diff --git a/sys/dev/e1000/e1000_82571.c b/sys/dev/e1000/e1000_82571.c index 6fefcc774cbb..8db1fcb921a9 100644 --- a/sys/dev/e1000/e1000_82571.c +++ b/sys/dev/e1000/e1000_82571.c @@ -1,1911 +1,1911 @@ /****************************************************************************** SPDX-License-Identifier: BSD-3-Clause Copyright (c) 2001-2020, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************/ /*$FreeBSD$*/ /* 82571EB Gigabit Ethernet Controller * 82571EB Gigabit Ethernet Controller (Copper) * 82571EB Gigabit Ethernet Controller (Fiber) * 82571EB Dual Port Gigabit Mezzanine Adapter * 82571EB Quad Port Gigabit Mezzanine Adapter * 82571PT Gigabit PT Quad Port Server ExpressModule * 82572EI Gigabit Ethernet Controller (Copper) * 82572EI Gigabit Ethernet Controller (Fiber) * 82572EI Gigabit Ethernet Controller * 82573V Gigabit Ethernet Controller (Copper) * 82573E Gigabit Ethernet Controller (Copper) * 82573L Gigabit Ethernet Controller * 82574L Gigabit Network Connection * 82583V Gigabit Network Connection */ #include "e1000_api.h" static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw); static void e1000_release_nvm_82571(struct e1000_hw *hw); static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw); static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw); static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw); static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active); static s32 e1000_reset_hw_82571(struct e1000_hw *hw); static s32 e1000_init_hw_82571(struct e1000_hw *hw); static void e1000_clear_vfta_82571(struct e1000_hw *hw); static bool e1000_check_mng_mode_82574(struct e1000_hw *hw); static s32 e1000_led_on_82574(struct e1000_hw *hw); static s32 e1000_setup_link_82571(struct e1000_hw *hw); static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw); static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw); static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw); static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data); static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw); static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw); static s32 e1000_get_phy_id_82571(struct e1000_hw *hw); static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw); static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw); static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active); static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active); static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw); static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw); static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw); /** * e1000_init_phy_params_82571 - Init PHY func ptrs. * @hw: pointer to the HW structure **/ static s32 e1000_init_phy_params_82571(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; DEBUGFUNC("e1000_init_phy_params_82571"); if (hw->phy.media_type != e1000_media_type_copper) { phy->type = e1000_phy_none; return E1000_SUCCESS; } phy->addr = 1; phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; phy->reset_delay_us = 100; phy->ops.check_reset_block = e1000_check_reset_block_generic; phy->ops.reset = e1000_phy_hw_reset_generic; phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82571; phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic; phy->ops.power_up = e1000_power_up_phy_copper; phy->ops.power_down = e1000_power_down_phy_copper_82571; switch (hw->mac.type) { case e1000_82571: case e1000_82572: phy->type = e1000_phy_igp_2; phy->ops.get_cfg_done = e1000_get_cfg_done_82571; phy->ops.get_info = e1000_get_phy_info_igp; phy->ops.check_polarity = e1000_check_polarity_igp; phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; phy->ops.get_cable_length = e1000_get_cable_length_igp_2; phy->ops.read_reg = e1000_read_phy_reg_igp; phy->ops.write_reg = e1000_write_phy_reg_igp; phy->ops.acquire = e1000_get_hw_semaphore; phy->ops.release = e1000_put_hw_semaphore; break; case e1000_82573: phy->type = e1000_phy_m88; phy->ops.get_cfg_done = e1000_get_cfg_done_generic; phy->ops.get_info = e1000_get_phy_info_m88; phy->ops.check_polarity = e1000_check_polarity_m88; phy->ops.commit = e1000_phy_sw_reset_generic; phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; phy->ops.get_cable_length = e1000_get_cable_length_m88; phy->ops.read_reg = e1000_read_phy_reg_m88; phy->ops.write_reg = e1000_write_phy_reg_m88; phy->ops.acquire = e1000_get_hw_semaphore; phy->ops.release = e1000_put_hw_semaphore; break; case e1000_82574: case e1000_82583: phy->type = e1000_phy_bm; phy->ops.get_cfg_done = e1000_get_cfg_done_generic; phy->ops.get_info = e1000_get_phy_info_m88; phy->ops.check_polarity = e1000_check_polarity_m88; phy->ops.commit = e1000_phy_sw_reset_generic; phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; phy->ops.get_cable_length = e1000_get_cable_length_m88; phy->ops.read_reg = e1000_read_phy_reg_bm2; phy->ops.write_reg = e1000_write_phy_reg_bm2; phy->ops.acquire = e1000_get_hw_semaphore_82574; phy->ops.release = e1000_put_hw_semaphore_82574; phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574; phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574; break; default: return -E1000_ERR_PHY; break; } /* This can only be done after all function pointers are setup. */ ret_val = e1000_get_phy_id_82571(hw); if (ret_val) { DEBUGOUT("Error getting PHY ID\n"); return ret_val; } /* Verify phy id */ switch (hw->mac.type) { case e1000_82571: case e1000_82572: if (phy->id != IGP01E1000_I_PHY_ID) ret_val = -E1000_ERR_PHY; break; case e1000_82573: if (phy->id != M88E1111_I_PHY_ID) ret_val = -E1000_ERR_PHY; break; case e1000_82574: case e1000_82583: if (phy->id != BME1000_E_PHY_ID_R2) ret_val = -E1000_ERR_PHY; break; default: ret_val = -E1000_ERR_PHY; break; } if (ret_val) DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id); return ret_val; } /** * e1000_init_nvm_params_82571 - Init NVM func ptrs. * @hw: pointer to the HW structure **/ static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; u32 eecd = E1000_READ_REG(hw, E1000_EECD); u16 size; DEBUGFUNC("e1000_init_nvm_params_82571"); nvm->opcode_bits = 8; nvm->delay_usec = 1; switch (nvm->override) { case e1000_nvm_override_spi_large: nvm->page_size = 32; nvm->address_bits = 16; break; case e1000_nvm_override_spi_small: nvm->page_size = 8; nvm->address_bits = 8; break; default: nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; break; } switch (hw->mac.type) { case e1000_82573: case e1000_82574: case e1000_82583: if (((eecd >> 15) & 0x3) == 0x3) { nvm->type = e1000_nvm_flash_hw; nvm->word_size = 2048; /* Autonomous Flash update bit must be cleared due * to Flash update issue. */ eecd &= ~E1000_EECD_AUPDEN; E1000_WRITE_REG(hw, E1000_EECD, eecd); break; } /* Fall Through */ default: nvm->type = e1000_nvm_eeprom_spi; size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> E1000_EECD_SIZE_EX_SHIFT); /* Added to a constant, "size" becomes the left-shift value * for setting word_size. */ size += NVM_WORD_SIZE_BASE_SHIFT; /* EEPROM access above 16k is unsupported */ if (size > 14) size = 14; nvm->word_size = 1 << size; break; } /* Function Pointers */ switch (hw->mac.type) { case e1000_82574: case e1000_82583: nvm->ops.acquire = e1000_get_hw_semaphore_82574; nvm->ops.release = e1000_put_hw_semaphore_82574; break; default: nvm->ops.acquire = e1000_acquire_nvm_82571; nvm->ops.release = e1000_release_nvm_82571; break; } nvm->ops.read = e1000_read_nvm_eerd; nvm->ops.update = e1000_update_nvm_checksum_82571; nvm->ops.validate = e1000_validate_nvm_checksum_82571; nvm->ops.valid_led_default = e1000_valid_led_default_82571; nvm->ops.write = e1000_write_nvm_82571; return E1000_SUCCESS; } /** * e1000_init_mac_params_82571 - Init MAC func ptrs. * @hw: pointer to the HW structure **/ static s32 e1000_init_mac_params_82571(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; u32 swsm = 0; u32 swsm2 = 0; bool force_clear_smbi = FALSE; DEBUGFUNC("e1000_init_mac_params_82571"); /* Set media type and media-dependent function pointers */ switch (hw->device_id) { case E1000_DEV_ID_82571EB_FIBER: case E1000_DEV_ID_82572EI_FIBER: case E1000_DEV_ID_82571EB_QUAD_FIBER: hw->phy.media_type = e1000_media_type_fiber; mac->ops.setup_physical_interface = e1000_setup_fiber_serdes_link_82571; mac->ops.check_for_link = e1000_check_for_fiber_link_generic; mac->ops.get_link_up_info = e1000_get_speed_and_duplex_fiber_serdes_generic; break; case E1000_DEV_ID_82571EB_SERDES: case E1000_DEV_ID_82571EB_SERDES_DUAL: case E1000_DEV_ID_82571EB_SERDES_QUAD: case E1000_DEV_ID_82572EI_SERDES: hw->phy.media_type = e1000_media_type_internal_serdes; mac->ops.setup_physical_interface = e1000_setup_fiber_serdes_link_82571; mac->ops.check_for_link = e1000_check_for_serdes_link_82571; mac->ops.get_link_up_info = e1000_get_speed_and_duplex_fiber_serdes_generic; break; default: hw->phy.media_type = e1000_media_type_copper; mac->ops.setup_physical_interface = e1000_setup_copper_link_82571; mac->ops.check_for_link = e1000_check_for_copper_link_generic; mac->ops.get_link_up_info = e1000_get_speed_and_duplex_copper_generic; break; } /* Set mta register count */ mac->mta_reg_count = 128; /* Set rar entry count */ mac->rar_entry_count = E1000_RAR_ENTRIES; /* Set if part includes ASF firmware */ mac->asf_firmware_present = TRUE; /* Adaptive IFS supported */ mac->adaptive_ifs = TRUE; /* Function pointers */ /* bus type/speed/width */ mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic; /* reset */ mac->ops.reset_hw = e1000_reset_hw_82571; /* hw initialization */ mac->ops.init_hw = e1000_init_hw_82571; /* link setup */ mac->ops.setup_link = e1000_setup_link_82571; /* multicast address update */ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; /* writing VFTA */ mac->ops.write_vfta = e1000_write_vfta_generic; /* clearing VFTA */ mac->ops.clear_vfta = e1000_clear_vfta_82571; /* read mac address */ mac->ops.read_mac_addr = e1000_read_mac_addr_82571; /* ID LED init */ mac->ops.id_led_init = e1000_id_led_init_generic; /* setup LED */ mac->ops.setup_led = e1000_setup_led_generic; /* cleanup LED */ mac->ops.cleanup_led = e1000_cleanup_led_generic; /* turn off LED */ mac->ops.led_off = e1000_led_off_generic; /* clear hardware counters */ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82571; /* MAC-specific function pointers */ switch (hw->mac.type) { case e1000_82573: mac->ops.set_lan_id = e1000_set_lan_id_single_port; mac->ops.check_mng_mode = e1000_check_mng_mode_generic; mac->ops.led_on = e1000_led_on_generic; mac->ops.blink_led = e1000_blink_led_generic; /* FWSM register */ mac->has_fwsm = TRUE; /* ARC supported; valid only if manageability features are * enabled. */ mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK); break; case e1000_82574: case e1000_82583: mac->ops.set_lan_id = e1000_set_lan_id_single_port; mac->ops.check_mng_mode = e1000_check_mng_mode_82574; mac->ops.led_on = e1000_led_on_82574; break; default: mac->ops.check_mng_mode = e1000_check_mng_mode_generic; mac->ops.led_on = e1000_led_on_generic; mac->ops.blink_led = e1000_blink_led_generic; /* FWSM register */ mac->has_fwsm = TRUE; break; } /* Ensure that the inter-port SWSM.SMBI lock bit is clear before * first NVM or PHY access. This should be done for single-port * devices, and for one port only on dual-port devices so that * for those devices we can still use the SMBI lock to synchronize * inter-port accesses to the PHY & NVM. */ switch (hw->mac.type) { case e1000_82571: case e1000_82572: swsm2 = E1000_READ_REG(hw, E1000_SWSM2); if (!