diff --git a/stand/common/load_elf.c b/stand/common/load_elf.c
index 9ae91036dbb4..c163b50c9737 100644
--- a/stand/common/load_elf.c
+++ b/stand/common/load_elf.c
@@ -1,1337 +1,1342 @@
 /*-
  * Copyright (c) 1998 Michael Smith <msmith@freebsd.org>
  * Copyright (c) 1998 Peter Wemm <peter@freebsd.org>
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/endian.h>
 #include <sys/exec.h>
 #include <sys/linker.h>
 #include <sys/module.h>
 #include <sys/stdint.h>
 #include <string.h>
 #include <machine/elf.h>
 #include <stand.h>
 #define FREEBSD_ELF
 #include <sys/link_elf.h>
 #include <gfx_fb.h>
 
 #include "bootstrap.h"
 
 #define COPYOUT(s,d,l)	archsw.arch_copyout((vm_offset_t)(s), d, l)
 
 #if defined(__i386__) && __ELF_WORD_SIZE == 64
 #undef ELF_TARG_CLASS
 #undef ELF_TARG_MACH
 #define ELF_TARG_CLASS  ELFCLASS64
 #define ELF_TARG_MACH   EM_X86_64
 #endif
 
 typedef struct elf_file {
 	Elf_Phdr	*ph;
 	Elf_Ehdr	*ehdr;
 	Elf_Sym		*symtab;
 	Elf_Hashelt	*hashtab;
 	Elf_Hashelt	nbuckets;
 	Elf_Hashelt	nchains;
 	Elf_Hashelt	*buckets;
 	Elf_Hashelt	*chains;
 	Elf_Rel	*rel;
 	size_t	relsz;
 	Elf_Rela	*rela;
 	size_t	relasz;
 	char	*strtab;
 	size_t	strsz;
 	int		fd;
 	caddr_t	firstpage;
 	size_t	firstlen;
 	int		kernel;
 	uint64_t	off;
 #ifdef LOADER_VERIEXEC_VECTX
 	struct vectx	*vctx;
 #endif
 } *elf_file_t;
 
 #ifdef LOADER_VERIEXEC_VECTX
 #define VECTX_HANDLE(ef) (ef)->vctx
 #else
 #define VECTX_HANDLE(ef) (ef)->fd
 #endif
 
 static int __elfN(loadimage)(struct preloaded_file *mp, elf_file_t ef,
     uint64_t loadaddr);
 static int __elfN(lookup_symbol)(elf_file_t ef, const char* name,
     Elf_Sym *sym, unsigned char type);
 static int __elfN(reloc_ptr)(struct preloaded_file *mp, elf_file_t ef,
     Elf_Addr p, void *val, size_t len);
 static int __elfN(parse_modmetadata)(struct preloaded_file *mp, elf_file_t ef,
     Elf_Addr p_start, Elf_Addr p_end);
 static bool __elfN(parse_vt_drv_set)(struct preloaded_file *mp, elf_file_t ef,
     Elf_Addr p_start, Elf_Addr p_end);
 static symaddr_fn __elfN(symaddr);
 static char	*fake_modname(const char *name);
 
 const char	*__elfN(kerneltype) = "elf kernel";
 const char	*__elfN(moduletype) = "elf module";
 
 uint64_t	__elfN(relocation_offset) = 0;
 
 extern void elf_wrong_field_size(void);
 #define CONVERT_FIELD(b, f, e)			\
 	switch (sizeof((b)->f)) {		\
 	case 2:					\
 		(b)->f = e ## 16toh((b)->f);	\
 		break;				\
 	case 4:					\
 		(b)->f = e ## 32toh((b)->f);	\
 		break;				\
 	case 8:					\
 		(b)->f = e ## 64toh((b)->f);	\
 		break;				\
 	default:				\
 		/* Force a link time error. */	\
 		elf_wrong_field_size();		\
 		break;				\
 	}
 
 #define CONVERT_SWITCH(h, d, f)			\
 	switch ((h)->e_ident[EI_DATA]) {	\
 	case ELFDATA2MSB:			\
 		f(d, be);			\
 		break;				\
 	case ELFDATA2LSB:			\
 		f(d, le);			\
 		break;				\
 	default:				\
 		return (EINVAL);		\
 	}
 
 
 static int elf_header_convert(Elf_Ehdr *ehdr)
 {
 	/*
 	 * Fixup ELF header endianness.
 	 *
 	 * The Xhdr structure was loaded using block read call to optimize file
 	 * accesses. It might happen, that the endianness of the system memory
 	 * is different that endianness of the ELF header.  Swap fields here to
 	 * guarantee that Xhdr always contain valid data regardless of
 	 * architecture.
 	 */
 #define HEADER_FIELDS(b, e)			\
 	CONVERT_FIELD(b, e_type, e);		\
 	CONVERT_FIELD(b, e_machine, e);		\
 	CONVERT_FIELD(b, e_version, e);		\
 	CONVERT_FIELD(b, e_entry, e);		\
 	CONVERT_FIELD(b, e_phoff, e);		\
 	CONVERT_FIELD(b, e_shoff, e);		\
 	CONVERT_FIELD(b, e_flags, e);		\
 	CONVERT_FIELD(b, e_ehsize, e);		\
 	CONVERT_FIELD(b, e_phentsize, e);	\
 	CONVERT_FIELD(b, e_phnum, e);		\
 	CONVERT_FIELD(b, e_shentsize, e);	\
 	CONVERT_FIELD(b, e_shnum, e);		\
 	CONVERT_FIELD(b, e_shstrndx, e)
 
 	CONVERT_SWITCH(ehdr, ehdr, HEADER_FIELDS);
 
 #undef HEADER_FIELDS
 
 	return (0);
 }
 
 static int elf_program_header_convert(const Elf_Ehdr *ehdr, Elf_Phdr *phdr)
 {
 #define PROGRAM_HEADER_FIELDS(b, e)		\
 	CONVERT_FIELD(b, p_type, e);		\
 	CONVERT_FIELD(b, p_flags, e);		\
 	CONVERT_FIELD(b, p_offset, e);		\
 	CONVERT_FIELD(b, p_vaddr, e);		\
 	CONVERT_FIELD(b, p_paddr, e);		\
 	CONVERT_FIELD(b, p_filesz, e);		\
 	CONVERT_FIELD(b, p_memsz, e);		\
 	CONVERT_FIELD(b, p_align, e)
 
