diff --git a/sys/amd64/include/vm.h b/sys/amd64/include/vm.h index 2e9c30da9936..fef7a53ca317 100644 --- a/sys/amd64/include/vm.h +++ b/sys/amd64/include/vm.h @@ -1,47 +1,48 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2009 Hudson River Trading LLC * Written by: John H. Baldwin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _MACHINE_VM_H_ #define _MACHINE_VM_H_ #include /* Memory attributes. */ #define VM_MEMATTR_UNCACHEABLE ((vm_memattr_t)PAT_UNCACHEABLE) #define VM_MEMATTR_WRITE_COMBINING ((vm_memattr_t)PAT_WRITE_COMBINING) #define VM_MEMATTR_WRITE_THROUGH ((vm_memattr_t)PAT_WRITE_THROUGH) #define VM_MEMATTR_WRITE_PROTECTED ((vm_memattr_t)PAT_WRITE_PROTECTED) #define VM_MEMATTR_WRITE_BACK ((vm_memattr_t)PAT_WRITE_BACK) #define VM_MEMATTR_WEAK_UNCACHEABLE ((vm_memattr_t)PAT_UNCACHED) #define VM_MEMATTR_DEFAULT VM_MEMATTR_WRITE_BACK +#define VM_MEMATTR_DEVICE VM_MEMATTR_UNCACHEABLE #endif /* !_MACHINE_VM_H_ */ diff --git a/sys/i386/include/vm.h b/sys/i386/include/vm.h index 2e9c30da9936..fef7a53ca317 100644 --- a/sys/i386/include/vm.h +++ b/sys/i386/include/vm.h @@ -1,47 +1,48 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2009 Hudson River Trading LLC * Written by: John H. Baldwin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _MACHINE_VM_H_ #define _MACHINE_VM_H_ #include /* Memory attributes. */ #define VM_MEMATTR_UNCACHEABLE ((vm_memattr_t)PAT_UNCACHEABLE) #define VM_MEMATTR_WRITE_COMBINING ((vm_memattr_t)PAT_WRITE_COMBINING) #define VM_MEMATTR_WRITE_THROUGH ((vm_memattr_t)PAT_WRITE_THROUGH) #define VM_MEMATTR_WRITE_PROTECTED ((vm_memattr_t)PAT_WRITE_PROTECTED) #define VM_MEMATTR_WRITE_BACK ((vm_memattr_t)PAT_WRITE_BACK) #define VM_MEMATTR_WEAK_UNCACHEABLE ((vm_memattr_t)PAT_UNCACHED) #define VM_MEMATTR_DEFAULT VM_MEMATTR_WRITE_BACK +#define VM_MEMATTR_DEVICE VM_MEMATTR_UNCACHEABLE #endif /* !_MACHINE_VM_H_ */ diff --git a/sys/kern/subr_bus.c b/sys/kern/subr_bus.c index 31975fb8977c..2a8cf00b5700 100644 --- a/sys/kern/subr_bus.c +++ b/sys/kern/subr_bus.c @@ -1,6074 +1,6074 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1997,1998,2003 Doug Rabson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_bus.h" #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, NULL); SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, NULL); /* * Used to attach drivers to devclasses. */ typedef struct driverlink *driverlink_t; struct driverlink { kobj_class_t driver; TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ int pass; int flags; #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ TAILQ_ENTRY(driverlink) passlink; }; /* * Forward declarations */ typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; typedef TAILQ_HEAD(device_list, device) device_list_t; struct devclass { TAILQ_ENTRY(devclass) link; devclass_t parent; /* parent in devclass hierarchy */ driver_list_t drivers; /* bus devclasses store drivers for bus */ char *name; device_t *devices; /* array of devices indexed by unit */ int maxunit; /* size of devices array */ int flags; #define DC_HAS_CHILDREN 1 struct sysctl_ctx_list sysctl_ctx; struct sysctl_oid *sysctl_tree; }; /** * @brief Implementation of device. */ struct device { /* * A device is a kernel object. The first field must be the * current ops table for the object. */ KOBJ_FIELDS; /* * Device hierarchy. */ TAILQ_ENTRY(device) link; /**< list of devices in parent */ TAILQ_ENTRY(device) devlink; /**< global device list membership */ device_t parent; /**< parent of this device */ device_list_t children; /**< list of child devices */ /* * Details of this device. */ driver_t *driver; /**< current driver */ devclass_t devclass; /**< current device class */ int unit; /**< current unit number */ char* nameunit; /**< name+unit e.g. foodev0 */ char* desc; /**< driver specific description */ int busy; /**< count of calls to device_busy() */ device_state_t state; /**< current device state */ uint32_t devflags; /**< api level flags for device_get_flags() */ u_int flags; /**< internal device flags */ u_int order; /**< order from device_add_child_ordered() */ void *ivars; /**< instance variables */ void *softc; /**< current driver's variables */ struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ }; static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); EVENTHANDLER_LIST_DEFINE(device_attach); EVENTHANDLER_LIST_DEFINE(device_detach); EVENTHANDLER_LIST_DEFINE(dev_lookup); static int bus_child_location_sb(device_t child, struct sbuf *sb); static int bus_child_pnpinfo_sb(device_t child, struct sbuf *sb); static void devctl2_init(void); static bool device_frozen; #define DRIVERNAME(d) ((d)? d->name : "no driver") #define DEVCLANAME(d) ((d)? d->name : "no devclass") #ifdef BUS_DEBUG static int bus_debug = 1; SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, "Bus debug level"); #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} #define DEVICENAME(d) ((d)? device_get_name(d): "no device") /** * Produce the indenting, indent*2 spaces plus a '.' ahead of that to * prevent syslog from deleting initial spaces */ #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJparent ? dc->parent->name : ""; break; default: return (EINVAL); } return (SYSCTL_OUT_STR(req, value)); } static void devclass_sysctl_init(devclass_t dc) { if (dc->sysctl_tree != NULL) return; sysctl_ctx_init(&dc->sysctl_ctx); dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", "parent class"); } enum { DEVICE_SYSCTL_DESC, DEVICE_SYSCTL_DRIVER, DEVICE_SYSCTL_LOCATION, DEVICE_SYSCTL_PNPINFO, DEVICE_SYSCTL_PARENT, }; static int device_sysctl_handler(SYSCTL_HANDLER_ARGS) { struct sbuf sb; device_t dev = (device_t)arg1; int error; sbuf_new_for_sysctl(&sb, NULL, 1024, req); sbuf_clear_flags(&sb, SBUF_INCLUDENUL); switch (arg2) { case DEVICE_SYSCTL_DESC: sbuf_cat(&sb, dev->desc ? dev->desc : ""); break; case DEVICE_SYSCTL_DRIVER: sbuf_cat(&sb, dev->driver ? dev->driver->name : ""); break; case DEVICE_SYSCTL_LOCATION: bus_child_location_sb(dev, &sb); break; case DEVICE_SYSCTL_PNPINFO: bus_child_pnpinfo_sb(dev, &sb); break; case DEVICE_SYSCTL_PARENT: sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : ""); break; default: sbuf_delete(&sb); return (EINVAL); } error = sbuf_finish(&sb); sbuf_delete(&sb); return (error); } static void device_sysctl_init(device_t dev) { devclass_t dc = dev->devclass; int domain; if (dev->sysctl_tree != NULL) return; devclass_sysctl_init(dc); sysctl_ctx_init(&dev->sysctl_ctx); dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, dev->nameunit + strlen(dc->name), CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index"); SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", "device description"); SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", "device driver name"); SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", "device location relative to parent"); SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", "device identification"); SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", "parent device"); if (bus_get_domain(dev, &domain) == 0) SYSCTL_ADD_INT(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", CTLFLAG_RD, NULL, domain, "NUMA domain"); } static void device_sysctl_update(device_t dev) { devclass_t dc = dev->devclass; if (dev->sysctl_tree == NULL) return; sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); } static void device_sysctl_fini(device_t dev) { if (dev->sysctl_tree == NULL) return; sysctl_ctx_free(&dev->sysctl_ctx); dev->sysctl_tree = NULL; } /* * /dev/devctl implementation */ /* * This design allows only one reader for /dev/devctl. This is not desirable * in the long run, but will get a lot of hair out of this implementation. * Maybe we should make this device a clonable device. * * Also note: we specifically do not attach a device to the device_t tree * to avoid potential chicken and egg problems. One could argue that all * of this belongs to the root node. */ #define DEVCTL_DEFAULT_QUEUE_LEN 1000 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); static d_open_t devopen; static d_close_t devclose; static d_read_t devread; static d_ioctl_t devioctl; static d_poll_t devpoll; static d_kqfilter_t devkqfilter; static struct cdevsw dev_cdevsw = { .d_version = D_VERSION, .d_open = devopen, .d_close = devclose, .d_read = devread, .d_ioctl = devioctl, .d_poll = devpoll, .d_kqfilter = devkqfilter, .d_name = "devctl", }; #define DEVCTL_BUFFER (1024 - sizeof(void *)) struct dev_event_info { STAILQ_ENTRY(dev_event_info) dei_link; char dei_data[DEVCTL_BUFFER]; }; STAILQ_HEAD(devq, dev_event_info); static struct dev_softc { int inuse; int nonblock; int queued; int async; struct mtx mtx; struct cv cv; struct selinfo sel; struct devq devq; struct sigio *sigio; uma_zone_t zone; } devsoftc; static void filt_devctl_detach(struct knote *kn); static int filt_devctl_read(struct knote *kn, long hint); struct filterops devctl_rfiltops = { .f_isfd = 1, .f_detach = filt_devctl_detach, .f_event = filt_devctl_read, }; static struct cdev *devctl_dev; static void devinit(void) { int reserve; uma_zone_t z; devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0600, "devctl"); mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); cv_init(&devsoftc.cv, "dev cv"); STAILQ_INIT(&devsoftc.devq); knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); if (devctl_queue_length > 0) { /* * Allocate a zone for the messages. Preallocate 2% of these for * a reserve. Allow only devctl_queue_length slabs to cap memory * usage. The reserve usually allows coverage of surges of * events during memory shortages. Normally we won't have to * re-use events from the queue, but will in extreme shortages. */ z = devsoftc.zone = uma_zcreate("DEVCTL", sizeof(struct dev_event_info), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); reserve = max(devctl_queue_length / 50, 100); /* 2% reserve */ uma_zone_set_max(z, devctl_queue_length); uma_zone_set_maxcache(z, 0); uma_zone_reserve(z, reserve); uma_prealloc(z, reserve); } devctl2_init(); } static int devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) { mtx_lock(&devsoftc.mtx); if (devsoftc.inuse) { mtx_unlock(&devsoftc.mtx); return (EBUSY); } /* move to init */ devsoftc.inuse = 1; mtx_unlock(&devsoftc.mtx); return (0); } static int devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) { mtx_lock(&devsoftc.mtx); devsoftc.inuse = 0; devsoftc.nonblock = 0; devsoftc.async = 0; cv_broadcast(&devsoftc.cv); funsetown(&devsoftc.sigio); mtx_unlock(&devsoftc.mtx); return (0); } /* * The read channel for this device is used to report changes to * userland in realtime. We are required to free the data as well as * the n1 object because we allocate them separately. Also note that * we return one record at a time. If you try to read this device a * character at a time, you will lose the rest of the data. Listening * programs are expected to cope. */ static int devread(struct cdev *dev, struct uio *uio, int ioflag) { struct dev_event_info *n1; int rv; mtx_lock(&devsoftc.mtx); while (STAILQ_EMPTY(&devsoftc.devq)) { if (devsoftc.nonblock) { mtx_unlock(&devsoftc.mtx); return (EAGAIN); } rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); if (rv) { /* * Need to translate ERESTART to EINTR here? -- jake */ mtx_unlock(&devsoftc.mtx); return (rv); } } n1 = STAILQ_FIRST(&devsoftc.devq); STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link); devsoftc.queued--; mtx_unlock(&devsoftc.mtx); rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); uma_zfree(devsoftc.zone, n1); return (rv); } static int devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) { switch (cmd) { case FIONBIO: if (*(int*)data) devsoftc.nonblock = 1; else devsoftc.nonblock = 0; return (0); case FIOASYNC: if (*(int*)data) devsoftc.async = 1; else devsoftc.async = 0; return (0); case FIOSETOWN: return fsetown(*(int *)data, &devsoftc.sigio); case FIOGETOWN: *(int *)data = fgetown(&devsoftc.sigio); return (0); /* (un)Support for other fcntl() calls. */ case FIOCLEX: case FIONCLEX: case FIONREAD: default: break; } return (ENOTTY); } static int devpoll(struct cdev *dev, int events, struct thread *td) { int revents = 0; mtx_lock(&devsoftc.mtx); if (events & (POLLIN | POLLRDNORM)) { if (!STAILQ_EMPTY(&devsoftc.devq)) revents = events & (POLLIN | POLLRDNORM); else selrecord(td, &devsoftc.sel); } mtx_unlock(&devsoftc.mtx); return (revents); } static int devkqfilter(struct cdev *dev, struct knote *kn) { int error; if (kn->kn_filter == EVFILT_READ) { kn->kn_fop = &devctl_rfiltops; knlist_add(&devsoftc.sel.si_note, kn, 0); error = 0; } else error = EINVAL; return (error); } static void filt_devctl_detach(struct knote *kn) { knlist_remove(&devsoftc.sel.si_note, kn, 0); } static int filt_devctl_read(struct knote *kn, long hint) { kn->kn_data = devsoftc.queued; return (kn->kn_data != 0); } /** * @brief Return whether the userland process is running */ bool devctl_process_running(void) { return (devsoftc.inuse == 1); } static struct dev_event_info * devctl_alloc_dei(void) { struct dev_event_info *dei = NULL; mtx_lock(&devsoftc.mtx); if (devctl_queue_length == 0) goto out; dei = uma_zalloc(devsoftc.zone, M_NOWAIT); if (dei == NULL) dei = uma_zalloc(devsoftc.zone, M_NOWAIT | M_USE_RESERVE); if (dei == NULL) { /* * Guard against no items in the queue. Normally, this won't * happen, but if lots of events happen all at once and there's * a chance we're out of allocated space but none have yet been * queued when we get here, leaving nothing to steal. This can * also happen with error injection. Fail safe by returning * NULL in that case.. */ if (devsoftc.queued == 0) goto out; dei = STAILQ_FIRST(&devsoftc.devq); STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link); devsoftc.queued--; } MPASS(dei != NULL); *dei->dei_data = '\0'; out: mtx_unlock(&devsoftc.mtx); return (dei); } static struct dev_event_info * devctl_alloc_dei_sb(struct sbuf *sb) { struct dev_event_info *dei; dei = devctl_alloc_dei(); if (dei != NULL) sbuf_new(sb, dei->dei_data, sizeof(dei->dei_data), SBUF_FIXEDLEN); return (dei); } static void devctl_free_dei(struct dev_event_info *dei) { uma_zfree(devsoftc.zone, dei); } static void devctl_queue(struct dev_event_info *dei) { mtx_lock(&devsoftc.mtx); STAILQ_INSERT_TAIL(&devsoftc.devq, dei, dei_link); devsoftc.queued++; cv_broadcast(&devsoftc.cv); KNOTE_LOCKED(&devsoftc.sel.si_note, 0); mtx_unlock(&devsoftc.mtx); selwakeup(&devsoftc.sel); if (devsoftc.async && devsoftc.sigio != NULL) pgsigio(&devsoftc.sigio, SIGIO, 0); } /** * @brief Send a 'notification' to userland, using standard ways */ void devctl_notify(const char *system, const char *subsystem, const char *type, const char *data) { struct dev_event_info *dei; struct sbuf sb; if (system == NULL || subsystem == NULL || type == NULL) return; dei = devctl_alloc_dei_sb(&sb); if (dei == NULL) return; sbuf_cpy(&sb, "!system="); sbuf_cat(&sb, system); sbuf_cat(&sb, " subsystem="); sbuf_cat(&sb, subsystem); sbuf_cat(&sb, " type="); sbuf_cat(&sb, type); if (data != NULL) { sbuf_putc(&sb, ' '); sbuf_cat(&sb, data); } sbuf_putc(&sb, '\n'); if (sbuf_finish(&sb) != 0) devctl_free_dei(dei); /* overflow -> drop it */ else devctl_queue(dei); } /* * Common routine that tries to make sending messages as easy as possible. * We allocate memory for the data, copy strings into that, but do not * free it unless there's an error. The dequeue part of the driver should * free the data. We don't send data when the device is disabled. We do * send data, even when we have no listeners, because we wish to avoid * races relating to startup and restart of listening applications. * * devaddq is designed to string together the type of event, with the * object of that event, plus the plug and play info and location info * for that event. This is likely most useful for devices, but less * useful for other consumers of this interface. Those should use * the devctl_notify() interface instead. * * Output: * ${type}${what} at $(location dev) $(pnp-info dev) on $(parent dev) */ static void devaddq(const char *type, const char *what, device_t dev) { struct dev_event_info *dei; const char *parstr; struct sbuf sb; dei = devctl_alloc_dei_sb(&sb); if (dei == NULL) return; sbuf_cpy(&sb, type); sbuf_cat(&sb, what); sbuf_cat(&sb, " at "); /* Add in the location */ bus_child_location_sb(dev, &sb); sbuf_putc(&sb, ' '); /* Add in pnpinfo */ bus_child_pnpinfo_sb(dev, &sb); /* Get the parent of this device, or / if high enough in the tree. */ if (device_get_parent(dev) == NULL) parstr = "."; /* Or '/' ? */ else parstr = device_get_nameunit(device_get_parent(dev)); sbuf_cat(&sb, " on "); sbuf_cat(&sb, parstr); sbuf_putc(&sb, '\n'); if (sbuf_finish(&sb) != 0) goto bad; devctl_queue(dei); return; bad: devctl_free_dei(dei); } /* * A device was added to the tree. We are called just after it successfully * attaches (that is, probe and attach success for this device). No call * is made if a device is merely parented into the tree. See devnomatch * if probe fails. If attach fails, no notification is sent (but maybe * we should have a different message for this). */ static void devadded(device_t dev) { devaddq("+", device_get_nameunit(dev), dev); } /* * A device was removed from the tree. We are called just before this * happens. */ static void devremoved(device_t dev) { devaddq("-", device_get_nameunit(dev), dev); } /* * Called when there's no match for this device. This is only called * the first time that no match happens, so we don't keep getting this * message. Should that prove to be undesirable, we can change it. * This is called when all drivers that can attach to a given bus * decline to accept this device. Other errors may not be detected. */ static void devnomatch(device_t dev) { devaddq("?", "", dev); } static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) { int q, error; q = devctl_queue_length; error = sysctl_handle_int(oidp, &q, 0, req); if (error || !req->newptr) return (error); if (q < 0) return (EINVAL); /* * When set as a tunable, we've not yet initialized the mutex. * It is safe to just assign to devctl_queue_length and return * as we're racing no one. We'll use whatever value set in * devinit. */ if (!mtx_initialized(&devsoftc.mtx)) { devctl_queue_length = q; return (0); } /* * XXX It's hard to grow or shrink the UMA zone. Only allow * disabling the queue size for the moment until underlying * UMA issues can be sorted out. */ if (q != 0) return (EINVAL); if (q == devctl_queue_length) return (0); mtx_lock(&devsoftc.mtx); devctl_queue_length = 0; uma_zdestroy(devsoftc.zone); devsoftc.zone = 0; mtx_unlock(&devsoftc.mtx); return (0); } /** * @brief safely quotes strings that might have double quotes in them. * * The devctl protocol relies on quoted strings having matching quotes. * This routine quotes any internal quotes so the resulting string * is safe to pass to snprintf to construct, for example pnp info strings. * * @param sb sbuf to place the characters into * @param src Original buffer. */ void devctl_safe_quote_sb(struct sbuf *sb, const char *src) { while (*src != '\0') { if (*src == '"' || *src == '\\') sbuf_putc(sb, '\\'); sbuf_putc(sb, *src++); } } /* End of /dev/devctl code */ static TAILQ_HEAD(,device) bus_data_devices; static int bus_data_generation = 1; static kobj_method_t null_methods[] = { KOBJMETHOD_END }; DEFINE_CLASS(null, null_methods, 0); /* * Bus pass implementation */ static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); int bus_current_pass = BUS_PASS_ROOT; /** * @internal * @brief Register the pass level of a new driver attachment * * Register a new driver attachment's pass level. If no driver * attachment with the same pass level has been added, then @p new * will be added to the global passes list. * * @param new the new driver attachment */ static void driver_register_pass(struct driverlink *new) { struct driverlink *dl; /* We only consider pass numbers during boot. */ if (bus_current_pass == BUS_PASS_DEFAULT) return; /* * Walk the passes list. If we already know about this pass * then there is nothing to do. If we don't, then insert this * driver link into the list. */ TAILQ_FOREACH(dl, &passes, passlink) { if (dl->pass < new->pass) continue; if (dl->pass == new->pass) return; TAILQ_INSERT_BEFORE(dl, new, passlink); return; } TAILQ_INSERT_TAIL(&passes, new, passlink); } /** * @brief Raise the current bus pass * * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() * method on the root bus to kick off a new device tree scan for each * new pass level that has at least one driver. */ void bus_set_pass(int pass) { struct driverlink *dl; if (bus_current_pass > pass) panic("Attempt to lower bus pass level"); TAILQ_FOREACH(dl, &passes, passlink) { /* Skip pass values below the current pass level. */ if (dl->pass <= bus_current_pass) continue; /* * Bail once we