
- ZSTD_copyBlockSequences(zc);
- return 0;
- }
-
-
if (frame &&
/* We don't want to emit our first block as a RLE even if it qualifies because
* doing so will cause the decoder (cli only) to throw a "should consume all input error."
* This is only an issue for zstd <= v1.4.3
*/
!zc->isFirstBlock &&
cSize < rleMaxLength &&
ZSTD_isRLE(ip, srcSize))
{
cSize = 1;
op[0] = ip[0];
}
out:
if (!ZSTD_isError(cSize) && cSize > 1) {
- ZSTD_confirmRepcodesAndEntropyTables(zc);
+ ZSTD_blockState_confirmRepcodesAndEntropyTables(&zc->blockState);
}
/* We check that dictionaries have offset codes available for the first
* block. After the first block, the offcode table might not have large
* enough codes to represent the offsets in the data.
*/
if (zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid)
zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check;
return cSize;
}
static size_t ZSTD_compressBlock_targetCBlockSize_body(ZSTD_CCtx* zc,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const size_t bss, U32 lastBlock)
{
DEBUGLOG(6, "Attempting ZSTD_compressSuperBlock()");
if (bss == ZSTDbss_compress) {
if (/* We don't want to emit our first block as a RLE even if it qualifies because
* doing so will cause the decoder (cli only) to throw a "should consume all input error."
* This is only an issue for zstd <= v1.4.3
*/
!zc->isFirstBlock &&
ZSTD_maybeRLE(&zc->seqStore) &&
ZSTD_isRLE((BYTE const*)src, srcSize))
{
return ZSTD_rleCompressBlock(dst, dstCapacity, *(BYTE const*)src, srcSize, lastBlock);
}
/* Attempt superblock compression.
*
* Note that compressed size of ZSTD_compressSuperBlock() is not bound by the
* standard ZSTD_compressBound(). This is a problem, because even if we have
* space now, taking an extra byte now could cause us to run out of space later
* and violate ZSTD_compressBound().
*
* Define blockBound(blockSize) = blockSize + ZSTD_blockHeaderSize.
*
* In order to respect ZSTD_compressBound() we must attempt to emit a raw
* uncompressed block in these cases:
* * cSize == 0: Return code for an uncompressed block.
* * cSize == dstSize_tooSmall: We may have expanded beyond blockBound(srcSize).
* ZSTD_noCompressBlock() will return dstSize_tooSmall if we are really out of
* output space.
* * cSize >= blockBound(srcSize): We have expanded the block too much so
* emit an uncompressed block.
*/
{
size_t const cSize = ZSTD_compressSuperBlock(zc, dst, dstCapacity, src, srcSize, lastBlock);
if (cSize != ERROR(dstSize_tooSmall)) {
size_t const maxCSize = srcSize - ZSTD_minGain(srcSize, zc->appliedParams.cParams.strategy);
FORWARD_IF_ERROR(cSize, "ZSTD_compressSuperBlock failed");
if (cSize != 0 && cSize < maxCSize + ZSTD_blockHeaderSize) {
- ZSTD_confirmRepcodesAndEntropyTables(zc);
+ ZSTD_blockState_confirmRepcodesAndEntropyTables(&zc->blockState);
return cSize;
}
}
}
}
DEBUGLOG(6, "Resorting to ZSTD_noCompressBlock()");
/* Superblock compression failed, attempt to emit a single no compress block.
* The decoder will be able to stream this block since it is uncompressed.
*/
return ZSTD_noCompressBlock(dst, dstCapacity, src, srcSize, lastBlock);
}
static size_t ZSTD_compressBlock_targetCBlockSize(ZSTD_CCtx* zc,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
U32 lastBlock)
{
size_t cSize = 0;
const size_t bss = ZSTD_buildSeqStore(zc, src, srcSize);
DEBUGLOG(5, "ZSTD_compressBlock_targetCBlockSize (dstCapacity=%u, dictLimit=%u, nextToUpdate=%u, srcSize=%zu)",
(unsigned)dstCapacity, (unsigned)zc->blockState.matchState.window.dictLimit, (unsigned)zc->blockState.matchState.nextToUpdate, srcSize);
FORWARD_IF_ERROR(bss, "ZSTD_buildSeqStore failed");
cSize = ZSTD_compressBlock_targetCBlockSize_body(zc, dst, dstCapacity, src, srcSize, bss, lastBlock);
FORWARD_IF_ERROR(cSize, "ZSTD_compressBlock_targetCBlockSize_body failed");
if (zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid)
zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check;
return cSize;
}
static void ZSTD_overflowCorrectIfNeeded(ZSTD_matchState_t* ms,
ZSTD_cwksp* ws,
ZSTD_CCtx_params const* params,
void const* ip,
void const* iend)
{
- if (ZSTD_window_needOverflowCorrection(ms->window, iend)) {
- U32 const maxDist = (U32)1 << params->cParams.windowLog;
- U32 const cycleLog = ZSTD_cycleLog(params->cParams.chainLog, params->cParams.strategy);
+ U32 const cycleLog = ZSTD_cycleLog(params->cParams.chainLog, params->cParams.strategy);
+ U32 const maxDist = (U32)1 << params->cParams.windowLog;
+ if (ZSTD_window_needOverflowCorrection(ms->window, cycleLog, maxDist, ms->loadedDictEnd, ip, iend)) {
U32 const correction = ZSTD_window_correctOverflow(&ms->window, cycleLog, maxDist, ip);
ZSTD_STATIC_ASSERT(ZSTD_CHAINLOG_MAX <= 30);
ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX_32 <= 30);
ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX <= 31);
ZSTD_cwksp_mark_tables_dirty(ws);
ZSTD_reduceIndex(ms, params, correction);
ZSTD_cwksp_mark_tables_clean(ws);
if (ms->nextToUpdate < correction) ms->nextToUpdate = 0;
else ms->nextToUpdate -= correction;
/* invalidate dictionaries on overflow correction */
ms->loadedDictEnd = 0;
ms->dictMatchState = NULL;
}
}
/*! ZSTD_compress_frameChunk() :
* Compress a chunk of data into one or multiple blocks.
* All blocks will be terminated, all input will be consumed.
* Function will issue an error if there is not enough `dstCapacity` to hold the compressed content.
* Frame is supposed already started (header already produced)
* @return : compressed size, or an error code
*/
-static size_t ZSTD_compress_frameChunk (ZSTD_CCtx* cctx,
+static size_t ZSTD_compress_frameChunk(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
U32 lastFrameChunk)
{
size_t blockSize = cctx->blockSize;
size_t remaining = srcSize;
const BYTE* ip = (const BYTE*)src;
BYTE* const ostart = (BYTE*)dst;
BYTE* op = ostart;
U32 const maxDist = (U32)1 << cctx->appliedParams.cParams.windowLog;
assert(cctx->appliedParams.cParams.windowLog <= ZSTD_WINDOWLOG_MAX);
DEBUGLOG(4, "ZSTD_compress_frameChunk (blockSize=%u)", (unsigned)blockSize);
if (cctx->appliedParams.fParams.checksumFlag && srcSize)
XXH64_update(&cctx->xxhState, src, srcSize);
while (remaining) {
ZSTD_matchState_t* const ms = &cctx->blockState.matchState;
U32 const lastBlock = lastFrameChunk & (blockSize >= remaining);
RETURN_ERROR_IF(dstCapacity < ZSTD_blockHeaderSize + MIN_CBLOCK_SIZE,
dstSize_tooSmall,
"not enough space to store compressed block");
if (remaining < blockSize) blockSize = remaining;
ZSTD_overflowCorrectIfNeeded(
ms, &cctx->workspace, &cctx->appliedParams, ip, ip + blockSize);
ZSTD_checkDictValidity(&ms->window, ip + blockSize, maxDist, &ms->loadedDictEnd, &ms->dictMatchState);
+ ZSTD_window_enforceMaxDist(&ms->window, ip, maxDist, &ms->loadedDictEnd, &ms->dictMatchState);
/* Ensure hash/chain table insertion resumes no sooner than lowlimit */
if (ms->nextToUpdate < ms->window.lowLimit) ms->nextToUpdate = ms->window.lowLimit;
{ size_t cSize;
if (ZSTD_useTargetCBlockSize(&cctx->appliedParams)) {
cSize = ZSTD_compressBlock_targetCBlockSize(cctx, op, dstCapacity, ip, blockSize, lastBlock);
FORWARD_IF_ERROR(cSize, "ZSTD_compressBlock_targetCBlockSize failed");
assert(cSize > 0);
assert(cSize <= blockSize + ZSTD_blockHeaderSize);
+ } else if (ZSTD_blockSplitterEnabled(&cctx->appliedParams)) {
+ cSize = ZSTD_compressBlock_splitBlock(cctx, op, dstCapacity, ip, blockSize, lastBlock);
+ FORWARD_IF_ERROR(cSize, "ZSTD_compressBlock_splitBlock failed");
+ assert(cSize > 0 || cctx->seqCollector.collectSequences == 1);
} else {
cSize = ZSTD_compressBlock_internal(cctx,
op+ZSTD_blockHeaderSize, dstCapacity-ZSTD_blockHeaderSize,
ip, blockSize, 1 /* frame */);
FORWARD_IF_ERROR(cSize, "ZSTD_compressBlock_internal failed");
if (cSize == 0) { /* block is not compressible */
cSize = ZSTD_noCompressBlock(op, dstCapacity, ip, blockSize, lastBlock);
FORWARD_IF_ERROR(cSize, "ZSTD_noCompressBlock failed");
} else {
U32 const cBlockHeader = cSize == 1 ?
lastBlock + (((U32)bt_rle)<<1) + (U32)(blockSize << 3) :
lastBlock + (((U32)bt_compressed)<<1) + (U32)(cSize << 3);
MEM_writeLE24(op, cBlockHeader);
cSize += ZSTD_blockHeaderSize;
}
}
ip += blockSize;
assert(remaining >= blockSize);
remaining -= blockSize;
op += cSize;
assert(dstCapacity >= cSize);
dstCapacity -= cSize;
cctx->isFirstBlock = 0;
DEBUGLOG(5, "ZSTD_compress_frameChunk: adding a block of size %u",
(unsigned)cSize);
} }
if (lastFrameChunk && (op>ostart)) cctx->stage = ZSTDcs_ending;
return (size_t)(op-ostart);
}
static size_t ZSTD_writeFrameHeader(void* dst, size_t dstCapacity,
const ZSTD_CCtx_params* params, U64 pledgedSrcSize, U32 dictID)
{ BYTE* const op = (BYTE*)dst;
U32 const dictIDSizeCodeLength = (dictID>0) + (dictID>=256) + (dictID>=65536); /* 0-3 */
U32 const dictIDSizeCode = params->fParams.noDictIDFlag ? 0 : dictIDSizeCodeLength; /* 0-3 */
U32 const checksumFlag = params->fParams.checksumFlag>0;
U32 const windowSize = (U32)1 << params->cParams.windowLog;
U32 const singleSegment = params->fParams.contentSizeFlag && (windowSize >= pledgedSrcSize);
BYTE const windowLogByte = (BYTE)((params->cParams.windowLog - ZSTD_WINDOWLOG_ABSOLUTEMIN) << 3);
U32 const fcsCode = params->fParams.contentSizeFlag ?
(pledgedSrcSize>=256) + (pledgedSrcSize>=65536+256) + (pledgedSrcSize>=0xFFFFFFFFU) : 0; /* 0-3 */
BYTE const frameHeaderDescriptionByte = (BYTE)(dictIDSizeCode + (checksumFlag<<2) + (singleSegment<<5) + (fcsCode<<6) );
size_t pos=0;
assert(!(params->fParams.contentSizeFlag && pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN));
RETURN_ERROR_IF(dstCapacity < ZSTD_FRAMEHEADERSIZE_MAX, dstSize_tooSmall,
"dst buf is too small to fit worst-case frame header size.");
DEBUGLOG(4, "ZSTD_writeFrameHeader : dictIDFlag : %u ; dictID : %u ; dictIDSizeCode : %u",
!params->fParams.noDictIDFlag, (unsigned)dictID, (unsigned)dictIDSizeCode);
if (params->format == ZSTD_f_zstd1) {
MEM_writeLE32(dst, ZSTD_MAGICNUMBER);
pos = 4;
}
op[pos++] = frameHeaderDescriptionByte;
if (!singleSegment) op[pos++] = windowLogByte;
switch(dictIDSizeCode)
{
- default: assert(0); /* impossible */
+ default:
+ assert(0); /* impossible */
+ ZSTD_FALLTHROUGH;
case 0 : break;
case 1 : op[pos] = (BYTE)(dictID); pos++; break;
case 2 : MEM_writeLE16(op+pos, (U16)dictID); pos+=2; break;
case 3 : MEM_writeLE32(op+pos, dictID); pos+=4; break;
}
switch(fcsCode)
{
- default: assert(0); /* impossible */
+ default:
+ assert(0); /* impossible */
+ ZSTD_FALLTHROUGH;
case 0 : if (singleSegment) op[pos++] = (BYTE)(pledgedSrcSize); break;
case 1 : MEM_writeLE16(op+pos, (U16)(pledgedSrcSize-256)); pos+=2; break;
case 2 : MEM_writeLE32(op+pos, (U32)(pledgedSrcSize)); pos+=4; break;
case 3 : MEM_writeLE64(op+pos, (U64)(pledgedSrcSize)); pos+=8; break;
}
return pos;
}
+/* ZSTD_writeSkippableFrame_advanced() :
+ * Writes out a skippable frame with the specified magic number variant (16 are supported),
+ * from ZSTD_MAGIC_SKIPPABLE_START to ZSTD_MAGIC_SKIPPABLE_START+15, and the desired source data.
+ *
+ * Returns the total number of bytes written, or a ZSTD error code.
+ */
+size_t ZSTD_writeSkippableFrame(void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize, unsigned magicVariant) {
+ BYTE* op = (BYTE*)dst;
+ RETURN_ERROR_IF(dstCapacity < srcSize + ZSTD_SKIPPABLEHEADERSIZE /* Skippable frame overhead */,
+ dstSize_tooSmall, "Not enough room for skippable frame");
+ RETURN_ERROR_IF(srcSize > (unsigned)0xFFFFFFFF, srcSize_wrong, "Src size too large for skippable frame");
+ RETURN_ERROR_IF(magicVariant > 15, parameter_outOfBound, "Skippable frame magic number variant not supported");
+
+ MEM_writeLE32(op, (U32)(ZSTD_MAGIC_SKIPPABLE_START + magicVariant));
+ MEM_writeLE32(op+4, (U32)srcSize);
+ ZSTD_memcpy(op+8, src, srcSize);
+ return srcSize + ZSTD_SKIPPABLEHEADERSIZE;
+}
+
/* ZSTD_writeLastEmptyBlock() :
* output an empty Block with end-of-frame mark to complete a frame
* @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h))
* or an error code if `dstCapacity` is too small (<ZSTD_blockHeaderSize)
*/
size_t ZSTD_writeLastEmptyBlock(void* dst, size_t dstCapacity)
{
RETURN_ERROR_IF(dstCapacity < ZSTD_blockHeaderSize, dstSize_tooSmall,
"dst buf is too small to write frame trailer empty block.");
{ U32 const cBlockHeader24 = 1 /*lastBlock*/ + (((U32)bt_raw)<<1); /* 0 size */
MEM_writeLE24(dst, cBlockHeader24);
return ZSTD_blockHeaderSize;
}
}
size_t ZSTD_referenceExternalSequences(ZSTD_CCtx* cctx, rawSeq* seq, size_t nbSeq)
{
RETURN_ERROR_IF(cctx->stage != ZSTDcs_init, stage_wrong,
"wrong cctx stage");
- RETURN_ERROR_IF(cctx->appliedParams.ldmParams.enableLdm,
+ RETURN_ERROR_IF(cctx->appliedParams.ldmParams.enableLdm == ZSTD_ps_enable,
parameter_unsupported,
"incompatible with ldm");
cctx->externSeqStore.seq = seq;
cctx->externSeqStore.size = nbSeq;
cctx->externSeqStore.capacity = nbSeq;
cctx->externSeqStore.pos = 0;
cctx->externSeqStore.posInSequence = 0;
return 0;
}
static size_t ZSTD_compressContinue_internal (ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
U32 frame, U32 lastFrameChunk)
{
ZSTD_matchState_t* const ms = &cctx->blockState.matchState;
size_t fhSize = 0;
DEBUGLOG(5, "ZSTD_compressContinue_internal, stage: %u, srcSize: %u",
cctx->stage, (unsigned)srcSize);
RETURN_ERROR_IF(cctx->stage==ZSTDcs_created, stage_wrong,
"missing init (ZSTD_compressBegin)");
if (frame && (cctx->stage==ZSTDcs_init)) {
fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, &cctx->appliedParams,
cctx->pledgedSrcSizePlusOne-1, cctx->dictID);
FORWARD_IF_ERROR(fhSize, "ZSTD_writeFrameHeader failed");
assert(fhSize <= dstCapacity);
dstCapacity -= fhSize;
dst = (char*)dst + fhSize;
cctx->stage = ZSTDcs_ongoing;
}
if (!srcSize) return fhSize; /* do not generate an empty block if no input */
- if (!ZSTD_window_update(&ms->window, src, srcSize)) {
+ if (!ZSTD_window_update(&ms->window, src, srcSize, ms->forceNonContiguous)) {
+ ms->forceNonContiguous = 0;
ms->nextToUpdate = ms->window.dictLimit;
}
- if (cctx->appliedParams.ldmParams.enableLdm) {
- ZSTD_window_update(&cctx->ldmState.window, src, srcSize);
+ if (cctx->appliedParams.ldmParams.enableLdm == ZSTD_ps_enable) {
+ ZSTD_window_update(&cctx->ldmState.window, src, srcSize, /* forceNonContiguous */ 0);
}
if (!frame) {
/* overflow check and correction for block mode */
ZSTD_overflowCorrectIfNeeded(
ms, &cctx->workspace, &cctx->appliedParams,
src, (BYTE const*)src + srcSize);
}
DEBUGLOG(5, "ZSTD_compressContinue_internal (blockSize=%u)", (unsigned)cctx->blockSize);
{ size_t const cSize = frame ?
ZSTD_compress_frameChunk (cctx, dst, dstCapacity, src, srcSize, lastFrameChunk) :
ZSTD_compressBlock_internal (cctx, dst, dstCapacity, src, srcSize, 0 /* frame */);
FORWARD_IF_ERROR(cSize, "%s", frame ? "ZSTD_compress_frameChunk failed" : "ZSTD_compressBlock_internal failed");
cctx->consumedSrcSize += srcSize;
cctx->producedCSize += (cSize + fhSize);
assert(!(cctx->appliedParams.fParams.contentSizeFlag && cctx->pledgedSrcSizePlusOne == 0));
if (cctx->pledgedSrcSizePlusOne != 0) { /* control src size */
ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN == (unsigned long long)-1);
RETURN_ERROR_IF(
cctx->consumedSrcSize+1 > cctx->pledgedSrcSizePlusOne,
srcSize_wrong,
"error : pledgedSrcSize = %u, while realSrcSize >= %u",
(unsigned)cctx->pledgedSrcSizePlusOne-1,
(unsigned)cctx->consumedSrcSize);
}
return cSize + fhSize;
}
}
size_t ZSTD_compressContinue (ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
DEBUGLOG(5, "ZSTD_compressContinue (srcSize=%u)", (unsigned)srcSize);
return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 1 /* frame mode */, 0 /* last chunk */);
}
size_t ZSTD_getBlockSize(const ZSTD_CCtx* cctx)
{
ZSTD_compressionParameters const cParams = cctx->appliedParams.cParams;
assert(!ZSTD_checkCParams(cParams));
return MIN (ZSTD_BLOCKSIZE_MAX, (U32)1 << cParams.windowLog);
}
size_t ZSTD_compressBlock(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
DEBUGLOG(5, "ZSTD_compressBlock: srcSize = %u", (unsigned)srcSize);
{ size_t const blockSizeMax = ZSTD_getBlockSize(cctx);
RETURN_ERROR_IF(srcSize > blockSizeMax, srcSize_wrong, "input is larger than a block"); }
return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 0 /* frame mode */, 0 /* last chunk */);
}
/*! ZSTD_loadDictionaryContent() :
* @return : 0, or an error code
*/
static size_t ZSTD_loadDictionaryContent(ZSTD_matchState_t* ms,
ldmState_t* ls,
ZSTD_cwksp* ws,
ZSTD_CCtx_params const* params,
const void* src, size_t srcSize,
ZSTD_dictTableLoadMethod_e dtlm)
{
const BYTE* ip = (const BYTE*) src;
const BYTE* const iend = ip + srcSize;
+ int const loadLdmDict = params->ldmParams.enableLdm == ZSTD_ps_enable && ls != NULL;
+
+ /* Assert that we the ms params match the params we're being given */
+ ZSTD_assertEqualCParams(params->cParams, ms->cParams);
+
+ if (srcSize > ZSTD_CHUNKSIZE_MAX) {
+ /* Allow the dictionary to set indices up to exactly ZSTD_CURRENT_MAX.
+ * Dictionaries right at the edge will immediately trigger overflow
+ * correction, but I don't want to insert extra constraints here.
+ */
+ U32 const maxDictSize = ZSTD_CURRENT_MAX - 1;
+ /* We must have cleared our windows when our source is this large. */
+ assert(ZSTD_window_isEmpty(ms->window));
+ if (loadLdmDict)
+ assert(ZSTD_window_isEmpty(ls->window));
+ /* If the dictionary is too large, only load the suffix of the dictionary. */
+ if (srcSize > maxDictSize) {
+ ip = iend - maxDictSize;
+ src = ip;
+ srcSize = maxDictSize;
+ }
+ }
- ZSTD_window_update(&ms->window, src, srcSize);
+ DEBUGLOG(4, "ZSTD_loadDictionaryContent(): useRowMatchFinder=%d", (int)params->useRowMatchFinder);
+ ZSTD_window_update(&ms->window, src, srcSize, /* forceNonContiguous */ 0);
ms->loadedDictEnd = params->forceWindow ? 0 : (U32)(iend - ms->window.base);
+ ms->forceNonContiguous = params->deterministicRefPrefix;
- if (params->ldmParams.enableLdm && ls != NULL) {
- ZSTD_window_update(&ls->window, src, srcSize);
+ if (loadLdmDict) {
+ ZSTD_window_update(&ls->window, src, srcSize, /* forceNonContiguous */ 0);
ls->loadedDictEnd = params->forceWindow ? 0 : (U32)(iend - ls->window.base);
}
- /* Assert that we the ms params match the params we're being given */
- ZSTD_assertEqualCParams(params->cParams, ms->cParams);
-
if (srcSize <= HASH_READ_SIZE) return 0;
- while (iend - ip > HASH_READ_SIZE) {
- size_t const remaining = (size_t)(iend - ip);
- size_t const chunk = MIN(remaining, ZSTD_CHUNKSIZE_MAX);
- const BYTE* const ichunk = ip + chunk;
-
- ZSTD_overflowCorrectIfNeeded(ms, ws, params, ip, ichunk);
+ ZSTD_overflowCorrectIfNeeded(ms, ws, params, ip, iend);
- if (params->ldmParams.enableLdm && ls != NULL)
- ZSTD_ldm_fillHashTable(ls, (const BYTE*)src, (const BYTE*)src + srcSize, &params->ldmParams);
+ if (loadLdmDict)
+ ZSTD_ldm_fillHashTable(ls, ip, iend, &params->ldmParams);
- switch(params->cParams.strategy)
- {
- case ZSTD_fast:
- ZSTD_fillHashTable(ms, ichunk, dtlm);
- break;
- case ZSTD_dfast:
- ZSTD_fillDoubleHashTable(ms, ichunk, dtlm);
- break;
+ switch(params->cParams.strategy)
+ {
+ case ZSTD_fast:
+ ZSTD_fillHashTable(ms, iend, dtlm);
+ break;
+ case ZSTD_dfast:
+ ZSTD_fillDoubleHashTable(ms, iend, dtlm);
+ break;
- case ZSTD_greedy:
- case ZSTD_lazy:
- case ZSTD_lazy2:
- if (chunk >= HASH_READ_SIZE && ms->dedicatedDictSearch) {
- assert(chunk == remaining); /* must load everything in one go */
- ZSTD_dedicatedDictSearch_lazy_loadDictionary(ms, ichunk-HASH_READ_SIZE);
- } else if (chunk >= HASH_READ_SIZE) {
- ZSTD_insertAndFindFirstIndex(ms, ichunk-HASH_READ_SIZE);
+ case ZSTD_greedy:
+ case ZSTD_lazy:
+ case ZSTD_lazy2:
+ assert(srcSize >= HASH_READ_SIZE);
+ if (ms->dedicatedDictSearch) {
+ assert(ms->chainTable != NULL);
+ ZSTD_dedicatedDictSearch_lazy_loadDictionary(ms, iend-HASH_READ_SIZE);
+ } else {
+ assert(params->useRowMatchFinder != ZSTD_ps_auto);
+ if (params->useRowMatchFinder == ZSTD_ps_enable) {
+ size_t const tagTableSize = ((size_t)1 << params->cParams.hashLog) * sizeof(U16);
+ ZSTD_memset(ms->tagTable, 0, tagTableSize);
+ ZSTD_row_update(ms, iend-HASH_READ_SIZE);
+ DEBUGLOG(4, "Using row-based hash table for lazy dict");
+ } else {
+ ZSTD_insertAndFindFirstIndex(ms, iend-HASH_READ_SIZE);
+ DEBUGLOG(4, "Using chain-based hash table for lazy dict");
}
- break;
-
- case ZSTD_btlazy2: /* we want the dictionary table fully sorted */
- case ZSTD_btopt:
- case ZSTD_btultra:
- case ZSTD_btultra2:
- if (chunk >= HASH_READ_SIZE)
- ZSTD_updateTree(ms, ichunk-HASH_READ_SIZE, ichunk);
- break;
-
- default:
- assert(0); /* not possible : not a valid strategy id */
}
+ break;
+
+ case ZSTD_btlazy2: /* we want the dictionary table fully sorted */
+ case ZSTD_btopt:
+ case ZSTD_btultra:
+ case ZSTD_btultra2:
+ assert(srcSize >= HASH_READ_SIZE);
+ ZSTD_updateTree(ms, iend-HASH_READ_SIZE, iend);
+ break;
- ip = ichunk;
+ default:
+ assert(0); /* not possible : not a valid strategy id */
}
ms->nextToUpdate = (U32)(iend - ms->window.base);
return 0;
}
/* Dictionaries that assign zero probability to symbols that show up causes problems
* when FSE encoding. Mark dictionaries with zero probability symbols as FSE_repeat_check
* and only dictionaries with 100% valid symbols can be assumed valid.
*/
static FSE_repeat ZSTD_dictNCountRepeat(short* normalizedCounter, unsigned dictMaxSymbolValue, unsigned maxSymbolValue)
{
U32 s;
if (dictMaxSymbolValue < maxSymbolValue) {
return FSE_repeat_check;
}
for (s = 0; s <= maxSymbolValue; ++s) {
if (normalizedCounter[s] == 0) {
return FSE_repeat_check;
}
}
return FSE_repeat_valid;
}
size_t ZSTD_loadCEntropy(ZSTD_compressedBlockState_t* bs, void* workspace,
const void* const dict, size_t dictSize)
{
short offcodeNCount[MaxOff+1];
unsigned offcodeMaxValue = MaxOff;
const BYTE* dictPtr = (const BYTE*)dict; /* skip magic num and dict ID */
const BYTE* const dictEnd = dictPtr + dictSize;
dictPtr += 8;
bs->entropy.huf.repeatMode = HUF_repeat_check;
{ unsigned maxSymbolValue = 255;
unsigned hasZeroWeights = 1;
size_t const hufHeaderSize = HUF_readCTable((HUF_CElt*)bs->entropy.huf.CTable, &maxSymbolValue, dictPtr,
dictEnd-dictPtr, &hasZeroWeights);
/* We only set the loaded table as valid if it contains all non-zero
* weights. Otherwise, we set it to check */
if (!hasZeroWeights)
bs->entropy.huf.repeatMode = HUF_repeat_valid;
RETURN_ERROR_IF(HUF_isError(hufHeaderSize), dictionary_corrupted, "");
RETURN_ERROR_IF(maxSymbolValue < 255, dictionary_corrupted, "");
dictPtr += hufHeaderSize;
}
{ unsigned offcodeLog;
size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd-dictPtr);
RETURN_ERROR_IF(FSE_isError(offcodeHeaderSize), dictionary_corrupted, "");
RETURN_ERROR_IF(offcodeLog > OffFSELog, dictionary_corrupted, "");
/* fill all offset symbols to avoid garbage at end of table */
RETURN_ERROR_IF(FSE_isError(FSE_buildCTable_wksp(
bs->entropy.fse.offcodeCTable,
offcodeNCount, MaxOff, offcodeLog,
workspace, HUF_WORKSPACE_SIZE)),
dictionary_corrupted, "");
/* Defer checking offcodeMaxValue because we need to know the size of the dictionary content */
dictPtr += offcodeHeaderSize;
}
{ short matchlengthNCount[MaxML+1];
unsigned matchlengthMaxValue = MaxML, matchlengthLog;
size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd-dictPtr);
RETURN_ERROR_IF(FSE_isError(matchlengthHeaderSize), dictionary_corrupted, "");
RETURN_ERROR_IF(matchlengthLog > MLFSELog, dictionary_corrupted, "");
RETURN_ERROR_IF(FSE_isError(FSE_buildCTable_wksp(
bs->entropy.fse.matchlengthCTable,
matchlengthNCount, matchlengthMaxValue, matchlengthLog,
workspace, HUF_WORKSPACE_SIZE)),
dictionary_corrupted, "");
bs->entropy.fse.matchlength_repeatMode = ZSTD_dictNCountRepeat(matchlengthNCount, matchlengthMaxValue, MaxML);
dictPtr += matchlengthHeaderSize;
}
{ short litlengthNCount[MaxLL+1];
unsigned litlengthMaxValue = MaxLL, litlengthLog;
size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd-dictPtr);
RETURN_ERROR_IF(FSE_isError(litlengthHeaderSize), dictionary_corrupted, "");
RETURN_ERROR_IF(litlengthLog > LLFSELog, dictionary_corrupted, "");
RETURN_ERROR_IF(FSE_isError(FSE_buildCTable_wksp(
bs->entropy.fse.litlengthCTable,
litlengthNCount, litlengthMaxValue, litlengthLog,
workspace, HUF_WORKSPACE_SIZE)),
dictionary_corrupted, "");
bs->entropy.fse.litlength_repeatMode = ZSTD_dictNCountRepeat(litlengthNCount, litlengthMaxValue, MaxLL);
dictPtr += litlengthHeaderSize;
}
RETURN_ERROR_IF(dictPtr+12 > dictEnd, dictionary_corrupted, "");
bs->rep[0] = MEM_readLE32(dictPtr+0);
bs->rep[1] = MEM_readLE32(dictPtr+4);
bs->rep[2] = MEM_readLE32(dictPtr+8);
dictPtr += 12;
{ size_t const dictContentSize = (size_t)(dictEnd - dictPtr);
U32 offcodeMax = MaxOff;
if (dictContentSize <= ((U32)-1) - 128 KB) {
U32 const maxOffset = (U32)dictContentSize + 128 KB; /* The maximum offset that must be supported */
offcodeMax = ZSTD_highbit32(maxOffset); /* Calculate minimum offset code required to represent maxOffset */
}
/* All offset values <= dictContentSize + 128 KB must be representable for a valid table */
bs->entropy.fse.offcode_repeatMode = ZSTD_dictNCountRepeat(offcodeNCount, offcodeMaxValue, MIN(offcodeMax, MaxOff));
/* All repCodes must be <= dictContentSize and != 0 */
{ U32 u;
for (u=0; u<3; u++) {
RETURN_ERROR_IF(bs->rep[u] == 0, dictionary_corrupted, "");
RETURN_ERROR_IF(bs->rep[u] > dictContentSize, dictionary_corrupted, "");
} } }
return dictPtr - (const BYTE*)dict;
}
/* Dictionary format :
* See :
* https://github.com/facebook/zstd/blob/release/doc/zstd_compression_format.md#dictionary-format
*/
/*! ZSTD_loadZstdDictionary() :
* @return : dictID, or an error code
* assumptions : magic number supposed already checked
* dictSize supposed >= 8
*/
static size_t ZSTD_loadZstdDictionary(ZSTD_compressedBlockState_t* bs,
ZSTD_matchState_t* ms,
ZSTD_cwksp* ws,
ZSTD_CCtx_params const* params,
const void* dict, size_t dictSize,
ZSTD_dictTableLoadMethod_e dtlm,
void* workspace)
{
const BYTE* dictPtr = (const BYTE*)dict;
const BYTE* const dictEnd = dictPtr + dictSize;
size_t dictID;
size_t eSize;
-
ZSTD_STATIC_ASSERT(HUF_WORKSPACE_SIZE >= (1<<MAX(MLFSELog,LLFSELog)));
assert(dictSize >= 8);
assert(MEM_readLE32(dictPtr) == ZSTD_MAGIC_DICTIONARY);
dictID = params->fParams.noDictIDFlag ? 0 : MEM_readLE32(dictPtr + 4 /* skip magic number */ );
eSize = ZSTD_loadCEntropy(bs, workspace, dict, dictSize);
FORWARD_IF_ERROR(eSize, "ZSTD_loadCEntropy failed");
dictPtr += eSize;
{
size_t const dictContentSize = (size_t)(dictEnd - dictPtr);
FORWARD_IF_ERROR(ZSTD_loadDictionaryContent(
ms, NULL, ws, params, dictPtr, dictContentSize, dtlm), "");
}
return dictID;
}
/** ZSTD_compress_insertDictionary() :
* @return : dictID, or an error code */
static size_t
ZSTD_compress_insertDictionary(ZSTD_compressedBlockState_t* bs,
ZSTD_matchState_t* ms,
ldmState_t* ls,
ZSTD_cwksp* ws,
const ZSTD_CCtx_params* params,
const void* dict, size_t dictSize,
ZSTD_dictContentType_e dictContentType,
ZSTD_dictTableLoadMethod_e dtlm,
void* workspace)
{
DEBUGLOG(4, "ZSTD_compress_insertDictionary (dictSize=%u)", (U32)dictSize);
if ((dict==NULL) || (dictSize<8)) {
RETURN_ERROR_IF(dictContentType == ZSTD_dct_fullDict, dictionary_wrong, "");
return 0;
}
ZSTD_reset_compressedBlockState(bs);
/* dict restricted modes */
if (dictContentType == ZSTD_dct_rawContent)
return ZSTD_loadDictionaryContent(ms, ls, ws, params, dict, dictSize, dtlm);
if (MEM_readLE32(dict) != ZSTD_MAGIC_DICTIONARY) {
if (dictContentType == ZSTD_dct_auto) {
DEBUGLOG(4, "raw content dictionary detected");
return ZSTD_loadDictionaryContent(
ms, ls, ws, params, dict, dictSize, dtlm);
}
RETURN_ERROR_IF(dictContentType == ZSTD_dct_fullDict, dictionary_wrong, "");
assert(0); /* impossible */
}
/* dict as full zstd dictionary */
return ZSTD_loadZstdDictionary(
bs, ms, ws, params, dict, dictSize, dtlm, workspace);
}
#define ZSTD_USE_CDICT_PARAMS_SRCSIZE_CUTOFF (128 KB)
#define ZSTD_USE_CDICT_PARAMS_DICTSIZE_MULTIPLIER (6ULL)
/*! ZSTD_compressBegin_internal() :
* @return : 0, or an error code */
static size_t ZSTD_compressBegin_internal(ZSTD_CCtx* cctx,
const void* dict, size_t dictSize,
ZSTD_dictContentType_e dictContentType,
ZSTD_dictTableLoadMethod_e dtlm,
const ZSTD_CDict* cdict,
const ZSTD_CCtx_params* params, U64 pledgedSrcSize,
ZSTD_buffered_policy_e zbuff)
{
+ size_t const dictContentSize = cdict ? cdict->dictContentSize : dictSize;
+#if ZSTD_TRACE
+ cctx->traceCtx = (ZSTD_trace_compress_begin != NULL) ? ZSTD_trace_compress_begin(cctx) : 0;
+#endif
DEBUGLOG(4, "ZSTD_compressBegin_internal: wlog=%u", params->cParams.windowLog);
/* params are supposed to be fully validated at this point */
assert(!ZSTD_isError(ZSTD_checkCParams(params->cParams)));
assert(!((dict) && (cdict))); /* either dict or cdict, not both */
if ( (cdict)
&& (cdict->dictContentSize > 0)
&& ( pledgedSrcSize < ZSTD_USE_CDICT_PARAMS_SRCSIZE_CUTOFF
|| pledgedSrcSize < cdict->dictContentSize * ZSTD_USE_CDICT_PARAMS_DICTSIZE_MULTIPLIER
|| pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN
|| cdict->compressionLevel == 0)
&& (params->attachDictPref != ZSTD_dictForceLoad) ) {
return ZSTD_resetCCtx_usingCDict(cctx, cdict, params, pledgedSrcSize, zbuff);
}
- FORWARD_IF_ERROR( ZSTD_resetCCtx_internal(cctx, *params, pledgedSrcSize,
+ FORWARD_IF_ERROR( ZSTD_resetCCtx_internal(cctx, params, pledgedSrcSize,
+ dictContentSize,
ZSTDcrp_makeClean, zbuff) , "");
{ size_t const dictID = cdict ?
ZSTD_compress_insertDictionary(
cctx->blockState.prevCBlock, &cctx->blockState.matchState,
&cctx->ldmState, &cctx->workspace, &cctx->appliedParams, cdict->dictContent,
cdict->dictContentSize, cdict->dictContentType, dtlm,
cctx->entropyWorkspace)
: ZSTD_compress_insertDictionary(
cctx->blockState.prevCBlock, &cctx->blockState.matchState,
&cctx->ldmState, &cctx->workspace, &cctx->appliedParams, dict, dictSize,
dictContentType, dtlm, cctx->entropyWorkspace);
FORWARD_IF_ERROR(dictID, "ZSTD_compress_insertDictionary failed");
assert(dictID <= UINT_MAX);
cctx->dictID = (U32)dictID;
+ cctx->dictContentSize = dictContentSize;
}
return 0;
}
size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx,
const void* dict, size_t dictSize,
ZSTD_dictContentType_e dictContentType,
ZSTD_dictTableLoadMethod_e dtlm,
const ZSTD_CDict* cdict,
const ZSTD_CCtx_params* params,
unsigned long long pledgedSrcSize)
{
DEBUGLOG(4, "ZSTD_compressBegin_advanced_internal: wlog=%u", params->cParams.windowLog);
/* compression parameters verification and optimization */
FORWARD_IF_ERROR( ZSTD_checkCParams(params->cParams) , "");
return ZSTD_compressBegin_internal(cctx,
dict, dictSize, dictContentType, dtlm,
cdict,
params, pledgedSrcSize,
ZSTDb_not_buffered);
}
/*! ZSTD_compressBegin_advanced() :
* @return : 0, or an error code */
size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx,
const void* dict, size_t dictSize,
ZSTD_parameters params, unsigned long long pledgedSrcSize)
{
- ZSTD_CCtx_params const cctxParams =
- ZSTD_assignParamsToCCtxParams(&cctx->requestedParams, &params);
+ ZSTD_CCtx_params cctxParams;
+ ZSTD_CCtxParams_init_internal(&cctxParams, &params, ZSTD_NO_CLEVEL);
return ZSTD_compressBegin_advanced_internal(cctx,
dict, dictSize, ZSTD_dct_auto, ZSTD_dtlm_fast,
NULL /*cdict*/,
&cctxParams, pledgedSrcSize);
}
size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel)
{
- ZSTD_parameters const params = ZSTD_getParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_noAttachDict);
- ZSTD_CCtx_params const cctxParams =
- ZSTD_assignParamsToCCtxParams(&cctx->requestedParams, &params);
+ ZSTD_CCtx_params cctxParams;
+ {
+ ZSTD_parameters const params = ZSTD_getParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_noAttachDict);
+ ZSTD_CCtxParams_init_internal(&cctxParams, &params, (compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : compressionLevel);
+ }
DEBUGLOG(4, "ZSTD_compressBegin_usingDict (dictSize=%u)", (unsigned)dictSize);
return ZSTD_compressBegin_internal(cctx, dict, dictSize, ZSTD_dct_auto, ZSTD_dtlm_fast, NULL,
&cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, ZSTDb_not_buffered);
}
size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel)
{
return ZSTD_compressBegin_usingDict(cctx, NULL, 0, compressionLevel);
}
/*! ZSTD_writeEpilogue() :
* Ends a frame.
* @return : nb of bytes written into dst (or an error code) */
static size_t ZSTD_writeEpilogue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity)
{
BYTE* const ostart = (BYTE*)dst;
BYTE* op = ostart;
size_t fhSize = 0;
DEBUGLOG(4, "ZSTD_writeEpilogue");
RETURN_ERROR_IF(cctx->stage == ZSTDcs_created, stage_wrong, "init missing");
/* special case : empty frame */
if (cctx->stage == ZSTDcs_init) {
fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, &cctx->appliedParams, 0, 0);
FORWARD_IF_ERROR(fhSize, "ZSTD_writeFrameHeader failed");
dstCapacity -= fhSize;
op += fhSize;
cctx->stage = ZSTDcs_ongoing;
}
if (cctx->stage != ZSTDcs_ending) {
/* write one last empty block, make it the "last" block */
U32 const cBlockHeader24 = 1 /* last block */ + (((U32)bt_raw)<<1) + 0;
RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall, "no room for epilogue");
MEM_writeLE32(op, cBlockHeader24);
op += ZSTD_blockHeaderSize;
dstCapacity -= ZSTD_blockHeaderSize;
}
if (cctx->appliedParams.fParams.checksumFlag) {
U32 const checksum = (U32) XXH64_digest(&cctx->xxhState);
RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall, "no room for checksum");
DEBUGLOG(4, "ZSTD_writeEpilogue: write checksum : %08X", (unsigned)checksum);
MEM_writeLE32(op, checksum);
op += 4;
}
cctx->stage = ZSTDcs_created; /* return to "created but no init" status */
return op-ostart;
}
+void ZSTD_CCtx_trace(ZSTD_CCtx* cctx, size_t extraCSize)
+{
+#if ZSTD_TRACE
+ if (cctx->traceCtx && ZSTD_trace_compress_end != NULL) {
+ int const streaming = cctx->inBuffSize > 0 || cctx->outBuffSize > 0 || cctx->appliedParams.nbWorkers > 0;
+ ZSTD_Trace trace;
+ ZSTD_memset(&trace, 0, sizeof(trace));
+ trace.version = ZSTD_VERSION_NUMBER;
+ trace.streaming = streaming;
+ trace.dictionaryID = cctx->dictID;
+ trace.dictionarySize = cctx->dictContentSize;
+ trace.uncompressedSize = cctx->consumedSrcSize;
+ trace.compressedSize = cctx->producedCSize + extraCSize;
+ trace.params = &cctx->appliedParams;
+ trace.cctx = cctx;
+ ZSTD_trace_compress_end(cctx->traceCtx, &trace);
+ }
+ cctx->traceCtx = 0;
+#else
+ (void)cctx;
+ (void)extraCSize;
+#endif
+}
+
size_t ZSTD_compressEnd (ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
size_t endResult;
size_t const cSize = ZSTD_compressContinue_internal(cctx,
dst, dstCapacity, src, srcSize,
1 /* frame mode */, 1 /* last chunk */);
FORWARD_IF_ERROR(cSize, "ZSTD_compressContinue_internal failed");
endResult = ZSTD_writeEpilogue(cctx, (char*)dst + cSize, dstCapacity-cSize);
FORWARD_IF_ERROR(endResult, "ZSTD_writeEpilogue failed");
assert(!(cctx->appliedParams.fParams.contentSizeFlag && cctx->pledgedSrcSizePlusOne == 0));
if (cctx->pledgedSrcSizePlusOne != 0) { /* control src size */
ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN == (unsigned long long)-1);
DEBUGLOG(4, "end of frame : controlling src size");
RETURN_ERROR_IF(
cctx->pledgedSrcSizePlusOne != cctx->consumedSrcSize+1,
srcSize_wrong,
"error : pledgedSrcSize = %u, while realSrcSize = %u",
(unsigned)cctx->pledgedSrcSizePlusOne-1,
(unsigned)cctx->consumedSrcSize);
}
+ ZSTD_CCtx_trace(cctx, endResult);
return cSize + endResult;
}
-static size_t ZSTD_compress_internal (ZSTD_CCtx* cctx,
- void* dst, size_t dstCapacity,
- const void* src, size_t srcSize,
- const void* dict,size_t dictSize,
- const ZSTD_parameters* params)
-{
- ZSTD_CCtx_params const cctxParams =
- ZSTD_assignParamsToCCtxParams(&cctx->requestedParams, params);
- DEBUGLOG(4, "ZSTD_compress_internal");
- return ZSTD_compress_advanced_internal(cctx,
- dst, dstCapacity,
- src, srcSize,
- dict, dictSize,
- &cctxParams);
-}
-
size_t ZSTD_compress_advanced (ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize,
ZSTD_parameters params)
{
DEBUGLOG(4, "ZSTD_compress_advanced");
FORWARD_IF_ERROR(ZSTD_checkCParams(params.cParams), "");
- return ZSTD_compress_internal(cctx,
- dst, dstCapacity,
- src, srcSize,
- dict, dictSize,
- &params);
+ ZSTD_CCtxParams_init_internal(&cctx->simpleApiParams, &params, ZSTD_NO_CLEVEL);
+ return ZSTD_compress_advanced_internal(cctx,
+ dst, dstCapacity,
+ src, srcSize,
+ dict, dictSize,
+ &cctx->simpleApiParams);
}
/* Internal */
size_t ZSTD_compress_advanced_internal(
ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize,
const ZSTD_CCtx_params* params)
{
DEBUGLOG(4, "ZSTD_compress_advanced_internal (srcSize:%u)", (unsigned)srcSize);
FORWARD_IF_ERROR( ZSTD_compressBegin_internal(cctx,
dict, dictSize, ZSTD_dct_auto, ZSTD_dtlm_fast, NULL,
params, srcSize, ZSTDb_not_buffered) , "");
return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize);
}
size_t ZSTD_compress_usingDict(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict, size_t dictSize,
int compressionLevel)
{
- ZSTD_parameters const params = ZSTD_getParams_internal(compressionLevel, srcSize, dict ? dictSize : 0, ZSTD_cpm_noAttachDict);
- ZSTD_CCtx_params cctxParams = ZSTD_assignParamsToCCtxParams(&cctx->requestedParams, &params);
+ {
+ ZSTD_parameters const params = ZSTD_getParams_internal(compressionLevel, srcSize, dict ? dictSize : 0, ZSTD_cpm_noAttachDict);
+ assert(params.fParams.contentSizeFlag == 1);
+ ZSTD_CCtxParams_init_internal(&cctx->simpleApiParams, &params, (compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT: compressionLevel);
+ }
DEBUGLOG(4, "ZSTD_compress_usingDict (srcSize=%u)", (unsigned)srcSize);
- assert(params.fParams.contentSizeFlag == 1);
- return ZSTD_compress_advanced_internal(cctx, dst, dstCapacity, src, srcSize, dict, dictSize, &cctxParams);
+ return ZSTD_compress_advanced_internal(cctx, dst, dstCapacity, src, srcSize, dict, dictSize, &cctx->simpleApiParams);
}
size_t ZSTD_compressCCtx(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
int compressionLevel)
{
DEBUGLOG(4, "ZSTD_compressCCtx (srcSize=%u)", (unsigned)srcSize);
assert(cctx != NULL);
return ZSTD_compress_usingDict(cctx, dst, dstCapacity, src, srcSize, NULL, 0, compressionLevel);
}
size_t ZSTD_compress(void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
int compressionLevel)
{
size_t result;
#if ZSTD_COMPRESS_HEAPMODE
ZSTD_CCtx* cctx = ZSTD_createCCtx();
RETURN_ERROR_IF(!cctx, memory_allocation, "ZSTD_createCCtx failed");
result = ZSTD_compressCCtx(cctx, dst, dstCapacity, src, srcSize, compressionLevel);
ZSTD_freeCCtx(cctx);
#else
ZSTD_CCtx ctxBody;
ZSTD_initCCtx(&ctxBody, ZSTD_defaultCMem);
result = ZSTD_compressCCtx(&ctxBody, dst, dstCapacity, src, srcSize, compressionLevel);
ZSTD_freeCCtxContent(&ctxBody); /* can't free ctxBody itself, as it's on stack; free only heap content */
#endif
return result;
}
/* ===== Dictionary API ===== */
/*! ZSTD_estimateCDictSize_advanced() :
* Estimate amount of memory that will be needed to create a dictionary with following arguments */
size_t ZSTD_estimateCDictSize_advanced(
size_t dictSize, ZSTD_compressionParameters cParams,
ZSTD_dictLoadMethod_e dictLoadMethod)
{
DEBUGLOG(5, "sizeof(ZSTD_CDict) : %u", (unsigned)sizeof(ZSTD_CDict));
return ZSTD_cwksp_alloc_size(sizeof(ZSTD_CDict))
+ ZSTD_cwksp_alloc_size(HUF_WORKSPACE_SIZE)
- + ZSTD_sizeof_matchState(&cParams, /* forCCtx */ 0)
+ /* enableDedicatedDictSearch == 1 ensures that CDict estimation will not be too small
+ * in case we are using DDS with row-hash. */
+ + ZSTD_sizeof_matchState(&cParams, ZSTD_resolveRowMatchFinderMode(ZSTD_ps_auto, &cParams),
+ /* enableDedicatedDictSearch */ 1, /* forCCtx */ 0)
+ (dictLoadMethod == ZSTD_dlm_byRef ? 0
: ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(dictSize, sizeof(void *))));
}
size_t ZSTD_estimateCDictSize(size_t dictSize, int compressionLevel)
{
ZSTD_compressionParameters const cParams = ZSTD_getCParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_createCDict);
return ZSTD_estimateCDictSize_advanced(dictSize, cParams, ZSTD_dlm_byCopy);
}
size_t ZSTD_sizeof_CDict(const ZSTD_CDict* cdict)
{
if (cdict==NULL) return 0; /* support sizeof on NULL */
DEBUGLOG(5, "sizeof(*cdict) : %u", (unsigned)sizeof(*cdict));
/* cdict may be in the workspace */
return (cdict->workspace.workspace == cdict ? 0 : sizeof(*cdict))
+ ZSTD_cwksp_sizeof(&cdict->workspace);
}
static size_t ZSTD_initCDict_internal(
ZSTD_CDict* cdict,
const void* dictBuffer, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType,
ZSTD_CCtx_params params)
{
DEBUGLOG(3, "ZSTD_initCDict_internal (dictContentType:%u)", (unsigned)dictContentType);
assert(!ZSTD_checkCParams(params.cParams));
cdict->matchState.cParams = params.cParams;
cdict->matchState.dedicatedDictSearch = params.enableDedicatedDictSearch;
- if (cdict->matchState.dedicatedDictSearch && dictSize > ZSTD_CHUNKSIZE_MAX) {
- cdict->matchState.dedicatedDictSearch = 0;
- }
if ((dictLoadMethod == ZSTD_dlm_byRef) || (!dictBuffer) || (!dictSize)) {
cdict->dictContent = dictBuffer;
} else {
void *internalBuffer = ZSTD_cwksp_reserve_object(&cdict->workspace, ZSTD_cwksp_align(dictSize, sizeof(void*)));
RETURN_ERROR_IF(!internalBuffer, memory_allocation, "NULL pointer!");
cdict->dictContent = internalBuffer;
ZSTD_memcpy(internalBuffer, dictBuffer, dictSize);
}
cdict->dictContentSize = dictSize;
cdict->dictContentType = dictContentType;
cdict->entropyWorkspace = (U32*)ZSTD_cwksp_reserve_object(&cdict->workspace, HUF_WORKSPACE_SIZE);
/* Reset the state to no dictionary */
ZSTD_reset_compressedBlockState(&cdict->cBlockState);
FORWARD_IF_ERROR(ZSTD_reset_matchState(
&cdict->matchState,
&cdict->workspace,
&params.cParams,
+ params.useRowMatchFinder,
ZSTDcrp_makeClean,
ZSTDirp_reset,
ZSTD_resetTarget_CDict), "");
/* (Maybe) load the dictionary
* Skips loading the dictionary if it is < 8 bytes.
*/
{ params.compressionLevel = ZSTD_CLEVEL_DEFAULT;
params.fParams.contentSizeFlag = 1;
{ size_t const dictID = ZSTD_compress_insertDictionary(
&cdict->cBlockState, &cdict->matchState, NULL, &cdict->workspace,
&params, cdict->dictContent, cdict->dictContentSize,
dictContentType, ZSTD_dtlm_full, cdict->entropyWorkspace);
FORWARD_IF_ERROR(dictID, "ZSTD_compress_insertDictionary failed");
assert(dictID <= (size_t)(U32)-1);
cdict->dictID = (U32)dictID;
}
}
return 0;
}
static ZSTD_CDict* ZSTD_createCDict_advanced_internal(size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
- ZSTD_compressionParameters cParams, ZSTD_customMem customMem)
+ ZSTD_compressionParameters cParams,
+ ZSTD_paramSwitch_e useRowMatchFinder,
+ U32 enableDedicatedDictSearch,
+ ZSTD_customMem customMem)
{
if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL;
{ size_t const workspaceSize =
ZSTD_cwksp_alloc_size(sizeof(ZSTD_CDict)) +
ZSTD_cwksp_alloc_size(HUF_WORKSPACE_SIZE) +
- ZSTD_sizeof_matchState(&cParams, /* forCCtx */ 0) +
+ ZSTD_sizeof_matchState(&cParams, useRowMatchFinder, enableDedicatedDictSearch, /* forCCtx */ 0) +
(dictLoadMethod == ZSTD_dlm_byRef ? 0
: ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(dictSize, sizeof(void*))));
void* const workspace = ZSTD_customMalloc(workspaceSize, customMem);
ZSTD_cwksp ws;
ZSTD_CDict* cdict;
if (!workspace) {
ZSTD_customFree(workspace, customMem);
return NULL;
}
ZSTD_cwksp_init(&ws, workspace, workspaceSize, ZSTD_cwksp_dynamic_alloc);
cdict = (ZSTD_CDict*)ZSTD_cwksp_reserve_object(&ws, sizeof(ZSTD_CDict));
assert(cdict != NULL);
ZSTD_cwksp_move(&cdict->workspace, &ws);
cdict->customMem = customMem;
- cdict->compressionLevel = 0; /* signals advanced API usage */
-
+ cdict->compressionLevel = ZSTD_NO_CLEVEL; /* signals advanced API usage */
+ cdict->useRowMatchFinder = useRowMatchFinder;
return cdict;
}
}
ZSTD_CDict* ZSTD_createCDict_advanced(const void* dictBuffer, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType,
ZSTD_compressionParameters cParams,
ZSTD_customMem customMem)
{
ZSTD_CCtx_params cctxParams;
ZSTD_memset(&cctxParams, 0, sizeof(cctxParams));
ZSTD_CCtxParams_init(&cctxParams, 0);
cctxParams.cParams = cParams;
cctxParams.customMem = customMem;
return ZSTD_createCDict_advanced2(
dictBuffer, dictSize,
dictLoadMethod, dictContentType,
&cctxParams, customMem);
}
-ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict_advanced2(
+ZSTD_CDict* ZSTD_createCDict_advanced2(
const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType,
const ZSTD_CCtx_params* originalCctxParams,
ZSTD_customMem customMem)
{
ZSTD_CCtx_params cctxParams = *originalCctxParams;
ZSTD_compressionParameters cParams;
ZSTD_CDict* cdict;
DEBUGLOG(3, "ZSTD_createCDict_advanced2, mode %u", (unsigned)dictContentType);
if (!customMem.customAlloc ^ !customMem.customFree) return NULL;
if (cctxParams.enableDedicatedDictSearch) {
cParams = ZSTD_dedicatedDictSearch_getCParams(
cctxParams.compressionLevel, dictSize);
ZSTD_overrideCParams(&cParams, &cctxParams.cParams);
} else {
cParams = ZSTD_getCParamsFromCCtxParams(
&cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_createCDict);
}
if (!ZSTD_dedicatedDictSearch_isSupported(&cParams)) {
/* Fall back to non-DDSS params */
cctxParams.enableDedicatedDictSearch = 0;
cParams = ZSTD_getCParamsFromCCtxParams(
&cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_createCDict);
}
+ DEBUGLOG(3, "ZSTD_createCDict_advanced2: DDS: %u", cctxParams.enableDedicatedDictSearch);
cctxParams.cParams = cParams;
+ cctxParams.useRowMatchFinder = ZSTD_resolveRowMatchFinderMode(cctxParams.useRowMatchFinder, &cParams);
cdict = ZSTD_createCDict_advanced_internal(dictSize,
dictLoadMethod, cctxParams.cParams,
+ cctxParams.useRowMatchFinder, cctxParams.enableDedicatedDictSearch,
customMem);
if (ZSTD_isError( ZSTD_initCDict_internal(cdict,
dict, dictSize,
dictLoadMethod, dictContentType,
cctxParams) )) {
ZSTD_freeCDict(cdict);
return NULL;
}
return cdict;
}
ZSTD_CDict* ZSTD_createCDict(const void* dict, size_t dictSize, int compressionLevel)
{
ZSTD_compressionParameters cParams = ZSTD_getCParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_createCDict);
ZSTD_CDict* const cdict = ZSTD_createCDict_advanced(dict, dictSize,
ZSTD_dlm_byCopy, ZSTD_dct_auto,
cParams, ZSTD_defaultCMem);
if (cdict)
cdict->compressionLevel = (compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : compressionLevel;
return cdict;
}
ZSTD_CDict* ZSTD_createCDict_byReference(const void* dict, size_t dictSize, int compressionLevel)
{
ZSTD_compressionParameters cParams = ZSTD_getCParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_createCDict);
ZSTD_CDict* const cdict = ZSTD_createCDict_advanced(dict, dictSize,
ZSTD_dlm_byRef, ZSTD_dct_auto,
cParams, ZSTD_defaultCMem);
if (cdict)
cdict->compressionLevel = (compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : compressionLevel;
return cdict;
}
size_t ZSTD_freeCDict(ZSTD_CDict* cdict)
{
if (cdict==NULL) return 0; /* support free on NULL */
{ ZSTD_customMem const cMem = cdict->customMem;
int cdictInWorkspace = ZSTD_cwksp_owns_buffer(&cdict->workspace, cdict);
ZSTD_cwksp_free(&cdict->workspace, cMem);
if (!cdictInWorkspace) {
ZSTD_customFree(cdict, cMem);
}
return 0;
}
}
/*! ZSTD_initStaticCDict_advanced() :
* Generate a digested dictionary in provided memory area.
* workspace: The memory area to emplace the dictionary into.
* Provided pointer must 8-bytes aligned.
* It must outlive dictionary usage.
* workspaceSize: Use ZSTD_estimateCDictSize()
* to determine how large workspace must be.
* cParams : use ZSTD_getCParams() to transform a compression level
* into its relevants cParams.
* @return : pointer to ZSTD_CDict*, or NULL if error (size too small)
* Note : there is no corresponding "free" function.
* Since workspace was allocated externally, it must be freed externally.
*/
const ZSTD_CDict* ZSTD_initStaticCDict(
void* workspace, size_t workspaceSize,
const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType,
ZSTD_compressionParameters cParams)
{
- size_t const matchStateSize = ZSTD_sizeof_matchState(&cParams, /* forCCtx */ 0);
+ ZSTD_paramSwitch_e const useRowMatchFinder = ZSTD_resolveRowMatchFinderMode(ZSTD_ps_auto, &cParams);
+ /* enableDedicatedDictSearch == 1 ensures matchstate is not too small in case this CDict will be used for DDS + row hash */
+ size_t const matchStateSize = ZSTD_sizeof_matchState(&cParams, useRowMatchFinder, /* enableDedicatedDictSearch */ 1, /* forCCtx */ 0);
size_t const neededSize = ZSTD_cwksp_alloc_size(sizeof(ZSTD_CDict))
+ (dictLoadMethod == ZSTD_dlm_byRef ? 0
: ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(dictSize, sizeof(void*))))
+ ZSTD_cwksp_alloc_size(HUF_WORKSPACE_SIZE)
+ matchStateSize;
ZSTD_CDict* cdict;
ZSTD_CCtx_params params;
if ((size_t)workspace & 7) return NULL; /* 8-aligned */
{
ZSTD_cwksp ws;
ZSTD_cwksp_init(&ws, workspace, workspaceSize, ZSTD_cwksp_static_alloc);
cdict = (ZSTD_CDict*)ZSTD_cwksp_reserve_object(&ws, sizeof(ZSTD_CDict));
if (cdict == NULL) return NULL;
ZSTD_cwksp_move(&cdict->workspace, &ws);
}
DEBUGLOG(4, "(workspaceSize < neededSize) : (%u < %u) => %u",
(unsigned)workspaceSize, (unsigned)neededSize, (unsigned)(workspaceSize < neededSize));
if (workspaceSize < neededSize) return NULL;
ZSTD_CCtxParams_init(&params, 0);
params.cParams = cParams;
+ params.useRowMatchFinder = useRowMatchFinder;
+ cdict->useRowMatchFinder = useRowMatchFinder;
if (ZSTD_isError( ZSTD_initCDict_internal(cdict,
dict, dictSize,
dictLoadMethod, dictContentType,
params) ))
return NULL;
return cdict;
}
ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict)
{
assert(cdict != NULL);
return cdict->matchState.cParams;
}
/*! ZSTD_getDictID_fromCDict() :
* Provides the dictID of the dictionary loaded into `cdict`.
* If @return == 0, the dictionary is not conformant to Zstandard specification, or empty.
* Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */
unsigned ZSTD_getDictID_fromCDict(const ZSTD_CDict* cdict)
{
if (cdict==NULL) return 0;
return cdict->dictID;
}
-
-/* ZSTD_compressBegin_usingCDict_advanced() :
- * cdict must be != NULL */
-size_t ZSTD_compressBegin_usingCDict_advanced(
+/* ZSTD_compressBegin_usingCDict_internal() :
+ * Implementation of various ZSTD_compressBegin_usingCDict* functions.
+ */
+static size_t ZSTD_compressBegin_usingCDict_internal(
ZSTD_CCtx* const cctx, const ZSTD_CDict* const cdict,
ZSTD_frameParameters const fParams, unsigned long long const pledgedSrcSize)
{
- DEBUGLOG(4, "ZSTD_compressBegin_usingCDict_advanced");
+ ZSTD_CCtx_params cctxParams;
+ DEBUGLOG(4, "ZSTD_compressBegin_usingCDict_internal");
RETURN_ERROR_IF(cdict==NULL, dictionary_wrong, "NULL pointer!");
- { ZSTD_CCtx_params params = cctx->requestedParams;
+ /* Initialize the cctxParams from the cdict */
+ {
+ ZSTD_parameters params;
+ params.fParams = fParams;
params.cParams = ( pledgedSrcSize < ZSTD_USE_CDICT_PARAMS_SRCSIZE_CUTOFF
|| pledgedSrcSize < cdict->dictContentSize * ZSTD_USE_CDICT_PARAMS_DICTSIZE_MULTIPLIER
|| pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN
- || cdict->compressionLevel == 0 )
- && (params.attachDictPref != ZSTD_dictForceLoad) ?
+ || cdict->compressionLevel == 0 ) ?
ZSTD_getCParamsFromCDict(cdict)
: ZSTD_getCParams(cdict->compressionLevel,
pledgedSrcSize,
cdict->dictContentSize);
- /* Increase window log to fit the entire dictionary and source if the
- * source size is known. Limit the increase to 19, which is the
- * window log for compression level 1 with the largest source size.
- */
- if (pledgedSrcSize != ZSTD_CONTENTSIZE_UNKNOWN) {
- U32 const limitedSrcSize = (U32)MIN(pledgedSrcSize, 1U << 19);
- U32 const limitedSrcLog = limitedSrcSize > 1 ? ZSTD_highbit32(limitedSrcSize - 1) + 1 : 1;
- params.cParams.windowLog = MAX(params.cParams.windowLog, limitedSrcLog);
- }
- params.fParams = fParams;
- return ZSTD_compressBegin_internal(cctx,
- NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast,
- cdict,
- &params, pledgedSrcSize,
- ZSTDb_not_buffered);
+ ZSTD_CCtxParams_init_internal(&cctxParams, &params, cdict->compressionLevel);
+ }
+ /* Increase window log to fit the entire dictionary and source if the
+ * source size is known. Limit the increase to 19, which is the
+ * window log for compression level 1 with the largest source size.
+ */
+ if (pledgedSrcSize != ZSTD_CONTENTSIZE_UNKNOWN) {
+ U32 const limitedSrcSize = (U32)MIN(pledgedSrcSize, 1U << 19);
+ U32 const limitedSrcLog = limitedSrcSize > 1 ? ZSTD_highbit32(limitedSrcSize - 1) + 1 : 1;
+ cctxParams.cParams.windowLog = MAX(cctxParams.cParams.windowLog, limitedSrcLog);
}
+ return ZSTD_compressBegin_internal(cctx,
+ NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast,
+ cdict,
+ &cctxParams, pledgedSrcSize,
+ ZSTDb_not_buffered);
+}
+
+
+/* ZSTD_compressBegin_usingCDict_advanced() :
+ * This function is DEPRECATED.
+ * cdict must be != NULL */
+size_t ZSTD_compressBegin_usingCDict_advanced(
+ ZSTD_CCtx* const cctx, const ZSTD_CDict* const cdict,
+ ZSTD_frameParameters const fParams, unsigned long long const pledgedSrcSize)
+{
+ return ZSTD_compressBegin_usingCDict_internal(cctx, cdict, fParams, pledgedSrcSize);
}
/* ZSTD_compressBegin_usingCDict() :
- * pledgedSrcSize=0 means "unknown"
- * if pledgedSrcSize>0, it will enable contentSizeFlag */
+ * cdict must be != NULL */
size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict)
{
ZSTD_frameParameters const fParams = { 0 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ };
- DEBUGLOG(4, "ZSTD_compressBegin_usingCDict : dictIDFlag == %u", !fParams.noDictIDFlag);
- return ZSTD_compressBegin_usingCDict_advanced(cctx, cdict, fParams, ZSTD_CONTENTSIZE_UNKNOWN);
+ return ZSTD_compressBegin_usingCDict_internal(cctx, cdict, fParams, ZSTD_CONTENTSIZE_UNKNOWN);
}
-size_t ZSTD_compress_usingCDict_advanced(ZSTD_CCtx* cctx,
+/*! ZSTD_compress_usingCDict_internal():
+ * Implementation of various ZSTD_compress_usingCDict* functions.
+ */
+static size_t ZSTD_compress_usingCDict_internal(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTD_CDict* cdict, ZSTD_frameParameters fParams)
{
- FORWARD_IF_ERROR(ZSTD_compressBegin_usingCDict_advanced(cctx, cdict, fParams, srcSize), ""); /* will check if cdict != NULL */
+ FORWARD_IF_ERROR(ZSTD_compressBegin_usingCDict_internal(cctx, cdict, fParams, srcSize), ""); /* will check if cdict != NULL */
return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize);
}
+/*! ZSTD_compress_usingCDict_advanced():
+ * This function is DEPRECATED.
+ */
+size_t ZSTD_compress_usingCDict_advanced(ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const ZSTD_CDict* cdict, ZSTD_frameParameters fParams)
+{
+ return ZSTD_compress_usingCDict_internal(cctx, dst, dstCapacity, src, srcSize, cdict, fParams);
+}
+
/*! ZSTD_compress_usingCDict() :
* Compression using a digested Dictionary.
* Faster startup than ZSTD_compress_usingDict(), recommended when same dictionary is used multiple times.
* Note that compression parameters are decided at CDict creation time
* while frame parameters are hardcoded */
size_t ZSTD_compress_usingCDict(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTD_CDict* cdict)
{
ZSTD_frameParameters const fParams = { 1 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ };
- return ZSTD_compress_usingCDict_advanced(cctx, dst, dstCapacity, src, srcSize, cdict, fParams);
+ return ZSTD_compress_usingCDict_internal(cctx, dst, dstCapacity, src, srcSize, cdict, fParams);
}
/* ******************************************************************
* Streaming
********************************************************************/
ZSTD_CStream* ZSTD_createCStream(void)
{
DEBUGLOG(3, "ZSTD_createCStream");
return ZSTD_createCStream_advanced(ZSTD_defaultCMem);
}
ZSTD_CStream* ZSTD_initStaticCStream(void *workspace, size_t workspaceSize)
{
return ZSTD_initStaticCCtx(workspace, workspaceSize);
}
ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem)
{ /* CStream and CCtx are now same object */
return ZSTD_createCCtx_advanced(customMem);
}
size_t ZSTD_freeCStream(ZSTD_CStream* zcs)
{
return ZSTD_freeCCtx(zcs); /* same object */
}
/*====== Initialization ======*/
size_t ZSTD_CStreamInSize(void) { return ZSTD_BLOCKSIZE_MAX; }
size_t ZSTD_CStreamOutSize(void)
{
return ZSTD_compressBound(ZSTD_BLOCKSIZE_MAX) + ZSTD_blockHeaderSize + 4 /* 32-bits hash */ ;
}
static ZSTD_cParamMode_e ZSTD_getCParamMode(ZSTD_CDict const* cdict, ZSTD_CCtx_params const* params, U64 pledgedSrcSize)
{
if (cdict != NULL && ZSTD_shouldAttachDict(cdict, params, pledgedSrcSize))
return ZSTD_cpm_attachDict;
else
return ZSTD_cpm_noAttachDict;
}
/* ZSTD_resetCStream():
* pledgedSrcSize == 0 means "unknown" */
size_t ZSTD_resetCStream(ZSTD_CStream* zcs, unsigned long long pss)
{
/* temporary : 0 interpreted as "unknown" during transition period.
* Users willing to specify "unknown" **must** use ZSTD_CONTENTSIZE_UNKNOWN.
* 0 will be interpreted as "empty" in the future.
*/
U64 const pledgedSrcSize = (pss==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss;
DEBUGLOG(4, "ZSTD_resetCStream: pledgedSrcSize = %u", (unsigned)pledgedSrcSize);
FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , "");
FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) , "");
return 0;
}
/*! ZSTD_initCStream_internal() :
* Note : for lib/compress only. Used by zstdmt_compress.c.
* Assumption 1 : params are valid
* Assumption 2 : either dict, or cdict, is defined, not both */
size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs,
const void* dict, size_t dictSize, const ZSTD_CDict* cdict,
const ZSTD_CCtx_params* params,
unsigned long long pledgedSrcSize)
{
DEBUGLOG(4, "ZSTD_initCStream_internal");
FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , "");
FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) , "");
assert(!ZSTD_isError(ZSTD_checkCParams(params->cParams)));
zcs->requestedParams = *params;
assert(!((dict) && (cdict))); /* either dict or cdict, not both */
if (dict) {
FORWARD_IF_ERROR( ZSTD_CCtx_loadDictionary(zcs, dict, dictSize) , "");
} else {
/* Dictionary is cleared if !cdict */
FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, cdict) , "");
}
return 0;
}
/* ZSTD_initCStream_usingCDict_advanced() :
* same as ZSTD_initCStream_usingCDict(), with control over frame parameters */
size_t ZSTD_initCStream_usingCDict_advanced(ZSTD_CStream* zcs,
const ZSTD_CDict* cdict,
ZSTD_frameParameters fParams,
unsigned long long pledgedSrcSize)
{
DEBUGLOG(4, "ZSTD_initCStream_usingCDict_advanced");
FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , "");
FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) , "");
zcs->requestedParams.fParams = fParams;
FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, cdict) , "");
return 0;
}
/* note : cdict must outlive compression session */
size_t ZSTD_initCStream_usingCDict(ZSTD_CStream* zcs, const ZSTD_CDict* cdict)
{
DEBUGLOG(4, "ZSTD_initCStream_usingCDict");
FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , "");
FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, cdict) , "");
return 0;
}
/* ZSTD_initCStream_advanced() :
* pledgedSrcSize must be exact.
* if srcSize is not known at init time, use value ZSTD_CONTENTSIZE_UNKNOWN.
* dict is loaded with default parameters ZSTD_dct_auto and ZSTD_dlm_byCopy. */
size_t ZSTD_initCStream_advanced(ZSTD_CStream* zcs,
const void* dict, size_t dictSize,
ZSTD_parameters params, unsigned long long pss)
{
/* for compatibility with older programs relying on this behavior.
* Users should now specify ZSTD_CONTENTSIZE_UNKNOWN.
* This line will be removed in the future.
*/
U64 const pledgedSrcSize = (pss==0 && params.fParams.contentSizeFlag==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss;
DEBUGLOG(4, "ZSTD_initCStream_advanced");
FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , "");
FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) , "");
FORWARD_IF_ERROR( ZSTD_checkCParams(params.cParams) , "");
- zcs->requestedParams = ZSTD_assignParamsToCCtxParams(&zcs->requestedParams, &params);
+ ZSTD_CCtxParams_setZstdParams(&zcs->requestedParams, &params);
FORWARD_IF_ERROR( ZSTD_CCtx_loadDictionary(zcs, dict, dictSize) , "");
return 0;
}
size_t ZSTD_initCStream_usingDict(ZSTD_CStream* zcs, const void* dict, size_t dictSize, int compressionLevel)
{
DEBUGLOG(4, "ZSTD_initCStream_usingDict");
FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , "");
FORWARD_IF_ERROR( ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel) , "");
FORWARD_IF_ERROR( ZSTD_CCtx_loadDictionary(zcs, dict, dictSize) , "");
return 0;
}
size_t ZSTD_initCStream_srcSize(ZSTD_CStream* zcs, int compressionLevel, unsigned long long pss)
{
/* temporary : 0 interpreted as "unknown" during transition period.
* Users willing to specify "unknown" **must** use ZSTD_CONTENTSIZE_UNKNOWN.
* 0 will be interpreted as "empty" in the future.
*/
U64 const pledgedSrcSize = (pss==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss;
DEBUGLOG(4, "ZSTD_initCStream_srcSize");
FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , "");
FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, NULL) , "");
FORWARD_IF_ERROR( ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel) , "");
FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) , "");
return 0;
}
size_t ZSTD_initCStream(ZSTD_CStream* zcs, int compressionLevel)
{
DEBUGLOG(4, "ZSTD_initCStream");
FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , "");
FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, NULL) , "");
FORWARD_IF_ERROR( ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel) , "");
return 0;
}
/*====== Compression ======*/
static size_t ZSTD_nextInputSizeHint(const ZSTD_CCtx* cctx)
{
size_t hintInSize = cctx->inBuffTarget - cctx->inBuffPos;
if (hintInSize==0) hintInSize = cctx->blockSize;
return hintInSize;
}
/** ZSTD_compressStream_generic():
* internal function for all *compressStream*() variants
* non-static, because can be called from zstdmt_compress.c
* @return : hint size for next input */
static size_t ZSTD_compressStream_generic(ZSTD_CStream* zcs,
ZSTD_outBuffer* output,
ZSTD_inBuffer* input,
ZSTD_EndDirective const flushMode)
{
const char* const istart = (const char*)input->src;
const char* const iend = input->size != 0 ? istart + input->size : istart;
const char* ip = input->pos != 0 ? istart + input->pos : istart;
char* const ostart = (char*)output->dst;
char* const oend = output->size != 0 ? ostart + output->size : ostart;
char* op = output->pos != 0 ? ostart + output->pos : ostart;
U32 someMoreWork = 1;
/* check expectations */
DEBUGLOG(5, "ZSTD_compressStream_generic, flush=%u", (unsigned)flushMode);
if (zcs->appliedParams.inBufferMode == ZSTD_bm_buffered) {
assert(zcs->inBuff != NULL);
assert(zcs->inBuffSize > 0);
}
if (zcs->appliedParams.outBufferMode == ZSTD_bm_buffered) {
assert(zcs->outBuff != NULL);
assert(zcs->outBuffSize > 0);
}
assert(output->pos <= output->size);
assert(input->pos <= input->size);
assert((U32)flushMode <= (U32)ZSTD_e_end);
while (someMoreWork) {
switch(zcs->streamStage)
{
case zcss_init:
RETURN_ERROR(init_missing, "call ZSTD_initCStream() first!");
case zcss_load:
if ( (flushMode == ZSTD_e_end)
&& ( (size_t)(oend-op) >= ZSTD_compressBound(iend-ip) /* Enough output space */
|| zcs->appliedParams.outBufferMode == ZSTD_bm_stable) /* OR we are allowed to return dstSizeTooSmall */
&& (zcs->inBuffPos == 0) ) {
/* shortcut to compression pass directly into output buffer */
size_t const cSize = ZSTD_compressEnd(zcs,
op, oend-op, ip, iend-ip);
DEBUGLOG(4, "ZSTD_compressEnd : cSize=%u", (unsigned)cSize);
FORWARD_IF_ERROR(cSize, "ZSTD_compressEnd failed");
ip = iend;
op += cSize;
zcs->frameEnded = 1;
ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
someMoreWork = 0; break;
}
/* complete loading into inBuffer in buffered mode */
if (zcs->appliedParams.inBufferMode == ZSTD_bm_buffered) {
size_t const toLoad = zcs->inBuffTarget - zcs->inBuffPos;
size_t const loaded = ZSTD_limitCopy(
zcs->inBuff + zcs->inBuffPos, toLoad,
ip, iend-ip);
zcs->inBuffPos += loaded;
if (loaded != 0)
ip += loaded;
if ( (flushMode == ZSTD_e_continue)
&& (zcs->inBuffPos < zcs->inBuffTarget) ) {
/* not enough input to fill full block : stop here */
someMoreWork = 0; break;
}
if ( (flushMode == ZSTD_e_flush)
&& (zcs->inBuffPos == zcs->inToCompress) ) {
/* empty */
someMoreWork = 0; break;
}
}
/* compress current block (note : this stage cannot be stopped in the middle) */
DEBUGLOG(5, "stream compression stage (flushMode==%u)", flushMode);
{ int const inputBuffered = (zcs->appliedParams.inBufferMode == ZSTD_bm_buffered);
void* cDst;
size_t cSize;
size_t oSize = oend-op;
size_t const iSize = inputBuffered
? zcs->inBuffPos - zcs->inToCompress
: MIN((size_t)(iend - ip), zcs->blockSize);
if (oSize >= ZSTD_compressBound(iSize) || zcs->appliedParams.outBufferMode == ZSTD_bm_stable)
cDst = op; /* compress into output buffer, to skip flush stage */
else
cDst = zcs->outBuff, oSize = zcs->outBuffSize;
if (inputBuffered) {
unsigned const lastBlock = (flushMode == ZSTD_e_end) && (ip==iend);
cSize = lastBlock ?
ZSTD_compressEnd(zcs, cDst, oSize,
zcs->inBuff + zcs->inToCompress, iSize) :
ZSTD_compressContinue(zcs, cDst, oSize,
zcs->inBuff + zcs->inToCompress, iSize);
FORWARD_IF_ERROR(cSize, "%s", lastBlock ? "ZSTD_compressEnd failed" : "ZSTD_compressContinue failed");
zcs->frameEnded = lastBlock;
/* prepare next block */
zcs->inBuffTarget = zcs->inBuffPos + zcs->blockSize;
if (zcs->inBuffTarget > zcs->inBuffSize)
zcs->inBuffPos = 0, zcs->inBuffTarget = zcs->blockSize;
DEBUGLOG(5, "inBuffTarget:%u / inBuffSize:%u",
(unsigned)zcs->inBuffTarget, (unsigned)zcs->inBuffSize);
if (!lastBlock)
assert(zcs->inBuffTarget <= zcs->inBuffSize);
zcs->inToCompress = zcs->inBuffPos;
} else {
unsigned const lastBlock = (ip + iSize == iend);
assert(flushMode == ZSTD_e_end /* Already validated */);
cSize = lastBlock ?
ZSTD_compressEnd(zcs, cDst, oSize, ip, iSize) :
ZSTD_compressContinue(zcs, cDst, oSize, ip, iSize);
/* Consume the input prior to error checking to mirror buffered mode. */
if (iSize > 0)
ip += iSize;
FORWARD_IF_ERROR(cSize, "%s", lastBlock ? "ZSTD_compressEnd failed" : "ZSTD_compressContinue failed");
zcs->frameEnded = lastBlock;
if (lastBlock)
assert(ip == iend);
}
if (cDst == op) { /* no need to flush */
op += cSize;
if (zcs->frameEnded) {
DEBUGLOG(5, "Frame completed directly in outBuffer");
someMoreWork = 0;
ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
}
break;
}
zcs->outBuffContentSize = cSize;
zcs->outBuffFlushedSize = 0;
zcs->streamStage = zcss_flush; /* pass-through to flush stage */
}
- /* fall-through */
+ ZSTD_FALLTHROUGH;
case zcss_flush:
DEBUGLOG(5, "flush stage");
assert(zcs->appliedParams.outBufferMode == ZSTD_bm_buffered);
{ size_t const toFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize;
size_t const flushed = ZSTD_limitCopy(op, (size_t)(oend-op),
zcs->outBuff + zcs->outBuffFlushedSize, toFlush);
DEBUGLOG(5, "toFlush: %u into %u ==> flushed: %u",
(unsigned)toFlush, (unsigned)(oend-op), (unsigned)flushed);
if (flushed)
op += flushed;
zcs->outBuffFlushedSize += flushed;
if (toFlush!=flushed) {
/* flush not fully completed, presumably because dst is too small */
assert(op==oend);
someMoreWork = 0;
break;
}
zcs->outBuffContentSize = zcs->outBuffFlushedSize = 0;
if (zcs->frameEnded) {
DEBUGLOG(5, "Frame completed on flush");
someMoreWork = 0;
ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
break;
}
zcs->streamStage = zcss_load;
break;
}
default: /* impossible */
assert(0);
}
}
input->pos = ip - istart;
output->pos = op - ostart;
if (zcs->frameEnded) return 0;
return ZSTD_nextInputSizeHint(zcs);
}
static size_t ZSTD_nextInputSizeHint_MTorST(const ZSTD_CCtx* cctx)
{
#ifdef ZSTD_MULTITHREAD
if (cctx->appliedParams.nbWorkers >= 1) {
assert(cctx->mtctx != NULL);
return ZSTDMT_nextInputSizeHint(cctx->mtctx);
}
#endif
return ZSTD_nextInputSizeHint(cctx);
}
size_t ZSTD_compressStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input)
{
FORWARD_IF_ERROR( ZSTD_compressStream2(zcs, output, input, ZSTD_e_continue) , "");
return ZSTD_nextInputSizeHint_MTorST(zcs);
}
/* After a compression call set the expected input/output buffer.
* This is validated at the start of the next compression call.
*/
static void ZSTD_setBufferExpectations(ZSTD_CCtx* cctx, ZSTD_outBuffer const* output, ZSTD_inBuffer const* input)
{
if (cctx->appliedParams.inBufferMode == ZSTD_bm_stable) {
cctx->expectedInBuffer = *input;
}
if (cctx->appliedParams.outBufferMode == ZSTD_bm_stable) {
cctx->expectedOutBufferSize = output->size - output->pos;
}
}
/* Validate that the input/output buffers match the expectations set by
* ZSTD_setBufferExpectations.
*/
static size_t ZSTD_checkBufferStability(ZSTD_CCtx const* cctx,
ZSTD_outBuffer const* output,
ZSTD_inBuffer const* input,
ZSTD_EndDirective endOp)
{
if (cctx->appliedParams.inBufferMode == ZSTD_bm_stable) {
ZSTD_inBuffer const expect = cctx->expectedInBuffer;
if (expect.src != input->src || expect.pos != input->pos || expect.size != input->size)
RETURN_ERROR(srcBuffer_wrong, "ZSTD_c_stableInBuffer enabled but input differs!");
if (endOp != ZSTD_e_end)
RETURN_ERROR(srcBuffer_wrong, "ZSTD_c_stableInBuffer can only be used with ZSTD_e_end!");
}
if (cctx->appliedParams.outBufferMode == ZSTD_bm_stable) {
size_t const outBufferSize = output->size - output->pos;
if (cctx->expectedOutBufferSize != outBufferSize)
RETURN_ERROR(dstBuffer_wrong, "ZSTD_c_stableOutBuffer enabled but output size differs!");
}
return 0;
}
static size_t ZSTD_CCtx_init_compressStream2(ZSTD_CCtx* cctx,
ZSTD_EndDirective endOp,
size_t inSize) {
ZSTD_CCtx_params params = cctx->requestedParams;
ZSTD_prefixDict const prefixDict = cctx->prefixDict;
FORWARD_IF_ERROR( ZSTD_initLocalDict(cctx) , ""); /* Init the local dict if present. */
ZSTD_memset(&cctx->prefixDict, 0, sizeof(cctx->prefixDict)); /* single usage */
assert(prefixDict.dict==NULL || cctx->cdict==NULL); /* only one can be set */
- if (cctx->cdict)
- params.compressionLevel = cctx->cdict->compressionLevel; /* let cdict take priority in terms of compression level */
+ if (cctx->cdict && !cctx->localDict.cdict) {
+ /* Let the cdict's compression level take priority over the requested params.
+ * But do not take the cdict's compression level if the "cdict" is actually a localDict
+ * generated from ZSTD_initLocalDict().
+ */
+ params.compressionLevel = cctx->cdict->compressionLevel;
+ }
DEBUGLOG(4, "ZSTD_compressStream2 : transparent init stage");
if (endOp == ZSTD_e_end) cctx->pledgedSrcSizePlusOne = inSize + 1; /* auto-fix pledgedSrcSize */
{
size_t const dictSize = prefixDict.dict
? prefixDict.dictSize
: (cctx->cdict ? cctx->cdict->dictContentSize : 0);
ZSTD_cParamMode_e const mode = ZSTD_getCParamMode(cctx->cdict, &params, cctx->pledgedSrcSizePlusOne - 1);
params.cParams = ZSTD_getCParamsFromCCtxParams(
&params, cctx->pledgedSrcSizePlusOne-1,
dictSize, mode);
}
- if (ZSTD_CParams_shouldEnableLdm(&params.cParams)) {
- /* Enable LDM by default for optimal parser and window size >= 128MB */
- DEBUGLOG(4, "LDM enabled by default (window size >= 128MB, strategy >= btopt)");
- params.ldmParams.enableLdm = 1;
- }
+ params.useBlockSplitter = ZSTD_resolveBlockSplitterMode(params.useBlockSplitter, &params.cParams);
+ params.ldmParams.enableLdm = ZSTD_resolveEnableLdm(params.ldmParams.enableLdm, &params.cParams);
+ params.useRowMatchFinder = ZSTD_resolveRowMatchFinderMode(params.useRowMatchFinder, &params.cParams);
#ifdef ZSTD_MULTITHREAD
if ((cctx->pledgedSrcSizePlusOne-1) <= ZSTDMT_JOBSIZE_MIN) {
params.nbWorkers = 0; /* do not invoke multi-threading when src size is too small */
}
if (params.nbWorkers > 0) {
+#if ZSTD_TRACE
+ cctx->traceCtx = (ZSTD_trace_compress_begin != NULL) ? ZSTD_trace_compress_begin(cctx) : 0;
+#endif
/* mt context creation */
if (cctx->mtctx == NULL) {
DEBUGLOG(4, "ZSTD_compressStream2: creating new mtctx for nbWorkers=%u",
params.nbWorkers);
cctx->mtctx = ZSTDMT_createCCtx_advanced((U32)params.nbWorkers, cctx->customMem, cctx->pool);
RETURN_ERROR_IF(cctx->mtctx == NULL, memory_allocation, "NULL pointer!");
}
/* mt compression */
DEBUGLOG(4, "call ZSTDMT_initCStream_internal as nbWorkers=%u", params.nbWorkers);
FORWARD_IF_ERROR( ZSTDMT_initCStream_internal(
cctx->mtctx,
prefixDict.dict, prefixDict.dictSize, prefixDict.dictContentType,
cctx->cdict, params, cctx->pledgedSrcSizePlusOne-1) , "");
+ cctx->dictID = cctx->cdict ? cctx->cdict->dictID : 0;
+ cctx->dictContentSize = cctx->cdict ? cctx->cdict->dictContentSize : prefixDict.dictSize;
+ cctx->consumedSrcSize = 0;
+ cctx->producedCSize = 0;
cctx->streamStage = zcss_load;
cctx->appliedParams = params;
} else
#endif
{ U64 const pledgedSrcSize = cctx->pledgedSrcSizePlusOne - 1;
assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
FORWARD_IF_ERROR( ZSTD_compressBegin_internal(cctx,
prefixDict.dict, prefixDict.dictSize, prefixDict.dictContentType, ZSTD_dtlm_fast,
cctx->cdict,
&params, pledgedSrcSize,
ZSTDb_buffered) , "");
assert(cctx->appliedParams.nbWorkers == 0);
cctx->inToCompress = 0;
cctx->inBuffPos = 0;
if (cctx->appliedParams.inBufferMode == ZSTD_bm_buffered) {
/* for small input: avoid automatic flush on reaching end of block, since
* it would require to add a 3-bytes null block to end frame
*/
cctx->inBuffTarget = cctx->blockSize + (cctx->blockSize == pledgedSrcSize);
} else {
cctx->inBuffTarget = 0;
}
cctx->outBuffContentSize = cctx->outBuffFlushedSize = 0;
cctx->streamStage = zcss_load;
cctx->frameEnded = 0;
}
return 0;
}
size_t ZSTD_compressStream2( ZSTD_CCtx* cctx,
ZSTD_outBuffer* output,
ZSTD_inBuffer* input,
ZSTD_EndDirective endOp)
{
DEBUGLOG(5, "ZSTD_compressStream2, endOp=%u ", (unsigned)endOp);
/* check conditions */
RETURN_ERROR_IF(output->pos > output->size, dstSize_tooSmall, "invalid output buffer");
RETURN_ERROR_IF(input->pos > input->size, srcSize_wrong, "invalid input buffer");
RETURN_ERROR_IF((U32)endOp > (U32)ZSTD_e_end, parameter_outOfBound, "invalid endDirective");
assert(cctx != NULL);
/* transparent initialization stage */
if (cctx->streamStage == zcss_init) {
FORWARD_IF_ERROR(ZSTD_CCtx_init_compressStream2(cctx, endOp, input->size), "CompressStream2 initialization failed");
ZSTD_setBufferExpectations(cctx, output, input); /* Set initial buffer expectations now that we've initialized */
}
/* end of transparent initialization stage */
FORWARD_IF_ERROR(ZSTD_checkBufferStability(cctx, output, input, endOp), "invalid buffers");
/* compression stage */
#ifdef ZSTD_MULTITHREAD
if (cctx->appliedParams.nbWorkers > 0) {
size_t flushMin;
if (cctx->cParamsChanged) {
ZSTDMT_updateCParams_whileCompressing(cctx->mtctx, &cctx->requestedParams);
cctx->cParamsChanged = 0;
}
for (;;) {
size_t const ipos = input->pos;
size_t const opos = output->pos;
flushMin = ZSTDMT_compressStream_generic(cctx->mtctx, output, input, endOp);
+ cctx->consumedSrcSize += (U64)(input->pos - ipos);
+ cctx->producedCSize += (U64)(output->pos - opos);
if ( ZSTD_isError(flushMin)
|| (endOp == ZSTD_e_end && flushMin == 0) ) { /* compression completed */
+ if (flushMin == 0)
+ ZSTD_CCtx_trace(cctx, 0);
ZSTD_CCtx_reset(cctx, ZSTD_reset_session_only);
}
FORWARD_IF_ERROR(flushMin, "ZSTDMT_compressStream_generic failed");
if (endOp == ZSTD_e_continue) {
/* We only require some progress with ZSTD_e_continue, not maximal progress.
* We're done if we've consumed or produced any bytes, or either buffer is
* full.
*/
if (input->pos != ipos || output->pos != opos || input->pos == input->size || output->pos == output->size)
break;
} else {
assert(endOp == ZSTD_e_flush || endOp == ZSTD_e_end);
/* We require maximal progress. We're done when the flush is complete or the
* output buffer is full.
*/
if (flushMin == 0 || output->pos == output->size)
break;
}
}
DEBUGLOG(5, "completed ZSTD_compressStream2 delegating to ZSTDMT_compressStream_generic");
/* Either we don't require maximum forward progress, we've finished the
* flush, or we are out of output space.
*/
assert(endOp == ZSTD_e_continue || flushMin == 0 || output->pos == output->size);
ZSTD_setBufferExpectations(cctx, output, input);
return flushMin;
}
#endif
FORWARD_IF_ERROR( ZSTD_compressStream_generic(cctx, output, input, endOp) , "");
DEBUGLOG(5, "completed ZSTD_compressStream2");
ZSTD_setBufferExpectations(cctx, output, input);
return cctx->outBuffContentSize - cctx->outBuffFlushedSize; /* remaining to flush */
}
size_t ZSTD_compressStream2_simpleArgs (
ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity, size_t* dstPos,
const void* src, size_t srcSize, size_t* srcPos,
ZSTD_EndDirective endOp)
{
ZSTD_outBuffer output = { dst, dstCapacity, *dstPos };
ZSTD_inBuffer input = { src, srcSize, *srcPos };
/* ZSTD_compressStream2() will check validity of dstPos and srcPos */
size_t const cErr = ZSTD_compressStream2(cctx, &output, &input, endOp);
*dstPos = output.pos;
*srcPos = input.pos;
return cErr;
}
size_t ZSTD_compress2(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
ZSTD_bufferMode_e const originalInBufferMode = cctx->requestedParams.inBufferMode;
ZSTD_bufferMode_e const originalOutBufferMode = cctx->requestedParams.outBufferMode;
DEBUGLOG(4, "ZSTD_compress2 (srcSize=%u)", (unsigned)srcSize);
ZSTD_CCtx_reset(cctx, ZSTD_reset_session_only);
/* Enable stable input/output buffers. */
cctx->requestedParams.inBufferMode = ZSTD_bm_stable;
cctx->requestedParams.outBufferMode = ZSTD_bm_stable;
{ size_t oPos = 0;
size_t iPos = 0;
size_t const result = ZSTD_compressStream2_simpleArgs(cctx,
dst, dstCapacity, &oPos,
src, srcSize, &iPos,
ZSTD_e_end);
/* Reset to the original values. */
cctx->requestedParams.inBufferMode = originalInBufferMode;
cctx->requestedParams.outBufferMode = originalOutBufferMode;
FORWARD_IF_ERROR(result, "ZSTD_compressStream2_simpleArgs failed");
if (result != 0) { /* compression not completed, due to lack of output space */
assert(oPos == dstCapacity);
RETURN_ERROR(dstSize_tooSmall, "");
}
assert(iPos == srcSize); /* all input is expected consumed */
return oPos;
}
}
typedef struct {
U32 idx; /* Index in array of ZSTD_Sequence */
U32 posInSequence; /* Position within sequence at idx */
size_t posInSrc; /* Number of bytes given by sequences provided so far */
} ZSTD_sequencePosition;
-/* Returns a ZSTD error code if sequence is not valid */
-static size_t ZSTD_validateSequence(U32 offCode, U32 matchLength,
- size_t posInSrc, U32 windowLog, size_t dictSize, U32 minMatch) {
- size_t offsetBound;
- U32 windowSize = 1 << windowLog;
+/* ZSTD_validateSequence() :
+ * @offCode : is presumed to follow format required by ZSTD_storeSeq()
+ * @returns a ZSTD error code if sequence is not valid
+ */
+static size_t
+ZSTD_validateSequence(U32 offCode, U32 matchLength,
+ size_t posInSrc, U32 windowLog, size_t dictSize)
+{
+ U32 const windowSize = 1 << windowLog;
/* posInSrc represents the amount of data the the decoder would decode up to this point.
* As long as the amount of data decoded is less than or equal to window size, offsets may be
* larger than the total length of output decoded in order to reference the dict, even larger than
* window size. After output surpasses windowSize, we're limited to windowSize offsets again.
*/
- offsetBound = posInSrc > windowSize ? (size_t)windowSize : posInSrc + (size_t)dictSize;
- RETURN_ERROR_IF(offCode > offsetBound + ZSTD_REP_MOVE, corruption_detected, "Offset too large!");
- RETURN_ERROR_IF(matchLength < minMatch, corruption_detected, "Matchlength too small");
+ size_t const offsetBound = posInSrc > windowSize ? (size_t)windowSize : posInSrc + (size_t)dictSize;
+ RETURN_ERROR_IF(offCode > STORE_OFFSET(offsetBound), corruption_detected, "Offset too large!");
+ RETURN_ERROR_IF(matchLength < MINMATCH, corruption_detected, "Matchlength too small");
return 0;
}
/* Returns an offset code, given a sequence's raw offset, the ongoing repcode array, and whether litLength == 0 */
-static U32 ZSTD_finalizeOffCode(U32 rawOffset, const U32 rep[ZSTD_REP_NUM], U32 ll0) {
- U32 offCode = rawOffset + ZSTD_REP_MOVE;
- U32 repCode = 0;
+static U32 ZSTD_finalizeOffCode(U32 rawOffset, const U32 rep[ZSTD_REP_NUM], U32 ll0)
+{
+ U32 offCode = STORE_OFFSET(rawOffset);
if (!ll0 && rawOffset == rep[0]) {
- repCode = 1;
+ offCode = STORE_REPCODE_1;
} else if (rawOffset == rep[1]) {
- repCode = 2 - ll0;
+ offCode = STORE_REPCODE(2 - ll0);
} else if (rawOffset == rep[2]) {
- repCode = 3 - ll0;
+ offCode = STORE_REPCODE(3 - ll0);
} else if (ll0 && rawOffset == rep[0] - 1) {
- repCode = 3;
- }
- if (repCode) {
- /* ZSTD_storeSeq expects a number in the range [0, 2] to represent a repcode */
- offCode = repCode - 1;
+ offCode = STORE_REPCODE_3;
}
return offCode;
}
/* Returns 0 on success, and a ZSTD_error otherwise. This function scans through an array of
* ZSTD_Sequence, storing the sequences it finds, until it reaches a block delimiter.
*/
-static size_t ZSTD_copySequencesToSeqStoreExplicitBlockDelim(ZSTD_CCtx* cctx, ZSTD_sequencePosition* seqPos,
- const ZSTD_Sequence* const inSeqs, size_t inSeqsSize,
- const void* src, size_t blockSize) {
+static size_t
+ZSTD_copySequencesToSeqStoreExplicitBlockDelim(ZSTD_CCtx* cctx,
+ ZSTD_sequencePosition* seqPos,
+ const ZSTD_Sequence* const inSeqs, size_t inSeqsSize,
+ const void* src, size_t blockSize)
+{
U32 idx = seqPos->idx;
BYTE const* ip = (BYTE const*)(src);
const BYTE* const iend = ip + blockSize;
repcodes_t updatedRepcodes;
U32 dictSize;
- U32 litLength;
- U32 matchLength;
- U32 ll0;
- U32 offCode;
if (cctx->cdict) {
dictSize = (U32)cctx->cdict->dictContentSize;
} else if (cctx->prefixDict.dict) {
dictSize = (U32)cctx->prefixDict.dictSize;
} else {
dictSize = 0;
}
ZSTD_memcpy(updatedRepcodes.rep, cctx->blockState.prevCBlock->rep, sizeof(repcodes_t));
for (; (inSeqs[idx].matchLength != 0 || inSeqs[idx].offset != 0) && idx < inSeqsSize; ++idx) {
- litLength = inSeqs[idx].litLength;
- matchLength = inSeqs[idx].matchLength;
- ll0 = litLength == 0;
- offCode = ZSTD_finalizeOffCode(inSeqs[idx].offset, updatedRepcodes.rep, ll0);
- updatedRepcodes = ZSTD_updateRep(updatedRepcodes.rep, offCode, ll0);
+ U32 const litLength = inSeqs[idx].litLength;
+ U32 const ll0 = (litLength == 0);
+ U32 const matchLength = inSeqs[idx].matchLength;
+ U32 const offCode = ZSTD_finalizeOffCode(inSeqs[idx].offset, updatedRepcodes.rep, ll0);
+ ZSTD_updateRep(updatedRepcodes.rep, offCode, ll0);
DEBUGLOG(6, "Storing sequence: (of: %u, ml: %u, ll: %u)", offCode, matchLength, litLength);
if (cctx->appliedParams.validateSequences) {
seqPos->posInSrc += litLength + matchLength;
FORWARD_IF_ERROR(ZSTD_validateSequence(offCode, matchLength, seqPos->posInSrc,
- cctx->appliedParams.cParams.windowLog, dictSize,
- cctx->appliedParams.cParams.minMatch),
+ cctx->appliedParams.cParams.windowLog, dictSize),
"Sequence validation failed");
}
RETURN_ERROR_IF(idx - seqPos->idx > cctx->seqStore.maxNbSeq, memory_allocation,
"Not enough memory allocated. Try adjusting ZSTD_c_minMatch.");
- ZSTD_storeSeq(&cctx->seqStore, litLength, ip, iend, offCode, matchLength - MINMATCH);
+ ZSTD_storeSeq(&cctx->seqStore, litLength, ip, iend, offCode, matchLength);
ip += matchLength + litLength;
}
ZSTD_memcpy(cctx->blockState.nextCBlock->rep, updatedRepcodes.rep, sizeof(repcodes_t));
if (inSeqs[idx].litLength) {
DEBUGLOG(6, "Storing last literals of size: %u", inSeqs[idx].litLength);
ZSTD_storeLastLiterals(&cctx->seqStore, ip, inSeqs[idx].litLength);
ip += inSeqs[idx].litLength;
seqPos->posInSrc += inSeqs[idx].litLength;
}
RETURN_ERROR_IF(ip != iend, corruption_detected, "Blocksize doesn't agree with block delimiter!");
seqPos->idx = idx+1;
return 0;
}
/* Returns the number of bytes to move the current read position back by. Only non-zero
* if we ended up splitting a sequence. Otherwise, it may return a ZSTD error if something
* went wrong.
*
* This function will attempt to scan through blockSize bytes represented by the sequences
* in inSeqs, storing any (partial) sequences.
*
* Occasionally, we may want to change the actual number of bytes we consumed from inSeqs to
* avoid splitting a match, or to avoid splitting a match such that it would produce a match
* smaller than MINMATCH. In this case, we return the number of bytes that we didn't read from this block.
*/
-static size_t ZSTD_copySequencesToSeqStoreNoBlockDelim(ZSTD_CCtx* cctx, ZSTD_sequencePosition* seqPos,
- const ZSTD_Sequence* const inSeqs, size_t inSeqsSize,
- const void* src, size_t blockSize) {
+static size_t
+ZSTD_copySequencesToSeqStoreNoBlockDelim(ZSTD_CCtx* cctx, ZSTD_sequencePosition* seqPos,
+ const ZSTD_Sequence* const inSeqs, size_t inSeqsSize,
+ const void* src, size_t blockSize)
+{
U32 idx = seqPos->idx;
U32 startPosInSequence = seqPos->posInSequence;
U32 endPosInSequence = seqPos->posInSequence + (U32)blockSize;
size_t dictSize;
BYTE const* ip = (BYTE const*)(src);
BYTE const* iend = ip + blockSize; /* May be adjusted if we decide to process fewer than blockSize bytes */
repcodes_t updatedRepcodes;
U32 bytesAdjustment = 0;
U32 finalMatchSplit = 0;
- U32 litLength;
- U32 matchLength;
- U32 rawOffset;
- U32 offCode;
if (cctx->cdict) {
dictSize = cctx->cdict->dictContentSize;
} else if (cctx->prefixDict.dict) {
dictSize = cctx->prefixDict.dictSize;
} else {
dictSize = 0;
}
DEBUGLOG(5, "ZSTD_copySequencesToSeqStore: idx: %u PIS: %u blockSize: %zu", idx, startPosInSequence, blockSize);
DEBUGLOG(5, "Start seq: idx: %u (of: %u ml: %u ll: %u)", idx, inSeqs[idx].offset, inSeqs[idx].matchLength, inSeqs[idx].litLength);
ZSTD_memcpy(updatedRepcodes.rep, cctx->blockState.prevCBlock->rep, sizeof(repcodes_t));
while (endPosInSequence && idx < inSeqsSize && !finalMatchSplit) {
const ZSTD_Sequence currSeq = inSeqs[idx];
- litLength = currSeq.litLength;
- matchLength = currSeq.matchLength;
- rawOffset = currSeq.offset;
+ U32 litLength = currSeq.litLength;
+ U32 matchLength = currSeq.matchLength;
+ U32 const rawOffset = currSeq.offset;
+ U32 offCode;
/* Modify the sequence depending on where endPosInSequence lies */
if (endPosInSequence >= currSeq.litLength + currSeq.matchLength) {
if (startPosInSequence >= litLength) {
startPosInSequence -= litLength;
litLength = 0;
matchLength -= startPosInSequence;
} else {
litLength -= startPosInSequence;
}
/* Move to the next sequence */
endPosInSequence -= currSeq.litLength + currSeq.matchLength;
startPosInSequence = 0;
idx++;
} else {
/* This is the final (partial) sequence we're adding from inSeqs, and endPosInSequence
does not reach the end of the match. So, we have to split the sequence */
DEBUGLOG(6, "Require a split: diff: %u, idx: %u PIS: %u",
currSeq.litLength + currSeq.matchLength - endPosInSequence, idx, endPosInSequence);
if (endPosInSequence > litLength) {
U32 firstHalfMatchLength;
litLength = startPosInSequence >= litLength ? 0 : litLength - startPosInSequence;
firstHalfMatchLength = endPosInSequence - startPosInSequence - litLength;
if (matchLength > blockSize && firstHalfMatchLength >= cctx->appliedParams.cParams.minMatch) {
/* Only ever split the match if it is larger than the block size */
U32 secondHalfMatchLength = currSeq.matchLength + currSeq.litLength - endPosInSequence;
if (secondHalfMatchLength < cctx->appliedParams.cParams.minMatch) {
/* Move the endPosInSequence backward so that it creates match of minMatch length */
endPosInSequence -= cctx->appliedParams.cParams.minMatch - secondHalfMatchLength;
bytesAdjustment = cctx->appliedParams.cParams.minMatch - secondHalfMatchLength;
firstHalfMatchLength -= bytesAdjustment;
}
matchLength = firstHalfMatchLength;
/* Flag that we split the last match - after storing the sequence, exit the loop,
but keep the value of endPosInSequence */
finalMatchSplit = 1;
} else {
/* Move the position in sequence backwards so that we don't split match, and break to store
* the last literals. We use the original currSeq.litLength as a marker for where endPosInSequence
* should go. We prefer to do this whenever it is not necessary to split the match, or if doing so
* would cause the first half of the match to be too small
*/
bytesAdjustment = endPosInSequence - currSeq.litLength;
endPosInSequence = currSeq.litLength;
break;
}
} else {
/* This sequence ends inside the literals, break to store the last literals */
break;
}
}
/* Check if this offset can be represented with a repcode */
- { U32 ll0 = (litLength == 0);
+ { U32 const ll0 = (litLength == 0);
offCode = ZSTD_finalizeOffCode(rawOffset, updatedRepcodes.rep, ll0);
- updatedRepcodes = ZSTD_updateRep(updatedRepcodes.rep, offCode, ll0);
+ ZSTD_updateRep(updatedRepcodes.rep, offCode, ll0);
}
if (cctx->appliedParams.validateSequences) {
seqPos->posInSrc += litLength + matchLength;
FORWARD_IF_ERROR(ZSTD_validateSequence(offCode, matchLength, seqPos->posInSrc,
- cctx->appliedParams.cParams.windowLog, dictSize,
- cctx->appliedParams.cParams.minMatch),
+ cctx->appliedParams.cParams.windowLog, dictSize),
"Sequence validation failed");
}
DEBUGLOG(6, "Storing sequence: (of: %u, ml: %u, ll: %u)", offCode, matchLength, litLength);
RETURN_ERROR_IF(idx - seqPos->idx > cctx->seqStore.maxNbSeq, memory_allocation,
"Not enough memory allocated. Try adjusting ZSTD_c_minMatch.");
- ZSTD_storeSeq(&cctx->seqStore, litLength, ip, iend, offCode, matchLength - MINMATCH);
+ ZSTD_storeSeq(&cctx->seqStore, litLength, ip, iend, offCode, matchLength);
ip += matchLength + litLength;
}
DEBUGLOG(5, "Ending seq: idx: %u (of: %u ml: %u ll: %u)", idx, inSeqs[idx].offset, inSeqs[idx].matchLength, inSeqs[idx].litLength);
assert(idx == inSeqsSize || endPosInSequence <= inSeqs[idx].litLength + inSeqs[idx].matchLength);
seqPos->idx = idx;
seqPos->posInSequence = endPosInSequence;
ZSTD_memcpy(cctx->blockState.nextCBlock->rep, updatedRepcodes.rep, sizeof(repcodes_t));
iend -= bytesAdjustment;
if (ip != iend) {
/* Store any last literals */
U32 lastLLSize = (U32)(iend - ip);
assert(ip <= iend);
DEBUGLOG(6, "Storing last literals of size: %u", lastLLSize);
ZSTD_storeLastLiterals(&cctx->seqStore, ip, lastLLSize);
seqPos->posInSrc += lastLLSize;
}
return bytesAdjustment;
}
typedef size_t (*ZSTD_sequenceCopier) (ZSTD_CCtx* cctx, ZSTD_sequencePosition* seqPos,
const ZSTD_Sequence* const inSeqs, size_t inSeqsSize,
const void* src, size_t blockSize);
-static ZSTD_sequenceCopier ZSTD_selectSequenceCopier(ZSTD_sequenceFormat_e mode) {
+static ZSTD_sequenceCopier ZSTD_selectSequenceCopier(ZSTD_sequenceFormat_e mode)
+{
ZSTD_sequenceCopier sequenceCopier = NULL;
assert(ZSTD_cParam_withinBounds(ZSTD_c_blockDelimiters, mode));
if (mode == ZSTD_sf_explicitBlockDelimiters) {
return ZSTD_copySequencesToSeqStoreExplicitBlockDelim;
} else if (mode == ZSTD_sf_noBlockDelimiters) {
return ZSTD_copySequencesToSeqStoreNoBlockDelim;
}
assert(sequenceCopier != NULL);
return sequenceCopier;
}
/* Compress, block-by-block, all of the sequences given.
*
- * Returns the cumulative size of all compressed blocks (including their headers), otherwise a ZSTD error.
+ * Returns the cumulative size of all compressed blocks (including their headers),
+ * otherwise a ZSTD error.
*/
-static size_t ZSTD_compressSequences_internal(ZSTD_CCtx* cctx,
- void* dst, size_t dstCapacity,
- const ZSTD_Sequence* inSeqs, size_t inSeqsSize,
- const void* src, size_t srcSize) {
+static size_t
+ZSTD_compressSequences_internal(ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const ZSTD_Sequence* inSeqs, size_t inSeqsSize,
+ const void* src, size_t srcSize)
+{
size_t cSize = 0;
U32 lastBlock;
size_t blockSize;
size_t compressedSeqsSize;
size_t remaining = srcSize;
ZSTD_sequencePosition seqPos = {0, 0, 0};
BYTE const* ip = (BYTE const*)src;
BYTE* op = (BYTE*)dst;
- ZSTD_sequenceCopier sequenceCopier = ZSTD_selectSequenceCopier(cctx->appliedParams.blockDelimiters);
+ ZSTD_sequenceCopier const sequenceCopier = ZSTD_selectSequenceCopier(cctx->appliedParams.blockDelimiters);
DEBUGLOG(4, "ZSTD_compressSequences_internal srcSize: %zu, inSeqsSize: %zu", srcSize, inSeqsSize);
/* Special case: empty frame */
if (remaining == 0) {
U32 const cBlockHeader24 = 1 /* last block */ + (((U32)bt_raw)<<1);
RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall, "No room for empty frame block header");
MEM_writeLE32(op, cBlockHeader24);
op += ZSTD_blockHeaderSize;
dstCapacity -= ZSTD_blockHeaderSize;
cSize += ZSTD_blockHeaderSize;
}
while (remaining) {
size_t cBlockSize;
size_t additionalByteAdjustment;
lastBlock = remaining <= cctx->blockSize;
blockSize = lastBlock ? (U32)remaining : (U32)cctx->blockSize;
ZSTD_resetSeqStore(&cctx->seqStore);
DEBUGLOG(4, "Working on new block. Blocksize: %zu", blockSize);
additionalByteAdjustment = sequenceCopier(cctx, &seqPos, inSeqs, inSeqsSize, ip, blockSize);
FORWARD_IF_ERROR(additionalByteAdjustment, "Bad sequence copy");
blockSize -= additionalByteAdjustment;
/* If blocks are too small, emit as a nocompress block */
if (blockSize < MIN_CBLOCK_SIZE+ZSTD_blockHeaderSize+1) {
cBlockSize = ZSTD_noCompressBlock(op, dstCapacity, ip, blockSize, lastBlock);
FORWARD_IF_ERROR(cBlockSize, "Nocompress block failed");
DEBUGLOG(4, "Block too small, writing out nocompress block: cSize: %zu", cBlockSize);
cSize += cBlockSize;
ip += blockSize;
op += cBlockSize;
remaining -= blockSize;
dstCapacity -= cBlockSize;
continue;
}
- compressedSeqsSize = ZSTD_entropyCompressSequences(&cctx->seqStore,
+ compressedSeqsSize = ZSTD_entropyCompressSeqStore(&cctx->seqStore,
&cctx->blockState.prevCBlock->entropy, &cctx->blockState.nextCBlock->entropy,
&cctx->appliedParams,
op + ZSTD_blockHeaderSize /* Leave space for block header */, dstCapacity - ZSTD_blockHeaderSize,
blockSize,
cctx->entropyWorkspace, ENTROPY_WORKSPACE_SIZE /* statically allocated in resetCCtx */,
cctx->bmi2);
FORWARD_IF_ERROR(compressedSeqsSize, "Compressing sequences of block failed");
DEBUGLOG(4, "Compressed sequences size: %zu", compressedSeqsSize);
if (!cctx->isFirstBlock &&
ZSTD_maybeRLE(&cctx->seqStore) &&
ZSTD_isRLE((BYTE const*)src, srcSize)) {
/* We don't want to emit our first block as a RLE even if it qualifies because
* doing so will cause the decoder (cli only) to throw a "should consume all input error."
* This is only an issue for zstd <= v1.4.3
*/
compressedSeqsSize = 1;
}
if (compressedSeqsSize == 0) {
/* ZSTD_noCompressBlock writes the block header as well */
cBlockSize = ZSTD_noCompressBlock(op, dstCapacity, ip, blockSize, lastBlock);
FORWARD_IF_ERROR(cBlockSize, "Nocompress block failed");
DEBUGLOG(4, "Writing out nocompress block, size: %zu", cBlockSize);
} else if (compressedSeqsSize == 1) {
cBlockSize = ZSTD_rleCompressBlock(op, dstCapacity, *ip, blockSize, lastBlock);
FORWARD_IF_ERROR(cBlockSize, "RLE compress block failed");
DEBUGLOG(4, "Writing out RLE block, size: %zu", cBlockSize);
} else {
U32 cBlockHeader;
/* Error checking and repcodes update */
- ZSTD_confirmRepcodesAndEntropyTables(cctx);
+ ZSTD_blockState_confirmRepcodesAndEntropyTables(&cctx->blockState);
if (cctx->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid)
cctx->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check;
/* Write block header into beginning of block*/
cBlockHeader = lastBlock + (((U32)bt_compressed)<<1) + (U32)(compressedSeqsSize << 3);
MEM_writeLE24(op, cBlockHeader);
cBlockSize = ZSTD_blockHeaderSize + compressedSeqsSize;
DEBUGLOG(4, "Writing out compressed block, size: %zu", cBlockSize);
}
cSize += cBlockSize;
DEBUGLOG(4, "cSize running total: %zu", cSize);
if (lastBlock) {
break;
} else {
ip += blockSize;
op += cBlockSize;
remaining -= blockSize;
dstCapacity -= cBlockSize;
cctx->isFirstBlock = 0;
}
}
return cSize;
}
size_t ZSTD_compressSequences(ZSTD_CCtx* const cctx, void* dst, size_t dstCapacity,
const ZSTD_Sequence* inSeqs, size_t inSeqsSize,
- const void* src, size_t srcSize) {
+ const void* src, size_t srcSize)
+{
BYTE* op = (BYTE*)dst;
size_t cSize = 0;
size_t compressedBlocksSize = 0;
size_t frameHeaderSize = 0;
/* Transparent initialization stage, same as compressStream2() */
DEBUGLOG(3, "ZSTD_compressSequences()");
assert(cctx != NULL);
FORWARD_IF_ERROR(ZSTD_CCtx_init_compressStream2(cctx, ZSTD_e_end, srcSize), "CCtx initialization failed");
/* Begin writing output, starting with frame header */
frameHeaderSize = ZSTD_writeFrameHeader(op, dstCapacity, &cctx->appliedParams, srcSize, cctx->dictID);
op += frameHeaderSize;
dstCapacity -= frameHeaderSize;
cSize += frameHeaderSize;
if (cctx->appliedParams.fParams.checksumFlag && srcSize) {
XXH64_update(&cctx->xxhState, src, srcSize);
}
/* cSize includes block header size and compressed sequences size */
compressedBlocksSize = ZSTD_compressSequences_internal(cctx,
op, dstCapacity,
inSeqs, inSeqsSize,
src, srcSize);
FORWARD_IF_ERROR(compressedBlocksSize, "Compressing blocks failed!");
cSize += compressedBlocksSize;
dstCapacity -= compressedBlocksSize;
if (cctx->appliedParams.fParams.checksumFlag) {
U32 const checksum = (U32) XXH64_digest(&cctx->xxhState);
RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall, "no room for checksum");
DEBUGLOG(4, "Write checksum : %08X", (unsigned)checksum);
MEM_writeLE32((char*)dst + cSize, checksum);
cSize += 4;
}
DEBUGLOG(3, "Final compressed size: %zu", cSize);
return cSize;
}
/*====== Finalize ======*/
/*! ZSTD_flushStream() :
* @return : amount of data remaining to flush */
size_t ZSTD_flushStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output)
{
ZSTD_inBuffer input = { NULL, 0, 0 };
return ZSTD_compressStream2(zcs, output, &input, ZSTD_e_flush);
}
size_t ZSTD_endStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output)
{
ZSTD_inBuffer input = { NULL, 0, 0 };
size_t const remainingToFlush = ZSTD_compressStream2(zcs, output, &input, ZSTD_e_end);
FORWARD_IF_ERROR( remainingToFlush , "ZSTD_compressStream2 failed");
if (zcs->appliedParams.nbWorkers > 0) return remainingToFlush; /* minimal estimation */
/* single thread mode : attempt to calculate remaining to flush more precisely */
{ size_t const lastBlockSize = zcs->frameEnded ? 0 : ZSTD_BLOCKHEADERSIZE;
size_t const checksumSize = (size_t)(zcs->frameEnded ? 0 : zcs->appliedParams.fParams.checksumFlag * 4);
size_t const toFlush = remainingToFlush + lastBlockSize + checksumSize;
DEBUGLOG(4, "ZSTD_endStream : remaining to flush : %u", (unsigned)toFlush);
return toFlush;
}
}
/*-===== Pre-defined compression levels =====-*/
+#include "clevels.h"
-#define ZSTD_MAX_CLEVEL 22
int ZSTD_maxCLevel(void) { return ZSTD_MAX_CLEVEL; }
int ZSTD_minCLevel(void) { return (int)-ZSTD_TARGETLENGTH_MAX; }
-
-static const ZSTD_compressionParameters ZSTD_defaultCParameters[4][ZSTD_MAX_CLEVEL+1] = {
-{ /* "default" - for any srcSize > 256 KB */
- /* W, C, H, S, L, TL, strat */
- { 19, 12, 13, 1, 6, 1, ZSTD_fast }, /* base for negative levels */
- { 19, 13, 14, 1, 7, 0, ZSTD_fast }, /* level 1 */
- { 20, 15, 16, 1, 6, 0, ZSTD_fast }, /* level 2 */
- { 21, 16, 17, 1, 5, 0, ZSTD_dfast }, /* level 3 */
- { 21, 18, 18, 1, 5, 0, ZSTD_dfast }, /* level 4 */
- { 21, 18, 19, 2, 5, 2, ZSTD_greedy }, /* level 5 */
- { 21, 19, 19, 3, 5, 4, ZSTD_greedy }, /* level 6 */
- { 21, 19, 19, 3, 5, 8, ZSTD_lazy }, /* level 7 */
- { 21, 19, 19, 3, 5, 16, ZSTD_lazy2 }, /* level 8 */
- { 21, 19, 20, 4, 5, 16, ZSTD_lazy2 }, /* level 9 */
- { 22, 20, 21, 4, 5, 16, ZSTD_lazy2 }, /* level 10 */
- { 22, 21, 22, 4, 5, 16, ZSTD_lazy2 }, /* level 11 */
- { 22, 21, 22, 5, 5, 16, ZSTD_lazy2 }, /* level 12 */
- { 22, 21, 22, 5, 5, 32, ZSTD_btlazy2 }, /* level 13 */
- { 22, 22, 23, 5, 5, 32, ZSTD_btlazy2 }, /* level 14 */
- { 22, 23, 23, 6, 5, 32, ZSTD_btlazy2 }, /* level 15 */
- { 22, 22, 22, 5, 5, 48, ZSTD_btopt }, /* level 16 */
- { 23, 23, 22, 5, 4, 64, ZSTD_btopt }, /* level 17 */
- { 23, 23, 22, 6, 3, 64, ZSTD_btultra }, /* level 18 */
- { 23, 24, 22, 7, 3,256, ZSTD_btultra2}, /* level 19 */
- { 25, 25, 23, 7, 3,256, ZSTD_btultra2}, /* level 20 */
- { 26, 26, 24, 7, 3,512, ZSTD_btultra2}, /* level 21 */
- { 27, 27, 25, 9, 3,999, ZSTD_btultra2}, /* level 22 */
-},
-{ /* for srcSize <= 256 KB */
- /* W, C, H, S, L, T, strat */
- { 18, 12, 13, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
- { 18, 13, 14, 1, 6, 0, ZSTD_fast }, /* level 1 */
- { 18, 14, 14, 1, 5, 0, ZSTD_dfast }, /* level 2 */
- { 18, 16, 16, 1, 4, 0, ZSTD_dfast }, /* level 3 */
- { 18, 16, 17, 2, 5, 2, ZSTD_greedy }, /* level 4.*/
- { 18, 18, 18, 3, 5, 2, ZSTD_greedy }, /* level 5.*/
- { 18, 18, 19, 3, 5, 4, ZSTD_lazy }, /* level 6.*/
- { 18, 18, 19, 4, 4, 4, ZSTD_lazy }, /* level 7 */
- { 18, 18, 19, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */
- { 18, 18, 19, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */
- { 18, 18, 19, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */
- { 18, 18, 19, 5, 4, 12, ZSTD_btlazy2 }, /* level 11.*/
- { 18, 19, 19, 7, 4, 12, ZSTD_btlazy2 }, /* level 12.*/
- { 18, 18, 19, 4, 4, 16, ZSTD_btopt }, /* level 13 */
- { 18, 18, 19, 4, 3, 32, ZSTD_btopt }, /* level 14.*/
- { 18, 18, 19, 6, 3,128, ZSTD_btopt }, /* level 15.*/
- { 18, 19, 19, 6, 3,128, ZSTD_btultra }, /* level 16.*/
- { 18, 19, 19, 8, 3,256, ZSTD_btultra }, /* level 17.*/
- { 18, 19, 19, 6, 3,128, ZSTD_btultra2}, /* level 18.*/
- { 18, 19, 19, 8, 3,256, ZSTD_btultra2}, /* level 19.*/
- { 18, 19, 19, 10, 3,512, ZSTD_btultra2}, /* level 20.*/
- { 18, 19, 19, 12, 3,512, ZSTD_btultra2}, /* level 21.*/
- { 18, 19, 19, 13, 3,999, ZSTD_btultra2}, /* level 22.*/
-},
-{ /* for srcSize <= 128 KB */
- /* W, C, H, S, L, T, strat */
- { 17, 12, 12, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
- { 17, 12, 13, 1, 6, 0, ZSTD_fast }, /* level 1 */
- { 17, 13, 15, 1, 5, 0, ZSTD_fast }, /* level 2 */
- { 17, 15, 16, 2, 5, 0, ZSTD_dfast }, /* level 3 */
- { 17, 17, 17, 2, 4, 0, ZSTD_dfast }, /* level 4 */
- { 17, 16, 17, 3, 4, 2, ZSTD_greedy }, /* level 5 */
- { 17, 17, 17, 3, 4, 4, ZSTD_lazy }, /* level 6 */
- { 17, 17, 17, 3, 4, 8, ZSTD_lazy2 }, /* level 7 */
- { 17, 17, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */
- { 17, 17, 17, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */
- { 17, 17, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */
- { 17, 17, 17, 5, 4, 8, ZSTD_btlazy2 }, /* level 11 */
- { 17, 18, 17, 7, 4, 12, ZSTD_btlazy2 }, /* level 12 */
- { 17, 18, 17, 3, 4, 12, ZSTD_btopt }, /* level 13.*/
- { 17, 18, 17, 4, 3, 32, ZSTD_btopt }, /* level 14.*/
- { 17, 18, 17, 6, 3,256, ZSTD_btopt }, /* level 15.*/
- { 17, 18, 17, 6, 3,128, ZSTD_btultra }, /* level 16.*/
- { 17, 18, 17, 8, 3,256, ZSTD_btultra }, /* level 17.*/
- { 17, 18, 17, 10, 3,512, ZSTD_btultra }, /* level 18.*/
- { 17, 18, 17, 5, 3,256, ZSTD_btultra2}, /* level 19.*/
- { 17, 18, 17, 7, 3,512, ZSTD_btultra2}, /* level 20.*/
- { 17, 18, 17, 9, 3,512, ZSTD_btultra2}, /* level 21.*/
- { 17, 18, 17, 11, 3,999, ZSTD_btultra2}, /* level 22.*/
-},
-{ /* for srcSize <= 16 KB */
- /* W, C, H, S, L, T, strat */
- { 14, 12, 13, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
- { 14, 14, 15, 1, 5, 0, ZSTD_fast }, /* level 1 */
- { 14, 14, 15, 1, 4, 0, ZSTD_fast }, /* level 2 */
- { 14, 14, 15, 2, 4, 0, ZSTD_dfast }, /* level 3 */
- { 14, 14, 14, 4, 4, 2, ZSTD_greedy }, /* level 4 */
- { 14, 14, 14, 3, 4, 4, ZSTD_lazy }, /* level 5.*/
- { 14, 14, 14, 4, 4, 8, ZSTD_lazy2 }, /* level 6 */
- { 14, 14, 14, 6, 4, 8, ZSTD_lazy2 }, /* level 7 */
- { 14, 14, 14, 8, 4, 8, ZSTD_lazy2 }, /* level 8.*/
- { 14, 15, 14, 5, 4, 8, ZSTD_btlazy2 }, /* level 9.*/
- { 14, 15, 14, 9, 4, 8, ZSTD_btlazy2 }, /* level 10.*/
- { 14, 15, 14, 3, 4, 12, ZSTD_btopt }, /* level 11.*/
- { 14, 15, 14, 4, 3, 24, ZSTD_btopt }, /* level 12.*/
- { 14, 15, 14, 5, 3, 32, ZSTD_btultra }, /* level 13.*/
- { 14, 15, 15, 6, 3, 64, ZSTD_btultra }, /* level 14.*/
- { 14, 15, 15, 7, 3,256, ZSTD_btultra }, /* level 15.*/
- { 14, 15, 15, 5, 3, 48, ZSTD_btultra2}, /* level 16.*/
- { 14, 15, 15, 6, 3,128, ZSTD_btultra2}, /* level 17.*/
- { 14, 15, 15, 7, 3,256, ZSTD_btultra2}, /* level 18.*/
- { 14, 15, 15, 8, 3,256, ZSTD_btultra2}, /* level 19.*/
- { 14, 15, 15, 8, 3,512, ZSTD_btultra2}, /* level 20.*/
- { 14, 15, 15, 9, 3,512, ZSTD_btultra2}, /* level 21.*/
- { 14, 15, 15, 10, 3,999, ZSTD_btultra2}, /* level 22.*/
-},
-};
+int ZSTD_defaultCLevel(void) { return ZSTD_CLEVEL_DEFAULT; }
static ZSTD_compressionParameters ZSTD_dedicatedDictSearch_getCParams(int const compressionLevel, size_t const dictSize)
{
ZSTD_compressionParameters cParams = ZSTD_getCParams_internal(compressionLevel, 0, dictSize, ZSTD_cpm_createCDict);
switch (cParams.strategy) {
case ZSTD_fast:
case ZSTD_dfast:
break;
case ZSTD_greedy:
case ZSTD_lazy:
case ZSTD_lazy2:
cParams.hashLog += ZSTD_LAZY_DDSS_BUCKET_LOG;
break;
case ZSTD_btlazy2:
case ZSTD_btopt:
case ZSTD_btultra:
case ZSTD_btultra2:
break;
}
return cParams;
}
static int ZSTD_dedicatedDictSearch_isSupported(
ZSTD_compressionParameters const* cParams)
{
- return (cParams->strategy >= ZSTD_greedy) && (cParams->strategy <= ZSTD_lazy2);
+ return (cParams->strategy >= ZSTD_greedy)
+ && (cParams->strategy <= ZSTD_lazy2)
+ && (cParams->hashLog > cParams->chainLog)
+ && (cParams->chainLog <= 24);
}
/**
* Reverses the adjustment applied to cparams when enabling dedicated dict
* search. This is used to recover the params set to be used in the working
* context. (Otherwise, those tables would also grow.)
*/
static void ZSTD_dedicatedDictSearch_revertCParams(
ZSTD_compressionParameters* cParams) {
switch (cParams->strategy) {
case ZSTD_fast:
case ZSTD_dfast:
break;
case ZSTD_greedy:
case ZSTD_lazy:
case ZSTD_lazy2:
cParams->hashLog -= ZSTD_LAZY_DDSS_BUCKET_LOG;
+ if (cParams->hashLog < ZSTD_HASHLOG_MIN) {
+ cParams->hashLog = ZSTD_HASHLOG_MIN;
+ }
break;
case ZSTD_btlazy2:
case ZSTD_btopt:
case ZSTD_btultra:
case ZSTD_btultra2:
break;
}
}
static U64 ZSTD_getCParamRowSize(U64 srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode)
{
switch (mode) {
case ZSTD_cpm_unknown:
case ZSTD_cpm_noAttachDict:
case ZSTD_cpm_createCDict:
break;
case ZSTD_cpm_attachDict:
dictSize = 0;
break;
default:
assert(0);
break;
}
{ int const unknown = srcSizeHint == ZSTD_CONTENTSIZE_UNKNOWN;
size_t const addedSize = unknown && dictSize > 0 ? 500 : 0;
return unknown && dictSize == 0 ? ZSTD_CONTENTSIZE_UNKNOWN : srcSizeHint+dictSize+addedSize;
}
}
/*! ZSTD_getCParams_internal() :
* @return ZSTD_compressionParameters structure for a selected compression level, srcSize and dictSize.
* Note: srcSizeHint 0 means 0, use ZSTD_CONTENTSIZE_UNKNOWN for unknown.
* Use dictSize == 0 for unknown or unused.
* Note: `mode` controls how we treat the `dictSize`. See docs for `ZSTD_cParamMode_e`. */
static ZSTD_compressionParameters ZSTD_getCParams_internal(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode)
{
U64 const rSize = ZSTD_getCParamRowSize(srcSizeHint, dictSize, mode);
U32 const tableID = (rSize <= 256 KB) + (rSize <= 128 KB) + (rSize <= 16 KB);
int row;
DEBUGLOG(5, "ZSTD_getCParams_internal (cLevel=%i)", compressionLevel);
/* row */
if (compressionLevel == 0) row = ZSTD_CLEVEL_DEFAULT; /* 0 == default */
else if (compressionLevel < 0) row = 0; /* entry 0 is baseline for fast mode */
else if (compressionLevel > ZSTD_MAX_CLEVEL) row = ZSTD_MAX_CLEVEL;
else row = compressionLevel;
{ ZSTD_compressionParameters cp = ZSTD_defaultCParameters[tableID][row];
+ DEBUGLOG(5, "ZSTD_getCParams_internal selected tableID: %u row: %u strat: %u", tableID, row, (U32)cp.strategy);
/* acceleration factor */
if (compressionLevel < 0) {
int const clampedCompressionLevel = MAX(ZSTD_minCLevel(), compressionLevel);
cp.targetLength = (unsigned)(-clampedCompressionLevel);
}
/* refine parameters based on srcSize & dictSize */
return ZSTD_adjustCParams_internal(cp, srcSizeHint, dictSize, mode);
}
}
/*! ZSTD_getCParams() :
* @return ZSTD_compressionParameters structure for a selected compression level, srcSize and dictSize.
* Size values are optional, provide 0 if not known or unused */
ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize)
{
if (srcSizeHint == 0) srcSizeHint = ZSTD_CONTENTSIZE_UNKNOWN;
return ZSTD_getCParams_internal(compressionLevel, srcSizeHint, dictSize, ZSTD_cpm_unknown);
}
/*! ZSTD_getParams() :
* same idea as ZSTD_getCParams()
* @return a `ZSTD_parameters` structure (instead of `ZSTD_compressionParameters`).
* Fields of `ZSTD_frameParameters` are set to default values */
static ZSTD_parameters ZSTD_getParams_internal(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode) {
ZSTD_parameters params;
ZSTD_compressionParameters const cParams = ZSTD_getCParams_internal(compressionLevel, srcSizeHint, dictSize, mode);
DEBUGLOG(5, "ZSTD_getParams (cLevel=%i)", compressionLevel);
ZSTD_memset(&params, 0, sizeof(params));
params.cParams = cParams;
params.fParams.contentSizeFlag = 1;
return params;
}
/*! ZSTD_getParams() :
* same idea as ZSTD_getCParams()
* @return a `ZSTD_parameters` structure (instead of `ZSTD_compressionParameters`).
* Fields of `ZSTD_frameParameters` are set to default values */
ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize) {
if (srcSizeHint == 0) srcSizeHint = ZSTD_CONTENTSIZE_UNKNOWN;
return ZSTD_getParams_internal(compressionLevel, srcSizeHint, dictSize, ZSTD_cpm_unknown);
}
diff --git a/sys/contrib/zstd/lib/compress/zstd_compress_internal.h b/sys/contrib/zstd/lib/compress/zstd_compress_internal.h
index 4749da101be2..bd403bf58d3d 100644
--- a/sys/contrib/zstd/lib/compress/zstd_compress_internal.h
+++ b/sys/contrib/zstd/lib/compress/zstd_compress_internal.h
@@ -1,1206 +1,1461 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* This header contains definitions
* that shall **only** be used by modules within lib/compress.
*/
#ifndef ZSTD_COMPRESS_H
#define ZSTD_COMPRESS_H
/*-*************************************
* Dependencies
***************************************/
#include "../common/zstd_internal.h"
#include "zstd_cwksp.h"
#ifdef ZSTD_MULTITHREAD
# include "zstdmt_compress.h"
#endif
#if defined (__cplusplus)
extern "C" {
#endif
/*-*************************************
* Constants
***************************************/
#define kSearchStrength 8
#define HASH_READ_SIZE 8
#define ZSTD_DUBT_UNSORTED_MARK 1 /* For btlazy2 strategy, index ZSTD_DUBT_UNSORTED_MARK==1 means "unsorted".
It could be confused for a real successor at index "1", if sorted as larger than its predecessor.
It's not a big deal though : candidate will just be sorted again.
Additionally, candidate position 1 will be lost.
But candidate 1 cannot hide a large tree of candidates, so it's a minimal loss.
The benefit is that ZSTD_DUBT_UNSORTED_MARK cannot be mishandled after table re-use with a different strategy.
This constant is required by ZSTD_compressBlock_btlazy2() and ZSTD_reduceTable_internal() */
/*-*************************************
* Context memory management
***************************************/
typedef enum { ZSTDcs_created=0, ZSTDcs_init, ZSTDcs_ongoing, ZSTDcs_ending } ZSTD_compressionStage_e;
typedef enum { zcss_init=0, zcss_load, zcss_flush } ZSTD_cStreamStage;
typedef struct ZSTD_prefixDict_s {
const void* dict;
size_t dictSize;
ZSTD_dictContentType_e dictContentType;
} ZSTD_prefixDict;
typedef struct {
void* dictBuffer;
void const* dict;
size_t dictSize;
ZSTD_dictContentType_e dictContentType;
ZSTD_CDict* cdict;
} ZSTD_localDict;
typedef struct {
- HUF_CElt CTable[HUF_CTABLE_SIZE_U32(255)];
+ HUF_CElt CTable[HUF_CTABLE_SIZE_ST(255)];
HUF_repeat repeatMode;
} ZSTD_hufCTables_t;
typedef struct {
FSE_CTable offcodeCTable[FSE_CTABLE_SIZE_U32(OffFSELog, MaxOff)];
FSE_CTable matchlengthCTable[FSE_CTABLE_SIZE_U32(MLFSELog, MaxML)];
FSE_CTable litlengthCTable[FSE_CTABLE_SIZE_U32(LLFSELog, MaxLL)];
FSE_repeat offcode_repeatMode;
FSE_repeat matchlength_repeatMode;
FSE_repeat litlength_repeatMode;
} ZSTD_fseCTables_t;
typedef struct {
ZSTD_hufCTables_t huf;
ZSTD_fseCTables_t fse;
} ZSTD_entropyCTables_t;
+/***********************************************
+* Entropy buffer statistics structs and funcs *
+***********************************************/
+/** ZSTD_hufCTablesMetadata_t :
+ * Stores Literals Block Type for a super-block in hType, and
+ * huffman tree description in hufDesBuffer.
+ * hufDesSize refers to the size of huffman tree description in bytes.
+ * This metadata is populated in ZSTD_buildBlockEntropyStats_literals() */
typedef struct {
- U32 off; /* Offset code (offset + ZSTD_REP_MOVE) for the match */
+ symbolEncodingType_e hType;
+ BYTE hufDesBuffer[ZSTD_MAX_HUF_HEADER_SIZE];
+ size_t hufDesSize;
+} ZSTD_hufCTablesMetadata_t;
+
+/** ZSTD_fseCTablesMetadata_t :
+ * Stores symbol compression modes for a super-block in {ll, ol, ml}Type, and
+ * fse tables in fseTablesBuffer.
+ * fseTablesSize refers to the size of fse tables in bytes.
+ * This metadata is populated in ZSTD_buildBlockEntropyStats_sequences() */
+typedef struct {
+ symbolEncodingType_e llType;
+ symbolEncodingType_e ofType;
+ symbolEncodingType_e mlType;
+ BYTE fseTablesBuffer[ZSTD_MAX_FSE_HEADERS_SIZE];
+ size_t fseTablesSize;
+ size_t lastCountSize; /* This is to account for bug in 1.3.4. More detail in ZSTD_entropyCompressSeqStore_internal() */
+} ZSTD_fseCTablesMetadata_t;
+
+typedef struct {
+ ZSTD_hufCTablesMetadata_t hufMetadata;
+ ZSTD_fseCTablesMetadata_t fseMetadata;
+} ZSTD_entropyCTablesMetadata_t;
+
+/** ZSTD_buildBlockEntropyStats() :
+ * Builds entropy for the block.
+ * @return : 0 on success or error code */
+size_t ZSTD_buildBlockEntropyStats(seqStore_t* seqStorePtr,
+ const ZSTD_entropyCTables_t* prevEntropy,
+ ZSTD_entropyCTables_t* nextEntropy,
+ const ZSTD_CCtx_params* cctxParams,
+ ZSTD_entropyCTablesMetadata_t* entropyMetadata,
+ void* workspace, size_t wkspSize);
+
+/*********************************
+* Compression internals structs *
+*********************************/
+
+typedef struct {
+ U32 off; /* Offset sumtype code for the match, using ZSTD_storeSeq() format */
U32 len; /* Raw length of match */
} ZSTD_match_t;
typedef struct {
U32 offset; /* Offset of sequence */
U32 litLength; /* Length of literals prior to match */
U32 matchLength; /* Raw length of match */
} rawSeq;
typedef struct {
rawSeq* seq; /* The start of the sequences */
size_t pos; /* The index in seq where reading stopped. pos <= size. */
size_t posInSequence; /* The position within the sequence at seq[pos] where reading
stopped. posInSequence <= seq[pos].litLength + seq[pos].matchLength */
size_t size; /* The number of sequences. <= capacity. */
size_t capacity; /* The capacity starting from `seq` pointer */
} rawSeqStore_t;
UNUSED_ATTR static const rawSeqStore_t kNullRawSeqStore = {NULL, 0, 0, 0, 0};
typedef struct {
int price;
U32 off;
U32 mlen;
U32 litlen;
U32 rep[ZSTD_REP_NUM];
} ZSTD_optimal_t;
typedef enum { zop_dynamic=0, zop_predef } ZSTD_OptPrice_e;
typedef struct {
/* All tables are allocated inside cctx->workspace by ZSTD_resetCCtx_internal() */
unsigned* litFreq; /* table of literals statistics, of size 256 */
unsigned* litLengthFreq; /* table of litLength statistics, of size (MaxLL+1) */
unsigned* matchLengthFreq; /* table of matchLength statistics, of size (MaxML+1) */
unsigned* offCodeFreq; /* table of offCode statistics, of size (MaxOff+1) */
ZSTD_match_t* matchTable; /* list of found matches, of size ZSTD_OPT_NUM+1 */
ZSTD_optimal_t* priceTable; /* All positions tracked by optimal parser, of size ZSTD_OPT_NUM+1 */
U32 litSum; /* nb of literals */
U32 litLengthSum; /* nb of litLength codes */
U32 matchLengthSum; /* nb of matchLength codes */
U32 offCodeSum; /* nb of offset codes */
U32 litSumBasePrice; /* to compare to log2(litfreq) */
U32 litLengthSumBasePrice; /* to compare to log2(llfreq) */
U32 matchLengthSumBasePrice;/* to compare to log2(mlfreq) */
U32 offCodeSumBasePrice; /* to compare to log2(offreq) */
ZSTD_OptPrice_e priceType; /* prices can be determined dynamically, or follow a pre-defined cost structure */
const ZSTD_entropyCTables_t* symbolCosts; /* pre-calculated dictionary statistics */
- ZSTD_literalCompressionMode_e literalCompressionMode;
+ ZSTD_paramSwitch_e literalCompressionMode;
} optState_t;
typedef struct {
ZSTD_entropyCTables_t entropy;
U32 rep[ZSTD_REP_NUM];
} ZSTD_compressedBlockState_t;
typedef struct {
- BYTE const* nextSrc; /* next block here to continue on current prefix */
- BYTE const* base; /* All regular indexes relative to this position */
- BYTE const* dictBase; /* extDict indexes relative to this position */
- U32 dictLimit; /* below that point, need extDict */
- U32 lowLimit; /* below that point, no more valid data */
+ BYTE const* nextSrc; /* next block here to continue on current prefix */
+ BYTE const* base; /* All regular indexes relative to this position */
+ BYTE const* dictBase; /* extDict indexes relative to this position */
+ U32 dictLimit; /* below that point, need extDict */
+ U32 lowLimit; /* below that point, no more valid data */
+ U32 nbOverflowCorrections; /* Number of times overflow correction has run since
+ * ZSTD_window_init(). Useful for debugging coredumps
+ * and for ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY.
+ */
} ZSTD_window_t;
+#define ZSTD_WINDOW_START_INDEX 2
+
typedef struct ZSTD_matchState_t ZSTD_matchState_t;
+
+#define ZSTD_ROW_HASH_CACHE_SIZE 8 /* Size of prefetching hash cache for row-based matchfinder */
+
struct ZSTD_matchState_t {
ZSTD_window_t window; /* State for window round buffer management */
U32 loadedDictEnd; /* index of end of dictionary, within context's referential.
* When loadedDictEnd != 0, a dictionary is in use, and still valid.
* This relies on a mechanism to set loadedDictEnd=0 when dictionary is no longer within distance.
* Such mechanism is provided within ZSTD_window_enforceMaxDist() and ZSTD_checkDictValidity().
* When dict referential is copied into active context (i.e. not attached),
* loadedDictEnd == dictSize, since referential starts from zero.
*/
U32 nextToUpdate; /* index from which to continue table update */
U32 hashLog3; /* dispatch table for matches of len==3 : larger == faster, more memory */
+
+ U32 rowHashLog; /* For row-based matchfinder: Hashlog based on nb of rows in the hashTable.*/
+ U16* tagTable; /* For row-based matchFinder: A row-based table containing the hashes and head index. */
+ U32 hashCache[ZSTD_ROW_HASH_CACHE_SIZE]; /* For row-based matchFinder: a cache of hashes to improve speed */
+
U32* hashTable;
U32* hashTable3;
U32* chainTable;
+
+ U32 forceNonContiguous; /* Non-zero if we should force non-contiguous load for the next window update. */
+
int dedicatedDictSearch; /* Indicates whether this matchState is using the
* dedicated dictionary search structure.
*/
optState_t opt; /* optimal parser state */
const ZSTD_matchState_t* dictMatchState;
ZSTD_compressionParameters cParams;
const rawSeqStore_t* ldmSeqStore;
};
typedef struct {
ZSTD_compressedBlockState_t* prevCBlock;
ZSTD_compressedBlockState_t* nextCBlock;
ZSTD_matchState_t matchState;
} ZSTD_blockState_t;
typedef struct {
U32 offset;
U32 checksum;
} ldmEntry_t;
+typedef struct {
+ BYTE const* split;
+ U32 hash;
+ U32 checksum;
+ ldmEntry_t* bucket;
+} ldmMatchCandidate_t;
+
+#define LDM_BATCH_SIZE 64
+
typedef struct {
ZSTD_window_t window; /* State for the window round buffer management */
ldmEntry_t* hashTable;
U32 loadedDictEnd;
BYTE* bucketOffsets; /* Next position in bucket to insert entry */
- U64 hashPower; /* Used to compute the rolling hash.
- * Depends on ldmParams.minMatchLength */
+ size_t splitIndices[LDM_BATCH_SIZE];
+ ldmMatchCandidate_t matchCandidates[LDM_BATCH_SIZE];
} ldmState_t;
typedef struct {
- U32 enableLdm; /* 1 if enable long distance matching */
+ ZSTD_paramSwitch_e enableLdm; /* ZSTD_ps_enable to enable LDM. ZSTD_ps_auto by default */
U32 hashLog; /* Log size of hashTable */
U32 bucketSizeLog; /* Log bucket size for collision resolution, at most 8 */
U32 minMatchLength; /* Minimum match length */
U32 hashRateLog; /* Log number of entries to skip */
U32 windowLog; /* Window log for the LDM */
} ldmParams_t;
typedef struct {
int collectSequences;
ZSTD_Sequence* seqStart;
size_t seqIndex;
size_t maxSequences;
} SeqCollector;
struct ZSTD_CCtx_params_s {
ZSTD_format_e format;
ZSTD_compressionParameters cParams;
ZSTD_frameParameters fParams;
int compressionLevel;
int forceWindow; /* force back-references to respect limit of
* 1<<wLog, even for dictionary */
size_t targetCBlockSize; /* Tries to fit compressed block size to be around targetCBlockSize.
* No target when targetCBlockSize == 0.
* There is no guarantee on compressed block size */
int srcSizeHint; /* User's best guess of source size.
* Hint is not valid when srcSizeHint == 0.
* There is no guarantee that hint is close to actual source size */
ZSTD_dictAttachPref_e attachDictPref;
- ZSTD_literalCompressionMode_e literalCompressionMode;
+ ZSTD_paramSwitch_e literalCompressionMode;
/* Multithreading: used to pass parameters to mtctx */
int nbWorkers;
size_t jobSize;
int overlapLog;
int rsyncable;
/* Long distance matching parameters */
ldmParams_t ldmParams;
/* Dedicated dict search algorithm trigger */
int enableDedicatedDictSearch;
/* Input/output buffer modes */
ZSTD_bufferMode_e inBufferMode;
ZSTD_bufferMode_e outBufferMode;
/* Sequence compression API */
ZSTD_sequenceFormat_e blockDelimiters;
int validateSequences;
+ /* Block splitting */
+ ZSTD_paramSwitch_e useBlockSplitter;
+
+ /* Param for deciding whether to use row-based matchfinder */
+ ZSTD_paramSwitch_e useRowMatchFinder;
+
+ /* Always load a dictionary in ext-dict mode (not prefix mode)? */
+ int deterministicRefPrefix;
+
/* Internal use, for createCCtxParams() and freeCCtxParams() only */
ZSTD_customMem customMem;
}; /* typedef'd to ZSTD_CCtx_params within "zstd.h" */
#define COMPRESS_SEQUENCES_WORKSPACE_SIZE (sizeof(unsigned) * (MaxSeq + 2))
#define ENTROPY_WORKSPACE_SIZE (HUF_WORKSPACE_SIZE + COMPRESS_SEQUENCES_WORKSPACE_SIZE)
/**
* Indicates whether this compression proceeds directly from user-provided
* source buffer to user-provided destination buffer (ZSTDb_not_buffered), or
* whether the context needs to buffer the input/output (ZSTDb_buffered).
*/
typedef enum {
ZSTDb_not_buffered,
ZSTDb_buffered
} ZSTD_buffered_policy_e;
+/**
+ * Struct that contains all elements of block splitter that should be allocated
+ * in a wksp.
+ */
+#define ZSTD_MAX_NB_BLOCK_SPLITS 196
+typedef struct {
+ seqStore_t fullSeqStoreChunk;
+ seqStore_t firstHalfSeqStore;
+ seqStore_t secondHalfSeqStore;
+ seqStore_t currSeqStore;
+ seqStore_t nextSeqStore;
+
+ U32 partitions[ZSTD_MAX_NB_BLOCK_SPLITS];
+ ZSTD_entropyCTablesMetadata_t entropyMetadata;
+} ZSTD_blockSplitCtx;
+
struct ZSTD_CCtx_s {
ZSTD_compressionStage_e stage;
int cParamsChanged; /* == 1 if cParams(except wlog) or compression level are changed in requestedParams. Triggers transmission of new params to ZSTDMT (if available) then reset to 0. */
int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */
ZSTD_CCtx_params requestedParams;
ZSTD_CCtx_params appliedParams;
+ ZSTD_CCtx_params simpleApiParams; /* Param storage used by the simple API - not sticky. Must only be used in top-level simple API functions for storage. */
U32 dictID;
+ size_t dictContentSize;
ZSTD_cwksp workspace; /* manages buffer for dynamic allocations */
size_t blockSize;
unsigned long long pledgedSrcSizePlusOne; /* this way, 0 (default) == unknown */
unsigned long long consumedSrcSize;
unsigned long long producedCSize;
XXH64_state_t xxhState;
ZSTD_customMem customMem;
ZSTD_threadPool* pool;
size_t staticSize;
SeqCollector seqCollector;
int isFirstBlock;
int initialized;
seqStore_t seqStore; /* sequences storage ptrs */
ldmState_t ldmState; /* long distance matching state */
rawSeq* ldmSequences; /* Storage for the ldm output sequences */
size_t maxNbLdmSequences;
rawSeqStore_t externSeqStore; /* Mutable reference to external sequences */
ZSTD_blockState_t blockState;
U32* entropyWorkspace; /* entropy workspace of ENTROPY_WORKSPACE_SIZE bytes */
- /* Wether we are streaming or not */
+ /* Whether we are streaming or not */
ZSTD_buffered_policy_e bufferedPolicy;
/* streaming */
char* inBuff;
size_t inBuffSize;
size_t inToCompress;
size_t inBuffPos;
size_t inBuffTarget;
char* outBuff;
size_t outBuffSize;
size_t outBuffContentSize;
size_t outBuffFlushedSize;
ZSTD_cStreamStage streamStage;
U32 frameEnded;
/* Stable in/out buffer verification */
ZSTD_inBuffer expectedInBuffer;
size_t expectedOutBufferSize;
/* Dictionary */
ZSTD_localDict localDict;
const ZSTD_CDict* cdict;
ZSTD_prefixDict prefixDict; /* single-usage dictionary */
/* Multi-threading */
#ifdef ZSTD_MULTITHREAD
ZSTDMT_CCtx* mtctx;
#endif
+
+ /* Tracing */
+#if ZSTD_TRACE
+ ZSTD_TraceCtx traceCtx;
+#endif
+
+ /* Workspace for block splitter */
+ ZSTD_blockSplitCtx blockSplitCtx;
};
typedef enum { ZSTD_dtlm_fast, ZSTD_dtlm_full } ZSTD_dictTableLoadMethod_e;
typedef enum {
ZSTD_noDict = 0,
ZSTD_extDict = 1,
ZSTD_dictMatchState = 2,
ZSTD_dedicatedDictSearch = 3
} ZSTD_dictMode_e;
typedef enum {
ZSTD_cpm_noAttachDict = 0, /* Compression with ZSTD_noDict or ZSTD_extDict.
* In this mode we use both the srcSize and the dictSize
* when selecting and adjusting parameters.
*/
ZSTD_cpm_attachDict = 1, /* Compression with ZSTD_dictMatchState or ZSTD_dedicatedDictSearch.
* In this mode we only take the srcSize into account when selecting
* and adjusting parameters.
*/
ZSTD_cpm_createCDict = 2, /* Creating a CDict.
* In this mode we take both the source size and the dictionary size
* into account when selecting and adjusting the parameters.
*/
ZSTD_cpm_unknown = 3, /* ZSTD_getCParams, ZSTD_getParams, ZSTD_adjustParams.
* We don't know what these parameters are for. We default to the legacy
* behavior of taking both the source size and the dict size into account
* when selecting and adjusting parameters.
*/
} ZSTD_cParamMode_e;
typedef size_t (*ZSTD_blockCompressor) (
ZSTD_matchState_t* bs, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_dictMode_e dictMode);
+ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_paramSwitch_e rowMatchfinderMode, ZSTD_dictMode_e dictMode);
MEM_STATIC U32 ZSTD_LLcode(U32 litLength)
{
static const BYTE LL_Code[64] = { 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 16, 17, 17, 18, 18, 19, 19,
20, 20, 20, 20, 21, 21, 21, 21,
22, 22, 22, 22, 22, 22, 22, 22,
23, 23, 23, 23, 23, 23, 23, 23,
24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24 };
static const U32 LL_deltaCode = 19;
return (litLength > 63) ? ZSTD_highbit32(litLength) + LL_deltaCode : LL_Code[litLength];
}
/* ZSTD_MLcode() :
* note : mlBase = matchLength - MINMATCH;
* because it's the format it's stored in seqStore->sequences */
MEM_STATIC U32 ZSTD_MLcode(U32 mlBase)
{
static const BYTE ML_Code[128] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36, 37, 37, 37, 37,
38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39,
40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,
41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42 };
static const U32 ML_deltaCode = 36;
return (mlBase > 127) ? ZSTD_highbit32(mlBase) + ML_deltaCode : ML_Code[mlBase];
}
-typedef struct repcodes_s {
- U32 rep[3];
-} repcodes_t;
-
-MEM_STATIC repcodes_t ZSTD_updateRep(U32 const rep[3], U32 const offset, U32 const ll0)
-{
- repcodes_t newReps;
- if (offset >= ZSTD_REP_NUM) { /* full offset */
- newReps.rep[2] = rep[1];
- newReps.rep[1] = rep[0];
- newReps.rep[0] = offset - ZSTD_REP_MOVE;
- } else { /* repcode */
- U32 const repCode = offset + ll0;
- if (repCode > 0) { /* note : if repCode==0, no change */
- U32 const currentOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode];
- newReps.rep[2] = (repCode >= 2) ? rep[1] : rep[2];
- newReps.rep[1] = rep[0];
- newReps.rep[0] = currentOffset;
- } else { /* repCode == 0 */
- ZSTD_memcpy(&newReps, rep, sizeof(newReps));
- }
- }
- return newReps;
-}
-
/* ZSTD_cParam_withinBounds:
* @return 1 if value is within cParam bounds,
* 0 otherwise */
MEM_STATIC int ZSTD_cParam_withinBounds(ZSTD_cParameter cParam, int value)
{
ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam);
if (ZSTD_isError(bounds.error)) return 0;
if (value < bounds.lowerBound) return 0;
if (value > bounds.upperBound) return 0;
return 1;
}
/* ZSTD_noCompressBlock() :
* Writes uncompressed block to dst buffer from given src.
* Returns the size of the block */
MEM_STATIC size_t ZSTD_noCompressBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 lastBlock)
{
U32 const cBlockHeader24 = lastBlock + (((U32)bt_raw)<<1) + (U32)(srcSize << 3);
RETURN_ERROR_IF(srcSize + ZSTD_blockHeaderSize > dstCapacity,
dstSize_tooSmall, "dst buf too small for uncompressed block");
MEM_writeLE24(dst, cBlockHeader24);
ZSTD_memcpy((BYTE*)dst + ZSTD_blockHeaderSize, src, srcSize);
return ZSTD_blockHeaderSize + srcSize;
}
MEM_STATIC size_t ZSTD_rleCompressBlock (void* dst, size_t dstCapacity, BYTE src, size_t srcSize, U32 lastBlock)
{
BYTE* const op = (BYTE*)dst;
U32 const cBlockHeader = lastBlock + (((U32)bt_rle)<<1) + (U32)(srcSize << 3);
RETURN_ERROR_IF(dstCapacity < 4, dstSize_tooSmall, "");
MEM_writeLE24(op, cBlockHeader);
op[3] = src;
return 4;
}
/* ZSTD_minGain() :
* minimum compression required
* to generate a compress block or a compressed literals section.
* note : use same formula for both situations */
MEM_STATIC size_t ZSTD_minGain(size_t srcSize, ZSTD_strategy strat)
{
U32 const minlog = (strat>=ZSTD_btultra) ? (U32)(strat) - 1 : 6;
ZSTD_STATIC_ASSERT(ZSTD_btultra == 8);
assert(ZSTD_cParam_withinBounds(ZSTD_c_strategy, strat));
return (srcSize >> minlog) + 2;
}
-MEM_STATIC int ZSTD_disableLiteralsCompression(const ZSTD_CCtx_params* cctxParams)
+MEM_STATIC int ZSTD_literalsCompressionIsDisabled(const ZSTD_CCtx_params* cctxParams)
{
switch (cctxParams->literalCompressionMode) {
- case ZSTD_lcm_huffman:
+ case ZSTD_ps_enable:
return 0;
- case ZSTD_lcm_uncompressed:
+ case ZSTD_ps_disable:
return 1;
default:
assert(0 /* impossible: pre-validated */);
- /* fall-through */
- case ZSTD_lcm_auto:
+ ZSTD_FALLTHROUGH;
+ case ZSTD_ps_auto:
return (cctxParams->cParams.strategy == ZSTD_fast) && (cctxParams->cParams.targetLength > 0);
}
}
/*! ZSTD_safecopyLiterals() :
* memcpy() function that won't read beyond more than WILDCOPY_OVERLENGTH bytes past ilimit_w.
* Only called when the sequence ends past ilimit_w, so it only needs to be optimized for single
* large copies.
*/
-static void ZSTD_safecopyLiterals(BYTE* op, BYTE const* ip, BYTE const* const iend, BYTE const* ilimit_w) {
+static void
+ZSTD_safecopyLiterals(BYTE* op, BYTE const* ip, BYTE const* const iend, BYTE const* ilimit_w)
+{
assert(iend > ilimit_w);
if (ip <= ilimit_w) {
ZSTD_wildcopy(op, ip, ilimit_w - ip, ZSTD_no_overlap);
op += ilimit_w - ip;
ip = ilimit_w;
}
while (ip < iend) *op++ = *ip++;
}
+#define ZSTD_REP_MOVE (ZSTD_REP_NUM-1)
+#define STORE_REPCODE_1 STORE_REPCODE(1)
+#define STORE_REPCODE_2 STORE_REPCODE(2)
+#define STORE_REPCODE_3 STORE_REPCODE(3)
+#define STORE_REPCODE(r) (assert((r)>=1), assert((r)<=3), (r)-1)
+#define STORE_OFFSET(o) (assert((o)>0), o + ZSTD_REP_MOVE)
+#define STORED_IS_OFFSET(o) ((o) > ZSTD_REP_MOVE)
+#define STORED_IS_REPCODE(o) ((o) <= ZSTD_REP_MOVE)
+#define STORED_OFFSET(o) (assert(STORED_IS_OFFSET(o)), (o)-ZSTD_REP_MOVE)
+#define STORED_REPCODE(o) (assert(STORED_IS_REPCODE(o)), (o)+1) /* returns ID 1,2,3 */
+#define STORED_TO_OFFBASE(o) ((o)+1)
+#define OFFBASE_TO_STORED(o) ((o)-1)
+
/*! ZSTD_storeSeq() :
- * Store a sequence (litlen, litPtr, offCode and mlBase) into seqStore_t.
- * `offCode` : distance to match + ZSTD_REP_MOVE (values <= ZSTD_REP_MOVE are repCodes).
- * `mlBase` : matchLength - MINMATCH
+ * Store a sequence (litlen, litPtr, offCode and matchLength) into seqStore_t.
+ * @offBase_minus1 : Users should use employ macros STORE_REPCODE_X and STORE_OFFSET().
+ * @matchLength : must be >= MINMATCH
* Allowed to overread literals up to litLimit.
*/
-HINT_INLINE UNUSED_ATTR
-void ZSTD_storeSeq(seqStore_t* seqStorePtr, size_t litLength, const BYTE* literals, const BYTE* litLimit, U32 offCode, size_t mlBase)
+HINT_INLINE UNUSED_ATTR void
+ZSTD_storeSeq(seqStore_t* seqStorePtr,
+ size_t litLength, const BYTE* literals, const BYTE* litLimit,
+ U32 offBase_minus1,
+ size_t matchLength)
{
BYTE const* const litLimit_w = litLimit - WILDCOPY_OVERLENGTH;
BYTE const* const litEnd = literals + litLength;
#if defined(DEBUGLEVEL) && (DEBUGLEVEL >= 6)
static const BYTE* g_start = NULL;
if (g_start==NULL) g_start = (const BYTE*)literals; /* note : index only works for compression within a single segment */
{ U32 const pos = (U32)((const BYTE*)literals - g_start);
DEBUGLOG(6, "Cpos%7u :%3u literals, match%4u bytes at offCode%7u",
- pos, (U32)litLength, (U32)mlBase+MINMATCH, (U32)offCode);
+ pos, (U32)litLength, (U32)matchLength, (U32)offBase_minus1);
}
#endif
assert((size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart) < seqStorePtr->maxNbSeq);
/* copy Literals */
assert(seqStorePtr->maxNbLit <= 128 KB);
assert(seqStorePtr->lit + litLength <= seqStorePtr->litStart + seqStorePtr->maxNbLit);
assert(literals + litLength <= litLimit);
if (litEnd <= litLimit_w) {
/* Common case we can use wildcopy.
* First copy 16 bytes, because literals are likely short.
*/
assert(WILDCOPY_OVERLENGTH >= 16);
ZSTD_copy16(seqStorePtr->lit, literals);
if (litLength > 16) {
ZSTD_wildcopy(seqStorePtr->lit+16, literals+16, (ptrdiff_t)litLength-16, ZSTD_no_overlap);
}
} else {
ZSTD_safecopyLiterals(seqStorePtr->lit, literals, litEnd, litLimit_w);
}
seqStorePtr->lit += litLength;
/* literal Length */
if (litLength>0xFFFF) {
- assert(seqStorePtr->longLengthID == 0); /* there can only be a single long length */
- seqStorePtr->longLengthID = 1;
+ assert(seqStorePtr->longLengthType == ZSTD_llt_none); /* there can only be a single long length */
+ seqStorePtr->longLengthType = ZSTD_llt_literalLength;
seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
}
seqStorePtr->sequences[0].litLength = (U16)litLength;
/* match offset */
- seqStorePtr->sequences[0].offset = offCode + 1;
+ seqStorePtr->sequences[0].offBase = STORED_TO_OFFBASE(offBase_minus1);
/* match Length */
- if (mlBase>0xFFFF) {
- assert(seqStorePtr->longLengthID == 0); /* there can only be a single long length */
- seqStorePtr->longLengthID = 2;
- seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
+ assert(matchLength >= MINMATCH);
+ { size_t const mlBase = matchLength - MINMATCH;
+ if (mlBase>0xFFFF) {
+ assert(seqStorePtr->longLengthType == ZSTD_llt_none); /* there can only be a single long length */
+ seqStorePtr->longLengthType = ZSTD_llt_matchLength;
+ seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
+ }
+ seqStorePtr->sequences[0].mlBase = (U16)mlBase;
}
- seqStorePtr->sequences[0].matchLength = (U16)mlBase;
seqStorePtr->sequences++;
}
+/* ZSTD_updateRep() :
+ * updates in-place @rep (array of repeat offsets)
+ * @offBase_minus1 : sum-type, with same numeric representation as ZSTD_storeSeq()
+ */
+MEM_STATIC void
+ZSTD_updateRep(U32 rep[ZSTD_REP_NUM], U32 const offBase_minus1, U32 const ll0)
+{
+ if (STORED_IS_OFFSET(offBase_minus1)) { /* full offset */
+ rep[2] = rep[1];
+ rep[1] = rep[0];
+ rep[0] = STORED_OFFSET(offBase_minus1);
+ } else { /* repcode */
+ U32 const repCode = STORED_REPCODE(offBase_minus1) - 1 + ll0;
+ if (repCode > 0) { /* note : if repCode==0, no change */
+ U32 const currentOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode];
+ rep[2] = (repCode >= 2) ? rep[1] : rep[2];
+ rep[1] = rep[0];
+ rep[0] = currentOffset;
+ } else { /* repCode == 0 */
+ /* nothing to do */
+ }
+ }
+}
+
+typedef struct repcodes_s {
+ U32 rep[3];
+} repcodes_t;
+
+MEM_STATIC repcodes_t
+ZSTD_newRep(U32 const rep[ZSTD_REP_NUM], U32 const offBase_minus1, U32 const ll0)
+{
+ repcodes_t newReps;
+ ZSTD_memcpy(&newReps, rep, sizeof(newReps));
+ ZSTD_updateRep(newReps.rep, offBase_minus1, ll0);
+ return newReps;
+}
+
/*-*************************************
* Match length counter
***************************************/
static unsigned ZSTD_NbCommonBytes (size_t val)
{
if (MEM_isLittleEndian()) {
if (MEM_64bits()) {
# if defined(_MSC_VER) && defined(_WIN64)
# if STATIC_BMI2
return _tzcnt_u64(val) >> 3;
# else
- unsigned long r = 0;
- return _BitScanForward64( &r, (U64)val ) ? (unsigned)(r >> 3) : 0;
+ if (val != 0) {
+ unsigned long r;
+ _BitScanForward64(&r, (U64)val);
+ return (unsigned)(r >> 3);
+ } else {
+ /* Should not reach this code path */
+ __assume(0);
+ }
# endif
# elif defined(__GNUC__) && (__GNUC__ >= 4)
return (__builtin_ctzll((U64)val) >> 3);
# else
static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2,
0, 3, 1, 3, 1, 4, 2, 7,
0, 2, 3, 6, 1, 5, 3, 5,
1, 3, 4, 4, 2, 5, 6, 7,
7, 0, 1, 2, 3, 3, 4, 6,
2, 6, 5, 5, 3, 4, 5, 6,
7, 1, 2, 4, 6, 4, 4, 5,
7, 2, 6, 5, 7, 6, 7, 7 };
return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
# endif
} else { /* 32 bits */
# if defined(_MSC_VER)
- unsigned long r=0;
- return _BitScanForward( &r, (U32)val ) ? (unsigned)(r >> 3) : 0;
+ if (val != 0) {
+ unsigned long r;
+ _BitScanForward(&r, (U32)val);
+ return (unsigned)(r >> 3);
+ } else {
+ /* Should not reach this code path */
+ __assume(0);
+ }
# elif defined(__GNUC__) && (__GNUC__ >= 3)
return (__builtin_ctz((U32)val) >> 3);
# else
static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0,
3, 2, 2, 1, 3, 2, 0, 1,
3, 3, 1, 2, 2, 2, 2, 0,
3, 1, 2, 0, 1, 0, 1, 1 };
return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
# endif
}
} else { /* Big Endian CPU */
if (MEM_64bits()) {
# if defined(_MSC_VER) && defined(_WIN64)
# if STATIC_BMI2
return _lzcnt_u64(val) >> 3;
# else
- unsigned long r = 0;
- return _BitScanReverse64(&r, (U64)val) ? (unsigned)(r >> 3) : 0;
+ if (val != 0) {
+ unsigned long r;
+ _BitScanReverse64(&r, (U64)val);
+ return (unsigned)(r >> 3);
+ } else {
+ /* Should not reach this code path */
+ __assume(0);
+ }
# endif
# elif defined(__GNUC__) && (__GNUC__ >= 4)
return (__builtin_clzll(val) >> 3);
# else
unsigned r;
const unsigned n32 = sizeof(size_t)*4; /* calculate this way due to compiler complaining in 32-bits mode */
if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
r += (!val);
return r;
# endif
} else { /* 32 bits */
# if defined(_MSC_VER)
- unsigned long r = 0;
- return _BitScanReverse( &r, (unsigned long)val ) ? (unsigned)(r >> 3) : 0;
+ if (val != 0) {
+ unsigned long r;
+ _BitScanReverse(&r, (unsigned long)val);
+ return (unsigned)(r >> 3);
+ } else {
+ /* Should not reach this code path */
+ __assume(0);
+ }
# elif defined(__GNUC__) && (__GNUC__ >= 3)
return (__builtin_clz((U32)val) >> 3);
# else
unsigned r;
if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
r += (!val);
return r;
# endif
} }
}
MEM_STATIC size_t ZSTD_count(const BYTE* pIn, const BYTE* pMatch, const BYTE* const pInLimit)
{
const BYTE* const pStart = pIn;
const BYTE* const pInLoopLimit = pInLimit - (sizeof(size_t)-1);
if (pIn < pInLoopLimit) {
{ size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
if (diff) return ZSTD_NbCommonBytes(diff); }
pIn+=sizeof(size_t); pMatch+=sizeof(size_t);
while (pIn < pInLoopLimit) {
size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
if (!diff) { pIn+=sizeof(size_t); pMatch+=sizeof(size_t); continue; }
pIn += ZSTD_NbCommonBytes(diff);
return (size_t)(pIn - pStart);
} }
if (MEM_64bits() && (pIn<(pInLimit-3)) && (MEM_read32(pMatch) == MEM_read32(pIn))) { pIn+=4; pMatch+=4; }
if ((pIn<(pInLimit-1)) && (MEM_read16(pMatch) == MEM_read16(pIn))) { pIn+=2; pMatch+=2; }
if ((pIn<pInLimit) && (*pMatch == *pIn)) pIn++;
return (size_t)(pIn - pStart);
}
/** ZSTD_count_2segments() :
* can count match length with `ip` & `match` in 2 different segments.
* convention : on reaching mEnd, match count continue starting from iStart
*/
MEM_STATIC size_t
ZSTD_count_2segments(const BYTE* ip, const BYTE* match,
const BYTE* iEnd, const BYTE* mEnd, const BYTE* iStart)
{
const BYTE* const vEnd = MIN( ip + (mEnd - match), iEnd);
size_t const matchLength = ZSTD_count(ip, match, vEnd);
if (match + matchLength != mEnd) return matchLength;
DEBUGLOG(7, "ZSTD_count_2segments: found a 2-parts match (current length==%zu)", matchLength);
DEBUGLOG(7, "distance from match beginning to end dictionary = %zi", mEnd - match);
DEBUGLOG(7, "distance from current pos to end buffer = %zi", iEnd - ip);
DEBUGLOG(7, "next byte : ip==%02X, istart==%02X", ip[matchLength], *iStart);
DEBUGLOG(7, "final match length = %zu", matchLength + ZSTD_count(ip+matchLength, iStart, iEnd));
return matchLength + ZSTD_count(ip+matchLength, iStart, iEnd);
}
/*-*************************************
* Hashes
***************************************/
static const U32 prime3bytes = 506832829U;
static U32 ZSTD_hash3(U32 u, U32 h) { return ((u << (32-24)) * prime3bytes) >> (32-h) ; }
MEM_STATIC size_t ZSTD_hash3Ptr(const void* ptr, U32 h) { return ZSTD_hash3(MEM_readLE32(ptr), h); } /* only in zstd_opt.h */
static const U32 prime4bytes = 2654435761U;
static U32 ZSTD_hash4(U32 u, U32 h) { return (u * prime4bytes) >> (32-h) ; }
static size_t ZSTD_hash4Ptr(const void* ptr, U32 h) { return ZSTD_hash4(MEM_read32(ptr), h); }
static const U64 prime5bytes = 889523592379ULL;
static size_t ZSTD_hash5(U64 u, U32 h) { return (size_t)(((u << (64-40)) * prime5bytes) >> (64-h)) ; }
static size_t ZSTD_hash5Ptr(const void* p, U32 h) { return ZSTD_hash5(MEM_readLE64(p), h); }
static const U64 prime6bytes = 227718039650203ULL;
static size_t ZSTD_hash6(U64 u, U32 h) { return (size_t)(((u << (64-48)) * prime6bytes) >> (64-h)) ; }
static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h); }
static const U64 prime7bytes = 58295818150454627ULL;
static size_t ZSTD_hash7(U64 u, U32 h) { return (size_t)(((u << (64-56)) * prime7bytes) >> (64-h)) ; }
static size_t ZSTD_hash7Ptr(const void* p, U32 h) { return ZSTD_hash7(MEM_readLE64(p), h); }
static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL;
static size_t ZSTD_hash8(U64 u, U32 h) { return (size_t)(((u) * prime8bytes) >> (64-h)) ; }
static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h); }
MEM_STATIC FORCE_INLINE_ATTR
size_t ZSTD_hashPtr(const void* p, U32 hBits, U32 mls)
{
switch(mls)
{
default:
case 4: return ZSTD_hash4Ptr(p, hBits);
case 5: return ZSTD_hash5Ptr(p, hBits);
case 6: return ZSTD_hash6Ptr(p, hBits);
case 7: return ZSTD_hash7Ptr(p, hBits);
case 8: return ZSTD_hash8Ptr(p, hBits);
}
}
/** ZSTD_ipow() :
* Return base^exponent.
*/
static U64 ZSTD_ipow(U64 base, U64 exponent)
{
U64 power = 1;
while (exponent) {
if (exponent & 1) power *= base;
exponent >>= 1;
base *= base;
}
return power;
}
#define ZSTD_ROLL_HASH_CHAR_OFFSET 10
/** ZSTD_rollingHash_append() :
* Add the buffer to the hash value.
*/
static U64 ZSTD_rollingHash_append(U64 hash, void const* buf, size_t size)
{
BYTE const* istart = (BYTE const*)buf;
size_t pos;
for (pos = 0; pos < size; ++pos) {
hash *= prime8bytes;
hash += istart[pos] + ZSTD_ROLL_HASH_CHAR_OFFSET;
}
return hash;
}
/** ZSTD_rollingHash_compute() :
* Compute the rolling hash value of the buffer.
*/
MEM_STATIC U64 ZSTD_rollingHash_compute(void const* buf, size_t size)
{
return ZSTD_rollingHash_append(0, buf, size);
}
/** ZSTD_rollingHash_primePower() :
* Compute the primePower to be passed to ZSTD_rollingHash_rotate() for a hash
* over a window of length bytes.
*/
MEM_STATIC U64 ZSTD_rollingHash_primePower(U32 length)
{
return ZSTD_ipow(prime8bytes, length - 1);
}
/** ZSTD_rollingHash_rotate() :
* Rotate the rolling hash by one byte.
*/
MEM_STATIC U64 ZSTD_rollingHash_rotate(U64 hash, BYTE toRemove, BYTE toAdd, U64 primePower)
{
hash -= (toRemove + ZSTD_ROLL_HASH_CHAR_OFFSET) * primePower;
hash *= prime8bytes;
hash += toAdd + ZSTD_ROLL_HASH_CHAR_OFFSET;
return hash;
}
/*-*************************************
* Round buffer management
***************************************/
#if (ZSTD_WINDOWLOG_MAX_64 > 31)
# error "ZSTD_WINDOWLOG_MAX is too large : would overflow ZSTD_CURRENT_MAX"
#endif
/* Max current allowed */
#define ZSTD_CURRENT_MAX ((3U << 29) + (1U << ZSTD_WINDOWLOG_MAX))
/* Maximum chunk size before overflow correction needs to be called again */
#define ZSTD_CHUNKSIZE_MAX \
( ((U32)-1) /* Maximum ending current index */ \
- ZSTD_CURRENT_MAX) /* Maximum beginning lowLimit */
/**
* ZSTD_window_clear():
* Clears the window containing the history by simply setting it to empty.
*/
MEM_STATIC void ZSTD_window_clear(ZSTD_window_t* window)
{
size_t const endT = (size_t)(window->nextSrc - window->base);
U32 const end = (U32)endT;
window->lowLimit = end;
window->dictLimit = end;
}
+MEM_STATIC U32 ZSTD_window_isEmpty(ZSTD_window_t const window)
+{
+ return window.dictLimit == ZSTD_WINDOW_START_INDEX &&
+ window.lowLimit == ZSTD_WINDOW_START_INDEX &&
+ (window.nextSrc - window.base) == ZSTD_WINDOW_START_INDEX;
+}
+
/**
* ZSTD_window_hasExtDict():
* Returns non-zero if the window has a non-empty extDict.
*/
MEM_STATIC U32 ZSTD_window_hasExtDict(ZSTD_window_t const window)
{
return window.lowLimit < window.dictLimit;
}
/**
* ZSTD_matchState_dictMode():
* Inspects the provided matchState and figures out what dictMode should be
* passed to the compressor.
*/
MEM_STATIC ZSTD_dictMode_e ZSTD_matchState_dictMode(const ZSTD_matchState_t *ms)
{
return ZSTD_window_hasExtDict(ms->window) ?
ZSTD_extDict :
ms->dictMatchState != NULL ?
(ms->dictMatchState->dedicatedDictSearch ? ZSTD_dedicatedDictSearch : ZSTD_dictMatchState) :
ZSTD_noDict;
}
+/* Defining this macro to non-zero tells zstd to run the overflow correction
+ * code much more frequently. This is very inefficient, and should only be
+ * used for tests and fuzzers.
+ */
+#ifndef ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY
+# ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
+# define ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY 1
+# else
+# define ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY 0
+# endif
+#endif
+
+/**
+ * ZSTD_window_canOverflowCorrect():
+ * Returns non-zero if the indices are large enough for overflow correction
+ * to work correctly without impacting compression ratio.
+ */
+MEM_STATIC U32 ZSTD_window_canOverflowCorrect(ZSTD_window_t const window,
+ U32 cycleLog,
+ U32 maxDist,
+ U32 loadedDictEnd,
+ void const* src)
+{
+ U32 const cycleSize = 1u << cycleLog;
+ U32 const curr = (U32)((BYTE const*)src - window.base);
+ U32 const minIndexToOverflowCorrect = cycleSize
+ + MAX(maxDist, cycleSize)
+ + ZSTD_WINDOW_START_INDEX;
+
+ /* Adjust the min index to backoff the overflow correction frequency,
+ * so we don't waste too much CPU in overflow correction. If this
+ * computation overflows we don't really care, we just need to make
+ * sure it is at least minIndexToOverflowCorrect.
+ */
+ U32 const adjustment = window.nbOverflowCorrections + 1;
+ U32 const adjustedIndex = MAX(minIndexToOverflowCorrect * adjustment,
+ minIndexToOverflowCorrect);
+ U32 const indexLargeEnough = curr > adjustedIndex;
+
+ /* Only overflow correct early if the dictionary is invalidated already,
+ * so we don't hurt compression ratio.
+ */
+ U32 const dictionaryInvalidated = curr > maxDist + loadedDictEnd;
+
+ return indexLargeEnough && dictionaryInvalidated;
+}
+
/**
* ZSTD_window_needOverflowCorrection():
* Returns non-zero if the indices are getting too large and need overflow
* protection.
*/
MEM_STATIC U32 ZSTD_window_needOverflowCorrection(ZSTD_window_t const window,
+ U32 cycleLog,
+ U32 maxDist,
+ U32 loadedDictEnd,
+ void const* src,
void const* srcEnd)
{
U32 const curr = (U32)((BYTE const*)srcEnd - window.base);
+ if (ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY) {
+ if (ZSTD_window_canOverflowCorrect(window, cycleLog, maxDist, loadedDictEnd, src)) {
+ return 1;
+ }
+ }
return curr > ZSTD_CURRENT_MAX;
}
/**
* ZSTD_window_correctOverflow():
* Reduces the indices to protect from index overflow.
* Returns the correction made to the indices, which must be applied to every
* stored index.
*
* The least significant cycleLog bits of the indices must remain the same,
* which may be 0. Every index up to maxDist in the past must be valid.
- * NOTE: (maxDist & cycleMask) must be zero.
*/
MEM_STATIC U32 ZSTD_window_correctOverflow(ZSTD_window_t* window, U32 cycleLog,
U32 maxDist, void const* src)
{
/* preemptive overflow correction:
* 1. correction is large enough:
* lowLimit > (3<<29) ==> current > 3<<29 + 1<<windowLog
* 1<<windowLog <= newCurrent < 1<<chainLog + 1<<windowLog
*
* current - newCurrent
* > (3<<29 + 1<<windowLog) - (1<<windowLog + 1<<chainLog)
* > (3<<29) - (1<<chainLog)
* > (3<<29) - (1<<30) (NOTE: chainLog <= 30)
* > 1<<29
*
* 2. (ip+ZSTD_CHUNKSIZE_MAX - cctx->base) doesn't overflow:
* After correction, current is less than (1<<chainLog + 1<<windowLog).
* In 64-bit mode we are safe, because we have 64-bit ptrdiff_t.
* In 32-bit mode we are safe, because (chainLog <= 29), so
* ip+ZSTD_CHUNKSIZE_MAX - cctx->base < 1<<32.
* 3. (cctx->lowLimit + 1<<windowLog) < 1<<32:
* windowLog <= 31 ==> 3<<29 + 1<<windowLog < 7<<29 < 1<<32.
*/
- U32 const cycleMask = (1U << cycleLog) - 1;
+ U32 const cycleSize = 1u << cycleLog;
+ U32 const cycleMask = cycleSize - 1;
U32 const curr = (U32)((BYTE const*)src - window->base);
- U32 const currentCycle0 = curr & cycleMask;
- /* Exclude zero so that newCurrent - maxDist >= 1. */
- U32 const currentCycle1 = currentCycle0 == 0 ? (1U << cycleLog) : currentCycle0;
- U32 const newCurrent = currentCycle1 + maxDist;
+ U32 const currentCycle = curr & cycleMask;
+ /* Ensure newCurrent - maxDist >= ZSTD_WINDOW_START_INDEX. */
+ U32 const currentCycleCorrection = currentCycle < ZSTD_WINDOW_START_INDEX
+ ? MAX(cycleSize, ZSTD_WINDOW_START_INDEX)
+ : 0;
+ U32 const newCurrent = currentCycle
+ + currentCycleCorrection
+ + MAX(maxDist, cycleSize);
U32 const correction = curr - newCurrent;
- assert((maxDist & cycleMask) == 0);
+ /* maxDist must be a power of two so that:
+ * (newCurrent & cycleMask) == (curr & cycleMask)
+ * This is required to not corrupt the chains / binary tree.
+ */
+ assert((maxDist & (maxDist - 1)) == 0);
+ assert((curr & cycleMask) == (newCurrent & cycleMask));
assert(curr > newCurrent);
- /* Loose bound, should be around 1<<29 (see above) */
- assert(correction > 1<<28);
+ if (!ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY) {
+ /* Loose bound, should be around 1<<29 (see above) */
+ assert(correction > 1<<28);
+ }
window->base += correction;
window->dictBase += correction;
- if (window->lowLimit <= correction) window->lowLimit = 1;
- else window->lowLimit -= correction;
- if (window->dictLimit <= correction) window->dictLimit = 1;
- else window->dictLimit -= correction;
+ if (window->lowLimit < correction + ZSTD_WINDOW_START_INDEX) {
+ window->lowLimit = ZSTD_WINDOW_START_INDEX;
+ } else {
+ window->lowLimit -= correction;
+ }
+ if (window->dictLimit < correction + ZSTD_WINDOW_START_INDEX) {
+ window->dictLimit = ZSTD_WINDOW_START_INDEX;
+ } else {
+ window->dictLimit -= correction;
+ }
/* Ensure we can still reference the full window. */
assert(newCurrent >= maxDist);
- assert(newCurrent - maxDist >= 1);
+ assert(newCurrent - maxDist >= ZSTD_WINDOW_START_INDEX);
/* Ensure that lowLimit and dictLimit didn't underflow. */
assert(window->lowLimit <= newCurrent);
assert(window->dictLimit <= newCurrent);
+ ++window->nbOverflowCorrections;
+
DEBUGLOG(4, "Correction of 0x%x bytes to lowLimit=0x%x", correction,
window->lowLimit);
return correction;
}
/**
* ZSTD_window_enforceMaxDist():
* Updates lowLimit so that:
* (srcEnd - base) - lowLimit == maxDist + loadedDictEnd
*
* It ensures index is valid as long as index >= lowLimit.
* This must be called before a block compression call.
*
* loadedDictEnd is only defined if a dictionary is in use for current compression.
* As the name implies, loadedDictEnd represents the index at end of dictionary.
* The value lies within context's referential, it can be directly compared to blockEndIdx.
*
* If loadedDictEndPtr is NULL, no dictionary is in use, and we use loadedDictEnd == 0.
* If loadedDictEndPtr is not NULL, we set it to zero after updating lowLimit.
* This is because dictionaries are allowed to be referenced fully
* as long as the last byte of the dictionary is in the window.
* Once input has progressed beyond window size, dictionary cannot be referenced anymore.
*
* In normal dict mode, the dictionary lies between lowLimit and dictLimit.
* In dictMatchState mode, lowLimit and dictLimit are the same,
* and the dictionary is below them.
* forceWindow and dictMatchState are therefore incompatible.
*/
MEM_STATIC void
ZSTD_window_enforceMaxDist(ZSTD_window_t* window,
const void* blockEnd,
U32 maxDist,
U32* loadedDictEndPtr,
const ZSTD_matchState_t** dictMatchStatePtr)
{
U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base);
U32 const loadedDictEnd = (loadedDictEndPtr != NULL) ? *loadedDictEndPtr : 0;
DEBUGLOG(5, "ZSTD_window_enforceMaxDist: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u",
(unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd);
/* - When there is no dictionary : loadedDictEnd == 0.
In which case, the test (blockEndIdx > maxDist) is merely to avoid
overflowing next operation `newLowLimit = blockEndIdx - maxDist`.
- When there is a standard dictionary :
Index referential is copied from the dictionary,
which means it starts from 0.
In which case, loadedDictEnd == dictSize,
and it makes sense to compare `blockEndIdx > maxDist + dictSize`
since `blockEndIdx` also starts from zero.
- When there is an attached dictionary :
loadedDictEnd is expressed within the referential of the context,
so it can be directly compared against blockEndIdx.
*/
if (blockEndIdx > maxDist + loadedDictEnd) {
U32 const newLowLimit = blockEndIdx - maxDist;
if (window->lowLimit < newLowLimit) window->lowLimit = newLowLimit;
if (window->dictLimit < window->lowLimit) {
DEBUGLOG(5, "Update dictLimit to match lowLimit, from %u to %u",
(unsigned)window->dictLimit, (unsigned)window->lowLimit);
window->dictLimit = window->lowLimit;
}
/* On reaching window size, dictionaries are invalidated */
if (loadedDictEndPtr) *loadedDictEndPtr = 0;
if (dictMatchStatePtr) *dictMatchStatePtr = NULL;
}
}
/* Similar to ZSTD_window_enforceMaxDist(),
* but only invalidates dictionary
* when input progresses beyond window size.
* assumption : loadedDictEndPtr and dictMatchStatePtr are valid (non NULL)
* loadedDictEnd uses same referential as window->base
* maxDist is the window size */
MEM_STATIC void
ZSTD_checkDictValidity(const ZSTD_window_t* window,
const void* blockEnd,
U32 maxDist,
U32* loadedDictEndPtr,
const ZSTD_matchState_t** dictMatchStatePtr)
{
assert(loadedDictEndPtr != NULL);
assert(dictMatchStatePtr != NULL);
{ U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base);
U32 const loadedDictEnd = *loadedDictEndPtr;
DEBUGLOG(5, "ZSTD_checkDictValidity: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u",
(unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd);
assert(blockEndIdx >= loadedDictEnd);
if (blockEndIdx > loadedDictEnd + maxDist) {
/* On reaching window size, dictionaries are invalidated.
* For simplification, if window size is reached anywhere within next block,
* the dictionary is invalidated for the full block.
*/
DEBUGLOG(6, "invalidating dictionary for current block (distance > windowSize)");
*loadedDictEndPtr = 0;
*dictMatchStatePtr = NULL;
} else {
if (*loadedDictEndPtr != 0) {
DEBUGLOG(6, "dictionary considered valid for current block");
} } }
}
MEM_STATIC void ZSTD_window_init(ZSTD_window_t* window) {
ZSTD_memset(window, 0, sizeof(*window));
- window->base = (BYTE const*)"";
- window->dictBase = (BYTE const*)"";
- window->dictLimit = 1; /* start from 1, so that 1st position is valid */
- window->lowLimit = 1; /* it ensures first and later CCtx usages compress the same */
- window->nextSrc = window->base + 1; /* see issue #1241 */
+ window->base = (BYTE const*)" ";
+ window->dictBase = (BYTE const*)" ";
+ ZSTD_STATIC_ASSERT(ZSTD_DUBT_UNSORTED_MARK < ZSTD_WINDOW_START_INDEX); /* Start above ZSTD_DUBT_UNSORTED_MARK */
+ window->dictLimit = ZSTD_WINDOW_START_INDEX; /* start from >0, so that 1st position is valid */
+ window->lowLimit = ZSTD_WINDOW_START_INDEX; /* it ensures first and later CCtx usages compress the same */
+ window->nextSrc = window->base + ZSTD_WINDOW_START_INDEX; /* see issue #1241 */
+ window->nbOverflowCorrections = 0;
}
/**
* ZSTD_window_update():
* Updates the window by appending [src, src + srcSize) to the window.
* If it is not contiguous, the current prefix becomes the extDict, and we
* forget about the extDict. Handles overlap of the prefix and extDict.
* Returns non-zero if the segment is contiguous.
*/
MEM_STATIC U32 ZSTD_window_update(ZSTD_window_t* window,
- void const* src, size_t srcSize)
+ void const* src, size_t srcSize,
+ int forceNonContiguous)
{
BYTE const* const ip = (BYTE const*)src;
U32 contiguous = 1;
DEBUGLOG(5, "ZSTD_window_update");
if (srcSize == 0)
return contiguous;
assert(window->base != NULL);
assert(window->dictBase != NULL);
/* Check if blocks follow each other */
- if (src != window->nextSrc) {
+ if (src != window->nextSrc || forceNonContiguous) {
/* not contiguous */
size_t const distanceFromBase = (size_t)(window->nextSrc - window->base);
DEBUGLOG(5, "Non contiguous blocks, new segment starts at %u", window->dictLimit);
window->lowLimit = window->dictLimit;
assert(distanceFromBase == (size_t)(U32)distanceFromBase); /* should never overflow */
window->dictLimit = (U32)distanceFromBase;
window->dictBase = window->base;
window->base = ip - distanceFromBase;
/* ms->nextToUpdate = window->dictLimit; */
if (window->dictLimit - window->lowLimit < HASH_READ_SIZE) window->lowLimit = window->dictLimit; /* too small extDict */
contiguous = 0;
}
window->nextSrc = ip + srcSize;
/* if input and dictionary overlap : reduce dictionary (area presumed modified by input) */
if ( (ip+srcSize > window->dictBase + window->lowLimit)
& (ip < window->dictBase + window->dictLimit)) {
ptrdiff_t const highInputIdx = (ip + srcSize) - window->dictBase;
U32 const lowLimitMax = (highInputIdx > (ptrdiff_t)window->dictLimit) ? window->dictLimit : (U32)highInputIdx;
window->lowLimit = lowLimitMax;
DEBUGLOG(5, "Overlapping extDict and input : new lowLimit = %u", window->lowLimit);
}
return contiguous;
}
/**
* Returns the lowest allowed match index. It may either be in the ext-dict or the prefix.
*/
MEM_STATIC U32 ZSTD_getLowestMatchIndex(const ZSTD_matchState_t* ms, U32 curr, unsigned windowLog)
{
- U32 const maxDistance = 1U << windowLog;
- U32 const lowestValid = ms->window.lowLimit;
- U32 const withinWindow = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
- U32 const isDictionary = (ms->loadedDictEnd != 0);
+ U32 const maxDistance = 1U << windowLog;
+ U32 const lowestValid = ms->window.lowLimit;
+ U32 const withinWindow = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
+ U32 const isDictionary = (ms->loadedDictEnd != 0);
/* When using a dictionary the entire dictionary is valid if a single byte of the dictionary
* is within the window. We invalidate the dictionary (and set loadedDictEnd to 0) when it isn't
* valid for the entire block. So this check is sufficient to find the lowest valid match index.
*/
- U32 const matchLowest = isDictionary ? lowestValid : withinWindow;
+ U32 const matchLowest = isDictionary ? lowestValid : withinWindow;
return matchLowest;
}
/**
* Returns the lowest allowed match index in the prefix.
*/
MEM_STATIC U32 ZSTD_getLowestPrefixIndex(const ZSTD_matchState_t* ms, U32 curr, unsigned windowLog)
{
U32 const maxDistance = 1U << windowLog;
U32 const lowestValid = ms->window.dictLimit;
U32 const withinWindow = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
U32 const isDictionary = (ms->loadedDictEnd != 0);
/* When computing the lowest prefix index we need to take the dictionary into account to handle
* the edge case where the dictionary and the source are contiguous in memory.
*/
U32 const matchLowest = isDictionary ? lowestValid : withinWindow;
return matchLowest;
}
/* debug functions */
#if (DEBUGLEVEL>=2)
MEM_STATIC double ZSTD_fWeight(U32 rawStat)
{
U32 const fp_accuracy = 8;
U32 const fp_multiplier = (1 << fp_accuracy);
U32 const newStat = rawStat + 1;
U32 const hb = ZSTD_highbit32(newStat);
U32 const BWeight = hb * fp_multiplier;
U32 const FWeight = (newStat << fp_accuracy) >> hb;
U32 const weight = BWeight + FWeight;
assert(hb + fp_accuracy < 31);
return (double)weight / fp_multiplier;
}
/* display a table content,
* listing each element, its frequency, and its predicted bit cost */
MEM_STATIC void ZSTD_debugTable(const U32* table, U32 max)
{
unsigned u, sum;
for (u=0, sum=0; u<=max; u++) sum += table[u];
DEBUGLOG(2, "total nb elts: %u", sum);
for (u=0; u<=max; u++) {
DEBUGLOG(2, "%2u: %5u (%.2f)",
u, table[u], ZSTD_fWeight(sum) - ZSTD_fWeight(table[u]) );
}
}
#endif
#if defined (__cplusplus)
}
#endif
/* ===============================================================
* Shared internal declarations
* These prototypes may be called from sources not in lib/compress
* =============================================================== */
/* ZSTD_loadCEntropy() :
* dict : must point at beginning of a valid zstd dictionary.
* return : size of dictionary header (size of magic number + dict ID + entropy tables)
* assumptions : magic number supposed already checked
* and dictSize >= 8 */
size_t ZSTD_loadCEntropy(ZSTD_compressedBlockState_t* bs, void* workspace,
const void* const dict, size_t dictSize);
void ZSTD_reset_compressedBlockState(ZSTD_compressedBlockState_t* bs);
/* ==============================================================
* Private declarations
* These prototypes shall only be called from within lib/compress
* ============================================================== */
/* ZSTD_getCParamsFromCCtxParams() :
* cParams are built depending on compressionLevel, src size hints,
* LDM and manually set compression parameters.
* Note: srcSizeHint == 0 means 0!
*/
ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams(
const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode);
/*! ZSTD_initCStream_internal() :
* Private use only. Init streaming operation.
* expects params to be valid.
* must receive dict, or cdict, or none, but not both.
* @return : 0, or an error code */
size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs,
const void* dict, size_t dictSize,
const ZSTD_CDict* cdict,
const ZSTD_CCtx_params* params, unsigned long long pledgedSrcSize);
void ZSTD_resetSeqStore(seqStore_t* ssPtr);
/*! ZSTD_getCParamsFromCDict() :
* as the name implies */
ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict);
/* ZSTD_compressBegin_advanced_internal() :
* Private use only. To be called from zstdmt_compress.c. */
size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx,
const void* dict, size_t dictSize,
ZSTD_dictContentType_e dictContentType,
ZSTD_dictTableLoadMethod_e dtlm,
const ZSTD_CDict* cdict,
const ZSTD_CCtx_params* params,
unsigned long long pledgedSrcSize);
/* ZSTD_compress_advanced_internal() :
* Private use only. To be called from zstdmt_compress.c. */
size_t ZSTD_compress_advanced_internal(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize,
const ZSTD_CCtx_params* params);
/* ZSTD_writeLastEmptyBlock() :
* output an empty Block with end-of-frame mark to complete a frame
* @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h))
* or an error code if `dstCapacity` is too small (<ZSTD_blockHeaderSize)
*/
size_t ZSTD_writeLastEmptyBlock(void* dst, size_t dstCapacity);
/* ZSTD_referenceExternalSequences() :
* Must be called before starting a compression operation.
* seqs must parse a prefix of the source.
* This cannot be used when long range matching is enabled.
* Zstd will use these sequences, and pass the literals to a secondary block
* compressor.
* @return : An error code on failure.
* NOTE: seqs are not verified! Invalid sequences can cause out-of-bounds memory
* access and data corruption.
*/
size_t ZSTD_referenceExternalSequences(ZSTD_CCtx* cctx, rawSeq* seq, size_t nbSeq);
/** ZSTD_cycleLog() :
* condition for correct operation : hashLog > 1 */
/* Begin FreeBSD - This symbol is needed by dll-linked CLI zstd(1). */
ZSTDLIB_API
/* End FreeBSD */
U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat);
+/** ZSTD_CCtx_trace() :
+ * Trace the end of a compression call.
+ */
+void ZSTD_CCtx_trace(ZSTD_CCtx* cctx, size_t extraCSize);
+
#endif /* ZSTD_COMPRESS_H */
diff --git a/sys/contrib/zstd/lib/compress/zstd_compress_literals.c b/sys/contrib/zstd/lib/compress/zstd_compress_literals.c
index 6dd1c1447a93..52b0a8059aba 100644
--- a/sys/contrib/zstd/lib/compress/zstd_compress_literals.c
+++ b/sys/contrib/zstd/lib/compress/zstd_compress_literals.c
@@ -1,158 +1,159 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Dependencies
***************************************/
#include "zstd_compress_literals.h"
size_t ZSTD_noCompressLiterals (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
- BYTE* const ostart = (BYTE* const)dst;
+ BYTE* const ostart = (BYTE*)dst;
U32 const flSize = 1 + (srcSize>31) + (srcSize>4095);
RETURN_ERROR_IF(srcSize + flSize > dstCapacity, dstSize_tooSmall, "");
switch(flSize)
{
case 1: /* 2 - 1 - 5 */
ostart[0] = (BYTE)((U32)set_basic + (srcSize<<3));
break;
case 2: /* 2 - 2 - 12 */
MEM_writeLE16(ostart, (U16)((U32)set_basic + (1<<2) + (srcSize<<4)));
break;
case 3: /* 2 - 2 - 20 */
MEM_writeLE32(ostart, (U32)((U32)set_basic + (3<<2) + (srcSize<<4)));
break;
default: /* not necessary : flSize is {1,2,3} */
assert(0);
}
ZSTD_memcpy(ostart + flSize, src, srcSize);
DEBUGLOG(5, "Raw literals: %u -> %u", (U32)srcSize, (U32)(srcSize + flSize));
return srcSize + flSize;
}
size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
- BYTE* const ostart = (BYTE* const)dst;
+ BYTE* const ostart = (BYTE*)dst;
U32 const flSize = 1 + (srcSize>31) + (srcSize>4095);
(void)dstCapacity; /* dstCapacity already guaranteed to be >=4, hence large enough */
switch(flSize)
{
case 1: /* 2 - 1 - 5 */
ostart[0] = (BYTE)((U32)set_rle + (srcSize<<3));
break;
case 2: /* 2 - 2 - 12 */
MEM_writeLE16(ostart, (U16)((U32)set_rle + (1<<2) + (srcSize<<4)));
break;
case 3: /* 2 - 2 - 20 */
MEM_writeLE32(ostart, (U32)((U32)set_rle + (3<<2) + (srcSize<<4)));
break;
default: /* not necessary : flSize is {1,2,3} */
assert(0);
}
ostart[flSize] = *(const BYTE*)src;
DEBUGLOG(5, "RLE literals: %u -> %u", (U32)srcSize, (U32)flSize + 1);
return flSize+1;
}
size_t ZSTD_compressLiterals (ZSTD_hufCTables_t const* prevHuf,
ZSTD_hufCTables_t* nextHuf,
ZSTD_strategy strategy, int disableLiteralCompression,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
void* entropyWorkspace, size_t entropyWorkspaceSize,
- const int bmi2)
+ const int bmi2,
+ unsigned suspectUncompressible)
{
size_t const minGain = ZSTD_minGain(srcSize, strategy);
size_t const lhSize = 3 + (srcSize >= 1 KB) + (srcSize >= 16 KB);
BYTE* const ostart = (BYTE*)dst;
U32 singleStream = srcSize < 256;
symbolEncodingType_e hType = set_compressed;
size_t cLitSize;
DEBUGLOG(5,"ZSTD_compressLiterals (disableLiteralCompression=%i srcSize=%u)",
disableLiteralCompression, (U32)srcSize);
/* Prepare nextEntropy assuming reusing the existing table */
ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
if (disableLiteralCompression)
return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
/* small ? don't even attempt compression (speed opt) */
# define COMPRESS_LITERALS_SIZE_MIN 63
{ size_t const minLitSize = (prevHuf->repeatMode == HUF_repeat_valid) ? 6 : COMPRESS_LITERALS_SIZE_MIN;
if (srcSize <= minLitSize) return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
}
RETURN_ERROR_IF(dstCapacity < lhSize+1, dstSize_tooSmall, "not enough space for compression");
{ HUF_repeat repeat = prevHuf->repeatMode;
int const preferRepeat = strategy < ZSTD_lazy ? srcSize <= 1024 : 0;
if (repeat == HUF_repeat_valid && lhSize == 3) singleStream = 1;
cLitSize = singleStream ?
HUF_compress1X_repeat(
ostart+lhSize, dstCapacity-lhSize, src, srcSize,
HUF_SYMBOLVALUE_MAX, HUF_TABLELOG_DEFAULT, entropyWorkspace, entropyWorkspaceSize,
- (HUF_CElt*)nextHuf->CTable, &repeat, preferRepeat, bmi2) :
+ (HUF_CElt*)nextHuf->CTable, &repeat, preferRepeat, bmi2, suspectUncompressible) :
HUF_compress4X_repeat(
ostart+lhSize, dstCapacity-lhSize, src, srcSize,
HUF_SYMBOLVALUE_MAX, HUF_TABLELOG_DEFAULT, entropyWorkspace, entropyWorkspaceSize,
- (HUF_CElt*)nextHuf->CTable, &repeat, preferRepeat, bmi2);
+ (HUF_CElt*)nextHuf->CTable, &repeat, preferRepeat, bmi2, suspectUncompressible);
if (repeat != HUF_repeat_none) {
/* reused the existing table */
DEBUGLOG(5, "Reusing previous huffman table");
hType = set_repeat;
}
}
- if ((cLitSize==0) | (cLitSize >= srcSize - minGain) | ERR_isError(cLitSize)) {
+ if ((cLitSize==0) || (cLitSize >= srcSize - minGain) || ERR_isError(cLitSize)) {
ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
}
if (cLitSize==1) {
ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
return ZSTD_compressRleLiteralsBlock(dst, dstCapacity, src, srcSize);
}
if (hType == set_compressed) {
/* using a newly constructed table */
nextHuf->repeatMode = HUF_repeat_check;
}
/* Build header */
switch(lhSize)
{
case 3: /* 2 - 2 - 10 - 10 */
{ U32 const lhc = hType + ((!singleStream) << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<14);
MEM_writeLE24(ostart, lhc);
break;
}
case 4: /* 2 - 2 - 14 - 14 */
{ U32 const lhc = hType + (2 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<18);
MEM_writeLE32(ostart, lhc);
break;
}
case 5: /* 2 - 2 - 18 - 18 */
{ U32 const lhc = hType + (3 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<22);
MEM_writeLE32(ostart, lhc);
ostart[4] = (BYTE)(cLitSize >> 10);
break;
}
default: /* not possible : lhSize is {3,4,5} */
assert(0);
}
DEBUGLOG(5, "Compressed literals: %u -> %u", (U32)srcSize, (U32)(lhSize+cLitSize));
return lhSize+cLitSize;
}
diff --git a/sys/contrib/zstd/lib/compress/zstd_compress_literals.h b/sys/contrib/zstd/lib/compress/zstd_compress_literals.h
index 8b0870574326..9775fb97cb70 100644
--- a/sys/contrib/zstd/lib/compress/zstd_compress_literals.h
+++ b/sys/contrib/zstd/lib/compress/zstd_compress_literals.h
@@ -1,29 +1,31 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_COMPRESS_LITERALS_H
#define ZSTD_COMPRESS_LITERALS_H
#include "zstd_compress_internal.h" /* ZSTD_hufCTables_t, ZSTD_minGain() */
size_t ZSTD_noCompressLiterals (void* dst, size_t dstCapacity, const void* src, size_t srcSize);
size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+/* If suspectUncompressible then some sampling checks will be run to potentially skip huffman coding */
size_t ZSTD_compressLiterals (ZSTD_hufCTables_t const* prevHuf,
ZSTD_hufCTables_t* nextHuf,
ZSTD_strategy strategy, int disableLiteralCompression,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
void* entropyWorkspace, size_t entropyWorkspaceSize,
- const int bmi2);
+ const int bmi2,
+ unsigned suspectUncompressible);
#endif /* ZSTD_COMPRESS_LITERALS_H */
diff --git a/sys/contrib/zstd/lib/compress/zstd_compress_sequences.c b/sys/contrib/zstd/lib/compress/zstd_compress_sequences.c
index be30c08c6b8b..f1e40af2ea05 100644
--- a/sys/contrib/zstd/lib/compress/zstd_compress_sequences.c
+++ b/sys/contrib/zstd/lib/compress/zstd_compress_sequences.c
@@ -1,433 +1,442 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Dependencies
***************************************/
#include "zstd_compress_sequences.h"
/**
* -log2(x / 256) lookup table for x in [0, 256).
* If x == 0: Return 0
* Else: Return floor(-log2(x / 256) * 256)
*/
static unsigned const kInverseProbabilityLog256[256] = {
0, 2048, 1792, 1642, 1536, 1453, 1386, 1329, 1280, 1236, 1197, 1162,
1130, 1100, 1073, 1047, 1024, 1001, 980, 960, 941, 923, 906, 889,
874, 859, 844, 830, 817, 804, 791, 779, 768, 756, 745, 734,
724, 714, 704, 694, 685, 676, 667, 658, 650, 642, 633, 626,
618, 610, 603, 595, 588, 581, 574, 567, 561, 554, 548, 542,
535, 529, 523, 517, 512, 506, 500, 495, 489, 484, 478, 473,
468, 463, 458, 453, 448, 443, 438, 434, 429, 424, 420, 415,
411, 407, 402, 398, 394, 390, 386, 382, 377, 373, 370, 366,
362, 358, 354, 350, 347, 343, 339, 336, 332, 329, 325, 322,
318, 315, 311, 308, 305, 302, 298, 295, 292, 289, 286, 282,
279, 276, 273, 270, 267, 264, 261, 258, 256, 253, 250, 247,
244, 241, 239, 236, 233, 230, 228, 225, 222, 220, 217, 215,
212, 209, 207, 204, 202, 199, 197, 194, 192, 190, 187, 185,
182, 180, 178, 175, 173, 171, 168, 166, 164, 162, 159, 157,
155, 153, 151, 149, 146, 144, 142, 140, 138, 136, 134, 132,
130, 128, 126, 123, 121, 119, 117, 115, 114, 112, 110, 108,
106, 104, 102, 100, 98, 96, 94, 93, 91, 89, 87, 85,
83, 82, 80, 78, 76, 74, 73, 71, 69, 67, 66, 64,
62, 61, 59, 57, 55, 54, 52, 50, 49, 47, 46, 44,
42, 41, 39, 37, 36, 34, 33, 31, 30, 28, 26, 25,
23, 22, 20, 19, 17, 16, 14, 13, 11, 10, 8, 7,
5, 4, 2, 1,
};
static unsigned ZSTD_getFSEMaxSymbolValue(FSE_CTable const* ctable) {
void const* ptr = ctable;
U16 const* u16ptr = (U16 const*)ptr;
U32 const maxSymbolValue = MEM_read16(u16ptr + 1);
return maxSymbolValue;
}
/**
* Returns true if we should use ncount=-1 else we should
* use ncount=1 for low probability symbols instead.
*/
static unsigned ZSTD_useLowProbCount(size_t const nbSeq)
{
/* Heuristic: This should cover most blocks <= 16K and
* start to fade out after 16K to about 32K depending on
* comprssibility.
*/
return nbSeq >= 2048;
}
/**
* Returns the cost in bytes of encoding the normalized count header.
* Returns an error if any of the helper functions return an error.
*/
static size_t ZSTD_NCountCost(unsigned const* count, unsigned const max,
size_t const nbSeq, unsigned const FSELog)
{
BYTE wksp[FSE_NCOUNTBOUND];
S16 norm[MaxSeq + 1];
const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq, max, ZSTD_useLowProbCount(nbSeq)), "");
return FSE_writeNCount(wksp, sizeof(wksp), norm, max, tableLog);
}
/**
* Returns the cost in bits of encoding the distribution described by count
* using the entropy bound.
*/
static size_t ZSTD_entropyCost(unsigned const* count, unsigned const max, size_t const total)
{
unsigned cost = 0;
unsigned s;
+
+ assert(total > 0);
for (s = 0; s <= max; ++s) {
unsigned norm = (unsigned)((256 * count[s]) / total);
if (count[s] != 0 && norm == 0)
norm = 1;
assert(count[s] < total);
cost += count[s] * kInverseProbabilityLog256[norm];
}
return cost >> 8;
}
/**
* Returns the cost in bits of encoding the distribution in count using ctable.
* Returns an error if ctable cannot represent all the symbols in count.
*/
size_t ZSTD_fseBitCost(
FSE_CTable const* ctable,
unsigned const* count,
unsigned const max)
{
unsigned const kAccuracyLog = 8;
size_t cost = 0;
unsigned s;
FSE_CState_t cstate;
FSE_initCState(&cstate, ctable);
if (ZSTD_getFSEMaxSymbolValue(ctable) < max) {
DEBUGLOG(5, "Repeat FSE_CTable has maxSymbolValue %u < %u",
ZSTD_getFSEMaxSymbolValue(ctable), max);
return ERROR(GENERIC);
}
for (s = 0; s <= max; ++s) {
unsigned const tableLog = cstate.stateLog;
unsigned const badCost = (tableLog + 1) << kAccuracyLog;
unsigned const bitCost = FSE_bitCost(cstate.symbolTT, tableLog, s, kAccuracyLog);
if (count[s] == 0)
continue;
if (bitCost >= badCost) {
DEBUGLOG(5, "Repeat FSE_CTable has Prob[%u] == 0", s);
return ERROR(GENERIC);
}
cost += (size_t)count[s] * bitCost;
}
return cost >> kAccuracyLog;
}
/**
* Returns the cost in bits of encoding the distribution in count using the
* table described by norm. The max symbol support by norm is assumed >= max.
* norm must be valid for every symbol with non-zero probability in count.
*/
size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog,
unsigned const* count, unsigned const max)
{
unsigned const shift = 8 - accuracyLog;
size_t cost = 0;
unsigned s;
assert(accuracyLog <= 8);
for (s = 0; s <= max; ++s) {
unsigned const normAcc = (norm[s] != -1) ? (unsigned)norm[s] : 1;
unsigned const norm256 = normAcc << shift;
assert(norm256 > 0);
assert(norm256 < 256);
cost += count[s] * kInverseProbabilityLog256[norm256];
}
return cost >> 8;
}
symbolEncodingType_e
ZSTD_selectEncodingType(
FSE_repeat* repeatMode, unsigned const* count, unsigned const max,
size_t const mostFrequent, size_t nbSeq, unsigned const FSELog,
FSE_CTable const* prevCTable,
short const* defaultNorm, U32 defaultNormLog,
ZSTD_defaultPolicy_e const isDefaultAllowed,
ZSTD_strategy const strategy)
{
ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0);
if (mostFrequent == nbSeq) {
*repeatMode = FSE_repeat_none;
if (isDefaultAllowed && nbSeq <= 2) {
/* Prefer set_basic over set_rle when there are 2 or less symbols,
* since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol.
* If basic encoding isn't possible, always choose RLE.
*/
DEBUGLOG(5, "Selected set_basic");
return set_basic;
}
DEBUGLOG(5, "Selected set_rle");
return set_rle;
}
if (strategy < ZSTD_lazy) {
if (isDefaultAllowed) {
size_t const staticFse_nbSeq_max = 1000;
size_t const mult = 10 - strategy;
size_t const baseLog = 3;
size_t const dynamicFse_nbSeq_min = (((size_t)1 << defaultNormLog) * mult) >> baseLog; /* 28-36 for offset, 56-72 for lengths */
assert(defaultNormLog >= 5 && defaultNormLog <= 6); /* xx_DEFAULTNORMLOG */
assert(mult <= 9 && mult >= 7);
if ( (*repeatMode == FSE_repeat_valid)
&& (nbSeq < staticFse_nbSeq_max) ) {
DEBUGLOG(5, "Selected set_repeat");
return set_repeat;
}
if ( (nbSeq < dynamicFse_nbSeq_min)
|| (mostFrequent < (nbSeq >> (defaultNormLog-1))) ) {
DEBUGLOG(5, "Selected set_basic");
/* The format allows default tables to be repeated, but it isn't useful.
* When using simple heuristics to select encoding type, we don't want
* to confuse these tables with dictionaries. When running more careful
* analysis, we don't need to waste time checking both repeating tables
* and default tables.
*/
*repeatMode = FSE_repeat_none;
return set_basic;
}
}
} else {
size_t const basicCost = isDefaultAllowed ? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, count, max) : ERROR(GENERIC);
size_t const repeatCost = *repeatMode != FSE_repeat_none ? ZSTD_fseBitCost(prevCTable, count, max) : ERROR(GENERIC);
size_t const NCountCost = ZSTD_NCountCost(count, max, nbSeq, FSELog);
size_t const compressedCost = (NCountCost << 3) + ZSTD_entropyCost(count, max, nbSeq);
if (isDefaultAllowed) {
assert(!ZSTD_isError(basicCost));
assert(!(*repeatMode == FSE_repeat_valid && ZSTD_isError(repeatCost)));
}
assert(!ZSTD_isError(NCountCost));
assert(compressedCost < ERROR(maxCode));
DEBUGLOG(5, "Estimated bit costs: basic=%u\trepeat=%u\tcompressed=%u",
(unsigned)basicCost, (unsigned)repeatCost, (unsigned)compressedCost);
if (basicCost <= repeatCost && basicCost <= compressedCost) {
DEBUGLOG(5, "Selected set_basic");
assert(isDefaultAllowed);
*repeatMode = FSE_repeat_none;
return set_basic;
}
if (repeatCost <= compressedCost) {
DEBUGLOG(5, "Selected set_repeat");
assert(!ZSTD_isError(repeatCost));
return set_repeat;
}
assert(compressedCost < basicCost && compressedCost < repeatCost);
}
DEBUGLOG(5, "Selected set_compressed");
*repeatMode = FSE_repeat_check;
return set_compressed;
}
+typedef struct {
+ S16 norm[MaxSeq + 1];
+ U32 wksp[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(MaxSeq, MaxFSELog)];
+} ZSTD_BuildCTableWksp;
+
size_t
ZSTD_buildCTable(void* dst, size_t dstCapacity,
FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type,
unsigned* count, U32 max,
const BYTE* codeTable, size_t nbSeq,
const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax,
const FSE_CTable* prevCTable, size_t prevCTableSize,
void* entropyWorkspace, size_t entropyWorkspaceSize)
{
BYTE* op = (BYTE*)dst;
const BYTE* const oend = op + dstCapacity;
DEBUGLOG(6, "ZSTD_buildCTable (dstCapacity=%u)", (unsigned)dstCapacity);
switch (type) {
case set_rle:
FORWARD_IF_ERROR(FSE_buildCTable_rle(nextCTable, (BYTE)max), "");
RETURN_ERROR_IF(dstCapacity==0, dstSize_tooSmall, "not enough space");
*op = codeTable[0];
return 1;
case set_repeat:
ZSTD_memcpy(nextCTable, prevCTable, prevCTableSize);
return 0;
case set_basic:
FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, defaultNorm, defaultMax, defaultNormLog, entropyWorkspace, entropyWorkspaceSize), ""); /* note : could be pre-calculated */
return 0;
case set_compressed: {
- S16 norm[MaxSeq + 1];
+ ZSTD_BuildCTableWksp* wksp = (ZSTD_BuildCTableWksp*)entropyWorkspace;
size_t nbSeq_1 = nbSeq;
const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
if (count[codeTable[nbSeq-1]] > 1) {
count[codeTable[nbSeq-1]]--;
nbSeq_1--;
}
assert(nbSeq_1 > 1);
- assert(entropyWorkspaceSize >= FSE_BUILD_CTABLE_WORKSPACE_SIZE(MaxSeq, MaxFSELog));
- FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max, ZSTD_useLowProbCount(nbSeq_1)), "");
- { size_t const NCountSize = FSE_writeNCount(op, oend - op, norm, max, tableLog); /* overflow protected */
+ assert(entropyWorkspaceSize >= sizeof(ZSTD_BuildCTableWksp));
+ (void)entropyWorkspaceSize;
+ FORWARD_IF_ERROR(FSE_normalizeCount(wksp->norm, tableLog, count, nbSeq_1, max, ZSTD_useLowProbCount(nbSeq_1)), "FSE_normalizeCount failed");
+ assert(oend >= op);
+ { size_t const NCountSize = FSE_writeNCount(op, (size_t)(oend - op), wksp->norm, max, tableLog); /* overflow protected */
FORWARD_IF_ERROR(NCountSize, "FSE_writeNCount failed");
- FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, norm, max, tableLog, entropyWorkspace, entropyWorkspaceSize), "");
+ FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, wksp->norm, max, tableLog, wksp->wksp, sizeof(wksp->wksp)), "FSE_buildCTable_wksp failed");
return NCountSize;
}
}
default: assert(0); RETURN_ERROR(GENERIC, "impossible to reach");
}
}
FORCE_INLINE_TEMPLATE size_t
ZSTD_encodeSequences_body(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets)
{
BIT_CStream_t blockStream;
FSE_CState_t stateMatchLength;
FSE_CState_t stateOffsetBits;
FSE_CState_t stateLitLength;
RETURN_ERROR_IF(
ERR_isError(BIT_initCStream(&blockStream, dst, dstCapacity)),
dstSize_tooSmall, "not enough space remaining");
DEBUGLOG(6, "available space for bitstream : %i (dstCapacity=%u)",
(int)(blockStream.endPtr - blockStream.startPtr),
(unsigned)dstCapacity);
/* first symbols */
FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]);
FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq-1]);
FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]);
BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]);
if (MEM_32bits()) BIT_flushBits(&blockStream);
- BIT_addBits(&blockStream, sequences[nbSeq-1].matchLength, ML_bits[mlCodeTable[nbSeq-1]]);
+ BIT_addBits(&blockStream, sequences[nbSeq-1].mlBase, ML_bits[mlCodeTable[nbSeq-1]]);
if (MEM_32bits()) BIT_flushBits(&blockStream);
if (longOffsets) {
U32 const ofBits = ofCodeTable[nbSeq-1];
unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
if (extraBits) {
- BIT_addBits(&blockStream, sequences[nbSeq-1].offset, extraBits);
+ BIT_addBits(&blockStream, sequences[nbSeq-1].offBase, extraBits);
BIT_flushBits(&blockStream);
}
- BIT_addBits(&blockStream, sequences[nbSeq-1].offset >> extraBits,
+ BIT_addBits(&blockStream, sequences[nbSeq-1].offBase >> extraBits,
ofBits - extraBits);
} else {
- BIT_addBits(&blockStream, sequences[nbSeq-1].offset, ofCodeTable[nbSeq-1]);
+ BIT_addBits(&blockStream, sequences[nbSeq-1].offBase, ofCodeTable[nbSeq-1]);
}
BIT_flushBits(&blockStream);
{ size_t n;
for (n=nbSeq-2 ; n<nbSeq ; n--) { /* intentional underflow */
BYTE const llCode = llCodeTable[n];
BYTE const ofCode = ofCodeTable[n];
BYTE const mlCode = mlCodeTable[n];
U32 const llBits = LL_bits[llCode];
U32 const ofBits = ofCode;
U32 const mlBits = ML_bits[mlCode];
DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u",
(unsigned)sequences[n].litLength,
- (unsigned)sequences[n].matchLength + MINMATCH,
- (unsigned)sequences[n].offset);
+ (unsigned)sequences[n].mlBase + MINMATCH,
+ (unsigned)sequences[n].offBase);
/* 32b*/ /* 64b*/
/* (7)*/ /* (7)*/
FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode); /* 15 */ /* 15 */
FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode); /* 24 */ /* 24 */
if (MEM_32bits()) BIT_flushBits(&blockStream); /* (7)*/
FSE_encodeSymbol(&blockStream, &stateLitLength, llCode); /* 16 */ /* 33 */
if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog)))
BIT_flushBits(&blockStream); /* (7)*/
BIT_addBits(&blockStream, sequences[n].litLength, llBits);
if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream);
- BIT_addBits(&blockStream, sequences[n].matchLength, mlBits);
+ BIT_addBits(&blockStream, sequences[n].mlBase, mlBits);
if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream);
if (longOffsets) {
unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
if (extraBits) {
- BIT_addBits(&blockStream, sequences[n].offset, extraBits);
+ BIT_addBits(&blockStream, sequences[n].offBase, extraBits);
BIT_flushBits(&blockStream); /* (7)*/
}
- BIT_addBits(&blockStream, sequences[n].offset >> extraBits,
+ BIT_addBits(&blockStream, sequences[n].offBase >> extraBits,
ofBits - extraBits); /* 31 */
} else {
- BIT_addBits(&blockStream, sequences[n].offset, ofBits); /* 31 */
+ BIT_addBits(&blockStream, sequences[n].offBase, ofBits); /* 31 */
}
BIT_flushBits(&blockStream); /* (7)*/
DEBUGLOG(7, "remaining space : %i", (int)(blockStream.endPtr - blockStream.ptr));
} }
DEBUGLOG(6, "ZSTD_encodeSequences: flushing ML state with %u bits", stateMatchLength.stateLog);
FSE_flushCState(&blockStream, &stateMatchLength);
DEBUGLOG(6, "ZSTD_encodeSequences: flushing Off state with %u bits", stateOffsetBits.stateLog);
FSE_flushCState(&blockStream, &stateOffsetBits);
DEBUGLOG(6, "ZSTD_encodeSequences: flushing LL state with %u bits", stateLitLength.stateLog);
FSE_flushCState(&blockStream, &stateLitLength);
{ size_t const streamSize = BIT_closeCStream(&blockStream);
RETURN_ERROR_IF(streamSize==0, dstSize_tooSmall, "not enough space");
return streamSize;
}
}
static size_t
ZSTD_encodeSequences_default(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets)
{
return ZSTD_encodeSequences_body(dst, dstCapacity,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq, longOffsets);
}
#if DYNAMIC_BMI2
-static TARGET_ATTRIBUTE("bmi2") size_t
+static BMI2_TARGET_ATTRIBUTE size_t
ZSTD_encodeSequences_bmi2(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets)
{
return ZSTD_encodeSequences_body(dst, dstCapacity,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq, longOffsets);
}
#endif
size_t ZSTD_encodeSequences(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2)
{
DEBUGLOG(5, "ZSTD_encodeSequences: dstCapacity = %u", (unsigned)dstCapacity);
#if DYNAMIC_BMI2
if (bmi2) {
return ZSTD_encodeSequences_bmi2(dst, dstCapacity,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq, longOffsets);
}
#endif
(void)bmi2;
return ZSTD_encodeSequences_default(dst, dstCapacity,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq, longOffsets);
}
diff --git a/sys/contrib/zstd/lib/compress/zstd_compress_sequences.h b/sys/contrib/zstd/lib/compress/zstd_compress_sequences.h
index 68c6f9a5acd8..7991364c2f71 100644
--- a/sys/contrib/zstd/lib/compress/zstd_compress_sequences.h
+++ b/sys/contrib/zstd/lib/compress/zstd_compress_sequences.h
@@ -1,54 +1,54 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_COMPRESS_SEQUENCES_H
#define ZSTD_COMPRESS_SEQUENCES_H
#include "../common/fse.h" /* FSE_repeat, FSE_CTable */
#include "../common/zstd_internal.h" /* symbolEncodingType_e, ZSTD_strategy */
typedef enum {
ZSTD_defaultDisallowed = 0,
ZSTD_defaultAllowed = 1
} ZSTD_defaultPolicy_e;
symbolEncodingType_e
ZSTD_selectEncodingType(
FSE_repeat* repeatMode, unsigned const* count, unsigned const max,
size_t const mostFrequent, size_t nbSeq, unsigned const FSELog,
FSE_CTable const* prevCTable,
short const* defaultNorm, U32 defaultNormLog,
ZSTD_defaultPolicy_e const isDefaultAllowed,
ZSTD_strategy const strategy);
size_t
ZSTD_buildCTable(void* dst, size_t dstCapacity,
FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type,
unsigned* count, U32 max,
const BYTE* codeTable, size_t nbSeq,
const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax,
const FSE_CTable* prevCTable, size_t prevCTableSize,
void* entropyWorkspace, size_t entropyWorkspaceSize);
size_t ZSTD_encodeSequences(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2);
size_t ZSTD_fseBitCost(
FSE_CTable const* ctable,
unsigned const* count,
unsigned const max);
size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog,
unsigned const* count, unsigned const max);
#endif /* ZSTD_COMPRESS_SEQUENCES_H */
diff --git a/sys/contrib/zstd/lib/compress/zstd_compress_superblock.c b/sys/contrib/zstd/lib/compress/zstd_compress_superblock.c
index e23e619eef14..10e337857785 100644
--- a/sys/contrib/zstd/lib/compress/zstd_compress_superblock.c
+++ b/sys/contrib/zstd/lib/compress/zstd_compress_superblock.c
@@ -1,849 +1,573 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Dependencies
***************************************/
#include "zstd_compress_superblock.h"
#include "../common/zstd_internal.h" /* ZSTD_getSequenceLength */
#include "hist.h" /* HIST_countFast_wksp */
-#include "zstd_compress_internal.h"
+#include "zstd_compress_internal.h" /* ZSTD_[huf|fse|entropy]CTablesMetadata_t */
#include "zstd_compress_sequences.h"
#include "zstd_compress_literals.h"
-/*-*************************************
-* Superblock entropy buffer structs
-***************************************/
-/** ZSTD_hufCTablesMetadata_t :
- * Stores Literals Block Type for a super-block in hType, and
- * huffman tree description in hufDesBuffer.
- * hufDesSize refers to the size of huffman tree description in bytes.
- * This metadata is populated in ZSTD_buildSuperBlockEntropy_literal() */
-typedef struct {
- symbolEncodingType_e hType;
- BYTE hufDesBuffer[ZSTD_MAX_HUF_HEADER_SIZE];
- size_t hufDesSize;
-} ZSTD_hufCTablesMetadata_t;
-
-/** ZSTD_fseCTablesMetadata_t :
- * Stores symbol compression modes for a super-block in {ll, ol, ml}Type, and
- * fse tables in fseTablesBuffer.
- * fseTablesSize refers to the size of fse tables in bytes.
- * This metadata is populated in ZSTD_buildSuperBlockEntropy_sequences() */
-typedef struct {
- symbolEncodingType_e llType;
- symbolEncodingType_e ofType;
- symbolEncodingType_e mlType;
- BYTE fseTablesBuffer[ZSTD_MAX_FSE_HEADERS_SIZE];
- size_t fseTablesSize;
- size_t lastCountSize; /* This is to account for bug in 1.3.4. More detail in ZSTD_compressSubBlock_sequences() */
-} ZSTD_fseCTablesMetadata_t;
-
-typedef struct {
- ZSTD_hufCTablesMetadata_t hufMetadata;
- ZSTD_fseCTablesMetadata_t fseMetadata;
-} ZSTD_entropyCTablesMetadata_t;
-
-
-/** ZSTD_buildSuperBlockEntropy_literal() :
- * Builds entropy for the super-block literals.
- * Stores literals block type (raw, rle, compressed, repeat) and
- * huffman description table to hufMetadata.
- * @return : size of huffman description table or error code */
-static size_t ZSTD_buildSuperBlockEntropy_literal(void* const src, size_t srcSize,
- const ZSTD_hufCTables_t* prevHuf,
- ZSTD_hufCTables_t* nextHuf,
- ZSTD_hufCTablesMetadata_t* hufMetadata,
- const int disableLiteralsCompression,
- void* workspace, size_t wkspSize)
-{
- BYTE* const wkspStart = (BYTE*)workspace;
- BYTE* const wkspEnd = wkspStart + wkspSize;
- BYTE* const countWkspStart = wkspStart;
- unsigned* const countWksp = (unsigned*)workspace;
- const size_t countWkspSize = (HUF_SYMBOLVALUE_MAX + 1) * sizeof(unsigned);
- BYTE* const nodeWksp = countWkspStart + countWkspSize;
- const size_t nodeWkspSize = wkspEnd-nodeWksp;
- unsigned maxSymbolValue = 255;
- unsigned huffLog = HUF_TABLELOG_DEFAULT;
- HUF_repeat repeat = prevHuf->repeatMode;
-
- DEBUGLOG(5, "ZSTD_buildSuperBlockEntropy_literal (srcSize=%zu)", srcSize);
-
- /* Prepare nextEntropy assuming reusing the existing table */
- ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
-
- if (disableLiteralsCompression) {
- DEBUGLOG(5, "set_basic - disabled");
- hufMetadata->hType = set_basic;
- return 0;
- }
-
- /* small ? don't even attempt compression (speed opt) */
-# define COMPRESS_LITERALS_SIZE_MIN 63
- { size_t const minLitSize = (prevHuf->repeatMode == HUF_repeat_valid) ? 6 : COMPRESS_LITERALS_SIZE_MIN;
- if (srcSize <= minLitSize) {
- DEBUGLOG(5, "set_basic - too small");
- hufMetadata->hType = set_basic;
- return 0;
- }
- }
-
- /* Scan input and build symbol stats */
- { size_t const largest = HIST_count_wksp (countWksp, &maxSymbolValue, (const BYTE*)src, srcSize, workspace, wkspSize);
- FORWARD_IF_ERROR(largest, "HIST_count_wksp failed");
- if (largest == srcSize) {
- DEBUGLOG(5, "set_rle");
- hufMetadata->hType = set_rle;
- return 0;
- }
- if (largest <= (srcSize >> 7)+4) {
- DEBUGLOG(5, "set_basic - no gain");
- hufMetadata->hType = set_basic;
- return 0;
- }
- }
-
- /* Validate the previous Huffman table */
- if (repeat == HUF_repeat_check && !HUF_validateCTable((HUF_CElt const*)prevHuf->CTable, countWksp, maxSymbolValue)) {
- repeat = HUF_repeat_none;
- }
-
- /* Build Huffman Tree */
- ZSTD_memset(nextHuf->CTable, 0, sizeof(nextHuf->CTable));
- huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
- { size_t const maxBits = HUF_buildCTable_wksp((HUF_CElt*)nextHuf->CTable, countWksp,
- maxSymbolValue, huffLog,
- nodeWksp, nodeWkspSize);
- FORWARD_IF_ERROR(maxBits, "HUF_buildCTable_wksp");
- huffLog = (U32)maxBits;
- { /* Build and write the CTable */
- size_t const newCSize = HUF_estimateCompressedSize(
- (HUF_CElt*)nextHuf->CTable, countWksp, maxSymbolValue);
- size_t const hSize = HUF_writeCTable(
- hufMetadata->hufDesBuffer, sizeof(hufMetadata->hufDesBuffer),
- (HUF_CElt*)nextHuf->CTable, maxSymbolValue, huffLog);
- /* Check against repeating the previous CTable */
- if (repeat != HUF_repeat_none) {
- size_t const oldCSize = HUF_estimateCompressedSize(
- (HUF_CElt const*)prevHuf->CTable, countWksp, maxSymbolValue);
- if (oldCSize < srcSize && (oldCSize <= hSize + newCSize || hSize + 12 >= srcSize)) {
- DEBUGLOG(5, "set_repeat - smaller");
- ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
- hufMetadata->hType = set_repeat;
- return 0;
- }
- }
- if (newCSize + hSize >= srcSize) {
- DEBUGLOG(5, "set_basic - no gains");
- ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
- hufMetadata->hType = set_basic;
- return 0;
- }
- DEBUGLOG(5, "set_compressed (hSize=%u)", (U32)hSize);
- hufMetadata->hType = set_compressed;
- nextHuf->repeatMode = HUF_repeat_check;
- return hSize;
- }
- }
-}
-
-/** ZSTD_buildSuperBlockEntropy_sequences() :
- * Builds entropy for the super-block sequences.
- * Stores symbol compression modes and fse table to fseMetadata.
- * @return : size of fse tables or error code */
-static size_t ZSTD_buildSuperBlockEntropy_sequences(seqStore_t* seqStorePtr,
- const ZSTD_fseCTables_t* prevEntropy,
- ZSTD_fseCTables_t* nextEntropy,
- const ZSTD_CCtx_params* cctxParams,
- ZSTD_fseCTablesMetadata_t* fseMetadata,
- void* workspace, size_t wkspSize)
-{
- BYTE* const wkspStart = (BYTE*)workspace;
- BYTE* const wkspEnd = wkspStart + wkspSize;
- BYTE* const countWkspStart = wkspStart;
- unsigned* const countWksp = (unsigned*)workspace;
- const size_t countWkspSize = (MaxSeq + 1) * sizeof(unsigned);
- BYTE* const cTableWksp = countWkspStart + countWkspSize;
- const size_t cTableWkspSize = wkspEnd-cTableWksp;
- ZSTD_strategy const strategy = cctxParams->cParams.strategy;
- FSE_CTable* CTable_LitLength = nextEntropy->litlengthCTable;
- FSE_CTable* CTable_OffsetBits = nextEntropy->offcodeCTable;
- FSE_CTable* CTable_MatchLength = nextEntropy->matchlengthCTable;
- const BYTE* const ofCodeTable = seqStorePtr->ofCode;
- const BYTE* const llCodeTable = seqStorePtr->llCode;
- const BYTE* const mlCodeTable = seqStorePtr->mlCode;
- size_t const nbSeq = seqStorePtr->sequences - seqStorePtr->sequencesStart;
- BYTE* const ostart = fseMetadata->fseTablesBuffer;
- BYTE* const oend = ostart + sizeof(fseMetadata->fseTablesBuffer);
- BYTE* op = ostart;
-
- assert(cTableWkspSize >= (1 << MaxFSELog) * sizeof(FSE_FUNCTION_TYPE));
- DEBUGLOG(5, "ZSTD_buildSuperBlockEntropy_sequences (nbSeq=%zu)", nbSeq);
- ZSTD_memset(workspace, 0, wkspSize);
-
- fseMetadata->lastCountSize = 0;
- /* convert length/distances into codes */
- ZSTD_seqToCodes(seqStorePtr);
- /* build CTable for Literal Lengths */
- { U32 LLtype;
- unsigned max = MaxLL;
- size_t const mostFrequent = HIST_countFast_wksp(countWksp, &max, llCodeTable, nbSeq, workspace, wkspSize); /* can't fail */
- DEBUGLOG(5, "Building LL table");
- nextEntropy->litlength_repeatMode = prevEntropy->litlength_repeatMode;
- LLtype = ZSTD_selectEncodingType(&nextEntropy->litlength_repeatMode,
- countWksp, max, mostFrequent, nbSeq,
- LLFSELog, prevEntropy->litlengthCTable,
- LL_defaultNorm, LL_defaultNormLog,
- ZSTD_defaultAllowed, strategy);
- assert(set_basic < set_compressed && set_rle < set_compressed);
- assert(!(LLtype < set_compressed && nextEntropy->litlength_repeatMode != FSE_repeat_none)); /* We don't copy tables */
- { size_t const countSize = ZSTD_buildCTable(op, oend - op, CTable_LitLength, LLFSELog, (symbolEncodingType_e)LLtype,
- countWksp, max, llCodeTable, nbSeq, LL_defaultNorm, LL_defaultNormLog, MaxLL,
- prevEntropy->litlengthCTable, sizeof(prevEntropy->litlengthCTable),
- cTableWksp, cTableWkspSize);
- FORWARD_IF_ERROR(countSize, "ZSTD_buildCTable for LitLens failed");
- if (LLtype == set_compressed)
- fseMetadata->lastCountSize = countSize;
- op += countSize;
- fseMetadata->llType = (symbolEncodingType_e) LLtype;
- } }
- /* build CTable for Offsets */
- { U32 Offtype;
- unsigned max = MaxOff;
- size_t const mostFrequent = HIST_countFast_wksp(countWksp, &max, ofCodeTable, nbSeq, workspace, wkspSize); /* can't fail */
- /* We can only use the basic table if max <= DefaultMaxOff, otherwise the offsets are too large */
- ZSTD_defaultPolicy_e const defaultPolicy = (max <= DefaultMaxOff) ? ZSTD_defaultAllowed : ZSTD_defaultDisallowed;
- DEBUGLOG(5, "Building OF table");
- nextEntropy->offcode_repeatMode = prevEntropy->offcode_repeatMode;
- Offtype = ZSTD_selectEncodingType(&nextEntropy->offcode_repeatMode,
- countWksp, max, mostFrequent, nbSeq,
- OffFSELog, prevEntropy->offcodeCTable,
- OF_defaultNorm, OF_defaultNormLog,
- defaultPolicy, strategy);
- assert(!(Offtype < set_compressed && nextEntropy->offcode_repeatMode != FSE_repeat_none)); /* We don't copy tables */
- { size_t const countSize = ZSTD_buildCTable(op, oend - op, CTable_OffsetBits, OffFSELog, (symbolEncodingType_e)Offtype,
- countWksp, max, ofCodeTable, nbSeq, OF_defaultNorm, OF_defaultNormLog, DefaultMaxOff,
- prevEntropy->offcodeCTable, sizeof(prevEntropy->offcodeCTable),
- cTableWksp, cTableWkspSize);
- FORWARD_IF_ERROR(countSize, "ZSTD_buildCTable for Offsets failed");
- if (Offtype == set_compressed)
- fseMetadata->lastCountSize = countSize;
- op += countSize;
- fseMetadata->ofType = (symbolEncodingType_e) Offtype;
- } }
- /* build CTable for MatchLengths */
- { U32 MLtype;
- unsigned max = MaxML;
- size_t const mostFrequent = HIST_countFast_wksp(countWksp, &max, mlCodeTable, nbSeq, workspace, wkspSize); /* can't fail */
- DEBUGLOG(5, "Building ML table (remaining space : %i)", (int)(oend-op));
- nextEntropy->matchlength_repeatMode = prevEntropy->matchlength_repeatMode;
- MLtype = ZSTD_selectEncodingType(&nextEntropy->matchlength_repeatMode,
- countWksp, max, mostFrequent, nbSeq,
- MLFSELog, prevEntropy->matchlengthCTable,
- ML_defaultNorm, ML_defaultNormLog,
- ZSTD_defaultAllowed, strategy);
- assert(!(MLtype < set_compressed && nextEntropy->matchlength_repeatMode != FSE_repeat_none)); /* We don't copy tables */
- { size_t const countSize = ZSTD_buildCTable(op, oend - op, CTable_MatchLength, MLFSELog, (symbolEncodingType_e)MLtype,
- countWksp, max, mlCodeTable, nbSeq, ML_defaultNorm, ML_defaultNormLog, MaxML,
- prevEntropy->matchlengthCTable, sizeof(prevEntropy->matchlengthCTable),
- cTableWksp, cTableWkspSize);
- FORWARD_IF_ERROR(countSize, "ZSTD_buildCTable for MatchLengths failed");
- if (MLtype == set_compressed)
- fseMetadata->lastCountSize = countSize;
- op += countSize;
- fseMetadata->mlType = (symbolEncodingType_e) MLtype;
- } }
- assert((size_t) (op-ostart) <= sizeof(fseMetadata->fseTablesBuffer));
- return op-ostart;
-}
-
-
-/** ZSTD_buildSuperBlockEntropy() :
- * Builds entropy for the super-block.
- * @return : 0 on success or error code */
-static size_t
-ZSTD_buildSuperBlockEntropy(seqStore_t* seqStorePtr,
- const ZSTD_entropyCTables_t* prevEntropy,
- ZSTD_entropyCTables_t* nextEntropy,
- const ZSTD_CCtx_params* cctxParams,
- ZSTD_entropyCTablesMetadata_t* entropyMetadata,
- void* workspace, size_t wkspSize)
-{
- size_t const litSize = seqStorePtr->lit - seqStorePtr->litStart;
- DEBUGLOG(5, "ZSTD_buildSuperBlockEntropy");
- entropyMetadata->hufMetadata.hufDesSize =
- ZSTD_buildSuperBlockEntropy_literal(seqStorePtr->litStart, litSize,
- &prevEntropy->huf, &nextEntropy->huf,
- &entropyMetadata->hufMetadata,
- ZSTD_disableLiteralsCompression(cctxParams),
- workspace, wkspSize);
- FORWARD_IF_ERROR(entropyMetadata->hufMetadata.hufDesSize, "ZSTD_buildSuperBlockEntropy_literal failed");
- entropyMetadata->fseMetadata.fseTablesSize =
- ZSTD_buildSuperBlockEntropy_sequences(seqStorePtr,
- &prevEntropy->fse, &nextEntropy->fse,
- cctxParams,
- &entropyMetadata->fseMetadata,
- workspace, wkspSize);
- FORWARD_IF_ERROR(entropyMetadata->fseMetadata.fseTablesSize, "ZSTD_buildSuperBlockEntropy_sequences failed");
- return 0;
-}
-
/** ZSTD_compressSubBlock_literal() :
* Compresses literals section for a sub-block.
* When we have to write the Huffman table we will sometimes choose a header
* size larger than necessary. This is because we have to pick the header size
* before we know the table size + compressed size, so we have a bound on the
* table size. If we guessed incorrectly, we fall back to uncompressed literals.
*
- * We write the header when writeEntropy=1 and set entropyWrriten=1 when we succeeded
+ * We write the header when writeEntropy=1 and set entropyWritten=1 when we succeeded
* in writing the header, otherwise it is set to 0.
*
* hufMetadata->hType has literals block type info.
* If it is set_basic, all sub-blocks literals section will be Raw_Literals_Block.
* If it is set_rle, all sub-blocks literals section will be RLE_Literals_Block.
* If it is set_compressed, first sub-block's literals section will be Compressed_Literals_Block
* If it is set_compressed, first sub-block's literals section will be Treeless_Literals_Block
* and the following sub-blocks' literals sections will be Treeless_Literals_Block.
* @return : compressed size of literals section of a sub-block
* Or 0 if it unable to compress.
* Or error code */
static size_t ZSTD_compressSubBlock_literal(const HUF_CElt* hufTable,
const ZSTD_hufCTablesMetadata_t* hufMetadata,
const BYTE* literals, size_t litSize,
void* dst, size_t dstSize,
const int bmi2, int writeEntropy, int* entropyWritten)
{
size_t const header = writeEntropy ? 200 : 0;
size_t const lhSize = 3 + (litSize >= (1 KB - header)) + (litSize >= (16 KB - header));
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstSize;
BYTE* op = ostart + lhSize;
U32 const singleStream = lhSize == 3;
symbolEncodingType_e hType = writeEntropy ? hufMetadata->hType : set_repeat;
size_t cLitSize = 0;
(void)bmi2; /* TODO bmi2... */
DEBUGLOG(5, "ZSTD_compressSubBlock_literal (litSize=%zu, lhSize=%zu, writeEntropy=%d)", litSize, lhSize, writeEntropy);
*entropyWritten = 0;
if (litSize == 0 || hufMetadata->hType == set_basic) {
DEBUGLOG(5, "ZSTD_compressSubBlock_literal using raw literal");
return ZSTD_noCompressLiterals(dst, dstSize, literals, litSize);
} else if (hufMetadata->hType == set_rle) {
DEBUGLOG(5, "ZSTD_compressSubBlock_literal using rle literal");
return ZSTD_compressRleLiteralsBlock(dst, dstSize, literals, litSize);
}
assert(litSize > 0);
assert(hufMetadata->hType == set_compressed || hufMetadata->hType == set_repeat);
if (writeEntropy && hufMetadata->hType == set_compressed) {
ZSTD_memcpy(op, hufMetadata->hufDesBuffer, hufMetadata->hufDesSize);
op += hufMetadata->hufDesSize;
cLitSize += hufMetadata->hufDesSize;
DEBUGLOG(5, "ZSTD_compressSubBlock_literal (hSize=%zu)", hufMetadata->hufDesSize);
}
/* TODO bmi2 */
{ const size_t cSize = singleStream ? HUF_compress1X_usingCTable(op, oend-op, literals, litSize, hufTable)
: HUF_compress4X_usingCTable(op, oend-op, literals, litSize, hufTable);
op += cSize;
cLitSize += cSize;
if (cSize == 0 || ERR_isError(cSize)) {
DEBUGLOG(5, "Failed to write entropy tables %s", ZSTD_getErrorName(cSize));
return 0;
}
/* If we expand and we aren't writing a header then emit uncompressed */
if (!writeEntropy && cLitSize >= litSize) {
DEBUGLOG(5, "ZSTD_compressSubBlock_literal using raw literal because uncompressible");
return ZSTD_noCompressLiterals(dst, dstSize, literals, litSize);
}
/* If we are writing headers then allow expansion that doesn't change our header size. */
if (lhSize < (size_t)(3 + (cLitSize >= 1 KB) + (cLitSize >= 16 KB))) {
assert(cLitSize > litSize);
DEBUGLOG(5, "Literals expanded beyond allowed header size");
return ZSTD_noCompressLiterals(dst, dstSize, literals, litSize);
}
DEBUGLOG(5, "ZSTD_compressSubBlock_literal (cSize=%zu)", cSize);
}
/* Build header */
switch(lhSize)
{
case 3: /* 2 - 2 - 10 - 10 */
{ U32 const lhc = hType + ((!singleStream) << 2) + ((U32)litSize<<4) + ((U32)cLitSize<<14);
MEM_writeLE24(ostart, lhc);
break;
}
case 4: /* 2 - 2 - 14 - 14 */
{ U32 const lhc = hType + (2 << 2) + ((U32)litSize<<4) + ((U32)cLitSize<<18);
MEM_writeLE32(ostart, lhc);
break;
}
case 5: /* 2 - 2 - 18 - 18 */
{ U32 const lhc = hType + (3 << 2) + ((U32)litSize<<4) + ((U32)cLitSize<<22);
MEM_writeLE32(ostart, lhc);
ostart[4] = (BYTE)(cLitSize >> 10);
break;
}
default: /* not possible : lhSize is {3,4,5} */
assert(0);
}
*entropyWritten = 1;
DEBUGLOG(5, "Compressed literals: %u -> %u", (U32)litSize, (U32)(op-ostart));
return op-ostart;
}
static size_t ZSTD_seqDecompressedSize(seqStore_t const* seqStore, const seqDef* sequences, size_t nbSeq, size_t litSize, int lastSequence) {
const seqDef* const sstart = sequences;
const seqDef* const send = sequences + nbSeq;
const seqDef* sp = sstart;
size_t matchLengthSum = 0;
size_t litLengthSum = 0;
+ (void)(litLengthSum); /* suppress unused variable warning on some environments */
while (send-sp > 0) {
ZSTD_sequenceLength const seqLen = ZSTD_getSequenceLength(seqStore, sp);
litLengthSum += seqLen.litLength;
matchLengthSum += seqLen.matchLength;
sp++;
}
assert(litLengthSum <= litSize);
if (!lastSequence) {
assert(litLengthSum == litSize);
}
return matchLengthSum + litSize;
}
/** ZSTD_compressSubBlock_sequences() :
* Compresses sequences section for a sub-block.
* fseMetadata->llType, fseMetadata->ofType, and fseMetadata->mlType have
* symbol compression modes for the super-block.
* The first successfully compressed block will have these in its header.
* We set entropyWritten=1 when we succeed in compressing the sequences.
* The following sub-blocks will always have repeat mode.
* @return : compressed size of sequences section of a sub-block
* Or 0 if it is unable to compress
* Or error code. */
static size_t ZSTD_compressSubBlock_sequences(const ZSTD_fseCTables_t* fseTables,
const ZSTD_fseCTablesMetadata_t* fseMetadata,
const seqDef* sequences, size_t nbSeq,
const BYTE* llCode, const BYTE* mlCode, const BYTE* ofCode,
const ZSTD_CCtx_params* cctxParams,
void* dst, size_t dstCapacity,
const int bmi2, int writeEntropy, int* entropyWritten)
{
const int longOffsets = cctxParams->cParams.windowLog > STREAM_ACCUMULATOR_MIN;
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstCapacity;
BYTE* op = ostart;
BYTE* seqHead;
DEBUGLOG(5, "ZSTD_compressSubBlock_sequences (nbSeq=%zu, writeEntropy=%d, longOffsets=%d)", nbSeq, writeEntropy, longOffsets);
*entropyWritten = 0;
/* Sequences Header */
RETURN_ERROR_IF((oend-op) < 3 /*max nbSeq Size*/ + 1 /*seqHead*/,
dstSize_tooSmall, "");
if (nbSeq < 0x7F)
*op++ = (BYTE)nbSeq;
else if (nbSeq < LONGNBSEQ)
op[0] = (BYTE)((nbSeq>>8) + 0x80), op[1] = (BYTE)nbSeq, op+=2;
else
op[0]=0xFF, MEM_writeLE16(op+1, (U16)(nbSeq - LONGNBSEQ)), op+=3;
if (nbSeq==0) {
return op - ostart;
}
/* seqHead : flags for FSE encoding type */
seqHead = op++;
DEBUGLOG(5, "ZSTD_compressSubBlock_sequences (seqHeadSize=%u)", (unsigned)(op-ostart));
if (writeEntropy) {
const U32 LLtype = fseMetadata->llType;
const U32 Offtype = fseMetadata->ofType;
const U32 MLtype = fseMetadata->mlType;
DEBUGLOG(5, "ZSTD_compressSubBlock_sequences (fseTablesSize=%zu)", fseMetadata->fseTablesSize);
*seqHead = (BYTE)((LLtype<<6) + (Offtype<<4) + (MLtype<<2));
ZSTD_memcpy(op, fseMetadata->fseTablesBuffer, fseMetadata->fseTablesSize);
op += fseMetadata->fseTablesSize;
} else {
const U32 repeat = set_repeat;
*seqHead = (BYTE)((repeat<<6) + (repeat<<4) + (repeat<<2));
}
{ size_t const bitstreamSize = ZSTD_encodeSequences(
op, oend - op,
fseTables->matchlengthCTable, mlCode,
fseTables->offcodeCTable, ofCode,
fseTables->litlengthCTable, llCode,
sequences, nbSeq,
longOffsets, bmi2);
FORWARD_IF_ERROR(bitstreamSize, "ZSTD_encodeSequences failed");
op += bitstreamSize;
/* zstd versions <= 1.3.4 mistakenly report corruption when
* FSE_readNCount() receives a buffer < 4 bytes.
* Fixed by https://github.com/facebook/zstd/pull/1146.
* This can happen when the last set_compressed table present is 2
* bytes and the bitstream is only one byte.
* In this exceedingly rare case, we will simply emit an uncompressed
* block, since it isn't worth optimizing.
*/
#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
if (writeEntropy && fseMetadata->lastCountSize && fseMetadata->lastCountSize + bitstreamSize < 4) {
/* NCountSize >= 2 && bitstreamSize > 0 ==> lastCountSize == 3 */
assert(fseMetadata->lastCountSize + bitstreamSize == 3);
DEBUGLOG(5, "Avoiding bug in zstd decoder in versions <= 1.3.4 by "
"emitting an uncompressed block.");
return 0;
}
#endif
DEBUGLOG(5, "ZSTD_compressSubBlock_sequences (bitstreamSize=%zu)", bitstreamSize);
}
/* zstd versions <= 1.4.0 mistakenly report error when
* sequences section body size is less than 3 bytes.
* Fixed by https://github.com/facebook/zstd/pull/1664.
* This can happen when the previous sequences section block is compressed
* with rle mode and the current block's sequences section is compressed
* with repeat mode where sequences section body size can be 1 byte.
*/
#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
if (op-seqHead < 4) {
DEBUGLOG(5, "Avoiding bug in zstd decoder in versions <= 1.4.0 by emitting "
"an uncompressed block when sequences are < 4 bytes");
return 0;
}
#endif
*entropyWritten = 1;
return op - ostart;
}
/** ZSTD_compressSubBlock() :
* Compresses a single sub-block.
* @return : compressed size of the sub-block
* Or 0 if it failed to compress. */
static size_t ZSTD_compressSubBlock(const ZSTD_entropyCTables_t* entropy,
const ZSTD_entropyCTablesMetadata_t* entropyMetadata,
const seqDef* sequences, size_t nbSeq,
const BYTE* literals, size_t litSize,
const BYTE* llCode, const BYTE* mlCode, const BYTE* ofCode,
const ZSTD_CCtx_params* cctxParams,
void* dst, size_t dstCapacity,
const int bmi2,
int writeLitEntropy, int writeSeqEntropy,
int* litEntropyWritten, int* seqEntropyWritten,
U32 lastBlock)
{
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstCapacity;
BYTE* op = ostart + ZSTD_blockHeaderSize;
DEBUGLOG(5, "ZSTD_compressSubBlock (litSize=%zu, nbSeq=%zu, writeLitEntropy=%d, writeSeqEntropy=%d, lastBlock=%d)",
litSize, nbSeq, writeLitEntropy, writeSeqEntropy, lastBlock);
{ size_t cLitSize = ZSTD_compressSubBlock_literal((const HUF_CElt*)entropy->huf.CTable,
&entropyMetadata->hufMetadata, literals, litSize,
op, oend-op, bmi2, writeLitEntropy, litEntropyWritten);
FORWARD_IF_ERROR(cLitSize, "ZSTD_compressSubBlock_literal failed");
if (cLitSize == 0) return 0;
op += cLitSize;
}
{ size_t cSeqSize = ZSTD_compressSubBlock_sequences(&entropy->fse,
&entropyMetadata->fseMetadata,
sequences, nbSeq,
llCode, mlCode, ofCode,
cctxParams,
op, oend-op,
bmi2, writeSeqEntropy, seqEntropyWritten);
FORWARD_IF_ERROR(cSeqSize, "ZSTD_compressSubBlock_sequences failed");
if (cSeqSize == 0) return 0;
op += cSeqSize;
}
/* Write block header */
{ size_t cSize = (op-ostart)-ZSTD_blockHeaderSize;
U32 const cBlockHeader24 = lastBlock + (((U32)bt_compressed)<<1) + (U32)(cSize << 3);
MEM_writeLE24(ostart, cBlockHeader24);
}
return op-ostart;
}
static size_t ZSTD_estimateSubBlockSize_literal(const BYTE* literals, size_t litSize,
const ZSTD_hufCTables_t* huf,
const ZSTD_hufCTablesMetadata_t* hufMetadata,
void* workspace, size_t wkspSize,
int writeEntropy)
{
unsigned* const countWksp = (unsigned*)workspace;
unsigned maxSymbolValue = 255;
size_t literalSectionHeaderSize = 3; /* Use hard coded size of 3 bytes */
if (hufMetadata->hType == set_basic) return litSize;
else if (hufMetadata->hType == set_rle) return 1;
else if (hufMetadata->hType == set_compressed || hufMetadata->hType == set_repeat) {
size_t const largest = HIST_count_wksp (countWksp, &maxSymbolValue, (const BYTE*)literals, litSize, workspace, wkspSize);
if (ZSTD_isError(largest)) return litSize;
{ size_t cLitSizeEstimate = HUF_estimateCompressedSize((const HUF_CElt*)huf->CTable, countWksp, maxSymbolValue);
if (writeEntropy) cLitSizeEstimate += hufMetadata->hufDesSize;
return cLitSizeEstimate + literalSectionHeaderSize;
} }
assert(0); /* impossible */
return 0;
}
static size_t ZSTD_estimateSubBlockSize_symbolType(symbolEncodingType_e type,
const BYTE* codeTable, unsigned maxCode,
size_t nbSeq, const FSE_CTable* fseCTable,
- const U32* additionalBits,
+ const U8* additionalBits,
short const* defaultNorm, U32 defaultNormLog, U32 defaultMax,
void* workspace, size_t wkspSize)
{
unsigned* const countWksp = (unsigned*)workspace;
const BYTE* ctp = codeTable;
const BYTE* const ctStart = ctp;
const BYTE* const ctEnd = ctStart + nbSeq;
size_t cSymbolTypeSizeEstimateInBits = 0;
unsigned max = maxCode;
HIST_countFast_wksp(countWksp, &max, codeTable, nbSeq, workspace, wkspSize); /* can't fail */
if (type == set_basic) {
/* We selected this encoding type, so it must be valid. */
assert(max <= defaultMax);
cSymbolTypeSizeEstimateInBits = max <= defaultMax
? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, countWksp, max)
: ERROR(GENERIC);
} else if (type == set_rle) {
cSymbolTypeSizeEstimateInBits = 0;
} else if (type == set_compressed || type == set_repeat) {
cSymbolTypeSizeEstimateInBits = ZSTD_fseBitCost(fseCTable, countWksp, max);
}
if (ZSTD_isError(cSymbolTypeSizeEstimateInBits)) return nbSeq * 10;
while (ctp < ctEnd) {
if (additionalBits) cSymbolTypeSizeEstimateInBits += additionalBits[*ctp];
else cSymbolTypeSizeEstimateInBits += *ctp; /* for offset, offset code is also the number of additional bits */
ctp++;
}
return cSymbolTypeSizeEstimateInBits / 8;
}
static size_t ZSTD_estimateSubBlockSize_sequences(const BYTE* ofCodeTable,
const BYTE* llCodeTable,
const BYTE* mlCodeTable,
size_t nbSeq,
const ZSTD_fseCTables_t* fseTables,
const ZSTD_fseCTablesMetadata_t* fseMetadata,
void* workspace, size_t wkspSize,
int writeEntropy)
{
- size_t sequencesSectionHeaderSize = 3; /* Use hard coded size of 3 bytes */
+ size_t const sequencesSectionHeaderSize = 3; /* Use hard coded size of 3 bytes */
size_t cSeqSizeEstimate = 0;
+ if (nbSeq == 0) return sequencesSectionHeaderSize;
cSeqSizeEstimate += ZSTD_estimateSubBlockSize_symbolType(fseMetadata->ofType, ofCodeTable, MaxOff,
nbSeq, fseTables->offcodeCTable, NULL,
OF_defaultNorm, OF_defaultNormLog, DefaultMaxOff,
workspace, wkspSize);
cSeqSizeEstimate += ZSTD_estimateSubBlockSize_symbolType(fseMetadata->llType, llCodeTable, MaxLL,
nbSeq, fseTables->litlengthCTable, LL_bits,
LL_defaultNorm, LL_defaultNormLog, MaxLL,
workspace, wkspSize);
cSeqSizeEstimate += ZSTD_estimateSubBlockSize_symbolType(fseMetadata->mlType, mlCodeTable, MaxML,
nbSeq, fseTables->matchlengthCTable, ML_bits,
ML_defaultNorm, ML_defaultNormLog, MaxML,
workspace, wkspSize);
if (writeEntropy) cSeqSizeEstimate += fseMetadata->fseTablesSize;
return cSeqSizeEstimate + sequencesSectionHeaderSize;
}
static size_t ZSTD_estimateSubBlockSize(const BYTE* literals, size_t litSize,
const BYTE* ofCodeTable,
const BYTE* llCodeTable,
const BYTE* mlCodeTable,
size_t nbSeq,
const ZSTD_entropyCTables_t* entropy,
const ZSTD_entropyCTablesMetadata_t* entropyMetadata,
void* workspace, size_t wkspSize,
int writeLitEntropy, int writeSeqEntropy) {
size_t cSizeEstimate = 0;
cSizeEstimate += ZSTD_estimateSubBlockSize_literal(literals, litSize,
&entropy->huf, &entropyMetadata->hufMetadata,
workspace, wkspSize, writeLitEntropy);
cSizeEstimate += ZSTD_estimateSubBlockSize_sequences(ofCodeTable, llCodeTable, mlCodeTable,
nbSeq, &entropy->fse, &entropyMetadata->fseMetadata,
workspace, wkspSize, writeSeqEntropy);
return cSizeEstimate + ZSTD_blockHeaderSize;
}
static int ZSTD_needSequenceEntropyTables(ZSTD_fseCTablesMetadata_t const* fseMetadata)
{
if (fseMetadata->llType == set_compressed || fseMetadata->llType == set_rle)
return 1;
if (fseMetadata->mlType == set_compressed || fseMetadata->mlType == set_rle)
return 1;
if (fseMetadata->ofType == set_compressed || fseMetadata->ofType == set_rle)
return 1;
return 0;
}
/** ZSTD_compressSubBlock_multi() :
* Breaks super-block into multiple sub-blocks and compresses them.
* Entropy will be written to the first block.
* The following blocks will use repeat mode to compress.
* All sub-blocks are compressed blocks (no raw or rle blocks).
* @return : compressed size of the super block (which is multiple ZSTD blocks)
* Or 0 if it failed to compress. */
static size_t ZSTD_compressSubBlock_multi(const seqStore_t* seqStorePtr,
const ZSTD_compressedBlockState_t* prevCBlock,
ZSTD_compressedBlockState_t* nextCBlock,
const ZSTD_entropyCTablesMetadata_t* entropyMetadata,
const ZSTD_CCtx_params* cctxParams,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const int bmi2, U32 lastBlock,
void* workspace, size_t wkspSize)
{
const seqDef* const sstart = seqStorePtr->sequencesStart;
const seqDef* const send = seqStorePtr->sequences;
const seqDef* sp = sstart;
const BYTE* const lstart = seqStorePtr->litStart;
const BYTE* const lend = seqStorePtr->lit;
const BYTE* lp = lstart;
BYTE const* ip = (BYTE const*)src;
BYTE const* const iend = ip + srcSize;
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstCapacity;
BYTE* op = ostart;
const BYTE* llCodePtr = seqStorePtr->llCode;
const BYTE* mlCodePtr = seqStorePtr->mlCode;
const BYTE* ofCodePtr = seqStorePtr->ofCode;
size_t targetCBlockSize = cctxParams->targetCBlockSize;
size_t litSize, seqCount;
int writeLitEntropy = entropyMetadata->hufMetadata.hType == set_compressed;
int writeSeqEntropy = 1;
int lastSequence = 0;
DEBUGLOG(5, "ZSTD_compressSubBlock_multi (litSize=%u, nbSeq=%u)",
(unsigned)(lend-lp), (unsigned)(send-sstart));
litSize = 0;
seqCount = 0;
do {
size_t cBlockSizeEstimate = 0;
if (sstart == send) {
lastSequence = 1;
} else {
const seqDef* const sequence = sp + seqCount;
lastSequence = sequence == send - 1;
litSize += ZSTD_getSequenceLength(seqStorePtr, sequence).litLength;
seqCount++;
}
if (lastSequence) {
assert(lp <= lend);
assert(litSize <= (size_t)(lend - lp));
litSize = (size_t)(lend - lp);
}
/* I think there is an optimization opportunity here.
* Calling ZSTD_estimateSubBlockSize for every sequence can be wasteful
* since it recalculates estimate from scratch.
- * For example, it would recount literal distribution and symbol codes everytime.
+ * For example, it would recount literal distribution and symbol codes every time.
*/
cBlockSizeEstimate = ZSTD_estimateSubBlockSize(lp, litSize, ofCodePtr, llCodePtr, mlCodePtr, seqCount,
&nextCBlock->entropy, entropyMetadata,
workspace, wkspSize, writeLitEntropy, writeSeqEntropy);
if (cBlockSizeEstimate > targetCBlockSize || lastSequence) {
int litEntropyWritten = 0;
int seqEntropyWritten = 0;
const size_t decompressedSize = ZSTD_seqDecompressedSize(seqStorePtr, sp, seqCount, litSize, lastSequence);
const size_t cSize = ZSTD_compressSubBlock(&nextCBlock->entropy, entropyMetadata,
sp, seqCount,
lp, litSize,
llCodePtr, mlCodePtr, ofCodePtr,
cctxParams,
op, oend-op,
bmi2, writeLitEntropy, writeSeqEntropy,
&litEntropyWritten, &seqEntropyWritten,
lastBlock && lastSequence);
FORWARD_IF_ERROR(cSize, "ZSTD_compressSubBlock failed");
if (cSize > 0 && cSize < decompressedSize) {
DEBUGLOG(5, "Committed the sub-block");
assert(ip + decompressedSize <= iend);
ip += decompressedSize;
sp += seqCount;
lp += litSize;
op += cSize;
llCodePtr += seqCount;
mlCodePtr += seqCount;
ofCodePtr += seqCount;
litSize = 0;
seqCount = 0;
/* Entropy only needs to be written once */
if (litEntropyWritten) {
writeLitEntropy = 0;
}
if (seqEntropyWritten) {
writeSeqEntropy = 0;
}
}
}
} while (!lastSequence);
if (writeLitEntropy) {
DEBUGLOG(5, "ZSTD_compressSubBlock_multi has literal entropy tables unwritten");
ZSTD_memcpy(&nextCBlock->entropy.huf, &prevCBlock->entropy.huf, sizeof(prevCBlock->entropy.huf));
}
if (writeSeqEntropy && ZSTD_needSequenceEntropyTables(&entropyMetadata->fseMetadata)) {
/* If we haven't written our entropy tables, then we've violated our contract and
* must emit an uncompressed block.
*/
DEBUGLOG(5, "ZSTD_compressSubBlock_multi has sequence entropy tables unwritten");
return 0;
}
if (ip < iend) {
size_t const cSize = ZSTD_noCompressBlock(op, oend - op, ip, iend - ip, lastBlock);
DEBUGLOG(5, "ZSTD_compressSubBlock_multi last sub-block uncompressed, %zu bytes", (size_t)(iend - ip));
FORWARD_IF_ERROR(cSize, "ZSTD_noCompressBlock failed");
assert(cSize != 0);
op += cSize;
/* We have to regenerate the repcodes because we've skipped some sequences */
if (sp < send) {
seqDef const* seq;
repcodes_t rep;
ZSTD_memcpy(&rep, prevCBlock->rep, sizeof(rep));
for (seq = sstart; seq < sp; ++seq) {
- rep = ZSTD_updateRep(rep.rep, seq->offset - 1, ZSTD_getSequenceLength(seqStorePtr, seq).litLength == 0);
+ ZSTD_updateRep(rep.rep, seq->offBase - 1, ZSTD_getSequenceLength(seqStorePtr, seq).litLength == 0);
}
ZSTD_memcpy(nextCBlock->rep, &rep, sizeof(rep));
}
}
DEBUGLOG(5, "ZSTD_compressSubBlock_multi compressed");
return op-ostart;
}
size_t ZSTD_compressSuperBlock(ZSTD_CCtx* zc,
void* dst, size_t dstCapacity,
void const* src, size_t srcSize,
unsigned lastBlock) {
ZSTD_entropyCTablesMetadata_t entropyMetadata;
- FORWARD_IF_ERROR(ZSTD_buildSuperBlockEntropy(&zc->seqStore,
+ FORWARD_IF_ERROR(ZSTD_buildBlockEntropyStats(&zc->seqStore,
&zc->blockState.prevCBlock->entropy,
&zc->blockState.nextCBlock->entropy,
&zc->appliedParams,
&entropyMetadata,
zc->entropyWorkspace, ENTROPY_WORKSPACE_SIZE /* statically allocated in resetCCtx */), "");
return ZSTD_compressSubBlock_multi(&zc->seqStore,
zc->blockState.prevCBlock,
zc->blockState.nextCBlock,
&entropyMetadata,
&zc->appliedParams,
dst, dstCapacity,
src, srcSize,
zc->bmi2, lastBlock,
zc->entropyWorkspace, ENTROPY_WORKSPACE_SIZE /* statically allocated in resetCCtx */);
}
diff --git a/sys/contrib/zstd/lib/compress/zstd_compress_superblock.h b/sys/contrib/zstd/lib/compress/zstd_compress_superblock.h
index 07f4cb1dc646..176f9b106f34 100644
--- a/sys/contrib/zstd/lib/compress/zstd_compress_superblock.h
+++ b/sys/contrib/zstd/lib/compress/zstd_compress_superblock.h
@@ -1,32 +1,32 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_COMPRESS_ADVANCED_H
#define ZSTD_COMPRESS_ADVANCED_H
/*-*************************************
* Dependencies
***************************************/
#include "../zstd.h" /* ZSTD_CCtx */
/*-*************************************
* Target Compressed Block Size
***************************************/
/* ZSTD_compressSuperBlock() :
* Used to compress a super block when targetCBlockSize is being used.
* The given block will be compressed into multiple sub blocks that are around targetCBlockSize. */
size_t ZSTD_compressSuperBlock(ZSTD_CCtx* zc,
void* dst, size_t dstCapacity,
void const* src, size_t srcSize,
unsigned lastBlock);
#endif /* ZSTD_COMPRESS_ADVANCED_H */
diff --git a/sys/contrib/zstd/lib/compress/zstd_cwksp.h b/sys/contrib/zstd/lib/compress/zstd_cwksp.h
index d65170b39cad..dc3f40c80c32 100644
--- a/sys/contrib/zstd/lib/compress/zstd_cwksp.h
+++ b/sys/contrib/zstd/lib/compress/zstd_cwksp.h
@@ -1,561 +1,676 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_CWKSP_H
#define ZSTD_CWKSP_H
/*-*************************************
* Dependencies
***************************************/
#include "../common/zstd_internal.h"
#if defined (__cplusplus)
extern "C" {
#endif
/*-*************************************
* Constants
***************************************/
/* Since the workspace is effectively its own little malloc implementation /
* arena, when we run under ASAN, we should similarly insert redzones between
* each internal element of the workspace, so ASAN will catch overruns that
* reach outside an object but that stay inside the workspace.
*
* This defines the size of that redzone.
*/
#ifndef ZSTD_CWKSP_ASAN_REDZONE_SIZE
#define ZSTD_CWKSP_ASAN_REDZONE_SIZE 128
#endif
+
+/* Set our tables and aligneds to align by 64 bytes */
+#define ZSTD_CWKSP_ALIGNMENT_BYTES 64
+
/*-*************************************
* Structures
***************************************/
typedef enum {
ZSTD_cwksp_alloc_objects,
ZSTD_cwksp_alloc_buffers,
ZSTD_cwksp_alloc_aligned
} ZSTD_cwksp_alloc_phase_e;
/**
* Used to describe whether the workspace is statically allocated (and will not
* necessarily ever be freed), or if it's dynamically allocated and we can
* expect a well-formed caller to free this.
*/
typedef enum {
ZSTD_cwksp_dynamic_alloc,
ZSTD_cwksp_static_alloc
} ZSTD_cwksp_static_alloc_e;
/**
* Zstd fits all its internal datastructures into a single continuous buffer,
* so that it only needs to perform a single OS allocation (or so that a buffer
* can be provided to it and it can perform no allocations at all). This buffer
* is called the workspace.
*
* Several optimizations complicate that process of allocating memory ranges
* from this workspace for each internal datastructure:
*
* - These different internal datastructures have different setup requirements:
*
* - The static objects need to be cleared once and can then be trivially
* reused for each compression.
*
* - Various buffers don't need to be initialized at all--they are always
* written into before they're read.
*
* - The matchstate tables have a unique requirement that they don't need
* their memory to be totally cleared, but they do need the memory to have
* some bound, i.e., a guarantee that all values in the memory they've been
* allocated is less than some maximum value (which is the starting value
* for the indices that they will then use for compression). When this
* guarantee is provided to them, they can use the memory without any setup
* work. When it can't, they have to clear the area.
*
* - These buffers also have different alignment requirements.
*
* - We would like to reuse the objects in the workspace for multiple
* compressions without having to perform any expensive reallocation or
* reinitialization work.
*
* - We would like to be able to efficiently reuse the workspace across
* multiple compressions **even when the compression parameters change** and
* we need to resize some of the objects (where possible).
*
* To attempt to manage this buffer, given these constraints, the ZSTD_cwksp
* abstraction was created. It works as follows:
*
* Workspace Layout:
*
* [ ... workspace ... ]
* [objects][tables ... ->] free space [<- ... aligned][<- ... buffers]
*
* The various objects that live in the workspace are divided into the
* following categories, and are allocated separately:
*
* - Static objects: this is optionally the enclosing ZSTD_CCtx or ZSTD_CDict,
* so that literally everything fits in a single buffer. Note: if present,
* this must be the first object in the workspace, since ZSTD_customFree{CCtx,
* CDict}() rely on a pointer comparison to see whether one or two frees are
* required.
*
* - Fixed size objects: these are fixed-size, fixed-count objects that are
* nonetheless "dynamically" allocated in the workspace so that we can
* control how they're initialized separately from the broader ZSTD_CCtx.
* Examples:
* - Entropy Workspace
* - 2 x ZSTD_compressedBlockState_t
* - CDict dictionary contents
*
* - Tables: these are any of several different datastructures (hash tables,
* chain tables, binary trees) that all respect a common format: they are
* uint32_t arrays, all of whose values are between 0 and (nextSrc - base).
- * Their sizes depend on the cparams.
+ * Their sizes depend on the cparams. These tables are 64-byte aligned.
*
* - Aligned: these buffers are used for various purposes that require 4 byte
- * alignment, but don't require any initialization before they're used.
+ * alignment, but don't require any initialization before they're used. These
+ * buffers are each aligned to 64 bytes.
*
* - Buffers: these buffers are used for various purposes that don't require
* any alignment or initialization before they're used. This means they can
* be moved around at no cost for a new compression.
*
* Allocating Memory:
*
* The various types of objects must be allocated in order, so they can be
* correctly packed into the workspace buffer. That order is:
*
* 1. Objects
* 2. Buffers
- * 3. Aligned
- * 4. Tables
+ * 3. Aligned/Tables
*
* Attempts to reserve objects of different types out of order will fail.
*/
typedef struct {
void* workspace;
void* workspaceEnd;
void* objectEnd;
void* tableEnd;
void* tableValidEnd;
void* allocStart;
BYTE allocFailed;
int workspaceOversizedDuration;
ZSTD_cwksp_alloc_phase_e phase;
ZSTD_cwksp_static_alloc_e isStatic;
} ZSTD_cwksp;
/*-*************************************
* Functions
***************************************/
MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws);
MEM_STATIC void ZSTD_cwksp_assert_internal_consistency(ZSTD_cwksp* ws) {
(void)ws;
assert(ws->workspace <= ws->objectEnd);
assert(ws->objectEnd <= ws->tableEnd);
assert(ws->objectEnd <= ws->tableValidEnd);
assert(ws->tableEnd <= ws->allocStart);
assert(ws->tableValidEnd <= ws->allocStart);
assert(ws->allocStart <= ws->workspaceEnd);
}
/**
* Align must be a power of 2.
*/
MEM_STATIC size_t ZSTD_cwksp_align(size_t size, size_t const align) {
size_t const mask = align - 1;
assert((align & mask) == 0);
return (size + mask) & ~mask;
}
/**
* Use this to determine how much space in the workspace we will consume to
* allocate this object. (Normally it should be exactly the size of the object,
* but under special conditions, like ASAN, where we pad each object, it might
* be larger.)
*
* Since tables aren't currently redzoned, you don't need to call through this
* to figure out how much space you need for the matchState tables. Everything
* else is though.
+ *
+ * Do not use for sizing aligned buffers. Instead, use ZSTD_cwksp_aligned_alloc_size().
*/
MEM_STATIC size_t ZSTD_cwksp_alloc_size(size_t size) {
if (size == 0)
return 0;
#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
return size + 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
#else
return size;
#endif
}
-MEM_STATIC void ZSTD_cwksp_internal_advance_phase(
- ZSTD_cwksp* ws, ZSTD_cwksp_alloc_phase_e phase) {
+/**
+ * Returns an adjusted alloc size that is the nearest larger multiple of 64 bytes.
+ * Used to determine the number of bytes required for a given "aligned".
+ */
+MEM_STATIC size_t ZSTD_cwksp_aligned_alloc_size(size_t size) {
+ return ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(size, ZSTD_CWKSP_ALIGNMENT_BYTES));
+}
+
+/**
+ * Returns the amount of additional space the cwksp must allocate
+ * for internal purposes (currently only alignment).
+ */
+MEM_STATIC size_t ZSTD_cwksp_slack_space_required(void) {
+ /* For alignment, the wksp will always allocate an additional n_1=[1, 64] bytes
+ * to align the beginning of tables section, as well as another n_2=[0, 63] bytes
+ * to align the beginning of the aligned section.
+ *
+ * n_1 + n_2 == 64 bytes if the cwksp is freshly allocated, due to tables and
+ * aligneds being sized in multiples of 64 bytes.
+ */
+ size_t const slackSpace = ZSTD_CWKSP_ALIGNMENT_BYTES;
+ return slackSpace;
+}
+
+
+/**
+ * Return the number of additional bytes required to align a pointer to the given number of bytes.
+ * alignBytes must be a power of two.
+ */
+MEM_STATIC size_t ZSTD_cwksp_bytes_to_align_ptr(void* ptr, const size_t alignBytes) {
+ size_t const alignBytesMask = alignBytes - 1;
+ size_t const bytes = (alignBytes - ((size_t)ptr & (alignBytesMask))) & alignBytesMask;
+ assert((alignBytes & alignBytesMask) == 0);
+ assert(bytes != ZSTD_CWKSP_ALIGNMENT_BYTES);
+ return bytes;
+}
+
+/**
+ * Internal function. Do not use directly.
+ * Reserves the given number of bytes within the aligned/buffer segment of the wksp,
+ * which counts from the end of the wksp (as opposed to the object/table segment).
+ *
+ * Returns a pointer to the beginning of that space.
+ */
+MEM_STATIC void*
+ZSTD_cwksp_reserve_internal_buffer_space(ZSTD_cwksp* ws, size_t const bytes)
+{
+ void* const alloc = (BYTE*)ws->allocStart - bytes;
+ void* const bottom = ws->tableEnd;
+ DEBUGLOG(5, "cwksp: reserving %p %zd bytes, %zd bytes remaining",
+ alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
+ ZSTD_cwksp_assert_internal_consistency(ws);
+ assert(alloc >= bottom);
+ if (alloc < bottom) {
+ DEBUGLOG(4, "cwksp: alloc failed!");
+ ws->allocFailed = 1;
+ return NULL;
+ }
+ /* the area is reserved from the end of wksp.
+ * If it overlaps with tableValidEnd, it voids guarantees on values' range */
+ if (alloc < ws->tableValidEnd) {
+ ws->tableValidEnd = alloc;
+ }
+ ws->allocStart = alloc;
+ return alloc;
+}
+
+/**
+ * Moves the cwksp to the next phase, and does any necessary allocations.
+ * cwksp initialization must necessarily go through each phase in order.
+ * Returns a 0 on success, or zstd error
+ */
+MEM_STATIC size_t
+ZSTD_cwksp_internal_advance_phase(ZSTD_cwksp* ws, ZSTD_cwksp_alloc_phase_e phase)
+{
assert(phase >= ws->phase);
if (phase > ws->phase) {
+ /* Going from allocating objects to allocating buffers */
if (ws->phase < ZSTD_cwksp_alloc_buffers &&
phase >= ZSTD_cwksp_alloc_buffers) {
ws->tableValidEnd = ws->objectEnd;
}
+
+ /* Going from allocating buffers to allocating aligneds/tables */
if (ws->phase < ZSTD_cwksp_alloc_aligned &&
phase >= ZSTD_cwksp_alloc_aligned) {
- /* If unaligned allocations down from a too-large top have left us
- * unaligned, we need to realign our alloc ptr. Technically, this
- * can consume space that is unaccounted for in the neededSpace
- * calculation. However, I believe this can only happen when the
- * workspace is too large, and specifically when it is too large
- * by a larger margin than the space that will be consumed. */
- /* TODO: cleaner, compiler warning friendly way to do this??? */
- ws->allocStart = (BYTE*)ws->allocStart - ((size_t)ws->allocStart & (sizeof(U32)-1));
- if (ws->allocStart < ws->tableValidEnd) {
- ws->tableValidEnd = ws->allocStart;
+ { /* Align the start of the "aligned" to 64 bytes. Use [1, 64] bytes. */
+ size_t const bytesToAlign =
+ ZSTD_CWKSP_ALIGNMENT_BYTES - ZSTD_cwksp_bytes_to_align_ptr(ws->allocStart, ZSTD_CWKSP_ALIGNMENT_BYTES);
+ DEBUGLOG(5, "reserving aligned alignment addtl space: %zu", bytesToAlign);
+ ZSTD_STATIC_ASSERT((ZSTD_CWKSP_ALIGNMENT_BYTES & (ZSTD_CWKSP_ALIGNMENT_BYTES - 1)) == 0); /* power of 2 */
+ RETURN_ERROR_IF(!ZSTD_cwksp_reserve_internal_buffer_space(ws, bytesToAlign),
+ memory_allocation, "aligned phase - alignment initial allocation failed!");
}
- }
+ { /* Align the start of the tables to 64 bytes. Use [0, 63] bytes */
+ void* const alloc = ws->objectEnd;
+ size_t const bytesToAlign = ZSTD_cwksp_bytes_to_align_ptr(alloc, ZSTD_CWKSP_ALIGNMENT_BYTES);
+ void* const objectEnd = (BYTE*)alloc + bytesToAlign;
+ DEBUGLOG(5, "reserving table alignment addtl space: %zu", bytesToAlign);
+ RETURN_ERROR_IF(objectEnd > ws->workspaceEnd, memory_allocation,
+ "table phase - alignment initial allocation failed!");
+ ws->objectEnd = objectEnd;
+ ws->tableEnd = objectEnd; /* table area starts being empty */
+ if (ws->tableValidEnd < ws->tableEnd) {
+ ws->tableValidEnd = ws->tableEnd;
+ } } }
ws->phase = phase;
+ ZSTD_cwksp_assert_internal_consistency(ws);
}
+ return 0;
}
/**
* Returns whether this object/buffer/etc was allocated in this workspace.
*/
-MEM_STATIC int ZSTD_cwksp_owns_buffer(const ZSTD_cwksp* ws, const void* ptr) {
+MEM_STATIC int ZSTD_cwksp_owns_buffer(const ZSTD_cwksp* ws, const void* ptr)
+{
return (ptr != NULL) && (ws->workspace <= ptr) && (ptr <= ws->workspaceEnd);
}
/**
* Internal function. Do not use directly.
*/
-MEM_STATIC void* ZSTD_cwksp_reserve_internal(
- ZSTD_cwksp* ws, size_t bytes, ZSTD_cwksp_alloc_phase_e phase) {
+MEM_STATIC void*
+ZSTD_cwksp_reserve_internal(ZSTD_cwksp* ws, size_t bytes, ZSTD_cwksp_alloc_phase_e phase)
+{
void* alloc;
- void* bottom = ws->tableEnd;
- ZSTD_cwksp_internal_advance_phase(ws, phase);
- alloc = (BYTE *)ws->allocStart - bytes;
-
- if (bytes == 0)
+ if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase)) || bytes == 0) {
return NULL;
+ }
#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
/* over-reserve space */
- alloc = (BYTE *)alloc - 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
+ bytes += 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
#endif
- DEBUGLOG(5, "cwksp: reserving %p %zd bytes, %zd bytes remaining",
- alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
- ZSTD_cwksp_assert_internal_consistency(ws);
- assert(alloc >= bottom);
- if (alloc < bottom) {
- DEBUGLOG(4, "cwksp: alloc failed!");
- ws->allocFailed = 1;
- return NULL;
- }
- if (alloc < ws->tableValidEnd) {
- ws->tableValidEnd = alloc;
- }
- ws->allocStart = alloc;
+ alloc = ZSTD_cwksp_reserve_internal_buffer_space(ws, bytes);
#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
/* Move alloc so there's ZSTD_CWKSP_ASAN_REDZONE_SIZE unused space on
* either size. */
- alloc = (BYTE *)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE;
- if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
- __asan_unpoison_memory_region(alloc, bytes);
+ if (alloc) {
+ alloc = (BYTE *)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE;
+ if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
+ __asan_unpoison_memory_region(alloc, bytes);
+ }
}
#endif
return alloc;
}
/**
* Reserves and returns unaligned memory.
*/
-MEM_STATIC BYTE* ZSTD_cwksp_reserve_buffer(ZSTD_cwksp* ws, size_t bytes) {
+MEM_STATIC BYTE* ZSTD_cwksp_reserve_buffer(ZSTD_cwksp* ws, size_t bytes)
+{
return (BYTE*)ZSTD_cwksp_reserve_internal(ws, bytes, ZSTD_cwksp_alloc_buffers);
}
/**
- * Reserves and returns memory sized on and aligned on sizeof(unsigned).
+ * Reserves and returns memory sized on and aligned on ZSTD_CWKSP_ALIGNMENT_BYTES (64 bytes).
*/
-MEM_STATIC void* ZSTD_cwksp_reserve_aligned(ZSTD_cwksp* ws, size_t bytes) {
- assert((bytes & (sizeof(U32)-1)) == 0);
- return ZSTD_cwksp_reserve_internal(ws, ZSTD_cwksp_align(bytes, sizeof(U32)), ZSTD_cwksp_alloc_aligned);
+MEM_STATIC void* ZSTD_cwksp_reserve_aligned(ZSTD_cwksp* ws, size_t bytes)
+{
+ void* ptr = ZSTD_cwksp_reserve_internal(ws, ZSTD_cwksp_align(bytes, ZSTD_CWKSP_ALIGNMENT_BYTES),
+ ZSTD_cwksp_alloc_aligned);
+ assert(((size_t)ptr & (ZSTD_CWKSP_ALIGNMENT_BYTES-1))== 0);
+ return ptr;
}
/**
- * Aligned on sizeof(unsigned). These buffers have the special property that
+ * Aligned on 64 bytes. These buffers have the special property that
* their values remain constrained, allowing us to re-use them without
* memset()-ing them.
*/
-MEM_STATIC void* ZSTD_cwksp_reserve_table(ZSTD_cwksp* ws, size_t bytes) {
+MEM_STATIC void* ZSTD_cwksp_reserve_table(ZSTD_cwksp* ws, size_t bytes)
+{
const ZSTD_cwksp_alloc_phase_e phase = ZSTD_cwksp_alloc_aligned;
- void* alloc = ws->tableEnd;
- void* end = (BYTE *)alloc + bytes;
- void* top = ws->allocStart;
+ void* alloc;
+ void* end;
+ void* top;
+
+ if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase))) {
+ return NULL;
+ }
+ alloc = ws->tableEnd;
+ end = (BYTE *)alloc + bytes;
+ top = ws->allocStart;
DEBUGLOG(5, "cwksp: reserving %p table %zd bytes, %zd bytes remaining",
alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
assert((bytes & (sizeof(U32)-1)) == 0);
- ZSTD_cwksp_internal_advance_phase(ws, phase);
ZSTD_cwksp_assert_internal_consistency(ws);
assert(end <= top);
if (end > top) {
DEBUGLOG(4, "cwksp: table alloc failed!");
ws->allocFailed = 1;
return NULL;
}
ws->tableEnd = end;
#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
__asan_unpoison_memory_region(alloc, bytes);
}
#endif
+ assert((bytes & (ZSTD_CWKSP_ALIGNMENT_BYTES-1)) == 0);
+ assert(((size_t)alloc & (ZSTD_CWKSP_ALIGNMENT_BYTES-1))== 0);
return alloc;
}
/**
* Aligned on sizeof(void*).
+ * Note : should happen only once, at workspace first initialization
*/
-MEM_STATIC void* ZSTD_cwksp_reserve_object(ZSTD_cwksp* ws, size_t bytes) {
- size_t roundedBytes = ZSTD_cwksp_align(bytes, sizeof(void*));
+MEM_STATIC void* ZSTD_cwksp_reserve_object(ZSTD_cwksp* ws, size_t bytes)
+{
+ size_t const roundedBytes = ZSTD_cwksp_align(bytes, sizeof(void*));
void* alloc = ws->objectEnd;
void* end = (BYTE*)alloc + roundedBytes;
#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
/* over-reserve space */
end = (BYTE *)end + 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
#endif
- DEBUGLOG(5,
+ DEBUGLOG(4,
"cwksp: reserving %p object %zd bytes (rounded to %zd), %zd bytes remaining",
alloc, bytes, roundedBytes, ZSTD_cwksp_available_space(ws) - roundedBytes);
- assert(((size_t)alloc & (sizeof(void*)-1)) == 0);
- assert((bytes & (sizeof(void*)-1)) == 0);
+ assert((size_t)alloc % ZSTD_ALIGNOF(void*) == 0);
+ assert(bytes % ZSTD_ALIGNOF(void*) == 0);
ZSTD_cwksp_assert_internal_consistency(ws);
/* we must be in the first phase, no advance is possible */
if (ws->phase != ZSTD_cwksp_alloc_objects || end > ws->workspaceEnd) {
- DEBUGLOG(4, "cwksp: object alloc failed!");
+ DEBUGLOG(3, "cwksp: object alloc failed!");
ws->allocFailed = 1;
return NULL;
}
ws->objectEnd = end;
ws->tableEnd = end;
ws->tableValidEnd = end;
#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
/* Move alloc so there's ZSTD_CWKSP_ASAN_REDZONE_SIZE unused space on
* either size. */
- alloc = (BYTE *)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE;
+ alloc = (BYTE*)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE;
if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
__asan_unpoison_memory_region(alloc, bytes);
}
#endif
return alloc;
}
-MEM_STATIC void ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp* ws) {
+MEM_STATIC void ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp* ws)
+{
DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_dirty");
#if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE)
/* To validate that the table re-use logic is sound, and that we don't
* access table space that we haven't cleaned, we re-"poison" the table
* space every time we mark it dirty. */
{
size_t size = (BYTE*)ws->tableValidEnd - (BYTE*)ws->objectEnd;
assert(__msan_test_shadow(ws->objectEnd, size) == -1);
__msan_poison(ws->objectEnd, size);
}
#endif
assert(ws->tableValidEnd >= ws->objectEnd);
assert(ws->tableValidEnd <= ws->allocStart);
ws->tableValidEnd = ws->objectEnd;
ZSTD_cwksp_assert_internal_consistency(ws);
}
MEM_STATIC void ZSTD_cwksp_mark_tables_clean(ZSTD_cwksp* ws) {
DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_clean");
assert(ws->tableValidEnd >= ws->objectEnd);
assert(ws->tableValidEnd <= ws->allocStart);
if (ws->tableValidEnd < ws->tableEnd) {
ws->tableValidEnd = ws->tableEnd;
}
ZSTD_cwksp_assert_internal_consistency(ws);
}
/**
* Zero the part of the allocated tables not already marked clean.
*/
MEM_STATIC void ZSTD_cwksp_clean_tables(ZSTD_cwksp* ws) {
DEBUGLOG(4, "cwksp: ZSTD_cwksp_clean_tables");
assert(ws->tableValidEnd >= ws->objectEnd);
assert(ws->tableValidEnd <= ws->allocStart);
if (ws->tableValidEnd < ws->tableEnd) {
ZSTD_memset(ws->tableValidEnd, 0, (BYTE*)ws->tableEnd - (BYTE*)ws->tableValidEnd);
}
ZSTD_cwksp_mark_tables_clean(ws);
}
/**
* Invalidates table allocations.
* All other allocations remain valid.
*/
MEM_STATIC void ZSTD_cwksp_clear_tables(ZSTD_cwksp* ws) {
DEBUGLOG(4, "cwksp: clearing tables!");
#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
/* We don't do this when the workspace is statically allocated, because
* when that is the case, we have no capability to hook into the end of the
* workspace's lifecycle to unpoison the memory.
*/
if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
size_t size = (BYTE*)ws->tableValidEnd - (BYTE*)ws->objectEnd;
__asan_poison_memory_region(ws->objectEnd, size);
}
#endif
ws->tableEnd = ws->objectEnd;
ZSTD_cwksp_assert_internal_consistency(ws);
}
/**
* Invalidates all buffer, aligned, and table allocations.
* Object allocations remain valid.
*/
MEM_STATIC void ZSTD_cwksp_clear(ZSTD_cwksp* ws) {
DEBUGLOG(4, "cwksp: clearing!");
#if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE)
/* To validate that the context re-use logic is sound, and that we don't
* access stuff that this compression hasn't initialized, we re-"poison"
* the workspace (or at least the non-static, non-table parts of it)
* every time we start a new compression. */
{
size_t size = (BYTE*)ws->workspaceEnd - (BYTE*)ws->tableValidEnd;
__msan_poison(ws->tableValidEnd, size);
}
#endif
#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
/* We don't do this when the workspace is statically allocated, because
* when that is the case, we have no capability to hook into the end of the
* workspace's lifecycle to unpoison the memory.
*/
if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
size_t size = (BYTE*)ws->workspaceEnd - (BYTE*)ws->objectEnd;
__asan_poison_memory_region(ws->objectEnd, size);
}
#endif
ws->tableEnd = ws->objectEnd;
ws->allocStart = ws->workspaceEnd;
ws->allocFailed = 0;
if (ws->phase > ZSTD_cwksp_alloc_buffers) {
ws->phase = ZSTD_cwksp_alloc_buffers;
}
ZSTD_cwksp_assert_internal_consistency(ws);
}
/**
* The provided workspace takes ownership of the buffer [start, start+size).
* Any existing values in the workspace are ignored (the previously managed
* buffer, if present, must be separately freed).
*/
MEM_STATIC void ZSTD_cwksp_init(ZSTD_cwksp* ws, void* start, size_t size, ZSTD_cwksp_static_alloc_e isStatic) {
DEBUGLOG(4, "cwksp: init'ing workspace with %zd bytes", size);
assert(((size_t)start & (sizeof(void*)-1)) == 0); /* ensure correct alignment */
ws->workspace = start;
ws->workspaceEnd = (BYTE*)start + size;
ws->objectEnd = ws->workspace;
ws->tableValidEnd = ws->objectEnd;
ws->phase = ZSTD_cwksp_alloc_objects;
ws->isStatic = isStatic;
ZSTD_cwksp_clear(ws);
ws->workspaceOversizedDuration = 0;
ZSTD_cwksp_assert_internal_consistency(ws);
}
MEM_STATIC size_t ZSTD_cwksp_create(ZSTD_cwksp* ws, size_t size, ZSTD_customMem customMem) {
void* workspace = ZSTD_customMalloc(size, customMem);
DEBUGLOG(4, "cwksp: creating new workspace with %zd bytes", size);
RETURN_ERROR_IF(workspace == NULL, memory_allocation, "NULL pointer!");
ZSTD_cwksp_init(ws, workspace, size, ZSTD_cwksp_dynamic_alloc);
return 0;
}
MEM_STATIC void ZSTD_cwksp_free(ZSTD_cwksp* ws, ZSTD_customMem customMem) {
void *ptr = ws->workspace;
DEBUGLOG(4, "cwksp: freeing workspace");
ZSTD_memset(ws, 0, sizeof(ZSTD_cwksp));
ZSTD_customFree(ptr, customMem);
}
/**
* Moves the management of a workspace from one cwksp to another. The src cwksp
- * is left in an invalid state (src must be re-init()'ed before its used again).
+ * is left in an invalid state (src must be re-init()'ed before it's used again).
*/
MEM_STATIC void ZSTD_cwksp_move(ZSTD_cwksp* dst, ZSTD_cwksp* src) {
*dst = *src;
ZSTD_memset(src, 0, sizeof(ZSTD_cwksp));
}
MEM_STATIC size_t ZSTD_cwksp_sizeof(const ZSTD_cwksp* ws) {
return (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->workspace);
}
MEM_STATIC size_t ZSTD_cwksp_used(const ZSTD_cwksp* ws) {
return (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->workspace)
+ (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->allocStart);
}
MEM_STATIC int ZSTD_cwksp_reserve_failed(const ZSTD_cwksp* ws) {
return ws->allocFailed;
}
/*-*************************************
* Functions Checking Free Space
***************************************/
+/* ZSTD_alignmentSpaceWithinBounds() :
+ * Returns if the estimated space needed for a wksp is within an acceptable limit of the
+ * actual amount of space used.
+ */
+MEM_STATIC int ZSTD_cwksp_estimated_space_within_bounds(const ZSTD_cwksp* const ws,
+ size_t const estimatedSpace, int resizedWorkspace) {
+ if (resizedWorkspace) {
+ /* Resized/newly allocated wksp should have exact bounds */
+ return ZSTD_cwksp_used(ws) == estimatedSpace;
+ } else {
+ /* Due to alignment, when reusing a workspace, we can actually consume 63 fewer or more bytes
+ * than estimatedSpace. See the comments in zstd_cwksp.h for details.
+ */
+ return (ZSTD_cwksp_used(ws) >= estimatedSpace - 63) && (ZSTD_cwksp_used(ws) <= estimatedSpace + 63);
+ }
+}
+
+
MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws) {
return (size_t)((BYTE*)ws->allocStart - (BYTE*)ws->tableEnd);
}
MEM_STATIC int ZSTD_cwksp_check_available(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
return ZSTD_cwksp_available_space(ws) >= additionalNeededSpace;
}
MEM_STATIC int ZSTD_cwksp_check_too_large(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
return ZSTD_cwksp_check_available(
ws, additionalNeededSpace * ZSTD_WORKSPACETOOLARGE_FACTOR);
}
MEM_STATIC int ZSTD_cwksp_check_wasteful(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
return ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)
&& ws->workspaceOversizedDuration > ZSTD_WORKSPACETOOLARGE_MAXDURATION;
}
MEM_STATIC void ZSTD_cwksp_bump_oversized_duration(
ZSTD_cwksp* ws, size_t additionalNeededSpace) {
if (ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)) {
ws->workspaceOversizedDuration++;
} else {
ws->workspaceOversizedDuration = 0;
}
}
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_CWKSP_H */
diff --git a/sys/contrib/zstd/lib/compress/zstd_double_fast.c b/sys/contrib/zstd/lib/compress/zstd_double_fast.c
index ef12a524f7c6..76933dea2624 100644
--- a/sys/contrib/zstd/lib/compress/zstd_double_fast.c
+++ b/sys/contrib/zstd/lib/compress/zstd_double_fast.c
@@ -1,521 +1,696 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include "zstd_compress_internal.h"
#include "zstd_double_fast.h"
void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms,
void const* end, ZSTD_dictTableLoadMethod_e dtlm)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashLarge = ms->hashTable;
U32 const hBitsL = cParams->hashLog;
U32 const mls = cParams->minMatch;
U32* const hashSmall = ms->chainTable;
U32 const hBitsS = cParams->chainLog;
const BYTE* const base = ms->window.base;
const BYTE* ip = base + ms->nextToUpdate;
const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
const U32 fastHashFillStep = 3;
/* Always insert every fastHashFillStep position into the hash tables.
* Insert the other positions into the large hash table if their entry
* is empty.
*/
for (; ip + fastHashFillStep - 1 <= iend; ip += fastHashFillStep) {
U32 const curr = (U32)(ip - base);
U32 i;
for (i = 0; i < fastHashFillStep; ++i) {
size_t const smHash = ZSTD_hashPtr(ip + i, hBitsS, mls);
size_t const lgHash = ZSTD_hashPtr(ip + i, hBitsL, 8);
if (i == 0)
hashSmall[smHash] = curr + i;
if (i == 0 || hashLarge[lgHash] == 0)
hashLarge[lgHash] = curr + i;
/* Only load extra positions for ZSTD_dtlm_full */
if (dtlm == ZSTD_dtlm_fast)
break;
} }
}
FORCE_INLINE_TEMPLATE
-size_t ZSTD_compressBlock_doubleFast_generic(
+size_t ZSTD_compressBlock_doubleFast_noDict_generic(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize, U32 const mls /* template */)
+{
+ ZSTD_compressionParameters const* cParams = &ms->cParams;
+ U32* const hashLong = ms->hashTable;
+ const U32 hBitsL = cParams->hashLog;
+ U32* const hashSmall = ms->chainTable;
+ const U32 hBitsS = cParams->chainLog;
+ const BYTE* const base = ms->window.base;
+ const BYTE* const istart = (const BYTE*)src;
+ const BYTE* anchor = istart;
+ const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
+ /* presumes that, if there is a dictionary, it must be using Attach mode */
+ const U32 prefixLowestIndex = ZSTD_getLowestPrefixIndex(ms, endIndex, cParams->windowLog);
+ const BYTE* const prefixLowest = base + prefixLowestIndex;
+ const BYTE* const iend = istart + srcSize;
+ const BYTE* const ilimit = iend - HASH_READ_SIZE;
+ U32 offset_1=rep[0], offset_2=rep[1];
+ U32 offsetSaved = 0;
+
+ size_t mLength;
+ U32 offset;
+ U32 curr;
+
+ /* how many positions to search before increasing step size */
+ const size_t kStepIncr = 1 << kSearchStrength;
+ /* the position at which to increment the step size if no match is found */
+ const BYTE* nextStep;
+ size_t step; /* the current step size */
+
+ size_t hl0; /* the long hash at ip */
+ size_t hl1; /* the long hash at ip1 */
+
+ U32 idxl0; /* the long match index for ip */
+ U32 idxl1; /* the long match index for ip1 */
+
+ const BYTE* matchl0; /* the long match for ip */
+ const BYTE* matchs0; /* the short match for ip */
+ const BYTE* matchl1; /* the long match for ip1 */
+
+ const BYTE* ip = istart; /* the current position */
+ const BYTE* ip1; /* the next position */
+
+ DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_noDict_generic");
+
+ /* init */
+ ip += ((ip - prefixLowest) == 0);
+ {
+ U32 const current = (U32)(ip - base);
+ U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, current, cParams->windowLog);
+ U32 const maxRep = current - windowLow;
+ if (offset_2 > maxRep) offsetSaved = offset_2, offset_2 = 0;
+ if (offset_1 > maxRep) offsetSaved = offset_1, offset_1 = 0;
+ }
+
+ /* Outer Loop: one iteration per match found and stored */
+ while (1) {
+ step = 1;
+ nextStep = ip + kStepIncr;
+ ip1 = ip + step;
+
+ if (ip1 > ilimit) {
+ goto _cleanup;
+ }
+
+ hl0 = ZSTD_hashPtr(ip, hBitsL, 8);
+ idxl0 = hashLong[hl0];
+ matchl0 = base + idxl0;
+
+ /* Inner Loop: one iteration per search / position */
+ do {
+ const size_t hs0 = ZSTD_hashPtr(ip, hBitsS, mls);
+ const U32 idxs0 = hashSmall[hs0];
+ curr = (U32)(ip-base);
+ matchs0 = base + idxs0;
+
+ hashLong[hl0] = hashSmall[hs0] = curr; /* update hash tables */
+
+ /* check noDict repcode */
+ if ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1))) {
+ mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
+ ip++;
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_REPCODE_1, mLength);
+ goto _match_stored;
+ }
+
+ hl1 = ZSTD_hashPtr(ip1, hBitsL, 8);
+
+ if (idxl0 > prefixLowestIndex) {
+ /* check prefix long match */
+ if (MEM_read64(matchl0) == MEM_read64(ip)) {
+ mLength = ZSTD_count(ip+8, matchl0+8, iend) + 8;
+ offset = (U32)(ip-matchl0);
+ while (((ip>anchor) & (matchl0>prefixLowest)) && (ip[-1] == matchl0[-1])) { ip--; matchl0--; mLength++; } /* catch up */
+ goto _match_found;
+ }
+ }
+
+ idxl1 = hashLong[hl1];
+ matchl1 = base + idxl1;
+
+ if (idxs0 > prefixLowestIndex) {
+ /* check prefix short match */
+ if (MEM_read32(matchs0) == MEM_read32(ip)) {
+ goto _search_next_long;
+ }
+ }
+
+ if (ip1 >= nextStep) {
+ PREFETCH_L1(ip1 + 64);
+ PREFETCH_L1(ip1 + 128);
+ step++;
+ nextStep += kStepIncr;
+ }
+ ip = ip1;
+ ip1 += step;
+
+ hl0 = hl1;
+ idxl0 = idxl1;
+ matchl0 = matchl1;
+ #if defined(__aarch64__)
+ PREFETCH_L1(ip+256);
+ #endif
+ } while (ip1 <= ilimit);
+
+_cleanup:
+ /* save reps for next block */
+ rep[0] = offset_1 ? offset_1 : offsetSaved;
+ rep[1] = offset_2 ? offset_2 : offsetSaved;
+
+ /* Return the last literals size */
+ return (size_t)(iend - anchor);
+
+_search_next_long:
+
+ /* check prefix long +1 match */
+ if (idxl1 > prefixLowestIndex) {
+ if (MEM_read64(matchl1) == MEM_read64(ip1)) {
+ ip = ip1;
+ mLength = ZSTD_count(ip+8, matchl1+8, iend) + 8;
+ offset = (U32)(ip-matchl1);
+ while (((ip>anchor) & (matchl1>prefixLowest)) && (ip[-1] == matchl1[-1])) { ip--; matchl1--; mLength++; } /* catch up */
+ goto _match_found;
+ }
+ }
+
+ /* if no long +1 match, explore the short match we found */
+ mLength = ZSTD_count(ip+4, matchs0+4, iend) + 4;
+ offset = (U32)(ip - matchs0);
+ while (((ip>anchor) & (matchs0>prefixLowest)) && (ip[-1] == matchs0[-1])) { ip--; matchs0--; mLength++; } /* catch up */
+
+ /* fall-through */
+
+_match_found: /* requires ip, offset, mLength */
+ offset_2 = offset_1;
+ offset_1 = offset;
+
+ if (step < 4) {
+ /* It is unsafe to write this value back to the hashtable when ip1 is
+ * greater than or equal to the new ip we will have after we're done
+ * processing this match. Rather than perform that test directly
+ * (ip1 >= ip + mLength), which costs speed in practice, we do a simpler
+ * more predictable test. The minmatch even if we take a short match is
+ * 4 bytes, so as long as step, the distance between ip and ip1
+ * (initially) is less than 4, we know ip1 < new ip. */
+ hashLong[hl1] = (U32)(ip1 - base);
+ }
+
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_OFFSET(offset), mLength);
+
+_match_stored:
+ /* match found */
+ ip += mLength;
+ anchor = ip;
+
+ if (ip <= ilimit) {
+ /* Complementary insertion */
+ /* done after iLimit test, as candidates could be > iend-8 */
+ { U32 const indexToInsert = curr+2;
+ hashLong[ZSTD_hashPtr(base+indexToInsert, hBitsL, 8)] = indexToInsert;
+ hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base);
+ hashSmall[ZSTD_hashPtr(base+indexToInsert, hBitsS, mls)] = indexToInsert;
+ hashSmall[ZSTD_hashPtr(ip-1, hBitsS, mls)] = (U32)(ip-1-base);
+ }
+
+ /* check immediate repcode */
+ while ( (ip <= ilimit)
+ && ( (offset_2>0)
+ & (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) {
+ /* store sequence */
+ size_t const rLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
+ U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; /* swap offset_2 <=> offset_1 */
+ hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip-base);
+ hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip-base);
+ ZSTD_storeSeq(seqStore, 0, anchor, iend, STORE_REPCODE_1, rLength);
+ ip += rLength;
+ anchor = ip;
+ continue; /* faster when present ... (?) */
+ }
+ }
+ }
+}
+
+
+FORCE_INLINE_TEMPLATE
+size_t ZSTD_compressBlock_doubleFast_dictMatchState_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize,
- U32 const mls /* template */, ZSTD_dictMode_e const dictMode)
+ U32 const mls /* template */)
{
ZSTD_compressionParameters const* cParams = &ms->cParams;
U32* const hashLong = ms->hashTable;
const U32 hBitsL = cParams->hashLog;
U32* const hashSmall = ms->chainTable;
const U32 hBitsS = cParams->chainLog;
const BYTE* const base = ms->window.base;
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
/* presumes that, if there is a dictionary, it must be using Attach mode */
const U32 prefixLowestIndex = ZSTD_getLowestPrefixIndex(ms, endIndex, cParams->windowLog);
const BYTE* const prefixLowest = base + prefixLowestIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - HASH_READ_SIZE;
U32 offset_1=rep[0], offset_2=rep[1];
U32 offsetSaved = 0;
const ZSTD_matchState_t* const dms = ms->dictMatchState;
- const ZSTD_compressionParameters* const dictCParams =
- dictMode == ZSTD_dictMatchState ?
- &dms->cParams : NULL;
- const U32* const dictHashLong = dictMode == ZSTD_dictMatchState ?
- dms->hashTable : NULL;
- const U32* const dictHashSmall = dictMode == ZSTD_dictMatchState ?
- dms->chainTable : NULL;
- const U32 dictStartIndex = dictMode == ZSTD_dictMatchState ?
- dms->window.dictLimit : 0;
- const BYTE* const dictBase = dictMode == ZSTD_dictMatchState ?
- dms->window.base : NULL;
- const BYTE* const dictStart = dictMode == ZSTD_dictMatchState ?
- dictBase + dictStartIndex : NULL;
- const BYTE* const dictEnd = dictMode == ZSTD_dictMatchState ?
- dms->window.nextSrc : NULL;
- const U32 dictIndexDelta = dictMode == ZSTD_dictMatchState ?
- prefixLowestIndex - (U32)(dictEnd - dictBase) :
- 0;
- const U32 dictHBitsL = dictMode == ZSTD_dictMatchState ?
- dictCParams->hashLog : hBitsL;
- const U32 dictHBitsS = dictMode == ZSTD_dictMatchState ?
- dictCParams->chainLog : hBitsS;
+ const ZSTD_compressionParameters* const dictCParams = &dms->cParams;
+ const U32* const dictHashLong = dms->hashTable;
+ const U32* const dictHashSmall = dms->chainTable;
+ const U32 dictStartIndex = dms->window.dictLimit;
+ const BYTE* const dictBase = dms->window.base;
+ const BYTE* const dictStart = dictBase + dictStartIndex;
+ const BYTE* const dictEnd = dms->window.nextSrc;
+ const U32 dictIndexDelta = prefixLowestIndex - (U32)(dictEnd - dictBase);
+ const U32 dictHBitsL = dictCParams->hashLog;
+ const U32 dictHBitsS = dictCParams->chainLog;
const U32 dictAndPrefixLength = (U32)((ip - prefixLowest) + (dictEnd - dictStart));
- DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_generic");
-
- assert(dictMode == ZSTD_noDict || dictMode == ZSTD_dictMatchState);
+ DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_dictMatchState_generic");
/* if a dictionary is attached, it must be within window range */
- if (dictMode == ZSTD_dictMatchState) {
- assert(ms->window.dictLimit + (1U << cParams->windowLog) >= endIndex);
- }
+ assert(ms->window.dictLimit + (1U << cParams->windowLog) >= endIndex);
/* init */
ip += (dictAndPrefixLength == 0);
- if (dictMode == ZSTD_noDict) {
- U32 const curr = (U32)(ip - base);
- U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, cParams->windowLog);
- U32 const maxRep = curr - windowLow;
- if (offset_2 > maxRep) offsetSaved = offset_2, offset_2 = 0;
- if (offset_1 > maxRep) offsetSaved = offset_1, offset_1 = 0;
- }
- if (dictMode == ZSTD_dictMatchState) {
- /* dictMatchState repCode checks don't currently handle repCode == 0
- * disabling. */
- assert(offset_1 <= dictAndPrefixLength);
- assert(offset_2 <= dictAndPrefixLength);
- }
+
+ /* dictMatchState repCode checks don't currently handle repCode == 0
+ * disabling. */
+ assert(offset_1 <= dictAndPrefixLength);
+ assert(offset_2 <= dictAndPrefixLength);
/* Main Search Loop */
while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */
size_t mLength;
U32 offset;
size_t const h2 = ZSTD_hashPtr(ip, hBitsL, 8);
size_t const h = ZSTD_hashPtr(ip, hBitsS, mls);
size_t const dictHL = ZSTD_hashPtr(ip, dictHBitsL, 8);
size_t const dictHS = ZSTD_hashPtr(ip, dictHBitsS, mls);
U32 const curr = (U32)(ip-base);
U32 const matchIndexL = hashLong[h2];
U32 matchIndexS = hashSmall[h];
const BYTE* matchLong = base + matchIndexL;
const BYTE* match = base + matchIndexS;
const U32 repIndex = curr + 1 - offset_1;
- const BYTE* repMatch = (dictMode == ZSTD_dictMatchState
- && repIndex < prefixLowestIndex) ?
+ const BYTE* repMatch = (repIndex < prefixLowestIndex) ?
dictBase + (repIndex - dictIndexDelta) :
base + repIndex;
hashLong[h2] = hashSmall[h] = curr; /* update hash tables */
- /* check dictMatchState repcode */
- if (dictMode == ZSTD_dictMatchState
- && ((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
+ /* check repcode */
+ if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
ip++;
- ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, 0, mLength-MINMATCH);
- goto _match_stored;
- }
-
- /* check noDict repcode */
- if ( dictMode == ZSTD_noDict
- && ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1)))) {
- mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
- ip++;
- ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, 0, mLength-MINMATCH);
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_REPCODE_1, mLength);
goto _match_stored;
}
if (matchIndexL > prefixLowestIndex) {
/* check prefix long match */
if (MEM_read64(matchLong) == MEM_read64(ip)) {
mLength = ZSTD_count(ip+8, matchLong+8, iend) + 8;
offset = (U32)(ip-matchLong);
while (((ip>anchor) & (matchLong>prefixLowest)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
goto _match_found;
}
- } else if (dictMode == ZSTD_dictMatchState) {
+ } else {
/* check dictMatchState long match */
U32 const dictMatchIndexL = dictHashLong[dictHL];
const BYTE* dictMatchL = dictBase + dictMatchIndexL;
assert(dictMatchL < dictEnd);
if (dictMatchL > dictStart && MEM_read64(dictMatchL) == MEM_read64(ip)) {
mLength = ZSTD_count_2segments(ip+8, dictMatchL+8, iend, dictEnd, prefixLowest) + 8;
offset = (U32)(curr - dictMatchIndexL - dictIndexDelta);
while (((ip>anchor) & (dictMatchL>dictStart)) && (ip[-1] == dictMatchL[-1])) { ip--; dictMatchL--; mLength++; } /* catch up */
goto _match_found;
} }
if (matchIndexS > prefixLowestIndex) {
/* check prefix short match */
if (MEM_read32(match) == MEM_read32(ip)) {
goto _search_next_long;
}
- } else if (dictMode == ZSTD_dictMatchState) {
+ } else {
/* check dictMatchState short match */
U32 const dictMatchIndexS = dictHashSmall[dictHS];
match = dictBase + dictMatchIndexS;
matchIndexS = dictMatchIndexS + dictIndexDelta;
if (match > dictStart && MEM_read32(match) == MEM_read32(ip)) {
goto _search_next_long;
} }
ip += ((ip-anchor) >> kSearchStrength) + 1;
#if defined(__aarch64__)
PREFETCH_L1(ip+256);
#endif
continue;
_search_next_long:
{ size_t const hl3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
size_t const dictHLNext = ZSTD_hashPtr(ip+1, dictHBitsL, 8);
U32 const matchIndexL3 = hashLong[hl3];
const BYTE* matchL3 = base + matchIndexL3;
hashLong[hl3] = curr + 1;
/* check prefix long +1 match */
if (matchIndexL3 > prefixLowestIndex) {
if (MEM_read64(matchL3) == MEM_read64(ip+1)) {
mLength = ZSTD_count(ip+9, matchL3+8, iend) + 8;
ip++;
offset = (U32)(ip-matchL3);
while (((ip>anchor) & (matchL3>prefixLowest)) && (ip[-1] == matchL3[-1])) { ip--; matchL3--; mLength++; } /* catch up */
goto _match_found;
}
- } else if (dictMode == ZSTD_dictMatchState) {
+ } else {
/* check dict long +1 match */
U32 const dictMatchIndexL3 = dictHashLong[dictHLNext];
const BYTE* dictMatchL3 = dictBase + dictMatchIndexL3;
assert(dictMatchL3 < dictEnd);
if (dictMatchL3 > dictStart && MEM_read64(dictMatchL3) == MEM_read64(ip+1)) {
mLength = ZSTD_count_2segments(ip+1+8, dictMatchL3+8, iend, dictEnd, prefixLowest) + 8;
ip++;
offset = (U32)(curr + 1 - dictMatchIndexL3 - dictIndexDelta);
while (((ip>anchor) & (dictMatchL3>dictStart)) && (ip[-1] == dictMatchL3[-1])) { ip--; dictMatchL3--; mLength++; } /* catch up */
goto _match_found;
} } }
/* if no long +1 match, explore the short match we found */
- if (dictMode == ZSTD_dictMatchState && matchIndexS < prefixLowestIndex) {
+ if (matchIndexS < prefixLowestIndex) {
mLength = ZSTD_count_2segments(ip+4, match+4, iend, dictEnd, prefixLowest) + 4;
offset = (U32)(curr - matchIndexS);
while (((ip>anchor) & (match>dictStart)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
} else {
mLength = ZSTD_count(ip+4, match+4, iend) + 4;
offset = (U32)(ip - match);
while (((ip>anchor) & (match>prefixLowest)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
}
- /* fall-through */
-
_match_found:
offset_2 = offset_1;
offset_1 = offset;
- ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_OFFSET(offset), mLength);
_match_stored:
/* match found */
ip += mLength;
anchor = ip;
if (ip <= ilimit) {
/* Complementary insertion */
/* done after iLimit test, as candidates could be > iend-8 */
{ U32 const indexToInsert = curr+2;
hashLong[ZSTD_hashPtr(base+indexToInsert, hBitsL, 8)] = indexToInsert;
hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base);
hashSmall[ZSTD_hashPtr(base+indexToInsert, hBitsS, mls)] = indexToInsert;
hashSmall[ZSTD_hashPtr(ip-1, hBitsS, mls)] = (U32)(ip-1-base);
}
/* check immediate repcode */
- if (dictMode == ZSTD_dictMatchState) {
- while (ip <= ilimit) {
- U32 const current2 = (U32)(ip-base);
- U32 const repIndex2 = current2 - offset_2;
- const BYTE* repMatch2 = dictMode == ZSTD_dictMatchState
- && repIndex2 < prefixLowestIndex ?
- dictBase + repIndex2 - dictIndexDelta :
- base + repIndex2;
- if ( ((U32)((prefixLowestIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */)
- && (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
- const BYTE* const repEnd2 = repIndex2 < prefixLowestIndex ? dictEnd : iend;
- size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixLowest) + 4;
- U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
- ZSTD_storeSeq(seqStore, 0, anchor, iend, 0, repLength2-MINMATCH);
- hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2;
- hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2;
- ip += repLength2;
- anchor = ip;
- continue;
- }
- break;
- } }
-
- if (dictMode == ZSTD_noDict) {
- while ( (ip <= ilimit)
- && ( (offset_2>0)
- & (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) {
- /* store sequence */
- size_t const rLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
- U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; /* swap offset_2 <=> offset_1 */
- hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip-base);
- hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip-base);
- ZSTD_storeSeq(seqStore, 0, anchor, iend, 0, rLength-MINMATCH);
- ip += rLength;
+ while (ip <= ilimit) {
+ U32 const current2 = (U32)(ip-base);
+ U32 const repIndex2 = current2 - offset_2;
+ const BYTE* repMatch2 = repIndex2 < prefixLowestIndex ?
+ dictBase + repIndex2 - dictIndexDelta :
+ base + repIndex2;
+ if ( ((U32)((prefixLowestIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */)
+ && (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
+ const BYTE* const repEnd2 = repIndex2 < prefixLowestIndex ? dictEnd : iend;
+ size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixLowest) + 4;
+ U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
+ ZSTD_storeSeq(seqStore, 0, anchor, iend, STORE_REPCODE_1, repLength2);
+ hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2;
+ hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2;
+ ip += repLength2;
anchor = ip;
- continue; /* faster when present ... (?) */
- } } }
+ continue;
+ }
+ break;
+ }
+ }
} /* while (ip < ilimit) */
/* save reps for next block */
rep[0] = offset_1 ? offset_1 : offsetSaved;
rep[1] = offset_2 ? offset_2 : offsetSaved;
/* Return the last literals size */
return (size_t)(iend - anchor);
}
+#define ZSTD_GEN_DFAST_FN(dictMode, mls) \
+ static size_t ZSTD_compressBlock_doubleFast_##dictMode##_##mls( \
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], \
+ void const* src, size_t srcSize) \
+ { \
+ return ZSTD_compressBlock_doubleFast_##dictMode##_generic(ms, seqStore, rep, src, srcSize, mls); \
+ }
+
+ZSTD_GEN_DFAST_FN(noDict, 4)
+ZSTD_GEN_DFAST_FN(noDict, 5)
+ZSTD_GEN_DFAST_FN(noDict, 6)
+ZSTD_GEN_DFAST_FN(noDict, 7)
+
+ZSTD_GEN_DFAST_FN(dictMatchState, 4)
+ZSTD_GEN_DFAST_FN(dictMatchState, 5)
+ZSTD_GEN_DFAST_FN(dictMatchState, 6)
+ZSTD_GEN_DFAST_FN(dictMatchState, 7)
+
size_t ZSTD_compressBlock_doubleFast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
const U32 mls = ms->cParams.minMatch;
switch(mls)
{
default: /* includes case 3 */
case 4 :
- return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 4, ZSTD_noDict);
+ return ZSTD_compressBlock_doubleFast_noDict_4(ms, seqStore, rep, src, srcSize);
case 5 :
- return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 5, ZSTD_noDict);
+ return ZSTD_compressBlock_doubleFast_noDict_5(ms, seqStore, rep, src, srcSize);
case 6 :
- return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 6, ZSTD_noDict);
+ return ZSTD_compressBlock_doubleFast_noDict_6(ms, seqStore, rep, src, srcSize);
case 7 :
- return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 7, ZSTD_noDict);
+ return ZSTD_compressBlock_doubleFast_noDict_7(ms, seqStore, rep, src, srcSize);
}
}
size_t ZSTD_compressBlock_doubleFast_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
const U32 mls = ms->cParams.minMatch;
switch(mls)
{
default: /* includes case 3 */
case 4 :
- return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 4, ZSTD_dictMatchState);
+ return ZSTD_compressBlock_doubleFast_dictMatchState_4(ms, seqStore, rep, src, srcSize);
case 5 :
- return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 5, ZSTD_dictMatchState);
+ return ZSTD_compressBlock_doubleFast_dictMatchState_5(ms, seqStore, rep, src, srcSize);
case 6 :
- return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 6, ZSTD_dictMatchState);
+ return ZSTD_compressBlock_doubleFast_dictMatchState_6(ms, seqStore, rep, src, srcSize);
case 7 :
- return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 7, ZSTD_dictMatchState);
+ return ZSTD_compressBlock_doubleFast_dictMatchState_7(ms, seqStore, rep, src, srcSize);
}
}
static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize,
U32 const mls /* template */)
{
ZSTD_compressionParameters const* cParams = &ms->cParams;
U32* const hashLong = ms->hashTable;
U32 const hBitsL = cParams->hashLog;
U32* const hashSmall = ms->chainTable;
U32 const hBitsS = cParams->chainLog;
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - 8;
const BYTE* const base = ms->window.base;
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
const U32 lowLimit = ZSTD_getLowestMatchIndex(ms, endIndex, cParams->windowLog);
const U32 dictStartIndex = lowLimit;
const U32 dictLimit = ms->window.dictLimit;
const U32 prefixStartIndex = (dictLimit > lowLimit) ? dictLimit : lowLimit;
const BYTE* const prefixStart = base + prefixStartIndex;
const BYTE* const dictBase = ms->window.dictBase;
const BYTE* const dictStart = dictBase + dictStartIndex;
const BYTE* const dictEnd = dictBase + prefixStartIndex;
U32 offset_1=rep[0], offset_2=rep[1];
DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_extDict_generic (srcSize=%zu)", srcSize);
/* if extDict is invalidated due to maxDistance, switch to "regular" variant */
if (prefixStartIndex == dictStartIndex)
- return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, mls, ZSTD_noDict);
+ return ZSTD_compressBlock_doubleFast(ms, seqStore, rep, src, srcSize);
/* Search Loop */
while (ip < ilimit) { /* < instead of <=, because (ip+1) */
const size_t hSmall = ZSTD_hashPtr(ip, hBitsS, mls);
const U32 matchIndex = hashSmall[hSmall];
const BYTE* const matchBase = matchIndex < prefixStartIndex ? dictBase : base;
const BYTE* match = matchBase + matchIndex;
const size_t hLong = ZSTD_hashPtr(ip, hBitsL, 8);
const U32 matchLongIndex = hashLong[hLong];
const BYTE* const matchLongBase = matchLongIndex < prefixStartIndex ? dictBase : base;
const BYTE* matchLong = matchLongBase + matchLongIndex;
const U32 curr = (U32)(ip-base);
const U32 repIndex = curr + 1 - offset_1; /* offset_1 expected <= curr +1 */
const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base;
const BYTE* const repMatch = repBase + repIndex;
size_t mLength;
hashSmall[hSmall] = hashLong[hLong] = curr; /* update hash table */
if ((((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow : ensure repIndex doesn't overlap dict + prefix */
- & (repIndex > dictStartIndex))
+ & (offset_1 <= curr+1 - dictStartIndex)) /* note: we are searching at curr+1 */
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
const BYTE* repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4;
ip++;
- ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, 0, mLength-MINMATCH);
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_REPCODE_1, mLength);
} else {
if ((matchLongIndex > dictStartIndex) && (MEM_read64(matchLong) == MEM_read64(ip))) {
const BYTE* const matchEnd = matchLongIndex < prefixStartIndex ? dictEnd : iend;
const BYTE* const lowMatchPtr = matchLongIndex < prefixStartIndex ? dictStart : prefixStart;
U32 offset;
mLength = ZSTD_count_2segments(ip+8, matchLong+8, iend, matchEnd, prefixStart) + 8;
offset = curr - matchLongIndex;
while (((ip>anchor) & (matchLong>lowMatchPtr)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
offset_2 = offset_1;
offset_1 = offset;
- ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_OFFSET(offset), mLength);
} else if ((matchIndex > dictStartIndex) && (MEM_read32(match) == MEM_read32(ip))) {
size_t const h3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
U32 const matchIndex3 = hashLong[h3];
const BYTE* const match3Base = matchIndex3 < prefixStartIndex ? dictBase : base;
const BYTE* match3 = match3Base + matchIndex3;
U32 offset;
hashLong[h3] = curr + 1;
if ( (matchIndex3 > dictStartIndex) && (MEM_read64(match3) == MEM_read64(ip+1)) ) {
const BYTE* const matchEnd = matchIndex3 < prefixStartIndex ? dictEnd : iend;
const BYTE* const lowMatchPtr = matchIndex3 < prefixStartIndex ? dictStart : prefixStart;
mLength = ZSTD_count_2segments(ip+9, match3+8, iend, matchEnd, prefixStart) + 8;
ip++;
offset = curr+1 - matchIndex3;
while (((ip>anchor) & (match3>lowMatchPtr)) && (ip[-1] == match3[-1])) { ip--; match3--; mLength++; } /* catch up */
} else {
const BYTE* const matchEnd = matchIndex < prefixStartIndex ? dictEnd : iend;
const BYTE* const lowMatchPtr = matchIndex < prefixStartIndex ? dictStart : prefixStart;
mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, prefixStart) + 4;
offset = curr - matchIndex;
while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
}
offset_2 = offset_1;
offset_1 = offset;
- ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_OFFSET(offset), mLength);
} else {
ip += ((ip-anchor) >> kSearchStrength) + 1;
continue;
} }
/* move to next sequence start */
ip += mLength;
anchor = ip;
if (ip <= ilimit) {
/* Complementary insertion */
/* done after iLimit test, as candidates could be > iend-8 */
{ U32 const indexToInsert = curr+2;
hashLong[ZSTD_hashPtr(base+indexToInsert, hBitsL, 8)] = indexToInsert;
hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base);
hashSmall[ZSTD_hashPtr(base+indexToInsert, hBitsS, mls)] = indexToInsert;
hashSmall[ZSTD_hashPtr(ip-1, hBitsS, mls)] = (U32)(ip-1-base);
}
/* check immediate repcode */
while (ip <= ilimit) {
U32 const current2 = (U32)(ip-base);
U32 const repIndex2 = current2 - offset_2;
const BYTE* repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2;
if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) /* intentional overflow : ensure repIndex2 doesn't overlap dict + prefix */
- & (repIndex2 > dictStartIndex))
+ & (offset_2 <= current2 - dictStartIndex))
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
- ZSTD_storeSeq(seqStore, 0, anchor, iend, 0, repLength2-MINMATCH);
+ ZSTD_storeSeq(seqStore, 0, anchor, iend, STORE_REPCODE_1, repLength2);
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2;
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2;
ip += repLength2;
anchor = ip;
continue;
}
break;
} } }
/* save reps for next block */
rep[0] = offset_1;
rep[1] = offset_2;
/* Return the last literals size */
return (size_t)(iend - anchor);
}
+ZSTD_GEN_DFAST_FN(extDict, 4)
+ZSTD_GEN_DFAST_FN(extDict, 5)
+ZSTD_GEN_DFAST_FN(extDict, 6)
+ZSTD_GEN_DFAST_FN(extDict, 7)
size_t ZSTD_compressBlock_doubleFast_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
U32 const mls = ms->cParams.minMatch;
switch(mls)
{
default: /* includes case 3 */
case 4 :
- return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, src, srcSize, 4);
+ return ZSTD_compressBlock_doubleFast_extDict_4(ms, seqStore, rep, src, srcSize);
case 5 :
- return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, src, srcSize, 5);
+ return ZSTD_compressBlock_doubleFast_extDict_5(ms, seqStore, rep, src, srcSize);
case 6 :
- return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, src, srcSize, 6);
+ return ZSTD_compressBlock_doubleFast_extDict_6(ms, seqStore, rep, src, srcSize);
case 7 :
- return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, src, srcSize, 7);
+ return ZSTD_compressBlock_doubleFast_extDict_7(ms, seqStore, rep, src, srcSize);
}
}
diff --git a/sys/contrib/zstd/lib/compress/zstd_double_fast.h b/sys/contrib/zstd/lib/compress/zstd_double_fast.h
index 14d944d69bc1..e16b7b03a324 100644
--- a/sys/contrib/zstd/lib/compress/zstd_double_fast.h
+++ b/sys/contrib/zstd/lib/compress/zstd_double_fast.h
@@ -1,38 +1,38 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_DOUBLE_FAST_H
#define ZSTD_DOUBLE_FAST_H
#if defined (__cplusplus)
extern "C" {
#endif
#include "../common/mem.h" /* U32 */
#include "zstd_compress_internal.h" /* ZSTD_CCtx, size_t */
void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms,
void const* end, ZSTD_dictTableLoadMethod_e dtlm);
size_t ZSTD_compressBlock_doubleFast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_doubleFast_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_doubleFast_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_DOUBLE_FAST_H */
diff --git a/sys/contrib/zstd/lib/compress/zstd_fast.c b/sys/contrib/zstd/lib/compress/zstd_fast.c
index db7ce83d0ad7..802fc3157982 100644
--- a/sys/contrib/zstd/lib/compress/zstd_fast.c
+++ b/sys/contrib/zstd/lib/compress/zstd_fast.c
@@ -1,496 +1,675 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include "zstd_compress_internal.h" /* ZSTD_hashPtr, ZSTD_count, ZSTD_storeSeq */
#include "zstd_fast.h"
void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
const void* const end,
ZSTD_dictTableLoadMethod_e dtlm)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashTable = ms->hashTable;
U32 const hBits = cParams->hashLog;
U32 const mls = cParams->minMatch;
const BYTE* const base = ms->window.base;
const BYTE* ip = base + ms->nextToUpdate;
const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
const U32 fastHashFillStep = 3;
/* Always insert every fastHashFillStep position into the hash table.
* Insert the other positions if their hash entry is empty.
*/
for ( ; ip + fastHashFillStep < iend + 2; ip += fastHashFillStep) {
U32 const curr = (U32)(ip - base);
size_t const hash0 = ZSTD_hashPtr(ip, hBits, mls);
hashTable[hash0] = curr;
if (dtlm == ZSTD_dtlm_fast) continue;
/* Only load extra positions for ZSTD_dtlm_full */
{ U32 p;
for (p = 1; p < fastHashFillStep; ++p) {
size_t const hash = ZSTD_hashPtr(ip + p, hBits, mls);
if (hashTable[hash] == 0) { /* not yet filled */
hashTable[hash] = curr + p;
} } } }
}
+/**
+ * If you squint hard enough (and ignore repcodes), the search operation at any
+ * given position is broken into 4 stages:
+ *
+ * 1. Hash (map position to hash value via input read)
+ * 2. Lookup (map hash val to index via hashtable read)
+ * 3. Load (map index to value at that position via input read)
+ * 4. Compare
+ *
+ * Each of these steps involves a memory read at an address which is computed
+ * from the previous step. This means these steps must be sequenced and their
+ * latencies are cumulative.
+ *
+ * Rather than do 1->2->3->4 sequentially for a single position before moving
+ * onto the next, this implementation interleaves these operations across the
+ * next few positions:
+ *
+ * R = Repcode Read & Compare
+ * H = Hash
+ * T = Table Lookup
+ * M = Match Read & Compare
+ *
+ * Pos | Time -->
+ * ----+-------------------
+ * N | ... M
+ * N+1 | ... TM
+ * N+2 | R H T M
+ * N+3 | H TM
+ * N+4 | R H T M
+ * N+5 | H ...
+ * N+6 | R ...
+ *
+ * This is very much analogous to the pipelining of execution in a CPU. And just
+ * like a CPU, we have to dump the pipeline when we find a match (i.e., take a
+ * branch).
+ *
+ * When this happens, we throw away our current state, and do the following prep
+ * to re-enter the loop:
+ *
+ * Pos | Time -->
+ * ----+-------------------
+ * N | H T
+ * N+1 | H
+ *
+ * This is also the work we do at the beginning to enter the loop initially.
+ */
FORCE_INLINE_TEMPLATE size_t
-ZSTD_compressBlock_fast_generic(
+ZSTD_compressBlock_fast_noDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize,
- U32 const mls)
+ U32 const mls, U32 const hasStep)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashTable = ms->hashTable;
U32 const hlog = cParams->hashLog;
/* support stepSize of 0 */
- size_t const stepSize = cParams->targetLength + !(cParams->targetLength) + 1;
+ size_t const stepSize = hasStep ? (cParams->targetLength + !(cParams->targetLength) + 1) : 2;
const BYTE* const base = ms->window.base;
const BYTE* const istart = (const BYTE*)src;
- /* We check ip0 (ip + 0) and ip1 (ip + 1) each loop */
- const BYTE* ip0 = istart;
- const BYTE* ip1;
- const BYTE* anchor = istart;
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
const U32 prefixStartIndex = ZSTD_getLowestPrefixIndex(ms, endIndex, cParams->windowLog);
const BYTE* const prefixStart = base + prefixStartIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - HASH_READ_SIZE;
- U32 offset_1=rep[0], offset_2=rep[1];
+
+ const BYTE* anchor = istart;
+ const BYTE* ip0 = istart;
+ const BYTE* ip1;
+ const BYTE* ip2;
+ const BYTE* ip3;
+ U32 current0;
+
+ U32 rep_offset1 = rep[0];
+ U32 rep_offset2 = rep[1];
U32 offsetSaved = 0;
- /* init */
+ size_t hash0; /* hash for ip0 */
+ size_t hash1; /* hash for ip1 */
+ U32 idx; /* match idx for ip0 */
+ U32 mval; /* src value at match idx */
+
+ U32 offcode;
+ const BYTE* match0;
+ size_t mLength;
+
+ /* ip0 and ip1 are always adjacent. The targetLength skipping and
+ * uncompressibility acceleration is applied to every other position,
+ * matching the behavior of #1562. step therefore represents the gap
+ * between pairs of positions, from ip0 to ip2 or ip1 to ip3. */
+ size_t step;
+ const BYTE* nextStep;
+ const size_t kStepIncr = (1 << (kSearchStrength - 1));
+
DEBUGLOG(5, "ZSTD_compressBlock_fast_generic");
ip0 += (ip0 == prefixStart);
- ip1 = ip0 + 1;
{ U32 const curr = (U32)(ip0 - base);
U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, cParams->windowLog);
U32 const maxRep = curr - windowLow;
- if (offset_2 > maxRep) offsetSaved = offset_2, offset_2 = 0;
- if (offset_1 > maxRep) offsetSaved = offset_1, offset_1 = 0;
+ if (rep_offset2 > maxRep) offsetSaved = rep_offset2, rep_offset2 = 0;
+ if (rep_offset1 > maxRep) offsetSaved = rep_offset1, rep_offset1 = 0;
}
- /* Main Search Loop */
-#ifdef __INTEL_COMPILER
- /* From intel 'The vector pragma indicates that the loop should be
- * vectorized if it is legal to do so'. Can be used together with
- * #pragma ivdep (but have opted to exclude that because intel
- * warns against using it).*/
- #pragma vector always
-#endif
- while (ip1 < ilimit) { /* < instead of <=, because check at ip0+2 */
- size_t mLength;
- BYTE const* ip2 = ip0 + 2;
- size_t const h0 = ZSTD_hashPtr(ip0, hlog, mls);
- U32 const val0 = MEM_read32(ip0);
- size_t const h1 = ZSTD_hashPtr(ip1, hlog, mls);
- U32 const val1 = MEM_read32(ip1);
- U32 const current0 = (U32)(ip0-base);
- U32 const current1 = (U32)(ip1-base);
- U32 const matchIndex0 = hashTable[h0];
- U32 const matchIndex1 = hashTable[h1];
- BYTE const* repMatch = ip2 - offset_1;
- const BYTE* match0 = base + matchIndex0;
- const BYTE* match1 = base + matchIndex1;
- U32 offcode;
-
-#if defined(__aarch64__)
- PREFETCH_L1(ip0+256);
-#endif
-
- hashTable[h0] = current0; /* update hash table */
- hashTable[h1] = current1; /* update hash table */
-
- assert(ip0 + 1 == ip1);
-
- if ((offset_1 > 0) & (MEM_read32(repMatch) == MEM_read32(ip2))) {
- mLength = (ip2[-1] == repMatch[-1]) ? 1 : 0;
- ip0 = ip2 - mLength;
- match0 = repMatch - mLength;
+ /* start each op */
+_start: /* Requires: ip0 */
+
+ step = stepSize;
+ nextStep = ip0 + kStepIncr;
+
+ /* calculate positions, ip0 - anchor == 0, so we skip step calc */
+ ip1 = ip0 + 1;
+ ip2 = ip0 + step;
+ ip3 = ip2 + 1;
+
+ if (ip3 >= ilimit) {
+ goto _cleanup;
+ }
+
+ hash0 = ZSTD_hashPtr(ip0, hlog, mls);
+ hash1 = ZSTD_hashPtr(ip1, hlog, mls);
+
+ idx = hashTable[hash0];
+
+ do {
+ /* load repcode match for ip[2]*/
+ const U32 rval = MEM_read32(ip2 - rep_offset1);
+
+ /* write back hash table entry */
+ current0 = (U32)(ip0 - base);
+ hashTable[hash0] = current0;
+
+ /* check repcode at ip[2] */
+ if ((MEM_read32(ip2) == rval) & (rep_offset1 > 0)) {
+ ip0 = ip2;
+ match0 = ip0 - rep_offset1;
+ mLength = ip0[-1] == match0[-1];
+ ip0 -= mLength;
+ match0 -= mLength;
+ offcode = STORE_REPCODE_1;
mLength += 4;
- offcode = 0;
goto _match;
}
- if ((matchIndex0 > prefixStartIndex) && MEM_read32(match0) == val0) {
- /* found a regular match */
- goto _offset;
+
+ /* load match for ip[0] */
+ if (idx >= prefixStartIndex) {
+ mval = MEM_read32(base + idx);
+ } else {
+ mval = MEM_read32(ip0) ^ 1; /* guaranteed to not match. */
}
- if ((matchIndex1 > prefixStartIndex) && MEM_read32(match1) == val1) {
- /* found a regular match after one literal */
- ip0 = ip1;
- match0 = match1;
+
+ /* check match at ip[0] */
+ if (MEM_read32(ip0) == mval) {
+ /* found a match! */
goto _offset;
}
- { size_t const step = ((size_t)(ip0-anchor) >> (kSearchStrength - 1)) + stepSize;
- assert(step >= 2);
- ip0 += step;
- ip1 += step;
- continue;
+
+ /* lookup ip[1] */
+ idx = hashTable[hash1];
+
+ /* hash ip[2] */
+ hash0 = hash1;
+ hash1 = ZSTD_hashPtr(ip2, hlog, mls);
+
+ /* advance to next positions */
+ ip0 = ip1;
+ ip1 = ip2;
+ ip2 = ip3;
+
+ /* write back hash table entry */
+ current0 = (U32)(ip0 - base);
+ hashTable[hash0] = current0;
+
+ /* load match for ip[0] */
+ if (idx >= prefixStartIndex) {
+ mval = MEM_read32(base + idx);
+ } else {
+ mval = MEM_read32(ip0) ^ 1; /* guaranteed to not match. */
}
-_offset: /* Requires: ip0, match0 */
- /* Compute the offset code */
- offset_2 = offset_1;
- offset_1 = (U32)(ip0-match0);
- offcode = offset_1 + ZSTD_REP_MOVE;
- mLength = 4;
- /* Count the backwards match length */
- while (((ip0>anchor) & (match0>prefixStart))
- && (ip0[-1] == match0[-1])) { ip0--; match0--; mLength++; } /* catch up */
-_match: /* Requires: ip0, match0, offcode */
- /* Count the forward length */
- mLength += ZSTD_count(ip0+mLength, match0+mLength, iend);
- ZSTD_storeSeq(seqStore, (size_t)(ip0-anchor), anchor, iend, offcode, mLength-MINMATCH);
- /* match found */
- ip0 += mLength;
- anchor = ip0;
+ /* check match at ip[0] */
+ if (MEM_read32(ip0) == mval) {
+ /* found a match! */
+ goto _offset;
+ }
- if (ip0 <= ilimit) {
- /* Fill Table */
- assert(base+current0+2 > istart); /* check base overflow */
- hashTable[ZSTD_hashPtr(base+current0+2, hlog, mls)] = current0+2; /* here because current+2 could be > iend-8 */
- hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base);
-
- if (offset_2 > 0) { /* offset_2==0 means offset_2 is invalidated */
- while ( (ip0 <= ilimit) && (MEM_read32(ip0) == MEM_read32(ip0 - offset_2)) ) {
- /* store sequence */
- size_t const rLength = ZSTD_count(ip0+4, ip0+4-offset_2, iend) + 4;
- { U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; } /* swap offset_2 <=> offset_1 */
- hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base);
- ip0 += rLength;
- ZSTD_storeSeq(seqStore, 0 /*litLen*/, anchor, iend, 0 /*offCode*/, rLength-MINMATCH);
- anchor = ip0;
- continue; /* faster when present (confirmed on gcc-8) ... (?) */
- } } }
- ip1 = ip0 + 1;
- }
+ /* lookup ip[1] */
+ idx = hashTable[hash1];
+
+ /* hash ip[2] */
+ hash0 = hash1;
+ hash1 = ZSTD_hashPtr(ip2, hlog, mls);
+
+ /* advance to next positions */
+ ip0 = ip1;
+ ip1 = ip2;
+ ip2 = ip0 + step;
+ ip3 = ip1 + step;
+
+ /* calculate step */
+ if (ip2 >= nextStep) {
+ step++;
+ PREFETCH_L1(ip1 + 64);
+ PREFETCH_L1(ip1 + 128);
+ nextStep += kStepIncr;
+ }
+ } while (ip3 < ilimit);
+
+_cleanup:
+ /* Note that there are probably still a couple positions we could search.