(swsm2 & E1000_SWSM2_LOCK)) { /* Only do this for the first interface on this card */ E1000_WRITE_REG(hw, E1000_SWSM2, swsm2 | E1000_SWSM2_LOCK); force_clear_smbi = TRUE; } else { force_clear_smbi = FALSE; } break; default: force_clear_smbi = TRUE; break; } if (force_clear_smbi) { /* Make sure SWSM.SMBI is clear */ swsm = E1000_READ_REG(hw, E1000_SWSM); if (swsm & E1000_SWSM_SMBI) { /* This bit should not be set on a first interface, and * indicates that the bootagent or EFI code has * improperly left this bit enabled */ DEBUGOUT("Please update your 82571 Bootagent\n"); } E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_SMBI); } /* Initialze device specific counter of SMBI acquisition timeouts. */ hw->dev_spec._82571.smb_counter = 0; return E1000_SUCCESS; } /** * e1000_init_function_pointers_82571 - Init func ptrs. * @hw: pointer to the HW structure * * Called to initialize all function pointers and parameters. **/ void e1000_init_function_pointers_82571(struct e1000_hw *hw) { DEBUGFUNC("e1000_init_function_pointers_82571"); hw->mac.ops.init_params = e1000_init_mac_params_82571; hw->nvm.ops.init_params = e1000_init_nvm_params_82571; hw->phy.ops.init_params = e1000_init_phy_params_82571; } /** * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision * @hw: pointer to the HW structure * * Reads the PHY registers and stores the PHY ID and possibly the PHY * revision in the hardware structure. **/ static s32 e1000_get_phy_id_82571(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_id = 0; DEBUGFUNC("e1000_get_phy_id_82571"); switch (hw->mac.type) { case e1000_82571: case e1000_82572: /* The 82571 firmware may still be configuring the PHY. * In this case, we cannot access the PHY until the * configuration is done. So we explicitly set the * PHY ID. */ phy->id = IGP01E1000_I_PHY_ID; break; case e1000_82573: return e1000_get_phy_id(hw); break; case e1000_82574: case e1000_82583: ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); if (ret_val) return ret_val; phy->id = (u32)(phy_id << 16); usec_delay(20); ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); if (ret_val) return ret_val; phy->id |= (u32)(phy_id); phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); break; default: return -E1000_ERR_PHY; break; } return E1000_SUCCESS; } /** * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore * @hw: pointer to the HW structure * * Acquire the HW semaphore during reset. * **/ static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw) { u32 extcnf_ctrl; s32 i = 0; /* XXX assert that mutex is held */ - DEBUGFUNC("e1000_get_hw_semaphore_82573"); + DEBUGFUNC("e1000_get_hw_semaphore_82574"); ASSERT_CTX_LOCK_HELD(hw); extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); do { extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) break; msec_delay(2); i++; } while (i < MDIO_OWNERSHIP_TIMEOUT); if (i == MDIO_OWNERSHIP_TIMEOUT) { /* Release semaphores */ e1000_put_hw_semaphore_82574(hw); DEBUGOUT("Driver can't access the PHY\n"); return -E1000_ERR_PHY; } return E1000_SUCCESS; } /** * e1000_put_hw_semaphore_82574 - Release hardware semaphore * @hw: pointer to the HW structure * * Release hardware semaphore used during reset. * **/ static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw) { u32 extcnf_ctrl; DEBUGFUNC("e1000_put_hw_semaphore_82574"); extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); } /** * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state * @hw: pointer to the HW structure * @active: TRUE to enable LPLU, FALSE to disable * * Sets the LPLU D0 state according to the active flag. * LPLU will not be activated unless the * device autonegotiation advertisement meets standards of * either 10 or 10/100 or 10/100/1000 at all duplexes. * This is a function pointer entry point only called by * PHY setup routines. **/ static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active) { u32 data = E1000_READ_REG(hw, E1000_POEMB); DEBUGFUNC("e1000_set_d0_lplu_state_82574"); if (active) data |= E1000_PHY_CTRL_D0A_LPLU; else data &= ~E1000_PHY_CTRL_D0A_LPLU; E1000_WRITE_REG(hw, E1000_POEMB, data); return E1000_SUCCESS; } /** * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3 * @hw: pointer to the HW structure * @active: boolean used to enable/disable lplu * * The low power link up (lplu) state is set to the power management level D3 * when active is TRUE, else clear lplu for D3. LPLU * is used during Dx states where the power conservation is most important. * During driver activity, SmartSpeed should be enabled so performance is * maintained. **/ static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active) { u32 data = E1000_READ_REG(hw, E1000_POEMB); DEBUGFUNC("e1000_set_d3_lplu_state_82574"); if (!active) { data &= ~E1000_PHY_CTRL_NOND0A_LPLU; } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) || (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) { data |= E1000_PHY_CTRL_NOND0A_LPLU; } E1000_WRITE_REG(hw, E1000_POEMB, data); return E1000_SUCCESS; } /** * e1000_acquire_nvm_82571 - Request for access to the EEPROM * @hw: pointer to the HW structure * * To gain access to the EEPROM, first we must obtain a hardware semaphore. * Then for non-82573 hardware, set the EEPROM access request bit and wait * for EEPROM access grant bit. If the access grant bit is not set, release * hardware semaphore. **/ static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw) { s32 ret_val; DEBUGFUNC("e1000_acquire_nvm_82571"); ret_val = e1000_get_hw_semaphore(hw); if (ret_val) return ret_val; switch (hw->mac.type) { case e1000_82573: break; default: ret_val = e1000_acquire_nvm_generic(hw); break; } if (ret_val) e1000_put_hw_semaphore(hw); return ret_val; } /** * e1000_release_nvm_82571 - Release exclusive access to EEPROM * @hw: pointer to the HW structure * * Stop any current commands to the EEPROM and clear the EEPROM request bit. **/ static void e1000_release_nvm_82571(struct e1000_hw *hw) { DEBUGFUNC("e1000_release_nvm_82571"); e1000_release_nvm_generic(hw); e1000_put_hw_semaphore(hw); } /** * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface * @hw: pointer to the HW structure * @offset: offset within the EEPROM to be written to * @words: number of words to write * @data: 16 bit word(s) to be written to the EEPROM * * For non-82573 silicon, write data to EEPROM at offset using SPI interface. * * If e1000_update_nvm_checksum is not called after this function, the * EEPROM will most likely contain an invalid checksum. **/ static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { s32 ret_val; DEBUGFUNC("e1000_write_nvm_82571"); switch (hw->mac.type) { case e1000_82573: case e1000_82574: case e1000_82583: ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data); break; case e1000_82571: case e1000_82572: ret_val = e1000_write_nvm_spi(hw, offset, words, data); break; default: ret_val = -E1000_ERR_NVM; break; } return ret_val; } /** * e1000_update_nvm_checksum_82571 - Update EEPROM checksum * @hw: pointer to the HW structure * * Updates the EEPROM checksum by reading/adding each word of the EEPROM * up to the checksum. Then calculates the EEPROM checksum and writes the * value to the EEPROM. **/ static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw) { u32 eecd; s32 ret_val; u16 i; DEBUGFUNC("e1000_update_nvm_checksum_82571"); ret_val = e1000_update_nvm_checksum_generic(hw); if (ret_val) return ret_val; /* If our nvm is an EEPROM, then we're done * otherwise, commit the checksum to the flash NVM. */ if (hw->nvm.type != e1000_nvm_flash_hw) return E1000_SUCCESS; /* Check for pending operations. */ for (i = 0; i < E1000_FLASH_UPDATES; i++) { msec_delay(1); if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD)) break; } if (i == E1000_FLASH_UPDATES) return -E1000_ERR_NVM; /* Reset the firmware if using STM opcode. */ if ((E1000_READ_REG(hw, E1000_FLOP) & 0xFF00) == E1000_STM_OPCODE) { /* The enabling of and the actual reset must be done * in two write cycles. */ E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET_ENABLE); E1000_WRITE_FLUSH(hw); E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET); } /* Commit the write to flash */ eecd = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD; E1000_WRITE_REG(hw, E1000_EECD, eecd); for (i = 0; i < E1000_FLASH_UPDATES; i++) { msec_delay(1); if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD)) break; } if (i == E1000_FLASH_UPDATES) return -E1000_ERR_NVM; return E1000_SUCCESS; } /** * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum * @hw: pointer to the HW structure * * Calculates the EEPROM checksum by reading/adding each word of the EEPROM * and then verifies that the sum of the EEPROM is equal to 0xBABA. **/ static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw) { DEBUGFUNC("e1000_validate_nvm_checksum_82571"); if (hw->nvm.type == e1000_nvm_flash_hw) e1000_fix_nvm_checksum_82571(hw); return e1000_validate_nvm_checksum_generic(hw); } /** * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon * @hw: pointer to the HW structure * @offset: offset within the EEPROM to be written to * @words: number of words to write * @data: 16 bit word(s) to be written to the EEPROM * * After checking for invalid values, poll the EEPROM to ensure the previous * command has completed before trying to write the next word. After write * poll for completion. * * If e1000_update_nvm_checksum is not called after this function, the * EEPROM will most likely contain an invalid checksum. **/ static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; u32 i, eewr = 0; s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_write_nvm_eewr_82571"); /* A check for invalid values: offset too large, too many words, * and not enough words. */ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || (words == 0)) { DEBUGOUT("nvm parameter(s) out of bounds\n"); return -E1000_ERR_NVM; } for (i = 0; i < words; i++) { eewr = ((data[i] << E1000_NVM_RW_REG_DATA) | ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) | E1000_NVM_RW_REG_START); ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); if (ret_val) break; E1000_WRITE_REG(hw, E1000_EEWR, eewr); ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); if (ret_val) break; } return ret_val; } /** * e1000_get_cfg_done_82571 - Poll for configuration done * @hw: pointer to the HW structure * * Reads the management control register for the config done bit to be set. **/ static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw) { s32 timeout = PHY_CFG_TIMEOUT; DEBUGFUNC("e1000_get_cfg_done_82571"); while (timeout) { if (E1000_READ_REG(hw, E1000_EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0) break; msec_delay(1); timeout--; } if (!timeout) { DEBUGOUT("MNG configuration cycle has not completed.\n"); return -E1000_ERR_RESET; } return E1000_SUCCESS; } /** * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state * @hw: pointer to the HW structure * @active: TRUE to enable LPLU, FALSE to disable * * Sets the LPLU D0 state according to the active flag. When activating LPLU * this function also disables smart speed and vice versa. LPLU will not be * activated unless the device autonegotiation advertisement meets standards * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function * pointer entry point only called by PHY setup routines. **/ static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; DEBUGFUNC("e1000_set_d0_lplu_state_82571"); if (!