hit a driver with a pass level that is * too high. */ if (dl->pass > pass) break; /* * Raise the pass level to the next level and rescan * the tree. */ bus_current_pass = dl->pass; BUS_NEW_PASS(root_bus); } /* * If there isn't a driver registered for the requested pass, * then bus_current_pass might still be less than 'pass'. Set * it to 'pass' in that case. */ if (bus_current_pass < pass) bus_current_pass = pass; KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); } /* * Devclass implementation */ static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); /** * @internal * @brief Find or create a device class * * If a device class with the name @p classname exists, return it, * otherwise if @p create is non-zero create and return a new device * class. * * If @p parentname is non-NULL, the parent of the devclass is set to * the devclass of that name. * * @param classname the devclass name to find or create * @param parentname the parent devclass name or @c NULL * @param create non-zero to create a devclass */ static devclass_t devclass_find_internal(const char *classname, const char *parentname, int create) { devclass_t dc; PDEBUG(("looking for %s", classname)); if (!classname) return (NULL); TAILQ_FOREACH(dc, &devclasses, link) { if (!strcmp(dc->name, classname)) break; } if (create && !dc) { PDEBUG(("creating %s", classname)); dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, M_BUS, M_NOWAIT | M_ZERO); if (!dc) return (NULL); dc->parent = NULL; dc->name = (char*) (dc + 1); strcpy(dc->name, classname); TAILQ_INIT(&dc->drivers); TAILQ_INSERT_TAIL(&devclasses, dc, link); bus_data_generation_update(); } /* * If a parent class is specified, then set that as our parent so * that this devclass will support drivers for the parent class as * well. If the parent class has the same name don't do this though * as it creates a cycle that can trigger an infinite loop in * device_probe_child() if a device exists for which there is no * suitable driver. */ if (parentname && dc && !dc->parent && strcmp(classname, parentname) != 0) { dc->parent = devclass_find_internal(parentname, NULL, TRUE); dc->parent->flags |= DC_HAS_CHILDREN; } return (dc); } /** * @brief Create a device class * * If a device class with the name @p classname exists, return it, * otherwise create and return a new device class. * * @param classname the devclass name to find or create */ devclass_t devclass_create(const char *classname) { return (devclass_find_internal(classname, NULL, TRUE)); } /** * @brief Find a device class * * If a device class with the name @p classname exists, return it, * otherwise return @c NULL. * * @param classname the devclass name to find */ devclass_t devclass_find(const char *classname) { return (devclass_find_internal(classname, NULL, FALSE)); } /** * @brief Register that a device driver has been added to a devclass * * Register that a device driver has been added to a devclass. This * is called by devclass_add_driver to accomplish the recursive * notification of all the children classes of dc, as well as dc. * Each layer will have BUS_DRIVER_ADDED() called for all instances of * the devclass. * * We do a full search here of the devclass list at each iteration * level to save storing children-lists in the devclass structure. If * we ever move beyond a few dozen devices doing this, we may need to * reevaluate... * * @param dc the devclass to edit * @param driver the driver that was just added */ static void devclass_driver_added(devclass_t dc, driver_t *driver) { devclass_t parent; int i; /* * Call BUS_DRIVER_ADDED for any existing buses in this class. */ for (i = 0; i < dc->maxunit; i++) if (dc->devices[i] && device_is_attached(dc->devices[i])) BUS_DRIVER_ADDED(dc->devices[i], driver); /* * Walk through the children classes. Since we only keep a * single parent pointer around, we walk the entire list of * devclasses looking for children. We set the * DC_HAS_CHILDREN flag when a child devclass is created on * the parent, so we only walk the list for those devclasses * that have children. */ if (!(dc->flags & DC_HAS_CHILDREN)) return; parent = dc; TAILQ_FOREACH(dc, &devclasses, link) { if (dc->parent == parent) devclass_driver_added(dc, driver); } } /** * @brief Add a device driver to a device class * * Add a device driver to a devclass. This is normally called * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of * all devices in the devclass will be called to allow them to attempt * to re-probe any unmatched children. * * @param dc the devclass to edit * @param driver the driver to register */ int devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) { driverlink_t dl; const char *parentname; PDEBUG(("%s", DRIVERNAME(driver))); /* Don't allow invalid pass values. */ if (pass <= BUS_PASS_ROOT) return (EINVAL); dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); if (!dl) return (ENOMEM); /* * Compile the driver's methods. Also increase the reference count * so that the class doesn't get freed when the last instance * goes. This means we can safely use static methods and avoids a * double-free in devclass_delete_driver. */ kobj_class_compile((kobj_class_t) driver); /* * If the driver has any base classes, make the * devclass inherit from the devclass of the driver's * first base class. This will allow the system to * search for drivers in both devclasses for children * of a device using this driver. */ if (driver->baseclasses) parentname = driver->baseclasses[0]->name; else parentname = NULL; *dcp = devclass_find_internal(driver->name, parentname, TRUE); dl->driver = driver; TAILQ_INSERT_TAIL(&dc->drivers, dl, link); driver->refs++; /* XXX: kobj_mtx */ dl->pass = pass; driver_register_pass(dl); if (device_frozen) { dl->flags |= DL_DEFERRED_PROBE; } else { devclass_driver_added(dc, driver); } bus_data_generation_update(); return (0); } /** * @brief Register that a device driver has been deleted from a devclass * * Register that a device driver has been removed from a devclass. * This is called by devclass_delete_driver to accomplish the * recursive notification of all the children classes of busclass, as * well as busclass. Each layer will attempt to detach the driver * from any devices that are children of the bus's devclass. The function * will return an error if a device fails to detach. * * We do a full search here of the devclass list at each iteration * level to save storing children-lists in the devclass structure. If * we ever move beyond a few dozen devices doing this, we may need to * reevaluate... * * @param busclass the devclass of the parent bus * @param dc the devclass of the driver being deleted * @param driver the driver being deleted */ static int devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) { devclass_t parent; device_t dev; int error, i; /* * Disassociate from any devices. We iterate through all the * devices in the devclass of the driver and detach any which are * using the driver and which have a parent in the devclass which * we are deleting from. * * Note that since a driver can be in multiple devclasses, we * should not detach devices which are not children of devices in * the affected devclass. * * If we're frozen, we don't generate NOMATCH events. Mark to * generate later. */ for (i = 0; i < dc->maxunit; i++) { if (dc->devices[i]) { dev = dc->devices[i]; if (dev->driver == driver && dev->parent && dev->parent->devclass == busclass) { if ((error = device_detach(dev)) != 0) return (error); if (device_frozen) { dev->flags &= ~DF_DONENOMATCH; dev->flags |= DF_NEEDNOMATCH; } else { BUS_PROBE_NOMATCH(dev->parent, dev); devnomatch(dev); dev->flags |= DF_DONENOMATCH; } } } } /* * Walk through the children classes. Since we only keep a * single parent pointer around, we walk the entire list of * devclasses looking for children. We set the * DC_HAS_CHILDREN flag when a child devclass is created on * the parent, so we only walk the list for those devclasses * that have children. */ if (!(busclass->flags & DC_HAS_CHILDREN)) return (0); parent = busclass; TAILQ_FOREACH(busclass, &devclasses, link) { if (busclass->parent == parent) { error = devclass_driver_deleted(busclass, dc, driver); if (error) return (error); } } return (0); } /** * @brief Delete a device driver from a device class * * Delete a device driver from a devclass. This is normally called * automatically by DRIVER_MODULE(). * * If the driver is currently attached to any devices, * devclass_delete_driver() will first attempt to detach from each * device. If one of the detach calls fails, the driver will not be * deleted. * * @param dc the devclass to edit * @param driver the driver to unregister */ int devclass_delete_driver(devclass_t busclass, driver_t *driver) { devclass_t dc = devclass_find(driver->name); driverlink_t dl; int error; PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); if (!dc) return (0); /* * Find the link structure in the bus' list of drivers. */ TAILQ_FOREACH(dl, &busclass->drivers, link) { if (dl->driver == driver) break; } if (!dl) { PDEBUG(("%s not found in %s list", driver->name, busclass->name)); return (ENOENT); } error = devclass_driver_deleted(busclass, dc, driver); if (error != 0) return (error); TAILQ_REMOVE(&busclass->drivers, dl, link); free(dl, M_BUS); /* XXX: kobj_mtx */ driver->refs--; if (driver->refs == 0) kobj_class_free((kobj_class_t) driver); bus_data_generation_update(); return (0); } /** * @brief Quiesces a set of device drivers from a device class * * Quiesce a device driver from a devclass. This is normally called * automatically by DRIVER_MODULE(). * * If the driver is currently attached to any devices, * devclass_quiesece_driver() will first attempt to quiesce each * device. * * @param dc the devclass to edit * @param driver the driver to unregister */ static int devclass_quiesce_driver(devclass_t busclass, driver_t *driver) { devclass_t dc = devclass_find(driver->name); driverlink_t dl; device_t dev; int i; int error; PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); if (!dc) return (0); /* * Find the link structure in the bus' list of drivers. */ TAILQ_FOREACH(dl, &busclass->drivers, link) { if (dl->driver == driver) break; } if (!dl) { PDEBUG(("%s not found in %s list", driver->name, busclass->name)); return (ENOENT); } /* * Quiesce all devices. We iterate through all the devices in * the devclass of the driver and quiesce any which are using * the driver and which have a parent in the devclass which we * are quiescing. * * Note that since a driver can be in multiple devclasses, we * should not quiesce devices which are not children of * devices in the affected devclass. */ for (i = 0; i < dc->maxunit; i++) { if (dc->devices[i]) { dev = dc->devices[i]; if (dev->driver == driver && dev->parent && dev->parent->devclass == busclass) { if ((error = device_quiesce(dev)) != 0) return (error); } } } return (0); } /** * @internal */ static driverlink_t devclass_find_driver_internal(devclass_t dc, const char *classname) { driverlink_t dl; PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); TAILQ_FOREACH(dl, &dc->drivers, link) { if (!strcmp(dl->driver->name, classname)) return (dl); } PDEBUG(("not found")); return (NULL); } /** * @brief Return the name of the devclass */ const char * devclass_get_name(devclass_t dc) { return (dc->name); } /** * @brief Find a device given a unit number * * @param dc the devclass to search * @param unit the unit number to search for * * @returns the device with the given unit number or @c * NULL if there is no such device */ device_t devclass_get_device(devclass_t dc, int unit) { if (dc == NULL || unit < 0 || unit >= dc->maxunit) return (NULL); return (dc->devices[unit]); } /** * @brief Find the softc field of a device given a unit number * * @param dc the devclass to search * @param unit the unit number to search for * * @returns the softc field of the device with the given * unit number or @c NULL if there is no such * device */ void * devclass_get_softc(devclass_t dc, int unit) { device_t dev; dev = devclass_get_device(dc, unit); if (!dev) return (NULL); return (device_get_softc(dev)); } /** * @brief Get a list of devices in the devclass * * An array containing a list of all the devices in the given devclass * is allocated and returned in @p *devlistp. The number of devices * in the array is returned in @p *devcountp. The caller should free * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. * * @param dc the devclass to examine * @param devlistp points at location for array pointer return * value * @param devcountp points at location for array size return value * * @retval 0 success * @retval ENOMEM the array allocation failed */ int devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) { int count, i; device_t *list; count = devclass_get_count(dc); list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); if (!list) return (ENOMEM); count = 0; for (i = 0; i < dc->maxunit; i++) { if (dc->devices[i]) { list[count] = dc->devices[i]; count++; } } *devlistp = list; *devcountp = count; return (0); } /** * @brief Get a list of drivers in the devclass * * An array containing a list of pointers to all the drivers in the * given devclass is allocated and returned in @p *listp. The number * of drivers in the array is returned in @p *countp. The caller should * free the array using @c free(p, M_TEMP). * * @param dc the devclass to examine * @param listp gives location for array pointer return value * @param countp gives location for number of array elements * return value * * @retval 0 success * @retval ENOMEM the array allocation failed */ int devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) { driverlink_t dl; driver_t **list; int count; count = 0; TAILQ_FOREACH(dl, &dc->drivers, link) count++; list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); if (list == NULL) return (ENOMEM); count = 0; TAILQ_FOREACH(dl, &dc->drivers, link) { list[count] = dl->driver; count++; } *listp = list; *countp = count; return (0); } /** * @brief Get the number of devices in a devclass * * @param dc the devclass to examine */ int devclass_get_count(devclass_t dc) { int count, i; count = 0; for (i = 0; i < dc->maxunit; i++) if (dc->devices[i]) count++; return (count); } /** * @brief Get the maximum unit number used in a devclass * * Note that this is one greater than the highest currently-allocated * unit. If a null devclass_t is passed in, -1 is returned to indicate * that not even the devclass has been allocated yet. * * @param dc the devclass to examine */ int devclass_get_maxunit(devclass_t dc) { if (dc == NULL) return (-1); return (dc->maxunit); } /** * @brief Find a free unit number in a devclass * * This function searches for the first unused unit number greater * that or equal to @p unit. * * @param dc the devclass to examine * @param unit the first unit number to check */ int devclass_find_free_unit(devclass_t dc, int unit) { if (dc == NULL) return (unit); while (unit < dc->maxunit && dc->devices[unit] != NULL) unit++; return (unit); } /** * @brief Set the parent of a devclass * * The parent class is normally initialised automatically by * DRIVER_MODULE(). * * @param dc the devclass to edit * @param pdc the new parent devclass */ void devclass_set_parent(devclass_t dc, devclass_t pdc) { dc->parent = pdc; } /** * @brief Get the parent of a devclass * * @param dc the devclass to examine */ devclass_t devclass_get_parent(devclass_t dc) { return (dc->parent); } struct sysctl_ctx_list * devclass_get_sysctl_ctx(devclass_t dc) { return (&dc->sysctl_ctx); } struct sysctl_oid * devclass_get_sysctl_tree(devclass_t dc) { return (dc->sysctl_tree); } /** * @internal * @brief Allocate a unit number * * On entry, @p *unitp is the desired unit number (or @c -1 if any * will do). The allocated unit number is returned in @p *unitp. * @param dc the devclass to allocate from * @param unitp points at the location for the allocated unit * number * * @retval 0 success * @retval EEXIST the requested unit number is already allocated * @retval ENOMEM memory allocation failure */ static int devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) { const char *s; int unit = *unitp; PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); /* Ask the parent bus if it wants to wire this device. */ if (unit == -1) BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, &unit); /* If we were given a wired unit number, check for existing device */ /* XXX imp XXX */ if (unit != -1) { if (unit >= 0 && unit < dc->maxunit && dc->devices[unit] != NULL) { if (bootverbose) printf("%s: %s%d already exists; skipping it\n", dc->name, dc->name, *unitp); return (EEXIST); } } else { /* Unwired device, find the next available slot for it */ unit = 0; for (unit = 0;; unit++) { /* If there is an "at" hint for a unit then skip it. */ if (resource_string_value(dc->name, unit, "at", &s) == 0) continue; /* If this device slot is already in use, skip it. */ if (unit < dc->maxunit && dc->devices[unit] != NULL) continue; break; } } /* * We've selected a unit beyond the length of the table, so let's * extend the table to make room for all units up to and including * this one. */ if (unit >= dc->maxunit) { device_t *newlist, *oldlist; int newsize; oldlist = dc->devices; newsize = roundup((unit + 1), MAX(1, MINALLOCSIZE / sizeof(device_t))); newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); if (!newlist) return (ENOMEM); if (oldlist != NULL) bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); bzero(newlist + dc->maxunit, sizeof(device_t) * (newsize - dc->maxunit)); dc->devices = newlist; dc->maxunit = newsize; if (oldlist != NULL) free(oldlist, M_BUS); } PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); *unitp = unit; return (0); } /** * @internal * @brief Add a device to a devclass * * A unit number is allocated for the device (using the device's * preferred unit number if any) and the device is registered in the * devclass. This allows the device to be looked up by its unit * number, e.g. by decoding a dev_t minor number. * * @param dc the devclass to add to * @param dev the device to add * * @retval 0 success * @retval EEXIST the requested unit number is already allocated * @retval ENOMEM memory allocation failure */ static int devclass_add_device(devclass_t dc, device_t dev) { int buflen, error; PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); if (buflen < 0) return (ENOMEM); dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); if (!dev->nameunit) return (ENOMEM); if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { free(dev->nameunit, M_BUS); dev->nameunit = NULL; return (error); } dc->devices[dev->unit] = dev; dev->devclass = dc; snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); return (0); } /** * @internal * @brief Delete a device from a devclass * * The device is removed from the devclass's device list and its unit * number is freed. * @param dc the devclass to delete from * @param dev the device to delete * * @retval 0 success */ static int devclass_delete_device(devclass_t dc, device_t dev) { if (!dc || !dev) return (0); PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); if (dev->devclass != dc || dc->devices[dev->unit] != dev) panic("devclass_delete_device: inconsistent device class"); dc->devices[dev->unit] = NULL; if (dev->flags & DF_WILDCARD) dev->unit = -1; dev->devclass = NULL; free(dev->nameunit, M_BUS); dev->nameunit = NULL; return (0); } /** * @internal * @brief Make a new device and add it as a child of @p parent * * @param parent the parent of the new device * @param name the devclass name of the new device or @c NULL * to leave the devclass unspecified * @parem unit the unit number of the new device of @c -1 to * leave the unit number unspecified * * @returns the new device */ static device_t make_device(device_t parent, const char *name, int unit) { device_t dev; devclass_t dc; PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); if (name) { dc = devclass_find_internal(name, NULL, TRUE); if (!dc) { printf("make_device: can't find device class %s\n", name); return (NULL); } } else { dc = NULL; } dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); if (!dev) return (NULL); dev->parent = parent; TAILQ_INIT(&dev->children); kobj_init((kobj_t) dev, &null_class); dev->driver = NULL; dev->devclass = NULL; dev->unit = unit; dev->nameunit = NULL; dev->desc = NULL; dev->busy = 0; dev->devflags = 0; dev->flags = DF_ENABLED; dev->order = 0; if (unit == -1) dev->flags |= DF_WILDCARD; if (name) { dev->flags |= DF_FIXEDCLASS; if (devclass_add_device(dc, dev)) { kobj_delete((kobj_t) dev, M_BUS); return (NULL); } } if (parent != NULL && device_has_quiet_children(parent)) dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; dev->ivars = NULL; dev->softc = NULL; dev->state = DS_NOTPRESENT; TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); bus_data_generation_update(); return (dev); } /** * @internal * @brief Print a description of a device. */ static int device_print_child(device_t dev, device_t child) { int retval = 0; if (device_is_alive(child)) retval += BUS_PRINT_CHILD(dev, child); else retval += device_printf(child, " not found\n"); return (retval); } /** * @brief Create a new device * * This creates a new device and adds it as a child of an existing * parent device. The new device will be added after the last existing * child with order zero. * * @param dev the device which will be the parent of the * new child device * @param name devclass name for new device or @c NULL if not * specified * @param unit unit number for new device or @c -1 if not * specified * * @returns the new device */ device_t device_add_child(device_t dev, const char *name, int unit) { return (device_add_child_ordered(dev, 0, name, unit)); } /** * @brief Create a new device * * This creates a new device and adds it as a child of an existing * parent device. The new device will be added after the last existing * child with the same order. * * @param dev the device which will be the parent of the * new child device * @param order a value which is used to partially sort the * children of @p dev - devices created using * lower values of @p order appear first in @p * dev's list of children * @param name devclass name for new device or @c NULL if not * specified * @param unit unit number for new device or @c -1 if not * specified * * @returns the new device */ device_t device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) { device_t child; device_t place; PDEBUG(("%s at %s with order %u as unit %d", name, DEVICENAME(dev), order, unit)); KASSERT(name != NULL || unit == -1, ("child device with wildcard name and specific unit number")); child = make_device(dev, name, unit); if (child == NULL) return (child); child->order = order; TAILQ_FOREACH(place, &dev->children, link) { if (place->order > order) break; } if (place) { /* * The device 'place' is the first device whose order is * greater than the new child. */ TAILQ_INSERT_BEFORE(place, child, link); } else { /* * The new child's order is greater or equal to the order of * any existing device. Add the child to the tail of the list. */ TAILQ_INSERT_TAIL(&dev->children, child, link); } bus_data_generation_update(); return (child); } /** * @brief Delete a device * * This function deletes a device along with all of its children. If * the device currently has a driver attached to it, the device is * detached first using device_detach(). * * @param dev the parent device * @param child the device to delete * * @retval 0 success * @retval non-zero a unit error code describing the error */ int device_delete_child(device_t dev, device_t child) { int error; device_t grandchild; PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); /* detach parent before deleting children, if any */ if ((error = device_detach(child)) != 0) return (error); /* remove children second */ while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { error = device_delete_child(child, grandchild); if (error) return (error); } if (child->devclass) devclass_delete_device(child->devclass, child); if (child->parent) BUS_CHILD_DELETED(dev, child); TAILQ_REMOVE(&dev->children, child, link); TAILQ_REMOVE(&bus_data_devices, child, devlink); kobj_delete((kobj_t) child, M_BUS); bus_data_generation_update(); return (0); } /** * @brief Delete all children devices of the given device, if any. * * This function deletes all children devices of the given device, if * any, using the device_delete_child() function for each device it * finds. If a child device cannot be deleted, this function will * return an error code. * * @param dev the parent device * * @retval 0 success * @retval non-zero a device would not detach */ int device_delete_children(device_t dev) { device_t child; int error; PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); error = 0; while ((child = TAILQ_FIRST(&dev->children)) != NULL) { error = device_delete_child(dev, child); if (error) { PDEBUG(("Failed deleting %s", DEVICENAME(child))); break; } } return (error); } /** * @brief Find a device given a unit number * * This is similar to devclass_get_devices() but only searches for * devices which have @p dev as a parent. * * @param dev the parent device to search * @param unit the unit number to search for. If the unit is -1, * return the first child of @p dev which has name * @p classname (that is, the one with the lowest unit.) * * @returns the device with the given unit number or @c * NULL if there is no such device */ device_t device_find_child(device_t dev, const char *classname, int unit) { devclass_t dc; device_t child; dc = devclass_find(classname); if (!dc) return (NULL); if (unit != -1) { child = devclass_get_device(dc, unit); if (child && child->parent == dev) return (child); } else { for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { child = devclass_get_device(dc, unit); if (child && child->parent == dev) return (child); } } return (NULL); } /** * @internal */ static driverlink_t first_matching_driver(devclass_t dc, device_t dev) { if (dev->devclass) return (devclass_find_driver_internal(dc, dev->devclass->name)); return (TAILQ_FIRST(&dc->drivers)); } /** * @internal */ static driverlink_t next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) { if (dev->devclass) { driverlink_t dl; for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) if (!strcmp(dev->devclass->name, dl->driver->name)) return (dl); return (NULL); } return (TAILQ_NEXT(last, link)); } /** * @internal */ int device_probe_child(device_t dev, device_t child) { devclass_t dc; driverlink_t best = NULL; driverlink_t dl; int result, pri = 0; int hasclass = (child->devclass != NULL); GIANT_REQUIRED; dc = dev->devclass; if (!dc) panic("device_probe_child: parent device has no devclass"); /* * If the state is already probed, then return. However, don't * return if we can rebid this object. */ if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) return (0); for (; dc; dc = dc->parent) { for (dl = first_matching_driver(dc, child); dl; dl = next_matching_driver(dc, child, dl)) { /* If this driver's pass is too high, then ignore it. */ if (dl->pass > bus_current_pass) continue; PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); result = device_set_driver(child, dl->driver); if (result == ENOMEM) return (result); else if (result != 0) continue; if (!hasclass) { if (device_set_devclass(child, dl->driver->name) != 0) { char const * devname = device_get_name(child); if (devname == NULL) devname = "(unknown)"; printf("driver bug: Unable to set " "devclass (class: %s " "devname: %s)\n", dl->driver->name, devname); (void)device_set_driver(child, NULL); continue; } } /* Fetch any flags for the device before probing. */ resource_int_value(dl->driver->name, child->unit, "flags", &child->devflags); result = DEVICE_PROBE(child); /* Reset flags and devclass before the next probe. */ child->devflags = 0; if (!hasclass) (void)device_set_devclass(child, NULL); /* * If the driver returns SUCCESS, there can be * no higher match for this device. */ if (result == 0) { best = dl; pri = 0; break; } /* * Reset DF_QUIET in case this driver doesn't * end up as the best driver. */ device_verbose(child); /* * Probes that return BUS_PROBE_NOWILDCARD or lower * only match on devices whose driver was explicitly * specified. */ if (result <= BUS_PROBE_NOWILDCARD && !(child->flags & DF_FIXEDCLASS)) { result = ENXIO; } /* * The driver returned an error so it * certainly doesn't match. */ if (result > 0) { (void)device_set_driver(child, NULL); continue; } /* * A priority lower than SUCCESS, remember the * best matching driver. Initialise the value * of pri for the first match. */ if (best == NULL || result > pri) { best = dl; pri = result; continue; } } /* * If we have an unambiguous match in this devclass, * don't look in the parent. */ if (best && pri == 0) break; } /* * If we found a driver, change state and initialise the devclass. */ /* XXX What happens if we rebid and got no best? */ if (best) { /* * If this device was attached, and we were asked to * rescan, and it is a different driver, then we have * to detach the old driver and reattach this new one. * Note, we don't have to check for DF_REBID here * because if the state is > DS_ALIVE, we know it must * be. * * This assumes that all DF_REBID drivers can have * their probe routine called at any time and that * they are idempotent as well as completely benign in * normal operations. * * We also have to make sure that the detach * succeeded, otherwise we fail the operation (or * maybe it should just fail silently? I'm torn). */ if (child->state > DS_ALIVE && best->driver != child->driver) if ((result = device_detach(dev)) != 0) return (result); /* Set the winning driver, devclass, and flags. */ if (!child->devclass) { result = device_set_devclass(child, best->driver->name); if (result != 0) return (result); } result = device_set_driver(child, best->driver); if (result != 0) return (result); resource_int_value(best->driver->name, child->unit, "flags", &child->devflags); if (pri < 0) { /* * A bit bogus. Call the probe method again to make * sure that we have the right description. */ DEVICE_PROBE(child); #if 0 child->flags |= DF_REBID; #endif } else child->flags &= ~DF_REBID; child->state = DS_ALIVE; bus_data_generation_update(); return (0); } return (ENXIO); } /** * @brief Return the parent of a device */ device_t device_get_parent(device_t dev) { return (dev->parent); } /** * @brief Get a list of children of a device * * An array containing a list of all the children of the given device * is allocated and returned in @p *devlistp. The number of devices * in the array is returned in @p *devcountp. The caller should free * the array using @c free(p, M_TEMP). * * @param dev the device to examine * @param devlistp points at location for array pointer return * value * @param devcountp points at location for array size return value * * @retval 0 success * @retval ENOMEM the array allocation failed */ int device_get_children(device_t dev, device_t **devlistp, int *devcountp) { int count; device_t child; device_t *list; count = 0; TAILQ_FOREACH(child, &dev->children, link) { count++; } if (count == 0) { *devlistp = NULL; *devcountp = 0; return (0); } list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); if (!list) return (ENOMEM); count = 0; TAILQ_FOREACH(child, &dev->children, link) { list[count] = child; count++; } *devlistp = list; *devcountp = count; return (0); } /** * @brief Return the current driver for the device or @c NULL if there * is no driver currently attached */ driver_t * device_get_driver(device_t dev) { return (dev->driver); } /** * @brief Return the current devclass for the device or @c NULL if * there is none. */ devclass_t device_get_devclass(device_t dev) { return (dev->devclass); } /** * @brief Return the name of the device's devclass or @c NULL if there * is none. */ const char * device_get_name(device_t dev) { if (dev != NULL && dev->devclass) return (devclass_get_name(dev->devclass)); return (NULL); } /** * @brief Return a string containing the device's devclass name * followed by an ascii representation of the device's unit number * (e.g. @c "foo2"). */ const char * device_get_nameunit(device_t dev) { return (dev->nameunit); } /** * @brief Return the device's unit number. */ int device_get_unit(device_t dev) { return (dev->unit); } /** * @brief Return the device's description string */ const char * device_get_desc(device_t dev) { return (dev->desc); } /** * @brief Return the device's flags */ uint32_t device_get_flags(device_t dev) { return (dev->devflags); } struct sysctl_ctx_list * device_get_sysctl_ctx(device_t dev) { return (&dev->sysctl_ctx); } struct sysctl_oid * device_get_sysctl_tree(device_t dev) { return (dev->sysctl_tree); } /** * @brief Print the name of the device followed by a colon and a space * * @returns the number of characters printed */ int device_print_prettyname(device_t dev) { const char *name = device_get_name(dev); if (name == NULL) return (printf("unknown: ")); return (printf("%s%d: ", name, device_get_unit(dev))); } /** * @brief Print the name of the device followed by a colon, a space * and the result of calling vprintf() with the value of @p fmt and * the following arguments. * * @returns the number of characters printed */ int device_printf(device_t dev, const char * fmt, ...) { char buf[128]; struct sbuf sb; const char *name; va_list ap; size_t retval; retval = 0; sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); sbuf_set_drain(&sb, sbuf_printf_drain, &retval); name = device_get_name(dev); if (name == NULL) sbuf_cat(&sb, "unknown: "); else sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); va_start(ap, fmt); sbuf_vprintf(&sb, fmt, ap); va_end(ap); sbuf_finish(&sb); sbuf_delete(&sb); return (retval); } /** * @brief Print the name of the device followed by a colon, a space * and the result of calling log() with the value of @p fmt and * the following arguments. * * @returns the number of characters printed */ int device_log(device_t dev, int pri, const char * fmt, ...) { char buf[128]; struct sbuf sb; const char *name; va_list ap; size_t retval; retval = 0; sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); name = device_get_name(dev); if (name == NULL) sbuf_cat(&sb, "unknown: "); else sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); va_start(ap, fmt); sbuf_vprintf(&sb, fmt, ap); va_end(ap); sbuf_finish(&sb); log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb)); retval = sbuf_len(&sb); sbuf_delete(&sb); return (retval); } /** * @internal */ static void device_set_desc_internal(device_t dev, const char* desc, int copy) { if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { free(dev->desc, M_BUS); dev->flags &= ~DF_DESCMALLOCED; dev->desc = NULL; } if (copy && desc) { dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); if (dev->desc) { strcpy(dev->desc, desc); dev->flags |= DF_DESCMALLOCED; } } else { /* Avoid a -Wcast-qual warning */ dev->desc = (char *)(uintptr_t) desc; } bus_data_generation_update(); } /** * @brief Set the device's description * * The value of @c desc should be a string constant that will not * change (at least until the description is changed in a subsequent * call to device_set_desc() or device_set_desc_copy()). */ void device_set_desc(device_t dev, const char* desc) { device_set_desc_internal(dev, desc, FALSE); } /** * @brief Set the device's description * * The string pointed to by @c desc is copied. Use this function if * the device description is generated, (e.g. with sprintf()). */ void device_set_desc_copy(device_t dev, const char* desc) { device_set_desc_internal(dev, desc, TRUE); } /** * @brief Set the device's flags */ void device_set_flags(device_t dev, uint32_t flags) { dev->devflags = flags; } /** * @brief Return the device's softc field * * The softc is allocated and zeroed when a driver is attached, based * on the size field of the driver. */ void * device_get_softc(device_t dev) { return (dev->softc); } /** * @brief Set the device's softc field * * Most drivers do not need to use this since the softc is allocated * automatically when the driver is attached. */ void device_set_softc(device_t dev, void *softc) { if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) free(dev->softc, M_BUS_SC); dev->softc = softc; if (dev->softc) dev->flags |= DF_EXTERNALSOFTC; else dev->flags &= ~DF_EXTERNALSOFTC; } /** * @brief Free claimed softc * * Most drivers do not need to use this since the softc is freed * automatically when the driver is detached. */ void device_free_softc(void *softc) { free(softc, M_BUS_SC); } /** * @brief Claim softc * * This function can be used to let the driver free the automatically * allocated softc using "device_free_softc()". This function is * useful when the driver is refcounting the softc and the softc * cannot be freed when the "device_detach" method is called. */ void device_claim_softc(device_t dev) { if (dev->softc) dev->flags |= DF_EXTERNALSOFTC; else dev->flags &= ~DF_EXTERNALSOFTC; } /** * @brief Get the device's ivars field * * The ivars field is used by the parent device to store per-device * state (e.g. the physical location of the device or a list of * resources). */ void * device_get_ivars(device_t dev) { KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); return (dev->ivars); } /** * @brief Set the device's ivars field */ void device_set_ivars(device_t dev, void * ivars) { KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); dev->ivars = ivars; } /** * @brief Return the device's state */ device_state_t device_get_state(device_t dev) { return (dev->state); } /** * @brief Set the DF_ENABLED flag for the device */ void device_enable(device_t dev) { dev->flags |= DF_ENABLED; } /** * @brief Clear the DF_ENABLED flag for the device */ void device_disable(device_t dev) { dev->flags &= ~DF_ENABLED; } /** * @brief Increment the busy counter for the device */ void device_busy(device_t dev) { if (dev->state < DS_ATTACHING) panic("device_busy: called for unattached device"); if (dev->busy == 0 && dev->parent) device_busy(dev->parent); dev->busy++; if (dev->state == DS_ATTACHED) dev->state = DS_BUSY; } /** * @brief Decrement the busy counter for the device */ void device_unbusy(device_t dev) { if (dev->busy != 0 && dev->state != DS_BUSY && dev->state != DS_ATTACHING) panic("device_unbusy: called for non-busy device %s", device_get_nameunit(dev)); dev->busy--; if (dev->busy == 0) { if (dev->parent) device_unbusy(dev->parent); if (dev->state == DS_BUSY) dev->state = DS_ATTACHED; } } /** * @brief Set the DF_QUIET flag for the device */ void device_quiet(device_t dev) { dev->flags |= DF_QUIET; } /** * @brief Set the DF_QUIET_CHILDREN flag for the device */ void device_quiet_children(device_t dev) { dev->flags |= DF_QUIET_CHILDREN; } /** * @brief Clear the DF_QUIET flag for the device */ void device_verbose(device_t dev) { dev->flags &= ~DF_QUIET; } /** * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device */ int device_has_quiet_children(device_t dev) { return ((dev->flags & DF_QUIET_CHILDREN) != 0); } /** * @brief Return non-zero if the DF_QUIET flag is set on the device */ int device_is_quiet(device_t dev) { return ((dev->flags & DF_QUIET) != 0); } /** * @brief Return non-zero if the DF_ENABLED flag is set on the device */ int device_is_enabled(device_t dev) { return ((dev->flags & DF_ENABLED) != 0); } /** * @brief Return non-zero if the device was successfully probed */ int device_is_alive(device_t dev) { return (dev->state >= DS_ALIVE); } /** * @brief Return non-zero if the device currently has a driver * attached to it */ int device_is_attached(device_t dev) { return (dev->state >= DS_ATTACHED); } /** * @brief Return non-zero if the device is currently suspended. */ int device_is_suspended(device_t dev) { return ((dev->flags & DF_SUSPENDED) != 0); } /** * @brief Set the devclass of a device * @see devclass_add_device(). */ int device_set_devclass(device_t dev, const char *classname) { devclass_t dc; int error; if (!classname) { if (dev->devclass) devclass_delete_device(dev->devclass, dev); return (0); } if (dev->devclass) { printf("device_set_devclass: device class already set\n"); return (EINVAL); } dc = devclass_find_internal(classname, NULL, TRUE); if (!dc) return (ENOMEM); error = devclass_add_device(dc, dev); bus_data_generation_update(); return (error); } /** * @brief Set the devclass of a device and mark the devclass fixed. * @see device_set_devclass() */ int device_set_devclass_fixed(device_t dev, const char *classname) { int error; if (classname == NULL) return (EINVAL); error = device_set_devclass(dev, classname); if (error) return (error); dev->flags |= DF_FIXEDCLASS; return (0); } /** * @brief Query the device to determine if it's of a fixed devclass * @see device_set_devclass_fixed() */ bool device_is_devclass_fixed(device_t dev) { return ((dev->flags & DF_FIXEDCLASS) != 0); } /** * @brief Set the driver of a device * * @retval 0 success * @retval EBUSY the device already has a driver attached * @retval ENOMEM a memory allocation failure occurred */ int device_set_driver(device_t dev, driver_t *driver) { int domain; struct domainset *policy; if (dev->state >= DS_ATTACHED) return (EBUSY); if (dev->driver == driver) return (0); if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { free(dev->softc, M_BUS_SC); dev->softc = NULL; } device_set_desc(dev, NULL); kobj_delete((kobj_t) dev, NULL); dev->driver = driver; if (driver) { kobj_init((kobj_t) dev, (kobj_class_t) driver); if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { if (bus_get_domain(dev, &domain) == 0) policy = DOMAINSET_PREF(domain); else policy = DOMAINSET_RR(); dev->softc = malloc_domainset(driver->size, M_BUS_SC, policy, M_NOWAIT | M_ZERO); if (!dev->softc) { kobj_delete((kobj_t) dev, NULL); kobj_init((kobj_t) dev, &null_class); dev->driver = NULL; return (ENOMEM); } } } else { kobj_init((kobj_t) dev, &null_class); } bus_data_generation_update(); return (0); } /** * @brief Probe a device, and return this status. * * This function is the core of the device autoconfiguration * system. Its purpose is to select a suitable driver for a device and * then call that driver to initialise the hardware appropriately. The * driver is selected by calling the DEVICE_PROBE() method of a set of * candidate drivers and then choosing the driver which returned the * best value. This driver is then attached to the device using * device_attach(). * * The set of suitable drivers is taken from the list of drivers in * the parent device's devclass. If the device was originally created * with a specific class name (see device_add_child()), only drivers * with that name are probed, otherwise all drivers in the devclass * are probed. If no drivers return successful probe values in the * parent devclass, the search continues in the parent of that * devclass (see devclass_get_parent()) if any. * * @param dev the device to initialise * * @retval 0 success * @retval ENXIO no driver was found * @retval ENOMEM memory allocation failure * @retval non-zero some other unix error code * @retval -1 Device already attached */ int device_probe(device_t dev) { int error; GIANT_REQUIRED; if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) return (-1); if (!