+ * However, it seems to be a meaningful performance hit to try to search
+ * them. So let's not. */
/* save reps for next block */
- rep[0] = offset_1 ? offset_1 : offsetSaved;
- rep[1] = offset_2 ? offset_2 : offsetSaved;
+ rep[0] = rep_offset1 ? rep_offset1 : offsetSaved;
+ rep[1] = rep_offset2 ? rep_offset2 : offsetSaved;
/* Return the last literals size */
return (size_t)(iend - anchor);
+
+_offset: /* Requires: ip0, idx */
+
+ /* Compute the offset code. */
+ match0 = base + idx;
+ rep_offset2 = rep_offset1;
+ rep_offset1 = (U32)(ip0-match0);
+ offcode = STORE_OFFSET(rep_offset1);
+ mLength = 4;
+
+ /* Count the backwards match length. */
+ while (((ip0>anchor) & (match0>prefixStart)) && (ip0[-1] == match0[-1])) {
+ ip0--;
+ match0--;
+ mLength++;
+ }
+
+_match: /* Requires: ip0, match0, offcode */
+
+ /* Count the forward length. */
+ mLength += ZSTD_count(ip0 + mLength, match0 + mLength, iend);
+
+ ZSTD_storeSeq(seqStore, (size_t)(ip0 - anchor), anchor, iend, offcode, mLength);
+
+ ip0 += mLength;
+ anchor = ip0;
+
+ /* write next hash table entry */
+ if (ip1 < ip0) {
+ hashTable[hash1] = (U32)(ip1 - base);
+ }
+
+ /* Fill table and check for immediate repcode. */
+ if (ip0 <= ilimit) {
+ /* Fill Table */
+ assert(base+current0+2 > istart); /* check base overflow */
+ hashTable[ZSTD_hashPtr(base+current0+2, hlog, mls)] = current0+2; /* here because current+2 could be > iend-8 */
+ hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base);
+
+ if (rep_offset2 > 0) { /* rep_offset2==0 means rep_offset2 is invalidated */
+ while ( (ip0 <= ilimit) && (MEM_read32(ip0) == MEM_read32(ip0 - rep_offset2)) ) {
+ /* store sequence */
+ size_t const rLength = ZSTD_count(ip0+4, ip0+4-rep_offset2, iend) + 4;
+ { U32 const tmpOff = rep_offset2; rep_offset2 = rep_offset1; rep_offset1 = tmpOff; } /* swap rep_offset2 <=> rep_offset1 */
+ hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base);
+ ip0 += rLength;
+ ZSTD_storeSeq(seqStore, 0 /*litLen*/, anchor, iend, STORE_REPCODE_1, rLength);
+ anchor = ip0;
+ continue; /* faster when present (confirmed on gcc-8) ... (?) */
+ } } }
+
+ goto _start;
}
+#define ZSTD_GEN_FAST_FN(dictMode, mls, step) \
+ static size_t ZSTD_compressBlock_fast_##dictMode##_##mls##_##step( \
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], \
+ void const* src, size_t srcSize) \
+ { \
+ return ZSTD_compressBlock_fast_##dictMode##_generic(ms, seqStore, rep, src, srcSize, mls, step); \
+ }
+
+ZSTD_GEN_FAST_FN(noDict, 4, 1)
+ZSTD_GEN_FAST_FN(noDict, 5, 1)
+ZSTD_GEN_FAST_FN(noDict, 6, 1)
+ZSTD_GEN_FAST_FN(noDict, 7, 1)
+
+ZSTD_GEN_FAST_FN(noDict, 4, 0)
+ZSTD_GEN_FAST_FN(noDict, 5, 0)
+ZSTD_GEN_FAST_FN(noDict, 6, 0)
+ZSTD_GEN_FAST_FN(noDict, 7, 0)
size_t ZSTD_compressBlock_fast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
U32 const mls = ms->cParams.minMatch;
assert(ms->dictMatchState == NULL);
- switch(mls)
- {
- default: /* includes case 3 */
- case 4 :
- return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 4);
- case 5 :
- return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 5);
- case 6 :
- return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 6);
- case 7 :
- return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 7);
+ if (ms->cParams.targetLength > 1) {
+ switch(mls)
+ {
+ default: /* includes case 3 */
+ case 4 :
+ return ZSTD_compressBlock_fast_noDict_4_1(ms, seqStore, rep, src, srcSize);
+ case 5 :
+ return ZSTD_compressBlock_fast_noDict_5_1(ms, seqStore, rep, src, srcSize);
+ case 6 :
+ return ZSTD_compressBlock_fast_noDict_6_1(ms, seqStore, rep, src, srcSize);
+ case 7 :
+ return ZSTD_compressBlock_fast_noDict_7_1(ms, seqStore, rep, src, srcSize);
+ }
+ } else {
+ switch(mls)
+ {
+ default: /* includes case 3 */
+ case 4 :
+ return ZSTD_compressBlock_fast_noDict_4_0(ms, seqStore, rep, src, srcSize);
+ case 5 :
+ return ZSTD_compressBlock_fast_noDict_5_0(ms, seqStore, rep, src, srcSize);
+ case 6 :
+ return ZSTD_compressBlock_fast_noDict_6_0(ms, seqStore, rep, src, srcSize);
+ case 7 :
+ return ZSTD_compressBlock_fast_noDict_7_0(ms, seqStore, rep, src, srcSize);
+ }
+
}
}
FORCE_INLINE_TEMPLATE
size_t ZSTD_compressBlock_fast_dictMatchState_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
- void const* src, size_t srcSize, U32 const mls)
+ void const* src, size_t srcSize, U32 const mls, U32 const hasStep)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashTable = ms->hashTable;
U32 const hlog = cParams->hashLog;
/* support stepSize of 0 */
U32 const stepSize = cParams->targetLength + !(cParams->targetLength);
const BYTE* const base = ms->window.base;
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const U32 prefixStartIndex = ms->window.dictLimit;
const BYTE* const prefixStart = base + prefixStartIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - HASH_READ_SIZE;
U32 offset_1=rep[0], offset_2=rep[1];
U32 offsetSaved = 0;
const ZSTD_matchState_t* const dms = ms->dictMatchState;
const ZSTD_compressionParameters* const dictCParams = &dms->cParams ;
const U32* const dictHashTable = dms->hashTable;
const U32 dictStartIndex = dms->window.dictLimit;
const BYTE* const dictBase = dms->window.base;
const BYTE* const dictStart = dictBase + dictStartIndex;
const BYTE* const dictEnd = dms->window.nextSrc;
const U32 dictIndexDelta = prefixStartIndex - (U32)(dictEnd - dictBase);
const U32 dictAndPrefixLength = (U32)(ip - prefixStart + dictEnd - dictStart);
const U32 dictHLog = dictCParams->hashLog;
/* if a dictionary is still attached, it necessarily means that
* it is within window size. So we just check it. */
const U32 maxDistance = 1U << cParams->windowLog;
const U32 endIndex = (U32)((size_t)(ip - base) + srcSize);
assert(endIndex - prefixStartIndex <= maxDistance);
(void)maxDistance; (void)endIndex; /* these variables are not used when assert() is disabled */
- /* ensure there will be no no underflow
+ (void)hasStep; /* not currently specialized on whether it's accelerated */
+
+ /* ensure there will be no underflow
* when translating a dict index into a local index */
assert(prefixStartIndex >= (U32)(dictEnd - dictBase));
/* init */
DEBUGLOG(5, "ZSTD_compressBlock_fast_dictMatchState_generic");
ip += (dictAndPrefixLength == 0);
/* dictMatchState repCode checks don't currently handle repCode == 0
* disabling. */
assert(offset_1 <= dictAndPrefixLength);
assert(offset_2 <= dictAndPrefixLength);
/* Main Search Loop */
while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */
size_t mLength;
size_t const h = ZSTD_hashPtr(ip, hlog, mls);
U32 const curr = (U32)(ip-base);
U32 const matchIndex = hashTable[h];
const BYTE* match = base + matchIndex;
const U32 repIndex = curr + 1 - offset_1;
const BYTE* repMatch = (repIndex < prefixStartIndex) ?
dictBase + (repIndex - dictIndexDelta) :
base + repIndex;
hashTable[h] = curr; /* update hash table */
if ( ((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow : ensure repIndex isn't overlapping dict + prefix */
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
const BYTE* const repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4;
ip++;
- ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, 0, mLength-MINMATCH);
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_REPCODE_1, mLength);
} else if ( (matchIndex <= prefixStartIndex) ) {
size_t const dictHash = ZSTD_hashPtr(ip, dictHLog, mls);
U32 const dictMatchIndex = dictHashTable[dictHash];
const BYTE* dictMatch = dictBase + dictMatchIndex;
if (dictMatchIndex <= dictStartIndex ||
MEM_read32(dictMatch) != MEM_read32(ip)) {
assert(stepSize >= 1);
ip += ((ip-anchor) >> kSearchStrength) + stepSize;
continue;
} else {
/* found a dict match */
U32 const offset = (U32)(curr-dictMatchIndex-dictIndexDelta);
mLength = ZSTD_count_2segments(ip+4, dictMatch+4, iend, dictEnd, prefixStart) + 4;
while (((ip>anchor) & (dictMatch>dictStart))
&& (ip[-1] == dictMatch[-1])) {
ip--; dictMatch--; mLength++;
} /* catch up */
offset_2 = offset_1;
offset_1 = offset;
- ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_OFFSET(offset), mLength);
}
} else if (MEM_read32(match) != MEM_read32(ip)) {
/* it's not a match, and we're not going to check the dictionary */
assert(stepSize >= 1);
ip += ((ip-anchor) >> kSearchStrength) + stepSize;
continue;
} else {
/* found a regular match */
U32 const offset = (U32)(ip-match);
mLength = ZSTD_count(ip+4, match+4, iend) + 4;
while (((ip>anchor) & (match>prefixStart))
&& (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
offset_2 = offset_1;
offset_1 = offset;
- ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_OFFSET(offset), mLength);
}
/* match found */
ip += mLength;
anchor = ip;
if (ip <= ilimit) {
/* Fill Table */
assert(base+curr+2 > istart); /* check base overflow */
hashTable[ZSTD_hashPtr(base+curr+2, hlog, mls)] = curr+2; /* here because curr+2 could be > iend-8 */
hashTable[ZSTD_hashPtr(ip-2, hlog, mls)] = (U32)(ip-2-base);
/* check immediate repcode */
while (ip <= ilimit) {
U32 const current2 = (U32)(ip-base);
U32 const repIndex2 = current2 - offset_2;
const BYTE* repMatch2 = repIndex2 < prefixStartIndex ?
dictBase - dictIndexDelta + repIndex2 :
base + repIndex2;
if ( ((U32)((prefixStartIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */)
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
- ZSTD_storeSeq(seqStore, 0, anchor, iend, 0, repLength2-MINMATCH);
+ ZSTD_storeSeq(seqStore, 0, anchor, iend, STORE_REPCODE_1, repLength2);
hashTable[ZSTD_hashPtr(ip, hlog, mls)] = current2;
ip += repLength2;
anchor = ip;
continue;
}
break;
}
}
}
/* save reps for next block */
rep[0] = offset_1 ? offset_1 : offsetSaved;
rep[1] = offset_2 ? offset_2 : offsetSaved;
/* Return the last literals size */
return (size_t)(iend - anchor);
}
+
+ZSTD_GEN_FAST_FN(dictMatchState, 4, 0)
+ZSTD_GEN_FAST_FN(dictMatchState, 5, 0)
+ZSTD_GEN_FAST_FN(dictMatchState, 6, 0)
+ZSTD_GEN_FAST_FN(dictMatchState, 7, 0)
+
size_t ZSTD_compressBlock_fast_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
U32 const mls = ms->cParams.minMatch;
assert(ms->dictMatchState != NULL);
switch(mls)
{
default: /* includes case 3 */
case 4 :
- return ZSTD_compressBlock_fast_dictMatchState_generic(ms, seqStore, rep, src, srcSize, 4);
+ return ZSTD_compressBlock_fast_dictMatchState_4_0(ms, seqStore, rep, src, srcSize);
case 5 :
- return ZSTD_compressBlock_fast_dictMatchState_generic(ms, seqStore, rep, src, srcSize, 5);
+ return ZSTD_compressBlock_fast_dictMatchState_5_0(ms, seqStore, rep, src, srcSize);
case 6 :
- return ZSTD_compressBlock_fast_dictMatchState_generic(ms, seqStore, rep, src, srcSize, 6);
+ return ZSTD_compressBlock_fast_dictMatchState_6_0(ms, seqStore, rep, src, srcSize);
case 7 :
- return ZSTD_compressBlock_fast_dictMatchState_generic(ms, seqStore, rep, src, srcSize, 7);
+ return ZSTD_compressBlock_fast_dictMatchState_7_0(ms, seqStore, rep, src, srcSize);
}
}
static size_t ZSTD_compressBlock_fast_extDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
- void const* src, size_t srcSize, U32 const mls)
+ void const* src, size_t srcSize, U32 const mls, U32 const hasStep)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashTable = ms->hashTable;
U32 const hlog = cParams->hashLog;
/* support stepSize of 0 */
U32 const stepSize = cParams->targetLength + !(cParams->targetLength);
const BYTE* const base = ms->window.base;
const BYTE* const dictBase = ms->window.dictBase;
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
const U32 lowLimit = ZSTD_getLowestMatchIndex(ms, endIndex, cParams->windowLog);
const U32 dictStartIndex = lowLimit;
const BYTE* const dictStart = dictBase + dictStartIndex;
const U32 dictLimit = ms->window.dictLimit;
const U32 prefixStartIndex = dictLimit < lowLimit ? lowLimit : dictLimit;
const BYTE* const prefixStart = base + prefixStartIndex;
const BYTE* const dictEnd = dictBase + prefixStartIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - 8;
U32 offset_1=rep[0], offset_2=rep[1];
+ (void)hasStep; /* not currently specialized on whether it's accelerated */
+
DEBUGLOG(5, "ZSTD_compressBlock_fast_extDict_generic (offset_1=%u)", offset_1);
/* switch to "regular" variant if extDict is invalidated due to maxDistance */
if (prefixStartIndex == dictStartIndex)
- return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, mls);
+ return ZSTD_compressBlock_fast(ms, seqStore, rep, src, srcSize);
/* Search Loop */
while (ip < ilimit) { /* < instead of <=, because (ip+1) */
const size_t h = ZSTD_hashPtr(ip, hlog, mls);
const U32 matchIndex = hashTable[h];
const BYTE* const matchBase = matchIndex < prefixStartIndex ? dictBase : base;
const BYTE* match = matchBase + matchIndex;
const U32 curr = (U32)(ip-base);
const U32 repIndex = curr + 1 - offset_1;
const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base;
const BYTE* const repMatch = repBase + repIndex;
hashTable[h] = curr; /* update hash table */
DEBUGLOG(7, "offset_1 = %u , curr = %u", offset_1, curr);
- assert(offset_1 <= curr +1); /* check repIndex */
- if ( (((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow */ & (repIndex > dictStartIndex))
+ if ( ( ((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow */
+ & (offset_1 <= curr+1 - dictStartIndex) ) /* note: we are searching at curr+1 */
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
const BYTE* const repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
size_t const rLength = ZSTD_count_2segments(ip+1 +4, repMatch +4, iend, repMatchEnd, prefixStart) + 4;
ip++;
- ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, 0, rLength-MINMATCH);
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_REPCODE_1, rLength);
ip += rLength;
anchor = ip;
} else {
if ( (matchIndex < dictStartIndex) ||
(MEM_read32(match) != MEM_read32(ip)) ) {
assert(stepSize >= 1);
ip += ((ip-anchor) >> kSearchStrength) + stepSize;
continue;
}
{ const BYTE* const matchEnd = matchIndex < prefixStartIndex ? dictEnd : iend;
const BYTE* const lowMatchPtr = matchIndex < prefixStartIndex ? dictStart : prefixStart;
U32 const offset = curr - matchIndex;
size_t mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, prefixStart) + 4;
while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
offset_2 = offset_1; offset_1 = offset; /* update offset history */
- ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_OFFSET(offset), mLength);
ip += mLength;
anchor = ip;
} }
if (ip <= ilimit) {
/* Fill Table */
hashTable[ZSTD_hashPtr(base+curr+2, hlog, mls)] = curr+2;
hashTable[ZSTD_hashPtr(ip-2, hlog, mls)] = (U32)(ip-2-base);
/* check immediate repcode */
while (ip <= ilimit) {
U32 const current2 = (U32)(ip-base);
U32 const repIndex2 = current2 - offset_2;
const BYTE* const repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2;
- if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) & (repIndex2 > dictStartIndex)) /* intentional overflow */
+ if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) & (offset_2 <= curr - dictStartIndex)) /* intentional overflow */
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
{ U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; } /* swap offset_2 <=> offset_1 */
- ZSTD_storeSeq(seqStore, 0 /*litlen*/, anchor, iend, 0 /*offcode*/, repLength2-MINMATCH);
+ ZSTD_storeSeq(seqStore, 0 /*litlen*/, anchor, iend, STORE_REPCODE_1, repLength2);
hashTable[ZSTD_hashPtr(ip, hlog, mls)] = current2;
ip += repLength2;
anchor = ip;
continue;
}
break;
} } }
/* save reps for next block */
rep[0] = offset_1;
rep[1] = offset_2;
/* Return the last literals size */
return (size_t)(iend - anchor);
}
+ZSTD_GEN_FAST_FN(extDict, 4, 0)
+ZSTD_GEN_FAST_FN(extDict, 5, 0)
+ZSTD_GEN_FAST_FN(extDict, 6, 0)
+ZSTD_GEN_FAST_FN(extDict, 7, 0)
size_t ZSTD_compressBlock_fast_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
U32 const mls = ms->cParams.minMatch;
switch(mls)
{
default: /* includes case 3 */
case 4 :
- return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, 4);
+ return ZSTD_compressBlock_fast_extDict_4_0(ms, seqStore, rep, src, srcSize);
case 5 :
- return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, 5);
+ return ZSTD_compressBlock_fast_extDict_5_0(ms, seqStore, rep, src, srcSize);
case 6 :
- return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, 6);
+ return ZSTD_compressBlock_fast_extDict_6_0(ms, seqStore, rep, src, srcSize);
case 7 :
- return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, 7);
+ return ZSTD_compressBlock_fast_extDict_7_0(ms, seqStore, rep, src, srcSize);
}
}
diff --git a/sys/contrib/zstd/lib/compress/zstd_fast.h b/sys/contrib/zstd/lib/compress/zstd_fast.h
index cf6aaa8e6750..0d4a0c1090ff 100644
--- a/sys/contrib/zstd/lib/compress/zstd_fast.h
+++ b/sys/contrib/zstd/lib/compress/zstd_fast.h
@@ -1,37 +1,37 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_FAST_H
#define ZSTD_FAST_H
#if defined (__cplusplus)
extern "C" {
#endif
#include "../common/mem.h" /* U32 */
#include "zstd_compress_internal.h"
void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
void const* end, ZSTD_dictTableLoadMethod_e dtlm);
size_t ZSTD_compressBlock_fast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_fast_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_fast_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_FAST_H */
diff --git a/sys/contrib/zstd/lib/compress/zstd_lazy.c b/sys/contrib/zstd/lib/compress/zstd_lazy.c
index 49ec1b09eff7..2e38dcb46d23 100644
--- a/sys/contrib/zstd/lib/compress/zstd_lazy.c
+++ b/sys/contrib/zstd/lib/compress/zstd_lazy.c
@@ -1,1412 +1,2104 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include "zstd_compress_internal.h"
#include "zstd_lazy.h"
/*-*************************************
* Binary Tree search
***************************************/
static void
ZSTD_updateDUBT(ZSTD_matchState_t* ms,
const BYTE* ip, const BYTE* iend,
U32 mls)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashTable = ms->hashTable;
U32 const hashLog = cParams->hashLog;
U32* const bt = ms->chainTable;
U32 const btLog = cParams->chainLog - 1;
U32 const btMask = (1 << btLog) - 1;
const BYTE* const base = ms->window.base;
U32 const target = (U32)(ip - base);
U32 idx = ms->nextToUpdate;
if (idx != target)
DEBUGLOG(7, "ZSTD_updateDUBT, from %u to %u (dictLimit:%u)",
idx, target, ms->window.dictLimit);
assert(ip + 8 <= iend); /* condition for ZSTD_hashPtr */
(void)iend;
assert(idx >= ms->window.dictLimit); /* condition for valid base+idx */
for ( ; idx < target ; idx++) {
size_t const h = ZSTD_hashPtr(base + idx, hashLog, mls); /* assumption : ip + 8 <= iend */
U32 const matchIndex = hashTable[h];
U32* const nextCandidatePtr = bt + 2*(idx&btMask);
U32* const sortMarkPtr = nextCandidatePtr + 1;
DEBUGLOG(8, "ZSTD_updateDUBT: insert %u", idx);
hashTable[h] = idx; /* Update Hash Table */
*nextCandidatePtr = matchIndex; /* update BT like a chain */
*sortMarkPtr = ZSTD_DUBT_UNSORTED_MARK;
}
ms->nextToUpdate = target;
}
/** ZSTD_insertDUBT1() :
* sort one already inserted but unsorted position
* assumption : curr >= btlow == (curr - btmask)
* doesn't fail */
static void
-ZSTD_insertDUBT1(ZSTD_matchState_t* ms,
+ZSTD_insertDUBT1(const ZSTD_matchState_t* ms,
U32 curr, const BYTE* inputEnd,
U32 nbCompares, U32 btLow,
const ZSTD_dictMode_e dictMode)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const bt = ms->chainTable;
U32 const btLog = cParams->chainLog - 1;
U32 const btMask = (1 << btLog) - 1;
size_t commonLengthSmaller=0, commonLengthLarger=0;
const BYTE* const base = ms->window.base;
const BYTE* const dictBase = ms->window.dictBase;
const U32 dictLimit = ms->window.dictLimit;
const BYTE* const ip = (curr>=dictLimit) ? base + curr : dictBase + curr;
const BYTE* const iend = (curr>=dictLimit) ? inputEnd : dictBase + dictLimit;
const BYTE* const dictEnd = dictBase + dictLimit;
const BYTE* const prefixStart = base + dictLimit;
const BYTE* match;
U32* smallerPtr = bt + 2*(curr&btMask);
U32* largerPtr = smallerPtr + 1;
U32 matchIndex = *smallerPtr; /* this candidate is unsorted : next sorted candidate is reached through *smallerPtr, while *largerPtr contains previous unsorted candidate (which is already saved and can be overwritten) */
U32 dummy32; /* to be nullified at the end */
U32 const windowValid = ms->window.lowLimit;
U32 const maxDistance = 1U << cParams->windowLog;
U32 const windowLow = (curr - windowValid > maxDistance) ? curr - maxDistance : windowValid;
DEBUGLOG(8, "ZSTD_insertDUBT1(%u) (dictLimit=%u, lowLimit=%u)",
curr, dictLimit, windowLow);
assert(curr >= btLow);
assert(ip < iend); /* condition for ZSTD_count */
- while (nbCompares-- && (matchIndex > windowLow)) {
+ for (; nbCompares && (matchIndex > windowLow); --nbCompares) {
U32* const nextPtr = bt + 2*(matchIndex & btMask);
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
assert(matchIndex < curr);
/* note : all candidates are now supposed sorted,
* but it's still possible to have nextPtr[1] == ZSTD_DUBT_UNSORTED_MARK
* when a real index has the same value as ZSTD_DUBT_UNSORTED_MARK */
if ( (dictMode != ZSTD_extDict)
|| (matchIndex+matchLength >= dictLimit) /* both in current segment*/
|| (curr < dictLimit) /* both in extDict */) {
const BYTE* const mBase = ( (dictMode != ZSTD_extDict)
|| (matchIndex+matchLength >= dictLimit)) ?
base : dictBase;
assert( (matchIndex+matchLength >= dictLimit) /* might be wrong if extDict is incorrectly set to 0 */
|| (curr < dictLimit) );
match = mBase + matchIndex;
matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
} else {
match = dictBase + matchIndex;
matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
if (matchIndex+matchLength >= dictLimit)
match = base + matchIndex; /* preparation for next read of match[matchLength] */
}
DEBUGLOG(8, "ZSTD_insertDUBT1: comparing %u with %u : found %u common bytes ",
curr, matchIndex, (U32)matchLength);
if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */
break; /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt tree */
}
if (match[matchLength] < ip[matchLength]) { /* necessarily within buffer */
/* match is smaller than current */
*smallerPtr = matchIndex; /* update smaller idx */
commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop searching */
DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is smaller : next => %u",
matchIndex, btLow, nextPtr[1]);
smallerPtr = nextPtr+1; /* new "candidate" => larger than match, which was smaller than target */
matchIndex = nextPtr[1]; /* new matchIndex, larger than previous and closer to current */
} else {
/* match is larger than current */
*largerPtr = matchIndex;
commonLengthLarger = matchLength;
if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop searching */
DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is larger => %u",
matchIndex, btLow, nextPtr[0]);
largerPtr = nextPtr;
matchIndex = nextPtr[0];
} }
*smallerPtr = *largerPtr = 0;
}
static size_t
ZSTD_DUBT_findBetterDictMatch (
- ZSTD_matchState_t* ms,
+ const ZSTD_matchState_t* ms,
const BYTE* const ip, const BYTE* const iend,
size_t* offsetPtr,
size_t bestLength,
U32 nbCompares,
U32 const mls,
const ZSTD_dictMode_e dictMode)
{
const ZSTD_matchState_t * const dms = ms->dictMatchState;
const ZSTD_compressionParameters* const dmsCParams = &dms->cParams;
const U32 * const dictHashTable = dms->hashTable;
U32 const hashLog = dmsCParams->hashLog;
size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
U32 dictMatchIndex = dictHashTable[h];
const BYTE* const base = ms->window.base;
const BYTE* const prefixStart = base + ms->window.dictLimit;
U32 const curr = (U32)(ip-base);
const BYTE* const dictBase = dms->window.base;
const BYTE* const dictEnd = dms->window.nextSrc;
U32 const dictHighLimit = (U32)(dms->window.nextSrc - dms->window.base);
U32 const dictLowLimit = dms->window.lowLimit;
U32 const dictIndexDelta = ms->window.lowLimit - dictHighLimit;
U32* const dictBt = dms->chainTable;
U32 const btLog = dmsCParams->chainLog - 1;
U32 const btMask = (1 << btLog) - 1;
U32 const btLow = (btMask >= dictHighLimit - dictLowLimit) ? dictLowLimit : dictHighLimit - btMask;
size_t commonLengthSmaller=0, commonLengthLarger=0;
(void)dictMode;
assert(dictMode == ZSTD_dictMatchState);
- while (nbCompares-- && (dictMatchIndex > dictLowLimit)) {
+ for (; nbCompares && (dictMatchIndex > dictLowLimit); --nbCompares) {
U32* const nextPtr = dictBt + 2*(dictMatchIndex & btMask);
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
const BYTE* match = dictBase + dictMatchIndex;
matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
if (dictMatchIndex+matchLength >= dictHighLimit)
match = base + dictMatchIndex + dictIndexDelta; /* to prepare for next usage of match[matchLength] */
if (matchLength > bestLength) {
U32 matchIndex = dictMatchIndex + dictIndexDelta;
if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(curr-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) ) {
DEBUGLOG(9, "ZSTD_DUBT_findBetterDictMatch(%u) : found better match length %u -> %u and offsetCode %u -> %u (dictMatchIndex %u, matchIndex %u)",
- curr, (U32)bestLength, (U32)matchLength, (U32)*offsetPtr, ZSTD_REP_MOVE + curr - matchIndex, dictMatchIndex, matchIndex);
- bestLength = matchLength, *offsetPtr = ZSTD_REP_MOVE + curr - matchIndex;
+ curr, (U32)bestLength, (U32)matchLength, (U32)*offsetPtr, STORE_OFFSET(curr - matchIndex), dictMatchIndex, matchIndex);
+ bestLength = matchLength, *offsetPtr = STORE_OFFSET(curr - matchIndex);
}
if (ip+matchLength == iend) { /* reached end of input : ip[matchLength] is not valid, no way to know if it's larger or smaller than match */
break; /* drop, to guarantee consistency (miss a little bit of compression) */
}
}
if (match[matchLength] < ip[matchLength]) {
if (dictMatchIndex <= btLow) { break; } /* beyond tree size, stop the search */
commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
dictMatchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */
} else {
/* match is larger than current */
if (dictMatchIndex <= btLow) { break; } /* beyond tree size, stop the search */
commonLengthLarger = matchLength;
dictMatchIndex = nextPtr[0];
}
}
if (bestLength >= MINMATCH) {
- U32 const mIndex = curr - ((U32)*offsetPtr - ZSTD_REP_MOVE); (void)mIndex;
+ U32 const mIndex = curr - (U32)STORED_OFFSET(*offsetPtr); (void)mIndex;
DEBUGLOG(8, "ZSTD_DUBT_findBetterDictMatch(%u) : found match of length %u and offsetCode %u (pos %u)",
curr, (U32)bestLength, (U32)*offsetPtr, mIndex);
}
return bestLength;
}
static size_t
ZSTD_DUBT_findBestMatch(ZSTD_matchState_t* ms,
const BYTE* const ip, const BYTE* const iend,
size_t* offsetPtr,
U32 const mls,
const ZSTD_dictMode_e dictMode)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashTable = ms->hashTable;
U32 const hashLog = cParams->hashLog;
size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
U32 matchIndex = hashTable[h];
const BYTE* const base = ms->window.base;
U32 const curr = (U32)(ip-base);
U32 const windowLow = ZSTD_getLowestMatchIndex(ms, curr, cParams->windowLog);
U32* const bt = ms->chainTable;
U32 const btLog = cParams->chainLog - 1;
U32 const btMask = (1 << btLog) - 1;
U32 const btLow = (btMask >= curr) ? 0 : curr - btMask;
U32 const unsortLimit = MAX(btLow, windowLow);
U32* nextCandidate = bt + 2*(matchIndex&btMask);
U32* unsortedMark = bt + 2*(matchIndex&btMask) + 1;
U32 nbCompares = 1U << cParams->searchLog;
U32 nbCandidates = nbCompares;
U32 previousCandidate = 0;
DEBUGLOG(7, "ZSTD_DUBT_findBestMatch (%u) ", curr);
assert(ip <= iend-8); /* required for h calculation */
assert(dictMode != ZSTD_dedicatedDictSearch);
/* reach end of unsorted candidates list */
while ( (matchIndex > unsortLimit)
&& (*unsortedMark == ZSTD_DUBT_UNSORTED_MARK)
&& (nbCandidates > 1) ) {
DEBUGLOG(8, "ZSTD_DUBT_findBestMatch: candidate %u is unsorted",
matchIndex);
*unsortedMark = previousCandidate; /* the unsortedMark becomes a reversed chain, to move up back to original position */
previousCandidate = matchIndex;
matchIndex = *nextCandidate;
nextCandidate = bt + 2*(matchIndex&btMask);
unsortedMark = bt + 2*(matchIndex&btMask) + 1;
nbCandidates --;
}
/* nullify last candidate if it's still unsorted
* simplification, detrimental to compression ratio, beneficial for speed */
if ( (matchIndex > unsortLimit)
&& (*unsortedMark==ZSTD_DUBT_UNSORTED_MARK) ) {
DEBUGLOG(7, "ZSTD_DUBT_findBestMatch: nullify last unsorted candidate %u",
matchIndex);
*nextCandidate = *unsortedMark = 0;
}
/* batch sort stacked candidates */
matchIndex = previousCandidate;
while (matchIndex) { /* will end on matchIndex == 0 */
U32* const nextCandidateIdxPtr = bt + 2*(matchIndex&btMask) + 1;
U32 const nextCandidateIdx = *nextCandidateIdxPtr;
ZSTD_insertDUBT1(ms, matchIndex, iend,
nbCandidates, unsortLimit, dictMode);
matchIndex = nextCandidateIdx;
nbCandidates++;
}
/* find longest match */
{ size_t commonLengthSmaller = 0, commonLengthLarger = 0;
const BYTE* const dictBase = ms->window.dictBase;
const U32 dictLimit = ms->window.dictLimit;
const BYTE* const dictEnd = dictBase + dictLimit;
const BYTE* const prefixStart = base + dictLimit;
U32* smallerPtr = bt + 2*(curr&btMask);
U32* largerPtr = bt + 2*(curr&btMask) + 1;
U32 matchEndIdx = curr + 8 + 1;
U32 dummy32; /* to be nullified at the end */
size_t bestLength = 0;
matchIndex = hashTable[h];
hashTable[h] = curr; /* Update Hash Table */
- while (nbCompares-- && (matchIndex > windowLow)) {
+ for (; nbCompares && (matchIndex > windowLow); --nbCompares) {
U32* const nextPtr = bt + 2*(matchIndex & btMask);
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
const BYTE* match;
if ((dictMode != ZSTD_extDict) || (matchIndex+matchLength >= dictLimit)) {
match = base + matchIndex;
matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
} else {
match = dictBase + matchIndex;
matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
if (matchIndex+matchLength >= dictLimit)
match = base + matchIndex; /* to prepare for next usage of match[matchLength] */
}
if (matchLength > bestLength) {
if (matchLength > matchEndIdx - matchIndex)
matchEndIdx = matchIndex + (U32)matchLength;
if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(curr-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) )
- bestLength = matchLength, *offsetPtr = ZSTD_REP_MOVE + curr - matchIndex;
+ bestLength = matchLength, *offsetPtr = STORE_OFFSET(curr - matchIndex);
if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */
if (dictMode == ZSTD_dictMatchState) {
nbCompares = 0; /* in addition to avoiding checking any
* further in this loop, make sure we
* skip checking in the dictionary. */
}
break; /* drop, to guarantee consistency (miss a little bit of compression) */
}
}
if (match[matchLength] < ip[matchLength]) {
/* match is smaller than current */
*smallerPtr = matchIndex; /* update smaller idx */
commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */
smallerPtr = nextPtr+1; /* new "smaller" => larger of match */
matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */
} else {
/* match is larger than current */
*largerPtr = matchIndex;
commonLengthLarger = matchLength;
if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */
largerPtr = nextPtr;
matchIndex = nextPtr[0];
} }
*smallerPtr = *largerPtr = 0;
+ assert(nbCompares <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
if (dictMode == ZSTD_dictMatchState && nbCompares) {
bestLength = ZSTD_DUBT_findBetterDictMatch(
ms, ip, iend,
offsetPtr, bestLength, nbCompares,
mls, dictMode);
}
assert(matchEndIdx > curr+8); /* ensure nextToUpdate is increased */
ms->nextToUpdate = matchEndIdx - 8; /* skip repetitive patterns */
if (bestLength >= MINMATCH) {
- U32 const mIndex = curr - ((U32)*offsetPtr - ZSTD_REP_MOVE); (void)mIndex;
+ U32 const mIndex = curr - (U32)STORED_OFFSET(*offsetPtr); (void)mIndex;
DEBUGLOG(8, "ZSTD_DUBT_findBestMatch(%u) : found match of length %u and offsetCode %u (pos %u)",
curr, (U32)bestLength, (U32)*offsetPtr, mIndex);
}
return bestLength;
}
}
/** ZSTD_BtFindBestMatch() : Tree updater, providing best match */
FORCE_INLINE_TEMPLATE size_t
ZSTD_BtFindBestMatch( ZSTD_matchState_t* ms,
const BYTE* const ip, const BYTE* const iLimit,
size_t* offsetPtr,
const U32 mls /* template */,
const ZSTD_dictMode_e dictMode)
{
DEBUGLOG(7, "ZSTD_BtFindBestMatch");
if (ip < ms->window.base + ms->nextToUpdate) return 0; /* skipped area */
ZSTD_updateDUBT(ms, ip, iLimit, mls);
return ZSTD_DUBT_findBestMatch(ms, ip, iLimit, offsetPtr, mls, dictMode);
}
-
-static size_t
-ZSTD_BtFindBestMatch_selectMLS ( ZSTD_matchState_t* ms,
- const BYTE* ip, const BYTE* const iLimit,
- size_t* offsetPtr)
-{
- switch(ms->cParams.minMatch)
- {
- default : /* includes case 3 */
- case 4 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 4, ZSTD_noDict);
- case 5 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 5, ZSTD_noDict);
- case 7 :
- case 6 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 6, ZSTD_noDict);
- }
-}
-
-
-static size_t ZSTD_BtFindBestMatch_dictMatchState_selectMLS (
- ZSTD_matchState_t* ms,
- const BYTE* ip, const BYTE* const iLimit,
- size_t* offsetPtr)
-{
- switch(ms->cParams.minMatch)
- {
- default : /* includes case 3 */
- case 4 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 4, ZSTD_dictMatchState);
- case 5 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 5, ZSTD_dictMatchState);
- case 7 :
- case 6 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 6, ZSTD_dictMatchState);
- }
-}
-
-
-static size_t ZSTD_BtFindBestMatch_extDict_selectMLS (
- ZSTD_matchState_t* ms,
- const BYTE* ip, const BYTE* const iLimit,
- size_t* offsetPtr)
-{
- switch(ms->cParams.minMatch)
- {
- default : /* includes case 3 */
- case 4 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 4, ZSTD_extDict);
- case 5 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 5, ZSTD_extDict);
- case 7 :
- case 6 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 6, ZSTD_extDict);
- }
-}
-
-
-
-/* *********************************
-* Hash Chain
+/***********************************
+* Dedicated dict search
***********************************/
-#define NEXT_IN_CHAIN(d, mask) chainTable[(d) & (mask)]
-
-/* Update chains up to ip (excluded)
- Assumption : always within prefix (i.e. not within extDict) */
-FORCE_INLINE_TEMPLATE U32 ZSTD_insertAndFindFirstIndex_internal(
- ZSTD_matchState_t* ms,
- const ZSTD_compressionParameters* const cParams,
- const BYTE* ip, U32 const mls)
-{
- U32* const hashTable = ms->hashTable;
- const U32 hashLog = cParams->hashLog;
- U32* const chainTable = ms->chainTable;
- const U32 chainMask = (1 << cParams->chainLog) - 1;
- const BYTE* const base = ms->window.base;
- const U32 target = (U32)(ip - base);
- U32 idx = ms->nextToUpdate;
-
- while(idx < target) { /* catch up */
- size_t const h = ZSTD_hashPtr(base+idx, hashLog, mls);
- NEXT_IN_CHAIN(idx, chainMask) = hashTable[h];
- hashTable[h] = idx;
- idx++;
- }
-
- ms->nextToUpdate = target;
- return hashTable[ZSTD_hashPtr(ip, hashLog, mls)];
-}
-
-U32 ZSTD_insertAndFindFirstIndex(ZSTD_matchState_t* ms, const BYTE* ip) {
- const ZSTD_compressionParameters* const cParams = &ms->cParams;
- return ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, ms->cParams.minMatch);
-}
void ZSTD_dedicatedDictSearch_lazy_loadDictionary(ZSTD_matchState_t* ms, const BYTE* const ip)
{
const BYTE* const base = ms->window.base;
U32 const target = (U32)(ip - base);
U32* const hashTable = ms->hashTable;
U32* const chainTable = ms->chainTable;
U32 const chainSize = 1 << ms->cParams.chainLog;
U32 idx = ms->nextToUpdate;
- U32 const minChain = chainSize < target ? target - chainSize : idx;
+ U32 const minChain = chainSize < target - idx ? target - chainSize : idx;
U32 const bucketSize = 1 << ZSTD_LAZY_DDSS_BUCKET_LOG;
U32 const cacheSize = bucketSize - 1;
U32 const chainAttempts = (1 << ms->cParams.searchLog) - cacheSize;
U32 const chainLimit = chainAttempts > 255 ? 255 : chainAttempts;
/* We know the hashtable is oversized by a factor of `bucketSize`.
* We are going to temporarily pretend `bucketSize == 1`, keeping only a
* single entry. We will use the rest of the space to construct a temporary
* chaintable.
*/
U32 const hashLog = ms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG;
U32* const tmpHashTable = hashTable;
U32* const tmpChainTable = hashTable + ((size_t)1 << hashLog);
- U32 const tmpChainSize = ((1 << ZSTD_LAZY_DDSS_BUCKET_LOG) - 1) << hashLog;
+ U32 const tmpChainSize = (U32)((1 << ZSTD_LAZY_DDSS_BUCKET_LOG) - 1) << hashLog;
U32 const tmpMinChain = tmpChainSize < target ? target - tmpChainSize : idx;
-
U32 hashIdx;
assert(ms->cParams.chainLog <= 24);
- assert(ms->cParams.hashLog >= ms->cParams.chainLog);
+ assert(ms->cParams.hashLog > ms->cParams.chainLog);
assert(idx != 0);
assert(tmpMinChain <= minChain);
/* fill conventional hash table and conventional chain table */
for ( ; idx < target; idx++) {
U32 const h = (U32)ZSTD_hashPtr(base + idx, hashLog, ms->cParams.minMatch);
if (idx >= tmpMinChain) {
tmpChainTable[idx - tmpMinChain] = hashTable[h];
}
tmpHashTable[h] = idx;
}
/* sort chains into ddss chain table */
{
U32 chainPos = 0;
for (hashIdx = 0; hashIdx < (1U << hashLog); hashIdx++) {
U32 count;
U32 countBeyondMinChain = 0;
U32 i = tmpHashTable[hashIdx];
for (count = 0; i >= tmpMinChain && count < cacheSize; count++) {
/* skip through the chain to the first position that won't be
* in the hash cache bucket */
if (i < minChain) {
countBeyondMinChain++;
}
i = tmpChainTable[i - tmpMinChain];
}
if (count == cacheSize) {
for (count = 0; count < chainLimit;) {
if (i < minChain) {
- if (!i || countBeyondMinChain++ > cacheSize) {
+ if (!i || ++countBeyondMinChain > cacheSize) {
/* only allow pulling `cacheSize` number of entries
* into the cache or chainTable beyond `minChain`,
* to replace the entries pulled out of the
* chainTable into the cache. This lets us reach
* back further without increasing the total number
* of entries in the chainTable, guaranteeing the
* DDSS chain table will fit into the space
* allocated for the regular one. */
break;
}
}
chainTable[chainPos++] = i;
count++;
if (i < tmpMinChain) {
break;
}
i = tmpChainTable[i - tmpMinChain];
}
} else {
count = 0;
}
if (count) {
tmpHashTable[hashIdx] = ((chainPos - count) << 8) + count;
} else {
tmpHashTable[hashIdx] = 0;
}
}
assert(chainPos <= chainSize); /* I believe this is guaranteed... */
}
/* move chain pointers into the last entry of each hash bucket */
for (hashIdx = (1 << hashLog); hashIdx; ) {
U32 const bucketIdx = --hashIdx << ZSTD_LAZY_DDSS_BUCKET_LOG;
U32 const chainPackedPointer = tmpHashTable[hashIdx];
U32 i;
for (i = 0; i < cacheSize; i++) {
hashTable[bucketIdx + i] = 0;
}
hashTable[bucketIdx + bucketSize - 1] = chainPackedPointer;
}
/* fill the buckets of the hash table */
for (idx = ms->nextToUpdate; idx < target; idx++) {
U32 const h = (U32)ZSTD_hashPtr(base + idx, hashLog, ms->cParams.minMatch)
<< ZSTD_LAZY_DDSS_BUCKET_LOG;
U32 i;
/* Shift hash cache down 1. */
for (i = cacheSize - 1; i; i--)
hashTable[h + i] = hashTable[h + i - 1];
hashTable[h] = idx;
}
ms->nextToUpdate = target;
}
+/* Returns the longest match length found in the dedicated dict search structure.
+ * If none are longer than the argument ml, then ml will be returned.
+ */
+FORCE_INLINE_TEMPLATE
+size_t ZSTD_dedicatedDictSearch_lazy_search(size_t* offsetPtr, size_t ml, U32 nbAttempts,
+ const ZSTD_matchState_t* const dms,
+ const BYTE* const ip, const BYTE* const iLimit,
+ const BYTE* const prefixStart, const U32 curr,
+ const U32 dictLimit, const size_t ddsIdx) {
+ const U32 ddsLowestIndex = dms->window.dictLimit;
+ const BYTE* const ddsBase = dms->window.base;
+ const BYTE* const ddsEnd = dms->window.nextSrc;
+ const U32 ddsSize = (U32)(ddsEnd - ddsBase);
+ const U32 ddsIndexDelta = dictLimit - ddsSize;
+ const U32 bucketSize = (1 << ZSTD_LAZY_DDSS_BUCKET_LOG);
+ const U32 bucketLimit = nbAttempts < bucketSize - 1 ? nbAttempts : bucketSize - 1;
+ U32 ddsAttempt;
+ U32 matchIndex;
+
+ for (ddsAttempt = 0; ddsAttempt < bucketSize - 1; ddsAttempt++) {
+ PREFETCH_L1(ddsBase + dms->hashTable[ddsIdx + ddsAttempt]);
+ }
+
+ {
+ U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1];
+ U32 const chainIndex = chainPackedPointer >> 8;
+
+ PREFETCH_L1(&dms->chainTable[chainIndex]);
+ }
+
+ for (ddsAttempt = 0; ddsAttempt < bucketLimit; ddsAttempt++) {
+ size_t currentMl=0;
+ const BYTE* match;
+ matchIndex = dms->hashTable[ddsIdx + ddsAttempt];
+ match = ddsBase + matchIndex;
+
+ if (!matchIndex) {
+ return ml;
+ }
+
+ /* guaranteed by table construction */
+ (void)ddsLowestIndex;
+ assert(matchIndex >= ddsLowestIndex);
+ assert(match+4 <= ddsEnd);
+ if (MEM_read32(match) == MEM_read32(ip)) {
+ /* assumption : matchIndex <= dictLimit-4 (by table construction) */
+ currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4;
+ }
+
+ /* save best solution */
+ if (currentMl > ml) {
+ ml = currentMl;
+ *offsetPtr = STORE_OFFSET(curr - (matchIndex + ddsIndexDelta));
+ if (ip+currentMl == iLimit) {
+ /* best possible, avoids read overflow on next attempt */
+ return ml;
+ }
+ }
+ }
+
+ {
+ U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1];
+ U32 chainIndex = chainPackedPointer >> 8;
+ U32 const chainLength = chainPackedPointer & 0xFF;
+ U32 const chainAttempts = nbAttempts - ddsAttempt;
+ U32 const chainLimit = chainAttempts > chainLength ? chainLength : chainAttempts;
+ U32 chainAttempt;
+
+ for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++) {
+ PREFETCH_L1(ddsBase + dms->chainTable[chainIndex + chainAttempt]);
+ }
+
+ for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++, chainIndex++) {
+ size_t currentMl=0;
+ const BYTE* match;
+ matchIndex = dms->chainTable[chainIndex];
+ match = ddsBase + matchIndex;
+
+ /* guaranteed by table construction */
+ assert(matchIndex >= ddsLowestIndex);
+ assert(match+4 <= ddsEnd);
+ if (MEM_read32(match) == MEM_read32(ip)) {
+ /* assumption : matchIndex <= dictLimit-4 (by table construction) */
+ currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4;
+ }
+
+ /* save best solution */
+ if (currentMl > ml) {
+ ml = currentMl;
+ *offsetPtr = STORE_OFFSET(curr - (matchIndex + ddsIndexDelta));
+ if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
+ }
+ }
+ }
+ return ml;
+}
+
+
+/* *********************************
+* Hash Chain
+***********************************/
+#define NEXT_IN_CHAIN(d, mask) chainTable[(d) & (mask)]
+
+/* Update chains up to ip (excluded)
+ Assumption : always within prefix (i.e. not within extDict) */
+FORCE_INLINE_TEMPLATE U32 ZSTD_insertAndFindFirstIndex_internal(
+ ZSTD_matchState_t* ms,
+ const ZSTD_compressionParameters* const cParams,
+ const BYTE* ip, U32 const mls)
+{
+ U32* const hashTable = ms->hashTable;
+ const U32 hashLog = cParams->hashLog;
+ U32* const chainTable = ms->chainTable;
+ const U32 chainMask = (1 << cParams->chainLog) - 1;
+ const BYTE* const base = ms->window.base;
+ const U32 target = (U32)(ip - base);
+ U32 idx = ms->nextToUpdate;
+
+ while(idx < target) { /* catch up */
+ size_t const h = ZSTD_hashPtr(base+idx, hashLog, mls);
+ NEXT_IN_CHAIN(idx, chainMask) = hashTable[h];
+ hashTable[h] = idx;
+ idx++;
+ }
+
+ ms->nextToUpdate = target;
+ return hashTable[ZSTD_hashPtr(ip, hashLog, mls)];
+}
+
+U32 ZSTD_insertAndFindFirstIndex(ZSTD_matchState_t* ms, const BYTE* ip) {
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ return ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, ms->cParams.minMatch);
+}
/* inlining is important to hardwire a hot branch (template emulation) */
FORCE_INLINE_TEMPLATE
-size_t ZSTD_HcFindBestMatch_generic (
+size_t ZSTD_HcFindBestMatch(
ZSTD_matchState_t* ms,
const BYTE* const ip, const BYTE* const iLimit,
size_t* offsetPtr,
const U32 mls, const ZSTD_dictMode_e dictMode)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const chainTable = ms->chainTable;
const U32 chainSize = (1 << cParams->chainLog);
const U32 chainMask = chainSize-1;
const BYTE* const base = ms->window.base;
const BYTE* const dictBase = ms->window.dictBase;
const U32 dictLimit = ms->window.dictLimit;
const BYTE* const prefixStart = base + dictLimit;
const BYTE* const dictEnd = dictBase + dictLimit;
const U32 curr = (U32)(ip-base);
const U32 maxDistance = 1U << cParams->windowLog;
const U32 lowestValid = ms->window.lowLimit;
const U32 withinMaxDistance = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
const U32 isDictionary = (ms->loadedDictEnd != 0);
const U32 lowLimit = isDictionary ? lowestValid : withinMaxDistance;
const U32 minChain = curr > chainSize ? curr - chainSize : 0;
U32 nbAttempts = 1U << cParams->searchLog;
size_t ml=4-1;
const ZSTD_matchState_t* const dms = ms->dictMatchState;
const U32 ddsHashLog = dictMode == ZSTD_dedicatedDictSearch
? dms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG : 0;
const size_t ddsIdx = dictMode == ZSTD_dedicatedDictSearch
? ZSTD_hashPtr(ip, ddsHashLog, mls) << ZSTD_LAZY_DDSS_BUCKET_LOG : 0;
U32 matchIndex;
if (dictMode == ZSTD_dedicatedDictSearch) {
const U32* entry = &dms->hashTable[ddsIdx];
PREFETCH_L1(entry);
}
/* HC4 match finder */
matchIndex = ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, mls);
for ( ; (matchIndex>=lowLimit) & (nbAttempts>0) ; nbAttempts--) {
size_t currentMl=0;
if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) {
const BYTE* const match = base + matchIndex;
assert(matchIndex >= dictLimit); /* ensures this is true if dictMode != ZSTD_extDict */
if (match[ml] == ip[ml]) /* potentially better */
currentMl = ZSTD_count(ip, match, iLimit);
} else {
const BYTE* const match = dictBase + matchIndex;
assert(match+4 <= dictEnd);
if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */
currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4;
}
/* save best solution */
if (currentMl > ml) {
ml = currentMl;
- *offsetPtr = curr - matchIndex + ZSTD_REP_MOVE;
+ *offsetPtr = STORE_OFFSET(curr - matchIndex);
if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
}
if (matchIndex <= minChain) break;
matchIndex = NEXT_IN_CHAIN(matchIndex, chainMask);
}
+ assert(nbAttempts <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
if (dictMode == ZSTD_dedicatedDictSearch) {
- const U32 ddsLowestIndex = dms->window.dictLimit;
- const BYTE* const ddsBase = dms->window.base;
- const BYTE* const ddsEnd = dms->window.nextSrc;
- const U32 ddsSize = (U32)(ddsEnd - ddsBase);
- const U32 ddsIndexDelta = dictLimit - ddsSize;
- const U32 bucketSize = (1 << ZSTD_LAZY_DDSS_BUCKET_LOG);
- const U32 bucketLimit = nbAttempts < bucketSize - 1 ? nbAttempts : bucketSize - 1;
- U32 ddsAttempt;
-
- for (ddsAttempt = 0; ddsAttempt < bucketSize - 1; ddsAttempt++) {
- PREFETCH_L1(ddsBase + dms->hashTable[ddsIdx + ddsAttempt]);
- }
-
- {
- U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1];
- U32 const chainIndex = chainPackedPointer >> 8;
-
- PREFETCH_L1(&dms->chainTable[chainIndex]);
- }
-
- for (ddsAttempt = 0; ddsAttempt < bucketLimit; ddsAttempt++) {
- size_t currentMl=0;
- const BYTE* match;
- matchIndex = dms->hashTable[ddsIdx + ddsAttempt];
- match = ddsBase + matchIndex;
-
- if (!matchIndex) {
- return ml;
- }
-
- /* guaranteed by table construction */
- (void)ddsLowestIndex;
- assert(matchIndex >= ddsLowestIndex);
- assert(match+4 <= ddsEnd);
- if (MEM_read32(match) == MEM_read32(ip)) {
- /* assumption : matchIndex <= dictLimit-4 (by table construction) */
- currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4;
- }
-
- /* save best solution */
- if (currentMl > ml) {
- ml = currentMl;
- *offsetPtr = curr - (matchIndex + ddsIndexDelta) + ZSTD_REP_MOVE;
- if (ip+currentMl == iLimit) {
- /* best possible, avoids read overflow on next attempt */
- return ml;
- }
- }
- }
-
- {
- U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1];
- U32 chainIndex = chainPackedPointer >> 8;
- U32 const chainLength = chainPackedPointer & 0xFF;
- U32 const chainAttempts = nbAttempts - ddsAttempt;
- U32 const chainLimit = chainAttempts > chainLength ? chainLength : chainAttempts;
- U32 chainAttempt;
-
- for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++) {
- PREFETCH_L1(ddsBase + dms->chainTable[chainIndex + chainAttempt]);
- }
-
- for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++, chainIndex++) {
- size_t currentMl=0;
- const BYTE* match;
- matchIndex = dms->chainTable[chainIndex];
- match = ddsBase + matchIndex;
-
- /* guaranteed by table construction */
- assert(matchIndex >= ddsLowestIndex);
- assert(match+4 <= ddsEnd);
- if (MEM_read32(match) == MEM_read32(ip)) {
- /* assumption : matchIndex <= dictLimit-4 (by table construction) */
- currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4;
- }
-
- /* save best solution */
- if (currentMl > ml) {
- ml = currentMl;
- *offsetPtr = curr - (matchIndex + ddsIndexDelta) + ZSTD_REP_MOVE;
- if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
- }
- }
- }
+ ml = ZSTD_dedicatedDictSearch_lazy_search(offsetPtr, ml, nbAttempts, dms,
+ ip, iLimit, prefixStart, curr, dictLimit, ddsIdx);
} else if (dictMode == ZSTD_dictMatchState) {
const U32* const dmsChainTable = dms->chainTable;
const U32 dmsChainSize = (1 << dms->cParams.chainLog);
const U32 dmsChainMask = dmsChainSize - 1;
const U32 dmsLowestIndex = dms->window.dictLimit;
const BYTE* const dmsBase = dms->window.base;
const BYTE* const dmsEnd = dms->window.nextSrc;
const U32 dmsSize = (U32)(dmsEnd - dmsBase);
const U32 dmsIndexDelta = dictLimit - dmsSize;
const U32 dmsMinChain = dmsSize > dmsChainSize ? dmsSize - dmsChainSize : 0;
matchIndex = dms->hashTable[ZSTD_hashPtr(ip, dms->cParams.hashLog, mls)];
for ( ; (matchIndex>=dmsLowestIndex) & (nbAttempts>0) ; nbAttempts--) {
size_t currentMl=0;
const BYTE* const match = dmsBase + matchIndex;
assert(match+4 <= dmsEnd);
if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */
currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dmsEnd, prefixStart) + 4;
/* save best solution */
if (currentMl > ml) {
ml = currentMl;
- *offsetPtr = curr - (matchIndex + dmsIndexDelta) + ZSTD_REP_MOVE;
+ assert(curr > matchIndex + dmsIndexDelta);
+ *offsetPtr = STORE_OFFSET(curr - (matchIndex + dmsIndexDelta));
if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
}
if (matchIndex <= dmsMinChain) break;
matchIndex = dmsChainTable[matchIndex & dmsChainMask];
}
}
return ml;
}
+/* *********************************
+* (SIMD) Row-based matchfinder
+***********************************/
+/* Constants for row-based hash */
+#define ZSTD_ROW_HASH_TAG_OFFSET 16 /* byte offset of hashes in the match state's tagTable from the beginning of a row */
+#define ZSTD_ROW_HASH_TAG_BITS 8 /* nb bits to use for the tag */
+#define ZSTD_ROW_HASH_TAG_MASK ((1u << ZSTD_ROW_HASH_TAG_BITS) - 1)
+#define ZSTD_ROW_HASH_MAX_ENTRIES 64 /* absolute maximum number of entries per row, for all configurations */
-FORCE_INLINE_TEMPLATE size_t ZSTD_HcFindBestMatch_selectMLS (
- ZSTD_matchState_t* ms,
- const BYTE* ip, const BYTE* const iLimit,
- size_t* offsetPtr)
+#define ZSTD_ROW_HASH_CACHE_MASK (ZSTD_ROW_HASH_CACHE_SIZE - 1)
+
+typedef U64 ZSTD_VecMask; /* Clarifies when we are interacting with a U64 representing a mask of matches */
+
+/* ZSTD_VecMask_next():
+ * Starting from the LSB, returns the idx of the next non-zero bit.
+ * Basically counting the nb of trailing zeroes.
+ */
+static U32 ZSTD_VecMask_next(ZSTD_VecMask val) {
+ assert(val != 0);
+# if defined(_MSC_VER) && defined(_WIN64)
+ if (val != 0) {
+ unsigned long r;
+ _BitScanForward64(&r, val);
+ return (U32)(r);
+ } else {
+ /* Should not reach this code path */
+ __assume(0);
+ }
+# elif (defined(__GNUC__) && ((__GNUC__ > 3) || ((__GNUC__ == 3) && (__GNUC_MINOR__ >= 4))))
+ if (sizeof(size_t) == 4) {
+ U32 mostSignificantWord = (U32)(val >> 32);
+ U32 leastSignificantWord = (U32)val;
+ if (leastSignificantWord == 0) {
+ return 32 + (U32)__builtin_ctz(mostSignificantWord);
+ } else {
+ return (U32)__builtin_ctz(leastSignificantWord);
+ }
+ } else {
+ return (U32)__builtin_ctzll(val);
+ }
+# else
+ /* Software ctz version: http://aggregate.org/MAGIC/#Trailing%20Zero%20Count
+ * and: https://stackoverflow.com/questions/2709430/count-number-of-bits-in-a-64-bit-long-big-integer
+ */
+ val = ~val & (val - 1ULL); /* Lowest set bit mask */
+ val = val - ((val >> 1) & 0x5555555555555555);
+ val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL);
+ return (U32)((((val + (val >> 4)) & 0xF0F0F0F0F0F0F0FULL) * 0x101010101010101ULL) >> 56);
+# endif
+}
+
+/* ZSTD_rotateRight_*():
+ * Rotates a bitfield to the right by "count" bits.
+ * https://en.wikipedia.org/w/index.php?title=Circular_shift&oldid=991635599#Implementing_circular_shifts
+ */
+FORCE_INLINE_TEMPLATE
+U64 ZSTD_rotateRight_U64(U64 const value, U32 count) {
+ assert(count < 64);
+ count &= 0x3F; /* for fickle pattern recognition */
+ return (value >> count) | (U64)(value << ((0U - count) & 0x3F));
+}
+
+FORCE_INLINE_TEMPLATE
+U32 ZSTD_rotateRight_U32(U32 const value, U32 count) {
+ assert(count < 32);
+ count &= 0x1F; /* for fickle pattern recognition */
+ return (value >> count) | (U32)(value << ((0U - count) & 0x1F));
+}
+
+FORCE_INLINE_TEMPLATE
+U16 ZSTD_rotateRight_U16(U16 const value, U32 count) {
+ assert(count < 16);
+ count &= 0x0F; /* for fickle pattern recognition */
+ return (value >> count) | (U16)(value << ((0U - count) & 0x0F));
+}
+
+/* ZSTD_row_nextIndex():
+ * Returns the next index to insert at within a tagTable row, and updates the "head"
+ * value to reflect the update. Essentially cycles backwards from [0, {entries per row})
+ */
+FORCE_INLINE_TEMPLATE U32 ZSTD_row_nextIndex(BYTE* const tagRow, U32 const rowMask) {
+ U32 const next = (*tagRow - 1) & rowMask;
+ *tagRow = (BYTE)next;
+ return next;
+}
+
+/* ZSTD_isAligned():
+ * Checks that a pointer is aligned to "align" bytes which must be a power of 2.
+ */
+MEM_STATIC int ZSTD_isAligned(void const* ptr, size_t align) {
+ assert((align & (align - 1)) == 0);
+ return (((size_t)ptr) & (align - 1)) == 0;
+}
+
+/* ZSTD_row_prefetch():
+ * Performs prefetching for the hashTable and tagTable at a given row.
+ */
+FORCE_INLINE_TEMPLATE void ZSTD_row_prefetch(U32 const* hashTable, U16 const* tagTable, U32 const relRow, U32 const rowLog) {
+ PREFETCH_L1(hashTable + relRow);
+ if (rowLog >= 5) {
+ PREFETCH_L1(hashTable + relRow + 16);
+ /* Note: prefetching more of the hash table does not appear to be beneficial for 128-entry rows */
+ }
+ PREFETCH_L1(tagTable + relRow);
+ if (rowLog == 6) {
+ PREFETCH_L1(tagTable + relRow + 32);
+ }
+ assert(rowLog == 4 || rowLog == 5 || rowLog == 6);
+ assert(ZSTD_isAligned(hashTable + relRow, 64)); /* prefetched hash row always 64-byte aligned */
+ assert(ZSTD_isAligned(tagTable + relRow, (size_t)1 << rowLog)); /* prefetched tagRow sits on correct multiple of bytes (32,64,128) */
+}
+
+/* ZSTD_row_fillHashCache():
+ * Fill up the hash cache starting at idx, prefetching up to ZSTD_ROW_HASH_CACHE_SIZE entries,
+ * but not beyond iLimit.
+ */
+FORCE_INLINE_TEMPLATE void ZSTD_row_fillHashCache(ZSTD_matchState_t* ms, const BYTE* base,
+ U32 const rowLog, U32 const mls,
+ U32 idx, const BYTE* const iLimit)
{
- switch(ms->cParams.minMatch)
- {
- default : /* includes case 3 */
- case 4 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 4, ZSTD_noDict);
- case 5 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 5, ZSTD_noDict);
- case 7 :
- case 6 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 6, ZSTD_noDict);
+ U32 const* const hashTable = ms->hashTable;
+ U16 const* const tagTable = ms->tagTable;
+ U32 const hashLog = ms->rowHashLog;
+ U32 const maxElemsToPrefetch = (base + idx) > iLimit ? 0 : (U32)(iLimit - (base + idx) + 1);
+ U32 const lim = idx + MIN(ZSTD_ROW_HASH_CACHE_SIZE, maxElemsToPrefetch);
+
+ for (; idx < lim; ++idx) {
+ U32 const hash = (U32)ZSTD_hashPtr(base + idx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls);
+ U32 const row = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
+ ZSTD_row_prefetch(hashTable, tagTable, row, rowLog);
+ ms->hashCache[idx & ZSTD_ROW_HASH_CACHE_MASK] = hash;
}
+
+ DEBUGLOG(6, "ZSTD_row_fillHashCache(): [%u %u %u %u %u %u %u %u]", ms->hashCache[0], ms->hashCache[1],
+ ms->hashCache[2], ms->hashCache[3], ms->hashCache[4],
+ ms->hashCache[5], ms->hashCache[6], ms->hashCache[7]);
}
+/* ZSTD_row_nextCachedHash():
+ * Returns the hash of base + idx, and replaces the hash in the hash cache with the byte at
+ * base + idx + ZSTD_ROW_HASH_CACHE_SIZE. Also prefetches the appropriate rows from hashTable and tagTable.
+ */
+FORCE_INLINE_TEMPLATE U32 ZSTD_row_nextCachedHash(U32* cache, U32 const* hashTable,
+ U16 const* tagTable, BYTE const* base,
+ U32 idx, U32 const hashLog,
+ U32 const rowLog, U32 const mls)
+{
+ U32 const newHash = (U32)ZSTD_hashPtr(base+idx+ZSTD_ROW_HASH_CACHE_SIZE, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls);
+ U32 const row = (newHash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
+ ZSTD_row_prefetch(hashTable, tagTable, row, rowLog);
+ { U32 const hash = cache[idx & ZSTD_ROW_HASH_CACHE_MASK];
+ cache[idx & ZSTD_ROW_HASH_CACHE_MASK] = newHash;
+ return hash;
+ }
+}
-static size_t ZSTD_HcFindBestMatch_dictMatchState_selectMLS (
- ZSTD_matchState_t* ms,
- const BYTE* ip, const BYTE* const iLimit,
- size_t* offsetPtr)
+/* ZSTD_row_update_internalImpl():
+ * Updates the hash table with positions starting from updateStartIdx until updateEndIdx.
+ */
+FORCE_INLINE_TEMPLATE void ZSTD_row_update_internalImpl(ZSTD_matchState_t* ms,
+ U32 updateStartIdx, U32 const updateEndIdx,
+ U32 const mls, U32 const rowLog,
+ U32 const rowMask, U32 const useCache)
{
- switch(ms->cParams.minMatch)
- {
- default : /* includes case 3 */
- case 4 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 4, ZSTD_dictMatchState);
- case 5 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 5, ZSTD_dictMatchState);
- case 7 :
- case 6 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 6, ZSTD_dictMatchState);
+ U32* const hashTable = ms->hashTable;
+ U16* const tagTable = ms->tagTable;
+ U32 const hashLog = ms->rowHashLog;
+ const BYTE* const base = ms->window.base;
+
+ DEBUGLOG(6, "ZSTD_row_update_internalImpl(): updateStartIdx=%u, updateEndIdx=%u", updateStartIdx, updateEndIdx);
+ for (; updateStartIdx < updateEndIdx; ++updateStartIdx) {
+ U32 const hash = useCache ? ZSTD_row_nextCachedHash(ms->hashCache, hashTable, tagTable, base, updateStartIdx, hashLog, rowLog, mls)
+ : (U32)ZSTD_hashPtr(base + updateStartIdx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls);
+ U32 const relRow = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
+ U32* const row = hashTable + relRow;
+ BYTE* tagRow = (BYTE*)(tagTable + relRow); /* Though tagTable is laid out as a table of U16, each tag is only 1 byte.
+ Explicit cast allows us to get exact desired position within each row */
+ U32 const pos = ZSTD_row_nextIndex(tagRow, rowMask);
+
+ assert(hash == ZSTD_hashPtr(base + updateStartIdx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls));
+ ((BYTE*)tagRow)[pos + ZSTD_ROW_HASH_TAG_OFFSET] = hash & ZSTD_ROW_HASH_TAG_MASK;
+ row[pos] = updateStartIdx;
}
}
+/* ZSTD_row_update_internal():
+ * Inserts the byte at ip into the appropriate position in the hash table, and updates ms->nextToUpdate.
+ * Skips sections of long matches as is necessary.
+ */
+FORCE_INLINE_TEMPLATE void ZSTD_row_update_internal(ZSTD_matchState_t* ms, const BYTE* ip,
+ U32 const mls, U32 const rowLog,
+ U32 const rowMask, U32 const useCache)
+{
+ U32 idx = ms->nextToUpdate;
+ const BYTE* const base = ms->window.base;
+ const U32 target = (U32)(ip - base);
+ const U32 kSkipThreshold = 384;
+ const U32 kMaxMatchStartPositionsToUpdate = 96;
+ const U32 kMaxMatchEndPositionsToUpdate = 32;
+
+ if (useCache) {
+ /* Only skip positions when using hash cache, i.e.
+ * if we are loading a dict, don't skip anything.
+ * If we decide to skip, then we only update a set number
+ * of positions at the beginning and end of the match.
+ */
+ if (UNLIKELY(target - idx > kSkipThreshold)) {
+ U32 const bound = idx + kMaxMatchStartPositionsToUpdate;
+ ZSTD_row_update_internalImpl(ms, idx, bound, mls, rowLog, rowMask, useCache);
+ idx = target - kMaxMatchEndPositionsToUpdate;
+ ZSTD_row_fillHashCache(ms, base, rowLog, mls, idx, ip+1);
+ }
+ }
+ assert(target >= idx);
+ ZSTD_row_update_internalImpl(ms, idx, target, mls, rowLog, rowMask, useCache);
+ ms->nextToUpdate = target;
+}
-static size_t ZSTD_HcFindBestMatch_dedicatedDictSearch_selectMLS (
- ZSTD_matchState_t* ms,
- const BYTE* ip, const BYTE* const iLimit,
- size_t* offsetPtr)
+/* ZSTD_row_update():
+ * External wrapper for ZSTD_row_update_internal(). Used for filling the hashtable during dictionary
+ * processing.
+ */
+void ZSTD_row_update(ZSTD_matchState_t* const ms, const BYTE* ip) {
+ const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6);
+ const U32 rowMask = (1u << rowLog) - 1;
+ const U32 mls = MIN(ms->cParams.minMatch, 6 /* mls caps out at 6 */);
+
+ DEBUGLOG(5, "ZSTD_row_update(), rowLog=%u", rowLog);
+ ZSTD_row_update_internal(ms, ip, mls, rowLog, rowMask, 0 /* dont use cache */);
+}
+
+#if defined(ZSTD_ARCH_X86_SSE2)
+FORCE_INLINE_TEMPLATE ZSTD_VecMask
+ZSTD_row_getSSEMask(int nbChunks, const BYTE* const src, const BYTE tag, const U32 head)
{
- switch(ms->cParams.minMatch)
- {
- default : /* includes case 3 */
- case 4 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 4, ZSTD_dedicatedDictSearch);
- case 5 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 5, ZSTD_dedicatedDictSearch);
- case 7 :
- case 6 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 6, ZSTD_dedicatedDictSearch);
+ const __m128i comparisonMask = _mm_set1_epi8((char)tag);
+ int matches[4] = {0};
+ int i;
+ assert(nbChunks == 1 || nbChunks == 2 || nbChunks == 4);
+ for (i=0; i<nbChunks; i++) {
+ const __m128i chunk = _mm_loadu_si128((const __m128i*)(const void*)(src + 16*i));
+ const __m128i equalMask = _mm_cmpeq_epi8(chunk, comparisonMask);
+ matches[i] = _mm_movemask_epi8(equalMask);
}
+ if (nbChunks == 1) return ZSTD_rotateRight_U16((U16)matches[0], head);
+ if (nbChunks == 2) return ZSTD_rotateRight_U32((U32)matches[1] << 16 | (U32)matches[0], head);
+ assert(nbChunks == 4);
+ return ZSTD_rotateRight_U64((U64)matches[3] << 48 | (U64)matches[2] << 32 | (U64)matches[1] << 16 | (U64)matches[0], head);
}
+#endif
+/* Returns a ZSTD_VecMask (U32) that has the nth bit set to 1 if the newly-computed "tag" matches
+ * the hash at the nth position in a row of the tagTable.
+ * Each row is a circular buffer beginning at the value of "head". So we must rotate the "matches" bitfield
+ * to match up with the actual layout of the entries within the hashTable */
+FORCE_INLINE_TEMPLATE ZSTD_VecMask
+ZSTD_row_getMatchMask(const BYTE* const tagRow, const BYTE tag, const U32 head, const U32 rowEntries)
+{
+ const BYTE* const src = tagRow + ZSTD_ROW_HASH_TAG_OFFSET;
+ assert((rowEntries == 16) || (rowEntries == 32) || rowEntries == 64);
+ assert(rowEntries <= ZSTD_ROW_HASH_MAX_ENTRIES);
+
+#if defined(ZSTD_ARCH_X86_SSE2)
+
+ return ZSTD_row_getSSEMask(rowEntries / 16, src, tag, head);
+
+#else /* SW or NEON-LE */
+
+# if defined(ZSTD_ARCH_ARM_NEON)
+ /* This NEON path only works for little endian - otherwise use SWAR below */
+ if (MEM_isLittleEndian()) {
+ if (rowEntries == 16) {
+ const uint8x16_t chunk = vld1q_u8(src);
+ const uint16x8_t equalMask = vreinterpretq_u16_u8(vceqq_u8(chunk, vdupq_n_u8(tag)));
+ const uint16x8_t t0 = vshlq_n_u16(equalMask, 7);
+ const uint32x4_t t1 = vreinterpretq_u32_u16(vsriq_n_u16(t0, t0, 14));
+ const uint64x2_t t2 = vreinterpretq_u64_u32(vshrq_n_u32(t1, 14));
+ const uint8x16_t t3 = vreinterpretq_u8_u64(vsraq_n_u64(t2, t2, 28));
+ const U16 hi = (U16)vgetq_lane_u8(t3, 8);
+ const U16 lo = (U16)vgetq_lane_u8(t3, 0);
+ return ZSTD_rotateRight_U16((hi << 8) | lo, head);
+ } else if (rowEntries == 32) {
+ const uint16x8x2_t chunk = vld2q_u16((const U16*)(const void*)src);
+ const uint8x16_t chunk0 = vreinterpretq_u8_u16(chunk.val[0]);
+ const uint8x16_t chunk1 = vreinterpretq_u8_u16(chunk.val[1]);
+ const uint8x16_t equalMask0 = vceqq_u8(chunk0, vdupq_n_u8(tag));
+ const uint8x16_t equalMask1 = vceqq_u8(chunk1, vdupq_n_u8(tag));
+ const int8x8_t pack0 = vqmovn_s16(vreinterpretq_s16_u8(equalMask0));
+ const int8x8_t pack1 = vqmovn_s16(vreinterpretq_s16_u8(equalMask1));
+ const uint8x8_t t0 = vreinterpret_u8_s8(pack0);
+ const uint8x8_t t1 = vreinterpret_u8_s8(pack1);
+ const uint8x8_t t2 = vsri_n_u8(t1, t0, 2);
+ const uint8x8x2_t t3 = vuzp_u8(t2, t0);
+ const uint8x8_t t4 = vsri_n_u8(t3.val[1], t3.val[0], 4);
+ const U32 matches = vget_lane_u32(vreinterpret_u32_u8(t4), 0);
+ return ZSTD_rotateRight_U32(matches, head);
+ } else { /* rowEntries == 64 */
+ const uint8x16x4_t chunk = vld4q_u8(src);
+ const uint8x16_t dup = vdupq_n_u8(tag);
+ const uint8x16_t cmp0 = vceqq_u8(chunk.val[0], dup);
+ const uint8x16_t cmp1 = vceqq_u8(chunk.val[1], dup);
+ const uint8x16_t cmp2 = vceqq_u8(chunk.val[2], dup);
+ const uint8x16_t cmp3 = vceqq_u8(chunk.val[3], dup);
+
+ const uint8x16_t t0 = vsriq_n_u8(cmp1, cmp0, 1);
+ const uint8x16_t t1 = vsriq_n_u8(cmp3, cmp2, 1);
+ const uint8x16_t t2 = vsriq_n_u8(t1, t0, 2);
+ const uint8x16_t t3 = vsriq_n_u8(t2, t2, 4);
+ const uint8x8_t t4 = vshrn_n_u16(vreinterpretq_u16_u8(t3), 4);
+ const U64 matches = vget_lane_u64(vreinterpret_u64_u8(t4), 0);
+ return ZSTD_rotateRight_U64(matches, head);
+ }
+ }
+# endif /* ZSTD_ARCH_ARM_NEON */
+ /* SWAR */
+ { const size_t chunkSize = sizeof(size_t);
+ const size_t shiftAmount = ((chunkSize * 8) - chunkSize);
+ const size_t xFF = ~((size_t)0);
+ const size_t x01 = xFF / 0xFF;
+ const size_t x80 = x01 << 7;
+ const size_t splatChar = tag * x01;
+ ZSTD_VecMask matches = 0;
+ int i = rowEntries - chunkSize;
+ assert((sizeof(size_t) == 4) || (sizeof(size_t) == 8));
+ if (MEM_isLittleEndian()) { /* runtime check so have two loops */
+ const size_t extractMagic = (xFF / 0x7F) >> chunkSize;
+ do {
+ size_t chunk = MEM_readST(&src[i]);
+ chunk ^= splatChar;
+ chunk = (((chunk | x80) - x01) | chunk) & x80;
+ matches <<= chunkSize;
+ matches |= (chunk * extractMagic) >> shiftAmount;
+ i -= chunkSize;
+ } while (i >= 0);
+ } else { /* big endian: reverse bits during extraction */
+ const size_t msb = xFF ^ (xFF >> 1);
+ const size_t extractMagic = (msb / 0x1FF) | msb;
+ do {
+ size_t chunk = MEM_readST(&src[i]);
+ chunk ^= splatChar;
+ chunk = (((chunk | x80) - x01) | chunk) & x80;
+ matches <<= chunkSize;
+ matches |= ((chunk >> 7) * extractMagic) >> shiftAmount;
+ i -= chunkSize;
+ } while (i >= 0);
+ }
+ matches = ~matches;
+ if (rowEntries == 16) {
+ return ZSTD_rotateRight_U16((U16)matches, head);
+ } else if (rowEntries == 32) {
+ return ZSTD_rotateRight_U32((U32)matches, head);
+ } else {
+ return ZSTD_rotateRight_U64((U64)matches, head);
+ }
+ }
+#endif
+}
-FORCE_INLINE_TEMPLATE size_t ZSTD_HcFindBestMatch_extDict_selectMLS (
+/* The high-level approach of the SIMD row based match finder is as follows:
+ * - Figure out where to insert the new entry:
+ * - Generate a hash from a byte along with an additional 1-byte "short hash". The additional byte is our "tag"
+ * - The hashTable is effectively split into groups or "rows" of 16 or 32 entries of U32, and the hash determines
+ * which row to insert into.
+ * - Determine the correct position within the row to insert the entry into. Each row of 16 or 32 can
+ * be considered as a circular buffer with a "head" index that resides in the tagTable.
+ * - Also insert the "tag" into the equivalent row and position in the tagTable.
+ * - Note: The tagTable has 17 or 33 1-byte entries per row, due to 16 or 32 tags, and 1 "head" entry.
+ * The 17 or 33 entry rows are spaced out to occur every 32 or 64 bytes, respectively,
+ * for alignment/performance reasons, leaving some bytes unused.
+ * - Use SIMD to efficiently compare the tags in the tagTable to the 1-byte "short hash" and
+ * generate a bitfield that we can cycle through to check the collisions in the hash table.
+ * - Pick the longest match.
+ */
+FORCE_INLINE_TEMPLATE
+size_t ZSTD_RowFindBestMatch(
ZSTD_matchState_t* ms,
- const BYTE* ip, const BYTE* const iLimit,
- size_t* offsetPtr)
+ const BYTE* const ip, const BYTE* const iLimit,
+ size_t* offsetPtr,
+ const U32 mls, const ZSTD_dictMode_e dictMode,
+ const U32 rowLog)
{
- switch(ms->cParams.minMatch)
- {
- default : /* includes case 3 */
- case 4 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 4, ZSTD_extDict);
- case 5 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 5, ZSTD_extDict);
- case 7 :
- case 6 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 6, ZSTD_extDict);
+ U32* const hashTable = ms->hashTable;
+ U16* const tagTable = ms->tagTable;
+ U32* const hashCache = ms->hashCache;
+ const U32 hashLog = ms->rowHashLog;
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ const BYTE* const base = ms->window.base;
+ const BYTE* const dictBase = ms->window.dictBase;
+ const U32 dictLimit = ms->window.dictLimit;
+ const BYTE* const prefixStart = base + dictLimit;
+ const BYTE* const dictEnd = dictBase + dictLimit;
+ const U32 curr = (U32)(ip-base);
+ const U32 maxDistance = 1U << cParams->windowLog;
+ const U32 lowestValid = ms->window.lowLimit;
+ const U32 withinMaxDistance = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
+ const U32 isDictionary = (ms->loadedDictEnd != 0);
+ const U32 lowLimit = isDictionary ? lowestValid : withinMaxDistance;
+ const U32 rowEntries = (1U << rowLog);
+ const U32 rowMask = rowEntries - 1;
+ const U32 cappedSearchLog = MIN(cParams->searchLog, rowLog); /* nb of searches is capped at nb entries per row */
+ U32 nbAttempts = 1U << cappedSearchLog;
+ size_t ml=4-1;
+
+ /* DMS/DDS variables that may be referenced laster */
+ const ZSTD_matchState_t* const dms = ms->dictMatchState;
+
+ /* Initialize the following variables to satisfy static analyzer */
+ size_t ddsIdx = 0;
+ U32 ddsExtraAttempts = 0; /* cctx hash tables are limited in searches, but allow extra searches into DDS */
+ U32 dmsTag = 0;
+ U32* dmsRow = NULL;
+ BYTE* dmsTagRow = NULL;
+
+ if (dictMode == ZSTD_dedicatedDictSearch) {
+ const U32 ddsHashLog = dms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG;
+ { /* Prefetch DDS hashtable entry */
+ ddsIdx = ZSTD_hashPtr(ip, ddsHashLog, mls) << ZSTD_LAZY_DDSS_BUCKET_LOG;
+ PREFETCH_L1(&dms->hashTable[ddsIdx]);
+ }
+ ddsExtraAttempts = cParams->searchLog > rowLog ? 1U << (cParams->searchLog - rowLog) : 0;
+ }
+
+ if (dictMode == ZSTD_dictMatchState) {
+ /* Prefetch DMS rows */
+ U32* const dmsHashTable = dms->hashTable;
+ U16* const dmsTagTable = dms->tagTable;
+ U32 const dmsHash = (U32)ZSTD_hashPtr(ip, dms->rowHashLog + ZSTD_ROW_HASH_TAG_BITS, mls);
+ U32 const dmsRelRow = (dmsHash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
+ dmsTag = dmsHash & ZSTD_ROW_HASH_TAG_MASK;
+ dmsTagRow = (BYTE*)(dmsTagTable + dmsRelRow);
+ dmsRow = dmsHashTable + dmsRelRow;
+ ZSTD_row_prefetch(dmsHashTable, dmsTagTable, dmsRelRow, rowLog);
+ }
+
+ /* Update the hashTable and tagTable up to (but not including) ip */
+ ZSTD_row_update_internal(ms, ip, mls, rowLog, rowMask, 1 /* useCache */);
+ { /* Get the hash for ip, compute the appropriate row */
+ U32 const hash = ZSTD_row_nextCachedHash(hashCache, hashTable, tagTable, base, curr, hashLog, rowLog, mls);
+ U32 const relRow = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
+ U32 const tag = hash & ZSTD_ROW_HASH_TAG_MASK;
+ U32* const row = hashTable + relRow;
+ BYTE* tagRow = (BYTE*)(tagTable + relRow);
+ U32 const head = *tagRow & rowMask;
+ U32 matchBuffer[ZSTD_ROW_HASH_MAX_ENTRIES];
+ size_t numMatches = 0;
+ size_t currMatch = 0;
+ ZSTD_VecMask matches = ZSTD_row_getMatchMask(tagRow, (BYTE)tag, head, rowEntries);
+
+ /* Cycle through the matches and prefetch */
+ for (; (matches > 0) && (nbAttempts > 0); --nbAttempts, matches &= (matches - 1)) {
+ U32 const matchPos = (head + ZSTD_VecMask_next(matches)) & rowMask;
+ U32 const matchIndex = row[matchPos];
+ assert(numMatches < rowEntries);
+ if (matchIndex < lowLimit)
+ break;
+ if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) {
+ PREFETCH_L1(base + matchIndex);
+ } else {
+ PREFETCH_L1(dictBase + matchIndex);
+ }
+ matchBuffer[numMatches++] = matchIndex;
+ }
+
+ /* Speed opt: insert current byte into hashtable too. This allows us to avoid one iteration of the loop
+ in ZSTD_row_update_internal() at the next search. */
+ {
+ U32 const pos = ZSTD_row_nextIndex(tagRow, rowMask);
+ tagRow[pos + ZSTD_ROW_HASH_TAG_OFFSET] = (BYTE)tag;
+ row[pos] = ms->nextToUpdate++;
+ }
+
+ /* Return the longest match */
+ for (; currMatch < numMatches; ++currMatch) {
+ U32 const matchIndex = matchBuffer[currMatch];
+ size_t currentMl=0;
+ assert(matchIndex < curr);
+ assert(matchIndex >= lowLimit);
+
+ if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) {
+ const BYTE* const match = base + matchIndex;
+ assert(matchIndex >= dictLimit); /* ensures this is true if dictMode != ZSTD_extDict */
+ if (match[ml] == ip[ml]) /* potentially better */
+ currentMl = ZSTD_count(ip, match, iLimit);
+ } else {
+ const BYTE* const match = dictBase + matchIndex;
+ assert(match+4 <= dictEnd);
+ if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */
+ currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4;
+ }
+
+ /* Save best solution */
+ if (currentMl > ml) {
+ ml = currentMl;
+ *offsetPtr = STORE_OFFSET(curr - matchIndex);
+ if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
+ }
+ }
}
+
+ assert(nbAttempts <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
+ if (dictMode == ZSTD_dedicatedDictSearch) {
+ ml = ZSTD_dedicatedDictSearch_lazy_search(offsetPtr, ml, nbAttempts + ddsExtraAttempts, dms,
+ ip, iLimit, prefixStart, curr, dictLimit, ddsIdx);
+ } else if (dictMode == ZSTD_dictMatchState) {
+ /* TODO: Measure and potentially add prefetching to DMS */
+ const U32 dmsLowestIndex = dms->window.dictLimit;
+ const BYTE* const dmsBase = dms->window.base;
+ const BYTE* const dmsEnd = dms->window.nextSrc;
+ const U32 dmsSize = (U32)(dmsEnd - dmsBase);
+ const U32 dmsIndexDelta = dictLimit - dmsSize;
+
+ { U32 const head = *dmsTagRow & rowMask;
+ U32 matchBuffer[ZSTD_ROW_HASH_MAX_ENTRIES];
+ size_t numMatches = 0;
+ size_t currMatch = 0;
+ ZSTD_VecMask matches = ZSTD_row_getMatchMask(dmsTagRow, (BYTE)dmsTag, head, rowEntries);
+
+ for (; (matches > 0) && (nbAttempts > 0); --nbAttempts, matches &= (matches - 1)) {
+ U32 const matchPos = (head + ZSTD_VecMask_next(matches)) & rowMask;
+ U32 const matchIndex = dmsRow[matchPos];
+ if (matchIndex < dmsLowestIndex)
+ break;
+ PREFETCH_L1(dmsBase + matchIndex);
+ matchBuffer[numMatches++] = matchIndex;
+ }
+
+ /* Return the longest match */
+ for (; currMatch < numMatches; ++currMatch) {
+ U32 const matchIndex = matchBuffer[currMatch];
+ size_t currentMl=0;
+ assert(matchIndex >= dmsLowestIndex);
+ assert(matchIndex < curr);
+
+ { const BYTE* const match = dmsBase + matchIndex;
+ assert(match+4 <= dmsEnd);
+ if (MEM_read32(match) == MEM_read32(ip))
+ currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dmsEnd, prefixStart) + 4;
+ }
+
+ if (currentMl > ml) {
+ ml = currentMl;
+ assert(curr > matchIndex + dmsIndexDelta);
+ *offsetPtr = STORE_OFFSET(curr - (matchIndex + dmsIndexDelta));
+ if (ip+currentMl == iLimit) break;
+ }
+ }
+ }
+ }
+ return ml;
}
+typedef size_t (*searchMax_f)(
+ ZSTD_matchState_t* ms,
+ const BYTE* ip, const BYTE* iLimit, size_t* offsetPtr);
+
+/**
+ * This struct contains the functions necessary for lazy to search.
+ * Currently, that is only searchMax. However, it is still valuable to have the
+ * VTable because this makes it easier to add more functions to the VTable later.
+ *
+ * TODO: The start of the search function involves loading and calculating a
+ * bunch of constants from the ZSTD_matchState_t. These computations could be
+ * done in an initialization function, and saved somewhere in the match state.
+ * Then we could pass a pointer to the saved state instead of the match state,
+ * and avoid duplicate computations.
+ *
+ * TODO: Move the match re-winding into searchMax. This improves compression
+ * ratio, and unlocks further simplifications with the next TODO.
+ *
+ * TODO: Try moving the repcode search into searchMax. After the re-winding
+ * and repcode search are in searchMax, there is no more logic in the match
+ * finder loop that requires knowledge about the dictMode. So we should be
+ * able to avoid force inlining it, and we can join the extDict loop with
+ * the single segment loop. It should go in searchMax instead of its own
+ * function to avoid having multiple virtual function calls per search.
+ */
+typedef struct {
+ searchMax_f searchMax;
+} ZSTD_LazyVTable;
+
+#define GEN_ZSTD_BT_VTABLE(dictMode, mls) \
+ static size_t ZSTD_BtFindBestMatch_##dictMode##_##mls( \
+ ZSTD_matchState_t* ms, \
+ const BYTE* ip, const BYTE* const iLimit, \
+ size_t* offsetPtr) \
+ { \
+ assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \
+ return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, mls, ZSTD_##dictMode); \
+ } \
+ static const ZSTD_LazyVTable ZSTD_BtVTable_##dictMode##_##mls = { \
+ ZSTD_BtFindBestMatch_##dictMode##_##mls \
+ };
+
+#define GEN_ZSTD_HC_VTABLE(dictMode, mls) \
+ static size_t ZSTD_HcFindBestMatch_##dictMode##_##mls( \
+ ZSTD_matchState_t* ms, \
+ const BYTE* ip, const BYTE* const iLimit, \
+ size_t* offsetPtr) \
+ { \
+ assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \
+ return ZSTD_HcFindBestMatch(ms, ip, iLimit, offsetPtr, mls, ZSTD_##dictMode); \
+ } \
+ static const ZSTD_LazyVTable ZSTD_HcVTable_##dictMode##_##mls = { \
+ ZSTD_HcFindBestMatch_##dictMode##_##mls \
+ };
+
+#define GEN_ZSTD_ROW_VTABLE(dictMode, mls, rowLog) \
+ static size_t ZSTD_RowFindBestMatch_##dictMode##_##mls##_##rowLog( \
+ ZSTD_matchState_t* ms, \
+ const BYTE* ip, const BYTE* const iLimit, \
+ size_t* offsetPtr) \
+ { \
+ assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \
+ assert(MAX(4, MIN(6, ms->cParams.searchLog)) == rowLog); \
+ return ZSTD_RowFindBestMatch(ms, ip, iLimit, offsetPtr, mls, ZSTD_##dictMode, rowLog); \
+ } \
+ static const ZSTD_LazyVTable ZSTD_RowVTable_##dictMode##_##mls##_##rowLog = { \
+ ZSTD_RowFindBestMatch_##dictMode##_##mls##_##rowLog \
+ };
+
+#define ZSTD_FOR_EACH_ROWLOG(X, dictMode, mls) \
+ X(dictMode, mls, 4) \
+ X(dictMode, mls, 5) \
+ X(dictMode, mls, 6)
+
+#define ZSTD_FOR_EACH_MLS_ROWLOG(X, dictMode) \
+ ZSTD_FOR_EACH_ROWLOG(X, dictMode, 4) \
+ ZSTD_FOR_EACH_ROWLOG(X, dictMode, 5) \
+ ZSTD_FOR_EACH_ROWLOG(X, dictMode, 6)
+
+#define ZSTD_FOR_EACH_MLS(X, dictMode) \
+ X(dictMode, 4) \
+ X(dictMode, 5) \
+ X(dictMode, 6)
+
+#define ZSTD_FOR_EACH_DICT_MODE(X, ...) \
+ X(__VA_ARGS__, noDict) \
+ X(__VA_ARGS__, extDict) \
+ X(__VA_ARGS__, dictMatchState) \
+ X(__VA_ARGS__, dedicatedDictSearch)
+
+/* Generate Row VTables for each combination of (dictMode, mls, rowLog) */
+ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS_ROWLOG, GEN_ZSTD_ROW_VTABLE)
+/* Generate Binary Tree VTables for each combination of (dictMode, mls) */
+ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS, GEN_ZSTD_BT_VTABLE)
+/* Generate Hash Chain VTables for each combination of (dictMode, mls) */
+ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS, GEN_ZSTD_HC_VTABLE)
+
+#define GEN_ZSTD_BT_VTABLE_ARRAY(dictMode) \
+ { \
+ &ZSTD_BtVTable_##dictMode##_4, \
+ &ZSTD_BtVTable_##dictMode##_5, \
+ &ZSTD_BtVTable_##dictMode##_6 \
+ }
+
+#define GEN_ZSTD_HC_VTABLE_ARRAY(dictMode) \
+ { \
+ &ZSTD_HcVTable_##dictMode##_4, \
+ &ZSTD_HcVTable_##dictMode##_5, \
+ &ZSTD_HcVTable_##dictMode##_6 \
+ }
+
+#define GEN_ZSTD_ROW_VTABLE_ARRAY_(dictMode, mls) \
+ { \
+ &ZSTD_RowVTable_##dictMode##_##mls##_4, \
+ &ZSTD_RowVTable_##dictMode##_##mls##_5, \
+ &ZSTD_RowVTable_##dictMode##_##mls##_6 \
+ }
+
+#define GEN_ZSTD_ROW_VTABLE_ARRAY(dictMode) \
+ { \
+ GEN_ZSTD_ROW_VTABLE_ARRAY_(dictMode, 4), \
+ GEN_ZSTD_ROW_VTABLE_ARRAY_(dictMode, 5), \
+ GEN_ZSTD_ROW_VTABLE_ARRAY_(dictMode, 6) \
+ }
+
+#define GEN_ZSTD_VTABLE_ARRAY(X) \
+ { \
+ X(noDict), \
+ X(extDict), \
+ X(dictMatchState), \
+ X(dedicatedDictSearch) \
+ }
+
/* *******************************
* Common parser - lazy strategy
*********************************/
-typedef enum { search_hashChain, search_binaryTree } searchMethod_e;
+typedef enum { search_hashChain=0, search_binaryTree=1, search_rowHash=2 } searchMethod_e;
+
+/**
+ * This table is indexed first by the four ZSTD_dictMode_e values, and then
+ * by the two searchMethod_e values. NULLs are placed for configurations
+ * that should never occur (extDict modes go to the other implementation
+ * below and there is no DDSS for binary tree search yet).
+ */
+
+static ZSTD_LazyVTable const*
+ZSTD_selectLazyVTable(ZSTD_matchState_t const* ms, searchMethod_e searchMethod, ZSTD_dictMode_e dictMode)
+{
+ /* Fill the Hc/Bt VTable arrays with the right functions for the (dictMode, mls) combination. */
+ ZSTD_LazyVTable const* const hcVTables[4][3] = GEN_ZSTD_VTABLE_ARRAY(GEN_ZSTD_HC_VTABLE_ARRAY);
+ ZSTD_LazyVTable const* const btVTables[4][3] = GEN_ZSTD_VTABLE_ARRAY(GEN_ZSTD_BT_VTABLE_ARRAY);
+ /* Fill the Row VTable array with the right functions for the (dictMode, mls, rowLog) combination. */
+ ZSTD_LazyVTable const* const rowVTables[4][3][3] = GEN_ZSTD_VTABLE_ARRAY(GEN_ZSTD_ROW_VTABLE_ARRAY);
+
+ U32 const mls = MAX(4, MIN(6, ms->cParams.minMatch));
+ U32 const rowLog = MAX(4, MIN(6, ms->cParams.searchLog));
+ switch (searchMethod) {
+ case search_hashChain:
+ return hcVTables[dictMode][mls - 4];
+ case search_binaryTree:
+ return btVTables[dictMode][mls - 4];
+ case search_rowHash:
+ return rowVTables[dictMode][mls - 4][rowLog - 4];
+ default:
+ return NULL;
+ }
+}
FORCE_INLINE_TEMPLATE size_t
ZSTD_compressBlock_lazy_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore,
U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize,
const searchMethod_e searchMethod, const U32 depth,
ZSTD_dictMode_e const dictMode)
{
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const BYTE* const iend = istart + srcSize;
- const BYTE* const ilimit = iend - 8;
+ const BYTE* const ilimit = (searchMethod == search_rowHash) ? iend - 8 - ZSTD_ROW_HASH_CACHE_SIZE : iend - 8;
const BYTE* const base = ms->window.base;
const U32 prefixLowestIndex = ms->window.dictLimit;
const BYTE* const prefixLowest = base + prefixLowestIndex;
- typedef size_t (*searchMax_f)(
- ZSTD_matchState_t* ms,
- const BYTE* ip, const BYTE* iLimit, size_t* offsetPtr);
-
- /**
- * This table is indexed first by the four ZSTD_dictMode_e values, and then
- * by the two searchMethod_e values. NULLs are placed for configurations
- * that should never occur (extDict modes go to the other implementation
- * below and there is no DDSS for binary tree search yet).
- */
- const searchMax_f searchFuncs[4][2] = {
- {
- ZSTD_HcFindBestMatch_selectMLS,
- ZSTD_BtFindBestMatch_selectMLS
- },
- {
- NULL,
- NULL
- },
- {
- ZSTD_HcFindBestMatch_dictMatchState_selectMLS,
- ZSTD_BtFindBestMatch_dictMatchState_selectMLS
- },
- {
- ZSTD_HcFindBestMatch_dedicatedDictSearch_selectMLS,
- NULL
- }
- };
-
- searchMax_f const searchMax = searchFuncs[dictMode][searchMethod == search_binaryTree];
+ searchMax_f const searchMax = ZSTD_selectLazyVTable(ms, searchMethod, dictMode)->searchMax;
U32 offset_1 = rep[0], offset_2 = rep[1], savedOffset=0;
const int isDMS = dictMode == ZSTD_dictMatchState;
const int isDDS = dictMode == ZSTD_dedicatedDictSearch;
const int isDxS = isDMS || isDDS;
const ZSTD_matchState_t* const dms = ms->dictMatchState;
const U32 dictLowestIndex = isDxS ? dms->window.dictLimit : 0;
const BYTE* const dictBase = isDxS ? dms->window.base : NULL;
const BYTE* const dictLowest = isDxS ? dictBase + dictLowestIndex : NULL;
const BYTE* const dictEnd = isDxS ? dms->window.nextSrc : NULL;
const U32 dictIndexDelta = isDxS ?
prefixLowestIndex - (U32)(dictEnd - dictBase) :
0;
const U32 dictAndPrefixLength = (U32)((ip - prefixLowest) + (dictEnd - dictLowest));
assert(searchMax != NULL);
- DEBUGLOG(5, "ZSTD_compressBlock_lazy_generic (dictMode=%u)", (U32)dictMode);
-
- /* init */
+ DEBUGLOG(5, "ZSTD_compressBlock_lazy_generic (dictMode=%u) (searchFunc=%u)", (U32)dictMode, (U32)searchMethod);
ip += (dictAndPrefixLength == 0);
if (dictMode == ZSTD_noDict) {
U32 const curr = (U32)(ip - base);
U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, ms->cParams.windowLog);
U32 const maxRep = curr - windowLow;
if (offset_2 > maxRep) savedOffset = offset_2, offset_2 = 0;
if (offset_1 > maxRep) savedOffset = offset_1, offset_1 = 0;
}
if (isDxS) {
/* dictMatchState repCode checks don't currently handle repCode == 0
* disabling. */
assert(offset_1 <= dictAndPrefixLength);
assert(offset_2 <= dictAndPrefixLength);
}
+ if (searchMethod == search_rowHash) {
+ const U32 rowLog = MAX(4, MIN(6, ms->cParams.searchLog));
+ ZSTD_row_fillHashCache(ms, base, rowLog,
+ MIN(ms->cParams.minMatch, 6 /* mls caps out at 6 */),
+ ms->nextToUpdate, ilimit);
+ }
+
/* Match Loop */
#if defined(__GNUC__) && defined(__x86_64__)
/* I've measured random a 5% speed loss on levels 5 & 6 (greedy) when the
* code alignment is perturbed. To fix the instability align the loop on 32-bytes.
*/
__asm__(".p2align 5");
#endif
while (ip < ilimit) {
size_t matchLength=0;
- size_t offset=0;
+ size_t offcode=STORE_REPCODE_1;
const BYTE* start=ip+1;
+ DEBUGLOG(7, "search baseline (depth 0)");
/* check repCode */
if (isDxS) {
const U32 repIndex = (U32)(ip - base) + 1 - offset_1;
const BYTE* repMatch = ((dictMode == ZSTD_dictMatchState || dictMode == ZSTD_dedicatedDictSearch)
&& repIndex < prefixLowestIndex) ?
dictBase + (repIndex - dictIndexDelta) :
base + repIndex;
if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
if (depth==0) goto _storeSequence;
}
}
if ( dictMode == ZSTD_noDict
&& ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1)))) {
matchLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
if (depth==0) goto _storeSequence;
}
/* first search (depth 0) */
{ size_t offsetFound = 999999999;
size_t const ml2 = searchMax(ms, ip, iend, &offsetFound);
if (ml2 > matchLength)
- matchLength = ml2, start = ip, offset=offsetFound;
+ matchLength = ml2, start = ip, offcode=offsetFound;
}
if (matchLength < 4) {
ip += ((ip-anchor) >> kSearchStrength) + 1; /* jump faster over incompressible sections */
continue;
}
/* let's try to find a better solution */
if (depth>=1)
while (ip<ilimit) {
+ DEBUGLOG(7, "search depth 1");
ip ++;
if ( (dictMode == ZSTD_noDict)
- && (offset) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) {
+ && (offcode) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) {
size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4;
int const gain2 = (int)(mlRep * 3);
- int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offset+1) + 1);
+ int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 1);
if ((mlRep >= 4) && (gain2 > gain1))
- matchLength = mlRep, offset = 0, start = ip;
+ matchLength = mlRep, offcode = STORE_REPCODE_1, start = ip;
}
if (isDxS) {
const U32 repIndex = (U32)(ip - base) - offset_1;
const BYTE* repMatch = repIndex < prefixLowestIndex ?
dictBase + (repIndex - dictIndexDelta) :
base + repIndex;
if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
&& (MEM_read32(repMatch) == MEM_read32(ip)) ) {
const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
int const gain2 = (int)(mlRep * 3);
- int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offset+1) + 1);
+ int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 1);
if ((mlRep >= 4) && (gain2 > gain1))
- matchLength = mlRep, offset = 0, start = ip;
+ matchLength = mlRep, offcode = STORE_REPCODE_1, start = ip;
}
}
{ size_t offset2=999999999;
size_t const ml2 = searchMax(ms, ip, iend, &offset2);
- int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */
- int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 4);
+ int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offset2))); /* raw approx */
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 4);
if ((ml2 >= 4) && (gain2 > gain1)) {
- matchLength = ml2, offset = offset2, start = ip;
+ matchLength = ml2, offcode = offset2, start = ip;
continue; /* search a better one */
} }
/* let's find an even better one */
if ((depth==2) && (ip<ilimit)) {
+ DEBUGLOG(7, "search depth 2");
ip ++;
if ( (dictMode == ZSTD_noDict)
- && (offset) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) {
+ && (offcode) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) {
size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4;
int const gain2 = (int)(mlRep * 4);
- int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 1);
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 1);
if ((mlRep >= 4) && (gain2 > gain1))
- matchLength = mlRep, offset = 0, start = ip;
+ matchLength = mlRep, offcode = STORE_REPCODE_1, start = ip;
}
if (isDxS) {
const U32 repIndex = (U32)(ip - base) - offset_1;
const BYTE* repMatch = repIndex < prefixLowestIndex ?
dictBase + (repIndex - dictIndexDelta) :
base + repIndex;
if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
&& (MEM_read32(repMatch) == MEM_read32(ip)) ) {
const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
int const gain2 = (int)(mlRep * 4);
- int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 1);
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 1);
if ((mlRep >= 4) && (gain2 > gain1))
- matchLength = mlRep, offset = 0, start = ip;
+ matchLength = mlRep, offcode = STORE_REPCODE_1, start = ip;
}
}
{ size_t offset2=999999999;
size_t const ml2 = searchMax(ms, ip, iend, &offset2);
- int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */
- int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 7);
+ int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offset2))); /* raw approx */
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 7);
if ((ml2 >= 4) && (gain2 > gain1)) {
- matchLength = ml2, offset = offset2, start = ip;
+ matchLength = ml2, offcode = offset2, start = ip;
continue;
} } }
break; /* nothing found : store previous solution */
}
/* NOTE:
- * start[-offset+ZSTD_REP_MOVE-1] is undefined behavior.
- * (-offset+ZSTD_REP_MOVE-1) is unsigned, and is added to start, which
- * overflows the pointer, which is undefined behavior.
+ * Pay attention that `start[-value]` can lead to strange undefined behavior
+ * notably if `value` is unsigned, resulting in a large positive `-value`.
*/
/* catch up */
- if (offset) {
+ if (STORED_IS_OFFSET(offcode)) {
if (dictMode == ZSTD_noDict) {
- while ( ((start > anchor) & (start - (offset-ZSTD_REP_MOVE) > prefixLowest))
- && (start[-1] == (start-(offset-ZSTD_REP_MOVE))[-1]) ) /* only search for offset within prefix */
+ while ( ((start > anchor) & (start - STORED_OFFSET(offcode) > prefixLowest))
+ && (start[-1] == (start-STORED_OFFSET(offcode))[-1]) ) /* only search for offset within prefix */
{ start--; matchLength++; }
}
if (isDxS) {
- U32 const matchIndex = (U32)((start-base) - (offset - ZSTD_REP_MOVE));
+ U32 const matchIndex = (U32)((size_t)(start-base) - STORED_OFFSET(offcode));
const BYTE* match = (matchIndex < prefixLowestIndex) ? dictBase + matchIndex - dictIndexDelta : base + matchIndex;
const BYTE* const mStart = (matchIndex < prefixLowestIndex) ? dictLowest : prefixLowest;
while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */
}
- offset_2 = offset_1; offset_1 = (U32)(offset - ZSTD_REP_MOVE);
+ offset_2 = offset_1; offset_1 = (U32)STORED_OFFSET(offcode);
}
/* store sequence */
_storeSequence:
- { size_t const litLength = start - anchor;
- ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offset, matchLength-MINMATCH);
+ { size_t const litLength = (size_t)(start - anchor);
+ ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offcode, matchLength);
anchor = ip = start + matchLength;
}
/* check immediate repcode */
if (isDxS) {
while (ip <= ilimit) {
U32 const current2 = (U32)(ip-base);
U32 const repIndex = current2 - offset_2;
const BYTE* repMatch = repIndex < prefixLowestIndex ?
dictBase - dictIndexDelta + repIndex :
base + repIndex;
if ( ((U32)((prefixLowestIndex-1) - (U32)repIndex) >= 3 /* intentional overflow */)
&& (MEM_read32(repMatch) == MEM_read32(ip)) ) {
const BYTE* const repEnd2 = repIndex < prefixLowestIndex ? dictEnd : iend;
matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd2, prefixLowest) + 4;
- offset = offset_2; offset_2 = offset_1; offset_1 = (U32)offset; /* swap offset_2 <=> offset_1 */
- ZSTD_storeSeq(seqStore, 0, anchor, iend, 0, matchLength-MINMATCH);
+ offcode = offset_2; offset_2 = offset_1; offset_1 = (U32)offcode; /* swap offset_2 <=> offset_1 */
+ ZSTD_storeSeq(seqStore, 0, anchor, iend, STORE_REPCODE_1, matchLength);
ip += matchLength;
anchor = ip;
continue;
}
break;
}
}
if (dictMode == ZSTD_noDict) {
while ( ((ip <= ilimit) & (offset_2>0))
&& (MEM_read32(ip) == MEM_read32(ip - offset_2)) ) {
/* store sequence */
matchLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
- offset = offset_2; offset_2 = offset_1; offset_1 = (U32)offset; /* swap repcodes */
- ZSTD_storeSeq(seqStore, 0, anchor, iend, 0, matchLength-MINMATCH);
+ offcode = offset_2; offset_2 = offset_1; offset_1 = (U32)offcode; /* swap repcodes */
+ ZSTD_storeSeq(seqStore, 0, anchor, iend, STORE_REPCODE_1, matchLength);
ip += matchLength;
anchor = ip;
continue; /* faster when present ... (?) */
} } }
/* Save reps for next block */
rep[0] = offset_1 ? offset_1 : savedOffset;
rep[1] = offset_2 ? offset_2 : savedOffset;
/* Return the last literals size */
return (size_t)(iend - anchor);
}
size_t ZSTD_compressBlock_btlazy2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_noDict);
}
size_t ZSTD_compressBlock_lazy2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_noDict);
}
size_t ZSTD_compressBlock_lazy(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_noDict);
}
size_t ZSTD_compressBlock_greedy(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_noDict);
}
size_t ZSTD_compressBlock_btlazy2_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_dictMatchState);
}
size_t ZSTD_compressBlock_lazy2_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dictMatchState);
}
size_t ZSTD_compressBlock_lazy_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dictMatchState);
}
size_t ZSTD_compressBlock_greedy_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dictMatchState);
}
size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dedicatedDictSearch);
}
size_t ZSTD_compressBlock_lazy_dedicatedDictSearch(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dedicatedDictSearch);
}
size_t ZSTD_compressBlock_greedy_dedicatedDictSearch(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dedicatedDictSearch);
}
+/* Row-based matchfinder */
+size_t ZSTD_compressBlock_lazy2_row(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_noDict);
+}
+
+size_t ZSTD_compressBlock_lazy_row(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_noDict);
+}
+
+size_t ZSTD_compressBlock_greedy_row(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_noDict);
+}
+
+size_t ZSTD_compressBlock_lazy2_dictMatchState_row(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_dictMatchState);
+}
+
+size_t ZSTD_compressBlock_lazy_dictMatchState_row(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dictMatchState);
+}
+
+size_t ZSTD_compressBlock_greedy_dictMatchState_row(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dictMatchState);
+}
+
+
+size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch_row(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_dedicatedDictSearch);
+}
+
+size_t ZSTD_compressBlock_lazy_dedicatedDictSearch_row(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dedicatedDictSearch);
+}
+
+size_t ZSTD_compressBlock_greedy_dedicatedDictSearch_row(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dedicatedDictSearch);
+}
FORCE_INLINE_TEMPLATE
size_t ZSTD_compressBlock_lazy_extDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore,
U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize,
const searchMethod_e searchMethod, const U32 depth)
{
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const BYTE* const iend = istart + srcSize;
- const BYTE* const ilimit = iend - 8;
+ const BYTE* const ilimit = searchMethod == search_rowHash ? iend - 8 - ZSTD_ROW_HASH_CACHE_SIZE : iend - 8;
const BYTE* const base = ms->window.base;
const U32 dictLimit = ms->window.dictLimit;
const BYTE* const prefixStart = base + dictLimit;
const BYTE* const dictBase = ms->window.dictBase;
const BYTE* const dictEnd = dictBase + dictLimit;
const BYTE* const dictStart = dictBase + ms->window.lowLimit;
const U32 windowLog = ms->cParams.windowLog;
+ const U32 rowLog = ms->cParams.searchLog < 5 ? 4 : 5;
- typedef size_t (*searchMax_f)(
- ZSTD_matchState_t* ms,
- const BYTE* ip, const BYTE* iLimit, size_t* offsetPtr);
- searchMax_f searchMax = searchMethod==search_binaryTree ? ZSTD_BtFindBestMatch_extDict_selectMLS : ZSTD_HcFindBestMatch_extDict_selectMLS;
-
+ searchMax_f const searchMax = ZSTD_selectLazyVTable(ms, searchMethod, ZSTD_extDict)->searchMax;
U32 offset_1 = rep[0], offset_2 = rep[1];
- DEBUGLOG(5, "ZSTD_compressBlock_lazy_extDict_generic");
+ DEBUGLOG(5, "ZSTD_compressBlock_lazy_extDict_generic (searchFunc=%u)", (U32)searchMethod);
/* init */
ip += (ip == prefixStart);
+ if (searchMethod == search_rowHash) {
+ ZSTD_row_fillHashCache(ms, base, rowLog,
+ MIN(ms->cParams.minMatch, 6 /* mls caps out at 6 */),
+ ms->nextToUpdate, ilimit);
+ }
/* Match Loop */
#if defined(__GNUC__) && defined(__x86_64__)
/* I've measured random a 5% speed loss on levels 5 & 6 (greedy) when the
* code alignment is perturbed. To fix the instability align the loop on 32-bytes.
*/
__asm__(".p2align 5");
#endif
while (ip < ilimit) {
size_t matchLength=0;
- size_t offset=0;
+ size_t offcode=STORE_REPCODE_1;
const BYTE* start=ip+1;
U32 curr = (U32)(ip-base);
/* check repCode */
{ const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr+1, windowLog);
const U32 repIndex = (U32)(curr+1 - offset_1);
const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
const BYTE* const repMatch = repBase + repIndex;
- if (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex > windowLow)) /* intentional overflow */
+ if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow */
+ & (offset_1 <= curr+1 - windowLow) ) /* note: we are searching at curr+1 */
if (MEM_read32(ip+1) == MEM_read32(repMatch)) {
/* repcode detected we should take it */
const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repEnd, prefixStart) + 4;
if (depth==0) goto _storeSequence;
} }
/* first search (depth 0) */
{ size_t offsetFound = 999999999;
size_t const ml2 = searchMax(ms, ip, iend, &offsetFound);
if (ml2 > matchLength)
- matchLength = ml2, start = ip, offset=offsetFound;
+ matchLength = ml2, start = ip, offcode=offsetFound;
}
- if (matchLength < 4) {
+ if (matchLength < 4) {
ip += ((ip-anchor) >> kSearchStrength) + 1; /* jump faster over incompressible sections */
continue;
}
/* let's try to find a better solution */
if (depth>=1)
while (ip<ilimit) {
ip ++;
curr++;
/* check repCode */
- if (offset) {
+ if (offcode) {
const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr, windowLog);
const U32 repIndex = (U32)(curr - offset_1);
const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
const BYTE* const repMatch = repBase + repIndex;
- if (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex > windowLow)) /* intentional overflow */
+ if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow : do not test positions overlapping 2 memory segments */
+ & (offset_1 <= curr - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */
if (MEM_read32(ip) == MEM_read32(repMatch)) {
/* repcode detected */
const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
int const gain2 = (int)(repLength * 3);
- int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offset+1) + 1);
+ int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 1);
if ((repLength >= 4) && (gain2 > gain1))
- matchLength = repLength, offset = 0, start = ip;
+ matchLength = repLength, offcode = STORE_REPCODE_1, start = ip;
} }
/* search match, depth 1 */
{ size_t offset2=999999999;
size_t const ml2 = searchMax(ms, ip, iend, &offset2);
- int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */
- int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 4);
+ int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offset2))); /* raw approx */
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 4);
if ((ml2 >= 4) && (gain2 > gain1)) {
- matchLength = ml2, offset = offset2, start = ip;
+ matchLength = ml2, offcode = offset2, start = ip;
continue; /* search a better one */
} }
/* let's find an even better one */
if ((depth==2) && (ip<ilimit)) {
ip ++;
curr++;
/* check repCode */
- if (offset) {
+ if (offcode) {
const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr, windowLog);
const U32 repIndex = (U32)(curr - offset_1);
const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
const BYTE* const repMatch = repBase + repIndex;
- if (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex > windowLow)) /* intentional overflow */
+ if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow : do not test positions overlapping 2 memory segments */
+ & (offset_1 <= curr - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */
if (MEM_read32(ip) == MEM_read32(repMatch)) {
/* repcode detected */
const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
int const gain2 = (int)(repLength * 4);
- int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 1);
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 1);
if ((repLength >= 4) && (gain2 > gain1))
- matchLength = repLength, offset = 0, start = ip;
+ matchLength = repLength, offcode = STORE_REPCODE_1, start = ip;
} }
/* search match, depth 2 */
{ size_t offset2=999999999;
size_t const ml2 = searchMax(ms, ip, iend, &offset2);
- int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */
- int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 7);
+ int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offset2))); /* raw approx */
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 7);
if ((ml2 >= 4) && (gain2 > gain1)) {
- matchLength = ml2, offset = offset2, start = ip;
+ matchLength = ml2, offcode = offset2, start = ip;
continue;
} } }
break; /* nothing found : store previous solution */
}
/* catch up */
- if (offset) {
- U32 const matchIndex = (U32)((start-base) - (offset - ZSTD_REP_MOVE));
+ if (STORED_IS_OFFSET(offcode)) {
+ U32 const matchIndex = (U32)((size_t)(start-base) - STORED_OFFSET(offcode));
const BYTE* match = (matchIndex < dictLimit) ? dictBase + matchIndex : base + matchIndex;
const BYTE* const mStart = (matchIndex < dictLimit) ? dictStart : prefixStart;
while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */
- offset_2 = offset_1; offset_1 = (U32)(offset - ZSTD_REP_MOVE);
+ offset_2 = offset_1; offset_1 = (U32)STORED_OFFSET(offcode);
}
/* store sequence */
_storeSequence:
- { size_t const litLength = start - anchor;
- ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offset, matchLength-MINMATCH);
+ { size_t const litLength = (size_t)(start - anchor);
+ ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offcode, matchLength);
anchor = ip = start + matchLength;
}
/* check immediate repcode */
while (ip <= ilimit) {
const U32 repCurrent = (U32)(ip-base);
const U32 windowLow = ZSTD_getLowestMatchIndex(ms, repCurrent, windowLog);
const U32 repIndex = repCurrent - offset_2;
const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
const BYTE* const repMatch = repBase + repIndex;
- if (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex > windowLow)) /* intentional overflow */
+ if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow : do not test positions overlapping 2 memory segments */
+ & (offset_2 <= repCurrent - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */
if (MEM_read32(ip) == MEM_read32(repMatch)) {
/* repcode detected we should take it */
const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
- offset = offset_2; offset_2 = offset_1; offset_1 = (U32)offset; /* swap offset history */
- ZSTD_storeSeq(seqStore, 0, anchor, iend, 0, matchLength-MINMATCH);
+ offcode = offset_2; offset_2 = offset_1; offset_1 = (U32)offcode; /* swap offset history */
+ ZSTD_storeSeq(seqStore, 0, anchor, iend, STORE_REPCODE_1, matchLength);
ip += matchLength;
anchor = ip;
continue; /* faster when present ... (?) */
}
break;
} }
/* Save reps for next block */
rep[0] = offset_1;
rep[1] = offset_2;
/* Return the last literals size */
return (size_t)(iend - anchor);
}
size_t ZSTD_compressBlock_greedy_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0);
}
size_t ZSTD_compressBlock_lazy_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1);
}
size_t ZSTD_compressBlock_lazy2_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2);
}
size_t ZSTD_compressBlock_btlazy2_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2);
}
+
+size_t ZSTD_compressBlock_greedy_extDict_row(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0);
+}
+
+size_t ZSTD_compressBlock_lazy_extDict_row(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+
+{
+ return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1);
+}
+
+size_t ZSTD_compressBlock_lazy2_extDict_row(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+
+{
+ return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2);
+}
diff --git a/sys/contrib/zstd/lib/compress/zstd_lazy.h b/sys/contrib/zstd/lib/compress/zstd_lazy.h
index d0214d5e7396..150f7b390b8e 100644
--- a/sys/contrib/zstd/lib/compress/zstd_lazy.h
+++ b/sys/contrib/zstd/lib/compress/zstd_lazy.h
@@ -1,87 +1,125 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_LAZY_H
#define ZSTD_LAZY_H
#if defined (__cplusplus)
extern "C" {
#endif
#include "zstd_compress_internal.h"
/**
* Dedicated Dictionary Search Structure bucket log. In the
* ZSTD_dedicatedDictSearch mode, the hashTable has
* 2 ** ZSTD_LAZY_DDSS_BUCKET_LOG entries in each bucket, rather than just
* one.
*/
#define ZSTD_LAZY_DDSS_BUCKET_LOG 2
U32 ZSTD_insertAndFindFirstIndex(ZSTD_matchState_t* ms, const BYTE* ip);
+void ZSTD_row_update(ZSTD_matchState_t* const ms, const BYTE* ip);
void ZSTD_dedicatedDictSearch_lazy_loadDictionary(ZSTD_matchState_t* ms, const BYTE* const ip);
void ZSTD_preserveUnsortedMark (U32* const table, U32 const size, U32 const reducerValue); /*! used in ZSTD_reduceIndex(). preemptively increase value of ZSTD_DUBT_UNSORTED_MARK */
size_t ZSTD_compressBlock_btlazy2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_greedy(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_lazy2_row(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_lazy_row(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_greedy_row(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btlazy2_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_greedy_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_lazy2_dictMatchState_row(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_lazy_dictMatchState_row(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_greedy_dictMatchState_row(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy_dedicatedDictSearch(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_greedy_dedicatedDictSearch(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch_row(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_lazy_dedicatedDictSearch_row(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_greedy_dedicatedDictSearch_row(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
size_t ZSTD_compressBlock_greedy_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_greedy_extDict_row(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_lazy_extDict_row(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_lazy2_extDict_row(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btlazy2_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
+
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_LAZY_H */
diff --git a/sys/contrib/zstd/lib/compress/zstd_ldm.c b/sys/contrib/zstd/lib/compress/zstd_ldm.c
index 3f3d7c46ab02..f662b2546e01 100644
--- a/sys/contrib/zstd/lib/compress/zstd_ldm.c
+++ b/sys/contrib/zstd/lib/compress/zstd_ldm.c
@@ -1,660 +1,724 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include "zstd_ldm.h"
#include "../common/debug.h"
+#include "../common/xxhash.h"
#include "zstd_fast.h" /* ZSTD_fillHashTable() */
#include "zstd_double_fast.h" /* ZSTD_fillDoubleHashTable() */
+#include "zstd_ldm_geartab.h"
#define LDM_BUCKET_SIZE_LOG 3
#define LDM_MIN_MATCH_LENGTH 64
#define LDM_HASH_RLOG 7
-#define LDM_HASH_CHAR_OFFSET 10
+
+typedef struct {
+ U64 rolling;
+ U64 stopMask;
+} ldmRollingHashState_t;
+
+/** ZSTD_ldm_gear_init():
+ *
+ * Initializes the rolling hash state such that it will honor the
+ * settings in params. */
+static void ZSTD_ldm_gear_init(ldmRollingHashState_t* state, ldmParams_t const* params)
+{
+ unsigned maxBitsInMask = MIN(params->minMatchLength, 64);
+ unsigned hashRateLog = params->hashRateLog;
+
+ state->rolling = ~(U32)0;
+
+ /* The choice of the splitting criterion is subject to two conditions:
+ * 1. it has to trigger on average every 2^(hashRateLog) bytes;
+ * 2. ideally, it has to depend on a window of minMatchLength bytes.
+ *
+ * In the gear hash algorithm, bit n depends on the last n bytes;
+ * so in order to obtain a good quality splitting criterion it is
+ * preferable to use bits with high weight.
+ *
+ * To match condition 1 we use a mask with hashRateLog bits set
+ * and, because of the previous remark, we make sure these bits
+ * have the highest possible weight while still respecting
+ * condition 2.
+ */
+ if (hashRateLog > 0 && hashRateLog <= maxBitsInMask) {
+ state->stopMask = (((U64)1 << hashRateLog) - 1) << (maxBitsInMask - hashRateLog);
+ } else {
+ /* In this degenerate case we simply honor the hash rate. */
+ state->stopMask = ((U64)1 << hashRateLog) - 1;
+ }
+}
+
+/** ZSTD_ldm_gear_reset()
+ * Feeds [data, data + minMatchLength) into the hash without registering any
+ * splits. This effectively resets the hash state. This is used when skipping
+ * over data, either at the beginning of a block, or skipping sections.
+ */
+static void ZSTD_ldm_gear_reset(ldmRollingHashState_t* state,
+ BYTE const* data, size_t minMatchLength)
+{
+ U64 hash = state->rolling;
+ size_t n = 0;
+
+#define GEAR_ITER_ONCE() do { \
+ hash = (hash << 1) + ZSTD_ldm_gearTab[data[n] & 0xff]; \
+ n += 1; \
+ } while (0)
+ while (n + 3 < minMatchLength) {
+ GEAR_ITER_ONCE();
+ GEAR_ITER_ONCE();
+ GEAR_ITER_ONCE();
+ GEAR_ITER_ONCE();
+ }
+ while (n < minMatchLength) {
+ GEAR_ITER_ONCE();
+ }
+#undef GEAR_ITER_ONCE
+}
+
+/** ZSTD_ldm_gear_feed():
+ *
+ * Registers in the splits array all the split points found in the first
+ * size bytes following the data pointer. This function terminates when
+ * either all the data has been processed or LDM_BATCH_SIZE splits are
+ * present in the splits array.
+ *
+ * Precondition: The splits array must not be full.
+ * Returns: The number of bytes processed. */
+static size_t ZSTD_ldm_gear_feed(ldmRollingHashState_t* state,
+ BYTE const* data, size_t size,
+ size_t* splits, unsigned* numSplits)
+{
+ size_t n;
+ U64 hash, mask;
+
+ hash = state->rolling;
+ mask = state->stopMask;
+ n = 0;
+
+#define GEAR_ITER_ONCE() do { \
+ hash = (hash << 1) + ZSTD_ldm_gearTab[data[n] & 0xff]; \
+ n += 1; \
+ if (UNLIKELY((hash & mask) == 0)) { \
+ splits[*numSplits] = n; \
+ *numSplits += 1; \
+ if (*numSplits == LDM_BATCH_SIZE) \
+ goto done; \
+ } \
+ } while (0)
+
+ while (n + 3 < size) {
+ GEAR_ITER_ONCE();
+ GEAR_ITER_ONCE();
+ GEAR_ITER_ONCE();
+ GEAR_ITER_ONCE();
+ }
+ while (n < size) {
+ GEAR_ITER_ONCE();
+ }
+
+#undef GEAR_ITER_ONCE
+
+done:
+ state->rolling = hash;
+ return n;
+}
void ZSTD_ldm_adjustParameters(ldmParams_t* params,
ZSTD_compressionParameters const* cParams)
{
params->windowLog = cParams->windowLog;
ZSTD_STATIC_ASSERT(LDM_BUCKET_SIZE_LOG <= ZSTD_LDM_BUCKETSIZELOG_MAX);
DEBUGLOG(4, "ZSTD_ldm_adjustParameters");
if (!params->bucketSizeLog) params->bucketSizeLog = LDM_BUCKET_SIZE_LOG;
if (!params->minMatchLength) params->minMatchLength = LDM_MIN_MATCH_LENGTH;
if (params->hashLog == 0) {
params->hashLog = MAX(ZSTD_HASHLOG_MIN, params->windowLog - LDM_HASH_RLOG);
assert(params->hashLog <= ZSTD_HASHLOG_MAX);
}
if (params->hashRateLog == 0) {
params->hashRateLog = params->windowLog < params->hashLog
? 0
: params->windowLog - params->hashLog;
}
params->bucketSizeLog = MIN(params->bucketSizeLog, params->hashLog);
}
size_t ZSTD_ldm_getTableSize(ldmParams_t params)
{
size_t const ldmHSize = ((size_t)1) << params.hashLog;
size_t const ldmBucketSizeLog = MIN(params.bucketSizeLog, params.hashLog);
size_t const ldmBucketSize = ((size_t)1) << (params.hashLog - ldmBucketSizeLog);
size_t const totalSize = ZSTD_cwksp_alloc_size(ldmBucketSize)
+ ZSTD_cwksp_alloc_size(ldmHSize * sizeof(ldmEntry_t));
- return params.enableLdm ? totalSize : 0;
+ return params.enableLdm == ZSTD_ps_enable ? totalSize : 0;
}
size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize)
{
- return params.enableLdm ? (maxChunkSize / params.minMatchLength) : 0;
-}
-
-/** ZSTD_ldm_getSmallHash() :
- * numBits should be <= 32
- * If numBits==0, returns 0.
- * @return : the most significant numBits of value. */
-static U32 ZSTD_ldm_getSmallHash(U64 value, U32 numBits)
-{
- assert(numBits <= 32);
- return numBits == 0 ? 0 : (U32)(value >> (64 - numBits));
-}
-
-/** ZSTD_ldm_getChecksum() :
- * numBitsToDiscard should be <= 32
- * @return : the next most significant 32 bits after numBitsToDiscard */
-static U32 ZSTD_ldm_getChecksum(U64 hash, U32 numBitsToDiscard)
-{
- assert(numBitsToDiscard <= 32);
- return (hash >> (64 - 32 - numBitsToDiscard)) & 0xFFFFFFFF;
-}
-
-/** ZSTD_ldm_getTag() ;
- * Given the hash, returns the most significant numTagBits bits
- * after (32 + hbits) bits.
- *
- * If there are not enough bits remaining, return the last
- * numTagBits bits. */
-static U32 ZSTD_ldm_getTag(U64 hash, U32 hbits, U32 numTagBits)
-{
- assert(numTagBits < 32 && hbits <= 32);
- if (32 - hbits < numTagBits) {
- return hash & (((U32)1 << numTagBits) - 1);
- } else {
- return (hash >> (32 - hbits - numTagBits)) & (((U32)1 << numTagBits) - 1);
- }
+ return params.enableLdm == ZSTD_ps_enable ? (maxChunkSize / params.minMatchLength) : 0;
}
/** ZSTD_ldm_getBucket() :
* Returns a pointer to the start of the bucket associated with hash. */
static ldmEntry_t* ZSTD_ldm_getBucket(
ldmState_t* ldmState, size_t hash, ldmParams_t const ldmParams)
{
return ldmState->hashTable + (hash << ldmParams.bucketSizeLog);
}
/** ZSTD_ldm_insertEntry() :
* Insert the entry with corresponding hash into the hash table */
static void ZSTD_ldm_insertEntry(ldmState_t* ldmState,
size_t const hash, const ldmEntry_t entry,
ldmParams_t const ldmParams)
{
- BYTE* const bucketOffsets = ldmState->bucketOffsets;
- *(ZSTD_ldm_getBucket(ldmState, hash, ldmParams) + bucketOffsets[hash]) = entry;
- bucketOffsets[hash]++;
- bucketOffsets[hash] &= ((U32)1 << ldmParams.bucketSizeLog) - 1;
-}
+ BYTE* const pOffset = ldmState->bucketOffsets + hash;
+ unsigned const offset = *pOffset;
+
+ *(ZSTD_ldm_getBucket(ldmState, hash, ldmParams) + offset) = entry;
+ *pOffset = (BYTE)((offset + 1) & ((1u << ldmParams.bucketSizeLog) - 1));
-/** ZSTD_ldm_makeEntryAndInsertByTag() :
- *
- * Gets the small hash, checksum, and tag from the rollingHash.
- *
- * If the tag matches (1 << ldmParams.hashRateLog)-1, then
- * creates an ldmEntry from the offset, and inserts it into the hash table.
- *
- * hBits is the length of the small hash, which is the most significant hBits
- * of rollingHash. The checksum is the next 32 most significant bits, followed
- * by ldmParams.hashRateLog bits that make up the tag. */
-static void ZSTD_ldm_makeEntryAndInsertByTag(ldmState_t* ldmState,
- U64 const rollingHash,
- U32 const hBits,
- U32 const offset,
- ldmParams_t const ldmParams)
-{
- U32 const tag = ZSTD_ldm_getTag(rollingHash, hBits, ldmParams.hashRateLog);
- U32 const tagMask = ((U32)1 << ldmParams.hashRateLog) - 1;
- if (tag == tagMask) {
- U32 const hash = ZSTD_ldm_getSmallHash(rollingHash, hBits);
- U32 const checksum = ZSTD_ldm_getChecksum(rollingHash, hBits);
- ldmEntry_t entry;
- entry.offset = offset;
- entry.checksum = checksum;
- ZSTD_ldm_insertEntry(ldmState, hash, entry, ldmParams);
- }
}
/** ZSTD_ldm_countBackwardsMatch() :
* Returns the number of bytes that match backwards before pIn and pMatch.
*
* We count only bytes where pMatch >= pBase and pIn >= pAnchor. */
static size_t ZSTD_ldm_countBackwardsMatch(
const BYTE* pIn, const BYTE* pAnchor,
const BYTE* pMatch, const BYTE* pMatchBase)
{
size_t matchLength = 0;
while (pIn > pAnchor && pMatch > pMatchBase && pIn[-1] == pMatch[-1]) {
pIn--;
pMatch--;
matchLength++;
}
return matchLength;
}
/** ZSTD_ldm_countBackwardsMatch_2segments() :
* Returns the number of bytes that match backwards from pMatch,
* even with the backwards match spanning 2 different segments.
*
* On reaching `pMatchBase`, start counting from mEnd */
static size_t ZSTD_ldm_countBackwardsMatch_2segments(
const BYTE* pIn, const BYTE* pAnchor,
const BYTE* pMatch, const BYTE* pMatchBase,
const BYTE* pExtDictStart, const BYTE* pExtDictEnd)
{
size_t matchLength = ZSTD_ldm_countBackwardsMatch(pIn, pAnchor, pMatch, pMatchBase);
if (pMatch - matchLength != pMatchBase || pMatchBase == pExtDictStart) {
/* If backwards match is entirely in the extDict or prefix, immediately return */
return matchLength;
}
DEBUGLOG(7, "ZSTD_ldm_countBackwardsMatch_2segments: found 2-parts backwards match (length in prefix==%zu)", matchLength);
matchLength += ZSTD_ldm_countBackwardsMatch(pIn - matchLength, pAnchor, pExtDictEnd, pExtDictStart);
DEBUGLOG(7, "final backwards match length = %zu", matchLength);
return matchLength;
}
/** ZSTD_ldm_fillFastTables() :
*
* Fills the relevant tables for the ZSTD_fast and ZSTD_dfast strategies.
* This is similar to ZSTD_loadDictionaryContent.
*
* The tables for the other strategies are filled within their
* block compressors. */
static size_t ZSTD_ldm_fillFastTables(ZSTD_matchState_t* ms,
void const* end)
{
const BYTE* const iend = (const BYTE*)end;
switch(ms->cParams.strategy)
{
case ZSTD_fast:
ZSTD_fillHashTable(ms, iend, ZSTD_dtlm_fast);
break;
case ZSTD_dfast:
ZSTD_fillDoubleHashTable(ms, iend, ZSTD_dtlm_fast);
break;
case ZSTD_greedy:
case ZSTD_lazy:
case ZSTD_lazy2:
case ZSTD_btlazy2:
case ZSTD_btopt:
case ZSTD_btultra:
case ZSTD_btultra2:
break;
default:
assert(0); /* not possible : not a valid strategy id */
}
return 0;
}
-/** ZSTD_ldm_fillLdmHashTable() :
- *
- * Fills hashTable from (lastHashed + 1) to iend (non-inclusive).
- * lastHash is the rolling hash that corresponds to lastHashed.
- *
- * Returns the rolling hash corresponding to position iend-1. */
-static U64 ZSTD_ldm_fillLdmHashTable(ldmState_t* state,
- U64 lastHash, const BYTE* lastHashed,
- const BYTE* iend, const BYTE* base,
- U32 hBits, ldmParams_t const ldmParams)
-{
- U64 rollingHash = lastHash;
- const BYTE* cur = lastHashed + 1;
-
- while (cur < iend) {
- rollingHash = ZSTD_rollingHash_rotate(rollingHash, cur[-1],
- cur[ldmParams.minMatchLength-1],
- state->hashPower);
- ZSTD_ldm_makeEntryAndInsertByTag(state,
- rollingHash, hBits,
- (U32)(cur - base), ldmParams);
- ++cur;
- }
- return rollingHash;
-}
-
void ZSTD_ldm_fillHashTable(
- ldmState_t* state, const BYTE* ip,
+ ldmState_t* ldmState, const BYTE* ip,
const BYTE* iend, ldmParams_t const* params)
{
+ U32 const minMatchLength = params->minMatchLength;
+ U32 const hBits = params->hashLog - params->bucketSizeLog;
+ BYTE const* const base = ldmState->window.base;
+ BYTE const* const istart = ip;
+ ldmRollingHashState_t hashState;
+ size_t* const splits = ldmState->splitIndices;
+ unsigned numSplits;
+
DEBUGLOG(5, "ZSTD_ldm_fillHashTable");
- if ((size_t)(iend - ip) >= params->minMatchLength) {
- U64 startingHash = ZSTD_rollingHash_compute(ip, params->minMatchLength);
- ZSTD_ldm_fillLdmHashTable(
- state, startingHash, ip, iend - params->minMatchLength, state->window.base,
- params->hashLog - params->bucketSizeLog,
- *params);
+
+ ZSTD_ldm_gear_init(&hashState, params);
+ while (ip < iend) {
+ size_t hashed;
+ unsigned n;
+
+ numSplits = 0;
+ hashed = ZSTD_ldm_gear_feed(&hashState, ip, iend - ip, splits, &numSplits);
+
+ for (n = 0; n < numSplits; n++) {
+ if (ip + splits[n] >= istart + minMatchLength) {
+ BYTE const* const split = ip + splits[n] - minMatchLength;
+ U64 const xxhash = XXH64(split, minMatchLength, 0);
+ U32 const hash = (U32)(xxhash & (((U32)1 << hBits) - 1));
+ ldmEntry_t entry;
+
+ entry.offset = (U32)(split - base);
+ entry.checksum = (U32)(xxhash >> 32);
+ ZSTD_ldm_insertEntry(ldmState, hash, entry, *params);
+ }
+ }
+
+ ip += hashed;
}
}
/** ZSTD_ldm_limitTableUpdate() :
*
* Sets cctx->nextToUpdate to a position corresponding closer to anchor
* if it is far way
* (after a long match, only update tables a limited amount). */
static void ZSTD_ldm_limitTableUpdate(ZSTD_matchState_t* ms, const BYTE* anchor)
{
U32 const curr = (U32)(anchor - ms->window.base);
if (curr > ms->nextToUpdate + 1024) {
ms->nextToUpdate =
curr - MIN(512, curr - ms->nextToUpdate - 1024);
}
}
static size_t ZSTD_ldm_generateSequences_internal(
ldmState_t* ldmState, rawSeqStore_t* rawSeqStore,
ldmParams_t const* params, void const* src, size_t srcSize)
{
/* LDM parameters */
int const extDict = ZSTD_window_hasExtDict(ldmState->window);
U32 const minMatchLength = params->minMatchLength;
- U64 const hashPower = ldmState->hashPower;
+ U32 const entsPerBucket = 1U << params->bucketSizeLog;
U32 const hBits = params->hashLog - params->bucketSizeLog;
- U32 const ldmBucketSize = 1U << params->bucketSizeLog;
- U32 const hashRateLog = params->hashRateLog;
- U32 const ldmTagMask = (1U << params->hashRateLog) - 1;
/* Prefix and extDict parameters */
U32 const dictLimit = ldmState->window.dictLimit;
U32 const lowestIndex = extDict ? ldmState->window.lowLimit : dictLimit;
BYTE const* const base = ldmState->window.base;
BYTE const* const dictBase = extDict ? ldmState->window.dictBase : NULL;
BYTE const* const dictStart = extDict ? dictBase + lowestIndex : NULL;
BYTE const* const dictEnd = extDict ? dictBase + dictLimit : NULL;
BYTE const* const lowPrefixPtr = base + dictLimit;
/* Input bounds */
BYTE const* const istart = (BYTE const*)src;
BYTE const* const iend = istart + srcSize;
- BYTE const* const ilimit = iend - MAX(minMatchLength, HASH_READ_SIZE);
+ BYTE const* const ilimit = iend - HASH_READ_SIZE;
/* Input positions */
BYTE const* anchor = istart;
BYTE const* ip = istart;
- /* Rolling hash */
- BYTE const* lastHashed = NULL;
- U64 rollingHash = 0;
-
- while (ip <= ilimit) {
- size_t mLength;
- U32 const curr = (U32)(ip - base);
- size_t forwardMatchLength = 0, backwardMatchLength = 0;
- ldmEntry_t* bestEntry = NULL;
- if (ip != istart) {
- rollingHash = ZSTD_rollingHash_rotate(rollingHash, lastHashed[0],
- lastHashed[minMatchLength],
- hashPower);
- } else {
- rollingHash = ZSTD_rollingHash_compute(ip, minMatchLength);
+ /* Rolling hash state */
+ ldmRollingHashState_t hashState;
+ /* Arrays for staged-processing */
+ size_t* const splits = ldmState->splitIndices;
+ ldmMatchCandidate_t* const candidates = ldmState->matchCandidates;
+ unsigned numSplits;
+
+ if (srcSize < minMatchLength)
+ return iend - anchor;
+
+ /* Initialize the rolling hash state with the first minMatchLength bytes */
+ ZSTD_ldm_gear_init(&hashState, params);
+ ZSTD_ldm_gear_reset(&hashState, ip, minMatchLength);
+ ip += minMatchLength;
+
+ while (ip < ilimit) {
+ size_t hashed;
+ unsigned n;
+
+ numSplits = 0;
+ hashed = ZSTD_ldm_gear_feed(&hashState, ip, ilimit - ip,
+ splits, &numSplits);
+
+ for (n = 0; n < numSplits; n++) {
+ BYTE const* const split = ip + splits[n] - minMatchLength;
+ U64 const xxhash = XXH64(split, minMatchLength, 0);
+ U32 const hash = (U32)(xxhash & (((U32)1 << hBits) - 1));
+
+ candidates[n].split = split;
+ candidates[n].hash = hash;
+ candidates[n].checksum = (U32)(xxhash >> 32);
+ candidates[n].bucket = ZSTD_ldm_getBucket(ldmState, hash, *params);
+ PREFETCH_L1(candidates[n].bucket);
}
- lastHashed = ip;
- /* Do not insert and do not look for a match */
- if (ZSTD_ldm_getTag(rollingHash, hBits, hashRateLog) != ldmTagMask) {
- ip++;
- continue;
- }
+ for (n = 0; n < numSplits; n++) {
+ size_t forwardMatchLength = 0, backwardMatchLength = 0,
+ bestMatchLength = 0, mLength;
+ U32 offset;
+ BYTE const* const split = candidates[n].split;
+ U32 const checksum = candidates[n].checksum;
+ U32 const hash = candidates[n].hash;
+ ldmEntry_t* const bucket = candidates[n].bucket;
+ ldmEntry_t const* cur;
+ ldmEntry_t const* bestEntry = NULL;
+ ldmEntry_t newEntry;
+
+ newEntry.offset = (U32)(split - base);
+ newEntry.checksum = checksum;
+
+ /* If a split point would generate a sequence overlapping with
+ * the previous one, we merely register it in the hash table and
+ * move on */
+ if (split < anchor) {
+ ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params);
+ continue;
+ }
- /* Get the best entry and compute the match lengths */
- {
- ldmEntry_t* const bucket =
- ZSTD_ldm_getBucket(ldmState,
- ZSTD_ldm_getSmallHash(rollingHash, hBits),
- *params);
- ldmEntry_t* cur;
- size_t bestMatchLength = 0;
- U32 const checksum = ZSTD_ldm_getChecksum(rollingHash, hBits);
-
- for (cur = bucket; cur < bucket + ldmBucketSize; ++cur) {
+ for (cur = bucket; cur < bucket + entsPerBucket; cur++) {
size_t curForwardMatchLength, curBackwardMatchLength,
curTotalMatchLength;
if (cur->checksum != checksum || cur->offset <= lowestIndex) {
continue;
}
if (extDict) {
BYTE const* const curMatchBase =
cur->offset < dictLimit ? dictBase : base;
BYTE const* const pMatch = curMatchBase + cur->offset;
BYTE const* const matchEnd =
cur->offset < dictLimit ? dictEnd : iend;
BYTE const* const lowMatchPtr =
cur->offset < dictLimit ? dictStart : lowPrefixPtr;
-
- curForwardMatchLength = ZSTD_count_2segments(
- ip, pMatch, iend,
- matchEnd, lowPrefixPtr);
+ curForwardMatchLength =
+ ZSTD_count_2segments(split, pMatch, iend, matchEnd, lowPrefixPtr);
if (curForwardMatchLength < minMatchLength) {
continue;
}
- curBackwardMatchLength =
- ZSTD_ldm_countBackwardsMatch_2segments(ip, anchor,
- pMatch, lowMatchPtr,
- dictStart, dictEnd);
- curTotalMatchLength = curForwardMatchLength +
- curBackwardMatchLength;
+ curBackwardMatchLength = ZSTD_ldm_countBackwardsMatch_2segments(
+ split, anchor, pMatch, lowMatchPtr, dictStart, dictEnd);
} else { /* !extDict */
BYTE const* const pMatch = base + cur->offset;
- curForwardMatchLength = ZSTD_count(ip, pMatch, iend);
+ curForwardMatchLength = ZSTD_count(split, pMatch, iend);
if (curForwardMatchLength < minMatchLength) {
continue;
}
curBackwardMatchLength =
- ZSTD_ldm_countBackwardsMatch(ip, anchor, pMatch,
- lowPrefixPtr);
- curTotalMatchLength = curForwardMatchLength +
- curBackwardMatchLength;
+ ZSTD_ldm_countBackwardsMatch(split, anchor, pMatch, lowPrefixPtr);
}
+ curTotalMatchLength = curForwardMatchLength + curBackwardMatchLength;
if (curTotalMatchLength > bestMatchLength) {
bestMatchLength = curTotalMatchLength;
forwardMatchLength = curForwardMatchLength;
backwardMatchLength = curBackwardMatchLength;
bestEntry = cur;
}
}
- }
- /* No match found -- continue searching */
- if (bestEntry == NULL) {
- ZSTD_ldm_makeEntryAndInsertByTag(ldmState, rollingHash,
- hBits, curr,
- *params);
- ip++;
- continue;
- }
-
- /* Match found */
- mLength = forwardMatchLength + backwardMatchLength;
- ip -= backwardMatchLength;
+ /* No match found -- insert an entry into the hash table
+ * and process the next candidate match */
+ if (bestEntry == NULL) {
+ ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params);
+ continue;
+ }
- {
- /* Store the sequence:
- * ip = curr - backwardMatchLength
- * The match is at (bestEntry->offset - backwardMatchLength)
- */
- U32 const matchIndex = bestEntry->offset;
- U32 const offset = curr - matchIndex;
- rawSeq* const seq = rawSeqStore->seq + rawSeqStore->size;
-
- /* Out of sequence storage */
- if (rawSeqStore->size == rawSeqStore->capacity)
- return ERROR(dstSize_tooSmall);
- seq->litLength = (U32)(ip - anchor);
- seq->matchLength = (U32)mLength;
- seq->offset = offset;
- rawSeqStore->size++;
- }
+ /* Match found */
+ offset = (U32)(split - base) - bestEntry->offset;
+ mLength = forwardMatchLength + backwardMatchLength;
+ {
+ rawSeq* const seq = rawSeqStore->seq + rawSeqStore->size;
+
+ /* Out of sequence storage */
+ if (rawSeqStore->size == rawSeqStore->capacity)
+ return ERROR(dstSize_tooSmall);
+ seq->litLength = (U32)(split - backwardMatchLength - anchor);
+ seq->matchLength = (U32)mLength;
+ seq->offset = offset;
+ rawSeqStore->size++;
+ }
- /* Insert the current entry into the hash table */
- ZSTD_ldm_makeEntryAndInsertByTag(ldmState, rollingHash, hBits,
- (U32)(lastHashed - base),
- *params);
+ /* Insert the current entry into the hash table --- it must be
+ * done after the previous block to avoid clobbering bestEntry */
+ ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params);
- assert(ip + backwardMatchLength == lastHashed);
+ anchor = split + forwardMatchLength;
- /* Fill the hash table from lastHashed+1 to ip+mLength*/
- /* Heuristic: don't need to fill the entire table at end of block */
- if (ip + mLength <= ilimit) {
- rollingHash = ZSTD_ldm_fillLdmHashTable(
- ldmState, rollingHash, lastHashed,
- ip + mLength, base, hBits, *params);
- lastHashed = ip + mLength - 1;
+ /* If we find a match that ends after the data that we've hashed
+ * then we have a repeating, overlapping, pattern. E.g. all zeros.
+ * If one repetition of the pattern matches our `stopMask` then all
+ * repetitions will. We don't need to insert them all into out table,
+ * only the first one. So skip over overlapping matches.
+ * This is a major speed boost (20x) for compressing a single byte
+ * repeated, when that byte ends up in the table.
+ */
+ if (anchor > ip + hashed) {
+ ZSTD_ldm_gear_reset(&hashState, anchor - minMatchLength, minMatchLength);
+ /* Continue the outer loop at anchor (ip + hashed == anchor). */
+ ip = anchor - hashed;
+ break;
+ }
}
- ip += mLength;
- anchor = ip;
+
+ ip += hashed;
}
+
return iend - anchor;
}
/*! ZSTD_ldm_reduceTable() :
* reduce table indexes by `reducerValue` */
static void ZSTD_ldm_reduceTable(ldmEntry_t* const table, U32 const size,
U32 const reducerValue)
{
U32 u;
for (u = 0; u < size; u++) {
if (table[u].offset < reducerValue) table[u].offset = 0;
else table[u].offset -= reducerValue;
}
}
size_t ZSTD_ldm_generateSequences(
ldmState_t* ldmState, rawSeqStore_t* sequences,
ldmParams_t const* params, void const* src, size_t srcSize)
{
U32 const maxDist = 1U << params->windowLog;
BYTE const* const istart = (BYTE const*)src;
BYTE const* const iend = istart + srcSize;
size_t const kMaxChunkSize = 1 << 20;
size_t const nbChunks = (srcSize / kMaxChunkSize) + ((srcSize % kMaxChunkSize) != 0);
size_t chunk;
size_t leftoverSize = 0;
assert(ZSTD_CHUNKSIZE_MAX >= kMaxChunkSize);
/* Check that ZSTD_window_update() has been called for this chunk prior
* to passing it to this function.
*/
assert(ldmState->window.nextSrc >= (BYTE const*)src + srcSize);
/* The input could be very large (in zstdmt), so it must be broken up into
* chunks to enforce the maximum distance and handle overflow correction.
*/
assert(sequences->pos <= sequences->size);
assert(sequences->size <= sequences->capacity);
for (chunk = 0; chunk < nbChunks && sequences->size < sequences->capacity; ++chunk) {
BYTE const* const chunkStart = istart + chunk * kMaxChunkSize;
size_t const remaining = (size_t)(iend - chunkStart);
BYTE const *const chunkEnd =
(remaining < kMaxChunkSize) ? iend : chunkStart + kMaxChunkSize;
size_t const chunkSize = chunkEnd - chunkStart;
size_t newLeftoverSize;
size_t const prevSize = sequences->size;
assert(chunkStart < iend);
/* 1. Perform overflow correction if necessary. */
- if (ZSTD_window_needOverflowCorrection(ldmState->window, chunkEnd)) {
+ if (ZSTD_window_needOverflowCorrection(ldmState->window, 0, maxDist, ldmState->loadedDictEnd, chunkStart, chunkEnd)) {
U32 const ldmHSize = 1U << params->hashLog;
U32 const correction = ZSTD_window_correctOverflow(
&ldmState->window, /* cycleLog */ 0, maxDist, chunkStart);
ZSTD_ldm_reduceTable(ldmState->hashTable, ldmHSize, correction);
/* invalidate dictionaries on overflow correction */
ldmState->loadedDictEnd = 0;
}
/* 2. We enforce the maximum offset allowed.
*
* kMaxChunkSize should be small enough that we don't lose too much of
* the window through early invalidation.
* TODO: * Test the chunk size.
* * Try invalidation after the sequence generation and test the
* the offset against maxDist directly.
*
* NOTE: Because of dictionaries + sequence splitting we MUST make sure
* that any offset used is valid at the END of the sequence, since it may
* be split into two sequences. This condition holds when using
* ZSTD_window_enforceMaxDist(), but if we move to checking offsets
* against maxDist directly, we'll have to carefully handle that case.
*/
ZSTD_window_enforceMaxDist(&ldmState->window, chunkEnd, maxDist, &ldmState->loadedDictEnd, NULL);
/* 3. Generate the sequences for the chunk, and get newLeftoverSize. */
newLeftoverSize = ZSTD_ldm_generateSequences_internal(
ldmState, sequences, params, chunkStart, chunkSize);
if (ZSTD_isError(newLeftoverSize))
return newLeftoverSize;
/* 4. We add the leftover literals from previous iterations to the first
* newly generated sequence, or add the `newLeftoverSize` if none are
* generated.
*/
/* Prepend the leftover literals from the last call */
if (prevSize < sequences->size) {
sequences->seq[prevSize].litLength += (U32)leftoverSize;
leftoverSize = newLeftoverSize;
} else {
assert(newLeftoverSize == chunkSize);
leftoverSize += chunkSize;
}
}
return 0;
}
-void ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize, U32 const minMatch) {
+void
+ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize, U32 const minMatch)
+{
while (srcSize > 0 && rawSeqStore->pos < rawSeqStore->size) {
rawSeq* seq = rawSeqStore->seq + rawSeqStore->pos;
if (srcSize <= seq->litLength) {
/* Skip past srcSize literals */
seq->litLength -= (U32)srcSize;
return;
}
srcSize -= seq->litLength;
seq->litLength = 0;
if (srcSize < seq->matchLength) {
/* Skip past the first srcSize of the match */
seq->matchLength -= (U32)srcSize;
if (seq->matchLength < minMatch) {
/* The match is too short, omit it */
if (rawSeqStore->pos + 1 < rawSeqStore->size) {
seq[1].litLength += seq[0].matchLength;
}
rawSeqStore->pos++;
}
return;
}
srcSize -= seq->matchLength;
seq->matchLength = 0;
rawSeqStore->pos++;
}
}
/**
* If the sequence length is longer than remaining then the sequence is split
* between this block and the next.
*
* Returns the current sequence to handle, or if the rest of the block should
* be literals, it returns a sequence with offset == 0.
*/
static rawSeq maybeSplitSequence(rawSeqStore_t* rawSeqStore,
U32 const remaining, U32 const minMatch)
{
rawSeq sequence = rawSeqStore->seq[rawSeqStore->pos];
assert(sequence.offset > 0);
/* Likely: No partial sequence */
if (remaining >= sequence.litLength + sequence.matchLength) {
rawSeqStore->pos++;
return sequence;
}
/* Cut the sequence short (offset == 0 ==> rest is literals). */
if (remaining <= sequence.litLength) {
sequence.offset = 0;
} else if (remaining < sequence.litLength + sequence.matchLength) {
sequence.matchLength = remaining - sequence.litLength;
if (sequence.matchLength < minMatch) {
sequence.offset = 0;
}
}
/* Skip past `remaining` bytes for the future sequences. */
ZSTD_ldm_skipSequences(rawSeqStore, remaining, minMatch);
return sequence;
}
void ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore_t* rawSeqStore, size_t nbBytes) {
U32 currPos = (U32)(rawSeqStore->posInSequence + nbBytes);
while (currPos && rawSeqStore->pos < rawSeqStore->size) {
rawSeq currSeq = rawSeqStore->seq[rawSeqStore->pos];
if (currPos >= currSeq.litLength + currSeq.matchLength) {
currPos -= currSeq.litLength + currSeq.matchLength;
rawSeqStore->pos++;
} else {
rawSeqStore->posInSequence = currPos;
break;
}
}
if (currPos == 0 || rawSeqStore->pos == rawSeqStore->size) {
rawSeqStore->posInSequence = 0;
}
}
size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ ZSTD_paramSwitch_e useRowMatchFinder,
void const* src, size_t srcSize)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
unsigned const minMatch = cParams->minMatch;
ZSTD_blockCompressor const blockCompressor =
- ZSTD_selectBlockCompressor(cParams->strategy, ZSTD_matchState_dictMode(ms));
+ ZSTD_selectBlockCompressor(cParams->strategy, useRowMatchFinder, ZSTD_matchState_dictMode(ms));
/* Input bounds */
BYTE const* const istart = (BYTE const*)src;
BYTE const* const iend = istart + srcSize;
/* Input positions */
BYTE const* ip = istart;
DEBUGLOG(5, "ZSTD_ldm_blockCompress: srcSize=%zu", srcSize);
/* If using opt parser, use LDMs only as candidates rather than always accepting them */
if (cParams->strategy >= ZSTD_btopt) {
size_t lastLLSize;
ms->ldmSeqStore = rawSeqStore;
lastLLSize = blockCompressor(ms, seqStore, rep, src, srcSize);
ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore, srcSize);
return lastLLSize;
}
assert(rawSeqStore->pos <= rawSeqStore->size);
assert(rawSeqStore->size <= rawSeqStore->capacity);
- /* Loop through each sequence and apply the block compressor to the lits */
+ /* Loop through each sequence and apply the block compressor to the literals */
while (rawSeqStore->pos < rawSeqStore->size && ip < iend) {
/* maybeSplitSequence updates rawSeqStore->pos */
rawSeq const sequence = maybeSplitSequence(rawSeqStore,
(U32)(iend - ip), minMatch);
int i;
/* End signal */
if (sequence.offset == 0)
break;
assert(ip + sequence.litLength + sequence.matchLength <= iend);
/* Fill tables for block compressor */
ZSTD_ldm_limitTableUpdate(ms, ip);
ZSTD_ldm_fillFastTables(ms, ip);
/* Run the block compressor */
DEBUGLOG(5, "pos %u : calling block compressor on segment of size %u", (unsigned)(ip-istart), sequence.litLength);
{
size_t const newLitLength =
blockCompressor(ms, seqStore, rep, ip, sequence.litLength);
ip += sequence.litLength;
/* Update the repcodes */
for (i = ZSTD_REP_NUM - 1; i > 0; i--)
rep[i] = rep[i-1];
rep[0] = sequence.offset;
/* Store the sequence */
ZSTD_storeSeq(seqStore, newLitLength, ip - newLitLength, iend,
- sequence.offset + ZSTD_REP_MOVE,
- sequence.matchLength - MINMATCH);
+ STORE_OFFSET(sequence.offset),
+ sequence.matchLength);
ip += sequence.matchLength;
}
}
/* Fill the tables for the block compressor */
ZSTD_ldm_limitTableUpdate(ms, ip);
ZSTD_ldm_fillFastTables(ms, ip);
/* Compress the last literals */
return blockCompressor(ms, seqStore, rep, ip, iend - ip);
}
diff --git a/sys/contrib/zstd/lib/compress/zstd_ldm.h b/sys/contrib/zstd/lib/compress/zstd_ldm.h
index 6561024e4c97..4e68dbf52e38 100644
--- a/sys/contrib/zstd/lib/compress/zstd_ldm.h
+++ b/sys/contrib/zstd/lib/compress/zstd_ldm.h
@@ -1,116 +1,117 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_LDM_H
#define ZSTD_LDM_H
#if defined (__cplusplus)
extern "C" {
#endif
#include "zstd_compress_internal.h" /* ldmParams_t, U32 */
#include "../zstd.h" /* ZSTD_CCtx, size_t */
/*-*************************************
* Long distance matching
***************************************/
#define ZSTD_LDM_DEFAULT_WINDOW_LOG ZSTD_WINDOWLOG_LIMIT_DEFAULT
void ZSTD_ldm_fillHashTable(
ldmState_t* state, const BYTE* ip,
const BYTE* iend, ldmParams_t const* params);
/**
* ZSTD_ldm_generateSequences():
*
* Generates the sequences using the long distance match finder.
* Generates long range matching sequences in `sequences`, which parse a prefix
* of the source. `sequences` must be large enough to store every sequence,
* which can be checked with `ZSTD_ldm_getMaxNbSeq()`.
* @returns 0 or an error code.
*
* NOTE: The user must have called ZSTD_window_update() for all of the input
* they have, even if they pass it to ZSTD_ldm_generateSequences() in chunks.
* NOTE: This function returns an error if it runs out of space to store
* sequences.
*/
size_t ZSTD_ldm_generateSequences(
ldmState_t* ldms, rawSeqStore_t* sequences,
ldmParams_t const* params, void const* src, size_t srcSize);
/**
* ZSTD_ldm_blockCompress():
*
* Compresses a block using the predefined sequences, along with a secondary
* block compressor. The literals section of every sequence is passed to the
* secondary block compressor, and those sequences are interspersed with the
* predefined sequences. Returns the length of the last literals.
* Updates `rawSeqStore.pos` to indicate how many sequences have been consumed.
* `rawSeqStore.seq` may also be updated to split the last sequence between two
* blocks.
* @return The length of the last literals.
*
* NOTE: The source must be at most the maximum block size, but the predefined
* sequences can be any size, and may be longer than the block. In the case that
* they are longer than the block, the last sequences may need to be split into
* two. We handle that case correctly, and update `rawSeqStore` appropriately.
* NOTE: This function does not return any errors.
*/
size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ ZSTD_paramSwitch_e useRowMatchFinder,
void const* src, size_t srcSize);
/**
* ZSTD_ldm_skipSequences():
*
* Skip past `srcSize` bytes worth of sequences in `rawSeqStore`.
* Avoids emitting matches less than `minMatch` bytes.
- * Must be called for data with is not passed to ZSTD_ldm_blockCompress().
+ * Must be called for data that is not passed to ZSTD_ldm_blockCompress().
*/
void ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize,
U32 const minMatch);
/* ZSTD_ldm_skipRawSeqStoreBytes():
* Moves forward in rawSeqStore by nbBytes, updating fields 'pos' and 'posInSequence'.
* Not to be used in conjunction with ZSTD_ldm_skipSequences().
* Must be called for data with is not passed to ZSTD_ldm_blockCompress().
*/
void ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore_t* rawSeqStore, size_t nbBytes);
/** ZSTD_ldm_getTableSize() :
* Estimate the space needed for long distance matching tables or 0 if LDM is
* disabled.
*/
size_t ZSTD_ldm_getTableSize(ldmParams_t params);
/** ZSTD_ldm_getSeqSpace() :
* Return an upper bound on the number of sequences that can be produced by
* the long distance matcher, or 0 if LDM is disabled.
*/
size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize);
/** ZSTD_ldm_adjustParameters() :
* If the params->hashRateLog is not set, set it to its default value based on
* windowLog and params->hashLog.
*
* Ensures that params->bucketSizeLog is <= params->hashLog (setting it to
* params->hashLog if it is not).
*
* Ensures that the minMatchLength >= targetLength during optimal parsing.
*/
void ZSTD_ldm_adjustParameters(ldmParams_t* params,
ZSTD_compressionParameters const* cParams);
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_FAST_H */
diff --git a/sys/contrib/zstd/lib/compress/zstd_ldm_geartab.h b/sys/contrib/zstd/lib/compress/zstd_ldm_geartab.h
new file mode 100644
index 000000000000..647f865be290
--- /dev/null
+++ b/sys/contrib/zstd/lib/compress/zstd_ldm_geartab.h
@@ -0,0 +1,106 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_LDM_GEARTAB_H
+#define ZSTD_LDM_GEARTAB_H
+
+#include "../common/compiler.h" /* UNUSED_ATTR */
+#include "../common/mem.h" /* U64 */
+
+static UNUSED_ATTR const U64 ZSTD_ldm_gearTab[256] = {
+ 0xf5b8f72c5f77775c, 0x84935f266b7ac412, 0xb647ada9ca730ccc,
+ 0xb065bb4b114fb1de, 0x34584e7e8c3a9fd0, 0x4e97e17c6ae26b05,
+ 0x3a03d743bc99a604, 0xcecd042422c4044f, 0x76de76c58524259e,
+ 0x9c8528f65badeaca, 0x86563706e2097529, 0x2902475fa375d889,
+ 0xafb32a9739a5ebe6, 0xce2714da3883e639, 0x21eaf821722e69e,
+ 0x37b628620b628, 0x49a8d455d88caf5, 0x8556d711e6958140,
+ 0x4f7ae74fc605c1f, 0x829f0c3468bd3a20, 0x4ffdc885c625179e,
+ 0x8473de048a3daf1b, 0x51008822b05646b2, 0x69d75d12b2d1cc5f,
+ 0x8c9d4a19159154bc, 0xc3cc10f4abbd4003, 0xd06ddc1cecb97391,
+ 0xbe48e6e7ed80302e, 0x3481db31cee03547, 0xacc3f67cdaa1d210,
+ 0x65cb771d8c7f96cc, 0x8eb27177055723dd, 0xc789950d44cd94be,
+ 0x934feadc3700b12b, 0x5e485f11edbdf182, 0x1e2e2a46fd64767a,
+ 0x2969ca71d82efa7c, 0x9d46e9935ebbba2e, 0xe056b67e05e6822b,
+ 0x94d73f55739d03a0, 0xcd7010bdb69b5a03, 0x455ef9fcd79b82f4,
+ 0x869cb54a8749c161, 0x38d1a4fa6185d225, 0xb475166f94bbe9bb,
+ 0xa4143548720959f1, 0x7aed4780ba6b26ba, 0xd0ce264439e02312,
+ 0x84366d746078d508, 0xa8ce973c72ed17be, 0x21c323a29a430b01,
+ 0x9962d617e3af80ee, 0xab0ce91d9c8cf75b, 0x530e8ee6d19a4dbc,
+ 0x2ef68c0cf53f5d72, 0xc03a681640a85506, 0x496e4e9f9c310967,
+ 0x78580472b59b14a0, 0x273824c23b388577, 0x66bf923ad45cb553,
+ 0x47ae1a5a2492ba86, 0x35e304569e229659, 0x4765182a46870b6f,
+ 0x6cbab625e9099412, 0xddac9a2e598522c1, 0x7172086e666624f2,
+ 0xdf5003ca503b7837, 0x88c0c1db78563d09, 0x58d51865acfc289d,
+ 0x177671aec65224f1, 0xfb79d8a241e967d7, 0x2be1e101cad9a49a,
+ 0x6625682f6e29186b, 0x399553457ac06e50, 0x35dffb4c23abb74,
+ 0x429db2591f54aade, 0xc52802a8037d1009, 0x6acb27381f0b25f3,
+ 0xf45e2551ee4f823b, 0x8b0ea2d99580c2f7, 0x3bed519cbcb4e1e1,
+ 0xff452823dbb010a, 0x9d42ed614f3dd267, 0x5b9313c06257c57b,
+ 0xa114b8008b5e1442, 0xc1fe311c11c13d4b, 0x66e8763ea34c5568,
+ 0x8b982af1c262f05d, 0xee8876faaa75fbb7, 0x8a62a4d0d172bb2a,
+ 0xc13d94a3b7449a97, 0x6dbbba9dc15d037c, 0xc786101f1d92e0f1,
+ 0xd78681a907a0b79b, 0xf61aaf2962c9abb9, 0x2cfd16fcd3cb7ad9,
+ 0x868c5b6744624d21, 0x25e650899c74ddd7, 0xba042af4a7c37463,
+ 0x4eb1a539465a3eca, 0xbe09dbf03b05d5ca, 0x774e5a362b5472ba,
+ 0x47a1221229d183cd, 0x504b0ca18ef5a2df, 0xdffbdfbde2456eb9,
+ 0x46cd2b2fbee34634, 0xf2aef8fe819d98c3, 0x357f5276d4599d61,
+ 0x24a5483879c453e3, 0x88026889192b4b9, 0x28da96671782dbec,
+ 0x4ef37c40588e9aaa, 0x8837b90651bc9fb3, 0xc164f741d3f0e5d6,
+ 0xbc135a0a704b70ba, 0x69cd868f7622ada, 0xbc37ba89e0b9c0ab,
+ 0x47c14a01323552f6, 0x4f00794bacee98bb, 0x7107de7d637a69d5,
+ 0x88af793bb6f2255e, 0xf3c6466b8799b598, 0xc288c616aa7f3b59,
+ 0x81ca63cf42fca3fd, 0x88d85ace36a2674b, 0xd056bd3792389e7,
+ 0xe55c396c4e9dd32d, 0xbefb504571e6c0a6, 0x96ab32115e91e8cc,
+ 0xbf8acb18de8f38d1, 0x66dae58801672606, 0x833b6017872317fb,
+ 0xb87c16f2d1c92864, 0xdb766a74e58b669c, 0x89659f85c61417be,
+ 0xc8daad856011ea0c, 0x76a4b565b6fe7eae, 0xa469d085f6237312,
+ 0xaaf0365683a3e96c, 0x4dbb746f8424f7b8, 0x638755af4e4acc1,
+ 0x3d7807f5bde64486, 0x17be6d8f5bbb7639, 0x903f0cd44dc35dc,
+ 0x67b672eafdf1196c, 0xa676ff93ed4c82f1, 0x521d1004c5053d9d,
+ 0x37ba9ad09ccc9202, 0x84e54d297aacfb51, 0xa0b4b776a143445,
+ 0x820d471e20b348e, 0x1874383cb83d46dc, 0x97edeec7a1efe11c,
+ 0xb330e50b1bdc42aa, 0x1dd91955ce70e032, 0xa514cdb88f2939d5,
+ 0x2791233fd90db9d3, 0x7b670a4cc50f7a9b, 0x77c07d2a05c6dfa5,
+ 0xe3778b6646d0a6fa, 0xb39c8eda47b56749, 0x933ed448addbef28,
+ 0xaf846af6ab7d0bf4, 0xe5af208eb666e49, 0x5e6622f73534cd6a,
+ 0x297daeca42ef5b6e, 0x862daef3d35539a6, 0xe68722498f8e1ea9,
+ 0x981c53093dc0d572, 0xfa09b0bfbf86fbf5, 0x30b1e96166219f15,
+ 0x70e7d466bdc4fb83, 0x5a66736e35f2a8e9, 0xcddb59d2b7c1baef,
+ 0xd6c7d247d26d8996, 0xea4e39eac8de1ba3, 0x539c8bb19fa3aff2,
+ 0x9f90e4c5fd508d8, 0xa34e5956fbaf3385, 0x2e2f8e151d3ef375,
+ 0x173691e9b83faec1, 0xb85a8d56bf016379, 0x8382381267408ae3,
+ 0xb90f901bbdc0096d, 0x7c6ad32933bcec65, 0x76bb5e2f2c8ad595,
+ 0x390f851a6cf46d28, 0xc3e6064da1c2da72, 0xc52a0c101cfa5389,
+ 0xd78eaf84a3fbc530, 0x3781b9e2288b997e, 0x73c2f6dea83d05c4,
+ 0x4228e364c5b5ed7, 0x9d7a3edf0da43911, 0x8edcfeda24686756,
+ 0x5e7667a7b7a9b3a1, 0x4c4f389fa143791d, 0xb08bc1023da7cddc,
+ 0x7ab4be3ae529b1cc, 0x754e6132dbe74ff9, 0x71635442a839df45,
+ 0x2f6fb1643fbe52de, 0x961e0a42cf7a8177, 0xf3b45d83d89ef2ea,
+ 0xee3de4cf4a6e3e9b, 0xcd6848542c3295e7, 0xe4cee1664c78662f,
+ 0x9947548b474c68c4, 0x25d73777a5ed8b0b, 0xc915b1d636b7fc,
+ 0x21c2ba75d9b0d2da, 0x5f6b5dcf608a64a1, 0xdcf333255ff9570c,
+ 0x633b922418ced4ee, 0xc136dde0b004b34a, 0x58cc83b05d4b2f5a,
+ 0x5eb424dda28e42d2, 0x62df47369739cd98, 0xb4e0b42485e4ce17,
+ 0x16e1f0c1f9a8d1e7, 0x8ec3916707560ebf, 0x62ba6e2df2cc9db3,
+ 0xcbf9f4ff77d83a16, 0x78d9d7d07d2bbcc4, 0xef554ce1e02c41f4,
+ 0x8d7581127eccf94d, 0xa9b53336cb3c8a05, 0x38c42c0bf45c4f91,
+ 0x640893cdf4488863, 0x80ec34bc575ea568, 0x39f324f5b48eaa40,
+ 0xe9d9ed1f8eff527f, 0x9224fc058cc5a214, 0xbaba00b04cfe7741,
+ 0x309a9f120fcf52af, 0xa558f3ec65626212, 0x424bec8b7adabe2f,
+ 0x41622513a6aea433, 0xb88da2d5324ca798, 0xd287733b245528a4,
+ 0x9a44697e6d68aec3, 0x7b1093be2f49bb28, 0x50bbec632e3d8aad,
+ 0x6cd90723e1ea8283, 0x897b9e7431b02bf3, 0x219efdcb338a7047,
+ 0x3b0311f0a27c0656, 0xdb17bf91c0db96e7, 0x8cd4fd6b4e85a5b2,
+ 0xfab071054ba6409d, 0x40d6fe831fa9dfd9, 0xaf358debad7d791e,
+ 0xeb8d0e25a65e3e58, 0xbbcbd3df14e08580, 0xcf751f27ecdab2b,
+ 0x2b4da14f2613d8f4
+};
+
+#endif /* ZSTD_LDM_GEARTAB_H */
diff --git a/sys/contrib/zstd/lib/compress/zstd_opt.c b/sys/contrib/zstd/lib/compress/zstd_opt.c
index e55c459debd1..1b1ddad42890 100644
--- a/sys/contrib/zstd/lib/compress/zstd_opt.c
+++ b/sys/contrib/zstd/lib/compress/zstd_opt.c
@@ -1,1345 +1,1446 @@
/*
- * Copyright (c) 2016-2020, Przemyslaw Skibinski, Yann Collet, Facebook, Inc.
+ * Copyright (c) Przemyslaw Skibinski, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include "zstd_compress_internal.h"
#include "hist.h"
#include "zstd_opt.h"
#define ZSTD_LITFREQ_ADD 2 /* scaling factor for litFreq, so that frequencies adapt faster to new stats */
-#define ZSTD_FREQ_DIV 4 /* log factor when using previous stats to init next stats */
#define ZSTD_MAX_PRICE (1<<30)
#define ZSTD_PREDEF_THRESHOLD 1024 /* if srcSize < ZSTD_PREDEF_THRESHOLD, symbols' cost is assumed static, directly determined by pre-defined distributions */
/*-*************************************
* Price functions for optimal parser
***************************************/
-#if 0 /* approximation at bit level */
+#if 0 /* approximation at bit level (for tests) */
# define BITCOST_ACCURACY 0
# define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY)
-# define WEIGHT(stat) ((void)opt, ZSTD_bitWeight(stat))
-#elif 0 /* fractional bit accuracy */
+# define WEIGHT(stat, opt) ((void)opt, ZSTD_bitWeight(stat))
+#elif 0 /* fractional bit accuracy (for tests) */
# define BITCOST_ACCURACY 8
# define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY)
# define WEIGHT(stat,opt) ((void)opt, ZSTD_fracWeight(stat))
#else /* opt==approx, ultra==accurate */
# define BITCOST_ACCURACY 8
# define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY)
# define WEIGHT(stat,opt) (opt ? ZSTD_fracWeight(stat) : ZSTD_bitWeight(stat))
#endif
MEM_STATIC U32 ZSTD_bitWeight(U32 stat)
{
return (ZSTD_highbit32(stat+1) * BITCOST_MULTIPLIER);
}
MEM_STATIC U32 ZSTD_fracWeight(U32 rawStat)
{
U32 const stat = rawStat + 1;
U32 const hb = ZSTD_highbit32(stat);
U32 const BWeight = hb * BITCOST_MULTIPLIER;
U32 const FWeight = (stat << BITCOST_ACCURACY) >> hb;
U32 const weight = BWeight + FWeight;
assert(hb + BITCOST_ACCURACY < 31);
return weight;
}
#if (DEBUGLEVEL>=2)
/* debugging function,
* @return price in bytes as fractional value
* for debug messages only */
MEM_STATIC double ZSTD_fCost(U32 price)
{
return (double)price / (BITCOST_MULTIPLIER*8);
}
#endif
static int ZSTD_compressedLiterals(optState_t const* const optPtr)
{
- return optPtr->literalCompressionMode != ZSTD_lcm_uncompressed;
+ return optPtr->literalCompressionMode != ZSTD_ps_disable;
}
static void ZSTD_setBasePrices(optState_t* optPtr, int optLevel)
{
if (ZSTD_compressedLiterals(optPtr))
optPtr->litSumBasePrice = WEIGHT(optPtr->litSum, optLevel);
optPtr->litLengthSumBasePrice = WEIGHT(optPtr->litLengthSum, optLevel);
optPtr->matchLengthSumBasePrice = WEIGHT(optPtr->matchLengthSum, optLevel);
optPtr->offCodeSumBasePrice = WEIGHT(optPtr->offCodeSum, optLevel);
}
-/* ZSTD_downscaleStat() :
- * reduce all elements in table by a factor 2^(ZSTD_FREQ_DIV+malus)
- * return the resulting sum of elements */
-static U32 ZSTD_downscaleStat(unsigned* table, U32 lastEltIndex, int malus)
+static U32 sum_u32(const unsigned table[], size_t nbElts)
+{
+ size_t n;
+ U32 total = 0;
+ for (n=0; n<nbElts; n++) {
+ total += table[n];
+ }
+ return total;
+}
+
+static U32 ZSTD_downscaleStats(unsigned* table, U32 lastEltIndex, U32 shift)
{
U32 s, sum=0;
- DEBUGLOG(5, "ZSTD_downscaleStat (nbElts=%u)", (unsigned)lastEltIndex+1);
- assert(ZSTD_FREQ_DIV+malus > 0 && ZSTD_FREQ_DIV+malus < 31);
+ DEBUGLOG(5, "ZSTD_downscaleStats (nbElts=%u, shift=%u)", (unsigned)lastEltIndex+1, (unsigned)shift);
+ assert(shift < 30);
for (s=0; s<lastEltIndex+1; s++) {
- table[s] = 1 + (table[s] >> (ZSTD_FREQ_DIV+malus));
+ table[s] = 1 + (table[s] >> shift);
sum += table[s];
}
return sum;
}
+/* ZSTD_scaleStats() :
+ * reduce all elements in table is sum too large
+ * return the resulting sum of elements */
+static U32 ZSTD_scaleStats(unsigned* table, U32 lastEltIndex, U32 logTarget)
+{
+ U32 const prevsum = sum_u32(table, lastEltIndex+1);
+ U32 const factor = prevsum >> logTarget;
+ DEBUGLOG(5, "ZSTD_scaleStats (nbElts=%u, target=%u)", (unsigned)lastEltIndex+1, (unsigned)logTarget);
+ assert(logTarget < 30);
+ if (factor <= 1) return prevsum;
+ return ZSTD_downscaleStats(table, lastEltIndex, ZSTD_highbit32(factor));
+}
+
/* ZSTD_rescaleFreqs() :
* if first block (detected by optPtr->litLengthSum == 0) : init statistics
* take hints from dictionary if there is one
- * or init from zero, using src for literals stats, or flat 1 for match symbols
+ * and init from zero if there is none,
+ * using src for literals stats, and baseline stats for sequence symbols
* otherwise downscale existing stats, to be used as seed for next block.
*/
static void
ZSTD_rescaleFreqs(optState_t* const optPtr,
const BYTE* const src, size_t const srcSize,
int const optLevel)
{
int const compressedLiterals = ZSTD_compressedLiterals(optPtr);
DEBUGLOG(5, "ZSTD_rescaleFreqs (srcSize=%u)", (unsigned)srcSize);
optPtr->priceType = zop_dynamic;
if (optPtr->litLengthSum == 0) { /* first block : init */
if (srcSize <= ZSTD_PREDEF_THRESHOLD) { /* heuristic */
DEBUGLOG(5, "(srcSize <= ZSTD_PREDEF_THRESHOLD) => zop_predef");
optPtr->priceType = zop_predef;
}
assert(optPtr->symbolCosts != NULL);
if (optPtr->symbolCosts->huf.repeatMode == HUF_repeat_valid) {
/* huffman table presumed generated by dictionary */
optPtr->priceType = zop_dynamic;
if (compressedLiterals) {
unsigned lit;
assert(optPtr->litFreq != NULL);
optPtr->litSum = 0;
for (lit=0; lit<=MaxLit; lit++) {
U32 const scaleLog = 11; /* scale to 2K */
- U32 const bitCost = HUF_getNbBits(optPtr->symbolCosts->huf.CTable, lit);
+ U32 const bitCost = HUF_getNbBitsFromCTable(optPtr->symbolCosts->huf.CTable, lit);
assert(bitCost <= scaleLog);
optPtr->litFreq[lit] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/;
optPtr->litSum += optPtr->litFreq[lit];
} }
{ unsigned ll;
FSE_CState_t llstate;
FSE_initCState(&llstate, optPtr->symbolCosts->fse.litlengthCTable);
optPtr->litLengthSum = 0;
for (ll=0; ll<=MaxLL; ll++) {
U32 const scaleLog = 10; /* scale to 1K */
U32 const bitCost = FSE_getMaxNbBits(llstate.symbolTT, ll);
assert(bitCost < scaleLog);
optPtr->litLengthFreq[ll] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/;
optPtr->litLengthSum += optPtr->litLengthFreq[ll];
} }
{ unsigned ml;
FSE_CState_t mlstate;
FSE_initCState(&mlstate, optPtr->symbolCosts->fse.matchlengthCTable);
optPtr->matchLengthSum = 0;
for (ml=0; ml<=MaxML; ml++) {
U32 const scaleLog = 10;
U32 const bitCost = FSE_getMaxNbBits(mlstate.symbolTT, ml);
assert(bitCost < scaleLog);
optPtr->matchLengthFreq[ml] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/;
optPtr->matchLengthSum += optPtr->matchLengthFreq[ml];
} }
{ unsigned of;
FSE_CState_t ofstate;
FSE_initCState(&ofstate, optPtr->symbolCosts->fse.offcodeCTable);
optPtr->offCodeSum = 0;
for (of=0; of<=MaxOff; of++) {
U32 const scaleLog = 10;
U32 const bitCost = FSE_getMaxNbBits(ofstate.symbolTT, of);
assert(bitCost < scaleLog);
optPtr->offCodeFreq[of] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/;
optPtr->offCodeSum += optPtr->offCodeFreq[of];
} }
} else { /* not a dictionary */
assert(optPtr->litFreq != NULL);
if (compressedLiterals) {
unsigned lit = MaxLit;
HIST_count_simple(optPtr->litFreq, &lit, src, srcSize); /* use raw first block to init statistics */
- optPtr->litSum = ZSTD_downscaleStat(optPtr->litFreq, MaxLit, 1);
+ optPtr->litSum = ZSTD_downscaleStats(optPtr->litFreq, MaxLit, 8);
}
- { unsigned ll;
- for (ll=0; ll<=MaxLL; ll++)
- optPtr->litLengthFreq[ll] = 1;
+ { unsigned const baseLLfreqs[MaxLL+1] = {
+ 4, 2, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1
+ };
+ ZSTD_memcpy(optPtr->litLengthFreq, baseLLfreqs, sizeof(baseLLfreqs));
+ optPtr->litLengthSum = sum_u32(baseLLfreqs, MaxLL+1);
}
- optPtr->litLengthSum = MaxLL+1;
{ unsigned ml;
for (ml=0; ml<=MaxML; ml++)
optPtr->matchLengthFreq[ml] = 1;
}
optPtr->matchLengthSum = MaxML+1;
- { unsigned of;
- for (of=0; of<=MaxOff; of++)
- optPtr->offCodeFreq[of] = 1;
+ { unsigned const baseOFCfreqs[MaxOff+1] = {
+ 6, 2, 1, 1, 2, 3, 4, 4,
+ 4, 3, 2, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1
+ };
+ ZSTD_memcpy(optPtr->offCodeFreq, baseOFCfreqs, sizeof(baseOFCfreqs));
+ optPtr->offCodeSum = sum_u32(baseOFCfreqs, MaxOff+1);
}
- optPtr->offCodeSum = MaxOff+1;
+
}
} else { /* new block : re-use previous statistics, scaled down */
if (compressedLiterals)
- optPtr->litSum = ZSTD_downscaleStat(optPtr->litFreq, MaxLit, 1);
- optPtr->litLengthSum = ZSTD_downscaleStat(optPtr->litLengthFreq, MaxLL, 0);
- optPtr->matchLengthSum = ZSTD_downscaleStat(optPtr->matchLengthFreq, MaxML, 0);
- optPtr->offCodeSum = ZSTD_downscaleStat(optPtr->offCodeFreq, MaxOff, 0);
+ optPtr->litSum = ZSTD_scaleStats(optPtr->litFreq, MaxLit, 12);
+ optPtr->litLengthSum = ZSTD_scaleStats(optPtr->litLengthFreq, MaxLL, 11);
+ optPtr->matchLengthSum = ZSTD_scaleStats(optPtr->matchLengthFreq, MaxML, 11);
+ optPtr->offCodeSum = ZSTD_scaleStats(optPtr->offCodeFreq, MaxOff, 11);
}
ZSTD_setBasePrices(optPtr, optLevel);
}
/* ZSTD_rawLiteralsCost() :
* price of literals (only) in specified segment (which length can be 0).
* does not include price of literalLength symbol */
static U32 ZSTD_rawLiteralsCost(const BYTE* const literals, U32 const litLength,
const optState_t* const optPtr,
int optLevel)
{
if (litLength == 0) return 0;
if (!ZSTD_compressedLiterals(optPtr))
return (litLength << 3) * BITCOST_MULTIPLIER; /* Uncompressed - 8 bytes per literal. */
if (optPtr->priceType == zop_predef)
return (litLength*6) * BITCOST_MULTIPLIER; /* 6 bit per literal - no statistic used */
/* dynamic statistics */
{ U32 price = litLength * optPtr->litSumBasePrice;
U32 u;
for (u=0; u < litLength; u++) {
assert(WEIGHT(optPtr->litFreq[literals[u]], optLevel) <= optPtr->litSumBasePrice); /* literal cost should never be negative */
price -= WEIGHT(optPtr->litFreq[literals[u]], optLevel);
}
return price;
}
}
/* ZSTD_litLengthPrice() :
* cost of literalLength symbol */
static U32 ZSTD_litLengthPrice(U32 const litLength, const optState_t* const optPtr, int optLevel)
{
- if (optPtr->priceType == zop_predef) return WEIGHT(litLength, optLevel);
+ assert(litLength <= ZSTD_BLOCKSIZE_MAX);
+ if (optPtr->priceType == zop_predef)
+ return WEIGHT(litLength, optLevel);
+ /* We can't compute the litLength price for sizes >= ZSTD_BLOCKSIZE_MAX
+ * because it isn't representable in the zstd format. So instead just
+ * call it 1 bit more than ZSTD_BLOCKSIZE_MAX - 1. In this case the block
+ * would be all literals.
+ */
+ if (litLength == ZSTD_BLOCKSIZE_MAX)
+ return BITCOST_MULTIPLIER + ZSTD_litLengthPrice(ZSTD_BLOCKSIZE_MAX - 1, optPtr, optLevel);
/* dynamic statistics */
{ U32 const llCode = ZSTD_LLcode(litLength);
return (LL_bits[llCode] * BITCOST_MULTIPLIER)
+ optPtr->litLengthSumBasePrice
- WEIGHT(optPtr->litLengthFreq[llCode], optLevel);
}
}
/* ZSTD_getMatchPrice() :
* Provides the cost of the match part (offset + matchLength) of a sequence
* Must be combined with ZSTD_fullLiteralsCost() to get the full cost of a sequence.
- * optLevel: when <2, favors small offset for decompression speed (improved cache efficiency) */
+ * @offcode : expects a scale where 0,1,2 are repcodes 1-3, and 3+ are real_offsets+2
+ * @optLevel: when <2, favors small offset for decompression speed (improved cache efficiency)
+ */
FORCE_INLINE_TEMPLATE U32
-ZSTD_getMatchPrice(U32 const offset,
+ZSTD_getMatchPrice(U32 const offcode,
U32 const matchLength,
const optState_t* const optPtr,
int const optLevel)
{
U32 price;
- U32 const offCode = ZSTD_highbit32(offset+1);
+ U32 const offCode = ZSTD_highbit32(STORED_TO_OFFBASE(offcode));
U32 const mlBase = matchLength - MINMATCH;
assert(matchLength >= MINMATCH);
if (optPtr->priceType == zop_predef) /* fixed scheme, do not use statistics */
return WEIGHT(mlBase, optLevel) + ((16 + offCode) * BITCOST_MULTIPLIER);
/* dynamic statistics */
price = (offCode * BITCOST_MULTIPLIER) + (optPtr->offCodeSumBasePrice - WEIGHT(optPtr->offCodeFreq[offCode], optLevel));
if ((optLevel<2) /*static*/ && offCode >= 20)
price += (offCode-19)*2 * BITCOST_MULTIPLIER; /* handicap for long distance offsets, favor decompression speed */
/* match Length */
{ U32 const mlCode = ZSTD_MLcode(mlBase);
price += (ML_bits[mlCode] * BITCOST_MULTIPLIER) + (optPtr->matchLengthSumBasePrice - WEIGHT(optPtr->matchLengthFreq[mlCode], optLevel));
}
price += BITCOST_MULTIPLIER / 5; /* heuristic : make matches a bit more costly to favor less sequences -> faster decompression speed */
DEBUGLOG(8, "ZSTD_getMatchPrice(ml:%u) = %u", matchLength, price);
return price;
}
/* ZSTD_updateStats() :
* assumption : literals + litLengtn <= iend */
static void ZSTD_updateStats(optState_t* const optPtr,
U32 litLength, const BYTE* literals,
U32 offsetCode, U32 matchLength)
{
/* literals */
if (ZSTD_compressedLiterals(optPtr)) {
U32 u;
for (u=0; u < litLength; u++)
optPtr->litFreq[literals[u]] += ZSTD_LITFREQ_ADD;
optPtr->litSum += litLength*ZSTD_LITFREQ_ADD;
}
/* literal Length */
{ U32 const llCode = ZSTD_LLcode(litLength);
optPtr->litLengthFreq[llCode]++;
optPtr->litLengthSum++;
}
- /* match offset code (0-2=>repCode; 3+=>offset+2) */
- { U32 const offCode = ZSTD_highbit32(offsetCode+1);
+ /* offset code : expected to follow storeSeq() numeric representation */
+ { U32 const offCode = ZSTD_highbit32(STORED_TO_OFFBASE(offsetCode));
assert(offCode <= MaxOff);
optPtr->offCodeFreq[offCode]++;
optPtr->offCodeSum++;
}
/* match Length */
{ U32 const mlBase = matchLength - MINMATCH;
U32 const mlCode = ZSTD_MLcode(mlBase);
optPtr->matchLengthFreq[mlCode]++;
optPtr->matchLengthSum++;
}
}
/* ZSTD_readMINMATCH() :
* function safe only for comparisons
* assumption : memPtr must be at least 4 bytes before end of buffer */
MEM_STATIC U32 ZSTD_readMINMATCH(const void* memPtr, U32 length)
{
switch (length)
{
default :
case 4 : return MEM_read32(memPtr);
case 3 : if (MEM_isLittleEndian())
return MEM_read32(memPtr)<<8;
else
return MEM_read32(memPtr)>>8;
}
}
/* Update hashTable3 up to ip (excluded)
Assumption : always within prefix (i.e. not within extDict) */
-static U32 ZSTD_insertAndFindFirstIndexHash3 (ZSTD_matchState_t* ms,
+static U32 ZSTD_insertAndFindFirstIndexHash3 (const ZSTD_matchState_t* ms,
U32* nextToUpdate3,
const BYTE* const ip)
{
U32* const hashTable3 = ms->hashTable3;
U32 const hashLog3 = ms->hashLog3;
const BYTE* const base = ms->window.base;
U32 idx = *nextToUpdate3;
U32 const target = (U32)(ip - base);
size_t const hash3 = ZSTD_hash3Ptr(ip, hashLog3);
assert(hashLog3 > 0);
while(idx < target) {
hashTable3[ZSTD_hash3Ptr(base+idx, hashLog3)] = idx;
idx++;
}
*nextToUpdate3 = target;
return hashTable3[hash3];
}
/*-*************************************
* Binary Tree search
***************************************/
/** ZSTD_insertBt1() : add one or multiple positions to tree.
- * ip : assumed <= iend-8 .
+ * @param ip assumed <= iend-8 .
+ * @param target The target of ZSTD_updateTree_internal() - we are filling to this position
* @return : nb of positions added */
static U32 ZSTD_insertBt1(
- ZSTD_matchState_t* ms,
+ const ZSTD_matchState_t* ms,
const BYTE* const ip, const BYTE* const iend,
+ U32 const target,
U32 const mls, const int extDict)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashTable = ms->hashTable;
U32 const hashLog = cParams->hashLog;
size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
U32* const bt = ms->chainTable;
U32 const btLog = cParams->chainLog - 1;
U32 const btMask = (1 << btLog) - 1;
U32 matchIndex = hashTable[h];
size_t commonLengthSmaller=0, commonLengthLarger=0;
const BYTE* const base = ms->window.base;
const BYTE* const dictBase = ms->window.dictBase;
const U32 dictLimit = ms->window.dictLimit;
const BYTE* const dictEnd = dictBase + dictLimit;
const BYTE* const prefixStart = base + dictLimit;
const BYTE* match;
const U32 curr = (U32)(ip-base);
const U32 btLow = btMask >= curr ? 0 : curr - btMask;
U32* smallerPtr = bt + 2*(curr&btMask);
U32* largerPtr = smallerPtr + 1;
U32 dummy32; /* to be nullified at the end */
- U32 const windowLow = ms->window.lowLimit;
+ /* windowLow is based on target because
+ * we only need positions that will be in the window at the end of the tree update.
+ */
+ U32 const windowLow = ZSTD_getLowestMatchIndex(ms, target, cParams->windowLog);
U32 matchEndIdx = curr+8+1;
size_t bestLength = 8;
U32 nbCompares = 1U << cParams->searchLog;
#ifdef ZSTD_C_PREDICT
U32 predictedSmall = *(bt + 2*((curr-1)&btMask) + 0);
U32 predictedLarge = *(bt + 2*((curr-1)&btMask) + 1);
predictedSmall += (predictedSmall>0);
predictedLarge += (predictedLarge>0);
#endif /* ZSTD_C_PREDICT */
DEBUGLOG(8, "ZSTD_insertBt1 (%u)", curr);
+ assert(curr <= target);
assert(ip <= iend-8); /* required for h calculation */
hashTable[h] = curr; /* Update Hash Table */
assert(windowLow > 0);
- while (nbCompares-- && (matchIndex >= windowLow)) {
+ for (; nbCompares && (matchIndex >= windowLow); --nbCompares) {
U32* const nextPtr = bt + 2*(matchIndex & btMask);
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
assert(matchIndex < curr);
#ifdef ZSTD_C_PREDICT /* note : can create issues when hlog small <= 11 */
const U32* predictPtr = bt + 2*((matchIndex-1) & btMask); /* written this way, as bt is a roll buffer */
if (matchIndex == predictedSmall) {
/* no need to check length, result known */
*smallerPtr = matchIndex;
if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */
smallerPtr = nextPtr+1; /* new "smaller" => larger of match */
matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */
predictedSmall = predictPtr[1] + (predictPtr[1]>0);
continue;
}
if (matchIndex == predictedLarge) {
*largerPtr = matchIndex;
if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */
largerPtr = nextPtr;
matchIndex = nextPtr[0];
predictedLarge = predictPtr[0] + (predictPtr[0]>0);
continue;
}
#endif
if (!extDict || (matchIndex+matchLength >= dictLimit)) {
assert(matchIndex+matchLength >= dictLimit); /* might be wrong if actually extDict */
match = base + matchIndex;
matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
} else {
match = dictBase + matchIndex;
matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
if (matchIndex+matchLength >= dictLimit)
match = base + matchIndex; /* to prepare for next usage of match[matchLength] */
}
if (matchLength > bestLength) {
bestLength = matchLength;
if (matchLength > matchEndIdx - matchIndex)
matchEndIdx = matchIndex + (U32)matchLength;
}
if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */
break; /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt tree */
}
if (match[matchLength] < ip[matchLength]) { /* necessarily within buffer */
/* match is smaller than current */
*smallerPtr = matchIndex; /* update smaller idx */
commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop searching */
smallerPtr = nextPtr+1; /* new "candidate" => larger than match, which was smaller than target */
matchIndex = nextPtr[1]; /* new matchIndex, larger than previous and closer to current */
} else {
/* match is larger than current */
*largerPtr = matchIndex;
commonLengthLarger = matchLength;
if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop searching */
largerPtr = nextPtr;
matchIndex = nextPtr[0];
} }
*smallerPtr = *largerPtr = 0;
{ U32 positions = 0;
if (bestLength > 384) positions = MIN(192, (U32)(bestLength - 384)); /* speed optimization */
assert(matchEndIdx > curr + 8);
return MAX(positions, matchEndIdx - (curr + 8));
}
}
FORCE_INLINE_TEMPLATE
void ZSTD_updateTree_internal(
ZSTD_matchState_t* ms,
const BYTE* const ip, const BYTE* const iend,
const U32 mls, const ZSTD_dictMode_e dictMode)
{
const BYTE* const base = ms->window.base;
U32 const target = (U32)(ip - base);
U32 idx = ms->nextToUpdate;
DEBUGLOG(6, "ZSTD_updateTree_internal, from %u to %u (dictMode:%u)",
idx, target, dictMode);
while(idx < target) {
- U32 const forward = ZSTD_insertBt1(ms, base+idx, iend, mls, dictMode == ZSTD_extDict);
+ U32 const forward = ZSTD_insertBt1(ms, base+idx, iend, target, mls, dictMode == ZSTD_extDict);
assert(idx < (U32)(idx + forward));
idx += forward;
}
assert((size_t)(ip - base) <= (size_t)(U32)(-1));
assert((size_t)(iend - base) <= (size_t)(U32)(-1));
ms->nextToUpdate = target;
}
void ZSTD_updateTree(ZSTD_matchState_t* ms, const BYTE* ip, const BYTE* iend) {
ZSTD_updateTree_internal(ms, ip, iend, ms->cParams.minMatch, ZSTD_noDict);
}
FORCE_INLINE_TEMPLATE
U32 ZSTD_insertBtAndGetAllMatches (
ZSTD_match_t* matches, /* store result (found matches) in this table (presumed large enough) */
ZSTD_matchState_t* ms,
U32* nextToUpdate3,
const BYTE* const ip, const BYTE* const iLimit, const ZSTD_dictMode_e dictMode,
const U32 rep[ZSTD_REP_NUM],
U32 const ll0, /* tells if associated literal length is 0 or not. This value must be 0 or 1 */
const U32 lengthToBeat,
U32 const mls /* template */)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32 const sufficient_len = MIN(cParams->targetLength, ZSTD_OPT_NUM -1);
const BYTE* const base = ms->window.base;
U32 const curr = (U32)(ip-base);
U32 const hashLog = cParams->hashLog;
U32 const minMatch = (mls==3) ? 3 : 4;
U32* const hashTable = ms->hashTable;
size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
U32 matchIndex = hashTable[h];
U32* const bt = ms->chainTable;
U32 const btLog = cParams->chainLog - 1;
U32 const btMask= (1U << btLog) - 1;
size_t commonLengthSmaller=0, commonLengthLarger=0;
const BYTE* const dictBase = ms->window.dictBase;
U32 const dictLimit = ms->window.dictLimit;
const BYTE* const dictEnd = dictBase + dictLimit;
const BYTE* const prefixStart = base + dictLimit;
U32 const btLow = (btMask >= curr) ? 0 : curr - btMask;
U32 const windowLow = ZSTD_getLowestMatchIndex(ms, curr, cParams->windowLog);
U32 const matchLow = windowLow ? windowLow : 1;
U32* smallerPtr = bt + 2*(curr&btMask);
U32* largerPtr = bt + 2*(curr&btMask) + 1;
U32 matchEndIdx = curr+8+1; /* farthest referenced position of any match => detects repetitive patterns */
U32 dummy32; /* to be nullified at the end */
U32 mnum = 0;
U32 nbCompares = 1U << cParams->searchLog;
const ZSTD_matchState_t* dms = dictMode == ZSTD_dictMatchState ? ms->dictMatchState : NULL;
const ZSTD_compressionParameters* const dmsCParams =
dictMode == ZSTD_dictMatchState ? &dms->cParams : NULL;
const BYTE* const dmsBase = dictMode == ZSTD_dictMatchState ? dms->window.base : NULL;
const BYTE* const dmsEnd = dictMode == ZSTD_dictMatchState ? dms->window.nextSrc : NULL;
U32 const dmsHighLimit = dictMode == ZSTD_dictMatchState ? (U32)(dmsEnd - dmsBase) : 0;
U32 const dmsLowLimit = dictMode == ZSTD_dictMatchState ? dms->window.lowLimit : 0;
U32 const dmsIndexDelta = dictMode == ZSTD_dictMatchState ? windowLow - dmsHighLimit : 0;
U32 const dmsHashLog = dictMode == ZSTD_dictMatchState ? dmsCParams->hashLog : hashLog;
U32 const dmsBtLog = dictMode == ZSTD_dictMatchState ? dmsCParams->chainLog - 1 : btLog;
U32 const dmsBtMask = dictMode == ZSTD_dictMatchState ? (1U << dmsBtLog) - 1 : 0;
U32 const dmsBtLow = dictMode == ZSTD_dictMatchState && dmsBtMask < dmsHighLimit - dmsLowLimit ? dmsHighLimit - dmsBtMask : dmsLowLimit;
size_t bestLength = lengthToBeat-1;
DEBUGLOG(8, "ZSTD_insertBtAndGetAllMatches: current=%u", curr);
/* check repCode */
assert(ll0 <= 1); /* necessarily 1 or 0 */
{ U32 const lastR = ZSTD_REP_NUM + ll0;
U32 repCode;
for (repCode = ll0; repCode < lastR; repCode++) {
U32 const repOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode];
U32 const repIndex = curr - repOffset;
U32 repLen = 0;
assert(curr >= dictLimit);
if (repOffset-1 /* intentional overflow, discards 0 and -1 */ < curr-dictLimit) { /* equivalent to `curr > repIndex >= dictLimit` */
/* We must validate the repcode offset because when we're using a dictionary the
* valid offset range shrinks when the dictionary goes out of bounds.
*/
if ((repIndex >= windowLow) & (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(ip - repOffset, minMatch))) {
repLen = (U32)ZSTD_count(ip+minMatch, ip+minMatch-repOffset, iLimit) + minMatch;
}
} else { /* repIndex < dictLimit || repIndex >= curr */
const BYTE* const repMatch = dictMode == ZSTD_dictMatchState ?
dmsBase + repIndex - dmsIndexDelta :
dictBase + repIndex;
assert(curr >= windowLow);
if ( dictMode == ZSTD_extDict
&& ( ((repOffset-1) /*intentional overflow*/ < curr - windowLow) /* equivalent to `curr > repIndex >= windowLow` */
& (((U32)((dictLimit-1) - repIndex) >= 3) ) /* intentional overflow : do not test positions overlapping 2 memory segments */)
&& (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(repMatch, minMatch)) ) {
repLen = (U32)ZSTD_count_2segments(ip+minMatch, repMatch+minMatch, iLimit, dictEnd, prefixStart) + minMatch;
}
if (dictMode == ZSTD_dictMatchState
&& ( ((repOffset-1) /*intentional overflow*/ < curr - (dmsLowLimit + dmsIndexDelta)) /* equivalent to `curr > repIndex >= dmsLowLimit` */
& ((U32)((dictLimit-1) - repIndex) >= 3) ) /* intentional overflow : do not test positions overlapping 2 memory segments */
&& (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(repMatch, minMatch)) ) {
repLen = (U32)ZSTD_count_2segments(ip+minMatch, repMatch+minMatch, iLimit, dmsEnd, prefixStart) + minMatch;
} }
/* save longer solution */
if (repLen > bestLength) {
DEBUGLOG(8, "found repCode %u (ll0:%u, offset:%u) of length %u",
repCode, ll0, repOffset, repLen);
bestLength = repLen;
- matches[mnum].off = repCode - ll0;
+ matches[mnum].off = STORE_REPCODE(repCode - ll0 + 1); /* expect value between 1 and 3 */
matches[mnum].len = (U32)repLen;
mnum++;
if ( (repLen > sufficient_len)
| (ip+repLen == iLimit) ) { /* best possible */
return mnum;
} } } }
/* HC3 match finder */
if ((mls == 3) /*static*/ && (bestLength < mls)) {
U32 const matchIndex3 = ZSTD_insertAndFindFirstIndexHash3(ms, nextToUpdate3, ip);
if ((matchIndex3 >= matchLow)
& (curr - matchIndex3 < (1<<18)) /*heuristic : longer distance likely too expensive*/ ) {
size_t mlen;
if ((dictMode == ZSTD_noDict) /*static*/ || (dictMode == ZSTD_dictMatchState) /*static*/ || (matchIndex3 >= dictLimit)) {
const BYTE* const match = base + matchIndex3;
mlen = ZSTD_count(ip, match, iLimit);
} else {
const BYTE* const match = dictBase + matchIndex3;
mlen = ZSTD_count_2segments(ip, match, iLimit, dictEnd, prefixStart);
}
/* save best solution */
if (mlen >= mls /* == 3 > bestLength */) {
DEBUGLOG(8, "found small match with hlog3, of length %u",
(U32)mlen);
bestLength = mlen;
assert(curr > matchIndex3);
assert(mnum==0); /* no prior solution */
- matches[0].off = (curr - matchIndex3) + ZSTD_REP_MOVE;
+ matches[0].off = STORE_OFFSET(curr - matchIndex3);
matches[0].len = (U32)mlen;
mnum = 1;
if ( (mlen > sufficient_len) |
(ip+mlen == iLimit) ) { /* best possible length */
ms->nextToUpdate = curr+1; /* skip insertion */
return 1;
} } }
/* no dictMatchState lookup: dicts don't have a populated HC3 table */
- }
+ } /* if (mls == 3) */
hashTable[h] = curr; /* Update Hash Table */
- while (nbCompares-- && (matchIndex >= matchLow)) {
+ for (; nbCompares && (matchIndex >= matchLow); --nbCompares) {
U32* const nextPtr = bt + 2*(matchIndex & btMask);
const BYTE* match;
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
assert(curr > matchIndex);
if ((dictMode == ZSTD_noDict) || (dictMode == ZSTD_dictMatchState) || (matchIndex+matchLength >= dictLimit)) {
assert(matchIndex+matchLength >= dictLimit); /* ensure the condition is correct when !extDict */
match = base + matchIndex;
if (matchIndex >= dictLimit) assert(memcmp(match, ip, matchLength) == 0); /* ensure early section of match is equal as expected */
matchLength += ZSTD_count(ip+matchLength, match+matchLength, iLimit);
} else {
match = dictBase + matchIndex;
assert(memcmp(match, ip, matchLength) == 0); /* ensure early section of match is equal as expected */
matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iLimit, dictEnd, prefixStart);
if (matchIndex+matchLength >= dictLimit)
match = base + matchIndex; /* prepare for match[matchLength] read */
}
if (matchLength > bestLength) {
DEBUGLOG(8, "found match of length %u at distance %u (offCode=%u)",
- (U32)matchLength, curr - matchIndex, curr - matchIndex + ZSTD_REP_MOVE);
+ (U32)matchLength, curr - matchIndex, STORE_OFFSET(curr - matchIndex));
assert(matchEndIdx > matchIndex);
if (matchLength > matchEndIdx - matchIndex)
matchEndIdx = matchIndex + (U32)matchLength;
bestLength = matchLength;
- matches[mnum].off = (curr - matchIndex) + ZSTD_REP_MOVE;
+ matches[mnum].off = STORE_OFFSET(curr - matchIndex);
matches[mnum].len = (U32)matchLength;
mnum++;
if ( (matchLength > ZSTD_OPT_NUM)
| (ip+matchLength == iLimit) /* equal : no way to know if inf or sup */) {
if (dictMode == ZSTD_dictMatchState) nbCompares = 0; /* break should also skip searching dms */
break; /* drop, to preserve bt consistency (miss a little bit of compression) */
- }
- }
+ } }
if (match[matchLength] < ip[matchLength]) {
/* match smaller than current */
*smallerPtr = matchIndex; /* update smaller idx */
commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */
smallerPtr = nextPtr+1; /* new candidate => larger than match, which was smaller than current */
matchIndex = nextPtr[1]; /* new matchIndex, larger than previous, closer to current */
} else {
*largerPtr = matchIndex;
commonLengthLarger = matchLength;
if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */
largerPtr = nextPtr;
matchIndex = nextPtr[0];
} }
*smallerPtr = *largerPtr = 0;
+ assert(nbCompares <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
if (dictMode == ZSTD_dictMatchState && nbCompares) {
size_t const dmsH = ZSTD_hashPtr(ip, dmsHashLog, mls);
U32 dictMatchIndex = dms->hashTable[dmsH];
const U32* const dmsBt = dms->chainTable;
commonLengthSmaller = commonLengthLarger = 0;
- while (nbCompares-- && (dictMatchIndex > dmsLowLimit)) {
+ for (; nbCompares && (dictMatchIndex > dmsLowLimit); --nbCompares) {
const U32* const nextPtr = dmsBt + 2*(dictMatchIndex & dmsBtMask);
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
const BYTE* match = dmsBase + dictMatchIndex;
matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iLimit, dmsEnd, prefixStart);
if (dictMatchIndex+matchLength >= dmsHighLimit)
match = base + dictMatchIndex + dmsIndexDelta; /* to prepare for next usage of match[matchLength] */
if (matchLength > bestLength) {
matchIndex = dictMatchIndex + dmsIndexDelta;
DEBUGLOG(8, "found dms match of length %u at distance %u (offCode=%u)",
- (U32)matchLength, curr - matchIndex, curr - matchIndex + ZSTD_REP_MOVE);
+ (U32)matchLength, curr - matchIndex, STORE_OFFSET(curr - matchIndex));
if (matchLength > matchEndIdx - matchIndex)
matchEndIdx = matchIndex + (U32)matchLength;
bestLength = matchLength;
- matches[mnum].off = (curr - matchIndex) + ZSTD_REP_MOVE;
+ matches[mnum].off = STORE_OFFSET(curr - matchIndex);
matches[mnum].len = (U32)matchLength;
mnum++;
if ( (matchLength > ZSTD_OPT_NUM)
| (ip+matchLength == iLimit) /* equal : no way to know if inf or sup */) {
break; /* drop, to guarantee consistency (miss a little bit of compression) */
- }
- }
+ } }
if (dictMatchIndex <= dmsBtLow) { break; } /* beyond tree size, stop the search */
if (match[matchLength] < ip[matchLength]) {
commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
dictMatchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */
} else {
/* match is larger than current */
commonLengthLarger = matchLength;
dictMatchIndex = nextPtr[0];
- }
- }
- }
+ } } } /* if (dictMode == ZSTD_dictMatchState) */
assert(matchEndIdx > curr+8);
ms->nextToUpdate = matchEndIdx - 8; /* skip repetitive patterns */
return mnum;
}
-
-FORCE_INLINE_TEMPLATE U32 ZSTD_BtGetAllMatches (
- ZSTD_match_t* matches, /* store result (match found, increasing size) in this table */
- ZSTD_matchState_t* ms,
- U32* nextToUpdate3,
- const BYTE* ip, const BYTE* const iHighLimit, const ZSTD_dictMode_e dictMode,
- const U32 rep[ZSTD_REP_NUM],
- U32 const ll0,
- U32 const lengthToBeat)
+typedef U32 (*ZSTD_getAllMatchesFn)(
+ ZSTD_match_t*,
+ ZSTD_matchState_t*,
+ U32*,
+ const BYTE*,
+ const BYTE*,
+ const U32 rep[ZSTD_REP_NUM],
+ U32 const ll0,
+ U32 const lengthToBeat);
+
+FORCE_INLINE_TEMPLATE U32 ZSTD_btGetAllMatches_internal(
+ ZSTD_match_t* matches,
+ ZSTD_matchState_t* ms,
+ U32* nextToUpdate3,
+ const BYTE* ip,
+ const BYTE* const iHighLimit,
+ const U32 rep[ZSTD_REP_NUM],
+ U32 const ll0,
+ U32 const lengthToBeat,
+ const ZSTD_dictMode_e dictMode,
+ const U32 mls)
{
- const ZSTD_compressionParameters* const cParams = &ms->cParams;
- U32 const matchLengthSearch = cParams->minMatch;
- DEBUGLOG(8, "ZSTD_BtGetAllMatches");
- if (ip < ms->window.base + ms->nextToUpdate) return 0; /* skipped area */
- ZSTD_updateTree_internal(ms, ip, iHighLimit, matchLengthSearch, dictMode);
- switch(matchLengthSearch)
- {
- case 3 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 3);
- default :
- case 4 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 4);
- case 5 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 5);
- case 7 :
- case 6 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 6);
+ assert(BOUNDED(3, ms->cParams.minMatch, 6) == mls);
+ DEBUGLOG(8, "ZSTD_BtGetAllMatches(dictMode=%d, mls=%u)", (int)dictMode, mls);
+ if (ip < ms->window.base + ms->nextToUpdate)
+ return 0; /* skipped area */
+ ZSTD_updateTree_internal(ms, ip, iHighLimit, mls, dictMode);
+ return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, mls);
+}
+
+#define ZSTD_BT_GET_ALL_MATCHES_FN(dictMode, mls) ZSTD_btGetAllMatches_##dictMode##_##mls
+
+#define GEN_ZSTD_BT_GET_ALL_MATCHES_(dictMode, mls) \
+ static U32 ZSTD_BT_GET_ALL_MATCHES_FN(dictMode, mls)( \
+ ZSTD_match_t* matches, \
+ ZSTD_matchState_t* ms, \
+ U32* nextToUpdate3, \
+ const BYTE* ip, \
+ const BYTE* const iHighLimit, \
+ const U32 rep[ZSTD_REP_NUM], \
+ U32 const ll0, \
+ U32 const lengthToBeat) \
+ { \
+ return ZSTD_btGetAllMatches_internal( \
+ matches, ms, nextToUpdate3, ip, iHighLimit, \
+ rep, ll0, lengthToBeat, ZSTD_##dictMode, mls); \
+ }
+
+#define GEN_ZSTD_BT_GET_ALL_MATCHES(dictMode) \
+ GEN_ZSTD_BT_GET_ALL_MATCHES_(dictMode, 3) \
+ GEN_ZSTD_BT_GET_ALL_MATCHES_(dictMode, 4) \
+ GEN_ZSTD_BT_GET_ALL_MATCHES_(dictMode, 5) \
+ GEN_ZSTD_BT_GET_ALL_MATCHES_(dictMode, 6)
+
+GEN_ZSTD_BT_GET_ALL_MATCHES(noDict)
+GEN_ZSTD_BT_GET_ALL_MATCHES(extDict)
+GEN_ZSTD_BT_GET_ALL_MATCHES(dictMatchState)
+
+#define ZSTD_BT_GET_ALL_MATCHES_ARRAY(dictMode) \
+ { \
+ ZSTD_BT_GET_ALL_MATCHES_FN(dictMode, 3), \
+ ZSTD_BT_GET_ALL_MATCHES_FN(dictMode, 4), \
+ ZSTD_BT_GET_ALL_MATCHES_FN(dictMode, 5), \
+ ZSTD_BT_GET_ALL_MATCHES_FN(dictMode, 6) \
}
+
+static ZSTD_getAllMatchesFn
+ZSTD_selectBtGetAllMatches(ZSTD_matchState_t const* ms, ZSTD_dictMode_e const dictMode)
+{
+ ZSTD_getAllMatchesFn const getAllMatchesFns[3][4] = {
+ ZSTD_BT_GET_ALL_MATCHES_ARRAY(noDict),
+ ZSTD_BT_GET_ALL_MATCHES_ARRAY(extDict),
+ ZSTD_BT_GET_ALL_MATCHES_ARRAY(dictMatchState)
+ };
+ U32 const mls = BOUNDED(3, ms->cParams.minMatch, 6);
+ assert((U32)dictMode < 3);
+ assert(mls - 3 < 4);
+ return getAllMatchesFns[(int)dictMode][mls - 3];
}
/*************************
* LDM helper functions *
*************************/
/* Struct containing info needed to make decision about ldm inclusion */
typedef struct {
- rawSeqStore_t seqStore; /* External match candidates store for this block */
- U32 startPosInBlock; /* Start position of the current match candidate */
- U32 endPosInBlock; /* End position of the current match candidate */
- U32 offset; /* Offset of the match candidate */
+ rawSeqStore_t seqStore; /* External match candidates store for this block */
+ U32 startPosInBlock; /* Start position of the current match candidate */
+ U32 endPosInBlock; /* End position of the current match candidate */
+ U32 offset; /* Offset of the match candidate */
} ZSTD_optLdm_t;
/* ZSTD_optLdm_skipRawSeqStoreBytes():
- * Moves forward in rawSeqStore by nbBytes, which will update the fields 'pos' and 'posInSequence'.
+ * Moves forward in @rawSeqStore by @nbBytes,
+ * which will update the fields 'pos' and 'posInSequence'.
*/
-static void ZSTD_optLdm_skipRawSeqStoreBytes(rawSeqStore_t* rawSeqStore, size_t nbBytes) {
+static void ZSTD_optLdm_skipRawSeqStoreBytes(rawSeqStore_t* rawSeqStore, size_t nbBytes)
+{
U32 currPos = (U32)(rawSeqStore->posInSequence + nbBytes);
while (currPos && rawSeqStore->pos < rawSeqStore->size) {
rawSeq currSeq = rawSeqStore->seq[rawSeqStore->pos];
if (currPos >= currSeq.litLength + currSeq.matchLength) {
currPos -= currSeq.litLength + currSeq.matchLength;
rawSeqStore->pos++;
} else {
rawSeqStore->posInSequence = currPos;
break;
}
}
if (currPos == 0 || rawSeqStore->pos == rawSeqStore->size) {
rawSeqStore->posInSequence = 0;
}
}
/* ZSTD_opt_getNextMatchAndUpdateSeqStore():
* Calculates the beginning and end of the next match in the current block.
* Updates 'pos' and 'posInSequence' of the ldmSeqStore.
*/
-static void ZSTD_opt_getNextMatchAndUpdateSeqStore(ZSTD_optLdm_t* optLdm, U32 currPosInBlock,
- U32 blockBytesRemaining) {
+static void
+ZSTD_opt_getNextMatchAndUpdateSeqStore(ZSTD_optLdm_t* optLdm, U32 currPosInBlock,
+ U32 blockBytesRemaining)
+{
rawSeq currSeq;
U32 currBlockEndPos;
U32 literalsBytesRemaining;
U32 matchBytesRemaining;
/* Setting match end position to MAX to ensure we never use an LDM during this block */
if (optLdm->seqStore.size == 0 || optLdm->seqStore.pos >= optLdm->seqStore.size) {
optLdm->startPosInBlock = UINT_MAX;
optLdm->endPosInBlock = UINT_MAX;
return;
}
- /* Calculate appropriate bytes left in matchLength and litLength after adjusting
- based on ldmSeqStore->posInSequence */
+ /* Calculate appropriate bytes left in matchLength and litLength
+ * after adjusting based on ldmSeqStore->posInSequence */
currSeq = optLdm->seqStore.seq[optLdm->seqStore.pos];
assert(optLdm->seqStore.posInSequence <= currSeq.litLength + currSeq.matchLength);
currBlockEndPos = currPosInBlock + blockBytesRemaining;
literalsBytesRemaining = (optLdm->seqStore.posInSequence < currSeq.litLength) ?
currSeq.litLength - (U32)optLdm->seqStore.posInSequence :
0;
matchBytesRemaining = (literalsBytesRemaining == 0) ?
currSeq.matchLength - ((U32)optLdm->seqStore.posInSequence - currSeq.litLength) :
currSeq.matchLength;
/* If there are more literal bytes than bytes remaining in block, no ldm is possible */
if (literalsBytesRemaining >= blockBytesRemaining) {
optLdm->startPosInBlock = UINT_MAX;
optLdm->endPosInBlock = UINT_MAX;
ZSTD_optLdm_skipRawSeqStoreBytes(&optLdm->seqStore, blockBytesRemaining);
return;
}
/* Matches may be < MINMATCH by this process. In that case, we will reject them
when we are deciding whether or not to add the ldm */
optLdm->startPosInBlock = currPosInBlock + literalsBytesRemaining;
optLdm->endPosInBlock = optLdm->startPosInBlock + matchBytesRemaining;
optLdm->offset = currSeq.offset;
if (optLdm->endPosInBlock > currBlockEndPos) {
/* Match ends after the block ends, we can't use the whole match */
optLdm->endPosInBlock = currBlockEndPos;
ZSTD_optLdm_skipRawSeqStoreBytes(&optLdm->seqStore, currBlockEndPos - currPosInBlock);
} else {
/* Consume nb of bytes equal to size of sequence left */
ZSTD_optLdm_skipRawSeqStoreBytes(&optLdm->seqStore, literalsBytesRemaining + matchBytesRemaining);
}
}
/* ZSTD_optLdm_maybeAddMatch():
- * Adds a match if it's long enough, based on it's 'matchStartPosInBlock'
- * and 'matchEndPosInBlock', into 'matches'. Maintains the correct ordering of 'matches'
+ * Adds a match if it's long enough,
+ * based on it's 'matchStartPosInBlock' and 'matchEndPosInBlock',
+ * into 'matches'. Maintains the correct ordering of 'matches'.
*/
static void ZSTD_optLdm_maybeAddMatch(ZSTD_match_t* matches, U32* nbMatches,
- ZSTD_optLdm_t* optLdm, U32 currPosInBlock) {
- U32 posDiff = currPosInBlock - optLdm->startPosInBlock;
+ const ZSTD_optLdm_t* optLdm, U32 currPosInBlock)
+{
+ U32 const posDiff = currPosInBlock - optLdm->startPosInBlock;
/* Note: ZSTD_match_t actually contains offCode and matchLength (before subtracting MINMATCH) */
- U32 candidateMatchLength = optLdm->endPosInBlock - optLdm->startPosInBlock - posDiff;
- U32 candidateOffCode = optLdm->offset + ZSTD_REP_MOVE;
+ U32 const candidateMatchLength = optLdm->endPosInBlock - optLdm->startPosInBlock - posDiff;
/* Ensure that current block position is not outside of the match */
if (currPosInBlock < optLdm->startPosInBlock
|| currPosInBlock >= optLdm->endPosInBlock
|| candidateMatchLength < MINMATCH) {
return;
}
if (*nbMatches == 0 || ((candidateMatchLength > matches[*nbMatches-1].len) && *nbMatches < ZSTD_OPT_NUM)) {
+ U32 const candidateOffCode = STORE_OFFSET(optLdm->offset);
DEBUGLOG(6, "ZSTD_optLdm_maybeAddMatch(): Adding ldm candidate match (offCode: %u matchLength %u) at block position=%u",
candidateOffCode, candidateMatchLength, currPosInBlock);
matches[*nbMatches].len = candidateMatchLength;
matches[*nbMatches].off = candidateOffCode;
(*nbMatches)++;
}
}
/* ZSTD_optLdm_processMatchCandidate():
* Wrapper function to update ldm seq store and call ldm functions as necessary.
*/
-static void ZSTD_optLdm_processMatchCandidate(ZSTD_optLdm_t* optLdm, ZSTD_match_t* matches, U32* nbMatches,
- U32 currPosInBlock, U32 remainingBytes) {
+static void
+ZSTD_optLdm_processMatchCandidate(ZSTD_optLdm_t* optLdm,
+ ZSTD_match_t* matches, U32* nbMatches,
+ U32 currPosInBlock, U32 remainingBytes)
+{
if (optLdm->seqStore.size == 0 || optLdm->seqStore.pos >= optLdm->seqStore.size) {
return;
}
if (currPosInBlock >= optLdm->endPosInBlock) {
if (currPosInBlock > optLdm->endPosInBlock) {
/* The position at which ZSTD_optLdm_processMatchCandidate() is called is not necessarily
* at the end of a match from the ldm seq store, and will often be some bytes
* over beyond matchEndPosInBlock. As such, we need to correct for these "overshoots"
*/
- U32 posOvershoot = currPosInBlock - optLdm->endPosInBlock;
+ U32 const posOvershoot = currPosInBlock - optLdm->endPosInBlock;
ZSTD_optLdm_skipRawSeqStoreBytes(&optLdm->seqStore, posOvershoot);
- }
+ }
ZSTD_opt_getNextMatchAndUpdateSeqStore(optLdm, currPosInBlock, remainingBytes);
}
ZSTD_optLdm_maybeAddMatch(matches, nbMatches, optLdm, currPosInBlock);
}
+
/*-*******************************
* Optimal parser
*********************************/
-
static U32 ZSTD_totalLen(ZSTD_optimal_t sol)
{
return sol.litlen + sol.mlen;
}
#if 0 /* debug */
static void
listStats(const U32* table, int lastEltID)
{
int const nbElts = lastEltID + 1;
int enb;
for (enb=0; enb < nbElts; enb++) {
(void)table;
/* RAWLOG(2, "%3i:%3i, ", enb, table[enb]); */
RAWLOG(2, "%4i,", table[enb]);
}
RAWLOG(2, " \n");
}
#endif
FORCE_INLINE_TEMPLATE size_t
ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
seqStore_t* seqStore,
U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize,
const int optLevel,
const ZSTD_dictMode_e dictMode)
{
optState_t* const optStatePtr = &ms->opt;
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - 8;
const BYTE* const base = ms->window.base;
const BYTE* const prefixStart = base + ms->window.dictLimit;
const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ ZSTD_getAllMatchesFn getAllMatches = ZSTD_selectBtGetAllMatches(ms, dictMode);
+
U32 const sufficient_len = MIN(cParams->targetLength, ZSTD_OPT_NUM -1);
U32 const minMatch = (cParams->minMatch == 3) ? 3 : 4;
U32 nextToUpdate3 = ms->nextToUpdate;
ZSTD_optimal_t* const opt = optStatePtr->priceTable;
ZSTD_match_t* const matches = optStatePtr->matchTable;
ZSTD_optimal_t lastSequence;
ZSTD_optLdm_t optLdm;
optLdm.seqStore = ms->ldmSeqStore ? *ms->ldmSeqStore : kNullRawSeqStore;
optLdm.endPosInBlock = optLdm.startPosInBlock = optLdm.offset = 0;
ZSTD_opt_getNextMatchAndUpdateSeqStore(&optLdm, (U32)(ip-istart), (U32)(iend-ip));
/* init */
DEBUGLOG(5, "ZSTD_compressBlock_opt_generic: current=%u, prefix=%u, nextToUpdate=%u",
(U32)(ip - base), ms->window.dictLimit, ms->nextToUpdate);
assert(optLevel <= 2);
ZSTD_rescaleFreqs(optStatePtr, (const BYTE*)src, srcSize, optLevel);
ip += (ip==prefixStart);
/* Match Loop */
while (ip < ilimit) {
U32 cur, last_pos = 0;
/* find first match */
{ U32 const litlen = (U32)(ip - anchor);
U32 const ll0 = !litlen;
- U32 nbMatches = ZSTD_BtGetAllMatches(matches, ms, &nextToUpdate3, ip, iend, dictMode, rep, ll0, minMatch);
+ U32 nbMatches = getAllMatches(matches, ms, &nextToUpdate3, ip, iend, rep, ll0, minMatch);
ZSTD_optLdm_processMatchCandidate(&optLdm, matches, &nbMatches,
(U32)(ip-istart), (U32)(iend - ip));
if (!nbMatches) { ip++; continue; }
/* initialize opt[0] */
{ U32 i ; for (i=0; i<ZSTD_REP_NUM; i++) opt[0].rep[i] = rep[i]; }
opt[0].mlen = 0; /* means is_a_literal */
opt[0].litlen = litlen;
/* We don't need to include the actual price of the literals because
* it is static for the duration of the forward pass, and is included
* in every price. We include the literal length to avoid negative
* prices when we subtract the previous literal length.
*/
- opt[0].price = ZSTD_litLengthPrice(litlen, optStatePtr, optLevel);
+ opt[0].price = (int)ZSTD_litLengthPrice(litlen, optStatePtr, optLevel);
/* large match -> immediate encoding */
{ U32 const maxML = matches[nbMatches-1].len;
- U32 const maxOffset = matches[nbMatches-1].off;
+ U32 const maxOffcode = matches[nbMatches-1].off;
DEBUGLOG(6, "found %u matches of maxLength=%u and maxOffCode=%u at cPos=%u => start new series",
- nbMatches, maxML, maxOffset, (U32)(ip-prefixStart));
+ nbMatches, maxML, maxOffcode, (U32)(ip-prefixStart));
if (maxML > sufficient_len) {
lastSequence.litlen = litlen;
lastSequence.mlen = maxML;
- lastSequence.off = maxOffset;
+ lastSequence.off = maxOffcode;
DEBUGLOG(6, "large match (%u>%u), immediate encoding",
maxML, sufficient_len);
cur = 0;
last_pos = ZSTD_totalLen(lastSequence);
goto _shortestPath;
} }
/* set prices for first matches starting position == 0 */
- { U32 const literalsPrice = opt[0].price + ZSTD_litLengthPrice(0, optStatePtr, optLevel);
+ assert(opt[0].price >= 0);
+ { U32 const literalsPrice = (U32)opt[0].price + ZSTD_litLengthPrice(0, optStatePtr, optLevel);
U32 pos;
U32 matchNb;
for (pos = 1; pos < minMatch; pos++) {
opt[pos].price = ZSTD_MAX_PRICE; /* mlen, litlen and price will be fixed during forward scanning */
}
for (matchNb = 0; matchNb < nbMatches; matchNb++) {
- U32 const offset = matches[matchNb].off;
+ U32 const offcode = matches[matchNb].off;
U32 const end = matches[matchNb].len;
for ( ; pos <= end ; pos++ ) {
- U32 const matchPrice = ZSTD_getMatchPrice(offset, pos, optStatePtr, optLevel);
+ U32 const matchPrice = ZSTD_getMatchPrice(offcode, pos, optStatePtr, optLevel);
U32 const sequencePrice = literalsPrice + matchPrice;
DEBUGLOG(7, "rPos:%u => set initial price : %.2f",
pos, ZSTD_fCost(sequencePrice));
opt[pos].mlen = pos;
- opt[pos].off = offset;
+ opt[pos].off = offcode;
opt[pos].litlen = litlen;
- opt[pos].price = sequencePrice;
+ opt[pos].price = (int)sequencePrice;
} }
last_pos = pos-1;
}
}
/* check further positions */
for (cur = 1; cur <= last_pos; cur++) {
const BYTE* const inr = ip + cur;
assert(cur < ZSTD_OPT_NUM);
DEBUGLOG(7, "cPos:%zi==rPos:%u", inr-istart, cur)
/* Fix current position with one literal if cheaper */
{ U32 const litlen = (opt[cur-1].mlen == 0) ? opt[cur-1].litlen + 1 : 1;
int const price = opt[cur-1].price
- + ZSTD_rawLiteralsCost(ip+cur-1, 1, optStatePtr, optLevel)
- + ZSTD_litLengthPrice(litlen, optStatePtr, optLevel)
- - ZSTD_litLengthPrice(litlen-1, optStatePtr, optLevel);
+ + (int)ZSTD_rawLiteralsCost(ip+cur-1, 1, optStatePtr, optLevel)
+ + (int)ZSTD_litLengthPrice(litlen, optStatePtr, optLevel)
+ - (int)ZSTD_litLengthPrice(litlen-1, optStatePtr, optLevel);
assert(price < 1000000000); /* overflow check */
if (price <= opt[cur].price) {
DEBUGLOG(7, "cPos:%zi==rPos:%u : better price (%.2f<=%.2f) using literal (ll==%u) (hist:%u,%u,%u)",
inr-istart, cur, ZSTD_fCost(price), ZSTD_fCost(opt[cur].price), litlen,
opt[cur-1].rep[0], opt[cur-1].rep[1], opt[cur-1].rep[2]);
opt[cur].mlen = 0;
opt[cur].off = 0;
opt[cur].litlen = litlen;
opt[cur].price = price;
} else {
DEBUGLOG(7, "cPos:%zi==rPos:%u : literal would cost more (%.2f>%.2f) (hist:%u,%u,%u)",
inr-istart, cur, ZSTD_fCost(price), ZSTD_fCost(opt[cur].price),
opt[cur].rep[0], opt[cur].rep[1], opt[cur].rep[2]);
}
}
/* Set the repcodes of the current position. We must do it here
* because we rely on the repcodes of the 2nd to last sequence being
* correct to set the next chunks repcodes during the backward
* traversal.
*/
ZSTD_STATIC_ASSERT(sizeof(opt[cur].rep) == sizeof(repcodes_t));
assert(cur >= opt[cur].mlen);
if (opt[cur].mlen != 0) {
U32 const prev = cur - opt[cur].mlen;
- repcodes_t newReps = ZSTD_updateRep(opt[prev].rep, opt[cur].off, opt[cur].litlen==0);
+ repcodes_t const newReps = ZSTD_newRep(opt[prev].rep, opt[cur].off, opt[cur].litlen==0);
ZSTD_memcpy(opt[cur].rep, &newReps, sizeof(repcodes_t));
} else {
ZSTD_memcpy(opt[cur].rep, opt[cur - 1].rep, sizeof(repcodes_t));
}
/* last match must start at a minimum distance of 8 from oend */
if (inr > ilimit) continue;
if (cur == last_pos) break;
if ( (optLevel==0) /*static_test*/
&& (opt[cur+1].price <= opt[cur].price + (BITCOST_MULTIPLIER/2)) ) {
DEBUGLOG(7, "move to next rPos:%u : price is <=", cur+1);
continue; /* skip unpromising positions; about ~+6% speed, -0.01 ratio */
}
+ assert(opt[cur].price >= 0);
{ U32 const ll0 = (opt[cur].mlen != 0);
U32 const litlen = (opt[cur].mlen == 0) ? opt[cur].litlen : 0;
- U32 const previousPrice = opt[cur].price;
+ U32 const previousPrice = (U32)opt[cur].price;
U32 const basePrice = previousPrice + ZSTD_litLengthPrice(0, optStatePtr, optLevel);
- U32 nbMatches = ZSTD_BtGetAllMatches(matches, ms, &nextToUpdate3, inr, iend, dictMode, opt[cur].rep, ll0, minMatch);
+ U32 nbMatches = getAllMatches(matches, ms, &nextToUpdate3, inr, iend, opt[cur].rep, ll0, minMatch);
U32 matchNb;
ZSTD_optLdm_processMatchCandidate(&optLdm, matches, &nbMatches,
(U32)(inr-istart), (U32)(iend-inr));
if (!nbMatches) {
DEBUGLOG(7, "rPos:%u : no match found", cur);
continue;
}
{ U32 const maxML = matches[nbMatches-1].len;
DEBUGLOG(7, "cPos:%zi==rPos:%u, found %u matches, of maxLength=%u",
inr-istart, cur, nbMatches, maxML);
if ( (maxML > sufficient_len)
|| (cur + maxML >= ZSTD_OPT_NUM) ) {
lastSequence.mlen = maxML;
lastSequence.off = matches[nbMatches-1].off;
lastSequence.litlen = litlen;
cur -= (opt[cur].mlen==0) ? opt[cur].litlen : 0; /* last sequence is actually only literals, fix cur to last match - note : may underflow, in which case, it's first sequence, and it's okay */
last_pos = cur + ZSTD_totalLen(lastSequence);
if (cur > ZSTD_OPT_NUM) cur = 0; /* underflow => first match */
goto _shortestPath;
} }
/* set prices using matches found at position == cur */
for (matchNb = 0; matchNb < nbMatches; matchNb++) {
U32 const offset = matches[matchNb].off;
U32 const lastML = matches[matchNb].len;
U32 const startML = (matchNb>0) ? matches[matchNb-1].len+1 : minMatch;
U32 mlen;
DEBUGLOG(7, "testing match %u => offCode=%4u, mlen=%2u, llen=%2u",
matchNb, matches[matchNb].off, lastML, litlen);
for (mlen = lastML; mlen >= startML; mlen--) { /* scan downward */
U32 const pos = cur + mlen;
- int const price = basePrice + ZSTD_getMatchPrice(offset, mlen, optStatePtr, optLevel);
+ int const price = (int)basePrice + (int)ZSTD_getMatchPrice(offset, mlen, optStatePtr, optLevel);
if ((pos > last_pos) || (price < opt[pos].price)) {
DEBUGLOG(7, "rPos:%u (ml=%2u) => new better price (%.2f<%.2f)",
pos, mlen, ZSTD_fCost(price), ZSTD_fCost(opt[pos].price));
while (last_pos < pos) { opt[last_pos+1].price = ZSTD_MAX_PRICE; last_pos++; } /* fill empty positions */
opt[pos].mlen = mlen;
opt[pos].off = offset;
opt[pos].litlen = litlen;
opt[pos].price = price;
} else {
DEBUGLOG(7, "rPos:%u (ml=%2u) => new price is worse (%.2f>=%.2f)",
pos, mlen, ZSTD_fCost(price), ZSTD_fCost(opt[pos].price));
if (optLevel==0) break; /* early update abort; gets ~+10% speed for about -0.01 ratio loss */
}
} } }
} /* for (cur = 1; cur <= last_pos; cur++) */
lastSequence = opt[last_pos];
cur = last_pos > ZSTD_totalLen(lastSequence) ? last_pos - ZSTD_totalLen(lastSequence) : 0; /* single sequence, and it starts before `ip` */
assert(cur < ZSTD_OPT_NUM); /* control overflow*/
_shortestPath: /* cur, last_pos, best_mlen, best_off have to be set */
assert(opt[0].mlen == 0);
/* Set the next chunk's repcodes based on the repcodes of the beginning
* of the last match, and the last sequence. This avoids us having to
* update them while traversing the sequences.
*/
if (lastSequence.mlen != 0) {
- repcodes_t reps = ZSTD_updateRep(opt[cur].rep, lastSequence.off, lastSequence.litlen==0);
+ repcodes_t const reps = ZSTD_newRep(opt[cur].rep, lastSequence.off, lastSequence.litlen==0);
ZSTD_memcpy(rep, &reps, sizeof(reps));
} else {
ZSTD_memcpy(rep, opt[cur].rep, sizeof(repcodes_t));
}
{ U32 const storeEnd = cur + 1;
U32 storeStart = storeEnd;
U32 seqPos = cur;
DEBUGLOG(6, "start reverse traversal (last_pos:%u, cur:%u)",
last_pos, cur); (void)last_pos;
assert(storeEnd < ZSTD_OPT_NUM);
DEBUGLOG(6, "last sequence copied into pos=%u (llen=%u,mlen=%u,ofc=%u)",
storeEnd, lastSequence.litlen, lastSequence.mlen, lastSequence.off);
opt[storeEnd] = lastSequence;
while (seqPos > 0) {
U32 const backDist = ZSTD_totalLen(opt[seqPos]);
storeStart--;
DEBUGLOG(6, "sequence from rPos=%u copied into pos=%u (llen=%u,mlen=%u,ofc=%u)",
seqPos, storeStart, opt[seqPos].litlen, opt[seqPos].mlen, opt[seqPos].off);
opt[storeStart] = opt[seqPos];
seqPos = (seqPos > backDist) ? seqPos - backDist : 0;
}
/* save sequences */
DEBUGLOG(6, "sending selected sequences into seqStore")
{ U32 storePos;
for (storePos=storeStart; storePos <= storeEnd; storePos++) {
U32 const llen = opt[storePos].litlen;
U32 const mlen = opt[storePos].mlen;
U32 const offCode = opt[storePos].off;
U32 const advance = llen + mlen;
DEBUGLOG(6, "considering seq starting at %zi, llen=%u, mlen=%u",
anchor - istart, (unsigned)llen, (unsigned)mlen);
if (mlen==0) { /* only literals => must be last "sequence", actually starting a new stream of sequences */
assert(storePos == storeEnd); /* must be last sequence */
ip = anchor + llen; /* last "sequence" is a bunch of literals => don't progress anchor */
continue; /* will finish */
}
assert(anchor + llen <= iend);
ZSTD_updateStats(optStatePtr, llen, anchor, offCode, mlen);
- ZSTD_storeSeq(seqStore, llen, anchor, iend, offCode, mlen-MINMATCH);
+ ZSTD_storeSeq(seqStore, llen, anchor, iend, offCode, mlen);
anchor += advance;
ip = anchor;
} }
ZSTD_setBasePrices(optStatePtr, optLevel);
}
} /* while (ip < ilimit) */
/* Return the last literals size */
return (size_t)(iend - anchor);
}
+static size_t ZSTD_compressBlock_opt0(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ const void* src, size_t srcSize, const ZSTD_dictMode_e dictMode)
+{
+ return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /* optLevel */, dictMode);
+}
+
+static size_t ZSTD_compressBlock_opt2(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ const void* src, size_t srcSize, const ZSTD_dictMode_e dictMode)
+{
+ return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /* optLevel */, dictMode);
+}
size_t ZSTD_compressBlock_btopt(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize)
{
DEBUGLOG(5, "ZSTD_compressBlock_btopt");
- return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /*optLevel*/, ZSTD_noDict);
+ return ZSTD_compressBlock_opt0(ms, seqStore, rep, src, srcSize, ZSTD_noDict);
}
-/* used in 2-pass strategy */
-static U32 ZSTD_upscaleStat(unsigned* table, U32 lastEltIndex, int bonus)
-{
- U32 s, sum=0;
- assert(ZSTD_FREQ_DIV+bonus >= 0);
- for (s=0; s<lastEltIndex+1; s++) {
- table[s] <<= ZSTD_FREQ_DIV+bonus;
- table[s]--;
- sum += table[s];
- }
- return sum;
-}
-/* used in 2-pass strategy */
-MEM_STATIC void ZSTD_upscaleStats(optState_t* optPtr)
-{
- if (ZSTD_compressedLiterals(optPtr))
- optPtr->litSum = ZSTD_upscaleStat(optPtr->litFreq, MaxLit, 0);
- optPtr->litLengthSum = ZSTD_upscaleStat(optPtr->litLengthFreq, MaxLL, 0);
- optPtr->matchLengthSum = ZSTD_upscaleStat(optPtr->matchLengthFreq, MaxML, 0);
- optPtr->offCodeSum = ZSTD_upscaleStat(optPtr->offCodeFreq, MaxOff, 0);
-}
/* ZSTD_initStats_ultra():
* make a first compression pass, just to seed stats with more accurate starting values.
* only works on first block, with no dictionary and no ldm.
* this function cannot error, hence its contract must be respected.
*/
static void
ZSTD_initStats_ultra(ZSTD_matchState_t* ms,
seqStore_t* seqStore,
U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize)
{
U32 tmpRep[ZSTD_REP_NUM]; /* updated rep codes will sink here */
ZSTD_memcpy(tmpRep, rep, sizeof(tmpRep));
DEBUGLOG(4, "ZSTD_initStats_ultra (srcSize=%zu)", srcSize);
assert(ms->opt.litLengthSum == 0); /* first block */
assert(seqStore->sequences == seqStore->sequencesStart); /* no ldm */
assert(ms->window.dictLimit == ms->window.lowLimit); /* no dictionary */
assert(ms->window.dictLimit - ms->nextToUpdate <= 1); /* no prefix (note: intentional overflow, defined as 2-complement) */
- ZSTD_compressBlock_opt_generic(ms, seqStore, tmpRep, src, srcSize, 2 /*optLevel*/, ZSTD_noDict); /* generate stats into ms->opt*/
+ ZSTD_compressBlock_opt2(ms, seqStore, tmpRep, src, srcSize, ZSTD_noDict); /* generate stats into ms->opt*/
/* invalidate first scan from history */
ZSTD_resetSeqStore(seqStore);
ms->window.base -= srcSize;
ms->window.dictLimit += (U32)srcSize;
ms->window.lowLimit = ms->window.dictLimit;
ms->nextToUpdate = ms->window.dictLimit;
- /* re-inforce weight of collected statistics */
- ZSTD_upscaleStats(&ms->opt);
}
size_t ZSTD_compressBlock_btultra(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize)
{
DEBUGLOG(5, "ZSTD_compressBlock_btultra (srcSize=%zu)", srcSize);
- return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_noDict);
+ return ZSTD_compressBlock_opt2(ms, seqStore, rep, src, srcSize, ZSTD_noDict);
}
size_t ZSTD_compressBlock_btultra2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize)
{
U32 const curr = (U32)((const BYTE*)src - ms->window.base);
DEBUGLOG(5, "ZSTD_compressBlock_btultra2 (srcSize=%zu)", srcSize);
/* 2-pass strategy:
* this strategy makes a first pass over first block to collect statistics
* and seed next round's statistics with it.
* After 1st pass, function forgets everything, and starts a new block.
* Consequently, this can only work if no data has been previously loaded in tables,
* aka, no dictionary, no prefix, no ldm preprocessing.
* The compression ratio gain is generally small (~0.5% on first block),
* the cost is 2x cpu time on first block. */
assert(srcSize <= ZSTD_BLOCKSIZE_MAX);
if ( (ms->opt.litLengthSum==0) /* first block */
&& (seqStore->sequences == seqStore->sequencesStart) /* no ldm */
&& (ms->window.dictLimit == ms->window.lowLimit) /* no dictionary */
&& (curr == ms->window.dictLimit) /* start of frame, nothing already loaded nor skipped */
&& (srcSize > ZSTD_PREDEF_THRESHOLD)
) {
ZSTD_initStats_ultra(ms, seqStore, rep, src, srcSize);
}
- return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_noDict);
+ return ZSTD_compressBlock_opt2(ms, seqStore, rep, src, srcSize, ZSTD_noDict);
}
size_t ZSTD_compressBlock_btopt_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize)
{
- return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /*optLevel*/, ZSTD_dictMatchState);
+ return ZSTD_compressBlock_opt0(ms, seqStore, rep, src, srcSize, ZSTD_dictMatchState);
}
size_t ZSTD_compressBlock_btultra_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize)
{
- return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_dictMatchState);
+ return ZSTD_compressBlock_opt2(ms, seqStore, rep, src, srcSize, ZSTD_dictMatchState);
}
size_t ZSTD_compressBlock_btopt_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize)
{
- return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /*optLevel*/, ZSTD_extDict);
+ return ZSTD_compressBlock_opt0(ms, seqStore, rep, src, srcSize, ZSTD_extDict);
}
size_t ZSTD_compressBlock_btultra_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize)
{
- return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_extDict);
+ return ZSTD_compressBlock_opt2(ms, seqStore, rep, src, srcSize, ZSTD_extDict);
}
/* note : no btultra2 variant for extDict nor dictMatchState,
* because btultra2 is not meant to work with dictionaries
* and is only specific for the first block (no prefix) */
diff --git a/sys/contrib/zstd/lib/compress/zstd_opt.h b/sys/contrib/zstd/lib/compress/zstd_opt.h
index 9aba8a9018c5..627255f53de2 100644
--- a/sys/contrib/zstd/lib/compress/zstd_opt.h
+++ b/sys/contrib/zstd/lib/compress/zstd_opt.h
@@ -1,56 +1,56 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_OPT_H
#define ZSTD_OPT_H
#if defined (__cplusplus)
extern "C" {
#endif
#include "zstd_compress_internal.h"
/* used in ZSTD_loadDictionaryContent() */
void ZSTD_updateTree(ZSTD_matchState_t* ms, const BYTE* ip, const BYTE* iend);
size_t ZSTD_compressBlock_btopt(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btultra(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btultra2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btopt_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btultra_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btopt_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btultra_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
/* note : no btultra2 variant for extDict nor dictMatchState,
* because btultra2 is not meant to work with dictionaries
* and is only specific for the first block (no prefix) */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_OPT_H */
diff --git a/sys/contrib/zstd/lib/compress/zstdmt_compress.c b/sys/contrib/zstd/lib/compress/zstdmt_compress.c
index 50454a50b9b7..6bc14b035e17 100644
--- a/sys/contrib/zstd/lib/compress/zstdmt_compress.c
+++ b/sys/contrib/zstd/lib/compress/zstdmt_compress.c
@@ -1,1811 +1,1859 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* ====== Compiler specifics ====== */
#if defined(_MSC_VER)
# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */
#endif
/* ====== Constants ====== */
#define ZSTDMT_OVERLAPLOG_DEFAULT 0
/* ====== Dependencies ====== */
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset, INT_MAX, UINT_MAX */
#include "../common/mem.h" /* MEM_STATIC */
#include "../common/pool.h" /* threadpool */
#include "../common/threading.h" /* mutex */
#include "zstd_compress_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */
#include "zstd_ldm.h"
#include "zstdmt_compress.h"
/* Guards code to support resizing the SeqPool.
* We will want to resize the SeqPool to save memory in the future.
* Until then, comment the code out since it is unused.
*/
#define ZSTD_RESIZE_SEQPOOL 0
/* ====== Debug ====== */
#if defined(DEBUGLEVEL) && (DEBUGLEVEL>=2) \
&& !defined(_MSC_VER) \
&& !defined(__MINGW32__)
# include <stdio.h>
# include <unistd.h>
# include <sys/times.h>
# define DEBUG_PRINTHEX(l,p,n) { \
unsigned debug_u; \
for (debug_u=0; debug_u<(n); debug_u++) \
RAWLOG(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \
RAWLOG(l, " \n"); \
}
static unsigned long long GetCurrentClockTimeMicroseconds(void)
{
static clock_t _ticksPerSecond = 0;
if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK);
{ struct tms junk; clock_t newTicks = (clock_t) times(&junk);
return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond);
} }
#define MUTEX_WAIT_TIME_DLEVEL 6
#define ZSTD_PTHREAD_MUTEX_LOCK(mutex) { \
if (DEBUGLEVEL >= MUTEX_WAIT_TIME_DLEVEL) { \
unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds(); \
ZSTD_pthread_mutex_lock(mutex); \
{ unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \
unsigned long long const elapsedTime = (afterTime-beforeTime); \
if (elapsedTime > 1000) { /* or whatever threshold you like; I'm using 1 millisecond here */ \
DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, "Thread took %llu microseconds to acquire mutex %s \n", \
elapsedTime, #mutex); \
} } \
} else { \
ZSTD_pthread_mutex_lock(mutex); \
} \
}
#else
# define ZSTD_PTHREAD_MUTEX_LOCK(m) ZSTD_pthread_mutex_lock(m)
# define DEBUG_PRINTHEX(l,p,n) {}
#endif
/* ===== Buffer Pool ===== */
/* a single Buffer Pool can be invoked from multiple threads in parallel */
typedef struct buffer_s {
void* start;
size_t capacity;
} buffer_t;
static const buffer_t g_nullBuffer = { NULL, 0 };
typedef struct ZSTDMT_bufferPool_s {
ZSTD_pthread_mutex_t poolMutex;
size_t bufferSize;
unsigned totalBuffers;
unsigned nbBuffers;
ZSTD_customMem cMem;
buffer_t bTable[1]; /* variable size */
} ZSTDMT_bufferPool;
-static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned nbWorkers, ZSTD_customMem cMem)
+static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned maxNbBuffers, ZSTD_customMem cMem)
{
- unsigned const maxNbBuffers = 2*nbWorkers + 3;
ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)ZSTD_customCalloc(
sizeof(ZSTDMT_bufferPool) + (maxNbBuffers-1) * sizeof(buffer_t), cMem);
if (bufPool==NULL) return NULL;
if (ZSTD_pthread_mutex_init(&bufPool->poolMutex, NULL)) {
ZSTD_customFree(bufPool, cMem);
return NULL;
}
bufPool->bufferSize = 64 KB;
bufPool->totalBuffers = maxNbBuffers;
bufPool->nbBuffers = 0;
bufPool->cMem = cMem;
return bufPool;
}
static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool)
{
unsigned u;
DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)", (U32)(size_t)bufPool);
if (!bufPool) return; /* compatibility with free on NULL */
for (u=0; u<bufPool->totalBuffers; u++) {
DEBUGLOG(4, "free buffer %2u (address:%08X)", u, (U32)(size_t)bufPool->bTable[u].start);
ZSTD_customFree(bufPool->bTable[u].start, bufPool->cMem);
}
ZSTD_pthread_mutex_destroy(&bufPool->poolMutex);
ZSTD_customFree(bufPool, bufPool->cMem);
}
/* only works at initialization, not during compression */
static size_t ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool* bufPool)
{
size_t const poolSize = sizeof(*bufPool)
+ (bufPool->totalBuffers - 1) * sizeof(buffer_t);
unsigned u;
size_t totalBufferSize = 0;
ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
for (u=0; u<bufPool->totalBuffers; u++)
totalBufferSize += bufPool->bTable[u].capacity;
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
return poolSize + totalBufferSize;
}
/* ZSTDMT_setBufferSize() :
* all future buffers provided by this buffer pool will have _at least_ this size
* note : it's better for all buffers to have same size,
* as they become freely interchangeable, reducing malloc/free usages and memory fragmentation */
static void ZSTDMT_setBufferSize(ZSTDMT_bufferPool* const bufPool, size_t const bSize)
{
ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
DEBUGLOG(4, "ZSTDMT_setBufferSize: bSize = %u", (U32)bSize);
bufPool->bufferSize = bSize;
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
}
-static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, U32 nbWorkers)
+static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, unsigned maxNbBuffers)
{
- unsigned const maxNbBuffers = 2*nbWorkers + 3;
if (srcBufPool==NULL) return NULL;
if (srcBufPool->totalBuffers >= maxNbBuffers) /* good enough */
return srcBufPool;
/* need a larger buffer pool */
{ ZSTD_customMem const cMem = srcBufPool->cMem;
size_t const bSize = srcBufPool->bufferSize; /* forward parameters */
ZSTDMT_bufferPool* newBufPool;
ZSTDMT_freeBufferPool(srcBufPool);
- newBufPool = ZSTDMT_createBufferPool(nbWorkers, cMem);
+ newBufPool = ZSTDMT_createBufferPool(maxNbBuffers, cMem);
if (newBufPool==NULL) return newBufPool;
ZSTDMT_setBufferSize(newBufPool, bSize);
return newBufPool;
}
}
/** ZSTDMT_getBuffer() :
* assumption : bufPool must be valid
* @return : a buffer, with start pointer and size
* note: allocation may fail, in this case, start==NULL and size==0 */
static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* bufPool)
{
size_t const bSize = bufPool->bufferSize;
DEBUGLOG(5, "ZSTDMT_getBuffer: bSize = %u", (U32)bufPool->bufferSize);
ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
if (bufPool->nbBuffers) { /* try to use an existing buffer */
buffer_t const buf = bufPool->bTable[--(bufPool->nbBuffers)];
size_t const availBufferSize = buf.capacity;
bufPool->bTable[bufPool->nbBuffers] = g_nullBuffer;
if ((availBufferSize >= bSize) & ((availBufferSize>>3) <= bSize)) {
/* large enough, but not too much */
DEBUGLOG(5, "ZSTDMT_getBuffer: provide buffer %u of size %u",
bufPool->nbBuffers, (U32)buf.capacity);
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
return buf;
}
/* size conditions not respected : scratch this buffer, create new one */
DEBUGLOG(5, "ZSTDMT_getBuffer: existing buffer does not meet size conditions => freeing");
ZSTD_customFree(buf.start, bufPool->cMem);
}
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
/* create new buffer */
DEBUGLOG(5, "ZSTDMT_getBuffer: create a new buffer");
{ buffer_t buffer;
void* const start = ZSTD_customMalloc(bSize, bufPool->cMem);
buffer.start = start; /* note : start can be NULL if malloc fails ! */
buffer.capacity = (start==NULL) ? 0 : bSize;
if (start==NULL) {
DEBUGLOG(5, "ZSTDMT_getBuffer: buffer allocation failure !!");
} else {
DEBUGLOG(5, "ZSTDMT_getBuffer: created buffer of size %u", (U32)bSize);
}
return buffer;
}
}
#if ZSTD_RESIZE_SEQPOOL
/** ZSTDMT_resizeBuffer() :
* assumption : bufPool must be valid
* @return : a buffer that is at least the buffer pool buffer size.
* If a reallocation happens, the data in the input buffer is copied.
*/
static buffer_t ZSTDMT_resizeBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buffer)
{
size_t const bSize = bufPool->bufferSize;
if (buffer.capacity < bSize) {
void* const start = ZSTD_customMalloc(bSize, bufPool->cMem);
buffer_t newBuffer;
newBuffer.start = start;
newBuffer.capacity = start == NULL ? 0 : bSize;
if (start != NULL) {
assert(newBuffer.capacity >= buffer.capacity);
ZSTD_memcpy(newBuffer.start, buffer.start, buffer.capacity);
DEBUGLOG(5, "ZSTDMT_resizeBuffer: created buffer of size %u", (U32)bSize);
return newBuffer;
}
DEBUGLOG(5, "ZSTDMT_resizeBuffer: buffer allocation failure !!");
}
return buffer;
}
#endif
/* store buffer for later re-use, up to pool capacity */
static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buf)
{
DEBUGLOG(5, "ZSTDMT_releaseBuffer");
if (buf.start == NULL) return; /* compatible with release on NULL */
ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
if (bufPool->nbBuffers < bufPool->totalBuffers) {
bufPool->bTable[bufPool->nbBuffers++] = buf; /* stored for later use */
DEBUGLOG(5, "ZSTDMT_releaseBuffer: stored buffer of size %u in slot %u",
(U32)buf.capacity, (U32)(bufPool->nbBuffers-1));
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
return;
}
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
/* Reached bufferPool capacity (should not happen) */
DEBUGLOG(5, "ZSTDMT_releaseBuffer: pool capacity reached => freeing ");
ZSTD_customFree(buf.start, bufPool->cMem);
}
+/* We need 2 output buffers per worker since each dstBuff must be flushed after it is released.
+ * The 3 additional buffers are as follows:
+ * 1 buffer for input loading
+ * 1 buffer for "next input" when submitting current one
+ * 1 buffer stuck in queue */
+#define BUF_POOL_MAX_NB_BUFFERS(nbWorkers) 2*nbWorkers + 3
+
+/* After a worker releases its rawSeqStore, it is immediately ready for reuse.
+ * So we only need one seq buffer per worker. */
+#define SEQ_POOL_MAX_NB_BUFFERS(nbWorkers) nbWorkers
/* ===== Seq Pool Wrapper ====== */
typedef ZSTDMT_bufferPool ZSTDMT_seqPool;
static size_t ZSTDMT_sizeof_seqPool(ZSTDMT_seqPool* seqPool)
{
return ZSTDMT_sizeof_bufferPool(seqPool);
}
static rawSeqStore_t bufferToSeq(buffer_t buffer)
{
rawSeqStore_t seq = kNullRawSeqStore;
seq.seq = (rawSeq*)buffer.start;
seq.capacity = buffer.capacity / sizeof(rawSeq);
return seq;
}
static buffer_t seqToBuffer(rawSeqStore_t seq)
{
buffer_t buffer;
buffer.start = seq.seq;
buffer.capacity = seq.capacity * sizeof(rawSeq);
return buffer;
}
static rawSeqStore_t ZSTDMT_getSeq(ZSTDMT_seqPool* seqPool)
{
if (seqPool->bufferSize == 0) {
return kNullRawSeqStore;
}
return bufferToSeq(ZSTDMT_getBuffer(seqPool));
}
#if ZSTD_RESIZE_SEQPOOL
static rawSeqStore_t ZSTDMT_resizeSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq)
{
return bufferToSeq(ZSTDMT_resizeBuffer(seqPool, seqToBuffer(seq)));
}
#endif
static void ZSTDMT_releaseSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq)
{
ZSTDMT_releaseBuffer(seqPool, seqToBuffer(seq));
}
static void ZSTDMT_setNbSeq(ZSTDMT_seqPool* const seqPool, size_t const nbSeq)
{
ZSTDMT_setBufferSize(seqPool, nbSeq * sizeof(rawSeq));
}
static ZSTDMT_seqPool* ZSTDMT_createSeqPool(unsigned nbWorkers, ZSTD_customMem cMem)
{
- ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(nbWorkers, cMem);
+ ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(SEQ_POOL_MAX_NB_BUFFERS(nbWorkers), cMem);
if (seqPool == NULL) return NULL;
ZSTDMT_setNbSeq(seqPool, 0);
return seqPool;
}
static void ZSTDMT_freeSeqPool(ZSTDMT_seqPool* seqPool)
{
ZSTDMT_freeBufferPool(seqPool);
}
static ZSTDMT_seqPool* ZSTDMT_expandSeqPool(ZSTDMT_seqPool* pool, U32 nbWorkers)
{
- return ZSTDMT_expandBufferPool(pool, nbWorkers);
+ return ZSTDMT_expandBufferPool(pool, SEQ_POOL_MAX_NB_BUFFERS(nbWorkers));
}
/* ===== CCtx Pool ===== */
/* a single CCtx Pool can be invoked from multiple threads in parallel */
typedef struct {
ZSTD_pthread_mutex_t poolMutex;
int totalCCtx;
int availCCtx;
ZSTD_customMem cMem;
ZSTD_CCtx* cctx[1]; /* variable size */
} ZSTDMT_CCtxPool;
/* note : all CCtx borrowed from the pool should be released back to the pool _before_ freeing the pool */
static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool)
{
int cid;
for (cid=0; cid<pool->totalCCtx; cid++)
ZSTD_freeCCtx(pool->cctx[cid]); /* note : compatible with free on NULL */
ZSTD_pthread_mutex_destroy(&pool->poolMutex);
ZSTD_customFree(pool, pool->cMem);
}
/* ZSTDMT_createCCtxPool() :
* implies nbWorkers >= 1 , checked by caller ZSTDMT_createCCtx() */
static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(int nbWorkers,
ZSTD_customMem cMem)
{
ZSTDMT_CCtxPool* const cctxPool = (ZSTDMT_CCtxPool*) ZSTD_customCalloc(
sizeof(ZSTDMT_CCtxPool) + (nbWorkers-1)*sizeof(ZSTD_CCtx*), cMem);
assert(nbWorkers > 0);
if (!cctxPool) return NULL;
if (ZSTD_pthread_mutex_init(&cctxPool->poolMutex, NULL)) {
ZSTD_customFree(cctxPool, cMem);
return NULL;
}
cctxPool->cMem = cMem;
cctxPool->totalCCtx = nbWorkers;
cctxPool->availCCtx = 1; /* at least one cctx for single-thread mode */
cctxPool->cctx[0] = ZSTD_createCCtx_advanced(cMem);
if (!cctxPool->cctx[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; }
DEBUGLOG(3, "cctxPool created, with %u workers", nbWorkers);
return cctxPool;
}
static ZSTDMT_CCtxPool* ZSTDMT_expandCCtxPool(ZSTDMT_CCtxPool* srcPool,
int nbWorkers)
{
if (srcPool==NULL) return NULL;
if (nbWorkers <= srcPool->totalCCtx) return srcPool; /* good enough */
/* need a larger cctx pool */
{ ZSTD_customMem const cMem = srcPool->cMem;
ZSTDMT_freeCCtxPool(srcPool);
return ZSTDMT_createCCtxPool(nbWorkers, cMem);
}
}
/* only works during initialization phase, not during compression */
static size_t ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool* cctxPool)
{
ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
{ unsigned const nbWorkers = cctxPool->totalCCtx;
size_t const poolSize = sizeof(*cctxPool)
+ (nbWorkers-1) * sizeof(ZSTD_CCtx*);
unsigned u;
size_t totalCCtxSize = 0;
for (u=0; u<nbWorkers; u++) {
totalCCtxSize += ZSTD_sizeof_CCtx(cctxPool->cctx[u]);
}
ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
assert(nbWorkers > 0);
return poolSize + totalCCtxSize;
}
}
static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* cctxPool)
{
DEBUGLOG(5, "ZSTDMT_getCCtx");
ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
if (cctxPool->availCCtx) {
cctxPool->availCCtx--;
{ ZSTD_CCtx* const cctx = cctxPool->cctx[cctxPool->availCCtx];
ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
return cctx;
} }
ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
DEBUGLOG(5, "create one more CCtx");
return ZSTD_createCCtx_advanced(cctxPool->cMem); /* note : can be NULL, when creation fails ! */
}
static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx)
{
if (cctx==NULL) return; /* compatibility with release on NULL */
ZSTD_pthread_mutex_lock(&pool->poolMutex);
if (pool->availCCtx < pool->totalCCtx)
pool->cctx[pool->availCCtx++] = cctx;
else {
/* pool overflow : should not happen, since totalCCtx==nbWorkers */
DEBUGLOG(4, "CCtx pool overflow : free cctx");
ZSTD_freeCCtx(cctx);
}
ZSTD_pthread_mutex_unlock(&pool->poolMutex);
}
/* ==== Serial State ==== */
typedef struct {
void const* start;
size_t size;
} range_t;
typedef struct {
/* All variables in the struct are protected by mutex. */
ZSTD_pthread_mutex_t mutex;
ZSTD_pthread_cond_t cond;
ZSTD_CCtx_params params;
ldmState_t ldmState;
XXH64_state_t xxhState;
unsigned nextJobID;
/* Protects ldmWindow.
* Must be acquired after the main mutex when acquiring both.
*/
ZSTD_pthread_mutex_t ldmWindowMutex;
ZSTD_pthread_cond_t ldmWindowCond; /* Signaled when ldmWindow is updated */
ZSTD_window_t ldmWindow; /* A thread-safe copy of ldmState.window */
} serialState_t;
static int
ZSTDMT_serialState_reset(serialState_t* serialState,
ZSTDMT_seqPool* seqPool,
ZSTD_CCtx_params params,
size_t jobSize,
const void* dict, size_t const dictSize,
ZSTD_dictContentType_e dictContentType)
{
/* Adjust parameters */
- if (params.ldmParams.enableLdm) {
+ if (params.ldmParams.enableLdm == ZSTD_ps_enable) {
DEBUGLOG(4, "LDM window size = %u KB", (1U << params.cParams.windowLog) >> 10);
ZSTD_ldm_adjustParameters(&params.ldmParams, &params.cParams);
assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog);
assert(params.ldmParams.hashRateLog < 32);
- serialState->ldmState.hashPower =
- ZSTD_rollingHash_primePower(params.ldmParams.minMatchLength);
} else {
ZSTD_memset(&params.ldmParams, 0, sizeof(params.ldmParams));
}
serialState->nextJobID = 0;
if (params.fParams.checksumFlag)
XXH64_reset(&serialState->xxhState, 0);
- if (params.ldmParams.enableLdm) {
+ if (params.ldmParams.enableLdm == ZSTD_ps_enable) {
ZSTD_customMem cMem = params.customMem;
unsigned const hashLog = params.ldmParams.hashLog;
size_t const hashSize = ((size_t)1 << hashLog) * sizeof(ldmEntry_t);
unsigned const bucketLog =
params.ldmParams.hashLog - params.ldmParams.bucketSizeLog;
- size_t const bucketSize = (size_t)1 << bucketLog;
unsigned const prevBucketLog =
serialState->params.ldmParams.hashLog -
serialState->params.ldmParams.bucketSizeLog;
+ size_t const numBuckets = (size_t)1 << bucketLog;
/* Size the seq pool tables */
ZSTDMT_setNbSeq(seqPool, ZSTD_ldm_getMaxNbSeq(params.ldmParams, jobSize));
/* Reset the window */
ZSTD_window_init(&serialState->ldmState.window);
/* Resize tables and output space if necessary. */
if (serialState->ldmState.hashTable == NULL || serialState->params.ldmParams.hashLog < hashLog) {
ZSTD_customFree(serialState->ldmState.hashTable, cMem);
serialState->ldmState.hashTable = (ldmEntry_t*)ZSTD_customMalloc(hashSize, cMem);
}
if (serialState->ldmState.bucketOffsets == NULL || prevBucketLog < bucketLog) {
ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem);
- serialState->ldmState.bucketOffsets = (BYTE*)ZSTD_customMalloc(bucketSize, cMem);
+ serialState->ldmState.bucketOffsets = (BYTE*)ZSTD_customMalloc(numBuckets, cMem);
}
if (!serialState->ldmState.hashTable || !serialState->ldmState.bucketOffsets)
return 1;
/* Zero the tables */
ZSTD_memset(serialState->ldmState.hashTable, 0, hashSize);
- ZSTD_memset(serialState->ldmState.bucketOffsets, 0, bucketSize);
+ ZSTD_memset(serialState->ldmState.bucketOffsets, 0, numBuckets);
/* Update window state and fill hash table with dict */
serialState->ldmState.loadedDictEnd = 0;
if (dictSize > 0) {
if (dictContentType == ZSTD_dct_rawContent) {
BYTE const* const dictEnd = (const BYTE*)dict + dictSize;
- ZSTD_window_update(&serialState->ldmState.window, dict, dictSize);
+ ZSTD_window_update(&serialState->ldmState.window, dict, dictSize, /* forceNonContiguous */ 0);
ZSTD_ldm_fillHashTable(&serialState->ldmState, (const BYTE*)dict, dictEnd, &params.ldmParams);
serialState->ldmState.loadedDictEnd = params.forceWindow ? 0 : (U32)(dictEnd - serialState->ldmState.window.base);
} else {
/* don't even load anything */
}
}
/* Initialize serialState's copy of ldmWindow. */
serialState->ldmWindow = serialState->ldmState.window;
}
serialState->params = params;
serialState->params.jobSize = (U32)jobSize;
return 0;
}
static int ZSTDMT_serialState_init(serialState_t* serialState)
{
int initError = 0;
ZSTD_memset(serialState, 0, sizeof(*serialState));
initError |= ZSTD_pthread_mutex_init(&serialState->mutex, NULL);
initError |= ZSTD_pthread_cond_init(&serialState->cond, NULL);
initError |= ZSTD_pthread_mutex_init(&serialState->ldmWindowMutex, NULL);
initError |= ZSTD_pthread_cond_init(&serialState->ldmWindowCond, NULL);
return initError;
}
static void ZSTDMT_serialState_free(serialState_t* serialState)
{
ZSTD_customMem cMem = serialState->params.customMem;
ZSTD_pthread_mutex_destroy(&serialState->mutex);
ZSTD_pthread_cond_destroy(&serialState->cond);
ZSTD_pthread_mutex_destroy(&serialState->ldmWindowMutex);
ZSTD_pthread_cond_destroy(&serialState->ldmWindowCond);
ZSTD_customFree(serialState->ldmState.hashTable, cMem);
ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem);
}
static void ZSTDMT_serialState_update(serialState_t* serialState,
ZSTD_CCtx* jobCCtx, rawSeqStore_t seqStore,
range_t src, unsigned jobID)
{
/* Wait for our turn */
ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
while (serialState->nextJobID < jobID) {
DEBUGLOG(5, "wait for serialState->cond");
ZSTD_pthread_cond_wait(&serialState->cond, &serialState->mutex);
}
/* A future job may error and skip our job */
if (serialState->nextJobID == jobID) {
/* It is now our turn, do any processing necessary */
- if (serialState->params.ldmParams.enableLdm) {
+ if (serialState->params.ldmParams.enableLdm == ZSTD_ps_enable) {
size_t error;
assert(seqStore.seq != NULL && seqStore.pos == 0 &&
seqStore.size == 0 && seqStore.capacity > 0);
assert(src.size <= serialState->params.jobSize);
- ZSTD_window_update(&serialState->ldmState.window, src.start, src.size);
+ ZSTD_window_update(&serialState->ldmState.window, src.start, src.size, /* forceNonContiguous */ 0);
error = ZSTD_ldm_generateSequences(
&serialState->ldmState, &seqStore,
&serialState->params.ldmParams, src.start, src.size);
/* We provide a large enough buffer to never fail. */
assert(!ZSTD_isError(error)); (void)error;
/* Update ldmWindow to match the ldmState.window and signal the main
* thread if it is waiting for a buffer.
*/
ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
serialState->ldmWindow = serialState->ldmState.window;
ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
}
if (serialState->params.fParams.checksumFlag && src.size > 0)
XXH64_update(&serialState->xxhState, src.start, src.size);
}
/* Now it is the next jobs turn */
serialState->nextJobID++;
ZSTD_pthread_cond_broadcast(&serialState->cond);
ZSTD_pthread_mutex_unlock(&serialState->mutex);
if (seqStore.size > 0) {
size_t const err = ZSTD_referenceExternalSequences(
jobCCtx, seqStore.seq, seqStore.size);
- assert(serialState->params.ldmParams.enableLdm);
+ assert(serialState->params.ldmParams.enableLdm == ZSTD_ps_enable);
assert(!ZSTD_isError(err));
(void)err;
}
}
static void ZSTDMT_serialState_ensureFinished(serialState_t* serialState,
unsigned jobID, size_t cSize)
{
ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
if (serialState->nextJobID <= jobID) {
assert(ZSTD_isError(cSize)); (void)cSize;
DEBUGLOG(5, "Skipping past job %u because of error", jobID);
serialState->nextJobID = jobID + 1;
ZSTD_pthread_cond_broadcast(&serialState->cond);
ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
ZSTD_window_clear(&serialState->ldmWindow);
ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
}
ZSTD_pthread_mutex_unlock(&serialState->mutex);
}
/* ------------------------------------------ */
/* ===== Worker thread ===== */
/* ------------------------------------------ */
static const range_t kNullRange = { NULL, 0 };
typedef struct {
size_t consumed; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx */
size_t cSize; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx, then set0 by mtctx */
ZSTD_pthread_mutex_t job_mutex; /* Thread-safe - used by mtctx and worker */
ZSTD_pthread_cond_t job_cond; /* Thread-safe - used by mtctx and worker */
ZSTDMT_CCtxPool* cctxPool; /* Thread-safe - used by mtctx and (all) workers */
ZSTDMT_bufferPool* bufPool; /* Thread-safe - used by mtctx and (all) workers */
ZSTDMT_seqPool* seqPool; /* Thread-safe - used by mtctx and (all) workers */
serialState_t* serial; /* Thread-safe - used by mtctx and (all) workers */
buffer_t dstBuff; /* set by worker (or mtctx), then read by worker & mtctx, then modified by mtctx => no barrier */
range_t prefix; /* set by mtctx, then read by worker & mtctx => no barrier */
range_t src; /* set by mtctx, then read by worker & mtctx => no barrier */
unsigned jobID; /* set by mtctx, then read by worker => no barrier */
unsigned firstJob; /* set by mtctx, then read by worker => no barrier */
unsigned lastJob; /* set by mtctx, then read by worker => no barrier */
ZSTD_CCtx_params params; /* set by mtctx, then read by worker => no barrier */
const ZSTD_CDict* cdict; /* set by mtctx, then read by worker => no barrier */
unsigned long long fullFrameSize; /* set by mtctx, then read by worker => no barrier */
size_t dstFlushed; /* used only by mtctx */
unsigned frameChecksumNeeded; /* used only by mtctx */
} ZSTDMT_jobDescription;
#define JOB_ERROR(e) { \
ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); \
job->cSize = e; \
ZSTD_pthread_mutex_unlock(&job->job_mutex); \
goto _endJob; \
}
/* ZSTDMT_compressionJob() is a POOL_function type */
static void ZSTDMT_compressionJob(void* jobDescription)
{
ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription;
ZSTD_CCtx_params jobParams = job->params; /* do not modify job->params ! copy it, modify the copy */
ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(job->cctxPool);
rawSeqStore_t rawSeqStore = ZSTDMT_getSeq(job->seqPool);
buffer_t dstBuff = job->dstBuff;
size_t lastCBlockSize = 0;
/* resources */
if (cctx==NULL) JOB_ERROR(ERROR(memory_allocation));
if (dstBuff.start == NULL) { /* streaming job : doesn't provide a dstBuffer */
dstBuff = ZSTDMT_getBuffer(job->bufPool);
if (dstBuff.start==NULL) JOB_ERROR(ERROR(memory_allocation));
job->dstBuff = dstBuff; /* this value can be read in ZSTDMT_flush, when it copies the whole job */
}
- if (jobParams.ldmParams.enableLdm && rawSeqStore.seq == NULL)
+ if (jobParams.ldmParams.enableLdm == ZSTD_ps_enable && rawSeqStore.seq == NULL)
JOB_ERROR(ERROR(memory_allocation));
/* Don't compute the checksum for chunks, since we compute it externally,
* but write it in the header.
*/
if (job->jobID != 0) jobParams.fParams.checksumFlag = 0;
/* Don't run LDM for the chunks, since we handle it externally */
- jobParams.ldmParams.enableLdm = 0;
+ jobParams.ldmParams.enableLdm = ZSTD_ps_disable;
+ /* Correct nbWorkers to 0. */
+ jobParams.nbWorkers = 0;
/* init */
if (job->cdict) {
size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, job->cdict, &jobParams, job->fullFrameSize);
assert(job->firstJob); /* only allowed for first job */
if (ZSTD_isError(initError)) JOB_ERROR(initError);
} else { /* srcStart points at reloaded section */
U64 const pledgedSrcSize = job->firstJob ? job->fullFrameSize : job->src.size;
{ size_t const forceWindowError = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_forceMaxWindow, !job->firstJob);
if (ZSTD_isError(forceWindowError)) JOB_ERROR(forceWindowError);
}
+ if (!job->firstJob) {
+ size_t const err = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_deterministicRefPrefix, 0);
+ if (ZSTD_isError(err)) JOB_ERROR(err);
+ }
{ size_t const initError = ZSTD_compressBegin_advanced_internal(cctx,
job->prefix.start, job->prefix.size, ZSTD_dct_rawContent, /* load dictionary in "content-only" mode (no header analysis) */
ZSTD_dtlm_fast,
NULL, /*cdict*/
&jobParams, pledgedSrcSize);
if (ZSTD_isError(initError)) JOB_ERROR(initError);
} }
/* Perform serial step as early as possible, but after CCtx initialization */
ZSTDMT_serialState_update(job->serial, cctx, rawSeqStore, job->src, job->jobID);
if (!job->firstJob) { /* flush and overwrite frame header when it's not first job */
size_t const hSize = ZSTD_compressContinue(cctx, dstBuff.start, dstBuff.capacity, job->src.start, 0);
if (ZSTD_isError(hSize)) JOB_ERROR(hSize);
DEBUGLOG(5, "ZSTDMT_compressionJob: flush and overwrite %u bytes of frame header (not first job)", (U32)hSize);
ZSTD_invalidateRepCodes(cctx);
}
/* compress */
{ size_t const chunkSize = 4*ZSTD_BLOCKSIZE_MAX;
int const nbChunks = (int)((job->src.size + (chunkSize-1)) / chunkSize);
const BYTE* ip = (const BYTE*) job->src.start;
BYTE* const ostart = (BYTE*)dstBuff.start;
BYTE* op = ostart;
BYTE* oend = op + dstBuff.capacity;
int chunkNb;
if (sizeof(size_t) > sizeof(int)) assert(job->src.size < ((size_t)INT_MAX) * chunkSize); /* check overflow */
DEBUGLOG(5, "ZSTDMT_compressionJob: compress %u bytes in %i blocks", (U32)job->src.size, nbChunks);
assert(job->cSize == 0);
for (chunkNb = 1; chunkNb < nbChunks; chunkNb++) {
size_t const cSize = ZSTD_compressContinue(cctx, op, oend-op, ip, chunkSize);
if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
ip += chunkSize;
op += cSize; assert(op < oend);
/* stats */
ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
job->cSize += cSize;
job->consumed = chunkSize * chunkNb;
DEBUGLOG(5, "ZSTDMT_compressionJob: compress new block : cSize==%u bytes (total: %u)",
(U32)cSize, (U32)job->cSize);
ZSTD_pthread_cond_signal(&job->job_cond); /* warns some more data is ready to be flushed */
ZSTD_pthread_mutex_unlock(&job->job_mutex);
}
/* last block */
assert(chunkSize > 0);
assert((chunkSize & (chunkSize - 1)) == 0); /* chunkSize must be power of 2 for mask==(chunkSize-1) to work */
if ((nbChunks > 0) | job->lastJob /*must output a "last block" flag*/ ) {
size_t const lastBlockSize1 = job->src.size & (chunkSize-1);
size_t const lastBlockSize = ((lastBlockSize1==0) & (job->src.size>=chunkSize)) ? chunkSize : lastBlockSize1;
size_t const cSize = (job->lastJob) ?
ZSTD_compressEnd (cctx, op, oend-op, ip, lastBlockSize) :
ZSTD_compressContinue(cctx, op, oend-op, ip, lastBlockSize);
if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
lastCBlockSize = cSize;
} }
+ if (!job->firstJob) {
+ /* Double check that we don't have an ext-dict, because then our
+ * repcode invalidation doesn't work.
+ */
+ assert(!ZSTD_window_hasExtDict(cctx->blockState.matchState.window));
+ }
+ ZSTD_CCtx_trace(cctx, 0);
_endJob:
ZSTDMT_serialState_ensureFinished(job->serial, job->jobID, job->cSize);
if (job->prefix.size > 0)
DEBUGLOG(5, "Finished with prefix: %zx", (size_t)job->prefix.start);
DEBUGLOG(5, "Finished with source: %zx", (size_t)job->src.start);
/* release resources */
ZSTDMT_releaseSeq(job->seqPool, rawSeqStore);
ZSTDMT_releaseCCtx(job->cctxPool, cctx);
/* report */
ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
if (ZSTD_isError(job->cSize)) assert(lastCBlockSize == 0);
job->cSize += lastCBlockSize;
job->consumed = job->src.size; /* when job->consumed == job->src.size , compression job is presumed completed */
ZSTD_pthread_cond_signal(&job->job_cond);
ZSTD_pthread_mutex_unlock(&job->job_mutex);
}
/* ------------------------------------------ */
/* ===== Multi-threaded compression ===== */
/* ------------------------------------------ */
typedef struct {
range_t prefix; /* read-only non-owned prefix buffer */
buffer_t buffer;
size_t filled;
} inBuff_t;
typedef struct {
BYTE* buffer; /* The round input buffer. All jobs get references
* to pieces of the buffer. ZSTDMT_tryGetInputRange()
* handles handing out job input buffers, and makes
* sure it doesn't overlap with any pieces still in use.
*/
size_t capacity; /* The capacity of buffer. */
size_t pos; /* The position of the current inBuff in the round
* buffer. Updated past the end if the inBuff once
* the inBuff is sent to the worker thread.
* pos <= capacity.
*/
} roundBuff_t;
static const roundBuff_t kNullRoundBuff = {NULL, 0, 0};
#define RSYNC_LENGTH 32
+/* Don't create chunks smaller than the zstd block size.
+ * This stops us from regressing compression ratio too much,
+ * and ensures our output fits in ZSTD_compressBound().
+ *
+ * If this is shrunk < ZSTD_BLOCKSIZELOG_MIN then
+ * ZSTD_COMPRESSBOUND() will need to be updated.
+ */
+#define RSYNC_MIN_BLOCK_LOG ZSTD_BLOCKSIZELOG_MAX
+#define RSYNC_MIN_BLOCK_SIZE (1<<RSYNC_MIN_BLOCK_LOG)
typedef struct {
U64 hash;
U64 hitMask;
U64 primePower;
} rsyncState_t;
struct ZSTDMT_CCtx_s {
POOL_ctx* factory;
ZSTDMT_jobDescription* jobs;
ZSTDMT_bufferPool* bufPool;
ZSTDMT_CCtxPool* cctxPool;
ZSTDMT_seqPool* seqPool;
ZSTD_CCtx_params params;
size_t targetSectionSize;
size_t targetPrefixSize;
int jobReady; /* 1 => one job is already prepared, but pool has shortage of workers. Don't create a new job. */
inBuff_t inBuff;
roundBuff_t roundBuff;
serialState_t serial;
rsyncState_t rsync;
unsigned jobIDMask;
unsigned doneJobID;
unsigned nextJobID;
unsigned frameEnded;
unsigned allJobsCompleted;
unsigned long long frameContentSize;
unsigned long long consumed;
unsigned long long produced;
ZSTD_customMem cMem;
ZSTD_CDict* cdictLocal;
const ZSTD_CDict* cdict;
unsigned providedFactory: 1;
};
static void ZSTDMT_freeJobsTable(ZSTDMT_jobDescription* jobTable, U32 nbJobs, ZSTD_customMem cMem)
{
U32 jobNb;
if (jobTable == NULL) return;
for (jobNb=0; jobNb<nbJobs; jobNb++) {
ZSTD_pthread_mutex_destroy(&jobTable[jobNb].job_mutex);
ZSTD_pthread_cond_destroy(&jobTable[jobNb].job_cond);
}
ZSTD_customFree(jobTable, cMem);
}
/* ZSTDMT_allocJobsTable()
* allocate and init a job table.
* update *nbJobsPtr to next power of 2 value, as size of table */
static ZSTDMT_jobDescription* ZSTDMT_createJobsTable(U32* nbJobsPtr, ZSTD_customMem cMem)
{
U32 const nbJobsLog2 = ZSTD_highbit32(*nbJobsPtr) + 1;
U32 const nbJobs = 1 << nbJobsLog2;
U32 jobNb;
ZSTDMT_jobDescription* const jobTable = (ZSTDMT_jobDescription*)
ZSTD_customCalloc(nbJobs * sizeof(ZSTDMT_jobDescription), cMem);
int initError = 0;
if (jobTable==NULL) return NULL;
*nbJobsPtr = nbJobs;
for (jobNb=0; jobNb<nbJobs; jobNb++) {
initError |= ZSTD_pthread_mutex_init(&jobTable[jobNb].job_mutex, NULL);
initError |= ZSTD_pthread_cond_init(&jobTable[jobNb].job_cond, NULL);
}
if (initError != 0) {
ZSTDMT_freeJobsTable(jobTable, nbJobs, cMem);
return NULL;
}
return jobTable;
}
static size_t ZSTDMT_expandJobsTable (ZSTDMT_CCtx* mtctx, U32 nbWorkers) {
U32 nbJobs = nbWorkers + 2;
if (nbJobs > mtctx->jobIDMask+1) { /* need more job capacity */
ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
mtctx->jobIDMask = 0;
mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, mtctx->cMem);
if (mtctx->jobs==NULL) return ERROR(memory_allocation);
assert((nbJobs != 0) && ((nbJobs & (nbJobs - 1)) == 0)); /* ensure nbJobs is a power of 2 */
mtctx->jobIDMask = nbJobs - 1;
}
return 0;
}
/* ZSTDMT_CCtxParam_setNbWorkers():
* Internal use only */
static size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers)
{
return ZSTD_CCtxParams_setParameter(params, ZSTD_c_nbWorkers, (int)nbWorkers);
}
MEM_STATIC ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool)
{
ZSTDMT_CCtx* mtctx;
U32 nbJobs = nbWorkers + 2;
int initError;
DEBUGLOG(3, "ZSTDMT_createCCtx_advanced (nbWorkers = %u)", nbWorkers);
if (nbWorkers < 1) return NULL;
nbWorkers = MIN(nbWorkers , ZSTDMT_NBWORKERS_MAX);
if ((cMem.customAlloc!=NULL) ^ (cMem.customFree!=NULL))
/* invalid custom allocator */
return NULL;
mtctx = (ZSTDMT_CCtx*) ZSTD_customCalloc(sizeof(ZSTDMT_CCtx), cMem);
if (!mtctx) return NULL;
ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
mtctx->cMem = cMem;
mtctx->allJobsCompleted = 1;
if (pool != NULL) {
mtctx->factory = pool;
mtctx->providedFactory = 1;
}
else {
mtctx->factory = POOL_create_advanced(nbWorkers, 0, cMem);
mtctx->providedFactory = 0;
}
mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, cMem);
assert(nbJobs > 0); assert((nbJobs & (nbJobs - 1)) == 0); /* ensure nbJobs is a power of 2 */
mtctx->jobIDMask = nbJobs - 1;
- mtctx->bufPool = ZSTDMT_createBufferPool(nbWorkers, cMem);
+ mtctx->bufPool = ZSTDMT_createBufferPool(BUF_POOL_MAX_NB_BUFFERS(nbWorkers), cMem);
mtctx->cctxPool = ZSTDMT_createCCtxPool(nbWorkers, cMem);
mtctx->seqPool = ZSTDMT_createSeqPool(nbWorkers, cMem);
initError = ZSTDMT_serialState_init(&mtctx->serial);
mtctx->roundBuff = kNullRoundBuff;
if (!mtctx->factory | !mtctx->jobs | !mtctx->bufPool | !mtctx->cctxPool | !mtctx->seqPool | initError) {
ZSTDMT_freeCCtx(mtctx);
return NULL;
}
DEBUGLOG(3, "mt_cctx created, for %u threads", nbWorkers);
return mtctx;
}
ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool)
{
#ifdef ZSTD_MULTITHREAD
return ZSTDMT_createCCtx_advanced_internal(nbWorkers, cMem, pool);
#else
(void)nbWorkers;
(void)cMem;
(void)pool;
return NULL;
#endif
}
/* ZSTDMT_releaseAllJobResources() :
* note : ensure all workers are killed first ! */
static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx)
{
unsigned jobID;
DEBUGLOG(3, "ZSTDMT_releaseAllJobResources");
for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) {
/* Copy the mutex/cond out */
ZSTD_pthread_mutex_t const mutex = mtctx->jobs[jobID].job_mutex;
ZSTD_pthread_cond_t const cond = mtctx->jobs[jobID].job_cond;
DEBUGLOG(4, "job%02u: release dst address %08X", jobID, (U32)(size_t)mtctx->jobs[jobID].dstBuff.start);
ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff);
/* Clear the job description, but keep the mutex/cond */
ZSTD_memset(&mtctx->jobs[jobID], 0, sizeof(mtctx->jobs[jobID]));
mtctx->jobs[jobID].job_mutex = mutex;
mtctx->jobs[jobID].job_cond = cond;
}
mtctx->inBuff.buffer = g_nullBuffer;
mtctx->inBuff.filled = 0;
mtctx->allJobsCompleted = 1;
}
static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* mtctx)
{
DEBUGLOG(4, "ZSTDMT_waitForAllJobsCompleted");
while (mtctx->doneJobID < mtctx->nextJobID) {
unsigned const jobID = mtctx->doneJobID & mtctx->jobIDMask;
ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex);
while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) {
DEBUGLOG(4, "waiting for jobCompleted signal from job %u", mtctx->doneJobID); /* we want to block when waiting for data to flush */
ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex);
}
ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex);
mtctx->doneJobID++;
}
}
size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx)
{
if (mtctx==NULL) return 0; /* compatible with free on NULL */
if (!mtctx->providedFactory)
POOL_free(mtctx->factory); /* stop and free worker threads */
ZSTDMT_releaseAllJobResources(mtctx); /* release job resources into pools first */
ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
ZSTDMT_freeBufferPool(mtctx->bufPool);
ZSTDMT_freeCCtxPool(mtctx->cctxPool);
ZSTDMT_freeSeqPool(mtctx->seqPool);
ZSTDMT_serialState_free(&mtctx->serial);
ZSTD_freeCDict(mtctx->cdictLocal);
if (mtctx->roundBuff.buffer)
ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem);
ZSTD_customFree(mtctx, mtctx->cMem);
return 0;
}
size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx)
{
if (mtctx == NULL) return 0; /* supports sizeof NULL */
return sizeof(*mtctx)
+ POOL_sizeof(mtctx->factory)
+ ZSTDMT_sizeof_bufferPool(mtctx->bufPool)
+ (mtctx->jobIDMask+1) * sizeof(ZSTDMT_jobDescription)
+ ZSTDMT_sizeof_CCtxPool(mtctx->cctxPool)
+ ZSTDMT_sizeof_seqPool(mtctx->seqPool)
+ ZSTD_sizeof_CDict(mtctx->cdictLocal)
+ mtctx->roundBuff.capacity;
}
/* ZSTDMT_resize() :
* @return : error code if fails, 0 on success */
static size_t ZSTDMT_resize(ZSTDMT_CCtx* mtctx, unsigned nbWorkers)
{
if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation);
FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbWorkers) , "");
- mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, nbWorkers);
+ mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, BUF_POOL_MAX_NB_BUFFERS(nbWorkers));
if (mtctx->bufPool == NULL) return ERROR(memory_allocation);
mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers);
if (mtctx->cctxPool == NULL) return ERROR(memory_allocation);
mtctx->seqPool = ZSTDMT_expandSeqPool(mtctx->seqPool, nbWorkers);
if (mtctx->seqPool == NULL) return ERROR(memory_allocation);
ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
return 0;
}
/*! ZSTDMT_updateCParams_whileCompressing() :
* Updates a selected set of compression parameters, remaining compatible with currently active frame.
* New parameters will be applied to next compression job. */
void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams)
{
U32 const saved_wlog = mtctx->params.cParams.windowLog; /* Do not modify windowLog while compressing */
int const compressionLevel = cctxParams->compressionLevel;
DEBUGLOG(5, "ZSTDMT_updateCParams_whileCompressing (level:%i)",
compressionLevel);
mtctx->params.compressionLevel = compressionLevel;
{ ZSTD_compressionParameters cParams = ZSTD_getCParamsFromCCtxParams(cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict);
cParams.windowLog = saved_wlog;
mtctx->params.cParams = cParams;
}
}
/* ZSTDMT_getFrameProgression():
* tells how much data has been consumed (input) and produced (output) for current frame.
* able to count progression inside worker threads.
* Note : mutex will be acquired during statistics collection inside workers. */
ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx)
{
ZSTD_frameProgression fps;
DEBUGLOG(5, "ZSTDMT_getFrameProgression");
fps.ingested = mtctx->consumed + mtctx->inBuff.filled;
fps.consumed = mtctx->consumed;
fps.produced = fps.flushed = mtctx->produced;
fps.currentJobID = mtctx->nextJobID;
fps.nbActiveWorkers = 0;
{ unsigned jobNb;
unsigned lastJobNb = mtctx->nextJobID + mtctx->jobReady; assert(mtctx->jobReady <= 1);
DEBUGLOG(6, "ZSTDMT_getFrameProgression: jobs: from %u to <%u (jobReady:%u)",
mtctx->doneJobID, lastJobNb, mtctx->jobReady)
for (jobNb = mtctx->doneJobID ; jobNb < lastJobNb ; jobNb++) {
unsigned const wJobID = jobNb & mtctx->jobIDMask;
ZSTDMT_jobDescription* jobPtr = &mtctx->jobs[wJobID];
ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
{ size_t const cResult = jobPtr->cSize;
size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
assert(flushed <= produced);
fps.ingested += jobPtr->src.size;
fps.consumed += jobPtr->consumed;
fps.produced += produced;
fps.flushed += flushed;
fps.nbActiveWorkers += (jobPtr->consumed < jobPtr->src.size);
}
ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
}
}
return fps;
}
size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx)
{
size_t toFlush;
unsigned const jobID = mtctx->doneJobID;
assert(jobID <= mtctx->nextJobID);
if (jobID == mtctx->nextJobID) return 0; /* no active job => nothing to flush */
/* look into oldest non-fully-flushed job */
{ unsigned const wJobID = jobID & mtctx->jobIDMask;
ZSTDMT_jobDescription* const jobPtr = &mtctx->jobs[wJobID];
ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
{ size_t const cResult = jobPtr->cSize;
size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
assert(flushed <= produced);
assert(jobPtr->consumed <= jobPtr->src.size);
toFlush = produced - flushed;
/* if toFlush==0, nothing is available to flush.
* However, jobID is expected to still be active:
* if jobID was already completed and fully flushed,
* ZSTDMT_flushProduced() should have already moved onto next job.
* Therefore, some input has not yet been consumed. */
if (toFlush==0) {
assert(jobPtr->consumed < jobPtr->src.size);
}
}
ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
}
return toFlush;
}
/* ------------------------------------------ */
/* ===== Multi-threaded compression ===== */
/* ------------------------------------------ */
static unsigned ZSTDMT_computeTargetJobLog(const ZSTD_CCtx_params* params)
{
unsigned jobLog;
- if (params->ldmParams.enableLdm) {
+ if (params->ldmParams.enableLdm == ZSTD_ps_enable) {
/* In Long Range Mode, the windowLog is typically oversized.
* In which case, it's preferable to determine the jobSize
* based on cycleLog instead. */
jobLog = MAX(21, ZSTD_cycleLog(params->cParams.chainLog, params->cParams.strategy) + 3);
} else {
jobLog = MAX(20, params->cParams.windowLog + 2);
}
return MIN(jobLog, (unsigned)ZSTDMT_JOBLOG_MAX);
}
static int ZSTDMT_overlapLog_default(ZSTD_strategy strat)
{
switch(strat)
{
case ZSTD_btultra2:
return 9;
case ZSTD_btultra:
case ZSTD_btopt:
return 8;
case ZSTD_btlazy2:
case ZSTD_lazy2:
return 7;
case ZSTD_lazy:
case ZSTD_greedy:
case ZSTD_dfast:
case ZSTD_fast:
default:;
}
return 6;
}
static int ZSTDMT_overlapLog(int ovlog, ZSTD_strategy strat)
{
assert(0 <= ovlog && ovlog <= 9);
if (ovlog == 0) return ZSTDMT_overlapLog_default(strat);
return ovlog;
}
static size_t ZSTDMT_computeOverlapSize(const ZSTD_CCtx_params* params)
{
int const overlapRLog = 9 - ZSTDMT_overlapLog(params->overlapLog, params->cParams.strategy);
int ovLog = (overlapRLog >= 8) ? 0 : (params->cParams.windowLog - overlapRLog);
assert(0 <= overlapRLog && overlapRLog <= 8);
- if (params->ldmParams.enableLdm) {
+ if (params->ldmParams.enableLdm == ZSTD_ps_enable) {
/* In Long Range Mode, the windowLog is typically oversized.
* In which case, it's preferable to determine the jobSize
* based on chainLog instead.
* Then, ovLog becomes a fraction of the jobSize, rather than windowSize */
ovLog = MIN(params->cParams.windowLog, ZSTDMT_computeTargetJobLog(params) - 2)
- overlapRLog;
}
assert(0 <= ovLog && ovLog <= ZSTD_WINDOWLOG_MAX);
DEBUGLOG(4, "overlapLog : %i", params->overlapLog);
DEBUGLOG(4, "overlap size : %i", 1 << ovLog);
return (ovLog==0) ? 0 : (size_t)1 << ovLog;
}
/* ====================================== */
/* ======= Streaming API ======= */
/* ====================================== */
size_t ZSTDMT_initCStream_internal(
ZSTDMT_CCtx* mtctx,
const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType,
const ZSTD_CDict* cdict, ZSTD_CCtx_params params,
unsigned long long pledgedSrcSize)
{
DEBUGLOG(4, "ZSTDMT_initCStream_internal (pledgedSrcSize=%u, nbWorkers=%u, cctxPool=%u)",
(U32)pledgedSrcSize, params.nbWorkers, mtctx->cctxPool->totalCCtx);
/* params supposed partially fully validated at this point */
assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
assert(!((dict) && (cdict))); /* either dict or cdict, not both */
/* init */
if (params.nbWorkers != mtctx->params.nbWorkers)
FORWARD_IF_ERROR( ZSTDMT_resize(mtctx, params.nbWorkers) , "");
if (params.jobSize != 0 && params.jobSize < ZSTDMT_JOBSIZE_MIN) params.jobSize = ZSTDMT_JOBSIZE_MIN;
if (params.jobSize > (size_t)ZSTDMT_JOBSIZE_MAX) params.jobSize = (size_t)ZSTDMT_JOBSIZE_MAX;
DEBUGLOG(4, "ZSTDMT_initCStream_internal: %u workers", params.nbWorkers);
if (mtctx->allJobsCompleted == 0) { /* previous compression not correctly finished */
ZSTDMT_waitForAllJobsCompleted(mtctx);
ZSTDMT_releaseAllJobResources(mtctx);
mtctx->allJobsCompleted = 1;
}
mtctx->params = params;
mtctx->frameContentSize = pledgedSrcSize;
if (dict) {
ZSTD_freeCDict(mtctx->cdictLocal);
mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize,
ZSTD_dlm_byCopy, dictContentType, /* note : a loadPrefix becomes an internal CDict */
params.cParams, mtctx->cMem);
mtctx->cdict = mtctx->cdictLocal;
if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation);
} else {
ZSTD_freeCDict(mtctx->cdictLocal);
mtctx->cdictLocal = NULL;
mtctx->cdict = cdict;
}
mtctx->targetPrefixSize = ZSTDMT_computeOverlapSize(&params);
DEBUGLOG(4, "overlapLog=%i => %u KB", params.overlapLog, (U32)(mtctx->targetPrefixSize>>10));
mtctx->targetSectionSize = params.jobSize;
if (mtctx->targetSectionSize == 0) {
mtctx->targetSectionSize = 1ULL << ZSTDMT_computeTargetJobLog(&params);
}
assert(mtctx->targetSectionSize <= (size_t)ZSTDMT_JOBSIZE_MAX);
if (params.rsyncable) {
/* Aim for the targetsectionSize as the average job size. */
- U32 const jobSizeMB = (U32)(mtctx->targetSectionSize >> 20);
- U32 const rsyncBits = ZSTD_highbit32(jobSizeMB) + 20;
- assert(jobSizeMB >= 1);
+ U32 const jobSizeKB = (U32)(mtctx->targetSectionSize >> 10);
+ U32 const rsyncBits = (assert(jobSizeKB >= 1), ZSTD_highbit32(jobSizeKB) + 10);
+ /* We refuse to create jobs < RSYNC_MIN_BLOCK_SIZE bytes, so make sure our
+ * expected job size is at least 4x larger. */
+ assert(rsyncBits >= RSYNC_MIN_BLOCK_LOG + 2);
DEBUGLOG(4, "rsyncLog = %u", rsyncBits);
mtctx->rsync.hash = 0;
mtctx->rsync.hitMask = (1ULL << rsyncBits) - 1;
mtctx->rsync.primePower = ZSTD_rollingHash_primePower(RSYNC_LENGTH);
}
if (mtctx->targetSectionSize < mtctx->targetPrefixSize) mtctx->targetSectionSize = mtctx->targetPrefixSize; /* job size must be >= overlap size */
DEBUGLOG(4, "Job Size : %u KB (note : set to %u)", (U32)(mtctx->targetSectionSize>>10), (U32)params.jobSize);
DEBUGLOG(4, "inBuff Size : %u KB", (U32)(mtctx->targetSectionSize>>10));
ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(mtctx->targetSectionSize));
{
/* If ldm is enabled we need windowSize space. */
- size_t const windowSize = mtctx->params.ldmParams.enableLdm ? (1U << mtctx->params.cParams.windowLog) : 0;
+ size_t const windowSize = mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable ? (1U << mtctx->params.cParams.windowLog) : 0;
/* Two buffers of slack, plus extra space for the overlap
* This is the minimum slack that LDM works with. One extra because
* flush might waste up to targetSectionSize-1 bytes. Another extra
* for the overlap (if > 0), then one to fill which doesn't overlap
* with the LDM window.
*/
size_t const nbSlackBuffers = 2 + (mtctx->targetPrefixSize > 0);
size_t const slackSize = mtctx->targetSectionSize * nbSlackBuffers;
/* Compute the total size, and always have enough slack */
size_t const nbWorkers = MAX(mtctx->params.nbWorkers, 1);
size_t const sectionsSize = mtctx->targetSectionSize * nbWorkers;
size_t const capacity = MAX(windowSize, sectionsSize) + slackSize;
if (mtctx->roundBuff.capacity < capacity) {
if (mtctx->roundBuff.buffer)
ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem);
mtctx->roundBuff.buffer = (BYTE*)ZSTD_customMalloc(capacity, mtctx->cMem);
if (mtctx->roundBuff.buffer == NULL) {
mtctx->roundBuff.capacity = 0;
return ERROR(memory_allocation);
}
mtctx->roundBuff.capacity = capacity;
}
}
DEBUGLOG(4, "roundBuff capacity : %u KB", (U32)(mtctx->roundBuff.capacity>>10));
mtctx->roundBuff.pos = 0;
mtctx->inBuff.buffer = g_nullBuffer;
mtctx->inBuff.filled = 0;
mtctx->inBuff.prefix = kNullRange;
mtctx->doneJobID = 0;
mtctx->nextJobID = 0;
mtctx->frameEnded = 0;
mtctx->allJobsCompleted = 0;
mtctx->consumed = 0;
mtctx->produced = 0;
if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, mtctx->targetSectionSize,
dict, dictSize, dictContentType))
return ERROR(memory_allocation);
return 0;
}
/* ZSTDMT_writeLastEmptyBlock()
* Write a single empty block with an end-of-frame to finish a frame.
* Job must be created from streaming variant.
* This function is always successful if expected conditions are fulfilled.
*/
static void ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription* job)
{
assert(job->lastJob == 1);
assert(job->src.size == 0); /* last job is empty -> will be simplified into a last empty block */
assert(job->firstJob == 0); /* cannot be first job, as it also needs to create frame header */
assert(job->dstBuff.start == NULL); /* invoked from streaming variant only (otherwise, dstBuff might be user's output) */
job->dstBuff = ZSTDMT_getBuffer(job->bufPool);
if (job->dstBuff.start == NULL) {
job->cSize = ERROR(memory_allocation);
return;
}
assert(job->dstBuff.capacity >= ZSTD_blockHeaderSize); /* no buffer should ever be that small */
job->src = kNullRange;
job->cSize = ZSTD_writeLastEmptyBlock(job->dstBuff.start, job->dstBuff.capacity);
assert(!ZSTD_isError(job->cSize));
assert(job->consumed == 0);
}
static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* mtctx, size_t srcSize, ZSTD_EndDirective endOp)
{
unsigned const jobID = mtctx->nextJobID & mtctx->jobIDMask;
int const endFrame = (endOp == ZSTD_e_end);
if (mtctx->nextJobID > mtctx->doneJobID + mtctx->jobIDMask) {
DEBUGLOG(5, "ZSTDMT_createCompressionJob: will not create new job : table is full");
assert((mtctx->nextJobID & mtctx->jobIDMask) == (mtctx->doneJobID & mtctx->jobIDMask));
return 0;
}
if (!mtctx->jobReady) {
BYTE const* src = (BYTE const*)mtctx->inBuff.buffer.start;
DEBUGLOG(5, "ZSTDMT_createCompressionJob: preparing job %u to compress %u bytes with %u preload ",
mtctx->nextJobID, (U32)srcSize, (U32)mtctx->inBuff.prefix.size);
mtctx->jobs[jobID].src.start = src;
mtctx->jobs[jobID].src.size = srcSize;
assert(mtctx->inBuff.filled >= srcSize);
mtctx->jobs[jobID].prefix = mtctx->inBuff.prefix;
mtctx->jobs[jobID].consumed = 0;
mtctx->jobs[jobID].cSize = 0;
mtctx->jobs[jobID].params = mtctx->params;
mtctx->jobs[jobID].cdict = mtctx->nextJobID==0 ? mtctx->cdict : NULL;
mtctx->jobs[jobID].fullFrameSize = mtctx->frameContentSize;
mtctx->jobs[jobID].dstBuff = g_nullBuffer;
mtctx->jobs[jobID].cctxPool = mtctx->cctxPool;
mtctx->jobs[jobID].bufPool = mtctx->bufPool;
mtctx->jobs[jobID].seqPool = mtctx->seqPool;
mtctx->jobs[jobID].serial = &mtctx->serial;
mtctx->jobs[jobID].jobID = mtctx->nextJobID;
mtctx->jobs[jobID].firstJob = (mtctx->nextJobID==0);
mtctx->jobs[jobID].lastJob = endFrame;
mtctx->jobs[jobID].frameChecksumNeeded = mtctx->params.fParams.checksumFlag && endFrame && (mtctx->nextJobID>0);
mtctx->jobs[jobID].dstFlushed = 0;
/* Update the round buffer pos and clear the input buffer to be reset */
mtctx->roundBuff.pos += srcSize;
mtctx->inBuff.buffer = g_nullBuffer;
mtctx->inBuff.filled = 0;
/* Set the prefix */
if (!endFrame) {
size_t const newPrefixSize = MIN(srcSize, mtctx->targetPrefixSize);
mtctx->inBuff.prefix.start = src + srcSize - newPrefixSize;
mtctx->inBuff.prefix.size = newPrefixSize;
} else { /* endFrame==1 => no need for another input buffer */
mtctx->inBuff.prefix = kNullRange;
mtctx->frameEnded = endFrame;
if (mtctx->nextJobID == 0) {
/* single job exception : checksum is already calculated directly within worker thread */
mtctx->params.fParams.checksumFlag = 0;
} }
if ( (srcSize == 0)
&& (mtctx->nextJobID>0)/*single job must also write frame header*/ ) {
DEBUGLOG(5, "ZSTDMT_createCompressionJob: creating a last empty block to end frame");
assert(endOp == ZSTD_e_end); /* only possible case : need to end the frame with an empty last block */
ZSTDMT_writeLastEmptyBlock(mtctx->jobs + jobID);
mtctx->nextJobID++;
return 0;
}
}
DEBUGLOG(5, "ZSTDMT_createCompressionJob: posting job %u : %u bytes (end:%u, jobNb == %u (mod:%u))",
mtctx->nextJobID,
(U32)mtctx->jobs[jobID].src.size,
mtctx->jobs[jobID].lastJob,
mtctx->nextJobID,
jobID);
if (POOL_tryAdd(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[jobID])) {
mtctx->nextJobID++;
mtctx->jobReady = 0;
} else {
DEBUGLOG(5, "ZSTDMT_createCompressionJob: no worker available for job %u", mtctx->nextJobID);
mtctx->jobReady = 1;
}
return 0;
}
/*! ZSTDMT_flushProduced() :
* flush whatever data has been produced but not yet flushed in current job.
* move to next job if current one is fully flushed.
* `output` : `pos` will be updated with amount of data flushed .
* `blockToFlush` : if >0, the function will block and wait if there is no data available to flush .
* @return : amount of data remaining within internal buffer, 0 if no more, 1 if unknown but > 0, or an error code */
static size_t ZSTDMT_flushProduced(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, unsigned blockToFlush, ZSTD_EndDirective end)
{
unsigned const wJobID = mtctx->doneJobID & mtctx->jobIDMask;
DEBUGLOG(5, "ZSTDMT_flushProduced (blocking:%u , job %u <= %u)",
blockToFlush, mtctx->doneJobID, mtctx->nextJobID);
assert(output->size >= output->pos);
ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
if ( blockToFlush
&& (mtctx->doneJobID < mtctx->nextJobID) ) {
assert(mtctx->jobs[wJobID].dstFlushed <= mtctx->jobs[wJobID].cSize);
while (mtctx->jobs[wJobID].dstFlushed == mtctx->jobs[wJobID].cSize) { /* nothing to flush */
if (mtctx->jobs[wJobID].consumed == mtctx->jobs[wJobID].src.size) {
DEBUGLOG(5, "job %u is completely consumed (%u == %u) => don't wait for cond, there will be none",
mtctx->doneJobID, (U32)mtctx->jobs[wJobID].consumed, (U32)mtctx->jobs[wJobID].src.size);
break;
}
DEBUGLOG(5, "waiting for something to flush from job %u (currently flushed: %u bytes)",
mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
ZSTD_pthread_cond_wait(&mtctx->jobs[wJobID].job_cond, &mtctx->jobs[wJobID].job_mutex); /* block when nothing to flush but some to come */
} }
/* try to flush something */
{ size_t cSize = mtctx->jobs[wJobID].cSize; /* shared */
size_t const srcConsumed = mtctx->jobs[wJobID].consumed; /* shared */
size_t const srcSize = mtctx->jobs[wJobID].src.size; /* read-only, could be done after mutex lock, but no-declaration-after-statement */
ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
if (ZSTD_isError(cSize)) {
DEBUGLOG(5, "ZSTDMT_flushProduced: job %u : compression error detected : %s",
mtctx->doneJobID, ZSTD_getErrorName(cSize));
ZSTDMT_waitForAllJobsCompleted(mtctx);
ZSTDMT_releaseAllJobResources(mtctx);
return cSize;
}
/* add frame checksum if necessary (can only happen once) */
assert(srcConsumed <= srcSize);
if ( (srcConsumed == srcSize) /* job completed -> worker no longer active */
&& mtctx->jobs[wJobID].frameChecksumNeeded ) {
U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState);
DEBUGLOG(4, "ZSTDMT_flushProduced: writing checksum : %08X \n", checksum);
MEM_writeLE32((char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].cSize, checksum);
cSize += 4;
mtctx->jobs[wJobID].cSize += 4; /* can write this shared value, as worker is no longer active */
mtctx->jobs[wJobID].frameChecksumNeeded = 0;
}
if (cSize > 0) { /* compression is ongoing or completed */
size_t const toFlush = MIN(cSize - mtctx->jobs[wJobID].dstFlushed, output->size - output->pos);
DEBUGLOG(5, "ZSTDMT_flushProduced: Flushing %u bytes from job %u (completion:%u/%u, generated:%u)",
(U32)toFlush, mtctx->doneJobID, (U32)srcConsumed, (U32)srcSize, (U32)cSize);
assert(mtctx->doneJobID < mtctx->nextJobID);
assert(cSize >= mtctx->jobs[wJobID].dstFlushed);
assert(mtctx->jobs[wJobID].dstBuff.start != NULL);
if (toFlush > 0) {
ZSTD_memcpy((char*)output->dst + output->pos,
(const char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].dstFlushed,
toFlush);
}
output->pos += toFlush;
mtctx->jobs[wJobID].dstFlushed += toFlush; /* can write : this value is only used by mtctx */
if ( (srcConsumed == srcSize) /* job is completed */
&& (mtctx->jobs[wJobID].dstFlushed == cSize) ) { /* output buffer fully flushed => free this job position */
DEBUGLOG(5, "Job %u completed (%u bytes), moving to next one",
mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[wJobID].dstBuff);
DEBUGLOG(5, "dstBuffer released");
mtctx->jobs[wJobID].dstBuff = g_nullBuffer;
mtctx->jobs[wJobID].cSize = 0; /* ensure this job slot is considered "not started" in future check */
mtctx->consumed += srcSize;
mtctx->produced += cSize;
mtctx->doneJobID++;
} }
/* return value : how many bytes left in buffer ; fake it to 1 when unknown but >0 */
if (cSize > mtctx->jobs[wJobID].dstFlushed) return (cSize - mtctx->jobs[wJobID].dstFlushed);
if (srcSize > srcConsumed) return 1; /* current job not completely compressed */
}
if (mtctx->doneJobID < mtctx->nextJobID) return 1; /* some more jobs ongoing */
if (mtctx->jobReady) return 1; /* one job is ready to push, just not yet in the list */
if (mtctx->inBuff.filled > 0) return 1; /* input is not empty, and still needs to be converted into a job */
mtctx->allJobsCompleted = mtctx->frameEnded; /* all jobs are entirely flushed => if this one is last one, frame is completed */
if (end == ZSTD_e_end) return !mtctx->frameEnded; /* for ZSTD_e_end, question becomes : is frame completed ? instead of : are internal buffers fully flushed ? */
return 0; /* internal buffers fully flushed */
}
/**
* Returns the range of data used by the earliest job that is not yet complete.
* If the data of the first job is broken up into two segments, we cover both
* sections.
*/
static range_t ZSTDMT_getInputDataInUse(ZSTDMT_CCtx* mtctx)
{
unsigned const firstJobID = mtctx->doneJobID;
unsigned const lastJobID = mtctx->nextJobID;
unsigned jobID;
for (jobID = firstJobID; jobID < lastJobID; ++jobID) {
unsigned const wJobID = jobID & mtctx->jobIDMask;
size_t consumed;
ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
consumed = mtctx->jobs[wJobID].consumed;
ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
if (consumed < mtctx->jobs[wJobID].src.size) {
range_t range = mtctx->jobs[wJobID].prefix;
if (range.size == 0) {
/* Empty prefix */
range = mtctx->jobs[wJobID].src;
}
/* Job source in multiple segments not supported yet */
assert(range.start <= mtctx->jobs[wJobID].src.start);
return range;
}
}
return kNullRange;
}
/**
* Returns non-zero iff buffer and range overlap.
*/
static int ZSTDMT_isOverlapped(buffer_t buffer, range_t range)
{
BYTE const* const bufferStart = (BYTE const*)buffer.start;
- BYTE const* const bufferEnd = bufferStart + buffer.capacity;
BYTE const* const rangeStart = (BYTE const*)range.start;
- BYTE const* const rangeEnd = range.size != 0 ? rangeStart + range.size : rangeStart;
if (rangeStart == NULL || bufferStart == NULL)
return 0;
- /* Empty ranges cannot overlap */
- if (bufferStart == bufferEnd || rangeStart == rangeEnd)
- return 0;
- return bufferStart < rangeEnd && rangeStart < bufferEnd;
+ {
+ BYTE const* const bufferEnd = bufferStart + buffer.capacity;
+ BYTE const* const rangeEnd = rangeStart + range.size;
+
+ /* Empty ranges cannot overlap */
+ if (bufferStart == bufferEnd || rangeStart == rangeEnd)
+ return 0;
+
+ return bufferStart < rangeEnd && rangeStart < bufferEnd;
+ }
}
static int ZSTDMT_doesOverlapWindow(buffer_t buffer, ZSTD_window_t window)
{
range_t extDict;
range_t prefix;
DEBUGLOG(5, "ZSTDMT_doesOverlapWindow");
extDict.start = window.dictBase + window.lowLimit;
extDict.size = window.dictLimit - window.lowLimit;
prefix.start = window.base + window.dictLimit;
prefix.size = window.nextSrc - (window.base + window.dictLimit);
DEBUGLOG(5, "extDict [0x%zx, 0x%zx)",
(size_t)extDict.start,
(size_t)extDict.start + extDict.size);
DEBUGLOG(5, "prefix [0x%zx, 0x%zx)",
(size_t)prefix.start,
(size_t)prefix.start + prefix.size);
return ZSTDMT_isOverlapped(buffer, extDict)
|| ZSTDMT_isOverlapped(buffer, prefix);
}
static void ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx* mtctx, buffer_t buffer)
{
- if (mtctx->params.ldmParams.enableLdm) {
+ if (mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable) {
ZSTD_pthread_mutex_t* mutex = &mtctx->serial.ldmWindowMutex;
DEBUGLOG(5, "ZSTDMT_waitForLdmComplete");
DEBUGLOG(5, "source [0x%zx, 0x%zx)",
(size_t)buffer.start,
(size_t)buffer.start + buffer.capacity);
ZSTD_PTHREAD_MUTEX_LOCK(mutex);
while (ZSTDMT_doesOverlapWindow(buffer, mtctx->serial.ldmWindow)) {
DEBUGLOG(5, "Waiting for LDM to finish...");
ZSTD_pthread_cond_wait(&mtctx->serial.ldmWindowCond, mutex);
}
DEBUGLOG(6, "Done waiting for LDM to finish");
ZSTD_pthread_mutex_unlock(mutex);
}
}
/**
* Attempts to set the inBuff to the next section to fill.
* If any part of the new section is still in use we give up.
* Returns non-zero if the buffer is filled.
*/
static int ZSTDMT_tryGetInputRange(ZSTDMT_CCtx* mtctx)
{
range_t const inUse = ZSTDMT_getInputDataInUse(mtctx);
size_t const spaceLeft = mtctx->roundBuff.capacity - mtctx->roundBuff.pos;
size_t const target = mtctx->targetSectionSize;
buffer_t buffer;
DEBUGLOG(5, "ZSTDMT_tryGetInputRange");
assert(mtctx->inBuff.buffer.start == NULL);
assert(mtctx->roundBuff.capacity >= target);
if (spaceLeft < target) {
/* ZSTD_invalidateRepCodes() doesn't work for extDict variants.
* Simply copy the prefix to the beginning in that case.
*/
BYTE* const start = (BYTE*)mtctx->roundBuff.buffer;
size_t const prefixSize = mtctx->inBuff.prefix.size;
buffer.start = start;
buffer.capacity = prefixSize;
if (ZSTDMT_isOverlapped(buffer, inUse)) {
DEBUGLOG(5, "Waiting for buffer...");
return 0;
}
ZSTDMT_waitForLdmComplete(mtctx, buffer);
ZSTD_memmove(start, mtctx->inBuff.prefix.start, prefixSize);
mtctx->inBuff.prefix.start = start;
mtctx->roundBuff.pos = prefixSize;
}
buffer.start = mtctx->roundBuff.buffer + mtctx->roundBuff.pos;
buffer.capacity = target;
if (ZSTDMT_isOverlapped(buffer, inUse)) {
DEBUGLOG(5, "Waiting for buffer...");
return 0;
}
assert(!ZSTDMT_isOverlapped(buffer, mtctx->inBuff.prefix));
ZSTDMT_waitForLdmComplete(mtctx, buffer);
DEBUGLOG(5, "Using prefix range [%zx, %zx)",
(size_t)mtctx->inBuff.prefix.start,
(size_t)mtctx->inBuff.prefix.start + mtctx->inBuff.prefix.size);
DEBUGLOG(5, "Using source range [%zx, %zx)",
(size_t)buffer.start,
(size_t)buffer.start + buffer.capacity);
mtctx->inBuff.buffer = buffer;
mtctx->inBuff.filled = 0;
assert(mtctx->roundBuff.pos + buffer.capacity <= mtctx->roundBuff.capacity);
return 1;
}
typedef struct {
size_t toLoad; /* The number of bytes to load from the input. */
int flush; /* Boolean declaring if we must flush because we found a synchronization point. */
} syncPoint_t;
/**
* Searches through the input for a synchronization point. If one is found, we
* will instruct the caller to flush, and return the number of bytes to load.
* Otherwise, we will load as many bytes as possible and instruct the caller
* to continue as normal.
*/
static syncPoint_t
findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input)
{
BYTE const* const istart = (BYTE const*)input.src + input.pos;
U64 const primePower = mtctx->rsync.primePower;
U64 const hitMask = mtctx->rsync.hitMask;
syncPoint_t syncPoint;
U64 hash;
BYTE const* prev;
size_t pos;
syncPoint.toLoad = MIN(input.size - input.pos, mtctx->targetSectionSize - mtctx->inBuff.filled);
syncPoint.flush = 0;
if (!mtctx->params.rsyncable)
/* Rsync is disabled. */
return syncPoint;
+ if (mtctx->inBuff.filled + input.size - input.pos < RSYNC_MIN_BLOCK_SIZE)
+ /* We don't emit synchronization points if it would produce too small blocks.
+ * We don't have enough input to find a synchronization point, so don't look.
+ */
+ return syncPoint;
if (mtctx->inBuff.filled + syncPoint.toLoad < RSYNC_LENGTH)
/* Not enough to compute the hash.
* We will miss any synchronization points in this RSYNC_LENGTH byte
* window. However, since it depends only in the internal buffers, if the
* state is already synchronized, we will remain synchronized.
* Additionally, the probability that we miss a synchronization point is
* low: RSYNC_LENGTH / targetSectionSize.
*/
return syncPoint;
/* Initialize the loop variables. */
- if (mtctx->inBuff.filled >= RSYNC_LENGTH) {
- /* We have enough bytes buffered to initialize the hash.
+ if (mtctx->inBuff.filled < RSYNC_MIN_BLOCK_SIZE) {
+ /* We don't need to scan the first RSYNC_MIN_BLOCK_SIZE positions
+ * because they can't possibly be a sync point. So we can start
+ * part way through the input buffer.
+ */
+ pos = RSYNC_MIN_BLOCK_SIZE - mtctx->inBuff.filled;
+ if (pos >= RSYNC_LENGTH) {
+ prev = istart + pos - RSYNC_LENGTH;
+ hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
+ } else {
+ assert(mtctx->inBuff.filled >= RSYNC_LENGTH);
+ prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
+ hash = ZSTD_rollingHash_compute(prev + pos, (RSYNC_LENGTH - pos));
+ hash = ZSTD_rollingHash_append(hash, istart, pos);
+ }
+ } else {
+ /* We have enough bytes buffered to initialize the hash,
+ * and are have processed enough bytes to find a sync point.
* Start scanning at the beginning of the input.
*/
+ assert(mtctx->inBuff.filled >= RSYNC_MIN_BLOCK_SIZE);
+ assert(RSYNC_MIN_BLOCK_SIZE >= RSYNC_LENGTH);
pos = 0;
prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
if ((hash & hitMask) == hitMask) {
/* We're already at a sync point so don't load any more until
* we're able to flush this sync point.
* This likely happened because the job table was full so we
* couldn't add our job.
*/
syncPoint.toLoad = 0;
syncPoint.flush = 1;
return syncPoint;
}
- } else {
- /* We don't have enough bytes buffered to initialize the hash, but
- * we know we have at least RSYNC_LENGTH bytes total.
- * Start scanning after the first RSYNC_LENGTH bytes less the bytes
- * already buffered.
- */
- pos = RSYNC_LENGTH - mtctx->inBuff.filled;
- prev = (BYTE const*)mtctx->inBuff.buffer.start - pos;
- hash = ZSTD_rollingHash_compute(mtctx->inBuff.buffer.start, mtctx->inBuff.filled);
- hash = ZSTD_rollingHash_append(hash, istart, pos);
}
/* Starting with the hash of the previous RSYNC_LENGTH bytes, roll
* through the input. If we hit a synchronization point, then cut the
* job off, and tell the compressor to flush the job. Otherwise, load
* all the bytes and continue as normal.
* If we go too long without a synchronization point (targetSectionSize)
* then a block will be emitted anyways, but this is okay, since if we
* are already synchronized we will remain synchronized.
*/
for (; pos < syncPoint.toLoad; ++pos) {
BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH];
- /* if (pos >= RSYNC_LENGTH) assert(ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash); */
+ assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash);
hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower);
+ assert(mtctx->inBuff.filled + pos >= RSYNC_MIN_BLOCK_SIZE);
if ((hash & hitMask) == hitMask) {
syncPoint.toLoad = pos + 1;
syncPoint.flush = 1;
break;
}
}
return syncPoint;
}
size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx)
{
size_t hintInSize = mtctx->targetSectionSize - mtctx->inBuff.filled;
if (hintInSize==0) hintInSize = mtctx->targetSectionSize;
return hintInSize;
}
/** ZSTDMT_compressStream_generic() :
* internal use only - exposed to be invoked from zstd_compress.c
* assumption : output and input are valid (pos <= size)
* @return : minimum amount of data remaining to flush, 0 if none */
size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
ZSTD_outBuffer* output,
ZSTD_inBuffer* input,
ZSTD_EndDirective endOp)
{
unsigned forwardInputProgress = 0;
DEBUGLOG(5, "ZSTDMT_compressStream_generic (endOp=%u, srcSize=%u)",
(U32)endOp, (U32)(input->size - input->pos));
assert(output->pos <= output->size);
assert(input->pos <= input->size);
if ((mtctx->frameEnded) && (endOp==ZSTD_e_continue)) {
/* current frame being ended. Only flush/end are allowed */
return ERROR(stage_wrong);
}
/* fill input buffer */
if ( (!mtctx->jobReady)
&& (input->size > input->pos) ) { /* support NULL input */
if (mtctx->inBuff.buffer.start == NULL) {
assert(mtctx->inBuff.filled == 0); /* Can't fill an empty buffer */
if (!ZSTDMT_tryGetInputRange(mtctx)) {
/* It is only possible for this operation to fail if there are
* still compression jobs ongoing.
*/
DEBUGLOG(5, "ZSTDMT_tryGetInputRange failed");
assert(mtctx->doneJobID != mtctx->nextJobID);
} else
DEBUGLOG(5, "ZSTDMT_tryGetInputRange completed successfully : mtctx->inBuff.buffer.start = %p", mtctx->inBuff.buffer.start);
}
if (mtctx->inBuff.buffer.start != NULL) {
syncPoint_t const syncPoint = findSynchronizationPoint(mtctx, *input);
if (syncPoint.flush && endOp == ZSTD_e_continue) {
endOp = ZSTD_e_flush;
}
assert(mtctx->inBuff.buffer.capacity >= mtctx->targetSectionSize);
DEBUGLOG(5, "ZSTDMT_compressStream_generic: adding %u bytes on top of %u to buffer of size %u",
(U32)syncPoint.toLoad, (U32)mtctx->inBuff.filled, (U32)mtctx->targetSectionSize);
ZSTD_memcpy((char*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled, (const char*)input->src + input->pos, syncPoint.toLoad);
input->pos += syncPoint.toLoad;
mtctx->inBuff.filled += syncPoint.toLoad;
forwardInputProgress = syncPoint.toLoad>0;
}
}
if ((input->pos < input->size) && (endOp == ZSTD_e_end)) {
/* Can't end yet because the input is not fully consumed.
* We are in one of these cases:
* - mtctx->inBuff is NULL & empty: we couldn't get an input buffer so don't create a new job.
* - We filled the input buffer: flush this job but don't end the frame.
* - We hit a synchronization point: flush this job but don't end the frame.
*/
assert(mtctx->inBuff.filled == 0 || mtctx->inBuff.filled == mtctx->targetSectionSize || mtctx->params.rsyncable);
endOp = ZSTD_e_flush;
}
if ( (mtctx->jobReady)
|| (mtctx->inBuff.filled >= mtctx->targetSectionSize) /* filled enough : let's compress */
|| ((endOp != ZSTD_e_continue) && (mtctx->inBuff.filled > 0)) /* something to flush : let's go */
|| ((endOp == ZSTD_e_end) && (!mtctx->frameEnded)) ) { /* must finish the frame with a zero-size block */
size_t const jobSize = mtctx->inBuff.filled;
assert(mtctx->inBuff.filled <= mtctx->targetSectionSize);
FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, jobSize, endOp) , "");
}
/* check for potential compressed data ready to be flushed */
{ size_t const remainingToFlush = ZSTDMT_flushProduced(mtctx, output, !forwardInputProgress, endOp); /* block if there was no forward input progress */
if (input->pos < input->size) return MAX(remainingToFlush, 1); /* input not consumed : do not end flush yet */
DEBUGLOG(5, "end of ZSTDMT_compressStream_generic: remainingToFlush = %u", (U32)remainingToFlush);
return remainingToFlush;
}
}
diff --git a/sys/contrib/zstd/lib/compress/zstdmt_compress.h b/sys/contrib/zstd/lib/compress/zstdmt_compress.h
index 0a9e551c99b6..271eb1ac71f5 100644
--- a/sys/contrib/zstd/lib/compress/zstdmt_compress.h
+++ b/sys/contrib/zstd/lib/compress/zstdmt_compress.h
@@ -1,110 +1,113 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTDMT_COMPRESS_H
#define ZSTDMT_COMPRESS_H
#if defined (__cplusplus)
extern "C" {
#endif
/* Note : This is an internal API.
* These APIs used to be exposed with ZSTDLIB_API,
* because it used to be the only way to invoke MT compression.
* Now, you must use ZSTD_compress2 and ZSTD_compressStream2() instead.
*
* This API requires ZSTD_MULTITHREAD to be defined during compilation,
* otherwise ZSTDMT_createCCtx*() will fail.
*/
/* === Dependencies === */
#include "../common/zstd_deps.h" /* size_t */
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_parameters */
#include "../zstd.h" /* ZSTD_inBuffer, ZSTD_outBuffer, ZSTDLIB_API */
/* === Constants === */
-#ifndef ZSTDMT_NBWORKERS_MAX
-# define ZSTDMT_NBWORKERS_MAX 200
+#ifndef ZSTDMT_NBWORKERS_MAX /* a different value can be selected at compile time */
+# define ZSTDMT_NBWORKERS_MAX ((sizeof(void*)==4) /*32-bit*/ ? 64 : 256)
#endif
-#ifndef ZSTDMT_JOBSIZE_MIN
-# define ZSTDMT_JOBSIZE_MIN (1 MB)
+#ifndef ZSTDMT_JOBSIZE_MIN /* a different value can be selected at compile time */
+# define ZSTDMT_JOBSIZE_MIN (512 KB)
#endif
#define ZSTDMT_JOBLOG_MAX (MEM_32bits() ? 29 : 30)
#define ZSTDMT_JOBSIZE_MAX (MEM_32bits() ? (512 MB) : (1024 MB))
/* ========================================================
* === Private interface, for use by ZSTD_compress.c ===
* === Not exposed in libzstd. Never invoke directly ===
* ======================================================== */
/* === Memory management === */
typedef struct ZSTDMT_CCtx_s ZSTDMT_CCtx;
/* Requires ZSTD_MULTITHREAD to be defined during compilation, otherwise it will return NULL. */
ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers,
ZSTD_customMem cMem,
ZSTD_threadPool *pool);
size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx);
size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx);
/* === Streaming functions === */
size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx);
/*! ZSTDMT_initCStream_internal() :
* Private use only. Init streaming operation.
* expects params to be valid.
* must receive dict, or cdict, or none, but not both.
+ * mtctx can be freshly constructed or reused from a prior compression.
+ * If mtctx is reused, memory allocations from the prior compression may not be freed,
+ * even if they are not needed for the current compression.
* @return : 0, or an error code */
-size_t ZSTDMT_initCStream_internal(ZSTDMT_CCtx* zcs,
+size_t ZSTDMT_initCStream_internal(ZSTDMT_CCtx* mtctx,
const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType,
const ZSTD_CDict* cdict,
ZSTD_CCtx_params params, unsigned long long pledgedSrcSize);
/*! ZSTDMT_compressStream_generic() :
* Combines ZSTDMT_compressStream() with optional ZSTDMT_flushStream() or ZSTDMT_endStream()
* depending on flush directive.
* @return : minimum amount of data still to be flushed
* 0 if fully flushed
* or an error code
* note : needs to be init using any ZSTD_initCStream*() variant */
size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
ZSTD_outBuffer* output,
ZSTD_inBuffer* input,
ZSTD_EndDirective endOp);
/*! ZSTDMT_toFlushNow()
* Tell how many bytes are ready to be flushed immediately.
* Probe the oldest active job (not yet entirely flushed) and check its output buffer.
* If return 0, it means there is no active job,
* or, it means oldest job is still active, but everything produced has been flushed so far,
* therefore flushing is limited by speed of oldest job. */
size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx);
/*! ZSTDMT_updateCParams_whileCompressing() :
* Updates only a selected set of compression parameters, to remain compatible with current frame.
* New parameters will be applied to next compression job. */
void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams);
/*! ZSTDMT_getFrameProgression():
* tells how much data has been consumed (input) and produced (output) for current frame.
* able to count progression inside worker threads.
*/
ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx);
#if defined (__cplusplus)
}
#endif
#endif /* ZSTDMT_COMPRESS_H */
diff --git a/sys/contrib/zstd/lib/decompress/huf_decompress.c b/sys/contrib/zstd/lib/decompress/huf_decompress.c
index 141820671852..2027188255e1 100644
--- a/sys/contrib/zstd/lib/decompress/huf_decompress.c
+++ b/sys/contrib/zstd/lib/decompress/huf_decompress.c
@@ -1,1350 +1,1889 @@
/* ******************************************************************
* huff0 huffman decoder,
* part of Finite State Entropy library
- * Copyright (c) 2013-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
*
* You can contact the author at :
* - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/* **************************************************************
* Dependencies
****************************************************************/
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */
#include "../common/compiler.h"
#include "../common/bitstream.h" /* BIT_* */
#include "../common/fse.h" /* to compress headers */
#define HUF_STATIC_LINKING_ONLY
#include "../common/huf.h"
#include "../common/error_private.h"
+#include "../common/zstd_internal.h"
+
+/* **************************************************************
+* Constants
+****************************************************************/
+
+#define HUF_DECODER_FAST_TABLELOG 11
/* **************************************************************
* Macros
****************************************************************/
/* These two optional macros force the use one way or another of the two
* Huffman decompression implementations. You can't force in both directions
* at the same time.
*/
#if defined(HUF_FORCE_DECOMPRESS_X1) && \
defined(HUF_FORCE_DECOMPRESS_X2)
#error "Cannot force the use of the X1 and X2 decoders at the same time!"
#endif
+#if ZSTD_ENABLE_ASM_X86_64_BMI2 && DYNAMIC_BMI2
+# define HUF_ASM_X86_64_BMI2_ATTRS BMI2_TARGET_ATTRIBUTE
+#else
+# define HUF_ASM_X86_64_BMI2_ATTRS
+#endif
+
+#ifdef __cplusplus
+# define HUF_EXTERN_C extern "C"
+#else
+# define HUF_EXTERN_C
+#endif
+#define HUF_ASM_DECL HUF_EXTERN_C
+
+#if DYNAMIC_BMI2 || (ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__))
+# define HUF_NEED_BMI2_FUNCTION 1
+#else
+# define HUF_NEED_BMI2_FUNCTION 0
+#endif
+
+#if !(ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__))
+# define HUF_NEED_DEFAULT_FUNCTION 1
+#else
+# define HUF_NEED_DEFAULT_FUNCTION 0
+#endif
/* **************************************************************
* Error Management
****************************************************************/
#define HUF_isError ERR_isError
/* **************************************************************
* Byte alignment for workSpace management
****************************************************************/
#define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1)
#define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask))
/* **************************************************************
* BMI2 Variant Wrappers
****************************************************************/
#if DYNAMIC_BMI2
#define HUF_DGEN(fn) \
\
static size_t fn##_default( \
void* dst, size_t dstSize, \
const void* cSrc, size_t cSrcSize, \
const HUF_DTable* DTable) \
{ \
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
} \
\
- static TARGET_ATTRIBUTE("bmi2") size_t fn##_bmi2( \
+ static BMI2_TARGET_ATTRIBUTE size_t fn##_bmi2( \
void* dst, size_t dstSize, \
const void* cSrc, size_t cSrcSize, \
const HUF_DTable* DTable) \
{ \
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
} \
\
static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
size_t cSrcSize, HUF_DTable const* DTable, int bmi2) \
{ \
if (bmi2) { \
return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \
} \
return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \
}
#else
#define HUF_DGEN(fn) \
static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
size_t cSrcSize, HUF_DTable const* DTable, int bmi2) \
{ \
(void)bmi2; \
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
}
#endif
/*-***************************/
/* generic DTableDesc */
/*-***************************/
typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;
static DTableDesc HUF_getDTableDesc(const HUF_DTable* table)
{
DTableDesc dtd;
ZSTD_memcpy(&dtd, table, sizeof(dtd));
return dtd;
}
+#if ZSTD_ENABLE_ASM_X86_64_BMI2
+
+static size_t HUF_initDStream(BYTE const* ip) {
+ BYTE const lastByte = ip[7];
+ size_t const bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0;
+ size_t const value = MEM_readLEST(ip) | 1;
+ assert(bitsConsumed <= 8);
+ return value << bitsConsumed;
+}
+typedef struct {
+ BYTE const* ip[4];
+ BYTE* op[4];
+ U64 bits[4];
+ void const* dt;
+ BYTE const* ilimit;
+ BYTE* oend;
+ BYTE const* iend[4];
+} HUF_DecompressAsmArgs;
+
+/**
+ * Initializes args for the asm decoding loop.
+ * @returns 0 on success
+ * 1 if the fallback implementation should be used.
+ * Or an error code on failure.
+ */
+static size_t HUF_DecompressAsmArgs_init(HUF_DecompressAsmArgs* args, void* dst, size_t dstSize, void const* src, size_t srcSize, const HUF_DTable* DTable)
+{
+ void const* dt = DTable + 1;
+ U32 const dtLog = HUF_getDTableDesc(DTable).tableLog;
+
+ const BYTE* const ilimit = (const BYTE*)src + 6 + 8;
+
+ BYTE* const oend = (BYTE*)dst + dstSize;
+
+ /* The following condition is false on x32 platform,
+ * but HUF_asm is not compatible with this ABI */
+ if (!(MEM_isLittleEndian() && !MEM_32bits())) return 1;
+
+ /* strict minimum : jump table + 1 byte per stream */
+ if (srcSize < 10)
+ return ERROR(corruption_detected);
+
+ /* Must have at least 8 bytes per stream because we don't handle initializing smaller bit containers.
+ * If table log is not correct at this point, fallback to the old decoder.
+ * On small inputs we don't have enough data to trigger the fast loop, so use the old decoder.
+ */
+ if (dtLog != HUF_DECODER_FAST_TABLELOG)
+ return 1;
+
+ /* Read the jump table. */
+ {
+ const BYTE* const istart = (const BYTE*)src;
+ size_t const length1 = MEM_readLE16(istart);
+ size_t const length2 = MEM_readLE16(istart+2);
+ size_t const length3 = MEM_readLE16(istart+4);
+ size_t const length4 = srcSize - (length1 + length2 + length3 + 6);
+ args->iend[0] = istart + 6; /* jumpTable */
+ args->iend[1] = args->iend[0] + length1;
+ args->iend[2] = args->iend[1] + length2;
+ args->iend[3] = args->iend[2] + length3;
+
+ /* HUF_initDStream() requires this, and this small of an input
+ * won't benefit from the ASM loop anyways.
+ * length1 must be >= 16 so that ip[0] >= ilimit before the loop
+ * starts.
+ */
+ if (length1 < 16 || length2 < 8 || length3 < 8 || length4 < 8)
+ return 1;
+ if (length4 > srcSize) return ERROR(corruption_detected); /* overflow */
+ }
+ /* ip[] contains the position that is currently loaded into bits[]. */
+ args->ip[0] = args->iend[1] - sizeof(U64);
+ args->ip[1] = args->iend[2] - sizeof(U64);
+ args->ip[2] = args->iend[3] - sizeof(U64);
+ args->ip[3] = (BYTE const*)src + srcSize - sizeof(U64);
+
+ /* op[] contains the output pointers. */
+ args->op[0] = (BYTE*)dst;
+ args->op[1] = args->op[0] + (dstSize+3)/4;
+ args->op[2] = args->op[1] + (dstSize+3)/4;
+ args->op[3] = args->op[2] + (dstSize+3)/4;
+
+ /* No point to call the ASM loop for tiny outputs. */
+ if (args->op[3] >= oend)
+ return 1;
+
+ /* bits[] is the bit container.
+ * It is read from the MSB down to the LSB.
+ * It is shifted left as it is read, and zeros are
+ * shifted in. After the lowest valid bit a 1 is
+ * set, so that CountTrailingZeros(bits[]) can be used
+ * to count how many bits we've consumed.
+ */
+ args->bits[0] = HUF_initDStream(args->ip[0]);
+ args->bits[1] = HUF_initDStream(args->ip[1]);
+ args->bits[2] = HUF_initDStream(args->ip[2]);
+ args->bits[3] = HUF_initDStream(args->ip[3]);
+
+ /* If ip[] >= ilimit, it is guaranteed to be safe to
+ * reload bits[]. It may be beyond its section, but is
+ * guaranteed to be valid (>= istart).
+ */
+ args->ilimit = ilimit;
+
+ args->oend = oend;
+ args->dt = dt;
+
+ return 0;
+}
+
+static size_t HUF_initRemainingDStream(BIT_DStream_t* bit, HUF_DecompressAsmArgs const* args, int stream, BYTE* segmentEnd)
+{
+ /* Validate that we haven't overwritten. */
+ if (args->op[stream] > segmentEnd)
+ return ERROR(corruption_detected);
+ /* Validate that we haven't read beyond iend[].
+ * Note that ip[] may be < iend[] because the MSB is
+ * the next bit to read, and we may have consumed 100%
+ * of the stream, so down to iend[i] - 8 is valid.
+ */
+ if (args->ip[stream] < args->iend[stream] - 8)
+ return ERROR(corruption_detected);
+
+ /* Construct the BIT_DStream_t. */
+ bit->bitContainer = MEM_readLE64(args->ip[stream]);
+ bit->bitsConsumed = ZSTD_countTrailingZeros((size_t)args->bits[stream]);
+ bit->start = (const char*)args->iend[0];
+ bit->limitPtr = bit->start + sizeof(size_t);
+ bit->ptr = (const char*)args->ip[stream];
+
+ return 0;
+}
+#endif
+
#ifndef HUF_FORCE_DECOMPRESS_X2
/*-***************************/
/* single-symbol decoding */
/*-***************************/
-typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX1; /* single-symbol decoding */
+typedef struct { BYTE nbBits; BYTE byte; } HUF_DEltX1; /* single-symbol decoding */
/**
* Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at
* a time.
*/
static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) {
U64 D4;
if (MEM_isLittleEndian()) {
- D4 = symbol + (nbBits << 8);
- } else {
D4 = (symbol << 8) + nbBits;
+ } else {
+ D4 = symbol + (nbBits << 8);
}
D4 *= 0x0001000100010001ULL;
return D4;
}
+/**
+ * Increase the tableLog to targetTableLog and rescales the stats.
+ * If tableLog > targetTableLog this is a no-op.
+ * @returns New tableLog
+ */
+static U32 HUF_rescaleStats(BYTE* huffWeight, U32* rankVal, U32 nbSymbols, U32 tableLog, U32 targetTableLog)
+{
+ if (tableLog > targetTableLog)
+ return tableLog;
+ if (tableLog < targetTableLog) {
+ U32 const scale = targetTableLog - tableLog;
+ U32 s;
+ /* Increase the weight for all non-zero probability symbols by scale. */
+ for (s = 0; s < nbSymbols; ++s) {
+ huffWeight[s] += (BYTE)((huffWeight[s] == 0) ? 0 : scale);
+ }
+ /* Update rankVal to reflect the new weights.
+ * All weights except 0 get moved to weight + scale.
+ * Weights [1, scale] are empty.
+ */
+ for (s = targetTableLog; s > scale; --s) {
+ rankVal[s] = rankVal[s - scale];
+ }
+ for (s = scale; s > 0; --s) {
+ rankVal[s] = 0;
+ }
+ }
+ return targetTableLog;
+}
+
typedef struct {
U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];
U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1];
U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
BYTE symbols[HUF_SYMBOLVALUE_MAX + 1];
BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];
} HUF_ReadDTableX1_Workspace;
size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize)
{
return HUF_readDTableX1_wksp_bmi2(DTable, src, srcSize, workSpace, wkspSize, /* bmi2 */ 0);
}
size_t HUF_readDTableX1_wksp_bmi2(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int bmi2)
{
U32 tableLog = 0;
U32 nbSymbols = 0;
size_t iSize;
void* const dtPtr = DTable + 1;
HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr;
HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace;
DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp));
if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge);
DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
/* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */
iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), bmi2);
if (HUF_isError(iSize)) return iSize;
+
/* Table header */
{ DTableDesc dtd = HUF_getDTableDesc(DTable);
+ U32 const maxTableLog = dtd.maxTableLog + 1;
+ U32 const targetTableLog = MIN(maxTableLog, HUF_DECODER_FAST_TABLELOG);
+ tableLog = HUF_rescaleStats(wksp->huffWeight, wksp->rankVal, nbSymbols, tableLog, targetTableLog);
if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */
dtd.tableType = 0;
dtd.tableLog = (BYTE)tableLog;
ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
}
/* Compute symbols and rankStart given rankVal:
*
* rankVal already contains the number of values of each weight.
*
* symbols contains the symbols ordered by weight. First are the rankVal[0]
* weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on.
* symbols[0] is filled (but unused) to avoid a branch.
*
* rankStart contains the offset where each rank belongs in the DTable.
* rankStart[0] is not filled because there are no entries in the table for
* weight 0.
*/
{
int n;
int nextRankStart = 0;
int const unroll = 4;
int const nLimit = (int)nbSymbols - unroll + 1;
for (n=0; n<(int)tableLog+1; n++) {
U32 const curr = nextRankStart;
nextRankStart += wksp->rankVal[n];
wksp->rankStart[n] = curr;
}
for (n=0; n < nLimit; n += unroll) {
int u;
for (u=0; u < unroll; ++u) {
size_t const w = wksp->huffWeight[n+u];
wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u);
}
}
for (; n < (int)nbSymbols; ++n) {
size_t const w = wksp->huffWeight[n];
wksp->symbols[wksp->rankStart[w]++] = (BYTE)n;
}
}
/* fill DTable
* We fill all entries of each weight in order.
- * That way length is a constant for each iteration of the outter loop.
+ * That way length is a constant for each iteration of the outer loop.
* We can switch based on the length to a different inner loop which is
* optimized for that particular case.