(phy->ops.read_reg)) return E1000_SUCCESS; ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); if (ret_val) return ret_val; if (active) { data |= IGP02E1000_PM_D0_LPLU; ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, data); if (ret_val) return ret_val; /* When LPLU is enabled, we should disable SmartSpeed */ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) return ret_val; } else { data &= ~IGP02E1000_PM_D0_LPLU; ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, data); /* LPLU and SmartSpeed are mutually exclusive. LPLU is used * during Dx states where the power conservation is most * important. During driver activity we should enable * SmartSpeed, so performance is maintained. */ if (phy->smart_speed == e1000_smart_speed_on) { ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data |= IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) return ret_val; } else if (phy->smart_speed == e1000_smart_speed_off) { ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) return ret_val; } } return E1000_SUCCESS; } /** * e1000_reset_hw_82571 - Reset hardware * @hw: pointer to the HW structure * * This resets the hardware into a known state. **/ static s32 e1000_reset_hw_82571(struct e1000_hw *hw) { u32 ctrl, ctrl_ext, eecd, tctl; s32 ret_val; DEBUGFUNC("e1000_reset_hw_82571"); /* Prevent the PCI-E bus from sticking if there is no TLP connection * on the last TLP read/write transaction when MAC is reset. */ ret_val = e1000_disable_pcie_master_generic(hw); if (ret_val) DEBUGOUT("PCI-E Master disable polling has failed.\n"); DEBUGOUT("Masking off all interrupts\n"); E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); E1000_WRITE_REG(hw, E1000_RCTL, 0); tctl = E1000_READ_REG(hw, E1000_TCTL); tctl &= ~E1000_TCTL_EN; E1000_WRITE_REG(hw, E1000_TCTL, tctl); E1000_WRITE_FLUSH(hw); msec_delay(10); /* Must acquire the MDIO ownership before MAC reset. * Ownership defaults to firmware after a reset. */ switch (hw->mac.type) { case e1000_82573: case e1000_82574: case e1000_82583: ret_val = e1000_get_hw_semaphore_82574(hw); break; default: break; } ctrl = E1000_READ_REG(hw, E1000_CTRL); DEBUGOUT("Issuing a global reset to MAC\n"); E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); /* Must release MDIO ownership and mutex after MAC reset. */ switch (hw->mac.type) { case e1000_82573: case e1000_82574: case e1000_82583: /* Release mutex only if the hw semaphore is acquired */ if (!ret_val) e1000_put_hw_semaphore_82574(hw); break; default: /* we didn't get the semaphore no need to put it */ break; } if (hw->nvm.type == e1000_nvm_flash_hw) { usec_delay(10); ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); ctrl_ext |= E1000_CTRL_EXT_EE_RST; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); E1000_WRITE_FLUSH(hw); } ret_val = e1000_get_auto_rd_done_generic(hw); if (ret_val) /* We don't want to continue accessing MAC registers. */ return ret_val; /* Phy configuration from NVM just starts after EECD_AUTO_RD is set. * Need to wait for Phy configuration completion before accessing * NVM and Phy. */ switch (hw->mac.type) { case e1000_82571: case e1000_82572: /* REQ and GNT bits need to be cleared when using AUTO_RD * to access the EEPROM. */ eecd = E1000_READ_REG(hw, E1000_EECD); eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT); E1000_WRITE_REG(hw, E1000_EECD, eecd); break; case e1000_82573: case e1000_82574: case e1000_82583: msec_delay(25); break; default: break; } /* Clear any pending interrupt events. */ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); E1000_READ_REG(hw, E1000_ICR); if (hw->mac.type == e1000_82571) { /* Install any alternate MAC address into RAR0 */ ret_val = e1000_check_alt_mac_addr_generic(hw); if (ret_val) return ret_val; e1000_set_laa_state_82571(hw, TRUE); } /* Reinitialize the 82571 serdes link state machine */ if (hw->phy.media_type == e1000_media_type_internal_serdes) hw->mac.serdes_link_state = e1000_serdes_link_down; return E1000_SUCCESS; } /** * e1000_init_hw_82571 - Initialize hardware * @hw: pointer to the HW structure * * This inits the hardware readying it for operation. **/ static s32 e1000_init_hw_82571(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; u32 reg_data; s32 ret_val; u16 i, rar_count = mac->rar_entry_count; DEBUGFUNC("e1000_init_hw_82571"); e1000_initialize_hw_bits_82571(hw); /* Initialize identification LED */ ret_val = mac->ops.id_led_init(hw); /* An error is not fatal and we should not stop init due to this */ if (ret_val) DEBUGOUT("Error initializing identification LED\n"); /* Disabling VLAN filtering */ DEBUGOUT("Initializing the IEEE VLAN\n"); mac->ops.clear_vfta(hw); /* Setup the receive address. * If, however, a locally administered address was assigned to the * 82571, we must reserve a RAR for it to work around an issue where * resetting one port will reload the MAC on the other port. */ if (e1000_get_laa_state_82571(hw)) rar_count--; e1000_init_rx_addrs_generic(hw, rar_count); /* Zero out the Multicast HASH table */ DEBUGOUT("Zeroing the MTA\n"); for (i = 0; i < mac->mta_reg_count; i++) E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); /* Setup link and flow control */ ret_val = mac->ops.setup_link(hw); /* Set the transmit descriptor write-back policy */ reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0)); reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC); E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data); /* ...for both queues. */ switch (mac->type) { case e1000_82573: e1000_enable_tx_pkt_filtering_generic(hw); /* fall through */ case e1000_82574: case e1000_82583: reg_data = E1000_READ_REG(hw, E1000_GCR); reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; E1000_WRITE_REG(hw, E1000_GCR, reg_data); break; default: reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1)); reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC); E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data); break; } /* Clear all of the statistics registers (clear on read). It is * important that we do this after we have tried to establish link * because the symbol error count will increment wildly if there * is no link. */ e1000_clear_hw_cntrs_82571(hw); return ret_val; } /** * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits * @hw: pointer to the HW structure * * Initializes required hardware-dependent bits needed for normal operation. **/ static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw) { u32 reg; DEBUGFUNC("e1000_initialize_hw_bits_82571"); /* Transmit Descriptor Control 0 */ reg = E1000_READ_REG(hw, E1000_TXDCTL(0)); reg |= (1 << 22); E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg); /* Transmit Descriptor Control 1 */ reg = E1000_READ_REG(hw, E1000_TXDCTL(1)); reg |= (1 << 22); E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg); /* Transmit Arbitration Control 0 */ reg = E1000_READ_REG(hw, E1000_TARC(0)); reg &= ~(0xF << 27); /* 30:27 */ switch (hw->mac.type) { case e1000_82571: case e1000_82572: reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26); break; case e1000_82574: case e1000_82583: reg |= (1 << 26); break; default: break; } E1000_WRITE_REG(hw, E1000_TARC(0), reg); /* Transmit Arbitration Control 1 */ reg = E1000_READ_REG(hw, E1000_TARC(1)); switch (hw->mac.type) { case e1000_82571: case e1000_82572: reg &= ~((1 << 29) | (1 << 30)); reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26); if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR) reg &= ~(1 << 28); else reg |= (1 << 28); E1000_WRITE_REG(hw, E1000_TARC(1), reg); break; default: break; } /* Device Control */ switch (hw->mac.type) { case e1000_82573: case e1000_82574: case e1000_82583: reg = E1000_READ_REG(hw, E1000_CTRL); reg &= ~(1 << 29); E1000_WRITE_REG(hw, E1000_CTRL, reg); break; default: break; } /* Extended Device Control */ switch (hw->mac.type) { case e1000_82573: case e1000_82574: case e1000_82583: reg = E1000_READ_REG(hw, E1000_CTRL_EXT); reg &= ~(1 << 23); reg |= (1 << 22); E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); break; default: break; } if (hw->mac.type == e1000_82571) { reg = E1000_READ_REG(hw, E1000_PBA_ECC); reg |= E1000_PBA_ECC_CORR_EN; E1000_WRITE_REG(hw, E1000_PBA_ECC, reg); } /* Workaround for hardware errata. * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572 */ if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) { reg = E1000_READ_REG(hw, E1000_CTRL_EXT); reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN; E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); } /* Disable IPv6 extension header parsing because some malformed * IPv6 headers can hang the Rx. */ if (hw->mac.type <= e1000_82573) { reg = E1000_READ_REG(hw, E1000_RFCTL); reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); E1000_WRITE_REG(hw, E1000_RFCTL, reg); } /* PCI-Ex Control Registers */ switch (hw->mac.type) { case e1000_82574: case e1000_82583: reg = E1000_READ_REG(hw, E1000_GCR); reg |= (1 << 22); E1000_WRITE_REG(hw, E1000_GCR, reg); /* Workaround for hardware errata. * apply workaround for hardware errata documented in errata * docs Fixes issue where some error prone or unreliable PCIe * completions are occurring, particularly with ASPM enabled. * Without fix, issue can cause Tx timeouts. */ reg = E1000_READ_REG(hw, E1000_GCR2); reg |= 1; E1000_WRITE_REG(hw, E1000_GCR2, reg); break; default: break; } return; } /** * e1000_clear_vfta_82571 - Clear VLAN filter table * @hw: pointer to the HW structure * * Clears the register array which contains the VLAN filter table by * setting all the values to 0. **/ static void e1000_clear_vfta_82571(struct e1000_hw *hw) { u32 offset; u32 vfta_value = 0; u32 vfta_offset = 0; u32 vfta_bit_in_reg = 0; DEBUGFUNC("e1000_clear_vfta_82571"); switch (hw->mac.type) { case e1000_82573: case e1000_82574: case e1000_82583: if (hw->mng_cookie.vlan_id != 0) { /* The VFTA is a 4096b bit-field, each identifying * a single VLAN ID. The following operations * determine which 32b entry (i.e. offset) into the * array we want to set the VLAN ID (i.e. bit) of * the manageability unit. */ vfta_offset = (hw->mng_cookie.vlan_id >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK; vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK); } break; default: break; } for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { /* If the offset we want to clear is the same offset of the * manageability VLAN ID, then clear all bits except that of * the manageability unit. */ vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value); E1000_WRITE_FLUSH(hw); } } /** * e1000_check_mng_mode_82574 - Check manageability is enabled * @hw: pointer to the HW structure * * Reads the NVM Initialization Control Word 2 and returns TRUE * (>0) if any manageability is enabled, else FALSE (0). **/ static bool e1000_check_mng_mode_82574(struct e1000_hw *hw) { u16 data; s32 ret_val; DEBUGFUNC("e1000_check_mng_mode_82574"); ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data); if (ret_val) return FALSE; return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0; } /** * e1000_led_on_82574 - Turn LED on * @hw: pointer to the HW structure * * Turn LED on. **/ static s32 e1000_led_on_82574(struct e1000_hw *hw) { u32 ctrl; u32 i; DEBUGFUNC("e1000_led_on_82574"); ctrl = hw->mac.ledctl_mode2; if (!