diff --git a/sys/kern/kern_exit.c b/sys/kern/kern_exit.c index e7a6f8d66c39..3f64343aea0e 100644 --- a/sys/kern/kern_exit.c +++ b/sys/kern/kern_exit.c @@ -1,1468 +1,1469 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_exit.c 8.7 (Berkeley) 2/12/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_ktrace.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for acct_process() function prototype */ #include #include #include #include #include #include #include #ifdef KTRACE #include #endif #include #include #include #include #include #include #include #include #include #ifdef KDTRACE_HOOKS #include dtrace_execexit_func_t dtrace_fasttrap_exit; #endif SDT_PROVIDER_DECLARE(proc); SDT_PROBE_DEFINE1(proc, , , exit, "int"); static int kern_kill_on_dbg_exit = 1; SYSCTL_INT(_kern, OID_AUTO, kill_on_debugger_exit, CTLFLAG_RWTUN, &kern_kill_on_dbg_exit, 0, "Kill ptraced processes when debugger exits"); static bool kern_wait_dequeue_sigchld = 1; SYSCTL_BOOL(_kern, OID_AUTO, wait_dequeue_sigchld, CTLFLAG_RWTUN, &kern_wait_dequeue_sigchld, 0, "Dequeue SIGCHLD on wait(2) for live process"); struct proc * proc_realparent(struct proc *child) { struct proc *p, *parent; sx_assert(&proctree_lock, SX_LOCKED); if ((child->p_treeflag & P_TREE_ORPHANED) == 0) return (child->p_pptr->p_pid == child->p_oppid ? child->p_pptr : child->p_reaper); for (p = child; (p->p_treeflag & P_TREE_FIRST_ORPHAN) == 0;) { /* Cannot use LIST_PREV(), since the list head is not known. */ p = __containerof(p->p_orphan.le_prev, struct proc, p_orphan.le_next); KASSERT((p->p_treeflag & P_TREE_ORPHANED) != 0, ("missing P_ORPHAN %p", p)); } parent = __containerof(p->p_orphan.le_prev, struct proc, p_orphans.lh_first); return (parent); } void reaper_abandon_children(struct proc *p, bool exiting) { struct proc *p1, *p2, *ptmp; sx_assert(&proctree_lock, SX_XLOCKED); KASSERT(p != initproc, ("reaper_abandon_children for initproc")); if ((p->p_treeflag & P_TREE_REAPER) == 0) return; p1 = p->p_reaper; LIST_FOREACH_SAFE(p2, &p->p_reaplist, p_reapsibling, ptmp) { LIST_REMOVE(p2, p_reapsibling); p2->p_reaper = p1; p2->p_reapsubtree = p->p_reapsubtree; LIST_INSERT_HEAD(&p1->p_reaplist, p2, p_reapsibling); if (exiting && p2->p_pptr == p) { PROC_LOCK(p2); proc_reparent(p2, p1, true); PROC_UNLOCK(p2); } } KASSERT(LIST_EMPTY(&p->p_reaplist), ("p_reaplist not empty")); p->p_treeflag &= ~P_TREE_REAPER; } static void reaper_clear(struct proc *p) { struct proc *p1; bool clear; sx_assert(&proctree_lock, SX_LOCKED); LIST_REMOVE(p, p_reapsibling); if (p->p_reapsubtree == 1) return; clear = true; LIST_FOREACH(p1, &p->p_reaper->p_reaplist, p_reapsibling) { if (p1->p_reapsubtree == p->p_reapsubtree) { clear = false; break; } } if (clear) proc_id_clear(PROC_ID_REAP, p->p_reapsubtree); } void proc_clear_orphan(struct proc *p) { struct proc *p1; sx_assert(&proctree_lock, SA_XLOCKED); if ((p->p_treeflag & P_TREE_ORPHANED) == 0) return; if ((p->p_treeflag & P_TREE_FIRST_ORPHAN) != 0) { p1 = LIST_NEXT(p, p_orphan); if (p1 != NULL) p1->p_treeflag |= P_TREE_FIRST_ORPHAN; p->p_treeflag &= ~P_TREE_FIRST_ORPHAN; } LIST_REMOVE(p, p_orphan); p->p_treeflag &= ~P_TREE_ORPHANED; } void exit_onexit(struct proc *p) { MPASS(p->p_numthreads == 1); umtx_thread_exit(FIRST_THREAD_IN_PROC(p)); } /* * exit -- death of process. */ int sys_exit(struct thread *td, struct exit_args *uap) { exit1(td, uap->rval, 0); __unreachable(); } void proc_set_p2_wexit(struct proc *p) { PROC_LOCK_ASSERT(p, MA_OWNED); p->p_flag2 |= P2_WEXIT; } /* * Exit: deallocate address space and other resources, change proc state to * zombie, and unlink proc from allproc and parent's lists. Save exit status * and rusage for wait(). Check for child processes and orphan them. */ void exit1(struct thread *td, int rval, int signo) { struct proc *p, *nq, *q, *t; struct thread *tdt; ksiginfo_t *ksi, *ksi1; int signal_parent; mtx_assert(&Giant, MA_NOTOWNED); KASSERT(rval == 0 || signo == 0, ("exit1 rv %d sig %d", rval, signo)); TSPROCEXIT(td->td_proc->p_pid); p = td->td_proc; /* * XXX in case we're rebooting we just let init die in order to * work around an unsolved stack overflow seen very late during * shutdown on sparc64 when the gmirror worker process exists. * XXX what to do now that sparc64 is gone... remove if? */ if (p == initproc && rebooting == 0) { printf("init died (signal %d, exit %d)\n", signo, rval); panic("Going nowhere without my init!"); } /* * Process deferred operations, designated with ASTF_KCLEAR. * For instance, we need to deref SU mp, since the thread does * not return to userspace, and wait for geom to stabilize. */ ast_kclear(td); /* * MUST abort all other threads before proceeding past here. */ PROC_LOCK(p); proc_set_p2_wexit(p); /* * First check if some other thread or external request got * here before us. If so, act appropriately: exit or suspend. * We must ensure that stop requests are handled before we set * P_WEXIT. */ thread_suspend_check(0); while (p->p_flag & P_HADTHREADS) { /* * Kill off the other threads. This requires * some co-operation from other parts of the kernel * so it may not be instantaneous. With this state set * any thread attempting to interruptibly * sleep will return immediately with EINTR or EWOULDBLOCK * which will hopefully force them to back out to userland * freeing resources as they go. Any thread attempting * to return to userland will thread_exit() from ast(). * thread_exit() will unsuspend us when the last of the * other threads exits. * If there is already a thread singler after resumption, * calling thread_single() will fail; in that case, we just * re-check all suspension request, the thread should * either be suspended there or exit. */ if (!thread_single(p, SINGLE_EXIT)) /* * All other activity in this process is now * stopped. Threading support has been turned * off. */ break; /* * Recheck for new stop or suspend requests which * might appear while process lock was dropped in * thread_single(). */ thread_suspend_check(0); } KASSERT(p->p_numthreads == 1, ("exit1: proc %p exiting with %d threads", p, p->p_numthreads)); racct_sub(p, RACCT_NTHR, 1); /* Let event handler change exit status */ p->p_xexit = rval; p->p_xsig = signo; /* * Ignore any pending request to stop due to a stop signal. * Once P_WEXIT is set, future requests will be ignored as * well. */ p->p_flag &= ~P_STOPPED_SIG; KASSERT(!P_SHOULDSTOP(p), ("exiting process is stopped")); /* Note that we are exiting. */ p->p_flag |= P_WEXIT; /* * Wait for any processes that have a hold on our vmspace to * release their reference. */ while (p->p_lock > 0) msleep(&p->p_lock, &p->p_mtx, PWAIT, "exithold", 0); PROC_UNLOCK(p); /* Drain the limit callout while we don't have the proc locked */ callout_drain(&p->p_limco); #ifdef AUDIT /* * The Sun BSM exit token contains two components: an exit status as * passed to exit(), and a return value to indicate what sort of exit * it was. The exit status is WEXITSTATUS(rv), but it's not clear * what the return value is. */ AUDIT_ARG_EXIT(rval, 0); AUDIT_SYSCALL_EXIT(0, td); #endif /* Are we a task leader with peers? */ if (p->p_peers != NULL && p == p->p_leader) { mtx_lock(&ppeers_lock); q = p->p_peers; while (q != NULL) { PROC_LOCK(q); kern_psignal(q, SIGKILL); PROC_UNLOCK(q); q = q->p_peers; } while (p->p_peers != NULL) msleep(p, &ppeers_lock, PWAIT, "exit1", 0); mtx_unlock(&ppeers_lock); } itimers_exit(p); /* * Check if any loadable modules need anything done at process exit. * E.g. SYSV IPC stuff. * Event handler could change exit status. * XXX what if one of these generates an error? */ EVENTHANDLER_DIRECT_INVOKE(process_exit, p); /* * If parent is waiting for us to exit or exec, * P_PPWAIT is set; we will wakeup the parent below. */ PROC_LOCK(p); stopprofclock(p); p->p_ptevents = 0; /* * Stop the real interval timer. If the handler is currently * executing, prevent it from rearming itself and let it finish. */ if (timevalisset(&p->p_realtimer.it_value) && callout_stop(&p->p_itcallout) == 0) { timevalclear(&p->p_realtimer.it_interval); PROC_UNLOCK(p); callout_drain(&p->p_itcallout); } else { PROC_UNLOCK(p); } if (p->p_sysent->sv_onexit != NULL) p->p_sysent->sv_onexit(p); seltdfini(td); /* * Reset any sigio structures pointing to us as a result of * F_SETOWN with our pid. The P_WEXIT flag interlocks with fsetown(). */ funsetownlst(&p->p_sigiolst); /* * Close open files and release open-file table. * This may block! */ pdescfree(td); fdescfree(td); /* * Remove ourself from our leader's peer list and wake our leader. */ if (p->p_leader->p_peers != NULL) { mtx_lock(&ppeers_lock); if (p->p_leader->p_peers != NULL) { q = p->p_leader; while (q->p_peers != p) q = q->p_peers; q->p_peers = p->p_peers; wakeup(p->p_leader); } mtx_unlock(&ppeers_lock); } exec_free_abi_mappings(p); vmspace_exit(td); (void)acct_process(td); #ifdef KTRACE ktrprocexit(td); #endif /* * Release reference to text vnode etc */ if (p->p_textvp != NULL) { vrele(p->p_textvp); p->p_textvp = NULL; } if (p->p_textdvp != NULL) { vrele(p->p_textdvp); p->p_textdvp = NULL; } if (p->p_binname != NULL) { free(p->p_binname, M_PARGS); p->p_binname = NULL; } /* * Release our limits structure. */ lim_free(p->p_limit); p->p_limit = NULL; tidhash_remove(td); /* * Call machine-dependent code to release any * machine-dependent resources other than the address space. * The address space is released by "vmspace_exitfree(p)" in * vm_waitproc(). */ cpu_exit(td); WITNESS_WARN(WARN_PANIC, NULL, "process (pid %d) exiting", p->p_pid); /* * Remove from allproc. It still sits in the hash. */ sx_xlock(&allproc_lock); LIST_REMOVE(p, p_list); #ifdef DDB /* * Used by ddb's 'ps' command to find this process via the * pidhash. */ p->p_list.le_prev = NULL; #endif + prison_proc_unlink(p->p_ucred->cr_prison, p); sx_xunlock(&allproc_lock); sx_xlock(&proctree_lock); PROC_LOCK(p); p->p_flag &= ~(P_TRACED | P_PPWAIT | P_PPTRACE); PROC_UNLOCK(p); /* * killjobc() might drop and re-acquire proctree_lock to * revoke control tty if exiting process was a session leader. */ killjobc(); /* * Reparent all children processes: * - traced ones to the original parent (or init if we are that parent) * - the rest to init */ q = LIST_FIRST(&p->p_children); if (q != NULL) /* only need this if any child is S_ZOMB */ wakeup(q->p_reaper); for (; q != NULL; q = nq) { nq = LIST_NEXT(q, p_sibling); ksi = ksiginfo_alloc(M_WAITOK); PROC_LOCK(q); q->p_sigparent = SIGCHLD; if ((q->p_flag & P_TRACED) == 0) { proc_reparent(q, q->p_reaper, true); if (q->p_state == PRS_ZOMBIE) { /* * Inform reaper about the reparented * zombie, since wait(2) has something * new to report. Guarantee queueing * of the SIGCHLD signal, similar to * the _exit() behaviour, by providing * our ksiginfo. Ksi is freed by the * signal delivery. */ if (q->p_ksi == NULL) { ksi1 = NULL; } else { ksiginfo_copy(q->p_ksi, ksi); ksi->ksi_flags |= KSI_INS; ksi1 = ksi; ksi = NULL; } PROC_LOCK(q->p_reaper); pksignal(q->p_reaper, SIGCHLD, ksi1); PROC_UNLOCK(q->p_reaper); } else if (q->p_pdeathsig > 0) { /* * The child asked to received a signal * when we exit. */ kern_psignal(q, q->p_pdeathsig); } } else { /* * Traced processes are killed by default * since their existence means someone is * screwing up. */ t = proc_realparent(q); if (t == p) { proc_reparent(q, q->p_reaper, true); } else { PROC_LOCK(t); proc_reparent(q, t, true); PROC_UNLOCK(t); } /* * Since q was found on our children list, the * proc_reparent() call moved q to the orphan * list due to present P_TRACED flag. Clear * orphan link for q now while q is locked. */ proc_clear_orphan(q); q->p_flag &= ~P_TRACED; q->p_flag2 &= ~P2_PTRACE_FSTP; q->p_ptevents = 0; p->p_xthread = NULL; FOREACH_THREAD_IN_PROC(q, tdt) { tdt->td_dbgflags &= ~(TDB_SUSPEND | TDB_XSIG | TDB_FSTP); tdt->td_xsig = 0; } if (kern_kill_on_dbg_exit) { q->p_flag &= ~P_STOPPED_TRACE; kern_psignal(q, SIGKILL); } else if ((q->p_flag & (P_STOPPED_TRACE | P_STOPPED_SIG)) != 0) { sigqueue_delete_proc(q, SIGTRAP); ptrace_unsuspend(q); } } PROC_UNLOCK(q); if (ksi != NULL) ksiginfo_free(ksi); } /* * Also get rid of our orphans. */ while ((q = LIST_FIRST(&p->p_orphans)) != NULL) { PROC_LOCK(q); KASSERT(q->p_oppid == p->p_pid, ("orphan %p of %p has unexpected oppid %d", q, p, q->p_oppid)); q->p_oppid = q->p_reaper->p_pid; /* * If we are the real parent of this process * but it has been reparented to a debugger, then * check if it asked for a signal when we exit. */ if (q->p_pdeathsig > 0) kern_psignal(q, q->p_pdeathsig); CTR2(KTR_PTRACE, "exit: pid %d, clearing orphan %d", p->p_pid, q->p_pid); proc_clear_orphan(q); PROC_UNLOCK(q); } #ifdef KDTRACE_HOOKS if (SDT_PROBES_ENABLED()) { int reason = CLD_EXITED; if (WCOREDUMP(signo)) reason = CLD_DUMPED; else if (WIFSIGNALED(signo)) reason = CLD_KILLED; SDT_PROBE1(proc, , , exit, reason); } #endif /* Save exit status. */ PROC_LOCK(p); p->p_xthread = td; if (p->p_sysent->sv_ontdexit != NULL) p->p_sysent->sv_ontdexit(td); #ifdef KDTRACE_HOOKS /* * Tell the DTrace fasttrap provider about the exit if it * has declared an interest. */ if (dtrace_fasttrap_exit) dtrace_fasttrap_exit(p); #endif /* * Notify interested parties of our demise. */ KNOTE_LOCKED(p->p_klist, NOTE_EXIT); /* * If this is a process with a descriptor, we may not need to deliver * a signal to the parent. proctree_lock is held over * procdesc_exit() to serialize concurrent calls to close() and * exit(). */ signal_parent = 0; if (p->p_procdesc == NULL || procdesc_exit(p)) { /* * Notify parent that we're gone. If parent has the * PS_NOCLDWAIT flag set, or if the handler is set to SIG_IGN, * notify process 1 instead (and hope it will handle this * situation). */ PROC_LOCK(p->p_pptr); mtx_lock(&p->p_pptr->p_sigacts->ps_mtx); if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) { struct proc *pp; mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx); pp = p->p_pptr; PROC_UNLOCK(pp); proc_reparent(p, p->p_reaper, true); p->p_sigparent = SIGCHLD; PROC_LOCK(p->p_pptr); /* * Notify parent, so in case he was wait(2)ing or * executing waitpid(2) with our pid, he will * continue. */ wakeup(pp); } else mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx); if (p->p_pptr == p->p_reaper || p->p_pptr == initproc) { signal_parent = 1; } else if (p->p_sigparent != 0) { if (p->p_sigparent == SIGCHLD) { signal_parent = 1; } else { /* LINUX thread */ signal_parent = 2; } } } else PROC_LOCK(p->p_pptr); sx_xunlock(&proctree_lock); if (signal_parent == 1) { childproc_exited(p); } else if (signal_parent == 2) { kern_psignal(p->p_pptr, p->p_sigparent); } /* Tell the prison that we are gone. */ prison_proc_free(p->p_ucred->cr_prison); /* * The state PRS_ZOMBIE prevents other proesses from sending * signal to the process, to avoid memory leak, we free memory * for signal queue at the time when the state is set. */ sigqueue_flush(&p->p_sigqueue); sigqueue_flush(&td->td_sigqueue); /* * We have to wait until after acquiring all locks before * changing p_state. We need to avoid all possible context * switches (including ones from blocking on a mutex) while * marked as a zombie. We also have to set the zombie state * before we release the parent process' proc lock to avoid * a lost wakeup. So, we first call wakeup, then we grab the * sched lock, update the state, and release the parent process' * proc lock. */ wakeup(p->p_pptr); cv_broadcast(&p->p_pwait); sched_exit(p->p_pptr, td); PROC_SLOCK(p); p->p_state = PRS_ZOMBIE; PROC_UNLOCK(p->p_pptr); /* * Save our children's rusage information in our exit rusage. */ PROC_STATLOCK(p); ruadd(&p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux); PROC_STATUNLOCK(p); /* * Make sure the scheduler takes this thread out of its tables etc. * This will also release this thread's reference to the ucred. * Other thread parts to release include pcb bits and such. */ thread_exit(); } #ifndef _SYS_SYSPROTO_H_ struct abort2_args { char *why; int nargs; void **args; }; #endif int sys_abort2(struct thread *td, struct abort2_args *uap) { void *uargs[16]; void **uargsp; int error, nargs; nargs = uap->nargs; if (nargs < 0 || nargs > nitems(uargs)) nargs = -1; uargsp = NULL; if (nargs > 0) { if (uap->args != NULL) { error = copyin(uap->args, uargs, nargs * sizeof(void *)); if (error != 0) nargs = -1; else uargsp = uargs; } else nargs = -1; } return (kern_abort2(td, uap->why, nargs, uargsp)); } /* * kern_abort2() * Arguments: * why - user pointer to why * nargs - number of arguments copied or -1 if an error occurred in copying * args - pointer to an array of pointers in kernel format */ int kern_abort2(struct thread *td, const char *why, int nargs, void **uargs) { struct proc *p = td->td_proc; struct sbuf *sb; int error, i, sig; /* * Do it right now so we can log either proper call of abort2(), or * note, that invalid argument was passed. 512 is big enough to * handle 16 arguments' descriptions with additional comments. */ sb = sbuf_new(NULL, NULL, 512, SBUF_FIXEDLEN); sbuf_clear(sb); sbuf_printf(sb, "%s(pid %d uid %d) aborted: ", p->p_comm, p->p_pid, td->td_ucred->cr_uid); /* * Since we can't return from abort2(), send SIGKILL in cases, where * abort2() was called improperly */ sig = SIGKILL; /* Prevent from DoSes from user-space. */ if (nargs == -1) goto out; KASSERT(nargs >= 0 && nargs <= 16, ("called with too many args (%d)", nargs)); /* * Limit size of 'reason' string to 128. Will fit even when * maximal number of arguments was chosen to be logged. */ if (why != NULL) { error = sbuf_copyin(sb, why, 128); if (error < 0) goto out; } else { sbuf_printf(sb, "(null)"); } if (nargs > 0) { sbuf_printf(sb, "("); for (i = 0;i < nargs; i++) sbuf_printf(sb, "%s%p", i == 0 ? "" : ", ", uargs[i]); sbuf_printf(sb, ")"); } /* * Final stage: arguments were proper, string has been * successfully copied from userspace, and copying pointers * from user-space succeed. */ sig = SIGABRT; out: if (sig == SIGKILL) { sbuf_trim(sb); sbuf_printf(sb, " (Reason text inaccessible)"); } sbuf_cat(sb, "\n"); sbuf_finish(sb); log(LOG_INFO, "%s", sbuf_data(sb)); sbuf_delete(sb); exit1(td, 0, sig); return (0); } #ifdef COMPAT_43 /* * The dirty work is handled by kern_wait(). */ int owait(struct thread *td, struct owait_args *uap __unused) { int error, status; error = kern_wait(td, WAIT_ANY, &status, 0, NULL); if (error == 0) td->td_retval[1] = status; return (error); } #endif /* COMPAT_43 */ /* * The dirty work is handled by kern_wait(). */ int sys_wait4(struct thread *td, struct wait4_args *uap) { struct rusage ru, *rup; int error, status; if (uap->rusage != NULL) rup = &ru; else rup = NULL; error = kern_wait(td, uap->pid, &status, uap->options, rup); if (uap->status != NULL && error == 0 && td->td_retval[0] != 0) error = copyout(&status, uap->status, sizeof(status)); if (uap->rusage != NULL && error == 0 && td->td_retval[0] != 0) error = copyout(&ru, uap->rusage, sizeof(struct rusage)); return (error); } int sys_wait6(struct thread *td, struct wait6_args *uap) { struct __wrusage wru, *wrup; siginfo_t si, *sip; idtype_t idtype; id_t id; int error, status; idtype = uap->idtype; id = uap->id; if (uap->wrusage != NULL) wrup = &wru; else wrup = NULL; if (uap->info != NULL) { sip = &si; bzero(sip, sizeof(*sip)); } else sip = NULL; /* * We expect all callers of wait6() to know about WEXITED and * WTRAPPED. */ error = kern_wait6(td, idtype, id, &status, uap->options, wrup, sip); if (uap->status != NULL && error == 0 && td->td_retval[0] != 0) error = copyout(&status, uap->status, sizeof(status)); if (uap->wrusage != NULL && error == 0 && td->td_retval[0] != 0) error = copyout(&wru, uap->wrusage, sizeof(wru)); if (uap->info != NULL && error == 0) error = copyout(&si, uap->info, sizeof(si)); return (error); } /* * Reap the remains of a zombie process and optionally return status and * rusage. Asserts and will release both the proctree_lock and the process * lock as part of its work. */ void proc_reap(struct thread *td, struct proc *p, int *status, int options) { struct proc *q, *t; sx_assert(&proctree_lock, SA_XLOCKED); PROC_LOCK_ASSERT(p, MA_OWNED); KASSERT(p->p_state == PRS_ZOMBIE, ("proc_reap: !PRS_ZOMBIE")); mtx_spin_wait_unlocked(&p->p_slock); q = td->td_proc; if (status) *status = KW_EXITCODE(p->p_xexit, p->p_xsig); if (options & WNOWAIT) { /* * Only poll, returning the status. Caller does not wish to * release the proc struct just yet. */ PROC_UNLOCK(p); sx_xunlock(&proctree_lock); return; } PROC_LOCK(q); sigqueue_take(p->p_ksi); PROC_UNLOCK(q); /* * If we got the child via a ptrace 'attach', we need to give it back * to the old parent. */ if (p->p_oppid != p->p_pptr->p_pid) { PROC_UNLOCK(p); t = proc_realparent(p); PROC_LOCK(t); PROC_LOCK(p); CTR2(KTR_PTRACE, "wait: traced child %d moved back to parent %d", p->p_pid, t->p_pid); proc_reparent(p, t, false); PROC_UNLOCK(p); pksignal(t, SIGCHLD, p->p_ksi); wakeup(t); cv_broadcast(&p->p_pwait); PROC_UNLOCK(t); sx_xunlock(&proctree_lock); return; } PROC_UNLOCK(p); /* * Remove other references to this process to ensure we have an * exclusive reference. */ sx_xlock(PIDHASHLOCK(p->p_pid)); LIST_REMOVE(p, p_hash); sx_xunlock(PIDHASHLOCK(p->p_pid)); LIST_REMOVE(p, p_sibling); reaper_abandon_children(p, true); reaper_clear(p); PROC_LOCK(p); proc_clear_orphan(p); PROC_UNLOCK(p); leavepgrp(p); if (p->p_procdesc != NULL) procdesc_reap(p); sx_xunlock(&proctree_lock); proc_id_clear(PROC_ID_PID, p->p_pid); PROC_LOCK(p); knlist_detach(p->p_klist); p->p_klist = NULL; PROC_UNLOCK(p); /* * Removal from allproc list and process group list paired with * PROC_LOCK which was executed during that time should guarantee * nothing can reach this process anymore. As such further locking * is unnecessary. */ p->p_xexit = p->p_xsig = 0; /* XXX: why? */ PROC_LOCK(q); ruadd(&q->p_stats->p_cru, &q->p_crux, &p->p_ru, &p->p_rux); PROC_UNLOCK(q); /* * Decrement the count of procs running with this uid. */ (void)chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0); /* * Destroy resource accounting information associated with the process. */ #ifdef RACCT if (racct_enable) { PROC_LOCK(p); racct_sub(p, RACCT_NPROC, 1); PROC_UNLOCK(p); } #endif racct_proc_exit(p); /* * Free credentials, arguments, and sigacts. */ proc_unset_cred(p); pargs_drop(p->p_args); p->p_args = NULL; sigacts_free(p->p_sigacts); p->p_sigacts = NULL; /* * Do any thread-system specific cleanups. */ thread_wait(p); /* * Give vm and machine-dependent layer a chance to free anything that * cpu_exit couldn't release while still running in process context. */ vm_waitproc(p); #ifdef MAC mac_proc_destroy(p); #endif KASSERT(FIRST_THREAD_IN_PROC(p), ("proc_reap: no residual thread!")); uma_zfree(proc_zone, p); atomic_add_int(&nprocs, -1); } static int proc_to_reap(struct thread *td, struct proc *p, idtype_t idtype, id_t id, int *status, int options, struct __wrusage *wrusage, siginfo_t *siginfo, int check_only) { struct rusage *rup; sx_assert(&proctree_lock, SA_XLOCKED); PROC_LOCK(p); switch (idtype) { case P_ALL: if (p->p_procdesc == NULL || (p->p_pptr == td->td_proc && (p->p_flag & P_TRACED) != 0)) { break; } PROC_UNLOCK(p); return (0); case P_PID: if (p->p_pid != (pid_t)id) { PROC_UNLOCK(p); return (0); } break; case P_PGID: if (p->p_pgid != (pid_t)id) { PROC_UNLOCK(p); return (0); } break; case P_SID: if (p->p_session->s_sid != (pid_t)id) { PROC_UNLOCK(p); return (0); } break; case P_UID: if (p->p_ucred->cr_uid != (uid_t)id) { PROC_UNLOCK(p); return (0); } break; case P_GID: if (p->p_ucred->cr_gid != (gid_t)id) { PROC_UNLOCK(p); return (0); } break; case P_JAILID: if (p->p_ucred->cr_prison->pr_id != (int)id) { PROC_UNLOCK(p); return (0); } break; /* * It seems that the thread structures get zeroed out * at process exit. This makes it impossible to * support P_SETID, P_CID or P_CPUID. */ default: PROC_UNLOCK(p); return (0); } if (p_canwait(td, p)) { PROC_UNLOCK(p); return (0); } if (((options & WEXITED) == 0) && (p->p_state == PRS_ZOMBIE)) { PROC_UNLOCK(p); return (0); } /* * This special case handles a kthread spawned by linux_clone * (see linux_misc.c). The linux_wait4 and linux_waitpid * functions need to be able to distinguish between waiting * on a process and waiting on a thread. It is a thread if * p_sigparent is not SIGCHLD, and the WLINUXCLONE option * signifies we want to wait for threads and not processes. */ if ((p->p_sigparent != SIGCHLD) ^ ((options & WLINUXCLONE) != 0)) { PROC_UNLOCK(p); return (0); } if (siginfo != NULL) { bzero(siginfo, sizeof(*siginfo)); siginfo->si_errno = 0; /* * SUSv4 requires that the si_signo value is always * SIGCHLD. Obey it despite the rfork(2) interface * allows to request other signal for child exit * notification. */ siginfo->si_signo = SIGCHLD; /* * This is still a rough estimate. We will fix the * cases TRAPPED, STOPPED, and CONTINUED later. */ if (WCOREDUMP(p->p_xsig)) { siginfo->si_code = CLD_DUMPED; siginfo->si_status = WTERMSIG(p->p_xsig); } else if (WIFSIGNALED(p->p_xsig)) { siginfo->si_code = CLD_KILLED; siginfo->si_status = WTERMSIG(p->p_xsig); } else { siginfo->si_code = CLD_EXITED; siginfo->si_status = p->p_xexit; } siginfo->si_pid = p->p_pid; siginfo->si_uid = p->p_ucred->cr_uid; /* * The si_addr field would be useful additional * detail, but apparently the PC value may be lost * when we reach this point. bzero() above sets * siginfo->si_addr to NULL. */ } /* * There should be no reason to limit resources usage info to * exited processes only. A snapshot about any resources used * by a stopped process may be exactly what is needed. */ if (wrusage != NULL) { rup = &wrusage->wru_self; *rup = p->p_ru; PROC_STATLOCK(p); calcru(p, &rup->ru_utime, &rup->ru_stime); PROC_STATUNLOCK(p); rup = &wrusage->wru_children; *rup = p->p_stats->p_cru; calccru(p, &rup->ru_utime, &rup->ru_stime); } if (p->p_state == PRS_ZOMBIE && !check_only) { proc_reap(td, p, status, options); return (-1); } return (1); } int kern_wait(struct thread *td, pid_t pid, int *status, int options, struct rusage *rusage) { struct __wrusage wru, *wrup; idtype_t idtype; id_t id; int ret; /* * Translate the special pid values into the (idtype, pid) * pair for kern_wait6. The WAIT_MYPGRP case is handled by * kern_wait6() on its own. */ if (pid == WAIT_ANY) { idtype = P_ALL; id = 0; } else if (pid < 0) { idtype = P_PGID; id = (id_t)-pid; } else { idtype = P_PID; id = (id_t)pid; } if (rusage != NULL) wrup = &wru; else wrup = NULL; /* * For backward compatibility we implicitly add flags WEXITED * and WTRAPPED here. */ options |= WEXITED | WTRAPPED; ret = kern_wait6(td, idtype, id, status, options, wrup, NULL); if (rusage != NULL) *rusage = wru.wru_self; return (ret); } static void report_alive_proc(struct thread *td, struct proc *p, siginfo_t *siginfo, int *status, int options, int si_code) { bool cont; PROC_LOCK_ASSERT(p, MA_OWNED); sx_assert(&proctree_lock, SA_XLOCKED); MPASS(si_code == CLD_TRAPPED || si_code == CLD_STOPPED || si_code == CLD_CONTINUED); cont = si_code == CLD_CONTINUED; if ((options & WNOWAIT) == 0) { if (cont) p->p_flag &= ~P_CONTINUED; else p->p_flag |= P_WAITED; if (kern_wait_dequeue_sigchld && (td->td_proc->p_sysent->sv_flags & SV_SIG_WAITNDQ) == 0) { PROC_LOCK(td->td_proc); sigqueue_take(p->p_ksi); PROC_UNLOCK(td->td_proc); } } sx_xunlock(&proctree_lock); if (siginfo != NULL) { siginfo->si_code = si_code; siginfo->si_status = cont ? SIGCONT : p->p_xsig; } if (status != NULL) *status = cont ? SIGCONT : W_STOPCODE(p->p_xsig); td->td_retval[0] = p->p_pid; PROC_UNLOCK(p); } int kern_wait6(struct thread *td, idtype_t idtype, id_t id, int *status, int options, struct __wrusage *wrusage, siginfo_t *siginfo) { struct proc *p, *q; pid_t pid; int error, nfound, ret; bool report; AUDIT_ARG_VALUE((int)idtype); /* XXX - This is likely wrong! */ AUDIT_ARG_PID((pid_t)id); /* XXX - This may be wrong! */ AUDIT_ARG_VALUE(options); q = td->td_proc; if ((pid_t)id == WAIT_MYPGRP && (idtype == P_PID || idtype == P_PGID)) { PROC_LOCK(q); id = (id_t)q->p_pgid; PROC_UNLOCK(q); idtype = P_PGID; } /* If we don't know the option, just return. */ if ((options & ~(WUNTRACED | WNOHANG | WCONTINUED | WNOWAIT | WEXITED | WTRAPPED | WLINUXCLONE)) != 0) return (EINVAL); if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) { /* * We will be unable to find any matching processes, * because there are no known events to look for. * Prefer to return error instead of blocking * indefinitely. */ return (EINVAL); } loop: if (q->p_flag & P_STATCHILD) { PROC_LOCK(q); q->p_flag &= ~P_STATCHILD; PROC_UNLOCK(q); } sx_xlock(&proctree_lock); loop_locked: nfound = 0; LIST_FOREACH(p, &q->p_children, p_sibling) { pid = p->p_pid; ret = proc_to_reap(td, p, idtype, id, status, options, wrusage, siginfo, 0); if (ret == 0) continue; else if (ret != 1) { td->td_retval[0] = pid; return (0); } nfound++; PROC_LOCK_ASSERT(p, MA_OWNED); if ((options & WTRAPPED) != 0 && (p->p_flag & P_TRACED) != 0) { PROC_SLOCK(p); report = ((p->p_flag & (P_STOPPED_TRACE | P_STOPPED_SIG)) && p->p_suspcount == p->p_numthreads && (p->p_flag & P_WAITED) == 0); PROC_SUNLOCK(p); if (report) { CTR4(KTR_PTRACE, "wait: returning trapped pid %d status %#x " "(xstat %d) xthread %d", p->p_pid, W_STOPCODE(p->p_xsig), p->p_xsig, p->p_xthread != NULL ? p->p_xthread->td_tid : -1); report_alive_proc(td, p, siginfo, status, options, CLD_TRAPPED); return (0); } } if ((options & WUNTRACED) != 0 && (p->p_flag & P_STOPPED_SIG) != 0) { PROC_SLOCK(p); report = (p->p_suspcount == p->p_numthreads && ((p->p_flag & P_WAITED) == 0)); PROC_SUNLOCK(p); if (report) { report_alive_proc(td, p, siginfo, status, options, CLD_STOPPED); return (0); } } if ((options & WCONTINUED) != 0 && (p->p_flag & P_CONTINUED) != 0) { report_alive_proc(td, p, siginfo, status, options, CLD_CONTINUED); return (0); } PROC_UNLOCK(p); } /* * Look in the orphans list too, to allow the parent to * collect it's child exit status even if child is being * debugged. * * Debugger detaches from the parent upon successful * switch-over from parent to child. At this point due to * re-parenting the parent loses the child to debugger and a * wait4(2) call would report that it has no children to wait * for. By maintaining a list of orphans we allow the parent * to successfully wait until the child becomes a zombie. */ if (nfound == 0) { LIST_FOREACH(p, &q->p_orphans, p_orphan) { ret = proc_to_reap(td, p, idtype, id, NULL, options, NULL, NULL, 1); if (ret != 0) { KASSERT(ret != -1, ("reaped an orphan (pid %d)", (int)td->td_retval[0])); PROC_UNLOCK(p); nfound++; break; } } } if (nfound == 0) { sx_xunlock(&proctree_lock); return (ECHILD); } if (options & WNOHANG) { sx_xunlock(&proctree_lock); td->td_retval[0] = 0; return (0); } PROC_LOCK(q); if (q->p_flag & P_STATCHILD) { q->p_flag &= ~P_STATCHILD; PROC_UNLOCK(q); goto loop_locked; } sx_xunlock(&proctree_lock); error = msleep(q, &q->p_mtx, PWAIT | PCATCH | PDROP, "wait", 0); if (error) return (error); goto loop; } void proc_add_orphan(struct proc *child, struct proc *parent) { sx_assert(&proctree_lock, SX_XLOCKED); KASSERT((child->p_flag & P_TRACED) != 0, ("proc_add_orphan: not traced")); if (LIST_EMPTY(&parent->p_orphans)) { child->p_treeflag |= P_TREE_FIRST_ORPHAN; LIST_INSERT_HEAD(&parent->p_orphans, child, p_orphan); } else { LIST_INSERT_AFTER(LIST_FIRST(&parent->p_orphans), child, p_orphan); } child->p_treeflag |= P_TREE_ORPHANED; } /* * Make process 'parent' the new parent of process 'child'. * Must be called with an exclusive hold of proctree lock. */ void proc_reparent(struct proc *child, struct proc *parent, bool set_oppid) { sx_assert(&proctree_lock, SX_XLOCKED); PROC_LOCK_ASSERT(child, MA_OWNED); if (child->p_pptr == parent) return; PROC_LOCK(child->p_pptr); sigqueue_take(child->p_ksi); PROC_UNLOCK(child->p_pptr); LIST_REMOVE(child, p_sibling); LIST_INSERT_HEAD(&parent->p_children, child, p_sibling); proc_clear_orphan(child); if ((child->p_flag & P_TRACED) != 0) { proc_add_orphan(child, child->p_pptr); } child->p_pptr = parent; if (set_oppid) child->p_oppid = parent->p_pid; } diff --git a/sys/kern/kern_fork.c b/sys/kern/kern_fork.c index 58f386f20544..87c14670ae10 100644 --- a/sys/kern/kern_fork.c +++ b/sys/kern/kern_fork.c @@ -1,1180 +1,1181 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_ktrace.h" #include "opt_kstack_pages.