*/
{
U32 w;
int symbol=wksp->rankVal[0];
int rankStart=0;
for (w=1; w<tableLog+1; ++w) {
int const symbolCount = wksp->rankVal[w];
int const length = (1 << w) >> 1;
int uStart = rankStart;
BYTE const nbBits = (BYTE)(tableLog + 1 - w);
int s;
int u;
switch (length) {
case 1:
for (s=0; s<symbolCount; ++s) {
HUF_DEltX1 D;
D.byte = wksp->symbols[symbol + s];
D.nbBits = nbBits;
dt[uStart] = D;
uStart += 1;
}
break;
case 2:
for (s=0; s<symbolCount; ++s) {
HUF_DEltX1 D;
D.byte = wksp->symbols[symbol + s];
D.nbBits = nbBits;
dt[uStart+0] = D;
dt[uStart+1] = D;
uStart += 2;
}
break;
case 4:
for (s=0; s<symbolCount; ++s) {
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
MEM_write64(dt + uStart, D4);
uStart += 4;
}
break;
case 8:
for (s=0; s<symbolCount; ++s) {
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
MEM_write64(dt + uStart, D4);
MEM_write64(dt + uStart + 4, D4);
uStart += 8;
}
break;
default:
for (s=0; s<symbolCount; ++s) {
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
for (u=0; u < length; u += 16) {
MEM_write64(dt + uStart + u + 0, D4);
MEM_write64(dt + uStart + u + 4, D4);
MEM_write64(dt + uStart + u + 8, D4);
MEM_write64(dt + uStart + u + 12, D4);
}
assert(u == length);
uStart += length;
}
break;
}
symbol += symbolCount;
rankStart += symbolCount * length;
}
}
return iSize;
}
FORCE_INLINE_TEMPLATE BYTE
HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog)
{
size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
BYTE const c = dt[val].byte;
BIT_skipBits(Dstream, dt[val].nbBits);
return c;
}
#define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \
*ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
#define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
HINT_INLINE size_t
HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 4 symbols at a time */
- while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) {
- HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
- HUF_DECODE_SYMBOLX1_1(p, bitDPtr);
- HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
- HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
+ if ((pEnd - p) > 3) {
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) {
+ HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX1_1(p, bitDPtr);
+ HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
+ }
+ } else {
+ BIT_reloadDStream(bitDPtr);
}
/* [0-3] symbols remaining */
if (MEM_32bits())
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd))
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
/* no more data to retrieve from bitstream, no need to reload */
while (p < pEnd)
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
return pEnd-pStart;
}
FORCE_INLINE_TEMPLATE size_t
HUF_decompress1X1_usingDTable_internal_body(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
BYTE* op = (BYTE*)dst;
BYTE* const oend = op + dstSize;
const void* dtPtr = DTable + 1;
const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
BIT_DStream_t bitD;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
U32 const dtLog = dtd.tableLog;
CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog);
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
return dstSize;
}
FORCE_INLINE_TEMPLATE size_t
HUF_decompress4X1_usingDTable_internal_body(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
/* Check */
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{ const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
BYTE* const olimit = oend - 3;
const void* const dtPtr = DTable + 1;
const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
/* Init */
BIT_DStream_t bitD1;
BIT_DStream_t bitD2;
BIT_DStream_t bitD3;
BIT_DStream_t bitD4;
size_t const length1 = MEM_readLE16(istart);
size_t const length2 = MEM_readLE16(istart+2);
size_t const length3 = MEM_readLE16(istart+4);
size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
const size_t segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
U32 const dtLog = dtd.tableLog;
U32 endSignal = 1;
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
+ if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */
CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
/* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */
- for ( ; (endSignal) & (op4 < olimit) ; ) {
- HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
- HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
- HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
- HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
- HUF_DECODE_SYMBOLX1_1(op1, &bitD1);
- HUF_DECODE_SYMBOLX1_1(op2, &bitD2);
- HUF_DECODE_SYMBOLX1_1(op3, &bitD3);
- HUF_DECODE_SYMBOLX1_1(op4, &bitD4);
- HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
- HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
- HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
- HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
- HUF_DECODE_SYMBOLX1_0(op1, &bitD1);
- HUF_DECODE_SYMBOLX1_0(op2, &bitD2);
- HUF_DECODE_SYMBOLX1_0(op3, &bitD3);
- HUF_DECODE_SYMBOLX1_0(op4, &bitD4);
- endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
- endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
- endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
- endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
+ if ((size_t)(oend - op4) >= sizeof(size_t)) {
+ for ( ; (endSignal) & (op4 < olimit) ; ) {
+ HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX1_1(op1, &bitD1);
+ HUF_DECODE_SYMBOLX1_1(op2, &bitD2);
+ HUF_DECODE_SYMBOLX1_1(op3, &bitD3);
+ HUF_DECODE_SYMBOLX1_1(op4, &bitD4);
+ HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX1_0(op1, &bitD1);
+ HUF_DECODE_SYMBOLX1_0(op2, &bitD2);
+ HUF_DECODE_SYMBOLX1_0(op3, &bitD3);
+ HUF_DECODE_SYMBOLX1_0(op4, &bitD4);
+ endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
+ endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
+ endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
+ endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
+ }
}
/* check corruption */
/* note : should not be necessary : op# advance in lock step, and we control op4.
* but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 supposed already verified within main loop */
/* finish bitStreams one by one */
HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog);
HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog);
HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog);
HUF_decodeStreamX1(op4, &bitD4, oend, dt, dtLog);
/* check */
{ U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
if (!endCheck) return ERROR(corruption_detected); }
/* decoded size */
return dstSize;
}
}
+#if HUF_NEED_BMI2_FUNCTION
+static BMI2_TARGET_ATTRIBUTE
+size_t HUF_decompress4X1_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
+ size_t cSrcSize, HUF_DTable const* DTable) {
+ return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
+}
+#endif
+
+#if HUF_NEED_DEFAULT_FUNCTION
+static
+size_t HUF_decompress4X1_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
+ size_t cSrcSize, HUF_DTable const* DTable) {
+ return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
+}
+#endif
+
+#if ZSTD_ENABLE_ASM_X86_64_BMI2
+
+HUF_ASM_DECL void HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop(HUF_DecompressAsmArgs* args) ZSTDLIB_HIDDEN;
+
+static HUF_ASM_X86_64_BMI2_ATTRS
+size_t
+HUF_decompress4X1_usingDTable_internal_bmi2_asm(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUF_DTable* DTable)
+{
+ void const* dt = DTable + 1;
+ const BYTE* const iend = (const BYTE*)cSrc + 6;
+ BYTE* const oend = (BYTE*)dst + dstSize;
+ HUF_DecompressAsmArgs args;
+ {
+ size_t const ret = HUF_DecompressAsmArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
+ FORWARD_IF_ERROR(ret, "Failed to init asm args");
+ if (ret != 0)
+ return HUF_decompress4X1_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable);
+ }
+
+ assert(args.ip[0] >= args.ilimit);
+ HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop(&args);
+
+ /* Our loop guarantees that ip[] >= ilimit and that we haven't
+ * overwritten any op[].
+ */
+ assert(args.ip[0] >= iend);
+ assert(args.ip[1] >= iend);
+ assert(args.ip[2] >= iend);
+ assert(args.ip[3] >= iend);
+ assert(args.op[3] <= oend);
+ (void)iend;
+
+ /* finish bit streams one by one. */
+ {
+ size_t const segmentSize = (dstSize+3) / 4;
+ BYTE* segmentEnd = (BYTE*)dst;
+ int i;
+ for (i = 0; i < 4; ++i) {
+ BIT_DStream_t bit;
+ if (segmentSize <= (size_t)(oend - segmentEnd))
+ segmentEnd += segmentSize;
+ else
+ segmentEnd = oend;
+ FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
+ /* Decompress and validate that we've produced exactly the expected length. */
+ args.op[i] += HUF_decodeStreamX1(args.op[i], &bit, segmentEnd, (HUF_DEltX1 const*)dt, HUF_DECODER_FAST_TABLELOG);
+ if (args.op[i] != segmentEnd) return ERROR(corruption_detected);
+ }
+ }
+
+ /* decoded size */
+ return dstSize;
+}
+#endif /* ZSTD_ENABLE_ASM_X86_64_BMI2 */
typedef size_t (*HUF_decompress_usingDTable_t)(void *dst, size_t dstSize,
const void *cSrc,
size_t cSrcSize,
const HUF_DTable *DTable);
HUF_DGEN(HUF_decompress1X1_usingDTable_internal)
-HUF_DGEN(HUF_decompress4X1_usingDTable_internal)
+static size_t HUF_decompress4X1_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
+ size_t cSrcSize, HUF_DTable const* DTable, int bmi2)
+{
+#if DYNAMIC_BMI2
+ if (bmi2) {
+# if ZSTD_ENABLE_ASM_X86_64_BMI2
+ return HUF_decompress4X1_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable);
+# else
+ return HUF_decompress4X1_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable);
+# endif
+ }
+#else
+ (void)bmi2;
+#endif
+
+#if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
+ return HUF_decompress4X1_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable);
+#else
+ return HUF_decompress4X1_usingDTable_internal_default(dst, dstSize, cSrc, cSrcSize, DTable);
+#endif
+}
size_t HUF_decompress1X1_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc dtd = HUF_getDTableDesc(DTable);
if (dtd.tableType != 0) return ERROR(GENERIC);
return HUF_decompress1X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
}
size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t const hSize = HUF_readDTableX1_wksp(DCtx, cSrc, cSrcSize, workSpace, wkspSize);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0);
}
size_t HUF_decompress4X1_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc dtd = HUF_getDTableDesc(DTable);
if (dtd.tableType != 0) return ERROR(GENERIC);
return HUF_decompress4X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
}
static size_t HUF_decompress4X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize, int bmi2)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t const hSize = HUF_readDTableX1_wksp_bmi2(dctx, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
}
size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
{
return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, 0);
}
#endif /* HUF_FORCE_DECOMPRESS_X2 */
#ifndef HUF_FORCE_DECOMPRESS_X1
/* *************************/
/* double-symbols decoding */
/* *************************/
typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2; /* double-symbols decoding */
-typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
+typedef struct { BYTE symbol; } sortedSymbol_t;
typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1];
typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX];
+/**
+ * Constructs a HUF_DEltX2 in a U32.
+ */
+static U32 HUF_buildDEltX2U32(U32 symbol, U32 nbBits, U32 baseSeq, int level)
+{
+ U32 seq;
+ DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, sequence) == 0);
+ DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, nbBits) == 2);
+ DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, length) == 3);
+ DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U32));
+ if (MEM_isLittleEndian()) {
+ seq = level == 1 ? symbol : (baseSeq + (symbol << 8));
+ return seq + (nbBits << 16) + ((U32)level << 24);
+ } else {
+ seq = level == 1 ? (symbol << 8) : ((baseSeq << 8) + symbol);
+ return (seq << 16) + (nbBits << 8) + (U32)level;
+ }
+}
+
+/**
+ * Constructs a HUF_DEltX2.
+ */
+static HUF_DEltX2 HUF_buildDEltX2(U32 symbol, U32 nbBits, U32 baseSeq, int level)
+{
+ HUF_DEltX2 DElt;
+ U32 const val = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
+ DEBUG_STATIC_ASSERT(sizeof(DElt) == sizeof(val));
+ ZSTD_memcpy(&DElt, &val, sizeof(val));
+ return DElt;
+}
+
+/**
+ * Constructs 2 HUF_DEltX2s and packs them into a U64.
+ */
+static U64 HUF_buildDEltX2U64(U32 symbol, U32 nbBits, U16 baseSeq, int level)
+{
+ U32 DElt = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
+ return (U64)DElt + ((U64)DElt << 32);
+}
+
+/**
+ * Fills the DTable rank with all the symbols from [begin, end) that are each
+ * nbBits long.
+ *
+ * @param DTableRank The start of the rank in the DTable.
+ * @param begin The first symbol to fill (inclusive).
+ * @param end The last symbol to fill (exclusive).
+ * @param nbBits Each symbol is nbBits long.
+ * @param tableLog The table log.
+ * @param baseSeq If level == 1 { 0 } else { the first level symbol }
+ * @param level The level in the table. Must be 1 or 2.
+ */
+static void HUF_fillDTableX2ForWeight(
+ HUF_DEltX2* DTableRank,
+ sortedSymbol_t const* begin, sortedSymbol_t const* end,
+ U32 nbBits, U32 tableLog,
+ U16 baseSeq, int const level)
+{
+ U32 const length = 1U << ((tableLog - nbBits) & 0x1F /* quiet static-analyzer */);
+ const sortedSymbol_t* ptr;
+ assert(level >= 1 && level <= 2);
+ switch (length) {
+ case 1:
+ for (ptr = begin; ptr != end; ++ptr) {
+ HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
+ *DTableRank++ = DElt;
+ }
+ break;
+ case 2:
+ for (ptr = begin; ptr != end; ++ptr) {
+ HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
+ DTableRank[0] = DElt;
+ DTableRank[1] = DElt;
+ DTableRank += 2;
+ }
+ break;
+ case 4:
+ for (ptr = begin; ptr != end; ++ptr) {
+ U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
+ ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
+ ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
+ DTableRank += 4;
+ }
+ break;
+ case 8:
+ for (ptr = begin; ptr != end; ++ptr) {
+ U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
+ ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
+ ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
+ ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
+ ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
+ DTableRank += 8;
+ }
+ break;
+ default:
+ for (ptr = begin; ptr != end; ++ptr) {
+ U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
+ HUF_DEltX2* const DTableRankEnd = DTableRank + length;
+ for (; DTableRank != DTableRankEnd; DTableRank += 8) {
+ ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
+ ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
+ ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
+ ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
+ }
+ }
+ break;
+ }
+}
/* HUF_fillDTableX2Level2() :
* `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */
-static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 sizeLog, const U32 consumed,
- const U32* rankValOrigin, const int minWeight,
- const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
+static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 targetLog, const U32 consumedBits,
+ const U32* rankVal, const int minWeight, const int maxWeight1,
+ const sortedSymbol_t* sortedSymbols, U32 const* rankStart,
U32 nbBitsBaseline, U16 baseSeq)
{
- HUF_DEltX2 DElt;
- U32 rankVal[HUF_TABLELOG_MAX + 1];
-
- /* get pre-calculated rankVal */
- ZSTD_memcpy(rankVal, rankValOrigin, sizeof(rankVal));
-
- /* fill skipped values */
+ /* Fill skipped values (all positions up to rankVal[minWeight]).
+ * These are positions only get a single symbol because the combined weight
+ * is too large.
+ */
if (minWeight>1) {
- U32 i, skipSize = rankVal[minWeight];
- MEM_writeLE16(&(DElt.sequence), baseSeq);
- DElt.nbBits = (BYTE)(consumed);
- DElt.length = 1;
- for (i = 0; i < skipSize; i++)
- DTable[i] = DElt;
+ U32 const length = 1U << ((targetLog - consumedBits) & 0x1F /* quiet static-analyzer */);
+ U64 const DEltX2 = HUF_buildDEltX2U64(baseSeq, consumedBits, /* baseSeq */ 0, /* level */ 1);
+ int const skipSize = rankVal[minWeight];
+ assert(length > 1);
+ assert((U32)skipSize < length);
+ switch (length) {
+ case 2:
+ assert(skipSize == 1);
+ ZSTD_memcpy(DTable, &DEltX2, sizeof(DEltX2));
+ break;
+ case 4:
+ assert(skipSize <= 4);
+ ZSTD_memcpy(DTable + 0, &DEltX2, sizeof(DEltX2));
+ ZSTD_memcpy(DTable + 2, &DEltX2, sizeof(DEltX2));
+ break;
+ default:
+ {
+ int i;
+ for (i = 0; i < skipSize; i += 8) {
+ ZSTD_memcpy(DTable + i + 0, &DEltX2, sizeof(DEltX2));
+ ZSTD_memcpy(DTable + i + 2, &DEltX2, sizeof(DEltX2));
+ ZSTD_memcpy(DTable + i + 4, &DEltX2, sizeof(DEltX2));
+ ZSTD_memcpy(DTable + i + 6, &DEltX2, sizeof(DEltX2));
+ }
+ }
+ }
}
- /* fill DTable */
- { U32 s; for (s=0; s<sortedListSize; s++) { /* note : sortedSymbols already skipped */
- const U32 symbol = sortedSymbols[s].symbol;
- const U32 weight = sortedSymbols[s].weight;
- const U32 nbBits = nbBitsBaseline - weight;
- const U32 length = 1 << (sizeLog-nbBits);
- const U32 start = rankVal[weight];
- U32 i = start;
- const U32 end = start + length;
-
- MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
- DElt.nbBits = (BYTE)(nbBits + consumed);
- DElt.length = 2;
- do { DTable[i++] = DElt; } while (i<end); /* since length >= 1 */
-
- rankVal[weight] += length;
- } }
+ /* Fill each of the second level symbols by weight. */
+ {
+ int w;
+ for (w = minWeight; w < maxWeight1; ++w) {
+ int const begin = rankStart[w];
+ int const end = rankStart[w+1];
+ U32 const nbBits = nbBitsBaseline - w;
+ U32 const totalBits = nbBits + consumedBits;
+ HUF_fillDTableX2ForWeight(
+ DTable + rankVal[w],
+ sortedSymbols + begin, sortedSymbols + end,
+ totalBits, targetLog,
+ baseSeq, /* level */ 2);
+ }
+ }
}
-
static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog,
- const sortedSymbol_t* sortedList, const U32 sortedListSize,
+ const sortedSymbol_t* sortedList,
const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
const U32 nbBitsBaseline)
{
- U32 rankVal[HUF_TABLELOG_MAX + 1];
+ U32* const rankVal = rankValOrigin[0];
const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
const U32 minBits = nbBitsBaseline - maxWeight;
- U32 s;
-
- ZSTD_memcpy(rankVal, rankValOrigin, sizeof(rankVal));
-
- /* fill DTable */
- for (s=0; s<sortedListSize; s++) {
- const U16 symbol = sortedList[s].symbol;
- const U32 weight = sortedList[s].weight;
- const U32 nbBits = nbBitsBaseline - weight;
- const U32 start = rankVal[weight];
- const U32 length = 1 << (targetLog-nbBits);
-
- if (targetLog-nbBits >= minBits) { /* enough room for a second symbol */
- U32 sortedRank;
+ int w;
+ int const wEnd = (int)maxWeight + 1;
+
+ /* Fill DTable in order of weight. */
+ for (w = 1; w < wEnd; ++w) {
+ int const begin = (int)rankStart[w];
+ int const end = (int)rankStart[w+1];
+ U32 const nbBits = nbBitsBaseline - w;
+
+ if (targetLog-nbBits >= minBits) {
+ /* Enough room for a second symbol. */
+ int start = rankVal[w];
+ U32 const length = 1U << ((targetLog - nbBits) & 0x1F /* quiet static-analyzer */);
int minWeight = nbBits + scaleLog;
+ int s;
if (minWeight < 1) minWeight = 1;
- sortedRank = rankStart[minWeight];
- HUF_fillDTableX2Level2(DTable+start, targetLog-nbBits, nbBits,
- rankValOrigin[nbBits], minWeight,
- sortedList+sortedRank, sortedListSize-sortedRank,
- nbBitsBaseline, symbol);
+ /* Fill the DTable for every symbol of weight w.
+ * These symbols get at least 1 second symbol.
+ */
+ for (s = begin; s != end; ++s) {
+ HUF_fillDTableX2Level2(
+ DTable + start, targetLog, nbBits,
+ rankValOrigin[nbBits], minWeight, wEnd,
+ sortedList, rankStart,
+ nbBitsBaseline, sortedList[s].symbol);
+ start += length;
+ }
} else {
- HUF_DEltX2 DElt;
- MEM_writeLE16(&(DElt.sequence), symbol);
- DElt.nbBits = (BYTE)(nbBits);
- DElt.length = 1;
- { U32 const end = start + length;
- U32 u;
- for (u = start; u < end; u++) DTable[u] = DElt;
- } }
- rankVal[weight] += length;
+ /* Only a single symbol. */
+ HUF_fillDTableX2ForWeight(
+ DTable + rankVal[w],
+ sortedList + begin, sortedList + end,
+ nbBits, targetLog,
+ /* baseSeq */ 0, /* level */ 1);
+ }
}
}
+typedef struct {
+ rankValCol_t rankVal[HUF_TABLELOG_MAX];
+ U32 rankStats[HUF_TABLELOG_MAX + 1];
+ U32 rankStart0[HUF_TABLELOG_MAX + 3];
+ sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1];
+ BYTE weightList[HUF_SYMBOLVALUE_MAX + 1];
+ U32 calleeWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
+} HUF_ReadDTableX2_Workspace;
+
size_t HUF_readDTableX2_wksp(HUF_DTable* DTable,
const void* src, size_t srcSize,
void* workSpace, size_t wkspSize)
{
- U32 tableLog, maxW, sizeOfSort, nbSymbols;
+ return HUF_readDTableX2_wksp_bmi2(DTable, src, srcSize, workSpace, wkspSize, /* bmi2 */ 0);
+}
+
+size_t HUF_readDTableX2_wksp_bmi2(HUF_DTable* DTable,
+ const void* src, size_t srcSize,
+ void* workSpace, size_t wkspSize, int bmi2)
+{
+ U32 tableLog, maxW, nbSymbols;
DTableDesc dtd = HUF_getDTableDesc(DTable);
- U32 const maxTableLog = dtd.maxTableLog;
+ U32 maxTableLog = dtd.maxTableLog;
size_t iSize;
void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */
HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
U32 *rankStart;
- rankValCol_t* rankVal;
- U32* rankStats;
- U32* rankStart0;
- sortedSymbol_t* sortedSymbol;
- BYTE* weightList;
- size_t spaceUsed32 = 0;
-
- rankVal = (rankValCol_t *)((U32 *)workSpace + spaceUsed32);
- spaceUsed32 += (sizeof(rankValCol_t) * HUF_TABLELOG_MAX) >> 2;
- rankStats = (U32 *)workSpace + spaceUsed32;
- spaceUsed32 += HUF_TABLELOG_MAX + 1;
- rankStart0 = (U32 *)workSpace + spaceUsed32;
- spaceUsed32 += HUF_TABLELOG_MAX + 2;
- sortedSymbol = (sortedSymbol_t *)workSpace + (spaceUsed32 * sizeof(U32)) / sizeof(sortedSymbol_t);
- spaceUsed32 += HUF_ALIGN(sizeof(sortedSymbol_t) * (HUF_SYMBOLVALUE_MAX + 1), sizeof(U32)) >> 2;
- weightList = (BYTE *)((U32 *)workSpace + spaceUsed32);
- spaceUsed32 += HUF_ALIGN(HUF_SYMBOLVALUE_MAX + 1, sizeof(U32)) >> 2;
-
- if ((spaceUsed32 << 2) > wkspSize) return ERROR(tableLog_tooLarge);
-
- rankStart = rankStart0 + 1;
- ZSTD_memset(rankStats, 0, sizeof(U32) * (2 * HUF_TABLELOG_MAX + 2 + 1));
+ HUF_ReadDTableX2_Workspace* const wksp = (HUF_ReadDTableX2_Workspace*)workSpace;
+
+ if (sizeof(*wksp) > wkspSize) return ERROR(GENERIC);
+
+ rankStart = wksp->rankStart0 + 1;
+ ZSTD_memset(wksp->rankStats, 0, sizeof(wksp->rankStats));
+ ZSTD_memset(wksp->rankStart0, 0, sizeof(wksp->rankStart0));
DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */
if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
/* ZSTD_memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */
- iSize = HUF_readStats(weightList, HUF_SYMBOLVALUE_MAX + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
+ iSize = HUF_readStats_wksp(wksp->weightList, HUF_SYMBOLVALUE_MAX + 1, wksp->rankStats, &nbSymbols, &tableLog, src, srcSize, wksp->calleeWksp, sizeof(wksp->calleeWksp), bmi2);
if (HUF_isError(iSize)) return iSize;
/* check result */
if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
+ if (tableLog <= HUF_DECODER_FAST_TABLELOG && maxTableLog > HUF_DECODER_FAST_TABLELOG) maxTableLog = HUF_DECODER_FAST_TABLELOG;
/* find maxWeight */
- for (maxW = tableLog; rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
+ for (maxW = tableLog; wksp->rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
/* Get start index of each weight */
{ U32 w, nextRankStart = 0;
for (w=1; w<maxW+1; w++) {
U32 curr = nextRankStart;
- nextRankStart += rankStats[w];
+ nextRankStart += wksp->rankStats[w];
rankStart[w] = curr;
}
rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
- sizeOfSort = nextRankStart;
+ rankStart[maxW+1] = nextRankStart;
}
/* sort symbols by weight */
{ U32 s;
for (s=0; s<nbSymbols; s++) {
- U32 const w = weightList[s];
+ U32 const w = wksp->weightList[s];
U32 const r = rankStart[w]++;
- sortedSymbol[r].symbol = (BYTE)s;
- sortedSymbol[r].weight = (BYTE)w;
+ wksp->sortedSymbol[r].symbol = (BYTE)s;
}
rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
}
/* Build rankVal */
- { U32* const rankVal0 = rankVal[0];
+ { U32* const rankVal0 = wksp->rankVal[0];
{ int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */
U32 nextRankVal = 0;
U32 w;
for (w=1; w<maxW+1; w++) {
U32 curr = nextRankVal;
- nextRankVal += rankStats[w] << (w+rescale);
+ nextRankVal += wksp->rankStats[w] << (w+rescale);
rankVal0[w] = curr;
} }
{ U32 const minBits = tableLog+1 - maxW;
U32 consumed;
for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
- U32* const rankValPtr = rankVal[consumed];
+ U32* const rankValPtr = wksp->rankVal[consumed];
U32 w;
for (w = 1; w < maxW+1; w++) {
rankValPtr[w] = rankVal0[w] >> consumed;
} } } }
HUF_fillDTableX2(dt, maxTableLog,
- sortedSymbol, sizeOfSort,
- rankStart0, rankVal, maxW,
+ wksp->sortedSymbol,
+ wksp->rankStart0, wksp->rankVal, maxW,
tableLog+1);
dtd.tableLog = (BYTE)maxTableLog;
dtd.tableType = 1;
ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
return iSize;
}
FORCE_INLINE_TEMPLATE U32
HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
{
size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
- ZSTD_memcpy(op, dt+val, 2);
+ ZSTD_memcpy(op, &dt[val].sequence, 2);
BIT_skipBits(DStream, dt[val].nbBits);
return dt[val].length;
}
FORCE_INLINE_TEMPLATE U32
HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
{
size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
- ZSTD_memcpy(op, dt+val, 1);
- if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits);
- else {
+ ZSTD_memcpy(op, &dt[val].sequence, 1);
+ if (dt[val].length==1) {
+ BIT_skipBits(DStream, dt[val].nbBits);
+ } else {
if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
BIT_skipBits(DStream, dt[val].nbBits);
if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
/* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);
- } }
+ }
+ }
return 1;
}
#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
HINT_INLINE size_t
HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd,
const HUF_DEltX2* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 8 symbols at a time */
- while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) {
- HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
- HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
- HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
- HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
+ if ((size_t)(pEnd - p) >= sizeof(bitDPtr->bitContainer)) {
+ if (dtLog <= 11 && MEM_64bits()) {
+ /* up to 10 symbols at a time */
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-9)) {
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
+ }
+ } else {
+ /* up to 8 symbols at a time */
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) {
+ HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
+ HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
+ }
+ }
+ } else {
+ BIT_reloadDStream(bitDPtr);
}
/* closer to end : up to 2 symbols at a time */
- while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2))
- HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
+ if ((size_t)(pEnd - p) >= 2) {
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2))
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
- while (p <= pEnd-2)
- HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
+ while (p <= pEnd-2)
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
+ }
if (p < pEnd)
p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog);
return p-pStart;
}
FORCE_INLINE_TEMPLATE size_t
HUF_decompress1X2_usingDTable_internal_body(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
BIT_DStream_t bitD;
/* Init */
CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
/* decode */
{ BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */
const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog);
}
/* check */
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
-
FORCE_INLINE_TEMPLATE size_t
HUF_decompress4X2_usingDTable_internal_body(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{ const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
BYTE* const olimit = oend - (sizeof(size_t)-1);
const void* const dtPtr = DTable+1;
const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
/* Init */
BIT_DStream_t bitD1;
BIT_DStream_t bitD2;
BIT_DStream_t bitD3;
BIT_DStream_t bitD4;
size_t const length1 = MEM_readLE16(istart);
size_t const length2 = MEM_readLE16(istart+2);
size_t const length3 = MEM_readLE16(istart+4);
size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
size_t const segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal = 1;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
U32 const dtLog = dtd.tableLog;
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
+ if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */
CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
/* 16-32 symbols per loop (4-8 symbols per stream) */
- for ( ; (endSignal) & (op4 < olimit); ) {
+ if ((size_t)(oend - op4) >= sizeof(size_t)) {
+ for ( ; (endSignal) & (op4 < olimit); ) {
#if defined(__clang__) && (defined(__x86_64__) || defined(__i386__))
- HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
- HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
- HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
- HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
- HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
- HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
- HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
- HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
- endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
- endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
- HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
- HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
- HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
- HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
- HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
- HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
- HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
- HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
- endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
- endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
+ HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
+ endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
+ endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
+ HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
+ HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
+ endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
+ endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
#else
- HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
- HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
- HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
- HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
- HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
- HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
- HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
- HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
- HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
- HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
- HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
- HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
- HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
- HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
- HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
- HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
- endSignal = (U32)LIKELY(
- (BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished)
- & (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished)
- & (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished)
- & (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished));
+ HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
+ HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
+ endSignal = (U32)LIKELY((U32)
+ (BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished)
+ & (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished)
+ & (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished)
+ & (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished));
#endif
+ }
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 already verified within main loop */
/* finish bitStreams one by one */
HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
/* check */
{ U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
if (!endCheck) return ERROR(corruption_detected); }
/* decoded size */
return dstSize;
}
}
+#if HUF_NEED_BMI2_FUNCTION
+static BMI2_TARGET_ATTRIBUTE
+size_t HUF_decompress4X2_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
+ size_t cSrcSize, HUF_DTable const* DTable) {
+ return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
+}
+#endif
+
+#if HUF_NEED_DEFAULT_FUNCTION
+static
+size_t HUF_decompress4X2_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
+ size_t cSrcSize, HUF_DTable const* DTable) {
+ return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
+}
+#endif
+
+#if ZSTD_ENABLE_ASM_X86_64_BMI2
+
+HUF_ASM_DECL void HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop(HUF_DecompressAsmArgs* args) ZSTDLIB_HIDDEN;
+
+static HUF_ASM_X86_64_BMI2_ATTRS size_t
+HUF_decompress4X2_usingDTable_internal_bmi2_asm(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUF_DTable* DTable) {
+ void const* dt = DTable + 1;
+ const BYTE* const iend = (const BYTE*)cSrc + 6;
+ BYTE* const oend = (BYTE*)dst + dstSize;
+ HUF_DecompressAsmArgs args;
+ {
+ size_t const ret = HUF_DecompressAsmArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
+ FORWARD_IF_ERROR(ret, "Failed to init asm args");
+ if (ret != 0)
+ return HUF_decompress4X2_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable);
+ }
+
+ assert(args.ip[0] >= args.ilimit);
+ HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop(&args);
+
+ /* note : op4 already verified within main loop */
+ assert(args.ip[0] >= iend);
+ assert(args.ip[1] >= iend);
+ assert(args.ip[2] >= iend);
+ assert(args.ip[3] >= iend);
+ assert(args.op[3] <= oend);
+ (void)iend;
+
+ /* finish bitStreams one by one */
+ {
+ size_t const segmentSize = (dstSize+3) / 4;
+ BYTE* segmentEnd = (BYTE*)dst;
+ int i;
+ for (i = 0; i < 4; ++i) {
+ BIT_DStream_t bit;
+ if (segmentSize <= (size_t)(oend - segmentEnd))
+ segmentEnd += segmentSize;
+ else
+ segmentEnd = oend;
+ FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
+ args.op[i] += HUF_decodeStreamX2(args.op[i], &bit, segmentEnd, (HUF_DEltX2 const*)dt, HUF_DECODER_FAST_TABLELOG);
+ if (args.op[i] != segmentEnd)
+ return ERROR(corruption_detected);
+ }
+ }
+
+ /* decoded size */
+ return dstSize;
+}
+#endif /* ZSTD_ENABLE_ASM_X86_64_BMI2 */
+
+static size_t HUF_decompress4X2_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
+ size_t cSrcSize, HUF_DTable const* DTable, int bmi2)
+{
+#if DYNAMIC_BMI2
+ if (bmi2) {
+# if ZSTD_ENABLE_ASM_X86_64_BMI2
+ return HUF_decompress4X2_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable);
+# else
+ return HUF_decompress4X2_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable);
+# endif
+ }
+#else
+ (void)bmi2;
+#endif
+
+#if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
+ return HUF_decompress4X2_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable);
+#else
+ return HUF_decompress4X2_usingDTable_internal_default(dst, dstSize, cSrc, cSrcSize, DTable);
+#endif
+}
+
HUF_DGEN(HUF_decompress1X2_usingDTable_internal)
-HUF_DGEN(HUF_decompress4X2_usingDTable_internal)
size_t HUF_decompress1X2_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc dtd = HUF_getDTableDesc(DTable);
if (dtd.tableType != 1) return ERROR(GENERIC);
return HUF_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
}
size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize,
workSpace, wkspSize);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0);
}
size_t HUF_decompress4X2_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc dtd = HUF_getDTableDesc(DTable);
if (dtd.tableType != 1) return ERROR(GENERIC);
return HUF_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
}
static size_t HUF_decompress4X2_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize, int bmi2)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize,
workSpace, wkspSize);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
}
size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
{
return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, /* bmi2 */ 0);
}
#endif /* HUF_FORCE_DECOMPRESS_X1 */
/* ***********************************/
/* Universal decompression selectors */
/* ***********************************/
size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc const dtd = HUF_getDTableDesc(DTable);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)dtd;
assert(dtd.tableType == 0);
return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)dtd;
assert(dtd.tableType == 1);
return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
#else
return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) :
HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
#endif
}
size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc const dtd = HUF_getDTableDesc(DTable);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)dtd;
assert(dtd.tableType == 0);
return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)dtd;
assert(dtd.tableType == 1);
return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
#else
return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) :
HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
#endif
}
#if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2)
typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
-static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
+static const algo_time_t algoTime[16 /* Quantization */][2 /* single, double */] =
{
/* single, double, quad */
- {{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */
- {{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */
- {{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */
- {{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */
- {{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */
- {{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */
- {{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */
- {{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */
- {{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */
- {{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */
- {{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */
- {{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */
- {{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */
- {{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */
- {{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */
- {{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */
+ {{0,0}, {1,1}}, /* Q==0 : impossible */
+ {{0,0}, {1,1}}, /* Q==1 : impossible */
+ {{ 150,216}, { 381,119}}, /* Q == 2 : 12-18% */
+ {{ 170,205}, { 514,112}}, /* Q == 3 : 18-25% */
+ {{ 177,199}, { 539,110}}, /* Q == 4 : 25-32% */
+ {{ 197,194}, { 644,107}}, /* Q == 5 : 32-38% */
+ {{ 221,192}, { 735,107}}, /* Q == 6 : 38-44% */
+ {{ 256,189}, { 881,106}}, /* Q == 7 : 44-50% */
+ {{ 359,188}, {1167,109}}, /* Q == 8 : 50-56% */
+ {{ 582,187}, {1570,114}}, /* Q == 9 : 56-62% */
+ {{ 688,187}, {1712,122}}, /* Q ==10 : 62-69% */
+ {{ 825,186}, {1965,136}}, /* Q ==11 : 69-75% */
+ {{ 976,185}, {2131,150}}, /* Q ==12 : 75-81% */
+ {{1180,186}, {2070,175}}, /* Q ==13 : 81-87% */
+ {{1377,185}, {1731,202}}, /* Q ==14 : 87-93% */
+ {{1412,185}, {1695,202}}, /* Q ==15 : 93-99% */
};
#endif
/** HUF_selectDecoder() :
* Tells which decoder is likely to decode faster,
* based on a set of pre-computed metrics.
* @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 .
* Assumption : 0 < dstSize <= 128 KB */
U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize)
{
assert(dstSize > 0);
assert(dstSize <= 128*1024);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)dstSize;
(void)cSrcSize;
return 0;
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)dstSize;
(void)cSrcSize;
return 1;
#else
/* decoder timing evaluation */
{ U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */
U32 const D256 = (U32)(dstSize >> 8);
U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
- DTime1 += DTime1 >> 3; /* advantage to algorithm using less memory, to reduce cache eviction */
+ DTime1 += DTime1 >> 5; /* small advantage to algorithm using less memory, to reduce cache eviction */
return DTime1 < DTime0;
}
#endif
}
size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst,
size_t dstSize, const void* cSrc,
size_t cSrcSize, void* workSpace,
size_t wkspSize)
{
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize == 0) return ERROR(corruption_detected);
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)algoNb;
assert(algoNb == 0);
return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)algoNb;
assert(algoNb == 1);
return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
#else
return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
cSrcSize, workSpace, wkspSize):
HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
#endif
}
}
size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
{
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)algoNb;
assert(algoNb == 0);
return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
cSrcSize, workSpace, wkspSize);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)algoNb;
assert(algoNb == 1);
return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
cSrcSize, workSpace, wkspSize);
#else
return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
cSrcSize, workSpace, wkspSize):
HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
cSrcSize, workSpace, wkspSize);
#endif
}
}
size_t HUF_decompress1X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2)
{
DTableDesc const dtd = HUF_getDTableDesc(DTable);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)dtd;
assert(dtd.tableType == 0);
return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)dtd;
assert(dtd.tableType == 1);
return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
#else
return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) :
HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
#endif
}
#ifndef HUF_FORCE_DECOMPRESS_X2
size_t HUF_decompress1X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t const hSize = HUF_readDTableX1_wksp_bmi2(dctx, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
}
#endif
size_t HUF_decompress4X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2)
{
DTableDesc const dtd = HUF_getDTableDesc(DTable);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)dtd;
assert(dtd.tableType == 0);
return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)dtd;
assert(dtd.tableType == 1);
return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
#else
return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) :
HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
#endif
}
size_t HUF_decompress4X_hufOnly_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2)
{
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize == 0) return ERROR(corruption_detected);
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)algoNb;
assert(algoNb == 0);
return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)algoNb;
assert(algoNb == 1);
return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
#else
return algoNb ? HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2) :
HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
#endif
}
}
#ifndef ZSTD_NO_UNUSED_FUNCTIONS
#ifndef HUF_FORCE_DECOMPRESS_X2
size_t HUF_readDTableX1(HUF_DTable* DTable, const void* src, size_t srcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_readDTableX1_wksp(DTable, src, srcSize,
workSpace, sizeof(workSpace));
}
size_t HUF_decompress1X1_DCtx(HUF_DTable* DCtx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_decompress1X1_DCtx_wksp(DCtx, dst, dstSize, cSrc, cSrcSize,
workSpace, sizeof(workSpace));
}
size_t HUF_decompress1X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLEX1(DTable, HUF_TABLELOG_MAX);
return HUF_decompress1X1_DCtx (DTable, dst, dstSize, cSrc, cSrcSize);
}
-#endif
+#endif
#ifndef HUF_FORCE_DECOMPRESS_X1
size_t HUF_readDTableX2(HUF_DTable* DTable, const void* src, size_t srcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_readDTableX2_wksp(DTable, src, srcSize,
workSpace, sizeof(workSpace));
}
size_t HUF_decompress1X2_DCtx(HUF_DTable* DCtx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_decompress1X2_DCtx_wksp(DCtx, dst, dstSize, cSrc, cSrcSize,
workSpace, sizeof(workSpace));
}
size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_TABLELOG_MAX);
return HUF_decompress1X2_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
}
#endif
#ifndef HUF_FORCE_DECOMPRESS_X2
size_t HUF_decompress4X1_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize,
workSpace, sizeof(workSpace));
}
size_t HUF_decompress4X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLEX1(DTable, HUF_TABLELOG_MAX);
return HUF_decompress4X1_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
}
#endif
#ifndef HUF_FORCE_DECOMPRESS_X1
size_t HUF_decompress4X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize,
workSpace, sizeof(workSpace));
}
size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_TABLELOG_MAX);
return HUF_decompress4X2_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
}
#endif
typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
#if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2)
static const decompressionAlgo decompress[2] = { HUF_decompress4X1, HUF_decompress4X2 };
#endif
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)algoNb;
assert(algoNb == 0);
return HUF_decompress4X1(dst, dstSize, cSrc, cSrcSize);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)algoNb;
assert(algoNb == 1);
return HUF_decompress4X2(dst, dstSize, cSrc, cSrcSize);
#else
return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
#endif
}
}
size_t HUF_decompress4X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)algoNb;
assert(algoNb == 0);
return HUF_decompress4X1_DCtx(dctx, dst, dstSize, cSrc, cSrcSize);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)algoNb;
assert(algoNb == 1);
return HUF_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize);
#else
return algoNb ? HUF_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) :
HUF_decompress4X1_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ;
#endif
}
}
size_t HUF_decompress4X_hufOnly(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_decompress4X_hufOnly_wksp(dctx, dst, dstSize, cSrc, cSrcSize,
workSpace, sizeof(workSpace));
}
size_t HUF_decompress1X_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_decompress1X_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize,
workSpace, sizeof(workSpace));
}
#endif
diff --git a/sys/contrib/zstd/lib/decompress/huf_decompress_amd64.S b/sys/contrib/zstd/lib/decompress/huf_decompress_amd64.S
new file mode 100644
index 000000000000..49589cb61141
--- /dev/null
+++ b/sys/contrib/zstd/lib/decompress/huf_decompress_amd64.S
@@ -0,0 +1,585 @@
+/*
+ * Copyright (c) Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#include "../common/portability_macros.h"
+
+/* Stack marking
+ * ref: https://wiki.gentoo.org/wiki/Hardened/GNU_stack_quickstart
+ */
+#if defined(__ELF__) && defined(__GNUC__)
+.section .note.GNU-stack,"",%progbits
+#endif
+
+#if ZSTD_ENABLE_ASM_X86_64_BMI2
+
+/* Calling convention:
+ *
+ * %rdi contains the first argument: HUF_DecompressAsmArgs*.
+ * %rbp isn't maintained (no frame pointer).
+ * %rsp contains the stack pointer that grows down.
+ * No red-zone is assumed, only addresses >= %rsp are used.
+ * All register contents are preserved.
+ *
+ * TODO: Support Windows calling convention.
+ */
+
+ZSTD_HIDE_ASM_FUNCTION(HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop)
+ZSTD_HIDE_ASM_FUNCTION(HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop)
+ZSTD_HIDE_ASM_FUNCTION(_HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop)
+ZSTD_HIDE_ASM_FUNCTION(_HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop)
+.global HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop
+.global HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop
+.global _HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop
+.global _HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop
+.text
+
+/* Sets up register mappings for clarity.
+ * op[], bits[], dtable & ip[0] each get their own register.
+ * ip[1,2,3] & olimit alias var[].
+ * %rax is a scratch register.
+ */
+
+#define op0 rsi
+#define op1 rbx
+#define op2 rcx
+#define op3 rdi
+
+#define ip0 r8
+#define ip1 r9
+#define ip2 r10
+#define ip3 r11
+
+#define bits0 rbp
+#define bits1 rdx
+#define bits2 r12
+#define bits3 r13
+#define dtable r14
+#define olimit r15
+
+/* var[] aliases ip[1,2,3] & olimit
+ * ip[1,2,3] are saved every iteration.
+ * olimit is only used in compute_olimit.
+ */
+#define var0 r15
+#define var1 r9
+#define var2 r10
+#define var3 r11
+
+/* 32-bit var registers */
+#define vard0 r15d
+#define vard1 r9d
+#define vard2 r10d
+#define vard3 r11d
+
+/* Calls X(N) for each stream 0, 1, 2, 3. */
+#define FOR_EACH_STREAM(X) \
+ X(0); \
+ X(1); \
+ X(2); \
+ X(3)
+
+/* Calls X(N, idx) for each stream 0, 1, 2, 3. */
+#define FOR_EACH_STREAM_WITH_INDEX(X, idx) \
+ X(0, idx); \
+ X(1, idx); \
+ X(2, idx); \
+ X(3, idx)
+
+/* Define both _HUF_* & HUF_* symbols because MacOS
+ * C symbols are prefixed with '_' & Linux symbols aren't.
+ */
+_HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop:
+HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop:
+ /* Save all registers - even if they are callee saved for simplicity. */
+ push %rax
+ push %rbx
+ push %rcx
+ push %rdx
+ push %rbp
+ push %rsi
+ push %rdi
+ push %r8
+ push %r9
+ push %r10
+ push %r11
+ push %r12
+ push %r13
+ push %r14
+ push %r15
+
+ /* Read HUF_DecompressAsmArgs* args from %rax */
+ movq %rdi, %rax
+ movq 0(%rax), %ip0
+ movq 8(%rax), %ip1
+ movq 16(%rax), %ip2
+ movq 24(%rax), %ip3
+ movq 32(%rax), %op0
+ movq 40(%rax), %op1
+ movq 48(%rax), %op2
+ movq 56(%rax), %op3
+ movq 64(%rax), %bits0
+ movq 72(%rax), %bits1
+ movq 80(%rax), %bits2
+ movq 88(%rax), %bits3
+ movq 96(%rax), %dtable
+ push %rax /* argument */
+ push 104(%rax) /* ilimit */
+ push 112(%rax) /* oend */
+ push %olimit /* olimit space */
+
+ subq $24, %rsp
+
+.L_4X1_compute_olimit:
+ /* Computes how many iterations we can do safely
+ * %r15, %rax may be clobbered
+ * rbx, rdx must be saved
+ * op3 & ip0 mustn't be clobbered
+ */
+ movq %rbx, 0(%rsp)
+ movq %rdx, 8(%rsp)
+
+ movq 32(%rsp), %rax /* rax = oend */
+ subq %op3, %rax /* rax = oend - op3 */
+
+ /* r15 = (oend - op3) / 5 */
+ movabsq $-3689348814741910323, %rdx
+ mulq %rdx
+ movq %rdx, %r15
+ shrq $2, %r15
+
+ movq %ip0, %rax /* rax = ip0 */
+ movq 40(%rsp), %rdx /* rdx = ilimit */
+ subq %rdx, %rax /* rax = ip0 - ilimit */
+ movq %rax, %rbx /* rbx = ip0 - ilimit */
+
+ /* rdx = (ip0 - ilimit) / 7 */
+ movabsq $2635249153387078803, %rdx
+ mulq %rdx
+ subq %rdx, %rbx
+ shrq %rbx
+ addq %rbx, %rdx
+ shrq $2, %rdx
+
+ /* r15 = min(%rdx, %r15) */
+ cmpq %rdx, %r15
+ cmova %rdx, %r15
+
+ /* r15 = r15 * 5 */
+ leaq (%r15, %r15, 4), %r15
+
+ /* olimit = op3 + r15 */
+ addq %op3, %olimit
+
+ movq 8(%rsp), %rdx
+ movq 0(%rsp), %rbx
+
+ /* If (op3 + 20 > olimit) */
+ movq %op3, %rax /* rax = op3 */
+ addq $20, %rax /* rax = op3 + 20 */
+ cmpq %rax, %olimit /* op3 + 20 > olimit */
+ jb .L_4X1_exit
+
+ /* If (ip1 < ip0) go to exit */
+ cmpq %ip0, %ip1
+ jb .L_4X1_exit
+
+ /* If (ip2 < ip1) go to exit */
+ cmpq %ip1, %ip2
+ jb .L_4X1_exit
+
+ /* If (ip3 < ip2) go to exit */
+ cmpq %ip2, %ip3
+ jb .L_4X1_exit
+
+/* Reads top 11 bits from bits[n]
+ * Loads dt[bits[n]] into var[n]
+ */
+#define GET_NEXT_DELT(n) \
+ movq $53, %var##n; \
+ shrxq %var##n, %bits##n, %var##n; \
+ movzwl (%dtable,%var##n,2),%vard##n
+
+/* var[n] must contain the DTable entry computed with GET_NEXT_DELT
+ * Moves var[n] to %rax
+ * bits[n] <<= var[n] & 63
+ * op[n][idx] = %rax >> 8
+ * %ah is a way to access bits [8, 16) of %rax
+ */
+#define DECODE_FROM_DELT(n, idx) \
+ movq %var##n, %rax; \
+ shlxq %var##n, %bits##n, %bits##n; \
+ movb %ah, idx(%op##n)
+
+/* Assumes GET_NEXT_DELT has been called.
+ * Calls DECODE_FROM_DELT then GET_NEXT_DELT
+ */
+#define DECODE_AND_GET_NEXT(n, idx) \
+ DECODE_FROM_DELT(n, idx); \
+ GET_NEXT_DELT(n) \
+
+/* // ctz & nbBytes is stored in bits[n]
+ * // nbBits is stored in %rax
+ * ctz = CTZ[bits[n]]
+ * nbBits = ctz & 7
+ * nbBytes = ctz >> 3
+ * op[n] += 5
+ * ip[n] -= nbBytes
+ * // Note: x86-64 is little-endian ==> no bswap
+ * bits[n] = MEM_readST(ip[n]) | 1
+ * bits[n] <<= nbBits
+ */
+#define RELOAD_BITS(n) \
+ bsfq %bits##n, %bits##n; \
+ movq %bits##n, %rax; \
+ andq $7, %rax; \
+ shrq $3, %bits##n; \
+ leaq 5(%op##n), %op##n; \
+ subq %bits##n, %ip##n; \
+ movq (%ip##n), %bits##n; \
+ orq $1, %bits##n; \
+ shlx %rax, %bits##n, %bits##n
+
+ /* Store clobbered variables on the stack */
+ movq %olimit, 24(%rsp)
+ movq %ip1, 0(%rsp)
+ movq %ip2, 8(%rsp)
+ movq %ip3, 16(%rsp)
+
+ /* Call GET_NEXT_DELT for each stream */
+ FOR_EACH_STREAM(GET_NEXT_DELT)
+
+ .p2align 6
+
+.L_4X1_loop_body:
+ /* Decode 5 symbols in each of the 4 streams (20 total)
+ * Must have called GET_NEXT_DELT for each stream
+ */
+ FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 0)
+ FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 1)
+ FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 2)
+ FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 3)
+ FOR_EACH_STREAM_WITH_INDEX(DECODE_FROM_DELT, 4)
+
+ /* Load ip[1,2,3] from stack (var[] aliases them)
+ * ip[] is needed for RELOAD_BITS
+ * Each will be stored back to the stack after RELOAD
+ */
+ movq 0(%rsp), %ip1
+ movq 8(%rsp), %ip2
+ movq 16(%rsp), %ip3
+
+ /* Reload each stream & fetch the next table entry
+ * to prepare for the next iteration
+ */
+ RELOAD_BITS(0)
+ GET_NEXT_DELT(0)
+
+ RELOAD_BITS(1)
+ movq %ip1, 0(%rsp)
+ GET_NEXT_DELT(1)
+
+ RELOAD_BITS(2)
+ movq %ip2, 8(%rsp)
+ GET_NEXT_DELT(2)
+
+ RELOAD_BITS(3)
+ movq %ip3, 16(%rsp)
+ GET_NEXT_DELT(3)
+
+ /* If op3 < olimit: continue the loop */
+ cmp %op3, 24(%rsp)
+ ja .L_4X1_loop_body
+
+ /* Reload ip[1,2,3] from stack */
+ movq 0(%rsp), %ip1
+ movq 8(%rsp), %ip2
+ movq 16(%rsp), %ip3
+
+ /* Re-compute olimit */
+ jmp .L_4X1_compute_olimit
+
+#undef GET_NEXT_DELT
+#undef DECODE_FROM_DELT
+#undef DECODE
+#undef RELOAD_BITS
+.L_4X1_exit:
+ addq $24, %rsp
+
+ /* Restore stack (oend & olimit) */
+ pop %rax /* olimit */
+ pop %rax /* oend */
+ pop %rax /* ilimit */
+ pop %rax /* arg */
+
+ /* Save ip / op / bits */
+ movq %ip0, 0(%rax)
+ movq %ip1, 8(%rax)
+ movq %ip2, 16(%rax)
+ movq %ip3, 24(%rax)
+ movq %op0, 32(%rax)
+ movq %op1, 40(%rax)
+ movq %op2, 48(%rax)
+ movq %op3, 56(%rax)
+ movq %bits0, 64(%rax)
+ movq %bits1, 72(%rax)
+ movq %bits2, 80(%rax)
+ movq %bits3, 88(%rax)
+
+ /* Restore registers */
+ pop %r15
+ pop %r14
+ pop %r13
+ pop %r12
+ pop %r11
+ pop %r10
+ pop %r9
+ pop %r8
+ pop %rdi
+ pop %rsi
+ pop %rbp
+ pop %rdx
+ pop %rcx
+ pop %rbx
+ pop %rax
+ ret
+
+_HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop:
+HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop:
+ /* Save all registers - even if they are callee saved for simplicity. */
+ push %rax
+ push %rbx
+ push %rcx
+ push %rdx
+ push %rbp
+ push %rsi
+ push %rdi
+ push %r8
+ push %r9
+ push %r10
+ push %r11
+ push %r12
+ push %r13
+ push %r14
+ push %r15
+
+ movq %rdi, %rax
+ movq 0(%rax), %ip0
+ movq 8(%rax), %ip1
+ movq 16(%rax), %ip2
+ movq 24(%rax), %ip3
+ movq 32(%rax), %op0
+ movq 40(%rax), %op1
+ movq 48(%rax), %op2
+ movq 56(%rax), %op3
+ movq 64(%rax), %bits0
+ movq 72(%rax), %bits1
+ movq 80(%rax), %bits2
+ movq 88(%rax), %bits3
+ movq 96(%rax), %dtable
+ push %rax /* argument */
+ push %rax /* olimit */
+ push 104(%rax) /* ilimit */
+
+ movq 112(%rax), %rax
+ push %rax /* oend3 */
+
+ movq %op3, %rax
+ push %rax /* oend2 */
+
+ movq %op2, %rax
+ push %rax /* oend1 */
+
+ movq %op1, %rax
+ push %rax /* oend0 */
+
+ /* Scratch space */
+ subq $8, %rsp
+
+.L_4X2_compute_olimit:
+ /* Computes how many iterations we can do safely
+ * %r15, %rax may be clobbered
+ * rdx must be saved
+ * op[1,2,3,4] & ip0 mustn't be clobbered
+ */
+ movq %rdx, 0(%rsp)
+
+ /* We can consume up to 7 input bytes each iteration. */
+ movq %ip0, %rax /* rax = ip0 */
+ movq 40(%rsp), %rdx /* rdx = ilimit */
+ subq %rdx, %rax /* rax = ip0 - ilimit */
+ movq %rax, %r15 /* r15 = ip0 - ilimit */
+
+ /* rdx = rax / 7 */
+ movabsq $2635249153387078803, %rdx
+ mulq %rdx
+ subq %rdx, %r15
+ shrq %r15
+ addq %r15, %rdx
+ shrq $2, %rdx
+
+ /* r15 = (ip0 - ilimit) / 7 */
+ movq %rdx, %r15
+
+ movabsq $-3689348814741910323, %rdx
+ movq 8(%rsp), %rax /* rax = oend0 */
+ subq %op0, %rax /* rax = oend0 - op0 */
+ mulq %rdx
+ shrq $3, %rdx /* rdx = rax / 10 */
+
+ /* r15 = min(%rdx, %r15) */
+ cmpq %rdx, %r15
+ cmova %rdx, %r15
+
+ movabsq $-3689348814741910323, %rdx
+ movq 16(%rsp), %rax /* rax = oend1 */
+ subq %op1, %rax /* rax = oend1 - op1 */
+ mulq %rdx
+ shrq $3, %rdx /* rdx = rax / 10 */
+
+ /* r15 = min(%rdx, %r15) */
+ cmpq %rdx, %r15
+ cmova %rdx, %r15
+
+ movabsq $-3689348814741910323, %rdx
+ movq 24(%rsp), %rax /* rax = oend2 */
+ subq %op2, %rax /* rax = oend2 - op2 */
+ mulq %rdx
+ shrq $3, %rdx /* rdx = rax / 10 */
+
+ /* r15 = min(%rdx, %r15) */
+ cmpq %rdx, %r15
+ cmova %rdx, %r15
+
+ movabsq $-3689348814741910323, %rdx
+ movq 32(%rsp), %rax /* rax = oend3 */
+ subq %op3, %rax /* rax = oend3 - op3 */
+ mulq %rdx
+ shrq $3, %rdx /* rdx = rax / 10 */
+
+ /* r15 = min(%rdx, %r15) */
+ cmpq %rdx, %r15
+ cmova %rdx, %r15
+
+ /* olimit = op3 + 5 * r15 */
+ movq %r15, %rax
+ leaq (%op3, %rax, 4), %olimit
+ addq %rax, %olimit
+
+ movq 0(%rsp), %rdx
+
+ /* If (op3 + 10 > olimit) */
+ movq %op3, %rax /* rax = op3 */
+ addq $10, %rax /* rax = op3 + 10 */
+ cmpq %rax, %olimit /* op3 + 10 > olimit */
+ jb .L_4X2_exit
+
+ /* If (ip1 < ip0) go to exit */
+ cmpq %ip0, %ip1
+ jb .L_4X2_exit
+
+ /* If (ip2 < ip1) go to exit */
+ cmpq %ip1, %ip2
+ jb .L_4X2_exit
+
+ /* If (ip3 < ip2) go to exit */
+ cmpq %ip2, %ip3
+ jb .L_4X2_exit
+
+#define DECODE(n, idx) \
+ movq %bits##n, %rax; \
+ shrq $53, %rax; \
+ movzwl 0(%dtable,%rax,4),%r8d; \
+ movzbl 2(%dtable,%rax,4),%r15d; \
+ movzbl 3(%dtable,%rax,4),%eax; \
+ movw %r8w, (%op##n); \
+ shlxq %r15, %bits##n, %bits##n; \
+ addq %rax, %op##n
+
+#define RELOAD_BITS(n) \
+ bsfq %bits##n, %bits##n; \
+ movq %bits##n, %rax; \
+ shrq $3, %bits##n; \
+ andq $7, %rax; \
+ subq %bits##n, %ip##n; \
+ movq (%ip##n), %bits##n; \
+ orq $1, %bits##n; \
+ shlxq %rax, %bits##n, %bits##n
+
+
+ movq %olimit, 48(%rsp)
+
+ .p2align 6
+
+.L_4X2_loop_body:
+ /* We clobber r8, so store it on the stack */
+ movq %r8, 0(%rsp)
+
+ /* Decode 5 symbols from each of the 4 streams (20 symbols total). */
+ FOR_EACH_STREAM_WITH_INDEX(DECODE, 0)
+ FOR_EACH_STREAM_WITH_INDEX(DECODE, 1)
+ FOR_EACH_STREAM_WITH_INDEX(DECODE, 2)
+ FOR_EACH_STREAM_WITH_INDEX(DECODE, 3)
+ FOR_EACH_STREAM_WITH_INDEX(DECODE, 4)
+
+ /* Reload r8 */
+ movq 0(%rsp), %r8
+
+ FOR_EACH_STREAM(RELOAD_BITS)
+
+ cmp %op3, 48(%rsp)
+ ja .L_4X2_loop_body
+ jmp .L_4X2_compute_olimit
+
+#undef DECODE
+#undef RELOAD_BITS
+.L_4X2_exit:
+ addq $8, %rsp
+ /* Restore stack (oend & olimit) */
+ pop %rax /* oend0 */
+ pop %rax /* oend1 */
+ pop %rax /* oend2 */
+ pop %rax /* oend3 */
+ pop %rax /* ilimit */
+ pop %rax /* olimit */
+ pop %rax /* arg */
+
+ /* Save ip / op / bits */
+ movq %ip0, 0(%rax)
+ movq %ip1, 8(%rax)
+ movq %ip2, 16(%rax)
+ movq %ip3, 24(%rax)
+ movq %op0, 32(%rax)
+ movq %op1, 40(%rax)
+ movq %op2, 48(%rax)
+ movq %op3, 56(%rax)
+ movq %bits0, 64(%rax)
+ movq %bits1, 72(%rax)
+ movq %bits2, 80(%rax)
+ movq %bits3, 88(%rax)
+
+ /* Restore registers */
+ pop %r15
+ pop %r14
+ pop %r13
+ pop %r12
+ pop %r11
+ pop %r10
+ pop %r9
+ pop %r8
+ pop %rdi
+ pop %rsi
+ pop %rbp
+ pop %rdx
+ pop %rcx
+ pop %rbx
+ pop %rax
+ ret
+
+#endif
diff --git a/sys/contrib/zstd/lib/decompress/zstd_ddict.c b/sys/contrib/zstd/lib/decompress/zstd_ddict.c
index f5cc23b387c4..ce335477b32d 100644
--- a/sys/contrib/zstd/lib/decompress/zstd_ddict.c
+++ b/sys/contrib/zstd/lib/decompress/zstd_ddict.c
@@ -1,244 +1,244 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* zstd_ddict.c :
* concentrates all logic that needs to know the internals of ZSTD_DDict object */
/*-*******************************************************
* Dependencies
*********************************************************/
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */
#include "../common/cpu.h" /* bmi2 */
#include "../common/mem.h" /* low level memory routines */
#define FSE_STATIC_LINKING_ONLY
#include "../common/fse.h"
#define HUF_STATIC_LINKING_ONLY
#include "../common/huf.h"
#include "zstd_decompress_internal.h"
#include "zstd_ddict.h"
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
# include "../legacy/zstd_legacy.h"
#endif
/*-*******************************************************
* Types
*********************************************************/
struct ZSTD_DDict_s {
void* dictBuffer;
const void* dictContent;
size_t dictSize;
ZSTD_entropyDTables_t entropy;
U32 dictID;
U32 entropyPresent;
ZSTD_customMem cMem;
}; /* typedef'd to ZSTD_DDict within "zstd.h" */
const void* ZSTD_DDict_dictContent(const ZSTD_DDict* ddict)
{
assert(ddict != NULL);
return ddict->dictContent;
}
size_t ZSTD_DDict_dictSize(const ZSTD_DDict* ddict)
{
assert(ddict != NULL);
return ddict->dictSize;
}
void ZSTD_copyDDictParameters(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict)
{
DEBUGLOG(4, "ZSTD_copyDDictParameters");
assert(dctx != NULL);
assert(ddict != NULL);
dctx->dictID = ddict->dictID;
dctx->prefixStart = ddict->dictContent;
dctx->virtualStart = ddict->dictContent;
dctx->dictEnd = (const BYTE*)ddict->dictContent + ddict->dictSize;
dctx->previousDstEnd = dctx->dictEnd;
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
dctx->dictContentBeginForFuzzing = dctx->prefixStart;
dctx->dictContentEndForFuzzing = dctx->previousDstEnd;
#endif
if (ddict->entropyPresent) {
dctx->litEntropy = 1;
dctx->fseEntropy = 1;
dctx->LLTptr = ddict->entropy.LLTable;
dctx->MLTptr = ddict->entropy.MLTable;
dctx->OFTptr = ddict->entropy.OFTable;
dctx->HUFptr = ddict->entropy.hufTable;
dctx->entropy.rep[0] = ddict->entropy.rep[0];
dctx->entropy.rep[1] = ddict->entropy.rep[1];
dctx->entropy.rep[2] = ddict->entropy.rep[2];
} else {
dctx->litEntropy = 0;
dctx->fseEntropy = 0;
}
}
static size_t
ZSTD_loadEntropy_intoDDict(ZSTD_DDict* ddict,
ZSTD_dictContentType_e dictContentType)
{
ddict->dictID = 0;
ddict->entropyPresent = 0;
if (dictContentType == ZSTD_dct_rawContent) return 0;
if (ddict->dictSize < 8) {
if (dictContentType == ZSTD_dct_fullDict)
return ERROR(dictionary_corrupted); /* only accept specified dictionaries */
return 0; /* pure content mode */
}
{ U32 const magic = MEM_readLE32(ddict->dictContent);
if (magic != ZSTD_MAGIC_DICTIONARY) {
if (dictContentType == ZSTD_dct_fullDict)
return ERROR(dictionary_corrupted); /* only accept specified dictionaries */
return 0; /* pure content mode */
}
}
ddict->dictID = MEM_readLE32((const char*)ddict->dictContent + ZSTD_FRAMEIDSIZE);
/* load entropy tables */
RETURN_ERROR_IF(ZSTD_isError(ZSTD_loadDEntropy(
&ddict->entropy, ddict->dictContent, ddict->dictSize)),
dictionary_corrupted, "");
ddict->entropyPresent = 1;
return 0;
}
static size_t ZSTD_initDDict_internal(ZSTD_DDict* ddict,
const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType)
{
if ((dictLoadMethod == ZSTD_dlm_byRef) || (!dict) || (!dictSize)) {
ddict->dictBuffer = NULL;
ddict->dictContent = dict;
if (!dict) dictSize = 0;
} else {
void* const internalBuffer = ZSTD_customMalloc(dictSize, ddict->cMem);
ddict->dictBuffer = internalBuffer;
ddict->dictContent = internalBuffer;
if (!internalBuffer) return ERROR(memory_allocation);
ZSTD_memcpy(internalBuffer, dict, dictSize);
}
ddict->dictSize = dictSize;
ddict->entropy.hufTable[0] = (HUF_DTable)((HufLog)*0x1000001); /* cover both little and big endian */
/* parse dictionary content */
FORWARD_IF_ERROR( ZSTD_loadEntropy_intoDDict(ddict, dictContentType) , "");
return 0;
}
ZSTD_DDict* ZSTD_createDDict_advanced(const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType,
ZSTD_customMem customMem)
{
if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL;
{ ZSTD_DDict* const ddict = (ZSTD_DDict*) ZSTD_customMalloc(sizeof(ZSTD_DDict), customMem);
if (ddict == NULL) return NULL;
ddict->cMem = customMem;
{ size_t const initResult = ZSTD_initDDict_internal(ddict,
dict, dictSize,
dictLoadMethod, dictContentType);
if (ZSTD_isError(initResult)) {
ZSTD_freeDDict(ddict);
return NULL;
} }
return ddict;
}
}
/*! ZSTD_createDDict() :
* Create a digested dictionary, to start decompression without startup delay.
* `dict` content is copied inside DDict.
* Consequently, `dict` can be released after `ZSTD_DDict` creation */
ZSTD_DDict* ZSTD_createDDict(const void* dict, size_t dictSize)
{
ZSTD_customMem const allocator = { NULL, NULL, NULL };
return ZSTD_createDDict_advanced(dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto, allocator);
}
/*! ZSTD_createDDict_byReference() :
* Create a digested dictionary, to start decompression without startup delay.
* Dictionary content is simply referenced, it will be accessed during decompression.
* Warning : dictBuffer must outlive DDict (DDict must be freed before dictBuffer) */
ZSTD_DDict* ZSTD_createDDict_byReference(const void* dictBuffer, size_t dictSize)
{
ZSTD_customMem const allocator = { NULL, NULL, NULL };
return ZSTD_createDDict_advanced(dictBuffer, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto, allocator);
}
const ZSTD_DDict* ZSTD_initStaticDDict(
void* sBuffer, size_t sBufferSize,
const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType)
{
size_t const neededSpace = sizeof(ZSTD_DDict)
+ (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize);
ZSTD_DDict* const ddict = (ZSTD_DDict*)sBuffer;
assert(sBuffer != NULL);
assert(dict != NULL);
if ((size_t)sBuffer & 7) return NULL; /* 8-aligned */
if (sBufferSize < neededSpace) return NULL;
if (dictLoadMethod == ZSTD_dlm_byCopy) {
ZSTD_memcpy(ddict+1, dict, dictSize); /* local copy */
dict = ddict+1;
}
if (ZSTD_isError( ZSTD_initDDict_internal(ddict,
dict, dictSize,
ZSTD_dlm_byRef, dictContentType) ))
return NULL;
return ddict;
}
size_t ZSTD_freeDDict(ZSTD_DDict* ddict)
{
if (ddict==NULL) return 0; /* support free on NULL */
{ ZSTD_customMem const cMem = ddict->cMem;
ZSTD_customFree(ddict->dictBuffer, cMem);
ZSTD_customFree(ddict, cMem);
return 0;
}
}
/*! ZSTD_estimateDDictSize() :
* Estimate amount of memory that will be needed to create a dictionary for decompression.
* Note : dictionary created by reference using ZSTD_dlm_byRef are smaller */
size_t ZSTD_estimateDDictSize(size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod)
{
return sizeof(ZSTD_DDict) + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize);
}
size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict)
{
if (ddict==NULL) return 0; /* support sizeof on NULL */
return sizeof(*ddict) + (ddict->dictBuffer ? ddict->dictSize : 0) ;
}
/*! ZSTD_getDictID_fromDDict() :
* Provides the dictID of the dictionary loaded into `ddict`.
* If @return == 0, the dictionary is not conformant to Zstandard specification, or empty.
* Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */
unsigned ZSTD_getDictID_fromDDict(const ZSTD_DDict* ddict)
{
if (ddict==NULL) return 0;
return ZSTD_getDictID_fromDict(ddict->dictContent, ddict->dictSize);
}
diff --git a/sys/contrib/zstd/lib/decompress/zstd_ddict.h b/sys/contrib/zstd/lib/decompress/zstd_ddict.h
index 8906a71c9404..bd03268b5087 100644
--- a/sys/contrib/zstd/lib/decompress/zstd_ddict.h
+++ b/sys/contrib/zstd/lib/decompress/zstd_ddict.h
@@ -1,44 +1,44 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_DDICT_H
#define ZSTD_DDICT_H
/*-*******************************************************
* Dependencies
*********************************************************/
#include "../common/zstd_deps.h" /* size_t */
#include "../zstd.h" /* ZSTD_DDict, and several public functions */
/*-*******************************************************
* Interface
*********************************************************/
/* note: several prototypes are already published in `zstd.h` :
* ZSTD_createDDict()
* ZSTD_createDDict_byReference()
* ZSTD_createDDict_advanced()
* ZSTD_freeDDict()
* ZSTD_initStaticDDict()
* ZSTD_sizeof_DDict()
* ZSTD_estimateDDictSize()
* ZSTD_getDictID_fromDict()
*/
const void* ZSTD_DDict_dictContent(const ZSTD_DDict* ddict);
size_t ZSTD_DDict_dictSize(const ZSTD_DDict* ddict);
void ZSTD_copyDDictParameters(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict);
#endif /* ZSTD_DDICT_H */
diff --git a/sys/contrib/zstd/lib/decompress/zstd_decompress.c b/sys/contrib/zstd/lib/decompress/zstd_decompress.c
index 21f846bc77e7..0031e98cfb1a 100644
--- a/sys/contrib/zstd/lib/decompress/zstd_decompress.c
+++ b/sys/contrib/zstd/lib/decompress/zstd_decompress.c
@@ -1,1930 +1,2230 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* ***************************************************************
* Tuning parameters
*****************************************************************/
/*!
* HEAPMODE :
* Select how default decompression function ZSTD_decompress() allocates its context,
* on stack (0), or into heap (1, default; requires malloc()).
* Note that functions with explicit context such as ZSTD_decompressDCtx() are unaffected.
*/
#ifndef ZSTD_HEAPMODE
# define ZSTD_HEAPMODE 1
#endif
/*!
* LEGACY_SUPPORT :
* if set to 1+, ZSTD_decompress() can decode older formats (v0.1+)
*/
#ifndef ZSTD_LEGACY_SUPPORT
# define ZSTD_LEGACY_SUPPORT 0
#endif
/*!
* MAXWINDOWSIZE_DEFAULT :
* maximum window size accepted by DStream __by default__.
* Frames requiring more memory will be rejected.
* It's possible to set a different limit using ZSTD_DCtx_setMaxWindowSize().
*/
#ifndef ZSTD_MAXWINDOWSIZE_DEFAULT
# define ZSTD_MAXWINDOWSIZE_DEFAULT (((U32)1 << ZSTD_WINDOWLOG_LIMIT_DEFAULT) + 1)
#endif
/*!
* NO_FORWARD_PROGRESS_MAX :
* maximum allowed nb of calls to ZSTD_decompressStream()
* without any forward progress
* (defined as: no byte read from input, and no byte flushed to output)
* before triggering an error.
*/
#ifndef ZSTD_NO_FORWARD_PROGRESS_MAX
# define ZSTD_NO_FORWARD_PROGRESS_MAX 16
#endif
/*-*******************************************************
* Dependencies
*********************************************************/
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */
-#include "../common/cpu.h" /* bmi2 */
#include "../common/mem.h" /* low level memory routines */
#define FSE_STATIC_LINKING_ONLY
#include "../common/fse.h"
#define HUF_STATIC_LINKING_ONLY
#include "../common/huf.h"
+#include "../common/xxhash.h" /* XXH64_reset, XXH64_update, XXH64_digest, XXH64 */
#include "../common/zstd_internal.h" /* blockProperties_t */
#include "zstd_decompress_internal.h" /* ZSTD_DCtx */
#include "zstd_ddict.h" /* ZSTD_DDictDictContent */
#include "zstd_decompress_block.h" /* ZSTD_decompressBlock_internal */
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
# include "../legacy/zstd_legacy.h"
#endif
+
+/*************************************
+ * Multiple DDicts Hashset internals *
+ *************************************/
+
+#define DDICT_HASHSET_MAX_LOAD_FACTOR_COUNT_MULT 4
+#define DDICT_HASHSET_MAX_LOAD_FACTOR_SIZE_MULT 3 /* These two constants represent SIZE_MULT/COUNT_MULT load factor without using a float.
+ * Currently, that means a 0.75 load factor.
+ * So, if count * COUNT_MULT / size * SIZE_MULT != 0, then we've exceeded
+ * the load factor of the ddict hash set.
+ */
+
+#define DDICT_HASHSET_TABLE_BASE_SIZE 64
+#define DDICT_HASHSET_RESIZE_FACTOR 2
+
+/* Hash function to determine starting position of dict insertion within the table
+ * Returns an index between [0, hashSet->ddictPtrTableSize]
+ */
+static size_t ZSTD_DDictHashSet_getIndex(const ZSTD_DDictHashSet* hashSet, U32 dictID) {
+ const U64 hash = XXH64(&dictID, sizeof(U32), 0);
+ /* DDict ptr table size is a multiple of 2, use size - 1 as mask to get index within [0, hashSet->ddictPtrTableSize) */
+ return hash & (hashSet->ddictPtrTableSize - 1);
+}
+
+/* Adds DDict to a hashset without resizing it.
+ * If inserting a DDict with a dictID that already exists in the set, replaces the one in the set.
+ * Returns 0 if successful, or a zstd error code if something went wrong.
+ */
+static size_t ZSTD_DDictHashSet_emplaceDDict(ZSTD_DDictHashSet* hashSet, const ZSTD_DDict* ddict) {
+ const U32 dictID = ZSTD_getDictID_fromDDict(ddict);
+ size_t idx = ZSTD_DDictHashSet_getIndex(hashSet, dictID);
+ const size_t idxRangeMask = hashSet->ddictPtrTableSize - 1;
+ RETURN_ERROR_IF(hashSet->ddictPtrCount == hashSet->ddictPtrTableSize, GENERIC, "Hash set is full!");
+ DEBUGLOG(4, "Hashed index: for dictID: %u is %zu", dictID, idx);
+ while (hashSet->ddictPtrTable[idx] != NULL) {
+ /* Replace existing ddict if inserting ddict with same dictID */
+ if (ZSTD_getDictID_fromDDict(hashSet->ddictPtrTable[idx]) == dictID) {
+ DEBUGLOG(4, "DictID already exists, replacing rather than adding");
+ hashSet->ddictPtrTable[idx] = ddict;
+ return 0;
+ }
+ idx &= idxRangeMask;
+ idx++;
+ }
+ DEBUGLOG(4, "Final idx after probing for dictID %u is: %zu", dictID, idx);
+ hashSet->ddictPtrTable[idx] = ddict;
+ hashSet->ddictPtrCount++;
+ return 0;
+}
+
+/* Expands hash table by factor of DDICT_HASHSET_RESIZE_FACTOR and
+ * rehashes all values, allocates new table, frees old table.
+ * Returns 0 on success, otherwise a zstd error code.
+ */
+static size_t ZSTD_DDictHashSet_expand(ZSTD_DDictHashSet* hashSet, ZSTD_customMem customMem) {
+ size_t newTableSize = hashSet->ddictPtrTableSize * DDICT_HASHSET_RESIZE_FACTOR;
+ const ZSTD_DDict** newTable = (const ZSTD_DDict**)ZSTD_customCalloc(sizeof(ZSTD_DDict*) * newTableSize, customMem);
+ const ZSTD_DDict** oldTable = hashSet->ddictPtrTable;
+ size_t oldTableSize = hashSet->ddictPtrTableSize;
+ size_t i;
+
+ DEBUGLOG(4, "Expanding DDict hash table! Old size: %zu new size: %zu", oldTableSize, newTableSize);
+ RETURN_ERROR_IF(!newTable, memory_allocation, "Expanded hashset allocation failed!");
+ hashSet->ddictPtrTable = newTable;
+ hashSet->ddictPtrTableSize = newTableSize;
+ hashSet->ddictPtrCount = 0;
+ for (i = 0; i < oldTableSize; ++i) {
+ if (oldTable[i] != NULL) {
+ FORWARD_IF_ERROR(ZSTD_DDictHashSet_emplaceDDict(hashSet, oldTable[i]), "");
+ }
+ }
+ ZSTD_customFree((void*)oldTable, customMem);
+ DEBUGLOG(4, "Finished re-hash");
+ return 0;
+}
+
+/* Fetches a DDict with the given dictID
+ * Returns the ZSTD_DDict* with the requested dictID. If it doesn't exist, then returns NULL.
+ */
+static const ZSTD_DDict* ZSTD_DDictHashSet_getDDict(ZSTD_DDictHashSet* hashSet, U32 dictID) {
+ size_t idx = ZSTD_DDictHashSet_getIndex(hashSet, dictID);
+ const size_t idxRangeMask = hashSet->ddictPtrTableSize - 1;
+ DEBUGLOG(4, "Hashed index: for dictID: %u is %zu", dictID, idx);
+ for (;;) {
+ size_t currDictID = ZSTD_getDictID_fromDDict(hashSet->ddictPtrTable[idx]);
+ if (currDictID == dictID || currDictID == 0) {
+ /* currDictID == 0 implies a NULL ddict entry */
+ break;
+ } else {
+ idx &= idxRangeMask; /* Goes to start of table when we reach the end */
+ idx++;
+ }
+ }
+ DEBUGLOG(4, "Final idx after probing for dictID %u is: %zu", dictID, idx);
+ return hashSet->ddictPtrTable[idx];
+}
+
+/* Allocates space for and returns a ddict hash set
+ * The hash set's ZSTD_DDict* table has all values automatically set to NULL to begin with.
+ * Returns NULL if allocation failed.
+ */
+static ZSTD_DDictHashSet* ZSTD_createDDictHashSet(ZSTD_customMem customMem) {
+ ZSTD_DDictHashSet* ret = (ZSTD_DDictHashSet*)ZSTD_customMalloc(sizeof(ZSTD_DDictHashSet), customMem);
+ DEBUGLOG(4, "Allocating new hash set");
+ if (!ret)
+ return NULL;
+ ret->ddictPtrTable = (const ZSTD_DDict**)ZSTD_customCalloc(DDICT_HASHSET_TABLE_BASE_SIZE * sizeof(ZSTD_DDict*), customMem);
+ if (!ret->ddictPtrTable) {
+ ZSTD_customFree(ret, customMem);
+ return NULL;
+ }
+ ret->ddictPtrTableSize = DDICT_HASHSET_TABLE_BASE_SIZE;
+ ret->ddictPtrCount = 0;
+ return ret;
+}
+
+/* Frees the table of ZSTD_DDict* within a hashset, then frees the hashset itself.
+ * Note: The ZSTD_DDict* within the table are NOT freed.
+ */
+static void ZSTD_freeDDictHashSet(ZSTD_DDictHashSet* hashSet, ZSTD_customMem customMem) {
+ DEBUGLOG(4, "Freeing ddict hash set");
+ if (hashSet && hashSet->ddictPtrTable) {
+ ZSTD_customFree((void*)hashSet->ddictPtrTable, customMem);
+ }
+ if (hashSet) {
+ ZSTD_customFree(hashSet, customMem);
+ }
+}
+
+/* Public function: Adds a DDict into the ZSTD_DDictHashSet, possibly triggering a resize of the hash set.
+ * Returns 0 on success, or a ZSTD error.
+ */
+static size_t ZSTD_DDictHashSet_addDDict(ZSTD_DDictHashSet* hashSet, const ZSTD_DDict* ddict, ZSTD_customMem customMem) {
+ DEBUGLOG(4, "Adding dict ID: %u to hashset with - Count: %zu Tablesize: %zu", ZSTD_getDictID_fromDDict(ddict), hashSet->ddictPtrCount, hashSet->ddictPtrTableSize);
+ if (hashSet->ddictPtrCount * DDICT_HASHSET_MAX_LOAD_FACTOR_COUNT_MULT / hashSet->ddictPtrTableSize * DDICT_HASHSET_MAX_LOAD_FACTOR_SIZE_MULT != 0) {
+ FORWARD_IF_ERROR(ZSTD_DDictHashSet_expand(hashSet, customMem), "");
+ }
+ FORWARD_IF_ERROR(ZSTD_DDictHashSet_emplaceDDict(hashSet, ddict), "");
+ return 0;
+}
+
/*-*************************************************************
* Context management
***************************************************************/
size_t ZSTD_sizeof_DCtx (const ZSTD_DCtx* dctx)
{
if (dctx==NULL) return 0; /* support sizeof NULL */
return sizeof(*dctx)
+ ZSTD_sizeof_DDict(dctx->ddictLocal)
+ dctx->inBuffSize + dctx->outBuffSize;
}
size_t ZSTD_estimateDCtxSize(void) { return sizeof(ZSTD_DCtx); }
static size_t ZSTD_startingInputLength(ZSTD_format_e format)
{
size_t const startingInputLength = ZSTD_FRAMEHEADERSIZE_PREFIX(format);
/* only supports formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless */
assert( (format == ZSTD_f_zstd1) || (format == ZSTD_f_zstd1_magicless) );
return startingInputLength;
}
static void ZSTD_DCtx_resetParameters(ZSTD_DCtx* dctx)
{
assert(dctx->streamStage == zdss_init);
dctx->format = ZSTD_f_zstd1;
dctx->maxWindowSize = ZSTD_MAXWINDOWSIZE_DEFAULT;
dctx->outBufferMode = ZSTD_bm_buffered;
dctx->forceIgnoreChecksum = ZSTD_d_validateChecksum;
+ dctx->refMultipleDDicts = ZSTD_rmd_refSingleDDict;
}
static void ZSTD_initDCtx_internal(ZSTD_DCtx* dctx)
{
dctx->staticSize = 0;
dctx->ddict = NULL;
dctx->ddictLocal = NULL;
dctx->dictEnd = NULL;
dctx->ddictIsCold = 0;
dctx->dictUses = ZSTD_dont_use;
dctx->inBuff = NULL;
dctx->inBuffSize = 0;
dctx->outBuffSize = 0;
dctx->streamStage = zdss_init;
+#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
dctx->legacyContext = NULL;
dctx->previousLegacyVersion = 0;
+#endif
dctx->noForwardProgress = 0;
dctx->oversizedDuration = 0;
- dctx->bmi2 = ZSTD_cpuid_bmi2(ZSTD_cpuid());
+#if DYNAMIC_BMI2
+ dctx->bmi2 = ZSTD_cpuSupportsBmi2();
+#endif
+ dctx->ddictSet = NULL;
ZSTD_DCtx_resetParameters(dctx);
- dctx->validateChecksum = 1;
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
dctx->dictContentEndForFuzzing = NULL;
#endif
}
ZSTD_DCtx* ZSTD_initStaticDCtx(void *workspace, size_t workspaceSize)
{
ZSTD_DCtx* const dctx = (ZSTD_DCtx*) workspace;
if ((size_t)workspace & 7) return NULL; /* 8-aligned */
if (workspaceSize < sizeof(ZSTD_DCtx)) return NULL; /* minimum size */
ZSTD_initDCtx_internal(dctx);
dctx->staticSize = workspaceSize;
dctx->inBuff = (char*)(dctx+1);
return dctx;
}
-ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem)
-{
+static ZSTD_DCtx* ZSTD_createDCtx_internal(ZSTD_customMem customMem) {
if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL;
{ ZSTD_DCtx* const dctx = (ZSTD_DCtx*)ZSTD_customMalloc(sizeof(*dctx), customMem);
if (!dctx) return NULL;
dctx->customMem = customMem;
ZSTD_initDCtx_internal(dctx);
return dctx;
}
}
+ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem)
+{
+ return ZSTD_createDCtx_internal(customMem);
+}
+
ZSTD_DCtx* ZSTD_createDCtx(void)
{
DEBUGLOG(3, "ZSTD_createDCtx");
- return ZSTD_createDCtx_advanced(ZSTD_defaultCMem);
+ return ZSTD_createDCtx_internal(ZSTD_defaultCMem);
}
static void ZSTD_clearDict(ZSTD_DCtx* dctx)
{
ZSTD_freeDDict(dctx->ddictLocal);
dctx->ddictLocal = NULL;
dctx->ddict = NULL;
dctx->dictUses = ZSTD_dont_use;
}
size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx)
{
if (dctx==NULL) return 0; /* support free on NULL */
RETURN_ERROR_IF(dctx->staticSize, memory_allocation, "not compatible with static DCtx");
{ ZSTD_customMem const cMem = dctx->customMem;
ZSTD_clearDict(dctx);
ZSTD_customFree(dctx->inBuff, cMem);
dctx->inBuff = NULL;
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1)
if (dctx->legacyContext)
ZSTD_freeLegacyStreamContext(dctx->legacyContext, dctx->previousLegacyVersion);
#endif
+ if (dctx->ddictSet) {
+ ZSTD_freeDDictHashSet(dctx->ddictSet, cMem);
+ dctx->ddictSet = NULL;
+ }
ZSTD_customFree(dctx, cMem);
return 0;
}
}
/* no longer useful */
void ZSTD_copyDCtx(ZSTD_DCtx* dstDCtx, const ZSTD_DCtx* srcDCtx)
{
size_t const toCopy = (size_t)((char*)(&dstDCtx->inBuff) - (char*)dstDCtx);
ZSTD_memcpy(dstDCtx, srcDCtx, toCopy); /* no need to copy workspace */
}
+/* Given a dctx with a digested frame params, re-selects the correct ZSTD_DDict based on
+ * the requested dict ID from the frame. If there exists a reference to the correct ZSTD_DDict, then
+ * accordingly sets the ddict to be used to decompress the frame.
+ *
+ * If no DDict is found, then no action is taken, and the ZSTD_DCtx::ddict remains as-is.
+ *
+ * ZSTD_d_refMultipleDDicts must be enabled for this function to be called.
+ */
+static void ZSTD_DCtx_selectFrameDDict(ZSTD_DCtx* dctx) {
+ assert(dctx->refMultipleDDicts && dctx->ddictSet);
+ DEBUGLOG(4, "Adjusting DDict based on requested dict ID from frame");
+ if (dctx->ddict) {
+ const ZSTD_DDict* frameDDict = ZSTD_DDictHashSet_getDDict(dctx->ddictSet, dctx->fParams.dictID);
+ if (frameDDict) {
+ DEBUGLOG(4, "DDict found!");
+ ZSTD_clearDict(dctx);
+ dctx->dictID = dctx->fParams.dictID;
+ dctx->ddict = frameDDict;
+ dctx->dictUses = ZSTD_use_indefinitely;
+ }
+ }
+}
+
/*-*************************************************************
* Frame header decoding
***************************************************************/
/*! ZSTD_isFrame() :
* Tells if the content of `buffer` starts with a valid Frame Identifier.
* Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0.
* Note 2 : Legacy Frame Identifiers are considered valid only if Legacy Support is enabled.
* Note 3 : Skippable Frame Identifiers are considered valid. */
unsigned ZSTD_isFrame(const void* buffer, size_t size)
{
if (size < ZSTD_FRAMEIDSIZE) return 0;
{ U32 const magic = MEM_readLE32(buffer);
if (magic == ZSTD_MAGICNUMBER) return 1;
if ((magic & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) return 1;
}
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1)
if (ZSTD_isLegacy(buffer, size)) return 1;
#endif
return 0;
}
+/*! ZSTD_isSkippableFrame() :
+ * Tells if the content of `buffer` starts with a valid Frame Identifier for a skippable frame.
+ * Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0.
+ */
+unsigned ZSTD_isSkippableFrame(const void* buffer, size_t size)
+{
+ if (size < ZSTD_FRAMEIDSIZE) return 0;
+ { U32 const magic = MEM_readLE32(buffer);
+ if ((magic & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) return 1;
+ }
+ return 0;
+}
+
/** ZSTD_frameHeaderSize_internal() :
* srcSize must be large enough to reach header size fields.
* note : only works for formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless.
* @return : size of the Frame Header
* or an error code, which can be tested with ZSTD_isError() */
static size_t ZSTD_frameHeaderSize_internal(const void* src, size_t srcSize, ZSTD_format_e format)
{
size_t const minInputSize = ZSTD_startingInputLength(format);
RETURN_ERROR_IF(srcSize < minInputSize, srcSize_wrong, "");
{ BYTE const fhd = ((const BYTE*)src)[minInputSize-1];
U32 const dictID= fhd & 3;
U32 const singleSegment = (fhd >> 5) & 1;
U32 const fcsId = fhd >> 6;
return minInputSize + !singleSegment
+ ZSTD_did_fieldSize[dictID] + ZSTD_fcs_fieldSize[fcsId]
+ (singleSegment && !fcsId);
}
}
/** ZSTD_frameHeaderSize() :
* srcSize must be >= ZSTD_frameHeaderSize_prefix.
* @return : size of the Frame Header,
* or an error code (if srcSize is too small) */
size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize)
{
return ZSTD_frameHeaderSize_internal(src, srcSize, ZSTD_f_zstd1);
}
/** ZSTD_getFrameHeader_advanced() :
* decode Frame Header, or require larger `srcSize`.
* note : only works for formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless
* @return : 0, `zfhPtr` is correctly filled,
* >0, `srcSize` is too small, value is wanted `srcSize` amount,
* or an error code, which can be tested using ZSTD_isError() */
size_t ZSTD_getFrameHeader_advanced(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize, ZSTD_format_e format)
{
const BYTE* ip = (const BYTE*)src;
size_t const minInputSize = ZSTD_startingInputLength(format);
ZSTD_memset(zfhPtr, 0, sizeof(*zfhPtr)); /* not strictly necessary, but static analyzer do not understand that zfhPtr is only going to be read only if return value is zero, since they are 2 different signals */
if (srcSize < minInputSize) return minInputSize;
RETURN_ERROR_IF(src==NULL, GENERIC, "invalid parameter");
if ( (format != ZSTD_f_zstd1_magicless)
&& (MEM_readLE32(src) != ZSTD_MAGICNUMBER) ) {
if ((MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) {
/* skippable frame */
if (srcSize < ZSTD_SKIPPABLEHEADERSIZE)
return ZSTD_SKIPPABLEHEADERSIZE; /* magic number + frame length */
ZSTD_memset(zfhPtr, 0, sizeof(*zfhPtr));
zfhPtr->frameContentSize = MEM_readLE32((const char *)src + ZSTD_FRAMEIDSIZE);
zfhPtr->frameType = ZSTD_skippableFrame;
return 0;
}
RETURN_ERROR(prefix_unknown, "");
}
/* ensure there is enough `srcSize` to fully read/decode frame header */
{ size_t const fhsize = ZSTD_frameHeaderSize_internal(src, srcSize, format);
if (srcSize < fhsize) return fhsize;
zfhPtr->headerSize = (U32)fhsize;
}
{ BYTE const fhdByte = ip[minInputSize-1];
size_t pos = minInputSize;
U32 const dictIDSizeCode = fhdByte&3;
U32 const checksumFlag = (fhdByte>>2)&1;
U32 const singleSegment = (fhdByte>>5)&1;
U32 const fcsID = fhdByte>>6;
U64 windowSize = 0;
U32 dictID = 0;
U64 frameContentSize = ZSTD_CONTENTSIZE_UNKNOWN;
RETURN_ERROR_IF((fhdByte & 0x08) != 0, frameParameter_unsupported,
"reserved bits, must be zero");
if (!singleSegment) {
BYTE const wlByte = ip[pos++];
U32 const windowLog = (wlByte >> 3) + ZSTD_WINDOWLOG_ABSOLUTEMIN;
RETURN_ERROR_IF(windowLog > ZSTD_WINDOWLOG_MAX, frameParameter_windowTooLarge, "");
windowSize = (1ULL << windowLog);
windowSize += (windowSize >> 3) * (wlByte&7);
}
switch(dictIDSizeCode)
{
- default: assert(0); /* impossible */
+ default:
+ assert(0); /* impossible */
+ ZSTD_FALLTHROUGH;
case 0 : break;
case 1 : dictID = ip[pos]; pos++; break;
case 2 : dictID = MEM_readLE16(ip+pos); pos+=2; break;
case 3 : dictID = MEM_readLE32(ip+pos); pos+=4; break;
}
switch(fcsID)
{
- default: assert(0); /* impossible */
+ default:
+ assert(0); /* impossible */
+ ZSTD_FALLTHROUGH;
case 0 : if (singleSegment) frameContentSize = ip[pos]; break;
case 1 : frameContentSize = MEM_readLE16(ip+pos)+256; break;
case 2 : frameContentSize = MEM_readLE32(ip+pos); break;
case 3 : frameContentSize = MEM_readLE64(ip+pos); break;
}
if (singleSegment) windowSize = frameContentSize;
zfhPtr->frameType = ZSTD_frame;
zfhPtr->frameContentSize = frameContentSize;
zfhPtr->windowSize = windowSize;
zfhPtr->blockSizeMax = (unsigned) MIN(windowSize, ZSTD_BLOCKSIZE_MAX);
zfhPtr->dictID = dictID;
zfhPtr->checksumFlag = checksumFlag;
}
return 0;
}
/** ZSTD_getFrameHeader() :
* decode Frame Header, or require larger `srcSize`.
* note : this function does not consume input, it only reads it.
* @return : 0, `zfhPtr` is correctly filled,
* >0, `srcSize` is too small, value is wanted `srcSize` amount,
* or an error code, which can be tested using ZSTD_isError() */
size_t ZSTD_getFrameHeader(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize)
{
return ZSTD_getFrameHeader_advanced(zfhPtr, src, srcSize, ZSTD_f_zstd1);
}
-
/** ZSTD_getFrameContentSize() :
* compatible with legacy mode
* @return : decompressed size of the single frame pointed to be `src` if known, otherwise
* - ZSTD_CONTENTSIZE_UNKNOWN if the size cannot be determined
* - ZSTD_CONTENTSIZE_ERROR if an error occurred (e.g. invalid magic number, srcSize too small) */
unsigned long long ZSTD_getFrameContentSize(const void *src, size_t srcSize)
{
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1)
if (ZSTD_isLegacy(src, srcSize)) {
unsigned long long const ret = ZSTD_getDecompressedSize_legacy(src, srcSize);
return ret == 0 ? ZSTD_CONTENTSIZE_UNKNOWN : ret;
}
#endif
{ ZSTD_frameHeader zfh;
if (ZSTD_getFrameHeader(&zfh, src, srcSize) != 0)
return ZSTD_CONTENTSIZE_ERROR;
if (zfh.frameType == ZSTD_skippableFrame) {
return 0;
} else {
return zfh.frameContentSize;
} }
}
static size_t readSkippableFrameSize(void const* src, size_t srcSize)
{
size_t const skippableHeaderSize = ZSTD_SKIPPABLEHEADERSIZE;
U32 sizeU32;
RETURN_ERROR_IF(srcSize < ZSTD_SKIPPABLEHEADERSIZE, srcSize_wrong, "");
sizeU32 = MEM_readLE32((BYTE const*)src + ZSTD_FRAMEIDSIZE);
RETURN_ERROR_IF((U32)(sizeU32 + ZSTD_SKIPPABLEHEADERSIZE) < sizeU32,
frameParameter_unsupported, "");
{
size_t const skippableSize = skippableHeaderSize + sizeU32;
RETURN_ERROR_IF(skippableSize > srcSize, srcSize_wrong, "");
return skippableSize;
}
}
+/*! ZSTD_readSkippableFrame() :
+ * Retrieves a zstd skippable frame containing data given by src, and writes it to dst buffer.
+ *
+ * The parameter magicVariant will receive the magicVariant that was supplied when the frame was written,
+ * i.e. magicNumber - ZSTD_MAGIC_SKIPPABLE_START. This can be NULL if the caller is not interested
+ * in the magicVariant.
+ *
+ * Returns an error if destination buffer is not large enough, or if the frame is not skippable.
+ *
+ * @return : number of bytes written or a ZSTD error.
+ */
+ZSTDLIB_API size_t ZSTD_readSkippableFrame(void* dst, size_t dstCapacity, unsigned* magicVariant,
+ const void* src, size_t srcSize)
+{
+ U32 const magicNumber = MEM_readLE32(src);
+ size_t skippableFrameSize = readSkippableFrameSize(src, srcSize);
+ size_t skippableContentSize = skippableFrameSize - ZSTD_SKIPPABLEHEADERSIZE;
+
+ /* check input validity */
+ RETURN_ERROR_IF(!ZSTD_isSkippableFrame(src, srcSize), frameParameter_unsupported, "");
+ RETURN_ERROR_IF(skippableFrameSize < ZSTD_SKIPPABLEHEADERSIZE || skippableFrameSize > srcSize, srcSize_wrong, "");
+ RETURN_ERROR_IF(skippableContentSize > dstCapacity, dstSize_tooSmall, "");
+
+ /* deliver payload */
+ if (skippableContentSize > 0 && dst != NULL)
+ ZSTD_memcpy(dst, (const BYTE *)src + ZSTD_SKIPPABLEHEADERSIZE, skippableContentSize);
+ if (magicVariant != NULL)
+ *magicVariant = magicNumber - ZSTD_MAGIC_SKIPPABLE_START;
+ return skippableContentSize;
+}
+
/** ZSTD_findDecompressedSize() :
* compatible with legacy mode
* `srcSize` must be the exact length of some number of ZSTD compressed and/or
* skippable frames
* @return : decompressed size of the frames contained */
unsigned long long ZSTD_findDecompressedSize(const void* src, size_t srcSize)
{
unsigned long long totalDstSize = 0;
while (srcSize >= ZSTD_startingInputLength(ZSTD_f_zstd1)) {
U32 const magicNumber = MEM_readLE32(src);
if ((magicNumber & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) {
size_t const skippableSize = readSkippableFrameSize(src, srcSize);
if (ZSTD_isError(skippableSize)) {
return ZSTD_CONTENTSIZE_ERROR;
}
assert(skippableSize <= srcSize);
src = (const BYTE *)src + skippableSize;
srcSize -= skippableSize;
continue;
}
{ unsigned long long const ret = ZSTD_getFrameContentSize(src, srcSize);
if (ret >= ZSTD_CONTENTSIZE_ERROR) return ret;
/* check for overflow */
if (totalDstSize + ret < totalDstSize) return ZSTD_CONTENTSIZE_ERROR;
totalDstSize += ret;
}
{ size_t const frameSrcSize = ZSTD_findFrameCompressedSize(src, srcSize);
if (ZSTD_isError(frameSrcSize)) {
return ZSTD_CONTENTSIZE_ERROR;
}
src = (const BYTE *)src + frameSrcSize;
srcSize -= frameSrcSize;
}
} /* while (srcSize >= ZSTD_frameHeaderSize_prefix) */
if (srcSize) return ZSTD_CONTENTSIZE_ERROR;
return totalDstSize;
}
/** ZSTD_getDecompressedSize() :
* compatible with legacy mode
* @return : decompressed size if known, 0 otherwise
note : 0 can mean any of the following :
- frame content is empty
- decompressed size field is not present in frame header
- frame header unknown / not supported
- frame header not complete (`srcSize` too small) */
unsigned long long ZSTD_getDecompressedSize(const void* src, size_t srcSize)
{
unsigned long long const ret = ZSTD_getFrameContentSize(src, srcSize);
ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_ERROR < ZSTD_CONTENTSIZE_UNKNOWN);
return (ret >= ZSTD_CONTENTSIZE_ERROR) ? 0 : ret;
}
/** ZSTD_decodeFrameHeader() :
* `headerSize` must be the size provided by ZSTD_frameHeaderSize().
+ * If multiple DDict references are enabled, also will choose the correct DDict to use.
* @return : 0 if success, or an error code, which can be tested using ZSTD_isError() */
static size_t ZSTD_decodeFrameHeader(ZSTD_DCtx* dctx, const void* src, size_t headerSize)
{
size_t const result = ZSTD_getFrameHeader_advanced(&(dctx->fParams), src, headerSize, dctx->format);
if (ZSTD_isError(result)) return result; /* invalid header */
RETURN_ERROR_IF(result>0, srcSize_wrong, "headerSize too small");
+
+ /* Reference DDict requested by frame if dctx references multiple ddicts */
+ if (dctx->refMultipleDDicts == ZSTD_rmd_refMultipleDDicts && dctx->ddictSet) {
+ ZSTD_DCtx_selectFrameDDict(dctx);
+ }
+
#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
/* Skip the dictID check in fuzzing mode, because it makes the search
* harder.
*/
RETURN_ERROR_IF(dctx->fParams.dictID && (dctx->dictID != dctx->fParams.dictID),
dictionary_wrong, "");
#endif
dctx->validateChecksum = (dctx->fParams.checksumFlag && !dctx->forceIgnoreChecksum) ? 1 : 0;
if (dctx->validateChecksum) XXH64_reset(&dctx->xxhState, 0);
+ dctx->processedCSize += headerSize;
return 0;
}
static ZSTD_frameSizeInfo ZSTD_errorFrameSizeInfo(size_t ret)
{
ZSTD_frameSizeInfo frameSizeInfo;
frameSizeInfo.compressedSize = ret;
frameSizeInfo.decompressedBound = ZSTD_CONTENTSIZE_ERROR;
return frameSizeInfo;
}
static ZSTD_frameSizeInfo ZSTD_findFrameSizeInfo(const void* src, size_t srcSize)
{
ZSTD_frameSizeInfo frameSizeInfo;
ZSTD_memset(&frameSizeInfo, 0, sizeof(ZSTD_frameSizeInfo));
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1)
if (ZSTD_isLegacy(src, srcSize))
return ZSTD_findFrameSizeInfoLegacy(src, srcSize);
#endif
if ((srcSize >= ZSTD_SKIPPABLEHEADERSIZE)
&& (MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) {
frameSizeInfo.compressedSize = readSkippableFrameSize(src, srcSize);
assert(ZSTD_isError(frameSizeInfo.compressedSize) ||
frameSizeInfo.compressedSize <= srcSize);
return frameSizeInfo;
} else {
const BYTE* ip = (const BYTE*)src;
const BYTE* const ipstart = ip;
size_t remainingSize = srcSize;
size_t nbBlocks = 0;
ZSTD_frameHeader zfh;
/* Extract Frame Header */
{ size_t const ret = ZSTD_getFrameHeader(&zfh, src, srcSize);
if (ZSTD_isError(ret))
return ZSTD_errorFrameSizeInfo(ret);
if (ret > 0)
return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong));
}
ip += zfh.headerSize;
remainingSize -= zfh.headerSize;
/* Iterate over each block */
while (1) {
blockProperties_t blockProperties;
size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties);
if (ZSTD_isError(cBlockSize))
return ZSTD_errorFrameSizeInfo(cBlockSize);
if (ZSTD_blockHeaderSize + cBlockSize > remainingSize)
return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong));
ip += ZSTD_blockHeaderSize + cBlockSize;
remainingSize -= ZSTD_blockHeaderSize + cBlockSize;
nbBlocks++;
if (blockProperties.lastBlock) break;
}
/* Final frame content checksum */
if (zfh.checksumFlag) {
if (remainingSize < 4)
return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong));
ip += 4;
}
frameSizeInfo.compressedSize = (size_t)(ip - ipstart);
frameSizeInfo.decompressedBound = (zfh.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN)
? zfh.frameContentSize
: nbBlocks * zfh.blockSizeMax;
return frameSizeInfo;
}
}
/** ZSTD_findFrameCompressedSize() :
* compatible with legacy mode
* `src` must point to the start of a ZSTD frame, ZSTD legacy frame, or skippable frame
* `srcSize` must be at least as large as the frame contained
* @return : the compressed size of the frame starting at `src` */
size_t ZSTD_findFrameCompressedSize(const void *src, size_t srcSize)
{
ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize);
return frameSizeInfo.compressedSize;
}
/** ZSTD_decompressBound() :
* compatible with legacy mode
* `src` must point to the start of a ZSTD frame or a skippeable frame
* `srcSize` must be at least as large as the frame contained
* @return : the maximum decompressed size of the compressed source
*/
unsigned long long ZSTD_decompressBound(const void* src, size_t srcSize)
{
unsigned long long bound = 0;
/* Iterate over each frame */
while (srcSize > 0) {
ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize);
size_t const compressedSize = frameSizeInfo.compressedSize;
unsigned long long const decompressedBound = frameSizeInfo.decompressedBound;
if (ZSTD_isError(compressedSize) || decompressedBound == ZSTD_CONTENTSIZE_ERROR)
return ZSTD_CONTENTSIZE_ERROR;
assert(srcSize >= compressedSize);
src = (const BYTE*)src + compressedSize;
srcSize -= compressedSize;
bound += decompressedBound;
}
return bound;
}
/*-*************************************************************
* Frame decoding
***************************************************************/
/** ZSTD_insertBlock() :
* insert `src` block into `dctx` history. Useful to track uncompressed blocks. */
size_t ZSTD_insertBlock(ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize)
{
DEBUGLOG(5, "ZSTD_insertBlock: %u bytes", (unsigned)blockSize);
- ZSTD_checkContinuity(dctx, blockStart);
+ ZSTD_checkContinuity(dctx, blockStart, blockSize);
dctx->previousDstEnd = (const char*)blockStart + blockSize;
return blockSize;
}
static size_t ZSTD_copyRawBlock(void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
DEBUGLOG(5, "ZSTD_copyRawBlock");
RETURN_ERROR_IF(srcSize > dstCapacity, dstSize_tooSmall, "");
if (dst == NULL) {
if (srcSize == 0) return 0;
RETURN_ERROR(dstBuffer_null, "");
}
ZSTD_memcpy(dst, src, srcSize);
return srcSize;
}
static size_t ZSTD_setRleBlock(void* dst, size_t dstCapacity,
BYTE b,
size_t regenSize)
{
RETURN_ERROR_IF(regenSize > dstCapacity, dstSize_tooSmall, "");
if (dst == NULL) {
if (regenSize == 0) return 0;
RETURN_ERROR(dstBuffer_null, "");
}
ZSTD_memset(dst, b, regenSize);
return regenSize;
}
+static void ZSTD_DCtx_trace_end(ZSTD_DCtx const* dctx, U64 uncompressedSize, U64 compressedSize, unsigned streaming)
+{
+#if ZSTD_TRACE
+ if (dctx->traceCtx && ZSTD_trace_decompress_end != NULL) {
+ ZSTD_Trace trace;
+ ZSTD_memset(&trace, 0, sizeof(trace));
+ trace.version = ZSTD_VERSION_NUMBER;
+ trace.streaming = streaming;
+ if (dctx->ddict) {
+ trace.dictionaryID = ZSTD_getDictID_fromDDict(dctx->ddict);
+ trace.dictionarySize = ZSTD_DDict_dictSize(dctx->ddict);
+ trace.dictionaryIsCold = dctx->ddictIsCold;
+ }
+ trace.uncompressedSize = (size_t)uncompressedSize;
+ trace.compressedSize = (size_t)compressedSize;
+ trace.dctx = dctx;
+ ZSTD_trace_decompress_end(dctx->traceCtx, &trace);
+ }
+#else
+ (void)dctx;
+ (void)uncompressedSize;
+ (void)compressedSize;
+ (void)streaming;
+#endif
+}
+
/*! ZSTD_decompressFrame() :
* @dctx must be properly initialized
* will update *srcPtr and *srcSizePtr,
* to make *srcPtr progress by one frame. */
static size_t ZSTD_decompressFrame(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void** srcPtr, size_t *srcSizePtr)
{
- const BYTE* ip = (const BYTE*)(*srcPtr);
- BYTE* const ostart = (BYTE* const)dst;
+ const BYTE* const istart = (const BYTE*)(*srcPtr);
+ const BYTE* ip = istart;
+ BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = dstCapacity != 0 ? ostart + dstCapacity : ostart;
BYTE* op = ostart;
size_t remainingSrcSize = *srcSizePtr;
DEBUGLOG(4, "ZSTD_decompressFrame (srcSize:%i)", (int)*srcSizePtr);
/* check */
RETURN_ERROR_IF(
remainingSrcSize < ZSTD_FRAMEHEADERSIZE_MIN(dctx->format)+ZSTD_blockHeaderSize,
srcSize_wrong, "");
/* Frame Header */
{ size_t const frameHeaderSize = ZSTD_frameHeaderSize_internal(
ip, ZSTD_FRAMEHEADERSIZE_PREFIX(dctx->format), dctx->format);
if (ZSTD_isError(frameHeaderSize)) return frameHeaderSize;
RETURN_ERROR_IF(remainingSrcSize < frameHeaderSize+ZSTD_blockHeaderSize,
srcSize_wrong, "");
FORWARD_IF_ERROR( ZSTD_decodeFrameHeader(dctx, ip, frameHeaderSize) , "");
ip += frameHeaderSize; remainingSrcSize -= frameHeaderSize;
}
/* Loop on each block */
while (1) {
size_t decodedSize;
blockProperties_t blockProperties;
size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSrcSize, &blockProperties);
if (ZSTD_isError(cBlockSize)) return cBlockSize;
ip += ZSTD_blockHeaderSize;
remainingSrcSize -= ZSTD_blockHeaderSize;
RETURN_ERROR_IF(cBlockSize > remainingSrcSize, srcSize_wrong, "");
switch(blockProperties.blockType)
{
case bt_compressed:
- decodedSize = ZSTD_decompressBlock_internal(dctx, op, (size_t)(oend-op), ip, cBlockSize, /* frame */ 1);
+ decodedSize = ZSTD_decompressBlock_internal(dctx, op, (size_t)(oend-op), ip, cBlockSize, /* frame */ 1, not_streaming);
break;
case bt_raw :
decodedSize = ZSTD_copyRawBlock(op, (size_t)(oend-op), ip, cBlockSize);
break;
case bt_rle :
decodedSize = ZSTD_setRleBlock(op, (size_t)(oend-op), *ip, blockProperties.origSize);
break;
case bt_reserved :
default:
RETURN_ERROR(corruption_detected, "invalid block type");
}
if (ZSTD_isError(decodedSize)) return decodedSize;
if (dctx->validateChecksum)
XXH64_update(&dctx->xxhState, op, decodedSize);
if (decodedSize != 0)
op += decodedSize;
assert(ip != NULL);
ip += cBlockSize;
remainingSrcSize -= cBlockSize;
if (blockProperties.lastBlock) break;
}
if (dctx->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN) {
RETURN_ERROR_IF((U64)(op-ostart) != dctx->fParams.frameContentSize,
corruption_detected, "");
}
if (dctx->fParams.checksumFlag) { /* Frame content checksum verification */
RETURN_ERROR_IF(remainingSrcSize<4, checksum_wrong, "");
if (!dctx->forceIgnoreChecksum) {
U32 const checkCalc = (U32)XXH64_digest(&dctx->xxhState);
U32 checkRead;
checkRead = MEM_readLE32(ip);
RETURN_ERROR_IF(checkRead != checkCalc, checksum_wrong, "");
}
ip += 4;
remainingSrcSize -= 4;
}
-
+ ZSTD_DCtx_trace_end(dctx, (U64)(op-ostart), (U64)(ip-istart), /* streaming */ 0);
/* Allow caller to get size read */
*srcPtr = ip;
*srcSizePtr = remainingSrcSize;
return (size_t)(op-ostart);
}
static size_t ZSTD_decompressMultiFrame(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict, size_t dictSize,
const ZSTD_DDict* ddict)
{
void* const dststart = dst;
int moreThan1Frame = 0;
DEBUGLOG(5, "ZSTD_decompressMultiFrame");
assert(dict==NULL || ddict==NULL); /* either dict or ddict set, not both */
if (ddict) {
dict = ZSTD_DDict_dictContent(ddict);
dictSize = ZSTD_DDict_dictSize(ddict);
}
while (srcSize >= ZSTD_startingInputLength(dctx->format)) {
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1)
if (ZSTD_isLegacy(src, srcSize)) {
size_t decodedSize;
size_t const frameSize = ZSTD_findFrameCompressedSizeLegacy(src, srcSize);
if (ZSTD_isError(frameSize)) return frameSize;
RETURN_ERROR_IF(dctx->staticSize, memory_allocation,
"legacy support is not compatible with static dctx");
decodedSize = ZSTD_decompressLegacy(dst, dstCapacity, src, frameSize, dict, dictSize);
if (ZSTD_isError(decodedSize)) return decodedSize;
assert(decodedSize <= dstCapacity);
dst = (BYTE*)dst + decodedSize;
dstCapacity -= decodedSize;
src = (const BYTE*)src + frameSize;
srcSize -= frameSize;
continue;
}
#endif
{ U32 const magicNumber = MEM_readLE32(src);
DEBUGLOG(4, "reading magic number %08X (expecting %08X)",
(unsigned)magicNumber, ZSTD_MAGICNUMBER);
if ((magicNumber & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) {
size_t const skippableSize = readSkippableFrameSize(src, srcSize);
FORWARD_IF_ERROR(skippableSize, "readSkippableFrameSize failed");
assert(skippableSize <= srcSize);
src = (const BYTE *)src + skippableSize;
srcSize -= skippableSize;
continue;
} }
if (ddict) {
/* we were called from ZSTD_decompress_usingDDict */
FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDDict(dctx, ddict), "");
} else {
/* this will initialize correctly with no dict if dict == NULL, so
* use this in all cases but ddict */
FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDict(dctx, dict, dictSize), "");
}
- ZSTD_checkContinuity(dctx, dst);
+ ZSTD_checkContinuity(dctx, dst, dstCapacity);
{ const size_t res = ZSTD_decompressFrame(dctx, dst, dstCapacity,
&src, &srcSize);
RETURN_ERROR_IF(
(ZSTD_getErrorCode(res) == ZSTD_error_prefix_unknown)
&& (moreThan1Frame==1),
srcSize_wrong,
"At least one frame successfully completed, "
"but following bytes are garbage: "
"it's more likely to be a srcSize error, "
"specifying more input bytes than size of frame(s). "
"Note: one could be unlucky, it might be a corruption error instead, "
"happening right at the place where we expect zstd magic bytes. "
"But this is _much_ less likely than a srcSize field error.");
if (ZSTD_isError(res)) return res;
assert(res <= dstCapacity);
if (res != 0)
dst = (BYTE*)dst + res;
dstCapacity -= res;
}
moreThan1Frame = 1;
} /* while (srcSize >= ZSTD_frameHeaderSize_prefix) */
RETURN_ERROR_IF(srcSize, srcSize_wrong, "input not entirely consumed");
return (size_t)((BYTE*)dst - (BYTE*)dststart);
}
size_t ZSTD_decompress_usingDict(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict, size_t dictSize)
{
return ZSTD_decompressMultiFrame(dctx, dst, dstCapacity, src, srcSize, dict, dictSize, NULL);
}
static ZSTD_DDict const* ZSTD_getDDict(ZSTD_DCtx* dctx)
{
switch (dctx->dictUses) {
default:
assert(0 /* Impossible */);
- /* fall-through */
+ ZSTD_FALLTHROUGH;
case ZSTD_dont_use:
ZSTD_clearDict(dctx);
return NULL;
case ZSTD_use_indefinitely:
return dctx->ddict;
case ZSTD_use_once:
dctx->dictUses = ZSTD_dont_use;
return dctx->ddict;
}
}
size_t ZSTD_decompressDCtx(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
return ZSTD_decompress_usingDDict(dctx, dst, dstCapacity, src, srcSize, ZSTD_getDDict(dctx));
}
size_t ZSTD_decompress(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
#if defined(ZSTD_HEAPMODE) && (ZSTD_HEAPMODE>=1)
size_t regenSize;
- ZSTD_DCtx* const dctx = ZSTD_createDCtx();
+ ZSTD_DCtx* const dctx = ZSTD_createDCtx_internal(ZSTD_defaultCMem);
RETURN_ERROR_IF(dctx==NULL, memory_allocation, "NULL pointer!");
regenSize = ZSTD_decompressDCtx(dctx, dst, dstCapacity, src, srcSize);
ZSTD_freeDCtx(dctx);
return regenSize;
#else /* stack mode */
ZSTD_DCtx dctx;
ZSTD_initDCtx_internal(&dctx);
return ZSTD_decompressDCtx(&dctx, dst, dstCapacity, src, srcSize);
#endif
}
/*-**************************************
* Advanced Streaming Decompression API
* Bufferless and synchronous
****************************************/
size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx) { return dctx->expected; }
/**
* Similar to ZSTD_nextSrcSizeToDecompress(), but when when a block input can be streamed,
* we allow taking a partial block as the input. Currently only raw uncompressed blocks can
* be streamed.
*
* For blocks that can be streamed, this allows us to reduce the latency until we produce
* output, and avoid copying the input.
*
* @param inputSize - The total amount of input that the caller currently has.
*/
static size_t ZSTD_nextSrcSizeToDecompressWithInputSize(ZSTD_DCtx* dctx, size_t inputSize) {
if (!(dctx->stage == ZSTDds_decompressBlock || dctx->stage == ZSTDds_decompressLastBlock))
return dctx->expected;
if (dctx->bType != bt_raw)
return dctx->expected;
- return MIN(MAX(inputSize, 1), dctx->expected);
+ return BOUNDED(1, inputSize, dctx->expected);
}
ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx) {
switch(dctx->stage)
{
default: /* should not happen */
assert(0);
+ ZSTD_FALLTHROUGH;
case ZSTDds_getFrameHeaderSize:
+ ZSTD_FALLTHROUGH;
case ZSTDds_decodeFrameHeader:
return ZSTDnit_frameHeader;
case ZSTDds_decodeBlockHeader:
return ZSTDnit_blockHeader;
case ZSTDds_decompressBlock:
return ZSTDnit_block;
case ZSTDds_decompressLastBlock:
return ZSTDnit_lastBlock;
case ZSTDds_checkChecksum:
return ZSTDnit_checksum;
case ZSTDds_decodeSkippableHeader:
+ ZSTD_FALLTHROUGH;
case ZSTDds_skipFrame:
return ZSTDnit_skippableFrame;
}
}
static int ZSTD_isSkipFrame(ZSTD_DCtx* dctx) { return dctx->stage == ZSTDds_skipFrame; }
/** ZSTD_decompressContinue() :
* srcSize : must be the exact nb of bytes expected (see ZSTD_nextSrcSizeToDecompress())
* @return : nb of bytes generated into `dst` (necessarily <= `dstCapacity)
* or an error code, which can be tested using ZSTD_isError() */
size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
DEBUGLOG(5, "ZSTD_decompressContinue (srcSize:%u)", (unsigned)srcSize);
/* Sanity check */
RETURN_ERROR_IF(srcSize != ZSTD_nextSrcSizeToDecompressWithInputSize(dctx, srcSize), srcSize_wrong, "not allowed");
- if (dstCapacity) ZSTD_checkContinuity(dctx, dst);
+ ZSTD_checkContinuity(dctx, dst, dstCapacity);
+
+ dctx->processedCSize += srcSize;
switch (dctx->stage)
{
case ZSTDds_getFrameHeaderSize :
assert(src != NULL);
if (dctx->format == ZSTD_f_zstd1) { /* allows header */
assert(srcSize >= ZSTD_FRAMEIDSIZE); /* to read skippable magic number */
if ((MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */
ZSTD_memcpy(dctx->headerBuffer, src, srcSize);
dctx->expected = ZSTD_SKIPPABLEHEADERSIZE - srcSize; /* remaining to load to get full skippable frame header */
dctx->stage = ZSTDds_decodeSkippableHeader;
return 0;
} }
dctx->headerSize = ZSTD_frameHeaderSize_internal(src, srcSize, dctx->format);
if (ZSTD_isError(dctx->headerSize)) return dctx->headerSize;
ZSTD_memcpy(dctx->headerBuffer, src, srcSize);
dctx->expected = dctx->headerSize - srcSize;
dctx->stage = ZSTDds_decodeFrameHeader;
return 0;
case ZSTDds_decodeFrameHeader:
assert(src != NULL);
ZSTD_memcpy(dctx->headerBuffer + (dctx->headerSize - srcSize), src, srcSize);
FORWARD_IF_ERROR(ZSTD_decodeFrameHeader(dctx, dctx->headerBuffer, dctx->headerSize), "");
dctx->expected = ZSTD_blockHeaderSize;
dctx->stage = ZSTDds_decodeBlockHeader;
return 0;
case ZSTDds_decodeBlockHeader:
{ blockProperties_t bp;
size_t const cBlockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp);
if (ZSTD_isError(cBlockSize)) return cBlockSize;
RETURN_ERROR_IF(cBlockSize > dctx->fParams.blockSizeMax, corruption_detected, "Block Size Exceeds Maximum");
dctx->expected = cBlockSize;
dctx->bType = bp.blockType;
dctx->rleSize = bp.origSize;
if (cBlockSize) {
dctx->stage = bp.lastBlock ? ZSTDds_decompressLastBlock : ZSTDds_decompressBlock;
return 0;
}
/* empty block */
if (bp.lastBlock) {
if (dctx->fParams.checksumFlag) {
dctx->expected = 4;
dctx->stage = ZSTDds_checkChecksum;
} else {
dctx->expected = 0; /* end of frame */
dctx->stage = ZSTDds_getFrameHeaderSize;
}
} else {
dctx->expected = ZSTD_blockHeaderSize; /* jump to next header */
dctx->stage = ZSTDds_decodeBlockHeader;
}
return 0;
}
case ZSTDds_decompressLastBlock:
case ZSTDds_decompressBlock:
DEBUGLOG(5, "ZSTD_decompressContinue: case ZSTDds_decompressBlock");
{ size_t rSize;
switch(dctx->bType)
{
case bt_compressed:
DEBUGLOG(5, "ZSTD_decompressContinue: case bt_compressed");
- rSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 1);
+ rSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 1, is_streaming);
dctx->expected = 0; /* Streaming not supported */
break;
case bt_raw :
assert(srcSize <= dctx->expected);
rSize = ZSTD_copyRawBlock(dst, dstCapacity, src, srcSize);
FORWARD_IF_ERROR(rSize, "ZSTD_copyRawBlock failed");
assert(rSize == srcSize);
dctx->expected -= rSize;
break;
case bt_rle :
rSize = ZSTD_setRleBlock(dst, dstCapacity, *(const BYTE*)src, dctx->rleSize);
dctx->expected = 0; /* Streaming not supported */
break;
case bt_reserved : /* should never happen */
default:
RETURN_ERROR(corruption_detected, "invalid block type");
}
FORWARD_IF_ERROR(rSize, "");
RETURN_ERROR_IF(rSize > dctx->fParams.blockSizeMax, corruption_detected, "Decompressed Block Size Exceeds Maximum");
DEBUGLOG(5, "ZSTD_decompressContinue: decoded size from block : %u", (unsigned)rSize);
dctx->decodedSize += rSize;
if (dctx->validateChecksum) XXH64_update(&dctx->xxhState, dst, rSize);
dctx->previousDstEnd = (char*)dst + rSize;
/* Stay on the same stage until we are finished streaming the block. */
if (dctx->expected > 0) {
return rSize;
}
if (dctx->stage == ZSTDds_decompressLastBlock) { /* end of frame */
DEBUGLOG(4, "ZSTD_decompressContinue: decoded size from frame : %u", (unsigned)dctx->decodedSize);
RETURN_ERROR_IF(
dctx->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN
&& dctx->decodedSize != dctx->fParams.frameContentSize,
corruption_detected, "");
if (dctx->fParams.checksumFlag) { /* another round for frame checksum */
dctx->expected = 4;
dctx->stage = ZSTDds_checkChecksum;
} else {
+ ZSTD_DCtx_trace_end(dctx, dctx->decodedSize, dctx->processedCSize, /* streaming */ 1);
dctx->expected = 0; /* ends here */
dctx->stage = ZSTDds_getFrameHeaderSize;
}
} else {
dctx->stage = ZSTDds_decodeBlockHeader;
dctx->expected = ZSTD_blockHeaderSize;
}
return rSize;
}
case ZSTDds_checkChecksum:
assert(srcSize == 4); /* guaranteed by dctx->expected */
{
if (dctx->validateChecksum) {
U32 const h32 = (U32)XXH64_digest(&dctx->xxhState);
U32 const check32 = MEM_readLE32(src);
DEBUGLOG(4, "ZSTD_decompressContinue: checksum : calculated %08X :: %08X read", (unsigned)h32, (unsigned)check32);
RETURN_ERROR_IF(check32 != h32, checksum_wrong, "");
}
+ ZSTD_DCtx_trace_end(dctx, dctx->decodedSize, dctx->processedCSize, /* streaming */ 1);
dctx->expected = 0;
dctx->stage = ZSTDds_getFrameHeaderSize;
return 0;
}
case ZSTDds_decodeSkippableHeader:
assert(src != NULL);
assert(srcSize <= ZSTD_SKIPPABLEHEADERSIZE);
ZSTD_memcpy(dctx->headerBuffer + (ZSTD_SKIPPABLEHEADERSIZE - srcSize), src, srcSize); /* complete skippable header */
dctx->expected = MEM_readLE32(dctx->headerBuffer + ZSTD_FRAMEIDSIZE); /* note : dctx->expected can grow seriously large, beyond local buffer size */
dctx->stage = ZSTDds_skipFrame;
return 0;
case ZSTDds_skipFrame:
dctx->expected = 0;
dctx->stage = ZSTDds_getFrameHeaderSize;
return 0;
default:
assert(0); /* impossible */
RETURN_ERROR(GENERIC, "impossible to reach"); /* some compiler require default to do something */
}
}
static size_t ZSTD_refDictContent(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
{
dctx->dictEnd = dctx->previousDstEnd;
dctx->virtualStart = (const char*)dict - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart));
dctx->prefixStart = dict;
dctx->previousDstEnd = (const char*)dict + dictSize;
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
dctx->dictContentBeginForFuzzing = dctx->prefixStart;
dctx->dictContentEndForFuzzing = dctx->previousDstEnd;
#endif
return 0;
}
/*! ZSTD_loadDEntropy() :
* dict : must point at beginning of a valid zstd dictionary.
* @return : size of entropy tables read */
size_t
ZSTD_loadDEntropy(ZSTD_entropyDTables_t* entropy,
const void* const dict, size_t const dictSize)
{
const BYTE* dictPtr = (const BYTE*)dict;
const BYTE* const dictEnd = dictPtr + dictSize;
RETURN_ERROR_IF(dictSize <= 8, dictionary_corrupted, "dict is too small");
assert(MEM_readLE32(dict) == ZSTD_MAGIC_DICTIONARY); /* dict must be valid */
dictPtr += 8; /* skip header = magic + dictID */
ZSTD_STATIC_ASSERT(offsetof(ZSTD_entropyDTables_t, OFTable) == offsetof(ZSTD_entropyDTables_t, LLTable) + sizeof(entropy->LLTable));
ZSTD_STATIC_ASSERT(offsetof(ZSTD_entropyDTables_t, MLTable) == offsetof(ZSTD_entropyDTables_t, OFTable) + sizeof(entropy->OFTable));
ZSTD_STATIC_ASSERT(sizeof(entropy->LLTable) + sizeof(entropy->OFTable) + sizeof(entropy->MLTable) >= HUF_DECOMPRESS_WORKSPACE_SIZE);
{ void* const workspace = &entropy->LLTable; /* use fse tables as temporary workspace; implies fse tables are grouped together */
size_t const workspaceSize = sizeof(entropy->LLTable) + sizeof(entropy->OFTable) + sizeof(entropy->MLTable);
#ifdef HUF_FORCE_DECOMPRESS_X1
/* in minimal huffman, we always use X1 variants */
size_t const hSize = HUF_readDTableX1_wksp(entropy->hufTable,
dictPtr, dictEnd - dictPtr,
workspace, workspaceSize);
#else
size_t const hSize = HUF_readDTableX2_wksp(entropy->hufTable,
dictPtr, (size_t)(dictEnd - dictPtr),
workspace, workspaceSize);
#endif
RETURN_ERROR_IF(HUF_isError(hSize), dictionary_corrupted, "");
dictPtr += hSize;
}
{ short offcodeNCount[MaxOff+1];
unsigned offcodeMaxValue = MaxOff, offcodeLog;
size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, (size_t)(dictEnd-dictPtr));
RETURN_ERROR_IF(FSE_isError(offcodeHeaderSize), dictionary_corrupted, "");
RETURN_ERROR_IF(offcodeMaxValue > MaxOff, dictionary_corrupted, "");
RETURN_ERROR_IF(offcodeLog > OffFSELog, dictionary_corrupted, "");
ZSTD_buildFSETable( entropy->OFTable,
offcodeNCount, offcodeMaxValue,
OF_base, OF_bits,
offcodeLog,
entropy->workspace, sizeof(entropy->workspace),
/* bmi2 */0);
dictPtr += offcodeHeaderSize;
}
{ short matchlengthNCount[MaxML+1];
unsigned matchlengthMaxValue = MaxML, matchlengthLog;
size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, (size_t)(dictEnd-dictPtr));
RETURN_ERROR_IF(FSE_isError(matchlengthHeaderSize), dictionary_corrupted, "");
RETURN_ERROR_IF(matchlengthMaxValue > MaxML, dictionary_corrupted, "");
RETURN_ERROR_IF(matchlengthLog > MLFSELog, dictionary_corrupted, "");
ZSTD_buildFSETable( entropy->MLTable,
matchlengthNCount, matchlengthMaxValue,
ML_base, ML_bits,
matchlengthLog,
entropy->workspace, sizeof(entropy->workspace),
/* bmi2 */ 0);
dictPtr += matchlengthHeaderSize;
}
{ short litlengthNCount[MaxLL+1];
unsigned litlengthMaxValue = MaxLL, litlengthLog;
size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, (size_t)(dictEnd-dictPtr));
RETURN_ERROR_IF(FSE_isError(litlengthHeaderSize), dictionary_corrupted, "");
RETURN_ERROR_IF(litlengthMaxValue > MaxLL, dictionary_corrupted, "");
RETURN_ERROR_IF(litlengthLog > LLFSELog, dictionary_corrupted, "");
ZSTD_buildFSETable( entropy->LLTable,
litlengthNCount, litlengthMaxValue,
LL_base, LL_bits,
litlengthLog,
entropy->workspace, sizeof(entropy->workspace),
/* bmi2 */ 0);
dictPtr += litlengthHeaderSize;
}
RETURN_ERROR_IF(dictPtr+12 > dictEnd, dictionary_corrupted, "");
{ int i;
size_t const dictContentSize = (size_t)(dictEnd - (dictPtr+12));
for (i=0; i<3; i++) {
U32 const rep = MEM_readLE32(dictPtr); dictPtr += 4;
RETURN_ERROR_IF(rep==0 || rep > dictContentSize,
dictionary_corrupted, "");
entropy->rep[i] = rep;
} }
return (size_t)(dictPtr - (const BYTE*)dict);
}
static size_t ZSTD_decompress_insertDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
{
if (dictSize < 8) return ZSTD_refDictContent(dctx, dict, dictSize);
{ U32 const magic = MEM_readLE32(dict);
if (magic != ZSTD_MAGIC_DICTIONARY) {
return ZSTD_refDictContent(dctx, dict, dictSize); /* pure content mode */
} }
dctx->dictID = MEM_readLE32((const char*)dict + ZSTD_FRAMEIDSIZE);
/* load entropy tables */
{ size_t const eSize = ZSTD_loadDEntropy(&dctx->entropy, dict, dictSize);
RETURN_ERROR_IF(ZSTD_isError(eSize), dictionary_corrupted, "");
dict = (const char*)dict + eSize;
dictSize -= eSize;
}
dctx->litEntropy = dctx->fseEntropy = 1;
/* reference dictionary content */
return ZSTD_refDictContent(dctx, dict, dictSize);
}
size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx)
{
assert(dctx != NULL);
+#if ZSTD_TRACE
+ dctx->traceCtx = (ZSTD_trace_decompress_begin != NULL) ? ZSTD_trace_decompress_begin(dctx) : 0;
+#endif
dctx->expected = ZSTD_startingInputLength(dctx->format); /* dctx->format must be properly set */
dctx->stage = ZSTDds_getFrameHeaderSize;
+ dctx->processedCSize = 0;
dctx->decodedSize = 0;
dctx->previousDstEnd = NULL;
dctx->prefixStart = NULL;
dctx->virtualStart = NULL;
dctx->dictEnd = NULL;
dctx->entropy.hufTable[0] = (HUF_DTable)((HufLog)*0x1000001); /* cover both little and big endian */
dctx->litEntropy = dctx->fseEntropy = 0;
dctx->dictID = 0;
dctx->bType = bt_reserved;
ZSTD_STATIC_ASSERT(sizeof(dctx->entropy.rep) == sizeof(repStartValue));
ZSTD_memcpy(dctx->entropy.rep, repStartValue, sizeof(repStartValue)); /* initial repcodes */
dctx->LLTptr = dctx->entropy.LLTable;
dctx->MLTptr = dctx->entropy.MLTable;
dctx->OFTptr = dctx->entropy.OFTable;
dctx->HUFptr = dctx->entropy.hufTable;
return 0;
}
size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
{
FORWARD_IF_ERROR( ZSTD_decompressBegin(dctx) , "");
if (dict && dictSize)
RETURN_ERROR_IF(
ZSTD_isError(ZSTD_decompress_insertDictionary(dctx, dict, dictSize)),
dictionary_corrupted, "");
return 0;
}
/* ====== ZSTD_DDict ====== */
size_t ZSTD_decompressBegin_usingDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict)
{
DEBUGLOG(4, "ZSTD_decompressBegin_usingDDict");
assert(dctx != NULL);
if (ddict) {
const char* const dictStart = (const char*)ZSTD_DDict_dictContent(ddict);
size_t const dictSize = ZSTD_DDict_dictSize(ddict);
const void* const dictEnd = dictStart + dictSize;
dctx->ddictIsCold = (dctx->dictEnd != dictEnd);
DEBUGLOG(4, "DDict is %s",
dctx->ddictIsCold ? "~cold~" : "hot!");
}
FORWARD_IF_ERROR( ZSTD_decompressBegin(dctx) , "");
if (ddict) { /* NULL ddict is equivalent to no dictionary */
ZSTD_copyDDictParameters(dctx, ddict);
}
return 0;
}
/*! ZSTD_getDictID_fromDict() :
* Provides the dictID stored within dictionary.
* if @return == 0, the dictionary is not conformant with Zstandard specification.
* It can still be loaded, but as a content-only dictionary. */
unsigned ZSTD_getDictID_fromDict(const void* dict, size_t dictSize)
{
if (dictSize < 8) return 0;
if (MEM_readLE32(dict) != ZSTD_MAGIC_DICTIONARY) return 0;
return MEM_readLE32((const char*)dict + ZSTD_FRAMEIDSIZE);
}
/*! ZSTD_getDictID_fromFrame() :
* Provides the dictID required to decompress frame stored within `src`.
* If @return == 0, the dictID could not be decoded.
* This could for one of the following reasons :
* - The frame does not require a dictionary (most common case).
* - The frame was built with dictID intentionally removed.
* Needed dictionary is a hidden information.
* Note : this use case also happens when using a non-conformant dictionary.
* - `srcSize` is too small, and as a result, frame header could not be decoded.
* Note : possible if `srcSize < ZSTD_FRAMEHEADERSIZE_MAX`.
* - This is not a Zstandard frame.
* When identifying the exact failure cause, it's possible to use
* ZSTD_getFrameHeader(), which will provide a more precise error code. */
unsigned ZSTD_getDictID_fromFrame(const void* src, size_t srcSize)
{
ZSTD_frameHeader zfp = { 0, 0, 0, ZSTD_frame, 0, 0, 0 };
size_t const hError = ZSTD_getFrameHeader(&zfp, src, srcSize);
if (ZSTD_isError(hError)) return 0;
return zfp.dictID;
}
/*! ZSTD_decompress_usingDDict() :
* Decompression using a pre-digested Dictionary
* Use dictionary without significant overhead. */
size_t ZSTD_decompress_usingDDict(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTD_DDict* ddict)
{
/* pass content and size in case legacy frames are encountered */
return ZSTD_decompressMultiFrame(dctx, dst, dstCapacity, src, srcSize,
NULL, 0,
ddict);
}
/*=====================================
* Streaming decompression
*====================================*/
ZSTD_DStream* ZSTD_createDStream(void)
{
DEBUGLOG(3, "ZSTD_createDStream");
- return ZSTD_createDStream_advanced(ZSTD_defaultCMem);
+ return ZSTD_createDCtx_internal(ZSTD_defaultCMem);
}
ZSTD_DStream* ZSTD_initStaticDStream(void *workspace, size_t workspaceSize)
{
return ZSTD_initStaticDCtx(workspace, workspaceSize);
}
ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem)
{
- return ZSTD_createDCtx_advanced(customMem);
+ return ZSTD_createDCtx_internal(customMem);
}
size_t ZSTD_freeDStream(ZSTD_DStream* zds)
{
return ZSTD_freeDCtx(zds);
}
/* *** Initialization *** */
size_t ZSTD_DStreamInSize(void) { return ZSTD_BLOCKSIZE_MAX + ZSTD_blockHeaderSize; }
size_t ZSTD_DStreamOutSize(void) { return ZSTD_BLOCKSIZE_MAX; }
size_t ZSTD_DCtx_loadDictionary_advanced(ZSTD_DCtx* dctx,
const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType)
{
RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, "");
ZSTD_clearDict(dctx);
if (dict && dictSize != 0) {
dctx->ddictLocal = ZSTD_createDDict_advanced(dict, dictSize, dictLoadMethod, dictContentType, dctx->customMem);
RETURN_ERROR_IF(dctx->ddictLocal == NULL, memory_allocation, "NULL pointer!");
dctx->ddict = dctx->ddictLocal;
dctx->dictUses = ZSTD_use_indefinitely;
}
return 0;
}
size_t ZSTD_DCtx_loadDictionary_byReference(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
{
return ZSTD_DCtx_loadDictionary_advanced(dctx, dict, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto);
}
size_t ZSTD_DCtx_loadDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
{
return ZSTD_DCtx_loadDictionary_advanced(dctx, dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto);
}
size_t ZSTD_DCtx_refPrefix_advanced(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType)
{
FORWARD_IF_ERROR(ZSTD_DCtx_loadDictionary_advanced(dctx, prefix, prefixSize, ZSTD_dlm_byRef, dictContentType), "");
dctx->dictUses = ZSTD_use_once;
return 0;
}
size_t ZSTD_DCtx_refPrefix(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize)
{
return ZSTD_DCtx_refPrefix_advanced(dctx, prefix, prefixSize, ZSTD_dct_rawContent);
}
/* ZSTD_initDStream_usingDict() :
* return : expected size, aka ZSTD_startingInputLength().
* this function cannot fail */
size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize)
{
DEBUGLOG(4, "ZSTD_initDStream_usingDict");
FORWARD_IF_ERROR( ZSTD_DCtx_reset(zds, ZSTD_reset_session_only) , "");
FORWARD_IF_ERROR( ZSTD_DCtx_loadDictionary(zds, dict, dictSize) , "");
return ZSTD_startingInputLength(zds->format);
}
/* note : this variant can't fail */
size_t ZSTD_initDStream(ZSTD_DStream* zds)
{
DEBUGLOG(4, "ZSTD_initDStream");
return ZSTD_initDStream_usingDDict(zds, NULL);
}
/* ZSTD_initDStream_usingDDict() :
* ddict will just be referenced, and must outlive decompression session
* this function cannot fail */
size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* dctx, const ZSTD_DDict* ddict)
{
FORWARD_IF_ERROR( ZSTD_DCtx_reset(dctx, ZSTD_reset_session_only) , "");
FORWARD_IF_ERROR( ZSTD_DCtx_refDDict(dctx, ddict) , "");
return ZSTD_startingInputLength(dctx->format);
}
/* ZSTD_resetDStream() :
* return : expected size, aka ZSTD_startingInputLength().
* this function cannot fail */
size_t ZSTD_resetDStream(ZSTD_DStream* dctx)
{
FORWARD_IF_ERROR(ZSTD_DCtx_reset(dctx, ZSTD_reset_session_only), "");
return ZSTD_startingInputLength(dctx->format);
}
size_t ZSTD_DCtx_refDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict)
{
RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, "");
ZSTD_clearDict(dctx);
if (ddict) {
dctx->ddict = ddict;
dctx->dictUses = ZSTD_use_indefinitely;
+ if (dctx->refMultipleDDicts == ZSTD_rmd_refMultipleDDicts) {
+ if (dctx->ddictSet == NULL) {
+ dctx->ddictSet = ZSTD_createDDictHashSet(dctx->customMem);
+ if (!dctx->ddictSet) {
+ RETURN_ERROR(memory_allocation, "Failed to allocate memory for hash set!");
+ }
+ }
+ assert(!dctx->staticSize); /* Impossible: ddictSet cannot have been allocated if static dctx */
+ FORWARD_IF_ERROR(ZSTD_DDictHashSet_addDDict(dctx->ddictSet, ddict, dctx->customMem), "");
+ }
}
return 0;
}
/* ZSTD_DCtx_setMaxWindowSize() :
* note : no direct equivalence in ZSTD_DCtx_setParameter,
* since this version sets windowSize, and the other sets windowLog */
size_t ZSTD_DCtx_setMaxWindowSize(ZSTD_DCtx* dctx, size_t maxWindowSize)
{
ZSTD_bounds const bounds = ZSTD_dParam_getBounds(ZSTD_d_windowLogMax);
size_t const min = (size_t)1 << bounds.lowerBound;
size_t const max = (size_t)1 << bounds.upperBound;
RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, "");
RETURN_ERROR_IF(maxWindowSize < min, parameter_outOfBound, "");
RETURN_ERROR_IF(maxWindowSize > max, parameter_outOfBound, "");
dctx->maxWindowSize = maxWindowSize;
return 0;
}
size_t ZSTD_DCtx_setFormat(ZSTD_DCtx* dctx, ZSTD_format_e format)
{
return ZSTD_DCtx_setParameter(dctx, ZSTD_d_format, (int)format);
}
ZSTD_bounds ZSTD_dParam_getBounds(ZSTD_dParameter dParam)
{
ZSTD_bounds bounds = { 0, 0, 0 };
switch(dParam) {
case ZSTD_d_windowLogMax:
bounds.lowerBound = ZSTD_WINDOWLOG_ABSOLUTEMIN;
bounds.upperBound = ZSTD_WINDOWLOG_MAX;
return bounds;
case ZSTD_d_format:
bounds.lowerBound = (int)ZSTD_f_zstd1;
bounds.upperBound = (int)ZSTD_f_zstd1_magicless;
ZSTD_STATIC_ASSERT(ZSTD_f_zstd1 < ZSTD_f_zstd1_magicless);
return bounds;
case ZSTD_d_stableOutBuffer:
bounds.lowerBound = (int)ZSTD_bm_buffered;
bounds.upperBound = (int)ZSTD_bm_stable;
return bounds;
case ZSTD_d_forceIgnoreChecksum:
bounds.lowerBound = (int)ZSTD_d_validateChecksum;
bounds.upperBound = (int)ZSTD_d_ignoreChecksum;
return bounds;
+ case ZSTD_d_refMultipleDDicts:
+ bounds.lowerBound = (int)ZSTD_rmd_refSingleDDict;
+ bounds.upperBound = (int)ZSTD_rmd_refMultipleDDicts;
+ return bounds;
default:;
}
bounds.error = ERROR(parameter_unsupported);
return bounds;
}
/* ZSTD_dParam_withinBounds:
* @return 1 if value is within dParam bounds,
* 0 otherwise */
static int ZSTD_dParam_withinBounds(ZSTD_dParameter dParam, int value)
{
ZSTD_bounds const bounds = ZSTD_dParam_getBounds(dParam);
if (ZSTD_isError(bounds.error)) return 0;
if (value < bounds.lowerBound) return 0;
if (value > bounds.upperBound) return 0;
return 1;
}
#define CHECK_DBOUNDS(p,v) { \
RETURN_ERROR_IF(!ZSTD_dParam_withinBounds(p, v), parameter_outOfBound, ""); \
}
size_t ZSTD_DCtx_getParameter(ZSTD_DCtx* dctx, ZSTD_dParameter param, int* value)
{
switch (param) {
case ZSTD_d_windowLogMax:
*value = (int)ZSTD_highbit32((U32)dctx->maxWindowSize);
return 0;
case ZSTD_d_format:
*value = (int)dctx->format;
return 0;
case ZSTD_d_stableOutBuffer:
*value = (int)dctx->outBufferMode;
return 0;
case ZSTD_d_forceIgnoreChecksum:
*value = (int)dctx->forceIgnoreChecksum;
return 0;
+ case ZSTD_d_refMultipleDDicts:
+ *value = (int)dctx->refMultipleDDicts;
+ return 0;
default:;
}
RETURN_ERROR(parameter_unsupported, "");
}
size_t ZSTD_DCtx_setParameter(ZSTD_DCtx* dctx, ZSTD_dParameter dParam, int value)
{
RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, "");
switch(dParam) {
case ZSTD_d_windowLogMax:
if (value == 0) value = ZSTD_WINDOWLOG_LIMIT_DEFAULT;
CHECK_DBOUNDS(ZSTD_d_windowLogMax, value);
dctx->maxWindowSize = ((size_t)1) << value;
return 0;
case ZSTD_d_format:
CHECK_DBOUNDS(ZSTD_d_format, value);
dctx->format = (ZSTD_format_e)value;
return 0;
case ZSTD_d_stableOutBuffer:
CHECK_DBOUNDS(ZSTD_d_stableOutBuffer, value);
dctx->outBufferMode = (ZSTD_bufferMode_e)value;
return 0;
case ZSTD_d_forceIgnoreChecksum:
CHECK_DBOUNDS(ZSTD_d_forceIgnoreChecksum, value);
dctx->forceIgnoreChecksum = (ZSTD_forceIgnoreChecksum_e)value;
return 0;
+ case ZSTD_d_refMultipleDDicts:
+ CHECK_DBOUNDS(ZSTD_d_refMultipleDDicts, value);
+ if (dctx->staticSize != 0) {
+ RETURN_ERROR(parameter_unsupported, "Static dctx does not support multiple DDicts!");
+ }
+ dctx->refMultipleDDicts = (ZSTD_refMultipleDDicts_e)value;
+ return 0;
default:;
}
RETURN_ERROR(parameter_unsupported, "");
}
size_t ZSTD_DCtx_reset(ZSTD_DCtx* dctx, ZSTD_ResetDirective reset)
{
if ( (reset == ZSTD_reset_session_only)
|| (reset == ZSTD_reset_session_and_parameters) ) {
dctx->streamStage = zdss_init;
dctx->noForwardProgress = 0;
}
if ( (reset == ZSTD_reset_parameters)
|| (reset == ZSTD_reset_session_and_parameters) ) {
RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, "");
ZSTD_clearDict(dctx);
ZSTD_DCtx_resetParameters(dctx);
}
return 0;
}
size_t ZSTD_sizeof_DStream(const ZSTD_DStream* dctx)
{
return ZSTD_sizeof_DCtx(dctx);
}
size_t ZSTD_decodingBufferSize_min(unsigned long long windowSize, unsigned long long frameContentSize)
{
size_t const blockSize = (size_t) MIN(windowSize, ZSTD_BLOCKSIZE_MAX);
- unsigned long long const neededRBSize = windowSize + blockSize + (WILDCOPY_OVERLENGTH * 2);
+ /* space is needed to store the litbuffer after the output of a given block without stomping the extDict of a previous run, as well as to cover both windows against wildcopy*/
+ unsigned long long const neededRBSize = windowSize + blockSize + ZSTD_BLOCKSIZE_MAX + (WILDCOPY_OVERLENGTH * 2);
unsigned long long const neededSize = MIN(frameContentSize, neededRBSize);
size_t const minRBSize = (size_t) neededSize;
RETURN_ERROR_IF((unsigned long long)minRBSize != neededSize,
frameParameter_windowTooLarge, "");
return minRBSize;
}
size_t ZSTD_estimateDStreamSize(size_t windowSize)
{
size_t const blockSize = MIN(windowSize, ZSTD_BLOCKSIZE_MAX);
size_t const inBuffSize = blockSize; /* no block can be larger */
size_t const outBuffSize = ZSTD_decodingBufferSize_min(windowSize, ZSTD_CONTENTSIZE_UNKNOWN);
return ZSTD_estimateDCtxSize() + inBuffSize + outBuffSize;
}
size_t ZSTD_estimateDStreamSize_fromFrame(const void* src, size_t srcSize)
{
U32 const windowSizeMax = 1U << ZSTD_WINDOWLOG_MAX; /* note : should be user-selectable, but requires an additional parameter (or a dctx) */
ZSTD_frameHeader zfh;
size_t const err = ZSTD_getFrameHeader(&zfh, src, srcSize);
if (ZSTD_isError(err)) return err;
RETURN_ERROR_IF(err>0, srcSize_wrong, "");
RETURN_ERROR_IF(zfh.windowSize > windowSizeMax,
frameParameter_windowTooLarge, "");
return ZSTD_estimateDStreamSize((size_t)zfh.windowSize);
}
/* ***** Decompression ***** */
static int ZSTD_DCtx_isOverflow(ZSTD_DStream* zds, size_t const neededInBuffSize, size_t const neededOutBuffSize)
{
return (zds->inBuffSize + zds->outBuffSize) >= (neededInBuffSize + neededOutBuffSize) * ZSTD_WORKSPACETOOLARGE_FACTOR;
}
static void ZSTD_DCtx_updateOversizedDuration(ZSTD_DStream* zds, size_t const neededInBuffSize, size_t const neededOutBuffSize)
{
if (ZSTD_DCtx_isOverflow(zds, neededInBuffSize, neededOutBuffSize))
zds->oversizedDuration++;
else
zds->oversizedDuration = 0;
}
static int ZSTD_DCtx_isOversizedTooLong(ZSTD_DStream* zds)
{
return zds->oversizedDuration >= ZSTD_WORKSPACETOOLARGE_MAXDURATION;
}
/* Checks that the output buffer hasn't changed if ZSTD_obm_stable is used. */
static size_t ZSTD_checkOutBuffer(ZSTD_DStream const* zds, ZSTD_outBuffer const* output)
{
ZSTD_outBuffer const expect = zds->expectedOutBuffer;
/* No requirement when ZSTD_obm_stable is not enabled. */
if (zds->outBufferMode != ZSTD_bm_stable)
return 0;
/* Any buffer is allowed in zdss_init, this must be the same for every other call until
* the context is reset.
*/
if (zds->streamStage == zdss_init)
return 0;
/* The buffer must match our expectation exactly. */
if (expect.dst == output->dst && expect.pos == output->pos && expect.size == output->size)
return 0;
RETURN_ERROR(dstBuffer_wrong, "ZSTD_d_stableOutBuffer enabled but output differs!");
}
/* Calls ZSTD_decompressContinue() with the right parameters for ZSTD_decompressStream()
* and updates the stage and the output buffer state. This call is extracted so it can be
* used both when reading directly from the ZSTD_inBuffer, and in buffered input mode.
* NOTE: You must break after calling this function since the streamStage is modified.
*/
static size_t ZSTD_decompressContinueStream(
ZSTD_DStream* zds, char** op, char* oend,
void const* src, size_t srcSize) {
int const isSkipFrame = ZSTD_isSkipFrame(zds);
if (zds->outBufferMode == ZSTD_bm_buffered) {
size_t const dstSize = isSkipFrame ? 0 : zds->outBuffSize - zds->outStart;
size_t const decodedSize = ZSTD_decompressContinue(zds,
zds->outBuff + zds->outStart, dstSize, src, srcSize);
FORWARD_IF_ERROR(decodedSize, "");
if (!decodedSize && !isSkipFrame) {
zds->streamStage = zdss_read;
} else {
zds->outEnd = zds->outStart + decodedSize;
zds->streamStage = zdss_flush;
}
} else {
/* Write directly into the output buffer */
size_t const dstSize = isSkipFrame ? 0 : (size_t)(oend - *op);
size_t const decodedSize = ZSTD_decompressContinue(zds, *op, dstSize, src, srcSize);
FORWARD_IF_ERROR(decodedSize, "");
*op += decodedSize;
/* Flushing is not needed. */
zds->streamStage = zdss_read;
assert(*op <= oend);
assert(zds->outBufferMode == ZSTD_bm_stable);
}
return 0;
}
size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inBuffer* input)
{
const char* const src = (const char*)input->src;
const char* const istart = input->pos != 0 ? src + input->pos : src;
const char* const iend = input->size != 0 ? src + input->size : src;
const char* ip = istart;
char* const dst = (char*)output->dst;
char* const ostart = output->pos != 0 ? dst + output->pos : dst;
char* const oend = output->size != 0 ? dst + output->size : dst;
char* op = ostart;
U32 someMoreWork = 1;
DEBUGLOG(5, "ZSTD_decompressStream");
RETURN_ERROR_IF(
input->pos > input->size,
srcSize_wrong,
"forbidden. in: pos: %u vs size: %u",
(U32)input->pos, (U32)input->size);
RETURN_ERROR_IF(
output->pos > output->size,
dstSize_tooSmall,
"forbidden. out: pos: %u vs size: %u",
(U32)output->pos, (U32)output->size);
DEBUGLOG(5, "input size : %u", (U32)(input->size - input->pos));
FORWARD_IF_ERROR(ZSTD_checkOutBuffer(zds, output), "");
while (someMoreWork) {
switch(zds->streamStage)
{
case zdss_init :
DEBUGLOG(5, "stage zdss_init => transparent reset ");
zds->streamStage = zdss_loadHeader;
zds->lhSize = zds->inPos = zds->outStart = zds->outEnd = 0;
+#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
zds->legacyVersion = 0;
+#endif
zds->hostageByte = 0;
zds->expectedOutBuffer = *output;
- /* fall-through */
+ ZSTD_FALLTHROUGH;
case zdss_loadHeader :
DEBUGLOG(5, "stage zdss_loadHeader (srcSize : %u)", (U32)(iend - ip));
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
if (zds->legacyVersion) {
RETURN_ERROR_IF(zds->staticSize, memory_allocation,
"legacy support is incompatible with static dctx");
{ size_t const hint = ZSTD_decompressLegacyStream(zds->legacyContext, zds->legacyVersion, output, input);
if (hint==0) zds->streamStage = zdss_init;
return hint;
} }
#endif
{ size_t const hSize = ZSTD_getFrameHeader_advanced(&zds->fParams, zds->headerBuffer, zds->lhSize, zds->format);
+ if (zds->refMultipleDDicts && zds->ddictSet) {
+ ZSTD_DCtx_selectFrameDDict(zds);
+ }
DEBUGLOG(5, "header size : %u", (U32)hSize);
if (ZSTD_isError(hSize)) {
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
U32 const legacyVersion = ZSTD_isLegacy(istart, iend-istart);
if (legacyVersion) {
ZSTD_DDict const* const ddict = ZSTD_getDDict(zds);
const void* const dict = ddict ? ZSTD_DDict_dictContent(ddict) : NULL;
size_t const dictSize = ddict ? ZSTD_DDict_dictSize(ddict) : 0;
DEBUGLOG(5, "ZSTD_decompressStream: detected legacy version v0.%u", legacyVersion);
RETURN_ERROR_IF(zds->staticSize, memory_allocation,
"legacy support is incompatible with static dctx");
FORWARD_IF_ERROR(ZSTD_initLegacyStream(&zds->legacyContext,
zds->previousLegacyVersion, legacyVersion,
dict, dictSize), "");
zds->legacyVersion = zds->previousLegacyVersion = legacyVersion;
{ size_t const hint = ZSTD_decompressLegacyStream(zds->legacyContext, legacyVersion, output, input);
if (hint==0) zds->streamStage = zdss_init; /* or stay in stage zdss_loadHeader */
return hint;
} }
#endif
return hSize; /* error */
}
if (hSize != 0) { /* need more input */
size_t const toLoad = hSize - zds->lhSize; /* if hSize!=0, hSize > zds->lhSize */
size_t const remainingInput = (size_t)(iend-ip);
assert(iend >= ip);
if (toLoad > remainingInput) { /* not enough input to load full header */
if (remainingInput > 0) {
ZSTD_memcpy(zds->headerBuffer + zds->lhSize, ip, remainingInput);
zds->lhSize += remainingInput;
}
input->pos = input->size;
return (MAX((size_t)ZSTD_FRAMEHEADERSIZE_MIN(zds->format), hSize) - zds->lhSize) + ZSTD_blockHeaderSize; /* remaining header bytes + next block header */
}
assert(ip != NULL);
ZSTD_memcpy(zds->headerBuffer + zds->lhSize, ip, toLoad); zds->lhSize = hSize; ip += toLoad;
break;
} }
/* check for single-pass mode opportunity */
if (zds->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN
&& zds->fParams.frameType != ZSTD_skippableFrame
&& (U64)(size_t)(oend-op) >= zds->fParams.frameContentSize) {
size_t const cSize = ZSTD_findFrameCompressedSize(istart, (size_t)(iend-istart));
if (cSize <= (size_t)(iend-istart)) {
/* shortcut : using single-pass mode */
size_t const decompressedSize = ZSTD_decompress_usingDDict(zds, op, (size_t)(oend-op), istart, cSize, ZSTD_getDDict(zds));
if (ZSTD_isError(decompressedSize)) return decompressedSize;
DEBUGLOG(4, "shortcut to single-pass ZSTD_decompress_usingDDict()")
ip = istart + cSize;
op += decompressedSize;
zds->expected = 0;
zds->streamStage = zdss_init;
someMoreWork = 0;
break;
} }
/* Check output buffer is large enough for ZSTD_odm_stable. */
if (zds->outBufferMode == ZSTD_bm_stable
&& zds->fParams.frameType != ZSTD_skippableFrame
&& zds->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN
&& (U64)(size_t)(oend-op) < zds->fParams.frameContentSize) {
RETURN_ERROR(dstSize_tooSmall, "ZSTD_obm_stable passed but ZSTD_outBuffer is too small");
}
/* Consume header (see ZSTDds_decodeFrameHeader) */
DEBUGLOG(4, "Consume header");
FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDDict(zds, ZSTD_getDDict(zds)), "");
if ((MEM_readLE32(zds->headerBuffer) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */
zds->expected = MEM_readLE32(zds->headerBuffer + ZSTD_FRAMEIDSIZE);
zds->stage = ZSTDds_skipFrame;
} else {
FORWARD_IF_ERROR(ZSTD_decodeFrameHeader(zds, zds->headerBuffer, zds->lhSize), "");
zds->expected = ZSTD_blockHeaderSize;
zds->stage = ZSTDds_decodeBlockHeader;
}
/* control buffer memory usage */
DEBUGLOG(4, "Control max memory usage (%u KB <= max %u KB)",
(U32)(zds->fParams.windowSize >>10),
(U32)(zds->maxWindowSize >> 10) );
zds->fParams.windowSize = MAX(zds->fParams.windowSize, 1U << ZSTD_WINDOWLOG_ABSOLUTEMIN);
RETURN_ERROR_IF(zds->fParams.windowSize > zds->maxWindowSize,
frameParameter_windowTooLarge, "");
/* Adapt buffer sizes to frame header instructions */
{ size_t const neededInBuffSize = MAX(zds->fParams.blockSizeMax, 4 /* frame checksum */);
size_t const neededOutBuffSize = zds->outBufferMode == ZSTD_bm_buffered
? ZSTD_decodingBufferSize_min(zds->fParams.windowSize, zds->fParams.frameContentSize)
: 0;
ZSTD_DCtx_updateOversizedDuration(zds, neededInBuffSize, neededOutBuffSize);
{ int const tooSmall = (zds->inBuffSize < neededInBuffSize) || (zds->outBuffSize < neededOutBuffSize);
int const tooLarge = ZSTD_DCtx_isOversizedTooLong(zds);
if (tooSmall || tooLarge) {
size_t const bufferSize = neededInBuffSize + neededOutBuffSize;
DEBUGLOG(4, "inBuff : from %u to %u",
(U32)zds->inBuffSize, (U32)neededInBuffSize);
DEBUGLOG(4, "outBuff : from %u to %u",
(U32)zds->outBuffSize, (U32)neededOutBuffSize);
if (zds->staticSize) { /* static DCtx */
DEBUGLOG(4, "staticSize : %u", (U32)zds->staticSize);
assert(zds->staticSize >= sizeof(ZSTD_DCtx)); /* controlled at init */
RETURN_ERROR_IF(
bufferSize > zds->staticSize - sizeof(ZSTD_DCtx),
memory_allocation, "");
} else {
ZSTD_customFree(zds->inBuff, zds->customMem);
zds->inBuffSize = 0;
zds->outBuffSize = 0;
zds->inBuff = (char*)ZSTD_customMalloc(bufferSize, zds->customMem);
RETURN_ERROR_IF(zds->inBuff == NULL, memory_allocation, "");
}
zds->inBuffSize = neededInBuffSize;
zds->outBuff = zds->inBuff + zds->inBuffSize;
zds->outBuffSize = neededOutBuffSize;
} } }
zds->streamStage = zdss_read;
- /* fall-through */
+ ZSTD_FALLTHROUGH;
case zdss_read:
DEBUGLOG(5, "stage zdss_read");
{ size_t const neededInSize = ZSTD_nextSrcSizeToDecompressWithInputSize(zds, (size_t)(iend - ip));
DEBUGLOG(5, "neededInSize = %u", (U32)neededInSize);
if (neededInSize==0) { /* end of frame */
zds->streamStage = zdss_init;
someMoreWork = 0;
break;
}
if ((size_t)(iend-ip) >= neededInSize) { /* decode directly from src */
FORWARD_IF_ERROR(ZSTD_decompressContinueStream(zds, &op, oend, ip, neededInSize), "");
ip += neededInSize;
/* Function modifies the stage so we must break */
break;
} }
if (ip==iend) { someMoreWork = 0; break; } /* no more input */
zds->streamStage = zdss_load;
- /* fall-through */
+ ZSTD_FALLTHROUGH;
case zdss_load:
{ size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zds);
size_t const toLoad = neededInSize - zds->inPos;
int const isSkipFrame = ZSTD_isSkipFrame(zds);
size_t loadedSize;
/* At this point we shouldn't be decompressing a block that we can stream. */
assert(neededInSize == ZSTD_nextSrcSizeToDecompressWithInputSize(zds, iend - ip));
if (isSkipFrame) {
loadedSize = MIN(toLoad, (size_t)(iend-ip));
} else {
RETURN_ERROR_IF(toLoad > zds->inBuffSize - zds->inPos,
corruption_detected,
"should never happen");
loadedSize = ZSTD_limitCopy(zds->inBuff + zds->inPos, toLoad, ip, (size_t)(iend-ip));
}
ip += loadedSize;
zds->inPos += loadedSize;
if (loadedSize < toLoad) { someMoreWork = 0; break; } /* not enough input, wait for more */
/* decode loaded input */
zds->inPos = 0; /* input is consumed */
FORWARD_IF_ERROR(ZSTD_decompressContinueStream(zds, &op, oend, zds->inBuff, neededInSize), "");
/* Function modifies the stage so we must break */
break;
}
case zdss_flush:
{ size_t const toFlushSize = zds->outEnd - zds->outStart;
size_t const flushedSize = ZSTD_limitCopy(op, (size_t)(oend-op), zds->outBuff + zds->outStart, toFlushSize);
op += flushedSize;
zds->outStart += flushedSize;
if (flushedSize == toFlushSize) { /* flush completed */
zds->streamStage = zdss_read;
if ( (zds->outBuffSize < zds->fParams.frameContentSize)
&& (zds->outStart + zds->fParams.blockSizeMax > zds->outBuffSize) ) {
DEBUGLOG(5, "restart filling outBuff from beginning (left:%i, needed:%u)",
(int)(zds->outBuffSize - zds->outStart),
(U32)zds->fParams.blockSizeMax);
zds->outStart = zds->outEnd = 0;
}
break;
} }
/* cannot complete flush */
someMoreWork = 0;
break;
default:
assert(0); /* impossible */
RETURN_ERROR(GENERIC, "impossible to reach"); /* some compiler require default to do something */
} }
/* result */
input->pos = (size_t)(ip - (const char*)(input->src));
output->pos = (size_t)(op - (char*)(output->dst));
/* Update the expected output buffer for ZSTD_obm_stable. */
zds->expectedOutBuffer = *output;
if ((ip==istart) && (op==ostart)) { /* no forward progress */
zds->noForwardProgress ++;
if (zds->noForwardProgress >= ZSTD_NO_FORWARD_PROGRESS_MAX) {
RETURN_ERROR_IF(op==oend, dstSize_tooSmall, "");
RETURN_ERROR_IF(ip==iend, srcSize_wrong, "");
assert(0);
}
} else {
zds->noForwardProgress = 0;
}
{ size_t nextSrcSizeHint = ZSTD_nextSrcSizeToDecompress(zds);
if (!nextSrcSizeHint) { /* frame fully decoded */
if (zds->outEnd == zds->outStart) { /* output fully flushed */
if (zds->hostageByte) {
if (input->pos >= input->size) {
/* can't release hostage (not present) */
zds->streamStage = zdss_read;
return 1;
}
input->pos++; /* release hostage */
} /* zds->hostageByte */
return 0;
} /* zds->outEnd == zds->outStart */
if (!zds->hostageByte) { /* output not fully flushed; keep last byte as hostage; will be released when all output is flushed */
input->pos--; /* note : pos > 0, otherwise, impossible to finish reading last block */
zds->hostageByte=1;
}
return 1;
} /* nextSrcSizeHint==0 */
nextSrcSizeHint += ZSTD_blockHeaderSize * (ZSTD_nextInputType(zds) == ZSTDnit_block); /* preload header of next block */
assert(zds->inPos <= nextSrcSizeHint);
nextSrcSizeHint -= zds->inPos; /* part already loaded*/
return nextSrcSizeHint;
}
}
size_t ZSTD_decompressStream_simpleArgs (
ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity, size_t* dstPos,
const void* src, size_t srcSize, size_t* srcPos)
{
ZSTD_outBuffer output = { dst, dstCapacity, *dstPos };
ZSTD_inBuffer input = { src, srcSize, *srcPos };
/* ZSTD_compress_generic() will check validity of dstPos and srcPos */
size_t const cErr = ZSTD_decompressStream(dctx, &output, &input);
*dstPos = output.pos;
*srcPos = input.pos;
return cErr;
}
diff --git a/sys/contrib/zstd/lib/decompress/zstd_decompress_block.c b/sys/contrib/zstd/lib/decompress/zstd_decompress_block.c
index 19cbdc5c16eb..2e44d30d2f37 100644
--- a/sys/contrib/zstd/lib/decompress/zstd_decompress_block.c
+++ b/sys/contrib/zstd/lib/decompress/zstd_decompress_block.c
@@ -1,1540 +1,2072 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* zstd_decompress_block :
* this module takes care of decompressing _compressed_ block */
/*-*******************************************************
* Dependencies
*********************************************************/
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */
#include "../common/compiler.h" /* prefetch */
#include "../common/cpu.h" /* bmi2 */
#include "../common/mem.h" /* low level memory routines */
#define FSE_STATIC_LINKING_ONLY
#include "../common/fse.h"
#define HUF_STATIC_LINKING_ONLY
#include "../common/huf.h"
#include "../common/zstd_internal.h"
#include "zstd_decompress_internal.h" /* ZSTD_DCtx */
#include "zstd_ddict.h" /* ZSTD_DDictDictContent */
#include "zstd_decompress_block.h"
/*_*******************************************************
* Macros
**********************************************************/
/* These two optional macros force the use one way or another of the two
* ZSTD_decompressSequences implementations. You can't force in both directions
* at the same time.
*/
#if defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
#error "Cannot force the use of the short and the long ZSTD_decompressSequences variants!"
#endif
/*_*******************************************************
* Memory operations
**********************************************************/
static void ZSTD_copy4(void* dst, const void* src) { ZSTD_memcpy(dst, src, 4); }
/*-*************************************************************
* Block decoding
***************************************************************/
/*! ZSTD_getcBlockSize() :
* Provides the size of compressed block from block header `src` */
size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
blockProperties_t* bpPtr)
{
RETURN_ERROR_IF(srcSize < ZSTD_blockHeaderSize, srcSize_wrong, "");
{ U32 const cBlockHeader = MEM_readLE24(src);
U32 const cSize = cBlockHeader >> 3;
bpPtr->lastBlock = cBlockHeader & 1;
bpPtr->blockType = (blockType_e)((cBlockHeader >> 1) & 3);
bpPtr->origSize = cSize; /* only useful for RLE */
if (bpPtr->blockType == bt_rle) return 1;
RETURN_ERROR_IF(bpPtr->blockType == bt_reserved, corruption_detected, "");
return cSize;
}
}
+/* Allocate buffer for literals, either overlapping current dst, or split between dst and litExtraBuffer, or stored entirely within litExtraBuffer */
+static void ZSTD_allocateLiteralsBuffer(ZSTD_DCtx* dctx, void* const dst, const size_t dstCapacity, const size_t litSize,
+ const streaming_operation streaming, const size_t expectedWriteSize, const unsigned splitImmediately)
+{
+ if (streaming == not_streaming && dstCapacity > ZSTD_BLOCKSIZE_MAX + WILDCOPY_OVERLENGTH + litSize + WILDCOPY_OVERLENGTH)
+ {
+ /* room for litbuffer to fit without read faulting */
+ dctx->litBuffer = (BYTE*)dst + ZSTD_BLOCKSIZE_MAX + WILDCOPY_OVERLENGTH;
+ dctx->litBufferEnd = dctx->litBuffer + litSize;
+ dctx->litBufferLocation = ZSTD_in_dst;
+ }
+ else if (litSize > ZSTD_LITBUFFEREXTRASIZE)
+ {
+ /* won't fit in litExtraBuffer, so it will be split between end of dst and extra buffer */
+ if (splitImmediately) {
+ /* won't fit in litExtraBuffer, so it will be split between end of dst and extra buffer */
+ dctx->litBuffer = (BYTE*)dst + expectedWriteSize - litSize + ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH;
+ dctx->litBufferEnd = dctx->litBuffer + litSize - ZSTD_LITBUFFEREXTRASIZE;
+ }
+ else {
+ /* initially this will be stored entirely in dst during huffman decoding, it will partially shifted to litExtraBuffer after */
+ dctx->litBuffer = (BYTE*)dst + expectedWriteSize - litSize;
+ dctx->litBufferEnd = (BYTE*)dst + expectedWriteSize;
+ }
+ dctx->litBufferLocation = ZSTD_split;
+ }
+ else
+ {
+ /* fits entirely within litExtraBuffer, so no split is necessary */
+ dctx->litBuffer = dctx->litExtraBuffer;
+ dctx->litBufferEnd = dctx->litBuffer + litSize;
+ dctx->litBufferLocation = ZSTD_not_in_dst;
+ }
+}
/* Hidden declaration for fullbench */
size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
- const void* src, size_t srcSize);
+ const void* src, size_t srcSize,
+ void* dst, size_t dstCapacity, const streaming_operation streaming);
/*! ZSTD_decodeLiteralsBlock() :
+ * Where it is possible to do so without being stomped by the output during decompression, the literals block will be stored
+ * in the dstBuffer. If there is room to do so, it will be stored in full in the excess dst space after where the current
+ * block will be output. Otherwise it will be stored at the end of the current dst blockspace, with a small portion being
+ * stored in dctx->litExtraBuffer to help keep it "ahead" of the current output write.
+ *
* @return : nb of bytes read from src (< srcSize )
* note : symbol not declared but exposed for fullbench */
size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
- const void* src, size_t srcSize) /* note : srcSize < BLOCKSIZE */
+ const void* src, size_t srcSize, /* note : srcSize < BLOCKSIZE */
+ void* dst, size_t dstCapacity, const streaming_operation streaming)
{
DEBUGLOG(5, "ZSTD_decodeLiteralsBlock");
RETURN_ERROR_IF(srcSize < MIN_CBLOCK_SIZE, corruption_detected, "");
{ const BYTE* const istart = (const BYTE*) src;
symbolEncodingType_e const litEncType = (symbolEncodingType_e)(istart[0] & 3);
switch(litEncType)
{
case set_repeat:
DEBUGLOG(5, "set_repeat flag : re-using stats from previous compressed literals block");
RETURN_ERROR_IF(dctx->litEntropy==0, dictionary_corrupted, "");
- /* fall-through */
+ ZSTD_FALLTHROUGH;
case set_compressed:
RETURN_ERROR_IF(srcSize < 5, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for case 3");
{ size_t lhSize, litSize, litCSize;
U32 singleStream=0;
U32 const lhlCode = (istart[0] >> 2) & 3;
U32 const lhc = MEM_readLE32(istart);
size_t hufSuccess;
+ size_t expectedWriteSize = MIN(ZSTD_BLOCKSIZE_MAX, dstCapacity);
switch(lhlCode)
{
case 0: case 1: default: /* note : default is impossible, since lhlCode into [0..3] */
/* 2 - 2 - 10 - 10 */
singleStream = !lhlCode;
lhSize = 3;
litSize = (lhc >> 4) & 0x3FF;
litCSize = (lhc >> 14) & 0x3FF;
break;
case 2:
/* 2 - 2 - 14 - 14 */
lhSize = 4;
litSize = (lhc >> 4) & 0x3FFF;
litCSize = lhc >> 18;
break;
case 3:
/* 2 - 2 - 18 - 18 */
lhSize = 5;
litSize = (lhc >> 4) & 0x3FFFF;
litCSize = (lhc >> 22) + ((size_t)istart[4] << 10);
break;
}
+ RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected, "");
RETURN_ERROR_IF(litCSize + lhSize > srcSize, corruption_detected, "");
+ RETURN_ERROR_IF(expectedWriteSize < litSize , dstSize_tooSmall, "");
+ ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 0);
/* prefetch huffman table if cold */
if (dctx->ddictIsCold && (litSize > 768 /* heuristic */)) {
PREFETCH_AREA(dctx->HUFptr, sizeof(dctx->entropy.hufTable));
}
if (litEncType==set_repeat) {
if (singleStream) {
hufSuccess = HUF_decompress1X_usingDTable_bmi2(
dctx->litBuffer, litSize, istart+lhSize, litCSize,
- dctx->HUFptr, dctx->bmi2);
+ dctx->HUFptr, ZSTD_DCtx_get_bmi2(dctx));
} else {
hufSuccess = HUF_decompress4X_usingDTable_bmi2(
dctx->litBuffer, litSize, istart+lhSize, litCSize,
- dctx->HUFptr, dctx->bmi2);
+ dctx->HUFptr, ZSTD_DCtx_get_bmi2(dctx));
}
} else {
if (singleStream) {
#if defined(HUF_FORCE_DECOMPRESS_X2)
hufSuccess = HUF_decompress1X_DCtx_wksp(
dctx->entropy.hufTable, dctx->litBuffer, litSize,
istart+lhSize, litCSize, dctx->workspace,
sizeof(dctx->workspace));
#else
hufSuccess = HUF_decompress1X1_DCtx_wksp_bmi2(
dctx->entropy.hufTable, dctx->litBuffer, litSize,
istart+lhSize, litCSize, dctx->workspace,
- sizeof(dctx->workspace), dctx->bmi2);
+ sizeof(dctx->workspace), ZSTD_DCtx_get_bmi2(dctx));
#endif
} else {
hufSuccess = HUF_decompress4X_hufOnly_wksp_bmi2(
dctx->entropy.hufTable, dctx->litBuffer, litSize,
istart+lhSize, litCSize, dctx->workspace,
- sizeof(dctx->workspace), dctx->bmi2);
+ sizeof(dctx->workspace), ZSTD_DCtx_get_bmi2(dctx));
}
}
+ if (dctx->litBufferLocation == ZSTD_split)
+ {
+ ZSTD_memcpy(dctx->litExtraBuffer, dctx->litBufferEnd - ZSTD_LITBUFFEREXTRASIZE, ZSTD_LITBUFFEREXTRASIZE);
+ ZSTD_memmove(dctx->litBuffer + ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH, dctx->litBuffer, litSize - ZSTD_LITBUFFEREXTRASIZE);
+ dctx->litBuffer += ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH;
+ dctx->litBufferEnd -= WILDCOPY_OVERLENGTH;
+ }
RETURN_ERROR_IF(HUF_isError(hufSuccess), corruption_detected, "");
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
dctx->litEntropy = 1;
if (litEncType==set_compressed) dctx->HUFptr = dctx->entropy.hufTable;
- ZSTD_memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
return litCSize + lhSize;
}
case set_basic:
{ size_t litSize, lhSize;
U32 const lhlCode = ((istart[0]) >> 2) & 3;
+ size_t expectedWriteSize = MIN(ZSTD_BLOCKSIZE_MAX, dstCapacity);
switch(lhlCode)
{
case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */
lhSize = 1;
litSize = istart[0] >> 3;
break;
case 1:
lhSize = 2;
litSize = MEM_readLE16(istart) >> 4;
break;
case 3:
lhSize = 3;
litSize = MEM_readLE24(istart) >> 4;
break;
}
+ RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
+ RETURN_ERROR_IF(expectedWriteSize < litSize, dstSize_tooSmall, "");
+ ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 1);
if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) { /* risk reading beyond src buffer with wildcopy */
RETURN_ERROR_IF(litSize+lhSize > srcSize, corruption_detected, "");
- ZSTD_memcpy(dctx->litBuffer, istart+lhSize, litSize);
+ if (dctx->litBufferLocation == ZSTD_split)
+ {
+ ZSTD_memcpy(dctx->litBuffer, istart + lhSize, litSize - ZSTD_LITBUFFEREXTRASIZE);
+ ZSTD_memcpy(dctx->litExtraBuffer, istart + lhSize + litSize - ZSTD_LITBUFFEREXTRASIZE, ZSTD_LITBUFFEREXTRASIZE);
+ }
+ else
+ {
+ ZSTD_memcpy(dctx->litBuffer, istart + lhSize, litSize);
+ }
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
- ZSTD_memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
return lhSize+litSize;
}
/* direct reference into compressed stream */
dctx->litPtr = istart+lhSize;
dctx->litSize = litSize;
+ dctx->litBufferEnd = dctx->litPtr + litSize;
+ dctx->litBufferLocation = ZSTD_not_in_dst;
return lhSize+litSize;
}
case set_rle:
{ U32 const lhlCode = ((istart[0]) >> 2) & 3;
size_t litSize, lhSize;
+ size_t expectedWriteSize = MIN(ZSTD_BLOCKSIZE_MAX, dstCapacity);
switch(lhlCode)
{
case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */
lhSize = 1;
litSize = istart[0] >> 3;
break;
case 1:
lhSize = 2;
litSize = MEM_readLE16(istart) >> 4;
break;
case 3:
lhSize = 3;
litSize = MEM_readLE24(istart) >> 4;
RETURN_ERROR_IF(srcSize<4, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4");
break;
}
+ RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected, "");
- ZSTD_memset(dctx->litBuffer, istart[lhSize], litSize + WILDCOPY_OVERLENGTH);
+ RETURN_ERROR_IF(expectedWriteSize < litSize, dstSize_tooSmall, "");
+ ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 1);
+ if (dctx->litBufferLocation == ZSTD_split)
+ {
+ ZSTD_memset(dctx->litBuffer, istart[lhSize], litSize - ZSTD_LITBUFFEREXTRASIZE);
+ ZSTD_memset(dctx->litExtraBuffer, istart[lhSize], ZSTD_LITBUFFEREXTRASIZE);
+ }
+ else
+ {
+ ZSTD_memset(dctx->litBuffer, istart[lhSize], litSize);
+ }
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
return lhSize+1;
}
default:
RETURN_ERROR(corruption_detected, "impossible");
}
}
}
/* Default FSE distribution tables.
* These are pre-calculated FSE decoding tables using default distributions as defined in specification :
* https://github.com/facebook/zstd/blob/release/doc/zstd_compression_format.md#default-distributions
* They were generated programmatically with following method :
* - start from default distributions, present in /lib/common/zstd_internal.h
* - generate tables normally, using ZSTD_buildFSETable()
* - printout the content of tables
* - pretify output, report below, test with fuzzer to ensure it's correct */
/* Default FSE distribution table for Literal Lengths */
static const ZSTD_seqSymbol LL_defaultDTable[(1<<LL_DEFAULTNORMLOG)+1] = {
{ 1, 1, 1, LL_DEFAULTNORMLOG}, /* header : fastMode, tableLog */
/* nextState, nbAddBits, nbBits, baseVal */
{ 0, 0, 4, 0}, { 16, 0, 4, 0},
{ 32, 0, 5, 1}, { 0, 0, 5, 3},
{ 0, 0, 5, 4}, { 0, 0, 5, 6},
{ 0, 0, 5, 7}, { 0, 0, 5, 9},
{ 0, 0, 5, 10}, { 0, 0, 5, 12},
{ 0, 0, 6, 14}, { 0, 1, 5, 16},
{ 0, 1, 5, 20}, { 0, 1, 5, 22},
{ 0, 2, 5, 28}, { 0, 3, 5, 32},
{ 0, 4, 5, 48}, { 32, 6, 5, 64},
{ 0, 7, 5, 128}, { 0, 8, 6, 256},
{ 0, 10, 6, 1024}, { 0, 12, 6, 4096},
{ 32, 0, 4, 0}, { 0, 0, 4, 1},
{ 0, 0, 5, 2}, { 32, 0, 5, 4},
{ 0, 0, 5, 5}, { 32, 0, 5, 7},
{ 0, 0, 5, 8}, { 32, 0, 5, 10},
{ 0, 0, 5, 11}, { 0, 0, 6, 13},
{ 32, 1, 5, 16}, { 0, 1, 5, 18},
{ 32, 1, 5, 22}, { 0, 2, 5, 24},
{ 32, 3, 5, 32}, { 0, 3, 5, 40},
{ 0, 6, 4, 64}, { 16, 6, 4, 64},
{ 32, 7, 5, 128}, { 0, 9, 6, 512},
{ 0, 11, 6, 2048}, { 48, 0, 4, 0},
{ 16, 0, 4, 1}, { 32, 0, 5, 2},
{ 32, 0, 5, 3}, { 32, 0, 5, 5},
{ 32, 0, 5, 6}, { 32, 0, 5, 8},
{ 32, 0, 5, 9}, { 32, 0, 5, 11},
{ 32, 0, 5, 12}, { 0, 0, 6, 15},
{ 32, 1, 5, 18}, { 32, 1, 5, 20},
{ 32, 2, 5, 24}, { 32, 2, 5, 28},
{ 32, 3, 5, 40}, { 32, 4, 5, 48},
{ 0, 16, 6,65536}, { 0, 15, 6,32768},
{ 0, 14, 6,16384}, { 0, 13, 6, 8192},
}; /* LL_defaultDTable */
/* Default FSE distribution table for Offset Codes */
static const ZSTD_seqSymbol OF_defaultDTable[(1<<OF_DEFAULTNORMLOG)+1] = {
{ 1, 1, 1, OF_DEFAULTNORMLOG}, /* header : fastMode, tableLog */
/* nextState, nbAddBits, nbBits, baseVal */
{ 0, 0, 5, 0}, { 0, 6, 4, 61},
{ 0, 9, 5, 509}, { 0, 15, 5,32765},
{ 0, 21, 5,2097149}, { 0, 3, 5, 5},
{ 0, 7, 4, 125}, { 0, 12, 5, 4093},
{ 0, 18, 5,262141}, { 0, 23, 5,8388605},
{ 0, 5, 5, 29}, { 0, 8, 4, 253},
{ 0, 14, 5,16381}, { 0, 20, 5,1048573},
{ 0, 2, 5, 1}, { 16, 7, 4, 125},
{ 0, 11, 5, 2045}, { 0, 17, 5,131069},
{ 0, 22, 5,4194301}, { 0, 4, 5, 13},
{ 16, 8, 4, 253}, { 0, 13, 5, 8189},
{ 0, 19, 5,524285}, { 0, 1, 5, 1},
{ 16, 6, 4, 61}, { 0, 10, 5, 1021},
{ 0, 16, 5,65533}, { 0, 28, 5,268435453},
{ 0, 27, 5,134217725}, { 0, 26, 5,67108861},
{ 0, 25, 5,33554429}, { 0, 24, 5,16777213},
}; /* OF_defaultDTable */
/* Default FSE distribution table for Match Lengths */
static const ZSTD_seqSymbol ML_defaultDTable[(1<<ML_DEFAULTNORMLOG)+1] = {
{ 1, 1, 1, ML_DEFAULTNORMLOG}, /* header : fastMode, tableLog */
/* nextState, nbAddBits, nbBits, baseVal */
{ 0, 0, 6, 3}, { 0, 0, 4, 4},
{ 32, 0, 5, 5}, { 0, 0, 5, 6},
{ 0, 0, 5, 8}, { 0, 0, 5, 9},
{ 0, 0, 5, 11}, { 0, 0, 6, 13},
{ 0, 0, 6, 16}, { 0, 0, 6, 19},
{ 0, 0, 6, 22}, { 0, 0, 6, 25},
{ 0, 0, 6, 28}, { 0, 0, 6, 31},
{ 0, 0, 6, 34}, { 0, 1, 6, 37},
{ 0, 1, 6, 41}, { 0, 2, 6, 47},
{ 0, 3, 6, 59}, { 0, 4, 6, 83},
{ 0, 7, 6, 131}, { 0, 9, 6, 515},
{ 16, 0, 4, 4}, { 0, 0, 4, 5},
{ 32, 0, 5, 6}, { 0, 0, 5, 7},
{ 32, 0, 5, 9}, { 0, 0, 5, 10},
{ 0, 0, 6, 12}, { 0, 0, 6, 15},
{ 0, 0, 6, 18}, { 0, 0, 6, 21},
{ 0, 0, 6, 24}, { 0, 0, 6, 27},
{ 0, 0, 6, 30}, { 0, 0, 6, 33},
{ 0, 1, 6, 35}, { 0, 1, 6, 39},
{ 0, 2, 6, 43}, { 0, 3, 6, 51},
{ 0, 4, 6, 67}, { 0, 5, 6, 99},
{ 0, 8, 6, 259}, { 32, 0, 4, 4},
{ 48, 0, 4, 4}, { 16, 0, 4, 5},
{ 32, 0, 5, 7}, { 32, 0, 5, 8},
{ 32, 0, 5, 10}, { 32, 0, 5, 11},
{ 0, 0, 6, 14}, { 0, 0, 6, 17},
{ 0, 0, 6, 20}, { 0, 0, 6, 23},
{ 0, 0, 6, 26}, { 0, 0, 6, 29},
{ 0, 0, 6, 32}, { 0, 16, 6,65539},
{ 0, 15, 6,32771}, { 0, 14, 6,16387},
{ 0, 13, 6, 8195}, { 0, 12, 6, 4099},
{ 0, 11, 6, 2051}, { 0, 10, 6, 1027},
}; /* ML_defaultDTable */
-static void ZSTD_buildSeqTable_rle(ZSTD_seqSymbol* dt, U32 baseValue, U32 nbAddBits)
+static void ZSTD_buildSeqTable_rle(ZSTD_seqSymbol* dt, U32 baseValue, U8 nbAddBits)
{
void* ptr = dt;
ZSTD_seqSymbol_header* const DTableH = (ZSTD_seqSymbol_header*)ptr;
ZSTD_seqSymbol* const cell = dt + 1;
DTableH->tableLog = 0;
DTableH->fastMode = 0;
cell->nbBits = 0;
cell->nextState = 0;
assert(nbAddBits < 255);
- cell->nbAdditionalBits = (BYTE)nbAddBits;
+ cell->nbAdditionalBits = nbAddBits;
cell->baseValue = baseValue;
}
/* ZSTD_buildFSETable() :
* generate FSE decoding table for one symbol (ll, ml or off)
* cannot fail if input is valid =>
* all inputs are presumed validated at this stage */
FORCE_INLINE_TEMPLATE
void ZSTD_buildFSETable_body(ZSTD_seqSymbol* dt,
const short* normalizedCounter, unsigned maxSymbolValue,
- const U32* baseValue, const U32* nbAdditionalBits,
+ const U32* baseValue, const U8* nbAdditionalBits,
unsigned tableLog, void* wksp, size_t wkspSize)
{
ZSTD_seqSymbol* const tableDecode = dt+1;
U32 const maxSV1 = maxSymbolValue + 1;
U32 const tableSize = 1 << tableLog;
U16* symbolNext = (U16*)wksp;
BYTE* spread = (BYTE*)(symbolNext + MaxSeq + 1);
U32 highThreshold = tableSize - 1;
/* Sanity Checks */
assert(maxSymbolValue <= MaxSeq);
assert(tableLog <= MaxFSELog);
assert(wkspSize >= ZSTD_BUILD_FSE_TABLE_WKSP_SIZE);
(void)wkspSize;
/* Init, lay down lowprob symbols */
{ ZSTD_seqSymbol_header DTableH;
DTableH.tableLog = tableLog;
DTableH.fastMode = 1;
{ S16 const largeLimit= (S16)(1 << (tableLog-1));
U32 s;
for (s=0; s<maxSV1; s++) {
if (normalizedCounter[s]==-1) {
tableDecode[highThreshold--].baseValue = s;
symbolNext[s] = 1;
} else {
if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
assert(normalizedCounter[s]>=0);
symbolNext[s] = (U16)normalizedCounter[s];
} } }
ZSTD_memcpy(dt, &DTableH, sizeof(DTableH));
}
/* Spread symbols */
assert(tableSize <= 512);
/* Specialized symbol spreading for the case when there are
* no low probability (-1 count) symbols. When compressing
* small blocks we avoid low probability symbols to hit this
* case, since header decoding speed matters more.
*/
if (highThreshold == tableSize - 1) {
size_t const tableMask = tableSize-1;
size_t const step = FSE_TABLESTEP(tableSize);
/* First lay down the symbols in order.
* We use a uint64_t to lay down 8 bytes at a time. This reduces branch
* misses since small blocks generally have small table logs, so nearly
* all symbols have counts <= 8. We ensure we have 8 bytes at the end of
* our buffer to handle the over-write.
*/
{
U64 const add = 0x0101010101010101ull;
size_t pos = 0;
U64 sv = 0;
U32 s;
for (s=0; s<maxSV1; ++s, sv += add) {
int i;
int const n = normalizedCounter[s];
MEM_write64(spread + pos, sv);
for (i = 8; i < n; i += 8) {
MEM_write64(spread + pos + i, sv);
}
pos += n;
}
}
/* Now we spread those positions across the table.
* The benefit of doing it in two stages is that we avoid the the
* variable size inner loop, which caused lots of branch misses.
* Now we can run through all the positions without any branch misses.
* We unroll the loop twice, since that is what emperically worked best.
*/
{
size_t position = 0;
size_t s;
size_t const unroll = 2;
assert(tableSize % unroll == 0); /* FSE_MIN_TABLELOG is 5 */
for (s = 0; s < (size_t)tableSize; s += unroll) {
size_t u;
for (u = 0; u < unroll; ++u) {
size_t const uPosition = (position + (u * step)) & tableMask;
tableDecode[uPosition].baseValue = spread[s + u];
}
position = (position + (unroll * step)) & tableMask;
}
assert(position == 0);
}
} else {
U32 const tableMask = tableSize-1;
U32 const step = FSE_TABLESTEP(tableSize);
U32 s, position = 0;
for (s=0; s<maxSV1; s++) {
int i;
int const n = normalizedCounter[s];
for (i=0; i<n; i++) {
tableDecode[position].baseValue = s;
position = (position + step) & tableMask;
while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
} }
assert(position == 0); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
}
/* Build Decoding table */
{
U32 u;
for (u=0; u<tableSize; u++) {
U32 const symbol = tableDecode[u].baseValue;
U32 const nextState = symbolNext[symbol]++;
tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32(nextState) );
tableDecode[u].nextState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
assert(nbAdditionalBits[symbol] < 255);
- tableDecode[u].nbAdditionalBits = (BYTE)nbAdditionalBits[symbol];
+ tableDecode[u].nbAdditionalBits = nbAdditionalBits[symbol];
tableDecode[u].baseValue = baseValue[symbol];
}
}
}
/* Avoids the FORCE_INLINE of the _body() function. */
static void ZSTD_buildFSETable_body_default(ZSTD_seqSymbol* dt,
const short* normalizedCounter, unsigned maxSymbolValue,
- const U32* baseValue, const U32* nbAdditionalBits,
+ const U32* baseValue, const U8* nbAdditionalBits,
unsigned tableLog, void* wksp, size_t wkspSize)
{
ZSTD_buildFSETable_body(dt, normalizedCounter, maxSymbolValue,
baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
}
#if DYNAMIC_BMI2
-TARGET_ATTRIBUTE("bmi2") static void ZSTD_buildFSETable_body_bmi2(ZSTD_seqSymbol* dt,
+BMI2_TARGET_ATTRIBUTE static void ZSTD_buildFSETable_body_bmi2(ZSTD_seqSymbol* dt,
const short* normalizedCounter, unsigned maxSymbolValue,
- const U32* baseValue, const U32* nbAdditionalBits,
+ const U32* baseValue, const U8* nbAdditionalBits,
unsigned tableLog, void* wksp, size_t wkspSize)
{
ZSTD_buildFSETable_body(dt, normalizedCounter, maxSymbolValue,
baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
}
#endif
void ZSTD_buildFSETable(ZSTD_seqSymbol* dt,
const short* normalizedCounter, unsigned maxSymbolValue,
- const U32* baseValue, const U32* nbAdditionalBits,
+ const U32* baseValue, const U8* nbAdditionalBits,
unsigned tableLog, void* wksp, size_t wkspSize, int bmi2)
{
#if DYNAMIC_BMI2
if (bmi2) {
ZSTD_buildFSETable_body_bmi2(dt, normalizedCounter, maxSymbolValue,
baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
return;
}
#endif
(void)bmi2;
ZSTD_buildFSETable_body_default(dt, normalizedCounter, maxSymbolValue,
baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
}
/*! ZSTD_buildSeqTable() :
* @return : nb bytes read from src,
* or an error code if it fails */
static size_t ZSTD_buildSeqTable(ZSTD_seqSymbol* DTableSpace, const ZSTD_seqSymbol** DTablePtr,
symbolEncodingType_e type, unsigned max, U32 maxLog,
const void* src, size_t srcSize,
- const U32* baseValue, const U32* nbAdditionalBits,
+ const U32* baseValue, const U8* nbAdditionalBits,
const ZSTD_seqSymbol* defaultTable, U32 flagRepeatTable,
int ddictIsCold, int nbSeq, U32* wksp, size_t wkspSize,
int bmi2)
{
switch(type)
{
case set_rle :
RETURN_ERROR_IF(!srcSize, srcSize_wrong, "");
RETURN_ERROR_IF((*(const BYTE*)src) > max, corruption_detected, "");
{ U32 const symbol = *(const BYTE*)src;
U32 const baseline = baseValue[symbol];
- U32 const nbBits = nbAdditionalBits[symbol];
+ U8 const nbBits = nbAdditionalBits[symbol];
ZSTD_buildSeqTable_rle(DTableSpace, baseline, nbBits);
}
*DTablePtr = DTableSpace;
return 1;
case set_basic :
*DTablePtr = defaultTable;
return 0;
case set_repeat:
RETURN_ERROR_IF(!flagRepeatTable, corruption_detected, "");
/* prefetch FSE table if used */
if (ddictIsCold && (nbSeq > 24 /* heuristic */)) {
const void* const pStart = *DTablePtr;
size_t const pSize = sizeof(ZSTD_seqSymbol) * (SEQSYMBOL_TABLE_SIZE(maxLog));
PREFETCH_AREA(pStart, pSize);
}
return 0;
case set_compressed :
{ unsigned tableLog;
S16 norm[MaxSeq+1];
size_t const headerSize = FSE_readNCount(norm, &max, &tableLog, src, srcSize);
RETURN_ERROR_IF(FSE_isError(headerSize), corruption_detected, "");
RETURN_ERROR_IF(tableLog > maxLog, corruption_detected, "");
ZSTD_buildFSETable(DTableSpace, norm, max, baseValue, nbAdditionalBits, tableLog, wksp, wkspSize, bmi2);
*DTablePtr = DTableSpace;
return headerSize;
}
default :
assert(0);
RETURN_ERROR(GENERIC, "impossible");
}
}
size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
const void* src, size_t srcSize)
{
- const BYTE* const istart = (const BYTE* const)src;
+ const BYTE* const istart = (const BYTE*)src;
const BYTE* const iend = istart + srcSize;
const BYTE* ip = istart;
int nbSeq;
DEBUGLOG(5, "ZSTD_decodeSeqHeaders");
/* check */
RETURN_ERROR_IF(srcSize < MIN_SEQUENCES_SIZE, srcSize_wrong, "");
/* SeqHead */
nbSeq = *ip++;
if (!nbSeq) {
*nbSeqPtr=0;
RETURN_ERROR_IF(srcSize != 1, srcSize_wrong, "");
return 1;
}
if (nbSeq > 0x7F) {
if (nbSeq == 0xFF) {
RETURN_ERROR_IF(ip+2 > iend, srcSize_wrong, "");
nbSeq = MEM_readLE16(ip) + LONGNBSEQ;
ip+=2;
} else {
RETURN_ERROR_IF(ip >= iend, srcSize_wrong, "");
nbSeq = ((nbSeq-0x80)<<8) + *ip++;
}
}
*nbSeqPtr = nbSeq;
/* FSE table descriptors */
RETURN_ERROR_IF(ip+1 > iend, srcSize_wrong, ""); /* minimum possible size: 1 byte for symbol encoding types */
{ symbolEncodingType_e const LLtype = (symbolEncodingType_e)(*ip >> 6);
symbolEncodingType_e const OFtype = (symbolEncodingType_e)((*ip >> 4) & 3);
symbolEncodingType_e const MLtype = (symbolEncodingType_e)((*ip >> 2) & 3);
ip++;
/* Build DTables */
{ size_t const llhSize = ZSTD_buildSeqTable(dctx->entropy.LLTable, &dctx->LLTptr,
LLtype, MaxLL, LLFSELog,
ip, iend-ip,
LL_base, LL_bits,
LL_defaultDTable, dctx->fseEntropy,
dctx->ddictIsCold, nbSeq,
dctx->workspace, sizeof(dctx->workspace),
- dctx->bmi2);
+ ZSTD_DCtx_get_bmi2(dctx));
RETURN_ERROR_IF(ZSTD_isError(llhSize), corruption_detected, "ZSTD_buildSeqTable failed");
ip += llhSize;
}
{ size_t const ofhSize = ZSTD_buildSeqTable(dctx->entropy.OFTable, &dctx->OFTptr,
OFtype, MaxOff, OffFSELog,
ip, iend-ip,
OF_base, OF_bits,
OF_defaultDTable, dctx->fseEntropy,
dctx->ddictIsCold, nbSeq,
dctx->workspace, sizeof(dctx->workspace),
- dctx->bmi2);
+ ZSTD_DCtx_get_bmi2(dctx));
RETURN_ERROR_IF(ZSTD_isError(ofhSize), corruption_detected, "ZSTD_buildSeqTable failed");
ip += ofhSize;
}
{ size_t const mlhSize = ZSTD_buildSeqTable(dctx->entropy.MLTable, &dctx->MLTptr,
MLtype, MaxML, MLFSELog,
ip, iend-ip,
ML_base, ML_bits,
ML_defaultDTable, dctx->fseEntropy,
dctx->ddictIsCold, nbSeq,
dctx->workspace, sizeof(dctx->workspace),
- dctx->bmi2);
+ ZSTD_DCtx_get_bmi2(dctx));
RETURN_ERROR_IF(ZSTD_isError(mlhSize), corruption_detected, "ZSTD_buildSeqTable failed");
ip += mlhSize;
}
}
return ip-istart;
}
typedef struct {
size_t litLength;
size_t matchLength;
size_t offset;
- const BYTE* match;
} seq_t;
typedef struct {
size_t state;
const ZSTD_seqSymbol* table;
} ZSTD_fseState;
typedef struct {
BIT_DStream_t DStream;
ZSTD_fseState stateLL;
ZSTD_fseState stateOffb;
ZSTD_fseState stateML;
size_t prevOffset[ZSTD_REP_NUM];
- const BYTE* prefixStart;
- const BYTE* dictEnd;
- size_t pos;
} seqState_t;
/*! ZSTD_overlapCopy8() :
* Copies 8 bytes from ip to op and updates op and ip where ip <= op.
* If the offset is < 8 then the offset is spread to at least 8 bytes.
*
* Precondition: *ip <= *op
* Postcondition: *op - *op >= 8
*/
HINT_INLINE void ZSTD_overlapCopy8(BYTE** op, BYTE const** ip, size_t offset) {
assert(*ip <= *op);
if (offset < 8) {
/* close range match, overlap */
static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
int const sub2 = dec64table[offset];
(*op)[0] = (*ip)[0];
(*op)[1] = (*ip)[1];
(*op)[2] = (*ip)[2];
(*op)[3] = (*ip)[3];
*ip += dec32table[offset];
ZSTD_copy4(*op+4, *ip);
*ip -= sub2;
} else {
ZSTD_copy8(*op, *ip);
}
*ip += 8;
*op += 8;
assert(*op - *ip >= 8);
}
/*! ZSTD_safecopy() :
* Specialized version of memcpy() that is allowed to READ up to WILDCOPY_OVERLENGTH past the input buffer
* and write up to 16 bytes past oend_w (op >= oend_w is allowed).
* This function is only called in the uncommon case where the sequence is near the end of the block. It
* should be fast for a single long sequence, but can be slow for several short sequences.
*
* @param ovtype controls the overlap detection
* - ZSTD_no_overlap: The source and destination are guaranteed to be at least WILDCOPY_VECLEN bytes apart.
* - ZSTD_overlap_src_before_dst: The src and dst may overlap and may be any distance apart.
* The src buffer must be before the dst buffer.
*/
-static void ZSTD_safecopy(BYTE* op, BYTE* const oend_w, BYTE const* ip, ptrdiff_t length, ZSTD_overlap_e ovtype) {
+static void ZSTD_safecopy(BYTE* op, const BYTE* const oend_w, BYTE const* ip, ptrdiff_t length, ZSTD_overlap_e ovtype) {
ptrdiff_t const diff = op - ip;
BYTE* const oend = op + length;
assert((ovtype == ZSTD_no_overlap && (diff <= -8 || diff >= 8 || op >= oend_w)) ||
(ovtype == ZSTD_overlap_src_before_dst && diff >= 0));
if (length < 8) {
/* Handle short lengths. */
while (op < oend) *op++ = *ip++;
return;
}
if (ovtype == ZSTD_overlap_src_before_dst) {
/* Copy 8 bytes and ensure the offset >= 8 when there can be overlap. */
assert(length >= 8);
ZSTD_overlapCopy8(&op, &ip, diff);
+ length -= 8;
assert(op - ip >= 8);
assert(op <= oend);
}
if (oend <= oend_w) {
/* No risk of overwrite. */
ZSTD_wildcopy(op, ip, length, ovtype);
return;
}
if (op <= oend_w) {
/* Wildcopy until we get close to the end. */
assert(oend > oend_w);
ZSTD_wildcopy(op, ip, oend_w - op, ovtype);
ip += oend_w - op;
- op = oend_w;
+ op += oend_w - op;
+ }
+ /* Handle the leftovers. */
+ while (op < oend) *op++ = *ip++;
+}
+
+/* ZSTD_safecopyDstBeforeSrc():
+ * This version allows overlap with dst before src, or handles the non-overlap case with dst after src
+ * Kept separate from more common ZSTD_safecopy case to avoid performance impact to the safecopy common case */
+static void ZSTD_safecopyDstBeforeSrc(BYTE* op, BYTE const* ip, ptrdiff_t length) {
+ ptrdiff_t const diff = op - ip;
+ BYTE* const oend = op + length;
+
+ if (length < 8 || diff > -8) {
+ /* Handle short lengths, close overlaps, and dst not before src. */
+ while (op < oend) *op++ = *ip++;
+ return;
+ }
+
+ if (op <= oend - WILDCOPY_OVERLENGTH && diff < -WILDCOPY_VECLEN) {
+ ZSTD_wildcopy(op, ip, oend - WILDCOPY_OVERLENGTH - op, ZSTD_no_overlap);
+ ip += oend - WILDCOPY_OVERLENGTH - op;
+ op += oend - WILDCOPY_OVERLENGTH - op;
}
+
/* Handle the leftovers. */
while (op < oend) *op++ = *ip++;
}
/* ZSTD_execSequenceEnd():
* This version handles cases that are near the end of the output buffer. It requires
* more careful checks to make sure there is no overflow. By separating out these hard
* and unlikely cases, we can speed up the common cases.
*
* NOTE: This function needs to be fast for a single long sequence, but doesn't need
* to be optimized for many small sequences, since those fall into ZSTD_execSequence().
*/
FORCE_NOINLINE
size_t ZSTD_execSequenceEnd(BYTE* op,
- BYTE* const oend, seq_t sequence,
- const BYTE** litPtr, const BYTE* const litLimit,
- const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
+ BYTE* const oend, seq_t sequence,
+ const BYTE** litPtr, const BYTE* const litLimit,
+ const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
{
BYTE* const oLitEnd = op + sequence.litLength;
size_t const sequenceLength = sequence.litLength + sequence.matchLength;
const BYTE* const iLitEnd = *litPtr + sequence.litLength;
const BYTE* match = oLitEnd - sequence.offset;
BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;
/* bounds checks : careful of address space overflow in 32-bit mode */
RETURN_ERROR_IF(sequenceLength > (size_t)(oend - op), dstSize_tooSmall, "last match must fit within dstBuffer");
RETURN_ERROR_IF(sequence.litLength > (size_t)(litLimit - *litPtr), corruption_detected, "try to read beyond literal buffer");
assert(op < op + sequenceLength);
assert(oLitEnd < op + sequenceLength);
/* copy literals */
ZSTD_safecopy(op, oend_w, *litPtr, sequence.litLength, ZSTD_no_overlap);
op = oLitEnd;
*litPtr = iLitEnd;
/* copy Match */
if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
/* offset beyond prefix */
RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected, "");
- match = dictEnd - (prefixStart-match);
+ match = dictEnd - (prefixStart - match);
if (match + sequence.matchLength <= dictEnd) {
ZSTD_memmove(oLitEnd, match, sequence.matchLength);
return sequenceLength;
}
/* span extDict & currentPrefixSegment */
{ size_t const length1 = dictEnd - match;
- ZSTD_memmove(oLitEnd, match, length1);
- op = oLitEnd + length1;
- sequence.matchLength -= length1;
- match = prefixStart;
- } }
+ ZSTD_memmove(oLitEnd, match, length1);
+ op = oLitEnd + length1;
+ sequence.matchLength -= length1;
+ match = prefixStart;
+ }
+ }
+ ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst);
+ return sequenceLength;
+}
+
+/* ZSTD_execSequenceEndSplitLitBuffer():
+ * This version is intended to be used during instances where the litBuffer is still split. It is kept separate to avoid performance impact for the good case.
+ */
+FORCE_NOINLINE
+size_t ZSTD_execSequenceEndSplitLitBuffer(BYTE* op,
+ BYTE* const oend, const BYTE* const oend_w, seq_t sequence,
+ const BYTE** litPtr, const BYTE* const litLimit,
+ const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
+{
+ BYTE* const oLitEnd = op + sequence.litLength;
+ size_t const sequenceLength = sequence.litLength + sequence.matchLength;
+ const BYTE* const iLitEnd = *litPtr + sequence.litLength;
+ const BYTE* match = oLitEnd - sequence.offset;
+
+
+ /* bounds checks : careful of address space overflow in 32-bit mode */
+ RETURN_ERROR_IF(sequenceLength > (size_t)(oend - op), dstSize_tooSmall, "last match must fit within dstBuffer");
+ RETURN_ERROR_IF(sequence.litLength > (size_t)(litLimit - *litPtr), corruption_detected, "try to read beyond literal buffer");
+ assert(op < op + sequenceLength);
+ assert(oLitEnd < op + sequenceLength);
+
+ /* copy literals */
+ RETURN_ERROR_IF(op > *litPtr && op < *litPtr + sequence.litLength, dstSize_tooSmall, "output should not catch up to and overwrite literal buffer");
+ ZSTD_safecopyDstBeforeSrc(op, *litPtr, sequence.litLength);
+ op = oLitEnd;
+ *litPtr = iLitEnd;
+
+ /* copy Match */
+ if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
+ /* offset beyond prefix */
+ RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected, "");
+ match = dictEnd - (prefixStart - match);
+ if (match + sequence.matchLength <= dictEnd) {
+ ZSTD_memmove(oLitEnd, match, sequence.matchLength);
+ return sequenceLength;
+ }
+ /* span extDict & currentPrefixSegment */
+ { size_t const length1 = dictEnd - match;
+ ZSTD_memmove(oLitEnd, match, length1);
+ op = oLitEnd + length1;
+ sequence.matchLength -= length1;
+ match = prefixStart;
+ }
+ }
ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst);
return sequenceLength;
}
HINT_INLINE
size_t ZSTD_execSequence(BYTE* op,
- BYTE* const oend, seq_t sequence,
- const BYTE** litPtr, const BYTE* const litLimit,
- const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
+ BYTE* const oend, seq_t sequence,
+ const BYTE** litPtr, const BYTE* const litLimit,
+ const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
{
BYTE* const oLitEnd = op + sequence.litLength;
size_t const sequenceLength = sequence.litLength + sequence.matchLength;
BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH; /* risk : address space underflow on oend=NULL */
const BYTE* const iLitEnd = *litPtr + sequence.litLength;
const BYTE* match = oLitEnd - sequence.offset;
+ assert(op != NULL /* Precondition */);
+ assert(oend_w < oend /* No underflow */);
+ /* Handle edge cases in a slow path:
+ * - Read beyond end of literals
+ * - Match end is within WILDCOPY_OVERLIMIT of oend
+ * - 32-bit mode and the match length overflows
+ */
+ if (UNLIKELY(
+ iLitEnd > litLimit ||
+ oMatchEnd > oend_w ||
+ (MEM_32bits() && (size_t)(oend - op) < sequenceLength + WILDCOPY_OVERLENGTH)))
+ return ZSTD_execSequenceEnd(op, oend, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);
+
+ /* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */
+ assert(op <= oLitEnd /* No overflow */);
+ assert(oLitEnd < oMatchEnd /* Non-zero match & no overflow */);
+ assert(oMatchEnd <= oend /* No underflow */);
+ assert(iLitEnd <= litLimit /* Literal length is in bounds */);
+ assert(oLitEnd <= oend_w /* Can wildcopy literals */);
+ assert(oMatchEnd <= oend_w /* Can wildcopy matches */);
+
+ /* Copy Literals:
+ * Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9.
+ * We likely don't need the full 32-byte wildcopy.
+ */
+ assert(WILDCOPY_OVERLENGTH >= 16);
+ ZSTD_copy16(op, (*litPtr));
+ if (UNLIKELY(sequence.litLength > 16)) {
+ ZSTD_wildcopy(op + 16, (*litPtr) + 16, sequence.litLength - 16, ZSTD_no_overlap);
+ }
+ op = oLitEnd;
+ *litPtr = iLitEnd; /* update for next sequence */
+
+ /* Copy Match */
+ if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
+ /* offset beyond prefix -> go into extDict */
+ RETURN_ERROR_IF(UNLIKELY(sequence.offset > (size_t)(oLitEnd - virtualStart)), corruption_detected, "");
+ match = dictEnd + (match - prefixStart);
+ if (match + sequence.matchLength <= dictEnd) {
+ ZSTD_memmove(oLitEnd, match, sequence.matchLength);
+ return sequenceLength;
+ }
+ /* span extDict & currentPrefixSegment */
+ { size_t const length1 = dictEnd - match;
+ ZSTD_memmove(oLitEnd, match, length1);
+ op = oLitEnd + length1;
+ sequence.matchLength -= length1;
+ match = prefixStart;
+ }
+ }
+ /* Match within prefix of 1 or more bytes */
+ assert(op <= oMatchEnd);
+ assert(oMatchEnd <= oend_w);
+ assert(match >= prefixStart);
+ assert(sequence.matchLength >= 1);
+
+ /* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy
+ * without overlap checking.
+ */
+ if (LIKELY(sequence.offset >= WILDCOPY_VECLEN)) {
+ /* We bet on a full wildcopy for matches, since we expect matches to be
+ * longer than literals (in general). In silesia, ~10% of matches are longer
+ * than 16 bytes.
+ */
+ ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength, ZSTD_no_overlap);
+ return sequenceLength;
+ }
+ assert(sequence.offset < WILDCOPY_VECLEN);
+
+ /* Copy 8 bytes and spread the offset to be >= 8. */
+ ZSTD_overlapCopy8(&op, &match, sequence.offset);
+
+ /* If the match length is > 8 bytes, then continue with the wildcopy. */
+ if (sequence.matchLength > 8) {
+ assert(op < oMatchEnd);
+ ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength - 8, ZSTD_overlap_src_before_dst);
+ }
+ return sequenceLength;
+}
+
+HINT_INLINE
+size_t ZSTD_execSequenceSplitLitBuffer(BYTE* op,
+ BYTE* const oend, const BYTE* const oend_w, seq_t sequence,
+ const BYTE** litPtr, const BYTE* const litLimit,
+ const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
+{
+ BYTE* const oLitEnd = op + sequence.litLength;
+ size_t const sequenceLength = sequence.litLength + sequence.matchLength;
+ BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
+ const BYTE* const iLitEnd = *litPtr + sequence.litLength;
+ const BYTE* match = oLitEnd - sequence.offset;
+
assert(op != NULL /* Precondition */);
assert(oend_w < oend /* No underflow */);
/* Handle edge cases in a slow path:
* - Read beyond end of literals
* - Match end is within WILDCOPY_OVERLIMIT of oend
* - 32-bit mode and the match length overflows
*/
if (UNLIKELY(
iLitEnd > litLimit ||
oMatchEnd > oend_w ||
(MEM_32bits() && (size_t)(oend - op) < sequenceLength + WILDCOPY_OVERLENGTH)))
- return ZSTD_execSequenceEnd(op, oend, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);
+ return ZSTD_execSequenceEndSplitLitBuffer(op, oend, oend_w, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);
/* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */
assert(op <= oLitEnd /* No overflow */);
assert(oLitEnd < oMatchEnd /* Non-zero match & no overflow */);
assert(oMatchEnd <= oend /* No underflow */);
assert(iLitEnd <= litLimit /* Literal length is in bounds */);
assert(oLitEnd <= oend_w /* Can wildcopy literals */);
assert(oMatchEnd <= oend_w /* Can wildcopy matches */);
/* Copy Literals:
* Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9.
* We likely don't need the full 32-byte wildcopy.
*/
assert(WILDCOPY_OVERLENGTH >= 16);
ZSTD_copy16(op, (*litPtr));
if (UNLIKELY(sequence.litLength > 16)) {
ZSTD_wildcopy(op+16, (*litPtr)+16, sequence.litLength-16, ZSTD_no_overlap);
}
op = oLitEnd;
*litPtr = iLitEnd; /* update for next sequence */
/* Copy Match */
if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
/* offset beyond prefix -> go into extDict */
RETURN_ERROR_IF(UNLIKELY(sequence.offset > (size_t)(oLitEnd - virtualStart)), corruption_detected, "");
match = dictEnd + (match - prefixStart);
if (match + sequence.matchLength <= dictEnd) {
ZSTD_memmove(oLitEnd, match, sequence.matchLength);
return sequenceLength;
}
/* span extDict & currentPrefixSegment */
{ size_t const length1 = dictEnd - match;
ZSTD_memmove(oLitEnd, match, length1);
op = oLitEnd + length1;
sequence.matchLength -= length1;
match = prefixStart;
} }
/* Match within prefix of 1 or more bytes */
assert(op <= oMatchEnd);
assert(oMatchEnd <= oend_w);
assert(match >= prefixStart);
assert(sequence.matchLength >= 1);
/* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy
* without overlap checking.
*/
if (LIKELY(sequence.offset >= WILDCOPY_VECLEN)) {
/* We bet on a full wildcopy for matches, since we expect matches to be
* longer than literals (in general). In silesia, ~10% of matches are longer
* than 16 bytes.
*/
ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength, ZSTD_no_overlap);
return sequenceLength;
}
assert(sequence.offset < WILDCOPY_VECLEN);
/* Copy 8 bytes and spread the offset to be >= 8. */
ZSTD_overlapCopy8(&op, &match, sequence.offset);
/* If the match length is > 8 bytes, then continue with the wildcopy. */
if (sequence.matchLength > 8) {
assert(op < oMatchEnd);
ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8, ZSTD_overlap_src_before_dst);
}
return sequenceLength;
}
+
static void
ZSTD_initFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, const ZSTD_seqSymbol* dt)
{
const void* ptr = dt;
const ZSTD_seqSymbol_header* const DTableH = (const ZSTD_seqSymbol_header*)ptr;
DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
DEBUGLOG(6, "ZSTD_initFseState : val=%u using %u bits",
(U32)DStatePtr->state, DTableH->tableLog);
BIT_reloadDStream(bitD);
DStatePtr->table = dt + 1;
}
FORCE_INLINE_TEMPLATE void
-ZSTD_updateFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD)
-{
- ZSTD_seqSymbol const DInfo = DStatePtr->table[DStatePtr->state];
- U32 const nbBits = DInfo.nbBits;
- size_t const lowBits = BIT_readBits(bitD, nbBits);
- DStatePtr->state = DInfo.nextState + lowBits;
-}
-
-FORCE_INLINE_TEMPLATE void
-ZSTD_updateFseStateWithDInfo(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, ZSTD_seqSymbol const DInfo)
+ZSTD_updateFseStateWithDInfo(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, U16 nextState, U32 nbBits)
{
- U32 const nbBits = DInfo.nbBits;
size_t const lowBits = BIT_readBits(bitD, nbBits);
- DStatePtr->state = DInfo.nextState + lowBits;
+ DStatePtr->state = nextState + lowBits;
}
/* We need to add at most (ZSTD_WINDOWLOG_MAX_32 - 1) bits to read the maximum
* offset bits. But we can only read at most (STREAM_ACCUMULATOR_MIN_32 - 1)
* bits before reloading. This value is the maximum number of bytes we read
* after reloading when we are decoding long offsets.
*/
#define LONG_OFFSETS_MAX_EXTRA_BITS_32 \
(ZSTD_WINDOWLOG_MAX_32 > STREAM_ACCUMULATOR_MIN_32 \
? ZSTD_WINDOWLOG_MAX_32 - STREAM_ACCUMULATOR_MIN_32 \
: 0)
typedef enum { ZSTD_lo_isRegularOffset, ZSTD_lo_isLongOffset=1 } ZSTD_longOffset_e;
-typedef enum { ZSTD_p_noPrefetch=0, ZSTD_p_prefetch=1 } ZSTD_prefetch_e;
FORCE_INLINE_TEMPLATE seq_t
-ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets, const ZSTD_prefetch_e prefetch)
+ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets)
{
seq_t seq;
- ZSTD_seqSymbol const llDInfo = seqState->stateLL.table[seqState->stateLL.state];
- ZSTD_seqSymbol const mlDInfo = seqState->stateML.table[seqState->stateML.state];
- ZSTD_seqSymbol const ofDInfo = seqState->stateOffb.table[seqState->stateOffb.state];
- U32 const llBase = llDInfo.baseValue;
- U32 const mlBase = mlDInfo.baseValue;
- U32 const ofBase = ofDInfo.baseValue;
- BYTE const llBits = llDInfo.nbAdditionalBits;
- BYTE const mlBits = mlDInfo.nbAdditionalBits;
- BYTE const ofBits = ofDInfo.nbAdditionalBits;
- BYTE const totalBits = llBits+mlBits+ofBits;
-
- /* sequence */
- { size_t offset;
- if (ofBits > 1) {
- ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1);
- ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5);
- assert(ofBits <= MaxOff);
- if (MEM_32bits() && longOffsets && (ofBits >= STREAM_ACCUMULATOR_MIN_32)) {
- U32 const extraBits = ofBits - MIN(ofBits, 32 - seqState->DStream.bitsConsumed);
- offset = ofBase + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits);
- BIT_reloadDStream(&seqState->DStream);
- if (extraBits) offset += BIT_readBitsFast(&seqState->DStream, extraBits);
- assert(extraBits <= LONG_OFFSETS_MAX_EXTRA_BITS_32); /* to avoid another reload */
- } else {
- offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits/*>0*/); /* <= (ZSTD_WINDOWLOG_MAX-1) bits */
- if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);
- }
- seqState->prevOffset[2] = seqState->prevOffset[1];
- seqState->prevOffset[1] = seqState->prevOffset[0];
- seqState->prevOffset[0] = offset;
- } else {
- U32 const ll0 = (llBase == 0);
- if (LIKELY((ofBits == 0))) {
- if (LIKELY(!ll0))
- offset = seqState->prevOffset[0];
- else {
- offset = seqState->prevOffset[1];
- seqState->prevOffset[1] = seqState->prevOffset[0];
- seqState->prevOffset[0] = offset;
+ const ZSTD_seqSymbol* const llDInfo = seqState->stateLL.table + seqState->stateLL.state;
+ const ZSTD_seqSymbol* const mlDInfo = seqState->stateML.table + seqState->stateML.state;
+ const ZSTD_seqSymbol* const ofDInfo = seqState->stateOffb.table + seqState->stateOffb.state;
+ seq.matchLength = mlDInfo->baseValue;
+ seq.litLength = llDInfo->baseValue;
+ { U32 const ofBase = ofDInfo->baseValue;
+ BYTE const llBits = llDInfo->nbAdditionalBits;
+ BYTE const mlBits = mlDInfo->nbAdditionalBits;
+ BYTE const ofBits = ofDInfo->nbAdditionalBits;
+ BYTE const totalBits = llBits+mlBits+ofBits;
+
+ U16 const llNext = llDInfo->nextState;
+ U16 const mlNext = mlDInfo->nextState;
+ U16 const ofNext = ofDInfo->nextState;
+ U32 const llnbBits = llDInfo->nbBits;
+ U32 const mlnbBits = mlDInfo->nbBits;
+ U32 const ofnbBits = ofDInfo->nbBits;
+ /*
+ * As gcc has better branch and block analyzers, sometimes it is only
+ * valuable to mark likelyness for clang, it gives around 3-4% of
+ * performance.
+ */
+
+ /* sequence */
+ { size_t offset;
+ #if defined(__clang__)
+ if (LIKELY(ofBits > 1)) {
+ #else
+ if (ofBits > 1) {
+ #endif
+ ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1);
+ ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5);
+ assert(ofBits <= MaxOff);
+ if (MEM_32bits() && longOffsets && (ofBits >= STREAM_ACCUMULATOR_MIN_32)) {
+ U32 const extraBits = ofBits - MIN(ofBits, 32 - seqState->DStream.bitsConsumed);
+ offset = ofBase + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits);
+ BIT_reloadDStream(&seqState->DStream);
+ if (extraBits) offset += BIT_readBitsFast(&seqState->DStream, extraBits);
+ assert(extraBits <= LONG_OFFSETS_MAX_EXTRA_BITS_32); /* to avoid another reload */
+ } else {
+ offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits/*>0*/); /* <= (ZSTD_WINDOWLOG_MAX-1) bits */
+ if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);
}
+ seqState->prevOffset[2] = seqState->prevOffset[1];
+ seqState->prevOffset[1] = seqState->prevOffset[0];
+ seqState->prevOffset[0] = offset;
} else {
- offset = ofBase + ll0 + BIT_readBitsFast(&seqState->DStream, 1);
- { size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset];
- temp += !temp; /* 0 is not valid; input is corrupted; force offset to 1 */
- if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1];
- seqState->prevOffset[1] = seqState->prevOffset[0];
- seqState->prevOffset[0] = offset = temp;
- } } }
- seq.offset = offset;
- }
-
- seq.matchLength = mlBase;
- if (mlBits > 0)
- seq.matchLength += BIT_readBitsFast(&seqState->DStream, mlBits/*>0*/);
-
- if (MEM_32bits() && (mlBits+llBits >= STREAM_ACCUMULATOR_MIN_32-LONG_OFFSETS_MAX_EXTRA_BITS_32))
- BIT_reloadDStream(&seqState->DStream);
- if (MEM_64bits() && UNLIKELY(totalBits >= STREAM_ACCUMULATOR_MIN_64-(LLFSELog+MLFSELog+OffFSELog)))
- BIT_reloadDStream(&seqState->DStream);
- /* Ensure there are enough bits to read the rest of data in 64-bit mode. */
- ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64);
-
- seq.litLength = llBase;
- if (llBits > 0)
- seq.litLength += BIT_readBitsFast(&seqState->DStream, llBits/*>0*/);
-
- if (MEM_32bits())
- BIT_reloadDStream(&seqState->DStream);
-
- DEBUGLOG(6, "seq: litL=%u, matchL=%u, offset=%u",
- (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
-
- if (prefetch == ZSTD_p_prefetch) {
- size_t const pos = seqState->pos + seq.litLength;
- const BYTE* const matchBase = (seq.offset > pos) ? seqState->dictEnd : seqState->prefixStart;
- seq.match = matchBase + pos - seq.offset; /* note : this operation can overflow when seq.offset is really too large, which can only happen when input is corrupted.
- * No consequence though : no memory access will occur, offset is only used for prefetching */
- seqState->pos = pos + seq.matchLength;
- }
-
- /* ANS state update
- * gcc-9.0.0 does 2.5% worse with ZSTD_updateFseStateWithDInfo().
- * clang-9.2.0 does 7% worse with ZSTD_updateFseState().
- * Naturally it seems like ZSTD_updateFseStateWithDInfo() should be the
- * better option, so it is the default for other compilers. But, if you
- * measure that it is worse, please put up a pull request.
- */
- {
-#if defined(__GNUC__) && !defined(__clang__)
- const int kUseUpdateFseState = 1;
-#else
- const int kUseUpdateFseState = 0;
-#endif
- if (kUseUpdateFseState) {
- ZSTD_updateFseState(&seqState->stateLL, &seqState->DStream); /* <= 9 bits */
- ZSTD_updateFseState(&seqState->stateML, &seqState->DStream); /* <= 9 bits */
- if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */
- ZSTD_updateFseState(&seqState->stateOffb, &seqState->DStream); /* <= 8 bits */
- } else {
- ZSTD_updateFseStateWithDInfo(&seqState->stateLL, &seqState->DStream, llDInfo); /* <= 9 bits */
- ZSTD_updateFseStateWithDInfo(&seqState->stateML, &seqState->DStream, mlDInfo); /* <= 9 bits */
- if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */
- ZSTD_updateFseStateWithDInfo(&seqState->stateOffb, &seqState->DStream, ofDInfo); /* <= 8 bits */
+ U32 const ll0 = (llDInfo->baseValue == 0);
+ if (LIKELY((ofBits == 0))) {
+ offset = seqState->prevOffset[ll0];
+ seqState->prevOffset[1] = seqState->prevOffset[!ll0];
+ seqState->prevOffset[0] = offset;
+ } else {
+ offset = ofBase + ll0 + BIT_readBitsFast(&seqState->DStream, 1);
+ { size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset];
+ temp += !temp; /* 0 is not valid; input is corrupted; force offset to 1 */
+ if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1];
+ seqState->prevOffset[1] = seqState->prevOffset[0];
+ seqState->prevOffset[0] = offset = temp;
+ } } }
+ seq.offset = offset;
}
+
+ #if defined(__clang__)
+ if (UNLIKELY(mlBits > 0))
+ #else
+ if (mlBits > 0)
+ #endif
+ seq.matchLength += BIT_readBitsFast(&seqState->DStream, mlBits/*>0*/);
+
+ if (MEM_32bits() && (mlBits+llBits >= STREAM_ACCUMULATOR_MIN_32-LONG_OFFSETS_MAX_EXTRA_BITS_32))
+ BIT_reloadDStream(&seqState->DStream);
+ if (MEM_64bits() && UNLIKELY(totalBits >= STREAM_ACCUMULATOR_MIN_64-(LLFSELog+MLFSELog+OffFSELog)))
+ BIT_reloadDStream(&seqState->DStream);
+ /* Ensure there are enough bits to read the rest of data in 64-bit mode. */
+ ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64);
+
+ #if defined(__clang__)
+ if (UNLIKELY(llBits > 0))
+ #else
+ if (llBits > 0)
+ #endif
+ seq.litLength += BIT_readBitsFast(&seqState->DStream, llBits/*>0*/);
+
+ if (MEM_32bits())
+ BIT_reloadDStream(&seqState->DStream);
+
+ DEBUGLOG(6, "seq: litL=%u, matchL=%u, offset=%u",
+ (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
+
+ ZSTD_updateFseStateWithDInfo(&seqState->stateLL, &seqState->DStream, llNext, llnbBits); /* <= 9 bits */
+ ZSTD_updateFseStateWithDInfo(&seqState->stateML, &seqState->DStream, mlNext, mlnbBits); /* <= 9 bits */
+ if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */
+ ZSTD_updateFseStateWithDInfo(&seqState->stateOffb, &seqState->DStream, ofNext, ofnbBits); /* <= 8 bits */
}
return seq;
}
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
MEM_STATIC int ZSTD_dictionaryIsActive(ZSTD_DCtx const* dctx, BYTE const* prefixStart, BYTE const* oLitEnd)
{
size_t const windowSize = dctx->fParams.windowSize;
/* No dictionary used. */
if (dctx->dictContentEndForFuzzing == NULL) return 0;
/* Dictionary is our prefix. */
if (prefixStart == dctx->dictContentBeginForFuzzing) return 1;
/* Dictionary is not our ext-dict. */
if (dctx->dictEnd != dctx->dictContentEndForFuzzing) return 0;
/* Dictionary is not within our window size. */
if ((size_t)(oLitEnd - prefixStart) >= windowSize) return 0;
/* Dictionary is active. */
return 1;
}
MEM_STATIC void ZSTD_assertValidSequence(
ZSTD_DCtx const* dctx,
BYTE const* op, BYTE const* oend,
seq_t const seq,
BYTE const* prefixStart, BYTE const* virtualStart)
{
#if DEBUGLEVEL >= 1
size_t const windowSize = dctx->fParams.windowSize;
size_t const sequenceSize = seq.litLength + seq.matchLength;
BYTE const* const oLitEnd = op + seq.litLength;
DEBUGLOG(6, "Checking sequence: litL=%u matchL=%u offset=%u",
(U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
assert(op <= oend);
assert((size_t)(oend - op) >= sequenceSize);
assert(sequenceSize <= ZSTD_BLOCKSIZE_MAX);
if (ZSTD_dictionaryIsActive(dctx, prefixStart, oLitEnd)) {
size_t const dictSize = (size_t)((char const*)dctx->dictContentEndForFuzzing - (char const*)dctx->dictContentBeginForFuzzing);
/* Offset must be within the dictionary. */
assert(seq.offset <= (size_t)(oLitEnd - virtualStart));
assert(seq.offset <= windowSize + dictSize);
} else {
/* Offset must be within our window. */
assert(seq.offset <= windowSize);
}
#else
(void)dctx, (void)op, (void)oend, (void)seq, (void)prefixStart, (void)virtualStart;
#endif
}
#endif
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
+
+
FORCE_INLINE_TEMPLATE size_t
DONT_VECTORIZE
-ZSTD_decompressSequences_body( ZSTD_DCtx* dctx,
+ZSTD_decompressSequences_bodySplitLitBuffer( ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset,
const int frame)
{
const BYTE* ip = (const BYTE*)seqStart;
const BYTE* const iend = ip + seqSize;
- BYTE* const ostart = (BYTE* const)dst;
+ BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + maxDstSize;
BYTE* op = ostart;
const BYTE* litPtr = dctx->litPtr;
- const BYTE* const litEnd = litPtr + dctx->litSize;
+ const BYTE* litBufferEnd = dctx->litBufferEnd;
const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
const BYTE* const vBase = (const BYTE*) (dctx->virtualStart);
const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
- DEBUGLOG(5, "ZSTD_decompressSequences_body");
+ DEBUGLOG(5, "ZSTD_decompressSequences_bodySplitLitBuffer");
(void)frame;
/* Regen sequences */
if (nbSeq) {
seqState_t seqState;
- size_t error = 0;
dctx->fseEntropy = 1;
{ U32 i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
RETURN_ERROR_IF(
ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
corruption_detected, "");
ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
assert(dst != NULL);
ZSTD_STATIC_ASSERT(
BIT_DStream_unfinished < BIT_DStream_completed &&
BIT_DStream_endOfBuffer < BIT_DStream_completed &&
BIT_DStream_completed < BIT_DStream_overflow);
+ /* decompress without overrunning litPtr begins */
+ {
+ seq_t sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
+ /* Align the decompression loop to 32 + 16 bytes.
+ *
+ * zstd compiled with gcc-9 on an Intel i9-9900k shows 10% decompression
+ * speed swings based on the alignment of the decompression loop. This
+ * performance swing is caused by parts of the decompression loop falling
+ * out of the DSB. The entire decompression loop should fit in the DSB,
+ * when it can't we get much worse performance. You can measure if you've
+ * hit the good case or the bad case with this perf command for some
+ * compressed file test.zst:
+ *
+ * perf stat -e cycles -e instructions -e idq.all_dsb_cycles_any_uops \
+ * -e idq.all_mite_cycles_any_uops -- ./zstd -tq test.zst
+ *
+ * If you see most cycles served out of the MITE you've hit the bad case.
+ * If you see most cycles served out of the DSB you've hit the good case.
+ * If it is pretty even then you may be in an okay case.
+ *
+ * This issue has been reproduced on the following CPUs:
+ * - Kabylake: Macbook Pro (15-inch, 2019) 2.4 GHz Intel Core i9
+ * Use Instruments->Counters to get DSB/MITE cycles.
+ * I never got performance swings, but I was able to
+ * go from the good case of mostly DSB to half of the
+ * cycles served from MITE.
+ * - Coffeelake: Intel i9-9900k
+ * - Coffeelake: Intel i7-9700k
+ *
+ * I haven't been able to reproduce the instability or DSB misses on any
+ * of the following CPUS:
+ * - Haswell
+ * - Broadwell: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GH
+ * - Skylake
+ *
+ * Alignment is done for each of the three major decompression loops:
+ * - ZSTD_decompressSequences_bodySplitLitBuffer - presplit section of the literal buffer
+ * - ZSTD_decompressSequences_bodySplitLitBuffer - postsplit section of the literal buffer
+ * - ZSTD_decompressSequences_body
+ * Alignment choices are made to minimize large swings on bad cases and influence on performance
+ * from changes external to this code, rather than to overoptimize on the current commit.
+ *
+ * If you are seeing performance stability this script can help test.
+ * It tests on 4 commits in zstd where I saw performance change.
+ *
+ * https://gist.github.com/terrelln/9889fc06a423fd5ca6e99351564473f4
+ */
#if defined(__GNUC__) && defined(__x86_64__)
- /* Align the decompression loop to 32 + 16 bytes.
- *
- * zstd compiled with gcc-9 on an Intel i9-9900k shows 10% decompression
- * speed swings based on the alignment of the decompression loop. This
- * performance swing is caused by parts of the decompression loop falling
- * out of the DSB. The entire decompression loop should fit in the DSB,
- * when it can't we get much worse performance. You can measure if you've
- * hit the good case or the bad case with this perf command for some
- * compressed file test.zst:
- *
- * perf stat -e cycles -e instructions -e idq.all_dsb_cycles_any_uops \
- * -e idq.all_mite_cycles_any_uops -- ./zstd -tq test.zst
- *
- * If you see most cycles served out of the MITE you've hit the bad case.
- * If you see most cycles served out of the DSB you've hit the good case.
- * If it is pretty even then you may be in an okay case.
- *
- * I've been able to reproduce this issue on the following CPUs:
- * - Kabylake: Macbook Pro (15-inch, 2019) 2.4 GHz Intel Core i9
- * Use Instruments->Counters to get DSB/MITE cycles.
- * I never got performance swings, but I was able to
- * go from the good case of mostly DSB to half of the
- * cycles served from MITE.
- * - Coffeelake: Intel i9-9900k
- *
- * I haven't been able to reproduce the instability or DSB misses on any
- * of the following CPUS:
- * - Haswell
- * - Broadwell: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GH
- * - Skylake
- *
- * If you are seeing performance stability this script can help test.
- * It tests on 4 commits in zstd where I saw performance change.
- *
- * https://gist.github.com/terrelln/9889fc06a423fd5ca6e99351564473f4
- */
- __asm__(".p2align 5");
- __asm__("nop");
- __asm__(".p2align 4");
+ __asm__(".p2align 6");
+# if __GNUC__ >= 7
+ /* good for gcc-7, gcc-9, and gcc-11 */
+ __asm__("nop");
+ __asm__(".p2align 5");
+ __asm__("nop");
+ __asm__(".p2align 4");
+# if __GNUC__ == 8 || __GNUC__ == 10
+ /* good for gcc-8 and gcc-10 */
+ __asm__("nop");
+ __asm__(".p2align 3");
+# endif
+# endif
+#endif
+
+ /* Handle the initial state where litBuffer is currently split between dst and litExtraBuffer */
+ for (; litPtr + sequence.litLength <= dctx->litBufferEnd; ) {
+ size_t const oneSeqSize = ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequence.litLength - WILDCOPY_OVERLENGTH, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
+#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
+ assert(!ZSTD_isError(oneSeqSize));
+ if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
+#endif
+ if (UNLIKELY(ZSTD_isError(oneSeqSize)))
+ return oneSeqSize;
+ DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
+ op += oneSeqSize;
+ if (UNLIKELY(!--nbSeq))
+ break;
+ BIT_reloadDStream(&(seqState.DStream));
+ sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
+ }
+
+ /* If there are more sequences, they will need to read literals from litExtraBuffer; copy over the remainder from dst and update litPtr and litEnd */
+ if (nbSeq > 0) {
+ const size_t leftoverLit = dctx->litBufferEnd - litPtr;
+ if (leftoverLit)
+ {
+ RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
+ ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
+ sequence.litLength -= leftoverLit;
+ op += leftoverLit;
+ }
+ litPtr = dctx->litExtraBuffer;
+ litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
+ dctx->litBufferLocation = ZSTD_not_in_dst;
+ {
+ size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
+#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
+ assert(!ZSTD_isError(oneSeqSize));
+ if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
+#endif
+ if (UNLIKELY(ZSTD_isError(oneSeqSize)))
+ return oneSeqSize;
+ DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
+ op += oneSeqSize;
+ if (--nbSeq)
+ BIT_reloadDStream(&(seqState.DStream));
+ }
+ }
+ }
+
+ if (nbSeq > 0) /* there is remaining lit from extra buffer */
+ {
+
+#if defined(__GNUC__) && defined(__x86_64__)
+ __asm__(".p2align 6");
+ __asm__("nop");
+# if __GNUC__ != 7
+ /* worse for gcc-7 better for gcc-8, gcc-9, and gcc-10 and clang */
+ __asm__(".p2align 4");
+ __asm__("nop");
+ __asm__(".p2align 3");
+# elif __GNUC__ >= 11
+ __asm__(".p2align 3");
+# else
+ __asm__(".p2align 5");
+ __asm__("nop");
+ __asm__(".p2align 3");
+# endif
#endif
+
+ for (; ; ) {
+ seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
+ size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
+#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
+ assert(!ZSTD_isError(oneSeqSize));
+ if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
+#endif
+ if (UNLIKELY(ZSTD_isError(oneSeqSize)))
+ return oneSeqSize;
+ DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
+ op += oneSeqSize;
+ if (UNLIKELY(!--nbSeq))
+ break;
+ BIT_reloadDStream(&(seqState.DStream));
+ }
+ }
+
+ /* check if reached exact end */
+ DEBUGLOG(5, "ZSTD_decompressSequences_bodySplitLitBuffer: after decode loop, remaining nbSeq : %i", nbSeq);
+ RETURN_ERROR_IF(nbSeq, corruption_detected, "");
+ RETURN_ERROR_IF(BIT_reloadDStream(&seqState.DStream) < BIT_DStream_completed, corruption_detected, "");
+ /* save reps for next block */
+ { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
+ }
+
+ /* last literal segment */
+ if (dctx->litBufferLocation == ZSTD_split) /* split hasn't been reached yet, first get dst then copy litExtraBuffer */
+ {
+ size_t const lastLLSize = litBufferEnd - litPtr;
+ RETURN_ERROR_IF(lastLLSize > (size_t)(oend - op), dstSize_tooSmall, "");
+ if (op != NULL) {
+ ZSTD_memmove(op, litPtr, lastLLSize);
+ op += lastLLSize;
+ }
+ litPtr = dctx->litExtraBuffer;
+ litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
+ dctx->litBufferLocation = ZSTD_not_in_dst;
+ }
+ { size_t const lastLLSize = litBufferEnd - litPtr;
+ RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
+ if (op != NULL) {
+ ZSTD_memcpy(op, litPtr, lastLLSize);
+ op += lastLLSize;
+ }
+ }
+
+ return op-ostart;
+}
+
+FORCE_INLINE_TEMPLATE size_t
+DONT_VECTORIZE
+ZSTD_decompressSequences_body(ZSTD_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize, int nbSeq,
+ const ZSTD_longOffset_e isLongOffset,
+ const int frame)
+{
+ const BYTE* ip = (const BYTE*)seqStart;
+ const BYTE* const iend = ip + seqSize;
+ BYTE* const ostart = (BYTE*)dst;
+ BYTE* const oend = dctx->litBufferLocation == ZSTD_not_in_dst ? ostart + maxDstSize : dctx->litBuffer;
+ BYTE* op = ostart;
+ const BYTE* litPtr = dctx->litPtr;
+ const BYTE* const litEnd = litPtr + dctx->litSize;
+ const BYTE* const prefixStart = (const BYTE*)(dctx->prefixStart);
+ const BYTE* const vBase = (const BYTE*)(dctx->virtualStart);
+ const BYTE* const dictEnd = (const BYTE*)(dctx->dictEnd);
+ DEBUGLOG(5, "ZSTD_decompressSequences_body");
+ (void)frame;
+
+ /* Regen sequences */
+ if (nbSeq) {
+ seqState_t seqState;
+ dctx->fseEntropy = 1;
+ { U32 i; for (i = 0; i < ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
+ RETURN_ERROR_IF(
+ ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend - ip)),
+ corruption_detected, "");
+ ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
+ ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
+ ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
+ assert(dst != NULL);
+
+ ZSTD_STATIC_ASSERT(
+ BIT_DStream_unfinished < BIT_DStream_completed &&
+ BIT_DStream_endOfBuffer < BIT_DStream_completed &&
+ BIT_DStream_completed < BIT_DStream_overflow);
+
+#if defined(__GNUC__) && defined(__x86_64__)
+ __asm__(".p2align 6");
+ __asm__("nop");
+# if __GNUC__ >= 7
+ __asm__(".p2align 5");
+ __asm__("nop");
+ __asm__(".p2align 3");
+# else
+ __asm__(".p2align 4");
+ __asm__("nop");
+ __asm__(".p2align 3");
+# endif
+#endif
+
for ( ; ; ) {
- seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, ZSTD_p_noPrefetch);
+ seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, prefixStart, vBase, dictEnd);
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
assert(!ZSTD_isError(oneSeqSize));
if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
#endif
+ if (UNLIKELY(ZSTD_isError(oneSeqSize)))
+ return oneSeqSize;
DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
- BIT_reloadDStream(&(seqState.DStream));
op += oneSeqSize;
- /* gcc and clang both don't like early returns in this loop.
- * Instead break and check for an error at the end of the loop.
- */
- if (UNLIKELY(ZSTD_isError(oneSeqSize))) {
- error = oneSeqSize;
+ if (UNLIKELY(!--nbSeq))
break;
- }
- if (UNLIKELY(!--nbSeq)) break;
+ BIT_reloadDStream(&(seqState.DStream));
}
/* check if reached exact end */
DEBUGLOG(5, "ZSTD_decompressSequences_body: after decode loop, remaining nbSeq : %i", nbSeq);
- if (ZSTD_isError(error)) return error;
RETURN_ERROR_IF(nbSeq, corruption_detected, "");
RETURN_ERROR_IF(BIT_reloadDStream(&seqState.DStream) < BIT_DStream_completed, corruption_detected, "");
/* save reps for next block */
{ U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
}
/* last literal segment */
{ size_t const lastLLSize = litEnd - litPtr;
RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
if (op != NULL) {
ZSTD_memcpy(op, litPtr, lastLLSize);
op += lastLLSize;
}
}
return op-ostart;
}
static size_t
ZSTD_decompressSequences_default(ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset,
const int frame)
{
return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
+
+static size_t
+ZSTD_decompressSequencesSplitLitBuffer_default(ZSTD_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize, int nbSeq,
+ const ZSTD_longOffset_e isLongOffset,
+ const int frame)
+{
+ return ZSTD_decompressSequences_bodySplitLitBuffer(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
+}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
+
+FORCE_INLINE_TEMPLATE size_t
+ZSTD_prefetchMatch(size_t prefetchPos, seq_t const sequence,
+ const BYTE* const prefixStart, const BYTE* const dictEnd)
+{
+ prefetchPos += sequence.litLength;
+ { const BYTE* const matchBase = (sequence.offset > prefetchPos) ? dictEnd : prefixStart;
+ const BYTE* const match = matchBase + prefetchPos - sequence.offset; /* note : this operation can overflow when seq.offset is really too large, which can only happen when input is corrupted.
+ * No consequence though : memory address is only used for prefetching, not for dereferencing */
+ PREFETCH_L1(match); PREFETCH_L1(match+CACHELINE_SIZE); /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
+ }
+ return prefetchPos + sequence.matchLength;
+}
+
+/* This decoding function employs prefetching
+ * to reduce latency impact of cache misses.
+ * It's generally employed when block contains a significant portion of long-distance matches
+ * or when coupled with a "cold" dictionary */
FORCE_INLINE_TEMPLATE size_t
ZSTD_decompressSequencesLong_body(
ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset,
const int frame)
{
const BYTE* ip = (const BYTE*)seqStart;
const BYTE* const iend = ip + seqSize;
- BYTE* const ostart = (BYTE* const)dst;
- BYTE* const oend = ostart + maxDstSize;
+ BYTE* const ostart = (BYTE*)dst;
+ BYTE* const oend = dctx->litBufferLocation == ZSTD_in_dst ? dctx->litBuffer : ostart + maxDstSize;
BYTE* op = ostart;
const BYTE* litPtr = dctx->litPtr;
- const BYTE* const litEnd = litPtr + dctx->litSize;
+ const BYTE* litBufferEnd = dctx->litBufferEnd;
const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
const BYTE* const dictStart = (const BYTE*) (dctx->virtualStart);
const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
(void)frame;
/* Regen sequences */
if (nbSeq) {
-#define STORED_SEQS 4
+#define STORED_SEQS 8
#define STORED_SEQS_MASK (STORED_SEQS-1)
-#define ADVANCED_SEQS 4
+#define ADVANCED_SEQS STORED_SEQS
seq_t sequences[STORED_SEQS];
int const seqAdvance = MIN(nbSeq, ADVANCED_SEQS);
seqState_t seqState;
int seqNb;
+ size_t prefetchPos = (size_t)(op-prefixStart); /* track position relative to prefixStart */
+
dctx->fseEntropy = 1;
{ int i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
- seqState.prefixStart = prefixStart;
- seqState.pos = (size_t)(op-prefixStart);
- seqState.dictEnd = dictEnd;
assert(dst != NULL);
assert(iend >= ip);
RETURN_ERROR_IF(
ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
corruption_detected, "");
ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
/* prepare in advance */
for (seqNb=0; (BIT_reloadDStream(&seqState.DStream) <= BIT_DStream_completed) && (seqNb<seqAdvance); seqNb++) {
- sequences[seqNb] = ZSTD_decodeSequence(&seqState, isLongOffset, ZSTD_p_prefetch);
- PREFETCH_L1(sequences[seqNb].match); PREFETCH_L1(sequences[seqNb].match + sequences[seqNb].matchLength - 1); /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
+ seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
+ prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
+ sequences[seqNb] = sequence;
}
RETURN_ERROR_IF(seqNb<seqAdvance, corruption_detected, "");
- /* decode and decompress */
- for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && (seqNb<nbSeq) ; seqNb++) {
- seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, ZSTD_p_prefetch);
- size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequences[(seqNb-ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litEnd, prefixStart, dictStart, dictEnd);
+ /* decompress without stomping litBuffer */
+ for (; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && (seqNb < nbSeq); seqNb++) {
+ seq_t sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
+ size_t oneSeqSize;
+
+ if (dctx->litBufferLocation == ZSTD_split && litPtr + sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength > dctx->litBufferEnd)
+ {
+ /* lit buffer is reaching split point, empty out the first buffer and transition to litExtraBuffer */
+ const size_t leftoverLit = dctx->litBufferEnd - litPtr;
+ if (leftoverLit)
+ {
+ RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
+ ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
+ sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength -= leftoverLit;
+ op += leftoverLit;
+ }
+ litPtr = dctx->litExtraBuffer;
+ litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
+ dctx->litBufferLocation = ZSTD_not_in_dst;
+ oneSeqSize = ZSTD_execSequence(op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
- assert(!ZSTD_isError(oneSeqSize));
- if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb-ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart);
+ assert(!ZSTD_isError(oneSeqSize));
+ if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart);
#endif
- if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
- PREFETCH_L1(sequence.match); PREFETCH_L1(sequence.match + sequence.matchLength - 1); /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
- sequences[seqNb & STORED_SEQS_MASK] = sequence;
- op += oneSeqSize;
+ if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
+
+ prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
+ sequences[seqNb & STORED_SEQS_MASK] = sequence;
+ op += oneSeqSize;
+ }
+ else
+ {
+ /* lit buffer is either wholly contained in first or second split, or not split at all*/
+ oneSeqSize = dctx->litBufferLocation == ZSTD_split ?
+ ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength - WILDCOPY_OVERLENGTH, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd) :
+ ZSTD_execSequence(op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
+#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
+ assert(!ZSTD_isError(oneSeqSize));
+ if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart);
+#endif
+ if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
+
+ prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
+ sequences[seqNb & STORED_SEQS_MASK] = sequence;
+ op += oneSeqSize;
+ }
}
RETURN_ERROR_IF(seqNb<nbSeq, corruption_detected, "");
/* finish queue */
seqNb -= seqAdvance;
for ( ; seqNb<nbSeq ; seqNb++) {
- size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequences[seqNb&STORED_SEQS_MASK], &litPtr, litEnd, prefixStart, dictStart, dictEnd);
+ seq_t *sequence = &(sequences[seqNb&STORED_SEQS_MASK]);
+ if (dctx->litBufferLocation == ZSTD_split && litPtr + sequence->litLength > dctx->litBufferEnd)
+ {
+ const size_t leftoverLit = dctx->litBufferEnd - litPtr;
+ if (leftoverLit)
+ {
+ RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
+ ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
+ sequence->litLength -= leftoverLit;
+ op += leftoverLit;
+ }
+ litPtr = dctx->litExtraBuffer;
+ litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
+ dctx->litBufferLocation = ZSTD_not_in_dst;
+ {
+ size_t const oneSeqSize = ZSTD_execSequence(op, oend, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
- assert(!ZSTD_isError(oneSeqSize));
- if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart);
+ assert(!ZSTD_isError(oneSeqSize));
+ if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart);
#endif
- if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
- op += oneSeqSize;
+ if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
+ op += oneSeqSize;
+ }
+ }
+ else
+ {
+ size_t const oneSeqSize = dctx->litBufferLocation == ZSTD_split ?
+ ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequence->litLength - WILDCOPY_OVERLENGTH, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd) :
+ ZSTD_execSequence(op, oend, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
+#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
+ assert(!ZSTD_isError(oneSeqSize));
+ if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart);
+#endif
+ if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
+ op += oneSeqSize;
+ }
}
/* save reps for next block */
{ U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
}
/* last literal segment */
- { size_t const lastLLSize = litEnd - litPtr;
+ if (dctx->litBufferLocation == ZSTD_split) /* first deplete literal buffer in dst, then copy litExtraBuffer */
+ {
+ size_t const lastLLSize = litBufferEnd - litPtr;
+ RETURN_ERROR_IF(lastLLSize > (size_t)(oend - op), dstSize_tooSmall, "");
+ if (op != NULL) {
+ ZSTD_memmove(op, litPtr, lastLLSize);
+ op += lastLLSize;
+ }
+ litPtr = dctx->litExtraBuffer;
+ litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
+ }
+ { size_t const lastLLSize = litBufferEnd - litPtr;
RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
if (op != NULL) {
- ZSTD_memcpy(op, litPtr, lastLLSize);
+ ZSTD_memmove(op, litPtr, lastLLSize);
op += lastLLSize;
}
}
return op-ostart;
}
static size_t
ZSTD_decompressSequencesLong_default(ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset,
const int frame)
{
return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
#if DYNAMIC_BMI2
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
-static TARGET_ATTRIBUTE("bmi2") size_t
+static BMI2_TARGET_ATTRIBUTE size_t
DONT_VECTORIZE
ZSTD_decompressSequences_bmi2(ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset,
const int frame)
{
return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
+static BMI2_TARGET_ATTRIBUTE size_t
+DONT_VECTORIZE
+ZSTD_decompressSequencesSplitLitBuffer_bmi2(ZSTD_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize, int nbSeq,
+ const ZSTD_longOffset_e isLongOffset,
+ const int frame)
+{
+ return ZSTD_decompressSequences_bodySplitLitBuffer(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
+}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
-static TARGET_ATTRIBUTE("bmi2") size_t
+static BMI2_TARGET_ATTRIBUTE size_t
ZSTD_decompressSequencesLong_bmi2(ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset,
const int frame)
{
return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
#endif /* DYNAMIC_BMI2 */
typedef size_t (*ZSTD_decompressSequences_t)(
ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset,
const int frame);
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
static size_t
ZSTD_decompressSequences(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset,
const int frame)
{
DEBUGLOG(5, "ZSTD_decompressSequences");
#if DYNAMIC_BMI2
- if (dctx->bmi2) {
+ if (ZSTD_DCtx_get_bmi2(dctx)) {
return ZSTD_decompressSequences_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif
- return ZSTD_decompressSequences_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
+ return ZSTD_decompressSequences_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
+}
+static size_t
+ZSTD_decompressSequencesSplitLitBuffer(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize, int nbSeq,
+ const ZSTD_longOffset_e isLongOffset,
+ const int frame)
+{
+ DEBUGLOG(5, "ZSTD_decompressSequencesSplitLitBuffer");
+#if DYNAMIC_BMI2
+ if (ZSTD_DCtx_get_bmi2(dctx)) {
+ return ZSTD_decompressSequencesSplitLitBuffer_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
+ }
+#endif
+ return ZSTD_decompressSequencesSplitLitBuffer_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
/* ZSTD_decompressSequencesLong() :
* decompression function triggered when a minimum share of offsets is considered "long",
* aka out of cache.
* note : "long" definition seems overloaded here, sometimes meaning "wider than bitstream register", and sometimes meaning "farther than memory cache distance".
* This function will try to mitigate main memory latency through the use of prefetching */
static size_t
ZSTD_decompressSequencesLong(ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset,
const int frame)
{
DEBUGLOG(5, "ZSTD_decompressSequencesLong");
#if DYNAMIC_BMI2
- if (dctx->bmi2) {
+ if (ZSTD_DCtx_get_bmi2(dctx)) {
return ZSTD_decompressSequencesLong_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif
return ZSTD_decompressSequencesLong_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
!defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
/* ZSTD_getLongOffsetsShare() :
* condition : offTable must be valid
* @return : "share" of long offsets (arbitrarily defined as > (1<<23))
* compared to maximum possible of (1<<OffFSELog) */
static unsigned
ZSTD_getLongOffsetsShare(const ZSTD_seqSymbol* offTable)
{
const void* ptr = offTable;
U32 const tableLog = ((const ZSTD_seqSymbol_header*)ptr)[0].tableLog;
const ZSTD_seqSymbol* table = offTable + 1;
U32 const max = 1 << tableLog;
U32 u, total = 0;
DEBUGLOG(5, "ZSTD_getLongOffsetsShare: (tableLog=%u)", tableLog);
assert(max <= (1 << OffFSELog)); /* max not too large */
for (u=0; u<max; u++) {
if (table[u].nbAdditionalBits > 22) total += 1;
}
assert(tableLog <= OffFSELog);
total <<= (OffFSELog - tableLog); /* scale to OffFSELog */
return total;
}
#endif
size_t
ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
- const void* src, size_t srcSize, const int frame)
+ const void* src, size_t srcSize, const int frame, const streaming_operation streaming)
{ /* blockType == blockCompressed */
const BYTE* ip = (const BYTE*)src;
/* isLongOffset must be true if there are long offsets.
* Offsets are long if they are larger than 2^STREAM_ACCUMULATOR_MIN.
* We don't expect that to be the case in 64-bit mode.
* In block mode, window size is not known, so we have to be conservative.
* (note: but it could be evaluated from current-lowLimit)
*/
ZSTD_longOffset_e const isLongOffset = (ZSTD_longOffset_e)(MEM_32bits() && (!frame || (dctx->fParams.windowSize > (1ULL << STREAM_ACCUMULATOR_MIN))));
DEBUGLOG(5, "ZSTD_decompressBlock_internal (size : %u)", (U32)srcSize);
RETURN_ERROR_IF(srcSize >= ZSTD_BLOCKSIZE_MAX, srcSize_wrong, "");
/* Decode literals section */
- { size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize);
+ { size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize, dst, dstCapacity, streaming);
DEBUGLOG(5, "ZSTD_decodeLiteralsBlock : %u", (U32)litCSize);
if (ZSTD_isError(litCSize)) return litCSize;
ip += litCSize;
srcSize -= litCSize;
}
/* Build Decoding Tables */
{
/* These macros control at build-time which decompressor implementation
* we use. If neither is defined, we do some inspection and dispatch at
* runtime.
*/
#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
!defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
int usePrefetchDecoder = dctx->ddictIsCold;
#endif
int nbSeq;
size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, srcSize);
if (ZSTD_isError(seqHSize)) return seqHSize;
ip += seqHSize;
srcSize -= seqHSize;
RETURN_ERROR_IF(dst == NULL && nbSeq > 0, dstSize_tooSmall, "NULL not handled");
#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
!defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
if ( !usePrefetchDecoder
&& (!frame || (dctx->fParams.windowSize > (1<<24)))
&& (nbSeq>ADVANCED_SEQS) ) { /* could probably use a larger nbSeq limit */
U32 const shareLongOffsets = ZSTD_getLongOffsetsShare(dctx->OFTptr);
U32 const minShare = MEM_64bits() ? 7 : 20; /* heuristic values, correspond to 2.73% and 7.81% */
usePrefetchDecoder = (shareLongOffsets >= minShare);
}
#endif
dctx->ddictIsCold = 0;
#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
!defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
if (usePrefetchDecoder)
#endif
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
return ZSTD_decompressSequencesLong(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame);
#endif
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
/* else */
- return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame);
+ if (dctx->litBufferLocation == ZSTD_split)
+ return ZSTD_decompressSequencesSplitLitBuffer(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame);
+ else
+ return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame);
#endif
}
}
-void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst)
+void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst, size_t dstSize)
{
- if (dst != dctx->previousDstEnd) { /* not contiguous */
+ if (dst != dctx->previousDstEnd && dstSize > 0) { /* not contiguous */
dctx->dictEnd = dctx->previousDstEnd;
dctx->virtualStart = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart));
dctx->prefixStart = dst;
dctx->previousDstEnd = dst;
}
}
size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
size_t dSize;
- ZSTD_checkContinuity(dctx, dst);
- dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 0);
+ ZSTD_checkContinuity(dctx, dst, dstCapacity);
+ dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 0, not_streaming);
dctx->previousDstEnd = (char*)dst + dSize;
return dSize;
}
diff --git a/sys/contrib/zstd/lib/decompress/zstd_decompress_block.h b/sys/contrib/zstd/lib/decompress/zstd_decompress_block.h
index b5715c168e2b..c61a9d0c4b36 100644
--- a/sys/contrib/zstd/lib/decompress/zstd_decompress_block.h
+++ b/sys/contrib/zstd/lib/decompress/zstd_decompress_block.h
@@ -1,62 +1,68 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_DEC_BLOCK_H
#define ZSTD_DEC_BLOCK_H
/*-*******************************************************
* Dependencies
*********************************************************/
#include "../common/zstd_deps.h" /* size_t */
#include "../zstd.h" /* DCtx, and some public functions */
#include "../common/zstd_internal.h" /* blockProperties_t, and some public functions */
#include "zstd_decompress_internal.h" /* ZSTD_seqSymbol */
/* === Prototypes === */
/* note: prototypes already published within `zstd.h` :
* ZSTD_decompressBlock()
*/
/* note: prototypes already published within `zstd_internal.h` :
* ZSTD_getcBlockSize()
* ZSTD_decodeSeqHeaders()
*/
+ /* Streaming state is used to inform allocation of the literal buffer */
+typedef enum {
+ not_streaming = 0,
+ is_streaming = 1
+} streaming_operation;
+
/* ZSTD_decompressBlock_internal() :
* decompress block, starting at `src`,
* into destination buffer `dst`.
* @return : decompressed block size,
* or an error code (which can be tested using ZSTD_isError())
*/
size_t ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
- const void* src, size_t srcSize, const int frame);
+ const void* src, size_t srcSize, const int frame, const streaming_operation streaming);
/* ZSTD_buildFSETable() :
* generate FSE decoding table for one symbol (ll, ml or off)
* this function must be called with valid parameters only
* (dt is large enough, normalizedCounter distribution total is a power of 2, max is within range, etc.)
* in which case it cannot fail.
* The workspace must be 4-byte aligned and at least ZSTD_BUILD_FSE_TABLE_WKSP_SIZE bytes, which is
* defined in zstd_decompress_internal.h.
* Internal use only.
*/
void ZSTD_buildFSETable(ZSTD_seqSymbol* dt,
const short* normalizedCounter, unsigned maxSymbolValue,
- const U32* baseValue, const U32* nbAdditionalBits,
+ const U32* baseValue, const U8* nbAdditionalBits,
unsigned tableLog, void* wksp, size_t wkspSize,
int bmi2);
#endif /* ZSTD_DEC_BLOCK_H */
diff --git a/sys/contrib/zstd/lib/decompress/zstd_decompress_internal.h b/sys/contrib/zstd/lib/decompress/zstd_decompress_internal.h
index f80b471e9940..2b5a53850ac2 100644
--- a/sys/contrib/zstd/lib/decompress/zstd_decompress_internal.h
+++ b/sys/contrib/zstd/lib/decompress/zstd_decompress_internal.h
@@ -1,190 +1,236 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* zstd_decompress_internal:
* objects and definitions shared within lib/decompress modules */
#ifndef ZSTD_DECOMPRESS_INTERNAL_H
#define ZSTD_DECOMPRESS_INTERNAL_H
/*-*******************************************************
* Dependencies
*********************************************************/
#include "../common/mem.h" /* BYTE, U16, U32 */
-#include "../common/zstd_internal.h" /* ZSTD_seqSymbol */
+#include "../common/zstd_internal.h" /* constants : MaxLL, MaxML, MaxOff, LLFSELog, etc. */
/*-*******************************************************
* Constants
*********************************************************/
static UNUSED_ATTR const U32 LL_base[MaxLL+1] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 18, 20, 22, 24, 28, 32, 40,
48, 64, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000,
0x2000, 0x4000, 0x8000, 0x10000 };
static UNUSED_ATTR const U32 OF_base[MaxOff+1] = {
0, 1, 1, 5, 0xD, 0x1D, 0x3D, 0x7D,
0xFD, 0x1FD, 0x3FD, 0x7FD, 0xFFD, 0x1FFD, 0x3FFD, 0x7FFD,
0xFFFD, 0x1FFFD, 0x3FFFD, 0x7FFFD, 0xFFFFD, 0x1FFFFD, 0x3FFFFD, 0x7FFFFD,
0xFFFFFD, 0x1FFFFFD, 0x3FFFFFD, 0x7FFFFFD, 0xFFFFFFD, 0x1FFFFFFD, 0x3FFFFFFD, 0x7FFFFFFD };
-static UNUSED_ATTR const U32 OF_bits[MaxOff+1] = {
+static UNUSED_ATTR const U8 OF_bits[MaxOff+1] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31 };
static UNUSED_ATTR const U32 ML_base[MaxML+1] = {
3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34,
35, 37, 39, 41, 43, 47, 51, 59,
67, 83, 99, 0x83, 0x103, 0x203, 0x403, 0x803,
0x1003, 0x2003, 0x4003, 0x8003, 0x10003 };
/*-*******************************************************
* Decompression types
*********************************************************/
typedef struct {
U32 fastMode;
U32 tableLog;
} ZSTD_seqSymbol_header;
typedef struct {
U16 nextState;
BYTE nbAdditionalBits;
BYTE nbBits;
U32 baseValue;
} ZSTD_seqSymbol;
#define SEQSYMBOL_TABLE_SIZE(log) (1 + (1 << (log)))
#define ZSTD_BUILD_FSE_TABLE_WKSP_SIZE (sizeof(S16) * (MaxSeq + 1) + (1u << MaxFSELog) + sizeof(U64))
#define ZSTD_BUILD_FSE_TABLE_WKSP_SIZE_U32 ((ZSTD_BUILD_FSE_TABLE_WKSP_SIZE + sizeof(U32) - 1) / sizeof(U32))
typedef struct {
ZSTD_seqSymbol LLTable[SEQSYMBOL_TABLE_SIZE(LLFSELog)]; /* Note : Space reserved for FSE Tables */
ZSTD_seqSymbol OFTable[SEQSYMBOL_TABLE_SIZE(OffFSELog)]; /* is also used as temporary workspace while building hufTable during DDict creation */
ZSTD_seqSymbol MLTable[SEQSYMBOL_TABLE_SIZE(MLFSELog)]; /* and therefore must be at least HUF_DECOMPRESS_WORKSPACE_SIZE large */
HUF_DTable hufTable[HUF_DTABLE_SIZE(HufLog)]; /* can accommodate HUF_decompress4X */
U32 rep[ZSTD_REP_NUM];
U32 workspace[ZSTD_BUILD_FSE_TABLE_WKSP_SIZE_U32];
} ZSTD_entropyDTables_t;
typedef enum { ZSTDds_getFrameHeaderSize, ZSTDds_decodeFrameHeader,
ZSTDds_decodeBlockHeader, ZSTDds_decompressBlock,
ZSTDds_decompressLastBlock, ZSTDds_checkChecksum,
ZSTDds_decodeSkippableHeader, ZSTDds_skipFrame } ZSTD_dStage;
typedef enum { zdss_init=0, zdss_loadHeader,
zdss_read, zdss_load, zdss_flush } ZSTD_dStreamStage;
typedef enum {
ZSTD_use_indefinitely = -1, /* Use the dictionary indefinitely */
ZSTD_dont_use = 0, /* Do not use the dictionary (if one exists free it) */
ZSTD_use_once = 1 /* Use the dictionary once and set to ZSTD_dont_use */
} ZSTD_dictUses_e;
+/* Hashset for storing references to multiple ZSTD_DDict within ZSTD_DCtx */
+typedef struct {
+ const ZSTD_DDict** ddictPtrTable;
+ size_t ddictPtrTableSize;
+ size_t ddictPtrCount;
+} ZSTD_DDictHashSet;
+
+#ifndef ZSTD_DECODER_INTERNAL_BUFFER
+# define ZSTD_DECODER_INTERNAL_BUFFER (1 << 16)
+#endif
+
+#define ZSTD_LBMIN 64
+#define ZSTD_LBMAX (128 << 10)
+
+/* extra buffer, compensates when dst is not large enough to store litBuffer */
+#define ZSTD_LITBUFFEREXTRASIZE BOUNDED(ZSTD_LBMIN, ZSTD_DECODER_INTERNAL_BUFFER, ZSTD_LBMAX)
+
+typedef enum {
+ ZSTD_not_in_dst = 0, /* Stored entirely within litExtraBuffer */
+ ZSTD_in_dst = 1, /* Stored entirely within dst (in memory after current output write) */
+ ZSTD_split = 2 /* Split between litExtraBuffer and dst */
+} ZSTD_litLocation_e;
+
struct ZSTD_DCtx_s
{
const ZSTD_seqSymbol* LLTptr;
const ZSTD_seqSymbol* MLTptr;
const ZSTD_seqSymbol* OFTptr;
const HUF_DTable* HUFptr;
ZSTD_entropyDTables_t entropy;
U32 workspace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; /* space needed when building huffman tables */
const void* previousDstEnd; /* detect continuity */
const void* prefixStart; /* start of current segment */
const void* virtualStart; /* virtual start of previous segment if it was just before current one */
const void* dictEnd; /* end of previous segment */
size_t expected;
ZSTD_frameHeader fParams;
+ U64 processedCSize;
U64 decodedSize;
blockType_e bType; /* used in ZSTD_decompressContinue(), store blockType between block header decoding and block decompression stages */
ZSTD_dStage stage;
U32 litEntropy;
U32 fseEntropy;
XXH64_state_t xxhState;
size_t headerSize;
ZSTD_format_e format;
ZSTD_forceIgnoreChecksum_e forceIgnoreChecksum; /* User specified: if == 1, will ignore checksums in compressed frame. Default == 0 */
U32 validateChecksum; /* if == 1, will validate checksum. Is == 1 if (fParams.checksumFlag == 1) and (forceIgnoreChecksum == 0). */
const BYTE* litPtr;
ZSTD_customMem customMem;
size_t litSize;
size_t rleSize;
size_t staticSize;
+#if DYNAMIC_BMI2 != 0
int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */
+#endif
/* dictionary */
ZSTD_DDict* ddictLocal;
const ZSTD_DDict* ddict; /* set by ZSTD_initDStream_usingDDict(), or ZSTD_DCtx_refDDict() */
U32 dictID;
int ddictIsCold; /* if == 1 : dictionary is "new" for working context, and presumed "cold" (not in cpu cache) */
ZSTD_dictUses_e dictUses;
+ ZSTD_DDictHashSet* ddictSet; /* Hash set for multiple ddicts */
+ ZSTD_refMultipleDDicts_e refMultipleDDicts; /* User specified: if == 1, will allow references to multiple DDicts. Default == 0 (disabled) */
/* streaming */
ZSTD_dStreamStage streamStage;
char* inBuff;
size_t inBuffSize;
size_t inPos;
size_t maxWindowSize;
char* outBuff;
size_t outBuffSize;
size_t outStart;
size_t outEnd;
size_t lhSize;
+#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
void* legacyContext;
U32 previousLegacyVersion;
U32 legacyVersion;
+#endif
U32 hostageByte;
int noForwardProgress;
ZSTD_bufferMode_e outBufferMode;
ZSTD_outBuffer expectedOutBuffer;
/* workspace */
- BYTE litBuffer[ZSTD_BLOCKSIZE_MAX + WILDCOPY_OVERLENGTH];
+ BYTE* litBuffer;
+ const BYTE* litBufferEnd;
+ ZSTD_litLocation_e litBufferLocation;
+ BYTE litExtraBuffer[ZSTD_LITBUFFEREXTRASIZE + WILDCOPY_OVERLENGTH]; /* literal buffer can be split between storage within dst and within this scratch buffer */
BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX];
size_t oversizedDuration;
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
void const* dictContentBeginForFuzzing;
void const* dictContentEndForFuzzing;
#endif
+
+ /* Tracing */
+#if ZSTD_TRACE
+ ZSTD_TraceCtx traceCtx;
+#endif
}; /* typedef'd to ZSTD_DCtx within "zstd.h" */
+MEM_STATIC int ZSTD_DCtx_get_bmi2(const struct ZSTD_DCtx_s *dctx) {
+#if DYNAMIC_BMI2 != 0
+ return dctx->bmi2;
+#else
+ (void)dctx;
+ return 0;
+#endif
+}
/*-*******************************************************
* Shared internal functions
*********************************************************/
/*! ZSTD_loadDEntropy() :
* dict : must point at beginning of a valid zstd dictionary.
* @return : size of dictionary header (size of magic number + dict ID + entropy tables) */
size_t ZSTD_loadDEntropy(ZSTD_entropyDTables_t* entropy,
const void* const dict, size_t const dictSize);
/*! ZSTD_checkContinuity() :
* check if next `dst` follows previous position, where decompression ended.
* If yes, do nothing (continue on current segment).
* If not, classify previous segment as "external dictionary", and start a new segment.
* This function cannot fail. */
-void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst);
+void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst, size_t dstSize);
#endif /* ZSTD_DECOMPRESS_INTERNAL_H */
diff --git a/sys/contrib/zstd/lib/deprecated/zbuff.h b/sys/contrib/zstd/lib/deprecated/zbuff.h
index 03cb14a039de..b83ea0fed585 100644
--- a/sys/contrib/zstd/lib/deprecated/zbuff.h
+++ b/sys/contrib/zstd/lib/deprecated/zbuff.h
@@ -1,214 +1,214 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* ***************************************************************
* NOTES/WARNINGS
******************************************************************/
/* The streaming API defined here is deprecated.
* Consider migrating towards ZSTD_compressStream() API in `zstd.h`
* See 'lib/README.md'.
*****************************************************************/
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef ZSTD_BUFFERED_H_23987
#define ZSTD_BUFFERED_H_23987
/* *************************************
* Dependencies
***************************************/
#include <stddef.h> /* size_t */
#include "../zstd.h" /* ZSTD_CStream, ZSTD_DStream, ZSTDLIB_API */
/* ***************************************************************
* Compiler specifics
*****************************************************************/
/* Deprecation warnings */
/* Should these warnings be a problem,
* it is generally possible to disable them,
* typically with -Wno-deprecated-declarations for gcc
* or _CRT_SECURE_NO_WARNINGS in Visual.
* Otherwise, it's also possible to define ZBUFF_DISABLE_DEPRECATE_WARNINGS
*/
#ifdef ZBUFF_DISABLE_DEPRECATE_WARNINGS
# define ZBUFF_DEPRECATED(message) ZSTDLIB_API /* disable deprecation warnings */
#else
# if defined (__cplusplus) && (__cplusplus >= 201402) /* C++14 or greater */
# define ZBUFF_DEPRECATED(message) [[deprecated(message)]] ZSTDLIB_API
# elif (defined(GNUC) && (GNUC > 4 || (GNUC == 4 && GNUC_MINOR >= 5))) || defined(__clang__)
# define ZBUFF_DEPRECATED(message) ZSTDLIB_API __attribute__((deprecated(message)))
# elif defined(__GNUC__) && (__GNUC__ >= 3)
# define ZBUFF_DEPRECATED(message) ZSTDLIB_API __attribute__((deprecated))
# elif defined(_MSC_VER)
# define ZBUFF_DEPRECATED(message) ZSTDLIB_API __declspec(deprecated(message))
# else
# pragma message("WARNING: You need to implement ZBUFF_DEPRECATED for this compiler")
# define ZBUFF_DEPRECATED(message) ZSTDLIB_API
# endif
#endif /* ZBUFF_DISABLE_DEPRECATE_WARNINGS */
/* *************************************
* Streaming functions
***************************************/
/* This is the easier "buffered" streaming API,
* using an internal buffer to lift all restrictions on user-provided buffers
* which can be any size, any place, for both input and output.
* ZBUFF and ZSTD are 100% interoperable,
* frames created by one can be decoded by the other one */
typedef ZSTD_CStream ZBUFF_CCtx;
ZBUFF_DEPRECATED("use ZSTD_createCStream") ZBUFF_CCtx* ZBUFF_createCCtx(void);
ZBUFF_DEPRECATED("use ZSTD_freeCStream") size_t ZBUFF_freeCCtx(ZBUFF_CCtx* cctx);
ZBUFF_DEPRECATED("use ZSTD_initCStream") size_t ZBUFF_compressInit(ZBUFF_CCtx* cctx, int compressionLevel);
ZBUFF_DEPRECATED("use ZSTD_initCStream_usingDict") size_t ZBUFF_compressInitDictionary(ZBUFF_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel);
ZBUFF_DEPRECATED("use ZSTD_compressStream") size_t ZBUFF_compressContinue(ZBUFF_CCtx* cctx, void* dst, size_t* dstCapacityPtr, const void* src, size_t* srcSizePtr);
ZBUFF_DEPRECATED("use ZSTD_flushStream") size_t ZBUFF_compressFlush(ZBUFF_CCtx* cctx, void* dst, size_t* dstCapacityPtr);
ZBUFF_DEPRECATED("use ZSTD_endStream") size_t ZBUFF_compressEnd(ZBUFF_CCtx* cctx, void* dst, size_t* dstCapacityPtr);
/*-*************************************************
* Streaming compression - howto
*
* A ZBUFF_CCtx object is required to track streaming operation.
* Use ZBUFF_createCCtx() and ZBUFF_freeCCtx() to create/release resources.
* ZBUFF_CCtx objects can be reused multiple times.
*
* Start by initializing ZBUF_CCtx.
* Use ZBUFF_compressInit() to start a new compression operation.
* Use ZBUFF_compressInitDictionary() for a compression which requires a dictionary.
*
* Use ZBUFF_compressContinue() repetitively to consume input stream.
* *srcSizePtr and *dstCapacityPtr can be any size.
* The function will report how many bytes were read or written within *srcSizePtr and *dstCapacityPtr.
* Note that it may not consume the entire input, in which case it's up to the caller to present again remaining data.
* The content of `dst` will be overwritten (up to *dstCapacityPtr) at each call, so save its content if it matters or change @dst .
* @return : a hint to preferred nb of bytes to use as input for next function call (it's just a hint, to improve latency)
* or an error code, which can be tested using ZBUFF_isError().
*
* At any moment, it's possible to flush whatever data remains within buffer, using ZBUFF_compressFlush().
* The nb of bytes written into `dst` will be reported into *dstCapacityPtr.
* Note that the function cannot output more than *dstCapacityPtr,
* therefore, some content might still be left into internal buffer if *dstCapacityPtr is too small.
* @return : nb of bytes still present into internal buffer (0 if it's empty)
* or an error code, which can be tested using ZBUFF_isError().
*
* ZBUFF_compressEnd() instructs to finish a frame.
* It will perform a flush and write frame epilogue.
* The epilogue is required for decoders to consider a frame completed.
* Similar to ZBUFF_compressFlush(), it may not be able to output the entire internal buffer content if *dstCapacityPtr is too small.
* In which case, call again ZBUFF_compressFlush() to complete the flush.
* @return : nb of bytes still present into internal buffer (0 if it's empty)
* or an error code, which can be tested using ZBUFF_isError().
*
* Hint : _recommended buffer_ sizes (not compulsory) : ZBUFF_recommendedCInSize() / ZBUFF_recommendedCOutSize()
* input : ZBUFF_recommendedCInSize==128 KB block size is the internal unit, use this value to reduce intermediate stages (better latency)
* output : ZBUFF_recommendedCOutSize==ZSTD_compressBound(128 KB) + 3 + 3 : ensures it's always possible to write/flush/end a full block. Skip some buffering.
* By using both, it ensures that input will be entirely consumed, and output will always contain the result, reducing intermediate buffering.
* **************************************************/
typedef ZSTD_DStream ZBUFF_DCtx;
ZBUFF_DEPRECATED("use ZSTD_createDStream") ZBUFF_DCtx* ZBUFF_createDCtx(void);
ZBUFF_DEPRECATED("use ZSTD_freeDStream") size_t ZBUFF_freeDCtx(ZBUFF_DCtx* dctx);
ZBUFF_DEPRECATED("use ZSTD_initDStream") size_t ZBUFF_decompressInit(ZBUFF_DCtx* dctx);
ZBUFF_DEPRECATED("use ZSTD_initDStream_usingDict") size_t ZBUFF_decompressInitDictionary(ZBUFF_DCtx* dctx, const void* dict, size_t dictSize);
ZBUFF_DEPRECATED("use ZSTD_decompressStream") size_t ZBUFF_decompressContinue(ZBUFF_DCtx* dctx,
void* dst, size_t* dstCapacityPtr,
const void* src, size_t* srcSizePtr);
/*-***************************************************************************
* Streaming decompression howto
*
* A ZBUFF_DCtx object is required to track streaming operations.
* Use ZBUFF_createDCtx() and ZBUFF_freeDCtx() to create/release resources.
* Use ZBUFF_decompressInit() to start a new decompression operation,
* or ZBUFF_decompressInitDictionary() if decompression requires a dictionary.
* Note that ZBUFF_DCtx objects can be re-init multiple times.
*
* Use ZBUFF_decompressContinue() repetitively to consume your input.
* *srcSizePtr and *dstCapacityPtr can be any size.
* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
* The content of `dst` will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters, or change `dst`.
* @return : 0 when a frame is completely decoded and fully flushed,
* 1 when there is still some data left within internal buffer to flush,
* >1 when more data is expected, with value being a suggested next input size (it's just a hint, which helps latency),
* or an error code, which can be tested using ZBUFF_isError().
*
* Hint : recommended buffer sizes (not compulsory) : ZBUFF_recommendedDInSize() and ZBUFF_recommendedDOutSize()
* output : ZBUFF_recommendedDOutSize== 128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded.
* input : ZBUFF_recommendedDInSize == 128KB + 3;
* just follow indications from ZBUFF_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
* *******************************************************************************/
/* *************************************
* Tool functions
***************************************/
ZBUFF_DEPRECATED("use ZSTD_isError") unsigned ZBUFF_isError(size_t errorCode);
ZBUFF_DEPRECATED("use ZSTD_getErrorName") const char* ZBUFF_getErrorName(size_t errorCode);
/** Functions below provide recommended buffer sizes for Compression or Decompression operations.
* These sizes are just hints, they tend to offer better latency */
ZBUFF_DEPRECATED("use ZSTD_CStreamInSize") size_t ZBUFF_recommendedCInSize(void);
ZBUFF_DEPRECATED("use ZSTD_CStreamOutSize") size_t ZBUFF_recommendedCOutSize(void);
ZBUFF_DEPRECATED("use ZSTD_DStreamInSize") size_t ZBUFF_recommendedDInSize(void);
ZBUFF_DEPRECATED("use ZSTD_DStreamOutSize") size_t ZBUFF_recommendedDOutSize(void);
#endif /* ZSTD_BUFFERED_H_23987 */
#ifdef ZBUFF_STATIC_LINKING_ONLY
#ifndef ZBUFF_STATIC_H_30298098432
#define ZBUFF_STATIC_H_30298098432
/* ====================================================================================
* The definitions in this section are considered experimental.
* They should never be used in association with a dynamic library, as they may change in the future.
* They are provided for advanced usages.
* Use them only in association with static linking.
* ==================================================================================== */
/*--- Dependency ---*/
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_parameters, ZSTD_customMem */
#include "../zstd.h"
/*--- Custom memory allocator ---*/
/*! ZBUFF_createCCtx_advanced() :
* Create a ZBUFF compression context using external alloc and free functions */
ZBUFF_DEPRECATED("use ZSTD_createCStream_advanced") ZBUFF_CCtx* ZBUFF_createCCtx_advanced(ZSTD_customMem customMem);
/*! ZBUFF_createDCtx_advanced() :
* Create a ZBUFF decompression context using external alloc and free functions */
ZBUFF_DEPRECATED("use ZSTD_createDStream_advanced") ZBUFF_DCtx* ZBUFF_createDCtx_advanced(ZSTD_customMem customMem);
/*--- Advanced Streaming Initialization ---*/
ZBUFF_DEPRECATED("use ZSTD_initDStream_usingDict") size_t ZBUFF_compressInit_advanced(ZBUFF_CCtx* zbc,
const void* dict, size_t dictSize,
ZSTD_parameters params, unsigned long long pledgedSrcSize);
#endif /* ZBUFF_STATIC_H_30298098432 */
#endif /* ZBUFF_STATIC_LINKING_ONLY */
#if defined (__cplusplus)
}
#endif
diff --git a/sys/contrib/zstd/lib/deprecated/zbuff_common.c b/sys/contrib/zstd/lib/deprecated/zbuff_common.c
index 579bc4df14a2..e7d01a081807 100644
--- a/sys/contrib/zstd/lib/deprecated/zbuff_common.c
+++ b/sys/contrib/zstd/lib/deprecated/zbuff_common.c
@@ -1,26 +1,26 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Dependencies
***************************************/
#include "../common/error_private.h"
#include "zbuff.h"
/*-****************************************
* ZBUFF Error Management (deprecated)
******************************************/
/*! ZBUFF_isError() :
* tells if a return value is an error code */
unsigned ZBUFF_isError(size_t errorCode) { return ERR_isError(errorCode); }
/*! ZBUFF_getErrorName() :
* provides error code string from function result (useful for debugging) */
const char* ZBUFF_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
diff --git a/sys/contrib/zstd/lib/deprecated/zbuff_compress.c b/sys/contrib/zstd/lib/deprecated/zbuff_compress.c
index 2d20b1377591..51cf158c4ad3 100644
--- a/sys/contrib/zstd/lib/deprecated/zbuff_compress.c
+++ b/sys/contrib/zstd/lib/deprecated/zbuff_compress.c
@@ -1,147 +1,167 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* *************************************
* Dependencies
***************************************/
#define ZBUFF_STATIC_LINKING_ONLY
#include "zbuff.h"
+#include "../common/error_private.h"
/*-***********************************************************
* Streaming compression
*
* A ZBUFF_CCtx object is required to track streaming operation.
* Use ZBUFF_createCCtx() and ZBUFF_freeCCtx() to create/release resources.
* Use ZBUFF_compressInit() to start a new compression operation.
* ZBUFF_CCtx objects can be reused multiple times.
*
* Use ZBUFF_compressContinue() repetitively to consume your input.
* *srcSizePtr and *dstCapacityPtr can be any size.
* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
* Note that it may not consume the entire input, in which case it's up to the caller to call again the function with remaining input.
* The content of dst will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters or change dst .
* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to improve latency)
* or an error code, which can be tested using ZBUFF_isError().
*
* ZBUFF_compressFlush() can be used to instruct ZBUFF to compress and output whatever remains within its buffer.
* Note that it will not output more than *dstCapacityPtr.
* Therefore, some content might still be left into its internal buffer if dst buffer is too small.
* @return : nb of bytes still present into internal buffer (0 if it's empty)
* or an error code, which can be tested using ZBUFF_isError().
*
* ZBUFF_compressEnd() instructs to finish a frame.
* It will perform a flush and write frame epilogue.
* Similar to ZBUFF_compressFlush(), it may not be able to output the entire internal buffer content if *dstCapacityPtr is too small.
* @return : nb of bytes still present into internal buffer (0 if it's empty)
* or an error code, which can be tested using ZBUFF_isError().
*
* Hint : recommended buffer sizes (not compulsory)
* input : ZSTD_BLOCKSIZE_MAX (128 KB), internal unit size, it improves latency to use this value.
* output : ZSTD_compressBound(ZSTD_BLOCKSIZE_MAX) + ZSTD_blockHeaderSize + ZBUFF_endFrameSize : ensures it's always possible to write/flush/end a full block at best speed.
* ***********************************************************/
ZBUFF_CCtx* ZBUFF_createCCtx(void)
{
return ZSTD_createCStream();
}
ZBUFF_CCtx* ZBUFF_createCCtx_advanced(ZSTD_customMem customMem)
{
return ZSTD_createCStream_advanced(customMem);
}
size_t ZBUFF_freeCCtx(ZBUFF_CCtx* zbc)
{
return ZSTD_freeCStream(zbc);
}
/* ====== Initialization ====== */
size_t ZBUFF_compressInit_advanced(ZBUFF_CCtx* zbc,
const void* dict, size_t dictSize,
ZSTD_parameters params, unsigned long long pledgedSrcSize)
{
if (pledgedSrcSize==0) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN; /* preserve "0 == unknown" behavior */
- return ZSTD_initCStream_advanced(zbc, dict, dictSize, params, pledgedSrcSize);
+ FORWARD_IF_ERROR(ZSTD_CCtx_reset(zbc, ZSTD_reset_session_only), "");
+ FORWARD_IF_ERROR(ZSTD_CCtx_setPledgedSrcSize(zbc, pledgedSrcSize), "");
+
+ FORWARD_IF_ERROR(ZSTD_checkCParams(params.cParams), "");
+ FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(zbc, ZSTD_c_windowLog, params.cParams.windowLog), "");
+ FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(zbc, ZSTD_c_hashLog, params.cParams.hashLog), "");
+ FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(zbc, ZSTD_c_chainLog, params.cParams.chainLog), "");
+ FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(zbc, ZSTD_c_searchLog, params.cParams.searchLog), "");
+ FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(zbc, ZSTD_c_minMatch, params.cParams.minMatch), "");
+ FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(zbc, ZSTD_c_targetLength, params.cParams.targetLength), "");
+ FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(zbc, ZSTD_c_strategy, params.cParams.strategy), "");
+
+ FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(zbc, ZSTD_c_contentSizeFlag, params.fParams.contentSizeFlag), "");
+ FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(zbc, ZSTD_c_checksumFlag, params.fParams.checksumFlag), "");
+ FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(zbc, ZSTD_c_dictIDFlag, params.fParams.noDictIDFlag), "");
+
+ FORWARD_IF_ERROR(ZSTD_CCtx_loadDictionary(zbc, dict, dictSize), "");
+ return 0;
}
-
size_t ZBUFF_compressInitDictionary(ZBUFF_CCtx* zbc, const void* dict, size_t dictSize, int compressionLevel)
{
- return ZSTD_initCStream_usingDict(zbc, dict, dictSize, compressionLevel);
+ FORWARD_IF_ERROR(ZSTD_CCtx_reset(zbc, ZSTD_reset_session_only), "");
+ FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(zbc, ZSTD_c_compressionLevel, compressionLevel), "");
+ FORWARD_IF_ERROR(ZSTD_CCtx_loadDictionary(zbc, dict, dictSize), "");
+ return 0;
}
size_t ZBUFF_compressInit(ZBUFF_CCtx* zbc, int compressionLevel)
{
return ZSTD_initCStream(zbc, compressionLevel);
}
/* ====== Compression ====== */
size_t ZBUFF_compressContinue(ZBUFF_CCtx* zbc,
void* dst, size_t* dstCapacityPtr,
const void* src, size_t* srcSizePtr)
{
size_t result;
ZSTD_outBuffer outBuff;
ZSTD_inBuffer inBuff;
outBuff.dst = dst;
outBuff.pos = 0;
outBuff.size = *dstCapacityPtr;
inBuff.src = src;
inBuff.pos = 0;
inBuff.size = *srcSizePtr;
result = ZSTD_compressStream(zbc, &outBuff, &inBuff);
*dstCapacityPtr = outBuff.pos;
*srcSizePtr = inBuff.pos;
return result;
}
/* ====== Finalize ====== */
size_t ZBUFF_compressFlush(ZBUFF_CCtx* zbc, void* dst, size_t* dstCapacityPtr)
{
size_t result;
ZSTD_outBuffer outBuff;
outBuff.dst = dst;
outBuff.pos = 0;
outBuff.size = *dstCapacityPtr;
result = ZSTD_flushStream(zbc, &outBuff);
*dstCapacityPtr = outBuff.pos;
return result;
}
size_t ZBUFF_compressEnd(ZBUFF_CCtx* zbc, void* dst, size_t* dstCapacityPtr)
{
size_t result;
ZSTD_outBuffer outBuff;
outBuff.dst = dst;
outBuff.pos = 0;
outBuff.size = *dstCapacityPtr;
result = ZSTD_endStream(zbc, &outBuff);
*dstCapacityPtr = outBuff.pos;
return result;
}
/* *************************************
* Tool functions
***************************************/
size_t ZBUFF_recommendedCInSize(void) { return ZSTD_CStreamInSize(); }
size_t ZBUFF_recommendedCOutSize(void) { return ZSTD_CStreamOutSize(); }
diff --git a/sys/contrib/zstd/lib/deprecated/zbuff_decompress.c b/sys/contrib/zstd/lib/deprecated/zbuff_decompress.c
index d3c49e84b815..d73c0f35fac7 100644
--- a/sys/contrib/zstd/lib/deprecated/zbuff_decompress.c
+++ b/sys/contrib/zstd/lib/deprecated/zbuff_decompress.c
@@ -1,75 +1,75 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* *************************************
* Dependencies
***************************************/
#define ZBUFF_STATIC_LINKING_ONLY
#include "zbuff.h"
ZBUFF_DCtx* ZBUFF_createDCtx(void)
{
return ZSTD_createDStream();
}
ZBUFF_DCtx* ZBUFF_createDCtx_advanced(ZSTD_customMem customMem)
{
return ZSTD_createDStream_advanced(customMem);
}
size_t ZBUFF_freeDCtx(ZBUFF_DCtx* zbd)
{
return ZSTD_freeDStream(zbd);
}
/* *** Initialization *** */
size_t ZBUFF_decompressInitDictionary(ZBUFF_DCtx* zbd, const void* dict, size_t dictSize)
{
return ZSTD_initDStream_usingDict(zbd, dict, dictSize);
}
size_t ZBUFF_decompressInit(ZBUFF_DCtx* zbd)
{
return ZSTD_initDStream(zbd);
}
/* *** Decompression *** */
size_t ZBUFF_decompressContinue(ZBUFF_DCtx* zbd,
void* dst, size_t* dstCapacityPtr,
const void* src, size_t* srcSizePtr)
{
ZSTD_outBuffer outBuff;
ZSTD_inBuffer inBuff;
size_t result;
outBuff.dst = dst;
outBuff.pos = 0;
outBuff.size = *dstCapacityPtr;
inBuff.src = src;
inBuff.pos = 0;
inBuff.size = *srcSizePtr;
result = ZSTD_decompressStream(zbd, &outBuff, &inBuff);
*dstCapacityPtr = outBuff.pos;
*srcSizePtr = inBuff.pos;
return result;
}
/* *************************************
* Tool functions
***************************************/
size_t ZBUFF_recommendedDInSize(void) { return ZSTD_DStreamInSize(); }
size_t ZBUFF_recommendedDOutSize(void) { return ZSTD_DStreamOutSize(); }
diff --git a/sys/contrib/zstd/lib/dictBuilder/cover.c b/sys/contrib/zstd/lib/dictBuilder/cover.c
index c78af133a9d5..028802a1b00a 100644
--- a/sys/contrib/zstd/lib/dictBuilder/cover.c
+++ b/sys/contrib/zstd/lib/dictBuilder/cover.c
@@ -1,1245 +1,1253 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* *****************************************************************************
* Constructs a dictionary using a heuristic based on the following paper:
*
* Liao, Petri, Moffat, Wirth
* Effective Construction of Relative Lempel-Ziv Dictionaries
* Published in WWW 2016.
*
* Adapted from code originally written by @ot (Giuseppe Ottaviano).
******************************************************************************/
/*-*************************************
* Dependencies
***************************************/
#include <stdio.h> /* fprintf */
#include <stdlib.h> /* malloc, free, qsort */
#include <string.h> /* memset */
#include <time.h> /* clock */
+#ifndef ZDICT_STATIC_LINKING_ONLY
+# define ZDICT_STATIC_LINKING_ONLY
+#endif
+
#include "../common/mem.h" /* read */
#include "../common/pool.h"
#include "../common/threading.h"
-#include "cover.h"
#include "../common/zstd_internal.h" /* includes zstd.h */
-#ifndef ZDICT_STATIC_LINKING_ONLY
-#define ZDICT_STATIC_LINKING_ONLY
-#endif
-#include "zdict.h"
+#include "../zdict.h"
+#include "cover.h"
/*-*************************************
* Constants
***************************************/
+/**
+* There are 32bit indexes used to ref samples, so limit samples size to 4GB
+* on 64bit builds.
+* For 32bit builds we choose 1 GB.
+* Most 32bit platforms have 2GB user-mode addressable space and we allocate a large
+* contiguous buffer, so 1GB is already a high limit.
+*/
#define COVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((unsigned)-1) : ((unsigned)1 GB))
#define COVER_DEFAULT_SPLITPOINT 1.0
/*-*************************************
* Console display
***************************************/
#ifndef LOCALDISPLAYLEVEL
-static int g_displayLevel = 2;
+static int g_displayLevel = 0;
#endif
#undef DISPLAY
#define DISPLAY(...) \
{ \
fprintf(stderr, __VA_ARGS__); \
fflush(stderr); \
}
#undef LOCALDISPLAYLEVEL
#define LOCALDISPLAYLEVEL(displayLevel, l, ...) \
if (displayLevel >= l) { \
DISPLAY(__VA_ARGS__); \
} /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */
#undef DISPLAYLEVEL
#define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__)
#ifndef LOCALDISPLAYUPDATE
static const clock_t g_refreshRate = CLOCKS_PER_SEC * 15 / 100;
static clock_t g_time = 0;
#endif
#undef LOCALDISPLAYUPDATE
#define LOCALDISPLAYUPDATE(displayLevel, l, ...) \
if (displayLevel >= l) { \
if ((clock() - g_time > g_refreshRate) || (displayLevel >= 4)) { \
g_time = clock(); \
DISPLAY(__VA_ARGS__); \
} \
}
#undef DISPLAYUPDATE
#define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__)
/*-*************************************
* Hash table
***************************************
* A small specialized hash map for storing activeDmers.
* The map does not resize, so if it becomes full it will loop forever.
* Thus, the map must be large enough to store every value.
* The map implements linear probing and keeps its load less than 0.5.
*/
#define MAP_EMPTY_VALUE ((U32)-1)
typedef struct COVER_map_pair_t_s {
U32 key;
U32 value;
} COVER_map_pair_t;
typedef struct COVER_map_s {
COVER_map_pair_t *data;
U32 sizeLog;
U32 size;
U32 sizeMask;
} COVER_map_t;
/**
* Clear the map.
*/
static void COVER_map_clear(COVER_map_t *map) {
memset(map->data, MAP_EMPTY_VALUE, map->size * sizeof(COVER_map_pair_t));
}
/**
* Initializes a map of the given size.
* Returns 1 on success and 0 on failure.
* The map must be destroyed with COVER_map_destroy().
* The map is only guaranteed to be large enough to hold size elements.
*/
static int COVER_map_init(COVER_map_t *map, U32 size) {
map->sizeLog = ZSTD_highbit32(size) + 2;
map->size = (U32)1 << map->sizeLog;
map->sizeMask = map->size - 1;
map->data = (COVER_map_pair_t *)malloc(map->size * sizeof(COVER_map_pair_t));
if (!map->data) {
map->sizeLog = 0;
map->size = 0;
return 0;
}
COVER_map_clear(map);
return 1;
}
/**
* Internal hash function
*/
static const U32 COVER_prime4bytes = 2654435761U;
static U32 COVER_map_hash(COVER_map_t *map, U32 key) {
return (key * COVER_prime4bytes) >> (32 - map->sizeLog);
}
/**
* Helper function that returns the index that a key should be placed into.
*/
static U32 COVER_map_index(COVER_map_t *map, U32 key) {
const U32 hash = COVER_map_hash(map, key);
U32 i;
for (i = hash;; i = (i + 1) & map->sizeMask) {
COVER_map_pair_t *pos = &map->data[i];
if (pos->value == MAP_EMPTY_VALUE) {
return i;
}
if (pos->key == key) {
return i;
}
}
}
/**
* Returns the pointer to the value for key.
* If key is not in the map, it is inserted and the value is set to 0.
* The map must not be full.
*/
static U32 *COVER_map_at(COVER_map_t *map, U32 key) {
COVER_map_pair_t *pos = &map->data[COVER_map_index(map, key)];
if (pos->value == MAP_EMPTY_VALUE) {
pos->key = key;
pos->value = 0;
}
return &pos->value;
}
/**
* Deletes key from the map if present.
*/
static void COVER_map_remove(COVER_map_t *map, U32 key) {
U32 i = COVER_map_index(map, key);
COVER_map_pair_t *del = &map->data[i];
U32 shift = 1;
if (del->value == MAP_EMPTY_VALUE) {
return;
}
for (i = (i + 1) & map->sizeMask;; i = (i + 1) & map->sizeMask) {
COVER_map_pair_t *const pos = &map->data[i];
/* If the position is empty we are done */
if (pos->value == MAP_EMPTY_VALUE) {
del->value = MAP_EMPTY_VALUE;
return;
}
/* If pos can be moved to del do so */
if (((i - COVER_map_hash(map, pos->key)) & map->sizeMask) >= shift) {
del->key = pos->key;
del->value = pos->value;
del = pos;
shift = 1;
} else {
++shift;
}
}
}
/**
* Destroys a map that is inited with COVER_map_init().
*/
static void COVER_map_destroy(COVER_map_t *map) {
if (map->data) {
free(map->data);
}
map->data = NULL;
map->size = 0;
}
/*-*************************************
* Context
***************************************/
typedef struct {
const BYTE *samples;
size_t *offsets;
const size_t *samplesSizes;
size_t nbSamples;
size_t nbTrainSamples;
size_t nbTestSamples;
U32 *suffix;
size_t suffixSize;
U32 *freqs;
U32 *dmerAt;
unsigned d;
} COVER_ctx_t;
/* We need a global context for qsort... */
static COVER_ctx_t *g_coverCtx = NULL;
/*-*************************************
* Helper functions
***************************************/
/**
* Returns the sum of the sample sizes.
*/
size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples) {
size_t sum = 0;
unsigned i;
for (i = 0; i < nbSamples; ++i) {
sum += samplesSizes[i];
}
return sum;
}
/**
* Returns -1 if the dmer at lp is less than the dmer at rp.
* Return 0 if the dmers at lp and rp are equal.
* Returns 1 if the dmer at lp is greater than the dmer at rp.
*/
static int COVER_cmp(COVER_ctx_t *ctx, const void *lp, const void *rp) {
U32 const lhs = *(U32 const *)lp;
U32 const rhs = *(U32 const *)rp;
return memcmp(ctx->samples + lhs, ctx->samples + rhs, ctx->d);
}
/**
* Faster version for d <= 8.
*/
static int COVER_cmp8(COVER_ctx_t *ctx, const void *lp, const void *rp) {
U64 const mask = (ctx->d == 8) ? (U64)-1 : (((U64)1 << (8 * ctx->d)) - 1);
U64 const lhs = MEM_readLE64(ctx->samples + *(U32 const *)lp) & mask;
U64 const rhs = MEM_readLE64(ctx->samples + *(U32 const *)rp) & mask;
if (lhs < rhs) {
return -1;
}
return (lhs > rhs);
}
/**
* Same as COVER_cmp() except ties are broken by pointer value
* NOTE: g_coverCtx must be set to call this function. A global is required because
* qsort doesn't take an opaque pointer.
*/
static int WIN_CDECL COVER_strict_cmp(const void *lp, const void *rp) {
int result = COVER_cmp(g_coverCtx, lp, rp);
if (result == 0) {
result = lp < rp ? -1 : 1;
}
return result;
}
/**
* Faster version for d <= 8.
*/
static int WIN_CDECL COVER_strict_cmp8(const void *lp, const void *rp) {
int result = COVER_cmp8(g_coverCtx, lp, rp);
if (result == 0) {
result = lp < rp ? -1 : 1;
}
return result;
}
/**
* Returns the first pointer in [first, last) whose element does not compare
* less than value. If no such element exists it returns last.
*/
static const size_t *COVER_lower_bound(const size_t *first, const size_t *last,
size_t value) {
size_t count = last - first;
while (count != 0) {
size_t step = count / 2;
const size_t *ptr = first;
ptr += step;
if (*ptr < value) {
first = ++ptr;
count -= step + 1;
} else {
count = step;
}
}
return first;
}
/**
* Generic groupBy function.
* Groups an array sorted by cmp into groups with equivalent values.
* Calls grp for each group.
*/
static void
COVER_groupBy(const void *data, size_t count, size_t size, COVER_ctx_t *ctx,
int (*cmp)(COVER_ctx_t *, const void *, const void *),
void (*grp)(COVER_ctx_t *, const void *, const void *)) {
const BYTE *ptr = (const BYTE *)data;
size_t num = 0;
while (num < count) {
const BYTE *grpEnd = ptr + size;
++num;
while (num < count && cmp(ctx, ptr, grpEnd) == 0) {
grpEnd += size;
++num;
}
grp(ctx, ptr, grpEnd);
ptr = grpEnd;
}
}
/*-*************************************
* Cover functions
***************************************/
/**
* Called on each group of positions with the same dmer.
* Counts the frequency of each dmer and saves it in the suffix array.
* Fills `ctx->dmerAt`.
*/
static void COVER_group(COVER_ctx_t *ctx, const void *group,
const void *groupEnd) {
/* The group consists of all the positions with the same first d bytes. */
const U32 *grpPtr = (const U32 *)group;
const U32 *grpEnd = (const U32 *)groupEnd;
/* The dmerId is how we will reference this dmer.
* This allows us to map the whole dmer space to a much smaller space, the
* size of the suffix array.
*/
const U32 dmerId = (U32)(grpPtr - ctx->suffix);
/* Count the number of samples this dmer shows up in */
U32 freq = 0;
/* Details */
const size_t *curOffsetPtr = ctx->offsets;
const size_t *offsetsEnd = ctx->offsets + ctx->nbSamples;
/* Once *grpPtr >= curSampleEnd this occurrence of the dmer is in a
* different sample than the last.
*/
size_t curSampleEnd = ctx->offsets[0];
for (; grpPtr != grpEnd; ++grpPtr) {
/* Save the dmerId for this position so we can get back to it. */
ctx->dmerAt[*grpPtr] = dmerId;
/* Dictionaries only help for the first reference to the dmer.
* After that zstd can reference the match from the previous reference.
* So only count each dmer once for each sample it is in.
*/
if (*grpPtr < curSampleEnd) {
continue;
}
freq += 1;
/* Binary search to find the end of the sample *grpPtr is in.
* In the common case that grpPtr + 1 == grpEnd we can skip the binary
* search because the loop is over.
*/
if (grpPtr + 1 != grpEnd) {
const size_t *sampleEndPtr =
COVER_lower_bound(curOffsetPtr, offsetsEnd, *grpPtr);
curSampleEnd = *sampleEndPtr;
curOffsetPtr = sampleEndPtr + 1;
}
}
/* At this point we are never going to look at this segment of the suffix
* array again. We take advantage of this fact to save memory.
* We store the frequency of the dmer in the first position of the group,
* which is dmerId.
*/
ctx->suffix[dmerId] = freq;
}
/**
* Selects the best segment in an epoch.
* Segments of are scored according to the function:
*
* Let F(d) be the frequency of dmer d.
* Let S_i be the dmer at position i of segment S which has length k.
*
* Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1})
*
* Once the dmer d is in the dictionary we set F(d) = 0.
*/
static COVER_segment_t COVER_selectSegment(const COVER_ctx_t *ctx, U32 *freqs,
COVER_map_t *activeDmers, U32 begin,
U32 end,
ZDICT_cover_params_t parameters) {
/* Constants */
const U32 k = parameters.k;
const U32 d = parameters.d;
const U32 dmersInK = k - d + 1;
/* Try each segment (activeSegment) and save the best (bestSegment) */
COVER_segment_t bestSegment = {0, 0, 0};
COVER_segment_t activeSegment;
/* Reset the activeDmers in the segment */
COVER_map_clear(activeDmers);
/* The activeSegment starts at the beginning of the epoch. */
activeSegment.begin = begin;
activeSegment.end = begin;
activeSegment.score = 0;
/* Slide the activeSegment through the whole epoch.
* Save the best segment in bestSegment.
*/
while (activeSegment.end < end) {
/* The dmerId for the dmer at the next position */
U32 newDmer = ctx->dmerAt[activeSegment.end];
/* The entry in activeDmers for this dmerId */
U32 *newDmerOcc = COVER_map_at(activeDmers, newDmer);
/* If the dmer isn't already present in the segment add its score. */
if (*newDmerOcc == 0) {
/* The paper suggest using the L-0.5 norm, but experiments show that it
* doesn't help.
*/
activeSegment.score += freqs[newDmer];
}
/* Add the dmer to the segment */
activeSegment.end += 1;
*newDmerOcc += 1;
/* If the window is now too large, drop the first position */
if (activeSegment.end - activeSegment.begin == dmersInK + 1) {
U32 delDmer = ctx->dmerAt[activeSegment.begin];
U32 *delDmerOcc = COVER_map_at(activeDmers, delDmer);
activeSegment.begin += 1;
*delDmerOcc -= 1;
/* If this is the last occurrence of the dmer, subtract its score */
if (*delDmerOcc == 0) {
COVER_map_remove(activeDmers, delDmer);
activeSegment.score -= freqs[delDmer];
}
}
/* If this segment is the best so far save it */
if (activeSegment.score > bestSegment.score) {
bestSegment = activeSegment;
}
}
{
/* Trim off the zero frequency head and tail from the segment. */
U32 newBegin = bestSegment.end;
U32 newEnd = bestSegment.begin;
U32 pos;
for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
U32 freq = freqs[ctx->dmerAt[pos]];
if (freq != 0) {
newBegin = MIN(newBegin, pos);
newEnd = pos + 1;
}
}
bestSegment.begin = newBegin;
bestSegment.end = newEnd;
}
{
/* Zero out the frequency of each dmer covered by the chosen segment. */
U32 pos;
for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
freqs[ctx->dmerAt[pos]] = 0;
}
}
return bestSegment;
}
/**
* Check the validity of the parameters.
* Returns non-zero if the parameters are valid and 0 otherwise.
*/
static int COVER_checkParameters(ZDICT_cover_params_t parameters,
size_t maxDictSize) {
/* k and d are required parameters */
if (parameters.d == 0 || parameters.k == 0) {
return 0;
}
/* k <= maxDictSize */
if (parameters.k > maxDictSize) {
return 0;
}
/* d <= k */
if (parameters.d > parameters.k) {
return 0;
}
/* 0 < splitPoint <= 1 */
if (parameters.splitPoint <= 0 || parameters.splitPoint > 1){
return 0;
}
return 1;
}
/**
* Clean up a context initialized with `COVER_ctx_init()`.
*/
static void COVER_ctx_destroy(COVER_ctx_t *ctx) {
if (!ctx) {
return;
}
if (ctx->suffix) {
free(ctx->suffix);
ctx->suffix = NULL;
}
if (ctx->freqs) {
free(ctx->freqs);
ctx->freqs = NULL;
}
if (ctx->dmerAt) {
free(ctx->dmerAt);
ctx->dmerAt = NULL;
}
if (ctx->offsets) {
free(ctx->offsets);
ctx->offsets = NULL;
}
}
/**
* Prepare a context for dictionary building.
* The context is only dependent on the parameter `d` and can used multiple
* times.
* Returns 0 on success or error code on error.
* The context must be destroyed with `COVER_ctx_destroy()`.
*/
static size_t COVER_ctx_init(COVER_ctx_t *ctx, const void *samplesBuffer,
const size_t *samplesSizes, unsigned nbSamples,
unsigned d, double splitPoint) {
const BYTE *const samples = (const BYTE *)samplesBuffer;
const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples);
/* Split samples into testing and training sets */
const unsigned nbTrainSamples = splitPoint < 1.0 ? (unsigned)((double)nbSamples * splitPoint) : nbSamples;
const unsigned nbTestSamples = splitPoint < 1.0 ? nbSamples - nbTrainSamples : nbSamples;
const size_t trainingSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes, nbTrainSamples) : totalSamplesSize;
const size_t testSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes + nbTrainSamples, nbTestSamples) : totalSamplesSize;
/* Checks */
if (totalSamplesSize < MAX(d, sizeof(U64)) ||
totalSamplesSize >= (size_t)COVER_MAX_SAMPLES_SIZE) {
DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n",
(unsigned)(totalSamplesSize>>20), (COVER_MAX_SAMPLES_SIZE >> 20));
return ERROR(srcSize_wrong);
}
/* Check if there are at least 5 training samples */
if (nbTrainSamples < 5) {
DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid.", nbTrainSamples);
return ERROR(srcSize_wrong);
}
/* Check if there's testing sample */
if (nbTestSamples < 1) {
DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.", nbTestSamples);
return ERROR(srcSize_wrong);
}
/* Zero the context */
memset(ctx, 0, sizeof(*ctx));
DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbTrainSamples,
(unsigned)trainingSamplesSize);
DISPLAYLEVEL(2, "Testing on %u samples of total size %u\n", nbTestSamples,
(unsigned)testSamplesSize);
ctx->samples = samples;
ctx->samplesSizes = samplesSizes;
ctx->nbSamples = nbSamples;
ctx->nbTrainSamples = nbTrainSamples;
ctx->nbTestSamples = nbTestSamples;
/* Partial suffix array */
ctx->suffixSize = trainingSamplesSize - MAX(d, sizeof(U64)) + 1;
ctx->suffix = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
/* Maps index to the dmerID */
ctx->dmerAt = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
/* The offsets of each file */
ctx->offsets = (size_t *)malloc((nbSamples + 1) * sizeof(size_t));
if (!ctx->suffix || !ctx->dmerAt || !ctx->offsets) {
DISPLAYLEVEL(1, "Failed to allocate scratch buffers\n");
COVER_ctx_destroy(ctx);
return ERROR(memory_allocation);
}
ctx->freqs = NULL;
ctx->d = d;
/* Fill offsets from the samplesSizes */
{
U32 i;
ctx->offsets[0] = 0;
for (i = 1; i <= nbSamples; ++i) {
ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1];
}
}
DISPLAYLEVEL(2, "Constructing partial suffix array\n");
{
/* suffix is a partial suffix array.
* It only sorts suffixes by their first parameters.d bytes.
* The sort is stable, so each dmer group is sorted by position in input.
*/
U32 i;
for (i = 0; i < ctx->suffixSize; ++i) {
ctx->suffix[i] = i;
}
/* qsort doesn't take an opaque pointer, so pass as a global.
* On OpenBSD qsort() is not guaranteed to be stable, their mergesort() is.
*/
g_coverCtx = ctx;
#if defined(__OpenBSD__)
mergesort(ctx->suffix, ctx->suffixSize, sizeof(U32),
(ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
#else
qsort(ctx->suffix, ctx->suffixSize, sizeof(U32),
(ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
#endif
}
DISPLAYLEVEL(2, "Computing frequencies\n");
/* For each dmer group (group of positions with the same first d bytes):
* 1. For each position we set dmerAt[position] = dmerID. The dmerID is
* (groupBeginPtr - suffix). This allows us to go from position to
* dmerID so we can look up values in freq.
* 2. We calculate how many samples the dmer occurs in and save it in
* freqs[dmerId].
*/
COVER_groupBy(ctx->suffix, ctx->suffixSize, sizeof(U32), ctx,
(ctx->d <= 8 ? &COVER_cmp8 : &COVER_cmp), &COVER_group);
ctx->freqs = ctx->suffix;
ctx->suffix = NULL;
return 0;
}
void COVER_warnOnSmallCorpus(size_t maxDictSize, size_t nbDmers, int displayLevel)
{
const double ratio = (double)nbDmers / maxDictSize;
if (ratio >= 10) {
return;
}
LOCALDISPLAYLEVEL(displayLevel, 1,
"WARNING: The maximum dictionary size %u is too large "
"compared to the source size %u! "
"size(source)/size(dictionary) = %f, but it should be >= "
"10! This may lead to a subpar dictionary! We recommend "
"training on sources at least 10x, and preferably 100x "
"the size of the dictionary! \n", (U32)maxDictSize,
(U32)nbDmers, ratio);
}
COVER_epoch_info_t COVER_computeEpochs(U32 maxDictSize,
U32 nbDmers, U32 k, U32 passes)
{
const U32 minEpochSize = k * 10;
COVER_epoch_info_t epochs;
epochs.num = MAX(1, maxDictSize / k / passes);
epochs.size = nbDmers / epochs.num;
if (epochs.size >= minEpochSize) {
assert(epochs.size * epochs.num <= nbDmers);
return epochs;
}
epochs.size = MIN(minEpochSize, nbDmers);
epochs.num = nbDmers / epochs.size;
assert(epochs.size * epochs.num <= nbDmers);
return epochs;
}
/**
* Given the prepared context build the dictionary.
*/
static size_t COVER_buildDictionary(const COVER_ctx_t *ctx, U32 *freqs,
COVER_map_t *activeDmers, void *dictBuffer,
size_t dictBufferCapacity,
ZDICT_cover_params_t parameters) {
BYTE *const dict = (BYTE *)dictBuffer;
size_t tail = dictBufferCapacity;
/* Divide the data into epochs. We will select one segment from each epoch. */
const COVER_epoch_info_t epochs = COVER_computeEpochs(
(U32)dictBufferCapacity, (U32)ctx->suffixSize, parameters.k, 4);
const size_t maxZeroScoreRun = MAX(10, MIN(100, epochs.num >> 3));
size_t zeroScoreRun = 0;
size_t epoch;
DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n",
(U32)epochs.num, (U32)epochs.size);
/* Loop through the epochs until there are no more segments or the dictionary
* is full.
*/
for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs.num) {
const U32 epochBegin = (U32)(epoch * epochs.size);
const U32 epochEnd = epochBegin + epochs.size;
size_t segmentSize;
/* Select a segment */
COVER_segment_t segment = COVER_selectSegment(
ctx, freqs, activeDmers, epochBegin, epochEnd, parameters);
/* If the segment covers no dmers, then we are out of content.
* There may be new content in other epochs, for continue for some time.
*/
if (segment.score == 0) {
if (++zeroScoreRun >= maxZeroScoreRun) {
break;
}
continue;
}
zeroScoreRun = 0;
/* Trim the segment if necessary and if it is too small then we are done */
segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail);
if (segmentSize < parameters.d) {
break;
}
/* We fill the dictionary from the back to allow the best segments to be
* referenced with the smallest offsets.
*/
tail -= segmentSize;
memcpy(dict + tail, ctx->samples + segment.begin, segmentSize);
DISPLAYUPDATE(
2, "\r%u%% ",
(unsigned)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity));
}
DISPLAYLEVEL(2, "\r%79s\r", "");
return tail;
}
ZDICTLIB_API size_t ZDICT_trainFromBuffer_cover(
void *dictBuffer, size_t dictBufferCapacity,
const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples,
ZDICT_cover_params_t parameters)
{
BYTE* const dict = (BYTE*)dictBuffer;
COVER_ctx_t ctx;
COVER_map_t activeDmers;
parameters.splitPoint = 1.0;
/* Initialize global data */
- g_displayLevel = parameters.zParams.notificationLevel;
+ g_displayLevel = (int)parameters.zParams.notificationLevel;
/* Checks */
if (!COVER_checkParameters(parameters, dictBufferCapacity)) {
DISPLAYLEVEL(1, "Cover parameters incorrect\n");
return ERROR(parameter_outOfBound);
}
if (nbSamples == 0) {
DISPLAYLEVEL(1, "Cover must have at least one input file\n");
return ERROR(srcSize_wrong);
}
if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
ZDICT_DICTSIZE_MIN);
return ERROR(dstSize_tooSmall);
}
/* Initialize context and activeDmers */
{
size_t const initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples,
parameters.d, parameters.splitPoint);
if (ZSTD_isError(initVal)) {
return initVal;
}
}
COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, g_displayLevel);
if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
COVER_ctx_destroy(&ctx);
return ERROR(memory_allocation);
}
DISPLAYLEVEL(2, "Building dictionary\n");
{
const size_t tail =
COVER_buildDictionary(&ctx, ctx.freqs, &activeDmers, dictBuffer,
dictBufferCapacity, parameters);
const size_t dictionarySize = ZDICT_finalizeDictionary(
dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
samplesBuffer, samplesSizes, nbSamples, parameters.zParams);
if (!ZSTD_isError(dictionarySize)) {
DISPLAYLEVEL(2, "Constructed dictionary of size %u\n",
(unsigned)dictionarySize);
}
COVER_ctx_destroy(&ctx);
COVER_map_destroy(&activeDmers);
return dictionarySize;
}
}
size_t COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters,
const size_t *samplesSizes, const BYTE *samples,
size_t *offsets,
size_t nbTrainSamples, size_t nbSamples,
BYTE *const dict, size_t dictBufferCapacity) {
size_t totalCompressedSize = ERROR(GENERIC);
/* Pointers */
ZSTD_CCtx *cctx;
ZSTD_CDict *cdict;
void *dst;
/* Local variables */
size_t dstCapacity;
size_t i;
/* Allocate dst with enough space to compress the maximum sized sample */
{
size_t maxSampleSize = 0;
i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
for (; i < nbSamples; ++i) {
maxSampleSize = MAX(samplesSizes[i], maxSampleSize);
}
dstCapacity = ZSTD_compressBound(maxSampleSize);
dst = malloc(dstCapacity);
}
/* Create the cctx and cdict */
cctx = ZSTD_createCCtx();
cdict = ZSTD_createCDict(dict, dictBufferCapacity,
parameters.zParams.compressionLevel);
if (!dst || !cctx || !cdict) {
goto _compressCleanup;
}
/* Compress each sample and sum their sizes (or error) */
totalCompressedSize = dictBufferCapacity;
i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
for (; i < nbSamples; ++i) {
const size_t size = ZSTD_compress_usingCDict(
cctx, dst, dstCapacity, samples + offsets[i],
samplesSizes[i], cdict);
if (ZSTD_isError(size)) {
totalCompressedSize = size;
goto _compressCleanup;
}
totalCompressedSize += size;
}
_compressCleanup:
ZSTD_freeCCtx(cctx);
ZSTD_freeCDict(cdict);
if (dst) {
free(dst);
}
return totalCompressedSize;
}
/**
* Initialize the `COVER_best_t`.
*/
void COVER_best_init(COVER_best_t *best) {
if (best==NULL) return; /* compatible with init on NULL */
(void)ZSTD_pthread_mutex_init(&best->mutex, NULL);
(void)ZSTD_pthread_cond_init(&best->cond, NULL);
best->liveJobs = 0;
best->dict = NULL;
best->dictSize = 0;
best->compressedSize = (size_t)-1;
memset(&best->parameters, 0, sizeof(best->parameters));
}
/**
* Wait until liveJobs == 0.
*/
void COVER_best_wait(COVER_best_t *best) {
if (!best) {
return;
}
ZSTD_pthread_mutex_lock(&best->mutex);
while (best->liveJobs != 0) {
ZSTD_pthread_cond_wait(&best->cond, &best->mutex);
}
ZSTD_pthread_mutex_unlock(&best->mutex);
}
/**
* Call COVER_best_wait() and then destroy the COVER_best_t.
*/
void COVER_best_destroy(COVER_best_t *best) {
if (!best) {
return;
}
COVER_best_wait(best);
if (best->dict) {
free(best->dict);
}
ZSTD_pthread_mutex_destroy(&best->mutex);
ZSTD_pthread_cond_destroy(&best->cond);
}
/**
* Called when a thread is about to be launched.
* Increments liveJobs.
*/
void COVER_best_start(COVER_best_t *best) {
if (!best) {
return;
}
ZSTD_pthread_mutex_lock(&best->mutex);
++best->liveJobs;
ZSTD_pthread_mutex_unlock(&best->mutex);
}
/**
* Called when a thread finishes executing, both on error or success.
* Decrements liveJobs and signals any waiting threads if liveJobs == 0.
* If this dictionary is the best so far save it and its parameters.
*/
void COVER_best_finish(COVER_best_t *best, ZDICT_cover_params_t parameters,
COVER_dictSelection_t selection) {
void* dict = selection.dictContent;
size_t compressedSize = selection.totalCompressedSize;
size_t dictSize = selection.dictSize;
if (!best) {
return;
}
{
size_t liveJobs;
ZSTD_pthread_mutex_lock(&best->mutex);
--best->liveJobs;
liveJobs = best->liveJobs;
/* If the new dictionary is better */
if (compressedSize < best->compressedSize) {
/* Allocate space if necessary */
if (!best->dict || best->dictSize < dictSize) {
if (best->dict) {
free(best->dict);
}
best->dict = malloc(dictSize);
if (!best->dict) {
best->compressedSize = ERROR(GENERIC);
best->dictSize = 0;
ZSTD_pthread_cond_signal(&best->cond);
ZSTD_pthread_mutex_unlock(&best->mutex);
return;
}
}
/* Save the dictionary, parameters, and size */
if (dict) {
memcpy(best->dict, dict, dictSize);
best->dictSize = dictSize;
best->parameters = parameters;
best->compressedSize = compressedSize;
}
}
if (liveJobs == 0) {
ZSTD_pthread_cond_broadcast(&best->cond);
}
ZSTD_pthread_mutex_unlock(&best->mutex);
}
}
COVER_dictSelection_t COVER_dictSelectionError(size_t error) {
COVER_dictSelection_t selection = { NULL, 0, error };
return selection;
}
unsigned COVER_dictSelectionIsError(COVER_dictSelection_t selection) {
return (ZSTD_isError(selection.totalCompressedSize) || !selection.dictContent);
}
void COVER_dictSelectionFree(COVER_dictSelection_t selection){
free(selection.dictContent);
}
COVER_dictSelection_t COVER_selectDict(BYTE* customDictContent, size_t dictBufferCapacity,
size_t dictContentSize, const BYTE* samplesBuffer, const size_t* samplesSizes, unsigned nbFinalizeSamples,
size_t nbCheckSamples, size_t nbSamples, ZDICT_cover_params_t params, size_t* offsets, size_t totalCompressedSize) {
size_t largestDict = 0;
size_t largestCompressed = 0;
BYTE* customDictContentEnd = customDictContent + dictContentSize;
BYTE * largestDictbuffer = (BYTE *)malloc(dictBufferCapacity);
BYTE * candidateDictBuffer = (BYTE *)malloc(dictBufferCapacity);
double regressionTolerance = ((double)params.shrinkDictMaxRegression / 100.0) + 1.00;
if (!largestDictbuffer || !candidateDictBuffer) {
free(largestDictbuffer);
free(candidateDictBuffer);
return COVER_dictSelectionError(dictContentSize);
}
/* Initial dictionary size and compressed size */
memcpy(largestDictbuffer, customDictContent, dictContentSize);
dictContentSize = ZDICT_finalizeDictionary(
largestDictbuffer, dictBufferCapacity, customDictContent, dictContentSize,
samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
if (ZDICT_isError(dictContentSize)) {
free(largestDictbuffer);
free(candidateDictBuffer);
return COVER_dictSelectionError(dictContentSize);
}
totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
samplesBuffer, offsets,
nbCheckSamples, nbSamples,
largestDictbuffer, dictContentSize);
if (ZSTD_isError(totalCompressedSize)) {
free(largestDictbuffer);
free(candidateDictBuffer);
return COVER_dictSelectionError(totalCompressedSize);
}
if (params.shrinkDict == 0) {
COVER_dictSelection_t selection = { largestDictbuffer, dictContentSize, totalCompressedSize };
free(candidateDictBuffer);
return selection;
}
largestDict = dictContentSize;
largestCompressed = totalCompressedSize;
dictContentSize = ZDICT_DICTSIZE_MIN;
/* Largest dict is initially at least ZDICT_DICTSIZE_MIN */
while (dictContentSize < largestDict) {
memcpy(candidateDictBuffer, largestDictbuffer, largestDict);
dictContentSize = ZDICT_finalizeDictionary(
candidateDictBuffer, dictBufferCapacity, customDictContentEnd - dictContentSize, dictContentSize,
samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
if (ZDICT_isError(dictContentSize)) {
free(largestDictbuffer);
free(candidateDictBuffer);
return COVER_dictSelectionError(dictContentSize);
}
totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
samplesBuffer, offsets,
nbCheckSamples, nbSamples,
candidateDictBuffer, dictContentSize);
if (ZSTD_isError(totalCompressedSize)) {
free(largestDictbuffer);
free(candidateDictBuffer);
return COVER_dictSelectionError(totalCompressedSize);
}
if (totalCompressedSize <= largestCompressed * regressionTolerance) {
COVER_dictSelection_t selection = { candidateDictBuffer, dictContentSize, totalCompressedSize };
free(largestDictbuffer);
return selection;
}
dictContentSize *= 2;
}
dictContentSize = largestDict;
totalCompressedSize = largestCompressed;
{
COVER_dictSelection_t selection = { largestDictbuffer, dictContentSize, totalCompressedSize };
free(candidateDictBuffer);
return selection;
}
}
/**
* Parameters for COVER_tryParameters().
*/
typedef struct COVER_tryParameters_data_s {
const COVER_ctx_t *ctx;
COVER_best_t *best;
size_t dictBufferCapacity;
ZDICT_cover_params_t parameters;
} COVER_tryParameters_data_t;
/**
* Tries a set of parameters and updates the COVER_best_t with the results.
* This function is thread safe if zstd is compiled with multithreaded support.
* It takes its parameters as an *OWNING* opaque pointer to support threading.
*/
-static void COVER_tryParameters(void *opaque) {
+static void COVER_tryParameters(void *opaque)
+{
/* Save parameters as local variables */
- COVER_tryParameters_data_t *const data = (COVER_tryParameters_data_t *)opaque;
+ COVER_tryParameters_data_t *const data = (COVER_tryParameters_data_t*)opaque;
const COVER_ctx_t *const ctx = data->ctx;
const ZDICT_cover_params_t parameters = data->parameters;
size_t dictBufferCapacity = data->dictBufferCapacity;
size_t totalCompressedSize = ERROR(GENERIC);
/* Allocate space for hash table, dict, and freqs */
COVER_map_t activeDmers;
- BYTE *const dict = (BYTE * const)malloc(dictBufferCapacity);
+ BYTE* const dict = (BYTE*)malloc(dictBufferCapacity);
COVER_dictSelection_t selection = COVER_dictSelectionError(ERROR(GENERIC));
- U32 *freqs = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
+ U32* const freqs = (U32*)malloc(ctx->suffixSize * sizeof(U32));
if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
goto _cleanup;
}
if (!dict || !freqs) {
DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n");
goto _cleanup;
}
/* Copy the frequencies because we need to modify them */
memcpy(freqs, ctx->freqs, ctx->suffixSize * sizeof(U32));
/* Build the dictionary */
{
const size_t tail = COVER_buildDictionary(ctx, freqs, &activeDmers, dict,
dictBufferCapacity, parameters);
selection = COVER_selectDict(dict + tail, dictBufferCapacity, dictBufferCapacity - tail,
ctx->samples, ctx->samplesSizes, (unsigned)ctx->nbTrainSamples, ctx->nbTrainSamples, ctx->nbSamples, parameters, ctx->offsets,
totalCompressedSize);
if (COVER_dictSelectionIsError(selection)) {
DISPLAYLEVEL(1, "Failed to select dictionary\n");
goto _cleanup;
}
}
_cleanup:
free(dict);
COVER_best_finish(data->best, parameters, selection);
free(data);
COVER_map_destroy(&activeDmers);
COVER_dictSelectionFree(selection);
- if (freqs) {
- free(freqs);
- }
+ free(freqs);
}
ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover(
- void *dictBuffer, size_t dictBufferCapacity, const void *samplesBuffer,
- const size_t *samplesSizes, unsigned nbSamples,
- ZDICT_cover_params_t *parameters) {
+ void* dictBuffer, size_t dictBufferCapacity, const void* samplesBuffer,
+ const size_t* samplesSizes, unsigned nbSamples,
+ ZDICT_cover_params_t* parameters)
+{
/* constants */
const unsigned nbThreads = parameters->nbThreads;
const double splitPoint =
parameters->splitPoint <= 0.0 ? COVER_DEFAULT_SPLITPOINT : parameters->splitPoint;
const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d;
const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d;
const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k;
const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k;
const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps;
const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1);
const unsigned kIterations =
(1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize);
const unsigned shrinkDict = 0;
/* Local variables */
const int displayLevel = parameters->zParams.notificationLevel;
unsigned iteration = 1;
unsigned d;
unsigned k;
COVER_best_t best;
POOL_ctx *pool = NULL;
int warned = 0;
/* Checks */
if (splitPoint <= 0 || splitPoint > 1) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
return ERROR(parameter_outOfBound);
}
if (kMinK < kMaxD || kMaxK < kMinK) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
return ERROR(parameter_outOfBound);
}
if (nbSamples == 0) {
DISPLAYLEVEL(1, "Cover must have at least one input file\n");
return ERROR(srcSize_wrong);
}
if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
ZDICT_DICTSIZE_MIN);
return ERROR(dstSize_tooSmall);
}
if (nbThreads > 1) {
pool = POOL_create(nbThreads, 1);
if (!pool) {
return ERROR(memory_allocation);
}
}
/* Initialization */
COVER_best_init(&best);
/* Turn down global display level to clean up display at level 2 and below */
g_displayLevel = displayLevel == 0 ? 0 : displayLevel - 1;
/* Loop through d first because each new value needs a new context */
LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n",
kIterations);
for (d = kMinD; d <= kMaxD; d += 2) {
/* Initialize the context for this value of d */
COVER_ctx_t ctx;
LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d);
{
const size_t initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint);
if (ZSTD_isError(initVal)) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
COVER_best_destroy(&best);
POOL_free(pool);
return initVal;
}
}
if (!warned) {
COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, displayLevel);
warned = 1;
}
/* Loop through k reusing the same context */
for (k = kMinK; k <= kMaxK; k += kStepSize) {
/* Prepare the arguments */
COVER_tryParameters_data_t *data = (COVER_tryParameters_data_t *)malloc(
sizeof(COVER_tryParameters_data_t));
LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k);
if (!data) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n");
COVER_best_destroy(&best);
COVER_ctx_destroy(&ctx);
POOL_free(pool);
return ERROR(memory_allocation);
}
data->ctx = &ctx;
data->best = &best;
data->dictBufferCapacity = dictBufferCapacity;
data->parameters = *parameters;
data->parameters.k = k;
data->parameters.d = d;
data->parameters.splitPoint = splitPoint;
data->parameters.steps = kSteps;
data->parameters.shrinkDict = shrinkDict;
data->parameters.zParams.notificationLevel = g_displayLevel;
/* Check the parameters */
if (!COVER_checkParameters(data->parameters, dictBufferCapacity)) {
DISPLAYLEVEL(1, "Cover parameters incorrect\n");
free(data);
continue;
}
/* Call the function and pass ownership of data to it */
COVER_best_start(&best);
if (pool) {
POOL_add(pool, &COVER_tryParameters, data);
} else {
COVER_tryParameters(data);
}
/* Print status */
LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%% ",
(unsigned)((iteration * 100) / kIterations));
++iteration;
}
COVER_best_wait(&best);
COVER_ctx_destroy(&ctx);
}
LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", "");
/* Fill the output buffer and parameters with output of the best parameters */
{
const size_t dictSize = best.dictSize;
if (ZSTD_isError(best.compressedSize)) {
const size_t compressedSize = best.compressedSize;
COVER_best_destroy(&best);
POOL_free(pool);
return compressedSize;
}
*parameters = best.parameters;
memcpy(dictBuffer, best.dict, dictSize);
COVER_best_destroy(&best);
POOL_free(pool);
return dictSize;
}
}
diff --git a/sys/contrib/zstd/lib/dictBuilder/cover.h b/sys/contrib/zstd/lib/dictBuilder/cover.h
index 9f1cb5fb9551..1aacdddd6fe4 100644
--- a/sys/contrib/zstd/lib/dictBuilder/cover.h
+++ b/sys/contrib/zstd/lib/dictBuilder/cover.h
@@ -1,157 +1,158 @@
/*
- * Copyright (c) 2017-2020, Facebook, Inc.
+ * Copyright (c) Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
+#ifndef ZDICT_STATIC_LINKING_ONLY
+# define ZDICT_STATIC_LINKING_ONLY
+#endif
+
#include <stdio.h> /* fprintf */
#include <stdlib.h> /* malloc, free, qsort */
#include <string.h> /* memset */
#include <time.h> /* clock */
#include "../common/mem.h" /* read */
#include "../common/pool.h"
#include "../common/threading.h"
#include "../common/zstd_internal.h" /* includes zstd.h */
-#ifndef ZDICT_STATIC_LINKING_ONLY
-#define ZDICT_STATIC_LINKING_ONLY
-#endif
-#include "zdict.h"
+#include "../zdict.h"
/**
* COVER_best_t is used for two purposes:
* 1. Synchronizing threads.
* 2. Saving the best parameters and dictionary.
*
* All of the methods except COVER_best_init() are thread safe if zstd is
* compiled with multithreaded support.
*/
typedef struct COVER_best_s {
ZSTD_pthread_mutex_t mutex;
ZSTD_pthread_cond_t cond;
size_t liveJobs;
void *dict;
size_t dictSize;
ZDICT_cover_params_t parameters;
size_t compressedSize;
} COVER_best_t;
/**
* A segment is a range in the source as well as the score of the segment.
*/
typedef struct {
U32 begin;
U32 end;
U32 score;
} COVER_segment_t;
/**
*Number of epochs and size of each epoch.
*/
typedef struct {
U32 num;
U32 size;
} COVER_epoch_info_t;
/**
* Struct used for the dictionary selection function.
*/
typedef struct COVER_dictSelection {
BYTE* dictContent;
size_t dictSize;
size_t totalCompressedSize;
} COVER_dictSelection_t;
/**
* Computes the number of epochs and the size of each epoch.
* We will make sure that each epoch gets at least 10 * k bytes.
*
* The COVER algorithms divide the data up into epochs of equal size and
* select one segment from each epoch.
*
* @param maxDictSize The maximum allowed dictionary size.
* @param nbDmers The number of dmers we are training on.
* @param k The parameter k (segment size).
* @param passes The target number of passes over the dmer corpus.
* More passes means a better dictionary.
*/
COVER_epoch_info_t COVER_computeEpochs(U32 maxDictSize, U32 nbDmers,
U32 k, U32 passes);
/**
* Warns the user when their corpus is too small.
*/
void COVER_warnOnSmallCorpus(size_t maxDictSize, size_t nbDmers, int displayLevel);
/**
* Checks total compressed size of a dictionary
*/
size_t COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters,
const size_t *samplesSizes, const BYTE *samples,
size_t *offsets,
size_t nbTrainSamples, size_t nbSamples,
BYTE *const dict, size_t dictBufferCapacity);
/**
* Returns the sum of the sample sizes.
*/
size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples) ;
/**
* Initialize the `COVER_best_t`.
*/
void COVER_best_init(COVER_best_t *best);
/**
* Wait until liveJobs == 0.
*/
void COVER_best_wait(COVER_best_t *best);
/**
* Call COVER_best_wait() and then destroy the COVER_best_t.
*/
void COVER_best_destroy(COVER_best_t *best);
/**
* Called when a thread is about to be launched.
* Increments liveJobs.
*/
void COVER_best_start(COVER_best_t *best);
/**
* Called when a thread finishes executing, both on error or success.
* Decrements liveJobs and signals any waiting threads if liveJobs == 0.
* If this dictionary is the best so far save it and its parameters.
*/
void COVER_best_finish(COVER_best_t *best, ZDICT_cover_params_t parameters,
COVER_dictSelection_t selection);
/**
* Error function for COVER_selectDict function. Checks if the return
* value is an error.
*/
unsigned COVER_dictSelectionIsError(COVER_dictSelection_t selection);
/**
* Error function for COVER_selectDict function. Returns a struct where
* return.totalCompressedSize is a ZSTD error.
*/
COVER_dictSelection_t COVER_dictSelectionError(size_t error);
/**
* Always call after selectDict is called to free up used memory from
* newly created dictionary.
*/
void COVER_dictSelectionFree(COVER_dictSelection_t selection);
/**
* Called to finalize the dictionary and select one based on whether or not
* the shrink-dict flag was enabled. If enabled the dictionary used is the
* smallest dictionary within a specified regression of the compressed size
* from the largest dictionary.
*/
COVER_dictSelection_t COVER_selectDict(BYTE* customDictContent, size_t dictBufferCapacity,
size_t dictContentSize, const BYTE* samplesBuffer, const size_t* samplesSizes, unsigned nbFinalizeSamples,
size_t nbCheckSamples, size_t nbSamples, ZDICT_cover_params_t params, size_t* offsets, size_t totalCompressedSize);
diff --git a/sys/contrib/zstd/lib/dictBuilder/divsufsort.c b/sys/contrib/zstd/lib/dictBuilder/divsufsort.c
index ead9220442b2..a2870fb3ba33 100644
--- a/sys/contrib/zstd/lib/dictBuilder/divsufsort.c
+++ b/sys/contrib/zstd/lib/dictBuilder/divsufsort.c
@@ -1,1913 +1,1913 @@
/*
* divsufsort.c for libdivsufsort-lite
* Copyright (c) 2003-2008 Yuta Mori All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/*- Compiler specifics -*/
#ifdef __clang__
#pragma clang diagnostic ignored "-Wshorten-64-to-32"
#endif
#if defined(_MSC_VER)
# pragma warning(disable : 4244)
# pragma warning(disable : 4127) /* C4127 : Condition expression is constant */
#endif
/*- Dependencies -*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include "divsufsort.h"
/*- Constants -*/
#if defined(INLINE)
# undef INLINE
#endif
#if !defined(INLINE)
# define INLINE __inline
#endif
#if defined(ALPHABET_SIZE) && (ALPHABET_SIZE < 1)
# undef ALPHABET_SIZE
#endif
#if !defined(ALPHABET_SIZE)
# define ALPHABET_SIZE (256)
#endif
#define BUCKET_A_SIZE (ALPHABET_SIZE)
#define BUCKET_B_SIZE (ALPHABET_SIZE * ALPHABET_SIZE)
#if defined(SS_INSERTIONSORT_THRESHOLD)
# if SS_INSERTIONSORT_THRESHOLD < 1
# undef SS_INSERTIONSORT_THRESHOLD
# define SS_INSERTIONSORT_THRESHOLD (1)
# endif
#else
# define SS_INSERTIONSORT_THRESHOLD (8)
#endif
#if defined(SS_BLOCKSIZE)
# if SS_BLOCKSIZE < 0
# undef SS_BLOCKSIZE
# define SS_BLOCKSIZE (0)
# elif 32768 <= SS_BLOCKSIZE
# undef SS_BLOCKSIZE
# define SS_BLOCKSIZE (32767)
# endif
#else
# define SS_BLOCKSIZE (1024)
#endif
/* minstacksize = log(SS_BLOCKSIZE) / log(3) * 2 */
#if SS_BLOCKSIZE == 0
# define SS_MISORT_STACKSIZE (96)
#elif SS_BLOCKSIZE <= 4096
# define SS_MISORT_STACKSIZE (16)
#else
# define SS_MISORT_STACKSIZE (24)
#endif
#define SS_SMERGE_STACKSIZE (32)
#define TR_INSERTIONSORT_THRESHOLD (8)
#define TR_STACKSIZE (64)
/*- Macros -*/
#ifndef SWAP
# define SWAP(_a, _b) do { t = (_a); (_a) = (_b); (_b) = t; } while(0)
#endif /* SWAP */
#ifndef MIN
# define MIN(_a, _b) (((_a) < (_b)) ? (_a) : (_b))
#endif /* MIN */
#ifndef MAX
# define MAX(_a, _b) (((_a) > (_b)) ? (_a) : (_b))
#endif /* MAX */
#define STACK_PUSH(_a, _b, _c, _d)\
do {\
assert(ssize < STACK_SIZE);\
stack[ssize].a = (_a), stack[ssize].b = (_b),\
stack[ssize].c = (_c), stack[ssize++].d = (_d);\
} while(0)
#define STACK_PUSH5(_a, _b, _c, _d, _e)\
do {\
assert(ssize < STACK_SIZE);\
stack[ssize].a = (_a), stack[ssize].b = (_b),\
stack[ssize].c = (_c), stack[ssize].d = (_d), stack[ssize++].e = (_e);\
} while(0)
#define STACK_POP(_a, _b, _c, _d)\
do {\
assert(0 <= ssize);\
if(ssize == 0) { return; }\
(_a) = stack[--ssize].a, (_b) = stack[ssize].b,\
(_c) = stack[ssize].c, (_d) = stack[ssize].d;\
} while(0)
#define STACK_POP5(_a, _b, _c, _d, _e)\
do {\
assert(0 <= ssize);\
if(ssize == 0) { return; }\
(_a) = stack[--ssize].a, (_b) = stack[ssize].b,\
(_c) = stack[ssize].c, (_d) = stack[ssize].d, (_e) = stack[ssize].e;\
} while(0)
#define BUCKET_A(_c0) bucket_A[(_c0)]
#if ALPHABET_SIZE == 256
#define BUCKET_B(_c0, _c1) (bucket_B[((_c1) << 8) | (_c0)])
#define BUCKET_BSTAR(_c0, _c1) (bucket_B[((_c0) << 8) | (_c1)])
#else
#define BUCKET_B(_c0, _c1) (bucket_B[(_c1) * ALPHABET_SIZE + (_c0)])
#define BUCKET_BSTAR(_c0, _c1) (bucket_B[(_c0) * ALPHABET_SIZE + (_c1)])
#endif
/*- Private Functions -*/
static const int lg_table[256]= {
-1,0,1,1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
};
#if (SS_BLOCKSIZE == 0) || (SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE)
static INLINE
int
ss_ilg(int n) {
#if SS_BLOCKSIZE == 0
return (n & 0xffff0000) ?
((n & 0xff000000) ?
24 + lg_table[(n >> 24) & 0xff] :
16 + lg_table[(n >> 16) & 0xff]) :
((n & 0x0000ff00) ?
8 + lg_table[(n >> 8) & 0xff] :
0 + lg_table[(n >> 0) & 0xff]);
#elif SS_BLOCKSIZE < 256
return lg_table[n];
#else
return (n & 0xff00) ?
8 + lg_table[(n >> 8) & 0xff] :
0 + lg_table[(n >> 0) & 0xff];
#endif
}
#endif /* (SS_BLOCKSIZE == 0) || (SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE) */
#if SS_BLOCKSIZE != 0
static const int sqq_table[256] = {
0, 16, 22, 27, 32, 35, 39, 42, 45, 48, 50, 53, 55, 57, 59, 61,
64, 65, 67, 69, 71, 73, 75, 76, 78, 80, 81, 83, 84, 86, 87, 89,
90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108, 109,
110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126,
128, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,
143, 144, 144, 145, 146, 147, 148, 149, 150, 150, 151, 152, 153, 154, 155, 155,
156, 157, 158, 159, 160, 160, 161, 162, 163, 163, 164, 165, 166, 167, 167, 168,
169, 170, 170, 171, 172, 173, 173, 174, 175, 176, 176, 177, 178, 178, 179, 180,
181, 181, 182, 183, 183, 184, 185, 185, 186, 187, 187, 188, 189, 189, 190, 191,
192, 192, 193, 193, 194, 195, 195, 196, 197, 197, 198, 199, 199, 200, 201, 201,
202, 203, 203, 204, 204, 205, 206, 206, 207, 208, 208, 209, 209, 210, 211, 211,
212, 212, 213, 214, 214, 215, 215, 216, 217, 217, 218, 218, 219, 219, 220, 221,
221, 222, 222, 223, 224, 224, 225, 225, 226, 226, 227, 227, 228, 229, 229, 230,
230, 231, 231, 232, 232, 233, 234, 234, 235, 235, 236, 236, 237, 237, 238, 238,
239, 240, 240, 241, 241, 242, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247,
247, 248, 248, 249, 249, 250, 250, 251, 251, 252, 252, 253, 253, 254, 254, 255
};
static INLINE
int
ss_isqrt(int x) {
int y, e;
if(x >= (SS_BLOCKSIZE * SS_BLOCKSIZE)) { return SS_BLOCKSIZE; }
e = (x & 0xffff0000) ?
((x & 0xff000000) ?
24 + lg_table[(x >> 24) & 0xff] :
16 + lg_table[(x >> 16) & 0xff]) :
((x & 0x0000ff00) ?
8 + lg_table[(x >> 8) & 0xff] :
0 + lg_table[(x >> 0) & 0xff]);
if(e >= 16) {
y = sqq_table[x >> ((e - 6) - (e & 1))] << ((e >> 1) - 7);
if(e >= 24) { y = (y + 1 + x / y) >> 1; }
y = (y + 1 + x / y) >> 1;
} else if(e >= 8) {
y = (sqq_table[x >> ((e - 6) - (e & 1))] >> (7 - (e >> 1))) + 1;
} else {
return sqq_table[x] >> 4;
}
return (x < (y * y)) ? y - 1 : y;
}
#endif /* SS_BLOCKSIZE != 0 */
/*---------------------------------------------------------------------------*/
/* Compares two suffixes. */
static INLINE
int
ss_compare(const unsigned char *T,
const int *p1, const int *p2,
int depth) {
const unsigned char *U1, *U2, *U1n, *U2n;
for(U1 = T + depth + *p1,
U2 = T + depth + *p2,
U1n = T + *(p1 + 1) + 2,
U2n = T + *(p2 + 1) + 2;
(U1 < U1n) && (U2 < U2n) && (*U1 == *U2);
++U1, ++U2) {
}
return U1 < U1n ?