 	CONVERT_SWITCH(ehdr, phdr, PROGRAM_HEADER_FIELDS);
 
 #undef PROGRAM_HEADER_FIELDS
 
 	return (0);
 }
 
 static int elf_section_header_convert(const Elf_Ehdr *ehdr, Elf_Shdr *shdr)
 {
 #define SECTION_HEADER_FIELDS(b, e)		\
 	CONVERT_FIELD(b, sh_name, e);		\
 	CONVERT_FIELD(b, sh_type, e);		\
 	CONVERT_FIELD(b, sh_link, e);		\
 	CONVERT_FIELD(b, sh_info, e);		\
 	CONVERT_FIELD(b, sh_flags, e);		\
 	CONVERT_FIELD(b, sh_addr, e);		\
 	CONVERT_FIELD(b, sh_offset, e);		\
 	CONVERT_FIELD(b, sh_size, e);		\
 	CONVERT_FIELD(b, sh_addralign, e);	\
 	CONVERT_FIELD(b, sh_entsize, e)
 
 	CONVERT_SWITCH(ehdr, shdr, SECTION_HEADER_FIELDS);
 
 #undef SECTION_HEADER_FIELDS
 
 	return (0);
 }
 #undef CONVERT_SWITCH
 #undef CONVERT_FIELD
 
 
 #ifdef __amd64__
 static bool
 is_kernphys_relocatable(elf_file_t ef)
 {
 	Elf_Sym sym;
 
 	return (__elfN(lookup_symbol)(ef, "kernphys", &sym, STT_OBJECT) == 0 &&
 	    sym.st_size == 8);
 }
 #endif
 
 static int
 __elfN(load_elf_header)(char *filename, elf_file_t ef)
 {
 	ssize_t			 bytes_read;
 	Elf_Ehdr		*ehdr;
 	int			 err;
 
 	/*
 	 * Open the image, read and validate the ELF header
 	 */
 	if (filename == NULL)	/* can't handle nameless */
 		return (EFTYPE);
 	if ((ef->fd = open(filename, O_RDONLY)) == -1)
 		return (errno);
 	ef->firstpage = malloc(PAGE_SIZE);
 	if (ef->firstpage == NULL) {
 		close(ef->fd);
 		return (ENOMEM);
 	}
 #ifdef LOADER_VERIEXEC_VECTX
 	{
 		int verror;
 
 		ef->vctx = vectx_open(ef->fd, filename, 0L, NULL, &verror, __func__);
 		if (verror) {
 			printf("Unverified %s: %s\n", filename, ve_error_get());
 			close(ef->fd);
 			free(ef->vctx);
 			return (EAUTH);
 		}
 	}
 #endif
 	bytes_read = VECTX_READ(VECTX_HANDLE(ef), ef->firstpage, PAGE_SIZE);
 	ef->firstlen = (size_t)bytes_read;
 	if (bytes_read < 0 || ef->firstlen <= sizeof(Elf_Ehdr)) {
 		err = EFTYPE; /* could be EIO, but may be small file */
 		goto error;
 	}
 	ehdr = ef->ehdr = (Elf_Ehdr *)ef->firstpage;
 
 	/* Is it ELF? */
 	if (!IS_ELF(*ehdr)) {
 		err = EFTYPE;
 		goto error;
 	}
 
 	if (ehdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || /* Layout ? */
 	    ehdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
 	    ehdr->e_ident[EI_VERSION] != EV_CURRENT) /* Version ? */ {
 		err = EFTYPE;
 		goto error;
 	}
 
 	err = elf_header_convert(ehdr);
 	if (err)
 		goto error;
 
 	if (ehdr->e_version != EV_CURRENT || ehdr->e_machine != ELF_TARG_MACH) {
 		/* Machine ? */
 		err = EFTYPE;
 		goto error;
 	}
 
 #if defined(LOADER_VERIEXEC) && !defined(LOADER_VERIEXEC_VECTX)
 	if (verify_file(ef->fd, filename, bytes_read, VE_MUST, __func__) < 0) {
 		err = EAUTH;
 		goto error;
 	}
 #endif
 	return (0);
 
 error:
 	if (ef->firstpage != NULL) {
 		free(ef->firstpage);
 		ef->firstpage = NULL;
 	}
 	if (ef->fd != -1) {
 #ifdef LOADER_VERIEXEC_VECTX
 		free(ef->vctx);
 #endif
 		close(ef->fd);
 		ef->fd = -1;
 	}
 	return (err);
 }
 
 /*
  * Attempt to load the file (file) as an ELF module.  It will be stored at
  * (dest), and a pointer to a module structure describing the loaded object
  * will be saved in (result).
  */
 int
 __elfN(loadfile)(char *filename, uint64_t dest, struct preloaded_file **result)
 {
 	return (__elfN(loadfile_raw)(filename, dest, result, 0));
 }
 
 int
 __elfN(loadfile_raw)(char *filename, uint64_t dest,
     struct preloaded_file **result, int multiboot)
 {
 	struct preloaded_file	*fp, *kfp;
 	struct elf_file		ef;
 	Elf_Ehdr		*ehdr;
 	int			err;
 
 	fp = NULL;
 	bzero(&ef, sizeof(struct elf_file));
 	ef.fd = -1;
 
 	err = __elfN(load_elf_header)(filename, &ef);
 	if (err != 0)
 		return (err);
 
 	ehdr = ef.ehdr;
 