(E1000_STATUS_LU & E1000_READ_REG(hw, E1000_STATUS))) { /* If no link, then turn LED on by setting the invert bit * for each LED that's "on" (0x0E) in ledctl_mode2. */ for (i = 0; i < 4; i++) if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == E1000_LEDCTL_MODE_LED_ON) ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8)); } E1000_WRITE_REG(hw, E1000_LEDCTL, ctrl); return E1000_SUCCESS; } /** * e1000_check_phy_82574 - check 82574 phy hung state * @hw: pointer to the HW structure * * Returns whether phy is hung or not **/ bool e1000_check_phy_82574(struct e1000_hw *hw) { u16 status_1kbt = 0; u16 receive_errors = 0; s32 ret_val; DEBUGFUNC("e1000_check_phy_82574"); /* Read PHY Receive Error counter first, if its is max - all F's then * read the Base1000T status register If both are max then PHY is hung. */ ret_val = hw->phy.ops.read_reg(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors); if (ret_val) return FALSE; if (receive_errors == E1000_RECEIVE_ERROR_MAX) { ret_val = hw->phy.ops.read_reg(hw, E1000_BASE1000T_STATUS, &status_1kbt); if (ret_val) return FALSE; if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) == E1000_IDLE_ERROR_COUNT_MASK) return TRUE; } return FALSE; } /** * e1000_setup_link_82571 - Setup flow control and link settings * @hw: pointer to the HW structure * * Determines which flow control settings to use, then configures flow * control. Calls the appropriate media-specific link configuration * function. Assuming the adapter has a valid link partner, a valid link * should be established. Assumes the hardware has previously been reset * and the transmitter and receiver are not enabled. **/ static s32 e1000_setup_link_82571(struct e1000_hw *hw) { DEBUGFUNC("e1000_setup_link_82571"); /* 82573 does not have a word in the NVM to determine * the default flow control setting, so we explicitly * set it to full. */ switch (hw->mac.type) { case e1000_82573: case e1000_82574: case e1000_82583: if (hw->fc.requested_mode == e1000_fc_default) hw->fc.requested_mode = e1000_fc_full; break; default: break; } return e1000_setup_link_generic(hw); } /** * e1000_setup_copper_link_82571 - Configure copper link settings * @hw: pointer to the HW structure * * Configures the link for auto-neg or forced speed and duplex. Then we check * for link, once link is established calls to configure collision distance * and flow control are called. **/ static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw) { u32 ctrl; s32 ret_val; DEBUGFUNC("e1000_setup_copper_link_82571"); ctrl = E1000_READ_REG(hw, E1000_CTRL); ctrl |= E1000_CTRL_SLU; ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); E1000_WRITE_REG(hw, E1000_CTRL, ctrl); switch (hw->phy.type) { case e1000_phy_m88: case e1000_phy_bm: ret_val = e1000_copper_link_setup_m88(hw); break; case e1000_phy_igp_2: ret_val = e1000_copper_link_setup_igp(hw); break; default: return -E1000_ERR_PHY; break; } if (ret_val) return ret_val; return e1000_setup_copper_link_generic(hw); } /** * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes * @hw: pointer to the HW structure * * Configures collision distance and flow control for fiber and serdes links. * Upon successful setup, poll for link. **/ static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw) { DEBUGFUNC("e1000_setup_fiber_serdes_link_82571"); switch (hw->mac.type) { case e1000_82571: case e1000_82572: /* If SerDes loopback mode is entered, there is no form * of reset to take the adapter out of that mode. So we * have to explicitly take the adapter out of loopback * mode. This prevents drivers from twiddling their thumbs * if another tool failed to take it out of loopback mode. */ E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); break; default: break; } return e1000_setup_fiber_serdes_link_generic(hw); } /** * e1000_check_for_serdes_link_82571 - Check for link (Serdes) * @hw: pointer to the HW structure * * Reports the link state as up or down. * * If autonegotiation is supported by the link partner, the link state is * determined by the result of autonegotiation. This is the most likely case. * If autonegotiation is not supported by the link partner, and the link * has a valid signal, force the link up. * * The link state is represented internally here by 4 states: * * 1) down * 2) autoneg_progress * 3) autoneg_complete (the link successfully autonegotiated) * 4) forced_up (the link has been forced up, it did not autonegotiate) * **/ static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; u32 rxcw; u32 ctrl; u32 status; u32 txcw; u32 i; s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_check_for_serdes_link_82571"); ctrl = E1000_READ_REG(hw, E1000_CTRL); status = E1000_READ_REG(hw, E1000_STATUS); E1000_READ_REG(hw, E1000_RXCW); /* SYNCH bit and IV bit are sticky */ usec_delay(10); rxcw = E1000_READ_REG(hw, E1000_RXCW); if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) { /* Receiver is synchronized with no invalid bits. */ switch (mac->serdes_link_state) { case e1000_serdes_link_autoneg_complete: if (!(status & E1000_STATUS_LU)) { /* We have lost link, retry autoneg before * reporting link failure */ mac->serdes_link_state = e1000_serdes_link_autoneg_progress; mac->serdes_has_link = FALSE; DEBUGOUT("AN_UP -> AN_PROG\n"); } else { mac->serdes_has_link = TRUE; } break; case e1000_serdes_link_forced_up: /* If we are receiving /C/ ordered sets, re-enable * auto-negotiation in the TXCW register and disable * forced link in the Device Control register in an * attempt to auto-negotiate with our link partner. */ if (rxcw & E1000_RXCW_C) { /* Enable autoneg, and unforce link up */ E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); mac->serdes_link_state = e1000_serdes_link_autoneg_progress; mac->serdes_has_link = FALSE; DEBUGOUT("FORCED_UP -> AN_PROG\n"); } else { mac->serdes_has_link = TRUE; } break; case e1000_serdes_link_autoneg_progress: if (rxcw & E1000_RXCW_C) { /* We received /C/ ordered sets, meaning the * link partner has autonegotiated, and we can * trust the Link Up (LU) status bit. */ if (status & E1000_STATUS_LU) { mac->serdes_link_state = e1000_serdes_link_autoneg_complete; DEBUGOUT("AN_PROG -> AN_UP\n"); mac->serdes_has_link = TRUE; } else { /* Autoneg completed, but failed. */ mac->serdes_link_state = e1000_serdes_link_down; DEBUGOUT("AN_PROG -> DOWN\n"); } } else { /* The link partner did not autoneg. * Force link up and full duplex, and change * state to forced. */ E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); E1000_WRITE_REG(hw, E1000_CTRL, ctrl); /* Configure Flow Control after link up. */ ret_val = e1000_config_fc_after_link_up_generic(hw); if (ret_val) { DEBUGOUT("Error config flow control\n"); break; } mac->serdes_link_state = e1000_serdes_link_forced_up; mac->serdes_has_link = TRUE; DEBUGOUT("AN_PROG -> FORCED_UP\n"); } break; case e1000_serdes_link_down: default: /* The link was down but the receiver has now gained * valid sync, so lets see if we can bring the link * up. */ E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); mac->serdes_link_state = e1000_serdes_link_autoneg_progress; mac->serdes_has_link = FALSE; DEBUGOUT("DOWN -> AN_PROG\n"); break; } } else { if (!(rxcw & E1000_RXCW_SYNCH)) { mac->serdes_has_link = FALSE; mac->serdes_link_state = e1000_serdes_link_down; DEBUGOUT("ANYSTATE -> DOWN\n"); } else { /* Check several times, if SYNCH bit and CONFIG * bit both are consistently 1 then simply ignore * the IV bit and restart Autoneg */ for (i = 0; i < AN_RETRY_COUNT; i++) { usec_delay(10); rxcw = E1000_READ_REG(hw, E1000_RXCW); if ((rxcw & E1000_RXCW_SYNCH) && (rxcw & E1000_RXCW_C)) continue; if (rxcw & E1000_RXCW_IV) { mac->serdes_has_link = FALSE; mac->serdes_link_state = e1000_serdes_link_down; DEBUGOUT("ANYSTATE -> DOWN\n"); break; } } if (i == AN_RETRY_COUNT) { txcw = E1000_READ_REG(hw, E1000_TXCW); txcw |= E1000_TXCW_ANE; E1000_WRITE_REG(hw, E1000_TXCW, txcw); mac->serdes_link_state = e1000_serdes_link_autoneg_progress; mac->serdes_has_link = FALSE; DEBUGOUT("ANYSTATE -> AN_PROG\n"); } } } return ret_val; } /** * e1000_valid_led_default_82571 - Verify a valid default LED config * @hw: pointer to the HW structure * @data: pointer to the NVM (EEPROM) * * Read the EEPROM for the current default LED configuration. If the * LED configuration is not valid, set to a valid LED configuration. **/ static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data) { s32 ret_val; DEBUGFUNC("e1000_valid_led_default_82571"); ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } switch (hw->mac.type) { case e1000_82573: case e1000_82574: case e1000_82583: if (*data == ID_LED_RESERVED_F746) *data = ID_LED_DEFAULT_82573; break; default: if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) *data = ID_LED_DEFAULT; break; } return E1000_SUCCESS; } /** * e1000_get_laa_state_82571 - Get locally administered address state * @hw: pointer to the HW structure * * Retrieve and return the current locally administered address state. **/ bool e1000_get_laa_state_82571(struct e1000_hw *hw) { DEBUGFUNC("e1000_get_laa_state_82571"); if (hw->mac.type != e1000_82571) return FALSE; return hw->dev_spec._82571.laa_is_present; } /** * e1000_set_laa_state_82571 - Set locally administered address state * @hw: pointer to the HW structure * @state: enable/disable locally administered address * * Enable/Disable the current locally administered address state. **/ void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state) { DEBUGFUNC("e1000_set_laa_state_82571"); if (hw->mac.type != e1000_82571) return; hw->dev_spec._82571.laa_is_present = state; /* If workaround is activated... */ if (state) /* Hold a copy of the LAA in RAR[14] This is done so that * between the time RAR[0] gets clobbered and the time it * gets fixed, the actual LAA is in one of the RARs and no * incoming packets directed to this port are dropped. * Eventually the LAA will be in RAR[0] and RAR[14]. */ hw->mac.ops.rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1); return; } /** * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum * @hw: pointer to the HW structure * * Verifies that the EEPROM has completed the update. After updating the * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If * the checksum fix is not implemented, we need to set the bit and update * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect, * we need to return bad checksum. **/ static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; s32 ret_val; u16 data; DEBUGFUNC("e1000_fix_nvm_checksum_82571"); if (nvm->type != e1000_nvm_flash_hw) return E1000_SUCCESS; /* Check bit 4 of word 10h. If it is 0, firmware is done updating * 10h-12h. Checksum may need to be fixed. */ ret_val = nvm->ops.read(hw, 0x10, 1, &data); if (ret_val) return ret_val; if (!(data & 0x10)) { /* Read 0x23 and check bit 15. This bit is a 1 * when the checksum has already been fixed. If * the checksum is still wrong and this bit is a * 1, we need to return bad checksum. Otherwise, * we need to set this bit to a 1 and update the * checksum. */ ret_val = nvm->ops.read(hw, 0x23, 1, &data); if (ret_val) return ret_val; if (!