(U2 < U2n ? *U1 - *U2 : 1) :
(U2 < U2n ? -1 : 0);
}
/*---------------------------------------------------------------------------*/
#if (SS_BLOCKSIZE != 1) && (SS_INSERTIONSORT_THRESHOLD != 1)
/* Insertionsort for small size groups */
static
void
ss_insertionsort(const unsigned char *T, const int *PA,
int *first, int *last, int depth) {
int *i, *j;
int t;
int r;
for(i = last - 2; first <= i; --i) {
for(t = *i, j = i + 1; 0 < (r = ss_compare(T, PA + t, PA + *j, depth));) {
do { *(j - 1) = *j; } while((++j < last) && (*j < 0));
if(last <= j) { break; }
}
if(r == 0) { *j = ~*j; }
*(j - 1) = t;
}
}
#endif /* (SS_BLOCKSIZE != 1) && (SS_INSERTIONSORT_THRESHOLD != 1) */
/*---------------------------------------------------------------------------*/
#if (SS_BLOCKSIZE == 0) || (SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE)
static INLINE
void
ss_fixdown(const unsigned char *Td, const int *PA,
int *SA, int i, int size) {
int j, k;
int v;
int c, d, e;
for(v = SA[i], c = Td[PA[v]]; (j = 2 * i + 1) < size; SA[i] = SA[k], i = k) {
d = Td[PA[SA[k = j++]]];
if(d < (e = Td[PA[SA[j]]])) { k = j; d = e; }
if(d <= c) { break; }
}
SA[i] = v;
}
/* Simple top-down heapsort. */
static
void
ss_heapsort(const unsigned char *Td, const int *PA, int *SA, int size) {
int i, m;
int t;
m = size;
if((size % 2) == 0) {
m--;
if(Td[PA[SA[m / 2]]] < Td[PA[SA[m]]]) { SWAP(SA[m], SA[m / 2]); }
}
for(i = m / 2 - 1; 0 <= i; --i) { ss_fixdown(Td, PA, SA, i, m); }
if((size % 2) == 0) { SWAP(SA[0], SA[m]); ss_fixdown(Td, PA, SA, 0, m); }
for(i = m - 1; 0 < i; --i) {
t = SA[0], SA[0] = SA[i];
ss_fixdown(Td, PA, SA, 0, i);
SA[i] = t;
}
}
/*---------------------------------------------------------------------------*/
/* Returns the median of three elements. */
static INLINE
int *
ss_median3(const unsigned char *Td, const int *PA,
int *v1, int *v2, int *v3) {
int *t;
if(Td[PA[*v1]] > Td[PA[*v2]]) { SWAP(v1, v2); }
if(Td[PA[*v2]] > Td[PA[*v3]]) {
if(Td[PA[*v1]] > Td[PA[*v3]]) { return v1; }
else { return v3; }
}
return v2;
}
/* Returns the median of five elements. */
static INLINE
int *
ss_median5(const unsigned char *Td, const int *PA,
int *v1, int *v2, int *v3, int *v4, int *v5) {
int *t;
if(Td[PA[*v2]] > Td[PA[*v3]]) { SWAP(v2, v3); }
if(Td[PA[*v4]] > Td[PA[*v5]]) { SWAP(v4, v5); }
if(Td[PA[*v2]] > Td[PA[*v4]]) { SWAP(v2, v4); SWAP(v3, v5); }
if(Td[PA[*v1]] > Td[PA[*v3]]) { SWAP(v1, v3); }
if(Td[PA[*v1]] > Td[PA[*v4]]) { SWAP(v1, v4); SWAP(v3, v5); }
if(Td[PA[*v3]] > Td[PA[*v4]]) { return v4; }
return v3;
}
/* Returns the pivot element. */
static INLINE
int *
ss_pivot(const unsigned char *Td, const int *PA, int *first, int *last) {
int *middle;
int t;
t = last - first;
middle = first + t / 2;
if(t <= 512) {
if(t <= 32) {
return ss_median3(Td, PA, first, middle, last - 1);
} else {
t >>= 2;
return ss_median5(Td, PA, first, first + t, middle, last - 1 - t, last - 1);
}
}
t >>= 3;
first = ss_median3(Td, PA, first, first + t, first + (t << 1));
middle = ss_median3(Td, PA, middle - t, middle, middle + t);
last = ss_median3(Td, PA, last - 1 - (t << 1), last - 1 - t, last - 1);
return ss_median3(Td, PA, first, middle, last);
}
/*---------------------------------------------------------------------------*/
/* Binary partition for substrings. */
static INLINE
int *
ss_partition(const int *PA,
int *first, int *last, int depth) {
int *a, *b;
int t;
for(a = first - 1, b = last;;) {
for(; (++a < b) && ((PA[*a] + depth) >= (PA[*a + 1] + 1));) { *a = ~*a; }
for(; (a < --b) && ((PA[*b] + depth) < (PA[*b + 1] + 1));) { }
if(b <= a) { break; }
t = ~*b;
*b = *a;
*a = t;
}
if(first < a) { *first = ~*first; }
return a;
}
/* Multikey introsort for medium size groups. */
static
void
ss_mintrosort(const unsigned char *T, const int *PA,
int *first, int *last,
int depth) {
#define STACK_SIZE SS_MISORT_STACKSIZE
struct { int *a, *b, c; int d; } stack[STACK_SIZE];
const unsigned char *Td;
int *a, *b, *c, *d, *e, *f;
int s, t;
int ssize;
int limit;
int v, x = 0;
for(ssize = 0, limit = ss_ilg(last - first);;) {
if((last - first) <= SS_INSERTIONSORT_THRESHOLD) {
#if 1 < SS_INSERTIONSORT_THRESHOLD
if(1 < (last - first)) { ss_insertionsort(T, PA, first, last, depth); }
#endif
STACK_POP(first, last, depth, limit);
continue;
}
Td = T + depth;
if(limit-- == 0) { ss_heapsort(Td, PA, first, last - first); }
if(limit < 0) {
for(a = first + 1, v = Td[PA[*first]]; a < last; ++a) {
if((x = Td[PA[*a]]) != v) {
if(1 < (a - first)) { break; }
v = x;
first = a;
}
}
if(Td[PA[*first] - 1] < v) {
first = ss_partition(PA, first, a, depth);
}
if((a - first) <= (last - a)) {
if(1 < (a - first)) {
STACK_PUSH(a, last, depth, -1);
last = a, depth += 1, limit = ss_ilg(a - first);
} else {
first = a, limit = -1;
}
} else {
if(1 < (last - a)) {
STACK_PUSH(first, a, depth + 1, ss_ilg(a - first));
first = a, limit = -1;
} else {
last = a, depth += 1, limit = ss_ilg(a - first);
}
}
continue;
}
/* choose pivot */
a = ss_pivot(Td, PA, first, last);
v = Td[PA[*a]];
SWAP(*first, *a);
/* partition */
for(b = first; (++b < last) && ((x = Td[PA[*b]]) == v);) { }
if(((a = b) < last) && (x < v)) {
for(; (++b < last) && ((x = Td[PA[*b]]) <= v);) {
if(x == v) { SWAP(*b, *a); ++a; }
}
}
for(c = last; (b < --c) && ((x = Td[PA[*c]]) == v);) { }
if((b < (d = c)) && (x > v)) {
for(; (b < --c) && ((x = Td[PA[*c]]) >= v);) {
if(x == v) { SWAP(*c, *d); --d; }
}
}
for(; b < c;) {
SWAP(*b, *c);
for(; (++b < c) && ((x = Td[PA[*b]]) <= v);) {
if(x == v) { SWAP(*b, *a); ++a; }
}
for(; (b < --c) && ((x = Td[PA[*c]]) >= v);) {
if(x == v) { SWAP(*c, *d); --d; }
}
}
if(a <= d) {
c = b - 1;
if((s = a - first) > (t = b - a)) { s = t; }
for(e = first, f = b - s; 0 < s; --s, ++e, ++f) { SWAP(*e, *f); }
if((s = d - c) > (t = last - d - 1)) { s = t; }
for(e = b, f = last - s; 0 < s; --s, ++e, ++f) { SWAP(*e, *f); }
a = first + (b - a), c = last - (d - c);
b = (v <= Td[PA[*a] - 1]) ? a : ss_partition(PA, a, c, depth);
if((a - first) <= (last - c)) {
if((last - c) <= (c - b)) {
STACK_PUSH(b, c, depth + 1, ss_ilg(c - b));
STACK_PUSH(c, last, depth, limit);
last = a;
} else if((a - first) <= (c - b)) {
STACK_PUSH(c, last, depth, limit);
STACK_PUSH(b, c, depth + 1, ss_ilg(c - b));
last = a;
} else {
STACK_PUSH(c, last, depth, limit);
STACK_PUSH(first, a, depth, limit);
first = b, last = c, depth += 1, limit = ss_ilg(c - b);
}
} else {
if((a - first) <= (c - b)) {
STACK_PUSH(b, c, depth + 1, ss_ilg(c - b));
STACK_PUSH(first, a, depth, limit);
first = c;
} else if((last - c) <= (c - b)) {
STACK_PUSH(first, a, depth, limit);
STACK_PUSH(b, c, depth + 1, ss_ilg(c - b));
first = c;
} else {
STACK_PUSH(first, a, depth, limit);
STACK_PUSH(c, last, depth, limit);
first = b, last = c, depth += 1, limit = ss_ilg(c - b);
}
}
} else {
limit += 1;
if(Td[PA[*first] - 1] < v) {
first = ss_partition(PA, first, last, depth);
limit = ss_ilg(last - first);
}
depth += 1;
}
}
#undef STACK_SIZE
}
#endif /* (SS_BLOCKSIZE == 0) || (SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE) */
/*---------------------------------------------------------------------------*/
#if SS_BLOCKSIZE != 0
static INLINE
void
ss_blockswap(int *a, int *b, int n) {
int t;
for(; 0 < n; --n, ++a, ++b) {
t = *a, *a = *b, *b = t;
}
}
static INLINE
void
ss_rotate(int *first, int *middle, int *last) {
int *a, *b, t;
int l, r;
l = middle - first, r = last - middle;
for(; (0 < l) && (0 < r);) {
if(l == r) { ss_blockswap(first, middle, l); break; }
if(l < r) {
a = last - 1, b = middle - 1;
t = *a;
do {
*a-- = *b, *b-- = *a;
if(b < first) {
*a = t;
last = a;
if((r -= l + 1) <= l) { break; }
a -= 1, b = middle - 1;
t = *a;
}
} while(1);
} else {
a = first, b = middle;
t = *a;
do {
*a++ = *b, *b++ = *a;
if(last <= b) {
*a = t;
first = a + 1;
if((l -= r + 1) <= r) { break; }
a += 1, b = middle;
t = *a;
}
} while(1);
}
}
}
/*---------------------------------------------------------------------------*/
static
void
ss_inplacemerge(const unsigned char *T, const int *PA,
int *first, int *middle, int *last,
int depth) {
const int *p;
int *a, *b;
int len, half;
int q, r;
int x;
for(;;) {
if(*(last - 1) < 0) { x = 1; p = PA + ~*(last - 1); }
else { x = 0; p = PA + *(last - 1); }
for(a = first, len = middle - first, half = len >> 1, r = -1;
0 < len;
len = half, half >>= 1) {
b = a + half;
q = ss_compare(T, PA + ((0 <= *b) ? *b : ~*b), p, depth);
if(q < 0) {
a = b + 1;
half -= (len & 1) ^ 1;
} else {
r = q;
}
}
if(a < middle) {
if(r == 0) { *a = ~*a; }
ss_rotate(a, middle, last);
last -= middle - a;
middle = a;
if(first == middle) { break; }
}
--last;
if(x != 0) { while(*--last < 0) { } }
if(middle == last) { break; }
}
}
/*---------------------------------------------------------------------------*/
/* Merge-forward with internal buffer. */
static
void
ss_mergeforward(const unsigned char *T, const int *PA,
int *first, int *middle, int *last,
int *buf, int depth) {
int *a, *b, *c, *bufend;
int t;
int r;
bufend = buf + (middle - first) - 1;
ss_blockswap(buf, first, middle - first);
for(t = *(a = first), b = buf, c = middle;;) {
r = ss_compare(T, PA + *b, PA + *c, depth);
if(r < 0) {
do {
*a++ = *b;
if(bufend <= b) { *bufend = t; return; }
*b++ = *a;
} while(*b < 0);
} else if(r > 0) {
do {
*a++ = *c, *c++ = *a;
if(last <= c) {
while(b < bufend) { *a++ = *b, *b++ = *a; }
*a = *b, *b = t;
return;
}
} while(*c < 0);
} else {
*c = ~*c;
do {
*a++ = *b;
if(bufend <= b) { *bufend = t; return; }
*b++ = *a;
} while(*b < 0);
do {
*a++ = *c, *c++ = *a;
if(last <= c) {
while(b < bufend) { *a++ = *b, *b++ = *a; }
*a = *b, *b = t;
return;
}
} while(*c < 0);
}
}
}
/* Merge-backward with internal buffer. */
static
void
ss_mergebackward(const unsigned char *T, const int *PA,
int *first, int *middle, int *last,
int *buf, int depth) {
const int *p1, *p2;
int *a, *b, *c, *bufend;
int t;
int r;
int x;
bufend = buf + (last - middle) - 1;
ss_blockswap(buf, middle, last - middle);
x = 0;
if(*bufend < 0) { p1 = PA + ~*bufend; x |= 1; }
else { p1 = PA + *bufend; }
if(*(middle - 1) < 0) { p2 = PA + ~*(middle - 1); x |= 2; }
else { p2 = PA + *(middle - 1); }
for(t = *(a = last - 1), b = bufend, c = middle - 1;;) {
r = ss_compare(T, p1, p2, depth);
if(0 < r) {
if(x & 1) { do { *a-- = *b, *b-- = *a; } while(*b < 0); x ^= 1; }
*a-- = *b;
if(b <= buf) { *buf = t; break; }
*b-- = *a;
if(*b < 0) { p1 = PA + ~*b; x |= 1; }
else { p1 = PA + *b; }
} else if(r < 0) {
if(x & 2) { do { *a-- = *c, *c-- = *a; } while(*c < 0); x ^= 2; }
*a-- = *c, *c-- = *a;
if(c < first) {
while(buf < b) { *a-- = *b, *b-- = *a; }
*a = *b, *b = t;
break;
}
if(*c < 0) { p2 = PA + ~*c; x |= 2; }
else { p2 = PA + *c; }
} else {
if(x & 1) { do { *a-- = *b, *b-- = *a; } while(*b < 0); x ^= 1; }
*a-- = ~*b;
if(b <= buf) { *buf = t; break; }
*b-- = *a;
if(x & 2) { do { *a-- = *c, *c-- = *a; } while(*c < 0); x ^= 2; }
*a-- = *c, *c-- = *a;
if(c < first) {
while(buf < b) { *a-- = *b, *b-- = *a; }
*a = *b, *b = t;
break;
}
if(*b < 0) { p1 = PA + ~*b; x |= 1; }
else { p1 = PA + *b; }
if(*c < 0) { p2 = PA + ~*c; x |= 2; }
else { p2 = PA + *c; }
}
}
}
/* D&C based merge. */
static
void
ss_swapmerge(const unsigned char *T, const int *PA,
int *first, int *middle, int *last,
int *buf, int bufsize, int depth) {
#define STACK_SIZE SS_SMERGE_STACKSIZE
#define GETIDX(a) ((0 <= (a)) ? (a) : (~(a)))
#define MERGE_CHECK(a, b, c)\
do {\
if(((c) & 1) ||\
(((c) & 2) && (ss_compare(T, PA + GETIDX(*((a) - 1)), PA + *(a), depth) == 0))) {\
*(a) = ~*(a);\
}\
if(((c) & 4) && ((ss_compare(T, PA + GETIDX(*((b) - 1)), PA + *(b), depth) == 0))) {\
*(b) = ~*(b);\
}\
} while(0)
struct { int *a, *b, *c; int d; } stack[STACK_SIZE];
int *l, *r, *lm, *rm;
int m, len, half;
int ssize;
int check, next;
for(check = 0, ssize = 0;;) {
if((last - middle) <= bufsize) {
if((first < middle) && (middle < last)) {
ss_mergebackward(T, PA, first, middle, last, buf, depth);
}
MERGE_CHECK(first, last, check);
STACK_POP(first, middle, last, check);
continue;
}
if((middle - first) <= bufsize) {
if(first < middle) {
ss_mergeforward(T, PA, first, middle, last, buf, depth);
}
MERGE_CHECK(first, last, check);
STACK_POP(first, middle, last, check);
continue;
}
for(m = 0, len = MIN(middle - first, last - middle), half = len >> 1;
0 < len;
len = half, half >>= 1) {
if(ss_compare(T, PA + GETIDX(*(middle + m + half)),
PA + GETIDX(*(middle - m - half - 1)), depth) < 0) {
m += half + 1;
half -= (len & 1) ^ 1;
}
}
if(0 < m) {
lm = middle - m, rm = middle + m;
ss_blockswap(lm, middle, m);
l = r = middle, next = 0;
if(rm < last) {
if(*rm < 0) {
*rm = ~*rm;
if(first < lm) { for(; *--l < 0;) { } next |= 4; }
next |= 1;
} else if(first < lm) {
for(; *r < 0; ++r) { }
next |= 2;
}
}
if((l - first) <= (last - r)) {
STACK_PUSH(r, rm, last, (next & 3) | (check & 4));
middle = lm, last = l, check = (check & 3) | (next & 4);
} else {
if((next & 2) && (r == middle)) { next ^= 6; }
STACK_PUSH(first, lm, l, (check & 3) | (next & 4));
first = r, middle = rm, check = (next & 3) | (check & 4);
}
} else {
if(ss_compare(T, PA + GETIDX(*(middle - 1)), PA + *middle, depth) == 0) {
*middle = ~*middle;
}
MERGE_CHECK(first, last, check);
STACK_POP(first, middle, last, check);
}
}
#undef STACK_SIZE
}
#endif /* SS_BLOCKSIZE != 0 */
/*---------------------------------------------------------------------------*/
/* Substring sort */
static
void
sssort(const unsigned char *T, const int *PA,
int *first, int *last,
int *buf, int bufsize,
int depth, int n, int lastsuffix) {
int *a;
#if SS_BLOCKSIZE != 0
int *b, *middle, *curbuf;
int j, k, curbufsize, limit;
#endif
int i;
if(lastsuffix != 0) { ++first; }
#if SS_BLOCKSIZE == 0
ss_mintrosort(T, PA, first, last, depth);
#else
if((bufsize < SS_BLOCKSIZE) &&
(bufsize < (last - first)) &&
(bufsize < (limit = ss_isqrt(last - first)))) {
if(SS_BLOCKSIZE < limit) { limit = SS_BLOCKSIZE; }
buf = middle = last - limit, bufsize = limit;
} else {
middle = last, limit = 0;
}
for(a = first, i = 0; SS_BLOCKSIZE < (middle - a); a += SS_BLOCKSIZE, ++i) {
#if SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE
ss_mintrosort(T, PA, a, a + SS_BLOCKSIZE, depth);
#elif 1 < SS_BLOCKSIZE
ss_insertionsort(T, PA, a, a + SS_BLOCKSIZE, depth);
#endif
curbufsize = last - (a + SS_BLOCKSIZE);
curbuf = a + SS_BLOCKSIZE;
if(curbufsize <= bufsize) { curbufsize = bufsize, curbuf = buf; }
for(b = a, k = SS_BLOCKSIZE, j = i; j & 1; b -= k, k <<= 1, j >>= 1) {
ss_swapmerge(T, PA, b - k, b, b + k, curbuf, curbufsize, depth);
}
}
#if SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE
ss_mintrosort(T, PA, a, middle, depth);
#elif 1 < SS_BLOCKSIZE
ss_insertionsort(T, PA, a, middle, depth);
#endif
for(k = SS_BLOCKSIZE; i != 0; k <<= 1, i >>= 1) {
if(i & 1) {
ss_swapmerge(T, PA, a - k, a, middle, buf, bufsize, depth);
a -= k;
}
}
if(limit != 0) {
#if SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE
ss_mintrosort(T, PA, middle, last, depth);
#elif 1 < SS_BLOCKSIZE
ss_insertionsort(T, PA, middle, last, depth);
#endif
ss_inplacemerge(T, PA, first, middle, last, depth);
}
#endif
if(lastsuffix != 0) {
/* Insert last type B* suffix. */
int PAi[2]; PAi[0] = PA[*(first - 1)], PAi[1] = n - 2;
for(a = first, i = *(first - 1);
(a < last) && ((*a < 0) || (0 < ss_compare(T, &(PAi[0]), PA + *a, depth)));
++a) {
*(a - 1) = *a;
}
*(a - 1) = i;
}
}
/*---------------------------------------------------------------------------*/
static INLINE
int
tr_ilg(int n) {
return (n & 0xffff0000) ?
((n & 0xff000000) ?
24 + lg_table[(n >> 24) & 0xff] :
16 + lg_table[(n >> 16) & 0xff]) :
((n & 0x0000ff00) ?
8 + lg_table[(n >> 8) & 0xff] :
0 + lg_table[(n >> 0) & 0xff]);
}
/*---------------------------------------------------------------------------*/
/* Simple insertionsort for small size groups. */
static
void
tr_insertionsort(const int *ISAd, int *first, int *last) {
int *a, *b;
int t, r;
for(a = first + 1; a < last; ++a) {
for(t = *a, b = a - 1; 0 > (r = ISAd[t] - ISAd[*b]);) {
do { *(b + 1) = *b; } while((first <= --b) && (*b < 0));
if(b < first) { break; }
}
if(r == 0) { *b = ~*b; }
*(b + 1) = t;
}
}
/*---------------------------------------------------------------------------*/
static INLINE
void
tr_fixdown(const int *ISAd, int *SA, int i, int size) {
int j, k;
int v;
int c, d, e;
for(v = SA[i], c = ISAd[v]; (j = 2 * i + 1) < size; SA[i] = SA[k], i = k) {
d = ISAd[SA[k = j++]];
if(d < (e = ISAd[SA[j]])) { k = j; d = e; }
if(d <= c) { break; }
}
SA[i] = v;
}
/* Simple top-down heapsort. */
static
void
tr_heapsort(const int *ISAd, int *SA, int size) {
int i, m;
int t;
m = size;
if((size % 2) == 0) {
m--;
if(ISAd[SA[m / 2]] < ISAd[SA[m]]) { SWAP(SA[m], SA[m / 2]); }
}
for(i = m / 2 - 1; 0 <= i; --i) { tr_fixdown(ISAd, SA, i, m); }
if((size % 2) == 0) { SWAP(SA[0], SA[m]); tr_fixdown(ISAd, SA, 0, m); }
for(i = m - 1; 0 < i; --i) {
t = SA[0], SA[0] = SA[i];
tr_fixdown(ISAd, SA, 0, i);
SA[i] = t;
}
}
/*---------------------------------------------------------------------------*/
/* Returns the median of three elements. */
static INLINE
int *
tr_median3(const int *ISAd, int *v1, int *v2, int *v3) {
int *t;
if(ISAd[*v1] > ISAd[*v2]) { SWAP(v1, v2); }
if(ISAd[*v2] > ISAd[*v3]) {
if(ISAd[*v1] > ISAd[*v3]) { return v1; }
else { return v3; }
}
return v2;
}
/* Returns the median of five elements. */
static INLINE
int *
tr_median5(const int *ISAd,
int *v1, int *v2, int *v3, int *v4, int *v5) {
int *t;
if(ISAd[*v2] > ISAd[*v3]) { SWAP(v2, v3); }
if(ISAd[*v4] > ISAd[*v5]) { SWAP(v4, v5); }
if(ISAd[*v2] > ISAd[*v4]) { SWAP(v2, v4); SWAP(v3, v5); }
if(ISAd[*v1] > ISAd[*v3]) { SWAP(v1, v3); }
if(ISAd[*v1] > ISAd[*v4]) { SWAP(v1, v4); SWAP(v3, v5); }
if(ISAd[*v3] > ISAd[*v4]) { return v4; }
return v3;
}
/* Returns the pivot element. */
static INLINE
int *
tr_pivot(const int *ISAd, int *first, int *last) {
int *middle;
int t;
t = last - first;
middle = first + t / 2;
if(t <= 512) {
if(t <= 32) {
return tr_median3(ISAd, first, middle, last - 1);
} else {
t >>= 2;
return tr_median5(ISAd, first, first + t, middle, last - 1 - t, last - 1);
}
}
t >>= 3;
first = tr_median3(ISAd, first, first + t, first + (t << 1));
middle = tr_median3(ISAd, middle - t, middle, middle + t);
last = tr_median3(ISAd, last - 1 - (t << 1), last - 1 - t, last - 1);
return tr_median3(ISAd, first, middle, last);
}
/*---------------------------------------------------------------------------*/
typedef struct _trbudget_t trbudget_t;
struct _trbudget_t {
int chance;
int remain;
int incval;
int count;
};
static INLINE
void
trbudget_init(trbudget_t *budget, int chance, int incval) {
budget->chance = chance;
budget->remain = budget->incval = incval;
}
static INLINE
int
trbudget_check(trbudget_t *budget, int size) {
if(size <= budget->remain) { budget->remain -= size; return 1; }
if(budget->chance == 0) { budget->count += size; return 0; }
budget->remain += budget->incval - size;
budget->chance -= 1;
return 1;
}
/*---------------------------------------------------------------------------*/
static INLINE
void
tr_partition(const int *ISAd,
int *first, int *middle, int *last,
int **pa, int **pb, int v) {
int *a, *b, *c, *d, *e, *f;
int t, s;
int x = 0;
for(b = middle - 1; (++b < last) && ((x = ISAd[*b]) == v);) { }
if(((a = b) < last) && (x < v)) {
for(; (++b < last) && ((x = ISAd[*b]) <= v);) {
if(x == v) { SWAP(*b, *a); ++a; }
}
}
for(c = last; (b < --c) && ((x = ISAd[*c]) == v);) { }
if((b < (d = c)) && (x > v)) {
for(; (b < --c) && ((x = ISAd[*c]) >= v);) {
if(x == v) { SWAP(*c, *d); --d; }
}
}
for(; b < c;) {
SWAP(*b, *c);
for(; (++b < c) && ((x = ISAd[*b]) <= v);) {
if(x == v) { SWAP(*b, *a); ++a; }
}
for(; (b < --c) && ((x = ISAd[*c]) >= v);) {
if(x == v) { SWAP(*c, *d); --d; }
}
}
if(a <= d) {
c = b - 1;
if((s = a - first) > (t = b - a)) { s = t; }
for(e = first, f = b - s; 0 < s; --s, ++e, ++f) { SWAP(*e, *f); }
if((s = d - c) > (t = last - d - 1)) { s = t; }
for(e = b, f = last - s; 0 < s; --s, ++e, ++f) { SWAP(*e, *f); }
first += (b - a), last -= (d - c);
}
*pa = first, *pb = last;
}
static
void
tr_copy(int *ISA, const int *SA,
int *first, int *a, int *b, int *last,
int depth) {
/* sort suffixes of middle partition
by using sorted order of suffixes of left and right partition. */
int *c, *d, *e;
int s, v;
v = b - SA - 1;
for(c = first, d = a - 1; c <= d; ++c) {
if((0 <= (s = *c - depth)) && (ISA[s] == v)) {
*++d = s;
ISA[s] = d - SA;
}
}
for(c = last - 1, e = d + 1, d = b; e < d; --c) {
if((0 <= (s = *c - depth)) && (ISA[s] == v)) {
*--d = s;
ISA[s] = d - SA;
}
}
}
static
void
tr_partialcopy(int *ISA, const int *SA,
int *first, int *a, int *b, int *last,
int depth) {
int *c, *d, *e;
int s, v;
int rank, lastrank, newrank = -1;
v = b - SA - 1;
lastrank = -1;
for(c = first, d = a - 1; c <= d; ++c) {
if((0 <= (s = *c - depth)) && (ISA[s] == v)) {
*++d = s;
rank = ISA[s + depth];
if(lastrank != rank) { lastrank = rank; newrank = d - SA; }
ISA[s] = newrank;
}
}
lastrank = -1;
for(e = d; first <= e; --e) {
rank = ISA[*e];
if(lastrank != rank) { lastrank = rank; newrank = e - SA; }
if(newrank != rank) { ISA[*e] = newrank; }
}
lastrank = -1;
for(c = last - 1, e = d + 1, d = b; e < d; --c) {
if((0 <= (s = *c - depth)) && (ISA[s] == v)) {
*--d = s;
rank = ISA[s + depth];
if(lastrank != rank) { lastrank = rank; newrank = d - SA; }
ISA[s] = newrank;
}
}
}
static
void
tr_introsort(int *ISA, const int *ISAd,
int *SA, int *first, int *last,
trbudget_t *budget) {
#define STACK_SIZE TR_STACKSIZE
struct { const int *a; int *b, *c; int d, e; }stack[STACK_SIZE];
int *a, *b, *c;
int t;
int v, x = 0;
int incr = ISAd - ISA;
int limit, next;
int ssize, trlink = -1;
for(ssize = 0, limit = tr_ilg(last - first);;) {
if(limit < 0) {
if(limit == -1) {
/* tandem repeat partition */
tr_partition(ISAd - incr, first, first, last, &a, &b, last - SA - 1);
/* update ranks */
if(a < last) {
for(c = first, v = a - SA - 1; c < a; ++c) { ISA[*c] = v; }
}
if(b < last) {
for(c = a, v = b - SA - 1; c < b; ++c) { ISA[*c] = v; }
}
/* push */
if(1 < (b - a)) {
STACK_PUSH5(NULL, a, b, 0, 0);
STACK_PUSH5(ISAd - incr, first, last, -2, trlink);
trlink = ssize - 2;
}
if((a - first) <= (last - b)) {
if(1 < (a - first)) {
STACK_PUSH5(ISAd, b, last, tr_ilg(last - b), trlink);
last = a, limit = tr_ilg(a - first);
} else if(1 < (last - b)) {
first = b, limit = tr_ilg(last - b);
} else {
STACK_POP5(ISAd, first, last, limit, trlink);
}
} else {
if(1 < (last - b)) {
STACK_PUSH5(ISAd, first, a, tr_ilg(a - first), trlink);
first = b, limit = tr_ilg(last - b);
} else if(1 < (a - first)) {
last = a, limit = tr_ilg(a - first);
} else {
STACK_POP5(ISAd, first, last, limit, trlink);
}
}
} else if(limit == -2) {
/* tandem repeat copy */
a = stack[--ssize].b, b = stack[ssize].c;
if(stack[ssize].d == 0) {
tr_copy(ISA, SA, first, a, b, last, ISAd - ISA);
} else {
if(0 <= trlink) { stack[trlink].d = -1; }
tr_partialcopy(ISA, SA, first, a, b, last, ISAd - ISA);
}
STACK_POP5(ISAd, first, last, limit, trlink);
} else {
/* sorted partition */
if(0 <= *first) {
a = first;
do { ISA[*a] = a - SA; } while((++a < last) && (0 <= *a));
first = a;
}
if(first < last) {
a = first; do { *a = ~*a; } while(*++a < 0);
next = (ISA[*a] != ISAd[*a]) ? tr_ilg(a - first + 1) : -1;
if(++a < last) { for(b = first, v = a - SA - 1; b < a; ++b) { ISA[*b] = v; } }
/* push */
if(trbudget_check(budget, a - first)) {
if((a - first) <= (last - a)) {
STACK_PUSH5(ISAd, a, last, -3, trlink);
ISAd += incr, last = a, limit = next;
} else {
if(1 < (last - a)) {
STACK_PUSH5(ISAd + incr, first, a, next, trlink);
first = a, limit = -3;
} else {
ISAd += incr, last = a, limit = next;
}
}
} else {
if(0 <= trlink) { stack[trlink].d = -1; }
if(1 < (last - a)) {
first = a, limit = -3;
} else {
STACK_POP5(ISAd, first, last, limit, trlink);
}
}
} else {
STACK_POP5(ISAd, first, last, limit, trlink);
}
}
continue;
}
if((last - first) <= TR_INSERTIONSORT_THRESHOLD) {
tr_insertionsort(ISAd, first, last);
limit = -3;
continue;
}
if(limit-- == 0) {
tr_heapsort(ISAd, first, last - first);
for(a = last - 1; first < a; a = b) {
for(x = ISAd[*a], b = a - 1; (first <= b) && (ISAd[*b] == x); --b) { *b = ~*b; }
}
limit = -3;
continue;
}
/* choose pivot */
a = tr_pivot(ISAd, first, last);
SWAP(*first, *a);
v = ISAd[*first];
/* partition */
tr_partition(ISAd, first, first + 1, last, &a, &b, v);
if((last - first) != (b - a)) {
next = (ISA[*a] != v) ? tr_ilg(b - a) : -1;
/* update ranks */
for(c = first, v = a - SA - 1; c < a; ++c) { ISA[*c] = v; }
if(b < last) { for(c = a, v = b - SA - 1; c < b; ++c) { ISA[*c] = v; } }
/* push */
if((1 < (b - a)) && (trbudget_check(budget, b - a))) {
if((a - first) <= (last - b)) {
if((last - b) <= (b - a)) {
if(1 < (a - first)) {
STACK_PUSH5(ISAd + incr, a, b, next, trlink);
STACK_PUSH5(ISAd, b, last, limit, trlink);
last = a;
} else if(1 < (last - b)) {
STACK_PUSH5(ISAd + incr, a, b, next, trlink);
first = b;
} else {
ISAd += incr, first = a, last = b, limit = next;
}
} else if((a - first) <= (b - a)) {
if(1 < (a - first)) {
STACK_PUSH5(ISAd, b, last, limit, trlink);
STACK_PUSH5(ISAd + incr, a, b, next, trlink);
last = a;
} else {
STACK_PUSH5(ISAd, b, last, limit, trlink);
ISAd += incr, first = a, last = b, limit = next;
}
} else {
STACK_PUSH5(ISAd, b, last, limit, trlink);
STACK_PUSH5(ISAd, first, a, limit, trlink);
ISAd += incr, first = a, last = b, limit = next;
}
} else {
if((a - first) <= (b - a)) {
if(1 < (last - b)) {
STACK_PUSH5(ISAd + incr, a, b, next, trlink);
STACK_PUSH5(ISAd, first, a, limit, trlink);
first = b;
} else if(1 < (a - first)) {
STACK_PUSH5(ISAd + incr, a, b, next, trlink);
last = a;
} else {
ISAd += incr, first = a, last = b, limit = next;
}
} else if((last - b) <= (b - a)) {
if(1 < (last - b)) {
STACK_PUSH5(ISAd, first, a, limit, trlink);
STACK_PUSH5(ISAd + incr, a, b, next, trlink);
first = b;
} else {
STACK_PUSH5(ISAd, first, a, limit, trlink);
ISAd += incr, first = a, last = b, limit = next;
}
} else {
STACK_PUSH5(ISAd, first, a, limit, trlink);
STACK_PUSH5(ISAd, b, last, limit, trlink);
ISAd += incr, first = a, last = b, limit = next;
}
}
} else {
if((1 < (b - a)) && (0 <= trlink)) { stack[trlink].d = -1; }
if((a - first) <= (last - b)) {
if(1 < (a - first)) {
STACK_PUSH5(ISAd, b, last, limit, trlink);
last = a;
} else if(1 < (last - b)) {
first = b;
} else {
STACK_POP5(ISAd, first, last, limit, trlink);
}
} else {
if(1 < (last - b)) {
STACK_PUSH5(ISAd, first, a, limit, trlink);
first = b;
} else if(1 < (a - first)) {
last = a;
} else {
STACK_POP5(ISAd, first, last, limit, trlink);
}
}
}
} else {
if(trbudget_check(budget, last - first)) {
limit = tr_ilg(last - first), ISAd += incr;
} else {
if(0 <= trlink) { stack[trlink].d = -1; }
STACK_POP5(ISAd, first, last, limit, trlink);
}
}
}
#undef STACK_SIZE
}
/*---------------------------------------------------------------------------*/
/* Tandem repeat sort */
static
void
trsort(int *ISA, int *SA, int n, int depth) {
int *ISAd;
int *first, *last;
trbudget_t budget;
int t, skip, unsorted;
trbudget_init(&budget, tr_ilg(n) * 2 / 3, n);
/* trbudget_init(&budget, tr_ilg(n) * 3 / 4, n); */
for(ISAd = ISA + depth; -n < *SA; ISAd += ISAd - ISA) {
first = SA;
skip = 0;
unsorted = 0;
do {
if((t = *first) < 0) { first -= t; skip += t; }
else {
if(skip != 0) { *(first + skip) = skip; skip = 0; }
last = SA + ISA[t] + 1;
if(1 < (last - first)) {
budget.count = 0;
tr_introsort(ISA, ISAd, SA, first, last, &budget);
if(budget.count != 0) { unsorted += budget.count; }
else { skip = first - last; }
} else if((last - first) == 1) {
skip = -1;
}
first = last;
}
} while(first < (SA + n));
if(skip != 0) { *(first + skip) = skip; }
if(unsorted == 0) { break; }
}
}
/*---------------------------------------------------------------------------*/
/* Sorts suffixes of type B*. */
static
int
sort_typeBstar(const unsigned char *T, int *SA,
int *bucket_A, int *bucket_B,
int n, int openMP) {
int *PAb, *ISAb, *buf;
#ifdef LIBBSC_OPENMP
int *curbuf;
int l;
#endif
int i, j, k, t, m, bufsize;
int c0, c1;
#ifdef LIBBSC_OPENMP
int d0, d1;
#endif
(void)openMP;
/* Initialize bucket arrays. */
for(i = 0; i < BUCKET_A_SIZE; ++i) { bucket_A[i] = 0; }
for(i = 0; i < BUCKET_B_SIZE; ++i) { bucket_B[i] = 0; }
/* Count the number of occurrences of the first one or two characters of each
type A, B and B* suffix. Moreover, store the beginning position of all
type B* suffixes into the array SA. */
for(i = n - 1, m = n, c0 = T[n - 1]; 0 <= i;) {
/* type A suffix. */
do { ++BUCKET_A(c1 = c0); } while((0 <= --i) && ((c0 = T[i]) >= c1));
if(0 <= i) {
/* type B* suffix. */
++BUCKET_BSTAR(c0, c1);
SA[--m] = i;
/* type B suffix. */
for(--i, c1 = c0; (0 <= i) && ((c0 = T[i]) <= c1); --i, c1 = c0) {
++BUCKET_B(c0, c1);
}
}
}
m = n - m;
/*
note:
A type B* suffix is lexicographically smaller than a type B suffix that
begins with the same first two characters.
*/
/* Calculate the index of start/end point of each bucket. */
for(c0 = 0, i = 0, j = 0; c0 < ALPHABET_SIZE; ++c0) {
t = i + BUCKET_A(c0);
BUCKET_A(c0) = i + j; /* start point */
i = t + BUCKET_B(c0, c0);
for(c1 = c0 + 1; c1 < ALPHABET_SIZE; ++c1) {
j += BUCKET_BSTAR(c0, c1);
BUCKET_BSTAR(c0, c1) = j; /* end point */
i += BUCKET_B(c0, c1);
}
}
if(0 < m) {
/* Sort the type B* suffixes by their first two characters. */
PAb = SA + n - m; ISAb = SA + m;
for(i = m - 2; 0 <= i; --i) {
t = PAb[i], c0 = T[t], c1 = T[t + 1];
SA[--BUCKET_BSTAR(c0, c1)] = i;
}
t = PAb[m - 1], c0 = T[t], c1 = T[t + 1];
SA[--BUCKET_BSTAR(c0, c1)] = m - 1;
/* Sort the type B* substrings using sssort. */
#ifdef LIBBSC_OPENMP
if (openMP)
{
buf = SA + m;
c0 = ALPHABET_SIZE - 2, c1 = ALPHABET_SIZE - 1, j = m;
#pragma omp parallel default(shared) private(bufsize, curbuf, k, l, d0, d1)
{
bufsize = (n - (2 * m)) / omp_get_num_threads();
curbuf = buf + omp_get_thread_num() * bufsize;
k = 0;
for(;;) {
#pragma omp critical(sssort_lock)
{
if(0 < (l = j)) {
d0 = c0, d1 = c1;
do {
k = BUCKET_BSTAR(d0, d1);
if(--d1 <= d0) {
d1 = ALPHABET_SIZE - 1;
if(--d0 < 0) { break; }
}
} while(((l - k) <= 1) && (0 < (l = k)));
c0 = d0, c1 = d1, j = k;
}
}
if(l == 0) { break; }
sssort(T, PAb, SA + k, SA + l,
curbuf, bufsize, 2, n, *(SA + k) == (m - 1));
}
}
}
else
{
buf = SA + m, bufsize = n - (2 * m);
for(c0 = ALPHABET_SIZE - 2, j = m; 0 < j; --c0) {
for(c1 = ALPHABET_SIZE - 1; c0 < c1; j = i, --c1) {
i = BUCKET_BSTAR(c0, c1);
if(1 < (j - i)) {
sssort(T, PAb, SA + i, SA + j,
buf, bufsize, 2, n, *(SA + i) == (m - 1));
}
}
}
}
#else
buf = SA + m, bufsize = n - (2 * m);
for(c0 = ALPHABET_SIZE - 2, j = m; 0 < j; --c0) {
for(c1 = ALPHABET_SIZE - 1; c0 < c1; j = i, --c1) {
i = BUCKET_BSTAR(c0, c1);
if(1 < (j - i)) {
sssort(T, PAb, SA + i, SA + j,
buf, bufsize, 2, n, *(SA + i) == (m - 1));
}
}
}
#endif
/* Compute ranks of type B* substrings. */
for(i = m - 1; 0 <= i; --i) {
if(0 <= SA[i]) {
j = i;
do { ISAb[SA[i]] = i; } while((0 <= --i) && (0 <= SA[i]));
SA[i + 1] = i - j;
if(i <= 0) { break; }
}
j = i;
do { ISAb[SA[i] = ~SA[i]] = j; } while(SA[--i] < 0);
ISAb[SA[i]] = j;
}
/* Construct the inverse suffix array of type B* suffixes using trsort. */
trsort(ISAb, SA, m, 1);
- /* Set the sorted order of tyoe B* suffixes. */
+ /* Set the sorted order of type B* suffixes. */
for(i = n - 1, j = m, c0 = T[n - 1]; 0 <= i;) {
for(--i, c1 = c0; (0 <= i) && ((c0 = T[i]) >= c1); --i, c1 = c0) { }
if(0 <= i) {
t = i;
for(--i, c1 = c0; (0 <= i) && ((c0 = T[i]) <= c1); --i, c1 = c0) { }
SA[ISAb[--j]] = ((t == 0) || (1 < (t - i))) ? t : ~t;
}
}
/* Calculate the index of start/end point of each bucket. */
BUCKET_B(ALPHABET_SIZE - 1, ALPHABET_SIZE - 1) = n; /* end point */
for(c0 = ALPHABET_SIZE - 2, k = m - 1; 0 <= c0; --c0) {
i = BUCKET_A(c0 + 1) - 1;
for(c1 = ALPHABET_SIZE - 1; c0 < c1; --c1) {
t = i - BUCKET_B(c0, c1);
BUCKET_B(c0, c1) = i; /* end point */
/* Move all type B* suffixes to the correct position. */
for(i = t, j = BUCKET_BSTAR(c0, c1);
j <= k;
--i, --k) { SA[i] = SA[k]; }
}
BUCKET_BSTAR(c0, c0 + 1) = i - BUCKET_B(c0, c0) + 1; /* start point */
BUCKET_B(c0, c0) = i; /* end point */
}
}
return m;
}
/* Constructs the suffix array by using the sorted order of type B* suffixes. */
static
void
construct_SA(const unsigned char *T, int *SA,
int *bucket_A, int *bucket_B,
int n, int m) {
int *i, *j, *k;
int s;
int c0, c1, c2;
if(0 < m) {
/* Construct the sorted order of type B suffixes by using
the sorted order of type B* suffixes. */
for(c1 = ALPHABET_SIZE - 2; 0 <= c1; --c1) {
/* Scan the suffix array from right to left. */
for(i = SA + BUCKET_BSTAR(c1, c1 + 1),
j = SA + BUCKET_A(c1 + 1) - 1, k = NULL, c2 = -1;
i <= j;
--j) {
if(0 < (s = *j)) {
assert(T[s] == c1);
assert(((s + 1) < n) && (T[s] <= T[s + 1]));
assert(T[s - 1] <= T[s]);
*j = ~s;
c0 = T[--s];
if((0 < s) && (T[s - 1] > c0)) { s = ~s; }
if(c0 != c2) {
if(0 <= c2) { BUCKET_B(c2, c1) = k - SA; }
k = SA + BUCKET_B(c2 = c0, c1);
}
assert(k < j); assert(k != NULL);
*k-- = s;
} else {
assert(((s == 0) && (T[s] == c1)) || (s < 0));
*j = ~s;
}
}
}
}
/* Construct the suffix array by using
the sorted order of type B suffixes. */
k = SA + BUCKET_A(c2 = T[n - 1]);
*k++ = (T[n - 2] < c2) ? ~(n - 1) : (n - 1);
/* Scan the suffix array from left to right. */
for(i = SA, j = SA + n; i < j; ++i) {
if(0 < (s = *i)) {
assert(T[s - 1] >= T[s]);
c0 = T[--s];
if((s == 0) || (T[s - 1] < c0)) { s = ~s; }
if(c0 != c2) {
BUCKET_A(c2) = k - SA;
k = SA + BUCKET_A(c2 = c0);
}
assert(i < k);
*k++ = s;
} else {
assert(s < 0);
*i = ~s;
}
}
}
/* Constructs the burrows-wheeler transformed string directly
by using the sorted order of type B* suffixes. */
static
int
construct_BWT(const unsigned char *T, int *SA,
int *bucket_A, int *bucket_B,
int n, int m) {
int *i, *j, *k, *orig;
int s;
int c0, c1, c2;
if(0 < m) {
/* Construct the sorted order of type B suffixes by using
the sorted order of type B* suffixes. */
for(c1 = ALPHABET_SIZE - 2; 0 <= c1; --c1) {
/* Scan the suffix array from right to left. */
for(i = SA + BUCKET_BSTAR(c1, c1 + 1),
j = SA + BUCKET_A(c1 + 1) - 1, k = NULL, c2 = -1;
i <= j;
--j) {
if(0 < (s = *j)) {
assert(T[s] == c1);
assert(((s + 1) < n) && (T[s] <= T[s + 1]));
assert(T[s - 1] <= T[s]);
c0 = T[--s];
*j = ~((int)c0);
if((0 < s) && (T[s - 1] > c0)) { s = ~s; }
if(c0 != c2) {
if(0 <= c2) { BUCKET_B(c2, c1) = k - SA; }
k = SA + BUCKET_B(c2 = c0, c1);
}
assert(k < j); assert(k != NULL);
*k-- = s;
} else if(s != 0) {
*j = ~s;
#ifndef NDEBUG
} else {
assert(T[s] == c1);
#endif
}
}
}
}
/* Construct the BWTed string by using
the sorted order of type B suffixes. */
k = SA + BUCKET_A(c2 = T[n - 1]);
*k++ = (T[n - 2] < c2) ? ~((int)T[n - 2]) : (n - 1);
/* Scan the suffix array from left to right. */
for(i = SA, j = SA + n, orig = SA; i < j; ++i) {
if(0 < (s = *i)) {
assert(T[s - 1] >= T[s]);
c0 = T[--s];
*i = c0;
if((0 < s) && (T[s - 1] < c0)) { s = ~((int)T[s - 1]); }
if(c0 != c2) {
BUCKET_A(c2) = k - SA;
k = SA + BUCKET_A(c2 = c0);
}
assert(i < k);
*k++ = s;
} else if(s != 0) {
*i = ~s;
} else {
orig = i;
}
}
return orig - SA;
}
/* Constructs the burrows-wheeler transformed string directly
by using the sorted order of type B* suffixes. */
static
int
construct_BWT_indexes(const unsigned char *T, int *SA,
int *bucket_A, int *bucket_B,
int n, int m,
unsigned char * num_indexes, int * indexes) {
int *i, *j, *k, *orig;
int s;
int c0, c1, c2;
int mod = n / 8;
{
mod |= mod >> 1; mod |= mod >> 2;
mod |= mod >> 4; mod |= mod >> 8;
mod |= mod >> 16; mod >>= 1;
*num_indexes = (unsigned char)((n - 1) / (mod + 1));
}
if(0 < m) {
/* Construct the sorted order of type B suffixes by using
the sorted order of type B* suffixes. */
for(c1 = ALPHABET_SIZE - 2; 0 <= c1; --c1) {
/* Scan the suffix array from right to left. */
for(i = SA + BUCKET_BSTAR(c1, c1 + 1),
j = SA + BUCKET_A(c1 + 1) - 1, k = NULL, c2 = -1;
i <= j;
--j) {
if(0 < (s = *j)) {
assert(T[s] == c1);
assert(((s + 1) < n) && (T[s] <= T[s + 1]));
assert(T[s - 1] <= T[s]);
if ((s & mod) == 0) indexes[s / (mod + 1) - 1] = j - SA;
c0 = T[--s];
*j = ~((int)c0);
if((0 < s) && (T[s - 1] > c0)) { s = ~s; }
if(c0 != c2) {
if(0 <= c2) { BUCKET_B(c2, c1) = k - SA; }
k = SA + BUCKET_B(c2 = c0, c1);
}
assert(k < j); assert(k != NULL);
*k-- = s;
} else if(s != 0) {
*j = ~s;
#ifndef NDEBUG
} else {
assert(T[s] == c1);
#endif
}
}
}
}
/* Construct the BWTed string by using
the sorted order of type B suffixes. */
k = SA + BUCKET_A(c2 = T[n - 1]);
if (T[n - 2] < c2) {
if (((n - 1) & mod) == 0) indexes[(n - 1) / (mod + 1) - 1] = k - SA;
*k++ = ~((int)T[n - 2]);
}
else {
*k++ = n - 1;
}
/* Scan the suffix array from left to right. */
for(i = SA, j = SA + n, orig = SA; i < j; ++i) {
if(0 < (s = *i)) {
assert(T[s - 1] >= T[s]);
if ((s & mod) == 0) indexes[s / (mod + 1) - 1] = i - SA;
c0 = T[--s];
*i = c0;
if(c0 != c2) {
BUCKET_A(c2) = k - SA;
k = SA + BUCKET_A(c2 = c0);
}
assert(i < k);
if((0 < s) && (T[s - 1] < c0)) {
if ((s & mod) == 0) indexes[s / (mod + 1) - 1] = k - SA;
*k++ = ~((int)T[s - 1]);
} else
*k++ = s;
} else if(s != 0) {
*i = ~s;
} else {
orig = i;
}
}
return orig - SA;
}
/*---------------------------------------------------------------------------*/
/*- Function -*/
int
divsufsort(const unsigned char *T, int *SA, int n, int openMP) {
int *bucket_A, *bucket_B;
int m;
int err = 0;
/* Check arguments. */
if((T == NULL) || (SA == NULL) || (n < 0)) { return -1; }
else if(n == 0) { return 0; }
else if(n == 1) { SA[0] = 0; return 0; }
else if(n == 2) { m = (T[0] < T[1]); SA[m ^ 1] = 0, SA[m] = 1; return 0; }
bucket_A = (int *)malloc(BUCKET_A_SIZE * sizeof(int));
bucket_B = (int *)malloc(BUCKET_B_SIZE * sizeof(int));
/* Suffixsort. */
if((bucket_A != NULL) && (bucket_B != NULL)) {
m = sort_typeBstar(T, SA, bucket_A, bucket_B, n, openMP);
construct_SA(T, SA, bucket_A, bucket_B, n, m);
} else {
err = -2;
}
free(bucket_B);
free(bucket_A);
return err;
}
int
divbwt(const unsigned char *T, unsigned char *U, int *A, int n, unsigned char * num_indexes, int * indexes, int openMP) {
int *B;
int *bucket_A, *bucket_B;
int m, pidx, i;
/* Check arguments. */
if((T == NULL) || (U == NULL) || (n < 0)) { return -1; }
else if(n <= 1) { if(n == 1) { U[0] = T[0]; } return n; }
if((B = A) == NULL) { B = (int *)malloc((size_t)(n + 1) * sizeof(int)); }
bucket_A = (int *)malloc(BUCKET_A_SIZE * sizeof(int));
bucket_B = (int *)malloc(BUCKET_B_SIZE * sizeof(int));
/* Burrows-Wheeler Transform. */
if((B != NULL) && (bucket_A != NULL) && (bucket_B != NULL)) {
m = sort_typeBstar(T, B, bucket_A, bucket_B, n, openMP);
if (num_indexes == NULL || indexes == NULL) {
pidx = construct_BWT(T, B, bucket_A, bucket_B, n, m);
} else {
pidx = construct_BWT_indexes(T, B, bucket_A, bucket_B, n, m, num_indexes, indexes);
}
/* Copy to output string. */
U[0] = T[n - 1];
for(i = 0; i < pidx; ++i) { U[i + 1] = (unsigned char)B[i]; }
for(i += 1; i < n; ++i) { U[i] = (unsigned char)B[i]; }
pidx += 1;
} else {
pidx = -2;
}
free(bucket_B);
free(bucket_A);
if(A == NULL) { free(B); }
return pidx;
}
diff --git a/sys/contrib/zstd/lib/dictBuilder/fastcover.c b/sys/contrib/zstd/lib/dictBuilder/fastcover.c
index 5e60f24c5879..3352859ada47 100644
--- a/sys/contrib/zstd/lib/dictBuilder/fastcover.c
+++ b/sys/contrib/zstd/lib/dictBuilder/fastcover.c
@@ -1,758 +1,766 @@
/*
- * Copyright (c) 2018-2020, Facebook, Inc.
+ * Copyright (c) Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Dependencies
***************************************/
#include <stdio.h> /* fprintf */
#include <stdlib.h> /* malloc, free, qsort */
#include <string.h> /* memset */
#include <time.h> /* clock */
+#ifndef ZDICT_STATIC_LINKING_ONLY
+# define ZDICT_STATIC_LINKING_ONLY
+#endif
+
#include "../common/mem.h" /* read */
#include "../common/pool.h"
#include "../common/threading.h"
-#include "cover.h"
#include "../common/zstd_internal.h" /* includes zstd.h */
#include "../compress/zstd_compress_internal.h" /* ZSTD_hash*() */
-#ifndef ZDICT_STATIC_LINKING_ONLY
-#define ZDICT_STATIC_LINKING_ONLY
-#endif
-#include "zdict.h"
+#include "../zdict.h"
+#include "cover.h"
/*-*************************************
* Constants
***************************************/
+/**
+* There are 32bit indexes used to ref samples, so limit samples size to 4GB
+* on 64bit builds.
+* For 32bit builds we choose 1 GB.
+* Most 32bit platforms have 2GB user-mode addressable space and we allocate a large
+* contiguous buffer, so 1GB is already a high limit.
+*/
#define FASTCOVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((unsigned)-1) : ((unsigned)1 GB))
#define FASTCOVER_MAX_F 31
#define FASTCOVER_MAX_ACCEL 10
#define FASTCOVER_DEFAULT_SPLITPOINT 0.75
#define DEFAULT_F 20
#define DEFAULT_ACCEL 1
/*-*************************************
* Console display
***************************************/
#ifndef LOCALDISPLAYLEVEL
-static int g_displayLevel = 2;
+static int g_displayLevel = 0;
#endif
#undef DISPLAY
#define DISPLAY(...) \
{ \
fprintf(stderr, __VA_ARGS__); \
fflush(stderr); \
}
#undef LOCALDISPLAYLEVEL
#define LOCALDISPLAYLEVEL(displayLevel, l, ...) \
if (displayLevel >= l) { \
DISPLAY(__VA_ARGS__); \
} /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */
#undef DISPLAYLEVEL
#define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__)
#ifndef LOCALDISPLAYUPDATE
static const clock_t g_refreshRate = CLOCKS_PER_SEC * 15 / 100;
static clock_t g_time = 0;
#endif
#undef LOCALDISPLAYUPDATE
#define LOCALDISPLAYUPDATE(displayLevel, l, ...) \
if (displayLevel >= l) { \
if ((clock() - g_time > g_refreshRate) || (displayLevel >= 4)) { \
g_time = clock(); \
DISPLAY(__VA_ARGS__); \
} \
}
#undef DISPLAYUPDATE
#define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__)
/*-*************************************
* Hash Functions
***************************************/
/**
* Hash the d-byte value pointed to by p and mod 2^f into the frequency vector
*/
static size_t FASTCOVER_hashPtrToIndex(const void* p, U32 f, unsigned d) {
if (d == 6) {
return ZSTD_hash6Ptr(p, f);
}
return ZSTD_hash8Ptr(p, f);
}
/*-*************************************
* Acceleration
***************************************/
typedef struct {
unsigned finalize; /* Percentage of training samples used for ZDICT_finalizeDictionary */
unsigned skip; /* Number of dmer skipped between each dmer counted in computeFrequency */
} FASTCOVER_accel_t;
static const FASTCOVER_accel_t FASTCOVER_defaultAccelParameters[FASTCOVER_MAX_ACCEL+1] = {
{ 100, 0 }, /* accel = 0, should not happen because accel = 0 defaults to accel = 1 */
{ 100, 0 }, /* accel = 1 */
{ 50, 1 }, /* accel = 2 */
{ 34, 2 }, /* accel = 3 */
{ 25, 3 }, /* accel = 4 */
{ 20, 4 }, /* accel = 5 */
{ 17, 5 }, /* accel = 6 */
{ 14, 6 }, /* accel = 7 */
{ 13, 7 }, /* accel = 8 */
{ 11, 8 }, /* accel = 9 */
{ 10, 9 }, /* accel = 10 */
};
/*-*************************************
* Context
***************************************/
typedef struct {
const BYTE *samples;
size_t *offsets;
const size_t *samplesSizes;
size_t nbSamples;
size_t nbTrainSamples;
size_t nbTestSamples;
size_t nbDmers;
U32 *freqs;
unsigned d;
unsigned f;
FASTCOVER_accel_t accelParams;
} FASTCOVER_ctx_t;
/*-*************************************
* Helper functions
***************************************/
/**
* Selects the best segment in an epoch.
* Segments of are scored according to the function:
*
* Let F(d) be the frequency of all dmers with hash value d.
* Let S_i be hash value of the dmer at position i of segment S which has length k.
*
* Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1})
*
* Once the dmer with hash value d is in the dictionary we set F(d) = 0.
*/
static COVER_segment_t FASTCOVER_selectSegment(const FASTCOVER_ctx_t *ctx,
U32 *freqs, U32 begin, U32 end,
ZDICT_cover_params_t parameters,
U16* segmentFreqs) {
/* Constants */
const U32 k = parameters.k;
const U32 d = parameters.d;
const U32 f = ctx->f;
const U32 dmersInK = k - d + 1;
/* Try each segment (activeSegment) and save the best (bestSegment) */
COVER_segment_t bestSegment = {0, 0, 0};
COVER_segment_t activeSegment;
/* Reset the activeDmers in the segment */
/* The activeSegment starts at the beginning of the epoch. */
activeSegment.begin = begin;
activeSegment.end = begin;
activeSegment.score = 0;
/* Slide the activeSegment through the whole epoch.
* Save the best segment in bestSegment.
*/
while (activeSegment.end < end) {
/* Get hash value of current dmer */
const size_t idx = FASTCOVER_hashPtrToIndex(ctx->samples + activeSegment.end, f, d);
/* Add frequency of this index to score if this is the first occurrence of index in active segment */
if (segmentFreqs[idx] == 0) {
activeSegment.score += freqs[idx];
}
/* Increment end of segment and segmentFreqs*/
activeSegment.end += 1;
segmentFreqs[idx] += 1;
/* If the window is now too large, drop the first position */
if (activeSegment.end - activeSegment.begin == dmersInK + 1) {
/* Get hash value of the dmer to be eliminated from active segment */
const size_t delIndex = FASTCOVER_hashPtrToIndex(ctx->samples + activeSegment.begin, f, d);
segmentFreqs[delIndex] -= 1;
/* Subtract frequency of this index from score if this is the last occurrence of this index in active segment */
if (segmentFreqs[delIndex] == 0) {
activeSegment.score -= freqs[delIndex];
}
/* Increment start of segment */
activeSegment.begin += 1;
}
/* If this segment is the best so far save it */
if (activeSegment.score > bestSegment.score) {
bestSegment = activeSegment;
}
}
/* Zero out rest of segmentFreqs array */
while (activeSegment.begin < end) {
const size_t delIndex = FASTCOVER_hashPtrToIndex(ctx->samples + activeSegment.begin, f, d);
segmentFreqs[delIndex] -= 1;
activeSegment.begin += 1;
}
{
/* Zero the frequency of hash value of each dmer covered by the chosen segment. */
U32 pos;
for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
const size_t i = FASTCOVER_hashPtrToIndex(ctx->samples + pos, f, d);
freqs[i] = 0;
}
}
return bestSegment;
}
static int FASTCOVER_checkParameters(ZDICT_cover_params_t parameters,
size_t maxDictSize, unsigned f,
unsigned accel) {
/* k, d, and f are required parameters */
if (parameters.d == 0 || parameters.k == 0) {
return 0;
}
/* d has to be 6 or 8 */
if (parameters.d != 6 && parameters.d != 8) {
return 0;
}
/* k <= maxDictSize */
if (parameters.k > maxDictSize) {
return 0;
}
/* d <= k */
if (parameters.d > parameters.k) {
return 0;
}
/* 0 < f <= FASTCOVER_MAX_F*/
if (f > FASTCOVER_MAX_F || f == 0) {
return 0;
}
/* 0 < splitPoint <= 1 */
if (parameters.splitPoint <= 0 || parameters.splitPoint > 1) {
return 0;
}
/* 0 < accel <= 10 */
if (accel > 10 || accel == 0) {
return 0;
}
return 1;
}
/**
* Clean up a context initialized with `FASTCOVER_ctx_init()`.
*/
static void
FASTCOVER_ctx_destroy(FASTCOVER_ctx_t* ctx)
{
if (!ctx) return;
free(ctx->freqs);
ctx->freqs = NULL;
free(ctx->offsets);
ctx->offsets = NULL;
}
/**
* Calculate for frequency of hash value of each dmer in ctx->samples
*/
static void
FASTCOVER_computeFrequency(U32* freqs, const FASTCOVER_ctx_t* ctx)
{
const unsigned f = ctx->f;
const unsigned d = ctx->d;
const unsigned skip = ctx->accelParams.skip;
const unsigned readLength = MAX(d, 8);
size_t i;
assert(ctx->nbTrainSamples >= 5);
assert(ctx->nbTrainSamples <= ctx->nbSamples);
for (i = 0; i < ctx->nbTrainSamples; i++) {
size_t start = ctx->offsets[i]; /* start of current dmer */
size_t const currSampleEnd = ctx->offsets[i+1];
while (start + readLength <= currSampleEnd) {
const size_t dmerIndex = FASTCOVER_hashPtrToIndex(ctx->samples + start, f, d);
freqs[dmerIndex]++;
start = start + skip + 1;
}
}
}
/**
* Prepare a context for dictionary building.
* The context is only dependent on the parameter `d` and can used multiple
* times.
* Returns 0 on success or error code on error.
* The context must be destroyed with `FASTCOVER_ctx_destroy()`.
*/
static size_t
FASTCOVER_ctx_init(FASTCOVER_ctx_t* ctx,
const void* samplesBuffer,
const size_t* samplesSizes, unsigned nbSamples,
unsigned d, double splitPoint, unsigned f,
FASTCOVER_accel_t accelParams)
{
const BYTE* const samples = (const BYTE*)samplesBuffer;
const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples);
/* Split samples into testing and training sets */
const unsigned nbTrainSamples = splitPoint < 1.0 ? (unsigned)((double)nbSamples * splitPoint) : nbSamples;
const unsigned nbTestSamples = splitPoint < 1.0 ? nbSamples - nbTrainSamples : nbSamples;
const size_t trainingSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes, nbTrainSamples) : totalSamplesSize;
const size_t testSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes + nbTrainSamples, nbTestSamples) : totalSamplesSize;
/* Checks */
if (totalSamplesSize < MAX(d, sizeof(U64)) ||
totalSamplesSize >= (size_t)FASTCOVER_MAX_SAMPLES_SIZE) {
DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n",
(unsigned)(totalSamplesSize >> 20), (FASTCOVER_MAX_SAMPLES_SIZE >> 20));
return ERROR(srcSize_wrong);
}
/* Check if there are at least 5 training samples */
if (nbTrainSamples < 5) {
DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid\n", nbTrainSamples);
return ERROR(srcSize_wrong);
}
/* Check if there's testing sample */
if (nbTestSamples < 1) {
DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.\n", nbTestSamples);
return ERROR(srcSize_wrong);
}
/* Zero the context */
memset(ctx, 0, sizeof(*ctx));
DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbTrainSamples,
(unsigned)trainingSamplesSize);
DISPLAYLEVEL(2, "Testing on %u samples of total size %u\n", nbTestSamples,
(unsigned)testSamplesSize);
ctx->samples = samples;
ctx->samplesSizes = samplesSizes;
ctx->nbSamples = nbSamples;
ctx->nbTrainSamples = nbTrainSamples;
ctx->nbTestSamples = nbTestSamples;
ctx->nbDmers = trainingSamplesSize - MAX(d, sizeof(U64)) + 1;
ctx->d = d;
ctx->f = f;
ctx->accelParams = accelParams;
/* The offsets of each file */
ctx->offsets = (size_t*)calloc((nbSamples + 1), sizeof(size_t));
if (ctx->offsets == NULL) {
DISPLAYLEVEL(1, "Failed to allocate scratch buffers \n");
FASTCOVER_ctx_destroy(ctx);
return ERROR(memory_allocation);
}
/* Fill offsets from the samplesSizes */
{ U32 i;
ctx->offsets[0] = 0;
assert(nbSamples >= 5);
for (i = 1; i <= nbSamples; ++i) {
ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1];
}
}
/* Initialize frequency array of size 2^f */
ctx->freqs = (U32*)calloc(((U64)1 << f), sizeof(U32));
if (ctx->freqs == NULL) {
DISPLAYLEVEL(1, "Failed to allocate frequency table \n");
FASTCOVER_ctx_destroy(ctx);
return ERROR(memory_allocation);
}
DISPLAYLEVEL(2, "Computing frequencies\n");
FASTCOVER_computeFrequency(ctx->freqs, ctx);
return 0;
}
/**
* Given the prepared context build the dictionary.
*/
static size_t
FASTCOVER_buildDictionary(const FASTCOVER_ctx_t* ctx,
U32* freqs,
void* dictBuffer, size_t dictBufferCapacity,
ZDICT_cover_params_t parameters,
U16* segmentFreqs)
{
BYTE *const dict = (BYTE *)dictBuffer;
size_t tail = dictBufferCapacity;
/* Divide the data into epochs. We will select one segment from each epoch. */
const COVER_epoch_info_t epochs = COVER_computeEpochs(
(U32)dictBufferCapacity, (U32)ctx->nbDmers, parameters.k, 1);
const size_t maxZeroScoreRun = 10;
size_t zeroScoreRun = 0;
size_t epoch;
DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n",
(U32)epochs.num, (U32)epochs.size);
/* Loop through the epochs until there are no more segments or the dictionary
* is full.
*/
for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs.num) {
const U32 epochBegin = (U32)(epoch * epochs.size);
const U32 epochEnd = epochBegin + epochs.size;
size_t segmentSize;
/* Select a segment */
COVER_segment_t segment = FASTCOVER_selectSegment(
ctx, freqs, epochBegin, epochEnd, parameters, segmentFreqs);
/* If the segment covers no dmers, then we are out of content.
* There may be new content in other epochs, for continue for some time.
*/
if (segment.score == 0) {
if (++zeroScoreRun >= maxZeroScoreRun) {
break;
}
continue;
}
zeroScoreRun = 0;
/* Trim the segment if necessary and if it is too small then we are done */
segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail);
if (segmentSize < parameters.d) {
break;
}
/* We fill the dictionary from the back to allow the best segments to be
* referenced with the smallest offsets.
*/
tail -= segmentSize;
memcpy(dict + tail, ctx->samples + segment.begin, segmentSize);
DISPLAYUPDATE(
2, "\r%u%% ",
(unsigned)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity));
}
DISPLAYLEVEL(2, "\r%79s\r", "");
return tail;
}
/**
* Parameters for FASTCOVER_tryParameters().
*/
typedef struct FASTCOVER_tryParameters_data_s {
const FASTCOVER_ctx_t* ctx;
COVER_best_t* best;
size_t dictBufferCapacity;
ZDICT_cover_params_t parameters;
} FASTCOVER_tryParameters_data_t;
/**
* Tries a set of parameters and updates the COVER_best_t with the results.
* This function is thread safe if zstd is compiled with multithreaded support.
* It takes its parameters as an *OWNING* opaque pointer to support threading.
*/
-static void FASTCOVER_tryParameters(void *opaque)
+static void FASTCOVER_tryParameters(void* opaque)
{
/* Save parameters as local variables */
- FASTCOVER_tryParameters_data_t *const data = (FASTCOVER_tryParameters_data_t *)opaque;
+ FASTCOVER_tryParameters_data_t *const data = (FASTCOVER_tryParameters_data_t*)opaque;
const FASTCOVER_ctx_t *const ctx = data->ctx;
const ZDICT_cover_params_t parameters = data->parameters;
size_t dictBufferCapacity = data->dictBufferCapacity;
size_t totalCompressedSize = ERROR(GENERIC);
/* Initialize array to keep track of frequency of dmer within activeSegment */
- U16* segmentFreqs = (U16 *)calloc(((U64)1 << ctx->f), sizeof(U16));
+ U16* segmentFreqs = (U16*)calloc(((U64)1 << ctx->f), sizeof(U16));
/* Allocate space for hash table, dict, and freqs */
- BYTE *const dict = (BYTE * const)malloc(dictBufferCapacity);
+ BYTE *const dict = (BYTE*)malloc(dictBufferCapacity);
COVER_dictSelection_t selection = COVER_dictSelectionError(ERROR(GENERIC));
- U32 *freqs = (U32*) malloc(((U64)1 << ctx->f) * sizeof(U32));
+ U32* freqs = (U32*) malloc(((U64)1 << ctx->f) * sizeof(U32));
if (!segmentFreqs || !dict || !freqs) {
DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n");
goto _cleanup;
}
/* Copy the frequencies because we need to modify them */
memcpy(freqs, ctx->freqs, ((U64)1 << ctx->f) * sizeof(U32));
/* Build the dictionary */
{ const size_t tail = FASTCOVER_buildDictionary(ctx, freqs, dict, dictBufferCapacity,
parameters, segmentFreqs);
const unsigned nbFinalizeSamples = (unsigned)(ctx->nbTrainSamples * ctx->accelParams.finalize / 100);
selection = COVER_selectDict(dict + tail, dictBufferCapacity, dictBufferCapacity - tail,
ctx->samples, ctx->samplesSizes, nbFinalizeSamples, ctx->nbTrainSamples, ctx->nbSamples, parameters, ctx->offsets,
totalCompressedSize);
if (COVER_dictSelectionIsError(selection)) {
DISPLAYLEVEL(1, "Failed to select dictionary\n");
goto _cleanup;
}
}
_cleanup:
free(dict);
COVER_best_finish(data->best, parameters, selection);
free(data);
free(segmentFreqs);
COVER_dictSelectionFree(selection);
free(freqs);
}
static void
FASTCOVER_convertToCoverParams(ZDICT_fastCover_params_t fastCoverParams,
ZDICT_cover_params_t* coverParams)
{
coverParams->k = fastCoverParams.k;
coverParams->d = fastCoverParams.d;
coverParams->steps = fastCoverParams.steps;
coverParams->nbThreads = fastCoverParams.nbThreads;
coverParams->splitPoint = fastCoverParams.splitPoint;
coverParams->zParams = fastCoverParams.zParams;
coverParams->shrinkDict = fastCoverParams.shrinkDict;
}
static void
FASTCOVER_convertToFastCoverParams(ZDICT_cover_params_t coverParams,
ZDICT_fastCover_params_t* fastCoverParams,
unsigned f, unsigned accel)
{
fastCoverParams->k = coverParams.k;
fastCoverParams->d = coverParams.d;
fastCoverParams->steps = coverParams.steps;
fastCoverParams->nbThreads = coverParams.nbThreads;
fastCoverParams->splitPoint = coverParams.splitPoint;
fastCoverParams->f = f;
fastCoverParams->accel = accel;
fastCoverParams->zParams = coverParams.zParams;
fastCoverParams->shrinkDict = coverParams.shrinkDict;
}
ZDICTLIB_API size_t
ZDICT_trainFromBuffer_fastCover(void* dictBuffer, size_t dictBufferCapacity,
const void* samplesBuffer,
const size_t* samplesSizes, unsigned nbSamples,
ZDICT_fastCover_params_t parameters)
{
BYTE* const dict = (BYTE*)dictBuffer;
FASTCOVER_ctx_t ctx;
ZDICT_cover_params_t coverParams;
FASTCOVER_accel_t accelParams;
/* Initialize global data */
- g_displayLevel = parameters.zParams.notificationLevel;
+ g_displayLevel = (int)parameters.zParams.notificationLevel;
/* Assign splitPoint and f if not provided */
parameters.splitPoint = 1.0;
parameters.f = parameters.f == 0 ? DEFAULT_F : parameters.f;
parameters.accel = parameters.accel == 0 ? DEFAULT_ACCEL : parameters.accel;
/* Convert to cover parameter */
memset(&coverParams, 0 , sizeof(coverParams));
FASTCOVER_convertToCoverParams(parameters, &coverParams);
/* Checks */
if (!FASTCOVER_checkParameters(coverParams, dictBufferCapacity, parameters.f,
parameters.accel)) {
DISPLAYLEVEL(1, "FASTCOVER parameters incorrect\n");
return ERROR(parameter_outOfBound);
}
if (nbSamples == 0) {
DISPLAYLEVEL(1, "FASTCOVER must have at least one input file\n");
return ERROR(srcSize_wrong);
}
if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
ZDICT_DICTSIZE_MIN);
return ERROR(dstSize_tooSmall);
}
/* Assign corresponding FASTCOVER_accel_t to accelParams*/
accelParams = FASTCOVER_defaultAccelParameters[parameters.accel];
/* Initialize context */
{
size_t const initVal = FASTCOVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples,
coverParams.d, parameters.splitPoint, parameters.f,
accelParams);
if (ZSTD_isError(initVal)) {
DISPLAYLEVEL(1, "Failed to initialize context\n");
return initVal;
}
}
COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.nbDmers, g_displayLevel);
/* Build the dictionary */
DISPLAYLEVEL(2, "Building dictionary\n");
{
/* Initialize array to keep track of frequency of dmer within activeSegment */
U16* segmentFreqs = (U16 *)calloc(((U64)1 << parameters.f), sizeof(U16));
const size_t tail = FASTCOVER_buildDictionary(&ctx, ctx.freqs, dictBuffer,
dictBufferCapacity, coverParams, segmentFreqs);
const unsigned nbFinalizeSamples = (unsigned)(ctx.nbTrainSamples * ctx.accelParams.finalize / 100);
const size_t dictionarySize = ZDICT_finalizeDictionary(
dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
samplesBuffer, samplesSizes, nbFinalizeSamples, coverParams.zParams);
if (!ZSTD_isError(dictionarySize)) {
DISPLAYLEVEL(2, "Constructed dictionary of size %u\n",
(unsigned)dictionarySize);
}
FASTCOVER_ctx_destroy(&ctx);
free(segmentFreqs);
return dictionarySize;
}
}
ZDICTLIB_API size_t
ZDICT_optimizeTrainFromBuffer_fastCover(
void* dictBuffer, size_t dictBufferCapacity,
const void* samplesBuffer,
const size_t* samplesSizes, unsigned nbSamples,
ZDICT_fastCover_params_t* parameters)
{
ZDICT_cover_params_t coverParams;
FASTCOVER_accel_t accelParams;
/* constants */
const unsigned nbThreads = parameters->nbThreads;
const double splitPoint =
parameters->splitPoint <= 0.0 ? FASTCOVER_DEFAULT_SPLITPOINT : parameters->splitPoint;
const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d;
const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d;
const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k;
const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k;
const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps;
const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1);
const unsigned kIterations =
(1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize);
const unsigned f = parameters->f == 0 ? DEFAULT_F : parameters->f;
const unsigned accel = parameters->accel == 0 ? DEFAULT_ACCEL : parameters->accel;
const unsigned shrinkDict = 0;
/* Local variables */
- const int displayLevel = parameters->zParams.notificationLevel;
+ const int displayLevel = (int)parameters->zParams.notificationLevel;
unsigned iteration = 1;
unsigned d;
unsigned k;
COVER_best_t best;
POOL_ctx *pool = NULL;
int warned = 0;
/* Checks */
if (splitPoint <= 0 || splitPoint > 1) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect splitPoint\n");
return ERROR(parameter_outOfBound);
}
if (accel == 0 || accel > FASTCOVER_MAX_ACCEL) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect accel\n");
return ERROR(parameter_outOfBound);
}
if (kMinK < kMaxD || kMaxK < kMinK) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect k\n");
return ERROR(parameter_outOfBound);
}
if (nbSamples == 0) {
LOCALDISPLAYLEVEL(displayLevel, 1, "FASTCOVER must have at least one input file\n");
return ERROR(srcSize_wrong);
}
if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
LOCALDISPLAYLEVEL(displayLevel, 1, "dictBufferCapacity must be at least %u\n",
ZDICT_DICTSIZE_MIN);
return ERROR(dstSize_tooSmall);
}
if (nbThreads > 1) {
pool = POOL_create(nbThreads, 1);
if (!pool) {
return ERROR(memory_allocation);
}
}
/* Initialization */
COVER_best_init(&best);
memset(&coverParams, 0 , sizeof(coverParams));
FASTCOVER_convertToCoverParams(*parameters, &coverParams);
accelParams = FASTCOVER_defaultAccelParameters[accel];
/* Turn down global display level to clean up display at level 2 and below */
g_displayLevel = displayLevel == 0 ? 0 : displayLevel - 1;
/* Loop through d first because each new value needs a new context */
LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n",
kIterations);
for (d = kMinD; d <= kMaxD; d += 2) {
/* Initialize the context for this value of d */
FASTCOVER_ctx_t ctx;
LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d);
{
size_t const initVal = FASTCOVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint, f, accelParams);
if (ZSTD_isError(initVal)) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
COVER_best_destroy(&best);
POOL_free(pool);
return initVal;
}
}
if (!warned) {
COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.nbDmers, displayLevel);
warned = 1;
}
/* Loop through k reusing the same context */
for (k = kMinK; k <= kMaxK; k += kStepSize) {
/* Prepare the arguments */
FASTCOVER_tryParameters_data_t *data = (FASTCOVER_tryParameters_data_t *)malloc(
sizeof(FASTCOVER_tryParameters_data_t));
LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k);
if (!data) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n");
COVER_best_destroy(&best);
FASTCOVER_ctx_destroy(&ctx);
POOL_free(pool);
return ERROR(memory_allocation);
}
data->ctx = &ctx;
data->best = &best;
data->dictBufferCapacity = dictBufferCapacity;
data->parameters = coverParams;
data->parameters.k = k;
data->parameters.d = d;
data->parameters.splitPoint = splitPoint;
data->parameters.steps = kSteps;
data->parameters.shrinkDict = shrinkDict;
- data->parameters.zParams.notificationLevel = g_displayLevel;
+ data->parameters.zParams.notificationLevel = (unsigned)g_displayLevel;
/* Check the parameters */
if (!FASTCOVER_checkParameters(data->parameters, dictBufferCapacity,
data->ctx->f, accel)) {
DISPLAYLEVEL(1, "FASTCOVER parameters incorrect\n");
free(data);
continue;
}
/* Call the function and pass ownership of data to it */
COVER_best_start(&best);
if (pool) {
POOL_add(pool, &FASTCOVER_tryParameters, data);
} else {
FASTCOVER_tryParameters(data);
}
/* Print status */
LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%% ",
(unsigned)((iteration * 100) / kIterations));
++iteration;
}
COVER_best_wait(&best);
FASTCOVER_ctx_destroy(&ctx);
}
LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", "");
/* Fill the output buffer and parameters with output of the best parameters */
{
const size_t dictSize = best.dictSize;
if (ZSTD_isError(best.compressedSize)) {
const size_t compressedSize = best.compressedSize;
COVER_best_destroy(&best);
POOL_free(pool);
return compressedSize;
}
FASTCOVER_convertToFastCoverParams(best.parameters, parameters, f, accel);
memcpy(dictBuffer, best.dict, dictSize);
COVER_best_destroy(&best);
POOL_free(pool);
return dictSize;
}
}
diff --git a/sys/contrib/zstd/lib/dictBuilder/zdict.c b/sys/contrib/zstd/lib/dictBuilder/zdict.c
index 057ff3f16da4..df0f1155fce7 100644
--- a/sys/contrib/zstd/lib/dictBuilder/zdict.c
+++ b/sys/contrib/zstd/lib/dictBuilder/zdict.c
@@ -1,1137 +1,1208 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-**************************************
* Tuning parameters
****************************************/
#define MINRATIO 4 /* minimum nb of apparition to be selected in dictionary */
#define ZDICT_MAX_SAMPLES_SIZE (2000U << 20)
#define ZDICT_MIN_SAMPLES_SIZE (ZDICT_CONTENTSIZE_MIN * MINRATIO)
/*-**************************************
* Compiler Options
****************************************/
/* Unix Large Files support (>4GB) */
#define _FILE_OFFSET_BITS 64
#if (defined(__sun__) && (!defined(__LP64__))) /* Sun Solaris 32-bits requires specific definitions */
+# ifndef _LARGEFILE_SOURCE
# define _LARGEFILE_SOURCE
+# endif
#elif ! defined(__LP64__) /* No point defining Large file for 64 bit */
+# ifndef _LARGEFILE64_SOURCE
# define _LARGEFILE64_SOURCE
+# endif
#endif
/*-*************************************
* Dependencies
***************************************/
#include <stdlib.h> /* malloc, free */
#include <string.h> /* memset */
#include <stdio.h> /* fprintf, fopen, ftello64 */
#include <time.h> /* clock */
+#ifndef ZDICT_STATIC_LINKING_ONLY
+# define ZDICT_STATIC_LINKING_ONLY
+#endif
+#define HUF_STATIC_LINKING_ONLY
+
#include "../common/mem.h" /* read */
#include "../common/fse.h" /* FSE_normalizeCount, FSE_writeNCount */
-#define HUF_STATIC_LINKING_ONLY
#include "../common/huf.h" /* HUF_buildCTable, HUF_writeCTable */
#include "../common/zstd_internal.h" /* includes zstd.h */
#include "../common/xxhash.h" /* XXH64 */
-#include "divsufsort.h"
-#ifndef ZDICT_STATIC_LINKING_ONLY
-# define ZDICT_STATIC_LINKING_ONLY
-#endif
-#include "zdict.h"
#include "../compress/zstd_compress_internal.h" /* ZSTD_loadCEntropy() */
+#include "../zdict.h"
+#include "divsufsort.h"
/*-*************************************
* Constants
***************************************/
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)
#define DICTLISTSIZE_DEFAULT 10000
#define NOISELENGTH 32
static const U32 g_selectivity_default = 9;
/*-*************************************
* Console display
***************************************/
#undef DISPLAY
#define DISPLAY(...) { fprintf(stderr, __VA_ARGS__); fflush( stderr ); }
#undef DISPLAYLEVEL
#define DISPLAYLEVEL(l, ...) if (notificationLevel>=l) { DISPLAY(__VA_ARGS__); } /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */
static clock_t ZDICT_clockSpan(clock_t nPrevious) { return clock() - nPrevious; }
static void ZDICT_printHex(const void* ptr, size_t length)
{
const BYTE* const b = (const BYTE*)ptr;
size_t u;
for (u=0; u<length; u++) {
BYTE c = b[u];
if (c<32 || c>126) c = '.'; /* non-printable char */
DISPLAY("%c", c);
}
}
/*-********************************************************
* Helper functions
**********************************************************/
unsigned ZDICT_isError(size_t errorCode) { return ERR_isError(errorCode); }
const char* ZDICT_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
unsigned ZDICT_getDictID(const void* dictBuffer, size_t dictSize)
{
if (dictSize < 8) return 0;
if (MEM_readLE32(dictBuffer) != ZSTD_MAGIC_DICTIONARY) return 0;
return MEM_readLE32((const char*)dictBuffer + 4);
}
size_t ZDICT_getDictHeaderSize(const void* dictBuffer, size_t dictSize)
{
size_t headerSize;
if (dictSize <= 8 || MEM_readLE32(dictBuffer) != ZSTD_MAGIC_DICTIONARY) return ERROR(dictionary_corrupted);
{ ZSTD_compressedBlockState_t* bs = (ZSTD_compressedBlockState_t*)malloc(sizeof(ZSTD_compressedBlockState_t));
U32* wksp = (U32*)malloc(HUF_WORKSPACE_SIZE);
if (!bs || !wksp) {
headerSize = ERROR(memory_allocation);
} else {
ZSTD_reset_compressedBlockState(bs);
headerSize = ZSTD_loadCEntropy(bs, wksp, dictBuffer, dictSize);
}
free(bs);
free(wksp);
}
return headerSize;
}
/*-********************************************************
* Dictionary training functions
**********************************************************/
static unsigned ZDICT_NbCommonBytes (size_t val)
{
if (MEM_isLittleEndian()) {
if (MEM_64bits()) {
# if defined(_MSC_VER) && defined(_WIN64)
- unsigned long r = 0;
- _BitScanForward64( &r, (U64)val );
- return (unsigned)(r>>3);
+ if (val != 0) {
+ unsigned long r;
+ _BitScanForward64(&r, (U64)val);
+ return (unsigned)(r >> 3);
+ } else {
+ /* Should not reach this code path */
+ __assume(0);
+ }
# elif defined(__GNUC__) && (__GNUC__ >= 3)
- return (__builtin_ctzll((U64)val) >> 3);
+ return (unsigned)(__builtin_ctzll((U64)val) >> 3);
# else
static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, 0, 3, 1, 3, 1, 4, 2, 7, 0, 2, 3, 6, 1, 5, 3, 5, 1, 3, 4, 4, 2, 5, 6, 7, 7, 0, 1, 2, 3, 3, 4, 6, 2, 6, 5, 5, 3, 4, 5, 6, 7, 1, 2, 4, 6, 4, 4, 5, 7, 2, 6, 5, 7, 6, 7, 7 };
return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
# endif
} else { /* 32 bits */
# if defined(_MSC_VER)
- unsigned long r=0;
- _BitScanForward( &r, (U32)val );
- return (unsigned)(r>>3);
+ if (val != 0) {
+ unsigned long r;
+ _BitScanForward(&r, (U32)val);
+ return (unsigned)(r >> 3);
+ } else {
+ /* Should not reach this code path */
+ __assume(0);
+ }
# elif defined(__GNUC__) && (__GNUC__ >= 3)
- return (__builtin_ctz((U32)val) >> 3);
+ return (unsigned)(__builtin_ctz((U32)val) >> 3);
# else
static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, 3, 2, 2, 1, 3, 2, 0, 1, 3, 3, 1, 2, 2, 2, 2, 0, 3, 1, 2, 0, 1, 0, 1, 1 };
return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
# endif
}
} else { /* Big Endian CPU */
if (MEM_64bits()) {
# if defined(_MSC_VER) && defined(_WIN64)
- unsigned long r = 0;
- _BitScanReverse64( &r, val );
- return (unsigned)(r>>3);
+ if (val != 0) {
+ unsigned long r;
+ _BitScanReverse64(&r, val);
+ return (unsigned)(r >> 3);
+ } else {
+ /* Should not reach this code path */
+ __assume(0);
+ }
# elif defined(__GNUC__) && (__GNUC__ >= 3)
- return (__builtin_clzll(val) >> 3);
+ return (unsigned)(__builtin_clzll(val) >> 3);
# else
unsigned r;
const unsigned n32 = sizeof(size_t)*4; /* calculate this way due to compiler complaining in 32-bits mode */
if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
r += (!val);
return r;
# endif
} else { /* 32 bits */
# if defined(_MSC_VER)
- unsigned long r = 0;
- _BitScanReverse( &r, (unsigned long)val );
- return (unsigned)(r>>3);
+ if (val != 0) {
+ unsigned long r;
+ _BitScanReverse(&r, (unsigned long)val);
+ return (unsigned)(r >> 3);
+ } else {
+ /* Should not reach this code path */
+ __assume(0);
+ }
# elif defined(__GNUC__) && (__GNUC__ >= 3)
- return (__builtin_clz((U32)val) >> 3);
+ return (unsigned)(__builtin_clz((U32)val) >> 3);
# else
unsigned r;
if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
r += (!val);
return r;
# endif
} }
}
/*! ZDICT_count() :
Count the nb of common bytes between 2 pointers.
Note : this function presumes end of buffer followed by noisy guard band.
*/
static size_t ZDICT_count(const void* pIn, const void* pMatch)
{
const char* const pStart = (const char*)pIn;
for (;;) {
size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
if (!diff) {
pIn = (const char*)pIn+sizeof(size_t);
pMatch = (const char*)pMatch+sizeof(size_t);
continue;
}
pIn = (const char*)pIn+ZDICT_NbCommonBytes(diff);
return (size_t)((const char*)pIn - pStart);
}
}
typedef struct {
U32 pos;
U32 length;
U32 savings;
} dictItem;
static void ZDICT_initDictItem(dictItem* d)
{
d->pos = 1;
d->length = 0;
d->savings = (U32)(-1);
}
#define LLIMIT 64 /* heuristic determined experimentally */
#define MINMATCHLENGTH 7 /* heuristic determined experimentally */
static dictItem ZDICT_analyzePos(
BYTE* doneMarks,
const int* suffix, U32 start,
const void* buffer, U32 minRatio, U32 notificationLevel)
{
U32 lengthList[LLIMIT] = {0};
U32 cumulLength[LLIMIT] = {0};
U32 savings[LLIMIT] = {0};
const BYTE* b = (const BYTE*)buffer;
size_t maxLength = LLIMIT;
- size_t pos = suffix[start];
+ size_t pos = (size_t)suffix[start];
U32 end = start;
dictItem solution;
/* init */
memset(&solution, 0, sizeof(solution));
doneMarks[pos] = 1;
/* trivial repetition cases */
if ( (MEM_read16(b+pos+0) == MEM_read16(b+pos+2))
||(MEM_read16(b+pos+1) == MEM_read16(b+pos+3))
||(MEM_read16(b+pos+2) == MEM_read16(b+pos+4)) ) {
/* skip and mark segment */
U16 const pattern16 = MEM_read16(b+pos+4);
U32 u, patternEnd = 6;
while (MEM_read16(b+pos+patternEnd) == pattern16) patternEnd+=2 ;
if (b[pos+patternEnd] == b[pos+patternEnd-1]) patternEnd++;
for (u=1; u<patternEnd; u++)
doneMarks[pos+u] = 1;
return solution;
}
/* look forward */
{ size_t length;
do {
end++;
length = ZDICT_count(b + pos, b + suffix[end]);
} while (length >= MINMATCHLENGTH);
}
/* look backward */
{ size_t length;
do {
length = ZDICT_count(b + pos, b + *(suffix+start-1));
if (length >=MINMATCHLENGTH) start--;
} while(length >= MINMATCHLENGTH);
}
/* exit if not found a minimum nb of repetitions */
if (end-start < minRatio) {
U32 idx;
for(idx=start; idx<end; idx++)
doneMarks[suffix[idx]] = 1;
return solution;
}
{ int i;
U32 mml;
U32 refinedStart = start;
U32 refinedEnd = end;
DISPLAYLEVEL(4, "\n");
DISPLAYLEVEL(4, "found %3u matches of length >= %i at pos %7u ", (unsigned)(end-start), MINMATCHLENGTH, (unsigned)pos);
DISPLAYLEVEL(4, "\n");
for (mml = MINMATCHLENGTH ; ; mml++) {
BYTE currentChar = 0;
U32 currentCount = 0;
U32 currentID = refinedStart;
U32 id;
U32 selectedCount = 0;
U32 selectedID = currentID;
for (id =refinedStart; id < refinedEnd; id++) {
if (b[suffix[id] + mml] != currentChar) {
if (currentCount > selectedCount) {
selectedCount = currentCount;
selectedID = currentID;
}
currentID = id;
currentChar = b[ suffix[id] + mml];
currentCount = 0;
}
currentCount ++;
}
if (currentCount > selectedCount) { /* for last */
selectedCount = currentCount;
selectedID = currentID;
}
if (selectedCount < minRatio)
break;
refinedStart = selectedID;
refinedEnd = refinedStart + selectedCount;
}
/* evaluate gain based on new dict */
start = refinedStart;
pos = suffix[refinedStart];
end = start;
memset(lengthList, 0, sizeof(lengthList));
/* look forward */
{ size_t length;
do {
end++;
length = ZDICT_count(b + pos, b + suffix[end]);
if (length >= LLIMIT) length = LLIMIT-1;
lengthList[length]++;
} while (length >=MINMATCHLENGTH);
}
/* look backward */
{ size_t length = MINMATCHLENGTH;
while ((length >= MINMATCHLENGTH) & (start > 0)) {
length = ZDICT_count(b + pos, b + suffix[start - 1]);
if (length >= LLIMIT) length = LLIMIT - 1;
lengthList[length]++;
if (length >= MINMATCHLENGTH) start--;
}
}
/* largest useful length */
memset(cumulLength, 0, sizeof(cumulLength));
cumulLength[maxLength-1] = lengthList[maxLength-1];
for (i=(int)(maxLength-2); i>=0; i--)
cumulLength[i] = cumulLength[i+1] + lengthList[i];
for (i=LLIMIT-1; i>=MINMATCHLENGTH; i--) if (cumulLength[i]>=minRatio) break;
maxLength = i;
/* reduce maxLength in case of final into repetitive data */
{ U32 l = (U32)maxLength;
BYTE const c = b[pos + maxLength-1];
while (b[pos+l-2]==c) l--;
maxLength = l;
}
if (maxLength < MINMATCHLENGTH) return solution; /* skip : no long-enough solution */
/* calculate savings */
savings[5] = 0;
for (i=MINMATCHLENGTH; i<=(int)maxLength; i++)
savings[i] = savings[i-1] + (lengthList[i] * (i-3));
DISPLAYLEVEL(4, "Selected dict at position %u, of length %u : saves %u (ratio: %.2f) \n",
- (unsigned)pos, (unsigned)maxLength, (unsigned)savings[maxLength], (double)savings[maxLength] / maxLength);
+ (unsigned)pos, (unsigned)maxLength, (unsigned)savings[maxLength], (double)savings[maxLength] / (double)maxLength);
solution.pos = (U32)pos;
solution.length = (U32)maxLength;
solution.savings = savings[maxLength];
/* mark positions done */
{ U32 id;
for (id=start; id<end; id++) {
U32 p, pEnd, length;
- U32 const testedPos = suffix[id];
+ U32 const testedPos = (U32)suffix[id];
if (testedPos == pos)
length = solution.length;
else {
length = (U32)ZDICT_count(b+pos, b+testedPos);
if (length > solution.length) length = solution.length;
}
pEnd = (U32)(testedPos + length);
for (p=testedPos; p<pEnd; p++)
doneMarks[p] = 1;
} } }
return solution;
}
static int isIncluded(const void* in, const void* container, size_t length)
{
const char* const ip = (const char*) in;
const char* const into = (const char*) container;
size_t u;
for (u=0; u<length; u++) { /* works because end of buffer is a noisy guard band */
if (ip[u] != into[u]) break;
}
return u==length;
}
/*! ZDICT_tryMerge() :
check if dictItem can be merged, do it if possible
@return : id of destination elt, 0 if not merged
*/
static U32 ZDICT_tryMerge(dictItem* table, dictItem elt, U32 eltNbToSkip, const void* buffer)
{
const U32 tableSize = table->pos;
const U32 eltEnd = elt.pos + elt.length;
const char* const buf = (const char*) buffer;
/* tail overlap */
U32 u; for (u=1; u<tableSize; u++) {
if (u==eltNbToSkip) continue;
if ((table[u].pos > elt.pos) && (table[u].pos <= eltEnd)) { /* overlap, existing > new */
/* append */
U32 const addedLength = table[u].pos - elt.pos;
table[u].length += addedLength;
table[u].pos = elt.pos;
table[u].savings += elt.savings * addedLength / elt.length; /* rough approx */
table[u].savings += elt.length / 8; /* rough approx bonus */
elt = table[u];
/* sort : improve rank */
while ((u>1) && (table[u-1].savings < elt.savings))
table[u] = table[u-1], u--;
table[u] = elt;
return u;
} }
/* front overlap */
for (u=1; u<tableSize; u++) {
if (u==eltNbToSkip) continue;
if ((table[u].pos + table[u].length >= elt.pos) && (table[u].pos < elt.pos)) { /* overlap, existing < new */
/* append */
- int const addedLength = (int)eltEnd - (table[u].pos + table[u].length);
+ int const addedLength = (int)eltEnd - (int)(table[u].pos + table[u].length);
table[u].savings += elt.length / 8; /* rough approx bonus */
if (addedLength > 0) { /* otherwise, elt fully included into existing */
table[u].length += addedLength;
table[u].savings += elt.savings * addedLength / elt.length; /* rough approx */
}
/* sort : improve rank */
elt = table[u];
while ((u>1) && (table[u-1].savings < elt.savings))
table[u] = table[u-1], u--;
table[u] = elt;
return u;
}
if (MEM_read64(buf + table[u].pos) == MEM_read64(buf + elt.pos + 1)) {
if (isIncluded(buf + table[u].pos, buf + elt.pos + 1, table[u].length)) {
size_t const addedLength = MAX( (int)elt.length - (int)table[u].length , 1 );
table[u].pos = elt.pos;
table[u].savings += (U32)(elt.savings * addedLength / elt.length);
table[u].length = MIN(elt.length, table[u].length + 1);
return u;
}
}
}
return 0;
}
static void ZDICT_removeDictItem(dictItem* table, U32 id)
{
/* convention : table[0].pos stores nb of elts */
U32 const max = table[0].pos;
U32 u;
if (!id) return; /* protection, should never happen */
for (u=id; u<max-1; u++)
table[u] = table[u+1];
table->pos--;
}
static void ZDICT_insertDictItem(dictItem* table, U32 maxSize, dictItem elt, const void* buffer)
{
/* merge if possible */
U32 mergeId = ZDICT_tryMerge(table, elt, 0, buffer);
if (mergeId) {
U32 newMerge = 1;
while (newMerge) {
newMerge = ZDICT_tryMerge(table, table[mergeId], mergeId, buffer);
if (newMerge) ZDICT_removeDictItem(table, mergeId);
mergeId = newMerge;
}
return;
}
/* insert */
{ U32 current;
U32 nextElt = table->pos;
if (nextElt >= maxSize) nextElt = maxSize-1;
current = nextElt-1;
while (table[current].savings < elt.savings) {
table[current+1] = table[current];
current--;
}
table[current+1] = elt;
table->pos = nextElt+1;
}
}
static U32 ZDICT_dictSize(const dictItem* dictList)
{
U32 u, dictSize = 0;
for (u=1; u<dictList[0].pos; u++)
dictSize += dictList[u].length;
return dictSize;
}
static size_t ZDICT_trainBuffer_legacy(dictItem* dictList, U32 dictListSize,
const void* const buffer, size_t bufferSize, /* buffer must end with noisy guard band */
const size_t* fileSizes, unsigned nbFiles,
unsigned minRatio, U32 notificationLevel)
{
int* const suffix0 = (int*)malloc((bufferSize+2)*sizeof(*suffix0));
int* const suffix = suffix0+1;
U32* reverseSuffix = (U32*)malloc((bufferSize)*sizeof(*reverseSuffix));
BYTE* doneMarks = (BYTE*)malloc((bufferSize+16)*sizeof(*doneMarks)); /* +16 for overflow security */
U32* filePos = (U32*)malloc(nbFiles * sizeof(*filePos));
size_t result = 0;
clock_t displayClock = 0;
clock_t const refreshRate = CLOCKS_PER_SEC * 3 / 10;
# undef DISPLAYUPDATE
# define DISPLAYUPDATE(l, ...) if (notificationLevel>=l) { \
if (ZDICT_clockSpan(displayClock) > refreshRate) \
{ displayClock = clock(); DISPLAY(__VA_ARGS__); \
if (notificationLevel>=4) fflush(stderr); } }
/* init */
DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */
if (!suffix0 || !reverseSuffix || !doneMarks || !filePos) {
result = ERROR(memory_allocation);
goto _cleanup;
}
if (minRatio < MINRATIO) minRatio = MINRATIO;
memset(doneMarks, 0, bufferSize+16);
/* limit sample set size (divsufsort limitation)*/
if (bufferSize > ZDICT_MAX_SAMPLES_SIZE) DISPLAYLEVEL(3, "sample set too large : reduced to %u MB ...\n", (unsigned)(ZDICT_MAX_SAMPLES_SIZE>>20));
while (bufferSize > ZDICT_MAX_SAMPLES_SIZE) bufferSize -= fileSizes[--nbFiles];
/* sort */
DISPLAYLEVEL(2, "sorting %u files of total size %u MB ...\n", nbFiles, (unsigned)(bufferSize>>20));
{ int const divSuftSortResult = divsufsort((const unsigned char*)buffer, suffix, (int)bufferSize, 0);
if (divSuftSortResult != 0) { result = ERROR(GENERIC); goto _cleanup; }
}
suffix[bufferSize] = (int)bufferSize; /* leads into noise */
suffix0[0] = (int)bufferSize; /* leads into noise */
/* build reverse suffix sort */
{ size_t pos;
for (pos=0; pos < bufferSize; pos++)
reverseSuffix[suffix[pos]] = (U32)pos;
/* note filePos tracks borders between samples.
It's not used at this stage, but planned to become useful in a later update */
filePos[0] = 0;
for (pos=1; pos<nbFiles; pos++)
filePos[pos] = (U32)(filePos[pos-1] + fileSizes[pos-1]);
}
DISPLAYLEVEL(2, "finding patterns ... \n");
DISPLAYLEVEL(3, "minimum ratio : %u \n", minRatio);
{ U32 cursor; for (cursor=0; cursor < bufferSize; ) {
dictItem solution;
if (doneMarks[cursor]) { cursor++; continue; }
solution = ZDICT_analyzePos(doneMarks, suffix, reverseSuffix[cursor], buffer, minRatio, notificationLevel);
if (solution.length==0) { cursor++; continue; }
ZDICT_insertDictItem(dictList, dictListSize, solution, buffer);
cursor += solution.length;
DISPLAYUPDATE(2, "\r%4.2f %% \r", (double)cursor / bufferSize * 100);
} }
_cleanup:
free(suffix0);
free(reverseSuffix);
free(doneMarks);
free(filePos);
return result;
}
static void ZDICT_fillNoise(void* buffer, size_t length)
{
unsigned const prime1 = 2654435761U;
unsigned const prime2 = 2246822519U;
unsigned acc = prime1;
size_t p=0;
for (p=0; p<length; p++) {
acc *= prime2;
((unsigned char*)buffer)[p] = (unsigned char)(acc >> 21);
}
}
typedef struct
{
ZSTD_CDict* dict; /* dictionary */
ZSTD_CCtx* zc; /* working context */
void* workPlace; /* must be ZSTD_BLOCKSIZE_MAX allocated */
} EStats_ress_t;
#define MAXREPOFFSET 1024
static void ZDICT_countEStats(EStats_ress_t esr, const ZSTD_parameters* params,
unsigned* countLit, unsigned* offsetcodeCount, unsigned* matchlengthCount, unsigned* litlengthCount, U32* repOffsets,
const void* src, size_t srcSize,
U32 notificationLevel)
{
size_t const blockSizeMax = MIN (ZSTD_BLOCKSIZE_MAX, 1 << params->cParams.windowLog);
size_t cSize;
if (srcSize > blockSizeMax) srcSize = blockSizeMax; /* protection vs large samples */
{ size_t const errorCode = ZSTD_compressBegin_usingCDict(esr.zc, esr.dict);
if (ZSTD_isError(errorCode)) { DISPLAYLEVEL(1, "warning : ZSTD_compressBegin_usingCDict failed \n"); return; }
}
cSize = ZSTD_compressBlock(esr.zc, esr.workPlace, ZSTD_BLOCKSIZE_MAX, src, srcSize);
if (ZSTD_isError(cSize)) { DISPLAYLEVEL(3, "warning : could not compress sample size %u \n", (unsigned)srcSize); return; }
if (cSize) { /* if == 0; block is not compressible */
const seqStore_t* const seqStorePtr = ZSTD_getSeqStore(esr.zc);
/* literals stats */
{ const BYTE* bytePtr;
for(bytePtr = seqStorePtr->litStart; bytePtr < seqStorePtr->lit; bytePtr++)
countLit[*bytePtr]++;
}
/* seqStats */
{ U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
ZSTD_seqToCodes(seqStorePtr);
{ const BYTE* codePtr = seqStorePtr->ofCode;
U32 u;
for (u=0; u<nbSeq; u++) offsetcodeCount[codePtr[u]]++;
}
{ const BYTE* codePtr = seqStorePtr->mlCode;
U32 u;
for (u=0; u<nbSeq; u++) matchlengthCount[codePtr[u]]++;
}
{ const BYTE* codePtr = seqStorePtr->llCode;
U32 u;
for (u=0; u<nbSeq; u++) litlengthCount[codePtr[u]]++;
}
if (nbSeq >= 2) { /* rep offsets */
const seqDef* const seq = seqStorePtr->sequencesStart;
- U32 offset1 = seq[0].offset - 3;
- U32 offset2 = seq[1].offset - 3;
+ U32 offset1 = seq[0].offBase - ZSTD_REP_NUM;
+ U32 offset2 = seq[1].offBase - ZSTD_REP_NUM;
if (offset1 >= MAXREPOFFSET) offset1 = 0;
if (offset2 >= MAXREPOFFSET) offset2 = 0;
repOffsets[offset1] += 3;
repOffsets[offset2] += 1;
} } }
}
static size_t ZDICT_totalSampleSize(const size_t* fileSizes, unsigned nbFiles)
{
size_t total=0;
unsigned u;
for (u=0; u<nbFiles; u++) total += fileSizes[u];
return total;
}
typedef struct { U32 offset; U32 count; } offsetCount_t;
static void ZDICT_insertSortCount(offsetCount_t table[ZSTD_REP_NUM+1], U32 val, U32 count)
{
U32 u;
table[ZSTD_REP_NUM].offset = val;
table[ZSTD_REP_NUM].count = count;
for (u=ZSTD_REP_NUM; u>0; u--) {
offsetCount_t tmp;
if (table[u-1].count >= table[u].count) break;
tmp = table[u-1];
table[u-1] = table[u];
table[u] = tmp;
}
}
/* ZDICT_flatLit() :
* rewrite `countLit` to contain a mostly flat but still compressible distribution of literals.
* necessary to avoid generating a non-compressible distribution that HUF_writeCTable() cannot encode.
*/
static void ZDICT_flatLit(unsigned* countLit)
{
int u;
for (u=1; u<256; u++) countLit[u] = 2;
countLit[0] = 4;
countLit[253] = 1;
countLit[254] = 1;
}
#define OFFCODE_MAX 30 /* only applicable to first block */
static size_t ZDICT_analyzeEntropy(void* dstBuffer, size_t maxDstSize,
int compressionLevel,
const void* srcBuffer, const size_t* fileSizes, unsigned nbFiles,
const void* dictBuffer, size_t dictBufferSize,
unsigned notificationLevel)
{
unsigned countLit[256];
HUF_CREATE_STATIC_CTABLE(hufTable, 255);
unsigned offcodeCount[OFFCODE_MAX+1];
short offcodeNCount[OFFCODE_MAX+1];
U32 offcodeMax = ZSTD_highbit32((U32)(dictBufferSize + 128 KB));
unsigned matchLengthCount[MaxML+1];
short matchLengthNCount[MaxML+1];
unsigned litLengthCount[MaxLL+1];
short litLengthNCount[MaxLL+1];
U32 repOffset[MAXREPOFFSET];
offsetCount_t bestRepOffset[ZSTD_REP_NUM+1];
EStats_ress_t esr = { NULL, NULL, NULL };
ZSTD_parameters params;
U32 u, huffLog = 11, Offlog = OffFSELog, mlLog = MLFSELog, llLog = LLFSELog, total;
size_t pos = 0, errorCode;
size_t eSize = 0;
size_t const totalSrcSize = ZDICT_totalSampleSize(fileSizes, nbFiles);
size_t const averageSampleSize = totalSrcSize / (nbFiles + !nbFiles);
BYTE* dstPtr = (BYTE*)dstBuffer;
/* init */
DEBUGLOG(4, "ZDICT_analyzeEntropy");
if (offcodeMax>OFFCODE_MAX) { eSize = ERROR(dictionaryCreation_failed); goto _cleanup; } /* too large dictionary */
for (u=0; u<256; u++) countLit[u] = 1; /* any character must be described */
for (u=0; u<=offcodeMax; u++) offcodeCount[u] = 1;
for (u=0; u<=MaxML; u++) matchLengthCount[u] = 1;
for (u=0; u<=MaxLL; u++) litLengthCount[u] = 1;
memset(repOffset, 0, sizeof(repOffset));
repOffset[1] = repOffset[4] = repOffset[8] = 1;
memset(bestRepOffset, 0, sizeof(bestRepOffset));
if (compressionLevel==0) compressionLevel = ZSTD_CLEVEL_DEFAULT;
params = ZSTD_getParams(compressionLevel, averageSampleSize, dictBufferSize);
esr.dict = ZSTD_createCDict_advanced(dictBuffer, dictBufferSize, ZSTD_dlm_byRef, ZSTD_dct_rawContent, params.cParams, ZSTD_defaultCMem);
esr.zc = ZSTD_createCCtx();
esr.workPlace = malloc(ZSTD_BLOCKSIZE_MAX);
if (!esr.dict || !esr.zc || !esr.workPlace) {
eSize = ERROR(memory_allocation);
DISPLAYLEVEL(1, "Not enough memory \n");
goto _cleanup;
}
/* collect stats on all samples */
for (u=0; u<nbFiles; u++) {
ZDICT_countEStats(esr, &params,
countLit, offcodeCount, matchLengthCount, litLengthCount, repOffset,
(const char*)srcBuffer + pos, fileSizes[u],
notificationLevel);
pos += fileSizes[u];
}
+ if (notificationLevel >= 4) {
+ /* writeStats */
+ DISPLAYLEVEL(4, "Offset Code Frequencies : \n");
+ for (u=0; u<=offcodeMax; u++) {
+ DISPLAYLEVEL(4, "%2u :%7u \n", u, offcodeCount[u]);
+ } }
+
/* analyze, build stats, starting with literals */
{ size_t maxNbBits = HUF_buildCTable (hufTable, countLit, 255, huffLog);
if (HUF_isError(maxNbBits)) {
eSize = maxNbBits;
DISPLAYLEVEL(1, " HUF_buildCTable error \n");
goto _cleanup;
}
if (maxNbBits==8) { /* not compressible : will fail on HUF_writeCTable() */
DISPLAYLEVEL(2, "warning : pathological dataset : literals are not compressible : samples are noisy or too regular \n");
ZDICT_flatLit(countLit); /* replace distribution by a fake "mostly flat but still compressible" distribution, that HUF_writeCTable() can encode */
maxNbBits = HUF_buildCTable (hufTable, countLit, 255, huffLog);
assert(maxNbBits==9);
}
huffLog = (U32)maxNbBits;
}
/* looking for most common first offsets */
{ U32 offset;
for (offset=1; offset<MAXREPOFFSET; offset++)
ZDICT_insertSortCount(bestRepOffset, offset, repOffset[offset]);
}
/* note : the result of this phase should be used to better appreciate the impact on statistics */
total=0; for (u=0; u<=offcodeMax; u++) total+=offcodeCount[u];
errorCode = FSE_normalizeCount(offcodeNCount, Offlog, offcodeCount, total, offcodeMax, /* useLowProbCount */ 1);
if (FSE_isError(errorCode)) {
eSize = errorCode;
DISPLAYLEVEL(1, "FSE_normalizeCount error with offcodeCount \n");
goto _cleanup;
}
Offlog = (U32)errorCode;
total=0; for (u=0; u<=MaxML; u++) total+=matchLengthCount[u];
errorCode = FSE_normalizeCount(matchLengthNCount, mlLog, matchLengthCount, total, MaxML, /* useLowProbCount */ 1);
if (FSE_isError(errorCode)) {
eSize = errorCode;
DISPLAYLEVEL(1, "FSE_normalizeCount error with matchLengthCount \n");
goto _cleanup;
}
mlLog = (U32)errorCode;
total=0; for (u=0; u<=MaxLL; u++) total+=litLengthCount[u];
errorCode = FSE_normalizeCount(litLengthNCount, llLog, litLengthCount, total, MaxLL, /* useLowProbCount */ 1);
if (FSE_isError(errorCode)) {
eSize = errorCode;
DISPLAYLEVEL(1, "FSE_normalizeCount error with litLengthCount \n");
goto _cleanup;
}
llLog = (U32)errorCode;
/* write result to buffer */
{ size_t const hhSize = HUF_writeCTable(dstPtr, maxDstSize, hufTable, 255, huffLog);
if (HUF_isError(hhSize)) {
eSize = hhSize;
DISPLAYLEVEL(1, "HUF_writeCTable error \n");
goto _cleanup;
}
dstPtr += hhSize;
maxDstSize -= hhSize;
eSize += hhSize;
}
{ size_t const ohSize = FSE_writeNCount(dstPtr, maxDstSize, offcodeNCount, OFFCODE_MAX, Offlog);
if (FSE_isError(ohSize)) {
eSize = ohSize;
DISPLAYLEVEL(1, "FSE_writeNCount error with offcodeNCount \n");
goto _cleanup;
}
dstPtr += ohSize;
maxDstSize -= ohSize;
eSize += ohSize;
}
{ size_t const mhSize = FSE_writeNCount(dstPtr, maxDstSize, matchLengthNCount, MaxML, mlLog);
if (FSE_isError(mhSize)) {
eSize = mhSize;
DISPLAYLEVEL(1, "FSE_writeNCount error with matchLengthNCount \n");
goto _cleanup;
}
dstPtr += mhSize;
maxDstSize -= mhSize;
eSize += mhSize;
}
{ size_t const lhSize = FSE_writeNCount(dstPtr, maxDstSize, litLengthNCount, MaxLL, llLog);
if (FSE_isError(lhSize)) {
eSize = lhSize;
DISPLAYLEVEL(1, "FSE_writeNCount error with litlengthNCount \n");
goto _cleanup;
}
dstPtr += lhSize;
maxDstSize -= lhSize;
eSize += lhSize;
}
if (maxDstSize<12) {
eSize = ERROR(dstSize_tooSmall);
DISPLAYLEVEL(1, "not enough space to write RepOffsets \n");
goto _cleanup;
}
# if 0
MEM_writeLE32(dstPtr+0, bestRepOffset[0].offset);
MEM_writeLE32(dstPtr+4, bestRepOffset[1].offset);
MEM_writeLE32(dstPtr+8, bestRepOffset[2].offset);
#else
/* at this stage, we don't use the result of "most common first offset",
- as the impact of statistics is not properly evaluated */
+ * as the impact of statistics is not properly evaluated */
MEM_writeLE32(dstPtr+0, repStartValue[0]);
MEM_writeLE32(dstPtr+4, repStartValue[1]);
MEM_writeLE32(dstPtr+8, repStartValue[2]);
#endif
eSize += 12;
_cleanup:
ZSTD_freeCDict(esr.dict);
ZSTD_freeCCtx(esr.zc);
free(esr.workPlace);
return eSize;
}
+/**
+ * @returns the maximum repcode value
+ */
+static U32 ZDICT_maxRep(U32 const reps[ZSTD_REP_NUM])
+{
+ U32 maxRep = reps[0];
+ int r;
+ for (r = 1; r < ZSTD_REP_NUM; ++r)
+ maxRep = MAX(maxRep, reps[r]);
+ return maxRep;
+}
size_t ZDICT_finalizeDictionary(void* dictBuffer, size_t dictBufferCapacity,
const void* customDictContent, size_t dictContentSize,
const void* samplesBuffer, const size_t* samplesSizes,
unsigned nbSamples, ZDICT_params_t params)
{
size_t hSize;
#define HBUFFSIZE 256 /* should prove large enough for all entropy headers */
BYTE header[HBUFFSIZE];
int const compressionLevel = (params.compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : params.compressionLevel;
U32 const notificationLevel = params.notificationLevel;
+ /* The final dictionary content must be at least as large as the largest repcode */
+ size_t const minContentSize = (size_t)ZDICT_maxRep(repStartValue);
+ size_t paddingSize;
/* check conditions */
DEBUGLOG(4, "ZDICT_finalizeDictionary");
if (dictBufferCapacity < dictContentSize) return ERROR(dstSize_tooSmall);
- if (dictContentSize < ZDICT_CONTENTSIZE_MIN) return ERROR(srcSize_wrong);
if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) return ERROR(dstSize_tooSmall);
/* dictionary header */
MEM_writeLE32(header, ZSTD_MAGIC_DICTIONARY);
{ U64 const randomID = XXH64(customDictContent, dictContentSize, 0);
U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768;
U32 const dictID = params.dictID ? params.dictID : compliantID;
MEM_writeLE32(header+4, dictID);
}
hSize = 8;
/* entropy tables */
DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */
DISPLAYLEVEL(2, "statistics ... \n");
{ size_t const eSize = ZDICT_analyzeEntropy(header+hSize, HBUFFSIZE-hSize,
compressionLevel,
samplesBuffer, samplesSizes, nbSamples,
customDictContent, dictContentSize,
notificationLevel);
if (ZDICT_isError(eSize)) return eSize;
hSize += eSize;
}
- /* copy elements in final buffer ; note : src and dst buffer can overlap */
- if (hSize + dictContentSize > dictBufferCapacity) dictContentSize = dictBufferCapacity - hSize;
- { size_t const dictSize = hSize + dictContentSize;
- char* dictEnd = (char*)dictBuffer + dictSize;
- memmove(dictEnd - dictContentSize, customDictContent, dictContentSize);
- memcpy(dictBuffer, header, hSize);
+ /* Shrink the content size if it doesn't fit in the buffer */
+ if (hSize + dictContentSize > dictBufferCapacity) {
+ dictContentSize = dictBufferCapacity - hSize;
+ }
+
+ /* Pad the dictionary content with zeros if it is too small */
+ if (dictContentSize < minContentSize) {
+ RETURN_ERROR_IF(hSize + minContentSize > dictBufferCapacity, dstSize_tooSmall,
+ "dictBufferCapacity too small to fit max repcode");
+ paddingSize = minContentSize - dictContentSize;
+ } else {
+ paddingSize = 0;
+ }
+
+ {
+ size_t const dictSize = hSize + paddingSize + dictContentSize;
+
+ /* The dictionary consists of the header, optional padding, and the content.
+ * The padding comes before the content because the "best" position in the
+ * dictionary is the last byte.
+ */
+ BYTE* const outDictHeader = (BYTE*)dictBuffer;
+ BYTE* const outDictPadding = outDictHeader + hSize;
+ BYTE* const outDictContent = outDictPadding + paddingSize;
+
+ assert(dictSize <= dictBufferCapacity);
+ assert(outDictContent + dictContentSize == (BYTE*)dictBuffer + dictSize);
+
+ /* First copy the customDictContent into its final location.
+ * `customDictContent` and `dictBuffer` may overlap, so we must
+ * do this before any other writes into the output buffer.
+ * Then copy the header & padding into the output buffer.
+ */
+ memmove(outDictContent, customDictContent, dictContentSize);
+ memcpy(outDictHeader, header, hSize);
+ memset(outDictPadding, 0, paddingSize);
+
return dictSize;
}
}
static size_t ZDICT_addEntropyTablesFromBuffer_advanced(
void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
ZDICT_params_t params)
{
int const compressionLevel = (params.compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : params.compressionLevel;
U32 const notificationLevel = params.notificationLevel;
size_t hSize = 8;
/* calculate entropy tables */
DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */
DISPLAYLEVEL(2, "statistics ... \n");
{ size_t const eSize = ZDICT_analyzeEntropy((char*)dictBuffer+hSize, dictBufferCapacity-hSize,
compressionLevel,
samplesBuffer, samplesSizes, nbSamples,
(char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize,
notificationLevel);
if (ZDICT_isError(eSize)) return eSize;
hSize += eSize;
}
/* add dictionary header (after entropy tables) */
MEM_writeLE32(dictBuffer, ZSTD_MAGIC_DICTIONARY);
{ U64 const randomID = XXH64((char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize, 0);
U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768;
U32 const dictID = params.dictID ? params.dictID : compliantID;
MEM_writeLE32((char*)dictBuffer+4, dictID);
}
if (hSize + dictContentSize < dictBufferCapacity)
memmove((char*)dictBuffer + hSize, (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize);
return MIN(dictBufferCapacity, hSize+dictContentSize);
}
-/* Hidden declaration for dbio.c */
-/* Begin FreeBSD - This symbol is needed by dll-linked CLI zstd(1). */
-ZSTDLIB_API
-/* End FreeBSD */
-size_t ZDICT_trainFromBuffer_unsafe_legacy(
- void* dictBuffer, size_t maxDictSize,
- const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
- ZDICT_legacy_params_t params);
/*! ZDICT_trainFromBuffer_unsafe_legacy() :
-* Warning : `samplesBuffer` must be followed by noisy guard band.
+* Warning : `samplesBuffer` must be followed by noisy guard band !!!
* @return : size of dictionary, or an error code which can be tested with ZDICT_isError()
*/
-size_t ZDICT_trainFromBuffer_unsafe_legacy(
+/* Begin FreeBSD - This symbol is needed by dll-linked CLI zstd(1). */
+ZSTDLIB_API
+/* End FreeBSD */
+static size_t ZDICT_trainFromBuffer_unsafe_legacy(
void* dictBuffer, size_t maxDictSize,
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
ZDICT_legacy_params_t params)
{
U32 const dictListSize = MAX(MAX(DICTLISTSIZE_DEFAULT, nbSamples), (U32)(maxDictSize/16));
dictItem* const dictList = (dictItem*)malloc(dictListSize * sizeof(*dictList));
unsigned const selectivity = params.selectivityLevel == 0 ? g_selectivity_default : params.selectivityLevel;
unsigned const minRep = (selectivity > 30) ? MINRATIO : nbSamples >> selectivity;
size_t const targetDictSize = maxDictSize;
size_t const samplesBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples);
size_t dictSize = 0;
U32 const notificationLevel = params.zParams.notificationLevel;
/* checks */
if (!dictList) return ERROR(memory_allocation);
if (maxDictSize < ZDICT_DICTSIZE_MIN) { free(dictList); return ERROR(dstSize_tooSmall); } /* requested dictionary size is too small */
if (samplesBuffSize < ZDICT_MIN_SAMPLES_SIZE) { free(dictList); return ERROR(dictionaryCreation_failed); } /* not enough source to create dictionary */
/* init */
ZDICT_initDictItem(dictList);
/* build dictionary */
ZDICT_trainBuffer_legacy(dictList, dictListSize,
samplesBuffer, samplesBuffSize,
samplesSizes, nbSamples,
minRep, notificationLevel);
/* display best matches */
if (params.zParams.notificationLevel>= 3) {
unsigned const nb = MIN(25, dictList[0].pos);
unsigned const dictContentSize = ZDICT_dictSize(dictList);
unsigned u;
DISPLAYLEVEL(3, "\n %u segments found, of total size %u \n", (unsigned)dictList[0].pos-1, dictContentSize);
DISPLAYLEVEL(3, "list %u best segments \n", nb-1);
for (u=1; u<nb; u++) {
unsigned const pos = dictList[u].pos;
unsigned const length = dictList[u].length;
U32 const printedLength = MIN(40, length);
if ((pos > samplesBuffSize) || ((pos + length) > samplesBuffSize)) {
free(dictList);
return ERROR(GENERIC); /* should never happen */
}
DISPLAYLEVEL(3, "%3u:%3u bytes at pos %8u, savings %7u bytes |",
u, length, pos, (unsigned)dictList[u].savings);
ZDICT_printHex((const char*)samplesBuffer+pos, printedLength);
DISPLAYLEVEL(3, "| \n");
} }
/* create dictionary */
{ unsigned dictContentSize = ZDICT_dictSize(dictList);
if (dictContentSize < ZDICT_CONTENTSIZE_MIN) { free(dictList); return ERROR(dictionaryCreation_failed); } /* dictionary content too small */
if (dictContentSize < targetDictSize/4) {
DISPLAYLEVEL(2, "! warning : selected content significantly smaller than requested (%u < %u) \n", dictContentSize, (unsigned)maxDictSize);
if (samplesBuffSize < 10 * targetDictSize)
DISPLAYLEVEL(2, "! consider increasing the number of samples (total size : %u MB)\n", (unsigned)(samplesBuffSize>>20));
if (minRep > MINRATIO) {
DISPLAYLEVEL(2, "! consider increasing selectivity to produce larger dictionary (-s%u) \n", selectivity+1);
DISPLAYLEVEL(2, "! note : larger dictionaries are not necessarily better, test its efficiency on samples \n");
}
}
if ((dictContentSize > targetDictSize*3) && (nbSamples > 2*MINRATIO) && (selectivity>1)) {
unsigned proposedSelectivity = selectivity-1;
while ((nbSamples >> proposedSelectivity) <= MINRATIO) { proposedSelectivity--; }
DISPLAYLEVEL(2, "! note : calculated dictionary significantly larger than requested (%u > %u) \n", dictContentSize, (unsigned)maxDictSize);
DISPLAYLEVEL(2, "! consider increasing dictionary size, or produce denser dictionary (-s%u) \n", proposedSelectivity);
DISPLAYLEVEL(2, "! always test dictionary efficiency on real samples \n");
}
/* limit dictionary size */
{ U32 const max = dictList->pos; /* convention : nb of useful elts within dictList */
U32 currentSize = 0;
U32 n; for (n=1; n<max; n++) {
currentSize += dictList[n].length;
if (currentSize > targetDictSize) { currentSize -= dictList[n].length; break; }
}
dictList->pos = n;
dictContentSize = currentSize;
}
/* build dict content */
{ U32 u;
BYTE* ptr = (BYTE*)dictBuffer + maxDictSize;
for (u=1; u<dictList->pos; u++) {
U32 l = dictList[u].length;
ptr -= l;
if (ptr<(BYTE*)dictBuffer) { free(dictList); return ERROR(GENERIC); } /* should not happen */
memcpy(ptr, (const char*)samplesBuffer+dictList[u].pos, l);
} }
dictSize = ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, maxDictSize,
samplesBuffer, samplesSizes, nbSamples,
params.zParams);
}
/* clean up */
free(dictList);
return dictSize;
}
/* ZDICT_trainFromBuffer_legacy() :
* issue : samplesBuffer need to be followed by a noisy guard band.
* work around : duplicate the buffer, and add the noise */
size_t ZDICT_trainFromBuffer_legacy(void* dictBuffer, size_t dictBufferCapacity,
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
ZDICT_legacy_params_t params)
{
size_t result;
void* newBuff;
size_t const sBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples);
if (sBuffSize < ZDICT_MIN_SAMPLES_SIZE) return 0; /* not enough content => no dictionary */
newBuff = malloc(sBuffSize + NOISELENGTH);
if (!newBuff) return ERROR(memory_allocation);
memcpy(newBuff, samplesBuffer, sBuffSize);
ZDICT_fillNoise((char*)newBuff + sBuffSize, NOISELENGTH); /* guard band, for end of buffer condition */
result =
ZDICT_trainFromBuffer_unsafe_legacy(dictBuffer, dictBufferCapacity, newBuff,
samplesSizes, nbSamples, params);
free(newBuff);
return result;
}
size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity,
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples)
{
ZDICT_fastCover_params_t params;
DEBUGLOG(3, "ZDICT_trainFromBuffer");
memset(&params, 0, sizeof(params));
params.d = 8;
params.steps = 4;
/* Use default level since no compression level information is available */
params.zParams.compressionLevel = ZSTD_CLEVEL_DEFAULT;
#if defined(DEBUGLEVEL) && (DEBUGLEVEL>=1)
params.zParams.notificationLevel = DEBUGLEVEL;
#endif
return ZDICT_optimizeTrainFromBuffer_fastCover(dictBuffer, dictBufferCapacity,
samplesBuffer, samplesSizes, nbSamples,
&params);
}
size_t ZDICT_addEntropyTablesFromBuffer(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples)
{
ZDICT_params_t params;
memset(&params, 0, sizeof(params));
return ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, dictBufferCapacity,
samplesBuffer, samplesSizes, nbSamples,
params);
}
diff --git a/sys/contrib/zstd/lib/legacy/zstd_legacy.h b/sys/contrib/zstd/lib/legacy/zstd_legacy.h
index 6bea6a519aba..a6f1174b82e0 100644
--- a/sys/contrib/zstd/lib/legacy/zstd_legacy.h
+++ b/sys/contrib/zstd/lib/legacy/zstd_legacy.h
@@ -1,415 +1,415 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_LEGACY_H
#define ZSTD_LEGACY_H
#if defined (__cplusplus)
extern "C" {
#endif
/* *************************************
* Includes
***************************************/
#include "../common/mem.h" /* MEM_STATIC */
#include "../common/error_private.h" /* ERROR */
#include "../common/zstd_internal.h" /* ZSTD_inBuffer, ZSTD_outBuffer, ZSTD_frameSizeInfo */
#if !defined (ZSTD_LEGACY_SUPPORT) || (ZSTD_LEGACY_SUPPORT == 0)
# undef ZSTD_LEGACY_SUPPORT
# define ZSTD_LEGACY_SUPPORT 8
#endif
#if (ZSTD_LEGACY_SUPPORT <= 1)
# include "zstd_v01.h"
#endif
#if (ZSTD_LEGACY_SUPPORT <= 2)
# include "zstd_v02.h"
#endif
#if (ZSTD_LEGACY_SUPPORT <= 3)
# include "zstd_v03.h"
#endif
#if (ZSTD_LEGACY_SUPPORT <= 4)
# include "zstd_v04.h"
#endif
#if (ZSTD_LEGACY_SUPPORT <= 5)
# include "zstd_v05.h"
#endif
#if (ZSTD_LEGACY_SUPPORT <= 6)
# include "zstd_v06.h"
#endif
#if (ZSTD_LEGACY_SUPPORT <= 7)
# include "zstd_v07.h"
#endif
/** ZSTD_isLegacy() :
@return : > 0 if supported by legacy decoder. 0 otherwise.
return value is the version.
*/
MEM_STATIC unsigned ZSTD_isLegacy(const void* src, size_t srcSize)
{
U32 magicNumberLE;
if (srcSize<4) return 0;
magicNumberLE = MEM_readLE32(src);
switch(magicNumberLE)
{
#if (ZSTD_LEGACY_SUPPORT <= 1)
case ZSTDv01_magicNumberLE:return 1;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 2)
case ZSTDv02_magicNumber : return 2;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 3)
case ZSTDv03_magicNumber : return 3;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 4)
case ZSTDv04_magicNumber : return 4;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 5)
case ZSTDv05_MAGICNUMBER : return 5;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 6)
case ZSTDv06_MAGICNUMBER : return 6;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 7)
case ZSTDv07_MAGICNUMBER : return 7;
#endif
default : return 0;
}
}
MEM_STATIC unsigned long long ZSTD_getDecompressedSize_legacy(const void* src, size_t srcSize)
{
U32 const version = ZSTD_isLegacy(src, srcSize);
if (version < 5) return 0; /* no decompressed size in frame header, or not a legacy format */
#if (ZSTD_LEGACY_SUPPORT <= 5)
if (version==5) {
ZSTDv05_parameters fParams;
size_t const frResult = ZSTDv05_getFrameParams(&fParams, src, srcSize);
if (frResult != 0) return 0;
return fParams.srcSize;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 6)
if (version==6) {
ZSTDv06_frameParams fParams;
size_t const frResult = ZSTDv06_getFrameParams(&fParams, src, srcSize);
if (frResult != 0) return 0;
return fParams.frameContentSize;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 7)
if (version==7) {
ZSTDv07_frameParams fParams;
size_t const frResult = ZSTDv07_getFrameParams(&fParams, src, srcSize);
if (frResult != 0) return 0;
return fParams.frameContentSize;
}
#endif
return 0; /* should not be possible */
}
MEM_STATIC size_t ZSTD_decompressLegacy(
void* dst, size_t dstCapacity,
const void* src, size_t compressedSize,
const void* dict,size_t dictSize)
{
U32 const version = ZSTD_isLegacy(src, compressedSize);
(void)dst; (void)dstCapacity; (void)dict; (void)dictSize; /* unused when ZSTD_LEGACY_SUPPORT >= 8 */
switch(version)
{
#if (ZSTD_LEGACY_SUPPORT <= 1)
case 1 :
return ZSTDv01_decompress(dst, dstCapacity, src, compressedSize);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 2)
case 2 :
return ZSTDv02_decompress(dst, dstCapacity, src, compressedSize);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 3)
case 3 :
return ZSTDv03_decompress(dst, dstCapacity, src, compressedSize);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 4)
case 4 :
return ZSTDv04_decompress(dst, dstCapacity, src, compressedSize);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 5)
case 5 :
{ size_t result;
ZSTDv05_DCtx* const zd = ZSTDv05_createDCtx();
if (zd==NULL) return ERROR(memory_allocation);
result = ZSTDv05_decompress_usingDict(zd, dst, dstCapacity, src, compressedSize, dict, dictSize);
ZSTDv05_freeDCtx(zd);
return result;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 6)
case 6 :
{ size_t result;
ZSTDv06_DCtx* const zd = ZSTDv06_createDCtx();
if (zd==NULL) return ERROR(memory_allocation);
result = ZSTDv06_decompress_usingDict(zd, dst, dstCapacity, src, compressedSize, dict, dictSize);
ZSTDv06_freeDCtx(zd);
return result;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 7)
case 7 :
{ size_t result;
ZSTDv07_DCtx* const zd = ZSTDv07_createDCtx();
if (zd==NULL) return ERROR(memory_allocation);
result = ZSTDv07_decompress_usingDict(zd, dst, dstCapacity, src, compressedSize, dict, dictSize);
ZSTDv07_freeDCtx(zd);
return result;
}
#endif
default :
return ERROR(prefix_unknown);
}
}
MEM_STATIC ZSTD_frameSizeInfo ZSTD_findFrameSizeInfoLegacy(const void *src, size_t srcSize)
{
ZSTD_frameSizeInfo frameSizeInfo;
U32 const version = ZSTD_isLegacy(src, srcSize);
switch(version)
{
#if (ZSTD_LEGACY_SUPPORT <= 1)
case 1 :
ZSTDv01_findFrameSizeInfoLegacy(src, srcSize,
&frameSizeInfo.compressedSize,
&frameSizeInfo.decompressedBound);
break;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 2)
case 2 :
ZSTDv02_findFrameSizeInfoLegacy(src, srcSize,
&frameSizeInfo.compressedSize,
&frameSizeInfo.decompressedBound);
break;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 3)
case 3 :
ZSTDv03_findFrameSizeInfoLegacy(src, srcSize,
&frameSizeInfo.compressedSize,
&frameSizeInfo.decompressedBound);
break;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 4)
case 4 :
ZSTDv04_findFrameSizeInfoLegacy(src, srcSize,
&frameSizeInfo.compressedSize,
&frameSizeInfo.decompressedBound);
break;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 5)
case 5 :
ZSTDv05_findFrameSizeInfoLegacy(src, srcSize,
&frameSizeInfo.compressedSize,
&frameSizeInfo.decompressedBound);
break;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 6)
case 6 :
ZSTDv06_findFrameSizeInfoLegacy(src, srcSize,
&frameSizeInfo.compressedSize,
&frameSizeInfo.decompressedBound);
break;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 7)
case 7 :
ZSTDv07_findFrameSizeInfoLegacy(src, srcSize,
&frameSizeInfo.compressedSize,
&frameSizeInfo.decompressedBound);
break;
#endif
default :
frameSizeInfo.compressedSize = ERROR(prefix_unknown);
frameSizeInfo.decompressedBound = ZSTD_CONTENTSIZE_ERROR;
break;
}
if (!ZSTD_isError(frameSizeInfo.compressedSize) && frameSizeInfo.compressedSize > srcSize) {
frameSizeInfo.compressedSize = ERROR(srcSize_wrong);
frameSizeInfo.decompressedBound = ZSTD_CONTENTSIZE_ERROR;
}
return frameSizeInfo;
}
MEM_STATIC size_t ZSTD_findFrameCompressedSizeLegacy(const void *src, size_t srcSize)
{
ZSTD_frameSizeInfo frameSizeInfo = ZSTD_findFrameSizeInfoLegacy(src, srcSize);
return frameSizeInfo.compressedSize;
}
MEM_STATIC size_t ZSTD_freeLegacyStreamContext(void* legacyContext, U32 version)
{
switch(version)
{
default :
case 1 :
case 2 :
case 3 :
(void)legacyContext;
return ERROR(version_unsupported);
#if (ZSTD_LEGACY_SUPPORT <= 4)
case 4 : return ZBUFFv04_freeDCtx((ZBUFFv04_DCtx*)legacyContext);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 5)
case 5 : return ZBUFFv05_freeDCtx((ZBUFFv05_DCtx*)legacyContext);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 6)
case 6 : return ZBUFFv06_freeDCtx((ZBUFFv06_DCtx*)legacyContext);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 7)
case 7 : return ZBUFFv07_freeDCtx((ZBUFFv07_DCtx*)legacyContext);
#endif
}
}
MEM_STATIC size_t ZSTD_initLegacyStream(void** legacyContext, U32 prevVersion, U32 newVersion,
const void* dict, size_t dictSize)
{
DEBUGLOG(5, "ZSTD_initLegacyStream for v0.%u", newVersion);
if (prevVersion != newVersion) ZSTD_freeLegacyStreamContext(*legacyContext, prevVersion);
switch(newVersion)
{
default :
case 1 :
case 2 :
case 3 :
(void)dict; (void)dictSize;
return 0;
#if (ZSTD_LEGACY_SUPPORT <= 4)
case 4 :
{
ZBUFFv04_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv04_createDCtx() : (ZBUFFv04_DCtx*)*legacyContext;
if (dctx==NULL) return ERROR(memory_allocation);
ZBUFFv04_decompressInit(dctx);
ZBUFFv04_decompressWithDictionary(dctx, dict, dictSize);
*legacyContext = dctx;
return 0;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 5)
case 5 :
{
ZBUFFv05_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv05_createDCtx() : (ZBUFFv05_DCtx*)*legacyContext;
if (dctx==NULL) return ERROR(memory_allocation);
ZBUFFv05_decompressInitDictionary(dctx, dict, dictSize);
*legacyContext = dctx;
return 0;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 6)
case 6 :
{
ZBUFFv06_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv06_createDCtx() : (ZBUFFv06_DCtx*)*legacyContext;
if (dctx==NULL) return ERROR(memory_allocation);
ZBUFFv06_decompressInitDictionary(dctx, dict, dictSize);
*legacyContext = dctx;
return 0;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 7)
case 7 :
{
ZBUFFv07_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv07_createDCtx() : (ZBUFFv07_DCtx*)*legacyContext;
if (dctx==NULL) return ERROR(memory_allocation);
ZBUFFv07_decompressInitDictionary(dctx, dict, dictSize);
*legacyContext = dctx;
return 0;
}
#endif
}
}
MEM_STATIC size_t ZSTD_decompressLegacyStream(void* legacyContext, U32 version,
ZSTD_outBuffer* output, ZSTD_inBuffer* input)
{
DEBUGLOG(5, "ZSTD_decompressLegacyStream for v0.%u", version);
switch(version)
{
default :
case 1 :
case 2 :
case 3 :
(void)legacyContext; (void)output; (void)input;
return ERROR(version_unsupported);
#if (ZSTD_LEGACY_SUPPORT <= 4)
case 4 :
{
ZBUFFv04_DCtx* dctx = (ZBUFFv04_DCtx*) legacyContext;
const void* src = (const char*)input->src + input->pos;
size_t readSize = input->size - input->pos;
void* dst = (char*)output->dst + output->pos;
size_t decodedSize = output->size - output->pos;
size_t const hintSize = ZBUFFv04_decompressContinue(dctx, dst, &decodedSize, src, &readSize);
output->pos += decodedSize;
input->pos += readSize;
return hintSize;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 5)
case 5 :
{
ZBUFFv05_DCtx* dctx = (ZBUFFv05_DCtx*) legacyContext;
const void* src = (const char*)input->src + input->pos;
size_t readSize = input->size - input->pos;
void* dst = (char*)output->dst + output->pos;
size_t decodedSize = output->size - output->pos;
size_t const hintSize = ZBUFFv05_decompressContinue(dctx, dst, &decodedSize, src, &readSize);
output->pos += decodedSize;
input->pos += readSize;
return hintSize;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 6)
case 6 :
{
ZBUFFv06_DCtx* dctx = (ZBUFFv06_DCtx*) legacyContext;
const void* src = (const char*)input->src + input->pos;
size_t readSize = input->size - input->pos;
void* dst = (char*)output->dst + output->pos;
size_t decodedSize = output->size - output->pos;
size_t const hintSize = ZBUFFv06_decompressContinue(dctx, dst, &decodedSize, src, &readSize);
output->pos += decodedSize;
input->pos += readSize;
return hintSize;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 7)
case 7 :
{
ZBUFFv07_DCtx* dctx = (ZBUFFv07_DCtx*) legacyContext;
const void* src = (const char*)input->src + input->pos;
size_t readSize = input->size - input->pos;
void* dst = (char*)output->dst + output->pos;
size_t decodedSize = output->size - output->pos;
size_t const hintSize = ZBUFFv07_decompressContinue(dctx, dst, &decodedSize, src, &readSize);
output->pos += decodedSize;
input->pos += readSize;
return hintSize;
}
#endif
}
}
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_LEGACY_H */
diff --git a/sys/contrib/zstd/lib/legacy/zstd_v01.c b/sys/contrib/zstd/lib/legacy/zstd_v01.c
index 13115bec5f81..23caaef5647c 100644
--- a/sys/contrib/zstd/lib/legacy/zstd_v01.c
+++ b/sys/contrib/zstd/lib/legacy/zstd_v01.c
@@ -1,2162 +1,2158 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/******************************************
* Includes
******************************************/
#include <stddef.h> /* size_t, ptrdiff_t */
#include "zstd_v01.h"
#include "../common/error_private.h"
/******************************************
* Static allocation
******************************************/
/* You can statically allocate FSE CTable/DTable as a table of unsigned using below macro */
#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog))
/* You can statically allocate Huff0 DTable as a table of unsigned short using below macro */
#define HUF_DTABLE_SIZE_U16(maxTableLog) (1 + (1<<maxTableLog))
#define HUF_CREATE_STATIC_DTABLE(DTable, maxTableLog) \
unsigned short DTable[HUF_DTABLE_SIZE_U16(maxTableLog)] = { maxTableLog }
/******************************************
* Error Management
******************************************/
#define FSE_LIST_ERRORS(ITEM) \
ITEM(FSE_OK_NoError) ITEM(FSE_ERROR_GENERIC) \
ITEM(FSE_ERROR_tableLog_tooLarge) ITEM(FSE_ERROR_maxSymbolValue_tooLarge) ITEM(FSE_ERROR_maxSymbolValue_tooSmall) \
ITEM(FSE_ERROR_dstSize_tooSmall) ITEM(FSE_ERROR_srcSize_wrong)\
ITEM(FSE_ERROR_corruptionDetected) \
ITEM(FSE_ERROR_maxCode)
#define FSE_GENERATE_ENUM(ENUM) ENUM,
typedef enum { FSE_LIST_ERRORS(FSE_GENERATE_ENUM) } FSE_errorCodes; /* enum is exposed, to detect & handle specific errors; compare function result to -enum value */
/******************************************
* FSE symbol compression API
******************************************/
/*
This API consists of small unitary functions, which highly benefit from being inlined.
You will want to enable link-time-optimization to ensure these functions are properly inlined in your binary.
Visual seems to do it automatically.
For gcc or clang, you'll need to add -flto flag at compilation and linking stages.
If none of these solutions is applicable, include "fse.c" directly.
*/
typedef unsigned FSE_CTable; /* don't allocate that. It's just a way to be more restrictive than void* */
typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
typedef struct
{
size_t bitContainer;
int bitPos;
char* startPtr;
char* ptr;
char* endPtr;
} FSE_CStream_t;
typedef struct
{
ptrdiff_t value;
const void* stateTable;
const void* symbolTT;
unsigned stateLog;
} FSE_CState_t;
typedef struct
{
size_t bitContainer;
unsigned bitsConsumed;
const char* ptr;
const char* start;
} FSE_DStream_t;
typedef struct
{
size_t state;
const void* table; /* precise table may vary, depending on U16 */
} FSE_DState_t;
typedef enum { FSE_DStream_unfinished = 0,
FSE_DStream_endOfBuffer = 1,
FSE_DStream_completed = 2,
FSE_DStream_tooFar = 3 } FSE_DStream_status; /* result of FSE_reloadDStream() */
/* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... ?! */
/****************************************************************
* Tuning parameters
****************************************************************/
/* MEMORY_USAGE :
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
* Increasing memory usage improves compression ratio
* Reduced memory usage can improve speed, due to cache effect
* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
#define FSE_MAX_MEMORY_USAGE 14
#define FSE_DEFAULT_MEMORY_USAGE 13
/* FSE_MAX_SYMBOL_VALUE :
* Maximum symbol value authorized.
* Required for proper stack allocation */
#define FSE_MAX_SYMBOL_VALUE 255
/****************************************************************
* template functions type & suffix
****************************************************************/
#define FSE_FUNCTION_TYPE BYTE
#define FSE_FUNCTION_EXTENSION
/****************************************************************
* Byte symbol type
****************************************************************/
typedef struct
{
unsigned short newState;
unsigned char symbol;
unsigned char nbBits;
} FSE_decode_t; /* size == U32 */
/****************************************************************
* Compiler specifics
****************************************************************/
#ifdef _MSC_VER /* Visual Studio */
# define FORCE_INLINE static __forceinline
# include <intrin.h> /* For Visual 2005 */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */
#else
# define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
# if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
# ifdef __GNUC__
# define FORCE_INLINE static inline __attribute__((always_inline))
# else
# define FORCE_INLINE static inline
# endif
# else
# define FORCE_INLINE static
# endif /* __STDC_VERSION__ */
#endif
/****************************************************************
* Includes
****************************************************************/
#include <stdlib.h> /* malloc, free, qsort */
#include <string.h> /* memcpy, memset */
#include <stdio.h> /* printf (debug) */
#ifndef MEM_ACCESS_MODULE
#define MEM_ACCESS_MODULE
/****************************************************************
* Basic Types
*****************************************************************/
#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
# include <stdint.h>
typedef uint8_t BYTE;
typedef uint16_t U16;
typedef int16_t S16;
typedef uint32_t U32;
typedef int32_t S32;
typedef uint64_t U64;
typedef int64_t S64;
#else
typedef unsigned char BYTE;
typedef unsigned short U16;
typedef signed short S16;
typedef unsigned int U32;
typedef signed int S32;
typedef unsigned long long U64;
typedef signed long long S64;
#endif
#endif /* MEM_ACCESS_MODULE */
/****************************************************************
* Memory I/O
*****************************************************************/
/* FSE_FORCE_MEMORY_ACCESS
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
* The below switch allow to select different access method for improved performance.
* Method 0 (default) : use `memcpy()`. Safe and portable.
* Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
* This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
* Method 2 : direct access. This method is portable but violate C standard.
* It can generate buggy code on targets generating assembly depending on alignment.
* But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
* See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
* Prefer these methods in priority order (0 > 1 > 2)
*/
#ifndef FSE_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
-# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
-# define FSE_FORCE_MEMORY_ACCESS 2
-# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
- (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
+# if defined(__INTEL_COMPILER) || defined(__GNUC__) || defined(__ICCARM__)
# define FSE_FORCE_MEMORY_ACCESS 1
# endif
#endif
static unsigned FSE_32bits(void)
{
return sizeof(void*)==4;
}
static unsigned FSE_isLittleEndian(void)
{
const union { U32 i; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
return one.c[0];
}
#if defined(FSE_FORCE_MEMORY_ACCESS) && (FSE_FORCE_MEMORY_ACCESS==2)
static U16 FSE_read16(const void* memPtr) { return *(const U16*) memPtr; }
static U32 FSE_read32(const void* memPtr) { return *(const U32*) memPtr; }
static U64 FSE_read64(const void* memPtr) { return *(const U64*) memPtr; }
#elif defined(FSE_FORCE_MEMORY_ACCESS) && (FSE_FORCE_MEMORY_ACCESS==1)
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
/* currently only defined for gcc and icc */
typedef union { U16 u16; U32 u32; U64 u64; } __attribute__((packed)) unalign;
static U16 FSE_read16(const void* ptr) { return ((const unalign*)ptr)->u16; }
static U32 FSE_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
static U64 FSE_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
#else
static U16 FSE_read16(const void* memPtr)
{
U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
static U32 FSE_read32(const void* memPtr)
{
U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
static U64 FSE_read64(const void* memPtr)
{
U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
#endif /* FSE_FORCE_MEMORY_ACCESS */
static U16 FSE_readLE16(const void* memPtr)
{
if (FSE_isLittleEndian())
return FSE_read16(memPtr);
else
{
const BYTE* p = (const BYTE*)memPtr;
return (U16)(p[0] + (p[1]<<8));
}
}
static U32 FSE_readLE32(const void* memPtr)
{
if (FSE_isLittleEndian())
return FSE_read32(memPtr);
else
{
const BYTE* p = (const BYTE*)memPtr;
return (U32)((U32)p[0] + ((U32)p[1]<<8) + ((U32)p[2]<<16) + ((U32)p[3]<<24));
}
}
static U64 FSE_readLE64(const void* memPtr)
{
if (FSE_isLittleEndian())
return FSE_read64(memPtr);
else
{
const BYTE* p = (const BYTE*)memPtr;
return (U64)((U64)p[0] + ((U64)p[1]<<8) + ((U64)p[2]<<16) + ((U64)p[3]<<24)
+ ((U64)p[4]<<32) + ((U64)p[5]<<40) + ((U64)p[6]<<48) + ((U64)p[7]<<56));
}
}
static size_t FSE_readLEST(const void* memPtr)
{
if (FSE_32bits())
return (size_t)FSE_readLE32(memPtr);
else
return (size_t)FSE_readLE64(memPtr);
}
/****************************************************************
* Constants
*****************************************************************/
#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2)
#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
#define FSE_MIN_TABLELOG 5
#define FSE_TABLELOG_ABSOLUTE_MAX 15
#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
#error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
#endif
/****************************************************************
* Error Management
****************************************************************/
#define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
/****************************************************************
* Complex types
****************************************************************/
typedef struct
{
int deltaFindState;
U32 deltaNbBits;
} FSE_symbolCompressionTransform; /* total 8 bytes */
typedef U32 DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)];
/****************************************************************
* Internal functions
****************************************************************/
FORCE_INLINE unsigned FSE_highbit32 (U32 val)
{
# if defined(_MSC_VER) /* Visual */
unsigned long r;
- _BitScanReverse ( &r, val );
- return (unsigned) r;
+ return _BitScanReverse(&r, val) ? (unsigned)r : 0;
# elif defined(__GNUC__) && (GCC_VERSION >= 304) /* GCC Intrinsic */
return __builtin_clz (val) ^ 31;
# else /* Software version */
static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
U32 v = val;
unsigned r;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
r = DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
return r;
# endif
}
/****************************************************************
* Templates
****************************************************************/
/*
designed to be included
for type-specific functions (template emulation in C)
Objective is to write these functions only once, for improved maintenance
*/
/* safety checks */
#ifndef FSE_FUNCTION_EXTENSION
# error "FSE_FUNCTION_EXTENSION must be defined"
#endif
#ifndef FSE_FUNCTION_TYPE
# error "FSE_FUNCTION_TYPE must be defined"
#endif
/* Function names */
#define FSE_CAT(X,Y) X##Y
#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
static U32 FSE_tableStep(U32 tableSize) { return (tableSize>>1) + (tableSize>>3) + 3; }
#define FSE_DECODE_TYPE FSE_decode_t
typedef struct {
U16 tableLog;
U16 fastMode;
} FSE_DTableHeader; /* sizeof U32 */
static size_t FSE_buildDTable
(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
{
void* ptr = dt;
FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*)(ptr) + 1; /* because dt is unsigned, 32-bits aligned on 32-bits */
const U32 tableSize = 1 << tableLog;
const U32 tableMask = tableSize-1;
const U32 step = FSE_tableStep(tableSize);
U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1];
U32 position = 0;
U32 highThreshold = tableSize-1;
const S16 largeLimit= (S16)(1 << (tableLog-1));
U32 noLarge = 1;
U32 s;
/* Sanity Checks */
if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return (size_t)-FSE_ERROR_maxSymbolValue_tooLarge;
if (tableLog > FSE_MAX_TABLELOG) return (size_t)-FSE_ERROR_tableLog_tooLarge;
/* Init, lay down lowprob symbols */
DTableH[0].tableLog = (U16)tableLog;
for (s=0; s<=maxSymbolValue; s++)
{
if (normalizedCounter[s]==-1)
{
tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
symbolNext[s] = 1;
}
else
{
if (normalizedCounter[s] >= largeLimit) noLarge=0;
symbolNext[s] = normalizedCounter[s];
}
}
/* Spread symbols */
for (s=0; s<=maxSymbolValue; s++)
{
int i;
for (i=0; i<normalizedCounter[s]; i++)
{
tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
position = (position + step) & tableMask;
while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
}
}
if (position!=0) return (size_t)-FSE_ERROR_GENERIC; /* position must reach all cells once, otherwise normalizedCounter is incorrect */
/* Build Decoding table */
{
U32 i;
for (i=0; i<tableSize; i++)
{
FSE_FUNCTION_TYPE symbol = (FSE_FUNCTION_TYPE)(tableDecode[i].symbol);
U16 nextState = symbolNext[symbol]++;
tableDecode[i].nbBits = (BYTE) (tableLog - FSE_highbit32 ((U32)nextState) );
tableDecode[i].newState = (U16) ( (nextState << tableDecode[i].nbBits) - tableSize);
}
}
DTableH->fastMode = (U16)noLarge;
return 0;
}
/******************************************
* FSE byte symbol
******************************************/
#ifndef FSE_COMMONDEFS_ONLY
static unsigned FSE_isError(size_t code) { return (code > (size_t)(-FSE_ERROR_maxCode)); }
static short FSE_abs(short a)
{
return a<0? -a : a;
}
/****************************************************************
* Header bitstream management
****************************************************************/
static size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize)
{
const BYTE* const istart = (const BYTE*) headerBuffer;
const BYTE* const iend = istart + hbSize;
const BYTE* ip = istart;
int nbBits;
int remaining;
int threshold;
U32 bitStream;
int bitCount;
unsigned charnum = 0;
int previous0 = 0;
if (hbSize < 4) return (size_t)-FSE_ERROR_srcSize_wrong;
bitStream = FSE_readLE32(ip);
nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */
if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return (size_t)-FSE_ERROR_tableLog_tooLarge;
bitStream >>= 4;
bitCount = 4;
*tableLogPtr = nbBits;
remaining = (1<<nbBits)+1;
threshold = 1<<nbBits;
nbBits++;
while ((remaining>1) && (charnum<=*maxSVPtr))
{
if (previous0)
{
unsigned n0 = charnum;
while ((bitStream & 0xFFFF) == 0xFFFF)
{
n0+=24;
if (ip < iend-5)
{
ip+=2;
bitStream = FSE_readLE32(ip) >> bitCount;
}
else
{
bitStream >>= 16;
bitCount+=16;
}
}
while ((bitStream & 3) == 3)
{
n0+=3;
bitStream>>=2;
bitCount+=2;
}
n0 += bitStream & 3;
bitCount += 2;
if (n0 > *maxSVPtr) return (size_t)-FSE_ERROR_maxSymbolValue_tooSmall;
while (charnum < n0) normalizedCounter[charnum++] = 0;
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
{
ip += bitCount>>3;
bitCount &= 7;
bitStream = FSE_readLE32(ip) >> bitCount;
}
else
bitStream >>= 2;
}
{
const short max = (short)((2*threshold-1)-remaining);
short count;
if ((bitStream & (threshold-1)) < (U32)max)
{
count = (short)(bitStream & (threshold-1));
bitCount += nbBits-1;
}
else
{
count = (short)(bitStream & (2*threshold-1));
if (count >= threshold) count -= max;
bitCount += nbBits;
}
count--; /* extra accuracy */
remaining -= FSE_abs(count);
normalizedCounter[charnum++] = count;
previous0 = !count;
while (remaining < threshold)
{
nbBits--;
threshold >>= 1;
}
{
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
{
ip += bitCount>>3;
bitCount &= 7;
}
else
{
bitCount -= (int)(8 * (iend - 4 - ip));
ip = iend - 4;
}
bitStream = FSE_readLE32(ip) >> (bitCount & 31);
}
}
}
if (remaining != 1) return (size_t)-FSE_ERROR_GENERIC;
*maxSVPtr = charnum-1;
ip += (bitCount+7)>>3;
if ((size_t)(ip-istart) > hbSize) return (size_t)-FSE_ERROR_srcSize_wrong;
return ip-istart;
}
/*********************************************************
* Decompression (Byte symbols)
*********************************************************/
static size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue)
{
void* ptr = dt;
FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
FSE_decode_t* const cell = (FSE_decode_t*)(ptr) + 1; /* because dt is unsigned */
DTableH->tableLog = 0;
DTableH->fastMode = 0;
cell->newState = 0;
cell->symbol = symbolValue;
cell->nbBits = 0;
return 0;
}
static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits)
{
void* ptr = dt;
FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
FSE_decode_t* const dinfo = (FSE_decode_t*)(ptr) + 1; /* because dt is unsigned */
const unsigned tableSize = 1 << nbBits;
const unsigned tableMask = tableSize - 1;
const unsigned maxSymbolValue = tableMask;
unsigned s;
/* Sanity checks */
if (nbBits < 1) return (size_t)-FSE_ERROR_GENERIC; /* min size */
/* Build Decoding Table */
DTableH->tableLog = (U16)nbBits;
DTableH->fastMode = 1;
for (s=0; s<=maxSymbolValue; s++)
{
dinfo[s].newState = 0;
dinfo[s].symbol = (BYTE)s;
dinfo[s].nbBits = (BYTE)nbBits;
}
return 0;
}
/* FSE_initDStream
* Initialize a FSE_DStream_t.
* srcBuffer must point at the beginning of an FSE block.
* The function result is the size of the FSE_block (== srcSize).
* If srcSize is too small, the function will return an errorCode;
*/
static size_t FSE_initDStream(FSE_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
{
if (srcSize < 1) return (size_t)-FSE_ERROR_srcSize_wrong;
if (srcSize >= sizeof(size_t))
{
U32 contain32;
bitD->start = (const char*)srcBuffer;
bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(size_t);
bitD->bitContainer = FSE_readLEST(bitD->ptr);
contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
if (contain32 == 0) return (size_t)-FSE_ERROR_GENERIC; /* stop bit not present */
bitD->bitsConsumed = 8 - FSE_highbit32(contain32);
}
else
{
U32 contain32;
bitD->start = (const char*)srcBuffer;
bitD->ptr = bitD->start;
bitD->bitContainer = *(const BYTE*)(bitD->start);
switch(srcSize)
{
case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16);
/* fallthrough */
case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24);
/* fallthrough */
case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32);
/* fallthrough */
case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24;
/* fallthrough */
case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16;
/* fallthrough */
case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) << 8;
/* fallthrough */
default:;
}
contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
if (contain32 == 0) return (size_t)-FSE_ERROR_GENERIC; /* stop bit not present */
bitD->bitsConsumed = 8 - FSE_highbit32(contain32);
bitD->bitsConsumed += (U32)(sizeof(size_t) - srcSize)*8;
}
return srcSize;
}
/*!FSE_lookBits
* Provides next n bits from the bitContainer.
* bitContainer is not modified (bits are still present for next read/look)
* On 32-bits, maxNbBits==25
* On 64-bits, maxNbBits==57
* return : value extracted.
*/
static size_t FSE_lookBits(FSE_DStream_t* bitD, U32 nbBits)
{
const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask);
}
static size_t FSE_lookBitsFast(FSE_DStream_t* bitD, U32 nbBits) /* only if nbBits >= 1 !! */
{
const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask);
}
static void FSE_skipBits(FSE_DStream_t* bitD, U32 nbBits)
{
bitD->bitsConsumed += nbBits;
}
/*!FSE_readBits
* Read next n bits from the bitContainer.
* On 32-bits, don't read more than maxNbBits==25
* On 64-bits, don't read more than maxNbBits==57
* Use the fast variant *only* if n >= 1.
* return : value extracted.
*/
static size_t FSE_readBits(FSE_DStream_t* bitD, U32 nbBits)
{
size_t value = FSE_lookBits(bitD, nbBits);
FSE_skipBits(bitD, nbBits);
return value;
}
static size_t FSE_readBitsFast(FSE_DStream_t* bitD, U32 nbBits) /* only if nbBits >= 1 !! */
{
size_t value = FSE_lookBitsFast(bitD, nbBits);
FSE_skipBits(bitD, nbBits);
return value;
}
static unsigned FSE_reloadDStream(FSE_DStream_t* bitD)
{
if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should never happen */
return FSE_DStream_tooFar;
if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer))
{
bitD->ptr -= bitD->bitsConsumed >> 3;
bitD->bitsConsumed &= 7;
bitD->bitContainer = FSE_readLEST(bitD->ptr);
return FSE_DStream_unfinished;
}
if (bitD->ptr == bitD->start)
{
if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return FSE_DStream_endOfBuffer;
return FSE_DStream_completed;
}
{
U32 nbBytes = bitD->bitsConsumed >> 3;
U32 result = FSE_DStream_unfinished;
if (bitD->ptr - nbBytes < bitD->start)
{
nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
result = FSE_DStream_endOfBuffer;
}
bitD->ptr -= nbBytes;
bitD->bitsConsumed -= nbBytes*8;
bitD->bitContainer = FSE_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */
return result;
}
}
static void FSE_initDState(FSE_DState_t* DStatePtr, FSE_DStream_t* bitD, const FSE_DTable* dt)
{
const void* ptr = dt;
const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr;
DStatePtr->state = FSE_readBits(bitD, DTableH->tableLog);
FSE_reloadDStream(bitD);
DStatePtr->table = dt + 1;
}
static BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, FSE_DStream_t* bitD)
{
const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
const U32 nbBits = DInfo.nbBits;
BYTE symbol = DInfo.symbol;
size_t lowBits = FSE_readBits(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
static BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, FSE_DStream_t* bitD)
{
const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
const U32 nbBits = DInfo.nbBits;
BYTE symbol = DInfo.symbol;
size_t lowBits = FSE_readBitsFast(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
/* FSE_endOfDStream
Tells if bitD has reached end of bitStream or not */
static unsigned FSE_endOfDStream(const FSE_DStream_t* bitD)
{
return ((bitD->ptr == bitD->start) && (bitD->bitsConsumed == sizeof(bitD->bitContainer)*8));
}
static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
{
return DStatePtr->state == 0;
}
FORCE_INLINE size_t FSE_decompress_usingDTable_generic(
void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const FSE_DTable* dt, const unsigned fast)
{
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const omax = op + maxDstSize;
BYTE* const olimit = omax-3;
FSE_DStream_t bitD;
FSE_DState_t state1;
FSE_DState_t state2;
size_t errorCode;
/* Init */
errorCode = FSE_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */
if (FSE_isError(errorCode)) return errorCode;
FSE_initDState(&state1, &bitD, dt);
FSE_initDState(&state2, &bitD, dt);
#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD)
/* 4 symbols per loop */
for ( ; (FSE_reloadDStream(&bitD)==FSE_DStream_unfinished) && (op<olimit) ; op+=4)
{
op[0] = FSE_GETSYMBOL(&state1);
if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
FSE_reloadDStream(&bitD);
op[1] = FSE_GETSYMBOL(&state2);
if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
{ if (FSE_reloadDStream(&bitD) > FSE_DStream_unfinished) { op+=2; break; } }
op[2] = FSE_GETSYMBOL(&state1);
if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
FSE_reloadDStream(&bitD);
op[3] = FSE_GETSYMBOL(&state2);
}
/* tail */
/* note : FSE_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly FSE_DStream_completed */
while (1)
{
if ( (FSE_reloadDStream(&bitD)>FSE_DStream_completed) || (op==omax) || (FSE_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state1))) )
break;
*op++ = FSE_GETSYMBOL(&state1);
if ( (FSE_reloadDStream(&bitD)>FSE_DStream_completed) || (op==omax) || (FSE_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state2))) )
break;
*op++ = FSE_GETSYMBOL(&state2);
}
/* end ? */
if (FSE_endOfDStream(&bitD) && FSE_endOfDState(&state1) && FSE_endOfDState(&state2))
return op-ostart;
if (op==omax) return (size_t)-FSE_ERROR_dstSize_tooSmall; /* dst buffer is full, but cSrc unfinished */
return (size_t)-FSE_ERROR_corruptionDetected;
}
static size_t FSE_decompress_usingDTable(void* dst, size_t originalSize,
const void* cSrc, size_t cSrcSize,
const FSE_DTable* dt)
{
FSE_DTableHeader DTableH;
memcpy(&DTableH, dt, sizeof(DTableH)); /* memcpy() into local variable, to avoid strict aliasing warning */
/* select fast mode (static) */
if (DTableH.fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
}
static size_t FSE_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
{
const BYTE* const istart = (const BYTE*)cSrc;
const BYTE* ip = istart;
short counting[FSE_MAX_SYMBOL_VALUE+1];
DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */
unsigned tableLog;
unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
size_t errorCode;
if (cSrcSize<2) return (size_t)-FSE_ERROR_srcSize_wrong; /* too small input size */
/* normal FSE decoding mode */
errorCode = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
if (FSE_isError(errorCode)) return errorCode;
if (errorCode >= cSrcSize) return (size_t)-FSE_ERROR_srcSize_wrong; /* too small input size */
ip += errorCode;
cSrcSize -= errorCode;
errorCode = FSE_buildDTable (dt, counting, maxSymbolValue, tableLog);
if (FSE_isError(errorCode)) return errorCode;
/* always return, even if it is an error code */
return FSE_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt);
}
/* *******************************************************
* Huff0 : Huffman block compression
*********************************************************/
#define HUF_MAX_SYMBOL_VALUE 255
#define HUF_DEFAULT_TABLELOG 12 /* used by default, when not specified */
#define HUF_MAX_TABLELOG 12 /* max possible tableLog; for allocation purpose; can be modified */
#define HUF_ABSOLUTEMAX_TABLELOG 16 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
#if (HUF_MAX_TABLELOG > HUF_ABSOLUTEMAX_TABLELOG)
# error "HUF_MAX_TABLELOG is too large !"
#endif
typedef struct HUF_CElt_s {
U16 val;
BYTE nbBits;
} HUF_CElt ;
typedef struct nodeElt_s {
U32 count;
U16 parent;
BYTE byte;
BYTE nbBits;
} nodeElt;
/* *******************************************************
* Huff0 : Huffman block decompression
*********************************************************/
typedef struct {
BYTE byte;
BYTE nbBits;
} HUF_DElt;
static size_t HUF_readDTable (U16* DTable, const void* src, size_t srcSize)
{
BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1];
U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; /* large enough for values from 0 to 16 */
U32 weightTotal;
U32 maxBits;
const BYTE* ip = (const BYTE*) src;
size_t iSize;
size_t oSize;
U32 n;
U32 nextRankStart;
void* ptr = DTable+1;
HUF_DElt* const dt = (HUF_DElt*)ptr;
if (!srcSize) return (size_t)-FSE_ERROR_srcSize_wrong;
iSize = ip[0];
FSE_STATIC_ASSERT(sizeof(HUF_DElt) == sizeof(U16)); /* if compilation fails here, assertion is false */
//memset(huffWeight, 0, sizeof(huffWeight)); /* should not be necessary, but some analyzer complain ... */
if (iSize >= 128) /* special header */
{
if (iSize >= (242)) /* RLE */
{
static int l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 };
oSize = l[iSize-242];
memset(huffWeight, 1, sizeof(huffWeight));
iSize = 0;
}
else /* Incompressible */
{
oSize = iSize - 127;
iSize = ((oSize+1)/2);
if (iSize+1 > srcSize) return (size_t)-FSE_ERROR_srcSize_wrong;
ip += 1;
for (n=0; n<oSize; n+=2)
{
huffWeight[n] = ip[n/2] >> 4;
huffWeight[n+1] = ip[n/2] & 15;
}
}
}
else /* header compressed with FSE (normal case) */
{
if (iSize+1 > srcSize) return (size_t)-FSE_ERROR_srcSize_wrong;
oSize = FSE_decompress(huffWeight, HUF_MAX_SYMBOL_VALUE, ip+1, iSize); /* max 255 values decoded, last one is implied */
if (FSE_isError(oSize)) return oSize;
}
/* collect weight stats */
memset(rankVal, 0, sizeof(rankVal));
weightTotal = 0;
for (n=0; n<oSize; n++)
{
if (huffWeight[n] >= HUF_ABSOLUTEMAX_TABLELOG) return (size_t)-FSE_ERROR_corruptionDetected;
rankVal[huffWeight[n]]++;
weightTotal += (1 << huffWeight[n]) >> 1;
}
if (weightTotal == 0) return (size_t)-FSE_ERROR_corruptionDetected;
/* get last non-null symbol weight (implied, total must be 2^n) */
maxBits = FSE_highbit32(weightTotal) + 1;
if (maxBits > DTable[0]) return (size_t)-FSE_ERROR_tableLog_tooLarge; /* DTable is too small */
DTable[0] = (U16)maxBits;
{
U32 total = 1 << maxBits;
U32 rest = total - weightTotal;
U32 verif = 1 << FSE_highbit32(rest);
U32 lastWeight = FSE_highbit32(rest) + 1;
if (verif != rest) return (size_t)-FSE_ERROR_corruptionDetected; /* last value must be a clean power of 2 */
huffWeight[oSize] = (BYTE)lastWeight;
rankVal[lastWeight]++;
}
/* check tree construction validity */
if ((rankVal[1] < 2) || (rankVal[1] & 1)) return (size_t)-FSE_ERROR_corruptionDetected; /* by construction : at least 2 elts of rank 1, must be even */
/* Prepare ranks */
nextRankStart = 0;
for (n=1; n<=maxBits; n++)
{
U32 current = nextRankStart;
nextRankStart += (rankVal[n] << (n-1));
rankVal[n] = current;
}
/* fill DTable */
for (n=0; n<=oSize; n++)
{
const U32 w = huffWeight[n];
const U32 length = (1 << w) >> 1;
U32 i;
HUF_DElt D;
D.byte = (BYTE)n; D.nbBits = (BYTE)(maxBits + 1 - w);
for (i = rankVal[w]; i < rankVal[w] + length; i++)
dt[i] = D;
rankVal[w] += length;
}
return iSize+1;
}
static BYTE HUF_decodeSymbol(FSE_DStream_t* Dstream, const HUF_DElt* dt, const U32 dtLog)
{
const size_t val = FSE_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
const BYTE c = dt[val].byte;
FSE_skipBits(Dstream, dt[val].nbBits);
return c;
}
static size_t HUF_decompress_usingDTable( /* -3% slower when non static */
void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const U16* DTable)
{
if (cSrcSize < 6) return (size_t)-FSE_ERROR_srcSize_wrong;
{
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const omax = op + maxDstSize;
BYTE* const olimit = maxDstSize < 15 ? op : omax-15;
const void* ptr = DTable;
const HUF_DElt* const dt = (const HUF_DElt*)(ptr)+1;
const U32 dtLog = DTable[0];
size_t errorCode;
U32 reloadStatus;
/* Init */
const U16* jumpTable = (const U16*)cSrc;
const size_t length1 = FSE_readLE16(jumpTable);
const size_t length2 = FSE_readLE16(jumpTable+1);
const size_t length3 = FSE_readLE16(jumpTable+2);
const size_t length4 = cSrcSize - 6 - length1 - length2 - length3; /* check coherency !! */
const char* const start1 = (const char*)(cSrc) + 6;
const char* const start2 = start1 + length1;
const char* const start3 = start2 + length2;
const char* const start4 = start3 + length3;
FSE_DStream_t bitD1, bitD2, bitD3, bitD4;
if (length1+length2+length3+6 >= cSrcSize) return (size_t)-FSE_ERROR_srcSize_wrong;
errorCode = FSE_initDStream(&bitD1, start1, length1);
if (FSE_isError(errorCode)) return errorCode;
errorCode = FSE_initDStream(&bitD2, start2, length2);
if (FSE_isError(errorCode)) return errorCode;
errorCode = FSE_initDStream(&bitD3, start3, length3);
if (FSE_isError(errorCode)) return errorCode;
errorCode = FSE_initDStream(&bitD4, start4, length4);
if (FSE_isError(errorCode)) return errorCode;
reloadStatus=FSE_reloadDStream(&bitD2);
/* 16 symbols per loop */
for ( ; (reloadStatus<FSE_DStream_completed) && (op<olimit); /* D2-3-4 are supposed to be synchronized and finish together */
op+=16, reloadStatus = FSE_reloadDStream(&bitD2) | FSE_reloadDStream(&bitD3) | FSE_reloadDStream(&bitD4), FSE_reloadDStream(&bitD1))
{
#define HUF_DECODE_SYMBOL_0(n, Dstream) \
op[n] = HUF_decodeSymbol(&Dstream, dt, dtLog);
#define HUF_DECODE_SYMBOL_1(n, Dstream) \
op[n] = HUF_decodeSymbol(&Dstream, dt, dtLog); \
if (FSE_32bits() && (HUF_MAX_TABLELOG>12)) FSE_reloadDStream(&Dstream)
#define HUF_DECODE_SYMBOL_2(n, Dstream) \
op[n] = HUF_decodeSymbol(&Dstream, dt, dtLog); \
if (FSE_32bits()) FSE_reloadDStream(&Dstream)
HUF_DECODE_SYMBOL_1( 0, bitD1);
HUF_DECODE_SYMBOL_1( 1, bitD2);
HUF_DECODE_SYMBOL_1( 2, bitD3);
HUF_DECODE_SYMBOL_1( 3, bitD4);
HUF_DECODE_SYMBOL_2( 4, bitD1);
HUF_DECODE_SYMBOL_2( 5, bitD2);
HUF_DECODE_SYMBOL_2( 6, bitD3);
HUF_DECODE_SYMBOL_2( 7, bitD4);
HUF_DECODE_SYMBOL_1( 8, bitD1);
HUF_DECODE_SYMBOL_1( 9, bitD2);
HUF_DECODE_SYMBOL_1(10, bitD3);
HUF_DECODE_SYMBOL_1(11, bitD4);
HUF_DECODE_SYMBOL_0(12, bitD1);
HUF_DECODE_SYMBOL_0(13, bitD2);
HUF_DECODE_SYMBOL_0(14, bitD3);
HUF_DECODE_SYMBOL_0(15, bitD4);
}
if (reloadStatus!=FSE_DStream_completed) /* not complete : some bitStream might be FSE_DStream_unfinished */
return (size_t)-FSE_ERROR_corruptionDetected;
/* tail */
{
/* bitTail = bitD1; */ /* *much* slower : -20% !??! */
FSE_DStream_t bitTail;
bitTail.ptr = bitD1.ptr;
bitTail.bitsConsumed = bitD1.bitsConsumed;
bitTail.bitContainer = bitD1.bitContainer; /* required in case of FSE_DStream_endOfBuffer */
bitTail.start = start1;
for ( ; (FSE_reloadDStream(&bitTail) < FSE_DStream_completed) && (op<omax) ; op++)
{
HUF_DECODE_SYMBOL_0(0, bitTail);
}
if (FSE_endOfDStream(&bitTail))
return op-ostart;
}
if (op==omax) return (size_t)-FSE_ERROR_dstSize_tooSmall; /* dst buffer is full, but cSrc unfinished */
return (size_t)-FSE_ERROR_corruptionDetected;
}
}
static size_t HUF_decompress (void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLE(DTable, HUF_MAX_TABLELOG);
const BYTE* ip = (const BYTE*) cSrc;
size_t errorCode;
errorCode = HUF_readDTable (DTable, cSrc, cSrcSize);
if (FSE_isError(errorCode)) return errorCode;
if (errorCode >= cSrcSize) return (size_t)-FSE_ERROR_srcSize_wrong;
ip += errorCode;
cSrcSize -= errorCode;
return HUF_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, DTable);
}
#endif /* FSE_COMMONDEFS_ONLY */
/*
zstd - standard compression library
Copyright (C) 2014-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- zstd source repository : https://github.com/Cyan4973/zstd
- ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
*/
/****************************************************************
* Tuning parameters
*****************************************************************/
/* MEMORY_USAGE :
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
* Increasing memory usage improves compression ratio
* Reduced memory usage can improve speed, due to cache effect */
#define ZSTD_MEMORY_USAGE 17
/**************************************
CPU Feature Detection
**************************************/
/*
* Automated efficient unaligned memory access detection
* Based on known hardware architectures
* This list will be updated thanks to feedbacks
*/
#if defined(CPU_HAS_EFFICIENT_UNALIGNED_MEMORY_ACCESS) \
|| defined(__ARM_FEATURE_UNALIGNED) \
|| defined(__i386__) || defined(__x86_64__) \
|| defined(_M_IX86) || defined(_M_X64) \
|| defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_8__) \
|| (defined(_M_ARM) && (_M_ARM >= 7))
# define ZSTD_UNALIGNED_ACCESS 1
#else
# define ZSTD_UNALIGNED_ACCESS 0
#endif
/********************************************************
* Includes
*********************************************************/
#include <stdlib.h> /* calloc */
#include <string.h> /* memcpy, memmove */
#include <stdio.h> /* debug : printf */
/********************************************************
* Compiler specifics
*********************************************************/
#ifdef __AVX2__
# include <immintrin.h> /* AVX2 intrinsics */
#endif
#ifdef _MSC_VER /* Visual Studio */
# include <intrin.h> /* For Visual 2005 */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4324) /* disable: C4324: padded structure */
#endif
#ifndef MEM_ACCESS_MODULE
#define MEM_ACCESS_MODULE
/********************************************************
* Basic Types
*********************************************************/
#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
# if defined(_AIX)
# include <inttypes.h>
# else
# include <stdint.h> /* intptr_t */
# endif
typedef uint8_t BYTE;
typedef uint16_t U16;
typedef int16_t S16;
typedef uint32_t U32;
typedef int32_t S32;
typedef uint64_t U64;
#else
typedef unsigned char BYTE;
typedef unsigned short U16;
typedef signed short S16;
typedef unsigned int U32;
typedef signed int S32;
typedef unsigned long long U64;
#endif
#endif /* MEM_ACCESS_MODULE */
/********************************************************
* Constants
*********************************************************/
static const U32 ZSTD_magicNumber = 0xFD2FB51E; /* 3rd version : seqNb header */
#define HASH_LOG (ZSTD_MEMORY_USAGE - 2)
#define HASH_TABLESIZE (1 << HASH_LOG)
#define HASH_MASK (HASH_TABLESIZE - 1)
#define KNUTH 2654435761
#define BIT7 128
#define BIT6 64
#define BIT5 32
#define BIT4 16
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)
#define BLOCKSIZE (128 KB) /* define, for static allocation */
#define WORKPLACESIZE (BLOCKSIZE*3)
#define MINMATCH 4
#define MLbits 7
#define LLbits 6
#define Offbits 5
#define MaxML ((1<<MLbits )-1)
#define MaxLL ((1<<LLbits )-1)
#define MaxOff ((1<<Offbits)-1)
#define LitFSELog 11
#define MLFSELog 10
#define LLFSELog 10
#define OffFSELog 9
#define MAX(a,b) ((a)<(b)?(b):(a))
#define MaxSeq MAX(MaxLL, MaxML)
#define LITERAL_NOENTROPY 63
#define COMMAND_NOENTROPY 7 /* to remove */
#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2)
static const size_t ZSTD_blockHeaderSize = 3;
static const size_t ZSTD_frameHeaderSize = 4;
/********************************************************
* Memory operations
*********************************************************/
static unsigned ZSTD_32bits(void) { return sizeof(void*)==4; }
static unsigned ZSTD_isLittleEndian(void)
{
const union { U32 i; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
return one.c[0];
}
static U16 ZSTD_read16(const void* p) { U16 r; memcpy(&r, p, sizeof(r)); return r; }
static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }
static void ZSTD_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
#define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; }
static void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length)
{
const BYTE* ip = (const BYTE*)src;
BYTE* op = (BYTE*)dst;
BYTE* const oend = op + length;
while (op < oend) COPY8(op, ip);
}
static U16 ZSTD_readLE16(const void* memPtr)
{
if (ZSTD_isLittleEndian()) return ZSTD_read16(memPtr);
else
{
const BYTE* p = (const BYTE*)memPtr;
return (U16)((U16)p[0] + ((U16)p[1]<<8));
}
}
static U32 ZSTD_readLE24(const void* memPtr)
{
return ZSTD_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16);
}
static U32 ZSTD_readBE32(const void* memPtr)
{
const BYTE* p = (const BYTE*)memPtr;
return (U32)(((U32)p[0]<<24) + ((U32)p[1]<<16) + ((U32)p[2]<<8) + ((U32)p[3]<<0));
}
/**************************************
* Local structures
***************************************/
typedef struct ZSTD_Cctx_s ZSTD_Cctx;
typedef enum { bt_compressed, bt_raw, bt_rle, bt_end } blockType_t;
typedef struct
{
blockType_t blockType;
U32 origSize;
} blockProperties_t;
typedef struct {
void* buffer;
U32* offsetStart;
U32* offset;
BYTE* offCodeStart;
BYTE* offCode;
BYTE* litStart;
BYTE* lit;
BYTE* litLengthStart;
BYTE* litLength;
BYTE* matchLengthStart;
BYTE* matchLength;
BYTE* dumpsStart;
BYTE* dumps;
} seqStore_t;
typedef struct ZSTD_Cctx_s
{
const BYTE* base;
U32 current;
U32 nextUpdate;
seqStore_t seqStore;
#ifdef __AVX2__
__m256i hashTable[HASH_TABLESIZE>>3];
#else
U32 hashTable[HASH_TABLESIZE];
#endif
BYTE buffer[WORKPLACESIZE];
} cctxi_t;
/**************************************
* Error Management
**************************************/
/* published entry point */
unsigned ZSTDv01_isError(size_t code) { return ERR_isError(code); }
/**************************************
* Tool functions
**************************************/
#define ZSTD_VERSION_MAJOR 0 /* for breaking interface changes */
#define ZSTD_VERSION_MINOR 1 /* for new (non-breaking) interface capabilities */
#define ZSTD_VERSION_RELEASE 3 /* for tweaks, bug-fixes, or development */
#define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE)
/**************************************************************
* Decompression code
**************************************************************/
static size_t ZSTDv01_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
{
const BYTE* const in = (const BYTE* const)src;
BYTE headerFlags;
U32 cSize;
if (srcSize < 3) return ERROR(srcSize_wrong);
headerFlags = *in;
cSize = in[2] + (in[1]<<8) + ((in[0] & 7)<<16);
bpPtr->blockType = (blockType_t)(headerFlags >> 6);
bpPtr->origSize = (bpPtr->blockType == bt_rle) ? cSize : 0;
if (bpPtr->blockType == bt_end) return 0;
if (bpPtr->blockType == bt_rle) return 1;
return cSize;
}
static size_t ZSTD_copyUncompressedBlock(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
if (srcSize > maxDstSize) return ERROR(dstSize_tooSmall);
if (srcSize > 0) {
memcpy(dst, src, srcSize);
}
return srcSize;
}
static size_t ZSTD_decompressLiterals(void* ctx,
void* dst, size_t maxDstSize,
const void* src, size_t srcSize)
{
BYTE* op = (BYTE*)dst;
BYTE* const oend = op + maxDstSize;
const BYTE* ip = (const BYTE*)src;
size_t errorCode;
size_t litSize;
/* check : minimum 2, for litSize, +1, for content */
if (srcSize <= 3) return ERROR(corruption_detected);
litSize = ip[1] + (ip[0]<<8);
litSize += ((ip[-3] >> 3) & 7) << 16; /* mmmmh.... */
op = oend - litSize;
(void)ctx;
if (litSize > maxDstSize) return ERROR(dstSize_tooSmall);
errorCode = HUF_decompress(op, litSize, ip+2, srcSize-2);
if (FSE_isError(errorCode)) return ERROR(GENERIC);
return litSize;
}
static size_t ZSTDv01_decodeLiteralsBlock(void* ctx,
void* dst, size_t maxDstSize,
const BYTE** litStart, size_t* litSize,
const void* src, size_t srcSize)
{
const BYTE* const istart = (const BYTE* const)src;
const BYTE* ip = istart;
BYTE* const ostart = (BYTE* const)dst;
BYTE* const oend = ostart + maxDstSize;
blockProperties_t litbp;
size_t litcSize = ZSTDv01_getcBlockSize(src, srcSize, &litbp);
if (ZSTDv01_isError(litcSize)) return litcSize;
if (litcSize > srcSize - ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
ip += ZSTD_blockHeaderSize;
switch(litbp.blockType)
{
case bt_raw:
*litStart = ip;
ip += litcSize;
*litSize = litcSize;
break;
case bt_rle:
{
size_t rleSize = litbp.origSize;
if (rleSize>maxDstSize) return ERROR(dstSize_tooSmall);
if (!srcSize) return ERROR(srcSize_wrong);
if (rleSize > 0) {
memset(oend - rleSize, *ip, rleSize);
}
*litStart = oend - rleSize;
*litSize = rleSize;
ip++;
break;
}
case bt_compressed:
{
size_t decodedLitSize = ZSTD_decompressLiterals(ctx, dst, maxDstSize, ip, litcSize);
if (ZSTDv01_isError(decodedLitSize)) return decodedLitSize;
*litStart = oend - decodedLitSize;
*litSize = decodedLitSize;
ip += litcSize;
break;
}
case bt_end:
default:
return ERROR(GENERIC);
}
return ip-istart;
}
static size_t ZSTDv01_decodeSeqHeaders(int* nbSeq, const BYTE** dumpsPtr, size_t* dumpsLengthPtr,
FSE_DTable* DTableLL, FSE_DTable* DTableML, FSE_DTable* DTableOffb,
const void* src, size_t srcSize)
{
const BYTE* const istart = (const BYTE* const)src;
const BYTE* ip = istart;
const BYTE* const iend = istart + srcSize;
U32 LLtype, Offtype, MLtype;
U32 LLlog, Offlog, MLlog;
size_t dumpsLength;
/* check */
if (srcSize < 5) return ERROR(srcSize_wrong);
/* SeqHead */
*nbSeq = ZSTD_readLE16(ip); ip+=2;
LLtype = *ip >> 6;
Offtype = (*ip >> 4) & 3;
MLtype = (*ip >> 2) & 3;
if (*ip & 2)
{
dumpsLength = ip[2];
dumpsLength += ip[1] << 8;
ip += 3;
}
else
{
dumpsLength = ip[1];
dumpsLength += (ip[0] & 1) << 8;
ip += 2;
}
*dumpsPtr = ip;
ip += dumpsLength;
*dumpsLengthPtr = dumpsLength;
/* check */
if (ip > iend-3) return ERROR(srcSize_wrong); /* min : all 3 are "raw", hence no header, but at least xxLog bits per type */
/* sequences */
{
S16 norm[MaxML+1]; /* assumption : MaxML >= MaxLL and MaxOff */
size_t headerSize;
/* Build DTables */
switch(LLtype)
{
case bt_rle :
LLlog = 0;
FSE_buildDTable_rle(DTableLL, *ip++); break;
case bt_raw :
LLlog = LLbits;
FSE_buildDTable_raw(DTableLL, LLbits); break;
default :
{ U32 max = MaxLL;
headerSize = FSE_readNCount(norm, &max, &LLlog, ip, iend-ip);
if (FSE_isError(headerSize)) return ERROR(GENERIC);
if (LLlog > LLFSELog) return ERROR(corruption_detected);
ip += headerSize;
FSE_buildDTable(DTableLL, norm, max, LLlog);
} }
switch(Offtype)
{
case bt_rle :
Offlog = 0;
if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
FSE_buildDTable_rle(DTableOffb, *ip++); break;
case bt_raw :
Offlog = Offbits;
FSE_buildDTable_raw(DTableOffb, Offbits); break;
default :
{ U32 max = MaxOff;
headerSize = FSE_readNCount(norm, &max, &Offlog, ip, iend-ip);
if (FSE_isError(headerSize)) return ERROR(GENERIC);
if (Offlog > OffFSELog) return ERROR(corruption_detected);
ip += headerSize;
FSE_buildDTable(DTableOffb, norm, max, Offlog);
} }
switch(MLtype)
{
case bt_rle :
MLlog = 0;
if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
FSE_buildDTable_rle(DTableML, *ip++); break;
case bt_raw :
MLlog = MLbits;
FSE_buildDTable_raw(DTableML, MLbits); break;
default :
{ U32 max = MaxML;
headerSize = FSE_readNCount(norm, &max, &MLlog, ip, iend-ip);
if (FSE_isError(headerSize)) return ERROR(GENERIC);
if (MLlog > MLFSELog) return ERROR(corruption_detected);
ip += headerSize;
FSE_buildDTable(DTableML, norm, max, MLlog);
} } }
return ip-istart;
}
typedef struct {
size_t litLength;
size_t offset;
size_t matchLength;
} seq_t;
typedef struct {
FSE_DStream_t DStream;
FSE_DState_t stateLL;
FSE_DState_t stateOffb;
FSE_DState_t stateML;
size_t prevOffset;
const BYTE* dumps;
const BYTE* dumpsEnd;
} seqState_t;
static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState)
{
size_t litLength;
size_t prevOffset;
size_t offset;
size_t matchLength;
const BYTE* dumps = seqState->dumps;
const BYTE* const de = seqState->dumpsEnd;
/* Literal length */
litLength = FSE_decodeSymbol(&(seqState->stateLL), &(seqState->DStream));
prevOffset = litLength ? seq->offset : seqState->prevOffset;
seqState->prevOffset = seq->offset;
if (litLength == MaxLL)
{
const U32 add = dumps<de ? *dumps++ : 0;
if (add < 255) litLength += add;
else
{
if (dumps<=(de-3))
{
litLength = ZSTD_readLE24(dumps);
dumps += 3;
}
}
}
/* Offset */
{
U32 offsetCode, nbBits;
offsetCode = FSE_decodeSymbol(&(seqState->stateOffb), &(seqState->DStream));
if (ZSTD_32bits()) FSE_reloadDStream(&(seqState->DStream));
nbBits = offsetCode - 1;
if (offsetCode==0) nbBits = 0; /* cmove */
offset = ((size_t)1 << (nbBits & ((sizeof(offset)*8)-1))) + FSE_readBits(&(seqState->DStream), nbBits);
if (ZSTD_32bits()) FSE_reloadDStream(&(seqState->DStream));
if (offsetCode==0) offset = prevOffset;
}
/* MatchLength */
matchLength = FSE_decodeSymbol(&(seqState->stateML), &(seqState->DStream));
if (matchLength == MaxML)
{
const U32 add = dumps<de ? *dumps++ : 0;
if (add < 255) matchLength += add;
else
{
if (dumps<=(de-3))
{
matchLength = ZSTD_readLE24(dumps);
dumps += 3;
}
}
}
matchLength += MINMATCH;
/* save result */
seq->litLength = litLength;
seq->offset = offset;
seq->matchLength = matchLength;
seqState->dumps = dumps;
}
static size_t ZSTD_execSequence(BYTE* op,
seq_t sequence,
const BYTE** litPtr, const BYTE* const litLimit,
BYTE* const base, BYTE* const oend)
{
static const int dec32table[] = {0, 1, 2, 1, 4, 4, 4, 4}; /* added */
static const int dec64table[] = {8, 8, 8, 7, 8, 9,10,11}; /* subtracted */
const BYTE* const ostart = op;
const size_t litLength = sequence.litLength;
BYTE* const endMatch = op + litLength + sequence.matchLength; /* risk : address space overflow (32-bits) */
const BYTE* const litEnd = *litPtr + litLength;
/* check */
if (endMatch > oend) return ERROR(dstSize_tooSmall); /* overwrite beyond dst buffer */
if (litEnd > litLimit) return ERROR(corruption_detected);
if (sequence.matchLength > (size_t)(*litPtr-op)) return ERROR(dstSize_tooSmall); /* overwrite literal segment */
/* copy Literals */
if (((size_t)(*litPtr - op) < 8) || ((size_t)(oend-litEnd) < 8) || (op+litLength > oend-8))
memmove(op, *litPtr, litLength); /* overwrite risk */
else
ZSTD_wildcopy(op, *litPtr, litLength);
op += litLength;
*litPtr = litEnd; /* update for next sequence */
/* check : last match must be at a minimum distance of 8 from end of dest buffer */
if (oend-op < 8) return ERROR(dstSize_tooSmall);
/* copy Match */
{
const U32 overlapRisk = (((size_t)(litEnd - endMatch)) < 12);
const BYTE* match = op - sequence.offset; /* possible underflow at op - offset ? */
size_t qutt = 12;
U64 saved[2];
/* check */
if (match < base) return ERROR(corruption_detected);
if (sequence.offset > (size_t)base) return ERROR(corruption_detected);
/* save beginning of literal sequence, in case of write overlap */
if (overlapRisk)
{
if ((endMatch + qutt) > oend) qutt = oend-endMatch;
memcpy(saved, endMatch, qutt);
}
if (sequence.offset < 8)
{
const int dec64 = dec64table[sequence.offset];
op[0] = match[0];
op[1] = match[1];
op[2] = match[2];
op[3] = match[3];
match += dec32table[sequence.offset];
ZSTD_copy4(op+4, match);
match -= dec64;
} else { ZSTD_copy8(op, match); }
op += 8; match += 8;
if (endMatch > oend-(16-MINMATCH))
{
if (op < oend-8)
{
ZSTD_wildcopy(op, match, (oend-8) - op);
match += (oend-8) - op;
op = oend-8;
}
while (op<endMatch) *op++ = *match++;
}
else
ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */
/* restore, in case of overlap */
if (overlapRisk) memcpy(endMatch, saved, qutt);
}
return endMatch-ostart;
}
typedef struct ZSTDv01_Dctx_s
{
U32 LLTable[FSE_DTABLE_SIZE_U32(LLFSELog)];
U32 OffTable[FSE_DTABLE_SIZE_U32(OffFSELog)];
U32 MLTable[FSE_DTABLE_SIZE_U32(MLFSELog)];
void* previousDstEnd;
void* base;
size_t expected;
blockType_t bType;
U32 phase;
} dctx_t;
static size_t ZSTD_decompressSequences(
void* ctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize,
const BYTE* litStart, size_t litSize)
{
dctx_t* dctx = (dctx_t*)ctx;
const BYTE* ip = (const BYTE*)seqStart;
const BYTE* const iend = ip + seqSize;
BYTE* const ostart = (BYTE* const)dst;
BYTE* op = ostart;
BYTE* const oend = ostart + maxDstSize;
size_t errorCode, dumpsLength;
const BYTE* litPtr = litStart;
const BYTE* const litEnd = litStart + litSize;
int nbSeq;
const BYTE* dumps;
U32* DTableLL = dctx->LLTable;
U32* DTableML = dctx->MLTable;
U32* DTableOffb = dctx->OffTable;
BYTE* const base = (BYTE*) (dctx->base);
/* Build Decoding Tables */
errorCode = ZSTDv01_decodeSeqHeaders(&nbSeq, &dumps, &dumpsLength,
DTableLL, DTableML, DTableOffb,
ip, iend-ip);
if (ZSTDv01_isError(errorCode)) return errorCode;
ip += errorCode;
/* Regen sequences */
{
seq_t sequence;
seqState_t seqState;
memset(&sequence, 0, sizeof(sequence));
seqState.dumps = dumps;
seqState.dumpsEnd = dumps + dumpsLength;
seqState.prevOffset = 1;
errorCode = FSE_initDStream(&(seqState.DStream), ip, iend-ip);
if (FSE_isError(errorCode)) return ERROR(corruption_detected);
FSE_initDState(&(seqState.stateLL), &(seqState.DStream), DTableLL);
FSE_initDState(&(seqState.stateOffb), &(seqState.DStream), DTableOffb);
FSE_initDState(&(seqState.stateML), &(seqState.DStream), DTableML);
for ( ; (FSE_reloadDStream(&(seqState.DStream)) <= FSE_DStream_completed) && (nbSeq>0) ; )
{
size_t oneSeqSize;
nbSeq--;
ZSTD_decodeSequence(&sequence, &seqState);
oneSeqSize = ZSTD_execSequence(op, sequence, &litPtr, litEnd, base, oend);
if (ZSTDv01_isError(oneSeqSize)) return oneSeqSize;
op += oneSeqSize;
}
/* check if reached exact end */
if ( !FSE_endOfDStream(&(seqState.DStream)) ) return ERROR(corruption_detected); /* requested too much : data is corrupted */
if (nbSeq<0) return ERROR(corruption_detected); /* requested too many sequences : data is corrupted */
/* last literal segment */
{
size_t lastLLSize = litEnd - litPtr;
if (op+lastLLSize > oend) return ERROR(dstSize_tooSmall);
if (lastLLSize > 0) {
if (op != litPtr) memmove(op, litPtr, lastLLSize);
op += lastLLSize;
}
}
}
return op-ostart;
}
static size_t ZSTD_decompressBlock(
void* ctx,
void* dst, size_t maxDstSize,
const void* src, size_t srcSize)
{
/* blockType == blockCompressed, srcSize is trusted */
const BYTE* ip = (const BYTE*)src;
const BYTE* litPtr = NULL;
size_t litSize = 0;
size_t errorCode;
/* Decode literals sub-block */
errorCode = ZSTDv01_decodeLiteralsBlock(ctx, dst, maxDstSize, &litPtr, &litSize, src, srcSize);
if (ZSTDv01_isError(errorCode)) return errorCode;
ip += errorCode;
srcSize -= errorCode;
return ZSTD_decompressSequences(ctx, dst, maxDstSize, ip, srcSize, litPtr, litSize);
}
size_t ZSTDv01_decompressDCtx(void* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
const BYTE* ip = (const BYTE*)src;
const BYTE* iend = ip + srcSize;
BYTE* const ostart = (BYTE* const)dst;
BYTE* op = ostart;
BYTE* const oend = ostart + maxDstSize;
size_t remainingSize = srcSize;
U32 magicNumber;
size_t errorCode=0;
blockProperties_t blockProperties;
/* Frame Header */
if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
magicNumber = ZSTD_readBE32(src);
if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown);
ip += ZSTD_frameHeaderSize; remainingSize -= ZSTD_frameHeaderSize;
/* Loop on each block */
while (1)
{
size_t blockSize = ZSTDv01_getcBlockSize(ip, iend-ip, &blockProperties);
if (ZSTDv01_isError(blockSize)) return blockSize;
ip += ZSTD_blockHeaderSize;
remainingSize -= ZSTD_blockHeaderSize;
if (blockSize > remainingSize) return ERROR(srcSize_wrong);
switch(blockProperties.blockType)
{
case bt_compressed:
errorCode = ZSTD_decompressBlock(ctx, op, oend-op, ip, blockSize);
break;
case bt_raw :
errorCode = ZSTD_copyUncompressedBlock(op, oend-op, ip, blockSize);
break;
case bt_rle :
return ERROR(GENERIC); /* not yet supported */
break;
case bt_end :
/* end of frame */
if (remainingSize) return ERROR(srcSize_wrong);
break;
default:
return ERROR(GENERIC);
}
if (blockSize == 0) break; /* bt_end */
if (ZSTDv01_isError(errorCode)) return errorCode;
op += errorCode;
ip += blockSize;
remainingSize -= blockSize;
}
return op-ostart;
}
size_t ZSTDv01_decompress(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
dctx_t ctx;
ctx.base = dst;
return ZSTDv01_decompressDCtx(&ctx, dst, maxDstSize, src, srcSize);
}
/* ZSTD_errorFrameSizeInfoLegacy() :
assumes `cSize` and `dBound` are _not_ NULL */
static void ZSTD_errorFrameSizeInfoLegacy(size_t* cSize, unsigned long long* dBound, size_t ret)
{
*cSize = ret;
*dBound = ZSTD_CONTENTSIZE_ERROR;
}
void ZSTDv01_findFrameSizeInfoLegacy(const void *src, size_t srcSize, size_t* cSize, unsigned long long* dBound)
{
const BYTE* ip = (const BYTE*)src;
size_t remainingSize = srcSize;
size_t nbBlocks = 0;
U32 magicNumber;
blockProperties_t blockProperties;
/* Frame Header */
if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
magicNumber = ZSTD_readBE32(src);
if (magicNumber != ZSTD_magicNumber) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(prefix_unknown));
return;
}
ip += ZSTD_frameHeaderSize; remainingSize -= ZSTD_frameHeaderSize;
/* Loop on each block */
while (1)
{
size_t blockSize = ZSTDv01_getcBlockSize(ip, remainingSize, &blockProperties);
if (ZSTDv01_isError(blockSize)) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, blockSize);
return;
}
ip += ZSTD_blockHeaderSize;
remainingSize -= ZSTD_blockHeaderSize;
if (blockSize > remainingSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
if (blockSize == 0) break; /* bt_end */
ip += blockSize;
remainingSize -= blockSize;
nbBlocks++;
}
*cSize = ip - (const BYTE*)src;
*dBound = nbBlocks * BLOCKSIZE;
}
/*******************************
* Streaming Decompression API
*******************************/
size_t ZSTDv01_resetDCtx(ZSTDv01_Dctx* dctx)
{
dctx->expected = ZSTD_frameHeaderSize;
dctx->phase = 0;
dctx->previousDstEnd = NULL;
dctx->base = NULL;
return 0;
}
ZSTDv01_Dctx* ZSTDv01_createDCtx(void)
{
ZSTDv01_Dctx* dctx = (ZSTDv01_Dctx*)malloc(sizeof(ZSTDv01_Dctx));
if (dctx==NULL) return NULL;
ZSTDv01_resetDCtx(dctx);
return dctx;
}
size_t ZSTDv01_freeDCtx(ZSTDv01_Dctx* dctx)
{
free(dctx);
return 0;
}
size_t ZSTDv01_nextSrcSizeToDecompress(ZSTDv01_Dctx* dctx)
{
return ((dctx_t*)dctx)->expected;
}
size_t ZSTDv01_decompressContinue(ZSTDv01_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
dctx_t* ctx = (dctx_t*)dctx;
/* Sanity check */
if (srcSize != ctx->expected) return ERROR(srcSize_wrong);
if (dst != ctx->previousDstEnd) /* not contiguous */
ctx->base = dst;
/* Decompress : frame header */
if (ctx->phase == 0)
{
/* Check frame magic header */
U32 magicNumber = ZSTD_readBE32(src);
if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown);
ctx->phase = 1;
ctx->expected = ZSTD_blockHeaderSize;
return 0;
}
/* Decompress : block header */
if (ctx->phase == 1)
{
blockProperties_t bp;
size_t blockSize = ZSTDv01_getcBlockSize(src, ZSTD_blockHeaderSize, &bp);
if (ZSTDv01_isError(blockSize)) return blockSize;
if (bp.blockType == bt_end)
{
ctx->expected = 0;
ctx->phase = 0;
}
else
{
ctx->expected = blockSize;
ctx->bType = bp.blockType;
ctx->phase = 2;
}
return 0;
}
/* Decompress : block content */
{
size_t rSize;
switch(ctx->bType)
{
case bt_compressed:
rSize = ZSTD_decompressBlock(ctx, dst, maxDstSize, src, srcSize);
break;
case bt_raw :
rSize = ZSTD_copyUncompressedBlock(dst, maxDstSize, src, srcSize);
break;
case bt_rle :
return ERROR(GENERIC); /* not yet handled */
break;
case bt_end : /* should never happen (filtered at phase 1) */
rSize = 0;
break;
default:
return ERROR(GENERIC);
}
ctx->phase = 1;
ctx->expected = ZSTD_blockHeaderSize;
ctx->previousDstEnd = (void*)( ((char*)dst) + rSize);
return rSize;
}
}
diff --git a/sys/contrib/zstd/lib/legacy/zstd_v01.h b/sys/contrib/zstd/lib/legacy/zstd_v01.h
index 7910351726c4..f777eb6e4c93 100644
--- a/sys/contrib/zstd/lib/legacy/zstd_v01.h
+++ b/sys/contrib/zstd/lib/legacy/zstd_v01.h
@@ -1,94 +1,94 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_V01_H_28739879432
#define ZSTD_V01_H_28739879432
#if defined (__cplusplus)
extern "C" {
#endif
/* *************************************
* Includes
***************************************/
#include <stddef.h> /* size_t */
/* *************************************
* Simple one-step function
***************************************/
/**
ZSTDv01_decompress() : decompress ZSTD frames compliant with v0.1.x format
compressedSize : is the exact source size
maxOriginalSize : is the size of the 'dst' buffer, which must be already allocated.
It must be equal or larger than originalSize, otherwise decompression will fail.
return : the number of bytes decompressed into destination buffer (originalSize)
or an errorCode if it fails (which can be tested using ZSTDv01_isError())
*/
size_t ZSTDv01_decompress( void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize);
/**
ZSTDv01_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.1.x format
srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
cSize (output parameter) : the number of bytes that would be read to decompress this frame
or an error code if it fails (which can be tested using ZSTDv01_isError())
dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame
or ZSTD_CONTENTSIZE_ERROR if an error occurs
note : assumes `cSize` and `dBound` are _not_ NULL.
*/
void ZSTDv01_findFrameSizeInfoLegacy(const void *src, size_t srcSize,
size_t* cSize, unsigned long long* dBound);
/**
ZSTDv01_isError() : tells if the result of ZSTDv01_decompress() is an error
*/
unsigned ZSTDv01_isError(size_t code);
/* *************************************
* Advanced functions
***************************************/
typedef struct ZSTDv01_Dctx_s ZSTDv01_Dctx;
ZSTDv01_Dctx* ZSTDv01_createDCtx(void);
size_t ZSTDv01_freeDCtx(ZSTDv01_Dctx* dctx);
size_t ZSTDv01_decompressDCtx(void* ctx,
void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize);
/* *************************************
* Streaming functions
***************************************/
size_t ZSTDv01_resetDCtx(ZSTDv01_Dctx* dctx);
size_t ZSTDv01_nextSrcSizeToDecompress(ZSTDv01_Dctx* dctx);
size_t ZSTDv01_decompressContinue(ZSTDv01_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize);
/**
Use above functions alternatively.
ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block.
Result is the number of bytes regenerated within 'dst'.
It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.
*/
/* *************************************
* Prefix - version detection
***************************************/
#define ZSTDv01_magicNumber 0xFD2FB51E /* Big Endian version */
#define ZSTDv01_magicNumberLE 0x1EB52FFD /* Little Endian version */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_V01_H_28739879432 */
diff --git a/sys/contrib/zstd/lib/legacy/zstd_v02.c b/sys/contrib/zstd/lib/legacy/zstd_v02.c
index 9abb6d03390f..2f473a75734b 100644
--- a/sys/contrib/zstd/lib/legacy/zstd_v02.c
+++ b/sys/contrib/zstd/lib/legacy/zstd_v02.c
@@ -1,3522 +1,3518 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include <stddef.h> /* size_t, ptrdiff_t */
#include "zstd_v02.h"
#include "../common/error_private.h"
/******************************************
* Compiler-specific
******************************************/
#if defined(_MSC_VER) /* Visual Studio */
# include <stdlib.h> /* _byteswap_ulong */
# include <intrin.h> /* _byteswap_* */
#endif
/* ******************************************************************
mem.h
low-level memory access routines
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef MEM_H_MODULE
#define MEM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/******************************************
* Includes
******************************************/
#include <stddef.h> /* size_t, ptrdiff_t */
#include <string.h> /* memcpy */
/******************************************
* Compiler-specific
******************************************/
#if defined(__GNUC__)
# define MEM_STATIC static __attribute__((unused))
#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define MEM_STATIC static inline
#elif defined(_MSC_VER)
# define MEM_STATIC static __inline
#else
# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
#endif
/****************************************************************
* Basic Types
*****************************************************************/
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# if defined(_AIX)
# include <inttypes.h>
# else
# include <stdint.h> /* intptr_t */
# endif
typedef uint8_t BYTE;
typedef uint16_t U16;
typedef int16_t S16;
typedef uint32_t U32;
typedef int32_t S32;
typedef uint64_t U64;
typedef int64_t S64;
#else
typedef unsigned char BYTE;
typedef unsigned short U16;
typedef signed short S16;
typedef unsigned int U32;
typedef signed int S32;
typedef unsigned long long U64;
typedef signed long long S64;
#endif
/****************************************************************
* Memory I/O
*****************************************************************/
/* MEM_FORCE_MEMORY_ACCESS
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
* The below switch allow to select different access method for improved performance.
* Method 0 (default) : use `memcpy()`. Safe and portable.
* Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
* This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
* Method 2 : direct access. This method is portable but violate C standard.
* It can generate buggy code on targets generating assembly depending on alignment.
* But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
* See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
* Prefer these methods in priority order (0 > 1 > 2)
*/
#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
-# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
-# define MEM_FORCE_MEMORY_ACCESS 2
-# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
- (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
+# if defined(__INTEL_COMPILER) || defined(__GNUC__) || defined(__ICCARM__)
# define MEM_FORCE_MEMORY_ACCESS 1
# endif
#endif
MEM_STATIC unsigned MEM_32bits(void) { return sizeof(void*)==4; }
MEM_STATIC unsigned MEM_64bits(void) { return sizeof(void*)==8; }
MEM_STATIC unsigned MEM_isLittleEndian(void)
{
const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
return one.c[0];
}
#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
/* violates C standard on structure alignment.
Only use if no other choice to achieve best performance on target platform */
MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
/* currently only defined for gcc and icc */
typedef union { U16 u16; U32 u32; U64 u64; } __attribute__((packed)) unalign;
MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign*)ptr)->u16; }
MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign*)memPtr)->u16 = value; }
#else
/* default method, safe and standard.
can sometimes prove slower */
MEM_STATIC U16 MEM_read16(const void* memPtr)
{
U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U32 MEM_read32(const void* memPtr)
{
U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U64 MEM_read64(const void* memPtr)
{
U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC void MEM_write16(void* memPtr, U16 value)
{
memcpy(memPtr, &value, sizeof(value));
}
#endif /* MEM_FORCE_MEMORY_ACCESS */
MEM_STATIC U16 MEM_readLE16(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read16(memPtr);
else
{
const BYTE* p = (const BYTE*)memPtr;
return (U16)(p[0] + (p[1]<<8));
}
}
MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
{
if (MEM_isLittleEndian())
{
MEM_write16(memPtr, val);
}
else
{
BYTE* p = (BYTE*)memPtr;
p[0] = (BYTE)val;
p[1] = (BYTE)(val>>8);
}
}
MEM_STATIC U32 MEM_readLE24(const void* memPtr)
{
return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16);
}
MEM_STATIC U32 MEM_readLE32(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read32(memPtr);
else
{
const BYTE* p = (const BYTE*)memPtr;
return (U32)((U32)p[0] + ((U32)p[1]<<8) + ((U32)p[2]<<16) + ((U32)p[3]<<24));
}
}
MEM_STATIC U64 MEM_readLE64(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read64(memPtr);
else
{
const BYTE* p = (const BYTE*)memPtr;
return (U64)((U64)p[0] + ((U64)p[1]<<8) + ((U64)p[2]<<16) + ((U64)p[3]<<24)
+ ((U64)p[4]<<32) + ((U64)p[5]<<40) + ((U64)p[6]<<48) + ((U64)p[7]<<56));
}
}
MEM_STATIC size_t MEM_readLEST(const void* memPtr)
{
if (MEM_32bits())
return (size_t)MEM_readLE32(memPtr);
else
return (size_t)MEM_readLE64(memPtr);
}
#if defined (__cplusplus)
}
#endif
#endif /* MEM_H_MODULE */
/* ******************************************************************
bitstream
Part of NewGen Entropy library
header file (to include)
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef BITSTREAM_H_MODULE
#define BITSTREAM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/*
* This API consists of small unitary functions, which highly benefit from being inlined.
* Since link-time-optimization is not available for all compilers,
* these functions are defined into a .h to be included.
*/
/**********************************************
* bitStream decompression API (read backward)
**********************************************/
typedef struct
{
size_t bitContainer;
unsigned bitsConsumed;
const char* ptr;
const char* start;
} BIT_DStream_t;
typedef enum { BIT_DStream_unfinished = 0,
BIT_DStream_endOfBuffer = 1,
BIT_DStream_completed = 2,
BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */
/* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits);
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD);
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);
/******************************************
* unsafe API
******************************************/
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
/* faster, but works only if nbBits >= 1 */
/****************************************************************
* Helper functions
****************************************************************/
MEM_STATIC unsigned BIT_highbit32 (U32 val)
{
# if defined(_MSC_VER) /* Visual */
- unsigned long r=0;
- _BitScanReverse ( &r, val );
- return (unsigned) r;
+ unsigned long r;
+ return _BitScanReverse(&r, val) ? (unsigned)r : 0;
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
return __builtin_clz (val) ^ 31;
# else /* Software version */
static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
U32 v = val;
unsigned r;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
r = DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
return r;
# endif
}
/**********************************************************
* bitStream decoding
**********************************************************/
/*!BIT_initDStream
* Initialize a BIT_DStream_t.
* @bitD : a pointer to an already allocated BIT_DStream_t structure
* @srcBuffer must point at the beginning of a bitStream
* @srcSize must be the exact size of the bitStream
* @result : size of stream (== srcSize) or an errorCode if a problem is detected
*/
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
{
if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
if (srcSize >= sizeof(size_t)) /* normal case */
{
U32 contain32;
bitD->start = (const char*)srcBuffer;
bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(size_t);
bitD->bitContainer = MEM_readLEST(bitD->ptr);
contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */
bitD->bitsConsumed = 8 - BIT_highbit32(contain32);
}
else
{
U32 contain32;
bitD->start = (const char*)srcBuffer;
bitD->ptr = bitD->start;
bitD->bitContainer = *(const BYTE*)(bitD->start);
switch(srcSize)
{
case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16);
/* fallthrough */
case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24);
/* fallthrough */
case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32);
/* fallthrough */
case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24;
/* fallthrough */
case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16;
/* fallthrough */
case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) << 8;
/* fallthrough */
default:;
}
contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */
bitD->bitsConsumed = 8 - BIT_highbit32(contain32);
bitD->bitsConsumed += (U32)(sizeof(size_t) - srcSize)*8;
}
return srcSize;
}
MEM_STATIC size_t BIT_lookBits(BIT_DStream_t* bitD, U32 nbBits)
{
const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask);
}
/*! BIT_lookBitsFast :
* unsafe version; only works only if nbBits >= 1 */
MEM_STATIC size_t BIT_lookBitsFast(BIT_DStream_t* bitD, U32 nbBits)
{
const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask);
}
MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
{
bitD->bitsConsumed += nbBits;
}
MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, U32 nbBits)
{
size_t value = BIT_lookBits(bitD, nbBits);
BIT_skipBits(bitD, nbBits);
return value;
}
/*!BIT_readBitsFast :
* unsafe version; only works only if nbBits >= 1 */
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, U32 nbBits)
{
size_t value = BIT_lookBitsFast(bitD, nbBits);
BIT_skipBits(bitD, nbBits);
return value;
}
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
{
if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should never happen */
return BIT_DStream_overflow;
if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer))
{
bitD->ptr -= bitD->bitsConsumed >> 3;
bitD->bitsConsumed &= 7;
bitD->bitContainer = MEM_readLEST(bitD->ptr);
return BIT_DStream_unfinished;
}
if (bitD->ptr == bitD->start)
{
if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer;
return BIT_DStream_completed;
}
{
U32 nbBytes = bitD->bitsConsumed >> 3;
BIT_DStream_status result = BIT_DStream_unfinished;
if (bitD->ptr - nbBytes < bitD->start)
{
nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
result = BIT_DStream_endOfBuffer;
}
bitD->ptr -= nbBytes;
bitD->bitsConsumed -= nbBytes*8;
bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */
return result;
}
}
/*! BIT_endOfDStream
* @return Tells if DStream has reached its exact end
*/
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream)
{
return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
}
#if defined (__cplusplus)
}
#endif
#endif /* BITSTREAM_H_MODULE */
/* ******************************************************************
Error codes and messages
Copyright (C) 2013-2015, Yann Collet
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef ERROR_H_MODULE
#define ERROR_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/******************************************
* Compiler-specific
******************************************/
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define ERR_STATIC static inline
#elif defined(_MSC_VER)
# define ERR_STATIC static __inline
#elif defined(__GNUC__)
# define ERR_STATIC static __attribute__((unused))
#else
# define ERR_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
#endif
/******************************************
* Error Management
******************************************/
#define PREFIX(name) ZSTD_error_##name
#define ERROR(name) (size_t)-PREFIX(name)
#define ERROR_LIST(ITEM) \
ITEM(PREFIX(No_Error)) ITEM(PREFIX(GENERIC)) \
ITEM(PREFIX(dstSize_tooSmall)) ITEM(PREFIX(srcSize_wrong)) \
ITEM(PREFIX(prefix_unknown)) ITEM(PREFIX(corruption_detected)) \
ITEM(PREFIX(tableLog_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooSmall)) \
ITEM(PREFIX(maxCode))
#define ERROR_GENERATE_ENUM(ENUM) ENUM,
typedef enum { ERROR_LIST(ERROR_GENERATE_ENUM) } ERR_codes; /* enum is exposed, to detect & handle specific errors; compare function result to -enum value */
#define ERROR_CONVERTTOSTRING(STRING) #STRING,
#define ERROR_GENERATE_STRING(EXPR) ERROR_CONVERTTOSTRING(EXPR)
static const char* ERR_strings[] = { ERROR_LIST(ERROR_GENERATE_STRING) };
ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); }
ERR_STATIC const char* ERR_getErrorName(size_t code)
{
static const char* codeError = "Unspecified error code";
if (ERR_isError(code)) return ERR_strings[-(int)(code)];
return codeError;
}
#if defined (__cplusplus)
}
#endif
#endif /* ERROR_H_MODULE */
/*
Constructor and Destructor of type FSE_CTable
Note that its size depends on 'tableLog' and 'maxSymbolValue' */
typedef unsigned FSE_CTable; /* don't allocate that. It's just a way to be more restrictive than void* */
typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
/* ******************************************************************
FSE : Finite State Entropy coder
header file for static linking (only)
Copyright (C) 2013-2015, Yann Collet
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#if defined (__cplusplus)
extern "C" {
#endif
/******************************************
* Static allocation
******************************************/
/* FSE buffer bounds */
#define FSE_NCOUNTBOUND 512
#define FSE_BLOCKBOUND(size) (size + (size>>7))
#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
/* You can statically allocate FSE CTable/DTable as a table of unsigned using below macro */
#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2))
#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog))
/******************************************
* FSE advanced API
******************************************/
static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
/* build a fake FSE_DTable, designed to read an uncompressed bitstream where each symbol uses nbBits */
static size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
/* build a fake FSE_DTable, designed to always generate the same symbolValue */
/******************************************
* FSE symbol decompression API
******************************************/
typedef struct
{
size_t state;
const void* table; /* precise table may vary, depending on U16 */
} FSE_DState_t;
static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
/******************************************
* FSE unsafe API
******************************************/
static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
/******************************************
* Implementation of inline functions
******************************************/
/* decompression */
typedef struct {
U16 tableLog;
U16 fastMode;
} FSE_DTableHeader; /* sizeof U32 */
typedef struct
{
unsigned short newState;
unsigned char symbol;
unsigned char nbBits;
} FSE_decode_t; /* size == U32 */
MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
{
FSE_DTableHeader DTableH;
memcpy(&DTableH, dt, sizeof(DTableH));
DStatePtr->state = BIT_readBits(bitD, DTableH.tableLog);
BIT_reloadDStream(bitD);
DStatePtr->table = dt + 1;
}
MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
{
const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
const U32 nbBits = DInfo.nbBits;
BYTE symbol = DInfo.symbol;
size_t lowBits = BIT_readBits(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
{
const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
const U32 nbBits = DInfo.nbBits;
BYTE symbol = DInfo.symbol;
size_t lowBits = BIT_readBitsFast(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
{
return DStatePtr->state == 0;
}
#if defined (__cplusplus)
}
#endif
/* ******************************************************************
Huff0 : Huffman coder, part of New Generation Entropy library
header file for static linking (only)
Copyright (C) 2013-2015, Yann Collet
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#if defined (__cplusplus)
extern "C" {
#endif
/******************************************
* Static allocation macros
******************************************/
/* Huff0 buffer bounds */
#define HUF_CTABLEBOUND 129
#define HUF_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true if incompressible pre-filtered with fast heuristic */
#define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
/* static allocation of Huff0's DTable */
#define HUF_DTABLE_SIZE(maxTableLog) (1 + (1<<maxTableLog)) /* nb Cells; use unsigned short for X2, unsigned int for X4 */
#define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
unsigned short DTable[HUF_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
#define HUF_CREATE_STATIC_DTABLEX4(DTable, maxTableLog) \
unsigned int DTable[HUF_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
#define HUF_CREATE_STATIC_DTABLEX6(DTable, maxTableLog) \
unsigned int DTable[HUF_DTABLE_SIZE(maxTableLog) * 3 / 2] = { maxTableLog }
/******************************************
* Advanced functions
******************************************/
static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbols decoder */
static size_t HUF_decompress4X6 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* quad-symbols decoder */
#if defined (__cplusplus)
}
#endif
/*
zstd - standard compression library
Header File
Copyright (C) 2014-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- zstd source repository : https://github.com/Cyan4973/zstd
- ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
*/
#if defined (__cplusplus)
extern "C" {
#endif
/* *************************************
* Includes
***************************************/
#include <stddef.h> /* size_t */
/* *************************************
* Version
***************************************/
#define ZSTD_VERSION_MAJOR 0 /* for breaking interface changes */
#define ZSTD_VERSION_MINOR 2 /* for new (non-breaking) interface capabilities */
#define ZSTD_VERSION_RELEASE 2 /* for tweaks, bug-fixes, or development */
#define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE)
/* *************************************
* Advanced functions
***************************************/
typedef struct ZSTD_CCtx_s ZSTD_CCtx; /* incomplete type */
#if defined (__cplusplus)
}
#endif
/*
zstd - standard compression library
Header File for static linking only
Copyright (C) 2014-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- zstd source repository : https://github.com/Cyan4973/zstd
- ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
*/
/* The objects defined into this file should be considered experimental.
* They are not labelled stable, as their prototype may change in the future.
* You can use them for tests, provide feedback, or if you can endure risk of future changes.
*/
#if defined (__cplusplus)
extern "C" {
#endif
/* *************************************
* Streaming functions
***************************************/
typedef struct ZSTD_DCtx_s ZSTD_DCtx;
/*
Use above functions alternatively.
ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block.
Result is the number of bytes regenerated within 'dst'.
It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.
*/
/* *************************************
* Prefix - version detection
***************************************/
#define ZSTD_magicNumber 0xFD2FB522 /* v0.2 (current)*/
#if defined (__cplusplus)
}
#endif
/* ******************************************************************
FSE : Finite State Entropy coder
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef FSE_COMMONDEFS_ONLY
/****************************************************************
* Tuning parameters
****************************************************************/
/* MEMORY_USAGE :
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
* Increasing memory usage improves compression ratio
* Reduced memory usage can improve speed, due to cache effect
* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
#define FSE_MAX_MEMORY_USAGE 14
#define FSE_DEFAULT_MEMORY_USAGE 13
/* FSE_MAX_SYMBOL_VALUE :
* Maximum symbol value authorized.
* Required for proper stack allocation */
#define FSE_MAX_SYMBOL_VALUE 255
/****************************************************************
* template functions type & suffix
****************************************************************/
#define FSE_FUNCTION_TYPE BYTE
#define FSE_FUNCTION_EXTENSION
/****************************************************************
* Byte symbol type
****************************************************************/
#endif /* !FSE_COMMONDEFS_ONLY */
/****************************************************************
* Compiler specifics
****************************************************************/
#ifdef _MSC_VER /* Visual Studio */
# define FORCE_INLINE static __forceinline
# include <intrin.h> /* For Visual 2005 */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */
#else
# if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
# ifdef __GNUC__
# define FORCE_INLINE static inline __attribute__((always_inline))
# else
# define FORCE_INLINE static inline
# endif
# else
# define FORCE_INLINE static
# endif /* __STDC_VERSION__ */
#endif
/****************************************************************
* Includes
****************************************************************/
#include <stdlib.h> /* malloc, free, qsort */
#include <string.h> /* memcpy, memset */
#include <stdio.h> /* printf (debug) */
/****************************************************************
* Constants
*****************************************************************/
#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2)
#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
#define FSE_MIN_TABLELOG 5
#define FSE_TABLELOG_ABSOLUTE_MAX 15
#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
#error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
#endif
/****************************************************************
* Error Management
****************************************************************/
#define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
/****************************************************************
* Complex types
****************************************************************/
typedef U32 DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)];
/****************************************************************
* Templates
****************************************************************/
/*
designed to be included
for type-specific functions (template emulation in C)
Objective is to write these functions only once, for improved maintenance
*/
/* safety checks */
#ifndef FSE_FUNCTION_EXTENSION
# error "FSE_FUNCTION_EXTENSION must be defined"
#endif
#ifndef FSE_FUNCTION_TYPE
# error "FSE_FUNCTION_TYPE must be defined"
#endif
/* Function names */
#define FSE_CAT(X,Y) X##Y
#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
/* Function templates */
#define FSE_DECODE_TYPE FSE_decode_t
static U32 FSE_tableStep(U32 tableSize) { return (tableSize>>1) + (tableSize>>3) + 3; }
static size_t FSE_buildDTable
(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
{
void* ptr = dt+1;
FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*)ptr;
FSE_DTableHeader DTableH;
const U32 tableSize = 1 << tableLog;
const U32 tableMask = tableSize-1;
const U32 step = FSE_tableStep(tableSize);
U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1];
U32 position = 0;
U32 highThreshold = tableSize-1;
const S16 largeLimit= (S16)(1 << (tableLog-1));
U32 noLarge = 1;
U32 s;
/* Sanity Checks */
if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
/* Init, lay down lowprob symbols */
DTableH.tableLog = (U16)tableLog;
for (s=0; s<=maxSymbolValue; s++)
{
if (normalizedCounter[s]==-1)
{
tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
symbolNext[s] = 1;
}
else
{
if (normalizedCounter[s] >= largeLimit) noLarge=0;
symbolNext[s] = normalizedCounter[s];
}
}
/* Spread symbols */
for (s=0; s<=maxSymbolValue; s++)
{
int i;
for (i=0; i<normalizedCounter[s]; i++)
{
tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
position = (position + step) & tableMask;
while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
}
}
if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
/* Build Decoding table */
{
U32 i;
for (i=0; i<tableSize; i++)
{
FSE_FUNCTION_TYPE symbol = (FSE_FUNCTION_TYPE)(tableDecode[i].symbol);
U16 nextState = symbolNext[symbol]++;
tableDecode[i].nbBits = (BYTE) (tableLog - BIT_highbit32 ((U32)nextState) );
tableDecode[i].newState = (U16) ( (nextState << tableDecode[i].nbBits) - tableSize);
}
}
DTableH.fastMode = (U16)noLarge;
memcpy(dt, &DTableH, sizeof(DTableH)); /* memcpy(), to avoid strict aliasing warnings */
return 0;
}
#ifndef FSE_COMMONDEFS_ONLY
/******************************************
* FSE helper functions
******************************************/
static unsigned FSE_isError(size_t code) { return ERR_isError(code); }
/****************************************************************
* FSE NCount encoding-decoding
****************************************************************/
static short FSE_abs(short a)
{
return (short)(a<0 ? -a : a);
}
static size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize)
{
const BYTE* const istart = (const BYTE*) headerBuffer;
const BYTE* const iend = istart + hbSize;
const BYTE* ip = istart;
int nbBits;
int remaining;
int threshold;
U32 bitStream;
int bitCount;
unsigned charnum = 0;
int previous0 = 0;
if (hbSize < 4) return ERROR(srcSize_wrong);
bitStream = MEM_readLE32(ip);
nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */
if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
bitStream >>= 4;
bitCount = 4;
*tableLogPtr = nbBits;
remaining = (1<<nbBits)+1;
threshold = 1<<nbBits;
nbBits++;
while ((remaining>1) && (charnum<=*maxSVPtr))
{
if (previous0)
{
unsigned n0 = charnum;
while ((bitStream & 0xFFFF) == 0xFFFF)
{
n0+=24;
if (ip < iend-5)
{
ip+=2;
bitStream = MEM_readLE32(ip) >> bitCount;
}
else
{
bitStream >>= 16;
bitCount+=16;
}
}
while ((bitStream & 3) == 3)
{
n0+=3;
bitStream>>=2;
bitCount+=2;
}
n0 += bitStream & 3;
bitCount += 2;
if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
while (charnum < n0) normalizedCounter[charnum++] = 0;
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
{
ip += bitCount>>3;
bitCount &= 7;
bitStream = MEM_readLE32(ip) >> bitCount;
}
else
bitStream >>= 2;
}
{
const short max = (short)((2*threshold-1)-remaining);
short count;
if ((bitStream & (threshold-1)) < (U32)max)
{
count = (short)(bitStream & (threshold-1));
bitCount += nbBits-1;
}
else
{
count = (short)(bitStream & (2*threshold-1));
if (count >= threshold) count -= max;
bitCount += nbBits;
}
count--; /* extra accuracy */
remaining -= FSE_abs(count);
normalizedCounter[charnum++] = count;
previous0 = !count;
while (remaining < threshold)
{
nbBits--;
threshold >>= 1;
}
{
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
{
ip += bitCount>>3;
bitCount &= 7;
}
else
{
bitCount -= (int)(8 * (iend - 4 - ip));
ip = iend - 4;
}
bitStream = MEM_readLE32(ip) >> (bitCount & 31);
}
}
}
if (remaining != 1) return ERROR(GENERIC);
*maxSVPtr = charnum-1;
ip += (bitCount+7)>>3;
if ((size_t)(ip-istart) > hbSize) return ERROR(srcSize_wrong);
return ip-istart;
}
/*********************************************************
* Decompression (Byte symbols)
*********************************************************/
static size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue)
{
void* ptr = dt;
FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
FSE_decode_t* const cell = (FSE_decode_t*)(ptr) + 1; /* because dt is unsigned */
DTableH->tableLog = 0;
DTableH->fastMode = 0;
cell->newState = 0;
cell->symbol = symbolValue;
cell->nbBits = 0;
return 0;
}
static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits)
{
void* ptr = dt;
FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
FSE_decode_t* const dinfo = (FSE_decode_t*)(ptr) + 1; /* because dt is unsigned */
const unsigned tableSize = 1 << nbBits;
const unsigned tableMask = tableSize - 1;
const unsigned maxSymbolValue = tableMask;
unsigned s;
/* Sanity checks */
if (nbBits < 1) return ERROR(GENERIC); /* min size */
/* Build Decoding Table */
DTableH->tableLog = (U16)nbBits;
DTableH->fastMode = 1;
for (s=0; s<=maxSymbolValue; s++)
{
dinfo[s].newState = 0;
dinfo[s].symbol = (BYTE)s;
dinfo[s].nbBits = (BYTE)nbBits;
}
return 0;
}
FORCE_INLINE size_t FSE_decompress_usingDTable_generic(
void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const FSE_DTable* dt, const unsigned fast)
{
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const omax = op + maxDstSize;
BYTE* const olimit = omax-3;
BIT_DStream_t bitD;
FSE_DState_t state1;
FSE_DState_t state2;
size_t errorCode;
/* Init */
errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */
if (FSE_isError(errorCode)) return errorCode;
FSE_initDState(&state1, &bitD, dt);
FSE_initDState(&state2, &bitD, dt);
#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD)
/* 4 symbols per loop */
for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) && (op<olimit) ; op+=4)
{
op[0] = FSE_GETSYMBOL(&state1);
if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
BIT_reloadDStream(&bitD);
op[1] = FSE_GETSYMBOL(&state2);
if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
{ if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } }
op[2] = FSE_GETSYMBOL(&state1);
if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
BIT_reloadDStream(&bitD);
op[3] = FSE_GETSYMBOL(&state2);
}
/* tail */
/* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */
while (1)
{
if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state1))) )
break;
*op++ = FSE_GETSYMBOL(&state1);
if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state2))) )
break;
*op++ = FSE_GETSYMBOL(&state2);
}
/* end ? */
if (BIT_endOfDStream(&bitD) && FSE_endOfDState(&state1) && FSE_endOfDState(&state2))
return op-ostart;
if (op==omax) return ERROR(dstSize_tooSmall); /* dst buffer is full, but cSrc unfinished */
return ERROR(corruption_detected);
}
static size_t FSE_decompress_usingDTable(void* dst, size_t originalSize,
const void* cSrc, size_t cSrcSize,
const FSE_DTable* dt)
{
FSE_DTableHeader DTableH;
memcpy(&DTableH, dt, sizeof(DTableH));
/* select fast mode (static) */
if (DTableH.fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
}
static size_t FSE_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
{
const BYTE* const istart = (const BYTE*)cSrc;
const BYTE* ip = istart;
short counting[FSE_MAX_SYMBOL_VALUE+1];
DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */
unsigned tableLog;
unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
size_t errorCode;
if (cSrcSize<2) return ERROR(srcSize_wrong); /* too small input size */
/* normal FSE decoding mode */
errorCode = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
if (FSE_isError(errorCode)) return errorCode;
if (errorCode >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size */
ip += errorCode;
cSrcSize -= errorCode;
errorCode = FSE_buildDTable (dt, counting, maxSymbolValue, tableLog);
if (FSE_isError(errorCode)) return errorCode;
/* always return, even if it is an error code */
return FSE_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt);
}
#endif /* FSE_COMMONDEFS_ONLY */
/* ******************************************************************
Huff0 : Huffman coder, part of New Generation Entropy library
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE+Huff0 source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
/****************************************************************
* Compiler specifics
****************************************************************/
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
/* inline is defined */
#elif defined(_MSC_VER)
# define inline __inline
#else
# define inline /* disable inline */
#endif
#ifdef _MSC_VER /* Visual Studio */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
#endif
/****************************************************************
* Includes
****************************************************************/
#include <stdlib.h> /* malloc, free, qsort */
#include <string.h> /* memcpy, memset */
#include <stdio.h> /* printf (debug) */
/****************************************************************
* Error Management
****************************************************************/
#define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
/******************************************
* Helper functions
******************************************/
static unsigned HUF_isError(size_t code) { return ERR_isError(code); }
#define HUF_ABSOLUTEMAX_TABLELOG 16 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
#define HUF_MAX_TABLELOG 12 /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
#define HUF_DEFAULT_TABLELOG HUF_MAX_TABLELOG /* tableLog by default, when not specified */
#define HUF_MAX_SYMBOL_VALUE 255
#if (HUF_MAX_TABLELOG > HUF_ABSOLUTEMAX_TABLELOG)
# error "HUF_MAX_TABLELOG is too large !"
#endif
/*********************************************************
* Huff0 : Huffman block decompression
*********************************************************/
typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX2; /* single-symbol decoding */
typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4; /* double-symbols decoding */
typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
/*! HUF_readStats
Read compact Huffman tree, saved by HUF_writeCTable
@huffWeight : destination buffer
@return : size read from `src`
*/
static size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize)
{
U32 weightTotal;
U32 tableLog;
const BYTE* ip = (const BYTE*) src;
size_t iSize;
size_t oSize;
U32 n;
if (!srcSize) return ERROR(srcSize_wrong);
iSize = ip[0];
//memset(huffWeight, 0, hwSize); /* is not necessary, even though some analyzer complain ... */
if (iSize >= 128) /* special header */
{
if (iSize >= (242)) /* RLE */
{
static int l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 };
oSize = l[iSize-242];
memset(huffWeight, 1, hwSize);
iSize = 0;
}
else /* Incompressible */
{
oSize = iSize - 127;
iSize = ((oSize+1)/2);
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
if (oSize >= hwSize) return ERROR(corruption_detected);
ip += 1;
for (n=0; n<oSize; n+=2)
{
huffWeight[n] = ip[n/2] >> 4;
huffWeight[n+1] = ip[n/2] & 15;
}
}
}
else /* header compressed with FSE (normal case) */
{
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
oSize = FSE_decompress(huffWeight, hwSize-1, ip+1, iSize); /* max (hwSize-1) values decoded, as last one is implied */
if (FSE_isError(oSize)) return oSize;
}
/* collect weight stats */
memset(rankStats, 0, (HUF_ABSOLUTEMAX_TABLELOG + 1) * sizeof(U32));
weightTotal = 0;
for (n=0; n<oSize; n++)
{
if (huffWeight[n] >= HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
rankStats[huffWeight[n]]++;
weightTotal += (1 << huffWeight[n]) >> 1;
}
if (weightTotal == 0) return ERROR(corruption_detected);
/* get last non-null symbol weight (implied, total must be 2^n) */
tableLog = BIT_highbit32(weightTotal) + 1;
if (tableLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
{
U32 total = 1 << tableLog;
U32 rest = total - weightTotal;
U32 verif = 1 << BIT_highbit32(rest);
U32 lastWeight = BIT_highbit32(rest) + 1;
if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
huffWeight[oSize] = (BYTE)lastWeight;
rankStats[lastWeight]++;
}
/* check tree construction validity */
if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
/* results */
*nbSymbolsPtr = (U32)(oSize+1);
*tableLogPtr = tableLog;
return iSize+1;
}
/**************************/
/* single-symbol decoding */
/**************************/
static size_t HUF_readDTableX2 (U16* DTable, const void* src, size_t srcSize)
{
BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1];
U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; /* large enough for values from 0 to 16 */
U32 tableLog = 0;
const BYTE* ip = (const BYTE*) src;
size_t iSize = ip[0];
U32 nbSymbols = 0;
U32 n;
U32 nextRankStart;
void* ptr = DTable+1;
HUF_DEltX2* const dt = (HUF_DEltX2*)ptr;
HUF_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U16)); /* if compilation fails here, assertion is false */
//memset(huffWeight, 0, sizeof(huffWeight)); /* is not necessary, even though some analyzer complain ... */
iSize = HUF_readStats(huffWeight, HUF_MAX_SYMBOL_VALUE + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
if (HUF_isError(iSize)) return iSize;
/* check result */
if (tableLog > DTable[0]) return ERROR(tableLog_tooLarge); /* DTable is too small */
DTable[0] = (U16)tableLog; /* maybe should separate sizeof DTable, as allocated, from used size of DTable, in case of DTable re-use */
/* Prepare ranks */
nextRankStart = 0;
for (n=1; n<=tableLog; n++)
{
U32 current = nextRankStart;
nextRankStart += (rankVal[n] << (n-1));
rankVal[n] = current;
}
/* fill DTable */
for (n=0; n<nbSymbols; n++)
{
const U32 w = huffWeight[n];
const U32 length = (1 << w) >> 1;
U32 i;
HUF_DEltX2 D;
D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
for (i = rankVal[w]; i < rankVal[w] + length; i++)
dt[i] = D;
rankVal[w] += length;
}
return iSize;
}
static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, const U32 dtLog)
{
const size_t val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
const BYTE c = dt[val].byte;
BIT_skipBits(Dstream, dt[val].nbBits);
return c;
}
#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
*ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
static inline size_t HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 4 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4))
{
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
}
/* closer to the end */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd))
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
/* no more data to retrieve from bitstream, hence no need to reload */
while (p < pEnd)
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
return pEnd-pStart;
}
static size_t HUF_decompress4X2_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const U16* DTable)
{
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{
const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* ptr = DTable;
const HUF_DEltX2* const dt = ((const HUF_DEltX2*)ptr) +1;
const U32 dtLog = DTable[0];
size_t errorCode;
/* Init */
BIT_DStream_t bitD1;
BIT_DStream_t bitD2;
BIT_DStream_t bitD3;
BIT_DStream_t bitD4;
const size_t length1 = MEM_readLE16(istart);
const size_t length2 = MEM_readLE16(istart+2);
const size_t length3 = MEM_readLE16(istart+4);
size_t length4;
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
const size_t segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal;
length4 = cSrcSize - (length1 + length2 + length3 + 6);
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
errorCode = BIT_initDStream(&bitD1, istart1, length1);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD2, istart2, length2);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD3, istart3, length3);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD4, istart4, length4);
if (HUF_isError(errorCode)) return errorCode;
/* 16-32 symbols per loop (4-8 symbols per stream) */
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; )
{
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 supposed already verified within main loop */
/* finish bitStreams one by one */
HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
/* check */
endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
if (!endSignal) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
}
static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_MAX_TABLELOG);
const BYTE* ip = (const BYTE*) cSrc;
size_t errorCode;
errorCode = HUF_readDTableX2 (DTable, cSrc, cSrcSize);
if (HUF_isError(errorCode)) return errorCode;
if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);
ip += errorCode;
cSrcSize -= errorCode;
return HUF_decompress4X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
}
/***************************/
/* double-symbols decoding */
/***************************/
static void HUF_fillDTableX4Level2(HUF_DEltX4* DTable, U32 sizeLog, const U32 consumed,
const U32* rankValOrigin, const int minWeight,
const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
U32 nbBitsBaseline, U16 baseSeq)
{
HUF_DEltX4 DElt;
U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
U32 s;
/* get pre-calculated rankVal */
memcpy(rankVal, rankValOrigin, sizeof(rankVal));
/* fill skipped values */
if (minWeight>1)
{
U32 i, skipSize = rankVal[minWeight];
MEM_writeLE16(&(DElt.sequence), baseSeq);
DElt.nbBits = (BYTE)(consumed);
DElt.length = 1;
for (i = 0; i < skipSize; i++)
DTable[i] = DElt;
}
/* fill DTable */
for (s=0; s<sortedListSize; s++) /* note : sortedSymbols already skipped */
{
const U32 symbol = sortedSymbols[s].symbol;
const U32 weight = sortedSymbols[s].weight;
const U32 nbBits = nbBitsBaseline - weight;
const U32 length = 1 << (sizeLog-nbBits);
const U32 start = rankVal[weight];
U32 i = start;
const U32 end = start + length;
MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
DElt.nbBits = (BYTE)(nbBits + consumed);
DElt.length = 2;
do { DTable[i++] = DElt; } while (i<end); /* since length >= 1 */
rankVal[weight] += length;
}
}
typedef U32 rankVal_t[HUF_ABSOLUTEMAX_TABLELOG][HUF_ABSOLUTEMAX_TABLELOG + 1];
static void HUF_fillDTableX4(HUF_DEltX4* DTable, const U32 targetLog,
const sortedSymbol_t* sortedList, const U32 sortedListSize,
const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
const U32 nbBitsBaseline)
{
U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
const U32 minBits = nbBitsBaseline - maxWeight;
U32 s;
memcpy(rankVal, rankValOrigin, sizeof(rankVal));
/* fill DTable */
for (s=0; s<sortedListSize; s++)
{
const U16 symbol = sortedList[s].symbol;
const U32 weight = sortedList[s].weight;
const U32 nbBits = nbBitsBaseline - weight;
const U32 start = rankVal[weight];
const U32 length = 1 << (targetLog-nbBits);
if (targetLog-nbBits >= minBits) /* enough room for a second symbol */
{
U32 sortedRank;
int minWeight = nbBits + scaleLog;
if (minWeight < 1) minWeight = 1;
sortedRank = rankStart[minWeight];
HUF_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits,
rankValOrigin[nbBits], minWeight,
sortedList+sortedRank, sortedListSize-sortedRank,
nbBitsBaseline, symbol);
}
else
{
U32 i;
const U32 end = start + length;
HUF_DEltX4 DElt;
MEM_writeLE16(&(DElt.sequence), symbol);
DElt.nbBits = (BYTE)(nbBits);
DElt.length = 1;
for (i = start; i < end; i++)
DTable[i] = DElt;
}
rankVal[weight] += length;
}
}
static size_t HUF_readDTableX4 (U32* DTable, const void* src, size_t srcSize)
{
BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1];
sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1];
U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 };
U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 };
U32* const rankStart = rankStart0+1;
rankVal_t rankVal;
U32 tableLog, maxW, sizeOfSort, nbSymbols;
const U32 memLog = DTable[0];
const BYTE* ip = (const BYTE*) src;
size_t iSize = ip[0];
void* ptr = DTable;
HUF_DEltX4* const dt = ((HUF_DEltX4*)ptr) + 1;
HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(U32)); /* if compilation fails here, assertion is false */
if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge);
//memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */
iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
if (HUF_isError(iSize)) return iSize;
/* check result */
if (tableLog > memLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
/* find maxWeight */
for (maxW = tableLog; rankStats[maxW]==0; maxW--)
{if (!maxW) return ERROR(GENERIC); } /* necessarily finds a solution before maxW==0 */
/* Get start index of each weight */
{
U32 w, nextRankStart = 0;
for (w=1; w<=maxW; w++)
{
U32 current = nextRankStart;
nextRankStart += rankStats[w];
rankStart[w] = current;
}
rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
sizeOfSort = nextRankStart;
}
/* sort symbols by weight */
{
U32 s;
for (s=0; s<nbSymbols; s++)
{
U32 w = weightList[s];
U32 r = rankStart[w]++;
sortedSymbol[r].symbol = (BYTE)s;
sortedSymbol[r].weight = (BYTE)w;
}
rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
}
/* Build rankVal */
{
const U32 minBits = tableLog+1 - maxW;
U32 nextRankVal = 0;
U32 w, consumed;
const int rescale = (memLog-tableLog) - 1; /* tableLog <= memLog */
U32* rankVal0 = rankVal[0];
for (w=1; w<=maxW; w++)
{
U32 current = nextRankVal;
nextRankVal += rankStats[w] << (w+rescale);
rankVal0[w] = current;
}
for (consumed = minBits; consumed <= memLog - minBits; consumed++)
{
U32* rankValPtr = rankVal[consumed];
for (w = 1; w <= maxW; w++)
{
rankValPtr[w] = rankVal0[w] >> consumed;
}
}
}
HUF_fillDTableX4(dt, memLog,
sortedSymbol, sizeOfSort,
rankStart0, rankVal, maxW,
tableLog+1);
return iSize;
}
static U32 HUF_decodeSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
{
const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
memcpy(op, dt+val, 2);
BIT_skipBits(DStream, dt[val].nbBits);
return dt[val].length;
}
static U32 HUF_decodeLastSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
{
const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
memcpy(op, dt+val, 1);
if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits);
else
{
if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8))
{
BIT_skipBits(DStream, dt[val].nbBits);
if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
}
}
return 1;
}
#define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
static inline size_t HUF_decodeStreamX4(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const HUF_DEltX4* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 8 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd-7))
{
HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
HUF_DECODE_SYMBOLX4_1(p, bitDPtr);
HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
}
/* closer to the end */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-2))
HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
while (p <= pEnd-2)
HUF_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
if (p < pEnd)
p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);
return p-pStart;
}
static size_t HUF_decompress4X4_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const U32* DTable)
{
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{
const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* ptr = DTable;
const HUF_DEltX4* const dt = ((const HUF_DEltX4*)ptr) +1;
const U32 dtLog = DTable[0];
size_t errorCode;
/* Init */
BIT_DStream_t bitD1;
BIT_DStream_t bitD2;
BIT_DStream_t bitD3;
BIT_DStream_t bitD4;
const size_t length1 = MEM_readLE16(istart);
const size_t length2 = MEM_readLE16(istart+2);
const size_t length3 = MEM_readLE16(istart+4);
size_t length4;
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
const size_t segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal;
length4 = cSrcSize - (length1 + length2 + length3 + 6);
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
errorCode = BIT_initDStream(&bitD1, istart1, length1);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD2, istart2, length2);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD3, istart3, length3);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD4, istart4, length4);
if (HUF_isError(errorCode)) return errorCode;
/* 16-32 symbols per loop (4-8 symbols per stream) */
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; )
{
HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
HUF_DECODE_SYMBOLX4_1(op1, &bitD1);
HUF_DECODE_SYMBOLX4_1(op2, &bitD2);
HUF_DECODE_SYMBOLX4_1(op3, &bitD3);
HUF_DECODE_SYMBOLX4_1(op4, &bitD4);
HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
HUF_DECODE_SYMBOLX4_0(op1, &bitD1);
HUF_DECODE_SYMBOLX4_0(op2, &bitD2);
HUF_DECODE_SYMBOLX4_0(op3, &bitD3);
HUF_DECODE_SYMBOLX4_0(op4, &bitD4);
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 supposed already verified within main loop */
/* finish bitStreams one by one */
HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
HUF_decodeStreamX4(op4, &bitD4, oend, dt, dtLog);
/* check */
endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
if (!endSignal) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
}
static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_MAX_TABLELOG);
const BYTE* ip = (const BYTE*) cSrc;
size_t hSize = HUF_readDTableX4 (DTable, cSrc, cSrcSize);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize;
cSrcSize -= hSize;
return HUF_decompress4X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
}
/**********************************/
/* quad-symbol decoding */
/**********************************/
typedef struct { BYTE nbBits; BYTE nbBytes; } HUF_DDescX6;
typedef union { BYTE byte[4]; U32 sequence; } HUF_DSeqX6;
/* recursive, up to level 3; may benefit from <template>-like strategy to nest each level inline */
static void HUF_fillDTableX6LevelN(HUF_DDescX6* DDescription, HUF_DSeqX6* DSequence, int sizeLog,
const rankVal_t rankValOrigin, const U32 consumed, const int minWeight, const U32 maxWeight,
const sortedSymbol_t* sortedSymbols, const U32 sortedListSize, const U32* rankStart,
const U32 nbBitsBaseline, HUF_DSeqX6 baseSeq, HUF_DDescX6 DDesc)
{
const int scaleLog = nbBitsBaseline - sizeLog; /* note : targetLog >= (nbBitsBaseline-1), hence scaleLog <= 1 */
const int minBits = nbBitsBaseline - maxWeight;
const U32 level = DDesc.nbBytes;
U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
U32 symbolStartPos, s;
/* local rankVal, will be modified */
memcpy(rankVal, rankValOrigin[consumed], sizeof(rankVal));
/* fill skipped values */
if (minWeight>1)
{
U32 i;
const U32 skipSize = rankVal[minWeight];
for (i = 0; i < skipSize; i++)
{
DSequence[i] = baseSeq;
DDescription[i] = DDesc;
}
}
/* fill DTable */
DDesc.nbBytes++;
symbolStartPos = rankStart[minWeight];
for (s=symbolStartPos; s<sortedListSize; s++)
{
const BYTE symbol = sortedSymbols[s].symbol;
const U32 weight = sortedSymbols[s].weight; /* >= 1 (sorted) */
const int nbBits = nbBitsBaseline - weight; /* >= 1 (by construction) */
const int totalBits = consumed+nbBits;
const U32 start = rankVal[weight];
const U32 length = 1 << (sizeLog-nbBits);
baseSeq.byte[level] = symbol;
DDesc.nbBits = (BYTE)totalBits;
if ((level<3) && (sizeLog-totalBits >= minBits)) /* enough room for another symbol */
{
int nextMinWeight = totalBits + scaleLog;
if (nextMinWeight < 1) nextMinWeight = 1;
HUF_fillDTableX6LevelN(DDescription+start, DSequence+start, sizeLog-nbBits,
rankValOrigin, totalBits, nextMinWeight, maxWeight,
sortedSymbols, sortedListSize, rankStart,
nbBitsBaseline, baseSeq, DDesc); /* recursive (max : level 3) */
}
else
{
U32 i;
const U32 end = start + length;
for (i = start; i < end; i++)
{
DDescription[i] = DDesc;
DSequence[i] = baseSeq;
}
}
rankVal[weight] += length;
}
}
/* note : same preparation as X4 */
static size_t HUF_readDTableX6 (U32* DTable, const void* src, size_t srcSize)
{
BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1];
sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1];
U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 };
U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 };
U32* const rankStart = rankStart0+1;
U32 tableLog, maxW, sizeOfSort, nbSymbols;
rankVal_t rankVal;
const U32 memLog = DTable[0];
const BYTE* ip = (const BYTE*) src;
size_t iSize = ip[0];
if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge);
//memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */
iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
if (HUF_isError(iSize)) return iSize;
/* check result */
if (tableLog > memLog) return ERROR(tableLog_tooLarge); /* DTable is too small */
/* find maxWeight */
for (maxW = tableLog; rankStats[maxW]==0; maxW--)
{ if (!maxW) return ERROR(GENERIC); } /* necessarily finds a solution before maxW==0 */
/* Get start index of each weight */
{
U32 w, nextRankStart = 0;
for (w=1; w<=maxW; w++)
{
U32 current = nextRankStart;
nextRankStart += rankStats[w];
rankStart[w] = current;
}
rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
sizeOfSort = nextRankStart;
}
/* sort symbols by weight */
{
U32 s;
for (s=0; s<nbSymbols; s++)
{
U32 w = weightList[s];
U32 r = rankStart[w]++;
sortedSymbol[r].symbol = (BYTE)s;
sortedSymbol[r].weight = (BYTE)w;
}
rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
}
/* Build rankVal */
{
const U32 minBits = tableLog+1 - maxW;
U32 nextRankVal = 0;
U32 w, consumed;
const int rescale = (memLog-tableLog) - 1; /* tableLog <= memLog */
U32* rankVal0 = rankVal[0];
for (w=1; w<=maxW; w++)
{
U32 current = nextRankVal;
nextRankVal += rankStats[w] << (w+rescale);
rankVal0[w] = current;
}
for (consumed = minBits; consumed <= memLog - minBits; consumed++)
{
U32* rankValPtr = rankVal[consumed];
for (w = 1; w <= maxW; w++)
{
rankValPtr[w] = rankVal0[w] >> consumed;
}
}
}
/* fill tables */
{
void* ptr = DTable+1;
HUF_DDescX6* DDescription = (HUF_DDescX6*)(ptr);
void* dSeqStart = DTable + 1 + ((size_t)1<<(memLog-1));
HUF_DSeqX6* DSequence = (HUF_DSeqX6*)(dSeqStart);
HUF_DSeqX6 DSeq;
HUF_DDescX6 DDesc;
DSeq.sequence = 0;
DDesc.nbBits = 0;
DDesc.nbBytes = 0;
HUF_fillDTableX6LevelN(DDescription, DSequence, memLog,
(const U32 (*)[HUF_ABSOLUTEMAX_TABLELOG + 1])rankVal, 0, 1, maxW,
sortedSymbol, sizeOfSort, rankStart0,
tableLog+1, DSeq, DDesc);
}
return iSize;
}
static U32 HUF_decodeSymbolX6(void* op, BIT_DStream_t* DStream, const HUF_DDescX6* dd, const HUF_DSeqX6* ds, const U32 dtLog)
{
const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
memcpy(op, ds+val, sizeof(HUF_DSeqX6));
BIT_skipBits(DStream, dd[val].nbBits);
return dd[val].nbBytes;
}
static U32 HUF_decodeLastSymbolsX6(void* op, const U32 maxL, BIT_DStream_t* DStream,
const HUF_DDescX6* dd, const HUF_DSeqX6* ds, const U32 dtLog)
{
const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
U32 length = dd[val].nbBytes;
if (length <= maxL)
{
memcpy(op, ds+val, length);
BIT_skipBits(DStream, dd[val].nbBits);
return length;
}
memcpy(op, ds+val, maxL);
if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8))
{
BIT_skipBits(DStream, dd[val].nbBits);
if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
}
return maxL;
}
#define HUF_DECODE_SYMBOLX6_0(ptr, DStreamPtr) \
ptr += HUF_decodeSymbolX6(ptr, DStreamPtr, dd, ds, dtLog)
#define HUF_DECODE_SYMBOLX6_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
HUF_DECODE_SYMBOLX6_0(ptr, DStreamPtr)
#define HUF_DECODE_SYMBOLX6_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
HUF_DECODE_SYMBOLX6_0(ptr, DStreamPtr)
static inline size_t HUF_decodeStreamX6(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const U32* DTable, const U32 dtLog)
{
const void* ddPtr = DTable+1;
const HUF_DDescX6* dd = (const HUF_DDescX6*)(ddPtr);
const void* dsPtr = DTable + 1 + ((size_t)1<<(dtLog-1));
const HUF_DSeqX6* ds = (const HUF_DSeqX6*)(dsPtr);
BYTE* const pStart = p;
/* up to 16 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-16))
{
HUF_DECODE_SYMBOLX6_2(p, bitDPtr);
HUF_DECODE_SYMBOLX6_1(p, bitDPtr);
HUF_DECODE_SYMBOLX6_2(p, bitDPtr);
HUF_DECODE_SYMBOLX6_0(p, bitDPtr);
}
/* closer to the end, up to 4 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4))
HUF_DECODE_SYMBOLX6_0(p, bitDPtr);
while (p <= pEnd-4)
HUF_DECODE_SYMBOLX6_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
while (p < pEnd)
p += HUF_decodeLastSymbolsX6(p, (U32)(pEnd-p), bitDPtr, dd, ds, dtLog);
return p-pStart;
}
static size_t HUF_decompress4X6_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const U32* DTable)
{
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{
const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const U32 dtLog = DTable[0];
const void* ddPtr = DTable+1;
const HUF_DDescX6* dd = (const HUF_DDescX6*)(ddPtr);
const void* dsPtr = DTable + 1 + ((size_t)1<<(dtLog-1));
const HUF_DSeqX6* ds = (const HUF_DSeqX6*)(dsPtr);
size_t errorCode;
/* Init */
BIT_DStream_t bitD1;
BIT_DStream_t bitD2;
BIT_DStream_t bitD3;
BIT_DStream_t bitD4;
const size_t length1 = MEM_readLE16(istart);
const size_t length2 = MEM_readLE16(istart+2);
const size_t length3 = MEM_readLE16(istart+4);
size_t length4;
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
const size_t segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal;
length4 = cSrcSize - (length1 + length2 + length3 + 6);
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
errorCode = BIT_initDStream(&bitD1, istart1, length1);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD2, istart2, length2);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD3, istart3, length3);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD4, istart4, length4);
if (HUF_isError(errorCode)) return errorCode;
/* 16-64 symbols per loop (4-16 symbols per stream) */
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
for ( ; (op3 <= opStart4) && (endSignal==BIT_DStream_unfinished) && (op4<=(oend-16)) ; )
{
HUF_DECODE_SYMBOLX6_2(op1, &bitD1);
HUF_DECODE_SYMBOLX6_2(op2, &bitD2);
HUF_DECODE_SYMBOLX6_2(op3, &bitD3);
HUF_DECODE_SYMBOLX6_2(op4, &bitD4);
HUF_DECODE_SYMBOLX6_1(op1, &bitD1);
HUF_DECODE_SYMBOLX6_1(op2, &bitD2);
HUF_DECODE_SYMBOLX6_1(op3, &bitD3);
HUF_DECODE_SYMBOLX6_1(op4, &bitD4);
HUF_DECODE_SYMBOLX6_2(op1, &bitD1);
HUF_DECODE_SYMBOLX6_2(op2, &bitD2);
HUF_DECODE_SYMBOLX6_2(op3, &bitD3);
HUF_DECODE_SYMBOLX6_2(op4, &bitD4);
HUF_DECODE_SYMBOLX6_0(op1, &bitD1);
HUF_DECODE_SYMBOLX6_0(op2, &bitD2);
HUF_DECODE_SYMBOLX6_0(op3, &bitD3);
HUF_DECODE_SYMBOLX6_0(op4, &bitD4);
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 supposed already verified within main loop */
/* finish bitStreams one by one */
HUF_decodeStreamX6(op1, &bitD1, opStart2, DTable, dtLog);
HUF_decodeStreamX6(op2, &bitD2, opStart3, DTable, dtLog);
HUF_decodeStreamX6(op3, &bitD3, opStart4, DTable, dtLog);
HUF_decodeStreamX6(op4, &bitD4, oend, DTable, dtLog);
/* check */
endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
if (!endSignal) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
}
static size_t HUF_decompress4X6 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLEX6(DTable, HUF_MAX_TABLELOG);
const BYTE* ip = (const BYTE*) cSrc;
size_t hSize = HUF_readDTableX6 (DTable, cSrc, cSrcSize);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize;
cSrcSize -= hSize;
return HUF_decompress4X6_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
}
/**********************************/
/* Generic decompression selector */
/**********************************/
typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
{
/* single, double, quad */
{{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */
{{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */
{{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */
{{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */
{{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */
{{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */
{{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */
{{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */
{{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */
{{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */
{{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */
{{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */
{{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */
{{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */
{{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */
{{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */
};
typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
static size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
static const decompressionAlgo decompress[3] = { HUF_decompress4X2, HUF_decompress4X4, HUF_decompress4X6 };
/* estimate decompression time */
U32 Q;
const U32 D256 = (U32)(dstSize >> 8);
U32 Dtime[3];
U32 algoNb = 0;
int n;
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
/* decoder timing evaluation */
Q = (U32)(cSrcSize * 16 / dstSize); /* Q < 16 since dstSize > cSrcSize */
for (n=0; n<3; n++)
Dtime[n] = algoTime[Q][n].tableTime + (algoTime[Q][n].decode256Time * D256);
Dtime[1] += Dtime[1] >> 4; Dtime[2] += Dtime[2] >> 3; /* advantage to algorithms using less memory, for cache eviction */
if (Dtime[1] < Dtime[0]) algoNb = 1;
if (Dtime[2] < Dtime[algoNb]) algoNb = 2;
return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
//return HUF_decompress4X2(dst, dstSize, cSrc, cSrcSize); /* multi-streams single-symbol decoding */
//return HUF_decompress4X4(dst, dstSize, cSrc, cSrcSize); /* multi-streams double-symbols decoding */
//return HUF_decompress4X6(dst, dstSize, cSrc, cSrcSize); /* multi-streams quad-symbols decoding */
}
/*
zstd - standard compression library
Copyright (C) 2014-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- zstd source repository : https://github.com/Cyan4973/zstd
- ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
*/
/* ***************************************************************
* Tuning parameters
*****************************************************************/
/*!
* MEMORY_USAGE :
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
* Increasing memory usage improves compression ratio
* Reduced memory usage can improve speed, due to cache effect
*/
#define ZSTD_MEMORY_USAGE 17
/*!
* HEAPMODE :
* Select how default compression functions will allocate memory for their hash table,
* in memory stack (0, fastest), or in memory heap (1, requires malloc())
* Note that compression context is fairly large, as a consequence heap memory is recommended.
*/
#ifndef ZSTD_HEAPMODE
# define ZSTD_HEAPMODE 1
#endif /* ZSTD_HEAPMODE */
/*!
* LEGACY_SUPPORT :
* decompressor can decode older formats (starting from Zstd 0.1+)
*/
#ifndef ZSTD_LEGACY_SUPPORT
# define ZSTD_LEGACY_SUPPORT 1
#endif
/* *******************************************************
* Includes
*********************************************************/
#include <stdlib.h> /* calloc */
#include <string.h> /* memcpy, memmove */
#include <stdio.h> /* debug : printf */
/* *******************************************************
* Compiler specifics
*********************************************************/
#ifdef __AVX2__
# include <immintrin.h> /* AVX2 intrinsics */
#endif
#ifdef _MSC_VER /* Visual Studio */
# include <intrin.h> /* For Visual 2005 */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4324) /* disable: C4324: padded structure */
#endif
/* *******************************************************
* Constants
*********************************************************/
#define HASH_LOG (ZSTD_MEMORY_USAGE - 2)
#define HASH_TABLESIZE (1 << HASH_LOG)
#define HASH_MASK (HASH_TABLESIZE - 1)
#define KNUTH 2654435761
#define BIT7 128
#define BIT6 64
#define BIT5 32
#define BIT4 16
#define BIT1 2
#define BIT0 1
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)
#define BLOCKSIZE (128 KB) /* define, for static allocation */
#define MIN_SEQUENCES_SIZE (2 /*seqNb*/ + 2 /*dumps*/ + 3 /*seqTables*/ + 1 /*bitStream*/)
#define MIN_CBLOCK_SIZE (3 /*litCSize*/ + MIN_SEQUENCES_SIZE)
#define IS_RAW BIT0
#define IS_RLE BIT1
#define WORKPLACESIZE (BLOCKSIZE*3)
#define MINMATCH 4
#define MLbits 7
#define LLbits 6
#define Offbits 5
#define MaxML ((1<<MLbits )-1)
#define MaxLL ((1<<LLbits )-1)
#define MaxOff 31
#define LitFSELog 11
#define MLFSELog 10
#define LLFSELog 10
#define OffFSELog 9
#define MAX(a,b) ((a)<(b)?(b):(a))
#define MaxSeq MAX(MaxLL, MaxML)
#define LITERAL_NOENTROPY 63
#define COMMAND_NOENTROPY 7 /* to remove */
#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2)
static const size_t ZSTD_blockHeaderSize = 3;
static const size_t ZSTD_frameHeaderSize = 4;
/* *******************************************************
* Memory operations
**********************************************************/
static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }
static void ZSTD_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
#define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; }
/*! ZSTD_wildcopy : custom version of memcpy(), can copy up to 7-8 bytes too many */
static void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length)
{
const BYTE* ip = (const BYTE*)src;
BYTE* op = (BYTE*)dst;
BYTE* const oend = op + length;
do COPY8(op, ip) while (op < oend);
}
/* **************************************
* Local structures
****************************************/
typedef enum { bt_compressed, bt_raw, bt_rle, bt_end } blockType_t;
typedef struct
{
blockType_t blockType;
U32 origSize;
} blockProperties_t;
typedef struct {
void* buffer;
U32* offsetStart;
U32* offset;
BYTE* offCodeStart;
BYTE* offCode;
BYTE* litStart;
BYTE* lit;
BYTE* litLengthStart;
BYTE* litLength;
BYTE* matchLengthStart;
BYTE* matchLength;
BYTE* dumpsStart;
BYTE* dumps;
} seqStore_t;
/* *************************************
* Error Management
***************************************/
/*! ZSTD_isError
* tells if a return value is an error code */
static unsigned ZSTD_isError(size_t code) { return ERR_isError(code); }
/* *************************************************************
* Decompression section
***************************************************************/
struct ZSTD_DCtx_s
{
U32 LLTable[FSE_DTABLE_SIZE_U32(LLFSELog)];
U32 OffTable[FSE_DTABLE_SIZE_U32(OffFSELog)];
U32 MLTable[FSE_DTABLE_SIZE_U32(MLFSELog)];
void* previousDstEnd;
void* base;
size_t expected;
blockType_t bType;
U32 phase;
const BYTE* litPtr;
size_t litSize;
BYTE litBuffer[BLOCKSIZE + 8 /* margin for wildcopy */];
}; /* typedef'd to ZSTD_Dctx within "zstd_static.h" */
static size_t ZSTD_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
{
const BYTE* const in = (const BYTE* const)src;
BYTE headerFlags;
U32 cSize;
if (srcSize < 3) return ERROR(srcSize_wrong);
headerFlags = *in;
cSize = in[2] + (in[1]<<8) + ((in[0] & 7)<<16);
bpPtr->blockType = (blockType_t)(headerFlags >> 6);
bpPtr->origSize = (bpPtr->blockType == bt_rle) ? cSize : 0;
if (bpPtr->blockType == bt_end) return 0;
if (bpPtr->blockType == bt_rle) return 1;
return cSize;
}
static size_t ZSTD_copyUncompressedBlock(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
if (srcSize > maxDstSize) return ERROR(dstSize_tooSmall);
if (srcSize > 0) {
memcpy(dst, src, srcSize);
}
return srcSize;
}
/** ZSTD_decompressLiterals
@return : nb of bytes read from src, or an error code*/
static size_t ZSTD_decompressLiterals(void* dst, size_t* maxDstSizePtr,
const void* src, size_t srcSize)
{
const BYTE* ip = (const BYTE*)src;
const size_t litSize = (MEM_readLE32(src) & 0x1FFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
const size_t litCSize = (MEM_readLE32(ip+2) & 0xFFFFFF) >> 5; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
if (litSize > *maxDstSizePtr) return ERROR(corruption_detected);
if (litCSize + 5 > srcSize) return ERROR(corruption_detected);
if (HUF_isError(HUF_decompress(dst, litSize, ip+5, litCSize))) return ERROR(corruption_detected);
*maxDstSizePtr = litSize;
return litCSize + 5;
}
/** ZSTD_decodeLiteralsBlock
@return : nb of bytes read from src (< srcSize )*/
static size_t ZSTD_decodeLiteralsBlock(void* ctx,
const void* src, size_t srcSize)
{
ZSTD_DCtx* dctx = (ZSTD_DCtx*)ctx;
const BYTE* const istart = (const BYTE* const)src;
/* any compressed block with literals segment must be at least this size */
if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected);
switch(*istart & 3)
{
default:
case 0:
{
size_t litSize = BLOCKSIZE;
const size_t readSize = ZSTD_decompressLiterals(dctx->litBuffer, &litSize, src, srcSize);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
memset(dctx->litBuffer + dctx->litSize, 0, 8);
return readSize; /* works if it's an error too */
}
case IS_RAW:
{
const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
if (litSize > srcSize-11) /* risk of reading too far with wildcopy */
{
if (litSize > BLOCKSIZE) return ERROR(corruption_detected);
if (litSize > srcSize-3) return ERROR(corruption_detected);
memcpy(dctx->litBuffer, istart, litSize);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
memset(dctx->litBuffer + dctx->litSize, 0, 8);
return litSize+3;
}
/* direct reference into compressed stream */
dctx->litPtr = istart+3;
dctx->litSize = litSize;
return litSize+3;
}
case IS_RLE:
{
const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
if (litSize > BLOCKSIZE) return ERROR(corruption_detected);
memset(dctx->litBuffer, istart[3], litSize + 8);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
return 4;
}
}
}
static size_t ZSTD_decodeSeqHeaders(int* nbSeq, const BYTE** dumpsPtr, size_t* dumpsLengthPtr,
FSE_DTable* DTableLL, FSE_DTable* DTableML, FSE_DTable* DTableOffb,
const void* src, size_t srcSize)
{
const BYTE* const istart = (const BYTE* const)src;
const BYTE* ip = istart;
const BYTE* const iend = istart + srcSize;
U32 LLtype, Offtype, MLtype;
U32 LLlog, Offlog, MLlog;
size_t dumpsLength;
/* check */
if (srcSize < 5) return ERROR(srcSize_wrong);
/* SeqHead */
*nbSeq = MEM_readLE16(ip); ip+=2;
LLtype = *ip >> 6;
Offtype = (*ip >> 4) & 3;
MLtype = (*ip >> 2) & 3;
if (*ip & 2)
{
dumpsLength = ip[2];
dumpsLength += ip[1] << 8;
ip += 3;
}
else
{
dumpsLength = ip[1];
dumpsLength += (ip[0] & 1) << 8;
ip += 2;
}
*dumpsPtr = ip;
ip += dumpsLength;
*dumpsLengthPtr = dumpsLength;
/* check */
if (ip > iend-3) return ERROR(srcSize_wrong); /* min : all 3 are "raw", hence no header, but at least xxLog bits per type */
/* sequences */
{
S16 norm[MaxML+1]; /* assumption : MaxML >= MaxLL and MaxOff */
size_t headerSize;
/* Build DTables */
switch(LLtype)
{
case bt_rle :
LLlog = 0;
FSE_buildDTable_rle(DTableLL, *ip++); break;
case bt_raw :
LLlog = LLbits;
FSE_buildDTable_raw(DTableLL, LLbits); break;
default :
{ U32 max = MaxLL;
headerSize = FSE_readNCount(norm, &max, &LLlog, ip, iend-ip);
if (FSE_isError(headerSize)) return ERROR(GENERIC);
if (LLlog > LLFSELog) return ERROR(corruption_detected);
ip += headerSize;
FSE_buildDTable(DTableLL, norm, max, LLlog);
} }
switch(Offtype)
{
case bt_rle :
Offlog = 0;
if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
FSE_buildDTable_rle(DTableOffb, *ip++ & MaxOff); /* if *ip > MaxOff, data is corrupted */
break;
case bt_raw :
Offlog = Offbits;
FSE_buildDTable_raw(DTableOffb, Offbits); break;
default :
{ U32 max = MaxOff;
headerSize = FSE_readNCount(norm, &max, &Offlog, ip, iend-ip);
if (FSE_isError(headerSize)) return ERROR(GENERIC);
if (Offlog > OffFSELog) return ERROR(corruption_detected);
ip += headerSize;
FSE_buildDTable(DTableOffb, norm, max, Offlog);
} }
switch(MLtype)
{
case bt_rle :
MLlog = 0;
if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
FSE_buildDTable_rle(DTableML, *ip++); break;
case bt_raw :
MLlog = MLbits;
FSE_buildDTable_raw(DTableML, MLbits); break;
default :
{ U32 max = MaxML;
headerSize = FSE_readNCount(norm, &max, &MLlog, ip, iend-ip);
if (FSE_isError(headerSize)) return ERROR(GENERIC);
if (MLlog > MLFSELog) return ERROR(corruption_detected);
ip += headerSize;
FSE_buildDTable(DTableML, norm, max, MLlog);
} } }
return ip-istart;
}
typedef struct {
size_t litLength;
size_t offset;
size_t matchLength;
} seq_t;
typedef struct {
BIT_DStream_t DStream;
FSE_DState_t stateLL;
FSE_DState_t stateOffb;
FSE_DState_t stateML;
size_t prevOffset;
const BYTE* dumps;
const BYTE* dumpsEnd;
} seqState_t;
static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState)
{
size_t litLength;
size_t prevOffset;
size_t offset;
size_t matchLength;
const BYTE* dumps = seqState->dumps;
const BYTE* const de = seqState->dumpsEnd;
/* Literal length */
litLength = FSE_decodeSymbol(&(seqState->stateLL), &(seqState->DStream));
prevOffset = litLength ? seq->offset : seqState->prevOffset;
seqState->prevOffset = seq->offset;
if (litLength == MaxLL)
{
const U32 add = dumps<de ? *dumps++ : 0;
if (add < 255) litLength += add;
else if (dumps + 3 <= de)
{
litLength = MEM_readLE24(dumps);
dumps += 3;
}
if (dumps >= de) dumps = de-1; /* late correction, to avoid read overflow (data is now corrupted anyway) */
}
/* Offset */
{
static const size_t offsetPrefix[MaxOff+1] = { /* note : size_t faster than U32 */
1 /*fake*/, 1, 2, 4, 8, 16, 32, 64, 128, 256,
512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144,
524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, /*fake*/ 1, 1, 1, 1, 1 };
U32 offsetCode, nbBits;
offsetCode = FSE_decodeSymbol(&(seqState->stateOffb), &(seqState->DStream)); /* <= maxOff, by table construction */
if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream));
nbBits = offsetCode - 1;
if (offsetCode==0) nbBits = 0; /* cmove */
offset = offsetPrefix[offsetCode] + BIT_readBits(&(seqState->DStream), nbBits);
if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream));
if (offsetCode==0) offset = prevOffset; /* cmove */
}
/* MatchLength */
matchLength = FSE_decodeSymbol(&(seqState->stateML), &(seqState->DStream));
if (matchLength == MaxML)
{
const U32 add = dumps<de ? *dumps++ : 0;
if (add < 255) matchLength += add;
else if (dumps + 3 <= de)
{
matchLength = MEM_readLE24(dumps);
dumps += 3;
}
if (dumps >= de) dumps = de-1; /* late correction, to avoid read overflow (data is now corrupted anyway) */
}
matchLength += MINMATCH;
/* save result */
seq->litLength = litLength;
seq->offset = offset;
seq->matchLength = matchLength;
seqState->dumps = dumps;
}
static size_t ZSTD_execSequence(BYTE* op,
seq_t sequence,
const BYTE** litPtr, const BYTE* const litLimit,
BYTE* const base, BYTE* const oend)
{
static const int dec32table[] = {0, 1, 2, 1, 4, 4, 4, 4}; /* added */
static const int dec64table[] = {8, 8, 8, 7, 8, 9,10,11}; /* subtracted */
const BYTE* const ostart = op;
BYTE* const oLitEnd = op + sequence.litLength;
BYTE* const oMatchEnd = op + sequence.litLength + sequence.matchLength; /* risk : address space overflow (32-bits) */
BYTE* const oend_8 = oend-8;
const BYTE* const litEnd = *litPtr + sequence.litLength;
/* checks */
if (oLitEnd > oend_8) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of 8 from oend */
if (oMatchEnd > oend) return ERROR(dstSize_tooSmall); /* overwrite beyond dst buffer */
if (litEnd > litLimit) return ERROR(corruption_detected); /* overRead beyond lit buffer */
/* copy Literals */
ZSTD_wildcopy(op, *litPtr, sequence.litLength); /* note : oLitEnd <= oend-8 : no risk of overwrite beyond oend */
op = oLitEnd;
*litPtr = litEnd; /* update for next sequence */
/* copy Match */
{
const BYTE* match = op - sequence.offset;
/* check */
if (sequence.offset > (size_t)op) return ERROR(corruption_detected); /* address space overflow test (this test seems kept by clang optimizer) */
//if (match > op) return ERROR(corruption_detected); /* address space overflow test (is clang optimizer removing this test ?) */
if (match < base) return ERROR(corruption_detected);
/* close range match, overlap */
if (sequence.offset < 8)
{
const int dec64 = dec64table[sequence.offset];
op[0] = match[0];
op[1] = match[1];
op[2] = match[2];
op[3] = match[3];
match += dec32table[sequence.offset];
ZSTD_copy4(op+4, match);
match -= dec64;
}
else
{
ZSTD_copy8(op, match);
}
op += 8; match += 8;
if (oMatchEnd > oend-(16-MINMATCH))
{
if (op < oend_8)
{
ZSTD_wildcopy(op, match, oend_8 - op);
match += oend_8 - op;
op = oend_8;
}
while (op < oMatchEnd) *op++ = *match++;
}
else
{
ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */
}
}
return oMatchEnd - ostart;
}
static size_t ZSTD_decompressSequences(
void* ctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize)
{
ZSTD_DCtx* dctx = (ZSTD_DCtx*)ctx;
const BYTE* ip = (const BYTE*)seqStart;
const BYTE* const iend = ip + seqSize;
BYTE* const ostart = (BYTE* const)dst;
BYTE* op = ostart;
BYTE* const oend = ostart + maxDstSize;
size_t errorCode, dumpsLength;
const BYTE* litPtr = dctx->litPtr;
const BYTE* const litEnd = litPtr + dctx->litSize;
int nbSeq;
const BYTE* dumps;
U32* DTableLL = dctx->LLTable;
U32* DTableML = dctx->MLTable;
U32* DTableOffb = dctx->OffTable;
BYTE* const base = (BYTE*) (dctx->base);
/* Build Decoding Tables */
errorCode = ZSTD_decodeSeqHeaders(&nbSeq, &dumps, &dumpsLength,
DTableLL, DTableML, DTableOffb,
ip, iend-ip);
if (ZSTD_isError(errorCode)) return errorCode;
ip += errorCode;
/* Regen sequences */
{
seq_t sequence;
seqState_t seqState;
memset(&sequence, 0, sizeof(sequence));
seqState.dumps = dumps;
seqState.dumpsEnd = dumps + dumpsLength;
seqState.prevOffset = 1;
errorCode = BIT_initDStream(&(seqState.DStream), ip, iend-ip);
if (ERR_isError(errorCode)) return ERROR(corruption_detected);
FSE_initDState(&(seqState.stateLL), &(seqState.DStream), DTableLL);
FSE_initDState(&(seqState.stateOffb), &(seqState.DStream), DTableOffb);
FSE_initDState(&(seqState.stateML), &(seqState.DStream), DTableML);
for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && (nbSeq>0) ; )
{
size_t oneSeqSize;
nbSeq--;
ZSTD_decodeSequence(&sequence, &seqState);
oneSeqSize = ZSTD_execSequence(op, sequence, &litPtr, litEnd, base, oend);
if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
op += oneSeqSize;
}
/* check if reached exact end */
if ( !BIT_endOfDStream(&(seqState.DStream)) ) return ERROR(corruption_detected); /* requested too much : data is corrupted */
if (nbSeq<0) return ERROR(corruption_detected); /* requested too many sequences : data is corrupted */
/* last literal segment */
{
size_t lastLLSize = litEnd - litPtr;
if (litPtr > litEnd) return ERROR(corruption_detected);
if (op+lastLLSize > oend) return ERROR(dstSize_tooSmall);
if (lastLLSize > 0) {
if (op != litPtr) memmove(op, litPtr, lastLLSize);
op += lastLLSize;
}
}
}
return op-ostart;
}
static size_t ZSTD_decompressBlock(
void* ctx,
void* dst, size_t maxDstSize,
const void* src, size_t srcSize)
{
/* blockType == blockCompressed */
const BYTE* ip = (const BYTE*)src;
/* Decode literals sub-block */
size_t litCSize = ZSTD_decodeLiteralsBlock(ctx, src, srcSize);
if (ZSTD_isError(litCSize)) return litCSize;
ip += litCSize;
srcSize -= litCSize;
return ZSTD_decompressSequences(ctx, dst, maxDstSize, ip, srcSize);
}
static size_t ZSTD_decompressDCtx(void* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
const BYTE* ip = (const BYTE*)src;
const BYTE* iend = ip + srcSize;
BYTE* const ostart = (BYTE* const)dst;
BYTE* op = ostart;
BYTE* const oend = ostart + maxDstSize;
size_t remainingSize = srcSize;
U32 magicNumber;
blockProperties_t blockProperties;
/* Frame Header */
if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
magicNumber = MEM_readLE32(src);
if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown);
ip += ZSTD_frameHeaderSize; remainingSize -= ZSTD_frameHeaderSize;
/* Loop on each block */
while (1)
{
size_t decodedSize=0;
size_t cBlockSize = ZSTD_getcBlockSize(ip, iend-ip, &blockProperties);
if (ZSTD_isError(cBlockSize)) return cBlockSize;
ip += ZSTD_blockHeaderSize;
remainingSize -= ZSTD_blockHeaderSize;
if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);
switch(blockProperties.blockType)
{
case bt_compressed:
decodedSize = ZSTD_decompressBlock(ctx, op, oend-op, ip, cBlockSize);
break;
case bt_raw :
decodedSize = ZSTD_copyUncompressedBlock(op, oend-op, ip, cBlockSize);
break;
case bt_rle :
return ERROR(GENERIC); /* not yet supported */
break;
case bt_end :
/* end of frame */
if (remainingSize) return ERROR(srcSize_wrong);
break;
default:
return ERROR(GENERIC); /* impossible */
}
if (cBlockSize == 0) break; /* bt_end */
if (ZSTD_isError(decodedSize)) return decodedSize;
op += decodedSize;
ip += cBlockSize;
remainingSize -= cBlockSize;
}
return op-ostart;
}
static size_t ZSTD_decompress(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
ZSTD_DCtx ctx;
ctx.base = dst;
return ZSTD_decompressDCtx(&ctx, dst, maxDstSize, src, srcSize);
}
/* ZSTD_errorFrameSizeInfoLegacy() :
assumes `cSize` and `dBound` are _not_ NULL */
static void ZSTD_errorFrameSizeInfoLegacy(size_t* cSize, unsigned long long* dBound, size_t ret)
{
*cSize = ret;
*dBound = ZSTD_CONTENTSIZE_ERROR;
}
void ZSTDv02_findFrameSizeInfoLegacy(const void *src, size_t srcSize, size_t* cSize, unsigned long long* dBound)
{
const BYTE* ip = (const BYTE*)src;
size_t remainingSize = srcSize;
size_t nbBlocks = 0;
U32 magicNumber;
blockProperties_t blockProperties;
/* Frame Header */
if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
magicNumber = MEM_readLE32(src);
if (magicNumber != ZSTD_magicNumber) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(prefix_unknown));
return;
}
ip += ZSTD_frameHeaderSize; remainingSize -= ZSTD_frameHeaderSize;
/* Loop on each block */
while (1)
{
size_t cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties);
if (ZSTD_isError(cBlockSize)) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, cBlockSize);
return;
}
ip += ZSTD_blockHeaderSize;
remainingSize -= ZSTD_blockHeaderSize;
if (cBlockSize > remainingSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
if (cBlockSize == 0) break; /* bt_end */
ip += cBlockSize;
remainingSize -= cBlockSize;
nbBlocks++;
}
*cSize = ip - (const BYTE*)src;
*dBound = nbBlocks * BLOCKSIZE;
}
/*******************************
* Streaming Decompression API
*******************************/
static size_t ZSTD_resetDCtx(ZSTD_DCtx* dctx)
{
dctx->expected = ZSTD_frameHeaderSize;
dctx->phase = 0;
dctx->previousDstEnd = NULL;
dctx->base = NULL;
return 0;
}
static ZSTD_DCtx* ZSTD_createDCtx(void)
{
ZSTD_DCtx* dctx = (ZSTD_DCtx*)malloc(sizeof(ZSTD_DCtx));
if (dctx==NULL) return NULL;
ZSTD_resetDCtx(dctx);
return dctx;
}
static size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx)
{
free(dctx);
return 0;
}
static size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx)
{
return dctx->expected;
}
static size_t ZSTD_decompressContinue(ZSTD_DCtx* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
/* Sanity check */
if (srcSize != ctx->expected) return ERROR(srcSize_wrong);
if (dst != ctx->previousDstEnd) /* not contiguous */
ctx->base = dst;
/* Decompress : frame header */
if (ctx->phase == 0)
{
/* Check frame magic header */
U32 magicNumber = MEM_readLE32(src);
if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown);
ctx->phase = 1;
ctx->expected = ZSTD_blockHeaderSize;
return 0;
}
/* Decompress : block header */
if (ctx->phase == 1)
{
blockProperties_t bp;
size_t blockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp);
if (ZSTD_isError(blockSize)) return blockSize;
if (bp.blockType == bt_end)
{
ctx->expected = 0;
ctx->phase = 0;
}
else
{
ctx->expected = blockSize;
ctx->bType = bp.blockType;
ctx->phase = 2;
}
return 0;
}
/* Decompress : block content */
{
size_t rSize;
switch(ctx->bType)
{
case bt_compressed:
rSize = ZSTD_decompressBlock(ctx, dst, maxDstSize, src, srcSize);
break;
case bt_raw :
rSize = ZSTD_copyUncompressedBlock(dst, maxDstSize, src, srcSize);
break;
case bt_rle :
return ERROR(GENERIC); /* not yet handled */
break;
case bt_end : /* should never happen (filtered at phase 1) */
rSize = 0;
break;
default:
return ERROR(GENERIC);
}
ctx->phase = 1;
ctx->expected = ZSTD_blockHeaderSize;
ctx->previousDstEnd = (void*)( ((char*)dst) + rSize);
return rSize;
}
}
/* wrapper layer */
unsigned ZSTDv02_isError(size_t code)
{
return ZSTD_isError(code);
}
size_t ZSTDv02_decompress( void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize)
{
return ZSTD_decompress(dst, maxOriginalSize, src, compressedSize);
}
ZSTDv02_Dctx* ZSTDv02_createDCtx(void)
{
return (ZSTDv02_Dctx*)ZSTD_createDCtx();
}
size_t ZSTDv02_freeDCtx(ZSTDv02_Dctx* dctx)
{
return ZSTD_freeDCtx((ZSTD_DCtx*)dctx);
}
size_t ZSTDv02_resetDCtx(ZSTDv02_Dctx* dctx)
{
return ZSTD_resetDCtx((ZSTD_DCtx*)dctx);
}
size_t ZSTDv02_nextSrcSizeToDecompress(ZSTDv02_Dctx* dctx)
{
return ZSTD_nextSrcSizeToDecompress((ZSTD_DCtx*)dctx);
}
size_t ZSTDv02_decompressContinue(ZSTDv02_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
return ZSTD_decompressContinue((ZSTD_DCtx*)dctx, dst, maxDstSize, src, srcSize);
}
diff --git a/sys/contrib/zstd/lib/legacy/zstd_v02.h b/sys/contrib/zstd/lib/legacy/zstd_v02.h
index 5f8f6cd60cc5..1b371953b740 100644
--- a/sys/contrib/zstd/lib/legacy/zstd_v02.h
+++ b/sys/contrib/zstd/lib/legacy/zstd_v02.h
@@ -1,93 +1,93 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_V02_H_4174539423
#define ZSTD_V02_H_4174539423
#if defined (__cplusplus)
extern "C" {
#endif
/* *************************************
* Includes
***************************************/
#include <stddef.h> /* size_t */
/* *************************************
* Simple one-step function
***************************************/
/**
ZSTDv02_decompress() : decompress ZSTD frames compliant with v0.2.x format
compressedSize : is the exact source size
maxOriginalSize : is the size of the 'dst' buffer, which must be already allocated.
It must be equal or larger than originalSize, otherwise decompression will fail.
return : the number of bytes decompressed into destination buffer (originalSize)
or an errorCode if it fails (which can be tested using ZSTDv01_isError())
*/
size_t ZSTDv02_decompress( void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize);
/**
ZSTDv02_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.2.x format
srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
cSize (output parameter) : the number of bytes that would be read to decompress this frame
or an error code if it fails (which can be tested using ZSTDv01_isError())
dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame
or ZSTD_CONTENTSIZE_ERROR if an error occurs
note : assumes `cSize` and `dBound` are _not_ NULL.
*/
void ZSTDv02_findFrameSizeInfoLegacy(const void *src, size_t srcSize,
size_t* cSize, unsigned long long* dBound);
/**
ZSTDv02_isError() : tells if the result of ZSTDv02_decompress() is an error
*/
unsigned ZSTDv02_isError(size_t code);
/* *************************************
* Advanced functions
***************************************/
typedef struct ZSTDv02_Dctx_s ZSTDv02_Dctx;
ZSTDv02_Dctx* ZSTDv02_createDCtx(void);
size_t ZSTDv02_freeDCtx(ZSTDv02_Dctx* dctx);
size_t ZSTDv02_decompressDCtx(void* ctx,
void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize);
/* *************************************
* Streaming functions
***************************************/
size_t ZSTDv02_resetDCtx(ZSTDv02_Dctx* dctx);
size_t ZSTDv02_nextSrcSizeToDecompress(ZSTDv02_Dctx* dctx);
size_t ZSTDv02_decompressContinue(ZSTDv02_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize);
/**
Use above functions alternatively.
ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block.
Result is the number of bytes regenerated within 'dst'.
It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.
*/
/* *************************************
* Prefix - version detection
***************************************/
#define ZSTDv02_magicNumber 0xFD2FB522 /* v0.2 */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_V02_H_4174539423 */
diff --git a/sys/contrib/zstd/lib/legacy/zstd_v03.c b/sys/contrib/zstd/lib/legacy/zstd_v03.c
index a19cb205a56c..6625f4df1cb4 100644
--- a/sys/contrib/zstd/lib/legacy/zstd_v03.c
+++ b/sys/contrib/zstd/lib/legacy/zstd_v03.c
@@ -1,3164 +1,3160 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include <stddef.h> /* size_t, ptrdiff_t */
#include "zstd_v03.h"
#include "../common/error_private.h"
/******************************************
* Compiler-specific
******************************************/
#if defined(_MSC_VER) /* Visual Studio */
# include <stdlib.h> /* _byteswap_ulong */
# include <intrin.h> /* _byteswap_* */
#endif
/* ******************************************************************
mem.h
low-level memory access routines
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef MEM_H_MODULE
#define MEM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/******************************************
* Includes
******************************************/
#include <stddef.h> /* size_t, ptrdiff_t */
#include <string.h> /* memcpy */
/******************************************
* Compiler-specific
******************************************/
#if defined(__GNUC__)
# define MEM_STATIC static __attribute__((unused))
#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define MEM_STATIC static inline
#elif defined(_MSC_VER)
# define MEM_STATIC static __inline
#else
# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
#endif
/****************************************************************
* Basic Types
*****************************************************************/
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# if defined(_AIX)
# include <inttypes.h>
# else
# include <stdint.h> /* intptr_t */
# endif
typedef uint8_t BYTE;
typedef uint16_t U16;
typedef int16_t S16;
typedef uint32_t U32;
typedef int32_t S32;
typedef uint64_t U64;
typedef int64_t S64;
#else
typedef unsigned char BYTE;
typedef unsigned short U16;
typedef signed short S16;
typedef unsigned int U32;
typedef signed int S32;
typedef unsigned long long U64;
typedef signed long long S64;
#endif
/****************************************************************
* Memory I/O
*****************************************************************/
/* MEM_FORCE_MEMORY_ACCESS
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
* The below switch allow to select different access method for improved performance.
* Method 0 (default) : use `memcpy()`. Safe and portable.
* Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
* This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
* Method 2 : direct access. This method is portable but violate C standard.
* It can generate buggy code on targets generating assembly depending on alignment.
* But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
* See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
* Prefer these methods in priority order (0 > 1 > 2)
*/
#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
-# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
-# define MEM_FORCE_MEMORY_ACCESS 2
-# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
- (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
+# if defined(__INTEL_COMPILER) || defined(__GNUC__) || defined(__ICCARM__)
# define MEM_FORCE_MEMORY_ACCESS 1
# endif
#endif
MEM_STATIC unsigned MEM_32bits(void) { return sizeof(void*)==4; }
MEM_STATIC unsigned MEM_64bits(void) { return sizeof(void*)==8; }
MEM_STATIC unsigned MEM_isLittleEndian(void)
{
const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
return one.c[0];
}
#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
/* violates C standard on structure alignment.
Only use if no other choice to achieve best performance on target platform */
MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
/* currently only defined for gcc and icc */
typedef union { U16 u16; U32 u32; U64 u64; } __attribute__((packed)) unalign;
MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign*)ptr)->u16; }
MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign*)memPtr)->u16 = value; }
#else
/* default method, safe and standard.
can sometimes prove slower */
MEM_STATIC U16 MEM_read16(const void* memPtr)
{
U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U32 MEM_read32(const void* memPtr)
{
U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U64 MEM_read64(const void* memPtr)
{
U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC void MEM_write16(void* memPtr, U16 value)
{
memcpy(memPtr, &value, sizeof(value));
}
#endif /* MEM_FORCE_MEMORY_ACCESS */
MEM_STATIC U16 MEM_readLE16(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read16(memPtr);
else
{
const BYTE* p = (const BYTE*)memPtr;
return (U16)(p[0] + (p[1]<<8));
}
}
MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
{
if (MEM_isLittleEndian())
{
MEM_write16(memPtr, val);
}
else
{
BYTE* p = (BYTE*)memPtr;
p[0] = (BYTE)val;
p[1] = (BYTE)(val>>8);
}
}
MEM_STATIC U32 MEM_readLE24(const void* memPtr)
{
return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16);
}
MEM_STATIC U32 MEM_readLE32(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read32(memPtr);
else
{
const BYTE* p = (const BYTE*)memPtr;
return (U32)((U32)p[0] + ((U32)p[1]<<8) + ((U32)p[2]<<16) + ((U32)p[3]<<24));
}
}
MEM_STATIC U64 MEM_readLE64(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read64(memPtr);
else
{
const BYTE* p = (const BYTE*)memPtr;
return (U64)((U64)p[0] + ((U64)p[1]<<8) + ((U64)p[2]<<16) + ((U64)p[3]<<24)
+ ((U64)p[4]<<32) + ((U64)p[5]<<40) + ((U64)p[6]<<48) + ((U64)p[7]<<56));
}
}
MEM_STATIC size_t MEM_readLEST(const void* memPtr)
{
if (MEM_32bits())
return (size_t)MEM_readLE32(memPtr);
else
return (size_t)MEM_readLE64(memPtr);
}
#if defined (__cplusplus)
}
#endif
#endif /* MEM_H_MODULE */
/* ******************************************************************
bitstream
Part of NewGen Entropy library
header file (to include)
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef BITSTREAM_H_MODULE
#define BITSTREAM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/*
* This API consists of small unitary functions, which highly benefit from being inlined.
* Since link-time-optimization is not available for all compilers,
* these functions are defined into a .h to be included.
*/
/**********************************************
* bitStream decompression API (read backward)
**********************************************/
typedef struct
{
size_t bitContainer;
unsigned bitsConsumed;
const char* ptr;
const char* start;
} BIT_DStream_t;
typedef enum { BIT_DStream_unfinished = 0,
BIT_DStream_endOfBuffer = 1,
BIT_DStream_completed = 2,
BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */
/* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits);
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD);
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);
/******************************************
* unsafe API
******************************************/
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
/* faster, but works only if nbBits >= 1 */
/****************************************************************
* Helper functions
****************************************************************/
MEM_STATIC unsigned BIT_highbit32 (U32 val)
{
# if defined(_MSC_VER) /* Visual */
- unsigned long r=0;
- _BitScanReverse ( &r, val );
- return (unsigned) r;
+ unsigned long r;
+ return _BitScanReverse(&r, val) ? (unsigned)r : 0;
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
return __builtin_clz (val) ^ 31;
# else /* Software version */
static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
U32 v = val;
unsigned r;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
r = DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
return r;
# endif
}
/**********************************************************
* bitStream decoding
**********************************************************/
/*!BIT_initDStream
* Initialize a BIT_DStream_t.
* @bitD : a pointer to an already allocated BIT_DStream_t structure
* @srcBuffer must point at the beginning of a bitStream
* @srcSize must be the exact size of the bitStream
* @result : size of stream (== srcSize) or an errorCode if a problem is detected
*/
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
{
if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
if (srcSize >= sizeof(size_t)) /* normal case */
{
U32 contain32;
bitD->start = (const char*)srcBuffer;
bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(size_t);
bitD->bitContainer = MEM_readLEST(bitD->ptr);
contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */
bitD->bitsConsumed = 8 - BIT_highbit32(contain32);
}
else
{
U32 contain32;
bitD->start = (const char*)srcBuffer;
bitD->ptr = bitD->start;
bitD->bitContainer = *(const BYTE*)(bitD->start);
switch(srcSize)
{
case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16);
/* fallthrough */
case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24);
/* fallthrough */
case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32);
/* fallthrough */
case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24;
/* fallthrough */
case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16;
/* fallthrough */
case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) << 8;
/* fallthrough */
default:;
}
contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */
bitD->bitsConsumed = 8 - BIT_highbit32(contain32);
bitD->bitsConsumed += (U32)(sizeof(size_t) - srcSize)*8;
}
return srcSize;
}
MEM_STATIC size_t BIT_lookBits(BIT_DStream_t* bitD, U32 nbBits)
{
const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask);
}
/*! BIT_lookBitsFast :
* unsafe version; only works only if nbBits >= 1 */
MEM_STATIC size_t BIT_lookBitsFast(BIT_DStream_t* bitD, U32 nbBits)
{
const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask);
}
MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
{
bitD->bitsConsumed += nbBits;
}
MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, U32 nbBits)
{
size_t value = BIT_lookBits(bitD, nbBits);
BIT_skipBits(bitD, nbBits);
return value;
}
/*!BIT_readBitsFast :
* unsafe version; only works only if nbBits >= 1 */
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, U32 nbBits)
{
size_t value = BIT_lookBitsFast(bitD, nbBits);
BIT_skipBits(bitD, nbBits);
return value;
}
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
{
if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should never happen */
return BIT_DStream_overflow;
if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer))
{
bitD->ptr -= bitD->bitsConsumed >> 3;
bitD->bitsConsumed &= 7;
bitD->bitContainer = MEM_readLEST(bitD->ptr);
return BIT_DStream_unfinished;
}
if (bitD->ptr == bitD->start)
{
if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer;
return BIT_DStream_completed;
}
{
U32 nbBytes = bitD->bitsConsumed >> 3;
BIT_DStream_status result = BIT_DStream_unfinished;
if (bitD->ptr - nbBytes < bitD->start)
{
nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
result = BIT_DStream_endOfBuffer;
}
bitD->ptr -= nbBytes;
bitD->bitsConsumed -= nbBytes*8;
bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */
return result;
}
}
/*! BIT_endOfDStream
* @return Tells if DStream has reached its exact end
*/
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream)
{
return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
}
#if defined (__cplusplus)
}
#endif
#endif /* BITSTREAM_H_MODULE */
/* ******************************************************************
Error codes and messages
Copyright (C) 2013-2015, Yann Collet
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef ERROR_H_MODULE
#define ERROR_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/******************************************
* Compiler-specific
******************************************/
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define ERR_STATIC static inline
#elif defined(_MSC_VER)
# define ERR_STATIC static __inline
#elif defined(__GNUC__)
# define ERR_STATIC static __attribute__((unused))
#else
# define ERR_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
#endif
/******************************************
* Error Management
******************************************/
#define PREFIX(name) ZSTD_error_##name
#define ERROR(name) (size_t)-PREFIX(name)
#define ERROR_LIST(ITEM) \
ITEM(PREFIX(No_Error)) ITEM(PREFIX(GENERIC)) \
ITEM(PREFIX(dstSize_tooSmall)) ITEM(PREFIX(srcSize_wrong)) \
ITEM(PREFIX(prefix_unknown)) ITEM(PREFIX(corruption_detected)) \
ITEM(PREFIX(tableLog_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooSmall)) \
ITEM(PREFIX(maxCode))
#define ERROR_GENERATE_ENUM(ENUM) ENUM,
typedef enum { ERROR_LIST(ERROR_GENERATE_ENUM) } ERR_codes; /* enum is exposed, to detect & handle specific errors; compare function result to -enum value */
#define ERROR_CONVERTTOSTRING(STRING) #STRING,
#define ERROR_GENERATE_STRING(EXPR) ERROR_CONVERTTOSTRING(EXPR)
static const char* ERR_strings[] = { ERROR_LIST(ERROR_GENERATE_STRING) };
ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); }
ERR_STATIC const char* ERR_getErrorName(size_t code)
{
static const char* codeError = "Unspecified error code";
if (ERR_isError(code)) return ERR_strings[-(int)(code)];
return codeError;
}
#if defined (__cplusplus)
}
#endif
#endif /* ERROR_H_MODULE */
/*
Constructor and Destructor of type FSE_CTable
Note that its size depends on 'tableLog' and 'maxSymbolValue' */
typedef unsigned FSE_CTable; /* don't allocate that. It's just a way to be more restrictive than void* */
typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
/* ******************************************************************
FSE : Finite State Entropy coder
header file for static linking (only)
Copyright (C) 2013-2015, Yann Collet
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#if defined (__cplusplus)
extern "C" {
#endif
/******************************************
* Static allocation
******************************************/
/* FSE buffer bounds */
#define FSE_NCOUNTBOUND 512
#define FSE_BLOCKBOUND(size) (size + (size>>7))
#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
/* You can statically allocate FSE CTable/DTable as a table of unsigned using below macro */
#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2))
#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog))
/******************************************
* FSE advanced API
******************************************/
static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
/* build a fake FSE_DTable, designed to read an uncompressed bitstream where each symbol uses nbBits */
static size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
/* build a fake FSE_DTable, designed to always generate the same symbolValue */
/******************************************
* FSE symbol decompression API
******************************************/
typedef struct
{
size_t state;
const void* table; /* precise table may vary, depending on U16 */
} FSE_DState_t;
static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
/******************************************
* FSE unsafe API
******************************************/
static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
/******************************************
* Implementation of inline functions
******************************************/
/* decompression */
typedef struct {
U16 tableLog;
U16 fastMode;
} FSE_DTableHeader; /* sizeof U32 */
typedef struct
{
unsigned short newState;
unsigned char symbol;
unsigned char nbBits;
} FSE_decode_t; /* size == U32 */
MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
{
FSE_DTableHeader DTableH;
memcpy(&DTableH, dt, sizeof(DTableH));
DStatePtr->state = BIT_readBits(bitD, DTableH.tableLog);
BIT_reloadDStream(bitD);
DStatePtr->table = dt + 1;
}
MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
{
const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
const U32 nbBits = DInfo.nbBits;
BYTE symbol = DInfo.symbol;
size_t lowBits = BIT_readBits(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
{
const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
const U32 nbBits = DInfo.nbBits;
BYTE symbol = DInfo.symbol;
size_t lowBits = BIT_readBitsFast(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
{
return DStatePtr->state == 0;
}
#if defined (__cplusplus)
}
#endif
/* ******************************************************************
Huff0 : Huffman coder, part of New Generation Entropy library
header file for static linking (only)
Copyright (C) 2013-2015, Yann Collet
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#if defined (__cplusplus)
extern "C" {
#endif
/******************************************
* Static allocation macros
******************************************/
/* Huff0 buffer bounds */
#define HUF_CTABLEBOUND 129
#define HUF_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true if incompressible pre-filtered with fast heuristic */
#define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
/* static allocation of Huff0's DTable */
#define HUF_DTABLE_SIZE(maxTableLog) (1 + (1<<maxTableLog)) /* nb Cells; use unsigned short for X2, unsigned int for X4 */
#define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
unsigned short DTable[HUF_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
#define HUF_CREATE_STATIC_DTABLEX4(DTable, maxTableLog) \
unsigned int DTable[HUF_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
#define HUF_CREATE_STATIC_DTABLEX6(DTable, maxTableLog) \
unsigned int DTable[HUF_DTABLE_SIZE(maxTableLog) * 3 / 2] = { maxTableLog }
/******************************************
* Advanced functions
******************************************/
static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbols decoder */
#if defined (__cplusplus)
}
#endif
/*
zstd - standard compression library
Header File
Copyright (C) 2014-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- zstd source repository : https://github.com/Cyan4973/zstd
- ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
*/
#if defined (__cplusplus)
extern "C" {
#endif
/* *************************************
* Includes
***************************************/
#include <stddef.h> /* size_t */
/* *************************************
* Version
***************************************/
#define ZSTD_VERSION_MAJOR 0 /* for breaking interface changes */
#define ZSTD_VERSION_MINOR 2 /* for new (non-breaking) interface capabilities */
#define ZSTD_VERSION_RELEASE 2 /* for tweaks, bug-fixes, or development */
#define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE)
/* *************************************
* Advanced functions
***************************************/
typedef struct ZSTD_CCtx_s ZSTD_CCtx; /* incomplete type */
#if defined (__cplusplus)
}
#endif
/*
zstd - standard compression library
Header File for static linking only
Copyright (C) 2014-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- zstd source repository : https://github.com/Cyan4973/zstd
- ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
*/
/* The objects defined into this file should be considered experimental.
* They are not labelled stable, as their prototype may change in the future.
* You can use them for tests, provide feedback, or if you can endure risk of future changes.
*/
#if defined (__cplusplus)
extern "C" {
#endif
/* *************************************
* Streaming functions
***************************************/
typedef struct ZSTD_DCtx_s ZSTD_DCtx;
/*
Use above functions alternatively.
ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block.
Result is the number of bytes regenerated within 'dst'.
It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.
*/
/* *************************************
* Prefix - version detection
***************************************/
#define ZSTD_magicNumber 0xFD2FB523 /* v0.3 */
#if defined (__cplusplus)
}
#endif
/* ******************************************************************
FSE : Finite State Entropy coder
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef FSE_COMMONDEFS_ONLY
/****************************************************************
* Tuning parameters
****************************************************************/
/* MEMORY_USAGE :
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
* Increasing memory usage improves compression ratio
* Reduced memory usage can improve speed, due to cache effect
* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
#define FSE_MAX_MEMORY_USAGE 14
#define FSE_DEFAULT_MEMORY_USAGE 13
/* FSE_MAX_SYMBOL_VALUE :
* Maximum symbol value authorized.
* Required for proper stack allocation */
#define FSE_MAX_SYMBOL_VALUE 255
/****************************************************************
* template functions type & suffix
****************************************************************/
#define FSE_FUNCTION_TYPE BYTE
#define FSE_FUNCTION_EXTENSION
/****************************************************************
* Byte symbol type
****************************************************************/
#endif /* !FSE_COMMONDEFS_ONLY */
/****************************************************************
* Compiler specifics
****************************************************************/
#ifdef _MSC_VER /* Visual Studio */
# define FORCE_INLINE static __forceinline
# include <intrin.h> /* For Visual 2005 */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */
#else
# if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
# ifdef __GNUC__
# define FORCE_INLINE static inline __attribute__((always_inline))
# else
# define FORCE_INLINE static inline
# endif
# else
# define FORCE_INLINE static
# endif /* __STDC_VERSION__ */
#endif
/****************************************************************
* Includes
****************************************************************/
#include <stdlib.h> /* malloc, free, qsort */
#include <string.h> /* memcpy, memset */
#include <stdio.h> /* printf (debug) */
/****************************************************************
* Constants
*****************************************************************/
#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2)
#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
#define FSE_MIN_TABLELOG 5
#define FSE_TABLELOG_ABSOLUTE_MAX 15
#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
#error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
#endif
/****************************************************************
* Error Management
****************************************************************/
#define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
/****************************************************************
* Complex types
****************************************************************/
typedef U32 DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)];
/****************************************************************
* Templates
****************************************************************/
/*
designed to be included
for type-specific functions (template emulation in C)
Objective is to write these functions only once, for improved maintenance
*/
/* safety checks */
#ifndef FSE_FUNCTION_EXTENSION
# error "FSE_FUNCTION_EXTENSION must be defined"
#endif
#ifndef FSE_FUNCTION_TYPE
# error "FSE_FUNCTION_TYPE must be defined"
#endif
/* Function names */
#define FSE_CAT(X,Y) X##Y
#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
/* Function templates */
#define FSE_DECODE_TYPE FSE_decode_t
static U32 FSE_tableStep(U32 tableSize) { return (tableSize>>1) + (tableSize>>3) + 3; }
static size_t FSE_buildDTable
(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
{
void* ptr = dt+1;
FSE_DTableHeader DTableH;
FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*)ptr;
const U32 tableSize = 1 << tableLog;
const U32 tableMask = tableSize-1;
const U32 step = FSE_tableStep(tableSize);
U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1];
U32 position = 0;
U32 highThreshold = tableSize-1;
const S16 largeLimit= (S16)(1 << (tableLog-1));
U32 noLarge = 1;
U32 s;
/* Sanity Checks */
if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
/* Init, lay down lowprob symbols */
DTableH.tableLog = (U16)tableLog;
for (s=0; s<=maxSymbolValue; s++)
{
if (normalizedCounter[s]==-1)
{
tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
symbolNext[s] = 1;
}
else
{
if (normalizedCounter[s] >= largeLimit) noLarge=0;
symbolNext[s] = normalizedCounter[s];
}
}
/* Spread symbols */
for (s=0; s<=maxSymbolValue; s++)
{
int i;
for (i=0; i<normalizedCounter[s]; i++)
{
tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
position = (position + step) & tableMask;
while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
}
}
if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
/* Build Decoding table */
{
U32 i;
for (i=0; i<tableSize; i++)
{
FSE_FUNCTION_TYPE symbol = (FSE_FUNCTION_TYPE)(tableDecode[i].symbol);
U16 nextState = symbolNext[symbol]++;
tableDecode[i].nbBits = (BYTE) (tableLog - BIT_highbit32 ((U32)nextState) );
tableDecode[i].newState = (U16) ( (nextState << tableDecode[i].nbBits) - tableSize);
}
}
DTableH.fastMode = (U16)noLarge;
memcpy(dt, &DTableH, sizeof(DTableH));
return 0;
}
#ifndef FSE_COMMONDEFS_ONLY
/******************************************
* FSE helper functions
******************************************/
static unsigned FSE_isError(size_t code) { return ERR_isError(code); }
/****************************************************************
* FSE NCount encoding-decoding
****************************************************************/
static short FSE_abs(short a)
{
return a<0 ? -a : a;
}
static size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize)
{
const BYTE* const istart = (const BYTE*) headerBuffer;
const BYTE* const iend = istart + hbSize;
const BYTE* ip = istart;
int nbBits;
int remaining;
int threshold;
U32 bitStream;
int bitCount;
unsigned charnum = 0;
int previous0 = 0;
if (hbSize < 4) return ERROR(srcSize_wrong);
bitStream = MEM_readLE32(ip);
nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */
if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
bitStream >>= 4;
bitCount = 4;
*tableLogPtr = nbBits;
remaining = (1<<nbBits)+1;
threshold = 1<<nbBits;
nbBits++;
while ((remaining>1) && (charnum<=*maxSVPtr))
{
if (previous0)
{
unsigned n0 = charnum;
while ((bitStream & 0xFFFF) == 0xFFFF)
{
n0+=24;
if (ip < iend-5)
{
ip+=2;
bitStream = MEM_readLE32(ip) >> bitCount;
}
else
{
bitStream >>= 16;
bitCount+=16;
}
}
while ((bitStream & 3) == 3)
{
n0+=3;
bitStream>>=2;
bitCount+=2;
}
n0 += bitStream & 3;
bitCount += 2;
if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
while (charnum < n0) normalizedCounter[charnum++] = 0;
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
{
ip += bitCount>>3;
bitCount &= 7;
bitStream = MEM_readLE32(ip) >> bitCount;
}
else
bitStream >>= 2;
}
{
const short max = (short)((2*threshold-1)-remaining);
short count;
if ((bitStream & (threshold-1)) < (U32)max)
{
count = (short)(bitStream & (threshold-1));
bitCount += nbBits-1;
}
else
{
count = (short)(bitStream & (2*threshold-1));
if (count >= threshold) count -= max;
bitCount += nbBits;
}
count--; /* extra accuracy */
remaining -= FSE_abs(count);
normalizedCounter[charnum++] = count;
previous0 = !count;
while (remaining < threshold)
{
nbBits--;
threshold >>= 1;
}
{
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
{
ip += bitCount>>3;
bitCount &= 7;
}
else
{
bitCount -= (int)(8 * (iend - 4 - ip));
ip = iend - 4;
}
bitStream = MEM_readLE32(ip) >> (bitCount & 31);
}
}
}
if (remaining != 1) return ERROR(GENERIC);
*maxSVPtr = charnum-1;
ip += (bitCount+7)>>3;
if ((size_t)(ip-istart) > hbSize) return ERROR(srcSize_wrong);
return ip-istart;
}
/*********************************************************
* Decompression (Byte symbols)
*********************************************************/
static size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue)
{
void* ptr = dt;
FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
FSE_decode_t* const cell = (FSE_decode_t*)(ptr) + 1;
DTableH->tableLog = 0;
DTableH->fastMode = 0;
cell->newState = 0;
cell->symbol = symbolValue;
cell->nbBits = 0;
return 0;
}
static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits)
{
void* ptr = dt;
FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
FSE_decode_t* const dinfo = (FSE_decode_t*)(ptr) + 1;
const unsigned tableSize = 1 << nbBits;
const unsigned tableMask = tableSize - 1;
const unsigned maxSymbolValue = tableMask;
unsigned s;
/* Sanity checks */
if (nbBits < 1) return ERROR(GENERIC); /* min size */
/* Build Decoding Table */
DTableH->tableLog = (U16)nbBits;
DTableH->fastMode = 1;
for (s=0; s<=maxSymbolValue; s++)
{
dinfo[s].newState = 0;
dinfo[s].symbol = (BYTE)s;
dinfo[s].nbBits = (BYTE)nbBits;
}
return 0;
}
FORCE_INLINE size_t FSE_decompress_usingDTable_generic(
void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const FSE_DTable* dt, const unsigned fast)
{
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const omax = op + maxDstSize;
BYTE* const olimit = omax-3;
BIT_DStream_t bitD;
FSE_DState_t state1;
FSE_DState_t state2;
size_t errorCode;
/* Init */
errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */
if (FSE_isError(errorCode)) return errorCode;
FSE_initDState(&state1, &bitD, dt);
FSE_initDState(&state2, &bitD, dt);
#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD)
/* 4 symbols per loop */
for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) && (op<olimit) ; op+=4)
{
op[0] = FSE_GETSYMBOL(&state1);
if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
BIT_reloadDStream(&bitD);
op[1] = FSE_GETSYMBOL(&state2);
if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
{ if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } }
op[2] = FSE_GETSYMBOL(&state1);
if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
BIT_reloadDStream(&bitD);
op[3] = FSE_GETSYMBOL(&state2);
}
/* tail */
/* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */
while (1)
{
if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state1))) )
break;
*op++ = FSE_GETSYMBOL(&state1);
if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state2))) )
break;
*op++ = FSE_GETSYMBOL(&state2);
}
/* end ? */
if (BIT_endOfDStream(&bitD) && FSE_endOfDState(&state1) && FSE_endOfDState(&state2))
return op-ostart;
if (op==omax) return ERROR(dstSize_tooSmall); /* dst buffer is full, but cSrc unfinished */
return ERROR(corruption_detected);
}
static size_t FSE_decompress_usingDTable(void* dst, size_t originalSize,
const void* cSrc, size_t cSrcSize,
const FSE_DTable* dt)
{
FSE_DTableHeader DTableH;
memcpy(&DTableH, dt, sizeof(DTableH));
/* select fast mode (static) */
if (DTableH.fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
}
static size_t FSE_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
{
const BYTE* const istart = (const BYTE*)cSrc;
const BYTE* ip = istart;
short counting[FSE_MAX_SYMBOL_VALUE+1];
DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */
unsigned tableLog;
unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
size_t errorCode;
if (cSrcSize<2) return ERROR(srcSize_wrong); /* too small input size */
/* normal FSE decoding mode */
errorCode = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
if (FSE_isError(errorCode)) return errorCode;
if (errorCode >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size */
ip += errorCode;
cSrcSize -= errorCode;
errorCode = FSE_buildDTable (dt, counting, maxSymbolValue, tableLog);
if (FSE_isError(errorCode)) return errorCode;
/* always return, even if it is an error code */
return FSE_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt);
}
#endif /* FSE_COMMONDEFS_ONLY */
/* ******************************************************************
Huff0 : Huffman coder, part of New Generation Entropy library
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE+Huff0 source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
/****************************************************************
* Compiler specifics
****************************************************************/
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
/* inline is defined */
#elif defined(_MSC_VER)
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# define inline __inline
#else
# define inline /* disable inline */
#endif
/****************************************************************
* Includes
****************************************************************/
#include <stdlib.h> /* malloc, free, qsort */
#include <string.h> /* memcpy, memset */
#include <stdio.h> /* printf (debug) */
/****************************************************************
* Error Management
****************************************************************/
#define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
/******************************************
* Helper functions
******************************************/
static unsigned HUF_isError(size_t code) { return ERR_isError(code); }
#define HUF_ABSOLUTEMAX_TABLELOG 16 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
#define HUF_MAX_TABLELOG 12 /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
#define HUF_DEFAULT_TABLELOG HUF_MAX_TABLELOG /* tableLog by default, when not specified */
#define HUF_MAX_SYMBOL_VALUE 255
#if (HUF_MAX_TABLELOG > HUF_ABSOLUTEMAX_TABLELOG)
# error "HUF_MAX_TABLELOG is too large !"
#endif
/*********************************************************
* Huff0 : Huffman block decompression
*********************************************************/
typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX2; /* single-symbol decoding */
typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4; /* double-symbols decoding */
typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
/*! HUF_readStats
Read compact Huffman tree, saved by HUF_writeCTable
@huffWeight : destination buffer
@return : size read from `src`
*/
static size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize)
{
U32 weightTotal;
U32 tableLog;
const BYTE* ip = (const BYTE*) src;
size_t iSize;
size_t oSize;
U32 n;
if (!srcSize) return ERROR(srcSize_wrong);
iSize = ip[0];
//memset(huffWeight, 0, hwSize); /* is not necessary, even though some analyzer complain ... */
if (iSize >= 128) /* special header */
{
if (iSize >= (242)) /* RLE */
{
static int l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 };
oSize = l[iSize-242];
memset(huffWeight, 1, hwSize);
iSize = 0;
}
else /* Incompressible */
{
oSize = iSize - 127;
iSize = ((oSize+1)/2);
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
if (oSize >= hwSize) return ERROR(corruption_detected);
ip += 1;
for (n=0; n<oSize; n+=2)
{
huffWeight[n] = ip[n/2] >> 4;
huffWeight[n+1] = ip[n/2] & 15;
}
}
}
else /* header compressed with FSE (normal case) */
{
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
oSize = FSE_decompress(huffWeight, hwSize-1, ip+1, iSize); /* max (hwSize-1) values decoded, as last one is implied */
if (FSE_isError(oSize)) return oSize;
}
/* collect weight stats */
memset(rankStats, 0, (HUF_ABSOLUTEMAX_TABLELOG + 1) * sizeof(U32));
weightTotal = 0;
for (n=0; n<oSize; n++)
{
if (huffWeight[n] >= HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
rankStats[huffWeight[n]]++;
weightTotal += (1 << huffWeight[n]) >> 1;
}
if (weightTotal == 0) return ERROR(corruption_detected);
/* get last non-null symbol weight (implied, total must be 2^n) */
tableLog = BIT_highbit32(weightTotal) + 1;
if (tableLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
{
U32 total = 1 << tableLog;
U32 rest = total - weightTotal;
U32 verif = 1 << BIT_highbit32(rest);
U32 lastWeight = BIT_highbit32(rest) + 1;
if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
huffWeight[oSize] = (BYTE)lastWeight;
rankStats[lastWeight]++;
}
/* check tree construction validity */
if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
/* results */
*nbSymbolsPtr = (U32)(oSize+1);
*tableLogPtr = tableLog;
return iSize+1;
}
/**************************/
/* single-symbol decoding */
/**************************/
static size_t HUF_readDTableX2 (U16* DTable, const void* src, size_t srcSize)
{
BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1];
U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; /* large enough for values from 0 to 16 */
U32 tableLog = 0;
const BYTE* ip = (const BYTE*) src;
size_t iSize = ip[0];
U32 nbSymbols = 0;
U32 n;
U32 nextRankStart;
void* ptr = DTable+1;
HUF_DEltX2* const dt = (HUF_DEltX2*)(ptr);
HUF_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U16)); /* if compilation fails here, assertion is false */
//memset(huffWeight, 0, sizeof(huffWeight)); /* is not necessary, even though some analyzer complain ... */
iSize = HUF_readStats(huffWeight, HUF_MAX_SYMBOL_VALUE + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
if (HUF_isError(iSize)) return iSize;
/* check result */
if (tableLog > DTable[0]) return ERROR(tableLog_tooLarge); /* DTable is too small */
DTable[0] = (U16)tableLog; /* maybe should separate sizeof DTable, as allocated, from used size of DTable, in case of DTable re-use */
/* Prepare ranks */
nextRankStart = 0;
for (n=1; n<=tableLog; n++)
{
U32 current = nextRankStart;
nextRankStart += (rankVal[n] << (n-1));
rankVal[n] = current;
}
/* fill DTable */
for (n=0; n<nbSymbols; n++)
{
const U32 w = huffWeight[n];
const U32 length = (1 << w) >> 1;
U32 i;
HUF_DEltX2 D;
D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
for (i = rankVal[w]; i < rankVal[w] + length; i++)
dt[i] = D;
rankVal[w] += length;
}
return iSize;
}
static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, const U32 dtLog)
{
const size_t val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
const BYTE c = dt[val].byte;
BIT_skipBits(Dstream, dt[val].nbBits);
return c;
}
#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
*ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
static inline size_t HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 4 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4))
{
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
}
/* closer to the end */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd))
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
/* no more data to retrieve from bitstream, hence no need to reload */
while (p < pEnd)
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
return pEnd-pStart;
}
static size_t HUF_decompress4X2_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const U16* DTable)
{
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{
const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* ptr = DTable;
const HUF_DEltX2* const dt = ((const HUF_DEltX2*)ptr) +1;
const U32 dtLog = DTable[0];
size_t errorCode;
/* Init */
BIT_DStream_t bitD1;
BIT_DStream_t bitD2;
BIT_DStream_t bitD3;
BIT_DStream_t bitD4;
const size_t length1 = MEM_readLE16(istart);
const size_t length2 = MEM_readLE16(istart+2);
const size_t length3 = MEM_readLE16(istart+4);
size_t length4;
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
const size_t segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal;
length4 = cSrcSize - (length1 + length2 + length3 + 6);
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
errorCode = BIT_initDStream(&bitD1, istart1, length1);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD2, istart2, length2);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD3, istart3, length3);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD4, istart4, length4);
if (HUF_isError(errorCode)) return errorCode;
/* 16-32 symbols per loop (4-8 symbols per stream) */
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; )
{
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 supposed already verified within main loop */
/* finish bitStreams one by one */
HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
/* check */
endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
if (!endSignal) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
}
static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_MAX_TABLELOG);
const BYTE* ip = (const BYTE*) cSrc;
size_t errorCode;
errorCode = HUF_readDTableX2 (DTable, cSrc, cSrcSize);
if (HUF_isError(errorCode)) return errorCode;
if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);
ip += errorCode;
cSrcSize -= errorCode;
return HUF_decompress4X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
}
/***************************/
/* double-symbols decoding */
/***************************/
static void HUF_fillDTableX4Level2(HUF_DEltX4* DTable, U32 sizeLog, const U32 consumed,
const U32* rankValOrigin, const int minWeight,
const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
U32 nbBitsBaseline, U16 baseSeq)
{
HUF_DEltX4 DElt;
U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
U32 s;
/* get pre-calculated rankVal */
memcpy(rankVal, rankValOrigin, sizeof(rankVal));
/* fill skipped values */
if (minWeight>1)
{
U32 i, skipSize = rankVal[minWeight];
MEM_writeLE16(&(DElt.sequence), baseSeq);
DElt.nbBits = (BYTE)(consumed);
DElt.length = 1;
for (i = 0; i < skipSize; i++)
DTable[i] = DElt;
}
/* fill DTable */
for (s=0; s<sortedListSize; s++) /* note : sortedSymbols already skipped */
{
const U32 symbol = sortedSymbols[s].symbol;
const U32 weight = sortedSymbols[s].weight;
const U32 nbBits = nbBitsBaseline - weight;
const U32 length = 1 << (sizeLog-nbBits);
const U32 start = rankVal[weight];
U32 i = start;
const U32 end = start + length;
MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
DElt.nbBits = (BYTE)(nbBits + consumed);
DElt.length = 2;
do { DTable[i++] = DElt; } while (i<end); /* since length >= 1 */
rankVal[weight] += length;
}
}
typedef U32 rankVal_t[HUF_ABSOLUTEMAX_TABLELOG][HUF_ABSOLUTEMAX_TABLELOG + 1];
static void HUF_fillDTableX4(HUF_DEltX4* DTable, const U32 targetLog,
const sortedSymbol_t* sortedList, const U32 sortedListSize,
const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
const U32 nbBitsBaseline)
{
U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
const U32 minBits = nbBitsBaseline - maxWeight;
U32 s;
memcpy(rankVal, rankValOrigin, sizeof(rankVal));
/* fill DTable */
for (s=0; s<sortedListSize; s++)
{
const U16 symbol = sortedList[s].symbol;
const U32 weight = sortedList[s].weight;
const U32 nbBits = nbBitsBaseline - weight;
const U32 start = rankVal[weight];
const U32 length = 1 << (targetLog-nbBits);
if (targetLog-nbBits >= minBits) /* enough room for a second symbol */
{
U32 sortedRank;
int minWeight = nbBits + scaleLog;
if (minWeight < 1) minWeight = 1;
sortedRank = rankStart[minWeight];
HUF_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits,
rankValOrigin[nbBits], minWeight,
sortedList+sortedRank, sortedListSize-sortedRank,
nbBitsBaseline, symbol);
}
else
{
U32 i;
const U32 end = start + length;
HUF_DEltX4 DElt;
MEM_writeLE16(&(DElt.sequence), symbol);
DElt.nbBits = (BYTE)(nbBits);
DElt.length = 1;
for (i = start; i < end; i++)
DTable[i] = DElt;
}
rankVal[weight] += length;
}
}
static size_t HUF_readDTableX4 (U32* DTable, const void* src, size_t srcSize)
{
BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1];
sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1];
U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 };
U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 };
U32* const rankStart = rankStart0+1;
rankVal_t rankVal;
U32 tableLog, maxW, sizeOfSort, nbSymbols;
const U32 memLog = DTable[0];
const BYTE* ip = (const BYTE*) src;
size_t iSize = ip[0];
void* ptr = DTable;
HUF_DEltX4* const dt = ((HUF_DEltX4*)ptr) + 1;
HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(U32)); /* if compilation fails here, assertion is false */
if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge);
//memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */
iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
if (HUF_isError(iSize)) return iSize;
/* check result */
if (tableLog > memLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
/* find maxWeight */
for (maxW = tableLog; rankStats[maxW]==0; maxW--)
{ if (!maxW) return ERROR(GENERIC); } /* necessarily finds a solution before maxW==0 */
/* Get start index of each weight */
{
U32 w, nextRankStart = 0;
for (w=1; w<=maxW; w++)
{
U32 current = nextRankStart;
nextRankStart += rankStats[w];
rankStart[w] = current;
}
rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
sizeOfSort = nextRankStart;
}
/* sort symbols by weight */
{
U32 s;
for (s=0; s<nbSymbols; s++)
{
U32 w = weightList[s];
U32 r = rankStart[w]++;
sortedSymbol[r].symbol = (BYTE)s;
sortedSymbol[r].weight = (BYTE)w;
}
rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
}
/* Build rankVal */
{
const U32 minBits = tableLog+1 - maxW;
U32 nextRankVal = 0;
U32 w, consumed;
const int rescale = (memLog-tableLog) - 1; /* tableLog <= memLog */
U32* rankVal0 = rankVal[0];
for (w=1; w<=maxW; w++)
{
U32 current = nextRankVal;
nextRankVal += rankStats[w] << (w+rescale);
rankVal0[w] = current;
}
for (consumed = minBits; consumed <= memLog - minBits; consumed++)
{
U32* rankValPtr = rankVal[consumed];
for (w = 1; w <= maxW; w++)
{
rankValPtr[w] = rankVal0[w] >> consumed;
}
}
}
HUF_fillDTableX4(dt, memLog,
sortedSymbol, sizeOfSort,
rankStart0, rankVal, maxW,
tableLog+1);
return iSize;
}
static U32 HUF_decodeSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
{
const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
memcpy(op, dt+val, 2);
BIT_skipBits(DStream, dt[val].nbBits);
return dt[val].length;
}
static U32 HUF_decodeLastSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
{
const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
memcpy(op, dt+val, 1);
if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits);
else
{
if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8))
{
BIT_skipBits(DStream, dt[val].nbBits);
if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
}
}
return 1;
}
#define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
static inline size_t HUF_decodeStreamX4(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const HUF_DEltX4* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 8 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd-7))
{
HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
HUF_DECODE_SYMBOLX4_1(p, bitDPtr);
HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
}
/* closer to the end */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-2))
HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
while (p <= pEnd-2)
HUF_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
if (p < pEnd)
p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);
return p-pStart;
}
static size_t HUF_decompress4X4_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const U32* DTable)
{
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{
const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* ptr = DTable;
const HUF_DEltX4* const dt = ((const HUF_DEltX4*)ptr) +1;
const U32 dtLog = DTable[0];
size_t errorCode;
/* Init */
BIT_DStream_t bitD1;
BIT_DStream_t bitD2;
BIT_DStream_t bitD3;
BIT_DStream_t bitD4;
const size_t length1 = MEM_readLE16(istart);
const size_t length2 = MEM_readLE16(istart+2);
const size_t length3 = MEM_readLE16(istart+4);
size_t length4;
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
const size_t segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal;
length4 = cSrcSize - (length1 + length2 + length3 + 6);
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
errorCode = BIT_initDStream(&bitD1, istart1, length1);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD2, istart2, length2);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD3, istart3, length3);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD4, istart4, length4);
if (HUF_isError(errorCode)) return errorCode;
/* 16-32 symbols per loop (4-8 symbols per stream) */
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; )
{
HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
HUF_DECODE_SYMBOLX4_1(op1, &bitD1);
HUF_DECODE_SYMBOLX4_1(op2, &bitD2);
HUF_DECODE_SYMBOLX4_1(op3, &bitD3);
HUF_DECODE_SYMBOLX4_1(op4, &bitD4);
HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
HUF_DECODE_SYMBOLX4_0(op1, &bitD1);
HUF_DECODE_SYMBOLX4_0(op2, &bitD2);
HUF_DECODE_SYMBOLX4_0(op3, &bitD3);
HUF_DECODE_SYMBOLX4_0(op4, &bitD4);
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 supposed already verified within main loop */
/* finish bitStreams one by one */
HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
HUF_decodeStreamX4(op4, &bitD4, oend, dt, dtLog);
/* check */
endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
if (!endSignal) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
}
static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_MAX_TABLELOG);
const BYTE* ip = (const BYTE*) cSrc;
size_t hSize = HUF_readDTableX4 (DTable, cSrc, cSrcSize);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize;
cSrcSize -= hSize;
return HUF_decompress4X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
}
/**********************************/
/* Generic decompression selector */
/**********************************/
typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
{
/* single, double, quad */
{{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */
{{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */
{{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */
{{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */
{{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */
{{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */
{{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */
{{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */
{{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */
{{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */
{{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */
{{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */
{{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */
{{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */
{{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */
{{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */
};
typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
static size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
static const decompressionAlgo decompress[3] = { HUF_decompress4X2, HUF_decompress4X4, NULL };
/* estimate decompression time */
U32 Q;
const U32 D256 = (U32)(dstSize >> 8);
U32 Dtime[3];
U32 algoNb = 0;
int n;
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
/* decoder timing evaluation */
Q = (U32)(cSrcSize * 16 / dstSize); /* Q < 16 since dstSize > cSrcSize */
for (n=0; n<3; n++)
Dtime[n] = algoTime[Q][n].tableTime + (algoTime[Q][n].decode256Time * D256);
Dtime[1] += Dtime[1] >> 4; Dtime[2] += Dtime[2] >> 3; /* advantage to algorithms using less memory, for cache eviction */
if (Dtime[1] < Dtime[0]) algoNb = 1;
return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
//return HUF_decompress4X2(dst, dstSize, cSrc, cSrcSize); /* multi-streams single-symbol decoding */
//return HUF_decompress4X4(dst, dstSize, cSrc, cSrcSize); /* multi-streams double-symbols decoding */
//return HUF_decompress4X6(dst, dstSize, cSrc, cSrcSize); /* multi-streams quad-symbols decoding */
}
/*
zstd - standard compression library
Copyright (C) 2014-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- zstd source repository : https://github.com/Cyan4973/zstd
- ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
*/
/* ***************************************************************
* Tuning parameters
*****************************************************************/
/*!
* MEMORY_USAGE :
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
* Increasing memory usage improves compression ratio
* Reduced memory usage can improve speed, due to cache effect
*/
#define ZSTD_MEMORY_USAGE 17
/*!
* HEAPMODE :
* Select how default compression functions will allocate memory for their hash table,
* in memory stack (0, fastest), or in memory heap (1, requires malloc())
* Note that compression context is fairly large, as a consequence heap memory is recommended.
*/
#ifndef ZSTD_HEAPMODE
# define ZSTD_HEAPMODE 1
#endif /* ZSTD_HEAPMODE */
/*!