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KDTRACE_HOOKS #include dtrace_fork_func_t dtrace_fasttrap_fork; #endif SDT_PROVIDER_DECLARE(proc); SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int"); #ifndef _SYS_SYSPROTO_H_ struct fork_args { int dummy; }; #endif /* ARGSUSED */ int sys_fork(struct thread *td, struct fork_args *uap) { struct fork_req fr; int error, pid; bzero(&fr, sizeof(fr)); fr.fr_flags = RFFDG | RFPROC; fr.fr_pidp = &pid; error = fork1(td, &fr); if (error == 0) { td->td_retval[0] = pid; td->td_retval[1] = 0; } return (error); } /* ARGUSED */ int sys_pdfork(struct thread *td, struct pdfork_args *uap) { struct fork_req fr; int error, fd, pid; bzero(&fr, sizeof(fr)); fr.fr_flags = RFFDG | RFPROC | RFPROCDESC; fr.fr_pidp = &pid; fr.fr_pd_fd = &fd; fr.fr_pd_flags = uap->flags; AUDIT_ARG_FFLAGS(uap->flags); /* * It is necessary to return fd by reference because 0 is a valid file * descriptor number, and the child needs to be able to distinguish * itself from the parent using the return value. */ error = fork1(td, &fr); if (error == 0) { td->td_retval[0] = pid; td->td_retval[1] = 0; error = copyout(&fd, uap->fdp, sizeof(fd)); } return (error); } /* ARGSUSED */ int sys_vfork(struct thread *td, struct vfork_args *uap) { struct fork_req fr; int error, pid; bzero(&fr, sizeof(fr)); fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM; fr.fr_pidp = &pid; error = fork1(td, &fr); if (error == 0) { td->td_retval[0] = pid; td->td_retval[1] = 0; } return (error); } int sys_rfork(struct thread *td, struct rfork_args *uap) { struct fork_req fr; int error, pid; /* Don't allow kernel-only flags. */ if ((uap->flags & RFKERNELONLY) != 0) return (EINVAL); /* RFSPAWN must not appear with others */ if ((uap->flags & RFSPAWN) != 0 && uap->flags != RFSPAWN) return (EINVAL); AUDIT_ARG_FFLAGS(uap->flags); bzero(&fr, sizeof(fr)); if ((uap->flags & RFSPAWN) != 0) { fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM; fr.fr_flags2 = FR2_DROPSIG_CAUGHT; } else { fr.fr_flags = uap->flags; } fr.fr_pidp = &pid; error = fork1(td, &fr); if (error == 0) { td->td_retval[0] = pid; td->td_retval[1] = 0; } return (error); } int __exclusive_cache_line nprocs = 1; /* process 0 */ int lastpid = 0; SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, "Last used PID"); /* * Random component to lastpid generation. We mix in a random factor to make * it a little harder to predict. We sanity check the modulus value to avoid * doing it in critical paths. Don't let it be too small or we pointlessly * waste randomness entropy, and don't let it be impossibly large. Using a * modulus that is too big causes a LOT more process table scans and slows * down fork processing as the pidchecked caching is defeated. */ static int randompid = 0; static int sysctl_kern_randompid(SYSCTL_HANDLER_ARGS) { int error, pid; error = sysctl_wire_old_buffer(req, sizeof(int)); if (error != 0) return(error); sx_xlock(&allproc_lock); pid = randompid; error = sysctl_handle_int(oidp, &pid, 0, req); if (error == 0 && req->newptr != NULL) { if (pid == 0) randompid = 0; else if (pid == 1) /* generate a random PID modulus between 100 and 1123 */ randompid = 100 + arc4random() % 1024; else if (pid < 0 || pid > pid_max - 100) /* out of range */ randompid = pid_max - 100; else if (pid < 100) /* Make it reasonable */ randompid = 100; else randompid = pid; } sx_xunlock(&allproc_lock); return (error); } SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, sysctl_kern_randompid, "I", "Random PID modulus. Special values: 0: disable, 1: choose random value"); extern bitstr_t proc_id_pidmap; extern bitstr_t proc_id_grpidmap; extern bitstr_t proc_id_sessidmap; extern bitstr_t proc_id_reapmap; /* * Find an unused process ID * * If RFHIGHPID is set (used during system boot), do not allocate * low-numbered pids. */ static int fork_findpid(int flags) { pid_t result; int trypid, random; /* * Avoid calling arc4random with procid_lock held. */ random = 0; if (__predict_false(randompid)) random = arc4random() % randompid; mtx_lock(&procid_lock); trypid = lastpid + 1; if (flags & RFHIGHPID) { if (trypid < 10) trypid = 10; } else { trypid += random; } retry: if (trypid >= pid_max) trypid = 2; bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result); if (result == -1) { KASSERT(trypid != 2, ("unexpectedly ran out of IDs")); trypid = 2; goto retry; } if (bit_test(&proc_id_grpidmap, result) || bit_test(&proc_id_sessidmap, result) || bit_test(&proc_id_reapmap, result)) { trypid = result + 1; goto retry; } /* * RFHIGHPID does not mess with the lastpid counter during boot. */ if ((flags & RFHIGHPID) == 0) lastpid = result; bit_set(&proc_id_pidmap, result); mtx_unlock(&procid_lock); return (result); } static int fork_norfproc(struct thread *td, int flags) { struct proc *p1; int error; KASSERT((flags & RFPROC) == 0, ("fork_norfproc called with RFPROC set")); p1 = td->td_proc; /* * Quiesce other threads if necessary. If RFMEM is not specified we * must ensure that other threads do not concurrently create a second * process sharing the vmspace, see vmspace_unshare(). */ if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS && ((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) { PROC_LOCK(p1); if (thread_single(p1, SINGLE_BOUNDARY)) { PROC_UNLOCK(p1); return (ERESTART); } PROC_UNLOCK(p1); } error = vm_forkproc(td, NULL, NULL, NULL, flags); if (error != 0) goto fail; /* * Close all file descriptors. */ if ((flags & RFCFDG) != 0) { struct filedesc *fdtmp; struct pwddesc *pdtmp; pdtmp = pdinit(td->td_proc->p_pd, false); fdtmp = fdinit(); pdescfree(td); fdescfree(td); p1->p_fd = fdtmp; p1->p_pd = pdtmp; } /* * Unshare file descriptors (from parent). */ if ((flags & RFFDG) != 0) { fdunshare(td); pdunshare(td); } fail: if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS && ((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) { PROC_LOCK(p1); thread_single_end(p1, SINGLE_BOUNDARY); PROC_UNLOCK(p1); } return (error); } static void do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2, struct vmspace *vm2, struct file *fp_procdesc) { struct proc *p1, *pptr; struct filedesc *fd; struct filedesc_to_leader *fdtol; struct pwddesc *pd; struct sigacts *newsigacts; p1 = td->td_proc; PROC_LOCK(p1); bcopy(&p1->p_startcopy, &p2->p_startcopy, __rangeof(struct proc, p_startcopy, p_endcopy)); pargs_hold(p2->p_args); PROC_UNLOCK(p1); bzero(&p2->p_startzero, __rangeof(struct proc, p_startzero, p_endzero)); /* Tell the prison that we exist. */ prison_proc_hold(p2->p_ucred->cr_prison); p2->p_state = PRS_NEW; /* protect against others */ p2->p_pid = fork_findpid(fr->fr_flags); AUDIT_ARG_PID(p2->p_pid); TSFORK(p2->p_pid, p1->p_pid); sx_xlock(&allproc_lock); LIST_INSERT_HEAD(&allproc, p2, p_list); allproc_gen++; + prison_proc_link(p2->p_ucred->cr_prison, p2); sx_xunlock(&allproc_lock); sx_xlock(PIDHASHLOCK(p2->p_pid)); LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash); sx_xunlock(PIDHASHLOCK(p2->p_pid)); tidhash_add(td2); /* * Malloc things while we don't hold any locks. */ if (fr->fr_flags & RFSIGSHARE) newsigacts = NULL; else newsigacts = sigacts_alloc(); /* * Copy filedesc. */ if (fr->fr_flags & RFCFDG) { pd = pdinit(p1->p_pd, false); fd = fdinit(); fdtol = NULL; } else if (fr->fr_flags & RFFDG) { if (fr->fr_flags2 & FR2_SHARE_PATHS) pd = pdshare(p1->p_pd); else pd = pdcopy(p1->p_pd); fd = fdcopy(p1->p_fd); fdtol = NULL; } else { if (fr->fr_flags2 & FR2_SHARE_PATHS) pd = pdcopy(p1->p_pd); else pd = pdshare(p1->p_pd); fd = fdshare(p1->p_fd); if (p1->p_fdtol == NULL) p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL, p1->p_leader); if ((fr->fr_flags & RFTHREAD) != 0) { /* * Shared file descriptor table, and shared * process leaders. */ fdtol = filedesc_to_leader_share(p1->p_fdtol, p1->p_fd); } else { /* * Shared file descriptor table, and different * process leaders. */ fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p1->p_fd, p2); } } /* * Make a proc table entry for the new process. * Start by zeroing the section of proc that is zero-initialized, * then copy the section that is copied directly from the parent. */ PROC_LOCK(p2); PROC_LOCK(p1); bzero(&td2->td_startzero, __rangeof(struct thread, td_startzero, td_endzero)); bcopy(&td->td_startcopy, &td2->td_startcopy, __rangeof(struct thread, td_startcopy, td_endcopy)); bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name)); td2->td_sigstk = td->td_sigstk; td2->td_flags = TDF_INMEM; td2->td_lend_user_pri = PRI_MAX; #ifdef VIMAGE td2->td_vnet = NULL; td2->td_vnet_lpush = NULL; #endif /* * Allow the scheduler to initialize the child. */ thread_lock(td); sched_fork(td, td2); /* * Request AST to check for TDP_RFPPWAIT. Do it here * to avoid calling thread_lock() again. */ if ((fr->fr_flags & RFPPWAIT) != 0) ast_sched_locked(td, TDA_VFORK); thread_unlock(td); /* * Duplicate sub-structures as needed. * Increase reference counts on shared objects. */ p2->p_flag = P_INMEM; p2->p_flag2 = p1->p_flag2 & (P2_ASLR_DISABLE | P2_ASLR_ENABLE | P2_ASLR_IGNSTART | P2_NOTRACE | P2_NOTRACE_EXEC | P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE | P2_TRAPCAP | P2_STKGAP_DISABLE | P2_STKGAP_DISABLE_EXEC | P2_NO_NEW_PRIVS | P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC); p2->p_swtick = ticks; if (p1->p_flag & P_PROFIL) startprofclock(p2); if (fr->fr_flags & RFSIGSHARE) { p2->p_sigacts = sigacts_hold(p1->p_sigacts); } else { sigacts_copy(newsigacts, p1->p_sigacts); p2->p_sigacts = newsigacts; if ((fr->fr_flags2 & (FR2_DROPSIG_CAUGHT | FR2_KPROC)) != 0) { mtx_lock(&p2->p_sigacts->ps_mtx); if ((fr->fr_flags2 & FR2_DROPSIG_CAUGHT) != 0) sig_drop_caught(p2); if ((fr->fr_flags2 & FR2_KPROC) != 0) p2->p_sigacts->ps_flag |= PS_NOCLDWAIT; mtx_unlock(&p2->p_sigacts->ps_mtx); } } if (fr->fr_flags & RFTSIGZMB) p2->p_sigparent = RFTSIGNUM(fr->fr_flags); else if (fr->fr_flags & RFLINUXTHPN) p2->p_sigparent = SIGUSR1; else p2->p_sigparent = SIGCHLD; if ((fr->fr_flags2 & FR2_KPROC) != 0) { p2->p_flag |= P_SYSTEM | P_KPROC; td2->td_pflags |= TDP_KTHREAD; } p2->p_textvp = p1->p_textvp; p2->p_textdvp = p1->p_textdvp; p2->p_fd = fd; p2->p_fdtol = fdtol; p2->p_pd = pd; if (p1->p_flag2 & P2_INHERIT_PROTECTED) { p2->p_flag |= P_PROTECTED; p2->p_flag2 |= P2_INHERIT_PROTECTED; } /* * p_limit is copy-on-write. Bump its refcount. */ lim_fork(p1, p2); thread_cow_get_proc(td2, p2); pstats_fork(p1->p_stats, p2->p_stats); PROC_UNLOCK(p1); PROC_UNLOCK(p2); /* * Bump references to the text vnode and directory, and copy * the hardlink name. */ if (p2->p_textvp != NULL) vrefact(p2->p_textvp); if (p2->p_textdvp != NULL) vrefact(p2->p_textdvp); p2->p_binname = p1->p_binname == NULL ? NULL : strdup(p1->p_binname, M_PARGS); /* * Set up linkage for kernel based threading. */ if ((fr->fr_flags & RFTHREAD) != 0) { mtx_lock(&ppeers_lock); p2->p_peers = p1->p_peers; p1->p_peers = p2; p2->p_leader = p1->p_leader; mtx_unlock(&ppeers_lock); PROC_LOCK(p1->p_leader); if ((p1->p_leader->p_flag & P_WEXIT) != 0) { PROC_UNLOCK(p1->p_leader); /* * The task leader is exiting, so process p1 is * going to be killed shortly. Since p1 obviously * isn't dead yet, we know that the leader is either * sending SIGKILL's to all the processes in this * task or is sleeping waiting for all the peers to * exit. We let p1 complete the fork, but we need * to go ahead and kill the new process p2 since * the task leader may not get a chance to send * SIGKILL to it. We leave it on the list so that * the task leader will wait for this new process * to commit suicide. */ PROC_LOCK(p2); kern_psignal(p2, SIGKILL); PROC_UNLOCK(p2); } else PROC_UNLOCK(p1->p_leader); } else { p2->p_peers = NULL; p2->p_leader = p2; } sx_xlock(&proctree_lock); PGRP_LOCK(p1->p_pgrp); PROC_LOCK(p2); PROC_LOCK(p1); /* * Preserve some more flags in subprocess. P_PROFIL has already * been preserved. */ p2->p_flag |= p1->p_flag & P_SUGID; td2->td_pflags |= (td->td_pflags & (TDP_ALTSTACK | TDP_SIGFASTBLOCK)); SESS_LOCK(p1->p_session); if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT) p2->p_flag |= P_CONTROLT; SESS_UNLOCK(p1->p_session); if (fr->fr_flags & RFPPWAIT) p2->p_flag |= P_PPWAIT; p2->p_pgrp = p1->p_pgrp; LIST_INSERT_AFTER(p1, p2, p_pglist); PGRP_UNLOCK(p1->p_pgrp); LIST_INIT(&p2->p_children); LIST_INIT(&p2->p_orphans); callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0); TAILQ_INIT(&p2->p_kqtim_stop); /* * This begins the section where we must prevent the parent * from being swapped. */ _PHOLD(p1); PROC_UNLOCK(p1); /* * Attach the new process to its parent. * * If RFNOWAIT is set, the newly created process becomes a child * of init. This effectively disassociates the child from the * parent. */ if ((fr->fr_flags & RFNOWAIT) != 0) { pptr = p1->p_reaper; p2->p_reaper = pptr; } else { p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ? p1 : p1->p_reaper; pptr = p1; } p2->p_pptr = pptr; p2->p_oppid = pptr->p_pid; LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling); LIST_INIT(&p2->p_reaplist); LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling); if (p2->p_reaper == p1 && p1 != initproc) { p2->p_reapsubtree = p2->p_pid; proc_id_set_cond(PROC_ID_REAP, p2->p_pid); } sx_xunlock(&proctree_lock); /* Inform accounting that we have forked. */ p2->p_acflag = AFORK; PROC_UNLOCK(p2); #ifdef KTRACE ktrprocfork(p1, p2); #endif /* * Finish creating the child process. It will return via a different * execution path later. (ie: directly into user mode) */ vm_forkproc(td, p2, td2, vm2, fr->fr_flags); if (fr->fr_flags == (RFFDG | RFPROC)) { VM_CNT_INC(v_forks); VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize); } else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) { VM_CNT_INC(v_vforks); VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize); } else if (p1 == &proc0) { VM_CNT_INC(v_kthreads); VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize); } else { VM_CNT_INC(v_rforks); VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize); } /* * Associate the process descriptor with the process before anything * can happen that might cause that process to need the descriptor. * However, don't do this until after fork(2) can no longer fail. */ if (fr->fr_flags & RFPROCDESC) procdesc_new(p2, fr->fr_pd_flags); /* * Both processes are set up, now check if any loadable modules want * to adjust anything. */ EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags); /* * Set the child start time and mark the process as being complete. */ PROC_LOCK(p2); PROC_LOCK(p1); microuptime(&p2->p_stats->p_start); PROC_SLOCK(p2); p2->p_state = PRS_NORMAL; PROC_SUNLOCK(p2); #ifdef KDTRACE_HOOKS /* * Tell the DTrace fasttrap provider about the new process so that any * tracepoints inherited from the parent can be removed. We have to do * this only after p_state is PRS_NORMAL since the fasttrap module will * use pfind() later on. */ if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork) dtrace_fasttrap_fork(p1, p2); #endif if (fr->fr_flags & RFPPWAIT) { td->td_pflags |= TDP_RFPPWAIT; td->td_rfppwait_p = p2; td->td_dbgflags |= TDB_VFORK; } PROC_UNLOCK(p2); /* * Tell any interested parties about the new process. */ knote_fork(p1->p_klist, p2->p_pid); /* * Now can be swapped. */ _PRELE(p1); PROC_UNLOCK(p1); SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags); if (fr->fr_flags & RFPROCDESC) { procdesc_finit(p2->p_procdesc, fp_procdesc); fdrop(fp_procdesc, td); } /* * Speculative check for PTRACE_FORK. PTRACE_FORK is not * synced with forks in progress so it is OK if we miss it * if being set atm. */ if ((p1->p_ptevents & PTRACE_FORK) != 0) { sx_xlock(&proctree_lock); PROC_LOCK(p2); /* * p1->p_ptevents & p1->p_pptr are protected by both * process and proctree locks for modifications, * so owning proctree_lock allows the race-free read. */ if ((p1->p_ptevents & PTRACE_FORK) != 0) { /* * Arrange for debugger to receive the fork event. * * We can report PL_FLAG_FORKED regardless of * P_FOLLOWFORK settings, but it does not make a sense * for runaway child. */ td->td_dbgflags |= TDB_FORK; td->td_dbg_forked = p2->p_pid; td2->td_dbgflags |= TDB_STOPATFORK; proc_set_traced(p2, true); CTR2(KTR_PTRACE, "do_fork: attaching to new child pid %d: oppid %d", p2->p_pid, p2->p_oppid); proc_reparent(p2, p1->p_pptr, false); } PROC_UNLOCK(p2); sx_xunlock(&proctree_lock); } racct_proc_fork_done(p2); if ((fr->fr_flags & RFSTOPPED) == 0) { if (fr->fr_pidp != NULL) *fr->fr_pidp = p2->p_pid; /* * If RFSTOPPED not requested, make child runnable and * add to run queue. */ thread_lock(td2); TD_SET_CAN_RUN(td2); sched_add(td2, SRQ_BORING); } else { *fr->fr_procp = p2; } } static void ast_vfork(struct thread *td, int tda __unused) { struct proc *p, *p2; MPASS(td->td_pflags & TDP_RFPPWAIT); p = td->td_proc; /* * Preserve synchronization semantics of vfork. If * waiting for child to exec or exit, fork set * P_PPWAIT on child, and there we sleep on our proc * (in case of exit). * * Do it after the ptracestop() above is finished, to * not block our debugger until child execs or exits * to finish vfork wait. */ td->td_pflags &= ~TDP_RFPPWAIT; p2 = td->td_rfppwait_p; again: PROC_LOCK(p2); while (p2->p_flag & P_PPWAIT) { PROC_LOCK(p); if (thread_suspend_check_needed()) { PROC_UNLOCK(p2); thread_suspend_check(0); PROC_UNLOCK(p); goto again; } else { PROC_UNLOCK(p); } cv_timedwait(&p2->p_pwait, &p2->p_mtx, hz); } PROC_UNLOCK(p2); if (td->td_dbgflags & TDB_VFORK) { PROC_LOCK(p); if (p->p_ptevents & PTRACE_VFORK) ptracestop(td, SIGTRAP, NULL); td->td_dbgflags &= ~TDB_VFORK; PROC_UNLOCK(p); } } int fork1(struct thread *td, struct fork_req *fr) { struct proc *p1, *newproc; struct thread *td2; struct vmspace *vm2; struct ucred *cred; struct file *fp_procdesc; vm_ooffset_t mem_charged; int error, nprocs_new; static int curfail; static struct timeval lastfail; int flags, pages; flags = fr->fr_flags; pages = fr->fr_pages; if ((flags & RFSTOPPED) != 0) MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL); else MPASS(fr->fr_procp == NULL); /* Check for the undefined or unimplemented flags. */ if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0) return (EINVAL); /* Signal value requires RFTSIGZMB. */ if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0) return (EINVAL); /* Can't copy and clear. */ if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG)) return (EINVAL); /* Check the validity of the signal number. */ if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG) return (EINVAL); if ((flags & RFPROCDESC) != 0) { /* Can't not create a process yet get a process descriptor. */ if ((flags & RFPROC) == 0) return (EINVAL); /* Must provide a place to put a procdesc if creating one. */ if (fr->fr_pd_fd == NULL) return (EINVAL); /* Check if we are using supported flags. */ if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0) return (EINVAL); } p1 = td->td_proc; /* * Here we don't create a new process, but we divorce * certain parts of a process from itself. */ if ((flags & RFPROC) == 0) { if (fr->fr_procp != NULL) *fr->fr_procp = NULL; else if (fr->fr_pidp != NULL) *fr->fr_pidp = 0; return (fork_norfproc(td, flags)); } fp_procdesc = NULL; newproc = NULL; vm2 = NULL; /* * Increment the nprocs resource before allocations occur. * Although process entries are dynamically created, we still * keep a global limit on the maximum number we will * create. There are hard-limits as to the number of processes * that can run, established by the KVA and memory usage for * the process data. * * Don't allow a nonprivileged user to use the last ten * processes; don't let root exceed the limit. */ nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1; if (nprocs_new >= maxproc - 10) { if (priv_check_cred(td->td_ucred, PRIV_MAXPROC) != 0 || nprocs_new >= maxproc) { error = EAGAIN; sx_xlock(&allproc_lock); if (ppsratecheck(&lastfail, &curfail, 1)) { printf("maxproc limit exceeded by uid %u " "(pid %d); see tuning(7) and " "login.conf(5)\n", td->td_ucred->cr_ruid, p1->p_pid); } sx_xunlock(&allproc_lock); goto fail2; } } /* * If required, create a process descriptor in the parent first; we * will abandon it if something goes wrong. We don't finit() until * later. */ if (flags & RFPROCDESC) { error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd, fr->fr_pd_flags, fr->fr_pd_fcaps); if (error != 0) goto fail2; AUDIT_ARG_FD(*fr->fr_pd_fd); } mem_charged = 0; if (pages == 0) pages = kstack_pages; /* Allocate new proc. */ newproc = uma_zalloc(proc_zone, M_WAITOK); td2 = FIRST_THREAD_IN_PROC(newproc); if (td2 == NULL) { td2 = thread_alloc(pages); if (td2 == NULL) { error = ENOMEM; goto fail2; } proc_linkup(newproc, td2); } else { kmsan_thread_alloc(td2); if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) { if (td2->td_kstack != 0) vm_thread_dispose(td2); if (!thread_alloc_stack(td2, pages)) { error = ENOMEM; goto fail2; } } } if ((flags & RFMEM) == 0) { vm2 = vmspace_fork(p1->p_vmspace, &mem_charged); if (vm2 == NULL) { error = ENOMEM; goto fail2; } if (!swap_reserve(mem_charged)) { /* * The swap reservation failed. The accounting * from the entries of the copied vm2 will be * subtracted in vmspace_free(), so force the * reservation there. */ swap_reserve_force(mem_charged); error = ENOMEM; goto fail2; } } else vm2 = NULL; /* * XXX: This is ugly; when we copy resource usage, we need to bump * per-cred resource counters. */ proc_set_cred_init(newproc, td->td_ucred); /* * Initialize resource accounting for the child process. */ error = racct_proc_fork(p1, newproc); if (error != 0) { error = EAGAIN; goto fail1; } #ifdef MAC mac_proc_init(newproc); #endif newproc->p_klist = knlist_alloc(&newproc->p_mtx); STAILQ_INIT(&newproc->p_ktr); /* * Increment the count of procs running with this uid. Don't allow * a nonprivileged user to exceed their current limit. */ cred = td->td_ucred; if (!chgproccnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_NPROC))) { if (priv_check_cred(cred, PRIV_PROC_LIMIT) != 0) goto fail0; chgproccnt(cred->cr_ruidinfo, 1, 0); } do_fork(td, fr, newproc, td2, vm2, fp_procdesc); return (0); fail0: error = EAGAIN; #ifdef MAC mac_proc_destroy(newproc); #endif racct_proc_exit(newproc); fail1: proc_unset_cred(newproc); fail2: if (vm2 != NULL) vmspace_free(vm2); uma_zfree(proc_zone, newproc); if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) { fdclose(td, fp_procdesc, *fr->fr_pd_fd); fdrop(fp_procdesc, td); } atomic_add_int(&nprocs, -1); pause("fork", hz / 2); return (error); } /* * Handle the return of a child process from fork1(). This function * is called from the MD fork_trampoline() entry point. */ void fork_exit(void (*callout)(void *, struct trapframe *), void *arg, struct trapframe *frame) { struct proc *p; struct thread *td; struct thread *dtd; kmsan_mark(frame, sizeof(*frame), KMSAN_STATE_INITED); td = curthread; p = td->td_proc; KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new")); CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)", td, td_get_sched(td), p->p_pid, td->td_name); sched_fork_exit(td); /* * Processes normally resume in mi_switch() after being * cpu_switch()'ed to, but when children start up they arrive here * instead, so we must do much the same things as mi_switch() would. */ if ((dtd = PCPU_GET(deadthread))) { PCPU_SET(deadthread, NULL); thread_stash(dtd); } thread_unlock(td); /* * cpu_fork_kthread_handler intercepts this function call to * have this call a non-return function to stay in kernel mode. * initproc has its own fork handler, but it does return. */ KASSERT(callout != NULL, ("NULL callout in fork_exit")); callout(arg, frame); /* * Check if a kernel thread misbehaved and returned from its main * function. */ if (p->p_flag & P_KPROC) { printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n", td->td_name, p->p_pid); kthread_exit(); } mtx_assert(&Giant, MA_NOTOWNED); if (p->p_sysent->sv_schedtail != NULL) (p->p_sysent->sv_schedtail)(td); } /* * Simplified back end of syscall(), used when returning from fork() * directly into user mode. This function is passed in to fork_exit() * as the first parameter and is called when returning to a new * userland process. */ void fork_return(struct thread *td, struct trapframe *frame) { struct proc *p; p = td->td_proc; if (td->td_dbgflags & TDB_STOPATFORK) { PROC_LOCK(p); if ((p->p_flag & P_TRACED) != 0) { /* * Inform the debugger if one is still present. */ td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP; ptracestop(td, SIGSTOP, NULL); td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX); } else { /* * ... otherwise clear the request. */ td->td_dbgflags &= ~TDB_STOPATFORK; } PROC_UNLOCK(p); } else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) { /* * This is the start of a new thread in a traced * process. Report a system call exit event. */ PROC_LOCK(p); td->td_dbgflags |= TDB_SCX; if ((p->p_ptevents & PTRACE_SCX) != 0 || (td->td_dbgflags & TDB_BORN) != 0) ptracestop(td, SIGTRAP, NULL); td->td_dbgflags &= ~(TDB_SCX | TDB_BORN); PROC_UNLOCK(p); } /* * If the prison was killed mid-fork, die along with it. */ if (!prison_isalive(td->td_ucred->cr_prison)) exit1(td, 0, SIGKILL); userret(td, frame); #ifdef KTRACE if (KTRPOINT(td, KTR_SYSRET)) ktrsysret(SYS_fork, 0, 0); #endif } static void fork_init(void *arg __unused) { ast_register(TDA_VFORK, ASTR_ASTF_REQUIRED | ASTR_TDP, TDP_RFPPWAIT, ast_vfork); } SYSINIT(fork, SI_SUB_INTRINSIC, SI_ORDER_ANY, fork_init, NULL); diff --git a/sys/kern/kern_jail.c b/sys/kern/kern_jail.c index 108432c53bca..853d5b1faf5f 100644 --- a/sys/kern/kern_jail.c +++ b/sys/kern/kern_jail.c @@ -1,4865 +1,4932 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1999 Poul-Henning Kamp. * Copyright (c) 2008 Bjoern A. Zeeb. * Copyright (c) 2009 James Gritton. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif /* DDB */ #include #define PRISON0_HOSTUUID_MODULE "hostuuid" MALLOC_DEFINE(M_PRISON, "prison", "Prison structures"); static MALLOC_DEFINE(M_PRISON_RACCT, "prison_racct", "Prison racct structures"); /* Keep struct prison prison0 and some code in kern_jail_set() readable. */ #ifdef INET #ifdef INET6 #define _PR_IP_SADDRSEL PR_IP4_SADDRSEL|PR_IP6_SADDRSEL #else #define _PR_IP_SADDRSEL PR_IP4_SADDRSEL #endif #else /* !INET */ #ifdef INET6 #define _PR_IP_SADDRSEL PR_IP6_SADDRSEL #else #define _PR_IP_SADDRSEL 0 #endif #endif /* prison0 describes what is "real" about the system. */ struct prison prison0 = { .pr_id = 0, .pr_name = "0", .pr_ref = 1, .pr_uref = 1, .pr_path = "/", .pr_securelevel = -1, .pr_devfs_rsnum = 0, .pr_state = PRISON_STATE_ALIVE, .pr_childmax = JAIL_MAX, .pr_hostuuid = DEFAULT_HOSTUUID, .pr_children = LIST_HEAD_INITIALIZER(prison0.pr_children), #ifdef VIMAGE .pr_flags = PR_HOST|PR_VNET|_PR_IP_SADDRSEL, #else .pr_flags = PR_HOST|_PR_IP_SADDRSEL, #endif .pr_allow = PR_ALLOW_ALL_STATIC, }; MTX_SYSINIT(prison0, &prison0.pr_mtx, "jail mutex", MTX_DEF); struct bool_flags { const char *name; const char *noname; volatile u_int flag; }; struct jailsys_flags { const char *name; unsigned disable; unsigned new; }; /* allprison, allprison_racct and lastprid are protected by allprison_lock. */ struct sx allprison_lock; SX_SYSINIT(allprison_lock, &allprison_lock, "allprison"); struct prisonlist allprison = TAILQ_HEAD_INITIALIZER(allprison); LIST_HEAD(, prison_racct) allprison_racct; int lastprid = 0; static int get_next_prid(struct prison **insprp); static int do_jail_attach(struct thread *td, struct prison *pr, int drflags); static void prison_complete(void *context, int pending); static void prison_deref(struct prison *pr, int flags); static void prison_deref_kill(struct prison *pr, struct prisonlist *freeprison); static int prison_lock_xlock(struct prison *pr, int flags); static void prison_cleanup(struct prison *pr); static void prison_free_not_last(struct prison *pr); static void prison_proc_free_not_last(struct prison *pr); +static void prison_proc_relink(struct prison *opr, struct prison *npr, + struct proc *p); static void prison_set_allow_locked(struct prison *pr, unsigned flag, int enable); static char *prison_path(struct prison *pr1, struct prison *pr2); #ifdef RACCT static void prison_racct_attach(struct prison *pr); static void prison_racct_modify(struct prison *pr); static void prison_racct_detach(struct prison *pr); #endif /* Flags for prison_deref */ #define PD_DEREF 0x01 /* Decrement pr_ref */ #define PD_DEUREF 0x02 /* Decrement pr_uref */ #define PD_KILL 0x04 /* Remove jail, kill processes, etc */ #define PD_LOCKED 0x10 /* pr_mtx is held */ #define PD_LIST_SLOCKED 0x20 /* allprison_lock is held shared */ #define PD_LIST_XLOCKED 0x40 /* allprison_lock is held exclusive */ #define PD_OP_FLAGS 0x07 /* Operation flags */ #define PD_LOCK_FLAGS 0x70 /* Lock status flags */ /* * Parameter names corresponding to PR_* flag values. Size values are for kvm * as we cannot figure out the size of a sparse array, or an array without a * terminating entry. */ static struct bool_flags pr_flag_bool[] = { {"persist", "nopersist", PR_PERSIST}, #ifdef INET {"ip4.saddrsel", "ip4.nosaddrsel", PR_IP4_SADDRSEL}, #endif #ifdef INET6 {"ip6.saddrsel", "ip6.nosaddrsel", PR_IP6_SADDRSEL}, #endif }; const size_t pr_flag_bool_size = sizeof(pr_flag_bool); static struct jailsys_flags pr_flag_jailsys[] = { {"host", 0, PR_HOST}, #ifdef VIMAGE {"vnet", 0, PR_VNET}, #endif #ifdef INET {"ip4", PR_IP4_USER, PR_IP4_USER}, #endif #ifdef INET6 {"ip6", PR_IP6_USER, PR_IP6_USER}, #endif }; const size_t pr_flag_jailsys_size = sizeof(pr_flag_jailsys); /* * Make this array full-size so dynamic parameters can be added. * It is protected by prison0.mtx, but lockless reading is allowed * with an atomic check of the flag values. */ static struct bool_flags pr_flag_allow[NBBY * NBPW] = { {"allow.set_hostname", "allow.noset_hostname", PR_ALLOW_SET_HOSTNAME}, {"allow.sysvipc", "allow.nosysvipc", PR_ALLOW_SYSVIPC}, {"allow.raw_sockets", "allow.noraw_sockets", PR_ALLOW_RAW_SOCKETS}, {"allow.chflags", "allow.nochflags", PR_ALLOW_CHFLAGS}, {"allow.mount", "allow.nomount", PR_ALLOW_MOUNT}, {"allow.quotas", "allow.noquotas", PR_ALLOW_QUOTAS}, {"allow.socket_af", "allow.nosocket_af", PR_ALLOW_SOCKET_AF}, {"allow.mlock", "allow.nomlock", PR_ALLOW_MLOCK}, {"allow.reserved_ports", "allow.noreserved_ports", PR_ALLOW_RESERVED_PORTS}, {"allow.read_msgbuf", "allow.noread_msgbuf", PR_ALLOW_READ_MSGBUF}, {"allow.unprivileged_proc_debug", "allow.nounprivileged_proc_debug", PR_ALLOW_UNPRIV_DEBUG}, {"allow.suser", "allow.nosuser", PR_ALLOW_SUSER}, }; static unsigned pr_allow_all = PR_ALLOW_ALL_STATIC; const size_t pr_flag_allow_size = sizeof(pr_flag_allow); #define JAIL_DEFAULT_ALLOW (PR_ALLOW_SET_HOSTNAME | \ PR_ALLOW_RESERVED_PORTS | \ PR_ALLOW_UNPRIV_DEBUG | \ PR_ALLOW_SUSER) #define JAIL_DEFAULT_ENFORCE_STATFS 2 #define JAIL_DEFAULT_DEVFS_RSNUM 0 static unsigned jail_default_allow = JAIL_DEFAULT_ALLOW; static int jail_default_enforce_statfs = JAIL_DEFAULT_ENFORCE_STATFS; static int jail_default_devfs_rsnum = JAIL_DEFAULT_DEVFS_RSNUM; #if defined(INET) || defined(INET6) static unsigned jail_max_af_ips = 255; #endif /* * Initialize the parts of prison0 that can't be static-initialized with * constants. This is called from proc0_init() after creating thread0 cpuset. */ void prison0_init(void) { uint8_t *file, *data; size_t size; char buf[sizeof(prison0.pr_hostuuid)]; bool valid; prison0.pr_cpuset = cpuset_ref(thread0.td_cpuset); prison0.pr_osreldate = osreldate; strlcpy(prison0.pr_osrelease, osrelease, sizeof(prison0.pr_osrelease)); /* If we have a preloaded hostuuid, use it. */ file = preload_search_by_type(PRISON0_HOSTUUID_MODULE); if (file != NULL) { data = preload_fetch_addr(file); size = preload_fetch_size(file); if (data != NULL) { /* * The preloaded data may include trailing whitespace, almost * certainly a newline; skip over any whitespace or * non-printable characters to be safe. */ while (size > 0 && data[size - 1] <= 0x20) { size--; } valid = false; /* * Not NUL-terminated when passed from loader, but * validate_uuid requires that due to using sscanf (as * does the subsequent strlcpy, since it still reads * past the given size to return the true length); * bounce to a temporary buffer to fix. */ if (size >= sizeof(buf)) goto done; memcpy(buf, data, size); buf[size] = '\0'; if (validate_uuid(buf, size, NULL, 0) != 0) goto done; valid = true; (void)strlcpy(prison0.pr_hostuuid, buf, sizeof(prison0.pr_hostuuid)); done: if (bootverbose && !valid) { printf("hostuuid: preload data malformed: '%.*s'\n", (int)size, data); } } } if (bootverbose) printf("hostuuid: using %s\n", prison0.pr_hostuuid); } /* * struct jail_args { * struct jail *jail; * }; */ int sys_jail(struct thread *td, struct jail_args *uap) { uint32_t version; int error; struct jail j; error = copyin(uap->jail, &version, sizeof(uint32_t)); if (error) return (error); switch (version) { case 0: { struct jail_v0 j0; /* FreeBSD single IPv4 jails. */ bzero(&j, sizeof(struct jail)); error = copyin(uap->jail, &j0, sizeof(struct jail_v0)); if (error) return (error); j.version = j0.version; j.path = j0.path; j.hostname = j0.hostname; j.ip4s = htonl(j0.ip_number); /* jail_v0 is host order */ break; } case 1: /* * Version 1 was used by multi-IPv4 jail implementations * that never made it into the official kernel. */ return (EINVAL); case 2: /* JAIL_API_VERSION */ /* FreeBSD multi-IPv4/IPv6,noIP jails. */ error = copyin(uap->jail, &j, sizeof(struct jail)); if (error) return (error); break; default: /* Sci-Fi jails are not supported, sorry. */ return (EINVAL); } return (kern_jail(td, &j)); } int kern_jail(struct thread *td, struct jail *j) { struct iovec optiov[2 * (4 + nitems(pr_flag_allow) #ifdef INET + 1 #endif #ifdef INET6 + 1 #endif )]; struct uio opt; char *u_path, *u_hostname, *u_name; struct bool_flags *bf; #ifdef INET uint32_t ip4s; struct in_addr *u_ip4; #endif #ifdef INET6 struct in6_addr *u_ip6; #endif size_t tmplen; int error, enforce_statfs; bzero(&optiov, sizeof(optiov)); opt.uio_iov = optiov; opt.uio_iovcnt = 0; opt.uio_offset = -1; opt.uio_resid = -1; opt.uio_segflg = UIO_SYSSPACE; opt.uio_rw = UIO_READ; opt.uio_td = td; /* Set permissions for top-level jails from sysctls. */ if (!jailed(td->td_ucred)) { for (bf = pr_flag_allow; bf < pr_flag_allow + nitems(pr_flag_allow) && atomic_load_int(&bf->flag) != 0; bf++) { optiov[opt.uio_iovcnt].iov_base = __DECONST(char *, (jail_default_allow & bf->flag) ? bf->name : bf->noname); optiov[opt.uio_iovcnt].iov_len = strlen(optiov[opt.uio_iovcnt].iov_base) + 1; opt.uio_iovcnt += 2; } optiov[opt.uio_iovcnt].iov_base = "enforce_statfs"; optiov[opt.uio_iovcnt].iov_len = sizeof("enforce_statfs"); opt.uio_iovcnt++; enforce_statfs = jail_default_enforce_statfs; optiov[opt.uio_iovcnt].iov_base = &enforce_statfs; optiov[opt.uio_iovcnt].iov_len = sizeof(enforce_statfs); opt.uio_iovcnt++; } tmplen = MAXPATHLEN + MAXHOSTNAMELEN + MAXHOSTNAMELEN; #ifdef INET ip4s = (j->version == 0) ? 1 : j->ip4s; if (ip4s > jail_max_af_ips) return (EINVAL); tmplen += ip4s * sizeof(struct in_addr); #else if (j->ip4s > 0) return (EINVAL); #endif #ifdef INET6 if (j->ip6s > jail_max_af_ips) return (EINVAL); tmplen += j->ip6s * sizeof(struct in6_addr); #else if (j->ip6s > 0) return (EINVAL); #endif u_path = malloc(tmplen, M_TEMP, M_WAITOK); u_hostname = u_path + MAXPATHLEN; u_name = u_hostname + MAXHOSTNAMELEN; #ifdef INET u_ip4 = (struct in_addr *)(u_name + MAXHOSTNAMELEN); #endif #ifdef INET6 #ifdef INET u_ip6 = (struct in6_addr *)(u_ip4 + ip4s); #else u_ip6 = (struct in6_addr *)(u_name + MAXHOSTNAMELEN); #endif #endif optiov[opt.uio_iovcnt].iov_base = "path"; optiov[opt.uio_iovcnt].iov_len = sizeof("path"); opt.uio_iovcnt++; optiov[opt.uio_iovcnt].iov_base = u_path; error = copyinstr(j->path, u_path, MAXPATHLEN, &optiov[opt.uio_iovcnt].iov_len); if (error) { free(u_path, M_TEMP); return (error); } opt.uio_iovcnt++; optiov[opt.uio_iovcnt].iov_base = "host.hostname"; optiov[opt.uio_iovcnt].iov_len = sizeof("host.hostname"); opt.uio_iovcnt++; optiov[opt.uio_iovcnt].iov_base = u_hostname; error = copyinstr(j->hostname, u_hostname, MAXHOSTNAMELEN, &optiov[opt.uio_iovcnt].iov_len); if (error) { free(u_path, M_TEMP); return (error); } opt.uio_iovcnt++; if (j->jailname != NULL) { optiov[opt.uio_iovcnt].iov_base = "name"; optiov[opt.uio_iovcnt].iov_len = sizeof("name"); opt.uio_iovcnt++; optiov[opt.uio_iovcnt].iov_base = u_name; error = copyinstr(j->jailname, u_name, MAXHOSTNAMELEN, &optiov[opt.uio_iovcnt].iov_len); if (error) { free(u_path, M_TEMP); return (error); } opt.uio_iovcnt++; } #ifdef INET optiov[opt.uio_iovcnt].iov_base = "ip4.addr"; optiov[opt.uio_iovcnt].iov_len = sizeof("ip4.addr"); opt.uio_iovcnt++; optiov[opt.uio_iovcnt].iov_base = u_ip4; optiov[opt.uio_iovcnt].iov_len = ip4s * sizeof(struct in_addr); if (j->version == 0) u_ip4->s_addr = j->ip4s; else { error = copyin(j->ip4, u_ip4, optiov[opt.uio_iovcnt].iov_len); if (error) { free(u_path, M_TEMP); return (error); } } opt.uio_iovcnt++; #endif #ifdef INET6 optiov[opt.uio_iovcnt].iov_base = "ip6.addr"; optiov[opt.uio_iovcnt].iov_len = sizeof("ip6.addr"); opt.uio_iovcnt++; optiov[opt.uio_iovcnt].iov_base = u_ip6; optiov[opt.uio_iovcnt].iov_len = j->ip6s * sizeof(struct in6_addr); error = copyin(j->ip6, u_ip6, optiov[opt.uio_iovcnt].iov_len); if (error) { free(u_path, M_TEMP); return (error); } opt.uio_iovcnt++; #endif KASSERT(opt.uio_iovcnt <= nitems(optiov), ("kern_jail: too many iovecs (%d)", opt.uio_iovcnt)); error = kern_jail_set(td, &opt, JAIL_CREATE | JAIL_ATTACH); free(u_path, M_TEMP); return (error); } /* * struct jail_set_args { * struct iovec *iovp; * unsigned int iovcnt; * int flags; * }; */ int sys_jail_set(struct thread *td, struct jail_set_args *uap) { struct uio *auio; int error; /* Check that we have an even number of iovecs. */ if (uap->iovcnt & 1) return (EINVAL); error = copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_jail_set(td, auio, uap->flags); free(auio, M_IOV); return (error); } #if defined(INET) || defined(INET6) typedef int prison_addr_cmp_t(const void *, const void *); typedef bool prison_addr_valid_t(const void *); static const struct pr_family { size_t size; prison_addr_cmp_t *cmp; prison_addr_valid_t *valid; int ip_flag; } pr_families[PR_FAMILY_MAX] = { #ifdef INET [PR_INET] = { .size = sizeof(struct in_addr), .cmp = prison_qcmp_v4, .valid = prison_valid_v4, .ip_flag = PR_IP4_USER, }, #endif #ifdef INET6 [PR_INET6] = { .size = sizeof(struct in6_addr), .cmp = prison_qcmp_v6, .valid = prison_valid_v6, .ip_flag = PR_IP6_USER, }, #endif }; /* * Network address lists (pr_addrs) allocation for jails. The addresses * are accessed locklessly by the network stack, thus need to be protected by * the network epoch. */ struct prison_ip { struct epoch_context ctx; uint32_t ips; #ifdef FUTURE_C union { struct in_addr pr_ip4[]; struct in6_addr pr_ip6[]; }; #else /* No future C :( */ #define PR_IP(pip, i) ((const char *)((pip) + 1) + pr_families[af].size * (i)) #define PR_IPD(pip, i) ((char *)((pip) + 1) + pr_families[af].size * (i)) #endif }; static struct prison_ip * prison_ip_alloc(const pr_family_t af, uint32_t cnt, int flags) { struct prison_ip *pip; pip = malloc(sizeof(struct prison_ip) + cnt * pr_families[af].size, M_PRISON, flags); if (pip != NULL) pip->ips = cnt; return (pip); } /* * Allocate and copyin user supplied address list, sorting and validating. * kern_jail_set() helper. */ static struct prison_ip * prison_ip_copyin(const pr_family_t af, void *op, uint32_t cnt) { prison_addr_cmp_t *const cmp = pr_families[af].cmp; const size_t size = pr_families[af].size; struct prison_ip *pip; pip = prison_ip_alloc(af, cnt, M_WAITOK); bcopy(op, pip + 1, cnt * size); /* * IP addresses are all sorted but ip[0] to preserve * the primary IP address as given from userland. * This special IP is used for unbound outgoing * connections as well for "loopback" traffic in case * source address selection cannot find any more fitting * address to connect from. */ if (cnt > 1) qsort((char *)(pip + 1) + size, cnt - 1, size, pr_families[af].cmp); /* * Check for duplicate addresses and do some simple * zero and broadcast checks. If users give other bogus * addresses it is their problem. */ for (int i = 0; i < cnt; i++) { if (!pr_families[af].valid(PR_IP(pip, i))) { free(pip, M_PRISON); return (NULL); } if (i + 1 < cnt && (cmp(PR_IP(pip, 0), PR_IP(pip, i + 1)) == 0 || cmp(PR_IP(pip, i), PR_IP(pip, i + 1)) == 0)) { free(pip, M_PRISON); return (NULL); } } return (pip); } /* * Allocate and dup parent prison address list. * kern_jail_set() helper. */ static void prison_ip_dup(struct prison *ppr, struct prison *pr, const pr_family_t af) { if (ppr->pr_addrs[af] != NULL) { pr->pr_addrs[af] = prison_ip_alloc(af, ppr->pr_addrs[af]->ips, M_WAITOK); bcopy(ppr->pr_addrs[af], pr->pr_addrs[af], pr->pr_addrs[af]->ips * pr_families[af].size); } } /* * Make sure the new set of IP addresses is a subset of the parent's list. * Don't worry about the parent being unlocked, as any setting is done with * allprison_lock held. * kern_jail_set() helper. */ static bool prison_ip_parent_match(const struct prison_ip *ppip, const struct prison_ip *pip, const pr_family_t af) { prison_addr_cmp_t *const cmp = pr_families[af].cmp; int i, j; if (ppip == NULL) return (false); for (i = 0; i < ppip->ips; i++) if (cmp(PR_IP(pip, 0), PR_IP(ppip, i)) == 0) break; if (i == ppip->ips) /* Main address not present in parent. */ return (false); if (pip->ips > 1) { for (i = j = 1; i < pip->ips; i++) { if (cmp(PR_IP(pip, i), PR_IP(ppip, 0)) == 0) /* Equals to parent primary address. */ continue; for (; j < ppip->ips; j++) if (cmp(PR_IP(pip, i), PR_IP(ppip, j)) == 0) break; if (j == ppip->ips) break; } if (j == ppip->ips) /* Address not present in parent. */ return (false); } return (true); } /* * Check for conflicting IP addresses. We permit them if there is no more * than one IP on each jail. If there is a duplicate on a jail with more * than one IP stop checking and return error. * kern_jail_set() helper. */ static bool prison_ip_conflict_check(const struct prison *ppr, const struct prison *pr, const struct prison_ip *pip, pr_family_t af) { const struct prison *tppr, *tpr; int descend; #ifdef VIMAGE for (tppr = ppr; tppr != &prison0; tppr = tppr->pr_parent) if (tppr->pr_flags & PR_VNET) break; #else tppr = &prison0; #endif FOREACH_PRISON_DESCENDANT(tppr, tpr, descend) { if (tpr == pr || #ifdef VIMAGE (tpr != tppr && (tpr->pr_flags & PR_VNET)) || #endif !prison_isalive(tpr)) { descend = 0; continue; } if (!(tpr->pr_flags & pr_families[af].ip_flag)) continue; descend = 0; if (tpr->pr_addrs[af] == NULL || (pip->ips == 1 && tpr->pr_addrs[af]->ips == 1)) continue; for (int i = 0; i < pip->ips; i++) if (prison_ip_check(tpr, af, PR_IP(pip, i)) == 0) return (false); } return (true); } _Static_assert(offsetof(struct prison_ip, ctx) == 0, "prison must start with epoch context"); static void prison_ip_free_deferred(epoch_context_t ctx) { free(ctx, M_PRISON); } static void prison_ip_free(struct prison_ip *pip) { if (pip != NULL) NET_EPOCH_CALL(prison_ip_free_deferred, &pip->ctx); } static void prison_ip_set(struct prison *pr, const pr_family_t af, struct prison_ip *new) { struct prison_ip **mem, *old; mtx_assert(&pr->pr_mtx, MA_OWNED); mem = &pr->pr_addrs[af]; old = *mem; ck_pr_store_ptr(mem, new); prison_ip_free(old); } /* * Restrict a prison's IP address list with its parent's, possibly replacing * it. Return true if the replacement buffer was used (or would have been). * kern_jail_set() helper. */ static bool prison_ip_restrict(struct prison *pr, const pr_family_t af, struct prison_ip *new) { const struct prison_ip *ppip = pr->pr_parent->pr_addrs[af]; const struct prison_ip *pip = pr->pr_addrs[af]; int (*const cmp)(const void *, const void *) = pr_families[af].cmp; const size_t size = pr_families[af].size; uint32_t ips; bool alloced; mtx_assert(&pr->pr_mtx, MA_OWNED); /* * Due to epoch-synchronized access to the IP address lists we always * allocate a new list even if the old one has enough space. We could * atomically update an IPv4 address inside a list, but that would * screw up sorting, and in case of IPv6 we can't even atomically write * one. */ ips = (pr->pr_flags & pr_families[af].ip_flag) ? pip->ips : ppip->ips; if (ips == 0) { prison_ip_set(pr, af, NULL); return (false); } if (new == NULL) { new = prison_ip_alloc(af, ips, M_NOWAIT); if (new == NULL) return (true); alloced = true; } else alloced = false; if (!(pr->pr_flags & pr_families[af].ip_flag)) { /* This has no user settings, so just copy the parent's list. */ bcopy(ppip, new, ips * size); } else { /* Remove addresses that aren't in the parent. */ int i; i = 0; /* index in pip */ ips = 0; /* index in new */ for (int pi = 0; pi < ppip->ips; pi++) if (cmp(PR_IP(pip, 0), PR_IP(ppip, pi)) == 0) { /* Found our primary address in parent. */ bcopy(PR_IP(pip, i), PR_IPD(new, ips), size); i++; ips++; break; } for (int pi = 1; i < pip->ips; ) { /* Check against primary, which is unsorted. */ if (cmp(PR_IP(pip, i), PR_IP(ppip, 0)) == 0) { /* Matches parent's primary address. */ bcopy(PR_IP(pip, i), PR_IPD(new, ips), size); i++; ips++; continue; } /* The rest are sorted. */ switch (pi >= ppip->ips ? -1 : cmp(PR_IP(pip, i), PR_IP(ppip, pi))) { case -1: i++; break; case 0: bcopy(PR_IP(pr, i), PR_IPD(new, ips), size); i++; pi++; ips++; break; case 1: pi++; break; } } if (ips == 0) { if (alloced) prison_ip_free(new); new = NULL; } } prison_ip_set(pr, af, new); return (new != NULL ? true : false); } /* * Fast-path check if an address belongs to a prison. */ int prison_ip_check(const struct prison *pr, const pr_family_t af, const void *addr) { int (*const cmp)(const void *, const void *) = pr_families[af].cmp; const struct prison_ip *pip; int i, a, z, d; MPASS(mtx_owned(&pr->pr_mtx) || in_epoch(net_epoch_preempt) || sx_xlocked(&allprison_lock)); pip = ck_pr_load_ptr(&pr->pr_addrs[af]); if (__predict_false(pip == NULL)) return (EAFNOSUPPORT); /* Check the primary IP. */ if (cmp(PR_IP(pip, 0), addr) == 0) return (0); /* * All the other IPs are sorted so we can do a binary search. */ a = 0; z = pip->ips - 2; while (a <= z) { i = (a + z) / 2; d = cmp(PR_IP(pip, i + 1), addr); if (d > 0) z = i - 1; else if (d < 0) a = i + 1; else return (0); } return (EADDRNOTAVAIL); } /* * Grab primary IP. Historically required mutex, but nothing prevents * us to support epoch-protected access. Is it used in fast path? * in{6}_jail.c helper */ const void * prison_ip_get0(const struct prison *pr, const pr_family_t af) { const struct prison_ip *pip = pr->pr_addrs[af]; mtx_assert(&pr->pr_mtx, MA_OWNED); MPASS(pip); return (pip + 1); } u_int prison_ip_cnt(const struct prison *pr, const pr_family_t af) { return (pr->pr_addrs[af]->ips); } #endif /* defined(INET) || defined(INET6) */ int kern_jail_set(struct thread *td, struct uio *optuio, int flags) { struct nameidata nd; #ifdef INET struct prison_ip *ip4; #endif #ifdef INET6 struct prison_ip *ip6; #endif struct vfsopt *opt; struct vfsoptlist *opts; struct prison *pr, *deadpr, *inspr, *mypr, *ppr, *tpr; struct vnode *root; char *domain, *errmsg, *host, *name, *namelc, *p, *path, *uuid; char *g_path, *osrelstr; struct bool_flags *bf; struct jailsys_flags *jsf; #if defined(INET) || defined(INET6) void *op; #endif unsigned long hid; size_t namelen, onamelen, pnamelen; int born, created, cuflags, descend, drflags, enforce; int error, errmsg_len, errmsg_pos; int gotchildmax, gotenforce, gothid, gotrsnum, gotslevel; int jid, jsys, len, level; int childmax, osreldt, rsnum, slevel; #ifdef INET int ip4s, redo_ip4; #endif #ifdef INET6 int ip6s, redo_ip6; #endif uint64_t pr_allow, ch_allow, pr_flags, ch_flags; uint64_t pr_allow_diff; unsigned tallow; char numbuf[12]; error = priv_check(td, PRIV_JAIL_SET); if (!error && (flags & JAIL_ATTACH)) error = priv_check(td, PRIV_JAIL_ATTACH); if (error) return (error); mypr = td->td_ucred->cr_prison; if ((flags & JAIL_CREATE) && mypr->pr_childmax == 0) return (EPERM); if (flags & ~JAIL_SET_MASK) return (EINVAL); /* * Check all the parameters before committing to anything. Not all * errors can be caught early, but we may as well try. Also, this * takes care of some expensive stuff (path lookup) before getting * the allprison lock. * * XXX Jails are not filesystems, and jail parameters are not mount * options. But it makes more sense to re-use the vfsopt code * than duplicate it under a different name. */ error = vfs_buildopts(optuio, &opts); if (error) return (error); #ifdef INET ip4 = NULL; #endif #ifdef INET6 ip6 = NULL; #endif g_path = NULL; cuflags = flags & (JAIL_CREATE | JAIL_UPDATE); if (!cuflags) { error = EINVAL; vfs_opterror(opts, "no valid operation (create or update)"); goto done_errmsg; } error = vfs_copyopt(opts, "jid", &jid, sizeof(jid)); if (error == ENOENT) jid = 0; else if (error != 0) goto done_free; error = vfs_copyopt(opts, "securelevel", &slevel, sizeof(slevel)); if (error == ENOENT) gotslevel = 0; else if (error != 0) goto done_free; else gotslevel = 1; error = vfs_copyopt(opts, "children.max", &childmax, sizeof(childmax)); if (error == ENOENT) gotchildmax = 0; else if (error != 0) goto done_free; else gotchildmax = 1; error = vfs_copyopt(opts, "enforce_statfs", &enforce, sizeof(enforce)); if (error == ENOENT) gotenforce = 0; else if (error != 0) goto done_free; else if (enforce < 0 || enforce > 2) { error = EINVAL; goto done_free; } else gotenforce = 1; error = vfs_copyopt(opts, "devfs_ruleset", &rsnum, sizeof(rsnum)); if (error == ENOENT) gotrsnum = 0; else if (error != 0) goto done_free; else gotrsnum = 1; pr_flags = ch_flags = 0; for (bf = pr_flag_bool; bf < pr_flag_bool + nitems(pr_flag_bool); bf++) { vfs_flagopt(opts, bf->name, &pr_flags, bf->flag); vfs_flagopt(opts, bf->noname, &ch_flags, bf->flag); } ch_flags |= pr_flags; for (jsf = pr_flag_jailsys; jsf < pr_flag_jailsys + nitems(pr_flag_jailsys); jsf++) { error = vfs_copyopt(opts, jsf->name, &jsys, sizeof(jsys)); if (error == ENOENT) continue; if (error != 0) goto done_free; switch (jsys) { case JAIL_SYS_DISABLE: if (!jsf->disable) { error = EINVAL; goto done_free; } pr_flags |= jsf->disable; break; case JAIL_SYS_NEW: pr_flags |= jsf->new; break; case JAIL_SYS_INHERIT: break; default: error = EINVAL; goto done_free; } ch_flags |= jsf->new | jsf->disable; } if ((flags & (JAIL_CREATE | JAIL_ATTACH)) == JAIL_CREATE && !(pr_flags & PR_PERSIST)) { error = EINVAL; vfs_opterror(opts, "new jail must persist or attach"); goto done_errmsg; } #ifdef VIMAGE if ((flags & JAIL_UPDATE) && (ch_flags & PR_VNET)) { error = EINVAL; vfs_opterror(opts, "vnet cannot be changed after creation"); goto done_errmsg; } #endif #ifdef INET if ((flags & JAIL_UPDATE) && (ch_flags & PR_IP4_USER)) { error = EINVAL; vfs_opterror(opts, "ip4 cannot be changed after creation"); goto done_errmsg; } #endif #ifdef INET6 if ((flags & JAIL_UPDATE) && (ch_flags & PR_IP6_USER)) { error = EINVAL; vfs_opterror(opts, "ip6 cannot be changed after creation"); goto done_errmsg; } #endif pr_allow = ch_allow = 0; for (bf = pr_flag_allow; bf < pr_flag_allow + nitems(pr_flag_allow) && atomic_load_int(&bf->flag) != 0; bf++) { vfs_flagopt(opts, bf->name, &pr_allow, bf->flag); vfs_flagopt(opts, bf->noname, &ch_allow, bf->flag); } ch_allow |= pr_allow; error = vfs_getopt(opts, "name", (void **)&name, &len); if (error == ENOENT) name = NULL; else if (error != 0) goto done_free; else { if (len == 0 || name[len - 1] != '\0') { error = EINVAL; goto done_free; } if (len > MAXHOSTNAMELEN) { error = ENAMETOOLONG; goto done_free; } } error = vfs_getopt(opts, "host.hostname", (void **)&host, &len); if (error == ENOENT) host = NULL; else if (error != 0) goto done_free; else { ch_flags |= PR_HOST; pr_flags |= PR_HOST; if (len == 0 || host[len - 1] != '\0') { error = EINVAL; goto done_free; } if (len > MAXHOSTNAMELEN) { error = ENAMETOOLONG; goto done_free; } } error = vfs_getopt(opts, "host.domainname", (void **)&domain, &len); if (error == ENOENT) domain = NULL; else if (error != 0) goto done_free; else { ch_flags |= PR_HOST; pr_flags |= PR_HOST; if (len == 0 || domain[len - 1] != '\0') { error = EINVAL; goto done_free; } if (len > MAXHOSTNAMELEN) { error = ENAMETOOLONG; goto done_free; } } error = vfs_getopt(opts, "host.hostuuid", (void **)&uuid, &len); if (error == ENOENT) uuid = NULL; else if (error != 0) goto done_free; else { ch_flags |= PR_HOST; pr_flags |= PR_HOST; if (len == 0 || uuid[len - 1] != '\0') { error = EINVAL; goto done_free; } if (len > HOSTUUIDLEN) { error = ENAMETOOLONG; goto done_free; } } #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { uint32_t hid32; error = vfs_copyopt(opts, "host.hostid", &hid32, sizeof(hid32)); hid = hid32; } else #endif error = vfs_copyopt(opts, "host.hostid", &hid, sizeof(hid)); if (error == ENOENT) gothid = 0; else if (error != 0) goto done_free; else { gothid = 1; ch_flags |= PR_HOST; pr_flags |= PR_HOST; } #ifdef INET error = vfs_getopt(opts, "ip4.addr", &op, &ip4s); if (error == ENOENT) ip4s = 0; else if (error != 0) goto done_free; else if (ip4s & (sizeof(struct in_addr) - 1)) { error = EINVAL; goto done_free; } else { ch_flags |= PR_IP4_USER; pr_flags |= PR_IP4_USER; if (ip4s > 0) { ip4s /= sizeof(struct in_addr); if (ip4s > jail_max_af_ips) { error = EINVAL; vfs_opterror(opts, "too many IPv4 addresses"); goto done_errmsg; } ip4 = prison_ip_copyin(PR_INET, op, ip4s); if (ip4 == NULL) { error = EINVAL; goto done_free; } } } #endif #ifdef INET6 error = vfs_getopt(opts, "ip6.addr", &op, &ip6s); if (error == ENOENT) ip6s = 0; else if (error != 0) goto done_free; else if (ip6s & (sizeof(struct in6_addr) - 1)) { error = EINVAL; goto done_free; } else { ch_flags |= PR_IP6_USER; pr_flags |= PR_IP6_USER; if (ip6s > 0) { ip6s /= sizeof(struct in6_addr); if (ip6s > jail_max_af_ips) { error = EINVAL; vfs_opterror(opts, "too many IPv6 addresses"); goto done_errmsg; } ip6 = prison_ip_copyin(PR_INET6, op, ip6s); if (ip6 == NULL) { error = EINVAL; goto done_free; } } } #endif #if defined(VIMAGE) && (defined(INET) || defined(INET6)) if ((ch_flags & PR_VNET) && (ch_flags & (PR_IP4_USER | PR_IP6_USER))) { error = EINVAL; vfs_opterror(opts, "vnet jails cannot have IP address restrictions"); goto done_errmsg; } #endif error = vfs_getopt(opts, "osrelease", (void **)&osrelstr, &len); if (error == ENOENT) osrelstr = NULL; else if (error != 0) goto done_free; else { if (flags & JAIL_UPDATE) { error = EINVAL; vfs_opterror(opts, "osrelease cannot be changed after creation"); goto done_errmsg; } if (len == 0 || osrelstr[len - 1] != '\0') { error = EINVAL; goto done_free; } if (len >= OSRELEASELEN) { error = ENAMETOOLONG; vfs_opterror(opts, "osrelease string must be 1-%d bytes long", OSRELEASELEN - 1); goto done_errmsg; } } error = vfs_copyopt(opts, "osreldate", &osreldt, sizeof(osreldt)); if (error == ENOENT) osreldt = 0; else if (error != 0) goto done_free; else { if (flags & JAIL_UPDATE) { error = EINVAL; vfs_opterror(opts, "osreldate cannot be changed after creation"); goto done_errmsg; } if (osreldt == 0) { error = EINVAL; vfs_opterror(opts, "osreldate cannot be 0"); goto done_errmsg; } } root = NULL; error = vfs_getopt(opts, "path", (void **)&path, &len); if (error == ENOENT) path = NULL; else if (error != 0) goto done_free; else { if (flags & JAIL_UPDATE) { error = EINVAL; vfs_opterror(opts, "path cannot be changed after creation"); goto done_errmsg; } if (len == 0 || path[len - 1] != '\0') { error = EINVAL; goto done_free; } NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, path); error = namei(&nd); if (error) goto done_free; root = nd.ni_vp; NDFREE_PNBUF(&nd); g_path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); strlcpy(g_path, path, MAXPATHLEN); error = vn_path_to_global_path(td, root, g_path, MAXPATHLEN); if (error == 0) { path = g_path; } else { /* exit on other errors */ goto done_free; } if (root->v_type != VDIR) { error = ENOTDIR; vput(root); goto done_free; } VOP_UNLOCK(root); } /* * Find the specified jail, or at least its parent. * This abuses the file error codes ENOENT and EEXIST. */ pr = NULL; inspr = NULL; if (cuflags == JAIL_CREATE && jid == 0 && name != NULL) { namelc = strrchr(name, '.'); jid = strtoul(namelc != NULL ? namelc + 1 : name, &p, 10); if (*p != '\0') jid = 0; } sx_xlock(&allprison_lock); drflags = PD_LIST_XLOCKED; ppr = mypr; if (!prison_isalive(ppr)) { /* This jail is dying. This process will surely follow. */ error = EAGAIN; goto done_deref; } if (jid != 0) { if (jid < 0) { error = EINVAL; vfs_opterror(opts, "negative jid"); goto done_deref; } /* * See if a requested jid already exists. Keep track of * where it can be inserted later. */ TAILQ_FOREACH(inspr, &allprison, pr_list) { if (inspr->pr_id < jid) continue; if (inspr->pr_id > jid) break; pr = inspr; mtx_lock(&pr->pr_mtx); drflags |= PD_LOCKED; inspr = NULL; break; } if (pr != NULL) { /* Create: jid must not exist. */ if (cuflags == JAIL_CREATE) { /* * Even creators that cannot see the jail will * get EEXIST. */ error = EEXIST; vfs_opterror(opts, "jail %d already exists", jid); goto done_deref; } if (!prison_ischild(mypr, pr)) { /* * Updaters get ENOENT if they cannot see the * jail. This is true even for CREATE | UPDATE, * which normally cannot give this error. */ error = ENOENT; vfs_opterror(opts, "jail %d not found", jid); goto done_deref; } ppr = pr->pr_parent; if (!prison_isalive(ppr)) { error = ENOENT; vfs_opterror(opts, "jail %d is dying", ppr->pr_id); goto done_deref; } if (!prison_isalive(pr)) { if (!