(data & 0x8000)) { data |= 0x8000; ret_val = nvm->ops.write(hw, 0x23, 1, &data); if (ret_val) return ret_val; ret_val = nvm->ops.update(hw); if (ret_val) return ret_val; } } return E1000_SUCCESS; } /** * e1000_read_mac_addr_82571 - Read device MAC address * @hw: pointer to the HW structure **/ static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw) { DEBUGFUNC("e1000_read_mac_addr_82571"); if (hw->mac.type == e1000_82571) { s32 ret_val; /* If there's an alternate MAC address place it in RAR0 * so that it will override the Si installed default perm * address. */ ret_val = e1000_check_alt_mac_addr_generic(hw); if (ret_val) return ret_val; } return e1000_read_mac_addr_generic(hw); } /** * e1000_power_down_phy_copper_82571 - Remove link during PHY power down * @hw: pointer to the HW structure * * In the case of a PHY power down to save power, or to turn off link during a * driver unload, or wake on lan is not enabled, remove the link. **/ static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; struct e1000_mac_info *mac = &hw->mac; if (!phy->ops.check_reset_block) return; /* If the management interface is not enabled, then power down */ if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw))) e1000_power_down_phy_copper(hw); return; } /** * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters * @hw: pointer to the HW structure * * Clears the hardware counters by reading the counter registers. **/ static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw) { DEBUGFUNC("e1000_clear_hw_cntrs_82571"); e1000_clear_hw_cntrs_base_generic(hw); E1000_READ_REG(hw, E1000_PRC64); E1000_READ_REG(hw, E1000_PRC127); E1000_READ_REG(hw, E1000_PRC255); E1000_READ_REG(hw, E1000_PRC511); E1000_READ_REG(hw, E1000_PRC1023); E1000_READ_REG(hw, E1000_PRC1522); E1000_READ_REG(hw, E1000_PTC64); E1000_READ_REG(hw, E1000_PTC127); E1000_READ_REG(hw, E1000_PTC255); E1000_READ_REG(hw, E1000_PTC511); E1000_READ_REG(hw, E1000_PTC1023); E1000_READ_REG(hw, E1000_PTC1522); E1000_READ_REG(hw, E1000_ALGNERRC); E1000_READ_REG(hw, E1000_RXERRC); E1000_READ_REG(hw, E1000_TNCRS); E1000_READ_REG(hw, E1000_CEXTERR); E1000_READ_REG(hw, E1000_TSCTC); E1000_READ_REG(hw, E1000_TSCTFC); E1000_READ_REG(hw, E1000_MGTPRC); E1000_READ_REG(hw, E1000_MGTPDC); E1000_READ_REG(hw, E1000_MGTPTC); E1000_READ_REG(hw, E1000_IAC); E1000_READ_REG(hw, E1000_ICRXOC); E1000_READ_REG(hw, E1000_ICRXPTC); E1000_READ_REG(hw, E1000_ICRXATC); E1000_READ_REG(hw, E1000_ICTXPTC); E1000_READ_REG(hw, E1000_ICTXATC); E1000_READ_REG(hw, E1000_ICTXQEC); E1000_READ_REG(hw, E1000_ICTXQMTC); E1000_READ_REG(hw, E1000_ICRXDMTC); } diff --git a/sys/dev/e1000/e1000_82575.c b/sys/dev/e1000/e1000_82575.c index 172e99b02d5c..29805270f8dc 100644 --- a/sys/dev/e1000/e1000_82575.c +++ b/sys/dev/e1000/e1000_82575.c @@ -1,3528 +1,3528 @@ /****************************************************************************** SPDX-License-Identifier: BSD-3-Clause Copyright (c) 2001-2020, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************/ /*$FreeBSD$*/ /* * 82575EB Gigabit Network Connection * 82575EB Gigabit Backplane Connection * 82575GB Gigabit Network Connection * 82576 Gigabit Network Connection * 82576 Quad Port Gigabit Mezzanine Adapter * 82580 Gigabit Network Connection * I350 Gigabit Network Connection */ #include "e1000_api.h" #include "e1000_i210.h" static s32 e1000_init_phy_params_82575(struct e1000_hw *hw); static s32 e1000_init_mac_params_82575(struct e1000_hw *hw); static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw); static void e1000_release_nvm_82575(struct e1000_hw *hw); static s32 e1000_check_for_link_82575(struct e1000_hw *hw); static s32 e1000_check_for_link_media_swap(struct e1000_hw *hw); static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw); static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, u16 *duplex); static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw); static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, u16 *data); static s32 e1000_reset_hw_82575(struct e1000_hw *hw); static s32 e1000_init_hw_82575(struct e1000_hw *hw); static s32 e1000_reset_hw_82580(struct e1000_hw *hw); static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data); static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data); static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active); static s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active); static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active); static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw); static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw); static s32 e1000_get_media_type_82575(struct e1000_hw *hw); static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw); static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data); static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, u16 data); static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw); static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed, u16 *duplex); static s32 e1000_get_phy_id_82575(struct e1000_hw *hw); static bool e1000_sgmii_active_82575(struct e1000_hw *hw); static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw); static void e1000_config_collision_dist_82575(struct e1000_hw *hw); static void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw); static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw); static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw); static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw); static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw); static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw); static s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset); static s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset); static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw); static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw); static void e1000_clear_vfta_i350(struct e1000_hw *hw); static void e1000_i2c_start(struct e1000_hw *hw); static void e1000_i2c_stop(struct e1000_hw *hw); static void e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data); static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data); static s32 e1000_get_i2c_ack(struct e1000_hw *hw); static void e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data); static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data); static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl); static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl); static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data); static bool e1000_get_i2c_data(u32 *i2cctl); static const u16 e1000_82580_rxpbs_table[] = { 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 }; #define E1000_82580_RXPBS_TABLE_SIZE \ (sizeof(e1000_82580_rxpbs_table) / \ sizeof(e1000_82580_rxpbs_table[0])) /** * e1000_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO * @hw: pointer to the HW structure * * Called to determine if the I2C pins are being used for I2C or as an * external MDIO interface since the two options are mutually exclusive. **/ static bool e1000_sgmii_uses_mdio_82575(struct e1000_hw *hw) { u32 reg = 0; bool ext_mdio = FALSE; DEBUGFUNC("e1000_sgmii_uses_mdio_82575"); switch (hw->mac.type) { case e1000_82575: case e1000_82576: reg = E1000_READ_REG(hw, E1000_MDIC); ext_mdio = !!(reg & E1000_MDIC_DEST); break; case e1000_82580: case e1000_i350: case e1000_i354: case e1000_i210: case e1000_i211: reg = E1000_READ_REG(hw, E1000_MDICNFG); ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO); break; default: break; } return ext_mdio; } /** * e1000_init_phy_params_82575 - Initialize PHY function ptrs * @hw: pointer to the HW structure **/ static s32 e1000_init_phy_params_82575(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = E1000_SUCCESS; u32 ctrl_ext; DEBUGFUNC("e1000_init_phy_params_82575"); phy->ops.read_i2c_byte = e1000_read_i2c_byte_generic; phy->ops.write_i2c_byte = e1000_write_i2c_byte_generic; if (hw->phy.media_type != e1000_media_type_copper) { phy->type = e1000_phy_none; goto out; } phy->ops.power_up = e1000_power_up_phy_copper; phy->ops.power_down = e1000_power_down_phy_copper_base; phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; phy->reset_delay_us = 100; phy->ops.acquire = e1000_acquire_phy_base; phy->ops.check_reset_block = e1000_check_reset_block_generic; phy->ops.commit = e1000_phy_sw_reset_generic; phy->ops.get_cfg_done = e1000_get_cfg_done_82575; phy->ops.release = e1000_release_phy_base; ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); if (e1000_sgmii_active_82575(hw)) { phy->ops.reset = e1000_phy_hw_reset_sgmii_82575; ctrl_ext |= E1000_CTRL_I2C_ENA; } else { phy->ops.reset = e1000_phy_hw_reset_generic; ctrl_ext &= ~E1000_CTRL_I2C_ENA; } E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); e1000_reset_mdicnfg_82580(hw); if (e1000_sgmii_active_82575(hw) && !e1000_sgmii_uses_mdio_82575(hw)) { phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575; phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575; } else { switch (hw->mac.type) { case e1000_82580: case e1000_i350: case e1000_i354: phy->ops.read_reg = e1000_read_phy_reg_82580; phy->ops.write_reg = e1000_write_phy_reg_82580; break; case e1000_i210: case e1000_i211: phy->ops.read_reg = e1000_read_phy_reg_gs40g; phy->ops.write_reg = e1000_write_phy_reg_gs40g; break; default: phy->ops.read_reg = e1000_read_phy_reg_igp; phy->ops.write_reg = e1000_write_phy_reg_igp; } } /* Set phy->phy_addr and phy->id. */ ret_val = e1000_get_phy_id_82575(hw); /* Verify phy id and set remaining function pointers */ switch (phy->id) { case M88E1543_E_PHY_ID: case M88E1512_E_PHY_ID: case I347AT4_E_PHY_ID: case M88E1112_E_PHY_ID: case M88E1340M_E_PHY_ID: phy->type = e1000_phy_m88; phy->ops.check_polarity = e1000_check_polarity_m88; phy->ops.get_info = e1000_get_phy_info_m88; phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2; phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; break; case M88E1111_I_PHY_ID: phy->type = e1000_phy_m88; phy->ops.check_polarity = e1000_check_polarity_m88; phy->ops.get_info = e1000_get_phy_info_m88; phy->ops.get_cable_length = e1000_get_cable_length_m88; phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; break; case IGP03E1000_E_PHY_ID: case IGP04E1000_E_PHY_ID: phy->type = e1000_phy_igp_3; phy->ops.check_polarity = e1000_check_polarity_igp; phy->ops.get_info = e1000_get_phy_info_igp; phy->ops.get_cable_length = e1000_get_cable_length_igp_2; phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575; phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic; phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; break; case I82580_I_PHY_ID: case I350_I_PHY_ID: phy->type = e1000_phy_82580; phy->ops.check_polarity = e1000_check_polarity_82577; phy->ops.get_info = e1000_get_phy_info_82577; phy->ops.get_cable_length = e1000_get_cable_length_82577; phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580; phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580; phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82577; break; case I210_I_PHY_ID: phy->type = e1000_phy_i210; phy->ops.check_polarity = e1000_check_polarity_m88; phy->ops.get_info = e1000_get_phy_info_m88; phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2; phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580; phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580; phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; break; default: ret_val = -E1000_ERR_PHY; goto out; } /* Check if this PHY is configured for media swap. */ switch (phy->id) { case M88E1112_E_PHY_ID: { u16 data; ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 2); if (ret_val) goto out; ret_val = phy->ops.read_reg(hw, E1000_M88E1112_MAC_CTRL_1, &data); if (ret_val) goto out; data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >> E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT; if (data == E1000_M88E1112_AUTO_COPPER_SGMII || data == E1000_M88E1112_AUTO_COPPER_BASEX) hw->mac.ops.check_for_link = e1000_check_for_link_media_swap; break; } case M88E1512_E_PHY_ID: { ret_val = e1000_initialize_M88E1512_phy(hw); break; } case M88E1543_E_PHY_ID: { ret_val = e1000_initialize_M88E1543_phy(hw); break; } default: goto out; } out: return ret_val; } /** * e1000_init_mac_params_82575 - Init MAC func ptrs. * @hw: pointer to the HW structure **/ static s32 e1000_init_mac_params_82575(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; DEBUGFUNC("e1000_init_mac_params_82575"); /* Initialize function pointer */ e1000_init_mac_ops_generic(hw); /* Derives media type */ e1000_get_media_type_82575(hw); /* Set MTA register count */ mac->mta_reg_count = 128; /* Set UTA register count */ mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128; /* Set RAR entry count */ mac->rar_entry_count = E1000_RAR_ENTRIES_82575; if (mac->type == e1000_82576) mac->rar_entry_count = E1000_RAR_ENTRIES_82576; if (mac->type == e1000_82580) mac->rar_entry_count = E1000_RAR_ENTRIES_82580; if (mac->type == e1000_i350 || mac->type == e1000_i354) mac->rar_entry_count = E1000_RAR_ENTRIES_I350; /* Enable EEE default settings for EEE supported devices */ if (mac->type >= e1000_i350) dev_spec->eee_disable = FALSE; /* Allow a single clear of the SW semaphore on I210 and newer */ if (mac->type >= e1000_i210) dev_spec->clear_semaphore_once = TRUE; /* Set if part includes ASF firmware */ mac->asf_firmware_present = TRUE; /* FWSM register */ mac->has_fwsm = TRUE; /* ARC supported; valid only if manageability features are enabled. */ mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK); /* Function pointers */ /* bus type/speed/width */ mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic; /* reset */ if (mac->type >= e1000_82580) mac->ops.reset_hw = e1000_reset_hw_82580; else mac->ops.reset_hw = e1000_reset_hw_82575; /* HW initialization */ if ((mac->type == e1000_i210) || (mac->type == e1000_i211)) mac->ops.init_hw = e1000_init_hw_i210; else mac->ops.init_hw = e1000_init_hw_82575; /* link setup */ mac->ops.setup_link = e1000_setup_link_generic; /* physical interface link setup */ mac->ops.setup_physical_interface = (hw->phy.media_type == e1000_media_type_copper) ? e1000_setup_copper_link_82575 : e1000_setup_serdes_link_82575; /* physical interface shutdown */ mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575; /* physical interface power up */ mac->ops.power_up_serdes = e1000_power_up_serdes_link_82575; /* check for link */ mac->ops.check_for_link = e1000_check_for_link_82575; /* read mac address */ mac->ops.read_mac_addr = e1000_read_mac_addr_82575; /* configure collision distance */ mac->ops.config_collision_dist = e1000_config_collision_dist_82575; /* multicast address update */ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; if (hw->mac.type == e1000_i350 || mac->type == e1000_i354) { /* writing VFTA */ mac->ops.write_vfta = e1000_write_vfta_i350; /* clearing VFTA */ mac->ops.clear_vfta = e1000_clear_vfta_i350; } else { /* writing VFTA */ mac->ops.write_vfta = e1000_write_vfta_generic; /* clearing VFTA */ mac->ops.clear_vfta = e1000_clear_vfta_generic; } if (hw->mac.type >= e1000_82580) mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_crossover_generic; /* ID LED init */ mac->ops.id_led_init = e1000_id_led_init_generic; /* blink LED */ mac->ops.blink_led = e1000_blink_led_generic; /* setup LED */ mac->ops.setup_led = e1000_setup_led_generic; /* cleanup LED */ mac->ops.cleanup_led = e1000_cleanup_led_generic; /* turn on/off LED */ mac->ops.led_on = e1000_led_on_generic; mac->ops.led_off = e1000_led_off_generic; /* clear hardware counters */ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575; /* link info */ mac->ops.get_link_up_info = e1000_get_link_up_info_82575; /* acquire SW_FW sync */ mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync; /* release SW_FW sync */ mac->ops.release_swfw_sync = e1000_release_swfw_sync; /* set lan id for port to determine which phy lock to use */ hw->mac.ops.set_lan_id(hw); return E1000_SUCCESS; } /** * e1000_init_nvm_params_82575 - Initialize NVM function ptrs * @hw: pointer to the HW structure **/ s32 e1000_init_nvm_params_82575(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; u32 eecd = E1000_READ_REG(hw, E1000_EECD); u16 size; DEBUGFUNC("e1000_init_nvm_params_82575"); size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> E1000_EECD_SIZE_EX_SHIFT); /* Added to a constant, "size" becomes the left-shift value * for setting word_size. */ size += NVM_WORD_SIZE_BASE_SHIFT; /* Just in case size is out of range, cap it to the largest * EEPROM size supported */ if (size > 15) size = 15; nvm->word_size = 1 << size; if (hw->mac.type < e1000_i210) { nvm->opcode_bits = 8; nvm->delay_usec = 1; switch (nvm->override) { case e1000_nvm_override_spi_large: nvm->page_size = 32; nvm->address_bits = 16; break; case e1000_nvm_override_spi_small: nvm->page_size = 8; nvm->address_bits = 8; break; default: nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; break; } if (nvm->word_size == (1 << 15)) nvm->page_size = 128; nvm->type = e1000_nvm_eeprom_spi; } else { nvm->type = e1000_nvm_flash_hw; } /* Function Pointers */ nvm->ops.acquire = e1000_acquire_nvm_82575; nvm->ops.release = e1000_release_nvm_82575; if (nvm->word_size < (1 << 15)) nvm->ops.read = e1000_read_nvm_eerd; else nvm->ops.read = e1000_read_nvm_spi; nvm->ops.write = e1000_write_nvm_spi; nvm->ops.validate = e1000_validate_nvm_checksum_generic; nvm->ops.update = e1000_update_nvm_checksum_generic; nvm->ops.valid_led_default = e1000_valid_led_default_82575; /* override generic family function pointers for specific descendants */ switch (hw->mac.type) { case e1000_82580: nvm->ops.validate = e1000_validate_nvm_checksum_82580; nvm->ops.update = e1000_update_nvm_checksum_82580; break; case e1000_i350: nvm->ops.validate = e1000_validate_nvm_checksum_i350; nvm->ops.update = e1000_update_nvm_checksum_i350; break; default: break; } return E1000_SUCCESS; } /** * e1000_init_function_pointers_82575 - Init func ptrs. * @hw: pointer to the HW structure * * Called to initialize all function pointers and parameters. **/ void e1000_init_function_pointers_82575(struct e1000_hw *hw) { DEBUGFUNC("e1000_init_function_pointers_82575"); hw->mac.ops.init_params = e1000_init_mac_params_82575; hw->nvm.ops.init_params = e1000_init_nvm_params_82575; hw->phy.ops.init_params = e1000_init_phy_params_82575; hw->mbx.ops.init_params = e1000_init_mbx_params_pf; } /** * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * * Reads the PHY register at offset using the serial gigabit media independent * interface and stores the retrieved information in data. **/ static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, u16 *data) { s32 ret_val = -E1000_ERR_PARAM; DEBUGFUNC("e1000_read_phy_reg_sgmii_82575"); if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { DEBUGOUT1("PHY Address %u is out of range\n", offset); goto out; } ret_val = hw->phy.ops.acquire(hw); if (ret_val) goto out; ret_val = e1000_read_phy_reg_i2c(hw, offset, data); hw->phy.ops.release(hw); out: return ret_val; } /** * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset * * Writes the data to PHY register at the offset using the serial gigabit * media independent interface. **/ static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, u16 data) { s32 ret_val = -E1000_ERR_PARAM; DEBUGFUNC("e1000_write_phy_reg_sgmii_82575"); if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { DEBUGOUT1("PHY Address %d is out of range\n", offset); goto out; } ret_val = hw->phy.ops.acquire(hw); if (ret_val) goto out; ret_val = e1000_write_phy_reg_i2c(hw, offset, data); hw->phy.ops.release(hw); out: return ret_val; } /** * e1000_get_phy_id_82575 - Retrieve PHY addr and id * @hw: pointer to the HW structure * * Retrieves the PHY address and ID for both PHY's which do and do not use * sgmi interface. **/ static s32 e1000_get_phy_id_82575(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = E1000_SUCCESS; u16 phy_id; u32 ctrl_ext; u32 mdic; DEBUGFUNC("e1000_get_phy_id_82575"); /* some i354 devices need an extra read for phy id */ if (hw->mac.type == e1000_i354) e1000_get_phy_id(hw); /* * For SGMII PHYs, we try the list of possible addresses until * we find one that works. For non-SGMII PHYs * (e.g. integrated copper PHYs), an address of 1 should * work. The result of this function should mean phy->phy_addr * and phy->id are set correctly. */ if (!e1000_sgmii_active_82575(hw)) { phy->addr = 1; ret_val = e1000_get_phy_id(hw); goto out; } if (e1000_sgmii_uses_mdio_82575(hw)) { switch (hw->mac.type) { case e1000_82575: case e1000_82576: mdic = E1000_READ_REG(hw, E1000_MDIC); mdic &= E1000_MDIC_PHY_MASK; phy->addr = mdic >> E1000_MDIC_PHY_SHIFT; break; case e1000_82580: case e1000_i350: case e1000_i354: case e1000_i210: case e1000_i211: mdic = E1000_READ_REG(hw, E1000_MDICNFG); mdic &= E1000_MDICNFG_PHY_MASK; phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT; break; default: ret_val = -E1000_ERR_PHY; goto out; break; } ret_val = e1000_get_phy_id(hw); goto out; } /* Power on sgmii phy if it is disabled */ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA); E1000_WRITE_FLUSH(hw); msec_delay(300); /* * The address field in the I2CCMD register is 3 bits and 0 is invalid. * Therefore, we need to test 1-7 */ for (phy->addr = 1; phy->addr < 8; phy->addr++) { ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id); if (ret_val == E1000_SUCCESS) { DEBUGOUT2("Vendor ID 0x%08X read at address %u\n", phy_id, phy->addr); /* * At the time of this writing, The M88 part is * the only supported SGMII PHY product. */ if (phy_id == M88_VENDOR) break; } else { DEBUGOUT1("PHY address %u was unreadable\n", phy->addr); } } /* A valid PHY type couldn't be found. */ if (phy->addr == 8) { phy->addr = 0; ret_val = -E1000_ERR_PHY; } else { ret_val = e1000_get_phy_id(hw); } /* restore previous sfp cage power state */ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); out: return ret_val; } /** * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset * @hw: pointer to the HW structure * * Resets the PHY using the serial gigabit media independent interface. **/ static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; struct e1000_phy_info *phy = &hw->phy; DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575"); /* * This isn't a TRUE "hard" reset, but is the only reset * available to us at this time. */ DEBUGOUT("Soft resetting SGMII attached PHY...\n"); if (!(hw->phy.ops.write_reg)) goto out; /* * SFP documentation requires the following to configure the SPF module * to work on SGMII. No further documentation is given. */ ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084); if (ret_val) goto out; ret_val = hw->phy.ops.commit(hw); if (ret_val) goto out; if (phy->id == M88E1512_E_PHY_ID) ret_val = e1000_initialize_M88E1512_phy(hw); out: return ret_val; } /** * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state * @hw: pointer to the HW structure * @active: TRUE to enable LPLU, FALSE to disable * * Sets the LPLU D0 state according to the active flag. When * activating LPLU this function also disables smart speed * and vice versa. LPLU will not be activated unless the * device autonegotiation advertisement meets standards of * either 10 or 10/100 or 10/100/1000 at all duplexes. * This is a function pointer entry point only called by * PHY setup routines. **/ static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = E1000_SUCCESS; u16 data; DEBUGFUNC("e1000_set_d0_lplu_state_82575"); if (!