 	/*
 	 * Check to see what sort of module we are.
 	 */
 	kfp = file_findfile(NULL, __elfN(kerneltype));
 #ifdef __powerpc__
 	/*
 	 * Kernels can be ET_DYN, so just assume the first loaded object is the
 	 * kernel. This assumption will be checked later.
 	 */
 	if (kfp == NULL)
 		ef.kernel = 1;
 #endif
 	if (ef.kernel || ehdr->e_type == ET_EXEC) {
 		/* Looks like a kernel */
 		if (kfp != NULL) {
 			printf("elf" __XSTRING(__ELF_WORD_SIZE)
 			    "_loadfile: kernel already loaded\n");
 			err = EPERM;
 			goto oerr;
 		}
 		/*
 		 * Calculate destination address based on kernel entrypoint.
 		 *
 		 * For ARM, the destination address is independent of any values
 		 * in the elf header (an ARM kernel can be loaded at any 2MB
 		 * boundary), so we leave dest set to the value calculated by
 		 * archsw.arch_loadaddr() and passed in to this function.
 		 */
 #ifndef __arm__
 		if (ehdr->e_type == ET_EXEC)
 			dest = (ehdr->e_entry & ~PAGE_MASK);
 #endif
 		if ((ehdr->e_entry & ~PAGE_MASK) == 0) {
 			printf("elf" __XSTRING(__ELF_WORD_SIZE)
 			    "_loadfile: not a kernel (maybe static binary?)\n");
 			err = EPERM;
 			goto oerr;
 		}
 		ef.kernel = 1;
 
 	} else if (ehdr->e_type == ET_DYN) {
 		/* Looks like a kld module */
 		if (multiboot != 0) {
 			printf("elf" __XSTRING(__ELF_WORD_SIZE)
 			    "_loadfile: can't load module as multiboot\n");
 			err = EPERM;
 			goto oerr;
 		}
 		if (kfp == NULL) {
 			printf("elf" __XSTRING(__ELF_WORD_SIZE)
 			    "_loadfile: can't load module before kernel\n");
 			err = EPERM;
 			goto oerr;
 		}
 		if (strcmp(__elfN(kerneltype), kfp->f_type)) {
 			printf("elf" __XSTRING(__ELF_WORD_SIZE)
 			 "_loadfile: can't load module with kernel type '%s'\n",
 			    kfp->f_type);
 			err = EPERM;
 			goto oerr;
 		}
 		/* Looks OK, got ahead */
 		ef.kernel = 0;
 	
 	} else {
 		err = EFTYPE;
 		goto oerr;
 	}
 
 	if (archsw.arch_loadaddr != NULL)
 		dest = archsw.arch_loadaddr(LOAD_ELF, ehdr, dest);
 	else
 		dest = roundup(dest, PAGE_SIZE);
 
 	/*
 	 * Ok, we think we should handle this.
 	 */
 	fp = file_alloc();
 	if (fp == NULL) {
 		printf("elf" __XSTRING(__ELF_WORD_SIZE)
 		    "_loadfile: cannot allocate module info\n");
 		err = EPERM;
 		goto out;
 	}
 	if (ef.kernel == 1 && multiboot == 0)
 		setenv("kernelname", filename, 1);
 	fp->f_name = strdup(filename);
 	if (multiboot == 0)
 		fp->f_type = strdup(ef.kernel ?
 		    __elfN(kerneltype) : __elfN(moduletype));
 	else
 		fp->f_type = strdup("elf multiboot kernel");
 
 #ifdef ELF_VERBOSE
 	if (ef.kernel)
 		printf("%s entry at 0x%jx\n", filename,
 		    (uintmax_t)ehdr->e_entry);
 #else
 	printf("%s ", filename);
 #endif
 
 	fp->f_size = __elfN(loadimage)(fp, &ef, dest);
 	if (fp->f_size == 0 || fp->f_addr == 0)
 		goto ioerr;
 
 	/* save exec header as metadata */
 	file_addmetadata(fp, MODINFOMD_ELFHDR, sizeof(*ehdr), ehdr);
 
 	/* Load OK, return module pointer */
 	*result = (struct preloaded_file *)fp;
 	err = 0;
 #ifdef __amd64__
-	fp->f_kernphys_relocatable = is_kernphys_relocatable(&ef);
+	fp->f_kernphys_relocatable = multiboot || is_kernphys_relocatable(&ef);
 #endif
 	goto out;
 
 ioerr:
 	err = EIO;
 oerr:
 	file_discard(fp);
 out:
 	if (ef.firstpage)
 		free(ef.firstpage);
 	if (ef.fd != -1) {
 #ifdef LOADER_VERIEXEC_VECTX
 		if (!err && ef.vctx) {
 			int verror;
 
 			verror = vectx_close(ef.vctx, VE_MUST, __func__);
 			if (verror) {
 				err = EAUTH;
 				file_discard(fp);
 			}
 		}
 #endif
 		close(ef.fd);
 	}
 	return (err);
 }
 
 /*
  * With the file (fd) open on the image, and (ehdr) containing
  * the Elf header, load the image at (off)
  */
 static int
 __elfN(loadimage)(struct preloaded_file *fp, elf_file_t ef, uint64_t off)
 {
 	int		i;
 	u_int		j;
 	Elf_Ehdr	*ehdr;
 	Elf_Phdr	*phdr, *php;
 	Elf_Shdr	*shdr;
 	char		*shstr;
 	int		ret;
 	vm_offset_t	firstaddr;
 	vm_offset_t	lastaddr;
 	size_t		chunk;
 	ssize_t		result;
 	Elf_Addr	ssym, esym;
 	Elf_Dyn		*dp;
 	Elf_Addr	adp;
 	Elf_Addr	ctors;
 	int		ndp;
 	int		symstrindex;
 	int		symtabindex;
 	Elf_Size	size;
 	u_int		fpcopy;
 	Elf_Sym		sym;
 	Elf_Addr	p_start, p_end;
 