(flags & JAIL_DYING)) { error = ENOENT; vfs_opterror(opts, "jail %d is dying", jid); goto done_deref; } if ((flags & JAIL_ATTACH) || (pr_flags & PR_PERSIST)) { /* * A dying jail might be resurrected * (via attach or persist), but first * it must determine if another jail * has claimed its name. Accomplish * this by implicitly re-setting the * name. */ if (name == NULL) name = prison_name(mypr, pr); } } } else { /* Update: jid must exist. */ if (cuflags == JAIL_UPDATE) { error = ENOENT; vfs_opterror(opts, "jail %d not found", jid); goto done_deref; } } } /* * If the caller provided a name, look for a jail by that name. * This has different semantics for creates and updates keyed by jid * (where the name must not already exist in a different jail), * and updates keyed by the name itself (where the name must exist * because that is the jail being updated). */ namelc = NULL; if (name != NULL) { namelc = strrchr(name, '.'); if (namelc == NULL) namelc = name; else { /* * This is a hierarchical name. Split it into the * parent and child names, and make sure the parent * exists or matches an already found jail. */ if (pr != NULL) { if (strncmp(name, ppr->pr_name, namelc - name) || ppr->pr_name[namelc - name] != '\0') { error = EINVAL; vfs_opterror(opts, "cannot change jail's parent"); goto done_deref; } } else { *namelc = '\0'; ppr = prison_find_name(mypr, name); if (ppr == NULL) { error = ENOENT; vfs_opterror(opts, "jail \"%s\" not found", name); goto done_deref; } mtx_unlock(&ppr->pr_mtx); if (!prison_isalive(ppr)) { error = ENOENT; vfs_opterror(opts, "jail \"%s\" is dying", name); goto done_deref; } *namelc = '.'; } namelc++; } if (namelc[0] != '\0') { pnamelen = (ppr == &prison0) ? 0 : strlen(ppr->pr_name) + 1; deadpr = NULL; FOREACH_PRISON_CHILD(ppr, tpr) { if (tpr != pr && !strcmp(tpr->pr_name + pnamelen, namelc)) { if (prison_isalive(tpr)) { if (pr == NULL && cuflags != JAIL_CREATE) { /* * Use this jail * for updates. */ pr = tpr; mtx_lock(&pr->pr_mtx); drflags |= PD_LOCKED; break; } /* * Create, or update(jid): * name must not exist in an * active sibling jail. */ error = EEXIST; vfs_opterror(opts, "jail \"%s\" already exists", name); goto done_deref; } if (pr == NULL && cuflags != JAIL_CREATE) { deadpr = tpr; } } } /* If no active jail is found, use a dying one. */ if (deadpr != NULL && pr == NULL) { if (flags & JAIL_DYING) { pr = deadpr; mtx_lock(&pr->pr_mtx); drflags |= PD_LOCKED; } else if (cuflags == JAIL_UPDATE) { error = ENOENT; vfs_opterror(opts, "jail \"%s\" is dying", name); goto done_deref; } } /* Update: name must exist if no jid. */ else if (cuflags == JAIL_UPDATE && pr == NULL) { error = ENOENT; vfs_opterror(opts, "jail \"%s\" not found", name); goto done_deref; } } } /* Update: must provide a jid or name. */ else if (cuflags == JAIL_UPDATE && pr == NULL) { error = ENOENT; vfs_opterror(opts, "update specified no jail"); goto done_deref; } /* If there's no prison to update, create a new one and link it in. */ created = pr == NULL; if (created) { for (tpr = mypr; tpr != NULL; tpr = tpr->pr_parent) if (tpr->pr_childcount >= tpr->pr_childmax) { error = EPERM; vfs_opterror(opts, "prison limit exceeded"); goto done_deref; } if (jid == 0 && (jid = get_next_prid(&inspr)) == 0) { error = EAGAIN; vfs_opterror(opts, "no available jail IDs"); goto done_deref; } pr = malloc(sizeof(*pr), M_PRISON, M_WAITOK | M_ZERO); pr->pr_state = PRISON_STATE_INVALID; refcount_init(&pr->pr_ref, 1); refcount_init(&pr->pr_uref, 0); drflags |= PD_DEREF; LIST_INIT(&pr->pr_children); mtx_init(&pr->pr_mtx, "jail mutex", NULL, MTX_DEF | MTX_DUPOK); TASK_INIT(&pr->pr_task, 0, prison_complete, pr); pr->pr_id = jid; if (inspr != NULL) TAILQ_INSERT_BEFORE(inspr, pr, pr_list); else TAILQ_INSERT_TAIL(&allprison, pr, pr_list); pr->pr_parent = ppr; prison_hold(ppr); prison_proc_hold(ppr); LIST_INSERT_HEAD(&ppr->pr_children, pr, pr_sibling); for (tpr = ppr; tpr != NULL; tpr = tpr->pr_parent) tpr->pr_childcount++; /* Set some default values, and inherit some from the parent. */ if (namelc == NULL) namelc = ""; if (path == NULL) { path = "/"; root = mypr->pr_root; vref(root); } strlcpy(pr->pr_hostuuid, DEFAULT_HOSTUUID, HOSTUUIDLEN); pr->pr_flags |= PR_HOST; #if defined(INET) || defined(INET6) #ifdef VIMAGE if (!(pr_flags & PR_VNET)) #endif { #ifdef INET if (!(ch_flags & PR_IP4_USER)) pr->pr_flags |= PR_IP4 | PR_IP4_USER; else if (!(pr_flags & PR_IP4_USER)) { pr->pr_flags |= ppr->pr_flags & PR_IP4; prison_ip_dup(ppr, pr, PR_INET); } #endif #ifdef INET6 if (!(ch_flags & PR_IP6_USER)) pr->pr_flags |= PR_IP6 | PR_IP6_USER; else if (!(pr_flags & PR_IP6_USER)) { pr->pr_flags |= ppr->pr_flags & PR_IP6; prison_ip_dup(ppr, pr, PR_INET6); } #endif } #endif /* Source address selection is always on by default. */ pr->pr_flags |= _PR_IP_SADDRSEL; pr->pr_securelevel = ppr->pr_securelevel; pr->pr_allow = JAIL_DEFAULT_ALLOW & ppr->pr_allow; pr->pr_enforce_statfs = jail_default_enforce_statfs; pr->pr_devfs_rsnum = ppr->pr_devfs_rsnum; pr->pr_osreldate = osreldt ? osreldt : ppr->pr_osreldate; if (osrelstr == NULL) strlcpy(pr->pr_osrelease, ppr->pr_osrelease, sizeof(pr->pr_osrelease)); else strlcpy(pr->pr_osrelease, osrelstr, sizeof(pr->pr_osrelease)); #ifdef VIMAGE /* Allocate a new vnet if specified. */ pr->pr_vnet = (pr_flags & PR_VNET) ? vnet_alloc() : ppr->pr_vnet; #endif /* * Allocate a dedicated cpuset for each jail. * Unlike other initial settings, this may return an error. */ error = cpuset_create_root(ppr, &pr->pr_cpuset); if (error) goto done_deref; mtx_lock(&pr->pr_mtx); drflags |= PD_LOCKED; } else { /* * Grab a reference for existing prisons, to ensure they * continue to exist for the duration of the call. */ prison_hold(pr); drflags |= PD_DEREF; #if defined(VIMAGE) && (defined(INET) || defined(INET6)) if ((pr->pr_flags & PR_VNET) && (ch_flags & (PR_IP4_USER | PR_IP6_USER))) { error = EINVAL; vfs_opterror(opts, "vnet jails cannot have IP address restrictions"); goto done_deref; } #endif #ifdef INET if (PR_IP4_USER & ch_flags & (pr_flags ^ pr->pr_flags)) { error = EINVAL; vfs_opterror(opts, "ip4 cannot be changed after creation"); goto done_deref; } #endif #ifdef INET6 if (PR_IP6_USER & ch_flags & (pr_flags ^ pr->pr_flags)) { error = EINVAL; vfs_opterror(opts, "ip6 cannot be changed after creation"); goto done_deref; } #endif } /* Do final error checking before setting anything. */ if (gotslevel) { if (slevel < ppr->pr_securelevel) { error = EPERM; goto done_deref; } } if (gotchildmax) { if (childmax >= ppr->pr_childmax) { error = EPERM; goto done_deref; } } if (gotenforce) { if (enforce < ppr->pr_enforce_statfs) { error = EPERM; goto done_deref; } } if (gotrsnum) { /* * devfs_rsnum is a uint16_t */ if (rsnum < 0 || rsnum > 65535) { error = EINVAL; goto done_deref; } /* * Nested jails always inherit parent's devfs ruleset */ if (jailed(td->td_ucred)) { if (rsnum > 0 && rsnum != ppr->pr_devfs_rsnum) { error = EPERM; goto done_deref; } else rsnum = ppr->pr_devfs_rsnum; } } #ifdef INET if (ip4s > 0) { if ((ppr->pr_flags & PR_IP4) && !prison_ip_parent_match(ppr->pr_addrs[PR_INET], ip4, PR_INET)) { error = EPERM; goto done_deref; } if (!prison_ip_conflict_check(ppr, pr, ip4, PR_INET)) { error = EADDRINUSE; vfs_opterror(opts, "IPv4 addresses clash"); goto done_deref; } } #endif #ifdef INET6 if (ip6s > 0) { if ((ppr->pr_flags & PR_IP6) && !prison_ip_parent_match(ppr->pr_addrs[PR_INET6], ip6, PR_INET6)) { error = EPERM; goto done_deref; } if (!prison_ip_conflict_check(ppr, pr, ip6, PR_INET6)) { error = EADDRINUSE; vfs_opterror(opts, "IPv6 addresses clash"); goto done_deref; } } #endif onamelen = namelen = 0; if (namelc != NULL) { /* Give a default name of the jid. Also allow the name to be * explicitly the jid - but not any other number, and only in * normal form (no leading zero/etc). */ if (namelc[0] == '\0') snprintf(namelc = numbuf, sizeof(numbuf), "%d", jid); else if ((strtoul(namelc, &p, 10) != jid || namelc[0] < '1' || namelc[0] > '9') && *p == '\0') { error = EINVAL; vfs_opterror(opts, "name cannot be numeric (unless it is the jid)"); goto done_deref; } /* * Make sure the name isn't too long for the prison or its * children. */ pnamelen = (ppr == &prison0) ? 0 : strlen(ppr->pr_name) + 1; onamelen = strlen(pr->pr_name + pnamelen); namelen = strlen(namelc); if (pnamelen + namelen + 1 > sizeof(pr->pr_name)) { error = ENAMETOOLONG; goto done_deref; } FOREACH_PRISON_DESCENDANT(pr, tpr, descend) { if (strlen(tpr->pr_name) + (namelen - onamelen) >= sizeof(pr->pr_name)) { error = ENAMETOOLONG; goto done_deref; } } } pr_allow_diff = pr_allow & ~ppr->pr_allow; if (pr_allow_diff & ~PR_ALLOW_DIFFERENCES) { error = EPERM; goto done_deref; } /* * Let modules check their parameters. This requires unlocking and * then re-locking the prison, but this is still a valid state as long * as allprison_lock remains xlocked. */ mtx_unlock(&pr->pr_mtx); drflags &= ~PD_LOCKED; error = osd_jail_call(pr, PR_METHOD_CHECK, opts); if (error != 0) goto done_deref; mtx_lock(&pr->pr_mtx); drflags |= PD_LOCKED; /* At this point, all valid parameters should have been noted. */ TAILQ_FOREACH(opt, opts, link) { if (!opt->seen && strcmp(opt->name, "errmsg")) { error = EINVAL; vfs_opterror(opts, "unknown parameter: %s", opt->name); goto done_deref; } } /* Set the parameters of the prison. */ #ifdef INET redo_ip4 = 0; if (pr_flags & PR_IP4_USER) { pr->pr_flags |= PR_IP4; prison_ip_set(pr, PR_INET, ip4); ip4 = NULL; FOREACH_PRISON_DESCENDANT_LOCKED(pr, tpr, descend) { #ifdef VIMAGE if (tpr->pr_flags & PR_VNET) { descend = 0; continue; } #endif if (prison_ip_restrict(tpr, PR_INET, NULL)) { redo_ip4 = 1; descend = 0; } } } #endif #ifdef INET6 redo_ip6 = 0; if (pr_flags & PR_IP6_USER) { pr->pr_flags |= PR_IP6; prison_ip_set(pr, PR_INET6, ip6); ip6 = NULL; FOREACH_PRISON_DESCENDANT_LOCKED(pr, tpr, descend) { #ifdef VIMAGE if (tpr->pr_flags & PR_VNET) { descend = 0; continue; } #endif if (prison_ip_restrict(tpr, PR_INET6, NULL)) { redo_ip6 = 1; descend = 0; } } } #endif if (gotslevel) { pr->pr_securelevel = slevel; /* Set all child jails to be at least this level. */ FOREACH_PRISON_DESCENDANT_LOCKED(pr, tpr, descend) if (tpr->pr_securelevel < slevel) tpr->pr_securelevel = slevel; } if (gotchildmax) { pr->pr_childmax = childmax; /* Set all child jails to under this limit. */ FOREACH_PRISON_DESCENDANT_LOCKED_LEVEL(pr, tpr, descend, level) if (tpr->pr_childmax > childmax - level) tpr->pr_childmax = childmax > level ? childmax - level : 0; } if (gotenforce) { pr->pr_enforce_statfs = enforce; /* Pass this restriction on to the children. */ FOREACH_PRISON_DESCENDANT_LOCKED(pr, tpr, descend) if (tpr->pr_enforce_statfs < enforce) tpr->pr_enforce_statfs = enforce; } if (gotrsnum) { pr->pr_devfs_rsnum = rsnum; /* Pass this restriction on to the children. */ FOREACH_PRISON_DESCENDANT_LOCKED(pr, tpr, descend) tpr->pr_devfs_rsnum = rsnum; } if (namelc != NULL) { if (ppr == &prison0) strlcpy(pr->pr_name, namelc, sizeof(pr->pr_name)); else snprintf(pr->pr_name, sizeof(pr->pr_name), "%s.%s", ppr->pr_name, namelc); /* Change this component of child names. */ FOREACH_PRISON_DESCENDANT_LOCKED(pr, tpr, descend) { bcopy(tpr->pr_name + onamelen, tpr->pr_name + namelen, strlen(tpr->pr_name + onamelen) + 1); bcopy(pr->pr_name, tpr->pr_name, namelen); } } if (path != NULL) { /* Try to keep a real-rooted full pathname. */ strlcpy(pr->pr_path, path, sizeof(pr->pr_path)); pr->pr_root = root; root = NULL; } if (PR_HOST & ch_flags & ~pr_flags) { if (pr->pr_flags & PR_HOST) { /* * Copy the parent's host info. As with pr_ip4 above, * the lack of a lock on the parent is not a problem; * it is always set with allprison_lock at least * shared, and is held exclusively here. */ strlcpy(pr->pr_hostname, pr->pr_parent->pr_hostname, sizeof(pr->pr_hostname)); strlcpy(pr->pr_domainname, pr->pr_parent->pr_domainname, sizeof(pr->pr_domainname)); strlcpy(pr->pr_hostuuid, pr->pr_parent->pr_hostuuid, sizeof(pr->pr_hostuuid)); pr->pr_hostid = pr->pr_parent->pr_hostid; } } else if (host != NULL || domain != NULL || uuid != NULL || gothid) { /* Set this prison, and any descendants without PR_HOST. */ if (host != NULL) strlcpy(pr->pr_hostname, host, sizeof(pr->pr_hostname)); if (domain != NULL) strlcpy(pr->pr_domainname, domain, sizeof(pr->pr_domainname)); if (uuid != NULL) strlcpy(pr->pr_hostuuid, uuid, sizeof(pr->pr_hostuuid)); if (gothid) pr->pr_hostid = hid; FOREACH_PRISON_DESCENDANT_LOCKED(pr, tpr, descend) { if (tpr->pr_flags & PR_HOST) descend = 0; else { if (host != NULL) strlcpy(tpr->pr_hostname, pr->pr_hostname, sizeof(tpr->pr_hostname)); if (domain != NULL) strlcpy(tpr->pr_domainname, pr->pr_domainname, sizeof(tpr->pr_domainname)); if (uuid != NULL) strlcpy(tpr->pr_hostuuid, pr->pr_hostuuid, sizeof(tpr->pr_hostuuid)); if (gothid) tpr->pr_hostid = hid; } } } pr->pr_allow = (pr->pr_allow & ~ch_allow) | pr_allow; if ((tallow = ch_allow & ~pr_allow)) prison_set_allow_locked(pr, tallow, 0); /* * Persistent prisons get an extra reference, and prisons losing their * persist flag lose that reference. */ born = !prison_isalive(pr); if (ch_flags & PR_PERSIST & (pr_flags ^ pr->pr_flags)) { if (pr_flags & PR_PERSIST) { prison_hold(pr); /* * This may make a dead prison alive again, but wait * to label it as such until after OSD calls have had * a chance to run (and perhaps to fail). */ refcount_acquire(&pr->pr_uref); } else { drflags |= PD_DEUREF; prison_free_not_last(pr); } } pr->pr_flags = (pr->pr_flags & ~ch_flags) | pr_flags; mtx_unlock(&pr->pr_mtx); drflags &= ~PD_LOCKED; /* * Any errors past this point will need to de-persist newly created * prisons, as well as call remove methods. */ if (born) drflags |= PD_KILL; #ifdef RACCT if (racct_enable && created) prison_racct_attach(pr); #endif /* Locks may have prevented a complete restriction of child IP * addresses. If so, allocate some more memory and try again. */ #ifdef INET while (redo_ip4) { ip4s = pr->pr_addrs[PR_INET]->ips; ip4 = prison_ip_alloc(PR_INET, ip4s, M_WAITOK); mtx_lock(&pr->pr_mtx); redo_ip4 = 0; FOREACH_PRISON_DESCENDANT_LOCKED(pr, tpr, descend) { #ifdef VIMAGE if (tpr->pr_flags & PR_VNET) { descend = 0; continue; } #endif if (prison_ip_restrict(tpr, PR_INET, ip4)) { if (ip4 != NULL) ip4 = NULL; else redo_ip4 = 1; } } mtx_unlock(&pr->pr_mtx); } #endif #ifdef INET6 while (redo_ip6) { ip6s = pr->pr_addrs[PR_INET6]->ips; ip6 = prison_ip_alloc(PR_INET6, ip6s, M_WAITOK); mtx_lock(&pr->pr_mtx); redo_ip6 = 0; FOREACH_PRISON_DESCENDANT_LOCKED(pr, tpr, descend) { #ifdef VIMAGE if (tpr->pr_flags & PR_VNET) { descend = 0; continue; } #endif if (prison_ip_restrict(tpr, PR_INET6, ip6)) { if (ip6 != NULL) ip6 = NULL; else redo_ip6 = 1; } } mtx_unlock(&pr->pr_mtx); } #endif /* Let the modules do their work. */ if (born) { error = osd_jail_call(pr, PR_METHOD_CREATE, opts); if (error) goto done_deref; } error = osd_jail_call(pr, PR_METHOD_SET, opts); if (error) goto done_deref; /* * A new prison is now ready to be seen; either it has gained a user * reference via persistence, or is about to gain one via attachment. */ if (born) { drflags = prison_lock_xlock(pr, drflags); pr->pr_state = PRISON_STATE_ALIVE; } /* Attach this process to the prison if requested. */ if (flags & JAIL_ATTACH) { error = do_jail_attach(td, pr, prison_lock_xlock(pr, drflags & PD_LOCK_FLAGS)); drflags &= ~(PD_LOCKED | PD_LIST_XLOCKED); if (error) { vfs_opterror(opts, "attach failed"); goto done_deref; } } #ifdef RACCT if (racct_enable && !created) { if (drflags & PD_LOCKED) { mtx_unlock(&pr->pr_mtx); drflags &= ~PD_LOCKED; } if (drflags & PD_LIST_XLOCKED) { sx_xunlock(&allprison_lock); drflags &= ~PD_LIST_XLOCKED; } prison_racct_modify(pr); } #endif drflags &= ~PD_KILL; td->td_retval[0] = pr->pr_id; done_deref: /* Release any temporary prison holds and/or locks. */ if (pr != NULL) prison_deref(pr, drflags); else if (drflags & PD_LIST_SLOCKED) sx_sunlock(&allprison_lock); else if (drflags & PD_LIST_XLOCKED) sx_xunlock(&allprison_lock); if (root != NULL) vrele(root); done_errmsg: if (error) { /* Write the error message back to userspace. */ if (vfs_getopt(opts, "errmsg", (void **)&errmsg, &errmsg_len) == 0 && errmsg_len > 0) { errmsg_pos = 2 * vfs_getopt_pos(opts, "errmsg") + 1; if (optuio->uio_segflg == UIO_SYSSPACE) bcopy(errmsg, optuio->uio_iov[errmsg_pos].iov_base, errmsg_len); else copyout(errmsg, optuio->uio_iov[errmsg_pos].iov_base, errmsg_len); } } done_free: #ifdef INET prison_ip_free(ip4); #endif #ifdef INET6 prison_ip_free(ip6); #endif if (g_path != NULL) free(g_path, M_TEMP); vfs_freeopts(opts); return (error); } /* * Find the next available prison ID. Return the ID on success, or zero * on failure. Also set a pointer to the allprison list entry the prison * should be inserted before. */ static int get_next_prid(struct prison **insprp) { struct prison *inspr; int jid, maxid; jid = lastprid % JAIL_MAX + 1; if (TAILQ_EMPTY(&allprison) || TAILQ_LAST(&allprison, prisonlist)->pr_id < jid) { /* * A common case is for all jails to be implicitly numbered, * which means they'll go on the end of the list, at least * for the first JAIL_MAX times. */ inspr = NULL; } else { /* * Take two passes through the allprison list: first starting * with the proposed jid, then ending with it. */ for (maxid = JAIL_MAX; maxid != 0; ) { TAILQ_FOREACH(inspr, &allprison, pr_list) { if (inspr->pr_id < jid) continue; if (inspr->pr_id > jid) { /* Found an opening. */ maxid = 0; break; } if (++jid > maxid) { if (lastprid == maxid || lastprid == 0) { /* * The entire legal range * has been traversed */ return 0; } /* Try again from the start. */ jid = 1; maxid = lastprid; break; } } if (inspr == NULL) { /* Found room at the end of the list. */ break; } } } *insprp = inspr; lastprid = jid; return (jid); } /* * struct jail_get_args { * struct iovec *iovp; * unsigned int iovcnt; * int flags; * }; */ int sys_jail_get(struct thread *td, struct jail_get_args *uap) { struct uio *auio; int error; /* Check that we have an even number of iovecs. */ if (uap->iovcnt & 1) return (EINVAL); error = copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_jail_get(td, auio, uap->flags); if (error == 0) error = copyout(auio->uio_iov, uap->iovp, uap->iovcnt * sizeof (struct iovec)); free(auio, M_IOV); return (error); } int kern_jail_get(struct thread *td, struct uio *optuio, int flags) { struct bool_flags *bf; struct jailsys_flags *jsf; struct prison *pr, *mypr; struct vfsopt *opt; struct vfsoptlist *opts; char *errmsg, *name; int drflags, error, errmsg_len, errmsg_pos, i, jid, len, pos; unsigned f; if (flags & ~JAIL_GET_MASK) return (EINVAL); /* Get the parameter list. */ error = vfs_buildopts(optuio, &opts); if (error) return (error); errmsg_pos = vfs_getopt_pos(opts, "errmsg"); mypr = td->td_ucred->cr_prison; pr = NULL; /* * Find the prison specified by one of: lastjid, jid, name. */ sx_slock(&allprison_lock); drflags = PD_LIST_SLOCKED; error = vfs_copyopt(opts, "lastjid", &jid, sizeof(jid)); if (error == 0) { TAILQ_FOREACH(pr, &allprison, pr_list) { if (pr->pr_id > jid && ((flags & JAIL_DYING) || prison_isalive(pr)) && prison_ischild(mypr, pr)) { mtx_lock(&pr->pr_mtx); drflags |= PD_LOCKED; goto found_prison; } } error = ENOENT; vfs_opterror(opts, "no jail after %d", jid); goto done; } else if (error != ENOENT) goto done; error = vfs_copyopt(opts, "jid", &jid, sizeof(jid)); if (error == 0) { if (jid != 0) { pr = prison_find_child(mypr, jid); if (pr != NULL) { drflags |= PD_LOCKED; if (!(prison_isalive(pr) || (flags & JAIL_DYING))) { error = ENOENT; vfs_opterror(opts, "jail %d is dying", jid); goto done; } goto found_prison; } error = ENOENT; vfs_opterror(opts, "jail %d not found", jid); goto done; } } else if (error != ENOENT) goto done; error = vfs_getopt(opts, "name", (void **)&name, &len); if (error == 0) { if (len == 0 || name[len - 1] != '\0') { error = EINVAL; goto done; } pr = prison_find_name(mypr, name); if (pr != NULL) { drflags |= PD_LOCKED; if (!(prison_isalive(pr) || (flags & JAIL_DYING))) { error = ENOENT; vfs_opterror(opts, "jail \"%s\" is dying", name); goto done; } goto found_prison; } error = ENOENT; vfs_opterror(opts, "jail \"%s\" not found", name); goto done; } else if (error != ENOENT) goto done; vfs_opterror(opts, "no jail specified"); error = ENOENT; goto done; found_prison: /* Get the parameters of the prison. */ prison_hold(pr); drflags |= PD_DEREF; td->td_retval[0] = pr->pr_id; error = vfs_setopt(opts, "jid", &pr->pr_id, sizeof(pr->pr_id)); if (error != 0 && error != ENOENT) goto done; i = (pr->pr_parent == mypr) ? 0 : pr->pr_parent->pr_id; error = vfs_setopt(opts, "parent", &i, sizeof(i)); if (error != 0 && error != ENOENT) goto done; error = vfs_setopts(opts, "name", prison_name(mypr, pr)); if (error != 0 && error != ENOENT) goto done; error = vfs_setopt(opts, "cpuset.id", &pr->pr_cpuset->cs_id, sizeof(pr->pr_cpuset->cs_id)); if (error != 0 && error != ENOENT) goto done; error = vfs_setopts(opts, "path", prison_path(mypr, pr)); if (error != 0 && error != ENOENT) goto done; #ifdef INET error = vfs_setopt_part(opts, "ip4.addr", pr->pr_addrs[PR_INET] + 1, pr->pr_addrs[PR_INET] ? pr->pr_addrs[PR_INET]->ips * pr_families[PR_INET].size : 0 ); if (error != 0 && error != ENOENT) goto done; #endif #ifdef INET6 error = vfs_setopt_part(opts, "ip6.addr", pr->pr_addrs[PR_INET6] + 1, pr->pr_addrs[PR_INET6] ? pr->pr_addrs[PR_INET6]->ips * pr_families[PR_INET6].size : 0 ); if (error != 0 && error != ENOENT) goto done; #endif error = vfs_setopt(opts, "securelevel", &pr->pr_securelevel, sizeof(pr->pr_securelevel)); if (error != 0 && error != ENOENT) goto done; error = vfs_setopt(opts, "children.cur", &pr->pr_childcount, sizeof(pr->pr_childcount)); if (error != 0 && error != ENOENT) goto done; error = vfs_setopt(opts, "children.max", &pr->pr_childmax, sizeof(pr->pr_childmax)); if (error != 0 && error != ENOENT) goto done; error = vfs_setopts(opts, "host.hostname", pr->pr_hostname); if (error != 0 && error != ENOENT) goto done; error = vfs_setopts(opts, "host.domainname", pr->pr_domainname); if (error != 0 && error != ENOENT) goto done; error = vfs_setopts(opts, "host.hostuuid", pr->pr_hostuuid); if (error != 0 && error != ENOENT) goto done; #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { uint32_t hid32 = pr->pr_hostid; error = vfs_setopt(opts, "host.hostid", &hid32, sizeof(hid32)); } else #endif error = vfs_setopt(opts, "host.hostid", &pr->pr_hostid, sizeof(pr->pr_hostid)); if (error != 0 && error != ENOENT) goto done; error = vfs_setopt(opts, "enforce_statfs", &pr->pr_enforce_statfs, sizeof(pr->pr_enforce_statfs)); if (error != 0 && error != ENOENT) goto done; error = vfs_setopt(opts, "devfs_ruleset", &pr->pr_devfs_rsnum, sizeof(pr->pr_devfs_rsnum)); if (error != 0 && error != ENOENT) goto done; for (bf = pr_flag_bool; bf < pr_flag_bool + nitems(pr_flag_bool); bf++) { i = (pr->pr_flags & bf->flag) ? 1 : 0; error = vfs_setopt(opts, bf->name, &i, sizeof(i)); if (error != 0 && error != ENOENT) goto done; i = !i; error = vfs_setopt(opts, bf->noname, &i, sizeof(i)); if (error != 0 && error != ENOENT) goto done; } for (jsf = pr_flag_jailsys; jsf < pr_flag_jailsys + nitems(pr_flag_jailsys); jsf++) { f = pr->pr_flags & (jsf->disable | jsf->new); i = (f != 0 && f == jsf->disable) ? JAIL_SYS_DISABLE : (f == jsf->new) ? JAIL_SYS_NEW : JAIL_SYS_INHERIT; error = vfs_setopt(opts, jsf->name, &i, sizeof(i)); if (error != 0 && error != ENOENT) goto done; } for (bf = pr_flag_allow; bf < pr_flag_allow + nitems(pr_flag_allow) && atomic_load_int(&bf->flag) != 0; bf++) { i = (pr->pr_allow & bf->flag) ? 1 : 0; error = vfs_setopt(opts, bf->name, &i, sizeof(i)); if (error != 0 && error != ENOENT) goto done; i = !i; error = vfs_setopt(opts, bf->noname, &i, sizeof(i)); if (error != 0 && error != ENOENT) goto done; } i = !prison_isalive(pr); error = vfs_setopt(opts, "dying", &i, sizeof(i)); if (error != 0 && error != ENOENT) goto done; i = !i; error = vfs_setopt(opts, "nodying", &i, sizeof(i)); if (error != 0 && error != ENOENT) goto done; error = vfs_setopt(opts, "osreldate", &pr->pr_osreldate, sizeof(pr->pr_osreldate)); if (error != 0 && error != ENOENT) goto done; error = vfs_setopts(opts, "osrelease", pr->pr_osrelease); if (error != 0 && error != ENOENT) goto done; /* Get the module parameters. */ mtx_unlock(&pr->pr_mtx); drflags &= ~PD_LOCKED; error = osd_jail_call(pr, PR_METHOD_GET, opts); if (error) goto done; prison_deref(pr, drflags); pr = NULL; drflags = 0; /* By now, all parameters should have been noted. */ TAILQ_FOREACH(opt, opts, link) { if (!opt->seen && strcmp(opt->name, "errmsg")) { error = EINVAL; vfs_opterror(opts, "unknown parameter: %s", opt->name); goto done; } } /* Write the fetched parameters back to userspace. */ error = 0; TAILQ_FOREACH(opt, opts, link) { if (opt->pos >= 0 && opt->pos != errmsg_pos) { pos = 2 * opt->pos + 1; optuio->uio_iov[pos].iov_len = opt->len; if (opt->value != NULL) { if (optuio->uio_segflg == UIO_SYSSPACE) { bcopy(opt->value, optuio->uio_iov[pos].iov_base, opt->len); } else { error = copyout(opt->value, optuio->uio_iov[pos].iov_base, opt->len); if (error) break; } } } } done: /* Release any temporary prison holds and/or locks. */ if (pr != NULL) prison_deref(pr, drflags); else if (drflags & PD_LIST_SLOCKED) sx_sunlock(&allprison_lock); if (error && errmsg_pos >= 0) { /* Write the error message back to userspace. */ vfs_getopt(opts, "errmsg", (void **)&errmsg, &errmsg_len); errmsg_pos = 2 * errmsg_pos + 1; if (errmsg_len > 0) { if (optuio->uio_segflg == UIO_SYSSPACE) bcopy(errmsg, optuio->uio_iov[errmsg_pos].iov_base, errmsg_len); else copyout(errmsg, optuio->uio_iov[errmsg_pos].iov_base, errmsg_len); } } vfs_freeopts(opts); return (error); } /* * struct jail_remove_args { * int jid; * }; */ int sys_jail_remove(struct thread *td, struct jail_remove_args *uap) { struct prison *pr; int error; error = priv_check(td, PRIV_JAIL_REMOVE); if (error) return (error); sx_xlock(&allprison_lock); pr = prison_find_child(td->td_ucred->cr_prison, uap->jid); if (pr == NULL) { sx_xunlock(&allprison_lock); return (EINVAL); } if (!prison_isalive(pr)) { /* Silently ignore already-dying prisons. */ mtx_unlock(&pr->pr_mtx); sx_xunlock(&allprison_lock); return (0); } prison_deref(pr, PD_KILL | PD_LOCKED | PD_LIST_XLOCKED); return (0); } /* * struct jail_attach_args { * int jid; * }; */ int sys_jail_attach(struct thread *td, struct jail_attach_args *uap) { struct prison *pr; int error; error = priv_check(td, PRIV_JAIL_ATTACH); if (error) return (error); sx_slock(&allprison_lock); pr = prison_find_child(td->td_ucred->cr_prison, uap->jid); if (pr == NULL) { sx_sunlock(&allprison_lock); return (EINVAL); } /* Do not allow a process to attach to a prison that is not alive. */ if (!prison_isalive(pr)) { mtx_unlock(&pr->pr_mtx); sx_sunlock(&allprison_lock); return (EINVAL); } return (do_jail_attach(td, pr, PD_LOCKED | PD_LIST_SLOCKED)); } static int do_jail_attach(struct thread *td, struct prison *pr, int drflags) { struct proc *p; struct ucred *newcred, *oldcred; int error; mtx_assert(&pr->pr_mtx, MA_OWNED); sx_assert(&allprison_lock, SX_LOCKED); drflags &= PD_LOCK_FLAGS; /* * XXX: Note that there is a slight race here if two threads * in the same privileged process attempt to attach to two * different jails at the same time. It is important for * user processes not to do this, or they might end up with * a process root from one prison, but attached to the jail * of another. */ prison_hold(pr); refcount_acquire(&pr->pr_uref); drflags |= PD_DEREF | PD_DEUREF; mtx_unlock(&pr->pr_mtx); drflags &= ~PD_LOCKED; /* Let modules do whatever they need to prepare for attaching. */ error = osd_jail_call(pr, PR_METHOD_ATTACH, td); if (error) { prison_deref(pr, drflags); return (error); } sx_unlock(&allprison_lock); drflags &= ~(PD_LIST_SLOCKED | PD_LIST_XLOCKED); /* * Reparent the newly attached process to this jail. */ p = td->td_proc; error = cpuset_setproc_update_set(p, pr->pr_cpuset); if (error) goto e_revert_osd; vn_lock(pr->pr_root, LK_EXCLUSIVE | LK_RETRY); if ((error = change_dir(pr->pr_root, td)) != 0) goto e_unlock; #ifdef MAC if ((error = mac_vnode_check_chroot(td->td_ucred, pr->pr_root))) goto e_unlock; #endif VOP_UNLOCK(pr->pr_root); if ((error = pwd_chroot_chdir(td, pr->pr_root))) goto e_revert_osd; newcred = crget(); PROC_LOCK(p); oldcred = crcopysafe(p, newcred); newcred->cr_prison = pr; proc_set_cred(p, newcred); setsugid(p); #ifdef RACCT racct_proc_ucred_changed(p, oldcred, newcred); crhold(newcred); #endif PROC_UNLOCK(p); #ifdef RCTL rctl_proc_ucred_changed(p, newcred); crfree(newcred); #endif + prison_proc_relink(oldcred->cr_prison, pr, p); prison_deref(oldcred->cr_prison, drflags); crfree(oldcred); /* * If the prison was killed while changing credentials, die along * with it. */ if (!prison_isalive(pr)) { PROC_LOCK(p); kern_psignal(p, SIGKILL); PROC_UNLOCK(p); } return (0); e_unlock: VOP_UNLOCK(pr->pr_root); e_revert_osd: /* Tell modules this thread is still in its old jail after all. */ sx_slock(&allprison_lock); drflags |= PD_LIST_SLOCKED; (void)osd_jail_call(td->td_ucred->cr_prison, PR_METHOD_ATTACH, td); prison_deref(pr, drflags); return (error); } /* * Returns a locked prison instance, or NULL on failure. */ struct prison * prison_find(int prid) { struct prison *pr; sx_assert(&allprison_lock, SX_LOCKED); TAILQ_FOREACH(pr, &allprison, pr_list) { if (pr->pr_id < prid) continue; if (pr->pr_id > prid) break; KASSERT(prison_isvalid(pr), ("Found invalid prison %p", pr)); mtx_lock(&pr->pr_mtx); return (pr); } return (NULL); } /* * Find a prison that is a descendant of mypr. Returns a locked prison or NULL. */ struct prison * prison_find_child(struct prison *mypr, int prid) { struct prison *pr; int descend; sx_assert(&allprison_lock, SX_LOCKED); FOREACH_PRISON_DESCENDANT(mypr, pr, descend) { if (pr->pr_id == prid) { KASSERT(prison_isvalid(pr), ("Found invalid prison %p", pr)); mtx_lock(&pr->pr_mtx); return (pr); } } return (NULL); } /* * Look for the name relative to mypr. Returns a locked prison or NULL. */ struct prison * prison_find_name(struct prison *mypr, const char *name) { struct prison *pr, *deadpr; size_t mylen; int descend; sx_assert(&allprison_lock, SX_LOCKED); mylen = (mypr == &prison0) ? 