(hw->phy.ops.read_reg)) goto out; ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); if (ret_val) goto out; if (active) { data |= IGP02E1000_PM_D0_LPLU; ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, data); if (ret_val) goto out; /* When LPLU is enabled, we should disable SmartSpeed */ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) goto out; } else { data &= ~IGP02E1000_PM_D0_LPLU; ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, data); /* * LPLU and SmartSpeed are mutually exclusive. LPLU is used * during Dx states where the power conservation is most * important. During driver activity we should enable * SmartSpeed, so performance is maintained. */ if (phy->smart_speed == e1000_smart_speed_on) { ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) goto out; data |= IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) goto out; } else if (phy->smart_speed == e1000_smart_speed_off) { ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) goto out; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) goto out; } } out: return ret_val; } /** * e1000_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state * @hw: pointer to the HW structure * @active: TRUE to enable LPLU, FALSE to disable * * Sets the LPLU D0 state according to the active flag. When * activating LPLU this function also disables smart speed * and vice versa. LPLU will not be activated unless the * device autonegotiation advertisement meets standards of * either 10 or 10/100 or 10/100/1000 at all duplexes. * This is a function pointer entry point only called by * PHY setup routines. **/ static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active) { struct e1000_phy_info *phy = &hw->phy; u32 data; DEBUGFUNC("e1000_set_d0_lplu_state_82580"); data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); if (active) { data |= E1000_82580_PM_D0_LPLU; /* When LPLU is enabled, we should disable SmartSpeed */ data &= ~E1000_82580_PM_SPD; } else { data &= ~E1000_82580_PM_D0_LPLU; /* * LPLU and SmartSpeed are mutually exclusive. LPLU is used * during Dx states where the power conservation is most * important. During driver activity we should enable * SmartSpeed, so performance is maintained. */ if (phy->smart_speed == e1000_smart_speed_on) data |= E1000_82580_PM_SPD; else if (phy->smart_speed == e1000_smart_speed_off) data &= ~E1000_82580_PM_SPD; } E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data); return E1000_SUCCESS; } /** * e1000_set_d3_lplu_state_82580 - Sets low power link up state for D3 * @hw: pointer to the HW structure * @active: boolean used to enable/disable lplu * * Success returns 0, Failure returns 1 * * The low power link up (lplu) state is set to the power management level D3 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU * is used during Dx states where the power conservation is most important. * During driver activity, SmartSpeed should be enabled so performance is * maintained. **/ s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active) { struct e1000_phy_info *phy = &hw->phy; u32 data; DEBUGFUNC("e1000_set_d3_lplu_state_82580"); data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); if (!active) { data &= ~E1000_82580_PM_D3_LPLU; /* * LPLU and SmartSpeed are mutually exclusive. LPLU is used * during Dx states where the power conservation is most * important. During driver activity we should enable * SmartSpeed, so performance is maintained. */ if (phy->smart_speed == e1000_smart_speed_on) data |= E1000_82580_PM_SPD; else if (phy->smart_speed == e1000_smart_speed_off) data &= ~E1000_82580_PM_SPD; } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { data |= E1000_82580_PM_D3_LPLU; /* When LPLU is enabled, we should disable SmartSpeed */ data &= ~E1000_82580_PM_SPD; } E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data); return E1000_SUCCESS; } /** * e1000_acquire_nvm_82575 - Request for access to EEPROM * @hw: pointer to the HW structure * * Acquire the necessary semaphores for exclusive access to the EEPROM. * Set the EEPROM access request bit and wait for EEPROM access grant bit. * Return successful if access grant bit set, else clear the request for * EEPROM access and return -E1000_ERR_NVM (-1). **/ static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_acquire_nvm_82575"); ret_val = e1000_acquire_swfw_sync(hw, E1000_SWFW_EEP_SM); if (ret_val) goto out; /* * Check if there is some access * error this access may hook on */ if (hw->mac.type == e1000_i350) { u32 eecd = E1000_READ_REG(hw, E1000_EECD); if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT | E1000_EECD_TIMEOUT)) { /* Clear all access error flags */ E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_ERROR_CLR); DEBUGOUT("Nvm bit banging access error detected and cleared.\n"); } } if (hw->mac.type == e1000_82580) { u32 eecd = E1000_READ_REG(hw, E1000_EECD); if (eecd & E1000_EECD_BLOCKED) { /* Clear access error flag */ E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_BLOCKED); DEBUGOUT("Nvm bit banging access error detected and cleared.\n"); } } ret_val = e1000_acquire_nvm_generic(hw); if (ret_val) e1000_release_swfw_sync(hw, E1000_SWFW_EEP_SM); out: return ret_val; } /** * e1000_release_nvm_82575 - Release exclusive access to EEPROM * @hw: pointer to the HW structure * * Stop any current commands to the EEPROM and clear the EEPROM request bit, * then release the semaphores acquired. **/ static void e1000_release_nvm_82575(struct e1000_hw *hw) { DEBUGFUNC("e1000_release_nvm_82575"); e1000_release_nvm_generic(hw); e1000_release_swfw_sync(hw, E1000_SWFW_EEP_SM); } /** * e1000_get_cfg_done_82575 - Read config done bit * @hw: pointer to the HW structure * * Read the management control register for the config done bit for * completion status. NOTE: silicon which is EEPROM-less will fail trying * to read the config done bit, so an error is *ONLY* logged and returns * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon * would not be able to be reset or change link. **/ static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw) { s32 timeout = PHY_CFG_TIMEOUT; u32 mask = E1000_NVM_CFG_DONE_PORT_0; DEBUGFUNC("e1000_get_cfg_done_82575"); if (hw->bus.func == E1000_FUNC_1) mask = E1000_NVM_CFG_DONE_PORT_1; else if (hw->bus.func == E1000_FUNC_2) mask = E1000_NVM_CFG_DONE_PORT_2; else if (hw->bus.func == E1000_FUNC_3) mask = E1000_NVM_CFG_DONE_PORT_3; while (timeout) { if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask) break; msec_delay(1); timeout--; } if (!timeout) DEBUGOUT("MNG configuration cycle has not completed.\n"); /* If EEPROM is not marked present, init the PHY manually */ if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) && (hw->phy.type == e1000_phy_igp_3)) e1000_phy_init_script_igp3(hw); return E1000_SUCCESS; } /** * e1000_get_link_up_info_82575 - Get link speed/duplex info * @hw: pointer to the HW structure * @speed: stores the current speed * @duplex: stores the current duplex * * This is a wrapper function, if using the serial gigabit media independent * interface, use PCS to retrieve the link speed and duplex information. * Otherwise, use the generic function to get the link speed and duplex info. **/ static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, u16 *duplex) { s32 ret_val; DEBUGFUNC("e1000_get_link_up_info_82575"); if (hw->phy.media_type != e1000_media_type_copper) ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed, duplex); else ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex); return ret_val; } /** * e1000_check_for_link_82575 - Check for link * @hw: pointer to the HW structure * * If sgmii is enabled, then use the pcs register to determine link, otherwise * use the generic interface for determining link. **/ static s32 e1000_check_for_link_82575(struct e1000_hw *hw) { s32 ret_val; u16 speed, duplex; DEBUGFUNC("e1000_check_for_link_82575"); if (hw->phy.media_type != e1000_media_type_copper) { ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed, &duplex); /* * Use this flag to determine if link needs to be checked or * not. If we have link clear the flag so that we do not * continue to check for link. */ hw->mac.get_link_status = !hw->mac.serdes_has_link; /* * Configure Flow Control now that Auto-Neg has completed. * First, we need to restore the desired flow control * settings because we may have had to re-autoneg with a * different link partner. */ ret_val = e1000_config_fc_after_link_up_generic(hw); if (ret_val) DEBUGOUT("Error configuring flow control\n"); } else { ret_val = e1000_check_for_copper_link_generic(hw); } return ret_val; } /** * e1000_check_for_link_media_swap - Check which M88E1112 interface linked * @hw: pointer to the HW structure * * Poll the M88E1112 interfaces to see which interface achieved link. */ static s32 e1000_check_for_link_media_swap(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; u8 port = 0; DEBUGFUNC("e1000_check_for_link_media_swap"); /* Check for copper. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); if (ret_val) return ret_val; ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data); if (ret_val) return ret_val; if (data & E1000_M88E1112_STATUS_LINK) port = E1000_MEDIA_PORT_COPPER; /* Check for other. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1); if (ret_val) return ret_val; ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data); if (ret_val) return ret_val; if (data & E1000_M88E1112_STATUS_LINK) port = E1000_MEDIA_PORT_OTHER; /* Determine if a swap needs to happen. */ if (port && (hw->dev_spec._82575.media_port != port)) { hw->dev_spec._82575.media_port = port; hw->dev_spec._82575.media_changed = TRUE; } if (port == E1000_MEDIA_PORT_COPPER) { /* reset page to 0 */ ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); if (ret_val) return ret_val; e1000_check_for_link_82575(hw); } else { e1000_check_for_link_82575(hw); /* reset page to 0 */ ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); if (ret_val) return ret_val; } return E1000_SUCCESS; } /** * e1000_power_up_serdes_link_82575 - Power up the serdes link after shutdown * @hw: pointer to the HW structure **/ static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw) { u32 reg; DEBUGFUNC("e1000_power_up_serdes_link_82575"); if ((hw->phy.media_type != e1000_media_type_internal_serdes) && !e1000_sgmii_active_82575(hw)) return; /* Enable PCS to turn on link */ reg = E1000_READ_REG(hw, E1000_PCS_CFG0); reg |= E1000_PCS_CFG_PCS_EN; E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg); /* Power up the laser */ reg = E1000_READ_REG(hw, E1000_CTRL_EXT); reg &= ~E1000_CTRL_EXT_SDP3_DATA; E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); /* flush the write to verify completion */ E1000_WRITE_FLUSH(hw); msec_delay(1); } /** * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex * @hw: pointer to the HW structure * @speed: stores the current speed * @duplex: stores the current duplex * * Using the physical coding sub-layer (PCS), retrieve the current speed and * duplex, then store the values in the pointers provided. **/ static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed, u16 *duplex) { struct e1000_mac_info *mac = &hw->mac; u32 pcs; u32 status; DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575"); /* * Read the PCS Status register for link state. For non-copper mode, * the status register is not accurate. The PCS status register is * used instead. */ pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT); /* * The link up bit determines when link is up on autoneg. */ if (pcs & E1000_PCS_LSTS_LINK_OK) { mac->serdes_has_link = TRUE; /* Detect and store PCS speed */ if (pcs & E1000_PCS_LSTS_SPEED_1000) *speed = SPEED_1000; else if (pcs & E1000_PCS_LSTS_SPEED_100) *speed = SPEED_100; else *speed = SPEED_10; /* Detect and store PCS duplex */ if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) *duplex = FULL_DUPLEX; else *duplex = HALF_DUPLEX; /* Check if it is an I354 2.5Gb backplane connection. */ if (mac->type == e1000_i354) { status = E1000_READ_REG(hw, E1000_STATUS); if ((status & E1000_STATUS_2P5_SKU) && !