(dev->flags & DF_ENABLED)) { if (bootverbose && device_get_name(dev) != NULL) { device_print_prettyname(dev); printf("not probed (disabled)\n"); } return (-1); } if ((error = device_probe_child(dev->parent, dev)) != 0) { if (bus_current_pass == BUS_PASS_DEFAULT && !(dev->flags & DF_DONENOMATCH)) { BUS_PROBE_NOMATCH(dev->parent, dev); devnomatch(dev); dev->flags |= DF_DONENOMATCH; } return (error); } return (0); } /** * @brief Probe a device and attach a driver if possible * * calls device_probe() and attaches if that was successful. */ int device_probe_and_attach(device_t dev) { int error; GIANT_REQUIRED; error = device_probe(dev); if (error == -1) return (0); else if (error != 0) return (error); CURVNET_SET_QUIET(vnet0); error = device_attach(dev); CURVNET_RESTORE(); return error; } /** * @brief Attach a device driver to a device * * This function is a wrapper around the DEVICE_ATTACH() driver * method. In addition to calling DEVICE_ATTACH(), it initialises the * device's sysctl tree, optionally prints a description of the device * and queues a notification event for user-based device management * services. * * Normally this function is only called internally from * device_probe_and_attach(). * * @param dev the device to initialise * * @retval 0 success * @retval ENXIO no driver was found * @retval ENOMEM memory allocation failure * @retval non-zero some other unix error code */ int device_attach(device_t dev) { uint64_t attachtime; uint16_t attachentropy; int error; if (resource_disabled(dev->driver->name, dev->unit)) { device_disable(dev); if (bootverbose) device_printf(dev, "disabled via hints entry\n"); return (ENXIO); } device_sysctl_init(dev); if (!device_is_quiet(dev)) device_print_child(dev->parent, dev); attachtime = get_cyclecount(); dev->state = DS_ATTACHING; if ((error = DEVICE_ATTACH(dev)) != 0) { printf("device_attach: %s%d attach returned %d\n", dev->driver->name, dev->unit, error); if (!(dev->flags & DF_FIXEDCLASS)) devclass_delete_device(dev->devclass, dev); (void)device_set_driver(dev, NULL); device_sysctl_fini(dev); KASSERT(dev->busy == 0, ("attach failed but busy")); dev->state = DS_NOTPRESENT; return (error); } dev->flags |= DF_ATTACHED_ONCE; /* We only need the low bits of this time, but ranges from tens to thousands * have been seen, so keep 2 bytes' worth. */ attachentropy = (uint16_t)(get_cyclecount() - attachtime); random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH); device_sysctl_update(dev); if (dev->busy) dev->state = DS_BUSY; else dev->state = DS_ATTACHED; dev->flags &= ~DF_DONENOMATCH; EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); devadded(dev); return (0); } /** * @brief Detach a driver from a device * * This function is a wrapper around the DEVICE_DETACH() driver * method. If the call to DEVICE_DETACH() succeeds, it calls * BUS_CHILD_DETACHED() for the parent of @p dev, queues a * notification event for user-based device management services and * cleans up the device's sysctl tree. * * @param dev the device to un-initialise * * @retval 0 success * @retval ENXIO no driver was found * @retval ENOMEM memory allocation failure * @retval non-zero some other unix error code */ int device_detach(device_t dev) { int error; GIANT_REQUIRED; PDEBUG(("%s", DEVICENAME(dev))); if (dev->state == DS_BUSY) return (EBUSY); if (dev->state == DS_ATTACHING) { device_printf(dev, "device in attaching state! Deferring detach.\n"); return (EBUSY); } if (dev->state != DS_ATTACHED) return (0); EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); if ((error = DEVICE_DETACH(dev)) != 0) { EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_FAILED); return (error); } else { EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_COMPLETE); } devremoved(dev); if (!device_is_quiet(dev)) device_printf(dev, "detached\n"); if (dev->parent) BUS_CHILD_DETACHED(dev->parent, dev); if (!(dev->flags & DF_FIXEDCLASS)) devclass_delete_device(dev->devclass, dev); device_verbose(dev); dev->state = DS_NOTPRESENT; (void)device_set_driver(dev, NULL); device_sysctl_fini(dev); return (0); } /** * @brief Tells a driver to quiesce itself. * * This function is a wrapper around the DEVICE_QUIESCE() driver * method. If the call to DEVICE_QUIESCE() succeeds. * * @param dev the device to quiesce * * @retval 0 success * @retval ENXIO no driver was found * @retval ENOMEM memory allocation failure * @retval non-zero some other unix error code */ int device_quiesce(device_t dev) { PDEBUG(("%s", DEVICENAME(dev))); if (dev->state == DS_BUSY) return (EBUSY); if (dev->state != DS_ATTACHED) return (0); return (DEVICE_QUIESCE(dev)); } /** * @brief Notify a device of system shutdown * * This function calls the DEVICE_SHUTDOWN() driver method if the * device currently has an attached driver. * * @returns the value returned by DEVICE_SHUTDOWN() */ int device_shutdown(device_t dev) { if (dev->state < DS_ATTACHED) return (0); return (DEVICE_SHUTDOWN(dev)); } /** * @brief Set the unit number of a device * * This function can be used to override the unit number used for a * device (e.g. to wire a device to a pre-configured unit number). */ int device_set_unit(device_t dev, int unit) { devclass_t dc; int err; dc = device_get_devclass(dev); if (unit < dc->maxunit && dc->devices[unit]) return (EBUSY); err = devclass_delete_device(dc, dev); if (err) return (err); dev->unit = unit; err = devclass_add_device(dc, dev); if (err) return (err); bus_data_generation_update(); return (0); } /*======================================*/ /* * Some useful method implementations to make life easier for bus drivers. */ void resource_init_map_request_impl(struct resource_map_request *args, size_t sz) { bzero(args, sz); args->size = sz; - args->memattr = VM_MEMATTR_UNCACHEABLE; + args->memattr = VM_MEMATTR_DEVICE; } /** * @brief Initialise a resource list. * * @param rl the resource list to initialise */ void resource_list_init(struct resource_list *rl) { STAILQ_INIT(rl); } /** * @brief Reclaim memory used by a resource list. * * This function frees the memory for all resource entries on the list * (if any). * * @param rl the resource list to free */ void resource_list_free(struct resource_list *rl) { struct resource_list_entry *rle; while ((rle = STAILQ_FIRST(rl)) != NULL) { if (rle->res) panic("resource_list_free: resource entry is busy"); STAILQ_REMOVE_HEAD(rl, link); free(rle, M_BUS); } } /** * @brief Add a resource entry. * * This function adds a resource entry using the given @p type, @p * start, @p end and @p count values. A rid value is chosen by * searching sequentially for the first unused rid starting at zero. * * @param rl the resource list to edit * @param type the resource entry type (e.g. SYS_RES_MEMORY) * @param start the start address of the resource * @param end the end address of the resource * @param count XXX end-start+1 */ int resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, rman_res_t end, rman_res_t count) { int rid; rid = 0; while (resource_list_find(rl, type, rid) != NULL) rid++; resource_list_add(rl, type, rid, start, end, count); return (rid); } /** * @brief Add or modify a resource entry. * * If an existing entry exists with the same type and rid, it will be * modified using the given values of @p start, @p end and @p * count. If no entry exists, a new one will be created using the * given values. The resource list entry that matches is then returned. * * @param rl the resource list to edit * @param type the resource entry type (e.g. SYS_RES_MEMORY) * @param rid the resource identifier * @param start the start address of the resource * @param end the end address of the resource * @param count XXX end-start+1 */ struct resource_list_entry * resource_list_add(struct resource_list *rl, int type, int rid, rman_res_t start, rman_res_t end, rman_res_t count) { struct resource_list_entry *rle; rle = resource_list_find(rl, type, rid); if (!rle) { rle = malloc(sizeof(struct resource_list_entry), M_BUS, M_NOWAIT); if (!rle) panic("resource_list_add: can't record entry"); STAILQ_INSERT_TAIL(rl, rle, link); rle->type = type; rle->rid = rid; rle->res = NULL; rle->flags = 0; } if (rle->res) panic("resource_list_add: resource entry is busy"); rle->start = start; rle->end = end; rle->count = count; return (rle); } /** * @brief Determine if a resource entry is busy. * * Returns true if a resource entry is busy meaning that it has an * associated resource that is not an unallocated "reserved" resource. * * @param rl the resource list to search * @param type the resource entry type (e.g. SYS_RES_MEMORY) * @param rid the resource identifier * * @returns Non-zero if the entry is busy, zero otherwise. */ int resource_list_busy(struct resource_list *rl, int type, int rid) { struct resource_list_entry *rle; rle = resource_list_find(rl, type, rid); if (rle == NULL || rle->res == NULL) return (0); if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), ("reserved resource is active")); return (0); } return (1); } /** * @brief Determine if a resource entry is reserved. * * Returns true if a resource entry is reserved meaning that it has an * associated "reserved" resource. The resource can either be * allocated or unallocated. * * @param rl the resource list to search * @param type the resource entry type (e.g. SYS_RES_MEMORY) * @param rid the resource identifier * * @returns Non-zero if the entry is reserved, zero otherwise. */ int resource_list_reserved(struct resource_list *rl, int type, int rid) { struct resource_list_entry *rle; rle = resource_list_find(rl, type, rid); if (rle != NULL && rle->flags & RLE_RESERVED) return (1); return (0); } /** * @brief Find a resource entry by type and rid. * * @param rl the resource list to search * @param type the resource entry type (e.g. SYS_RES_MEMORY) * @param rid the resource identifier * * @returns the resource entry pointer or NULL if there is no such * entry. */ struct resource_list_entry * resource_list_find(struct resource_list *rl, int type, int rid) { struct resource_list_entry *rle; STAILQ_FOREACH(rle, rl, link) { if (rle->type == type && rle->rid == rid) return (rle); } return (NULL); } /** * @brief Delete a resource entry. * * @param rl the resource list to edit * @param type the resource entry type (e.g. SYS_RES_MEMORY) * @param rid the resource identifier */ void resource_list_delete(struct resource_list *rl, int type, int rid) { struct resource_list_entry *rle = resource_list_find(rl, type, rid); if (rle) { if (rle->res != NULL) panic("resource_list_delete: resource has not been released"); STAILQ_REMOVE(rl, rle, resource_list_entry, link); free(rle, M_BUS); } } /** * @brief Allocate a reserved resource * * This can be used by buses to force the allocation of resources * that are always active in the system even if they are not allocated * by a driver (e.g. PCI BARs). This function is usually called when * adding a new child to the bus. The resource is allocated from the * parent bus when it is reserved. The resource list entry is marked * with RLE_RESERVED to note that it is a reserved resource. * * Subsequent attempts to allocate the resource with * resource_list_alloc() will succeed the first time and will set * RLE_ALLOCATED to note that it has been allocated. When a reserved * resource that has been allocated is released with * resource_list_release() the resource RLE_ALLOCATED is cleared, but * the actual resource remains allocated. The resource can be released to * the parent bus by calling resource_list_unreserve(). * * @param rl the resource list to allocate from * @param bus the parent device of @p child * @param child the device for which the resource is being reserved * @param type the type of resource to allocate * @param rid a pointer to the resource identifier * @param start hint at the start of the resource range - pass * @c 0 for any start address * @param end hint at the end of the resource range - pass * @c ~0 for any end address * @param count hint at the size of range required - pass @c 1 * for any size * @param flags any extra flags to control the resource * allocation - see @c RF_XXX flags in * for details * * @returns the resource which was allocated or @c NULL if no * resource could be allocated */ struct resource * resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { struct resource_list_entry *rle = NULL; int passthrough = (device_get_parent(child) != bus); struct resource *r; if (passthrough) panic( "resource_list_reserve() should only be called for direct children"); if (flags & RF_ACTIVE) panic( "resource_list_reserve() should only reserve inactive resources"); r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, flags); if (r != NULL) { rle = resource_list_find(rl, type, *rid); rle->flags |= RLE_RESERVED; } return (r); } /** * @brief Helper function for implementing BUS_ALLOC_RESOURCE() * * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list * and passing the allocation up to the parent of @p bus. This assumes * that the first entry of @c device_get_ivars(child) is a struct * resource_list. This also handles 'passthrough' allocations where a * child is a remote descendant of bus by passing the allocation up to * the parent of bus. * * Typically, a bus driver would store a list of child resources * somewhere in the child device's ivars (see device_get_ivars()) and * its implementation of BUS_ALLOC_RESOURCE() would find that list and * then call resource_list_alloc() to perform the allocation. * * @param rl the resource list to allocate from * @param bus the parent device of @p child * @param child the device which is requesting an allocation * @param type the type of resource to allocate * @param rid a pointer to the resource identifier * @param start hint at the start of the resource range - pass * @c 0 for any start address * @param end hint at the end of the resource range - pass * @c ~0 for any end address * @param count hint at the size of range required - pass @c 1 * for any size * @param flags any extra flags to control the resource * allocation - see @c RF_XXX flags in * for details * * @returns the resource which was allocated or @c NULL if no * resource could be allocated */ struct resource * resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { struct resource_list_entry *rle = NULL; int passthrough = (device_get_parent(child) != bus); int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); if (passthrough) { return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, start, end, count, flags)); } rle = resource_list_find(rl, type, *rid); if (!rle) return (NULL); /* no resource of that type/rid */ if (rle->res) { if (rle->flags & RLE_RESERVED) { if (rle->flags & RLE_ALLOCATED) return (NULL); if ((flags & RF_ACTIVE) && bus_activate_resource(child, type, *rid, rle->res) != 0) return (NULL); rle->flags |= RLE_ALLOCATED; return (rle->res); } device_printf(bus, "resource entry %#x type %d for child %s is busy\n", *rid, type, device_get_nameunit(child)); return (NULL); } if (isdefault) { start = rle->start; count = ulmax(count, rle->count); end = ulmax(rle->end, start + count - 1); } rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, start, end, count, flags); /* * Record the new range. */ if (rle->res) { rle->start = rman_get_start(rle->res); rle->end = rman_get_end(rle->res); rle->count = count; } return (rle->res); } /** * @brief Helper function for implementing BUS_RELEASE_RESOURCE() * * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally * used with resource_list_alloc(). * * @param rl the resource list which was allocated from * @param bus the parent device of @p child * @param child the device which is requesting a release * @param type the type of resource to release * @param rid the resource identifier * @param res the resource to release * * @retval 0 success * @retval non-zero a standard unix error code indicating what * error condition prevented the operation */ int resource_list_release(struct resource_list *rl, device_t bus, device_t child, int type, int rid, struct resource *res) { struct resource_list_entry *rle = NULL; int passthrough = (device_get_parent(child) != bus); int error; if (passthrough) { return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, type, rid, res)); } rle = resource_list_find(rl, type, rid); if (!rle) panic("resource_list_release: can't find resource"); if (!rle->res) panic("resource_list_release: resource entry is not busy"); if (rle->flags & RLE_RESERVED) { if (rle->flags & RLE_ALLOCATED) { if (rman_get_flags(res) & RF_ACTIVE) { error = bus_deactivate_resource(child, type, rid, res); if (error) return (error); } rle->flags &= ~RLE_ALLOCATED; return (0); } return (EINVAL); } error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, type, rid, res); if (error) return (error); rle->res = NULL; return (0); } /** * @brief Release all active resources of a given type * * Release all active resources of a specified type. This is intended * to be used to cleanup resources leaked by a driver after detach or * a failed attach. * * @param rl the resource list which was allocated from * @param bus the parent device of @p child * @param child the device whose active resources are being released * @param type the type of resources to release * * @retval 0 success * @retval EBUSY at least one resource was active */ int resource_list_release_active(struct resource_list *rl, device_t bus, device_t child, int type) { struct resource_list_entry *rle; int error, retval; retval = 0; STAILQ_FOREACH(rle, rl, link) { if (rle->type != type) continue; if (rle->res == NULL) continue; if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) continue; retval = EBUSY; error = resource_list_release(rl, bus, child, type, rman_get_rid(rle->res), rle->res); if (error != 0) device_printf(bus, "Failed to release active resource: %d\n", error); } return (retval); } /** * @brief Fully release a reserved resource * * Fully releases a resource reserved via resource_list_reserve(). * * @param rl the resource list which was allocated from * @param bus the parent device of @p child * @param child the device whose reserved resource is being released * @param type the type of resource to release * @param rid the resource identifier * @param res the resource to release * * @retval 0 success * @retval non-zero a standard unix error code indicating what * error condition prevented the operation */ int resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, int type, int rid) { struct resource_list_entry *rle = NULL; int passthrough = (device_get_parent(child) != bus); if (passthrough) panic( "resource_list_unreserve() should only be called for direct children"); rle = resource_list_find(rl, type, rid); if (!rle) panic("resource_list_unreserve: can't find resource"); if (!