0 : strlen(mypr->pr_name) + 1; deadpr = NULL; FOREACH_PRISON_DESCENDANT(mypr, pr, descend) { if (!strcmp(pr->pr_name + mylen, name)) { KASSERT(prison_isvalid(pr), ("Found invalid prison %p", pr)); if (prison_isalive(pr)) { mtx_lock(&pr->pr_mtx); return (pr); } deadpr = pr; } } /* There was no valid prison - perhaps there was a dying one. */ if (deadpr != NULL) mtx_lock(&deadpr->pr_mtx); return (deadpr); } /* * See if a prison has the specific flag set. The prison should be locked, * unless checking for flags that are only set at jail creation (such as * PR_IP4 and PR_IP6), or only the single bit is examined, without regard * to any other prison data. */ int prison_flag(struct ucred *cred, unsigned flag) { return (cred->cr_prison->pr_flags & flag); } int prison_allow(struct ucred *cred, unsigned flag) { return ((cred->cr_prison->pr_allow & flag) != 0); } /* * Hold a prison reference, by incrementing pr_ref. It is generally * an error to hold a prison that does not already have a reference. * A prison record will remain valid as long as it has at least one * reference, and will not be removed as long as either the prison * mutex or the allprison lock is held (allprison_lock may be shared). */ void prison_hold_locked(struct prison *pr) { /* Locking is no longer required. */ prison_hold(pr); } void prison_hold(struct prison *pr) { #ifdef INVARIANTS int was_valid = refcount_acquire_if_not_zero(&pr->pr_ref); KASSERT(was_valid, ("Trying to hold dead prison %p (jid=%d).", pr, pr->pr_id)); #else refcount_acquire(&pr->pr_ref); #endif } /* * Remove a prison reference. If that was the last reference, the * prison will be removed (at a later time). */ void prison_free_locked(struct prison *pr) { mtx_assert(&pr->pr_mtx, MA_OWNED); /* * Locking is no longer required, but unlock because the caller * expects it. */ mtx_unlock(&pr->pr_mtx); prison_free(pr); } void prison_free(struct prison *pr) { KASSERT(refcount_load(&pr->pr_ref) > 0, ("Trying to free dead prison %p (jid=%d).", pr, pr->pr_id)); if (!refcount_release_if_not_last(&pr->pr_ref)) { /* * Don't remove the last reference in this context, * in case there are locks held. */ taskqueue_enqueue(taskqueue_thread, &pr->pr_task); } } static void prison_free_not_last(struct prison *pr) { #ifdef INVARIANTS int lastref; KASSERT(refcount_load(&pr->pr_ref) > 0, ("Trying to free dead prison %p (jid=%d).", pr, pr->pr_id)); lastref = refcount_release(&pr->pr_ref); KASSERT(!lastref, ("prison_free_not_last freed last ref on prison %p (jid=%d).", pr, pr->pr_id)); #else refcount_release(&pr->pr_ref); #endif } /* * Hold a prison for user visibility, by incrementing pr_uref. * It is generally an error to hold a prison that isn't already * user-visible, except through the jail system calls. It is also * an error to hold an invalid prison. A prison record will remain * alive as long as it has at least one user reference, and will not * be set to the dying state until the prison mutex and allprison_lock * are both freed. */ void prison_proc_hold(struct prison *pr) { #ifdef INVARIANTS int was_alive = refcount_acquire_if_not_zero(&pr->pr_uref); KASSERT(was_alive, ("Cannot add a process to a non-alive prison (jid=%d)", pr->pr_id)); #else refcount_acquire(&pr->pr_uref); #endif } /* * Remove a prison user reference. If it was the last reference, the * prison will be considered "dying", and may be removed once all of * its references are dropped. */ void prison_proc_free(struct prison *pr) { /* * Locking is only required when releasing the last reference. * This allows assurance that a locked prison will remain alive * until it is unlocked. */ KASSERT(refcount_load(&pr->pr_uref) > 0, ("Trying to kill a process in a dead prison (jid=%d)", pr->pr_id)); if (!refcount_release_if_not_last(&pr->pr_uref)) { /* * Don't remove the last user reference in this context, * which is expected to be a process that is not only locked, * but also half dead. Add a reference so any calls to * prison_free() won't re-submit the task. */ prison_hold(pr); mtx_lock(&pr->pr_mtx); KASSERT(!(pr->pr_flags & PR_COMPLETE_PROC), ("Redundant last reference in prison_proc_free (jid=%d)", pr->pr_id)); pr->pr_flags |= PR_COMPLETE_PROC; mtx_unlock(&pr->pr_mtx); taskqueue_enqueue(taskqueue_thread, &pr->pr_task); } } static void prison_proc_free_not_last(struct prison *pr) { #ifdef INVARIANTS int lastref; KASSERT(refcount_load(&pr->pr_uref) > 0, ("Trying to free dead prison %p (jid=%d).", pr, pr->pr_id)); lastref = refcount_release(&pr->pr_uref); KASSERT(!lastref, ("prison_proc_free_not_last freed last uref on prison %p (jid=%d).", pr, pr->pr_id)); #else refcount_release(&pr->pr_uref); #endif } +void +prison_proc_link(struct prison *pr, struct proc *p) +{ + + sx_assert(&allproc_lock, SA_XLOCKED); + LIST_INSERT_HEAD(&pr->pr_proclist, p, p_jaillist); +} + +void +prison_proc_unlink(struct prison *pr, struct proc *p) +{ + + sx_assert(&allproc_lock, SA_XLOCKED); + LIST_REMOVE(p, p_jaillist); +} + +static void +prison_proc_relink(struct prison *opr, struct prison *npr, struct proc *p) +{ + + sx_xlock(&allproc_lock); + prison_proc_unlink(opr, p); + prison_proc_link(npr, p); + sx_xunlock(&allproc_lock); +} + /* * Complete a call to either prison_free or prison_proc_free. */ static void prison_complete(void *context, int pending) { struct prison *pr = context; int drflags; /* * This could be called to release the last reference, or the last * user reference (plus the reference held in prison_proc_free). */ drflags = prison_lock_xlock(pr, PD_DEREF); if (pr->pr_flags & PR_COMPLETE_PROC) { pr->pr_flags &= ~PR_COMPLETE_PROC; drflags |= PD_DEUREF; } prison_deref(pr, drflags); } +static void +prison_kill_processes_cb(struct proc *p, void *arg __unused) +{ + + kern_psignal(p, SIGKILL); +} + +/* + * Note the iteration does not guarantee acting on all processes. + * Most notably there may be fork or jail_attach in progress. + */ +void +prison_proc_iterate(struct prison *pr, void (*cb)(struct proc *, void *), + void *cbarg) +{ + struct prison *ppr; + struct proc *p; + + if (atomic_load_int(&pr->pr_childcount) == 0) { + sx_slock(&allproc_lock); + LIST_FOREACH(p, &pr->pr_proclist, p_jaillist) { + if (p->p_state == PRS_NEW) + continue; + PROC_LOCK(p); + cb(p, cbarg); + PROC_UNLOCK(p); + } + sx_sunlock(&allproc_lock); + if (atomic_load_int(&pr->pr_childcount) == 0) + return; + /* + * Some jails popped up during the iteration, fall through to a + * system-wide search. + */ + } + + sx_slock(&allproc_lock); + FOREACH_PROC_IN_SYSTEM(p) { + PROC_LOCK(p); + if (p->p_state != PRS_NEW && p->p_ucred != NULL) { + for (ppr = p->p_ucred->cr_prison; + ppr != &prison0; + ppr = ppr->pr_parent) { + if (ppr == pr) { + cb(p, cbarg); + break; + } + } + } + PROC_UNLOCK(p); + } + sx_sunlock(&allproc_lock); +} + /* * Remove a prison reference and/or user reference (usually). * This assumes context that allows sleeping (for allprison_lock), * with no non-sleeping locks held, except perhaps the prison itself. * If there are no more references, release and delist the prison. * On completion, the prison lock and the allprison lock are both * unlocked. */ static void prison_deref(struct prison *pr, int flags) { struct prisonlist freeprison; struct prison *killpr, *rpr, *ppr, *tpr; - struct proc *p; killpr = NULL; TAILQ_INIT(&freeprison); /* * Release this prison as requested, which may cause its parent * to be released, and then maybe its grandparent, etc. */ for (;;) { if (flags & PD_KILL) { /* Kill the prison and its descendents. */ KASSERT(pr != &prison0, ("prison_deref trying to kill prison0")); if (!(flags & PD_DEREF)) { prison_hold(pr); flags |= PD_DEREF; } flags = prison_lock_xlock(pr, flags); prison_deref_kill(pr, &freeprison); } if (flags & PD_DEUREF) { /* Drop a user reference. */ KASSERT(refcount_load(&pr->pr_uref) > 0, ("prison_deref PD_DEUREF on a dead prison (jid=%d)", pr->pr_id)); if (!refcount_release_if_not_last(&pr->pr_uref)) { if (!(flags & PD_DEREF)) { prison_hold(pr); flags |= PD_DEREF; } flags = prison_lock_xlock(pr, flags); if (refcount_release(&pr->pr_uref) && pr->pr_state == PRISON_STATE_ALIVE) { /* * When the last user references goes, * this becomes a dying prison. */ KASSERT( refcount_load(&prison0.pr_uref) > 0, ("prison0 pr_uref=0")); pr->pr_state = PRISON_STATE_DYING; mtx_unlock(&pr->pr_mtx); flags &= ~PD_LOCKED; prison_cleanup(pr); } } } if (flags & PD_KILL) { /* * Any remaining user references are probably processes * that need to be killed, either in this prison or its * descendants. */ if (refcount_load(&pr->pr_uref) > 0) killpr = pr; /* Make sure the parent prison doesn't get killed. */ flags &= ~PD_KILL; } if (flags & PD_DEREF) { /* Drop a reference. */ KASSERT(refcount_load(&pr->pr_ref) > 0, ("prison_deref PD_DEREF on a dead prison (jid=%d)", pr->pr_id)); if (!refcount_release_if_not_last(&pr->pr_ref)) { flags = prison_lock_xlock(pr, flags); if (refcount_release(&pr->pr_ref)) { /* * When the last reference goes, * unlink the prison and set it aside. */ KASSERT( refcount_load(&pr->pr_uref) == 0, ("prison_deref: last ref, " "but still has %d urefs (jid=%d)", pr->pr_uref, pr->pr_id)); KASSERT( refcount_load(&prison0.pr_ref) != 0, ("prison0 pr_ref=0")); pr->pr_state = PRISON_STATE_INVALID; TAILQ_REMOVE(&allprison, pr, pr_list); LIST_REMOVE(pr, pr_sibling); TAILQ_INSERT_TAIL(&freeprison, pr, pr_list); for (ppr = pr->pr_parent; ppr != NULL; ppr = ppr->pr_parent) ppr->pr_childcount--; /* * Removing a prison frees references * from its parent. */ mtx_unlock(&pr->pr_mtx); flags &= ~PD_LOCKED; pr = pr->pr_parent; flags |= PD_DEREF | PD_DEUREF; continue; } } } break; } /* Release all the prison locks. */ if (flags & PD_LOCKED) mtx_unlock(&pr->pr_mtx); if (flags & PD_LIST_SLOCKED) sx_sunlock(&allprison_lock); else if (flags & PD_LIST_XLOCKED) sx_xunlock(&allprison_lock); /* Kill any processes attached to a killed prison. */ - if (killpr != NULL) { - sx_slock(&allproc_lock); - FOREACH_PROC_IN_SYSTEM(p) { - PROC_LOCK(p); - if (p->p_state != PRS_NEW && p->p_ucred != NULL) { - for (ppr = p->p_ucred->cr_prison; - ppr != &prison0; - ppr = ppr->pr_parent) - if (ppr == killpr) { - kern_psignal(p, SIGKILL); - break; - } - } - PROC_UNLOCK(p); - } - sx_sunlock(&allproc_lock); - } + if (killpr != NULL) + prison_proc_iterate(killpr, prison_kill_processes_cb, NULL); /* * Finish removing any unreferenced prisons, which couldn't happen * while allprison_lock was held (to avoid a LOR on vrele). */ TAILQ_FOREACH_SAFE(rpr, &freeprison, pr_list, tpr) { #ifdef VIMAGE if (rpr->pr_vnet != rpr->pr_parent->pr_vnet) vnet_destroy(rpr->pr_vnet); #endif if (rpr->pr_root != NULL) vrele(rpr->pr_root); mtx_destroy(&rpr->pr_mtx); #ifdef INET prison_ip_free(rpr->pr_addrs[PR_INET]); #endif #ifdef INET6 prison_ip_free(rpr->pr_addrs[PR_INET6]); #endif if (rpr->pr_cpuset != NULL) cpuset_rel(rpr->pr_cpuset); osd_jail_exit(rpr); #ifdef RACCT if (racct_enable) prison_racct_detach(rpr); #endif TAILQ_REMOVE(&freeprison, rpr, pr_list); free(rpr, M_PRISON); } } /* * Kill the prison and its descendants. Mark them as dying, clear the * persist flag, and call module remove methods. */ static void prison_deref_kill(struct prison *pr, struct prisonlist *freeprison) { struct prison *cpr, *ppr, *rpr; bool descend; /* * Unlike the descendants, the target prison can be killed * even if it is currently dying. This is useful for failed * creation in jail_set(2). */ KASSERT(refcount_load(&pr->pr_ref) > 0, ("Trying to kill dead prison %p (jid=%d).", pr, pr->pr_id)); refcount_acquire(&pr->pr_uref); pr->pr_state = PRISON_STATE_DYING; mtx_unlock(&pr->pr_mtx); rpr = NULL; FOREACH_PRISON_DESCENDANT_PRE_POST(pr, cpr, descend) { if (descend) { if (!prison_isalive(cpr)) { descend = false; continue; } prison_hold(cpr); prison_proc_hold(cpr); mtx_lock(&cpr->pr_mtx); cpr->pr_state = PRISON_STATE_DYING; cpr->pr_flags |= PR_REMOVE; mtx_unlock(&cpr->pr_mtx); continue; } if (!(cpr->pr_flags & PR_REMOVE)) continue; prison_cleanup(cpr); mtx_lock(&cpr->pr_mtx); cpr->pr_flags &= ~PR_REMOVE; if (cpr->pr_flags & PR_PERSIST) { cpr->pr_flags &= ~PR_PERSIST; prison_proc_free_not_last(cpr); prison_free_not_last(cpr); } (void)refcount_release(&cpr->pr_uref); if (refcount_release(&cpr->pr_ref)) { /* * When the last reference goes, unlink the prison * and set it aside for prison_deref() to handle. * Delay unlinking the sibling list to keep the loop * safe. */ if (rpr != NULL) LIST_REMOVE(rpr, pr_sibling); rpr = cpr; rpr->pr_state = PRISON_STATE_INVALID; TAILQ_REMOVE(&allprison, rpr, pr_list); TAILQ_INSERT_TAIL(freeprison, rpr, pr_list); /* * Removing a prison frees references from its parent. */ ppr = rpr->pr_parent; prison_proc_free_not_last(ppr); prison_free_not_last(ppr); for (; ppr != NULL; ppr = ppr->pr_parent) ppr->pr_childcount--; } mtx_unlock(&cpr->pr_mtx); } if (rpr != NULL) LIST_REMOVE(rpr, pr_sibling); prison_cleanup(pr); mtx_lock(&pr->pr_mtx); if (pr->pr_flags & PR_PERSIST) { pr->pr_flags &= ~PR_PERSIST; prison_proc_free_not_last(pr); prison_free_not_last(pr); } (void)refcount_release(&pr->pr_uref); } /* * Given the current locking state in the flags, make sure allprison_lock * is held exclusive, and the prison is locked. Return flags indicating * the new state. */ static int prison_lock_xlock(struct prison *pr, int flags) { if (!(flags & PD_LIST_XLOCKED)) { /* * Get allprison_lock, which may be an upgrade, * and may require unlocking the prison. */ if (flags & PD_LOCKED) { mtx_unlock(&pr->pr_mtx); flags &= ~PD_LOCKED; } if (flags & PD_LIST_SLOCKED) { if (!sx_try_upgrade(&allprison_lock)) { sx_sunlock(&allprison_lock); sx_xlock(&allprison_lock); } flags &= ~PD_LIST_SLOCKED; } else sx_xlock(&allprison_lock); flags |= PD_LIST_XLOCKED; } if (!(flags & PD_LOCKED)) { /* Lock the prison mutex. */ mtx_lock(&pr->pr_mtx); flags |= PD_LOCKED; } return flags; } /* * Release a prison's resources when it starts dying (when the last user * reference is dropped, or when it is killed). */ static void prison_cleanup(struct prison *pr) { sx_assert(&allprison_lock, SA_XLOCKED); mtx_assert(&pr->pr_mtx, MA_NOTOWNED); shm_remove_prison(pr); (void)osd_jail_call(pr, PR_METHOD_REMOVE, NULL); } /* * Set or clear a permission bit in the pr_allow field, passing restrictions * (cleared permission) down to child jails. */ void prison_set_allow(struct ucred *cred, unsigned flag, int enable) { struct prison *pr; pr = cred->cr_prison; sx_slock(&allprison_lock); mtx_lock(&pr->pr_mtx); prison_set_allow_locked(pr, flag, enable); mtx_unlock(&pr->pr_mtx); sx_sunlock(&allprison_lock); } static void prison_set_allow_locked(struct prison *pr, unsigned flag, int enable) { struct prison *cpr; int descend; if (enable != 0) pr->pr_allow |= flag; else { pr->pr_allow &= ~flag; FOREACH_PRISON_DESCENDANT_LOCKED(pr, cpr, descend) cpr->pr_allow &= ~flag; } } /* * Check if a jail supports the given address family. * * Returns 0 if not jailed or the address family is supported, EAFNOSUPPORT * if not. */ int prison_check_af(struct ucred *cred, int af) { struct prison *pr; int error; KASSERT(cred != NULL, ("%s: cred is NULL", __func__)); pr = cred->cr_prison; #ifdef VIMAGE /* Prisons with their own network stack are not limited. */ if (prison_owns_vnet(cred)) return (0); #endif error = 0; switch (af) { #ifdef INET case AF_INET: if (pr->pr_flags & PR_IP4) { mtx_lock(&pr->pr_mtx); if ((pr->pr_flags & PR_IP4) && pr->pr_addrs[PR_INET] == NULL) error = EAFNOSUPPORT; mtx_unlock(&pr->pr_mtx); } break; #endif #ifdef INET6 case AF_INET6: if (pr->pr_flags & PR_IP6) { mtx_lock(&pr->pr_mtx); if ((pr->pr_flags & PR_IP6) && pr->pr_addrs[PR_INET6] == NULL) error = EAFNOSUPPORT; mtx_unlock(&pr->pr_mtx); } break; #endif case AF_LOCAL: case AF_ROUTE: break; default: if (!(pr->pr_allow & PR_ALLOW_SOCKET_AF)) error = EAFNOSUPPORT; } return (error); } /* * Check if given address belongs to the jail referenced by cred (wrapper to * prison_check_ip[46]). * * Returns 0 if jail doesn't restrict the address family or if address belongs * to jail, EADDRNOTAVAIL if the address doesn't belong, or EAFNOSUPPORT if * the jail doesn't allow the address family. IPv4 Address passed in in NBO. */ int prison_if(struct ucred *cred, const struct sockaddr *sa) { #ifdef INET const struct sockaddr_in *sai; #endif #ifdef INET6 const struct sockaddr_in6 *sai6; #endif int error; KASSERT(cred != NULL, ("%s: cred is NULL", __func__)); KASSERT(sa != NULL, ("%s: sa is NULL", __func__)); #ifdef VIMAGE if (prison_owns_vnet(cred)) return (0); #endif error = 0; switch (sa->sa_family) { #ifdef INET case AF_INET: sai = (const struct sockaddr_in *)sa; error = prison_check_ip4(cred, &sai->sin_addr); break; #endif #ifdef INET6 case AF_INET6: sai6 = (const struct sockaddr_in6 *)sa; error = prison_check_ip6(cred, &sai6->sin6_addr); break; #endif default: if (!(cred->cr_prison->pr_allow & PR_ALLOW_SOCKET_AF)) error = EAFNOSUPPORT; } return (error); } /* * Return 0 if jails permit p1 to frob p2, otherwise ESRCH. */ int prison_check(struct ucred *cred1, struct ucred *cred2) { return ((cred1->cr_prison == cred2->cr_prison || prison_ischild(cred1->cr_prison, cred2->cr_prison)) ? 0 : ESRCH); } /* * Return 1 if p2 is a child of p1, otherwise 0. */ int prison_ischild(struct prison *pr1, struct prison *pr2) { for (pr2 = pr2->pr_parent; pr2 != NULL; pr2 = pr2->pr_parent) if (pr1 == pr2) return (1); return (0); } /* * Return true if the prison is currently alive. A prison is alive if it * holds user references and it isn't being removed. */ bool prison_isalive(const struct prison *pr) { if (__predict_false(pr->pr_state != PRISON_STATE_ALIVE)) return (false); return (true); } /* * Return true if the prison is currently valid. A prison is valid if it has * been fully created, and is not being destroyed. Note that dying prisons * are still considered valid. Invalid prisons won't be found under normal * circumstances, as they're only put in that state by functions that have * an exclusive hold on allprison_lock. */ bool prison_isvalid(struct prison *pr) { if (__predict_false(pr->pr_state == PRISON_STATE_INVALID)) return (false); if (__predict_false(refcount_load(&pr->pr_ref) == 0)) return (false); return (true); } /* * Return 1 if the passed credential is in a jail and that jail does not * have its own virtual network stack, otherwise 0. */ int jailed_without_vnet(struct ucred *cred) { if (!jailed(cred)) return (0); #ifdef VIMAGE if (prison_owns_vnet(cred)) return (0); #endif return (1); } /* * Return the correct hostname (domainname, et al) for the passed credential. */ void getcredhostname(struct ucred *cred, char *buf, size_t size) { struct prison *pr; /* * A NULL credential can be used to shortcut to the physical * system's hostname. */ pr = (cred != NULL) ? cred->cr_prison : &prison0; mtx_lock(&pr->pr_mtx); strlcpy(buf, pr->pr_hostname, size); mtx_unlock(&pr->pr_mtx); } void getcreddomainname(struct ucred *cred, char *buf, size_t size) { mtx_lock(&cred->cr_prison->pr_mtx); strlcpy(buf, cred->cr_prison->pr_domainname, size); mtx_unlock(&cred->cr_prison->pr_mtx); } void getcredhostuuid(struct ucred *cred, char *buf, size_t size) { mtx_lock(&cred->cr_prison->pr_mtx); strlcpy(buf, cred->cr_prison->pr_hostuuid, size); mtx_unlock(&cred->cr_prison->pr_mtx); } void getcredhostid(struct ucred *cred, unsigned long *hostid) { mtx_lock(&cred->cr_prison->pr_mtx); *hostid = cred->cr_prison->pr_hostid; mtx_unlock(&cred->cr_prison->pr_mtx); } void getjailname(struct ucred *cred, char *name, size_t len) { mtx_lock(&cred->cr_prison->pr_mtx); strlcpy(name, cred->cr_prison->pr_name, len); mtx_unlock(&cred->cr_prison->pr_mtx); } #ifdef VIMAGE /* * Determine whether the prison represented by cred owns * its vnet rather than having it inherited. * * Returns 1 in case the prison owns the vnet, 0 otherwise. */ int prison_owns_vnet(struct ucred *cred) { /* * vnets cannot be added/removed after jail creation, * so no need to lock here. */ return (cred->cr_prison->pr_flags & PR_VNET ? 1 : 0); } #endif /* * Determine whether the subject represented by cred can "see" * status of a mount point. * Returns: 0 for permitted, ENOENT otherwise. * XXX: This function should be called cr_canseemount() and should be * placed in kern_prot.c. */ int prison_canseemount(struct ucred *cred, struct mount *mp) { struct prison *pr; struct statfs *sp; size_t len; pr = cred->cr_prison; if (pr->pr_enforce_statfs == 0) return (0); if (pr->pr_root->v_mount == mp) return (0); if (pr->pr_enforce_statfs == 2) return (ENOENT); /* * If jail's chroot directory is set to "/" we should be able to see * all mount-points from inside a jail. * This is ugly check, but this is the only situation when jail's * directory ends with '/'. */ if (strcmp(pr->pr_path, "/") == 0) return (0); len = strlen(pr->pr_path); sp = &mp->mnt_stat; if (strncmp(pr->pr_path, sp->f_mntonname, len) != 0) return (ENOENT); /* * Be sure that we don't have situation where jail's root directory * is "/some/path" and mount point is "/some/pathpath". */ if (sp->f_mntonname[len] != '\0' && sp->f_mntonname[len] != '/') return (ENOENT); return (0); } void prison_enforce_statfs(struct ucred *cred, struct mount *mp, struct statfs *sp) { char jpath[MAXPATHLEN]; struct prison *pr; size_t len; pr = cred->cr_prison; if (pr->pr_enforce_statfs == 0) return; if (prison_canseemount(cred, mp) != 0) { bzero(sp->f_mntonname, sizeof(sp->f_mntonname)); strlcpy(sp->f_mntonname, "[restricted]", sizeof(sp->f_mntonname)); return; } if (pr->pr_root->v_mount == mp) { /* * Clear current buffer data, so we are sure nothing from * the valid path left there. */ bzero(sp->f_mntonname, sizeof(sp->f_mntonname)); *sp->f_mntonname = '/'; return; } /* * If jail's chroot directory is set to "/" we should be able to see * all mount-points from inside a jail. */ if (strcmp(pr->pr_path, "/") == 0) return; len = strlen(pr->pr_path); strlcpy(jpath, sp->f_mntonname + len, sizeof(jpath)); /* * Clear current buffer data, so we are sure nothing from * the valid path left there. */ bzero(sp->f_mntonname, sizeof(sp->f_mntonname)); if (*jpath == '\0') { /* Should never happen. */ *sp->f_mntonname = '/'; } else { strlcpy(sp->f_mntonname, jpath, sizeof(sp->f_mntonname)); } } /* * Check with permission for a specific privilege is granted within jail. We * have a specific list of accepted privileges; the rest are denied. */ int prison_priv_check(struct ucred *cred, int priv) { struct prison *pr; int error; /* * Some policies have custom handlers. This routine should not be * called for them. See priv_check_cred(). */ switch (priv) { case PRIV_VFS_LOOKUP: case PRIV_VFS_GENERATION: KASSERT(0, ("prison_priv_check instead of a custom handler " "called for %d\n", priv)); } if (!jailed(cred)) return (0); #ifdef VIMAGE /* * Privileges specific to prisons with a virtual network stack. * There might be a duplicate entry here in case the privilege * is only granted conditionally in the legacy jail case. */ switch (priv) { #ifdef notyet /* * NFS-specific privileges. */ case PRIV_NFS_DAEMON: case PRIV_NFS_LOCKD: #endif /* * Network stack privileges. */ case PRIV_NET_BRIDGE: case PRIV_NET_GRE: case PRIV_NET_BPF: case PRIV_NET_RAW: /* Dup, cond. in legacy jail case. */ case PRIV_NET_ROUTE: case PRIV_NET_TAP: case PRIV_NET_SETIFMTU: case PRIV_NET_SETIFFLAGS: case PRIV_NET_SETIFCAP: case PRIV_NET_SETIFDESCR: case PRIV_NET_SETIFNAME : case PRIV_NET_SETIFMETRIC: case PRIV_NET_SETIFPHYS: case PRIV_NET_SETIFMAC: case PRIV_NET_SETLANPCP: case PRIV_NET_ADDMULTI: case PRIV_NET_DELMULTI: case PRIV_NET_HWIOCTL: case PRIV_NET_SETLLADDR: case PRIV_NET_ADDIFGROUP: case PRIV_NET_DELIFGROUP: case PRIV_NET_IFCREATE: case PRIV_NET_IFDESTROY: case PRIV_NET_ADDIFADDR: case PRIV_NET_DELIFADDR: case PRIV_NET_LAGG: case PRIV_NET_GIF: case PRIV_NET_SETIFVNET: case PRIV_NET_SETIFFIB: case PRIV_NET_OVPN: /* * 802.11-related privileges. */ case PRIV_NET80211_VAP_GETKEY: case PRIV_NET80211_VAP_MANAGE: #ifdef notyet /* * ATM privileges. */ case PRIV_NETATM_CFG: case PRIV_NETATM_ADD: case PRIV_NETATM_DEL: case PRIV_NETATM_SET: /* * Bluetooth privileges. */ case PRIV_NETBLUETOOTH_RAW: #endif /* * Netgraph and netgraph module privileges. */ case PRIV_NETGRAPH_CONTROL: #ifdef notyet case PRIV_NETGRAPH_TTY: #endif /* * IPv4 and IPv6 privileges. */ case PRIV_NETINET_IPFW: case PRIV_NETINET_DIVERT: case PRIV_NETINET_PF: case PRIV_NETINET_DUMMYNET: case PRIV_NETINET_CARP: case PRIV_NETINET_MROUTE: case PRIV_NETINET_RAW: case PRIV_NETINET_ADDRCTRL6: case PRIV_NETINET_ND6: case PRIV_NETINET_SCOPE6: case PRIV_NETINET_ALIFETIME6: case PRIV_NETINET_IPSEC: case PRIV_NETINET_BINDANY: #ifdef notyet /* * NCP privileges. */ case PRIV_NETNCP: /* * SMB privileges. */ case PRIV_NETSMB: #endif /* * No default: or deny here. * In case of no permit fall through to next switch(). */ if (cred->cr_prison->pr_flags & PR_VNET) return (0); } #endif /* VIMAGE */ switch (priv) { /* * Allow ktrace privileges for root in jail. */ case PRIV_KTRACE: #if 0 /* * Allow jailed processes to configure audit identity and * submit audit records (login, etc). In the future we may * want to further refine the relationship between audit and * jail. */ case PRIV_AUDIT_GETAUDIT: case PRIV_AUDIT_SETAUDIT: case PRIV_AUDIT_SUBMIT: #endif /* * Allow jailed processes to manipulate process UNIX * credentials in any way they see fit. */ case PRIV_CRED_SETUID: case PRIV_CRED_SETEUID: case PRIV_CRED_SETGID: case PRIV_CRED_SETEGID: case PRIV_CRED_SETGROUPS: case PRIV_CRED_SETREUID: case PRIV_CRED_SETREGID: case PRIV_CRED_SETRESUID: case PRIV_CRED_SETRESGID: /* * Jail implements visibility constraints already, so allow * jailed root to override uid/gid-based constraints. */ case PRIV_SEEOTHERGIDS: case PRIV_SEEOTHERUIDS: /* * Jail implements inter-process debugging limits already, so * allow jailed root various debugging privileges. */ case PRIV_DEBUG_DIFFCRED: case PRIV_DEBUG_SUGID: case PRIV_DEBUG_UNPRIV: /* * Allow jail to set various resource limits and login * properties, and for now, exceed process resource limits. */ case PRIV_PROC_LIMIT: case PRIV_PROC_SETLOGIN: case PRIV_PROC_SETRLIMIT: /* * System V and POSIX IPC privileges are granted in jail. */ case PRIV_IPC_READ: case PRIV_IPC_WRITE: case PRIV_IPC_ADMIN: case PRIV_IPC_MSGSIZE: case PRIV_MQ_ADMIN: /* * Jail operations within a jail work on child jails. */ case PRIV_JAIL_ATTACH: case PRIV_JAIL_SET: case PRIV_JAIL_REMOVE: /* * Jail implements its own inter-process limits, so allow * root processes in jail to change scheduling on other * processes in the same jail. Likewise for signalling. */ case PRIV_SCHED_DIFFCRED: case PRIV_SCHED_CPUSET: case PRIV_SIGNAL_DIFFCRED: case PRIV_SIGNAL_SUGID: /* * Allow jailed processes to write to sysctls marked as jail * writable. */ case PRIV_SYSCTL_WRITEJAIL: /* * Allow root in jail to manage a variety of quota * properties. These should likely be conditional on a * configuration option. */ case PRIV_VFS_GETQUOTA: case PRIV_VFS_SETQUOTA: /* * Since Jail relies on chroot() to implement file system * protections, grant many VFS privileges to root in jail. * Be careful to exclude mount-related and NFS-related * privileges. */ case PRIV_VFS_READ: case PRIV_VFS_WRITE: case PRIV_VFS_ADMIN: case PRIV_VFS_EXEC: case PRIV_VFS_BLOCKRESERVE: /* XXXRW: Slightly surprising. */ case PRIV_VFS_CHFLAGS_DEV: case PRIV_VFS_CHOWN: case PRIV_VFS_CHROOT: case PRIV_VFS_RETAINSUGID: case PRIV_VFS_FCHROOT: case PRIV_VFS_LINK: case PRIV_VFS_SETGID: case PRIV_VFS_STAT: case PRIV_VFS_STICKYFILE: /* * As in the non-jail case, non-root users are expected to be * able to read kernel/physical memory (provided /dev/[k]mem * exists in the jail and they have permission to access it). */ case PRIV_KMEM_READ: return (0); /* * Depending on the global setting, allow privilege of * setting system flags. */ case PRIV_VFS_SYSFLAGS: if (cred->cr_prison->pr_allow & PR_ALLOW_CHFLAGS) return (0); else return (EPERM); /* * Depending on the global setting, allow privilege of * mounting/unmounting file systems. */ case PRIV_VFS_MOUNT: case PRIV_VFS_UNMOUNT: case PRIV_VFS_MOUNT_NONUSER: case PRIV_VFS_MOUNT_OWNER: pr = cred->cr_prison; prison_lock(pr); if (pr->pr_allow & PR_ALLOW_MOUNT && pr->pr_enforce_statfs < 2) error = 0; else error = EPERM; prison_unlock(pr); return (error); /* * Jails should hold no disposition on the PRIV_VFS_READ_DIR * policy. priv_check_cred will not specifically allow it, and * we may want a MAC policy to allow it. */ case PRIV_VFS_READ_DIR: return (0); /* * Conditionnaly allow locking (unlocking) physical pages * in memory. */ case PRIV_VM_MLOCK: case PRIV_VM_MUNLOCK: if (cred->cr_prison->pr_allow & PR_ALLOW_MLOCK) return (0); else return (EPERM); /* * Conditionally allow jailed root to bind reserved ports. */ case PRIV_NETINET_RESERVEDPORT: if (cred->cr_prison->pr_allow & PR_ALLOW_RESERVED_PORTS) return (0); else return (EPERM); /* * Allow jailed root to reuse in-use ports. */ case PRIV_NETINET_REUSEPORT: return (0); /* * Allow jailed root to set certain IPv4/6 (option) headers. */ case PRIV_NETINET_SETHDROPTS: return (0); /* * Conditionally allow creating raw sockets in jail. */ case PRIV_NETINET_RAW: if (cred->cr_prison->pr_allow & PR_ALLOW_RAW_SOCKETS) return (0); else return (EPERM); /* * Since jail implements its own visibility limits on netstat * sysctls, allow getcred. This allows identd to work in * jail. */ case PRIV_NETINET_GETCRED: return (0); /* * Allow jailed root to set loginclass. */ case PRIV_PROC_SETLOGINCLASS: return (0); /* * Do not allow a process inside a jail to read the kernel * message buffer unless explicitly permitted. */ case PRIV_MSGBUF: if (cred->cr_prison->pr_allow & PR_ALLOW_READ_MSGBUF) return (0); return (EPERM); default: /* * In all remaining cases, deny the privilege request. This * includes almost all network privileges, many system * configuration privileges. */ return (EPERM); } } /* * Return the part of pr2's name that is relative to pr1, or the whole name * if it does not directly follow. */ char * prison_name(struct prison *pr1, struct prison *pr2) { char *name; /* Jails see themselves as "0" (if they see themselves at all). */ if (pr1 == pr2) return "0"; name = pr2->pr_name; if (prison_ischild(pr1, pr2)) { /* * pr1 isn't locked (and allprison_lock may not be either) * so its length can't be counted on. But the number of dots * can be counted on - and counted. */ for (; pr1 != &prison0; pr1 = pr1->pr_parent) name = strchr(name, '.') + 1; } return (name); } /* * Return the part of pr2's path that is relative to pr1, or the whole path * if it does not directly follow. */ static char * prison_path(struct prison *pr1, struct prison *pr2) { char *path1, *path2; int len1; path1 = pr1->pr_path; path2 = pr2->pr_path; if (!strcmp(path1, "/")) return (path2); len1 = strlen(path1); if (strncmp(path1, path2, len1)) return (path2); if (path2[len1] == '\0') return "/"; if (path2[len1] == '/') return (path2 + len1); return (path2); } /* * Jail-related sysctls. */ static SYSCTL_NODE(_security, OID_AUTO, jail, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Jails"); #if defined(INET) || defined(INET6) /* * Copy address array to memory that would be then SYSCTL_OUT-ed. * sysctl_jail_list() helper. */ static void prison_ip_copyout(struct prison *pr, const pr_family_t af, void **out, int *len) { const size_t size = pr_families[af].size; again: mtx_assert(&pr->pr_mtx, MA_OWNED); if (pr->pr_addrs[af] != NULL) { if (*len < pr->pr_addrs[af]->ips) { *len = pr->pr_addrs[af]->ips; mtx_unlock(&pr->pr_mtx); *out = realloc(*out, *len * size, M_TEMP, M_WAITOK); mtx_lock(&pr->pr_mtx); goto again; } bcopy(pr->pr_addrs[af] + 1, *out, pr->pr_addrs[af]->ips * size); } } #endif static int sysctl_jail_list(SYSCTL_HANDLER_ARGS) { struct xprison *xp; struct prison *pr, *cpr; #ifdef INET struct in_addr *ip4 = NULL; int ip4s = 0; #endif #ifdef INET6 struct in6_addr *ip6 = NULL; int ip6s = 0; #endif int descend, error; xp = malloc(sizeof(*xp), M_TEMP, M_WAITOK); pr = req->td->td_ucred->cr_prison; error = 0; sx_slock(&allprison_lock); FOREACH_PRISON_DESCENDANT(pr, cpr, descend) { mtx_lock(&cpr->pr_mtx); #ifdef INET prison_ip_copyout(cpr, PR_INET, (void **)&ip4, &ip4s); #endif #ifdef INET6 prison_ip_copyout(cpr, PR_INET6, (void **)&ip6, &ip6s); #endif bzero(xp, sizeof(*xp)); xp->pr_version = XPRISON_VERSION; xp->pr_id = cpr->pr_id; xp->pr_state = cpr->pr_state; strlcpy(xp->pr_path, prison_path(pr, cpr), sizeof(xp->pr_path)); strlcpy(xp->pr_host, cpr->pr_hostname, sizeof(xp->pr_host)); strlcpy(xp->pr_name, prison_name(pr, cpr), sizeof(xp->pr_name)); #ifdef INET xp->pr_ip4s = ip4s; #endif #ifdef INET6 xp->pr_ip6s = ip6s; #endif mtx_unlock(&cpr->pr_mtx); error = SYSCTL_OUT(req, xp, sizeof(*xp)); if (error) break; #ifdef INET if (xp->pr_ip4s > 0) { error = SYSCTL_OUT(req, ip4, xp->pr_ip4s * sizeof(struct in_addr)); if (error) break; } #endif #ifdef INET6 if (xp->pr_ip6s > 0) { error = SYSCTL_OUT(req, ip6, xp->pr_ip6s * sizeof(struct in6_addr)); if (error) break; } #endif } sx_sunlock(&allprison_lock); free(xp, M_TEMP); #ifdef INET free(ip4, M_TEMP); #endif #ifdef INET6 free(ip6, M_TEMP); #endif return (error); } SYSCTL_OID(_security_jail, OID_AUTO, list, CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, sysctl_jail_list, "S", "List of active jails"); static int sysctl_jail_jailed(SYSCTL_HANDLER_ARGS) { int error, injail; injail = jailed(req->td->td_ucred); error = SYSCTL_OUT(req, &injail, sizeof(injail)); return (error); } SYSCTL_PROC(_security_jail, OID_AUTO, jailed, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, sysctl_jail_jailed, "I", "Process in jail?"); static int sysctl_jail_vnet(SYSCTL_HANDLER_ARGS) { int error, havevnet; #ifdef VIMAGE struct ucred *cred = req->td->td_ucred; havevnet = jailed(cred) && prison_owns_vnet(cred); #else havevnet = 0; #endif error = SYSCTL_OUT(req, &havevnet, sizeof(havevnet)); return (error); } SYSCTL_PROC(_security_jail, OID_AUTO, vnet, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, sysctl_jail_vnet, "I", "Jail owns vnet?"); #if defined(INET) || defined(INET6) SYSCTL_UINT(_security_jail, OID_AUTO, jail_max_af_ips, CTLFLAG_RW, &jail_max_af_ips, 0, "Number of IP addresses a jail may have at most per address family (deprecated)"); #endif /* * Default parameters for jail(2) compatibility. For historical reasons, * the sysctl names have varying similarity to the parameter names. Prisons * just see their own parameters, and can't change them. */ static int sysctl_jail_default_allow(SYSCTL_HANDLER_ARGS) { int error, i; /* Get the current flag value, and convert it to a boolean. */ if (req->td->td_ucred->cr_prison == &prison0) { mtx_lock(&prison0.pr_mtx); i = (jail_default_allow & arg2) != 0; mtx_unlock(&prison0.pr_mtx); } else i = prison_allow(req->td->td_ucred, arg2); if (arg1 != NULL) i = !i; error = sysctl_handle_int(oidp, &i, 0, req); if (error || !req->newptr) return (error); i = i ? arg2 : 0; if (arg1 != NULL) i ^= arg2; /* * The sysctls don't have CTLFLAGS_PRISON, so assume prison0 * for writing. */ mtx_lock(&prison0.pr_mtx); jail_default_allow = (jail_default_allow & ~arg2) | i; mtx_unlock(&prison0.pr_mtx); return (0); } SYSCTL_PROC(_security_jail, OID_AUTO, set_hostname_allowed, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, PR_ALLOW_SET_HOSTNAME, sysctl_jail_default_allow, "I", "Processes in jail can set their hostnames (deprecated)"); SYSCTL_PROC(_security_jail, OID_AUTO, socket_unixiproute_only, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, (void *)1, PR_ALLOW_SOCKET_AF, sysctl_jail_default_allow, "I", "Processes in jail are limited to creating UNIX/IP/route sockets only (deprecated)"); SYSCTL_PROC(_security_jail, OID_AUTO, sysvipc_allowed, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, PR_ALLOW_SYSVIPC, sysctl_jail_default_allow, "I", "Processes in jail can use System V IPC primitives (deprecated)"); SYSCTL_PROC(_security_jail, OID_AUTO, allow_raw_sockets, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, PR_ALLOW_RAW_SOCKETS, sysctl_jail_default_allow, "I", "Prison root can create raw sockets (deprecated)"); SYSCTL_PROC(_security_jail, OID_AUTO, chflags_allowed, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, PR_ALLOW_CHFLAGS, sysctl_jail_default_allow, "I", "Processes in jail can alter system file flags (deprecated)"); SYSCTL_PROC(_security_jail, OID_AUTO, mount_allowed, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, PR_ALLOW_MOUNT, sysctl_jail_default_allow, "I", "Processes in jail can mount/unmount jail-friendly file systems (deprecated)"); static int sysctl_jail_default_level(SYSCTL_HANDLER_ARGS) { struct prison *pr; int level, error; pr = req->td->td_ucred->cr_prison; level = (pr == &prison0) ? *(int *)arg1 : *(int *)((char *)pr + arg2); error = sysctl_handle_int(oidp, &level, 0, req); if (error || !req->newptr) return (error); *(int *)arg1 = level; return (0); } SYSCTL_PROC(_security_jail, OID_AUTO, enforce_statfs, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &jail_default_enforce_statfs, offsetof(struct prison, pr_enforce_statfs), sysctl_jail_default_level, "I", "Processes in jail cannot see all mounted file systems (deprecated)"); SYSCTL_PROC(_security_jail, OID_AUTO, devfs_ruleset, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, &jail_default_devfs_rsnum, offsetof(struct prison, pr_devfs_rsnum), sysctl_jail_default_level, "I", "Ruleset for the devfs filesystem in jail (deprecated)"); /* * Nodes to describe jail parameters. Maximum length of string parameters * is returned in the string itself, and the other parameters exist merely * to make themselves and their types known. */ SYSCTL_NODE(_security_jail, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Jail parameters"); int sysctl_jail_param(SYSCTL_HANDLER_ARGS) { int i; long l; size_t s; char numbuf[12]; switch (oidp->oid_kind & CTLTYPE) { case CTLTYPE_LONG: case CTLTYPE_ULONG: l = 0; #ifdef SCTL_MASK32 if (!(req->flags & SCTL_MASK32)) #endif return (SYSCTL_OUT(req, &l, sizeof(l))); case CTLTYPE_INT: case CTLTYPE_UINT: i = 0; return (SYSCTL_OUT(req, &i, sizeof(i))); case CTLTYPE_STRING: snprintf(numbuf, sizeof(numbuf), "%jd", (intmax_t)arg2); return (sysctl_handle_string(oidp, numbuf, sizeof(numbuf), req)); case CTLTYPE_STRUCT: s = (size_t)arg2; return (SYSCTL_OUT(req, &s, sizeof(s))); } return (0); } /* * CTLFLAG_RDTUN in the following indicates jail parameters that can be set at * jail creation time but cannot be changed in an existing jail. */ SYSCTL_JAIL_PARAM(, jid, CTLTYPE_INT | CTLFLAG_RDTUN, "I", "Jail ID"); SYSCTL_JAIL_PARAM(, parent, CTLTYPE_INT | CTLFLAG_RD, "I", "Jail parent ID"); SYSCTL_JAIL_PARAM_STRING(, name, CTLFLAG_RW, MAXHOSTNAMELEN, "Jail name"); SYSCTL_JAIL_PARAM_STRING(, path, CTLFLAG_RDTUN, MAXPATHLEN, "Jail root path"); SYSCTL_JAIL_PARAM(, securelevel, CTLTYPE_INT | CTLFLAG_RW, "I", "Jail secure level"); SYSCTL_JAIL_PARAM(, osreldate, CTLTYPE_INT | CTLFLAG_RDTUN, "I", "Jail value for kern.osreldate and uname -K"); SYSCTL_JAIL_PARAM_STRING(, osrelease, CTLFLAG_RDTUN, OSRELEASELEN, "Jail value for kern.osrelease and uname -r"); SYSCTL_JAIL_PARAM(, enforce_statfs, CTLTYPE_INT | CTLFLAG_RW, "I", "Jail cannot see all mounted file systems"); SYSCTL_JAIL_PARAM(, devfs_ruleset, CTLTYPE_INT | CTLFLAG_RW, "I", "Ruleset for in-jail devfs mounts"); SYSCTL_JAIL_PARAM(, persist, CTLTYPE_INT | CTLFLAG_RW, "B", "Jail persistence"); #ifdef VIMAGE SYSCTL_JAIL_PARAM(, vnet, CTLTYPE_INT | CTLFLAG_RDTUN, "E,jailsys", "Virtual network stack"); #endif SYSCTL_JAIL_PARAM(, dying, CTLTYPE_INT | CTLFLAG_RD, "B", "Jail is in the process of shutting down"); SYSCTL_JAIL_PARAM_NODE(children, "Number of child jails"); SYSCTL_JAIL_PARAM(_children, cur, CTLTYPE_INT | CTLFLAG_RD, "I", "Current number of child jails"); SYSCTL_JAIL_PARAM(_children, max, CTLTYPE_INT | CTLFLAG_RW, "I", "Maximum number of child jails"); SYSCTL_JAIL_PARAM_SYS_NODE(host, CTLFLAG_RW, "Jail host info"); SYSCTL_JAIL_PARAM_STRING(_host, hostname, CTLFLAG_RW, MAXHOSTNAMELEN, "Jail hostname"); SYSCTL_JAIL_PARAM_STRING(_host, domainname, CTLFLAG_RW, MAXHOSTNAMELEN, "Jail NIS domainname"); SYSCTL_JAIL_PARAM_STRING(_host, hostuuid, CTLFLAG_RW, HOSTUUIDLEN, "Jail host UUID"); SYSCTL_JAIL_PARAM(_host, hostid, CTLTYPE_ULONG | CTLFLAG_RW, "LU", "Jail host ID"); SYSCTL_JAIL_PARAM_NODE(cpuset, "Jail cpuset"); SYSCTL_JAIL_PARAM(_cpuset, id, CTLTYPE_INT | CTLFLAG_RD, "I", "Jail cpuset ID"); #ifdef INET SYSCTL_JAIL_PARAM_SYS_NODE(ip4, CTLFLAG_RDTUN, "Jail IPv4 address virtualization"); SYSCTL_JAIL_PARAM_STRUCT(_ip4, addr, CTLFLAG_RW, sizeof(struct in_addr), "S,in_addr,a", "Jail IPv4 addresses"); SYSCTL_JAIL_PARAM(_ip4, saddrsel, CTLTYPE_INT | CTLFLAG_RW, "B", "Do (not) use IPv4 source address selection rather than the " "primary jail IPv4 address."); #endif #ifdef INET6 SYSCTL_JAIL_PARAM_SYS_NODE(ip6, CTLFLAG_RDTUN, "Jail IPv6 address virtualization"); SYSCTL_JAIL_PARAM_STRUCT(_ip6, addr, CTLFLAG_RW, sizeof(struct in6_addr), "S,in6_addr,a", "Jail IPv6 addresses"); SYSCTL_JAIL_PARAM(_ip6, saddrsel, CTLTYPE_INT | CTLFLAG_RW, "B", "Do (not) use IPv6 source address selection rather than the " "primary jail IPv6 address."); #endif SYSCTL_JAIL_PARAM_NODE(allow, "Jail permission flags"); SYSCTL_JAIL_PARAM(_allow, set_hostname, CTLTYPE_INT | CTLFLAG_RW, "B", "Jail may set hostname"); SYSCTL_JAIL_PARAM(_allow, sysvipc, CTLTYPE_INT | CTLFLAG_RW, "B", "Jail may use SYSV IPC"); SYSCTL_JAIL_PARAM(_allow, raw_sockets, CTLTYPE_INT | CTLFLAG_RW, "B", "Jail may create raw sockets"); SYSCTL_JAIL_PARAM(_allow, chflags, CTLTYPE_INT | CTLFLAG_RW, "B", "Jail may alter system file flags"); SYSCTL_JAIL_PARAM(_allow, quotas, CTLTYPE_INT | CTLFLAG_RW, "B", "Jail may set file quotas"); SYSCTL_JAIL_PARAM(_allow, socket_af, CTLTYPE_INT | CTLFLAG_RW, "B", "Jail may create sockets other than just UNIX/IPv4/IPv6/route"); SYSCTL_JAIL_PARAM(_allow, mlock, CTLTYPE_INT | CTLFLAG_RW, "B", "Jail may lock (unlock) physical pages in memory"); SYSCTL_JAIL_PARAM(_allow, reserved_ports, CTLTYPE_INT | CTLFLAG_RW, "B", "Jail may bind sockets to reserved ports"); SYSCTL_JAIL_PARAM(_allow, read_msgbuf, CTLTYPE_INT | CTLFLAG_RW, "B", "Jail may read the kernel message buffer"); SYSCTL_JAIL_PARAM(_allow, unprivileged_proc_debug, CTLTYPE_INT | CTLFLAG_RW, "B", "Unprivileged processes may use process debugging facilities"); SYSCTL_JAIL_PARAM(_allow, suser, CTLTYPE_INT | CTLFLAG_RW, "B", "Processes in jail with uid 0 have privilege"); SYSCTL_JAIL_PARAM_SUBNODE(allow, mount, "Jail mount/unmount permission flags"); SYSCTL_JAIL_PARAM(_allow_mount, , CTLTYPE_INT | CTLFLAG_RW, "B", "Jail may mount/unmount jail-friendly file systems in general"); /* * Add a dynamic parameter allow., or allow... Return * its associated bit in the pr_allow bitmask, or zero if the parameter was * not created. */ unsigned prison_add_allow(const char *prefix, const char *name, const char *prefix_descr, const char *descr) { struct bool_flags *bf; struct sysctl_oid *parent; char *allow_name, *allow_noname, *allowed; #ifndef NO_SYSCTL_DESCR char *descr_deprecated; #endif u_int allow_flag; if (prefix ? asprintf(&allow_name, M_PRISON, "allow.%s.%s", prefix, name) < 0 || asprintf(&allow_noname, M_PRISON, "allow.%s.no%s", prefix, name) < 0 : asprintf(&allow_name, M_PRISON, "allow.%s", name) < 0 || asprintf(&allow_noname, M_PRISON, "allow.no%s", name) < 0) { free(allow_name, M_PRISON); return 0; } /* * See if this parameter has already beed added, i.e. a module was * previously loaded/unloaded. */ mtx_lock(&prison0.pr_mtx); for (bf = pr_flag_allow; bf < pr_flag_allow + nitems(pr_flag_allow) && atomic_load_int(&bf->flag) != 0; bf++) { if (strcmp(bf->name, allow_name) == 0) { allow_flag = bf->flag; goto no_add; } } /* * Find a free bit in pr_allow_all, failing if there are none * (which shouldn't happen as long as we keep track of how many * potential dynamic flags exist). */ for (allow_flag = 1;; allow_flag <<= 1) { if (allow_flag == 0) goto no_add; if ((pr_allow_all & allow_flag) == 0) break; } /* Note the parameter in the next open slot in pr_flag_allow. */ for (bf = pr_flag_allow; ; bf++) { if (bf == pr_flag_allow + nitems(pr_flag_allow)) { /* This should never happen, but is not fatal. */ allow_flag = 0; goto no_add; } if (atomic_load_int(&bf->flag) == 0) break; } bf->name = allow_name; bf->noname = allow_noname; pr_allow_all |= allow_flag; /* * prison0 always has permission for the new parameter. * Other jails must have it granted to them. */ prison0.pr_allow |= allow_flag; /* The flag indicates a valid entry, so make sure it is set last. */ atomic_store_rel_int(&bf->flag, allow_flag); mtx_unlock(&prison0.pr_mtx); /* * Create sysctls for the paramter, and the back-compat global * permission. */ parent = prefix ? SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(&sysctl___security_jail_param_allow), OID_AUTO, prefix, CTLFLAG_MPSAFE, 0, prefix_descr) : &sysctl___security_jail_param_allow; (void)SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(parent), OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0, sysctl_jail_param, "B", descr); if ((prefix ? asprintf(&allowed, M_TEMP, "%s_%s_allowed", prefix, name) : asprintf(&allowed, M_TEMP, "%s_allowed", name)) >= 0) { #ifndef NO_SYSCTL_DESCR (void)asprintf(&descr_deprecated, M_TEMP, "%s (deprecated)", descr); #endif (void)SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(&sysctl___security_jail), OID_AUTO, allowed, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, allow_flag, sysctl_jail_default_allow, "I", descr_deprecated); #ifndef NO_SYSCTL_DESCR free(descr_deprecated, M_TEMP); #endif free(allowed, M_TEMP); } return allow_flag; no_add: mtx_unlock(&prison0.pr_mtx); free(allow_name, M_PRISON); free(allow_noname, M_PRISON); return allow_flag; } /* * The VFS system will register jail-aware filesystems here. They each get * a parameter allow.mount.xxxfs and a flag to check when a jailed user * attempts to mount. */ void prison_add_vfs(struct vfsconf *vfsp) { #ifdef NO_SYSCTL_DESCR vfsp->vfc_prison_flag = prison_add_allow("mount", vfsp->vfc_name, NULL, NULL); #else char *descr; (void)asprintf(&descr, M_TEMP, "Jail may mount the %s file system", vfsp->vfc_name); vfsp->vfc_prison_flag = prison_add_allow("mount", vfsp->vfc_name, NULL, descr); free(descr, M_TEMP); #endif } #ifdef RACCT void prison_racct_foreach(void (*callback)(struct racct *racct, void *arg2, void *arg3), void (*pre)(void), void (*post)(void), void *arg2, void *arg3) { struct prison_racct *prr; ASSERT_RACCT_ENABLED(); sx_slock(&allprison_lock); if (pre != NULL) (pre)(); LIST_FOREACH(prr, &allprison_racct, prr_next) (callback)(prr->prr_racct, arg2, arg3); if (post != NULL) (post)(); sx_sunlock(&allprison_lock); } static struct prison_racct * prison_racct_find_locked(const char *name) { struct prison_racct *prr; ASSERT_RACCT_ENABLED(); sx_assert(&allprison_lock, SA_XLOCKED); if (name[0] == '\0' || strlen(name) >= MAXHOSTNAMELEN) return (NULL); LIST_FOREACH(prr, &allprison_racct, prr_next) { if (strcmp(name, prr->prr_name) != 0) continue; /* Found prison_racct with a matching name? */ prison_racct_hold(prr); return (prr); } /* Add new prison_racct. */ prr = malloc(sizeof(*prr), M_PRISON_RACCT, M_ZERO | M_WAITOK); racct_create(&prr->prr_racct); strcpy(prr->prr_name, name); refcount_init(&prr->prr_refcount, 1); LIST_INSERT_HEAD(&allprison_racct, prr, prr_next); return (prr); } struct prison_racct * prison_racct_find(const char *name) { struct prison_racct *prr; ASSERT_RACCT_ENABLED(); sx_xlock(&allprison_lock); prr = prison_racct_find_locked(name); sx_xunlock(&allprison_lock); return (prr); } void prison_racct_hold(struct prison_racct *prr) { ASSERT_RACCT_ENABLED(); refcount_acquire(&prr->prr_refcount); } static void prison_racct_free_locked(struct prison_racct *prr) { ASSERT_RACCT_ENABLED(); sx_assert(&allprison_lock, SA_XLOCKED); if (refcount_release(&prr->prr_refcount)) { racct_destroy(&prr->prr_racct); LIST_REMOVE(prr, prr_next); free(prr, M_PRISON_RACCT); } } void prison_racct_free(struct prison_racct *prr) { ASSERT_RACCT_ENABLED(); sx_assert(&allprison_lock, SA_UNLOCKED); if (refcount_release_if_not_last(&prr->prr_refcount)) return; sx_xlock(&allprison_lock); prison_racct_free_locked(prr); sx_xunlock(&allprison_lock); } static void prison_racct_attach(struct prison *pr) { struct prison_racct *prr; ASSERT_RACCT_ENABLED(); sx_assert(&allprison_lock, SA_XLOCKED); prr = prison_racct_find_locked(pr->pr_name); KASSERT(prr != NULL, ("cannot find prison_racct")); pr->pr_prison_racct = prr; } /* * Handle jail renaming. From the racct point of view, renaming means * moving from one prison_racct to another. */ static void prison_racct_modify(struct prison *pr) { #ifdef RCTL struct proc *p; struct ucred *cred; #endif struct prison_racct *oldprr; ASSERT_RACCT_ENABLED(); sx_slock(&allproc_lock); sx_xlock(&allprison_lock); if (strcmp(pr->pr_name, pr->pr_prison_racct->prr_name) == 0) { sx_xunlock(&allprison_lock); sx_sunlock(&allproc_lock); return; } oldprr = pr->pr_prison_racct; pr->pr_prison_racct = NULL; prison_racct_attach(pr); /* * Move resource utilisation records. */ racct_move(pr->pr_prison_racct->prr_racct, oldprr->prr_racct); #ifdef RCTL /* * Force rctl to reattach rules to processes. */ FOREACH_PROC_IN_SYSTEM(p) { PROC_LOCK(p); cred = crhold(p->p_ucred); PROC_UNLOCK(p); rctl_proc_ucred_changed(p, cred); crfree(cred); } #endif sx_sunlock(&allproc_lock); prison_racct_free_locked(oldprr); sx_xunlock(&allprison_lock); } static void prison_racct_detach(struct prison *pr) { ASSERT_RACCT_ENABLED(); sx_assert(&allprison_lock, SA_UNLOCKED); if (pr->pr_prison_racct == NULL) return; prison_racct_free(pr->pr_prison_racct); pr->pr_prison_racct = NULL; } #endif /* RACCT */ #ifdef DDB static void db_show_prison(struct prison *pr) { struct bool_flags *bf; struct jailsys_flags *jsf; #if defined(INET) || defined(INET6) int ii; #endif unsigned f; #ifdef INET char ip4buf[INET_ADDRSTRLEN]; #endif #ifdef INET6 char ip6buf[INET6_ADDRSTRLEN]; #endif db_printf("prison %p:\n", pr); db_printf(" jid = %d\n", pr->pr_id); db_printf(" name = %s\n", pr->pr_name); db_printf(" parent = %p\n", pr->pr_parent); db_printf(" ref = %d\n", pr->pr_ref); db_printf(" uref = %d\n", pr->pr_uref); db_printf(" state = %s\n", pr->pr_state == PRISON_STATE_ALIVE ? "alive" : pr->pr_state == PRISON_STATE_DYING ? "dying" : "invalid"); db_printf(" path = %s\n", pr->pr_path); db_printf(" cpuset = %d\n", pr->pr_cpuset ? pr->pr_cpuset->cs_id : -1); #ifdef VIMAGE db_printf(" vnet = %p\n", pr->pr_vnet); #endif db_printf(" root = %p\n", pr->pr_root); db_printf(" securelevel = %d\n", pr->pr_securelevel); db_printf(" devfs_rsnum = %d\n", pr->pr_devfs_rsnum); db_printf(" children.max = %d\n", pr->pr_childmax); db_printf(" children.cur = %d\n", pr->pr_childcount); db_printf(" child = %p\n", LIST_FIRST(&pr->pr_children)); db_printf(" sibling = %p\n", LIST_NEXT(pr, pr_sibling)); db_printf(" flags = 0x%x", pr->pr_flags); for (bf = pr_flag_bool; bf < pr_flag_bool + nitems(pr_flag_bool); bf++) if (pr->pr_flags & bf->flag) db_printf(" %s", bf->name); for (jsf = pr_flag_jailsys; jsf < pr_flag_jailsys + nitems(pr_flag_jailsys); jsf++) { f = pr->pr_flags & (jsf->disable | jsf->new); db_printf(" %-16s= %s\n", jsf->name, (f != 0 && f == jsf->disable) ? "disable" : (f == jsf->new) ? "new" : "inherit"); } db_printf(" allow = 0x%x", pr->pr_allow); for (bf = pr_flag_allow; bf < pr_flag_allow + nitems(pr_flag_allow) && atomic_load_int(&bf->flag) != 0; bf++) if (pr->pr_allow & bf->flag) db_printf(" %s", bf->name); db_printf("\n"); db_printf(" enforce_statfs = %d\n", pr->pr_enforce_statfs); db_printf(" host.hostname = %s\n", pr->pr_hostname); db_printf(" host.domainname = %s\n", pr->pr_domainname); db_printf(" host.hostuuid = %s\n", pr->pr_hostuuid); db_printf(" host.hostid = %lu\n", pr->pr_hostid); #ifdef INET if (pr->pr_addrs[PR_INET] != NULL) { pr_family_t af = PR_INET; db_printf(" ip4s = %d\n", pr->pr_addrs[af]->ips); for (ii = 0; ii < pr->pr_addrs[af]->ips; ii++) db_printf(" %s %s\n", ii == 0 ? "ip4.addr =" : " ", inet_ntoa_r( *(const struct in_addr *)PR_IP(pr, ii), ip4buf)); } #endif #ifdef INET6 if (pr->pr_addrs[PR_INET6] != NULL) { pr_family_t af = PR_INET6; db_printf(" ip6s = %d\n", pr->pr_addrs[af]->ips); for (ii = 0; ii < pr->pr_addrs[af]->ips; ii++) db_printf(" %s %s\n", ii == 0 ? "ip6.addr =" : " ", ip6_sprintf(ip6buf, (const struct in6_addr *)PR_IP(pr, ii))); } #endif } DB_SHOW_COMMAND(prison, db_show_prison_command) { struct prison *pr; if (!have_addr) { /* * Show all prisons in the list, and prison0 which is not * listed. */ db_show_prison(&prison0); if (!db_pager_quit) { TAILQ_FOREACH(pr, &allprison, pr_list) { db_show_prison(pr); if (db_pager_quit) break; } } return; } if (addr == 0) pr = &prison0; else { /* Look for a prison with the ID and with references. */ TAILQ_FOREACH(pr, &allprison, pr_list) if (pr->pr_id == addr && pr->pr_ref > 0) break; if (pr == NULL) /* Look again, without requiring a reference. */ TAILQ_FOREACH(pr, &allprison, pr_list) if (pr->pr_id == addr) break; if (pr == NULL) /* Assume address points to a valid prison. */ pr = (struct prison *)addr; } db_show_prison(pr); } #endif /* DDB */ diff --git a/sys/sys/jail.h b/sys/sys/jail.h index b7ecfc198b4c..743b413bc06d 100644 --- a/sys/sys/jail.h +++ b/sys/sys/jail.h @@ -1,482 +1,487 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1999 Poul-Henning Kamp. * Copyright (c) 2009 James Gritton. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _SYS_JAIL_H_ #define _SYS_JAIL_H_ #ifdef _KERNEL struct jail_v0 { u_int32_t version; char *path; char *hostname; u_int32_t ip_number; }; #endif struct jail { uint32_t version; char *path; char *hostname; char *jailname; uint32_t ip4s; uint32_t ip6s; struct in_addr *ip4; struct in6_addr *ip6; }; #define JAIL_API_VERSION 2 /* * For all xprison structs, always keep the pr_version an int and * the first variable so userspace can easily distinguish them. */ #ifndef _KERNEL struct xprison_v1 { int pr_version; int pr_id; char pr_path[MAXPATHLEN]; char pr_host[MAXHOSTNAMELEN]; u_int32_t pr_ip; }; #endif struct xprison { int pr_version; int pr_id; int pr_state; cpusetid_t pr_cpusetid; char pr_path[MAXPATHLEN]; char pr_host[MAXHOSTNAMELEN]; char pr_name[MAXHOSTNAMELEN]; uint32_t pr_ip4s; uint32_t pr_ip6s; #if 0 /* * sizeof(xprison) will be malloced + size needed for all * IPv4 and IPv6 addesses. Offsets are based numbers of addresses. */ struct in_addr pr_ip4[]; struct in6_addr pr_ip6[]; #endif }; #define XPRISON_VERSION 3 enum prison_state { PRISON_STATE_INVALID = 0, /* New prison, not ready to be seen */ PRISON_STATE_ALIVE, /* Current prison, visible to all */ PRISON_STATE_DYING /* Removed but holding resources, */ }; /* optionally visible. */ /* * Flags for jail_set and jail_get. */ #define JAIL_CREATE 0x01 /* Create jail if it doesn't exist */ #define JAIL_UPDATE 0x02 /* Update parameters of existing jail */ #define JAIL_ATTACH 0x04 /* Attach to jail upon creation */ #define JAIL_DYING 0x08 /* Allow getting a dying jail */ #define JAIL_SET_MASK 0x0f #define JAIL_GET_MASK 0x08 #define JAIL_SYS_DISABLE 0 #define JAIL_SYS_NEW 1 #define JAIL_SYS_INHERIT 2 #ifndef _KERNEL struct iovec; __BEGIN_DECLS int jail(struct jail *); int jail_set(struct iovec *, unsigned int, int); int jail_get(struct iovec *, unsigned int, int); int jail_attach(int); int jail_remove(int); __END_DECLS #else /* _KERNEL */ #include #include #include #include #include #define JAIL_MAX 999999 #ifdef MALLOC_DECLARE MALLOC_DECLARE(M_PRISON); #endif #endif /* _KERNEL */ #if defined(_KERNEL) || defined(_WANT_PRISON) #include #define HOSTUUIDLEN 64 #define DEFAULT_HOSTUUID "00000000-0000-0000-0000-000000000000" #define OSRELEASELEN 32 struct racct; struct prison_racct; typedef enum { PR_INET = 0, PR_INET6 = 1, PR_FAMILY_MAX = 2, } pr_family_t; /* * This structure describes a prison. It is pointed to by all struct * ucreds's of the inmates. pr_ref keeps track of them and is used to * delete the structure when the last inmate is dead. * * Lock key: * (a) allprison_lock + * (A) allproc_lock * (c) set only during creation before the structure is shared, no mutex * required to read * (m) locked by pr_mtx * (p) locked by pr_mtx, and also at least shared allprison_lock required * to update * (q) locked by both pr_mtx and allprison_lock * (r) atomic via refcount(9), pr_mtx and allprison_lock required to * decrement to zero * (n) read access granted with the network epoch */ struct prison { TAILQ_ENTRY(prison) pr_list; /* (a) all prisons */ int pr_id; /* (c) prison id */ volatile u_int pr_ref; /* (r) refcount */ volatile u_int pr_uref; /* (r) user (alive) refcount */ unsigned pr_flags; /* (p) PR_* flags */ LIST_HEAD(, prison) pr_children; /* (a) list of child jails */ + LIST_HEAD(, proc) pr_proclist; /* (A) list of jailed processes */ LIST_ENTRY(prison) pr_sibling; /* (a) next in parent's list */ struct prison *pr_parent; /* (c) containing jail */ struct mtx pr_mtx; struct task pr_task; /* (c) destroy task */ struct osd pr_osd; /* (p) additional data */ struct cpuset *pr_cpuset; /* (p) cpuset */ struct vnet *pr_vnet; /* (c) network stack */ struct vnode *pr_root; /* (c) vnode to rdir */ struct prison_ip *pr_addrs[PR_FAMILY_MAX]; /* (p,n) IPs of jail */ struct prison_racct *pr_prison_racct; /* (c) racct jail proxy */ void *pr_sparep[3]; int pr_childcount; /* (a) number of child jails */ int pr_childmax; /* (p) maximum child jails */ unsigned pr_allow; /* (p) PR_ALLOW_* flags */ int pr_securelevel; /* (p) securelevel */ int pr_enforce_statfs; /* (p) statfs permission */ int pr_devfs_rsnum; /* (p) devfs ruleset */ enum prison_state pr_state; /* (q) state in life cycle */ int pr_spare[2]; int pr_osreldate; /* (c) kern.osreldate value */ unsigned long pr_hostid; /* (p) jail hostid */ char pr_name[MAXHOSTNAMELEN]; /* (p) admin jail name */ char pr_path[MAXPATHLEN]; /* (c) chroot path */ char pr_hostname[MAXHOSTNAMELEN]; /* (p) jail hostname */ char pr_domainname[MAXHOSTNAMELEN]; /* (p) jail domainname */ char pr_hostuuid[HOSTUUIDLEN]; /* (p) jail hostuuid */ char pr_osrelease[OSRELEASELEN]; /* (c) kern.osrelease value */ }; struct prison_racct { LIST_ENTRY(prison_racct) prr_next; char prr_name[MAXHOSTNAMELEN]; u_int prr_refcount; struct racct *prr_racct; }; #endif /* _KERNEL || _WANT_PRISON */ #ifdef _KERNEL /* Flag bits set via options */ #define PR_PERSIST 0x00000001 /* Can exist without processes */ #define PR_HOST 0x00000002 /* Virtualize hostname et al */ #define PR_IP4_USER 0x00000004 /* Restrict IPv4 addresses */ #define PR_IP6_USER 0x00000008 /* Restrict IPv6 addresses */ #define PR_VNET 0x00000010 /* Virtual network stack */ #define PR_IP4_SADDRSEL 0x00000080 /* Do IPv4 src addr sel. or use the */ /* primary jail address. */ #define PR_IP6_SADDRSEL 0x00000100 /* Do IPv6 src addr sel. or use the */ /* primary jail address. */ /* Internal flag bits */ #define PR_REMOVE 0x01000000 /* In process of being removed */ #define PR_IP4 0x02000000 /* IPv4 restricted or disabled */ /* by this jail or an ancestor */ #define PR_IP6 0x04000000 /* IPv6 restricted or disabled */ /* by this jail or an ancestor */ #define PR_COMPLETE_PROC 0x08000000 /* prison_complete called from */ /* prison_proc_free, releases uref */ /* * Flags for pr_allow * Bits not noted here may be used for dynamic allow.mount.xxxfs. */ #define PR_ALLOW_SET_HOSTNAME 0x00000001 #define PR_ALLOW_SYSVIPC 0x00000002 #define PR_ALLOW_RAW_SOCKETS 0x00000004 #define PR_ALLOW_CHFLAGS 0x00000008 #define PR_ALLOW_MOUNT 0x00000010 #define PR_ALLOW_QUOTAS 0x00000020 #define PR_ALLOW_SOCKET_AF 0x00000040 #define PR_ALLOW_MLOCK 0x00000080 #define PR_ALLOW_READ_MSGBUF 0x00000100 #define PR_ALLOW_UNPRIV_DEBUG 0x00000200 #define PR_ALLOW_SUSER 0x00000400 #define PR_ALLOW_RESERVED_PORTS 0x00008000 #define PR_ALLOW_KMEM_ACCESS 0x00010000 /* reserved, not used yet */ #define PR_ALLOW_ALL_STATIC 0x000187ff /* * PR_ALLOW_DIFFERENCES determines which flags are able to be * different between the parent and child jail upon creation. */ #define PR_ALLOW_DIFFERENCES (PR_ALLOW_UNPRIV_DEBUG) /* * OSD methods */ #define PR_METHOD_CREATE 0 #define PR_METHOD_GET 1 #define PR_METHOD_SET 2 #define PR_METHOD_CHECK 3 #define PR_METHOD_ATTACH 4 #define PR_METHOD_REMOVE 5 #define PR_MAXMETHOD 6 /* * Lock/unlock a prison. * XXX These exist not so much for general convenience, but to be useable in * the FOREACH_PRISON_DESCENDANT_LOCKED macro which can't handle them in * non-function form as currently defined. */ static __inline void prison_lock(struct prison *pr) { mtx_lock(&pr->pr_mtx); } static __inline void prison_unlock(struct prison *pr) { mtx_unlock(&pr->pr_mtx); } /* Traverse a prison's immediate children. */ #define FOREACH_PRISON_CHILD(ppr, cpr) \ LIST_FOREACH(cpr, &(ppr)->pr_children, pr_sibling) /* * Preorder traversal of all of a prison's descendants. * This ugly loop allows the macro to be followed by a single block * as expected in a looping primitive. */ #define FOREACH_PRISON_DESCENDANT(ppr, cpr, descend) \ for ((cpr) = (ppr), (descend) = 1; \ ((cpr) = (((descend) && !LIST_EMPTY(&(cpr)->pr_children)) \ ? LIST_FIRST(&(cpr)->pr_children) \ : ((cpr) == (ppr) \ ? NULL \ : (((descend) = LIST_NEXT(cpr, pr_sibling) != NULL) \ ? LIST_NEXT(cpr, pr_sibling) \ : (cpr)->pr_parent))));) \ if (!