 	dp = NULL;
 	shdr = NULL;
 	ret = 0;
 	firstaddr = lastaddr = 0;
 	ehdr = ef->ehdr;
 #ifdef __powerpc__
 	if (ef->kernel) {
 #else
 	if (ehdr->e_type == ET_EXEC) {
 #endif
 #if defined(__i386__) || defined(__amd64__)
 #if __ELF_WORD_SIZE == 64
 		/* x86_64 relocates after locore */
 		off = - (off & 0xffffffffff000000ull);
 #else
 		/* i386 relocates after locore */
 		off = - (off & 0xff000000u);
 #endif
 #elif defined(__powerpc__)
 		/*
 		 * On the purely virtual memory machines like e500, the kernel
 		 * is linked against its final VA range, which is most often
 		 * not available at the loader stage, but only after kernel
 		 * initializes and completes its VM settings. In such cases we
 		 * cannot use p_vaddr field directly to load ELF segments, but
 		 * put them at some 'load-time' locations.
 		 */
 		if (off & 0xf0000000u) {
 			off = -(off & 0xf0000000u);
 			/*
 			 * XXX the physical load address should not be
 			 * hardcoded. Note that the Book-E kernel assumes that
 			 * it's loaded at a 16MB boundary for now...
 			 */
 			off += 0x01000000;
 		}
 		ehdr->e_entry += off;
 #ifdef ELF_VERBOSE
 		printf("Converted entry 0x%jx\n", (uintmax_t)ehdr->e_entry);
 #endif
 #elif defined(__arm__) && !defined(EFI)
 		/*
 		 * The elf headers in arm kernels specify virtual addresses in
 		 * all header fields, even the ones that should be physical
 		 * addresses.  We assume the entry point is in the first page,
 		 * and masking the page offset will leave us with the virtual
 		 * address the kernel was linked at.  We subtract that from the
 		 * load offset, making 'off' into the value which, when added
 		 * to a virtual address in an elf header, translates it to a
 		 * physical address.  We do the va->pa conversion on the entry
 		 * point address in the header now, so that later we can launch
 		 * the kernel by just jumping to that address.
 		 *
 		 * When booting from UEFI the copyin and copyout functions
 		 * handle adjusting the location relative to the first virtual
 		 * address.  Because of this there is no need to adjust the
 		 * offset or entry point address as these will both be handled
 		 * by the efi code.
 		 */
 		off -= ehdr->e_entry & ~PAGE_MASK;
 		ehdr->e_entry += off;
 #ifdef ELF_VERBOSE
 		printf("ehdr->e_entry 0x%jx, va<->pa off %llx\n",
 		    (uintmax_t)ehdr->e_entry, off);
 #endif
 #else
 		off = 0;	/* other archs use direct mapped kernels */
 #endif
 	}
 	ef->off = off;
 
 	if (ef->kernel)
 		__elfN(relocation_offset) = off;
 
 	if ((ehdr->e_phoff + ehdr->e_phnum * sizeof(*phdr)) > ef->firstlen) {
 		printf("elf" __XSTRING(__ELF_WORD_SIZE)
 		    "_loadimage: program header not within first page\n");
 		goto out;
 	}
 	phdr = (Elf_Phdr *)(ef->firstpage + ehdr->e_phoff);
 
 	for (i = 0; i < ehdr->e_phnum; i++) {
 		if (elf_program_header_convert(ehdr, phdr))
 			continue;
 
 		/* We want to load PT_LOAD segments only.. */
 		if (phdr[i].p_type != PT_LOAD)
 			continue;
 
 #ifdef ELF_VERBOSE
 		printf("Segment: 0x%lx@0x%lx -> 0x%lx-0x%lx",
 		    (long)phdr[i].p_filesz, (long)phdr[i].p_offset,
 		    (long)(phdr[i].p_vaddr + off),
 		    (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz - 1));
 #else
 		if ((phdr[i].p_flags & PF_W) == 0) {
 			printf("text=0x%lx ", (long)phdr[i].p_filesz);
 		} else {
 			printf("data=0x%lx", (long)phdr[i].p_filesz);
 			if (phdr[i].p_filesz < phdr[i].p_memsz)
 				printf("+0x%lx", (long)(phdr[i].p_memsz -
 				    phdr[i].p_filesz));
 			printf(" ");
 		}
 #endif
 		fpcopy = 0;
 		if (ef->firstlen > phdr[i].p_offset) {
 			fpcopy = ef->firstlen - phdr[i].p_offset;
 			archsw.arch_copyin(ef->firstpage + phdr[i].p_offset,
 			    phdr[i].p_vaddr + off, fpcopy);
 		}
 		if (phdr[i].p_filesz > fpcopy) {
 			if (kern_pread(VECTX_HANDLE(ef),
 			    phdr[i].p_vaddr + off + fpcopy,
 			    phdr[i].p_filesz - fpcopy,
 			    phdr[i].p_offset + fpcopy) != 0) {
 				printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
 				    "_loadimage: read failed\n");
 				goto out;
 			}
 		}
 		/* clear space from oversized segments; eg: bss */
 		if (phdr[i].p_filesz < phdr[i].p_memsz) {
 #ifdef ELF_VERBOSE
 			printf(" (bss: 0x%lx-0x%lx)",
 			    (long)(phdr[i].p_vaddr + off + phdr[i].p_filesz),
 			    (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz -1));
 #endif
 
 			kern_bzero(phdr[i].p_vaddr + off + phdr[i].p_filesz,
 			    phdr[i].p_memsz - phdr[i].p_filesz);
 		}
 #ifdef ELF_VERBOSE
 		printf("\n");
 #endif
 
 		if (archsw.arch_loadseg != NULL)
 			archsw.arch_loadseg(ehdr, phdr + i, off);
 
 		if (firstaddr == 0 || firstaddr > (phdr[i].p_vaddr + off))
 			firstaddr = phdr[i].p_vaddr + off;
 		if (lastaddr == 0 || lastaddr <
 		    (phdr[i].p_vaddr + off + phdr[i].p_memsz))
 			lastaddr = phdr[i].p_vaddr + off + phdr[i].p_memsz;
 	}
 	lastaddr = roundup(lastaddr, sizeof(long));
 
 	/*
 	 * Get the section headers.  We need this for finding the .ctors
 	 * section as well as for loading any symbols.  Both may be hard
 	 * to do if reading from a .gz file as it involves seeking.  I
 	 * think the rule is going to have to be that you must strip a
 	 * file to remove symbols before gzipping it.
 	 */
 	chunk = (size_t)ehdr->e_shnum * (size_t)ehdr->e_shentsize;
 	if (chunk == 0 || ehdr->e_shoff == 0)
 		goto nosyms;
 	shdr = alloc_pread(VECTX_HANDLE(ef), ehdr->e_shoff, chunk);
 	if (shdr == NULL) {
 		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
 		    "_loadimage: failed to read section headers");
 		goto nosyms;
 	}
 
 	for (i = 0; i < ehdr->e_shnum; i++)
 		elf_section_header_convert(ehdr, &shdr[i]);
 
 	file_addmetadata(fp, MODINFOMD_SHDR, chunk, shdr);
 