(rle->flags & RLE_RESERVED)) return (EINVAL); if (rle->flags & RLE_ALLOCATED) return (EBUSY); rle->flags &= ~RLE_RESERVED; return (resource_list_release(rl, bus, child, type, rid, rle->res)); } /** * @brief Print a description of resources in a resource list * * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). * The name is printed if at least one resource of the given type is available. * The format is used to print resource start and end. * * @param rl the resource list to print * @param name the name of @p type, e.g. @c "memory" * @param type type type of resource entry to print * @param format printf(9) format string to print resource * start and end values * * @returns the number of characters printed */ int resource_list_print_type(struct resource_list *rl, const char *name, int type, const char *format) { struct resource_list_entry *rle; int printed, retval; printed = 0; retval = 0; /* Yes, this is kinda cheating */ STAILQ_FOREACH(rle, rl, link) { if (rle->type == type) { if (printed == 0) retval += printf(" %s ", name); else retval += printf(","); printed++; retval += printf(format, rle->start); if (rle->count > 1) { retval += printf("-"); retval += printf(format, rle->start + rle->count - 1); } } } return (retval); } /** * @brief Releases all the resources in a list. * * @param rl The resource list to purge. * * @returns nothing */ void resource_list_purge(struct resource_list *rl) { struct resource_list_entry *rle; while ((rle = STAILQ_FIRST(rl)) != NULL) { if (rle->res) bus_release_resource(rman_get_device(rle->res), rle->type, rle->rid, rle->res); STAILQ_REMOVE_HEAD(rl, link); free(rle, M_BUS); } } device_t bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) { return (device_add_child_ordered(dev, order, name, unit)); } /** * @brief Helper function for implementing DEVICE_PROBE() * * This function can be used to help implement the DEVICE_PROBE() for * a bus (i.e. a device which has other devices attached to it). It * calls the DEVICE_IDENTIFY() method of each driver in the device's * devclass. */ int bus_generic_probe(device_t dev) { devclass_t dc = dev->devclass; driverlink_t dl; TAILQ_FOREACH(dl, &dc->drivers, link) { /* * If this driver's pass is too high, then ignore it. * For most drivers in the default pass, this will * never be true. For early-pass drivers they will * only call the identify routines of eligible drivers * when this routine is called. Drivers for later * passes should have their identify routines called * on early-pass buses during BUS_NEW_PASS(). */ if (dl->pass > bus_current_pass) continue; DEVICE_IDENTIFY(dl->driver, dev); } return (0); } /** * @brief Helper function for implementing DEVICE_ATTACH() * * This function can be used to help implement the DEVICE_ATTACH() for * a bus. It calls device_probe_and_attach() for each of the device's * children. */ int bus_generic_attach(device_t dev) { device_t child; TAILQ_FOREACH(child, &dev->children, link) { device_probe_and_attach(child); } return (0); } /** * @brief Helper function for delaying attaching children * * Many buses can't run transactions on the bus which children need to probe and * attach until after interrupts and/or timers are running. This function * delays their attach until interrupts and timers are enabled. */ int bus_delayed_attach_children(device_t dev) { /* Probe and attach the bus children when interrupts are available */ config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev); return (0); } /** * @brief Helper function for implementing DEVICE_DETACH() * * This function can be used to help implement the DEVICE_DETACH() for * a bus. It calls device_detach() for each of the device's * children. */ int bus_generic_detach(device_t dev) { device_t child; int error; if (dev->state != DS_ATTACHED) return (EBUSY); /* * Detach children in the reverse order. * See bus_generic_suspend for details. */ TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { if ((error = device_detach(child)) != 0) return (error); } return (0); } /** * @brief Helper function for implementing DEVICE_SHUTDOWN() * * This function can be used to help implement the DEVICE_SHUTDOWN() * for a bus. It calls device_shutdown() for each of the device's * children. */ int bus_generic_shutdown(device_t dev) { device_t child; /* * Shut down children in the reverse order. * See bus_generic_suspend for details. */ TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { device_shutdown(child); } return (0); } /** * @brief Default function for suspending a child device. * * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). */ int bus_generic_suspend_child(device_t dev, device_t child) { int error; error = DEVICE_SUSPEND(child); if (error == 0) child->flags |= DF_SUSPENDED; return (error); } /** * @brief Default function for resuming a child device. * * This function is to be used by a bus's DEVICE_RESUME_CHILD(). */ int bus_generic_resume_child(device_t dev, device_t child) { DEVICE_RESUME(child); child->flags &= ~DF_SUSPENDED; return (0); } /** * @brief Helper function for implementing DEVICE_SUSPEND() * * This function can be used to help implement the DEVICE_SUSPEND() * for a bus. It calls DEVICE_SUSPEND() for each of the device's * children. If any call to DEVICE_SUSPEND() fails, the suspend * operation is aborted and any devices which were suspended are * resumed immediately by calling their DEVICE_RESUME() methods. */ int bus_generic_suspend(device_t dev) { int error; device_t child; /* * Suspend children in the reverse order. * For most buses all children are equal, so the order does not matter. * Other buses, such as acpi, carefully order their child devices to * express implicit dependencies between them. For such buses it is * safer to bring down devices in the reverse order. */ TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { error = BUS_SUSPEND_CHILD(dev, child); if (error != 0) { child = TAILQ_NEXT(child, link); if (child != NULL) { TAILQ_FOREACH_FROM(child, &dev->children, link) BUS_RESUME_CHILD(dev, child); } return (error); } } return (0); } /** * @brief Helper function for implementing DEVICE_RESUME() * * This function can be used to help implement the DEVICE_RESUME() for * a bus. It calls DEVICE_RESUME() on each of the device's children. */ int bus_generic_resume(device_t dev) { device_t child; TAILQ_FOREACH(child, &dev->children, link) { BUS_RESUME_CHILD(dev, child); /* if resume fails, there's nothing we can usefully do... */ } return (0); } /** * @brief Helper function for implementing BUS_RESET_POST * * Bus can use this function to implement common operations of * re-attaching or resuming the children after the bus itself was * reset, and after restoring bus-unique state of children. * * @param dev The bus * #param flags DEVF_RESET_* */ int bus_helper_reset_post(device_t dev, int flags) { device_t child; int error, error1; error = 0; TAILQ_FOREACH(child, &dev->children,link) { BUS_RESET_POST(dev, child); error1 = (flags & DEVF_RESET_DETACH) != 0 ? device_probe_and_attach(child) : BUS_RESUME_CHILD(dev, child); if (error == 0 && error1 != 0) error = error1; } return (error); } static void bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags) { child = TAILQ_NEXT(child, link); if (child == NULL) return; TAILQ_FOREACH_FROM(child, &dev->children,link) { BUS_RESET_POST(dev, child); if ((flags & DEVF_RESET_DETACH) != 0) device_probe_and_attach(child); else BUS_RESUME_CHILD(dev, child); } } /** * @brief Helper function for implementing BUS_RESET_PREPARE * * Bus can use this function to implement common operations of * detaching or suspending the children before the bus itself is * reset, and then save bus-unique state of children that must * persists around reset. * * @param dev The bus * #param flags DEVF_RESET_* */ int bus_helper_reset_prepare(device_t dev, int flags) { device_t child; int error; if (dev->state != DS_ATTACHED) return (EBUSY); TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { if ((flags & DEVF_RESET_DETACH) != 0) { error = device_get_state(child) == DS_ATTACHED ? device_detach(child) : 0; } else { error = BUS_SUSPEND_CHILD(dev, child); } if (error == 0) { error = BUS_RESET_PREPARE(dev, child); if (error != 0) { if ((flags & DEVF_RESET_DETACH) != 0) device_probe_and_attach(child); else BUS_RESUME_CHILD(dev, child); } } if (error != 0) { bus_helper_reset_prepare_rollback(dev, child, flags); return (error); } } return (0); } /** * @brief Helper function for implementing BUS_PRINT_CHILD(). * * This function prints the first part of the ascii representation of * @p child, including its name, unit and description (if any - see * device_set_desc()). * * @returns the number of characters printed */ int bus_print_child_header(device_t dev, device_t child) { int retval = 0; if (device_get_desc(child)) { retval += device_printf(child, "<%s>", device_get_desc(child)); } else { retval += printf("%s", device_get_nameunit(child)); } return (retval); } /** * @brief Helper function for implementing BUS_PRINT_CHILD(). * * This function prints the last part of the ascii representation of * @p child, which consists of the string @c " on " followed by the * name and unit of the @p dev. * * @returns the number of characters printed */ int bus_print_child_footer(device_t dev, device_t child) { return (printf(" on %s\n", device_get_nameunit(dev))); } /** * @brief Helper function for implementing BUS_PRINT_CHILD(). * * This function prints out the VM domain for the given device. * * @returns the number of characters printed */ int bus_print_child_domain(device_t dev, device_t child) { int domain; /* No domain? Don't print anything */ if (BUS_GET_DOMAIN(dev, child, &domain) != 0) return (0); return (printf(" numa-domain %d", domain)); } /** * @brief Helper function for implementing BUS_PRINT_CHILD(). * * This function simply calls bus_print_child_header() followed by * bus_print_child_footer(). * * @returns the number of characters printed */ int bus_generic_print_child(device_t dev, device_t child) { int retval = 0; retval += bus_print_child_header(dev, child); retval += bus_print_child_domain(dev, child); retval += bus_print_child_footer(dev, child); return (retval); } /** * @brief Stub function for implementing BUS_READ_IVAR(). * * @returns ENOENT */ int bus_generic_read_ivar(device_t dev, device_t child, int index, uintptr_t * result) { return (ENOENT); } /** * @brief Stub function for implementing BUS_WRITE_IVAR(). * * @returns ENOENT */ int bus_generic_write_ivar(device_t dev, device_t child, int index, uintptr_t value) { return (ENOENT); } /** * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). * * @returns NULL */ struct resource_list * bus_generic_get_resource_list(device_t dev, device_t child) { return (NULL); } /** * @brief Helper function for implementing BUS_DRIVER_ADDED(). * * This implementation of BUS_DRIVER_ADDED() simply calls the driver's * DEVICE_IDENTIFY() method to allow it to add new children to the bus * and then calls device_probe_and_attach() for each unattached child. */ void bus_generic_driver_added(device_t dev, driver_t *driver) { device_t child; DEVICE_IDENTIFY(driver, dev); TAILQ_FOREACH(child, &dev->children, link) { if (child->state == DS_NOTPRESENT || (child->flags & DF_REBID)) device_probe_and_attach(child); } } /** * @brief Helper function for implementing BUS_NEW_PASS(). * * This implementing of BUS_NEW_PASS() first calls the identify * routines for any drivers that probe at the current pass. Then it * walks the list of devices for this bus. If a device is already * attached, then it calls BUS_NEW_PASS() on that device. If the * device is not already attached, it attempts to attach a driver to * it. */ void bus_generic_new_pass(device_t dev) { driverlink_t dl; devclass_t dc; device_t child; dc = dev->devclass; TAILQ_FOREACH(dl, &dc->drivers, link) { if (dl->pass == bus_current_pass) DEVICE_IDENTIFY(dl->driver, dev); } TAILQ_FOREACH(child, &dev->children, link) { if (child->state >= DS_ATTACHED) BUS_NEW_PASS(child); else if (child->state == DS_NOTPRESENT) device_probe_and_attach(child); } } /** * @brief Helper function for implementing BUS_SETUP_INTR(). * * This simple implementation of BUS_SETUP_INTR() simply calls the * BUS_SETUP_INTR() method of the parent of @p dev. */ int bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_SETUP_INTR(dev->parent, child, irq, flags, filter, intr, arg, cookiep)); return (EINVAL); } /** * @brief Helper function for implementing BUS_TEARDOWN_INTR(). * * This simple implementation of BUS_TEARDOWN_INTR() simply calls the * BUS_TEARDOWN_INTR() method of the parent of @p dev. */ int bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, void *cookie) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); return (EINVAL); } /** * @brief Helper function for implementing BUS_SUSPEND_INTR(). * * This simple implementation of BUS_SUSPEND_INTR() simply calls the * BUS_SUSPEND_INTR() method of the parent of @p dev. */ int bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_SUSPEND_INTR(dev->parent, child, irq)); return (EINVAL); } /** * @brief Helper function for implementing BUS_RESUME_INTR(). * * This simple implementation of BUS_RESUME_INTR() simply calls the * BUS_RESUME_INTR() method of the parent of @p dev. */ int bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_RESUME_INTR(dev->parent, child, irq)); return (EINVAL); } /** * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). * * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the * BUS_ADJUST_RESOURCE() method of the parent of @p dev. */ int bus_generic_adjust_resource(device_t dev, device_t child, int type, struct resource *r, rman_res_t start, rman_res_t end) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, end)); return (EINVAL); } /** * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). * * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the * BUS_ALLOC_RESOURCE() method of the parent of @p dev. */ struct resource * bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, start, end, count, flags)); return (NULL); } /** * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). * * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the * BUS_RELEASE_RESOURCE() method of the parent of @p dev. */ int bus_generic_release_resource(device_t dev, device_t child, int type, int rid, struct resource *r) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r)); return (EINVAL); } /** * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). * * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. */ int bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, struct resource *r) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r)); return (EINVAL); } /** * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). * * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. */ int bus_generic_deactivate_resource(device_t dev, device_t child, int type, int rid, struct resource *r) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, r)); return (EINVAL); } /** * @brief Helper function for implementing BUS_MAP_RESOURCE(). * * This simple implementation of BUS_MAP_RESOURCE() simply calls the * BUS_MAP_RESOURCE() method of the parent of @p dev. */ int bus_generic_map_resource(device_t dev, device_t child, int type, struct resource *r, struct resource_map_request *args, struct resource_map *map) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args, map)); return (EINVAL); } /** * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). * * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the * BUS_UNMAP_RESOURCE() method of the parent of @p dev. */ int bus_generic_unmap_resource(device_t dev, device_t child, int type, struct resource *r, struct resource_map *map) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map)); return (EINVAL); } /** * @brief Helper function for implementing BUS_BIND_INTR(). * * This simple implementation of BUS_BIND_INTR() simply calls the * BUS_BIND_INTR() method of the parent of @p dev. */ int bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, int cpu) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); return (EINVAL); } /** * @brief Helper function for implementing BUS_CONFIG_INTR(). * * This simple implementation of BUS_CONFIG_INTR() simply calls the * BUS_CONFIG_INTR() method of the parent of @p dev. */ int bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, enum intr_polarity pol) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); return (EINVAL); } /** * @brief Helper function for implementing BUS_DESCRIBE_INTR(). * * This simple implementation of BUS_DESCRIBE_INTR() simply calls the * BUS_DESCRIBE_INTR() method of the parent of @p dev. */ int bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, void *cookie, const char *descr) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, descr)); return (EINVAL); } /** * @brief Helper function for implementing BUS_GET_CPUS(). * * This simple implementation of BUS_GET_CPUS() simply calls the * BUS_GET_CPUS() method of the parent of @p dev. */ int bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent != NULL) return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); return (EINVAL); } /** * @brief Helper function for implementing BUS_GET_DMA_TAG(). * * This simple implementation of BUS_GET_DMA_TAG() simply calls the * BUS_GET_DMA_TAG() method of the parent of @p dev. */ bus_dma_tag_t bus_generic_get_dma_tag(device_t dev, device_t child) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent != NULL) return (BUS_GET_DMA_TAG(dev->parent, child)); return (NULL); } /** * @brief Helper function for implementing BUS_GET_BUS_TAG(). * * This simple implementation of BUS_GET_BUS_TAG() simply calls the * BUS_GET_BUS_TAG() method of the parent of @p dev. */ bus_space_tag_t bus_generic_get_bus_tag(device_t dev, device_t child) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent != NULL) return (BUS_GET_BUS_TAG(dev->parent, child)); return ((bus_space_tag_t)0); } /** * @brief Helper function for implementing BUS_GET_RESOURCE(). * * This implementation of BUS_GET_RESOURCE() uses the * resource_list_find() function to do most of the work. It calls * BUS_GET_RESOURCE_LIST() to find a suitable resource list to * search. */ int bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, rman_res_t *startp, rman_res_t *countp) { struct resource_list * rl = NULL; struct resource_list_entry * rle = NULL; rl = BUS_GET_RESOURCE_LIST(dev, child); if (!rl) return (EINVAL); rle = resource_list_find(rl, type, rid); if (!rle) return (ENOENT); if (startp) *startp = rle->start; if (countp) *countp = rle->count; return (0); } /** * @brief Helper function for implementing BUS_SET_RESOURCE(). * * This implementation of BUS_SET_RESOURCE() uses the * resource_list_add() function to do most of the work. It calls * BUS_GET_RESOURCE_LIST() to find a suitable resource list to * edit. */ int bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, rman_res_t start, rman_res_t count) { struct resource_list * rl = NULL; rl = BUS_GET_RESOURCE_LIST(dev, child); if (!rl) return (EINVAL); resource_list_add(rl, type, rid, start, (start + count - 1), count); return (0); } /** * @brief Helper function for implementing BUS_DELETE_RESOURCE(). * * This implementation of BUS_DELETE_RESOURCE() uses the * resource_list_delete() function to do most of the work. It calls * BUS_GET_RESOURCE_LIST() to find a suitable resource list to * edit. */ void bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) { struct resource_list * rl = NULL; rl = BUS_GET_RESOURCE_LIST(dev, child); if (!rl) return; resource_list_delete(rl, type, rid); return; } /** * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). * * This implementation of BUS_RELEASE_RESOURCE() uses the * resource_list_release() function to do most of the work. It calls * BUS_GET_RESOURCE_LIST() to find a suitable resource list. */ int bus_generic_rl_release_resource(device_t dev, device_t child, int type, int rid, struct resource *r) { struct resource_list * rl = NULL; if (device_get_parent(child) != dev) return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, type, rid, r)); rl = BUS_GET_RESOURCE_LIST(dev, child); if (!rl) return (EINVAL); return (resource_list_release(rl, dev, child, type, rid, r)); } /** * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). * * This implementation of BUS_ALLOC_RESOURCE() uses the * resource_list_alloc() function to do most of the work. It calls * BUS_GET_RESOURCE_LIST() to find a suitable resource list. */ struct resource * bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { struct resource_list * rl = NULL; if (device_get_parent(child) != dev) return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, type, rid, start, end, count, flags)); rl = BUS_GET_RESOURCE_LIST(dev, child); if (!rl) return (NULL); return (resource_list_alloc(rl, dev, child, type, rid, start, end, count, flags)); } /** * @brief Helper function for implementing BUS_CHILD_PRESENT(). * * This simple implementation of BUS_CHILD_PRESENT() simply calls the * BUS_CHILD_PRESENT() method of the parent of @p dev. */ int bus_generic_child_present(device_t dev, device_t