(descend)) \ ; \ else /* * As above, but lock descendants on the way down and unlock on the way up. */ #define FOREACH_PRISON_DESCENDANT_LOCKED(ppr, cpr, descend) \ for ((cpr) = (ppr), (descend) = 1; \ ((cpr) = (((descend) && !LIST_EMPTY(&(cpr)->pr_children)) \ ? LIST_FIRST(&(cpr)->pr_children) \ : ((cpr) == (ppr) \ ? NULL \ : ((prison_unlock(cpr), \ (descend) = LIST_NEXT(cpr, pr_sibling) != NULL) \ ? LIST_NEXT(cpr, pr_sibling) \ : (cpr)->pr_parent))));) \ if ((descend) ? (prison_lock(cpr), 0) : 1) \ ; \ else /* * As above, but also keep track of the level descended to. */ #define FOREACH_PRISON_DESCENDANT_LOCKED_LEVEL(ppr, cpr, descend, level)\ for ((cpr) = (ppr), (descend) = 1, (level) = 0; \ ((cpr) = (((descend) && !LIST_EMPTY(&(cpr)->pr_children)) \ ? (level++, LIST_FIRST(&(cpr)->pr_children)) \ : ((cpr) == (ppr) \ ? NULL \ : ((prison_unlock(cpr), \ (descend) = LIST_NEXT(cpr, pr_sibling) != NULL) \ ? LIST_NEXT(cpr, pr_sibling) \ : (level--, (cpr)->pr_parent)))));) \ if ((descend) ? (prison_lock(cpr), 0) : 1) \ ; \ else /* * Traverse a prison's descendants, visiting both preorder and postorder. */ #define FOREACH_PRISON_DESCENDANT_PRE_POST(ppr, cpr, descend) \ for ((cpr) = (ppr), (descend) = 1; \ ((cpr) = (descend) \ ? ((descend) = !LIST_EMPTY(&(cpr)->pr_children)) \ ? LIST_FIRST(&(cpr)->pr_children) \ : (cpr) \ : ((descend) = LIST_NEXT(cpr, pr_sibling) != NULL) \ ? LIST_NEXT(cpr, pr_sibling) \ : cpr->pr_parent) != (ppr);) /* * Attributes of the physical system, and the root of the jail tree. */ extern struct prison prison0; TAILQ_HEAD(prisonlist, prison); extern struct prisonlist allprison; extern struct sx allprison_lock; /* * Sysctls to describe jail parameters. */ SYSCTL_DECL(_security_jail_param); #define SYSCTL_JAIL_PARAM(module, param, type, fmt, descr) \ SYSCTL_PROC(_security_jail_param ## module, OID_AUTO, param, \ (type) | CTLFLAG_MPSAFE, NULL, 0, sysctl_jail_param, fmt, descr) #define SYSCTL_JAIL_PARAM_STRING(module, param, access, len, descr) \ SYSCTL_PROC(_security_jail_param ## module, OID_AUTO, param, \ CTLTYPE_STRING | CTLFLAG_MPSAFE | (access), NULL, len, \ sysctl_jail_param, "A", descr) #define SYSCTL_JAIL_PARAM_STRUCT(module, param, access, len, fmt, descr)\ SYSCTL_PROC(_security_jail_param ## module, OID_AUTO, param, \ CTLTYPE_STRUCT | CTLFLAG_MPSAFE | (access), NULL, len, \ sysctl_jail_param, fmt, descr) #define SYSCTL_JAIL_PARAM_NODE(module, descr) \ SYSCTL_NODE(_security_jail_param, OID_AUTO, module, CTLFLAG_MPSAFE, \ 0, descr) #define SYSCTL_JAIL_PARAM_SUBNODE(parent, module, descr) \ SYSCTL_NODE(_security_jail_param_##parent, OID_AUTO, module, \ CTLFLAG_MPSAFE, 0, descr) #define SYSCTL_JAIL_PARAM_SYS_NODE(module, access, descr) \ SYSCTL_JAIL_PARAM_NODE(module, descr); \ SYSCTL_JAIL_PARAM(_##module, , CTLTYPE_INT | (access), "E,jailsys", \ descr) /* * Kernel support functions for jail(). */ struct ucred; struct mount; struct sockaddr; struct statfs; struct vfsconf; /* * Return 1 if the passed credential is in a jail, otherwise 0. */ #define jailed(cred) (cred->cr_prison != &prison0) int jailed_without_vnet(struct ucred *); void getcredhostname(struct ucred *, char *, size_t); void getcreddomainname(struct ucred *, char *, size_t); void getcredhostuuid(struct ucred *, char *, size_t); void getcredhostid(struct ucred *, unsigned long *); void getjailname(struct ucred *cred, char *name, size_t len); void prison0_init(void); int prison_allow(struct ucred *, unsigned); int prison_check(struct ucred *cred1, struct ucred *cred2); int prison_owns_vnet(struct ucred *); int prison_canseemount(struct ucred *cred, struct mount *mp); void prison_enforce_statfs(struct ucred *cred, struct mount *mp, struct statfs *sp); struct prison *prison_find(int prid); struct prison *prison_find_child(struct prison *, int); struct prison *prison_find_name(struct prison *, const char *); int prison_flag(struct ucred *, unsigned); void prison_free(struct prison *pr); void prison_free_locked(struct prison *pr); void prison_hold(struct prison *pr); void prison_hold_locked(struct prison *pr); void prison_proc_hold(struct prison *); void prison_proc_free(struct prison *); +void prison_proc_link(struct prison *, struct proc *); +void prison_proc_unlink(struct prison *, struct proc *); +void prison_proc_iterate(struct prison *, void (*)(struct proc *, void *), void *); void prison_set_allow(struct ucred *cred, unsigned flag, int enable); int prison_ischild(struct prison *, struct prison *); bool prison_isalive(const struct prison *); bool prison_isvalid(struct prison *); #if defined(INET) || defined(INET6) int prison_ip_check(const struct prison *, const pr_family_t, const void *); const void *prison_ip_get0(const struct prison *, const pr_family_t); u_int prison_ip_cnt(const struct prison *, const pr_family_t); #endif #ifdef INET int prison_equal_ip4(struct prison *, struct prison *); int prison_get_ip4(struct ucred *cred, struct in_addr *ia); int prison_local_ip4(struct ucred *cred, struct in_addr *ia); int prison_remote_ip4(struct ucred *cred, struct in_addr *ia); int prison_check_ip4(const struct ucred *, const struct in_addr *); int prison_check_ip4_locked(const struct prison *, const struct in_addr *); int prison_saddrsel_ip4(struct ucred *, struct in_addr *); int prison_qcmp_v4(const void *, const void *); bool prison_valid_v4(const void *); #endif #ifdef INET6 int prison_equal_ip6(struct prison *, struct prison *); int prison_get_ip6(struct ucred *, struct in6_addr *); int prison_local_ip6(struct ucred *, struct in6_addr *, int); int prison_remote_ip6(struct ucred *, struct in6_addr *); int prison_check_ip6(const struct ucred *, const struct in6_addr *); int prison_check_ip6_locked(const struct prison *, const struct in6_addr *); int prison_saddrsel_ip6(struct ucred *, struct in6_addr *); int prison_qcmp_v6(const void *, const void *); bool prison_valid_v6(const void *); #endif int prison_check_af(struct ucred *cred, int af); int prison_if(struct ucred *cred, const struct sockaddr *sa); char *prison_name(struct prison *, struct prison *); int prison_priv_check(struct ucred *cred, int priv); int sysctl_jail_param(SYSCTL_HANDLER_ARGS); unsigned prison_add_allow(const char *prefix, const char *name, const char *prefix_descr, const char *descr); void prison_add_vfs(struct vfsconf *vfsp); void prison_racct_foreach(void (*callback)(struct racct *racct, void *arg2, void *arg3), void (*pre)(void), void (*post)(void), void *arg2, void *arg3); struct prison_racct *prison_racct_find(const char *name); void prison_racct_hold(struct prison_racct *prr); void prison_racct_free(struct prison_racct *prr); #endif /* _KERNEL */ #endif /* !_SYS_JAIL_H_ */ diff --git a/sys/sys/proc.h b/sys/sys/proc.h index fb1553539b1c..08a74c7326cf 100644 --- a/sys/sys/proc.h +++ b/sys/sys/proc.h @@ -1,1363 +1,1364 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)proc.h 8.15 (Berkeley) 5/19/95 * $FreeBSD$ */ #ifndef _SYS_PROC_H_ #define _SYS_PROC_H_ #include /* For struct callout. */ #include /* For struct klist. */ #ifdef _KERNEL #include #endif #include #ifndef _KERNEL #include #endif #include #include #include #include #include #include #include /* XXX. */ #include #include #include #include #include #ifndef _KERNEL #include /* For structs itimerval, timeval. */ #else #include #include #endif #include #include #include #include #include /* Machine-dependent proc substruct. */ #ifdef _KERNEL #include #endif /* * One structure allocated per session. * * List of locks * (m) locked by s_mtx mtx * (e) locked by proctree_lock sx * (c) const until freeing */ struct session { u_int s_count; /* Ref cnt; pgrps in session - atomic. */ struct proc *s_leader; /* (m + e) Session leader. */ struct vnode *s_ttyvp; /* (m) Vnode of controlling tty. */ struct cdev_priv *s_ttydp; /* (m) Device of controlling tty. */ struct tty *s_ttyp; /* (e) Controlling tty. */ pid_t s_sid; /* (c) Session ID. */ /* (m) Setlogin() name: */ char s_login[roundup(MAXLOGNAME, sizeof(long))]; struct mtx s_mtx; /* Mutex to protect members. */ }; /* * One structure allocated per process group. * * List of locks * (m) locked by pg_mtx mtx * (e) locked by proctree_lock sx * (c) const until freeing */ struct pgrp { LIST_ENTRY(pgrp) pg_hash; /* (e) Hash chain. */ LIST_HEAD(, proc) pg_members; /* (m + e) Pointer to pgrp members. */ struct session *pg_session; /* (c) Pointer to session. */ struct sigiolst pg_sigiolst; /* (m) List of sigio sources. */ pid_t pg_id; /* (c) Process group id. */ struct mtx pg_mtx; /* Mutex to protect members */ int pg_flags; /* (m) PGRP_ flags */ }; #define PGRP_ORPHANED 0x00000001 /* Group is orphaned */ /* * pargs, used to hold a copy of the command line, if it had a sane length. */ struct pargs { u_int ar_ref; /* Reference count. */ u_int ar_length; /* Length. */ u_char ar_args[1]; /* Arguments. */ }; /*- * Description of a process. * * This structure contains the information needed to manage a thread of * control, known in UN*X as a process; it has references to substructures * containing descriptions of things that the process uses, but may share * with related processes. The process structure and the substructures * are always addressable except for those marked "(CPU)" below, * which might be addressable only on a processor on which the process * is running. * * Below is a key of locks used to protect each member of struct proc. The * lock is indicated by a reference to a specific character in parens in the * associated comment. * * - not yet protected * a - only touched by curproc or parent during fork/wait * b - created at fork, never changes * (exception aiods switch vmspaces, but they are also * marked 'P_SYSTEM' so hopefully it will be left alone) * c - locked by proc mtx * d - locked by allproc_lock lock * e - locked by proctree_lock lock * f - session mtx * g - process group mtx * h - callout_lock mtx * i - by curproc or the master session mtx * j - locked by proc slock * k - only accessed by curthread * k*- only accessed by curthread and from an interrupt * kx- only accessed by curthread and by debugger * l - the attaching proc or attaching proc parent * m - Giant * n - not locked, lazy * o - ktrace lock * q - td_contested lock * r - p_peers lock * s - see sleepq_switch(), sleeping_on_old_rtc(), and sleep(9) * t - thread lock * u - process stat lock * w - process timer lock * x - created at fork, only changes during single threading in exec * y - created at first aio, doesn't change until exit or exec at which * point we are single-threaded and only curthread changes it * z - zombie threads lock * * If the locking key specifies two identifiers (for example, p_pptr) then * either lock is sufficient for read access, but both locks must be held * for write access. */ struct cpuset; struct filecaps; struct filemon; struct kaioinfo; struct kaudit_record; struct kcov_info; struct kdtrace_proc; struct kdtrace_thread; struct kmsan_td; struct kq_timer_cb_data; struct mqueue_notifier; struct p_sched; struct proc; struct procdesc; struct racct; struct sbuf; struct sleepqueue; struct socket; struct td_sched; struct thread; struct trapframe; struct turnstile; struct vm_map; struct vm_map_entry; struct epoch_tracker; struct syscall_args { u_int code; u_int original_code; struct sysent *callp; register_t args[8]; }; /* * XXX: Does this belong in resource.h or resourcevar.h instead? * Resource usage extension. The times in rusage structs in the kernel are * never up to date. The actual times are kept as runtimes and tick counts * (with control info in the "previous" times), and are converted when * userland asks for rusage info. Backwards compatibility prevents putting * this directly in the user-visible rusage struct. * * Locking for p_rux: (cu) means (u) for p_rux and (c) for p_crux. * Locking for td_rux: (t) for all fields. */ struct rusage_ext { uint64_t rux_runtime; /* (cu) Real time. */ uint64_t rux_uticks; /* (cu) Statclock hits in user mode. */ uint64_t rux_sticks; /* (cu) Statclock hits in sys mode. */ uint64_t rux_iticks; /* (cu) Statclock hits in intr mode. */ uint64_t rux_uu; /* (c) Previous user time in usec. */ uint64_t rux_su; /* (c) Previous sys time in usec. */ uint64_t rux_tu; /* (c) Previous total time in usec. */ }; /* * Kernel runnable context (thread). * This is what is put to sleep and reactivated. * Thread context. Processes may have multiple threads. */ struct thread { struct mtx *volatile td_lock; /* replaces sched lock */ struct proc *td_proc; /* (*) Associated process. */ TAILQ_ENTRY(thread) td_plist; /* (*) All threads in this proc. */ TAILQ_ENTRY(thread) td_runq; /* (t) Run queue. */ union { TAILQ_ENTRY(thread) td_slpq; /* (t) Sleep queue. */ struct thread *td_zombie; /* Zombie list linkage */ }; TAILQ_ENTRY(thread) td_lockq; /* (t) Lock queue. */ LIST_ENTRY(thread) td_hash; /* (d) Hash chain. */ struct cpuset *td_cpuset; /* (t) CPU affinity mask. */ struct domainset_ref td_domain; /* (a) NUMA policy */ struct seltd *td_sel; /* Select queue/channel. */ struct sleepqueue *td_sleepqueue; /* (k) Associated sleep queue. */ struct turnstile *td_turnstile; /* (k) Associated turnstile. */ struct rl_q_entry *td_rlqe; /* (k) Associated range lock entry. */ struct umtx_q *td_umtxq; /* (c?) Link for when we're blocked. */ lwpid_t td_tid; /* (b) Thread ID. */ sigqueue_t td_sigqueue; /* (c) Sigs arrived, not delivered. */ #define td_siglist td_sigqueue.sq_signals u_char td_lend_user_pri; /* (t) Lend user pri. */ u_char td_allocdomain; /* (b) NUMA domain backing this struct thread. */ u_char td_base_ithread_pri; /* (t) Base ithread pri */ struct kmsan_td *td_kmsan; /* (k) KMSAN state */ /* Cleared during fork1() */ #define td_startzero td_flags int td_flags; /* (t) TDF_* flags. */ int td_ast; /* (t) TDA_* indicators */ int td_inhibitors; /* (t) Why can not run. */ int td_pflags; /* (k) Private thread (TDP_*) flags. */ int td_pflags2; /* (k) Private thread (TDP2_*) flags. */ int td_dupfd; /* (k) Ret value from fdopen. XXX */ int td_sqqueue; /* (t) Sleepqueue queue blocked on. */ const void *td_wchan; /* (t) Sleep address. */ const char *td_wmesg; /* (t) Reason for sleep. */ volatile u_char td_owepreempt; /* (k*) Preempt on last critical_exit */ u_char td_tsqueue; /* (t) Turnstile queue blocked on. */ short td_locks; /* (k) Debug: count of non-spin locks */ short td_rw_rlocks; /* (k) Count of rwlock read locks. */ short td_sx_slocks; /* (k) Count of sx shared locks. */ short td_lk_slocks; /* (k) Count of lockmgr shared locks. */ short td_stopsched; /* (k) Scheduler stopped. */ struct turnstile *td_blocked; /* (t) Lock thread is blocked on. */ const char *td_lockname; /* (t) Name of lock blocked on. */ LIST_HEAD(, turnstile) td_contested; /* (q) Contested locks. */ struct lock_list_entry *td_sleeplocks; /* (k) Held sleep locks. */ int td_intr_nesting_level; /* (k) Interrupt recursion. */ int td_pinned; /* (k) Temporary cpu pin count. */ struct ucred *td_realucred; /* (k) Reference to credentials. */ struct ucred *td_ucred; /* (k) Used credentials, temporarily switchable. */ struct plimit *td_limit; /* (k) Resource limits. */ int td_slptick; /* (t) Time at sleep. */ int td_blktick; /* (t) Time spent blocked. */ int td_swvoltick; /* (t) Time at last SW_VOL switch. */ int td_swinvoltick; /* (t) Time at last SW_INVOL switch. */ u_int td_cow; /* (*) Number of copy-on-write faults */ struct rusage td_ru; /* (t) rusage information. */ struct rusage_ext td_rux; /* (t) Internal rusage information. */ uint64_t td_incruntime; /* (t) Cpu ticks to transfer to proc. */ uint64_t td_runtime; /* (t) How many cpu ticks we've run. */ u_int td_pticks; /* (t) Statclock hits for profiling */ u_int td_sticks; /* (t) Statclock hits in system mode. */ u_int td_iticks; /* (t) Statclock hits in intr mode. */ u_int td_uticks; /* (t) Statclock hits in user mode. */ int td_intrval; /* (t) Return value for sleepq. */ sigset_t td_oldsigmask; /* (k) Saved mask from pre sigpause. */ volatile u_int td_generation; /* (k) For detection of preemption */ stack_t td_sigstk; /* (k) Stack ptr and on-stack flag. */ int td_xsig; /* (c) Signal for ptrace */ u_long td_profil_addr; /* (k) Temporary addr until AST. */ u_int td_profil_ticks; /* (k) Temporary ticks until AST. */ char td_name[MAXCOMLEN + 1]; /* (*) Thread name. */ struct file *td_fpop; /* (k) file referencing cdev under op */ int td_dbgflags; /* (c) Userland debugger flags */ siginfo_t td_si; /* (c) For debugger or core file */ int td_ng_outbound; /* (k) Thread entered ng from above. */ struct osd td_osd; /* (k) Object specific data. */ struct vm_map_entry *td_map_def_user; /* (k) Deferred entries. */ pid_t td_dbg_forked; /* (c) Child pid for debugger. */ struct vnode *td_vp_reserved;/* (k) Preallocated vnode. */ u_int td_no_sleeping; /* (k) Sleeping disabled count. */ void *td_su; /* (k) FFS SU private */ sbintime_t td_sleeptimo; /* (t) Sleep timeout. */ int td_rtcgen; /* (s) rtc_generation of abs. sleep */ int td_errno; /* (k) Error from last syscall. */ size_t td_vslock_sz; /* (k) amount of vslock-ed space */ struct kcov_info *td_kcov_info; /* (*) Kernel code coverage data */ u_int td_ucredref; /* (k) references on td_realucred */ #define td_endzero td_sigmask /* Copied during fork1() or create_thread(). */ #define td_startcopy td_endzero sigset_t td_sigmask; /* (c) Current signal mask. */ u_char td_rqindex; /* (t) Run queue index. */ u_char td_base_pri; /* (t) Thread base kernel priority. */ u_char td_priority; /* (t) Thread active priority. */ u_char td_pri_class; /* (t) Scheduling class. */ u_char td_user_pri; /* (t) User pri from estcpu and nice. */ u_char td_base_user_pri; /* (t) Base user pri */ uintptr_t td_rb_list; /* (k) Robust list head. */ uintptr_t td_rbp_list; /* (k) Robust priv list head. */ uintptr_t td_rb_inact; /* (k) Current in-action mutex loc. */ struct syscall_args td_sa; /* (kx) Syscall parameters. Copied on fork for child tracing. */ void *td_sigblock_ptr; /* (k) uptr for fast sigblock. */ uint32_t td_sigblock_val; /* (k) fast sigblock value read at td_sigblock_ptr on kern entry */ #define td_endcopy td_pcb /* * Fields that must be manually set in fork1() or create_thread() * or already have been set in the allocator, constructor, etc. */ struct pcb *td_pcb; /* (k) Kernel VA of pcb and kstack. */ enum td_states { TDS_INACTIVE = 0x0, TDS_INHIBITED, TDS_CAN_RUN, TDS_RUNQ, TDS_RUNNING } td_state; /* (t) thread state */ /* Note: td_state must be accessed using TD_{GET,SET}_STATE(). */ union { syscallarg_t tdu_retval[2]; off_t tdu_off; } td_uretoff; /* (k) Syscall aux returns. */ #define td_retval td_uretoff.tdu_retval u_int td_cowgen; /* (k) Generation of COW pointers. */ /* LP64 hole */ struct callout td_slpcallout; /* (h) Callout for sleep. */ struct trapframe *td_frame; /* (k) */ vm_offset_t td_kstack; /* (a) Kernel VA of kstack. */ int td_kstack_pages; /* (a) Size of the kstack. */ volatile u_int td_critnest; /* (k*) Critical section nest level. */ struct mdthread td_md; /* (k) Any machine-dependent fields. */ struct kaudit_record *td_ar; /* (k) Active audit record, if any. */ struct lpohead td_lprof[2]; /* (a) lock profiling objects. */ struct kdtrace_thread *td_dtrace; /* (*) DTrace-specific data. */ struct vnet *td_vnet; /* (k) Effective vnet. */ const char *td_vnet_lpush; /* (k) Debugging vnet push / pop. */ struct trapframe *td_intr_frame;/* (k) Frame of the current irq */ struct proc *td_rfppwait_p; /* (k) The vforked child */ struct vm_page **td_ma; /* (k) uio pages held */ int td_ma_cnt; /* (k) size of *td_ma */ /* LP64 hole */ void *td_emuldata; /* Emulator state data */ int td_lastcpu; /* (t) Last cpu we were on. */ int td_oncpu; /* (t) Which cpu we are on. */ void *td_lkpi_task; /* LinuxKPI task struct pointer */ int td_pmcpend; void *td_coredump; /* (c) coredump request. */ off_t td_ktr_io_lim; /* (k) limit for ktrace file size */ #ifdef EPOCH_TRACE SLIST_HEAD(, epoch_tracker) td_epochs; #endif }; struct thread0_storage { struct thread t0st_thread; uint64_t t0st_sched[10]; }; struct mtx *thread_lock_block(struct thread *); void thread_lock_block_wait(struct thread *); void thread_lock_set(struct thread *, struct mtx *); void thread_lock_unblock(struct thread *, struct mtx *); #define THREAD_LOCK_ASSERT(td, type) \ mtx_assert((td)->td_lock, (type)) #define THREAD_LOCK_BLOCKED_ASSERT(td, type) \ do { \ struct mtx *__m = (td)->td_lock; \ if (__m != &blocked_lock) \ mtx_assert(__m, (type)); \ } while (0) #ifdef INVARIANTS #define THREAD_LOCKPTR_ASSERT(td, lock) \ do { \ struct mtx *__m; \ __m = (td)->td_lock; \ KASSERT(__m == (lock), \ ("Thread %p lock %p does not match %p", td, __m, (lock))); \ } while (0) #define THREAD_LOCKPTR_BLOCKED_ASSERT(td, lock) \ do { \ struct mtx *__m; \ __m = (td)->td_lock; \ KASSERT(__m == (lock) || __m == &blocked_lock, \ ("Thread %p lock %p does not match %p", td, __m, (lock))); \ } while (0) #define TD_LOCKS_INC(td) ((td)->td_locks++) #define TD_LOCKS_DEC(td) do { \ KASSERT(SCHEDULER_STOPPED_TD(td) || (td)->td_locks > 0, \ ("thread %p owns no locks", (td))); \ (td)->td_locks--; \ } while (0) #else #define THREAD_LOCKPTR_ASSERT(td, lock) #define THREAD_LOCKPTR_BLOCKED_ASSERT(td, lock) #define TD_LOCKS_INC(td) #define TD_LOCKS_DEC(td) #endif /* * Flags kept in td_flags: * To change these you MUST have the scheduler lock. */ #define TDF_BORROWING 0x00000001 /* Thread is borrowing pri from another. */ #define TDF_INPANIC 0x00000002 /* Caused a panic, let it drive crashdump. */ #define TDF_INMEM 0x00000004 /* Thread's stack is in memory. */ #define TDF_SINTR 0x00000008 /* Sleep is interruptible. */ #define TDF_TIMEOUT 0x00000010 /* Timing out during sleep. */ #define TDF_IDLETD 0x00000020 /* This is a per-CPU idle thread. */ #define TDF_CANSWAP 0x00000040 /* Thread can be swapped. */ #define TDF_SIGWAIT 0x00000080 /* Ignore ignored signals */ #define TDF_KTH_SUSP 0x00000100 /* kthread is suspended */ #define TDF_ALLPROCSUSP 0x00000200 /* suspended by SINGLE_ALLPROC */ #define TDF_BOUNDARY 0x00000400 /* Thread suspended at user boundary */ #define TDF_UNUSED1 0x00000800 /* Available */ #define TDF_UNUSED2 0x00001000 /* Available */ #define TDF_SBDRY 0x00002000 /* Stop only on usermode boundary. */ #define TDF_UPIBLOCKED 0x00004000 /* Thread blocked on user PI mutex. */ #define TDF_UNUSED3 0x00008000 /* Available */ #define TDF_UNUSED4 0x00010000 /* Available */ #define TDF_UNUSED5 0x00020000 /* Available */ #define TDF_NOLOAD 0x00040000 /* Ignore during load avg calculations. */ #define TDF_SERESTART 0x00080000 /* ERESTART on stop attempts. */ #define TDF_THRWAKEUP 0x00100000 /* Libthr thread must not suspend itself. */ #define TDF_SEINTR 0x00200000 /* EINTR on stop attempts. */ #define TDF_SWAPINREQ 0x00400000 /* Swapin request due to wakeup. */ #define TDF_UNUSED6 0x00800000 /* Available */ #define TDF_SCHED0 0x01000000 /* Reserved for scheduler private use */ #define TDF_SCHED1 0x02000000 /* Reserved for scheduler private use */ #define TDF_SCHED2 0x04000000 /* Reserved for scheduler private use */ #define TDF_SCHED3 0x08000000 /* Reserved for scheduler private use */ #define TDF_UNUSED7 0x10000000 /* Available */ #define TDF_UNUSED8 0x20000000 /* Available */ #define TDF_UNUSED9 0x40000000 /* Available */ #define TDF_UNUSED10 0x80000000 /* Available */ enum { TDA_AST = 0, /* Special: call all non-flagged AST handlers */ TDA_OWEUPC, TDA_HWPMC, TDA_VFORK, TDA_ALRM, TDA_PROF, TDA_MAC, TDA_SCHED, TDA_UFS, TDA_GEOM, TDA_KQUEUE, TDA_RACCT, TDA_MOD1, /* For third party use, before signals are */ TAD_MOD2, /* processed .. */ TDA_SIG, TDA_KTRACE, TDA_SUSPEND, TDA_SIGSUSPEND, TDA_MOD3, /* .. and after */ TAD_MOD4, TDA_MAX, }; #define TDAI(tda) (1U << (tda)) #define td_ast_pending(td, tda) ((td->td_ast & TDAI(tda)) != 0) /* Userland debug flags */ #define TDB_SUSPEND 0x00000001 /* Thread is suspended by debugger */ #define TDB_XSIG 0x00000002 /* Thread is exchanging signal under trace */ #define TDB_USERWR 0x00000004 /* Debugger modified memory or registers */ #define TDB_SCE 0x00000008 /* Thread performs syscall enter */ #define TDB_SCX 0x00000010 /* Thread performs syscall exit */ #define TDB_EXEC 0x00000020 /* TDB_SCX from exec(2) family */ #define TDB_FORK 0x00000040 /* TDB_SCX from fork(2) that created new process */ #define TDB_STOPATFORK 0x00000080 /* Stop at the return from fork (child only) */ #define TDB_CHILD 0x00000100 /* New child indicator for ptrace() */ #define TDB_BORN 0x00000200 /* New LWP indicator for ptrace() */ #define TDB_EXIT 0x00000400 /* Exiting LWP indicator for ptrace() */ #define TDB_VFORK 0x00000800 /* vfork indicator for ptrace() */ #define TDB_FSTP 0x00001000 /* The thread is PT_ATTACH leader */ #define TDB_STEP 0x00002000 /* (x86) PSL_T set for PT_STEP */ #define TDB_SSWITCH 0x00004000 /* Suspended in ptracestop */ #define TDB_COREDUMPRQ 0x00008000 /* Coredump request */ /* * "Private" flags kept in td_pflags: * These are only written by curthread and thus need no locking. */ #define TDP_OLDMASK 0x00000001 /* Need to restore mask after suspend. */ #define TDP_INKTR 0x00000002 /* Thread is currently in KTR code. */ #define TDP_INKTRACE 0x00000004 /* Thread is currently in KTRACE code. */ #define TDP_BUFNEED 0x00000008 /* Do not recurse into the buf flush */ #define TDP_COWINPROGRESS 0x00000010 /* Snapshot copy-on-write in progress. */ #define TDP_ALTSTACK 0x00000020 /* Have alternate signal stack. */ #define TDP_DEADLKTREAT 0x00000040 /* Lock acquisition - deadlock treatment. */ #define TDP_NOFAULTING 0x00000080 /* Do not handle page faults. */ #define TDP_SIGFASTBLOCK 0x00000100 /* Fast sigblock active */ #define TDP_OWEUPC 0x00000200 /* Call addupc() at next AST. */ #define TDP_ITHREAD 0x00000400 /* Thread is an interrupt thread. */ #define TDP_SYNCIO 0x00000800 /* Local override, disable async i/o. */ #define TDP_SCHED1 0x00001000 /* Reserved for scheduler private use */ #define TDP_SCHED2 0x00002000 /* Reserved for scheduler private use */ #define TDP_SCHED3 0x00004000 /* Reserved for scheduler private use */ #define TDP_SCHED4 0x00008000 /* Reserved for scheduler private use */ #define TDP_GEOM 0x00010000 /* Settle GEOM before finishing syscall */ #define TDP_SOFTDEP 0x00020000 /* Stuck processing softdep worklist */ #define TDP_NORUNNINGBUF 0x00040000 /* Ignore runningbufspace check */ #define TDP_WAKEUP 0x00080000 /* Don't sleep in umtx cond_wait */ #define TDP_INBDFLUSH 0x00100000 /* Already in BO_BDFLUSH, do not recurse */ #define TDP_KTHREAD 0x00200000 /* This is an official kernel thread */ #define TDP_CALLCHAIN 0x00400000 /* Capture thread's callchain */ #define TDP_IGNSUSP 0x00800000 /* Permission to ignore the MNTK_SUSPEND* */ #define TDP_AUDITREC 0x01000000 /* Audit record pending on thread */ #define TDP_RFPPWAIT 0x02000000 /* Handle RFPPWAIT on syscall exit */ #define TDP_RESETSPUR 0x04000000 /* Reset spurious page fault history. */ #define TDP_NERRNO 0x08000000 /* Last errno is already in td_errno */ #define TDP_UIOHELD 0x10000000 /* Current uio has pages held in td_ma */ #define TDP_UNUSED0 0x20000000 /* UNUSED */ #define TDP_EXECVMSPC 0x40000000 /* Execve destroyed old vmspace */ #define TDP_SIGFASTPENDING 0x80000000 /* Pending signal due to sigfastblock */ #define TDP2_SBPAGES 0x00000001 /* Owns sbusy on some pages */ #define TDP2_COMPAT32RB 0x00000002 /* compat32 ABI for robust lists */ #define TDP2_ACCT 0x00000004 /* Doing accounting */ /* * Reasons that the current thread can not be run yet. * More than one may apply. */ #define TDI_SUSPENDED 0x0001 /* On suspension queue. */ #define TDI_SLEEPING 0x0002 /* Actually asleep! (tricky). */ #define TDI_SWAPPED 0x0004 /* Stack not in mem. Bad juju if run. */ #define TDI_LOCK 0x0008 /* Stopped on a lock. */ #define TDI_IWAIT 0x0010 /* Awaiting interrupt. */ #define TD_IS_SLEEPING(td) ((td)->td_inhibitors & TDI_SLEEPING) #define TD_ON_SLEEPQ(td) ((td)->td_wchan != NULL) #define