 	/*
 	 * Read the section string table and look for the .ctors section.
 	 * We need to tell the kernel where it is so that it can call the
 	 * ctors.
 	 */
 	chunk = shdr[ehdr->e_shstrndx].sh_size;
 	if (chunk) {
 		shstr = alloc_pread(VECTX_HANDLE(ef),
 		    shdr[ehdr->e_shstrndx].sh_offset, chunk);
 		if (shstr) {
 			for (i = 0; i < ehdr->e_shnum; i++) {
 				if (strcmp(shstr + shdr[i].sh_name,
 				    ".ctors") != 0)
 					continue;
 				ctors = shdr[i].sh_addr;
 				file_addmetadata(fp, MODINFOMD_CTORS_ADDR,
 				    sizeof(ctors), &ctors);
 				size = shdr[i].sh_size;
 				file_addmetadata(fp, MODINFOMD_CTORS_SIZE,
 				    sizeof(size), &size);
 				break;
 			}
 			free(shstr);
 		}
 	}
 
 	/*
 	 * Now load any symbols.
 	 */
 	symtabindex = -1;
 	symstrindex = -1;
 	for (i = 0; i < ehdr->e_shnum; i++) {
 		if (shdr[i].sh_type != SHT_SYMTAB)
 			continue;
 		for (j = 0; j < ehdr->e_phnum; j++) {
 			if (phdr[j].p_type != PT_LOAD)
 				continue;
 			if (shdr[i].sh_offset >= phdr[j].p_offset &&
 			    (shdr[i].sh_offset + shdr[i].sh_size <=
 			    phdr[j].p_offset + phdr[j].p_filesz)) {
 				shdr[i].sh_offset = 0;
 				shdr[i].sh_size = 0;
 				break;
 			}
 		}
 		if (shdr[i].sh_offset == 0 || shdr[i].sh_size == 0)
 			continue;	/* alread loaded in a PT_LOAD above */
 		/* Save it for loading below */
 		symtabindex = i;
 		symstrindex = shdr[i].sh_link;
 	}
 	if (symtabindex < 0 || symstrindex < 0)
 		goto nosyms;
 
 	/* Ok, committed to a load. */
 #ifndef ELF_VERBOSE
 	printf("syms=[");
 #endif
 	ssym = lastaddr;
 	for (i = symtabindex; i >= 0; i = symstrindex) {
 #ifdef ELF_VERBOSE
 		char	*secname;
 
 		switch(shdr[i].sh_type) {
 		case SHT_SYMTAB:		/* Symbol table */
 			secname = "symtab";
 			break;
 		case SHT_STRTAB:		/* String table */
 			secname = "strtab";
 			break;
 		default:
 			secname = "WHOA!!";
 			break;
 		}
 #endif
 		size = shdr[i].sh_size;
 #if defined(__powerpc__)
   #if __ELF_WORD_SIZE == 64
 		size = htobe64(size);
   #else
 		size = htobe32(size);
   #endif
 #endif
 
 		archsw.arch_copyin(&size, lastaddr, sizeof(size));
 		lastaddr += sizeof(size);
 
 #ifdef ELF_VERBOSE
 		printf("\n%s: 0x%jx@0x%jx -> 0x%jx-0x%jx", secname,
 		    (uintmax_t)shdr[i].sh_size, (uintmax_t)shdr[i].sh_offset,
 		    (uintmax_t)lastaddr,
 		    (uintmax_t)(lastaddr + shdr[i].sh_size));
 #else
 		if (i == symstrindex)
 			printf("+");
 		printf("0x%lx+0x%lx", (long)sizeof(size), (long)size);
 #endif
 
 		if (VECTX_LSEEK(VECTX_HANDLE(ef), (off_t)shdr[i].sh_offset, SEEK_SET) == -1) {
 			printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
 			   "_loadimage: could not seek for symbols - skipped!");
 			lastaddr = ssym;
 			ssym = 0;
 			goto nosyms;
 		}
 		result = archsw.arch_readin(VECTX_HANDLE(ef), lastaddr, shdr[i].sh_size);
 		if (result < 0 || (size_t)result != shdr[i].sh_size) {
 			printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
 			    "_loadimage: could not read symbols - skipped! "
 			    "(%ju != %ju)", (uintmax_t)result,
 			    (uintmax_t)shdr[i].sh_size);
 			lastaddr = ssym;
 			ssym = 0;
 			goto nosyms;
 		}
 		/* Reset offsets relative to ssym */
 		lastaddr += shdr[i].sh_size;
 		lastaddr = roundup(lastaddr, sizeof(size));
 		if (i == symtabindex)
 			symtabindex = -1;
 		else if (i == symstrindex)
 			symstrindex = -1;
 	}
 	esym = lastaddr;
 #ifndef ELF_VERBOSE
 	printf("]");
 #endif
 
 #if defined(__powerpc__)
   /* On PowerPC we always need to provide BE data to the kernel */
   #if __ELF_WORD_SIZE == 64
 	ssym = htobe64((uint64_t)ssym);
 	esym = htobe64((uint64_t)esym);
   #else
 	ssym = htobe32((uint32_t)ssym);
 	esym = htobe32((uint32_t)esym);
   #endif
 #endif
 
 	file_addmetadata(fp, MODINFOMD_SSYM, sizeof(ssym), &ssym);
 	file_addmetadata(fp, MODINFOMD_ESYM, sizeof(esym), &esym);
 
 nosyms:
 	printf("\n");
 
 	ret = lastaddr - firstaddr;
 	fp->f_addr = firstaddr;
 