* LEGACY_SUPPORT :
* decompressor can decode older formats (starting from Zstd 0.1+)
*/
#ifndef ZSTD_LEGACY_SUPPORT
# define ZSTD_LEGACY_SUPPORT 1
#endif
/* *******************************************************
* Includes
*********************************************************/
#include <stdlib.h> /* calloc */
#include <string.h> /* memcpy, memmove */
#include <stdio.h> /* debug : printf */
/* *******************************************************
* Compiler specifics
*********************************************************/
#ifdef __AVX2__
# include <immintrin.h> /* AVX2 intrinsics */
#endif
#ifdef _MSC_VER /* Visual Studio */
# include <intrin.h> /* For Visual 2005 */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4324) /* disable: C4324: padded structure */
#else
# define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
#endif
/* *******************************************************
* Constants
*********************************************************/
#define HASH_LOG (ZSTD_MEMORY_USAGE - 2)
#define HASH_TABLESIZE (1 << HASH_LOG)
#define HASH_MASK (HASH_TABLESIZE - 1)
#define KNUTH 2654435761
#define BIT7 128
#define BIT6 64
#define BIT5 32
#define BIT4 16
#define BIT1 2
#define BIT0 1
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)
#define BLOCKSIZE (128 KB) /* define, for static allocation */
#define MIN_SEQUENCES_SIZE (2 /*seqNb*/ + 2 /*dumps*/ + 3 /*seqTables*/ + 1 /*bitStream*/)
#define MIN_CBLOCK_SIZE (3 /*litCSize*/ + MIN_SEQUENCES_SIZE)
#define IS_RAW BIT0
#define IS_RLE BIT1
#define WORKPLACESIZE (BLOCKSIZE*3)
#define MINMATCH 4
#define MLbits 7
#define LLbits 6
#define Offbits 5
#define MaxML ((1<<MLbits )-1)
#define MaxLL ((1<<LLbits )-1)
#define MaxOff 31
#define LitFSELog 11
#define MLFSELog 10
#define LLFSELog 10
#define OffFSELog 9
#define MAX(a,b) ((a)<(b)?(b):(a))
#define MaxSeq MAX(MaxLL, MaxML)
#define LITERAL_NOENTROPY 63
#define COMMAND_NOENTROPY 7 /* to remove */
#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2)
static const size_t ZSTD_blockHeaderSize = 3;
static const size_t ZSTD_frameHeaderSize = 4;
/* *******************************************************
* Memory operations
**********************************************************/
static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }
static void ZSTD_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
#define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; }
/*! ZSTD_wildcopy : custom version of memcpy(), can copy up to 7-8 bytes too many */
static void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length)
{
const BYTE* ip = (const BYTE*)src;
BYTE* op = (BYTE*)dst;
BYTE* const oend = op + length;
do COPY8(op, ip) while (op < oend);
}
/* **************************************
* Local structures
****************************************/
typedef enum { bt_compressed, bt_raw, bt_rle, bt_end } blockType_t;
typedef struct
{
blockType_t blockType;
U32 origSize;
} blockProperties_t;
typedef struct {
void* buffer;
U32* offsetStart;
U32* offset;
BYTE* offCodeStart;
BYTE* offCode;
BYTE* litStart;
BYTE* lit;
BYTE* litLengthStart;
BYTE* litLength;
BYTE* matchLengthStart;
BYTE* matchLength;
BYTE* dumpsStart;
BYTE* dumps;
} seqStore_t;
/* *************************************
* Error Management
***************************************/
/*! ZSTD_isError
* tells if a return value is an error code */
static unsigned ZSTD_isError(size_t code) { return ERR_isError(code); }
/* *************************************************************
* Decompression section
***************************************************************/
struct ZSTD_DCtx_s
{
U32 LLTable[FSE_DTABLE_SIZE_U32(LLFSELog)];
U32 OffTable[FSE_DTABLE_SIZE_U32(OffFSELog)];
U32 MLTable[FSE_DTABLE_SIZE_U32(MLFSELog)];
void* previousDstEnd;
void* base;
size_t expected;
blockType_t bType;
U32 phase;
const BYTE* litPtr;
size_t litSize;
BYTE litBuffer[BLOCKSIZE + 8 /* margin for wildcopy */];
}; /* typedef'd to ZSTD_Dctx within "zstd_static.h" */
static size_t ZSTD_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
{
const BYTE* const in = (const BYTE* const)src;
BYTE headerFlags;
U32 cSize;
if (srcSize < 3) return ERROR(srcSize_wrong);
headerFlags = *in;
cSize = in[2] + (in[1]<<8) + ((in[0] & 7)<<16);
bpPtr->blockType = (blockType_t)(headerFlags >> 6);
bpPtr->origSize = (bpPtr->blockType == bt_rle) ? cSize : 0;
if (bpPtr->blockType == bt_end) return 0;
if (bpPtr->blockType == bt_rle) return 1;
return cSize;
}
static size_t ZSTD_copyUncompressedBlock(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
if (srcSize > maxDstSize) return ERROR(dstSize_tooSmall);
if (srcSize > 0) {
memcpy(dst, src, srcSize);
}
return srcSize;
}
/** ZSTD_decompressLiterals
@return : nb of bytes read from src, or an error code*/
static size_t ZSTD_decompressLiterals(void* dst, size_t* maxDstSizePtr,
const void* src, size_t srcSize)
{
const BYTE* ip = (const BYTE*)src;
const size_t litSize = (MEM_readLE32(src) & 0x1FFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
const size_t litCSize = (MEM_readLE32(ip+2) & 0xFFFFFF) >> 5; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
if (litSize > *maxDstSizePtr) return ERROR(corruption_detected);
if (litCSize + 5 > srcSize) return ERROR(corruption_detected);
if (HUF_isError(HUF_decompress(dst, litSize, ip+5, litCSize))) return ERROR(corruption_detected);
*maxDstSizePtr = litSize;
return litCSize + 5;
}
/** ZSTD_decodeLiteralsBlock
@return : nb of bytes read from src (< srcSize )*/
static size_t ZSTD_decodeLiteralsBlock(void* ctx,
const void* src, size_t srcSize)
{
ZSTD_DCtx* dctx = (ZSTD_DCtx*)ctx;
const BYTE* const istart = (const BYTE* const)src;
/* any compressed block with literals segment must be at least this size */
if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected);
switch(*istart & 3)
{
default:
case 0:
{
size_t litSize = BLOCKSIZE;
const size_t readSize = ZSTD_decompressLiterals(dctx->litBuffer, &litSize, src, srcSize);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
memset(dctx->litBuffer + dctx->litSize, 0, 8);
return readSize; /* works if it's an error too */
}
case IS_RAW:
{
const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
if (litSize > srcSize-11) /* risk of reading too far with wildcopy */
{
if (litSize > BLOCKSIZE) return ERROR(corruption_detected);
if (litSize > srcSize-3) return ERROR(corruption_detected);
memcpy(dctx->litBuffer, istart, litSize);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
memset(dctx->litBuffer + dctx->litSize, 0, 8);
return litSize+3;
}
/* direct reference into compressed stream */
dctx->litPtr = istart+3;
dctx->litSize = litSize;
return litSize+3;
}
case IS_RLE:
{
const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
if (litSize > BLOCKSIZE) return ERROR(corruption_detected);
memset(dctx->litBuffer, istart[3], litSize + 8);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
return 4;
}
}
}
static size_t ZSTD_decodeSeqHeaders(int* nbSeq, const BYTE** dumpsPtr, size_t* dumpsLengthPtr,
FSE_DTable* DTableLL, FSE_DTable* DTableML, FSE_DTable* DTableOffb,
const void* src, size_t srcSize)
{
const BYTE* const istart = (const BYTE* const)src;
const BYTE* ip = istart;
const BYTE* const iend = istart + srcSize;
U32 LLtype, Offtype, MLtype;
U32 LLlog, Offlog, MLlog;
size_t dumpsLength;
/* check */
if (srcSize < 5) return ERROR(srcSize_wrong);
/* SeqHead */
*nbSeq = MEM_readLE16(ip); ip+=2;
LLtype = *ip >> 6;
Offtype = (*ip >> 4) & 3;
MLtype = (*ip >> 2) & 3;
if (*ip & 2)
{
dumpsLength = ip[2];
dumpsLength += ip[1] << 8;
ip += 3;
}
else
{
dumpsLength = ip[1];
dumpsLength += (ip[0] & 1) << 8;
ip += 2;
}
*dumpsPtr = ip;
ip += dumpsLength;
*dumpsLengthPtr = dumpsLength;
/* check */
if (ip > iend-3) return ERROR(srcSize_wrong); /* min : all 3 are "raw", hence no header, but at least xxLog bits per type */
/* sequences */
{
S16 norm[MaxML+1]; /* assumption : MaxML >= MaxLL and MaxOff */
size_t headerSize;
/* Build DTables */
switch(LLtype)
{
case bt_rle :
LLlog = 0;
FSE_buildDTable_rle(DTableLL, *ip++); break;
case bt_raw :
LLlog = LLbits;
FSE_buildDTable_raw(DTableLL, LLbits); break;
default :
{ U32 max = MaxLL;
headerSize = FSE_readNCount(norm, &max, &LLlog, ip, iend-ip);
if (FSE_isError(headerSize)) return ERROR(GENERIC);
if (LLlog > LLFSELog) return ERROR(corruption_detected);
ip += headerSize;
FSE_buildDTable(DTableLL, norm, max, LLlog);
} }
switch(Offtype)
{
case bt_rle :
Offlog = 0;
if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
FSE_buildDTable_rle(DTableOffb, *ip++ & MaxOff); /* if *ip > MaxOff, data is corrupted */
break;
case bt_raw :
Offlog = Offbits;
FSE_buildDTable_raw(DTableOffb, Offbits); break;
default :
{ U32 max = MaxOff;
headerSize = FSE_readNCount(norm, &max, &Offlog, ip, iend-ip);
if (FSE_isError(headerSize)) return ERROR(GENERIC);
if (Offlog > OffFSELog) return ERROR(corruption_detected);
ip += headerSize;
FSE_buildDTable(DTableOffb, norm, max, Offlog);
} }
switch(MLtype)
{
case bt_rle :
MLlog = 0;
if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
FSE_buildDTable_rle(DTableML, *ip++); break;
case bt_raw :
MLlog = MLbits;
FSE_buildDTable_raw(DTableML, MLbits); break;
default :
{ U32 max = MaxML;
headerSize = FSE_readNCount(norm, &max, &MLlog, ip, iend-ip);
if (FSE_isError(headerSize)) return ERROR(GENERIC);
if (MLlog > MLFSELog) return ERROR(corruption_detected);
ip += headerSize;
FSE_buildDTable(DTableML, norm, max, MLlog);
} } }
return ip-istart;
}
typedef struct {
size_t litLength;
size_t offset;
size_t matchLength;
} seq_t;
typedef struct {
BIT_DStream_t DStream;
FSE_DState_t stateLL;
FSE_DState_t stateOffb;
FSE_DState_t stateML;
size_t prevOffset;
const BYTE* dumps;
const BYTE* dumpsEnd;
} seqState_t;
static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState)
{
size_t litLength;
size_t prevOffset;
size_t offset;
size_t matchLength;
const BYTE* dumps = seqState->dumps;
const BYTE* const de = seqState->dumpsEnd;
/* Literal length */
litLength = FSE_decodeSymbol(&(seqState->stateLL), &(seqState->DStream));
prevOffset = litLength ? seq->offset : seqState->prevOffset;
seqState->prevOffset = seq->offset;
if (litLength == MaxLL)
{
const U32 add = dumps<de ? *dumps++ : 0;
if (add < 255) litLength += add;
else if (dumps + 3 <= de)
{
litLength = MEM_readLE24(dumps);
dumps += 3;
}
if (dumps >= de) dumps = de-1; /* late correction, to avoid read overflow (data is now corrupted anyway) */
}
/* Offset */
{
static const size_t offsetPrefix[MaxOff+1] = { /* note : size_t faster than U32 */
1 /*fake*/, 1, 2, 4, 8, 16, 32, 64, 128, 256,
512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144,
524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, /*fake*/ 1, 1, 1, 1, 1 };
U32 offsetCode, nbBits;
offsetCode = FSE_decodeSymbol(&(seqState->stateOffb), &(seqState->DStream)); /* <= maxOff, by table construction */
if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream));
nbBits = offsetCode - 1;
if (offsetCode==0) nbBits = 0; /* cmove */
offset = offsetPrefix[offsetCode] + BIT_readBits(&(seqState->DStream), nbBits);
if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream));
if (offsetCode==0) offset = prevOffset; /* cmove */
}
/* MatchLength */
matchLength = FSE_decodeSymbol(&(seqState->stateML), &(seqState->DStream));
if (matchLength == MaxML)
{
const U32 add = dumps<de ? *dumps++ : 0;
if (add < 255) matchLength += add;
else if (dumps + 3 <= de)
{
matchLength = MEM_readLE24(dumps);
dumps += 3;
}
if (dumps >= de) dumps = de-1; /* late correction, to avoid read overflow (data is now corrupted anyway) */
}
matchLength += MINMATCH;
/* save result */
seq->litLength = litLength;
seq->offset = offset;
seq->matchLength = matchLength;
seqState->dumps = dumps;
}
static size_t ZSTD_execSequence(BYTE* op,
seq_t sequence,
const BYTE** litPtr, const BYTE* const litLimit,
BYTE* const base, BYTE* const oend)
{
static const int dec32table[] = {0, 1, 2, 1, 4, 4, 4, 4}; /* added */
static const int dec64table[] = {8, 8, 8, 7, 8, 9,10,11}; /* subtracted */
const BYTE* const ostart = op;
BYTE* const oLitEnd = op + sequence.litLength;
BYTE* const oMatchEnd = op + sequence.litLength + sequence.matchLength; /* risk : address space overflow (32-bits) */
BYTE* const oend_8 = oend-8;
const BYTE* const litEnd = *litPtr + sequence.litLength;
/* checks */
if (oLitEnd > oend_8) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of 8 from oend */
if (oMatchEnd > oend) return ERROR(dstSize_tooSmall); /* overwrite beyond dst buffer */
if (litEnd > litLimit) return ERROR(corruption_detected); /* overRead beyond lit buffer */
/* copy Literals */
ZSTD_wildcopy(op, *litPtr, sequence.litLength); /* note : oLitEnd <= oend-8 : no risk of overwrite beyond oend */
op = oLitEnd;
*litPtr = litEnd; /* update for next sequence */
/* copy Match */
{
const BYTE* match = op - sequence.offset;
/* check */
if (sequence.offset > (size_t)op) return ERROR(corruption_detected); /* address space overflow test (this test seems kept by clang optimizer) */
//if (match > op) return ERROR(corruption_detected); /* address space overflow test (is clang optimizer removing this test ?) */
if (match < base) return ERROR(corruption_detected);
/* close range match, overlap */
if (sequence.offset < 8)
{
const int dec64 = dec64table[sequence.offset];
op[0] = match[0];
op[1] = match[1];
op[2] = match[2];
op[3] = match[3];
match += dec32table[sequence.offset];
ZSTD_copy4(op+4, match);
match -= dec64;
}
else
{
ZSTD_copy8(op, match);
}
op += 8; match += 8;
if (oMatchEnd > oend-(16-MINMATCH))
{
if (op < oend_8)
{
ZSTD_wildcopy(op, match, oend_8 - op);
match += oend_8 - op;
op = oend_8;
}
while (op < oMatchEnd) *op++ = *match++;
}
else
{
ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */
}
}
return oMatchEnd - ostart;
}
static size_t ZSTD_decompressSequences(
void* ctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize)
{
ZSTD_DCtx* dctx = (ZSTD_DCtx*)ctx;
const BYTE* ip = (const BYTE*)seqStart;
const BYTE* const iend = ip + seqSize;
BYTE* const ostart = (BYTE* const)dst;
BYTE* op = ostart;
BYTE* const oend = ostart + maxDstSize;
size_t errorCode, dumpsLength;
const BYTE* litPtr = dctx->litPtr;
const BYTE* const litEnd = litPtr + dctx->litSize;
int nbSeq;
const BYTE* dumps;
U32* DTableLL = dctx->LLTable;
U32* DTableML = dctx->MLTable;
U32* DTableOffb = dctx->OffTable;
BYTE* const base = (BYTE*) (dctx->base);
/* Build Decoding Tables */
errorCode = ZSTD_decodeSeqHeaders(&nbSeq, &dumps, &dumpsLength,
DTableLL, DTableML, DTableOffb,
ip, iend-ip);
if (ZSTD_isError(errorCode)) return errorCode;
ip += errorCode;
/* Regen sequences */
{
seq_t sequence;
seqState_t seqState;
memset(&sequence, 0, sizeof(sequence));
seqState.dumps = dumps;
seqState.dumpsEnd = dumps + dumpsLength;
seqState.prevOffset = sequence.offset = 4;
errorCode = BIT_initDStream(&(seqState.DStream), ip, iend-ip);
if (ERR_isError(errorCode)) return ERROR(corruption_detected);
FSE_initDState(&(seqState.stateLL), &(seqState.DStream), DTableLL);
FSE_initDState(&(seqState.stateOffb), &(seqState.DStream), DTableOffb);
FSE_initDState(&(seqState.stateML), &(seqState.DStream), DTableML);
for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && (nbSeq>0) ; )
{
size_t oneSeqSize;
nbSeq--;
ZSTD_decodeSequence(&sequence, &seqState);
oneSeqSize = ZSTD_execSequence(op, sequence, &litPtr, litEnd, base, oend);
if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
op += oneSeqSize;
}
/* check if reached exact end */
if ( !BIT_endOfDStream(&(seqState.DStream)) ) return ERROR(corruption_detected); /* requested too much : data is corrupted */
if (nbSeq<0) return ERROR(corruption_detected); /* requested too many sequences : data is corrupted */
/* last literal segment */
{
size_t lastLLSize = litEnd - litPtr;
if (litPtr > litEnd) return ERROR(corruption_detected);
if (op+lastLLSize > oend) return ERROR(dstSize_tooSmall);
if (lastLLSize > 0) {
if (op != litPtr) memmove(op, litPtr, lastLLSize);
op += lastLLSize;
}
}
}
return op-ostart;
}
static size_t ZSTD_decompressBlock(
void* ctx,
void* dst, size_t maxDstSize,
const void* src, size_t srcSize)
{
/* blockType == blockCompressed */
const BYTE* ip = (const BYTE*)src;
/* Decode literals sub-block */
size_t litCSize = ZSTD_decodeLiteralsBlock(ctx, src, srcSize);
if (ZSTD_isError(litCSize)) return litCSize;
ip += litCSize;
srcSize -= litCSize;
return ZSTD_decompressSequences(ctx, dst, maxDstSize, ip, srcSize);
}
static size_t ZSTD_decompressDCtx(void* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
const BYTE* ip = (const BYTE*)src;
const BYTE* iend = ip + srcSize;
BYTE* const ostart = (BYTE* const)dst;
BYTE* op = ostart;
BYTE* const oend = ostart + maxDstSize;
size_t remainingSize = srcSize;
U32 magicNumber;
blockProperties_t blockProperties;
/* Frame Header */
if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
magicNumber = MEM_readLE32(src);
if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown);
ip += ZSTD_frameHeaderSize; remainingSize -= ZSTD_frameHeaderSize;
/* Loop on each block */
while (1)
{
size_t decodedSize=0;
size_t cBlockSize = ZSTD_getcBlockSize(ip, iend-ip, &blockProperties);
if (ZSTD_isError(cBlockSize)) return cBlockSize;
ip += ZSTD_blockHeaderSize;
remainingSize -= ZSTD_blockHeaderSize;
if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);
switch(blockProperties.blockType)
{
case bt_compressed:
decodedSize = ZSTD_decompressBlock(ctx, op, oend-op, ip, cBlockSize);
break;
case bt_raw :
decodedSize = ZSTD_copyUncompressedBlock(op, oend-op, ip, cBlockSize);
break;
case bt_rle :
return ERROR(GENERIC); /* not yet supported */
break;
case bt_end :
/* end of frame */
if (remainingSize) return ERROR(srcSize_wrong);
break;
default:
return ERROR(GENERIC); /* impossible */
}
if (cBlockSize == 0) break; /* bt_end */
if (ZSTD_isError(decodedSize)) return decodedSize;
op += decodedSize;
ip += cBlockSize;
remainingSize -= cBlockSize;
}
return op-ostart;
}
static size_t ZSTD_decompress(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
ZSTD_DCtx ctx;
ctx.base = dst;
return ZSTD_decompressDCtx(&ctx, dst, maxDstSize, src, srcSize);
}
/* ZSTD_errorFrameSizeInfoLegacy() :
assumes `cSize` and `dBound` are _not_ NULL */
MEM_STATIC void ZSTD_errorFrameSizeInfoLegacy(size_t* cSize, unsigned long long* dBound, size_t ret)
{
*cSize = ret;
*dBound = ZSTD_CONTENTSIZE_ERROR;
}
void ZSTDv03_findFrameSizeInfoLegacy(const void *src, size_t srcSize, size_t* cSize, unsigned long long* dBound)
{
const BYTE* ip = (const BYTE*)src;
size_t remainingSize = srcSize;
size_t nbBlocks = 0;
U32 magicNumber;
blockProperties_t blockProperties;
/* Frame Header */
if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
magicNumber = MEM_readLE32(src);
if (magicNumber != ZSTD_magicNumber) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(prefix_unknown));
return;
}
ip += ZSTD_frameHeaderSize; remainingSize -= ZSTD_frameHeaderSize;
/* Loop on each block */
while (1)
{
size_t cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties);
if (ZSTD_isError(cBlockSize)) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, cBlockSize);
return;
}
ip += ZSTD_blockHeaderSize;
remainingSize -= ZSTD_blockHeaderSize;
if (cBlockSize > remainingSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
if (cBlockSize == 0) break; /* bt_end */
ip += cBlockSize;
remainingSize -= cBlockSize;
nbBlocks++;
}
*cSize = ip - (const BYTE*)src;
*dBound = nbBlocks * BLOCKSIZE;
}
/*******************************
* Streaming Decompression API
*******************************/
static size_t ZSTD_resetDCtx(ZSTD_DCtx* dctx)
{
dctx->expected = ZSTD_frameHeaderSize;
dctx->phase = 0;
dctx->previousDstEnd = NULL;
dctx->base = NULL;
return 0;
}
static ZSTD_DCtx* ZSTD_createDCtx(void)
{
ZSTD_DCtx* dctx = (ZSTD_DCtx*)malloc(sizeof(ZSTD_DCtx));
if (dctx==NULL) return NULL;
ZSTD_resetDCtx(dctx);
return dctx;
}
static size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx)
{
free(dctx);
return 0;
}
static size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx)
{
return dctx->expected;
}
static size_t ZSTD_decompressContinue(ZSTD_DCtx* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
/* Sanity check */
if (srcSize != ctx->expected) return ERROR(srcSize_wrong);
if (dst != ctx->previousDstEnd) /* not contiguous */
ctx->base = dst;
/* Decompress : frame header */
if (ctx->phase == 0)
{
/* Check frame magic header */
U32 magicNumber = MEM_readLE32(src);
if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown);
ctx->phase = 1;
ctx->expected = ZSTD_blockHeaderSize;
return 0;
}
/* Decompress : block header */
if (ctx->phase == 1)
{
blockProperties_t bp;
size_t blockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp);
if (ZSTD_isError(blockSize)) return blockSize;
if (bp.blockType == bt_end)
{
ctx->expected = 0;
ctx->phase = 0;
}
else
{
ctx->expected = blockSize;
ctx->bType = bp.blockType;
ctx->phase = 2;
}
return 0;
}
/* Decompress : block content */
{
size_t rSize;
switch(ctx->bType)
{
case bt_compressed:
rSize = ZSTD_decompressBlock(ctx, dst, maxDstSize, src, srcSize);
break;
case bt_raw :
rSize = ZSTD_copyUncompressedBlock(dst, maxDstSize, src, srcSize);
break;
case bt_rle :
return ERROR(GENERIC); /* not yet handled */
break;
case bt_end : /* should never happen (filtered at phase 1) */
rSize = 0;
break;
default:
return ERROR(GENERIC);
}
ctx->phase = 1;
ctx->expected = ZSTD_blockHeaderSize;
ctx->previousDstEnd = (void*)( ((char*)dst) + rSize);
return rSize;
}
}
/* wrapper layer */
unsigned ZSTDv03_isError(size_t code)
{
return ZSTD_isError(code);
}
size_t ZSTDv03_decompress( void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize)
{
return ZSTD_decompress(dst, maxOriginalSize, src, compressedSize);
}
ZSTDv03_Dctx* ZSTDv03_createDCtx(void)
{
return (ZSTDv03_Dctx*)ZSTD_createDCtx();
}
size_t ZSTDv03_freeDCtx(ZSTDv03_Dctx* dctx)
{
return ZSTD_freeDCtx((ZSTD_DCtx*)dctx);
}
size_t ZSTDv03_resetDCtx(ZSTDv03_Dctx* dctx)
{
return ZSTD_resetDCtx((ZSTD_DCtx*)dctx);
}
size_t ZSTDv03_nextSrcSizeToDecompress(ZSTDv03_Dctx* dctx)
{
return ZSTD_nextSrcSizeToDecompress((ZSTD_DCtx*)dctx);
}
size_t ZSTDv03_decompressContinue(ZSTDv03_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
return ZSTD_decompressContinue((ZSTD_DCtx*)dctx, dst, maxDstSize, src, srcSize);
}
diff --git a/sys/contrib/zstd/lib/legacy/zstd_v03.h b/sys/contrib/zstd/lib/legacy/zstd_v03.h
index 5fc72730ce99..7a00d4304bac 100644
--- a/sys/contrib/zstd/lib/legacy/zstd_v03.h
+++ b/sys/contrib/zstd/lib/legacy/zstd_v03.h
@@ -1,93 +1,93 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_V03_H_298734209782
#define ZSTD_V03_H_298734209782
#if defined (__cplusplus)
extern "C" {
#endif
/* *************************************
* Includes
***************************************/
#include <stddef.h> /* size_t */
/* *************************************
* Simple one-step function
***************************************/
/**
ZSTDv03_decompress() : decompress ZSTD frames compliant with v0.3.x format
compressedSize : is the exact source size
maxOriginalSize : is the size of the 'dst' buffer, which must be already allocated.
It must be equal or larger than originalSize, otherwise decompression will fail.
return : the number of bytes decompressed into destination buffer (originalSize)
or an errorCode if it fails (which can be tested using ZSTDv01_isError())
*/
size_t ZSTDv03_decompress( void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize);
/**
ZSTDv03_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.3.x format
srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
cSize (output parameter) : the number of bytes that would be read to decompress this frame
or an error code if it fails (which can be tested using ZSTDv01_isError())
dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame
or ZSTD_CONTENTSIZE_ERROR if an error occurs
note : assumes `cSize` and `dBound` are _not_ NULL.
*/
void ZSTDv03_findFrameSizeInfoLegacy(const void *src, size_t srcSize,
size_t* cSize, unsigned long long* dBound);
/**
ZSTDv03_isError() : tells if the result of ZSTDv03_decompress() is an error
*/
unsigned ZSTDv03_isError(size_t code);
/* *************************************
* Advanced functions
***************************************/
typedef struct ZSTDv03_Dctx_s ZSTDv03_Dctx;
ZSTDv03_Dctx* ZSTDv03_createDCtx(void);
size_t ZSTDv03_freeDCtx(ZSTDv03_Dctx* dctx);
size_t ZSTDv03_decompressDCtx(void* ctx,
void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize);
/* *************************************
* Streaming functions
***************************************/
size_t ZSTDv03_resetDCtx(ZSTDv03_Dctx* dctx);
size_t ZSTDv03_nextSrcSizeToDecompress(ZSTDv03_Dctx* dctx);
size_t ZSTDv03_decompressContinue(ZSTDv03_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize);
/**
Use above functions alternatively.
ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block.
Result is the number of bytes regenerated within 'dst'.
It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.
*/
/* *************************************
* Prefix - version detection
***************************************/
#define ZSTDv03_magicNumber 0xFD2FB523 /* v0.3 */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_V03_H_298734209782 */
diff --git a/sys/contrib/zstd/lib/legacy/zstd_v04.c b/sys/contrib/zstd/lib/legacy/zstd_v04.c
index 77d52555b313..8d305c7eae9e 100644
--- a/sys/contrib/zstd/lib/legacy/zstd_v04.c
+++ b/sys/contrib/zstd/lib/legacy/zstd_v04.c
@@ -1,3651 +1,3647 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/******************************************
* Includes
******************************************/
#include <stddef.h> /* size_t, ptrdiff_t */
#include <string.h> /* memcpy */
#include "zstd_v04.h"
#include "../common/error_private.h"
/* ******************************************************************
* mem.h
*******************************************************************/
#ifndef MEM_H_MODULE
#define MEM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/******************************************
* Compiler-specific
******************************************/
#if defined(_MSC_VER) /* Visual Studio */
# include <stdlib.h> /* _byteswap_ulong */
# include <intrin.h> /* _byteswap_* */
#endif
#if defined(__GNUC__)
# define MEM_STATIC static __attribute__((unused))
#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define MEM_STATIC static inline
#elif defined(_MSC_VER)
# define MEM_STATIC static __inline
#else
# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
#endif
/****************************************************************
* Basic Types
*****************************************************************/
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# if defined(_AIX)
# include <inttypes.h>
# else
# include <stdint.h> /* intptr_t */
# endif
typedef uint8_t BYTE;
typedef uint16_t U16;
typedef int16_t S16;
typedef uint32_t U32;
typedef int32_t S32;
typedef uint64_t U64;
typedef int64_t S64;
#else
typedef unsigned char BYTE;
typedef unsigned short U16;
typedef signed short S16;
typedef unsigned int U32;
typedef signed int S32;
typedef unsigned long long U64;
typedef signed long long S64;
#endif
/*-*************************************
* Debug
***************************************/
#include "../common/debug.h"
#ifndef assert
# define assert(condition) ((void)0)
#endif
/****************************************************************
* Memory I/O
*****************************************************************/
/* MEM_FORCE_MEMORY_ACCESS
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
* The below switch allow to select different access method for improved performance.
* Method 0 (default) : use `memcpy()`. Safe and portable.
* Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
* This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
* Method 2 : direct access. This method is portable but violate C standard.
* It can generate buggy code on targets generating assembly depending on alignment.
* But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
* See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
* Prefer these methods in priority order (0 > 1 > 2)
*/
#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
-# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
-# define MEM_FORCE_MEMORY_ACCESS 2
-# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
- (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
+# if defined(__INTEL_COMPILER) || defined(__GNUC__) || defined(__ICCARM__)
# define MEM_FORCE_MEMORY_ACCESS 1
# endif
#endif
MEM_STATIC unsigned MEM_32bits(void) { return sizeof(void*)==4; }
MEM_STATIC unsigned MEM_64bits(void) { return sizeof(void*)==8; }
MEM_STATIC unsigned MEM_isLittleEndian(void)
{
const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
return one.c[0];
}
#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
/* violates C standard on structure alignment.
Only use if no other choice to achieve best performance on target platform */
MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
/* currently only defined for gcc and icc */
typedef union { U16 u16; U32 u32; U64 u64; } __attribute__((packed)) unalign;
MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign*)ptr)->u16; }
MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign*)memPtr)->u16 = value; }
#else
/* default method, safe and standard.
can sometimes prove slower */
MEM_STATIC U16 MEM_read16(const void* memPtr)
{
U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U32 MEM_read32(const void* memPtr)
{
U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U64 MEM_read64(const void* memPtr)
{
U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC void MEM_write16(void* memPtr, U16 value)
{
memcpy(memPtr, &value, sizeof(value));
}
#endif /* MEM_FORCE_MEMORY_ACCESS */
MEM_STATIC U16 MEM_readLE16(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read16(memPtr);
else
{
const BYTE* p = (const BYTE*)memPtr;
return (U16)(p[0] + (p[1]<<8));
}
}
MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
{
if (MEM_isLittleEndian())
{
MEM_write16(memPtr, val);
}
else
{
BYTE* p = (BYTE*)memPtr;
p[0] = (BYTE)val;
p[1] = (BYTE)(val>>8);
}
}
MEM_STATIC U32 MEM_readLE24(const void* memPtr)
{
return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16);
}
MEM_STATIC U32 MEM_readLE32(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read32(memPtr);
else
{
const BYTE* p = (const BYTE*)memPtr;
return (U32)((U32)p[0] + ((U32)p[1]<<8) + ((U32)p[2]<<16) + ((U32)p[3]<<24));
}
}
MEM_STATIC U64 MEM_readLE64(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read64(memPtr);
else
{
const BYTE* p = (const BYTE*)memPtr;
return (U64)((U64)p[0] + ((U64)p[1]<<8) + ((U64)p[2]<<16) + ((U64)p[3]<<24)
+ ((U64)p[4]<<32) + ((U64)p[5]<<40) + ((U64)p[6]<<48) + ((U64)p[7]<<56));
}
}
MEM_STATIC size_t MEM_readLEST(const void* memPtr)
{
if (MEM_32bits())
return (size_t)MEM_readLE32(memPtr);
else
return (size_t)MEM_readLE64(memPtr);
}
#if defined (__cplusplus)
}
#endif
#endif /* MEM_H_MODULE */
/*
zstd - standard compression library
Header File for static linking only
*/
#ifndef ZSTD_STATIC_H
#define ZSTD_STATIC_H
/* *************************************
* Types
***************************************/
#define ZSTD_WINDOWLOG_ABSOLUTEMIN 11
/** from faster to stronger */
typedef enum { ZSTD_fast, ZSTD_greedy, ZSTD_lazy, ZSTD_lazy2, ZSTD_btlazy2 } ZSTD_strategy;
typedef struct
{
U64 srcSize; /* optional : tells how much bytes are present in the frame. Use 0 if not known. */
U32 windowLog; /* largest match distance : larger == more compression, more memory needed during decompression */
U32 contentLog; /* full search segment : larger == more compression, slower, more memory (useless for fast) */
U32 hashLog; /* dispatch table : larger == more memory, faster */
U32 searchLog; /* nb of searches : larger == more compression, slower */
U32 searchLength; /* size of matches : larger == faster decompression, sometimes less compression */
ZSTD_strategy strategy;
} ZSTD_parameters;
typedef ZSTDv04_Dctx ZSTD_DCtx;
/* *************************************
* Advanced functions
***************************************/
/** ZSTD_decompress_usingDict
* Same as ZSTD_decompressDCtx, using a Dictionary content as prefix
* Note : dict can be NULL, in which case, it's equivalent to ZSTD_decompressDCtx() */
static size_t ZSTD_decompress_usingDict(ZSTD_DCtx* ctx,
void* dst, size_t maxDstSize,
const void* src, size_t srcSize,
const void* dict,size_t dictSize);
/* **************************************
* Streaming functions (direct mode)
****************************************/
static size_t ZSTD_resetDCtx(ZSTD_DCtx* dctx);
static size_t ZSTD_getFrameParams(ZSTD_parameters* params, const void* src, size_t srcSize);
static void ZSTD_decompress_insertDictionary(ZSTD_DCtx* ctx, const void* src, size_t srcSize);
static size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx);
static size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize);
/**
Streaming decompression, bufferless mode
A ZSTD_DCtx object is required to track streaming operations.
Use ZSTD_createDCtx() / ZSTD_freeDCtx() to manage it.
A ZSTD_DCtx object can be re-used multiple times. Use ZSTD_resetDCtx() to return to fresh status.
First operation is to retrieve frame parameters, using ZSTD_getFrameParams().
This function doesn't consume its input. It needs enough input data to properly decode the frame header.
Objective is to retrieve *params.windowlog, to know minimum amount of memory required during decoding.
Result : 0 when successful, it means the ZSTD_parameters structure has been filled.
>0 : means there is not enough data into src. Provides the expected size to successfully decode header.
errorCode, which can be tested using ZSTD_isError() (For example, if it's not a ZSTD header)
Then, you can optionally insert a dictionary.
This operation must mimic the compressor behavior, otherwise decompression will fail or be corrupted.
Then it's possible to start decompression.
Use ZSTD_nextSrcSizeToDecompress() and ZSTD_decompressContinue() alternatively.
ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
ZSTD_decompressContinue() requires this exact amount of bytes, or it will fail.
ZSTD_decompressContinue() needs previous data blocks during decompression, up to (1 << windowlog).
They should preferably be located contiguously, prior to current block. Alternatively, a round buffer is also possible.
@result of ZSTD_decompressContinue() is the number of bytes regenerated within 'dst'.
It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.
A frame is fully decoded when ZSTD_nextSrcSizeToDecompress() returns zero.
Context can then be reset to start a new decompression.
*/
#endif /* ZSTD_STATIC_H */
/*
zstd_internal - common functions to include
Header File for include
*/
#ifndef ZSTD_CCOMMON_H_MODULE
#define ZSTD_CCOMMON_H_MODULE
/* *************************************
* Common macros
***************************************/
#define MIN(a,b) ((a)<(b) ? (a) : (b))
#define MAX(a,b) ((a)>(b) ? (a) : (b))
/* *************************************
* Common constants
***************************************/
#define ZSTD_MAGICNUMBER 0xFD2FB524 /* v0.4 */
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)
#define BLOCKSIZE (128 KB) /* define, for static allocation */
static const size_t ZSTD_blockHeaderSize = 3;
static const size_t ZSTD_frameHeaderSize_min = 5;
#define ZSTD_frameHeaderSize_max 5 /* define, for static allocation */
#define BIT7 128
#define BIT6 64
#define BIT5 32
#define BIT4 16
#define BIT1 2
#define BIT0 1
#define IS_RAW BIT0
#define IS_RLE BIT1
#define MINMATCH 4
#define REPCODE_STARTVALUE 4
#define MLbits 7
#define LLbits 6
#define Offbits 5
#define MaxML ((1<<MLbits) - 1)
#define MaxLL ((1<<LLbits) - 1)
#define MaxOff ((1<<Offbits)- 1)
#define MLFSELog 10
#define LLFSELog 10
#define OffFSELog 9
#define MaxSeq MAX(MaxLL, MaxML)
#define MIN_SEQUENCES_SIZE (2 /*seqNb*/ + 2 /*dumps*/ + 3 /*seqTables*/ + 1 /*bitStream*/)
#define MIN_CBLOCK_SIZE (3 /*litCSize*/ + MIN_SEQUENCES_SIZE)
#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2)
typedef enum { bt_compressed, bt_raw, bt_rle, bt_end } blockType_t;
/* ******************************************
* Shared functions to include for inlining
********************************************/
static void ZSTD_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
#define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; }
/*! ZSTD_wildcopy : custom version of memcpy(), can copy up to 7-8 bytes too many */
static void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length)
{
const BYTE* ip = (const BYTE*)src;
BYTE* op = (BYTE*)dst;
BYTE* const oend = op + length;
do
COPY8(op, ip)
while (op < oend);
}
/* ******************************************************************
FSE : Finite State Entropy coder
header file
****************************************************************** */
#ifndef FSE_H
#define FSE_H
#if defined (__cplusplus)
extern "C" {
#endif
/* *****************************************
* Includes
******************************************/
#include <stddef.h> /* size_t, ptrdiff_t */
/* *****************************************
* FSE simple functions
******************************************/
static size_t FSE_decompress(void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize);
/*!
FSE_decompress():
Decompress FSE data from buffer 'cSrc', of size 'cSrcSize',
into already allocated destination buffer 'dst', of size 'maxDstSize'.
return : size of regenerated data (<= maxDstSize)
or an error code, which can be tested using FSE_isError()
** Important ** : FSE_decompress() doesn't decompress non-compressible nor RLE data !!!
Why ? : making this distinction requires a header.
Header management is intentionally delegated to the user layer, which can better manage special cases.
*/
/* *****************************************
* Tool functions
******************************************/
/* Error Management */
static unsigned FSE_isError(size_t code); /* tells if a return value is an error code */
/* *****************************************
* FSE detailed API
******************************************/
/*!
FSE_compress() does the following:
1. count symbol occurrence from source[] into table count[]
2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
3. save normalized counters to memory buffer using writeNCount()
4. build encoding table 'CTable' from normalized counters
5. encode the data stream using encoding table 'CTable'
FSE_decompress() does the following:
1. read normalized counters with readNCount()
2. build decoding table 'DTable' from normalized counters
3. decode the data stream using decoding table 'DTable'
The following API allows targeting specific sub-functions for advanced tasks.
For example, it's possible to compress several blocks using the same 'CTable',
or to save and provide normalized distribution using external method.
*/
/* *** DECOMPRESSION *** */
/*!
FSE_readNCount():
Read compactly saved 'normalizedCounter' from 'rBuffer'.
return : size read from 'rBuffer'
or an errorCode, which can be tested using FSE_isError()
maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
static size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, const void* rBuffer, size_t rBuffSize);
/*!
Constructor and Destructor of type FSE_DTable
Note that its size depends on 'tableLog' */
typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
/*!
FSE_buildDTable():
Builds 'dt', which must be already allocated, using FSE_createDTable()
return : 0,
or an errorCode, which can be tested using FSE_isError() */
static size_t FSE_buildDTable ( FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
/*!
FSE_decompress_usingDTable():
Decompress compressed source 'cSrc' of size 'cSrcSize' using 'dt'
into 'dst' which must be already allocated.
return : size of regenerated data (necessarily <= maxDstSize)
or an errorCode, which can be tested using FSE_isError() */
static size_t FSE_decompress_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt);
/*!
Tutorial :
----------
(Note : these functions only decompress FSE-compressed blocks.
If block is uncompressed, use memcpy() instead
If block is a single repeated byte, use memset() instead )
The first step is to obtain the normalized frequencies of symbols.
This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
or size the table to handle worst case situations (typically 256).
FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
If there is an error, the function will return an error code, which can be tested using FSE_isError().
The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
This is performed by the function FSE_buildDTable().
The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
If there is an error, the function will return an error code, which can be tested using FSE_isError().
'FSE_DTable' can then be used to decompress 'cSrc', with FSE_decompress_usingDTable().
'cSrcSize' must be strictly correct, otherwise decompression will fail.
FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=maxDstSize).
If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
*/
#if defined (__cplusplus)
}
#endif
#endif /* FSE_H */
/* ******************************************************************
bitstream
Part of NewGen Entropy library
header file (to include)
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef BITSTREAM_H_MODULE
#define BITSTREAM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/*
* This API consists of small unitary functions, which highly benefit from being inlined.
* Since link-time-optimization is not available for all compilers,
* these functions are defined into a .h to be included.
*/
/**********************************************
* bitStream decompression API (read backward)
**********************************************/
typedef struct
{
size_t bitContainer;
unsigned bitsConsumed;
const char* ptr;
const char* start;
} BIT_DStream_t;
typedef enum { BIT_DStream_unfinished = 0,
BIT_DStream_endOfBuffer = 1,
BIT_DStream_completed = 2,
BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */
/* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits);
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD);
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);
/******************************************
* unsafe API
******************************************/
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
/* faster, but works only if nbBits >= 1 */
/****************************************************************
* Helper functions
****************************************************************/
MEM_STATIC unsigned BIT_highbit32 (U32 val)
{
# if defined(_MSC_VER) /* Visual */
- unsigned long r=0;
- _BitScanReverse ( &r, val );
- return (unsigned) r;
+ unsigned long r;
+ return _BitScanReverse(&r, val) ? (unsigned)r : 0;
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
return __builtin_clz (val) ^ 31;
# else /* Software version */
static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
U32 v = val;
unsigned r;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
r = DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
return r;
# endif
}
/**********************************************************
* bitStream decoding
**********************************************************/
/*!BIT_initDStream
* Initialize a BIT_DStream_t.
* @bitD : a pointer to an already allocated BIT_DStream_t structure
* @srcBuffer must point at the beginning of a bitStream
* @srcSize must be the exact size of the bitStream
* @result : size of stream (== srcSize) or an errorCode if a problem is detected
*/
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
{
if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
if (srcSize >= sizeof(size_t)) /* normal case */
{
U32 contain32;
bitD->start = (const char*)srcBuffer;
bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(size_t);
bitD->bitContainer = MEM_readLEST(bitD->ptr);
contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */
bitD->bitsConsumed = 8 - BIT_highbit32(contain32);
}
else
{
U32 contain32;
bitD->start = (const char*)srcBuffer;
bitD->ptr = bitD->start;
bitD->bitContainer = *(const BYTE*)(bitD->start);
switch(srcSize)
{
case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16);/* fall-through */
case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24);/* fall-through */
case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32);/* fall-through */
case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24; /* fall-through */
case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16; /* fall-through */
case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) << 8; /* fall-through */
default: break;
}
contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */
bitD->bitsConsumed = 8 - BIT_highbit32(contain32);
bitD->bitsConsumed += (U32)(sizeof(size_t) - srcSize)*8;
}
return srcSize;
}
MEM_STATIC size_t BIT_lookBits(BIT_DStream_t* bitD, U32 nbBits)
{
const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask);
}
/*! BIT_lookBitsFast :
* unsafe version; only works only if nbBits >= 1 */
MEM_STATIC size_t BIT_lookBitsFast(BIT_DStream_t* bitD, U32 nbBits)
{
const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask);
}
MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
{
bitD->bitsConsumed += nbBits;
}
MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, U32 nbBits)
{
size_t value = BIT_lookBits(bitD, nbBits);
BIT_skipBits(bitD, nbBits);
return value;
}
/*!BIT_readBitsFast :
* unsafe version; only works only if nbBits >= 1 */
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, U32 nbBits)
{
size_t value = BIT_lookBitsFast(bitD, nbBits);
BIT_skipBits(bitD, nbBits);
return value;
}
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
{
if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should never happen */
return BIT_DStream_overflow;
if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer))
{
bitD->ptr -= bitD->bitsConsumed >> 3;
bitD->bitsConsumed &= 7;
bitD->bitContainer = MEM_readLEST(bitD->ptr);
return BIT_DStream_unfinished;
}
if (bitD->ptr == bitD->start)
{
if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer;
return BIT_DStream_completed;
}
{
U32 nbBytes = bitD->bitsConsumed >> 3;
BIT_DStream_status result = BIT_DStream_unfinished;
if (bitD->ptr - nbBytes < bitD->start)
{
nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
result = BIT_DStream_endOfBuffer;
}
bitD->ptr -= nbBytes;
bitD->bitsConsumed -= nbBytes*8;
bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */
return result;
}
}
/*! BIT_endOfDStream
* @return Tells if DStream has reached its exact end
*/
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream)
{
return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
}
#if defined (__cplusplus)
}
#endif
#endif /* BITSTREAM_H_MODULE */
/* ******************************************************************
FSE : Finite State Entropy coder
header file for static linking (only)
Copyright (C) 2013-2015, Yann Collet
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef FSE_STATIC_H
#define FSE_STATIC_H
#if defined (__cplusplus)
extern "C" {
#endif
/* *****************************************
* Static allocation
*******************************************/
/* FSE buffer bounds */
#define FSE_NCOUNTBOUND 512
#define FSE_BLOCKBOUND(size) (size + (size>>7))
#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
/* It is possible to statically allocate FSE CTable/DTable as a table of unsigned using below macros */
#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2))
#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog))
/* *****************************************
* FSE advanced API
*******************************************/
static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
/* build a fake FSE_DTable, designed to read an uncompressed bitstream where each symbol uses nbBits */
static size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
/* build a fake FSE_DTable, designed to always generate the same symbolValue */
/* *****************************************
* FSE symbol decompression API
*******************************************/
typedef struct
{
size_t state;
const void* table; /* precise table may vary, depending on U16 */
} FSE_DState_t;
static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
/* *****************************************
* FSE unsafe API
*******************************************/
static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
/* *****************************************
* Implementation of inlined functions
*******************************************/
/* decompression */
typedef struct {
U16 tableLog;
U16 fastMode;
} FSE_DTableHeader; /* sizeof U32 */
typedef struct
{
unsigned short newState;
unsigned char symbol;
unsigned char nbBits;
} FSE_decode_t; /* size == U32 */
MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
{
FSE_DTableHeader DTableH;
memcpy(&DTableH, dt, sizeof(DTableH));
DStatePtr->state = BIT_readBits(bitD, DTableH.tableLog);
BIT_reloadDStream(bitD);
DStatePtr->table = dt + 1;
}
MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
{
const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
const U32 nbBits = DInfo.nbBits;
BYTE symbol = DInfo.symbol;
size_t lowBits = BIT_readBits(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
{
const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
const U32 nbBits = DInfo.nbBits;
BYTE symbol = DInfo.symbol;
size_t lowBits = BIT_readBitsFast(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
{
return DStatePtr->state == 0;
}
#if defined (__cplusplus)
}
#endif
#endif /* FSE_STATIC_H */
/* ******************************************************************
FSE : Finite State Entropy coder
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef FSE_COMMONDEFS_ONLY
/* **************************************************************
* Tuning parameters
****************************************************************/
/*!MEMORY_USAGE :
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
* Increasing memory usage improves compression ratio
* Reduced memory usage can improve speed, due to cache effect
* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
#define FSE_MAX_MEMORY_USAGE 14
#define FSE_DEFAULT_MEMORY_USAGE 13
/*!FSE_MAX_SYMBOL_VALUE :
* Maximum symbol value authorized.
* Required for proper stack allocation */
#define FSE_MAX_SYMBOL_VALUE 255
/* **************************************************************
* template functions type & suffix
****************************************************************/
#define FSE_FUNCTION_TYPE BYTE
#define FSE_FUNCTION_EXTENSION
#define FSE_DECODE_TYPE FSE_decode_t
#endif /* !FSE_COMMONDEFS_ONLY */
/* **************************************************************
* Compiler specifics
****************************************************************/
#ifdef _MSC_VER /* Visual Studio */
# define FORCE_INLINE static __forceinline
# include <intrin.h> /* For Visual 2005 */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */
#else
# if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
# ifdef __GNUC__
# define FORCE_INLINE static inline __attribute__((always_inline))
# else
# define FORCE_INLINE static inline
# endif
# else
# define FORCE_INLINE static
# endif /* __STDC_VERSION__ */
#endif
/* **************************************************************
* Dependencies
****************************************************************/
#include <stdlib.h> /* malloc, free, qsort */
#include <string.h> /* memcpy, memset */
#include <stdio.h> /* printf (debug) */
/* ***************************************************************
* Constants
*****************************************************************/
#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2)
#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
#define FSE_MIN_TABLELOG 5
#define FSE_TABLELOG_ABSOLUTE_MAX 15
#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
#error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
#endif
/* **************************************************************
* Error Management
****************************************************************/
#define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
/* **************************************************************
* Complex types
****************************************************************/
typedef U32 DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)];
/*-**************************************************************
* Templates
****************************************************************/
/*
designed to be included
for type-specific functions (template emulation in C)
Objective is to write these functions only once, for improved maintenance
*/
/* safety checks */
#ifndef FSE_FUNCTION_EXTENSION
# error "FSE_FUNCTION_EXTENSION must be defined"
#endif
#ifndef FSE_FUNCTION_TYPE
# error "FSE_FUNCTION_TYPE must be defined"
#endif
/* Function names */
#define FSE_CAT(X,Y) X##Y
#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
static U32 FSE_tableStep(U32 tableSize) { return (tableSize>>1) + (tableSize>>3) + 3; }
static size_t FSE_buildDTable(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
{
FSE_DTableHeader DTableH;
void* const tdPtr = dt+1; /* because dt is unsigned, 32-bits aligned on 32-bits */
FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*) (tdPtr);
const U32 tableSize = 1 << tableLog;
const U32 tableMask = tableSize-1;
const U32 step = FSE_tableStep(tableSize);
U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1];
U32 position = 0;
U32 highThreshold = tableSize-1;
const S16 largeLimit= (S16)(1 << (tableLog-1));
U32 noLarge = 1;
U32 s;
/* Sanity Checks */
if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
/* Init, lay down lowprob symbols */
memset(tableDecode, 0, sizeof(FSE_DECODE_TYPE) * (maxSymbolValue+1) ); /* useless init, but keep static analyzer happy, and we don't need to performance optimize legacy decoders */
DTableH.tableLog = (U16)tableLog;
for (s=0; s<=maxSymbolValue; s++)
{
if (normalizedCounter[s]==-1)
{
tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
symbolNext[s] = 1;
}
else
{
if (normalizedCounter[s] >= largeLimit) noLarge=0;
symbolNext[s] = normalizedCounter[s];
}
}
/* Spread symbols */
for (s=0; s<=maxSymbolValue; s++)
{
int i;
for (i=0; i<normalizedCounter[s]; i++)
{
tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
position = (position + step) & tableMask;
while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
}
}
if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
/* Build Decoding table */
{
U32 i;
for (i=0; i<tableSize; i++)
{
FSE_FUNCTION_TYPE symbol = (FSE_FUNCTION_TYPE)(tableDecode[i].symbol);
U16 nextState = symbolNext[symbol]++;
tableDecode[i].nbBits = (BYTE) (tableLog - BIT_highbit32 ((U32)nextState) );
tableDecode[i].newState = (U16) ( (nextState << tableDecode[i].nbBits) - tableSize);
}
}
DTableH.fastMode = (U16)noLarge;
memcpy(dt, &DTableH, sizeof(DTableH));
return 0;
}
#ifndef FSE_COMMONDEFS_ONLY
/******************************************
* FSE helper functions
******************************************/
static unsigned FSE_isError(size_t code) { return ERR_isError(code); }
/****************************************************************
* FSE NCount encoding-decoding
****************************************************************/
static short FSE_abs(short a)
{
return a<0 ? -a : a;
}
static size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize)
{
const BYTE* const istart = (const BYTE*) headerBuffer;
const BYTE* const iend = istart + hbSize;
const BYTE* ip = istart;
int nbBits;
int remaining;
int threshold;
U32 bitStream;
int bitCount;
unsigned charnum = 0;
int previous0 = 0;
if (hbSize < 4) return ERROR(srcSize_wrong);
bitStream = MEM_readLE32(ip);
nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */
if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
bitStream >>= 4;
bitCount = 4;
*tableLogPtr = nbBits;
remaining = (1<<nbBits)+1;
threshold = 1<<nbBits;
nbBits++;
while ((remaining>1) && (charnum<=*maxSVPtr))
{
if (previous0)
{
unsigned n0 = charnum;
while ((bitStream & 0xFFFF) == 0xFFFF)
{
n0+=24;
if (ip < iend-5)
{
ip+=2;
bitStream = MEM_readLE32(ip) >> bitCount;
}
else
{
bitStream >>= 16;
bitCount+=16;
}
}
while ((bitStream & 3) == 3)
{
n0+=3;
bitStream>>=2;
bitCount+=2;
}
n0 += bitStream & 3;
bitCount += 2;
if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
while (charnum < n0) normalizedCounter[charnum++] = 0;
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
{
ip += bitCount>>3;
bitCount &= 7;
bitStream = MEM_readLE32(ip) >> bitCount;
}
else
bitStream >>= 2;
}
{
const short max = (short)((2*threshold-1)-remaining);
short count;
if ((bitStream & (threshold-1)) < (U32)max)
{
count = (short)(bitStream & (threshold-1));
bitCount += nbBits-1;
}
else
{
count = (short)(bitStream & (2*threshold-1));
if (count >= threshold) count -= max;
bitCount += nbBits;
}
count--; /* extra accuracy */
remaining -= FSE_abs(count);
normalizedCounter[charnum++] = count;
previous0 = !count;
while (remaining < threshold)
{
nbBits--;
threshold >>= 1;
}
{
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
{
ip += bitCount>>3;
bitCount &= 7;
}
else
{
bitCount -= (int)(8 * (iend - 4 - ip));
ip = iend - 4;
}
bitStream = MEM_readLE32(ip) >> (bitCount & 31);
}
}
}
if (remaining != 1) return ERROR(GENERIC);
*maxSVPtr = charnum-1;
ip += (bitCount+7)>>3;
if ((size_t)(ip-istart) > hbSize) return ERROR(srcSize_wrong);
return ip-istart;
}
/*********************************************************
* Decompression (Byte symbols)
*********************************************************/
static size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue)
{
void* ptr = dt;
FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
void* dPtr = dt + 1;
FSE_decode_t* const cell = (FSE_decode_t*)dPtr;
DTableH->tableLog = 0;
DTableH->fastMode = 0;
cell->newState = 0;
cell->symbol = symbolValue;
cell->nbBits = 0;
return 0;
}
static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits)
{
void* ptr = dt;
FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
void* dPtr = dt + 1;
FSE_decode_t* const dinfo = (FSE_decode_t*)dPtr;
const unsigned tableSize = 1 << nbBits;
const unsigned tableMask = tableSize - 1;
const unsigned maxSymbolValue = tableMask;
unsigned s;
/* Sanity checks */
if (nbBits < 1) return ERROR(GENERIC); /* min size */
/* Build Decoding Table */
DTableH->tableLog = (U16)nbBits;
DTableH->fastMode = 1;
for (s=0; s<=maxSymbolValue; s++)
{
dinfo[s].newState = 0;
dinfo[s].symbol = (BYTE)s;
dinfo[s].nbBits = (BYTE)nbBits;
}
return 0;
}
FORCE_INLINE size_t FSE_decompress_usingDTable_generic(
void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const FSE_DTable* dt, const unsigned fast)
{
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const omax = op + maxDstSize;
BYTE* const olimit = omax-3;
BIT_DStream_t bitD;
FSE_DState_t state1;
FSE_DState_t state2;
size_t errorCode;
/* Init */
errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */
if (FSE_isError(errorCode)) return errorCode;
FSE_initDState(&state1, &bitD, dt);
FSE_initDState(&state2, &bitD, dt);
#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD)
/* 4 symbols per loop */
for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) && (op<olimit) ; op+=4)
{
op[0] = FSE_GETSYMBOL(&state1);
if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
BIT_reloadDStream(&bitD);
op[1] = FSE_GETSYMBOL(&state2);
if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
{ if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } }
op[2] = FSE_GETSYMBOL(&state1);
if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
BIT_reloadDStream(&bitD);
op[3] = FSE_GETSYMBOL(&state2);
}
/* tail */
/* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */
while (1)
{
if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state1))) )
break;
*op++ = FSE_GETSYMBOL(&state1);
if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state2))) )
break;
*op++ = FSE_GETSYMBOL(&state2);
}
/* end ? */
if (BIT_endOfDStream(&bitD) && FSE_endOfDState(&state1) && FSE_endOfDState(&state2))
return op-ostart;
if (op==omax) return ERROR(dstSize_tooSmall); /* dst buffer is full, but cSrc unfinished */
return ERROR(corruption_detected);
}
static size_t FSE_decompress_usingDTable(void* dst, size_t originalSize,
const void* cSrc, size_t cSrcSize,
const FSE_DTable* dt)
{
FSE_DTableHeader DTableH;
U32 fastMode;
memcpy(&DTableH, dt, sizeof(DTableH));
fastMode = DTableH.fastMode;
/* select fast mode (static) */
if (fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
}
static size_t FSE_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
{
const BYTE* const istart = (const BYTE*)cSrc;
const BYTE* ip = istart;
short counting[FSE_MAX_SYMBOL_VALUE+1];
DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */
unsigned tableLog;
unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
size_t errorCode;
if (cSrcSize<2) return ERROR(srcSize_wrong); /* too small input size */
/* normal FSE decoding mode */
errorCode = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
if (FSE_isError(errorCode)) return errorCode;
if (errorCode >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size */
ip += errorCode;
cSrcSize -= errorCode;
errorCode = FSE_buildDTable (dt, counting, maxSymbolValue, tableLog);
if (FSE_isError(errorCode)) return errorCode;
/* always return, even if it is an error code */
return FSE_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt);
}
#endif /* FSE_COMMONDEFS_ONLY */
/* ******************************************************************
Huff0 : Huffman coder, part of New Generation Entropy library
header file
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef HUFF0_H
#define HUFF0_H
#if defined (__cplusplus)
extern "C" {
#endif
/* ****************************************
* Dependency
******************************************/
#include <stddef.h> /* size_t */
/* ****************************************
* Huff0 simple functions
******************************************/
static size_t HUF_decompress(void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize);
/*!
HUF_decompress():
Decompress Huff0 data from buffer 'cSrc', of size 'cSrcSize',
into already allocated destination buffer 'dst', of size 'dstSize'.
'dstSize' must be the exact size of original (uncompressed) data.
Note : in contrast with FSE, HUF_decompress can regenerate RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data, because it knows size to regenerate.
@return : size of regenerated data (== dstSize)
or an error code, which can be tested using HUF_isError()
*/
/* ****************************************
* Tool functions
******************************************/
/* Error Management */
static unsigned HUF_isError(size_t code); /* tells if a return value is an error code */
#if defined (__cplusplus)
}
#endif
#endif /* HUFF0_H */
/* ******************************************************************
Huff0 : Huffman coder, part of New Generation Entropy library
header file for static linking (only)
Copyright (C) 2013-2015, Yann Collet
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef HUFF0_STATIC_H
#define HUFF0_STATIC_H
#if defined (__cplusplus)
extern "C" {
#endif
/* ****************************************
* Static allocation macros
******************************************/
/* static allocation of Huff0's DTable */
#define HUF_DTABLE_SIZE(maxTableLog) (1 + (1<<maxTableLog)) /* nb Cells; use unsigned short for X2, unsigned int for X4 */
#define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
unsigned short DTable[HUF_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
#define HUF_CREATE_STATIC_DTABLEX4(DTable, maxTableLog) \
unsigned int DTable[HUF_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
#define HUF_CREATE_STATIC_DTABLEX6(DTable, maxTableLog) \
unsigned int DTable[HUF_DTABLE_SIZE(maxTableLog) * 3 / 2] = { maxTableLog }
/* ****************************************
* Advanced decompression functions
******************************************/
static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbols decoder */
/* ****************************************
* Huff0 detailed API
******************************************/
/*!
HUF_decompress() does the following:
1. select the decompression algorithm (X2, X4, X6) based on pre-computed heuristics
2. build Huffman table from save, using HUF_readDTableXn()
3. decode 1 or 4 segments in parallel using HUF_decompressSXn_usingDTable
*/
static size_t HUF_readDTableX2 (unsigned short* DTable, const void* src, size_t srcSize);
static size_t HUF_readDTableX4 (unsigned* DTable, const void* src, size_t srcSize);
static size_t HUF_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned short* DTable);
static size_t HUF_decompress4X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned* DTable);
#if defined (__cplusplus)
}
#endif
#endif /* HUFF0_STATIC_H */
/* ******************************************************************
Huff0 : Huffman coder, part of New Generation Entropy library
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE+Huff0 source repository : https://github.com/Cyan4973/FiniteStateEntropy
****************************************************************** */
/* **************************************************************
* Compiler specifics
****************************************************************/
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
/* inline is defined */
#elif defined(_MSC_VER)
# define inline __inline
#else
# define inline /* disable inline */
#endif
#ifdef _MSC_VER /* Visual Studio */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
#endif
/* **************************************************************
* Includes
****************************************************************/
#include <stdlib.h> /* malloc, free, qsort */
#include <string.h> /* memcpy, memset */
#include <stdio.h> /* printf (debug) */
/* **************************************************************
* Constants
****************************************************************/
#define HUF_ABSOLUTEMAX_TABLELOG 16 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
#define HUF_MAX_TABLELOG 12 /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
#define HUF_DEFAULT_TABLELOG HUF_MAX_TABLELOG /* tableLog by default, when not specified */
#define HUF_MAX_SYMBOL_VALUE 255
#if (HUF_MAX_TABLELOG > HUF_ABSOLUTEMAX_TABLELOG)
# error "HUF_MAX_TABLELOG is too large !"
#endif
/* **************************************************************
* Error Management
****************************************************************/
static unsigned HUF_isError(size_t code) { return ERR_isError(code); }
#define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
/*-*******************************************************
* Huff0 : Huffman block decompression
*********************************************************/
typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX2; /* single-symbol decoding */
typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4; /* double-symbols decoding */
typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
/*! HUF_readStats
Read compact Huffman tree, saved by HUF_writeCTable
@huffWeight : destination buffer
@return : size read from `src`
*/
static size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize)
{
U32 weightTotal;
U32 tableLog;
const BYTE* ip = (const BYTE*) src;
size_t iSize;
size_t oSize;
U32 n;
if (!srcSize) return ERROR(srcSize_wrong);
iSize = ip[0];
//memset(huffWeight, 0, hwSize); /* is not necessary, even though some analyzer complain ... */
if (iSize >= 128) /* special header */
{
if (iSize >= (242)) /* RLE */
{
static int l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 };
oSize = l[iSize-242];
memset(huffWeight, 1, hwSize);
iSize = 0;
}
else /* Incompressible */
{
oSize = iSize - 127;
iSize = ((oSize+1)/2);
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
if (oSize >= hwSize) return ERROR(corruption_detected);
ip += 1;
for (n=0; n<oSize; n+=2)
{
huffWeight[n] = ip[n/2] >> 4;
huffWeight[n+1] = ip[n/2] & 15;
}
}
}
else /* header compressed with FSE (normal case) */
{
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
oSize = FSE_decompress(huffWeight, hwSize-1, ip+1, iSize); /* max (hwSize-1) values decoded, as last one is implied */
if (FSE_isError(oSize)) return oSize;
}
/* collect weight stats */
memset(rankStats, 0, (HUF_ABSOLUTEMAX_TABLELOG + 1) * sizeof(U32));
weightTotal = 0;
for (n=0; n<oSize; n++)
{
if (huffWeight[n] >= HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
rankStats[huffWeight[n]]++;
weightTotal += (1 << huffWeight[n]) >> 1;
}
if (weightTotal == 0) return ERROR(corruption_detected);
/* get last non-null symbol weight (implied, total must be 2^n) */
tableLog = BIT_highbit32(weightTotal) + 1;
if (tableLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
{
U32 total = 1 << tableLog;
U32 rest = total - weightTotal;
U32 verif = 1 << BIT_highbit32(rest);
U32 lastWeight = BIT_highbit32(rest) + 1;
if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
huffWeight[oSize] = (BYTE)lastWeight;
rankStats[lastWeight]++;
}
/* check tree construction validity */
if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
/* results */
*nbSymbolsPtr = (U32)(oSize+1);
*tableLogPtr = tableLog;
return iSize+1;
}
/**************************/
/* single-symbol decoding */
/**************************/
static size_t HUF_readDTableX2 (U16* DTable, const void* src, size_t srcSize)
{
BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1];
U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; /* large enough for values from 0 to 16 */
U32 tableLog = 0;
size_t iSize;
U32 nbSymbols = 0;
U32 n;
U32 nextRankStart;
void* const dtPtr = DTable + 1;
HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
HUF_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U16)); /* if compilation fails here, assertion is false */
//memset(huffWeight, 0, sizeof(huffWeight)); /* is not necessary, even though some analyzer complain ... */
iSize = HUF_readStats(huffWeight, HUF_MAX_SYMBOL_VALUE + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
if (HUF_isError(iSize)) return iSize;
/* check result */
if (tableLog > DTable[0]) return ERROR(tableLog_tooLarge); /* DTable is too small */
DTable[0] = (U16)tableLog; /* maybe should separate sizeof DTable, as allocated, from used size of DTable, in case of DTable re-use */
/* Prepare ranks */
nextRankStart = 0;
for (n=1; n<=tableLog; n++)
{
U32 current = nextRankStart;
nextRankStart += (rankVal[n] << (n-1));
rankVal[n] = current;
}
/* fill DTable */
for (n=0; n<nbSymbols; n++)
{
const U32 w = huffWeight[n];
const U32 length = (1 << w) >> 1;
U32 i;
HUF_DEltX2 D;
D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
for (i = rankVal[w]; i < rankVal[w] + length; i++)
dt[i] = D;
rankVal[w] += length;
}
return iSize;
}
static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, const U32 dtLog)
{
const size_t val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
const BYTE c = dt[val].byte;
BIT_skipBits(Dstream, dt[val].nbBits);
return c;
}
#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
*ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
static inline size_t HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 4 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4))
{
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
}
/* closer to the end */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd))
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
/* no more data to retrieve from bitstream, hence no need to reload */
while (p < pEnd)
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
return pEnd-pStart;
}
static size_t HUF_decompress4X2_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const U16* DTable)
{
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{
const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* const dtPtr = DTable;
const HUF_DEltX2* const dt = ((const HUF_DEltX2*)dtPtr) +1;
const U32 dtLog = DTable[0];
size_t errorCode;
/* Init */
BIT_DStream_t bitD1;
BIT_DStream_t bitD2;
BIT_DStream_t bitD3;
BIT_DStream_t bitD4;
const size_t length1 = MEM_readLE16(istart);
const size_t length2 = MEM_readLE16(istart+2);
const size_t length3 = MEM_readLE16(istart+4);
size_t length4;
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
const size_t segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal;
length4 = cSrcSize - (length1 + length2 + length3 + 6);
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
errorCode = BIT_initDStream(&bitD1, istart1, length1);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD2, istart2, length2);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD3, istart3, length3);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD4, istart4, length4);
if (HUF_isError(errorCode)) return errorCode;
/* 16-32 symbols per loop (4-8 symbols per stream) */
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; )
{
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 supposed already verified within main loop */
/* finish bitStreams one by one */
HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
/* check */
endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
if (!endSignal) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
}
static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_MAX_TABLELOG);
const BYTE* ip = (const BYTE*) cSrc;
size_t errorCode;
errorCode = HUF_readDTableX2 (DTable, cSrc, cSrcSize);
if (HUF_isError(errorCode)) return errorCode;
if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);
ip += errorCode;
cSrcSize -= errorCode;
return HUF_decompress4X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
}
/***************************/
/* double-symbols decoding */
/***************************/
static void HUF_fillDTableX4Level2(HUF_DEltX4* DTable, U32 sizeLog, const U32 consumed,
const U32* rankValOrigin, const int minWeight,
const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
U32 nbBitsBaseline, U16 baseSeq)
{
HUF_DEltX4 DElt;
U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
U32 s;
/* get pre-calculated rankVal */
memcpy(rankVal, rankValOrigin, sizeof(rankVal));
/* fill skipped values */
if (minWeight>1)
{
U32 i, skipSize = rankVal[minWeight];
MEM_writeLE16(&(DElt.sequence), baseSeq);
DElt.nbBits = (BYTE)(consumed);
DElt.length = 1;
for (i = 0; i < skipSize; i++)
DTable[i] = DElt;
}
/* fill DTable */
for (s=0; s<sortedListSize; s++) /* note : sortedSymbols already skipped */
{
const U32 symbol = sortedSymbols[s].symbol;
const U32 weight = sortedSymbols[s].weight;
const U32 nbBits = nbBitsBaseline - weight;
const U32 length = 1 << (sizeLog-nbBits);
const U32 start = rankVal[weight];
U32 i = start;
const U32 end = start + length;
MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
DElt.nbBits = (BYTE)(nbBits + consumed);
DElt.length = 2;
do { DTable[i++] = DElt; } while (i<end); /* since length >= 1 */
rankVal[weight] += length;
}
}
typedef U32 rankVal_t[HUF_ABSOLUTEMAX_TABLELOG][HUF_ABSOLUTEMAX_TABLELOG + 1];
static void HUF_fillDTableX4(HUF_DEltX4* DTable, const U32 targetLog,
const sortedSymbol_t* sortedList, const U32 sortedListSize,
const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
const U32 nbBitsBaseline)
{
U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
const U32 minBits = nbBitsBaseline - maxWeight;
U32 s;
memcpy(rankVal, rankValOrigin, sizeof(rankVal));
/* fill DTable */
for (s=0; s<sortedListSize; s++)
{
const U16 symbol = sortedList[s].symbol;
const U32 weight = sortedList[s].weight;
const U32 nbBits = nbBitsBaseline - weight;
const U32 start = rankVal[weight];
const U32 length = 1 << (targetLog-nbBits);
if (targetLog-nbBits >= minBits) /* enough room for a second symbol */
{
U32 sortedRank;
int minWeight = nbBits + scaleLog;
if (minWeight < 1) minWeight = 1;
sortedRank = rankStart[minWeight];
HUF_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits,
rankValOrigin[nbBits], minWeight,
sortedList+sortedRank, sortedListSize-sortedRank,
nbBitsBaseline, symbol);
}
else
{
U32 i;
const U32 end = start + length;
HUF_DEltX4 DElt;
MEM_writeLE16(&(DElt.sequence), symbol);
DElt.nbBits = (BYTE)(nbBits);
DElt.length = 1;
for (i = start; i < end; i++)
DTable[i] = DElt;
}
rankVal[weight] += length;
}
}
static size_t HUF_readDTableX4 (U32* DTable, const void* src, size_t srcSize)
{
BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1];
sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1];
U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 };
U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 };
U32* const rankStart = rankStart0+1;
rankVal_t rankVal;
U32 tableLog, maxW, sizeOfSort, nbSymbols;
const U32 memLog = DTable[0];
size_t iSize;
void* dtPtr = DTable;
HUF_DEltX4* const dt = ((HUF_DEltX4*)dtPtr) + 1;
HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(U32)); /* if compilation fails here, assertion is false */
if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge);
//memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */
iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
if (HUF_isError(iSize)) return iSize;
/* check result */
if (tableLog > memLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
/* find maxWeight */
for (maxW = tableLog; rankStats[maxW]==0; maxW--)
{ if (!maxW) return ERROR(GENERIC); } /* necessarily finds a solution before maxW==0 */
/* Get start index of each weight */
{
U32 w, nextRankStart = 0;
for (w=1; w<=maxW; w++)
{
U32 current = nextRankStart;
nextRankStart += rankStats[w];
rankStart[w] = current;
}
rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
sizeOfSort = nextRankStart;
}
/* sort symbols by weight */
{
U32 s;
for (s=0; s<nbSymbols; s++)
{
U32 w = weightList[s];
U32 r = rankStart[w]++;
sortedSymbol[r].symbol = (BYTE)s;
sortedSymbol[r].weight = (BYTE)w;
}
rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
}
/* Build rankVal */
{
const U32 minBits = tableLog+1 - maxW;
U32 nextRankVal = 0;
U32 w, consumed;
const int rescale = (memLog-tableLog) - 1; /* tableLog <= memLog */
U32* rankVal0 = rankVal[0];
for (w=1; w<=maxW; w++)
{
U32 current = nextRankVal;
nextRankVal += rankStats[w] << (w+rescale);
rankVal0[w] = current;
}
for (consumed = minBits; consumed <= memLog - minBits; consumed++)
{
U32* rankValPtr = rankVal[consumed];
for (w = 1; w <= maxW; w++)
{
rankValPtr[w] = rankVal0[w] >> consumed;
}
}
}
HUF_fillDTableX4(dt, memLog,
sortedSymbol, sizeOfSort,
rankStart0, rankVal, maxW,
tableLog+1);
return iSize;
}
static U32 HUF_decodeSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
{
const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
memcpy(op, dt+val, 2);
BIT_skipBits(DStream, dt[val].nbBits);
return dt[val].length;
}
static U32 HUF_decodeLastSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
{
const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
memcpy(op, dt+val, 1);
if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits);
else
{
if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8))
{
BIT_skipBits(DStream, dt[val].nbBits);
if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
}
}
return 1;
}
#define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
static inline size_t HUF_decodeStreamX4(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const HUF_DEltX4* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 8 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd-7))
{
HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
HUF_DECODE_SYMBOLX4_1(p, bitDPtr);
HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
}
/* closer to the end */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-2))
HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
while (p <= pEnd-2)
HUF_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
if (p < pEnd)
p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);
return p-pStart;
}
static size_t HUF_decompress4X4_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const U32* DTable)
{
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{
const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* const dtPtr = DTable;
const HUF_DEltX4* const dt = ((const HUF_DEltX4*)dtPtr) +1;
const U32 dtLog = DTable[0];
size_t errorCode;
/* Init */
BIT_DStream_t bitD1;
BIT_DStream_t bitD2;
BIT_DStream_t bitD3;
BIT_DStream_t bitD4;
const size_t length1 = MEM_readLE16(istart);
const size_t length2 = MEM_readLE16(istart+2);
const size_t length3 = MEM_readLE16(istart+4);
size_t length4;
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
const size_t segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal;
length4 = cSrcSize - (length1 + length2 + length3 + 6);
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
errorCode = BIT_initDStream(&bitD1, istart1, length1);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD2, istart2, length2);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD3, istart3, length3);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD4, istart4, length4);
if (HUF_isError(errorCode)) return errorCode;
/* 16-32 symbols per loop (4-8 symbols per stream) */
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; )
{
HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
HUF_DECODE_SYMBOLX4_1(op1, &bitD1);
HUF_DECODE_SYMBOLX4_1(op2, &bitD2);
HUF_DECODE_SYMBOLX4_1(op3, &bitD3);
HUF_DECODE_SYMBOLX4_1(op4, &bitD4);
HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
HUF_DECODE_SYMBOLX4_0(op1, &bitD1);
HUF_DECODE_SYMBOLX4_0(op2, &bitD2);
HUF_DECODE_SYMBOLX4_0(op3, &bitD3);
HUF_DECODE_SYMBOLX4_0(op4, &bitD4);
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 supposed already verified within main loop */
/* finish bitStreams one by one */
HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
HUF_decodeStreamX4(op4, &bitD4, oend, dt, dtLog);
/* check */
endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
if (!endSignal) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
}
static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_MAX_TABLELOG);
const BYTE* ip = (const BYTE*) cSrc;
size_t hSize = HUF_readDTableX4 (DTable, cSrc, cSrcSize);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize;
cSrcSize -= hSize;
return HUF_decompress4X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
}
/**********************************/
/* Generic decompression selector */
/**********************************/
typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
{
/* single, double, quad */
{{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */
{{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */
{{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */
{{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */
{{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */
{{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */
{{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */
{{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */
{{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */
{{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */
{{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */
{{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */
{{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */
{{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */
{{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */
{{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */
};
typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
static size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
static const decompressionAlgo decompress[3] = { HUF_decompress4X2, HUF_decompress4X4, NULL };
/* estimate decompression time */
U32 Q;
const U32 D256 = (U32)(dstSize >> 8);
U32 Dtime[3];
U32 algoNb = 0;
int n;
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
/* decoder timing evaluation */
Q = (U32)(cSrcSize * 16 / dstSize); /* Q < 16 since dstSize > cSrcSize */
for (n=0; n<3; n++)
Dtime[n] = algoTime[Q][n].tableTime + (algoTime[Q][n].decode256Time * D256);
Dtime[1] += Dtime[1] >> 4; Dtime[2] += Dtime[2] >> 3; /* advantage to algorithms using less memory, for cache eviction */
if (Dtime[1] < Dtime[0]) algoNb = 1;
return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
//return HUF_decompress4X2(dst, dstSize, cSrc, cSrcSize); /* multi-streams single-symbol decoding */
//return HUF_decompress4X4(dst, dstSize, cSrc, cSrcSize); /* multi-streams double-symbols decoding */
//return HUF_decompress4X6(dst, dstSize, cSrc, cSrcSize); /* multi-streams quad-symbols decoding */
}
#endif /* ZSTD_CCOMMON_H_MODULE */
/*
zstd - decompression module fo v0.4 legacy format
Copyright (C) 2015-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- zstd source repository : https://github.com/Cyan4973/zstd
- ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
*/
/* ***************************************************************
* Tuning parameters
*****************************************************************/
/*!
* HEAPMODE :
* Select how default decompression function ZSTD_decompress() will allocate memory,
* in memory stack (0), or in memory heap (1, requires malloc())
*/
#ifndef ZSTD_HEAPMODE
# define ZSTD_HEAPMODE 1
#endif
/* *******************************************************
* Includes
*********************************************************/
#include <stdlib.h> /* calloc */
#include <string.h> /* memcpy, memmove */
#include <stdio.h> /* debug : printf */
/* *******************************************************
* Compiler specifics
*********************************************************/
#ifdef _MSC_VER /* Visual Studio */
# include <intrin.h> /* For Visual 2005 */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4324) /* disable: C4324: padded structure */
#endif
/* *************************************
* Local types
***************************************/
typedef struct
{
blockType_t blockType;
U32 origSize;
} blockProperties_t;
/* *******************************************************
* Memory operations
**********************************************************/
static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }
/* *************************************
* Error Management
***************************************/
/*! ZSTD_isError
* tells if a return value is an error code */
static unsigned ZSTD_isError(size_t code) { return ERR_isError(code); }
/* *************************************************************
* Context management
***************************************************************/
typedef enum { ZSTDds_getFrameHeaderSize, ZSTDds_decodeFrameHeader,
ZSTDds_decodeBlockHeader, ZSTDds_decompressBlock } ZSTD_dStage;
struct ZSTDv04_Dctx_s
{
U32 LLTable[FSE_DTABLE_SIZE_U32(LLFSELog)];
U32 OffTable[FSE_DTABLE_SIZE_U32(OffFSELog)];
U32 MLTable[FSE_DTABLE_SIZE_U32(MLFSELog)];
const void* previousDstEnd;
const void* base;
const void* vBase;
const void* dictEnd;
size_t expected;
size_t headerSize;
ZSTD_parameters params;
blockType_t bType;
ZSTD_dStage stage;
const BYTE* litPtr;
size_t litSize;
BYTE litBuffer[BLOCKSIZE + 8 /* margin for wildcopy */];
BYTE headerBuffer[ZSTD_frameHeaderSize_max];
}; /* typedef'd to ZSTD_DCtx within "zstd_static.h" */
static size_t ZSTD_resetDCtx(ZSTD_DCtx* dctx)
{
dctx->expected = ZSTD_frameHeaderSize_min;
dctx->stage = ZSTDds_getFrameHeaderSize;
dctx->previousDstEnd = NULL;
dctx->base = NULL;
dctx->vBase = NULL;
dctx->dictEnd = NULL;
return 0;
}
static ZSTD_DCtx* ZSTD_createDCtx(void)
{
ZSTD_DCtx* dctx = (ZSTD_DCtx*)malloc(sizeof(ZSTD_DCtx));
if (dctx==NULL) return NULL;
ZSTD_resetDCtx(dctx);
return dctx;
}
static size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx)
{
free(dctx);
return 0;
}
/* *************************************************************
* Decompression section
***************************************************************/
/** ZSTD_decodeFrameHeader_Part1
* decode the 1st part of the Frame Header, which tells Frame Header size.
* srcSize must be == ZSTD_frameHeaderSize_min
* @return : the full size of the Frame Header */
static size_t ZSTD_decodeFrameHeader_Part1(ZSTD_DCtx* zc, const void* src, size_t srcSize)
{
U32 magicNumber;
if (srcSize != ZSTD_frameHeaderSize_min) return ERROR(srcSize_wrong);
magicNumber = MEM_readLE32(src);
if (magicNumber != ZSTD_MAGICNUMBER) return ERROR(prefix_unknown);
zc->headerSize = ZSTD_frameHeaderSize_min;
return zc->headerSize;
}
static size_t ZSTD_getFrameParams(ZSTD_parameters* params, const void* src, size_t srcSize)
{
U32 magicNumber;
if (srcSize < ZSTD_frameHeaderSize_min) return ZSTD_frameHeaderSize_max;
magicNumber = MEM_readLE32(src);
if (magicNumber != ZSTD_MAGICNUMBER) return ERROR(prefix_unknown);
memset(params, 0, sizeof(*params));
params->windowLog = (((const BYTE*)src)[4] & 15) + ZSTD_WINDOWLOG_ABSOLUTEMIN;
if ((((const BYTE*)src)[4] >> 4) != 0) return ERROR(frameParameter_unsupported); /* reserved bits */
return 0;
}
/** ZSTD_decodeFrameHeader_Part2
* decode the full Frame Header
* srcSize must be the size provided by ZSTD_decodeFrameHeader_Part1
* @return : 0, or an error code, which can be tested using ZSTD_isError() */
static size_t ZSTD_decodeFrameHeader_Part2(ZSTD_DCtx* zc, const void* src, size_t srcSize)
{
size_t result;
if (srcSize != zc->headerSize) return ERROR(srcSize_wrong);
result = ZSTD_getFrameParams(&(zc->params), src, srcSize);
if ((MEM_32bits()) && (zc->params.windowLog > 25)) return ERROR(frameParameter_unsupported);
return result;
}
static size_t ZSTD_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
{
const BYTE* const in = (const BYTE* const)src;
BYTE headerFlags;
U32 cSize;
if (srcSize < 3) return ERROR(srcSize_wrong);
headerFlags = *in;
cSize = in[2] + (in[1]<<8) + ((in[0] & 7)<<16);
bpPtr->blockType = (blockType_t)(headerFlags >> 6);
bpPtr->origSize = (bpPtr->blockType == bt_rle) ? cSize : 0;
if (bpPtr->blockType == bt_end) return 0;
if (bpPtr->blockType == bt_rle) return 1;
return cSize;
}
static size_t ZSTD_copyRawBlock(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
if (srcSize > maxDstSize) return ERROR(dstSize_tooSmall);
if (srcSize > 0) {
memcpy(dst, src, srcSize);
}
return srcSize;
}
/** ZSTD_decompressLiterals
@return : nb of bytes read from src, or an error code*/
static size_t ZSTD_decompressLiterals(void* dst, size_t* maxDstSizePtr,
const void* src, size_t srcSize)
{
const BYTE* ip = (const BYTE*)src;
const size_t litSize = (MEM_readLE32(src) & 0x1FFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
const size_t litCSize = (MEM_readLE32(ip+2) & 0xFFFFFF) >> 5; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
if (litSize > *maxDstSizePtr) return ERROR(corruption_detected);
if (litCSize + 5 > srcSize) return ERROR(corruption_detected);
if (HUF_isError(HUF_decompress(dst, litSize, ip+5, litCSize))) return ERROR(corruption_detected);
*maxDstSizePtr = litSize;
return litCSize + 5;
}
/** ZSTD_decodeLiteralsBlock
@return : nb of bytes read from src (< srcSize ) */
static size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
const void* src, size_t srcSize) /* note : srcSize < BLOCKSIZE */
{
const BYTE* const istart = (const BYTE*) src;
/* any compressed block with literals segment must be at least this size */
if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected);
switch(*istart & 3)
{
/* compressed */
case 0:
{
size_t litSize = BLOCKSIZE;
const size_t readSize = ZSTD_decompressLiterals(dctx->litBuffer, &litSize, src, srcSize);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
memset(dctx->litBuffer + dctx->litSize, 0, 8);
return readSize; /* works if it's an error too */
}
case IS_RAW:
{
const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
if (litSize > srcSize-11) /* risk of reading too far with wildcopy */
{
if (litSize > BLOCKSIZE) return ERROR(corruption_detected);
if (litSize > srcSize-3) return ERROR(corruption_detected);
memcpy(dctx->litBuffer, istart, litSize);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
memset(dctx->litBuffer + dctx->litSize, 0, 8);
return litSize+3;
}
/* direct reference into compressed stream */
dctx->litPtr = istart+3;
dctx->litSize = litSize;
return litSize+3; }
case IS_RLE:
{
const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
if (litSize > BLOCKSIZE) return ERROR(corruption_detected);
memset(dctx->litBuffer, istart[3], litSize + 8);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
return 4;
}
default:
return ERROR(corruption_detected); /* forbidden nominal case */
}
}
static size_t ZSTD_decodeSeqHeaders(int* nbSeq, const BYTE** dumpsPtr, size_t* dumpsLengthPtr,
FSE_DTable* DTableLL, FSE_DTable* DTableML, FSE_DTable* DTableOffb,
const void* src, size_t srcSize)
{
const BYTE* const istart = (const BYTE* const)src;
const BYTE* ip = istart;
const BYTE* const iend = istart + srcSize;
U32 LLtype, Offtype, MLtype;
U32 LLlog, Offlog, MLlog;
size_t dumpsLength;
/* check */
if (srcSize < 5) return ERROR(srcSize_wrong);
/* SeqHead */
*nbSeq = MEM_readLE16(ip); ip+=2;
LLtype = *ip >> 6;
Offtype = (*ip >> 4) & 3;
MLtype = (*ip >> 2) & 3;
if (*ip & 2)
{
dumpsLength = ip[2];
dumpsLength += ip[1] << 8;
ip += 3;
}
else
{
dumpsLength = ip[1];
dumpsLength += (ip[0] & 1) << 8;
ip += 2;
}
*dumpsPtr = ip;
ip += dumpsLength;
*dumpsLengthPtr = dumpsLength;
/* check */
if (ip > iend-3) return ERROR(srcSize_wrong); /* min : all 3 are "raw", hence no header, but at least xxLog bits per type */
/* sequences */
{
S16 norm[MaxML+1]; /* assumption : MaxML >= MaxLL >= MaxOff */
size_t headerSize;
/* Build DTables */
switch(LLtype)
{
case bt_rle :
LLlog = 0;
FSE_buildDTable_rle(DTableLL, *ip++); break;
case bt_raw :
LLlog = LLbits;
FSE_buildDTable_raw(DTableLL, LLbits); break;
default :
{ U32 max = MaxLL;
headerSize = FSE_readNCount(norm, &max, &LLlog, ip, iend-ip);
if (FSE_isError(headerSize)) return ERROR(GENERIC);
if (LLlog > LLFSELog) return ERROR(corruption_detected);
ip += headerSize;
FSE_buildDTable(DTableLL, norm, max, LLlog);
} }
switch(Offtype)
{
case bt_rle :
Offlog = 0;
if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
FSE_buildDTable_rle(DTableOffb, *ip++ & MaxOff); /* if *ip > MaxOff, data is corrupted */
break;
case bt_raw :
Offlog = Offbits;
FSE_buildDTable_raw(DTableOffb, Offbits); break;
default :
{ U32 max = MaxOff;
headerSize = FSE_readNCount(norm, &max, &Offlog, ip, iend-ip);
if (FSE_isError(headerSize)) return ERROR(GENERIC);
if (Offlog > OffFSELog) return ERROR(corruption_detected);
ip += headerSize;
FSE_buildDTable(DTableOffb, norm, max, Offlog);
} }
switch(MLtype)
{
case bt_rle :
MLlog = 0;
if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
FSE_buildDTable_rle(DTableML, *ip++); break;
case bt_raw :
MLlog = MLbits;
FSE_buildDTable_raw(DTableML, MLbits); break;
default :
{ U32 max = MaxML;
headerSize = FSE_readNCount(norm, &max, &MLlog, ip, iend-ip);
if (FSE_isError(headerSize)) return ERROR(GENERIC);
if (MLlog > MLFSELog) return ERROR(corruption_detected);
ip += headerSize;
FSE_buildDTable(DTableML, norm, max, MLlog);
} } }
return ip-istart;
}
typedef struct {
size_t litLength;
size_t offset;
size_t matchLength;
} seq_t;
typedef struct {
BIT_DStream_t DStream;
FSE_DState_t stateLL;
FSE_DState_t stateOffb;
FSE_DState_t stateML;
size_t prevOffset;
const BYTE* dumps;
const BYTE* dumpsEnd;
} seqState_t;
static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState)
{
size_t litLength;
size_t prevOffset;
size_t offset;
size_t matchLength;
const BYTE* dumps = seqState->dumps;
const BYTE* const de = seqState->dumpsEnd;
/* Literal length */
litLength = FSE_decodeSymbol(&(seqState->stateLL), &(seqState->DStream));
prevOffset = litLength ? seq->offset : seqState->prevOffset;
if (litLength == MaxLL) {
const U32 add = dumps<de ? *dumps++ : 0;
if (add < 255) litLength += add;
else if (dumps + 3 <= de) {
litLength = MEM_readLE24(dumps);
dumps += 3;
}
if (dumps >= de) { dumps = de-1; } /* late correction, to avoid read overflow (data is now corrupted anyway) */
}
/* Offset */
{ static const U32 offsetPrefix[MaxOff+1] = {
1 /*fake*/, 1, 2, 4, 8, 16, 32, 64, 128, 256,
512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144,
524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, /*fake*/ 1, 1, 1, 1, 1 };
U32 offsetCode, nbBits;
offsetCode = FSE_decodeSymbol(&(seqState->stateOffb), &(seqState->DStream)); /* <= maxOff, by table construction */
if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream));
nbBits = offsetCode - 1;
if (offsetCode==0) nbBits = 0; /* cmove */
offset = offsetPrefix[offsetCode] + BIT_readBits(&(seqState->DStream), nbBits);
if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream));
if (offsetCode==0) offset = prevOffset; /* cmove */
if (offsetCode | !litLength) seqState->prevOffset = seq->offset; /* cmove */
}
/* MatchLength */
matchLength = FSE_decodeSymbol(&(seqState->stateML), &(seqState->DStream));
if (matchLength == MaxML) {
const U32 add = dumps<de ? *dumps++ : 0;
if (add < 255) matchLength += add;
else if (dumps + 3 <= de){
matchLength = MEM_readLE24(dumps);
dumps += 3;
}
if (dumps >= de) { dumps = de-1; } /* late correction, to avoid read overflow (data is now corrupted anyway) */
}
matchLength += MINMATCH;
/* save result */
seq->litLength = litLength;
seq->offset = offset;
seq->matchLength = matchLength;
seqState->dumps = dumps;
}
static size_t ZSTD_execSequence(BYTE* op,
BYTE* const oend, seq_t sequence,
const BYTE** litPtr, const BYTE* const litLimit,
const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd)
{
static const int dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
BYTE* const oLitEnd = op + sequence.litLength;
const size_t sequenceLength = sequence.litLength + sequence.matchLength;
BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
BYTE* const oend_8 = oend-8;
const BYTE* const litEnd = *litPtr + sequence.litLength;
const BYTE* match = oLitEnd - sequence.offset;
/* check */
if (oLitEnd > oend_8) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of 8 from oend */
if (oMatchEnd > oend) return ERROR(dstSize_tooSmall); /* overwrite beyond dst buffer */
if (litEnd > litLimit) return ERROR(corruption_detected); /* risk read beyond lit buffer */
/* copy Literals */
ZSTD_wildcopy(op, *litPtr, sequence.litLength); /* note : oLitEnd <= oend-8 : no risk of overwrite beyond oend */
op = oLitEnd;
*litPtr = litEnd; /* update for next sequence */
/* copy Match */
if (sequence.offset > (size_t)(oLitEnd - base))
{
/* offset beyond prefix */
if (sequence.offset > (size_t)(oLitEnd - vBase))
return ERROR(corruption_detected);
match = dictEnd - (base-match);
if (match + sequence.matchLength <= dictEnd)
{
memmove(oLitEnd, match, sequence.matchLength);
return sequenceLength;
}
/* span extDict & currentPrefixSegment */
{
size_t length1 = dictEnd - match;
memmove(oLitEnd, match, length1);
op = oLitEnd + length1;
sequence.matchLength -= length1;
match = base;
if (op > oend_8 || sequence.matchLength < MINMATCH) {
while (op < oMatchEnd) *op++ = *match++;
return sequenceLength;
}
}
}
/* Requirement: op <= oend_8 */
/* match within prefix */
if (sequence.offset < 8) {
/* close range match, overlap */
const int sub2 = dec64table[sequence.offset];
op[0] = match[0];
op[1] = match[1];
op[2] = match[2];
op[3] = match[3];
match += dec32table[sequence.offset];
ZSTD_copy4(op+4, match);
match -= sub2;
} else {
ZSTD_copy8(op, match);
}
op += 8; match += 8;
if (oMatchEnd > oend-(16-MINMATCH))
{
if (op < oend_8)
{
ZSTD_wildcopy(op, match, oend_8 - op);
match += oend_8 - op;
op = oend_8;
}
while (op < oMatchEnd) *op++ = *match++;
}
else
{
ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8, but must be signed */
}
return sequenceLength;
}
static size_t ZSTD_decompressSequences(
ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize)
{
const BYTE* ip = (const BYTE*)seqStart;
const BYTE* const iend = ip + seqSize;
BYTE* const ostart = (BYTE* const)dst;
BYTE* op = ostart;
BYTE* const oend = ostart + maxDstSize;
size_t errorCode, dumpsLength;
const BYTE* litPtr = dctx->litPtr;
const BYTE* const litEnd = litPtr + dctx->litSize;
int nbSeq;
const BYTE* dumps;
U32* DTableLL = dctx->LLTable;
U32* DTableML = dctx->MLTable;
U32* DTableOffb = dctx->OffTable;
const BYTE* const base = (const BYTE*) (dctx->base);
const BYTE* const vBase = (const BYTE*) (dctx->vBase);
const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
/* Build Decoding Tables */
errorCode = ZSTD_decodeSeqHeaders(&nbSeq, &dumps, &dumpsLength,
DTableLL, DTableML, DTableOffb,
ip, iend-ip);
if (ZSTD_isError(errorCode)) return errorCode;
ip += errorCode;
/* Regen sequences */
{
seq_t sequence;
seqState_t seqState;
memset(&sequence, 0, sizeof(sequence));
sequence.offset = 4;
seqState.dumps = dumps;
seqState.dumpsEnd = dumps + dumpsLength;
seqState.prevOffset = 4;
errorCode = BIT_initDStream(&(seqState.DStream), ip, iend-ip);
if (ERR_isError(errorCode)) return ERROR(corruption_detected);
FSE_initDState(&(seqState.stateLL), &(seqState.DStream), DTableLL);
FSE_initDState(&(seqState.stateOffb), &(seqState.DStream), DTableOffb);
FSE_initDState(&(seqState.stateML), &(seqState.DStream), DTableML);
for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && nbSeq ; )
{
size_t oneSeqSize;
nbSeq--;
ZSTD_decodeSequence(&sequence, &seqState);
oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, base, vBase, dictEnd);
if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
op += oneSeqSize;
}
/* check if reached exact end */
if ( !BIT_endOfDStream(&(seqState.DStream)) ) return ERROR(corruption_detected); /* DStream should be entirely and exactly consumed; otherwise data is corrupted */
/* last literal segment */
{
size_t lastLLSize = litEnd - litPtr;
if (litPtr > litEnd) return ERROR(corruption_detected);
if (op+lastLLSize > oend) return ERROR(dstSize_tooSmall);
if (lastLLSize > 0) {
if (op != litPtr) memcpy(op, litPtr, lastLLSize);
op += lastLLSize;
}
}
}
return op-ostart;
}
static void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst)
{
if (dst != dctx->previousDstEnd) /* not contiguous */
{
dctx->dictEnd = dctx->previousDstEnd;
dctx->vBase = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base));
dctx->base = dst;
dctx->previousDstEnd = dst;
}
}
static size_t ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* src, size_t srcSize)
{
/* blockType == blockCompressed */
const BYTE* ip = (const BYTE*)src;
size_t litCSize;
if (srcSize > BLOCKSIZE) return ERROR(corruption_detected);
/* Decode literals sub-block */
litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize);
if (ZSTD_isError(litCSize)) return litCSize;
ip += litCSize;
srcSize -= litCSize;
return ZSTD_decompressSequences(dctx, dst, maxDstSize, ip, srcSize);
}
static size_t ZSTD_decompress_usingDict(ZSTD_DCtx* ctx,
void* dst, size_t maxDstSize,
const void* src, size_t srcSize,
const void* dict, size_t dictSize)
{
const BYTE* ip = (const BYTE*)src;
const BYTE* iend = ip + srcSize;
BYTE* const ostart = (BYTE* const)dst;
BYTE* op = ostart;
BYTE* const oend = ostart + maxDstSize;
size_t remainingSize = srcSize;
blockProperties_t blockProperties;
/* init */
ZSTD_resetDCtx(ctx);
if (dict)
{
ZSTD_decompress_insertDictionary(ctx, dict, dictSize);
ctx->dictEnd = ctx->previousDstEnd;
ctx->vBase = (const char*)dst - ((const char*)(ctx->previousDstEnd) - (const char*)(ctx->base));
ctx->base = dst;
}
else
{
ctx->vBase = ctx->base = ctx->dictEnd = dst;
}
/* Frame Header */
{
size_t frameHeaderSize;
if (srcSize < ZSTD_frameHeaderSize_min+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
frameHeaderSize = ZSTD_decodeFrameHeader_Part1(ctx, src, ZSTD_frameHeaderSize_min);
if (ZSTD_isError(frameHeaderSize)) return frameHeaderSize;
if (srcSize < frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
ip += frameHeaderSize; remainingSize -= frameHeaderSize;
frameHeaderSize = ZSTD_decodeFrameHeader_Part2(ctx, src, frameHeaderSize);
if (ZSTD_isError(frameHeaderSize)) return frameHeaderSize;
}
/* Loop on each block */
while (1)
{
size_t decodedSize=0;
size_t cBlockSize = ZSTD_getcBlockSize(ip, iend-ip, &blockProperties);
if (ZSTD_isError(cBlockSize)) return cBlockSize;
ip += ZSTD_blockHeaderSize;
remainingSize -= ZSTD_blockHeaderSize;
if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);
switch(blockProperties.blockType)
{
case bt_compressed:
decodedSize = ZSTD_decompressBlock_internal(ctx, op, oend-op, ip, cBlockSize);
break;
case bt_raw :
decodedSize = ZSTD_copyRawBlock(op, oend-op, ip, cBlockSize);
break;
case bt_rle :
return ERROR(GENERIC); /* not yet supported */
break;
case bt_end :
/* end of frame */
if (remainingSize) return ERROR(srcSize_wrong);
break;
default:
return ERROR(GENERIC); /* impossible */
}
if (cBlockSize == 0) break; /* bt_end */
if (ZSTD_isError(decodedSize)) return decodedSize;
op += decodedSize;
ip += cBlockSize;
remainingSize -= cBlockSize;
}
return op-ostart;
}
/* ZSTD_errorFrameSizeInfoLegacy() :
assumes `cSize` and `dBound` are _not_ NULL */
static void ZSTD_errorFrameSizeInfoLegacy(size_t* cSize, unsigned long long* dBound, size_t ret)
{
*cSize = ret;
*dBound = ZSTD_CONTENTSIZE_ERROR;
}
void ZSTDv04_findFrameSizeInfoLegacy(const void *src, size_t srcSize, size_t* cSize, unsigned long long* dBound)
{
const BYTE* ip = (const BYTE*)src;
size_t remainingSize = srcSize;
size_t nbBlocks = 0;
blockProperties_t blockProperties;
/* Frame Header */
if (srcSize < ZSTD_frameHeaderSize_min) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
if (MEM_readLE32(src) != ZSTD_MAGICNUMBER) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(prefix_unknown));
return;
}
ip += ZSTD_frameHeaderSize_min; remainingSize -= ZSTD_frameHeaderSize_min;
/* Loop on each block */
while (1)
{
size_t cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties);
if (ZSTD_isError(cBlockSize)) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, cBlockSize);
return;
}
ip += ZSTD_blockHeaderSize;
remainingSize -= ZSTD_blockHeaderSize;
if (cBlockSize > remainingSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
if (cBlockSize == 0) break; /* bt_end */
ip += cBlockSize;
remainingSize -= cBlockSize;
nbBlocks++;
}
*cSize = ip - (const BYTE*)src;
*dBound = nbBlocks * BLOCKSIZE;
}
/* ******************************
* Streaming Decompression API
********************************/
static size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx)
{
return dctx->expected;
}
static size_t ZSTD_decompressContinue(ZSTD_DCtx* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
/* Sanity check */
if (srcSize != ctx->expected) return ERROR(srcSize_wrong);
ZSTD_checkContinuity(ctx, dst);
/* Decompress : frame header; part 1 */
switch (ctx->stage)
{
case ZSTDds_getFrameHeaderSize :
/* get frame header size */
if (srcSize != ZSTD_frameHeaderSize_min) return ERROR(srcSize_wrong); /* impossible */
ctx->headerSize = ZSTD_decodeFrameHeader_Part1(ctx, src, ZSTD_frameHeaderSize_min);
if (ZSTD_isError(ctx->headerSize)) return ctx->headerSize;
memcpy(ctx->headerBuffer, src, ZSTD_frameHeaderSize_min);
if (ctx->headerSize > ZSTD_frameHeaderSize_min) return ERROR(GENERIC); /* impossible */
ctx->expected = 0; /* not necessary to copy more */
/* fallthrough */
case ZSTDds_decodeFrameHeader:
/* get frame header */
{ size_t const result = ZSTD_decodeFrameHeader_Part2(ctx, ctx->headerBuffer, ctx->headerSize);
if (ZSTD_isError(result)) return result;
ctx->expected = ZSTD_blockHeaderSize;
ctx->stage = ZSTDds_decodeBlockHeader;
return 0;
}
case ZSTDds_decodeBlockHeader:
/* Decode block header */
{ blockProperties_t bp;
size_t const blockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp);
if (ZSTD_isError(blockSize)) return blockSize;
if (bp.blockType == bt_end)
{
ctx->expected = 0;
ctx->stage = ZSTDds_getFrameHeaderSize;
}
else
{
ctx->expected = blockSize;
ctx->bType = bp.blockType;
ctx->stage = ZSTDds_decompressBlock;
}
return 0;
}
case ZSTDds_decompressBlock:
{
/* Decompress : block content */
size_t rSize;
switch(ctx->bType)
{
case bt_compressed:
rSize = ZSTD_decompressBlock_internal(ctx, dst, maxDstSize, src, srcSize);
break;
case bt_raw :
rSize = ZSTD_copyRawBlock(dst, maxDstSize, src, srcSize);
break;
case bt_rle :
return ERROR(GENERIC); /* not yet handled */
break;
case bt_end : /* should never happen (filtered at phase 1) */
rSize = 0;
break;
default:
return ERROR(GENERIC);
}
ctx->stage = ZSTDds_decodeBlockHeader;
ctx->expected = ZSTD_blockHeaderSize;
ctx->previousDstEnd = (char*)dst + rSize;
return rSize;
}
default:
return ERROR(GENERIC); /* impossible */
}
}
static void ZSTD_decompress_insertDictionary(ZSTD_DCtx* ctx, const void* dict, size_t dictSize)
{
ctx->dictEnd = ctx->previousDstEnd;
ctx->vBase = (const char*)dict - ((const char*)(ctx->previousDstEnd) - (const char*)(ctx->base));
ctx->base = dict;
ctx->previousDstEnd = (const char*)dict + dictSize;
}
/*
Buffered version of Zstd compression library
Copyright (C) 2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- zstd source repository : https://github.com/Cyan4973/zstd
- ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
*/
/* The objects defined into this file should be considered experimental.
* They are not labelled stable, as their prototype may change in the future.
* You can use them for tests, provide feedback, or if you can endure risk of future changes.
*/
/* *************************************
* Includes
***************************************/
#include <stdlib.h>
/** ************************************************
* Streaming decompression
*
* A ZBUFF_DCtx object is required to track streaming operation.
* Use ZBUFF_createDCtx() and ZBUFF_freeDCtx() to create/release resources.
* Use ZBUFF_decompressInit() to start a new decompression operation.
* ZBUFF_DCtx objects can be reused multiple times.
*
* Use ZBUFF_decompressContinue() repetitively to consume your input.
* *srcSizePtr and *maxDstSizePtr can be any size.
* The function will report how many bytes were read or written by modifying *srcSizePtr and *maxDstSizePtr.
* Note that it may not consume the entire input, in which case it's up to the caller to call again the function with remaining input.
* The content of dst will be overwritten (up to *maxDstSizePtr) at each function call, so save its content if it matters or change dst .
* return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to improve latency)
* or 0 when a frame is completely decoded
* or an error code, which can be tested using ZBUFF_isError().
*
* Hint : recommended buffer sizes (not compulsory)
* output : 128 KB block size is the internal unit, it ensures it's always possible to write a full block when it's decoded.
* input : just follow indications from ZBUFF_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
* **************************************************/
typedef enum { ZBUFFds_init, ZBUFFds_readHeader, ZBUFFds_loadHeader, ZBUFFds_decodeHeader,
ZBUFFds_read, ZBUFFds_load, ZBUFFds_flush } ZBUFF_dStage;
/* *** Resource management *** */
#define ZSTD_frameHeaderSize_max 5 /* too magical, should come from reference */
struct ZBUFFv04_DCtx_s {
ZSTD_DCtx* zc;
ZSTD_parameters params;
char* inBuff;
size_t inBuffSize;
size_t inPos;
char* outBuff;
size_t outBuffSize;
size_t outStart;
size_t outEnd;
size_t hPos;
const char* dict;
size_t dictSize;
ZBUFF_dStage stage;
unsigned char headerBuffer[ZSTD_frameHeaderSize_max];
}; /* typedef'd to ZBUFF_DCtx within "zstd_buffered.h" */
typedef ZBUFFv04_DCtx ZBUFF_DCtx;
static ZBUFF_DCtx* ZBUFF_createDCtx(void)
{
ZBUFF_DCtx* zbc = (ZBUFF_DCtx*)malloc(sizeof(ZBUFF_DCtx));
if (zbc==NULL) return NULL;
memset(zbc, 0, sizeof(*zbc));
zbc->zc = ZSTD_createDCtx();
zbc->stage = ZBUFFds_init;
return zbc;
}
static size_t ZBUFF_freeDCtx(ZBUFF_DCtx* zbc)
{
if (zbc==NULL) return 0; /* support free on null */
ZSTD_freeDCtx(zbc->zc);
free(zbc->inBuff);
free(zbc->outBuff);
free(zbc);
return 0;
}
/* *** Initialization *** */
static size_t ZBUFF_decompressInit(ZBUFF_DCtx* zbc)
{
zbc->stage = ZBUFFds_readHeader;
zbc->hPos = zbc->inPos = zbc->outStart = zbc->outEnd = zbc->dictSize = 0;
return ZSTD_resetDCtx(zbc->zc);
}
static size_t ZBUFF_decompressWithDictionary(ZBUFF_DCtx* zbc, const void* src, size_t srcSize)
{
zbc->dict = (const char*)src;
zbc->dictSize = srcSize;
return 0;
}
static size_t ZBUFF_limitCopy(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
size_t length = MIN(maxDstSize, srcSize);
if (length > 0) {
memcpy(dst, src, length);
}
return length;
}
/* *** Decompression *** */
static size_t ZBUFF_decompressContinue(ZBUFF_DCtx* zbc, void* dst, size_t* maxDstSizePtr, const void* src, size_t* srcSizePtr)
{
const char* const istart = (const char*)src;
const char* ip = istart;
const char* const iend = istart + *srcSizePtr;
char* const ostart = (char*)dst;
char* op = ostart;
char* const oend = ostart + *maxDstSizePtr;
U32 notDone = 1;
DEBUGLOG(5, "ZBUFF_decompressContinue");
while (notDone)
{
switch(zbc->stage)
{
case ZBUFFds_init :
DEBUGLOG(5, "ZBUFF_decompressContinue: stage==ZBUFFds_init => ERROR(init_missing)");
return ERROR(init_missing);
case ZBUFFds_readHeader :
/* read header from src */
{ size_t const headerSize = ZSTD_getFrameParams(&(zbc->params), src, *srcSizePtr);
if (ZSTD_isError(headerSize)) return headerSize;
if (headerSize) {
/* not enough input to decode header : tell how many bytes would be necessary */
memcpy(zbc->headerBuffer+zbc->hPos, src, *srcSizePtr);
zbc->hPos += *srcSizePtr;
*maxDstSizePtr = 0;
zbc->stage = ZBUFFds_loadHeader;
return headerSize - zbc->hPos;
}
zbc->stage = ZBUFFds_decodeHeader;
break;
}
case ZBUFFds_loadHeader:
/* complete header from src */
{ size_t headerSize = ZBUFF_limitCopy(
zbc->headerBuffer + zbc->hPos, ZSTD_frameHeaderSize_max - zbc->hPos,
src, *srcSizePtr);
zbc->hPos += headerSize;
ip += headerSize;
headerSize = ZSTD_getFrameParams(&(zbc->params), zbc->headerBuffer, zbc->hPos);
if (ZSTD_isError(headerSize)) return headerSize;
if (headerSize) {
/* not enough input to decode header : tell how many bytes would be necessary */
*maxDstSizePtr = 0;
return headerSize - zbc->hPos;
} }
/* intentional fallthrough */
case ZBUFFds_decodeHeader:
/* apply header to create / resize buffers */
{ size_t const neededOutSize = (size_t)1 << zbc->params.windowLog;
size_t const neededInSize = BLOCKSIZE; /* a block is never > BLOCKSIZE */
if (zbc->inBuffSize < neededInSize) {
free(zbc->inBuff);
zbc->inBuffSize = neededInSize;
zbc->inBuff = (char*)malloc(neededInSize);
if (zbc->inBuff == NULL) return ERROR(memory_allocation);
}
if (zbc->outBuffSize < neededOutSize) {
free(zbc->outBuff);
zbc->outBuffSize = neededOutSize;
zbc->outBuff = (char*)malloc(neededOutSize);
if (zbc->outBuff == NULL) return ERROR(memory_allocation);
} }
if (zbc->dictSize)
ZSTD_decompress_insertDictionary(zbc->zc, zbc->dict, zbc->dictSize);
if (zbc->hPos) {
/* some data already loaded into headerBuffer : transfer into inBuff */
memcpy(zbc->inBuff, zbc->headerBuffer, zbc->hPos);
zbc->inPos = zbc->hPos;
zbc->hPos = 0;
zbc->stage = ZBUFFds_load;
break;
}
zbc->stage = ZBUFFds_read;
/* fall-through */
case ZBUFFds_read:
{
size_t neededInSize = ZSTD_nextSrcSizeToDecompress(zbc->zc);
if (neededInSize==0) /* end of frame */
{
zbc->stage = ZBUFFds_init;
notDone = 0;
break;
}
if ((size_t)(iend-ip) >= neededInSize)
{
/* directly decode from src */
size_t decodedSize = ZSTD_decompressContinue(zbc->zc,
zbc->outBuff + zbc->outStart, zbc->outBuffSize - zbc->outStart,
ip, neededInSize);
if (ZSTD_isError(decodedSize)) return decodedSize;
ip += neededInSize;
if (!decodedSize) break; /* this was just a header */
zbc->outEnd = zbc->outStart + decodedSize;
zbc->stage = ZBUFFds_flush;
break;
}
if (ip==iend) { notDone = 0; break; } /* no more input */
zbc->stage = ZBUFFds_load;
}
/* fall-through */
case ZBUFFds_load:
{
size_t neededInSize = ZSTD_nextSrcSizeToDecompress(zbc->zc);
size_t toLoad = neededInSize - zbc->inPos; /* should always be <= remaining space within inBuff */
size_t loadedSize;
if (toLoad > zbc->inBuffSize - zbc->inPos) return ERROR(corruption_detected); /* should never happen */
loadedSize = ZBUFF_limitCopy(zbc->inBuff + zbc->inPos, toLoad, ip, iend-ip);
ip += loadedSize;
zbc->inPos += loadedSize;
if (loadedSize < toLoad) { notDone = 0; break; } /* not enough input, wait for more */
{
size_t decodedSize = ZSTD_decompressContinue(zbc->zc,
zbc->outBuff + zbc->outStart, zbc->outBuffSize - zbc->outStart,
zbc->inBuff, neededInSize);
if (ZSTD_isError(decodedSize)) return decodedSize;
zbc->inPos = 0; /* input is consumed */
if (!decodedSize) { zbc->stage = ZBUFFds_read; break; } /* this was just a header */
zbc->outEnd = zbc->outStart + decodedSize;
zbc->stage = ZBUFFds_flush;
/* ZBUFFds_flush follows */
}
}
/* fall-through */
case ZBUFFds_flush:
{
size_t toFlushSize = zbc->outEnd - zbc->outStart;
size_t flushedSize = ZBUFF_limitCopy(op, oend-op, zbc->outBuff + zbc->outStart, toFlushSize);
op += flushedSize;
zbc->outStart += flushedSize;
if (flushedSize == toFlushSize)
{
zbc->stage = ZBUFFds_read;
if (zbc->outStart + BLOCKSIZE > zbc->outBuffSize)
zbc->outStart = zbc->outEnd = 0;
break;
}
/* cannot flush everything */
notDone = 0;
break;
}
default: return ERROR(GENERIC); /* impossible */
}
}
*srcSizePtr = ip-istart;
*maxDstSizePtr = op-ostart;
{
size_t nextSrcSizeHint = ZSTD_nextSrcSizeToDecompress(zbc->zc);
if (nextSrcSizeHint > 3) nextSrcSizeHint+= 3; /* get the next block header while at it */
nextSrcSizeHint -= zbc->inPos; /* already loaded*/
return nextSrcSizeHint;
}
}
/* *************************************
* Tool functions
***************************************/
unsigned ZBUFFv04_isError(size_t errorCode) { return ERR_isError(errorCode); }
const char* ZBUFFv04_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
size_t ZBUFFv04_recommendedDInSize() { return BLOCKSIZE + 3; }
size_t ZBUFFv04_recommendedDOutSize() { return BLOCKSIZE; }
/*- ========================================================================= -*/
/* final wrapping stage */
size_t ZSTDv04_decompressDCtx(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
return ZSTD_decompress_usingDict(dctx, dst, maxDstSize, src, srcSize, NULL, 0);
}
size_t ZSTDv04_decompress(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
#if defined(ZSTD_HEAPMODE) && (ZSTD_HEAPMODE==1)
size_t regenSize;
ZSTD_DCtx* dctx = ZSTD_createDCtx();
if (dctx==NULL) return ERROR(memory_allocation);
regenSize = ZSTDv04_decompressDCtx(dctx, dst, maxDstSize, src, srcSize);
ZSTD_freeDCtx(dctx);
return regenSize;
#else
ZSTD_DCtx dctx;
return ZSTDv04_decompressDCtx(&dctx, dst, maxDstSize, src, srcSize);
#endif
}
size_t ZSTDv04_resetDCtx(ZSTDv04_Dctx* dctx) { return ZSTD_resetDCtx(dctx); }
size_t ZSTDv04_nextSrcSizeToDecompress(ZSTDv04_Dctx* dctx)
{
return ZSTD_nextSrcSizeToDecompress(dctx);
}
size_t ZSTDv04_decompressContinue(ZSTDv04_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
return ZSTD_decompressContinue(dctx, dst, maxDstSize, src, srcSize);
}
ZBUFFv04_DCtx* ZBUFFv04_createDCtx(void) { return ZBUFF_createDCtx(); }
size_t ZBUFFv04_freeDCtx(ZBUFFv04_DCtx* dctx) { return ZBUFF_freeDCtx(dctx); }
size_t ZBUFFv04_decompressInit(ZBUFFv04_DCtx* dctx) { return ZBUFF_decompressInit(dctx); }
size_t ZBUFFv04_decompressWithDictionary(ZBUFFv04_DCtx* dctx, const void* src, size_t srcSize)
{ return ZBUFF_decompressWithDictionary(dctx, src, srcSize); }
size_t ZBUFFv04_decompressContinue(ZBUFFv04_DCtx* dctx, void* dst, size_t* maxDstSizePtr, const void* src, size_t* srcSizePtr)
{
DEBUGLOG(5, "ZBUFFv04_decompressContinue");
return ZBUFF_decompressContinue(dctx, dst, maxDstSizePtr, src, srcSizePtr);
}
ZSTD_DCtx* ZSTDv04_createDCtx(void) { return ZSTD_createDCtx(); }
size_t ZSTDv04_freeDCtx(ZSTD_DCtx* dctx) { return ZSTD_freeDCtx(dctx); }
diff --git a/sys/contrib/zstd/lib/legacy/zstd_v04.h b/sys/contrib/zstd/lib/legacy/zstd_v04.h
index 15fce0d487ff..66b97ab8e601 100644
--- a/sys/contrib/zstd/lib/legacy/zstd_v04.h
+++ b/sys/contrib/zstd/lib/legacy/zstd_v04.h
@@ -1,142 +1,142 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_V04_H_91868324769238
#define ZSTD_V04_H_91868324769238
#if defined (__cplusplus)
extern "C" {
#endif
/* *************************************
* Includes
***************************************/
#include <stddef.h> /* size_t */
/* *************************************
* Simple one-step function
***************************************/
/**
ZSTDv04_decompress() : decompress ZSTD frames compliant with v0.4.x format
compressedSize : is the exact source size
maxOriginalSize : is the size of the 'dst' buffer, which must be already allocated.
It must be equal or larger than originalSize, otherwise decompression will fail.
return : the number of bytes decompressed into destination buffer (originalSize)
or an errorCode if it fails (which can be tested using ZSTDv01_isError())
*/
size_t ZSTDv04_decompress( void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize);
/**
ZSTDv04_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.4.x format
srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
cSize (output parameter) : the number of bytes that would be read to decompress this frame
or an error code if it fails (which can be tested using ZSTDv01_isError())
dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame
or ZSTD_CONTENTSIZE_ERROR if an error occurs
note : assumes `cSize` and `dBound` are _not_ NULL.
*/
void ZSTDv04_findFrameSizeInfoLegacy(const void *src, size_t srcSize,
size_t* cSize, unsigned long long* dBound);
/**
ZSTDv04_isError() : tells if the result of ZSTDv04_decompress() is an error
*/
unsigned ZSTDv04_isError(size_t code);
/* *************************************
* Advanced functions
***************************************/
typedef struct ZSTDv04_Dctx_s ZSTDv04_Dctx;
ZSTDv04_Dctx* ZSTDv04_createDCtx(void);
size_t ZSTDv04_freeDCtx(ZSTDv04_Dctx* dctx);
size_t ZSTDv04_decompressDCtx(ZSTDv04_Dctx* dctx,
void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize);
/* *************************************
* Direct Streaming
***************************************/
size_t ZSTDv04_resetDCtx(ZSTDv04_Dctx* dctx);
size_t ZSTDv04_nextSrcSizeToDecompress(ZSTDv04_Dctx* dctx);
size_t ZSTDv04_decompressContinue(ZSTDv04_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize);
/**
Use above functions alternatively.
ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block.
Result is the number of bytes regenerated within 'dst'.
It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.
*/
/* *************************************
* Buffered Streaming
***************************************/
typedef struct ZBUFFv04_DCtx_s ZBUFFv04_DCtx;
ZBUFFv04_DCtx* ZBUFFv04_createDCtx(void);
size_t ZBUFFv04_freeDCtx(ZBUFFv04_DCtx* dctx);
size_t ZBUFFv04_decompressInit(ZBUFFv04_DCtx* dctx);
size_t ZBUFFv04_decompressWithDictionary(ZBUFFv04_DCtx* dctx, const void* dict, size_t dictSize);
size_t ZBUFFv04_decompressContinue(ZBUFFv04_DCtx* dctx, void* dst, size_t* maxDstSizePtr, const void* src, size_t* srcSizePtr);
/** ************************************************
* Streaming decompression
*
* A ZBUFF_DCtx object is required to track streaming operation.
* Use ZBUFF_createDCtx() and ZBUFF_freeDCtx() to create/release resources.
* Use ZBUFF_decompressInit() to start a new decompression operation.
* ZBUFF_DCtx objects can be reused multiple times.
*
* Optionally, a reference to a static dictionary can be set, using ZBUFF_decompressWithDictionary()
* It must be the same content as the one set during compression phase.
* Dictionary content must remain accessible during the decompression process.
*
* Use ZBUFF_decompressContinue() repetitively to consume your input.
* *srcSizePtr and *maxDstSizePtr can be any size.
* The function will report how many bytes were read or written by modifying *srcSizePtr and *maxDstSizePtr.
* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
* The content of dst will be overwritten (up to *maxDstSizePtr) at each function call, so save its content if it matters or change dst.
* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to improve latency)
* or 0 when a frame is completely decoded
* or an error code, which can be tested using ZBUFF_isError().
*
* Hint : recommended buffer sizes (not compulsory) : ZBUFF_recommendedDInSize / ZBUFF_recommendedDOutSize
* output : ZBUFF_recommendedDOutSize==128 KB block size is the internal unit, it ensures it's always possible to write a full block when it's decoded.
* input : ZBUFF_recommendedDInSize==128Kb+3; just follow indications from ZBUFF_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
* **************************************************/
unsigned ZBUFFv04_isError(size_t errorCode);
const char* ZBUFFv04_getErrorName(size_t errorCode);
/** The below functions provide recommended buffer sizes for Compression or Decompression operations.
* These sizes are not compulsory, they just tend to offer better latency */
size_t ZBUFFv04_recommendedDInSize(void);
size_t ZBUFFv04_recommendedDOutSize(void);
/* *************************************
* Prefix - version detection
***************************************/
#define ZSTDv04_magicNumber 0xFD2FB524 /* v0.4 */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_V04_H_91868324769238 */
diff --git a/sys/contrib/zstd/lib/legacy/zstd_v05.c b/sys/contrib/zstd/lib/legacy/zstd_v05.c
index ca8d5c9bf03c..795dfb410c0e 100644
--- a/sys/contrib/zstd/lib/legacy/zstd_v05.c
+++ b/sys/contrib/zstd/lib/legacy/zstd_v05.c
@@ -1,4054 +1,4050 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*- Dependencies -*/
#include "zstd_v05.h"
#include "../common/error_private.h"
/* ******************************************************************
mem.h
low-level memory access routines
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSEv05 source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef MEM_H_MODULE
#define MEM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/*-****************************************
* Dependencies
******************************************/
#include <stddef.h> /* size_t, ptrdiff_t */
#include <string.h> /* memcpy */
/*-****************************************
* Compiler specifics
******************************************/
#if defined(__GNUC__)
# define MEM_STATIC static __attribute__((unused))
#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define MEM_STATIC static inline
#elif defined(_MSC_VER)
# define MEM_STATIC static __inline
#else
# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
#endif
/*-**************************************************************
* Basic Types
*****************************************************************/
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# if defined(_AIX)
# include <inttypes.h>
# else
# include <stdint.h> /* intptr_t */
# endif
typedef uint8_t BYTE;
typedef uint16_t U16;
typedef int16_t S16;
typedef uint32_t U32;
typedef int32_t S32;
typedef uint64_t U64;
typedef int64_t S64;
#else
typedef unsigned char BYTE;
typedef unsigned short U16;
typedef signed short S16;
typedef unsigned int U32;
typedef signed int S32;
typedef unsigned long long U64;
typedef signed long long S64;
#endif
/*-**************************************************************
* Memory I/O
*****************************************************************/
/* MEM_FORCE_MEMORY_ACCESS :
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
* The below switch allow to select different access method for improved performance.
* Method 0 (default) : use `memcpy()`. Safe and portable.
* Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
* This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
* Method 2 : direct access. This method is portable but violate C standard.
* It can generate buggy code on targets depending on alignment.
* In some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
* See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
* Prefer these methods in priority order (0 > 1 > 2)
*/
#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
-# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
-# define MEM_FORCE_MEMORY_ACCESS 2
-# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
- (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
+# if defined(__INTEL_COMPILER) || defined(__GNUC__) || defined(__ICCARM__)
# define MEM_FORCE_MEMORY_ACCESS 1
# endif
#endif
MEM_STATIC unsigned MEM_32bits(void) { return sizeof(void*)==4; }
MEM_STATIC unsigned MEM_64bits(void) { return sizeof(void*)==8; }
MEM_STATIC unsigned MEM_isLittleEndian(void)
{
const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
return one.c[0];
}
#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
/* violates C standard, by lying on structure alignment.
Only use if no other choice to achieve best performance on target platform */
MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(U32*)memPtr = value; }
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(U64*)memPtr = value; }
#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
/* currently only defined for gcc and icc */
typedef union { U16 u16; U32 u32; U64 u64; size_t st; } __attribute__((packed)) unalign;
MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign*)ptr)->u16; }
MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign*)memPtr)->u16 = value; }
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { ((unalign*)memPtr)->u32 = value; }
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { ((unalign*)memPtr)->u64 = value; }
#else
/* default method, safe and standard.
can sometimes prove slower */
MEM_STATIC U16 MEM_read16(const void* memPtr)
{
U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U32 MEM_read32(const void* memPtr)
{
U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U64 MEM_read64(const void* memPtr)
{
U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC void MEM_write16(void* memPtr, U16 value)
{
memcpy(memPtr, &value, sizeof(value));
}
MEM_STATIC void MEM_write32(void* memPtr, U32 value)
{
memcpy(memPtr, &value, sizeof(value));
}
MEM_STATIC void MEM_write64(void* memPtr, U64 value)
{
memcpy(memPtr, &value, sizeof(value));
}
#endif /* MEM_FORCE_MEMORY_ACCESS */
MEM_STATIC U16 MEM_readLE16(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read16(memPtr);
else {
const BYTE* p = (const BYTE*)memPtr;
return (U16)(p[0] + (p[1]<<8));
}
}
MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
{
if (MEM_isLittleEndian()) {
MEM_write16(memPtr, val);
} else {
BYTE* p = (BYTE*)memPtr;
p[0] = (BYTE)val;
p[1] = (BYTE)(val>>8);
}
}
MEM_STATIC U32 MEM_readLE32(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read32(memPtr);
else {
const BYTE* p = (const BYTE*)memPtr;
return (U32)((U32)p[0] + ((U32)p[1]<<8) + ((U32)p[2]<<16) + ((U32)p[3]<<24));
}
}
MEM_STATIC U64 MEM_readLE64(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read64(memPtr);
else {
const BYTE* p = (const BYTE*)memPtr;
return (U64)((U64)p[0] + ((U64)p[1]<<8) + ((U64)p[2]<<16) + ((U64)p[3]<<24)
+ ((U64)p[4]<<32) + ((U64)p[5]<<40) + ((U64)p[6]<<48) + ((U64)p[7]<<56));
}
}
MEM_STATIC size_t MEM_readLEST(const void* memPtr)
{
if (MEM_32bits())
return (size_t)MEM_readLE32(memPtr);
else
return (size_t)MEM_readLE64(memPtr);
}
#if defined (__cplusplus)
}
#endif
#endif /* MEM_H_MODULE */
/*
zstd - standard compression library
Header File for static linking only
Copyright (C) 2014-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- zstd homepage : http://www.zstd.net
*/
#ifndef ZSTD_STATIC_H
#define ZSTD_STATIC_H
/* The prototypes defined within this file are considered experimental.
* They should not be used in the context DLL as they may change in the future.
* Prefer static linking if you need them, to control breaking version changes issues.
*/
#if defined (__cplusplus)
extern "C" {
#endif
/*-*************************************
* Types
***************************************/
#define ZSTDv05_WINDOWLOG_ABSOLUTEMIN 11
/*-*************************************
* Advanced functions
***************************************/
/*- Advanced Decompression functions -*/
/*! ZSTDv05_decompress_usingPreparedDCtx() :
* Same as ZSTDv05_decompress_usingDict, but using a reference context `preparedDCtx`, where dictionary has been loaded.
* It avoids reloading the dictionary each time.
* `preparedDCtx` must have been properly initialized using ZSTDv05_decompressBegin_usingDict().
* Requires 2 contexts : 1 for reference, which will not be modified, and 1 to run the decompression operation */
size_t ZSTDv05_decompress_usingPreparedDCtx(
ZSTDv05_DCtx* dctx, const ZSTDv05_DCtx* preparedDCtx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize);
/* **************************************
* Streaming functions (direct mode)
****************************************/
size_t ZSTDv05_decompressBegin(ZSTDv05_DCtx* dctx);
/*
Streaming decompression, direct mode (bufferless)
A ZSTDv05_DCtx object is required to track streaming operations.
Use ZSTDv05_createDCtx() / ZSTDv05_freeDCtx() to manage it.
A ZSTDv05_DCtx object can be re-used multiple times.
First typical operation is to retrieve frame parameters, using ZSTDv05_getFrameParams().
This operation is independent, and just needs enough input data to properly decode the frame header.
Objective is to retrieve *params.windowlog, to know minimum amount of memory required during decoding.
Result : 0 when successful, it means the ZSTDv05_parameters structure has been filled.
>0 : means there is not enough data into src. Provides the expected size to successfully decode header.
errorCode, which can be tested using ZSTDv05_isError()
Start decompression, with ZSTDv05_decompressBegin() or ZSTDv05_decompressBegin_usingDict()
Alternatively, you can copy a prepared context, using ZSTDv05_copyDCtx()
Then use ZSTDv05_nextSrcSizeToDecompress() and ZSTDv05_decompressContinue() alternatively.
ZSTDv05_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTDv05_decompressContinue().
ZSTDv05_decompressContinue() requires this exact amount of bytes, or it will fail.
ZSTDv05_decompressContinue() needs previous data blocks during decompression, up to (1 << windowlog).
They should preferably be located contiguously, prior to current block. Alternatively, a round buffer is also possible.
@result of ZSTDv05_decompressContinue() is the number of bytes regenerated within 'dst'.
It can be zero, which is not an error; it just means ZSTDv05_decompressContinue() has decoded some header.
A frame is fully decoded when ZSTDv05_nextSrcSizeToDecompress() returns zero.
Context can then be reset to start a new decompression.
*/
/* **************************************
* Block functions
****************************************/
/*! Block functions produce and decode raw zstd blocks, without frame metadata.
User will have to take in charge required information to regenerate data, such as block sizes.
A few rules to respect :
- Uncompressed block size must be <= 128 KB
- Compressing or decompressing requires a context structure
+ Use ZSTDv05_createCCtx() and ZSTDv05_createDCtx()
- It is necessary to init context before starting
+ compression : ZSTDv05_compressBegin()
+ decompression : ZSTDv05_decompressBegin()
+ variants _usingDict() are also allowed
+ copyCCtx() and copyDCtx() work too
- When a block is considered not compressible enough, ZSTDv05_compressBlock() result will be zero.
In which case, nothing is produced into `dst`.
+ User must test for such outcome and deal directly with uncompressed data
+ ZSTDv05_decompressBlock() doesn't accept uncompressed data as input !!
*/
size_t ZSTDv05_decompressBlock(ZSTDv05_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
#if defined (__cplusplus)
}
#endif
#endif /* ZSTDv05_STATIC_H */
/*
zstd_internal - common functions to include
Header File for include
Copyright (C) 2014-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- zstd source repository : https://github.com/Cyan4973/zstd
*/
#ifndef ZSTD_CCOMMON_H_MODULE
#define ZSTD_CCOMMON_H_MODULE
/*-*************************************
* Common macros
***************************************/
#define MIN(a,b) ((a)<(b) ? (a) : (b))
#define MAX(a,b) ((a)>(b) ? (a) : (b))
/*-*************************************
* Common constants
***************************************/
#define ZSTDv05_DICT_MAGIC 0xEC30A435
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)
#define BLOCKSIZE (128 KB) /* define, for static allocation */
static const size_t ZSTDv05_blockHeaderSize = 3;
static const size_t ZSTDv05_frameHeaderSize_min = 5;
#define ZSTDv05_frameHeaderSize_max 5 /* define, for static allocation */
#define BITv057 128
#define BITv056 64
#define BITv055 32
#define BITv054 16
#define BITv051 2
#define BITv050 1
#define IS_HUFv05 0
#define IS_PCH 1
#define IS_RAW 2
#define IS_RLE 3
#define MINMATCH 4
#define REPCODE_STARTVALUE 1
#define Litbits 8
#define MLbits 7
#define LLbits 6
#define Offbits 5
#define MaxLit ((1<<Litbits) - 1)
#define MaxML ((1<<MLbits) - 1)
#define MaxLL ((1<<LLbits) - 1)
#define MaxOff ((1<<Offbits)- 1)
#define MLFSEv05Log 10
#define LLFSEv05Log 10
#define OffFSEv05Log 9
#define MaxSeq MAX(MaxLL, MaxML)
#define FSEv05_ENCODING_RAW 0
#define FSEv05_ENCODING_RLE 1
#define FSEv05_ENCODING_STATIC 2
#define FSEv05_ENCODING_DYNAMIC 3
#define HufLog 12
#define MIN_SEQUENCES_SIZE 1 /* nbSeq==0 */
#define MIN_CBLOCK_SIZE (1 /*litCSize*/ + 1 /* RLE or RAW */ + MIN_SEQUENCES_SIZE /* nbSeq==0 */) /* for a non-null block */
#define WILDCOPY_OVERLENGTH 8
#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2)
typedef enum { bt_compressed, bt_raw, bt_rle, bt_end } blockType_t;
/*-*******************************************
* Shared functions to include for inlining
*********************************************/
static void ZSTDv05_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
#define COPY8(d,s) { ZSTDv05_copy8(d,s); d+=8; s+=8; }
/*! ZSTDv05_wildcopy() :
* custom version of memcpy(), can copy up to 7 bytes too many (8 bytes if length==0) */
MEM_STATIC void ZSTDv05_wildcopy(void* dst, const void* src, ptrdiff_t length)
{
const BYTE* ip = (const BYTE*)src;
BYTE* op = (BYTE*)dst;
BYTE* const oend = op + length;
do
COPY8(op, ip)
while (op < oend);
}
/*-*******************************************
* Private interfaces
*********************************************/
typedef struct {
void* buffer;
U32* offsetStart;
U32* offset;
BYTE* offCodeStart;
BYTE* offCode;
BYTE* litStart;
BYTE* lit;
BYTE* litLengthStart;
BYTE* litLength;
BYTE* matchLengthStart;
BYTE* matchLength;
BYTE* dumpsStart;
BYTE* dumps;
/* opt */
U32* matchLengthFreq;
U32* litLengthFreq;
U32* litFreq;
U32* offCodeFreq;
U32 matchLengthSum;
U32 litLengthSum;
U32 litSum;
U32 offCodeSum;
} seqStore_t;
#endif /* ZSTDv05_CCOMMON_H_MODULE */
/* ******************************************************************
FSEv05 : Finite State Entropy coder
header file
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef FSEv05_H
#define FSEv05_H
#if defined (__cplusplus)
extern "C" {
#endif
/* *****************************************
* Includes
******************************************/
#include <stddef.h> /* size_t, ptrdiff_t */
/*-****************************************
* FSEv05 simple functions
******************************************/
size_t FSEv05_decompress(void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize);
/*!
FSEv05_decompress():
Decompress FSEv05 data from buffer 'cSrc', of size 'cSrcSize',
into already allocated destination buffer 'dst', of size 'maxDstSize'.
return : size of regenerated data (<= maxDstSize)
or an error code, which can be tested using FSEv05_isError()
** Important ** : FSEv05_decompress() doesn't decompress non-compressible nor RLE data !!!
Why ? : making this distinction requires a header.
Header management is intentionally delegated to the user layer, which can better manage special cases.
*/
/* *****************************************
* Tool functions
******************************************/
/* Error Management */
unsigned FSEv05_isError(size_t code); /* tells if a return value is an error code */
const char* FSEv05_getErrorName(size_t code); /* provides error code string (useful for debugging) */
/* *****************************************
* FSEv05 detailed API
******************************************/
/* *** DECOMPRESSION *** */
/*!
FSEv05_readNCount():
Read compactly saved 'normalizedCounter' from 'rBuffer'.
return : size read from 'rBuffer'
or an errorCode, which can be tested using FSEv05_isError()
maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
size_t FSEv05_readNCount (short* normalizedCounter, unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, const void* rBuffer, size_t rBuffSize);
/*!
Constructor and Destructor of type FSEv05_DTable
Note that its size depends on 'tableLog' */
typedef unsigned FSEv05_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
FSEv05_DTable* FSEv05_createDTable(unsigned tableLog);
void FSEv05_freeDTable(FSEv05_DTable* dt);
/*!
FSEv05_buildDTable():
Builds 'dt', which must be already allocated, using FSEv05_createDTable()
@return : 0,
or an errorCode, which can be tested using FSEv05_isError() */
size_t FSEv05_buildDTable (FSEv05_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
/*!
FSEv05_decompress_usingDTable():
Decompress compressed source @cSrc of size @cSrcSize using `dt`
into `dst` which must be already allocated.
@return : size of regenerated data (necessarily <= @dstCapacity)
or an errorCode, which can be tested using FSEv05_isError() */
size_t FSEv05_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSEv05_DTable* dt);
#if defined (__cplusplus)
}
#endif
#endif /* FSEv05_H */
/* ******************************************************************
bitstream
Part of FSEv05 library
header file (to include)
Copyright (C) 2013-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
****************************************************************** */
#ifndef BITv05STREAM_H_MODULE
#define BITv05STREAM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/*
* This API consists of small unitary functions, which highly benefit from being inlined.
* Since link-time-optimization is not available for all compilers,
* these functions are defined into a .h to be included.
*/
/*-********************************************
* bitStream decoding API (read backward)
**********************************************/
typedef struct
{
size_t bitContainer;
unsigned bitsConsumed;
const char* ptr;
const char* start;
} BITv05_DStream_t;
typedef enum { BITv05_DStream_unfinished = 0,
BITv05_DStream_endOfBuffer = 1,
BITv05_DStream_completed = 2,
BITv05_DStream_overflow = 3 } BITv05_DStream_status; /* result of BITv05_reloadDStream() */
/* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
MEM_STATIC size_t BITv05_initDStream(BITv05_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
MEM_STATIC size_t BITv05_readBits(BITv05_DStream_t* bitD, unsigned nbBits);
MEM_STATIC BITv05_DStream_status BITv05_reloadDStream(BITv05_DStream_t* bitD);
MEM_STATIC unsigned BITv05_endOfDStream(const BITv05_DStream_t* bitD);
/*-****************************************
* unsafe API
******************************************/
MEM_STATIC size_t BITv05_readBitsFast(BITv05_DStream_t* bitD, unsigned nbBits);
/* faster, but works only if nbBits >= 1 */
/*-**************************************************************
* Helper functions
****************************************************************/
MEM_STATIC unsigned BITv05_highbit32 (U32 val)
{
# if defined(_MSC_VER) /* Visual */
- unsigned long r=0;
- _BitScanReverse ( &r, val );
- return (unsigned) r;
+ unsigned long r;
+ return _BitScanReverse(&r, val) ? (unsigned)r : 0;
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
return __builtin_clz (val) ^ 31;
# else /* Software version */
static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
U32 v = val;
unsigned r;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
r = DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
return r;
# endif
}
/*-********************************************************
* bitStream decoding
**********************************************************/
/*!BITv05_initDStream
* Initialize a BITv05_DStream_t.
* @bitD : a pointer to an already allocated BITv05_DStream_t structure
* @srcBuffer must point at the beginning of a bitStream
* @srcSize must be the exact size of the bitStream
* @result : size of stream (== srcSize) or an errorCode if a problem is detected
*/
MEM_STATIC size_t BITv05_initDStream(BITv05_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
{
if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
if (srcSize >= sizeof(size_t)) { /* normal case */
U32 contain32;
bitD->start = (const char*)srcBuffer;
bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(size_t);
bitD->bitContainer = MEM_readLEST(bitD->ptr);
contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */
bitD->bitsConsumed = 8 - BITv05_highbit32(contain32);
} else {
U32 contain32;
bitD->start = (const char*)srcBuffer;
bitD->ptr = bitD->start;
bitD->bitContainer = *(const BYTE*)(bitD->start);
switch(srcSize)
{
case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16);/* fall-through */
case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24);/* fall-through */
case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32);/* fall-through */
case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24; /* fall-through */
case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16; /* fall-through */
case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) << 8; /* fall-through */
default: break;
}
contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */
bitD->bitsConsumed = 8 - BITv05_highbit32(contain32);
bitD->bitsConsumed += (U32)(sizeof(size_t) - srcSize)*8;
}
return srcSize;
}
MEM_STATIC size_t BITv05_lookBits(BITv05_DStream_t* bitD, U32 nbBits)
{
const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask);
}
/*! BITv05_lookBitsFast :
* unsafe version; only works only if nbBits >= 1 */
MEM_STATIC size_t BITv05_lookBitsFast(BITv05_DStream_t* bitD, U32 nbBits)
{
const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask);
}
MEM_STATIC void BITv05_skipBits(BITv05_DStream_t* bitD, U32 nbBits)
{
bitD->bitsConsumed += nbBits;
}
MEM_STATIC size_t BITv05_readBits(BITv05_DStream_t* bitD, unsigned nbBits)
{
size_t value = BITv05_lookBits(bitD, nbBits);
BITv05_skipBits(bitD, nbBits);
return value;
}
/*!BITv05_readBitsFast :
* unsafe version; only works only if nbBits >= 1 */
MEM_STATIC size_t BITv05_readBitsFast(BITv05_DStream_t* bitD, unsigned nbBits)
{
size_t value = BITv05_lookBitsFast(bitD, nbBits);
BITv05_skipBits(bitD, nbBits);
return value;
}
MEM_STATIC BITv05_DStream_status BITv05_reloadDStream(BITv05_DStream_t* bitD)
{
if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should never happen */
return BITv05_DStream_overflow;
if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer)) {
bitD->ptr -= bitD->bitsConsumed >> 3;
bitD->bitsConsumed &= 7;
bitD->bitContainer = MEM_readLEST(bitD->ptr);
return BITv05_DStream_unfinished;
}
if (bitD->ptr == bitD->start) {
if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BITv05_DStream_endOfBuffer;
return BITv05_DStream_completed;
}
{
U32 nbBytes = bitD->bitsConsumed >> 3;
BITv05_DStream_status result = BITv05_DStream_unfinished;
if (bitD->ptr - nbBytes < bitD->start) {
nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
result = BITv05_DStream_endOfBuffer;
}
bitD->ptr -= nbBytes;
bitD->bitsConsumed -= nbBytes*8;
bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */
return result;
}
}
/*! BITv05_endOfDStream
* @return Tells if DStream has reached its exact end
*/
MEM_STATIC unsigned BITv05_endOfDStream(const BITv05_DStream_t* DStream)
{
return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
}
#if defined (__cplusplus)
}
#endif
#endif /* BITv05STREAM_H_MODULE */
/* ******************************************************************
FSEv05 : Finite State Entropy coder
header file for static linking (only)
Copyright (C) 2013-2015, Yann Collet
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef FSEv05_STATIC_H
#define FSEv05_STATIC_H
#if defined (__cplusplus)
extern "C" {
#endif
/* *****************************************
* Static allocation
*******************************************/
/* It is possible to statically allocate FSEv05 CTable/DTable as a table of unsigned using below macros */
#define FSEv05_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog))
/* *****************************************
* FSEv05 advanced API
*******************************************/
size_t FSEv05_buildDTable_raw (FSEv05_DTable* dt, unsigned nbBits);
/* build a fake FSEv05_DTable, designed to read an uncompressed bitstream where each symbol uses nbBits */
size_t FSEv05_buildDTable_rle (FSEv05_DTable* dt, unsigned char symbolValue);
/* build a fake FSEv05_DTable, designed to always generate the same symbolValue */
/* *****************************************
* FSEv05 symbol decompression API
*******************************************/
typedef struct
{
size_t state;
const void* table; /* precise table may vary, depending on U16 */
} FSEv05_DState_t;
static void FSEv05_initDState(FSEv05_DState_t* DStatePtr, BITv05_DStream_t* bitD, const FSEv05_DTable* dt);
static unsigned char FSEv05_decodeSymbol(FSEv05_DState_t* DStatePtr, BITv05_DStream_t* bitD);
static unsigned FSEv05_endOfDState(const FSEv05_DState_t* DStatePtr);
/* *****************************************
* FSEv05 unsafe API
*******************************************/
static unsigned char FSEv05_decodeSymbolFast(FSEv05_DState_t* DStatePtr, BITv05_DStream_t* bitD);
/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
/* *****************************************
* Implementation of inlined functions
*******************************************/
/* decompression */
typedef struct {
U16 tableLog;
U16 fastMode;
} FSEv05_DTableHeader; /* sizeof U32 */
typedef struct
{
unsigned short newState;
unsigned char symbol;
unsigned char nbBits;
} FSEv05_decode_t; /* size == U32 */
MEM_STATIC void FSEv05_initDState(FSEv05_DState_t* DStatePtr, BITv05_DStream_t* bitD, const FSEv05_DTable* dt)
{
const void* ptr = dt;
const FSEv05_DTableHeader* const DTableH = (const FSEv05_DTableHeader*)ptr;
DStatePtr->state = BITv05_readBits(bitD, DTableH->tableLog);
BITv05_reloadDStream(bitD);
DStatePtr->table = dt + 1;
}
MEM_STATIC BYTE FSEv05_peakSymbol(FSEv05_DState_t* DStatePtr)
{
const FSEv05_decode_t DInfo = ((const FSEv05_decode_t*)(DStatePtr->table))[DStatePtr->state];
return DInfo.symbol;
}
MEM_STATIC BYTE FSEv05_decodeSymbol(FSEv05_DState_t* DStatePtr, BITv05_DStream_t* bitD)
{
const FSEv05_decode_t DInfo = ((const FSEv05_decode_t*)(DStatePtr->table))[DStatePtr->state];
const U32 nbBits = DInfo.nbBits;
BYTE symbol = DInfo.symbol;
size_t lowBits = BITv05_readBits(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
MEM_STATIC BYTE FSEv05_decodeSymbolFast(FSEv05_DState_t* DStatePtr, BITv05_DStream_t* bitD)
{
const FSEv05_decode_t DInfo = ((const FSEv05_decode_t*)(DStatePtr->table))[DStatePtr->state];
const U32 nbBits = DInfo.nbBits;
BYTE symbol = DInfo.symbol;
size_t lowBits = BITv05_readBitsFast(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
MEM_STATIC unsigned FSEv05_endOfDState(const FSEv05_DState_t* DStatePtr)
{
return DStatePtr->state == 0;
}
#if defined (__cplusplus)
}
#endif
#endif /* FSEv05_STATIC_H */
/* ******************************************************************
FSEv05 : Finite State Entropy coder
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSEv05 source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef FSEv05_COMMONDEFS_ONLY
/* **************************************************************
* Tuning parameters
****************************************************************/
/*!MEMORY_USAGE :
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
* Increasing memory usage improves compression ratio
* Reduced memory usage can improve speed, due to cache effect
* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
#define FSEv05_MAX_MEMORY_USAGE 14
#define FSEv05_DEFAULT_MEMORY_USAGE 13
/*!FSEv05_MAX_SYMBOL_VALUE :
* Maximum symbol value authorized.
* Required for proper stack allocation */
#define FSEv05_MAX_SYMBOL_VALUE 255
/* **************************************************************
* template functions type & suffix
****************************************************************/
#define FSEv05_FUNCTION_TYPE BYTE
#define FSEv05_FUNCTION_EXTENSION
#define FSEv05_DECODE_TYPE FSEv05_decode_t
#endif /* !FSEv05_COMMONDEFS_ONLY */
/* **************************************************************
* Compiler specifics
****************************************************************/
#ifdef _MSC_VER /* Visual Studio */
# define FORCE_INLINE static __forceinline
# include <intrin.h> /* For Visual 2005 */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */
#else
# if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
# ifdef __GNUC__
# define FORCE_INLINE static inline __attribute__((always_inline))
# else
# define FORCE_INLINE static inline
# endif
# else
# define FORCE_INLINE static
# endif /* __STDC_VERSION__ */
#endif
/* **************************************************************
* Includes
****************************************************************/
#include <stdlib.h> /* malloc, free, qsort */
#include <string.h> /* memcpy, memset */
#include <stdio.h> /* printf (debug) */
/* ***************************************************************
* Constants
*****************************************************************/
#define FSEv05_MAX_TABLELOG (FSEv05_MAX_MEMORY_USAGE-2)
#define FSEv05_MAX_TABLESIZE (1U<<FSEv05_MAX_TABLELOG)
#define FSEv05_MAXTABLESIZE_MASK (FSEv05_MAX_TABLESIZE-1)
#define FSEv05_DEFAULT_TABLELOG (FSEv05_DEFAULT_MEMORY_USAGE-2)
#define FSEv05_MIN_TABLELOG 5
#define FSEv05_TABLELOG_ABSOLUTE_MAX 15
#if FSEv05_MAX_TABLELOG > FSEv05_TABLELOG_ABSOLUTE_MAX
#error "FSEv05_MAX_TABLELOG > FSEv05_TABLELOG_ABSOLUTE_MAX is not supported"
#endif
/* **************************************************************
* Error Management
****************************************************************/
#define FSEv05_STATIC_ASSERT(c) { enum { FSEv05_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
/* **************************************************************
* Complex types
****************************************************************/
typedef unsigned DTable_max_t[FSEv05_DTABLE_SIZE_U32(FSEv05_MAX_TABLELOG)];
/* **************************************************************
* Templates
****************************************************************/
/*
designed to be included
for type-specific functions (template emulation in C)
Objective is to write these functions only once, for improved maintenance
*/
/* safety checks */
#ifndef FSEv05_FUNCTION_EXTENSION
# error "FSEv05_FUNCTION_EXTENSION must be defined"
#endif
#ifndef FSEv05_FUNCTION_TYPE
# error "FSEv05_FUNCTION_TYPE must be defined"
#endif
/* Function names */
#define FSEv05_CAT(X,Y) X##Y
#define FSEv05_FUNCTION_NAME(X,Y) FSEv05_CAT(X,Y)
#define FSEv05_TYPE_NAME(X,Y) FSEv05_CAT(X,Y)
/* Function templates */
static U32 FSEv05_tableStep(U32 tableSize) { return (tableSize>>1) + (tableSize>>3) + 3; }
FSEv05_DTable* FSEv05_createDTable (unsigned tableLog)
{
if (tableLog > FSEv05_TABLELOG_ABSOLUTE_MAX) tableLog = FSEv05_TABLELOG_ABSOLUTE_MAX;
return (FSEv05_DTable*)malloc( FSEv05_DTABLE_SIZE_U32(tableLog) * sizeof (U32) );
}
void FSEv05_freeDTable (FSEv05_DTable* dt)
{
free(dt);
}
size_t FSEv05_buildDTable(FSEv05_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
{
FSEv05_DTableHeader DTableH;
void* const tdPtr = dt+1; /* because dt is unsigned, 32-bits aligned on 32-bits */
FSEv05_DECODE_TYPE* const tableDecode = (FSEv05_DECODE_TYPE*) (tdPtr);
const U32 tableSize = 1 << tableLog;
const U32 tableMask = tableSize-1;
const U32 step = FSEv05_tableStep(tableSize);
U16 symbolNext[FSEv05_MAX_SYMBOL_VALUE+1];
U32 position = 0;
U32 highThreshold = tableSize-1;
const S16 largeLimit= (S16)(1 << (tableLog-1));
U32 noLarge = 1;
U32 s;
/* Sanity Checks */
if (maxSymbolValue > FSEv05_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
if (tableLog > FSEv05_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
/* Init, lay down lowprob symbols */
memset(tableDecode, 0, sizeof(FSEv05_FUNCTION_TYPE) * (maxSymbolValue+1) ); /* useless init, but keep static analyzer happy, and we don't need to performance optimize legacy decoders */
DTableH.tableLog = (U16)tableLog;
for (s=0; s<=maxSymbolValue; s++) {
if (normalizedCounter[s]==-1) {
tableDecode[highThreshold--].symbol = (FSEv05_FUNCTION_TYPE)s;
symbolNext[s] = 1;
} else {
if (normalizedCounter[s] >= largeLimit) noLarge=0;
symbolNext[s] = normalizedCounter[s];
} }
/* Spread symbols */
for (s=0; s<=maxSymbolValue; s++) {
int i;
for (i=0; i<normalizedCounter[s]; i++) {
tableDecode[position].symbol = (FSEv05_FUNCTION_TYPE)s;
position = (position + step) & tableMask;
while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
} }
if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
/* Build Decoding table */
{
U32 i;
for (i=0; i<tableSize; i++) {
FSEv05_FUNCTION_TYPE symbol = (FSEv05_FUNCTION_TYPE)(tableDecode[i].symbol);
U16 nextState = symbolNext[symbol]++;
tableDecode[i].nbBits = (BYTE) (tableLog - BITv05_highbit32 ((U32)nextState) );
tableDecode[i].newState = (U16) ( (nextState << tableDecode[i].nbBits) - tableSize);
} }
DTableH.fastMode = (U16)noLarge;
memcpy(dt, &DTableH, sizeof(DTableH));
return 0;
}
#ifndef FSEv05_COMMONDEFS_ONLY
/*-****************************************
* FSEv05 helper functions
******************************************/
unsigned FSEv05_isError(size_t code) { return ERR_isError(code); }
const char* FSEv05_getErrorName(size_t code) { return ERR_getErrorName(code); }
/*-**************************************************************
* FSEv05 NCount encoding-decoding
****************************************************************/
static short FSEv05_abs(short a) { return a<0 ? -a : a; }
size_t FSEv05_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize)
{
const BYTE* const istart = (const BYTE*) headerBuffer;
const BYTE* const iend = istart + hbSize;
const BYTE* ip = istart;
int nbBits;
int remaining;
int threshold;
U32 bitStream;
int bitCount;
unsigned charnum = 0;
int previous0 = 0;
if (hbSize < 4) return ERROR(srcSize_wrong);
bitStream = MEM_readLE32(ip);
nbBits = (bitStream & 0xF) + FSEv05_MIN_TABLELOG; /* extract tableLog */
if (nbBits > FSEv05_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
bitStream >>= 4;
bitCount = 4;
*tableLogPtr = nbBits;
remaining = (1<<nbBits)+1;
threshold = 1<<nbBits;
nbBits++;
while ((remaining>1) && (charnum<=*maxSVPtr)) {
if (previous0) {
unsigned n0 = charnum;
while ((bitStream & 0xFFFF) == 0xFFFF) {
n0+=24;
if (ip < iend-5) {
ip+=2;
bitStream = MEM_readLE32(ip) >> bitCount;
} else {
bitStream >>= 16;
bitCount+=16;
} }
while ((bitStream & 3) == 3) {
n0+=3;
bitStream>>=2;
bitCount+=2;
}
n0 += bitStream & 3;
bitCount += 2;
if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
while (charnum < n0) normalizedCounter[charnum++] = 0;
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
ip += bitCount>>3;
bitCount &= 7;
bitStream = MEM_readLE32(ip) >> bitCount;
}
else
bitStream >>= 2;
}
{
const short max = (short)((2*threshold-1)-remaining);
short count;
if ((bitStream & (threshold-1)) < (U32)max) {
count = (short)(bitStream & (threshold-1));
bitCount += nbBits-1;
} else {
count = (short)(bitStream & (2*threshold-1));
if (count >= threshold) count -= max;
bitCount += nbBits;
}
count--; /* extra accuracy */
remaining -= FSEv05_abs(count);
normalizedCounter[charnum++] = count;
previous0 = !count;
while (remaining < threshold) {
nbBits--;
threshold >>= 1;
}
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
ip += bitCount>>3;
bitCount &= 7;
} else {
bitCount -= (int)(8 * (iend - 4 - ip));
ip = iend - 4;
}
bitStream = MEM_readLE32(ip) >> (bitCount & 31);
} }
if (remaining != 1) return ERROR(GENERIC);
*maxSVPtr = charnum-1;
ip += (bitCount+7)>>3;
if ((size_t)(ip-istart) > hbSize) return ERROR(srcSize_wrong);
return ip-istart;
}
/*-*******************************************************
* Decompression (Byte symbols)
*********************************************************/
size_t FSEv05_buildDTable_rle (FSEv05_DTable* dt, BYTE symbolValue)
{
void* ptr = dt;
FSEv05_DTableHeader* const DTableH = (FSEv05_DTableHeader*)ptr;
void* dPtr = dt + 1;
FSEv05_decode_t* const cell = (FSEv05_decode_t*)dPtr;
DTableH->tableLog = 0;
DTableH->fastMode = 0;
cell->newState = 0;
cell->symbol = symbolValue;
cell->nbBits = 0;
return 0;
}
size_t FSEv05_buildDTable_raw (FSEv05_DTable* dt, unsigned nbBits)
{
void* ptr = dt;
FSEv05_DTableHeader* const DTableH = (FSEv05_DTableHeader*)ptr;
void* dPtr = dt + 1;
FSEv05_decode_t* const dinfo = (FSEv05_decode_t*)dPtr;
const unsigned tableSize = 1 << nbBits;
const unsigned tableMask = tableSize - 1;
const unsigned maxSymbolValue = tableMask;
unsigned s;
/* Sanity checks */
if (nbBits < 1) return ERROR(GENERIC); /* min size */
/* Build Decoding Table */
DTableH->tableLog = (U16)nbBits;
DTableH->fastMode = 1;
for (s=0; s<=maxSymbolValue; s++) {
dinfo[s].newState = 0;
dinfo[s].symbol = (BYTE)s;
dinfo[s].nbBits = (BYTE)nbBits;
}
return 0;
}
FORCE_INLINE size_t FSEv05_decompress_usingDTable_generic(
void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const FSEv05_DTable* dt, const unsigned fast)
{
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const omax = op + maxDstSize;
BYTE* const olimit = omax-3;
BITv05_DStream_t bitD;
FSEv05_DState_t state1;
FSEv05_DState_t state2;
size_t errorCode;
/* Init */
errorCode = BITv05_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */
if (FSEv05_isError(errorCode)) return errorCode;
FSEv05_initDState(&state1, &bitD, dt);
FSEv05_initDState(&state2, &bitD, dt);
#define FSEv05_GETSYMBOL(statePtr) fast ? FSEv05_decodeSymbolFast(statePtr, &bitD) : FSEv05_decodeSymbol(statePtr, &bitD)
/* 4 symbols per loop */
for ( ; (BITv05_reloadDStream(&bitD)==BITv05_DStream_unfinished) && (op<olimit) ; op+=4) {
op[0] = FSEv05_GETSYMBOL(&state1);
if (FSEv05_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
BITv05_reloadDStream(&bitD);
op[1] = FSEv05_GETSYMBOL(&state2);
if (FSEv05_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
{ if (BITv05_reloadDStream(&bitD) > BITv05_DStream_unfinished) { op+=2; break; } }
op[2] = FSEv05_GETSYMBOL(&state1);
if (FSEv05_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
BITv05_reloadDStream(&bitD);
op[3] = FSEv05_GETSYMBOL(&state2);
}
/* tail */
/* note : BITv05_reloadDStream(&bitD) >= FSEv05_DStream_partiallyFilled; Ends at exactly BITv05_DStream_completed */
while (1) {
if ( (BITv05_reloadDStream(&bitD)>BITv05_DStream_completed) || (op==omax) || (BITv05_endOfDStream(&bitD) && (fast || FSEv05_endOfDState(&state1))) )
break;
*op++ = FSEv05_GETSYMBOL(&state1);
if ( (BITv05_reloadDStream(&bitD)>BITv05_DStream_completed) || (op==omax) || (BITv05_endOfDStream(&bitD) && (fast || FSEv05_endOfDState(&state2))) )
break;
*op++ = FSEv05_GETSYMBOL(&state2);
}
/* end ? */
if (BITv05_endOfDStream(&bitD) && FSEv05_endOfDState(&state1) && FSEv05_endOfDState(&state2))
return op-ostart;
if (op==omax) return ERROR(dstSize_tooSmall); /* dst buffer is full, but cSrc unfinished */
return ERROR(corruption_detected);
}
size_t FSEv05_decompress_usingDTable(void* dst, size_t originalSize,
const void* cSrc, size_t cSrcSize,
const FSEv05_DTable* dt)
{
const void* ptr = dt;
const FSEv05_DTableHeader* DTableH = (const FSEv05_DTableHeader*)ptr;
const U32 fastMode = DTableH->fastMode;
/* select fast mode (static) */
if (fastMode) return FSEv05_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
return FSEv05_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
}
size_t FSEv05_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
{
const BYTE* const istart = (const BYTE*)cSrc;
const BYTE* ip = istart;
short counting[FSEv05_MAX_SYMBOL_VALUE+1];
DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */
unsigned tableLog;
unsigned maxSymbolValue = FSEv05_MAX_SYMBOL_VALUE;
size_t errorCode;
if (cSrcSize<2) return ERROR(srcSize_wrong); /* too small input size */
/* normal FSEv05 decoding mode */
errorCode = FSEv05_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
if (FSEv05_isError(errorCode)) return errorCode;
if (errorCode >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size */
ip += errorCode;
cSrcSize -= errorCode;
errorCode = FSEv05_buildDTable (dt, counting, maxSymbolValue, tableLog);
if (FSEv05_isError(errorCode)) return errorCode;
/* always return, even if it is an error code */
return FSEv05_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt);
}
#endif /* FSEv05_COMMONDEFS_ONLY */
/* ******************************************************************
Huff0 : Huffman coder, part of New Generation Entropy library
header file
Copyright (C) 2013-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
****************************************************************** */
#ifndef HUFF0_H
#define HUFF0_H
#if defined (__cplusplus)
extern "C" {
#endif
/* ****************************************
* Huff0 simple functions
******************************************/
size_t HUFv05_decompress(void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize);
/*!
HUFv05_decompress():
Decompress Huff0 data from buffer 'cSrc', of size 'cSrcSize',
into already allocated destination buffer 'dst', of size 'dstSize'.
@dstSize : must be the **exact** size of original (uncompressed) data.
Note : in contrast with FSEv05, HUFv05_decompress can regenerate
RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data,
because it knows size to regenerate.
@return : size of regenerated data (== dstSize)
or an error code, which can be tested using HUFv05_isError()
*/
/* ****************************************
* Tool functions
******************************************/
/* Error Management */
unsigned HUFv05_isError(size_t code); /* tells if a return value is an error code */
const char* HUFv05_getErrorName(size_t code); /* provides error code string (useful for debugging) */
#if defined (__cplusplus)
}
#endif
#endif /* HUF0_H */
/* ******************************************************************
Huff0 : Huffman codec, part of New Generation Entropy library
header file, for static linking only
Copyright (C) 2013-2016, Yann Collet
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
****************************************************************** */
#ifndef HUF0_STATIC_H
#define HUF0_STATIC_H
#if defined (__cplusplus)
extern "C" {
#endif
/* ****************************************
* Static allocation
******************************************/
/* static allocation of Huff0's DTable */
#define HUFv05_DTABLE_SIZE(maxTableLog) (1 + (1<<maxTableLog))
#define HUFv05_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
unsigned short DTable[HUFv05_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
#define HUFv05_CREATE_STATIC_DTABLEX4(DTable, maxTableLog) \
unsigned int DTable[HUFv05_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
#define HUFv05_CREATE_STATIC_DTABLEX6(DTable, maxTableLog) \
unsigned int DTable[HUFv05_DTABLE_SIZE(maxTableLog) * 3 / 2] = { maxTableLog }
/* ****************************************
* Advanced decompression functions
******************************************/
size_t HUFv05_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
size_t HUFv05_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbols decoder */
/* ****************************************
* Huff0 detailed API
******************************************/
/*!
HUFv05_decompress() does the following:
1. select the decompression algorithm (X2, X4, X6) based on pre-computed heuristics
2. build Huffman table from save, using HUFv05_readDTableXn()
3. decode 1 or 4 segments in parallel using HUFv05_decompressSXn_usingDTable
*/
size_t HUFv05_readDTableX2 (unsigned short* DTable, const void* src, size_t srcSize);
size_t HUFv05_readDTableX4 (unsigned* DTable, const void* src, size_t srcSize);
size_t HUFv05_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned short* DTable);
size_t HUFv05_decompress4X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned* DTable);
/* single stream variants */
size_t HUFv05_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
size_t HUFv05_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbol decoder */
size_t HUFv05_decompress1X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned short* DTable);
size_t HUFv05_decompress1X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned* DTable);
#if defined (__cplusplus)
}
#endif
#endif /* HUF0_STATIC_H */
/* ******************************************************************
Huff0 : Huffman coder, part of New Generation Entropy library
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSEv05+Huff0 source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
/* **************************************************************
* Compiler specifics
****************************************************************/
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
/* inline is defined */
#elif defined(_MSC_VER)
# define inline __inline
#else
# define inline /* disable inline */
#endif
#ifdef _MSC_VER /* Visual Studio */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
#endif
/* **************************************************************
* Includes
****************************************************************/
#include <stdlib.h> /* malloc, free, qsort */
#include <string.h> /* memcpy, memset */
#include <stdio.h> /* printf (debug) */
/* **************************************************************
* Constants
****************************************************************/
#define HUFv05_ABSOLUTEMAX_TABLELOG 16 /* absolute limit of HUFv05_MAX_TABLELOG. Beyond that value, code does not work */
#define HUFv05_MAX_TABLELOG 12 /* max configured tableLog (for static allocation); can be modified up to HUFv05_ABSOLUTEMAX_TABLELOG */
#define HUFv05_DEFAULT_TABLELOG HUFv05_MAX_TABLELOG /* tableLog by default, when not specified */
#define HUFv05_MAX_SYMBOL_VALUE 255
#if (HUFv05_MAX_TABLELOG > HUFv05_ABSOLUTEMAX_TABLELOG)
# error "HUFv05_MAX_TABLELOG is too large !"
#endif
/* **************************************************************
* Error Management
****************************************************************/
unsigned HUFv05_isError(size_t code) { return ERR_isError(code); }
const char* HUFv05_getErrorName(size_t code) { return ERR_getErrorName(code); }
#define HUFv05_STATIC_ASSERT(c) { enum { HUFv05_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
/* *******************************************************
* Huff0 : Huffman block decompression
*********************************************************/
typedef struct { BYTE byte; BYTE nbBits; } HUFv05_DEltX2; /* single-symbol decoding */
typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUFv05_DEltX4; /* double-symbols decoding */
typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
/*! HUFv05_readStats
Read compact Huffman tree, saved by HUFv05_writeCTable
@huffWeight : destination buffer
@return : size read from `src`
*/
static size_t HUFv05_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize)
{
U32 weightTotal;
U32 tableLog;
const BYTE* ip = (const BYTE*) src;
size_t iSize;
size_t oSize;
U32 n;
if (!srcSize) return ERROR(srcSize_wrong);
iSize = ip[0];
/* memset(huffWeight, 0, hwSize); */ /* is not necessary, even though some analyzer complain ... */
if (iSize >= 128) { /* special header */
if (iSize >= (242)) { /* RLE */
static int l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 };
oSize = l[iSize-242];
memset(huffWeight, 1, hwSize);
iSize = 0;
}
else { /* Incompressible */
oSize = iSize - 127;
iSize = ((oSize+1)/2);
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
if (oSize >= hwSize) return ERROR(corruption_detected);
ip += 1;
for (n=0; n<oSize; n+=2) {
huffWeight[n] = ip[n/2] >> 4;
huffWeight[n+1] = ip[n/2] & 15;
} } }
else { /* header compressed with FSEv05 (normal case) */
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
oSize = FSEv05_decompress(huffWeight, hwSize-1, ip+1, iSize); /* max (hwSize-1) values decoded, as last one is implied */
if (FSEv05_isError(oSize)) return oSize;
}
/* collect weight stats */
memset(rankStats, 0, (HUFv05_ABSOLUTEMAX_TABLELOG + 1) * sizeof(U32));
weightTotal = 0;
for (n=0; n<oSize; n++) {
if (huffWeight[n] >= HUFv05_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
rankStats[huffWeight[n]]++;
weightTotal += (1 << huffWeight[n]) >> 1;
}
if (weightTotal == 0) return ERROR(corruption_detected);
/* get last non-null symbol weight (implied, total must be 2^n) */
tableLog = BITv05_highbit32(weightTotal) + 1;
if (tableLog > HUFv05_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
{ /* determine last weight */
U32 total = 1 << tableLog;
U32 rest = total - weightTotal;
U32 verif = 1 << BITv05_highbit32(rest);
U32 lastWeight = BITv05_highbit32(rest) + 1;
if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
huffWeight[oSize] = (BYTE)lastWeight;
rankStats[lastWeight]++;
}
/* check tree construction validity */
if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
/* results */
*nbSymbolsPtr = (U32)(oSize+1);
*tableLogPtr = tableLog;
return iSize+1;
}
/*-***************************/
/* single-symbol decoding */
/*-***************************/
size_t HUFv05_readDTableX2 (U16* DTable, const void* src, size_t srcSize)
{
BYTE huffWeight[HUFv05_MAX_SYMBOL_VALUE + 1];
U32 rankVal[HUFv05_ABSOLUTEMAX_TABLELOG + 1]; /* large enough for values from 0 to 16 */
U32 tableLog = 0;
size_t iSize;
U32 nbSymbols = 0;
U32 n;
U32 nextRankStart;
void* const dtPtr = DTable + 1;
HUFv05_DEltX2* const dt = (HUFv05_DEltX2*)dtPtr;
HUFv05_STATIC_ASSERT(sizeof(HUFv05_DEltX2) == sizeof(U16)); /* if compilation fails here, assertion is false */
/* memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */
iSize = HUFv05_readStats(huffWeight, HUFv05_MAX_SYMBOL_VALUE + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
if (HUFv05_isError(iSize)) return iSize;
/* check result */
if (tableLog > DTable[0]) return ERROR(tableLog_tooLarge); /* DTable is too small */
DTable[0] = (U16)tableLog; /* maybe should separate sizeof allocated DTable, from used size of DTable, in case of re-use */
/* Prepare ranks */
nextRankStart = 0;
for (n=1; n<=tableLog; n++) {
U32 current = nextRankStart;
nextRankStart += (rankVal[n] << (n-1));
rankVal[n] = current;
}
/* fill DTable */
for (n=0; n<nbSymbols; n++) {
const U32 w = huffWeight[n];
const U32 length = (1 << w) >> 1;
U32 i;
HUFv05_DEltX2 D;
D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
for (i = rankVal[w]; i < rankVal[w] + length; i++)
dt[i] = D;
rankVal[w] += length;
}
return iSize;
}
static BYTE HUFv05_decodeSymbolX2(BITv05_DStream_t* Dstream, const HUFv05_DEltX2* dt, const U32 dtLog)
{
const size_t val = BITv05_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
const BYTE c = dt[val].byte;
BITv05_skipBits(Dstream, dt[val].nbBits);
return c;
}
#define HUFv05_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
*ptr++ = HUFv05_decodeSymbolX2(DStreamPtr, dt, dtLog)
#define HUFv05_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUFv05_MAX_TABLELOG<=12)) \
HUFv05_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
#define HUFv05_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
HUFv05_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
static inline size_t HUFv05_decodeStreamX2(BYTE* p, BITv05_DStream_t* const bitDPtr, BYTE* const pEnd, const HUFv05_DEltX2* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 4 symbols at a time */
while ((BITv05_reloadDStream(bitDPtr) == BITv05_DStream_unfinished) && (p <= pEnd-4)) {
HUFv05_DECODE_SYMBOLX2_2(p, bitDPtr);
HUFv05_DECODE_SYMBOLX2_1(p, bitDPtr);
HUFv05_DECODE_SYMBOLX2_2(p, bitDPtr);
HUFv05_DECODE_SYMBOLX2_0(p, bitDPtr);
}
/* closer to the end */
while ((BITv05_reloadDStream(bitDPtr) == BITv05_DStream_unfinished) && (p < pEnd))
HUFv05_DECODE_SYMBOLX2_0(p, bitDPtr);
/* no more data to retrieve from bitstream, hence no need to reload */
while (p < pEnd)
HUFv05_DECODE_SYMBOLX2_0(p, bitDPtr);
return pEnd-pStart;
}
size_t HUFv05_decompress1X2_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const U16* DTable)
{
BYTE* op = (BYTE*)dst;
BYTE* const oend = op + dstSize;
const U32 dtLog = DTable[0];
const void* dtPtr = DTable;
const HUFv05_DEltX2* const dt = ((const HUFv05_DEltX2*)dtPtr)+1;
BITv05_DStream_t bitD;
if (dstSize <= cSrcSize) return ERROR(dstSize_tooSmall);
{ size_t const errorCode = BITv05_initDStream(&bitD, cSrc, cSrcSize);
if (HUFv05_isError(errorCode)) return errorCode; }
HUFv05_decodeStreamX2(op, &bitD, oend, dt, dtLog);
/* check */
if (!BITv05_endOfDStream(&bitD)) return ERROR(corruption_detected);
return dstSize;
}
size_t HUFv05_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUFv05_CREATE_STATIC_DTABLEX2(DTable, HUFv05_MAX_TABLELOG);
const BYTE* ip = (const BYTE*) cSrc;
size_t errorCode;
errorCode = HUFv05_readDTableX2 (DTable, cSrc, cSrcSize);
if (HUFv05_isError(errorCode)) return errorCode;
if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);
ip += errorCode;
cSrcSize -= errorCode;
return HUFv05_decompress1X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
}
size_t HUFv05_decompress4X2_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const U16* DTable)
{
/* Check */
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{
const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* const dtPtr = DTable;
const HUFv05_DEltX2* const dt = ((const HUFv05_DEltX2*)dtPtr) +1;
const U32 dtLog = DTable[0];
size_t errorCode;
/* Init */
BITv05_DStream_t bitD1;
BITv05_DStream_t bitD2;
BITv05_DStream_t bitD3;
BITv05_DStream_t bitD4;
const size_t length1 = MEM_readLE16(istart);
const size_t length2 = MEM_readLE16(istart+2);
const size_t length3 = MEM_readLE16(istart+4);
size_t length4;
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
const size_t segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal;
length4 = cSrcSize - (length1 + length2 + length3 + 6);
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
errorCode = BITv05_initDStream(&bitD1, istart1, length1);
if (HUFv05_isError(errorCode)) return errorCode;
errorCode = BITv05_initDStream(&bitD2, istart2, length2);
if (HUFv05_isError(errorCode)) return errorCode;
errorCode = BITv05_initDStream(&bitD3, istart3, length3);
if (HUFv05_isError(errorCode)) return errorCode;
errorCode = BITv05_initDStream(&bitD4, istart4, length4);
if (HUFv05_isError(errorCode)) return errorCode;
/* 16-32 symbols per loop (4-8 symbols per stream) */
endSignal = BITv05_reloadDStream(&bitD1) | BITv05_reloadDStream(&bitD2) | BITv05_reloadDStream(&bitD3) | BITv05_reloadDStream(&bitD4);
for ( ; (endSignal==BITv05_DStream_unfinished) && (op4<(oend-7)) ; ) {
HUFv05_DECODE_SYMBOLX2_2(op1, &bitD1);
HUFv05_DECODE_SYMBOLX2_2(op2, &bitD2);
HUFv05_DECODE_SYMBOLX2_2(op3, &bitD3);
HUFv05_DECODE_SYMBOLX2_2(op4, &bitD4);
HUFv05_DECODE_SYMBOLX2_1(op1, &bitD1);
HUFv05_DECODE_SYMBOLX2_1(op2, &bitD2);
HUFv05_DECODE_SYMBOLX2_1(op3, &bitD3);
HUFv05_DECODE_SYMBOLX2_1(op4, &bitD4);
HUFv05_DECODE_SYMBOLX2_2(op1, &bitD1);
HUFv05_DECODE_SYMBOLX2_2(op2, &bitD2);
HUFv05_DECODE_SYMBOLX2_2(op3, &bitD3);
HUFv05_DECODE_SYMBOLX2_2(op4, &bitD4);
HUFv05_DECODE_SYMBOLX2_0(op1, &bitD1);
HUFv05_DECODE_SYMBOLX2_0(op2, &bitD2);
HUFv05_DECODE_SYMBOLX2_0(op3, &bitD3);
HUFv05_DECODE_SYMBOLX2_0(op4, &bitD4);
endSignal = BITv05_reloadDStream(&bitD1) | BITv05_reloadDStream(&bitD2) | BITv05_reloadDStream(&bitD3) | BITv05_reloadDStream(&bitD4);
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 supposed already verified within main loop */
/* finish bitStreams one by one */
HUFv05_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
HUFv05_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
HUFv05_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
HUFv05_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
/* check */
endSignal = BITv05_endOfDStream(&bitD1) & BITv05_endOfDStream(&bitD2) & BITv05_endOfDStream(&bitD3) & BITv05_endOfDStream(&bitD4);
if (!endSignal) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
}
size_t HUFv05_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUFv05_CREATE_STATIC_DTABLEX2(DTable, HUFv05_MAX_TABLELOG);
const BYTE* ip = (const BYTE*) cSrc;
size_t errorCode;
errorCode = HUFv05_readDTableX2 (DTable, cSrc, cSrcSize);
if (HUFv05_isError(errorCode)) return errorCode;
if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);
ip += errorCode;
cSrcSize -= errorCode;
return HUFv05_decompress4X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
}
/* *************************/
/* double-symbols decoding */
/* *************************/
static void HUFv05_fillDTableX4Level2(HUFv05_DEltX4* DTable, U32 sizeLog, const U32 consumed,
const U32* rankValOrigin, const int minWeight,
const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
U32 nbBitsBaseline, U16 baseSeq)
{
HUFv05_DEltX4 DElt;
U32 rankVal[HUFv05_ABSOLUTEMAX_TABLELOG + 1];
U32 s;
/* get pre-calculated rankVal */
memcpy(rankVal, rankValOrigin, sizeof(rankVal));
/* fill skipped values */
if (minWeight>1) {
U32 i, skipSize = rankVal[minWeight];
MEM_writeLE16(&(DElt.sequence), baseSeq);
DElt.nbBits = (BYTE)(consumed);
DElt.length = 1;
for (i = 0; i < skipSize; i++)
DTable[i] = DElt;
}
/* fill DTable */
for (s=0; s<sortedListSize; s++) { /* note : sortedSymbols already skipped */
const U32 symbol = sortedSymbols[s].symbol;
const U32 weight = sortedSymbols[s].weight;
const U32 nbBits = nbBitsBaseline - weight;
const U32 length = 1 << (sizeLog-nbBits);
const U32 start = rankVal[weight];
U32 i = start;
const U32 end = start + length;
MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
DElt.nbBits = (BYTE)(nbBits + consumed);
DElt.length = 2;
do { DTable[i++] = DElt; } while (i<end); /* since length >= 1 */
rankVal[weight] += length;
}
}
typedef U32 rankVal_t[HUFv05_ABSOLUTEMAX_TABLELOG][HUFv05_ABSOLUTEMAX_TABLELOG + 1];
static void HUFv05_fillDTableX4(HUFv05_DEltX4* DTable, const U32 targetLog,
const sortedSymbol_t* sortedList, const U32 sortedListSize,
const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
const U32 nbBitsBaseline)
{
U32 rankVal[HUFv05_ABSOLUTEMAX_TABLELOG + 1];
const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
const U32 minBits = nbBitsBaseline - maxWeight;
U32 s;
memcpy(rankVal, rankValOrigin, sizeof(rankVal));
/* fill DTable */
for (s=0; s<sortedListSize; s++) {
const U16 symbol = sortedList[s].symbol;
const U32 weight = sortedList[s].weight;
const U32 nbBits = nbBitsBaseline - weight;
const U32 start = rankVal[weight];
const U32 length = 1 << (targetLog-nbBits);
if (targetLog-nbBits >= minBits) { /* enough room for a second symbol */
U32 sortedRank;
int minWeight = nbBits + scaleLog;
if (minWeight < 1) minWeight = 1;
sortedRank = rankStart[minWeight];
HUFv05_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits,
rankValOrigin[nbBits], minWeight,
sortedList+sortedRank, sortedListSize-sortedRank,
nbBitsBaseline, symbol);
} else {
U32 i;
const U32 end = start + length;
HUFv05_DEltX4 DElt;
MEM_writeLE16(&(DElt.sequence), symbol);
DElt.nbBits = (BYTE)(nbBits);
DElt.length = 1;
for (i = start; i < end; i++)
DTable[i] = DElt;
}
rankVal[weight] += length;
}
}
size_t HUFv05_readDTableX4 (unsigned* DTable, const void* src, size_t srcSize)
{
BYTE weightList[HUFv05_MAX_SYMBOL_VALUE + 1];
sortedSymbol_t sortedSymbol[HUFv05_MAX_SYMBOL_VALUE + 1];
U32 rankStats[HUFv05_ABSOLUTEMAX_TABLELOG + 1] = { 0 };
U32 rankStart0[HUFv05_ABSOLUTEMAX_TABLELOG + 2] = { 0 };
U32* const rankStart = rankStart0+1;
rankVal_t rankVal;
U32 tableLog, maxW, sizeOfSort, nbSymbols;
const U32 memLog = DTable[0];
size_t iSize;
void* dtPtr = DTable;
HUFv05_DEltX4* const dt = ((HUFv05_DEltX4*)dtPtr) + 1;
HUFv05_STATIC_ASSERT(sizeof(HUFv05_DEltX4) == sizeof(unsigned)); /* if compilation fails here, assertion is false */
if (memLog > HUFv05_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge);
/* memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */
iSize = HUFv05_readStats(weightList, HUFv05_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
if (HUFv05_isError(iSize)) return iSize;
/* check result */
if (tableLog > memLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
/* find maxWeight */
for (maxW = tableLog; rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
/* Get start index of each weight */
{
U32 w, nextRankStart = 0;
for (w=1; w<=maxW; w++) {
U32 current = nextRankStart;
nextRankStart += rankStats[w];
rankStart[w] = current;
}
rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
sizeOfSort = nextRankStart;
}
/* sort symbols by weight */
{
U32 s;
for (s=0; s<nbSymbols; s++) {
U32 w = weightList[s];
U32 r = rankStart[w]++;
sortedSymbol[r].symbol = (BYTE)s;
sortedSymbol[r].weight = (BYTE)w;
}
rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
}
/* Build rankVal */
{
const U32 minBits = tableLog+1 - maxW;
U32 nextRankVal = 0;
U32 w, consumed;
const int rescale = (memLog-tableLog) - 1; /* tableLog <= memLog */
U32* rankVal0 = rankVal[0];
for (w=1; w<=maxW; w++) {
U32 current = nextRankVal;
nextRankVal += rankStats[w] << (w+rescale);
rankVal0[w] = current;
}
for (consumed = minBits; consumed <= memLog - minBits; consumed++) {
U32* rankValPtr = rankVal[consumed];
for (w = 1; w <= maxW; w++) {
rankValPtr[w] = rankVal0[w] >> consumed;
} } }
HUFv05_fillDTableX4(dt, memLog,
sortedSymbol, sizeOfSort,
rankStart0, rankVal, maxW,
tableLog+1);
return iSize;
}
static U32 HUFv05_decodeSymbolX4(void* op, BITv05_DStream_t* DStream, const HUFv05_DEltX4* dt, const U32 dtLog)
{
const size_t val = BITv05_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
memcpy(op, dt+val, 2);
BITv05_skipBits(DStream, dt[val].nbBits);
return dt[val].length;
}
static U32 HUFv05_decodeLastSymbolX4(void* op, BITv05_DStream_t* DStream, const HUFv05_DEltX4* dt, const U32 dtLog)
{
const size_t val = BITv05_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
memcpy(op, dt+val, 1);
if (dt[val].length==1) BITv05_skipBits(DStream, dt[val].nbBits);
else {
if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
BITv05_skipBits(DStream, dt[val].nbBits);
if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
} }
return 1;
}
#define HUFv05_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \
ptr += HUFv05_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
#define HUFv05_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUFv05_MAX_TABLELOG<=12)) \
ptr += HUFv05_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
#define HUFv05_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
ptr += HUFv05_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
static inline size_t HUFv05_decodeStreamX4(BYTE* p, BITv05_DStream_t* bitDPtr, BYTE* const pEnd, const HUFv05_DEltX4* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 8 symbols at a time */
while ((BITv05_reloadDStream(bitDPtr) == BITv05_DStream_unfinished) && (p < pEnd-7)) {
HUFv05_DECODE_SYMBOLX4_2(p, bitDPtr);
HUFv05_DECODE_SYMBOLX4_1(p, bitDPtr);
HUFv05_DECODE_SYMBOLX4_2(p, bitDPtr);
HUFv05_DECODE_SYMBOLX4_0(p, bitDPtr);
}
/* closer to the end */
while ((BITv05_reloadDStream(bitDPtr) == BITv05_DStream_unfinished) && (p <= pEnd-2))
HUFv05_DECODE_SYMBOLX4_0(p, bitDPtr);
while (p <= pEnd-2)
HUFv05_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
if (p < pEnd)
p += HUFv05_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);
return p-pStart;
}
size_t HUFv05_decompress1X4_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const unsigned* DTable)
{
const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const U32 dtLog = DTable[0];
const void* const dtPtr = DTable;
const HUFv05_DEltX4* const dt = ((const HUFv05_DEltX4*)dtPtr) +1;
size_t errorCode;
/* Init */
BITv05_DStream_t bitD;
errorCode = BITv05_initDStream(&bitD, istart, cSrcSize);
if (HUFv05_isError(errorCode)) return errorCode;
/* finish bitStreams one by one */
HUFv05_decodeStreamX4(ostart, &bitD, oend, dt, dtLog);
/* check */
if (!BITv05_endOfDStream(&bitD)) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
size_t HUFv05_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUFv05_CREATE_STATIC_DTABLEX4(DTable, HUFv05_MAX_TABLELOG);
const BYTE* ip = (const BYTE*) cSrc;
size_t hSize = HUFv05_readDTableX4 (DTable, cSrc, cSrcSize);
if (HUFv05_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize;
cSrcSize -= hSize;
return HUFv05_decompress1X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
}
size_t HUFv05_decompress4X4_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const unsigned* DTable)
{
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{
const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* const dtPtr = DTable;
const HUFv05_DEltX4* const dt = ((const HUFv05_DEltX4*)dtPtr) +1;
const U32 dtLog = DTable[0];
size_t errorCode;
/* Init */
BITv05_DStream_t bitD1;
BITv05_DStream_t bitD2;
BITv05_DStream_t bitD3;
BITv05_DStream_t bitD4;
const size_t length1 = MEM_readLE16(istart);
const size_t length2 = MEM_readLE16(istart+2);
const size_t length3 = MEM_readLE16(istart+4);
size_t length4;
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
const size_t segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal;
length4 = cSrcSize - (length1 + length2 + length3 + 6);
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
errorCode = BITv05_initDStream(&bitD1, istart1, length1);
if (HUFv05_isError(errorCode)) return errorCode;
errorCode = BITv05_initDStream(&bitD2, istart2, length2);
if (HUFv05_isError(errorCode)) return errorCode;
errorCode = BITv05_initDStream(&bitD3, istart3, length3);
if (HUFv05_isError(errorCode)) return errorCode;
errorCode = BITv05_initDStream(&bitD4, istart4, length4);
if (HUFv05_isError(errorCode)) return errorCode;
/* 16-32 symbols per loop (4-8 symbols per stream) */
endSignal = BITv05_reloadDStream(&bitD1) | BITv05_reloadDStream(&bitD2) | BITv05_reloadDStream(&bitD3) | BITv05_reloadDStream(&bitD4);
for ( ; (endSignal==BITv05_DStream_unfinished) && (op4<(oend-7)) ; ) {
HUFv05_DECODE_SYMBOLX4_2(op1, &bitD1);
HUFv05_DECODE_SYMBOLX4_2(op2, &bitD2);
HUFv05_DECODE_SYMBOLX4_2(op3, &bitD3);
HUFv05_DECODE_SYMBOLX4_2(op4, &bitD4);
HUFv05_DECODE_SYMBOLX4_1(op1, &bitD1);
HUFv05_DECODE_SYMBOLX4_1(op2, &bitD2);
HUFv05_DECODE_SYMBOLX4_1(op3, &bitD3);
HUFv05_DECODE_SYMBOLX4_1(op4, &bitD4);
HUFv05_DECODE_SYMBOLX4_2(op1, &bitD1);
HUFv05_DECODE_SYMBOLX4_2(op2, &bitD2);
HUFv05_DECODE_SYMBOLX4_2(op3, &bitD3);
HUFv05_DECODE_SYMBOLX4_2(op4, &bitD4);
HUFv05_DECODE_SYMBOLX4_0(op1, &bitD1);
HUFv05_DECODE_SYMBOLX4_0(op2, &bitD2);
HUFv05_DECODE_SYMBOLX4_0(op3, &bitD3);
HUFv05_DECODE_SYMBOLX4_0(op4, &bitD4);
endSignal = BITv05_reloadDStream(&bitD1) | BITv05_reloadDStream(&bitD2) | BITv05_reloadDStream(&bitD3) | BITv05_reloadDStream(&bitD4);
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 supposed already verified within main loop */
/* finish bitStreams one by one */
HUFv05_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
HUFv05_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
HUFv05_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
HUFv05_decodeStreamX4(op4, &bitD4, oend, dt, dtLog);
/* check */
endSignal = BITv05_endOfDStream(&bitD1) & BITv05_endOfDStream(&bitD2) & BITv05_endOfDStream(&bitD3) & BITv05_endOfDStream(&bitD4);
if (!endSignal) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
}
size_t HUFv05_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUFv05_CREATE_STATIC_DTABLEX4(DTable, HUFv05_MAX_TABLELOG);
const BYTE* ip = (const BYTE*) cSrc;
size_t hSize = HUFv05_readDTableX4 (DTable, cSrc, cSrcSize);
if (HUFv05_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize;
cSrcSize -= hSize;
return HUFv05_decompress4X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
}
/* ********************************/
/* Generic decompression selector */
/* ********************************/
typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
{
/* single, double, quad */
{{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */
{{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */
{{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */
{{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */
{{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */
{{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */
{{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */
{{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */
{{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */
{{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */
{{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */
{{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */
{{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */
{{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */
{{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */
{{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */
};
typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
size_t HUFv05_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
static const decompressionAlgo decompress[3] = { HUFv05_decompress4X2, HUFv05_decompress4X4, NULL };
/* estimate decompression time */
U32 Q;
const U32 D256 = (U32)(dstSize >> 8);
U32 Dtime[3];
U32 algoNb = 0;
int n;
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize >= dstSize) return ERROR(corruption_detected); /* invalid, or not compressed, but not compressed already dealt with */
if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
/* decoder timing evaluation */
Q = (U32)(cSrcSize * 16 / dstSize); /* Q < 16 since dstSize > cSrcSize */
for (n=0; n<3; n++)
Dtime[n] = algoTime[Q][n].tableTime + (algoTime[Q][n].decode256Time * D256);
Dtime[1] += Dtime[1] >> 4; Dtime[2] += Dtime[2] >> 3; /* advantage to algorithms using less memory, for cache eviction */
if (Dtime[1] < Dtime[0]) algoNb = 1;
return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
/* return HUFv05_decompress4X2(dst, dstSize, cSrc, cSrcSize); */ /* multi-streams single-symbol decoding */
/* return HUFv05_decompress4X4(dst, dstSize, cSrc, cSrcSize); */ /* multi-streams double-symbols decoding */
/* return HUFv05_decompress4X6(dst, dstSize, cSrc, cSrcSize); */ /* multi-streams quad-symbols decoding */
}
/*
zstd - standard compression library
Copyright (C) 2014-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- zstd source repository : https://github.com/Cyan4973/zstd
*/
/* ***************************************************************
* Tuning parameters
*****************************************************************/
/*!
* HEAPMODE :
* Select how default decompression function ZSTDv05_decompress() will allocate memory,
* in memory stack (0), or in memory heap (1, requires malloc())
*/
#ifndef ZSTDv05_HEAPMODE
# define ZSTDv05_HEAPMODE 1
#endif
/*-*******************************************************
* Dependencies
*********************************************************/
#include <stdlib.h> /* calloc */
#include <string.h> /* memcpy, memmove */
#include <stdio.h> /* debug only : printf */
/*-*******************************************************
* Compiler specifics
*********************************************************/
#ifdef _MSC_VER /* Visual Studio */
# include <intrin.h> /* For Visual 2005 */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4324) /* disable: C4324: padded structure */
#endif
/*-*************************************
* Local types
***************************************/
typedef struct
{
blockType_t blockType;
U32 origSize;
} blockProperties_t;
/* *******************************************************
* Memory operations
**********************************************************/
static void ZSTDv05_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }
/* *************************************
* Error Management
***************************************/
/*! ZSTDv05_isError() :
* tells if a return value is an error code */
unsigned ZSTDv05_isError(size_t code) { return ERR_isError(code); }
/*! ZSTDv05_getErrorName() :
* provides error code string (useful for debugging) */
const char* ZSTDv05_getErrorName(size_t code) { return ERR_getErrorName(code); }
/* *************************************************************
* Context management
***************************************************************/
typedef enum { ZSTDv05ds_getFrameHeaderSize, ZSTDv05ds_decodeFrameHeader,
ZSTDv05ds_decodeBlockHeader, ZSTDv05ds_decompressBlock } ZSTDv05_dStage;
struct ZSTDv05_DCtx_s
{
FSEv05_DTable LLTable[FSEv05_DTABLE_SIZE_U32(LLFSEv05Log)];
FSEv05_DTable OffTable[FSEv05_DTABLE_SIZE_U32(OffFSEv05Log)];
FSEv05_DTable MLTable[FSEv05_DTABLE_SIZE_U32(MLFSEv05Log)];
unsigned hufTableX4[HUFv05_DTABLE_SIZE(HufLog)];
const void* previousDstEnd;
const void* base;
const void* vBase;
const void* dictEnd;
size_t expected;
size_t headerSize;
ZSTDv05_parameters params;
blockType_t bType; /* used in ZSTDv05_decompressContinue(), to transfer blockType between header decoding and block decoding stages */
ZSTDv05_dStage stage;
U32 flagStaticTables;
const BYTE* litPtr;
size_t litSize;
BYTE litBuffer[BLOCKSIZE + WILDCOPY_OVERLENGTH];
BYTE headerBuffer[ZSTDv05_frameHeaderSize_max];
}; /* typedef'd to ZSTDv05_DCtx within "zstd_static.h" */
size_t ZSTDv05_sizeofDCtx (void); /* Hidden declaration */
size_t ZSTDv05_sizeofDCtx (void) { return sizeof(ZSTDv05_DCtx); }
size_t ZSTDv05_decompressBegin(ZSTDv05_DCtx* dctx)
{
dctx->expected = ZSTDv05_frameHeaderSize_min;
dctx->stage = ZSTDv05ds_getFrameHeaderSize;
dctx->previousDstEnd = NULL;
dctx->base = NULL;
dctx->vBase = NULL;
dctx->dictEnd = NULL;
dctx->hufTableX4[0] = HufLog;
dctx->flagStaticTables = 0;
return 0;
}
ZSTDv05_DCtx* ZSTDv05_createDCtx(void)
{
ZSTDv05_DCtx* dctx = (ZSTDv05_DCtx*)malloc(sizeof(ZSTDv05_DCtx));
if (dctx==NULL) return NULL;
ZSTDv05_decompressBegin(dctx);
return dctx;
}
size_t ZSTDv05_freeDCtx(ZSTDv05_DCtx* dctx)
{
free(dctx);
return 0; /* reserved as a potential error code in the future */
}
void ZSTDv05_copyDCtx(ZSTDv05_DCtx* dstDCtx, const ZSTDv05_DCtx* srcDCtx)
{
memcpy(dstDCtx, srcDCtx,
sizeof(ZSTDv05_DCtx) - (BLOCKSIZE+WILDCOPY_OVERLENGTH + ZSTDv05_frameHeaderSize_max)); /* no need to copy workspace */
}
/* *************************************************************
* Decompression section
***************************************************************/
/* Frame format description
Frame Header - [ Block Header - Block ] - Frame End
1) Frame Header
- 4 bytes - Magic Number : ZSTDv05_MAGICNUMBER (defined within zstd_internal.h)
- 1 byte - Window Descriptor
2) Block Header
- 3 bytes, starting with a 2-bits descriptor
Uncompressed, Compressed, Frame End, unused
3) Block
See Block Format Description
4) Frame End
- 3 bytes, compatible with Block Header
*/
/* Block format description
Block = Literal Section - Sequences Section
Prerequisite : size of (compressed) block, maximum size of regenerated data
1) Literal Section
1.1) Header : 1-5 bytes
flags: 2 bits
00 compressed by Huff0
01 unused
10 is Raw (uncompressed)
11 is Rle
Note : using 01 => Huff0 with precomputed table ?
Note : delta map ? => compressed ?
1.1.1) Huff0-compressed literal block : 3-5 bytes
srcSize < 1 KB => 3 bytes (2-2-10-10) => single stream
srcSize < 1 KB => 3 bytes (2-2-10-10)
srcSize < 16KB => 4 bytes (2-2-14-14)
else => 5 bytes (2-2-18-18)
big endian convention
1.1.2) Raw (uncompressed) literal block header : 1-3 bytes
size : 5 bits: (IS_RAW<<6) + (0<<4) + size
12 bits: (IS_RAW<<6) + (2<<4) + (size>>8)
size&255
20 bits: (IS_RAW<<6) + (3<<4) + (size>>16)
size>>8&255
size&255
1.1.3) Rle (repeated single byte) literal block header : 1-3 bytes
size : 5 bits: (IS_RLE<<6) + (0<<4) + size
12 bits: (IS_RLE<<6) + (2<<4) + (size>>8)
size&255
20 bits: (IS_RLE<<6) + (3<<4) + (size>>16)
size>>8&255
size&255
1.1.4) Huff0-compressed literal block, using precomputed CTables : 3-5 bytes
srcSize < 1 KB => 3 bytes (2-2-10-10) => single stream
srcSize < 1 KB => 3 bytes (2-2-10-10)
srcSize < 16KB => 4 bytes (2-2-14-14)
else => 5 bytes (2-2-18-18)
big endian convention
1- CTable available (stored into workspace ?)
2- Small input (fast heuristic ? Full comparison ? depend on clevel ?)
1.2) Literal block content
1.2.1) Huff0 block, using sizes from header
See Huff0 format
1.2.2) Huff0 block, using prepared table
1.2.3) Raw content
1.2.4) single byte
2) Sequences section
TO DO
*/
/** ZSTDv05_decodeFrameHeader_Part1() :
* decode the 1st part of the Frame Header, which tells Frame Header size.
* srcSize must be == ZSTDv05_frameHeaderSize_min.
* @return : the full size of the Frame Header */
static size_t ZSTDv05_decodeFrameHeader_Part1(ZSTDv05_DCtx* zc, const void* src, size_t srcSize)
{
U32 magicNumber;
if (srcSize != ZSTDv05_frameHeaderSize_min)
return ERROR(srcSize_wrong);
magicNumber = MEM_readLE32(src);
if (magicNumber != ZSTDv05_MAGICNUMBER) return ERROR(prefix_unknown);
zc->headerSize = ZSTDv05_frameHeaderSize_min;
return zc->headerSize;
}
size_t ZSTDv05_getFrameParams(ZSTDv05_parameters* params, const void* src, size_t srcSize)
{
U32 magicNumber;
if (srcSize < ZSTDv05_frameHeaderSize_min) return ZSTDv05_frameHeaderSize_max;
magicNumber = MEM_readLE32(src);
if (magicNumber != ZSTDv05_MAGICNUMBER) return ERROR(prefix_unknown);
memset(params, 0, sizeof(*params));
params->windowLog = (((const BYTE*)src)[4] & 15) + ZSTDv05_WINDOWLOG_ABSOLUTEMIN;
if ((((const BYTE*)src)[4] >> 4) != 0) return ERROR(frameParameter_unsupported); /* reserved bits */
return 0;
}
/** ZSTDv05_decodeFrameHeader_Part2() :
* decode the full Frame Header.
* srcSize must be the size provided by ZSTDv05_decodeFrameHeader_Part1().
* @return : 0, or an error code, which can be tested using ZSTDv05_isError() */
static size_t ZSTDv05_decodeFrameHeader_Part2(ZSTDv05_DCtx* zc, const void* src, size_t srcSize)
{
size_t result;
if (srcSize != zc->headerSize)
return ERROR(srcSize_wrong);
result = ZSTDv05_getFrameParams(&(zc->params), src, srcSize);
if ((MEM_32bits()) && (zc->params.windowLog > 25)) return ERROR(frameParameter_unsupported);
return result;
}
static size_t ZSTDv05_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
{
- const BYTE* const in = (const BYTE* const)src;
+ const BYTE* const in = (const BYTE*)src;
BYTE headerFlags;
U32 cSize;
if (srcSize < 3)
return ERROR(srcSize_wrong);
headerFlags = *in;
cSize = in[2] + (in[1]<<8) + ((in[0] & 7)<<16);
bpPtr->blockType = (blockType_t)(headerFlags >> 6);
bpPtr->origSize = (bpPtr->blockType == bt_rle) ? cSize : 0;
if (bpPtr->blockType == bt_end) return 0;
if (bpPtr->blockType == bt_rle) return 1;
return cSize;
}
static size_t ZSTDv05_copyRawBlock(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
if (dst==NULL) return ERROR(dstSize_tooSmall);
if (srcSize > maxDstSize) return ERROR(dstSize_tooSmall);
memcpy(dst, src, srcSize);
return srcSize;
}
/*! ZSTDv05_decodeLiteralsBlock() :
@return : nb of bytes read from src (< srcSize ) */
static size_t ZSTDv05_decodeLiteralsBlock(ZSTDv05_DCtx* dctx,
const void* src, size_t srcSize) /* note : srcSize < BLOCKSIZE */
{
const BYTE* const istart = (const BYTE*) src;
/* any compressed block with literals segment must be at least this size */
if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected);
switch(istart[0]>> 6)
{
case IS_HUFv05:
{
size_t litSize, litCSize, singleStream=0;
U32 lhSize = ((istart[0]) >> 4) & 3;
if (srcSize < 5) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for case 3 */
switch(lhSize)
{
case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */
/* 2 - 2 - 10 - 10 */
lhSize=3;
singleStream = istart[0] & 16;
litSize = ((istart[0] & 15) << 6) + (istart[1] >> 2);
litCSize = ((istart[1] & 3) << 8) + istart[2];
break;
case 2:
/* 2 - 2 - 14 - 14 */
lhSize=4;
litSize = ((istart[0] & 15) << 10) + (istart[1] << 2) + (istart[2] >> 6);
litCSize = ((istart[2] & 63) << 8) + istart[3];
break;
case 3:
/* 2 - 2 - 18 - 18 */
lhSize=5;
litSize = ((istart[0] & 15) << 14) + (istart[1] << 6) + (istart[2] >> 2);
litCSize = ((istart[2] & 3) << 16) + (istart[3] << 8) + istart[4];
break;
}
if (litSize > BLOCKSIZE) return ERROR(corruption_detected);
if (litCSize + lhSize > srcSize) return ERROR(corruption_detected);
if (HUFv05_isError(singleStream ?
HUFv05_decompress1X2(dctx->litBuffer, litSize, istart+lhSize, litCSize) :
HUFv05_decompress (dctx->litBuffer, litSize, istart+lhSize, litCSize) ))
return ERROR(corruption_detected);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
return litCSize + lhSize;
}
case IS_PCH:
{
size_t errorCode;
size_t litSize, litCSize;
U32 lhSize = ((istart[0]) >> 4) & 3;
if (lhSize != 1) /* only case supported for now : small litSize, single stream */
return ERROR(corruption_detected);
if (!dctx->flagStaticTables)
return ERROR(dictionary_corrupted);
/* 2 - 2 - 10 - 10 */
lhSize=3;
litSize = ((istart[0] & 15) << 6) + (istart[1] >> 2);
litCSize = ((istart[1] & 3) << 8) + istart[2];
if (litCSize + lhSize > srcSize) return ERROR(corruption_detected);
errorCode = HUFv05_decompress1X4_usingDTable(dctx->litBuffer, litSize, istart+lhSize, litCSize, dctx->hufTableX4);
if (HUFv05_isError(errorCode)) return ERROR(corruption_detected);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
return litCSize + lhSize;
}
case IS_RAW:
{
size_t litSize;
U32 lhSize = ((istart[0]) >> 4) & 3;
switch(lhSize)
{
case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */
lhSize=1;
litSize = istart[0] & 31;
break;
case 2:
litSize = ((istart[0] & 15) << 8) + istart[1];
break;
case 3:
litSize = ((istart[0] & 15) << 16) + (istart[1] << 8) + istart[2];
break;
}
if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) { /* risk reading beyond src buffer with wildcopy */
if (litSize+lhSize > srcSize) return ERROR(corruption_detected);
memcpy(dctx->litBuffer, istart+lhSize, litSize);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
return lhSize+litSize;
}
/* direct reference into compressed stream */
dctx->litPtr = istart+lhSize;
dctx->litSize = litSize;
return lhSize+litSize;
}
case IS_RLE:
{
size_t litSize;
U32 lhSize = ((istart[0]) >> 4) & 3;
switch(lhSize)
{
case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */
lhSize = 1;
litSize = istart[0] & 31;
break;
case 2:
litSize = ((istart[0] & 15) << 8) + istart[1];
break;
case 3:
litSize = ((istart[0] & 15) << 16) + (istart[1] << 8) + istart[2];
if (srcSize<4) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4 */
break;
}
if (litSize > BLOCKSIZE) return ERROR(corruption_detected);
memset(dctx->litBuffer, istart[lhSize], litSize + WILDCOPY_OVERLENGTH);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
return lhSize+1;
}
default:
return ERROR(corruption_detected); /* impossible */
}
}
static size_t ZSTDv05_decodeSeqHeaders(int* nbSeq, const BYTE** dumpsPtr, size_t* dumpsLengthPtr,
FSEv05_DTable* DTableLL, FSEv05_DTable* DTableML, FSEv05_DTable* DTableOffb,
const void* src, size_t srcSize, U32 flagStaticTable)
{
- const BYTE* const istart = (const BYTE* const)src;
+ const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* const iend = istart + srcSize;
U32 LLtype, Offtype, MLtype;
unsigned LLlog, Offlog, MLlog;
size_t dumpsLength;
/* check */
if (srcSize < MIN_SEQUENCES_SIZE)
return ERROR(srcSize_wrong);
/* SeqHead */
*nbSeq = *ip++;
if (*nbSeq==0) return 1;
if (*nbSeq >= 128) {
if (ip >= iend) return ERROR(srcSize_wrong);
*nbSeq = ((nbSeq[0]-128)<<8) + *ip++;
}
if (ip >= iend) return ERROR(srcSize_wrong);
LLtype = *ip >> 6;
Offtype = (*ip >> 4) & 3;
MLtype = (*ip >> 2) & 3;
if (*ip & 2) {
if (ip+3 > iend) return ERROR(srcSize_wrong);
dumpsLength = ip[2];
dumpsLength += ip[1] << 8;
ip += 3;
} else {
if (ip+2 > iend) return ERROR(srcSize_wrong);
dumpsLength = ip[1];
dumpsLength += (ip[0] & 1) << 8;
ip += 2;
}
*dumpsPtr = ip;
ip += dumpsLength;
*dumpsLengthPtr = dumpsLength;
/* check */
if (ip > iend-3) return ERROR(srcSize_wrong); /* min : all 3 are "raw", hence no header, but at least xxLog bits per type */
/* sequences */
{
S16 norm[MaxML+1]; /* assumption : MaxML >= MaxLL >= MaxOff */
size_t headerSize;
/* Build DTables */
switch(LLtype)
{
case FSEv05_ENCODING_RLE :
LLlog = 0;
FSEv05_buildDTable_rle(DTableLL, *ip++);
break;
case FSEv05_ENCODING_RAW :
LLlog = LLbits;
FSEv05_buildDTable_raw(DTableLL, LLbits);
break;
case FSEv05_ENCODING_STATIC:
if (!flagStaticTable) return ERROR(corruption_detected);
break;
case FSEv05_ENCODING_DYNAMIC :
default : /* impossible */
{ unsigned max = MaxLL;
headerSize = FSEv05_readNCount(norm, &max, &LLlog, ip, iend-ip);
if (FSEv05_isError(headerSize)) return ERROR(GENERIC);
if (LLlog > LLFSEv05Log) return ERROR(corruption_detected);
ip += headerSize;
FSEv05_buildDTable(DTableLL, norm, max, LLlog);
} }
switch(Offtype)
{
case FSEv05_ENCODING_RLE :
Offlog = 0;
if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
FSEv05_buildDTable_rle(DTableOffb, *ip++ & MaxOff); /* if *ip > MaxOff, data is corrupted */
break;
case FSEv05_ENCODING_RAW :
Offlog = Offbits;
FSEv05_buildDTable_raw(DTableOffb, Offbits);
break;
case FSEv05_ENCODING_STATIC:
if (!flagStaticTable) return ERROR(corruption_detected);
break;
case FSEv05_ENCODING_DYNAMIC :
default : /* impossible */
{ unsigned max = MaxOff;
headerSize = FSEv05_readNCount(norm, &max, &Offlog, ip, iend-ip);
if (FSEv05_isError(headerSize)) return ERROR(GENERIC);
if (Offlog > OffFSEv05Log) return ERROR(corruption_detected);
ip += headerSize;
FSEv05_buildDTable(DTableOffb, norm, max, Offlog);
} }
switch(MLtype)
{
case FSEv05_ENCODING_RLE :
MLlog = 0;
if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
FSEv05_buildDTable_rle(DTableML, *ip++);
break;
case FSEv05_ENCODING_RAW :
MLlog = MLbits;
FSEv05_buildDTable_raw(DTableML, MLbits);
break;
case FSEv05_ENCODING_STATIC:
if (!flagStaticTable) return ERROR(corruption_detected);
break;
case FSEv05_ENCODING_DYNAMIC :
default : /* impossible */
{ unsigned max = MaxML;
headerSize = FSEv05_readNCount(norm, &max, &MLlog, ip, iend-ip);
if (FSEv05_isError(headerSize)) return ERROR(GENERIC);
if (MLlog > MLFSEv05Log) return ERROR(corruption_detected);
ip += headerSize;
FSEv05_buildDTable(DTableML, norm, max, MLlog);
} } }
return ip-istart;
}
typedef struct {
size_t litLength;
size_t matchLength;
size_t offset;
} seq_t;
typedef struct {
BITv05_DStream_t DStream;
FSEv05_DState_t stateLL;
FSEv05_DState_t stateOffb;
FSEv05_DState_t stateML;
size_t prevOffset;
const BYTE* dumps;
const BYTE* dumpsEnd;
} seqState_t;
static void ZSTDv05_decodeSequence(seq_t* seq, seqState_t* seqState)
{
size_t litLength;
size_t prevOffset;
size_t offset;
size_t matchLength;
const BYTE* dumps = seqState->dumps;
const BYTE* const de = seqState->dumpsEnd;
/* Literal length */
litLength = FSEv05_peakSymbol(&(seqState->stateLL));
prevOffset = litLength ? seq->offset : seqState->prevOffset;
if (litLength == MaxLL) {
const U32 add = *dumps++;
if (add < 255) litLength += add;
else if (dumps + 2 <= de) {
litLength = MEM_readLE16(dumps);
dumps += 2;
if ((litLength & 1) && dumps < de) {
litLength += *dumps << 16;
dumps += 1;
}
litLength>>=1;
}
if (dumps >= de) { dumps = de-1; } /* late correction, to avoid read overflow (data is now corrupted anyway) */
}
/* Offset */
{
static const U32 offsetPrefix[MaxOff+1] = {
1 /*fake*/, 1, 2, 4, 8, 16, 32, 64, 128, 256,
512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144,
524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, /*fake*/ 1, 1, 1, 1, 1 };
U32 offsetCode = FSEv05_peakSymbol(&(seqState->stateOffb)); /* <= maxOff, by table construction */
U32 nbBits = offsetCode - 1;
if (offsetCode==0) nbBits = 0; /* cmove */
offset = offsetPrefix[offsetCode] + BITv05_readBits(&(seqState->DStream), nbBits);
if (MEM_32bits()) BITv05_reloadDStream(&(seqState->DStream));
if (offsetCode==0) offset = prevOffset; /* repcode, cmove */
if (offsetCode | !litLength) seqState->prevOffset = seq->offset; /* cmove */
FSEv05_decodeSymbol(&(seqState->stateOffb), &(seqState->DStream)); /* update */
}
/* Literal length update */
FSEv05_decodeSymbol(&(seqState->stateLL), &(seqState->DStream)); /* update */
if (MEM_32bits()) BITv05_reloadDStream(&(seqState->DStream));
/* MatchLength */
matchLength = FSEv05_decodeSymbol(&(seqState->stateML), &(seqState->DStream));
if (matchLength == MaxML) {
const U32 add = dumps<de ? *dumps++ : 0;
if (add < 255) matchLength += add;
else if (dumps + 2 <= de) {
matchLength = MEM_readLE16(dumps);
dumps += 2;
if ((matchLength & 1) && dumps < de) {
matchLength += *dumps << 16;
dumps += 1;
}
matchLength >>= 1;
}
if (dumps >= de) { dumps = de-1; } /* late correction, to avoid read overflow (data is now corrupted anyway) */
}
matchLength += MINMATCH;
/* save result */
seq->litLength = litLength;
seq->offset = offset;
seq->matchLength = matchLength;
seqState->dumps = dumps;
#if 0 /* debug */
{
static U64 totalDecoded = 0;
printf("pos %6u : %3u literals & match %3u bytes at distance %6u \n",
(U32)(totalDecoded), (U32)litLength, (U32)matchLength, (U32)offset);
totalDecoded += litLength + matchLength;
}
#endif
}
static size_t ZSTDv05_execSequence(BYTE* op,
BYTE* const oend, seq_t sequence,
const BYTE** litPtr, const BYTE* const litLimit,
const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd)
{
static const int dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
BYTE* const oLitEnd = op + sequence.litLength;
const size_t sequenceLength = sequence.litLength + sequence.matchLength;
BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
BYTE* const oend_8 = oend-8;
const BYTE* const litEnd = *litPtr + sequence.litLength;
const BYTE* match = oLitEnd - sequence.offset;
/* check */
if (oLitEnd > oend_8) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of 8 from oend */
if (oMatchEnd > oend) return ERROR(dstSize_tooSmall); /* overwrite beyond dst buffer */
if (litEnd > litLimit) return ERROR(corruption_detected); /* risk read beyond lit buffer */
/* copy Literals */
ZSTDv05_wildcopy(op, *litPtr, sequence.litLength); /* note : oLitEnd <= oend-8 : no risk of overwrite beyond oend */
op = oLitEnd;
*litPtr = litEnd; /* update for next sequence */
/* copy Match */
if (sequence.offset > (size_t)(oLitEnd - base)) {
/* offset beyond prefix */
if (sequence.offset > (size_t)(oLitEnd - vBase))
return ERROR(corruption_detected);
match = dictEnd - (base-match);
if (match + sequence.matchLength <= dictEnd) {
memmove(oLitEnd, match, sequence.matchLength);
return sequenceLength;
}
/* span extDict & currentPrefixSegment */
{
size_t length1 = dictEnd - match;
memmove(oLitEnd, match, length1);
op = oLitEnd + length1;
sequence.matchLength -= length1;
match = base;
if (op > oend_8 || sequence.matchLength < MINMATCH) {
while (op < oMatchEnd) *op++ = *match++;
return sequenceLength;
}
} }
/* Requirement: op <= oend_8 */
/* match within prefix */
if (sequence.offset < 8) {
/* close range match, overlap */
const int sub2 = dec64table[sequence.offset];
op[0] = match[0];
op[1] = match[1];
op[2] = match[2];
op[3] = match[3];
match += dec32table[sequence.offset];
ZSTDv05_copy4(op+4, match);
match -= sub2;
} else {
ZSTDv05_copy8(op, match);
}
op += 8; match += 8;
if (oMatchEnd > oend-(16-MINMATCH)) {
if (op < oend_8) {
ZSTDv05_wildcopy(op, match, oend_8 - op);
match += oend_8 - op;
op = oend_8;
}
while (op < oMatchEnd)
*op++ = *match++;
} else {
ZSTDv05_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */
}
return sequenceLength;
}
static size_t ZSTDv05_decompressSequences(
ZSTDv05_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize)
{
const BYTE* ip = (const BYTE*)seqStart;
const BYTE* const iend = ip + seqSize;
- BYTE* const ostart = (BYTE* const)dst;
+ BYTE* const ostart = (BYTE*)dst;
BYTE* op = ostart;
BYTE* const oend = ostart + maxDstSize;
size_t errorCode, dumpsLength=0;
const BYTE* litPtr = dctx->litPtr;
const BYTE* const litEnd = litPtr + dctx->litSize;
int nbSeq=0;
const BYTE* dumps = NULL;
unsigned* DTableLL = dctx->LLTable;
unsigned* DTableML = dctx->MLTable;
unsigned* DTableOffb = dctx->OffTable;
const BYTE* const base = (const BYTE*) (dctx->base);
const BYTE* const vBase = (const BYTE*) (dctx->vBase);
const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
/* Build Decoding Tables */
errorCode = ZSTDv05_decodeSeqHeaders(&nbSeq, &dumps, &dumpsLength,
DTableLL, DTableML, DTableOffb,
ip, seqSize, dctx->flagStaticTables);
if (ZSTDv05_isError(errorCode)) return errorCode;
ip += errorCode;
/* Regen sequences */
if (nbSeq) {
seq_t sequence;
seqState_t seqState;
memset(&sequence, 0, sizeof(sequence));
sequence.offset = REPCODE_STARTVALUE;
seqState.dumps = dumps;
seqState.dumpsEnd = dumps + dumpsLength;
seqState.prevOffset = REPCODE_STARTVALUE;
errorCode = BITv05_initDStream(&(seqState.DStream), ip, iend-ip);
if (ERR_isError(errorCode)) return ERROR(corruption_detected);
FSEv05_initDState(&(seqState.stateLL), &(seqState.DStream), DTableLL);
FSEv05_initDState(&(seqState.stateOffb), &(seqState.DStream), DTableOffb);
FSEv05_initDState(&(seqState.stateML), &(seqState.DStream), DTableML);
for ( ; (BITv05_reloadDStream(&(seqState.DStream)) <= BITv05_DStream_completed) && nbSeq ; ) {
size_t oneSeqSize;
nbSeq--;
ZSTDv05_decodeSequence(&sequence, &seqState);
oneSeqSize = ZSTDv05_execSequence(op, oend, sequence, &litPtr, litEnd, base, vBase, dictEnd);
if (ZSTDv05_isError(oneSeqSize)) return oneSeqSize;
op += oneSeqSize;
}
/* check if reached exact end */
if (nbSeq) return ERROR(corruption_detected);
}
/* last literal segment */
{
size_t lastLLSize = litEnd - litPtr;
if (litPtr > litEnd) return ERROR(corruption_detected); /* too many literals already used */
if (op+lastLLSize > oend) return ERROR(dstSize_tooSmall);
if (lastLLSize > 0) {
memcpy(op, litPtr, lastLLSize);
op += lastLLSize;
}
}
return op-ostart;
}
static void ZSTDv05_checkContinuity(ZSTDv05_DCtx* dctx, const void* dst)
{
if (dst != dctx->previousDstEnd) { /* not contiguous */
dctx->dictEnd = dctx->previousDstEnd;
dctx->vBase = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base));
dctx->base = dst;
dctx->previousDstEnd = dst;
}
}
static size_t ZSTDv05_decompressBlock_internal(ZSTDv05_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{ /* blockType == blockCompressed */
const BYTE* ip = (const BYTE*)src;
size_t litCSize;
if (srcSize >= BLOCKSIZE) return ERROR(srcSize_wrong);
/* Decode literals sub-block */
litCSize = ZSTDv05_decodeLiteralsBlock(dctx, src, srcSize);
if (ZSTDv05_isError(litCSize)) return litCSize;
ip += litCSize;
srcSize -= litCSize;
return ZSTDv05_decompressSequences(dctx, dst, dstCapacity, ip, srcSize);
}
size_t ZSTDv05_decompressBlock(ZSTDv05_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
ZSTDv05_checkContinuity(dctx, dst);
return ZSTDv05_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize);
}
/*! ZSTDv05_decompress_continueDCtx
* dctx must have been properly initialized */
static size_t ZSTDv05_decompress_continueDCtx(ZSTDv05_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* src, size_t srcSize)
{
const BYTE* ip = (const BYTE*)src;
const BYTE* iend = ip + srcSize;
- BYTE* const ostart = (BYTE* const)dst;
+ BYTE* const ostart = (BYTE*)dst;
BYTE* op = ostart;
BYTE* const oend = ostart + maxDstSize;
size_t remainingSize = srcSize;
blockProperties_t blockProperties;
memset(&blockProperties, 0, sizeof(blockProperties));
/* Frame Header */
{ size_t frameHeaderSize;
if (srcSize < ZSTDv05_frameHeaderSize_min+ZSTDv05_blockHeaderSize) return ERROR(srcSize_wrong);
frameHeaderSize = ZSTDv05_decodeFrameHeader_Part1(dctx, src, ZSTDv05_frameHeaderSize_min);
if (ZSTDv05_isError(frameHeaderSize)) return frameHeaderSize;
if (srcSize < frameHeaderSize+ZSTDv05_blockHeaderSize) return ERROR(srcSize_wrong);
ip += frameHeaderSize; remainingSize -= frameHeaderSize;
frameHeaderSize = ZSTDv05_decodeFrameHeader_Part2(dctx, src, frameHeaderSize);
if (ZSTDv05_isError(frameHeaderSize)) return frameHeaderSize;
}
/* Loop on each block */
while (1)
{
size_t decodedSize=0;
size_t cBlockSize = ZSTDv05_getcBlockSize(ip, iend-ip, &blockProperties);
if (ZSTDv05_isError(cBlockSize)) return cBlockSize;
ip += ZSTDv05_blockHeaderSize;
remainingSize -= ZSTDv05_blockHeaderSize;
if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);
switch(blockProperties.blockType)
{
case bt_compressed:
decodedSize = ZSTDv05_decompressBlock_internal(dctx, op, oend-op, ip, cBlockSize);
break;
case bt_raw :
decodedSize = ZSTDv05_copyRawBlock(op, oend-op, ip, cBlockSize);
break;
case bt_rle :
return ERROR(GENERIC); /* not yet supported */
break;
case bt_end :
/* end of frame */
if (remainingSize) return ERROR(srcSize_wrong);
break;
default:
return ERROR(GENERIC); /* impossible */
}
if (cBlockSize == 0) break; /* bt_end */
if (ZSTDv05_isError(decodedSize)) return decodedSize;
op += decodedSize;
ip += cBlockSize;
remainingSize -= cBlockSize;
}
return op-ostart;
}
size_t ZSTDv05_decompress_usingPreparedDCtx(ZSTDv05_DCtx* dctx, const ZSTDv05_DCtx* refDCtx,
void* dst, size_t maxDstSize,
const void* src, size_t srcSize)
{
ZSTDv05_copyDCtx(dctx, refDCtx);
ZSTDv05_checkContinuity(dctx, dst);
return ZSTDv05_decompress_continueDCtx(dctx, dst, maxDstSize, src, srcSize);
}
size_t ZSTDv05_decompress_usingDict(ZSTDv05_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* src, size_t srcSize,
const void* dict, size_t dictSize)
{
ZSTDv05_decompressBegin_usingDict(dctx, dict, dictSize);
ZSTDv05_checkContinuity(dctx, dst);
return ZSTDv05_decompress_continueDCtx(dctx, dst, maxDstSize, src, srcSize);
}
size_t ZSTDv05_decompressDCtx(ZSTDv05_DCtx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
return ZSTDv05_decompress_usingDict(dctx, dst, maxDstSize, src, srcSize, NULL, 0);
}
size_t ZSTDv05_decompress(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
#if defined(ZSTDv05_HEAPMODE) && (ZSTDv05_HEAPMODE==1)
size_t regenSize;
ZSTDv05_DCtx* dctx = ZSTDv05_createDCtx();
if (dctx==NULL) return ERROR(memory_allocation);
regenSize = ZSTDv05_decompressDCtx(dctx, dst, maxDstSize, src, srcSize);
ZSTDv05_freeDCtx(dctx);
return regenSize;
#else
ZSTDv05_DCtx dctx;
return ZSTDv05_decompressDCtx(&dctx, dst, maxDstSize, src, srcSize);
#endif
}
/* ZSTD_errorFrameSizeInfoLegacy() :
assumes `cSize` and `dBound` are _not_ NULL */
static void ZSTD_errorFrameSizeInfoLegacy(size_t* cSize, unsigned long long* dBound, size_t ret)
{
*cSize = ret;
*dBound = ZSTD_CONTENTSIZE_ERROR;
}
void ZSTDv05_findFrameSizeInfoLegacy(const void *src, size_t srcSize, size_t* cSize, unsigned long long* dBound)
{
const BYTE* ip = (const BYTE*)src;
size_t remainingSize = srcSize;
size_t nbBlocks = 0;
blockProperties_t blockProperties;
/* Frame Header */
if (srcSize < ZSTDv05_frameHeaderSize_min) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
if (MEM_readLE32(src) != ZSTDv05_MAGICNUMBER) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(prefix_unknown));
return;
}
ip += ZSTDv05_frameHeaderSize_min; remainingSize -= ZSTDv05_frameHeaderSize_min;
/* Loop on each block */
while (1)
{
size_t cBlockSize = ZSTDv05_getcBlockSize(ip, remainingSize, &blockProperties);
if (ZSTDv05_isError(cBlockSize)) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, cBlockSize);
return;
}
ip += ZSTDv05_blockHeaderSize;
remainingSize -= ZSTDv05_blockHeaderSize;
if (cBlockSize > remainingSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
if (cBlockSize == 0) break; /* bt_end */
ip += cBlockSize;
remainingSize -= cBlockSize;
nbBlocks++;
}
*cSize = ip - (const BYTE*)src;
*dBound = nbBlocks * BLOCKSIZE;
}
/* ******************************
* Streaming Decompression API
********************************/
size_t ZSTDv05_nextSrcSizeToDecompress(ZSTDv05_DCtx* dctx)
{
return dctx->expected;
}
size_t ZSTDv05_decompressContinue(ZSTDv05_DCtx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
/* Sanity check */
if (srcSize != dctx->expected) return ERROR(srcSize_wrong);
ZSTDv05_checkContinuity(dctx, dst);
/* Decompress : frame header; part 1 */
switch (dctx->stage)
{
case ZSTDv05ds_getFrameHeaderSize :
/* get frame header size */
if (srcSize != ZSTDv05_frameHeaderSize_min) return ERROR(srcSize_wrong); /* impossible */
dctx->headerSize = ZSTDv05_decodeFrameHeader_Part1(dctx, src, ZSTDv05_frameHeaderSize_min);
if (ZSTDv05_isError(dctx->headerSize)) return dctx->headerSize;
memcpy(dctx->headerBuffer, src, ZSTDv05_frameHeaderSize_min);
if (dctx->headerSize > ZSTDv05_frameHeaderSize_min) return ERROR(GENERIC); /* should never happen */
dctx->expected = 0; /* not necessary to copy more */
/* fallthrough */
case ZSTDv05ds_decodeFrameHeader:
/* get frame header */
{ size_t const result = ZSTDv05_decodeFrameHeader_Part2(dctx, dctx->headerBuffer, dctx->headerSize);
if (ZSTDv05_isError(result)) return result;
dctx->expected = ZSTDv05_blockHeaderSize;
dctx->stage = ZSTDv05ds_decodeBlockHeader;
return 0;
}
case ZSTDv05ds_decodeBlockHeader:
{
/* Decode block header */
blockProperties_t bp;
size_t blockSize = ZSTDv05_getcBlockSize(src, ZSTDv05_blockHeaderSize, &bp);
if (ZSTDv05_isError(blockSize)) return blockSize;
if (bp.blockType == bt_end) {
dctx->expected = 0;
dctx->stage = ZSTDv05ds_getFrameHeaderSize;
}
else {
dctx->expected = blockSize;
dctx->bType = bp.blockType;
dctx->stage = ZSTDv05ds_decompressBlock;
}
return 0;
}
case ZSTDv05ds_decompressBlock:
{
/* Decompress : block content */
size_t rSize;
switch(dctx->bType)
{
case bt_compressed:
rSize = ZSTDv05_decompressBlock_internal(dctx, dst, maxDstSize, src, srcSize);
break;
case bt_raw :
rSize = ZSTDv05_copyRawBlock(dst, maxDstSize, src, srcSize);
break;
case bt_rle :
return ERROR(GENERIC); /* not yet handled */
break;
case bt_end : /* should never happen (filtered at phase 1) */
rSize = 0;
break;
default:
return ERROR(GENERIC); /* impossible */
}
dctx->stage = ZSTDv05ds_decodeBlockHeader;
dctx->expected = ZSTDv05_blockHeaderSize;
dctx->previousDstEnd = (char*)dst + rSize;
return rSize;
}
default:
return ERROR(GENERIC); /* impossible */
}
}
static void ZSTDv05_refDictContent(ZSTDv05_DCtx* dctx, const void* dict, size_t dictSize)
{
dctx->dictEnd = dctx->previousDstEnd;
dctx->vBase = (const char*)dict - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base));
dctx->base = dict;
dctx->previousDstEnd = (const char*)dict + dictSize;
}
static size_t ZSTDv05_loadEntropy(ZSTDv05_DCtx* dctx, const void* dict, size_t dictSize)
{
size_t hSize, offcodeHeaderSize, matchlengthHeaderSize, errorCode, litlengthHeaderSize;
short offcodeNCount[MaxOff+1];
unsigned offcodeMaxValue=MaxOff, offcodeLog;
short matchlengthNCount[MaxML+1];
unsigned matchlengthMaxValue = MaxML, matchlengthLog;
short litlengthNCount[MaxLL+1];
unsigned litlengthMaxValue = MaxLL, litlengthLog;
hSize = HUFv05_readDTableX4(dctx->hufTableX4, dict, dictSize);
if (HUFv05_isError(hSize)) return ERROR(dictionary_corrupted);
dict = (const char*)dict + hSize;
dictSize -= hSize;
offcodeHeaderSize = FSEv05_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dict, dictSize);
if (FSEv05_isError(offcodeHeaderSize)) return ERROR(dictionary_corrupted);
if (offcodeLog > OffFSEv05Log) return ERROR(dictionary_corrupted);
errorCode = FSEv05_buildDTable(dctx->OffTable, offcodeNCount, offcodeMaxValue, offcodeLog);
if (FSEv05_isError(errorCode)) return ERROR(dictionary_corrupted);
dict = (const char*)dict + offcodeHeaderSize;
dictSize -= offcodeHeaderSize;
matchlengthHeaderSize = FSEv05_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dict, dictSize);
if (FSEv05_isError(matchlengthHeaderSize)) return ERROR(dictionary_corrupted);
if (matchlengthLog > MLFSEv05Log) return ERROR(dictionary_corrupted);
errorCode = FSEv05_buildDTable(dctx->MLTable, matchlengthNCount, matchlengthMaxValue, matchlengthLog);
if (FSEv05_isError(errorCode)) return ERROR(dictionary_corrupted);
dict = (const char*)dict + matchlengthHeaderSize;
dictSize -= matchlengthHeaderSize;
litlengthHeaderSize = FSEv05_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dict, dictSize);
if (litlengthLog > LLFSEv05Log) return ERROR(dictionary_corrupted);
if (FSEv05_isError(litlengthHeaderSize)) return ERROR(dictionary_corrupted);
errorCode = FSEv05_buildDTable(dctx->LLTable, litlengthNCount, litlengthMaxValue, litlengthLog);
if (FSEv05_isError(errorCode)) return ERROR(dictionary_corrupted);
dctx->flagStaticTables = 1;
return hSize + offcodeHeaderSize + matchlengthHeaderSize + litlengthHeaderSize;
}
static size_t ZSTDv05_decompress_insertDictionary(ZSTDv05_DCtx* dctx, const void* dict, size_t dictSize)
{
size_t eSize;
U32 magic = MEM_readLE32(dict);
if (magic != ZSTDv05_DICT_MAGIC) {
/* pure content mode */
ZSTDv05_refDictContent(dctx, dict, dictSize);
return 0;
}
/* load entropy tables */
dict = (const char*)dict + 4;
dictSize -= 4;
eSize = ZSTDv05_loadEntropy(dctx, dict, dictSize);
if (ZSTDv05_isError(eSize)) return ERROR(dictionary_corrupted);
/* reference dictionary content */
dict = (const char*)dict + eSize;
dictSize -= eSize;
ZSTDv05_refDictContent(dctx, dict, dictSize);
return 0;
}
size_t ZSTDv05_decompressBegin_usingDict(ZSTDv05_DCtx* dctx, const void* dict, size_t dictSize)
{
size_t errorCode;
errorCode = ZSTDv05_decompressBegin(dctx);
if (ZSTDv05_isError(errorCode)) return errorCode;
if (dict && dictSize) {
errorCode = ZSTDv05_decompress_insertDictionary(dctx, dict, dictSize);
if (ZSTDv05_isError(errorCode)) return ERROR(dictionary_corrupted);
}
return 0;
}
/*
Buffered version of Zstd compression library
Copyright (C) 2015-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- zstd source repository : https://github.com/Cyan4973/zstd
- ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
*/
/* The objects defined into this file should be considered experimental.
* They are not labelled stable, as their prototype may change in the future.
* You can use them for tests, provide feedback, or if you can endure risk of future changes.
*/
/* *************************************
* Constants
***************************************/
static size_t ZBUFFv05_blockHeaderSize = 3;
/* *** Compression *** */
static size_t ZBUFFv05_limitCopy(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
size_t length = MIN(maxDstSize, srcSize);
if (length > 0) {
memcpy(dst, src, length);
}
return length;
}
/** ************************************************
* Streaming decompression
*
* A ZBUFFv05_DCtx object is required to track streaming operation.
* Use ZBUFFv05_createDCtx() and ZBUFFv05_freeDCtx() to create/release resources.
* Use ZBUFFv05_decompressInit() to start a new decompression operation.
* ZBUFFv05_DCtx objects can be reused multiple times.
*
* Use ZBUFFv05_decompressContinue() repetitively to consume your input.
* *srcSizePtr and *maxDstSizePtr can be any size.
* The function will report how many bytes were read or written by modifying *srcSizePtr and *maxDstSizePtr.
* Note that it may not consume the entire input, in which case it's up to the caller to call again the function with remaining input.
* The content of dst will be overwritten (up to *maxDstSizePtr) at each function call, so save its content if it matters or change dst .
* return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to improve latency)
* or 0 when a frame is completely decoded
* or an error code, which can be tested using ZBUFFv05_isError().
*
* Hint : recommended buffer sizes (not compulsory)
* output : 128 KB block size is the internal unit, it ensures it's always possible to write a full block when it's decoded.
* input : just follow indications from ZBUFFv05_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
* **************************************************/
typedef enum { ZBUFFv05ds_init, ZBUFFv05ds_readHeader, ZBUFFv05ds_loadHeader, ZBUFFv05ds_decodeHeader,
ZBUFFv05ds_read, ZBUFFv05ds_load, ZBUFFv05ds_flush } ZBUFFv05_dStage;
/* *** Resource management *** */
#define ZSTDv05_frameHeaderSize_max 5 /* too magical, should come from reference */
struct ZBUFFv05_DCtx_s {
ZSTDv05_DCtx* zc;
ZSTDv05_parameters params;
char* inBuff;
size_t inBuffSize;
size_t inPos;
char* outBuff;
size_t outBuffSize;
size_t outStart;
size_t outEnd;
size_t hPos;
ZBUFFv05_dStage stage;
unsigned char headerBuffer[ZSTDv05_frameHeaderSize_max];
}; /* typedef'd to ZBUFFv05_DCtx within "zstd_buffered.h" */
ZBUFFv05_DCtx* ZBUFFv05_createDCtx(void)
{
ZBUFFv05_DCtx* zbc = (ZBUFFv05_DCtx*)malloc(sizeof(ZBUFFv05_DCtx));
if (zbc==NULL) return NULL;
memset(zbc, 0, sizeof(*zbc));
zbc->zc = ZSTDv05_createDCtx();
zbc->stage = ZBUFFv05ds_init;
return zbc;
}
size_t ZBUFFv05_freeDCtx(ZBUFFv05_DCtx* zbc)
{
if (zbc==NULL) return 0; /* support free on null */
ZSTDv05_freeDCtx(zbc->zc);
free(zbc->inBuff);
free(zbc->outBuff);
free(zbc);
return 0;
}
/* *** Initialization *** */
size_t ZBUFFv05_decompressInitDictionary(ZBUFFv05_DCtx* zbc, const void* dict, size_t dictSize)
{
zbc->stage = ZBUFFv05ds_readHeader;
zbc->hPos = zbc->inPos = zbc->outStart = zbc->outEnd = 0;
return ZSTDv05_decompressBegin_usingDict(zbc->zc, dict, dictSize);
}
size_t ZBUFFv05_decompressInit(ZBUFFv05_DCtx* zbc)
{
return ZBUFFv05_decompressInitDictionary(zbc, NULL, 0);
}
/* *** Decompression *** */
size_t ZBUFFv05_decompressContinue(ZBUFFv05_DCtx* zbc, void* dst, size_t* maxDstSizePtr, const void* src, size_t* srcSizePtr)
{
const char* const istart = (const char*)src;
const char* ip = istart;
const char* const iend = istart + *srcSizePtr;
char* const ostart = (char*)dst;
char* op = ostart;
char* const oend = ostart + *maxDstSizePtr;
U32 notDone = 1;
while (notDone) {
switch(zbc->stage)
{
case ZBUFFv05ds_init :
return ERROR(init_missing);
case ZBUFFv05ds_readHeader :
/* read header from src */
{
size_t headerSize = ZSTDv05_getFrameParams(&(zbc->params), src, *srcSizePtr);
if (ZSTDv05_isError(headerSize)) return headerSize;
if (headerSize) {
/* not enough input to decode header : tell how many bytes would be necessary */
memcpy(zbc->headerBuffer+zbc->hPos, src, *srcSizePtr);
zbc->hPos += *srcSizePtr;
*maxDstSizePtr = 0;
zbc->stage = ZBUFFv05ds_loadHeader;
return headerSize - zbc->hPos;
}
zbc->stage = ZBUFFv05ds_decodeHeader;
break;
}
/* fall-through */
case ZBUFFv05ds_loadHeader:
/* complete header from src */
{
size_t headerSize = ZBUFFv05_limitCopy(
zbc->headerBuffer + zbc->hPos, ZSTDv05_frameHeaderSize_max - zbc->hPos,
src, *srcSizePtr);
zbc->hPos += headerSize;
ip += headerSize;
headerSize = ZSTDv05_getFrameParams(&(zbc->params), zbc->headerBuffer, zbc->hPos);
if (ZSTDv05_isError(headerSize)) return headerSize;
if (headerSize) {
/* not enough input to decode header : tell how many bytes would be necessary */
*maxDstSizePtr = 0;
return headerSize - zbc->hPos;
}
/* zbc->stage = ZBUFFv05ds_decodeHeader; break; */ /* useless : stage follows */
}
/* fall-through */
case ZBUFFv05ds_decodeHeader:
/* apply header to create / resize buffers */
{
size_t neededOutSize = (size_t)1 << zbc->params.windowLog;
size_t neededInSize = BLOCKSIZE; /* a block is never > BLOCKSIZE */
if (zbc->inBuffSize < neededInSize) {
free(zbc->inBuff);
zbc->inBuffSize = neededInSize;
zbc->inBuff = (char*)malloc(neededInSize);
if (zbc->inBuff == NULL) return ERROR(memory_allocation);
}
if (zbc->outBuffSize < neededOutSize) {
free(zbc->outBuff);
zbc->outBuffSize = neededOutSize;
zbc->outBuff = (char*)malloc(neededOutSize);
if (zbc->outBuff == NULL) return ERROR(memory_allocation);
} }
if (zbc->hPos) {
/* some data already loaded into headerBuffer : transfer into inBuff */
memcpy(zbc->inBuff, zbc->headerBuffer, zbc->hPos);
zbc->inPos = zbc->hPos;
zbc->hPos = 0;
zbc->stage = ZBUFFv05ds_load;
break;
}
zbc->stage = ZBUFFv05ds_read;
/* fall-through */
case ZBUFFv05ds_read:
{
size_t neededInSize = ZSTDv05_nextSrcSizeToDecompress(zbc->zc);
if (neededInSize==0) { /* end of frame */
zbc->stage = ZBUFFv05ds_init;
notDone = 0;
break;
}
if ((size_t)(iend-ip) >= neededInSize) {
/* directly decode from src */
size_t decodedSize = ZSTDv05_decompressContinue(zbc->zc,
zbc->outBuff + zbc->outStart, zbc->outBuffSize - zbc->outStart,
ip, neededInSize);
if (ZSTDv05_isError(decodedSize)) return decodedSize;
ip += neededInSize;
if (!decodedSize) break; /* this was just a header */
zbc->outEnd = zbc->outStart + decodedSize;
zbc->stage = ZBUFFv05ds_flush;
break;
}
if (ip==iend) { notDone = 0; break; } /* no more input */
zbc->stage = ZBUFFv05ds_load;
}
/* fall-through */
case ZBUFFv05ds_load:
{
size_t neededInSize = ZSTDv05_nextSrcSizeToDecompress(zbc->zc);
size_t toLoad = neededInSize - zbc->inPos; /* should always be <= remaining space within inBuff */
size_t loadedSize;
if (toLoad > zbc->inBuffSize - zbc->inPos) return ERROR(corruption_detected); /* should never happen */
loadedSize = ZBUFFv05_limitCopy(zbc->inBuff + zbc->inPos, toLoad, ip, iend-ip);
ip += loadedSize;
zbc->inPos += loadedSize;
if (loadedSize < toLoad) { notDone = 0; break; } /* not enough input, wait for more */
{
size_t decodedSize = ZSTDv05_decompressContinue(zbc->zc,
zbc->outBuff + zbc->outStart, zbc->outBuffSize - zbc->outStart,
zbc->inBuff, neededInSize);
if (ZSTDv05_isError(decodedSize)) return decodedSize;
zbc->inPos = 0; /* input is consumed */
if (!decodedSize) { zbc->stage = ZBUFFv05ds_read; break; } /* this was just a header */
zbc->outEnd = zbc->outStart + decodedSize;
zbc->stage = ZBUFFv05ds_flush;
/* break; */ /* ZBUFFv05ds_flush follows */
}
}
/* fall-through */
case ZBUFFv05ds_flush:
{
size_t toFlushSize = zbc->outEnd - zbc->outStart;
size_t flushedSize = ZBUFFv05_limitCopy(op, oend-op, zbc->outBuff + zbc->outStart, toFlushSize);
op += flushedSize;
zbc->outStart += flushedSize;
if (flushedSize == toFlushSize) {
zbc->stage = ZBUFFv05ds_read;
if (zbc->outStart + BLOCKSIZE > zbc->outBuffSize)
zbc->outStart = zbc->outEnd = 0;
break;
}
/* cannot flush everything */
notDone = 0;
break;
}
default: return ERROR(GENERIC); /* impossible */
} }
*srcSizePtr = ip-istart;
*maxDstSizePtr = op-ostart;
{ size_t nextSrcSizeHint = ZSTDv05_nextSrcSizeToDecompress(zbc->zc);
if (nextSrcSizeHint > ZBUFFv05_blockHeaderSize) nextSrcSizeHint+= ZBUFFv05_blockHeaderSize; /* get next block header too */
nextSrcSizeHint -= zbc->inPos; /* already loaded*/
return nextSrcSizeHint;
}
}
/* *************************************
* Tool functions
***************************************/
unsigned ZBUFFv05_isError(size_t errorCode) { return ERR_isError(errorCode); }
const char* ZBUFFv05_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
size_t ZBUFFv05_recommendedDInSize(void) { return BLOCKSIZE + ZBUFFv05_blockHeaderSize /* block header size*/ ; }
size_t ZBUFFv05_recommendedDOutSize(void) { return BLOCKSIZE; }
diff --git a/sys/contrib/zstd/lib/legacy/zstd_v05.h b/sys/contrib/zstd/lib/legacy/zstd_v05.h
index 167d892e6655..bd423bfc1b95 100644
--- a/sys/contrib/zstd/lib/legacy/zstd_v05.h
+++ b/sys/contrib/zstd/lib/legacy/zstd_v05.h
@@ -1,162 +1,162 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTDv05_H
#define ZSTDv05_H
#if defined (__cplusplus)
extern "C" {
#endif
/*-*************************************
* Dependencies
***************************************/
#include <stddef.h> /* size_t */
#include "../common/mem.h" /* U64, U32 */
/* *************************************
* Simple functions
***************************************/
/*! ZSTDv05_decompress() :
`compressedSize` : is the _exact_ size of the compressed blob, otherwise decompression will fail.
`dstCapacity` must be large enough, equal or larger than originalSize.
@return : the number of bytes decompressed into `dst` (<= `dstCapacity`),
or an errorCode if it fails (which can be tested using ZSTDv05_isError()) */
size_t ZSTDv05_decompress( void* dst, size_t dstCapacity,
const void* src, size_t compressedSize);
/**
ZSTDv05_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.5.x format
srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
cSize (output parameter) : the number of bytes that would be read to decompress this frame
or an error code if it fails (which can be tested using ZSTDv01_isError())
dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame
or ZSTD_CONTENTSIZE_ERROR if an error occurs
note : assumes `cSize` and `dBound` are _not_ NULL.
*/
void ZSTDv05_findFrameSizeInfoLegacy(const void *src, size_t srcSize,
size_t* cSize, unsigned long long* dBound);
/* *************************************
* Helper functions
***************************************/
/* Error Management */
unsigned ZSTDv05_isError(size_t code); /*!< tells if a `size_t` function result is an error code */
const char* ZSTDv05_getErrorName(size_t code); /*!< provides readable string for an error code */
/* *************************************
* Explicit memory management
***************************************/
/** Decompression context */
typedef struct ZSTDv05_DCtx_s ZSTDv05_DCtx;
ZSTDv05_DCtx* ZSTDv05_createDCtx(void);
size_t ZSTDv05_freeDCtx(ZSTDv05_DCtx* dctx); /*!< @return : errorCode */
/** ZSTDv05_decompressDCtx() :
* Same as ZSTDv05_decompress(), but requires an already allocated ZSTDv05_DCtx (see ZSTDv05_createDCtx()) */
size_t ZSTDv05_decompressDCtx(ZSTDv05_DCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
/*-***********************
* Simple Dictionary API
*************************/
/*! ZSTDv05_decompress_usingDict() :
* Decompression using a pre-defined Dictionary content (see dictBuilder).
* Dictionary must be identical to the one used during compression, otherwise regenerated data will be corrupted.
* Note : dict can be NULL, in which case, it's equivalent to ZSTDv05_decompressDCtx() */
size_t ZSTDv05_decompress_usingDict(ZSTDv05_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize);
/*-************************
* Advanced Streaming API
***************************/
typedef enum { ZSTDv05_fast, ZSTDv05_greedy, ZSTDv05_lazy, ZSTDv05_lazy2, ZSTDv05_btlazy2, ZSTDv05_opt, ZSTDv05_btopt } ZSTDv05_strategy;
typedef struct {
U64 srcSize;
U32 windowLog; /* the only useful information to retrieve */
U32 contentLog; U32 hashLog; U32 searchLog; U32 searchLength; U32 targetLength; ZSTDv05_strategy strategy;
} ZSTDv05_parameters;
size_t ZSTDv05_getFrameParams(ZSTDv05_parameters* params, const void* src, size_t srcSize);
size_t ZSTDv05_decompressBegin_usingDict(ZSTDv05_DCtx* dctx, const void* dict, size_t dictSize);
void ZSTDv05_copyDCtx(ZSTDv05_DCtx* dstDCtx, const ZSTDv05_DCtx* srcDCtx);
size_t ZSTDv05_nextSrcSizeToDecompress(ZSTDv05_DCtx* dctx);
size_t ZSTDv05_decompressContinue(ZSTDv05_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
/*-***********************
* ZBUFF API
*************************/
typedef struct ZBUFFv05_DCtx_s ZBUFFv05_DCtx;
ZBUFFv05_DCtx* ZBUFFv05_createDCtx(void);
size_t ZBUFFv05_freeDCtx(ZBUFFv05_DCtx* dctx);
size_t ZBUFFv05_decompressInit(ZBUFFv05_DCtx* dctx);
size_t ZBUFFv05_decompressInitDictionary(ZBUFFv05_DCtx* dctx, const void* dict, size_t dictSize);
size_t ZBUFFv05_decompressContinue(ZBUFFv05_DCtx* dctx,
void* dst, size_t* dstCapacityPtr,
const void* src, size_t* srcSizePtr);
/*-***************************************************************************
* Streaming decompression
*
* A ZBUFFv05_DCtx object is required to track streaming operations.
* Use ZBUFFv05_createDCtx() and ZBUFFv05_freeDCtx() to create/release resources.
* Use ZBUFFv05_decompressInit() to start a new decompression operation,
* or ZBUFFv05_decompressInitDictionary() if decompression requires a dictionary.
* Note that ZBUFFv05_DCtx objects can be reused multiple times.
*
* Use ZBUFFv05_decompressContinue() repetitively to consume your input.
* *srcSizePtr and *dstCapacityPtr can be any size.
* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
* The content of @dst will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters or change @dst.
* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to help latency)
* or 0 when a frame is completely decoded
* or an error code, which can be tested using ZBUFFv05_isError().
*
* Hint : recommended buffer sizes (not compulsory) : ZBUFFv05_recommendedDInSize() / ZBUFFv05_recommendedDOutSize()
* output : ZBUFFv05_recommendedDOutSize==128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded.
* input : ZBUFFv05_recommendedDInSize==128Kb+3; just follow indications from ZBUFFv05_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
* *******************************************************************************/
/* *************************************
* Tool functions
***************************************/
unsigned ZBUFFv05_isError(size_t errorCode);
const char* ZBUFFv05_getErrorName(size_t errorCode);
/** Functions below provide recommended buffer sizes for Compression or Decompression operations.
* These sizes are just hints, and tend to offer better latency */
size_t ZBUFFv05_recommendedDInSize(void);
size_t ZBUFFv05_recommendedDOutSize(void);
/*-*************************************
* Constants
***************************************/
#define ZSTDv05_MAGICNUMBER 0xFD2FB525 /* v0.5 */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTDv0505_H */
diff --git a/sys/contrib/zstd/lib/legacy/zstd_v06.c b/sys/contrib/zstd/lib/legacy/zstd_v06.c
index c4ac7dba8eb3..ead213c4849f 100644
--- a/sys/contrib/zstd/lib/legacy/zstd_v06.c
+++ b/sys/contrib/zstd/lib/legacy/zstd_v06.c
@@ -1,4158 +1,4154 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*- Dependencies -*/
#include "zstd_v06.h"
#include <stddef.h> /* size_t, ptrdiff_t */
#include <string.h> /* memcpy */
#include <stdlib.h> /* malloc, free, qsort */
#include "../common/error_private.h"
/* ******************************************************************
mem.h
low-level memory access routines
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef MEM_H_MODULE
#define MEM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/*-****************************************
* Compiler specifics
******************************************/
#if defined(_MSC_VER) /* Visual Studio */
# include <stdlib.h> /* _byteswap_ulong */
# include <intrin.h> /* _byteswap_* */
#endif
#if defined(__GNUC__)
# define MEM_STATIC static __attribute__((unused))
#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define MEM_STATIC static inline
#elif defined(_MSC_VER)
# define MEM_STATIC static __inline
#else
# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
#endif
/*-**************************************************************
* Basic Types
*****************************************************************/
#if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
# if defined(_AIX)
# include <inttypes.h>
# else
# include <stdint.h> /* intptr_t */
# endif
typedef uint8_t BYTE;
typedef uint16_t U16;
typedef int16_t S16;
typedef uint32_t U32;
typedef int32_t S32;
typedef uint64_t U64;
typedef int64_t S64;
#else
typedef unsigned char BYTE;
typedef unsigned short U16;
typedef signed short S16;
typedef unsigned int U32;
typedef signed int S32;
typedef unsigned long long U64;
typedef signed long long S64;
#endif
/*-**************************************************************
* Memory I/O
*****************************************************************/
/* MEM_FORCE_MEMORY_ACCESS :
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
* The below switch allow to select different access method for improved performance.
* Method 0 (default) : use `memcpy()`. Safe and portable.
* Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
* This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
* Method 2 : direct access. This method is portable but violate C standard.
* It can generate buggy code on targets depending on alignment.
* In some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
* See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
* Prefer these methods in priority order (0 > 1 > 2)
*/
#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
-# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
-# define MEM_FORCE_MEMORY_ACCESS 2
-# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
- (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
+# if defined(__INTEL_COMPILER) || defined(__GNUC__) || defined(__ICCARM__)
# define MEM_FORCE_MEMORY_ACCESS 1
# endif
#endif
MEM_STATIC unsigned MEM_32bits(void) { return sizeof(size_t)==4; }
MEM_STATIC unsigned MEM_64bits(void) { return sizeof(size_t)==8; }
MEM_STATIC unsigned MEM_isLittleEndian(void)
{
const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
return one.c[0];
}
#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
/* violates C standard, by lying on structure alignment.
Only use if no other choice to achieve best performance on target platform */
MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
/* currently only defined for gcc and icc */
typedef union { U16 u16; U32 u32; U64 u64; size_t st; } __attribute__((packed)) unalign;
MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign*)ptr)->u16; }
MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign*)memPtr)->u16 = value; }
#else
/* default method, safe and standard.
can sometimes prove slower */
MEM_STATIC U16 MEM_read16(const void* memPtr)
{
U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U32 MEM_read32(const void* memPtr)
{
U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U64 MEM_read64(const void* memPtr)
{
U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC void MEM_write16(void* memPtr, U16 value)
{
memcpy(memPtr, &value, sizeof(value));
}
#endif /* MEM_FORCE_MEMORY_ACCESS */
MEM_STATIC U32 MEM_swap32(U32 in)
{
#if defined(_MSC_VER) /* Visual Studio */
return _byteswap_ulong(in);
#elif defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)
return __builtin_bswap32(in);
#else
return ((in << 24) & 0xff000000 ) |
((in << 8) & 0x00ff0000 ) |
((in >> 8) & 0x0000ff00 ) |
((in >> 24) & 0x000000ff );
#endif
}
MEM_STATIC U64 MEM_swap64(U64 in)
{
#if defined(_MSC_VER) /* Visual Studio */
return _byteswap_uint64(in);
#elif defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)
return __builtin_bswap64(in);
#else
return ((in << 56) & 0xff00000000000000ULL) |
((in << 40) & 0x00ff000000000000ULL) |
((in << 24) & 0x0000ff0000000000ULL) |
((in << 8) & 0x000000ff00000000ULL) |
((in >> 8) & 0x00000000ff000000ULL) |
((in >> 24) & 0x0000000000ff0000ULL) |
((in >> 40) & 0x000000000000ff00ULL) |
((in >> 56) & 0x00000000000000ffULL);
#endif
}
/*=== Little endian r/w ===*/
MEM_STATIC U16 MEM_readLE16(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read16(memPtr);
else {
const BYTE* p = (const BYTE*)memPtr;
return (U16)(p[0] + (p[1]<<8));
}
}
MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
{
if (MEM_isLittleEndian()) {
MEM_write16(memPtr, val);
} else {
BYTE* p = (BYTE*)memPtr;
p[0] = (BYTE)val;
p[1] = (BYTE)(val>>8);
}
}
MEM_STATIC U32 MEM_readLE32(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read32(memPtr);
else
return MEM_swap32(MEM_read32(memPtr));
}
MEM_STATIC U64 MEM_readLE64(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read64(memPtr);
else
return MEM_swap64(MEM_read64(memPtr));
}
MEM_STATIC size_t MEM_readLEST(const void* memPtr)
{
if (MEM_32bits())
return (size_t)MEM_readLE32(memPtr);
else
return (size_t)MEM_readLE64(memPtr);
}
#if defined (__cplusplus)
}
#endif
#endif /* MEM_H_MODULE */
/*
zstd - standard compression library
Header File for static linking only
Copyright (C) 2014-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- zstd homepage : http://www.zstd.net
*/
#ifndef ZSTDv06_STATIC_H
#define ZSTDv06_STATIC_H
/* The prototypes defined within this file are considered experimental.
* They should not be used in the context DLL as they may change in the future.
* Prefer static linking if you need them, to control breaking version changes issues.
*/
#if defined (__cplusplus)
extern "C" {
#endif
/*- Advanced Decompression functions -*/
/*! ZSTDv06_decompress_usingPreparedDCtx() :
* Same as ZSTDv06_decompress_usingDict, but using a reference context `preparedDCtx`, where dictionary has been loaded.
* It avoids reloading the dictionary each time.
* `preparedDCtx` must have been properly initialized using ZSTDv06_decompressBegin_usingDict().
* Requires 2 contexts : 1 for reference (preparedDCtx), which will not be modified, and 1 to run the decompression operation (dctx) */
ZSTDLIBv06_API size_t ZSTDv06_decompress_usingPreparedDCtx(
ZSTDv06_DCtx* dctx, const ZSTDv06_DCtx* preparedDCtx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize);
#define ZSTDv06_FRAMEHEADERSIZE_MAX 13 /* for static allocation */
static const size_t ZSTDv06_frameHeaderSize_min = 5;
static const size_t ZSTDv06_frameHeaderSize_max = ZSTDv06_FRAMEHEADERSIZE_MAX;
ZSTDLIBv06_API size_t ZSTDv06_decompressBegin(ZSTDv06_DCtx* dctx);
/*
Streaming decompression, direct mode (bufferless)
A ZSTDv06_DCtx object is required to track streaming operations.
Use ZSTDv06_createDCtx() / ZSTDv06_freeDCtx() to manage it.
A ZSTDv06_DCtx object can be re-used multiple times.
First optional operation is to retrieve frame parameters, using ZSTDv06_getFrameParams(), which doesn't consume the input.
It can provide the minimum size of rolling buffer required to properly decompress data,
and optionally the final size of uncompressed content.
(Note : content size is an optional info that may not be present. 0 means : content size unknown)
Frame parameters are extracted from the beginning of compressed frame.
The amount of data to read is variable, from ZSTDv06_frameHeaderSize_min to ZSTDv06_frameHeaderSize_max (so if `srcSize` >= ZSTDv06_frameHeaderSize_max, it will always work)
If `srcSize` is too small for operation to succeed, function will return the minimum size it requires to produce a result.
Result : 0 when successful, it means the ZSTDv06_frameParams structure has been filled.
>0 : means there is not enough data into `src`. Provides the expected size to successfully decode header.
errorCode, which can be tested using ZSTDv06_isError()
Start decompression, with ZSTDv06_decompressBegin() or ZSTDv06_decompressBegin_usingDict().
Alternatively, you can copy a prepared context, using ZSTDv06_copyDCtx().
Then use ZSTDv06_nextSrcSizeToDecompress() and ZSTDv06_decompressContinue() alternatively.
ZSTDv06_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTDv06_decompressContinue().
ZSTDv06_decompressContinue() requires this exact amount of bytes, or it will fail.
ZSTDv06_decompressContinue() needs previous data blocks during decompression, up to (1 << windowlog).
They should preferably be located contiguously, prior to current block. Alternatively, a round buffer is also possible.
@result of ZSTDv06_decompressContinue() is the number of bytes regenerated within 'dst' (necessarily <= dstCapacity)
It can be zero, which is not an error; it just means ZSTDv06_decompressContinue() has decoded some header.
A frame is fully decoded when ZSTDv06_nextSrcSizeToDecompress() returns zero.
Context can then be reset to start a new decompression.
*/
/* **************************************
* Block functions
****************************************/
/*! Block functions produce and decode raw zstd blocks, without frame metadata.
User will have to take in charge required information to regenerate data, such as compressed and content sizes.
A few rules to respect :
- Uncompressed block size must be <= ZSTDv06_BLOCKSIZE_MAX (128 KB)
- Compressing or decompressing requires a context structure
+ Use ZSTDv06_createCCtx() and ZSTDv06_createDCtx()
- It is necessary to init context before starting
+ compression : ZSTDv06_compressBegin()
+ decompression : ZSTDv06_decompressBegin()
+ variants _usingDict() are also allowed
+ copyCCtx() and copyDCtx() work too
- When a block is considered not compressible enough, ZSTDv06_compressBlock() result will be zero.
In which case, nothing is produced into `dst`.
+ User must test for such outcome and deal directly with uncompressed data
+ ZSTDv06_decompressBlock() doesn't accept uncompressed data as input !!
*/
#define ZSTDv06_BLOCKSIZE_MAX (128 * 1024) /* define, for static allocation */
ZSTDLIBv06_API size_t ZSTDv06_decompressBlock(ZSTDv06_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
#if defined (__cplusplus)
}
#endif
#endif /* ZSTDv06_STATIC_H */
/*
zstd_internal - common functions to include
Header File for include
Copyright (C) 2014-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- zstd homepage : https://www.zstd.net
*/
#ifndef ZSTDv06_CCOMMON_H_MODULE
#define ZSTDv06_CCOMMON_H_MODULE
/*-*************************************
* Common macros
***************************************/
#define MIN(a,b) ((a)<(b) ? (a) : (b))
#define MAX(a,b) ((a)>(b) ? (a) : (b))
/*-*************************************
* Common constants
***************************************/
#define ZSTDv06_DICT_MAGIC 0xEC30A436
#define ZSTDv06_REP_NUM 3
#define ZSTDv06_REP_INIT ZSTDv06_REP_NUM
#define ZSTDv06_REP_MOVE (ZSTDv06_REP_NUM-1)
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)
#define BIT7 128
#define BIT6 64
#define BIT5 32
#define BIT4 16
#define BIT1 2
#define BIT0 1
#define ZSTDv06_WINDOWLOG_ABSOLUTEMIN 12
static const size_t ZSTDv06_fcs_fieldSize[4] = { 0, 1, 2, 8 };
#define ZSTDv06_BLOCKHEADERSIZE 3 /* because C standard does not allow a static const value to be defined using another static const value .... :( */
static const size_t ZSTDv06_blockHeaderSize = ZSTDv06_BLOCKHEADERSIZE;
typedef enum { bt_compressed, bt_raw, bt_rle, bt_end } blockType_t;
#define MIN_SEQUENCES_SIZE 1 /* nbSeq==0 */
#define MIN_CBLOCK_SIZE (1 /*litCSize*/ + 1 /* RLE or RAW */ + MIN_SEQUENCES_SIZE /* nbSeq==0 */) /* for a non-null block */
#define HufLog 12
#define IS_HUF 0
#define IS_PCH 1
#define IS_RAW 2
#define IS_RLE 3
#define LONGNBSEQ 0x7F00
#define MINMATCH 3
#define EQUAL_READ32 4
#define REPCODE_STARTVALUE 1
#define Litbits 8
#define MaxLit ((1<<Litbits) - 1)
#define MaxML 52
#define MaxLL 35
#define MaxOff 28
#define MaxSeq MAX(MaxLL, MaxML) /* Assumption : MaxOff < MaxLL,MaxML */
#define MLFSELog 9
#define LLFSELog 9
#define OffFSELog 8
#define FSEv06_ENCODING_RAW 0
#define FSEv06_ENCODING_RLE 1
#define FSEv06_ENCODING_STATIC 2
#define FSEv06_ENCODING_DYNAMIC 3
#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2)
static const U32 LL_bits[MaxLL+1] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 9,10,11,12,
13,14,15,16 };
static const S16 LL_defaultNorm[MaxLL+1] = { 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 1, 1, 1, 1,
-1,-1,-1,-1 };
static const U32 LL_defaultNormLog = 6;
static const U32 ML_bits[MaxML+1] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 7, 8, 9,10,11,
12,13,14,15,16 };
static const S16 ML_defaultNorm[MaxML+1] = { 1, 4, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,-1,-1,
-1,-1,-1,-1,-1 };
static const U32 ML_defaultNormLog = 6;
static const S16 OF_defaultNorm[MaxOff+1] = { 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,-1,-1,-1,-1,-1 };
static const U32 OF_defaultNormLog = 5;
/*-*******************************************
* Shared functions to include for inlining
*********************************************/
static void ZSTDv06_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
#define COPY8(d,s) { ZSTDv06_copy8(d,s); d+=8; s+=8; }
/*! ZSTDv06_wildcopy() :
* custom version of memcpy(), can copy up to 7 bytes too many (8 bytes if length==0) */
#define WILDCOPY_OVERLENGTH 8
MEM_STATIC void ZSTDv06_wildcopy(void* dst, const void* src, ptrdiff_t length)
{
const BYTE* ip = (const BYTE*)src;
BYTE* op = (BYTE*)dst;
BYTE* const oend = op + length;
do
COPY8(op, ip)
while (op < oend);
}
/*-*******************************************
* Private interfaces
*********************************************/
typedef struct {
U32 off;
U32 len;
} ZSTDv06_match_t;
typedef struct {
U32 price;
U32 off;
U32 mlen;
U32 litlen;
U32 rep[ZSTDv06_REP_INIT];
} ZSTDv06_optimal_t;
typedef struct { U32 unused; } ZSTDv06_stats_t;
typedef struct {
void* buffer;
U32* offsetStart;
U32* offset;
BYTE* offCodeStart;
BYTE* litStart;
BYTE* lit;
U16* litLengthStart;
U16* litLength;
BYTE* llCodeStart;
U16* matchLengthStart;
U16* matchLength;
BYTE* mlCodeStart;
U32 longLengthID; /* 0 == no longLength; 1 == Lit.longLength; 2 == Match.longLength; */
U32 longLengthPos;
/* opt */
ZSTDv06_optimal_t* priceTable;
ZSTDv06_match_t* matchTable;
U32* matchLengthFreq;
U32* litLengthFreq;
U32* litFreq;
U32* offCodeFreq;
U32 matchLengthSum;
U32 matchSum;
U32 litLengthSum;
U32 litSum;
U32 offCodeSum;
U32 log2matchLengthSum;
U32 log2matchSum;
U32 log2litLengthSum;
U32 log2litSum;
U32 log2offCodeSum;
U32 factor;
U32 cachedPrice;
U32 cachedLitLength;
const BYTE* cachedLiterals;
ZSTDv06_stats_t stats;
} seqStore_t;
void ZSTDv06_seqToCodes(const seqStore_t* seqStorePtr, size_t const nbSeq);
#endif /* ZSTDv06_CCOMMON_H_MODULE */
/* ******************************************************************
FSE : Finite State Entropy codec
Public Prototypes declaration
Copyright (C) 2013-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
****************************************************************** */
#ifndef FSEv06_H
#define FSEv06_H
#if defined (__cplusplus)
extern "C" {
#endif
/*-****************************************
* FSE simple functions
******************************************/
/*! FSEv06_decompress():
Decompress FSE data from buffer 'cSrc', of size 'cSrcSize',
into already allocated destination buffer 'dst', of size 'dstCapacity'.
@return : size of regenerated data (<= maxDstSize),
or an error code, which can be tested using FSEv06_isError() .
** Important ** : FSEv06_decompress() does not decompress non-compressible nor RLE data !!!
Why ? : making this distinction requires a header.
Header management is intentionally delegated to the user layer, which can better manage special cases.
*/
size_t FSEv06_decompress(void* dst, size_t dstCapacity,
const void* cSrc, size_t cSrcSize);
/*-*****************************************
* Tool functions
******************************************/
size_t FSEv06_compressBound(size_t size); /* maximum compressed size */
/* Error Management */
unsigned FSEv06_isError(size_t code); /* tells if a return value is an error code */
const char* FSEv06_getErrorName(size_t code); /* provides error code string (useful for debugging) */
/*-*****************************************
* FSE detailed API
******************************************/
/*!
FSEv06_decompress() does the following:
1. read normalized counters with readNCount()
2. build decoding table 'DTable' from normalized counters
3. decode the data stream using decoding table 'DTable'
The following API allows targeting specific sub-functions for advanced tasks.
For example, it's possible to compress several blocks using the same 'CTable',
or to save and provide normalized distribution using external method.
*/
/* *** DECOMPRESSION *** */
/*! FSEv06_readNCount():
Read compactly saved 'normalizedCounter' from 'rBuffer'.
@return : size read from 'rBuffer',
or an errorCode, which can be tested using FSEv06_isError().
maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
size_t FSEv06_readNCount (short* normalizedCounter, unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, const void* rBuffer, size_t rBuffSize);
/*! Constructor and Destructor of FSEv06_DTable.
Note that its size depends on 'tableLog' */
typedef unsigned FSEv06_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
FSEv06_DTable* FSEv06_createDTable(unsigned tableLog);
void FSEv06_freeDTable(FSEv06_DTable* dt);
/*! FSEv06_buildDTable():
Builds 'dt', which must be already allocated, using FSEv06_createDTable().
return : 0, or an errorCode, which can be tested using FSEv06_isError() */
size_t FSEv06_buildDTable (FSEv06_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
/*! FSEv06_decompress_usingDTable():
Decompress compressed source `cSrc` of size `cSrcSize` using `dt`
into `dst` which must be already allocated.
@return : size of regenerated data (necessarily <= `dstCapacity`),
or an errorCode, which can be tested using FSEv06_isError() */
size_t FSEv06_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSEv06_DTable* dt);
/*!
Tutorial :
----------
(Note : these functions only decompress FSE-compressed blocks.
If block is uncompressed, use memcpy() instead
If block is a single repeated byte, use memset() instead )
The first step is to obtain the normalized frequencies of symbols.
This can be performed by FSEv06_readNCount() if it was saved using FSEv06_writeNCount().
'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
or size the table to handle worst case situations (typically 256).
FSEv06_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
The result of FSEv06_readNCount() is the number of bytes read from 'rBuffer'.
Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
If there is an error, the function will return an error code, which can be tested using FSEv06_isError().
The next step is to build the decompression tables 'FSEv06_DTable' from 'normalizedCounter'.
This is performed by the function FSEv06_buildDTable().
The space required by 'FSEv06_DTable' must be already allocated using FSEv06_createDTable().
If there is an error, the function will return an error code, which can be tested using FSEv06_isError().
`FSEv06_DTable` can then be used to decompress `cSrc`, with FSEv06_decompress_usingDTable().
`cSrcSize` must be strictly correct, otherwise decompression will fail.
FSEv06_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
If there is an error, the function will return an error code, which can be tested using FSEv06_isError(). (ex: dst buffer too small)
*/
#if defined (__cplusplus)
}
#endif
#endif /* FSEv06_H */
/* ******************************************************************
bitstream
Part of FSE library
header file (to include)
Copyright (C) 2013-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
****************************************************************** */
#ifndef BITSTREAM_H_MODULE
#define BITSTREAM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/*
* This API consists of small unitary functions, which must be inlined for best performance.
* Since link-time-optimization is not available for all compilers,
* these functions are defined into a .h to be included.
*/
/*=========================================
* Target specific
=========================================*/
#if defined(__BMI__) && defined(__GNUC__)
# include <immintrin.h> /* support for bextr (experimental) */
#endif
/*-********************************************
* bitStream decoding API (read backward)
**********************************************/
typedef struct
{
size_t bitContainer;
unsigned bitsConsumed;
const char* ptr;
const char* start;
} BITv06_DStream_t;
typedef enum { BITv06_DStream_unfinished = 0,
BITv06_DStream_endOfBuffer = 1,
BITv06_DStream_completed = 2,
BITv06_DStream_overflow = 3 } BITv06_DStream_status; /* result of BITv06_reloadDStream() */
/* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
MEM_STATIC size_t BITv06_initDStream(BITv06_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
MEM_STATIC size_t BITv06_readBits(BITv06_DStream_t* bitD, unsigned nbBits);
MEM_STATIC BITv06_DStream_status BITv06_reloadDStream(BITv06_DStream_t* bitD);
MEM_STATIC unsigned BITv06_endOfDStream(const BITv06_DStream_t* bitD);
/*-****************************************
* unsafe API
******************************************/
MEM_STATIC size_t BITv06_readBitsFast(BITv06_DStream_t* bitD, unsigned nbBits);
/* faster, but works only if nbBits >= 1 */
/*-**************************************************************
* Internal functions
****************************************************************/
MEM_STATIC unsigned BITv06_highbit32 ( U32 val)
{
# if defined(_MSC_VER) /* Visual */
- unsigned long r=0;
- _BitScanReverse ( &r, val );
- return (unsigned) r;
+ unsigned long r;
+ return _BitScanReverse(&r, val) ? (unsigned)r : 0;
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
return __builtin_clz (val) ^ 31;
# else /* Software version */
static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
U32 v = val;
unsigned r;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
r = DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
return r;
# endif
}
/*-********************************************************
* bitStream decoding
**********************************************************/
/*! BITv06_initDStream() :
* Initialize a BITv06_DStream_t.
* `bitD` : a pointer to an already allocated BITv06_DStream_t structure.
* `srcSize` must be the *exact* size of the bitStream, in bytes.
* @return : size of stream (== srcSize) or an errorCode if a problem is detected
*/
MEM_STATIC size_t BITv06_initDStream(BITv06_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
{
if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
if (srcSize >= sizeof(bitD->bitContainer)) { /* normal case */
bitD->start = (const char*)srcBuffer;
bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(bitD->bitContainer);
bitD->bitContainer = MEM_readLEST(bitD->ptr);
{ BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */
bitD->bitsConsumed = 8 - BITv06_highbit32(lastByte); }
} else {
bitD->start = (const char*)srcBuffer;
bitD->ptr = bitD->start;
bitD->bitContainer = *(const BYTE*)(bitD->start);
switch(srcSize)
{
case 7: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[6]) << (sizeof(bitD->bitContainer)*8 - 16);/* fall-through */
case 6: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[5]) << (sizeof(bitD->bitContainer)*8 - 24);/* fall-through */
case 5: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[4]) << (sizeof(bitD->bitContainer)*8 - 32);/* fall-through */
case 4: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[3]) << 24; /* fall-through */
case 3: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[2]) << 16; /* fall-through */
case 2: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[1]) << 8; /* fall-through */
default: break;
}
{ BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */
bitD->bitsConsumed = 8 - BITv06_highbit32(lastByte); }
bitD->bitsConsumed += (U32)(sizeof(bitD->bitContainer) - srcSize)*8;
}
return srcSize;
}
MEM_STATIC size_t BITv06_lookBits(const BITv06_DStream_t* bitD, U32 nbBits)
{
U32 const bitMask = sizeof(bitD->bitContainer)*8 - 1;
return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask);
}
/*! BITv06_lookBitsFast() :
* unsafe version; only works only if nbBits >= 1 */
MEM_STATIC size_t BITv06_lookBitsFast(const BITv06_DStream_t* bitD, U32 nbBits)
{
U32 const bitMask = sizeof(bitD->bitContainer)*8 - 1;
return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask);
}
MEM_STATIC void BITv06_skipBits(BITv06_DStream_t* bitD, U32 nbBits)
{
bitD->bitsConsumed += nbBits;
}
MEM_STATIC size_t BITv06_readBits(BITv06_DStream_t* bitD, U32 nbBits)
{
size_t const value = BITv06_lookBits(bitD, nbBits);
BITv06_skipBits(bitD, nbBits);
return value;
}
/*! BITv06_readBitsFast() :
* unsafe version; only works only if nbBits >= 1 */
MEM_STATIC size_t BITv06_readBitsFast(BITv06_DStream_t* bitD, U32 nbBits)
{
size_t const value = BITv06_lookBitsFast(bitD, nbBits);
BITv06_skipBits(bitD, nbBits);
return value;
}
MEM_STATIC BITv06_DStream_status BITv06_reloadDStream(BITv06_DStream_t* bitD)
{
if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should never happen */
return BITv06_DStream_overflow;
if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer)) {
bitD->ptr -= bitD->bitsConsumed >> 3;
bitD->bitsConsumed &= 7;
bitD->bitContainer = MEM_readLEST(bitD->ptr);
return BITv06_DStream_unfinished;
}
if (bitD->ptr == bitD->start) {
if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BITv06_DStream_endOfBuffer;
return BITv06_DStream_completed;
}
{ U32 nbBytes = bitD->bitsConsumed >> 3;
BITv06_DStream_status result = BITv06_DStream_unfinished;
if (bitD->ptr - nbBytes < bitD->start) {
nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
result = BITv06_DStream_endOfBuffer;
}
bitD->ptr -= nbBytes;
bitD->bitsConsumed -= nbBytes*8;
bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */
return result;
}
}
/*! BITv06_endOfDStream() :
* @return Tells if DStream has exactly reached its end (all bits consumed).
*/
MEM_STATIC unsigned BITv06_endOfDStream(const BITv06_DStream_t* DStream)
{
return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
}
#if defined (__cplusplus)
}
#endif
#endif /* BITSTREAM_H_MODULE */
/* ******************************************************************
FSE : Finite State Entropy coder
header file for static linking (only)
Copyright (C) 2013-2015, Yann Collet
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef FSEv06_STATIC_H
#define FSEv06_STATIC_H
#if defined (__cplusplus)
extern "C" {
#endif
/* *****************************************
* Static allocation
*******************************************/
/* FSE buffer bounds */
#define FSEv06_NCOUNTBOUND 512
#define FSEv06_BLOCKBOUND(size) (size + (size>>7))
#define FSEv06_COMPRESSBOUND(size) (FSEv06_NCOUNTBOUND + FSEv06_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
/* It is possible to statically allocate FSE CTable/DTable as a table of unsigned using below macros */
#define FSEv06_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog))
/* *****************************************
* FSE advanced API
*******************************************/
size_t FSEv06_countFast(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
/* same as FSEv06_count(), but blindly trusts that all byte values within src are <= *maxSymbolValuePtr */
size_t FSEv06_buildDTable_raw (FSEv06_DTable* dt, unsigned nbBits);
/* build a fake FSEv06_DTable, designed to read an uncompressed bitstream where each symbol uses nbBits */
size_t FSEv06_buildDTable_rle (FSEv06_DTable* dt, unsigned char symbolValue);
/* build a fake FSEv06_DTable, designed to always generate the same symbolValue */
/* *****************************************
* FSE symbol decompression API
*******************************************/
typedef struct
{
size_t state;
const void* table; /* precise table may vary, depending on U16 */
} FSEv06_DState_t;
static void FSEv06_initDState(FSEv06_DState_t* DStatePtr, BITv06_DStream_t* bitD, const FSEv06_DTable* dt);
static unsigned char FSEv06_decodeSymbol(FSEv06_DState_t* DStatePtr, BITv06_DStream_t* bitD);
/* *****************************************
* FSE unsafe API
*******************************************/
static unsigned char FSEv06_decodeSymbolFast(FSEv06_DState_t* DStatePtr, BITv06_DStream_t* bitD);
/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
/* *****************************************
* Implementation of inlined functions
*******************************************/
/* ====== Decompression ====== */
typedef struct {
U16 tableLog;
U16 fastMode;
} FSEv06_DTableHeader; /* sizeof U32 */
typedef struct
{
unsigned short newState;
unsigned char symbol;
unsigned char nbBits;
} FSEv06_decode_t; /* size == U32 */
MEM_STATIC void FSEv06_initDState(FSEv06_DState_t* DStatePtr, BITv06_DStream_t* bitD, const FSEv06_DTable* dt)
{
const void* ptr = dt;
const FSEv06_DTableHeader* const DTableH = (const FSEv06_DTableHeader*)ptr;
DStatePtr->state = BITv06_readBits(bitD, DTableH->tableLog);
BITv06_reloadDStream(bitD);
DStatePtr->table = dt + 1;
}
MEM_STATIC BYTE FSEv06_peekSymbol(const FSEv06_DState_t* DStatePtr)
{
FSEv06_decode_t const DInfo = ((const FSEv06_decode_t*)(DStatePtr->table))[DStatePtr->state];
return DInfo.symbol;
}
MEM_STATIC void FSEv06_updateState(FSEv06_DState_t* DStatePtr, BITv06_DStream_t* bitD)
{
FSEv06_decode_t const DInfo = ((const FSEv06_decode_t*)(DStatePtr->table))[DStatePtr->state];
U32 const nbBits = DInfo.nbBits;
size_t const lowBits = BITv06_readBits(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
}
MEM_STATIC BYTE FSEv06_decodeSymbol(FSEv06_DState_t* DStatePtr, BITv06_DStream_t* bitD)
{
FSEv06_decode_t const DInfo = ((const FSEv06_decode_t*)(DStatePtr->table))[DStatePtr->state];
U32 const nbBits = DInfo.nbBits;
BYTE const symbol = DInfo.symbol;
size_t const lowBits = BITv06_readBits(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
/*! FSEv06_decodeSymbolFast() :
unsafe, only works if no symbol has a probability > 50% */
MEM_STATIC BYTE FSEv06_decodeSymbolFast(FSEv06_DState_t* DStatePtr, BITv06_DStream_t* bitD)
{
FSEv06_decode_t const DInfo = ((const FSEv06_decode_t*)(DStatePtr->table))[DStatePtr->state];
U32 const nbBits = DInfo.nbBits;
BYTE const symbol = DInfo.symbol;
size_t const lowBits = BITv06_readBitsFast(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
#ifndef FSEv06_COMMONDEFS_ONLY
/* **************************************************************
* Tuning parameters
****************************************************************/
/*!MEMORY_USAGE :
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
* Increasing memory usage improves compression ratio
* Reduced memory usage can improve speed, due to cache effect
* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
#define FSEv06_MAX_MEMORY_USAGE 14
#define FSEv06_DEFAULT_MEMORY_USAGE 13
/*!FSEv06_MAX_SYMBOL_VALUE :
* Maximum symbol value authorized.
* Required for proper stack allocation */
#define FSEv06_MAX_SYMBOL_VALUE 255
/* **************************************************************
* template functions type & suffix
****************************************************************/
#define FSEv06_FUNCTION_TYPE BYTE
#define FSEv06_FUNCTION_EXTENSION
#define FSEv06_DECODE_TYPE FSEv06_decode_t
#endif /* !FSEv06_COMMONDEFS_ONLY */
/* ***************************************************************
* Constants
*****************************************************************/
#define FSEv06_MAX_TABLELOG (FSEv06_MAX_MEMORY_USAGE-2)
#define FSEv06_MAX_TABLESIZE (1U<<FSEv06_MAX_TABLELOG)
#define FSEv06_MAXTABLESIZE_MASK (FSEv06_MAX_TABLESIZE-1)
#define FSEv06_DEFAULT_TABLELOG (FSEv06_DEFAULT_MEMORY_USAGE-2)
#define FSEv06_MIN_TABLELOG 5
#define FSEv06_TABLELOG_ABSOLUTE_MAX 15
#if FSEv06_MAX_TABLELOG > FSEv06_TABLELOG_ABSOLUTE_MAX
#error "FSEv06_MAX_TABLELOG > FSEv06_TABLELOG_ABSOLUTE_MAX is not supported"
#endif
#define FSEv06_TABLESTEP(tableSize) ((tableSize>>1) + (tableSize>>3) + 3)
#if defined (__cplusplus)
}
#endif
#endif /* FSEv06_STATIC_H */
/*
Common functions of New Generation Entropy library
Copyright (C) 2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
*************************************************************************** */
/*-****************************************
* FSE Error Management
******************************************/
unsigned FSEv06_isError(size_t code) { return ERR_isError(code); }
const char* FSEv06_getErrorName(size_t code) { return ERR_getErrorName(code); }
/* **************************************************************
* HUF Error Management
****************************************************************/
static unsigned HUFv06_isError(size_t code) { return ERR_isError(code); }
/*-**************************************************************
* FSE NCount encoding-decoding
****************************************************************/
static short FSEv06_abs(short a) { return a<0 ? -a : a; }
size_t FSEv06_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize)
{
const BYTE* const istart = (const BYTE*) headerBuffer;
const BYTE* const iend = istart + hbSize;
const BYTE* ip = istart;
int nbBits;
int remaining;
int threshold;
U32 bitStream;
int bitCount;
unsigned charnum = 0;
int previous0 = 0;
if (hbSize < 4) return ERROR(srcSize_wrong);
bitStream = MEM_readLE32(ip);
nbBits = (bitStream & 0xF) + FSEv06_MIN_TABLELOG; /* extract tableLog */
if (nbBits > FSEv06_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
bitStream >>= 4;
bitCount = 4;
*tableLogPtr = nbBits;
remaining = (1<<nbBits)+1;
threshold = 1<<nbBits;
nbBits++;
while ((remaining>1) && (charnum<=*maxSVPtr)) {
if (previous0) {
unsigned n0 = charnum;
while ((bitStream & 0xFFFF) == 0xFFFF) {
n0+=24;
if (ip < iend-5) {
ip+=2;
bitStream = MEM_readLE32(ip) >> bitCount;
} else {
bitStream >>= 16;
bitCount+=16;
} }
while ((bitStream & 3) == 3) {
n0+=3;
bitStream>>=2;
bitCount+=2;
}
n0 += bitStream & 3;
bitCount += 2;
if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
while (charnum < n0) normalizedCounter[charnum++] = 0;
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
ip += bitCount>>3;
bitCount &= 7;
bitStream = MEM_readLE32(ip) >> bitCount;
}
else
bitStream >>= 2;
}
{ short const max = (short)((2*threshold-1)-remaining);
short count;
if ((bitStream & (threshold-1)) < (U32)max) {
count = (short)(bitStream & (threshold-1));
bitCount += nbBits-1;
} else {
count = (short)(bitStream & (2*threshold-1));
if (count >= threshold) count -= max;
bitCount += nbBits;
}
count--; /* extra accuracy */
remaining -= FSEv06_abs(count);
normalizedCounter[charnum++] = count;
previous0 = !count;
while (remaining < threshold) {
nbBits--;
threshold >>= 1;
}
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
ip += bitCount>>3;
bitCount &= 7;
} else {
bitCount -= (int)(8 * (iend - 4 - ip));
ip = iend - 4;
}
bitStream = MEM_readLE32(ip) >> (bitCount & 31);
} } /* while ((remaining>1) && (charnum<=*maxSVPtr)) */
if (remaining != 1) return ERROR(GENERIC);
*maxSVPtr = charnum-1;
ip += (bitCount+7)>>3;
if ((size_t)(ip-istart) > hbSize) return ERROR(srcSize_wrong);
return ip-istart;
}
/* ******************************************************************
FSE : Finite State Entropy decoder
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
/* **************************************************************
* Compiler specifics
****************************************************************/
#ifdef _MSC_VER /* Visual Studio */
# define FORCE_INLINE static __forceinline
# include <intrin.h> /* For Visual 2005 */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */
#else
# if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
# ifdef __GNUC__
# define FORCE_INLINE static inline __attribute__((always_inline))
# else
# define FORCE_INLINE static inline
# endif
# else
# define FORCE_INLINE static
# endif /* __STDC_VERSION__ */
#endif
/* **************************************************************
* Error Management
****************************************************************/
#define FSEv06_isError ERR_isError
#define FSEv06_STATIC_ASSERT(c) { enum { FSEv06_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
/* **************************************************************
* Complex types
****************************************************************/
typedef U32 DTable_max_t[FSEv06_DTABLE_SIZE_U32(FSEv06_MAX_TABLELOG)];
/* **************************************************************
* Templates
****************************************************************/
/*
designed to be included
for type-specific functions (template emulation in C)
Objective is to write these functions only once, for improved maintenance
*/
/* safety checks */
#ifndef FSEv06_FUNCTION_EXTENSION
# error "FSEv06_FUNCTION_EXTENSION must be defined"
#endif
#ifndef FSEv06_FUNCTION_TYPE
# error "FSEv06_FUNCTION_TYPE must be defined"
#endif
/* Function names */
#define FSEv06_CAT(X,Y) X##Y
#define FSEv06_FUNCTION_NAME(X,Y) FSEv06_CAT(X,Y)
#define FSEv06_TYPE_NAME(X,Y) FSEv06_CAT(X,Y)
/* Function templates */
FSEv06_DTable* FSEv06_createDTable (unsigned tableLog)
{
if (tableLog > FSEv06_TABLELOG_ABSOLUTE_MAX) tableLog = FSEv06_TABLELOG_ABSOLUTE_MAX;
return (FSEv06_DTable*)malloc( FSEv06_DTABLE_SIZE_U32(tableLog) * sizeof (U32) );
}
void FSEv06_freeDTable (FSEv06_DTable* dt)
{
free(dt);
}
size_t FSEv06_buildDTable(FSEv06_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
{
void* const tdPtr = dt+1; /* because *dt is unsigned, 32-bits aligned on 32-bits */
FSEv06_DECODE_TYPE* const tableDecode = (FSEv06_DECODE_TYPE*) (tdPtr);
U16 symbolNext[FSEv06_MAX_SYMBOL_VALUE+1];
U32 const maxSV1 = maxSymbolValue + 1;
U32 const tableSize = 1 << tableLog;
U32 highThreshold = tableSize-1;
/* Sanity Checks */
if (maxSymbolValue > FSEv06_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
if (tableLog > FSEv06_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
/* Init, lay down lowprob symbols */
{ FSEv06_DTableHeader DTableH;
DTableH.tableLog = (U16)tableLog;
DTableH.fastMode = 1;
{ S16 const largeLimit= (S16)(1 << (tableLog-1));
U32 s;
for (s=0; s<maxSV1; s++) {
if (normalizedCounter[s]==-1) {
tableDecode[highThreshold--].symbol = (FSEv06_FUNCTION_TYPE)s;
symbolNext[s] = 1;
} else {
if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
symbolNext[s] = normalizedCounter[s];
} } }
memcpy(dt, &DTableH, sizeof(DTableH));
}
/* Spread symbols */
{ U32 const tableMask = tableSize-1;
U32 const step = FSEv06_TABLESTEP(tableSize);
U32 s, position = 0;
for (s=0; s<maxSV1; s++) {
int i;
for (i=0; i<normalizedCounter[s]; i++) {
tableDecode[position].symbol = (FSEv06_FUNCTION_TYPE)s;
position = (position + step) & tableMask;
while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
} }
if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
}
/* Build Decoding table */
{ U32 u;
for (u=0; u<tableSize; u++) {
FSEv06_FUNCTION_TYPE const symbol = (FSEv06_FUNCTION_TYPE)(tableDecode[u].symbol);
U16 nextState = symbolNext[symbol]++;
tableDecode[u].nbBits = (BYTE) (tableLog - BITv06_highbit32 ((U32)nextState) );
tableDecode[u].newState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
} }
return 0;
}
#ifndef FSEv06_COMMONDEFS_ONLY
/*-*******************************************************
* Decompression (Byte symbols)
*********************************************************/
size_t FSEv06_buildDTable_rle (FSEv06_DTable* dt, BYTE symbolValue)
{
void* ptr = dt;
FSEv06_DTableHeader* const DTableH = (FSEv06_DTableHeader*)ptr;
void* dPtr = dt + 1;
FSEv06_decode_t* const cell = (FSEv06_decode_t*)dPtr;
DTableH->tableLog = 0;
DTableH->fastMode = 0;
cell->newState = 0;
cell->symbol = symbolValue;
cell->nbBits = 0;
return 0;
}
size_t FSEv06_buildDTable_raw (FSEv06_DTable* dt, unsigned nbBits)
{
void* ptr = dt;
FSEv06_DTableHeader* const DTableH = (FSEv06_DTableHeader*)ptr;
void* dPtr = dt + 1;
FSEv06_decode_t* const dinfo = (FSEv06_decode_t*)dPtr;
const unsigned tableSize = 1 << nbBits;
const unsigned tableMask = tableSize - 1;
const unsigned maxSV1 = tableMask+1;
unsigned s;
/* Sanity checks */
if (nbBits < 1) return ERROR(GENERIC); /* min size */
/* Build Decoding Table */
DTableH->tableLog = (U16)nbBits;
DTableH->fastMode = 1;
for (s=0; s<maxSV1; s++) {
dinfo[s].newState = 0;
dinfo[s].symbol = (BYTE)s;
dinfo[s].nbBits = (BYTE)nbBits;
}
return 0;
}
FORCE_INLINE size_t FSEv06_decompress_usingDTable_generic(
void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const FSEv06_DTable* dt, const unsigned fast)
{
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const omax = op + maxDstSize;
BYTE* const olimit = omax-3;
BITv06_DStream_t bitD;
FSEv06_DState_t state1;
FSEv06_DState_t state2;
/* Init */
{ size_t const errorCode = BITv06_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */
if (FSEv06_isError(errorCode)) return errorCode; }
FSEv06_initDState(&state1, &bitD, dt);
FSEv06_initDState(&state2, &bitD, dt);
#define FSEv06_GETSYMBOL(statePtr) fast ? FSEv06_decodeSymbolFast(statePtr, &bitD) : FSEv06_decodeSymbol(statePtr, &bitD)
/* 4 symbols per loop */
for ( ; (BITv06_reloadDStream(&bitD)==BITv06_DStream_unfinished) && (op<olimit) ; op+=4) {
op[0] = FSEv06_GETSYMBOL(&state1);
if (FSEv06_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
BITv06_reloadDStream(&bitD);
op[1] = FSEv06_GETSYMBOL(&state2);
if (FSEv06_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
{ if (BITv06_reloadDStream(&bitD) > BITv06_DStream_unfinished) { op+=2; break; } }
op[2] = FSEv06_GETSYMBOL(&state1);
if (FSEv06_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
BITv06_reloadDStream(&bitD);
op[3] = FSEv06_GETSYMBOL(&state2);
}
/* tail */
/* note : BITv06_reloadDStream(&bitD) >= FSEv06_DStream_partiallyFilled; Ends at exactly BITv06_DStream_completed */
while (1) {
if (op>(omax-2)) return ERROR(dstSize_tooSmall);
*op++ = FSEv06_GETSYMBOL(&state1);
if (BITv06_reloadDStream(&bitD)==BITv06_DStream_overflow) {
*op++ = FSEv06_GETSYMBOL(&state2);
break;
}
if (op>(omax-2)) return ERROR(dstSize_tooSmall);
*op++ = FSEv06_GETSYMBOL(&state2);
if (BITv06_reloadDStream(&bitD)==BITv06_DStream_overflow) {
*op++ = FSEv06_GETSYMBOL(&state1);
break;
} }
return op-ostart;
}
size_t FSEv06_decompress_usingDTable(void* dst, size_t originalSize,
const void* cSrc, size_t cSrcSize,
const FSEv06_DTable* dt)
{
const void* ptr = dt;
const FSEv06_DTableHeader* DTableH = (const FSEv06_DTableHeader*)ptr;
const U32 fastMode = DTableH->fastMode;
/* select fast mode (static) */
if (fastMode) return FSEv06_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
return FSEv06_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
}
size_t FSEv06_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
{
const BYTE* const istart = (const BYTE*)cSrc;
const BYTE* ip = istart;
short counting[FSEv06_MAX_SYMBOL_VALUE+1];
DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */
unsigned tableLog;
unsigned maxSymbolValue = FSEv06_MAX_SYMBOL_VALUE;
if (cSrcSize<2) return ERROR(srcSize_wrong); /* too small input size */
/* normal FSE decoding mode */
{ size_t const NCountLength = FSEv06_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
if (FSEv06_isError(NCountLength)) return NCountLength;
if (NCountLength >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size */
ip += NCountLength;
cSrcSize -= NCountLength;
}
{ size_t const errorCode = FSEv06_buildDTable (dt, counting, maxSymbolValue, tableLog);
if (FSEv06_isError(errorCode)) return errorCode; }
return FSEv06_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt); /* always return, even if it is an error code */
}
#endif /* FSEv06_COMMONDEFS_ONLY */
/* ******************************************************************
Huffman coder, part of New Generation Entropy library
header file
Copyright (C) 2013-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
****************************************************************** */
#ifndef HUFv06_H
#define HUFv06_H
#if defined (__cplusplus)
extern "C" {
#endif
/* ****************************************
* HUF simple functions
******************************************/
size_t HUFv06_decompress(void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize);
/*
HUFv06_decompress() :
Decompress HUF data from buffer 'cSrc', of size 'cSrcSize',
into already allocated destination buffer 'dst', of size 'dstSize'.
`dstSize` : must be the **exact** size of original (uncompressed) data.
Note : in contrast with FSE, HUFv06_decompress can regenerate
RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data,
because it knows size to regenerate.
@return : size of regenerated data (== dstSize)
or an error code, which can be tested using HUFv06_isError()
*/
/* ****************************************
* Tool functions
******************************************/
size_t HUFv06_compressBound(size_t size); /**< maximum compressed size */
#if defined (__cplusplus)
}
#endif
#endif /* HUFv06_H */
/* ******************************************************************
Huffman codec, part of New Generation Entropy library
header file, for static linking only
Copyright (C) 2013-2016, Yann Collet
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
****************************************************************** */
#ifndef HUFv06_STATIC_H
#define HUFv06_STATIC_H
#if defined (__cplusplus)
extern "C" {
#endif
/* ****************************************
* Static allocation
******************************************/
/* HUF buffer bounds */
#define HUFv06_CTABLEBOUND 129
#define HUFv06_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true if incompressible pre-filtered with fast heuristic */
#define HUFv06_COMPRESSBOUND(size) (HUFv06_CTABLEBOUND + HUFv06_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
/* static allocation of HUF's DTable */
#define HUFv06_DTABLE_SIZE(maxTableLog) (1 + (1<<maxTableLog))
#define HUFv06_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
unsigned short DTable[HUFv06_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
#define HUFv06_CREATE_STATIC_DTABLEX4(DTable, maxTableLog) \
unsigned int DTable[HUFv06_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
#define HUFv06_CREATE_STATIC_DTABLEX6(DTable, maxTableLog) \
unsigned int DTable[HUFv06_DTABLE_SIZE(maxTableLog) * 3 / 2] = { maxTableLog }
/* ****************************************
* Advanced decompression functions
******************************************/
size_t HUFv06_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
size_t HUFv06_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbols decoder */
/*!
HUFv06_decompress() does the following:
1. select the decompression algorithm (X2, X4, X6) based on pre-computed heuristics
2. build Huffman table from save, using HUFv06_readDTableXn()
3. decode 1 or 4 segments in parallel using HUFv06_decompressSXn_usingDTable
*/
size_t HUFv06_readDTableX2 (unsigned short* DTable, const void* src, size_t srcSize);
size_t HUFv06_readDTableX4 (unsigned* DTable, const void* src, size_t srcSize);
size_t HUFv06_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned short* DTable);
size_t HUFv06_decompress4X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned* DTable);
/* single stream variants */
size_t HUFv06_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
size_t HUFv06_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbol decoder */
size_t HUFv06_decompress1X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned short* DTable);
size_t HUFv06_decompress1X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned* DTable);
/* **************************************************************
* Constants
****************************************************************/
#define HUFv06_ABSOLUTEMAX_TABLELOG 16 /* absolute limit of HUFv06_MAX_TABLELOG. Beyond that value, code does not work */
#define HUFv06_MAX_TABLELOG 12 /* max configured tableLog (for static allocation); can be modified up to HUFv06_ABSOLUTEMAX_TABLELOG */
#define HUFv06_DEFAULT_TABLELOG HUFv06_MAX_TABLELOG /* tableLog by default, when not specified */
#define HUFv06_MAX_SYMBOL_VALUE 255
#if (HUFv06_MAX_TABLELOG > HUFv06_ABSOLUTEMAX_TABLELOG)
# error "HUFv06_MAX_TABLELOG is too large !"
#endif
/*! HUFv06_readStats() :
Read compact Huffman tree, saved by HUFv06_writeCTable().
`huffWeight` is destination buffer.
@return : size read from `src`
*/
MEM_STATIC size_t HUFv06_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize)
{
U32 weightTotal;
const BYTE* ip = (const BYTE*) src;
size_t iSize;
size_t oSize;
if (!srcSize) return ERROR(srcSize_wrong);
iSize = ip[0];
/* memset(huffWeight, 0, hwSize); */ /* is not necessary, even though some analyzer complain ... */
if (iSize >= 128) { /* special header */
if (iSize >= (242)) { /* RLE */
static U32 l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 };
oSize = l[iSize-242];
memset(huffWeight, 1, hwSize);
iSize = 0;
}
else { /* Incompressible */
oSize = iSize - 127;
iSize = ((oSize+1)/2);
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
if (oSize >= hwSize) return ERROR(corruption_detected);
ip += 1;
{ U32 n;
for (n=0; n<oSize; n+=2) {
huffWeight[n] = ip[n/2] >> 4;
huffWeight[n+1] = ip[n/2] & 15;
} } } }
else { /* header compressed with FSE (normal case) */
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
oSize = FSEv06_decompress(huffWeight, hwSize-1, ip+1, iSize); /* max (hwSize-1) values decoded, as last one is implied */
if (FSEv06_isError(oSize)) return oSize;
}
/* collect weight stats */
memset(rankStats, 0, (HUFv06_ABSOLUTEMAX_TABLELOG + 1) * sizeof(U32));
weightTotal = 0;
{ U32 n; for (n=0; n<oSize; n++) {
if (huffWeight[n] >= HUFv06_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
rankStats[huffWeight[n]]++;
weightTotal += (1 << huffWeight[n]) >> 1;
} }
if (weightTotal == 0) return ERROR(corruption_detected);
/* get last non-null symbol weight (implied, total must be 2^n) */
{ U32 const tableLog = BITv06_highbit32(weightTotal) + 1;
if (tableLog > HUFv06_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
*tableLogPtr = tableLog;
/* determine last weight */
{ U32 const total = 1 << tableLog;
U32 const rest = total - weightTotal;
U32 const verif = 1 << BITv06_highbit32(rest);
U32 const lastWeight = BITv06_highbit32(rest) + 1;
if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
huffWeight[oSize] = (BYTE)lastWeight;
rankStats[lastWeight]++;
} }
/* check tree construction validity */
if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
/* results */
*nbSymbolsPtr = (U32)(oSize+1);
return iSize+1;
}
#if defined (__cplusplus)
}
#endif
#endif /* HUFv06_STATIC_H */
/* ******************************************************************
Huffman decoder, part of New Generation Entropy library
Copyright (C) 2013-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
/* **************************************************************
* Compiler specifics
****************************************************************/
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
/* inline is defined */
#elif defined(_MSC_VER)
# define inline __inline
#else
# define inline /* disable inline */
#endif
#ifdef _MSC_VER /* Visual Studio */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
#endif
/* **************************************************************
* Error Management
****************************************************************/
#define HUFv06_STATIC_ASSERT(c) { enum { HUFv06_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
/* *******************************************************
* HUF : Huffman block decompression
*********************************************************/
typedef struct { BYTE byte; BYTE nbBits; } HUFv06_DEltX2; /* single-symbol decoding */
typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUFv06_DEltX4; /* double-symbols decoding */
typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
/*-***************************/
/* single-symbol decoding */
/*-***************************/
size_t HUFv06_readDTableX2 (U16* DTable, const void* src, size_t srcSize)
{
BYTE huffWeight[HUFv06_MAX_SYMBOL_VALUE + 1];
U32 rankVal[HUFv06_ABSOLUTEMAX_TABLELOG + 1]; /* large enough for values from 0 to 16 */
U32 tableLog = 0;
size_t iSize;
U32 nbSymbols = 0;
U32 n;
U32 nextRankStart;
void* const dtPtr = DTable + 1;
HUFv06_DEltX2* const dt = (HUFv06_DEltX2*)dtPtr;
HUFv06_STATIC_ASSERT(sizeof(HUFv06_DEltX2) == sizeof(U16)); /* if compilation fails here, assertion is false */
/* memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */
iSize = HUFv06_readStats(huffWeight, HUFv06_MAX_SYMBOL_VALUE + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
if (HUFv06_isError(iSize)) return iSize;
/* check result */
if (tableLog > DTable[0]) return ERROR(tableLog_tooLarge); /* DTable is too small */
DTable[0] = (U16)tableLog; /* maybe should separate sizeof allocated DTable, from used size of DTable, in case of re-use */
/* Prepare ranks */
nextRankStart = 0;
for (n=1; n<tableLog+1; n++) {
U32 current = nextRankStart;
nextRankStart += (rankVal[n] << (n-1));
rankVal[n] = current;
}
/* fill DTable */
for (n=0; n<nbSymbols; n++) {
const U32 w = huffWeight[n];
const U32 length = (1 << w) >> 1;
U32 i;
HUFv06_DEltX2 D;
D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
for (i = rankVal[w]; i < rankVal[w] + length; i++)
dt[i] = D;
rankVal[w] += length;
}
return iSize;
}
static BYTE HUFv06_decodeSymbolX2(BITv06_DStream_t* Dstream, const HUFv06_DEltX2* dt, const U32 dtLog)
{
const size_t val = BITv06_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
const BYTE c = dt[val].byte;
BITv06_skipBits(Dstream, dt[val].nbBits);
return c;
}
#define HUFv06_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
*ptr++ = HUFv06_decodeSymbolX2(DStreamPtr, dt, dtLog)
#define HUFv06_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUFv06_MAX_TABLELOG<=12)) \
HUFv06_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
#define HUFv06_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
HUFv06_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
static inline size_t HUFv06_decodeStreamX2(BYTE* p, BITv06_DStream_t* const bitDPtr, BYTE* const pEnd, const HUFv06_DEltX2* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 4 symbols at a time */
while ((BITv06_reloadDStream(bitDPtr) == BITv06_DStream_unfinished) && (p <= pEnd-4)) {
HUFv06_DECODE_SYMBOLX2_2(p, bitDPtr);
HUFv06_DECODE_SYMBOLX2_1(p, bitDPtr);
HUFv06_DECODE_SYMBOLX2_2(p, bitDPtr);
HUFv06_DECODE_SYMBOLX2_0(p, bitDPtr);
}
/* closer to the end */
while ((BITv06_reloadDStream(bitDPtr) == BITv06_DStream_unfinished) && (p < pEnd))
HUFv06_DECODE_SYMBOLX2_0(p, bitDPtr);
/* no more data to retrieve from bitstream, hence no need to reload */
while (p < pEnd)
HUFv06_DECODE_SYMBOLX2_0(p, bitDPtr);
return pEnd-pStart;
}
size_t HUFv06_decompress1X2_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const U16* DTable)
{
BYTE* op = (BYTE*)dst;
BYTE* const oend = op + dstSize;
const U32 dtLog = DTable[0];
const void* dtPtr = DTable;
const HUFv06_DEltX2* const dt = ((const HUFv06_DEltX2*)dtPtr)+1;
BITv06_DStream_t bitD;
{ size_t const errorCode = BITv06_initDStream(&bitD, cSrc, cSrcSize);
if (HUFv06_isError(errorCode)) return errorCode; }
HUFv06_decodeStreamX2(op, &bitD, oend, dt, dtLog);
/* check */
if (!BITv06_endOfDStream(&bitD)) return ERROR(corruption_detected);
return dstSize;
}
size_t HUFv06_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUFv06_CREATE_STATIC_DTABLEX2(DTable, HUFv06_MAX_TABLELOG);
const BYTE* ip = (const BYTE*) cSrc;
size_t const errorCode = HUFv06_readDTableX2 (DTable, cSrc, cSrcSize);
if (HUFv06_isError(errorCode)) return errorCode;
if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);
ip += errorCode;
cSrcSize -= errorCode;
return HUFv06_decompress1X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
}
size_t HUFv06_decompress4X2_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const U16* DTable)
{
/* Check */
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{ const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* const dtPtr = DTable;
const HUFv06_DEltX2* const dt = ((const HUFv06_DEltX2*)dtPtr) +1;
const U32 dtLog = DTable[0];
size_t errorCode;
/* Init */
BITv06_DStream_t bitD1;
BITv06_DStream_t bitD2;
BITv06_DStream_t bitD3;
BITv06_DStream_t bitD4;
const size_t length1 = MEM_readLE16(istart);
const size_t length2 = MEM_readLE16(istart+2);
const size_t length3 = MEM_readLE16(istart+4);
size_t length4;
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
const size_t segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal;
length4 = cSrcSize - (length1 + length2 + length3 + 6);
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
errorCode = BITv06_initDStream(&bitD1, istart1, length1);
if (HUFv06_isError(errorCode)) return errorCode;
errorCode = BITv06_initDStream(&bitD2, istart2, length2);
if (HUFv06_isError(errorCode)) return errorCode;
errorCode = BITv06_initDStream(&bitD3, istart3, length3);
if (HUFv06_isError(errorCode)) return errorCode;
errorCode = BITv06_initDStream(&bitD4, istart4, length4);
if (HUFv06_isError(errorCode)) return errorCode;
/* 16-32 symbols per loop (4-8 symbols per stream) */
endSignal = BITv06_reloadDStream(&bitD1) | BITv06_reloadDStream(&bitD2) | BITv06_reloadDStream(&bitD3) | BITv06_reloadDStream(&bitD4);
for ( ; (endSignal==BITv06_DStream_unfinished) && (op4<(oend-7)) ; ) {
HUFv06_DECODE_SYMBOLX2_2(op1, &bitD1);
HUFv06_DECODE_SYMBOLX2_2(op2, &bitD2);
HUFv06_DECODE_SYMBOLX2_2(op3, &bitD3);
HUFv06_DECODE_SYMBOLX2_2(op4, &bitD4);
HUFv06_DECODE_SYMBOLX2_1(op1, &bitD1);
HUFv06_DECODE_SYMBOLX2_1(op2, &bitD2);
HUFv06_DECODE_SYMBOLX2_1(op3, &bitD3);
HUFv06_DECODE_SYMBOLX2_1(op4, &bitD4);
HUFv06_DECODE_SYMBOLX2_2(op1, &bitD1);
HUFv06_DECODE_SYMBOLX2_2(op2, &bitD2);
HUFv06_DECODE_SYMBOLX2_2(op3, &bitD3);
HUFv06_DECODE_SYMBOLX2_2(op4, &bitD4);
HUFv06_DECODE_SYMBOLX2_0(op1, &bitD1);
HUFv06_DECODE_SYMBOLX2_0(op2, &bitD2);
HUFv06_DECODE_SYMBOLX2_0(op3, &bitD3);
HUFv06_DECODE_SYMBOLX2_0(op4, &bitD4);
endSignal = BITv06_reloadDStream(&bitD1) | BITv06_reloadDStream(&bitD2) | BITv06_reloadDStream(&bitD3) | BITv06_reloadDStream(&bitD4);
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 supposed already verified within main loop */
/* finish bitStreams one by one */
HUFv06_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
HUFv06_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
HUFv06_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
HUFv06_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
/* check */
endSignal = BITv06_endOfDStream(&bitD1) & BITv06_endOfDStream(&bitD2) & BITv06_endOfDStream(&bitD3) & BITv06_endOfDStream(&bitD4);
if (!endSignal) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
}
size_t HUFv06_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUFv06_CREATE_STATIC_DTABLEX2(DTable, HUFv06_MAX_TABLELOG);
const BYTE* ip = (const BYTE*) cSrc;
size_t const errorCode = HUFv06_readDTableX2 (DTable, cSrc, cSrcSize);
if (HUFv06_isError(errorCode)) return errorCode;
if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);
ip += errorCode;
cSrcSize -= errorCode;
return HUFv06_decompress4X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
}
/* *************************/
/* double-symbols decoding */
/* *************************/
static void HUFv06_fillDTableX4Level2(HUFv06_DEltX4* DTable, U32 sizeLog, const U32 consumed,
const U32* rankValOrigin, const int minWeight,
const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
U32 nbBitsBaseline, U16 baseSeq)
{
HUFv06_DEltX4 DElt;
U32 rankVal[HUFv06_ABSOLUTEMAX_TABLELOG + 1];
/* get pre-calculated rankVal */
memcpy(rankVal, rankValOrigin, sizeof(rankVal));
/* fill skipped values */
if (minWeight>1) {
U32 i, skipSize = rankVal[minWeight];
MEM_writeLE16(&(DElt.sequence), baseSeq);
DElt.nbBits = (BYTE)(consumed);
DElt.length = 1;
for (i = 0; i < skipSize; i++)
DTable[i] = DElt;
}
/* fill DTable */
{ U32 s; for (s=0; s<sortedListSize; s++) { /* note : sortedSymbols already skipped */
const U32 symbol = sortedSymbols[s].symbol;
const U32 weight = sortedSymbols[s].weight;
const U32 nbBits = nbBitsBaseline - weight;
const U32 length = 1 << (sizeLog-nbBits);
const U32 start = rankVal[weight];
U32 i = start;
const U32 end = start + length;
MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
DElt.nbBits = (BYTE)(nbBits + consumed);
DElt.length = 2;
do { DTable[i++] = DElt; } while (i<end); /* since length >= 1 */
rankVal[weight] += length;
}}
}
typedef U32 rankVal_t[HUFv06_ABSOLUTEMAX_TABLELOG][HUFv06_ABSOLUTEMAX_TABLELOG + 1];
static void HUFv06_fillDTableX4(HUFv06_DEltX4* DTable, const U32 targetLog,
const sortedSymbol_t* sortedList, const U32 sortedListSize,
const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
const U32 nbBitsBaseline)
{
U32 rankVal[HUFv06_ABSOLUTEMAX_TABLELOG + 1];
const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
const U32 minBits = nbBitsBaseline - maxWeight;
U32 s;
memcpy(rankVal, rankValOrigin, sizeof(rankVal));
/* fill DTable */
for (s=0; s<sortedListSize; s++) {
const U16 symbol = sortedList[s].symbol;
const U32 weight = sortedList[s].weight;
const U32 nbBits = nbBitsBaseline - weight;
const U32 start = rankVal[weight];
const U32 length = 1 << (targetLog-nbBits);
if (targetLog-nbBits >= minBits) { /* enough room for a second symbol */
U32 sortedRank;
int minWeight = nbBits + scaleLog;
if (minWeight < 1) minWeight = 1;
sortedRank = rankStart[minWeight];
HUFv06_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits,
rankValOrigin[nbBits], minWeight,
sortedList+sortedRank, sortedListSize-sortedRank,
nbBitsBaseline, symbol);
} else {
HUFv06_DEltX4 DElt;
MEM_writeLE16(&(DElt.sequence), symbol);
DElt.nbBits = (BYTE)(nbBits);
DElt.length = 1;
{ U32 u;
const U32 end = start + length;
for (u = start; u < end; u++) DTable[u] = DElt;
} }
rankVal[weight] += length;
}
}
size_t HUFv06_readDTableX4 (U32* DTable, const void* src, size_t srcSize)
{
BYTE weightList[HUFv06_MAX_SYMBOL_VALUE + 1];
sortedSymbol_t sortedSymbol[HUFv06_MAX_SYMBOL_VALUE + 1];
U32 rankStats[HUFv06_ABSOLUTEMAX_TABLELOG + 1] = { 0 };
U32 rankStart0[HUFv06_ABSOLUTEMAX_TABLELOG + 2] = { 0 };
U32* const rankStart = rankStart0+1;
rankVal_t rankVal;
U32 tableLog, maxW, sizeOfSort, nbSymbols;
const U32 memLog = DTable[0];
size_t iSize;
void* dtPtr = DTable;
HUFv06_DEltX4* const dt = ((HUFv06_DEltX4*)dtPtr) + 1;
HUFv06_STATIC_ASSERT(sizeof(HUFv06_DEltX4) == sizeof(U32)); /* if compilation fails here, assertion is false */
if (memLog > HUFv06_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge);
/* memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */
iSize = HUFv06_readStats(weightList, HUFv06_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
if (HUFv06_isError(iSize)) return iSize;
/* check result */
if (tableLog > memLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
/* find maxWeight */
for (maxW = tableLog; rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
/* Get start index of each weight */
{ U32 w, nextRankStart = 0;
for (w=1; w<maxW+1; w++) {
U32 current = nextRankStart;
nextRankStart += rankStats[w];
rankStart[w] = current;
}
rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
sizeOfSort = nextRankStart;
}
/* sort symbols by weight */
{ U32 s;
for (s=0; s<nbSymbols; s++) {
U32 const w = weightList[s];
U32 const r = rankStart[w]++;
sortedSymbol[r].symbol = (BYTE)s;
sortedSymbol[r].weight = (BYTE)w;
}
rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
}
/* Build rankVal */
{ U32* const rankVal0 = rankVal[0];
{ int const rescale = (memLog-tableLog) - 1; /* tableLog <= memLog */
U32 nextRankVal = 0;
U32 w;
for (w=1; w<maxW+1; w++) {
U32 current = nextRankVal;
nextRankVal += rankStats[w] << (w+rescale);
rankVal0[w] = current;
} }
{ U32 const minBits = tableLog+1 - maxW;
U32 consumed;
for (consumed = minBits; consumed < memLog - minBits + 1; consumed++) {
U32* const rankValPtr = rankVal[consumed];
U32 w;
for (w = 1; w < maxW+1; w++) {
rankValPtr[w] = rankVal0[w] >> consumed;
} } } }
HUFv06_fillDTableX4(dt, memLog,
sortedSymbol, sizeOfSort,
rankStart0, rankVal, maxW,
tableLog+1);
return iSize;
}
static U32 HUFv06_decodeSymbolX4(void* op, BITv06_DStream_t* DStream, const HUFv06_DEltX4* dt, const U32 dtLog)
{
const size_t val = BITv06_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
memcpy(op, dt+val, 2);
BITv06_skipBits(DStream, dt[val].nbBits);
return dt[val].length;
}
static U32 HUFv06_decodeLastSymbolX4(void* op, BITv06_DStream_t* DStream, const HUFv06_DEltX4* dt, const U32 dtLog)
{
const size_t val = BITv06_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
memcpy(op, dt+val, 1);
if (dt[val].length==1) BITv06_skipBits(DStream, dt[val].nbBits);
else {
if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
BITv06_skipBits(DStream, dt[val].nbBits);
if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
} }
return 1;
}
#define HUFv06_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \
ptr += HUFv06_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
#define HUFv06_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUFv06_MAX_TABLELOG<=12)) \
ptr += HUFv06_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
#define HUFv06_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
ptr += HUFv06_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
static inline size_t HUFv06_decodeStreamX4(BYTE* p, BITv06_DStream_t* bitDPtr, BYTE* const pEnd, const HUFv06_DEltX4* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 8 symbols at a time */
while ((BITv06_reloadDStream(bitDPtr) == BITv06_DStream_unfinished) && (p < pEnd-7)) {
HUFv06_DECODE_SYMBOLX4_2(p, bitDPtr);
HUFv06_DECODE_SYMBOLX4_1(p, bitDPtr);
HUFv06_DECODE_SYMBOLX4_2(p, bitDPtr);
HUFv06_DECODE_SYMBOLX4_0(p, bitDPtr);
}
/* closer to the end */
while ((BITv06_reloadDStream(bitDPtr) == BITv06_DStream_unfinished) && (p <= pEnd-2))
HUFv06_DECODE_SYMBOLX4_0(p, bitDPtr);
while (p <= pEnd-2)
HUFv06_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
if (p < pEnd)
p += HUFv06_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);
return p-pStart;
}
size_t HUFv06_decompress1X4_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const U32* DTable)
{
const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const U32 dtLog = DTable[0];
const void* const dtPtr = DTable;
const HUFv06_DEltX4* const dt = ((const HUFv06_DEltX4*)dtPtr) +1;
/* Init */
BITv06_DStream_t bitD;
{ size_t const errorCode = BITv06_initDStream(&bitD, istart, cSrcSize);
if (HUFv06_isError(errorCode)) return errorCode; }
/* decode */
HUFv06_decodeStreamX4(ostart, &bitD, oend, dt, dtLog);
/* check */
if (!BITv06_endOfDStream(&bitD)) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
size_t HUFv06_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUFv06_CREATE_STATIC_DTABLEX4(DTable, HUFv06_MAX_TABLELOG);
const BYTE* ip = (const BYTE*) cSrc;
size_t const hSize = HUFv06_readDTableX4 (DTable, cSrc, cSrcSize);
if (HUFv06_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize;
cSrcSize -= hSize;
return HUFv06_decompress1X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
}
size_t HUFv06_decompress4X4_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const U32* DTable)
{
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{ const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* const dtPtr = DTable;
const HUFv06_DEltX4* const dt = ((const HUFv06_DEltX4*)dtPtr) +1;
const U32 dtLog = DTable[0];
size_t errorCode;
/* Init */
BITv06_DStream_t bitD1;
BITv06_DStream_t bitD2;
BITv06_DStream_t bitD3;
BITv06_DStream_t bitD4;
const size_t length1 = MEM_readLE16(istart);
const size_t length2 = MEM_readLE16(istart+2);
const size_t length3 = MEM_readLE16(istart+4);
size_t length4;
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
const size_t segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal;
length4 = cSrcSize - (length1 + length2 + length3 + 6);
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
errorCode = BITv06_initDStream(&bitD1, istart1, length1);
if (HUFv06_isError(errorCode)) return errorCode;
errorCode = BITv06_initDStream(&bitD2, istart2, length2);
if (HUFv06_isError(errorCode)) return errorCode;
errorCode = BITv06_initDStream(&bitD3, istart3, length3);
if (HUFv06_isError(errorCode)) return errorCode;
errorCode = BITv06_initDStream(&bitD4, istart4, length4);
if (HUFv06_isError(errorCode)) return errorCode;
/* 16-32 symbols per loop (4-8 symbols per stream) */
endSignal = BITv06_reloadDStream(&bitD1) | BITv06_reloadDStream(&bitD2) | BITv06_reloadDStream(&bitD3) | BITv06_reloadDStream(&bitD4);
for ( ; (endSignal==BITv06_DStream_unfinished) && (op4<(oend-7)) ; ) {
HUFv06_DECODE_SYMBOLX4_2(op1, &bitD1);
HUFv06_DECODE_SYMBOLX4_2(op2, &bitD2);
HUFv06_DECODE_SYMBOLX4_2(op3, &bitD3);
HUFv06_DECODE_SYMBOLX4_2(op4, &bitD4);
HUFv06_DECODE_SYMBOLX4_1(op1, &bitD1);
HUFv06_DECODE_SYMBOLX4_1(op2, &bitD2);
HUFv06_DECODE_SYMBOLX4_1(op3, &bitD3);
HUFv06_DECODE_SYMBOLX4_1(op4, &bitD4);
HUFv06_DECODE_SYMBOLX4_2(op1, &bitD1);
HUFv06_DECODE_SYMBOLX4_2(op2, &bitD2);
HUFv06_DECODE_SYMBOLX4_2(op3, &bitD3);
HUFv06_DECODE_SYMBOLX4_2(op4, &bitD4);
HUFv06_DECODE_SYMBOLX4_0(op1, &bitD1);
HUFv06_DECODE_SYMBOLX4_0(op2, &bitD2);
HUFv06_DECODE_SYMBOLX4_0(op3, &bitD3);
HUFv06_DECODE_SYMBOLX4_0(op4, &bitD4);
endSignal = BITv06_reloadDStream(&bitD1) | BITv06_reloadDStream(&bitD2) | BITv06_reloadDStream(&bitD3) | BITv06_reloadDStream(&bitD4);
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 supposed already verified within main loop */
/* finish bitStreams one by one */
HUFv06_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
HUFv06_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
HUFv06_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
HUFv06_decodeStreamX4(op4, &bitD4, oend, dt, dtLog);
/* check */
endSignal = BITv06_endOfDStream(&bitD1) & BITv06_endOfDStream(&bitD2) & BITv06_endOfDStream(&bitD3) & BITv06_endOfDStream(&bitD4);
if (!endSignal) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
}
size_t HUFv06_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUFv06_CREATE_STATIC_DTABLEX4(DTable, HUFv06_MAX_TABLELOG);
const BYTE* ip = (const BYTE*) cSrc;
size_t hSize = HUFv06_readDTableX4 (DTable, cSrc, cSrcSize);
if (HUFv06_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize;
cSrcSize -= hSize;
return HUFv06_decompress4X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
}
/* ********************************/
/* Generic decompression selector */
/* ********************************/
typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
{
/* single, double, quad */
{{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */
{{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */
{{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */
{{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */
{{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */
{{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */
{{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */
{{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */
{{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */
{{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */
{{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */
{{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */
{{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */
{{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */
{{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */
{{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */
};
typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
size_t HUFv06_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
static const decompressionAlgo decompress[3] = { HUFv06_decompress4X2, HUFv06_decompress4X4, NULL };
U32 Dtime[3]; /* decompression time estimation */
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
/* decoder timing evaluation */
{ U32 const Q = (U32)(cSrcSize * 16 / dstSize); /* Q < 16 since dstSize > cSrcSize */
U32 const D256 = (U32)(dstSize >> 8);
U32 n; for (n=0; n<3; n++)
Dtime[n] = algoTime[Q][n].tableTime + (algoTime[Q][n].decode256Time * D256);
}
Dtime[1] += Dtime[1] >> 4; Dtime[2] += Dtime[2] >> 3; /* advantage to algorithms using less memory, for cache eviction */
{ U32 algoNb = 0;
if (Dtime[1] < Dtime[0]) algoNb = 1;
/* if (Dtime[2] < Dtime[algoNb]) algoNb = 2; */ /* current speed of HUFv06_decompress4X6 is not good */
return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
}
/* return HUFv06_decompress4X2(dst, dstSize, cSrc, cSrcSize); */ /* multi-streams single-symbol decoding */
/* return HUFv06_decompress4X4(dst, dstSize, cSrc, cSrcSize); */ /* multi-streams double-symbols decoding */
/* return HUFv06_decompress4X6(dst, dstSize, cSrc, cSrcSize); */ /* multi-streams quad-symbols decoding */
}
/*
Common functions of Zstd compression library
Copyright (C) 2015-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- zstd homepage : http://www.zstd.net/
*/
/*-****************************************
* Version
******************************************/
/*-****************************************
* ZSTD Error Management
******************************************/
/*! ZSTDv06_isError() :
* tells if a return value is an error code */
unsigned ZSTDv06_isError(size_t code) { return ERR_isError(code); }
/*! ZSTDv06_getErrorName() :
* provides error code string from function result (useful for debugging) */
const char* ZSTDv06_getErrorName(size_t code) { return ERR_getErrorName(code); }
/* **************************************************************
* ZBUFF Error Management
****************************************************************/
unsigned ZBUFFv06_isError(size_t errorCode) { return ERR_isError(errorCode); }
const char* ZBUFFv06_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
/*
zstd - standard compression library
Copyright (C) 2014-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- zstd homepage : http://www.zstd.net
*/
/* ***************************************************************
* Tuning parameters
*****************************************************************/
/*!
* HEAPMODE :
* Select how default decompression function ZSTDv06_decompress() will allocate memory,
* in memory stack (0), or in memory heap (1, requires malloc())
*/
#ifndef ZSTDv06_HEAPMODE
# define ZSTDv06_HEAPMODE 1
#endif
/*-*******************************************************
* Compiler specifics
*********************************************************/
#ifdef _MSC_VER /* Visual Studio */
# include <intrin.h> /* For Visual 2005 */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4324) /* disable: C4324: padded structure */
#endif
/*-*************************************
* Macros
***************************************/
#define ZSTDv06_isError ERR_isError /* for inlining */
#define FSEv06_isError ERR_isError
#define HUFv06_isError ERR_isError
/*_*******************************************************
* Memory operations
**********************************************************/
static void ZSTDv06_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }
/*-*************************************************************
* Context management
***************************************************************/
typedef enum { ZSTDds_getFrameHeaderSize, ZSTDds_decodeFrameHeader,
ZSTDds_decodeBlockHeader, ZSTDds_decompressBlock } ZSTDv06_dStage;
struct ZSTDv06_DCtx_s
{
FSEv06_DTable LLTable[FSEv06_DTABLE_SIZE_U32(LLFSELog)];
FSEv06_DTable OffTable[FSEv06_DTABLE_SIZE_U32(OffFSELog)];
FSEv06_DTable MLTable[FSEv06_DTABLE_SIZE_U32(MLFSELog)];
unsigned hufTableX4[HUFv06_DTABLE_SIZE(HufLog)];
const void* previousDstEnd;
const void* base;
const void* vBase;
const void* dictEnd;
size_t expected;
size_t headerSize;
ZSTDv06_frameParams fParams;
blockType_t bType; /* used in ZSTDv06_decompressContinue(), to transfer blockType between header decoding and block decoding stages */
ZSTDv06_dStage stage;
U32 flagRepeatTable;
const BYTE* litPtr;
size_t litSize;
BYTE litBuffer[ZSTDv06_BLOCKSIZE_MAX + WILDCOPY_OVERLENGTH];
BYTE headerBuffer[ZSTDv06_FRAMEHEADERSIZE_MAX];
}; /* typedef'd to ZSTDv06_DCtx within "zstd_static.h" */
size_t ZSTDv06_sizeofDCtx (void); /* Hidden declaration */
size_t ZSTDv06_sizeofDCtx (void) { return sizeof(ZSTDv06_DCtx); }
size_t ZSTDv06_decompressBegin(ZSTDv06_DCtx* dctx)
{
dctx->expected = ZSTDv06_frameHeaderSize_min;
dctx->stage = ZSTDds_getFrameHeaderSize;
dctx->previousDstEnd = NULL;
dctx->base = NULL;
dctx->vBase = NULL;
dctx->dictEnd = NULL;
dctx->hufTableX4[0] = HufLog;
dctx->flagRepeatTable = 0;
return 0;
}
ZSTDv06_DCtx* ZSTDv06_createDCtx(void)
{
ZSTDv06_DCtx* dctx = (ZSTDv06_DCtx*)malloc(sizeof(ZSTDv06_DCtx));
if (dctx==NULL) return NULL;
ZSTDv06_decompressBegin(dctx);
return dctx;
}
size_t ZSTDv06_freeDCtx(ZSTDv06_DCtx* dctx)
{
free(dctx);
return 0; /* reserved as a potential error code in the future */
}
void ZSTDv06_copyDCtx(ZSTDv06_DCtx* dstDCtx, const ZSTDv06_DCtx* srcDCtx)
{
memcpy(dstDCtx, srcDCtx,
sizeof(ZSTDv06_DCtx) - (ZSTDv06_BLOCKSIZE_MAX+WILDCOPY_OVERLENGTH + ZSTDv06_frameHeaderSize_max)); /* no need to copy workspace */
}
/*-*************************************************************
* Decompression section
***************************************************************/
/* Frame format description
Frame Header - [ Block Header - Block ] - Frame End
1) Frame Header
- 4 bytes - Magic Number : ZSTDv06_MAGICNUMBER (defined within zstd_static.h)
- 1 byte - Frame Descriptor
2) Block Header
- 3 bytes, starting with a 2-bits descriptor
Uncompressed, Compressed, Frame End, unused
3) Block
See Block Format Description
4) Frame End
- 3 bytes, compatible with Block Header
*/
/* Frame descriptor
1 byte, using :
bit 0-3 : windowLog - ZSTDv06_WINDOWLOG_ABSOLUTEMIN (see zstd_internal.h)
bit 4 : minmatch 4(0) or 3(1)
bit 5 : reserved (must be zero)
bit 6-7 : Frame content size : unknown, 1 byte, 2 bytes, 8 bytes
Optional : content size (0, 1, 2 or 8 bytes)
0 : unknown
1 : 0-255 bytes
2 : 256 - 65535+256
8 : up to 16 exa
*/
/* Compressed Block, format description
Block = Literal Section - Sequences Section
Prerequisite : size of (compressed) block, maximum size of regenerated data
1) Literal Section
1.1) Header : 1-5 bytes
flags: 2 bits
00 compressed by Huff0
01 unused
10 is Raw (uncompressed)
11 is Rle
Note : using 01 => Huff0 with precomputed table ?
Note : delta map ? => compressed ?
1.1.1) Huff0-compressed literal block : 3-5 bytes
srcSize < 1 KB => 3 bytes (2-2-10-10) => single stream
srcSize < 1 KB => 3 bytes (2-2-10-10)
srcSize < 16KB => 4 bytes (2-2-14-14)
else => 5 bytes (2-2-18-18)
big endian convention
1.1.2) Raw (uncompressed) literal block header : 1-3 bytes
size : 5 bits: (IS_RAW<<6) + (0<<4) + size
12 bits: (IS_RAW<<6) + (2<<4) + (size>>8)
size&255
20 bits: (IS_RAW<<6) + (3<<4) + (size>>16)
size>>8&255
size&255
1.1.3) Rle (repeated single byte) literal block header : 1-3 bytes
size : 5 bits: (IS_RLE<<6) + (0<<4) + size
12 bits: (IS_RLE<<6) + (2<<4) + (size>>8)
size&255
20 bits: (IS_RLE<<6) + (3<<4) + (size>>16)
size>>8&255
size&255
1.1.4) Huff0-compressed literal block, using precomputed CTables : 3-5 bytes
srcSize < 1 KB => 3 bytes (2-2-10-10) => single stream
srcSize < 1 KB => 3 bytes (2-2-10-10)
srcSize < 16KB => 4 bytes (2-2-14-14)
else => 5 bytes (2-2-18-18)
big endian convention
1- CTable available (stored into workspace ?)
2- Small input (fast heuristic ? Full comparison ? depend on clevel ?)
1.2) Literal block content
1.2.1) Huff0 block, using sizes from header
See Huff0 format
1.2.2) Huff0 block, using prepared table
1.2.3) Raw content
1.2.4) single byte
2) Sequences section
TO DO
*/
/** ZSTDv06_frameHeaderSize() :
* srcSize must be >= ZSTDv06_frameHeaderSize_min.
* @return : size of the Frame Header */
static size_t ZSTDv06_frameHeaderSize(const void* src, size_t srcSize)
{
if (srcSize < ZSTDv06_frameHeaderSize_min) return ERROR(srcSize_wrong);
{ U32 const fcsId = (((const BYTE*)src)[4]) >> 6;
return ZSTDv06_frameHeaderSize_min + ZSTDv06_fcs_fieldSize[fcsId]; }
}
/** ZSTDv06_getFrameParams() :
* decode Frame Header, or provide expected `srcSize`.
* @return : 0, `fparamsPtr` is correctly filled,
* >0, `srcSize` is too small, result is expected `srcSize`,
* or an error code, which can be tested using ZSTDv06_isError() */
size_t ZSTDv06_getFrameParams(ZSTDv06_frameParams* fparamsPtr, const void* src, size_t srcSize)
{
const BYTE* ip = (const BYTE*)src;
if (srcSize < ZSTDv06_frameHeaderSize_min) return ZSTDv06_frameHeaderSize_min;
if (MEM_readLE32(src) != ZSTDv06_MAGICNUMBER) return ERROR(prefix_unknown);
/* ensure there is enough `srcSize` to fully read/decode frame header */
{ size_t const fhsize = ZSTDv06_frameHeaderSize(src, srcSize);
if (srcSize < fhsize) return fhsize; }
memset(fparamsPtr, 0, sizeof(*fparamsPtr));
{ BYTE const frameDesc = ip[4];
fparamsPtr->windowLog = (frameDesc & 0xF) + ZSTDv06_WINDOWLOG_ABSOLUTEMIN;
if ((frameDesc & 0x20) != 0) return ERROR(frameParameter_unsupported); /* reserved 1 bit */
switch(frameDesc >> 6) /* fcsId */
{
default: /* impossible */
case 0 : fparamsPtr->frameContentSize = 0; break;
case 1 : fparamsPtr->frameContentSize = ip[5]; break;
case 2 : fparamsPtr->frameContentSize = MEM_readLE16(ip+5)+256; break;
case 3 : fparamsPtr->frameContentSize = MEM_readLE64(ip+5); break;
} }
return 0;
}
/** ZSTDv06_decodeFrameHeader() :
* `srcSize` must be the size provided by ZSTDv06_frameHeaderSize().
* @return : 0 if success, or an error code, which can be tested using ZSTDv06_isError() */
static size_t ZSTDv06_decodeFrameHeader(ZSTDv06_DCtx* zc, const void* src, size_t srcSize)
{
size_t const result = ZSTDv06_getFrameParams(&(zc->fParams), src, srcSize);
if ((MEM_32bits()) && (zc->fParams.windowLog > 25)) return ERROR(frameParameter_unsupported);
return result;
}
typedef struct
{
blockType_t blockType;
U32 origSize;
} blockProperties_t;
/*! ZSTDv06_getcBlockSize() :
* Provides the size of compressed block from block header `src` */
static size_t ZSTDv06_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
{
- const BYTE* const in = (const BYTE* const)src;
+ const BYTE* const in = (const BYTE*)src;
U32 cSize;
if (srcSize < ZSTDv06_blockHeaderSize) return ERROR(srcSize_wrong);
bpPtr->blockType = (blockType_t)((*in) >> 6);
cSize = in[2] + (in[1]<<8) + ((in[0] & 7)<<16);
bpPtr->origSize = (bpPtr->blockType == bt_rle) ? cSize : 0;
if (bpPtr->blockType == bt_end) return 0;
if (bpPtr->blockType == bt_rle) return 1;
return cSize;
}
static size_t ZSTDv06_copyRawBlock(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
if (dst==NULL) return ERROR(dstSize_tooSmall);
if (srcSize > dstCapacity) return ERROR(dstSize_tooSmall);
memcpy(dst, src, srcSize);
return srcSize;
}
/*! ZSTDv06_decodeLiteralsBlock() :
@return : nb of bytes read from src (< srcSize ) */
static size_t ZSTDv06_decodeLiteralsBlock(ZSTDv06_DCtx* dctx,
const void* src, size_t srcSize) /* note : srcSize < BLOCKSIZE */
{
const BYTE* const istart = (const BYTE*) src;
/* any compressed block with literals segment must be at least this size */
if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected);
switch(istart[0]>> 6)
{
case IS_HUF:
{ size_t litSize, litCSize, singleStream=0;
U32 lhSize = ((istart[0]) >> 4) & 3;
if (srcSize < 5) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for lhSize, + cSize (+nbSeq) */
switch(lhSize)
{
case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */
/* 2 - 2 - 10 - 10 */
lhSize=3;
singleStream = istart[0] & 16;
litSize = ((istart[0] & 15) << 6) + (istart[1] >> 2);
litCSize = ((istart[1] & 3) << 8) + istart[2];
break;
case 2:
/* 2 - 2 - 14 - 14 */
lhSize=4;
litSize = ((istart[0] & 15) << 10) + (istart[1] << 2) + (istart[2] >> 6);
litCSize = ((istart[2] & 63) << 8) + istart[3];
break;
case 3:
/* 2 - 2 - 18 - 18 */
lhSize=5;
litSize = ((istart[0] & 15) << 14) + (istart[1] << 6) + (istart[2] >> 2);
litCSize = ((istart[2] & 3) << 16) + (istart[3] << 8) + istart[4];
break;
}
if (litSize > ZSTDv06_BLOCKSIZE_MAX) return ERROR(corruption_detected);
if (litCSize + lhSize > srcSize) return ERROR(corruption_detected);
if (HUFv06_isError(singleStream ?
HUFv06_decompress1X2(dctx->litBuffer, litSize, istart+lhSize, litCSize) :
HUFv06_decompress (dctx->litBuffer, litSize, istart+lhSize, litCSize) ))
return ERROR(corruption_detected);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
return litCSize + lhSize;
}
case IS_PCH:
{ size_t litSize, litCSize;
U32 lhSize = ((istart[0]) >> 4) & 3;
if (lhSize != 1) /* only case supported for now : small litSize, single stream */
return ERROR(corruption_detected);
if (!dctx->flagRepeatTable)
return ERROR(dictionary_corrupted);
/* 2 - 2 - 10 - 10 */
lhSize=3;
litSize = ((istart[0] & 15) << 6) + (istart[1] >> 2);
litCSize = ((istart[1] & 3) << 8) + istart[2];
if (litCSize + lhSize > srcSize) return ERROR(corruption_detected);
{ size_t const errorCode = HUFv06_decompress1X4_usingDTable(dctx->litBuffer, litSize, istart+lhSize, litCSize, dctx->hufTableX4);
if (HUFv06_isError(errorCode)) return ERROR(corruption_detected);
}
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
return litCSize + lhSize;
}
case IS_RAW:
{ size_t litSize;
U32 lhSize = ((istart[0]) >> 4) & 3;
switch(lhSize)
{
case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */
lhSize=1;
litSize = istart[0] & 31;
break;
case 2:
litSize = ((istart[0] & 15) << 8) + istart[1];
break;
case 3:
litSize = ((istart[0] & 15) << 16) + (istart[1] << 8) + istart[2];
break;
}
if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) { /* risk reading beyond src buffer with wildcopy */
if (litSize+lhSize > srcSize) return ERROR(corruption_detected);
memcpy(dctx->litBuffer, istart+lhSize, litSize);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
return lhSize+litSize;
}
/* direct reference into compressed stream */
dctx->litPtr = istart+lhSize;
dctx->litSize = litSize;
return lhSize+litSize;
}
case IS_RLE:
{ size_t litSize;
U32 lhSize = ((istart[0]) >> 4) & 3;
switch(lhSize)
{
case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */
lhSize = 1;
litSize = istart[0] & 31;
break;
case 2:
litSize = ((istart[0] & 15) << 8) + istart[1];
break;
case 3:
litSize = ((istart[0] & 15) << 16) + (istart[1] << 8) + istart[2];
if (srcSize<4) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4 */
break;
}
if (litSize > ZSTDv06_BLOCKSIZE_MAX) return ERROR(corruption_detected);
memset(dctx->litBuffer, istart[lhSize], litSize + WILDCOPY_OVERLENGTH);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
return lhSize+1;
}
default:
return ERROR(corruption_detected); /* impossible */
}
}
/*! ZSTDv06_buildSeqTable() :
@return : nb bytes read from src,
or an error code if it fails, testable with ZSTDv06_isError()
*/
static size_t ZSTDv06_buildSeqTable(FSEv06_DTable* DTable, U32 type, U32 max, U32 maxLog,
const void* src, size_t srcSize,
const S16* defaultNorm, U32 defaultLog, U32 flagRepeatTable)
{
switch(type)
{
case FSEv06_ENCODING_RLE :
if (!srcSize) return ERROR(srcSize_wrong);
if ( (*(const BYTE*)src) > max) return ERROR(corruption_detected);
FSEv06_buildDTable_rle(DTable, *(const BYTE*)src); /* if *src > max, data is corrupted */
return 1;
case FSEv06_ENCODING_RAW :
FSEv06_buildDTable(DTable, defaultNorm, max, defaultLog);
return 0;
case FSEv06_ENCODING_STATIC:
if (!flagRepeatTable) return ERROR(corruption_detected);
return 0;
default : /* impossible */
case FSEv06_ENCODING_DYNAMIC :
{ U32 tableLog;
S16 norm[MaxSeq+1];
size_t const headerSize = FSEv06_readNCount(norm, &max, &tableLog, src, srcSize);
if (FSEv06_isError(headerSize)) return ERROR(corruption_detected);
if (tableLog > maxLog) return ERROR(corruption_detected);
FSEv06_buildDTable(DTable, norm, max, tableLog);
return headerSize;
} }
}
static size_t ZSTDv06_decodeSeqHeaders(int* nbSeqPtr,
FSEv06_DTable* DTableLL, FSEv06_DTable* DTableML, FSEv06_DTable* DTableOffb, U32 flagRepeatTable,
const void* src, size_t srcSize)
{
- const BYTE* const istart = (const BYTE* const)src;
+ const BYTE* const istart = (const BYTE*)src;
const BYTE* const iend = istart + srcSize;
const BYTE* ip = istart;
/* check */
if (srcSize < MIN_SEQUENCES_SIZE) return ERROR(srcSize_wrong);
/* SeqHead */
{ int nbSeq = *ip++;
if (!nbSeq) { *nbSeqPtr=0; return 1; }
if (nbSeq > 0x7F) {
if (nbSeq == 0xFF) {
if (ip+2 > iend) return ERROR(srcSize_wrong);
nbSeq = MEM_readLE16(ip) + LONGNBSEQ, ip+=2;
} else {
if (ip >= iend) return ERROR(srcSize_wrong);
nbSeq = ((nbSeq-0x80)<<8) + *ip++;
}
}
*nbSeqPtr = nbSeq;
}
/* FSE table descriptors */
if (ip + 4 > iend) return ERROR(srcSize_wrong); /* min : header byte + all 3 are "raw", hence no header, but at least xxLog bits per type */
{ U32 const LLtype = *ip >> 6;
U32 const Offtype = (*ip >> 4) & 3;
U32 const MLtype = (*ip >> 2) & 3;
ip++;
/* Build DTables */
{ size_t const bhSize = ZSTDv06_buildSeqTable(DTableLL, LLtype, MaxLL, LLFSELog, ip, iend-ip, LL_defaultNorm, LL_defaultNormLog, flagRepeatTable);
if (ZSTDv06_isError(bhSize)) return ERROR(corruption_detected);
ip += bhSize;
}
{ size_t const bhSize = ZSTDv06_buildSeqTable(DTableOffb, Offtype, MaxOff, OffFSELog, ip, iend-ip, OF_defaultNorm, OF_defaultNormLog, flagRepeatTable);
if (ZSTDv06_isError(bhSize)) return ERROR(corruption_detected);
ip += bhSize;
}
{ size_t const bhSize = ZSTDv06_buildSeqTable(DTableML, MLtype, MaxML, MLFSELog, ip, iend-ip, ML_defaultNorm, ML_defaultNormLog, flagRepeatTable);
if (ZSTDv06_isError(bhSize)) return ERROR(corruption_detected);
ip += bhSize;
} }
return ip-istart;
}
typedef struct {
size_t litLength;
size_t matchLength;
size_t offset;
} seq_t;
typedef struct {
BITv06_DStream_t DStream;
FSEv06_DState_t stateLL;
FSEv06_DState_t stateOffb;
FSEv06_DState_t stateML;
size_t prevOffset[ZSTDv06_REP_INIT];
} seqState_t;
static void ZSTDv06_decodeSequence(seq_t* seq, seqState_t* seqState)
{
/* Literal length */
U32 const llCode = FSEv06_peekSymbol(&(seqState->stateLL));
U32 const mlCode = FSEv06_peekSymbol(&(seqState->stateML));
U32 const ofCode = FSEv06_peekSymbol(&(seqState->stateOffb)); /* <= maxOff, by table construction */
U32 const llBits = LL_bits[llCode];
U32 const mlBits = ML_bits[mlCode];
U32 const ofBits = ofCode;
U32 const totalBits = llBits+mlBits+ofBits;
static const U32 LL_base[MaxLL+1] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 18, 20, 22, 24, 28, 32, 40, 48, 64, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000,
0x2000, 0x4000, 0x8000, 0x10000 };
static const U32 ML_base[MaxML+1] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 34, 36, 38, 40, 44, 48, 56, 64, 80, 96, 0x80, 0x100, 0x200, 0x400, 0x800,
0x1000, 0x2000, 0x4000, 0x8000, 0x10000 };
static const U32 OF_base[MaxOff+1] = {
0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F,
0xFF, 0x1FF, 0x3FF, 0x7FF, 0xFFF, 0x1FFF, 0x3FFF, 0x7FFF,
0xFFFF, 0x1FFFF, 0x3FFFF, 0x7FFFF, 0xFFFFF, 0x1FFFFF, 0x3FFFFF, 0x7FFFFF,
0xFFFFFF, 0x1FFFFFF, 0x3FFFFFF, /*fake*/ 1, 1 };
/* sequence */
{ size_t offset;
if (!ofCode)
offset = 0;
else {
offset = OF_base[ofCode] + BITv06_readBits(&(seqState->DStream), ofBits); /* <= 26 bits */
if (MEM_32bits()) BITv06_reloadDStream(&(seqState->DStream));
}
if (offset < ZSTDv06_REP_NUM) {
if (llCode == 0 && offset <= 1) offset = 1-offset;
if (offset != 0) {
size_t temp = seqState->prevOffset[offset];
if (offset != 1) {
seqState->prevOffset[2] = seqState->prevOffset[1];
}
seqState->prevOffset[1] = seqState->prevOffset[0];
seqState->prevOffset[0] = offset = temp;
} else {
offset = seqState->prevOffset[0];
}
} else {
offset -= ZSTDv06_REP_MOVE;
seqState->prevOffset[2] = seqState->prevOffset[1];
seqState->prevOffset[1] = seqState->prevOffset[0];
seqState->prevOffset[0] = offset;
}
seq->offset = offset;
}
seq->matchLength = ML_base[mlCode] + MINMATCH + ((mlCode>31) ? BITv06_readBits(&(seqState->DStream), mlBits) : 0); /* <= 16 bits */
if (MEM_32bits() && (mlBits+llBits>24)) BITv06_reloadDStream(&(seqState->DStream));
seq->litLength = LL_base[llCode] + ((llCode>15) ? BITv06_readBits(&(seqState->DStream), llBits) : 0); /* <= 16 bits */
if (MEM_32bits() ||
(totalBits > 64 - 7 - (LLFSELog+MLFSELog+OffFSELog)) ) BITv06_reloadDStream(&(seqState->DStream));
/* ANS state update */
FSEv06_updateState(&(seqState->stateLL), &(seqState->DStream)); /* <= 9 bits */
FSEv06_updateState(&(seqState->stateML), &(seqState->DStream)); /* <= 9 bits */
if (MEM_32bits()) BITv06_reloadDStream(&(seqState->DStream)); /* <= 18 bits */
FSEv06_updateState(&(seqState->stateOffb), &(seqState->DStream)); /* <= 8 bits */
}
static size_t ZSTDv06_execSequence(BYTE* op,
BYTE* const oend, seq_t sequence,
const BYTE** litPtr, const BYTE* const litLimit,
const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd)
{
BYTE* const oLitEnd = op + sequence.litLength;
size_t const sequenceLength = sequence.litLength + sequence.matchLength;
BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
BYTE* const oend_8 = oend-8;
const BYTE* const iLitEnd = *litPtr + sequence.litLength;
const BYTE* match = oLitEnd - sequence.offset;
/* check */
if (oLitEnd > oend_8) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of 8 from oend */
if (oMatchEnd > oend) return ERROR(dstSize_tooSmall); /* overwrite beyond dst buffer */
if (iLitEnd > litLimit) return ERROR(corruption_detected); /* over-read beyond lit buffer */
/* copy Literals */
ZSTDv06_wildcopy(op, *litPtr, sequence.litLength); /* note : oLitEnd <= oend-8 : no risk of overwrite beyond oend */
op = oLitEnd;
*litPtr = iLitEnd; /* update for next sequence */
/* copy Match */
if (sequence.offset > (size_t)(oLitEnd - base)) {
/* offset beyond prefix */
if (sequence.offset > (size_t)(oLitEnd - vBase)) return ERROR(corruption_detected);
match = dictEnd - (base-match);
if (match + sequence.matchLength <= dictEnd) {
memmove(oLitEnd, match, sequence.matchLength);
return sequenceLength;
}
/* span extDict & currentPrefixSegment */
{ size_t const length1 = dictEnd - match;
memmove(oLitEnd, match, length1);
op = oLitEnd + length1;
sequence.matchLength -= length1;
match = base;
if (op > oend_8 || sequence.matchLength < MINMATCH) {
while (op < oMatchEnd) *op++ = *match++;
return sequenceLength;
}
} }
/* Requirement: op <= oend_8 */
/* match within prefix */
if (sequence.offset < 8) {
/* close range match, overlap */
static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
int const sub2 = dec64table[sequence.offset];
op[0] = match[0];
op[1] = match[1];
op[2] = match[2];
op[3] = match[3];
match += dec32table[sequence.offset];
ZSTDv06_copy4(op+4, match);
match -= sub2;
} else {
ZSTDv06_copy8(op, match);
}
op += 8; match += 8;
if (oMatchEnd > oend-(16-MINMATCH)) {
if (op < oend_8) {
ZSTDv06_wildcopy(op, match, oend_8 - op);
match += oend_8 - op;
op = oend_8;
}
while (op < oMatchEnd) *op++ = *match++;
} else {
ZSTDv06_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */
}
return sequenceLength;
}
static size_t ZSTDv06_decompressSequences(
ZSTDv06_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize)
{
const BYTE* ip = (const BYTE*)seqStart;
const BYTE* const iend = ip + seqSize;
- BYTE* const ostart = (BYTE* const)dst;
+ BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + maxDstSize;
BYTE* op = ostart;
const BYTE* litPtr = dctx->litPtr;
const BYTE* const litEnd = litPtr + dctx->litSize;
FSEv06_DTable* DTableLL = dctx->LLTable;
FSEv06_DTable* DTableML = dctx->MLTable;
FSEv06_DTable* DTableOffb = dctx->OffTable;
const BYTE* const base = (const BYTE*) (dctx->base);
const BYTE* const vBase = (const BYTE*) (dctx->vBase);
const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
int nbSeq;
/* Build Decoding Tables */
{ size_t const seqHSize = ZSTDv06_decodeSeqHeaders(&nbSeq, DTableLL, DTableML, DTableOffb, dctx->flagRepeatTable, ip, seqSize);
if (ZSTDv06_isError(seqHSize)) return seqHSize;
ip += seqHSize;
dctx->flagRepeatTable = 0;
}
/* Regen sequences */
if (nbSeq) {
seq_t sequence;
seqState_t seqState;
memset(&sequence, 0, sizeof(sequence));
sequence.offset = REPCODE_STARTVALUE;
{ U32 i; for (i=0; i<ZSTDv06_REP_INIT; i++) seqState.prevOffset[i] = REPCODE_STARTVALUE; }
{ size_t const errorCode = BITv06_initDStream(&(seqState.DStream), ip, iend-ip);
if (ERR_isError(errorCode)) return ERROR(corruption_detected); }
FSEv06_initDState(&(seqState.stateLL), &(seqState.DStream), DTableLL);
FSEv06_initDState(&(seqState.stateOffb), &(seqState.DStream), DTableOffb);
FSEv06_initDState(&(seqState.stateML), &(seqState.DStream), DTableML);
for ( ; (BITv06_reloadDStream(&(seqState.DStream)) <= BITv06_DStream_completed) && nbSeq ; ) {
nbSeq--;
ZSTDv06_decodeSequence(&sequence, &seqState);
#if 0 /* debug */
static BYTE* start = NULL;
if (start==NULL) start = op;
size_t pos = (size_t)(op-start);
if ((pos >= 5810037) && (pos < 5810400))
printf("Dpos %6u :%5u literals & match %3u bytes at distance %6u \n",
pos, (U32)sequence.litLength, (U32)sequence.matchLength, (U32)sequence.offset);
#endif
{ size_t const oneSeqSize = ZSTDv06_execSequence(op, oend, sequence, &litPtr, litEnd, base, vBase, dictEnd);
if (ZSTDv06_isError(oneSeqSize)) return oneSeqSize;
op += oneSeqSize;
} }
/* check if reached exact end */
if (nbSeq) return ERROR(corruption_detected);
}
/* last literal segment */
{ size_t const lastLLSize = litEnd - litPtr;
if (litPtr > litEnd) return ERROR(corruption_detected); /* too many literals already used */
if (op+lastLLSize > oend) return ERROR(dstSize_tooSmall);
if (lastLLSize > 0) {
memcpy(op, litPtr, lastLLSize);
op += lastLLSize;
}
}
return op-ostart;
}
static void ZSTDv06_checkContinuity(ZSTDv06_DCtx* dctx, const void* dst)
{
if (dst != dctx->previousDstEnd) { /* not contiguous */
dctx->dictEnd = dctx->previousDstEnd;
dctx->vBase = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base));
dctx->base = dst;
dctx->previousDstEnd = dst;
}
}
static size_t ZSTDv06_decompressBlock_internal(ZSTDv06_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{ /* blockType == blockCompressed */
const BYTE* ip = (const BYTE*)src;
if (srcSize >= ZSTDv06_BLOCKSIZE_MAX) return ERROR(srcSize_wrong);
/* Decode literals sub-block */
{ size_t const litCSize = ZSTDv06_decodeLiteralsBlock(dctx, src, srcSize);
if (ZSTDv06_isError(litCSize)) return litCSize;
ip += litCSize;
srcSize -= litCSize;
}
return ZSTDv06_decompressSequences(dctx, dst, dstCapacity, ip, srcSize);
}
size_t ZSTDv06_decompressBlock(ZSTDv06_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
ZSTDv06_checkContinuity(dctx, dst);
return ZSTDv06_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize);
}
/*! ZSTDv06_decompressFrame() :
* `dctx` must be properly initialized */
static size_t ZSTDv06_decompressFrame(ZSTDv06_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
const BYTE* ip = (const BYTE*)src;
const BYTE* const iend = ip + srcSize;
- BYTE* const ostart = (BYTE* const)dst;
+ BYTE* const ostart = (BYTE*)dst;
BYTE* op = ostart;
BYTE* const oend = ostart + dstCapacity;
size_t remainingSize = srcSize;
blockProperties_t blockProperties = { bt_compressed, 0 };
/* check */
if (srcSize < ZSTDv06_frameHeaderSize_min+ZSTDv06_blockHeaderSize) return ERROR(srcSize_wrong);
/* Frame Header */
{ size_t const frameHeaderSize = ZSTDv06_frameHeaderSize(src, ZSTDv06_frameHeaderSize_min);
if (ZSTDv06_isError(frameHeaderSize)) return frameHeaderSize;
if (srcSize < frameHeaderSize+ZSTDv06_blockHeaderSize) return ERROR(srcSize_wrong);
if (ZSTDv06_decodeFrameHeader(dctx, src, frameHeaderSize)) return ERROR(corruption_detected);
ip += frameHeaderSize; remainingSize -= frameHeaderSize;
}
/* Loop on each block */
while (1) {
size_t decodedSize=0;
size_t const cBlockSize = ZSTDv06_getcBlockSize(ip, iend-ip, &blockProperties);
if (ZSTDv06_isError(cBlockSize)) return cBlockSize;
ip += ZSTDv06_blockHeaderSize;
remainingSize -= ZSTDv06_blockHeaderSize;
if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);
switch(blockProperties.blockType)
{
case bt_compressed:
decodedSize = ZSTDv06_decompressBlock_internal(dctx, op, oend-op, ip, cBlockSize);
break;
case bt_raw :
decodedSize = ZSTDv06_copyRawBlock(op, oend-op, ip, cBlockSize);
break;
case bt_rle :
return ERROR(GENERIC); /* not yet supported */
break;
case bt_end :
/* end of frame */
if (remainingSize) return ERROR(srcSize_wrong);
break;
default:
return ERROR(GENERIC); /* impossible */
}
if (cBlockSize == 0) break; /* bt_end */
if (ZSTDv06_isError(decodedSize)) return decodedSize;
op += decodedSize;
ip += cBlockSize;
remainingSize -= cBlockSize;
}
return op-ostart;
}
size_t ZSTDv06_decompress_usingPreparedDCtx(ZSTDv06_DCtx* dctx, const ZSTDv06_DCtx* refDCtx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
ZSTDv06_copyDCtx(dctx, refDCtx);
ZSTDv06_checkContinuity(dctx, dst);
return ZSTDv06_decompressFrame(dctx, dst, dstCapacity, src, srcSize);
}
size_t ZSTDv06_decompress_usingDict(ZSTDv06_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict, size_t dictSize)
{
ZSTDv06_decompressBegin_usingDict(dctx, dict, dictSize);
ZSTDv06_checkContinuity(dctx, dst);
return ZSTDv06_decompressFrame(dctx, dst, dstCapacity, src, srcSize);
}
size_t ZSTDv06_decompressDCtx(ZSTDv06_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
return ZSTDv06_decompress_usingDict(dctx, dst, dstCapacity, src, srcSize, NULL, 0);
}
size_t ZSTDv06_decompress(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
#if defined(ZSTDv06_HEAPMODE) && (ZSTDv06_HEAPMODE==1)
size_t regenSize;
ZSTDv06_DCtx* dctx = ZSTDv06_createDCtx();
if (dctx==NULL) return ERROR(memory_allocation);
regenSize = ZSTDv06_decompressDCtx(dctx, dst, dstCapacity, src, srcSize);
ZSTDv06_freeDCtx(dctx);
return regenSize;
#else /* stack mode */
ZSTDv06_DCtx dctx;
return ZSTDv06_decompressDCtx(&dctx, dst, dstCapacity, src, srcSize);
#endif
}
/* ZSTD_errorFrameSizeInfoLegacy() :
assumes `cSize` and `dBound` are _not_ NULL */
static void ZSTD_errorFrameSizeInfoLegacy(size_t* cSize, unsigned long long* dBound, size_t ret)
{
*cSize = ret;
*dBound = ZSTD_CONTENTSIZE_ERROR;
}
void ZSTDv06_findFrameSizeInfoLegacy(const void *src, size_t srcSize, size_t* cSize, unsigned long long* dBound)
{
const BYTE* ip = (const BYTE*)src;
size_t remainingSize = srcSize;
size_t nbBlocks = 0;
blockProperties_t blockProperties = { bt_compressed, 0 };
/* Frame Header */
{ size_t const frameHeaderSize = ZSTDv06_frameHeaderSize(src, srcSize);
if (ZSTDv06_isError(frameHeaderSize)) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, frameHeaderSize);
return;
}
if (MEM_readLE32(src) != ZSTDv06_MAGICNUMBER) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(prefix_unknown));
return;
}
if (srcSize < frameHeaderSize+ZSTDv06_blockHeaderSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
ip += frameHeaderSize; remainingSize -= frameHeaderSize;
}
/* Loop on each block */
while (1) {
size_t const cBlockSize = ZSTDv06_getcBlockSize(ip, remainingSize, &blockProperties);
if (ZSTDv06_isError(cBlockSize)) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, cBlockSize);
return;
}
ip += ZSTDv06_blockHeaderSize;
remainingSize -= ZSTDv06_blockHeaderSize;
if (cBlockSize > remainingSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
if (cBlockSize == 0) break; /* bt_end */
ip += cBlockSize;
remainingSize -= cBlockSize;
nbBlocks++;
}
*cSize = ip - (const BYTE*)src;
*dBound = nbBlocks * ZSTDv06_BLOCKSIZE_MAX;
}
/*_******************************
* Streaming Decompression API
********************************/
size_t ZSTDv06_nextSrcSizeToDecompress(ZSTDv06_DCtx* dctx)
{
return dctx->expected;
}
size_t ZSTDv06_decompressContinue(ZSTDv06_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
/* Sanity check */
if (srcSize != dctx->expected) return ERROR(srcSize_wrong);
if (dstCapacity) ZSTDv06_checkContinuity(dctx, dst);
/* Decompress : frame header; part 1 */
switch (dctx->stage)
{
case ZSTDds_getFrameHeaderSize :
if (srcSize != ZSTDv06_frameHeaderSize_min) return ERROR(srcSize_wrong); /* impossible */
dctx->headerSize = ZSTDv06_frameHeaderSize(src, ZSTDv06_frameHeaderSize_min);
if (ZSTDv06_isError(dctx->headerSize)) return dctx->headerSize;
memcpy(dctx->headerBuffer, src, ZSTDv06_frameHeaderSize_min);
if (dctx->headerSize > ZSTDv06_frameHeaderSize_min) {
dctx->expected = dctx->headerSize - ZSTDv06_frameHeaderSize_min;
dctx->stage = ZSTDds_decodeFrameHeader;
return 0;
}
dctx->expected = 0; /* not necessary to copy more */
/* fall-through */
case ZSTDds_decodeFrameHeader:
{ size_t result;
memcpy(dctx->headerBuffer + ZSTDv06_frameHeaderSize_min, src, dctx->expected);
result = ZSTDv06_decodeFrameHeader(dctx, dctx->headerBuffer, dctx->headerSize);
if (ZSTDv06_isError(result)) return result;
dctx->expected = ZSTDv06_blockHeaderSize;
dctx->stage = ZSTDds_decodeBlockHeader;
return 0;
}
case ZSTDds_decodeBlockHeader:
{ blockProperties_t bp;
size_t const cBlockSize = ZSTDv06_getcBlockSize(src, ZSTDv06_blockHeaderSize, &bp);
if (ZSTDv06_isError(cBlockSize)) return cBlockSize;
if (bp.blockType == bt_end) {
dctx->expected = 0;
dctx->stage = ZSTDds_getFrameHeaderSize;
} else {
dctx->expected = cBlockSize;
dctx->bType = bp.blockType;
dctx->stage = ZSTDds_decompressBlock;
}
return 0;
}
case ZSTDds_decompressBlock:
{ size_t rSize;
switch(dctx->bType)
{
case bt_compressed:
rSize = ZSTDv06_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize);
break;
case bt_raw :
rSize = ZSTDv06_copyRawBlock(dst, dstCapacity, src, srcSize);
break;
case bt_rle :
return ERROR(GENERIC); /* not yet handled */
break;
case bt_end : /* should never happen (filtered at phase 1) */
rSize = 0;
break;
default:
return ERROR(GENERIC); /* impossible */
}
dctx->stage = ZSTDds_decodeBlockHeader;
dctx->expected = ZSTDv06_blockHeaderSize;
dctx->previousDstEnd = (char*)dst + rSize;
return rSize;
}
default:
return ERROR(GENERIC); /* impossible */
}
}
static void ZSTDv06_refDictContent(ZSTDv06_DCtx* dctx, const void* dict, size_t dictSize)
{
dctx->dictEnd = dctx->previousDstEnd;
dctx->vBase = (const char*)dict - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base));
dctx->base = dict;
dctx->previousDstEnd = (const char*)dict + dictSize;
}
static size_t ZSTDv06_loadEntropy(ZSTDv06_DCtx* dctx, const void* dict, size_t dictSize)
{
size_t hSize, offcodeHeaderSize, matchlengthHeaderSize, litlengthHeaderSize;
hSize = HUFv06_readDTableX4(dctx->hufTableX4, dict, dictSize);
if (HUFv06_isError(hSize)) return ERROR(dictionary_corrupted);
dict = (const char*)dict + hSize;
dictSize -= hSize;
{ short offcodeNCount[MaxOff+1];
U32 offcodeMaxValue=MaxOff, offcodeLog;
offcodeHeaderSize = FSEv06_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dict, dictSize);
if (FSEv06_isError(offcodeHeaderSize)) return ERROR(dictionary_corrupted);
if (offcodeLog > OffFSELog) return ERROR(dictionary_corrupted);
{ size_t const errorCode = FSEv06_buildDTable(dctx->OffTable, offcodeNCount, offcodeMaxValue, offcodeLog);
if (FSEv06_isError(errorCode)) return ERROR(dictionary_corrupted); }
dict = (const char*)dict + offcodeHeaderSize;
dictSize -= offcodeHeaderSize;
}
{ short matchlengthNCount[MaxML+1];
unsigned matchlengthMaxValue = MaxML, matchlengthLog;
matchlengthHeaderSize = FSEv06_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dict, dictSize);
if (FSEv06_isError(matchlengthHeaderSize)) return ERROR(dictionary_corrupted);
if (matchlengthLog > MLFSELog) return ERROR(dictionary_corrupted);
{ size_t const errorCode = FSEv06_buildDTable(dctx->MLTable, matchlengthNCount, matchlengthMaxValue, matchlengthLog);
if (FSEv06_isError(errorCode)) return ERROR(dictionary_corrupted); }
dict = (const char*)dict + matchlengthHeaderSize;
dictSize -= matchlengthHeaderSize;
}
{ short litlengthNCount[MaxLL+1];
unsigned litlengthMaxValue = MaxLL, litlengthLog;
litlengthHeaderSize = FSEv06_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dict, dictSize);
if (FSEv06_isError(litlengthHeaderSize)) return ERROR(dictionary_corrupted);
if (litlengthLog > LLFSELog) return ERROR(dictionary_corrupted);
{ size_t const errorCode = FSEv06_buildDTable(dctx->LLTable, litlengthNCount, litlengthMaxValue, litlengthLog);
if (FSEv06_isError(errorCode)) return ERROR(dictionary_corrupted); }
}
dctx->flagRepeatTable = 1;
return hSize + offcodeHeaderSize + matchlengthHeaderSize + litlengthHeaderSize;
}
static size_t ZSTDv06_decompress_insertDictionary(ZSTDv06_DCtx* dctx, const void* dict, size_t dictSize)
{
size_t eSize;
U32 const magic = MEM_readLE32(dict);
if (magic != ZSTDv06_DICT_MAGIC) {
/* pure content mode */
ZSTDv06_refDictContent(dctx, dict, dictSize);
return 0;
}
/* load entropy tables */
dict = (const char*)dict + 4;
dictSize -= 4;
eSize = ZSTDv06_loadEntropy(dctx, dict, dictSize);
if (ZSTDv06_isError(eSize)) return ERROR(dictionary_corrupted);
/* reference dictionary content */
dict = (const char*)dict + eSize;
dictSize -= eSize;
ZSTDv06_refDictContent(dctx, dict, dictSize);
return 0;
}
size_t ZSTDv06_decompressBegin_usingDict(ZSTDv06_DCtx* dctx, const void* dict, size_t dictSize)
{
{ size_t const errorCode = ZSTDv06_decompressBegin(dctx);
if (ZSTDv06_isError(errorCode)) return errorCode; }
if (dict && dictSize) {
size_t const errorCode = ZSTDv06_decompress_insertDictionary(dctx, dict, dictSize);
if (ZSTDv06_isError(errorCode)) return ERROR(dictionary_corrupted);
}
return 0;
}
/*
Buffered version of Zstd compression library
Copyright (C) 2015-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- zstd homepage : http://www.zstd.net/
*/
/*-***************************************************************************
* Streaming decompression howto
*
* A ZBUFFv06_DCtx object is required to track streaming operations.