child) { return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); } int bus_generic_get_domain(device_t dev, device_t child, int *domain) { if (dev->parent) return (BUS_GET_DOMAIN(dev->parent, dev, domain)); return (ENOENT); } /** * @brief Helper function for implementing BUS_RESCAN(). * * This null implementation of BUS_RESCAN() always fails to indicate * the bus does not support rescanning. */ int bus_null_rescan(device_t dev) { return (ENXIO); } /* * Some convenience functions to make it easier for drivers to use the * resource-management functions. All these really do is hide the * indirection through the parent's method table, making for slightly * less-wordy code. In the future, it might make sense for this code * to maintain some sort of a list of resources allocated by each device. */ int bus_alloc_resources(device_t dev, struct resource_spec *rs, struct resource **res) { int i; for (i = 0; rs[i].type != -1; i++) res[i] = NULL; for (i = 0; rs[i].type != -1; i++) { res[i] = bus_alloc_resource_any(dev, rs[i].type, &rs[i].rid, rs[i].flags); if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { bus_release_resources(dev, rs, res); return (ENXIO); } } return (0); } void bus_release_resources(device_t dev, const struct resource_spec *rs, struct resource **res) { int i; for (i = 0; rs[i].type != -1; i++) if (res[i] != NULL) { bus_release_resource( dev, rs[i].type, rs[i].rid, res[i]); res[i] = NULL; } } /** * @brief Wrapper function for BUS_ALLOC_RESOURCE(). * * This function simply calls the BUS_ALLOC_RESOURCE() method of the * parent of @p dev. */ struct resource * bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { struct resource *res; if (dev->parent == NULL) return (NULL); res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, count, flags); return (res); } /** * @brief Wrapper function for BUS_ADJUST_RESOURCE(). * * This function simply calls the BUS_ADJUST_RESOURCE() method of the * parent of @p dev. */ int bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, rman_res_t end) { if (dev->parent == NULL) return (EINVAL); return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); } /** * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). * * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the * parent of @p dev. */ int bus_activate_resource(device_t dev, int type, int rid, struct resource *r) { if (dev->parent == NULL) return (EINVAL); return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); } /** * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). * * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the * parent of @p dev. */ int bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) { if (dev->parent == NULL) return (EINVAL); return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); } /** * @brief Wrapper function for BUS_MAP_RESOURCE(). * * This function simply calls the BUS_MAP_RESOURCE() method of the * parent of @p dev. */ int bus_map_resource(device_t dev, int type, struct resource *r, struct resource_map_request *args, struct resource_map *map) { if (dev->parent == NULL) return (EINVAL); return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map)); } /** * @brief Wrapper function for BUS_UNMAP_RESOURCE(). * * This function simply calls the BUS_UNMAP_RESOURCE() method of the * parent of @p dev. */ int bus_unmap_resource(device_t dev, int type, struct resource *r, struct resource_map *map) { if (dev->parent == NULL) return (EINVAL); return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map)); } /** * @brief Wrapper function for BUS_RELEASE_RESOURCE(). * * This function simply calls the BUS_RELEASE_RESOURCE() method of the * parent of @p dev. */ int bus_release_resource(device_t dev, int type, int rid, struct resource *r) { int rv; if (dev->parent == NULL) return (EINVAL); rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r); return (rv); } /** * @brief Wrapper function for BUS_SETUP_INTR(). * * This function simply calls the BUS_SETUP_INTR() method of the * parent of @p dev. */ int bus_setup_intr(device_t dev, struct resource *r, int flags, driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) { int error; if (dev->parent == NULL) return (EINVAL); error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, arg, cookiep); if (error != 0) return (error); if (handler != NULL && !(flags & INTR_MPSAFE)) device_printf(dev, "[GIANT-LOCKED]\n"); return (0); } /** * @brief Wrapper function for BUS_TEARDOWN_INTR(). * * This function simply calls the BUS_TEARDOWN_INTR() method of the * parent of @p dev. */ int bus_teardown_intr(device_t dev, struct resource *r, void *cookie) { if (dev->parent == NULL) return (EINVAL); return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); } /** * @brief Wrapper function for BUS_SUSPEND_INTR(). * * This function simply calls the BUS_SUSPEND_INTR() method of the * parent of @p dev. */ int bus_suspend_intr(device_t dev, struct resource *r) { if (dev->parent == NULL) return (EINVAL); return (BUS_SUSPEND_INTR(dev->parent, dev, r)); } /** * @brief Wrapper function for BUS_RESUME_INTR(). * * This function simply calls the BUS_RESUME_INTR() method of the * parent of @p dev. */ int bus_resume_intr(device_t dev, struct resource *r) { if (dev->parent == NULL) return (EINVAL); return (BUS_RESUME_INTR(dev->parent, dev, r)); } /** * @brief Wrapper function for BUS_BIND_INTR(). * * This function simply calls the BUS_BIND_INTR() method of the * parent of @p dev. */ int bus_bind_intr(device_t dev, struct resource *r, int cpu) { if (dev->parent == NULL) return (EINVAL); return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); } /** * @brief Wrapper function for BUS_DESCRIBE_INTR(). * * This function first formats the requested description into a * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of * the parent of @p dev. */ int bus_describe_intr(device_t dev, struct resource *irq, void *cookie, const char *fmt, ...) { va_list ap; char descr[MAXCOMLEN + 1]; if (dev->parent == NULL) return (EINVAL); va_start(ap, fmt); vsnprintf(descr, sizeof(descr), fmt, ap); va_end(ap); return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); } /** * @brief Wrapper function for BUS_SET_RESOURCE(). * * This function simply calls the BUS_SET_RESOURCE() method of the * parent of @p dev. */ int bus_set_resource(device_t dev, int type, int rid, rman_res_t start, rman_res_t count) { return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, start, count)); } /** * @brief Wrapper function for BUS_GET_RESOURCE(). * * This function simply calls the BUS_GET_RESOURCE() method of the * parent of @p dev. */ int bus_get_resource(device_t dev, int type, int rid, rman_res_t *startp, rman_res_t *countp) { return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, startp, countp)); } /** * @brief Wrapper function for BUS_GET_RESOURCE(). * * This function simply calls the BUS_GET_RESOURCE() method of the * parent of @p dev and returns the start value. */ rman_res_t bus_get_resource_start(device_t dev, int type, int rid) { rman_res_t start; rman_res_t count; int error; error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, &start, &count); if (error) return (0); return (start); } /** * @brief Wrapper function for BUS_GET_RESOURCE(). * * This function simply calls the BUS_GET_RESOURCE() method of the * parent of @p dev and returns the count value. */ rman_res_t bus_get_resource_count(device_t dev, int type, int rid) { rman_res_t start; rman_res_t count; int error; error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, &start, &count); if (error) return (0); return (count); } /** * @brief Wrapper function for BUS_DELETE_RESOURCE(). * * This function simply calls the BUS_DELETE_RESOURCE() method of the * parent of @p dev. */ void bus_delete_resource(device_t dev, int type, int rid) { BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); } /** * @brief Wrapper function for BUS_CHILD_PRESENT(). * * This function simply calls the BUS_CHILD_PRESENT() method of the * parent of @p dev. */ int bus_child_present(device_t child) { return (BUS_CHILD_PRESENT(device_get_parent(child), child)); } /** * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). * * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the * parent of @p dev. */ int bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) { device_t parent; parent = device_get_parent(child); if (parent == NULL) { *buf = '\0'; return (0); } return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); } /** * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). * * This function simply calls the BUS_CHILD_LOCATION_STR() method of the * parent of @p dev. */ int bus_child_location_str(device_t child, char *buf, size_t buflen) { device_t parent; parent = device_get_parent(child); if (parent == NULL) { *buf = '\0'; return (0); } return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); } /** * @brief Wrapper function for bus_child_pnpinfo_str using sbuf * * A convenient wrapper frunction for bus_child_pnpinfo_str that allows * us to splat that into an sbuf. It uses unholy knowledge of sbuf to * accomplish this, however. It is an interim function until we can convert * this interface more fully. */ /* Note: we reach inside of sbuf because it's API isn't rich enough to do this */ #define SPACE(s) ((s)->s_size - (s)->s_len) #define EOB(s) ((s)->s_buf + (s)->s_len) static int bus_child_pnpinfo_sb(device_t dev, struct sbuf *sb) { char *p; ssize_t space; MPASS((sb->s_flags & SBUF_INCLUDENUL) == 0); MPASS(sb->s_size >= sb->s_len); if (sb->s_error != 0) return (-1); space = SPACE(sb); if (space <= 1) { sb->s_error = ENOMEM; return (-1); } p = EOB(sb); *p = '\0'; /* sbuf buffer isn't NUL terminated until sbuf_finish() */ bus_child_pnpinfo_str(dev, p, space); sb->s_len += strlen(p); return (0); } /** * @brief Wrapper function for bus_child_pnpinfo_str using sbuf * * A convenient wrapper frunction for bus_child_pnpinfo_str that allows * us to splat that into an sbuf. It uses unholy knowledge of sbuf to * accomplish this, however. It is an interim function until we can convert * this interface more fully. */ static int bus_child_location_sb(device_t dev, struct sbuf *sb) { char *p; ssize_t space; MPASS((sb->s_flags & SBUF_INCLUDENUL) == 0); MPASS(sb->s_size >= sb->s_len); if (sb->s_error != 0) return (-1); space = SPACE(sb); if (space <= 1) { sb->s_error = ENOMEM; return (-1); } p = EOB(sb); *p = '\0'; /* sbuf buffer isn't NUL terminated until sbuf_finish() */ bus_child_location_str(dev, p, space); sb->s_len += strlen(p); return (0); } #undef SPACE #undef EOB /** * @brief Wrapper function for BUS_GET_CPUS(). * * This function simply calls the BUS_GET_CPUS() method of the * parent of @p dev. */ int bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) { device_t parent; parent = device_get_parent(dev); if (parent == NULL) return (EINVAL); return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); } /** * @brief Wrapper function for BUS_GET_DMA_TAG(). * * This function simply calls the BUS_GET_DMA_TAG() method of the * parent of @p dev. */ bus_dma_tag_t bus_get_dma_tag(device_t dev) { device_t parent; parent = device_get_parent(dev); if (parent == NULL) return (NULL); return (BUS_GET_DMA_TAG(parent, dev)); } /** * @brief Wrapper function for BUS_GET_BUS_TAG(). * * This function simply calls the BUS_GET_BUS_TAG() method of the * parent of @p dev. */ bus_space_tag_t bus_get_bus_tag(device_t dev) { device_t parent; parent = device_get_parent(dev); if (parent == NULL) return ((bus_space_tag_t)0); return (BUS_GET_BUS_TAG(parent, dev)); } /** * @brief Wrapper function for BUS_GET_DOMAIN(). * * This function simply calls the BUS_GET_DOMAIN() method of the * parent of @p dev. */ int bus_get_domain(device_t dev, int *domain) { return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); } /* Resume all devices and then notify userland that we're up again. */ static int root_resume(device_t dev) { int error; error = bus_generic_resume(dev); if (error == 0) { devctl_notify("kern", "power", "resume", NULL); /* Deprecated gone in 14 */ devctl_notify("kernel", "power", "resume", NULL); } return (error); } static int root_print_child(device_t dev, device_t child) { int retval = 0; retval += bus_print_child_header(dev, child); retval += printf("\n"); return (retval); } static int root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) { /* * If an interrupt mapping gets to here something bad has happened. */ panic("root_setup_intr"); } /* * If we get here, assume that the device is permanent and really is * present in the system. Removable bus drivers are expected to intercept * this call long before it gets here. We return -1 so that drivers that * really care can check vs -1 or some ERRNO returned higher in the food * chain. */ static int root_child_present(device_t dev, device_t child) { return (-1); } static int root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) { switch (op) { case INTR_CPUS: /* Default to returning the set of all CPUs. */ if (setsize != sizeof(cpuset_t)) return (EINVAL); *cpuset = all_cpus; return (0); default: return (EINVAL); } } static kobj_method_t root_methods[] = { /* Device interface */ KOBJMETHOD(device_shutdown, bus_generic_shutdown), KOBJMETHOD(device_suspend, bus_generic_suspend), KOBJMETHOD(device_resume, root_resume), /* Bus interface */ KOBJMETHOD(bus_print_child, root_print_child), KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), KOBJMETHOD(bus_setup_intr, root_setup_intr), KOBJMETHOD(bus_child_present, root_child_present), KOBJMETHOD(bus_get_cpus, root_get_cpus), KOBJMETHOD_END }; static driver_t root_driver = { "root", root_methods, 1, /* no softc */ }; device_t root_bus; devclass_t root_devclass; static int root_bus_module_handler(module_t mod, int what, void* arg) { switch (what) { case MOD_LOAD: TAILQ_INIT(&bus_data_devices); kobj_class_compile((kobj_class_t) &root_driver); root_bus = make_device(NULL, "root", 0); root_bus->desc = "System root bus"; kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); root_bus->driver = &root_driver; root_bus->state = DS_ATTACHED; root_devclass = devclass_find_internal("root", NULL, FALSE); devinit(); return (0); case MOD_SHUTDOWN: device_shutdown(root_bus); return (0); default: return (EOPNOTSUPP); } return (0); } static moduledata_t root_bus_mod = { "rootbus", root_bus_module_handler, NULL }; DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); /** * @brief Automatically configure devices * * This function begins the autoconfiguration process by calling * device_probe_and_attach() for each child of the @c root0 device. */ void root_bus_configure(void) { PDEBUG((".")); /* Eventually this will be split up, but this is sufficient for now. */ bus_set_pass(BUS_PASS_DEFAULT); } /** * @brief Module handler for registering device drivers * * This module handler is used to automatically register device * drivers when modules are loaded. If @p what is MOD_LOAD, it calls * devclass_add_driver() for the driver described by the * driver_module_data structure pointed to by @p arg */ int driver_module_handler(module_t mod, int what, void *arg) { struct driver_module_data *dmd; devclass_t bus_devclass; kobj_class_t driver; int error, pass; dmd = (struct driver_module_data *)arg; bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); error = 0; switch (what) { case MOD_LOAD: if (dmd->dmd_chainevh) error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); pass = dmd->dmd_pass; driver = dmd->dmd_driver; PDEBUG(("Loading module: driver %s on bus %s (pass %d)", DRIVERNAME(driver), dmd->dmd_busname, pass)); error = devclass_add_driver(bus_devclass, driver, pass, dmd->dmd_devclass); break; case MOD_UNLOAD: PDEBUG(("Unloading module: driver %s from bus %s", DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname)); error = devclass_delete_driver(bus_devclass, dmd->dmd_driver); if (!error && dmd->dmd_chainevh) error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); break; case MOD_QUIESCE: PDEBUG(("Quiesce module: driver %s from bus %s", DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname)); error = devclass_quiesce_driver(bus_devclass, dmd->dmd_driver); if (!error && dmd->dmd_chainevh) error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); break; default: error = EOPNOTSUPP; break; } return (error); } /** * @brief Enumerate all hinted devices for this bus. * * Walks through the hints for this bus and calls the bus_hinted_child * routine for each one it fines. It searches first for the specific * bus that's being probed for hinted children (eg isa0), and then for * generic children (eg isa). * * @param dev bus device to enumerate */ void bus_enumerate_hinted_children(device_t bus) { int i; const char *dname, *busname; int dunit; /* * enumerate all devices on the specific bus */ busname = device_get_nameunit(bus); i = 0; while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) BUS_HINTED_CHILD(bus, dname, dunit); /* * and all the generic ones. */ busname = device_get_name(bus); i = 0; while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) BUS_HINTED_CHILD(bus, dname, dunit); } #ifdef BUS_DEBUG /* the _short versions avoid iteration by not calling anything that prints * more than oneliners. I love oneliners. */ static void print_device_short(device_t dev, int indent) { if (!dev) return; indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", dev->unit, dev->desc, (dev->parent? "":"no "), (TAILQ_EMPTY(&dev->children)? "no ":""), (dev->flags&DF_ENABLED? "enabled,":"disabled,"), (dev->flags&DF_FIXEDCLASS? "fixed,":""), (dev->flags&DF_WILDCARD? "wildcard,":""), (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), (dev->flags&DF_REBID? "rebiddable,":""), (dev->flags&DF_SUSPENDED? "suspended,":""), (dev->ivars? "":"no "), (dev->softc? "":"no "), dev->busy)); } static void print_device(device_t dev, int indent) { if (!dev) return; print_device_short(dev, indent); indentprintf(("Parent:\n")); print_device_short(dev->parent, indent+1); indentprintf(("Driver:\n")); print_driver_short(dev->driver, indent+1); indentprintf(("Devclass:\n")); print_devclass_short(dev->devclass, indent+1); } void print_device_tree_short(device_t dev, int indent) /* print the device and all its children (indented) */ { device_t child; if (!dev) return; print_device_short(dev, indent); TAILQ_FOREACH(child, &dev->children, link) { print_device_tree_short(child, indent+1); } } void print_device_tree(device_t dev, int indent) /* print the device and all its children (indented) */ { device_t child; if (!dev) return; print_device(dev, indent); TAILQ_FOREACH(child, &dev->children, link) { print_device_tree(child, indent+1); } } static void print_driver_short(driver_t *driver, int indent) { if (!driver) return; indentprintf(("driver %s: softc size = %zd\n", driver->name, driver->size)); } static void print_driver(driver_t *driver, int indent) { if (!driver) return; print_driver_short(driver, indent); } static void print_driver_list(driver_list_t drivers, int indent) { driverlink_t driver; TAILQ_FOREACH(driver, &drivers, link) { print_driver(driver->driver, indent); } } static void print_devclass_short(devclass_t dc, int indent) { if ( !dc ) return; indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); } static void print_devclass(devclass_t dc, int indent) { int i; if ( !dc ) return; print_devclass_short(dc, indent); indentprintf(("Drivers:\n")); print_driver_list(dc->drivers, indent+1); indentprintf(("Devices:\n")); for (i = 0; i < dc->maxunit; i++) if (dc->devices[i]) print_device(dc->devices[i], indent+1); } void print_devclass_list_short(void) { devclass_t dc; printf("Short listing of devclasses, drivers & devices:\n"); TAILQ_FOREACH(dc, &devclasses, link) { print_devclass_short(dc, 0); } } void print_devclass_list(void) { devclass_t dc; printf("Full listing of devclasses, drivers & devices:\n"); TAILQ_FOREACH(dc, &devclasses, link) { print_devclass(dc, 0); } } #endif /* * User-space access to the device tree. * * We implement a small set of nodes: * * hw.bus Single integer read method to obtain the * current generation count. * hw.bus.devices Reads the entire device tree in flat space. * hw.bus.rman Resource manager interface * * We might like to add the ability to scan devclasses and/or drivers to * determine what else is currently loaded/available. */ static int sysctl_bus_info(SYSCTL_HANDLER_ARGS) { struct u_businfo ubus; ubus.ub_version = BUS_USER_VERSION; ubus.ub_generation = bus_data_generation; return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); } SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo", "bus-related data"); static int sysctl_devices(SYSCTL_HANDLER_ARGS) { struct sbuf sb; int *name = (int *)arg1; u_int namelen = arg2; int index; device_t dev; struct u_device *udev; int error; if (namelen != 