 	php = NULL;
 	for (i = 0; i < ehdr->e_phnum; i++) {
 		if (phdr[i].p_type == PT_DYNAMIC) {
 			php = phdr + i;
 			adp = php->p_vaddr;
 			file_addmetadata(fp, MODINFOMD_DYNAMIC, sizeof(adp),
 			    &adp);
 			break;
 		}
 	}
 
 	if (php == NULL) /* this is bad, we cannot get to symbols or _DYNAMIC */
 		goto out;
 
 	ndp = php->p_filesz / sizeof(Elf_Dyn);
 	if (ndp == 0)
 		goto out;
 	dp = malloc(php->p_filesz);
 	if (dp == NULL)
 		goto out;
 	archsw.arch_copyout(php->p_vaddr + off, dp, php->p_filesz);
 
 	ef->strsz = 0;
 	for (i = 0; i < ndp; i++) {
 		if (dp[i].d_tag == 0)
 			break;
 		switch (dp[i].d_tag) {
 		case DT_HASH:
 			ef->hashtab =
 			    (Elf_Hashelt*)(uintptr_t)(dp[i].d_un.d_ptr + off);
 			break;
 		case DT_STRTAB:
 			ef->strtab =
 			    (char *)(uintptr_t)(dp[i].d_un.d_ptr + off);
 			break;
 		case DT_STRSZ:
 			ef->strsz = dp[i].d_un.d_val;
 			break;
 		case DT_SYMTAB:
 			ef->symtab =
 			    (Elf_Sym *)(uintptr_t)(dp[i].d_un.d_ptr + off);
 			break;
 		case DT_REL:
 			ef->rel =
 			    (Elf_Rel *)(uintptr_t)(dp[i].d_un.d_ptr + off);
 			break;
 		case DT_RELSZ:
 			ef->relsz = dp[i].d_un.d_val;
 			break;
 		case DT_RELA:
 			ef->rela =
 			    (Elf_Rela *)(uintptr_t)(dp[i].d_un.d_ptr + off);
 			break;
 		case DT_RELASZ:
 			ef->relasz = dp[i].d_un.d_val;
 			break;
 		default:
 			break;
 		}
 	}
 	if (ef->hashtab == NULL || ef->symtab == NULL ||
 	    ef->strtab == NULL || ef->strsz == 0)
 		goto out;
 	COPYOUT(ef->hashtab, &ef->nbuckets, sizeof(ef->nbuckets));
 	COPYOUT(ef->hashtab + 1, &ef->nchains, sizeof(ef->nchains));
 	ef->buckets = ef->hashtab + 2;
 	ef->chains = ef->buckets + ef->nbuckets;
 
 	if (!gfx_state.tg_kernel_supported &&
 	    __elfN(lookup_symbol)(ef, "__start_set_vt_drv_set", &sym,
 	    STT_NOTYPE) == 0) {
 		p_start = sym.st_value + ef->off;
 		if (__elfN(lookup_symbol)(ef, "__stop_set_vt_drv_set", &sym,
 		    STT_NOTYPE) == 0) {
 			p_end = sym.st_value + ef->off;
 			gfx_state.tg_kernel_supported =
 			    __elfN(parse_vt_drv_set)(fp, ef, p_start, p_end);
 		}
 	}
 
 	if (__elfN(lookup_symbol)(ef, "__start_set_modmetadata_set", &sym,
 	    STT_NOTYPE) != 0)
 		return 0;
 	p_start = sym.st_value + ef->off;
 	if (__elfN(lookup_symbol)(ef, "__stop_set_modmetadata_set", &sym,
 	    STT_NOTYPE) != 0)
 		return 0;
 	p_end = sym.st_value + ef->off;
 
 	if (__elfN(parse_modmetadata)(fp, ef, p_start, p_end) == 0)
 		goto out;
 
 	if (ef->kernel)		/* kernel must not depend on anything */
 		goto out;
 
 out:
 	if (dp)
 		free(dp);
 	if (shdr)
 		free(shdr);
 	return ret;
 }
 
 static char invalid_name[] = "bad";
 
 char *
 fake_modname(const char *name)
 {
 	const char *sp, *ep;
 	char *fp;
 	size_t len;
 
 	sp = strrchr(name, '/');
 	if (sp)
 		sp++;
 	else
 		sp = name;
 
 	ep = strrchr(sp, '.');
 	if (ep == NULL) {
 		ep = sp + strlen(sp);
 	}
 	if (ep == sp) {
 		sp = invalid_name;
 		ep = invalid_name + sizeof(invalid_name) - 1;
 	}
 
 	len = ep - sp;
 	fp = malloc(len + 1);
 	if (fp == NULL)
 		return NULL;
 	memcpy(fp, sp, len);
 	fp[len] = '\0';
 	return fp;
 }
 
 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64
 struct mod_metadata64 {
 	int		md_version;	/* structure version MDTV_* */
 	int		md_type;	/* type of entry MDT_* */
 	uint64_t	md_data;	/* specific data */
 	uint64_t	md_cval;	/* common string label */
 };
 #endif
 #if defined(__amd64__) && __ELF_WORD_SIZE == 32
 struct mod_metadata32 {
 	int		md_version;	/* structure version MDTV_* */
 	int		md_type;	/* type of entry MDT_* */
 	uint32_t	md_data;	/* specific data */
 	uint32_t	md_cval;	/* common string label */
 };
 #endif
 
 int
 __elfN(load_modmetadata)(struct preloaded_file *fp, uint64_t dest)
 {
 	struct elf_file		 ef;
 	int			 err, i, j;
 	Elf_Shdr		*sh_meta, *shdr = NULL;
 	Elf_Shdr		*sh_data[2];
 	char			*shstrtab = NULL;
 	size_t			 size;
 	Elf_Addr		 p_start, p_end;
 
 	bzero(&ef, sizeof(struct elf_file));
 	ef.fd = -1;
 
 	err = __elfN(load_elf_header)(fp->f_name, &ef);
 	if (err != 0)
 		goto out;
 
 	if (ef.kernel == 1 || ef.ehdr->e_type == ET_EXEC) {
 		ef.kernel = 1;
 	} else if (ef.ehdr->e_type != ET_DYN) {
 		err = EFTYPE;
 		goto out;
 	}
 
 	size = (size_t)ef.ehdr->e_shnum * (size_t)ef.ehdr->e_shentsize;
 	shdr = alloc_pread(VECTX_HANDLE(&ef), ef.ehdr->e_shoff, size);
 	if (shdr == NULL) {
 		err = ENOMEM;
 		goto out;
 	}
 