TD_IS_SUSPENDED(td) ((td)->td_inhibitors & TDI_SUSPENDED) #define TD_IS_SWAPPED(td) ((td)->td_inhibitors & TDI_SWAPPED) #define TD_ON_LOCK(td) ((td)->td_inhibitors & TDI_LOCK) #define TD_AWAITING_INTR(td) ((td)->td_inhibitors & TDI_IWAIT) #ifdef _KERNEL #define TD_GET_STATE(td) atomic_load_int(&(td)->td_state) #else #define TD_GET_STATE(td) ((td)->td_state) #endif #define TD_IS_RUNNING(td) (TD_GET_STATE(td) == TDS_RUNNING) #define TD_ON_RUNQ(td) (TD_GET_STATE(td) == TDS_RUNQ) #define TD_CAN_RUN(td) (TD_GET_STATE(td) == TDS_CAN_RUN) #define TD_IS_INHIBITED(td) (TD_GET_STATE(td) == TDS_INHIBITED) #define TD_ON_UPILOCK(td) ((td)->td_flags & TDF_UPIBLOCKED) #define TD_IS_IDLETHREAD(td) ((td)->td_flags & TDF_IDLETD) #define TD_CAN_ABORT(td) (TD_ON_SLEEPQ((td)) && \ ((td)->td_flags & TDF_SINTR) != 0) #define KTDSTATE(td) \ (((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep" : \ ((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" : \ ((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" : \ ((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" : \ ((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding") #define TD_SET_INHIB(td, inhib) do { \ TD_SET_STATE(td, TDS_INHIBITED); \ (td)->td_inhibitors |= (inhib); \ } while (0) #define TD_CLR_INHIB(td, inhib) do { \ if (((td)->td_inhibitors & (inhib)) && \ (((td)->td_inhibitors &= ~(inhib)) == 0)) \ TD_SET_STATE(td, TDS_CAN_RUN); \ } while (0) #define TD_SET_SLEEPING(td) TD_SET_INHIB((td), TDI_SLEEPING) #define TD_SET_SWAPPED(td) TD_SET_INHIB((td), TDI_SWAPPED) #define TD_SET_LOCK(td) TD_SET_INHIB((td), TDI_LOCK) #define TD_SET_SUSPENDED(td) TD_SET_INHIB((td), TDI_SUSPENDED) #define TD_SET_IWAIT(td) TD_SET_INHIB((td), TDI_IWAIT) #define TD_SET_EXITING(td) TD_SET_INHIB((td), TDI_EXITING) #define TD_CLR_SLEEPING(td) TD_CLR_INHIB((td), TDI_SLEEPING) #define TD_CLR_SWAPPED(td) TD_CLR_INHIB((td), TDI_SWAPPED) #define TD_CLR_LOCK(td) TD_CLR_INHIB((td), TDI_LOCK) #define TD_CLR_SUSPENDED(td) TD_CLR_INHIB((td), TDI_SUSPENDED) #define TD_CLR_IWAIT(td) TD_CLR_INHIB((td), TDI_IWAIT) #ifdef _KERNEL #define TD_SET_STATE(td, state) atomic_store_int(&(td)->td_state, state) #else #define TD_SET_STATE(td, state) (td)->td_state = state #endif #define TD_SET_RUNNING(td) TD_SET_STATE(td, TDS_RUNNING) #define TD_SET_RUNQ(td) TD_SET_STATE(td, TDS_RUNQ) #define TD_SET_CAN_RUN(td) TD_SET_STATE(td, TDS_CAN_RUN) #define TD_SBDRY_INTR(td) \ (((td)->td_flags & (TDF_SEINTR | TDF_SERESTART)) != 0) #define TD_SBDRY_ERRNO(td) \ (((td)->td_flags & TDF_SEINTR) != 0 ? EINTR : ERESTART) /* * Process structure. */ struct proc { LIST_ENTRY(proc) p_list; /* (d) List of all processes. */ TAILQ_HEAD(, thread) p_threads; /* (c) all threads. */ struct mtx p_slock; /* process spin lock */ struct ucred *p_ucred; /* (c) Process owner's identity. */ struct filedesc *p_fd; /* (b) Open files. */ struct filedesc_to_leader *p_fdtol; /* (b) Tracking node */ struct pwddesc *p_pd; /* (b) Cwd, chroot, jail, umask */ struct pstats *p_stats; /* (b) Accounting/statistics (CPU). */ struct plimit *p_limit; /* (c) Resource limits. */ struct callout p_limco; /* (c) Limit callout handle */ struct sigacts *p_sigacts; /* (x) Signal actions, state (CPU). */ int p_flag; /* (c) P_* flags. */ int p_flag2; /* (c) P2_* flags. */ enum p_states { PRS_NEW = 0, /* In creation */ PRS_NORMAL, /* threads can be run. */ PRS_ZOMBIE } p_state; /* (j/c) Process status. */ pid_t p_pid; /* (b) Process identifier. */ LIST_ENTRY(proc) p_hash; /* (d) Hash chain. */ LIST_ENTRY(proc) p_pglist; /* (g + e) List of processes in pgrp. */ struct proc *p_pptr; /* (c + e) Pointer to parent process. */ LIST_ENTRY(proc) p_sibling; /* (e) List of sibling processes. */ LIST_HEAD(, proc) p_children; /* (e) Pointer to list of children. */ struct proc *p_reaper; /* (e) My reaper. */ LIST_HEAD(, proc) p_reaplist; /* (e) List of my descendants (if I am reaper). */ LIST_ENTRY(proc) p_reapsibling; /* (e) List of siblings - descendants of the same reaper. */ struct mtx p_mtx; /* (n) Lock for this struct. */ struct mtx p_statmtx; /* Lock for the stats */ struct mtx p_itimmtx; /* Lock for the virt/prof timers */ struct mtx p_profmtx; /* Lock for the profiling */ struct ksiginfo *p_ksi; /* Locked by parent proc lock */ sigqueue_t p_sigqueue; /* (c) Sigs not delivered to a td. */ #define p_siglist p_sigqueue.sq_signals pid_t p_oppid; /* (c + e) Real parent pid. */ /* The following fields are all zeroed upon creation in fork. */ #define p_startzero p_vmspace struct vmspace *p_vmspace; /* (b) Address space. */ u_int p_swtick; /* (c) Tick when swapped in or out. */ u_int p_cowgen; /* (c) Generation of COW pointers. */ struct itimerval p_realtimer; /* (c) Alarm timer. */ struct rusage p_ru; /* (a) Exit information. */ struct rusage_ext p_rux; /* (cu) Internal resource usage. */ struct rusage_ext p_crux; /* (c) Internal child resource usage. */ int p_profthreads; /* (c) Num threads in addupc_task. */ volatile int p_exitthreads; /* (j) Number of threads exiting */ int p_traceflag; /* (o) Kernel trace points. */ struct ktr_io_params *p_ktrioparms; /* (c + o) Params for ktrace. */ struct vnode *p_textvp; /* (b) Vnode of executable. */ struct vnode *p_textdvp; /* (b) Dir containing textvp. */ char *p_binname; /* (b) Binary hardlink name. */ u_int p_lock; /* (c) Proclock (prevent swap) count. */ struct sigiolst p_sigiolst; /* (c) List of sigio sources. */ int p_sigparent; /* (c) Signal to parent on exit. */ int p_sig; /* (n) For core dump/debugger XXX. */ u_int p_ptevents; /* (c + e) ptrace() event mask. */ struct kaioinfo *p_aioinfo; /* (y) ASYNC I/O info. */ struct thread *p_singlethread;/* (c + j) If single threading this is it */ int p_suspcount; /* (j) Num threads in suspended mode. */ struct thread *p_xthread; /* (c) Trap thread */ int p_boundary_count;/* (j) Num threads at user boundary */ int p_pendingcnt; /* how many signals are pending */ struct itimers *p_itimers; /* (c) POSIX interval timers. */ struct procdesc *p_procdesc; /* (e) Process descriptor, if any. */ u_int p_treeflag; /* (e) P_TREE flags */ int p_pendingexits; /* (c) Count of pending thread exits. */ struct filemon *p_filemon; /* (c) filemon-specific data. */ int p_pdeathsig; /* (c) Signal from parent on exit. */ /* End area that is zeroed on creation. */ #define p_endzero p_magic /* The following fields are all copied upon creation in fork. */ #define p_startcopy p_endzero u_int p_magic; /* (b) Magic number. */ int p_osrel; /* (x) osreldate for the binary (from ELF note, if any) */ uint32_t p_fctl0; /* (x) ABI feature control, ELF note */ char p_comm[MAXCOMLEN + 1]; /* (x) Process name. */ struct sysentvec *p_sysent; /* (b) Syscall dispatch info. */ struct pargs *p_args; /* (c) Process arguments. */ rlim_t p_cpulimit; /* (c) Current CPU limit in seconds. */ signed char p_nice; /* (c) Process "nice" value. */ int p_fibnum; /* in this routing domain XXX MRT */ pid_t p_reapsubtree; /* (e) Pid of the direct child of the reaper which spawned our subtree. */ uint64_t p_elf_flags; /* (x) ELF flags */ void *p_elf_brandinfo; /* (x) Elf_Brandinfo, NULL for non ELF binaries. */ /* End area that is copied on creation. */ #define p_endcopy p_xexit u_int p_xexit; /* (c) Exit code. */ u_int p_xsig; /* (c) Stop/kill sig. */ struct pgrp *p_pgrp; /* (c + e) Pointer to process group. */ struct knlist *p_klist; /* (c) Knotes attached to this proc. */ int p_numthreads; /* (c) Number of threads. */ struct mdproc p_md; /* Any machine-dependent fields. */ struct callout p_itcallout; /* (h + c) Interval timer callout. */ u_short p_acflag; /* (c) Accounting flags. */ struct proc *p_peers; /* (r) */ struct proc *p_leader; /* (b) */ void *p_emuldata; /* (c) Emulator state data. */ struct label *p_label; /* (*) Proc (not subject) MAC label. */ STAILQ_HEAD(, ktr_request) p_ktr; /* (o) KTR event queue. */ LIST_HEAD(, mqueue_notifier) p_mqnotifier; /* (c) mqueue notifiers.*/ struct kdtrace_proc *p_dtrace; /* (*) DTrace-specific data. */ struct cv p_pwait; /* (*) wait cv for exit/exec. */ uint64_t p_prev_runtime; /* (c) Resource usage accounting. */ struct racct *p_racct; /* (b) Resource accounting. */ int p_throttled; /* (c) Flag for racct pcpu throttling */ /* * An orphan is the child that has been re-parented to the * debugger as a result of attaching to it. Need to keep * track of them for parent to be able to collect the exit * status of what used to be children. */ LIST_ENTRY(proc) p_orphan; /* (e) List of orphan processes. */ LIST_HEAD(, proc) p_orphans; /* (e) Pointer to list of orphans. */ TAILQ_HEAD(, kq_timer_cb_data) p_kqtim_stop; /* (c) */ + LIST_ENTRY(proc) p_jaillist; /* (d) Jail process linkage. */ }; #define p_session p_pgrp->pg_session #define p_pgid p_pgrp->pg_id #define NOCPU (-1) /* For when we aren't on a CPU. */ #define NOCPU_OLD (255) #define MAXCPU_OLD (254) #define PROC_SLOCK(p) mtx_lock_spin(&(p)->p_slock) #define PROC_SUNLOCK(p) mtx_unlock_spin(&(p)->p_slock) #define PROC_SLOCK_ASSERT(p, type) mtx_assert(&(p)->p_slock, (type)) #define PROC_STATLOCK(p) mtx_lock_spin(&(p)->p_statmtx) #define PROC_STATUNLOCK(p) mtx_unlock_spin(&(p)->p_statmtx) #define PROC_STATLOCK_ASSERT(p, type) mtx_assert(&(p)->p_statmtx, (type)) #define PROC_ITIMLOCK(p) mtx_lock_spin(&(p)->p_itimmtx) #define PROC_ITIMUNLOCK(p) mtx_unlock_spin(&(p)->p_itimmtx) #define PROC_ITIMLOCK_ASSERT(p, type) mtx_assert(&(p)->p_itimmtx, (type)) #define PROC_PROFLOCK(p) mtx_lock_spin(&(p)->p_profmtx) #define PROC_PROFUNLOCK(p) mtx_unlock_spin(&(p)->p_profmtx) #define PROC_PROFLOCK_ASSERT(p, type) mtx_assert(&(p)->p_profmtx, (type)) /* These flags are kept in p_flag. */ #define P_ADVLOCK 0x00000001 /* Process may hold a POSIX advisory lock. */ #define P_CONTROLT 0x00000002 /* Has a controlling terminal. */ #define P_KPROC 0x00000004 /* Kernel process. */ #define P_UNUSED3 0x00000008 /* --available-- */ #define P_PPWAIT 0x00000010 /* Parent is waiting for child to exec/exit. */ #define P_PROFIL 0x00000020 /* Has started profiling. */ #define P_STOPPROF 0x00000040 /* Has thread requesting to stop profiling. */ #define P_HADTHREADS 0x00000080 /* Has had threads (no cleanup shortcuts) */ #define P_SUGID 0x00000100 /* Had set id privileges since last exec. */ #define P_SYSTEM 0x00000200 /* System proc: no sigs, stats or swapping. */ #define P_SINGLE_EXIT 0x00000400 /* Threads suspending should exit, not wait. */ #define P_TRACED 0x00000800 /* Debugged process being traced. */ #define P_WAITED 0x00001000 /* Someone is waiting for us. */ #define P_WEXIT 0x00002000 /* Working on exiting. */ #define P_EXEC 0x00004000 /* Process called exec. */ #define P_WKILLED 0x00008000 /* Killed, go to kernel/user boundary ASAP. */ #define P_CONTINUED 0x00010000 /* Proc has continued from a stopped state. */ #define P_STOPPED_SIG 0x00020000 /* Stopped due to SIGSTOP/SIGTSTP. */ #define P_STOPPED_TRACE 0x00040000 /* Stopped because of tracing. */ #define P_STOPPED_SINGLE 0x00080000 /* Only 1 thread can continue (not to user). */ #define P_PROTECTED 0x00100000 /* Do not kill on memory overcommit. */ #define P_SIGEVENT 0x00200000 /* Process pending signals changed. */ #define P_SINGLE_BOUNDARY 0x00400000 /* Threads should suspend at user boundary. */ #define P_HWPMC 0x00800000 /* Process is using HWPMCs */ #define P_JAILED 0x01000000 /* Process is in jail. */ #define P_TOTAL_STOP 0x02000000 /* Stopped in stop_all_proc. */ #define P_INEXEC 0x04000000 /* Process is in execve(). */ #define P_STATCHILD 0x08000000 /* Child process stopped or exited. */ #define P_INMEM 0x10000000 /* Loaded into memory. */ #define P_SWAPPINGOUT 0x20000000 /* Process is being swapped out. */ #define P_SWAPPINGIN 0x40000000 /* Process is being swapped in. */ #define P_PPTRACE 0x80000000 /* PT_TRACEME by vforked child. */ #define P_STOPPED (P_STOPPED_SIG|P_STOPPED_SINGLE|P_STOPPED_TRACE) #define P_SHOULDSTOP(p) ((p)->p_flag & P_STOPPED) #define P_KILLED(p) ((p)->p_flag & P_WKILLED) /* These flags are kept in p_flag2. */ #define P2_INHERIT_PROTECTED 0x00000001 /* New children get P_PROTECTED. */ #define P2_NOTRACE 0x00000002 /* No ptrace(2) attach or coredumps. */ #define P2_NOTRACE_EXEC 0x00000004 /* Keep P2_NOPTRACE on exec(2). */ #define P2_AST_SU 0x00000008 /* Handles SU ast for kthreads. */ #define P2_PTRACE_FSTP 0x00000010 /* SIGSTOP from PT_ATTACH not yet handled. */ #define P2_TRAPCAP 0x00000020 /* SIGTRAP on ENOTCAPABLE */ #define P2_ASLR_ENABLE 0x00000040 /* Force enable ASLR. */ #define P2_ASLR_DISABLE 0x00000080 /* Force disable ASLR. */ #define P2_ASLR_IGNSTART 0x00000100 /* Enable ASLR to consume sbrk area. */ #define P2_PROTMAX_ENABLE 0x00000200 /* Force enable implied PROT_MAX. */ #define P2_PROTMAX_DISABLE 0x00000400 /* Force disable implied PROT_MAX. */ #define P2_STKGAP_DISABLE 0x00000800 /* Disable stack gap for MAP_STACK */ #define P2_STKGAP_DISABLE_EXEC 0x00001000 /* Stack gap disabled after exec */ #define P2_ITSTOPPED 0x00002000 #define P2_PTRACEREQ 0x00004000 /* Active ptrace req */ #define P2_NO_NEW_PRIVS 0x00008000 /* Ignore setuid */ #define P2_WXORX_DISABLE 0x00010000 /* WX mappings enabled */ #define P2_WXORX_ENABLE_EXEC 0x00020000 /* WXORX enabled after exec */ #define P2_WEXIT 0x00040000 /* exit just started, no external thread_single() is permitted */ /* Flags protected by proctree_lock, kept in p_treeflags. */ #define P_TREE_ORPHANED 0x00000001 /* Reparented, on orphan list */ #define P_TREE_FIRST_ORPHAN 0x00000002 /* First element of orphan list */ #define P_TREE_REAPER 0x00000004 /* Reaper of subtree */ #define P_TREE_GRPEXITED 0x00000008 /* exit1() done with job ctl */ /* * These were process status values (p_stat), now they are only used in * legacy conversion code. */ #define SIDL 1 /* Process being created by fork. */ #define SRUN 2 /* Currently runnable. */ #define SSLEEP 3 /* Sleeping on an address. */ #define SSTOP 4 /* Process debugging or suspension. */ #define SZOMB 5 /* Awaiting collection by parent. */ #define SWAIT 6 /* Waiting for interrupt. */ #define SLOCK 7 /* Blocked on a lock. */ #define P_MAGIC 0xbeefface #ifdef _KERNEL /* Types and flags for mi_switch(). */ #define SW_TYPE_MASK 0xff /* First 8 bits are switch type */ #define SWT_NONE 0 /* Unspecified switch. */ #define SWT_PREEMPT 1 /* Switching due to preemption. */ #define SWT_OWEPREEMPT 2 /* Switching due to owepreempt. */ #define SWT_TURNSTILE 3 /* Turnstile contention. */ #define SWT_SLEEPQ 4 /* Sleepq wait. */ #define SWT_SLEEPQTIMO 5 /* Sleepq timeout wait. */ #define SWT_RELINQUISH 6 /* yield call. */ #define SWT_NEEDRESCHED 7 /* NEEDRESCHED was set. */ #define SWT_IDLE 8 /* Switching from the idle thread. */ #define SWT_IWAIT 9 /* Waiting for interrupts. */ #define SWT_SUSPEND 10 /* Thread suspended. */ #define SWT_REMOTEPREEMPT 11 /* Remote processor preempted. */ #define SWT_REMOTEWAKEIDLE 12 /* Remote processor preempted idle. */ #define SWT_COUNT 13 /* Number of switch types. */ /* Flags */ #define SW_VOL 0x0100 /* Voluntary switch. */ #define SW_INVOL 0x0200 /* Involuntary switch. */ #define SW_PREEMPT 0x0400 /* The invol switch is a preemption */ /* How values for thread_single(). */ #define SINGLE_NO_EXIT 0 #define SINGLE_EXIT 1 #define SINGLE_BOUNDARY 2 #define SINGLE_ALLPROC 3 #ifdef MALLOC_DECLARE MALLOC_DECLARE(M_PARGS); MALLOC_DECLARE(M_SESSION); MALLOC_DECLARE(M_SUBPROC); #endif #define FOREACH_PROC_IN_SYSTEM(p) \ LIST_FOREACH((p), &allproc, p_list) #define FOREACH_THREAD_IN_PROC(p, td) \ TAILQ_FOREACH((td), &(p)->p_threads, td_plist) #define FIRST_THREAD_IN_PROC(p) TAILQ_FIRST(&(p)->p_threads) /* * We use process IDs <= pid_max <= PID_MAX; PID_MAX + 1 must also fit * in a pid_t, as it is used to represent "no process group". */ #define PID_MAX 99999 #define NO_PID 100000 #define THREAD0_TID NO_PID extern pid_t pid_max; #define SESS_LEADER(p) ((p)->p_session->s_leader == (p)) /* Lock and unlock a process. */ #define PROC_LOCK(p) mtx_lock(&(p)->p_mtx) #define PROC_TRYLOCK(p) mtx_trylock(&(p)->p_mtx) #define PROC_UNLOCK(p) mtx_unlock(&(p)->p_mtx) #define PROC_LOCKED(p) mtx_owned(&(p)->p_mtx) #define PROC_WAIT_UNLOCKED(p) mtx_wait_unlocked(&(p)->p_mtx) #define PROC_LOCK_ASSERT(p, type) mtx_assert(&(p)->p_mtx, (type)) /* Lock and unlock a process group. */ #define PGRP_LOCK(pg) mtx_lock(&(pg)->pg_mtx) #define PGRP_UNLOCK(pg) mtx_unlock(&(pg)->pg_mtx) #define PGRP_LOCKED(pg) mtx_owned(&(pg)->pg_mtx) #define PGRP_LOCK_ASSERT(pg, type) mtx_assert(&(pg)->pg_mtx, (type)) #define PGRP_LOCK_PGSIGNAL(pg) do { \ if ((pg) != NULL) \ PGRP_LOCK(pg); \ } while (0) #define PGRP_UNLOCK_PGSIGNAL(pg) do { \ if ((pg) != NULL) \ PGRP_UNLOCK(pg); \ } while (0) /* Lock and unlock a session. */ #define SESS_LOCK(s) mtx_lock(&(s)->s_mtx) #define SESS_UNLOCK(s) mtx_unlock(&(s)->s_mtx) #define SESS_LOCKED(s) mtx_owned(&(s)->s_mtx) #define SESS_LOCK_ASSERT(s, type) mtx_assert(&(s)->s_mtx, (type)) /* * Non-zero p_lock ensures that: * - exit1() is not performed until p_lock reaches zero; * - the process' threads stack are not swapped out if they are currently * not (P_INMEM). * * PHOLD() asserts that the process (except the current process) is * not exiting, increments p_lock and swaps threads stacks into memory, * if needed. * _PHOLD() is same as PHOLD(), it takes the process locked. * _PHOLD_LITE() also takes the process locked, but comparing with * _PHOLD(), it only guarantees that exit1() is not executed, * faultin() is not called. */ #define PHOLD(p) do { \ PROC_LOCK(p); \ _PHOLD(p); \ PROC_UNLOCK(p); \ } while (0) #define _PHOLD(p) do { \ PROC_LOCK_ASSERT((p), MA_OWNED); \ KASSERT(!((p)->p_flag & P_WEXIT) || (p) == curproc, \ ("PHOLD of exiting process %p", p)); \ (p)->p_lock++; \ if (((p)->p_flag & P_INMEM) == 0) \ faultin((p)); \ } while (0) #define _PHOLD_LITE(p) do { \ PROC_LOCK_ASSERT((p), MA_OWNED); \ KASSERT(!((p)->p_flag & P_WEXIT) || (p) == curproc, \ ("PHOLD of exiting process %p", p)); \ (p)->p_lock++; \ } while (0) #define PROC_ASSERT_HELD(p) do { \ KASSERT((p)->p_lock > 0, ("process %p not held", p)); \ } while (0) #define PRELE(p) do { \ PROC_LOCK((p)); \ _PRELE((p)); \ PROC_UNLOCK((p)); \ } while (0) #define _PRELE(p) do { \ PROC_LOCK_ASSERT((p), MA_OWNED); \ PROC_ASSERT_HELD(p); \ (--(p)->p_lock); \ if (((p)->p_flag & P_WEXIT) && (p)->p_lock == 0) \ wakeup(&(p)->p_lock); \ } while (0) #define PROC_ASSERT_NOT_HELD(p) do { \ KASSERT((p)->p_lock == 0, ("process %p held", p)); \ } while (0) #define PROC_UPDATE_COW(p) do { \ struct proc *_p = (p); \ PROC_LOCK_ASSERT((_p), MA_OWNED); \ atomic_store_int(&_p->p_cowgen, _p->p_cowgen + 1); \ } while (0) #define PROC_COW_CHANGECOUNT(td, p) ({ \ struct thread *_td = (td); \ struct proc *_p = (p); \ MPASS(_td == curthread); \ PROC_LOCK_ASSERT(_p, MA_OWNED); \ _p->p_cowgen - _td->td_cowgen; \ }) /* Check whether a thread is safe to be swapped out. */ #define thread_safetoswapout(td) ((td)->td_flags & TDF_CANSWAP) /* Control whether or not it is safe for curthread to sleep. */ #define THREAD_NO_SLEEPING() do { \ curthread->td_no_sleeping++; \ MPASS(curthread->td_no_sleeping > 0); \ } while (0) #define THREAD_SLEEPING_OK() do { \ MPASS(curthread->td_no_sleeping > 0); \ curthread->td_no_sleeping--; \ } while (0) #define THREAD_CAN_SLEEP() ((curthread)->td_no_sleeping == 0) #define PIDHASH(pid) (&pidhashtbl[(pid) & pidhash]) #define PIDHASHLOCK(pid) (&pidhashtbl_lock[((pid) & pidhashlock)]) extern LIST_HEAD(pidhashhead, proc) *pidhashtbl; extern struct sx *pidhashtbl_lock; extern u_long pidhash; extern u_long pidhashlock; #define PGRPHASH(pgid) (&pgrphashtbl[(pgid) & pgrphash]) extern LIST_HEAD(pgrphashhead, pgrp) *pgrphashtbl; extern u_long pgrphash; extern struct sx allproc_lock; extern int allproc_gen; extern struct sx proctree_lock; extern struct mtx ppeers_lock; extern struct mtx procid_lock; extern struct proc proc0; /* Process slot for swapper. */ extern struct thread0_storage thread0_st; /* Primary thread in proc0. */ #define thread0 (thread0_st.t0st_thread) extern struct vmspace vmspace0; /* VM space for proc0. */ extern int hogticks; /* Limit on kernel cpu hogs. */ extern int lastpid; extern int nprocs, maxproc; /* Current and max number of procs. */ extern int maxprocperuid; /* Max procs per uid. */ extern u_long ps_arg_cache_limit; LIST_HEAD(proclist, proc); TAILQ_HEAD(procqueue, proc); TAILQ_HEAD(threadqueue, thread); extern struct proclist allproc; /* List of all processes. */ extern struct proc *initproc, *pageproc; /* Process slots for init, pager. */ extern struct uma_zone *proc_zone; extern struct uma_zone *pgrp_zone; struct proc *pfind(pid_t); /* Find process by id. */ struct proc *pfind_any(pid_t); /* Find (zombie) process by id. */ struct proc *pfind_any_locked(pid_t pid); /* Find process by id, locked. */ struct pgrp *pgfind(pid_t); /* Find process group by id. */ void pidhash_slockall(void); /* Shared lock all pid hash lists. */ void pidhash_sunlockall(void); /* Shared unlock all pid hash lists. */ struct fork_req { int fr_flags; int fr_pages; int *fr_pidp; struct proc **fr_procp; int *fr_pd_fd; int fr_pd_flags; struct filecaps *fr_pd_fcaps; int fr_flags2; #define FR2_DROPSIG_CAUGHT 0x00000001 /* Drop caught non-DFL signals */ #define FR2_SHARE_PATHS 0x00000002 /* Invert sense of RFFDG for paths */ #define FR2_KPROC 0x00000004 /* Create a kernel process */ }; /* * pget() flags. */ #define PGET_HOLD 0x00001 /* Hold the process. */ #define PGET_CANSEE 0x00002 /* Check against p_cansee(). */ #define PGET_CANDEBUG 0x00004 /* Check against p_candebug(). */ #define PGET_ISCURRENT 0x00008 /* Check that the found process is current. */ #define PGET_NOTWEXIT 0x00010 /* Check that the process is not in P_WEXIT. */ #define PGET_NOTINEXEC 0x00020 /* Check that the process is not in P_INEXEC. */ #define PGET_NOTID 0x00040 /* Do not assume tid if pid > PID_MAX. */ #define PGET_WANTREAD (PGET_HOLD | PGET_CANDEBUG | PGET_NOTWEXIT) int pget(pid_t pid, int flags, struct proc **pp); /* ast_register() flags */ #define ASTR_ASTF_REQUIRED 0x0001 /* td_ast TDAI(TDA_X) flag set is required for call */ #define ASTR_TDP 0x0002 /* td_pflags flag set is required */ #define ASTR_KCLEAR 0x0004 /* call me on ast_kclear() */ #define ASTR_UNCOND 0x0008 /* call me always */ void ast(struct trapframe *framep); void ast_kclear(struct thread *td); void ast_register(int ast, int ast_flags, int tdp, void (*f)(struct thread *td, int asts)); void ast_deregister(int tda); void ast_sched_locked(struct thread *td, int tda); void ast_sched_mask(struct thread *td, int ast); void ast_sched(struct thread *td, int tda); void ast_unsched_locked(struct thread *td, int tda); struct thread *choosethread(void); int cr_cansee(struct ucred *u1, struct ucred *u2); int cr_canseesocket(struct ucred *cred, struct socket *so); int cr_canseeothergids(struct ucred *u1, struct ucred *u2); int cr_canseeotheruids(struct ucred *u1, struct ucred *u2); int cr_canseejailproc(struct ucred *u1, struct ucred *u2); int cr_cansignal(struct ucred *cred, struct proc *proc, int signum); int enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess); int enterthispgrp(struct proc *p, struct pgrp *pgrp); void faultin(struct proc *p); int fork1(struct thread *, struct fork_req *); void fork_exit(void (*)(void *, struct trapframe *), void *, struct trapframe *); void fork_return(struct thread *, struct trapframe *); int inferior(struct proc *p); void itimer_proc_continue(struct proc *p); void kqtimer_proc_continue(struct proc *p); void kern_proc_vmmap_resident(struct vm_map *map, struct vm_map_entry *entry, int *resident_count, bool *super); void kern_yield(int); void kick_proc0(void); void killjobc(void); int leavepgrp(struct proc *p); int maybe_preempt(struct thread *td); void maybe_yield(void); void mi_switch(int flags); int p_candebug(struct thread *td, struct proc *p); int p_cansee(struct thread *td, struct proc *p); int p_cansched(struct thread *td, struct proc *p); int p_cansignal(struct thread *td, struct proc *p, int signum); int p_canwait(struct thread *td, struct proc *p); struct pargs *pargs_alloc(int len); void pargs_drop(struct pargs *pa); void pargs_hold(struct pargs *pa); void proc_add_orphan(struct proc *child, struct proc *parent); int proc_get_binpath(struct proc *p, char *binname, char **fullpath, char **freepath); int proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb); int proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb); int proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb); void procinit(void); int proc_iterate(int (*cb)(struct proc *, void *), void *cbarg); void proc_linkup0(struct proc *p, struct thread *td); void proc_linkup(struct proc *p, struct thread *td); struct proc *proc_realparent(struct proc *child); void proc_reap(struct thread *td, struct proc *p, int *status, int options); void proc_reparent(struct proc *child, struct proc *newparent, bool set_oppid); void proc_set_p2_wexit(struct proc *p); void proc_set_traced(struct proc *p, bool stop); void proc_wkilled(struct proc *p); struct pstats *pstats_alloc(void); void pstats_fork(struct pstats *src, struct pstats *dst); void pstats_free(struct pstats *ps); void proc_clear_orphan(struct proc *p); void reaper_abandon_children(struct proc *p, bool exiting); int securelevel_ge(struct ucred *cr, int level); int securelevel_gt(struct ucred *cr, int level); void sess_hold(struct session *); void sess_release(struct session *); int setrunnable(struct thread *, int); void setsugid(struct proc *p); int should_yield(void); int sigonstack(size_t sp); void stopevent(struct proc *, u_int, u_int); struct thread *tdfind(lwpid_t, pid_t); void threadinit(void); void tidhash_add(struct thread *); void tidhash_remove(struct thread *); void cpu_idle(int); int cpu_idle_wakeup(int); extern void (*cpu_idle_hook)(sbintime_t); /* Hook to machdep CPU idler. */ void cpu_switch(struct thread *, struct thread *, struct mtx *); void cpu_throw(struct thread *, struct thread *) __dead2; bool curproc_sigkilled(void); void userret(struct thread *, struct trapframe *); void cpu_exit(struct thread *); void exit1(struct thread *, int, int) __dead2; void cpu_copy_thread(struct thread *td, struct thread *td0); bool cpu_exec_vmspace_reuse(struct proc *p, struct vm_map *map); int cpu_fetch_syscall_args(struct thread *td); void cpu_fork(struct thread *, struct proc *, struct thread *, int); void cpu_fork_kthread_handler(struct thread *, void (*)(void *), void *); int cpu_procctl(struct thread *td, int idtype, id_t id, int com, void *data); void cpu_set_syscall_retval(struct thread *, int); void cpu_set_upcall(struct thread *, void (*)(void *), void *, stack_t *); int cpu_set_user_tls(struct thread *, void *tls_base); void cpu_thread_alloc(struct thread *); void cpu_thread_clean(struct thread *); void cpu_thread_exit(struct thread *); void cpu_thread_free(struct thread *); void cpu_thread_swapin(struct thread *); void cpu_thread_swapout(struct thread *); struct thread *thread_alloc(int pages); int thread_alloc_stack(struct thread *, int pages); int thread_check_susp(struct thread *td, bool sleep); void thread_cow_get_proc(struct thread *newtd, struct proc *p); void thread_cow_get(struct thread *newtd, struct thread *td); void thread_cow_free(struct thread *td); void thread_cow_update(struct thread *td); void thread_cow_synced(struct thread *td); int thread_create(struct thread *td, struct rtprio *rtp, int (*initialize_thread)(struct thread *, void *), void *thunk); void thread_exit(void) __dead2; void thread_free(struct thread *td); void thread_link(struct thread *td, struct proc *p); void thread_reap_barrier(void); int thread_single(struct proc *p, int how); void thread_single_end(struct proc *p, int how); void thread_stash(struct thread *td); void thread_stopped(struct proc *p); void childproc_stopped(struct proc *child, int reason); void childproc_continued(struct proc *child); void childproc_exited(struct proc *child); void thread_run_flash(struct thread *td); int thread_suspend_check(int how); bool thread_suspend_check_needed(void); void thread_suspend_switch(struct thread *, struct proc *p); void thread_suspend_one(struct thread *td); void thread_unlink(struct thread *td); void thread_unsuspend(struct proc *p); void thread_wait(struct proc *p); bool stop_all_proc_block(void); void stop_all_proc_unblock(void); void stop_all_proc(void); void resume_all_proc(void); static __inline int curthread_pflags_set(int flags) { struct thread *td; int save; td = curthread; save = ~flags | (td->td_pflags & flags); td->td_pflags |= flags; return (save); } static __inline void curthread_pflags_restore(int save) { curthread->td_pflags &= save; } static __inline int curthread_pflags2_set(int flags) { struct thread *td; int save; td = curthread; save = ~flags | (td->td_pflags2 & flags); td->td_pflags2 |= flags; return (save); } static __inline void curthread_pflags2_restore(int save) { curthread->td_pflags2 &= save; } static __inline bool kstack_contains(struct thread *td, vm_offset_t va, size_t len) { return (va >= td->td_kstack && va + len >= va && va + len <= td->td_kstack + td->td_kstack_pages * PAGE_SIZE); } static __inline __pure2 struct td_sched * td_get_sched(struct thread *td) { return ((struct td_sched *)&td[1]); } #define PROC_ID_PID 0 #define PROC_ID_GROUP 1 #define PROC_ID_SESSION 2 #define PROC_ID_REAP 3 void proc_id_set(int type, pid_t id); void proc_id_set_cond(int type, pid_t id); void proc_id_clear(int type, pid_t id); EVENTHANDLER_LIST_DECLARE(process_ctor); EVENTHANDLER_LIST_DECLARE(process_dtor); EVENTHANDLER_LIST_DECLARE(process_init); EVENTHANDLER_LIST_DECLARE(process_fini); EVENTHANDLER_LIST_DECLARE(process_exit); EVENTHANDLER_LIST_DECLARE(process_fork); EVENTHANDLER_LIST_DECLARE(process_exec); EVENTHANDLER_LIST_DECLARE(thread_ctor); EVENTHANDLER_LIST_DECLARE(thread_dtor); EVENTHANDLER_LIST_DECLARE(thread_init); #endif /* _KERNEL */ #endif /* !_SYS_PROC_H_ */