* Use ZBUFFv06_createDCtx() and ZBUFFv06_freeDCtx() to create/release resources.
* Use ZBUFFv06_decompressInit() to start a new decompression operation,
* or ZBUFFv06_decompressInitDictionary() if decompression requires a dictionary.
* Note that ZBUFFv06_DCtx objects can be re-init multiple times.
*
* Use ZBUFFv06_decompressContinue() repetitively to consume your input.
* *srcSizePtr and *dstCapacityPtr can be any size.
* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
* The content of @dst will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters, or change @dst.
* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to help latency),
* or 0 when a frame is completely decoded,
* or an error code, which can be tested using ZBUFFv06_isError().
*
* Hint : recommended buffer sizes (not compulsory) : ZBUFFv06_recommendedDInSize() and ZBUFFv06_recommendedDOutSize()
* output : ZBUFFv06_recommendedDOutSize==128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded.
* input : ZBUFFv06_recommendedDInSize == 128KB + 3;
* just follow indications from ZBUFFv06_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
* *******************************************************************************/
typedef enum { ZBUFFds_init, ZBUFFds_loadHeader,
ZBUFFds_read, ZBUFFds_load, ZBUFFds_flush } ZBUFFv06_dStage;
/* *** Resource management *** */
struct ZBUFFv06_DCtx_s {
ZSTDv06_DCtx* zd;
ZSTDv06_frameParams fParams;
ZBUFFv06_dStage stage;
char* inBuff;
size_t inBuffSize;
size_t inPos;
char* outBuff;
size_t outBuffSize;
size_t outStart;
size_t outEnd;
size_t blockSize;
BYTE headerBuffer[ZSTDv06_FRAMEHEADERSIZE_MAX];
size_t lhSize;
}; /* typedef'd to ZBUFFv06_DCtx within "zstd_buffered.h" */
ZBUFFv06_DCtx* ZBUFFv06_createDCtx(void)
{
ZBUFFv06_DCtx* zbd = (ZBUFFv06_DCtx*)malloc(sizeof(ZBUFFv06_DCtx));
if (zbd==NULL) return NULL;
memset(zbd, 0, sizeof(*zbd));
zbd->zd = ZSTDv06_createDCtx();
zbd->stage = ZBUFFds_init;
return zbd;
}
size_t ZBUFFv06_freeDCtx(ZBUFFv06_DCtx* zbd)
{
if (zbd==NULL) return 0; /* support free on null */
ZSTDv06_freeDCtx(zbd->zd);
free(zbd->inBuff);
free(zbd->outBuff);
free(zbd);
return 0;
}
/* *** Initialization *** */
size_t ZBUFFv06_decompressInitDictionary(ZBUFFv06_DCtx* zbd, const void* dict, size_t dictSize)
{
zbd->stage = ZBUFFds_loadHeader;
zbd->lhSize = zbd->inPos = zbd->outStart = zbd->outEnd = 0;
return ZSTDv06_decompressBegin_usingDict(zbd->zd, dict, dictSize);
}
size_t ZBUFFv06_decompressInit(ZBUFFv06_DCtx* zbd)
{
return ZBUFFv06_decompressInitDictionary(zbd, NULL, 0);
}
MEM_STATIC size_t ZBUFFv06_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
size_t length = MIN(dstCapacity, srcSize);
if (length > 0) {
memcpy(dst, src, length);
}
return length;
}
/* *** Decompression *** */
size_t ZBUFFv06_decompressContinue(ZBUFFv06_DCtx* zbd,
void* dst, size_t* dstCapacityPtr,
const void* src, size_t* srcSizePtr)
{
const char* const istart = (const char*)src;
const char* const iend = istart + *srcSizePtr;
const char* ip = istart;
char* const ostart = (char*)dst;
char* const oend = ostart + *dstCapacityPtr;
char* op = ostart;
U32 notDone = 1;
while (notDone) {
switch(zbd->stage)
{
case ZBUFFds_init :
return ERROR(init_missing);
case ZBUFFds_loadHeader :
{ size_t const hSize = ZSTDv06_getFrameParams(&(zbd->fParams), zbd->headerBuffer, zbd->lhSize);
if (hSize != 0) {
size_t const toLoad = hSize - zbd->lhSize; /* if hSize!=0, hSize > zbd->lhSize */
if (ZSTDv06_isError(hSize)) return hSize;
if (toLoad > (size_t)(iend-ip)) { /* not enough input to load full header */
memcpy(zbd->headerBuffer + zbd->lhSize, ip, iend-ip);
zbd->lhSize += iend-ip;
*dstCapacityPtr = 0;
return (hSize - zbd->lhSize) + ZSTDv06_blockHeaderSize; /* remaining header bytes + next block header */
}
memcpy(zbd->headerBuffer + zbd->lhSize, ip, toLoad); zbd->lhSize = hSize; ip += toLoad;
break;
} }
/* Consume header */
{ size_t const h1Size = ZSTDv06_nextSrcSizeToDecompress(zbd->zd); /* == ZSTDv06_frameHeaderSize_min */
size_t const h1Result = ZSTDv06_decompressContinue(zbd->zd, NULL, 0, zbd->headerBuffer, h1Size);
if (ZSTDv06_isError(h1Result)) return h1Result;
if (h1Size < zbd->lhSize) { /* long header */
size_t const h2Size = ZSTDv06_nextSrcSizeToDecompress(zbd->zd);
size_t const h2Result = ZSTDv06_decompressContinue(zbd->zd, NULL, 0, zbd->headerBuffer+h1Size, h2Size);
if (ZSTDv06_isError(h2Result)) return h2Result;
} }
/* Frame header instruct buffer sizes */
{ size_t const blockSize = MIN(1 << zbd->fParams.windowLog, ZSTDv06_BLOCKSIZE_MAX);
zbd->blockSize = blockSize;
if (zbd->inBuffSize < blockSize) {
free(zbd->inBuff);
zbd->inBuffSize = blockSize;
zbd->inBuff = (char*)malloc(blockSize);
if (zbd->inBuff == NULL) return ERROR(memory_allocation);
}
{ size_t const neededOutSize = ((size_t)1 << zbd->fParams.windowLog) + blockSize + WILDCOPY_OVERLENGTH * 2;
if (zbd->outBuffSize < neededOutSize) {
free(zbd->outBuff);
zbd->outBuffSize = neededOutSize;
zbd->outBuff = (char*)malloc(neededOutSize);
if (zbd->outBuff == NULL) return ERROR(memory_allocation);
} } }
zbd->stage = ZBUFFds_read;
/* fall-through */
case ZBUFFds_read:
{ size_t const neededInSize = ZSTDv06_nextSrcSizeToDecompress(zbd->zd);
if (neededInSize==0) { /* end of frame */
zbd->stage = ZBUFFds_init;
notDone = 0;
break;
}
if ((size_t)(iend-ip) >= neededInSize) { /* decode directly from src */
size_t const decodedSize = ZSTDv06_decompressContinue(zbd->zd,
zbd->outBuff + zbd->outStart, zbd->outBuffSize - zbd->outStart,
ip, neededInSize);
if (ZSTDv06_isError(decodedSize)) return decodedSize;
ip += neededInSize;
if (!decodedSize) break; /* this was just a header */
zbd->outEnd = zbd->outStart + decodedSize;
zbd->stage = ZBUFFds_flush;
break;
}
if (ip==iend) { notDone = 0; break; } /* no more input */
zbd->stage = ZBUFFds_load;
}
/* fall-through */
case ZBUFFds_load:
{ size_t const neededInSize = ZSTDv06_nextSrcSizeToDecompress(zbd->zd);
size_t const toLoad = neededInSize - zbd->inPos; /* should always be <= remaining space within inBuff */
size_t loadedSize;
if (toLoad > zbd->inBuffSize - zbd->inPos) return ERROR(corruption_detected); /* should never happen */
loadedSize = ZBUFFv06_limitCopy(zbd->inBuff + zbd->inPos, toLoad, ip, iend-ip);
ip += loadedSize;
zbd->inPos += loadedSize;
if (loadedSize < toLoad) { notDone = 0; break; } /* not enough input, wait for more */
/* decode loaded input */
{ size_t const decodedSize = ZSTDv06_decompressContinue(zbd->zd,
zbd->outBuff + zbd->outStart, zbd->outBuffSize - zbd->outStart,
zbd->inBuff, neededInSize);
if (ZSTDv06_isError(decodedSize)) return decodedSize;
zbd->inPos = 0; /* input is consumed */
if (!decodedSize) { zbd->stage = ZBUFFds_read; break; } /* this was just a header */
zbd->outEnd = zbd->outStart + decodedSize;
zbd->stage = ZBUFFds_flush;
/* break; */ /* ZBUFFds_flush follows */
}
}
/* fall-through */
case ZBUFFds_flush:
{ size_t const toFlushSize = zbd->outEnd - zbd->outStart;
size_t const flushedSize = ZBUFFv06_limitCopy(op, oend-op, zbd->outBuff + zbd->outStart, toFlushSize);
op += flushedSize;
zbd->outStart += flushedSize;
if (flushedSize == toFlushSize) {
zbd->stage = ZBUFFds_read;
if (zbd->outStart + zbd->blockSize > zbd->outBuffSize)
zbd->outStart = zbd->outEnd = 0;
break;
}
/* cannot flush everything */
notDone = 0;
break;
}
default: return ERROR(GENERIC); /* impossible */
} }
/* result */
*srcSizePtr = ip-istart;
*dstCapacityPtr = op-ostart;
{ size_t nextSrcSizeHint = ZSTDv06_nextSrcSizeToDecompress(zbd->zd);
if (nextSrcSizeHint > ZSTDv06_blockHeaderSize) nextSrcSizeHint+= ZSTDv06_blockHeaderSize; /* get following block header too */
nextSrcSizeHint -= zbd->inPos; /* already loaded*/
return nextSrcSizeHint;
}
}
/* *************************************
* Tool functions
***************************************/
size_t ZBUFFv06_recommendedDInSize(void) { return ZSTDv06_BLOCKSIZE_MAX + ZSTDv06_blockHeaderSize /* block header size*/ ; }
size_t ZBUFFv06_recommendedDOutSize(void) { return ZSTDv06_BLOCKSIZE_MAX; }
diff --git a/sys/contrib/zstd/lib/legacy/zstd_v06.h b/sys/contrib/zstd/lib/legacy/zstd_v06.h
index 2fd99e629d47..9e32b76e08dc 100644
--- a/sys/contrib/zstd/lib/legacy/zstd_v06.h
+++ b/sys/contrib/zstd/lib/legacy/zstd_v06.h
@@ -1,172 +1,172 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTDv06_H
#define ZSTDv06_H
#if defined (__cplusplus)
extern "C" {
#endif
/*====== Dependency ======*/
#include <stddef.h> /* size_t */
/*====== Export for Windows ======*/
/*!
* ZSTDv06_DLL_EXPORT :
* Enable exporting of functions when building a Windows DLL
*/
#if defined(_WIN32) && defined(ZSTDv06_DLL_EXPORT) && (ZSTDv06_DLL_EXPORT==1)
# define ZSTDLIBv06_API __declspec(dllexport)
#else
# define ZSTDLIBv06_API
#endif
/* *************************************
* Simple functions
***************************************/
/*! ZSTDv06_decompress() :
`compressedSize` : is the _exact_ size of the compressed blob, otherwise decompression will fail.
`dstCapacity` must be large enough, equal or larger than originalSize.
@return : the number of bytes decompressed into `dst` (<= `dstCapacity`),
or an errorCode if it fails (which can be tested using ZSTDv06_isError()) */
ZSTDLIBv06_API size_t ZSTDv06_decompress( void* dst, size_t dstCapacity,
const void* src, size_t compressedSize);
/**
ZSTDv06_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.6.x format
srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
cSize (output parameter) : the number of bytes that would be read to decompress this frame
or an error code if it fails (which can be tested using ZSTDv01_isError())
dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame
or ZSTD_CONTENTSIZE_ERROR if an error occurs
note : assumes `cSize` and `dBound` are _not_ NULL.
*/
void ZSTDv06_findFrameSizeInfoLegacy(const void *src, size_t srcSize,
size_t* cSize, unsigned long long* dBound);
/* *************************************
* Helper functions
***************************************/
ZSTDLIBv06_API size_t ZSTDv06_compressBound(size_t srcSize); /*!< maximum compressed size (worst case scenario) */
/* Error Management */
ZSTDLIBv06_API unsigned ZSTDv06_isError(size_t code); /*!< tells if a `size_t` function result is an error code */
ZSTDLIBv06_API const char* ZSTDv06_getErrorName(size_t code); /*!< provides readable string for an error code */
/* *************************************
* Explicit memory management
***************************************/
/** Decompression context */
typedef struct ZSTDv06_DCtx_s ZSTDv06_DCtx;
ZSTDLIBv06_API ZSTDv06_DCtx* ZSTDv06_createDCtx(void);
ZSTDLIBv06_API size_t ZSTDv06_freeDCtx(ZSTDv06_DCtx* dctx); /*!< @return : errorCode */
/** ZSTDv06_decompressDCtx() :
* Same as ZSTDv06_decompress(), but requires an already allocated ZSTDv06_DCtx (see ZSTDv06_createDCtx()) */
ZSTDLIBv06_API size_t ZSTDv06_decompressDCtx(ZSTDv06_DCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
/*-***********************
* Dictionary API
*************************/
/*! ZSTDv06_decompress_usingDict() :
* Decompression using a pre-defined Dictionary content (see dictBuilder).
* Dictionary must be identical to the one used during compression, otherwise regenerated data will be corrupted.
* Note : dict can be NULL, in which case, it's equivalent to ZSTDv06_decompressDCtx() */
ZSTDLIBv06_API size_t ZSTDv06_decompress_usingDict(ZSTDv06_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize);
/*-************************
* Advanced Streaming API
***************************/
struct ZSTDv06_frameParams_s { unsigned long long frameContentSize; unsigned windowLog; };
typedef struct ZSTDv06_frameParams_s ZSTDv06_frameParams;
ZSTDLIBv06_API size_t ZSTDv06_getFrameParams(ZSTDv06_frameParams* fparamsPtr, const void* src, size_t srcSize); /**< doesn't consume input */
ZSTDLIBv06_API size_t ZSTDv06_decompressBegin_usingDict(ZSTDv06_DCtx* dctx, const void* dict, size_t dictSize);
ZSTDLIBv06_API void ZSTDv06_copyDCtx(ZSTDv06_DCtx* dctx, const ZSTDv06_DCtx* preparedDCtx);
ZSTDLIBv06_API size_t ZSTDv06_nextSrcSizeToDecompress(ZSTDv06_DCtx* dctx);
ZSTDLIBv06_API size_t ZSTDv06_decompressContinue(ZSTDv06_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
/* *************************************
* ZBUFF API
***************************************/
typedef struct ZBUFFv06_DCtx_s ZBUFFv06_DCtx;
ZSTDLIBv06_API ZBUFFv06_DCtx* ZBUFFv06_createDCtx(void);
ZSTDLIBv06_API size_t ZBUFFv06_freeDCtx(ZBUFFv06_DCtx* dctx);
ZSTDLIBv06_API size_t ZBUFFv06_decompressInit(ZBUFFv06_DCtx* dctx);
ZSTDLIBv06_API size_t ZBUFFv06_decompressInitDictionary(ZBUFFv06_DCtx* dctx, const void* dict, size_t dictSize);
ZSTDLIBv06_API size_t ZBUFFv06_decompressContinue(ZBUFFv06_DCtx* dctx,
void* dst, size_t* dstCapacityPtr,
const void* src, size_t* srcSizePtr);
/*-***************************************************************************
* Streaming decompression howto
*
* A ZBUFFv06_DCtx object is required to track streaming operations.
* Use ZBUFFv06_createDCtx() and ZBUFFv06_freeDCtx() to create/release resources.
* Use ZBUFFv06_decompressInit() to start a new decompression operation,
* or ZBUFFv06_decompressInitDictionary() if decompression requires a dictionary.
* Note that ZBUFFv06_DCtx objects can be re-init multiple times.
*
* Use ZBUFFv06_decompressContinue() repetitively to consume your input.
* *srcSizePtr and *dstCapacityPtr can be any size.
* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
* The content of `dst` will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters, or change `dst`.
* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to help latency),
* or 0 when a frame is completely decoded,
* or an error code, which can be tested using ZBUFFv06_isError().
*
* Hint : recommended buffer sizes (not compulsory) : ZBUFFv06_recommendedDInSize() and ZBUFFv06_recommendedDOutSize()
* output : ZBUFFv06_recommendedDOutSize== 128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded.
* input : ZBUFFv06_recommendedDInSize == 128KB + 3;
* just follow indications from ZBUFFv06_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
* *******************************************************************************/
/* *************************************
* Tool functions
***************************************/
ZSTDLIBv06_API unsigned ZBUFFv06_isError(size_t errorCode);
ZSTDLIBv06_API const char* ZBUFFv06_getErrorName(size_t errorCode);
/** Functions below provide recommended buffer sizes for Compression or Decompression operations.
* These sizes are just hints, they tend to offer better latency */
ZSTDLIBv06_API size_t ZBUFFv06_recommendedDInSize(void);
ZSTDLIBv06_API size_t ZBUFFv06_recommendedDOutSize(void);
/*-*************************************
* Constants
***************************************/
#define ZSTDv06_MAGICNUMBER 0xFD2FB526 /* v0.6 */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTDv06_BUFFERED_H */
diff --git a/sys/contrib/zstd/lib/legacy/zstd_v07.c b/sys/contrib/zstd/lib/legacy/zstd_v07.c
index 049ba4749409..3a0418e526f6 100644
--- a/sys/contrib/zstd/lib/legacy/zstd_v07.c
+++ b/sys/contrib/zstd/lib/legacy/zstd_v07.c
@@ -1,4545 +1,4541 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*- Dependencies -*/
#include <stddef.h> /* size_t, ptrdiff_t */
#include <string.h> /* memcpy */
#include <stdlib.h> /* malloc, free, qsort */
#ifndef XXH_STATIC_LINKING_ONLY
# define XXH_STATIC_LINKING_ONLY /* XXH64_state_t */
#endif
#include "../common/xxhash.h" /* XXH64_* */
#include "zstd_v07.h"
#define FSEv07_STATIC_LINKING_ONLY /* FSEv07_MIN_TABLELOG */
#define HUFv07_STATIC_LINKING_ONLY /* HUFv07_TABLELOG_ABSOLUTEMAX */
#define ZSTDv07_STATIC_LINKING_ONLY
#include "../common/error_private.h"
#ifdef ZSTDv07_STATIC_LINKING_ONLY
/* ====================================================================================
* The definitions in this section are considered experimental.
* They should never be used with a dynamic library, as they may change in the future.
* They are provided for advanced usages.
* Use them only in association with static linking.
* ==================================================================================== */
/*--- Constants ---*/
#define ZSTDv07_MAGIC_SKIPPABLE_START 0x184D2A50U
#define ZSTDv07_WINDOWLOG_MAX_32 25
#define ZSTDv07_WINDOWLOG_MAX_64 27
#define ZSTDv07_WINDOWLOG_MAX ((U32)(MEM_32bits() ? ZSTDv07_WINDOWLOG_MAX_32 : ZSTDv07_WINDOWLOG_MAX_64))
#define ZSTDv07_WINDOWLOG_MIN 18
#define ZSTDv07_CHAINLOG_MAX (ZSTDv07_WINDOWLOG_MAX+1)
#define ZSTDv07_CHAINLOG_MIN 4
#define ZSTDv07_HASHLOG_MAX ZSTDv07_WINDOWLOG_MAX
#define ZSTDv07_HASHLOG_MIN 12
#define ZSTDv07_HASHLOG3_MAX 17
#define ZSTDv07_SEARCHLOG_MAX (ZSTDv07_WINDOWLOG_MAX-1)
#define ZSTDv07_SEARCHLOG_MIN 1
#define ZSTDv07_SEARCHLENGTH_MAX 7
#define ZSTDv07_SEARCHLENGTH_MIN 3
#define ZSTDv07_TARGETLENGTH_MIN 4
#define ZSTDv07_TARGETLENGTH_MAX 999
#define ZSTDv07_FRAMEHEADERSIZE_MAX 18 /* for static allocation */
static const size_t ZSTDv07_frameHeaderSize_min = 5;
static const size_t ZSTDv07_frameHeaderSize_max = ZSTDv07_FRAMEHEADERSIZE_MAX;
static const size_t ZSTDv07_skippableHeaderSize = 8; /* magic number + skippable frame length */
/* custom memory allocation functions */
typedef void* (*ZSTDv07_allocFunction) (void* opaque, size_t size);
typedef void (*ZSTDv07_freeFunction) (void* opaque, void* address);
typedef struct { ZSTDv07_allocFunction customAlloc; ZSTDv07_freeFunction customFree; void* opaque; } ZSTDv07_customMem;
/*--- Advanced Decompression functions ---*/
/*! ZSTDv07_estimateDCtxSize() :
* Gives the potential amount of memory allocated to create a ZSTDv07_DCtx */
ZSTDLIBv07_API size_t ZSTDv07_estimateDCtxSize(void);
/*! ZSTDv07_createDCtx_advanced() :
* Create a ZSTD decompression context using external alloc and free functions */
ZSTDLIBv07_API ZSTDv07_DCtx* ZSTDv07_createDCtx_advanced(ZSTDv07_customMem customMem);
/*! ZSTDv07_sizeofDCtx() :
* Gives the amount of memory used by a given ZSTDv07_DCtx */
ZSTDLIBv07_API size_t ZSTDv07_sizeofDCtx(const ZSTDv07_DCtx* dctx);
/* ******************************************************************
* Buffer-less streaming functions (synchronous mode)
********************************************************************/
ZSTDLIBv07_API size_t ZSTDv07_decompressBegin(ZSTDv07_DCtx* dctx);
ZSTDLIBv07_API size_t ZSTDv07_decompressBegin_usingDict(ZSTDv07_DCtx* dctx, const void* dict, size_t dictSize);
ZSTDLIBv07_API void ZSTDv07_copyDCtx(ZSTDv07_DCtx* dctx, const ZSTDv07_DCtx* preparedDCtx);
ZSTDLIBv07_API size_t ZSTDv07_nextSrcSizeToDecompress(ZSTDv07_DCtx* dctx);
ZSTDLIBv07_API size_t ZSTDv07_decompressContinue(ZSTDv07_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
/*
Buffer-less streaming decompression (synchronous mode)
A ZSTDv07_DCtx object is required to track streaming operations.
Use ZSTDv07_createDCtx() / ZSTDv07_freeDCtx() to manage it.
A ZSTDv07_DCtx object can be re-used multiple times.
First optional operation is to retrieve frame parameters, using ZSTDv07_getFrameParams(), which doesn't consume the input.
It can provide the minimum size of rolling buffer required to properly decompress data (`windowSize`),
and optionally the final size of uncompressed content.
(Note : content size is an optional info that may not be present. 0 means : content size unknown)
Frame parameters are extracted from the beginning of compressed frame.
The amount of data to read is variable, from ZSTDv07_frameHeaderSize_min to ZSTDv07_frameHeaderSize_max (so if `srcSize` >= ZSTDv07_frameHeaderSize_max, it will always work)
If `srcSize` is too small for operation to succeed, function will return the minimum size it requires to produce a result.
Result : 0 when successful, it means the ZSTDv07_frameParams structure has been filled.
>0 : means there is not enough data into `src`. Provides the expected size to successfully decode header.
errorCode, which can be tested using ZSTDv07_isError()
Start decompression, with ZSTDv07_decompressBegin() or ZSTDv07_decompressBegin_usingDict().
Alternatively, you can copy a prepared context, using ZSTDv07_copyDCtx().
Then use ZSTDv07_nextSrcSizeToDecompress() and ZSTDv07_decompressContinue() alternatively.
ZSTDv07_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTDv07_decompressContinue().
ZSTDv07_decompressContinue() requires this exact amount of bytes, or it will fail.
@result of ZSTDv07_decompressContinue() is the number of bytes regenerated within 'dst' (necessarily <= dstCapacity).
It can be zero, which is not an error; it just means ZSTDv07_decompressContinue() has decoded some header.
ZSTDv07_decompressContinue() needs previous data blocks during decompression, up to `windowSize`.
They should preferably be located contiguously, prior to current block.
Alternatively, a round buffer of sufficient size is also possible. Sufficient size is determined by frame parameters.
ZSTDv07_decompressContinue() is very sensitive to contiguity,
if 2 blocks don't follow each other, make sure that either the compressor breaks contiguity at the same place,
or that previous contiguous segment is large enough to properly handle maximum back-reference.
A frame is fully decoded when ZSTDv07_nextSrcSizeToDecompress() returns zero.
Context can then be reset to start a new decompression.
== Special case : skippable frames ==
Skippable frames allow the integration of user-defined data into a flow of concatenated frames.
Skippable frames will be ignored (skipped) by a decompressor. The format of skippable frame is following:
a) Skippable frame ID - 4 Bytes, Little endian format, any value from 0x184D2A50 to 0x184D2A5F
b) Frame Size - 4 Bytes, Little endian format, unsigned 32-bits
c) Frame Content - any content (User Data) of length equal to Frame Size
For skippable frames ZSTDv07_decompressContinue() always returns 0.
For skippable frames ZSTDv07_getFrameParams() returns fparamsPtr->windowLog==0 what means that a frame is skippable.
It also returns Frame Size as fparamsPtr->frameContentSize.
*/
/* **************************************
* Block functions
****************************************/
/*! Block functions produce and decode raw zstd blocks, without frame metadata.
Frame metadata cost is typically ~18 bytes, which can be non-negligible for very small blocks (< 100 bytes).
User will have to take in charge required information to regenerate data, such as compressed and content sizes.
A few rules to respect :
- Compressing and decompressing require a context structure
+ Use ZSTDv07_createCCtx() and ZSTDv07_createDCtx()
- It is necessary to init context before starting
+ compression : ZSTDv07_compressBegin()
+ decompression : ZSTDv07_decompressBegin()
+ variants _usingDict() are also allowed
+ copyCCtx() and copyDCtx() work too
- Block size is limited, it must be <= ZSTDv07_getBlockSizeMax()
+ If you need to compress more, cut data into multiple blocks
+ Consider using the regular ZSTDv07_compress() instead, as frame metadata costs become negligible when source size is large.
- When a block is considered not compressible enough, ZSTDv07_compressBlock() result will be zero.
In which case, nothing is produced into `dst`.
+ User must test for such outcome and deal directly with uncompressed data
+ ZSTDv07_decompressBlock() doesn't accept uncompressed data as input !!!
+ In case of multiple successive blocks, decoder must be informed of uncompressed block existence to follow proper history.
Use ZSTDv07_insertBlock() in such a case.
*/
#define ZSTDv07_BLOCKSIZE_ABSOLUTEMAX (128 * 1024) /* define, for static allocation */
ZSTDLIBv07_API size_t ZSTDv07_decompressBlock(ZSTDv07_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
ZSTDLIBv07_API size_t ZSTDv07_insertBlock(ZSTDv07_DCtx* dctx, const void* blockStart, size_t blockSize); /**< insert block into `dctx` history. Useful for uncompressed blocks */
#endif /* ZSTDv07_STATIC_LINKING_ONLY */
/* ******************************************************************
mem.h
low-level memory access routines
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef MEM_H_MODULE
#define MEM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/*-****************************************
* Compiler specifics
******************************************/
#if defined(_MSC_VER) /* Visual Studio */
# include <stdlib.h> /* _byteswap_ulong */
# include <intrin.h> /* _byteswap_* */
#endif
#if defined(__GNUC__)
# define MEM_STATIC static __attribute__((unused))
#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define MEM_STATIC static inline
#elif defined(_MSC_VER)
# define MEM_STATIC static __inline
#else
# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
#endif
/*-**************************************************************
* Basic Types
*****************************************************************/
#if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
# if defined(_AIX)
# include <inttypes.h>
# else
# include <stdint.h> /* intptr_t */
# endif
typedef uint8_t BYTE;
typedef uint16_t U16;
typedef int16_t S16;
typedef uint32_t U32;
typedef int32_t S32;
typedef uint64_t U64;
typedef int64_t S64;
#else
typedef unsigned char BYTE;
typedef unsigned short U16;
typedef signed short S16;
typedef unsigned int U32;
typedef signed int S32;
typedef unsigned long long U64;
typedef signed long long S64;
#endif
/*-**************************************************************
* Memory I/O
*****************************************************************/
/* MEM_FORCE_MEMORY_ACCESS :
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
* The below switch allow to select different access method for improved performance.
* Method 0 (default) : use `memcpy()`. Safe and portable.
* Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
* This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
* Method 2 : direct access. This method is portable but violate C standard.
* It can generate buggy code on targets depending on alignment.
* In some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
* See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
* Prefer these methods in priority order (0 > 1 > 2)
*/
#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
-# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
-# define MEM_FORCE_MEMORY_ACCESS 2
-# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
- (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
+# if defined(__INTEL_COMPILER) || defined(__GNUC__) || defined(__ICCARM__)
# define MEM_FORCE_MEMORY_ACCESS 1
# endif
#endif
MEM_STATIC unsigned MEM_32bits(void) { return sizeof(size_t)==4; }
MEM_STATIC unsigned MEM_64bits(void) { return sizeof(size_t)==8; }
MEM_STATIC unsigned MEM_isLittleEndian(void)
{
const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
return one.c[0];
}
#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
/* violates C standard, by lying on structure alignment.
Only use if no other choice to achieve best performance on target platform */
MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
/* currently only defined for gcc and icc */
typedef union { U16 u16; U32 u32; U64 u64; size_t st; } __attribute__((packed)) unalign;
MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign*)ptr)->u16; }
MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign*)memPtr)->u16 = value; }
#else
/* default method, safe and standard.
can sometimes prove slower */
MEM_STATIC U16 MEM_read16(const void* memPtr)
{
U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U32 MEM_read32(const void* memPtr)
{
U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U64 MEM_read64(const void* memPtr)
{
U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC void MEM_write16(void* memPtr, U16 value)
{
memcpy(memPtr, &value, sizeof(value));
}
#endif /* MEM_FORCE_MEMORY_ACCESS */
MEM_STATIC U32 MEM_swap32(U32 in)
{
#if defined(_MSC_VER) /* Visual Studio */
return _byteswap_ulong(in);
#elif defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)
return __builtin_bswap32(in);
#else
return ((in << 24) & 0xff000000 ) |
((in << 8) & 0x00ff0000 ) |
((in >> 8) & 0x0000ff00 ) |
((in >> 24) & 0x000000ff );
#endif
}
MEM_STATIC U64 MEM_swap64(U64 in)
{
#if defined(_MSC_VER) /* Visual Studio */
return _byteswap_uint64(in);
#elif defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)
return __builtin_bswap64(in);
#else
return ((in << 56) & 0xff00000000000000ULL) |
((in << 40) & 0x00ff000000000000ULL) |
((in << 24) & 0x0000ff0000000000ULL) |
((in << 8) & 0x000000ff00000000ULL) |
((in >> 8) & 0x00000000ff000000ULL) |
((in >> 24) & 0x0000000000ff0000ULL) |
((in >> 40) & 0x000000000000ff00ULL) |
((in >> 56) & 0x00000000000000ffULL);
#endif
}
/*=== Little endian r/w ===*/
MEM_STATIC U16 MEM_readLE16(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read16(memPtr);
else {
const BYTE* p = (const BYTE*)memPtr;
return (U16)(p[0] + (p[1]<<8));
}
}
MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
{
if (MEM_isLittleEndian()) {
MEM_write16(memPtr, val);
} else {
BYTE* p = (BYTE*)memPtr;
p[0] = (BYTE)val;
p[1] = (BYTE)(val>>8);
}
}
MEM_STATIC U32 MEM_readLE32(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read32(memPtr);
else
return MEM_swap32(MEM_read32(memPtr));
}
MEM_STATIC U64 MEM_readLE64(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read64(memPtr);
else
return MEM_swap64(MEM_read64(memPtr));
}
MEM_STATIC size_t MEM_readLEST(const void* memPtr)
{
if (MEM_32bits())
return (size_t)MEM_readLE32(memPtr);
else
return (size_t)MEM_readLE64(memPtr);
}
#if defined (__cplusplus)
}
#endif
#endif /* MEM_H_MODULE */
/* ******************************************************************
bitstream
Part of FSE library
header file (to include)
Copyright (C) 2013-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
****************************************************************** */
#ifndef BITSTREAM_H_MODULE
#define BITSTREAM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/*
* This API consists of small unitary functions, which must be inlined for best performance.
* Since link-time-optimization is not available for all compilers,
* these functions are defined into a .h to be included.
*/
/*=========================================
* Target specific
=========================================*/
#if defined(__BMI__) && defined(__GNUC__)
# include <immintrin.h> /* support for bextr (experimental) */
#endif
/*-********************************************
* bitStream decoding API (read backward)
**********************************************/
typedef struct
{
size_t bitContainer;
unsigned bitsConsumed;
const char* ptr;
const char* start;
} BITv07_DStream_t;
typedef enum { BITv07_DStream_unfinished = 0,
BITv07_DStream_endOfBuffer = 1,
BITv07_DStream_completed = 2,
BITv07_DStream_overflow = 3 } BITv07_DStream_status; /* result of BITv07_reloadDStream() */
/* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
MEM_STATIC size_t BITv07_initDStream(BITv07_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
MEM_STATIC size_t BITv07_readBits(BITv07_DStream_t* bitD, unsigned nbBits);
MEM_STATIC BITv07_DStream_status BITv07_reloadDStream(BITv07_DStream_t* bitD);
MEM_STATIC unsigned BITv07_endOfDStream(const BITv07_DStream_t* bitD);
/*-****************************************
* unsafe API
******************************************/
MEM_STATIC size_t BITv07_readBitsFast(BITv07_DStream_t* bitD, unsigned nbBits);
/* faster, but works only if nbBits >= 1 */
/*-**************************************************************
* Internal functions
****************************************************************/
MEM_STATIC unsigned BITv07_highbit32 (U32 val)
{
# if defined(_MSC_VER) /* Visual */
- unsigned long r=0;
- _BitScanReverse ( &r, val );
- return (unsigned) r;
+ unsigned long r;
+ return _BitScanReverse(&r, val) ? (unsigned)r : 0;
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
return __builtin_clz (val) ^ 31;
# else /* Software version */
static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
U32 v = val;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
return DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
# endif
}
/*-********************************************************
* bitStream decoding
**********************************************************/
/*! BITv07_initDStream() :
* Initialize a BITv07_DStream_t.
* `bitD` : a pointer to an already allocated BITv07_DStream_t structure.
* `srcSize` must be the *exact* size of the bitStream, in bytes.
* @return : size of stream (== srcSize) or an errorCode if a problem is detected
*/
MEM_STATIC size_t BITv07_initDStream(BITv07_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
{
if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
if (srcSize >= sizeof(bitD->bitContainer)) { /* normal case */
bitD->start = (const char*)srcBuffer;
bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(bitD->bitContainer);
bitD->bitContainer = MEM_readLEST(bitD->ptr);
{ BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
bitD->bitsConsumed = lastByte ? 8 - BITv07_highbit32(lastByte) : 0;
if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */ }
} else {
bitD->start = (const char*)srcBuffer;
bitD->ptr = bitD->start;
bitD->bitContainer = *(const BYTE*)(bitD->start);
switch(srcSize)
{
case 7: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[6]) << (sizeof(bitD->bitContainer)*8 - 16);/* fall-through */
case 6: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[5]) << (sizeof(bitD->bitContainer)*8 - 24);/* fall-through */
case 5: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[4]) << (sizeof(bitD->bitContainer)*8 - 32);/* fall-through */
case 4: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[3]) << 24; /* fall-through */
case 3: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[2]) << 16; /* fall-through */
case 2: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[1]) << 8; /* fall-through */
default: break;
}
{ BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
bitD->bitsConsumed = lastByte ? 8 - BITv07_highbit32(lastByte) : 0;
if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */ }
bitD->bitsConsumed += (U32)(sizeof(bitD->bitContainer) - srcSize)*8;
}
return srcSize;
}
MEM_STATIC size_t BITv07_lookBits(const BITv07_DStream_t* bitD, U32 nbBits)
{
U32 const bitMask = sizeof(bitD->bitContainer)*8 - 1;
return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask);
}
/*! BITv07_lookBitsFast() :
* unsafe version; only works only if nbBits >= 1 */
MEM_STATIC size_t BITv07_lookBitsFast(const BITv07_DStream_t* bitD, U32 nbBits)
{
U32 const bitMask = sizeof(bitD->bitContainer)*8 - 1;
return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask);
}
MEM_STATIC void BITv07_skipBits(BITv07_DStream_t* bitD, U32 nbBits)
{
bitD->bitsConsumed += nbBits;
}
MEM_STATIC size_t BITv07_readBits(BITv07_DStream_t* bitD, U32 nbBits)
{
size_t const value = BITv07_lookBits(bitD, nbBits);
BITv07_skipBits(bitD, nbBits);
return value;
}
/*! BITv07_readBitsFast() :
* unsafe version; only works only if nbBits >= 1 */
MEM_STATIC size_t BITv07_readBitsFast(BITv07_DStream_t* bitD, U32 nbBits)
{
size_t const value = BITv07_lookBitsFast(bitD, nbBits);
BITv07_skipBits(bitD, nbBits);
return value;
}
MEM_STATIC BITv07_DStream_status BITv07_reloadDStream(BITv07_DStream_t* bitD)
{
if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should not happen => corruption detected */
return BITv07_DStream_overflow;
if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer)) {
bitD->ptr -= bitD->bitsConsumed >> 3;
bitD->bitsConsumed &= 7;
bitD->bitContainer = MEM_readLEST(bitD->ptr);
return BITv07_DStream_unfinished;
}
if (bitD->ptr == bitD->start) {
if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BITv07_DStream_endOfBuffer;
return BITv07_DStream_completed;
}
{ U32 nbBytes = bitD->bitsConsumed >> 3;
BITv07_DStream_status result = BITv07_DStream_unfinished;
if (bitD->ptr - nbBytes < bitD->start) {
nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
result = BITv07_DStream_endOfBuffer;
}
bitD->ptr -= nbBytes;
bitD->bitsConsumed -= nbBytes*8;
bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */
return result;
}
}
/*! BITv07_endOfDStream() :
* @return Tells if DStream has exactly reached its end (all bits consumed).
*/
MEM_STATIC unsigned BITv07_endOfDStream(const BITv07_DStream_t* DStream)
{
return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
}
#if defined (__cplusplus)
}
#endif
#endif /* BITSTREAM_H_MODULE */
/* ******************************************************************
FSE : Finite State Entropy codec
Public Prototypes declaration
Copyright (C) 2013-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
****************************************************************** */
#ifndef FSEv07_H
#define FSEv07_H
#if defined (__cplusplus)
extern "C" {
#endif
/*-****************************************
* FSE simple functions
******************************************/
/*! FSEv07_decompress():
Decompress FSE data from buffer 'cSrc', of size 'cSrcSize',
into already allocated destination buffer 'dst', of size 'dstCapacity'.
@return : size of regenerated data (<= maxDstSize),
or an error code, which can be tested using FSEv07_isError() .
** Important ** : FSEv07_decompress() does not decompress non-compressible nor RLE data !!!
Why ? : making this distinction requires a header.
Header management is intentionally delegated to the user layer, which can better manage special cases.
*/
size_t FSEv07_decompress(void* dst, size_t dstCapacity,
const void* cSrc, size_t cSrcSize);
/* Error Management */
unsigned FSEv07_isError(size_t code); /* tells if a return value is an error code */
const char* FSEv07_getErrorName(size_t code); /* provides error code string (useful for debugging) */
/*-*****************************************
* FSE detailed API
******************************************/
/*!
FSEv07_decompress() does the following:
1. read normalized counters with readNCount()
2. build decoding table 'DTable' from normalized counters
3. decode the data stream using decoding table 'DTable'
The following API allows targeting specific sub-functions for advanced tasks.
For example, it's possible to compress several blocks using the same 'CTable',
or to save and provide normalized distribution using external method.
*/
/* *** DECOMPRESSION *** */
/*! FSEv07_readNCount():
Read compactly saved 'normalizedCounter' from 'rBuffer'.
@return : size read from 'rBuffer',
or an errorCode, which can be tested using FSEv07_isError().
maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
size_t FSEv07_readNCount (short* normalizedCounter, unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, const void* rBuffer, size_t rBuffSize);
/*! Constructor and Destructor of FSEv07_DTable.
Note that its size depends on 'tableLog' */
typedef unsigned FSEv07_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
FSEv07_DTable* FSEv07_createDTable(unsigned tableLog);
void FSEv07_freeDTable(FSEv07_DTable* dt);
/*! FSEv07_buildDTable():
Builds 'dt', which must be already allocated, using FSEv07_createDTable().
return : 0, or an errorCode, which can be tested using FSEv07_isError() */
size_t FSEv07_buildDTable (FSEv07_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
/*! FSEv07_decompress_usingDTable():
Decompress compressed source `cSrc` of size `cSrcSize` using `dt`
into `dst` which must be already allocated.
@return : size of regenerated data (necessarily <= `dstCapacity`),
or an errorCode, which can be tested using FSEv07_isError() */
size_t FSEv07_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSEv07_DTable* dt);
/*!
Tutorial :
----------
(Note : these functions only decompress FSE-compressed blocks.
If block is uncompressed, use memcpy() instead
If block is a single repeated byte, use memset() instead )
The first step is to obtain the normalized frequencies of symbols.
This can be performed by FSEv07_readNCount() if it was saved using FSEv07_writeNCount().
'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
or size the table to handle worst case situations (typically 256).
FSEv07_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
The result of FSEv07_readNCount() is the number of bytes read from 'rBuffer'.
Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
If there is an error, the function will return an error code, which can be tested using FSEv07_isError().
The next step is to build the decompression tables 'FSEv07_DTable' from 'normalizedCounter'.
This is performed by the function FSEv07_buildDTable().
The space required by 'FSEv07_DTable' must be already allocated using FSEv07_createDTable().
If there is an error, the function will return an error code, which can be tested using FSEv07_isError().
`FSEv07_DTable` can then be used to decompress `cSrc`, with FSEv07_decompress_usingDTable().
`cSrcSize` must be strictly correct, otherwise decompression will fail.
FSEv07_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
If there is an error, the function will return an error code, which can be tested using FSEv07_isError(). (ex: dst buffer too small)
*/
#ifdef FSEv07_STATIC_LINKING_ONLY
/* *****************************************
* Static allocation
*******************************************/
/* FSE buffer bounds */
#define FSEv07_NCOUNTBOUND 512
#define FSEv07_BLOCKBOUND(size) (size + (size>>7))
/* It is possible to statically allocate FSE CTable/DTable as a table of unsigned using below macros */
#define FSEv07_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog))
/* *****************************************
* FSE advanced API
*******************************************/
size_t FSEv07_countFast(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
/**< same as FSEv07_count(), but blindly trusts that all byte values within src are <= *maxSymbolValuePtr */
unsigned FSEv07_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
/**< same as FSEv07_optimalTableLog(), which used `minus==2` */
size_t FSEv07_buildDTable_raw (FSEv07_DTable* dt, unsigned nbBits);
/**< build a fake FSEv07_DTable, designed to read an uncompressed bitstream where each symbol uses nbBits */
size_t FSEv07_buildDTable_rle (FSEv07_DTable* dt, unsigned char symbolValue);
/**< build a fake FSEv07_DTable, designed to always generate the same symbolValue */
/* *****************************************
* FSE symbol decompression API
*******************************************/
typedef struct
{
size_t state;
const void* table; /* precise table may vary, depending on U16 */
} FSEv07_DState_t;
static void FSEv07_initDState(FSEv07_DState_t* DStatePtr, BITv07_DStream_t* bitD, const FSEv07_DTable* dt);
static unsigned char FSEv07_decodeSymbol(FSEv07_DState_t* DStatePtr, BITv07_DStream_t* bitD);
/* *****************************************
* FSE unsafe API
*******************************************/
static unsigned char FSEv07_decodeSymbolFast(FSEv07_DState_t* DStatePtr, BITv07_DStream_t* bitD);
/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
/* ====== Decompression ====== */
typedef struct {
U16 tableLog;
U16 fastMode;
} FSEv07_DTableHeader; /* sizeof U32 */
typedef struct
{
unsigned short newState;
unsigned char symbol;
unsigned char nbBits;
} FSEv07_decode_t; /* size == U32 */
MEM_STATIC void FSEv07_initDState(FSEv07_DState_t* DStatePtr, BITv07_DStream_t* bitD, const FSEv07_DTable* dt)
{
const void* ptr = dt;
const FSEv07_DTableHeader* const DTableH = (const FSEv07_DTableHeader*)ptr;
DStatePtr->state = BITv07_readBits(bitD, DTableH->tableLog);
BITv07_reloadDStream(bitD);
DStatePtr->table = dt + 1;
}
MEM_STATIC BYTE FSEv07_peekSymbol(const FSEv07_DState_t* DStatePtr)
{
FSEv07_decode_t const DInfo = ((const FSEv07_decode_t*)(DStatePtr->table))[DStatePtr->state];
return DInfo.symbol;
}
MEM_STATIC void FSEv07_updateState(FSEv07_DState_t* DStatePtr, BITv07_DStream_t* bitD)
{
FSEv07_decode_t const DInfo = ((const FSEv07_decode_t*)(DStatePtr->table))[DStatePtr->state];
U32 const nbBits = DInfo.nbBits;
size_t const lowBits = BITv07_readBits(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
}
MEM_STATIC BYTE FSEv07_decodeSymbol(FSEv07_DState_t* DStatePtr, BITv07_DStream_t* bitD)
{
FSEv07_decode_t const DInfo = ((const FSEv07_decode_t*)(DStatePtr->table))[DStatePtr->state];
U32 const nbBits = DInfo.nbBits;
BYTE const symbol = DInfo.symbol;
size_t const lowBits = BITv07_readBits(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
/*! FSEv07_decodeSymbolFast() :
unsafe, only works if no symbol has a probability > 50% */
MEM_STATIC BYTE FSEv07_decodeSymbolFast(FSEv07_DState_t* DStatePtr, BITv07_DStream_t* bitD)
{
FSEv07_decode_t const DInfo = ((const FSEv07_decode_t*)(DStatePtr->table))[DStatePtr->state];
U32 const nbBits = DInfo.nbBits;
BYTE const symbol = DInfo.symbol;
size_t const lowBits = BITv07_readBitsFast(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
#ifndef FSEv07_COMMONDEFS_ONLY
/* **************************************************************
* Tuning parameters
****************************************************************/
/*!MEMORY_USAGE :
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
* Increasing memory usage improves compression ratio
* Reduced memory usage can improve speed, due to cache effect
* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
#define FSEv07_MAX_MEMORY_USAGE 14
#define FSEv07_DEFAULT_MEMORY_USAGE 13
/*!FSEv07_MAX_SYMBOL_VALUE :
* Maximum symbol value authorized.
* Required for proper stack allocation */
#define FSEv07_MAX_SYMBOL_VALUE 255
/* **************************************************************
* template functions type & suffix
****************************************************************/
#define FSEv07_FUNCTION_TYPE BYTE
#define FSEv07_FUNCTION_EXTENSION
#define FSEv07_DECODE_TYPE FSEv07_decode_t
#endif /* !FSEv07_COMMONDEFS_ONLY */
/* ***************************************************************
* Constants
*****************************************************************/
#define FSEv07_MAX_TABLELOG (FSEv07_MAX_MEMORY_USAGE-2)
#define FSEv07_MAX_TABLESIZE (1U<<FSEv07_MAX_TABLELOG)
#define FSEv07_MAXTABLESIZE_MASK (FSEv07_MAX_TABLESIZE-1)
#define FSEv07_DEFAULT_TABLELOG (FSEv07_DEFAULT_MEMORY_USAGE-2)
#define FSEv07_MIN_TABLELOG 5
#define FSEv07_TABLELOG_ABSOLUTE_MAX 15
#if FSEv07_MAX_TABLELOG > FSEv07_TABLELOG_ABSOLUTE_MAX
# error "FSEv07_MAX_TABLELOG > FSEv07_TABLELOG_ABSOLUTE_MAX is not supported"
#endif
#define FSEv07_TABLESTEP(tableSize) ((tableSize>>1) + (tableSize>>3) + 3)
#endif /* FSEv07_STATIC_LINKING_ONLY */
#if defined (__cplusplus)
}
#endif
#endif /* FSEv07_H */
/* ******************************************************************
Huffman coder, part of New Generation Entropy library
header file
Copyright (C) 2013-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
****************************************************************** */
#ifndef HUFv07_H_298734234
#define HUFv07_H_298734234
#if defined (__cplusplus)
extern "C" {
#endif
/* *** simple functions *** */
/**
HUFv07_decompress() :
Decompress HUF data from buffer 'cSrc', of size 'cSrcSize',
into already allocated buffer 'dst', of minimum size 'dstSize'.
`dstSize` : **must** be the ***exact*** size of original (uncompressed) data.
Note : in contrast with FSE, HUFv07_decompress can regenerate
RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data,
because it knows size to regenerate.
@return : size of regenerated data (== dstSize),
or an error code, which can be tested using HUFv07_isError()
*/
size_t HUFv07_decompress(void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize);
/* ****************************************
* Tool functions
******************************************/
#define HUFv07_BLOCKSIZE_MAX (128 * 1024)
/* Error Management */
unsigned HUFv07_isError(size_t code); /**< tells if a return value is an error code */
const char* HUFv07_getErrorName(size_t code); /**< provides error code string (useful for debugging) */
/* *** Advanced function *** */
#ifdef HUFv07_STATIC_LINKING_ONLY
/* *** Constants *** */
#define HUFv07_TABLELOG_ABSOLUTEMAX 16 /* absolute limit of HUFv07_MAX_TABLELOG. Beyond that value, code does not work */
#define HUFv07_TABLELOG_MAX 12 /* max configured tableLog (for static allocation); can be modified up to HUFv07_ABSOLUTEMAX_TABLELOG */
#define HUFv07_TABLELOG_DEFAULT 11 /* tableLog by default, when not specified */
#define HUFv07_SYMBOLVALUE_MAX 255
#if (HUFv07_TABLELOG_MAX > HUFv07_TABLELOG_ABSOLUTEMAX)
# error "HUFv07_TABLELOG_MAX is too large !"
#endif
/* ****************************************
* Static allocation
******************************************/
/* HUF buffer bounds */
#define HUFv07_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true if incompressible pre-filtered with fast heuristic */
/* static allocation of HUF's DTable */
typedef U32 HUFv07_DTable;
#define HUFv07_DTABLE_SIZE(maxTableLog) (1 + (1<<(maxTableLog)))
#define HUFv07_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
HUFv07_DTable DTable[HUFv07_DTABLE_SIZE((maxTableLog)-1)] = { ((U32)((maxTableLog)-1)*0x1000001) }
#define HUFv07_CREATE_STATIC_DTABLEX4(DTable, maxTableLog) \
HUFv07_DTable DTable[HUFv07_DTABLE_SIZE(maxTableLog)] = { ((U32)(maxTableLog)*0x1000001) }
/* ****************************************
* Advanced decompression functions
******************************************/
size_t HUFv07_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
size_t HUFv07_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
size_t HUFv07_decompress4X_DCtx (HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< decodes RLE and uncompressed */
size_t HUFv07_decompress4X_hufOnly(HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< considers RLE and uncompressed as errors */
size_t HUFv07_decompress4X2_DCtx(HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
size_t HUFv07_decompress4X4_DCtx(HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
size_t HUFv07_decompress1X_DCtx (HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
size_t HUFv07_decompress1X2_DCtx(HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
size_t HUFv07_decompress1X4_DCtx(HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
/* ****************************************
* HUF detailed API
******************************************/
/*!
The following API allows targeting specific sub-functions for advanced tasks.
For example, it's possible to compress several blocks using the same 'CTable',
or to save and regenerate 'CTable' using external methods.
*/
/* FSEv07_count() : find it within "fse.h" */
/*! HUFv07_readStats() :
Read compact Huffman tree, saved by HUFv07_writeCTable().
`huffWeight` is destination buffer.
@return : size read from `src` , or an error Code .
Note : Needed by HUFv07_readCTable() and HUFv07_readDTableXn() . */
size_t HUFv07_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize);
/*
HUFv07_decompress() does the following:
1. select the decompression algorithm (X2, X4) based on pre-computed heuristics
2. build Huffman table from save, using HUFv07_readDTableXn()
3. decode 1 or 4 segments in parallel using HUFv07_decompressSXn_usingDTable
*/
/** HUFv07_selectDecoder() :
* Tells which decoder is likely to decode faster,
* based on a set of pre-determined metrics.
* @return : 0==HUFv07_decompress4X2, 1==HUFv07_decompress4X4 .
* Assumption : 0 < cSrcSize < dstSize <= 128 KB */
U32 HUFv07_selectDecoder (size_t dstSize, size_t cSrcSize);
size_t HUFv07_readDTableX2 (HUFv07_DTable* DTable, const void* src, size_t srcSize);
size_t HUFv07_readDTableX4 (HUFv07_DTable* DTable, const void* src, size_t srcSize);
size_t HUFv07_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUFv07_DTable* DTable);
size_t HUFv07_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUFv07_DTable* DTable);
size_t HUFv07_decompress4X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUFv07_DTable* DTable);
/* single stream variants */
size_t HUFv07_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
size_t HUFv07_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbol decoder */
size_t HUFv07_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUFv07_DTable* DTable);
size_t HUFv07_decompress1X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUFv07_DTable* DTable);
size_t HUFv07_decompress1X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUFv07_DTable* DTable);
#endif /* HUFv07_STATIC_LINKING_ONLY */
#if defined (__cplusplus)
}
#endif
#endif /* HUFv07_H_298734234 */
/*
Common functions of New Generation Entropy library
Copyright (C) 2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
*************************************************************************** */
/*-****************************************
* FSE Error Management
******************************************/
unsigned FSEv07_isError(size_t code) { return ERR_isError(code); }
const char* FSEv07_getErrorName(size_t code) { return ERR_getErrorName(code); }
/* **************************************************************
* HUF Error Management
****************************************************************/
unsigned HUFv07_isError(size_t code) { return ERR_isError(code); }
const char* HUFv07_getErrorName(size_t code) { return ERR_getErrorName(code); }
/*-**************************************************************
* FSE NCount encoding-decoding
****************************************************************/
static short FSEv07_abs(short a) { return (short)(a<0 ? -a : a); }
size_t FSEv07_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize)
{
const BYTE* const istart = (const BYTE*) headerBuffer;
const BYTE* const iend = istart + hbSize;
const BYTE* ip = istart;
int nbBits;
int remaining;
int threshold;
U32 bitStream;
int bitCount;
unsigned charnum = 0;
int previous0 = 0;
if (hbSize < 4) return ERROR(srcSize_wrong);
bitStream = MEM_readLE32(ip);
nbBits = (bitStream & 0xF) + FSEv07_MIN_TABLELOG; /* extract tableLog */
if (nbBits > FSEv07_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
bitStream >>= 4;
bitCount = 4;
*tableLogPtr = nbBits;
remaining = (1<<nbBits)+1;
threshold = 1<<nbBits;
nbBits++;
while ((remaining>1) && (charnum<=*maxSVPtr)) {
if (previous0) {
unsigned n0 = charnum;
while ((bitStream & 0xFFFF) == 0xFFFF) {
n0+=24;
if (ip < iend-5) {
ip+=2;
bitStream = MEM_readLE32(ip) >> bitCount;
} else {
bitStream >>= 16;
bitCount+=16;
} }
while ((bitStream & 3) == 3) {
n0+=3;
bitStream>>=2;
bitCount+=2;
}
n0 += bitStream & 3;
bitCount += 2;
if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
while (charnum < n0) normalizedCounter[charnum++] = 0;
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
ip += bitCount>>3;
bitCount &= 7;
bitStream = MEM_readLE32(ip) >> bitCount;
}
else
bitStream >>= 2;
}
{ short const max = (short)((2*threshold-1)-remaining);
short count;
if ((bitStream & (threshold-1)) < (U32)max) {
count = (short)(bitStream & (threshold-1));
bitCount += nbBits-1;
} else {
count = (short)(bitStream & (2*threshold-1));
if (count >= threshold) count -= max;
bitCount += nbBits;
}
count--; /* extra accuracy */
remaining -= FSEv07_abs(count);
normalizedCounter[charnum++] = count;
previous0 = !count;
while (remaining < threshold) {
nbBits--;
threshold >>= 1;
}
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
ip += bitCount>>3;
bitCount &= 7;
} else {
bitCount -= (int)(8 * (iend - 4 - ip));
ip = iend - 4;
}
bitStream = MEM_readLE32(ip) >> (bitCount & 31);
} } /* while ((remaining>1) && (charnum<=*maxSVPtr)) */
if (remaining != 1) return ERROR(GENERIC);
*maxSVPtr = charnum-1;
ip += (bitCount+7)>>3;
if ((size_t)(ip-istart) > hbSize) return ERROR(srcSize_wrong);
return ip-istart;
}
/*! HUFv07_readStats() :
Read compact Huffman tree, saved by HUFv07_writeCTable().
`huffWeight` is destination buffer.
@return : size read from `src` , or an error Code .
Note : Needed by HUFv07_readCTable() and HUFv07_readDTableXn() .
*/
size_t HUFv07_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize)
{
U32 weightTotal;
const BYTE* ip = (const BYTE*) src;
size_t iSize;
size_t oSize;
if (!srcSize) return ERROR(srcSize_wrong);
iSize = ip[0];
/* memset(huffWeight, 0, hwSize); */ /* is not necessary, even though some analyzer complain ... */
if (iSize >= 128) { /* special header */
if (iSize >= (242)) { /* RLE */
static U32 l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 };
oSize = l[iSize-242];
memset(huffWeight, 1, hwSize);
iSize = 0;
}
else { /* Incompressible */
oSize = iSize - 127;
iSize = ((oSize+1)/2);
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
if (oSize >= hwSize) return ERROR(corruption_detected);
ip += 1;
{ U32 n;
for (n=0; n<oSize; n+=2) {
huffWeight[n] = ip[n/2] >> 4;
huffWeight[n+1] = ip[n/2] & 15;
} } } }
else { /* header compressed with FSE (normal case) */
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
oSize = FSEv07_decompress(huffWeight, hwSize-1, ip+1, iSize); /* max (hwSize-1) values decoded, as last one is implied */
if (FSEv07_isError(oSize)) return oSize;
}
/* collect weight stats */
memset(rankStats, 0, (HUFv07_TABLELOG_ABSOLUTEMAX + 1) * sizeof(U32));
weightTotal = 0;
{ U32 n; for (n=0; n<oSize; n++) {
if (huffWeight[n] >= HUFv07_TABLELOG_ABSOLUTEMAX) return ERROR(corruption_detected);
rankStats[huffWeight[n]]++;
weightTotal += (1 << huffWeight[n]) >> 1;
} }
if (weightTotal == 0) return ERROR(corruption_detected);
/* get last non-null symbol weight (implied, total must be 2^n) */
{ U32 const tableLog = BITv07_highbit32(weightTotal) + 1;
if (tableLog > HUFv07_TABLELOG_ABSOLUTEMAX) return ERROR(corruption_detected);
*tableLogPtr = tableLog;
/* determine last weight */
{ U32 const total = 1 << tableLog;
U32 const rest = total - weightTotal;
U32 const verif = 1 << BITv07_highbit32(rest);
U32 const lastWeight = BITv07_highbit32(rest) + 1;
if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
huffWeight[oSize] = (BYTE)lastWeight;
rankStats[lastWeight]++;
} }
/* check tree construction validity */
if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
/* results */
*nbSymbolsPtr = (U32)(oSize+1);
return iSize+1;
}
/* ******************************************************************
FSE : Finite State Entropy decoder
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
/* **************************************************************
* Compiler specifics
****************************************************************/
#ifdef _MSC_VER /* Visual Studio */
# define FORCE_INLINE static __forceinline
# include <intrin.h> /* For Visual 2005 */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */
#else
# if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
# ifdef __GNUC__
# define FORCE_INLINE static inline __attribute__((always_inline))
# else
# define FORCE_INLINE static inline
# endif
# else
# define FORCE_INLINE static
# endif /* __STDC_VERSION__ */
#endif
/* **************************************************************
* Error Management
****************************************************************/
#define FSEv07_isError ERR_isError
#define FSEv07_STATIC_ASSERT(c) { enum { FSEv07_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
/* **************************************************************
* Complex types
****************************************************************/
typedef U32 DTable_max_t[FSEv07_DTABLE_SIZE_U32(FSEv07_MAX_TABLELOG)];
/* **************************************************************
* Templates
****************************************************************/
/*
designed to be included
for type-specific functions (template emulation in C)
Objective is to write these functions only once, for improved maintenance
*/
/* safety checks */
#ifndef FSEv07_FUNCTION_EXTENSION
# error "FSEv07_FUNCTION_EXTENSION must be defined"
#endif
#ifndef FSEv07_FUNCTION_TYPE
# error "FSEv07_FUNCTION_TYPE must be defined"
#endif
/* Function names */
#define FSEv07_CAT(X,Y) X##Y
#define FSEv07_FUNCTION_NAME(X,Y) FSEv07_CAT(X,Y)
#define FSEv07_TYPE_NAME(X,Y) FSEv07_CAT(X,Y)
/* Function templates */
FSEv07_DTable* FSEv07_createDTable (unsigned tableLog)
{
if (tableLog > FSEv07_TABLELOG_ABSOLUTE_MAX) tableLog = FSEv07_TABLELOG_ABSOLUTE_MAX;
return (FSEv07_DTable*)malloc( FSEv07_DTABLE_SIZE_U32(tableLog) * sizeof (U32) );
}
void FSEv07_freeDTable (FSEv07_DTable* dt)
{
free(dt);
}
size_t FSEv07_buildDTable(FSEv07_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
{
void* const tdPtr = dt+1; /* because *dt is unsigned, 32-bits aligned on 32-bits */
FSEv07_DECODE_TYPE* const tableDecode = (FSEv07_DECODE_TYPE*) (tdPtr);
U16 symbolNext[FSEv07_MAX_SYMBOL_VALUE+1];
U32 const maxSV1 = maxSymbolValue + 1;
U32 const tableSize = 1 << tableLog;
U32 highThreshold = tableSize-1;
/* Sanity Checks */
if (maxSymbolValue > FSEv07_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
if (tableLog > FSEv07_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
/* Init, lay down lowprob symbols */
{ FSEv07_DTableHeader DTableH;
DTableH.tableLog = (U16)tableLog;
DTableH.fastMode = 1;
{ S16 const largeLimit= (S16)(1 << (tableLog-1));
U32 s;
for (s=0; s<maxSV1; s++) {
if (normalizedCounter[s]==-1) {
tableDecode[highThreshold--].symbol = (FSEv07_FUNCTION_TYPE)s;
symbolNext[s] = 1;
} else {
if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
symbolNext[s] = normalizedCounter[s];
} } }
memcpy(dt, &DTableH, sizeof(DTableH));
}
/* Spread symbols */
{ U32 const tableMask = tableSize-1;
U32 const step = FSEv07_TABLESTEP(tableSize);
U32 s, position = 0;
for (s=0; s<maxSV1; s++) {
int i;
for (i=0; i<normalizedCounter[s]; i++) {
tableDecode[position].symbol = (FSEv07_FUNCTION_TYPE)s;
position = (position + step) & tableMask;
while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
} }
if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
}
/* Build Decoding table */
{ U32 u;
for (u=0; u<tableSize; u++) {
FSEv07_FUNCTION_TYPE const symbol = (FSEv07_FUNCTION_TYPE)(tableDecode[u].symbol);
U16 nextState = symbolNext[symbol]++;
tableDecode[u].nbBits = (BYTE) (tableLog - BITv07_highbit32 ((U32)nextState) );
tableDecode[u].newState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
} }
return 0;
}
#ifndef FSEv07_COMMONDEFS_ONLY
/*-*******************************************************
* Decompression (Byte symbols)
*********************************************************/
size_t FSEv07_buildDTable_rle (FSEv07_DTable* dt, BYTE symbolValue)
{
void* ptr = dt;
FSEv07_DTableHeader* const DTableH = (FSEv07_DTableHeader*)ptr;
void* dPtr = dt + 1;
FSEv07_decode_t* const cell = (FSEv07_decode_t*)dPtr;
DTableH->tableLog = 0;
DTableH->fastMode = 0;
cell->newState = 0;
cell->symbol = symbolValue;
cell->nbBits = 0;
return 0;
}
size_t FSEv07_buildDTable_raw (FSEv07_DTable* dt, unsigned nbBits)
{
void* ptr = dt;
FSEv07_DTableHeader* const DTableH = (FSEv07_DTableHeader*)ptr;
void* dPtr = dt + 1;
FSEv07_decode_t* const dinfo = (FSEv07_decode_t*)dPtr;
const unsigned tableSize = 1 << nbBits;
const unsigned tableMask = tableSize - 1;
const unsigned maxSV1 = tableMask+1;
unsigned s;
/* Sanity checks */
if (nbBits < 1) return ERROR(GENERIC); /* min size */
/* Build Decoding Table */
DTableH->tableLog = (U16)nbBits;
DTableH->fastMode = 1;
for (s=0; s<maxSV1; s++) {
dinfo[s].newState = 0;
dinfo[s].symbol = (BYTE)s;
dinfo[s].nbBits = (BYTE)nbBits;
}
return 0;
}
FORCE_INLINE size_t FSEv07_decompress_usingDTable_generic(
void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const FSEv07_DTable* dt, const unsigned fast)
{
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const omax = op + maxDstSize;
BYTE* const olimit = omax-3;
BITv07_DStream_t bitD;
FSEv07_DState_t state1;
FSEv07_DState_t state2;
/* Init */
{ size_t const errorCode = BITv07_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */
if (FSEv07_isError(errorCode)) return errorCode; }
FSEv07_initDState(&state1, &bitD, dt);
FSEv07_initDState(&state2, &bitD, dt);
#define FSEv07_GETSYMBOL(statePtr) fast ? FSEv07_decodeSymbolFast(statePtr, &bitD) : FSEv07_decodeSymbol(statePtr, &bitD)
/* 4 symbols per loop */
for ( ; (BITv07_reloadDStream(&bitD)==BITv07_DStream_unfinished) && (op<olimit) ; op+=4) {
op[0] = FSEv07_GETSYMBOL(&state1);
if (FSEv07_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
BITv07_reloadDStream(&bitD);
op[1] = FSEv07_GETSYMBOL(&state2);
if (FSEv07_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
{ if (BITv07_reloadDStream(&bitD) > BITv07_DStream_unfinished) { op+=2; break; } }
op[2] = FSEv07_GETSYMBOL(&state1);
if (FSEv07_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
BITv07_reloadDStream(&bitD);
op[3] = FSEv07_GETSYMBOL(&state2);
}
/* tail */
/* note : BITv07_reloadDStream(&bitD) >= FSEv07_DStream_partiallyFilled; Ends at exactly BITv07_DStream_completed */
while (1) {
if (op>(omax-2)) return ERROR(dstSize_tooSmall);
*op++ = FSEv07_GETSYMBOL(&state1);
if (BITv07_reloadDStream(&bitD)==BITv07_DStream_overflow) {
*op++ = FSEv07_GETSYMBOL(&state2);
break;
}
if (op>(omax-2)) return ERROR(dstSize_tooSmall);
*op++ = FSEv07_GETSYMBOL(&state2);
if (BITv07_reloadDStream(&bitD)==BITv07_DStream_overflow) {
*op++ = FSEv07_GETSYMBOL(&state1);
break;
} }
return op-ostart;
}
size_t FSEv07_decompress_usingDTable(void* dst, size_t originalSize,
const void* cSrc, size_t cSrcSize,
const FSEv07_DTable* dt)
{
const void* ptr = dt;
const FSEv07_DTableHeader* DTableH = (const FSEv07_DTableHeader*)ptr;
const U32 fastMode = DTableH->fastMode;
/* select fast mode (static) */
if (fastMode) return FSEv07_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
return FSEv07_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
}
size_t FSEv07_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
{
const BYTE* const istart = (const BYTE*)cSrc;
const BYTE* ip = istart;
short counting[FSEv07_MAX_SYMBOL_VALUE+1];
DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */
unsigned tableLog;
unsigned maxSymbolValue = FSEv07_MAX_SYMBOL_VALUE;
if (cSrcSize<2) return ERROR(srcSize_wrong); /* too small input size */
/* normal FSE decoding mode */
{ size_t const NCountLength = FSEv07_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
if (FSEv07_isError(NCountLength)) return NCountLength;
if (NCountLength >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size */
ip += NCountLength;
cSrcSize -= NCountLength;
}
{ size_t const errorCode = FSEv07_buildDTable (dt, counting, maxSymbolValue, tableLog);
if (FSEv07_isError(errorCode)) return errorCode; }
return FSEv07_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt); /* always return, even if it is an error code */
}
#endif /* FSEv07_COMMONDEFS_ONLY */
/* ******************************************************************
Huffman decoder, part of New Generation Entropy library
Copyright (C) 2013-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
/* **************************************************************
* Compiler specifics
****************************************************************/
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
/* inline is defined */
#elif defined(_MSC_VER)
# define inline __inline
#else
# define inline /* disable inline */
#endif
#ifdef _MSC_VER /* Visual Studio */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
#endif
/* **************************************************************
* Error Management
****************************************************************/
#define HUFv07_STATIC_ASSERT(c) { enum { HUFv07_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
/*-***************************/
/* generic DTableDesc */
/*-***************************/
typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;
static DTableDesc HUFv07_getDTableDesc(const HUFv07_DTable* table)
{
DTableDesc dtd;
memcpy(&dtd, table, sizeof(dtd));
return dtd;
}
/*-***************************/
/* single-symbol decoding */
/*-***************************/
typedef struct { BYTE byte; BYTE nbBits; } HUFv07_DEltX2; /* single-symbol decoding */
size_t HUFv07_readDTableX2 (HUFv07_DTable* DTable, const void* src, size_t srcSize)
{
BYTE huffWeight[HUFv07_SYMBOLVALUE_MAX + 1];
U32 rankVal[HUFv07_TABLELOG_ABSOLUTEMAX + 1]; /* large enough for values from 0 to 16 */
U32 tableLog = 0;
U32 nbSymbols = 0;
size_t iSize;
void* const dtPtr = DTable + 1;
HUFv07_DEltX2* const dt = (HUFv07_DEltX2*)dtPtr;
HUFv07_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUFv07_DTable));
/* memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */
iSize = HUFv07_readStats(huffWeight, HUFv07_SYMBOLVALUE_MAX + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
if (HUFv07_isError(iSize)) return iSize;
/* Table header */
{ DTableDesc dtd = HUFv07_getDTableDesc(DTable);
if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, huffman tree cannot fit in */
dtd.tableType = 0;
dtd.tableLog = (BYTE)tableLog;
memcpy(DTable, &dtd, sizeof(dtd));
}
/* Prepare ranks */
{ U32 n, nextRankStart = 0;
for (n=1; n<tableLog+1; n++) {
U32 current = nextRankStart;
nextRankStart += (rankVal[n] << (n-1));
rankVal[n] = current;
} }
/* fill DTable */
{ U32 n;
for (n=0; n<nbSymbols; n++) {
U32 const w = huffWeight[n];
U32 const length = (1 << w) >> 1;
U32 i;
HUFv07_DEltX2 D;
D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
for (i = rankVal[w]; i < rankVal[w] + length; i++)
dt[i] = D;
rankVal[w] += length;
} }
return iSize;
}
static BYTE HUFv07_decodeSymbolX2(BITv07_DStream_t* Dstream, const HUFv07_DEltX2* dt, const U32 dtLog)
{
size_t const val = BITv07_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
BYTE const c = dt[val].byte;
BITv07_skipBits(Dstream, dt[val].nbBits);
return c;
}
#define HUFv07_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
*ptr++ = HUFv07_decodeSymbolX2(DStreamPtr, dt, dtLog)
#define HUFv07_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUFv07_TABLELOG_MAX<=12)) \
HUFv07_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
#define HUFv07_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
HUFv07_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
static inline size_t HUFv07_decodeStreamX2(BYTE* p, BITv07_DStream_t* const bitDPtr, BYTE* const pEnd, const HUFv07_DEltX2* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 4 symbols at a time */
while ((BITv07_reloadDStream(bitDPtr) == BITv07_DStream_unfinished) && (p <= pEnd-4)) {
HUFv07_DECODE_SYMBOLX2_2(p, bitDPtr);
HUFv07_DECODE_SYMBOLX2_1(p, bitDPtr);
HUFv07_DECODE_SYMBOLX2_2(p, bitDPtr);
HUFv07_DECODE_SYMBOLX2_0(p, bitDPtr);
}
/* closer to the end */
while ((BITv07_reloadDStream(bitDPtr) == BITv07_DStream_unfinished) && (p < pEnd))
HUFv07_DECODE_SYMBOLX2_0(p, bitDPtr);
/* no more data to retrieve from bitstream, hence no need to reload */
while (p < pEnd)
HUFv07_DECODE_SYMBOLX2_0(p, bitDPtr);
return pEnd-pStart;
}
static size_t HUFv07_decompress1X2_usingDTable_internal(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUFv07_DTable* DTable)
{
BYTE* op = (BYTE*)dst;
BYTE* const oend = op + dstSize;
const void* dtPtr = DTable + 1;
const HUFv07_DEltX2* const dt = (const HUFv07_DEltX2*)dtPtr;
BITv07_DStream_t bitD;
DTableDesc const dtd = HUFv07_getDTableDesc(DTable);
U32 const dtLog = dtd.tableLog;
{ size_t const errorCode = BITv07_initDStream(&bitD, cSrc, cSrcSize);
if (HUFv07_isError(errorCode)) return errorCode; }
HUFv07_decodeStreamX2(op, &bitD, oend, dt, dtLog);
/* check */
if (!BITv07_endOfDStream(&bitD)) return ERROR(corruption_detected);
return dstSize;
}
size_t HUFv07_decompress1X2_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUFv07_DTable* DTable)
{
DTableDesc dtd = HUFv07_getDTableDesc(DTable);
if (dtd.tableType != 0) return ERROR(GENERIC);
return HUFv07_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
}
size_t HUFv07_decompress1X2_DCtx (HUFv07_DTable* DCtx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t const hSize = HUFv07_readDTableX2 (DCtx, cSrc, cSrcSize);
if (HUFv07_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUFv07_decompress1X2_usingDTable_internal (dst, dstSize, ip, cSrcSize, DCtx);
}
size_t HUFv07_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUFv07_CREATE_STATIC_DTABLEX2(DTable, HUFv07_TABLELOG_MAX);
return HUFv07_decompress1X2_DCtx (DTable, dst, dstSize, cSrc, cSrcSize);
}
static size_t HUFv07_decompress4X2_usingDTable_internal(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUFv07_DTable* DTable)
{
/* Check */
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{ const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* const dtPtr = DTable + 1;
const HUFv07_DEltX2* const dt = (const HUFv07_DEltX2*)dtPtr;
/* Init */
BITv07_DStream_t bitD1;
BITv07_DStream_t bitD2;
BITv07_DStream_t bitD3;
BITv07_DStream_t bitD4;
size_t const length1 = MEM_readLE16(istart);
size_t const length2 = MEM_readLE16(istart+2);
size_t const length3 = MEM_readLE16(istart+4);
size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
const size_t segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal;
DTableDesc const dtd = HUFv07_getDTableDesc(DTable);
U32 const dtLog = dtd.tableLog;
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
{ size_t const errorCode = BITv07_initDStream(&bitD1, istart1, length1);
if (HUFv07_isError(errorCode)) return errorCode; }
{ size_t const errorCode = BITv07_initDStream(&bitD2, istart2, length2);
if (HUFv07_isError(errorCode)) return errorCode; }
{ size_t const errorCode = BITv07_initDStream(&bitD3, istart3, length3);
if (HUFv07_isError(errorCode)) return errorCode; }
{ size_t const errorCode = BITv07_initDStream(&bitD4, istart4, length4);
if (HUFv07_isError(errorCode)) return errorCode; }
/* 16-32 symbols per loop (4-8 symbols per stream) */
endSignal = BITv07_reloadDStream(&bitD1) | BITv07_reloadDStream(&bitD2) | BITv07_reloadDStream(&bitD3) | BITv07_reloadDStream(&bitD4);
for ( ; (endSignal==BITv07_DStream_unfinished) && (op4<(oend-7)) ; ) {
HUFv07_DECODE_SYMBOLX2_2(op1, &bitD1);
HUFv07_DECODE_SYMBOLX2_2(op2, &bitD2);
HUFv07_DECODE_SYMBOLX2_2(op3, &bitD3);
HUFv07_DECODE_SYMBOLX2_2(op4, &bitD4);
HUFv07_DECODE_SYMBOLX2_1(op1, &bitD1);
HUFv07_DECODE_SYMBOLX2_1(op2, &bitD2);
HUFv07_DECODE_SYMBOLX2_1(op3, &bitD3);
HUFv07_DECODE_SYMBOLX2_1(op4, &bitD4);
HUFv07_DECODE_SYMBOLX2_2(op1, &bitD1);
HUFv07_DECODE_SYMBOLX2_2(op2, &bitD2);
HUFv07_DECODE_SYMBOLX2_2(op3, &bitD3);
HUFv07_DECODE_SYMBOLX2_2(op4, &bitD4);
HUFv07_DECODE_SYMBOLX2_0(op1, &bitD1);
HUFv07_DECODE_SYMBOLX2_0(op2, &bitD2);
HUFv07_DECODE_SYMBOLX2_0(op3, &bitD3);
HUFv07_DECODE_SYMBOLX2_0(op4, &bitD4);
endSignal = BITv07_reloadDStream(&bitD1) | BITv07_reloadDStream(&bitD2) | BITv07_reloadDStream(&bitD3) | BITv07_reloadDStream(&bitD4);
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 supposed already verified within main loop */
/* finish bitStreams one by one */
HUFv07_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
HUFv07_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
HUFv07_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
HUFv07_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
/* check */
endSignal = BITv07_endOfDStream(&bitD1) & BITv07_endOfDStream(&bitD2) & BITv07_endOfDStream(&bitD3) & BITv07_endOfDStream(&bitD4);
if (!endSignal) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
}
size_t HUFv07_decompress4X2_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUFv07_DTable* DTable)
{
DTableDesc dtd = HUFv07_getDTableDesc(DTable);
if (dtd.tableType != 0) return ERROR(GENERIC);
return HUFv07_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
}
size_t HUFv07_decompress4X2_DCtx (HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t const hSize = HUFv07_readDTableX2 (dctx, cSrc, cSrcSize);
if (HUFv07_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUFv07_decompress4X2_usingDTable_internal (dst, dstSize, ip, cSrcSize, dctx);
}
size_t HUFv07_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUFv07_CREATE_STATIC_DTABLEX2(DTable, HUFv07_TABLELOG_MAX);
return HUFv07_decompress4X2_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
}
/* *************************/
/* double-symbols decoding */
/* *************************/
typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUFv07_DEltX4; /* double-symbols decoding */
typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
static void HUFv07_fillDTableX4Level2(HUFv07_DEltX4* DTable, U32 sizeLog, const U32 consumed,
const U32* rankValOrigin, const int minWeight,
const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
U32 nbBitsBaseline, U16 baseSeq)
{
HUFv07_DEltX4 DElt;
U32 rankVal[HUFv07_TABLELOG_ABSOLUTEMAX + 1];
/* get pre-calculated rankVal */
memcpy(rankVal, rankValOrigin, sizeof(rankVal));
/* fill skipped values */
if (minWeight>1) {
U32 i, skipSize = rankVal[minWeight];
MEM_writeLE16(&(DElt.sequence), baseSeq);
DElt.nbBits = (BYTE)(consumed);
DElt.length = 1;
for (i = 0; i < skipSize; i++)
DTable[i] = DElt;
}
/* fill DTable */
{ U32 s; for (s=0; s<sortedListSize; s++) { /* note : sortedSymbols already skipped */
const U32 symbol = sortedSymbols[s].symbol;
const U32 weight = sortedSymbols[s].weight;
const U32 nbBits = nbBitsBaseline - weight;
const U32 length = 1 << (sizeLog-nbBits);
const U32 start = rankVal[weight];
U32 i = start;
const U32 end = start + length;
MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
DElt.nbBits = (BYTE)(nbBits + consumed);
DElt.length = 2;
do { DTable[i++] = DElt; } while (i<end); /* since length >= 1 */
rankVal[weight] += length;
}}
}
typedef U32 rankVal_t[HUFv07_TABLELOG_ABSOLUTEMAX][HUFv07_TABLELOG_ABSOLUTEMAX + 1];
static void HUFv07_fillDTableX4(HUFv07_DEltX4* DTable, const U32 targetLog,
const sortedSymbol_t* sortedList, const U32 sortedListSize,
const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
const U32 nbBitsBaseline)
{
U32 rankVal[HUFv07_TABLELOG_ABSOLUTEMAX + 1];
const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
const U32 minBits = nbBitsBaseline - maxWeight;
U32 s;
memcpy(rankVal, rankValOrigin, sizeof(rankVal));
/* fill DTable */
for (s=0; s<sortedListSize; s++) {
const U16 symbol = sortedList[s].symbol;
const U32 weight = sortedList[s].weight;
const U32 nbBits = nbBitsBaseline - weight;
const U32 start = rankVal[weight];
const U32 length = 1 << (targetLog-nbBits);
if (targetLog-nbBits >= minBits) { /* enough room for a second symbol */
U32 sortedRank;
int minWeight = nbBits + scaleLog;
if (minWeight < 1) minWeight = 1;
sortedRank = rankStart[minWeight];
HUFv07_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits,
rankValOrigin[nbBits], minWeight,
sortedList+sortedRank, sortedListSize-sortedRank,
nbBitsBaseline, symbol);
} else {
HUFv07_DEltX4 DElt;
MEM_writeLE16(&(DElt.sequence), symbol);
DElt.nbBits = (BYTE)(nbBits);
DElt.length = 1;
{ U32 u;
const U32 end = start + length;
for (u = start; u < end; u++) DTable[u] = DElt;
} }
rankVal[weight] += length;
}
}
size_t HUFv07_readDTableX4 (HUFv07_DTable* DTable, const void* src, size_t srcSize)
{
BYTE weightList[HUFv07_SYMBOLVALUE_MAX + 1];
sortedSymbol_t sortedSymbol[HUFv07_SYMBOLVALUE_MAX + 1];
U32 rankStats[HUFv07_TABLELOG_ABSOLUTEMAX + 1] = { 0 };
U32 rankStart0[HUFv07_TABLELOG_ABSOLUTEMAX + 2] = { 0 };
U32* const rankStart = rankStart0+1;
rankVal_t rankVal;
U32 tableLog, maxW, sizeOfSort, nbSymbols;
DTableDesc dtd = HUFv07_getDTableDesc(DTable);
U32 const maxTableLog = dtd.maxTableLog;
size_t iSize;
void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */
HUFv07_DEltX4* const dt = (HUFv07_DEltX4*)dtPtr;
HUFv07_STATIC_ASSERT(sizeof(HUFv07_DEltX4) == sizeof(HUFv07_DTable)); /* if compilation fails here, assertion is false */
if (maxTableLog > HUFv07_TABLELOG_ABSOLUTEMAX) return ERROR(tableLog_tooLarge);
/* memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */
iSize = HUFv07_readStats(weightList, HUFv07_SYMBOLVALUE_MAX + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
if (HUFv07_isError(iSize)) return iSize;
/* check result */
if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
/* find maxWeight */
for (maxW = tableLog; rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
/* Get start index of each weight */
{ U32 w, nextRankStart = 0;
for (w=1; w<maxW+1; w++) {
U32 current = nextRankStart;
nextRankStart += rankStats[w];
rankStart[w] = current;
}
rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
sizeOfSort = nextRankStart;
}
/* sort symbols by weight */
{ U32 s;
for (s=0; s<nbSymbols; s++) {
U32 const w = weightList[s];
U32 const r = rankStart[w]++;
sortedSymbol[r].symbol = (BYTE)s;
sortedSymbol[r].weight = (BYTE)w;
}
rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
}
/* Build rankVal */
{ U32* const rankVal0 = rankVal[0];
{ int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */
U32 nextRankVal = 0;
U32 w;
for (w=1; w<maxW+1; w++) {
U32 current = nextRankVal;
nextRankVal += rankStats[w] << (w+rescale);
rankVal0[w] = current;
} }
{ U32 const minBits = tableLog+1 - maxW;
U32 consumed;
for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
U32* const rankValPtr = rankVal[consumed];
U32 w;
for (w = 1; w < maxW+1; w++) {
rankValPtr[w] = rankVal0[w] >> consumed;
} } } }
HUFv07_fillDTableX4(dt, maxTableLog,
sortedSymbol, sizeOfSort,
rankStart0, rankVal, maxW,
tableLog+1);
dtd.tableLog = (BYTE)maxTableLog;
dtd.tableType = 1;
memcpy(DTable, &dtd, sizeof(dtd));
return iSize;
}
static U32 HUFv07_decodeSymbolX4(void* op, BITv07_DStream_t* DStream, const HUFv07_DEltX4* dt, const U32 dtLog)
{
const size_t val = BITv07_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
memcpy(op, dt+val, 2);
BITv07_skipBits(DStream, dt[val].nbBits);
return dt[val].length;
}
static U32 HUFv07_decodeLastSymbolX4(void* op, BITv07_DStream_t* DStream, const HUFv07_DEltX4* dt, const U32 dtLog)
{
const size_t val = BITv07_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
memcpy(op, dt+val, 1);
if (dt[val].length==1) BITv07_skipBits(DStream, dt[val].nbBits);
else {
if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
BITv07_skipBits(DStream, dt[val].nbBits);
if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
} }
return 1;
}
#define HUFv07_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \
ptr += HUFv07_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
#define HUFv07_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUFv07_TABLELOG_MAX<=12)) \
ptr += HUFv07_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
#define HUFv07_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
ptr += HUFv07_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
static inline size_t HUFv07_decodeStreamX4(BYTE* p, BITv07_DStream_t* bitDPtr, BYTE* const pEnd, const HUFv07_DEltX4* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 8 symbols at a time */
while ((BITv07_reloadDStream(bitDPtr) == BITv07_DStream_unfinished) && (p < pEnd-7)) {
HUFv07_DECODE_SYMBOLX4_2(p, bitDPtr);
HUFv07_DECODE_SYMBOLX4_1(p, bitDPtr);
HUFv07_DECODE_SYMBOLX4_2(p, bitDPtr);
HUFv07_DECODE_SYMBOLX4_0(p, bitDPtr);
}
/* closer to end : up to 2 symbols at a time */
while ((BITv07_reloadDStream(bitDPtr) == BITv07_DStream_unfinished) && (p <= pEnd-2))
HUFv07_DECODE_SYMBOLX4_0(p, bitDPtr);
while (p <= pEnd-2)
HUFv07_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
if (p < pEnd)
p += HUFv07_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);
return p-pStart;
}
static size_t HUFv07_decompress1X4_usingDTable_internal(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUFv07_DTable* DTable)
{
BITv07_DStream_t bitD;
/* Init */
{ size_t const errorCode = BITv07_initDStream(&bitD, cSrc, cSrcSize);
if (HUFv07_isError(errorCode)) return errorCode;
}
/* decode */
{ BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */
const HUFv07_DEltX4* const dt = (const HUFv07_DEltX4*)dtPtr;
DTableDesc const dtd = HUFv07_getDTableDesc(DTable);
HUFv07_decodeStreamX4(ostart, &bitD, oend, dt, dtd.tableLog);
}
/* check */
if (!BITv07_endOfDStream(&bitD)) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
size_t HUFv07_decompress1X4_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUFv07_DTable* DTable)
{
DTableDesc dtd = HUFv07_getDTableDesc(DTable);
if (dtd.tableType != 1) return ERROR(GENERIC);
return HUFv07_decompress1X4_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
}
size_t HUFv07_decompress1X4_DCtx (HUFv07_DTable* DCtx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t const hSize = HUFv07_readDTableX4 (DCtx, cSrc, cSrcSize);
if (HUFv07_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUFv07_decompress1X4_usingDTable_internal (dst, dstSize, ip, cSrcSize, DCtx);
}
size_t HUFv07_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUFv07_CREATE_STATIC_DTABLEX4(DTable, HUFv07_TABLELOG_MAX);
return HUFv07_decompress1X4_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
}
static size_t HUFv07_decompress4X4_usingDTable_internal(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUFv07_DTable* DTable)
{
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{ const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* const dtPtr = DTable+1;
const HUFv07_DEltX4* const dt = (const HUFv07_DEltX4*)dtPtr;
/* Init */
BITv07_DStream_t bitD1;
BITv07_DStream_t bitD2;
BITv07_DStream_t bitD3;
BITv07_DStream_t bitD4;
size_t const length1 = MEM_readLE16(istart);
size_t const length2 = MEM_readLE16(istart+2);
size_t const length3 = MEM_readLE16(istart+4);
size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
size_t const segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal;
DTableDesc const dtd = HUFv07_getDTableDesc(DTable);
U32 const dtLog = dtd.tableLog;
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
{ size_t const errorCode = BITv07_initDStream(&bitD1, istart1, length1);
if (HUFv07_isError(errorCode)) return errorCode; }
{ size_t const errorCode = BITv07_initDStream(&bitD2, istart2, length2);
if (HUFv07_isError(errorCode)) return errorCode; }
{ size_t const errorCode = BITv07_initDStream(&bitD3, istart3, length3);
if (HUFv07_isError(errorCode)) return errorCode; }
{ size_t const errorCode = BITv07_initDStream(&bitD4, istart4, length4);
if (HUFv07_isError(errorCode)) return errorCode; }
/* 16-32 symbols per loop (4-8 symbols per stream) */
endSignal = BITv07_reloadDStream(&bitD1) | BITv07_reloadDStream(&bitD2) | BITv07_reloadDStream(&bitD3) | BITv07_reloadDStream(&bitD4);
for ( ; (endSignal==BITv07_DStream_unfinished) && (op4<(oend-7)) ; ) {
HUFv07_DECODE_SYMBOLX4_2(op1, &bitD1);
HUFv07_DECODE_SYMBOLX4_2(op2, &bitD2);
HUFv07_DECODE_SYMBOLX4_2(op3, &bitD3);
HUFv07_DECODE_SYMBOLX4_2(op4, &bitD4);
HUFv07_DECODE_SYMBOLX4_1(op1, &bitD1);
HUFv07_DECODE_SYMBOLX4_1(op2, &bitD2);
HUFv07_DECODE_SYMBOLX4_1(op3, &bitD3);
HUFv07_DECODE_SYMBOLX4_1(op4, &bitD4);
HUFv07_DECODE_SYMBOLX4_2(op1, &bitD1);
HUFv07_DECODE_SYMBOLX4_2(op2, &bitD2);
HUFv07_DECODE_SYMBOLX4_2(op3, &bitD3);
HUFv07_DECODE_SYMBOLX4_2(op4, &bitD4);
HUFv07_DECODE_SYMBOLX4_0(op1, &bitD1);
HUFv07_DECODE_SYMBOLX4_0(op2, &bitD2);
HUFv07_DECODE_SYMBOLX4_0(op3, &bitD3);
HUFv07_DECODE_SYMBOLX4_0(op4, &bitD4);
endSignal = BITv07_reloadDStream(&bitD1) | BITv07_reloadDStream(&bitD2) | BITv07_reloadDStream(&bitD3) | BITv07_reloadDStream(&bitD4);
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 supposed already verified within main loop */
/* finish bitStreams one by one */
HUFv07_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
HUFv07_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
HUFv07_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
HUFv07_decodeStreamX4(op4, &bitD4, oend, dt, dtLog);
/* check */
{ U32 const endCheck = BITv07_endOfDStream(&bitD1) & BITv07_endOfDStream(&bitD2) & BITv07_endOfDStream(&bitD3) & BITv07_endOfDStream(&bitD4);
if (!endCheck) return ERROR(corruption_detected); }
/* decoded size */
return dstSize;
}
}
size_t HUFv07_decompress4X4_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUFv07_DTable* DTable)
{
DTableDesc dtd = HUFv07_getDTableDesc(DTable);
if (dtd.tableType != 1) return ERROR(GENERIC);
return HUFv07_decompress4X4_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
}
size_t HUFv07_decompress4X4_DCtx (HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t hSize = HUFv07_readDTableX4 (dctx, cSrc, cSrcSize);
if (HUFv07_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUFv07_decompress4X4_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx);
}
size_t HUFv07_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUFv07_CREATE_STATIC_DTABLEX4(DTable, HUFv07_TABLELOG_MAX);
return HUFv07_decompress4X4_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
}
/* ********************************/
/* Generic decompression selector */
/* ********************************/
size_t HUFv07_decompress1X_usingDTable(void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const HUFv07_DTable* DTable)
{
DTableDesc const dtd = HUFv07_getDTableDesc(DTable);
return dtd.tableType ? HUFv07_decompress1X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable) :
HUFv07_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable);
}
size_t HUFv07_decompress4X_usingDTable(void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const HUFv07_DTable* DTable)
{
DTableDesc const dtd = HUFv07_getDTableDesc(DTable);
return dtd.tableType ? HUFv07_decompress4X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable) :
HUFv07_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable);
}
typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
{
/* single, double, quad */
{{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */
{{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */
{{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */
{{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */
{{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */
{{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */
{{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */
{{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */
{{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */
{{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */
{{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */
{{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */
{{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */
{{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */
{{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */
{{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */
};
/** HUFv07_selectDecoder() :
* Tells which decoder is likely to decode faster,
* based on a set of pre-determined metrics.
* @return : 0==HUFv07_decompress4X2, 1==HUFv07_decompress4X4 .
* Assumption : 0 < cSrcSize < dstSize <= 128 KB */
U32 HUFv07_selectDecoder (size_t dstSize, size_t cSrcSize)
{
/* decoder timing evaluation */
U32 const Q = (U32)(cSrcSize * 16 / dstSize); /* Q < 16 since dstSize > cSrcSize */
U32 const D256 = (U32)(dstSize >> 8);
U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
DTime1 += DTime1 >> 3; /* advantage to algorithm using less memory, for cache eviction */
return DTime1 < DTime0;
}
typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
size_t HUFv07_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
static const decompressionAlgo decompress[2] = { HUFv07_decompress4X2, HUFv07_decompress4X4 };
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
{ U32 const algoNb = HUFv07_selectDecoder(dstSize, cSrcSize);
return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
}
/* return HUFv07_decompress4X2(dst, dstSize, cSrc, cSrcSize); */ /* multi-streams single-symbol decoding */
/* return HUFv07_decompress4X4(dst, dstSize, cSrc, cSrcSize); */ /* multi-streams double-symbols decoding */
}
size_t HUFv07_decompress4X_DCtx (HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
{ U32 const algoNb = HUFv07_selectDecoder(dstSize, cSrcSize);
return algoNb ? HUFv07_decompress4X4_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) :
HUFv07_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ;
}
}
size_t HUFv07_decompress4X_hufOnly (HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if ((cSrcSize >= dstSize) || (cSrcSize <= 1)) return ERROR(corruption_detected); /* invalid */
{ U32 const algoNb = HUFv07_selectDecoder(dstSize, cSrcSize);
return algoNb ? HUFv07_decompress4X4_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) :
HUFv07_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ;
}
}
size_t HUFv07_decompress1X_DCtx (HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
{ U32 const algoNb = HUFv07_selectDecoder(dstSize, cSrcSize);
return algoNb ? HUFv07_decompress1X4_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) :
HUFv07_decompress1X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ;
}
}
/*
Common functions of Zstd compression library
Copyright (C) 2015-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- zstd homepage : http://www.zstd.net/
*/
/*-****************************************
* ZSTD Error Management
******************************************/
/*! ZSTDv07_isError() :
* tells if a return value is an error code */
unsigned ZSTDv07_isError(size_t code) { return ERR_isError(code); }
/*! ZSTDv07_getErrorName() :
* provides error code string from function result (useful for debugging) */
const char* ZSTDv07_getErrorName(size_t code) { return ERR_getErrorName(code); }
/* **************************************************************
* ZBUFF Error Management
****************************************************************/
unsigned ZBUFFv07_isError(size_t errorCode) { return ERR_isError(errorCode); }
const char* ZBUFFv07_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
static void* ZSTDv07_defaultAllocFunction(void* opaque, size_t size)
{
void* address = malloc(size);
(void)opaque;
/* printf("alloc %p, %d opaque=%p \n", address, (int)size, opaque); */
return address;
}
static void ZSTDv07_defaultFreeFunction(void* opaque, void* address)
{
(void)opaque;
/* if (address) printf("free %p opaque=%p \n", address, opaque); */
free(address);
}
/*
zstd_internal - common functions to include
Header File for include
Copyright (C) 2014-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- zstd homepage : https://www.zstd.net
*/
#ifndef ZSTDv07_CCOMMON_H_MODULE
#define ZSTDv07_CCOMMON_H_MODULE
/*-*************************************
* Common macros
***************************************/
#define MIN(a,b) ((a)<(b) ? (a) : (b))
#define MAX(a,b) ((a)>(b) ? (a) : (b))
/*-*************************************
* Common constants
***************************************/
#define ZSTDv07_OPT_NUM (1<<12)
#define ZSTDv07_DICT_MAGIC 0xEC30A437 /* v0.7 */
#define ZSTDv07_REP_NUM 3
#define ZSTDv07_REP_INIT ZSTDv07_REP_NUM
#define ZSTDv07_REP_MOVE (ZSTDv07_REP_NUM-1)
static const U32 repStartValue[ZSTDv07_REP_NUM] = { 1, 4, 8 };
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)
#define BIT7 128
#define BIT6 64
#define BIT5 32
#define BIT4 16
#define BIT1 2
#define BIT0 1
#define ZSTDv07_WINDOWLOG_ABSOLUTEMIN 10
static const size_t ZSTDv07_fcs_fieldSize[4] = { 0, 2, 4, 8 };
static const size_t ZSTDv07_did_fieldSize[4] = { 0, 1, 2, 4 };
#define ZSTDv07_BLOCKHEADERSIZE 3 /* C standard doesn't allow `static const` variable to be init using another `static const` variable */
static const size_t ZSTDv07_blockHeaderSize = ZSTDv07_BLOCKHEADERSIZE;
typedef enum { bt_compressed, bt_raw, bt_rle, bt_end } blockType_t;
#define MIN_SEQUENCES_SIZE 1 /* nbSeq==0 */
#define MIN_CBLOCK_SIZE (1 /*litCSize*/ + 1 /* RLE or RAW */ + MIN_SEQUENCES_SIZE /* nbSeq==0 */) /* for a non-null block */
#define HufLog 12
typedef enum { lbt_huffman, lbt_repeat, lbt_raw, lbt_rle } litBlockType_t;
#define LONGNBSEQ 0x7F00
#define MINMATCH 3
#define EQUAL_READ32 4
#define Litbits 8
#define MaxLit ((1<<Litbits) - 1)
#define MaxML 52
#define MaxLL 35
#define MaxOff 28
#define MaxSeq MAX(MaxLL, MaxML) /* Assumption : MaxOff < MaxLL,MaxML */
#define MLFSELog 9
#define LLFSELog 9
#define OffFSELog 8
#define FSEv07_ENCODING_RAW 0
#define FSEv07_ENCODING_RLE 1
#define FSEv07_ENCODING_STATIC 2
#define FSEv07_ENCODING_DYNAMIC 3
#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2)
static const U32 LL_bits[MaxLL+1] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 9,10,11,12,
13,14,15,16 };
static const S16 LL_defaultNorm[MaxLL+1] = { 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 1, 1, 1, 1,
-1,-1,-1,-1 };
static const U32 LL_defaultNormLog = 6;
static const U32 ML_bits[MaxML+1] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 7, 8, 9,10,11,
12,13,14,15,16 };
static const S16 ML_defaultNorm[MaxML+1] = { 1, 4, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,-1,-1,
-1,-1,-1,-1,-1 };
static const U32 ML_defaultNormLog = 6;
static const S16 OF_defaultNorm[MaxOff+1] = { 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,-1,-1,-1,-1,-1 };
static const U32 OF_defaultNormLog = 5;
/*-*******************************************
* Shared functions to include for inlining
*********************************************/
static void ZSTDv07_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
#define COPY8(d,s) { ZSTDv07_copy8(d,s); d+=8; s+=8; }
/*! ZSTDv07_wildcopy() :
* custom version of memcpy(), can copy up to 7 bytes too many (8 bytes if length==0) */
#define WILDCOPY_OVERLENGTH 8
MEM_STATIC void ZSTDv07_wildcopy(void* dst, const void* src, ptrdiff_t length)
{
const BYTE* ip = (const BYTE*)src;
BYTE* op = (BYTE*)dst;
BYTE* const oend = op + length;
do
COPY8(op, ip)
while (op < oend);
}
/*-*******************************************
* Private interfaces
*********************************************/
typedef struct ZSTDv07_stats_s ZSTDv07_stats_t;
typedef struct {
U32 off;
U32 len;
} ZSTDv07_match_t;
typedef struct {
U32 price;
U32 off;
U32 mlen;
U32 litlen;
U32 rep[ZSTDv07_REP_INIT];
} ZSTDv07_optimal_t;
struct ZSTDv07_stats_s { U32 unused; };
typedef struct {
void* buffer;
U32* offsetStart;
U32* offset;
BYTE* offCodeStart;
BYTE* litStart;
BYTE* lit;
U16* litLengthStart;
U16* litLength;
BYTE* llCodeStart;
U16* matchLengthStart;
U16* matchLength;
BYTE* mlCodeStart;
U32 longLengthID; /* 0 == no longLength; 1 == Lit.longLength; 2 == Match.longLength; */
U32 longLengthPos;
/* opt */
ZSTDv07_optimal_t* priceTable;
ZSTDv07_match_t* matchTable;
U32* matchLengthFreq;
U32* litLengthFreq;
U32* litFreq;
U32* offCodeFreq;
U32 matchLengthSum;
U32 matchSum;
U32 litLengthSum;
U32 litSum;
U32 offCodeSum;
U32 log2matchLengthSum;
U32 log2matchSum;
U32 log2litLengthSum;
U32 log2litSum;
U32 log2offCodeSum;
U32 factor;
U32 cachedPrice;
U32 cachedLitLength;
const BYTE* cachedLiterals;
ZSTDv07_stats_t stats;
} seqStore_t;
void ZSTDv07_seqToCodes(const seqStore_t* seqStorePtr, size_t const nbSeq);
/* custom memory allocation functions */
static const ZSTDv07_customMem defaultCustomMem = { ZSTDv07_defaultAllocFunction, ZSTDv07_defaultFreeFunction, NULL };
#endif /* ZSTDv07_CCOMMON_H_MODULE */
/*
zstd - standard compression library
Copyright (C) 2014-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- zstd homepage : http://www.zstd.net
*/
/* ***************************************************************
* Tuning parameters
*****************************************************************/
/*!
* HEAPMODE :
* Select how default decompression function ZSTDv07_decompress() will allocate memory,
* in memory stack (0), or in memory heap (1, requires malloc())
*/
#ifndef ZSTDv07_HEAPMODE
# define ZSTDv07_HEAPMODE 1
#endif
/*-*******************************************************
* Compiler specifics
*********************************************************/
#ifdef _MSC_VER /* Visual Studio */
# include <intrin.h> /* For Visual 2005 */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4324) /* disable: C4324: padded structure */
# pragma warning(disable : 4100) /* disable: C4100: unreferenced formal parameter */
#endif
/*-*************************************
* Macros
***************************************/
#define ZSTDv07_isError ERR_isError /* for inlining */
#define FSEv07_isError ERR_isError
#define HUFv07_isError ERR_isError
/*_*******************************************************
* Memory operations
**********************************************************/
static void ZSTDv07_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }
/*-*************************************************************
* Context management
***************************************************************/
typedef enum { ZSTDds_getFrameHeaderSize, ZSTDds_decodeFrameHeader,
ZSTDds_decodeBlockHeader, ZSTDds_decompressBlock,
ZSTDds_decodeSkippableHeader, ZSTDds_skipFrame } ZSTDv07_dStage;
struct ZSTDv07_DCtx_s
{
FSEv07_DTable LLTable[FSEv07_DTABLE_SIZE_U32(LLFSELog)];
FSEv07_DTable OffTable[FSEv07_DTABLE_SIZE_U32(OffFSELog)];
FSEv07_DTable MLTable[FSEv07_DTABLE_SIZE_U32(MLFSELog)];
HUFv07_DTable hufTable[HUFv07_DTABLE_SIZE(HufLog)]; /* can accommodate HUFv07_decompress4X */
const void* previousDstEnd;
const void* base;
const void* vBase;
const void* dictEnd;
size_t expected;
U32 rep[3];
ZSTDv07_frameParams fParams;
blockType_t bType; /* used in ZSTDv07_decompressContinue(), to transfer blockType between header decoding and block decoding stages */
ZSTDv07_dStage stage;
U32 litEntropy;
U32 fseEntropy;
XXH64_state_t xxhState;
size_t headerSize;
U32 dictID;
const BYTE* litPtr;
ZSTDv07_customMem customMem;
size_t litSize;
BYTE litBuffer[ZSTDv07_BLOCKSIZE_ABSOLUTEMAX + WILDCOPY_OVERLENGTH];
BYTE headerBuffer[ZSTDv07_FRAMEHEADERSIZE_MAX];
}; /* typedef'd to ZSTDv07_DCtx within "zstd_static.h" */
int ZSTDv07_isSkipFrame(ZSTDv07_DCtx* dctx);
size_t ZSTDv07_sizeofDCtx (const ZSTDv07_DCtx* dctx) { return sizeof(*dctx); }
size_t ZSTDv07_estimateDCtxSize(void) { return sizeof(ZSTDv07_DCtx); }
size_t ZSTDv07_decompressBegin(ZSTDv07_DCtx* dctx)
{
dctx->expected = ZSTDv07_frameHeaderSize_min;
dctx->stage = ZSTDds_getFrameHeaderSize;
dctx->previousDstEnd = NULL;
dctx->base = NULL;
dctx->vBase = NULL;
dctx->dictEnd = NULL;
dctx->hufTable[0] = (HUFv07_DTable)((HufLog)*0x1000001);
dctx->litEntropy = dctx->fseEntropy = 0;
dctx->dictID = 0;
{ int i; for (i=0; i<ZSTDv07_REP_NUM; i++) dctx->rep[i] = repStartValue[i]; }
return 0;
}
ZSTDv07_DCtx* ZSTDv07_createDCtx_advanced(ZSTDv07_customMem customMem)
{
ZSTDv07_DCtx* dctx;
if (!customMem.customAlloc && !customMem.customFree)
customMem = defaultCustomMem;
if (!customMem.customAlloc || !customMem.customFree)
return NULL;
dctx = (ZSTDv07_DCtx*) customMem.customAlloc(customMem.opaque, sizeof(ZSTDv07_DCtx));
if (!dctx) return NULL;
memcpy(&dctx->customMem, &customMem, sizeof(ZSTDv07_customMem));
ZSTDv07_decompressBegin(dctx);
return dctx;
}
ZSTDv07_DCtx* ZSTDv07_createDCtx(void)
{
return ZSTDv07_createDCtx_advanced(defaultCustomMem);
}
size_t ZSTDv07_freeDCtx(ZSTDv07_DCtx* dctx)
{
if (dctx==NULL) return 0; /* support free on NULL */
dctx->customMem.customFree(dctx->customMem.opaque, dctx);
return 0; /* reserved as a potential error code in the future */
}
void ZSTDv07_copyDCtx(ZSTDv07_DCtx* dstDCtx, const ZSTDv07_DCtx* srcDCtx)
{
memcpy(dstDCtx, srcDCtx,
sizeof(ZSTDv07_DCtx) - (ZSTDv07_BLOCKSIZE_ABSOLUTEMAX+WILDCOPY_OVERLENGTH + ZSTDv07_frameHeaderSize_max)); /* no need to copy workspace */
}
/*-*************************************************************
* Decompression section
***************************************************************/
/* Frame format description
Frame Header - [ Block Header - Block ] - Frame End
1) Frame Header
- 4 bytes - Magic Number : ZSTDv07_MAGICNUMBER (defined within zstd.h)
- 1 byte - Frame Descriptor
2) Block Header
- 3 bytes, starting with a 2-bits descriptor
Uncompressed, Compressed, Frame End, unused
3) Block
See Block Format Description
4) Frame End
- 3 bytes, compatible with Block Header
*/
/* Frame Header :
1 byte - FrameHeaderDescription :
bit 0-1 : dictID (0, 1, 2 or 4 bytes)
bit 2 : checksumFlag
bit 3 : reserved (must be zero)
bit 4 : reserved (unused, can be any value)
bit 5 : Single Segment (if 1, WindowLog byte is not present)
bit 6-7 : FrameContentFieldSize (0, 2, 4, or 8)
if (SkippedWindowLog && !FrameContentFieldsize) FrameContentFieldsize=1;
Optional : WindowLog (0 or 1 byte)
bit 0-2 : octal Fractional (1/8th)
bit 3-7 : Power of 2, with 0 = 1 KB (up to 2 TB)
Optional : dictID (0, 1, 2 or 4 bytes)
Automatic adaptation
0 : no dictID
1 : 1 - 255
2 : 256 - 65535
4 : all other values
Optional : content size (0, 1, 2, 4 or 8 bytes)
0 : unknown (fcfs==0 and swl==0)
1 : 0-255 bytes (fcfs==0 and swl==1)
2 : 256 - 65535+256 (fcfs==1)
4 : 0 - 4GB-1 (fcfs==2)
8 : 0 - 16EB-1 (fcfs==3)
*/
/* Compressed Block, format description
Block = Literal Section - Sequences Section
Prerequisite : size of (compressed) block, maximum size of regenerated data
1) Literal Section
1.1) Header : 1-5 bytes
flags: 2 bits
00 compressed by Huff0
01 unused
10 is Raw (uncompressed)
11 is Rle
Note : using 01 => Huff0 with precomputed table ?
Note : delta map ? => compressed ?
1.1.1) Huff0-compressed literal block : 3-5 bytes
srcSize < 1 KB => 3 bytes (2-2-10-10) => single stream
srcSize < 1 KB => 3 bytes (2-2-10-10)
srcSize < 16KB => 4 bytes (2-2-14-14)
else => 5 bytes (2-2-18-18)
big endian convention
1.1.2) Raw (uncompressed) literal block header : 1-3 bytes
size : 5 bits: (IS_RAW<<6) + (0<<4) + size
12 bits: (IS_RAW<<6) + (2<<4) + (size>>8)
size&255
20 bits: (IS_RAW<<6) + (3<<4) + (size>>16)
size>>8&255
size&255
1.1.3) Rle (repeated single byte) literal block header : 1-3 bytes
size : 5 bits: (IS_RLE<<6) + (0<<4) + size
12 bits: (IS_RLE<<6) + (2<<4) + (size>>8)
size&255
20 bits: (IS_RLE<<6) + (3<<4) + (size>>16)
size>>8&255
size&255
1.1.4) Huff0-compressed literal block, using precomputed CTables : 3-5 bytes
srcSize < 1 KB => 3 bytes (2-2-10-10) => single stream
srcSize < 1 KB => 3 bytes (2-2-10-10)
srcSize < 16KB => 4 bytes (2-2-14-14)
else => 5 bytes (2-2-18-18)
big endian convention
1- CTable available (stored into workspace ?)
2- Small input (fast heuristic ? Full comparison ? depend on clevel ?)
1.2) Literal block content
1.2.1) Huff0 block, using sizes from header
See Huff0 format
1.2.2) Huff0 block, using prepared table
1.2.3) Raw content
1.2.4) single byte
2) Sequences section
TO DO
*/
/** ZSTDv07_frameHeaderSize() :
* srcSize must be >= ZSTDv07_frameHeaderSize_min.
* @return : size of the Frame Header */
static size_t ZSTDv07_frameHeaderSize(const void* src, size_t srcSize)
{
if (srcSize < ZSTDv07_frameHeaderSize_min) return ERROR(srcSize_wrong);
{ BYTE const fhd = ((const BYTE*)src)[4];
U32 const dictID= fhd & 3;
U32 const directMode = (fhd >> 5) & 1;
U32 const fcsId = fhd >> 6;
return ZSTDv07_frameHeaderSize_min + !directMode + ZSTDv07_did_fieldSize[dictID] + ZSTDv07_fcs_fieldSize[fcsId]
+ (directMode && !ZSTDv07_fcs_fieldSize[fcsId]);
}
}
/** ZSTDv07_getFrameParams() :
* decode Frame Header, or require larger `srcSize`.
* @return : 0, `fparamsPtr` is correctly filled,
* >0, `srcSize` is too small, result is expected `srcSize`,
* or an error code, which can be tested using ZSTDv07_isError() */
size_t ZSTDv07_getFrameParams(ZSTDv07_frameParams* fparamsPtr, const void* src, size_t srcSize)
{
const BYTE* ip = (const BYTE*)src;
if (srcSize < ZSTDv07_frameHeaderSize_min) return ZSTDv07_frameHeaderSize_min;
memset(fparamsPtr, 0, sizeof(*fparamsPtr));
if (MEM_readLE32(src) != ZSTDv07_MAGICNUMBER) {
if ((MEM_readLE32(src) & 0xFFFFFFF0U) == ZSTDv07_MAGIC_SKIPPABLE_START) {
if (srcSize < ZSTDv07_skippableHeaderSize) return ZSTDv07_skippableHeaderSize; /* magic number + skippable frame length */
fparamsPtr->frameContentSize = MEM_readLE32((const char *)src + 4);
fparamsPtr->windowSize = 0; /* windowSize==0 means a frame is skippable */
return 0;
}
return ERROR(prefix_unknown);
}
/* ensure there is enough `srcSize` to fully read/decode frame header */
{ size_t const fhsize = ZSTDv07_frameHeaderSize(src, srcSize);
if (srcSize < fhsize) return fhsize; }
{ BYTE const fhdByte = ip[4];
size_t pos = 5;
U32 const dictIDSizeCode = fhdByte&3;
U32 const checksumFlag = (fhdByte>>2)&1;
U32 const directMode = (fhdByte>>5)&1;
U32 const fcsID = fhdByte>>6;
U32 const windowSizeMax = 1U << ZSTDv07_WINDOWLOG_MAX;
U32 windowSize = 0;
U32 dictID = 0;
U64 frameContentSize = 0;
if ((fhdByte & 0x08) != 0) /* reserved bits, which must be zero */
return ERROR(frameParameter_unsupported);
if (!directMode) {
BYTE const wlByte = ip[pos++];
U32 const windowLog = (wlByte >> 3) + ZSTDv07_WINDOWLOG_ABSOLUTEMIN;
if (windowLog > ZSTDv07_WINDOWLOG_MAX)
return ERROR(frameParameter_unsupported);
windowSize = (1U << windowLog);
windowSize += (windowSize >> 3) * (wlByte&7);
}
switch(dictIDSizeCode)
{
default: /* impossible */
case 0 : break;
case 1 : dictID = ip[pos]; pos++; break;
case 2 : dictID = MEM_readLE16(ip+pos); pos+=2; break;
case 3 : dictID = MEM_readLE32(ip+pos); pos+=4; break;
}
switch(fcsID)
{
default: /* impossible */
case 0 : if (directMode) frameContentSize = ip[pos]; break;
case 1 : frameContentSize = MEM_readLE16(ip+pos)+256; break;
case 2 : frameContentSize = MEM_readLE32(ip+pos); break;
case 3 : frameContentSize = MEM_readLE64(ip+pos); break;
}
if (!windowSize) windowSize = (U32)frameContentSize;
if (windowSize > windowSizeMax)
return ERROR(frameParameter_unsupported);
fparamsPtr->frameContentSize = frameContentSize;
fparamsPtr->windowSize = windowSize;
fparamsPtr->dictID = dictID;
fparamsPtr->checksumFlag = checksumFlag;
}
return 0;
}
/** ZSTDv07_getDecompressedSize() :
* compatible with legacy mode
* @return : decompressed size if known, 0 otherwise
note : 0 can mean any of the following :
- decompressed size is not provided within frame header
- frame header unknown / not supported
- frame header not completely provided (`srcSize` too small) */
unsigned long long ZSTDv07_getDecompressedSize(const void* src, size_t srcSize)
{
ZSTDv07_frameParams fparams;
size_t const frResult = ZSTDv07_getFrameParams(&fparams, src, srcSize);
if (frResult!=0) return 0;
return fparams.frameContentSize;
}
/** ZSTDv07_decodeFrameHeader() :
* `srcSize` must be the size provided by ZSTDv07_frameHeaderSize().
* @return : 0 if success, or an error code, which can be tested using ZSTDv07_isError() */
static size_t ZSTDv07_decodeFrameHeader(ZSTDv07_DCtx* dctx, const void* src, size_t srcSize)
{
size_t const result = ZSTDv07_getFrameParams(&(dctx->fParams), src, srcSize);
if (dctx->fParams.dictID && (dctx->dictID != dctx->fParams.dictID)) return ERROR(dictionary_wrong);
if (dctx->fParams.checksumFlag) XXH64_reset(&dctx->xxhState, 0);
return result;
}
typedef struct
{
blockType_t blockType;
U32 origSize;
} blockProperties_t;
/*! ZSTDv07_getcBlockSize() :
* Provides the size of compressed block from block header `src` */
static size_t ZSTDv07_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
{
- const BYTE* const in = (const BYTE* const)src;
+ const BYTE* const in = (const BYTE*)src;
U32 cSize;
if (srcSize < ZSTDv07_blockHeaderSize) return ERROR(srcSize_wrong);
bpPtr->blockType = (blockType_t)((*in) >> 6);
cSize = in[2] + (in[1]<<8) + ((in[0] & 7)<<16);
bpPtr->origSize = (bpPtr->blockType == bt_rle) ? cSize : 0;
if (bpPtr->blockType == bt_end) return 0;
if (bpPtr->blockType == bt_rle) return 1;
return cSize;
}
static size_t ZSTDv07_copyRawBlock(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
if (srcSize > dstCapacity) return ERROR(dstSize_tooSmall);
if (srcSize > 0) {
memcpy(dst, src, srcSize);
}
return srcSize;
}
/*! ZSTDv07_decodeLiteralsBlock() :
@return : nb of bytes read from src (< srcSize ) */
static size_t ZSTDv07_decodeLiteralsBlock(ZSTDv07_DCtx* dctx,
const void* src, size_t srcSize) /* note : srcSize < BLOCKSIZE */
{
const BYTE* const istart = (const BYTE*) src;
if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected);
switch((litBlockType_t)(istart[0]>> 6))
{
case lbt_huffman:
{ size_t litSize, litCSize, singleStream=0;
U32 lhSize = (istart[0] >> 4) & 3;
if (srcSize < 5) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for lhSize, + cSize (+nbSeq) */
switch(lhSize)
{
case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */
/* 2 - 2 - 10 - 10 */
lhSize=3;
singleStream = istart[0] & 16;
litSize = ((istart[0] & 15) << 6) + (istart[1] >> 2);
litCSize = ((istart[1] & 3) << 8) + istart[2];
break;
case 2:
/* 2 - 2 - 14 - 14 */
lhSize=4;
litSize = ((istart[0] & 15) << 10) + (istart[1] << 2) + (istart[2] >> 6);
litCSize = ((istart[2] & 63) << 8) + istart[3];
break;
case 3:
/* 2 - 2 - 18 - 18 */
lhSize=5;
litSize = ((istart[0] & 15) << 14) + (istart[1] << 6) + (istart[2] >> 2);
litCSize = ((istart[2] & 3) << 16) + (istart[3] << 8) + istart[4];
break;
}
if (litSize > ZSTDv07_BLOCKSIZE_ABSOLUTEMAX) return ERROR(corruption_detected);
if (litCSize + lhSize > srcSize) return ERROR(corruption_detected);
if (HUFv07_isError(singleStream ?
HUFv07_decompress1X2_DCtx(dctx->hufTable, dctx->litBuffer, litSize, istart+lhSize, litCSize) :
HUFv07_decompress4X_hufOnly (dctx->hufTable, dctx->litBuffer, litSize, istart+lhSize, litCSize) ))
return ERROR(corruption_detected);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
dctx->litEntropy = 1;
memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
return litCSize + lhSize;
}
case lbt_repeat:
{ size_t litSize, litCSize;
U32 lhSize = ((istart[0]) >> 4) & 3;
if (lhSize != 1) /* only case supported for now : small litSize, single stream */
return ERROR(corruption_detected);
if (dctx->litEntropy==0)
return ERROR(dictionary_corrupted);
/* 2 - 2 - 10 - 10 */
lhSize=3;
litSize = ((istart[0] & 15) << 6) + (istart[1] >> 2);
litCSize = ((istart[1] & 3) << 8) + istart[2];
if (litCSize + lhSize > srcSize) return ERROR(corruption_detected);
{ size_t const errorCode = HUFv07_decompress1X4_usingDTable(dctx->litBuffer, litSize, istart+lhSize, litCSize, dctx->hufTable);
if (HUFv07_isError(errorCode)) return ERROR(corruption_detected);
}
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
return litCSize + lhSize;
}
case lbt_raw:
{ size_t litSize;
U32 lhSize = ((istart[0]) >> 4) & 3;
switch(lhSize)
{
case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */
lhSize=1;
litSize = istart[0] & 31;
break;
case 2:
litSize = ((istart[0] & 15) << 8) + istart[1];
break;
case 3:
litSize = ((istart[0] & 15) << 16) + (istart[1] << 8) + istart[2];
break;
}
if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) { /* risk reading beyond src buffer with wildcopy */
if (litSize+lhSize > srcSize) return ERROR(corruption_detected);
memcpy(dctx->litBuffer, istart+lhSize, litSize);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
return lhSize+litSize;
}
/* direct reference into compressed stream */
dctx->litPtr = istart+lhSize;
dctx->litSize = litSize;
return lhSize+litSize;
}
case lbt_rle:
{ size_t litSize;
U32 lhSize = ((istart[0]) >> 4) & 3;
switch(lhSize)
{
case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */
lhSize = 1;
litSize = istart[0] & 31;
break;
case 2:
litSize = ((istart[0] & 15) << 8) + istart[1];
break;
case 3:
litSize = ((istart[0] & 15) << 16) + (istart[1] << 8) + istart[2];
if (srcSize<4) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4 */
break;
}
if (litSize > ZSTDv07_BLOCKSIZE_ABSOLUTEMAX) return ERROR(corruption_detected);
memset(dctx->litBuffer, istart[lhSize], litSize + WILDCOPY_OVERLENGTH);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
return lhSize+1;
}
default:
return ERROR(corruption_detected); /* impossible */
}
}
/*! ZSTDv07_buildSeqTable() :
@return : nb bytes read from src,
or an error code if it fails, testable with ZSTDv07_isError()
*/
static size_t ZSTDv07_buildSeqTable(FSEv07_DTable* DTable, U32 type, U32 max, U32 maxLog,
const void* src, size_t srcSize,
const S16* defaultNorm, U32 defaultLog, U32 flagRepeatTable)
{
switch(type)
{
case FSEv07_ENCODING_RLE :
if (!srcSize) return ERROR(srcSize_wrong);
if ( (*(const BYTE*)src) > max) return ERROR(corruption_detected);
FSEv07_buildDTable_rle(DTable, *(const BYTE*)src); /* if *src > max, data is corrupted */
return 1;
case FSEv07_ENCODING_RAW :
FSEv07_buildDTable(DTable, defaultNorm, max, defaultLog);
return 0;
case FSEv07_ENCODING_STATIC:
if (!flagRepeatTable) return ERROR(corruption_detected);
return 0;
default : /* impossible */
case FSEv07_ENCODING_DYNAMIC :
{ U32 tableLog;
S16 norm[MaxSeq+1];
size_t const headerSize = FSEv07_readNCount(norm, &max, &tableLog, src, srcSize);
if (FSEv07_isError(headerSize)) return ERROR(corruption_detected);
if (tableLog > maxLog) return ERROR(corruption_detected);
FSEv07_buildDTable(DTable, norm, max, tableLog);
return headerSize;
} }
}
static size_t ZSTDv07_decodeSeqHeaders(int* nbSeqPtr,
FSEv07_DTable* DTableLL, FSEv07_DTable* DTableML, FSEv07_DTable* DTableOffb, U32 flagRepeatTable,
const void* src, size_t srcSize)
{
- const BYTE* const istart = (const BYTE* const)src;
+ const BYTE* const istart = (const BYTE*)src;
const BYTE* const iend = istart + srcSize;
const BYTE* ip = istart;
/* check */
if (srcSize < MIN_SEQUENCES_SIZE) return ERROR(srcSize_wrong);
/* SeqHead */
{ int nbSeq = *ip++;
if (!nbSeq) { *nbSeqPtr=0; return 1; }
if (nbSeq > 0x7F) {
if (nbSeq == 0xFF) {
if (ip+2 > iend) return ERROR(srcSize_wrong);
nbSeq = MEM_readLE16(ip) + LONGNBSEQ, ip+=2;
} else {
if (ip >= iend) return ERROR(srcSize_wrong);
nbSeq = ((nbSeq-0x80)<<8) + *ip++;
}
}
*nbSeqPtr = nbSeq;
}
/* FSE table descriptors */
if (ip + 4 > iend) return ERROR(srcSize_wrong); /* min : header byte + all 3 are "raw", hence no header, but at least xxLog bits per type */
{ U32 const LLtype = *ip >> 6;
U32 const OFtype = (*ip >> 4) & 3;
U32 const MLtype = (*ip >> 2) & 3;
ip++;
/* Build DTables */
{ size_t const llhSize = ZSTDv07_buildSeqTable(DTableLL, LLtype, MaxLL, LLFSELog, ip, iend-ip, LL_defaultNorm, LL_defaultNormLog, flagRepeatTable);
if (ZSTDv07_isError(llhSize)) return ERROR(corruption_detected);
ip += llhSize;
}
{ size_t const ofhSize = ZSTDv07_buildSeqTable(DTableOffb, OFtype, MaxOff, OffFSELog, ip, iend-ip, OF_defaultNorm, OF_defaultNormLog, flagRepeatTable);
if (ZSTDv07_isError(ofhSize)) return ERROR(corruption_detected);
ip += ofhSize;
}
{ size_t const mlhSize = ZSTDv07_buildSeqTable(DTableML, MLtype, MaxML, MLFSELog, ip, iend-ip, ML_defaultNorm, ML_defaultNormLog, flagRepeatTable);
if (ZSTDv07_isError(mlhSize)) return ERROR(corruption_detected);
ip += mlhSize;
} }
return ip-istart;
}
typedef struct {
size_t litLength;
size_t matchLength;
size_t offset;
} seq_t;
typedef struct {
BITv07_DStream_t DStream;
FSEv07_DState_t stateLL;
FSEv07_DState_t stateOffb;
FSEv07_DState_t stateML;
size_t prevOffset[ZSTDv07_REP_INIT];
} seqState_t;
static seq_t ZSTDv07_decodeSequence(seqState_t* seqState)
{
seq_t seq;
U32 const llCode = FSEv07_peekSymbol(&(seqState->stateLL));
U32 const mlCode = FSEv07_peekSymbol(&(seqState->stateML));
U32 const ofCode = FSEv07_peekSymbol(&(seqState->stateOffb)); /* <= maxOff, by table construction */
U32 const llBits = LL_bits[llCode];
U32 const mlBits = ML_bits[mlCode];
U32 const ofBits = ofCode;
U32 const totalBits = llBits+mlBits+ofBits;
static const U32 LL_base[MaxLL+1] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 18, 20, 22, 24, 28, 32, 40, 48, 64, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000,
0x2000, 0x4000, 0x8000, 0x10000 };
static const U32 ML_base[MaxML+1] = {
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 37, 39, 41, 43, 47, 51, 59, 67, 83, 99, 0x83, 0x103, 0x203, 0x403, 0x803,
0x1003, 0x2003, 0x4003, 0x8003, 0x10003 };
static const U32 OF_base[MaxOff+1] = {
0, 1, 1, 5, 0xD, 0x1D, 0x3D, 0x7D,
0xFD, 0x1FD, 0x3FD, 0x7FD, 0xFFD, 0x1FFD, 0x3FFD, 0x7FFD,
0xFFFD, 0x1FFFD, 0x3FFFD, 0x7FFFD, 0xFFFFD, 0x1FFFFD, 0x3FFFFD, 0x7FFFFD,
0xFFFFFD, 0x1FFFFFD, 0x3FFFFFD, 0x7FFFFFD, 0xFFFFFFD };
/* sequence */
{ size_t offset;
if (!ofCode)
offset = 0;
else {
offset = OF_base[ofCode] + BITv07_readBits(&(seqState->DStream), ofBits); /* <= (ZSTDv07_WINDOWLOG_MAX-1) bits */
if (MEM_32bits()) BITv07_reloadDStream(&(seqState->DStream));
}
if (ofCode <= 1) {
if ((llCode == 0) & (offset <= 1)) offset = 1-offset;
if (offset) {
size_t const temp = seqState->prevOffset[offset];
if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1];
seqState->prevOffset[1] = seqState->prevOffset[0];
seqState->prevOffset[0] = offset = temp;
} else {
offset = seqState->prevOffset[0];
}
} else {
seqState->prevOffset[2] = seqState->prevOffset[1];
seqState->prevOffset[1] = seqState->prevOffset[0];
seqState->prevOffset[0] = offset;
}
seq.offset = offset;
}
seq.matchLength = ML_base[mlCode] + ((mlCode>31) ? BITv07_readBits(&(seqState->DStream), mlBits) : 0); /* <= 16 bits */
if (MEM_32bits() && (mlBits+llBits>24)) BITv07_reloadDStream(&(seqState->DStream));
seq.litLength = LL_base[llCode] + ((llCode>15) ? BITv07_readBits(&(seqState->DStream), llBits) : 0); /* <= 16 bits */
if (MEM_32bits() ||
(totalBits > 64 - 7 - (LLFSELog+MLFSELog+OffFSELog)) ) BITv07_reloadDStream(&(seqState->DStream));
/* ANS state update */
FSEv07_updateState(&(seqState->stateLL), &(seqState->DStream)); /* <= 9 bits */
FSEv07_updateState(&(seqState->stateML), &(seqState->DStream)); /* <= 9 bits */
if (MEM_32bits()) BITv07_reloadDStream(&(seqState->DStream)); /* <= 18 bits */
FSEv07_updateState(&(seqState->stateOffb), &(seqState->DStream)); /* <= 8 bits */
return seq;
}
static
size_t ZSTDv07_execSequence(BYTE* op,
BYTE* const oend, seq_t sequence,
const BYTE** litPtr, const BYTE* const litLimit,
const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd)
{
BYTE* const oLitEnd = op + sequence.litLength;
size_t const sequenceLength = sequence.litLength + sequence.matchLength;
BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
BYTE* const oend_w = oend-WILDCOPY_OVERLENGTH;
const BYTE* const iLitEnd = *litPtr + sequence.litLength;
const BYTE* match = oLitEnd - sequence.offset;
/* check */
if ((oLitEnd>oend_w) | (oMatchEnd>oend)) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of WILDCOPY_OVERLENGTH from oend */
if (iLitEnd > litLimit) return ERROR(corruption_detected); /* over-read beyond lit buffer */
/* copy Literals */
ZSTDv07_wildcopy(op, *litPtr, sequence.litLength); /* note : since oLitEnd <= oend-WILDCOPY_OVERLENGTH, no risk of overwrite beyond oend */
op = oLitEnd;
*litPtr = iLitEnd; /* update for next sequence */
/* copy Match */
if (sequence.offset > (size_t)(oLitEnd - base)) {
/* offset beyond prefix */
if (sequence.offset > (size_t)(oLitEnd - vBase)) return ERROR(corruption_detected);
match = dictEnd - (base-match);
if (match + sequence.matchLength <= dictEnd) {
memmove(oLitEnd, match, sequence.matchLength);
return sequenceLength;
}
/* span extDict & currentPrefixSegment */
{ size_t const length1 = dictEnd - match;
memmove(oLitEnd, match, length1);
op = oLitEnd + length1;
sequence.matchLength -= length1;
match = base;
if (op > oend_w || sequence.matchLength < MINMATCH) {
while (op < oMatchEnd) *op++ = *match++;
return sequenceLength;
}
} }
/* Requirement: op <= oend_w */
/* match within prefix */
if (sequence.offset < 8) {
/* close range match, overlap */
static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
int const sub2 = dec64table[sequence.offset];
op[0] = match[0];
op[1] = match[1];
op[2] = match[2];
op[3] = match[3];
match += dec32table[sequence.offset];
ZSTDv07_copy4(op+4, match);
match -= sub2;
} else {
ZSTDv07_copy8(op, match);
}
op += 8; match += 8;
if (oMatchEnd > oend-(16-MINMATCH)) {
if (op < oend_w) {
ZSTDv07_wildcopy(op, match, oend_w - op);
match += oend_w - op;
op = oend_w;
}
while (op < oMatchEnd) *op++ = *match++;
} else {
ZSTDv07_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */
}
return sequenceLength;
}
static size_t ZSTDv07_decompressSequences(
ZSTDv07_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize)
{
const BYTE* ip = (const BYTE*)seqStart;
const BYTE* const iend = ip + seqSize;
- BYTE* const ostart = (BYTE* const)dst;
+ BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + maxDstSize;
BYTE* op = ostart;
const BYTE* litPtr = dctx->litPtr;
const BYTE* const litEnd = litPtr + dctx->litSize;
FSEv07_DTable* DTableLL = dctx->LLTable;
FSEv07_DTable* DTableML = dctx->MLTable;
FSEv07_DTable* DTableOffb = dctx->OffTable;
const BYTE* const base = (const BYTE*) (dctx->base);
const BYTE* const vBase = (const BYTE*) (dctx->vBase);
const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
int nbSeq;
/* Build Decoding Tables */
{ size_t const seqHSize = ZSTDv07_decodeSeqHeaders(&nbSeq, DTableLL, DTableML, DTableOffb, dctx->fseEntropy, ip, seqSize);
if (ZSTDv07_isError(seqHSize)) return seqHSize;
ip += seqHSize;
}
/* Regen sequences */
if (nbSeq) {
seqState_t seqState;
dctx->fseEntropy = 1;
{ U32 i; for (i=0; i<ZSTDv07_REP_INIT; i++) seqState.prevOffset[i] = dctx->rep[i]; }
{ size_t const errorCode = BITv07_initDStream(&(seqState.DStream), ip, iend-ip);
if (ERR_isError(errorCode)) return ERROR(corruption_detected); }
FSEv07_initDState(&(seqState.stateLL), &(seqState.DStream), DTableLL);
FSEv07_initDState(&(seqState.stateOffb), &(seqState.DStream), DTableOffb);
FSEv07_initDState(&(seqState.stateML), &(seqState.DStream), DTableML);
for ( ; (BITv07_reloadDStream(&(seqState.DStream)) <= BITv07_DStream_completed) && nbSeq ; ) {
nbSeq--;
{ seq_t const sequence = ZSTDv07_decodeSequence(&seqState);
size_t const oneSeqSize = ZSTDv07_execSequence(op, oend, sequence, &litPtr, litEnd, base, vBase, dictEnd);
if (ZSTDv07_isError(oneSeqSize)) return oneSeqSize;
op += oneSeqSize;
} }
/* check if reached exact end */
if (nbSeq) return ERROR(corruption_detected);
/* save reps for next block */
{ U32 i; for (i=0; i<ZSTDv07_REP_INIT; i++) dctx->rep[i] = (U32)(seqState.prevOffset[i]); }
}
/* last literal segment */
{ size_t const lastLLSize = litEnd - litPtr;
/* if (litPtr > litEnd) return ERROR(corruption_detected); */ /* too many literals already used */
if (lastLLSize > (size_t)(oend-op)) return ERROR(dstSize_tooSmall);
if (lastLLSize > 0) {
memcpy(op, litPtr, lastLLSize);
op += lastLLSize;
}
}
return op-ostart;
}
static void ZSTDv07_checkContinuity(ZSTDv07_DCtx* dctx, const void* dst)
{
if (dst != dctx->previousDstEnd) { /* not contiguous */
dctx->dictEnd = dctx->previousDstEnd;
dctx->vBase = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base));
dctx->base = dst;
dctx->previousDstEnd = dst;
}
}
static size_t ZSTDv07_decompressBlock_internal(ZSTDv07_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{ /* blockType == blockCompressed */
const BYTE* ip = (const BYTE*)src;
if (srcSize >= ZSTDv07_BLOCKSIZE_ABSOLUTEMAX) return ERROR(srcSize_wrong);
/* Decode literals sub-block */
{ size_t const litCSize = ZSTDv07_decodeLiteralsBlock(dctx, src, srcSize);
if (ZSTDv07_isError(litCSize)) return litCSize;
ip += litCSize;
srcSize -= litCSize;
}
return ZSTDv07_decompressSequences(dctx, dst, dstCapacity, ip, srcSize);
}
size_t ZSTDv07_decompressBlock(ZSTDv07_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
size_t dSize;
ZSTDv07_checkContinuity(dctx, dst);
dSize = ZSTDv07_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize);
dctx->previousDstEnd = (char*)dst + dSize;
return dSize;
}
/** ZSTDv07_insertBlock() :
insert `src` block into `dctx` history. Useful to track uncompressed blocks. */
ZSTDLIBv07_API size_t ZSTDv07_insertBlock(ZSTDv07_DCtx* dctx, const void* blockStart, size_t blockSize)
{
ZSTDv07_checkContinuity(dctx, blockStart);
dctx->previousDstEnd = (const char*)blockStart + blockSize;
return blockSize;
}
static size_t ZSTDv07_generateNxBytes(void* dst, size_t dstCapacity, BYTE byte, size_t length)
{
if (length > dstCapacity) return ERROR(dstSize_tooSmall);
if (length > 0) {
memset(dst, byte, length);
}
return length;
}
/*! ZSTDv07_decompressFrame() :
* `dctx` must be properly initialized */
static size_t ZSTDv07_decompressFrame(ZSTDv07_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
const BYTE* ip = (const BYTE*)src;
const BYTE* const iend = ip + srcSize;
- BYTE* const ostart = (BYTE* const)dst;
+ BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstCapacity;
BYTE* op = ostart;
size_t remainingSize = srcSize;
/* check */
if (srcSize < ZSTDv07_frameHeaderSize_min+ZSTDv07_blockHeaderSize) return ERROR(srcSize_wrong);
/* Frame Header */
{ size_t const frameHeaderSize = ZSTDv07_frameHeaderSize(src, ZSTDv07_frameHeaderSize_min);
if (ZSTDv07_isError(frameHeaderSize)) return frameHeaderSize;
if (srcSize < frameHeaderSize+ZSTDv07_blockHeaderSize) return ERROR(srcSize_wrong);
if (ZSTDv07_decodeFrameHeader(dctx, src, frameHeaderSize)) return ERROR(corruption_detected);
ip += frameHeaderSize; remainingSize -= frameHeaderSize;
}
/* Loop on each block */
while (1) {
size_t decodedSize;
blockProperties_t blockProperties;
size_t const cBlockSize = ZSTDv07_getcBlockSize(ip, iend-ip, &blockProperties);
if (ZSTDv07_isError(cBlockSize)) return cBlockSize;
ip += ZSTDv07_blockHeaderSize;
remainingSize -= ZSTDv07_blockHeaderSize;
if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);
switch(blockProperties.blockType)
{
case bt_compressed:
decodedSize = ZSTDv07_decompressBlock_internal(dctx, op, oend-op, ip, cBlockSize);
break;
case bt_raw :
decodedSize = ZSTDv07_copyRawBlock(op, oend-op, ip, cBlockSize);
break;
case bt_rle :
decodedSize = ZSTDv07_generateNxBytes(op, oend-op, *ip, blockProperties.origSize);
break;
case bt_end :
/* end of frame */
if (remainingSize) return ERROR(srcSize_wrong);
decodedSize = 0;
break;
default:
return ERROR(GENERIC); /* impossible */
}
if (blockProperties.blockType == bt_end) break; /* bt_end */
if (ZSTDv07_isError(decodedSize)) return decodedSize;
if (dctx->fParams.checksumFlag) XXH64_update(&dctx->xxhState, op, decodedSize);
op += decodedSize;
ip += cBlockSize;
remainingSize -= cBlockSize;
}
return op-ostart;
}
/*! ZSTDv07_decompress_usingPreparedDCtx() :
* Same as ZSTDv07_decompress_usingDict, but using a reference context `preparedDCtx`, where dictionary has been loaded.
* It avoids reloading the dictionary each time.
* `preparedDCtx` must have been properly initialized using ZSTDv07_decompressBegin_usingDict().
* Requires 2 contexts : 1 for reference (preparedDCtx), which will not be modified, and 1 to run the decompression operation (dctx) */
static size_t ZSTDv07_decompress_usingPreparedDCtx(ZSTDv07_DCtx* dctx, const ZSTDv07_DCtx* refDCtx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
ZSTDv07_copyDCtx(dctx, refDCtx);
ZSTDv07_checkContinuity(dctx, dst);
return ZSTDv07_decompressFrame(dctx, dst, dstCapacity, src, srcSize);
}
size_t ZSTDv07_decompress_usingDict(ZSTDv07_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict, size_t dictSize)
{
ZSTDv07_decompressBegin_usingDict(dctx, dict, dictSize);
ZSTDv07_checkContinuity(dctx, dst);
return ZSTDv07_decompressFrame(dctx, dst, dstCapacity, src, srcSize);
}
size_t ZSTDv07_decompressDCtx(ZSTDv07_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
return ZSTDv07_decompress_usingDict(dctx, dst, dstCapacity, src, srcSize, NULL, 0);
}
size_t ZSTDv07_decompress(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
#if defined(ZSTDv07_HEAPMODE) && (ZSTDv07_HEAPMODE==1)
size_t regenSize;
ZSTDv07_DCtx* const dctx = ZSTDv07_createDCtx();
if (dctx==NULL) return ERROR(memory_allocation);
regenSize = ZSTDv07_decompressDCtx(dctx, dst, dstCapacity, src, srcSize);
ZSTDv07_freeDCtx(dctx);
return regenSize;
#else /* stack mode */
ZSTDv07_DCtx dctx;
return ZSTDv07_decompressDCtx(&dctx, dst, dstCapacity, src, srcSize);
#endif
}
/* ZSTD_errorFrameSizeInfoLegacy() :
assumes `cSize` and `dBound` are _not_ NULL */
static void ZSTD_errorFrameSizeInfoLegacy(size_t* cSize, unsigned long long* dBound, size_t ret)
{
*cSize = ret;
*dBound = ZSTD_CONTENTSIZE_ERROR;
}
void ZSTDv07_findFrameSizeInfoLegacy(const void *src, size_t srcSize, size_t* cSize, unsigned long long* dBound)
{
const BYTE* ip = (const BYTE*)src;
size_t remainingSize = srcSize;
size_t nbBlocks = 0;
/* check */
if (srcSize < ZSTDv07_frameHeaderSize_min+ZSTDv07_blockHeaderSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
/* Frame Header */
{ size_t const frameHeaderSize = ZSTDv07_frameHeaderSize(src, srcSize);
if (ZSTDv07_isError(frameHeaderSize)) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, frameHeaderSize);
return;
}
if (MEM_readLE32(src) != ZSTDv07_MAGICNUMBER) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(prefix_unknown));
return;
}
if (srcSize < frameHeaderSize+ZSTDv07_blockHeaderSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
ip += frameHeaderSize; remainingSize -= frameHeaderSize;
}
/* Loop on each block */
while (1) {
blockProperties_t blockProperties;
size_t const cBlockSize = ZSTDv07_getcBlockSize(ip, remainingSize, &blockProperties);
if (ZSTDv07_isError(cBlockSize)) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, cBlockSize);
return;
}
ip += ZSTDv07_blockHeaderSize;
remainingSize -= ZSTDv07_blockHeaderSize;
if (blockProperties.blockType == bt_end) break;
if (cBlockSize > remainingSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
ip += cBlockSize;
remainingSize -= cBlockSize;
nbBlocks++;
}
*cSize = ip - (const BYTE*)src;
*dBound = nbBlocks * ZSTDv07_BLOCKSIZE_ABSOLUTEMAX;
}
/*_******************************
* Streaming Decompression API
********************************/
size_t ZSTDv07_nextSrcSizeToDecompress(ZSTDv07_DCtx* dctx)
{
return dctx->expected;
}
int ZSTDv07_isSkipFrame(ZSTDv07_DCtx* dctx)
{
return dctx->stage == ZSTDds_skipFrame;
}
/** ZSTDv07_decompressContinue() :
* @return : nb of bytes generated into `dst` (necessarily <= `dstCapacity)
* or an error code, which can be tested using ZSTDv07_isError() */
size_t ZSTDv07_decompressContinue(ZSTDv07_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
/* Sanity check */
if (srcSize != dctx->expected) return ERROR(srcSize_wrong);
if (dstCapacity) ZSTDv07_checkContinuity(dctx, dst);
switch (dctx->stage)
{
case ZSTDds_getFrameHeaderSize :
if (srcSize != ZSTDv07_frameHeaderSize_min) return ERROR(srcSize_wrong); /* impossible */
if ((MEM_readLE32(src) & 0xFFFFFFF0U) == ZSTDv07_MAGIC_SKIPPABLE_START) {
memcpy(dctx->headerBuffer, src, ZSTDv07_frameHeaderSize_min);
dctx->expected = ZSTDv07_skippableHeaderSize - ZSTDv07_frameHeaderSize_min; /* magic number + skippable frame length */
dctx->stage = ZSTDds_decodeSkippableHeader;
return 0;
}
dctx->headerSize = ZSTDv07_frameHeaderSize(src, ZSTDv07_frameHeaderSize_min);
if (ZSTDv07_isError(dctx->headerSize)) return dctx->headerSize;
memcpy(dctx->headerBuffer, src, ZSTDv07_frameHeaderSize_min);
if (dctx->headerSize > ZSTDv07_frameHeaderSize_min) {
dctx->expected = dctx->headerSize - ZSTDv07_frameHeaderSize_min;
dctx->stage = ZSTDds_decodeFrameHeader;
return 0;
}
dctx->expected = 0; /* not necessary to copy more */
/* fall-through */
case ZSTDds_decodeFrameHeader:
{ size_t result;
memcpy(dctx->headerBuffer + ZSTDv07_frameHeaderSize_min, src, dctx->expected);
result = ZSTDv07_decodeFrameHeader(dctx, dctx->headerBuffer, dctx->headerSize);
if (ZSTDv07_isError(result)) return result;
dctx->expected = ZSTDv07_blockHeaderSize;
dctx->stage = ZSTDds_decodeBlockHeader;
return 0;
}
case ZSTDds_decodeBlockHeader:
{ blockProperties_t bp;
size_t const cBlockSize = ZSTDv07_getcBlockSize(src, ZSTDv07_blockHeaderSize, &bp);
if (ZSTDv07_isError(cBlockSize)) return cBlockSize;
if (bp.blockType == bt_end) {
if (dctx->fParams.checksumFlag) {
U64 const h64 = XXH64_digest(&dctx->xxhState);
U32 const h32 = (U32)(h64>>11) & ((1<<22)-1);
const BYTE* const ip = (const BYTE*)src;
U32 const check32 = ip[2] + (ip[1] << 8) + ((ip[0] & 0x3F) << 16);
if (check32 != h32) return ERROR(checksum_wrong);
}
dctx->expected = 0;
dctx->stage = ZSTDds_getFrameHeaderSize;
} else {
dctx->expected = cBlockSize;
dctx->bType = bp.blockType;
dctx->stage = ZSTDds_decompressBlock;
}
return 0;
}
case ZSTDds_decompressBlock:
{ size_t rSize;
switch(dctx->bType)
{
case bt_compressed:
rSize = ZSTDv07_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize);
break;
case bt_raw :
rSize = ZSTDv07_copyRawBlock(dst, dstCapacity, src, srcSize);
break;
case bt_rle :
return ERROR(GENERIC); /* not yet handled */
break;
case bt_end : /* should never happen (filtered at phase 1) */
rSize = 0;
break;
default:
return ERROR(GENERIC); /* impossible */
}
dctx->stage = ZSTDds_decodeBlockHeader;
dctx->expected = ZSTDv07_blockHeaderSize;
dctx->previousDstEnd = (char*)dst + rSize;
if (ZSTDv07_isError(rSize)) return rSize;
if (dctx->fParams.checksumFlag) XXH64_update(&dctx->xxhState, dst, rSize);
return rSize;
}
case ZSTDds_decodeSkippableHeader:
{ memcpy(dctx->headerBuffer + ZSTDv07_frameHeaderSize_min, src, dctx->expected);
dctx->expected = MEM_readLE32(dctx->headerBuffer + 4);
dctx->stage = ZSTDds_skipFrame;
return 0;
}
case ZSTDds_skipFrame:
{ dctx->expected = 0;
dctx->stage = ZSTDds_getFrameHeaderSize;
return 0;
}
default:
return ERROR(GENERIC); /* impossible */
}
}
static size_t ZSTDv07_refDictContent(ZSTDv07_DCtx* dctx, const void* dict, size_t dictSize)
{
dctx->dictEnd = dctx->previousDstEnd;
dctx->vBase = (const char*)dict - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base));
dctx->base = dict;
dctx->previousDstEnd = (const char*)dict + dictSize;
return 0;
}
static size_t ZSTDv07_loadEntropy(ZSTDv07_DCtx* dctx, const void* const dict, size_t const dictSize)
{
const BYTE* dictPtr = (const BYTE*)dict;
const BYTE* const dictEnd = dictPtr + dictSize;
{ size_t const hSize = HUFv07_readDTableX4(dctx->hufTable, dict, dictSize);
if (HUFv07_isError(hSize)) return ERROR(dictionary_corrupted);
dictPtr += hSize;
}
{ short offcodeNCount[MaxOff+1];
U32 offcodeMaxValue=MaxOff, offcodeLog;
size_t const offcodeHeaderSize = FSEv07_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd-dictPtr);
if (FSEv07_isError(offcodeHeaderSize)) return ERROR(dictionary_corrupted);
if (offcodeLog > OffFSELog) return ERROR(dictionary_corrupted);
{ size_t const errorCode = FSEv07_buildDTable(dctx->OffTable, offcodeNCount, offcodeMaxValue, offcodeLog);
if (FSEv07_isError(errorCode)) return ERROR(dictionary_corrupted); }
dictPtr += offcodeHeaderSize;
}
{ short matchlengthNCount[MaxML+1];
unsigned matchlengthMaxValue = MaxML, matchlengthLog;
size_t const matchlengthHeaderSize = FSEv07_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd-dictPtr);
if (FSEv07_isError(matchlengthHeaderSize)) return ERROR(dictionary_corrupted);
if (matchlengthLog > MLFSELog) return ERROR(dictionary_corrupted);
{ size_t const errorCode = FSEv07_buildDTable(dctx->MLTable, matchlengthNCount, matchlengthMaxValue, matchlengthLog);
if (FSEv07_isError(errorCode)) return ERROR(dictionary_corrupted); }
dictPtr += matchlengthHeaderSize;
}
{ short litlengthNCount[MaxLL+1];
unsigned litlengthMaxValue = MaxLL, litlengthLog;
size_t const litlengthHeaderSize = FSEv07_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd-dictPtr);
if (FSEv07_isError(litlengthHeaderSize)) return ERROR(dictionary_corrupted);
if (litlengthLog > LLFSELog) return ERROR(dictionary_corrupted);
{ size_t const errorCode = FSEv07_buildDTable(dctx->LLTable, litlengthNCount, litlengthMaxValue, litlengthLog);
if (FSEv07_isError(errorCode)) return ERROR(dictionary_corrupted); }
dictPtr += litlengthHeaderSize;
}
if (dictPtr+12 > dictEnd) return ERROR(dictionary_corrupted);
dctx->rep[0] = MEM_readLE32(dictPtr+0); if (dctx->rep[0] == 0 || dctx->rep[0] >= dictSize) return ERROR(dictionary_corrupted);
dctx->rep[1] = MEM_readLE32(dictPtr+4); if (dctx->rep[1] == 0 || dctx->rep[1] >= dictSize) return ERROR(dictionary_corrupted);
dctx->rep[2] = MEM_readLE32(dictPtr+8); if (dctx->rep[2] == 0 || dctx->rep[2] >= dictSize) return ERROR(dictionary_corrupted);
dictPtr += 12;
dctx->litEntropy = dctx->fseEntropy = 1;
return dictPtr - (const BYTE*)dict;
}
static size_t ZSTDv07_decompress_insertDictionary(ZSTDv07_DCtx* dctx, const void* dict, size_t dictSize)
{
if (dictSize < 8) return ZSTDv07_refDictContent(dctx, dict, dictSize);
{ U32 const magic = MEM_readLE32(dict);
if (magic != ZSTDv07_DICT_MAGIC) {
return ZSTDv07_refDictContent(dctx, dict, dictSize); /* pure content mode */
} }
dctx->dictID = MEM_readLE32((const char*)dict + 4);
/* load entropy tables */
dict = (const char*)dict + 8;
dictSize -= 8;
{ size_t const eSize = ZSTDv07_loadEntropy(dctx, dict, dictSize);
if (ZSTDv07_isError(eSize)) return ERROR(dictionary_corrupted);
dict = (const char*)dict + eSize;
dictSize -= eSize;
}
/* reference dictionary content */
return ZSTDv07_refDictContent(dctx, dict, dictSize);
}
size_t ZSTDv07_decompressBegin_usingDict(ZSTDv07_DCtx* dctx, const void* dict, size_t dictSize)
{
{ size_t const errorCode = ZSTDv07_decompressBegin(dctx);
if (ZSTDv07_isError(errorCode)) return errorCode; }
if (dict && dictSize) {
size_t const errorCode = ZSTDv07_decompress_insertDictionary(dctx, dict, dictSize);
if (ZSTDv07_isError(errorCode)) return ERROR(dictionary_corrupted);
}
return 0;
}
struct ZSTDv07_DDict_s {
void* dict;
size_t dictSize;
ZSTDv07_DCtx* refContext;
}; /* typedef'd tp ZSTDv07_CDict within zstd.h */
static ZSTDv07_DDict* ZSTDv07_createDDict_advanced(const void* dict, size_t dictSize, ZSTDv07_customMem customMem)
{
if (!customMem.customAlloc && !customMem.customFree)
customMem = defaultCustomMem;
if (!customMem.customAlloc || !customMem.customFree)
return NULL;
{ ZSTDv07_DDict* const ddict = (ZSTDv07_DDict*) customMem.customAlloc(customMem.opaque, sizeof(*ddict));
void* const dictContent = customMem.customAlloc(customMem.opaque, dictSize);
ZSTDv07_DCtx* const dctx = ZSTDv07_createDCtx_advanced(customMem);
if (!dictContent || !ddict || !dctx) {
customMem.customFree(customMem.opaque, dictContent);
customMem.customFree(customMem.opaque, ddict);
customMem.customFree(customMem.opaque, dctx);
return NULL;
}
memcpy(dictContent, dict, dictSize);
{ size_t const errorCode = ZSTDv07_decompressBegin_usingDict(dctx, dictContent, dictSize);
if (ZSTDv07_isError(errorCode)) {
customMem.customFree(customMem.opaque, dictContent);
customMem.customFree(customMem.opaque, ddict);
customMem.customFree(customMem.opaque, dctx);
return NULL;
} }
ddict->dict = dictContent;
ddict->dictSize = dictSize;
ddict->refContext = dctx;
return ddict;
}
}
/*! ZSTDv07_createDDict() :
* Create a digested dictionary, ready to start decompression without startup delay.
* `dict` can be released after `ZSTDv07_DDict` creation */
ZSTDv07_DDict* ZSTDv07_createDDict(const void* dict, size_t dictSize)
{
ZSTDv07_customMem const allocator = { NULL, NULL, NULL };
return ZSTDv07_createDDict_advanced(dict, dictSize, allocator);
}
size_t ZSTDv07_freeDDict(ZSTDv07_DDict* ddict)
{
ZSTDv07_freeFunction const cFree = ddict->refContext->customMem.customFree;
void* const opaque = ddict->refContext->customMem.opaque;
ZSTDv07_freeDCtx(ddict->refContext);
cFree(opaque, ddict->dict);
cFree(opaque, ddict);
return 0;
}
/*! ZSTDv07_decompress_usingDDict() :
* Decompression using a pre-digested Dictionary
* Use dictionary without significant overhead. */
ZSTDLIBv07_API size_t ZSTDv07_decompress_usingDDict(ZSTDv07_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTDv07_DDict* ddict)
{
return ZSTDv07_decompress_usingPreparedDCtx(dctx, ddict->refContext,
dst, dstCapacity,
src, srcSize);
}
/*
Buffered version of Zstd compression library
Copyright (C) 2015-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- zstd homepage : http://www.zstd.net/
*/
/*-***************************************************************************
* Streaming decompression howto
*
* A ZBUFFv07_DCtx object is required to track streaming operations.
* Use ZBUFFv07_createDCtx() and ZBUFFv07_freeDCtx() to create/release resources.
* Use ZBUFFv07_decompressInit() to start a new decompression operation,
* or ZBUFFv07_decompressInitDictionary() if decompression requires a dictionary.
* Note that ZBUFFv07_DCtx objects can be re-init multiple times.
*
* Use ZBUFFv07_decompressContinue() repetitively to consume your input.
* *srcSizePtr and *dstCapacityPtr can be any size.
* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
* The content of @dst will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters, or change @dst.
* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to help latency),
* or 0 when a frame is completely decoded,
* or an error code, which can be tested using ZBUFFv07_isError().
*
* Hint : recommended buffer sizes (not compulsory) : ZBUFFv07_recommendedDInSize() and ZBUFFv07_recommendedDOutSize()
* output : ZBUFFv07_recommendedDOutSize==128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded.
* input : ZBUFFv07_recommendedDInSize == 128KB + 3;
* just follow indications from ZBUFFv07_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
* *******************************************************************************/
typedef enum { ZBUFFds_init, ZBUFFds_loadHeader,
ZBUFFds_read, ZBUFFds_load, ZBUFFds_flush } ZBUFFv07_dStage;
/* *** Resource management *** */
struct ZBUFFv07_DCtx_s {
ZSTDv07_DCtx* zd;
ZSTDv07_frameParams fParams;
ZBUFFv07_dStage stage;
char* inBuff;
size_t inBuffSize;
size_t inPos;
char* outBuff;
size_t outBuffSize;
size_t outStart;
size_t outEnd;
size_t blockSize;
BYTE headerBuffer[ZSTDv07_FRAMEHEADERSIZE_MAX];
size_t lhSize;
ZSTDv07_customMem customMem;
}; /* typedef'd to ZBUFFv07_DCtx within "zstd_buffered.h" */
ZSTDLIBv07_API ZBUFFv07_DCtx* ZBUFFv07_createDCtx_advanced(ZSTDv07_customMem customMem);
ZBUFFv07_DCtx* ZBUFFv07_createDCtx(void)
{
return ZBUFFv07_createDCtx_advanced(defaultCustomMem);
}
ZBUFFv07_DCtx* ZBUFFv07_createDCtx_advanced(ZSTDv07_customMem customMem)
{
ZBUFFv07_DCtx* zbd;
if (!customMem.customAlloc && !customMem.customFree)
customMem = defaultCustomMem;
if (!customMem.customAlloc || !customMem.customFree)
return NULL;
zbd = (ZBUFFv07_DCtx*)customMem.customAlloc(customMem.opaque, sizeof(ZBUFFv07_DCtx));
if (zbd==NULL) return NULL;
memset(zbd, 0, sizeof(ZBUFFv07_DCtx));
memcpy(&zbd->customMem, &customMem, sizeof(ZSTDv07_customMem));
zbd->zd = ZSTDv07_createDCtx_advanced(customMem);
if (zbd->zd == NULL) { ZBUFFv07_freeDCtx(zbd); return NULL; }
zbd->stage = ZBUFFds_init;
return zbd;
}
size_t ZBUFFv07_freeDCtx(ZBUFFv07_DCtx* zbd)
{
if (zbd==NULL) return 0; /* support free on null */
ZSTDv07_freeDCtx(zbd->zd);
if (zbd->inBuff) zbd->customMem.customFree(zbd->customMem.opaque, zbd->inBuff);
if (zbd->outBuff) zbd->customMem.customFree(zbd->customMem.opaque, zbd->outBuff);
zbd->customMem.customFree(zbd->customMem.opaque, zbd);
return 0;
}
/* *** Initialization *** */
size_t ZBUFFv07_decompressInitDictionary(ZBUFFv07_DCtx* zbd, const void* dict, size_t dictSize)
{
zbd->stage = ZBUFFds_loadHeader;
zbd->lhSize = zbd->inPos = zbd->outStart = zbd->outEnd = 0;
return ZSTDv07_decompressBegin_usingDict(zbd->zd, dict, dictSize);
}
size_t ZBUFFv07_decompressInit(ZBUFFv07_DCtx* zbd)
{
return ZBUFFv07_decompressInitDictionary(zbd, NULL, 0);
}
/* internal util function */
MEM_STATIC size_t ZBUFFv07_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
size_t const length = MIN(dstCapacity, srcSize);
if (length > 0) {
memcpy(dst, src, length);
}
return length;
}
/* *** Decompression *** */
size_t ZBUFFv07_decompressContinue(ZBUFFv07_DCtx* zbd,
void* dst, size_t* dstCapacityPtr,
const void* src, size_t* srcSizePtr)
{
const char* const istart = (const char*)src;
const char* const iend = istart + *srcSizePtr;
const char* ip = istart;
char* const ostart = (char*)dst;
char* const oend = ostart + *dstCapacityPtr;
char* op = ostart;
U32 notDone = 1;
while (notDone) {
switch(zbd->stage)
{
case ZBUFFds_init :
return ERROR(init_missing);
case ZBUFFds_loadHeader :
{ size_t const hSize = ZSTDv07_getFrameParams(&(zbd->fParams), zbd->headerBuffer, zbd->lhSize);
if (ZSTDv07_isError(hSize)) return hSize;
if (hSize != 0) {
size_t const toLoad = hSize - zbd->lhSize; /* if hSize!=0, hSize > zbd->lhSize */
if (toLoad > (size_t)(iend-ip)) { /* not enough input to load full header */
memcpy(zbd->headerBuffer + zbd->lhSize, ip, iend-ip);
zbd->lhSize += iend-ip;
*dstCapacityPtr = 0;
return (hSize - zbd->lhSize) + ZSTDv07_blockHeaderSize; /* remaining header bytes + next block header */
}
memcpy(zbd->headerBuffer + zbd->lhSize, ip, toLoad); zbd->lhSize = hSize; ip += toLoad;
break;
} }
/* Consume header */
{ size_t const h1Size = ZSTDv07_nextSrcSizeToDecompress(zbd->zd); /* == ZSTDv07_frameHeaderSize_min */
size_t const h1Result = ZSTDv07_decompressContinue(zbd->zd, NULL, 0, zbd->headerBuffer, h1Size);
if (ZSTDv07_isError(h1Result)) return h1Result;
if (h1Size < zbd->lhSize) { /* long header */
size_t const h2Size = ZSTDv07_nextSrcSizeToDecompress(zbd->zd);
size_t const h2Result = ZSTDv07_decompressContinue(zbd->zd, NULL, 0, zbd->headerBuffer+h1Size, h2Size);
if (ZSTDv07_isError(h2Result)) return h2Result;
} }
zbd->fParams.windowSize = MAX(zbd->fParams.windowSize, 1U << ZSTDv07_WINDOWLOG_ABSOLUTEMIN);
/* Frame header instruct buffer sizes */
{ size_t const blockSize = MIN(zbd->fParams.windowSize, ZSTDv07_BLOCKSIZE_ABSOLUTEMAX);
zbd->blockSize = blockSize;
if (zbd->inBuffSize < blockSize) {
zbd->customMem.customFree(zbd->customMem.opaque, zbd->inBuff);
zbd->inBuffSize = blockSize;
zbd->inBuff = (char*)zbd->customMem.customAlloc(zbd->customMem.opaque, blockSize);
if (zbd->inBuff == NULL) return ERROR(memory_allocation);
}
{ size_t const neededOutSize = zbd->fParams.windowSize + blockSize + WILDCOPY_OVERLENGTH * 2;
if (zbd->outBuffSize < neededOutSize) {
zbd->customMem.customFree(zbd->customMem.opaque, zbd->outBuff);
zbd->outBuffSize = neededOutSize;
zbd->outBuff = (char*)zbd->customMem.customAlloc(zbd->customMem.opaque, neededOutSize);
if (zbd->outBuff == NULL) return ERROR(memory_allocation);
} } }
zbd->stage = ZBUFFds_read;
/* pass-through */
/* fall-through */
case ZBUFFds_read:
{ size_t const neededInSize = ZSTDv07_nextSrcSizeToDecompress(zbd->zd);
if (neededInSize==0) { /* end of frame */
zbd->stage = ZBUFFds_init;
notDone = 0;
break;
}
if ((size_t)(iend-ip) >= neededInSize) { /* decode directly from src */
const int isSkipFrame = ZSTDv07_isSkipFrame(zbd->zd);
size_t const decodedSize = ZSTDv07_decompressContinue(zbd->zd,
zbd->outBuff + zbd->outStart, (isSkipFrame ? 0 : zbd->outBuffSize - zbd->outStart),
ip, neededInSize);
if (ZSTDv07_isError(decodedSize)) return decodedSize;
ip += neededInSize;
if (!decodedSize && !isSkipFrame) break; /* this was just a header */
zbd->outEnd = zbd->outStart + decodedSize;
zbd->stage = ZBUFFds_flush;
break;
}
if (ip==iend) { notDone = 0; break; } /* no more input */
zbd->stage = ZBUFFds_load;
}
/* fall-through */
case ZBUFFds_load:
{ size_t const neededInSize = ZSTDv07_nextSrcSizeToDecompress(zbd->zd);
size_t const toLoad = neededInSize - zbd->inPos; /* should always be <= remaining space within inBuff */
size_t loadedSize;
if (toLoad > zbd->inBuffSize - zbd->inPos) return ERROR(corruption_detected); /* should never happen */
loadedSize = ZBUFFv07_limitCopy(zbd->inBuff + zbd->inPos, toLoad, ip, iend-ip);
ip += loadedSize;
zbd->inPos += loadedSize;
if (loadedSize < toLoad) { notDone = 0; break; } /* not enough input, wait for more */
/* decode loaded input */
{ const int isSkipFrame = ZSTDv07_isSkipFrame(zbd->zd);
size_t const decodedSize = ZSTDv07_decompressContinue(zbd->zd,
zbd->outBuff + zbd->outStart, zbd->outBuffSize - zbd->outStart,
zbd->inBuff, neededInSize);
if (ZSTDv07_isError(decodedSize)) return decodedSize;
zbd->inPos = 0; /* input is consumed */
if (!decodedSize && !isSkipFrame) { zbd->stage = ZBUFFds_read; break; } /* this was just a header */
zbd->outEnd = zbd->outStart + decodedSize;
zbd->stage = ZBUFFds_flush;
/* break; */
/* pass-through */
}
}
/* fall-through */
case ZBUFFds_flush:
{ size_t const toFlushSize = zbd->outEnd - zbd->outStart;
size_t const flushedSize = ZBUFFv07_limitCopy(op, oend-op, zbd->outBuff + zbd->outStart, toFlushSize);
op += flushedSize;
zbd->outStart += flushedSize;
if (flushedSize == toFlushSize) {
zbd->stage = ZBUFFds_read;
if (zbd->outStart + zbd->blockSize > zbd->outBuffSize)
zbd->outStart = zbd->outEnd = 0;
break;
}
/* cannot flush everything */
notDone = 0;
break;
}
default: return ERROR(GENERIC); /* impossible */
} }
/* result */
*srcSizePtr = ip-istart;
*dstCapacityPtr = op-ostart;
{ size_t nextSrcSizeHint = ZSTDv07_nextSrcSizeToDecompress(zbd->zd);
nextSrcSizeHint -= zbd->inPos; /* already loaded*/
return nextSrcSizeHint;
}
}
/* *************************************
* Tool functions
***************************************/
size_t ZBUFFv07_recommendedDInSize(void) { return ZSTDv07_BLOCKSIZE_ABSOLUTEMAX + ZSTDv07_blockHeaderSize /* block header size*/ ; }
size_t ZBUFFv07_recommendedDOutSize(void) { return ZSTDv07_BLOCKSIZE_ABSOLUTEMAX; }
diff --git a/sys/contrib/zstd/lib/legacy/zstd_v07.h b/sys/contrib/zstd/lib/legacy/zstd_v07.h
index 9da50c4e6418..bc35cfa6a33f 100644
--- a/sys/contrib/zstd/lib/legacy/zstd_v07.h
+++ b/sys/contrib/zstd/lib/legacy/zstd_v07.h
@@ -1,187 +1,187 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTDv07_H_235446
#define ZSTDv07_H_235446
#if defined (__cplusplus)
extern "C" {
#endif
/*====== Dependency ======*/
#include <stddef.h> /* size_t */
/*====== Export for Windows ======*/
/*!
* ZSTDv07_DLL_EXPORT :
* Enable exporting of functions when building a Windows DLL
*/
#if defined(_WIN32) && defined(ZSTDv07_DLL_EXPORT) && (ZSTDv07_DLL_EXPORT==1)
# define ZSTDLIBv07_API __declspec(dllexport)
#else
# define ZSTDLIBv07_API
#endif
/* *************************************
* Simple API
***************************************/
/*! ZSTDv07_getDecompressedSize() :
* @return : decompressed size if known, 0 otherwise.
note 1 : if `0`, follow up with ZSTDv07_getFrameParams() to know precise failure cause.
note 2 : decompressed size could be wrong or intentionally modified !
always ensure results fit within application's authorized limits */
unsigned long long ZSTDv07_getDecompressedSize(const void* src, size_t srcSize);
/*! ZSTDv07_decompress() :
`compressedSize` : must be _exact_ size of compressed input, otherwise decompression will fail.
`dstCapacity` must be equal or larger than originalSize.
@return : the number of bytes decompressed into `dst` (<= `dstCapacity`),
or an errorCode if it fails (which can be tested using ZSTDv07_isError()) */
ZSTDLIBv07_API size_t ZSTDv07_decompress( void* dst, size_t dstCapacity,
const void* src, size_t compressedSize);
/**
ZSTDv07_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.7.x format
srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
cSize (output parameter) : the number of bytes that would be read to decompress this frame
or an error code if it fails (which can be tested using ZSTDv01_isError())
dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame
or ZSTD_CONTENTSIZE_ERROR if an error occurs
note : assumes `cSize` and `dBound` are _not_ NULL.
*/
void ZSTDv07_findFrameSizeInfoLegacy(const void *src, size_t srcSize,
size_t* cSize, unsigned long long* dBound);
/*====== Helper functions ======*/
ZSTDLIBv07_API unsigned ZSTDv07_isError(size_t code); /*!< tells if a `size_t` function result is an error code */
ZSTDLIBv07_API const char* ZSTDv07_getErrorName(size_t code); /*!< provides readable string from an error code */
/*-*************************************
* Explicit memory management
***************************************/
/** Decompression context */
typedef struct ZSTDv07_DCtx_s ZSTDv07_DCtx;
ZSTDLIBv07_API ZSTDv07_DCtx* ZSTDv07_createDCtx(void);
ZSTDLIBv07_API size_t ZSTDv07_freeDCtx(ZSTDv07_DCtx* dctx); /*!< @return : errorCode */
/** ZSTDv07_decompressDCtx() :
* Same as ZSTDv07_decompress(), requires an allocated ZSTDv07_DCtx (see ZSTDv07_createDCtx()) */
ZSTDLIBv07_API size_t ZSTDv07_decompressDCtx(ZSTDv07_DCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
/*-************************
* Simple dictionary API
***************************/
/*! ZSTDv07_decompress_usingDict() :
* Decompression using a pre-defined Dictionary content (see dictBuilder).
* Dictionary must be identical to the one used during compression.
* Note : This function load the dictionary, resulting in a significant startup time */
ZSTDLIBv07_API size_t ZSTDv07_decompress_usingDict(ZSTDv07_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize);
/*-**************************
* Advanced Dictionary API
****************************/
/*! ZSTDv07_createDDict() :
* Create a digested dictionary, ready to start decompression operation without startup delay.
* `dict` can be released after creation */
typedef struct ZSTDv07_DDict_s ZSTDv07_DDict;
ZSTDLIBv07_API ZSTDv07_DDict* ZSTDv07_createDDict(const void* dict, size_t dictSize);
ZSTDLIBv07_API size_t ZSTDv07_freeDDict(ZSTDv07_DDict* ddict);
/*! ZSTDv07_decompress_usingDDict() :
* Decompression using a pre-digested Dictionary
* Faster startup than ZSTDv07_decompress_usingDict(), recommended when same dictionary is used multiple times. */
ZSTDLIBv07_API size_t ZSTDv07_decompress_usingDDict(ZSTDv07_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTDv07_DDict* ddict);
typedef struct {
unsigned long long frameContentSize;
unsigned windowSize;
unsigned dictID;
unsigned checksumFlag;
} ZSTDv07_frameParams;
ZSTDLIBv07_API size_t ZSTDv07_getFrameParams(ZSTDv07_frameParams* fparamsPtr, const void* src, size_t srcSize); /**< doesn't consume input */
/* *************************************
* Streaming functions
***************************************/
typedef struct ZBUFFv07_DCtx_s ZBUFFv07_DCtx;
ZSTDLIBv07_API ZBUFFv07_DCtx* ZBUFFv07_createDCtx(void);
ZSTDLIBv07_API size_t ZBUFFv07_freeDCtx(ZBUFFv07_DCtx* dctx);
ZSTDLIBv07_API size_t ZBUFFv07_decompressInit(ZBUFFv07_DCtx* dctx);
ZSTDLIBv07_API size_t ZBUFFv07_decompressInitDictionary(ZBUFFv07_DCtx* dctx, const void* dict, size_t dictSize);
ZSTDLIBv07_API size_t ZBUFFv07_decompressContinue(ZBUFFv07_DCtx* dctx,
void* dst, size_t* dstCapacityPtr,
const void* src, size_t* srcSizePtr);
/*-***************************************************************************
* Streaming decompression howto
*
* A ZBUFFv07_DCtx object is required to track streaming operations.
* Use ZBUFFv07_createDCtx() and ZBUFFv07_freeDCtx() to create/release resources.
* Use ZBUFFv07_decompressInit() to start a new decompression operation,
* or ZBUFFv07_decompressInitDictionary() if decompression requires a dictionary.
* Note that ZBUFFv07_DCtx objects can be re-init multiple times.
*
* Use ZBUFFv07_decompressContinue() repetitively to consume your input.
* *srcSizePtr and *dstCapacityPtr can be any size.
* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
* The content of `dst` will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters, or change `dst`.
* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to help latency),
* or 0 when a frame is completely decoded,
* or an error code, which can be tested using ZBUFFv07_isError().
*
* Hint : recommended buffer sizes (not compulsory) : ZBUFFv07_recommendedDInSize() and ZBUFFv07_recommendedDOutSize()
* output : ZBUFFv07_recommendedDOutSize== 128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded.
* input : ZBUFFv07_recommendedDInSize == 128KB + 3;
* just follow indications from ZBUFFv07_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
* *******************************************************************************/
/* *************************************
* Tool functions
***************************************/
ZSTDLIBv07_API unsigned ZBUFFv07_isError(size_t errorCode);
ZSTDLIBv07_API const char* ZBUFFv07_getErrorName(size_t errorCode);
/** Functions below provide recommended buffer sizes for Compression or Decompression operations.
* These sizes are just hints, they tend to offer better latency */
ZSTDLIBv07_API size_t ZBUFFv07_recommendedDInSize(void);
ZSTDLIBv07_API size_t ZBUFFv07_recommendedDOutSize(void);
/*-*************************************
* Constants
***************************************/
#define ZSTDv07_MAGICNUMBER 0xFD2FB527 /* v0.7 */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTDv07_H_235446 */
diff --git a/sys/contrib/zstd/lib/libzstd.mk b/sys/contrib/zstd/lib/libzstd.mk
new file mode 100644
index 000000000000..6e9a643954ba
--- /dev/null
+++ b/sys/contrib/zstd/lib/libzstd.mk
@@ -0,0 +1,203 @@
+# ################################################################
+# Copyright (c) Yann Collet, Facebook, Inc.
+# All rights reserved.
+#
+# This source code is licensed under both the BSD-style license (found in the
+# LICENSE file in the root directory of this source tree) and the GPLv2 (found
+# in the COPYING file in the root directory of this source tree).
+# You may select, at your option, one of the above-listed licenses.
+# ################################################################
+
+##################################################################
+# Input Variables
+##################################################################
+
+# Zstd lib directory
+LIBZSTD ?= ./
+
+# Legacy support
+ZSTD_LEGACY_SUPPORT ?= 5
+ZSTD_LEGACY_MULTITHREADED_API ?= 0
+
+# Build size optimizations
+HUF_FORCE_DECOMPRESS_X1 ?= 0
+HUF_FORCE_DECOMPRESS_X2 ?= 0
+ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT ?= 0
+ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG ?= 0
+ZSTD_NO_INLINE ?= 0
+ZSTD_STRIP_ERROR_STRINGS ?= 0
+
+# Assembly support
+ZSTD_NO_ASM ?= 0
+
+##################################################################
+# libzstd helpers
+##################################################################
+
+VOID ?= /dev/null
+
+# Make 4.3 doesn't support '\#' anymore (https://lwn.net/Articles/810071/)
+NUM_SYMBOL := \#
+
+# define silent mode as default (verbose mode with V=1 or VERBOSE=1)
+$(V)$(VERBOSE).SILENT:
+
+# When cross-compiling from linux to windows,
+# one might need to specify TARGET_SYSTEM as "Windows."
+# Building from Fedora fails without it.
+# (but Ubuntu and Debian don't need to set anything)
+TARGET_SYSTEM ?= $(OS)
+
+# Version numbers
+LIBVER_SRC := $(LIBZSTD)/zstd.h
+LIBVER_MAJOR_SCRIPT:=`sed -n '/define ZSTD_VERSION_MAJOR/s/.*[[:blank:]]\([0-9][0-9]*\).*/\1/p' < $(LIBVER_SRC)`
+LIBVER_MINOR_SCRIPT:=`sed -n '/define ZSTD_VERSION_MINOR/s/.*[[:blank:]]\([0-9][0-9]*\).*/\1/p' < $(LIBVER_SRC)`
+LIBVER_PATCH_SCRIPT:=`sed -n '/define ZSTD_VERSION_RELEASE/s/.*[[:blank:]]\([0-9][0-9]*\).*/\1/p' < $(LIBVER_SRC)`
+LIBVER_SCRIPT:= $(LIBVER_MAJOR_SCRIPT).$(LIBVER_MINOR_SCRIPT).$(LIBVER_PATCH_SCRIPT)
+LIBVER_MAJOR := $(shell echo $(LIBVER_MAJOR_SCRIPT))
+LIBVER_MINOR := $(shell echo $(LIBVER_MINOR_SCRIPT))
+LIBVER_PATCH := $(shell echo $(LIBVER_PATCH_SCRIPT))
+LIBVER := $(shell echo $(LIBVER_SCRIPT))
+CCVER := $(shell $(CC) --version)
+ZSTD_VERSION?= $(LIBVER)
+
+# ZSTD_LIB_MINIFY is a helper variable that
+# configures a bunch of other variables to space-optimized defaults.
+ZSTD_LIB_MINIFY ?= 0
+ifneq ($(ZSTD_LIB_MINIFY), 0)
+ HAVE_CC_OZ ?= $(shell echo "" | $(CC) -Oz -x c -c - -o /dev/null 2> /dev/null && echo 1 || echo 0)
+ ZSTD_LEGACY_SUPPORT ?= 0
+ ZSTD_LIB_DEPRECATED ?= 0
+ HUF_FORCE_DECOMPRESS_X1 ?= 1
+ ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT ?= 1
+ ZSTD_NO_INLINE ?= 1
+ ZSTD_STRIP_ERROR_STRINGS ?= 1
+ifneq ($(HAVE_CC_OZ), 0)
+ # Some compilers (clang) support an even more space-optimized setting.
+ CFLAGS += -Oz
+else
+ CFLAGS += -Os
+endif
+ CFLAGS += -fno-stack-protector -fomit-frame-pointer -fno-ident \
+ -DDYNAMIC_BMI2=0 -DNDEBUG
+else
+ CFLAGS ?= -O3
+endif
+
+DEBUGLEVEL ?= 0
+CPPFLAGS += -DXXH_NAMESPACE=ZSTD_ -DDEBUGLEVEL=$(DEBUGLEVEL)
+ifeq ($(TARGET_SYSTEM),Windows_NT) # MinGW assumed
+ CPPFLAGS += -D__USE_MINGW_ANSI_STDIO # compatibility with %zu formatting
+endif
+DEBUGFLAGS= -Wall -Wextra -Wcast-qual -Wcast-align -Wshadow \
+ -Wstrict-aliasing=1 -Wswitch-enum -Wdeclaration-after-statement \
+ -Wstrict-prototypes -Wundef -Wpointer-arith \
+ -Wvla -Wformat=2 -Winit-self -Wfloat-equal -Wwrite-strings \
+ -Wredundant-decls -Wmissing-prototypes -Wc++-compat
+CFLAGS += $(DEBUGFLAGS) $(MOREFLAGS)
+ASFLAGS += $(DEBUGFLAGS) $(MOREFLAGS) $(CFLAGS)
+LDFLAGS += $(MOREFLAGS)
+FLAGS = $(CPPFLAGS) $(CFLAGS) $(ASFLAGS) $(LDFLAGS)
+
+ifndef ALREADY_APPENDED_NOEXECSTACK
+export ALREADY_APPENDED_NOEXECSTACK := 1
+ifeq ($(shell echo "int main(int argc, char* argv[]) { (void)argc; (void)argv; return 0; }" | $(CC) $(FLAGS) -z noexecstack -x c -Werror - -o $(VOID) 2>$(VOID) && echo 1 || echo 0),1)
+LDFLAGS += -z noexecstack
+endif
+ifeq ($(shell echo | $(CC) $(FLAGS) -Wa,--noexecstack -x assembler -Werror -c - -o $(VOID) 2>$(VOID) && echo 1 || echo 0),1)
+CFLAGS += -Wa,--noexecstack
+# CFLAGS are also added to ASFLAGS
+else ifeq ($(shell echo | $(CC) $(FLAGS) -Qunused-arguments -Wa,--noexecstack -x assembler -Werror -c - -o $(VOID) 2>$(VOID) && echo 1 || echo 0),1)
+# See e.g.: https://github.com/android/ndk/issues/171
+CFLAGS += -Qunused-arguments -Wa,--noexecstack
+# CFLAGS are also added to ASFLAGS
+endif
+endif
+
+HAVE_COLORNEVER = $(shell echo a | grep --color=never a > /dev/null 2> /dev/null && echo 1 || echo 0)
+GREP_OPTIONS ?=
+ifeq ($HAVE_COLORNEVER, 1)
+ GREP_OPTIONS += --color=never
+endif
+GREP = grep $(GREP_OPTIONS)
+SED_ERE_OPT ?= -E
+
+ZSTD_COMMON_FILES := $(sort $(wildcard $(LIBZSTD)/common/*.c))
+ZSTD_COMPRESS_FILES := $(sort $(wildcard $(LIBZSTD)/compress/*.c))
+ZSTD_DECOMPRESS_FILES := $(sort $(wildcard $(LIBZSTD)/decompress/*.c))
+ZSTD_DICTBUILDER_FILES := $(sort $(wildcard $(LIBZSTD)/dictBuilder/*.c))
+ZSTD_DEPRECATED_FILES := $(sort $(wildcard $(LIBZSTD)/deprecated/*.c))
+ZSTD_LEGACY_FILES :=
+
+ZSTD_DECOMPRESS_AMD64_ASM_FILES := $(sort $(wildcard $(LIBZSTD)/decompress/*_amd64.S))
+
+ifneq ($(ZSTD_NO_ASM), 0)
+ CPPFLAGS += -DZSTD_DISABLE_ASM
+else
+ # Unconditionally add the ASM files they are disabled by
+ # macros in the .S file.
+ ZSTD_DECOMPRESS_FILES += $(ZSTD_DECOMPRESS_AMD64_ASM_FILES)
+endif
+
+ifneq ($(HUF_FORCE_DECOMPRESS_X1), 0)
+ CFLAGS += -DHUF_FORCE_DECOMPRESS_X1
+endif
+
+ifneq ($(HUF_FORCE_DECOMPRESS_X2), 0)
+ CFLAGS += -DHUF_FORCE_DECOMPRESS_X2
+endif
+
+ifneq ($(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT), 0)
+ CFLAGS += -DZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
+endif
+
+ifneq ($(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG), 0)
+ CFLAGS += -DZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
+endif
+
+ifneq ($(ZSTD_NO_INLINE), 0)
+ CFLAGS += -DZSTD_NO_INLINE
+endif
+
+ifneq ($(ZSTD_STRIP_ERROR_STRINGS), 0)
+ CFLAGS += -DZSTD_STRIP_ERROR_STRINGS
+endif
+
+ifneq ($(ZSTD_LEGACY_MULTITHREADED_API), 0)
+ CFLAGS += -DZSTD_LEGACY_MULTITHREADED_API
+endif
+
+ifneq ($(ZSTD_LEGACY_SUPPORT), 0)
+ifeq ($(shell test $(ZSTD_LEGACY_SUPPORT) -lt 8; echo $$?), 0)
+ ZSTD_LEGACY_FILES += $(shell ls $(LIBZSTD)/legacy/*.c | $(GREP) 'v0[$(ZSTD_LEGACY_SUPPORT)-7]')
+endif
+endif
+CPPFLAGS += -DZSTD_LEGACY_SUPPORT=$(ZSTD_LEGACY_SUPPORT)
+
+UNAME := $(shell uname)
+
+ifndef BUILD_DIR
+ifeq ($(UNAME), Darwin)
+ ifeq ($(shell md5 < /dev/null > /dev/null; echo $$?), 0)
+ HASH ?= md5
+ endif
+else ifeq ($(UNAME), FreeBSD)
+ HASH ?= gmd5sum
+else ifeq ($(UNAME), NetBSD)
+ HASH ?= md5 -n
+else ifeq ($(UNAME), OpenBSD)
+ HASH ?= md5
+endif
+HASH ?= md5sum
+
+HASH_DIR = conf_$(shell echo $(CC) $(CPPFLAGS) $(CFLAGS) $(LDFLAGS) $(ZSTD_FILES) | $(HASH) | cut -f 1 -d " " )
+HAVE_HASH :=$(shell echo 1 | $(HASH) > /dev/null && echo 1 || echo 0)
+ifeq ($(HAVE_HASH),0)
+ $(info warning : could not find HASH ($(HASH)), needed to differentiate builds using different flags)
+ BUILD_DIR := obj/generic_noconf
+endif
+endif # BUILD_DIR
+
+ZSTD_SUBDIR := $(LIBZSTD)/common $(LIBZSTD)/compress $(LIBZSTD)/decompress $(LIBZSTD)/dictBuilder $(LIBZSTD)/legacy $(LIBZSTD)/deprecated
+vpath %.c $(ZSTD_SUBDIR)
+vpath %.S $(ZSTD_SUBDIR)
diff --git a/sys/contrib/zstd/lib/libzstd.pc.in b/sys/contrib/zstd/lib/libzstd.pc.in
index 8465c9770681..43ebaec35760 100644
--- a/sys/contrib/zstd/lib/libzstd.pc.in
+++ b/sys/contrib/zstd/lib/libzstd.pc.in
@@ -1,15 +1,16 @@
# ZSTD - standard compression algorithm
# Copyright (C) 2014-2016, Yann Collet, Facebook
# BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
prefix=@PREFIX@
exec_prefix=@EXEC_PREFIX@
includedir=@INCLUDEDIR@
libdir=@LIBDIR@
Name: zstd
Description: fast lossless compression algorithm library
URL: http://www.zstd.net/
Version: @VERSION@
Libs: -L${libdir} -lzstd
+Libs.private: @LIBS_PRIVATE@
Cflags: -I${includedir}
diff --git a/sys/contrib/zstd/lib/module.modulemap b/sys/contrib/zstd/lib/module.modulemap
new file mode 100644
index 000000000000..bbb939782e1e
--- /dev/null
+++ b/sys/contrib/zstd/lib/module.modulemap
@@ -0,0 +1,25 @@
+module libzstd [extern_c] {
+ header "zstd.h"
+ export *
+ config_macros [exhaustive] /* zstd.h */ \
+ ZSTD_STATIC_LINKING_ONLY, \
+ ZSTDLIB_VISIBLE, \
+ ZSTD_DLL_EXPORT, \
+ ZSTDLIB_STATIC_API, \
+ ZSTD_DISABLE_DEPRECATE_WARNINGS, \
+ ZSTD_CLEVEL_DEFAULT, \
+ /* zdict.h */ ZDICT_STATIC_LINKING_ONLY, \
+ ZDICTLIB_VISIBILITY, \
+ ZDICT_DISABLE_DEPRECATE_WARNINGS, \
+ /* zstd_errors.h */ ZSTDERRORLIB_VISIBILITY
+
+ module dictbuilder [extern_c] {
+ header "zdict.h"
+ export *
+ }
+
+ module errors [extern_c] {
+ header "zstd_errors.h"
+ export *
+ }
+}
diff --git a/sys/contrib/zstd/lib/dictBuilder/zdict.h b/sys/contrib/zstd/lib/zdict.h
similarity index 70%
rename from sys/contrib/zstd/lib/dictBuilder/zdict.h
rename to sys/contrib/zstd/lib/zdict.h
index b782993f9d2e..f1e139a40ddb 100644
--- a/sys/contrib/zstd/lib/dictBuilder/zdict.h
+++ b/sys/contrib/zstd/lib/zdict.h
@@ -1,305 +1,452 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef DICTBUILDER_H_001
#define DICTBUILDER_H_001
#if defined (__cplusplus)
extern "C" {
#endif
/*====== Dependencies ======*/
#include <stddef.h> /* size_t */
/* ===== ZDICTLIB_API : control library symbols visibility ===== */
#ifndef ZDICTLIB_VISIBILITY
# if defined(__GNUC__) && (__GNUC__ >= 4)
# define ZDICTLIB_VISIBILITY __attribute__ ((visibility ("default")))
# else
# define ZDICTLIB_VISIBILITY
# endif
#endif
#if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1)
# define ZDICTLIB_API __declspec(dllexport) ZDICTLIB_VISIBILITY
#elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1)
# define ZDICTLIB_API __declspec(dllimport) ZDICTLIB_VISIBILITY /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
#else
# define ZDICTLIB_API ZDICTLIB_VISIBILITY
#endif
+/*******************************************************************************
+ * Zstd dictionary builder
+ *
+ * FAQ
+ * ===
+ * Why should I use a dictionary?
+ * ------------------------------
+ *
+ * Zstd can use dictionaries to improve compression ratio of small data.
+ * Traditionally small files don't compress well because there is very little
+ * repetition in a single sample, since it is small. But, if you are compressing
+ * many similar files, like a bunch of JSON records that share the same
+ * structure, you can train a dictionary on ahead of time on some samples of
+ * these files. Then, zstd can use the dictionary to find repetitions that are
+ * present across samples. This can vastly improve compression ratio.
+ *
+ * When is a dictionary useful?
+ * ----------------------------
+ *
+ * Dictionaries are useful when compressing many small files that are similar.
+ * The larger a file is, the less benefit a dictionary will have. Generally,
+ * we don't expect dictionary compression to be effective past 100KB. And the
+ * smaller a file is, the more we would expect the dictionary to help.
+ *
+ * How do I use a dictionary?
+ * --------------------------
+ *
+ * Simply pass the dictionary to the zstd compressor with
+ * `ZSTD_CCtx_loadDictionary()`. The same dictionary must then be passed to
+ * the decompressor, using `ZSTD_DCtx_loadDictionary()`. There are other
+ * more advanced functions that allow selecting some options, see zstd.h for
+ * complete documentation.
+ *
+ * What is a zstd dictionary?
+ * --------------------------
+ *
+ * A zstd dictionary has two pieces: Its header, and its content. The header
+ * contains a magic number, the dictionary ID, and entropy tables. These
+ * entropy tables allow zstd to save on header costs in the compressed file,
+ * which really matters for small data. The content is just bytes, which are
+ * repeated content that is common across many samples.
+ *
+ * What is a raw content dictionary?
+ * ---------------------------------
+ *
+ * A raw content dictionary is just bytes. It doesn't have a zstd dictionary
+ * header, a dictionary ID, or entropy tables. Any buffer is a valid raw
+ * content dictionary.
+ *
+ * How do I train a dictionary?
+ * ----------------------------
+ *
+ * Gather samples from your use case. These samples should be similar to each
+ * other. If you have several use cases, you could try to train one dictionary
+ * per use case.
+ *
+ * Pass those samples to `ZDICT_trainFromBuffer()` and that will train your
+ * dictionary. There are a few advanced versions of this function, but this
+ * is a great starting point. If you want to further tune your dictionary
+ * you could try `ZDICT_optimizeTrainFromBuffer_cover()`. If that is too slow
+ * you can try `ZDICT_optimizeTrainFromBuffer_fastCover()`.
+ *
+ * If the dictionary training function fails, that is likely because you
+ * either passed too few samples, or a dictionary would not be effective
+ * for your data. Look at the messages that the dictionary trainer printed,
+ * if it doesn't say too few samples, then a dictionary would not be effective.
+ *
+ * How large should my dictionary be?
+ * ----------------------------------
+ *
+ * A reasonable dictionary size, the `dictBufferCapacity`, is about 100KB.
+ * The zstd CLI defaults to a 110KB dictionary. You likely don't need a
+ * dictionary larger than that. But, most use cases can get away with a
+ * smaller dictionary. The advanced dictionary builders can automatically
+ * shrink the dictionary for you, and select a the smallest size that
+ * doesn't hurt compression ratio too much. See the `shrinkDict` parameter.
+ * A smaller dictionary can save memory, and potentially speed up
+ * compression.
+ *
+ * How many samples should I provide to the dictionary builder?
+ * ------------------------------------------------------------
+ *
+ * We generally recommend passing ~100x the size of the dictionary
+ * in samples. A few thousand should suffice. Having too few samples
+ * can hurt the dictionaries effectiveness. Having more samples will
+ * only improve the dictionaries effectiveness. But having too many
+ * samples can slow down the dictionary builder.
+ *
+ * How do I determine if a dictionary will be effective?
+ * -----------------------------------------------------
+ *
+ * Simply train a dictionary and try it out. You can use zstd's built in
+ * benchmarking tool to test the dictionary effectiveness.
+ *
+ * # Benchmark levels 1-3 without a dictionary
+ * zstd -b1e3 -r /path/to/my/files
+ * # Benchmark levels 1-3 with a dictionary
+ * zstd -b1e3 -r /path/to/my/files -D /path/to/my/dictionary
+ *
+ * When should I retrain a dictionary?
+ * -----------------------------------
+ *
+ * You should retrain a dictionary when its effectiveness drops. Dictionary
+ * effectiveness drops as the data you are compressing changes. Generally, we do
+ * expect dictionaries to "decay" over time, as your data changes, but the rate
+ * at which they decay depends on your use case. Internally, we regularly
+ * retrain dictionaries, and if the new dictionary performs significantly
+ * better than the old dictionary, we will ship the new dictionary.
+ *
+ * I have a raw content dictionary, how do I turn it into a zstd dictionary?
+ * -------------------------------------------------------------------------
+ *
+ * If you have a raw content dictionary, e.g. by manually constructing it, or
+ * using a third-party dictionary builder, you can turn it into a zstd
+ * dictionary by using `ZDICT_finalizeDictionary()`. You'll also have to
+ * provide some samples of the data. It will add the zstd header to the
+ * raw content, which contains a dictionary ID and entropy tables, which
+ * will improve compression ratio, and allow zstd to write the dictionary ID
+ * into the frame, if you so choose.
+ *
+ * Do I have to use zstd's dictionary builder?
+ * -------------------------------------------
+ *
+ * No! You can construct dictionary content however you please, it is just
+ * bytes. It will always be valid as a raw content dictionary. If you want
+ * a zstd dictionary, which can improve compression ratio, use
+ * `ZDICT_finalizeDictionary()`.
+ *
+ * What is the attack surface of a zstd dictionary?
+ * ------------------------------------------------
+ *
+ * Zstd is heavily fuzz tested, including loading fuzzed dictionaries, so
+ * zstd should never crash, or access out-of-bounds memory no matter what
+ * the dictionary is. However, if an attacker can control the dictionary
+ * during decompression, they can cause zstd to generate arbitrary bytes,
+ * just like if they controlled the compressed data.
+ *
+ ******************************************************************************/
+
/*! ZDICT_trainFromBuffer():
* Train a dictionary from an array of samples.
* Redirect towards ZDICT_optimizeTrainFromBuffer_fastCover() single-threaded, with d=8, steps=4,
* f=20, and accel=1.
* Samples must be stored concatenated in a single flat buffer `samplesBuffer`,
* supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order.
* The resulting dictionary will be saved into `dictBuffer`.
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* Note: Dictionary training will fail if there are not enough samples to construct a
* dictionary, or if most of the samples are too small (< 8 bytes being the lower limit).
* If dictionary training fails, you should use zstd without a dictionary, as the dictionary
* would've been ineffective anyways. If you believe your samples would benefit from a dictionary
* please open an issue with details, and we can look into it.
* Note: ZDICT_trainFromBuffer()'s memory usage is about 6 MB.
* Tips: In general, a reasonable dictionary has a size of ~ 100 KB.
* It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`.
* In general, it's recommended to provide a few thousands samples, though this can vary a lot.
* It's recommended that total size of all samples be about ~x100 times the target size of dictionary.
*/
ZDICTLIB_API size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity,
const void* samplesBuffer,
const size_t* samplesSizes, unsigned nbSamples);
typedef struct {
int compressionLevel; /*< optimize for a specific zstd compression level; 0 means default */
unsigned notificationLevel; /*< Write log to stderr; 0 = none (default); 1 = errors; 2 = progression; 3 = details; 4 = debug; */
- unsigned dictID; /*< force dictID value; 0 means auto mode (32-bits random value) */
+ unsigned dictID; /*< force dictID value; 0 means auto mode (32-bits random value)
+ * NOTE: The zstd format reserves some dictionary IDs for future use.
+ * You may use them in private settings, but be warned that they
+ * may be used by zstd in a public dictionary registry in the future.
+ * These dictionary IDs are:
+ * - low range : <= 32767
+ * - high range : >= (2^31)
+ */
} ZDICT_params_t;
/*! ZDICT_finalizeDictionary():
* Given a custom content as a basis for dictionary, and a set of samples,
* finalize dictionary by adding headers and statistics according to the zstd
* dictionary format.
*
* Samples must be stored concatenated in a flat buffer `samplesBuffer`,
* supplied with an array of sizes `samplesSizes`, providing the size of each
* sample in order. The samples are used to construct the statistics, so they
* should be representative of what you will compress with this dictionary.
*
* The compression level can be set in `parameters`. You should pass the
* compression level you expect to use in production. The statistics for each
* compression level differ, so tuning the dictionary for the compression level
* can help quite a bit.
*
* You can set an explicit dictionary ID in `parameters`, or allow us to pick
* a random dictionary ID for you, but we can't guarantee no collisions.
*
* The dstDictBuffer and the dictContent may overlap, and the content will be
* appended to the end of the header. If the header + the content doesn't fit in
* maxDictSize the beginning of the content is truncated to make room, since it
* is presumed that the most profitable content is at the end of the dictionary,
* since that is the cheapest to reference.
*
- * `dictContentSize` must be >= ZDICT_CONTENTSIZE_MIN bytes.
* `maxDictSize` must be >= max(dictContentSize, ZSTD_DICTSIZE_MIN).
*
* @return: size of dictionary stored into `dstDictBuffer` (<= `maxDictSize`),
* or an error code, which can be tested by ZDICT_isError().
* Note: ZDICT_finalizeDictionary() will push notifications into stderr if
* instructed to, using notificationLevel>0.
* NOTE: This function currently may fail in several edge cases including:
* * Not enough samples
* * Samples are uncompressible
* * Samples are all exactly the same
*/
ZDICTLIB_API size_t ZDICT_finalizeDictionary(void* dstDictBuffer, size_t maxDictSize,
const void* dictContent, size_t dictContentSize,
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
ZDICT_params_t parameters);
/*====== Helper functions ======*/
ZDICTLIB_API unsigned ZDICT_getDictID(const void* dictBuffer, size_t dictSize); /**< extracts dictID; @return zero if error (not a valid dictionary) */
ZDICTLIB_API size_t ZDICT_getDictHeaderSize(const void* dictBuffer, size_t dictSize); /* returns dict header size; returns a ZSTD error code on failure */
ZDICTLIB_API unsigned ZDICT_isError(size_t errorCode);
ZDICTLIB_API const char* ZDICT_getErrorName(size_t errorCode);
#ifdef ZDICT_STATIC_LINKING_ONLY
/* ====================================================================================
* The definitions in this section are considered experimental.
* They should never be used with a dynamic library, as they may change in the future.
* They are provided for advanced usages.
* Use them only in association with static linking.
* ==================================================================================== */
-#define ZDICT_CONTENTSIZE_MIN 128
#define ZDICT_DICTSIZE_MIN 256
+/* Deprecated: Remove in v1.6.0 */
+#define ZDICT_CONTENTSIZE_MIN 128
/*! ZDICT_cover_params_t:
* k and d are the only required parameters.
* For others, value 0 means default.
*/
typedef struct {
unsigned k; /* Segment size : constraint: 0 < k : Reasonable range [16, 2048+] */
unsigned d; /* dmer size : constraint: 0 < d <= k : Reasonable range [6, 16] */
unsigned steps; /* Number of steps : Only used for optimization : 0 means default (40) : Higher means more parameters checked */
unsigned nbThreads; /* Number of threads : constraint: 0 < nbThreads : 1 means single-threaded : Only used for optimization : Ignored if ZSTD_MULTITHREAD is not defined */
double splitPoint; /* Percentage of samples used for training: Only used for optimization : the first nbSamples * splitPoint samples will be used to training, the last nbSamples * (1 - splitPoint) samples will be used for testing, 0 means default (1.0), 1.0 when all samples are used for both training and testing */
unsigned shrinkDict; /* Train dictionaries to shrink in size starting from the minimum size and selects the smallest dictionary that is shrinkDictMaxRegression% worse than the largest dictionary. 0 means no shrinking and 1 means shrinking */
unsigned shrinkDictMaxRegression; /* Sets shrinkDictMaxRegression so that a smaller dictionary can be at worse shrinkDictMaxRegression% worse than the max dict size dictionary. */
ZDICT_params_t zParams;
} ZDICT_cover_params_t;
typedef struct {
unsigned k; /* Segment size : constraint: 0 < k : Reasonable range [16, 2048+] */
unsigned d; /* dmer size : constraint: 0 < d <= k : Reasonable range [6, 16] */
unsigned f; /* log of size of frequency array : constraint: 0 < f <= 31 : 1 means default(20)*/
unsigned steps; /* Number of steps : Only used for optimization : 0 means default (40) : Higher means more parameters checked */
unsigned nbThreads; /* Number of threads : constraint: 0 < nbThreads : 1 means single-threaded : Only used for optimization : Ignored if ZSTD_MULTITHREAD is not defined */
double splitPoint; /* Percentage of samples used for training: Only used for optimization : the first nbSamples * splitPoint samples will be used to training, the last nbSamples * (1 - splitPoint) samples will be used for testing, 0 means default (0.75), 1.0 when all samples are used for both training and testing */
unsigned accel; /* Acceleration level: constraint: 0 < accel <= 10, higher means faster and less accurate, 0 means default(1) */
unsigned shrinkDict; /* Train dictionaries to shrink in size starting from the minimum size and selects the smallest dictionary that is shrinkDictMaxRegression% worse than the largest dictionary. 0 means no shrinking and 1 means shrinking */
unsigned shrinkDictMaxRegression; /* Sets shrinkDictMaxRegression so that a smaller dictionary can be at worse shrinkDictMaxRegression% worse than the max dict size dictionary. */
ZDICT_params_t zParams;
} ZDICT_fastCover_params_t;
/*! ZDICT_trainFromBuffer_cover():
* Train a dictionary from an array of samples using the COVER algorithm.
* Samples must be stored concatenated in a single flat buffer `samplesBuffer`,
* supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order.
* The resulting dictionary will be saved into `dictBuffer`.
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* See ZDICT_trainFromBuffer() for details on failure modes.
* Note: ZDICT_trainFromBuffer_cover() requires about 9 bytes of memory for each input byte.
* Tips: In general, a reasonable dictionary has a size of ~ 100 KB.
* It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`.
* In general, it's recommended to provide a few thousands samples, though this can vary a lot.
* It's recommended that total size of all samples be about ~x100 times the target size of dictionary.
*/
ZDICTLIB_API size_t ZDICT_trainFromBuffer_cover(
void *dictBuffer, size_t dictBufferCapacity,
const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples,
ZDICT_cover_params_t parameters);
/*! ZDICT_optimizeTrainFromBuffer_cover():
* The same requirements as above hold for all the parameters except `parameters`.
* This function tries many parameter combinations and picks the best parameters.
* `*parameters` is filled with the best parameters found,
* dictionary constructed with those parameters is stored in `dictBuffer`.
*
* All of the parameters d, k, steps are optional.
* If d is non-zero then we don't check multiple values of d, otherwise we check d = {6, 8}.
* if steps is zero it defaults to its default value.
* If k is non-zero then we don't check multiple values of k, otherwise we check steps values in [50, 2000].
*
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* On success `*parameters` contains the parameters selected.
* See ZDICT_trainFromBuffer() for details on failure modes.
* Note: ZDICT_optimizeTrainFromBuffer_cover() requires about 8 bytes of memory for each input byte and additionally another 5 bytes of memory for each byte of memory for each thread.
*/
ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover(
void* dictBuffer, size_t dictBufferCapacity,
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
ZDICT_cover_params_t* parameters);
/*! ZDICT_trainFromBuffer_fastCover():
* Train a dictionary from an array of samples using a modified version of COVER algorithm.
* Samples must be stored concatenated in a single flat buffer `samplesBuffer`,
* supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order.
* d and k are required.
* All other parameters are optional, will use default values if not provided
* The resulting dictionary will be saved into `dictBuffer`.
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* See ZDICT_trainFromBuffer() for details on failure modes.
* Note: ZDICT_trainFromBuffer_fastCover() requires 6 * 2^f bytes of memory.
* Tips: In general, a reasonable dictionary has a size of ~ 100 KB.
* It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`.
* In general, it's recommended to provide a few thousands samples, though this can vary a lot.
* It's recommended that total size of all samples be about ~x100 times the target size of dictionary.
*/
ZDICTLIB_API size_t ZDICT_trainFromBuffer_fastCover(void *dictBuffer,
size_t dictBufferCapacity, const void *samplesBuffer,
const size_t *samplesSizes, unsigned nbSamples,
ZDICT_fastCover_params_t parameters);
/*! ZDICT_optimizeTrainFromBuffer_fastCover():
* The same requirements as above hold for all the parameters except `parameters`.
* This function tries many parameter combinations (specifically, k and d combinations)
* and picks the best parameters. `*parameters` is filled with the best parameters found,
* dictionary constructed with those parameters is stored in `dictBuffer`.
* All of the parameters d, k, steps, f, and accel are optional.
* If d is non-zero then we don't check multiple values of d, otherwise we check d = {6, 8}.
* if steps is zero it defaults to its default value.
* If k is non-zero then we don't check multiple values of k, otherwise we check steps values in [50, 2000].
* If f is zero, default value of 20 is used.
* If accel is zero, default value of 1 is used.
*
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* On success `*parameters` contains the parameters selected.
* See ZDICT_trainFromBuffer() for details on failure modes.
* Note: ZDICT_optimizeTrainFromBuffer_fastCover() requires about 6 * 2^f bytes of memory for each thread.
*/
ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_fastCover(void* dictBuffer,
size_t dictBufferCapacity, const void* samplesBuffer,
const size_t* samplesSizes, unsigned nbSamples,
ZDICT_fastCover_params_t* parameters);
typedef struct {
unsigned selectivityLevel; /* 0 means default; larger => select more => larger dictionary */
ZDICT_params_t zParams;
} ZDICT_legacy_params_t;
/*! ZDICT_trainFromBuffer_legacy():
* Train a dictionary from an array of samples.
* Samples must be stored concatenated in a single flat buffer `samplesBuffer`,
* supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order.
* The resulting dictionary will be saved into `dictBuffer`.
* `parameters` is optional and can be provided with values set to 0 to mean "default".
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* See ZDICT_trainFromBuffer() for details on failure modes.
* Tips: In general, a reasonable dictionary has a size of ~ 100 KB.
* It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`.
* In general, it's recommended to provide a few thousands samples, though this can vary a lot.
* It's recommended that total size of all samples be about ~x100 times the target size of dictionary.
* Note: ZDICT_trainFromBuffer_legacy() will send notifications into stderr if instructed to, using notificationLevel>0.
*/
ZDICTLIB_API size_t ZDICT_trainFromBuffer_legacy(
- void *dictBuffer, size_t dictBufferCapacity,
- const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples,
+ void* dictBuffer, size_t dictBufferCapacity,
+ const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
ZDICT_legacy_params_t parameters);
+
/* Deprecation warnings */
/* It is generally possible to disable deprecation warnings from compiler,
for example with -Wno-deprecated-declarations for gcc
or _CRT_SECURE_NO_WARNINGS in Visual.
Otherwise, it's also possible to manually define ZDICT_DISABLE_DEPRECATE_WARNINGS */
#ifdef ZDICT_DISABLE_DEPRECATE_WARNINGS
# define ZDICT_DEPRECATED(message) ZDICTLIB_API /* disable deprecation warnings */
#else
# define ZDICT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
# if defined (__cplusplus) && (__cplusplus >= 201402) /* C++14 or greater */
# define ZDICT_DEPRECATED(message) [[deprecated(message)]] ZDICTLIB_API
# elif defined(__clang__) || (ZDICT_GCC_VERSION >= 405)
# define ZDICT_DEPRECATED(message) ZDICTLIB_API __attribute__((deprecated(message)))
# elif (ZDICT_GCC_VERSION >= 301)
# define ZDICT_DEPRECATED(message) ZDICTLIB_API __attribute__((deprecated))
# elif defined(_MSC_VER)
# define ZDICT_DEPRECATED(message) ZDICTLIB_API __declspec(deprecated(message))
# else
# pragma message("WARNING: You need to implement ZDICT_DEPRECATED for this compiler")
# define ZDICT_DEPRECATED(message) ZDICTLIB_API
# endif
#endif /* ZDICT_DISABLE_DEPRECATE_WARNINGS */
ZDICT_DEPRECATED("use ZDICT_finalizeDictionary() instead")
size_t ZDICT_addEntropyTablesFromBuffer(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples);
#endif /* ZDICT_STATIC_LINKING_ONLY */
#if defined (__cplusplus)
}
#endif
#endif /* DICTBUILDER_H_001 */
diff --git a/sys/contrib/zstd/lib/zstd.h b/sys/contrib/zstd/lib/zstd.h
index b0ecdf55385c..a88ae7bf8ed5 100644
--- a/sys/contrib/zstd/lib/zstd.h
+++ b/sys/contrib/zstd/lib/zstd.h
@@ -1,2391 +1,2575 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef ZSTD_H_235446
#define ZSTD_H_235446
/* ====== Dependency ======*/
#include <limits.h> /* INT_MAX */
#include <stddef.h> /* size_t */
/* ===== ZSTDLIB_API : control library symbols visibility ===== */
-#ifndef ZSTDLIB_VISIBILITY
-# if defined(__GNUC__) && (__GNUC__ >= 4)
-# define ZSTDLIB_VISIBILITY __attribute__ ((visibility ("default")))
+#ifndef ZSTDLIB_VISIBLE
+# if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__)
+# define ZSTDLIB_VISIBLE __attribute__ ((visibility ("default")))
+# define ZSTDLIB_HIDDEN __attribute__ ((visibility ("hidden")))
# else
-# define ZSTDLIB_VISIBILITY
+# define ZSTDLIB_VISIBLE
+# define ZSTDLIB_HIDDEN
# endif
#endif
#if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1)
-# define ZSTDLIB_API __declspec(dllexport) ZSTDLIB_VISIBILITY
+# define ZSTDLIB_API __declspec(dllexport) ZSTDLIB_VISIBLE
#elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1)
-# define ZSTDLIB_API __declspec(dllimport) ZSTDLIB_VISIBILITY /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
+# define ZSTDLIB_API __declspec(dllimport) ZSTDLIB_VISIBLE /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
#else
-# define ZSTDLIB_API ZSTDLIB_VISIBILITY
+# define ZSTDLIB_API ZSTDLIB_VISIBLE
#endif
/*******************************************************************************
Introduction
zstd, short for Zstandard, is a fast lossless compression algorithm, targeting
real-time compression scenarios at zlib-level and better compression ratios.
The zstd compression library provides in-memory compression and decompression
functions.
The library supports regular compression levels from 1 up to ZSTD_maxCLevel(),
which is currently 22. Levels >= 20, labeled `--ultra`, should be used with
caution, as they require more memory. The library also offers negative
compression levels, which extend the range of speed vs. ratio preferences.
The lower the level, the faster the speed (at the cost of compression).
Compression can be done in:
- a single step (described as Simple API)
- a single step, reusing a context (described as Explicit context)
- unbounded multiple steps (described as Streaming compression)
The compression ratio achievable on small data can be highly improved using
a dictionary. Dictionary compression can be performed in:
- a single step (described as Simple dictionary API)
- a single step, reusing a dictionary (described as Bulk-processing
dictionary API)
Advanced experimental functions can be accessed using
`#define ZSTD_STATIC_LINKING_ONLY` before including zstd.h.
Advanced experimental APIs should never be used with a dynamically-linked
library. They are not "stable"; their definitions or signatures may change in
the future. Only static linking is allowed.
*******************************************************************************/
/*------ Version ------*/
#define ZSTD_VERSION_MAJOR 1
-#define ZSTD_VERSION_MINOR 4
-#define ZSTD_VERSION_RELEASE 8
+#define ZSTD_VERSION_MINOR 5
+#define ZSTD_VERSION_RELEASE 2
#define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE)
/*! ZSTD_versionNumber() :
* Return runtime library version, the value is (MAJOR*100*100 + MINOR*100 + RELEASE). */
ZSTDLIB_API unsigned ZSTD_versionNumber(void);
#define ZSTD_LIB_VERSION ZSTD_VERSION_MAJOR.ZSTD_VERSION_MINOR.ZSTD_VERSION_RELEASE
#define ZSTD_QUOTE(str) #str
#define ZSTD_EXPAND_AND_QUOTE(str) ZSTD_QUOTE(str)
#define ZSTD_VERSION_STRING ZSTD_EXPAND_AND_QUOTE(ZSTD_LIB_VERSION)
/*! ZSTD_versionString() :
* Return runtime library version, like "1.4.5". Requires v1.3.0+. */
ZSTDLIB_API const char* ZSTD_versionString(void);
/* *************************************
* Default constant
***************************************/
#ifndef ZSTD_CLEVEL_DEFAULT
# define ZSTD_CLEVEL_DEFAULT 3
#endif
/* *************************************
* Constants
***************************************/
/* All magic numbers are supposed read/written to/from files/memory using little-endian convention */
#define ZSTD_MAGICNUMBER 0xFD2FB528 /* valid since v0.8.0 */
#define ZSTD_MAGIC_DICTIONARY 0xEC30A437 /* valid since v0.7.0 */
#define ZSTD_MAGIC_SKIPPABLE_START 0x184D2A50 /* all 16 values, from 0x184D2A50 to 0x184D2A5F, signal the beginning of a skippable frame */
#define ZSTD_MAGIC_SKIPPABLE_MASK 0xFFFFFFF0
#define ZSTD_BLOCKSIZELOG_MAX 17
#define ZSTD_BLOCKSIZE_MAX (1<<ZSTD_BLOCKSIZELOG_MAX)
-
/***************************************
* Simple API
***************************************/
/*! ZSTD_compress() :
* Compresses `src` content as a single zstd compressed frame into already allocated `dst`.
* Hint : compression runs faster if `dstCapacity` >= `ZSTD_compressBound(srcSize)`.
* @return : compressed size written into `dst` (<= `dstCapacity),
* or an error code if it fails (which can be tested using ZSTD_isError()). */
ZSTDLIB_API size_t ZSTD_compress( void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
int compressionLevel);
/*! ZSTD_decompress() :
* `compressedSize` : must be the _exact_ size of some number of compressed and/or skippable frames.
* `dstCapacity` is an upper bound of originalSize to regenerate.
* If user cannot imply a maximum upper bound, it's better to use streaming mode to decompress data.
* @return : the number of bytes decompressed into `dst` (<= `dstCapacity`),
* or an errorCode if it fails (which can be tested using ZSTD_isError()). */
ZSTDLIB_API size_t ZSTD_decompress( void* dst, size_t dstCapacity,
const void* src, size_t compressedSize);
/*! ZSTD_getFrameContentSize() : requires v1.3.0+
* `src` should point to the start of a ZSTD encoded frame.
* `srcSize` must be at least as large as the frame header.
* hint : any size >= `ZSTD_frameHeaderSize_max` is large enough.
* @return : - decompressed size of `src` frame content, if known
* - ZSTD_CONTENTSIZE_UNKNOWN if the size cannot be determined
* - ZSTD_CONTENTSIZE_ERROR if an error occurred (e.g. invalid magic number, srcSize too small)
* note 1 : a 0 return value means the frame is valid but "empty".
* note 2 : decompressed size is an optional field, it may not be present, typically in streaming mode.
* When `return==ZSTD_CONTENTSIZE_UNKNOWN`, data to decompress could be any size.
* In which case, it's necessary to use streaming mode to decompress data.
* Optionally, application can rely on some implicit limit,
* as ZSTD_decompress() only needs an upper bound of decompressed size.
* (For example, data could be necessarily cut into blocks <= 16 KB).
* note 3 : decompressed size is always present when compression is completed using single-pass functions,
* such as ZSTD_compress(), ZSTD_compressCCtx() ZSTD_compress_usingDict() or ZSTD_compress_usingCDict().
* note 4 : decompressed size can be very large (64-bits value),
* potentially larger than what local system can handle as a single memory segment.
* In which case, it's necessary to use streaming mode to decompress data.
* note 5 : If source is untrusted, decompressed size could be wrong or intentionally modified.
* Always ensure return value fits within application's authorized limits.
* Each application can set its own limits.
* note 6 : This function replaces ZSTD_getDecompressedSize() */
#define ZSTD_CONTENTSIZE_UNKNOWN (0ULL - 1)
#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2)
ZSTDLIB_API unsigned long long ZSTD_getFrameContentSize(const void *src, size_t srcSize);
/*! ZSTD_getDecompressedSize() :
* NOTE: This function is now obsolete, in favor of ZSTD_getFrameContentSize().
* Both functions work the same way, but ZSTD_getDecompressedSize() blends
* "empty", "unknown" and "error" results to the same return value (0),
* while ZSTD_getFrameContentSize() gives them separate return values.
* @return : decompressed size of `src` frame content _if known and not empty_, 0 otherwise. */
ZSTDLIB_API unsigned long long ZSTD_getDecompressedSize(const void* src, size_t srcSize);
-/*! ZSTD_findFrameCompressedSize() :
+/*! ZSTD_findFrameCompressedSize() : Requires v1.4.0+
* `src` should point to the start of a ZSTD frame or skippable frame.
* `srcSize` must be >= first frame size
* @return : the compressed size of the first frame starting at `src`,
* suitable to pass as `srcSize` to `ZSTD_decompress` or similar,
* or an error code if input is invalid */
ZSTDLIB_API size_t ZSTD_findFrameCompressedSize(const void* src, size_t srcSize);
/*====== Helper functions ======*/
#define ZSTD_COMPRESSBOUND(srcSize) ((srcSize) + ((srcSize)>>8) + (((srcSize) < (128<<10)) ? (((128<<10) - (srcSize)) >> 11) /* margin, from 64 to 0 */ : 0)) /* this formula ensures that bound(A) + bound(B) <= bound(A+B) as long as A and B >= 128 KB */
ZSTDLIB_API size_t ZSTD_compressBound(size_t srcSize); /*!< maximum compressed size in worst case single-pass scenario */
ZSTDLIB_API unsigned ZSTD_isError(size_t code); /*!< tells if a `size_t` function result is an error code */
ZSTDLIB_API const char* ZSTD_getErrorName(size_t code); /*!< provides readable string from an error code */
-ZSTDLIB_API int ZSTD_minCLevel(void); /*!< minimum negative compression level allowed */
+ZSTDLIB_API int ZSTD_minCLevel(void); /*!< minimum negative compression level allowed, requires v1.4.0+ */
ZSTDLIB_API int ZSTD_maxCLevel(void); /*!< maximum compression level available */
+ZSTDLIB_API int ZSTD_defaultCLevel(void); /*!< default compression level, specified by ZSTD_CLEVEL_DEFAULT, requires v1.5.0+ */
/***************************************
* Explicit context
***************************************/
/*= Compression context
* When compressing many times,
* it is recommended to allocate a context just once,
* and re-use it for each successive compression operation.
* This will make workload friendlier for system's memory.
* Note : re-using context is just a speed / resource optimization.
* It doesn't change the compression ratio, which remains identical.
* Note 2 : In multi-threaded environments,
* use one different context per thread for parallel execution.
*/
typedef struct ZSTD_CCtx_s ZSTD_CCtx;
ZSTDLIB_API ZSTD_CCtx* ZSTD_createCCtx(void);
-ZSTDLIB_API size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx);
+ZSTDLIB_API size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx); /* accept NULL pointer */
/*! ZSTD_compressCCtx() :
* Same as ZSTD_compress(), using an explicit ZSTD_CCtx.
* Important : in order to behave similarly to `ZSTD_compress()`,
* this function compresses at requested compression level,
* __ignoring any other parameter__ .
* If any advanced parameter was set using the advanced API,
* they will all be reset. Only `compressionLevel` remains.
*/
ZSTDLIB_API size_t ZSTD_compressCCtx(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
int compressionLevel);
/*= Decompression context
* When decompressing many times,
* it is recommended to allocate a context only once,
* and re-use it for each successive compression operation.
* This will make workload friendlier for system's memory.
* Use one context per thread for parallel execution. */
typedef struct ZSTD_DCtx_s ZSTD_DCtx;
ZSTDLIB_API ZSTD_DCtx* ZSTD_createDCtx(void);
-ZSTDLIB_API size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx);
+ZSTDLIB_API size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx); /* accept NULL pointer */
/*! ZSTD_decompressDCtx() :
* Same as ZSTD_decompress(),
* requires an allocated ZSTD_DCtx.
* Compatible with sticky parameters.
*/
ZSTDLIB_API size_t ZSTD_decompressDCtx(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize);
-/***************************************
-* Advanced compression API
-***************************************/
+/*********************************************
+* Advanced compression API (Requires v1.4.0+)
+**********************************************/
/* API design :
* Parameters are pushed one by one into an existing context,
* using ZSTD_CCtx_set*() functions.
* Pushed parameters are sticky : they are valid for next compressed frame, and any subsequent frame.
* "sticky" parameters are applicable to `ZSTD_compress2()` and `ZSTD_compressStream*()` !
* __They do not apply to "simple" one-shot variants such as ZSTD_compressCCtx()__ .
*
* It's possible to reset all parameters to "default" using ZSTD_CCtx_reset().
*
- * This API supercedes all other "advanced" API entry points in the experimental section.
+ * This API supersedes all other "advanced" API entry points in the experimental section.
* In the future, we expect to remove from experimental API entry points which are redundant with this API.
*/
/* Compression strategies, listed from fastest to strongest */
typedef enum { ZSTD_fast=1,
ZSTD_dfast=2,
ZSTD_greedy=3,
ZSTD_lazy=4,
ZSTD_lazy2=5,
ZSTD_btlazy2=6,
ZSTD_btopt=7,
ZSTD_btultra=8,
ZSTD_btultra2=9
/* note : new strategies _might_ be added in the future.
Only the order (from fast to strong) is guaranteed */
} ZSTD_strategy;
-
typedef enum {
/* compression parameters
* Note: When compressing with a ZSTD_CDict these parameters are superseded
* by the parameters used to construct the ZSTD_CDict.
* See ZSTD_CCtx_refCDict() for more info (superseded-by-cdict). */
ZSTD_c_compressionLevel=100, /* Set compression parameters according to pre-defined cLevel table.
* Note that exact compression parameters are dynamically determined,
* depending on both compression level and srcSize (when known).
* Default level is ZSTD_CLEVEL_DEFAULT==3.
* Special: value 0 means default, which is controlled by ZSTD_CLEVEL_DEFAULT.
* Note 1 : it's possible to pass a negative compression level.
* Note 2 : setting a level does not automatically set all other compression parameters
* to default. Setting this will however eventually dynamically impact the compression
* parameters which have not been manually set. The manually set
* ones will 'stick'. */
/* Advanced compression parameters :
* It's possible to pin down compression parameters to some specific values.
* In which case, these values are no longer dynamically selected by the compressor */
ZSTD_c_windowLog=101, /* Maximum allowed back-reference distance, expressed as power of 2.
* This will set a memory budget for streaming decompression,
* with larger values requiring more memory
* and typically compressing more.
* Must be clamped between ZSTD_WINDOWLOG_MIN and ZSTD_WINDOWLOG_MAX.
* Special: value 0 means "use default windowLog".
* Note: Using a windowLog greater than ZSTD_WINDOWLOG_LIMIT_DEFAULT
* requires explicitly allowing such size at streaming decompression stage. */
ZSTD_c_hashLog=102, /* Size of the initial probe table, as a power of 2.
* Resulting memory usage is (1 << (hashLog+2)).
* Must be clamped between ZSTD_HASHLOG_MIN and ZSTD_HASHLOG_MAX.
* Larger tables improve compression ratio of strategies <= dFast,
* and improve speed of strategies > dFast.
* Special: value 0 means "use default hashLog". */
ZSTD_c_chainLog=103, /* Size of the multi-probe search table, as a power of 2.
* Resulting memory usage is (1 << (chainLog+2)).
* Must be clamped between ZSTD_CHAINLOG_MIN and ZSTD_CHAINLOG_MAX.
* Larger tables result in better and slower compression.
* This parameter is useless for "fast" strategy.
* It's still useful when using "dfast" strategy,
* in which case it defines a secondary probe table.
* Special: value 0 means "use default chainLog". */
ZSTD_c_searchLog=104, /* Number of search attempts, as a power of 2.
* More attempts result in better and slower compression.
* This parameter is useless for "fast" and "dFast" strategies.
* Special: value 0 means "use default searchLog". */
ZSTD_c_minMatch=105, /* Minimum size of searched matches.
* Note that Zstandard can still find matches of smaller size,
* it just tweaks its search algorithm to look for this size and larger.
* Larger values increase compression and decompression speed, but decrease ratio.
* Must be clamped between ZSTD_MINMATCH_MIN and ZSTD_MINMATCH_MAX.
* Note that currently, for all strategies < btopt, effective minimum is 4.
* , for all strategies > fast, effective maximum is 6.
* Special: value 0 means "use default minMatchLength". */
ZSTD_c_targetLength=106, /* Impact of this field depends on strategy.
* For strategies btopt, btultra & btultra2:
* Length of Match considered "good enough" to stop search.
* Larger values make compression stronger, and slower.
* For strategy fast:
* Distance between match sampling.
* Larger values make compression faster, and weaker.
* Special: value 0 means "use default targetLength". */
ZSTD_c_strategy=107, /* See ZSTD_strategy enum definition.
* The higher the value of selected strategy, the more complex it is,
* resulting in stronger and slower compression.
* Special: value 0 means "use default strategy". */
-
/* LDM mode parameters */
ZSTD_c_enableLongDistanceMatching=160, /* Enable long distance matching.
* This parameter is designed to improve compression ratio
* for large inputs, by finding large matches at long distance.
* It increases memory usage and window size.
* Note: enabling this parameter increases default ZSTD_c_windowLog to 128 MB
* except when expressly set to a different value.
* Note: will be enabled by default if ZSTD_c_windowLog >= 128 MB and
* compression strategy >= ZSTD_btopt (== compression level 16+) */
ZSTD_c_ldmHashLog=161, /* Size of the table for long distance matching, as a power of 2.
* Larger values increase memory usage and compression ratio,
* but decrease compression speed.
* Must be clamped between ZSTD_HASHLOG_MIN and ZSTD_HASHLOG_MAX
* default: windowlog - 7.
* Special: value 0 means "automatically determine hashlog". */
ZSTD_c_ldmMinMatch=162, /* Minimum match size for long distance matcher.
* Larger/too small values usually decrease compression ratio.
* Must be clamped between ZSTD_LDM_MINMATCH_MIN and ZSTD_LDM_MINMATCH_MAX.
* Special: value 0 means "use default value" (default: 64). */
ZSTD_c_ldmBucketSizeLog=163, /* Log size of each bucket in the LDM hash table for collision resolution.
* Larger values improve collision resolution but decrease compression speed.
* The maximum value is ZSTD_LDM_BUCKETSIZELOG_MAX.
* Special: value 0 means "use default value" (default: 3). */
ZSTD_c_ldmHashRateLog=164, /* Frequency of inserting/looking up entries into the LDM hash table.
* Must be clamped between 0 and (ZSTD_WINDOWLOG_MAX - ZSTD_HASHLOG_MIN).
* Default is MAX(0, (windowLog - ldmHashLog)), optimizing hash table usage.
* Larger values improve compression speed.
* Deviating far from default value will likely result in a compression ratio decrease.
* Special: value 0 means "automatically determine hashRateLog". */
/* frame parameters */
ZSTD_c_contentSizeFlag=200, /* Content size will be written into frame header _whenever known_ (default:1)
* Content size must be known at the beginning of compression.
* This is automatically the case when using ZSTD_compress2(),
* For streaming scenarios, content size must be provided with ZSTD_CCtx_setPledgedSrcSize() */
ZSTD_c_checksumFlag=201, /* A 32-bits checksum of content is written at end of frame (default:0) */
ZSTD_c_dictIDFlag=202, /* When applicable, dictionary's ID is written into frame header (default:1) */
/* multi-threading parameters */
/* These parameters are only active if multi-threading is enabled (compiled with build macro ZSTD_MULTITHREAD).
* Otherwise, trying to set any other value than default (0) will be a no-op and return an error.
* In a situation where it's unknown if the linked library supports multi-threading or not,
* setting ZSTD_c_nbWorkers to any value >= 1 and consulting the return value provides a quick way to check this property.
*/
ZSTD_c_nbWorkers=400, /* Select how many threads will be spawned to compress in parallel.
* When nbWorkers >= 1, triggers asynchronous mode when invoking ZSTD_compressStream*() :
* ZSTD_compressStream*() consumes input and flush output if possible, but immediately gives back control to caller,
* while compression is performed in parallel, within worker thread(s).
* (note : a strong exception to this rule is when first invocation of ZSTD_compressStream2() sets ZSTD_e_end :
* in which case, ZSTD_compressStream2() delegates to ZSTD_compress2(), which is always a blocking call).
* More workers improve speed, but also increase memory usage.
* Default value is `0`, aka "single-threaded mode" : no worker is spawned,
* compression is performed inside Caller's thread, and all invocations are blocking */
ZSTD_c_jobSize=401, /* Size of a compression job. This value is enforced only when nbWorkers >= 1.
* Each compression job is completed in parallel, so this value can indirectly impact the nb of active threads.
* 0 means default, which is dynamically determined based on compression parameters.
- * Job size must be a minimum of overlap size, or 1 MB, whichever is largest.
+ * Job size must be a minimum of overlap size, or ZSTDMT_JOBSIZE_MIN (= 512 KB), whichever is largest.
* The minimum size is automatically and transparently enforced. */
ZSTD_c_overlapLog=402, /* Control the overlap size, as a fraction of window size.
* The overlap size is an amount of data reloaded from previous job at the beginning of a new job.
* It helps preserve compression ratio, while each job is compressed in parallel.
* This value is enforced only when nbWorkers >= 1.
* Larger values increase compression ratio, but decrease speed.
* Possible values range from 0 to 9 :
* - 0 means "default" : value will be determined by the library, depending on strategy
* - 1 means "no overlap"
* - 9 means "full overlap", using a full window size.
* Each intermediate rank increases/decreases load size by a factor 2 :
* 9: full window; 8: w/2; 7: w/4; 6: w/8; 5:w/16; 4: w/32; 3:w/64; 2:w/128; 1:no overlap; 0:default
* default value varies between 6 and 9, depending on strategy */
/* note : additional experimental parameters are also available
* within the experimental section of the API.
* At the time of this writing, they include :
* ZSTD_c_rsyncable
* ZSTD_c_format
* ZSTD_c_forceMaxWindow
* ZSTD_c_forceAttachDict
* ZSTD_c_literalCompressionMode
* ZSTD_c_targetCBlockSize
* ZSTD_c_srcSizeHint
* ZSTD_c_enableDedicatedDictSearch
* ZSTD_c_stableInBuffer
* ZSTD_c_stableOutBuffer
* ZSTD_c_blockDelimiters
* ZSTD_c_validateSequences
+ * ZSTD_c_useBlockSplitter
+ * ZSTD_c_useRowMatchFinder
* Because they are not stable, it's necessary to define ZSTD_STATIC_LINKING_ONLY to access them.
* note : never ever use experimentalParam? names directly;
* also, the enums values themselves are unstable and can still change.
*/
ZSTD_c_experimentalParam1=500,
ZSTD_c_experimentalParam2=10,
ZSTD_c_experimentalParam3=1000,
ZSTD_c_experimentalParam4=1001,
ZSTD_c_experimentalParam5=1002,
ZSTD_c_experimentalParam6=1003,
ZSTD_c_experimentalParam7=1004,
ZSTD_c_experimentalParam8=1005,
ZSTD_c_experimentalParam9=1006,
ZSTD_c_experimentalParam10=1007,
ZSTD_c_experimentalParam11=1008,
- ZSTD_c_experimentalParam12=1009
+ ZSTD_c_experimentalParam12=1009,
+ ZSTD_c_experimentalParam13=1010,
+ ZSTD_c_experimentalParam14=1011,
+ ZSTD_c_experimentalParam15=1012
} ZSTD_cParameter;
typedef struct {
size_t error;
int lowerBound;
int upperBound;
} ZSTD_bounds;
/*! ZSTD_cParam_getBounds() :
* All parameters must belong to an interval with lower and upper bounds,
* otherwise they will either trigger an error or be automatically clamped.
* @return : a structure, ZSTD_bounds, which contains
* - an error status field, which must be tested using ZSTD_isError()
* - lower and upper bounds, both inclusive
*/
ZSTDLIB_API ZSTD_bounds ZSTD_cParam_getBounds(ZSTD_cParameter cParam);
/*! ZSTD_CCtx_setParameter() :
* Set one compression parameter, selected by enum ZSTD_cParameter.
* All parameters have valid bounds. Bounds can be queried using ZSTD_cParam_getBounds().
* Providing a value beyond bound will either clamp it, or trigger an error (depending on parameter).
* Setting a parameter is generally only possible during frame initialization (before starting compression).
* Exception : when using multi-threading mode (nbWorkers >= 1),
* the following parameters can be updated _during_ compression (within same frame):
* => compressionLevel, hashLog, chainLog, searchLog, minMatch, targetLength and strategy.
* new parameters will be active for next job only (after a flush()).
* @return : an error code (which can be tested using ZSTD_isError()).
*/
ZSTDLIB_API size_t ZSTD_CCtx_setParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, int value);
/*! ZSTD_CCtx_setPledgedSrcSize() :
* Total input data size to be compressed as a single frame.
* Value will be written in frame header, unless if explicitly forbidden using ZSTD_c_contentSizeFlag.
* This value will also be controlled at end of frame, and trigger an error if not respected.
* @result : 0, or an error code (which can be tested with ZSTD_isError()).
* Note 1 : pledgedSrcSize==0 actually means zero, aka an empty frame.
* In order to mean "unknown content size", pass constant ZSTD_CONTENTSIZE_UNKNOWN.
* ZSTD_CONTENTSIZE_UNKNOWN is default value for any new frame.
* Note 2 : pledgedSrcSize is only valid once, for the next frame.
* It's discarded at the end of the frame, and replaced by ZSTD_CONTENTSIZE_UNKNOWN.
* Note 3 : Whenever all input data is provided and consumed in a single round,
* for example with ZSTD_compress2(),
* or invoking immediately ZSTD_compressStream2(,,,ZSTD_e_end),
* this value is automatically overridden by srcSize instead.
*/
ZSTDLIB_API size_t ZSTD_CCtx_setPledgedSrcSize(ZSTD_CCtx* cctx, unsigned long long pledgedSrcSize);
typedef enum {
ZSTD_reset_session_only = 1,
ZSTD_reset_parameters = 2,
ZSTD_reset_session_and_parameters = 3
} ZSTD_ResetDirective;
/*! ZSTD_CCtx_reset() :
* There are 2 different things that can be reset, independently or jointly :
* - The session : will stop compressing current frame, and make CCtx ready to start a new one.
* Useful after an error, or to interrupt any ongoing compression.
* Any internal data not yet flushed is cancelled.
* Compression parameters and dictionary remain unchanged.
* They will be used to compress next frame.
* Resetting session never fails.
* - The parameters : changes all parameters back to "default".
* This removes any reference to any dictionary too.
* Parameters can only be changed between 2 sessions (i.e. no compression is currently ongoing)
* otherwise the reset fails, and function returns an error value (which can be tested using ZSTD_isError())
* - Both : similar to resetting the session, followed by resetting parameters.
*/
ZSTDLIB_API size_t ZSTD_CCtx_reset(ZSTD_CCtx* cctx, ZSTD_ResetDirective reset);
/*! ZSTD_compress2() :
* Behave the same as ZSTD_compressCCtx(), but compression parameters are set using the advanced API.
* ZSTD_compress2() always starts a new frame.
* Should cctx hold data from a previously unfinished frame, everything about it is forgotten.
* - Compression parameters are pushed into CCtx before starting compression, using ZSTD_CCtx_set*()
* - The function is always blocking, returns when compression is completed.
* Hint : compression runs faster if `dstCapacity` >= `ZSTD_compressBound(srcSize)`.
* @return : compressed size written into `dst` (<= `dstCapacity),
* or an error code if it fails (which can be tested using ZSTD_isError()).
*/
ZSTDLIB_API size_t ZSTD_compress2( ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize);
-/***************************************
-* Advanced decompression API
-***************************************/
+/***********************************************
+* Advanced decompression API (Requires v1.4.0+)
+************************************************/
/* The advanced API pushes parameters one by one into an existing DCtx context.
* Parameters are sticky, and remain valid for all following frames
* using the same DCtx context.
* It's possible to reset parameters to default values using ZSTD_DCtx_reset().
* Note : This API is compatible with existing ZSTD_decompressDCtx() and ZSTD_decompressStream().
* Therefore, no new decompression function is necessary.
*/
typedef enum {
ZSTD_d_windowLogMax=100, /* Select a size limit (in power of 2) beyond which
* the streaming API will refuse to allocate memory buffer
* in order to protect the host from unreasonable memory requirements.
* This parameter is only useful in streaming mode, since no internal buffer is allocated in single-pass mode.
* By default, a decompression context accepts window sizes <= (1 << ZSTD_WINDOWLOG_LIMIT_DEFAULT).
* Special: value 0 means "use default maximum windowLog". */
/* note : additional experimental parameters are also available
* within the experimental section of the API.
* At the time of this writing, they include :
* ZSTD_d_format
* ZSTD_d_stableOutBuffer
* ZSTD_d_forceIgnoreChecksum
+ * ZSTD_d_refMultipleDDicts
* Because they are not stable, it's necessary to define ZSTD_STATIC_LINKING_ONLY to access them.
* note : never ever use experimentalParam? names directly
*/
ZSTD_d_experimentalParam1=1000,
ZSTD_d_experimentalParam2=1001,
- ZSTD_d_experimentalParam3=1002
+ ZSTD_d_experimentalParam3=1002,
+ ZSTD_d_experimentalParam4=1003
} ZSTD_dParameter;
/*! ZSTD_dParam_getBounds() :
* All parameters must belong to an interval with lower and upper bounds,
* otherwise they will either trigger an error or be automatically clamped.
* @return : a structure, ZSTD_bounds, which contains
* - an error status field, which must be tested using ZSTD_isError()
* - both lower and upper bounds, inclusive
*/
ZSTDLIB_API ZSTD_bounds ZSTD_dParam_getBounds(ZSTD_dParameter dParam);
/*! ZSTD_DCtx_setParameter() :
* Set one compression parameter, selected by enum ZSTD_dParameter.
* All parameters have valid bounds. Bounds can be queried using ZSTD_dParam_getBounds().
* Providing a value beyond bound will either clamp it, or trigger an error (depending on parameter).
* Setting a parameter is only possible during frame initialization (before starting decompression).
* @return : 0, or an error code (which can be tested using ZSTD_isError()).
*/
ZSTDLIB_API size_t ZSTD_DCtx_setParameter(ZSTD_DCtx* dctx, ZSTD_dParameter param, int value);
/*! ZSTD_DCtx_reset() :
* Return a DCtx to clean state.
* Session and parameters can be reset jointly or separately.
* Parameters can only be reset when no active frame is being decompressed.
* @return : 0, or an error code, which can be tested with ZSTD_isError()
*/
ZSTDLIB_API size_t ZSTD_DCtx_reset(ZSTD_DCtx* dctx, ZSTD_ResetDirective reset);
/****************************
* Streaming
****************************/
typedef struct ZSTD_inBuffer_s {
const void* src; /**< start of input buffer */
size_t size; /**< size of input buffer */
size_t pos; /**< position where reading stopped. Will be updated. Necessarily 0 <= pos <= size */
} ZSTD_inBuffer;
typedef struct ZSTD_outBuffer_s {
void* dst; /**< start of output buffer */
size_t size; /**< size of output buffer */
size_t pos; /**< position where writing stopped. Will be updated. Necessarily 0 <= pos <= size */
} ZSTD_outBuffer;
/*-***********************************************************************
* Streaming compression - HowTo
*
* A ZSTD_CStream object is required to track streaming operation.
* Use ZSTD_createCStream() and ZSTD_freeCStream() to create/release resources.
* ZSTD_CStream objects can be reused multiple times on consecutive compression operations.
* It is recommended to re-use ZSTD_CStream since it will play nicer with system's memory, by re-using already allocated memory.
*
* For parallel execution, use one separate ZSTD_CStream per thread.
*
* note : since v1.3.0, ZSTD_CStream and ZSTD_CCtx are the same thing.
*
* Parameters are sticky : when starting a new compression on the same context,
* it will re-use the same sticky parameters as previous compression session.
* When in doubt, it's recommended to fully initialize the context before usage.
* Use ZSTD_CCtx_reset() to reset the context and ZSTD_CCtx_setParameter(),
* ZSTD_CCtx_setPledgedSrcSize(), or ZSTD_CCtx_loadDictionary() and friends to
* set more specific parameters, the pledged source size, or load a dictionary.
*
* Use ZSTD_compressStream2() with ZSTD_e_continue as many times as necessary to
* consume input stream. The function will automatically update both `pos`
* fields within `input` and `output`.
* Note that the function may not consume the entire input, for example, because
* the output buffer is already full, in which case `input.pos < input.size`.
* The caller must check if input has been entirely consumed.
* If not, the caller must make some room to receive more compressed data,
* and then present again remaining input data.
* note: ZSTD_e_continue is guaranteed to make some forward progress when called,
* but doesn't guarantee maximal forward progress. This is especially relevant
* when compressing with multiple threads. The call won't block if it can
* consume some input, but if it can't it will wait for some, but not all,
* output to be flushed.
* @return : provides a minimum amount of data remaining to be flushed from internal buffers
* or an error code, which can be tested using ZSTD_isError().
*
* At any moment, it's possible to flush whatever data might remain stuck within internal buffer,
* using ZSTD_compressStream2() with ZSTD_e_flush. `output->pos` will be updated.
* Note that, if `output->size` is too small, a single invocation with ZSTD_e_flush might not be enough (return code > 0).
* In which case, make some room to receive more compressed data, and call again ZSTD_compressStream2() with ZSTD_e_flush.
* You must continue calling ZSTD_compressStream2() with ZSTD_e_flush until it returns 0, at which point you can change the
* operation.
* note: ZSTD_e_flush will flush as much output as possible, meaning when compressing with multiple threads, it will
* block until the flush is complete or the output buffer is full.
* @return : 0 if internal buffers are entirely flushed,
* >0 if some data still present within internal buffer (the value is minimal estimation of remaining size),
* or an error code, which can be tested using ZSTD_isError().
*
* Calling ZSTD_compressStream2() with ZSTD_e_end instructs to finish a frame.
* It will perform a flush and write frame epilogue.
* The epilogue is required for decoders to consider a frame completed.
* flush operation is the same, and follows same rules as calling ZSTD_compressStream2() with ZSTD_e_flush.
* You must continue calling ZSTD_compressStream2() with ZSTD_e_end until it returns 0, at which point you are free to
* start a new frame.
* note: ZSTD_e_end will flush as much output as possible, meaning when compressing with multiple threads, it will
* block until the flush is complete or the output buffer is full.
* @return : 0 if frame fully completed and fully flushed,
* >0 if some data still present within internal buffer (the value is minimal estimation of remaining size),
* or an error code, which can be tested using ZSTD_isError().
*
* *******************************************************************/
typedef ZSTD_CCtx ZSTD_CStream; /**< CCtx and CStream are now effectively same object (>= v1.3.0) */
/* Continue to distinguish them for compatibility with older versions <= v1.2.0 */
/*===== ZSTD_CStream management functions =====*/
ZSTDLIB_API ZSTD_CStream* ZSTD_createCStream(void);
-ZSTDLIB_API size_t ZSTD_freeCStream(ZSTD_CStream* zcs);
+ZSTDLIB_API size_t ZSTD_freeCStream(ZSTD_CStream* zcs); /* accept NULL pointer */
/*===== Streaming compression functions =====*/
typedef enum {
ZSTD_e_continue=0, /* collect more data, encoder decides when to output compressed result, for optimal compression ratio */
ZSTD_e_flush=1, /* flush any data provided so far,
* it creates (at least) one new block, that can be decoded immediately on reception;
* frame will continue: any future data can still reference previously compressed data, improving compression.
* note : multithreaded compression will block to flush as much output as possible. */
ZSTD_e_end=2 /* flush any remaining data _and_ close current frame.
* note that frame is only closed after compressed data is fully flushed (return value == 0).
* After that point, any additional data starts a new frame.
* note : each frame is independent (does not reference any content from previous frame).
: note : multithreaded compression will block to flush as much output as possible. */
} ZSTD_EndDirective;
-/*! ZSTD_compressStream2() :
+/*! ZSTD_compressStream2() : Requires v1.4.0+
* Behaves about the same as ZSTD_compressStream, with additional control on end directive.
* - Compression parameters are pushed into CCtx before starting compression, using ZSTD_CCtx_set*()
* - Compression parameters cannot be changed once compression is started (save a list of exceptions in multi-threading mode)
* - output->pos must be <= dstCapacity, input->pos must be <= srcSize
* - output->pos and input->pos will be updated. They are guaranteed to remain below their respective limit.
* - endOp must be a valid directive
* - When nbWorkers==0 (default), function is blocking : it completes its job before returning to caller.
* - When nbWorkers>=1, function is non-blocking : it copies a portion of input, distributes jobs to internal worker threads, flush to output whatever is available,
* and then immediately returns, just indicating that there is some data remaining to be flushed.
* The function nonetheless guarantees forward progress : it will return only after it reads or write at least 1+ byte.
* - Exception : if the first call requests a ZSTD_e_end directive and provides enough dstCapacity, the function delegates to ZSTD_compress2() which is always blocking.
* - @return provides a minimum amount of data remaining to be flushed from internal buffers
* or an error code, which can be tested using ZSTD_isError().
* if @return != 0, flush is not fully completed, there is still some data left within internal buffers.
* This is useful for ZSTD_e_flush, since in this case more flushes are necessary to empty all buffers.
* For ZSTD_e_end, @return == 0 when internal buffers are fully flushed and frame is completed.
* - after a ZSTD_e_end directive, if internal buffer is not fully flushed (@return != 0),
* only ZSTD_e_end or ZSTD_e_flush operations are allowed.
* Before starting a new compression job, or changing compression parameters,
* it is required to fully flush internal buffers.
*/
ZSTDLIB_API size_t ZSTD_compressStream2( ZSTD_CCtx* cctx,
ZSTD_outBuffer* output,
ZSTD_inBuffer* input,
ZSTD_EndDirective endOp);
/* These buffer sizes are softly recommended.
* They are not required : ZSTD_compressStream*() happily accepts any buffer size, for both input and output.
* Respecting the recommended size just makes it a bit easier for ZSTD_compressStream*(),
* reducing the amount of memory shuffling and buffering, resulting in minor performance savings.
*
* However, note that these recommendations are from the perspective of a C caller program.
* If the streaming interface is invoked from some other language,
* especially managed ones such as Java or Go, through a foreign function interface such as jni or cgo,
* a major performance rule is to reduce crossing such interface to an absolute minimum.
* It's not rare that performance ends being spent more into the interface, rather than compression itself.
* In which cases, prefer using large buffers, as large as practical,
* for both input and output, to reduce the nb of roundtrips.
*/
ZSTDLIB_API size_t ZSTD_CStreamInSize(void); /**< recommended size for input buffer */
ZSTDLIB_API size_t ZSTD_CStreamOutSize(void); /**< recommended size for output buffer. Guarantee to successfully flush at least one complete compressed block. */
/* *****************************************************************************
- * This following is a legacy streaming API.
+ * This following is a legacy streaming API, available since v1.0+ .
* It can be replaced by ZSTD_CCtx_reset() and ZSTD_compressStream2().
* It is redundant, but remains fully supported.
- * Advanced parameters and dictionary compression can only be used through the
- * new API.
+ * Streaming in combination with advanced parameters and dictionary compression
+ * can only be used through the new API.
******************************************************************************/
/*!
* Equivalent to:
*
* ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
* ZSTD_CCtx_refCDict(zcs, NULL); // clear the dictionary (if any)
* ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel);
*/
ZSTDLIB_API size_t ZSTD_initCStream(ZSTD_CStream* zcs, int compressionLevel);
/*!
* Alternative for ZSTD_compressStream2(zcs, output, input, ZSTD_e_continue).
* NOTE: The return value is different. ZSTD_compressStream() returns a hint for
* the next read size (if non-zero and not an error). ZSTD_compressStream2()
* returns the minimum nb of bytes left to flush (if non-zero and not an error).
*/
ZSTDLIB_API size_t ZSTD_compressStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input);
/*! Equivalent to ZSTD_compressStream2(zcs, output, &emptyInput, ZSTD_e_flush). */
ZSTDLIB_API size_t ZSTD_flushStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output);
/*! Equivalent to ZSTD_compressStream2(zcs, output, &emptyInput, ZSTD_e_end). */
ZSTDLIB_API size_t ZSTD_endStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output);
/*-***************************************************************************
* Streaming decompression - HowTo
*
* A ZSTD_DStream object is required to track streaming operations.
* Use ZSTD_createDStream() and ZSTD_freeDStream() to create/release resources.
* ZSTD_DStream objects can be re-used multiple times.
*
* Use ZSTD_initDStream() to start a new decompression operation.
* @return : recommended first input size
* Alternatively, use advanced API to set specific properties.
*
* Use ZSTD_decompressStream() repetitively to consume your input.
* The function will update both `pos` fields.
* If `input.pos < input.size`, some input has not been consumed.
* It's up to the caller to present again remaining data.
* The function tries to flush all data decoded immediately, respecting output buffer size.
* If `output.pos < output.size`, decoder has flushed everything it could.
* But if `output.pos == output.size`, there might be some data left within internal buffers.,
* In which case, call ZSTD_decompressStream() again to flush whatever remains in the buffer.
* Note : with no additional input provided, amount of data flushed is necessarily <= ZSTD_BLOCKSIZE_MAX.
* @return : 0 when a frame is completely decoded and fully flushed,
* or an error code, which can be tested using ZSTD_isError(),
* or any other value > 0, which means there is still some decoding or flushing to do to complete current frame :
* the return value is a suggested next input size (just a hint for better latency)
* that will never request more than the remaining frame size.
* *******************************************************************************/
typedef ZSTD_DCtx ZSTD_DStream; /**< DCtx and DStream are now effectively same object (>= v1.3.0) */
/* For compatibility with versions <= v1.2.0, prefer differentiating them. */
/*===== ZSTD_DStream management functions =====*/
ZSTDLIB_API ZSTD_DStream* ZSTD_createDStream(void);
-ZSTDLIB_API size_t ZSTD_freeDStream(ZSTD_DStream* zds);
+ZSTDLIB_API size_t ZSTD_freeDStream(ZSTD_DStream* zds); /* accept NULL pointer */
/*===== Streaming decompression functions =====*/
/* This function is redundant with the advanced API and equivalent to:
*
* ZSTD_DCtx_reset(zds, ZSTD_reset_session_only);
* ZSTD_DCtx_refDDict(zds, NULL);
*/
ZSTDLIB_API size_t ZSTD_initDStream(ZSTD_DStream* zds);
ZSTDLIB_API size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inBuffer* input);
ZSTDLIB_API size_t ZSTD_DStreamInSize(void); /*!< recommended size for input buffer */
ZSTDLIB_API size_t ZSTD_DStreamOutSize(void); /*!< recommended size for output buffer. Guarantee to successfully flush at least one complete block in all circumstances. */
/**************************
* Simple dictionary API
***************************/
/*! ZSTD_compress_usingDict() :
* Compression at an explicit compression level using a Dictionary.
* A dictionary can be any arbitrary data segment (also called a prefix),
- * or a buffer with specified information (see dictBuilder/zdict.h).
+ * or a buffer with specified information (see zdict.h).
* Note : This function loads the dictionary, resulting in significant startup delay.
* It's intended for a dictionary used only once.
* Note 2 : When `dict == NULL || dictSize < 8` no dictionary is used. */
ZSTDLIB_API size_t ZSTD_compress_usingDict(ZSTD_CCtx* ctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize,
int compressionLevel);
/*! ZSTD_decompress_usingDict() :
* Decompression using a known Dictionary.
* Dictionary must be identical to the one used during compression.
* Note : This function loads the dictionary, resulting in significant startup delay.
* It's intended for a dictionary used only once.
* Note : When `dict == NULL || dictSize < 8` no dictionary is used. */
ZSTDLIB_API size_t ZSTD_decompress_usingDict(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize);
/***********************************
* Bulk processing dictionary API
**********************************/
typedef struct ZSTD_CDict_s ZSTD_CDict;
/*! ZSTD_createCDict() :
* When compressing multiple messages or blocks using the same dictionary,
* it's recommended to digest the dictionary only once, since it's a costly operation.
* ZSTD_createCDict() will create a state from digesting a dictionary.
* The resulting state can be used for future compression operations with very limited startup cost.
* ZSTD_CDict can be created once and shared by multiple threads concurrently, since its usage is read-only.
* @dictBuffer can be released after ZSTD_CDict creation, because its content is copied within CDict.
* Note 1 : Consider experimental function `ZSTD_createCDict_byReference()` if you prefer to not duplicate @dictBuffer content.
* Note 2 : A ZSTD_CDict can be created from an empty @dictBuffer,
* in which case the only thing that it transports is the @compressionLevel.
* This can be useful in a pipeline featuring ZSTD_compress_usingCDict() exclusively,
* expecting a ZSTD_CDict parameter with any data, including those without a known dictionary. */
ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict(const void* dictBuffer, size_t dictSize,
int compressionLevel);
/*! ZSTD_freeCDict() :
- * Function frees memory allocated by ZSTD_createCDict(). */
+ * Function frees memory allocated by ZSTD_createCDict().
+ * If a NULL pointer is passed, no operation is performed. */
ZSTDLIB_API size_t ZSTD_freeCDict(ZSTD_CDict* CDict);
/*! ZSTD_compress_usingCDict() :
* Compression using a digested Dictionary.
* Recommended when same dictionary is used multiple times.
* Note : compression level is _decided at dictionary creation time_,
* and frame parameters are hardcoded (dictID=yes, contentSize=yes, checksum=no) */
ZSTDLIB_API size_t ZSTD_compress_usingCDict(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTD_CDict* cdict);
typedef struct ZSTD_DDict_s ZSTD_DDict;
/*! ZSTD_createDDict() :
* Create a digested dictionary, ready to start decompression operation without startup delay.
* dictBuffer can be released after DDict creation, as its content is copied inside DDict. */
ZSTDLIB_API ZSTD_DDict* ZSTD_createDDict(const void* dictBuffer, size_t dictSize);
/*! ZSTD_freeDDict() :
- * Function frees memory allocated with ZSTD_createDDict() */
+ * Function frees memory allocated with ZSTD_createDDict()
+ * If a NULL pointer is passed, no operation is performed. */
ZSTDLIB_API size_t ZSTD_freeDDict(ZSTD_DDict* ddict);
/*! ZSTD_decompress_usingDDict() :
* Decompression using a digested Dictionary.
* Recommended when same dictionary is used multiple times. */
ZSTDLIB_API size_t ZSTD_decompress_usingDDict(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTD_DDict* ddict);
/********************************
* Dictionary helper functions
*******************************/
-/*! ZSTD_getDictID_fromDict() :
+/*! ZSTD_getDictID_fromDict() : Requires v1.4.0+
* Provides the dictID stored within dictionary.
* if @return == 0, the dictionary is not conformant with Zstandard specification.
* It can still be loaded, but as a content-only dictionary. */
ZSTDLIB_API unsigned ZSTD_getDictID_fromDict(const void* dict, size_t dictSize);
-/*! ZSTD_getDictID_fromDDict() :
+/*! ZSTD_getDictID_fromCDict() : Requires v1.5.0+
+ * Provides the dictID of the dictionary loaded into `cdict`.
+ * If @return == 0, the dictionary is not conformant to Zstandard specification, or empty.
+ * Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */
+ZSTDLIB_API unsigned ZSTD_getDictID_fromCDict(const ZSTD_CDict* cdict);
+
+/*! ZSTD_getDictID_fromDDict() : Requires v1.4.0+
* Provides the dictID of the dictionary loaded into `ddict`.
* If @return == 0, the dictionary is not conformant to Zstandard specification, or empty.
* Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */
ZSTDLIB_API unsigned ZSTD_getDictID_fromDDict(const ZSTD_DDict* ddict);
-/*! ZSTD_getDictID_fromFrame() :
+/*! ZSTD_getDictID_fromFrame() : Requires v1.4.0+
* Provides the dictID required to decompressed the frame stored within `src`.
* If @return == 0, the dictID could not be decoded.
* This could for one of the following reasons :
* - The frame does not require a dictionary to be decoded (most common case).
* - The frame was built with dictID intentionally removed. Whatever dictionary is necessary is a hidden information.
* Note : this use case also happens when using a non-conformant dictionary.
* - `srcSize` is too small, and as a result, the frame header could not be decoded (only possible if `srcSize < ZSTD_FRAMEHEADERSIZE_MAX`).
* - This is not a Zstandard frame.
* When identifying the exact failure cause, it's possible to use ZSTD_getFrameHeader(), which will provide a more precise error code. */
ZSTDLIB_API unsigned ZSTD_getDictID_fromFrame(const void* src, size_t srcSize);
/*******************************************************************************
- * Advanced dictionary and prefix API
+ * Advanced dictionary and prefix API (Requires v1.4.0+)
*
* This API allows dictionaries to be used with ZSTD_compress2(),
- * ZSTD_compressStream2(), and ZSTD_decompress(). Dictionaries are sticky, and
+ * ZSTD_compressStream2(), and ZSTD_decompressDCtx(). Dictionaries are sticky, and
* only reset with the context is reset with ZSTD_reset_parameters or
* ZSTD_reset_session_and_parameters. Prefixes are single-use.
******************************************************************************/
-/*! ZSTD_CCtx_loadDictionary() :
+/*! ZSTD_CCtx_loadDictionary() : Requires v1.4.0+
* Create an internal CDict from `dict` buffer.
* Decompression will have to use same dictionary.
* @result : 0, or an error code (which can be tested with ZSTD_isError()).
* Special: Loading a NULL (or 0-size) dictionary invalidates previous dictionary,
* meaning "return to no-dictionary mode".
* Note 1 : Dictionary is sticky, it will be used for all future compressed frames.
* To return to "no-dictionary" situation, load a NULL dictionary (or reset parameters).
* Note 2 : Loading a dictionary involves building tables.
* It's also a CPU consuming operation, with non-negligible impact on latency.
* Tables are dependent on compression parameters, and for this reason,
* compression parameters can no longer be changed after loading a dictionary.
* Note 3 :`dict` content will be copied internally.
* Use experimental ZSTD_CCtx_loadDictionary_byReference() to reference content instead.
* In such a case, dictionary buffer must outlive its users.
* Note 4 : Use ZSTD_CCtx_loadDictionary_advanced()
* to precisely select how dictionary content must be interpreted. */
ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize);
-/*! ZSTD_CCtx_refCDict() :
+/*! ZSTD_CCtx_refCDict() : Requires v1.4.0+
* Reference a prepared dictionary, to be used for all next compressed frames.
* Note that compression parameters are enforced from within CDict,
* and supersede any compression parameter previously set within CCtx.
- * The parameters ignored are labled as "superseded-by-cdict" in the ZSTD_cParameter enum docs.
+ * The parameters ignored are labelled as "superseded-by-cdict" in the ZSTD_cParameter enum docs.
* The ignored parameters will be used again if the CCtx is returned to no-dictionary mode.
* The dictionary will remain valid for future compressed frames using same CCtx.
* @result : 0, or an error code (which can be tested with ZSTD_isError()).
* Special : Referencing a NULL CDict means "return to no-dictionary mode".
* Note 1 : Currently, only one dictionary can be managed.
* Referencing a new dictionary effectively "discards" any previous one.
* Note 2 : CDict is just referenced, its lifetime must outlive its usage within CCtx. */
ZSTDLIB_API size_t ZSTD_CCtx_refCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict);
-/*! ZSTD_CCtx_refPrefix() :
+/*! ZSTD_CCtx_refPrefix() : Requires v1.4.0+
* Reference a prefix (single-usage dictionary) for next compressed frame.
* A prefix is **only used once**. Tables are discarded at end of frame (ZSTD_e_end).
* Decompression will need same prefix to properly regenerate data.
* Compressing with a prefix is similar in outcome as performing a diff and compressing it,
* but performs much faster, especially during decompression (compression speed is tunable with compression level).
* @result : 0, or an error code (which can be tested with ZSTD_isError()).
* Special: Adding any prefix (including NULL) invalidates any previous prefix or dictionary
* Note 1 : Prefix buffer is referenced. It **must** outlive compression.
* Its content must remain unmodified during compression.
* Note 2 : If the intention is to diff some large src data blob with some prior version of itself,
* ensure that the window size is large enough to contain the entire source.
* See ZSTD_c_windowLog.
* Note 3 : Referencing a prefix involves building tables, which are dependent on compression parameters.
* It's a CPU consuming operation, with non-negligible impact on latency.
* If there is a need to use the same prefix multiple times, consider loadDictionary instead.
* Note 4 : By default, the prefix is interpreted as raw content (ZSTD_dct_rawContent).
* Use experimental ZSTD_CCtx_refPrefix_advanced() to alter dictionary interpretation. */
ZSTDLIB_API size_t ZSTD_CCtx_refPrefix(ZSTD_CCtx* cctx,
const void* prefix, size_t prefixSize);
-/*! ZSTD_DCtx_loadDictionary() :
+/*! ZSTD_DCtx_loadDictionary() : Requires v1.4.0+
* Create an internal DDict from dict buffer,
* to be used to decompress next frames.
* The dictionary remains valid for all future frames, until explicitly invalidated.
* @result : 0, or an error code (which can be tested with ZSTD_isError()).
* Special : Adding a NULL (or 0-size) dictionary invalidates any previous dictionary,
* meaning "return to no-dictionary mode".
* Note 1 : Loading a dictionary involves building tables,
* which has a non-negligible impact on CPU usage and latency.
* It's recommended to "load once, use many times", to amortize the cost
* Note 2 :`dict` content will be copied internally, so `dict` can be released after loading.
* Use ZSTD_DCtx_loadDictionary_byReference() to reference dictionary content instead.
* Note 3 : Use ZSTD_DCtx_loadDictionary_advanced() to take control of
* how dictionary content is loaded and interpreted.
*/
ZSTDLIB_API size_t ZSTD_DCtx_loadDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize);
-/*! ZSTD_DCtx_refDDict() :
+/*! ZSTD_DCtx_refDDict() : Requires v1.4.0+
* Reference a prepared dictionary, to be used to decompress next frames.
* The dictionary remains active for decompression of future frames using same DCtx.
+ *
+ * If called with ZSTD_d_refMultipleDDicts enabled, repeated calls of this function
+ * will store the DDict references in a table, and the DDict used for decompression
+ * will be determined at decompression time, as per the dict ID in the frame.
+ * The memory for the table is allocated on the first call to refDDict, and can be
+ * freed with ZSTD_freeDCtx().
+ *
* @result : 0, or an error code (which can be tested with ZSTD_isError()).
* Note 1 : Currently, only one dictionary can be managed.
* Referencing a new dictionary effectively "discards" any previous one.
* Special: referencing a NULL DDict means "return to no-dictionary mode".
* Note 2 : DDict is just referenced, its lifetime must outlive its usage from DCtx.
*/
ZSTDLIB_API size_t ZSTD_DCtx_refDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict);
-/*! ZSTD_DCtx_refPrefix() :
+/*! ZSTD_DCtx_refPrefix() : Requires v1.4.0+
* Reference a prefix (single-usage dictionary) to decompress next frame.
* This is the reverse operation of ZSTD_CCtx_refPrefix(),
* and must use the same prefix as the one used during compression.
* Prefix is **only used once**. Reference is discarded at end of frame.
* End of frame is reached when ZSTD_decompressStream() returns 0.
* @result : 0, or an error code (which can be tested with ZSTD_isError()).
* Note 1 : Adding any prefix (including NULL) invalidates any previously set prefix or dictionary
* Note 2 : Prefix buffer is referenced. It **must** outlive decompression.
* Prefix buffer must remain unmodified up to the end of frame,
* reached when ZSTD_decompressStream() returns 0.
* Note 3 : By default, the prefix is treated as raw content (ZSTD_dct_rawContent).
* Use ZSTD_CCtx_refPrefix_advanced() to alter dictMode (Experimental section)
* Note 4 : Referencing a raw content prefix has almost no cpu nor memory cost.
* A full dictionary is more costly, as it requires building tables.
*/
ZSTDLIB_API size_t ZSTD_DCtx_refPrefix(ZSTD_DCtx* dctx,
const void* prefix, size_t prefixSize);
/* === Memory management === */
-/*! ZSTD_sizeof_*() :
+/*! ZSTD_sizeof_*() : Requires v1.4.0+
* These functions give the _current_ memory usage of selected object.
* Note that object memory usage can evolve (increase or decrease) over time. */
ZSTDLIB_API size_t ZSTD_sizeof_CCtx(const ZSTD_CCtx* cctx);
ZSTDLIB_API size_t ZSTD_sizeof_DCtx(const ZSTD_DCtx* dctx);
ZSTDLIB_API size_t ZSTD_sizeof_CStream(const ZSTD_CStream* zcs);
ZSTDLIB_API size_t ZSTD_sizeof_DStream(const ZSTD_DStream* zds);
ZSTDLIB_API size_t ZSTD_sizeof_CDict(const ZSTD_CDict* cdict);
ZSTDLIB_API size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict);
#endif /* ZSTD_H_235446 */
/* **************************************************************************************
* ADVANCED AND EXPERIMENTAL FUNCTIONS
****************************************************************************************
* The definitions in the following section are considered experimental.
* They are provided for advanced scenarios.
* They should never be used with a dynamic library, as prototypes may change in the future.
* Use them only in association with static linking.
* ***************************************************************************************/
#if defined(ZSTD_STATIC_LINKING_ONLY) && !defined(ZSTD_H_ZSTD_STATIC_LINKING_ONLY)
#define ZSTD_H_ZSTD_STATIC_LINKING_ONLY
+/* This can be overridden externally to hide static symbols. */
+#ifndef ZSTDLIB_STATIC_API
+# if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1)
+# define ZSTDLIB_STATIC_API __declspec(dllexport) ZSTDLIB_VISIBLE
+# elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1)
+# define ZSTDLIB_STATIC_API __declspec(dllimport) ZSTDLIB_VISIBLE
+# else
+# define ZSTDLIB_STATIC_API ZSTDLIB_VISIBLE
+# endif
+#endif
+
+/* Deprecation warnings :
+ * Should these warnings be a problem, it is generally possible to disable them,
+ * typically with -Wno-deprecated-declarations for gcc or _CRT_SECURE_NO_WARNINGS in Visual.
+ * Otherwise, it's also possible to define ZSTD_DISABLE_DEPRECATE_WARNINGS.
+ */
+#ifdef ZSTD_DISABLE_DEPRECATE_WARNINGS
+# define ZSTD_DEPRECATED(message) ZSTDLIB_STATIC_API /* disable deprecation warnings */
+#else
+# if defined (__cplusplus) && (__cplusplus >= 201402) /* C++14 or greater */
+# define ZSTD_DEPRECATED(message) [[deprecated(message)]] ZSTDLIB_STATIC_API
+# elif (defined(GNUC) && (GNUC > 4 || (GNUC == 4 && GNUC_MINOR >= 5))) || defined(__clang__)
+# define ZSTD_DEPRECATED(message) ZSTDLIB_STATIC_API __attribute__((deprecated(message)))
+# elif defined(__GNUC__) && (__GNUC__ >= 3)
+# define ZSTD_DEPRECATED(message) ZSTDLIB_STATIC_API __attribute__((deprecated))
+# elif defined(_MSC_VER)
+# define ZSTD_DEPRECATED(message) ZSTDLIB_STATIC_API __declspec(deprecated(message))
+# else
+# pragma message("WARNING: You need to implement ZSTD_DEPRECATED for this compiler")
+# define ZSTD_DEPRECATED(message) ZSTDLIB_STATIC_API
+# endif
+#endif /* ZSTD_DISABLE_DEPRECATE_WARNINGS */
+
/****************************************************************************************
* experimental API (static linking only)
****************************************************************************************
* The following symbols and constants
* are not planned to join "stable API" status in the near future.
* They can still change in future versions.
* Some of them are planned to remain in the static_only section indefinitely.
* Some of them might be removed in the future (especially when redundant with existing stable functions)
* ***************************************************************************************/
#define ZSTD_FRAMEHEADERSIZE_PREFIX(format) ((format) == ZSTD_f_zstd1 ? 5 : 1) /* minimum input size required to query frame header size */
#define ZSTD_FRAMEHEADERSIZE_MIN(format) ((format) == ZSTD_f_zstd1 ? 6 : 2)
#define ZSTD_FRAMEHEADERSIZE_MAX 18 /* can be useful for static allocation */
#define ZSTD_SKIPPABLEHEADERSIZE 8
/* compression parameter bounds */
#define ZSTD_WINDOWLOG_MAX_32 30
#define ZSTD_WINDOWLOG_MAX_64 31
#define ZSTD_WINDOWLOG_MAX ((int)(sizeof(size_t) == 4 ? ZSTD_WINDOWLOG_MAX_32 : ZSTD_WINDOWLOG_MAX_64))
#define ZSTD_WINDOWLOG_MIN 10
#define ZSTD_HASHLOG_MAX ((ZSTD_WINDOWLOG_MAX < 30) ? ZSTD_WINDOWLOG_MAX : 30)
#define ZSTD_HASHLOG_MIN 6
#define ZSTD_CHAINLOG_MAX_32 29
#define ZSTD_CHAINLOG_MAX_64 30
#define ZSTD_CHAINLOG_MAX ((int)(sizeof(size_t) == 4 ? ZSTD_CHAINLOG_MAX_32 : ZSTD_CHAINLOG_MAX_64))
#define ZSTD_CHAINLOG_MIN ZSTD_HASHLOG_MIN
#define ZSTD_SEARCHLOG_MAX (ZSTD_WINDOWLOG_MAX-1)
#define ZSTD_SEARCHLOG_MIN 1
#define ZSTD_MINMATCH_MAX 7 /* only for ZSTD_fast, other strategies are limited to 6 */
#define ZSTD_MINMATCH_MIN 3 /* only for ZSTD_btopt+, faster strategies are limited to 4 */
#define ZSTD_TARGETLENGTH_MAX ZSTD_BLOCKSIZE_MAX
#define ZSTD_TARGETLENGTH_MIN 0 /* note : comparing this constant to an unsigned results in a tautological test */
#define ZSTD_STRATEGY_MIN ZSTD_fast
#define ZSTD_STRATEGY_MAX ZSTD_btultra2
#define ZSTD_OVERLAPLOG_MIN 0
#define ZSTD_OVERLAPLOG_MAX 9
#define ZSTD_WINDOWLOG_LIMIT_DEFAULT 27 /* by default, the streaming decoder will refuse any frame
* requiring larger than (1<<ZSTD_WINDOWLOG_LIMIT_DEFAULT) window size,
* to preserve host's memory from unreasonable requirements.
* This limit can be overridden using ZSTD_DCtx_setParameter(,ZSTD_d_windowLogMax,).
* The limit does not apply for one-pass decoders (such as ZSTD_decompress()), since no additional memory is allocated */
/* LDM parameter bounds */
#define ZSTD_LDM_HASHLOG_MIN ZSTD_HASHLOG_MIN
#define ZSTD_LDM_HASHLOG_MAX ZSTD_HASHLOG_MAX
#define ZSTD_LDM_MINMATCH_MIN 4
#define ZSTD_LDM_MINMATCH_MAX 4096
#define ZSTD_LDM_BUCKETSIZELOG_MIN 1
#define ZSTD_LDM_BUCKETSIZELOG_MAX 8
#define ZSTD_LDM_HASHRATELOG_MIN 0
#define ZSTD_LDM_HASHRATELOG_MAX (ZSTD_WINDOWLOG_MAX - ZSTD_HASHLOG_MIN)
/* Advanced parameter bounds */
#define ZSTD_TARGETCBLOCKSIZE_MIN 64
#define ZSTD_TARGETCBLOCKSIZE_MAX ZSTD_BLOCKSIZE_MAX
#define ZSTD_SRCSIZEHINT_MIN 0
#define ZSTD_SRCSIZEHINT_MAX INT_MAX
-/* internal */
-#define ZSTD_HASHLOG3_MAX 17
-
/* --- Advanced types --- */
typedef struct ZSTD_CCtx_params_s ZSTD_CCtx_params;
typedef struct {
unsigned int offset; /* The offset of the match. (NOT the same as the offset code)
* If offset == 0 and matchLength == 0, this sequence represents the last
* literals in the block of litLength size.
*/
unsigned int litLength; /* Literal length of the sequence. */
unsigned int matchLength; /* Match length of the sequence. */
/* Note: Users of this API may provide a sequence with matchLength == litLength == offset == 0.
* In this case, we will treat the sequence as a marker for a block boundary.
*/
unsigned int rep; /* Represents which repeat offset is represented by the field 'offset'.
* Ranges from [0, 3].
*
* Repeat offsets are essentially previous offsets from previous sequences sorted in
* recency order. For more detail, see doc/zstd_compression_format.md
*
* If rep == 0, then 'offset' does not contain a repeat offset.
* If rep > 0:
* If litLength != 0:
* rep == 1 --> offset == repeat_offset_1
* rep == 2 --> offset == repeat_offset_2
* rep == 3 --> offset == repeat_offset_3
* If litLength == 0:
* rep == 1 --> offset == repeat_offset_2
* rep == 2 --> offset == repeat_offset_3
* rep == 3 --> offset == repeat_offset_1 - 1
*
* Note: This field is optional. ZSTD_generateSequences() will calculate the value of
* 'rep', but repeat offsets do not necessarily need to be calculated from an external
* sequence provider's perspective. For example, ZSTD_compressSequences() does not
* use this 'rep' field at all (as of now).
*/
} ZSTD_Sequence;
typedef struct {
unsigned windowLog; /**< largest match distance : larger == more compression, more memory needed during decompression */
unsigned chainLog; /**< fully searched segment : larger == more compression, slower, more memory (useless for fast) */
unsigned hashLog; /**< dispatch table : larger == faster, more memory */
unsigned searchLog; /**< nb of searches : larger == more compression, slower */
unsigned minMatch; /**< match length searched : larger == faster decompression, sometimes less compression */
unsigned targetLength; /**< acceptable match size for optimal parser (only) : larger == more compression, slower */
ZSTD_strategy strategy; /**< see ZSTD_strategy definition above */
} ZSTD_compressionParameters;
typedef struct {
int contentSizeFlag; /**< 1: content size will be in frame header (when known) */
int checksumFlag; /**< 1: generate a 32-bits checksum using XXH64 algorithm at end of frame, for error detection */
int noDictIDFlag; /**< 1: no dictID will be saved into frame header (dictID is only useful for dictionary compression) */
} ZSTD_frameParameters;
typedef struct {
ZSTD_compressionParameters cParams;
ZSTD_frameParameters fParams;
} ZSTD_parameters;
typedef enum {
ZSTD_dct_auto = 0, /* dictionary is "full" when starting with ZSTD_MAGIC_DICTIONARY, otherwise it is "rawContent" */
ZSTD_dct_rawContent = 1, /* ensures dictionary is always loaded as rawContent, even if it starts with ZSTD_MAGIC_DICTIONARY */
ZSTD_dct_fullDict = 2 /* refuses to load a dictionary if it does not respect Zstandard's specification, starting with ZSTD_MAGIC_DICTIONARY */
} ZSTD_dictContentType_e;
typedef enum {
ZSTD_dlm_byCopy = 0, /**< Copy dictionary content internally */
ZSTD_dlm_byRef = 1 /**< Reference dictionary content -- the dictionary buffer must outlive its users. */
} ZSTD_dictLoadMethod_e;
typedef enum {
ZSTD_f_zstd1 = 0, /* zstd frame format, specified in zstd_compression_format.md (default) */
ZSTD_f_zstd1_magicless = 1 /* Variant of zstd frame format, without initial 4-bytes magic number.
* Useful to save 4 bytes per generated frame.
* Decoder cannot recognise automatically this format, requiring this instruction. */
} ZSTD_format_e;
typedef enum {
/* Note: this enum controls ZSTD_d_forceIgnoreChecksum */
ZSTD_d_validateChecksum = 0,
ZSTD_d_ignoreChecksum = 1
} ZSTD_forceIgnoreChecksum_e;
+typedef enum {
+ /* Note: this enum controls ZSTD_d_refMultipleDDicts */
+ ZSTD_rmd_refSingleDDict = 0,
+ ZSTD_rmd_refMultipleDDicts = 1
+} ZSTD_refMultipleDDicts_e;
+
typedef enum {
/* Note: this enum and the behavior it controls are effectively internal
* implementation details of the compressor. They are expected to continue
* to evolve and should be considered only in the context of extremely
* advanced performance tuning.
*
* Zstd currently supports the use of a CDict in three ways:
*
* - The contents of the CDict can be copied into the working context. This
* means that the compression can search both the dictionary and input
* while operating on a single set of internal tables. This makes
* the compression faster per-byte of input. However, the initial copy of
* the CDict's tables incurs a fixed cost at the beginning of the
* compression. For small compressions (< 8 KB), that copy can dominate
* the cost of the compression.
*
* - The CDict's tables can be used in-place. In this model, compression is
* slower per input byte, because the compressor has to search two sets of
* tables. However, this model incurs no start-up cost (as long as the
* working context's tables can be reused). For small inputs, this can be
* faster than copying the CDict's tables.
*
* - The CDict's tables are not used at all, and instead we use the working
* context alone to reload the dictionary and use params based on the source
* size. See ZSTD_compress_insertDictionary() and ZSTD_compress_usingDict().
* This method is effective when the dictionary sizes are very small relative
* to the input size, and the input size is fairly large to begin with.
*
* Zstd has a simple internal heuristic that selects which strategy to use
* at the beginning of a compression. However, if experimentation shows that
* Zstd is making poor choices, it is possible to override that choice with
* this enum.
*/
ZSTD_dictDefaultAttach = 0, /* Use the default heuristic. */
ZSTD_dictForceAttach = 1, /* Never copy the dictionary. */
ZSTD_dictForceCopy = 2, /* Always copy the dictionary. */
ZSTD_dictForceLoad = 3 /* Always reload the dictionary */
} ZSTD_dictAttachPref_e;
typedef enum {
ZSTD_lcm_auto = 0, /**< Automatically determine the compression mode based on the compression level.
* Negative compression levels will be uncompressed, and positive compression
* levels will be compressed. */
ZSTD_lcm_huffman = 1, /**< Always attempt Huffman compression. Uncompressed literals will still be
* emitted if Huffman compression is not profitable. */
ZSTD_lcm_uncompressed = 2 /**< Always emit uncompressed literals. */
} ZSTD_literalCompressionMode_e;
+typedef enum {
+ /* Note: This enum controls features which are conditionally beneficial. Zstd typically will make a final
+ * decision on whether or not to enable the feature (ZSTD_ps_auto), but setting the switch to ZSTD_ps_enable
+ * or ZSTD_ps_disable allow for a force enable/disable the feature.
+ */
+ ZSTD_ps_auto = 0, /* Let the library automatically determine whether the feature shall be enabled */
+ ZSTD_ps_enable = 1, /* Force-enable the feature */
+ ZSTD_ps_disable = 2 /* Do not use the feature */
+} ZSTD_paramSwitch_e;
/***************************************
* Frame size functions
***************************************/
/*! ZSTD_findDecompressedSize() :
* `src` should point to the start of a series of ZSTD encoded and/or skippable frames
* `srcSize` must be the _exact_ size of this series
* (i.e. there should be a frame boundary at `src + srcSize`)
* @return : - decompressed size of all data in all successive frames
* - if the decompressed size cannot be determined: ZSTD_CONTENTSIZE_UNKNOWN
* - if an error occurred: ZSTD_CONTENTSIZE_ERROR
*
* note 1 : decompressed size is an optional field, that may not be present, especially in streaming mode.
* When `return==ZSTD_CONTENTSIZE_UNKNOWN`, data to decompress could be any size.
* In which case, it's necessary to use streaming mode to decompress data.
* note 2 : decompressed size is always present when compression is done with ZSTD_compress()
* note 3 : decompressed size can be very large (64-bits value),
* potentially larger than what local system can handle as a single memory segment.
* In which case, it's necessary to use streaming mode to decompress data.
* note 4 : If source is untrusted, decompressed size could be wrong or intentionally modified.
* Always ensure result fits within application's authorized limits.
* Each application can set its own limits.
* note 5 : ZSTD_findDecompressedSize handles multiple frames, and so it must traverse the input to
* read each contained frame header. This is fast as most of the data is skipped,
* however it does mean that all frame data must be present and valid. */
-ZSTDLIB_API unsigned long long ZSTD_findDecompressedSize(const void* src, size_t srcSize);
+ZSTDLIB_STATIC_API unsigned long long ZSTD_findDecompressedSize(const void* src, size_t srcSize);
/*! ZSTD_decompressBound() :
* `src` should point to the start of a series of ZSTD encoded and/or skippable frames
* `srcSize` must be the _exact_ size of this series
* (i.e. there should be a frame boundary at `src + srcSize`)
* @return : - upper-bound for the decompressed size of all data in all successive frames
- * - if an error occured: ZSTD_CONTENTSIZE_ERROR
+ * - if an error occurred: ZSTD_CONTENTSIZE_ERROR
*
* note 1 : an error can occur if `src` contains an invalid or incorrectly formatted frame.
* note 2 : the upper-bound is exact when the decompressed size field is available in every ZSTD encoded frame of `src`.
* in this case, `ZSTD_findDecompressedSize` and `ZSTD_decompressBound` return the same value.
* note 3 : when the decompressed size field isn't available, the upper-bound for that frame is calculated by:
* upper-bound = # blocks * min(128 KB, Window_Size)
*/
-ZSTDLIB_API unsigned long long ZSTD_decompressBound(const void* src, size_t srcSize);
+ZSTDLIB_STATIC_API unsigned long long ZSTD_decompressBound(const void* src, size_t srcSize);
/*! ZSTD_frameHeaderSize() :
* srcSize must be >= ZSTD_FRAMEHEADERSIZE_PREFIX.
* @return : size of the Frame Header,
* or an error code (if srcSize is too small) */
-ZSTDLIB_API size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize);
+ZSTDLIB_STATIC_API size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize);
typedef enum {
ZSTD_sf_noBlockDelimiters = 0, /* Representation of ZSTD_Sequence has no block delimiters, sequences only */
ZSTD_sf_explicitBlockDelimiters = 1 /* Representation of ZSTD_Sequence contains explicit block delimiters */
} ZSTD_sequenceFormat_e;
/*! ZSTD_generateSequences() :
* Generate sequences using ZSTD_compress2, given a source buffer.
*
* Each block will end with a dummy sequence
* with offset == 0, matchLength == 0, and litLength == length of last literals.
* litLength may be == 0, and if so, then the sequence of (of: 0 ml: 0 ll: 0)
* simply acts as a block delimiter.
*
* zc can be used to insert custom compression params.
* This function invokes ZSTD_compress2
*
* The output of this function can be fed into ZSTD_compressSequences() with CCtx
* setting of ZSTD_c_blockDelimiters as ZSTD_sf_explicitBlockDelimiters
* @return : number of sequences generated
*/
-ZSTDLIB_API size_t ZSTD_generateSequences(ZSTD_CCtx* zc, ZSTD_Sequence* outSeqs,
+ZSTDLIB_STATIC_API size_t ZSTD_generateSequences(ZSTD_CCtx* zc, ZSTD_Sequence* outSeqs,
size_t outSeqsSize, const void* src, size_t srcSize);
/*! ZSTD_mergeBlockDelimiters() :
* Given an array of ZSTD_Sequence, remove all sequences that represent block delimiters/last literals
* by merging them into into the literals of the next sequence.
*
* As such, the final generated result has no explicit representation of block boundaries,
* and the final last literals segment is not represented in the sequences.
*
* The output of this function can be fed into ZSTD_compressSequences() with CCtx
* setting of ZSTD_c_blockDelimiters as ZSTD_sf_noBlockDelimiters
* @return : number of sequences left after merging
*/
-ZSTDLIB_API size_t ZSTD_mergeBlockDelimiters(ZSTD_Sequence* sequences, size_t seqsSize);
+ZSTDLIB_STATIC_API size_t ZSTD_mergeBlockDelimiters(ZSTD_Sequence* sequences, size_t seqsSize);
/*! ZSTD_compressSequences() :
* Compress an array of ZSTD_Sequence, generated from the original source buffer, into dst.
* If a dictionary is included, then the cctx should reference the dict. (see: ZSTD_CCtx_refCDict(), ZSTD_CCtx_loadDictionary(), etc.)
* The entire source is compressed into a single frame.
*
* The compression behavior changes based on cctx params. In particular:
* If ZSTD_c_blockDelimiters == ZSTD_sf_noBlockDelimiters, the array of ZSTD_Sequence is expected to contain
* no block delimiters (defined in ZSTD_Sequence). Block boundaries are roughly determined based on
* the block size derived from the cctx, and sequences may be split. This is the default setting.
*
* If ZSTD_c_blockDelimiters == ZSTD_sf_explicitBlockDelimiters, the array of ZSTD_Sequence is expected to contain
* block delimiters (defined in ZSTD_Sequence). Behavior is undefined if no block delimiters are provided.
*
* If ZSTD_c_validateSequences == 0, this function will blindly accept the sequences provided. Invalid sequences cause undefined
* behavior. If ZSTD_c_validateSequences == 1, then if sequence is invalid (see doc/zstd_compression_format.md for
* specifics regarding offset/matchlength requirements) then the function will bail out and return an error.
*
* In addition to the two adjustable experimental params, there are other important cctx params.
* - ZSTD_c_minMatch MUST be set as less than or equal to the smallest match generated by the match finder. It has a minimum value of ZSTD_MINMATCH_MIN.
* - ZSTD_c_compressionLevel accordingly adjusts the strength of the entropy coder, as it would in typical compression.
* - ZSTD_c_windowLog affects offset validation: this function will return an error at higher debug levels if a provided offset
* is larger than what the spec allows for a given window log and dictionary (if present). See: doc/zstd_compression_format.md
*
* Note: Repcodes are, as of now, always re-calculated within this function, so ZSTD_Sequence::rep is unused.
* Note 2: Once we integrate ability to ingest repcodes, the explicit block delims mode must respect those repcodes exactly,
* and cannot emit an RLE block that disagrees with the repcode history
* @return : final compressed size or a ZSTD error.
*/
-ZSTDLIB_API size_t ZSTD_compressSequences(ZSTD_CCtx* const cctx, void* dst, size_t dstSize,
+ZSTDLIB_STATIC_API size_t ZSTD_compressSequences(ZSTD_CCtx* const cctx, void* dst, size_t dstSize,
const ZSTD_Sequence* inSeqs, size_t inSeqsSize,
const void* src, size_t srcSize);
+/*! ZSTD_writeSkippableFrame() :
+ * Generates a zstd skippable frame containing data given by src, and writes it to dst buffer.
+ *
+ * Skippable frames begin with a a 4-byte magic number. There are 16 possible choices of magic number,
+ * ranging from ZSTD_MAGIC_SKIPPABLE_START to ZSTD_MAGIC_SKIPPABLE_START+15.
+ * As such, the parameter magicVariant controls the exact skippable frame magic number variant used, so
+ * the magic number used will be ZSTD_MAGIC_SKIPPABLE_START + magicVariant.
+ *
+ * Returns an error if destination buffer is not large enough, if the source size is not representable
+ * with a 4-byte unsigned int, or if the parameter magicVariant is greater than 15 (and therefore invalid).
+ *
+ * @return : number of bytes written or a ZSTD error.
+ */
+ZSTDLIB_STATIC_API size_t ZSTD_writeSkippableFrame(void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize, unsigned magicVariant);
+
+/*! ZSTD_readSkippableFrame() :
+ * Retrieves a zstd skippable frame containing data given by src, and writes it to dst buffer.
+ *
+ * The parameter magicVariant will receive the magicVariant that was supplied when the frame was written,
+ * i.e. magicNumber - ZSTD_MAGIC_SKIPPABLE_START. This can be NULL if the caller is not interested
+ * in the magicVariant.
+ *
+ * Returns an error if destination buffer is not large enough, or if the frame is not skippable.
+ *
+ * @return : number of bytes written or a ZSTD error.
+ */
+ZSTDLIB_API size_t ZSTD_readSkippableFrame(void* dst, size_t dstCapacity, unsigned* magicVariant,
+ const void* src, size_t srcSize);
+
+/*! ZSTD_isSkippableFrame() :
+ * Tells if the content of `buffer` starts with a valid Frame Identifier for a skippable frame.
+ */
+ZSTDLIB_API unsigned ZSTD_isSkippableFrame(const void* buffer, size_t size);
+
+
+
/***************************************
* Memory management
***************************************/
/*! ZSTD_estimate*() :
* These functions make it possible to estimate memory usage
* of a future {D,C}Ctx, before its creation.
*
* ZSTD_estimateCCtxSize() will provide a memory budget large enough
* for any compression level up to selected one.
* Note : Unlike ZSTD_estimateCStreamSize*(), this estimate
* does not include space for a window buffer.
* Therefore, the estimation is only guaranteed for single-shot compressions, not streaming.
* The estimate will assume the input may be arbitrarily large,
* which is the worst case.
*
* When srcSize can be bound by a known and rather "small" value,
* this fact can be used to provide a tighter estimation
* because the CCtx compression context will need less memory.
* This tighter estimation can be provided by more advanced functions
* ZSTD_estimateCCtxSize_usingCParams(), which can be used in tandem with ZSTD_getCParams(),
* and ZSTD_estimateCCtxSize_usingCCtxParams(), which can be used in tandem with ZSTD_CCtxParams_setParameter().
* Both can be used to estimate memory using custom compression parameters and arbitrary srcSize limits.
*
* Note 2 : only single-threaded compression is supported.
* ZSTD_estimateCCtxSize_usingCCtxParams() will return an error code if ZSTD_c_nbWorkers is >= 1.
*/
-ZSTDLIB_API size_t ZSTD_estimateCCtxSize(int compressionLevel);
-ZSTDLIB_API size_t ZSTD_estimateCCtxSize_usingCParams(ZSTD_compressionParameters cParams);
-ZSTDLIB_API size_t ZSTD_estimateCCtxSize_usingCCtxParams(const ZSTD_CCtx_params* params);
-ZSTDLIB_API size_t ZSTD_estimateDCtxSize(void);
+ZSTDLIB_STATIC_API size_t ZSTD_estimateCCtxSize(int compressionLevel);
+ZSTDLIB_STATIC_API size_t ZSTD_estimateCCtxSize_usingCParams(ZSTD_compressionParameters cParams);
+ZSTDLIB_STATIC_API size_t ZSTD_estimateCCtxSize_usingCCtxParams(const ZSTD_CCtx_params* params);
+ZSTDLIB_STATIC_API size_t ZSTD_estimateDCtxSize(void);
/*! ZSTD_estimateCStreamSize() :
* ZSTD_estimateCStreamSize() will provide a budget large enough for any compression level up to selected one.
* It will also consider src size to be arbitrarily "large", which is worst case.
* If srcSize is known to always be small, ZSTD_estimateCStreamSize_usingCParams() can provide a tighter estimation.
* ZSTD_estimateCStreamSize_usingCParams() can be used in tandem with ZSTD_getCParams() to create cParams from compressionLevel.
* ZSTD_estimateCStreamSize_usingCCtxParams() can be used in tandem with ZSTD_CCtxParams_setParameter(). Only single-threaded compression is supported. This function will return an error code if ZSTD_c_nbWorkers is >= 1.
* Note : CStream size estimation is only correct for single-threaded compression.
* ZSTD_DStream memory budget depends on window Size.
* This information can be passed manually, using ZSTD_estimateDStreamSize,
* or deducted from a valid frame Header, using ZSTD_estimateDStreamSize_fromFrame();
* Note : if streaming is init with function ZSTD_init?Stream_usingDict(),
* an internal ?Dict will be created, which additional size is not estimated here.
* In this case, get total size by adding ZSTD_estimate?DictSize */
-ZSTDLIB_API size_t ZSTD_estimateCStreamSize(int compressionLevel);
-ZSTDLIB_API size_t ZSTD_estimateCStreamSize_usingCParams(ZSTD_compressionParameters cParams);
-ZSTDLIB_API size_t ZSTD_estimateCStreamSize_usingCCtxParams(const ZSTD_CCtx_params* params);
-ZSTDLIB_API size_t ZSTD_estimateDStreamSize(size_t windowSize);
-ZSTDLIB_API size_t ZSTD_estimateDStreamSize_fromFrame(const void* src, size_t srcSize);
+ZSTDLIB_STATIC_API size_t ZSTD_estimateCStreamSize(int compressionLevel);
+ZSTDLIB_STATIC_API size_t ZSTD_estimateCStreamSize_usingCParams(ZSTD_compressionParameters cParams);
+ZSTDLIB_STATIC_API size_t ZSTD_estimateCStreamSize_usingCCtxParams(const ZSTD_CCtx_params* params);
+ZSTDLIB_STATIC_API size_t ZSTD_estimateDStreamSize(size_t windowSize);
+ZSTDLIB_STATIC_API size_t ZSTD_estimateDStreamSize_fromFrame(const void* src, size_t srcSize);
/*! ZSTD_estimate?DictSize() :
* ZSTD_estimateCDictSize() will bet that src size is relatively "small", and content is copied, like ZSTD_createCDict().
* ZSTD_estimateCDictSize_advanced() makes it possible to control compression parameters precisely, like ZSTD_createCDict_advanced().
* Note : dictionaries created by reference (`ZSTD_dlm_byRef`) are logically smaller.
*/
-ZSTDLIB_API size_t ZSTD_estimateCDictSize(size_t dictSize, int compressionLevel);
-ZSTDLIB_API size_t ZSTD_estimateCDictSize_advanced(size_t dictSize, ZSTD_compressionParameters cParams, ZSTD_dictLoadMethod_e dictLoadMethod);
-ZSTDLIB_API size_t ZSTD_estimateDDictSize(size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod);
+ZSTDLIB_STATIC_API size_t ZSTD_estimateCDictSize(size_t dictSize, int compressionLevel);
+ZSTDLIB_STATIC_API size_t ZSTD_estimateCDictSize_advanced(size_t dictSize, ZSTD_compressionParameters cParams, ZSTD_dictLoadMethod_e dictLoadMethod);
+ZSTDLIB_STATIC_API size_t ZSTD_estimateDDictSize(size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod);
/*! ZSTD_initStatic*() :
* Initialize an object using a pre-allocated fixed-size buffer.
* workspace: The memory area to emplace the object into.
* Provided pointer *must be 8-bytes aligned*.
* Buffer must outlive object.
* workspaceSize: Use ZSTD_estimate*Size() to determine
* how large workspace must be to support target scenario.
* @return : pointer to object (same address as workspace, just different type),
* or NULL if error (size too small, incorrect alignment, etc.)
* Note : zstd will never resize nor malloc() when using a static buffer.
* If the object requires more memory than available,
* zstd will just error out (typically ZSTD_error_memory_allocation).
* Note 2 : there is no corresponding "free" function.
* Since workspace is allocated externally, it must be freed externally too.
* Note 3 : cParams : use ZSTD_getCParams() to convert a compression level
* into its associated cParams.
* Limitation 1 : currently not compatible with internal dictionary creation, triggered by
* ZSTD_CCtx_loadDictionary(), ZSTD_initCStream_usingDict() or ZSTD_initDStream_usingDict().
* Limitation 2 : static cctx currently not compatible with multi-threading.
* Limitation 3 : static dctx is incompatible with legacy support.
*/
-ZSTDLIB_API ZSTD_CCtx* ZSTD_initStaticCCtx(void* workspace, size_t workspaceSize);
-ZSTDLIB_API ZSTD_CStream* ZSTD_initStaticCStream(void* workspace, size_t workspaceSize); /**< same as ZSTD_initStaticCCtx() */
+ZSTDLIB_STATIC_API ZSTD_CCtx* ZSTD_initStaticCCtx(void* workspace, size_t workspaceSize);
+ZSTDLIB_STATIC_API ZSTD_CStream* ZSTD_initStaticCStream(void* workspace, size_t workspaceSize); /**< same as ZSTD_initStaticCCtx() */
-ZSTDLIB_API ZSTD_DCtx* ZSTD_initStaticDCtx(void* workspace, size_t workspaceSize);
-ZSTDLIB_API ZSTD_DStream* ZSTD_initStaticDStream(void* workspace, size_t workspaceSize); /**< same as ZSTD_initStaticDCtx() */
+ZSTDLIB_STATIC_API ZSTD_DCtx* ZSTD_initStaticDCtx(void* workspace, size_t workspaceSize);
+ZSTDLIB_STATIC_API ZSTD_DStream* ZSTD_initStaticDStream(void* workspace, size_t workspaceSize); /**< same as ZSTD_initStaticDCtx() */
-ZSTDLIB_API const ZSTD_CDict* ZSTD_initStaticCDict(
+ZSTDLIB_STATIC_API const ZSTD_CDict* ZSTD_initStaticCDict(
void* workspace, size_t workspaceSize,
const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType,
ZSTD_compressionParameters cParams);
-ZSTDLIB_API const ZSTD_DDict* ZSTD_initStaticDDict(
+ZSTDLIB_STATIC_API const ZSTD_DDict* ZSTD_initStaticDDict(
void* workspace, size_t workspaceSize,
const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType);
/*! Custom memory allocation :
* These prototypes make it possible to pass your own allocation/free functions.
* ZSTD_customMem is provided at creation time, using ZSTD_create*_advanced() variants listed below.
* All allocation/free operations will be completed using these custom variants instead of regular <stdlib.h> ones.
*/
typedef void* (*ZSTD_allocFunction) (void* opaque, size_t size);
typedef void (*ZSTD_freeFunction) (void* opaque, void* address);
typedef struct { ZSTD_allocFunction customAlloc; ZSTD_freeFunction customFree; void* opaque; } ZSTD_customMem;
static
#ifdef __GNUC__
__attribute__((__unused__))
#endif
ZSTD_customMem const ZSTD_defaultCMem = { NULL, NULL, NULL }; /**< this constant defers to stdlib's functions */
-ZSTDLIB_API ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem);
-ZSTDLIB_API ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem);
-ZSTDLIB_API ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem);
-ZSTDLIB_API ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem);
+ZSTDLIB_STATIC_API ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem);
+ZSTDLIB_STATIC_API ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem);
+ZSTDLIB_STATIC_API ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem);
+ZSTDLIB_STATIC_API ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem);
-ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict_advanced(const void* dict, size_t dictSize,
+ZSTDLIB_STATIC_API ZSTD_CDict* ZSTD_createCDict_advanced(const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType,
ZSTD_compressionParameters cParams,
ZSTD_customMem customMem);
-/* ! Thread pool :
- * These prototypes make it possible to share a thread pool among multiple compression contexts.
- * This can limit resources for applications with multiple threads where each one uses
- * a threaded compression mode (via ZSTD_c_nbWorkers parameter).
- * ZSTD_createThreadPool creates a new thread pool with a given number of threads.
- * Note that the lifetime of such pool must exist while being used.
- * ZSTD_CCtx_refThreadPool assigns a thread pool to a context (use NULL argument value
- * to use an internal thread pool).
- * ZSTD_freeThreadPool frees a thread pool.
+/*! Thread pool :
+ * These prototypes make it possible to share a thread pool among multiple compression contexts.
+ * This can limit resources for applications with multiple threads where each one uses
+ * a threaded compression mode (via ZSTD_c_nbWorkers parameter).
+ * ZSTD_createThreadPool creates a new thread pool with a given number of threads.
+ * Note that the lifetime of such pool must exist while being used.
+ * ZSTD_CCtx_refThreadPool assigns a thread pool to a context (use NULL argument value
+ * to use an internal thread pool).
+ * ZSTD_freeThreadPool frees a thread pool, accepts NULL pointer.
*/
typedef struct POOL_ctx_s ZSTD_threadPool;
-ZSTDLIB_API ZSTD_threadPool* ZSTD_createThreadPool(size_t numThreads);
-ZSTDLIB_API void ZSTD_freeThreadPool (ZSTD_threadPool* pool);
-ZSTDLIB_API size_t ZSTD_CCtx_refThreadPool(ZSTD_CCtx* cctx, ZSTD_threadPool* pool);
+ZSTDLIB_STATIC_API ZSTD_threadPool* ZSTD_createThreadPool(size_t numThreads);
+ZSTDLIB_STATIC_API void ZSTD_freeThreadPool (ZSTD_threadPool* pool); /* accept NULL pointer */
+ZSTDLIB_STATIC_API size_t ZSTD_CCtx_refThreadPool(ZSTD_CCtx* cctx, ZSTD_threadPool* pool);
+
/*
* This API is temporary and is expected to change or disappear in the future!
*/
-ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict_advanced2(
+ZSTDLIB_STATIC_API ZSTD_CDict* ZSTD_createCDict_advanced2(
const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType,
const ZSTD_CCtx_params* cctxParams,
ZSTD_customMem customMem);
-ZSTDLIB_API ZSTD_DDict* ZSTD_createDDict_advanced(const void* dict, size_t dictSize,
- ZSTD_dictLoadMethod_e dictLoadMethod,
- ZSTD_dictContentType_e dictContentType,
- ZSTD_customMem customMem);
+ZSTDLIB_STATIC_API ZSTD_DDict* ZSTD_createDDict_advanced(
+ const void* dict, size_t dictSize,
+ ZSTD_dictLoadMethod_e dictLoadMethod,
+ ZSTD_dictContentType_e dictContentType,
+ ZSTD_customMem customMem);
+
/***************************************
* Advanced compression functions
***************************************/
/*! ZSTD_createCDict_byReference() :
* Create a digested dictionary for compression
* Dictionary content is just referenced, not duplicated.
* As a consequence, `dictBuffer` **must** outlive CDict,
* and its content must remain unmodified throughout the lifetime of CDict.
* note: equivalent to ZSTD_createCDict_advanced(), with dictLoadMethod==ZSTD_dlm_byRef */
-ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict_byReference(const void* dictBuffer, size_t dictSize, int compressionLevel);
-
-/*! ZSTD_getDictID_fromCDict() :
- * Provides the dictID of the dictionary loaded into `cdict`.
- * If @return == 0, the dictionary is not conformant to Zstandard specification, or empty.
- * Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */
-ZSTDLIB_API unsigned ZSTD_getDictID_fromCDict(const ZSTD_CDict* cdict);
+ZSTDLIB_STATIC_API ZSTD_CDict* ZSTD_createCDict_byReference(const void* dictBuffer, size_t dictSize, int compressionLevel);
/*! ZSTD_getCParams() :
* @return ZSTD_compressionParameters structure for a selected compression level and estimated srcSize.
* `estimatedSrcSize` value is optional, select 0 if not known */
-ZSTDLIB_API ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long estimatedSrcSize, size_t dictSize);
+ZSTDLIB_STATIC_API ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long estimatedSrcSize, size_t dictSize);
/*! ZSTD_getParams() :
* same as ZSTD_getCParams(), but @return a full `ZSTD_parameters` object instead of sub-component `ZSTD_compressionParameters`.
* All fields of `ZSTD_frameParameters` are set to default : contentSize=1, checksum=0, noDictID=0 */
-ZSTDLIB_API ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long estimatedSrcSize, size_t dictSize);
+ZSTDLIB_STATIC_API ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long estimatedSrcSize, size_t dictSize);
/*! ZSTD_checkCParams() :
* Ensure param values remain within authorized range.
* @return 0 on success, or an error code (can be checked with ZSTD_isError()) */
-ZSTDLIB_API size_t ZSTD_checkCParams(ZSTD_compressionParameters params);
+ZSTDLIB_STATIC_API size_t ZSTD_checkCParams(ZSTD_compressionParameters params);
/*! ZSTD_adjustCParams() :
* optimize params for a given `srcSize` and `dictSize`.
* `srcSize` can be unknown, in which case use ZSTD_CONTENTSIZE_UNKNOWN.
* `dictSize` must be `0` when there is no dictionary.
* cPar can be invalid : all parameters will be clamped within valid range in the @return struct.
* This function never fails (wide contract) */
-ZSTDLIB_API ZSTD_compressionParameters ZSTD_adjustCParams(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize);
+ZSTDLIB_STATIC_API ZSTD_compressionParameters ZSTD_adjustCParams(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize);
/*! ZSTD_compress_advanced() :
* Note : this function is now DEPRECATED.
* It can be replaced by ZSTD_compress2(), in combination with ZSTD_CCtx_setParameter() and other parameter setters.
- * This prototype will be marked as deprecated and generate compilation warning on reaching v1.5.x */
-ZSTDLIB_API size_t ZSTD_compress_advanced(ZSTD_CCtx* cctx,
+ * This prototype will generate compilation warnings. */
+ZSTD_DEPRECATED("use ZSTD_compress2")
+size_t ZSTD_compress_advanced(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize,
ZSTD_parameters params);
/*! ZSTD_compress_usingCDict_advanced() :
- * Note : this function is now REDUNDANT.
+ * Note : this function is now DEPRECATED.
* It can be replaced by ZSTD_compress2(), in combination with ZSTD_CCtx_loadDictionary() and other parameter setters.
- * This prototype will be marked as deprecated and generate compilation warning in some future version */
-ZSTDLIB_API size_t ZSTD_compress_usingCDict_advanced(ZSTD_CCtx* cctx,
+ * This prototype will generate compilation warnings. */
+ZSTD_DEPRECATED("use ZSTD_compress2 with ZSTD_CCtx_loadDictionary")
+size_t ZSTD_compress_usingCDict_advanced(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTD_CDict* cdict,
ZSTD_frameParameters fParams);
/*! ZSTD_CCtx_loadDictionary_byReference() :
* Same as ZSTD_CCtx_loadDictionary(), but dictionary content is referenced, instead of being copied into CCtx.
* It saves some memory, but also requires that `dict` outlives its usage within `cctx` */
-ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary_byReference(ZSTD_CCtx* cctx, const void* dict, size_t dictSize);
+ZSTDLIB_STATIC_API size_t ZSTD_CCtx_loadDictionary_byReference(ZSTD_CCtx* cctx, const void* dict, size_t dictSize);
/*! ZSTD_CCtx_loadDictionary_advanced() :
* Same as ZSTD_CCtx_loadDictionary(), but gives finer control over
* how to load the dictionary (by copy ? by reference ?)
* and how to interpret it (automatic ? force raw mode ? full mode only ?) */
-ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType);
+ZSTDLIB_STATIC_API size_t ZSTD_CCtx_loadDictionary_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType);
/*! ZSTD_CCtx_refPrefix_advanced() :
* Same as ZSTD_CCtx_refPrefix(), but gives finer control over
* how to interpret prefix content (automatic ? force raw mode (default) ? full mode only ?) */
-ZSTDLIB_API size_t ZSTD_CCtx_refPrefix_advanced(ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType);
+ZSTDLIB_STATIC_API size_t ZSTD_CCtx_refPrefix_advanced(ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType);
/* === experimental parameters === */
/* these parameters can be used with ZSTD_setParameter()
* they are not guaranteed to remain supported in the future */
/* Enables rsyncable mode,
* which makes compressed files more rsync friendly
* by adding periodic synchronization points to the compressed data.
* The target average block size is ZSTD_c_jobSize / 2.
* It's possible to modify the job size to increase or decrease
* the granularity of the synchronization point.
* Once the jobSize is smaller than the window size,
* it will result in compression ratio degradation.
* NOTE 1: rsyncable mode only works when multithreading is enabled.
* NOTE 2: rsyncable performs poorly in combination with long range mode,
* since it will decrease the effectiveness of synchronization points,
* though mileage may vary.
* NOTE 3: Rsyncable mode limits maximum compression speed to ~400 MB/s.
* If the selected compression level is already running significantly slower,
* the overall speed won't be significantly impacted.
*/
#define ZSTD_c_rsyncable ZSTD_c_experimentalParam1
/* Select a compression format.
* The value must be of type ZSTD_format_e.
* See ZSTD_format_e enum definition for details */
#define ZSTD_c_format ZSTD_c_experimentalParam2
/* Force back-reference distances to remain < windowSize,
* even when referencing into Dictionary content (default:0) */
#define ZSTD_c_forceMaxWindow ZSTD_c_experimentalParam3
/* Controls whether the contents of a CDict
* are used in place, or copied into the working context.
* Accepts values from the ZSTD_dictAttachPref_e enum.
* See the comments on that enum for an explanation of the feature. */
#define ZSTD_c_forceAttachDict ZSTD_c_experimentalParam4
-/* Controls how the literals are compressed (default is auto).
- * The value must be of type ZSTD_literalCompressionMode_e.
- * See ZSTD_literalCompressionMode_t enum definition for details.
+/* Controlled with ZSTD_paramSwitch_e enum.
+ * Default is ZSTD_ps_auto.
+ * Set to ZSTD_ps_disable to never compress literals.
+ * Set to ZSTD_ps_enable to always compress literals. (Note: uncompressed literals
+ * may still be emitted if huffman is not beneficial to use.)
+ *
+ * By default, in ZSTD_ps_auto, the library will decide at runtime whether to use
+ * literals compression based on the compression parameters - specifically,
+ * negative compression levels do not use literal compression.
*/
#define ZSTD_c_literalCompressionMode ZSTD_c_experimentalParam5
/* Tries to fit compressed block size to be around targetCBlockSize.
* No target when targetCBlockSize == 0.
* There is no guarantee on compressed block size (default:0) */
#define ZSTD_c_targetCBlockSize ZSTD_c_experimentalParam6
/* User's best guess of source size.
* Hint is not valid when srcSizeHint == 0.
* There is no guarantee that hint is close to actual source size,
* but compression ratio may regress significantly if guess considerably underestimates */
#define ZSTD_c_srcSizeHint ZSTD_c_experimentalParam7
/* Controls whether the new and experimental "dedicated dictionary search
* structure" can be used. This feature is still rough around the edges, be
* prepared for surprising behavior!
*
* How to use it:
*
* When using a CDict, whether to use this feature or not is controlled at
* CDict creation, and it must be set in a CCtxParams set passed into that
* construction (via ZSTD_createCDict_advanced2()). A compression will then
* use the feature or not based on how the CDict was constructed; the value of
* this param, set in the CCtx, will have no effect.
*
* However, when a dictionary buffer is passed into a CCtx, such as via
* ZSTD_CCtx_loadDictionary(), this param can be set on the CCtx to control
* whether the CDict that is created internally can use the feature or not.
*
* What it does:
*
* Normally, the internal data structures of the CDict are analogous to what
* would be stored in a CCtx after compressing the contents of a dictionary.
* To an approximation, a compression using a dictionary can then use those
* data structures to simply continue what is effectively a streaming
* compression where the simulated compression of the dictionary left off.
* Which is to say, the search structures in the CDict are normally the same
* format as in the CCtx.
*
* It is possible to do better, since the CDict is not like a CCtx: the search
* structures are written once during CDict creation, and then are only read
* after that, while the search structures in the CCtx are both read and
* written as the compression goes along. This means we can choose a search
* structure for the dictionary that is read-optimized.
*
* This feature enables the use of that different structure.
*
* Note that some of the members of the ZSTD_compressionParameters struct have
* different semantics and constraints in the dedicated search structure. It is
* highly recommended that you simply set a compression level in the CCtxParams
* you pass into the CDict creation call, and avoid messing with the cParams
* directly.
*
* Effects:
*
* This will only have any effect when the selected ZSTD_strategy
* implementation supports this feature. Currently, that's limited to
* ZSTD_greedy, ZSTD_lazy, and ZSTD_lazy2.
*
* Note that this means that the CDict tables can no longer be copied into the
* CCtx, so the dict attachment mode ZSTD_dictForceCopy will no longer be
- * useable. The dictionary can only be attached or reloaded.
+ * usable. The dictionary can only be attached or reloaded.
*
* In general, you should expect compression to be faster--sometimes very much
* so--and CDict creation to be slightly slower. Eventually, we will probably
* make this mode the default.
*/
#define ZSTD_c_enableDedicatedDictSearch ZSTD_c_experimentalParam8
/* ZSTD_c_stableInBuffer
* Experimental parameter.
* Default is 0 == disabled. Set to 1 to enable.
*
* Tells the compressor that the ZSTD_inBuffer will ALWAYS be the same
* between calls, except for the modifications that zstd makes to pos (the
* caller must not modify pos). This is checked by the compressor, and
* compression will fail if it ever changes. This means the only flush
* mode that makes sense is ZSTD_e_end, so zstd will error if ZSTD_e_end
* is not used. The data in the ZSTD_inBuffer in the range [src, src + pos)
* MUST not be modified during compression or you will get data corruption.
*
* When this flag is enabled zstd won't allocate an input window buffer,
* because the user guarantees it can reference the ZSTD_inBuffer until
* the frame is complete. But, it will still allocate an output buffer
* large enough to fit a block (see ZSTD_c_stableOutBuffer). This will also
* avoid the memcpy() from the input buffer to the input window buffer.
*
* NOTE: ZSTD_compressStream2() will error if ZSTD_e_end is not used.
* That means this flag cannot be used with ZSTD_compressStream().
*
* NOTE: So long as the ZSTD_inBuffer always points to valid memory, using
* this flag is ALWAYS memory safe, and will never access out-of-bounds
* memory. However, compression WILL fail if you violate the preconditions.
*
* WARNING: The data in the ZSTD_inBuffer in the range [dst, dst + pos) MUST
* not be modified during compression or you will get data corruption. This
* is because zstd needs to reference data in the ZSTD_inBuffer to find
* matches. Normally zstd maintains its own window buffer for this purpose,
* but passing this flag tells zstd to use the user provided buffer.
*/
#define ZSTD_c_stableInBuffer ZSTD_c_experimentalParam9
/* ZSTD_c_stableOutBuffer
* Experimental parameter.
* Default is 0 == disabled. Set to 1 to enable.
*
* Tells he compressor that the ZSTD_outBuffer will not be resized between
* calls. Specifically: (out.size - out.pos) will never grow. This gives the
* compressor the freedom to say: If the compressed data doesn't fit in the
* output buffer then return ZSTD_error_dstSizeTooSmall. This allows us to
* always decompress directly into the output buffer, instead of decompressing
* into an internal buffer and copying to the output buffer.
*
* When this flag is enabled zstd won't allocate an output buffer, because
* it can write directly to the ZSTD_outBuffer. It will still allocate the
* input window buffer (see ZSTD_c_stableInBuffer).
*
* Zstd will check that (out.size - out.pos) never grows and return an error
* if it does. While not strictly necessary, this should prevent surprises.
*/
#define ZSTD_c_stableOutBuffer ZSTD_c_experimentalParam10
/* ZSTD_c_blockDelimiters
* Default is 0 == ZSTD_sf_noBlockDelimiters.
*
* For use with sequence compression API: ZSTD_compressSequences().
*
* Designates whether or not the given array of ZSTD_Sequence contains block delimiters
* and last literals, which are defined as sequences with offset == 0 and matchLength == 0.
* See the definition of ZSTD_Sequence for more specifics.
*/
#define ZSTD_c_blockDelimiters ZSTD_c_experimentalParam11
/* ZSTD_c_validateSequences
* Default is 0 == disabled. Set to 1 to enable sequence validation.
*
* For use with sequence compression API: ZSTD_compressSequences().
* Designates whether or not we validate sequences provided to ZSTD_compressSequences()
* during function execution.
*
* Without validation, providing a sequence that does not conform to the zstd spec will cause
* undefined behavior, and may produce a corrupted block.
*
* With validation enabled, a if sequence is invalid (see doc/zstd_compression_format.md for
* specifics regarding offset/matchlength requirements) then the function will bail out and
* return an error.
*
*/
#define ZSTD_c_validateSequences ZSTD_c_experimentalParam12
+/* ZSTD_c_useBlockSplitter
+ * Controlled with ZSTD_paramSwitch_e enum.
+ * Default is ZSTD_ps_auto.
+ * Set to ZSTD_ps_disable to never use block splitter.
+ * Set to ZSTD_ps_enable to always use block splitter.
+ *
+ * By default, in ZSTD_ps_auto, the library will decide at runtime whether to use
+ * block splitting based on the compression parameters.
+ */
+#define ZSTD_c_useBlockSplitter ZSTD_c_experimentalParam13
+
+/* ZSTD_c_useRowMatchFinder
+ * Controlled with ZSTD_paramSwitch_e enum.
+ * Default is ZSTD_ps_auto.
+ * Set to ZSTD_ps_disable to never use row-based matchfinder.
+ * Set to ZSTD_ps_enable to force usage of row-based matchfinder.
+ *
+ * By default, in ZSTD_ps_auto, the library will decide at runtime whether to use
+ * the row-based matchfinder based on support for SIMD instructions and the window log.
+ * Note that this only pertains to compression strategies: greedy, lazy, and lazy2
+ */
+#define ZSTD_c_useRowMatchFinder ZSTD_c_experimentalParam14
+
+/* ZSTD_c_deterministicRefPrefix
+ * Default is 0 == disabled. Set to 1 to enable.
+ *
+ * Zstd produces different results for prefix compression when the prefix is
+ * directly adjacent to the data about to be compressed vs. when it isn't.
+ * This is because zstd detects that the two buffers are contiguous and it can
+ * use a more efficient match finding algorithm. However, this produces different
+ * results than when the two buffers are non-contiguous. This flag forces zstd
+ * to always load the prefix in non-contiguous mode, even if it happens to be
+ * adjacent to the data, to guarantee determinism.
+ *
+ * If you really care about determinism when using a dictionary or prefix,
+ * like when doing delta compression, you should select this option. It comes
+ * at a speed penalty of about ~2.5% if the dictionary and data happened to be
+ * contiguous, and is free if they weren't contiguous. We don't expect that
+ * intentionally making the dictionary and data contiguous will be worth the
+ * cost to memcpy() the data.
+ */
+#define ZSTD_c_deterministicRefPrefix ZSTD_c_experimentalParam15
+
/*! ZSTD_CCtx_getParameter() :
* Get the requested compression parameter value, selected by enum ZSTD_cParameter,
* and store it into int* value.
* @return : 0, or an error code (which can be tested with ZSTD_isError()).
*/
-ZSTDLIB_API size_t ZSTD_CCtx_getParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, int* value);
+ZSTDLIB_STATIC_API size_t ZSTD_CCtx_getParameter(const ZSTD_CCtx* cctx, ZSTD_cParameter param, int* value);
/*! ZSTD_CCtx_params :
* Quick howto :
* - ZSTD_createCCtxParams() : Create a ZSTD_CCtx_params structure
* - ZSTD_CCtxParams_setParameter() : Push parameters one by one into
* an existing ZSTD_CCtx_params structure.
* This is similar to
* ZSTD_CCtx_setParameter().
* - ZSTD_CCtx_setParametersUsingCCtxParams() : Apply parameters to
* an existing CCtx.
* These parameters will be applied to
* all subsequent frames.
* - ZSTD_compressStream2() : Do compression using the CCtx.
- * - ZSTD_freeCCtxParams() : Free the memory.
+ * - ZSTD_freeCCtxParams() : Free the memory, accept NULL pointer.
*
* This can be used with ZSTD_estimateCCtxSize_advanced_usingCCtxParams()
* for static allocation of CCtx for single-threaded compression.
*/
-ZSTDLIB_API ZSTD_CCtx_params* ZSTD_createCCtxParams(void);
-ZSTDLIB_API size_t ZSTD_freeCCtxParams(ZSTD_CCtx_params* params);
+ZSTDLIB_STATIC_API ZSTD_CCtx_params* ZSTD_createCCtxParams(void);
+ZSTDLIB_STATIC_API size_t ZSTD_freeCCtxParams(ZSTD_CCtx_params* params); /* accept NULL pointer */
/*! ZSTD_CCtxParams_reset() :
* Reset params to default values.
*/
-ZSTDLIB_API size_t ZSTD_CCtxParams_reset(ZSTD_CCtx_params* params);
+ZSTDLIB_STATIC_API size_t ZSTD_CCtxParams_reset(ZSTD_CCtx_params* params);
/*! ZSTD_CCtxParams_init() :
* Initializes the compression parameters of cctxParams according to
* compression level. All other parameters are reset to their default values.
*/
-ZSTDLIB_API size_t ZSTD_CCtxParams_init(ZSTD_CCtx_params* cctxParams, int compressionLevel);
+ZSTDLIB_STATIC_API size_t ZSTD_CCtxParams_init(ZSTD_CCtx_params* cctxParams, int compressionLevel);
/*! ZSTD_CCtxParams_init_advanced() :
* Initializes the compression and frame parameters of cctxParams according to
* params. All other parameters are reset to their default values.
*/
-ZSTDLIB_API size_t ZSTD_CCtxParams_init_advanced(ZSTD_CCtx_params* cctxParams, ZSTD_parameters params);
+ZSTDLIB_STATIC_API size_t ZSTD_CCtxParams_init_advanced(ZSTD_CCtx_params* cctxParams, ZSTD_parameters params);
-/*! ZSTD_CCtxParams_setParameter() :
+/*! ZSTD_CCtxParams_setParameter() : Requires v1.4.0+
* Similar to ZSTD_CCtx_setParameter.
* Set one compression parameter, selected by enum ZSTD_cParameter.
* Parameters must be applied to a ZSTD_CCtx using
* ZSTD_CCtx_setParametersUsingCCtxParams().
* @result : a code representing success or failure (which can be tested with
* ZSTD_isError()).
*/
-ZSTDLIB_API size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* params, ZSTD_cParameter param, int value);
+ZSTDLIB_STATIC_API size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* params, ZSTD_cParameter param, int value);
/*! ZSTD_CCtxParams_getParameter() :
* Similar to ZSTD_CCtx_getParameter.
* Get the requested value of one compression parameter, selected by enum ZSTD_cParameter.
* @result : 0, or an error code (which can be tested with ZSTD_isError()).
*/
-ZSTDLIB_API size_t ZSTD_CCtxParams_getParameter(ZSTD_CCtx_params* params, ZSTD_cParameter param, int* value);
+ZSTDLIB_STATIC_API size_t ZSTD_CCtxParams_getParameter(const ZSTD_CCtx_params* params, ZSTD_cParameter param, int* value);
/*! ZSTD_CCtx_setParametersUsingCCtxParams() :
* Apply a set of ZSTD_CCtx_params to the compression context.
* This can be done even after compression is started,
* if nbWorkers==0, this will have no impact until a new compression is started.
* if nbWorkers>=1, new parameters will be picked up at next job,
* with a few restrictions (windowLog, pledgedSrcSize, nbWorkers, jobSize, and overlapLog are not updated).
*/
-ZSTDLIB_API size_t ZSTD_CCtx_setParametersUsingCCtxParams(
+ZSTDLIB_STATIC_API size_t ZSTD_CCtx_setParametersUsingCCtxParams(
ZSTD_CCtx* cctx, const ZSTD_CCtx_params* params);
/*! ZSTD_compressStream2_simpleArgs() :
* Same as ZSTD_compressStream2(),
* but using only integral types as arguments.
* This variant might be helpful for binders from dynamic languages
* which have troubles handling structures containing memory pointers.
*/
-ZSTDLIB_API size_t ZSTD_compressStream2_simpleArgs (
+ZSTDLIB_STATIC_API size_t ZSTD_compressStream2_simpleArgs (
ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity, size_t* dstPos,
const void* src, size_t srcSize, size_t* srcPos,
ZSTD_EndDirective endOp);
/***************************************
* Advanced decompression functions
***************************************/
/*! ZSTD_isFrame() :
* Tells if the content of `buffer` starts with a valid Frame Identifier.
* Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0.
* Note 2 : Legacy Frame Identifiers are considered valid only if Legacy Support is enabled.
* Note 3 : Skippable Frame Identifiers are considered valid. */
-ZSTDLIB_API unsigned ZSTD_isFrame(const void* buffer, size_t size);
+ZSTDLIB_STATIC_API unsigned ZSTD_isFrame(const void* buffer, size_t size);
/*! ZSTD_createDDict_byReference() :
* Create a digested dictionary, ready to start decompression operation without startup delay.
* Dictionary content is referenced, and therefore stays in dictBuffer.
* It is important that dictBuffer outlives DDict,
* it must remain read accessible throughout the lifetime of DDict */
-ZSTDLIB_API ZSTD_DDict* ZSTD_createDDict_byReference(const void* dictBuffer, size_t dictSize);
+ZSTDLIB_STATIC_API ZSTD_DDict* ZSTD_createDDict_byReference(const void* dictBuffer, size_t dictSize);
/*! ZSTD_DCtx_loadDictionary_byReference() :
* Same as ZSTD_DCtx_loadDictionary(),
* but references `dict` content instead of copying it into `dctx`.
* This saves memory if `dict` remains around.,
* However, it's imperative that `dict` remains accessible (and unmodified) while being used, so it must outlive decompression. */
-ZSTDLIB_API size_t ZSTD_DCtx_loadDictionary_byReference(ZSTD_DCtx* dctx, const void* dict, size_t dictSize);
+ZSTDLIB_STATIC_API size_t ZSTD_DCtx_loadDictionary_byReference(ZSTD_DCtx* dctx, const void* dict, size_t dictSize);
/*! ZSTD_DCtx_loadDictionary_advanced() :
* Same as ZSTD_DCtx_loadDictionary(),
* but gives direct control over
* how to load the dictionary (by copy ? by reference ?)
* and how to interpret it (automatic ? force raw mode ? full mode only ?). */
-ZSTDLIB_API size_t ZSTD_DCtx_loadDictionary_advanced(ZSTD_DCtx* dctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType);
+ZSTDLIB_STATIC_API size_t ZSTD_DCtx_loadDictionary_advanced(ZSTD_DCtx* dctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType);
/*! ZSTD_DCtx_refPrefix_advanced() :
* Same as ZSTD_DCtx_refPrefix(), but gives finer control over
* how to interpret prefix content (automatic ? force raw mode (default) ? full mode only ?) */
-ZSTDLIB_API size_t ZSTD_DCtx_refPrefix_advanced(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType);
+ZSTDLIB_STATIC_API size_t ZSTD_DCtx_refPrefix_advanced(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType);
/*! ZSTD_DCtx_setMaxWindowSize() :
* Refuses allocating internal buffers for frames requiring a window size larger than provided limit.
* This protects a decoder context from reserving too much memory for itself (potential attack scenario).
* This parameter is only useful in streaming mode, since no internal buffer is allocated in single-pass mode.
* By default, a decompression context accepts all window sizes <= (1 << ZSTD_WINDOWLOG_LIMIT_DEFAULT)
* @return : 0, or an error code (which can be tested using ZSTD_isError()).
*/
-ZSTDLIB_API size_t ZSTD_DCtx_setMaxWindowSize(ZSTD_DCtx* dctx, size_t maxWindowSize);
+ZSTDLIB_STATIC_API size_t ZSTD_DCtx_setMaxWindowSize(ZSTD_DCtx* dctx, size_t maxWindowSize);
/*! ZSTD_DCtx_getParameter() :
* Get the requested decompression parameter value, selected by enum ZSTD_dParameter,
* and store it into int* value.
* @return : 0, or an error code (which can be tested with ZSTD_isError()).
*/
-ZSTDLIB_API size_t ZSTD_DCtx_getParameter(ZSTD_DCtx* dctx, ZSTD_dParameter param, int* value);
+ZSTDLIB_STATIC_API size_t ZSTD_DCtx_getParameter(ZSTD_DCtx* dctx, ZSTD_dParameter param, int* value);
/* ZSTD_d_format
* experimental parameter,
* allowing selection between ZSTD_format_e input compression formats
*/
#define ZSTD_d_format ZSTD_d_experimentalParam1
/* ZSTD_d_stableOutBuffer
* Experimental parameter.
* Default is 0 == disabled. Set to 1 to enable.
*
* Tells the decompressor that the ZSTD_outBuffer will ALWAYS be the same
* between calls, except for the modifications that zstd makes to pos (the
* caller must not modify pos). This is checked by the decompressor, and
* decompression will fail if it ever changes. Therefore the ZSTD_outBuffer
* MUST be large enough to fit the entire decompressed frame. This will be
* checked when the frame content size is known. The data in the ZSTD_outBuffer
* in the range [dst, dst + pos) MUST not be modified during decompression
* or you will get data corruption.
*
* When this flags is enabled zstd won't allocate an output buffer, because
* it can write directly to the ZSTD_outBuffer, but it will still allocate
* an input buffer large enough to fit any compressed block. This will also
* avoid the memcpy() from the internal output buffer to the ZSTD_outBuffer.
* If you need to avoid the input buffer allocation use the buffer-less
* streaming API.
*
* NOTE: So long as the ZSTD_outBuffer always points to valid memory, using
* this flag is ALWAYS memory safe, and will never access out-of-bounds
* memory. However, decompression WILL fail if you violate the preconditions.
*
* WARNING: The data in the ZSTD_outBuffer in the range [dst, dst + pos) MUST
* not be modified during decompression or you will get data corruption. This
* is because zstd needs to reference data in the ZSTD_outBuffer to regenerate
* matches. Normally zstd maintains its own buffer for this purpose, but passing
* this flag tells zstd to use the user provided buffer.
*/
#define ZSTD_d_stableOutBuffer ZSTD_d_experimentalParam2
/* ZSTD_d_forceIgnoreChecksum
* Experimental parameter.
* Default is 0 == disabled. Set to 1 to enable
*
* Tells the decompressor to skip checksum validation during decompression, regardless
* of whether checksumming was specified during compression. This offers some
* slight performance benefits, and may be useful for debugging.
* Param has values of type ZSTD_forceIgnoreChecksum_e
*/
#define ZSTD_d_forceIgnoreChecksum ZSTD_d_experimentalParam3
+/* ZSTD_d_refMultipleDDicts
+ * Experimental parameter.
+ * Default is 0 == disabled. Set to 1 to enable
+ *
+ * If enabled and dctx is allocated on the heap, then additional memory will be allocated
+ * to store references to multiple ZSTD_DDict. That is, multiple calls of ZSTD_refDDict()
+ * using a given ZSTD_DCtx, rather than overwriting the previous DDict reference, will instead
+ * store all references. At decompression time, the appropriate dictID is selected
+ * from the set of DDicts based on the dictID in the frame.
+ *
+ * Usage is simply calling ZSTD_refDDict() on multiple dict buffers.
+ *
+ * Param has values of byte ZSTD_refMultipleDDicts_e
+ *
+ * WARNING: Enabling this parameter and calling ZSTD_DCtx_refDDict(), will trigger memory
+ * allocation for the hash table. ZSTD_freeDCtx() also frees this memory.
+ * Memory is allocated as per ZSTD_DCtx::customMem.
+ *
+ * Although this function allocates memory for the table, the user is still responsible for
+ * memory management of the underlying ZSTD_DDict* themselves.
+ */
+#define ZSTD_d_refMultipleDDicts ZSTD_d_experimentalParam4
+
+
/*! ZSTD_DCtx_setFormat() :
+ * This function is REDUNDANT. Prefer ZSTD_DCtx_setParameter().
* Instruct the decoder context about what kind of data to decode next.
* This instruction is mandatory to decode data without a fully-formed header,
* such ZSTD_f_zstd1_magicless for example.
* @return : 0, or an error code (which can be tested using ZSTD_isError()). */
-ZSTDLIB_API size_t ZSTD_DCtx_setFormat(ZSTD_DCtx* dctx, ZSTD_format_e format);
+ZSTD_DEPRECATED("use ZSTD_DCtx_setParameter() instead")
+size_t ZSTD_DCtx_setFormat(ZSTD_DCtx* dctx, ZSTD_format_e format);
/*! ZSTD_decompressStream_simpleArgs() :
* Same as ZSTD_decompressStream(),
* but using only integral types as arguments.
* This can be helpful for binders from dynamic languages
* which have troubles handling structures containing memory pointers.
*/
-ZSTDLIB_API size_t ZSTD_decompressStream_simpleArgs (
+ZSTDLIB_STATIC_API size_t ZSTD_decompressStream_simpleArgs (
ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity, size_t* dstPos,
const void* src, size_t srcSize, size_t* srcPos);
/********************************************************************
* Advanced streaming functions
* Warning : most of these functions are now redundant with the Advanced API.
* Once Advanced API reaches "stable" status,
* redundant functions will be deprecated, and then at some point removed.
********************************************************************/
/*===== Advanced Streaming compression functions =====*/
/*! ZSTD_initCStream_srcSize() :
- * This function is deprecated, and equivalent to:
+ * This function is DEPRECATED, and equivalent to:
* ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
* ZSTD_CCtx_refCDict(zcs, NULL); // clear the dictionary (if any)
* ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel);
* ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize);
*
* pledgedSrcSize must be correct. If it is not known at init time, use
* ZSTD_CONTENTSIZE_UNKNOWN. Note that, for compatibility with older programs,
* "0" also disables frame content size field. It may be enabled in the future.
- * Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x
+ * This prototype will generate compilation warnings.
*/
-ZSTDLIB_API size_t
-ZSTD_initCStream_srcSize(ZSTD_CStream* zcs,
+ZSTD_DEPRECATED("use ZSTD_CCtx_reset, see zstd.h for detailed instructions")
+size_t ZSTD_initCStream_srcSize(ZSTD_CStream* zcs,
int compressionLevel,
unsigned long long pledgedSrcSize);
/*! ZSTD_initCStream_usingDict() :
- * This function is deprecated, and is equivalent to:
+ * This function is DEPRECATED, and is equivalent to:
* ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
* ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel);
* ZSTD_CCtx_loadDictionary(zcs, dict, dictSize);
*
* Creates of an internal CDict (incompatible with static CCtx), except if
* dict == NULL or dictSize < 8, in which case no dict is used.