 	/* Load shstrtab. */
 	shstrtab = alloc_pread(VECTX_HANDLE(&ef), shdr[ef.ehdr->e_shstrndx].sh_offset,
 	    shdr[ef.ehdr->e_shstrndx].sh_size);
 	if (shstrtab == NULL) {
 		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
 		    "load_modmetadata: unable to load shstrtab\n");
 		err = EFTYPE;
 		goto out;
 	}
 
 	/* Find set_modmetadata_set and data sections. */
 	sh_data[0] = sh_data[1] = sh_meta = NULL;
 	for (i = 0, j = 0; i < ef.ehdr->e_shnum; i++) {
 		if (strcmp(&shstrtab[shdr[i].sh_name],
 		    "set_modmetadata_set") == 0) {
 			sh_meta = &shdr[i];
 		}
 		if ((strcmp(&shstrtab[shdr[i].sh_name], ".data") == 0) ||
 		    (strcmp(&shstrtab[shdr[i].sh_name], ".rodata") == 0)) {
 			sh_data[j++] = &shdr[i];
 		}
 	}
 	if (sh_meta == NULL || sh_data[0] == NULL || sh_data[1] == NULL) {
 		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
     "load_modmetadata: unable to find set_modmetadata_set or data sections\n");
 		err = EFTYPE;
 		goto out;
 	}
 
 	/* Load set_modmetadata_set into memory */
 	err = kern_pread(VECTX_HANDLE(&ef), dest, sh_meta->sh_size, sh_meta->sh_offset);
 	if (err != 0) {
 		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
     "load_modmetadata: unable to load set_modmetadata_set: %d\n", err);
 		goto out;
 	}
 	p_start = dest;
 	p_end = dest + sh_meta->sh_size;
 	dest += sh_meta->sh_size;
 
 	/* Load data sections into memory. */
 	err = kern_pread(VECTX_HANDLE(&ef), dest, sh_data[0]->sh_size,
 	    sh_data[0]->sh_offset);
 	if (err != 0) {
 		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
 		    "load_modmetadata: unable to load data: %d\n", err);
 		goto out;
 	}
 
 	/*
 	 * We have to increment the dest, so that the offset is the same into
 	 * both the .rodata and .data sections.
 	 */
 	ef.off = -(sh_data[0]->sh_addr - dest);
 	dest +=	(sh_data[1]->sh_addr - sh_data[0]->sh_addr);
 
 	err = kern_pread(VECTX_HANDLE(&ef), dest, sh_data[1]->sh_size,
 	    sh_data[1]->sh_offset);
 	if (err != 0) {
 		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
 		    "load_modmetadata: unable to load data: %d\n", err);
 		goto out;
 	}
 
 	err = __elfN(parse_modmetadata)(fp, &ef, p_start, p_end);
 	if (err != 0) {
 		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
 		    "load_modmetadata: unable to parse metadata: %d\n", err);
 		goto out;
 	}
 
 out:
 	if (shstrtab != NULL)
 		free(shstrtab);
 	if (shdr != NULL)
 		free(shdr);
 	if (ef.firstpage != NULL)
 		free(ef.firstpage);
 	if (ef.fd != -1) {
 #ifdef LOADER_VERIEXEC_VECTX
 		if (!err && ef.vctx) {
 			int verror;
 
 			verror = vectx_close(ef.vctx, VE_MUST, __func__);
 			if (verror) {
 				err = EAUTH;
 				file_discard(fp);
 			}
 		}
 #endif
 		close(ef.fd);
 	}
 	return (err);
 }
 
 /*
  * Walk through vt_drv_set, each vt driver structure starts with
  * static 16 chars for driver name. If we have "vbefb", return true.
  */
 static bool
 __elfN(parse_vt_drv_set)(struct preloaded_file *fp, elf_file_t ef,
     Elf_Addr p_start, Elf_Addr p_end)
 {
 	Elf_Addr v, p;
 	char vd_name[16];
 	int error;
 
 	p = p_start;
 	while (p < p_end) {
 		COPYOUT(p, &v, sizeof(v));
 
 		error = __elfN(reloc_ptr)(fp, ef, p, &v, sizeof(v));
 		if (error == EOPNOTSUPP)
 			v += ef->off;
 		else if (error != 0)
 			return (false);
 		COPYOUT(v, &vd_name, sizeof(vd_name));
 		if (strncmp(vd_name, "vbefb", sizeof(vd_name)) == 0)
 			return (true);
 		p += sizeof(Elf_Addr);
 	}
 
 	return (false);
 }
 
 int
 __elfN(parse_modmetadata)(struct preloaded_file *fp, elf_file_t ef,
     Elf_Addr p_start, Elf_Addr p_end)
 {
 	struct mod_metadata md;
 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64
 	struct mod_metadata64 md64;
 #elif defined(__amd64__) && __ELF_WORD_SIZE == 32
 	struct mod_metadata32 md32;
 #endif
 	struct mod_depend *mdepend;
 	struct mod_version mver;
 	char *s;
 	int error, modcnt, minfolen;
 	Elf_Addr v, p;
 