2) return (EINVAL); if (bus_data_generation_check(name[0])) return (EINVAL); index = name[1]; /* * Scan the list of devices, looking for the requested index. */ TAILQ_FOREACH(dev, &bus_data_devices, devlink) { if (index-- == 0) break; } if (dev == NULL) return (ENOENT); /* * Populate the return item, careful not to overflow the buffer. */ udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); if (udev == NULL) return (ENOMEM); udev->dv_handle = (uintptr_t)dev; udev->dv_parent = (uintptr_t)dev->parent; udev->dv_devflags = dev->devflags; udev->dv_flags = dev->flags; udev->dv_state = dev->state; sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN); if (dev->nameunit != NULL) sbuf_cat(&sb, dev->nameunit); sbuf_putc(&sb, '\0'); if (dev->desc != NULL) sbuf_cat(&sb, dev->desc); sbuf_putc(&sb, '\0'); if (dev->driver != NULL) sbuf_cat(&sb, dev->driver->name); sbuf_putc(&sb, '\0'); bus_child_pnpinfo_sb(dev, &sb); sbuf_putc(&sb, '\0'); bus_child_location_sb(dev, &sb); sbuf_putc(&sb, '\0'); error = sbuf_finish(&sb); if (error == 0) error = SYSCTL_OUT(req, udev, sizeof(*udev)); sbuf_delete(&sb); free(udev, M_BUS); return (error); } SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices, "system device tree"); int bus_data_generation_check(int generation) { if (generation != bus_data_generation) return (1); /* XXX generate optimised lists here? */ return (0); } void bus_data_generation_update(void) { atomic_add_int(&bus_data_generation, 1); } int bus_free_resource(device_t dev, int type, struct resource *r) { if (r == NULL) return (0); return (bus_release_resource(dev, type, rman_get_rid(r), r)); } device_t device_lookup_by_name(const char *name) { device_t dev; TAILQ_FOREACH(dev, &bus_data_devices, devlink) { if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) return (dev); } return (NULL); } /* * /dev/devctl2 implementation. The existing /dev/devctl device has * implicit semantics on open, so it could not be reused for this. * Another option would be to call this /dev/bus? */ static int find_device(struct devreq *req, device_t *devp) { device_t dev; /* * First, ensure that the name is nul terminated. */ if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) return (EINVAL); /* * Second, try to find an attached device whose name matches * 'name'. */ dev = device_lookup_by_name(req->dr_name); if (dev != NULL) { *devp = dev; return (0); } /* Finally, give device enumerators a chance. */ dev = NULL; EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); if (dev == NULL) return (ENOENT); *devp = dev; return (0); } static bool driver_exists(device_t bus, const char *driver) { devclass_t dc; for (dc = bus->devclass; dc != NULL; dc = dc->parent) { if (devclass_find_driver_internal(dc, driver) != NULL) return (true); } return (false); } static void device_gen_nomatch(device_t dev) { device_t child; if (dev->flags & DF_NEEDNOMATCH && dev->state == DS_NOTPRESENT) { BUS_PROBE_NOMATCH(dev->parent, dev); devnomatch(dev); dev->flags |= DF_DONENOMATCH; } dev->flags &= ~DF_NEEDNOMATCH; TAILQ_FOREACH(child, &dev->children, link) { device_gen_nomatch(child); } } static void device_do_deferred_actions(void) { devclass_t dc; driverlink_t dl; /* * Walk through the devclasses to find all the drivers we've tagged as * deferred during the freeze and call the driver added routines. They * have already been added to the lists in the background, so the driver * added routines that trigger a probe will have all the right bidders * for the probe auction. */ TAILQ_FOREACH(dc, &devclasses, link) { TAILQ_FOREACH(dl, &dc->drivers, link) { if (dl->flags & DL_DEFERRED_PROBE) { devclass_driver_added(dc, dl->driver); dl->flags &= ~DL_DEFERRED_PROBE; } } } /* * We also defer no-match events during a freeze. Walk the tree and * generate all the pent-up events that are still relevant. */ device_gen_nomatch(root_bus); bus_data_generation_update(); } static int devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, struct thread *td) { struct devreq *req; device_t dev; int error, old; /* Locate the device to control. */ mtx_lock(&Giant); req = (struct devreq *)data; switch (cmd) { case DEV_ATTACH: case DEV_DETACH: case DEV_ENABLE: case DEV_DISABLE: case DEV_SUSPEND: case DEV_RESUME: case DEV_SET_DRIVER: case DEV_CLEAR_DRIVER: case DEV_RESCAN: case DEV_DELETE: case DEV_RESET: error = priv_check(td, PRIV_DRIVER); if (error == 0) error = find_device(req, &dev); break; case DEV_FREEZE: case DEV_THAW: error = priv_check(td, PRIV_DRIVER); break; default: error = ENOTTY; break; } if (error) { mtx_unlock(&Giant); return (error); } /* Perform the requested operation. */ switch (cmd) { case DEV_ATTACH: if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0) error = EBUSY; else if (!device_is_enabled(dev)) error = ENXIO; else error = device_probe_and_attach(dev); break; case DEV_DETACH: if (!device_is_attached(dev)) { error = ENXIO; break; } if (!(req->dr_flags & DEVF_FORCE_DETACH)) { error = device_quiesce(dev); if (error) break; } error = device_detach(dev); break; case DEV_ENABLE: if (device_is_enabled(dev)) { error = EBUSY; break; } /* * If the device has been probed but not attached (e.g. * when it has been disabled by a loader hint), just * attach the device rather than doing a full probe. */ device_enable(dev); if (device_is_alive(dev)) { /* * If the device was disabled via a hint, clear * the hint. */ if (resource_disabled(dev->driver->name, dev->unit)) resource_unset_value(dev->driver->name, dev->unit, "disabled"); error = device_attach(dev); } else error = device_probe_and_attach(dev); break; case DEV_DISABLE: if (!device_is_enabled(dev)) { error = ENXIO; break; } if (!(req->dr_flags & DEVF_FORCE_DETACH)) { error = device_quiesce(dev); if (error) break; } /* * Force DF_FIXEDCLASS on around detach to preserve * the existing name. */ old = dev->flags; dev->flags |= DF_FIXEDCLASS; error = device_detach(dev); if (!(old & DF_FIXEDCLASS)) dev->flags &= ~DF_FIXEDCLASS; if (error == 0) device_disable(dev); break; case DEV_SUSPEND: if (device_is_suspended(dev)) { error = EBUSY; break; } if (device_get_parent(dev) == NULL) { error = EINVAL; break; } error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); break; case DEV_RESUME: if (!device_is_suspended(dev)) { error = EINVAL; break; } if (device_get_parent(dev) == NULL) { error = EINVAL; break; } error = BUS_RESUME_CHILD(device_get_parent(dev), dev); break; case DEV_SET_DRIVER: { devclass_t dc; char driver[128]; error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); if (error) break; if (driver[0] == '\0') { error = EINVAL; break; } if (dev->devclass != NULL && strcmp(driver, dev->devclass->name) == 0) /* XXX: Could possibly force DF_FIXEDCLASS on? */ break; /* * Scan drivers for this device's bus looking for at * least one matching driver. */ if (dev->parent == NULL) { error = EINVAL; break; } if (!driver_exists(dev->parent, driver)) { error = ENOENT; break; } dc = devclass_create(driver); if (dc == NULL) { error = ENOMEM; break; } /* Detach device if necessary. */ if (device_is_attached(dev)) { if (req->dr_flags & DEVF_SET_DRIVER_DETACH) error = device_detach(dev); else error = EBUSY; if (error) break; } /* Clear any previously-fixed device class and unit. */ if (dev->flags & DF_FIXEDCLASS) devclass_delete_device(dev->devclass, dev); dev->flags |= DF_WILDCARD; dev->unit = -1; /* Force the new device class. */ error = devclass_add_device(dc, dev); if (error) break; dev->flags |= DF_FIXEDCLASS; error = device_probe_and_attach(dev); break; } case DEV_CLEAR_DRIVER: if (!(dev->flags & DF_FIXEDCLASS)) { error = 0; break; } if (device_is_attached(dev)) { if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) error = device_detach(dev); else error = EBUSY; if (error) break; } dev->flags &= ~DF_FIXEDCLASS; dev->flags |= DF_WILDCARD; devclass_delete_device(dev->devclass, dev); error = device_probe_and_attach(dev); break; case DEV_RESCAN: if (!device_is_attached(dev)) { error = ENXIO; break; } error = BUS_RESCAN(dev); break; case DEV_DELETE: { device_t parent; parent = device_get_parent(dev); if (parent == NULL) { error = EINVAL; break; } if (!(req->dr_flags & DEVF_FORCE_DELETE)) { if (bus_child_present(dev) != 0) { error = EBUSY; break; } } error = device_delete_child(parent, dev); break; } case DEV_FREEZE: if (device_frozen) error = EBUSY; else device_frozen = true; break; case DEV_THAW: if (!device_frozen) error = EBUSY; else { device_do_deferred_actions(); device_frozen = false; } break; case DEV_RESET: if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) { error = EINVAL; break; } error = BUS_RESET_CHILD(device_get_parent(dev), dev, req->dr_flags); break; } mtx_unlock(&Giant); return (error); } static struct cdevsw devctl2_cdevsw = { .d_version = D_VERSION, .d_ioctl = devctl2_ioctl, .d_name = "devctl2", }; static void devctl2_init(void) { make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0600, "devctl2"); } /* * APIs to manage deprecation and obsolescence. */ static int obsolete_panic = 0; SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, "Panic when obsolete features are used (0 = never, 1 = if osbolete, " "2 = if deprecated)"); static void gone_panic(int major, int running, const char *msg) { switch (obsolete_panic) { case 0: return; case 1: if (running < major) return; /* FALLTHROUGH */ default: panic("%s", msg); } } void _gone_in(int major, const char *msg) { gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); if (P_OSREL_MAJOR(__FreeBSD_version) >= major) printf("Obsolete code will be removed soon: %s\n", msg); else printf("Deprecated code (to be removed in FreeBSD %d): %s\n", major, msg); } void _gone_in_dev(device_t dev, int major, const char *msg) { gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); if (P_OSREL_MAJOR(__FreeBSD_version) >= major) device_printf(dev, "Obsolete code will be removed soon: %s\n", msg); else device_printf(dev, "Deprecated code (to be removed in FreeBSD %d): %s\n", major, msg); } #ifdef DDB DB_SHOW_COMMAND(device, db_show_device) { device_t dev; if (!have_addr) return; dev = (device_t)addr; db_printf("name: %s\n", device_get_nameunit(dev)); db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); db_printf(" addr: %p\n", dev); db_printf(" parent: %p\n", dev->parent); db_printf(" softc: %p\n", dev->softc); db_printf(" ivars: %p\n", dev->ivars); } DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) { device_t dev; TAILQ_FOREACH(dev, &bus_data_devices, devlink) { db_show_device((db_expr_t)dev, true, count, modif); } } #endif diff --git a/sys/mips/include/vm.h b/sys/mips/include/vm.h index 06af199db17b..c759d8cfa61e 100644 --- a/sys/mips/include/vm.h +++ b/sys/mips/include/vm.h @@ -1,45 +1,46 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2009 Alan L. Cox * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _MACHINE_VM_H_ #define _MACHINE_VM_H_ #include #include /* Memory attributes. */ #define VM_MEMATTR_UNCACHEABLE ((vm_memattr_t)MIPS_CCA_UNCACHED) #define VM_MEMATTR_WRITE_BACK ((vm_memattr_t)MIPS_CCA_CACHED) #define VM_MEMATTR_DEFAULT VM_MEMATTR_WRITE_BACK +#define VM_MEMATTR_DEVICE VM_MEMATTR_UNCACHEABLE #ifdef MIPS_CCA_WC #define VM_MEMATTR_WRITE_COMBINING ((vm_memattr_t)MIPS_CCA_WC) #endif #endif /* !_MACHINE_VM_H_ */ diff --git a/sys/powerpc/include/vm.h b/sys/powerpc/include/vm.h index 3af863509908..692bd8fc2d77 100644 --- a/sys/powerpc/include/vm.h +++ b/sys/powerpc/include/vm.h @@ -1,45 +1,47 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2009 Alan L. Cox * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _MACHINE_VM_H_ #define _MACHINE_VM_H_ #include /* Memory attributes. */ #define VM_MEMATTR_DEFAULT 0 #define VM_MEMATTR_UNCACHEABLE 0x01 #define VM_MEMATTR_CACHEABLE 0x02 #define VM_MEMATTR_WRITE_COMBINING 0x04 #define VM_MEMATTR_WRITE_BACK 0x08 #define VM_MEMATTR_WRITE_THROUGH 0x10 #define VM_MEMATTR_PREFETCHABLE 0x20 +#define VM_MEMATTR_DEVICE VM_MEMATTR_DEFAULT + #endif /* !_MACHINE_VM_H_ */ diff --git a/usr.sbin/pciconf/pciconf.c b/usr.sbin/pciconf/pciconf.c index 6b54687d7c79..ccc816d5986d 100644 --- a/usr.sbin/pciconf/pciconf.c +++ b/usr.sbin/pciconf/pciconf.c @@ -1,1212 +1,1208 @@ /* * Copyright 1996 Massachusetts Institute of Technology * * Permission to use, copy, modify, and distribute this software and * its documentation for any purpose and without fee is hereby * granted, provided that both the above copyright notice and this * permission notice appear in all copies, that both the above * copyright notice and this permission notice appear in all * supporting documentation, and that the name of M.I.T. not be used * in advertising or publicity pertaining to distribution of the * software without specific, written prior permission. M.I.T. makes * no representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied * warranty. * * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef lint static const char rcsid[] = "$FreeBSD$"; #endif /* not lint */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pathnames.h" #include "pciconf.h" struct pci_device_info { TAILQ_ENTRY(pci_device_info) link; int id; char *desc; }; struct pci_vendor_info { TAILQ_ENTRY(pci_vendor_info) link; TAILQ_HEAD(,pci_device_info) devs; int id; char *desc; }; static TAILQ_HEAD(,pci_vendor_info) pci_vendors; static struct pcisel getsel(const char *str); static void list_bridge(int fd, struct pci_conf *p); static void list_bars(int fd, struct pci_conf *p); static void list_devs(const char *name, int verbose, int bars, int bridge, int caps, int errors, int vpd, int listmode); static void list_verbose(struct pci_conf *p); static void list_vpd(int fd, struct pci_conf *p); static const char *guess_class(struct pci_conf *p); static const char *guess_subclass(struct pci_conf *p); static int load_vendors(void); static void readit(const char *, const char *, int); static void writeit(const char *, const char *, const char *, int); static void chkattached(const char *); static void dump_bar(const char *name, const char *reg, const char *bar_start, const char *bar_count, int width, int verbose); static int exitstatus = 0; static void usage(void) { fprintf(stderr, "%s", "usage: pciconf -l [-BbcevV] [device]\n" " pciconf -a device\n" " pciconf -r [-b | -h] device addr[:addr2]\n" " pciconf -w [-b | -h] device addr value\n" " pciconf -D [-b | -h | -x] device bar [start [count]]" "\n"); exit(1); } int main(int argc, char **argv) { int c, width; int listmode, readmode, writemode, attachedmode, dumpbarmode; int bars, bridge, caps, errors, verbose, vpd; listmode = readmode = writemode = attachedmode = dumpbarmode = 0; bars = bridge = caps = errors = verbose = vpd= 0; width = 4; while ((c = getopt(argc, argv, "aBbcDehlrwVv")) != -1) { switch(c) { case 'a': attachedmode = 1; break; case 'B': bridge = 1; break; case 'b': bars = 1; width = 1; break; case 'c': caps++; break; case 'D': dumpbarmode = 1; break; case 'e': errors = 1; break; case 'h': width = 2; break; case 'l': listmode++; break; case 'r': readmode = 1; break; case 'w': writemode = 1; break; case 'v': verbose = 1; break; case 'V': vpd = 1; break; case 'x': width = 8; break; default: usage(); } } if ((listmode && optind >= argc + 1) || (writemode && optind + 3 != argc) || (readmode && optind + 2 != argc) || (attachedmode && optind + 1 != argc) || (dumpbarmode && (optind + 2 > argc || optind + 4 < argc)) || (width == 8 && !dumpbarmode)) usage(); if (listmode) { list_devs(optind + 1 == argc ? argv[optind] : NULL, verbose, bars, bridge, caps, errors, vpd, listmode); } else if (attachedmode) { chkattached(argv[optind]); } else if (readmode) { readit(argv[optind], argv[optind + 1], width); } else if (writemode) { writeit(argv[optind], argv[optind + 1], argv[optind + 2], width); } else if (dumpbarmode) { dump_bar(argv[optind], argv[optind + 1], optind + 2 < argc ? argv[optind + 2] : NULL, optind + 3 < argc ? argv[optind + 3] : NULL, width, verbose); } else { usage(); } return (exitstatus); } static void list_devs(const char *name, int verbose, int bars, int bridge, int caps, int errors, int vpd, int listmode) { int fd; struct pci_conf_io pc; struct pci_conf conf[255], *p; struct pci_match_conf patterns[1]; int none_count = 0; if (verbose) load_vendors(); fd = open(_PATH_DEVPCI, (bridge || caps || errors) ? O_RDWR : O_RDONLY, 0); if (fd < 0) err(1, "%s", _PATH_DEVPCI); bzero(&pc, sizeof(struct pci_conf_io)); pc.match_buf_len = sizeof(conf); pc.matches = conf; if (name != NULL) { bzero(&patterns, sizeof(patterns)); patterns[0].pc_sel = getsel(name); patterns[0].flags = PCI_GETCONF_MATCH_DOMAIN | PCI_GETCONF_MATCH_BUS | PCI_GETCONF_MATCH_DEV | PCI_GETCONF_MATCH_FUNC; pc.num_patterns = 1; pc.pat_buf_len = sizeof(patterns); pc.patterns = patterns; } do { if (ioctl(fd, PCIOCGETCONF, &pc) == -1) err(1, "ioctl(PCIOCGETCONF)"); /* * 255 entries should be more than enough for most people, * but if someone has more devices, and then changes things * around between ioctls, we'll do the cheesy thing and * just bail. The alternative would be to go back to the * beginning of the list, and print things twice, which may * not be desirable. */ if (pc.status == PCI_GETCONF_LIST_CHANGED) { warnx("PCI device list changed, please try again"); exitstatus = 1; close(fd); return; } else if (pc.status == PCI_GETCONF_ERROR) { warnx("error returned from PCIOCGETCONF ioctl"); exitstatus = 1; close(fd); return; } if (listmode == 2) printf("drv\tselector\tclass rev hdr " "vendor device subven subdev\n"); for (p = conf; p < &conf[pc.num_matches]; p++) { if (listmode == 2) printf("%s%d@pci%d:%d:%d:%d:" "\t%06x %02x %02x " "%04x %04x %04x %04x\n", *p->pd_name ? p->pd_name : "none", *p->pd_name ? (int)p->pd_unit : none_count++, p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev, p->pc_sel.pc_func, (p->pc_class << 16) | (p->pc_subclass << 8) | p->pc_progif, p->pc_revid, p->pc_hdr, p->pc_vendor, p->pc_device, p->pc_subvendor, p->pc_subdevice); else printf("%s%d@pci%d:%d:%d:%d:" "\tclass=0x%06x rev=0x%02x hdr=0x%02x " "vendor=0x%04x device=0x%04x " "subvendor=0x%04x subdevice=0x%04x\n", *p->pd_name ? p->pd_name : "none", *p->pd_name ? (int)p->pd_unit : none_count++, p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev, p->pc_sel.pc_func, (p->pc_class << 16) | (p->pc_subclass << 8) | p->pc_progif, p->pc_revid, p->pc_hdr, p->pc_vendor, p->pc_device, p->pc_subvendor, p->pc_subdevice); if (verbose) list_verbose(p); if (bars) list_bars(fd, p); if (bridge) list_bridge(fd, p); if (caps) list_caps(fd, p, caps); if (errors) list_errors(fd, p); if (vpd) list_vpd(fd, p); } } while (pc.status == PCI_GETCONF_MORE_DEVS); close(fd); } static void print_bus_range(int fd, struct pci_conf *p, int secreg, int subreg) { uint8_t secbus, subbus; secbus = read_config(fd, &p->pc_sel, secreg, 1); subbus = read_config(fd, &p->pc_sel, subreg, 1); printf(" bus range = %u-%u\n", secbus, subbus); } static void print_window(int reg, const char *type, int range, uint64_t base, uint64_t limit) { printf(" window[%02x] = type %s, range %2d, addr %#jx-%#jx, %s\n", reg, type, range, (uintmax_t)base, (uintmax_t)limit, base < limit ? "enabled" : "disabled"); } static void print_special_decode(bool isa, bool vga, bool subtractive) { bool comma; if (isa || vga || subtractive) { comma = false; printf(" decode = "); if (isa) { printf("ISA"); comma = true; } if (vga) { printf("%sVGA", comma ? ", " : ""); comma = true; } if (subtractive) printf("%ssubtractive", comma ? ", " : ""); printf("\n"); } } static void print_bridge_windows(int fd, struct pci_conf *p) { uint64_t base, limit; uint32_t val; uint16_t bctl; bool subtractive; int range; /* * XXX: This assumes that a window with a base and limit of 0 * is not implemented. In theory a window might be programmed * at the smallest size with a base of 0, but those do not seem * common in practice. */ val = read_config(fd, &p->pc_sel, PCIR_IOBASEL_1, 1); if (val != 0 || read_config(fd, &p->pc_sel, PCIR_IOLIMITL_1, 1) != 0) { if ((val & PCIM_BRIO_MASK) == PCIM_BRIO_32) { base = PCI_PPBIOBASE( read_config(fd, &p->pc_sel, PCIR_IOBASEH_1, 2), val); limit = PCI_PPBIOLIMIT( read_config(fd, &p->pc_sel, PCIR_IOLIMITH_1, 2), read_config(fd, &p->pc_sel, PCIR_IOLIMITL_1, 1)); range = 32; } else { base = PCI_PPBIOBASE(0, val); limit = PCI_PPBIOLIMIT(0, read_config(fd, &p->pc_sel, PCIR_IOLIMITL_1, 1)); range = 16; } print_window(PCIR_IOBASEL_1, "I/O Port", range, base, limit); } base = PCI_PPBMEMBASE(0, read_config(fd, &p->pc_sel, PCIR_MEMBASE_1, 2)); limit = PCI_PPBMEMLIMIT(0, read_config(fd, &p->pc_sel, PCIR_MEMLIMIT_1, 2)); print_window(PCIR_MEMBASE_1, "Memory", 32, base, limit); val = read_config(fd, &p->pc_sel, PCIR_PMBASEL_1, 2); if (val != 0 || read_config(fd, &p->pc_sel, PCIR_PMLIMITL_1, 2) != 0) { if ((val & PCIM_BRPM_MASK) == PCIM_BRPM_64) { base = PCI_PPBMEMBASE( read_config(fd, &p->pc_sel, PCIR_PMBASEH_1, 