* Note: dict is loaded with ZSTD_dct_auto (treated as a full zstd dictionary if
* it begins with ZSTD_MAGIC_DICTIONARY, else as raw content) and ZSTD_dlm_byCopy.
- * Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x
+ * This prototype will generate compilation warnings.
*/
-ZSTDLIB_API size_t
-ZSTD_initCStream_usingDict(ZSTD_CStream* zcs,
+ZSTD_DEPRECATED("use ZSTD_CCtx_reset, see zstd.h for detailed instructions")
+size_t ZSTD_initCStream_usingDict(ZSTD_CStream* zcs,
const void* dict, size_t dictSize,
int compressionLevel);
/*! ZSTD_initCStream_advanced() :
- * This function is deprecated, and is approximately equivalent to:
+ * This function is DEPRECATED, and is approximately equivalent to:
* ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
* // Pseudocode: Set each zstd parameter and leave the rest as-is.
* for ((param, value) : params) {
* ZSTD_CCtx_setParameter(zcs, param, value);
* }
* ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize);
* ZSTD_CCtx_loadDictionary(zcs, dict, dictSize);
*
* dict is loaded with ZSTD_dct_auto and ZSTD_dlm_byCopy.
* pledgedSrcSize must be correct.
* If srcSize is not known at init time, use value ZSTD_CONTENTSIZE_UNKNOWN.
- * Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x
+ * This prototype will generate compilation warnings.
*/
-ZSTDLIB_API size_t
-ZSTD_initCStream_advanced(ZSTD_CStream* zcs,
+ZSTD_DEPRECATED("use ZSTD_CCtx_reset, see zstd.h for detailed instructions")
+size_t ZSTD_initCStream_advanced(ZSTD_CStream* zcs,
const void* dict, size_t dictSize,
ZSTD_parameters params,
unsigned long long pledgedSrcSize);
/*! ZSTD_initCStream_usingCDict() :
- * This function is deprecated, and equivalent to:
+ * This function is DEPRECATED, and equivalent to:
* ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
* ZSTD_CCtx_refCDict(zcs, cdict);
*
* note : cdict will just be referenced, and must outlive compression session
- * Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x
+ * This prototype will generate compilation warnings.
*/
-ZSTDLIB_API size_t ZSTD_initCStream_usingCDict(ZSTD_CStream* zcs, const ZSTD_CDict* cdict);
+ZSTD_DEPRECATED("use ZSTD_CCtx_reset and ZSTD_CCtx_refCDict, see zstd.h for detailed instructions")
+size_t ZSTD_initCStream_usingCDict(ZSTD_CStream* zcs, const ZSTD_CDict* cdict);
/*! ZSTD_initCStream_usingCDict_advanced() :
* This function is DEPRECATED, and is approximately equivalent to:
* ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
* // Pseudocode: Set each zstd frame parameter and leave the rest as-is.
* for ((fParam, value) : fParams) {
* ZSTD_CCtx_setParameter(zcs, fParam, value);
* }
* ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize);
* ZSTD_CCtx_refCDict(zcs, cdict);
*
* same as ZSTD_initCStream_usingCDict(), with control over frame parameters.
* pledgedSrcSize must be correct. If srcSize is not known at init time, use
* value ZSTD_CONTENTSIZE_UNKNOWN.
- * Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x
+ * This prototype will generate compilation warnings.
*/
-ZSTDLIB_API size_t
-ZSTD_initCStream_usingCDict_advanced(ZSTD_CStream* zcs,
+ZSTD_DEPRECATED("use ZSTD_CCtx_reset and ZSTD_CCtx_refCDict, see zstd.h for detailed instructions")
+size_t ZSTD_initCStream_usingCDict_advanced(ZSTD_CStream* zcs,
const ZSTD_CDict* cdict,
ZSTD_frameParameters fParams,
unsigned long long pledgedSrcSize);
/*! ZSTD_resetCStream() :
- * This function is deprecated, and is equivalent to:
+ * This function is DEPRECATED, and is equivalent to:
* ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
* ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize);
+ * Note: ZSTD_resetCStream() interprets pledgedSrcSize == 0 as ZSTD_CONTENTSIZE_UNKNOWN, but
+ * ZSTD_CCtx_setPledgedSrcSize() does not do the same, so ZSTD_CONTENTSIZE_UNKNOWN must be
+ * explicitly specified.
*
* start a new frame, using same parameters from previous frame.
* This is typically useful to skip dictionary loading stage, since it will re-use it in-place.
* Note that zcs must be init at least once before using ZSTD_resetCStream().
* If pledgedSrcSize is not known at reset time, use macro ZSTD_CONTENTSIZE_UNKNOWN.
* If pledgedSrcSize > 0, its value must be correct, as it will be written in header, and controlled at the end.
* For the time being, pledgedSrcSize==0 is interpreted as "srcSize unknown" for compatibility with older programs,
* but it will change to mean "empty" in future version, so use macro ZSTD_CONTENTSIZE_UNKNOWN instead.
* @return : 0, or an error code (which can be tested using ZSTD_isError())
- * Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x
+ * This prototype will generate compilation warnings.
*/
-ZSTDLIB_API size_t ZSTD_resetCStream(ZSTD_CStream* zcs, unsigned long long pledgedSrcSize);
+ZSTD_DEPRECATED("use ZSTD_CCtx_reset, see zstd.h for detailed instructions")
+size_t ZSTD_resetCStream(ZSTD_CStream* zcs, unsigned long long pledgedSrcSize);
typedef struct {
unsigned long long ingested; /* nb input bytes read and buffered */
unsigned long long consumed; /* nb input bytes actually compressed */
unsigned long long produced; /* nb of compressed bytes generated and buffered */
unsigned long long flushed; /* nb of compressed bytes flushed : not provided; can be tracked from caller side */
unsigned currentJobID; /* MT only : latest started job nb */
unsigned nbActiveWorkers; /* MT only : nb of workers actively compressing at probe time */
} ZSTD_frameProgression;
/* ZSTD_getFrameProgression() :
* tells how much data has been ingested (read from input)
* consumed (input actually compressed) and produced (output) for current frame.
* Note : (ingested - consumed) is amount of input data buffered internally, not yet compressed.
* Aggregates progression inside active worker threads.
*/
-ZSTDLIB_API ZSTD_frameProgression ZSTD_getFrameProgression(const ZSTD_CCtx* cctx);
+ZSTDLIB_STATIC_API ZSTD_frameProgression ZSTD_getFrameProgression(const ZSTD_CCtx* cctx);
/*! ZSTD_toFlushNow() :
* Tell how many bytes are ready to be flushed immediately.
* Useful for multithreading scenarios (nbWorkers >= 1).
* Probe the oldest active job, defined as oldest job not yet entirely flushed,
* and check its output buffer.
* @return : amount of data stored in oldest job and ready to be flushed immediately.
* if @return == 0, it means either :
* + there is no active job (could be checked with ZSTD_frameProgression()), or
* + oldest job is still actively compressing data,
* but everything it has produced has also been flushed so far,
* therefore flush speed is limited by production speed of oldest job
* irrespective of the speed of concurrent (and newer) jobs.
*/
-ZSTDLIB_API size_t ZSTD_toFlushNow(ZSTD_CCtx* cctx);
+ZSTDLIB_STATIC_API size_t ZSTD_toFlushNow(ZSTD_CCtx* cctx);
/*===== Advanced Streaming decompression functions =====*/
/*!
* This function is deprecated, and is equivalent to:
*
* ZSTD_DCtx_reset(zds, ZSTD_reset_session_only);
* ZSTD_DCtx_loadDictionary(zds, dict, dictSize);
*
* note: no dictionary will be used if dict == NULL or dictSize < 8
* Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x
*/
-ZSTDLIB_API size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize);
+ZSTDLIB_STATIC_API size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize);
/*!
* This function is deprecated, and is equivalent to:
*
* ZSTD_DCtx_reset(zds, ZSTD_reset_session_only);
* ZSTD_DCtx_refDDict(zds, ddict);
*
* note : ddict is referenced, it must outlive decompression session
* Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x
*/
-ZSTDLIB_API size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* zds, const ZSTD_DDict* ddict);
+ZSTDLIB_STATIC_API size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* zds, const ZSTD_DDict* ddict);
/*!
* This function is deprecated, and is equivalent to:
*
* ZSTD_DCtx_reset(zds, ZSTD_reset_session_only);
*
* re-use decompression parameters from previous init; saves dictionary loading
* Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x
*/
-ZSTDLIB_API size_t ZSTD_resetDStream(ZSTD_DStream* zds);
+ZSTDLIB_STATIC_API size_t ZSTD_resetDStream(ZSTD_DStream* zds);
/*********************************************************************
* Buffer-less and synchronous inner streaming functions
*
* This is an advanced API, giving full control over buffer management, for users which need direct control over memory.
* But it's also a complex one, with several restrictions, documented below.
* Prefer normal streaming API for an easier experience.
********************************************************************* */
/**
Buffer-less streaming compression (synchronous mode)
A ZSTD_CCtx object is required to track streaming operations.
Use ZSTD_createCCtx() / ZSTD_freeCCtx() to manage resource.
ZSTD_CCtx object can be re-used multiple times within successive compression operations.
Start by initializing a context.
- Use ZSTD_compressBegin(), or ZSTD_compressBegin_usingDict() for dictionary compression,
- or ZSTD_compressBegin_advanced(), for finer parameter control.
+ Use ZSTD_compressBegin(), or ZSTD_compressBegin_usingDict() for dictionary compression.
It's also possible to duplicate a reference context which has already been initialized, using ZSTD_copyCCtx()
Then, consume your input using ZSTD_compressContinue().
There are some important considerations to keep in mind when using this advanced function :
- ZSTD_compressContinue() has no internal buffer. It uses externally provided buffers only.
- Interface is synchronous : input is consumed entirely and produces 1+ compressed blocks.
- Caller must ensure there is enough space in `dst` to store compressed data under worst case scenario.
Worst case evaluation is provided by ZSTD_compressBound().
ZSTD_compressContinue() doesn't guarantee recover after a failed compression.
- ZSTD_compressContinue() presumes prior input ***is still accessible and unmodified*** (up to maximum distance size, see WindowLog).
It remembers all previous contiguous blocks, plus one separated memory segment (which can itself consists of multiple contiguous blocks)
- ZSTD_compressContinue() detects that prior input has been overwritten when `src` buffer overlaps.
In which case, it will "discard" the relevant memory section from its history.
Finish a frame with ZSTD_compressEnd(), which will write the last block(s) and optional checksum.
It's possible to use srcSize==0, in which case, it will write a final empty block to end the frame.
Without last block mark, frames are considered unfinished (hence corrupted) by compliant decoders.
`ZSTD_CCtx` object can be re-used (ZSTD_compressBegin()) to compress again.
*/
/*===== Buffer-less streaming compression functions =====*/
-ZSTDLIB_API size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel);
-ZSTDLIB_API size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel);
-ZSTDLIB_API size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_parameters params, unsigned long long pledgedSrcSize); /**< pledgedSrcSize : If srcSize is not known at init time, use ZSTD_CONTENTSIZE_UNKNOWN */
-ZSTDLIB_API size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict); /**< note: fails if cdict==NULL */
-ZSTDLIB_API size_t ZSTD_compressBegin_usingCDict_advanced(ZSTD_CCtx* const cctx, const ZSTD_CDict* const cdict, ZSTD_frameParameters const fParams, unsigned long long const pledgedSrcSize); /* compression parameters are already set within cdict. pledgedSrcSize must be correct. If srcSize is not known, use macro ZSTD_CONTENTSIZE_UNKNOWN */
-ZSTDLIB_API size_t ZSTD_copyCCtx(ZSTD_CCtx* cctx, const ZSTD_CCtx* preparedCCtx, unsigned long long pledgedSrcSize); /**< note: if pledgedSrcSize is not known, use ZSTD_CONTENTSIZE_UNKNOWN */
-
-ZSTDLIB_API size_t ZSTD_compressContinue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
-ZSTDLIB_API size_t ZSTD_compressEnd(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
-
-
+ZSTDLIB_STATIC_API size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel);
+ZSTDLIB_STATIC_API size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel);
+ZSTDLIB_STATIC_API size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict); /**< note: fails if cdict==NULL */
+ZSTDLIB_STATIC_API size_t ZSTD_copyCCtx(ZSTD_CCtx* cctx, const ZSTD_CCtx* preparedCCtx, unsigned long long pledgedSrcSize); /**< note: if pledgedSrcSize is not known, use ZSTD_CONTENTSIZE_UNKNOWN */
+
+ZSTDLIB_STATIC_API size_t ZSTD_compressContinue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+ZSTDLIB_STATIC_API size_t ZSTD_compressEnd(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+
+/* The ZSTD_compressBegin_advanced() and ZSTD_compressBegin_usingCDict_advanced() are now DEPRECATED and will generate a compiler warning */
+ZSTD_DEPRECATED("use advanced API to access custom parameters")
+size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_parameters params, unsigned long long pledgedSrcSize); /**< pledgedSrcSize : If srcSize is not known at init time, use ZSTD_CONTENTSIZE_UNKNOWN */
+ZSTD_DEPRECATED("use advanced API to access custom parameters")
+size_t ZSTD_compressBegin_usingCDict_advanced(ZSTD_CCtx* const cctx, const ZSTD_CDict* const cdict, ZSTD_frameParameters const fParams, unsigned long long const pledgedSrcSize); /* compression parameters are already set within cdict. pledgedSrcSize must be correct. If srcSize is not known, use macro ZSTD_CONTENTSIZE_UNKNOWN */
/**
Buffer-less streaming decompression (synchronous mode)
A ZSTD_DCtx object is required to track streaming operations.
Use ZSTD_createDCtx() / ZSTD_freeDCtx() to manage it.
A ZSTD_DCtx object can be re-used multiple times.
First typical operation is to retrieve frame parameters, using ZSTD_getFrameHeader().
Frame header is extracted from the beginning of compressed frame, so providing only the frame's beginning is enough.
Data fragment must be large enough to ensure successful decoding.
`ZSTD_frameHeaderSize_max` bytes is guaranteed to always be large enough.
@result : 0 : successful decoding, the `ZSTD_frameHeader` structure is correctly filled.
>0 : `srcSize` is too small, please provide at least @result bytes on next attempt.
errorCode, which can be tested using ZSTD_isError().
It fills a ZSTD_frameHeader structure with important information to correctly decode the frame,
such as the dictionary ID, content size, or maximum back-reference distance (`windowSize`).
Note that these values could be wrong, either because of data corruption, or because a 3rd party deliberately spoofs false information.
As a consequence, check that values remain within valid application range.
For example, do not allocate memory blindly, check that `windowSize` is within expectation.
Each application can set its own limits, depending on local restrictions.
For extended interoperability, it is recommended to support `windowSize` of at least 8 MB.
ZSTD_decompressContinue() needs previous data blocks during decompression, up to `windowSize` bytes.
ZSTD_decompressContinue() is very sensitive to contiguity,
if 2 blocks don't follow each other, make sure that either the compressor breaks contiguity at the same place,
or that previous contiguous segment is large enough to properly handle maximum back-reference distance.
There are multiple ways to guarantee this condition.
The most memory efficient way is to use a round buffer of sufficient size.
Sufficient size is determined by invoking ZSTD_decodingBufferSize_min(),
which can @return an error code if required value is too large for current system (in 32-bits mode).
In a round buffer methodology, ZSTD_decompressContinue() decompresses each block next to previous one,
up to the moment there is not enough room left in the buffer to guarantee decoding another full block,
which maximum size is provided in `ZSTD_frameHeader` structure, field `blockSizeMax`.
At which point, decoding can resume from the beginning of the buffer.
Note that already decoded data stored in the buffer should be flushed before being overwritten.
There are alternatives possible, for example using two or more buffers of size `windowSize` each, though they consume more memory.
Finally, if you control the compression process, you can also ignore all buffer size rules,
as long as the encoder and decoder progress in "lock-step",
aka use exactly the same buffer sizes, break contiguity at the same place, etc.
Once buffers are setup, start decompression, with ZSTD_decompressBegin().
If decompression requires a dictionary, use ZSTD_decompressBegin_usingDict() or ZSTD_decompressBegin_usingDDict().
Then use ZSTD_nextSrcSizeToDecompress() and ZSTD_decompressContinue() alternatively.
ZSTD_nextSrcSizeToDecompress() tells how many bytes to provide as 'srcSize' to ZSTD_decompressContinue().
ZSTD_decompressContinue() requires this _exact_ amount of bytes, or it will fail.
@result of ZSTD_decompressContinue() is the number of bytes regenerated within 'dst' (necessarily <= dstCapacity).
It can be zero : it just means ZSTD_decompressContinue() has decoded some metadata item.
It can also be an error code, which can be tested with ZSTD_isError().
A frame is fully decoded when ZSTD_nextSrcSizeToDecompress() returns zero.
Context can then be reset to start a new decompression.
Note : it's possible to know if next input to present is a header or a block, using ZSTD_nextInputType().
This information is not required to properly decode a frame.
== Special case : skippable frames ==
Skippable frames allow integration of user-defined data into a flow of concatenated frames.
Skippable frames will be ignored (skipped) by decompressor.
The format of skippable frames is as follows :
a) Skippable frame ID - 4 Bytes, Little endian format, any value from 0x184D2A50 to 0x184D2A5F
b) Frame Size - 4 Bytes, Little endian format, unsigned 32-bits
c) Frame Content - any content (User Data) of length equal to Frame Size
For skippable frames ZSTD_getFrameHeader() returns zfhPtr->frameType==ZSTD_skippableFrame.
For skippable frames ZSTD_decompressContinue() always returns 0 : it only skips the content.
*/
/*===== Buffer-less streaming decompression functions =====*/
typedef enum { ZSTD_frame, ZSTD_skippableFrame } ZSTD_frameType_e;
typedef struct {
unsigned long long frameContentSize; /* if == ZSTD_CONTENTSIZE_UNKNOWN, it means this field is not available. 0 means "empty" */
unsigned long long windowSize; /* can be very large, up to <= frameContentSize */
unsigned blockSizeMax;
ZSTD_frameType_e frameType; /* if == ZSTD_skippableFrame, frameContentSize is the size of skippable content */
unsigned headerSize;
unsigned dictID;
unsigned checksumFlag;
} ZSTD_frameHeader;
/*! ZSTD_getFrameHeader() :
* decode Frame Header, or requires larger `srcSize`.
* @return : 0, `zfhPtr` is correctly filled,
* >0, `srcSize` is too small, value is wanted `srcSize` amount,
* or an error code, which can be tested using ZSTD_isError() */
-ZSTDLIB_API size_t ZSTD_getFrameHeader(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize); /**< doesn't consume input */
+ZSTDLIB_STATIC_API size_t ZSTD_getFrameHeader(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize); /**< doesn't consume input */
/*! ZSTD_getFrameHeader_advanced() :
* same as ZSTD_getFrameHeader(),
* with added capability to select a format (like ZSTD_f_zstd1_magicless) */
-ZSTDLIB_API size_t ZSTD_getFrameHeader_advanced(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize, ZSTD_format_e format);
-ZSTDLIB_API size_t ZSTD_decodingBufferSize_min(unsigned long long windowSize, unsigned long long frameContentSize); /**< when frame content size is not known, pass in frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN */
+ZSTDLIB_STATIC_API size_t ZSTD_getFrameHeader_advanced(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize, ZSTD_format_e format);
+ZSTDLIB_STATIC_API size_t ZSTD_decodingBufferSize_min(unsigned long long windowSize, unsigned long long frameContentSize); /**< when frame content size is not known, pass in frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN */
-ZSTDLIB_API size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx);
-ZSTDLIB_API size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize);
-ZSTDLIB_API size_t ZSTD_decompressBegin_usingDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict);
+ZSTDLIB_STATIC_API size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx);
+ZSTDLIB_STATIC_API size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize);
+ZSTDLIB_STATIC_API size_t ZSTD_decompressBegin_usingDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict);
-ZSTDLIB_API size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx);
-ZSTDLIB_API size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+ZSTDLIB_STATIC_API size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx);
+ZSTDLIB_STATIC_API size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
/* misc */
-ZSTDLIB_API void ZSTD_copyDCtx(ZSTD_DCtx* dctx, const ZSTD_DCtx* preparedDCtx);
+ZSTDLIB_STATIC_API void ZSTD_copyDCtx(ZSTD_DCtx* dctx, const ZSTD_DCtx* preparedDCtx);
typedef enum { ZSTDnit_frameHeader, ZSTDnit_blockHeader, ZSTDnit_block, ZSTDnit_lastBlock, ZSTDnit_checksum, ZSTDnit_skippableFrame } ZSTD_nextInputType_e;
-ZSTDLIB_API ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx);
+ZSTDLIB_STATIC_API ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx);
/* ============================ */
/** Block level API */
/* ============================ */
/*!
Block functions produce and decode raw zstd blocks, without frame metadata.
Frame metadata cost is typically ~12 bytes, which can be non-negligible for very small blocks (< 100 bytes).
But users will have to take in charge needed metadata to regenerate data, such as compressed and content sizes.
A few rules to respect :
- Compressing and decompressing require a context structure
+ Use ZSTD_createCCtx() and ZSTD_createDCtx()
- It is necessary to init context before starting
+ compression : any ZSTD_compressBegin*() variant, including with dictionary
+ decompression : any ZSTD_decompressBegin*() variant, including with dictionary
+ copyCCtx() and copyDCtx() can be used too
- Block size is limited, it must be <= ZSTD_getBlockSize() <= ZSTD_BLOCKSIZE_MAX == 128 KB
+ If input is larger than a block size, it's necessary to split input data into multiple blocks
+ For inputs larger than a single block, consider using regular ZSTD_compress() instead.
Frame metadata is not that costly, and quickly becomes negligible as source size grows larger than a block.
- When a block is considered not compressible enough, ZSTD_compressBlock() result will be 0 (zero) !
===> In which case, nothing is produced into `dst` !
+ User __must__ test for such outcome and deal directly with uncompressed data
+ A block cannot be declared incompressible if ZSTD_compressBlock() return value was != 0.
Doing so would mess up with statistics history, leading to potential data corruption.
+ ZSTD_decompressBlock() _doesn't accept uncompressed data as input_ !!
+ In case of multiple successive blocks, should some of them be uncompressed,
decoder must be informed of their existence in order to follow proper history.
Use ZSTD_insertBlock() for such a case.
*/
/*===== Raw zstd block functions =====*/
-ZSTDLIB_API size_t ZSTD_getBlockSize (const ZSTD_CCtx* cctx);
-ZSTDLIB_API size_t ZSTD_compressBlock (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
-ZSTDLIB_API size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
-ZSTDLIB_API size_t ZSTD_insertBlock (ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize); /**< insert uncompressed block into `dctx` history. Useful for multi-blocks decompression. */
+ZSTDLIB_STATIC_API size_t ZSTD_getBlockSize (const ZSTD_CCtx* cctx);
+ZSTDLIB_STATIC_API size_t ZSTD_compressBlock (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+ZSTDLIB_STATIC_API size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+ZSTDLIB_STATIC_API size_t ZSTD_insertBlock (ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize); /**< insert uncompressed block into `dctx` history. Useful for multi-blocks decompression. */
#endif /* ZSTD_H_ZSTD_STATIC_LINKING_ONLY */
#if defined (__cplusplus)
}
#endif
diff --git a/sys/contrib/zstd/lib/common/zstd_errors.h b/sys/contrib/zstd/lib/zstd_errors.h
similarity index 98%
rename from sys/contrib/zstd/lib/common/zstd_errors.h
rename to sys/contrib/zstd/lib/zstd_errors.h
index 6d0d0030043e..fa3686b77243 100644
--- a/sys/contrib/zstd/lib/common/zstd_errors.h
+++ b/sys/contrib/zstd/lib/zstd_errors.h
@@ -1,95 +1,95 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_ERRORS_H_398273423
#define ZSTD_ERRORS_H_398273423
#if defined (__cplusplus)
extern "C" {
#endif
/*===== dependency =====*/
#include <stddef.h> /* size_t */
/* ===== ZSTDERRORLIB_API : control library symbols visibility ===== */
#ifndef ZSTDERRORLIB_VISIBILITY
# if defined(__GNUC__) && (__GNUC__ >= 4)
# define ZSTDERRORLIB_VISIBILITY __attribute__ ((visibility ("default")))
# else
# define ZSTDERRORLIB_VISIBILITY
# endif
#endif
#if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1)
# define ZSTDERRORLIB_API __declspec(dllexport) ZSTDERRORLIB_VISIBILITY
#elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1)
# define ZSTDERRORLIB_API __declspec(dllimport) ZSTDERRORLIB_VISIBILITY /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
#else
# define ZSTDERRORLIB_API ZSTDERRORLIB_VISIBILITY
#endif
/*-*********************************************
* Error codes list
*-*********************************************
* Error codes _values_ are pinned down since v1.3.1 only.
* Therefore, don't rely on values if you may link to any version < v1.3.1.
*
* Only values < 100 are considered stable.
*
* note 1 : this API shall be used with static linking only.
* dynamic linking is not yet officially supported.
* note 2 : Prefer relying on the enum than on its value whenever possible
* This is the only supported way to use the error list < v1.3.1
* note 3 : ZSTD_isError() is always correct, whatever the library version.
**********************************************/
typedef enum {
ZSTD_error_no_error = 0,
ZSTD_error_GENERIC = 1,
ZSTD_error_prefix_unknown = 10,
ZSTD_error_version_unsupported = 12,
ZSTD_error_frameParameter_unsupported = 14,
ZSTD_error_frameParameter_windowTooLarge = 16,
ZSTD_error_corruption_detected = 20,
ZSTD_error_checksum_wrong = 22,
ZSTD_error_dictionary_corrupted = 30,
ZSTD_error_dictionary_wrong = 32,
ZSTD_error_dictionaryCreation_failed = 34,
ZSTD_error_parameter_unsupported = 40,
ZSTD_error_parameter_outOfBound = 42,
ZSTD_error_tableLog_tooLarge = 44,
ZSTD_error_maxSymbolValue_tooLarge = 46,
ZSTD_error_maxSymbolValue_tooSmall = 48,
ZSTD_error_stage_wrong = 60,
ZSTD_error_init_missing = 62,
ZSTD_error_memory_allocation = 64,
ZSTD_error_workSpace_tooSmall= 66,
ZSTD_error_dstSize_tooSmall = 70,
ZSTD_error_srcSize_wrong = 72,
ZSTD_error_dstBuffer_null = 74,
/* following error codes are __NOT STABLE__, they can be removed or changed in future versions */
ZSTD_error_frameIndex_tooLarge = 100,
ZSTD_error_seekableIO = 102,
ZSTD_error_dstBuffer_wrong = 104,
ZSTD_error_srcBuffer_wrong = 105,
ZSTD_error_maxCode = 120 /* never EVER use this value directly, it can change in future versions! Use ZSTD_isError() instead */
} ZSTD_ErrorCode;
/*! ZSTD_getErrorCode() :
convert a `size_t` function result into a `ZSTD_ErrorCode` enum type,
which can be used to compare with enum list published above */
ZSTDERRORLIB_API ZSTD_ErrorCode ZSTD_getErrorCode(size_t functionResult);
ZSTDERRORLIB_API const char* ZSTD_getErrorString(ZSTD_ErrorCode code); /**< Same as ZSTD_getErrorName, but using a `ZSTD_ErrorCode` enum argument */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_ERRORS_H_398273423 */
diff --git a/sys/contrib/zstd/programs/Makefile b/sys/contrib/zstd/programs/Makefile
index 8641d0ee48a0..f77e1b7f10f8 100644
--- a/sys/contrib/zstd/programs/Makefile
+++ b/sys/contrib/zstd/programs/Makefile
@@ -1,501 +1,435 @@
# ################################################################
-# Copyright (c) 2015-2020, Yann Collet, Facebook, Inc.
+# Copyright (c) Yann Collet, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under both the BSD-style license (found in the
# LICENSE file in the root directory of this source tree) and the GPLv2 (found
# in the COPYING file in the root directory of this source tree).
# You may select, at your option, one of the above-listed licenses.
# ##########################################################################
# zstd : Command Line Utility, supporting gzip-like arguments
# zstd32 : Same as zstd, but forced to compile in 32-bits mode
-# zstd_nolegacy : zstd without support of decompression of legacy versions
+# zstd-nolegacy : zstd without support of decompression of legacy versions
# zstd-small : minimal zstd without dictionary builder and benchmark
# zstd-compress : compressor-only version of zstd
# zstd-decompress : decompressor-only version of zstd
# ##########################################################################
.PHONY: default
default: zstd-release
-# silent mode by default; verbose can be triggered by V=1 or VERBOSE=1
-$(V)$(VERBOSE).SILENT:
+LIBZSTD := ../lib
-
-ZSTDDIR := ../lib
-
-# Version numbers
-LIBVER_SRC := $(ZSTDDIR)/zstd.h
-LIBVER_MAJOR_SCRIPT:=`sed -n '/define ZSTD_VERSION_MAJOR/s/.*[[:blank:]]\([0-9][0-9]*\).*/\1/p' < $(LIBVER_SRC)`
-LIBVER_MINOR_SCRIPT:=`sed -n '/define ZSTD_VERSION_MINOR/s/.*[[:blank:]]\([0-9][0-9]*\).*/\1/p' < $(LIBVER_SRC)`
-LIBVER_PATCH_SCRIPT:=`sed -n '/define ZSTD_VERSION_RELEASE/s/.*[[:blank:]]\([0-9][0-9]*\).*/\1/p' < $(LIBVER_SRC)`
-LIBVER_SCRIPT:= $(LIBVER_MAJOR_SCRIPT).$(LIBVER_MINOR_SCRIPT).$(LIBVER_PATCH_SCRIPT)
-LIBVER_MAJOR := $(shell echo $(LIBVER_MAJOR_SCRIPT))
-LIBVER_MINOR := $(shell echo $(LIBVER_MINOR_SCRIPT))
-LIBVER_PATCH := $(shell echo $(LIBVER_PATCH_SCRIPT))
-LIBVER := $(shell echo $(LIBVER_SCRIPT))
-
-ZSTD_VERSION = $(LIBVER)
-
-HAVE_COLORNEVER = $(shell echo a | grep --color=never a > /dev/null 2> /dev/null && echo 1 || echo 0)
-GREP_OPTIONS ?=
-ifeq ($HAVE_COLORNEVER, 1)
- GREP_OPTIONS += --color=never
-endif
-GREP = grep $(GREP_OPTIONS)
+include $(LIBZSTD)/libzstd.mk
ifeq ($(shell $(CC) -v 2>&1 | $(GREP) -c "gcc version "), 1)
ALIGN_LOOP = -falign-loops=32
else
ALIGN_LOOP =
endif
-DEBUGLEVEL ?= 0
-CPPFLAGS += -DXXH_NAMESPACE=ZSTD_ -DDEBUGLEVEL=$(DEBUGLEVEL)
-ifeq ($(OS),Windows_NT) # MinGW assumed
- CPPFLAGS += -D__USE_MINGW_ANSI_STDIO # compatibility with %zu formatting
-endif
-CFLAGS ?= -O3
-DEBUGFLAGS+=-Wall -Wextra -Wcast-qual -Wcast-align -Wshadow \
- -Wstrict-aliasing=1 -Wswitch-enum -Wdeclaration-after-statement \
- -Wstrict-prototypes -Wundef -Wpointer-arith \
- -Wvla -Wformat=2 -Winit-self -Wfloat-equal -Wwrite-strings \
- -Wredundant-decls -Wmissing-prototypes -Wc++-compat
-CFLAGS += $(DEBUGFLAGS) $(MOREFLAGS)
-FLAGS = $(CPPFLAGS) $(CFLAGS) $(LDFLAGS)
-
-ZSTDLIB_COMMON := $(ZSTDDIR)/common
-ZSTDLIB_COMPRESS := $(ZSTDDIR)/compress
-ZSTDLIB_DECOMPRESS := $(ZSTDDIR)/decompress
-ZDICT_DIR := $(ZSTDDIR)/dictBuilder
-ZSTDLEGACY_DIR := $(ZSTDDIR)/legacy
-
-vpath %.c $(ZSTDLIB_COMMON) $(ZSTDLIB_COMPRESS) $(ZSTDLIB_DECOMPRESS) $(ZDICT_DIR) $(ZSTDLEGACY_DIR)
-
-ZSTDLIB_COMMON_C := $(wildcard $(ZSTDLIB_COMMON)/*.c)
-ZSTDLIB_COMPRESS_C := $(wildcard $(ZSTDLIB_COMPRESS)/*.c)
-ZSTDLIB_DECOMPRESS_C := $(wildcard $(ZSTDLIB_DECOMPRESS)/*.c)
-ZSTDLIB_CORE_SRC := $(ZSTDLIB_DECOMPRESS_C) $(ZSTDLIB_COMMON_C) $(ZSTDLIB_COMPRESS_C)
-ZDICT_SRC := $(wildcard $(ZDICT_DIR)/*.c)
-
-ZSTD_LEGACY_SUPPORT ?= 5
-ZSTDLEGACY_SRC :=
-ifneq ($(ZSTD_LEGACY_SUPPORT), 0)
-ifeq ($(shell test $(ZSTD_LEGACY_SUPPORT) -lt 8; echo $$?), 0)
- ZSTDLEGACY_SRC += $(shell ls $(ZSTDLEGACY_DIR)/*.c | $(GREP) 'v0[$(ZSTD_LEGACY_SUPPORT)-7]')
-endif
-endif
+ZSTDLIB_COMMON_SRC := $(sort $(ZSTD_COMMON_FILES))
+ZSTDLIB_COMPRESS_SRC := $(sort $(ZSTD_COMPRESS_FILES))
+ZSTDLIB_DECOMPRESS_SRC := $(sort $(ZSTD_DECOMPRESS_FILES))
+ZSTDLIB_CORE_SRC := $(sort $(ZSTD_DECOMPRESS_FILES) $(ZSTD_COMMON_FILES) $(ZSTD_COMPRESS_FILES))
+ZDICT_SRC := $(sort $(ZSTD_DICTBUILDER_FILES))
+ZSTDLEGACY_SRC := $(sort $(ZSTD_LEGACY_FILES))
# Sort files in alphabetical order for reproducible builds
ZSTDLIB_FULL_SRC = $(sort $(ZSTDLIB_CORE_SRC) $(ZSTDLEGACY_SRC) $(ZDICT_SRC))
-ZSTDLIB_LOCAL_SRC := $(notdir $(ZSTDLIB_FULL_SRC))
-ZSTDLIB_LOCAL_OBJ := $(ZSTDLIB_LOCAL_SRC:.c=.o)
+ZSTDLIB_LOCAL_SRC = $(notdir $(ZSTDLIB_FULL_SRC))
+ZSTDLIB_LOCAL_OBJ0 := $(ZSTDLIB_LOCAL_SRC:.c=.o)
+ZSTDLIB_LOCAL_OBJ := $(ZSTDLIB_LOCAL_OBJ0:.S=.o)
-ZSTD_CLI_SRC := $(wildcard *.c)
+ZSTD_CLI_SRC := $(sort $(wildcard *.c))
ZSTD_CLI_OBJ := $(ZSTD_CLI_SRC:.c=.o)
-ZSTD_ALL_SRC := $(ZSTDLIB_LOCAL_SRC) $(ZSTD_CLI_SRC)
-ZSTD_ALL_OBJ := $(ZSTD_ALL_SRC:.c=.o)
-
-UNAME := $(shell uname)
-ifeq ($(UNAME), Darwin)
- HASH ?= md5
-else ifeq ($(UNAME), FreeBSD)
- HASH ?= gmd5sum
-else ifeq ($(UNAME), OpenBSD)
- HASH ?= md5
-endif
-HASH ?= md5sum
-HAVE_HASH :=$(shell echo 1 | $(HASH) > /dev/null && echo 1 || echo 0)
-
-ifndef BUILD_DIR
-HASH_DIR = conf_$(shell echo $(CC) $(CPPFLAGS) $(CFLAGS) $(LDFLAGS) $(ZSTD_FILES) | $(HASH) | cut -f 1 -d " ")
-ifeq ($(HAVE_HASH),0)
- $(info warning : could not find HASH ($(HASH)), needed to differentiate builds using different flags)
- BUILD_DIR := obj/generic_noconf
-endif
-endif # BUILD_DIR
+ZSTD_ALL_SRC = $(ZSTDLIB_LOCAL_SRC) $(ZSTD_CLI_SRC)
+ZSTD_ALL_OBJ0 := $(ZSTD_ALL_SRC:.c=.o)
+ZSTD_ALL_OBJ := $(ZSTD_ALL_OBJ0:.S=.o)
# Define *.exe as extension for Windows systems
ifneq (,$(filter Windows%,$(OS)))
EXT =.exe
RES64_FILE = windres/zstd64.res
RES32_FILE = windres/zstd32.res
ifneq (,$(filter x86_64%,$(shell $(CC) -dumpmachine)))
RES_FILE = $(RES64_FILE)
else
RES_FILE = $(RES32_FILE)
endif
else
EXT =
endif
-VOID = /dev/null
-
-# Make 4.3 doesn't support '\#' anymore (https://lwn.net/Articles/810071/)
-NUM_SYMBOL := \#
-
# thread detection
NO_THREAD_MSG := ==> no threads, building without multithreading support
HAVE_PTHREAD := $(shell printf '$(NUM_SYMBOL)include <pthread.h>\nint main(void) { return 0; }' > have_pthread.c && $(CC) $(FLAGS) -o have_pthread$(EXT) have_pthread.c -pthread 2> $(VOID) && rm have_pthread$(EXT) && echo 1 || echo 0; rm have_pthread.c)
HAVE_THREAD := $(shell [ "$(HAVE_PTHREAD)" -eq "1" -o -n "$(filter Windows%,$(OS))" ] && echo 1 || echo 0)
ifeq ($(HAVE_THREAD), 1)
THREAD_MSG := ==> building with threading support
THREAD_CPP := -DZSTD_MULTITHREAD
THREAD_LD := -pthread
else
THREAD_MSG := $(NO_THREAD_MSG)
endif
# zlib detection
NO_ZLIB_MSG := ==> no zlib, building zstd without .gz support
-HAVE_ZLIB := $(shell printf '$(NUM_SYMBOL)include <zlib.h>\nint main(void) { return 0; }' > have_zlib.c && $(CC) $(FLAGS) -o have_zlib$(EXT) have_zlib.c -lz 2> $(VOID) && rm have_zlib$(EXT) && echo 1 || echo 0; rm have_zlib.c)
+HAVE_ZLIB ?= $(shell printf '$(NUM_SYMBOL)include <zlib.h>\nint main(void) { return 0; }' > have_zlib.c && $(CC) $(FLAGS) -o have_zlib$(EXT) have_zlib.c -lz 2> $(VOID) && rm have_zlib$(EXT) && echo 1 || echo 0; rm have_zlib.c)
ifeq ($(HAVE_ZLIB), 1)
ZLIB_MSG := ==> building zstd with .gz compression support
ZLIBCPP = -DZSTD_GZCOMPRESS -DZSTD_GZDECOMPRESS
ZLIBLD = -lz
else
ZLIB_MSG := $(NO_ZLIB_MSG)
endif
# lzma detection
NO_LZMA_MSG := ==> no liblzma, building zstd without .xz/.lzma support
-HAVE_LZMA := $(shell printf '$(NUM_SYMBOL)include <lzma.h>\nint main(void) { return 0; }' > have_lzma.c && $(CC) $(FLAGS) -o have_lzma$(EXT) have_lzma.c -llzma 2> $(VOID) && rm have_lzma$(EXT) && echo 1 || echo 0; rm have_lzma.c)
+HAVE_LZMA ?= $(shell printf '$(NUM_SYMBOL)include <lzma.h>\nint main(void) { return 0; }' > have_lzma.c && $(CC) $(FLAGS) -o have_lzma$(EXT) have_lzma.c -llzma 2> $(VOID) && rm have_lzma$(EXT) && echo 1 || echo 0; rm have_lzma.c)
ifeq ($(HAVE_LZMA), 1)
LZMA_MSG := ==> building zstd with .xz/.lzma compression support
LZMACPP = -DZSTD_LZMACOMPRESS -DZSTD_LZMADECOMPRESS
LZMALD = -llzma
else
LZMA_MSG := $(NO_LZMA_MSG)
endif
# lz4 detection
NO_LZ4_MSG := ==> no liblz4, building zstd without .lz4 support
-HAVE_LZ4 := $(shell printf '$(NUM_SYMBOL)include <lz4frame.h>\n$(NUM_SYMBOL)include <lz4.h>\nint main(void) { return 0; }' > have_lz4.c && $(CC) $(FLAGS) -o have_lz4$(EXT) have_lz4.c -llz4 2> $(VOID) && rm have_lz4$(EXT) && echo 1 || echo 0; rm have_lz4.c)
+HAVE_LZ4 ?= $(shell printf '$(NUM_SYMBOL)include <lz4frame.h>\n$(NUM_SYMBOL)include <lz4.h>\nint main(void) { return 0; }' > have_lz4.c && $(CC) $(FLAGS) -o have_lz4$(EXT) have_lz4.c -llz4 2> $(VOID) && rm have_lz4$(EXT) && echo 1 || echo 0; rm have_lz4.c)
ifeq ($(HAVE_LZ4), 1)
LZ4_MSG := ==> building zstd with .lz4 compression support
LZ4CPP = -DZSTD_LZ4COMPRESS -DZSTD_LZ4DECOMPRESS
LZ4LD = -llz4
else
LZ4_MSG := $(NO_LZ4_MSG)
endif
# explicit backtrace enable/disable for Linux & Darwin
ifeq ($(BACKTRACE), 0)
DEBUGFLAGS += -DBACKTRACE_ENABLE=0
endif
ifeq (,$(filter Windows%, $(OS)))
ifeq ($(BACKTRACE), 1)
DEBUGFLAGS += -DBACKTRACE_ENABLE=1
DEBUGFLAGS_LD += -rdynamic
endif
endif
SET_CACHE_DIRECTORY = \
- $(MAKE) --no-print-directory $@ \
+ +$(MAKE) --no-print-directory $@ \
BUILD_DIR=obj/$(HASH_DIR) \
CPPFLAGS="$(CPPFLAGS)" \
CFLAGS="$(CFLAGS)" \
- LDFLAGS="$(LDFLAGS)"
+ LDFLAGS="$(LDFLAGS)" \
+ LDLIBS="$(LDLIBS)" \
+ ZSTD_ALL_SRC="$(ZSTD_ALL_SRC)"
.PHONY: all
all: zstd
.PHONY: allVariants
-allVariants: zstd zstd-compress zstd-decompress zstd-small zstd-nolegacy zstd-dictBuilder
+allVariants: zstd zstd-compress zstd-decompress zstd-small zstd-frugal zstd-nolegacy zstd-dictBuilder
.PHONY: zstd # must always be run
zstd : CPPFLAGS += $(THREAD_CPP) $(ZLIBCPP) $(LZMACPP) $(LZ4CPP)
-zstd : LDFLAGS += $(THREAD_LD) $(ZLIBLD) $(LZMALD) $(LZ4LD) $(DEBUGFLAGS_LD)
+zstd : LDFLAGS += $(THREAD_LD) $(DEBUGFLAGS_LD)
+zstd : LDLIBS += $(ZLIBLD) $(LZMALD) $(LZ4LD)
zstd : CPPFLAGS += -DZSTD_LEGACY_SUPPORT=$(ZSTD_LEGACY_SUPPORT)
ifneq (,$(filter Windows%,$(OS)))
zstd : $(RES_FILE)
endif
ifndef BUILD_DIR
# generate BUILD_DIR from flags
zstd:
$(SET_CACHE_DIRECTORY)
else
# BUILD_DIR is defined
ZSTD_OBJ := $(addprefix $(BUILD_DIR)/, $(ZSTD_ALL_OBJ))
$(BUILD_DIR)/zstd : $(ZSTD_OBJ)
@echo "$(THREAD_MSG)"
@echo "$(ZLIB_MSG)"
@echo "$(LZMA_MSG)"
@echo "$(LZ4_MSG)"
@echo LINK $@
- $(CC) $(FLAGS) $^ -o $@$(EXT) $(LDFLAGS)
+ $(CC) $(FLAGS) $^ $(LDLIBS) -o $@$(EXT)
ifeq ($(HAVE_HASH),1)
-SRCBIN_HASH = $(shell cat $(BUILD_DIR)/zstd 2> $(VOID) | $(HASH) | cut -f 1 -d " ")
-DSTBIN_HASH = $(shell cat zstd 2> $(VOID) | $(HASH) | cut -f 1 -d " ")
+SRCBIN_HASH = $(shell cat $(BUILD_DIR)/zstd$(EXT) 2> $(VOID) | $(HASH) | cut -f 1 -d " ")
+DSTBIN_HASH = $(shell cat zstd$(EXT) 2> $(VOID) | $(HASH) | cut -f 1 -d " ")
BIN_ISDIFFERENT = $(if $(filter $(SRCBIN_HASH),$(DSTBIN_HASH)),0,1)
else
BIN_ISDIFFERENT = 1
endif
zstd : $(BUILD_DIR)/zstd
if [ $(BIN_ISDIFFERENT) -eq 1 ]; then \
- cp -f $< $@; \
+ cp -f $<$(EXT) $@$(EXT); \
echo zstd build completed; \
else \
echo zstd already built; \
fi
endif # BUILD_DIR
.PHONY: zstd-release
zstd-release: DEBUGFLAGS := -DBACKTRACE_ENABLE=0
zstd-release: DEBUGFLAGS_LD :=
zstd-release: zstd
zstd32 : CPPFLAGS += $(THREAD_CPP)
zstd32 : LDFLAGS += $(THREAD_LD)
zstd32 : CPPFLAGS += -DZSTD_LEGACY_SUPPORT=$(ZSTD_LEGACY_SUPPORT)
ifneq (,$(filter Windows%,$(OS)))
zstd32 : $(RES32_FILE)
endif
zstd32 : $(ZSTDLIB_FULL_SRC) $(ZSTD_CLI_SRC)
$(CC) -m32 $(FLAGS) $^ -o $@$(EXT)
## zstd-nolegacy: same scope as zstd, with just support of legacy formats removed
zstd-nolegacy : LDFLAGS += $(THREAD_LD) $(ZLIBLD) $(LZMALD) $(LZ4LD) $(DEBUGFLAGS_LD)
+zstd-nolegacy : CPPFLAGS += -UZSTD_LEGACY_SUPPORT -DZSTD_LEGACY_SUPPORT=0
zstd-nolegacy : $(ZSTDLIB_CORE_SRC) $(ZDICT_SRC) $(ZSTD_CLI_OBJ)
$(CC) $(FLAGS) $^ -o $@$(EXT) $(LDFLAGS)
+.PHONY: zstd-nomt
zstd-nomt : THREAD_CPP :=
zstd-nomt : THREAD_LD :=
zstd-nomt : THREAD_MSG := - multi-threading disabled
zstd-nomt : zstd
+.PHONY: zstd-nogz
zstd-nogz : ZLIBCPP :=
zstd-nogz : ZLIBLD :=
zstd-nogz : ZLIB_MSG := - gzip support is disabled
zstd-nogz : zstd
+.PHONY: zstd-noxz
zstd-noxz : LZMACPP :=
zstd-noxz : LZMALD :=
zstd-noxz : LZMA_MSG := - xz/lzma support is disabled
zstd-noxz : zstd
-## zstd-dll: zstd executable linked to dynamic library libzstd (must already exist)
-# note : the following target doesn't link
-# because zstd uses non-public symbols from libzstd
-# such as XXH64 (for benchmark),
-# ZDICT_trainFromBuffer_unsafe_legacy (for dictionary builder)
-# and ZSTD_cycleLog (likely for --patch-from).
-# It's unclear at this stage if this is a scenario that must be supported
+## zstd-dll: zstd executable linked to dynamic library libzstd (must have same version)
.PHONY: zstd-dll
-zstd-dll : LDFLAGS+= -L$(ZSTDDIR) -lzstd
-zstd-dll : ZSTDLIB_FULL_SRC =
-zstd-dll : $(ZSTD_CLI_OBJ)
- $(CC) $(FLAGS) $^ -o $@$(EXT) $(LDFLAGS)
+zstd-dll : LDFLAGS+= -L$(LIBZSTD)
+zstd-dll : LDLIBS += -lzstd
+zstd-dll : ZSTDLIB_LOCAL_SRC = xxhash.c
+zstd-dll : zstd
## zstd-pgo: zstd executable optimized with PGO.
+.PHONY: zstd-pgo
zstd-pgo :
$(MAKE) clean
$(MAKE) zstd MOREFLAGS=-fprofile-generate
./zstd -b19i1 $(PROFILE_WITH)
./zstd -b16i1 $(PROFILE_WITH)
./zstd -b9i2 $(PROFILE_WITH)
./zstd -b $(PROFILE_WITH)
./zstd -b7i2 $(PROFILE_WITH)
./zstd -b5 $(PROFILE_WITH)
$(RM) zstd *.o
case $(CC) in *clang*) if ! [ -e default.profdata ]; then llvm-profdata merge -output=default.profdata default*.profraw; fi ;; esac
$(MAKE) zstd MOREFLAGS=-fprofile-use
## zstd-small: minimal target, supporting only zstd compression and decompression. no bench. no legacy. no other format.
zstd-small: CFLAGS = -Os -s
zstd-frugal zstd-small: $(ZSTDLIB_CORE_SRC) zstdcli.c util.c timefn.c fileio.c
- $(CC) $(FLAGS) -DZSTD_NOBENCH -DZSTD_NODICT $^ -o $@$(EXT)
+ $(CC) $(FLAGS) -DZSTD_NOBENCH -DZSTD_NODICT -DZSTD_NOTRACE -UZSTD_LEGACY_SUPPORT -DZSTD_LEGACY_SUPPORT=0 $^ -o $@$(EXT)
-zstd-decompress: $(ZSTDLIB_COMMON_C) $(ZSTDLIB_DECOMPRESS_C) zstdcli.c util.c timefn.c fileio.c
- $(CC) $(FLAGS) -DZSTD_NOBENCH -DZSTD_NODICT -DZSTD_NOCOMPRESS $^ -o $@$(EXT)
+zstd-decompress: $(ZSTDLIB_COMMON_SRC) $(ZSTDLIB_DECOMPRESS_SRC) zstdcli.c util.c timefn.c fileio.c
+ $(CC) $(FLAGS) -DZSTD_NOBENCH -DZSTD_NODICT -DZSTD_NOCOMPRESS -DZSTD_NOTRACE -UZSTD_LEGACY_SUPPORT -DZSTD_LEGACY_SUPPORT=0 $^ -o $@$(EXT)
-zstd-compress: $(ZSTDLIB_COMMON_C) $(ZSTDLIB_COMPRESS_C) zstdcli.c util.c timefn.c fileio.c
- $(CC) $(FLAGS) -DZSTD_NOBENCH -DZSTD_NODICT -DZSTD_NODECOMPRESS $^ -o $@$(EXT)
+zstd-compress: $(ZSTDLIB_COMMON_SRC) $(ZSTDLIB_COMPRESS_SRC) zstdcli.c util.c timefn.c fileio.c
+ $(CC) $(FLAGS) -DZSTD_NOBENCH -DZSTD_NODICT -DZSTD_NODECOMPRESS -DZSTD_NOTRACE -UZSTD_LEGACY_SUPPORT -DZSTD_LEGACY_SUPPORT=0 $^ -o $@$(EXT)
## zstd-dictBuilder: executable supporting dictionary creation and compression (only)
-zstd-dictBuilder: CPPFLAGS += -DZSTD_NOBENCH -DZSTD_NODECOMPRESS
-zstd-dictBuilder: $(ZSTDLIB_COMMON_C) $(ZSTDLIB_COMPRESS_C) $(ZDICT_SRC) zstdcli.c util.c timefn.c fileio.c dibio.c
- $(CC) $(FLAGS) $^ -o $@$(EXT)
+zstd-dictBuilder: $(ZSTDLIB_COMMON_SRC) $(ZSTDLIB_COMPRESS_SRC) $(ZDICT_SRC) zstdcli.c util.c timefn.c fileio.c dibio.c
+ $(CC) $(FLAGS) -DZSTD_NOBENCH -DZSTD_NODECOMPRESS -DZSTD_NOTRACE $^ -o $@$(EXT)
zstdmt: zstd
ln -sf zstd zstdmt
.PHONY: generate_res
generate_res: $(RES64_FILE) $(RES32_FILE)
ifneq (,$(filter Windows%,$(OS)))
RC ?= windres
# http://stackoverflow.com/questions/708238/how-do-i-add-an-icon-to-a-mingw-gcc-compiled-executable
$(RES64_FILE): windres/zstd.rc
$(RC) -o $@ -I ../lib -I windres -i $< -O coff -F pe-x86-64
$(RES32_FILE): windres/zstd.rc
$(RC) -o $@ -I ../lib -I windres -i $< -O coff -F pe-i386
endif
.PHONY: clean
clean:
$(RM) core *.o tmp* result* *.gcda dictionary *.zst \
- zstd$(EXT) zstd32$(EXT) zstd-compress$(EXT) zstd-decompress$(EXT) \
+ zstd$(EXT) zstd32$(EXT) zstd-dll$(EXT) \
+ zstd-compress$(EXT) zstd-decompress$(EXT) \
zstd-small$(EXT) zstd-frugal$(EXT) zstd-nolegacy$(EXT) zstd4$(EXT) \
- zstd-dictBuilder$(EXT) *.gcda default*.profraw default.profdata have_zlib$(EXT)
+ zstd-dictBuilder$(EXT) \
+ *.gcda default*.profraw default.profdata have_zlib$(EXT)
$(RM) -r obj/*
@echo Cleaning completed
MD2ROFF = ronn
MD2ROFF_FLAGS = --roff --warnings --manual="User Commands" --organization="zstd $(ZSTD_VERSION)"
zstd.1: zstd.1.md ../lib/zstd.h
cat $< | $(MD2ROFF) $(MD2ROFF_FLAGS) | sed -n '/^\.\\\".*/!p' > $@
zstdgrep.1: zstdgrep.1.md ../lib/zstd.h
cat $< | $(MD2ROFF) $(MD2ROFF_FLAGS) | sed -n '/^\.\\\".*/!p' > $@
zstdless.1: zstdless.1.md ../lib/zstd.h
cat $< | $(MD2ROFF) $(MD2ROFF_FLAGS) | sed -n '/^\.\\\".*/!p' > $@
.PHONY: man
man: zstd.1 zstdgrep.1 zstdless.1
.PHONY: clean-man
clean-man:
$(RM) zstd.1
$(RM) zstdgrep.1
$(RM) zstdless.1
.PHONY: preview-man
preview-man: clean-man man
man ./zstd.1
man ./zstdgrep.1
man ./zstdless.1
# Generate .h dependencies automatically
DEPFLAGS = -MT $@ -MMD -MP -MF
$(BUILD_DIR)/%.o : %.c $(BUILD_DIR)/%.d | $(BUILD_DIR)
@echo CC $@
$(COMPILE.c) $(DEPFLAGS) $(BUILD_DIR)/$*.d $(OUTPUT_OPTION) $<
+$(BUILD_DIR)/%.o : %.S | $(BUILD_DIR)
+ @echo AS $@
+ $(COMPILE.S) $(OUTPUT_OPTION) $<
+
MKDIR ?= mkdir
$(BUILD_DIR): ; $(MKDIR) -p $@
DEPFILES := $(ZSTD_OBJ:.o=.d)
$(DEPFILES):
include $(wildcard $(DEPFILES))
#-----------------------------------------------------------------------------
# make install is validated only for Linux, macOS, BSD, Hurd and Solaris targets
#-----------------------------------------------------------------------------
-ifneq (,$(filter $(UNAME),Linux Darwin GNU/kFreeBSD GNU OpenBSD FreeBSD NetBSD DragonFly SunOS Haiku))
+ifneq (,$(filter $(UNAME),Linux Darwin GNU/kFreeBSD GNU OpenBSD FreeBSD NetBSD DragonFly SunOS Haiku AIX))
HAVE_COLORNEVER = $(shell echo a | egrep --color=never a > /dev/null 2> /dev/null && echo 1 || echo 0)
EGREP_OPTIONS ?=
ifeq ($HAVE_COLORNEVER, 1)
EGREP_OPTIONS += --color=never
endif
EGREP = egrep $(EGREP_OPTIONS)
AWK = awk
# Print a two column output of targets and their description. To add a target description, put a
# comment in the Makefile with the format "## <TARGET>: <DESCRIPTION>". For example:
#
## list: Print all targets and their descriptions (if provided)
.PHONY: list
list:
TARGETS=$$($(MAKE) -pRrq -f $(lastword $(MAKEFILE_LIST)) : 2>/dev/null \
| $(AWK) -v RS= -F: '/^# File/,/^# Finished Make data base/ {if ($$1 !~ "^[#.]") {print $$1}}' \
| $(EGREP) -v -e '^[^[:alnum:]]' | sort); \
{ \
printf "Target Name\tDescription\n"; \
printf "%0.s-" {1..16}; printf "\t"; printf "%0.s-" {1..40}; printf "\n"; \
for target in $$TARGETS; do \
line=$$($(EGREP) "^##[[:space:]]+$$target:" $(lastword $(MAKEFILE_LIST))); \
description=$$(echo $$line | $(AWK) '{i=index($$0,":"); print substr($$0,i+1)}' | xargs); \
printf "$$target\t$$description\n"; \
done \
} | column -t -s $$'\t'
DESTDIR ?=
# directory variables : GNU conventions prefer lowercase
# see https://www.gnu.org/prep/standards/html_node/Makefile-Conventions.html
# support both lower and uppercase (BSD), use uppercase in script
prefix ?= /usr/local
PREFIX ?= $(prefix)
exec_prefix ?= $(PREFIX)
bindir ?= $(exec_prefix)/bin
BINDIR ?= $(bindir)
datarootdir ?= $(PREFIX)/share
mandir ?= $(datarootdir)/man
man1dir ?= $(mandir)/man1
ifneq (,$(filter $(UNAME),OpenBSD FreeBSD NetBSD DragonFly SunOS))
MANDIR ?= $(PREFIX)/man
MAN1DIR ?= $(MANDIR)/man1
else
MAN1DIR ?= $(man1dir)
endif
ifneq (,$(filter $(UNAME),SunOS))
INSTALL ?= ginstall
else
INSTALL ?= install
endif
INSTALL_PROGRAM ?= $(INSTALL)
INSTALL_SCRIPT ?= $(INSTALL_PROGRAM)
INSTALL_DATA ?= $(INSTALL) -m 644
INSTALL_MAN ?= $(INSTALL_DATA)
.PHONY: install
install:
# generate zstd only if not already present
[ -e zstd ] || $(MAKE) zstd-release
[ -e $(DESTDIR)$(BINDIR) ] || $(INSTALL) -d -m 755 $(DESTDIR)$(BINDIR)/
[ -e $(DESTDIR)$(MAN1DIR) ] || $(INSTALL) -d -m 755 $(DESTDIR)$(MAN1DIR)/
@echo Installing binaries
$(INSTALL_PROGRAM) zstd$(EXT) $(DESTDIR)$(BINDIR)/zstd$(EXT)
ln -sf zstd$(EXT) $(DESTDIR)$(BINDIR)/zstdcat$(EXT)
ln -sf zstd$(EXT) $(DESTDIR)$(BINDIR)/unzstd$(EXT)
ln -sf zstd$(EXT) $(DESTDIR)$(BINDIR)/zstdmt$(EXT)
$(INSTALL_SCRIPT) zstdless $(DESTDIR)$(BINDIR)/zstdless
$(INSTALL_SCRIPT) zstdgrep $(DESTDIR)$(BINDIR)/zstdgrep
@echo Installing man pages
$(INSTALL_MAN) zstd.1 $(DESTDIR)$(MAN1DIR)/zstd.1
ln -sf zstd.1 $(DESTDIR)$(MAN1DIR)/zstdcat.1
ln -sf zstd.1 $(DESTDIR)$(MAN1DIR)/unzstd.1
$(INSTALL_MAN) zstdgrep.1 $(DESTDIR)$(MAN1DIR)/zstdgrep.1
$(INSTALL_MAN) zstdless.1 $(DESTDIR)$(MAN1DIR)/zstdless.1
@echo zstd installation completed
.PHONY: uninstall
uninstall:
$(RM) $(DESTDIR)$(BINDIR)/zstdgrep
$(RM) $(DESTDIR)$(BINDIR)/zstdless
$(RM) $(DESTDIR)$(BINDIR)/zstdcat
$(RM) $(DESTDIR)$(BINDIR)/unzstd
$(RM) $(DESTDIR)$(BINDIR)/zstdmt
$(RM) $(DESTDIR)$(BINDIR)/zstd
$(RM) $(DESTDIR)$(MAN1DIR)/zstdless.1
$(RM) $(DESTDIR)$(MAN1DIR)/zstdgrep.1
$(RM) $(DESTDIR)$(MAN1DIR)/zstdcat.1
$(RM) $(DESTDIR)$(MAN1DIR)/unzstd.1
$(RM) $(DESTDIR)$(MAN1DIR)/zstd.1
@echo zstd programs successfully uninstalled
endif
diff --git a/sys/contrib/zstd/programs/README.md b/sys/contrib/zstd/programs/README.md
index cf7f5ba46d12..5570f90c3b4f 100644
--- a/sys/contrib/zstd/programs/README.md
+++ b/sys/contrib/zstd/programs/README.md
@@ -1,299 +1,301 @@
Command Line Interface for Zstandard library
============================================
Command Line Interface (CLI) can be created using the `make` command without any additional parameters.
There are however other Makefile targets that create different variations of CLI:
- `zstd` : default CLI supporting gzip-like arguments; includes dictionary builder, benchmark, and supports decompression of legacy zstd formats
- `zstd_nolegacy` : Same as `zstd` but without support for legacy zstd formats
- `zstd-small` : CLI optimized for minimal size; no dictionary builder, no benchmark, and no support for legacy zstd formats
- `zstd-compress` : version of CLI which can only compress into zstd format
- `zstd-decompress` : version of CLI which can only decompress zstd format
### Compilation variables
`zstd` scope can be altered by modifying the following `make` variables :
- __HAVE_THREAD__ : multithreading is automatically enabled when `pthread` is detected.
It's possible to disable multithread support, by setting `HAVE_THREAD=0`.
Example : `make zstd HAVE_THREAD=0`
It's also possible to force multithread support, using `HAVE_THREAD=1`.
In which case, linking stage will fail if neither `pthread` nor `windows.h` library can be found.
This is useful to ensure this feature is not silently disabled.
- __ZSTD_LEGACY_SUPPORT__ : `zstd` can decompress files compressed by older versions of `zstd`.
Starting v0.8.0, all versions of `zstd` produce frames compliant with the [specification](../doc/zstd_compression_format.md), and are therefore compatible.
But older versions (< v0.8.0) produced different, incompatible, frames.
By default, `zstd` supports decoding legacy formats >= v0.4.0 (`ZSTD_LEGACY_SUPPORT=4`).
This can be altered by modifying this compilation variable.
`ZSTD_LEGACY_SUPPORT=1` means "support all formats >= v0.1.0".
`ZSTD_LEGACY_SUPPORT=2` means "support all formats >= v0.2.0", and so on.
`ZSTD_LEGACY_SUPPORT=0` means _DO NOT_ support any legacy format.
if `ZSTD_LEGACY_SUPPORT >= 8`, it's the same as `0`, since there is no legacy format after `7`.
Note : `zstd` only supports decoding older formats, and cannot generate any legacy format.
- __HAVE_ZLIB__ : `zstd` can compress and decompress files in `.gz` format.
This is ordered through command `--format=gzip`.
Alternatively, symlinks named `gzip` or `gunzip` will mimic intended behavior.
`.gz` support is automatically enabled when `zlib` library is detected at build time.
It's possible to disable `.gz` support, by setting `HAVE_ZLIB=0`.
Example : `make zstd HAVE_ZLIB=0`
It's also possible to force compilation with zlib support, using `HAVE_ZLIB=1`.
In which case, linking stage will fail if `zlib` library cannot be found.
This is useful to prevent silent feature disabling.
- __HAVE_LZMA__ : `zstd` can compress and decompress files in `.xz` and `.lzma` formats.
This is ordered through commands `--format=xz` and `--format=lzma` respectively.
Alternatively, symlinks named `xz`, `unxz`, `lzma`, or `unlzma` will mimic intended behavior.
`.xz` and `.lzma` support is automatically enabled when `lzma` library is detected at build time.
It's possible to disable `.xz` and `.lzma` support, by setting `HAVE_LZMA=0`.
Example : `make zstd HAVE_LZMA=0`
It's also possible to force compilation with lzma support, using `HAVE_LZMA=1`.
In which case, linking stage will fail if `lzma` library cannot be found.
This is useful to prevent silent feature disabling.
- __HAVE_LZ4__ : `zstd` can compress and decompress files in `.lz4` formats.
This is ordered through commands `--format=lz4`.
Alternatively, symlinks named `lz4`, or `unlz4` will mimic intended behavior.
`.lz4` support is automatically enabled when `lz4` library is detected at build time.
It's possible to disable `.lz4` support, by setting `HAVE_LZ4=0` .
Example : `make zstd HAVE_LZ4=0`
It's also possible to force compilation with lz4 support, using `HAVE_LZ4=1`.
In which case, linking stage will fail if `lz4` library cannot be found.
This is useful to prevent silent feature disabling.
- __ZSTD_NOBENCH__ : `zstd` cli will be compiled without its integrated benchmark module.
This can be useful to produce smaller binaries.
In this case, the corresponding unit can also be excluded from compilation target.
- __ZSTD_NODICT__ : `zstd` cli will be compiled without support for the integrated dictionary builder.
This can be useful to produce smaller binaries.
In this case, the corresponding unit can also be excluded from compilation target.
- __ZSTD_NOCOMPRESS__ : `zstd` cli will be compiled without support for compression.
The resulting binary will only be able to decompress files.
This can be useful to produce smaller binaries.
A corresponding `Makefile` target using this ability is `zstd-decompress`.
- __ZSTD_NODECOMPRESS__ : `zstd` cli will be compiled without support for decompression.
The resulting binary will only be able to compress files.
This can be useful to produce smaller binaries.
A corresponding `Makefile` target using this ability is `zstd-compress`.
- __BACKTRACE__ : `zstd` can display a stack backtrace when execution
generates a runtime exception. By default, this feature may be
degraded/disabled on some platforms unless additional compiler directives are
applied. When triaging a runtime issue, enabling this feature can provide
more context to determine the location of the fault.
Example : `make zstd BACKTRACE=1`
### Aggregation of parameters
CLI supports aggregation of parameters i.e. `-b1`, `-e18`, and `-i1` can be joined into `-b1e18i1`.
### Symlink shortcuts
It's possible to invoke `zstd` through a symlink.
When the name of the symlink has a specific value, it triggers an associated behavior.
- `zstdmt` : compress using all cores available on local system.
- `zcat` : will decompress and output target file using any of the supported formats. `gzcat` and `zstdcat` are also equivalent.
- `gzip` : if zlib support is enabled, will mimic `gzip` by compressing file using `.gz` format, removing source file by default (use `--keep` to preserve). If zlib is not supported, triggers an error.
- `xz` : if lzma support is enabled, will mimic `xz` by compressing file using `.xz` format, removing source file by default (use `--keep` to preserve). If xz is not supported, triggers an error.
- `lzma` : if lzma support is enabled, will mimic `lzma` by compressing file using `.lzma` format, removing source file by default (use `--keep` to preserve). If lzma is not supported, triggers an error.
- `lz4` : if lz4 support is enabled, will mimic `lz4` by compressing file using `.lz4` format. If lz4 is not supported, triggers an error.
- `unzstd` and `unlz4` will decompress any of the supported format.
- `ungz`, `unxz` and `unlzma` will do the same, and will also remove source file by default (use `--keep` to preserve).
### Dictionary builder in Command Line Interface
Zstd offers a training mode, which can be used to tune the algorithm for a selected
type of data, by providing it with a few samples. The result of the training is stored
in a file selected with the `-o` option (default name is `dictionary`),
which can be loaded before compression and decompression.
Using a dictionary, the compression ratio achievable on small data improves dramatically.
These compression gains are achieved while simultaneously providing faster compression and decompression speeds.
Dictionary work if there is some correlation in a family of small data (there is no universal dictionary).
Hence, deploying one dictionary per type of data will provide the greater benefits.
Dictionary gains are mostly effective in the first few KB. Then, the compression algorithm
will rely more and more on previously decoded content to compress the rest of the file.
Usage of the dictionary builder and created dictionaries with CLI:
1. Create the dictionary : `zstd --train PathToTrainingSet/* -o dictionaryName`
2. Compress with the dictionary: `zstd FILE -D dictionaryName`
3. Decompress with the dictionary: `zstd --decompress FILE.zst -D dictionaryName`
### Benchmark in Command Line Interface
CLI includes in-memory compression benchmark module for zstd.
The benchmark is conducted using given filenames. The files are read into memory and joined together.
It makes benchmark more precise as it eliminates I/O overhead.
Multiple filenames can be supplied, as multiple parameters, with wildcards,
or names of directories can be used as parameters with `-r` option.
The benchmark measures ratio, compressed size, compression and decompression speed.
One can select compression levels starting from `-b` and ending with `-e`.
The `-i` parameter selects minimal time used for each of tested levels.
### Usage of Command Line Interface
The full list of options can be obtained with `-h` or `-H` parameter:
```
Usage :
zstd [args] [FILE(s)] [-o file]
FILE : a filename
with no FILE, or when FILE is - , read standard input
Arguments :
-# : # compression level (1-19, default: 3)
-d : decompression
-D DICT: use DICT as Dictionary for compression or decompression
-o file: result stored into `file` (only 1 output file)
-f : overwrite output without prompting, also (de)compress links
--rm : remove source file(s) after successful de/compression
-k : preserve source file(s) (default)
-h/-H : display help/long help and exit
Advanced arguments :
-V : display Version number and exit
- -c : force write to standard output, even if it is the console
+ -c : write to standard output (even if it is the console)
-v : verbose mode; specify multiple times to increase verbosity
-q : suppress warnings; specify twice to suppress errors too
--no-progress : do not display the progress counter
-r : operate recursively on directories
--filelist FILE : read list of files to operate upon from FILE
--output-dir-flat DIR : processed files are stored into DIR
--output-dir-mirror DIR : processed files are stored into DIR respecting original directory structure
--[no-]check : during compression, add XXH64 integrity checksum to frame (default: enabled). If specified with -d, decompressor will ignore/validate checksums in compressed frame (default: validate).
-- : All arguments after "--" are treated as files
Advanced compression arguments :
--ultra : enable levels beyond 19, up to 22 (requires more memory)
--long[=#]: enable long distance matching with given window log (default: 27)
--fast[=#]: switch to very fast compression levels (default: 1)
--adapt : dynamically adapt compression level to I/O conditions
+--patch-from=FILE : specify the file to be used as a reference point for zstd's diff engine
-T# : spawns # compression threads (default: 1, 0==# cores)
-B# : select size of each job (default: 0==automatic)
--single-thread : use a single thread for both I/O and compression (result slightly different than -T1)
--rsyncable : compress using a rsync-friendly method (-B sets block size)
--exclude-compressed: only compress files that are not already compressed
--stream-size=# : specify size of streaming input from `stdin`
--size-hint=# optimize compression parameters for streaming input of approximately this size
--target-compressed-block-size=# : generate compressed block of approximately targeted size
--no-dictID : don't write dictID into header (dictionary compression only)
--[no-]compress-literals : force (un)compressed literals
--format=zstd : compress files to the .zst format (default)
--format=gzip : compress files to the .gz format
--format=xz : compress files to the .xz format
--format=lzma : compress files to the .lzma format
--format=lz4 : compress files to the .lz4 format
Advanced decompression arguments :
-l : print information about zstd compressed files
--test : test compressed file integrity
-M# : Set a memory usage limit for decompression
--[no-]sparse : sparse mode (default: disabled)
Dictionary builder :
--train ## : create a dictionary from a training set of files
--train-cover[=k=#,d=#,steps=#,split=#,shrink[=#]] : use the cover algorithm with optional args
--train-fastcover[=k=#,d=#,f=#,steps=#,split=#,accel=#,shrink[=#]] : use the fast cover algorithm with optional args
--train-legacy[=s=#] : use the legacy algorithm with selectivity (default: 9)
-o DICT : DICT is dictionary name (default: dictionary)
--maxdict=# : limit dictionary to specified size (default: 112640)
--dictID=# : force dictionary ID to specified value (default: random)
Benchmark arguments :
-b# : benchmark file(s), using # compression level (default: 3)
-e# : test all compression levels successively from -b# to -e# (default: 1)
-i# : minimum evaluation time in seconds (default: 3s)
-B# : cut file into independent blocks of size # (default: no block)
-S : output one benchmark result per input file (default: consolidated result)
--priority=rt : set process priority to real-time
```
### Passing parameters through Environment Variables
There is no "generic" way to pass "any kind of parameter" to `zstd` in a pass-through manner.
Using environment variables for this purpose has security implications.
Therefore, this avenue is intentionally restricted and only supports `ZSTD_CLEVEL` and `ZSTD_NBTHREADS`.
`ZSTD_CLEVEL` can be used to modify the default compression level of `zstd`
(usually set to `3`) to another value between 1 and 19 (the "normal" range).
`ZSTD_NBTHREADS` can be used to specify a number of threads
that `zstd` will use for compression, which by default is `1`.
This functionality only exists when `zstd` is compiled with multithread support.
`0` means "use as many threads as detected cpu cores on local system".
-The max # of threads is capped at: `ZSTDMT_NBWORKERS_MAX==200`.
+The max # of threads is capped at `ZSTDMT_NBWORKERS_MAX`,
+which is either 64 in 32-bit mode, or 256 for 64-bit environments.
This functionality can be useful when `zstd` CLI is invoked in a way that doesn't allow passing arguments.
One such scenario is `tar --zstd`.
As `ZSTD_CLEVEL` and `ZSTD_NBTHREADS` only replace the default compression level
and number of threads respectively, they can both be overridden by corresponding command line arguments:
`-#` for compression level and `-T#` for number of threads.
### Long distance matching mode
The long distance matching mode, enabled with `--long`, is designed to improve
the compression ratio for files with long matches at a large distance (up to the
maximum window size, `128 MiB`) while still maintaining compression speed.
Enabling this mode sets the window size to `128 MiB` and thus increases the memory
usage for both the compressor and decompressor. Performance in terms of speed is
dependent on long matches being found. Compression speed may degrade if few long
matches are found. Decompression speed usually improves when there are many long
distance matches.
Below are graphs comparing the compression speed, compression ratio, and
decompression speed with and without long distance matching on an ideal use
case: a tar of four versions of clang (versions `3.4.1`, `3.4.2`, `3.5.0`,
`3.5.1`) with a total size of `244889600 B`. This is an ideal use case as there
are many long distance matches within the maximum window size of `128 MiB` (each
version is less than `128 MiB`).
Compression Speed vs Ratio | Decompression Speed
---------------------------|---------------------
![Compression Speed vs Ratio](https://raw.githubusercontent.com/facebook/zstd/v1.3.3/doc/images/ldmCspeed.png "Compression Speed vs Ratio") | ![Decompression Speed](https://raw.githubusercontent.com/facebook/zstd/v1.3.3/doc/images/ldmDspeed.png "Decompression Speed")
| Method | Compression ratio | Compression speed | Decompression speed |
|:-------|------------------:|-------------------------:|---------------------------:|
| `zstd -1` | `5.065` | `284.8 MB/s` | `759.3 MB/s` |
| `zstd -5` | `5.826` | `124.9 MB/s` | `674.0 MB/s` |
| `zstd -10` | `6.504` | `29.5 MB/s` | `771.3 MB/s` |
| `zstd -1 --long` | `17.426` | `220.6 MB/s` | `1638.4 MB/s` |
| `zstd -5 --long` | `19.661` | `165.5 MB/s` | `1530.6 MB/s` |
| `zstd -10 --long`| `21.949` | `75.6 MB/s` | `1632.6 MB/s` |
On this file, the compression ratio improves significantly with minimal impact
on compression speed, and the decompression speed doubles.
On the other extreme, compressing a file with few long distance matches (such as
the [Silesia compression corpus]) will likely lead to a deterioration in
compression speed (for lower levels) with minimal change in compression ratio.
The below table illustrates this on the [Silesia compression corpus].
[Silesia compression corpus]: http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
| Method | Compression ratio | Compression speed | Decompression speed |
|:-------|------------------:|------------------:|---------------------:|
| `zstd -1` | `2.878` | `231.7 MB/s` | `594.4 MB/s` |
| `zstd -1 --long` | `2.929` | `106.5 MB/s` | `517.9 MB/s` |
| `zstd -5` | `3.274` | `77.1 MB/s` | `464.2 MB/s` |
| `zstd -5 --long` | `3.319` | `51.7 MB/s` | `371.9 MB/s` |
| `zstd -10` | `3.523` | `16.4 MB/s` | `489.2 MB/s` |
| `zstd -10 --long`| `3.566` | `16.2 MB/s` | `415.7 MB/s` |
### zstdgrep
`zstdgrep` is a utility which makes it possible to `grep` directly a `.zst` compressed file.
It's used the same way as normal `grep`, for example :
`zstdgrep pattern file.zst`
`zstdgrep` is _not_ compatible with dictionary compression.
To search into a file compressed with a dictionary,
it's necessary to decompress it using `zstd` or `zstdcat`,
and then pipe the result to `grep`. For example :
`zstdcat -D dictionary -qc -- file.zst | grep pattern`
diff --git a/sys/contrib/zstd/programs/benchfn.c b/sys/contrib/zstd/programs/benchfn.c
index ed7273afb6e5..1aadbdd9136c 100644
--- a/sys/contrib/zstd/programs/benchfn.c
+++ b/sys/contrib/zstd/programs/benchfn.c
@@ -1,256 +1,256 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* *************************************
* Includes
***************************************/
#include <stdlib.h> /* malloc, free */
#include <string.h> /* memset */
#include <assert.h> /* assert */
#include "timefn.h" /* UTIL_time_t, UTIL_getTime */
#include "benchfn.h"
/* *************************************
* Constants
***************************************/
#define TIMELOOP_MICROSEC SEC_TO_MICRO /* 1 second */
#define TIMELOOP_NANOSEC (1*1000000000ULL) /* 1 second */
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)
/* *************************************
* Debug errors
***************************************/
#if defined(DEBUG) && (DEBUG >= 1)
# include <stdio.h> /* fprintf */
# define DISPLAY(...) fprintf(stderr, __VA_ARGS__)
# define DEBUGOUTPUT(...) { if (DEBUG) DISPLAY(__VA_ARGS__); }
#else
# define DEBUGOUTPUT(...)
#endif
/* error without displaying */
#define RETURN_QUIET_ERROR(retValue, ...) { \
DEBUGOUTPUT("%s: %i: \n", __FILE__, __LINE__); \
DEBUGOUTPUT("Error : "); \
DEBUGOUTPUT(__VA_ARGS__); \
DEBUGOUTPUT(" \n"); \
return retValue; \
}
/* Abort execution if a condition is not met */
#define CONTROL(c) { if (!(c)) { DEBUGOUTPUT("error: %s \n", #c); abort(); } }
/* *************************************
* Benchmarking an arbitrary function
***************************************/
int BMK_isSuccessful_runOutcome(BMK_runOutcome_t outcome)
{
return outcome.error_tag_never_ever_use_directly == 0;
}
/* warning : this function will stop program execution if outcome is invalid !
* check outcome validity first, using BMK_isValid_runResult() */
BMK_runTime_t BMK_extract_runTime(BMK_runOutcome_t outcome)
{
CONTROL(outcome.error_tag_never_ever_use_directly == 0);
return outcome.internal_never_ever_use_directly;
}
size_t BMK_extract_errorResult(BMK_runOutcome_t outcome)
{
CONTROL(outcome.error_tag_never_ever_use_directly != 0);
return outcome.error_result_never_ever_use_directly;
}
static BMK_runOutcome_t BMK_runOutcome_error(size_t errorResult)
{
BMK_runOutcome_t b;
memset(&b, 0, sizeof(b));
b.error_tag_never_ever_use_directly = 1;
b.error_result_never_ever_use_directly = errorResult;
return b;
}
static BMK_runOutcome_t BMK_setValid_runTime(BMK_runTime_t runTime)
{
BMK_runOutcome_t outcome;
outcome.error_tag_never_ever_use_directly = 0;
outcome.internal_never_ever_use_directly = runTime;
return outcome;
}
/* initFn will be measured once, benchFn will be measured `nbLoops` times */
/* initFn is optional, provide NULL if none */
/* benchFn must return a size_t value that errorFn can interpret */
/* takes # of blocks and list of size & stuff for each. */
/* can report result of benchFn for each block into blockResult. */
/* blockResult is optional, provide NULL if this information is not required */
/* note : time per loop can be reported as zero if run time < timer resolution */
BMK_runOutcome_t BMK_benchFunction(BMK_benchParams_t p,
unsigned nbLoops)
{
size_t dstSize = 0;
nbLoops += !nbLoops; /* minimum nbLoops is 1 */
/* init */
{ size_t i;
for(i = 0; i < p.blockCount; i++) {
memset(p.dstBuffers[i], 0xE5, p.dstCapacities[i]); /* warm up and erase result buffer */
} }
/* benchmark */
{ UTIL_time_t const clockStart = UTIL_getTime();
unsigned loopNb, blockNb;
if (p.initFn != NULL) p.initFn(p.initPayload);
for (loopNb = 0; loopNb < nbLoops; loopNb++) {
for (blockNb = 0; blockNb < p.blockCount; blockNb++) {
size_t const res = p.benchFn(p.srcBuffers[blockNb], p.srcSizes[blockNb],
p.dstBuffers[blockNb], p.dstCapacities[blockNb],
p.benchPayload);
if (loopNb == 0) {
if (p.blockResults != NULL) p.blockResults[blockNb] = res;
if ((p.errorFn != NULL) && (p.errorFn(res))) {
RETURN_QUIET_ERROR(BMK_runOutcome_error(res),
"Function benchmark failed on block %u (of size %u) with error %i",
blockNb, (unsigned)p.srcSizes[blockNb], (int)res);
}
dstSize += res;
} }
} /* for (loopNb = 0; loopNb < nbLoops; loopNb++) */
{ PTime const totalTime = UTIL_clockSpanNano(clockStart);
BMK_runTime_t rt;
rt.nanoSecPerRun = (double)totalTime / nbLoops;
rt.sumOfReturn = dstSize;
return BMK_setValid_runTime(rt);
} }
}
/* ==== Benchmarking any function, providing intermediate results ==== */
struct BMK_timedFnState_s {
PTime timeSpent_ns;
PTime timeBudget_ns;
PTime runBudget_ns;
BMK_runTime_t fastestRun;
unsigned nbLoops;
UTIL_time_t coolTime;
}; /* typedef'd to BMK_timedFnState_t within bench.h */
BMK_timedFnState_t* BMK_createTimedFnState(unsigned total_ms, unsigned run_ms)
{
BMK_timedFnState_t* const r = (BMK_timedFnState_t*)malloc(sizeof(*r));
if (r == NULL) return NULL; /* malloc() error */
BMK_resetTimedFnState(r, total_ms, run_ms);
return r;
}
void BMK_freeTimedFnState(BMK_timedFnState_t* state) { free(state); }
BMK_timedFnState_t*
BMK_initStatic_timedFnState(void* buffer, size_t size, unsigned total_ms, unsigned run_ms)
{
typedef char check_size[ 2 * (sizeof(BMK_timedFnState_shell) >= sizeof(struct BMK_timedFnState_s)) - 1]; /* static assert : a compilation failure indicates that BMK_timedFnState_shell is not large enough */
typedef struct { check_size c; BMK_timedFnState_t tfs; } tfs_align; /* force tfs to be aligned at its next best position */
size_t const tfs_alignment = offsetof(tfs_align, tfs); /* provides the minimal alignment restriction for BMK_timedFnState_t */
BMK_timedFnState_t* const r = (BMK_timedFnState_t*)buffer;
if (buffer == NULL) return NULL;
if (size < sizeof(struct BMK_timedFnState_s)) return NULL;
if ((size_t)buffer % tfs_alignment) return NULL; /* buffer must be properly aligned */
BMK_resetTimedFnState(r, total_ms, run_ms);
return r;
}
void BMK_resetTimedFnState(BMK_timedFnState_t* timedFnState, unsigned total_ms, unsigned run_ms)
{
if (!total_ms) total_ms = 1 ;
if (!run_ms) run_ms = 1;
if (run_ms > total_ms) run_ms = total_ms;
timedFnState->timeSpent_ns = 0;
timedFnState->timeBudget_ns = (PTime)total_ms * TIMELOOP_NANOSEC / 1000;
timedFnState->runBudget_ns = (PTime)run_ms * TIMELOOP_NANOSEC / 1000;
timedFnState->fastestRun.nanoSecPerRun = (double)TIMELOOP_NANOSEC * 2000000000; /* hopefully large enough : must be larger than any potential measurement */
timedFnState->fastestRun.sumOfReturn = (size_t)(-1LL);
timedFnState->nbLoops = 1;
timedFnState->coolTime = UTIL_getTime();
}
/* Tells if nb of seconds set in timedFnState for all runs is spent.
* note : this function will return 1 if BMK_benchFunctionTimed() has actually errored. */
int BMK_isCompleted_TimedFn(const BMK_timedFnState_t* timedFnState)
{
return (timedFnState->timeSpent_ns >= timedFnState->timeBudget_ns);
}
#undef MIN
#define MIN(a,b) ( (a) < (b) ? (a) : (b) )
#define MINUSABLETIME (TIMELOOP_NANOSEC / 2) /* 0.5 seconds */
BMK_runOutcome_t BMK_benchTimedFn(BMK_timedFnState_t* cont,
BMK_benchParams_t p)
{
PTime const runBudget_ns = cont->runBudget_ns;
PTime const runTimeMin_ns = runBudget_ns / 2;
int completed = 0;
BMK_runTime_t bestRunTime = cont->fastestRun;
while (!completed) {
BMK_runOutcome_t const runResult = BMK_benchFunction(p, cont->nbLoops);
if(!BMK_isSuccessful_runOutcome(runResult)) { /* error : move out */
return runResult;
}
{ BMK_runTime_t const newRunTime = BMK_extract_runTime(runResult);
double const loopDuration_ns = newRunTime.nanoSecPerRun * cont->nbLoops;
cont->timeSpent_ns += (unsigned long long)loopDuration_ns;
/* estimate nbLoops for next run to last approximately 1 second */
if (loopDuration_ns > (runBudget_ns / 50)) {
double const fastestRun_ns = MIN(bestRunTime.nanoSecPerRun, newRunTime.nanoSecPerRun);
cont->nbLoops = (unsigned)(runBudget_ns / fastestRun_ns) + 1;
} else {
/* previous run was too short : blindly increase workload by x multiplier */
const unsigned multiplier = 10;
assert(cont->nbLoops < ((unsigned)-1) / multiplier); /* avoid overflow */
cont->nbLoops *= multiplier;
}
if(loopDuration_ns < runTimeMin_ns) {
/* don't report results for which benchmark run time was too small : increased risks of rounding errors */
assert(completed == 0);
continue;
} else {
if(newRunTime.nanoSecPerRun < bestRunTime.nanoSecPerRun) {
bestRunTime = newRunTime;
}
completed = 1;
}
}
} /* while (!completed) */
return BMK_setValid_runTime(bestRunTime);
}
diff --git a/sys/contrib/zstd/programs/benchfn.h b/sys/contrib/zstd/programs/benchfn.h
index e555bbe6ae32..590f292eaa61 100644
--- a/sys/contrib/zstd/programs/benchfn.h
+++ b/sys/contrib/zstd/programs/benchfn.h
@@ -1,183 +1,183 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* benchfn :
* benchmark any function on a set of input
* providing result in nanoSecPerRun
* or detecting and returning an error
*/
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef BENCH_FN_H_23876
#define BENCH_FN_H_23876
/* === Dependencies === */
#include <stddef.h> /* size_t */
/* ==== Benchmark any function, iterated on a set of blocks ==== */
/* BMK_runTime_t: valid result return type */
typedef struct {
double nanoSecPerRun; /* time per iteration (over all blocks) */
size_t sumOfReturn; /* sum of return values */
} BMK_runTime_t;
/* BMK_runOutcome_t:
* type expressing the outcome of a benchmark run by BMK_benchFunction(),
* which can be either valid or invalid.
* benchmark outcome can be invalid if errorFn is provided.
* BMK_runOutcome_t must be considered "opaque" : never access its members directly.
* Instead, use its assigned methods :
* BMK_isSuccessful_runOutcome, BMK_extract_runTime, BMK_extract_errorResult.
* The structure is only described here to allow its allocation on stack. */
typedef struct {
BMK_runTime_t internal_never_ever_use_directly;
size_t error_result_never_ever_use_directly;
int error_tag_never_ever_use_directly;
} BMK_runOutcome_t;
/* prototypes for benchmarked functions */
typedef size_t (*BMK_benchFn_t)(const void* src, size_t srcSize, void* dst, size_t dstCapacity, void* customPayload);
typedef size_t (*BMK_initFn_t)(void* initPayload);
typedef unsigned (*BMK_errorFn_t)(size_t);
/* BMK_benchFunction() parameters are provided via the following structure.
* A structure is preferable for readability,
* as the number of parameters required is fairly large.
* No initializer is provided, because it doesn't make sense to provide some "default" :
* all parameters must be specified by the caller.
* optional parameters are labelled explicitly, and accept value NULL when not used */
typedef struct {
BMK_benchFn_t benchFn; /* the function to benchmark, over the set of blocks */
void* benchPayload; /* pass custom parameters to benchFn :
* (*benchFn)(srcBuffers[i], srcSizes[i], dstBuffers[i], dstCapacities[i], benchPayload) */
BMK_initFn_t initFn; /* (*initFn)(initPayload) is run once per run, at the beginning. */
void* initPayload; /* Both arguments can be NULL, in which case nothing is run. */
BMK_errorFn_t errorFn; /* errorFn will check each return value of benchFn over each block, to determine if it failed or not.
* errorFn can be NULL, in which case no check is performed.
* errorFn must return 0 when benchFn was successful, and >= 1 if it detects an error.
* Execution is stopped as soon as an error is detected.
* the triggering return value can be retrieved using BMK_extract_errorResult(). */
size_t blockCount; /* number of blocks to operate benchFn on.
* It's also the size of all array parameters :
* srcBuffers, srcSizes, dstBuffers, dstCapacities, blockResults */
const void *const * srcBuffers; /* read-only array of buffers to be operated on by benchFn */
const size_t* srcSizes; /* read-only array containing sizes of srcBuffers */
void *const * dstBuffers; /* array of buffers to be written into by benchFn. This array is not optional, it must be provided even if unused by benchfn. */
const size_t* dstCapacities; /* read-only array containing capacities of dstBuffers. This array must be present. */
size_t* blockResults; /* Optional: store the return value of benchFn for each block. Use NULL if this result is not requested. */
} BMK_benchParams_t;
/* BMK_benchFunction() :
* This function benchmarks benchFn and initFn, providing a result.
*
* params : see description of BMK_benchParams_t above.
* nbLoops: defines number of times benchFn is run over the full set of blocks.
* Minimum value is 1. A 0 is interpreted as a 1.
*
* @return: can express either an error or a successful result.
* Use BMK_isSuccessful_runOutcome() to check if benchmark was successful.
* If yes, extract the result with BMK_extract_runTime(),
* it will contain :
* .sumOfReturn : the sum of all return values of benchFn through all of blocks
* .nanoSecPerRun : time per run of benchFn + (time for initFn / nbLoops)
* .sumOfReturn is generally intended for functions which return a # of bytes written into dstBuffer,
* in which case, this value will be the total amount of bytes written into dstBuffer.
*
* blockResults : when provided (!= NULL), and when benchmark is successful,
* params.blockResults contains all return values of `benchFn` over all blocks.
* when provided (!= NULL), and when benchmark failed,
* params.blockResults contains return values of `benchFn` over all blocks preceding and including the failed block.
*/
BMK_runOutcome_t BMK_benchFunction(BMK_benchParams_t params, unsigned nbLoops);
/* check first if the benchmark was successful or not */
int BMK_isSuccessful_runOutcome(BMK_runOutcome_t outcome);
/* If the benchmark was successful, extract the result.
* note : this function will abort() program execution if benchmark failed !
* always check if benchmark was successful first !
*/
BMK_runTime_t BMK_extract_runTime(BMK_runOutcome_t outcome);
/* when benchmark failed, it means one invocation of `benchFn` failed.
* The failure was detected by `errorFn`, operating on return values of `benchFn`.
* Returns the faulty return value.
* note : this function will abort() program execution if benchmark did not failed.
* always check if benchmark failed first !
*/
size_t BMK_extract_errorResult(BMK_runOutcome_t outcome);
/* ==== Benchmark any function, returning intermediate results ==== */
/* state information tracking benchmark session */
typedef struct BMK_timedFnState_s BMK_timedFnState_t;
/* BMK_benchTimedFn() :
* Similar to BMK_benchFunction(), most arguments being identical.
* Automatically determines `nbLoops` so that each result is regularly produced at interval of about run_ms.
* Note : minimum `nbLoops` is 1, therefore a run may last more than run_ms, and possibly even more than total_ms.
* Usage - initialize timedFnState, select benchmark duration (total_ms) and each measurement duration (run_ms)
* call BMK_benchTimedFn() repetitively, each measurement is supposed to last about run_ms
* Check if total time budget is spent or exceeded, using BMK_isCompleted_TimedFn()
*/
BMK_runOutcome_t BMK_benchTimedFn(BMK_timedFnState_t* timedFnState,
BMK_benchParams_t params);
/* Tells if duration of all benchmark runs has exceeded total_ms
*/
int BMK_isCompleted_TimedFn(const BMK_timedFnState_t* timedFnState);
/* BMK_createTimedFnState() and BMK_resetTimedFnState() :
* Create/Set BMK_timedFnState_t for next benchmark session,
* which shall last a minimum of total_ms milliseconds,
* producing intermediate results, paced at interval of (approximately) run_ms.
*/
BMK_timedFnState_t* BMK_createTimedFnState(unsigned total_ms, unsigned run_ms);
void BMK_resetTimedFnState(BMK_timedFnState_t* timedFnState, unsigned total_ms, unsigned run_ms);
void BMK_freeTimedFnState(BMK_timedFnState_t* state);
/* BMK_timedFnState_shell and BMK_initStatic_timedFnState() :
* Makes it possible to statically allocate a BMK_timedFnState_t on stack.
* BMK_timedFnState_shell is only there to allocate space,
* never ever access its members.
* BMK_timedFnState_t() actually accepts any buffer.
* It will check if provided buffer is large enough and is correctly aligned,
* and will return NULL if conditions are not respected.
*/
#define BMK_TIMEDFNSTATE_SIZE 64
typedef union {
char never_access_space[BMK_TIMEDFNSTATE_SIZE];
long long alignment_enforcer; /* must be aligned on 8-bytes boundaries */
} BMK_timedFnState_shell;
BMK_timedFnState_t* BMK_initStatic_timedFnState(void* buffer, size_t size, unsigned total_ms, unsigned run_ms);
#endif /* BENCH_FN_H_23876 */
#if defined (__cplusplus)
}
#endif
diff --git a/sys/contrib/zstd/programs/benchzstd.c b/sys/contrib/zstd/programs/benchzstd.c
index 77056203d55e..fa2659efbbba 100644
--- a/sys/contrib/zstd/programs/benchzstd.c
+++ b/sys/contrib/zstd/programs/benchzstd.c
@@ -1,888 +1,892 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* **************************************
* Tuning parameters
****************************************/
#ifndef BMK_TIMETEST_DEFAULT_S /* default minimum time per test */
#define BMK_TIMETEST_DEFAULT_S 3
#endif
/* *************************************
* Includes
***************************************/
#include "platform.h" /* Large Files support */
#include "util.h" /* UTIL_getFileSize, UTIL_sleep */
#include <stdlib.h> /* malloc, free */
#include <string.h> /* memset, strerror */
#include <stdio.h> /* fprintf, fopen */
#include <errno.h>
#include <assert.h> /* assert */
#include "timefn.h" /* UTIL_time_t */
#include "benchfn.h"
#include "../lib/common/mem.h"
+#ifndef ZSTD_STATIC_LINKING_ONLY
#define ZSTD_STATIC_LINKING_ONLY
+#endif
#include "../lib/zstd.h"
#include "datagen.h" /* RDG_genBuffer */
+#ifndef XXH_INLINE_ALL
+#define XXH_INLINE_ALL
+#endif
#include "../lib/common/xxhash.h"
#include "benchzstd.h"
-#include "../lib/common/zstd_errors.h"
+#include "../lib/zstd_errors.h"
/* *************************************
* Constants
***************************************/
#ifndef ZSTD_GIT_COMMIT
# define ZSTD_GIT_COMMIT_STRING ""
#else
# define ZSTD_GIT_COMMIT_STRING ZSTD_EXPAND_AND_QUOTE(ZSTD_GIT_COMMIT)
#endif
#define TIMELOOP_MICROSEC (1*1000000ULL) /* 1 second */
#define TIMELOOP_NANOSEC (1*1000000000ULL) /* 1 second */
#define ACTIVEPERIOD_MICROSEC (70*TIMELOOP_MICROSEC) /* 70 seconds */
#define COOLPERIOD_SEC 10
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)
#define BMK_RUNTEST_DEFAULT_MS 1000
static const size_t maxMemory = (sizeof(size_t)==4) ?
/* 32-bit */ (2 GB - 64 MB) :
/* 64-bit */ (size_t)(1ULL << ((sizeof(size_t)*8)-31));
/* *************************************
* console display
***************************************/
-#define DISPLAY(...) fprintf(stderr, __VA_ARGS__)
+#define DISPLAY(...) { fprintf(stderr, __VA_ARGS__); fflush(NULL); }
#define DISPLAYLEVEL(l, ...) if (displayLevel>=l) { DISPLAY(__VA_ARGS__); }
/* 0 : no display; 1: errors; 2 : + result + interaction + warnings; 3 : + progression; 4 : + information */
-
-static const U64 g_refreshRate = SEC_TO_MICRO / 6;
-static UTIL_time_t g_displayClock = UTIL_TIME_INITIALIZER;
-
-#define DISPLAYUPDATE(l, ...) { if (displayLevel>=l) { \
- if ((UTIL_clockSpanMicro(g_displayClock) > g_refreshRate) || (displayLevel>=4)) \
- { g_displayClock = UTIL_getTime(); DISPLAY(__VA_ARGS__); \
- if (displayLevel>=4) fflush(stderr); } } }
+#define OUTPUT(...) { fprintf(stdout, __VA_ARGS__); fflush(NULL); }
+#define OUTPUTLEVEL(l, ...) if (displayLevel>=l) { OUTPUT(__VA_ARGS__); }
/* *************************************
* Exceptions
***************************************/
#ifndef DEBUG
# define DEBUG 0
#endif
#define DEBUGOUTPUT(...) { if (DEBUG) DISPLAY(__VA_ARGS__); }
#define RETURN_ERROR_INT(errorNum, ...) { \
DEBUGOUTPUT("%s: %i: \n", __FILE__, __LINE__); \
DISPLAYLEVEL(1, "Error %i : ", errorNum); \
DISPLAYLEVEL(1, __VA_ARGS__); \
DISPLAYLEVEL(1, " \n"); \
return errorNum; \
}
#define CHECK_Z(zf) { \
size_t const zerr = zf; \
if (ZSTD_isError(zerr)) { \
DEBUGOUTPUT("%s: %i: \n", __FILE__, __LINE__); \
DISPLAY("Error : "); \
DISPLAY("%s failed : %s", \
#zf, ZSTD_getErrorName(zerr)); \
DISPLAY(" \n"); \
exit(1); \
} \
}
#define RETURN_ERROR(errorNum, retType, ...) { \
retType r; \
memset(&r, 0, sizeof(retType)); \
DEBUGOUTPUT("%s: %i: \n", __FILE__, __LINE__); \
DISPLAYLEVEL(1, "Error %i : ", errorNum); \
DISPLAYLEVEL(1, __VA_ARGS__); \
DISPLAYLEVEL(1, " \n"); \
r.tag = errorNum; \
return r; \
}
/* *************************************
* Benchmark Parameters
***************************************/
BMK_advancedParams_t BMK_initAdvancedParams(void) {
BMK_advancedParams_t const res = {
BMK_both, /* mode */
BMK_TIMETEST_DEFAULT_S, /* nbSeconds */
0, /* blockSize */
0, /* nbWorkers */
0, /* realTime */
0, /* additionalParam */
0, /* ldmFlag */
0, /* ldmMinMatch */
0, /* ldmHashLog */
0, /* ldmBuckSizeLog */
0, /* ldmHashRateLog */
- ZSTD_lcm_auto /* literalCompressionMode */
+ ZSTD_ps_auto, /* literalCompressionMode */
+ 0 /* useRowMatchFinder */
};
return res;
}
/* ********************************************************
* Bench functions
**********************************************************/
typedef struct {
const void* srcPtr;
size_t srcSize;
void* cPtr;
size_t cRoom;
size_t cSize;
void* resPtr;
size_t resSize;
} blockParam_t;
#undef MIN
#undef MAX
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define MAX(a,b) ((a) > (b) ? (a) : (b))
static void
BMK_initCCtx(ZSTD_CCtx* ctx,
const void* dictBuffer, size_t dictBufferSize,
int cLevel,
const ZSTD_compressionParameters* comprParams,
const BMK_advancedParams_t* adv)
{
ZSTD_CCtx_reset(ctx, ZSTD_reset_session_and_parameters);
if (adv->nbWorkers==1) {
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_nbWorkers, 0));
} else {
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_nbWorkers, adv->nbWorkers));
}
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_compressionLevel, cLevel));
+ CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_useRowMatchFinder, adv->useRowMatchFinder));
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_enableLongDistanceMatching, adv->ldmFlag));
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_ldmMinMatch, adv->ldmMinMatch));
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_ldmHashLog, adv->ldmHashLog));
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_ldmBucketSizeLog, adv->ldmBucketSizeLog));
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_ldmHashRateLog, adv->ldmHashRateLog));
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_windowLog, (int)comprParams->windowLog));
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_hashLog, (int)comprParams->hashLog));
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_chainLog, (int)comprParams->chainLog));
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_searchLog, (int)comprParams->searchLog));
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_minMatch, (int)comprParams->minMatch));
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_targetLength, (int)comprParams->targetLength));
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_literalCompressionMode, (int)adv->literalCompressionMode));
- CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_strategy, comprParams->strategy));
+ CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_strategy, (int)comprParams->strategy));
CHECK_Z(ZSTD_CCtx_loadDictionary(ctx, dictBuffer, dictBufferSize));
}
static void BMK_initDCtx(ZSTD_DCtx* dctx,
const void* dictBuffer, size_t dictBufferSize) {
CHECK_Z(ZSTD_DCtx_reset(dctx, ZSTD_reset_session_and_parameters));
CHECK_Z(ZSTD_DCtx_loadDictionary(dctx, dictBuffer, dictBufferSize));
}
typedef struct {
ZSTD_CCtx* cctx;
const void* dictBuffer;
size_t dictBufferSize;
int cLevel;
const ZSTD_compressionParameters* comprParams;
const BMK_advancedParams_t* adv;
} BMK_initCCtxArgs;
static size_t local_initCCtx(void* payload) {
BMK_initCCtxArgs* ag = (BMK_initCCtxArgs*)payload;
BMK_initCCtx(ag->cctx, ag->dictBuffer, ag->dictBufferSize, ag->cLevel, ag->comprParams, ag->adv);
return 0;
}
typedef struct {
ZSTD_DCtx* dctx;
const void* dictBuffer;
size_t dictBufferSize;
} BMK_initDCtxArgs;
static size_t local_initDCtx(void* payload) {
BMK_initDCtxArgs* ag = (BMK_initDCtxArgs*)payload;
BMK_initDCtx(ag->dctx, ag->dictBuffer, ag->dictBufferSize);
return 0;
}
/* `addArgs` is the context */
static size_t local_defaultCompress(
const void* srcBuffer, size_t srcSize,
void* dstBuffer, size_t dstSize,
void* addArgs)
{
ZSTD_CCtx* const cctx = (ZSTD_CCtx*)addArgs;
return ZSTD_compress2(cctx, dstBuffer, dstSize, srcBuffer, srcSize);
}
/* `addArgs` is the context */
static size_t local_defaultDecompress(
const void* srcBuffer, size_t srcSize,
void* dstBuffer, size_t dstCapacity,
void* addArgs)
{
size_t moreToFlush = 1;
ZSTD_DCtx* const dctx = (ZSTD_DCtx*)addArgs;
ZSTD_inBuffer in;
ZSTD_outBuffer out;
in.src = srcBuffer; in.size = srcSize; in.pos = 0;
out.dst = dstBuffer; out.size = dstCapacity; out.pos = 0;
while (moreToFlush) {
if(out.pos == out.size) {
return (size_t)-ZSTD_error_dstSize_tooSmall;
}
moreToFlush = ZSTD_decompressStream(dctx, &out, &in);
if (ZSTD_isError(moreToFlush)) {
return moreToFlush;
}
}
return out.pos;
}
/* ================================================================= */
/* Benchmark Zstandard, mem-to-mem scenarios */
/* ================================================================= */
int BMK_isSuccessful_benchOutcome(BMK_benchOutcome_t outcome)
{
return outcome.tag == 0;
}
BMK_benchResult_t BMK_extract_benchResult(BMK_benchOutcome_t outcome)
{
assert(outcome.tag == 0);
return outcome.internal_never_use_directly;
}
static BMK_benchOutcome_t BMK_benchOutcome_error(void)
{
BMK_benchOutcome_t b;
memset(&b, 0, sizeof(b));
b.tag = 1;
return b;
}
static BMK_benchOutcome_t BMK_benchOutcome_setValidResult(BMK_benchResult_t result)
{
BMK_benchOutcome_t b;
b.tag = 0;
b.internal_never_use_directly = result;
return b;
}
/* benchMem with no allocation */
static BMK_benchOutcome_t
BMK_benchMemAdvancedNoAlloc(
const void** srcPtrs, size_t* srcSizes,
void** cPtrs, size_t* cCapacities, size_t* cSizes,
void** resPtrs, size_t* resSizes,
void** resultBufferPtr, void* compressedBuffer,
size_t maxCompressedSize,
BMK_timedFnState_t* timeStateCompress,
BMK_timedFnState_t* timeStateDecompress,
const void* srcBuffer, size_t srcSize,
const size_t* fileSizes, unsigned nbFiles,
const int cLevel,
const ZSTD_compressionParameters* comprParams,
const void* dictBuffer, size_t dictBufferSize,
ZSTD_CCtx* cctx, ZSTD_DCtx* dctx,
int displayLevel, const char* displayName,
const BMK_advancedParams_t* adv)
{
size_t const blockSize = ((adv->blockSize>=32 && (adv->mode != BMK_decodeOnly)) ? adv->blockSize : srcSize) + (!srcSize); /* avoid div by 0 */
BMK_benchResult_t benchResult;
size_t const loadedCompressedSize = srcSize;
size_t cSize = 0;
double ratio = 0.;
U32 nbBlocks;
assert(cctx != NULL); assert(dctx != NULL);
/* init */
memset(&benchResult, 0, sizeof(benchResult));
if (strlen(displayName)>17) displayName += strlen(displayName) - 17; /* display last 17 characters */
if (adv->mode == BMK_decodeOnly) { /* benchmark only decompression : source must be already compressed */
const char* srcPtr = (const char*)srcBuffer;
U64 totalDSize64 = 0;
U32 fileNb;
for (fileNb=0; fileNb<nbFiles; fileNb++) {
U64 const fSize64 = ZSTD_findDecompressedSize(srcPtr, fileSizes[fileNb]);
if (fSize64==0) RETURN_ERROR(32, BMK_benchOutcome_t, "Impossible to determine original size ");
totalDSize64 += fSize64;
srcPtr += fileSizes[fileNb];
}
{ size_t const decodedSize = (size_t)totalDSize64;
assert((U64)decodedSize == totalDSize64); /* check overflow */
free(*resultBufferPtr);
*resultBufferPtr = malloc(decodedSize);
if (!(*resultBufferPtr)) {
RETURN_ERROR(33, BMK_benchOutcome_t, "not enough memory");
}
if (totalDSize64 > decodedSize) { /* size_t overflow */
free(*resultBufferPtr);
RETURN_ERROR(32, BMK_benchOutcome_t, "original size is too large");
}
cSize = srcSize;
srcSize = decodedSize;
ratio = (double)srcSize / (double)cSize;
}
}
/* Init data blocks */
{ const char* srcPtr = (const char*)srcBuffer;
char* cPtr = (char*)compressedBuffer;
char* resPtr = (char*)(*resultBufferPtr);
U32 fileNb;
for (nbBlocks=0, fileNb=0; fileNb<nbFiles; fileNb++) {
size_t remaining = fileSizes[fileNb];
U32 const nbBlocksforThisFile = (adv->mode == BMK_decodeOnly) ? 1 : (U32)((remaining + (blockSize-1)) / blockSize);
U32 const blockEnd = nbBlocks + nbBlocksforThisFile;
for ( ; nbBlocks<blockEnd; nbBlocks++) {
size_t const thisBlockSize = MIN(remaining, blockSize);
srcPtrs[nbBlocks] = srcPtr;
srcSizes[nbBlocks] = thisBlockSize;
cPtrs[nbBlocks] = cPtr;
cCapacities[nbBlocks] = (adv->mode == BMK_decodeOnly) ? thisBlockSize : ZSTD_compressBound(thisBlockSize);
resPtrs[nbBlocks] = resPtr;
resSizes[nbBlocks] = (adv->mode == BMK_decodeOnly) ? (size_t) ZSTD_findDecompressedSize(srcPtr, thisBlockSize) : thisBlockSize;
srcPtr += thisBlockSize;
cPtr += cCapacities[nbBlocks];
resPtr += thisBlockSize;
remaining -= thisBlockSize;
if (adv->mode == BMK_decodeOnly) {
cSizes[nbBlocks] = thisBlockSize;
benchResult.cSize = thisBlockSize;
- }
- }
- }
- }
+ } } } }
/* warming up `compressedBuffer` */
if (adv->mode == BMK_decodeOnly) {
memcpy(compressedBuffer, srcBuffer, loadedCompressedSize);
} else {
RDG_genBuffer(compressedBuffer, maxCompressedSize, 0.10, 0.50, 1);
}
/* Bench */
{ U64 const crcOrig = (adv->mode == BMK_decodeOnly) ? 0 : XXH64(srcBuffer, srcSize, 0);
# define NB_MARKS 4
const char* marks[NB_MARKS] = { " |", " /", " =", " \\" };
U32 markNb = 0;
int compressionCompleted = (adv->mode == BMK_decodeOnly);
int decompressionCompleted = (adv->mode == BMK_compressOnly);
BMK_benchParams_t cbp, dbp;
BMK_initCCtxArgs cctxprep;
BMK_initDCtxArgs dctxprep;
cbp.benchFn = local_defaultCompress; /* ZSTD_compress2 */
cbp.benchPayload = cctx;
cbp.initFn = local_initCCtx; /* BMK_initCCtx */
cbp.initPayload = &cctxprep;
cbp.errorFn = ZSTD_isError;
cbp.blockCount = nbBlocks;
cbp.srcBuffers = srcPtrs;
cbp.srcSizes = srcSizes;
cbp.dstBuffers = cPtrs;
cbp.dstCapacities = cCapacities;
cbp.blockResults = cSizes;
cctxprep.cctx = cctx;
cctxprep.dictBuffer = dictBuffer;
cctxprep.dictBufferSize = dictBufferSize;
cctxprep.cLevel = cLevel;
cctxprep.comprParams = comprParams;
cctxprep.adv = adv;
dbp.benchFn = local_defaultDecompress;
dbp.benchPayload = dctx;
dbp.initFn = local_initDCtx;
dbp.initPayload = &dctxprep;
dbp.errorFn = ZSTD_isError;
dbp.blockCount = nbBlocks;
dbp.srcBuffers = (const void* const *) cPtrs;
dbp.srcSizes = cSizes;
dbp.dstBuffers = resPtrs;
dbp.dstCapacities = resSizes;
dbp.blockResults = NULL;
dctxprep.dctx = dctx;
dctxprep.dictBuffer = dictBuffer;
dctxprep.dictBufferSize = dictBufferSize;
- DISPLAYLEVEL(2, "\r%70s\r", ""); /* blank line */
- DISPLAYLEVEL(2, "%2s-%-17.17s :%10u ->\r", marks[markNb], displayName, (unsigned)srcSize);
+ OUTPUTLEVEL(2, "\r%70s\r", ""); /* blank line */
+ assert(srcSize < UINT_MAX);
+ OUTPUTLEVEL(2, "%2s-%-17.17s :%10u -> \r", marks[markNb], displayName, (unsigned)srcSize);
while (!(compressionCompleted && decompressionCompleted)) {
if (!compressionCompleted) {
BMK_runOutcome_t const cOutcome = BMK_benchTimedFn( timeStateCompress, cbp);
if (!BMK_isSuccessful_runOutcome(cOutcome)) {
return BMK_benchOutcome_error();
}
{ BMK_runTime_t const cResult = BMK_extract_runTime(cOutcome);
cSize = cResult.sumOfReturn;
- ratio = (double)srcSize / cSize;
+ ratio = (double)srcSize / (double)cSize;
{ BMK_benchResult_t newResult;
newResult.cSpeed = (U64)((double)srcSize * TIMELOOP_NANOSEC / cResult.nanoSecPerRun);
benchResult.cSize = cSize;
if (newResult.cSpeed > benchResult.cSpeed)
benchResult.cSpeed = newResult.cSpeed;
} }
{ int const ratioAccuracy = (ratio < 10.) ? 3 : 2;
- DISPLAYLEVEL(2, "%2s-%-17.17s :%10u ->%10u (%5.*f),%6.*f MB/s\r",
+ assert(cSize < UINT_MAX);
+ OUTPUTLEVEL(2, "%2s-%-17.17s :%10u ->%10u (x%5.*f), %6.*f MB/s \r",
marks[markNb], displayName,
(unsigned)srcSize, (unsigned)cSize,
ratioAccuracy, ratio,
- benchResult.cSpeed < (10 MB) ? 2 : 1, (double)benchResult.cSpeed / MB_UNIT);
+ benchResult.cSpeed < (10 * MB_UNIT) ? 2 : 1, (double)benchResult.cSpeed / MB_UNIT);
}
compressionCompleted = BMK_isCompleted_TimedFn(timeStateCompress);
}
if(!decompressionCompleted) {
BMK_runOutcome_t const dOutcome = BMK_benchTimedFn(timeStateDecompress, dbp);
if(!BMK_isSuccessful_runOutcome(dOutcome)) {
return BMK_benchOutcome_error();
}
{ BMK_runTime_t const dResult = BMK_extract_runTime(dOutcome);
U64 const newDSpeed = (U64)((double)srcSize * TIMELOOP_NANOSEC / dResult.nanoSecPerRun);
if (newDSpeed > benchResult.dSpeed)
benchResult.dSpeed = newDSpeed;
}
{ int const ratioAccuracy = (ratio < 10.) ? 3 : 2;
- DISPLAYLEVEL(2, "%2s-%-17.17s :%10u ->%10u (%5.*f),%6.*f MB/s ,%6.1f MB/s \r",
+ OUTPUTLEVEL(2, "%2s-%-17.17s :%10u ->%10u (x%5.*f), %6.*f MB/s, %6.1f MB/s\r",
marks[markNb], displayName,
(unsigned)srcSize, (unsigned)cSize,
ratioAccuracy, ratio,
- benchResult.cSpeed < (10 MB) ? 2 : 1, (double)benchResult.cSpeed / MB_UNIT,
+ benchResult.cSpeed < (10 * MB_UNIT) ? 2 : 1, (double)benchResult.cSpeed / MB_UNIT,
(double)benchResult.dSpeed / MB_UNIT);
}
decompressionCompleted = BMK_isCompleted_TimedFn(timeStateDecompress);
}
markNb = (markNb+1) % NB_MARKS;
} /* while (!(compressionCompleted && decompressionCompleted)) */
/* CRC Checking */
{ const BYTE* resultBuffer = (const BYTE*)(*resultBufferPtr);
U64 const crcCheck = XXH64(resultBuffer, srcSize, 0);
if ((adv->mode == BMK_both) && (crcOrig!=crcCheck)) {
size_t u;
DISPLAY("!!! WARNING !!! %14s : Invalid Checksum : %x != %x \n",
displayName, (unsigned)crcOrig, (unsigned)crcCheck);
for (u=0; u<srcSize; u++) {
if (((const BYTE*)srcBuffer)[u] != resultBuffer[u]) {
unsigned segNb, bNb, pos;
size_t bacc = 0;
DISPLAY("Decoding error at pos %u ", (unsigned)u);
for (segNb = 0; segNb < nbBlocks; segNb++) {
if (bacc + srcSizes[segNb] > u) break;
bacc += srcSizes[segNb];
}
pos = (U32)(u - bacc);
bNb = pos / (128 KB);
DISPLAY("(sample %u, block %u, pos %u) \n", segNb, bNb, pos);
{ size_t const lowest = (u>5) ? 5 : u;
size_t n;
DISPLAY("origin: ");
for (n=lowest; n>0; n--)
DISPLAY("%02X ", ((const BYTE*)srcBuffer)[u-n]);
DISPLAY(" :%02X: ", ((const BYTE*)srcBuffer)[u]);
for (n=1; n<3; n++)
DISPLAY("%02X ", ((const BYTE*)srcBuffer)[u+n]);
DISPLAY(" \n");
DISPLAY("decode: ");
- for (n=lowest; n>0; n++)
+ for (n=lowest; n>0; n--)
DISPLAY("%02X ", resultBuffer[u-n]);
DISPLAY(" :%02X: ", resultBuffer[u]);
for (n=1; n<3; n++)
DISPLAY("%02X ", resultBuffer[u+n]);
DISPLAY(" \n");
}
break;
}
if (u==srcSize-1) { /* should never happen */
DISPLAY("no difference detected\n");
}
} /* for (u=0; u<srcSize; u++) */
} /* if ((adv->mode == BMK_both) && (crcOrig!=crcCheck)) */
} /* CRC Checking */
if (displayLevel == 1) { /* hidden display mode -q, used by python speed benchmark */
double const cSpeed = (double)benchResult.cSpeed / MB_UNIT;
double const dSpeed = (double)benchResult.dSpeed / MB_UNIT;
if (adv->additionalParam) {
- DISPLAY("-%-3i%11i (%5.3f) %6.2f MB/s %6.1f MB/s %s (param=%d)\n", cLevel, (int)cSize, ratio, cSpeed, dSpeed, displayName, adv->additionalParam);
+ OUTPUT("-%-3i%11i (%5.3f) %6.2f MB/s %6.1f MB/s %s (param=%d)\n", cLevel, (int)cSize, ratio, cSpeed, dSpeed, displayName, adv->additionalParam);
} else {
- DISPLAY("-%-3i%11i (%5.3f) %6.2f MB/s %6.1f MB/s %s\n", cLevel, (int)cSize, ratio, cSpeed, dSpeed, displayName);
+ OUTPUT("-%-3i%11i (%5.3f) %6.2f MB/s %6.1f MB/s %s\n", cLevel, (int)cSize, ratio, cSpeed, dSpeed, displayName);
}
}
- DISPLAYLEVEL(2, "%2i#\n", cLevel);
+ OUTPUTLEVEL(2, "%2i#\n", cLevel);
} /* Bench */
benchResult.cMem = (1ULL << (comprParams->windowLog)) + ZSTD_sizeof_CCtx(cctx);
return BMK_benchOutcome_setValidResult(benchResult);
}
BMK_benchOutcome_t BMK_benchMemAdvanced(const void* srcBuffer, size_t srcSize,
void* dstBuffer, size_t dstCapacity,
const size_t* fileSizes, unsigned nbFiles,
int cLevel, const ZSTD_compressionParameters* comprParams,
const void* dictBuffer, size_t dictBufferSize,
int displayLevel, const char* displayName, const BMK_advancedParams_t* adv)
{
int const dstParamsError = !dstBuffer ^ !dstCapacity; /* must be both NULL or none */
size_t const blockSize = ((adv->blockSize>=32 && (adv->mode != BMK_decodeOnly)) ? adv->blockSize : srcSize) + (!srcSize) /* avoid div by 0 */ ;
U32 const maxNbBlocks = (U32) ((srcSize + (blockSize-1)) / blockSize) + nbFiles;
/* these are the blockTable parameters, just split up */
const void ** const srcPtrs = (const void**)malloc(maxNbBlocks * sizeof(void*));
size_t* const srcSizes = (size_t*)malloc(maxNbBlocks * sizeof(size_t));
void ** const cPtrs = (void**)malloc(maxNbBlocks * sizeof(void*));
size_t* const cSizes = (size_t*)malloc(maxNbBlocks * sizeof(size_t));
size_t* const cCapacities = (size_t*)malloc(maxNbBlocks * sizeof(size_t));
void ** const resPtrs = (void**)malloc(maxNbBlocks * sizeof(void*));
size_t* const resSizes = (size_t*)malloc(maxNbBlocks * sizeof(size_t));
BMK_timedFnState_t* timeStateCompress = BMK_createTimedFnState(adv->nbSeconds * 1000, BMK_RUNTEST_DEFAULT_MS);
BMK_timedFnState_t* timeStateDecompress = BMK_createTimedFnState(adv->nbSeconds * 1000, BMK_RUNTEST_DEFAULT_MS);
ZSTD_CCtx* const cctx = ZSTD_createCCtx();
ZSTD_DCtx* const dctx = ZSTD_createDCtx();
const size_t maxCompressedSize = dstCapacity ? dstCapacity : ZSTD_compressBound(srcSize) + (maxNbBlocks * 1024);
void* const internalDstBuffer = dstBuffer ? NULL : malloc(maxCompressedSize);
void* const compressedBuffer = dstBuffer ? dstBuffer : internalDstBuffer;
BMK_benchOutcome_t outcome = BMK_benchOutcome_error(); /* error by default */
void* resultBuffer = srcSize ? malloc(srcSize) : NULL;
int allocationincomplete = !srcPtrs || !srcSizes || !cPtrs ||
!cSizes || !cCapacities || !resPtrs || !resSizes ||
!timeStateCompress || !timeStateDecompress ||
!cctx || !dctx ||
!compressedBuffer || !resultBuffer;
if (!allocationincomplete && !dstParamsError) {
outcome = BMK_benchMemAdvancedNoAlloc(srcPtrs, srcSizes,
cPtrs, cCapacities, cSizes,
resPtrs, resSizes,
&resultBuffer,
compressedBuffer, maxCompressedSize,
timeStateCompress, timeStateDecompress,
srcBuffer, srcSize,
fileSizes, nbFiles,
cLevel, comprParams,
dictBuffer, dictBufferSize,
cctx, dctx,
displayLevel, displayName, adv);
}
/* clean up */
BMK_freeTimedFnState(timeStateCompress);
BMK_freeTimedFnState(timeStateDecompress);
ZSTD_freeCCtx(cctx);
ZSTD_freeDCtx(dctx);
free(internalDstBuffer);
free(resultBuffer);
free((void*)srcPtrs);
free(srcSizes);
free(cPtrs);
free(cSizes);
free(cCapacities);
free(resPtrs);
free(resSizes);
if(allocationincomplete) {
RETURN_ERROR(31, BMK_benchOutcome_t, "allocation error : not enough memory");
}
if(dstParamsError) {
RETURN_ERROR(32, BMK_benchOutcome_t, "Dst parameters not coherent");
}
return outcome;
}
BMK_benchOutcome_t BMK_benchMem(const void* srcBuffer, size_t srcSize,
const size_t* fileSizes, unsigned nbFiles,
int cLevel, const ZSTD_compressionParameters* comprParams,
const void* dictBuffer, size_t dictBufferSize,
int displayLevel, const char* displayName) {
BMK_advancedParams_t const adv = BMK_initAdvancedParams();
return BMK_benchMemAdvanced(srcBuffer, srcSize,
NULL, 0,
fileSizes, nbFiles,
cLevel, comprParams,
dictBuffer, dictBufferSize,
displayLevel, displayName, &adv);
}
static BMK_benchOutcome_t BMK_benchCLevel(const void* srcBuffer, size_t benchedSize,
const size_t* fileSizes, unsigned nbFiles,
int cLevel, const ZSTD_compressionParameters* comprParams,
const void* dictBuffer, size_t dictBufferSize,
int displayLevel, const char* displayName,
BMK_advancedParams_t const * const adv)
{
const char* pch = strrchr(displayName, '\\'); /* Windows */
if (!pch) pch = strrchr(displayName, '/'); /* Linux */
if (pch) displayName = pch+1;
if (adv->realTime) {
DISPLAYLEVEL(2, "Note : switching to real-time priority \n");
SET_REALTIME_PRIORITY;
}
if (displayLevel == 1 && !adv->additionalParam) /* --quiet mode */
- DISPLAY("bench %s %s: input %u bytes, %u seconds, %u KB blocks\n",
+ OUTPUT("bench %s %s: input %u bytes, %u seconds, %u KB blocks\n",
ZSTD_VERSION_STRING, ZSTD_GIT_COMMIT_STRING,
(unsigned)benchedSize, adv->nbSeconds, (unsigned)(adv->blockSize>>10));
return BMK_benchMemAdvanced(srcBuffer, benchedSize,
NULL, 0,
fileSizes, nbFiles,
cLevel, comprParams,
dictBuffer, dictBufferSize,
displayLevel, displayName, adv);
}
BMK_benchOutcome_t BMK_syntheticTest(int cLevel, double compressibility,
const ZSTD_compressionParameters* compressionParams,
int displayLevel, const BMK_advancedParams_t* adv)
{
char name[20] = {0};
size_t const benchedSize = 10000000;
void* srcBuffer;
BMK_benchOutcome_t res;
if (cLevel > ZSTD_maxCLevel()) {
RETURN_ERROR(15, BMK_benchOutcome_t, "Invalid Compression Level");
}
/* Memory allocation */
srcBuffer = malloc(benchedSize);
if (!srcBuffer) RETURN_ERROR(21, BMK_benchOutcome_t, "not enough memory");
/* Fill input buffer */
RDG_genBuffer(srcBuffer, benchedSize, compressibility, 0.0, 0);
/* Bench */
snprintf (name, sizeof(name), "Synthetic %2u%%", (unsigned)(compressibility*100));
res = BMK_benchCLevel(srcBuffer, benchedSize,
&benchedSize /* ? */, 1 /* ? */,
cLevel, compressionParams,
NULL, 0, /* dictionary */
displayLevel, name, adv);
/* clean up */
free(srcBuffer);
return res;
}
static size_t BMK_findMaxMem(U64 requiredMem)
{
size_t const step = 64 MB;
BYTE* testmem = NULL;
requiredMem = (((requiredMem >> 26) + 1) << 26);
requiredMem += step;
if (requiredMem > maxMemory) requiredMem = maxMemory;
do {
testmem = (BYTE*)malloc((size_t)requiredMem);
requiredMem -= step;
} while (!testmem && requiredMem > 0);
free(testmem);
return (size_t)(requiredMem);
}
/*! BMK_loadFiles() :
* Loads `buffer` with content of files listed within `fileNamesTable`.
* At most, fills `buffer` entirely. */
static int BMK_loadFiles(void* buffer, size_t bufferSize,
size_t* fileSizes,
const char* const * fileNamesTable, unsigned nbFiles,
int displayLevel)
{
size_t pos = 0, totalSize = 0;
unsigned n;
for (n=0; n<nbFiles; n++) {
U64 fileSize = UTIL_getFileSize(fileNamesTable[n]); /* last file may be shortened */
if (UTIL_isDirectory(fileNamesTable[n])) {
DISPLAYLEVEL(2, "Ignoring %s directory... \n", fileNamesTable[n]);
fileSizes[n] = 0;
continue;
}
if (fileSize == UTIL_FILESIZE_UNKNOWN) {
DISPLAYLEVEL(2, "Cannot evaluate size of %s, ignoring ... \n", fileNamesTable[n]);
fileSizes[n] = 0;
continue;
}
{ FILE* const f = fopen(fileNamesTable[n], "rb");
if (f==NULL) RETURN_ERROR_INT(10, "impossible to open file %s", fileNamesTable[n]);
- DISPLAYUPDATE(2, "Loading %s... \r", fileNamesTable[n]);
+ OUTPUTLEVEL(2, "Loading %s... \r", fileNamesTable[n]);
if (fileSize > bufferSize-pos) fileSize = bufferSize-pos, nbFiles=n; /* buffer too small - stop after this file */
{ size_t const readSize = fread(((char*)buffer)+pos, 1, (size_t)fileSize, f);
if (readSize != (size_t)fileSize) RETURN_ERROR_INT(11, "could not read %s", fileNamesTable[n]);
pos += readSize;
}
fileSizes[n] = (size_t)fileSize;
totalSize += (size_t)fileSize;
fclose(f);
} }
if (totalSize == 0) RETURN_ERROR_INT(12, "no data to bench");
return 0;
}
BMK_benchOutcome_t BMK_benchFilesAdvanced(
const char* const * fileNamesTable, unsigned nbFiles,
const char* dictFileName, int cLevel,
const ZSTD_compressionParameters* compressionParams,
int displayLevel, const BMK_advancedParams_t* adv)
{
void* srcBuffer = NULL;
size_t benchedSize;
void* dictBuffer = NULL;
size_t dictBufferSize = 0;
size_t* fileSizes = NULL;
BMK_benchOutcome_t res;
U64 const totalSizeToLoad = UTIL_getTotalFileSize(fileNamesTable, nbFiles);
if (!nbFiles) {
RETURN_ERROR(14, BMK_benchOutcome_t, "No Files to Benchmark");
}
if (cLevel > ZSTD_maxCLevel()) {
RETURN_ERROR(15, BMK_benchOutcome_t, "Invalid Compression Level");
}
+ if (totalSizeToLoad == UTIL_FILESIZE_UNKNOWN) {
+ RETURN_ERROR(9, BMK_benchOutcome_t, "Error loading files");
+ }
+
fileSizes = (size_t*)calloc(nbFiles, sizeof(size_t));
if (!fileSizes) RETURN_ERROR(12, BMK_benchOutcome_t, "not enough memory for fileSizes");
/* Load dictionary */
if (dictFileName != NULL) {
U64 const dictFileSize = UTIL_getFileSize(dictFileName);
if (dictFileSize == UTIL_FILESIZE_UNKNOWN) {
DISPLAYLEVEL(1, "error loading %s : %s \n", dictFileName, strerror(errno));
free(fileSizes);
RETURN_ERROR(9, BMK_benchOutcome_t, "benchmark aborted");
}
if (dictFileSize > 64 MB) {
free(fileSizes);
RETURN_ERROR(10, BMK_benchOutcome_t, "dictionary file %s too large", dictFileName);
}
dictBufferSize = (size_t)dictFileSize;
dictBuffer = malloc(dictBufferSize);
if (dictBuffer==NULL) {
free(fileSizes);
RETURN_ERROR(11, BMK_benchOutcome_t, "not enough memory for dictionary (%u bytes)",
(unsigned)dictBufferSize);
}
{ int const errorCode = BMK_loadFiles(dictBuffer, dictBufferSize,
fileSizes, &dictFileName /*?*/,
1 /*?*/, displayLevel);
if (errorCode) {
res = BMK_benchOutcome_error();
goto _cleanUp;
} }
}
/* Memory allocation & restrictions */
benchedSize = BMK_findMaxMem(totalSizeToLoad * 3) / 3;
if ((U64)benchedSize > totalSizeToLoad) benchedSize = (size_t)totalSizeToLoad;
if (benchedSize < totalSizeToLoad)
DISPLAY("Not enough memory; testing %u MB only...\n", (unsigned)(benchedSize >> 20));
srcBuffer = benchedSize ? malloc(benchedSize) : NULL;
if (!srcBuffer) {
free(dictBuffer);
free(fileSizes);
RETURN_ERROR(12, BMK_benchOutcome_t, "not enough memory");
}
/* Load input buffer */
{ int const errorCode = BMK_loadFiles(srcBuffer, benchedSize,
fileSizes, fileNamesTable, nbFiles,
displayLevel);
if (errorCode) {
res = BMK_benchOutcome_error();
goto _cleanUp;
} }
/* Bench */
{ char mfName[20] = {0};
snprintf (mfName, sizeof(mfName), " %u files", nbFiles);
{ const char* const displayName = (nbFiles > 1) ? mfName : fileNamesTable[0];
res = BMK_benchCLevel(srcBuffer, benchedSize,
fileSizes, nbFiles,
cLevel, compressionParams,
dictBuffer, dictBufferSize,
displayLevel, displayName,
adv);
} }
_cleanUp:
free(srcBuffer);
free(dictBuffer);
free(fileSizes);
return res;
}
BMK_benchOutcome_t BMK_benchFiles(
const char* const * fileNamesTable, unsigned nbFiles,
const char* dictFileName,
int cLevel, const ZSTD_compressionParameters* compressionParams,
int displayLevel)
{
BMK_advancedParams_t const adv = BMK_initAdvancedParams();
return BMK_benchFilesAdvanced(fileNamesTable, nbFiles, dictFileName, cLevel, compressionParams, displayLevel, &adv);
}
diff --git a/sys/contrib/zstd/programs/benchzstd.h b/sys/contrib/zstd/programs/benchzstd.h
index 8c55b3c4f297..11ac85da7f94 100644
--- a/sys/contrib/zstd/programs/benchzstd.h
+++ b/sys/contrib/zstd/programs/benchzstd.h
@@ -1,212 +1,213 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* benchzstd :
* benchmark Zstandard compression / decompression
* over a set of files or buffers
* and display progress result and final summary
*/
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef BENCH_ZSTD_H_3242387
#define BENCH_ZSTD_H_3242387
/* === Dependencies === */
#include <stddef.h> /* size_t */
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_compressionParameters */
#include "../lib/zstd.h" /* ZSTD_compressionParameters */
/* === Constants === */
#define MB_UNIT 1000000
/* === Benchmark functions === */
/* Creates a variant `typeName`, able to express "error or valid result".
* Functions with return type `typeName`
* must first check if result is valid, using BMK_isSuccessful_*(),
* and only then can extract `baseType`.
*/
#define VARIANT_ERROR_RESULT(baseType, variantName) \
\
typedef struct { \
baseType internal_never_use_directly; \
int tag; \
} variantName
typedef struct {
size_t cSize;
unsigned long long cSpeed; /* bytes / sec */
unsigned long long dSpeed;
size_t cMem; /* memory usage during compression */
} BMK_benchResult_t;
VARIANT_ERROR_RESULT(BMK_benchResult_t, BMK_benchOutcome_t);
/* check first if the return structure represents an error or a valid result */
int BMK_isSuccessful_benchOutcome(BMK_benchOutcome_t outcome);
/* extract result from variant type.
* note : this function will abort() program execution if result is not valid
* check result validity first, by using BMK_isSuccessful_benchOutcome()
*/
BMK_benchResult_t BMK_extract_benchResult(BMK_benchOutcome_t outcome);
/*! BMK_benchFiles() -- called by zstdcli */
/* Loads files from fileNamesTable into memory,
* and an optional dictionary from dictFileName (can be NULL),
* then uses benchMem().
* fileNamesTable - name of files to benchmark.
* nbFiles - number of files (size of fileNamesTable), must be > 0.
* dictFileName - name of dictionary file to load.
* cLevel - compression level to benchmark, errors if invalid.
* compressionParams - advanced compression Parameters.
* displayLevel - what gets printed:
* 0 : no display;
* 1 : errors;
* 2 : + result + interaction + warnings;
* 3 : + information;
* 4 : + debug
* @return:
* a variant, which expresses either an error, or a valid result.
* Use BMK_isSuccessful_benchOutcome() to check if function was successful.
* If yes, extract the valid result with BMK_extract_benchResult(),
* it will contain :
* .cSpeed: compression speed in bytes per second,
* .dSpeed: decompression speed in bytes per second,
* .cSize : compressed size, in bytes
* .cMem : memory budget required for the compression context
*/
BMK_benchOutcome_t BMK_benchFiles(
const char* const * fileNamesTable, unsigned nbFiles,
const char* dictFileName,
int cLevel, const ZSTD_compressionParameters* compressionParams,
int displayLevel);
typedef enum {
BMK_both = 0,
BMK_decodeOnly = 1,
BMK_compressOnly = 2
} BMK_mode_t;
typedef struct {
BMK_mode_t mode; /* 0: all, 1: compress only 2: decode only */
unsigned nbSeconds; /* default timing is in nbSeconds */
size_t blockSize; /* Maximum size of each block*/
int nbWorkers; /* multithreading */
unsigned realTime; /* real time priority */
int additionalParam; /* used by python speed benchmark */
int ldmFlag; /* enables long distance matching */
int ldmMinMatch; /* below: parameters for long distance matching, see zstd.1.md */
int ldmHashLog;
int ldmBucketSizeLog;
int ldmHashRateLog;
- ZSTD_literalCompressionMode_e literalCompressionMode;
+ ZSTD_paramSwitch_e literalCompressionMode;
+ int useRowMatchFinder; /* use row-based matchfinder if possible */
} BMK_advancedParams_t;
/* returns default parameters used by nonAdvanced functions */
BMK_advancedParams_t BMK_initAdvancedParams(void);
/*! BMK_benchFilesAdvanced():
* Same as BMK_benchFiles(),
* with more controls, provided through advancedParams_t structure */
BMK_benchOutcome_t BMK_benchFilesAdvanced(
const char* const * fileNamesTable, unsigned nbFiles,
const char* dictFileName,
int cLevel, const ZSTD_compressionParameters* compressionParams,
int displayLevel, const BMK_advancedParams_t* adv);
/*! BMK_syntheticTest() -- called from zstdcli */
/* Generates a sample with datagen, using compressibility argument */
/* cLevel - compression level to benchmark, errors if invalid
* compressibility - determines compressibility of sample
* compressionParams - basic compression Parameters
* displayLevel - see benchFiles
* adv - see advanced_Params_t
* @return:
* a variant, which expresses either an error, or a valid result.
* Use BMK_isSuccessful_benchOutcome() to check if function was successful.
* If yes, extract the valid result with BMK_extract_benchResult(),
* it will contain :
* .cSpeed: compression speed in bytes per second,
* .dSpeed: decompression speed in bytes per second,
* .cSize : compressed size, in bytes
* .cMem : memory budget required for the compression context
*/
BMK_benchOutcome_t BMK_syntheticTest(
int cLevel, double compressibility,
const ZSTD_compressionParameters* compressionParams,
int displayLevel, const BMK_advancedParams_t* adv);
/* === Benchmark Zstandard in a memory-to-memory scenario === */
/** BMK_benchMem() -- core benchmarking function, called in paramgrill
* applies ZSTD_compress_generic() and ZSTD_decompress_generic() on data in srcBuffer
* with specific compression parameters provided by other arguments using benchFunction
* (cLevel, comprParams + adv in advanced Mode) */
/* srcBuffer - data source, expected to be valid compressed data if in Decode Only Mode
* srcSize - size of data in srcBuffer
* fileSizes - srcBuffer is considered cut into 1+ segments, to compress separately.
* note : sum(fileSizes) must be == srcSize. (<== ensure it's properly checked)
* nbFiles - nb of segments
* cLevel - compression level
* comprParams - basic compression parameters
* dictBuffer - a dictionary if used, null otherwise
* dictBufferSize - size of dictBuffer, 0 otherwise
* displayLevel - see BMK_benchFiles
* displayName - name used by display
* @return:
* a variant, which expresses either an error, or a valid result.
* Use BMK_isSuccessful_benchOutcome() to check if function was successful.
* If yes, extract the valid result with BMK_extract_benchResult(),
* it will contain :
* .cSpeed: compression speed in bytes per second,
* .dSpeed: decompression speed in bytes per second,
* .cSize : compressed size, in bytes
* .cMem : memory budget required for the compression context
*/
BMK_benchOutcome_t BMK_benchMem(const void* srcBuffer, size_t srcSize,
const size_t* fileSizes, unsigned nbFiles,
int cLevel, const ZSTD_compressionParameters* comprParams,
const void* dictBuffer, size_t dictBufferSize,
int displayLevel, const char* displayName);
/* BMK_benchMemAdvanced() : same as BMK_benchMem()
* with following additional options :
* dstBuffer - destination buffer to write compressed output in, NULL if none provided.
* dstCapacity - capacity of destination buffer, give 0 if dstBuffer = NULL
* adv = see advancedParams_t
*/
BMK_benchOutcome_t BMK_benchMemAdvanced(const void* srcBuffer, size_t srcSize,
void* dstBuffer, size_t dstCapacity,
const size_t* fileSizes, unsigned nbFiles,
int cLevel, const ZSTD_compressionParameters* comprParams,
const void* dictBuffer, size_t dictBufferSize,
int displayLevel, const char* displayName,
const BMK_advancedParams_t* adv);
#endif /* BENCH_ZSTD_H_3242387 */
#if defined (__cplusplus)
}
#endif
diff --git a/sys/contrib/zstd/programs/datagen.c b/sys/contrib/zstd/programs/datagen.c
index 4353b7ff9943..3b4f9e5c7b69 100644
--- a/sys/contrib/zstd/programs/datagen.c
+++ b/sys/contrib/zstd/programs/datagen.c
@@ -1,186 +1,186 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-************************************
* Dependencies
**************************************/
#include "datagen.h"
#include "platform.h" /* SET_BINARY_MODE */
#include <stdlib.h> /* malloc, free */
#include <stdio.h> /* FILE, fwrite, fprintf */
#include <string.h> /* memcpy */
#include "../lib/common/mem.h" /* U32 */
/*-************************************
* Macros
**************************************/
#define KB *(1 <<10)
#define MIN(a,b) ( (a) < (b) ? (a) : (b) )
#define RDG_DEBUG 0
#define TRACE(...) if (RDG_DEBUG) fprintf(stderr, __VA_ARGS__ )
/*-************************************
* Local constants
**************************************/
#define LTLOG 13
#define LTSIZE (1<<LTLOG)
#define LTMASK (LTSIZE-1)
/*-*******************************************************
* Local Functions
*********************************************************/
#define RDG_rotl32(x,r) ((x << r) | (x >> (32 - r)))
static U32 RDG_rand(U32* src)
{
static const U32 prime1 = 2654435761U;
static const U32 prime2 = 2246822519U;
U32 rand32 = *src;
rand32 *= prime1;
rand32 ^= prime2;
rand32 = RDG_rotl32(rand32, 13);
*src = rand32;
return rand32 >> 5;
}
typedef U32 fixedPoint_24_8;
static void RDG_fillLiteralDistrib(BYTE* ldt, fixedPoint_24_8 ld)
{
BYTE const firstChar = (ld<=0.0) ? 0 : '(';
BYTE const lastChar = (ld<=0.0) ? 255 : '}';
BYTE character = (ld<=0.0) ? 0 : '0';
U32 u;
if (ld<=0) ld = 0;
for (u=0; u<LTSIZE; ) {
U32 const weight = (((LTSIZE - u) * ld) >> 8) + 1;
U32 const end = MIN ( u + weight , LTSIZE);
while (u < end) ldt[u++] = character;
character++;
if (character > lastChar) character = firstChar;
}
}
static BYTE RDG_genChar(U32* seed, const BYTE* ldt)
{
U32 const id = RDG_rand(seed) & LTMASK;
return ldt[id]; /* memory-sanitizer fails here, stating "uninitialized value" when table initialized with P==0.0. Checked : table is fully initialized */
}
static U32 RDG_rand15Bits (U32* seedPtr)
{
return RDG_rand(seedPtr) & 0x7FFF;
}
static U32 RDG_randLength(U32* seedPtr)
{
if (RDG_rand(seedPtr) & 7) return (RDG_rand(seedPtr) & 0xF); /* small length */
return (RDG_rand(seedPtr) & 0x1FF) + 0xF;
}
static void RDG_genBlock(void* buffer, size_t buffSize, size_t prefixSize,
double matchProba, const BYTE* ldt, U32* seedPtr)
{
BYTE* const buffPtr = (BYTE*)buffer;
U32 const matchProba32 = (U32)(32768 * matchProba);
size_t pos = prefixSize;
U32 prevOffset = 1;
/* special case : sparse content */
while (matchProba >= 1.0) {
size_t size0 = RDG_rand(seedPtr) & 3;
size0 = (size_t)1 << (16 + size0 * 2);
size0 += RDG_rand(seedPtr) & (size0-1); /* because size0 is power of 2*/
if (buffSize < pos + size0) {
memset(buffPtr+pos, 0, buffSize-pos);
return;
}
memset(buffPtr+pos, 0, size0);
pos += size0;
buffPtr[pos-1] = RDG_genChar(seedPtr, ldt);
continue;
}
/* init */
if (pos==0) buffPtr[0] = RDG_genChar(seedPtr, ldt), pos=1;
/* Generate compressible data */
while (pos < buffSize) {
/* Select : Literal (char) or Match (within 32K) */
if (RDG_rand15Bits(seedPtr) < matchProba32) {
/* Copy (within 32K) */
U32 const length = RDG_randLength(seedPtr) + 4;
U32 const d = (U32) MIN(pos + length , buffSize);
U32 const repeatOffset = (RDG_rand(seedPtr) & 15) == 2;
U32 const randOffset = RDG_rand15Bits(seedPtr) + 1;
U32 const offset = repeatOffset ? prevOffset : (U32) MIN(randOffset , pos);
size_t match = pos - offset;
while (pos < d) { buffPtr[pos++] = buffPtr[match++]; /* correctly manages overlaps */ }
prevOffset = offset;
} else {
/* Literal (noise) */
U32 const length = RDG_randLength(seedPtr);
U32 const d = (U32) MIN(pos + length, buffSize);
while (pos < d) { buffPtr[pos++] = RDG_genChar(seedPtr, ldt); }
} }
}
void RDG_genBuffer(void* buffer, size_t size, double matchProba, double litProba, unsigned seed)
{
U32 seed32 = seed;
BYTE ldt[LTSIZE];
memset(ldt, '0', sizeof(ldt)); /* yes, character '0', this is intentional */
if (litProba<=0.0) litProba = matchProba / 4.5;
RDG_fillLiteralDistrib(ldt, (fixedPoint_24_8)(litProba * 256 + 0.001));
RDG_genBlock(buffer, size, 0, matchProba, ldt, &seed32);
}
void RDG_genStdout(unsigned long long size, double matchProba, double litProba, unsigned seed)
{
U32 seed32 = seed;
size_t const stdBlockSize = 128 KB;
size_t const stdDictSize = 32 KB;
BYTE* const buff = (BYTE*)malloc(stdDictSize + stdBlockSize);
U64 total = 0;
BYTE ldt[LTSIZE]; /* literals distribution table */
/* init */
if (buff==NULL) { perror("datagen"); exit(1); }
if (litProba<=0.0) litProba = matchProba / 4.5;
memset(ldt, '0', sizeof(ldt)); /* yes, character '0', this is intentional */
RDG_fillLiteralDistrib(ldt, (fixedPoint_24_8)(litProba * 256 + 0.001));
SET_BINARY_MODE(stdout);
/* Generate initial dict */
RDG_genBlock(buff, stdDictSize, 0, matchProba, ldt, &seed32);
/* Generate compressible data */
while (total < size) {
size_t const genBlockSize = (size_t) (MIN (stdBlockSize, size-total));
RDG_genBlock(buff, stdDictSize+stdBlockSize, stdDictSize, matchProba, ldt, &seed32);
total += genBlockSize;
{ size_t const unused = fwrite(buff, 1, genBlockSize, stdout); (void)unused; }
/* update dict */
memcpy(buff, buff + stdBlockSize, stdDictSize);
}
/* cleanup */
free(buff);
}
diff --git a/sys/contrib/zstd/programs/datagen.h b/sys/contrib/zstd/programs/datagen.h
index 5a2682d8f9f6..b76ae2a2225c 100644
--- a/sys/contrib/zstd/programs/datagen.h
+++ b/sys/contrib/zstd/programs/datagen.h
@@ -1,30 +1,30 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef DATAGEN_H
#define DATAGEN_H
#include <stddef.h> /* size_t */
void RDG_genStdout(unsigned long long size, double matchProba, double litProba, unsigned seed);
void RDG_genBuffer(void* buffer, size_t size, double matchProba, double litProba, unsigned seed);
/*!RDG_genBuffer
Generate 'size' bytes of compressible data into 'buffer'.
Compressibility can be controlled using 'matchProba', which is floating point value between 0 and 1.
'LitProba' is optional, it affect variability of individual bytes. If litProba==0.0, default value will be used.
Generated data pattern can be modified using different 'seed'.
For a triplet (matchProba, litProba, seed), the function always generate the same content.
RDG_genStdout
Same as RDG_genBuffer, but generates data into stdout
*/
#endif
diff --git a/sys/contrib/zstd/programs/dibio.c b/sys/contrib/zstd/programs/dibio.c
index cb3829e3e59b..d19f954486f0 100644
--- a/sys/contrib/zstd/programs/dibio.c
+++ b/sys/contrib/zstd/programs/dibio.c
@@ -1,372 +1,435 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* **************************************
* Compiler Warnings
****************************************/
#ifdef _MSC_VER
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
#endif
/*-*************************************
* Includes
***************************************/
#include "platform.h" /* Large Files support */
#include "util.h" /* UTIL_getFileSize, UTIL_getTotalFileSize */
#include <stdlib.h> /* malloc, free */
#include <string.h> /* memset */
#include <stdio.h> /* fprintf, fopen, ftello64 */
#include <errno.h> /* errno */
#include <assert.h>
#include "timefn.h" /* UTIL_time_t, UTIL_clockSpanMicro, UTIL_getTime */
#include "../lib/common/mem.h" /* read */
-#include "../lib/common/error_private.h"
#include "dibio.h"
/*-*************************************
* Constants
***************************************/
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)
#define SAMPLESIZE_MAX (128 KB)
#define MEMMULT 11 /* rough estimation : memory cost to analyze 1 byte of sample */
#define COVER_MEMMULT 9 /* rough estimation : memory cost to analyze 1 byte of sample */
#define FASTCOVER_MEMMULT 1 /* rough estimation : memory cost to analyze 1 byte of sample */
static const size_t g_maxMemory = (sizeof(size_t) == 4) ? (2 GB - 64 MB) : ((size_t)(512 MB) << sizeof(size_t));
#define NOISELENGTH 32
+#define MAX_SAMPLES_SIZE (2 GB) /* training dataset limited to 2GB */
/*-*************************************
* Console display
***************************************/
#define DISPLAY(...) fprintf(stderr, __VA_ARGS__)
#define DISPLAYLEVEL(l, ...) if (displayLevel>=l) { DISPLAY(__VA_ARGS__); }
static const U64 g_refreshRate = SEC_TO_MICRO / 6;
static UTIL_time_t g_displayClock = UTIL_TIME_INITIALIZER;
#define DISPLAYUPDATE(l, ...) { if (displayLevel>=l) { \
if ((UTIL_clockSpanMicro(g_displayClock) > g_refreshRate) || (displayLevel>=4)) \
{ g_displayClock = UTIL_getTime(); DISPLAY(__VA_ARGS__); \
if (displayLevel>=4) fflush(stderr); } } }
/*-*************************************
* Exceptions
***************************************/
#ifndef DEBUG
# define DEBUG 0
#endif
#define DEBUGOUTPUT(...) if (DEBUG) DISPLAY(__VA_ARGS__);
#define EXM_THROW(error, ...) \
{ \
DEBUGOUTPUT("Error defined at %s, line %i : \n", __FILE__, __LINE__); \
DISPLAY("Error %i : ", error); \
DISPLAY(__VA_ARGS__); \
DISPLAY("\n"); \
exit(error); \
}
/* ********************************************************
* Helper functions
**********************************************************/
#undef MIN
#define MIN(a,b) ((a) < (b) ? (a) : (b))
+/**
+ Returns the size of a file.
+ If error returns -1.
+*/
+static S64 DiB_getFileSize (const char * fileName)
+{
+ U64 const fileSize = UTIL_getFileSize(fileName);
+ return (fileSize == UTIL_FILESIZE_UNKNOWN) ? -1 : (S64)fileSize;
+}
/* ********************************************************
* File related operations
**********************************************************/
/** DiB_loadFiles() :
* load samples from files listed in fileNamesTable into buffer.
* works even if buffer is too small to load all samples.
* Also provides the size of each sample into sampleSizes table
* which must be sized correctly, using DiB_fileStats().
* @return : nb of samples effectively loaded into `buffer`
* *bufferSizePtr is modified, it provides the amount data loaded within buffer.
* sampleSizes is filled with the size of each sample.
*/
-static unsigned DiB_loadFiles(void* buffer, size_t* bufferSizePtr,
- size_t* sampleSizes, unsigned sstSize,
- const char** fileNamesTable, unsigned nbFiles, size_t targetChunkSize,
- unsigned displayLevel)
+static int DiB_loadFiles(
+ void* buffer, size_t* bufferSizePtr,
+ size_t* sampleSizes, int sstSize,
+ const char** fileNamesTable, int nbFiles,
+ size_t targetChunkSize, int displayLevel )
{
char* const buff = (char*)buffer;
- size_t pos = 0;
- unsigned nbLoadedChunks = 0, fileIndex;
-
- for (fileIndex=0; fileIndex<nbFiles; fileIndex++) {
- const char* const fileName = fileNamesTable[fileIndex];
- unsigned long long const fs64 = UTIL_getFileSize(fileName);
- unsigned long long remainingToLoad = (fs64 == UTIL_FILESIZE_UNKNOWN) ? 0 : fs64;
- U32 const nbChunks = targetChunkSize ? (U32)((fs64 + (targetChunkSize-1)) / targetChunkSize) : 1;
- U64 const chunkSize = targetChunkSize ? MIN(targetChunkSize, fs64) : fs64;
- size_t const maxChunkSize = (size_t)MIN(chunkSize, SAMPLESIZE_MAX);
- U32 cnb;
- FILE* const f = fopen(fileName, "rb");
- if (f==NULL) EXM_THROW(10, "zstd: dictBuilder: %s %s ", fileName, strerror(errno));
- DISPLAYUPDATE(2, "Loading %s... \r", fileName);
- for (cnb=0; cnb<nbChunks; cnb++) {
- size_t const toLoad = (size_t)MIN(maxChunkSize, remainingToLoad);
- if (toLoad > *bufferSizePtr-pos) break;
- { size_t const readSize = fread(buff+pos, 1, toLoad, f);
- if (readSize != toLoad) EXM_THROW(11, "Pb reading %s", fileName);
- pos += readSize;
- sampleSizes[nbLoadedChunks++] = toLoad;
- remainingToLoad -= targetChunkSize;
- if (nbLoadedChunks == sstSize) { /* no more space left in sampleSizes table */
- fileIndex = nbFiles; /* stop there */
+ size_t totalDataLoaded = 0;
+ int nbSamplesLoaded = 0;
+ int fileIndex = 0;
+ FILE * f = NULL;
+
+ assert(targetChunkSize <= SAMPLESIZE_MAX);
+
+ while ( nbSamplesLoaded < sstSize && fileIndex < nbFiles ) {
+ size_t fileDataLoaded;
+ S64 const fileSize = DiB_getFileSize(fileNamesTable[fileIndex]);
+ if (fileSize <= 0) /* skip if zero-size or file error */
+ continue;
+
+ f = fopen( fileNamesTable[fileIndex], "rb");
+ if (f == NULL)
+ EXM_THROW(10, "zstd: dictBuilder: %s %s ", fileNamesTable[fileIndex], strerror(errno));
+ DISPLAYUPDATE(2, "Loading %s... \r", fileNamesTable[fileIndex]);
+
+ /* Load the first chunk of data from the file */
+ fileDataLoaded = targetChunkSize > 0 ?
+ (size_t)MIN(fileSize, (S64)targetChunkSize) :
+ (size_t)MIN(fileSize, SAMPLESIZE_MAX );
+ if (totalDataLoaded + fileDataLoaded > *bufferSizePtr)
+ break;
+ if (fread( buff+totalDataLoaded, 1, fileDataLoaded, f ) != fileDataLoaded)
+ EXM_THROW(11, "Pb reading %s", fileNamesTable[fileIndex]);
+ sampleSizes[nbSamplesLoaded++] = fileDataLoaded;
+ totalDataLoaded += fileDataLoaded;
+
+ /* If file-chunking is enabled, load the rest of the file as more samples */
+ if (targetChunkSize > 0) {
+ while( (S64)fileDataLoaded < fileSize && nbSamplesLoaded < sstSize ) {
+ size_t const chunkSize = MIN((size_t)(fileSize-fileDataLoaded), targetChunkSize);
+ if (totalDataLoaded + chunkSize > *bufferSizePtr) /* buffer is full */
break;
- }
- if (toLoad < targetChunkSize) {
- fseek(f, (long)(targetChunkSize - toLoad), SEEK_CUR);
- } } }
- fclose(f);
+
+ if (fread( buff+totalDataLoaded, 1, chunkSize, f ) != chunkSize)
+ EXM_THROW(11, "Pb reading %s", fileNamesTable[fileIndex]);
+ sampleSizes[nbSamplesLoaded++] = chunkSize;
+ totalDataLoaded += chunkSize;
+ fileDataLoaded += chunkSize;
+ }
+ }
+ fileIndex += 1;
+ fclose(f); f = NULL;
}
+ if (f != NULL)
+ fclose(f);
+
DISPLAYLEVEL(2, "\r%79s\r", "");
- *bufferSizePtr = pos;
- DISPLAYLEVEL(4, "loaded : %u KB \n", (unsigned)(pos >> 10))
- return nbLoadedChunks;
+ DISPLAYLEVEL(4, "Loaded %d KB total training data, %d nb samples \n",
+ (int)(totalDataLoaded / (1 KB)), nbSamplesLoaded );
+ *bufferSizePtr = totalDataLoaded;
+ return nbSamplesLoaded;
}
#define DiB_rotl32(x,r) ((x << r) | (x >> (32 - r)))
static U32 DiB_rand(U32* src)
{
static const U32 prime1 = 2654435761U;
static const U32 prime2 = 2246822519U;
U32 rand32 = *src;
rand32 *= prime1;
rand32 ^= prime2;
rand32 = DiB_rotl32(rand32, 13);
*src = rand32;
return rand32 >> 5;
}
/* DiB_shuffle() :
* shuffle a table of file names in a semi-random way
* It improves dictionary quality by reducing "locality" impact, so if sample set is very large,
* it will load random elements from it, instead of just the first ones. */
static void DiB_shuffle(const char** fileNamesTable, unsigned nbFiles) {
U32 seed = 0xFD2FB528;
unsigned i;
assert(nbFiles >= 1);
for (i = nbFiles - 1; i > 0; --i) {
unsigned const j = DiB_rand(&seed) % (i + 1);
const char* const tmp = fileNamesTable[j];
fileNamesTable[j] = fileNamesTable[i];
fileNamesTable[i] = tmp;
}
}
/*-********************************************************
* Dictionary training functions
**********************************************************/
static size_t DiB_findMaxMem(unsigned long long requiredMem)
{
size_t const step = 8 MB;
void* testmem = NULL;
requiredMem = (((requiredMem >> 23) + 1) << 23);
requiredMem += step;
if (requiredMem > g_maxMemory) requiredMem = g_maxMemory;
while (!testmem) {
testmem = malloc((size_t)requiredMem);
requiredMem -= step;
}
free(testmem);
return (size_t)requiredMem;
}
static void DiB_fillNoise(void* buffer, size_t length)
{
unsigned const prime1 = 2654435761U;
unsigned const prime2 = 2246822519U;
unsigned acc = prime1;
size_t p=0;
for (p=0; p<length; p++) {
acc *= prime2;
((unsigned char*)buffer)[p] = (unsigned char)(acc >> 21);
}
}
static void DiB_saveDict(const char* dictFileName,
const void* buff, size_t buffSize)
{
FILE* const f = fopen(dictFileName, "wb");
if (f==NULL) EXM_THROW(3, "cannot open %s ", dictFileName);
{ size_t const n = fwrite(buff, 1, buffSize, f);
if (n!=buffSize) EXM_THROW(4, "%s : write error", dictFileName) }
{ size_t const n = (size_t)fclose(f);
if (n!=0) EXM_THROW(5, "%s : flush error", dictFileName) }
}
-
typedef struct {
- U64 totalSizeToLoad;
- unsigned oneSampleTooLarge;
- unsigned nbSamples;
+ S64 totalSizeToLoad;
+ int nbSamples;
+ int oneSampleTooLarge;
} fileStats;
/*! DiB_fileStats() :
* Given a list of files, and a chunkSize (0 == no chunk, whole files)
* provides the amount of data to be loaded and the resulting nb of samples.
* This is useful primarily for allocation purpose => sample buffer, and sample sizes table.
*/
-static fileStats DiB_fileStats(const char** fileNamesTable, unsigned nbFiles, size_t chunkSize, unsigned displayLevel)
+static fileStats DiB_fileStats(const char** fileNamesTable, int nbFiles, size_t chunkSize, int displayLevel)
{
fileStats fs;
- unsigned n;
+ int n;
memset(&fs, 0, sizeof(fs));
+
+ // We assume that if chunking is requested, the chunk size is < SAMPLESIZE_MAX
+ assert( chunkSize <= SAMPLESIZE_MAX );
+
for (n=0; n<nbFiles; n++) {
- U64 const fileSize = UTIL_getFileSize(fileNamesTable[n]);
- U64 const srcSize = (fileSize == UTIL_FILESIZE_UNKNOWN) ? 0 : fileSize;
- U32 const nbSamples = (U32)(chunkSize ? (srcSize + (chunkSize-1)) / chunkSize : 1);
- U64 const chunkToLoad = chunkSize ? MIN(chunkSize, srcSize) : srcSize;
- size_t const cappedChunkSize = (size_t)MIN(chunkToLoad, SAMPLESIZE_MAX);
- fs.totalSizeToLoad += cappedChunkSize * nbSamples;
- fs.oneSampleTooLarge |= (chunkSize > 2*SAMPLESIZE_MAX);
- fs.nbSamples += nbSamples;
+ S64 const fileSize = DiB_getFileSize(fileNamesTable[n]);
+ // TODO: is there a minimum sample size? What if the file is 1-byte?
+ if (fileSize == 0) {
+ DISPLAYLEVEL(3, "Sample file '%s' has zero size, skipping...\n", fileNamesTable[n]);
+ continue;
+ }
+
+ /* the case where we are breaking up files in sample chunks */
+ if (chunkSize > 0)
+ {
+ // TODO: is there a minimum sample size? Can we have a 1-byte sample?
+ fs.nbSamples += (int)((fileSize + chunkSize-1) / chunkSize);
+ fs.totalSizeToLoad += fileSize;
+ }
+ else {
+ /* the case where one file is one sample */
+ if (fileSize > SAMPLESIZE_MAX) {
+ /* flag excessively large sample files */
+ fs.oneSampleTooLarge |= (fileSize > 2*SAMPLESIZE_MAX);
+
+ /* Limit to the first SAMPLESIZE_MAX (128kB) of the file */
+ DISPLAYLEVEL(3, "Sample file '%s' is too large, limiting to %d KB",
+ fileNamesTable[n], SAMPLESIZE_MAX / (1 KB));
+ }
+ fs.nbSamples += 1;
+ fs.totalSizeToLoad += MIN(fileSize, SAMPLESIZE_MAX);
+ }
}
- DISPLAYLEVEL(4, "Preparing to load : %u KB \n", (unsigned)(fs.totalSizeToLoad >> 10));
+ DISPLAYLEVEL(4, "Found training data %d files, %d KB, %d samples\n", nbFiles, (int)(fs.totalSizeToLoad / (1 KB)), fs.nbSamples);
return fs;
}
-
-/*! ZDICT_trainFromBuffer_unsafe_legacy() :
- Strictly Internal use only !!
- Same as ZDICT_trainFromBuffer_legacy(), but does not control `samplesBuffer`.
- `samplesBuffer` must be followed by noisy guard band to avoid out-of-buffer reads.
- @return : size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
- or an error code.
-*/
-size_t ZDICT_trainFromBuffer_unsafe_legacy(void* dictBuffer, size_t dictBufferCapacity,
- const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
- ZDICT_legacy_params_t parameters);
-
-
-int DiB_trainFromFiles(const char* dictFileName, unsigned maxDictSize,
- const char** fileNamesTable, unsigned nbFiles, size_t chunkSize,
+int DiB_trainFromFiles(const char* dictFileName, size_t maxDictSize,
+ const char** fileNamesTable, int nbFiles, size_t chunkSize,
ZDICT_legacy_params_t* params, ZDICT_cover_params_t* coverParams,
- ZDICT_fastCover_params_t* fastCoverParams, int optimize)
+ ZDICT_fastCover_params_t* fastCoverParams, int optimize, unsigned memLimit)
{
- unsigned const displayLevel = params ? params->zParams.notificationLevel :
- coverParams ? coverParams->zParams.notificationLevel :
- fastCoverParams ? fastCoverParams->zParams.notificationLevel :
- 0; /* should never happen */
+ fileStats fs;
+ size_t* sampleSizes; /* vector of sample sizes. Each sample can be up to SAMPLESIZE_MAX */
+ int nbSamplesLoaded; /* nb of samples effectively loaded in srcBuffer */
+ size_t loadedSize; /* total data loaded in srcBuffer for all samples */
+ void* srcBuffer /* contiguous buffer with training data/samples */;
void* const dictBuffer = malloc(maxDictSize);
- fileStats const fs = DiB_fileStats(fileNamesTable, nbFiles, chunkSize, displayLevel);
- size_t* const sampleSizes = (size_t*)malloc(fs.nbSamples * sizeof(size_t));
- size_t const memMult = params ? MEMMULT :
- coverParams ? COVER_MEMMULT:
- FASTCOVER_MEMMULT;
- size_t const maxMem = DiB_findMaxMem(fs.totalSizeToLoad * memMult) / memMult;
- size_t loadedSize = (size_t) MIN ((unsigned long long)maxMem, fs.totalSizeToLoad);
- void* const srcBuffer = malloc(loadedSize+NOISELENGTH);
int result = 0;
+ int const displayLevel = params ? params->zParams.notificationLevel :
+ coverParams ? coverParams->zParams.notificationLevel :
+ fastCoverParams ? fastCoverParams->zParams.notificationLevel : 0;
+
+ /* Shuffle input files before we start assessing how much sample datA to load.
+ The purpose of the shuffle is to pick random samples when the sample
+ set is larger than what we can load in memory. */
+ DISPLAYLEVEL(3, "Shuffling input files\n");
+ DiB_shuffle(fileNamesTable, nbFiles);
+
+ /* Figure out how much sample data to load with how many samples */
+ fs = DiB_fileStats(fileNamesTable, nbFiles, chunkSize, displayLevel);
+
+ {
+ int const memMult = params ? MEMMULT :
+ coverParams ? COVER_MEMMULT:
+ FASTCOVER_MEMMULT;
+ size_t const maxMem = DiB_findMaxMem(fs.totalSizeToLoad * memMult) / memMult;
+ /* Limit the size of the training data to the free memory */
+ /* Limit the size of the training data to 2GB */
+ /* TODO: there is opportunity to stop DiB_fileStats() early when the data limit is reached */
+ loadedSize = (size_t)MIN( MIN((S64)maxMem, fs.totalSizeToLoad), MAX_SAMPLES_SIZE );
+ if (memLimit != 0) {
+ DISPLAYLEVEL(2, "! Warning : setting manual memory limit for dictionary training data at %u MB \n",
+ (unsigned)(memLimit / (1 MB)));
+ loadedSize = (size_t)MIN(loadedSize, memLimit);
+ }
+ srcBuffer = malloc(loadedSize+NOISELENGTH);
+ sampleSizes = (size_t*)malloc(fs.nbSamples * sizeof(size_t));
+ }
+
/* Checks */
if ((!sampleSizes) || (!srcBuffer) || (!dictBuffer))
EXM_THROW(12, "not enough memory for DiB_trainFiles"); /* should not happen */
if (fs.oneSampleTooLarge) {
DISPLAYLEVEL(2, "! Warning : some sample(s) are very large \n");
DISPLAYLEVEL(2, "! Note that dictionary is only useful for small samples. \n");
DISPLAYLEVEL(2, "! As a consequence, only the first %u bytes of each sample are loaded \n", SAMPLESIZE_MAX);
}
if (fs.nbSamples < 5) {
DISPLAYLEVEL(2, "! Warning : nb of samples too low for proper processing ! \n");
DISPLAYLEVEL(2, "! Please provide _one file per sample_. \n");
DISPLAYLEVEL(2, "! Alternatively, split files into fixed-size blocks representative of samples, with -B# \n");
EXM_THROW(14, "nb of samples too low"); /* we now clearly forbid this case */
}
- if (fs.totalSizeToLoad < (unsigned long long)maxDictSize * 8) {
+ if (fs.totalSizeToLoad < (S64)maxDictSize * 8) {
DISPLAYLEVEL(2, "! Warning : data size of samples too small for target dictionary size \n");
DISPLAYLEVEL(2, "! Samples should be about 100x larger than target dictionary size \n");
}
/* init */
- if (loadedSize < fs.totalSizeToLoad)
- DISPLAYLEVEL(1, "Not enough memory; training on %u MB only...\n", (unsigned)(loadedSize >> 20));
+ if ((S64)loadedSize < fs.totalSizeToLoad)
+ DISPLAYLEVEL(1, "Training samples set too large (%u MB); training on %u MB only...\n",
+ (unsigned)(fs.totalSizeToLoad / (1 MB)),
+ (unsigned)(loadedSize / (1 MB)));
/* Load input buffer */
- DISPLAYLEVEL(3, "Shuffling input files\n");
- DiB_shuffle(fileNamesTable, nbFiles);
-
- DiB_loadFiles(srcBuffer, &loadedSize, sampleSizes, fs.nbSamples, fileNamesTable, nbFiles, chunkSize, displayLevel);
+ nbSamplesLoaded = DiB_loadFiles(
+ srcBuffer, &loadedSize, sampleSizes, fs.nbSamples, fileNamesTable,
+ nbFiles, chunkSize, displayLevel);
{ size_t dictSize;
if (params) {
DiB_fillNoise((char*)srcBuffer + loadedSize, NOISELENGTH); /* guard band, for end of buffer condition */
- dictSize = ZDICT_trainFromBuffer_unsafe_legacy(dictBuffer, maxDictSize,
- srcBuffer, sampleSizes, fs.nbSamples,
- *params);
+ dictSize = ZDICT_trainFromBuffer_legacy(dictBuffer, maxDictSize,
+ srcBuffer, sampleSizes, nbSamplesLoaded,
+ *params);
} else if (coverParams) {
if (optimize) {
dictSize = ZDICT_optimizeTrainFromBuffer_cover(dictBuffer, maxDictSize,
- srcBuffer, sampleSizes, fs.nbSamples,
+ srcBuffer, sampleSizes, nbSamplesLoaded,
coverParams);
if (!ZDICT_isError(dictSize)) {
unsigned splitPercentage = (unsigned)(coverParams->splitPoint * 100);
DISPLAYLEVEL(2, "k=%u\nd=%u\nsteps=%u\nsplit=%u\n", coverParams->k, coverParams->d,
coverParams->steps, splitPercentage);
}
} else {
dictSize = ZDICT_trainFromBuffer_cover(dictBuffer, maxDictSize, srcBuffer,
- sampleSizes, fs.nbSamples, *coverParams);
+ sampleSizes, nbSamplesLoaded, *coverParams);
}
} else {
assert(fastCoverParams != NULL);
if (optimize) {
dictSize = ZDICT_optimizeTrainFromBuffer_fastCover(dictBuffer, maxDictSize,
- srcBuffer, sampleSizes, fs.nbSamples,
+ srcBuffer, sampleSizes, nbSamplesLoaded,
fastCoverParams);
if (!ZDICT_isError(dictSize)) {
unsigned splitPercentage = (unsigned)(fastCoverParams->splitPoint * 100);
DISPLAYLEVEL(2, "k=%u\nd=%u\nf=%u\nsteps=%u\nsplit=%u\naccel=%u\n", fastCoverParams->k,
fastCoverParams->d, fastCoverParams->f, fastCoverParams->steps, splitPercentage,
fastCoverParams->accel);
}
} else {
dictSize = ZDICT_trainFromBuffer_fastCover(dictBuffer, maxDictSize, srcBuffer,
- sampleSizes, fs.nbSamples, *fastCoverParams);
+ sampleSizes, nbSamplesLoaded, *fastCoverParams);
}
}
if (ZDICT_isError(dictSize)) {
DISPLAYLEVEL(1, "dictionary training failed : %s \n", ZDICT_getErrorName(dictSize)); /* should not happen */
result = 1;
goto _cleanup;
}
/* save dict */
DISPLAYLEVEL(2, "Save dictionary of size %u into file %s \n", (unsigned)dictSize, dictFileName);
DiB_saveDict(dictFileName, dictBuffer, dictSize);
}
/* clean up */
_cleanup:
free(srcBuffer);
free(sampleSizes);
free(dictBuffer);
return result;
}
diff --git a/sys/contrib/zstd/programs/dibio.h b/sys/contrib/zstd/programs/dibio.h
index 682723d6a54b..666c1e661800 100644
--- a/sys/contrib/zstd/programs/dibio.h
+++ b/sys/contrib/zstd/programs/dibio.h
@@ -1,39 +1,39 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* This library is designed for a single-threaded console application.
* It exit() and printf() into stderr when it encounters an error condition. */
#ifndef DIBIO_H_003
#define DIBIO_H_003
/*-*************************************
* Dependencies
***************************************/
#define ZDICT_STATIC_LINKING_ONLY
-#include "../lib/dictBuilder/zdict.h" /* ZDICT_params_t */
+#include "../lib/zdict.h" /* ZDICT_params_t */
/*-*************************************
* Public functions
***************************************/
/*! DiB_trainFromFiles() :
Train a dictionary from a set of files provided by `fileNamesTable`.
Resulting dictionary is written into file `dictFileName`.
`parameters` is optional and can be provided with values set to 0, meaning "default".
@return : 0 == ok. Any other : error.
*/
-int DiB_trainFromFiles(const char* dictFileName, unsigned maxDictSize,
- const char** fileNamesTable, unsigned nbFiles, size_t chunkSize,
+int DiB_trainFromFiles(const char* dictFileName, size_t maxDictSize,
+ const char** fileNamesTable, int nbFiles, size_t chunkSize,
ZDICT_legacy_params_t* params, ZDICT_cover_params_t* coverParams,
- ZDICT_fastCover_params_t* fastCoverParams, int optimize);
+ ZDICT_fastCover_params_t* fastCoverParams, int optimize, unsigned memLimit);
#endif
diff --git a/sys/contrib/zstd/programs/fileio.c b/sys/contrib/zstd/programs/fileio.c
index 65f2d531a81d..5338fa62955b 100644
--- a/sys/contrib/zstd/programs/fileio.c
+++ b/sys/contrib/zstd/programs/fileio.c
@@ -1,3083 +1,3221 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* *************************************
* Compiler Options
***************************************/
#ifdef _MSC_VER /* Visual */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4204) /* non-constant aggregate initializer */
#endif
#if defined(__MINGW32__) && !defined(_POSIX_SOURCE)
# define _POSIX_SOURCE 1 /* disable %llu warnings with MinGW on Windows */
#endif
/*-*************************************
* Includes
***************************************/
#include "platform.h" /* Large Files support, SET_BINARY_MODE */
#include "util.h" /* UTIL_getFileSize, UTIL_isRegularFile, UTIL_isSameFile */
-#include <stdio.h> /* fprintf, fopen, fread, _fileno, stdin, stdout */
+#include <stdio.h> /* fprintf, open, fdopen, fread, _fileno, stdin, stdout */
#include <stdlib.h> /* malloc, free */
#include <string.h> /* strcmp, strlen */
+#include <fcntl.h> /* O_WRONLY */
#include <assert.h>
#include <errno.h> /* errno */
#include <limits.h> /* INT_MAX */
#include <signal.h>
#include "timefn.h" /* UTIL_getTime, UTIL_clockSpanMicro */
#if defined (_MSC_VER)
# include <sys/stat.h>
# include <io.h>
#endif
#include "../lib/common/mem.h" /* U32, U64 */
#include "fileio.h"
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_magicNumber, ZSTD_frameHeaderSize_max */
#include "../lib/zstd.h"
-#include "../lib/common/zstd_errors.h" /* ZSTD_error_frameParameter_windowTooLarge */
-#include "../lib/compress/zstd_compress_internal.h"
+#include "../lib/zstd_errors.h" /* ZSTD_error_frameParameter_windowTooLarge */
#if defined(ZSTD_GZCOMPRESS) || defined(ZSTD_GZDECOMPRESS)
# include <zlib.h>
# if !defined(z_const)
# define z_const
# endif
#endif
#if defined(ZSTD_LZMACOMPRESS) || defined(ZSTD_LZMADECOMPRESS)
# include <lzma.h>
#endif
#define LZ4_MAGICNUMBER 0x184D2204
#if defined(ZSTD_LZ4COMPRESS) || defined(ZSTD_LZ4DECOMPRESS)
# define LZ4F_ENABLE_OBSOLETE_ENUMS
# include <lz4frame.h>
# include <lz4.h>
#endif
/*-*************************************
* Constants
***************************************/
#define ADAPT_WINDOWLOG_DEFAULT 23 /* 8 MB */
#define DICTSIZE_MAX (32 MB) /* protection against large input (attack scenario) */
#define FNSPACE 30
+/* Default file permissions 0666 (modulated by umask) */
+#if !defined(_WIN32)
+/* These macros aren't defined on windows. */
+#define DEFAULT_FILE_PERMISSIONS (S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH)
+#else
+#define DEFAULT_FILE_PERMISSIONS (0666)
+#endif
+
/*-*************************************
* Macros
***************************************/
+#define KB *(1 <<10)
+#define MB *(1 <<20)
+#define GB *(1U<<30)
+#undef MAX
+#define MAX(a,b) ((a)>(b) ? (a) : (b))
struct FIO_display_prefs_s {
int displayLevel; /* 0 : no display; 1: errors; 2: + result + interaction + warnings; 3: + progression; 4: + information */
- U32 noProgress;
+ FIO_progressSetting_e progressSetting;
};
-static FIO_display_prefs_t g_display_prefs = {2, 0};
+static FIO_display_prefs_t g_display_prefs = {2, FIO_ps_auto};
#define DISPLAY(...) fprintf(stderr, __VA_ARGS__)
#define DISPLAYOUT(...) fprintf(stdout, __VA_ARGS__)
#define DISPLAYLEVEL(l, ...) { if (g_display_prefs.displayLevel>=l) { DISPLAY(__VA_ARGS__); } }
static const U64 g_refreshRate = SEC_TO_MICRO / 6;
static UTIL_time_t g_displayClock = UTIL_TIME_INITIALIZER;
-#define READY_FOR_UPDATE() (!g_display_prefs.noProgress && UTIL_clockSpanMicro(g_displayClock) > g_refreshRate)
+#define READY_FOR_UPDATE() ((g_display_prefs.progressSetting != FIO_ps_never) && UTIL_clockSpanMicro(g_displayClock) > g_refreshRate)
#define DELAY_NEXT_UPDATE() { g_displayClock = UTIL_getTime(); }
#define DISPLAYUPDATE(l, ...) { \
- if (g_display_prefs.displayLevel>=l && !g_display_prefs.noProgress) { \
+ if (g_display_prefs.displayLevel>=l && (g_display_prefs.progressSetting != FIO_ps_never)) { \
if (READY_FOR_UPDATE() || (g_display_prefs.displayLevel>=4)) { \
DELAY_NEXT_UPDATE(); \
DISPLAY(__VA_ARGS__); \
if (g_display_prefs.displayLevel>=4) fflush(stderr); \
} } }
#undef MIN /* in case it would be already defined */
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define EXM_THROW(error, ...) \
{ \
DISPLAYLEVEL(1, "zstd: "); \
DISPLAYLEVEL(5, "Error defined at %s, line %i : \n", __FILE__, __LINE__); \
DISPLAYLEVEL(1, "error %i : ", error); \
DISPLAYLEVEL(1, __VA_ARGS__); \
DISPLAYLEVEL(1, " \n"); \
exit(error); \
}
#define CHECK_V(v, f) \
v = f; \
if (ZSTD_isError(v)) { \
DISPLAYLEVEL(5, "%s \n", #f); \
EXM_THROW(11, "%s", ZSTD_getErrorName(v)); \
}
#define CHECK(f) { size_t err; CHECK_V(err, f); }
/*-************************************
* Signal (Ctrl-C trapping)
**************************************/
static const char* g_artefact = NULL;
static void INThandler(int sig)
{
assert(sig==SIGINT); (void)sig;
#if !defined(_MSC_VER)
signal(sig, SIG_IGN); /* this invocation generates a buggy warning in Visual Studio */
#endif
if (g_artefact) {
assert(UTIL_isRegularFile(g_artefact));
remove(g_artefact);
}
DISPLAY("\n");
exit(2);
}
static void addHandler(char const* dstFileName)
{
if (UTIL_isRegularFile(dstFileName)) {
g_artefact = dstFileName;
signal(SIGINT, INThandler);
} else {
g_artefact = NULL;
}
}
/* Idempotent */
static void clearHandler(void)
{
if (g_artefact) signal(SIGINT, SIG_DFL);
g_artefact = NULL;
}
/*-*********************************************************
* Termination signal trapping (Print debug stack trace)
***********************************************************/
#if defined(__has_feature) && !defined(BACKTRACE_ENABLE) /* Clang compiler */
# if (__has_feature(address_sanitizer))
# define BACKTRACE_ENABLE 0
# endif /* __has_feature(address_sanitizer) */
#elif defined(__SANITIZE_ADDRESS__) && !defined(BACKTRACE_ENABLE) /* GCC compiler */
# define BACKTRACE_ENABLE 0
#endif
#if !defined(BACKTRACE_ENABLE)
/* automatic detector : backtrace enabled by default on linux+glibc and osx */
# if (defined(__linux__) && (defined(__GLIBC__) && !defined(__UCLIBC__))) \
|| (defined(__APPLE__) && defined(__MACH__))
# define BACKTRACE_ENABLE 1
# else
# define BACKTRACE_ENABLE 0
# endif
#endif
/* note : after this point, BACKTRACE_ENABLE is necessarily defined */
#if BACKTRACE_ENABLE
#include <execinfo.h> /* backtrace, backtrace_symbols */
#define MAX_STACK_FRAMES 50
static void ABRThandler(int sig) {
const char* name;
void* addrlist[MAX_STACK_FRAMES];
char** symbollist;
int addrlen, i;
switch (sig) {
case SIGABRT: name = "SIGABRT"; break;
case SIGFPE: name = "SIGFPE"; break;
case SIGILL: name = "SIGILL"; break;
case SIGINT: name = "SIGINT"; break;
case SIGSEGV: name = "SIGSEGV"; break;
default: name = "UNKNOWN";
}
DISPLAY("Caught %s signal, printing stack:\n", name);
/* Retrieve current stack addresses. */
addrlen = backtrace(addrlist, MAX_STACK_FRAMES);
if (addrlen == 0) {
DISPLAY("\n");
return;
}
/* Create readable strings to each frame. */
symbollist = backtrace_symbols(addrlist, addrlen);
/* Print the stack trace, excluding calls handling the signal. */
for (i = ZSTD_START_SYMBOLLIST_FRAME; i < addrlen; i++) {
DISPLAY("%s\n", symbollist[i]);
}
free(symbollist);
/* Reset and raise the signal so default handler runs. */
signal(sig, SIG_DFL);
raise(sig);
}
#endif
void FIO_addAbortHandler()
{
#if BACKTRACE_ENABLE
signal(SIGABRT, ABRThandler);
signal(SIGFPE, ABRThandler);
signal(SIGILL, ABRThandler);
signal(SIGSEGV, ABRThandler);
signal(SIGBUS, ABRThandler);
#endif
}
/*-************************************************************
* Avoid fseek()'s 2GiB barrier with MSVC, macOS, *BSD, MinGW
***************************************************************/
#if defined(_MSC_VER) && _MSC_VER >= 1400
# define LONG_SEEK _fseeki64
# define LONG_TELL _ftelli64
#elif !defined(__64BIT__) && (PLATFORM_POSIX_VERSION >= 200112L) /* No point defining Large file for 64 bit */
# define LONG_SEEK fseeko
# define LONG_TELL ftello
#elif defined(__MINGW32__) && !defined(__STRICT_ANSI__) && !defined(__NO_MINGW_LFS) && defined(__MSVCRT__)
# define LONG_SEEK fseeko64
# define LONG_TELL ftello64
#elif defined(_WIN32) && !defined(__DJGPP__)
# include <windows.h>
static int LONG_SEEK(FILE* file, __int64 offset, int origin) {
LARGE_INTEGER off;
DWORD method;
off.QuadPart = offset;
if (origin == SEEK_END)
method = FILE_END;
else if (origin == SEEK_CUR)
method = FILE_CURRENT;
else
method = FILE_BEGIN;
if (SetFilePointerEx((HANDLE) _get_osfhandle(_fileno(file)), off, NULL, method))
return 0;
else
return -1;
}
static __int64 LONG_TELL(FILE* file) {
LARGE_INTEGER off, newOff;
off.QuadPart = 0;
newOff.QuadPart = 0;
SetFilePointerEx((HANDLE) _get_osfhandle(_fileno(file)), off, &newOff, FILE_CURRENT);
return newOff.QuadPart;
}
#else
# define LONG_SEEK fseek
# define LONG_TELL ftell
#endif
/*-*************************************
* Parameters: FIO_prefs_t
***************************************/
/* typedef'd to FIO_prefs_t within fileio.h */
struct FIO_prefs_s {
/* Algorithm preferences */
FIO_compressionType_t compressionType;
U32 sparseFileSupport; /* 0: no sparse allowed; 1: auto (file yes, stdout no); 2: force sparse */
int dictIDFlag;
int checksumFlag;
int blockSize;
int overlapLog;
U32 adaptiveMode;
+ U32 useRowMatchFinder;
int rsyncable;
int minAdaptLevel;
int maxAdaptLevel;
int ldmFlag;
int ldmHashLog;
int ldmMinMatch;
int ldmBucketSizeLog;
int ldmHashRateLog;
size_t streamSrcSize;
size_t targetCBlockSize;
int srcSizeHint;
int testMode;
- ZSTD_literalCompressionMode_e literalCompressionMode;
+ ZSTD_paramSwitch_e literalCompressionMode;
/* IO preferences */
U32 removeSrcFile;
U32 overwrite;
/* Computation resources preferences */
unsigned memLimit;
int nbWorkers;
int excludeCompressedFiles;
int patchFromMode;
int contentSize;
+ int allowBlockDevices;
};
/*-*************************************
* Parameters: FIO_ctx_t
***************************************/
/* typedef'd to FIO_ctx_t within fileio.h */
struct FIO_ctx_s {
/* file i/o info */
int nbFilesTotal;
int hasStdinInput;
int hasStdoutOutput;
/* file i/o state */
int currFileIdx;
int nbFilesProcessed;
size_t totalBytesInput;
size_t totalBytesOutput;
};
/*-*************************************
* Parameters: Initialization
***************************************/
#define FIO_OVERLAP_LOG_NOTSET 9999
#define FIO_LDM_PARAM_NOTSET 9999
FIO_prefs_t* FIO_createPreferences(void)
{
FIO_prefs_t* const ret = (FIO_prefs_t*)malloc(sizeof(FIO_prefs_t));
if (!ret) EXM_THROW(21, "Allocation error : not enough memory");
ret->compressionType = FIO_zstdCompression;
ret->overwrite = 0;
ret->sparseFileSupport = ZSTD_SPARSE_DEFAULT;
ret->dictIDFlag = 1;
ret->checksumFlag = 1;
ret->removeSrcFile = 0;
ret->memLimit = 0;
ret->nbWorkers = 1;
ret->blockSize = 0;
ret->overlapLog = FIO_OVERLAP_LOG_NOTSET;
ret->adaptiveMode = 0;
ret->rsyncable = 0;
ret->minAdaptLevel = -50; /* initializing this value requires a constant, so ZSTD_minCLevel() doesn't work */
ret->maxAdaptLevel = 22; /* initializing this value requires a constant, so ZSTD_maxCLevel() doesn't work */
ret->ldmFlag = 0;
ret->ldmHashLog = 0;
ret->ldmMinMatch = 0;
ret->ldmBucketSizeLog = FIO_LDM_PARAM_NOTSET;
ret->ldmHashRateLog = FIO_LDM_PARAM_NOTSET;
ret->streamSrcSize = 0;
ret->targetCBlockSize = 0;
ret->srcSizeHint = 0;
ret->testMode = 0;
- ret->literalCompressionMode = ZSTD_lcm_auto;
+ ret->literalCompressionMode = ZSTD_ps_auto;
ret->excludeCompressedFiles = 0;
+ ret->allowBlockDevices = 0;
return ret;
}
FIO_ctx_t* FIO_createContext(void)
{
FIO_ctx_t* const ret = (FIO_ctx_t*)malloc(sizeof(FIO_ctx_t));
if (!ret) EXM_THROW(21, "Allocation error : not enough memory");
ret->currFileIdx = 0;
ret->hasStdinInput = 0;
ret->hasStdoutOutput = 0;
ret->nbFilesTotal = 1;
ret->nbFilesProcessed = 0;
ret->totalBytesInput = 0;
ret->totalBytesOutput = 0;
return ret;
}
void FIO_freePreferences(FIO_prefs_t* const prefs)
{
free(prefs);
}
void FIO_freeContext(FIO_ctx_t* const fCtx)
{
free(fCtx);
}
/*-*************************************
* Parameters: Display Options
***************************************/
void FIO_setNotificationLevel(int level) { g_display_prefs.displayLevel=level; }
-void FIO_setNoProgress(unsigned noProgress) { g_display_prefs.noProgress = noProgress; }
+void FIO_setProgressSetting(FIO_progressSetting_e setting) { g_display_prefs.progressSetting = setting; }
/*-*************************************
* Parameters: Setters
***************************************/
/* FIO_prefs_t functions */
void FIO_setCompressionType(FIO_prefs_t* const prefs, FIO_compressionType_t compressionType) { prefs->compressionType = compressionType; }
void FIO_overwriteMode(FIO_prefs_t* const prefs) { prefs->overwrite = 1; }
void FIO_setSparseWrite(FIO_prefs_t* const prefs, unsigned sparse) { prefs->sparseFileSupport = sparse; }
void FIO_setDictIDFlag(FIO_prefs_t* const prefs, int dictIDFlag) { prefs->dictIDFlag = dictIDFlag; }
void FIO_setChecksumFlag(FIO_prefs_t* const prefs, int checksumFlag) { prefs->checksumFlag = checksumFlag; }
void FIO_setRemoveSrcFile(FIO_prefs_t* const prefs, unsigned flag) { prefs->removeSrcFile = (flag>0); }
void FIO_setMemLimit(FIO_prefs_t* const prefs, unsigned memLimit) { prefs->memLimit = memLimit; }
void FIO_setNbWorkers(FIO_prefs_t* const prefs, int nbWorkers) {
#ifndef ZSTD_MULTITHREAD
if (nbWorkers > 0) DISPLAYLEVEL(2, "Note : multi-threading is disabled \n");
#endif
prefs->nbWorkers = nbWorkers;
}
void FIO_setExcludeCompressedFile(FIO_prefs_t* const prefs, int excludeCompressedFiles) { prefs->excludeCompressedFiles = excludeCompressedFiles; }
+void FIO_setAllowBlockDevices(FIO_prefs_t* const prefs, int allowBlockDevices) { prefs->allowBlockDevices = allowBlockDevices; }
+
void FIO_setBlockSize(FIO_prefs_t* const prefs, int blockSize) {
if (blockSize && prefs->nbWorkers==0)
DISPLAYLEVEL(2, "Setting block size is useless in single-thread mode \n");
prefs->blockSize = blockSize;
}
void FIO_setOverlapLog(FIO_prefs_t* const prefs, int overlapLog){
if (overlapLog && prefs->nbWorkers==0)
DISPLAYLEVEL(2, "Setting overlapLog is useless in single-thread mode \n");
prefs->overlapLog = overlapLog;
}
void FIO_setAdaptiveMode(FIO_prefs_t* const prefs, unsigned adapt) {
if ((adapt>0) && (prefs->nbWorkers==0))
EXM_THROW(1, "Adaptive mode is not compatible with single thread mode \n");
prefs->adaptiveMode = adapt;
}
+void FIO_setUseRowMatchFinder(FIO_prefs_t* const prefs, int useRowMatchFinder) {
+ prefs->useRowMatchFinder = useRowMatchFinder;
+}
+
void FIO_setRsyncable(FIO_prefs_t* const prefs, int rsyncable) {
if ((rsyncable>0) && (prefs->nbWorkers==0))
EXM_THROW(1, "Rsyncable mode is not compatible with single thread mode \n");
prefs->rsyncable = rsyncable;
}
void FIO_setStreamSrcSize(FIO_prefs_t* const prefs, size_t streamSrcSize) {
prefs->streamSrcSize = streamSrcSize;
}
void FIO_setTargetCBlockSize(FIO_prefs_t* const prefs, size_t targetCBlockSize) {
prefs->targetCBlockSize = targetCBlockSize;
}
void FIO_setSrcSizeHint(FIO_prefs_t* const prefs, size_t srcSizeHint) {
prefs->srcSizeHint = (int)MIN((size_t)INT_MAX, srcSizeHint);
}
void FIO_setTestMode(FIO_prefs_t* const prefs, int testMode) {
prefs->testMode = (testMode!=0);
}
void FIO_setLiteralCompressionMode(
FIO_prefs_t* const prefs,
- ZSTD_literalCompressionMode_e mode) {
+ ZSTD_paramSwitch_e mode) {
prefs->literalCompressionMode = mode;
}
void FIO_setAdaptMin(FIO_prefs_t* const prefs, int minCLevel)
{
#ifndef ZSTD_NOCOMPRESS
assert(minCLevel >= ZSTD_minCLevel());
#endif
prefs->minAdaptLevel = minCLevel;
}
void FIO_setAdaptMax(FIO_prefs_t* const prefs, int maxCLevel)
{
prefs->maxAdaptLevel = maxCLevel;
}
void FIO_setLdmFlag(FIO_prefs_t* const prefs, unsigned ldmFlag) {
prefs->ldmFlag = (ldmFlag>0);
}
void FIO_setLdmHashLog(FIO_prefs_t* const prefs, int ldmHashLog) {
prefs->ldmHashLog = ldmHashLog;
}
void FIO_setLdmMinMatch(FIO_prefs_t* const prefs, int ldmMinMatch) {
prefs->ldmMinMatch = ldmMinMatch;
}
void FIO_setLdmBucketSizeLog(FIO_prefs_t* const prefs, int ldmBucketSizeLog) {
prefs->ldmBucketSizeLog = ldmBucketSizeLog;
}
void FIO_setLdmHashRateLog(FIO_prefs_t* const prefs, int ldmHashRateLog) {
prefs->ldmHashRateLog = ldmHashRateLog;
}
void FIO_setPatchFromMode(FIO_prefs_t* const prefs, int value)
{
prefs->patchFromMode = value != 0;
}
void FIO_setContentSize(FIO_prefs_t* const prefs, int value)
{
prefs->contentSize = value != 0;
}
/* FIO_ctx_t functions */
void FIO_setHasStdoutOutput(FIO_ctx_t* const fCtx, int value) {
fCtx->hasStdoutOutput = value;
}
void FIO_setNbFilesTotal(FIO_ctx_t* const fCtx, int value)
{
fCtx->nbFilesTotal = value;
}
void FIO_determineHasStdinInput(FIO_ctx_t* const fCtx, const FileNamesTable* const filenames) {
size_t i = 0;
for ( ; i < filenames->tableSize; ++i) {
if (!strcmp(stdinmark, filenames->fileNames[i])) {
fCtx->hasStdinInput = 1;
return;
}
}
}
/*-*************************************
* Functions
***************************************/
/** FIO_removeFile() :
* @result : Unlink `fileName`, even if it's read-only */
static int FIO_removeFile(const char* path)
{
stat_t statbuf;
if (!UTIL_stat(path, &statbuf)) {
DISPLAYLEVEL(2, "zstd: Failed to stat %s while trying to remove it\n", path);
return 0;
}
if (!UTIL_isRegularFileStat(&statbuf)) {
DISPLAYLEVEL(2, "zstd: Refusing to remove non-regular file %s\n", path);
return 0;
}
#if defined(_WIN32) || defined(WIN32)
/* windows doesn't allow remove read-only files,
* so try to make it writable first */
if (!(statbuf.st_mode & _S_IWRITE)) {
UTIL_chmod(path, &statbuf, _S_IWRITE);
}
#endif
return remove(path);
}
/** FIO_openSrcFile() :
- * condition : `srcFileName` must be non-NULL.
+ * condition : `srcFileName` must be non-NULL. `prefs` may be NULL.
* @result : FILE* to `srcFileName`, or NULL if it fails */
-static FILE* FIO_openSrcFile(const char* srcFileName)
+static FILE* FIO_openSrcFile(const FIO_prefs_t* const prefs, const char* srcFileName)
{
stat_t statbuf;
+ int allowBlockDevices = prefs != NULL ? prefs->allowBlockDevices : 0;
assert(srcFileName != NULL);
if (!strcmp (srcFileName, stdinmark)) {
DISPLAYLEVEL(4,"Using stdin for input \n");
SET_BINARY_MODE(stdin);
return stdin;
}
if (!UTIL_stat(srcFileName, &statbuf)) {
DISPLAYLEVEL(1, "zstd: can't stat %s : %s -- ignored \n",
srcFileName, strerror(errno));
return NULL;
}
if (!UTIL_isRegularFileStat(&statbuf)
&& !UTIL_isFIFOStat(&statbuf)
+ && !(allowBlockDevices && UTIL_isBlockDevStat(&statbuf))
) {
DISPLAYLEVEL(1, "zstd: %s is not a regular file -- ignored \n",
srcFileName);
return NULL;
}
{ FILE* const f = fopen(srcFileName, "rb");
if (f == NULL)
DISPLAYLEVEL(1, "zstd: %s: %s \n", srcFileName, strerror(errno));
return f;
}
}
/** FIO_openDstFile() :
* condition : `dstFileName` must be non-NULL.
* @result : FILE* to `dstFileName`, or NULL if it fails */
static FILE*
FIO_openDstFile(FIO_ctx_t* fCtx, FIO_prefs_t* const prefs,
- const char* srcFileName, const char* dstFileName)
+ const char* srcFileName, const char* dstFileName,
+ const int mode)
{
if (prefs->testMode) return NULL; /* do not open file in test mode */
assert(dstFileName != NULL);
if (!strcmp (dstFileName, stdoutmark)) {
DISPLAYLEVEL(4,"Using stdout for output \n");
SET_BINARY_MODE(stdout);
if (prefs->sparseFileSupport == 1) {
prefs->sparseFileSupport = 0;
DISPLAYLEVEL(4, "Sparse File Support is automatically disabled on stdout ; try --sparse \n");
}
return stdout;
}
/* ensure dst is not the same as src */
if (srcFileName != NULL && UTIL_isSameFile(srcFileName, dstFileName)) {
DISPLAYLEVEL(1, "zstd: Refusing to open an output file which will overwrite the input file \n");
return NULL;
}
if (prefs->sparseFileSupport == 1) {
prefs->sparseFileSupport = ZSTD_SPARSE_DEFAULT;
}
if (UTIL_isRegularFile(dstFileName)) {
/* Check if destination file already exists */
- FILE* const fCheck = fopen( dstFileName, "rb" );
#if !defined(_WIN32)
/* this test does not work on Windows :
* `NUL` and `nul` are detected as regular files */
if (!strcmp(dstFileName, nulmark)) {
EXM_THROW(40, "%s is unexpectedly categorized as a regular file",
dstFileName);
}
#endif
- if (fCheck != NULL) { /* dst file exists, authorization prompt */
- fclose(fCheck);
- if (!prefs->overwrite) {
- if (g_display_prefs.displayLevel <= 1) {
- /* No interaction possible */
- DISPLAY("zstd: %s already exists; not overwritten \n",
- dstFileName);
- return NULL;
- }
- DISPLAY("zstd: %s already exists; ", dstFileName);
- if (UTIL_requireUserConfirmation("overwrite (y/n) ? ", "Not overwritten \n", "yY", fCtx->hasStdinInput))
- return NULL;
+ if (!prefs->overwrite) {
+ if (g_display_prefs.displayLevel <= 1) {
+ /* No interaction possible */
+ DISPLAY("zstd: %s already exists; not overwritten \n",
+ dstFileName);
+ return NULL;
}
- /* need to unlink */
- FIO_removeFile(dstFileName);
- } }
+ DISPLAY("zstd: %s already exists; ", dstFileName);
+ if (UTIL_requireUserConfirmation("overwrite (y/n) ? ", "Not overwritten \n", "yY", fCtx->hasStdinInput))
+ return NULL;
+ }
+ /* need to unlink */
+ FIO_removeFile(dstFileName);
+ }
- { FILE* const f = fopen( dstFileName, "wb" );
+ {
+#if defined(_WIN32)
+ /* Windows requires opening the file as a "binary" file to avoid
+ * mangling. This macro doesn't exist on unix. */
+ const int openflags = O_WRONLY|O_CREAT|O_TRUNC|O_BINARY;
+ const int fd = _open(dstFileName, openflags, mode);
+ FILE* f = NULL;
+ if (fd != -1) {
+ f = _fdopen(fd, "wb");
+ }
+#else
+ const int openflags = O_WRONLY|O_CREAT|O_TRUNC;
+ const int fd = open(dstFileName, openflags, mode);
+ FILE* f = NULL;
+ if (fd != -1) {
+ f = fdopen(fd, "wb");
+ }
+#endif
if (f == NULL) {
DISPLAYLEVEL(1, "zstd: %s: %s\n", dstFileName, strerror(errno));
- } else if (srcFileName != NULL
- && strcmp (srcFileName, stdinmark)
- && strcmp(dstFileName, nulmark) ) {
- /* reduce rights on newly created dst file while compression is ongoing */
- UTIL_chmod(dstFileName, NULL, 00600);
}
return f;
}
}
/*! FIO_createDictBuffer() :
* creates a buffer, pointed by `*bufferPtr`,
* loads `filename` content into it, up to DICTSIZE_MAX bytes.
* @return : loaded size
* if fileName==NULL, returns 0 and a NULL pointer
*/
static size_t FIO_createDictBuffer(void** bufferPtr, const char* fileName, FIO_prefs_t* const prefs)
{
FILE* fileHandle;
U64 fileSize;
+ stat_t statbuf;
assert(bufferPtr != NULL);
*bufferPtr = NULL;
if (fileName == NULL) return 0;
DISPLAYLEVEL(4,"Loading %s as dictionary \n", fileName);
+
+ if (!UTIL_stat(fileName, &statbuf)) {
+ EXM_THROW(31, "Stat failed on dictionary file %s: %s", fileName, strerror(errno));
+ }
+
+ if (!UTIL_isRegularFileStat(&statbuf)) {
+ EXM_THROW(32, "Dictionary %s must be a regular file.", fileName);
+ }
+
fileHandle = fopen(fileName, "rb");
- if (fileHandle==NULL) EXM_THROW(31, "%s: %s", fileName, strerror(errno));
- fileSize = UTIL_getFileSize(fileName);
+ if (fileHandle == NULL) {
+ EXM_THROW(33, "Couldn't open dictionary %s: %s", fileName, strerror(errno));
+ }
+
+ fileSize = UTIL_getFileSizeStat(&statbuf);
{
size_t const dictSizeMax = prefs->patchFromMode ? prefs->memLimit : DICTSIZE_MAX;
if (fileSize > dictSizeMax) {
- EXM_THROW(32, "Dictionary file %s is too large (> %u bytes)",
+ EXM_THROW(34, "Dictionary file %s is too large (> %u bytes)",
fileName, (unsigned)dictSizeMax); /* avoid extreme cases */
}
}
*bufferPtr = malloc((size_t)fileSize);
if (*bufferPtr==NULL) EXM_THROW(34, "%s", strerror(errno));
{ size_t const readSize = fread(*bufferPtr, 1, (size_t)fileSize, fileHandle);
- if (readSize != fileSize)
+ if (readSize != fileSize) {
EXM_THROW(35, "Error reading dictionary file %s : %s",
fileName, strerror(errno));
+ }
}
fclose(fileHandle);
return (size_t)fileSize;
}
/* FIO_checkFilenameCollisions() :
* Checks for and warns if there are any files that would have the same output path
*/
int FIO_checkFilenameCollisions(const char** filenameTable, unsigned nbFiles) {
const char **filenameTableSorted, *prevElem, *filename;
unsigned u;
filenameTableSorted = (const char**) malloc(sizeof(char*) * nbFiles);
if (!filenameTableSorted) {
DISPLAY("Unable to malloc new str array, not checking for name collisions\n");
return 1;
}
for (u = 0; u < nbFiles; ++u) {
filename = strrchr(filenameTable[u], PATH_SEP);
if (filename == NULL) {
filenameTableSorted[u] = filenameTable[u];
} else {
filenameTableSorted[u] = filename+1;
}
}
qsort((void*)filenameTableSorted, nbFiles, sizeof(char*), UTIL_compareStr);
prevElem = filenameTableSorted[0];
for (u = 1; u < nbFiles; ++u) {
if (strcmp(prevElem, filenameTableSorted[u]) == 0) {
DISPLAY("WARNING: Two files have same filename: %s\n", prevElem);
}
prevElem = filenameTableSorted[u];
}
free((void*)filenameTableSorted);
return 0;
}
static const char*
extractFilename(const char* path, char separator)
{
const char* search = strrchr(path, separator);
if (search == NULL) return path;
return search+1;
}
/* FIO_createFilename_fromOutDir() :
* Takes a source file name and specified output directory, and
* allocates memory for and returns a pointer to final path.
* This function never returns an error (it may abort() in case of pb)
*/
static char*
FIO_createFilename_fromOutDir(const char* path, const char* outDirName, const size_t suffixLen)
{
const char* filenameStart;
char separator;
char* result;
#if defined(_MSC_VER) || defined(__MINGW32__) || defined (__MSVCRT__) /* windows support */
separator = '\\';
#else
separator = '/';
#endif
filenameStart = extractFilename(path, separator);
#if defined(_MSC_VER) || defined(__MINGW32__) || defined (__MSVCRT__) /* windows support */
filenameStart = extractFilename(filenameStart, '/'); /* sometimes, '/' separator is also used on Windows (mingw+msys2) */
#endif
result = (char*) calloc(1, strlen(outDirName) + 1 + strlen(filenameStart) + suffixLen + 1);
if (!result) {
EXM_THROW(30, "zstd: FIO_createFilename_fromOutDir: %s", strerror(errno));
}
memcpy(result, outDirName, strlen(outDirName));
if (outDirName[strlen(outDirName)-1] == separator) {
memcpy(result + strlen(outDirName), filenameStart, strlen(filenameStart));
} else {
memcpy(result + strlen(outDirName), &separator, 1);
memcpy(result + strlen(outDirName) + 1, filenameStart, strlen(filenameStart));
}
return result;
}
/* FIO_highbit64() :
* gives position of highest bit.
* note : only works for v > 0 !
*/
static unsigned FIO_highbit64(unsigned long long v)
{
unsigned count = 0;
assert(v != 0);
v >>= 1;
while (v) { v >>= 1; count++; }
return count;
}
static void FIO_adjustMemLimitForPatchFromMode(FIO_prefs_t* const prefs,
unsigned long long const dictSize,
unsigned long long const maxSrcFileSize)
{
unsigned long long maxSize = MAX(prefs->memLimit, MAX(dictSize, maxSrcFileSize));
unsigned const maxWindowSize = (1U << ZSTD_WINDOWLOG_MAX);
if (maxSize == UTIL_FILESIZE_UNKNOWN)
EXM_THROW(42, "Using --patch-from with stdin requires --stream-size");
assert(maxSize != UTIL_FILESIZE_UNKNOWN);
if (maxSize > maxWindowSize)
EXM_THROW(42, "Can't handle files larger than %u GB\n", maxWindowSize/(1 GB));
FIO_setMemLimit(prefs, (unsigned)maxSize);
}
/* FIO_removeMultiFilesWarning() :
* Returns 1 if the console should abort, 0 if console should proceed.
* This function handles logic when processing multiple files with -o, displaying the appropriate warnings/prompts.
- *
+ *
* If -f is specified, or there is just 1 file, zstd will always proceed as usual.
* If --rm is specified, there will be a prompt asking for user confirmation.
* If -f is specified with --rm, zstd will proceed as usual
* If -q is specified with --rm, zstd will abort pre-emptively
* If neither flag is specified, zstd will prompt the user for confirmation to proceed.
* If --rm is not specified, then zstd will print a warning to the user (which can be silenced with -q).
* However, if the output is stdout, we will always abort rather than displaying the warning prompt.
*/
static int FIO_removeMultiFilesWarning(FIO_ctx_t* const fCtx, const FIO_prefs_t* const prefs, const char* outFileName, int displayLevelCutoff)
{
int error = 0;
if (fCtx->nbFilesTotal > 1 && !prefs->overwrite) {
if (g_display_prefs.displayLevel <= displayLevelCutoff) {
if (prefs->removeSrcFile) {
- DISPLAYLEVEL(1, "zstd: Aborting... not deleting files and processing into dst: %s", outFileName);
+ DISPLAYLEVEL(1, "zstd: Aborting... not deleting files and processing into dst: %s\n", outFileName);
error = 1;
}
} else {
if (!strcmp(outFileName, stdoutmark)) {
- DISPLAYLEVEL(2, "zstd: WARNING: all input files will be processed and concatenated into stdout. ");
+ DISPLAYLEVEL(2, "zstd: WARNING: all input files will be processed and concatenated into stdout. \n");
} else {
- DISPLAYLEVEL(2, "zstd: WARNING: all input files will be processed and concatenated into a single output file: %s ", outFileName);
+ DISPLAYLEVEL(2, "zstd: WARNING: all input files will be processed and concatenated into a single output file: %s \n", outFileName);
}
- DISPLAYLEVEL(2, "\nThe concatenated output CANNOT regenerate the original directory tree. ")
+ DISPLAYLEVEL(2, "The concatenated output CANNOT regenerate the original directory tree. \n")
if (prefs->removeSrcFile) {
if (fCtx->hasStdoutOutput) {
- DISPLAYLEVEL(1, "\nAborting. Use -f if you really want to delete the files and output to stdout");
+ DISPLAYLEVEL(1, "Aborting. Use -f if you really want to delete the files and output to stdout\n");
error = 1;
} else {
error = g_display_prefs.displayLevel > displayLevelCutoff && UTIL_requireUserConfirmation("This is a destructive operation. Proceed? (y/n): ", "Aborting...", "yY", fCtx->hasStdinInput);
}
}
}
- DISPLAY("\n");
}
return error;
}
#ifndef ZSTD_NOCOMPRESS
/* **********************************************************************
* Compression
************************************************************************/
typedef struct {
FILE* srcFile;
FILE* dstFile;
void* srcBuffer;
size_t srcBufferSize;
void* dstBuffer;
size_t dstBufferSize;
void* dictBuffer;
size_t dictBufferSize;
const char* dictFileName;
ZSTD_CStream* cctx;
} cRess_t;
+/** ZSTD_cycleLog() :
+ * condition for correct operation : hashLog > 1 */
+static U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat)
+{
+ U32 const btScale = ((U32)strat >= (U32)ZSTD_btlazy2);
+ assert(hashLog > 1);
+ return hashLog - btScale;
+}
+
static void FIO_adjustParamsForPatchFromMode(FIO_prefs_t* const prefs,
ZSTD_compressionParameters* comprParams,
unsigned long long const dictSize,
unsigned long long const maxSrcFileSize,
int cLevel)
{
unsigned const fileWindowLog = FIO_highbit64(maxSrcFileSize) + 1;
ZSTD_compressionParameters const cParams = ZSTD_getCParams(cLevel, (size_t)maxSrcFileSize, (size_t)dictSize);
FIO_adjustMemLimitForPatchFromMode(prefs, dictSize, maxSrcFileSize);
if (fileWindowLog > ZSTD_WINDOWLOG_MAX)
DISPLAYLEVEL(1, "Max window log exceeded by file (compression ratio will suffer)\n");
- comprParams->windowLog = MIN(ZSTD_WINDOWLOG_MAX, fileWindowLog);
+ comprParams->windowLog = MAX(ZSTD_WINDOWLOG_MIN, MIN(ZSTD_WINDOWLOG_MAX, fileWindowLog));
if (fileWindowLog > ZSTD_cycleLog(cParams.chainLog, cParams.strategy)) {
if (!prefs->ldmFlag)
DISPLAYLEVEL(1, "long mode automatically triggered\n");
FIO_setLdmFlag(prefs, 1);
}
if (cParams.strategy >= ZSTD_btopt) {
DISPLAYLEVEL(1, "[Optimal parser notes] Consider the following to improve patch size at the cost of speed:\n");
DISPLAYLEVEL(1, "- Use --single-thread mode in the zstd cli\n");
DISPLAYLEVEL(1, "- Set a larger targetLength (eg. --zstd=targetLength=4096)\n");
DISPLAYLEVEL(1, "- Set a larger chainLog (eg. --zstd=chainLog=%u)\n", ZSTD_CHAINLOG_MAX);
- DISPLAYLEVEL(1, "Also consdier playing around with searchLog and hashLog\n");
+ DISPLAYLEVEL(1, "Also consider playing around with searchLog and hashLog\n");
}
}
static cRess_t FIO_createCResources(FIO_prefs_t* const prefs,
const char* dictFileName, unsigned long long const maxSrcFileSize,
int cLevel, ZSTD_compressionParameters comprParams) {
cRess_t ress;
memset(&ress, 0, sizeof(ress));
DISPLAYLEVEL(6, "FIO_createCResources \n");
ress.cctx = ZSTD_createCCtx();
if (ress.cctx == NULL)
EXM_THROW(30, "allocation error (%s): can't create ZSTD_CCtx",
strerror(errno));
ress.srcBufferSize = ZSTD_CStreamInSize();
ress.srcBuffer = malloc(ress.srcBufferSize);
ress.dstBufferSize = ZSTD_CStreamOutSize();
/* need to update memLimit before calling createDictBuffer
* because of memLimit check inside it */
if (prefs->patchFromMode) {
unsigned long long const ssSize = (unsigned long long)prefs->streamSrcSize;
FIO_adjustParamsForPatchFromMode(prefs, &comprParams, UTIL_getFileSize(dictFileName), ssSize > 0 ? ssSize : maxSrcFileSize, cLevel);
}
ress.dstBuffer = malloc(ress.dstBufferSize);
ress.dictBufferSize = FIO_createDictBuffer(&ress.dictBuffer, dictFileName, prefs); /* works with dictFileName==NULL */
if (!ress.srcBuffer || !ress.dstBuffer)
EXM_THROW(31, "allocation error : not enough memory");
/* Advanced parameters, including dictionary */
if (dictFileName && (ress.dictBuffer==NULL))
EXM_THROW(32, "allocation error : can't create dictBuffer");
ress.dictFileName = dictFileName;
if (prefs->adaptiveMode && !prefs->ldmFlag && !comprParams.windowLog)
comprParams.windowLog = ADAPT_WINDOWLOG_DEFAULT;
CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_contentSizeFlag, prefs->contentSize) ); /* always enable content size when available (note: supposed to be default) */
CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_dictIDFlag, prefs->dictIDFlag) );
CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_checksumFlag, prefs->checksumFlag) );
/* compression level */
CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_compressionLevel, cLevel) );
/* max compressed block size */
CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_targetCBlockSize, (int)prefs->targetCBlockSize) );
/* source size hint */
CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_srcSizeHint, (int)prefs->srcSizeHint) );
/* long distance matching */
CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_enableLongDistanceMatching, prefs->ldmFlag) );
CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_ldmHashLog, prefs->ldmHashLog) );
CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_ldmMinMatch, prefs->ldmMinMatch) );
if (prefs->ldmBucketSizeLog != FIO_LDM_PARAM_NOTSET) {
CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_ldmBucketSizeLog, prefs->ldmBucketSizeLog) );
}
if (prefs->ldmHashRateLog != FIO_LDM_PARAM_NOTSET) {
CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_ldmHashRateLog, prefs->ldmHashRateLog) );
}
+ CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_useRowMatchFinder, prefs->useRowMatchFinder));
/* compression parameters */
CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_windowLog, (int)comprParams.windowLog) );
CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_chainLog, (int)comprParams.chainLog) );
CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_hashLog, (int)comprParams.hashLog) );
CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_searchLog, (int)comprParams.searchLog) );
CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_minMatch, (int)comprParams.minMatch) );
CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_targetLength, (int)comprParams.targetLength) );
- CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_strategy, comprParams.strategy) );
+ CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_strategy, (int)comprParams.strategy) );
CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_literalCompressionMode, (int)prefs->literalCompressionMode) );
CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_enableDedicatedDictSearch, 1) );
/* multi-threading */
#ifdef ZSTD_MULTITHREAD
DISPLAYLEVEL(5,"set nb workers = %u \n", prefs->nbWorkers);
CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_nbWorkers, prefs->nbWorkers) );
CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_jobSize, prefs->blockSize) );
if (prefs->overlapLog != FIO_OVERLAP_LOG_NOTSET) {
DISPLAYLEVEL(3,"set overlapLog = %u \n", prefs->overlapLog);
CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_overlapLog, prefs->overlapLog) );
}
CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_rsyncable, prefs->rsyncable) );
#endif
/* dictionary */
if (prefs->patchFromMode) {
CHECK( ZSTD_CCtx_refPrefix(ress.cctx, ress.dictBuffer, ress.dictBufferSize) );
} else {
CHECK( ZSTD_CCtx_loadDictionary(ress.cctx, ress.dictBuffer, ress.dictBufferSize) );
}
return ress;
}
static void FIO_freeCResources(const cRess_t* const ress)
{
free(ress->srcBuffer);
free(ress->dstBuffer);
free(ress->dictBuffer);
ZSTD_freeCStream(ress->cctx); /* never fails */
}
#ifdef ZSTD_GZCOMPRESS
static unsigned long long
FIO_compressGzFrame(const cRess_t* ress, /* buffers & handlers are used, but not changed */
const char* srcFileName, U64 const srcFileSize,
int compressionLevel, U64* readsize)
{
unsigned long long inFileSize = 0, outFileSize = 0;
z_stream strm;
if (compressionLevel > Z_BEST_COMPRESSION)
compressionLevel = Z_BEST_COMPRESSION;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
{ int const ret = deflateInit2(&strm, compressionLevel, Z_DEFLATED,
15 /* maxWindowLogSize */ + 16 /* gzip only */,
8, Z_DEFAULT_STRATEGY); /* see http://www.zlib.net/manual.html */
if (ret != Z_OK) {
EXM_THROW(71, "zstd: %s: deflateInit2 error %d \n", srcFileName, ret);
} }
strm.next_in = 0;
strm.avail_in = 0;
strm.next_out = (Bytef*)ress->dstBuffer;
strm.avail_out = (uInt)ress->dstBufferSize;
while (1) {
int ret;
if (strm.avail_in == 0) {
size_t const inSize = fread(ress->srcBuffer, 1, ress->srcBufferSize, ress->srcFile);
if (inSize == 0) break;
inFileSize += inSize;
strm.next_in = (z_const unsigned char*)ress->srcBuffer;
strm.avail_in = (uInt)inSize;
}
ret = deflate(&strm, Z_NO_FLUSH);
if (ret != Z_OK)
EXM_THROW(72, "zstd: %s: deflate error %d \n", srcFileName, ret);
{ size_t const cSize = ress->dstBufferSize - strm.avail_out;
if (cSize) {
if (fwrite(ress->dstBuffer, 1, cSize, ress->dstFile) != cSize)
EXM_THROW(73, "Write error : cannot write to output file : %s ", strerror(errno));
outFileSize += cSize;
strm.next_out = (Bytef*)ress->dstBuffer;
strm.avail_out = (uInt)ress->dstBufferSize;
} }
if (srcFileSize == UTIL_FILESIZE_UNKNOWN) {
DISPLAYUPDATE(2, "\rRead : %u MB ==> %.2f%% ",
(unsigned)(inFileSize>>20),
(double)outFileSize/inFileSize*100)
} else {
DISPLAYUPDATE(2, "\rRead : %u / %u MB ==> %.2f%% ",
(unsigned)(inFileSize>>20), (unsigned)(srcFileSize>>20),
(double)outFileSize/inFileSize*100);
} }
while (1) {
int const ret = deflate(&strm, Z_FINISH);
{ size_t const cSize = ress->dstBufferSize - strm.avail_out;
if (cSize) {
if (fwrite(ress->dstBuffer, 1, cSize, ress->dstFile) != cSize)
EXM_THROW(75, "Write error : %s ", strerror(errno));
outFileSize += cSize;
strm.next_out = (Bytef*)ress->dstBuffer;
strm.avail_out = (uInt)ress->dstBufferSize;
} }
if (ret == Z_STREAM_END) break;
if (ret != Z_BUF_ERROR)
EXM_THROW(77, "zstd: %s: deflate error %d \n", srcFileName, ret);
}
{ int const ret = deflateEnd(&strm);
if (ret != Z_OK) {
EXM_THROW(79, "zstd: %s: deflateEnd error %d \n", srcFileName, ret);
} }
*readsize = inFileSize;
return outFileSize;
}
#endif
#ifdef ZSTD_LZMACOMPRESS
static unsigned long long
FIO_compressLzmaFrame(cRess_t* ress,
const char* srcFileName, U64 const srcFileSize,
int compressionLevel, U64* readsize, int plain_lzma)
{
unsigned long long inFileSize = 0, outFileSize = 0;
lzma_stream strm = LZMA_STREAM_INIT;
lzma_action action = LZMA_RUN;
lzma_ret ret;
if (compressionLevel < 0) compressionLevel = 0;
if (compressionLevel > 9) compressionLevel = 9;
if (plain_lzma) {
lzma_options_lzma opt_lzma;
if (lzma_lzma_preset(&opt_lzma, compressionLevel))
EXM_THROW(81, "zstd: %s: lzma_lzma_preset error", srcFileName);
ret = lzma_alone_encoder(&strm, &opt_lzma); /* LZMA */
if (ret != LZMA_OK)
EXM_THROW(82, "zstd: %s: lzma_alone_encoder error %d", srcFileName, ret);
} else {
ret = lzma_easy_encoder(&strm, compressionLevel, LZMA_CHECK_CRC64); /* XZ */
if (ret != LZMA_OK)
EXM_THROW(83, "zstd: %s: lzma_easy_encoder error %d", srcFileName, ret);
}
strm.next_in = 0;
strm.avail_in = 0;
strm.next_out = (BYTE*)ress->dstBuffer;
strm.avail_out = ress->dstBufferSize;
while (1) {
if (strm.avail_in == 0) {
size_t const inSize = fread(ress->srcBuffer, 1, ress->srcBufferSize, ress->srcFile);
if (inSize == 0) action = LZMA_FINISH;
inFileSize += inSize;
strm.next_in = (BYTE const*)ress->srcBuffer;
strm.avail_in = inSize;
}
ret = lzma_code(&strm, action);
if (ret != LZMA_OK && ret != LZMA_STREAM_END)
EXM_THROW(84, "zstd: %s: lzma_code encoding error %d", srcFileName, ret);
{ size_t const compBytes = ress->dstBufferSize - strm.avail_out;
if (compBytes) {
if (fwrite(ress->dstBuffer, 1, compBytes, ress->dstFile) != compBytes)
EXM_THROW(85, "Write error : %s", strerror(errno));
outFileSize += compBytes;
strm.next_out = (BYTE*)ress->dstBuffer;
strm.avail_out = ress->dstBufferSize;
} }
if (srcFileSize == UTIL_FILESIZE_UNKNOWN)
DISPLAYUPDATE(2, "\rRead : %u MB ==> %.2f%%",
(unsigned)(inFileSize>>20),
(double)outFileSize/inFileSize*100)
else
DISPLAYUPDATE(2, "\rRead : %u / %u MB ==> %.2f%%",
(unsigned)(inFileSize>>20), (unsigned)(srcFileSize>>20),
(double)outFileSize/inFileSize*100);
if (ret == LZMA_STREAM_END) break;
}
lzma_end(&strm);
*readsize = inFileSize;
return outFileSize;
}
#endif
#ifdef ZSTD_LZ4COMPRESS
#if LZ4_VERSION_NUMBER <= 10600
#define LZ4F_blockLinked blockLinked
#define LZ4F_max64KB max64KB
#endif
static int FIO_LZ4_GetBlockSize_FromBlockId (int id) { return (1 << (8 + (2 * id))); }
static unsigned long long
FIO_compressLz4Frame(cRess_t* ress,
const char* srcFileName, U64 const srcFileSize,
int compressionLevel, int checksumFlag,
U64* readsize)
{
const size_t blockSize = FIO_LZ4_GetBlockSize_FromBlockId(LZ4F_max64KB);
unsigned long long inFileSize = 0, outFileSize = 0;
LZ4F_preferences_t prefs;
LZ4F_compressionContext_t ctx;
LZ4F_errorCode_t const errorCode = LZ4F_createCompressionContext(&ctx, LZ4F_VERSION);
if (LZ4F_isError(errorCode))
EXM_THROW(31, "zstd: failed to create lz4 compression context");
memset(&prefs, 0, sizeof(prefs));
assert(blockSize <= ress->srcBufferSize);
prefs.autoFlush = 1;
prefs.compressionLevel = compressionLevel;
prefs.frameInfo.blockMode = LZ4F_blockLinked;
prefs.frameInfo.blockSizeID = LZ4F_max64KB;
prefs.frameInfo.contentChecksumFlag = (contentChecksum_t)checksumFlag;
#if LZ4_VERSION_NUMBER >= 10600
prefs.frameInfo.contentSize = (srcFileSize==UTIL_FILESIZE_UNKNOWN) ? 0 : srcFileSize;
#endif
assert(LZ4F_compressBound(blockSize, &prefs) <= ress->dstBufferSize);
{
size_t readSize;
size_t headerSize = LZ4F_compressBegin(ctx, ress->dstBuffer, ress->dstBufferSize, &prefs);
if (LZ4F_isError(headerSize))
EXM_THROW(33, "File header generation failed : %s",
LZ4F_getErrorName(headerSize));
if (fwrite(ress->dstBuffer, 1, headerSize, ress->dstFile) != headerSize)
EXM_THROW(34, "Write error : %s (cannot write header)", strerror(errno));
outFileSize += headerSize;
/* Read first block */
readSize = fread(ress->srcBuffer, (size_t)1, (size_t)blockSize, ress->srcFile);
inFileSize += readSize;
/* Main Loop */
while (readSize>0) {
size_t const outSize = LZ4F_compressUpdate(ctx,
ress->dstBuffer, ress->dstBufferSize,
ress->srcBuffer, readSize, NULL);
if (LZ4F_isError(outSize))
EXM_THROW(35, "zstd: %s: lz4 compression failed : %s",
srcFileName, LZ4F_getErrorName(outSize));
outFileSize += outSize;
if (srcFileSize == UTIL_FILESIZE_UNKNOWN) {
DISPLAYUPDATE(2, "\rRead : %u MB ==> %.2f%%",
(unsigned)(inFileSize>>20),
(double)outFileSize/inFileSize*100)
} else {
DISPLAYUPDATE(2, "\rRead : %u / %u MB ==> %.2f%%",
(unsigned)(inFileSize>>20), (unsigned)(srcFileSize>>20),
(double)outFileSize/inFileSize*100);
}
/* Write Block */
{ size_t const sizeCheck = fwrite(ress->dstBuffer, 1, outSize, ress->dstFile);
if (sizeCheck != outSize)
EXM_THROW(36, "Write error : %s", strerror(errno));
}
/* Read next block */
readSize = fread(ress->srcBuffer, (size_t)1, (size_t)blockSize, ress->srcFile);
inFileSize += readSize;
}
if (ferror(ress->srcFile)) EXM_THROW(37, "Error reading %s ", srcFileName);
/* End of Stream mark */
headerSize = LZ4F_compressEnd(ctx, ress->dstBuffer, ress->dstBufferSize, NULL);
if (LZ4F_isError(headerSize))
EXM_THROW(38, "zstd: %s: lz4 end of file generation failed : %s",
srcFileName, LZ4F_getErrorName(headerSize));
{ size_t const sizeCheck = fwrite(ress->dstBuffer, 1, headerSize, ress->dstFile);
if (sizeCheck != headerSize)
EXM_THROW(39, "Write error : %s (cannot write end of stream)",
strerror(errno));
}
outFileSize += headerSize;
}
*readsize = inFileSize;
LZ4F_freeCompressionContext(ctx);
return outFileSize;
}
#endif
static unsigned long long
FIO_compressZstdFrame(FIO_ctx_t* const fCtx,
FIO_prefs_t* const prefs,
const cRess_t* ressPtr,
const char* srcFileName, U64 fileSize,
int compressionLevel, U64* readsize)
{
cRess_t const ress = *ressPtr;
FILE* const srcFile = ress.srcFile;
FILE* const dstFile = ress.dstFile;
U64 compressedfilesize = 0;
ZSTD_EndDirective directive = ZSTD_e_continue;
+ U64 pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN;
/* stats */
ZSTD_frameProgression previous_zfp_update = { 0, 0, 0, 0, 0, 0 };
ZSTD_frameProgression previous_zfp_correction = { 0, 0, 0, 0, 0, 0 };
typedef enum { noChange, slower, faster } speedChange_e;
speedChange_e speedChange = noChange;
unsigned flushWaiting = 0;
unsigned inputPresented = 0;
unsigned inputBlocked = 0;
unsigned lastJobID = 0;
+ UTIL_HumanReadableSize_t const file_hrs = UTIL_makeHumanReadableSize(fileSize);
DISPLAYLEVEL(6, "compression using zstd format \n");
/* init */
if (fileSize != UTIL_FILESIZE_UNKNOWN) {
+ pledgedSrcSize = fileSize;
CHECK(ZSTD_CCtx_setPledgedSrcSize(ress.cctx, fileSize));
} else if (prefs->streamSrcSize > 0) {
/* unknown source size; use the declared stream size */
+ pledgedSrcSize = prefs->streamSrcSize;
CHECK( ZSTD_CCtx_setPledgedSrcSize(ress.cctx, prefs->streamSrcSize) );
}
+
+ {
+ int windowLog;
+ UTIL_HumanReadableSize_t windowSize;
+ CHECK(ZSTD_CCtx_getParameter(ress.cctx, ZSTD_c_windowLog, &windowLog));
+ if (windowLog == 0) {
+ const ZSTD_compressionParameters cParams = ZSTD_getCParams(compressionLevel, fileSize, 0);
+ windowLog = cParams.windowLog;
+ }
+ windowSize = UTIL_makeHumanReadableSize(MAX(1ULL, MIN(1ULL << windowLog, pledgedSrcSize)));
+ DISPLAYLEVEL(4, "Decompression will require %.*f%s of memory\n", windowSize.precision, windowSize.value, windowSize.suffix);
+ }
(void)srcFileName;
/* Main compression loop */
do {
size_t stillToFlush;
/* Fill input Buffer */
size_t const inSize = fread(ress.srcBuffer, (size_t)1, ress.srcBufferSize, srcFile);
ZSTD_inBuffer inBuff = { ress.srcBuffer, inSize, 0 };
DISPLAYLEVEL(6, "fread %u bytes from source \n", (unsigned)inSize);
*readsize += inSize;
if ((inSize == 0) || (*readsize == fileSize))
directive = ZSTD_e_end;
stillToFlush = 1;
while ((inBuff.pos != inBuff.size) /* input buffer must be entirely ingested */
|| (directive == ZSTD_e_end && stillToFlush != 0) ) {
size_t const oldIPos = inBuff.pos;
ZSTD_outBuffer outBuff = { ress.dstBuffer, ress.dstBufferSize, 0 };
size_t const toFlushNow = ZSTD_toFlushNow(ress.cctx);
CHECK_V(stillToFlush, ZSTD_compressStream2(ress.cctx, &outBuff, &inBuff, directive));
/* count stats */
inputPresented++;
if (oldIPos == inBuff.pos) inputBlocked++; /* input buffer is full and can't take any more : input speed is faster than consumption rate */
if (!toFlushNow) flushWaiting = 1;
/* Write compressed stream */
DISPLAYLEVEL(6, "ZSTD_compress_generic(end:%u) => input pos(%u)<=(%u)size ; output generated %u bytes \n",
(unsigned)directive, (unsigned)inBuff.pos, (unsigned)inBuff.size, (unsigned)outBuff.pos);
if (outBuff.pos) {
size_t const sizeCheck = fwrite(ress.dstBuffer, 1, outBuff.pos, dstFile);
if (sizeCheck != outBuff.pos)
EXM_THROW(25, "Write error : %s (cannot write compressed block)",
strerror(errno));
compressedfilesize += outBuff.pos;
}
/* display notification; and adapt compression level */
if (READY_FOR_UPDATE()) {
ZSTD_frameProgression const zfp = ZSTD_getFrameProgression(ress.cctx);
- double const cShare = (double)zfp.produced / (zfp.consumed + !zfp.consumed/*avoid div0*/) * 100;
+ double const cShare = (double)zfp.produced / (double)(zfp.consumed + !zfp.consumed/*avoid div0*/) * 100;
+ UTIL_HumanReadableSize_t const buffered_hrs = UTIL_makeHumanReadableSize(zfp.ingested - zfp.consumed);
+ UTIL_HumanReadableSize_t const consumed_hrs = UTIL_makeHumanReadableSize(zfp.consumed);
+ UTIL_HumanReadableSize_t const produced_hrs = UTIL_makeHumanReadableSize(zfp.produced);
/* display progress notifications */
if (g_display_prefs.displayLevel >= 3) {
- DISPLAYUPDATE(3, "\r(L%i) Buffered :%4u MB - Consumed :%4u MB - Compressed :%4u MB => %.2f%% ",
+ DISPLAYUPDATE(3, "\r(L%i) Buffered :%6.*f%4s - Consumed :%6.*f%4s - Compressed :%6.*f%4s => %.2f%% ",
compressionLevel,
- (unsigned)((zfp.ingested - zfp.consumed) >> 20),
- (unsigned)(zfp.consumed >> 20),
- (unsigned)(zfp.produced >> 20),
+ buffered_hrs.precision, buffered_hrs.value, buffered_hrs.suffix,
+ consumed_hrs.precision, consumed_hrs.value, consumed_hrs.suffix,
+ produced_hrs.precision, produced_hrs.value, produced_hrs.suffix,
cShare );
- } else { /* summarized notifications if == 2 */
- DISPLAYLEVEL(2, "\r%79s\r", ""); /* Clear out the current displayed line */
+ } else if (g_display_prefs.displayLevel >= 2 || g_display_prefs.progressSetting == FIO_ps_always) {
+ /* Require level 2 or forcibly displayed progress counter for summarized updates */
+ DISPLAYLEVEL(1, "\r%79s\r", ""); /* Clear out the current displayed line */
if (fCtx->nbFilesTotal > 1) {
size_t srcFileNameSize = strlen(srcFileName);
/* Ensure that the string we print is roughly the same size each time */
if (srcFileNameSize > 18) {
const char* truncatedSrcFileName = srcFileName + srcFileNameSize - 15;
- DISPLAYLEVEL(2, "Compress: %u/%u files. Current: ...%s ",
- fCtx->currFileIdx+1, fCtx->nbFilesTotal, truncatedSrcFileName);
+ DISPLAYLEVEL(1, "Compress: %u/%u files. Current: ...%s ",
+ fCtx->currFileIdx+1, fCtx->nbFilesTotal, truncatedSrcFileName);
} else {
- DISPLAYLEVEL(2, "Compress: %u/%u files. Current: %*s ",
- fCtx->currFileIdx+1, fCtx->nbFilesTotal, (int)(18-srcFileNameSize), srcFileName);
+ DISPLAYLEVEL(1, "Compress: %u/%u files. Current: %*s ",
+ fCtx->currFileIdx+1, fCtx->nbFilesTotal, (int)(18-srcFileNameSize), srcFileName);
}
}
- DISPLAYLEVEL(2, "Read : %2u ", (unsigned)(zfp.consumed >> 20));
+ DISPLAYLEVEL(1, "Read:%6.*f%4s ", consumed_hrs.precision, consumed_hrs.value, consumed_hrs.suffix);
if (fileSize != UTIL_FILESIZE_UNKNOWN)
- DISPLAYLEVEL(2, "/ %2u ", (unsigned)(fileSize >> 20));
- DISPLAYLEVEL(2, "MB ==> %2.f%%", cShare);
+ DISPLAYLEVEL(2, "/%6.*f%4s", file_hrs.precision, file_hrs.value, file_hrs.suffix);
+ DISPLAYLEVEL(1, " ==> %2.f%%", cShare);
DELAY_NEXT_UPDATE();
}
/* adaptive mode : statistics measurement and speed correction */
if (prefs->adaptiveMode) {
/* check output speed */
if (zfp.currentJobID > 1) { /* only possible if nbWorkers >= 1 */
unsigned long long newlyProduced = zfp.produced - previous_zfp_update.produced;
unsigned long long newlyFlushed = zfp.flushed - previous_zfp_update.flushed;
assert(zfp.produced >= previous_zfp_update.produced);
assert(prefs->nbWorkers >= 1);
/* test if compression is blocked
* either because output is slow and all buffers are full
* or because input is slow and no job can start while waiting for at least one buffer to be filled.
* note : exclude starting part, since currentJobID > 1 */
if ( (zfp.consumed == previous_zfp_update.consumed) /* no data compressed : no data available, or no more buffer to compress to, OR compression is really slow (compression of a single block is slower than update rate)*/
&& (zfp.nbActiveWorkers == 0) /* confirmed : no compression ongoing */
) {
DISPLAYLEVEL(6, "all buffers full : compression stopped => slow down \n")
speedChange = slower;
}
previous_zfp_update = zfp;
if ( (newlyProduced > (newlyFlushed * 9 / 8)) /* compression produces more data than output can flush (though production can be spiky, due to work unit : (N==4)*block sizes) */
&& (flushWaiting == 0) /* flush speed was never slowed by lack of production, so it's operating at max capacity */
) {
DISPLAYLEVEL(6, "compression faster than flush (%llu > %llu), and flushed was never slowed down by lack of production => slow down \n", newlyProduced, newlyFlushed);
speedChange = slower;
}
flushWaiting = 0;
}
/* course correct only if there is at least one new job completed */
if (zfp.currentJobID > lastJobID) {
DISPLAYLEVEL(6, "compression level adaptation check \n")
/* check input speed */
if (zfp.currentJobID > (unsigned)(prefs->nbWorkers+1)) { /* warm up period, to fill all workers */
if (inputBlocked <= 0) {
DISPLAYLEVEL(6, "input is never blocked => input is slower than ingestion \n");
speedChange = slower;
} else if (speedChange == noChange) {
unsigned long long newlyIngested = zfp.ingested - previous_zfp_correction.ingested;
unsigned long long newlyConsumed = zfp.consumed - previous_zfp_correction.consumed;
unsigned long long newlyProduced = zfp.produced - previous_zfp_correction.produced;
unsigned long long newlyFlushed = zfp.flushed - previous_zfp_correction.flushed;
previous_zfp_correction = zfp;
assert(inputPresented > 0);
DISPLAYLEVEL(6, "input blocked %u/%u(%.2f) - ingested:%u vs %u:consumed - flushed:%u vs %u:produced \n",
inputBlocked, inputPresented, (double)inputBlocked/inputPresented*100,
(unsigned)newlyIngested, (unsigned)newlyConsumed,
(unsigned)newlyFlushed, (unsigned)newlyProduced);
if ( (inputBlocked > inputPresented / 8) /* input is waiting often, because input buffers is full : compression or output too slow */
&& (newlyFlushed * 33 / 32 > newlyProduced) /* flush everything that is produced */
&& (newlyIngested * 33 / 32 > newlyConsumed) /* input speed as fast or faster than compression speed */
) {
DISPLAYLEVEL(6, "recommend faster as in(%llu) >= (%llu)comp(%llu) <= out(%llu) \n",
newlyIngested, newlyConsumed, newlyProduced, newlyFlushed);
speedChange = faster;
}
}
inputBlocked = 0;
inputPresented = 0;
}
if (speedChange == slower) {
DISPLAYLEVEL(6, "slower speed , higher compression \n")
compressionLevel ++;
if (compressionLevel > ZSTD_maxCLevel()) compressionLevel = ZSTD_maxCLevel();
if (compressionLevel > prefs->maxAdaptLevel) compressionLevel = prefs->maxAdaptLevel;
compressionLevel += (compressionLevel == 0); /* skip 0 */
ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_compressionLevel, compressionLevel);
}
if (speedChange == faster) {
DISPLAYLEVEL(6, "faster speed , lighter compression \n")
compressionLevel --;
if (compressionLevel < prefs->minAdaptLevel) compressionLevel = prefs->minAdaptLevel;
compressionLevel -= (compressionLevel == 0); /* skip 0 */
ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_compressionLevel, compressionLevel);
}
speedChange = noChange;
lastJobID = zfp.currentJobID;
} /* if (zfp.currentJobID > lastJobID) */
} /* if (g_adaptiveMode) */
} /* if (READY_FOR_UPDATE()) */
} /* while ((inBuff.pos != inBuff.size) */
} while (directive != ZSTD_e_end);
if (ferror(srcFile)) {
EXM_THROW(26, "Read error : I/O error");
}
if (fileSize != UTIL_FILESIZE_UNKNOWN && *readsize != fileSize) {
EXM_THROW(27, "Read error : Incomplete read : %llu / %llu B",
(unsigned long long)*readsize, (unsigned long long)fileSize);
}
return compressedfilesize;
}
/*! FIO_compressFilename_internal() :
* same as FIO_compressFilename_extRess(), with `ress.desFile` already opened.
* @return : 0 : compression completed correctly,
* 1 : missing or pb opening srcFileName
*/
static int
FIO_compressFilename_internal(FIO_ctx_t* const fCtx,
FIO_prefs_t* const prefs,
cRess_t ress,
const char* dstFileName, const char* srcFileName,
int compressionLevel)
{
UTIL_time_t const timeStart = UTIL_getTime();
clock_t const cpuStart = clock();
U64 readsize = 0;
U64 compressedfilesize = 0;
U64 const fileSize = UTIL_getFileSize(srcFileName);
- DISPLAYLEVEL(5, "%s: %u bytes \n", srcFileName, (unsigned)fileSize);
+ DISPLAYLEVEL(5, "%s: %llu bytes \n", srcFileName, (unsigned long long)fileSize);
/* compression format selection */
switch (prefs->compressionType) {
default:
case FIO_zstdCompression:
compressedfilesize = FIO_compressZstdFrame(fCtx, prefs, &ress, srcFileName, fileSize, compressionLevel, &readsize);
break;
case FIO_gzipCompression:
#ifdef ZSTD_GZCOMPRESS
compressedfilesize = FIO_compressGzFrame(&ress, srcFileName, fileSize, compressionLevel, &readsize);
#else
(void)compressionLevel;
EXM_THROW(20, "zstd: %s: file cannot be compressed as gzip (zstd compiled without ZSTD_GZCOMPRESS) -- ignored \n",
srcFileName);
#endif
break;
case FIO_xzCompression:
case FIO_lzmaCompression:
#ifdef ZSTD_LZMACOMPRESS
compressedfilesize = FIO_compressLzmaFrame(&ress, srcFileName, fileSize, compressionLevel, &readsize, prefs->compressionType==FIO_lzmaCompression);
#else
(void)compressionLevel;
EXM_THROW(20, "zstd: %s: file cannot be compressed as xz/lzma (zstd compiled without ZSTD_LZMACOMPRESS) -- ignored \n",
srcFileName);
#endif
break;
case FIO_lz4Compression:
#ifdef ZSTD_LZ4COMPRESS
compressedfilesize = FIO_compressLz4Frame(&ress, srcFileName, fileSize, compressionLevel, prefs->checksumFlag, &readsize);
#else
(void)compressionLevel;
EXM_THROW(20, "zstd: %s: file cannot be compressed as lz4 (zstd compiled without ZSTD_LZ4COMPRESS) -- ignored \n",
srcFileName);
#endif
break;
}
/* Status */
fCtx->totalBytesInput += (size_t)readsize;
fCtx->totalBytesOutput += (size_t)compressedfilesize;
DISPLAYLEVEL(2, "\r%79s\r", "");
if (g_display_prefs.displayLevel >= 2 &&
- !fCtx->hasStdoutOutput &&
+ !fCtx->hasStdoutOutput &&
(g_display_prefs.displayLevel >= 3 || fCtx->nbFilesTotal <= 1)) {
+ UTIL_HumanReadableSize_t hr_isize = UTIL_makeHumanReadableSize((U64) readsize);
+ UTIL_HumanReadableSize_t hr_osize = UTIL_makeHumanReadableSize((U64) compressedfilesize);
if (readsize == 0) {
- DISPLAYLEVEL(2,"%-20s : (%6llu => %6llu bytes, %s) \n",
+ DISPLAYLEVEL(2,"%-20s : (%6.*f%4s => %6.*f%4s, %s) \n",
srcFileName,
- (unsigned long long)readsize, (unsigned long long) compressedfilesize,
+ hr_isize.precision, hr_isize.value, hr_isize.suffix,
+ hr_osize.precision, hr_osize.value, hr_osize.suffix,
dstFileName);
} else {
- DISPLAYLEVEL(2,"%-20s :%6.2f%% (%6llu => %6llu bytes, %s) \n",
+ DISPLAYLEVEL(2,"%-20s :%6.2f%% (%6.*f%4s => %6.*f%4s, %s) \n",
srcFileName,
- (double)compressedfilesize / readsize * 100,
- (unsigned long long)readsize, (unsigned long long) compressedfilesize,
+ (double)compressedfilesize / (double)readsize * 100,
+ hr_isize.precision, hr_isize.value, hr_isize.suffix,
+ hr_osize.precision, hr_osize.value, hr_osize.suffix,
dstFileName);
}
}
/* Elapsed Time and CPU Load */
{ clock_t const cpuEnd = clock();
double const cpuLoad_s = (double)(cpuEnd - cpuStart) / CLOCKS_PER_SEC;
U64 const timeLength_ns = UTIL_clockSpanNano(timeStart);
double const timeLength_s = (double)timeLength_ns / 1000000000;
double const cpuLoad_pct = (cpuLoad_s / timeLength_s) * 100;
DISPLAYLEVEL(4, "%-20s : Completed in %.2f sec (cpu load : %.0f%%)\n",
srcFileName, timeLength_s, cpuLoad_pct);
}
return 0;
}
/*! FIO_compressFilename_dstFile() :
* open dstFileName, or pass-through if ress.dstFile != NULL,
* then start compression with FIO_compressFilename_internal().
* Manages source removal (--rm) and file permissions transfer.
* note : ress.srcFile must be != NULL,
* so reach this function through FIO_compressFilename_srcFile().
* @return : 0 : compression completed correctly,
* 1 : pb
*/
static int FIO_compressFilename_dstFile(FIO_ctx_t* const fCtx,
FIO_prefs_t* const prefs,
cRess_t ress,
const char* dstFileName,
const char* srcFileName,
int compressionLevel)
{
int closeDstFile = 0;
int result;
stat_t statbuf;
- int transfer_permissions = 0;
+ int transferMTime = 0;
assert(ress.srcFile != NULL);
if (ress.dstFile == NULL) {
+ int dstFilePermissions = DEFAULT_FILE_PERMISSIONS;
+ if ( strcmp (srcFileName, stdinmark)
+ && strcmp (dstFileName, stdoutmark)
+ && UTIL_stat(srcFileName, &statbuf)
+ && UTIL_isRegularFileStat(&statbuf) ) {
+ dstFilePermissions = statbuf.st_mode;
+ transferMTime = 1;
+ }
+
closeDstFile = 1;
DISPLAYLEVEL(6, "FIO_compressFilename_dstFile: opening dst: %s \n", dstFileName);
- ress.dstFile = FIO_openDstFile(fCtx, prefs, srcFileName, dstFileName);
+ ress.dstFile = FIO_openDstFile(fCtx, prefs, srcFileName, dstFileName, dstFilePermissions);
if (ress.dstFile==NULL) return 1; /* could not open dstFileName */
/* Must only be added after FIO_openDstFile() succeeds.
* Otherwise we may delete the destination file if it already exists,
* and the user presses Ctrl-C when asked if they wish to overwrite.
*/
addHandler(dstFileName);
-
- if ( strcmp (srcFileName, stdinmark)
- && UTIL_stat(srcFileName, &statbuf)
- && UTIL_isRegularFileStat(&statbuf) )
- transfer_permissions = 1;
}
result = FIO_compressFilename_internal(fCtx, prefs, ress, dstFileName, srcFileName, compressionLevel);
if (closeDstFile) {
FILE* const dstFile = ress.dstFile;
ress.dstFile = NULL;
clearHandler();
DISPLAYLEVEL(6, "FIO_compressFilename_dstFile: closing dst: %s \n", dstFileName);
if (fclose(dstFile)) { /* error closing dstFile */
DISPLAYLEVEL(1, "zstd: %s: %s \n", dstFileName, strerror(errno));
result=1;
}
+ if (transferMTime) {
+ UTIL_utime(dstFileName, &statbuf);
+ }
if ( (result != 0) /* operation failure */
&& strcmp(dstFileName, stdoutmark) /* special case : don't remove() stdout */
) {
FIO_removeFile(dstFileName); /* remove compression artefact; note don't do anything special if remove() fails */
- } else if (transfer_permissions) {
- DISPLAYLEVEL(6, "FIO_compressFilename_dstFile: transferring permissions into dst: %s \n", dstFileName);
- UTIL_setFileStat(dstFileName, &statbuf);
- } else {
- DISPLAYLEVEL(6, "FIO_compressFilename_dstFile: do not transfer permissions into dst: %s \n", dstFileName);
}
}
return result;
}
/* List used to compare file extensions (used with --exclude-compressed flag)
* Different from the suffixList and should only apply to ZSTD compress operationResult
*/
static const char *compressedFileExtensions[] = {
ZSTD_EXTENSION,
TZSTD_EXTENSION,
GZ_EXTENSION,
TGZ_EXTENSION,
LZMA_EXTENSION,
XZ_EXTENSION,
TXZ_EXTENSION,
LZ4_EXTENSION,
TLZ4_EXTENSION,
NULL
};
/*! FIO_compressFilename_srcFile() :
* @return : 0 : compression completed correctly,
* 1 : missing or pb opening srcFileName
*/
static int
FIO_compressFilename_srcFile(FIO_ctx_t* const fCtx,
FIO_prefs_t* const prefs,
cRess_t ress,
const char* dstFileName,
const char* srcFileName,
int compressionLevel)
{
int result;
DISPLAYLEVEL(6, "FIO_compressFilename_srcFile: %s \n", srcFileName);
/* ensure src is not a directory */
if (UTIL_isDirectory(srcFileName)) {
DISPLAYLEVEL(1, "zstd: %s is a directory -- ignored \n", srcFileName);
return 1;
}
/* ensure src is not the same as dict (if present) */
if (ress.dictFileName != NULL && UTIL_isSameFile(srcFileName, ress.dictFileName)) {
DISPLAYLEVEL(1, "zstd: cannot use %s as an input file and dictionary \n", srcFileName);
return 1;
}
/* Check if "srcFile" is compressed. Only done if --exclude-compressed flag is used
* YES => ZSTD will skip compression of the file and will return 0.
* NO => ZSTD will resume with compress operation.
*/
if (prefs->excludeCompressedFiles == 1 && UTIL_isCompressedFile(srcFileName, compressedFileExtensions)) {
DISPLAYLEVEL(4, "File is already compressed : %s \n", srcFileName);
return 0;
}
- ress.srcFile = FIO_openSrcFile(srcFileName);
+ ress.srcFile = FIO_openSrcFile(prefs, srcFileName);
if (ress.srcFile == NULL) return 1; /* srcFile could not be opened */
result = FIO_compressFilename_dstFile(fCtx, prefs, ress, dstFileName, srcFileName, compressionLevel);
fclose(ress.srcFile);
ress.srcFile = NULL;
if ( prefs->removeSrcFile /* --rm */
&& result == 0 /* success */
&& strcmp(srcFileName, stdinmark) /* exception : don't erase stdin */
) {
/* We must clear the handler, since after this point calling it would
* delete both the source and destination files.
*/
clearHandler();
if (FIO_removeFile(srcFileName))
EXM_THROW(1, "zstd: %s: %s", srcFileName, strerror(errno));
}
return result;
}
+static const char* checked_index(const char* options[], size_t length, size_t index) {
+ assert(index < length);
+ // Necessary to avoid warnings since -O3 will omit the above `assert`
+ (void) length;
+ return options[index];
+}
+
+#define INDEX(options, index) checked_index((options), sizeof(options) / sizeof(char*), (index))
+
+void FIO_displayCompressionParameters(const FIO_prefs_t* prefs) {
+ static const char* formatOptions[5] = {ZSTD_EXTENSION, GZ_EXTENSION, XZ_EXTENSION,
+ LZMA_EXTENSION, LZ4_EXTENSION};
+ static const char* sparseOptions[3] = {" --no-sparse", "", " --sparse"};
+ static const char* checkSumOptions[3] = {" --no-check", "", " --check"};
+ static const char* rowMatchFinderOptions[3] = {"", " --no-row-match-finder", " --row-match-finder"};
+ static const char* compressLiteralsOptions[3] = {"", " --compress-literals", " --no-compress-literals"};
+
+ assert(g_display_prefs.displayLevel >= 4);
+
+ DISPLAY("--format=%s", formatOptions[prefs->compressionType]);
+ DISPLAY("%s", INDEX(sparseOptions, prefs->sparseFileSupport));
+ DISPLAY("%s", prefs->dictIDFlag ? "" : " --no-dictID");
+ DISPLAY("%s", INDEX(checkSumOptions, prefs->checksumFlag));
+ DISPLAY(" --block-size=%d", prefs->blockSize);
+ if (prefs->adaptiveMode)
+ DISPLAY(" --adapt=min=%d,max=%d", prefs->minAdaptLevel, prefs->maxAdaptLevel);
+ DISPLAY("%s", INDEX(rowMatchFinderOptions, prefs->useRowMatchFinder));
+ DISPLAY("%s", prefs->rsyncable ? " --rsyncable" : "");
+ if (prefs->streamSrcSize)
+ DISPLAY(" --stream-size=%u", (unsigned) prefs->streamSrcSize);
+ if (prefs->srcSizeHint)
+ DISPLAY(" --size-hint=%d", prefs->srcSizeHint);
+ if (prefs->targetCBlockSize)
+ DISPLAY(" --target-compressed-block-size=%u", (unsigned) prefs->targetCBlockSize);
+ DISPLAY("%s", INDEX(compressLiteralsOptions, prefs->literalCompressionMode));
+ DISPLAY(" --memory=%u", prefs->memLimit ? prefs->memLimit : 128 MB);
+ DISPLAY(" --threads=%d", prefs->nbWorkers);
+ DISPLAY("%s", prefs->excludeCompressedFiles ? " --exclude-compressed" : "");
+ DISPLAY(" --%scontent-size", prefs->contentSize ? "" : "no-");
+ DISPLAY("\n");
+}
+
+#undef INDEX
+
int FIO_compressFilename(FIO_ctx_t* const fCtx, FIO_prefs_t* const prefs, const char* dstFileName,
const char* srcFileName, const char* dictFileName,
int compressionLevel, ZSTD_compressionParameters comprParams)
{
cRess_t const ress = FIO_createCResources(prefs, dictFileName, UTIL_getFileSize(srcFileName), compressionLevel, comprParams);
int const result = FIO_compressFilename_srcFile(fCtx, prefs, ress, dstFileName, srcFileName, compressionLevel);
#define DISPLAY_LEVEL_DEFAULT 2
FIO_freeCResources(&ress);
return result;
}
/* FIO_determineCompressedName() :
* create a destination filename for compressed srcFileName.
* @return a pointer to it.
* This function never returns an error (it may abort() in case of pb)
*/
static const char*
FIO_determineCompressedName(const char* srcFileName, const char* outDirName, const char* suffix)
{
static size_t dfnbCapacity = 0;
static char* dstFileNameBuffer = NULL; /* using static allocation : this function cannot be multi-threaded */
char* outDirFilename = NULL;
size_t sfnSize = strlen(srcFileName);
size_t const srcSuffixLen = strlen(suffix);
if (outDirName) {
outDirFilename = FIO_createFilename_fromOutDir(srcFileName, outDirName, srcSuffixLen);
sfnSize = strlen(outDirFilename);
assert(outDirFilename != NULL);
}
if (dfnbCapacity <= sfnSize+srcSuffixLen+1) {
/* resize buffer for dstName */
free(dstFileNameBuffer);
dfnbCapacity = sfnSize + srcSuffixLen + 30;
dstFileNameBuffer = (char*)malloc(dfnbCapacity);
if (!dstFileNameBuffer) {
EXM_THROW(30, "zstd: %s", strerror(errno));
}
}
assert(dstFileNameBuffer != NULL);
if (outDirFilename) {
memcpy(dstFileNameBuffer, outDirFilename, sfnSize);
free(outDirFilename);
} else {
memcpy(dstFileNameBuffer, srcFileName, sfnSize);
}
memcpy(dstFileNameBuffer+sfnSize, suffix, srcSuffixLen+1 /* Include terminating null */);
return dstFileNameBuffer;
}
static unsigned long long FIO_getLargestFileSize(const char** inFileNames, unsigned nbFiles)
{
size_t i;
unsigned long long fileSize, maxFileSize = 0;
for (i = 0; i < nbFiles; i++) {
fileSize = UTIL_getFileSize(inFileNames[i]);
maxFileSize = fileSize > maxFileSize ? fileSize : maxFileSize;
}
return maxFileSize;
}
/* FIO_compressMultipleFilenames() :
* compress nbFiles files
* into either one destination (outFileName),
* or into one file each (outFileName == NULL, but suffix != NULL),
* or into a destination folder (specified with -O)
*/
int FIO_compressMultipleFilenames(FIO_ctx_t* const fCtx,
FIO_prefs_t* const prefs,
const char** inFileNamesTable,
const char* outMirroredRootDirName,
const char* outDirName,
const char* outFileName, const char* suffix,
const char* dictFileName, int compressionLevel,
ZSTD_compressionParameters comprParams)
{
int status;
int error = 0;
cRess_t ress = FIO_createCResources(prefs, dictFileName,
- FIO_getLargestFileSize(inFileNamesTable, fCtx->nbFilesTotal),
+ FIO_getLargestFileSize(inFileNamesTable, (unsigned)fCtx->nbFilesTotal),
compressionLevel, comprParams);
/* init */
assert(outFileName != NULL || suffix != NULL);
if (outFileName != NULL) { /* output into a single destination (stdout typically) */
if (FIO_removeMultiFilesWarning(fCtx, prefs, outFileName, 1 /* displayLevelCutoff */)) {
FIO_freeCResources(&ress);
return 1;
}
- ress.dstFile = FIO_openDstFile(fCtx, prefs, NULL, outFileName);
+ ress.dstFile = FIO_openDstFile(fCtx, prefs, NULL, outFileName, DEFAULT_FILE_PERMISSIONS);
if (ress.dstFile == NULL) { /* could not open outFileName */
error = 1;
} else {
for (; fCtx->currFileIdx < fCtx->nbFilesTotal; ++fCtx->currFileIdx) {
status = FIO_compressFilename_srcFile(fCtx, prefs, ress, outFileName, inFileNamesTable[fCtx->currFileIdx], compressionLevel);
if (!status) fCtx->nbFilesProcessed++;
error |= status;
}
if (fclose(ress.dstFile))
EXM_THROW(29, "Write error (%s) : cannot properly close %s",
strerror(errno), outFileName);
ress.dstFile = NULL;
}
} else {
if (outMirroredRootDirName)
- UTIL_mirrorSourceFilesDirectories(inFileNamesTable, fCtx->nbFilesTotal, outMirroredRootDirName);
+ UTIL_mirrorSourceFilesDirectories(inFileNamesTable, (unsigned)fCtx->nbFilesTotal, outMirroredRootDirName);
for (; fCtx->currFileIdx < fCtx->nbFilesTotal; ++fCtx->currFileIdx) {
const char* const srcFileName = inFileNamesTable[fCtx->currFileIdx];
const char* dstFileName = NULL;
if (outMirroredRootDirName) {
char* validMirroredDirName = UTIL_createMirroredDestDirName(srcFileName, outMirroredRootDirName);
if (validMirroredDirName) {
dstFileName = FIO_determineCompressedName(srcFileName, validMirroredDirName, suffix);
free(validMirroredDirName);
} else {
DISPLAYLEVEL(2, "zstd: --output-dir-mirror cannot compress '%s' into '%s' \n", srcFileName, outMirroredRootDirName);
error=1;
continue;
}
} else {
dstFileName = FIO_determineCompressedName(srcFileName, outDirName, suffix); /* cannot fail */
}
status = FIO_compressFilename_srcFile(fCtx, prefs, ress, dstFileName, srcFileName, compressionLevel);
if (!status) fCtx->nbFilesProcessed++;
error |= status;
}
if (outDirName)
- FIO_checkFilenameCollisions(inFileNamesTable , fCtx->nbFilesTotal);
+ FIO_checkFilenameCollisions(inFileNamesTable , (unsigned)fCtx->nbFilesTotal);
}
if (fCtx->nbFilesProcessed >= 1 && fCtx->nbFilesTotal > 1 && fCtx->totalBytesInput != 0) {
+ UTIL_HumanReadableSize_t hr_isize = UTIL_makeHumanReadableSize((U64) fCtx->totalBytesInput);
+ UTIL_HumanReadableSize_t hr_osize = UTIL_makeHumanReadableSize((U64) fCtx->totalBytesOutput);
+
DISPLAYLEVEL(2, "\r%79s\r", "");
- DISPLAYLEVEL(2, "%d files compressed : %.2f%% (%6zu => %6zu bytes)\n", fCtx->nbFilesProcessed,
+ DISPLAYLEVEL(2, "%3d files compressed :%.2f%% (%6.*f%4s => %6.*f%4s)\n",
+ fCtx->nbFilesProcessed,
(double)fCtx->totalBytesOutput/((double)fCtx->totalBytesInput)*100,
- fCtx->totalBytesInput, fCtx->totalBytesOutput);
+ hr_isize.precision, hr_isize.value, hr_isize.suffix,
+ hr_osize.precision, hr_osize.value, hr_osize.suffix);
}
FIO_freeCResources(&ress);
return error;
}
#endif /* #ifndef ZSTD_NOCOMPRESS */
#ifndef ZSTD_NODECOMPRESS
/* **************************************************************************
* Decompression
***************************************************************************/
typedef struct {
void* srcBuffer;
size_t srcBufferSize;
size_t srcBufferLoaded;
void* dstBuffer;
size_t dstBufferSize;
ZSTD_DStream* dctx;
FILE* dstFile;
} dRess_t;
static dRess_t FIO_createDResources(FIO_prefs_t* const prefs, const char* dictFileName)
{
dRess_t ress;
memset(&ress, 0, sizeof(ress));
if (prefs->patchFromMode)
FIO_adjustMemLimitForPatchFromMode(prefs, UTIL_getFileSize(dictFileName), 0 /* just use the dict size */);
/* Allocation */
ress.dctx = ZSTD_createDStream();
if (ress.dctx==NULL)
EXM_THROW(60, "Error: %s : can't create ZSTD_DStream", strerror(errno));
CHECK( ZSTD_DCtx_setMaxWindowSize(ress.dctx, prefs->memLimit) );
CHECK( ZSTD_DCtx_setParameter(ress.dctx, ZSTD_d_forceIgnoreChecksum, !prefs->checksumFlag));
-
+
ress.srcBufferSize = ZSTD_DStreamInSize();
ress.srcBuffer = malloc(ress.srcBufferSize);
ress.dstBufferSize = ZSTD_DStreamOutSize();
ress.dstBuffer = malloc(ress.dstBufferSize);
if (!ress.srcBuffer || !ress.dstBuffer)
EXM_THROW(61, "Allocation error : not enough memory");
/* dictionary */
{ void* dictBuffer;
size_t const dictBufferSize = FIO_createDictBuffer(&dictBuffer, dictFileName, prefs);
CHECK( ZSTD_initDStream_usingDict(ress.dctx, dictBuffer, dictBufferSize) );
free(dictBuffer);
}
return ress;
}
static void FIO_freeDResources(dRess_t ress)
{
CHECK( ZSTD_freeDStream(ress.dctx) );
free(ress.srcBuffer);
free(ress.dstBuffer);
}
/** FIO_fwriteSparse() :
* @return : storedSkips,
* argument for next call to FIO_fwriteSparse() or FIO_fwriteSparseEnd() */
static unsigned
FIO_fwriteSparse(FILE* file,
const void* buffer, size_t bufferSize,
const FIO_prefs_t* const prefs,
unsigned storedSkips)
{
const size_t* const bufferT = (const size_t*)buffer; /* Buffer is supposed malloc'ed, hence aligned on size_t */
size_t bufferSizeT = bufferSize / sizeof(size_t);
const size_t* const bufferTEnd = bufferT + bufferSizeT;
const size_t* ptrT = bufferT;
static const size_t segmentSizeT = (32 KB) / sizeof(size_t); /* check every 32 KB */
if (prefs->testMode) return 0; /* do not output anything in test mode */
if (!prefs->sparseFileSupport) { /* normal write */
size_t const sizeCheck = fwrite(buffer, 1, bufferSize, file);
if (sizeCheck != bufferSize)
EXM_THROW(70, "Write error : cannot write decoded block : %s",
strerror(errno));
return 0;
}
/* avoid int overflow */
if (storedSkips > 1 GB) {
if (LONG_SEEK(file, 1 GB, SEEK_CUR) != 0)
EXM_THROW(91, "1 GB skip error (sparse file support)");
storedSkips -= 1 GB;
}
while (ptrT < bufferTEnd) {
size_t nb0T;
/* adjust last segment if < 32 KB */
size_t seg0SizeT = segmentSizeT;
if (seg0SizeT > bufferSizeT) seg0SizeT = bufferSizeT;
bufferSizeT -= seg0SizeT;
/* count leading zeroes */
for (nb0T=0; (nb0T < seg0SizeT) && (ptrT[nb0T] == 0); nb0T++) ;
storedSkips += (unsigned)(nb0T * sizeof(size_t));
if (nb0T != seg0SizeT) { /* not all 0s */
size_t const nbNon0ST = seg0SizeT - nb0T;
/* skip leading zeros */
if (LONG_SEEK(file, storedSkips, SEEK_CUR) != 0)
EXM_THROW(92, "Sparse skip error ; try --no-sparse");
storedSkips = 0;
/* write the rest */
if (fwrite(ptrT + nb0T, sizeof(size_t), nbNon0ST, file) != nbNon0ST)
EXM_THROW(93, "Write error : cannot write decoded block : %s",
strerror(errno));
}
ptrT += seg0SizeT;
}
{ static size_t const maskT = sizeof(size_t)-1;
if (bufferSize & maskT) {
/* size not multiple of sizeof(size_t) : implies end of block */
const char* const restStart = (const char*)bufferTEnd;
const char* restPtr = restStart;
const char* const restEnd = (const char*)buffer + bufferSize;
assert(restEnd > restStart && restEnd < restStart + sizeof(size_t));
for ( ; (restPtr < restEnd) && (*restPtr == 0); restPtr++) ;
storedSkips += (unsigned) (restPtr - restStart);
if (restPtr != restEnd) {
/* not all remaining bytes are 0 */
size_t const restSize = (size_t)(restEnd - restPtr);
if (LONG_SEEK(file, storedSkips, SEEK_CUR) != 0)
EXM_THROW(92, "Sparse skip error ; try --no-sparse");
if (fwrite(restPtr, 1, restSize, file) != restSize)
EXM_THROW(95, "Write error : cannot write end of decoded block : %s",
strerror(errno));
storedSkips = 0;
} } }
return storedSkips;
}
static void
FIO_fwriteSparseEnd(const FIO_prefs_t* const prefs, FILE* file, unsigned storedSkips)
{
if (prefs->testMode) assert(storedSkips == 0);
if (storedSkips>0) {
assert(prefs->sparseFileSupport > 0); /* storedSkips>0 implies sparse support is enabled */
(void)prefs; /* assert can be disabled, in which case prefs becomes unused */
if (LONG_SEEK(file, storedSkips-1, SEEK_CUR) != 0)
EXM_THROW(69, "Final skip error (sparse file support)");
/* last zero must be explicitly written,
* so that skipped ones get implicitly translated as zero by FS */
{ const char lastZeroByte[1] = { 0 };
if (fwrite(lastZeroByte, 1, 1, file) != 1)
EXM_THROW(69, "Write error : cannot write last zero : %s", strerror(errno));
} }
}
/** FIO_passThrough() : just copy input into output, for compatibility with gzip -df mode
@return : 0 (no error) */
static int FIO_passThrough(const FIO_prefs_t* const prefs,
FILE* foutput, FILE* finput,
void* buffer, size_t bufferSize,
size_t alreadyLoaded)
{
size_t const blockSize = MIN(64 KB, bufferSize);
size_t readFromInput;
unsigned storedSkips = 0;
/* assumption : ress->srcBufferLoaded bytes already loaded and stored within buffer */
{ size_t const sizeCheck = fwrite(buffer, 1, alreadyLoaded, foutput);
if (sizeCheck != alreadyLoaded) {
DISPLAYLEVEL(1, "Pass-through write error : %s\n", strerror(errno));
return 1;
} }
do {
readFromInput = fread(buffer, 1, blockSize, finput);
storedSkips = FIO_fwriteSparse(foutput, buffer, readFromInput, prefs, storedSkips);
} while (readFromInput == blockSize);
if (ferror(finput)) {
DISPLAYLEVEL(1, "Pass-through read error : %s\n", strerror(errno));
return 1;
}
assert(feof(finput));
FIO_fwriteSparseEnd(prefs, foutput, storedSkips);
return 0;
}
/* FIO_zstdErrorHelp() :
* detailed error message when requested window size is too large */
static void
FIO_zstdErrorHelp(const FIO_prefs_t* const prefs,
const dRess_t* ress,
size_t err, const char* srcFileName)
{
ZSTD_frameHeader header;
/* Help message only for one specific error */
if (ZSTD_getErrorCode(err) != ZSTD_error_frameParameter_windowTooLarge)
return;
/* Try to decode the frame header */
err = ZSTD_getFrameHeader(&header, ress->srcBuffer, ress->srcBufferLoaded);
if (err == 0) {
unsigned long long const windowSize = header.windowSize;
unsigned const windowLog = FIO_highbit64(windowSize) + ((windowSize & (windowSize - 1)) != 0);
assert(prefs->memLimit > 0);
DISPLAYLEVEL(1, "%s : Window size larger than maximum : %llu > %u \n",
srcFileName, windowSize, prefs->memLimit);
if (windowLog <= ZSTD_WINDOWLOG_MAX) {
unsigned const windowMB = (unsigned)((windowSize >> 20) + ((windowSize & ((1 MB) - 1)) != 0));
assert(windowSize < (U64)(1ULL << 52)); /* ensure now overflow for windowMB */
DISPLAYLEVEL(1, "%s : Use --long=%u or --memory=%uMB \n",
srcFileName, windowLog, windowMB);
return;
} }
DISPLAYLEVEL(1, "%s : Window log larger than ZSTD_WINDOWLOG_MAX=%u; not supported \n",
srcFileName, ZSTD_WINDOWLOG_MAX);
}
/** FIO_decompressFrame() :
* @return : size of decoded zstd frame, or an error code
*/
#define FIO_ERROR_FRAME_DECODING ((unsigned long long)(-2))
static unsigned long long
FIO_decompressZstdFrame(FIO_ctx_t* const fCtx, dRess_t* ress, FILE* finput,
const FIO_prefs_t* const prefs,
const char* srcFileName,
U64 alreadyDecoded) /* for multi-frames streams */
{
U64 frameSize = 0;
U32 storedSkips = 0;
/* display last 20 characters only */
{ size_t const srcFileLength = strlen(srcFileName);
if (srcFileLength>20) srcFileName += srcFileLength-20;
}
- ZSTD_resetDStream(ress->dctx);
+ ZSTD_DCtx_reset(ress->dctx, ZSTD_reset_session_only);
/* Header loading : ensures ZSTD_getFrameHeader() will succeed */
{ size_t const toDecode = ZSTD_FRAMEHEADERSIZE_MAX;
if (ress->srcBufferLoaded < toDecode) {
size_t const toRead = toDecode - ress->srcBufferLoaded;
void* const startPosition = (char*)ress->srcBuffer + ress->srcBufferLoaded;
ress->srcBufferLoaded += fread(startPosition, 1, toRead, finput);
} }
/* Main decompression Loop */
while (1) {
ZSTD_inBuffer inBuff = { ress->srcBuffer, ress->srcBufferLoaded, 0 };
ZSTD_outBuffer outBuff= { ress->dstBuffer, ress->dstBufferSize, 0 };
size_t const readSizeHint = ZSTD_decompressStream(ress->dctx, &outBuff, &inBuff);
+ const int displayLevel = (g_display_prefs.progressSetting == FIO_ps_always) ? 1 : 2;
+ UTIL_HumanReadableSize_t const hrs = UTIL_makeHumanReadableSize(alreadyDecoded+frameSize);
if (ZSTD_isError(readSizeHint)) {
DISPLAYLEVEL(1, "%s : Decoding error (36) : %s \n",
srcFileName, ZSTD_getErrorName(readSizeHint));
FIO_zstdErrorHelp(prefs, ress, readSizeHint, srcFileName);
return FIO_ERROR_FRAME_DECODING;
}
/* Write block */
storedSkips = FIO_fwriteSparse(ress->dstFile, ress->dstBuffer, outBuff.pos, prefs, storedSkips);
frameSize += outBuff.pos;
- if (!fCtx->hasStdoutOutput) {
- if (fCtx->nbFilesTotal > 1) {
- size_t srcFileNameSize = strlen(srcFileName);
- if (srcFileNameSize > 18) {
- const char* truncatedSrcFileName = srcFileName + srcFileNameSize - 15;
- DISPLAYUPDATE(2, "\rDecompress: %2u/%2u files. Current: ...%s : %u MB... ",
- fCtx->currFileIdx+1, fCtx->nbFilesTotal, truncatedSrcFileName, (unsigned)((alreadyDecoded+frameSize)>>20) );
- } else {
- DISPLAYUPDATE(2, "\rDecompress: %2u/%2u files. Current: %s : %u MB... ",
- fCtx->currFileIdx+1, fCtx->nbFilesTotal, srcFileName, (unsigned)((alreadyDecoded+frameSize)>>20) );
- }
+ if (fCtx->nbFilesTotal > 1) {
+ size_t srcFileNameSize = strlen(srcFileName);
+ if (srcFileNameSize > 18) {
+ const char* truncatedSrcFileName = srcFileName + srcFileNameSize - 15;
+ DISPLAYUPDATE(displayLevel, "\rDecompress: %2u/%2u files. Current: ...%s : %.*f%s... ",
+ fCtx->currFileIdx+1, fCtx->nbFilesTotal, truncatedSrcFileName, hrs.precision, hrs.value, hrs.suffix);
} else {
- DISPLAYUPDATE(2, "\r%-20.20s : %u MB... ",
- srcFileName, (unsigned)((alreadyDecoded+frameSize)>>20) );
+ DISPLAYUPDATE(displayLevel, "\rDecompress: %2u/%2u files. Current: %s : %.*f%s... ",
+ fCtx->currFileIdx+1, fCtx->nbFilesTotal, srcFileName, hrs.precision, hrs.value, hrs.suffix);
}
+ } else {
+ DISPLAYUPDATE(displayLevel, "\r%-20.20s : %.*f%s... ",
+ srcFileName, hrs.precision, hrs.value, hrs.suffix);
}
if (inBuff.pos > 0) {
memmove(ress->srcBuffer, (char*)ress->srcBuffer + inBuff.pos, inBuff.size - inBuff.pos);
ress->srcBufferLoaded -= inBuff.pos;
}
if (readSizeHint == 0) break; /* end of frame */
/* Fill input buffer */
{ size_t const toDecode = MIN(readSizeHint, ress->srcBufferSize); /* support large skippable frames */
if (ress->srcBufferLoaded < toDecode) {
size_t const toRead = toDecode - ress->srcBufferLoaded; /* > 0 */
void* const startPosition = (char*)ress->srcBuffer + ress->srcBufferLoaded;
size_t const readSize = fread(startPosition, 1, toRead, finput);
if (readSize==0) {
DISPLAYLEVEL(1, "%s : Read error (39) : premature end \n",
srcFileName);
return FIO_ERROR_FRAME_DECODING;
}
ress->srcBufferLoaded += readSize;
} } }
FIO_fwriteSparseEnd(prefs, ress->dstFile, storedSkips);
return frameSize;
}
#ifdef ZSTD_GZDECOMPRESS
static unsigned long long
FIO_decompressGzFrame(dRess_t* ress, FILE* srcFile,
const FIO_prefs_t* const prefs,
const char* srcFileName)
{
unsigned long long outFileSize = 0;
z_stream strm;
int flush = Z_NO_FLUSH;
int decodingError = 0;
unsigned storedSkips = 0;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.next_in = 0;
strm.avail_in = 0;
/* see http://www.zlib.net/manual.html */
if (inflateInit2(&strm, 15 /* maxWindowLogSize */ + 16 /* gzip only */) != Z_OK)
return FIO_ERROR_FRAME_DECODING;
strm.next_out = (Bytef*)ress->dstBuffer;
strm.avail_out = (uInt)ress->dstBufferSize;
strm.avail_in = (uInt)ress->srcBufferLoaded;
strm.next_in = (z_const unsigned char*)ress->srcBuffer;
for ( ; ; ) {
int ret;
if (strm.avail_in == 0) {
ress->srcBufferLoaded = fread(ress->srcBuffer, 1, ress->srcBufferSize, srcFile);
if (ress->srcBufferLoaded == 0) flush = Z_FINISH;
strm.next_in = (z_const unsigned char*)ress->srcBuffer;
strm.avail_in = (uInt)ress->srcBufferLoaded;
}
ret = inflate(&strm, flush);
if (ret == Z_BUF_ERROR) {
DISPLAYLEVEL(1, "zstd: %s: premature gz end \n", srcFileName);
decodingError = 1; break;
}
if (ret != Z_OK && ret != Z_STREAM_END) {
DISPLAYLEVEL(1, "zstd: %s: inflate error %d \n", srcFileName, ret);
decodingError = 1; break;
}
{ size_t const decompBytes = ress->dstBufferSize - strm.avail_out;
if (decompBytes) {
storedSkips = FIO_fwriteSparse(ress->dstFile, ress->dstBuffer, decompBytes, prefs, storedSkips);
outFileSize += decompBytes;
strm.next_out = (Bytef*)ress->dstBuffer;
strm.avail_out = (uInt)ress->dstBufferSize;
}
}
if (ret == Z_STREAM_END) break;
}
if (strm.avail_in > 0)
memmove(ress->srcBuffer, strm.next_in, strm.avail_in);
ress->srcBufferLoaded = strm.avail_in;
if ( (inflateEnd(&strm) != Z_OK) /* release resources ; error detected */
&& (decodingError==0) ) {
DISPLAYLEVEL(1, "zstd: %s: inflateEnd error \n", srcFileName);
decodingError = 1;
}
FIO_fwriteSparseEnd(prefs, ress->dstFile, storedSkips);
return decodingError ? FIO_ERROR_FRAME_DECODING : outFileSize;
}
#endif
#ifdef ZSTD_LZMADECOMPRESS
static unsigned long long
FIO_decompressLzmaFrame(dRess_t* ress, FILE* srcFile,
const FIO_prefs_t* const prefs,
const char* srcFileName, int plain_lzma)
{
unsigned long long outFileSize = 0;
lzma_stream strm = LZMA_STREAM_INIT;
lzma_action action = LZMA_RUN;
lzma_ret initRet;
int decodingError = 0;
unsigned storedSkips = 0;
strm.next_in = 0;
strm.avail_in = 0;
if (plain_lzma) {
initRet = lzma_alone_decoder(&strm, UINT64_MAX); /* LZMA */
} else {
initRet = lzma_stream_decoder(&strm, UINT64_MAX, 0); /* XZ */
}
if (initRet != LZMA_OK) {
DISPLAYLEVEL(1, "zstd: %s: %s error %d \n",
plain_lzma ? "lzma_alone_decoder" : "lzma_stream_decoder",
srcFileName, initRet);
return FIO_ERROR_FRAME_DECODING;
}
strm.next_out = (BYTE*)ress->dstBuffer;
strm.avail_out = ress->dstBufferSize;
strm.next_in = (BYTE const*)ress->srcBuffer;
strm.avail_in = ress->srcBufferLoaded;
for ( ; ; ) {
lzma_ret ret;
if (strm.avail_in == 0) {
ress->srcBufferLoaded = fread(ress->srcBuffer, 1, ress->srcBufferSize, srcFile);
if (ress->srcBufferLoaded == 0) action = LZMA_FINISH;
strm.next_in = (BYTE const*)ress->srcBuffer;
strm.avail_in = ress->srcBufferLoaded;
}
ret = lzma_code(&strm, action);
if (ret == LZMA_BUF_ERROR) {
DISPLAYLEVEL(1, "zstd: %s: premature lzma end \n", srcFileName);
decodingError = 1; break;
}
if (ret != LZMA_OK && ret != LZMA_STREAM_END) {
DISPLAYLEVEL(1, "zstd: %s: lzma_code decoding error %d \n",
srcFileName, ret);
decodingError = 1; break;
}
{ size_t const decompBytes = ress->dstBufferSize - strm.avail_out;
if (decompBytes) {
storedSkips = FIO_fwriteSparse(ress->dstFile, ress->dstBuffer, decompBytes, prefs, storedSkips);
outFileSize += decompBytes;
strm.next_out = (BYTE*)ress->dstBuffer;
strm.avail_out = ress->dstBufferSize;
} }
if (ret == LZMA_STREAM_END) break;
}
if (strm.avail_in > 0)
memmove(ress->srcBuffer, strm.next_in, strm.avail_in);
ress->srcBufferLoaded = strm.avail_in;
lzma_end(&strm);
FIO_fwriteSparseEnd(prefs, ress->dstFile, storedSkips);
return decodingError ? FIO_ERROR_FRAME_DECODING : outFileSize;
}
#endif
#ifdef ZSTD_LZ4DECOMPRESS
static unsigned long long
FIO_decompressLz4Frame(dRess_t* ress, FILE* srcFile,
const FIO_prefs_t* const prefs,
const char* srcFileName)
{
unsigned long long filesize = 0;
LZ4F_errorCode_t nextToLoad;
LZ4F_decompressionContext_t dCtx;
LZ4F_errorCode_t const errorCode = LZ4F_createDecompressionContext(&dCtx, LZ4F_VERSION);
int decodingError = 0;
unsigned storedSkips = 0;
if (LZ4F_isError(errorCode)) {
DISPLAYLEVEL(1, "zstd: failed to create lz4 decompression context \n");
return FIO_ERROR_FRAME_DECODING;
}
/* Init feed with magic number (already consumed from FILE* sFile) */
{ size_t inSize = 4;
size_t outSize= 0;
MEM_writeLE32(ress->srcBuffer, LZ4_MAGICNUMBER);
nextToLoad = LZ4F_decompress(dCtx, ress->dstBuffer, &outSize, ress->srcBuffer, &inSize, NULL);
if (LZ4F_isError(nextToLoad)) {
DISPLAYLEVEL(1, "zstd: %s: lz4 header error : %s \n",
srcFileName, LZ4F_getErrorName(nextToLoad));
LZ4F_freeDecompressionContext(dCtx);
return FIO_ERROR_FRAME_DECODING;
} }
/* Main Loop */
for (;nextToLoad;) {
size_t readSize;
size_t pos = 0;
size_t decodedBytes = ress->dstBufferSize;
/* Read input */
if (nextToLoad > ress->srcBufferSize) nextToLoad = ress->srcBufferSize;
readSize = fread(ress->srcBuffer, 1, nextToLoad, srcFile);
if (!readSize) break; /* reached end of file or stream */
while ((pos < readSize) || (decodedBytes == ress->dstBufferSize)) { /* still to read, or still to flush */
/* Decode Input (at least partially) */
size_t remaining = readSize - pos;
decodedBytes = ress->dstBufferSize;
nextToLoad = LZ4F_decompress(dCtx, ress->dstBuffer, &decodedBytes, (char*)(ress->srcBuffer)+pos, &remaining, NULL);
if (LZ4F_isError(nextToLoad)) {
DISPLAYLEVEL(1, "zstd: %s: lz4 decompression error : %s \n",
srcFileName, LZ4F_getErrorName(nextToLoad));
decodingError = 1; nextToLoad = 0; break;
}
pos += remaining;
/* Write Block */
if (decodedBytes) {
+ UTIL_HumanReadableSize_t hrs;
storedSkips = FIO_fwriteSparse(ress->dstFile, ress->dstBuffer, decodedBytes, prefs, storedSkips);
filesize += decodedBytes;
- DISPLAYUPDATE(2, "\rDecompressed : %u MB ", (unsigned)(filesize>>20));
+ hrs = UTIL_makeHumanReadableSize(filesize);
+ DISPLAYUPDATE(2, "\rDecompressed : %.*f%s ", hrs.precision, hrs.value, hrs.suffix);
}
if (!nextToLoad) break;
}
}
/* can be out because readSize == 0, which could be an fread() error */
if (ferror(srcFile)) {
DISPLAYLEVEL(1, "zstd: %s: read error \n", srcFileName);
decodingError=1;
}
if (nextToLoad!=0) {
DISPLAYLEVEL(1, "zstd: %s: unfinished lz4 stream \n", srcFileName);
decodingError=1;
}
LZ4F_freeDecompressionContext(dCtx);
ress->srcBufferLoaded = 0; /* LZ4F will reach exact frame boundary */
FIO_fwriteSparseEnd(prefs, ress->dstFile, storedSkips);
return decodingError ? FIO_ERROR_FRAME_DECODING : filesize;
}
#endif
/** FIO_decompressFrames() :
* Find and decode frames inside srcFile
* srcFile presumed opened and valid
* @return : 0 : OK
* 1 : error
*/
static int FIO_decompressFrames(FIO_ctx_t* const fCtx,
dRess_t ress, FILE* srcFile,
const FIO_prefs_t* const prefs,
const char* dstFileName, const char* srcFileName)
{
unsigned readSomething = 0;
unsigned long long filesize = 0;
assert(srcFile != NULL);
/* for each frame */
for ( ; ; ) {
/* check magic number -> version */
size_t const toRead = 4;
const BYTE* const buf = (const BYTE*)ress.srcBuffer;
if (ress.srcBufferLoaded < toRead) /* load up to 4 bytes for header */
ress.srcBufferLoaded += fread((char*)ress.srcBuffer + ress.srcBufferLoaded,
(size_t)1, toRead - ress.srcBufferLoaded, srcFile);
if (ress.srcBufferLoaded==0) {
if (readSomething==0) { /* srcFile is empty (which is invalid) */
DISPLAYLEVEL(1, "zstd: %s: unexpected end of file \n", srcFileName);
return 1;
} /* else, just reached frame boundary */
break; /* no more input */
}
readSomething = 1; /* there is at least 1 byte in srcFile */
if (ress.srcBufferLoaded < toRead) {
DISPLAYLEVEL(1, "zstd: %s: unknown header \n", srcFileName);
return 1;
}
if (ZSTD_isFrame(buf, ress.srcBufferLoaded)) {
unsigned long long const frameSize = FIO_decompressZstdFrame(fCtx, &ress, srcFile, prefs, srcFileName, filesize);
if (frameSize == FIO_ERROR_FRAME_DECODING) return 1;
filesize += frameSize;
} else if (buf[0] == 31 && buf[1] == 139) { /* gz magic number */
#ifdef ZSTD_GZDECOMPRESS
unsigned long long const frameSize = FIO_decompressGzFrame(&ress, srcFile, prefs, srcFileName);
if (frameSize == FIO_ERROR_FRAME_DECODING) return 1;
filesize += frameSize;
#else
DISPLAYLEVEL(1, "zstd: %s: gzip file cannot be uncompressed (zstd compiled without HAVE_ZLIB) -- ignored \n", srcFileName);
return 1;
#endif
} else if ((buf[0] == 0xFD && buf[1] == 0x37) /* xz magic number */
|| (buf[0] == 0x5D && buf[1] == 0x00)) { /* lzma header (no magic number) */
#ifdef ZSTD_LZMADECOMPRESS
unsigned long long const frameSize = FIO_decompressLzmaFrame(&ress, srcFile, prefs, srcFileName, buf[0] != 0xFD);
if (frameSize == FIO_ERROR_FRAME_DECODING) return 1;
filesize += frameSize;
#else
DISPLAYLEVEL(1, "zstd: %s: xz/lzma file cannot be uncompressed (zstd compiled without HAVE_LZMA) -- ignored \n", srcFileName);
return 1;
#endif
} else if (MEM_readLE32(buf) == LZ4_MAGICNUMBER) {
#ifdef ZSTD_LZ4DECOMPRESS
unsigned long long const frameSize = FIO_decompressLz4Frame(&ress, srcFile, prefs, srcFileName);
if (frameSize == FIO_ERROR_FRAME_DECODING) return 1;
filesize += frameSize;
#else
DISPLAYLEVEL(1, "zstd: %s: lz4 file cannot be uncompressed (zstd compiled without HAVE_LZ4) -- ignored \n", srcFileName);
return 1;
#endif
} else if ((prefs->overwrite) && !strcmp (dstFileName, stdoutmark)) { /* pass-through mode */
return FIO_passThrough(prefs,
ress.dstFile, srcFile,
ress.srcBuffer, ress.srcBufferSize,
ress.srcBufferLoaded);
} else {
DISPLAYLEVEL(1, "zstd: %s: unsupported format \n", srcFileName);
return 1;
} } /* for each frame */
/* Final Status */
fCtx->totalBytesOutput += (size_t)filesize;
DISPLAYLEVEL(2, "\r%79s\r", "");
/* No status message in pipe mode (stdin - stdout) or multi-files mode */
- if (g_display_prefs.displayLevel >= 2) {
- if (fCtx->nbFilesTotal <= 1 || g_display_prefs.displayLevel >= 3) {
- DISPLAYLEVEL(2, "%-20s: %llu bytes \n", srcFileName, filesize);
- }
+ if ((g_display_prefs.displayLevel >= 2 && fCtx->nbFilesTotal <= 1) ||
+ g_display_prefs.displayLevel >= 3 ||
+ g_display_prefs.progressSetting == FIO_ps_always) {
+ DISPLAYLEVEL(1, "\r%-20s: %llu bytes \n", srcFileName, filesize);
}
return 0;
}
/** FIO_decompressDstFile() :
open `dstFileName`,
or path-through if ress.dstFile is already != 0,
then start decompression process (FIO_decompressFrames()).
@return : 0 : OK
1 : operation aborted
*/
static int FIO_decompressDstFile(FIO_ctx_t* const fCtx,
FIO_prefs_t* const prefs,
dRess_t ress, FILE* srcFile,
const char* dstFileName, const char* srcFileName)
{
int result;
stat_t statbuf;
- int transfer_permissions = 0;
int releaseDstFile = 0;
+ int transferMTime = 0;
if ((ress.dstFile == NULL) && (prefs->testMode==0)) {
+ int dstFilePermissions = DEFAULT_FILE_PERMISSIONS;
+ if ( strcmp(srcFileName, stdinmark) /* special case : don't transfer permissions from stdin */
+ && strcmp(dstFileName, stdoutmark)
+ && UTIL_stat(srcFileName, &statbuf)
+ && UTIL_isRegularFileStat(&statbuf) ) {
+ dstFilePermissions = statbuf.st_mode;
+ transferMTime = 1;
+ }
+
releaseDstFile = 1;
- ress.dstFile = FIO_openDstFile(fCtx, prefs, srcFileName, dstFileName);
+ ress.dstFile = FIO_openDstFile(fCtx, prefs, srcFileName, dstFileName, dstFilePermissions);
if (ress.dstFile==NULL) return 1;
/* Must only be added after FIO_openDstFile() succeeds.
* Otherwise we may delete the destination file if it already exists,
* and the user presses Ctrl-C when asked if they wish to overwrite.
*/
addHandler(dstFileName);
-
- if ( strcmp(srcFileName, stdinmark) /* special case : don't transfer permissions from stdin */
- && UTIL_stat(srcFileName, &statbuf)
- && UTIL_isRegularFileStat(&statbuf) )
- transfer_permissions = 1;
}
result = FIO_decompressFrames(fCtx, ress, srcFile, prefs, dstFileName, srcFileName);
if (releaseDstFile) {
FILE* const dstFile = ress.dstFile;
clearHandler();
ress.dstFile = NULL;
if (fclose(dstFile)) {
DISPLAYLEVEL(1, "zstd: %s: %s \n", dstFileName, strerror(errno));
result = 1;
}
+ if (transferMTime) {
+ UTIL_utime(dstFileName, &statbuf);
+ }
+
if ( (result != 0) /* operation failure */
&& strcmp(dstFileName, stdoutmark) /* special case : don't remove() stdout */
) {
FIO_removeFile(dstFileName); /* remove decompression artefact; note: don't do anything special if remove() fails */
- } else if ( transfer_permissions /* file permissions correctly extracted from src */ ) {
- UTIL_setFileStat(dstFileName, &statbuf); /* transfer file permissions from src into dst */
}
}
return result;
}
/** FIO_decompressSrcFile() :
Open `srcFileName`, transfer control to decompressDstFile()
@return : 0 : OK
1 : error
*/
static int FIO_decompressSrcFile(FIO_ctx_t* const fCtx, FIO_prefs_t* const prefs, dRess_t ress, const char* dstFileName, const char* srcFileName)
{
FILE* srcFile;
int result;
if (UTIL_isDirectory(srcFileName)) {
DISPLAYLEVEL(1, "zstd: %s is a directory -- ignored \n", srcFileName);
return 1;
}
- srcFile = FIO_openSrcFile(srcFileName);
+ srcFile = FIO_openSrcFile(prefs, srcFileName);
if (srcFile==NULL) return 1;
ress.srcBufferLoaded = 0;
result = FIO_decompressDstFile(fCtx, prefs, ress, srcFile, dstFileName, srcFileName);
/* Close file */
if (fclose(srcFile)) {
DISPLAYLEVEL(1, "zstd: %s: %s \n", srcFileName, strerror(errno)); /* error should not happen */
return 1;
}
if ( prefs->removeSrcFile /* --rm */
&& (result==0) /* decompression successful */
&& strcmp(srcFileName, stdinmark) ) /* not stdin */ {
/* We must clear the handler, since after this point calling it would
* delete both the source and destination files.
*/
clearHandler();
if (FIO_removeFile(srcFileName)) {
/* failed to remove src file */
DISPLAYLEVEL(1, "zstd: %s: %s \n", srcFileName, strerror(errno));
return 1;
} }
return result;
}
int FIO_decompressFilename(FIO_ctx_t* const fCtx, FIO_prefs_t* const prefs,
const char* dstFileName, const char* srcFileName,
const char* dictFileName)
{
dRess_t const ress = FIO_createDResources(prefs, dictFileName);
int const decodingError = FIO_decompressSrcFile(fCtx, prefs, ress, dstFileName, srcFileName);
FIO_freeDResources(ress);
return decodingError;
}
static const char *suffixList[] = {
ZSTD_EXTENSION,
TZSTD_EXTENSION,
#ifndef ZSTD_NODECOMPRESS
ZSTD_ALT_EXTENSION,
#endif
#ifdef ZSTD_GZDECOMPRESS
GZ_EXTENSION,
TGZ_EXTENSION,
#endif
#ifdef ZSTD_LZMADECOMPRESS
LZMA_EXTENSION,
XZ_EXTENSION,
TXZ_EXTENSION,
#endif
#ifdef ZSTD_LZ4DECOMPRESS
LZ4_EXTENSION,
TLZ4_EXTENSION,
#endif
NULL
};
static const char *suffixListStr =
ZSTD_EXTENSION "/" TZSTD_EXTENSION
#ifdef ZSTD_GZDECOMPRESS
"/" GZ_EXTENSION "/" TGZ_EXTENSION
#endif
#ifdef ZSTD_LZMADECOMPRESS
"/" LZMA_EXTENSION "/" XZ_EXTENSION "/" TXZ_EXTENSION
#endif
#ifdef ZSTD_LZ4DECOMPRESS
"/" LZ4_EXTENSION "/" TLZ4_EXTENSION
#endif
;
/* FIO_determineDstName() :
* create a destination filename from a srcFileName.
* @return a pointer to it.
* @return == NULL if there is an error */
static const char*
FIO_determineDstName(const char* srcFileName, const char* outDirName)
{
static size_t dfnbCapacity = 0;
static char* dstFileNameBuffer = NULL; /* using static allocation : this function cannot be multi-threaded */
size_t dstFileNameEndPos;
char* outDirFilename = NULL;
const char* dstSuffix = "";
size_t dstSuffixLen = 0;
size_t sfnSize = strlen(srcFileName);
size_t srcSuffixLen;
const char* const srcSuffix = strrchr(srcFileName, '.');
if (srcSuffix == NULL) {
DISPLAYLEVEL(1,
"zstd: %s: unknown suffix (%s expected). "
"Can't derive the output file name. "
"Specify it with -o dstFileName. Ignoring.\n",
srcFileName, suffixListStr);
return NULL;
}
srcSuffixLen = strlen(srcSuffix);
{
const char** matchedSuffixPtr;
for (matchedSuffixPtr = suffixList; *matchedSuffixPtr != NULL; matchedSuffixPtr++) {
if (!strcmp(*matchedSuffixPtr, srcSuffix)) {
break;
}
}
/* check suffix is authorized */
if (sfnSize <= srcSuffixLen || *matchedSuffixPtr == NULL) {
DISPLAYLEVEL(1,
"zstd: %s: unknown suffix (%s expected). "
"Can't derive the output file name. "
"Specify it with -o dstFileName. Ignoring.\n",
srcFileName, suffixListStr);
return NULL;
}
if ((*matchedSuffixPtr)[1] == 't') {
dstSuffix = ".tar";
dstSuffixLen = strlen(dstSuffix);
}
}
if (outDirName) {
outDirFilename = FIO_createFilename_fromOutDir(srcFileName, outDirName, 0);
sfnSize = strlen(outDirFilename);
assert(outDirFilename != NULL);
}
if (dfnbCapacity+srcSuffixLen <= sfnSize+1+dstSuffixLen) {
/* allocate enough space to write dstFilename into it */
free(dstFileNameBuffer);
dfnbCapacity = sfnSize + 20;
dstFileNameBuffer = (char*)malloc(dfnbCapacity);
if (dstFileNameBuffer==NULL)
EXM_THROW(74, "%s : not enough memory for dstFileName",
strerror(errno));
}
/* return dst name == src name truncated from suffix */
assert(dstFileNameBuffer != NULL);
dstFileNameEndPos = sfnSize - srcSuffixLen;
if (outDirFilename) {
memcpy(dstFileNameBuffer, outDirFilename, dstFileNameEndPos);
free(outDirFilename);
} else {
memcpy(dstFileNameBuffer, srcFileName, dstFileNameEndPos);
}
/* The short tar extensions tzst, tgz, txz and tlz4 files should have "tar"
* extension on decompression. Also writes terminating null. */
strcpy(dstFileNameBuffer + dstFileNameEndPos, dstSuffix);
return dstFileNameBuffer;
/* note : dstFileNameBuffer memory is not going to be free */
}
int
FIO_decompressMultipleFilenames(FIO_ctx_t* const fCtx,
FIO_prefs_t* const prefs,
const char** srcNamesTable,
const char* outMirroredRootDirName,
const char* outDirName, const char* outFileName,
const char* dictFileName)
{
int status;
int error = 0;
dRess_t ress = FIO_createDResources(prefs, dictFileName);
if (outFileName) {
if (FIO_removeMultiFilesWarning(fCtx, prefs, outFileName, 1 /* displayLevelCutoff */)) {
FIO_freeDResources(ress);
return 1;
}
if (!prefs->testMode) {
- ress.dstFile = FIO_openDstFile(fCtx, prefs, NULL, outFileName);
+ ress.dstFile = FIO_openDstFile(fCtx, prefs, NULL, outFileName, DEFAULT_FILE_PERMISSIONS);
if (ress.dstFile == 0) EXM_THROW(19, "cannot open %s", outFileName);
}
for (; fCtx->currFileIdx < fCtx->nbFilesTotal; fCtx->currFileIdx++) {
status = FIO_decompressSrcFile(fCtx, prefs, ress, outFileName, srcNamesTable[fCtx->currFileIdx]);
if (!status) fCtx->nbFilesProcessed++;
error |= status;
}
if ((!prefs->testMode) && (fclose(ress.dstFile)))
EXM_THROW(72, "Write error : %s : cannot properly close output file",
strerror(errno));
} else {
if (outMirroredRootDirName)
- UTIL_mirrorSourceFilesDirectories(srcNamesTable, fCtx->nbFilesTotal, outMirroredRootDirName);
+ UTIL_mirrorSourceFilesDirectories(srcNamesTable, (unsigned)fCtx->nbFilesTotal, outMirroredRootDirName);
for (; fCtx->currFileIdx < fCtx->nbFilesTotal; fCtx->currFileIdx++) { /* create dstFileName */
const char* const srcFileName = srcNamesTable[fCtx->currFileIdx];
const char* dstFileName = NULL;
if (outMirroredRootDirName) {
char* validMirroredDirName = UTIL_createMirroredDestDirName(srcFileName, outMirroredRootDirName);
if (validMirroredDirName) {
dstFileName = FIO_determineDstName(srcFileName, validMirroredDirName);
free(validMirroredDirName);
} else {
DISPLAYLEVEL(2, "zstd: --output-dir-mirror cannot decompress '%s' into '%s'\n", srcFileName, outMirroredRootDirName);
}
} else {
dstFileName = FIO_determineDstName(srcFileName, outDirName);
}
if (dstFileName == NULL) { error=1; continue; }
status = FIO_decompressSrcFile(fCtx, prefs, ress, dstFileName, srcFileName);
if (!status) fCtx->nbFilesProcessed++;
error |= status;
}
if (outDirName)
- FIO_checkFilenameCollisions(srcNamesTable , fCtx->nbFilesTotal);
+ FIO_checkFilenameCollisions(srcNamesTable , (unsigned)fCtx->nbFilesTotal);
}
-
+
if (fCtx->nbFilesProcessed >= 1 && fCtx->nbFilesTotal > 1 && fCtx->totalBytesOutput != 0)
DISPLAYLEVEL(2, "%d files decompressed : %6zu bytes total \n", fCtx->nbFilesProcessed, fCtx->totalBytesOutput);
FIO_freeDResources(ress);
return error;
}
/* **************************************************************************
* .zst file info (--list command)
***************************************************************************/
typedef struct {
U64 decompressedSize;
U64 compressedSize;
U64 windowSize;
int numActualFrames;
int numSkippableFrames;
int decompUnavailable;
int usesCheck;
U32 nbFiles;
} fileInfo_t;
typedef enum {
info_success=0,
info_frame_error=1,
info_not_zstd=2,
info_file_error=3,
info_truncated_input=4,
} InfoError;
#define ERROR_IF(c,n,...) { \
if (c) { \
DISPLAYLEVEL(1, __VA_ARGS__); \
DISPLAYLEVEL(1, " \n"); \
return n; \
} \
}
static InfoError
FIO_analyzeFrames(fileInfo_t* info, FILE* const srcFile)
{
/* begin analyzing frame */
for ( ; ; ) {
BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX];
size_t const numBytesRead = fread(headerBuffer, 1, sizeof(headerBuffer), srcFile);
if (numBytesRead < ZSTD_FRAMEHEADERSIZE_MIN(ZSTD_f_zstd1)) {
if ( feof(srcFile)
&& (numBytesRead == 0)
&& (info->compressedSize > 0)
&& (info->compressedSize != UTIL_FILESIZE_UNKNOWN) ) {
unsigned long long file_position = (unsigned long long) LONG_TELL(srcFile);
unsigned long long file_size = (unsigned long long) info->compressedSize;
ERROR_IF(file_position != file_size, info_truncated_input,
"Error: seeked to position %llu, which is beyond file size of %llu\n",
file_position,
file_size);
break; /* correct end of file => success */
}
ERROR_IF(feof(srcFile), info_not_zstd, "Error: reached end of file with incomplete frame");
ERROR_IF(1, info_frame_error, "Error: did not reach end of file but ran out of frames");
}
{ U32 const magicNumber = MEM_readLE32(headerBuffer);
/* Zstandard frame */
if (magicNumber == ZSTD_MAGICNUMBER) {
ZSTD_frameHeader header;
U64 const frameContentSize = ZSTD_getFrameContentSize(headerBuffer, numBytesRead);
if ( frameContentSize == ZSTD_CONTENTSIZE_ERROR
|| frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN ) {
info->decompUnavailable = 1;
} else {
info->decompressedSize += frameContentSize;
}
ERROR_IF(ZSTD_getFrameHeader(&header, headerBuffer, numBytesRead) != 0,
info_frame_error, "Error: could not decode frame header");
info->windowSize = header.windowSize;
/* move to the end of the frame header */
{ size_t const headerSize = ZSTD_frameHeaderSize(headerBuffer, numBytesRead);
ERROR_IF(ZSTD_isError(headerSize), info_frame_error, "Error: could not determine frame header size");
ERROR_IF(fseek(srcFile, ((long)headerSize)-((long)numBytesRead), SEEK_CUR) != 0,
info_frame_error, "Error: could not move to end of frame header");
}
/* skip all blocks in the frame */
{ int lastBlock = 0;
do {
BYTE blockHeaderBuffer[3];
ERROR_IF(fread(blockHeaderBuffer, 1, 3, srcFile) != 3,
info_frame_error, "Error while reading block header");
{ U32 const blockHeader = MEM_readLE24(blockHeaderBuffer);
U32 const blockTypeID = (blockHeader >> 1) & 3;
U32 const isRLE = (blockTypeID == 1);
U32 const isWrongBlock = (blockTypeID == 3);
long const blockSize = isRLE ? 1 : (long)(blockHeader >> 3);
ERROR_IF(isWrongBlock, info_frame_error, "Error: unsupported block type");
lastBlock = blockHeader & 1;
ERROR_IF(fseek(srcFile, blockSize, SEEK_CUR) != 0,
info_frame_error, "Error: could not skip to end of block");
}
} while (lastBlock != 1);
}
/* check if checksum is used */
{ BYTE const frameHeaderDescriptor = headerBuffer[4];
int const contentChecksumFlag = (frameHeaderDescriptor & (1 << 2)) >> 2;
if (contentChecksumFlag) {
info->usesCheck = 1;
ERROR_IF(fseek(srcFile, 4, SEEK_CUR) != 0,
info_frame_error, "Error: could not skip past checksum");
} }
info->numActualFrames++;
}
/* Skippable frame */
else if ((magicNumber & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) {
U32 const frameSize = MEM_readLE32(headerBuffer + 4);
long const seek = (long)(8 + frameSize - numBytesRead);
ERROR_IF(LONG_SEEK(srcFile, seek, SEEK_CUR) != 0,
info_frame_error, "Error: could not find end of skippable frame");
info->numSkippableFrames++;
}
/* unknown content */
else {
return info_not_zstd;
}
} /* magic number analysis */
} /* end analyzing frames */
return info_success;
}
static InfoError
getFileInfo_fileConfirmed(fileInfo_t* info, const char* inFileName)
{
InfoError status;
- FILE* const srcFile = FIO_openSrcFile(inFileName);
+ FILE* const srcFile = FIO_openSrcFile(NULL, inFileName);
ERROR_IF(srcFile == NULL, info_file_error, "Error: could not open source file %s", inFileName);
info->compressedSize = UTIL_getFileSize(inFileName);
status = FIO_analyzeFrames(info, srcFile);
fclose(srcFile);
info->nbFiles = 1;
return status;
}
/** getFileInfo() :
* Reads information from file, stores in *info
* @return : InfoError status
*/
static InfoError
getFileInfo(fileInfo_t* info, const char* srcFileName)
{
ERROR_IF(!UTIL_isRegularFile(srcFileName),
info_file_error, "Error : %s is not a file", srcFileName);
return getFileInfo_fileConfirmed(info, srcFileName);
}
static void
displayInfo(const char* inFileName, const fileInfo_t* info, int displayLevel)
{
- unsigned const unit = info->compressedSize < (1 MB) ? (1 KB) : (1 MB);
- const char* const unitStr = info->compressedSize < (1 MB) ? "KB" : "MB";
- double const windowSizeUnit = (double)info->windowSize / unit;
- double const compressedSizeUnit = (double)info->compressedSize / unit;
- double const decompressedSizeUnit = (double)info->decompressedSize / unit;
- double const ratio = (info->compressedSize == 0) ? 0 : ((double)info->decompressedSize)/info->compressedSize;
+ UTIL_HumanReadableSize_t const window_hrs = UTIL_makeHumanReadableSize(info->windowSize);
+ UTIL_HumanReadableSize_t const compressed_hrs = UTIL_makeHumanReadableSize(info->compressedSize);
+ UTIL_HumanReadableSize_t const decompressed_hrs = UTIL_makeHumanReadableSize(info->decompressedSize);
+ double const ratio = (info->compressedSize == 0) ? 0 : ((double)info->decompressedSize)/(double)info->compressedSize;
const char* const checkString = (info->usesCheck ? "XXH64" : "None");
if (displayLevel <= 2) {
if (!info->decompUnavailable) {
- DISPLAYOUT("%6d %5d %7.2f %2s %9.2f %2s %5.3f %5s %s\n",
+ DISPLAYOUT("%6d %5d %6.*f%4s %8.*f%4s %5.3f %5s %s\n",
info->numSkippableFrames + info->numActualFrames,
info->numSkippableFrames,
- compressedSizeUnit, unitStr, decompressedSizeUnit, unitStr,
+ compressed_hrs.precision, compressed_hrs.value, compressed_hrs.suffix,
+ decompressed_hrs.precision, decompressed_hrs.value, decompressed_hrs.suffix,
ratio, checkString, inFileName);
} else {
- DISPLAYOUT("%6d %5d %7.2f %2s %5s %s\n",
+ DISPLAYOUT("%6d %5d %6.*f%4s %5s %s\n",
info->numSkippableFrames + info->numActualFrames,
info->numSkippableFrames,
- compressedSizeUnit, unitStr,
+ compressed_hrs.precision, compressed_hrs.value, compressed_hrs.suffix,
checkString, inFileName);
}
} else {
DISPLAYOUT("%s \n", inFileName);
DISPLAYOUT("# Zstandard Frames: %d\n", info->numActualFrames);
if (info->numSkippableFrames)
DISPLAYOUT("# Skippable Frames: %d\n", info->numSkippableFrames);
- DISPLAYOUT("Window Size: %.2f %2s (%llu B)\n",
- windowSizeUnit, unitStr,
+ DISPLAYOUT("Window Size: %.*f%s (%llu B)\n",
+ window_hrs.precision, window_hrs.value, window_hrs.suffix,
(unsigned long long)info->windowSize);
- DISPLAYOUT("Compressed Size: %.2f %2s (%llu B)\n",
- compressedSizeUnit, unitStr,
+ DISPLAYOUT("Compressed Size: %.*f%s (%llu B)\n",
+ compressed_hrs.precision, compressed_hrs.value, compressed_hrs.suffix,
(unsigned long long)info->compressedSize);
if (!info->decompUnavailable) {
- DISPLAYOUT("Decompressed Size: %.2f %2s (%llu B)\n",
- decompressedSizeUnit, unitStr,
+ DISPLAYOUT("Decompressed Size: %.*f%s (%llu B)\n",
+ decompressed_hrs.precision, decompressed_hrs.value, decompressed_hrs.suffix,
(unsigned long long)info->decompressedSize);
DISPLAYOUT("Ratio: %.4f\n", ratio);
}
DISPLAYOUT("Check: %s\n", checkString);
DISPLAYOUT("\n");
}
}
static fileInfo_t FIO_addFInfo(fileInfo_t fi1, fileInfo_t fi2)
{
fileInfo_t total;
memset(&total, 0, sizeof(total));
total.numActualFrames = fi1.numActualFrames + fi2.numActualFrames;
total.numSkippableFrames = fi1.numSkippableFrames + fi2.numSkippableFrames;
total.compressedSize = fi1.compressedSize + fi2.compressedSize;
total.decompressedSize = fi1.decompressedSize + fi2.decompressedSize;
total.decompUnavailable = fi1.decompUnavailable | fi2.decompUnavailable;
total.usesCheck = fi1.usesCheck & fi2.usesCheck;
total.nbFiles = fi1.nbFiles + fi2.nbFiles;
return total;
}
static int
FIO_listFile(fileInfo_t* total, const char* inFileName, int displayLevel)
{
fileInfo_t info;
memset(&info, 0, sizeof(info));
{ InfoError const error = getFileInfo(&info, inFileName);
switch (error) {
case info_frame_error:
/* display error, but provide output */
DISPLAYLEVEL(1, "Error while parsing \"%s\" \n", inFileName);
break;
case info_not_zstd:
DISPLAYOUT("File \"%s\" not compressed by zstd \n", inFileName);
if (displayLevel > 2) DISPLAYOUT("\n");
return 1;
case info_file_error:
/* error occurred while opening the file */
if (displayLevel > 2) DISPLAYOUT("\n");
return 1;
case info_truncated_input:
DISPLAYOUT("File \"%s\" is truncated \n", inFileName);
if (displayLevel > 2) DISPLAYOUT("\n");
return 1;
case info_success:
default:
break;
}
displayInfo(inFileName, &info, displayLevel);
*total = FIO_addFInfo(*total, info);
assert(error == info_success || error == info_frame_error);
return (int)error;
}
}
int FIO_listMultipleFiles(unsigned numFiles, const char** filenameTable, int displayLevel)
{
/* ensure no specified input is stdin (needs fseek() capability) */
{ unsigned u;
for (u=0; u<numFiles;u++) {
ERROR_IF(!strcmp (filenameTable[u], stdinmark),
1, "zstd: --list does not support reading from standard input");
} }
if (numFiles == 0) {
if (!IS_CONSOLE(stdin)) {
DISPLAYLEVEL(1, "zstd: --list does not support reading from standard input \n");
}
DISPLAYLEVEL(1, "No files given \n");
return 1;
}
if (displayLevel <= 2) {
DISPLAYOUT("Frames Skips Compressed Uncompressed Ratio Check Filename\n");
}
{ int error = 0;
fileInfo_t total;
memset(&total, 0, sizeof(total));
total.usesCheck = 1;
/* --list each file, and check for any error */
{ unsigned u;
for (u=0; u<numFiles;u++) {
error |= FIO_listFile(&total, filenameTable[u], displayLevel);
} }
if (numFiles > 1 && displayLevel <= 2) { /* display total */
- unsigned const unit = total.compressedSize < (1 MB) ? (1 KB) : (1 MB);
- const char* const unitStr = total.compressedSize < (1 MB) ? "KB" : "MB";
- double const compressedSizeUnit = (double)total.compressedSize / unit;
- double const decompressedSizeUnit = (double)total.decompressedSize / unit;
- double const ratio = (total.compressedSize == 0) ? 0 : ((double)total.decompressedSize)/total.compressedSize;
+ UTIL_HumanReadableSize_t const compressed_hrs = UTIL_makeHumanReadableSize(total.compressedSize);
+ UTIL_HumanReadableSize_t const decompressed_hrs = UTIL_makeHumanReadableSize(total.decompressedSize);
+ double const ratio = (total.compressedSize == 0) ? 0 : ((double)total.decompressedSize)/(double)total.compressedSize;
const char* const checkString = (total.usesCheck ? "XXH64" : "");
DISPLAYOUT("----------------------------------------------------------------- \n");
if (total.decompUnavailable) {
- DISPLAYOUT("%6d %5d %7.2f %2s %5s %u files\n",
+ DISPLAYOUT("%6d %5d %6.*f%4s %5s %u files\n",
total.numSkippableFrames + total.numActualFrames,
total.numSkippableFrames,
- compressedSizeUnit, unitStr,
+ compressed_hrs.precision, compressed_hrs.value, compressed_hrs.suffix,
checkString, (unsigned)total.nbFiles);
} else {
- DISPLAYOUT("%6d %5d %7.2f %2s %9.2f %2s %5.3f %5s %u files\n",
+ DISPLAYOUT("%6d %5d %6.*f%4s %8.*f%4s %5.3f %5s %u files\n",
total.numSkippableFrames + total.numActualFrames,
total.numSkippableFrames,
- compressedSizeUnit, unitStr, decompressedSizeUnit, unitStr,
+ compressed_hrs.precision, compressed_hrs.value, compressed_hrs.suffix,
+ decompressed_hrs.precision, decompressed_hrs.value, decompressed_hrs.suffix,
ratio, checkString, (unsigned)total.nbFiles);
} }
return error;
}
}
#endif /* #ifndef ZSTD_NODECOMPRESS */
diff --git a/sys/contrib/zstd/programs/fileio.h b/sys/contrib/zstd/programs/fileio.h
index 05e6d06815f7..61094db83cba 100644
--- a/sys/contrib/zstd/programs/fileio.h
+++ b/sys/contrib/zstd/programs/fileio.h
@@ -1,175 +1,180 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef FILEIO_H_23981798732
#define FILEIO_H_23981798732
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_compressionParameters */
#include "../lib/zstd.h" /* ZSTD_* */
#if defined (__cplusplus)
extern "C" {
#endif
/* *************************************
* Special i/o constants
**************************************/
#define stdinmark "/*stdin*\\"
#define stdoutmark "/*stdout*\\"
#ifdef _WIN32
# define nulmark "NUL"
#else
# define nulmark "/dev/null"
#endif
/**
* We test whether the extension we found starts with 't', and if so, we append
* ".tar" to the end of the output name.
*/
#define LZMA_EXTENSION ".lzma"
#define XZ_EXTENSION ".xz"
#define TXZ_EXTENSION ".txz"
#define GZ_EXTENSION ".gz"
#define TGZ_EXTENSION ".tgz"
#define ZSTD_EXTENSION ".zst"
#define TZSTD_EXTENSION ".tzst"
#define ZSTD_ALT_EXTENSION ".zstd" /* allow decompression of .zstd files */
#define LZ4_EXTENSION ".lz4"
#define TLZ4_EXTENSION ".tlz4"
/*-*************************************
* Types
***************************************/
typedef enum { FIO_zstdCompression, FIO_gzipCompression, FIO_xzCompression, FIO_lzmaCompression, FIO_lz4Compression } FIO_compressionType_t;
typedef struct FIO_prefs_s FIO_prefs_t;
FIO_prefs_t* FIO_createPreferences(void);
void FIO_freePreferences(FIO_prefs_t* const prefs);
/* Mutable struct containing relevant context and state regarding (de)compression with respect to file I/O */
typedef struct FIO_ctx_s FIO_ctx_t;
FIO_ctx_t* FIO_createContext(void);
void FIO_freeContext(FIO_ctx_t* const fCtx);
typedef struct FIO_display_prefs_s FIO_display_prefs_t;
+typedef enum { FIO_ps_auto, FIO_ps_never, FIO_ps_always } FIO_progressSetting_e;
+
/*-*************************************
* Parameters
***************************************/
/* FIO_prefs_t functions */
void FIO_setCompressionType(FIO_prefs_t* const prefs, FIO_compressionType_t compressionType);
void FIO_overwriteMode(FIO_prefs_t* const prefs);
void FIO_setAdaptiveMode(FIO_prefs_t* const prefs, unsigned adapt);
void FIO_setAdaptMin(FIO_prefs_t* const prefs, int minCLevel);
void FIO_setAdaptMax(FIO_prefs_t* const prefs, int maxCLevel);
+void FIO_setUseRowMatchFinder(FIO_prefs_t* const prefs, int useRowMatchFinder);
void FIO_setBlockSize(FIO_prefs_t* const prefs, int blockSize);
void FIO_setChecksumFlag(FIO_prefs_t* const prefs, int checksumFlag);
void FIO_setDictIDFlag(FIO_prefs_t* const prefs, int dictIDFlag);
void FIO_setLdmBucketSizeLog(FIO_prefs_t* const prefs, int ldmBucketSizeLog);
void FIO_setLdmFlag(FIO_prefs_t* const prefs, unsigned ldmFlag);
void FIO_setLdmHashRateLog(FIO_prefs_t* const prefs, int ldmHashRateLog);
void FIO_setLdmHashLog(FIO_prefs_t* const prefs, int ldmHashLog);
void FIO_setLdmMinMatch(FIO_prefs_t* const prefs, int ldmMinMatch);
void FIO_setMemLimit(FIO_prefs_t* const prefs, unsigned memLimit);
void FIO_setNbWorkers(FIO_prefs_t* const prefs, int nbWorkers);
void FIO_setOverlapLog(FIO_prefs_t* const prefs, int overlapLog);
void FIO_setRemoveSrcFile(FIO_prefs_t* const prefs, unsigned flag);
void FIO_setSparseWrite(FIO_prefs_t* const prefs, unsigned sparse); /**< 0: no sparse; 1: disable on stdout; 2: always enabled */
void FIO_setRsyncable(FIO_prefs_t* const prefs, int rsyncable);
void FIO_setStreamSrcSize(FIO_prefs_t* const prefs, size_t streamSrcSize);
void FIO_setTargetCBlockSize(FIO_prefs_t* const prefs, size_t targetCBlockSize);
void FIO_setSrcSizeHint(FIO_prefs_t* const prefs, size_t srcSizeHint);
void FIO_setTestMode(FIO_prefs_t* const prefs, int testMode);
void FIO_setLiteralCompressionMode(
FIO_prefs_t* const prefs,
- ZSTD_literalCompressionMode_e mode);
+ ZSTD_paramSwitch_e mode);
-void FIO_setNoProgress(unsigned noProgress);
+void FIO_setProgressSetting(FIO_progressSetting_e progressSetting);
void FIO_setNotificationLevel(int level);
void FIO_setExcludeCompressedFile(FIO_prefs_t* const prefs, int excludeCompressedFiles);
+void FIO_setAllowBlockDevices(FIO_prefs_t* const prefs, int allowBlockDevices);
void FIO_setPatchFromMode(FIO_prefs_t* const prefs, int value);
void FIO_setContentSize(FIO_prefs_t* const prefs, int value);
+void FIO_displayCompressionParameters(const FIO_prefs_t* prefs);
/* FIO_ctx_t functions */
void FIO_setNbFilesTotal(FIO_ctx_t* const fCtx, int value);
void FIO_setHasStdoutOutput(FIO_ctx_t* const fCtx, int value);
void FIO_determineHasStdinInput(FIO_ctx_t* const fCtx, const FileNamesTable* const filenames);
/*-*************************************
* Single File functions
***************************************/
/** FIO_compressFilename() :
* @return : 0 == ok; 1 == pb with src file. */
int FIO_compressFilename (FIO_ctx_t* const fCtx, FIO_prefs_t* const prefs,
const char* outfilename, const char* infilename,
const char* dictFileName, int compressionLevel,
ZSTD_compressionParameters comprParams);
/** FIO_decompressFilename() :
* @return : 0 == ok; 1 == pb with src file. */
int FIO_decompressFilename (FIO_ctx_t* const fCtx, FIO_prefs_t* const prefs,
const char* outfilename, const char* infilename, const char* dictFileName);
int FIO_listMultipleFiles(unsigned numFiles, const char** filenameTable, int displayLevel);
/*-*************************************
* Multiple File functions
***************************************/
/** FIO_compressMultipleFilenames() :
* @return : nb of missing files */
int FIO_compressMultipleFilenames(FIO_ctx_t* const fCtx,
FIO_prefs_t* const prefs,
const char** inFileNamesTable,
const char* outMirroredDirName,
const char* outDirName,
const char* outFileName, const char* suffix,
const char* dictFileName, int compressionLevel,
ZSTD_compressionParameters comprParams);
/** FIO_decompressMultipleFilenames() :
* @return : nb of missing or skipped files */
int FIO_decompressMultipleFilenames(FIO_ctx_t* const fCtx,
FIO_prefs_t* const prefs,
const char** srcNamesTable,
const char* outMirroredDirName,
const char* outDirName,
const char* outFileName,
const char* dictFileName);
/* FIO_checkFilenameCollisions() :
* Checks for and warns if there are any files that would have the same output path
*/
int FIO_checkFilenameCollisions(const char** filenameTable, unsigned nbFiles);
/*-*************************************
* Advanced stuff (should actually be hosted elsewhere)
***************************************/
/* custom crash signal handler */
void FIO_addAbortHandler(void);
#if defined (__cplusplus)
}
#endif
#endif /* FILEIO_H_23981798732 */
diff --git a/sys/contrib/zstd/programs/platform.h b/sys/contrib/zstd/programs/platform.h
index 68be70bb333b..b858e3b484c2 100644
--- a/sys/contrib/zstd/programs/platform.h
+++ b/sys/contrib/zstd/programs/platform.h
@@ -1,214 +1,215 @@
/*
- * Copyright (c) 2016-2020, Przemyslaw Skibinski, Yann Collet, Facebook, Inc.
+ * Copyright (c) Przemyslaw Skibinski, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef PLATFORM_H_MODULE
#define PLATFORM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/* **************************************
* Compiler Options
****************************************/
#if defined(_MSC_VER)
# define _CRT_SECURE_NO_WARNINGS /* Disable Visual Studio warning messages for fopen, strncpy, strerror */
+# define _CRT_NONSTDC_NO_WARNINGS /* Disable C4996 complaining about posix function names */
# if (_MSC_VER <= 1800) /* 1800 == Visual Studio 2013 */
# define _CRT_SECURE_NO_DEPRECATE /* VS2005 - must be declared before <io.h> and <windows.h> */
# define snprintf sprintf_s /* snprintf unsupported by Visual <= 2013 */
# endif
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
#endif
/* **************************************
* Detect 64-bit OS
* http://nadeausoftware.com/articles/2012/02/c_c_tip_how_detect_processor_type_using_compiler_predefined_macros
****************************************/
#if defined __ia64 || defined _M_IA64 /* Intel Itanium */ \
|| defined __powerpc64__ || defined __ppc64__ || defined __PPC64__ /* POWER 64-bit */ \
|| (defined __sparc && (defined __sparcv9 || defined __sparc_v9__ || defined __arch64__)) || defined __sparc64__ /* SPARC 64-bit */ \
|| defined __x86_64__s || defined _M_X64 /* x86 64-bit */ \
|| defined __arm64__ || defined __aarch64__ || defined __ARM64_ARCH_8__ /* ARM 64-bit */ \
|| (defined __mips && (__mips == 64 || __mips == 4 || __mips == 3)) /* MIPS 64-bit */ \
|| defined _LP64 || defined __LP64__ /* NetBSD, OpenBSD */ || defined __64BIT__ /* AIX */ || defined _ADDR64 /* Cray */ \
|| (defined __SIZEOF_POINTER__ && __SIZEOF_POINTER__ == 8) /* gcc */
# if !defined(__64BIT__)
# define __64BIT__ 1
# endif
#endif
/* *********************************************************
* Turn on Large Files support (>4GB) for 32-bit Linux/Unix
***********************************************************/
#if !defined(__64BIT__) || defined(__MINGW32__) /* No point defining Large file for 64 bit but MinGW-w64 requires it */
# if !defined(_FILE_OFFSET_BITS)
# define _FILE_OFFSET_BITS 64 /* turn off_t into a 64-bit type for ftello, fseeko */
# endif
# if !defined(_LARGEFILE_SOURCE) /* obsolete macro, replaced with _FILE_OFFSET_BITS */
# define _LARGEFILE_SOURCE 1 /* Large File Support extension (LFS) - fseeko, ftello */
# endif
# if defined(_AIX) || defined(__hpux)
# define _LARGE_FILES /* Large file support on 32-bits AIX and HP-UX */
# endif
#endif
/* ************************************************************
* Detect POSIX version
* PLATFORM_POSIX_VERSION = 0 for non-Unix e.g. Windows
* PLATFORM_POSIX_VERSION = 1 for Unix-like but non-POSIX
* PLATFORM_POSIX_VERSION > 1 is equal to found _POSIX_VERSION
* Value of PLATFORM_POSIX_VERSION can be forced on command line
***************************************************************/
#ifndef PLATFORM_POSIX_VERSION
# if (defined(__APPLE__) && defined(__MACH__)) || defined(__SVR4) || defined(_AIX) || defined(__hpux) /* POSIX.1-2001 (SUSv3) conformant */ \
|| defined(__DragonFly__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) /* BSD distros */
/* exception rule : force posix version to 200112L,
* note: it's better to use unistd.h's _POSIX_VERSION whenever possible */
# define PLATFORM_POSIX_VERSION 200112L
/* try to determine posix version through official unistd.h's _POSIX_VERSION (http://pubs.opengroup.org/onlinepubs/7908799/xsh/unistd.h.html).
* note : there is no simple way to know in advance if <unistd.h> is present or not on target system,
* Posix specification mandates its presence and its content, but target system must respect this spec.
* It's necessary to _not_ #include <unistd.h> whenever target OS is not unix-like
* otherwise it will block preprocessing stage.
* The following list of build macros tries to "guess" if target OS is likely unix-like, and therefore can #include <unistd.h>
*/
# elif !defined(_WIN32) \
&& ( defined(__unix__) || defined(__unix) \
|| defined(__midipix__) || defined(__VMS) || defined(__HAIKU__) )
# if defined(__linux__) || defined(__linux) || defined(__CYGWIN__)
# ifndef _POSIX_C_SOURCE
# define _POSIX_C_SOURCE 200809L /* feature test macro : https://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html */
# endif
# endif
# include <unistd.h> /* declares _POSIX_VERSION */
# if defined(_POSIX_VERSION) /* POSIX compliant */
# define PLATFORM_POSIX_VERSION _POSIX_VERSION
# else
# define PLATFORM_POSIX_VERSION 1
# endif
# ifdef __UCLIBC__
# ifndef __USE_MISC
# define __USE_MISC /* enable st_mtim on uclibc */
# endif
# endif
# else /* non-unix target platform (like Windows) */
# define PLATFORM_POSIX_VERSION 0
# endif
#endif /* PLATFORM_POSIX_VERSION */
#if PLATFORM_POSIX_VERSION > 1
/* glibc < 2.26 may not expose struct timespec def without this.
* See issue #1920. */
# ifndef _ATFILE_SOURCE
# define _ATFILE_SOURCE
# endif
#endif
/*-*********************************************
* Detect if isatty() and fileno() are available
************************************************/
#if (defined(__linux__) && (PLATFORM_POSIX_VERSION > 1)) \
|| (PLATFORM_POSIX_VERSION >= 200112L) \
|| defined(__DJGPP__)
# include <unistd.h> /* isatty */
# include <stdio.h> /* fileno */
# define IS_CONSOLE(stdStream) isatty(fileno(stdStream))
#elif defined(MSDOS) || defined(OS2)
# include <io.h> /* _isatty */
# define IS_CONSOLE(stdStream) _isatty(_fileno(stdStream))
#elif defined(WIN32) || defined(_WIN32)
# include <io.h> /* _isatty */
# include <windows.h> /* DeviceIoControl, HANDLE, FSCTL_SET_SPARSE */
# include <stdio.h> /* FILE */
static __inline int IS_CONSOLE(FILE* stdStream) {
DWORD dummy;
return _isatty(_fileno(stdStream)) && GetConsoleMode((HANDLE)_get_osfhandle(_fileno(stdStream)), &dummy);
}
#else
# define IS_CONSOLE(stdStream) 0
#endif
/******************************
* OS-specific IO behaviors
******************************/
#if defined(MSDOS) || defined(OS2) || defined(WIN32) || defined(_WIN32)
# include <fcntl.h> /* _O_BINARY */
# include <io.h> /* _setmode, _fileno, _get_osfhandle */
# if !defined(__DJGPP__)
# include <windows.h> /* DeviceIoControl, HANDLE, FSCTL_SET_SPARSE */
# include <winioctl.h> /* FSCTL_SET_SPARSE */
# define SET_BINARY_MODE(file) { int const unused=_setmode(_fileno(file), _O_BINARY); (void)unused; }
# define SET_SPARSE_FILE_MODE(file) { DWORD dw; DeviceIoControl((HANDLE) _get_osfhandle(_fileno(file)), FSCTL_SET_SPARSE, 0, 0, 0, 0, &dw, 0); }
# else
# define SET_BINARY_MODE(file) setmode(fileno(file), O_BINARY)
# define SET_SPARSE_FILE_MODE(file)
# endif
#else
# define SET_BINARY_MODE(file)
# define SET_SPARSE_FILE_MODE(file)
#endif
#ifndef ZSTD_SPARSE_DEFAULT
# if (defined(__APPLE__) && defined(__MACH__))
# define ZSTD_SPARSE_DEFAULT 0
# else
# define ZSTD_SPARSE_DEFAULT 1
# endif
#endif
#ifndef ZSTD_START_SYMBOLLIST_FRAME
# ifdef __linux__
# define ZSTD_START_SYMBOLLIST_FRAME 2
# elif defined __APPLE__
# define ZSTD_START_SYMBOLLIST_FRAME 4
# else
# define ZSTD_START_SYMBOLLIST_FRAME 0
# endif
#endif
#ifndef ZSTD_SETPRIORITY_SUPPORT
/* mandates presence of <sys/resource.h> and support for setpriority() : http://man7.org/linux/man-pages/man2/setpriority.2.html */
# define ZSTD_SETPRIORITY_SUPPORT (PLATFORM_POSIX_VERSION >= 200112L)
#endif
#ifndef ZSTD_NANOSLEEP_SUPPORT
/* mandates support of nanosleep() within <time.h> : http://man7.org/linux/man-pages/man2/nanosleep.2.html */
# if (defined(__linux__) && (PLATFORM_POSIX_VERSION >= 199309L)) \
|| (PLATFORM_POSIX_VERSION >= 200112L)
# define ZSTD_NANOSLEEP_SUPPORT 1
# else
# define ZSTD_NANOSLEEP_SUPPORT 0
# endif
#endif
#if defined (__cplusplus)
}
#endif
#endif /* PLATFORM_H_MODULE */
diff --git a/sys/contrib/zstd/programs/timefn.c b/sys/contrib/zstd/programs/timefn.c
index 95460d0d971d..64577b0e932a 100644
--- a/sys/contrib/zstd/programs/timefn.c
+++ b/sys/contrib/zstd/programs/timefn.c
@@ -1,169 +1,169 @@
/*
- * Copyright (c) 2019-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* === Dependencies === */
#include "timefn.h"
/*-****************************************
* Time functions
******************************************/
#if defined(_WIN32) /* Windows */
#include <stdlib.h> /* abort */
#include <stdio.h> /* perror */
UTIL_time_t UTIL_getTime(void) { UTIL_time_t x; QueryPerformanceCounter(&x); return x; }
PTime UTIL_getSpanTimeMicro(UTIL_time_t clockStart, UTIL_time_t clockEnd)
{
static LARGE_INTEGER ticksPerSecond;
static int init = 0;
if (!init) {
if (!QueryPerformanceFrequency(&ticksPerSecond)) {
perror("timefn::QueryPerformanceFrequency");
abort();
}
init = 1;
}
return 1000000ULL*(clockEnd.QuadPart - clockStart.QuadPart)/ticksPerSecond.QuadPart;
}
PTime UTIL_getSpanTimeNano(UTIL_time_t clockStart, UTIL_time_t clockEnd)
{
static LARGE_INTEGER ticksPerSecond;
static int init = 0;
if (!init) {
if (!QueryPerformanceFrequency(&ticksPerSecond)) {
perror("timefn::QueryPerformanceFrequency");
abort();
}
init = 1;
}
return 1000000000ULL*(clockEnd.QuadPart - clockStart.QuadPart)/ticksPerSecond.QuadPart;
}
#elif defined(__APPLE__) && defined(__MACH__)
UTIL_time_t UTIL_getTime(void) { return mach_absolute_time(); }
PTime UTIL_getSpanTimeMicro(UTIL_time_t clockStart, UTIL_time_t clockEnd)
{
static mach_timebase_info_data_t rate;
static int init = 0;
if (!init) {
mach_timebase_info(&rate);
init = 1;
}
return (((clockEnd - clockStart) * (PTime)rate.numer) / ((PTime)rate.denom))/1000ULL;
}
PTime UTIL_getSpanTimeNano(UTIL_time_t clockStart, UTIL_time_t clockEnd)
{
static mach_timebase_info_data_t rate;
static int init = 0;
if (!init) {
mach_timebase_info(&rate);
init = 1;
}
return ((clockEnd - clockStart) * (PTime)rate.numer) / ((PTime)rate.denom);
}
/* C11 requires timespec_get, but FreeBSD 11 lacks it, while still claiming C11 compliance.
Android also lacks it but does define TIME_UTC. */
#elif (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11 */) \
&& defined(TIME_UTC) && !defined(__ANDROID__)
#include <stdlib.h> /* abort */
#include <stdio.h> /* perror */
UTIL_time_t UTIL_getTime(void)
{
/* time must be initialized, othersize it may fail msan test.
* No good reason, likely a limitation of timespec_get() for some target */
UTIL_time_t time = UTIL_TIME_INITIALIZER;
if (timespec_get(&time, TIME_UTC) != TIME_UTC) {
perror("timefn::timespec_get");
abort();
}
return time;
}
static UTIL_time_t UTIL_getSpanTime(UTIL_time_t begin, UTIL_time_t end)
{
UTIL_time_t diff;
if (end.tv_nsec < begin.tv_nsec) {
diff.tv_sec = (end.tv_sec - 1) - begin.tv_sec;
diff.tv_nsec = (end.tv_nsec + 1000000000ULL) - begin.tv_nsec;
} else {
diff.tv_sec = end.tv_sec - begin.tv_sec;
diff.tv_nsec = end.tv_nsec - begin.tv_nsec;
}
return diff;
}
PTime UTIL_getSpanTimeMicro(UTIL_time_t begin, UTIL_time_t end)
{
UTIL_time_t const diff = UTIL_getSpanTime(begin, end);
PTime micro = 0;
micro += 1000000ULL * diff.tv_sec;
micro += diff.tv_nsec / 1000ULL;
return micro;
}
PTime UTIL_getSpanTimeNano(UTIL_time_t begin, UTIL_time_t end)
{
UTIL_time_t const diff = UTIL_getSpanTime(begin, end);
PTime nano = 0;
nano += 1000000000ULL * diff.tv_sec;
nano += diff.tv_nsec;
return nano;
}
#else /* relies on standard C90 (note : clock_t measurements can be wrong when using multi-threading) */
UTIL_time_t UTIL_getTime(void) { return clock(); }
PTime UTIL_getSpanTimeMicro(UTIL_time_t clockStart, UTIL_time_t clockEnd) { return 1000000ULL * (clockEnd - clockStart) / CLOCKS_PER_SEC; }
PTime UTIL_getSpanTimeNano(UTIL_time_t clockStart, UTIL_time_t clockEnd) { return 1000000000ULL * (clockEnd - clockStart) / CLOCKS_PER_SEC; }
#endif
/* returns time span in microseconds */
PTime UTIL_clockSpanMicro(UTIL_time_t clockStart )
{
UTIL_time_t const clockEnd = UTIL_getTime();
return UTIL_getSpanTimeMicro(clockStart, clockEnd);
}
/* returns time span in microseconds */
PTime UTIL_clockSpanNano(UTIL_time_t clockStart )
{
UTIL_time_t const clockEnd = UTIL_getTime();
return UTIL_getSpanTimeNano(clockStart, clockEnd);
}
void UTIL_waitForNextTick(void)
{
UTIL_time_t const clockStart = UTIL_getTime();
UTIL_time_t clockEnd;
do {
clockEnd = UTIL_getTime();
} while (UTIL_getSpanTimeNano(clockStart, clockEnd) == 0);
}
diff --git a/sys/contrib/zstd/programs/timefn.h b/sys/contrib/zstd/programs/timefn.h
index 5d2818e8a1b7..3fcd78a28ec1 100644
--- a/sys/contrib/zstd/programs/timefn.h
+++ b/sys/contrib/zstd/programs/timefn.h
@@ -1,89 +1,89 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef TIME_FN_H_MODULE_287987
#define TIME_FN_H_MODULE_287987
#if defined (__cplusplus)
extern "C" {
#endif
/*-****************************************
* Dependencies
******************************************/
#include <time.h> /* clock_t, clock, CLOCKS_PER_SEC */
/*-****************************************
* Local Types
******************************************/
#if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
# if defined(_AIX)
# include <inttypes.h>
# else
# include <stdint.h> /* intptr_t */
# endif
typedef uint64_t PTime; /* Precise Time */
#else
typedef unsigned long long PTime; /* does not support compilers without long long support */
#endif
/*-****************************************
* Time functions
******************************************/
#if defined(_WIN32) /* Windows */
#include <windows.h> /* LARGE_INTEGER */
typedef LARGE_INTEGER UTIL_time_t;
#define UTIL_TIME_INITIALIZER { { 0, 0 } }
#elif defined(__APPLE__) && defined(__MACH__)
#include <mach/mach_time.h>
typedef PTime UTIL_time_t;
#define UTIL_TIME_INITIALIZER 0
/* C11 requires timespec_get, but FreeBSD 11 lacks it, while still claiming C11 compliance.
Android also lacks it but does define TIME_UTC. */
#elif (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11 */) \
&& defined(TIME_UTC) && !defined(__ANDROID__)
typedef struct timespec UTIL_time_t;
#define UTIL_TIME_INITIALIZER { 0, 0 }
#else /* relies on standard C90 (note : clock_t measurements can be wrong when using multi-threading) */
typedef clock_t UTIL_time_t;
#define UTIL_TIME_INITIALIZER 0
#endif
UTIL_time_t UTIL_getTime(void);
PTime UTIL_getSpanTimeMicro(UTIL_time_t clockStart, UTIL_time_t clockEnd);
PTime UTIL_getSpanTimeNano(UTIL_time_t clockStart, UTIL_time_t clockEnd);
#define SEC_TO_MICRO ((PTime)1000000)
PTime UTIL_clockSpanMicro(UTIL_time_t clockStart);
PTime UTIL_clockSpanNano(UTIL_time_t clockStart);
void UTIL_waitForNextTick(void);
#if defined (__cplusplus)
}
#endif
#endif /* TIME_FN_H_MODULE_287987 */
diff --git a/sys/contrib/zstd/programs/util.c b/sys/contrib/zstd/programs/util.c
index 5386d005c26c..d69b72a37ca6 100644
--- a/sys/contrib/zstd/programs/util.c
+++ b/sys/contrib/zstd/programs/util.c
@@ -1,1257 +1,1399 @@
/*
- * Copyright (c) 2016-2020, Przemyslaw Skibinski, Yann Collet, Facebook, Inc.
+ * Copyright (c) Przemyslaw Skibinski, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#if defined (__cplusplus)
extern "C" {
#endif
/*-****************************************
* Dependencies
******************************************/
#include "util.h" /* note : ensure that platform.h is included first ! */
#include <stdlib.h> /* malloc, realloc, free */
#include <stdio.h> /* fprintf */
#include <time.h> /* clock_t, clock, CLOCKS_PER_SEC, nanosleep */
#include <errno.h>
#include <assert.h>
#if defined(_WIN32)
# include <sys/utime.h> /* utime */
# include <io.h> /* _chmod */
#else
# include <unistd.h> /* chown, stat */
# if PLATFORM_POSIX_VERSION < 200809L || !defined(st_mtime)
# include <utime.h> /* utime */
# else
# include <fcntl.h> /* AT_FDCWD */
# include <sys/stat.h> /* utimensat */
# endif
#endif
#if defined(_MSC_VER) || defined(__MINGW32__) || defined (__MSVCRT__)
#include <direct.h> /* needed for _mkdir in windows */
#endif
#if defined(__linux__) || (PLATFORM_POSIX_VERSION >= 200112L) /* opendir, readdir require POSIX.1-2001 */
# include <dirent.h> /* opendir, readdir */
# include <string.h> /* strerror, memcpy */
#endif /* #ifdef _WIN32 */
/*-****************************************
* Internal Macros
******************************************/
/* CONTROL is almost like an assert(), but is never disabled.
* It's designed for failures that may happen rarely,
* but we don't want to maintain a specific error code path for them,
* such as a malloc() returning NULL for example.
* Since it's always active, this macro can trigger side effects.
*/
#define CONTROL(c) { \
if (!(c)) { \
UTIL_DISPLAYLEVEL(1, "Error : %s, %i : %s", \
__FILE__, __LINE__, #c); \
exit(1); \
} }
/* console log */
#define UTIL_DISPLAY(...) fprintf(stderr, __VA_ARGS__)
#define UTIL_DISPLAYLEVEL(l, ...) { if (g_utilDisplayLevel>=l) { UTIL_DISPLAY(__VA_ARGS__); } }
/* A modified version of realloc().
* If UTIL_realloc() fails the original block is freed.