 	modcnt = 0;
 	p = p_start;
 	while (p < p_end) {
 		COPYOUT(p, &v, sizeof(v));
 		error = __elfN(reloc_ptr)(fp, ef, p, &v, sizeof(v));
 		if (error == EOPNOTSUPP)
 			v += ef->off;
 		else if (error != 0)
 			return (error);
 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64
 		COPYOUT(v, &md64, sizeof(md64));
 		error = __elfN(reloc_ptr)(fp, ef, v, &md64, sizeof(md64));
 		if (error == EOPNOTSUPP) {
 			md64.md_cval += ef->off;
 			md64.md_data += ef->off;
 		} else if (error != 0)
 			return (error);
 		md.md_version = md64.md_version;
 		md.md_type = md64.md_type;
 		md.md_cval = (const char *)(uintptr_t)md64.md_cval;
 		md.md_data = (void *)(uintptr_t)md64.md_data;
 #elif defined(__amd64__) && __ELF_WORD_SIZE == 32
 		COPYOUT(v, &md32, sizeof(md32));
 		error = __elfN(reloc_ptr)(fp, ef, v, &md32, sizeof(md32));
 		if (error == EOPNOTSUPP) {
 			md32.md_cval += ef->off;
 			md32.md_data += ef->off;
 		} else if (error != 0)
 			return (error);
 		md.md_version = md32.md_version;
 		md.md_type = md32.md_type;
 		md.md_cval = (const char *)(uintptr_t)md32.md_cval;
 		md.md_data = (void *)(uintptr_t)md32.md_data;
 #else
 		COPYOUT(v, &md, sizeof(md));
 		error = __elfN(reloc_ptr)(fp, ef, v, &md, sizeof(md));
 		if (error == EOPNOTSUPP) {
 			md.md_cval += ef->off;
 			md.md_data = (void *)((uintptr_t)md.md_data +
 			    (uintptr_t)ef->off);
 		} else if (error != 0)
 			return (error);
 #endif
 		p += sizeof(Elf_Addr);
 		switch(md.md_type) {
 		case MDT_DEPEND:
 			if (ef->kernel) /* kernel must not depend on anything */
 				break;
 			s = strdupout((vm_offset_t)md.md_cval);
 			minfolen = sizeof(*mdepend) + strlen(s) + 1;
 			mdepend = malloc(minfolen);
 			if (mdepend == NULL)
 				return ENOMEM;
 			COPYOUT((vm_offset_t)md.md_data, mdepend,
 			    sizeof(*mdepend));
 			strcpy((char*)(mdepend + 1), s);
 			free(s);
 			file_addmetadata(fp, MODINFOMD_DEPLIST, minfolen,
 			    mdepend);
 			free(mdepend);
 			break;
 		case MDT_VERSION:
 			s = strdupout((vm_offset_t)md.md_cval);
 			COPYOUT((vm_offset_t)md.md_data, &mver, sizeof(mver));
 			file_addmodule(fp, s, mver.mv_version, NULL);
 			free(s);
 			modcnt++;
 			break;
 		}
 	}
 	if (modcnt == 0) {
 		s = fake_modname(fp->f_name);
 		file_addmodule(fp, s, 1, NULL);
 		free(s);
 	}
 	return 0;
 }
 
 static unsigned long
 elf_hash(const char *name)
 {
 	const unsigned char *p = (const unsigned char *) name;
 	unsigned long h = 0;
 	unsigned long g;
 
 	while (*p != '\0') {
 		h = (h << 4) + *p++;
 		if ((g = h & 0xf0000000) != 0)
 			h ^= g >> 24;
 		h &= ~g;
 	}
 	return h;
 }
 
 static const char __elfN(bad_symtable)[] = "elf" __XSTRING(__ELF_WORD_SIZE)
     "_lookup_symbol: corrupt symbol table\n";
 int
 __elfN(lookup_symbol)(elf_file_t ef, const char* name, Elf_Sym *symp,
     unsigned char type)
 {
 	Elf_Hashelt symnum;
 	Elf_Sym sym;
 	char *strp;
 	unsigned long hash;
 
+	if (ef->nbuckets == 0) {
+		printf(__elfN(bad_symtable));
+		return ENOENT;
+	}
+
 	hash = elf_hash(name);
 	COPYOUT(&ef->buckets[hash % ef->nbuckets], &symnum, sizeof(symnum));
 
 	while (symnum != STN_UNDEF) {
 		if (symnum >= ef->nchains) {
 			printf(__elfN(bad_symtable));
 			return ENOENT;
 		}
 
 		COPYOUT(ef->symtab + symnum, &sym, sizeof(sym));
 		if (sym.st_name == 0) {
 			printf(__elfN(bad_symtable));
 			return ENOENT;
 		}
 
 		strp = strdupout((vm_offset_t)(ef->strtab + sym.st_name));
 		if (strcmp(name, strp) == 0) {
 			free(strp);
 			if (sym.st_shndx != SHN_UNDEF ||
 			    (sym.st_value != 0 &&
 			    ELF_ST_TYPE(sym.st_info) == type)) {
 				*symp = sym;
 				return 0;
 			}
 			return ENOENT;
 		}
 		free(strp);
 		COPYOUT(&ef->chains[symnum], &symnum, sizeof(symnum));
 	}
 	return ENOENT;
 }
 
 /*
  * Apply any intra-module relocations to the value. p is the load address
  * of the value and val/len is the value to be modified. This does NOT modify
  * the image in-place, because this is done by kern_linker later on.
  *
  * Returns EOPNOTSUPP if no relocation method is supplied.
  */
 static int
 __elfN(reloc_ptr)(struct preloaded_file *mp, elf_file_t ef,
     Elf_Addr p, void *val, size_t len)
 {
 	size_t n;
 	Elf_Rela a;
 	Elf_Rel r;
 	int error;
 
 	/*
 	 * The kernel is already relocated, but we still want to apply
 	 * offset adjustments.
 	 */
 	if (ef->kernel)
 		return (EOPNOTSUPP);
 
 	for (n = 0; n < ef->relsz / sizeof(r); n++) {
 		COPYOUT(ef->rel + n, &r, sizeof(r));
 
 		error = __elfN(reloc)(ef, __elfN(symaddr), &r, ELF_RELOC_REL,
 		    ef->off, p, val, len);
 		if (error != 0)
 			return (error);
 	}
 	for (n = 0; n < ef->relasz / sizeof(a); n++) {
 		COPYOUT(ef->rela + n, &a, sizeof(a));
 
 		error = __elfN(reloc)(ef, __elfN(symaddr), &a, ELF_RELOC_RELA,
 		    ef->off, p, val, len);
 		if (error != 0)
 			return (error);
 	}
 
 	return (0);
 }
 
 static Elf_Addr
 __elfN(symaddr)(struct elf_file *ef, Elf_Size symidx)
 {
 
 	/* Symbol lookup by index not required here. */
 	return (0);
 }