4), val); limit = PCI_PPBMEMLIMIT( read_config(fd, &p->pc_sel, PCIR_PMLIMITH_1, 4), read_config(fd, &p->pc_sel, PCIR_PMLIMITL_1, 2)); range = 64; } else { base = PCI_PPBMEMBASE(0, val); limit = PCI_PPBMEMLIMIT(0, read_config(fd, &p->pc_sel, PCIR_PMLIMITL_1, 2)); range = 32; } print_window(PCIR_PMBASEL_1, "Prefetchable Memory", range, base, limit); } /* * XXX: This list of bridges that are subtractive but do not set * progif to indicate it is copied from pci_pci.c. */ subtractive = p->pc_progif == PCIP_BRIDGE_PCI_SUBTRACTIVE; switch (p->pc_device << 16 | p->pc_vendor) { case 0xa002177d: /* Cavium ThunderX */ case 0x124b8086: /* Intel 82380FB Mobile */ case 0x060513d7: /* Toshiba ???? */ subtractive = true; } if (p->pc_vendor == 0x8086 && (p->pc_device & 0xff00) == 0x2400) subtractive = true; bctl = read_config(fd, &p->pc_sel, PCIR_BRIDGECTL_1, 2); print_special_decode(bctl & PCIB_BCR_ISA_ENABLE, bctl & PCIB_BCR_VGA_ENABLE, subtractive); } static void print_cardbus_mem_window(int fd, struct pci_conf *p, int basereg, int limitreg, bool prefetch) { print_window(basereg, prefetch ? "Prefetchable Memory" : "Memory", 32, PCI_CBBMEMBASE(read_config(fd, &p->pc_sel, basereg, 4)), PCI_CBBMEMLIMIT(read_config(fd, &p->pc_sel, limitreg, 4))); } static void print_cardbus_io_window(int fd, struct pci_conf *p, int basereg, int limitreg) { uint32_t base, limit; uint32_t val; int range; val = read_config(fd, &p->pc_sel, basereg, 2); if ((val & PCIM_CBBIO_MASK) == PCIM_CBBIO_32) { base = PCI_CBBIOBASE(read_config(fd, &p->pc_sel, basereg, 4)); limit = PCI_CBBIOBASE(read_config(fd, &p->pc_sel, limitreg, 4)); range = 32; } else { base = PCI_CBBIOBASE(val); limit = PCI_CBBIOBASE(read_config(fd, &p->pc_sel, limitreg, 2)); range = 16; } print_window(basereg, "I/O Port", range, base, limit); } static void print_cardbus_windows(int fd, struct pci_conf *p) { uint16_t bctl; bctl = read_config(fd, &p->pc_sel, PCIR_BRIDGECTL_2, 2); print_cardbus_mem_window(fd, p, PCIR_MEMBASE0_2, PCIR_MEMLIMIT0_2, bctl & CBB_BCR_PREFETCH_0_ENABLE); print_cardbus_mem_window(fd, p, PCIR_MEMBASE1_2, PCIR_MEMLIMIT1_2, bctl & CBB_BCR_PREFETCH_1_ENABLE); print_cardbus_io_window(fd, p, PCIR_IOBASE0_2, PCIR_IOLIMIT0_2); print_cardbus_io_window(fd, p, PCIR_IOBASE1_2, PCIR_IOLIMIT1_2); print_special_decode(bctl & CBB_BCR_ISA_ENABLE, bctl & CBB_BCR_VGA_ENABLE, false); } static void list_bridge(int fd, struct pci_conf *p) { switch (p->pc_hdr & PCIM_HDRTYPE) { case PCIM_HDRTYPE_BRIDGE: print_bus_range(fd, p, PCIR_SECBUS_1, PCIR_SUBBUS_1); print_bridge_windows(fd, p); break; case PCIM_HDRTYPE_CARDBUS: print_bus_range(fd, p, PCIR_SECBUS_2, PCIR_SUBBUS_2); print_cardbus_windows(fd, p); break; } } static void list_bars(int fd, struct pci_conf *p) { int i, max; switch (p->pc_hdr & PCIM_HDRTYPE) { case PCIM_HDRTYPE_NORMAL: max = PCIR_MAX_BAR_0; break; case PCIM_HDRTYPE_BRIDGE: max = PCIR_MAX_BAR_1; break; case PCIM_HDRTYPE_CARDBUS: max = PCIR_MAX_BAR_2; break; default: return; } for (i = 0; i <= max; i++) print_bar(fd, p, "bar ", PCIR_BAR(i)); } void print_bar(int fd, struct pci_conf *p, const char *label, uint16_t bar_offset) { uint64_t base; const char *type; struct pci_bar_io bar; int range; bar.pbi_sel = p->pc_sel; bar.pbi_reg = bar_offset; if (ioctl(fd, PCIOCGETBAR, &bar) < 0) return; if (PCI_BAR_IO(bar.pbi_base)) { type = "I/O Port"; range = 32; base = bar.pbi_base & PCIM_BAR_IO_BASE; } else { if (bar.pbi_base & PCIM_BAR_MEM_PREFETCH) type = "Prefetchable Memory"; else type = "Memory"; switch (bar.pbi_base & PCIM_BAR_MEM_TYPE) { case PCIM_BAR_MEM_32: range = 32; break; case PCIM_BAR_MEM_1MB: range = 20; break; case PCIM_BAR_MEM_64: range = 64; break; default: range = -1; } base = bar.pbi_base & ~((uint64_t)0xf); } printf(" %s[%02x] = type %s, range %2d, base %#jx, ", label, bar_offset, type, range, (uintmax_t)base); printf("size %ju, %s\n", (uintmax_t)bar.pbi_length, bar.pbi_enabled ? "enabled" : "disabled"); } static void list_verbose(struct pci_conf *p) { struct pci_vendor_info *vi; struct pci_device_info *di; const char *dp; TAILQ_FOREACH(vi, &pci_vendors, link) { if (vi->id == p->pc_vendor) { printf(" vendor = '%s'\n", vi->desc); break; } } if (vi == NULL) { di = NULL; } else { TAILQ_FOREACH(di, &vi->devs, link) { if (di->id == p->pc_device) { printf(" device = '%s'\n", di->desc); break; } } } if ((dp = guess_class(p)) != NULL) printf(" class = %s\n", dp); if ((dp = guess_subclass(p)) != NULL) printf(" subclass = %s\n", dp); } static void list_vpd(int fd, struct pci_conf *p) { struct pci_list_vpd_io list; struct pci_vpd_element *vpd, *end; list.plvi_sel = p->pc_sel; list.plvi_len = 0; list.plvi_data = NULL; if (ioctl(fd, PCIOCLISTVPD, &list) < 0 || list.plvi_len == 0) return; list.plvi_data = malloc(list.plvi_len); if (ioctl(fd, PCIOCLISTVPD, &list) < 0) { free(list.plvi_data); return; } vpd = list.plvi_data; end = (struct pci_vpd_element *)((char *)vpd + list.plvi_len); for (; vpd < end; vpd = PVE_NEXT(vpd)) { if (vpd->pve_flags == PVE_FLAG_IDENT) { printf(" VPD ident = '%.*s'\n", (int)vpd->pve_datalen, vpd->pve_data); continue; } /* Ignore the checksum keyword. */ if (!(vpd->pve_flags & PVE_FLAG_RW) && memcmp(vpd->pve_keyword, "RV", 2) == 0) continue; /* Ignore remaining read-write space. */ if (vpd->pve_flags & PVE_FLAG_RW && memcmp(vpd->pve_keyword, "RW", 2) == 0) continue; /* Handle extended capability keyword. */ if (!(vpd->pve_flags & PVE_FLAG_RW) && memcmp(vpd->pve_keyword, "CP", 2) == 0) { printf(" VPD ro CP = ID %02x in map 0x%x[0x%x]\n", (unsigned int)vpd->pve_data[0], PCIR_BAR((unsigned int)vpd->pve_data[1]), (unsigned int)vpd->pve_data[3] << 8 | (unsigned int)vpd->pve_data[2]); continue; } /* Remaining keywords should all have ASCII values. */ printf(" VPD %s %c%c = '%.*s'\n", vpd->pve_flags & PVE_FLAG_RW ? "rw" : "ro", vpd->pve_keyword[0], vpd->pve_keyword[1], (int)vpd->pve_datalen, vpd->pve_data); } free(list.plvi_data); } /* * This is a direct cut-and-paste from the table in sys/dev/pci/pci.c. */ static struct { int class; int subclass; const char *desc; } pci_nomatch_tab[] = { {PCIC_OLD, -1, "old"}, {PCIC_OLD, PCIS_OLD_NONVGA, "non-VGA display device"}, {PCIC_OLD, PCIS_OLD_VGA, "VGA-compatible display device"}, {PCIC_STORAGE, -1, "mass storage"}, {PCIC_STORAGE, PCIS_STORAGE_SCSI, "SCSI"}, {PCIC_STORAGE, PCIS_STORAGE_IDE, "ATA"}, {PCIC_STORAGE, PCIS_STORAGE_FLOPPY, "floppy disk"}, {PCIC_STORAGE, PCIS_STORAGE_IPI, "IPI"}, {PCIC_STORAGE, PCIS_STORAGE_RAID, "RAID"}, {PCIC_STORAGE, PCIS_STORAGE_ATA_ADMA, "ATA (ADMA)"}, {PCIC_STORAGE, PCIS_STORAGE_SATA, "SATA"}, {PCIC_STORAGE, PCIS_STORAGE_SAS, "SAS"}, {PCIC_STORAGE, PCIS_STORAGE_NVM, "NVM"}, {PCIC_STORAGE, PCIS_STORAGE_UFS, "UFS"}, {PCIC_NETWORK, -1, "network"}, {PCIC_NETWORK, PCIS_NETWORK_ETHERNET, "ethernet"}, {PCIC_NETWORK, PCIS_NETWORK_TOKENRING, "token ring"}, {PCIC_NETWORK, PCIS_NETWORK_FDDI, "fddi"}, {PCIC_NETWORK, PCIS_NETWORK_ATM, "ATM"}, {PCIC_NETWORK, PCIS_NETWORK_ISDN, "ISDN"}, {PCIC_NETWORK, PCIS_NETWORK_WORLDFIP, "WorldFip"}, {PCIC_NETWORK, PCIS_NETWORK_PICMG, "PICMG"}, {PCIC_NETWORK, PCIS_NETWORK_INFINIBAND, "InfiniBand"}, {PCIC_NETWORK, PCIS_NETWORK_HFC, "host fabric"}, {PCIC_DISPLAY, -1, "display"}, {PCIC_DISPLAY, PCIS_DISPLAY_VGA, "VGA"}, {PCIC_DISPLAY, PCIS_DISPLAY_XGA, "XGA"}, {PCIC_DISPLAY, PCIS_DISPLAY_3D, "3D"}, {PCIC_MULTIMEDIA, -1, "multimedia"}, {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_VIDEO, "video"}, {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_AUDIO, "audio"}, {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_TELE, "telephony"}, {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_HDA, "HDA"}, {PCIC_MEMORY, -1, "memory"}, {PCIC_MEMORY, PCIS_MEMORY_RAM, "RAM"}, {PCIC_MEMORY, PCIS_MEMORY_FLASH, "flash"}, {PCIC_BRIDGE, -1, "bridge"}, {PCIC_BRIDGE, PCIS_BRIDGE_HOST, "HOST-PCI"}, {PCIC_BRIDGE, PCIS_BRIDGE_ISA, "PCI-ISA"}, {PCIC_BRIDGE, PCIS_BRIDGE_EISA, "PCI-EISA"}, {PCIC_BRIDGE, PCIS_BRIDGE_MCA, "PCI-MCA"}, {PCIC_BRIDGE, PCIS_BRIDGE_PCI, "PCI-PCI"}, {PCIC_BRIDGE, PCIS_BRIDGE_PCMCIA, "PCI-PCMCIA"}, {PCIC_BRIDGE, PCIS_BRIDGE_NUBUS, "PCI-NuBus"}, {PCIC_BRIDGE, PCIS_BRIDGE_CARDBUS, "PCI-CardBus"}, {PCIC_BRIDGE, PCIS_BRIDGE_RACEWAY, "PCI-RACEway"}, {PCIC_BRIDGE, PCIS_BRIDGE_PCI_TRANSPARENT, "Semi-transparent PCI-to-PCI"}, {PCIC_BRIDGE, PCIS_BRIDGE_INFINIBAND, "InfiniBand-PCI"}, {PCIC_BRIDGE, PCIS_BRIDGE_AS_PCI, "AdvancedSwitching-PCI"}, {PCIC_SIMPLECOMM, -1, "simple comms"}, {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_UART, "UART"}, /* could detect 16550 */ {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_PAR, "parallel port"}, {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MULSER, "multiport serial"}, {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MODEM, "generic modem"}, {PCIC_BASEPERIPH, -1, "base peripheral"}, {PCIC_BASEPERIPH, PCIS_BASEPERIPH_PIC, "interrupt controller"}, {PCIC_BASEPERIPH, PCIS_BASEPERIPH_DMA, "DMA controller"}, {PCIC_BASEPERIPH, PCIS_BASEPERIPH_TIMER, "timer"}, {PCIC_BASEPERIPH, PCIS_BASEPERIPH_RTC, "realtime clock"}, {PCIC_BASEPERIPH, PCIS_BASEPERIPH_PCIHOT, "PCI hot-plug controller"}, {PCIC_BASEPERIPH, PCIS_BASEPERIPH_SDHC, "SD host controller"}, {PCIC_BASEPERIPH, PCIS_BASEPERIPH_IOMMU, "IOMMU"}, {PCIC_BASEPERIPH, PCIS_BASEPERIPH_RCEC, "Root Complex Event Collector"}, {PCIC_INPUTDEV, -1, "input device"}, {PCIC_INPUTDEV, PCIS_INPUTDEV_KEYBOARD, "keyboard"}, {PCIC_INPUTDEV, PCIS_INPUTDEV_DIGITIZER,"digitizer"}, {PCIC_INPUTDEV, PCIS_INPUTDEV_MOUSE, "mouse"}, {PCIC_INPUTDEV, PCIS_INPUTDEV_SCANNER, "scanner"}, {PCIC_INPUTDEV, PCIS_INPUTDEV_GAMEPORT, "gameport"}, {PCIC_DOCKING, -1, "docking station"}, {PCIC_PROCESSOR, -1, "processor"}, {PCIC_SERIALBUS, -1, "serial bus"}, {PCIC_SERIALBUS, PCIS_SERIALBUS_FW, "FireWire"}, {PCIC_SERIALBUS, PCIS_SERIALBUS_ACCESS, "AccessBus"}, {PCIC_SERIALBUS, PCIS_SERIALBUS_SSA, "SSA"}, {PCIC_SERIALBUS, PCIS_SERIALBUS_USB, "USB"}, {PCIC_SERIALBUS, PCIS_SERIALBUS_FC, "Fibre Channel"}, {PCIC_SERIALBUS, PCIS_SERIALBUS_SMBUS, "SMBus"}, {PCIC_SERIALBUS, PCIS_SERIALBUS_INFINIBAND, "InfiniBand"}, {PCIC_SERIALBUS, PCIS_SERIALBUS_IPMI, "IPMI"}, {PCIC_SERIALBUS, PCIS_SERIALBUS_SERCOS, "SERCOS"}, {PCIC_SERIALBUS, PCIS_SERIALBUS_CANBUS, "CANbus"}, {PCIC_SERIALBUS, PCIS_SERIALBUS_MIPI_I3C, "MIPI I3C"}, {PCIC_WIRELESS, -1, "wireless controller"}, {PCIC_WIRELESS, PCIS_WIRELESS_IRDA, "iRDA"}, {PCIC_WIRELESS, PCIS_WIRELESS_IR, "IR"}, {PCIC_WIRELESS, PCIS_WIRELESS_RF, "RF"}, {PCIC_WIRELESS, PCIS_WIRELESS_BLUETOOTH, "bluetooth"}, {PCIC_WIRELESS, PCIS_WIRELESS_BROADBAND, "broadband"}, {PCIC_WIRELESS, PCIS_WIRELESS_80211A, "ethernet 802.11a"}, {PCIC_WIRELESS, PCIS_WIRELESS_80211B, "ethernet 802.11b"}, {PCIC_WIRELESS, PCIS_WIRELESS_CELL, "cellular controller/modem"}, {PCIC_WIRELESS, PCIS_WIRELESS_CELL_E, "cellular controller/modem plus ethernet"}, {PCIC_INTELLIIO, -1, "intelligent I/O controller"}, {PCIC_INTELLIIO, PCIS_INTELLIIO_I2O, "I2O"}, {PCIC_SATCOM, -1, "satellite communication"}, {PCIC_SATCOM, PCIS_SATCOM_TV, "sat TV"}, {PCIC_SATCOM, PCIS_SATCOM_AUDIO, "sat audio"}, {PCIC_SATCOM, PCIS_SATCOM_VOICE, "sat voice"}, {PCIC_SATCOM, PCIS_SATCOM_DATA, "sat data"}, {PCIC_CRYPTO, -1, "encrypt/decrypt"}, {PCIC_CRYPTO, PCIS_CRYPTO_NETCOMP, "network/computer crypto"}, {PCIC_CRYPTO, PCIS_CRYPTO_NETCOMP, "entertainment crypto"}, {PCIC_DASP, -1, "dasp"}, {PCIC_DASP, PCIS_DASP_DPIO, "DPIO module"}, {PCIC_DASP, PCIS_DASP_PERFCNTRS, "performance counters"}, {PCIC_DASP, PCIS_DASP_COMM_SYNC, "communication synchronizer"}, {PCIC_DASP, PCIS_DASP_MGMT_CARD, "signal processing management"}, {PCIC_ACCEL, -1, "processing accelerators"}, {PCIC_ACCEL, PCIS_ACCEL_PROCESSING, "processing accelerators"}, {PCIC_INSTRUMENT, -1, "non-essential instrumentation"}, {0, 0, NULL} }; static const char * guess_class(struct pci_conf *p) { int i; for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) { if (pci_nomatch_tab[i].class == p->pc_class) return(pci_nomatch_tab[i].desc); } return(NULL); } static const char * guess_subclass(struct pci_conf *p) { int i; for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) { if ((pci_nomatch_tab[i].class == p->pc_class) && (pci_nomatch_tab[i].subclass == p->pc_subclass)) return(pci_nomatch_tab[i].desc); } return(NULL); } static int load_vendors(void) { const char *dbf; FILE *db; struct pci_vendor_info *cv; struct pci_device_info *cd; char buf[1024], str[1024]; char *ch; int id, error; /* * Locate the database and initialise. */ TAILQ_INIT(&pci_vendors); if ((dbf = getenv("PCICONF_VENDOR_DATABASE")) == NULL) dbf = _PATH_LPCIVDB; if ((db = fopen(dbf, "r")) == NULL) { dbf = _PATH_PCIVDB; if ((db = fopen(dbf, "r")) == NULL) return(1); } cv = NULL; cd = NULL; error = 0; /* * Scan input lines from the database */ for (;;) { if (fgets(buf, sizeof(buf), db) == NULL) break; if ((ch = strchr(buf, '#')) != NULL) *ch = '\0'; ch = strchr(buf, '\0') - 1; while (ch > buf && isspace(*ch)) *ch-- = '\0'; if (ch <= buf) continue; /* Can't handle subvendor / subdevice entries yet */ if (buf[0] == '\t' && buf[1] == '\t') continue; /* Check for vendor entry */ if (buf[0] != '\t' && sscanf(buf, "%04x %[^\n]", &id, str) == 2) { if ((id == 0) || (strlen(str) < 1)) continue; if ((cv = malloc(sizeof(struct pci_vendor_info))) == NULL) { warn("allocating vendor entry"); error = 1; break; } if ((cv->desc = strdup(str)) == NULL) { free(cv); warn("allocating vendor description"); error = 1; break; } cv->id = id; TAILQ_INIT(&cv->devs); TAILQ_INSERT_TAIL(&pci_vendors, cv, link); continue; } /* Check for device entry */ if (buf[0] == '\t' && sscanf(buf + 1, "%04x %[^\n]", &id, str) == 2) { if ((id == 0) || (strlen(str) < 1)) continue; if (cv == NULL) { warnx("device entry with no vendor!"); continue; } if ((cd = malloc(sizeof(struct pci_device_info))) == NULL) { warn("allocating device entry"); error = 1; break; } if ((cd->desc = strdup(str)) == NULL) { free(cd); warn("allocating device description"); error = 1; break; } cd->id = id; TAILQ_INSERT_TAIL(&cv->devs, cd, link); continue; } /* It's a comment or junk, ignore it */ } if (ferror(db)) error = 1; fclose(db); return(error); } uint32_t read_config(int fd, struct pcisel *sel, long reg, int width) { struct pci_io pi; pi.pi_sel = *sel; pi.pi_reg = reg; pi.pi_width = width; if (ioctl(fd, PCIOCREAD, &pi) < 0) err(1, "ioctl(PCIOCREAD)"); return (pi.pi_data); } static struct pcisel getdevice(const char *name) { struct pci_conf_io pc; struct pci_conf conf[1]; struct pci_match_conf patterns[1]; char *cp; int fd; fd = open(_PATH_DEVPCI, O_RDONLY, 0); if (fd < 0) err(1, "%s", _PATH_DEVPCI); bzero(&pc, sizeof(struct pci_conf_io)); pc.match_buf_len = sizeof(conf); pc.matches = conf; bzero(&patterns, sizeof(patterns)); /* * The pattern structure requires the unit to be split out from * the driver name. Walk backwards from the end of the name to * find the start of the unit. */ if (name[0] == '\0') errx(1, "Empty device name"); cp = strchr(name, '\0'); assert(cp != NULL && cp != name); cp--; while (cp != name && isdigit(cp[-1])) cp--; if (cp == name || !isdigit(*cp)) errx(1, "Invalid device name"); if ((size_t)(cp - name) + 1 > sizeof(patterns[0].pd_name)) errx(1, "Device name is too long"); memcpy(patterns[0].pd_name, name, cp - name); patterns[0].pd_unit = strtol(cp, &cp, 10); if (*cp != '\0') errx(1, "Invalid device name"); patterns[0].flags = PCI_GETCONF_MATCH_NAME | PCI_GETCONF_MATCH_UNIT; pc.num_patterns = 1; pc.pat_buf_len = sizeof(patterns); pc.patterns = patterns; if (ioctl(fd, PCIOCGETCONF, &pc) == -1) err(1, "ioctl(PCIOCGETCONF)"); if (pc.status != PCI_GETCONF_LAST_DEVICE && pc.status != PCI_GETCONF_MORE_DEVS) errx(1, "error returned from PCIOCGETCONF ioctl"); close(fd); if (pc.num_matches == 0) errx(1, "Device not found"); return (conf[0].pc_sel); } static struct pcisel parsesel(const char *str) { const char *ep; char *eppos; struct pcisel sel; unsigned long selarr[4]; int i; ep = strchr(str, '@'); if (ep != NULL) ep++; else ep = str; if (strncmp(ep, "pci", 3) == 0) { ep += 3; i = 0; while (isdigit(*ep) && i < 4) { selarr[i++] = strtoul(ep, &eppos, 10); ep = eppos; if (*ep == ':') ep++; } if (i > 0 && *ep == '\0') { sel.pc_func = (i > 2) ? selarr[--i] : 0; sel.pc_dev = (i > 0) ? selarr[--i] : 0; sel.pc_bus = (i > 0) ? selarr[--i] : 0; sel.pc_domain = (i > 0) ? selarr[--i] : 0; return (sel); } } errx(1, "cannot parse selector %s", str); } static struct pcisel getsel(const char *str) { /* * No device names contain colons and selectors always contain * at least one colon. */ if (strchr(str, ':') == NULL) return (getdevice(str)); else return (parsesel(str)); } static void readone(int fd, struct pcisel *sel, long reg, int width) { printf("%0*x", width*2, read_config(fd, sel, reg, width)); } static void readit(const char *name, const char *reg, int width) { long rstart; long rend; long r; char *end; int i; int fd; struct pcisel sel; fd = open(_PATH_DEVPCI, O_RDWR, 0); if (fd < 0) err(1, "%s", _PATH_DEVPCI); rend = rstart = strtol(reg, &end, 0); if (end && *end == ':') { end++; rend = strtol(end, (char **) 0, 0); } sel = getsel(name); for (i = 1, r = rstart; r <= rend; i++, r += width) { readone(fd, &sel, r, width); if (i && !(i % 8)) putchar(' '); putchar(i % (16/width) ? ' ' : '\n'); } if (i % (16/width) != 1) putchar('\n'); close(fd); } static void writeit(const char *name, const char *reg, const char *data, int width) { int fd; struct pci_io pi; pi.pi_sel = getsel(name); pi.pi_reg = strtoul(reg, (char **)0, 0); /* XXX error check */ pi.pi_width = width; pi.pi_data = strtoul(data, (char **)0, 0); /* XXX error check */ fd = open(_PATH_DEVPCI, O_RDWR, 0); if (fd < 0) err(1, "%s", _PATH_DEVPCI); if (ioctl(fd, PCIOCWRITE, &pi) < 0) err(1, "ioctl(PCIOCWRITE)"); close(fd); } static void chkattached(const char *name) { int fd; struct pci_io pi; pi.pi_sel = getsel(name); fd = open(_PATH_DEVPCI, O_RDWR, 0); if (fd < 0) err(1, "%s", _PATH_DEVPCI); if (ioctl(fd, PCIOCATTACHED, &pi) < 0) err(1, "ioctl(PCIOCATTACHED)"); exitstatus = pi.pi_data ? 0 : 2; /* exit(2), if NOT attached */ printf("%s: %s%s\n", name, pi.pi_data == 0 ? "not " : "", "attached"); close(fd); } static void dump_bar(const char *name, const char *reg, const char *bar_start, const char *bar_count, int width, int verbose) { struct pci_bar_mmap pbm; uint32_t *dd; uint16_t *dh; uint8_t *db; uint64_t *dx, a, start, count; char *el; size_t res; int fd; start = 0; if (bar_start != NULL) { start = strtoul(bar_start, &el, 0); if (*el != '\0') errx(1, "Invalid bar start specification %s", bar_start); } count = 0; if (bar_count != NULL) { count = strtoul(bar_count, &el, 0); if (*el != '\0') errx(1, "Invalid count specification %s", bar_count); } pbm.pbm_sel = getsel(name); pbm.pbm_reg = strtoul(reg, &el, 0); if (*reg == '\0' || *el != '\0') errx(1, "Invalid bar specification %s", reg); pbm.pbm_flags = 0; -#ifdef VM_MEMATTR_DEVICE pbm.pbm_memattr = VM_MEMATTR_DEVICE; -#else - pbm.pbm_memattr = VM_MEMATTR_UNCACHEABLE; -#endif fd = open(_PATH_DEVPCI, O_RDWR, 0); if (fd < 0) err(1, "%s", _PATH_DEVPCI); if (ioctl(fd, PCIOCBARMMAP, &pbm) < 0) err(1, "ioctl(PCIOCBARMMAP)"); if (count == 0) count = pbm.pbm_bar_length / width; if (start + count < start || (start + count) * width < (uint64_t)width) errx(1, "(start + count) x width overflow"); if ((start + count) * width > pbm.pbm_bar_length) { if (start * width > pbm.pbm_bar_length) count = 0; else count = (pbm.pbm_bar_length - start * width) / width; } if (verbose) { fprintf(stderr, "Dumping pci%d:%d:%d:%d BAR %x mapped base %p " "off %#x length %#jx from %#jx count %#jx in %d-bytes\n", pbm.pbm_sel.pc_domain, pbm.pbm_sel.pc_bus, pbm.pbm_sel.pc_dev, pbm.pbm_sel.pc_func, pbm.pbm_reg, pbm.pbm_map_base, pbm.pbm_bar_off, pbm.pbm_bar_length, start, count, width); } switch (width) { case 1: db = (uint8_t *)(uintptr_t)((uintptr_t)pbm.pbm_map_base + pbm.pbm_bar_off + start * width); for (a = 0; a < count; a += width, db++) { res = fwrite(db, width, 1, stdout); if (res != 1) { errx(1, "error writing to stdout"); break; } } break; case 2: dh = (uint16_t *)(uintptr_t)((uintptr_t)pbm.pbm_map_base + pbm.pbm_bar_off + start * width); for (a = 0; a < count; a += width, dh++) { res = fwrite(dh, width, 1, stdout); if (res != 1) { errx(1, "error writing to stdout"); break; } } break; case 4: dd = (uint32_t *)(uintptr_t)((uintptr_t)pbm.pbm_map_base + pbm.pbm_bar_off + start * width); for (a = 0; a < count; a += width, dd++) { res = fwrite(dd, width, 1, stdout); if (res != 1) { errx(1, "error writing to stdout"); break; } } break; case 8: dx = (uint64_t *)(uintptr_t)((uintptr_t)pbm.pbm_map_base + pbm.pbm_bar_off + start * width); for (a = 0; a < count; a += width, dx++) { res = fwrite(dx, width, 1, stdout); if (res != 1) { errx(1, "error writing to stdout"); break; } } break; default: errx(1, "invalid access width"); } munmap((void *)pbm.pbm_map_base, pbm.pbm_map_length); close(fd); }