*/
UTIL_STATIC void* UTIL_realloc(void *ptr, size_t size)
{
void *newptr = realloc(ptr, size);
if (newptr) return newptr;
free(ptr);
return NULL;
}
#if defined(_MSC_VER)
#define chmod _chmod
#endif
/*-****************************************
* Console log
******************************************/
int g_utilDisplayLevel;
int UTIL_requireUserConfirmation(const char* prompt, const char* abortMsg,
const char* acceptableLetters, int hasStdinInput) {
int ch, result;
if (hasStdinInput) {
UTIL_DISPLAY("stdin is an input - not proceeding.\n");
return 1;
}
UTIL_DISPLAY("%s", prompt);
ch = getchar();
result = 0;
if (strchr(acceptableLetters, ch) == NULL) {
UTIL_DISPLAY("%s", abortMsg);
result = 1;
}
/* flush the rest */
while ((ch!=EOF) && (ch!='\n'))
ch = getchar();
return result;
}
/*-*************************************
* Constants
***************************************/
#define LIST_SIZE_INCREASE (8*1024)
#define MAX_FILE_OF_FILE_NAMES_SIZE (1<<20)*50
/*-*************************************
* Functions
***************************************/
int UTIL_stat(const char* filename, stat_t* statbuf)
{
#if defined(_MSC_VER)
return !_stat64(filename, statbuf);
#elif defined(__MINGW32__) && defined (__MSVCRT__)
return !_stati64(filename, statbuf);
#else
return !stat(filename, statbuf);
#endif
}
int UTIL_isRegularFile(const char* infilename)
{
stat_t statbuf;
return UTIL_stat(infilename, &statbuf) && UTIL_isRegularFileStat(&statbuf);
}
int UTIL_isRegularFileStat(const stat_t* statbuf)
{
#if defined(_MSC_VER)
return (statbuf->st_mode & S_IFREG) != 0;
#else
return S_ISREG(statbuf->st_mode) != 0;
#endif
}
/* like chmod, but avoid changing permission of /dev/null */
int UTIL_chmod(char const* filename, const stat_t* statbuf, mode_t permissions)
{
stat_t localStatBuf;
if (statbuf == NULL) {
if (!UTIL_stat(filename, &localStatBuf)) return 0;
statbuf = &localStatBuf;
}
if (!UTIL_isRegularFileStat(statbuf)) return 0; /* pretend success, but don't change anything */
return chmod(filename, permissions);
}
+/* set access and modification times */
+int UTIL_utime(const char* filename, const stat_t *statbuf)
+{
+ int ret;
+ /* We check that st_mtime is a macro here in order to give us confidence
+ * that struct stat has a struct timespec st_mtim member. We need this
+ * check because there are some platforms that claim to be POSIX 2008
+ * compliant but which do not have st_mtim... */
+#if (PLATFORM_POSIX_VERSION >= 200809L) && defined(st_mtime)
+ /* (atime, mtime) */
+ struct timespec timebuf[2] = { {0, UTIME_NOW} };
+ timebuf[1] = statbuf->st_mtim;
+ ret = utimensat(AT_FDCWD, filename, timebuf, 0);
+#else
+ struct utimbuf timebuf;
+ timebuf.actime = time(NULL);
+ timebuf.modtime = statbuf->st_mtime;
+ ret = utime(filename, &timebuf);
+#endif
+ errno = 0;
+ return ret;
+}
+
int UTIL_setFileStat(const char *filename, const stat_t *statbuf)
{
int res = 0;
stat_t curStatBuf;
if (!UTIL_stat(filename, &curStatBuf) || !UTIL_isRegularFileStat(&curStatBuf))
return -1;
/* set access and modification times */
- /* We check that st_mtime is a macro here in order to give us confidence
- * that struct stat has a struct timespec st_mtim member. We need this
- * check because there are some platforms that claim to be POSIX 2008
- * compliant but which do not have st_mtim... */
-#if (PLATFORM_POSIX_VERSION >= 200809L) && defined(st_mtime)
- {
- /* (atime, mtime) */
- struct timespec timebuf[2] = { {0, UTIME_NOW} };
- timebuf[1] = statbuf->st_mtim;
- res += utimensat(AT_FDCWD, filename, timebuf, 0);
- }
-#else
- {
- struct utimbuf timebuf;
- timebuf.actime = time(NULL);
- timebuf.modtime = statbuf->st_mtime;
- res += utime(filename, &timebuf);
- }
-#endif
+ res += UTIL_utime(filename, statbuf);
#if !defined(_WIN32)
res += chown(filename, statbuf->st_uid, statbuf->st_gid); /* Copy ownership */
#endif
res += UTIL_chmod(filename, &curStatBuf, statbuf->st_mode & 07777); /* Copy file permissions */
errno = 0;
return -res; /* number of errors is returned */
}
int UTIL_isDirectory(const char* infilename)
{
stat_t statbuf;
return UTIL_stat(infilename, &statbuf) && UTIL_isDirectoryStat(&statbuf);
}
int UTIL_isDirectoryStat(const stat_t* statbuf)
{
#if defined(_MSC_VER)
return (statbuf->st_mode & _S_IFDIR) != 0;
#else
return S_ISDIR(statbuf->st_mode) != 0;
#endif
}
int UTIL_compareStr(const void *p1, const void *p2) {
return strcmp(* (char * const *) p1, * (char * const *) p2);
}
int UTIL_isSameFile(const char* fName1, const char* fName2)
{
assert(fName1 != NULL); assert(fName2 != NULL);
#if defined(_MSC_VER) || defined(_WIN32)
/* note : Visual does not support file identification by inode.
* inode does not work on Windows, even with a posix layer, like msys2.
* The following work-around is limited to detecting exact name repetition only,
* aka `filename` is considered different from `subdir/../filename` */
return !strcmp(fName1, fName2);
#else
{ stat_t file1Stat;
stat_t file2Stat;
return UTIL_stat(fName1, &file1Stat)
&& UTIL_stat(fName2, &file2Stat)
&& (file1Stat.st_dev == file2Stat.st_dev)
&& (file1Stat.st_ino == file2Stat.st_ino);
}
#endif
}
/* UTIL_isFIFO : distinguish named pipes */
int UTIL_isFIFO(const char* infilename)
{
/* macro guards, as defined in : https://linux.die.net/man/2/lstat */
#if PLATFORM_POSIX_VERSION >= 200112L
stat_t statbuf;
if (UTIL_stat(infilename, &statbuf) && UTIL_isFIFOStat(&statbuf)) return 1;
#endif
(void)infilename;
return 0;
}
/* UTIL_isFIFO : distinguish named pipes */
int UTIL_isFIFOStat(const stat_t* statbuf)
{
/* macro guards, as defined in : https://linux.die.net/man/2/lstat */
#if PLATFORM_POSIX_VERSION >= 200112L
if (S_ISFIFO(statbuf->st_mode)) return 1;
#endif
(void)statbuf;
return 0;
}
+/* UTIL_isBlockDevStat : distinguish named pipes */
+int UTIL_isBlockDevStat(const stat_t* statbuf)
+{
+/* macro guards, as defined in : https://linux.die.net/man/2/lstat */
+#if PLATFORM_POSIX_VERSION >= 200112L
+ if (S_ISBLK(statbuf->st_mode)) return 1;
+#endif
+ (void)statbuf;
+ return 0;
+}
+
int UTIL_isLink(const char* infilename)
{
/* macro guards, as defined in : https://linux.die.net/man/2/lstat */
#if PLATFORM_POSIX_VERSION >= 200112L
stat_t statbuf;
int const r = lstat(infilename, &statbuf);
if (!r && S_ISLNK(statbuf.st_mode)) return 1;
#endif
(void)infilename;
return 0;
}
U64 UTIL_getFileSize(const char* infilename)
{
stat_t statbuf;
if (!UTIL_stat(infilename, &statbuf)) return UTIL_FILESIZE_UNKNOWN;
return UTIL_getFileSizeStat(&statbuf);
}
U64 UTIL_getFileSizeStat(const stat_t* statbuf)
{
if (!UTIL_isRegularFileStat(statbuf)) return UTIL_FILESIZE_UNKNOWN;
#if defined(_MSC_VER)
if (!(statbuf->st_mode & S_IFREG)) return UTIL_FILESIZE_UNKNOWN;
#elif defined(__MINGW32__) && defined (__MSVCRT__)
if (!(statbuf->st_mode & S_IFREG)) return UTIL_FILESIZE_UNKNOWN;
#else
if (!S_ISREG(statbuf->st_mode)) return UTIL_FILESIZE_UNKNOWN;
#endif
return (U64)statbuf->st_size;
}
+UTIL_HumanReadableSize_t UTIL_makeHumanReadableSize(U64 size)
+{
+ UTIL_HumanReadableSize_t hrs;
+
+ if (g_utilDisplayLevel > 3) {
+ /* In verbose mode, do not scale sizes down, except in the case of
+ * values that exceed the integral precision of a double. */
+ if (size >= (1ull << 53)) {
+ hrs.value = (double)size / (1ull << 20);
+ hrs.suffix = " MiB";
+ /* At worst, a double representation of a maximal size will be
+ * accurate to better than tens of kilobytes. */
+ hrs.precision = 2;
+ } else {
+ hrs.value = (double)size;
+ hrs.suffix = " B";
+ hrs.precision = 0;
+ }
+ } else {
+ /* In regular mode, scale sizes down and use suffixes. */
+ if (size >= (1ull << 60)) {
+ hrs.value = (double)size / (1ull << 60);
+ hrs.suffix = " EiB";
+ } else if (size >= (1ull << 50)) {
+ hrs.value = (double)size / (1ull << 50);
+ hrs.suffix = " PiB";
+ } else if (size >= (1ull << 40)) {
+ hrs.value = (double)size / (1ull << 40);
+ hrs.suffix = " TiB";
+ } else if (size >= (1ull << 30)) {
+ hrs.value = (double)size / (1ull << 30);
+ hrs.suffix = " GiB";
+ } else if (size >= (1ull << 20)) {
+ hrs.value = (double)size / (1ull << 20);
+ hrs.suffix = " MiB";
+ } else if (size >= (1ull << 10)) {
+ hrs.value = (double)size / (1ull << 10);
+ hrs.suffix = " KiB";
+ } else {
+ hrs.value = (double)size;
+ hrs.suffix = " B";
+ }
+
+ if (hrs.value >= 100 || (U64)hrs.value == size) {
+ hrs.precision = 0;
+ } else if (hrs.value >= 10) {
+ hrs.precision = 1;
+ } else if (hrs.value > 1) {
+ hrs.precision = 2;
+ } else {
+ hrs.precision = 3;
+ }
+ }
+
+ return hrs;
+}
U64 UTIL_getTotalFileSize(const char* const * fileNamesTable, unsigned nbFiles)
{
U64 total = 0;
unsigned n;
for (n=0; n<nbFiles; n++) {
U64 const size = UTIL_getFileSize(fileNamesTable[n]);
if (size == UTIL_FILESIZE_UNKNOWN) return UTIL_FILESIZE_UNKNOWN;
total += size;
}
return total;
}
/* condition : @file must be valid, and not have reached its end.
* @return : length of line written into @buf, ended with `\0` instead of '\n',
* or 0, if there is no new line */
static size_t readLineFromFile(char* buf, size_t len, FILE* file)
{
assert(!feof(file));
- /* Work around Cygwin problem when len == 1 it returns NULL. */
- if (len <= 1) return 0;
- CONTROL( fgets(buf, (int) len, file) );
+ if ( fgets(buf, (int) len, file) == NULL ) return 0;
{ size_t linelen = strlen(buf);
if (strlen(buf)==0) return 0;
if (buf[linelen-1] == '\n') linelen--;
buf[linelen] = '\0';
return linelen+1;
}
}
/* Conditions :
* size of @inputFileName file must be < @dstCapacity
* @dst must be initialized
* @return : nb of lines
* or -1 if there's an error
*/
static int
readLinesFromFile(void* dst, size_t dstCapacity,
const char* inputFileName)
{
int nbFiles = 0;
size_t pos = 0;
char* const buf = (char*)dst;
FILE* const inputFile = fopen(inputFileName, "r");
assert(dst != NULL);
if(!inputFile) {
if (g_utilDisplayLevel >= 1) perror("zstd:util:readLinesFromFile");
return -1;
}
while ( !feof(inputFile) ) {
size_t const lineLength = readLineFromFile(buf+pos, dstCapacity-pos, inputFile);
if (lineLength == 0) break;
assert(pos + lineLength < dstCapacity);
pos += lineLength;
++nbFiles;
}
CONTROL( fclose(inputFile) == 0 );
return nbFiles;
}
/*Note: buf is not freed in case function successfully created table because filesTable->fileNames[0] = buf*/
FileNamesTable*
UTIL_createFileNamesTable_fromFileName(const char* inputFileName)
{
size_t nbFiles = 0;
char* buf;
size_t bufSize;
size_t pos = 0;
stat_t statbuf;
if (!UTIL_stat(inputFileName, &statbuf) || !UTIL_isRegularFileStat(&statbuf))
return NULL;
{ U64 const inputFileSize = UTIL_getFileSizeStat(&statbuf);
if(inputFileSize > MAX_FILE_OF_FILE_NAMES_SIZE)
return NULL;
bufSize = (size_t)(inputFileSize + 1); /* (+1) to add '\0' at the end of last filename */
}
buf = (char*) malloc(bufSize);
CONTROL( buf != NULL );
{ int const ret_nbFiles = readLinesFromFile(buf, bufSize, inputFileName);
if (ret_nbFiles <= 0) {
free(buf);
return NULL;
}
nbFiles = (size_t)ret_nbFiles;
}
{ const char** filenamesTable = (const char**) malloc(nbFiles * sizeof(*filenamesTable));
CONTROL(filenamesTable != NULL);
{ size_t fnb;
for (fnb = 0, pos = 0; fnb < nbFiles; fnb++) {
filenamesTable[fnb] = buf+pos;
pos += strlen(buf+pos)+1; /* +1 for the finishing `\0` */
} }
assert(pos <= bufSize);
return UTIL_assembleFileNamesTable(filenamesTable, nbFiles, buf);
}
}
static FileNamesTable*
UTIL_assembleFileNamesTable2(const char** filenames, size_t tableSize, size_t tableCapacity, char* buf)
{
FileNamesTable* const table = (FileNamesTable*) malloc(sizeof(*table));
CONTROL(table != NULL);
table->fileNames = filenames;
table->buf = buf;
table->tableSize = tableSize;
table->tableCapacity = tableCapacity;
return table;
}
FileNamesTable*
UTIL_assembleFileNamesTable(const char** filenames, size_t tableSize, char* buf)
{
return UTIL_assembleFileNamesTable2(filenames, tableSize, tableSize, buf);
}
void UTIL_freeFileNamesTable(FileNamesTable* table)
{
if (table==NULL) return;
free((void*)table->fileNames);
free(table->buf);
free(table);
}
FileNamesTable* UTIL_allocateFileNamesTable(size_t tableSize)
{
const char** const fnTable = (const char**)malloc(tableSize * sizeof(*fnTable));
FileNamesTable* fnt;
if (fnTable==NULL) return NULL;
fnt = UTIL_assembleFileNamesTable(fnTable, tableSize, NULL);
fnt->tableSize = 0; /* the table is empty */
return fnt;
}
void UTIL_refFilename(FileNamesTable* fnt, const char* filename)
{
assert(fnt->tableSize < fnt->tableCapacity);
fnt->fileNames[fnt->tableSize] = filename;
fnt->tableSize++;
}
static size_t getTotalTableSize(FileNamesTable* table)
{
size_t fnb = 0, totalSize = 0;
for(fnb = 0 ; fnb < table->tableSize && table->fileNames[fnb] ; ++fnb) {
totalSize += strlen(table->fileNames[fnb]) + 1; /* +1 to add '\0' at the end of each fileName */
}
return totalSize;
}
FileNamesTable*
UTIL_mergeFileNamesTable(FileNamesTable* table1, FileNamesTable* table2)
{
unsigned newTableIdx = 0;
size_t pos = 0;
size_t newTotalTableSize;
char* buf;
FileNamesTable* const newTable = UTIL_assembleFileNamesTable(NULL, 0, NULL);
CONTROL( newTable != NULL );
newTotalTableSize = getTotalTableSize(table1) + getTotalTableSize(table2);
buf = (char*) calloc(newTotalTableSize, sizeof(*buf));
CONTROL ( buf != NULL );
newTable->buf = buf;
newTable->tableSize = table1->tableSize + table2->tableSize;
newTable->fileNames = (const char **) calloc(newTable->tableSize, sizeof(*(newTable->fileNames)));
CONTROL ( newTable->fileNames != NULL );
{ unsigned idx1;
for( idx1=0 ; (idx1 < table1->tableSize) && table1->fileNames[idx1] && (pos < newTotalTableSize); ++idx1, ++newTableIdx) {
size_t const curLen = strlen(table1->fileNames[idx1]);
memcpy(buf+pos, table1->fileNames[idx1], curLen);
assert(newTableIdx <= newTable->tableSize);
newTable->fileNames[newTableIdx] = buf+pos;
pos += curLen+1;
} }
{ unsigned idx2;
for( idx2=0 ; (idx2 < table2->tableSize) && table2->fileNames[idx2] && (pos < newTotalTableSize) ; ++idx2, ++newTableIdx) {
size_t const curLen = strlen(table2->fileNames[idx2]);
memcpy(buf+pos, table2->fileNames[idx2], curLen);
assert(newTableIdx <= newTable->tableSize);
newTable->fileNames[newTableIdx] = buf+pos;
pos += curLen+1;
} }
assert(pos <= newTotalTableSize);
newTable->tableSize = newTableIdx;
UTIL_freeFileNamesTable(table1);
UTIL_freeFileNamesTable(table2);
return newTable;
}
#ifdef _WIN32
static int UTIL_prepareFileList(const char* dirName,
char** bufStart, size_t* pos,
char** bufEnd, int followLinks)
{
char* path;
size_t dirLength, pathLength;
int nbFiles = 0;
WIN32_FIND_DATAA cFile;
HANDLE hFile;
dirLength = strlen(dirName);
path = (char*) malloc(dirLength + 3);
if (!path) return 0;
memcpy(path, dirName, dirLength);
path[dirLength] = '\\';
path[dirLength+1] = '*';
path[dirLength+2] = 0;
hFile=FindFirstFileA(path, &cFile);
if (hFile == INVALID_HANDLE_VALUE) {
UTIL_DISPLAYLEVEL(1, "Cannot open directory '%s'\n", dirName);
return 0;
}
free(path);
do {
size_t const fnameLength = strlen(cFile.cFileName);
path = (char*) malloc(dirLength + fnameLength + 2);
if (!path) { FindClose(hFile); return 0; }
memcpy(path, dirName, dirLength);
path[dirLength] = '\\';
memcpy(path+dirLength+1, cFile.cFileName, fnameLength);
pathLength = dirLength+1+fnameLength;
path[pathLength] = 0;
if (cFile.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) {
if ( strcmp (cFile.cFileName, "..") == 0
|| strcmp (cFile.cFileName, ".") == 0 )
continue;
/* Recursively call "UTIL_prepareFileList" with the new path. */
nbFiles += UTIL_prepareFileList(path, bufStart, pos, bufEnd, followLinks);
if (*bufStart == NULL) { free(path); FindClose(hFile); return 0; }
} else if ( (cFile.dwFileAttributes & FILE_ATTRIBUTE_NORMAL)
|| (cFile.dwFileAttributes & FILE_ATTRIBUTE_ARCHIVE)
|| (cFile.dwFileAttributes & FILE_ATTRIBUTE_COMPRESSED) ) {
if (*bufStart + *pos + pathLength >= *bufEnd) {
ptrdiff_t const newListSize = (*bufEnd - *bufStart) + LIST_SIZE_INCREASE;
*bufStart = (char*)UTIL_realloc(*bufStart, newListSize);
if (*bufStart == NULL) { free(path); FindClose(hFile); return 0; }
*bufEnd = *bufStart + newListSize;
}
if (*bufStart + *pos + pathLength < *bufEnd) {
memcpy(*bufStart + *pos, path, pathLength+1 /* include final \0 */);
*pos += pathLength + 1;
nbFiles++;
} }
free(path);
} while (FindNextFileA(hFile, &cFile));
FindClose(hFile);
return nbFiles;
}
#elif defined(__linux__) || (PLATFORM_POSIX_VERSION >= 200112L) /* opendir, readdir require POSIX.1-2001 */
static int UTIL_prepareFileList(const char *dirName,
char** bufStart, size_t* pos,
char** bufEnd, int followLinks)
{
DIR* dir;
struct dirent * entry;
size_t dirLength;
int nbFiles = 0;
if (!(dir = opendir(dirName))) {
UTIL_DISPLAYLEVEL(1, "Cannot open directory '%s': %s\n", dirName, strerror(errno));
return 0;
}
dirLength = strlen(dirName);
errno = 0;
while ((entry = readdir(dir)) != NULL) {
char* path;
size_t fnameLength, pathLength;
if (strcmp (entry->d_name, "..") == 0 ||
strcmp (entry->d_name, ".") == 0) continue;
fnameLength = strlen(entry->d_name);
path = (char*) malloc(dirLength + fnameLength + 2);
if (!path) { closedir(dir); return 0; }
memcpy(path, dirName, dirLength);
path[dirLength] = '/';
memcpy(path+dirLength+1, entry->d_name, fnameLength);
pathLength = dirLength+1+fnameLength;
path[pathLength] = 0;
if (!followLinks && UTIL_isLink(path)) {
UTIL_DISPLAYLEVEL(2, "Warning : %s is a symbolic link, ignoring\n", path);
free(path);
continue;
}
if (UTIL_isDirectory(path)) {
nbFiles += UTIL_prepareFileList(path, bufStart, pos, bufEnd, followLinks); /* Recursively call "UTIL_prepareFileList" with the new path. */
if (*bufStart == NULL) { free(path); closedir(dir); return 0; }
} else {
if (*bufStart + *pos + pathLength >= *bufEnd) {
ptrdiff_t newListSize = (*bufEnd - *bufStart) + LIST_SIZE_INCREASE;
assert(newListSize >= 0);
*bufStart = (char*)UTIL_realloc(*bufStart, (size_t)newListSize);
*bufEnd = *bufStart + newListSize;
if (*bufStart == NULL) { free(path); closedir(dir); return 0; }
}
if (*bufStart + *pos + pathLength < *bufEnd) {
memcpy(*bufStart + *pos, path, pathLength + 1); /* with final \0 */
*pos += pathLength + 1;
nbFiles++;
} }
free(path);
errno = 0; /* clear errno after UTIL_isDirectory, UTIL_prepareFileList */
}
if (errno != 0) {
UTIL_DISPLAYLEVEL(1, "readdir(%s) error: %s \n", dirName, strerror(errno));
free(*bufStart);
*bufStart = NULL;
}
closedir(dir);
return nbFiles;
}
#else
static int UTIL_prepareFileList(const char *dirName,
char** bufStart, size_t* pos,
char** bufEnd, int followLinks)
{
(void)bufStart; (void)bufEnd; (void)pos; (void)followLinks;
UTIL_DISPLAYLEVEL(1, "Directory %s ignored (compiled without _WIN32 or _POSIX_C_SOURCE) \n", dirName);
return 0;
}
#endif /* #ifdef _WIN32 */
int UTIL_isCompressedFile(const char *inputName, const char *extensionList[])
{
const char* ext = UTIL_getFileExtension(inputName);
while(*extensionList!=NULL)
{
const int isCompressedExtension = strcmp(ext,*extensionList);
if(isCompressedExtension==0)
return 1;
++extensionList;
}
return 0;
}
/*Utility function to get file extension from file */
const char* UTIL_getFileExtension(const char* infilename)
{
const char* extension = strrchr(infilename, '.');
if(!extension || extension==infilename) return "";
return extension;
}
static int pathnameHas2Dots(const char *pathname)
{
- return NULL != strstr(pathname, "..");
+ /* We need to figure out whether any ".." present in the path is a whole
+ * path token, which is the case if it is bordered on both sides by either
+ * the beginning/end of the path or by a directory separator.
+ */
+ const char *needle = pathname;
+ while (1) {
+ needle = strstr(needle, "..");
+
+ if (needle == NULL) {
+ return 0;
+ }
+
+ if ((needle == pathname || needle[-1] == PATH_SEP)
+ && (needle[2] == '\0' || needle[2] == PATH_SEP)) {
+ return 1;
+ }
+
+ /* increment so we search for the next match */
+ needle++;
+ };
+ return 0;
}
static int isFileNameValidForMirroredOutput(const char *filename)
{
return !pathnameHas2Dots(filename);
}
#define DIR_DEFAULT_MODE 0755
static mode_t getDirMode(const char *dirName)
{
stat_t st;
if (!UTIL_stat(dirName, &st)) {
UTIL_DISPLAY("zstd: failed to get DIR stats %s: %s\n", dirName, strerror(errno));
return DIR_DEFAULT_MODE;
}
if (!UTIL_isDirectoryStat(&st)) {
UTIL_DISPLAY("zstd: expected directory: %s\n", dirName);
return DIR_DEFAULT_MODE;
}
return st.st_mode;
}
static int makeDir(const char *dir, mode_t mode)
{
#if defined(_MSC_VER) || defined(__MINGW32__) || defined (__MSVCRT__)
int ret = _mkdir(dir);
(void) mode;
#else
int ret = mkdir(dir, mode);
#endif
if (ret != 0) {
if (errno == EEXIST)
return 0;
UTIL_DISPLAY("zstd: failed to create DIR %s: %s\n", dir, strerror(errno));
}
return ret;
}
/* this function requires a mutable input string */
static void convertPathnameToDirName(char *pathname)
{
size_t len = 0;
char* pos = NULL;
/* get dir name from pathname similar to 'dirname()' */
assert(pathname != NULL);
/* remove trailing '/' chars */
len = strlen(pathname);
assert(len > 0);
while (pathname[len] == PATH_SEP) {
pathname[len] = '\0';
len--;
}
if (len == 0) return;
/* if input is a single file, return '.' instead. i.e.
* "xyz/abc/file.txt" => "xyz/abc"
"./file.txt" => "."
"file.txt" => "."
*/
pos = strrchr(pathname, PATH_SEP);
if (pos == NULL) {
pathname[0] = '.';
pathname[1] = '\0';
} else {
*pos = '\0';
}
}
/* pathname must be valid */
static const char* trimLeadingRootChar(const char *pathname)
{
assert(pathname != NULL);
if (pathname[0] == PATH_SEP)
return pathname + 1;
return pathname;
}
/* pathname must be valid */
static const char* trimLeadingCurrentDirConst(const char *pathname)
{
assert(pathname != NULL);
if ((pathname[0] == '.') && (pathname[1] == PATH_SEP))
return pathname + 2;
return pathname;
}
static char*
trimLeadingCurrentDir(char *pathname)
{
/* 'union charunion' can do const-cast without compiler warning */
union charunion {
char *chr;
const char* cchr;
} ptr;
ptr.cchr = trimLeadingCurrentDirConst(pathname);
return ptr.chr;
}
/* remove leading './' or '/' chars here */
static const char * trimPath(const char *pathname)
{
return trimLeadingRootChar(
trimLeadingCurrentDirConst(pathname));
}
static char* mallocAndJoin2Dir(const char *dir1, const char *dir2)
{
const size_t dir1Size = strlen(dir1);
const size_t dir2Size = strlen(dir2);
char *outDirBuffer, *buffer, trailingChar;
assert(dir1 != NULL && dir2 != NULL);
outDirBuffer = (char *) malloc(dir1Size + dir2Size + 2);
CONTROL(outDirBuffer != NULL);
memcpy(outDirBuffer, dir1, dir1Size);
outDirBuffer[dir1Size] = '\0';
if (dir2[0] == '.')
return outDirBuffer;
buffer = outDirBuffer + dir1Size;
trailingChar = *(buffer - 1);
if (trailingChar != PATH_SEP) {
*buffer = PATH_SEP;
buffer++;
}
memcpy(buffer, dir2, dir2Size);
buffer[dir2Size] = '\0';
return outDirBuffer;
}
/* this function will return NULL if input srcFileName is not valid name for mirrored output path */
char* UTIL_createMirroredDestDirName(const char* srcFileName, const char* outDirRootName)
{
char* pathname = NULL;
if (!isFileNameValidForMirroredOutput(srcFileName))
return NULL;
pathname = mallocAndJoin2Dir(outDirRootName, trimPath(srcFileName));
convertPathnameToDirName(pathname);
return pathname;
}
static int
mirrorSrcDir(char* srcDirName, const char* outDirName)
{
mode_t srcMode;
int status = 0;
char* newDir = mallocAndJoin2Dir(outDirName, trimPath(srcDirName));
if (!newDir)
return -ENOMEM;
srcMode = getDirMode(srcDirName);
status = makeDir(newDir, srcMode);
free(newDir);
return status;
}
static int
mirrorSrcDirRecursive(char* srcDirName, const char* outDirName)
{
int status = 0;
char* pp = trimLeadingCurrentDir(srcDirName);
char* sp = NULL;
while ((sp = strchr(pp, PATH_SEP)) != NULL) {
if (sp != pp) {
*sp = '\0';
status = mirrorSrcDir(srcDirName, outDirName);
if (status != 0)
return status;
*sp = PATH_SEP;
}
pp = sp + 1;
}
status = mirrorSrcDir(srcDirName, outDirName);
return status;
}
static void
makeMirroredDestDirsWithSameSrcDirMode(char** srcDirNames, unsigned nbFile, const char* outDirName)
{
unsigned int i = 0;
for (i = 0; i < nbFile; i++)
mirrorSrcDirRecursive(srcDirNames[i], outDirName);
}
static int
firstIsParentOrSameDirOfSecond(const char* firstDir, const char* secondDir)
{
size_t firstDirLen = strlen(firstDir),
secondDirLen = strlen(secondDir);
return firstDirLen <= secondDirLen &&
(secondDir[firstDirLen] == PATH_SEP || secondDir[firstDirLen] == '\0') &&
0 == strncmp(firstDir, secondDir, firstDirLen);
}
static int compareDir(const void* pathname1, const void* pathname2) {
/* sort it after remove the leading '/' or './'*/
const char* s1 = trimPath(*(char * const *) pathname1);
const char* s2 = trimPath(*(char * const *) pathname2);
return strcmp(s1, s2);
}
static void
makeUniqueMirroredDestDirs(char** srcDirNames, unsigned nbFile, const char* outDirName)
{
unsigned int i = 0, uniqueDirNr = 0;
char** uniqueDirNames = NULL;
if (nbFile == 0)
return;
uniqueDirNames = (char** ) malloc(nbFile * sizeof (char *));
CONTROL(uniqueDirNames != NULL);
/* if dirs is "a/b/c" and "a/b/c/d", we only need call:
* we just need "a/b/c/d" */
qsort((void *)srcDirNames, nbFile, sizeof(char*), compareDir);
uniqueDirNr = 1;
uniqueDirNames[uniqueDirNr - 1] = srcDirNames[0];
for (i = 1; i < nbFile; i++) {
char* prevDirName = srcDirNames[i - 1];
char* currDirName = srcDirNames[i];
- /* note: we alwasy compare trimmed path, i.e.:
+ /* note: we always compare trimmed path, i.e.:
* src dir of "./foo" and "/foo" will be both saved into:
* "outDirName/foo/" */
if (!firstIsParentOrSameDirOfSecond(trimPath(prevDirName),
trimPath(currDirName)))
uniqueDirNr++;
/* we need maintain original src dir name instead of trimmed
- * dir, so we can retrive the original src dir's mode_t */
+ * dir, so we can retrieve the original src dir's mode_t */
uniqueDirNames[uniqueDirNr - 1] = currDirName;
}
makeMirroredDestDirsWithSameSrcDirMode(uniqueDirNames, uniqueDirNr, outDirName);
free(uniqueDirNames);
}
static void
makeMirroredDestDirs(char** srcFileNames, unsigned nbFile, const char* outDirName)
{
unsigned int i = 0;
for (i = 0; i < nbFile; ++i)
convertPathnameToDirName(srcFileNames[i]);
makeUniqueMirroredDestDirs(srcFileNames, nbFile, outDirName);
}
void UTIL_mirrorSourceFilesDirectories(const char** inFileNames, unsigned int nbFile, const char* outDirName)
{
unsigned int i = 0, validFilenamesNr = 0;
char** srcFileNames = (char **) malloc(nbFile * sizeof (char *));
CONTROL(srcFileNames != NULL);
/* check input filenames is valid */
for (i = 0; i < nbFile; ++i) {
if (isFileNameValidForMirroredOutput(inFileNames[i])) {
char* fname = STRDUP(inFileNames[i]);
CONTROL(fname != NULL);
srcFileNames[validFilenamesNr++] = fname;
}
}
if (validFilenamesNr > 0) {
makeDir(outDirName, DIR_DEFAULT_MODE);
makeMirroredDestDirs(srcFileNames, validFilenamesNr, outDirName);
}
for (i = 0; i < validFilenamesNr; i++)
free(srcFileNames[i]);
free(srcFileNames);
}
FileNamesTable*
-UTIL_createExpandedFNT(const char** inputNames, size_t nbIfns, int followLinks)
+UTIL_createExpandedFNT(const char* const* inputNames, size_t nbIfns, int followLinks)
{
unsigned nbFiles;
char* buf = (char*)malloc(LIST_SIZE_INCREASE);
char* bufend = buf + LIST_SIZE_INCREASE;
if (!buf) return NULL;
{ size_t ifnNb, pos;
for (ifnNb=0, pos=0, nbFiles=0; ifnNb<nbIfns; ifnNb++) {
if (!UTIL_isDirectory(inputNames[ifnNb])) {
size_t const len = strlen(inputNames[ifnNb]);
if (buf + pos + len >= bufend) {
ptrdiff_t newListSize = (bufend - buf) + LIST_SIZE_INCREASE;
assert(newListSize >= 0);
buf = (char*)UTIL_realloc(buf, (size_t)newListSize);
if (!buf) return NULL;
bufend = buf + newListSize;
}
if (buf + pos + len < bufend) {
memcpy(buf+pos, inputNames[ifnNb], len+1); /* including final \0 */
pos += len + 1;
nbFiles++;
}
} else {
nbFiles += (unsigned)UTIL_prepareFileList(inputNames[ifnNb], &buf, &pos, &bufend, followLinks);
if (buf == NULL) return NULL;
} } }
/* note : even if nbFiles==0, function returns a valid, though empty, FileNamesTable* object */
{ size_t ifnNb, pos;
size_t const fntCapacity = nbFiles + 1; /* minimum 1, allows adding one reference, typically stdin */
const char** const fileNamesTable = (const char**)malloc(fntCapacity * sizeof(*fileNamesTable));
if (!fileNamesTable) { free(buf); return NULL; }
for (ifnNb = 0, pos = 0; ifnNb < nbFiles; ifnNb++) {
fileNamesTable[ifnNb] = buf + pos;
if (buf + pos > bufend) { free(buf); free((void*)fileNamesTable); return NULL; }
pos += strlen(fileNamesTable[ifnNb]) + 1;
}
return UTIL_assembleFileNamesTable2(fileNamesTable, nbFiles, fntCapacity, buf);
}
}
void UTIL_expandFNT(FileNamesTable** fnt, int followLinks)
{
FileNamesTable* const newFNT = UTIL_createExpandedFNT((*fnt)->fileNames, (*fnt)->tableSize, followLinks);
CONTROL(newFNT != NULL);
UTIL_freeFileNamesTable(*fnt);
*fnt = newFNT;
}
FileNamesTable* UTIL_createFNT_fromROTable(const char** filenames, size_t nbFilenames)
{
size_t const sizeof_FNTable = nbFilenames * sizeof(*filenames);
const char** const newFNTable = (const char**)malloc(sizeof_FNTable);
if (newFNTable==NULL) return NULL;
memcpy((void*)newFNTable, filenames, sizeof_FNTable); /* void* : mitigate a Visual compiler bug or limitation */
return UTIL_assembleFileNamesTable(newFNTable, nbFilenames, NULL);
}
/*-****************************************
-* count the number of physical cores
+* count the number of cores
******************************************/
#if defined(_WIN32) || defined(WIN32)
#include <windows.h>
typedef BOOL(WINAPI* LPFN_GLPI)(PSYSTEM_LOGICAL_PROCESSOR_INFORMATION, PDWORD);
-int UTIL_countPhysicalCores(void)
+DWORD CountSetBits(ULONG_PTR bitMask)
+{
+ DWORD LSHIFT = sizeof(ULONG_PTR)*8 - 1;
+ DWORD bitSetCount = 0;
+ ULONG_PTR bitTest = (ULONG_PTR)1 << LSHIFT;
+ DWORD i;
+
+ for (i = 0; i <= LSHIFT; ++i)
+ {
+ bitSetCount += ((bitMask & bitTest)?1:0);
+ bitTest/=2;
+ }
+
+ return bitSetCount;
+}
+
+int UTIL_countCores(int logical)
{
- static int numPhysicalCores = 0;
- if (numPhysicalCores != 0) return numPhysicalCores;
+ static int numCores = 0;
+ if (numCores != 0) return numCores;
{ LPFN_GLPI glpi;
BOOL done = FALSE;
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION buffer = NULL;
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION ptr = NULL;
DWORD returnLength = 0;
size_t byteOffset = 0;
#if defined(_MSC_VER)
/* Visual Studio does not like the following cast */
# pragma warning( disable : 4054 ) /* conversion from function ptr to data ptr */
# pragma warning( disable : 4055 ) /* conversion from data ptr to function ptr */
#endif
glpi = (LPFN_GLPI)(void*)GetProcAddress(GetModuleHandle(TEXT("kernel32")),
"GetLogicalProcessorInformation");
if (glpi == NULL) {
goto failed;
}
while(!done) {
DWORD rc = glpi(buffer, &returnLength);
if (FALSE == rc) {
if (GetLastError() == ERROR_INSUFFICIENT_BUFFER) {
if (buffer)
free(buffer);
buffer = (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION)malloc(returnLength);
if (buffer == NULL) {
perror("zstd");
exit(1);
}
} else {
/* some other error */
goto failed;
}
} else {
done = TRUE;
} }
ptr = buffer;
while (byteOffset + sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION) <= returnLength) {
if (ptr->Relationship == RelationProcessorCore) {
- numPhysicalCores++;
+ if (logical)
+ numCores += CountSetBits(ptr->ProcessorMask);
+ else
+ numCores++;
}
ptr++;
byteOffset += sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION);
}
free(buffer);
- return numPhysicalCores;
+ return numCores;
}
failed:
/* try to fall back on GetSystemInfo */
{ SYSTEM_INFO sysinfo;
GetSystemInfo(&sysinfo);
- numPhysicalCores = sysinfo.dwNumberOfProcessors;
- if (numPhysicalCores == 0) numPhysicalCores = 1; /* just in case */
+ numCores = sysinfo.dwNumberOfProcessors;
+ if (numCores == 0) numCores = 1; /* just in case */
}
- return numPhysicalCores;
+ return numCores;
}
#elif defined(__APPLE__)
#include <sys/sysctl.h>
/* Use apple-provided syscall
* see: man 3 sysctl */
-int UTIL_countPhysicalCores(void)
+int UTIL_countCores(int logical)
{
- static S32 numPhysicalCores = 0; /* apple specifies int32_t */
- if (numPhysicalCores != 0) return numPhysicalCores;
+ static S32 numCores = 0; /* apple specifies int32_t */
+ if (numCores != 0) return numCores;
{ size_t size = sizeof(S32);
- int const ret = sysctlbyname("hw.physicalcpu", &numPhysicalCores, &size, NULL, 0);
+ int const ret = sysctlbyname(logical ? "hw.logicalcpu" : "hw.physicalcpu", &numCores, &size, NULL, 0);
if (ret != 0) {
if (errno == ENOENT) {
/* entry not present, fall back on 1 */
- numPhysicalCores = 1;
+ numCores = 1;
} else {
- perror("zstd: can't get number of physical cpus");
+ perror("zstd: can't get number of cpus");
exit(1);
}
}
- return numPhysicalCores;
+ return numCores;
}
}
#elif defined(__linux__)
/* parse /proc/cpuinfo
* siblings / cpu cores should give hyperthreading ratio
* otherwise fall back on sysconf */
-int UTIL_countPhysicalCores(void)
+int UTIL_countCores(int logical)
{
- static int numPhysicalCores = 0;
+ static int numCores = 0;
- if (numPhysicalCores != 0) return numPhysicalCores;
+ if (numCores != 0) return numCores;
- numPhysicalCores = (int)sysconf(_SC_NPROCESSORS_ONLN);
- if (numPhysicalCores == -1) {
+ numCores = (int)sysconf(_SC_NPROCESSORS_ONLN);
+ if (numCores == -1) {
/* value not queryable, fall back on 1 */
- return numPhysicalCores = 1;
+ return numCores = 1;
}
/* try to determine if there's hyperthreading */
{ FILE* const cpuinfo = fopen("/proc/cpuinfo", "r");
#define BUF_SIZE 80
char buff[BUF_SIZE];
int siblings = 0;
int cpu_cores = 0;
int ratio = 1;
if (cpuinfo == NULL) {
/* fall back on the sysconf value */
- return numPhysicalCores;
+ return numCores;
}
/* assume the cpu cores/siblings values will be constant across all
* present processors */
while (!feof(cpuinfo)) {
if (fgets(buff, BUF_SIZE, cpuinfo) != NULL) {
if (strncmp(buff, "siblings", 8) == 0) {
const char* const sep = strchr(buff, ':');
if (sep == NULL || *sep == '\0') {
/* formatting was broken? */
goto failed;
}
siblings = atoi(sep + 1);
}
if (strncmp(buff, "cpu cores", 9) == 0) {
const char* const sep = strchr(buff, ':');
if (sep == NULL || *sep == '\0') {
/* formatting was broken? */
goto failed;
}
cpu_cores = atoi(sep + 1);
}
} else if (ferror(cpuinfo)) {
/* fall back on the sysconf value */
goto failed;
} }
- if (siblings && cpu_cores) {
+ if (siblings && cpu_cores && siblings > cpu_cores) {
ratio = siblings / cpu_cores;
}
+
+ if (ratio && numCores > ratio && !logical) {
+ numCores = numCores / ratio;
+ }
+
failed:
fclose(cpuinfo);
- return numPhysicalCores = numPhysicalCores / ratio;
+ return numCores;
}
}
#elif defined(__FreeBSD__)
#include <sys/param.h>
#include <sys/sysctl.h>
/* Use physical core sysctl when available
* see: man 4 smp, man 3 sysctl */
-int UTIL_countPhysicalCores(void)
+int UTIL_countCores(int logical)
{
- static int numPhysicalCores = 0; /* freebsd sysctl is native int sized */
- if (numPhysicalCores != 0) return numPhysicalCores;
+ static int numCores = 0; /* freebsd sysctl is native int sized */
+#if __FreeBSD_version >= 1300008
+ static int perCore = 1;
+#endif
+ if (numCores != 0) return numCores;
#if __FreeBSD_version >= 1300008
- { size_t size = sizeof(numPhysicalCores);
- int ret = sysctlbyname("kern.smp.cores", &numPhysicalCores, &size, NULL, 0);
- if (ret == 0) return numPhysicalCores;
+ { size_t size = sizeof(numCores);
+ int ret = sysctlbyname("kern.smp.cores", &numCores, &size, NULL, 0);
+ if (ret == 0) {
+ if (logical) {
+ ret = sysctlbyname("kern.smp.threads_per_core", &perCore, &size, NULL, 0);
+ /* default to physical cores if logical cannot be read */
+ if (ret == 0)
+ numCores *= perCore;
+ }
+
+ return numCores;
+ }
if (errno != ENOENT) {
- perror("zstd: can't get number of physical cpus");
+ perror("zstd: can't get number of cpus");
exit(1);
}
/* sysctl not present, fall through to older sysconf method */
}
+#else
+ /* suppress unused parameter warning */
+ (void) logical;
#endif
- numPhysicalCores = (int)sysconf(_SC_NPROCESSORS_ONLN);
- if (numPhysicalCores == -1) {
+ numCores = (int)sysconf(_SC_NPROCESSORS_ONLN);
+ if (numCores == -1) {
/* value not queryable, fall back on 1 */
- numPhysicalCores = 1;
+ numCores = 1;
}
- return numPhysicalCores;
+ return numCores;
}
#elif defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__) || defined(__CYGWIN__)
/* Use POSIX sysconf
* see: man 3 sysconf */
-int UTIL_countPhysicalCores(void)
+int UTIL_countCores(int logical)
{
- static int numPhysicalCores = 0;
+ static int numCores = 0;
+
+ /* suppress unused parameter warning */
+ (void)logical;
- if (numPhysicalCores != 0) return numPhysicalCores;
+ if (numCores != 0) return numCores;
- numPhysicalCores = (int)sysconf(_SC_NPROCESSORS_ONLN);
- if (numPhysicalCores == -1) {
+ numCores = (int)sysconf(_SC_NPROCESSORS_ONLN);
+ if (numCores == -1) {
/* value not queryable, fall back on 1 */
- return numPhysicalCores = 1;
+ return numCores = 1;
}
- return numPhysicalCores;
+ return numCores;
}
#else
-int UTIL_countPhysicalCores(void)
+int UTIL_countCores(int logical)
{
/* assume 1 */
return 1;
}
#endif
+int UTIL_countPhysicalCores(void)
+{
+ return UTIL_countCores(0);
+}
+
+int UTIL_countLogicalCores(void)
+{
+ return UTIL_countCores(1);
+}
+
#if defined (__cplusplus)
}
#endif
diff --git a/sys/contrib/zstd/programs/util.h b/sys/contrib/zstd/programs/util.h
index 25fa3f53aab4..add165d57ce9 100644
--- a/sys/contrib/zstd/programs/util.h
+++ b/sys/contrib/zstd/programs/util.h
@@ -1,289 +1,322 @@
/*
- * Copyright (c) 2016-2020, Przemyslaw Skibinski, Yann Collet, Facebook, Inc.
+ * Copyright (c) Przemyslaw Skibinski, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef UTIL_H_MODULE
#define UTIL_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/*-****************************************
* Dependencies
******************************************/
#include "platform.h" /* PLATFORM_POSIX_VERSION, ZSTD_NANOSLEEP_SUPPORT, ZSTD_SETPRIORITY_SUPPORT */
#include <stddef.h> /* size_t, ptrdiff_t */
#include <sys/types.h> /* stat, utime */
#include <sys/stat.h> /* stat, chmod */
#include "../lib/common/mem.h" /* U64 */
/*-************************************************************
* Avoid fseek()'s 2GiB barrier with MSVC, macOS, *BSD, MinGW
***************************************************************/
#if defined(_MSC_VER) && (_MSC_VER >= 1400)
# define UTIL_fseek _fseeki64
#elif !defined(__64BIT__) && (PLATFORM_POSIX_VERSION >= 200112L) /* No point defining Large file for 64 bit */
# define UTIL_fseek fseeko
#elif defined(__MINGW32__) && defined(__MSVCRT__) && !defined(__STRICT_ANSI__) && !defined(__NO_MINGW_LFS)
# define UTIL_fseek fseeko64
#else
# define UTIL_fseek fseek
#endif
/*-*************************************************
* Sleep & priority functions: Windows - Posix - others
***************************************************/
#if defined(_WIN32)
# include <windows.h>
# define SET_REALTIME_PRIORITY SetPriorityClass(GetCurrentProcess(), REALTIME_PRIORITY_CLASS)
# define UTIL_sleep(s) Sleep(1000*s)
# define UTIL_sleepMilli(milli) Sleep(milli)
#elif PLATFORM_POSIX_VERSION > 0 /* Unix-like operating system */
# include <unistd.h> /* sleep */
# define UTIL_sleep(s) sleep(s)
# if ZSTD_NANOSLEEP_SUPPORT /* necessarily defined in platform.h */
# define UTIL_sleepMilli(milli) { struct timespec t; t.tv_sec=0; t.tv_nsec=milli*1000000ULL; nanosleep(&t, NULL); }
# else
# define UTIL_sleepMilli(milli) /* disabled */
# endif
# if ZSTD_SETPRIORITY_SUPPORT
# include <sys/resource.h> /* setpriority */
# define SET_REALTIME_PRIORITY setpriority(PRIO_PROCESS, 0, -20)
# else
# define SET_REALTIME_PRIORITY /* disabled */
# endif
-#else /* unknown non-unix operating systen */
+#else /* unknown non-unix operating system */
# define UTIL_sleep(s) /* disabled */
# define UTIL_sleepMilli(milli) /* disabled */
# define SET_REALTIME_PRIORITY /* disabled */
#endif
/*-****************************************
* Compiler specifics
******************************************/
#if defined(__INTEL_COMPILER)
# pragma warning(disable : 177) /* disable: message #177: function was declared but never referenced, useful with UTIL_STATIC */
#endif
#if defined(__GNUC__)
# define UTIL_STATIC static __attribute__((unused))
#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define UTIL_STATIC static inline
#elif defined(_MSC_VER)
# define UTIL_STATIC static __inline
#else
# define UTIL_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
#endif
/*-****************************************
* Console log
******************************************/
extern int g_utilDisplayLevel;
/**
* Displays a message prompt and returns success (0) if first character from stdin
* matches any from acceptableLetters. Otherwise, returns failure (1) and displays abortMsg.
* If any of the inputs are stdin itself, then automatically return failure (1).
*/
int UTIL_requireUserConfirmation(const char* prompt, const char* abortMsg, const char* acceptableLetters, int hasStdinInput);
/*-****************************************
* File functions
******************************************/
#if defined(_MSC_VER)
typedef struct __stat64 stat_t;
typedef int mode_t;
#elif defined(__MINGW32__) && defined (__MSVCRT__)
typedef struct _stati64 stat_t;
#else
typedef struct stat stat_t;
#endif
#if defined(_MSC_VER) || defined(__MINGW32__) || defined (__MSVCRT__) /* windows support */
#define PATH_SEP '\\'
#define STRDUP(s) _strdup(s)
#else
#define PATH_SEP '/'
#include <libgen.h>
#define STRDUP(s) strdup(s)
#endif
+
/**
* Calls platform's equivalent of stat() on filename and writes info to statbuf.
* Returns success (1) or failure (0).
*/
int UTIL_stat(const char* filename, stat_t* statbuf);
/**
* Instead of getting a file's stats, this updates them with the info in the
* provided stat_t. Currently sets owner, group, atime, and mtime. Will only
* update this info for regular files.
*/
int UTIL_setFileStat(const char* filename, const stat_t* statbuf);
+/**
+ * Set atime to now and mtime to the st_mtim in statbuf.
+ *
+ * Directly wraps utime() or utimensat(). Returns -1 on error.
+ * Does not validate filename is valid.
+ */
+int UTIL_utime(const char* filename, const stat_t *statbuf);
+
/*
* These helpers operate on a pre-populated stat_t, i.e., the result of
* calling one of the above functions.
*/
int UTIL_isRegularFileStat(const stat_t* statbuf);
int UTIL_isDirectoryStat(const stat_t* statbuf);
int UTIL_isFIFOStat(const stat_t* statbuf);
+int UTIL_isBlockDevStat(const stat_t* statbuf);
U64 UTIL_getFileSizeStat(const stat_t* statbuf);
/**
* Like chmod(), but only modifies regular files. Provided statbuf may be NULL,
* in which case this function will stat() the file internally, in order to
* check whether it should be modified.
*/
int UTIL_chmod(char const* filename, const stat_t* statbuf, mode_t permissions);
/*
* In the absence of a pre-existing stat result on the file in question, these
* functions will do a stat() call internally and then use that result to
* compute the needed information.
*/
int UTIL_isRegularFile(const char* infilename);
int UTIL_isDirectory(const char* infilename);
int UTIL_isSameFile(const char* file1, const char* file2);
int UTIL_isCompressedFile(const char* infilename, const char *extensionList[]);
int UTIL_isLink(const char* infilename);
int UTIL_isFIFO(const char* infilename);
#define UTIL_FILESIZE_UNKNOWN ((U64)(-1))
U64 UTIL_getFileSize(const char* infilename);
U64 UTIL_getTotalFileSize(const char* const * fileNamesTable, unsigned nbFiles);
+/**
+ * Take @size in bytes,
+ * prepare the components to pretty-print it in a scaled way.
+ * The components in the returned struct should be passed in
+ * precision, value, suffix order to a "%.*f%s" format string.
+ * Output policy is sensible to @g_utilDisplayLevel,
+ * for verbose mode (@g_utilDisplayLevel >= 4),
+ * does not scale down.
+ */
+typedef struct {
+ double value;
+ int precision;
+ const char* suffix;
+} UTIL_HumanReadableSize_t;
+
+UTIL_HumanReadableSize_t UTIL_makeHumanReadableSize(U64 size);
+
int UTIL_compareStr(const void *p1, const void *p2);
const char* UTIL_getFileExtension(const char* infilename);
void UTIL_mirrorSourceFilesDirectories(const char** fileNamesTable, unsigned int nbFiles, const char *outDirName);
char* UTIL_createMirroredDestDirName(const char* srcFileName, const char* outDirRootName);
/*-****************************************
* Lists of Filenames
******************************************/
typedef struct
{ const char** fileNames;
char* buf; /* fileNames are stored in this buffer (or are read-only) */
size_t tableSize; /* nb of fileNames */
size_t tableCapacity;
} FileNamesTable;
/*! UTIL_createFileNamesTable_fromFileName() :
* read filenames from @inputFileName, and store them into returned object.
* @return : a FileNamesTable*, or NULL in case of error (ex: @inputFileName doesn't exist).
* Note: inputFileSize must be less than 50MB
*/
FileNamesTable*
UTIL_createFileNamesTable_fromFileName(const char* inputFileName);
/*! UTIL_assembleFileNamesTable() :
* This function takes ownership of its arguments, @filenames and @buf,
* and store them inside the created object.
* note : this function never fails,
* it will rather exit() the program if internal allocation fails.
* @return : resulting FileNamesTable* object.
*/
FileNamesTable*
UTIL_assembleFileNamesTable(const char** filenames, size_t tableSize, char* buf);
/*! UTIL_freeFileNamesTable() :
* This function is compatible with NULL argument and never fails.
*/
void UTIL_freeFileNamesTable(FileNamesTable* table);
/*! UTIL_mergeFileNamesTable():
* @return : FileNamesTable*, concatenation of @table1 and @table2
* note: @table1 and @table2 are consumed (freed) by this operation
*/
FileNamesTable*
UTIL_mergeFileNamesTable(FileNamesTable* table1, FileNamesTable* table2);
/*! UTIL_expandFNT() :
* read names from @fnt, and expand those corresponding to directories
* update @fnt, now containing only file names,
* @return : 0 in case of success, 1 if error
* note : in case of error, @fnt[0] is NULL
*/
void UTIL_expandFNT(FileNamesTable** fnt, int followLinks);
/*! UTIL_createFNT_fromROTable() :
* copy the @filenames pointer table inside the returned object.
* The names themselves are still stored in their original buffer, which must outlive the object.
* @return : a FileNamesTable* object,
* or NULL in case of error
*/
FileNamesTable*
UTIL_createFNT_fromROTable(const char** filenames, size_t nbFilenames);
/*! UTIL_allocateFileNamesTable() :
* Allocates a table of const char*, to insert read-only names later on.
* The created FileNamesTable* doesn't hold a buffer.
* @return : FileNamesTable*, or NULL, if allocation fails.
*/
FileNamesTable* UTIL_allocateFileNamesTable(size_t tableSize);
/*! UTIL_refFilename() :
* Add a reference to read-only name into @fnt table.
* As @filename is only referenced, its lifetime must outlive @fnt.
* Internal table must be large enough to reference a new member,
* otherwise its UB (protected by an `assert()`).
*/
void UTIL_refFilename(FileNamesTable* fnt, const char* filename);
/* UTIL_createExpandedFNT() is only active if UTIL_HAS_CREATEFILELIST is defined.
* Otherwise, UTIL_createExpandedFNT() is a shell function which does nothing
* apart from displaying a warning message.
*/
#ifdef _WIN32
# define UTIL_HAS_CREATEFILELIST
#elif defined(__linux__) || (PLATFORM_POSIX_VERSION >= 200112L) /* opendir, readdir require POSIX.1-2001 */
# define UTIL_HAS_CREATEFILELIST
# define UTIL_HAS_MIRRORFILELIST
#else
/* do not define UTIL_HAS_CREATEFILELIST */
#endif
/*! UTIL_createExpandedFNT() :
* read names from @filenames, and expand those corresponding to directories.
* links are followed or not depending on @followLinks directive.
* @return : an expanded FileNamesTable*, where each name is a file
* or NULL in case of error
*/
FileNamesTable*
-UTIL_createExpandedFNT(const char** filenames, size_t nbFilenames, int followLinks);
+UTIL_createExpandedFNT(const char* const* filenames, size_t nbFilenames, int followLinks);
+#if defined(_WIN32) || defined(WIN32)
+DWORD CountSetBits(ULONG_PTR bitMask);
+#endif
/*-****************************************
* System
******************************************/
+int UTIL_countCores(int logical);
+
int UTIL_countPhysicalCores(void);
+int UTIL_countLogicalCores(void);
#if defined (__cplusplus)
}
#endif
#endif /* UTIL_H_MODULE */
diff --git a/sys/contrib/zstd/programs/zstd.1 b/sys/contrib/zstd/programs/zstd.1
index a8fc277672b6..c7a19dbacace 100644
--- a/sys/contrib/zstd/programs/zstd.1
+++ b/sys/contrib/zstd/programs/zstd.1
@@ -1,491 +1,501 @@
.
-.TH "ZSTD" "1" "December 2020" "zstd 1.4.8" "User Commands"
+.TH "ZSTD" "1" "January 2022" "zstd 1.5.2" "User Commands"
.
.SH "NAME"
\fBzstd\fR \- zstd, zstdmt, unzstd, zstdcat \- Compress or decompress \.zst files
.
.SH "SYNOPSIS"
\fBzstd\fR [\fIOPTIONS\fR] [\-|\fIINPUT\-FILE\fR] [\-o \fIOUTPUT\-FILE\fR]
.
.P
\fBzstdmt\fR is equivalent to \fBzstd \-T0\fR
.
.P
\fBunzstd\fR is equivalent to \fBzstd \-d\fR
.
.P
\fBzstdcat\fR is equivalent to \fBzstd \-dcf\fR
.
.SH "DESCRIPTION"
\fBzstd\fR is a fast lossless compression algorithm and data compression tool, with command line syntax similar to \fBgzip (1)\fR and \fBxz (1)\fR\. It is based on the \fBLZ77\fR family, with further FSE & huff0 entropy stages\. \fBzstd\fR offers highly configurable compression speed, with fast modes at > 200 MB/s per core, and strong modes nearing lzma compression ratios\. It also features a very fast decoder, with speeds > 500 MB/s per core\.
.
.P
\fBzstd\fR command line syntax is generally similar to gzip, but features the following differences :
.
.IP "\(bu" 4
Source files are preserved by default\. It\'s possible to remove them automatically by using the \fB\-\-rm\fR command\.
.
.IP "\(bu" 4
When compressing a single file, \fBzstd\fR displays progress notifications and result summary by default\. Use \fB\-q\fR to turn them off\.
.
.IP "\(bu" 4
\fBzstd\fR does not accept input from console, but it properly accepts \fBstdin\fR when it\'s not the console\.
.
.IP "\(bu" 4
\fBzstd\fR displays a short help page when command line is an error\. Use \fB\-q\fR to turn it off\.
.
.IP "" 0
.
.P
\fBzstd\fR compresses or decompresses each \fIfile\fR according to the selected operation mode\. If no \fIfiles\fR are given or \fIfile\fR is \fB\-\fR, \fBzstd\fR reads from standard input and writes the processed data to standard output\. \fBzstd\fR will refuse to write compressed data to standard output if it is a terminal : it will display an error message and skip the \fIfile\fR\. Similarly, \fBzstd\fR will refuse to read compressed data from standard input if it is a terminal\.
.
.P
Unless \fB\-\-stdout\fR or \fB\-o\fR is specified, \fIfiles\fR are written to a new file whose name is derived from the source \fIfile\fR name:
.
.IP "\(bu" 4
When compressing, the suffix \fB\.zst\fR is appended to the source filename to get the target filename\.
.
.IP "\(bu" 4
When decompressing, the \fB\.zst\fR suffix is removed from the source filename to get the target filename
.
.IP "" 0
.
.SS "Concatenation with \.zst files"
It is possible to concatenate \fB\.zst\fR files as is\. \fBzstd\fR will decompress such files as if they were a single \fB\.zst\fR file\.
.
.SH "OPTIONS"
.
.SS "Integer suffixes and special values"
In most places where an integer argument is expected, an optional suffix is supported to easily indicate large integers\. There must be no space between the integer and the suffix\.
.
.TP
\fBKiB\fR
Multiply the integer by 1,024 (2^10)\. \fBKi\fR, \fBK\fR, and \fBKB\fR are accepted as synonyms for \fBKiB\fR\.
.
.TP
\fBMiB\fR
Multiply the integer by 1,048,576 (2^20)\. \fBMi\fR, \fBM\fR, and \fBMB\fR are accepted as synonyms for \fBMiB\fR\.
.
.SS "Operation mode"
If multiple operation mode options are given, the last one takes effect\.
.
.TP
\fB\-z\fR, \fB\-\-compress\fR
Compress\. This is the default operation mode when no operation mode option is specified and no other operation mode is implied from the command name (for example, \fBunzstd\fR implies \fB\-\-decompress\fR)\.
.
.TP
\fB\-d\fR, \fB\-\-decompress\fR, \fB\-\-uncompress\fR
Decompress\.
.
.TP
\fB\-t\fR, \fB\-\-test\fR
Test the integrity of compressed \fIfiles\fR\. This option is equivalent to \fB\-\-decompress \-\-stdout\fR except that the decompressed data is discarded instead of being written to standard output\. No files are created or removed\.
.
.TP
\fB\-b#\fR
Benchmark file(s) using compression level #
.
.TP
\fB\-\-train FILEs\fR
Use FILEs as a training set to create a dictionary\. The training set should contain a lot of small files (> 100)\.
.
.TP
\fB\-l\fR, \fB\-\-list\fR
Display information related to a zstd compressed file, such as size, ratio, and checksum\. Some of these fields may not be available\. This command can be augmented with the \fB\-v\fR modifier\.
.
.SS "Operation modifiers"
.
.IP "\(bu" 4
\fB\-#\fR: \fB#\fR compression level [1\-19] (default: 3)
.
.IP "\(bu" 4
\fB\-\-ultra\fR: unlocks high compression levels 20+ (maximum 22), using a lot more memory\. Note that decompression will also require more memory when using these levels\.
.
.IP "\(bu" 4
\fB\-\-fast[=#]\fR: switch to ultra\-fast compression levels\. If \fB=#\fR is not present, it defaults to \fB1\fR\. The higher the value, the faster the compression speed, at the cost of some compression ratio\. This setting overwrites compression level if one was set previously\. Similarly, if a compression level is set after \fB\-\-fast\fR, it overrides it\.
.
.IP "\(bu" 4
-\fB\-T#\fR, \fB\-\-threads=#\fR: Compress using \fB#\fR working threads (default: 1)\. If \fB#\fR is 0, attempt to detect and use the number of physical CPU cores\. In all cases, the nb of threads is capped to ZSTDMT_NBWORKERS_MAX==200\. This modifier does nothing if \fBzstd\fR is compiled without multithread support\.
+\fB\-T#\fR, \fB\-\-threads=#\fR: Compress using \fB#\fR working threads (default: 1)\. If \fB#\fR is 0, attempt to detect and use the number of physical CPU cores\. In all cases, the nb of threads is capped to \fBZSTDMT_NBWORKERS_MAX\fR, which is either 64 in 32\-bit mode, or 256 for 64\-bit environments\. This modifier does nothing if \fBzstd\fR is compiled without multithread support\.
.
.IP "\(bu" 4
\fB\-\-single\-thread\fR: Does not spawn a thread for compression, use a single thread for both I/O and compression\. In this mode, compression is serialized with I/O, which is slightly slower\. (This is different from \fB\-T1\fR, which spawns 1 compression thread in parallel of I/O)\. This mode is the only one available when multithread support is disabled\. Single\-thread mode features lower memory usage\. Final compressed result is slightly different from \fB\-T1\fR\.
.
.IP "\(bu" 4
+\fB\-\-auto\-threads={physical,logical} (default: physical)\fR: When using a default amount of threads via \fB\-T0\fR, choose the default based on the number of detected physical or logical cores\.
+.
+.IP "\(bu" 4
\fB\-\-adapt[=min=#,max=#]\fR : \fBzstd\fR will dynamically adapt compression level to perceived I/O conditions\. Compression level adaptation can be observed live by using command \fB\-v\fR\. Adaptation can be constrained between supplied \fBmin\fR and \fBmax\fR levels\. The feature works when combined with multi\-threading and \fB\-\-long\fR mode\. It does not work with \fB\-\-single\-thread\fR\. It sets window size to 8 MB by default (can be changed manually, see \fBwlog\fR)\. Due to the chaotic nature of dynamic adaptation, compressed result is not reproducible\. \fInote\fR : at the time of this writing, \fB\-\-adapt\fR can remain stuck at low speed when combined with multiple worker threads (>=2)\.
.
.IP "\(bu" 4
\fB\-\-long[=#]\fR: enables long distance matching with \fB#\fR \fBwindowLog\fR, if not \fB#\fR is not present it defaults to \fB27\fR\. This increases the window size (\fBwindowLog\fR) and memory usage for both the compressor and decompressor\. This setting is designed to improve the compression ratio for files with long matches at a large distance\.
.
.IP
Note: If \fBwindowLog\fR is set to larger than 27, \fB\-\-long=windowLog\fR or \fB\-\-memory=windowSize\fR needs to be passed to the decompressor\.
.
.IP "\(bu" 4
\fB\-D DICT\fR: use \fBDICT\fR as Dictionary to compress or decompress FILE(s)
.
.IP "\(bu" 4
\fB\-\-patch\-from FILE\fR: Specify the file to be used as a reference point for zstd\'s diff engine\. This is effectively dictionary compression with some convenient parameter selection, namely that windowSize > srcSize\.
.
.IP
Note: cannot use both this and \-D together Note: \fB\-\-long\fR mode will be automatically activated if chainLog < fileLog (fileLog being the windowLog required to cover the whole file)\. You can also manually force it\. Node: for all levels, you can use \-\-patch\-from in \-\-single\-thread mode to improve compression ratio at the cost of speed Note: for level 19, you can get increased compression ratio at the cost of speed by specifying \fB\-\-zstd=targetLength=\fR to be something large (i\.e 4096), and by setting a large \fB\-\-zstd=chainLog=\fR
.
.IP "\(bu" 4
-\fB\-\-rsyncable\fR : \fBzstd\fR will periodically synchronize the compression state to make the compressed file more rsync\-friendly\. There is a negligible impact to compression ratio, and the faster compression levels will see a small compression speed hit\. This feature does not work with \fB\-\-single\-thread\fR\. You probably don\'t want to use it with long range mode, since it will decrease the effectiveness of the synchronization points, but your milage may vary\.
+\fB\-\-rsyncable\fR : \fBzstd\fR will periodically synchronize the compression state to make the compressed file more rsync\-friendly\. There is a negligible impact to compression ratio, and the faster compression levels will see a small compression speed hit\. This feature does not work with \fB\-\-single\-thread\fR\. You probably don\'t want to use it with long range mode, since it will decrease the effectiveness of the synchronization points, but your mileage may vary\.
.
.IP "\(bu" 4
\fB\-C\fR, \fB\-\-[no\-]check\fR: add integrity check computed from uncompressed data (default: enabled)
.
.IP "\(bu" 4
\fB\-\-[no\-]content\-size\fR: enable / disable whether or not the original size of the file is placed in the header of the compressed file\. The default option is \-\-content\-size (meaning that the original size will be placed in the header)\.
.
.IP "\(bu" 4
\fB\-\-no\-dictID\fR: do not store dictionary ID within frame header (dictionary compression)\. The decoder will have to rely on implicit knowledge about which dictionary to use, it won\'t be able to check if it\'s correct\.
.
.IP "\(bu" 4
\fB\-M#\fR, \fB\-\-memory=#\fR: Set a memory usage limit\. By default, Zstandard uses 128 MB for decompression as the maximum amount of memory the decompressor is allowed to use, but you can override this manually if need be in either direction (ie\. you can increase or decrease it)\.
.
.IP
This is also used during compression when using with \-\-patch\-from=\. In this case, this parameter overrides that maximum size allowed for a dictionary\. (128 MB)\.
.
+.IP
+Additionally, this can be used to limit memory for dictionary training\. This parameter overrides the default limit of 2 GB\. zstd will load training samples up to the memory limit and ignore the rest\.
+.
.IP "\(bu" 4
\fB\-\-stream\-size=#\fR : Sets the pledged source size of input coming from a stream\. This value must be exact, as it will be included in the produced frame header\. Incorrect stream sizes will cause an error\. This information will be used to better optimize compression parameters, resulting in better and potentially faster compression, especially for smaller source sizes\.
.
.IP "\(bu" 4
\fB\-\-size\-hint=#\fR: When handling input from a stream, \fBzstd\fR must guess how large the source size will be when optimizing compression parameters\. If the stream size is relatively small, this guess may be a poor one, resulting in a higher compression ratio than expected\. This feature allows for controlling the guess when needed\. Exact guesses result in better compression ratios\. Overestimates result in slightly degraded compression ratios, while underestimates may result in significant degradation\.
.
.IP "\(bu" 4
\fB\-o FILE\fR: save result into \fBFILE\fR
.
.IP "\(bu" 4
-\fB\-f\fR, \fB\-\-force\fR: overwrite output without prompting, and (de)compress symbolic links
+\fB\-f\fR, \fB\-\-force\fR: disable input and output checks\. Allows overwriting existing files, input from console, output to stdout, operating on links, block devices, etc\.
.
.IP "\(bu" 4
-\fB\-c\fR, \fB\-\-stdout\fR: force write to standard output, even if it is the console
+\fB\-c\fR, \fB\-\-stdout\fR: write to standard output (even if it is the console)
.
.IP "\(bu" 4
\fB\-\-[no\-]sparse\fR: enable / disable sparse FS support, to make files with many zeroes smaller on disk\. Creating sparse files may save disk space and speed up decompression by reducing the amount of disk I/O\. default: enabled when output is into a file, and disabled when output is stdout\. This setting overrides default and can force sparse mode over stdout\.
.
.IP "\(bu" 4
\fB\-\-rm\fR: remove source file(s) after successful compression or decompression\. If used in combination with \-o, will trigger a confirmation prompt (which can be silenced with \-f), as this is a destructive operation\.
.
.IP "\(bu" 4
\fB\-k\fR, \fB\-\-keep\fR: keep source file(s) after successful compression or decompression\. This is the default behavior\.
.
.IP "\(bu" 4
-\fB\-r\fR: operate recursively on directories
+\fB\-r\fR: operate recursively on directories\. It selects all files in the named directory and all its subdirectories\. This can be useful both to reduce command line typing, and to circumvent shell expansion limitations, when there are a lot of files and naming breaks the maximum size of a command line\.
.
.IP "\(bu" 4
\fB\-\-filelist FILE\fR read a list of files to process as content from \fBFILE\fR\. Format is compatible with \fBls\fR output, with one file per line\.
.
.IP "\(bu" 4
\fB\-\-output\-dir\-flat DIR\fR: resulting files are stored into target \fBDIR\fR directory, instead of same directory as origin file\. Be aware that this command can introduce name collision issues, if multiple files, from different directories, end up having the same name\. Collision resolution ensures first file with a given name will be present in \fBDIR\fR, while in combination with \fB\-f\fR, the last file will be present instead\.
.
.IP "\(bu" 4
\fB\-\-output\-dir\-mirror DIR\fR: similar to \fB\-\-output\-dir\-flat\fR, the output files are stored underneath target \fBDIR\fR directory, but this option will replicate input directory hierarchy into output \fBDIR\fR\.
.
.IP
If input directory contains "\.\.", the files in this directory will be ignored\. If input directory is an absolute directory (i\.e\. "/var/tmp/abc"), it will be stored into the "output\-dir/var/tmp/abc"\. If there are multiple input files or directories, name collision resolution will follow the same rules as \fB\-\-output\-dir\-flat\fR\.
.
.IP "\(bu" 4
\fB\-\-format=FORMAT\fR: compress and decompress in other formats\. If compiled with support, zstd can compress to or decompress from other compression algorithm formats\. Possibly available options are \fBzstd\fR, \fBgzip\fR, \fBxz\fR, \fBlzma\fR, and \fBlz4\fR\. If no such format is provided, \fBzstd\fR is the default\.
.
.IP "\(bu" 4
\fB\-h\fR/\fB\-H\fR, \fB\-\-help\fR: display help/long help and exit
.
.IP "\(bu" 4
\fB\-V\fR, \fB\-\-version\fR: display version number and exit\. Advanced : \fB\-vV\fR also displays supported formats\. \fB\-vvV\fR also displays POSIX support\. \fB\-q\fR will only display the version number, suitable for machine reading\.
.
.IP "\(bu" 4
\fB\-v\fR, \fB\-\-verbose\fR: verbose mode, display more information
.
.IP "\(bu" 4
\fB\-q\fR, \fB\-\-quiet\fR: suppress warnings, interactivity, and notifications\. specify twice to suppress errors too\.
.
.IP "\(bu" 4
\fB\-\-no\-progress\fR: do not display the progress bar, but keep all other messages\.
.
.IP "\(bu" 4
\fB\-\-show\-default\-cparams\fR: Shows the default compression parameters that will be used for a particular src file\. If the provided src file is not a regular file (eg\. named pipe), the cli will just output the default parameters\. That is, the parameters that are used when the src size is unknown\.
.
.IP "\(bu" 4
\fB\-\-\fR: All arguments after \fB\-\-\fR are treated as files
.
.IP "" 0
.
.SS "Restricted usage of Environment Variables"
Using environment variables to set parameters has security implications\. Therefore, this avenue is intentionally restricted\. Only \fBZSTD_CLEVEL\fR and \fBZSTD_NBTHREADS\fR are currently supported\. They set the compression level and number of threads to use during compression, respectively\.
.
.P
\fBZSTD_CLEVEL\fR can be used to set the level between 1 and 19 (the "normal" range)\. If the value of \fBZSTD_CLEVEL\fR is not a valid integer, it will be ignored with a warning message\. \fBZSTD_CLEVEL\fR just replaces the default compression level (\fB3\fR)\.
.
.P
-\fBZSTD_NBTHREADS\fR can be used to set the number of threads \fBzstd\fR will attempt to use during compression\. If the value of \fBZSTD_NBTHREADS\fR is not a valid unsigned integer, it will be ignored with a warning message\. \'ZSTD_NBTHREADS\fBhas a default value of (\fR1\fB), and is capped at ZSTDMT_NBWORKERS_MAX==200\.\fRzstd` must be compiled with multithread support for this to have any effect\.
+\fBZSTD_NBTHREADS\fR can be used to set the number of threads \fBzstd\fR will attempt to use during compression\. If the value of \fBZSTD_NBTHREADS\fR is not a valid unsigned integer, it will be ignored with a warning message\. \fBZSTD_NBTHREADS\fR has a default value of (\fB1\fR), and is capped at ZSTDMT_NBWORKERS_MAX==200\. \fBzstd\fR must be compiled with multithread support for this to have any effect\.
.
.P
They can both be overridden by corresponding command line arguments: \fB\-#\fR for compression level and \fB\-T#\fR for number of compression threads\.
.
.SH "DICTIONARY BUILDER"
\fBzstd\fR offers \fIdictionary\fR compression, which greatly improves efficiency on small files and messages\. It\'s possible to train \fBzstd\fR with a set of samples, the result of which is saved into a file called a \fBdictionary\fR\. Then during compression and decompression, reference the same dictionary, using command \fB\-D dictionaryFileName\fR\. Compression of small files similar to the sample set will be greatly improved\.
.
.TP
\fB\-\-train FILEs\fR
-Use FILEs as training set to create a dictionary\. The training set should contain a lot of small files (> 100), and weight typically 100x the target dictionary size (for example, 10 MB for a 100 KB dictionary)\.
+Use FILEs as training set to create a dictionary\. The training set should contain a lot of small files (> 100), and weight typically 100x the target dictionary size (for example, 10 MB for a 100 KB dictionary)\. \fB\-\-train\fR can be combined with \fB\-r\fR to indicate a directory rather than listing all the files, which can be useful to circumvent shell expansion limits\.
.
.IP
-Supports multithreading if \fBzstd\fR is compiled with threading support\. Additional parameters can be specified with \fB\-\-train\-fastcover\fR\. The legacy dictionary builder can be accessed with \fB\-\-train\-legacy\fR\. The cover dictionary builder can be accessed with \fB\-\-train\-cover\fR\. Equivalent to \fB\-\-train\-fastcover=d=8,steps=4\fR\.
+\fB\-\-train\fR supports multithreading if \fBzstd\fR is compiled with threading support (default)\. Additional parameters can be specified with \fB\-\-train\-fastcover\fR\. The legacy dictionary builder can be accessed with \fB\-\-train\-legacy\fR\. The slower cover dictionary builder can be accessed with \fB\-\-train\-cover\fR\. Default is equivalent to \fB\-\-train\-fastcover=d=8,steps=4\fR\.
.
.TP
\fB\-o file\fR
Dictionary saved into \fBfile\fR (default name: dictionary)\.
.
.TP
\fB\-\-maxdict=#\fR
Limit dictionary to specified size (default: 112640)\.
.
.TP
\fB\-#\fR
Use \fB#\fR compression level during training (optional)\. Will generate statistics more tuned for selected compression level, resulting in a \fIsmall\fR compression ratio improvement for this level\.
.
.TP
\fB\-B#\fR
-Split input files in blocks of size # (default: no split)
+Split input files into blocks of size # (default: no split)
+.
+.TP
+\fB\-M#\fR, \fB\-\-memory=#\fR
+Limit the amount of sample data loaded for training (default: 2 GB)\. See above for details\.
.
.TP
\fB\-\-dictID=#\fR
A dictionary ID is a locally unique ID that a decoder can use to verify it is using the right dictionary\. By default, zstd will create a 4\-bytes random number ID\. It\'s possible to give a precise number instead\. Short numbers have an advantage : an ID < 256 will only need 1 byte in the compressed frame header, and an ID < 65536 will only need 2 bytes\. This compares favorably to 4 bytes default\. However, it\'s up to the dictionary manager to not assign twice the same ID to 2 different dictionaries\.
.
.TP
\fB\-\-train\-cover[=k#,d=#,steps=#,split=#,shrink[=#]]\fR
Select parameters for the default dictionary builder algorithm named cover\. If \fId\fR is not specified, then it tries \fId\fR = 6 and \fId\fR = 8\. If \fIk\fR is not specified, then it tries \fIsteps\fR values in the range [50, 2000]\. If \fIsteps\fR is not specified, then the default value of 40 is used\. If \fIsplit\fR is not specified or split <= 0, then the default value of 100 is used\. Requires that \fId\fR <= \fIk\fR\. If \fIshrink\fR flag is not used, then the default value for \fIshrinkDict\fR of 0 is used\. If \fIshrink\fR is not specified, then the default value for \fIshrinkDictMaxRegression\fR of 1 is used\.
.
.IP
Selects segments of size \fIk\fR with highest score to put in the dictionary\. The score of a segment is computed by the sum of the frequencies of all the subsegments of size \fId\fR\. Generally \fId\fR should be in the range [6, 8], occasionally up to 16, but the algorithm will run faster with d <= \fI8\fR\. Good values for \fIk\fR vary widely based on the input data, but a safe range is [2 * \fId\fR, 2000]\. If \fIsplit\fR is 100, all input samples are used for both training and testing to find optimal \fId\fR and \fIk\fR to build dictionary\. Supports multithreading if \fBzstd\fR is compiled with threading support\. Having \fIshrink\fR enabled takes a truncated dictionary of minimum size and doubles in size until compression ratio of the truncated dictionary is at most \fIshrinkDictMaxRegression%\fR worse than the compression ratio of the largest dictionary\.
.
.IP
Examples:
.
.IP
\fBzstd \-\-train\-cover FILEs\fR
.
.IP
\fBzstd \-\-train\-cover=k=50,d=8 FILEs\fR
.
.IP
\fBzstd \-\-train\-cover=d=8,steps=500 FILEs\fR
.
.IP
\fBzstd \-\-train\-cover=k=50 FILEs\fR
.
.IP
\fBzstd \-\-train\-cover=k=50,split=60 FILEs\fR
.
.IP
\fBzstd \-\-train\-cover=shrink FILEs\fR
.
.IP
\fBzstd \-\-train\-cover=shrink=2 FILEs\fR
.
.TP
\fB\-\-train\-fastcover[=k#,d=#,f=#,steps=#,split=#,accel=#]\fR
Same as cover but with extra parameters \fIf\fR and \fIaccel\fR and different default value of split If \fIsplit\fR is not specified, then it tries \fIsplit\fR = 75\. If \fIf\fR is not specified, then it tries \fIf\fR = 20\. Requires that 0 < \fIf\fR < 32\. If \fIaccel\fR is not specified, then it tries \fIaccel\fR = 1\. Requires that 0 < \fIaccel\fR <= 10\. Requires that \fId\fR = 6 or \fId\fR = 8\.
.
.IP
\fIf\fR is log of size of array that keeps track of frequency of subsegments of size \fId\fR\. The subsegment is hashed to an index in the range [0,2^\fIf\fR \- 1]\. It is possible that 2 different subsegments are hashed to the same index, and they are considered as the same subsegment when computing frequency\. Using a higher \fIf\fR reduces collision but takes longer\.
.
.IP
Examples:
.
.IP
\fBzstd \-\-train\-fastcover FILEs\fR
.
.IP
\fBzstd \-\-train\-fastcover=d=8,f=15,accel=2 FILEs\fR
.
.TP
\fB\-\-train\-legacy[=selectivity=#]\fR
Use legacy dictionary builder algorithm with the given dictionary \fIselectivity\fR (default: 9)\. The smaller the \fIselectivity\fR value, the denser the dictionary, improving its efficiency but reducing its possible maximum size\. \fB\-\-train\-legacy=s=#\fR is also accepted\.
.
.IP
Examples:
.
.IP
\fBzstd \-\-train\-legacy FILEs\fR
.
.IP
\fBzstd \-\-train\-legacy=selectivity=8 FILEs\fR
.
.SH "BENCHMARK"
.
.TP
\fB\-b#\fR
benchmark file(s) using compression level #
.
.TP
\fB\-e#\fR
benchmark file(s) using multiple compression levels, from \fB\-b#\fR to \fB\-e#\fR (inclusive)
.
.TP
\fB\-i#\fR
minimum evaluation time, in seconds (default: 3s), benchmark mode only
.
.TP
\fB\-B#\fR, \fB\-\-block\-size=#\fR
cut file(s) into independent blocks of size # (default: no block)
.
.TP
\fB\-\-priority=rt\fR
set process priority to real\-time
.
.P
\fBOutput Format:\fR CompressionLevel#Filename : IntputSize \-> OutputSize (CompressionRatio), CompressionSpeed, DecompressionSpeed
.
.P
\fBMethodology:\fR For both compression and decompression speed, the entire input is compressed/decompressed in\-memory to measure speed\. A run lasts at least 1 sec, so when files are small, they are compressed/decompressed several times per run, in order to improve measurement accuracy\.
.
.SH "ADVANCED COMPRESSION OPTIONS"
.
+.SS "\-B#:"
+Select the size of each compression job\. This parameter is only available when multi\-threading is enabled\. Each compression job is run in parallel, so this value indirectly impacts the nb of active threads\. Default job size varies depending on compression level (generally \fB4 * windowSize\fR)\. \fB\-B#\fR makes it possible to manually select a custom size\. Note that job size must respect a minimum value which is enforced transparently\. This minimum is either 512 KB, or \fBoverlapSize\fR, whichever is largest\. Different job sizes will lead to (slightly) different compressed frames\.
+.
.SS "\-\-zstd[=options]:"
\fBzstd\fR provides 22 predefined compression levels\. The selected or default predefined compression level can be changed with advanced compression options\. The \fIoptions\fR are provided as a comma\-separated list\. You may specify only the options you want to change and the rest will be taken from the selected or default compression level\. The list of available \fIoptions\fR:
.
.TP
\fBstrategy\fR=\fIstrat\fR, \fBstrat\fR=\fIstrat\fR
Specify a strategy used by a match finder\.
.
.IP
There are 9 strategies numbered from 1 to 9, from faster to stronger: 1=ZSTD_fast, 2=ZSTD_dfast, 3=ZSTD_greedy, 4=ZSTD_lazy, 5=ZSTD_lazy2, 6=ZSTD_btlazy2, 7=ZSTD_btopt, 8=ZSTD_btultra, 9=ZSTD_btultra2\.
.
.TP
\fBwindowLog\fR=\fIwlog\fR, \fBwlog\fR=\fIwlog\fR
Specify the maximum number of bits for a match distance\.
.
.IP
The higher number of increases the chance to find a match which usually improves compression ratio\. It also increases memory requirements for the compressor and decompressor\. The minimum \fIwlog\fR is 10 (1 KiB) and the maximum is 30 (1 GiB) on 32\-bit platforms and 31 (2 GiB) on 64\-bit platforms\.
.
.IP
Note: If \fBwindowLog\fR is set to larger than 27, \fB\-\-long=windowLog\fR or \fB\-\-memory=windowSize\fR needs to be passed to the decompressor\.
.
.TP
\fBhashLog\fR=\fIhlog\fR, \fBhlog\fR=\fIhlog\fR
Specify the maximum number of bits for a hash table\.
.
.IP
Bigger hash tables cause less collisions which usually makes compression faster, but requires more memory during compression\.
.
.IP
The minimum \fIhlog\fR is 6 (64 B) and the maximum is 30 (1 GiB)\.
.
.TP
\fBchainLog\fR=\fIclog\fR, \fBclog\fR=\fIclog\fR
Specify the maximum number of bits for a hash chain or a binary tree\.
.
.IP
Higher numbers of bits increases the chance to find a match which usually improves compression ratio\. It also slows down compression speed and increases memory requirements for compression\. This option is ignored for the ZSTD_fast strategy\.
.
.IP
The minimum \fIclog\fR is 6 (64 B) and the maximum is 29 (524 Mib) on 32\-bit platforms and 30 (1 Gib) on 64\-bit platforms\.
.
.TP
\fBsearchLog\fR=\fIslog\fR, \fBslog\fR=\fIslog\fR
Specify the maximum number of searches in a hash chain or a binary tree using logarithmic scale\.
.
.IP
More searches increases the chance to find a match which usually increases compression ratio but decreases compression speed\.
.
.IP
The minimum \fIslog\fR is 1 and the maximum is \'windowLog\' \- 1\.
.
.TP
\fBminMatch\fR=\fImml\fR, \fBmml\fR=\fImml\fR
Specify the minimum searched length of a match in a hash table\.
.
.IP
Larger search lengths usually decrease compression ratio but improve decompression speed\.
.
.IP
The minimum \fImml\fR is 3 and the maximum is 7\.
.
.TP
\fBtargetLength\fR=\fItlen\fR, \fBtlen\fR=\fItlen\fR
The impact of this field vary depending on selected strategy\.
.
.IP
For ZSTD_btopt, ZSTD_btultra and ZSTD_btultra2, it specifies the minimum match length that causes match finder to stop searching\. A larger \fBtargetLength\fR usually improves compression ratio but decreases compression speed\. t For ZSTD_fast, it triggers ultra\-fast mode when > 0\. The value represents the amount of data skipped between match sampling\. Impact is reversed : a larger \fBtargetLength\fR increases compression speed but decreases compression ratio\.
.
.IP
For all other strategies, this field has no impact\.
.
.IP
The minimum \fItlen\fR is 0 and the maximum is 128 Kib\.
.
.TP
\fBoverlapLog\fR=\fIovlog\fR, \fBovlog\fR=\fIovlog\fR
Determine \fBoverlapSize\fR, amount of data reloaded from previous job\. This parameter is only available when multithreading is enabled\. Reloading more data improves compression ratio, but decreases speed\.
.
.IP
The minimum \fIovlog\fR is 0, and the maximum is 9\. 1 means "no overlap", hence completely independent jobs\. 9 means "full overlap", meaning up to \fBwindowSize\fR is reloaded from previous job\. Reducing \fIovlog\fR by 1 reduces the reloaded amount by a factor 2\. For example, 8 means "windowSize/2", and 6 means "windowSize/8"\. Value 0 is special and means "default" : \fIovlog\fR is automatically determined by \fBzstd\fR\. In which case, \fIovlog\fR will range from 6 to 9, depending on selected \fIstrat\fR\.
.
.TP
\fBldmHashLog\fR=\fIlhlog\fR, \fBlhlog\fR=\fIlhlog\fR
Specify the maximum size for a hash table used for long distance matching\.
.
.IP
This option is ignored unless long distance matching is enabled\.
.
.IP
Bigger hash tables usually improve compression ratio at the expense of more memory during compression and a decrease in compression speed\.
.
.IP
The minimum \fIlhlog\fR is 6 and the maximum is 30 (default: 20)\.
.
.TP
\fBldmMinMatch\fR=\fIlmml\fR, \fBlmml\fR=\fIlmml\fR
Specify the minimum searched length of a match for long distance matching\.
.
.IP
This option is ignored unless long distance matching is enabled\.
.
.IP
Larger/very small values usually decrease compression ratio\.
.
.IP
The minimum \fIlmml\fR is 4 and the maximum is 4096 (default: 64)\.
.
.TP
\fBldmBucketSizeLog\fR=\fIlblog\fR, \fBlblog\fR=\fIlblog\fR
Specify the size of each bucket for the hash table used for long distance matching\.
.
.IP
This option is ignored unless long distance matching is enabled\.
.
.IP
Larger bucket sizes improve collision resolution but decrease compression speed\.
.
.IP
The minimum \fIlblog\fR is 1 and the maximum is 8 (default: 3)\.
.
.TP
\fBldmHashRateLog\fR=\fIlhrlog\fR, \fBlhrlog\fR=\fIlhrlog\fR
Specify the frequency of inserting entries into the long distance matching hash table\.
.
.IP
This option is ignored unless long distance matching is enabled\.
.
.IP
Larger values will improve compression speed\. Deviating far from the default value will likely result in a decrease in compression ratio\.
.
.IP
The default value is \fBwlog \- lhlog\fR\.
.
.SS "Example"
The following parameters sets advanced compression options to something similar to predefined level 19 for files bigger than 256 KB:
.
.P
\fB\-\-zstd\fR=wlog=23,clog=23,hlog=22,slog=6,mml=3,tlen=48,strat=6
.
-.SS "\-B#:"
-Select the size of each compression job\. This parameter is available only when multi\-threading is enabled\. Default value is \fB4 * windowSize\fR, which means it varies depending on compression level\. \fB\-B#\fR makes it possible to select a custom value\. Note that job size must respect a minimum value which is enforced transparently\. This minimum is either 1 MB, or \fBoverlapSize\fR, whichever is largest\.
-.
.SH "BUGS"
Report bugs at: https://github\.com/facebook/zstd/issues
.
.SH "AUTHOR"
Yann Collet
diff --git a/sys/contrib/zstd/programs/zstd.1.md b/sys/contrib/zstd/programs/zstd.1.md
index 73670daf6dc2..e343ec0448b4 100644
--- a/sys/contrib/zstd/programs/zstd.1.md
+++ b/sys/contrib/zstd/programs/zstd.1.md
@@ -1,582 +1,602 @@
zstd(1) -- zstd, zstdmt, unzstd, zstdcat - Compress or decompress .zst files
============================================================================
SYNOPSIS
--------
`zstd` [*OPTIONS*] [-|_INPUT-FILE_] [-o _OUTPUT-FILE_]
`zstdmt` is equivalent to `zstd -T0`
`unzstd` is equivalent to `zstd -d`
`zstdcat` is equivalent to `zstd -dcf`
DESCRIPTION
-----------
`zstd` is a fast lossless compression algorithm and data compression tool,
with command line syntax similar to `gzip (1)` and `xz (1)`.
It is based on the **LZ77** family, with further FSE & huff0 entropy stages.
`zstd` offers highly configurable compression speed,
with fast modes at > 200 MB/s per core,
and strong modes nearing lzma compression ratios.
It also features a very fast decoder, with speeds > 500 MB/s per core.
`zstd` command line syntax is generally similar to gzip,
but features the following differences :
- Source files are preserved by default.
It's possible to remove them automatically by using the `--rm` command.
- When compressing a single file, `zstd` displays progress notifications
and result summary by default.
Use `-q` to turn them off.
- `zstd` does not accept input from console,
but it properly accepts `stdin` when it's not the console.
- `zstd` displays a short help page when command line is an error.
Use `-q` to turn it off.
`zstd` compresses or decompresses each _file_ according to the selected
operation mode.
If no _files_ are given or _file_ is `-`, `zstd` reads from standard input
and writes the processed data to standard output.
`zstd` will refuse to write compressed data to standard output
if it is a terminal : it will display an error message and skip the _file_.
Similarly, `zstd` will refuse to read compressed data from standard input
if it is a terminal.
Unless `--stdout` or `-o` is specified, _files_ are written to a new file
whose name is derived from the source _file_ name:
* When compressing, the suffix `.zst` is appended to the source filename to
get the target filename.
* When decompressing, the `.zst` suffix is removed from the source filename to
get the target filename
### Concatenation with .zst files
It is possible to concatenate `.zst` files as is.
`zstd` will decompress such files as if they were a single `.zst` file.
OPTIONS
-------
### Integer suffixes and special values
In most places where an integer argument is expected,
an optional suffix is supported to easily indicate large integers.
There must be no space between the integer and the suffix.
* `KiB`:
Multiply the integer by 1,024 (2\^10).
`Ki`, `K`, and `KB` are accepted as synonyms for `KiB`.
* `MiB`:
Multiply the integer by 1,048,576 (2\^20).
`Mi`, `M`, and `MB` are accepted as synonyms for `MiB`.
### Operation mode
If multiple operation mode options are given,
the last one takes effect.
* `-z`, `--compress`:
Compress.
This is the default operation mode when no operation mode option is specified
and no other operation mode is implied from the command name
(for example, `unzstd` implies `--decompress`).
* `-d`, `--decompress`, `--uncompress`:
Decompress.
* `-t`, `--test`:
Test the integrity of compressed _files_.
This option is equivalent to `--decompress --stdout` except that the
decompressed data is discarded instead of being written to standard output.
No files are created or removed.
* `-b#`:
Benchmark file(s) using compression level #
* `--train FILEs`:
Use FILEs as a training set to create a dictionary.
The training set should contain a lot of small files (> 100).
* `-l`, `--list`:
Display information related to a zstd compressed file, such as size, ratio, and checksum.
Some of these fields may not be available.
This command can be augmented with the `-v` modifier.
### Operation modifiers
* `-#`:
`#` compression level \[1-19] (default: 3)
* `--ultra`:
unlocks high compression levels 20+ (maximum 22), using a lot more memory.
Note that decompression will also require more memory when using these levels.
* `--fast[=#]`:
switch to ultra-fast compression levels.
If `=#` is not present, it defaults to `1`.
The higher the value, the faster the compression speed,
at the cost of some compression ratio.
This setting overwrites compression level if one was set previously.
Similarly, if a compression level is set after `--fast`, it overrides it.
* `-T#`, `--threads=#`:
Compress using `#` working threads (default: 1).
If `#` is 0, attempt to detect and use the number of physical CPU cores.
- In all cases, the nb of threads is capped to ZSTDMT_NBWORKERS_MAX==200.
+ In all cases, the nb of threads is capped to `ZSTDMT_NBWORKERS_MAX`,
+ which is either 64 in 32-bit mode, or 256 for 64-bit environments.
This modifier does nothing if `zstd` is compiled without multithread support.
* `--single-thread`:
Does not spawn a thread for compression, use a single thread for both I/O and compression.
In this mode, compression is serialized with I/O, which is slightly slower.
(This is different from `-T1`, which spawns 1 compression thread in parallel of I/O).
This mode is the only one available when multithread support is disabled.
Single-thread mode features lower memory usage.
Final compressed result is slightly different from `-T1`.
+* `--auto-threads={physical,logical} (default: physical)`:
+ When using a default amount of threads via `-T0`, choose the default based on the number
+ of detected physical or logical cores.
* `--adapt[=min=#,max=#]` :
`zstd` will dynamically adapt compression level to perceived I/O conditions.
Compression level adaptation can be observed live by using command `-v`.
Adaptation can be constrained between supplied `min` and `max` levels.
The feature works when combined with multi-threading and `--long` mode.
It does not work with `--single-thread`.
It sets window size to 8 MB by default (can be changed manually, see `wlog`).
Due to the chaotic nature of dynamic adaptation, compressed result is not reproducible.
_note_ : at the time of this writing, `--adapt` can remain stuck at low speed
when combined with multiple worker threads (>=2).
* `--long[=#]`:
enables long distance matching with `#` `windowLog`, if not `#` is not
present it defaults to `27`.
This increases the window size (`windowLog`) and memory usage for both the
compressor and decompressor.
This setting is designed to improve the compression ratio for files with
long matches at a large distance.
Note: If `windowLog` is set to larger than 27, `--long=windowLog` or
`--memory=windowSize` needs to be passed to the decompressor.
* `-D DICT`:
use `DICT` as Dictionary to compress or decompress FILE(s)
* `--patch-from FILE`:
Specify the file to be used as a reference point for zstd's diff engine.
This is effectively dictionary compression with some convenient parameter
selection, namely that windowSize > srcSize.
Note: cannot use both this and -D together
Note: `--long` mode will be automatically activated if chainLog < fileLog
(fileLog being the windowLog required to cover the whole file). You
can also manually force it.
Node: for all levels, you can use --patch-from in --single-thread mode
to improve compression ratio at the cost of speed
Note: for level 19, you can get increased compression ratio at the cost
of speed by specifying `--zstd=targetLength=` to be something large
(i.e 4096), and by setting a large `--zstd=chainLog=`
* `--rsyncable` :
`zstd` will periodically synchronize the compression state to make the
compressed file more rsync-friendly. There is a negligible impact to
compression ratio, and the faster compression levels will see a small
compression speed hit.
This feature does not work with `--single-thread`. You probably don't want
to use it with long range mode, since it will decrease the effectiveness of
- the synchronization points, but your milage may vary.
+ the synchronization points, but your mileage may vary.
* `-C`, `--[no-]check`:
add integrity check computed from uncompressed data (default: enabled)
* `--[no-]content-size`:
enable / disable whether or not the original size of the file is placed in
the header of the compressed file. The default option is
--content-size (meaning that the original size will be placed in the header).
* `--no-dictID`:
do not store dictionary ID within frame header (dictionary compression).
The decoder will have to rely on implicit knowledge about which dictionary to use,
it won't be able to check if it's correct.
* `-M#`, `--memory=#`:
Set a memory usage limit. By default, Zstandard uses 128 MB for decompression
as the maximum amount of memory the decompressor is allowed to use, but you can
override this manually if need be in either direction (ie. you can increase or
decrease it).
This is also used during compression when using with --patch-from=. In this case,
this parameter overrides that maximum size allowed for a dictionary. (128 MB).
+
+ Additionally, this can be used to limit memory for dictionary training. This parameter
+ overrides the default limit of 2 GB. zstd will load training samples up to the memory limit
+ and ignore the rest.
* `--stream-size=#` :
Sets the pledged source size of input coming from a stream. This value must be exact, as it
will be included in the produced frame header. Incorrect stream sizes will cause an error.
This information will be used to better optimize compression parameters, resulting in
better and potentially faster compression, especially for smaller source sizes.
* `--size-hint=#`:
When handling input from a stream, `zstd` must guess how large the source size
will be when optimizing compression parameters. If the stream size is relatively
small, this guess may be a poor one, resulting in a higher compression ratio than
expected. This feature allows for controlling the guess when needed.
Exact guesses result in better compression ratios. Overestimates result in slightly
degraded compression ratios, while underestimates may result in significant degradation.
* `-o FILE`:
save result into `FILE`
* `-f`, `--force`:
- overwrite output without prompting, and (de)compress symbolic links
+ disable input and output checks. Allows overwriting existing files, input
+ from console, output to stdout, operating on links, block devices, etc.
* `-c`, `--stdout`:
- force write to standard output, even if it is the console
+ write to standard output (even if it is the console)
* `--[no-]sparse`:
enable / disable sparse FS support,
to make files with many zeroes smaller on disk.
Creating sparse files may save disk space and speed up decompression by
reducing the amount of disk I/O.
default: enabled when output is into a file,
and disabled when output is stdout.
This setting overrides default and can force sparse mode over stdout.
* `--rm`:
remove source file(s) after successful compression or decompression. If used in combination with
- -o, will trigger a confirmation prompt (which can be silenced with -f), as this is a destructive operation.
+ -o, will trigger a confirmation prompt (which can be silenced with -f), as this is a destructive operation.
* `-k`, `--keep`:
keep source file(s) after successful compression or decompression.
This is the default behavior.
* `-r`:
- operate recursively on directories
+ operate recursively on directories.
+ It selects all files in the named directory and all its subdirectories.
+ This can be useful both to reduce command line typing,
+ and to circumvent shell expansion limitations,
+ when there are a lot of files and naming breaks the maximum size of a command line.
* `--filelist FILE`
read a list of files to process as content from `FILE`.
Format is compatible with `ls` output, with one file per line.
* `--output-dir-flat DIR`:
resulting files are stored into target `DIR` directory,
instead of same directory as origin file.
Be aware that this command can introduce name collision issues,
if multiple files, from different directories, end up having the same name.
Collision resolution ensures first file with a given name will be present in `DIR`,
while in combination with `-f`, the last file will be present instead.
* `--output-dir-mirror DIR`:
similar to `--output-dir-flat`,
the output files are stored underneath target `DIR` directory,
but this option will replicate input directory hierarchy into output `DIR`.
If input directory contains "..", the files in this directory will be ignored.
If input directory is an absolute directory (i.e. "/var/tmp/abc"),
it will be stored into the "output-dir/var/tmp/abc".
If there are multiple input files or directories,
name collision resolution will follow the same rules as `--output-dir-flat`.
* `--format=FORMAT`:
compress and decompress in other formats. If compiled with
support, zstd can compress to or decompress from other compression algorithm
formats. Possibly available options are `zstd`, `gzip`, `xz`, `lzma`, and `lz4`.
If no such format is provided, `zstd` is the default.
* `-h`/`-H`, `--help`:
display help/long help and exit
* `-V`, `--version`:
display version number and exit.
Advanced : `-vV` also displays supported formats.
`-vvV` also displays POSIX support.
`-q` will only display the version number, suitable for machine reading.
* `-v`, `--verbose`:
verbose mode, display more information
* `-q`, `--quiet`:
suppress warnings, interactivity, and notifications.
specify twice to suppress errors too.
* `--no-progress`:
do not display the progress bar, but keep all other messages.
* `--show-default-cparams`:
Shows the default compression parameters that will be used for a
particular src file. If the provided src file is not a regular file
(eg. named pipe), the cli will just output the default parameters.
That is, the parameters that are used when the src size is unknown.
* `--`:
All arguments after `--` are treated as files
### Restricted usage of Environment Variables
Using environment variables to set parameters has security implications.
Therefore, this avenue is intentionally restricted.
Only `ZSTD_CLEVEL` and `ZSTD_NBTHREADS` are currently supported.
They set the compression level and number of threads to use during compression, respectively.
`ZSTD_CLEVEL` can be used to set the level between 1 and 19 (the "normal" range).
If the value of `ZSTD_CLEVEL` is not a valid integer, it will be ignored with a warning message.
`ZSTD_CLEVEL` just replaces the default compression level (`3`).
`ZSTD_NBTHREADS` can be used to set the number of threads `zstd` will attempt to use during compression.
If the value of `ZSTD_NBTHREADS` is not a valid unsigned integer, it will be ignored with a warning message.
-'ZSTD_NBTHREADS` has a default value of (`1`), and is capped at ZSTDMT_NBWORKERS_MAX==200. `zstd` must be
+`ZSTD_NBTHREADS` has a default value of (`1`), and is capped at ZSTDMT_NBWORKERS_MAX==200. `zstd` must be
compiled with multithread support for this to have any effect.
They can both be overridden by corresponding command line arguments:
-`-#` for compression level and `-T#` for number of compression threads.
+`-#` for compression level and `-T#` for number of compression threads.
DICTIONARY BUILDER
------------------
`zstd` offers _dictionary_ compression,
which greatly improves efficiency on small files and messages.
It's possible to train `zstd` with a set of samples,
the result of which is saved into a file called a `dictionary`.
Then during compression and decompression, reference the same dictionary,
using command `-D dictionaryFileName`.
Compression of small files similar to the sample set will be greatly improved.
* `--train FILEs`:
Use FILEs as training set to create a dictionary.
The training set should contain a lot of small files (> 100),
and weight typically 100x the target dictionary size
(for example, 10 MB for a 100 KB dictionary).
+ `--train` can be combined with `-r` to indicate a directory rather than listing all the files,
+ which can be useful to circumvent shell expansion limits.
- Supports multithreading if `zstd` is compiled with threading support.
+ `--train` supports multithreading if `zstd` is compiled with threading support (default).
Additional parameters can be specified with `--train-fastcover`.
The legacy dictionary builder can be accessed with `--train-legacy`.
- The cover dictionary builder can be accessed with `--train-cover`.
- Equivalent to `--train-fastcover=d=8,steps=4`.
+ The slower cover dictionary builder can be accessed with `--train-cover`.
+ Default is equivalent to `--train-fastcover=d=8,steps=4`.
* `-o file`:
Dictionary saved into `file` (default name: dictionary).
* `--maxdict=#`:
Limit dictionary to specified size (default: 112640).
* `-#`:
Use `#` compression level during training (optional).
Will generate statistics more tuned for selected compression level,
resulting in a _small_ compression ratio improvement for this level.
* `-B#`:
- Split input files in blocks of size # (default: no split)
+ Split input files into blocks of size # (default: no split)
+* `-M#`, `--memory=#`:
+ Limit the amount of sample data loaded for training (default: 2 GB). See above for details.
* `--dictID=#`:
- A dictionary ID is a locally unique ID that a decoder can use to verify it is
- using the right dictionary.
+ A dictionary ID is a locally unique ID
+ that a decoder can use to verify it is using the right dictionary.
By default, zstd will create a 4-bytes random number ID.
It's possible to give a precise number instead.
Short numbers have an advantage : an ID < 256 will only need 1 byte in the
compressed frame header, and an ID < 65536 will only need 2 bytes.
This compares favorably to 4 bytes default.
However, it's up to the dictionary manager to not assign twice the same ID to
2 different dictionaries.
* `--train-cover[=k#,d=#,steps=#,split=#,shrink[=#]]`:
Select parameters for the default dictionary builder algorithm named cover.
If _d_ is not specified, then it tries _d_ = 6 and _d_ = 8.
If _k_ is not specified, then it tries _steps_ values in the range [50, 2000].
If _steps_ is not specified, then the default value of 40 is used.
If _split_ is not specified or split <= 0, then the default value of 100 is used.
Requires that _d_ <= _k_.
If _shrink_ flag is not used, then the default value for _shrinkDict_ of 0 is used.
If _shrink_ is not specified, then the default value for _shrinkDictMaxRegression_ of 1 is used.
Selects segments of size _k_ with highest score to put in the dictionary.
The score of a segment is computed by the sum of the frequencies of all the
subsegments of size _d_.
Generally _d_ should be in the range [6, 8], occasionally up to 16, but the
algorithm will run faster with d <= _8_.
Good values for _k_ vary widely based on the input data, but a safe range is
[2 * _d_, 2000].
If _split_ is 100, all input samples are used for both training and testing
to find optimal _d_ and _k_ to build dictionary.
Supports multithreading if `zstd` is compiled with threading support.
Having _shrink_ enabled takes a truncated dictionary of minimum size and doubles
in size until compression ratio of the truncated dictionary is at most
_shrinkDictMaxRegression%_ worse than the compression ratio of the largest dictionary.
Examples:
`zstd --train-cover FILEs`
`zstd --train-cover=k=50,d=8 FILEs`
`zstd --train-cover=d=8,steps=500 FILEs`
`zstd --train-cover=k=50 FILEs`
`zstd --train-cover=k=50,split=60 FILEs`
`zstd --train-cover=shrink FILEs`
`zstd --train-cover=shrink=2 FILEs`
* `--train-fastcover[=k#,d=#,f=#,steps=#,split=#,accel=#]`:
Same as cover but with extra parameters _f_ and _accel_ and different default value of split
If _split_ is not specified, then it tries _split_ = 75.
If _f_ is not specified, then it tries _f_ = 20.
Requires that 0 < _f_ < 32.
If _accel_ is not specified, then it tries _accel_ = 1.
Requires that 0 < _accel_ <= 10.
Requires that _d_ = 6 or _d_ = 8.
_f_ is log of size of array that keeps track of frequency of subsegments of size _d_.
The subsegment is hashed to an index in the range [0,2^_f_ - 1].
It is possible that 2 different subsegments are hashed to the same index, and they are considered as the same subsegment when computing frequency.
Using a higher _f_ reduces collision but takes longer.
Examples:
`zstd --train-fastcover FILEs`
`zstd --train-fastcover=d=8,f=15,accel=2 FILEs`
* `--train-legacy[=selectivity=#]`:
Use legacy dictionary builder algorithm with the given dictionary
_selectivity_ (default: 9).
The smaller the _selectivity_ value, the denser the dictionary,
improving its efficiency but reducing its possible maximum size.
`--train-legacy=s=#` is also accepted.
Examples:
`zstd --train-legacy FILEs`
`zstd --train-legacy=selectivity=8 FILEs`
BENCHMARK
---------
* `-b#`:
benchmark file(s) using compression level #
* `-e#`:
benchmark file(s) using multiple compression levels, from `-b#` to `-e#` (inclusive)
* `-i#`:
minimum evaluation time, in seconds (default: 3s), benchmark mode only
* `-B#`, `--block-size=#`:
cut file(s) into independent blocks of size # (default: no block)
* `--priority=rt`:
set process priority to real-time
**Output Format:** CompressionLevel#Filename : IntputSize -> OutputSize (CompressionRatio), CompressionSpeed, DecompressionSpeed
**Methodology:** For both compression and decompression speed, the entire input is compressed/decompressed in-memory to measure speed. A run lasts at least 1 sec, so when files are small, they are compressed/decompressed several times per run, in order to improve measurement accuracy.
ADVANCED COMPRESSION OPTIONS
----------------------------
+### -B#:
+Select the size of each compression job.
+This parameter is only available when multi-threading is enabled.
+Each compression job is run in parallel, so this value indirectly impacts the nb of active threads.
+Default job size varies depending on compression level (generally `4 * windowSize`).
+`-B#` makes it possible to manually select a custom size.
+Note that job size must respect a minimum value which is enforced transparently.
+This minimum is either 512 KB, or `overlapSize`, whichever is largest.
+Different job sizes will lead to (slightly) different compressed frames.
+
### --zstd[=options]:
`zstd` provides 22 predefined compression levels.
The selected or default predefined compression level can be changed with
advanced compression options.
The _options_ are provided as a comma-separated list.
You may specify only the options you want to change and the rest will be
taken from the selected or default compression level.
The list of available _options_:
- `strategy`=_strat_, `strat`=_strat_:
Specify a strategy used by a match finder.
There are 9 strategies numbered from 1 to 9, from faster to stronger:
1=ZSTD\_fast, 2=ZSTD\_dfast, 3=ZSTD\_greedy,
4=ZSTD\_lazy, 5=ZSTD\_lazy2, 6=ZSTD\_btlazy2,
7=ZSTD\_btopt, 8=ZSTD\_btultra, 9=ZSTD\_btultra2.
- `windowLog`=_wlog_, `wlog`=_wlog_:
Specify the maximum number of bits for a match distance.
The higher number of increases the chance to find a match which usually
improves compression ratio.
It also increases memory requirements for the compressor and decompressor.
The minimum _wlog_ is 10 (1 KiB) and the maximum is 30 (1 GiB) on 32-bit
platforms and 31 (2 GiB) on 64-bit platforms.
Note: If `windowLog` is set to larger than 27, `--long=windowLog` or
`--memory=windowSize` needs to be passed to the decompressor.
- `hashLog`=_hlog_, `hlog`=_hlog_:
Specify the maximum number of bits for a hash table.
Bigger hash tables cause less collisions which usually makes compression
faster, but requires more memory during compression.
The minimum _hlog_ is 6 (64 B) and the maximum is 30 (1 GiB).
- `chainLog`=_clog_, `clog`=_clog_:
Specify the maximum number of bits for a hash chain or a binary tree.
Higher numbers of bits increases the chance to find a match which usually
improves compression ratio.
It also slows down compression speed and increases memory requirements for
compression.
This option is ignored for the ZSTD_fast strategy.
The minimum _clog_ is 6 (64 B) and the maximum is 29 (524 Mib) on 32-bit platforms
and 30 (1 Gib) on 64-bit platforms.
- `searchLog`=_slog_, `slog`=_slog_:
Specify the maximum number of searches in a hash chain or a binary tree
using logarithmic scale.
More searches increases the chance to find a match which usually increases
compression ratio but decreases compression speed.
The minimum _slog_ is 1 and the maximum is 'windowLog' - 1.
- `minMatch`=_mml_, `mml`=_mml_:
Specify the minimum searched length of a match in a hash table.
Larger search lengths usually decrease compression ratio but improve
decompression speed.
The minimum _mml_ is 3 and the maximum is 7.
- `targetLength`=_tlen_, `tlen`=_tlen_:
The impact of this field vary depending on selected strategy.
For ZSTD\_btopt, ZSTD\_btultra and ZSTD\_btultra2, it specifies
the minimum match length that causes match finder to stop searching.
A larger `targetLength` usually improves compression ratio
but decreases compression speed.
t
For ZSTD\_fast, it triggers ultra-fast mode when > 0.
The value represents the amount of data skipped between match sampling.
Impact is reversed : a larger `targetLength` increases compression speed
but decreases compression ratio.
For all other strategies, this field has no impact.
The minimum _tlen_ is 0 and the maximum is 128 Kib.
- `overlapLog`=_ovlog_, `ovlog`=_ovlog_:
Determine `overlapSize`, amount of data reloaded from previous job.
This parameter is only available when multithreading is enabled.
Reloading more data improves compression ratio, but decreases speed.
The minimum _ovlog_ is 0, and the maximum is 9.
1 means "no overlap", hence completely independent jobs.
9 means "full overlap", meaning up to `windowSize` is reloaded from previous job.
Reducing _ovlog_ by 1 reduces the reloaded amount by a factor 2.
For example, 8 means "windowSize/2", and 6 means "windowSize/8".
Value 0 is special and means "default" : _ovlog_ is automatically determined by `zstd`.
In which case, _ovlog_ will range from 6 to 9, depending on selected _strat_.
- `ldmHashLog`=_lhlog_, `lhlog`=_lhlog_:
Specify the maximum size for a hash table used for long distance matching.
This option is ignored unless long distance matching is enabled.
Bigger hash tables usually improve compression ratio at the expense of more
memory during compression and a decrease in compression speed.
The minimum _lhlog_ is 6 and the maximum is 30 (default: 20).
- `ldmMinMatch`=_lmml_, `lmml`=_lmml_:
Specify the minimum searched length of a match for long distance matching.
This option is ignored unless long distance matching is enabled.
Larger/very small values usually decrease compression ratio.
The minimum _lmml_ is 4 and the maximum is 4096 (default: 64).
- `ldmBucketSizeLog`=_lblog_, `lblog`=_lblog_:
Specify the size of each bucket for the hash table used for long distance
matching.
This option is ignored unless long distance matching is enabled.
Larger bucket sizes improve collision resolution but decrease compression
speed.
The minimum _lblog_ is 1 and the maximum is 8 (default: 3).
- `ldmHashRateLog`=_lhrlog_, `lhrlog`=_lhrlog_:
Specify the frequency of inserting entries into the long distance matching
hash table.
This option is ignored unless long distance matching is enabled.
Larger values will improve compression speed. Deviating far from the
default value will likely result in a decrease in compression ratio.
The default value is `wlog - lhlog`.
### Example
The following parameters sets advanced compression options to something
similar to predefined level 19 for files bigger than 256 KB:
`--zstd`=wlog=23,clog=23,hlog=22,slog=6,mml=3,tlen=48,strat=6
-### -B#:
-Select the size of each compression job.
-This parameter is available only when multi-threading is enabled.
-Default value is `4 * windowSize`, which means it varies depending on compression level.
-`-B#` makes it possible to select a custom value.
-Note that job size must respect a minimum value which is enforced transparently.
-This minimum is either 1 MB, or `overlapSize`, whichever is largest.
BUGS
----
Report bugs at: https://github.com/facebook/zstd/issues
AUTHOR
------
Yann Collet
diff --git a/sys/contrib/zstd/programs/zstdcli.c b/sys/contrib/zstd/programs/zstdcli.c
index 9b6f91533462..bfe18c0c1ba3 100644
--- a/sys/contrib/zstd/programs/zstdcli.c
+++ b/sys/contrib/zstd/programs/zstdcli.c
@@ -1,1379 +1,1494 @@
/*
- * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
+ * Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-************************************
* Tuning parameters
**************************************/
#ifndef ZSTDCLI_CLEVEL_DEFAULT
# define ZSTDCLI_CLEVEL_DEFAULT 3
#endif
#ifndef ZSTDCLI_CLEVEL_MAX
# define ZSTDCLI_CLEVEL_MAX 19 /* without using --ultra */
#endif
#ifndef ZSTDCLI_NBTHREADS_DEFAULT
# define ZSTDCLI_NBTHREADS_DEFAULT 1
#endif
/*-************************************
* Dependencies
**************************************/
#include "platform.h" /* IS_CONSOLE, PLATFORM_POSIX_VERSION */
#include "util.h" /* UTIL_HAS_CREATEFILELIST, UTIL_createFileList */
#include <stdlib.h> /* getenv */
#include <string.h> /* strcmp, strlen */
#include <stdio.h> /* fprintf(), stdin, stdout, stderr */
#include <errno.h> /* errno */
#include <assert.h> /* assert */
#include "fileio.h" /* stdinmark, stdoutmark, ZSTD_EXTENSION */
#ifndef ZSTD_NOBENCH
# include "benchzstd.h" /* BMK_benchFiles */
#endif
#ifndef ZSTD_NODICT
# include "dibio.h" /* ZDICT_cover_params_t, DiB_trainFromFiles() */
#endif
+#ifndef ZSTD_NOTRACE
+# include "zstdcli_trace.h"
+#endif
#include "../lib/zstd.h" /* ZSTD_VERSION_STRING, ZSTD_minCLevel, ZSTD_maxCLevel */
/*-************************************
* Constants
**************************************/
#define COMPRESSOR_NAME "zstd command line interface"
#ifndef ZSTD_VERSION
# define ZSTD_VERSION "v" ZSTD_VERSION_STRING
#endif
#define AUTHOR "Yann Collet"
#define WELCOME_MESSAGE "*** %s %i-bits %s, by %s ***\n", COMPRESSOR_NAME, (int)(sizeof(size_t)*8), ZSTD_VERSION, AUTHOR
#define ZSTD_ZSTDMT "zstdmt"
#define ZSTD_UNZSTD "unzstd"
#define ZSTD_CAT "zstdcat"
#define ZSTD_ZCAT "zcat"
#define ZSTD_GZ "gzip"
#define ZSTD_GUNZIP "gunzip"
#define ZSTD_GZCAT "gzcat"
#define ZSTD_LZMA "lzma"
#define ZSTD_UNLZMA "unlzma"
#define ZSTD_XZ "xz"
#define ZSTD_UNXZ "unxz"
#define ZSTD_LZ4 "lz4"
#define ZSTD_UNLZ4 "unlz4"
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)
#define DISPLAY_LEVEL_DEFAULT 2
static const char* g_defaultDictName = "dictionary";
static const unsigned g_defaultMaxDictSize = 110 KB;
static const int g_defaultDictCLevel = 3;
static const unsigned g_defaultSelectivityLevel = 9;
static const unsigned g_defaultMaxWindowLog = 27;
#define OVERLAP_LOG_DEFAULT 9999
#define LDM_PARAM_DEFAULT 9999 /* Default for parameters where 0 is valid */
static U32 g_overlapLog = OVERLAP_LOG_DEFAULT;
static U32 g_ldmHashLog = 0;
static U32 g_ldmMinMatch = 0;
static U32 g_ldmHashRateLog = LDM_PARAM_DEFAULT;
static U32 g_ldmBucketSizeLog = LDM_PARAM_DEFAULT;
#define DEFAULT_ACCEL 1
typedef enum { cover, fastCover, legacy } dictType;
/*-************************************
* Display Macros
**************************************/
#define DISPLAY_F(f, ...) fprintf((f), __VA_ARGS__)
#define DISPLAYOUT(...) DISPLAY_F(stdout, __VA_ARGS__)
#define DISPLAY(...) DISPLAY_F(stderr, __VA_ARGS__)
#define DISPLAYLEVEL(l, ...) { if (g_displayLevel>=l) { DISPLAY(__VA_ARGS__); } }
static int g_displayLevel = DISPLAY_LEVEL_DEFAULT; /* 0 : no display, 1: errors, 2 : + result + interaction + warnings, 3 : + progression, 4 : + information */
+/*-************************************
+* Check Version (when CLI linked to dynamic library)
+**************************************/
+
+/* Due to usage of experimental symbols and capabilities by the CLI,
+ * the CLI must be linked against a dynamic library of same version */
+static void checkLibVersion(void)
+{
+ if (strcmp(ZSTD_VERSION_STRING, ZSTD_versionString())) {
+ DISPLAYLEVEL(1, "Error : incorrect library version (expecting : %s ; actual : %s ) \n",
+ ZSTD_VERSION_STRING, ZSTD_versionString());
+ DISPLAYLEVEL(1, "Please update library to version %s, or use stand-alone zstd binary \n",
+ ZSTD_VERSION_STRING);
+ exit(1);
+ }
+}
+
+
/*-************************************
* Command Line
**************************************/
/* print help either in `stderr` or `stdout` depending on originating request
* error (badusage) => stderr
* help (usage_advanced) => stdout
*/
static void usage(FILE* f, const char* programName)
{
DISPLAY_F(f, "Usage : \n");
DISPLAY_F(f, " %s [args] [FILE(s)] [-o file] \n", programName);
DISPLAY_F(f, "\n");
DISPLAY_F(f, "FILE : a filename \n");
DISPLAY_F(f, " with no FILE, or when FILE is - , read standard input\n");
DISPLAY_F(f, "Arguments : \n");
#ifndef ZSTD_NOCOMPRESS
DISPLAY_F(f, " -# : # compression level (1-%d, default: %d) \n", ZSTDCLI_CLEVEL_MAX, ZSTDCLI_CLEVEL_DEFAULT);
#endif
#ifndef ZSTD_NODECOMPRESS
DISPLAY_F(f, " -d : decompression \n");
#endif
DISPLAY_F(f, " -D DICT: use DICT as Dictionary for compression or decompression \n");
DISPLAY_F(f, " -o file: result stored into `file` (only 1 output file) \n");
- DISPLAY_F(f, " -f : overwrite output without prompting, also (de)compress links \n");
+ DISPLAY_F(f, " -f : disable input and output checks. Allows overwriting existing files,\n");
+ DISPLAY_F(f, " input from console, output to stdout, operating on links,\n");
+ DISPLAY_F(f, " block devices, etc.\n");
DISPLAY_F(f, "--rm : remove source file(s) after successful de/compression \n");
DISPLAY_F(f, " -k : preserve source file(s) (default) \n");
DISPLAY_F(f, " -h/-H : display help/long help and exit \n");
}
static void usage_advanced(const char* programName)
{
DISPLAYOUT(WELCOME_MESSAGE);
usage(stdout, programName);
DISPLAYOUT( "\n");
DISPLAYOUT( "Advanced arguments : \n");
DISPLAYOUT( " -V : display Version number and exit \n");
- DISPLAYOUT( " -c : force write to standard output, even if it is the console \n");
+ DISPLAYOUT( " -c : write to standard output (even if it is the console) \n");
DISPLAYOUT( " -v : verbose mode; specify multiple times to increase verbosity \n");
DISPLAYOUT( " -q : suppress warnings; specify twice to suppress errors too \n");
- DISPLAYOUT( "--no-progress : do not display the progress counter \n");
+ DISPLAYOUT( "--[no-]progress : forcibly display, or never display the progress counter.\n");
+ DISPLAYOUT( " note: any (de)compressed output to terminal will mix with progress counter text. \n");
#ifdef UTIL_HAS_CREATEFILELIST
DISPLAYOUT( " -r : operate recursively on directories \n");
DISPLAYOUT( "--filelist FILE : read list of files to operate upon from FILE \n");
DISPLAYOUT( "--output-dir-flat DIR : processed files are stored into DIR \n");
#endif
#ifdef UTIL_HAS_MIRRORFILELIST
DISPLAYOUT( "--output-dir-mirror DIR : processed files are stored into DIR respecting original directory structure \n");
#endif
#ifndef ZSTD_NOCOMPRESS
DISPLAYOUT( "--[no-]check : during compression, add XXH64 integrity checksum to frame (default: enabled)");
#ifndef ZSTD_NODECOMPRESS
DISPLAYOUT( ". If specified with -d, decompressor will ignore/validate checksums in compressed frame (default: validate).");
#endif
#else
#ifdef ZSTD_NOCOMPRESS
DISPLAYOUT( "--[no-]check : during decompression, ignore/validate checksums in compressed frame (default: validate).");
#endif
#endif /* ZSTD_NOCOMPRESS */
+
+#ifndef ZSTD_NOTRACE
+ DISPLAYOUT( "\n");
+ DISPLAYOUT( "--trace FILE : log tracing information to FILE.");
+#endif
DISPLAYOUT( "\n");
DISPLAYOUT( "-- : All arguments after \"--\" are treated as files \n");
#ifndef ZSTD_NOCOMPRESS
DISPLAYOUT( "\n");
DISPLAYOUT( "Advanced compression arguments : \n");
DISPLAYOUT( "--ultra : enable levels beyond %i, up to %i (requires more memory) \n", ZSTDCLI_CLEVEL_MAX, ZSTD_maxCLevel());
DISPLAYOUT( "--long[=#]: enable long distance matching with given window log (default: %u) \n", g_defaultMaxWindowLog);
DISPLAYOUT( "--fast[=#]: switch to very fast compression levels (default: %u) \n", 1);
DISPLAYOUT( "--adapt : dynamically adapt compression level to I/O conditions \n");
+ DISPLAYOUT( "--[no-]row-match-finder : force enable/disable usage of fast row-based matchfinder for greedy, lazy, and lazy2 strategies \n");
+ DISPLAYOUT( "--patch-from=FILE : specify the file to be used as a reference point for zstd's diff engine. \n");
# ifdef ZSTD_MULTITHREAD
DISPLAYOUT( " -T# : spawns # compression threads (default: 1, 0==# cores) \n");
DISPLAYOUT( " -B# : select size of each job (default: 0==automatic) \n");
DISPLAYOUT( "--single-thread : use a single thread for both I/O and compression (result slightly different than -T1) \n");
+ DISPLAYOUT( "--auto-threads={physical,logical} (default: physical} : use either physical cores or logical cores as default when specifying -T0 \n");
DISPLAYOUT( "--rsyncable : compress using a rsync-friendly method (-B sets block size) \n");
# endif
DISPLAYOUT( "--exclude-compressed: only compress files that are not already compressed \n");
DISPLAYOUT( "--stream-size=# : specify size of streaming input from `stdin` \n");
DISPLAYOUT( "--size-hint=# optimize compression parameters for streaming input of approximately this size \n");
DISPLAYOUT( "--target-compressed-block-size=# : generate compressed block of approximately targeted size \n");
DISPLAYOUT( "--no-dictID : don't write dictID into header (dictionary compression only) \n");
DISPLAYOUT( "--[no-]compress-literals : force (un)compressed literals \n");
DISPLAYOUT( "--format=zstd : compress files to the .zst format (default) \n");
#ifdef ZSTD_GZCOMPRESS
DISPLAYOUT( "--format=gzip : compress files to the .gz format \n");
#endif
#ifdef ZSTD_LZMACOMPRESS
DISPLAYOUT( "--format=xz : compress files to the .xz format \n");
DISPLAYOUT( "--format=lzma : compress files to the .lzma format \n");
#endif
#ifdef ZSTD_LZ4COMPRESS
DISPLAYOUT( "--format=lz4 : compress files to the .lz4 format \n");
#endif
#endif /* !ZSTD_NOCOMPRESS */
#ifndef ZSTD_NODECOMPRESS
DISPLAYOUT( "\n");
DISPLAYOUT( "Advanced decompression arguments : \n");
DISPLAYOUT( " -l : print information about zstd compressed files \n");
DISPLAYOUT( "--test : test compressed file integrity \n");
DISPLAYOUT( " -M# : Set a memory usage limit for decompression \n");
# if ZSTD_SPARSE_DEFAULT
DISPLAYOUT( "--[no-]sparse : sparse mode (default: enabled on file, disabled on stdout) \n");
# else
DISPLAYOUT( "--[no-]sparse : sparse mode (default: disabled) \n");
# endif
#endif /* ZSTD_NODECOMPRESS */
#ifndef ZSTD_NODICT
DISPLAYOUT( "\n");
DISPLAYOUT( "Dictionary builder : \n");
DISPLAYOUT( "--train ## : create a dictionary from a training set of files \n");
DISPLAYOUT( "--train-cover[=k=#,d=#,steps=#,split=#,shrink[=#]] : use the cover algorithm with optional args \n");
DISPLAYOUT( "--train-fastcover[=k=#,d=#,f=#,steps=#,split=#,accel=#,shrink[=#]] : use the fast cover algorithm with optional args \n");
DISPLAYOUT( "--train-legacy[=s=#] : use the legacy algorithm with selectivity (default: %u) \n", g_defaultSelectivityLevel);
DISPLAYOUT( " -o DICT : DICT is dictionary name (default: %s) \n", g_defaultDictName);
DISPLAYOUT( "--maxdict=# : limit dictionary to specified size (default: %u) \n", g_defaultMaxDictSize);
DISPLAYOUT( "--dictID=# : force dictionary ID to specified value (default: random) \n");
#endif
#ifndef ZSTD_NOBENCH
DISPLAYOUT( "\n");
DISPLAYOUT( "Benchmark arguments : \n");
DISPLAYOUT( " -b# : benchmark file(s), using # compression level (default: %d) \n", ZSTDCLI_CLEVEL_DEFAULT);
DISPLAYOUT( " -e# : test all compression levels successively from -b# to -e# (default: 1) \n");
DISPLAYOUT( " -i# : minimum evaluation time in seconds (default: 3s) \n");
DISPLAYOUT( " -B# : cut file into independent blocks of size # (default: no block) \n");
DISPLAYOUT( " -S : output one benchmark result per input file (default: consolidated result) \n");
DISPLAYOUT( "--priority=rt : set process priority to real-time \n");
#endif
}
static void badusage(const char* programName)
{
DISPLAYLEVEL(1, "Incorrect parameters \n");
if (g_displayLevel >= 2) usage(stderr, programName);
}
static void waitEnter(void)
{
int unused;
DISPLAY("Press enter to continue... \n");
unused = getchar();
(void)unused;
}
static const char* lastNameFromPath(const char* path)
{
const char* name = path;
if (strrchr(name, '/')) name = strrchr(name, '/') + 1;
if (strrchr(name, '\\')) name = strrchr(name, '\\') + 1; /* windows */
return name;
}
/*! exeNameMatch() :
@return : a non-zero value if exeName matches test, excluding the extension
*/
static int exeNameMatch(const char* exeName, const char* test)
{
return !strncmp(exeName, test, strlen(test)) &&
(exeName[strlen(test)] == '\0' || exeName[strlen(test)] == '.');
}
static void errorOut(const char* msg)
{
DISPLAY("%s \n", msg); exit(1);
}
/*! readU32FromCharChecked() :
* @return 0 if success, and store the result in *value.
* allows and interprets K, KB, KiB, M, MB and MiB suffix.
* Will also modify `*stringPtr`, advancing it to position where it stopped reading.
* @return 1 if an overflow error occurs */
static int readU32FromCharChecked(const char** stringPtr, unsigned* value)
{
unsigned result = 0;
while ((**stringPtr >='0') && (**stringPtr <='9')) {
unsigned const max = ((unsigned)(-1)) / 10;
unsigned last = result;
if (result > max) return 1; /* overflow error */
result *= 10;
result += (unsigned)(**stringPtr - '0');
if (result < last) return 1; /* overflow error */
(*stringPtr)++ ;
}
if ((**stringPtr=='K') || (**stringPtr=='M')) {
unsigned const maxK = ((unsigned)(-1)) >> 10;
if (result > maxK) return 1; /* overflow error */
result <<= 10;
if (**stringPtr=='M') {
if (result > maxK) return 1; /* overflow error */
result <<= 10;
}
(*stringPtr)++; /* skip `K` or `M` */
if (**stringPtr=='i') (*stringPtr)++;
if (**stringPtr=='B') (*stringPtr)++;
}
*value = result;
return 0;
}
/*! readU32FromChar() :
* @return : unsigned integer value read from input in `char` format.
* allows and interprets K, KB, KiB, M, MB and MiB suffix.
* Will also modify `*stringPtr`, advancing it to position where it stopped reading.
* Note : function will exit() program if digit sequence overflows */
static unsigned readU32FromChar(const char** stringPtr) {
static const char errorMsg[] = "error: numeric value overflows 32-bit unsigned int";
unsigned result;
if (readU32FromCharChecked(stringPtr, &result)) { errorOut(errorMsg); }
return result;
}
+/*! readIntFromChar() :
+ * @return : signed integer value read from input in `char` format.
+ * allows and interprets K, KB, KiB, M, MB and MiB suffix.
+ * Will also modify `*stringPtr`, advancing it to position where it stopped reading.
+ * Note : function will exit() program if digit sequence overflows */
+static int readIntFromChar(const char** stringPtr) {
+ static const char errorMsg[] = "error: numeric value overflows 32-bit int";
+ int sign = 1;
+ unsigned result;
+ if (**stringPtr=='-') {
+ (*stringPtr)++;
+ sign = -1;
+ }
+ if (readU32FromCharChecked(stringPtr, &result)) { errorOut(errorMsg); }
+ return (int) result * sign;
+}
+
/*! readSizeTFromCharChecked() :
* @return 0 if success, and store the result in *value.
* allows and interprets K, KB, KiB, M, MB and MiB suffix.
* Will also modify `*stringPtr`, advancing it to position where it stopped reading.
* @return 1 if an overflow error occurs */
static int readSizeTFromCharChecked(const char** stringPtr, size_t* value)
{
size_t result = 0;
while ((**stringPtr >='0') && (**stringPtr <='9')) {
size_t const max = ((size_t)(-1)) / 10;
size_t last = result;
if (result > max) return 1; /* overflow error */
result *= 10;
result += (size_t)(**stringPtr - '0');
if (result < last) return 1; /* overflow error */
(*stringPtr)++ ;
}
if ((**stringPtr=='K') || (**stringPtr=='M')) {
size_t const maxK = ((size_t)(-1)) >> 10;
if (result > maxK) return 1; /* overflow error */
result <<= 10;
if (**stringPtr=='M') {
if (result > maxK) return 1; /* overflow error */
result <<= 10;
}
(*stringPtr)++; /* skip `K` or `M` */
if (**stringPtr=='i') (*stringPtr)++;
if (**stringPtr=='B') (*stringPtr)++;
}
*value = result;
return 0;
}
/*! readSizeTFromChar() :
* @return : size_t value read from input in `char` format.
* allows and interprets K, KB, KiB, M, MB and MiB suffix.
* Will also modify `*stringPtr`, advancing it to position where it stopped reading.
* Note : function will exit() program if digit sequence overflows */
static size_t readSizeTFromChar(const char** stringPtr) {
static const char errorMsg[] = "error: numeric value overflows size_t";
size_t result;
if (readSizeTFromCharChecked(stringPtr, &result)) { errorOut(errorMsg); }
return result;
}
/** longCommandWArg() :
* check if *stringPtr is the same as longCommand.
* If yes, @return 1 and advances *stringPtr to the position which immediately follows longCommand.
* @return 0 and doesn't modify *stringPtr otherwise.
*/
static int longCommandWArg(const char** stringPtr, const char* longCommand)
{
size_t const comSize = strlen(longCommand);
int const result = !strncmp(*stringPtr, longCommand, comSize);
if (result) *stringPtr += comSize;
return result;
}
#ifndef ZSTD_NODICT
static const unsigned kDefaultRegression = 1;
/**
* parseCoverParameters() :
* reads cover parameters from *stringPtr (e.g. "--train-cover=k=48,d=8,steps=32") into *params
* @return 1 means that cover parameters were correct
* @return 0 in case of malformed parameters
*/
static unsigned parseCoverParameters(const char* stringPtr, ZDICT_cover_params_t* params)
{
memset(params, 0, sizeof(*params));
for (; ;) {
if (longCommandWArg(&stringPtr, "k=")) { params->k = readU32FromChar(&stringPtr); if (stringPtr[0]==',') { stringPtr++; continue; } else break; }
if (longCommandWArg(&stringPtr, "d=")) { params->d = readU32FromChar(&stringPtr); if (stringPtr[0]==',') { stringPtr++; continue; } else break; }
if (longCommandWArg(&stringPtr, "steps=")) { params->steps = readU32FromChar(&stringPtr); if (stringPtr[0]==',') { stringPtr++; continue; } else break; }
if (longCommandWArg(&stringPtr, "split=")) {
unsigned splitPercentage = readU32FromChar(&stringPtr);
params->splitPoint = (double)splitPercentage / 100.0;
if (stringPtr[0]==',') { stringPtr++; continue; } else break;
}
if (longCommandWArg(&stringPtr, "shrink")) {
params->shrinkDictMaxRegression = kDefaultRegression;
params->shrinkDict = 1;
if (stringPtr[0]=='=') {
stringPtr++;
params->shrinkDictMaxRegression = readU32FromChar(&stringPtr);
}
if (stringPtr[0]==',') {
stringPtr++;
continue;
}
else break;
}
return 0;
}
if (stringPtr[0] != 0) return 0;
DISPLAYLEVEL(4, "cover: k=%u\nd=%u\nsteps=%u\nsplit=%u\nshrink%u\n", params->k, params->d, params->steps, (unsigned)(params->splitPoint * 100), params->shrinkDictMaxRegression);
return 1;
}
/**
* parseFastCoverParameters() :
* reads fastcover parameters from *stringPtr (e.g. "--train-fastcover=k=48,d=8,f=20,steps=32,accel=2") into *params
* @return 1 means that fastcover parameters were correct
* @return 0 in case of malformed parameters
*/
static unsigned parseFastCoverParameters(const char* stringPtr, ZDICT_fastCover_params_t* params)
{
memset(params, 0, sizeof(*params));
for (; ;) {
if (longCommandWArg(&stringPtr, "k=")) { params->k = readU32FromChar(&stringPtr); if (stringPtr[0]==',') { stringPtr++; continue; } else break; }
if (longCommandWArg(&stringPtr, "d=")) { params->d = readU32FromChar(&stringPtr); if (stringPtr[0]==',') { stringPtr++; continue; } else break; }
if (longCommandWArg(&stringPtr, "f=")) { params->f = readU32FromChar(&stringPtr); if (stringPtr[0]==',') { stringPtr++; continue; } else break; }
if (longCommandWArg(&stringPtr, "steps=")) { params->steps = readU32FromChar(&stringPtr); if (stringPtr[0]==',') { stringPtr++; continue; } else break; }
if (longCommandWArg(&stringPtr, "accel=")) { params->accel = readU32FromChar(&stringPtr); if (stringPtr[0]==',') { stringPtr++; continue; } else break; }
if (longCommandWArg(&stringPtr, "split=")) {
unsigned splitPercentage = readU32FromChar(&stringPtr);
params->splitPoint = (double)splitPercentage / 100.0;
if (stringPtr[0]==',') { stringPtr++; continue; } else break;
}
if (longCommandWArg(&stringPtr, "shrink")) {
params->shrinkDictMaxRegression = kDefaultRegression;
params->shrinkDict = 1;
if (stringPtr[0]=='=') {
stringPtr++;
params->shrinkDictMaxRegression = readU32FromChar(&stringPtr);
}
if (stringPtr[0]==',') {
stringPtr++;
continue;
}
else break;
}
return 0;
}
if (stringPtr[0] != 0) return 0;
DISPLAYLEVEL(4, "cover: k=%u\nd=%u\nf=%u\nsteps=%u\nsplit=%u\naccel=%u\nshrink=%u\n", params->k, params->d, params->f, params->steps, (unsigned)(params->splitPoint * 100), params->accel, params->shrinkDictMaxRegression);
return 1;
}
/**
* parseLegacyParameters() :
* reads legacy dictionary builder parameters from *stringPtr (e.g. "--train-legacy=selectivity=8") into *selectivity
* @return 1 means that legacy dictionary builder parameters were correct
* @return 0 in case of malformed parameters
*/
static unsigned parseLegacyParameters(const char* stringPtr, unsigned* selectivity)
{
if (!longCommandWArg(&stringPtr, "s=") && !longCommandWArg(&stringPtr, "selectivity=")) { return 0; }
*selectivity = readU32FromChar(&stringPtr);
if (stringPtr[0] != 0) return 0;
DISPLAYLEVEL(4, "legacy: selectivity=%u\n", *selectivity);
return 1;
}
static ZDICT_cover_params_t defaultCoverParams(void)
{
ZDICT_cover_params_t params;
memset(&params, 0, sizeof(params));
params.d = 8;
params.steps = 4;
params.splitPoint = 1.0;
params.shrinkDict = 0;
params.shrinkDictMaxRegression = kDefaultRegression;
return params;
}
static ZDICT_fastCover_params_t defaultFastCoverParams(void)
{
ZDICT_fastCover_params_t params;
memset(&params, 0, sizeof(params));
params.d = 8;
params.f = 20;
params.steps = 4;
params.splitPoint = 0.75; /* different from default splitPoint of cover */
params.accel = DEFAULT_ACCEL;
params.shrinkDict = 0;
params.shrinkDictMaxRegression = kDefaultRegression;
return params;
}
#endif
/** parseAdaptParameters() :
* reads adapt parameters from *stringPtr (e.g. "--zstd=min=1,max=19) and store them into adaptMinPtr and adaptMaxPtr.
* Both adaptMinPtr and adaptMaxPtr must be already allocated and correctly initialized.
* There is no guarantee that any of these values will be updated.
* @return 1 means that parsing was successful,
* @return 0 in case of malformed parameters
*/
static unsigned parseAdaptParameters(const char* stringPtr, int* adaptMinPtr, int* adaptMaxPtr)
{
for ( ; ;) {
- if (longCommandWArg(&stringPtr, "min=")) { *adaptMinPtr = (int)readU32FromChar(&stringPtr); if (stringPtr[0]==',') { stringPtr++; continue; } else break; }
- if (longCommandWArg(&stringPtr, "max=")) { *adaptMaxPtr = (int)readU32FromChar(&stringPtr); if (stringPtr[0]==',') { stringPtr++; continue; } else break; }
+ if (longCommandWArg(&stringPtr, "min=")) { *adaptMinPtr = readIntFromChar(&stringPtr); if (stringPtr[0]==',') { stringPtr++; continue; } else break; }
+ if (longCommandWArg(&stringPtr, "max=")) { *adaptMaxPtr = readIntFromChar(&stringPtr); if (stringPtr[0]==',') { stringPtr++; continue; } else break; }
DISPLAYLEVEL(4, "invalid compression parameter \n");
return 0;
}
if (stringPtr[0] != 0) return 0; /* check the end of string */
if (*adaptMinPtr > *adaptMaxPtr) {
DISPLAYLEVEL(4, "incoherent adaptation limits \n");
return 0;
}
return 1;
}
/** parseCompressionParameters() :
* reads compression parameters from *stringPtr (e.g. "--zstd=wlog=23,clog=23,hlog=22,slog=6,mml=3,tlen=48,strat=6") into *params
* @return 1 means that compression parameters were correct
* @return 0 in case of malformed parameters
*/
static unsigned parseCompressionParameters(const char* stringPtr, ZSTD_compressionParameters* params)
{
for ( ; ;) {
if (longCommandWArg(&stringPtr, "windowLog=") || longCommandWArg(&stringPtr, "wlog=")) { params->windowLog = readU32FromChar(&stringPtr); if (stringPtr[0]==',') { stringPtr++; continue; } else break; }
if (longCommandWArg(&stringPtr, "chainLog=") || longCommandWArg(&stringPtr, "clog=")) { params->chainLog = readU32FromChar(&stringPtr); if (stringPtr[0]==',') { stringPtr++; continue; } else break; }
if (longCommandWArg(&stringPtr, "hashLog=") || longCommandWArg(&stringPtr, "hlog=")) { params->hashLog = readU32FromChar(&stringPtr); if (stringPtr[0]==',') { stringPtr++; continue; } else break; }
if (longCommandWArg(&stringPtr, "searchLog=") || longCommandWArg(&stringPtr, "slog=")) { params->searchLog = readU32FromChar(&stringPtr); if (stringPtr[0]==',') { stringPtr++; continue; } else break; }
if (longCommandWArg(&stringPtr, "minMatch=") || longCommandWArg(&stringPtr, "mml=")) { params->minMatch = readU32FromChar(&stringPtr); if (stringPtr[0]==',') { stringPtr++; continue; } else break; }
if (longCommandWArg(&stringPtr, "targetLength=") || longCommandWArg(&stringPtr, "tlen=")) { params->targetLength = readU32FromChar(&stringPtr); if (stringPtr[0]==',') { stringPtr++; continue; } else break; }
if (longCommandWArg(&stringPtr, "strategy=") || longCommandWArg(&stringPtr, "strat=")) { params->strategy = (ZSTD_strategy)(readU32FromChar(&stringPtr)); if (stringPtr[0]==',') { stringPtr++; continue; } else break; }
if (longCommandWArg(&stringPtr, "overlapLog=") || longCommandWArg(&stringPtr, "ovlog=")) { g_overlapLog = readU32FromChar(&stringPtr); if (stringPtr[0]==',') { stringPtr++; continue; } else break; }
if (longCommandWArg(&stringPtr, "ldmHashLog=") || longCommandWArg(&stringPtr, "lhlog=")) { g_ldmHashLog = readU32FromChar(&stringPtr); if (stringPtr[0]==',') { stringPtr++; continue; } else break; }
if (longCommandWArg(&stringPtr, "ldmMinMatch=") || longCommandWArg(&stringPtr, "lmml=")) { g_ldmMinMatch = readU32FromChar(&stringPtr); if (stringPtr[0]==',') { stringPtr++; continue; } else break; }
if (longCommandWArg(&stringPtr, "ldmBucketSizeLog=") || longCommandWArg(&stringPtr, "lblog=")) { g_ldmBucketSizeLog = readU32FromChar(&stringPtr); if (stringPtr[0]==',') { stringPtr++; continue; } else break; }
if (longCommandWArg(&stringPtr, "ldmHashRateLog=") || longCommandWArg(&stringPtr, "lhrlog=")) { g_ldmHashRateLog = readU32FromChar(&stringPtr); if (stringPtr[0]==',') { stringPtr++; continue; } else break; }
DISPLAYLEVEL(4, "invalid compression parameter \n");
return 0;
}
DISPLAYLEVEL(4, "windowLog=%d, chainLog=%d, hashLog=%d, searchLog=%d \n", params->windowLog, params->chainLog, params->hashLog, params->searchLog);
DISPLAYLEVEL(4, "minMatch=%d, targetLength=%d, strategy=%d \n", params->minMatch, params->targetLength, params->strategy);
if (stringPtr[0] != 0) return 0; /* check the end of string */
return 1;
}
static void printVersion(void)
{
if (g_displayLevel < DISPLAY_LEVEL_DEFAULT) {
DISPLAYOUT("%s\n", ZSTD_VERSION_STRING);
return;
}
DISPLAYOUT(WELCOME_MESSAGE);
if (g_displayLevel >= 3) {
/* format support */
DISPLAYOUT("*** supports: zstd");
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>0) && (ZSTD_LEGACY_SUPPORT<8)
DISPLAYOUT(", zstd legacy v0.%d+", ZSTD_LEGACY_SUPPORT);
#endif
#ifdef ZSTD_GZCOMPRESS
DISPLAYOUT(", gzip");
#endif
#ifdef ZSTD_LZ4COMPRESS
DISPLAYOUT(", lz4");
#endif
#ifdef ZSTD_LZMACOMPRESS
DISPLAYOUT(", lzma, xz ");
#endif
DISPLAYOUT("\n");
if (g_displayLevel >= 4) {
/* posix support */
#ifdef _POSIX_C_SOURCE
DISPLAYOUT("_POSIX_C_SOURCE defined: %ldL\n", (long) _POSIX_C_SOURCE);
#endif
#ifdef _POSIX_VERSION
DISPLAYOUT("_POSIX_VERSION defined: %ldL \n", (long) _POSIX_VERSION);
#endif
#ifdef PLATFORM_POSIX_VERSION
DISPLAYOUT("PLATFORM_POSIX_VERSION defined: %ldL\n", (long) PLATFORM_POSIX_VERSION);
#endif
} }
}
+#define ZSTD_NB_STRATEGIES 9
+static const char* ZSTD_strategyMap[ZSTD_NB_STRATEGIES + 1] = { "", "ZSTD_fast",
+ "ZSTD_dfast", "ZSTD_greedy", "ZSTD_lazy", "ZSTD_lazy2", "ZSTD_btlazy2",
+ "ZSTD_btopt", "ZSTD_btultra", "ZSTD_btultra2"};
+
+#ifndef ZSTD_NOCOMPRESS
+
+static void printDefaultCParams(const char* filename, const char* dictFileName, int cLevel) {
+ unsigned long long fileSize = UTIL_getFileSize(filename);
+ const size_t dictSize = dictFileName != NULL ? (size_t)UTIL_getFileSize(dictFileName) : 0;
+ const ZSTD_compressionParameters cParams = ZSTD_getCParams(cLevel, fileSize, dictSize);
+ if (fileSize != UTIL_FILESIZE_UNKNOWN) DISPLAY("%s (%u bytes)\n", filename, (unsigned)fileSize);
+ else DISPLAY("%s (src size unknown)\n", filename);
+ DISPLAY(" - windowLog : %u\n", cParams.windowLog);
+ DISPLAY(" - chainLog : %u\n", cParams.chainLog);
+ DISPLAY(" - hashLog : %u\n", cParams.hashLog);
+ DISPLAY(" - searchLog : %u\n", cParams.searchLog);
+ DISPLAY(" - minMatch : %u\n", cParams.minMatch);
+ DISPLAY(" - targetLength : %u\n", cParams.targetLength);
+ assert(cParams.strategy < ZSTD_NB_STRATEGIES + 1);
+ DISPLAY(" - strategy : %s (%u)\n", ZSTD_strategyMap[(int)cParams.strategy], (unsigned)cParams.strategy);
+}
+
+static void printActualCParams(const char* filename, const char* dictFileName, int cLevel, const ZSTD_compressionParameters* cParams) {
+ unsigned long long fileSize = UTIL_getFileSize(filename);
+ const size_t dictSize = dictFileName != NULL ? (size_t)UTIL_getFileSize(dictFileName) : 0;
+ ZSTD_compressionParameters actualCParams = ZSTD_getCParams(cLevel, fileSize, dictSize);
+ assert(g_displayLevel >= 4);
+ actualCParams.windowLog = cParams->windowLog == 0 ? actualCParams.windowLog : cParams->windowLog;
+ actualCParams.chainLog = cParams->chainLog == 0 ? actualCParams.chainLog : cParams->chainLog;
+ actualCParams.hashLog = cParams->hashLog == 0 ? actualCParams.hashLog : cParams->hashLog;
+ actualCParams.searchLog = cParams->searchLog == 0 ? actualCParams.searchLog : cParams->searchLog;
+ actualCParams.minMatch = cParams->minMatch == 0 ? actualCParams.minMatch : cParams->minMatch;
+ actualCParams.targetLength = cParams->targetLength == 0 ? actualCParams.targetLength : cParams->targetLength;
+ actualCParams.strategy = cParams->strategy == 0 ? actualCParams.strategy : cParams->strategy;
+ DISPLAY("--zstd=wlog=%d,clog=%d,hlog=%d,slog=%d,mml=%d,tlen=%d,strat=%d\n",
+ actualCParams.windowLog, actualCParams.chainLog, actualCParams.hashLog, actualCParams.searchLog,
+ actualCParams.minMatch, actualCParams.targetLength, actualCParams.strategy);
+}
+
+#endif
+
/* Environment variables for parameter setting */
#define ENV_CLEVEL "ZSTD_CLEVEL"
#define ENV_NBTHREADS "ZSTD_NBTHREADS" /* takes lower precedence than directly specifying -T# in the CLI */
/* pick up environment variable */
static int init_cLevel(void) {
const char* const env = getenv(ENV_CLEVEL);
if (env != NULL) {
const char* ptr = env;
int sign = 1;
if (*ptr == '-') {
sign = -1;
ptr++;
} else if (*ptr == '+') {
ptr++;
}
if ((*ptr>='0') && (*ptr<='9')) {
unsigned absLevel;
if (readU32FromCharChecked(&ptr, &absLevel)) {
DISPLAYLEVEL(2, "Ignore environment variable setting %s=%s: numeric value too large \n", ENV_CLEVEL, env);
return ZSTDCLI_CLEVEL_DEFAULT;
} else if (*ptr == 0) {
return sign * (int)absLevel;
} }
DISPLAYLEVEL(2, "Ignore environment variable setting %s=%s: not a valid integer value \n", ENV_CLEVEL, env);
}
return ZSTDCLI_CLEVEL_DEFAULT;
}
#ifdef ZSTD_MULTITHREAD
static unsigned init_nbThreads(void) {
const char* const env = getenv(ENV_NBTHREADS);
if (env != NULL) {
const char* ptr = env;
if ((*ptr>='0') && (*ptr<='9')) {
unsigned nbThreads;
if (readU32FromCharChecked(&ptr, &nbThreads)) {
DISPLAYLEVEL(2, "Ignore environment variable setting %s=%s: numeric value too large \n", ENV_NBTHREADS, env);
return ZSTDCLI_NBTHREADS_DEFAULT;
} else if (*ptr == 0) {
return nbThreads;
}
}
DISPLAYLEVEL(2, "Ignore environment variable setting %s=%s: not a valid unsigned value \n", ENV_NBTHREADS, env);
}
return ZSTDCLI_NBTHREADS_DEFAULT;
}
#endif
#define NEXT_FIELD(ptr) { \
if (*argument == '=') { \
ptr = ++argument; \
argument += strlen(ptr); \
} else { \
argNb++; \
if (argNb >= argCount) { \
DISPLAY("error: missing command argument \n"); \
CLEAN_RETURN(1); \
} \
ptr = argv[argNb]; \
assert(ptr != NULL); \
if (ptr[0]=='-') { \
DISPLAY("error: command cannot be separated from its argument by another command \n"); \
CLEAN_RETURN(1); \
} } }
#define NEXT_UINT32(val32) { \
const char* __nb; \
NEXT_FIELD(__nb); \
val32 = readU32FromChar(&__nb); \
}
-#define ZSTD_NB_STRATEGIES 9
-static const char* ZSTD_strategyMap[ZSTD_NB_STRATEGIES + 1] = { "", "ZSTD_fast",
- "ZSTD_dfast", "ZSTD_greedy", "ZSTD_lazy", "ZSTD_lazy2", "ZSTD_btlazy2",
- "ZSTD_btopt", "ZSTD_btultra", "ZSTD_btultra2"};
-
typedef enum { zom_compress, zom_decompress, zom_test, zom_bench, zom_train, zom_list } zstd_operation_mode;
#define CLEAN_RETURN(i) { operationResult = (i); goto _end; }
#ifdef ZSTD_NOCOMPRESS
/* symbols from compression library are not defined and should not be invoked */
# define MINCLEVEL -99
# define MAXCLEVEL 22
#else
# define MINCLEVEL ZSTD_minCLevel()
# define MAXCLEVEL ZSTD_maxCLevel()
#endif
-int main(int const argCount, const char* argv[])
+int main(int argCount, const char* argv[])
{
int argNb,
followLinks = 0,
+ allowBlockDevices = 0,
+ forceStdin = 0,
forceStdout = 0,
hasStdout = 0,
ldmFlag = 0,
main_pause = 0,
nbWorkers = 0,
adapt = 0,
+ useRowMatchFinder = 0,
adaptMin = MINCLEVEL,
adaptMax = MAXCLEVEL,
rsyncable = 0,
nextArgumentsAreFiles = 0,
operationResult = 0,
separateFiles = 0,
setRealTimePrio = 0,
singleThread = 0,
+#ifdef ZSTD_MULTITHREAD
+ defaultLogicalCores = 0,
+#endif
showDefaultCParams = 0,
ultra=0,
contentSize=1;
double compressibility = 0.5;
unsigned bench_nbSeconds = 3; /* would be better if this value was synchronized from bench */
size_t blockSize = 0;
FIO_prefs_t* const prefs = FIO_createPreferences();
FIO_ctx_t* const fCtx = FIO_createContext();
zstd_operation_mode operation = zom_compress;
ZSTD_compressionParameters compressionParams;
int cLevel = init_cLevel();
int cLevelLast = MINCLEVEL - 1; /* lower than minimum */
unsigned recursive = 0;
unsigned memLimit = 0;
FileNamesTable* filenames = UTIL_allocateFileNamesTable((size_t)argCount); /* argCount >= 1 */
FileNamesTable* file_of_names = UTIL_allocateFileNamesTable((size_t)argCount); /* argCount >= 1 */
const char* programName = argv[0];
const char* outFileName = NULL;
const char* outDirName = NULL;
const char* outMirroredDirName = NULL;
const char* dictFileName = NULL;
const char* patchFromDictFileName = NULL;
const char* suffix = ZSTD_EXTENSION;
unsigned maxDictSize = g_defaultMaxDictSize;
unsigned dictID = 0;
size_t streamSrcSize = 0;
size_t targetCBlockSize = 0;
size_t srcSizeHint = 0;
int dictCLevel = g_defaultDictCLevel;
unsigned dictSelect = g_defaultSelectivityLevel;
#ifndef ZSTD_NODICT
ZDICT_cover_params_t coverParams = defaultCoverParams();
ZDICT_fastCover_params_t fastCoverParams = defaultFastCoverParams();
dictType dict = fastCover;
#endif
#ifndef ZSTD_NOBENCH
BMK_advancedParams_t benchParams = BMK_initAdvancedParams();
#endif
- ZSTD_literalCompressionMode_e literalCompressionMode = ZSTD_lcm_auto;
+ ZSTD_paramSwitch_e literalCompressionMode = ZSTD_ps_auto;
/* init */
+ checkLibVersion();
(void)recursive; (void)cLevelLast; /* not used when ZSTD_NOBENCH set */
(void)memLimit;
assert(argCount >= 1);
if ((filenames==NULL) || (file_of_names==NULL)) { DISPLAY("zstd: allocation error \n"); exit(1); }
programName = lastNameFromPath(programName);
#ifdef ZSTD_MULTITHREAD
nbWorkers = init_nbThreads();
#endif
/* preset behaviors */
if (exeNameMatch(programName, ZSTD_ZSTDMT)) nbWorkers=0, singleThread=0;
if (exeNameMatch(programName, ZSTD_UNZSTD)) operation=zom_decompress;
if (exeNameMatch(programName, ZSTD_CAT)) { operation=zom_decompress; FIO_overwriteMode(prefs); forceStdout=1; followLinks=1; outFileName=stdoutmark; g_displayLevel=1; } /* supports multiple formats */
if (exeNameMatch(programName, ZSTD_ZCAT)) { operation=zom_decompress; FIO_overwriteMode(prefs); forceStdout=1; followLinks=1; outFileName=stdoutmark; g_displayLevel=1; } /* behave like zcat, also supports multiple formats */
if (exeNameMatch(programName, ZSTD_GZ)) { suffix = GZ_EXTENSION; FIO_setCompressionType(prefs, FIO_gzipCompression); FIO_setRemoveSrcFile(prefs, 1); } /* behave like gzip */
if (exeNameMatch(programName, ZSTD_GUNZIP)) { operation=zom_decompress; FIO_setRemoveSrcFile(prefs, 1); } /* behave like gunzip, also supports multiple formats */
if (exeNameMatch(programName, ZSTD_GZCAT)) { operation=zom_decompress; FIO_overwriteMode(prefs); forceStdout=1; followLinks=1; outFileName=stdoutmark; g_displayLevel=1; } /* behave like gzcat, also supports multiple formats */
if (exeNameMatch(programName, ZSTD_LZMA)) { suffix = LZMA_EXTENSION; FIO_setCompressionType(prefs, FIO_lzmaCompression); FIO_setRemoveSrcFile(prefs, 1); } /* behave like lzma */
if (exeNameMatch(programName, ZSTD_UNLZMA)) { operation=zom_decompress; FIO_setCompressionType(prefs, FIO_lzmaCompression); FIO_setRemoveSrcFile(prefs, 1); } /* behave like unlzma, also supports multiple formats */
if (exeNameMatch(programName, ZSTD_XZ)) { suffix = XZ_EXTENSION; FIO_setCompressionType(prefs, FIO_xzCompression); FIO_setRemoveSrcFile(prefs, 1); } /* behave like xz */
if (exeNameMatch(programName, ZSTD_UNXZ)) { operation=zom_decompress; FIO_setCompressionType(prefs, FIO_xzCompression); FIO_setRemoveSrcFile(prefs, 1); } /* behave like unxz, also supports multiple formats */
if (exeNameMatch(programName, ZSTD_LZ4)) { suffix = LZ4_EXTENSION; FIO_setCompressionType(prefs, FIO_lz4Compression); } /* behave like lz4 */
if (exeNameMatch(programName, ZSTD_UNLZ4)) { operation=zom_decompress; FIO_setCompressionType(prefs, FIO_lz4Compression); } /* behave like unlz4, also supports multiple formats */
memset(&compressionParams, 0, sizeof(compressionParams));
/* init crash handler */
FIO_addAbortHandler();
/* command switches */
for (argNb=1; argNb<argCount; argNb++) {
const char* argument = argv[argNb];
if (!argument) continue; /* Protection if argument empty */
if (nextArgumentsAreFiles) {
UTIL_refFilename(filenames, argument);
continue;
}
/* "-" means stdin/stdout */
if (!strcmp(argument, "-")){
UTIL_refFilename(filenames, stdinmark);
continue;
}
/* Decode commands (note : aggregated commands are allowed) */
if (argument[0]=='-') {
if (argument[1]=='-') {
/* long commands (--long-word) */
if (!strcmp(argument, "--")) { nextArgumentsAreFiles=1; continue; } /* only file names allowed from now on */
if (!strcmp(argument, "--list")) { operation=zom_list; continue; }
if (!strcmp(argument, "--compress")) { operation=zom_compress; continue; }
if (!strcmp(argument, "--decompress")) { operation=zom_decompress; continue; }
if (!strcmp(argument, "--uncompress")) { operation=zom_decompress; continue; }
- if (!strcmp(argument, "--force")) { FIO_overwriteMode(prefs); forceStdout=1; followLinks=1; continue; }
+ if (!strcmp(argument, "--force")) { FIO_overwriteMode(prefs); forceStdin=1; forceStdout=1; followLinks=1; allowBlockDevices=1; continue; }
if (!strcmp(argument, "--version")) { printVersion(); CLEAN_RETURN(0); }
if (!strcmp(argument, "--help")) { usage_advanced(programName); CLEAN_RETURN(0); }
if (!strcmp(argument, "--verbose")) { g_displayLevel++; continue; }
if (!strcmp(argument, "--quiet")) { g_displayLevel--; continue; }
if (!strcmp(argument, "--stdout")) { forceStdout=1; outFileName=stdoutmark; g_displayLevel-=(g_displayLevel==2); continue; }
if (!strcmp(argument, "--ultra")) { ultra=1; continue; }
if (!strcmp(argument, "--check")) { FIO_setChecksumFlag(prefs, 2); continue; }
if (!strcmp(argument, "--no-check")) { FIO_setChecksumFlag(prefs, 0); continue; }
if (!strcmp(argument, "--sparse")) { FIO_setSparseWrite(prefs, 2); continue; }
if (!strcmp(argument, "--no-sparse")) { FIO_setSparseWrite(prefs, 0); continue; }
if (!strcmp(argument, "--test")) { operation=zom_test; continue; }
if (!strcmp(argument, "--train")) { operation=zom_train; if (outFileName==NULL) outFileName=g_defaultDictName; continue; }
if (!strcmp(argument, "--no-dictID")) { FIO_setDictIDFlag(prefs, 0); continue; }
if (!strcmp(argument, "--keep")) { FIO_setRemoveSrcFile(prefs, 0); continue; }
if (!strcmp(argument, "--rm")) { FIO_setRemoveSrcFile(prefs, 1); continue; }
if (!strcmp(argument, "--priority=rt")) { setRealTimePrio = 1; continue; }
if (!strcmp(argument, "--show-default-cparams")) { showDefaultCParams = 1; continue; }
if (!strcmp(argument, "--content-size")) { contentSize = 1; continue; }
if (!strcmp(argument, "--no-content-size")) { contentSize = 0; continue; }
if (!strcmp(argument, "--adapt")) { adapt = 1; continue; }
+ if (!strcmp(argument, "--no-row-match-finder")) { useRowMatchFinder = 1; continue; }
+ if (!strcmp(argument, "--row-match-finder")) { useRowMatchFinder = 2; continue; }
if (longCommandWArg(&argument, "--adapt=")) { adapt = 1; if (!parseAdaptParameters(argument, &adaptMin, &adaptMax)) { badusage(programName); CLEAN_RETURN(1); } continue; }
if (!strcmp(argument, "--single-thread")) { nbWorkers = 0; singleThread = 1; continue; }
if (!strcmp(argument, "--format=zstd")) { suffix = ZSTD_EXTENSION; FIO_setCompressionType(prefs, FIO_zstdCompression); continue; }
#ifdef ZSTD_GZCOMPRESS
if (!strcmp(argument, "--format=gzip")) { suffix = GZ_EXTENSION; FIO_setCompressionType(prefs, FIO_gzipCompression); continue; }
#endif
#ifdef ZSTD_LZMACOMPRESS
if (!strcmp(argument, "--format=lzma")) { suffix = LZMA_EXTENSION; FIO_setCompressionType(prefs, FIO_lzmaCompression); continue; }
if (!strcmp(argument, "--format=xz")) { suffix = XZ_EXTENSION; FIO_setCompressionType(prefs, FIO_xzCompression); continue; }
#endif
#ifdef ZSTD_LZ4COMPRESS
if (!strcmp(argument, "--format=lz4")) { suffix = LZ4_EXTENSION; FIO_setCompressionType(prefs, FIO_lz4Compression); continue; }
#endif
if (!strcmp(argument, "--rsyncable")) { rsyncable = 1; continue; }
- if (!strcmp(argument, "--compress-literals")) { literalCompressionMode = ZSTD_lcm_huffman; continue; }
- if (!strcmp(argument, "--no-compress-literals")) { literalCompressionMode = ZSTD_lcm_uncompressed; continue; }
- if (!strcmp(argument, "--no-progress")) { FIO_setNoProgress(1); continue; }
+ if (!strcmp(argument, "--compress-literals")) { literalCompressionMode = ZSTD_ps_enable; continue; }
+ if (!strcmp(argument, "--no-compress-literals")) { literalCompressionMode = ZSTD_ps_disable; continue; }
+ if (!strcmp(argument, "--no-progress")) { FIO_setProgressSetting(FIO_ps_never); continue; }
+ if (!strcmp(argument, "--progress")) { FIO_setProgressSetting(FIO_ps_always); continue; }
if (!strcmp(argument, "--exclude-compressed")) { FIO_setExcludeCompressedFile(prefs, 1); continue; }
/* long commands with arguments */
#ifndef ZSTD_NODICT
if (longCommandWArg(&argument, "--train-cover")) {
operation = zom_train;
if (outFileName == NULL)
outFileName = g_defaultDictName;
dict = cover;
/* Allow optional arguments following an = */
if (*argument == 0) { memset(&coverParams, 0, sizeof(coverParams)); }
else if (*argument++ != '=') { badusage(programName); CLEAN_RETURN(1); }
else if (!parseCoverParameters(argument, &coverParams)) { badusage(programName); CLEAN_RETURN(1); }
continue;
}
if (longCommandWArg(&argument, "--train-fastcover")) {
operation = zom_train;
if (outFileName == NULL)
outFileName = g_defaultDictName;
dict = fastCover;
/* Allow optional arguments following an = */
if (*argument == 0) { memset(&fastCoverParams, 0, sizeof(fastCoverParams)); }
else if (*argument++ != '=') { badusage(programName); CLEAN_RETURN(1); }
else if (!parseFastCoverParameters(argument, &fastCoverParams)) { badusage(programName); CLEAN_RETURN(1); }
continue;
}
if (longCommandWArg(&argument, "--train-legacy")) {
operation = zom_train;
if (outFileName == NULL)
outFileName = g_defaultDictName;
dict = legacy;
/* Allow optional arguments following an = */
if (*argument == 0) { continue; }
else if (*argument++ != '=') { badusage(programName); CLEAN_RETURN(1); }
else if (!parseLegacyParameters(argument, &dictSelect)) { badusage(programName); CLEAN_RETURN(1); }
continue;
}
#endif
if (longCommandWArg(&argument, "--threads")) { NEXT_UINT32(nbWorkers); continue; }
if (longCommandWArg(&argument, "--memlimit")) { NEXT_UINT32(memLimit); continue; }
if (longCommandWArg(&argument, "--memory")) { NEXT_UINT32(memLimit); continue; }
if (longCommandWArg(&argument, "--memlimit-decompress")) { NEXT_UINT32(memLimit); continue; }
if (longCommandWArg(&argument, "--block-size=")) { blockSize = readSizeTFromChar(&argument); continue; }
if (longCommandWArg(&argument, "--maxdict")) { NEXT_UINT32(maxDictSize); continue; }
if (longCommandWArg(&argument, "--dictID")) { NEXT_UINT32(dictID); continue; }
if (longCommandWArg(&argument, "--zstd=")) { if (!parseCompressionParameters(argument, &compressionParams)) { badusage(programName); CLEAN_RETURN(1); } continue; }
if (longCommandWArg(&argument, "--stream-size=")) { streamSrcSize = readSizeTFromChar(&argument); continue; }
if (longCommandWArg(&argument, "--target-compressed-block-size=")) { targetCBlockSize = readSizeTFromChar(&argument); continue; }
if (longCommandWArg(&argument, "--size-hint=")) { srcSizeHint = readSizeTFromChar(&argument); continue; }
if (longCommandWArg(&argument, "--output-dir-flat")) { NEXT_FIELD(outDirName); continue; }
+#ifdef ZSTD_MULTITHREAD
+ if (longCommandWArg(&argument, "--auto-threads")) {
+ const char* threadDefault = NULL;
+ NEXT_FIELD(threadDefault);
+ if (strcmp(threadDefault, "logical") == 0)
+ defaultLogicalCores = 1;
+ continue;
+ }
+#endif
#ifdef UTIL_HAS_MIRRORFILELIST
if (longCommandWArg(&argument, "--output-dir-mirror")) { NEXT_FIELD(outMirroredDirName); continue; }
+#endif
+#ifndef ZSTD_NOTRACE
+ if (longCommandWArg(&argument, "--trace")) { char const* traceFile; NEXT_FIELD(traceFile); TRACE_enable(traceFile); continue; }
#endif
if (longCommandWArg(&argument, "--patch-from")) { NEXT_FIELD(patchFromDictFileName); continue; }
if (longCommandWArg(&argument, "--long")) {
unsigned ldmWindowLog = 0;
ldmFlag = 1;
/* Parse optional window log */
if (*argument == '=') {
++argument;
ldmWindowLog = readU32FromChar(&argument);
} else if (*argument != 0) {
/* Invalid character following --long */
badusage(programName);
CLEAN_RETURN(1);
}
/* Only set windowLog if not already set by --zstd */
if (compressionParams.windowLog == 0)
compressionParams.windowLog = ldmWindowLog;
continue;
}
#ifndef ZSTD_NOCOMPRESS /* linking ZSTD_minCLevel() requires compression support */
if (longCommandWArg(&argument, "--fast")) {
/* Parse optional acceleration factor */
if (*argument == '=') {
U32 const maxFast = (U32)-ZSTD_minCLevel();
U32 fastLevel;
++argument;
fastLevel = readU32FromChar(&argument);
if (fastLevel > maxFast) fastLevel = maxFast;
if (fastLevel) {
dictCLevel = cLevel = -(int)fastLevel;
} else {
badusage(programName);
CLEAN_RETURN(1);
}
} else if (*argument != 0) {
/* Invalid character following --fast */
badusage(programName);
CLEAN_RETURN(1);
} else {
cLevel = -1; /* default for --fast */
}
continue;
}
#endif
if (longCommandWArg(&argument, "--filelist")) {
const char* listName;
NEXT_FIELD(listName);
UTIL_refFilename(file_of_names, listName);
continue;
}
/* fall-through, will trigger bad_usage() later on */
}
argument++;
while (argument[0]!=0) {
#ifndef ZSTD_NOCOMPRESS
/* compression Level */
if ((*argument>='0') && (*argument<='9')) {
dictCLevel = cLevel = (int)readU32FromChar(&argument);
continue;
}
#endif
switch(argument[0])
{
/* Display help */
case 'V': printVersion(); CLEAN_RETURN(0); /* Version Only */
case 'H':
case 'h': usage_advanced(programName); CLEAN_RETURN(0);
/* Compress */
case 'z': operation=zom_compress; argument++; break;
/* Decoding */
case 'd':
#ifndef ZSTD_NOBENCH
benchParams.mode = BMK_decodeOnly;
if (operation==zom_bench) { argument++; break; } /* benchmark decode (hidden option) */
#endif
operation=zom_decompress; argument++; break;
/* Force stdout, even if stdout==console */
case 'c': forceStdout=1; outFileName=stdoutmark; argument++; break;
/* Use file content as dictionary */
case 'D': argument++; NEXT_FIELD(dictFileName); break;
/* Overwrite */
- case 'f': FIO_overwriteMode(prefs); forceStdout=1; followLinks=1; argument++; break;
+ case 'f': FIO_overwriteMode(prefs); forceStdin=1; forceStdout=1; followLinks=1; allowBlockDevices=1; argument++; break;
/* Verbose mode */
case 'v': g_displayLevel++; argument++; break;
/* Quiet mode */
case 'q': g_displayLevel--; argument++; break;
/* keep source file (default) */
case 'k': FIO_setRemoveSrcFile(prefs, 0); argument++; break;
/* Checksum */
case 'C': FIO_setChecksumFlag(prefs, 2); argument++; break;
/* test compressed file */
case 't': operation=zom_test; argument++; break;
/* destination file name */
case 'o': argument++; NEXT_FIELD(outFileName); break;
/* limit memory */
case 'M':
argument++;
memLimit = readU32FromChar(&argument);
break;
case 'l': operation=zom_list; argument++; break;
#ifdef UTIL_HAS_CREATEFILELIST
/* recursive */
case 'r': recursive=1; argument++; break;
#endif
#ifndef ZSTD_NOBENCH
/* Benchmark */
case 'b':
operation=zom_bench;
argument++;
break;
/* range bench (benchmark only) */
case 'e':
/* compression Level */
argument++;
cLevelLast = (int)readU32FromChar(&argument);
break;
/* Modify Nb Iterations (benchmark only) */
case 'i':
argument++;
bench_nbSeconds = readU32FromChar(&argument);
break;
/* cut input into blocks (benchmark only) */
case 'B':
argument++;
blockSize = readU32FromChar(&argument);
break;
/* benchmark files separately (hidden option) */
case 'S':
argument++;
separateFiles = 1;
break;
#endif /* ZSTD_NOBENCH */
/* nb of threads (hidden option) */
case 'T':
argument++;
nbWorkers = (int)readU32FromChar(&argument);
break;
/* Dictionary Selection level */
case 's':
argument++;
dictSelect = readU32FromChar(&argument);
break;
/* Pause at the end (-p) or set an additional param (-p#) (hidden option) */
case 'p': argument++;
#ifndef ZSTD_NOBENCH
if ((*argument>='0') && (*argument<='9')) {
benchParams.additionalParam = (int)readU32FromChar(&argument);
} else
#endif
main_pause=1;
break;
/* Select compressibility of synthetic sample */
case 'P':
argument++;
compressibility = (double)readU32FromChar(&argument) / 100;
break;
/* unknown command */
default : badusage(programName); CLEAN_RETURN(1);
}
}
continue;
} /* if (argument[0]=='-') */
/* none of the above : add filename to list */
UTIL_refFilename(filenames, argument);
}
/* Welcome message (if verbose) */
DISPLAYLEVEL(3, WELCOME_MESSAGE);
#ifdef ZSTD_MULTITHREAD
if ((nbWorkers==0) && (!singleThread)) {
/* automatically set # workers based on # of reported cpus */
- nbWorkers = UTIL_countPhysicalCores();
- DISPLAYLEVEL(3, "Note: %d physical core(s) detected \n", nbWorkers);
+ if (defaultLogicalCores) {
+ nbWorkers = UTIL_countLogicalCores();
+ DISPLAYLEVEL(3, "Note: %d logical core(s) detected \n", nbWorkers);
+ } else {
+ nbWorkers = UTIL_countPhysicalCores();
+ DISPLAYLEVEL(3, "Note: %d physical core(s) detected \n", nbWorkers);
+ }
}
#else
(void)singleThread; (void)nbWorkers;
#endif
-#ifdef UTIL_HAS_CREATEFILELIST
g_utilDisplayLevel = g_displayLevel;
+
+#ifdef UTIL_HAS_CREATEFILELIST
if (!followLinks) {
unsigned u, fileNamesNb;
unsigned const nbFilenames = (unsigned)filenames->tableSize;
for (u=0, fileNamesNb=0; u<nbFilenames; u++) {
if ( UTIL_isLink(filenames->fileNames[u])
&& !UTIL_isFIFO(filenames->fileNames[u])
) {
DISPLAYLEVEL(2, "Warning : %s is a symbolic link, ignoring \n", filenames->fileNames[u]);
} else {
filenames->fileNames[fileNamesNb++] = filenames->fileNames[u];
} }
if (fileNamesNb == 0 && nbFilenames > 0) /* all names are eliminated */
CLEAN_RETURN(1);
filenames->tableSize = fileNamesNb;
} /* if (!followLinks) */
/* read names from a file */
if (file_of_names->tableSize) {
size_t const nbFileLists = file_of_names->tableSize;
size_t flNb;
for (flNb=0; flNb < nbFileLists; flNb++) {
FileNamesTable* const fnt = UTIL_createFileNamesTable_fromFileName(file_of_names->fileNames[flNb]);
if (fnt==NULL) {
DISPLAYLEVEL(1, "zstd: error reading %s \n", file_of_names->fileNames[flNb]);
CLEAN_RETURN(1);
}
filenames = UTIL_mergeFileNamesTable(filenames, fnt);
}
}
if (recursive) { /* at this stage, filenameTable is a list of paths, which can contain both files and directories */
UTIL_expandFNT(&filenames, followLinks);
}
#else
(void)followLinks;
#endif
if (operation == zom_list) {
#ifndef ZSTD_NODECOMPRESS
int const ret = FIO_listMultipleFiles((unsigned)filenames->tableSize, filenames->fileNames, g_displayLevel);
CLEAN_RETURN(ret);
#else
DISPLAY("file information is not supported \n");
CLEAN_RETURN(1);
#endif
}
/* Check if benchmark is selected */
if (operation==zom_bench) {
#ifndef ZSTD_NOBENCH
benchParams.blockSize = blockSize;
benchParams.nbWorkers = nbWorkers;
benchParams.realTime = (unsigned)setRealTimePrio;
benchParams.nbSeconds = bench_nbSeconds;
benchParams.ldmFlag = ldmFlag;
benchParams.ldmMinMatch = (int)g_ldmMinMatch;
benchParams.ldmHashLog = (int)g_ldmHashLog;
+ benchParams.useRowMatchFinder = useRowMatchFinder;
if (g_ldmBucketSizeLog != LDM_PARAM_DEFAULT) {
benchParams.ldmBucketSizeLog = (int)g_ldmBucketSizeLog;
}
if (g_ldmHashRateLog != LDM_PARAM_DEFAULT) {
benchParams.ldmHashRateLog = (int)g_ldmHashRateLog;
}
benchParams.literalCompressionMode = literalCompressionMode;
if (cLevel > ZSTD_maxCLevel()) cLevel = ZSTD_maxCLevel();
if (cLevelLast > ZSTD_maxCLevel()) cLevelLast = ZSTD_maxCLevel();
if (cLevelLast < cLevel) cLevelLast = cLevel;
if (cLevelLast > cLevel)
DISPLAYLEVEL(3, "Benchmarking levels from %d to %d\n", cLevel, cLevelLast);
if (filenames->tableSize > 0) {
if(separateFiles) {
unsigned i;
for(i = 0; i < filenames->tableSize; i++) {
int c;
DISPLAYLEVEL(3, "Benchmarking %s \n", filenames->fileNames[i]);
for(c = cLevel; c <= cLevelLast; c++) {
BMK_benchFilesAdvanced(&filenames->fileNames[i], 1, dictFileName, c, &compressionParams, g_displayLevel, &benchParams);
} }
} else {
for(; cLevel <= cLevelLast; cLevel++) {
BMK_benchFilesAdvanced(filenames->fileNames, (unsigned)filenames->tableSize, dictFileName, cLevel, &compressionParams, g_displayLevel, &benchParams);
} }
} else {
for(; cLevel <= cLevelLast; cLevel++) {
BMK_syntheticTest(cLevel, compressibility, &compressionParams, g_displayLevel, &benchParams);
} }
#else
(void)bench_nbSeconds; (void)blockSize; (void)setRealTimePrio; (void)separateFiles; (void)compressibility;
#endif
goto _end;
}
/* Check if dictionary builder is selected */
if (operation==zom_train) {
#ifndef ZSTD_NODICT
ZDICT_params_t zParams;
zParams.compressionLevel = dictCLevel;
zParams.notificationLevel = (unsigned)g_displayLevel;
zParams.dictID = dictID;
if (dict == cover) {
int const optimize = !coverParams.k || !coverParams.d;
coverParams.nbThreads = (unsigned)nbWorkers;
coverParams.zParams = zParams;
- operationResult = DiB_trainFromFiles(outFileName, maxDictSize, filenames->fileNames, (unsigned)filenames->tableSize, blockSize, NULL, &coverParams, NULL, optimize);
+ operationResult = DiB_trainFromFiles(outFileName, maxDictSize, filenames->fileNames, (int)filenames->tableSize, blockSize, NULL, &coverParams, NULL, optimize, memLimit);
} else if (dict == fastCover) {
int const optimize = !fastCoverParams.k || !fastCoverParams.d;
fastCoverParams.nbThreads = (unsigned)nbWorkers;
fastCoverParams.zParams = zParams;
- operationResult = DiB_trainFromFiles(outFileName, maxDictSize, filenames->fileNames, (unsigned)filenames->tableSize, blockSize, NULL, NULL, &fastCoverParams, optimize);
+ operationResult = DiB_trainFromFiles(outFileName, maxDictSize, filenames->fileNames, (int)filenames->tableSize, blockSize, NULL, NULL, &fastCoverParams, optimize, memLimit);
} else {
ZDICT_legacy_params_t dictParams;
memset(&dictParams, 0, sizeof(dictParams));
dictParams.selectivityLevel = dictSelect;
dictParams.zParams = zParams;
- operationResult = DiB_trainFromFiles(outFileName, maxDictSize, filenames->fileNames, (unsigned)filenames->tableSize, blockSize, &dictParams, NULL, NULL, 0);
+ operationResult = DiB_trainFromFiles(outFileName, maxDictSize, filenames->fileNames, (int)filenames->tableSize, blockSize, &dictParams, NULL, NULL, 0, memLimit);
}
#else
(void)dictCLevel; (void)dictSelect; (void)dictID; (void)maxDictSize; /* not used when ZSTD_NODICT set */
DISPLAYLEVEL(1, "training mode not available \n");
operationResult = 1;
#endif
goto _end;
}
#ifndef ZSTD_NODECOMPRESS
if (operation==zom_test) { FIO_setTestMode(prefs, 1); outFileName=nulmark; FIO_setRemoveSrcFile(prefs, 0); } /* test mode */
#endif
/* No input filename ==> use stdin and stdout */
if (filenames->tableSize == 0) UTIL_refFilename(filenames, stdinmark);
if (!strcmp(filenames->fileNames[0], stdinmark) && !outFileName)
outFileName = stdoutmark; /* when input is stdin, default output is stdout */
/* Check if input/output defined as console; trigger an error in this case */
- if (!strcmp(filenames->fileNames[0], stdinmark) && IS_CONSOLE(stdin) ) {
+ if (!forceStdin
+ && !strcmp(filenames->fileNames[0], stdinmark)
+ && IS_CONSOLE(stdin) ) {
DISPLAYLEVEL(1, "stdin is a console, aborting\n");
CLEAN_RETURN(1);
}
if ( outFileName && !strcmp(outFileName, stdoutmark)
&& IS_CONSOLE(stdout)
&& !strcmp(filenames->fileNames[0], stdinmark)
&& !forceStdout
&& operation!=zom_decompress ) {
DISPLAYLEVEL(1, "stdout is a console, aborting\n");
CLEAN_RETURN(1);
}
#ifndef ZSTD_NOCOMPRESS
/* check compression level limits */
{ int const maxCLevel = ultra ? ZSTD_maxCLevel() : ZSTDCLI_CLEVEL_MAX;
if (cLevel > maxCLevel) {
DISPLAYLEVEL(2, "Warning : compression level higher than max, reduced to %i \n", maxCLevel);
cLevel = maxCLevel;
} }
#endif
if (showDefaultCParams) {
if (operation == zom_decompress) {
DISPLAY("error : can't use --show-default-cparams in decomrpession mode \n");
CLEAN_RETURN(1);
}
}
if (dictFileName != NULL && patchFromDictFileName != NULL) {
DISPLAY("error : can't use -D and --patch-from=# at the same time \n");
CLEAN_RETURN(1);
}
if (patchFromDictFileName != NULL && filenames->tableSize > 1) {
DISPLAY("error : can't use --patch-from=# on multiple files \n");
CLEAN_RETURN(1);
}
-
- /* No status message in pipe mode (stdin - stdout) */
+
+ /* No status message in pipe mode (stdin - stdout) */
hasStdout = outFileName && !strcmp(outFileName,stdoutmark);
- if (hasStdout && (g_displayLevel==2)) g_displayLevel=1;
+ if ((hasStdout || !IS_CONSOLE(stderr)) && (g_displayLevel==2)) g_displayLevel=1;
/* IO Stream/File */
FIO_setHasStdoutOutput(fCtx, hasStdout);
- FIO_setNbFilesTotal(fCtx, (int)filenames->tableSize);
+ FIO_setNbFilesTotal(fCtx, (int)filenames->tableSize);
FIO_determineHasStdinInput(fCtx, filenames);
FIO_setNotificationLevel(g_displayLevel);
+ FIO_setAllowBlockDevices(prefs, allowBlockDevices);
FIO_setPatchFromMode(prefs, patchFromDictFileName != NULL);
if (memLimit == 0) {
if (compressionParams.windowLog == 0) {
memLimit = (U32)1 << g_defaultMaxWindowLog;
} else {
memLimit = (U32)1 << (compressionParams.windowLog & 31);
} }
if (patchFromDictFileName != NULL)
dictFileName = patchFromDictFileName;
FIO_setMemLimit(prefs, memLimit);
if (operation==zom_compress) {
#ifndef ZSTD_NOCOMPRESS
FIO_setContentSize(prefs, contentSize);
FIO_setNbWorkers(prefs, nbWorkers);
FIO_setBlockSize(prefs, (int)blockSize);
if (g_overlapLog!=OVERLAP_LOG_DEFAULT) FIO_setOverlapLog(prefs, (int)g_overlapLog);
FIO_setLdmFlag(prefs, (unsigned)ldmFlag);
FIO_setLdmHashLog(prefs, (int)g_ldmHashLog);
FIO_setLdmMinMatch(prefs, (int)g_ldmMinMatch);
if (g_ldmBucketSizeLog != LDM_PARAM_DEFAULT) FIO_setLdmBucketSizeLog(prefs, (int)g_ldmBucketSizeLog);
if (g_ldmHashRateLog != LDM_PARAM_DEFAULT) FIO_setLdmHashRateLog(prefs, (int)g_ldmHashRateLog);
FIO_setAdaptiveMode(prefs, (unsigned)adapt);
+ FIO_setUseRowMatchFinder(prefs, useRowMatchFinder);
FIO_setAdaptMin(prefs, adaptMin);
FIO_setAdaptMax(prefs, adaptMax);
FIO_setRsyncable(prefs, rsyncable);
FIO_setStreamSrcSize(prefs, streamSrcSize);
FIO_setTargetCBlockSize(prefs, targetCBlockSize);
FIO_setSrcSizeHint(prefs, srcSizeHint);
FIO_setLiteralCompressionMode(prefs, literalCompressionMode);
if (adaptMin > cLevel) cLevel = adaptMin;
if (adaptMax < cLevel) cLevel = adaptMax;
/* Compare strategies constant with the ground truth */
{ ZSTD_bounds strategyBounds = ZSTD_cParam_getBounds(ZSTD_c_strategy);
assert(ZSTD_NB_STRATEGIES == strategyBounds.upperBound);
(void)strategyBounds; }
- if (showDefaultCParams) {
+ if (showDefaultCParams || g_displayLevel >= 4) {
size_t fileNb;
for (fileNb = 0; fileNb < (size_t)filenames->tableSize; fileNb++) {
- unsigned long long fileSize = UTIL_getFileSize(filenames->fileNames[fileNb]);
- const size_t dictSize = dictFileName != NULL ? (size_t)UTIL_getFileSize(dictFileName) : 0;
- const ZSTD_compressionParameters cParams = ZSTD_getCParams(cLevel, fileSize, dictSize);
- if (fileSize != UTIL_FILESIZE_UNKNOWN) DISPLAY("%s (%u bytes)\n", filenames->fileNames[fileNb], (unsigned)fileSize);
- else DISPLAY("%s (src size unknown)\n", filenames->fileNames[fileNb]);
- DISPLAY(" - windowLog : %u\n", cParams.windowLog);
- DISPLAY(" - chainLog : %u\n", cParams.chainLog);
- DISPLAY(" - hashLog : %u\n", cParams.hashLog);
- DISPLAY(" - searchLog : %u\n", cParams.searchLog);
- DISPLAY(" - minMatch : %u\n", cParams.minMatch);
- DISPLAY(" - targetLength : %u\n", cParams.targetLength);
- assert(cParams.strategy < ZSTD_NB_STRATEGIES + 1);
- DISPLAY(" - strategy : %s (%u)\n", ZSTD_strategyMap[(int)cParams.strategy], (unsigned)cParams.strategy);
+ if (showDefaultCParams)
+ printDefaultCParams(filenames->fileNames[fileNb], dictFileName, cLevel);
+ if (g_displayLevel >= 4)
+ printActualCParams(filenames->fileNames[fileNb], dictFileName, cLevel, &compressionParams);
}
}
+ if (g_displayLevel >= 4)
+ FIO_displayCompressionParameters(prefs);
if ((filenames->tableSize==1) && outFileName)
operationResult = FIO_compressFilename(fCtx, prefs, outFileName, filenames->fileNames[0], dictFileName, cLevel, compressionParams);
else
operationResult = FIO_compressMultipleFilenames(fCtx, prefs, filenames->fileNames, outMirroredDirName, outDirName, outFileName, suffix, dictFileName, cLevel, compressionParams);
#else
- (void)contentSize; (void)suffix; (void)adapt; (void)rsyncable; (void)ultra; (void)cLevel; (void)ldmFlag; (void)literalCompressionMode; (void)targetCBlockSize; (void)streamSrcSize; (void)srcSizeHint; (void)ZSTD_strategyMap; /* not used when ZSTD_NOCOMPRESS set */
+ (void)contentSize; (void)suffix; (void)adapt; (void)rsyncable; (void)ultra; (void)cLevel; (void)ldmFlag; (void)literalCompressionMode; (void)targetCBlockSize; (void)streamSrcSize; (void)srcSizeHint; (void)ZSTD_strategyMap; (void)useRowMatchFinder; /* not used when ZSTD_NOCOMPRESS set */
DISPLAY("Compression not supported \n");
#endif
} else { /* decompression or test */
#ifndef ZSTD_NODECOMPRESS
if (filenames->tableSize == 1 && outFileName) {
operationResult = FIO_decompressFilename(fCtx, prefs, outFileName, filenames->fileNames[0], dictFileName);
} else {
operationResult = FIO_decompressMultipleFilenames(fCtx, prefs, filenames->fileNames, outMirroredDirName, outDirName, outFileName, dictFileName);
}
#else
DISPLAY("Decompression not supported \n");
#endif
}
_end:
FIO_freePreferences(prefs);
FIO_freeContext(fCtx);
if (main_pause) waitEnter();
UTIL_freeFileNamesTable(filenames);
UTIL_freeFileNamesTable(file_of_names);
+#ifndef ZSTD_NOTRACE
+ TRACE_finish();
+#endif
return operationResult;
}
diff --git a/sys/contrib/zstd/programs/zstdcli_trace.c b/sys/contrib/zstd/programs/zstdcli_trace.c
new file mode 100644
index 000000000000..b3b977feb53b
--- /dev/null
+++ b/sys/contrib/zstd/programs/zstdcli_trace.c
@@ -0,0 +1,172 @@
+/*
+ * Copyright (c) Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#include "zstdcli_trace.h"
+
+#include <stdio.h>
+#include <stdlib.h>
+
+#include "timefn.h"
+#include "util.h"
+
+#define ZSTD_STATIC_LINKING_ONLY
+#include "../lib/zstd.h"
+/* We depend on the trace header to avoid duplicating the ZSTD_trace struct.
+ * But, we check the version so it is compatible with dynamic linking.
+ */
+#include "../lib/common/zstd_trace.h"
+/* We only use macros from threading.h so it is compatible with dynamic linking */
+#include "../lib/common/threading.h"
+
+#if ZSTD_TRACE
+
+static FILE* g_traceFile = NULL;
+static int g_mutexInit = 0;
+static ZSTD_pthread_mutex_t g_mutex;
+static UTIL_time_t g_enableTime = UTIL_TIME_INITIALIZER;
+
+void TRACE_enable(char const* filename)
+{
+ int const writeHeader = !UTIL_isRegularFile(filename);
+ if (g_traceFile)
+ fclose(g_traceFile);
+ g_traceFile = fopen(filename, "a");
+ if (g_traceFile && writeHeader) {
+ /* Fields:
+ * algorithm
+ * version
+ * method
+ * streaming
+ * level
+ * workers
+ * dictionary size
+ * uncompressed size
+ * compressed size
+ * duration nanos
+ * compression ratio
+ * speed MB/s
+ */
+ fprintf(g_traceFile, "Algorithm, Version, Method, Mode, Level, Workers, Dictionary Size, Uncompressed Size, Compressed Size, Duration Nanos, Compression Ratio, Speed MB/s\n");
+ }
+ g_enableTime = UTIL_getTime();
+ if (!g_mutexInit) {
+ if (!ZSTD_pthread_mutex_init(&g_mutex, NULL)) {
+ g_mutexInit = 1;
+ } else {
+ TRACE_finish();
+ }
+ }
+}
+
+void TRACE_finish(void)
+{
+ if (g_traceFile) {
+ fclose(g_traceFile);
+ }
+ g_traceFile = NULL;
+ if (g_mutexInit) {
+ ZSTD_pthread_mutex_destroy(&g_mutex);
+ g_mutexInit = 0;
+ }
+}
+
+static void TRACE_log(char const* method, PTime duration, ZSTD_Trace const* trace)
+{
+ int level = 0;
+ int workers = 0;
+ double const ratio = (double)trace->uncompressedSize / (double)trace->compressedSize;
+ double const speed = ((double)trace->uncompressedSize * 1000) / (double)duration;
+ if (trace->params) {
+ ZSTD_CCtxParams_getParameter(trace->params, ZSTD_c_compressionLevel, &level);
+ ZSTD_CCtxParams_getParameter(trace->params, ZSTD_c_nbWorkers, &workers);
+ }
+ assert(g_traceFile != NULL);
+
+ ZSTD_pthread_mutex_lock(&g_mutex);
+ /* Fields:
+ * algorithm
+ * version
+ * method
+ * streaming
+ * level
+ * workers
+ * dictionary size
+ * uncompressed size
+ * compressed size
+ * duration nanos
+ * compression ratio
+ * speed MB/s
+ */
+ fprintf(g_traceFile,
+ "zstd, %u, %s, %s, %d, %d, %llu, %llu, %llu, %llu, %.2f, %.2f\n",
+ trace->version,
+ method,
+ trace->streaming ? "streaming" : "single-pass",
+ level,
+ workers,
+ (unsigned long long)trace->dictionarySize,
+ (unsigned long long)trace->uncompressedSize,
+ (unsigned long long)trace->compressedSize,
+ (unsigned long long)duration,
+ ratio,
+ speed);
+ ZSTD_pthread_mutex_unlock(&g_mutex);
+}
+
+/**
+ * These symbols override the weak symbols provided by the library.
+ */
+
+ZSTD_TraceCtx ZSTD_trace_compress_begin(ZSTD_CCtx const* cctx)
+{
+ (void)cctx;
+ if (g_traceFile == NULL)
+ return 0;
+ return (ZSTD_TraceCtx)UTIL_clockSpanNano(g_enableTime);
+}
+
+void ZSTD_trace_compress_end(ZSTD_TraceCtx ctx, ZSTD_Trace const* trace)
+{
+ PTime const beginNanos = (PTime)ctx;
+ PTime const endNanos = UTIL_clockSpanNano(g_enableTime);
+ PTime const durationNanos = endNanos > beginNanos ? endNanos - beginNanos : 0;
+ assert(g_traceFile != NULL);
+ assert(trace->version == ZSTD_VERSION_NUMBER); /* CLI version must match. */
+ TRACE_log("compress", durationNanos, trace);
+}
+
+ZSTD_TraceCtx ZSTD_trace_decompress_begin(ZSTD_DCtx const* dctx)
+{
+ (void)dctx;
+ if (g_traceFile == NULL)
+ return 0;
+ return (ZSTD_TraceCtx)UTIL_clockSpanNano(g_enableTime);
+}
+
+void ZSTD_trace_decompress_end(ZSTD_TraceCtx ctx, ZSTD_Trace const* trace)
+{
+ PTime const beginNanos = (PTime)ctx;
+ PTime const endNanos = UTIL_clockSpanNano(g_enableTime);
+ PTime const durationNanos = endNanos > beginNanos ? endNanos - beginNanos : 0;
+ assert(g_traceFile != NULL);
+ assert(trace->version == ZSTD_VERSION_NUMBER); /* CLI version must match. */
+ TRACE_log("decompress", durationNanos, trace);
+}
+
+#else /* ZSTD_TRACE */
+
+void TRACE_enable(char const* filename)
+{
+ (void)filename;
+}
+
+void TRACE_finish(void) {}
+
+#endif /* ZSTD_TRACE */
diff --git a/sys/contrib/zstd/programs/zstdcli_trace.h b/sys/contrib/zstd/programs/zstdcli_trace.h
new file mode 100644
index 000000000000..38c27dc04c4f
--- /dev/null
+++ b/sys/contrib/zstd/programs/zstdcli_trace.h
@@ -0,0 +1,24 @@
+/*
+ * Copyright (c) Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTDCLI_TRACE_H
+#define ZSTDCLI_TRACE_H
+
+/**
+ * Enable tracing - log to filename.
+ */
+void TRACE_enable(char const* filename);
+
+/**
+ * Shut down the tracing library.
+ */
+void TRACE_finish(void);
+
+#endif /* ZSTDCLI_TRACE_H */
diff --git a/sys/contrib/zstd/programs/zstdgrep.1 b/sys/contrib/zstd/programs/zstdgrep.1
index 4d143b598735..563696d339ee 100644
--- a/sys/contrib/zstd/programs/zstdgrep.1
+++ b/sys/contrib/zstd/programs/zstdgrep.1
@@ -1,23 +1,26 @@
.
-.TH "ZSTDGREP" "1" "December 2020" "zstd 1.4.8" "User Commands"
+.TH "ZSTDGREP" "1" "January 2022" "zstd 1.5.2" "User Commands"
.
.SH "NAME"
\fBzstdgrep\fR \- print lines matching a pattern in zstandard\-compressed files
.
.SH "SYNOPSIS"
\fBzstdgrep\fR [\fIgrep\-flags\fR] [\-\-] \fIpattern\fR [\fIfiles\fR \.\.\.]
.
.SH "DESCRIPTION"
-\fBzstdgrep\fR runs \fBgrep (1)\fR on files or stdin, if no files argument is given, after decompressing them with \fBzstdcat (1)\fR\.
+\fBzstdgrep\fR runs \fBgrep (1)\fR on files, or \fBstdin\fR if no files argument is given, after decompressing them with \fBzstdcat (1)\fR\.
.
.P
The grep\-flags and pattern arguments are passed on to \fBgrep (1)\fR\. If an \fB\-e\fR flag is found in the \fBgrep\-flags\fR, \fBzstdgrep\fR will not look for a pattern argument\.
.
+.P
+Note that modern \fBgrep\fR alternatives such as \fBripgrep\fR (\fBrg\fR) support \fBzstd\fR\-compressed files out of the box, and can prove better alternatives than \fBzstdgrep\fR notably for unsupported complex pattern searches\. Note though that such alternatives may also feature some minor command line differences\.
+.
.SH "EXIT STATUS"
In case of missing arguments or missing pattern, 1 will be returned, otherwise 0\.
.
.SH "SEE ALSO"
\fBzstd (1)\fR
.
.SH "AUTHORS"
Thomas Klausner \fIwiz@NetBSD\.org\fR
diff --git a/sys/contrib/zstd/programs/zstdgrep.1.md b/sys/contrib/zstd/programs/zstdgrep.1.md
index 363ad4f9978c..35186a4bf02d 100644
--- a/sys/contrib/zstd/programs/zstdgrep.1.md
+++ b/sys/contrib/zstd/programs/zstdgrep.1.md
@@ -1,26 +1,30 @@
zstdgrep(1) -- print lines matching a pattern in zstandard-compressed files
============================================================================
SYNOPSIS
--------
`zstdgrep` [*grep-flags*] [--] _pattern_ [_files_ ...]
DESCRIPTION
-----------
-`zstdgrep` runs `grep (1)` on files or stdin, if no files argument is given, after decompressing them with `zstdcat (1)`.
+`zstdgrep` runs `grep (1)` on files, or `stdin` if no files argument is given, after decompressing them with `zstdcat (1)`.
The grep-flags and pattern arguments are passed on to `grep (1)`. If an `-e` flag is found in the `grep-flags`, `zstdgrep` will not look for a pattern argument.
+Note that modern `grep` alternatives such as `ripgrep` (`rg`) support `zstd`-compressed files out of the box,
+and can prove better alternatives than `zstdgrep` notably for unsupported complex pattern searches.
+Note though that such alternatives may also feature some minor command line differences.
+
EXIT STATUS
-----------
In case of missing arguments or missing pattern, 1 will be returned, otherwise 0.
SEE ALSO
--------
`zstd (1)`
AUTHORS
-------
Thomas Klausner <wiz@NetBSD.org>
diff --git a/sys/contrib/zstd/programs/zstdless.1 b/sys/contrib/zstd/programs/zstdless.1
index 43f235453ee6..ab38e7a7f45d 100644
--- a/sys/contrib/zstd/programs/zstdless.1
+++ b/sys/contrib/zstd/programs/zstdless.1
@@ -1,14 +1,14 @@
.
-.TH "ZSTDLESS" "1" "December 2020" "zstd 1.4.8" "User Commands"
+.TH "ZSTDLESS" "1" "January 2022" "zstd 1.5.2" "User Commands"
.
.SH "NAME"
\fBzstdless\fR \- view zstandard\-compressed files
.
.SH "SYNOPSIS"
\fBzstdless\fR [\fIflags\fR] [\fIfile\fR \.\.\.]
.
.SH "DESCRIPTION"
\fBzstdless\fR runs \fBless (1)\fR on files or stdin, if no files argument is given, after decompressing them with \fBzstdcat (1)\fR\.
.
.SH "SEE ALSO"
\fBzstd (1)\fR
diff --git a/sys/contrib/zstd/zlibWrapper/Makefile b/sys/contrib/zstd/zlibWrapper/Makefile
index d74c41bc4b84..6fd5ac3bbec8 100644
--- a/sys/contrib/zstd/zlibWrapper/Makefile
+++ b/sys/contrib/zstd/zlibWrapper/Makefile
@@ -1,119 +1,119 @@
# Makefile for example of using zstd wrapper for zlib
#
# make - compiles examples
# make MOREFLAGS=-DZWRAP_USE_ZSTD=1 - compiles examples with zstd compression turned on
# make test - runs examples
# Paths to static and dynamic zlib and zstd libraries
-# Use "make ZLIB_PATH=path/to/zlib ZLIB_LIBRARY=path/to/libz.a" to select a path to library
+# Use "make ZLIB_PATH=path/to/zlib ZLIB_LIBRARY=path/to/libz.so" to select a path to library
ZLIB_LIBRARY ?= -lz
ZLIB_PATH ?= .
ZSTDLIBDIR = ../lib
ZSTDLIBRARY = $(ZSTDLIBDIR)/libzstd.a
ZLIBWRAPPER_PATH = .
GZFILES = gzclose.o gzlib.o gzread.o gzwrite.o
EXAMPLE_PATH = examples
PROGRAMS_PATH = ../programs
TEST_FILE = ../doc/zstd_compression_format.md
-VPATH = $(PROGRAMS_PATH)
+vpath %.c $(PROGRAMS_PATH) $(EXAMPLE_PATH) $(ZLIBWRAPPER_PATH)
+
CPPFLAGS += -DXXH_NAMESPACE=ZSTD_ -I$(ZLIB_PATH) -I$(PROGRAMS_PATH) \
-I$(ZSTDLIBDIR) -I$(ZSTDLIBDIR)/common -I$(ZLIBWRAPPER_PATH)
STDFLAGS = -std=c89 -pedantic -Wno-long-long -Wno-variadic-macros -Wc++-compat \
-DNO_snprintf -DNO_vsnprintf # strict ANSI C89 is missing these prototypes
DEBUGFLAGS= -Wall -Wextra -Wcast-qual -Wcast-align -Wshadow -Wswitch-enum \
-Wdeclaration-after-statement -Wstrict-prototypes -Wundef \
-Wstrict-aliasing=1
CFLAGS ?= -O3
-CFLAGS += $(STDFLAGS) $(DEBUGFLAGS) $(MOREFLAGS)
+CFLAGS += $(STDFLAGS) $(DEBUGFLAGS)
+CPPFLAGS += $(MOREFLAGS)
+LDLIBS += $(ZLIB_LIBRARY)
# Define *.exe as extension for Windows systems
ifneq (,$(filter Windows%,$(OS)))
EXT =.exe
else
EXT =
endif
default : release
release : STDFLAGS =
release : DEBUGFLAGS =
release : all
all: fitblk example zwrapbench minigzip
test: example fitblk example_zstd fitblk_zstd zwrapbench minigzip minigzip_zstd
./example
./example_zstd
./fitblk 10240 <$(TEST_FILE)
./fitblk 40960 <$(TEST_FILE)
./fitblk_zstd 10240 <$(TEST_FILE)
./fitblk_zstd 40960 <$(TEST_FILE)
@echo ---- minigzip start ----
./minigzip_zstd example$(EXT)
#cp example$(EXT).gz example$(EXT)_zstd.gz
./minigzip_zstd -d example$(EXT).gz
./minigzip example$(EXT)
#cp example$(EXT).gz example$(EXT)_gz.gz
./minigzip_zstd -d example$(EXT).gz
@echo ---- minigzip end ----
./zwrapbench -qi1b3B1K $(TEST_FILE)
- ./zwrapbench -rqi1b1e5 ../lib ../programs ../tests
+ ./zwrapbench -rqi1b1e3 ../lib
#valgrindTest: ZSTDLIBRARY = $(ZSTDLIBDIR)/libzstd.so
valgrindTest: VALGRIND = LD_LIBRARY_PATH=$(ZSTDLIBDIR) valgrind --track-origins=yes --leak-check=full --error-exitcode=1
valgrindTest: clean example fitblk example_zstd fitblk_zstd zwrapbench
@echo "\n ---- valgrind tests ----"
$(VALGRIND) ./example
$(VALGRIND) ./example_zstd
$(VALGRIND) ./fitblk 10240 <$(TEST_FILE)
$(VALGRIND) ./fitblk 40960 <$(TEST_FILE)
$(VALGRIND) ./fitblk_zstd 10240 <$(TEST_FILE)
$(VALGRIND) ./fitblk_zstd 40960 <$(TEST_FILE)
$(VALGRIND) ./zwrapbench -qi1b3B1K $(TEST_FILE)
$(VALGRIND) ./zwrapbench -rqi1b1e5 ../lib ../programs ../tests
#.c.o:
# $(CC) $(CFLAGS) $(CPPFLAGS) -c $< -o $@
-minigzip: $(EXAMPLE_PATH)/minigzip.o zstd_zlibwrapper.o $(GZFILES) $(ZSTDLIBRARY)
- $(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS) $^ $(ZSTDLIBRARY) $(ZLIB_LIBRARY) -o $@
+minigzip: minigzip.o zstd_zlibwrapper.o $(GZFILES) $(ZSTDLIBRARY)
-minigzip_zstd: $(EXAMPLE_PATH)/minigzip.o zstdTurnedOn_zlibwrapper.o $(GZFILES) $(ZSTDLIBRARY)
- $(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS) $^ $(ZSTDLIBRARY) $(ZLIB_LIBRARY) -o $@
+minigzip_zstd: minigzip.o zstdTurnedOn_zlibwrapper.o $(GZFILES) $(ZSTDLIBRARY)
+ $(LINK.o) $^ $(LDLIBS) $(OUTPUT_OPTION)
-example: $(EXAMPLE_PATH)/example.o zstd_zlibwrapper.o $(GZFILES) $(ZSTDLIBRARY)
- $(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS) $^ $(ZLIB_LIBRARY) -o $@
+example: example.o zstd_zlibwrapper.o $(GZFILES) $(ZSTDLIBRARY)
-example_zstd: $(EXAMPLE_PATH)/example.o zstdTurnedOn_zlibwrapper.o $(GZFILES) $(ZSTDLIBRARY)
- $(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS) $^ $(ZLIB_LIBRARY) -o $@
+example_zstd: example.o zstdTurnedOn_zlibwrapper.o $(GZFILES) $(ZSTDLIBRARY)
+ $(LINK.o) $^ $(LDLIBS) $(OUTPUT_OPTION)
-fitblk: $(EXAMPLE_PATH)/fitblk.o zstd_zlibwrapper.o $(ZSTDLIBRARY)
- $(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS) $^ $(ZLIB_LIBRARY) -o $@
+fitblk: fitblk.o zstd_zlibwrapper.o $(ZSTDLIBRARY)
-fitblk_zstd: $(EXAMPLE_PATH)/fitblk.o zstdTurnedOn_zlibwrapper.o $(ZSTDLIBRARY)
- $(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS) $^ $(ZLIB_LIBRARY) -o $@
+fitblk_zstd: fitblk.o zstdTurnedOn_zlibwrapper.o $(ZSTDLIBRARY)
+ $(LINK.o) $^ $(LDLIBS) $(OUTPUT_OPTION)
-zwrapbench: $(EXAMPLE_PATH)/zwrapbench.o zstd_zlibwrapper.o util.o timefn.o datagen.o $(ZSTDLIBRARY)
- $(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS) $^ $(ZLIB_LIBRARY) -o $@
+zwrapbench: zwrapbench.o zstd_zlibwrapper.o util.o timefn.o datagen.o $(ZSTDLIBRARY)
-zstd_zlibwrapper.o: $(ZLIBWRAPPER_PATH)/zstd_zlibwrapper.c $(ZLIBWRAPPER_PATH)/zstd_zlibwrapper.h
+zstd_zlibwrapper.o: zstd_zlibwrapper.h
zstdTurnedOn_zlibwrapper.o: CPPFLAGS += -DZWRAP_USE_ZSTD=1
-zstdTurnedOn_zlibwrapper.o: $(ZLIBWRAPPER_PATH)/zstd_zlibwrapper.c $(ZLIBWRAPPER_PATH)/zstd_zlibwrapper.h
- $(CC) $(CPPFLAGS) $(CFLAGS) $< -c -o $@
+zstdTurnedOn_zlibwrapper.o: zstd_zlibwrapper.c zstd_zlibwrapper.h
+ $(COMPILE.c) $< $(OUTPUT_OPTION)
+
-$(ZSTDLIBDIR)/libzstd.a:
+$(ZSTDLIBRARY):
$(MAKE) -C $(ZSTDLIBDIR) libzstd.a
$(ZSTDLIBDIR)/libzstd.so:
$(MAKE) -C $(ZSTDLIBDIR) libzstd
clean:
-$(RM) $(ZLIBWRAPPER_PATH)/*.o $(EXAMPLE_PATH)/*.o *.o foo.gz example$(EXT) example_zstd$(EXT) fitblk$(EXT) fitblk_zstd$(EXT) zwrapbench$(EXT) minigzip$(EXT) minigzip_zstd$(EXT)
@echo Cleaning completed
diff --git a/sys/contrib/zstd/zlibWrapper/examples/fitblk.c b/sys/contrib/zstd/zlibWrapper/examples/fitblk.c
index 669b176eb8cb..8dc7071ee96c 100644
--- a/sys/contrib/zstd/zlibWrapper/examples/fitblk.c
+++ b/sys/contrib/zstd/zlibWrapper/examples/fitblk.c
@@ -1,254 +1,254 @@
/* fitblk.c contains minimal changes required to be compiled with zlibWrapper:
* - #include "zlib.h" was changed to #include "zstd_zlibwrapper.h"
* - writing block to stdout was disabled */
/* fitblk.c: example of fitting compressed output to a specified size
Not copyrighted -- provided to the public domain
Version 1.1 25 November 2004 Mark Adler */
/* Version history:
1.0 24 Nov 2004 First version
1.1 25 Nov 2004 Change deflateInit2() to deflateInit()
Use fixed-size, stack-allocated raw buffers
Simplify code moving compression to subroutines
Use assert() for internal errors
Add detailed description of approach
*/
/* Approach to just fitting a requested compressed size:
fitblk performs three compression passes on a portion of the input
data in order to determine how much of that input will compress to
nearly the requested output block size. The first pass generates
enough deflate blocks to produce output to fill the requested
output size plus a specified excess amount (see the EXCESS define
below). The last deflate block may go quite a bit past that, but
is discarded. The second pass decompresses and recompresses just
the compressed data that fit in the requested plus excess sized
buffer. The deflate process is terminated after that amount of
input, which is less than the amount consumed on the first pass.
The last deflate block of the result will be of a comparable size
to the final product, so that the header for that deflate block and
the compression ratio for that block will be about the same as in
the final product. The third compression pass decompresses the
result of the second step, but only the compressed data up to the
requested size minus an amount to allow the compressed stream to
complete (see the MARGIN define below). That will result in a
final compressed stream whose length is less than or equal to the
requested size. Assuming sufficient input and a requested size
greater than a few hundred bytes, the shortfall will typically be
less than ten bytes.
If the input is short enough that the first compression completes
before filling the requested output size, then that compressed
stream is return with no recompression.
EXCESS is chosen to be just greater than the shortfall seen in a
two pass approach similar to the above. That shortfall is due to
the last deflate block compressing more efficiently with a smaller
header on the second pass. EXCESS is set to be large enough so
that there is enough uncompressed data for the second pass to fill
out the requested size, and small enough so that the final deflate
block of the second pass will be close in size to the final deflate
block of the third and final pass. MARGIN is chosen to be just
large enough to assure that the final compression has enough room
to complete in all cases.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "zstd_zlibwrapper.h"
#define LOG_FITBLK(...) /*printf(__VA_ARGS__)*/
#define local static
/* print nastygram and leave */
local void quit(char *why)
{
fprintf(stderr, "fitblk abort: %s\n", why);
exit(1);
}
#define RAWLEN 4096 /* intermediate uncompressed buffer size */
/* compress from file to def until provided buffer is full or end of
input reached; return last deflate() return value, or Z_ERRNO if
there was read error on the file */
local int partcompress(FILE *in, z_streamp def)
{
int ret, flush;
unsigned char raw[RAWLEN];
flush = Z_SYNC_FLUSH;
do {
def->avail_in = (uInt)fread(raw, 1, RAWLEN, in);
if (ferror(in))
return Z_ERRNO;
def->next_in = raw;
if (feof(in))
flush = Z_FINISH;
LOG_FITBLK("partcompress1 avail_in=%d total_in=%d avail_out=%d total_out=%d\n", (int)def->avail_in, (int)def->total_in, (int)def->avail_out, (int)def->total_out);
ret = deflate(def, flush);
LOG_FITBLK("partcompress2 ret=%d avail_in=%d total_in=%d avail_out=%d total_out=%d\n", ret, (int)def->avail_in, (int)def->total_in, (int)def->avail_out, (int)def->total_out);
assert(ret != Z_STREAM_ERROR);
} while (def->avail_out != 0 && flush == Z_SYNC_FLUSH);
return ret;
}
/* recompress from inf's input to def's output; the input for inf and
the output for def are set in those structures before calling;
return last deflate() return value, or Z_MEM_ERROR if inflate()
was not able to allocate enough memory when it needed to */
local int recompress(z_streamp inf, z_streamp def)
{
int ret, flush;
unsigned char raw[RAWLEN];
flush = Z_NO_FLUSH;
LOG_FITBLK("recompress start\n");
do {
/* decompress */
inf->avail_out = RAWLEN;
inf->next_out = raw;
LOG_FITBLK("recompress1inflate avail_in=%d total_in=%d avail_out=%d total_out=%d\n", (int)inf->avail_in, (int)inf->total_in, (int)inf->avail_out, (int)inf->total_out);
ret = inflate(inf, Z_NO_FLUSH);
LOG_FITBLK("recompress2inflate avail_in=%d total_in=%d avail_out=%d total_out=%d\n", (int)inf->avail_in, (int)inf->total_in, (int)inf->avail_out, (int)inf->total_out);
assert(ret != Z_STREAM_ERROR && ret != Z_DATA_ERROR &&
ret != Z_NEED_DICT);
if (ret == Z_MEM_ERROR)
return ret;
- /* compress what was decompresed until done or no room */
+ /* compress what was decompressed until done or no room */
def->avail_in = RAWLEN - inf->avail_out;
def->next_in = raw;
if (inf->avail_out != 0)
flush = Z_FINISH;
LOG_FITBLK("recompress1deflate avail_in=%d total_in=%d avail_out=%d total_out=%d\n", (int)def->avail_in, (int)def->total_in, (int)def->avail_out, (int)def->total_out);
ret = deflate(def, flush);
LOG_FITBLK("recompress2deflate ret=%d avail_in=%d total_in=%d avail_out=%d total_out=%d\n", ret, (int)def->avail_in, (int)def->total_in, (int)def->avail_out, (int)def->total_out);
assert(ret != Z_STREAM_ERROR);
} while (ret != Z_STREAM_END && def->avail_out != 0);
return ret;
}
#define EXCESS 256 /* empirically determined stream overage */
#define MARGIN 8 /* amount to back off for completion */
/* compress from stdin to fixed-size block on stdout */
int main(int argc, char **argv)
{
int ret; /* return code */
unsigned size; /* requested fixed output block size */
unsigned have; /* bytes written by deflate() call */
unsigned char *blk; /* intermediate and final stream */
unsigned char *tmp; /* close to desired size stream */
z_stream def, inf; /* zlib deflate and inflate states */
/* get requested output size */
if (argc != 2)
quit("need one argument: size of output block");
ret = (int)strtol(argv[1], argv + 1, 10);
if (argv[1][0] != 0)
quit("argument must be a number");
if (ret < 8) /* 8 is minimum zlib stream size */
quit("need positive size of 8 or greater");
size = (unsigned)ret;
printf("zlib version %s\n", ZLIB_VERSION);
if (ZWRAP_isUsingZSTDcompression()) printf("zstd version %s\n", zstdVersion());
/* allocate memory for buffers and compression engine */
blk = (unsigned char*)malloc(size + EXCESS);
def.zalloc = Z_NULL;
def.zfree = Z_NULL;
def.opaque = Z_NULL;
ret = deflateInit(&def, Z_DEFAULT_COMPRESSION);
if (ret != Z_OK || blk == NULL)
quit("out of memory");
/* compress from stdin until output full, or no more input */
def.avail_out = size + EXCESS;
def.next_out = blk;
LOG_FITBLK("partcompress1 total_in=%d total_out=%d\n", (int)def.total_in, (int)def.total_out);
ret = partcompress(stdin, &def);
printf("partcompress total_in=%d total_out=%d\n", (int)def.total_in, (int)def.total_out);
if (ret == Z_ERRNO)
quit("error reading input");
/* if it all fit, then size was undersubscribed -- done! */
if (ret == Z_STREAM_END && def.avail_out >= EXCESS) {
/* write block to stdout */
have = size + EXCESS - def.avail_out;
/* if (fwrite(blk, 1, have, stdout) != have || ferror(stdout))
* quit("error writing output"); */
/* clean up and print results to stderr */
ret = deflateEnd(&def);
assert(ret != Z_STREAM_ERROR);
free(blk);
fprintf(stderr,
"%u bytes unused out of %u requested (all input)\n",
size - have, size);
return 0;
}
/* it didn't all fit -- set up for recompression */
inf.zalloc = Z_NULL;
inf.zfree = Z_NULL;
inf.opaque = Z_NULL;
inf.avail_in = 0;
inf.next_in = Z_NULL;
ret = inflateInit(&inf);
tmp = (unsigned char*)malloc(size + EXCESS);
if (ret != Z_OK || tmp == NULL)
quit("out of memory");
ret = deflateReset(&def);
assert(ret != Z_STREAM_ERROR);
/* do first recompression close to the right amount */
inf.avail_in = size + EXCESS;
inf.next_in = blk;
def.avail_out = size + EXCESS;
def.next_out = tmp;
LOG_FITBLK("recompress1 inf.total_in=%d def.total_out=%d\n", (int)inf.total_in, (int)def.total_out);
ret = recompress(&inf, &def);
LOG_FITBLK("recompress1 inf.total_in=%d def.total_out=%d\n", (int)inf.total_in, (int)def.total_out);
if (ret == Z_MEM_ERROR)
quit("out of memory");
/* set up for next recompression */
ret = inflateReset(&inf);
assert(ret != Z_STREAM_ERROR);
ret = deflateReset(&def);
assert(ret != Z_STREAM_ERROR);
/* do second and final recompression (third compression) */
inf.avail_in = size - MARGIN; /* assure stream will complete */
inf.next_in = tmp;
def.avail_out = size;
def.next_out = blk;
LOG_FITBLK("recompress2 inf.total_in=%d def.total_out=%d\n", (int)inf.total_in, (int)def.total_out);
ret = recompress(&inf, &def);
LOG_FITBLK("recompress2 inf.total_in=%d def.total_out=%d\n", (int)inf.total_in, (int)def.total_out);
if (ret == Z_MEM_ERROR)
quit("out of memory");
assert(ret == Z_STREAM_END); /* otherwise MARGIN too small */
/* done -- write block to stdout */
have = size - def.avail_out;
/* if (fwrite(blk, 1, have, stdout) != have || ferror(stdout))
* quit("error writing output"); */
/* clean up and print results to stderr */
free(tmp);
ret = inflateEnd(&inf);
assert(ret != Z_STREAM_ERROR);
ret = deflateEnd(&def);
assert(ret != Z_STREAM_ERROR);
free(blk);
fprintf(stderr,
"%u bytes unused out of %u requested (%lu input)\n",
size - have, size, def.total_in);
return 0;
}
diff --git a/sys/contrib/zstd/zlibWrapper/examples/fitblk_original.c b/sys/contrib/zstd/zlibWrapper/examples/fitblk_original.c
index 20f351bfaf22..723dc0028127 100644
--- a/sys/contrib/zstd/zlibWrapper/examples/fitblk_original.c
+++ b/sys/contrib/zstd/zlibWrapper/examples/fitblk_original.c
@@ -1,233 +1,233 @@
/* fitblk.c: example of fitting compressed output to a specified size
Not copyrighted -- provided to the public domain
Version 1.1 25 November 2004 Mark Adler */
/* Version history:
1.0 24 Nov 2004 First version
1.1 25 Nov 2004 Change deflateInit2() to deflateInit()
Use fixed-size, stack-allocated raw buffers
Simplify code moving compression to subroutines
Use assert() for internal errors
Add detailed description of approach
*/
/* Approach to just fitting a requested compressed size:
fitblk performs three compression passes on a portion of the input
data in order to determine how much of that input will compress to
nearly the requested output block size. The first pass generates
enough deflate blocks to produce output to fill the requested
output size plus a specified excess amount (see the EXCESS define
below). The last deflate block may go quite a bit past that, but
is discarded. The second pass decompresses and recompresses just
the compressed data that fit in the requested plus excess sized
buffer. The deflate process is terminated after that amount of
input, which is less than the amount consumed on the first pass.
The last deflate block of the result will be of a comparable size
to the final product, so that the header for that deflate block and
the compression ratio for that block will be about the same as in
the final product. The third compression pass decompresses the
result of the second step, but only the compressed data up to the
requested size minus an amount to allow the compressed stream to
complete (see the MARGIN define below). That will result in a
final compressed stream whose length is less than or equal to the
requested size. Assuming sufficient input and a requested size
greater than a few hundred bytes, the shortfall will typically be
less than ten bytes.
If the input is short enough that the first compression completes
before filling the requested output size, then that compressed
stream is return with no recompression.
EXCESS is chosen to be just greater than the shortfall seen in a
two pass approach similar to the above. That shortfall is due to
the last deflate block compressing more efficiently with a smaller
header on the second pass. EXCESS is set to be large enough so
that there is enough uncompressed data for the second pass to fill
out the requested size, and small enough so that the final deflate
block of the second pass will be close in size to the final deflate
block of the third and final pass. MARGIN is chosen to be just
large enough to assure that the final compression has enough room
to complete in all cases.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "zlib.h"
#define local static
/* print nastygram and leave */
local void quit(char *why)
{
fprintf(stderr, "fitblk abort: %s\n", why);
exit(1);
}
#define RAWLEN 4096 /* intermediate uncompressed buffer size */
/* compress from file to def until provided buffer is full or end of
input reached; return last deflate() return value, or Z_ERRNO if
there was read error on the file */
local int partcompress(FILE *in, z_streamp def)
{
int ret, flush;
unsigned char raw[RAWLEN];
flush = Z_NO_FLUSH;
do {
def->avail_in = fread(raw, 1, RAWLEN, in);
if (ferror(in))
return Z_ERRNO;
def->next_in = raw;
if (feof(in))
flush = Z_FINISH;
ret = deflate(def, flush);
assert(ret != Z_STREAM_ERROR);
} while (def->avail_out != 0 && flush == Z_NO_FLUSH);
return ret;
}
/* recompress from inf's input to def's output; the input for inf and
the output for def are set in those structures before calling;
return last deflate() return value, or Z_MEM_ERROR if inflate()
was not able to allocate enough memory when it needed to */
local int recompress(z_streamp inf, z_streamp def)
{
int ret, flush;
unsigned char raw[RAWLEN];
flush = Z_NO_FLUSH;
do {
/* decompress */
inf->avail_out = RAWLEN;
inf->next_out = raw;
ret = inflate(inf, Z_NO_FLUSH);
assert(ret != Z_STREAM_ERROR && ret != Z_DATA_ERROR &&
ret != Z_NEED_DICT);
if (ret == Z_MEM_ERROR)
return ret;
- /* compress what was decompresed until done or no room */
+ /* compress what was decompressed until done or no room */
def->avail_in = RAWLEN - inf->avail_out;
def->next_in = raw;
if (inf->avail_out != 0)
flush = Z_FINISH;
ret = deflate(def, flush);
assert(ret != Z_STREAM_ERROR);
} while (ret != Z_STREAM_END && def->avail_out != 0);
return ret;
}
#define EXCESS 256 /* empirically determined stream overage */
#define MARGIN 8 /* amount to back off for completion */
/* compress from stdin to fixed-size block on stdout */
int main(int argc, char **argv)
{
int ret; /* return code */
unsigned size; /* requested fixed output block size */
unsigned have; /* bytes written by deflate() call */
unsigned char *blk; /* intermediate and final stream */
unsigned char *tmp; /* close to desired size stream */
z_stream def, inf; /* zlib deflate and inflate states */
/* get requested output size */
if (argc != 2)
quit("need one argument: size of output block");
ret = strtol(argv[1], argv + 1, 10);
if (argv[1][0] != 0)
quit("argument must be a number");
if (ret < 8) /* 8 is minimum zlib stream size */
quit("need positive size of 8 or greater");
size = (unsigned)ret;
/* allocate memory for buffers and compression engine */
blk = malloc(size + EXCESS);
def.zalloc = Z_NULL;
def.zfree = Z_NULL;
def.opaque = Z_NULL;
ret = deflateInit(&def, Z_DEFAULT_COMPRESSION);
if (ret != Z_OK || blk == NULL)
quit("out of memory");
/* compress from stdin until output full, or no more input */
def.avail_out = size + EXCESS;
def.next_out = blk;
ret = partcompress(stdin, &def);
if (ret == Z_ERRNO)
quit("error reading input");
/* if it all fit, then size was undersubscribed -- done! */
if (ret == Z_STREAM_END && def.avail_out >= EXCESS) {
/* write block to stdout */
have = size + EXCESS - def.avail_out;
if (fwrite(blk, 1, have, stdout) != have || ferror(stdout))
quit("error writing output");
/* clean up and print results to stderr */
ret = deflateEnd(&def);
assert(ret != Z_STREAM_ERROR);
free(blk);
fprintf(stderr,
"%u bytes unused out of %u requested (all input)\n",
size - have, size);
return 0;
}
/* it didn't all fit -- set up for recompression */
inf.zalloc = Z_NULL;
inf.zfree = Z_NULL;
inf.opaque = Z_NULL;
inf.avail_in = 0;
inf.next_in = Z_NULL;
ret = inflateInit(&inf);
tmp = malloc(size + EXCESS);
if (ret != Z_OK || tmp == NULL)
quit("out of memory");
ret = deflateReset(&def);
assert(ret != Z_STREAM_ERROR);
/* do first recompression close to the right amount */
inf.avail_in = size + EXCESS;
inf.next_in = blk;
def.avail_out = size + EXCESS;
def.next_out = tmp;
ret = recompress(&inf, &def);
if (ret == Z_MEM_ERROR)
quit("out of memory");
/* set up for next recompression */
ret = inflateReset(&inf);
assert(ret != Z_STREAM_ERROR);
ret = deflateReset(&def);
assert(ret != Z_STREAM_ERROR);
/* do second and final recompression (third compression) */
inf.avail_in = size - MARGIN; /* assure stream will complete */
inf.next_in = tmp;
def.avail_out = size;
def.next_out = blk;
ret = recompress(&inf, &def);
if (ret == Z_MEM_ERROR)
quit("out of memory");
assert(ret == Z_STREAM_END); /* otherwise MARGIN too small */
/* done -- write block to stdout */
have = size - def.avail_out;
if (fwrite(blk, 1, have, stdout) != have || ferror(stdout))
quit("error writing output");
/* clean up and print results to stderr */
free(tmp);
ret = inflateEnd(&inf);
assert(ret != Z_STREAM_ERROR);
ret = deflateEnd(&def);
assert(ret != Z_STREAM_ERROR);
free(blk);
fprintf(stderr,
"%u bytes unused out of %u requested (%lu input)\n",
size - have, size, def.total_in);
return 0;
}
diff --git a/sys/contrib/zstd/zlibWrapper/examples/zwrapbench.c b/sys/contrib/zstd/zlibWrapper/examples/zwrapbench.c
index f30cad40c719..5993e51ba025 100644
--- a/sys/contrib/zstd/zlibWrapper/examples/zwrapbench.c
+++ b/sys/contrib/zstd/zlibWrapper/examples/zwrapbench.c
@@ -1,1001 +1,1016 @@
/*
* Copyright (c) 2016-present, Przemyslaw Skibinski, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
/* *************************************
* Includes
***************************************/
#include "util.h" /* Compiler options, UTIL_GetFileSize, UTIL_sleep */
#include <stdlib.h> /* malloc, free */
#include <string.h> /* memset */
#include <stdio.h> /* fprintf, fopen, ftello64 */
#include <time.h> /* clock_t, clock, CLOCKS_PER_SEC */
#include <ctype.h> /* toupper */
#include <errno.h> /* errno */
#include "timefn.h" /* UTIL_time_t, UTIL_getTime, UTIL_clockSpanMicro, UTIL_waitForNextTick */
#include "mem.h"
#define ZSTD_STATIC_LINKING_ONLY
#include "zstd.h"
#include "datagen.h" /* RDG_genBuffer */
#include "xxhash.h"
#include "zstd_zlibwrapper.h"
/*-************************************
* Tuning parameters
**************************************/
#ifndef ZSTDCLI_CLEVEL_DEFAULT
# define ZSTDCLI_CLEVEL_DEFAULT 3
#endif
/*-************************************
* Constants
**************************************/
#define COMPRESSOR_NAME "Zstandard wrapper for zlib command line interface"
#ifndef ZSTD_VERSION
# define ZSTD_VERSION "v" ZSTD_VERSION_STRING
#endif
#define AUTHOR "Yann Collet"
#define WELCOME_MESSAGE "*** %s %i-bits %s, by %s ***\n", COMPRESSOR_NAME, (int)(sizeof(size_t)*8), ZSTD_VERSION, AUTHOR
#ifndef ZSTD_GIT_COMMIT
# define ZSTD_GIT_COMMIT_STRING ""
#else
# define ZSTD_GIT_COMMIT_STRING ZSTD_EXPAND_AND_QUOTE(ZSTD_GIT_COMMIT)
#endif
#define NBLOOPS 3
#define TIMELOOP_MICROSEC 1*1000000ULL /* 1 second */
#define ACTIVEPERIOD_MICROSEC 70*1000000ULL /* 70 seconds */
#define COOLPERIOD_SEC 10
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)
static const size_t maxMemory = (sizeof(size_t)==4) ? (2 GB - 64 MB) : (size_t)(1ULL << ((sizeof(size_t)*8)-31));
static U32 g_compressibilityDefault = 50;
/* *************************************
* console display
***************************************/
#define DEFAULT_DISPLAY_LEVEL 2
#define DISPLAY(...) fprintf(displayOut, __VA_ARGS__)
#define DISPLAYLEVEL(l, ...) if (g_displayLevel>=l) { DISPLAY(__VA_ARGS__); }
static unsigned g_displayLevel = DEFAULT_DISPLAY_LEVEL; /* 0 : no display; 1: errors; 2 : + result + interaction + warnings; 3 : + progression; 4 : + information */
static FILE* displayOut;
#define DISPLAYUPDATE(l, ...) if (g_displayLevel>=l) { \
if ((clock() - g_time > refreshRate) || (g_displayLevel>=4)) \
{ g_time = clock(); DISPLAY(__VA_ARGS__); \
if (g_displayLevel>=4) fflush(displayOut); } }
static const clock_t refreshRate = CLOCKS_PER_SEC * 15 / 100;
static clock_t g_time = 0;
/* *************************************
* Exceptions
***************************************/
#ifndef DEBUG
# define DEBUG 0
#endif
#define DEBUGOUTPUT(...) { if (DEBUG) DISPLAY(__VA_ARGS__); }
#define EXM_THROW(error, ...) \
{ \
DEBUGOUTPUT("Error defined at %s, line %i : \n", __FILE__, __LINE__); \
DISPLAYLEVEL(1, "Error %i : ", error); \
DISPLAYLEVEL(1, __VA_ARGS__); \
DISPLAYLEVEL(1, "\n"); \
exit(error); \
}
/* *************************************
* Benchmark Parameters
***************************************/
static unsigned g_nbIterations = NBLOOPS;
static size_t g_blockSize = 0;
int g_additionalParam = 0;
void BMK_setNotificationLevel(unsigned level) { g_displayLevel=level; }
void BMK_setAdditionalParam(int additionalParam) { g_additionalParam=additionalParam; }
void BMK_SetNbIterations(unsigned nbLoops)
{
g_nbIterations = nbLoops;
DISPLAYLEVEL(3, "- test >= %u seconds per compression / decompression -\n", g_nbIterations);
}
void BMK_SetBlockSize(size_t blockSize)
{
g_blockSize = blockSize;
DISPLAYLEVEL(2, "using blocks of size %u KB \n", (unsigned)(blockSize>>10));
}
/* ********************************************************
* Bench functions
**********************************************************/
#undef MIN
#undef MAX
#define MIN(a,b) ((a)<(b) ? (a) : (b))
#define MAX(a,b) ((a)>(b) ? (a) : (b))
typedef struct
{
z_const char* srcPtr;
size_t srcSize;
char* cPtr;
size_t cRoom;
size_t cSize;
char* resPtr;
size_t resSize;
} blockParam_t;
typedef enum { BMK_ZSTD, BMK_ZSTD_STREAM, BMK_ZLIB, BMK_ZWRAP_ZLIB, BMK_ZWRAP_ZSTD, BMK_ZLIB_REUSE, BMK_ZWRAP_ZLIB_REUSE, BMK_ZWRAP_ZSTD_REUSE } BMK_compressor;
static int BMK_benchMem(z_const void* srcBuffer, size_t srcSize,
const char* displayName, int cLevel,
const size_t* fileSizes, U32 nbFiles,
const void* dictBuffer, size_t dictBufferSize, BMK_compressor compressor)
{
size_t const blockSize = (g_blockSize>=32 ? g_blockSize : srcSize) + (!srcSize) /* avoid div by 0 */ ;
size_t const avgSize = MIN(g_blockSize, (srcSize / nbFiles));
U32 const maxNbBlocks = (U32) ((srcSize + (blockSize-1)) / blockSize) + nbFiles;
blockParam_t* const blockTable = (blockParam_t*) malloc(maxNbBlocks * sizeof(blockParam_t));
size_t const maxCompressedSize = ZSTD_compressBound(srcSize) + (maxNbBlocks * 1024); /* add some room for safety */
void* const compressedBuffer = malloc(maxCompressedSize);
void* const resultBuffer = malloc(srcSize);
ZSTD_CCtx* const ctx = ZSTD_createCCtx();
ZSTD_DCtx* const dctx = ZSTD_createDCtx();
U32 nbBlocks;
/* checks */
if (!compressedBuffer || !resultBuffer || !blockTable || !ctx || !dctx)
EXM_THROW(31, "allocation error : not enough memory");
/* init */
if (strlen(displayName)>17) displayName += strlen(displayName)-17; /* can only display 17 characters */
/* Init blockTable data */
{ z_const char* srcPtr = (z_const char*)srcBuffer;
char* cPtr = (char*)compressedBuffer;
char* resPtr = (char*)resultBuffer;
U32 fileNb;
for (nbBlocks=0, fileNb=0; fileNb<nbFiles; fileNb++) {
size_t remaining = fileSizes[fileNb];
U32 const nbBlocksforThisFile = (U32)((remaining + (blockSize-1)) / blockSize);
U32 const blockEnd = nbBlocks + nbBlocksforThisFile;
for ( ; nbBlocks<blockEnd; nbBlocks++) {
size_t const thisBlockSize = MIN(remaining, blockSize);
blockTable[nbBlocks].srcPtr = srcPtr;
blockTable[nbBlocks].cPtr = cPtr;
blockTable[nbBlocks].resPtr = resPtr;
blockTable[nbBlocks].srcSize = thisBlockSize;
blockTable[nbBlocks].cRoom = ZSTD_compressBound(thisBlockSize);
srcPtr += thisBlockSize;
cPtr += blockTable[nbBlocks].cRoom;
resPtr += thisBlockSize;
remaining -= thisBlockSize;
} } }
/* warming up memory */
RDG_genBuffer(compressedBuffer, maxCompressedSize, 0.10, 0.50, 1);
/* Bench */
{ U64 fastestC = (U64)(-1LL), fastestD = (U64)(-1LL);
U64 const crcOrig = XXH64(srcBuffer, srcSize, 0);
UTIL_time_t coolTime;
U64 const maxTime = (g_nbIterations * TIMELOOP_MICROSEC) + 100;
U64 totalCTime=0, totalDTime=0;
U32 cCompleted=0, dCompleted=0;
# define NB_MARKS 4
const char* const marks[NB_MARKS] = { " |", " /", " =", "\\" };
U32 markNb = 0;
size_t cSize = 0;
double ratio = 0.;
coolTime = UTIL_getTime();
DISPLAYLEVEL(2, "\r%79s\r", "");
while (!cCompleted | !dCompleted) {
UTIL_time_t clockStart;
U64 clockLoop = g_nbIterations ? TIMELOOP_MICROSEC : 1;
/* overheat protection */
if (UTIL_clockSpanMicro(coolTime) > ACTIVEPERIOD_MICROSEC) {
DISPLAYLEVEL(2, "\rcooling down ... \r");
UTIL_sleep(COOLPERIOD_SEC);
coolTime = UTIL_getTime();
}
/* Compression */
DISPLAYLEVEL(2, "%2s-%-17.17s :%10u ->\r", marks[markNb], displayName, (unsigned)srcSize);
if (!cCompleted) memset(compressedBuffer, 0xE5, maxCompressedSize); /* warm up and erase result buffer */
UTIL_sleepMilli(1); /* give processor time to other processes */
UTIL_waitForNextTick();
clockStart = UTIL_getTime();
if (!cCompleted) { /* still some time to do compression tests */
U32 nbLoops = 0;
if (compressor == BMK_ZSTD) {
ZSTD_parameters const zparams = ZSTD_getParams(cLevel, avgSize, dictBufferSize);
ZSTD_customMem const cmem = { NULL, NULL, NULL };
ZSTD_CDict* const cdict = ZSTD_createCDict_advanced(dictBuffer, dictBufferSize, ZSTD_dlm_byRef, ZSTD_dct_auto, zparams.cParams, cmem);
if (cdict==NULL) EXM_THROW(1, "ZSTD_createCDict_advanced() allocation failure");
do {
U32 blockNb;
size_t rSize;
for (blockNb=0; blockNb<nbBlocks; blockNb++) {
if (dictBufferSize) {
rSize = ZSTD_compress_usingCDict(ctx,
blockTable[blockNb].cPtr, blockTable[blockNb].cRoom,
blockTable[blockNb].srcPtr,blockTable[blockNb].srcSize,
cdict);
} else {
rSize = ZSTD_compressCCtx (ctx,
blockTable[blockNb].cPtr, blockTable[blockNb].cRoom,
blockTable[blockNb].srcPtr,blockTable[blockNb].srcSize, cLevel);
}
if (ZSTD_isError(rSize)) EXM_THROW(1, "ZSTD_compress_usingCDict() failed : %s", ZSTD_getErrorName(rSize));
blockTable[blockNb].cSize = rSize;
}
nbLoops++;
} while (UTIL_clockSpanMicro(clockStart) < clockLoop);
ZSTD_freeCDict(cdict);
} else if (compressor == BMK_ZSTD_STREAM) {
ZSTD_parameters const zparams = ZSTD_getParams(cLevel, avgSize, dictBufferSize);
ZSTD_inBuffer inBuffer;
ZSTD_outBuffer outBuffer;
ZSTD_CStream* zbc = ZSTD_createCStream();
size_t rSize;
+ ZSTD_CCtx_params* cctxParams = ZSTD_createCCtxParams();
+
+ if (!cctxParams) EXM_THROW(1, "ZSTD_createCCtxParams() allocation failure");
if (zbc == NULL) EXM_THROW(1, "ZSTD_createCStream() allocation failure");
- rSize = ZSTD_initCStream_advanced(zbc, dictBuffer, dictBufferSize, zparams, avgSize);
- if (ZSTD_isError(rSize)) EXM_THROW(1, "ZSTD_initCStream_advanced() failed : %s", ZSTD_getErrorName(rSize));
+
+ { int initErr = 0;
+ initErr |= ZSTD_isError(ZSTD_CCtx_reset(zbc, ZSTD_reset_session_only));
+ initErr |= ZSTD_isError(ZSTD_CCtxParams_init_advanced(cctxParams, zparams));
+ initErr |= ZSTD_isError(ZSTD_CCtx_setParametersUsingCCtxParams(zbc, cctxParams));
+ initErr |= ZSTD_isError(ZSTD_CCtx_setPledgedSrcSize(zbc, avgSize));
+ initErr |= ZSTD_isError(ZSTD_CCtx_loadDictionary(zbc, dictBuffer, dictBufferSize));
+
+ ZSTD_freeCCtxParams(cctxParams);
+ if (initErr) EXM_THROW(1, "CCtx init failed!");
+ }
+
do {
U32 blockNb;
for (blockNb=0; blockNb<nbBlocks; blockNb++) {
- rSize = ZSTD_resetCStream(zbc, blockTable[blockNb].srcSize);
- if (ZSTD_isError(rSize)) EXM_THROW(1, "ZSTD_resetCStream() failed : %s", ZSTD_getErrorName(rSize));
+ rSize = ZSTD_CCtx_reset(zbc, ZSTD_reset_session_only);
+ if (ZSTD_isError(rSize)) EXM_THROW(1, "ZSTD_CCtx_reset() failed : %s", ZSTD_getErrorName(rSize));
+ rSize = ZSTD_CCtx_setPledgedSrcSize(zbc, blockTable[blockNb].srcSize);
+ if (ZSTD_isError(rSize)) EXM_THROW(1, "ZSTD_CCtx_setPledgedSrcSize() failed : %s", ZSTD_getErrorName(rSize));
inBuffer.src = blockTable[blockNb].srcPtr;
inBuffer.size = blockTable[blockNb].srcSize;
inBuffer.pos = 0;
outBuffer.dst = blockTable[blockNb].cPtr;
outBuffer.size = blockTable[blockNb].cRoom;
outBuffer.pos = 0;
rSize = ZSTD_compressStream(zbc, &outBuffer, &inBuffer);
if (ZSTD_isError(rSize)) EXM_THROW(1, "ZSTD_compressStream() failed : %s", ZSTD_getErrorName(rSize));
rSize = ZSTD_endStream(zbc, &outBuffer);
if (ZSTD_isError(rSize)) EXM_THROW(1, "ZSTD_endStream() failed : %s", ZSTD_getErrorName(rSize));
blockTable[blockNb].cSize = outBuffer.pos;
}
nbLoops++;
} while (UTIL_clockSpanMicro(clockStart) < clockLoop);
ZSTD_freeCStream(zbc);
} else if (compressor == BMK_ZWRAP_ZLIB_REUSE || compressor == BMK_ZWRAP_ZSTD_REUSE || compressor == BMK_ZLIB_REUSE) {
z_stream def;
int ret;
int useSetDict = (dictBuffer != NULL);
if (compressor == BMK_ZLIB_REUSE || compressor == BMK_ZWRAP_ZLIB_REUSE) ZWRAP_useZSTDcompression(0);
else ZWRAP_useZSTDcompression(1);
def.zalloc = Z_NULL;
def.zfree = Z_NULL;
def.opaque = Z_NULL;
ret = deflateInit(&def, cLevel);
if (ret != Z_OK) EXM_THROW(1, "deflateInit failure");
/* if (ZWRAP_isUsingZSTDcompression()) {
ret = ZWRAP_setPledgedSrcSize(&def, avgSize);
if (ret != Z_OK) EXM_THROW(1, "ZWRAP_setPledgedSrcSize failure");
} */
do {
U32 blockNb;
for (blockNb=0; blockNb<nbBlocks; blockNb++) {
if (ZWRAP_isUsingZSTDcompression())
ret = ZWRAP_deflateReset_keepDict(&def); /* reuse dictionary to make compression faster */
else
ret = deflateReset(&def);
if (ret != Z_OK) EXM_THROW(1, "deflateReset failure");
if (useSetDict) {
ret = deflateSetDictionary(&def, (const z_Bytef*)dictBuffer, dictBufferSize);
if (ret != Z_OK) EXM_THROW(1, "deflateSetDictionary failure");
if (ZWRAP_isUsingZSTDcompression()) useSetDict = 0; /* zstd doesn't require deflateSetDictionary after ZWRAP_deflateReset_keepDict */
}
def.next_in = (z_const z_Bytef*) blockTable[blockNb].srcPtr;
def.avail_in = (uInt)blockTable[blockNb].srcSize;
def.total_in = 0;
def.next_out = (z_Bytef*) blockTable[blockNb].cPtr;
def.avail_out = (uInt)blockTable[blockNb].cRoom;
def.total_out = 0;
ret = deflate(&def, Z_FINISH);
if (ret != Z_STREAM_END) EXM_THROW(1, "deflate failure ret=%d srcSize=%d" , ret, (int)blockTable[blockNb].srcSize);
blockTable[blockNb].cSize = def.total_out;
}
nbLoops++;
} while (UTIL_clockSpanMicro(clockStart) < clockLoop);
ret = deflateEnd(&def);
if (ret != Z_OK) EXM_THROW(1, "deflateEnd failure");
} else {
z_stream def;
if (compressor == BMK_ZLIB || compressor == BMK_ZWRAP_ZLIB) ZWRAP_useZSTDcompression(0);
else ZWRAP_useZSTDcompression(1);
do {
U32 blockNb;
for (blockNb=0; blockNb<nbBlocks; blockNb++) {
int ret;
def.zalloc = Z_NULL;
def.zfree = Z_NULL;
def.opaque = Z_NULL;
ret = deflateInit(&def, cLevel);
if (ret != Z_OK) EXM_THROW(1, "deflateInit failure");
if (dictBuffer) {
ret = deflateSetDictionary(&def, (const z_Bytef*)dictBuffer, dictBufferSize);
if (ret != Z_OK) EXM_THROW(1, "deflateSetDictionary failure");
}
def.next_in = (z_const z_Bytef*) blockTable[blockNb].srcPtr;
def.avail_in = (uInt)blockTable[blockNb].srcSize;
def.total_in = 0;
def.next_out = (z_Bytef*) blockTable[blockNb].cPtr;
def.avail_out = (uInt)blockTable[blockNb].cRoom;
def.total_out = 0;
ret = deflate(&def, Z_FINISH);
if (ret != Z_STREAM_END) EXM_THROW(1, "deflate failure");
ret = deflateEnd(&def);
if (ret != Z_OK) EXM_THROW(1, "deflateEnd failure");
blockTable[blockNb].cSize = def.total_out;
}
nbLoops++;
} while (UTIL_clockSpanMicro(clockStart) < clockLoop);
}
{ U64 const clockSpan = UTIL_clockSpanMicro(clockStart);
if (clockSpan < fastestC*nbLoops) fastestC = clockSpan / nbLoops;
totalCTime += clockSpan;
cCompleted = totalCTime>maxTime;
} }
cSize = 0;
{ U32 blockNb; for (blockNb=0; blockNb<nbBlocks; blockNb++) cSize += blockTable[blockNb].cSize; }
ratio = (double)srcSize / (double)cSize;
markNb = (markNb+1) % NB_MARKS;
DISPLAYLEVEL(2, "%2s-%-17.17s :%10u ->%10u (%5.3f),%6.1f MB/s\r",
marks[markNb], displayName, (unsigned)srcSize, (unsigned)cSize, ratio,
(double)srcSize / fastestC );
(void)fastestD; (void)crcOrig; /* unused when decompression disabled */
#if 1
/* Decompression */
if (!dCompleted) memset(resultBuffer, 0xD6, srcSize); /* warm result buffer */
UTIL_sleepMilli(1); /* give processor time to other processes */
UTIL_waitForNextTick();
clockStart = UTIL_getTime();
if (!dCompleted) {
U32 nbLoops = 0;
if (compressor == BMK_ZSTD) {
ZSTD_DDict* ddict = ZSTD_createDDict(dictBuffer, dictBufferSize);
if (!ddict) EXM_THROW(2, "ZSTD_createDDict() allocation failure");
do {
unsigned blockNb;
for (blockNb=0; blockNb<nbBlocks; blockNb++) {
size_t const regenSize = ZSTD_decompress_usingDDict(dctx,
blockTable[blockNb].resPtr, blockTable[blockNb].srcSize,
blockTable[blockNb].cPtr, blockTable[blockNb].cSize,
ddict);
if (ZSTD_isError(regenSize)) {
DISPLAY("ZSTD_decompress_usingDDict() failed on block %u : %s \n",
blockNb, ZSTD_getErrorName(regenSize));
clockLoop = 0; /* force immediate test end */
break;
}
blockTable[blockNb].resSize = regenSize;
}
nbLoops++;
} while (UTIL_clockSpanMicro(clockStart) < clockLoop);
ZSTD_freeDDict(ddict);
} else if (compressor == BMK_ZSTD_STREAM) {
ZSTD_inBuffer inBuffer;
ZSTD_outBuffer outBuffer;
ZSTD_DStream* zbd = ZSTD_createDStream();
size_t rSize;
if (zbd == NULL) EXM_THROW(1, "ZSTD_createDStream() allocation failure");
rSize = ZSTD_initDStream_usingDict(zbd, dictBuffer, dictBufferSize);
if (ZSTD_isError(rSize)) EXM_THROW(1, "ZSTD_initDStream() failed : %s", ZSTD_getErrorName(rSize));
do {
U32 blockNb;
for (blockNb=0; blockNb<nbBlocks; blockNb++) {
- rSize = ZSTD_resetDStream(zbd);
- if (ZSTD_isError(rSize)) EXM_THROW(1, "ZSTD_resetDStream() failed : %s", ZSTD_getErrorName(rSize));
+ rSize = ZSTD_DCtx_reset(zbd, ZSTD_reset_session_only);
+ if (ZSTD_isError(rSize)) EXM_THROW(1, "ZSTD_DCtx_reset() failed : %s", ZSTD_getErrorName(rSize));
inBuffer.src = blockTable[blockNb].cPtr;
inBuffer.size = blockTable[blockNb].cSize;
inBuffer.pos = 0;
outBuffer.dst = blockTable[blockNb].resPtr;
outBuffer.size = blockTable[blockNb].srcSize;
outBuffer.pos = 0;
rSize = ZSTD_decompressStream(zbd, &outBuffer, &inBuffer);
if (ZSTD_isError(rSize)) EXM_THROW(1, "ZSTD_decompressStream() failed : %s", ZSTD_getErrorName(rSize));
blockTable[blockNb].resSize = outBuffer.pos;
}
nbLoops++;
} while (UTIL_clockSpanMicro(clockStart) < clockLoop);
ZSTD_freeDStream(zbd);
} else if (compressor == BMK_ZWRAP_ZLIB_REUSE || compressor == BMK_ZWRAP_ZSTD_REUSE || compressor == BMK_ZLIB_REUSE) {
z_stream inf;
int ret;
if (compressor == BMK_ZLIB_REUSE) ZWRAP_setDecompressionType(ZWRAP_FORCE_ZLIB);
else ZWRAP_setDecompressionType(ZWRAP_AUTO);
inf.zalloc = Z_NULL;
inf.zfree = Z_NULL;
inf.opaque = Z_NULL;
ret = inflateInit(&inf);
if (ret != Z_OK) EXM_THROW(1, "inflateInit failure");
do {
U32 blockNb;
for (blockNb=0; blockNb<nbBlocks; blockNb++) {
if (ZWRAP_isUsingZSTDdecompression(&inf))
ret = ZWRAP_inflateReset_keepDict(&inf); /* reuse dictionary to make decompression faster; inflate will return Z_NEED_DICT only for the first time */
else
ret = inflateReset(&inf);
if (ret != Z_OK) EXM_THROW(1, "inflateReset failure");
inf.next_in = (z_const z_Bytef*) blockTable[blockNb].cPtr;
inf.avail_in = (uInt)blockTable[blockNb].cSize;
inf.total_in = 0;
inf.next_out = (z_Bytef*) blockTable[blockNb].resPtr;
inf.avail_out = (uInt)blockTable[blockNb].srcSize;
inf.total_out = 0;
ret = inflate(&inf, Z_FINISH);
if (ret == Z_NEED_DICT) {
ret = inflateSetDictionary(&inf, (const z_Bytef*)dictBuffer, dictBufferSize);
if (ret != Z_OK) EXM_THROW(1, "inflateSetDictionary failure");
ret = inflate(&inf, Z_FINISH);
}
if (ret != Z_STREAM_END) EXM_THROW(1, "inflate failure");
blockTable[blockNb].resSize = inf.total_out;
}
nbLoops++;
} while (UTIL_clockSpanMicro(clockStart) < clockLoop);
ret = inflateEnd(&inf);
if (ret != Z_OK) EXM_THROW(1, "inflateEnd failure");
} else {
z_stream inf;
if (compressor == BMK_ZLIB) ZWRAP_setDecompressionType(ZWRAP_FORCE_ZLIB);
else ZWRAP_setDecompressionType(ZWRAP_AUTO);
do {
U32 blockNb;
for (blockNb=0; blockNb<nbBlocks; blockNb++) {
int ret;
inf.zalloc = Z_NULL;
inf.zfree = Z_NULL;
inf.opaque = Z_NULL;
ret = inflateInit(&inf);
if (ret != Z_OK) EXM_THROW(1, "inflateInit failure");
inf.next_in = (z_const z_Bytef*) blockTable[blockNb].cPtr;
inf.avail_in = (uInt)blockTable[blockNb].cSize;
inf.total_in = 0;
inf.next_out = (z_Bytef*) blockTable[blockNb].resPtr;
inf.avail_out = (uInt)blockTable[blockNb].srcSize;
inf.total_out = 0;
ret = inflate(&inf, Z_FINISH);
if (ret == Z_NEED_DICT) {
ret = inflateSetDictionary(&inf, (const z_Bytef*) dictBuffer, dictBufferSize);
if (ret != Z_OK) EXM_THROW(1, "inflateSetDictionary failure");
ret = inflate(&inf, Z_FINISH);
}
if (ret != Z_STREAM_END) EXM_THROW(1, "inflate failure");
ret = inflateEnd(&inf);
if (ret != Z_OK) EXM_THROW(1, "inflateEnd failure");
blockTable[blockNb].resSize = inf.total_out;
}
nbLoops++;
} while (UTIL_clockSpanMicro(clockStart) < clockLoop);
}
{ U64 const clockSpan = UTIL_clockSpanMicro(clockStart);
if (clockSpan < fastestD*nbLoops) fastestD = clockSpan / nbLoops;
totalDTime += clockSpan;
dCompleted = totalDTime>maxTime;
} }
markNb = (markNb+1) % NB_MARKS;
DISPLAYLEVEL(2, "%2s-%-17.17s :%10u ->%10u (%5.3f),%6.1f MB/s ,%6.1f MB/s\r",
marks[markNb], displayName, (unsigned)srcSize, (unsigned)cSize, ratio,
(double)srcSize / fastestC,
(double)srcSize / fastestD );
/* CRC Checking */
{ U64 const crcCheck = XXH64(resultBuffer, srcSize, 0);
if (crcOrig!=crcCheck) {
size_t u;
DISPLAY("!!! WARNING !!! %14s : Invalid Checksum : %x != %x \n", displayName, (unsigned)crcOrig, (unsigned)crcCheck);
for (u=0; u<srcSize; u++) {
if (((const BYTE*)srcBuffer)[u] != ((const BYTE*)resultBuffer)[u]) {
unsigned segNb, bNb, pos;
size_t bacc = 0;
DISPLAY("Decoding error at pos %u ", (unsigned)u);
for (segNb = 0; segNb < nbBlocks; segNb++) {
if (bacc + blockTable[segNb].srcSize > u) break;
bacc += blockTable[segNb].srcSize;
}
pos = (U32)(u - bacc);
bNb = pos / (128 KB);
DISPLAY("(block %u, sub %u, pos %u) \n", segNb, bNb, pos);
break;
}
if (u==srcSize-1) { /* should never happen */
DISPLAY("no difference detected\n");
} }
break;
} } /* CRC Checking */
#endif
} /* for (testNb = 1; testNb <= (g_nbIterations + !g_nbIterations); testNb++) */
if (g_displayLevel == 1) {
double cSpeed = (double)srcSize / fastestC;
double dSpeed = (double)srcSize / fastestD;
if (g_additionalParam)
DISPLAY("-%-3i%11i (%5.3f) %6.2f MB/s %6.1f MB/s %s (param=%d)\n", cLevel, (int)cSize, ratio, cSpeed, dSpeed, displayName, g_additionalParam);
else
DISPLAY("-%-3i%11i (%5.3f) %6.2f MB/s %6.1f MB/s %s\n", cLevel, (int)cSize, ratio, cSpeed, dSpeed, displayName);
}
DISPLAYLEVEL(2, "%2i#\n", cLevel);
} /* Bench */
/* clean up */
free(blockTable);
free(compressedBuffer);
free(resultBuffer);
ZSTD_freeCCtx(ctx);
ZSTD_freeDCtx(dctx);
return 0;
}
static size_t BMK_findMaxMem(U64 requiredMem)
{
size_t const step = 64 MB;
BYTE* testmem = NULL;
requiredMem = (((requiredMem >> 26) + 1) << 26);
requiredMem += step;
if (requiredMem > maxMemory) requiredMem = maxMemory;
do {
testmem = (BYTE*)malloc((size_t)requiredMem);
requiredMem -= step;
} while (!testmem && requiredMem); /* do not allocate zero bytes */
free(testmem);
return (size_t)(requiredMem+1); /* avoid zero */
}
static void BMK_benchCLevel(void* srcBuffer, size_t benchedSize,
const char* displayName, int cLevel, int cLevelLast,
const size_t* fileSizes, unsigned nbFiles,
const void* dictBuffer, size_t dictBufferSize)
{
int l;
const char* pch = strrchr(displayName, '\\'); /* Windows */
if (!pch) pch = strrchr(displayName, '/'); /* Linux */
if (pch) displayName = pch+1;
SET_REALTIME_PRIORITY;
if (g_displayLevel == 1 && !g_additionalParam)
DISPLAY("bench %s %s: input %u bytes, %u seconds, %u KB blocks\n",
ZSTD_VERSION_STRING, ZSTD_GIT_COMMIT_STRING,
(unsigned)benchedSize, g_nbIterations, (unsigned)(g_blockSize>>10));
if (cLevelLast < cLevel) cLevelLast = cLevel;
DISPLAY("benchmarking zstd %s (using ZSTD_CStream)\n", ZSTD_VERSION_STRING);
for (l=cLevel; l <= cLevelLast; l++) {
BMK_benchMem(srcBuffer, benchedSize,
displayName, l,
fileSizes, nbFiles,
dictBuffer, dictBufferSize, BMK_ZSTD_STREAM);
}
DISPLAY("benchmarking zstd %s (using ZSTD_CCtx)\n", ZSTD_VERSION_STRING);
for (l=cLevel; l <= cLevelLast; l++) {
BMK_benchMem(srcBuffer, benchedSize,
displayName, l,
fileSizes, nbFiles,
dictBuffer, dictBufferSize, BMK_ZSTD);
}
DISPLAY("benchmarking zstd %s (using zlibWrapper)\n", ZSTD_VERSION_STRING);
for (l=cLevel; l <= cLevelLast; l++) {
BMK_benchMem(srcBuffer, benchedSize,
displayName, l,
fileSizes, nbFiles,
dictBuffer, dictBufferSize, BMK_ZWRAP_ZSTD_REUSE);
}
DISPLAY("benchmarking zstd %s (zlibWrapper not reusing a context)\n", ZSTD_VERSION_STRING);
for (l=cLevel; l <= cLevelLast; l++) {
BMK_benchMem(srcBuffer, benchedSize,
displayName, l,
fileSizes, nbFiles,
dictBuffer, dictBufferSize, BMK_ZWRAP_ZSTD);
}
if (cLevelLast > Z_BEST_COMPRESSION) cLevelLast = Z_BEST_COMPRESSION;
DISPLAY("\n");
DISPLAY("benchmarking zlib %s\n", ZLIB_VERSION);
for (l=cLevel; l <= cLevelLast; l++) {
BMK_benchMem(srcBuffer, benchedSize,
displayName, l,
fileSizes, nbFiles,
dictBuffer, dictBufferSize, BMK_ZLIB_REUSE);
}
DISPLAY("benchmarking zlib %s (zlib not reusing a context)\n", ZLIB_VERSION);
for (l=cLevel; l <= cLevelLast; l++) {
BMK_benchMem(srcBuffer, benchedSize,
displayName, l,
fileSizes, nbFiles,
dictBuffer, dictBufferSize, BMK_ZLIB);
}
DISPLAY("benchmarking zlib %s (using zlibWrapper)\n", ZLIB_VERSION);
for (l=cLevel; l <= cLevelLast; l++) {
BMK_benchMem(srcBuffer, benchedSize,
displayName, l,
fileSizes, nbFiles,
dictBuffer, dictBufferSize, BMK_ZWRAP_ZLIB_REUSE);
}
DISPLAY("benchmarking zlib %s (zlibWrapper not reusing a context)\n", ZLIB_VERSION);
for (l=cLevel; l <= cLevelLast; l++) {
BMK_benchMem(srcBuffer, benchedSize,
displayName, l,
fileSizes, nbFiles,
dictBuffer, dictBufferSize, BMK_ZWRAP_ZLIB);
}
}
/*! BMK_loadFiles() :
Loads `buffer` with content of files listed within `fileNamesTable`.
At most, fills `buffer` entirely */
static void BMK_loadFiles(void* buffer, size_t bufferSize,
size_t* fileSizes,
const char** fileNamesTable, unsigned nbFiles)
{
size_t pos = 0, totalSize = 0;
unsigned n;
for (n=0; n<nbFiles; n++) {
FILE* f;
U64 fileSize = UTIL_getFileSize(fileNamesTable[n]);
if (UTIL_isDirectory(fileNamesTable[n])) {
DISPLAYLEVEL(2, "Ignoring %s directory... \n", fileNamesTable[n]);
fileSizes[n] = 0;
continue;
}
if (fileSize == UTIL_FILESIZE_UNKNOWN) {
DISPLAYLEVEL(2, "Cannot determine size of %s ... \n", fileNamesTable[n]);
fileSizes[n] = 0;
continue;
}
f = fopen(fileNamesTable[n], "rb");
if (f==NULL) EXM_THROW(10, "impossible to open file %s", fileNamesTable[n]);
DISPLAYUPDATE(2, "Loading %s... \r", fileNamesTable[n]);
if (fileSize > bufferSize-pos) fileSize = bufferSize-pos, nbFiles=n; /* buffer too small - stop after this file */
{ size_t const readSize = fread(((char*)buffer)+pos, 1, (size_t)fileSize, f);
if (readSize != (size_t)fileSize) EXM_THROW(11, "could not read %s", fileNamesTable[n]);
pos += readSize; }
fileSizes[n] = (size_t)fileSize;
totalSize += (size_t)fileSize;
fclose(f);
}
if (totalSize == 0) EXM_THROW(12, "no data to bench");
}
static void BMK_benchFileTable(const char** fileNamesTable, unsigned nbFiles,
const char* dictFileName, int cLevel, int cLevelLast)
{
void* srcBuffer;
size_t benchedSize;
void* dictBuffer = NULL;
size_t dictBufferSize = 0;
size_t* fileSizes = (size_t*)malloc(nbFiles * sizeof(size_t));
U64 const totalSizeToLoad = UTIL_getTotalFileSize(fileNamesTable, nbFiles);
char mfName[20] = {0};
if (!fileSizes) EXM_THROW(12, "not enough memory for fileSizes");
/* Load dictionary */
if (dictFileName != NULL) {
U64 const dictFileSize = UTIL_getFileSize(dictFileName);
if (dictFileSize > 64 MB)
EXM_THROW(10, "dictionary file %s too large", dictFileName);
dictBufferSize = (size_t)dictFileSize;
dictBuffer = malloc(dictBufferSize);
if (dictBuffer==NULL)
EXM_THROW(11, "not enough memory for dictionary (%u bytes)", (unsigned)dictBufferSize);
BMK_loadFiles(dictBuffer, dictBufferSize, fileSizes, &dictFileName, 1);
}
/* Memory allocation & restrictions */
benchedSize = BMK_findMaxMem(totalSizeToLoad * 3) / 3;
if ((U64)benchedSize > totalSizeToLoad) benchedSize = (size_t)totalSizeToLoad;
if (benchedSize < totalSizeToLoad)
DISPLAY("Not enough memory; testing %u MB only...\n", (unsigned)(benchedSize >> 20));
srcBuffer = malloc(benchedSize + !benchedSize);
if (!srcBuffer) EXM_THROW(12, "not enough memory");
/* Load input buffer */
BMK_loadFiles(srcBuffer, benchedSize, fileSizes, fileNamesTable, nbFiles);
/* Bench */
snprintf (mfName, sizeof(mfName), " %u files", nbFiles);
{ const char* displayName = (nbFiles > 1) ? mfName : fileNamesTable[0];
BMK_benchCLevel(srcBuffer, benchedSize,
displayName, cLevel, cLevelLast,
fileSizes, nbFiles,
dictBuffer, dictBufferSize);
}
/* clean up */
free(srcBuffer);
free(dictBuffer);
free(fileSizes);
}
static void BMK_syntheticTest(int cLevel, int cLevelLast, double compressibility)
{
char name[20] = {0};
size_t benchedSize = 10000000;
void* const srcBuffer = malloc(benchedSize);
/* Memory allocation */
if (!srcBuffer) EXM_THROW(21, "not enough memory");
/* Fill input buffer */
RDG_genBuffer(srcBuffer, benchedSize, compressibility, 0.0, 0);
/* Bench */
snprintf (name, sizeof(name), "Synthetic %2u%%", (unsigned)(compressibility*100));
BMK_benchCLevel(srcBuffer, benchedSize, name, cLevel, cLevelLast, &benchedSize, 1, NULL, 0);
/* clean up */
free(srcBuffer);
}
int BMK_benchFiles(const char** fileNamesTable, unsigned nbFiles,
const char* dictFileName, int cLevel, int cLevelLast)
{
double const compressibility = (double)g_compressibilityDefault / 100;
if (nbFiles == 0)
BMK_syntheticTest(cLevel, cLevelLast, compressibility);
else
BMK_benchFileTable(fileNamesTable, nbFiles, dictFileName, cLevel, cLevelLast);
return 0;
}
/*-************************************
* Command Line
**************************************/
static int usage(const char* programName)
{
DISPLAY(WELCOME_MESSAGE);
DISPLAY( "Usage :\n");
DISPLAY( " %s [args] [FILE(s)] [-o file]\n", programName);
DISPLAY( "\n");
DISPLAY( "FILE : a filename\n");
DISPLAY( " with no FILE, or when FILE is - , read standard input\n");
DISPLAY( "Arguments :\n");
DISPLAY( " -D file: use `file` as Dictionary \n");
DISPLAY( " -h/-H : display help/long help and exit\n");
DISPLAY( " -V : display Version number and exit\n");
DISPLAY( " -v : verbose mode; specify multiple times to increase log level (default:%d)\n", DEFAULT_DISPLAY_LEVEL);
DISPLAY( " -q : suppress warnings; specify twice to suppress errors too\n");
#ifdef UTIL_HAS_CREATEFILELIST
DISPLAY( " -r : operate recursively on directories\n");
#endif
DISPLAY( "\n");
DISPLAY( "Benchmark arguments :\n");
DISPLAY( " -b# : benchmark file(s), using # compression level (default : %d) \n", ZSTDCLI_CLEVEL_DEFAULT);
DISPLAY( " -e# : test all compression levels from -bX to # (default: %d)\n", ZSTDCLI_CLEVEL_DEFAULT);
DISPLAY( " -i# : minimum evaluation time in seconds (default : 3s)\n");
DISPLAY( " -B# : cut file into independent blocks of size # (default: no block)\n");
return 0;
}
static int badusage(const char* programName)
{
DISPLAYLEVEL(1, "Incorrect parameters\n");
if (g_displayLevel >= 1) usage(programName);
return 1;
}
static void waitEnter(void)
{
int unused;
DISPLAY("Press enter to continue...\n");
unused = getchar();
(void)unused;
}
/*! readU32FromChar() :
@return : unsigned integer value reach from input in `char` format
Will also modify `*stringPtr`, advancing it to position where it stopped reading.
Note : this function can overflow if digit string > MAX_UINT */
static unsigned readU32FromChar(const char** stringPtr)
{
unsigned result = 0;
while ((**stringPtr >='0') && (**stringPtr <='9'))
result *= 10, result += (unsigned)(**stringPtr - '0'), (*stringPtr)++ ;
return result;
}
#define CLEAN_RETURN(i) { operationResult = (i); goto _end; }
int main(int argCount, char** argv)
{
int argNb,
main_pause=0,
nextEntryIsDictionary=0,
operationResult=0,
nextArgumentIsFile=0;
int cLevel = ZSTDCLI_CLEVEL_DEFAULT;
int cLevelLast = 1;
unsigned recursive = 0;
FileNamesTable* filenames = UTIL_allocateFileNamesTable((size_t)argCount);
const char* programName = argv[0];
const char* dictFileName = NULL;
char* dynNameSpace = NULL;
/* init */
if (filenames==NULL) { DISPLAY("zstd: %s \n", strerror(errno)); exit(1); }
displayOut = stderr;
/* Pick out program name from path. Don't rely on stdlib because of conflicting behavior */
{ size_t pos;
for (pos = strlen(programName); pos > 0; pos--) { if (programName[pos] == '/') { pos++; break; } }
programName += pos;
}
/* command switches */
for(argNb=1; argNb<argCount; argNb++) {
const char* argument = argv[argNb];
if(!argument) continue; /* Protection if argument empty */
if (nextArgumentIsFile==0) {
/* long commands (--long-word) */
if (!strcmp(argument, "--")) { nextArgumentIsFile=1; continue; }
if (!strcmp(argument, "--version")) { displayOut=stdout; DISPLAY(WELCOME_MESSAGE); CLEAN_RETURN(0); }
if (!strcmp(argument, "--help")) { displayOut=stdout; CLEAN_RETURN(usage(programName)); }
if (!strcmp(argument, "--verbose")) { g_displayLevel++; continue; }
if (!strcmp(argument, "--quiet")) { g_displayLevel--; continue; }
/* Decode commands (note : aggregated commands are allowed) */
if (argument[0]=='-') {
argument++;
while (argument[0]!=0) {
switch(argument[0])
{
/* Display help */
case 'V': displayOut=stdout; DISPLAY(WELCOME_MESSAGE); CLEAN_RETURN(0); /* Version Only */
case 'H':
case 'h': displayOut=stdout; CLEAN_RETURN(usage(programName));
/* Use file content as dictionary */
case 'D': nextEntryIsDictionary = 1; argument++; break;
/* Verbose mode */
case 'v': g_displayLevel++; argument++; break;
/* Quiet mode */
case 'q': g_displayLevel--; argument++; break;
#ifdef UTIL_HAS_CREATEFILELIST
/* recursive */
case 'r': recursive=1; argument++; break;
#endif
/* Benchmark */
case 'b':
/* first compression Level */
argument++;
cLevel = (int)readU32FromChar(&argument);
break;
/* range bench (benchmark only) */
case 'e':
/* last compression Level */
argument++;
cLevelLast = (int)readU32FromChar(&argument);
break;
/* Modify Nb Iterations (benchmark only) */
case 'i':
argument++;
{ U32 const iters = readU32FromChar(&argument);
BMK_setNotificationLevel(g_displayLevel);
BMK_SetNbIterations(iters);
}
break;
/* cut input into blocks (benchmark only) */
case 'B':
argument++;
{ size_t bSize = readU32FromChar(&argument);
if (toupper(*argument)=='K') bSize<<=10, argument++; /* allows using KB notation */
if (toupper(*argument)=='M') bSize<<=20, argument++;
if (toupper(*argument)=='B') argument++;
BMK_setNotificationLevel(g_displayLevel);
BMK_SetBlockSize(bSize);
}
break;
/* Pause at the end (-p) or set an additional param (-p#) (hidden option) */
case 'p': argument++;
if ((*argument>='0') && (*argument<='9')) {
BMK_setAdditionalParam((int)readU32FromChar(&argument));
} else
main_pause=1;
break;
/* unknown command */
default : CLEAN_RETURN(badusage(programName));
}
}
continue;
} /* if (argument[0]=='-') */
} /* if (nextArgumentIsAFile==0) */
if (nextEntryIsDictionary) {
nextEntryIsDictionary = 0;
dictFileName = argument;
continue;
}
/* add filename to list */
UTIL_refFilename(filenames, argument);
}
/* Welcome message (if verbose) */
DISPLAYLEVEL(3, WELCOME_MESSAGE);
#ifdef UTIL_HAS_CREATEFILELIST
if (recursive) {
UTIL_expandFNT(&filenames, 1);
}
#endif
BMK_setNotificationLevel(g_displayLevel);
BMK_benchFiles(filenames->fileNames, (unsigned)filenames->tableSize, dictFileName, cLevel, cLevelLast);
_end:
if (main_pause) waitEnter();
free(dynNameSpace);
UTIL_freeFileNamesTable(filenames);
return operationResult;
}
diff --git a/sys/contrib/zstd/zlibWrapper/gzcompatibility.h b/sys/contrib/zstd/zlibWrapper/gzcompatibility.h
index 394648abbba2..c1aa2b87c127 100644
--- a/sys/contrib/zstd/zlibWrapper/gzcompatibility.h
+++ b/sys/contrib/zstd/zlibWrapper/gzcompatibility.h
@@ -1,68 +1,68 @@
/*
- * Copyright (c) 2016-2020, Przemyslaw Skibinski, Yann Collet, Facebook, Inc.
+ * Copyright (c) 2016-2021, Przemyslaw Skibinski, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#if ZLIB_VERNUM <= 0x1240
ZEXTERN int ZEXPORT gzclose_r OF((gzFile file));
ZEXTERN int ZEXPORT gzclose_w OF((gzFile file));
ZEXTERN int ZEXPORT gzbuffer OF((gzFile file, unsigned size));
ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile file));
#if !defined(_WIN32) && defined(Z_LARGE64)
# define z_off64_t off64_t
#else
# if defined(_WIN32) && !defined(__GNUC__) && !defined(Z_SOLO)
# define z_off64_t __int64
# else
# define z_off64_t z_off_t
# endif
#endif
#endif
#if ZLIB_VERNUM <= 0x1250
struct gzFile_s {
unsigned have;
unsigned char *next;
z_off64_t pos;
};
#endif
#if ZLIB_VERNUM <= 0x1270
#if defined(_WIN32) && !defined(Z_SOLO)
# include <stddef.h> /* for wchar_t */
ZEXTERN gzFile ZEXPORT gzopen_w OF((const wchar_t *path,
const char *mode));
#endif
#endif
#if ZLIB_VERNUM < 0x12B0
#ifdef Z_SOLO
typedef unsigned long z_size_t;
#else
# define z_longlong long long
# if defined(NO_SIZE_T)
typedef unsigned NO_SIZE_T z_size_t;
# elif defined(STDC)
# include <stddef.h>
typedef size_t z_size_t;
# else
typedef unsigned long z_size_t;
# endif
# undef z_longlong
#endif
ZEXTERN z_size_t ZEXPORT gzfread OF((voidp buf, z_size_t size, z_size_t nitems,
gzFile file));
ZEXTERN z_size_t ZEXPORT gzfwrite OF((voidpc buf, z_size_t size,
z_size_t nitems, gzFile file));
#endif
diff --git a/sys/contrib/zstd/zlibWrapper/zstd_zlibwrapper.c b/sys/contrib/zstd/zlibWrapper/zstd_zlibwrapper.c
index 0ae5012a184c..adb231f0606d 100644
--- a/sys/contrib/zstd/zlibWrapper/zstd_zlibwrapper.c
+++ b/sys/contrib/zstd/zlibWrapper/zstd_zlibwrapper.c
@@ -1,1176 +1,1198 @@
/*
- * Copyright (c) 2016-2020, Przemyslaw Skibinski, Yann Collet, Facebook, Inc.
+ * Copyright (c) 2016-2021, Przemyslaw Skibinski, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* === Tuning parameters === */
#ifndef ZWRAP_USE_ZSTD
#define ZWRAP_USE_ZSTD 0
#endif
/* === Dependencies === */
#include <stdlib.h>
#include <stdio.h> /* vsprintf */
#include <stdarg.h> /* va_list, for z_gzprintf */
#include <string.h>
#define NO_DUMMY_DECL
#define ZLIB_CONST
#include <zlib.h> /* without #define Z_PREFIX */
#include "zstd_zlibwrapper.h"
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_isFrame, ZSTD_MAGICNUMBER, ZSTD_customMem */
#include "zstd.h"
/* === Constants === */
#define Z_INFLATE_SYNC 8
#define ZLIB_HEADERSIZE 4
#define ZSTD_HEADERSIZE ZSTD_FRAMEHEADERSIZE_MIN(ZSTD_f_zstd1)
#define ZWRAP_DEFAULT_CLEVEL 3 /* Z_DEFAULT_COMPRESSION is translated to ZWRAP_DEFAULT_CLEVEL for zstd */
/* === Debug === */
#define LOG_WRAPPERC(...) /* fprintf(stderr, __VA_ARGS__) */
#define LOG_WRAPPERD(...) /* fprintf(stderr, __VA_ARGS__) */
#define FINISH_WITH_GZ_ERR(msg) { (void)msg; return Z_STREAM_ERROR; }
#define FINISH_WITH_NULL_ERR(msg) { (void)msg; return NULL; }
/* === Utility === */
#define MIN(x,y) ((x) < (y) ? (x) : (y))
static unsigned ZWRAP_isLittleEndian(void)
{
const union { unsigned u; char c[4]; } one = { 1 }; /* don't use static : performance detrimental */
return one.c[0];
}
#ifndef __has_builtin
# define __has_builtin(x) 0
#endif
static unsigned ZWRAP_swap32(unsigned in)
{
#if defined(_MSC_VER) /* Visual Studio */
return _byteswap_ulong(in);
#elif (defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)) \
|| (defined(__clang__) && __has_builtin(__builtin_bswap32))
return __builtin_bswap32(in);
#else
return ((in << 24) & 0xff000000 ) |
((in << 8) & 0x00ff0000 ) |
((in >> 8) & 0x0000ff00 ) |
((in >> 24) & 0x000000ff );
#endif
}
static unsigned ZWRAP_readLE32(const void* ptr)
{
unsigned value;
memcpy(&value, ptr, sizeof(value));
if (ZWRAP_isLittleEndian())
return value;
else
return ZWRAP_swap32(value);
}
/* === Wrapper === */
static int g_ZWRAP_useZSTDcompression = ZWRAP_USE_ZSTD; /* 0 = don't use ZSTD */
void ZWRAP_useZSTDcompression(int turn_on) { g_ZWRAP_useZSTDcompression = turn_on; }
int ZWRAP_isUsingZSTDcompression(void) { return g_ZWRAP_useZSTDcompression; }
static ZWRAP_decompress_type g_ZWRAPdecompressionType = ZWRAP_AUTO;
void ZWRAP_setDecompressionType(ZWRAP_decompress_type type) { g_ZWRAPdecompressionType = type; }
ZWRAP_decompress_type ZWRAP_getDecompressionType(void) { return g_ZWRAPdecompressionType; }
const char * zstdVersion(void) { return ZSTD_VERSION_STRING; }
ZEXTERN const char * ZEXPORT z_zlibVersion OF((void)) { return zlibVersion(); }
static void* ZWRAP_allocFunction(void* opaque, size_t size)
{
z_streamp strm = (z_streamp) opaque;
void* address = strm->zalloc(strm->opaque, 1, (uInt)size);
/* LOG_WRAPPERC("ZWRAP alloc %p, %d \n", address, (int)size); */
return address;
}
static void ZWRAP_freeFunction(void* opaque, void* address)
{
z_streamp strm = (z_streamp) opaque;
strm->zfree(strm->opaque, address);
/* if (address) LOG_WRAPPERC("ZWRAP free %p \n", address); */
}
static void* ZWRAP_customMalloc(size_t size, ZSTD_customMem customMem)
{
if (customMem.customAlloc)
return customMem.customAlloc(customMem.opaque, size);
return malloc(size);
}
static void* ZWRAP_customCalloc(size_t size, ZSTD_customMem customMem)
{
if (customMem.customAlloc) {
/* calloc implemented as malloc+memset;
* not as efficient as calloc, but next best guess for custom malloc */
void* const ptr = customMem.customAlloc(customMem.opaque, size);
memset(ptr, 0, size);
return ptr;
}
return calloc(1, size);
}
static void ZWRAP_customFree(void* ptr, ZSTD_customMem customMem)
{
if (ptr!=NULL) {
if (customMem.customFree)
customMem.customFree(customMem.opaque, ptr);
else
free(ptr);
}
}
/* === Compression === */
typedef enum { ZWRAP_useInit, ZWRAP_useReset, ZWRAP_streamEnd } ZWRAP_state_t;
typedef struct {
ZSTD_CStream* zbc;
int compressionLevel;
int streamEnd; /* a flag to signal the end of a stream */
unsigned long long totalInBytes; /* we need it as strm->total_in can be reset by user */
ZSTD_customMem customMem;
z_stream allocFunc; /* copy of zalloc, zfree, opaque */
ZSTD_inBuffer inBuffer;
ZSTD_outBuffer outBuffer;
ZWRAP_state_t comprState;
unsigned long long pledgedSrcSize;
} ZWRAP_CCtx;
/* typedef ZWRAP_CCtx internal_state; */
static size_t ZWRAP_freeCCtx(ZWRAP_CCtx* zwc)
{
if (zwc==NULL) return 0; /* support free on NULL */
ZSTD_freeCStream(zwc->zbc);
ZWRAP_customFree(zwc, zwc->customMem);
return 0;
}
static ZWRAP_CCtx* ZWRAP_createCCtx(z_streamp strm)
{
ZWRAP_CCtx* zwc;
ZSTD_customMem customMem = { NULL, NULL, NULL };
if (strm->zalloc && strm->zfree) {
customMem.customAlloc = ZWRAP_allocFunction;
customMem.customFree = ZWRAP_freeFunction;
}
customMem.opaque = strm;
zwc = (ZWRAP_CCtx*)ZWRAP_customCalloc(sizeof(ZWRAP_CCtx), customMem);
if (zwc == NULL) return NULL;
zwc->allocFunc = *strm;
customMem.opaque = &zwc->allocFunc;
zwc->customMem = customMem;
return zwc;
}
static int ZWRAP_initializeCStream(ZWRAP_CCtx* zwc, const void* dict, size_t dictSize, unsigned long long pledgedSrcSize)
{
LOG_WRAPPERC("- ZWRAP_initializeCStream=%p\n", zwc);
if (zwc == NULL || zwc->zbc == NULL) return Z_STREAM_ERROR;
if (!pledgedSrcSize) pledgedSrcSize = zwc->pledgedSrcSize;
- { ZSTD_parameters const params = ZSTD_getParams(zwc->compressionLevel, pledgedSrcSize, dictSize);
- size_t initErr;
+ { unsigned initErr = 0;
+ ZSTD_parameters const params = ZSTD_getParams(zwc->compressionLevel, pledgedSrcSize, dictSize);
+ ZSTD_CCtx_params* cctxParams = ZSTD_createCCtxParams();
+ if (!cctxParams) return Z_STREAM_ERROR;
LOG_WRAPPERC("pledgedSrcSize=%d windowLog=%d chainLog=%d hashLog=%d searchLog=%d minMatch=%d strategy=%d\n",
(int)pledgedSrcSize, params.cParams.windowLog, params.cParams.chainLog, params.cParams.hashLog, params.cParams.searchLog, params.cParams.minMatch, params.cParams.strategy);
- initErr = ZSTD_initCStream_advanced(zwc->zbc, dict, dictSize, params, pledgedSrcSize);
- if (ZSTD_isError(initErr)) return Z_STREAM_ERROR;
+
+ initErr |= ZSTD_isError(ZSTD_CCtx_reset(zwc->zbc, ZSTD_reset_session_only));
+ initErr |= ZSTD_isError(ZSTD_CCtxParams_init_advanced(cctxParams, params));
+ initErr |= ZSTD_isError(ZSTD_CCtx_setParametersUsingCCtxParams(zwc->zbc, cctxParams));
+ initErr |= ZSTD_isError(ZSTD_CCtx_setPledgedSrcSize(zwc->zbc, pledgedSrcSize));
+ initErr |= ZSTD_isError(ZSTD_CCtx_loadDictionary(zwc->zbc, dict, dictSize));
+
+ ZSTD_freeCCtxParams(cctxParams);
+ if (initErr) return Z_STREAM_ERROR;
}
return Z_OK;
}
static int ZWRAPC_finishWithError(ZWRAP_CCtx* zwc, z_streamp strm, int error)
{
LOG_WRAPPERC("- ZWRAPC_finishWithError=%d\n", error);
if (zwc) ZWRAP_freeCCtx(zwc);
if (strm) strm->state = NULL;
return (error) ? error : Z_STREAM_ERROR;
}
static int ZWRAPC_finishWithErrorMsg(z_streamp strm, char* message)
{
ZWRAP_CCtx* zwc = (ZWRAP_CCtx*) strm->state;
strm->msg = message;
if (zwc == NULL) return Z_STREAM_ERROR;
return ZWRAPC_finishWithError(zwc, strm, 0);
}
int ZWRAP_setPledgedSrcSize(z_streamp strm, unsigned long long pledgedSrcSize)
{
ZWRAP_CCtx* zwc = (ZWRAP_CCtx*) strm->state;
if (zwc == NULL) return Z_STREAM_ERROR;
zwc->pledgedSrcSize = pledgedSrcSize;
zwc->comprState = ZWRAP_useInit;
return Z_OK;
}
static struct internal_state* convert_into_sis(void* ptr)
{
return (struct internal_state*) ptr;
}
ZEXTERN int ZEXPORT z_deflateInit_ OF((z_streamp strm, int level,
const char *version, int stream_size))
{
ZWRAP_CCtx* zwc;
LOG_WRAPPERC("- deflateInit level=%d\n", level);
if (!g_ZWRAP_useZSTDcompression) {
return deflateInit_((strm), (level), version, stream_size);
}
zwc = ZWRAP_createCCtx(strm);
if (zwc == NULL) return Z_MEM_ERROR;
if (level == Z_DEFAULT_COMPRESSION)
level = ZWRAP_DEFAULT_CLEVEL;
zwc->streamEnd = 0;
zwc->totalInBytes = 0;
zwc->compressionLevel = level;
strm->state = convert_into_sis(zwc); /* use state which in not used by user */
strm->total_in = 0;
strm->total_out = 0;
strm->adler = 0;
return Z_OK;
}
ZEXTERN int ZEXPORT z_deflateInit2_ OF((z_streamp strm, int level, int method,
int windowBits, int memLevel,
int strategy, const char *version,
int stream_size))
{
if (!g_ZWRAP_useZSTDcompression)
return deflateInit2_(strm, level, method, windowBits, memLevel, strategy, version, stream_size);
return z_deflateInit_ (strm, level, version, stream_size);
}
int ZWRAP_deflateReset_keepDict(z_streamp strm)
{
LOG_WRAPPERC("- ZWRAP_deflateReset_keepDict\n");
if (!g_ZWRAP_useZSTDcompression)
return deflateReset(strm);
{ ZWRAP_CCtx* zwc = (ZWRAP_CCtx*) strm->state;
if (zwc) {
zwc->streamEnd = 0;
zwc->totalInBytes = 0;
}
}
strm->total_in = 0;
strm->total_out = 0;
strm->adler = 0;
return Z_OK;
}
ZEXTERN int ZEXPORT z_deflateReset OF((z_streamp strm))
{
LOG_WRAPPERC("- deflateReset\n");
if (!g_ZWRAP_useZSTDcompression)
return deflateReset(strm);
ZWRAP_deflateReset_keepDict(strm);
{ ZWRAP_CCtx* zwc = (ZWRAP_CCtx*) strm->state;
if (zwc) zwc->comprState = ZWRAP_useInit;
}
return Z_OK;
}
ZEXTERN int ZEXPORT z_deflateSetDictionary OF((z_streamp strm,
const Bytef *dictionary,
uInt dictLength))
{
if (!g_ZWRAP_useZSTDcompression) {
LOG_WRAPPERC("- deflateSetDictionary\n");
return deflateSetDictionary(strm, dictionary, dictLength);
}
{ ZWRAP_CCtx* zwc = (ZWRAP_CCtx*) strm->state;
LOG_WRAPPERC("- deflateSetDictionary level=%d\n", (int)zwc->compressionLevel);
if (!zwc) return Z_STREAM_ERROR;
if (zwc->zbc == NULL) {
zwc->zbc = ZSTD_createCStream_advanced(zwc->customMem);
if (zwc->zbc == NULL) return ZWRAPC_finishWithError(zwc, strm, 0);
}
{ int res = ZWRAP_initializeCStream(zwc, dictionary, dictLength, ZSTD_CONTENTSIZE_UNKNOWN);
if (res != Z_OK) return ZWRAPC_finishWithError(zwc, strm, res); }
zwc->comprState = ZWRAP_useReset;
}
return Z_OK;
}
ZEXTERN int ZEXPORT z_deflate OF((z_streamp strm, int flush))
{
ZWRAP_CCtx* zwc;
if (!g_ZWRAP_useZSTDcompression) {
LOG_WRAPPERC("- deflate1 flush=%d avail_in=%d avail_out=%d total_in=%d total_out=%d\n",
(int)flush, (int)strm->avail_in, (int)strm->avail_out, (int)strm->total_in, (int)strm->total_out);
return deflate(strm, flush);
}
zwc = (ZWRAP_CCtx*) strm->state;
if (zwc == NULL) { LOG_WRAPPERC("zwc == NULL\n"); return Z_STREAM_ERROR; }
if (zwc->zbc == NULL) {
zwc->zbc = ZSTD_createCStream_advanced(zwc->customMem);
if (zwc->zbc == NULL) return ZWRAPC_finishWithError(zwc, strm, 0);
{ int const initErr = ZWRAP_initializeCStream(zwc, NULL, 0, (flush == Z_FINISH) ? strm->avail_in : ZSTD_CONTENTSIZE_UNKNOWN);
if (initErr != Z_OK) return ZWRAPC_finishWithError(zwc, strm, initErr); }
if (flush != Z_FINISH) zwc->comprState = ZWRAP_useReset;
} else {
if (zwc->totalInBytes == 0) {
if (zwc->comprState == ZWRAP_useReset) {
- size_t const resetErr = ZSTD_resetCStream(zwc->zbc, (flush == Z_FINISH) ? strm->avail_in : zwc->pledgedSrcSize);
+ size_t resetErr = ZSTD_CCtx_reset(zwc->zbc, ZSTD_reset_session_only);
if (ZSTD_isError(resetErr)) {
- LOG_WRAPPERC("ERROR: ZSTD_resetCStream errorCode=%s\n",
+ LOG_WRAPPERC("ERROR: ZSTD_CCtx_reset errorCode=%s\n",
+ ZSTD_getErrorName(resetErr));
+ return ZWRAPC_finishWithError(zwc, strm, 0);
+ }
+ resetErr = ZSTD_CCtx_setPledgedSrcSize(zwc->zbc, (flush == Z_FINISH) ? strm->avail_in : zwc->pledgedSrcSize);
+ if (ZSTD_isError(resetErr)) {
+ LOG_WRAPPERC("ERROR: ZSTD_CCtx_setPledgedSrcSize errorCode=%s\n",
ZSTD_getErrorName(resetErr));
return ZWRAPC_finishWithError(zwc, strm, 0);
}
} else {
int const res = ZWRAP_initializeCStream(zwc, NULL, 0, (flush == Z_FINISH) ? strm->avail_in : ZSTD_CONTENTSIZE_UNKNOWN);
if (res != Z_OK) return ZWRAPC_finishWithError(zwc, strm, res);
if (flush != Z_FINISH) zwc->comprState = ZWRAP_useReset;
}
} /* (zwc->totalInBytes == 0) */
} /* ! (zwc->zbc == NULL) */
LOG_WRAPPERC("- deflate2 flush=%d avail_in=%d avail_out=%d total_in=%d total_out=%d\n", (int)flush, (int)strm->avail_in, (int)strm->avail_out, (int)strm->total_in, (int)strm->total_out);
if (strm->avail_in > 0) {
zwc->inBuffer.src = strm->next_in;
zwc->inBuffer.size = strm->avail_in;
zwc->inBuffer.pos = 0;
zwc->outBuffer.dst = strm->next_out;
zwc->outBuffer.size = strm->avail_out;
zwc->outBuffer.pos = 0;
{ size_t const cErr = ZSTD_compressStream(zwc->zbc, &zwc->outBuffer, &zwc->inBuffer);
LOG_WRAPPERC("deflate ZSTD_compressStream srcSize=%d dstCapacity=%d\n", (int)zwc->inBuffer.size, (int)zwc->outBuffer.size);
if (ZSTD_isError(cErr)) return ZWRAPC_finishWithError(zwc, strm, 0);
}
strm->next_out += zwc->outBuffer.pos;
strm->total_out += zwc->outBuffer.pos;
strm->avail_out -= zwc->outBuffer.pos;
strm->total_in += zwc->inBuffer.pos;
zwc->totalInBytes += zwc->inBuffer.pos;
strm->next_in += zwc->inBuffer.pos;
strm->avail_in -= zwc->inBuffer.pos;
}
if (flush == Z_FULL_FLUSH
#if ZLIB_VERNUM >= 0x1240
|| flush == Z_TREES
#endif
|| flush == Z_BLOCK)
return ZWRAPC_finishWithErrorMsg(strm, "Z_FULL_FLUSH, Z_BLOCK and Z_TREES are not supported!");
if (flush == Z_FINISH) {
size_t bytesLeft;
if (zwc->streamEnd) return Z_STREAM_END;
zwc->outBuffer.dst = strm->next_out;
zwc->outBuffer.size = strm->avail_out;
zwc->outBuffer.pos = 0;
bytesLeft = ZSTD_endStream(zwc->zbc, &zwc->outBuffer);
LOG_WRAPPERC("deflate ZSTD_endStream dstCapacity=%d bytesLeft=%d\n", (int)strm->avail_out, (int)bytesLeft);
if (ZSTD_isError(bytesLeft)) return ZWRAPC_finishWithError(zwc, strm, 0);
strm->next_out += zwc->outBuffer.pos;
strm->total_out += zwc->outBuffer.pos;
strm->avail_out -= zwc->outBuffer.pos;
if (bytesLeft == 0) {
zwc->streamEnd = 1;
LOG_WRAPPERC("Z_STREAM_END2 strm->total_in=%d strm->avail_out=%d strm->total_out=%d\n",
(int)strm->total_in, (int)strm->avail_out, (int)strm->total_out);
return Z_STREAM_END;
} }
else
if (flush == Z_SYNC_FLUSH || flush == Z_PARTIAL_FLUSH) {
size_t bytesLeft;
zwc->outBuffer.dst = strm->next_out;
zwc->outBuffer.size = strm->avail_out;
zwc->outBuffer.pos = 0;
bytesLeft = ZSTD_flushStream(zwc->zbc, &zwc->outBuffer);
LOG_WRAPPERC("deflate ZSTD_flushStream dstCapacity=%d bytesLeft=%d\n", (int)strm->avail_out, (int)bytesLeft);
if (ZSTD_isError(bytesLeft)) return ZWRAPC_finishWithError(zwc, strm, 0);
strm->next_out += zwc->outBuffer.pos;
strm->total_out += zwc->outBuffer.pos;
strm->avail_out -= zwc->outBuffer.pos;
}
LOG_WRAPPERC("- deflate3 flush=%d avail_in=%d avail_out=%d total_in=%d total_out=%d\n", (int)flush, (int)strm->avail_in, (int)strm->avail_out, (int)strm->total_in, (int)strm->total_out);
return Z_OK;
}
ZEXTERN int ZEXPORT z_deflateEnd OF((z_streamp strm))
{
if (!g_ZWRAP_useZSTDcompression) {
LOG_WRAPPERC("- deflateEnd\n");
return deflateEnd(strm);
}
LOG_WRAPPERC("- deflateEnd total_in=%d total_out=%d\n", (int)(strm->total_in), (int)(strm->total_out));
{ size_t errorCode;
ZWRAP_CCtx* zwc = (ZWRAP_CCtx*) strm->state;
if (zwc == NULL) return Z_OK; /* structures are already freed */
strm->state = NULL;
errorCode = ZWRAP_freeCCtx(zwc);
if (ZSTD_isError(errorCode)) return Z_STREAM_ERROR;
}
return Z_OK;
}
ZEXTERN uLong ZEXPORT z_deflateBound OF((z_streamp strm,
uLong sourceLen))
{
if (!g_ZWRAP_useZSTDcompression)
return deflateBound(strm, sourceLen);
return ZSTD_compressBound(sourceLen);
}
ZEXTERN int ZEXPORT z_deflateParams OF((z_streamp strm,
int level,
int strategy))
{
if (!g_ZWRAP_useZSTDcompression) {
LOG_WRAPPERC("- deflateParams level=%d strategy=%d\n", level, strategy);
return deflateParams(strm, level, strategy);
}
return Z_OK;
}
/* === Decompression === */
typedef enum { ZWRAP_ZLIB_STREAM, ZWRAP_ZSTD_STREAM, ZWRAP_UNKNOWN_STREAM } ZWRAP_stream_type;
typedef struct {
ZSTD_DStream* zbd;
char headerBuf[16]; /* must be >= ZSTD_frameHeaderSize_min */
int errorCount;
unsigned long long totalInBytes; /* we need it as strm->total_in can be reset by user */
ZWRAP_state_t decompState;
ZSTD_inBuffer inBuffer;
ZSTD_outBuffer outBuffer;
/* zlib params */
int stream_size;
char *version;
int windowBits;
ZSTD_customMem customMem;
z_stream allocFunc; /* just to copy zalloc, zfree, opaque */
} ZWRAP_DCtx;
static void ZWRAP_initDCtx(ZWRAP_DCtx* zwd)
{
zwd->errorCount = 0;
zwd->outBuffer.pos = 0;
zwd->outBuffer.size = 0;
}
static ZWRAP_DCtx* ZWRAP_createDCtx(z_streamp strm)
{
ZWRAP_DCtx* zwd;
ZSTD_customMem customMem = { NULL, NULL, NULL };
if (strm->zalloc && strm->zfree) {
customMem.customAlloc = ZWRAP_allocFunction;
customMem.customFree = ZWRAP_freeFunction;
}
customMem.opaque = strm;
zwd = (ZWRAP_DCtx*)ZWRAP_customCalloc(sizeof(ZWRAP_DCtx), customMem);
if (zwd == NULL) return NULL;
zwd->allocFunc = *strm;
customMem.opaque = &zwd->allocFunc;
zwd->customMem = customMem;
ZWRAP_initDCtx(zwd);
return zwd;
}
static size_t ZWRAP_freeDCtx(ZWRAP_DCtx* zwd)
{
if (zwd==NULL) return 0; /* support free on null */
ZSTD_freeDStream(zwd->zbd);
ZWRAP_customFree(zwd->version, zwd->customMem);
ZWRAP_customFree(zwd, zwd->customMem);
return 0;
}
int ZWRAP_isUsingZSTDdecompression(z_streamp strm)
{
if (strm == NULL) return 0;
return (strm->reserved == ZWRAP_ZSTD_STREAM);
}
static int ZWRAPD_finishWithError(ZWRAP_DCtx* zwd, z_streamp strm, int error)
{
LOG_WRAPPERD("- ZWRAPD_finishWithError=%d\n", error);
ZWRAP_freeDCtx(zwd);
strm->state = NULL;
return (error) ? error : Z_STREAM_ERROR;
}
static int ZWRAPD_finishWithErrorMsg(z_streamp strm, char* message)
{
ZWRAP_DCtx* const zwd = (ZWRAP_DCtx*) strm->state;
strm->msg = message;
if (zwd == NULL) return Z_STREAM_ERROR;
return ZWRAPD_finishWithError(zwd, strm, 0);
}
ZEXTERN int ZEXPORT z_inflateInit_ OF((z_streamp strm,
const char* version, int stream_size))
{
if (g_ZWRAPdecompressionType == ZWRAP_FORCE_ZLIB) {
strm->reserved = ZWRAP_ZLIB_STREAM;
return inflateInit(strm);
}
{ ZWRAP_DCtx* const zwd = ZWRAP_createDCtx(strm);
LOG_WRAPPERD("- inflateInit\n");
if (zwd == NULL) return ZWRAPD_finishWithError(zwd, strm, 0);
zwd->version = (char*)ZWRAP_customMalloc(strlen(version)+1, zwd->customMem);
if (zwd->version == NULL) return ZWRAPD_finishWithError(zwd, strm, 0);
strcpy(zwd->version, version);
zwd->stream_size = stream_size;
zwd->totalInBytes = 0;
strm->state = convert_into_sis(zwd);
strm->total_in = 0;
strm->total_out = 0;
strm->reserved = ZWRAP_UNKNOWN_STREAM;
strm->adler = 0;
}
return Z_OK;
}
ZEXTERN int ZEXPORT z_inflateInit2_ OF((z_streamp strm, int windowBits,
const char *version, int stream_size))
{
if (g_ZWRAPdecompressionType == ZWRAP_FORCE_ZLIB) {
return inflateInit2_(strm, windowBits, version, stream_size);
}
{ int const ret = z_inflateInit_ (strm, version, stream_size);
LOG_WRAPPERD("- inflateInit2 windowBits=%d\n", windowBits);
if (ret == Z_OK) {
ZWRAP_DCtx* const zwd = (ZWRAP_DCtx*)strm->state;
if (zwd == NULL) return Z_STREAM_ERROR;
zwd->windowBits = windowBits;
}
return ret;
}
}
int ZWRAP_inflateReset_keepDict(z_streamp strm)
{
LOG_WRAPPERD("- ZWRAP_inflateReset_keepDict\n");
if (g_ZWRAPdecompressionType == ZWRAP_FORCE_ZLIB || !strm->reserved)
return inflateReset(strm);
{ ZWRAP_DCtx* const zwd = (ZWRAP_DCtx*) strm->state;
if (zwd == NULL) return Z_STREAM_ERROR;
ZWRAP_initDCtx(zwd);
zwd->decompState = ZWRAP_useReset;
zwd->totalInBytes = 0;
}
strm->total_in = 0;
strm->total_out = 0;
return Z_OK;
}
ZEXTERN int ZEXPORT z_inflateReset OF((z_streamp strm))
{
LOG_WRAPPERD("- inflateReset\n");
if (g_ZWRAPdecompressionType == ZWRAP_FORCE_ZLIB || !strm->reserved)
return inflateReset(strm);
{ int const ret = ZWRAP_inflateReset_keepDict(strm);
if (ret != Z_OK) return ret; }
{ ZWRAP_DCtx* const zwd = (ZWRAP_DCtx*) strm->state;
if (zwd == NULL) return Z_STREAM_ERROR;
zwd->decompState = ZWRAP_useInit; }
return Z_OK;
}
#if ZLIB_VERNUM >= 0x1240
ZEXTERN int ZEXPORT z_inflateReset2 OF((z_streamp strm,
int windowBits))
{
if (g_ZWRAPdecompressionType == ZWRAP_FORCE_ZLIB || !strm->reserved)
return inflateReset2(strm, windowBits);
{ int const ret = z_inflateReset (strm);
if (ret == Z_OK) {
ZWRAP_DCtx* const zwd = (ZWRAP_DCtx*)strm->state;
if (zwd == NULL) return Z_STREAM_ERROR;
zwd->windowBits = windowBits;
}
return ret;
}
}
#endif
ZEXTERN int ZEXPORT z_inflateSetDictionary OF((z_streamp strm,
const Bytef *dictionary,
uInt dictLength))
{
LOG_WRAPPERD("- inflateSetDictionary\n");
if (g_ZWRAPdecompressionType == ZWRAP_FORCE_ZLIB || !strm->reserved)
return inflateSetDictionary(strm, dictionary, dictLength);
{ ZWRAP_DCtx* const zwd = (ZWRAP_DCtx*) strm->state;
if (zwd == NULL || zwd->zbd == NULL) return Z_STREAM_ERROR;
{ size_t const initErr = ZSTD_initDStream_usingDict(zwd->zbd, dictionary, dictLength);
if (ZSTD_isError(initErr)) return ZWRAPD_finishWithError(zwd, strm, 0); }
zwd->decompState = ZWRAP_useReset;
if (zwd->totalInBytes == ZSTD_HEADERSIZE) {
zwd->inBuffer.src = zwd->headerBuf;
zwd->inBuffer.size = zwd->totalInBytes;
zwd->inBuffer.pos = 0;
zwd->outBuffer.dst = strm->next_out;
zwd->outBuffer.size = 0;
zwd->outBuffer.pos = 0;
{ size_t const errorCode = ZSTD_decompressStream(zwd->zbd, &zwd->outBuffer, &zwd->inBuffer);
LOG_WRAPPERD("inflateSetDictionary ZSTD_decompressStream errorCode=%d srcSize=%d dstCapacity=%d\n",
(int)errorCode, (int)zwd->inBuffer.size, (int)zwd->outBuffer.size);
if (zwd->inBuffer.pos < zwd->outBuffer.size || ZSTD_isError(errorCode)) {
LOG_WRAPPERD("ERROR: ZSTD_decompressStream %s\n",
ZSTD_getErrorName(errorCode));
return ZWRAPD_finishWithError(zwd, strm, 0);
} } } }
return Z_OK;
}
ZEXTERN int ZEXPORT z_inflate OF((z_streamp strm, int flush))
{
ZWRAP_DCtx* zwd;
if (g_ZWRAPdecompressionType == ZWRAP_FORCE_ZLIB || !strm->reserved) {
int const result = inflate(strm, flush);
LOG_WRAPPERD("- inflate2 flush=%d avail_in=%d avail_out=%d total_in=%d total_out=%d res=%d\n",
(int)flush, (int)strm->avail_in, (int)strm->avail_out, (int)strm->total_in, (int)strm->total_out, result);
return result;
}
if (strm->avail_in <= 0) return Z_OK;
zwd = (ZWRAP_DCtx*) strm->state;
LOG_WRAPPERD("- inflate1 flush=%d avail_in=%d avail_out=%d total_in=%d total_out=%d\n",
(int)flush, (int)strm->avail_in, (int)strm->avail_out, (int)strm->total_in, (int)strm->total_out);
if (zwd == NULL) return Z_STREAM_ERROR;
if (zwd->decompState == ZWRAP_streamEnd) return Z_STREAM_END;
if (zwd->totalInBytes < ZLIB_HEADERSIZE) {
if (zwd->totalInBytes == 0 && strm->avail_in >= ZLIB_HEADERSIZE) {
if (ZWRAP_readLE32(strm->next_in) != ZSTD_MAGICNUMBER) {
{ int const initErr = (zwd->windowBits) ?
inflateInit2_(strm, zwd->windowBits, zwd->version, zwd->stream_size) :
inflateInit_(strm, zwd->version, zwd->stream_size);
LOG_WRAPPERD("ZLIB inflateInit errorCode=%d\n", initErr);
if (initErr != Z_OK) return ZWRAPD_finishWithError(zwd, strm, initErr);
}
strm->reserved = ZWRAP_ZLIB_STREAM;
{ size_t const freeErr = ZWRAP_freeDCtx(zwd);
if (ZSTD_isError(freeErr)) goto error; }
{ int const result = (flush == Z_INFLATE_SYNC) ?
inflateSync(strm) :
inflate(strm, flush);
LOG_WRAPPERD("- inflate3 flush=%d avail_in=%d avail_out=%d total_in=%d total_out=%d res=%d\n",
(int)flush, (int)strm->avail_in, (int)strm->avail_out, (int)strm->total_in, (int)strm->total_out, res);
return result;
} }
} else { /* ! (zwd->totalInBytes == 0 && strm->avail_in >= ZLIB_HEADERSIZE) */
size_t const srcSize = MIN(strm->avail_in, ZLIB_HEADERSIZE - zwd->totalInBytes);
memcpy(zwd->headerBuf+zwd->totalInBytes, strm->next_in, srcSize);
strm->total_in += srcSize;
zwd->totalInBytes += srcSize;
strm->next_in += srcSize;
strm->avail_in -= srcSize;
if (zwd->totalInBytes < ZLIB_HEADERSIZE) return Z_OK;
if (ZWRAP_readLE32(zwd->headerBuf) != ZSTD_MAGICNUMBER) {
z_stream strm2;
strm2.next_in = strm->next_in;
strm2.avail_in = strm->avail_in;
strm2.next_out = strm->next_out;
strm2.avail_out = strm->avail_out;
{ int const initErr = (zwd->windowBits) ?
inflateInit2_(strm, zwd->windowBits, zwd->version, zwd->stream_size) :
inflateInit_(strm, zwd->version, zwd->stream_size);
LOG_WRAPPERD("ZLIB inflateInit errorCode=%d\n", initErr);
if (initErr != Z_OK) return ZWRAPD_finishWithError(zwd, strm, initErr);
}
/* inflate header */
strm->next_in = (unsigned char*)zwd->headerBuf;
strm->avail_in = ZLIB_HEADERSIZE;
strm->avail_out = 0;
{ int const dErr = inflate(strm, Z_NO_FLUSH);
LOG_WRAPPERD("ZLIB inflate errorCode=%d strm->avail_in=%d\n",
dErr, (int)strm->avail_in);
if (dErr != Z_OK)
return ZWRAPD_finishWithError(zwd, strm, dErr);
}
if (strm->avail_in > 0) goto error;
strm->next_in = strm2.next_in;
strm->avail_in = strm2.avail_in;
strm->next_out = strm2.next_out;
strm->avail_out = strm2.avail_out;
strm->reserved = ZWRAP_ZLIB_STREAM; /* mark as zlib stream */
{ size_t const freeErr = ZWRAP_freeDCtx(zwd);
if (ZSTD_isError(freeErr)) goto error; }
{ int const result = (flush == Z_INFLATE_SYNC) ?
inflateSync(strm) :
inflate(strm, flush);
LOG_WRAPPERD("- inflate2 flush=%d avail_in=%d avail_out=%d total_in=%d total_out=%d res=%d\n",
(int)flush, (int)strm->avail_in, (int)strm->avail_out, (int)strm->total_in, (int)strm->total_out, res);
return result;
} } } /* if ! (zwd->totalInBytes == 0 && strm->avail_in >= ZLIB_HEADERSIZE) */
} /* (zwd->totalInBytes < ZLIB_HEADERSIZE) */
strm->reserved = ZWRAP_ZSTD_STREAM; /* mark as zstd steam */
if (flush == Z_INFLATE_SYNC) { strm->msg = "inflateSync is not supported!"; goto error; }
if (!zwd->zbd) {
zwd->zbd = ZSTD_createDStream_advanced(zwd->customMem);
if (zwd->zbd == NULL) { LOG_WRAPPERD("ERROR: ZSTD_createDStream_advanced\n"); goto error; }
zwd->decompState = ZWRAP_useInit;
}
if (zwd->totalInBytes < ZSTD_HEADERSIZE) {
if (zwd->totalInBytes == 0 && strm->avail_in >= ZSTD_HEADERSIZE) {
if (zwd->decompState == ZWRAP_useInit) {
size_t const initErr = ZSTD_initDStream(zwd->zbd);
if (ZSTD_isError(initErr)) {
LOG_WRAPPERD("ERROR: ZSTD_initDStream errorCode=%s\n",
ZSTD_getErrorName(initErr));
goto error;
}
} else {
- size_t const resetErr = ZSTD_resetDStream(zwd->zbd);
+ size_t const resetErr = ZSTD_DCtx_reset(zwd->zbd, ZSTD_reset_session_only);
if (ZSTD_isError(resetErr)) goto error;
}
} else {
size_t const srcSize = MIN(strm->avail_in, ZSTD_HEADERSIZE - zwd->totalInBytes);
memcpy(zwd->headerBuf+zwd->totalInBytes, strm->next_in, srcSize);
strm->total_in += srcSize;
zwd->totalInBytes += srcSize;
strm->next_in += srcSize;
strm->avail_in -= srcSize;
if (zwd->totalInBytes < ZSTD_HEADERSIZE) return Z_OK;
if (zwd->decompState == ZWRAP_useInit) {
size_t const initErr = ZSTD_initDStream(zwd->zbd);
if (ZSTD_isError(initErr)) {
LOG_WRAPPERD("ERROR: ZSTD_initDStream errorCode=%s\n",
ZSTD_getErrorName(initErr));
goto error;
}
} else {
- size_t const resetErr = ZSTD_resetDStream(zwd->zbd);
+ size_t const resetErr = ZSTD_DCtx_reset(zwd->zbd, ZSTD_reset_session_only);
if (ZSTD_isError(resetErr)) goto error;
}
zwd->inBuffer.src = zwd->headerBuf;
zwd->inBuffer.size = ZSTD_HEADERSIZE;
zwd->inBuffer.pos = 0;
zwd->outBuffer.dst = strm->next_out;
zwd->outBuffer.size = 0;
zwd->outBuffer.pos = 0;
{ size_t const dErr = ZSTD_decompressStream(zwd->zbd, &zwd->outBuffer, &zwd->inBuffer);
LOG_WRAPPERD("inflate ZSTD_decompressStream1 errorCode=%d srcSize=%d dstCapacity=%d\n",
(int)dErr, (int)zwd->inBuffer.size, (int)zwd->outBuffer.size);
if (ZSTD_isError(dErr)) {
LOG_WRAPPERD("ERROR: ZSTD_decompressStream1 %s\n", ZSTD_getErrorName(dErr));
goto error;
} }
if (zwd->inBuffer.pos != zwd->inBuffer.size) goto error; /* not consumed */
}
} /* (zwd->totalInBytes < ZSTD_HEADERSIZE) */
zwd->inBuffer.src = strm->next_in;
zwd->inBuffer.size = strm->avail_in;
zwd->inBuffer.pos = 0;
zwd->outBuffer.dst = strm->next_out;
zwd->outBuffer.size = strm->avail_out;
zwd->outBuffer.pos = 0;
{ size_t const dErr = ZSTD_decompressStream(zwd->zbd, &zwd->outBuffer, &zwd->inBuffer);
LOG_WRAPPERD("inflate ZSTD_decompressStream2 errorCode=%d srcSize=%d dstCapacity=%d\n",
(int)dErr, (int)strm->avail_in, (int)strm->avail_out);
if (ZSTD_isError(dErr)) {
zwd->errorCount++;
LOG_WRAPPERD("ERROR: ZSTD_decompressStream2 %s zwd->errorCount=%d\n",
ZSTD_getErrorName(dErr), zwd->errorCount);
if (zwd->errorCount<=1) return Z_NEED_DICT; else goto error;
}
LOG_WRAPPERD("inflate inBuffer.pos=%d inBuffer.size=%d outBuffer.pos=%d outBuffer.size=%d o\n",
(int)zwd->inBuffer.pos, (int)zwd->inBuffer.size, (int)zwd->outBuffer.pos, (int)zwd->outBuffer.size);
strm->next_out += zwd->outBuffer.pos;
strm->total_out += zwd->outBuffer.pos;
strm->avail_out -= zwd->outBuffer.pos;
strm->total_in += zwd->inBuffer.pos;
zwd->totalInBytes += zwd->inBuffer.pos;
strm->next_in += zwd->inBuffer.pos;
strm->avail_in -= zwd->inBuffer.pos;
if (dErr == 0) {
LOG_WRAPPERD("inflate Z_STREAM_END1 avail_in=%d avail_out=%d total_in=%d total_out=%d\n",
(int)strm->avail_in, (int)strm->avail_out, (int)strm->total_in, (int)strm->total_out);
zwd->decompState = ZWRAP_streamEnd;
return Z_STREAM_END;
}
} /* dErr lifetime */
LOG_WRAPPERD("- inflate2 flush=%d avail_in=%d avail_out=%d total_in=%d total_out=%d res=%d\n",
(int)flush, (int)strm->avail_in, (int)strm->avail_out, (int)strm->total_in, (int)strm->total_out, Z_OK);
return Z_OK;
error:
return ZWRAPD_finishWithError(zwd, strm, 0);
}
ZEXTERN int ZEXPORT z_inflateEnd OF((z_streamp strm))
{
if (g_ZWRAPdecompressionType == ZWRAP_FORCE_ZLIB || !strm->reserved)
return inflateEnd(strm);
LOG_WRAPPERD("- inflateEnd total_in=%d total_out=%d\n",
(int)(strm->total_in), (int)(strm->total_out));
{ ZWRAP_DCtx* const zwd = (ZWRAP_DCtx*) strm->state;
if (zwd == NULL) return Z_OK; /* structures are already freed */
{ size_t const freeErr = ZWRAP_freeDCtx(zwd);
if (ZSTD_isError(freeErr)) return Z_STREAM_ERROR; }
strm->state = NULL;
}
return Z_OK;
}
ZEXTERN int ZEXPORT z_inflateSync OF((z_streamp strm))
{
if (g_ZWRAPdecompressionType == ZWRAP_FORCE_ZLIB || !strm->reserved) {
return inflateSync(strm);
}
return z_inflate(strm, Z_INFLATE_SYNC);
}
/* Advanced compression functions */
ZEXTERN int ZEXPORT z_deflateCopy OF((z_streamp dest,
z_streamp source))
{
if (!g_ZWRAP_useZSTDcompression)
return deflateCopy(dest, source);
return ZWRAPC_finishWithErrorMsg(source, "deflateCopy is not supported!");
}
ZEXTERN int ZEXPORT z_deflateTune OF((z_streamp strm,
int good_length,
int max_lazy,
int nice_length,
int max_chain))
{
if (!g_ZWRAP_useZSTDcompression)
return deflateTune(strm, good_length, max_lazy, nice_length, max_chain);
return ZWRAPC_finishWithErrorMsg(strm, "deflateTune is not supported!");
}
#if ZLIB_VERNUM >= 0x1260
ZEXTERN int ZEXPORT z_deflatePending OF((z_streamp strm,
unsigned *pending,
int *bits))
{
if (!g_ZWRAP_useZSTDcompression)
return deflatePending(strm, pending, bits);
return ZWRAPC_finishWithErrorMsg(strm, "deflatePending is not supported!");
}
#endif
ZEXTERN int ZEXPORT z_deflatePrime OF((z_streamp strm,
int bits,
int value))
{
if (!g_ZWRAP_useZSTDcompression)
return deflatePrime(strm, bits, value);
return ZWRAPC_finishWithErrorMsg(strm, "deflatePrime is not supported!");
}
ZEXTERN int ZEXPORT z_deflateSetHeader OF((z_streamp strm,
gz_headerp head))
{
if (!g_ZWRAP_useZSTDcompression)
return deflateSetHeader(strm, head);
return ZWRAPC_finishWithErrorMsg(strm, "deflateSetHeader is not supported!");
}
/* Advanced decompression functions */
#if ZLIB_VERNUM >= 0x1280
ZEXTERN int ZEXPORT z_inflateGetDictionary OF((z_streamp strm,
Bytef *dictionary,
uInt *dictLength))
{
if (g_ZWRAPdecompressionType == ZWRAP_FORCE_ZLIB || !strm->reserved)
return inflateGetDictionary(strm, dictionary, dictLength);
return ZWRAPD_finishWithErrorMsg(strm, "inflateGetDictionary is not supported!");
}
#endif
ZEXTERN int ZEXPORT z_inflateCopy OF((z_streamp dest,
z_streamp source))
{
if (g_ZWRAPdecompressionType == ZWRAP_FORCE_ZLIB || !source->reserved)
return inflateCopy(dest, source);
return ZWRAPD_finishWithErrorMsg(source, "inflateCopy is not supported!");
}
#if ZLIB_VERNUM >= 0x1240
ZEXTERN long ZEXPORT z_inflateMark OF((z_streamp strm))
{
if (g_ZWRAPdecompressionType == ZWRAP_FORCE_ZLIB || !strm->reserved)
return inflateMark(strm);
return ZWRAPD_finishWithErrorMsg(strm, "inflateMark is not supported!");
}
#endif
ZEXTERN int ZEXPORT z_inflatePrime OF((z_streamp strm,
int bits,
int value))
{
if (g_ZWRAPdecompressionType == ZWRAP_FORCE_ZLIB || !strm->reserved)
return inflatePrime(strm, bits, value);
return ZWRAPD_finishWithErrorMsg(strm, "inflatePrime is not supported!");
}
ZEXTERN int ZEXPORT z_inflateGetHeader OF((z_streamp strm,
gz_headerp head))
{
if (g_ZWRAPdecompressionType == ZWRAP_FORCE_ZLIB || !strm->reserved)
return inflateGetHeader(strm, head);
return ZWRAPD_finishWithErrorMsg(strm, "inflateGetHeader is not supported!");
}
ZEXTERN int ZEXPORT z_inflateBackInit_ OF((z_streamp strm, int windowBits,
unsigned char FAR *window,
const char *version,
int stream_size))
{
if (g_ZWRAPdecompressionType == ZWRAP_FORCE_ZLIB || !strm->reserved)
return inflateBackInit_(strm, windowBits, window, version, stream_size);
return ZWRAPD_finishWithErrorMsg(strm, "inflateBackInit is not supported!");
}
ZEXTERN int ZEXPORT z_inflateBack OF((z_streamp strm,
in_func in, void FAR *in_desc,
out_func out, void FAR *out_desc))
{
if (g_ZWRAPdecompressionType == ZWRAP_FORCE_ZLIB || !strm->reserved)
return inflateBack(strm, in, in_desc, out, out_desc);
return ZWRAPD_finishWithErrorMsg(strm, "inflateBack is not supported!");
}
ZEXTERN int ZEXPORT z_inflateBackEnd OF((z_streamp strm))
{
if (g_ZWRAPdecompressionType == ZWRAP_FORCE_ZLIB || !strm->reserved)
return inflateBackEnd(strm);
return ZWRAPD_finishWithErrorMsg(strm, "inflateBackEnd is not supported!");
}
ZEXTERN uLong ZEXPORT z_zlibCompileFlags OF((void)) { return zlibCompileFlags(); }
/* === utility functions === */
#ifndef Z_SOLO
ZEXTERN int ZEXPORT z_compress OF((Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen))
{
if (!g_ZWRAP_useZSTDcompression)
return compress(dest, destLen, source, sourceLen);
{ size_t dstCapacity = *destLen;
size_t const cSize = ZSTD_compress(dest, dstCapacity,
source, sourceLen,
ZWRAP_DEFAULT_CLEVEL);
LOG_WRAPPERD("z_compress sourceLen=%d dstCapacity=%d\n",
(int)sourceLen, (int)dstCapacity);
if (ZSTD_isError(cSize)) return Z_STREAM_ERROR;
*destLen = cSize;
}
return Z_OK;
}
ZEXTERN int ZEXPORT z_compress2 OF((Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen,
int level))
{
if (!g_ZWRAP_useZSTDcompression)
return compress2(dest, destLen, source, sourceLen, level);
{ size_t dstCapacity = *destLen;
size_t const cSize = ZSTD_compress(dest, dstCapacity, source, sourceLen, level);
if (ZSTD_isError(cSize)) return Z_STREAM_ERROR;
*destLen = cSize;
}
return Z_OK;
}
ZEXTERN uLong ZEXPORT z_compressBound OF((uLong sourceLen))
{
if (!g_ZWRAP_useZSTDcompression)
return compressBound(sourceLen);
return ZSTD_compressBound(sourceLen);
}
ZEXTERN int ZEXPORT z_uncompress OF((Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen))
{
if (!ZSTD_isFrame(source, sourceLen))
return uncompress(dest, destLen, source, sourceLen);
{ size_t dstCapacity = *destLen;
size_t const dSize = ZSTD_decompress(dest, dstCapacity, source, sourceLen);
if (ZSTD_isError(dSize)) return Z_STREAM_ERROR;
*destLen = dSize;
}
return Z_OK;
}
#endif /* !Z_SOLO */
/* checksum functions */
ZEXTERN uLong ZEXPORT z_adler32 OF((uLong adler, const Bytef *buf, uInt len))
{
return adler32(adler, buf, len);
}
ZEXTERN uLong ZEXPORT z_crc32 OF((uLong crc, const Bytef *buf, uInt len))
{
return crc32(crc, buf, len);
}
#if ZLIB_VERNUM >= 0x12B0
ZEXTERN uLong ZEXPORT z_adler32_z OF((uLong adler, const Bytef *buf, z_size_t len))
{
return adler32_z(adler, buf, len);
}
ZEXTERN uLong ZEXPORT z_crc32_z OF((uLong crc, const Bytef *buf, z_size_t len))
{
return crc32_z(crc, buf, len);
}
#endif
#if ZLIB_VERNUM >= 0x1270
ZEXTERN const z_crc_t FAR * ZEXPORT z_get_crc_table OF((void))
{
return get_crc_table();
}
#endif
+
+ /* Error function */
+ZEXTERN const char * ZEXPORT z_zError OF((int err))
+{
+ /* Just use zlib Error function */
+ return zError(err);
+}
diff --git a/sys/contrib/zstd/zlibWrapper/zstd_zlibwrapper.h b/sys/contrib/zstd/zlibWrapper/zstd_zlibwrapper.h
index e791043e1d0c..042ab9f84fda 100644
--- a/sys/contrib/zstd/zlibWrapper/zstd_zlibwrapper.h
+++ b/sys/contrib/zstd/zlibWrapper/zstd_zlibwrapper.h
@@ -1,88 +1,88 @@
/*
- * Copyright (c) 2016-2020, Przemyslaw Skibinski, Yann Collet, Facebook, Inc.
+ * Copyright (c) 2016-2021, Przemyslaw Skibinski, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_ZLIBWRAPPER_H
#define ZSTD_ZLIBWRAPPER_H
#if defined (__cplusplus)
extern "C" {
#endif
#define ZLIB_CONST
#define Z_PREFIX
#define ZLIB_INTERNAL /* disables gz*64 functions but fixes zlib 1.2.4 with Z_PREFIX */
#include <zlib.h>
#if !defined(z_const)
#define z_const
#endif
/* returns a string with version of zstd library */
const char * zstdVersion(void);
/*** COMPRESSION ***/
/* ZWRAP_useZSTDcompression() enables/disables zstd compression during runtime.
By default zstd compression is disabled. To enable zstd compression please use one of the methods:
- compilation with the additional option -DZWRAP_USE_ZSTD=1
- using '#define ZWRAP_USE_ZSTD 1' in source code before '#include "zstd_zlibwrapper.h"'
- calling ZWRAP_useZSTDcompression(1)
All above-mentioned methods will enable zstd compression for all threads.
Be aware that ZWRAP_useZSTDcompression() is not thread-safe and may lead to a race condition. */
void ZWRAP_useZSTDcompression(int turn_on);
/* checks if zstd compression is turned on */
int ZWRAP_isUsingZSTDcompression(void);
/* Changes a pledged source size for a given compression stream.
It will change ZSTD compression parameters what may improve compression speed and/or ratio.
The function should be called just after deflateInit() or deflateReset() and before deflate() or deflateSetDictionary().
It's only helpful when data is compressed in blocks.
There will be no change in case of deflateInit() or deflateReset() immediately followed by deflate(strm, Z_FINISH)
as this case is automatically detected. */
int ZWRAP_setPledgedSrcSize(z_streamp strm, unsigned long long pledgedSrcSize);
/* Similar to deflateReset but preserves dictionary set using deflateSetDictionary.
It should improve compression speed because there will be less calls to deflateSetDictionary
When using zlib compression this method redirects to deflateReset. */
int ZWRAP_deflateReset_keepDict(z_streamp strm);
/*** DECOMPRESSION ***/
typedef enum { ZWRAP_FORCE_ZLIB, ZWRAP_AUTO } ZWRAP_decompress_type;
/* ZWRAP_setDecompressionType() enables/disables automatic recognition of zstd/zlib compressed data during runtime.
By default auto-detection of zstd and zlib streams in enabled (ZWRAP_AUTO).
Forcing zlib decompression with ZWRAP_setDecompressionType(ZWRAP_FORCE_ZLIB) slightly improves
decompression speed of zlib-encoded streams.
Be aware that ZWRAP_setDecompressionType() is not thread-safe and may lead to a race condition. */
void ZWRAP_setDecompressionType(ZWRAP_decompress_type type);
/* checks zstd decompression type */
ZWRAP_decompress_type ZWRAP_getDecompressionType(void);
/* Checks if zstd decompression is used for a given stream.
If will return 1 only when inflate() was called and zstd header was detected. */
int ZWRAP_isUsingZSTDdecompression(z_streamp strm);
/* Similar to inflateReset but preserves dictionary set using inflateSetDictionary.
inflate() will return Z_NEED_DICT only for the first time what will improve decompression speed.
For zlib streams this method redirects to inflateReset. */
int ZWRAP_inflateReset_keepDict(z_streamp strm);
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_ZLIBWRAPPER_H */
diff --git a/sys/kern/subr_compressor.c b/sys/kern/subr_compressor.c
index 74526a949437..d36e59aaa180 100644
--- a/sys/kern/subr_compressor.c
+++ b/sys/kern/subr_compressor.c
@@ -1,566 +1,571 @@
/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2014, 2017 Mark Johnston <markj@FreeBSD.org>
* Copyright (c) 2017 Conrad Meyer <cem@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Subroutines used for writing compressed user process and kernel core dumps.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_gzio.h"
#include "opt_zstdio.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/compressor.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/linker_set.h>
#include <sys/malloc.h>
MALLOC_DEFINE(M_COMPRESS, "compressor", "kernel compression subroutines");
struct compressor_methods {
int format;
void *(* const init)(size_t, int);
void (* const reset)(void *);
int (* const write)(void *, void *, size_t, compressor_cb_t, void *);
void (* const fini)(void *);
};
struct compressor {
const struct compressor_methods *methods;
compressor_cb_t cb;
void *priv;
void *arg;
};
SET_DECLARE(compressors, struct compressor_methods);
#ifdef GZIO
#include <contrib/zlib/zutil.h>
struct gz_stream {
uint8_t *gz_buffer; /* output buffer */
size_t gz_bufsz; /* output buffer size */
off_t gz_off; /* offset into the output stream */
uint32_t gz_crc; /* stream CRC32 */
z_stream gz_stream; /* zlib state */
};
static void *gz_init(size_t maxiosize, int level);
static void gz_reset(void *stream);
static int gz_write(void *stream, void *data, size_t len, compressor_cb_t,
void *);
static void gz_fini(void *stream);
static void *
gz_alloc(void *arg __unused, u_int n, u_int sz)
{
/*
* Memory for zlib state is allocated using M_NODUMP since it may be
* used to compress a kernel dump, and we don't want zlib to attempt to
* compress its own state.
*/
return (malloc(n * sz, M_COMPRESS, M_WAITOK | M_ZERO | M_NODUMP));
}
static void
gz_free(void *arg __unused, void *ptr)
{
free(ptr, M_COMPRESS);
}
static void *
gz_init(size_t maxiosize, int level)
{
struct gz_stream *s;
int error;
s = gz_alloc(NULL, 1, roundup2(sizeof(*s), PAGE_SIZE));
s->gz_buffer = gz_alloc(NULL, 1, maxiosize);
s->gz_bufsz = maxiosize;
s->gz_stream.zalloc = gz_alloc;
s->gz_stream.zfree = gz_free;
s->gz_stream.opaque = NULL;
s->gz_stream.next_in = Z_NULL;
s->gz_stream.avail_in = 0;
if (level != Z_DEFAULT_COMPRESSION) {
if (level < Z_BEST_SPEED)
level = Z_BEST_SPEED;
else if (level > Z_BEST_COMPRESSION)
level = Z_BEST_COMPRESSION;
}
error = deflateInit2(&s->gz_stream, level, Z_DEFLATED, -MAX_WBITS,
DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY);
if (error != 0)
goto fail;
gz_reset(s);
return (s);
fail:
gz_free(NULL, s);
return (NULL);
}
static void
gz_reset(void *stream)
{
struct gz_stream *s;
uint8_t *hdr;
const size_t hdrlen = 10;
s = stream;
s->gz_off = 0;
s->gz_crc = crc32(0L, Z_NULL, 0);
(void)deflateReset(&s->gz_stream);
s->gz_stream.avail_out = s->gz_bufsz;
s->gz_stream.next_out = s->gz_buffer;
/* Write the gzip header to the output buffer. */
hdr = s->gz_buffer;
memset(hdr, 0, hdrlen);
hdr[0] = 0x1f;
hdr[1] = 0x8b;
hdr[2] = Z_DEFLATED;
hdr[9] = OS_CODE;
s->gz_stream.next_out += hdrlen;
s->gz_stream.avail_out -= hdrlen;
}
static int
gz_write(void *stream, void *data, size_t len, compressor_cb_t cb,
void *arg)
{
struct gz_stream *s;
uint8_t trailer[8];
size_t room;
int error, zerror, zflag;
s = stream;
zflag = data == NULL ? Z_FINISH : Z_NO_FLUSH;
if (len > 0) {
s->gz_stream.avail_in = len;
s->gz_stream.next_in = data;
s->gz_crc = crc32(s->gz_crc, data, len);
}
error = 0;
do {
zerror = deflate(&s->gz_stream, zflag);
if (zerror != Z_OK && zerror != Z_STREAM_END) {
error = EIO;
break;
}
if (s->gz_stream.avail_out == 0 || zerror == Z_STREAM_END) {
/*
* Our output buffer is full or there's nothing left
* to produce, so we're flushing the buffer.
*/
len = s->gz_bufsz - s->gz_stream.avail_out;
if (zerror == Z_STREAM_END) {
/*
* Try to pack as much of the trailer into the
* output buffer as we can.
*/
((uint32_t *)trailer)[0] = htole32(s->gz_crc);
((uint32_t *)trailer)[1] =
htole32(s->gz_stream.total_in);
room = MIN(sizeof(trailer),
s->gz_bufsz - len);
memcpy(s->gz_buffer + len, trailer, room);
len += room;
}
error = cb(s->gz_buffer, len, s->gz_off, arg);
if (error != 0)
break;
s->gz_off += len;
s->gz_stream.next_out = s->gz_buffer;
s->gz_stream.avail_out = s->gz_bufsz;
/*
* If we couldn't pack the trailer into the output
* buffer, write it out now.
*/
if (zerror == Z_STREAM_END && room < sizeof(trailer))
error = cb(trailer + room,
sizeof(trailer) - room, s->gz_off, arg);
}
} while (zerror != Z_STREAM_END &&
(zflag == Z_FINISH || s->gz_stream.avail_in > 0));
return (error);
}
static void
gz_fini(void *stream)
{
struct gz_stream *s;
s = stream;
(void)deflateEnd(&s->gz_stream);
gz_free(NULL, s->gz_buffer);
gz_free(NULL, s);
}
struct compressor_methods gzip_methods = {
.format = COMPRESS_GZIP,
.init = gz_init,
.reset = gz_reset,
.write = gz_write,
.fini = gz_fini,
};
DATA_SET(compressors, gzip_methods);
#endif /* GZIO */
#ifdef ZSTDIO
#define ZSTD_STATIC_LINKING_ONLY
#include <contrib/zstd/lib/zstd.h>
struct zstdio_stream {
ZSTD_CCtx *zst_stream;
ZSTD_inBuffer zst_inbuffer;
ZSTD_outBuffer zst_outbuffer;
uint8_t * zst_buffer; /* output buffer */
size_t zst_maxiosz; /* Max output IO size */
off_t zst_off; /* offset into the output stream */
void * zst_static_wkspc;
};
static void *zstdio_init(size_t maxiosize, int level);
static void zstdio_reset(void *stream);
static int zstdio_write(void *stream, void *data, size_t len,
compressor_cb_t, void *);
static void zstdio_fini(void *stream);
static void *
zstdio_init(size_t maxiosize, int level)
{
ZSTD_CCtx *dump_compressor;
struct zstdio_stream *s;
void *wkspc, *owkspc, *buffer;
size_t wkspc_size, buf_size, rc;
s = NULL;
wkspc_size = ZSTD_estimateCStreamSize(level);
owkspc = wkspc = malloc(wkspc_size + 8, M_COMPRESS,
M_WAITOK | M_NODUMP);
/* Zstd API requires 8-byte alignment. */
if ((uintptr_t)wkspc % 8 != 0)
wkspc = (void *)roundup2((uintptr_t)wkspc, 8);
dump_compressor = ZSTD_initStaticCCtx(wkspc, wkspc_size);
if (dump_compressor == NULL) {
printf("%s: workspace too small.\n", __func__);
goto out;
}
rc = ZSTD_CCtx_setParameter(dump_compressor, ZSTD_c_checksumFlag, 1);
if (ZSTD_isError(rc)) {
printf("%s: error setting checksumFlag: %s\n", __func__,
ZSTD_getErrorName(rc));
goto out;
}
rc = ZSTD_CCtx_setParameter(dump_compressor, ZSTD_c_compressionLevel,
level);
if (ZSTD_isError(rc)) {
printf("%s: error setting compressLevel: %s\n", __func__,
ZSTD_getErrorName(rc));
goto out;
}
buf_size = ZSTD_CStreamOutSize() * 2;
buffer = malloc(buf_size, M_COMPRESS, M_WAITOK | M_NODUMP);
s = malloc(sizeof(*s), M_COMPRESS, M_NODUMP | M_WAITOK);
s->zst_buffer = buffer;
s->zst_outbuffer.dst = buffer;
s->zst_outbuffer.size = buf_size;
s->zst_maxiosz = maxiosize;
s->zst_stream = dump_compressor;
s->zst_static_wkspc = owkspc;
zstdio_reset(s);
out:
if (s == NULL)
free(owkspc, M_COMPRESS);
return (s);
}
static void
zstdio_reset(void *stream)
{
struct zstdio_stream *s;
size_t res;
s = stream;
- res = ZSTD_resetCStream(s->zst_stream, 0);
+ res = ZSTD_CCtx_reset(s->zst_stream, ZSTD_reset_session_only);
if (ZSTD_isError(res))
panic("%s: could not reset stream %p: %s\n", __func__, s,
ZSTD_getErrorName(res));
+ res = ZSTD_CCtx_setPledgedSrcSize(s->zst_stream,
+ ZSTD_CONTENTSIZE_UNKNOWN);
+ if (ZSTD_isError(res))
+ panic("%s: could not set src size on %p: %s\n", __func__, s,
+ ZSTD_getErrorName(res));
s->zst_off = 0;
s->zst_inbuffer.src = NULL;
s->zst_inbuffer.size = 0;
s->zst_inbuffer.pos = 0;
s->zst_outbuffer.pos = 0;
}
static int
zst_flush_intermediate(struct zstdio_stream *s, compressor_cb_t cb, void *arg)
{
size_t bytes_to_dump;
int error;
/* Flush as many full output blocks as possible. */
/* XXX: 4096 is arbitrary safe HDD block size for kernel dumps */
while (s->zst_outbuffer.pos >= 4096) {
bytes_to_dump = rounddown(s->zst_outbuffer.pos, 4096);
if (bytes_to_dump > s->zst_maxiosz)
bytes_to_dump = s->zst_maxiosz;
error = cb(s->zst_buffer, bytes_to_dump, s->zst_off, arg);
if (error != 0)
return (error);
/*
* Shift any non-full blocks up to the front of the output
* buffer.
*/
s->zst_outbuffer.pos -= bytes_to_dump;
memmove(s->zst_outbuffer.dst,
(char *)s->zst_outbuffer.dst + bytes_to_dump,
s->zst_outbuffer.pos);
s->zst_off += bytes_to_dump;
}
return (0);
}
static int
zstdio_flush(struct zstdio_stream *s, compressor_cb_t cb, void *arg)
{
size_t rc, lastpos;
int error;
/*
* Positive return indicates unflushed data remaining; need to call
* endStream again after clearing out room in output buffer.
*/
rc = 1;
lastpos = s->zst_outbuffer.pos;
while (rc > 0) {
rc = ZSTD_endStream(s->zst_stream, &s->zst_outbuffer);
if (ZSTD_isError(rc)) {
printf("%s: ZSTD_endStream failed (%s)\n", __func__,
ZSTD_getErrorName(rc));
return (EIO);
}
if (lastpos == s->zst_outbuffer.pos) {
printf("%s: did not make forward progress endStream %zu\n",
__func__, lastpos);
return (EIO);
}
error = zst_flush_intermediate(s, cb, arg);
if (error != 0)
return (error);
lastpos = s->zst_outbuffer.pos;
}
/*
* We've already done an intermediate flush, so all full blocks have
* been written. Only a partial block remains. Padding happens in a
* higher layer.
*/
if (s->zst_outbuffer.pos != 0) {
error = cb(s->zst_buffer, s->zst_outbuffer.pos, s->zst_off,
arg);
if (error != 0)
return (error);
}
return (0);
}
static int
zstdio_write(void *stream, void *data, size_t len, compressor_cb_t cb,
void *arg)
{
struct zstdio_stream *s;
size_t lastpos, rc;
int error;
s = stream;
if (data == NULL)
return (zstdio_flush(s, cb, arg));
s->zst_inbuffer.src = data;
s->zst_inbuffer.size = len;
s->zst_inbuffer.pos = 0;
lastpos = 0;
while (s->zst_inbuffer.pos < s->zst_inbuffer.size) {
rc = ZSTD_compressStream(s->zst_stream, &s->zst_outbuffer,
&s->zst_inbuffer);
if (ZSTD_isError(rc)) {
printf("%s: Compress failed on %p! (%s)\n",
__func__, data, ZSTD_getErrorName(rc));
return (EIO);
}
if (lastpos == s->zst_inbuffer.pos) {
/*
* XXX: May need flushStream to make forward progress
*/
printf("ZSTD: did not make forward progress @pos %zu\n",
lastpos);
return (EIO);
}
lastpos = s->zst_inbuffer.pos;
error = zst_flush_intermediate(s, cb, arg);
if (error != 0)
return (error);
}
return (0);
}
static void
zstdio_fini(void *stream)
{
struct zstdio_stream *s;
s = stream;
if (s->zst_static_wkspc != NULL)
free(s->zst_static_wkspc, M_COMPRESS);
else
ZSTD_freeCCtx(s->zst_stream);
free(s->zst_buffer, M_COMPRESS);
free(s, M_COMPRESS);
}
static struct compressor_methods zstd_methods = {
.format = COMPRESS_ZSTD,
.init = zstdio_init,
.reset = zstdio_reset,
.write = zstdio_write,
.fini = zstdio_fini,
};
DATA_SET(compressors, zstd_methods);
#endif /* ZSTDIO */
bool
compressor_avail(int format)
{
struct compressor_methods **iter;
SET_FOREACH(iter, compressors) {
if ((*iter)->format == format)
return (true);
}
return (false);
}
struct compressor *
compressor_init(compressor_cb_t cb, int format, size_t maxiosize, int level,
void *arg)
{
struct compressor_methods **iter;
struct compressor *s;
void *priv;
SET_FOREACH(iter, compressors) {
if ((*iter)->format == format)
break;
}
if (iter == SET_LIMIT(compressors))
return (NULL);
priv = (*iter)->init(maxiosize, level);
if (priv == NULL)
return (NULL);
s = malloc(sizeof(*s), M_COMPRESS, M_WAITOK | M_ZERO);
s->methods = (*iter);
s->priv = priv;
s->cb = cb;
s->arg = arg;
return (s);
}
void
compressor_reset(struct compressor *stream)
{
stream->methods->reset(stream->priv);
}
int
compressor_write(struct compressor *stream, void *data, size_t len)
{
return (stream->methods->write(stream->priv, data, len, stream->cb,
stream->arg));
}
int
compressor_flush(struct compressor *stream)
{
return (stream->methods->write(stream->priv, NULL, 0, stream->cb,
stream->arg));
}
void
compressor_fini(struct compressor *stream)
{
stream->methods->fini(stream->priv);
}
diff --git a/usr.bin/zstd/Makefile b/usr.bin/zstd/Makefile
index 4ecf16f07b40..4d1a7ffa76ab 100644
--- a/usr.bin/zstd/Makefile
+++ b/usr.bin/zstd/Makefile
@@ -1,34 +1,35 @@
# $FreeBSD$
PROG= zstd
SRCS= \
benchfn.c \
benchzstd.c \
datagen.c \
dibio.c \
fileio.c \
timefn.c \
util.c \
- zstdcli.c
+ zstdcli.c \
+ zstdcli_trace.c
CFLAGS+= -I${SRCTOP}/sys/contrib/zstd/programs \
-I${SRCTOP}/sys/contrib/zstd/lib/common \
-I${SRCTOP}/sys/contrib/zstd/lib/compress \
-I${SRCTOP}/sys/contrib/zstd/lib/dictBuilder \
-I${SRCTOP}/sys/contrib/zstd/lib \
-DXXH_NAMESPACE=ZSTD_ \
-DHAVE_THREAD=1 \
-DZSTD_MULTITHREAD=1
LINKS= ${BINDIR}/zstd ${BINDIR}/unzstd \
${BINDIR}/zstd ${BINDIR}/zstdcat \
${BINDIR}/zstd ${BINDIR}/zstdmt
MLINKS= zstd.1 unzstd.1 \
zstd.1 zstdcat.1 \
zstd.1 zstdmt.1
CSTD=c11
WARNS?= 2
LIBADD= zstd
.PATH: ${SRCTOP}/sys/contrib/zstd/programs
.include <bsd.prog.mk>

File Metadata

Mime Type
application/octet-stream
Expires
Tue, Apr 30, 1:58 PM (2 d)
Storage Engine
chunks
Storage Format
Chunks
Storage Handle
c0dPQgghRD0y
Default Alt Text
(4 MB)

Event Timeline