(status & E1000_STATUS_2P5_SKU_OVER)) { *speed = SPEED_2500; *duplex = FULL_DUPLEX; DEBUGOUT("2500 Mbs, "); DEBUGOUT("Full Duplex\n"); } } } else { mac->serdes_has_link = FALSE; *speed = 0; *duplex = 0; } return E1000_SUCCESS; } /** * e1000_shutdown_serdes_link_82575 - Remove link during power down * @hw: pointer to the HW structure * * In the case of serdes shut down sfp and PCS on driver unload * when management pass thru is not enabled. **/ void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw) { u32 reg; DEBUGFUNC("e1000_shutdown_serdes_link_82575"); if ((hw->phy.media_type != e1000_media_type_internal_serdes) && !e1000_sgmii_active_82575(hw)) return; if (!e1000_enable_mng_pass_thru(hw)) { /* Disable PCS to turn off link */ reg = E1000_READ_REG(hw, E1000_PCS_CFG0); reg &= ~E1000_PCS_CFG_PCS_EN; E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg); /* shutdown the laser */ reg = E1000_READ_REG(hw, E1000_CTRL_EXT); reg |= E1000_CTRL_EXT_SDP3_DATA; E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); /* flush the write to verify completion */ E1000_WRITE_FLUSH(hw); msec_delay(1); } return; } /** * e1000_reset_hw_82575 - Reset hardware * @hw: pointer to the HW structure * * This resets the hardware into a known state. **/ static s32 e1000_reset_hw_82575(struct e1000_hw *hw) { u32 ctrl; s32 ret_val; DEBUGFUNC("e1000_reset_hw_82575"); /* * Prevent the PCI-E bus from sticking if there is no TLP connection * on the last TLP read/write transaction when MAC is reset. */ ret_val = e1000_disable_pcie_master_generic(hw); if (ret_val) DEBUGOUT("PCI-E Master disable polling has failed.\n"); /* set the completion timeout for interface */ ret_val = e1000_set_pcie_completion_timeout(hw); if (ret_val) DEBUGOUT("PCI-E Set completion timeout has failed.\n"); DEBUGOUT("Masking off all interrupts\n"); E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); E1000_WRITE_REG(hw, E1000_RCTL, 0); E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); E1000_WRITE_FLUSH(hw); msec_delay(10); ctrl = E1000_READ_REG(hw, E1000_CTRL); DEBUGOUT("Issuing a global reset to MAC\n"); E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); ret_val = e1000_get_auto_rd_done_generic(hw); if (ret_val) { /* * When auto config read does not complete, do not * return with an error. This can happen in situations * where there is no eeprom and prevents getting link. */ DEBUGOUT("Auto Read Done did not complete\n"); } /* If EEPROM is not present, run manual init scripts */ if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES)) e1000_reset_init_script_82575(hw); /* Clear any pending interrupt events. */ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); E1000_READ_REG(hw, E1000_ICR); /* Install any alternate MAC address into RAR0 */ ret_val = e1000_check_alt_mac_addr_generic(hw); return ret_val; } /** * e1000_init_hw_82575 - Initialize hardware * @hw: pointer to the HW structure * * This inits the hardware readying it for operation. **/ -STATIC s32 e1000_init_hw_82575(struct e1000_hw *hw) +static s32 e1000_init_hw_82575(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val; DEBUGFUNC("e1000_init_hw_82575"); /* Initialize identification LED */ ret_val = mac->ops.id_led_init(hw); if (ret_val) { DEBUGOUT("Error initializing identification LED\n"); /* This is not fatal and we should not stop init due to this */ } /* Disabling VLAN filtering */ DEBUGOUT("Initializing the IEEE VLAN\n"); mac->ops.clear_vfta(hw); ret_val = e1000_init_hw_base(hw); /* Set the default MTU size */ hw->dev_spec._82575.mtu = 1500; /* Clear all of the statistics registers (clear on read). It is * important that we do this after we have tried to establish link * because the symbol error count will increment wildly if there * is no link. */ e1000_clear_hw_cntrs_82575(hw); return ret_val; } /** * e1000_setup_copper_link_82575 - Configure copper link settings * @hw: pointer to the HW structure * * Configures the link for auto-neg or forced speed and duplex. Then we check * for link, once link is established calls to configure collision distance * and flow control are called. **/ static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw) { u32 phpm_reg; u32 ctrl; s32 ret_val; DEBUGFUNC("e1000_setup_copper_link_82575"); ctrl = E1000_READ_REG(hw, E1000_CTRL); ctrl |= E1000_CTRL_SLU; ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); E1000_WRITE_REG(hw, E1000_CTRL, ctrl); /* Clear Go Link Disconnect bit on supported devices */ switch (hw->mac.type) { case e1000_82580: case e1000_i350: case e1000_i210: case e1000_i211: phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); phpm_reg &= ~E1000_82580_PM_GO_LINKD; E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg); break; default: break; } ret_val = e1000_setup_serdes_link_82575(hw); if (ret_val) goto out; if (e1000_sgmii_active_82575(hw)) { /* allow time for SFP cage time to power up phy */ msec_delay(300); ret_val = hw->phy.ops.reset(hw); if (ret_val) { DEBUGOUT("Error resetting the PHY.\n"); goto out; } } switch (hw->phy.type) { case e1000_phy_i210: case e1000_phy_m88: switch (hw->phy.id) { case I347AT4_E_PHY_ID: case M88E1112_E_PHY_ID: case M88E1340M_E_PHY_ID: case M88E1543_E_PHY_ID: case M88E1512_E_PHY_ID: case I210_I_PHY_ID: ret_val = e1000_copper_link_setup_m88_gen2(hw); break; default: ret_val = e1000_copper_link_setup_m88(hw); break; } break; case e1000_phy_igp_3: ret_val = e1000_copper_link_setup_igp(hw); break; case e1000_phy_82580: ret_val = e1000_copper_link_setup_82577(hw); break; default: ret_val = -E1000_ERR_PHY; break; } if (ret_val) goto out; ret_val = e1000_setup_copper_link_generic(hw); out: return ret_val; } /** * e1000_setup_serdes_link_82575 - Setup link for serdes * @hw: pointer to the HW structure * * Configure the physical coding sub-layer (PCS) link. The PCS link is * used on copper connections where the serialized gigabit media independent * interface (sgmii), or serdes fiber is being used. Configures the link * for auto-negotiation or forces speed/duplex. **/ static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw) { u32 ctrl_ext, ctrl_reg, reg, anadv_reg; bool pcs_autoneg; s32 ret_val = E1000_SUCCESS; u16 data; DEBUGFUNC("e1000_setup_serdes_link_82575"); if ((hw->phy.media_type != e1000_media_type_internal_serdes) && !e1000_sgmii_active_82575(hw)) return ret_val; /* * On the 82575, SerDes loopback mode persists until it is * explicitly turned off or a power cycle is performed. A read to * the register does not indicate its status. Therefore, we ensure * loopback mode is disabled during initialization. */ E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); /* power on the sfp cage if present */ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); ctrl_reg = E1000_READ_REG(hw, E1000_CTRL); ctrl_reg |= E1000_CTRL_SLU; /* set both sw defined pins on 82575/82576*/ if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1; reg = E1000_READ_REG(hw, E1000_PCS_LCTL); /* default pcs_autoneg to the same setting as mac autoneg */ pcs_autoneg = hw->mac.autoneg; switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) { case E1000_CTRL_EXT_LINK_MODE_SGMII: /* sgmii mode lets the phy handle forcing speed/duplex */ pcs_autoneg = TRUE; /* autoneg time out should be disabled for SGMII mode */ reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT); break; case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: /* disable PCS autoneg and support parallel detect only */ pcs_autoneg = FALSE; /* FALLTHROUGH */ default: if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) { ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT) pcs_autoneg = FALSE; } /* * non-SGMII modes only supports a speed of 1000/Full for the * link so it is best to just force the MAC and let the pcs * link either autoneg or be forced to 1000/Full */ ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD | E1000_CTRL_FD | E1000_CTRL_FRCDPX; /* set speed of 1000/Full if speed/duplex is forced */ reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL; break; } E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg); /* * New SerDes mode allows for forcing speed or autonegotiating speed * at 1gb. Autoneg should be default set by most drivers. This is the * mode that will be compatible with older link partners and switches. * However, both are supported by the hardware and some drivers/tools. */ reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP | E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); if (pcs_autoneg) { /* Set PCS register for autoneg */ reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */ E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */ /* Disable force flow control for autoneg */ reg &= ~E1000_PCS_LCTL_FORCE_FCTRL; /* Configure flow control advertisement for autoneg */ anadv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV); anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE); switch (hw->fc.requested_mode) { case e1000_fc_full: case e1000_fc_rx_pause: anadv_reg |= E1000_TXCW_ASM_DIR; anadv_reg |= E1000_TXCW_PAUSE; break; case e1000_fc_tx_pause: anadv_reg |= E1000_TXCW_ASM_DIR; break; default: break; } E1000_WRITE_REG(hw, E1000_PCS_ANADV, anadv_reg); DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg); } else { /* Set PCS register for forced link */ reg |= E1000_PCS_LCTL_FSD; /* Force Speed */ /* Force flow control for forced link */ reg |= E1000_PCS_LCTL_FORCE_FCTRL; DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg); } E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg); if (!pcs_autoneg && !e1000_sgmii_active_82575(hw)) e1000_force_mac_fc_generic(hw); return ret_val; } /** * e1000_get_media_type_82575 - derives current media type. * @hw: pointer to the HW structure * * The media type is chosen reflecting few settings. * The following are taken into account: * - link mode set in the current port Init Control Word #3 * - current link mode settings in CSR register * - MDIO vs. I2C PHY control interface chosen * - SFP module media type **/ static s32 e1000_get_media_type_82575(struct e1000_hw *hw) { struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; s32 ret_val = E1000_SUCCESS; u32 ctrl_ext = 0; u32 link_mode = 0; /* Set internal phy as default */ dev_spec->sgmii_active = FALSE; dev_spec->module_plugged = FALSE; /* Get CSR setting */ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); /* extract link mode setting */ link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK; switch (link_mode) { case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: hw->phy.media_type = e1000_media_type_internal_serdes; break; case E1000_CTRL_EXT_LINK_MODE_GMII: hw->phy.media_type = e1000_media_type_copper; break; case E1000_CTRL_EXT_LINK_MODE_SGMII: /* Get phy control interface type set (MDIO vs. I2C)*/ if (e1000_sgmii_uses_mdio_82575(hw)) { hw->phy.media_type = e1000_media_type_copper; dev_spec->sgmii_active = TRUE; break; } /* fall through for I2C based SGMII */ /* FALLTHROUGH */ case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES: /* read media type from SFP EEPROM */ ret_val = e1000_set_sfp_media_type_82575(hw); if ((ret_val != E1000_SUCCESS) || (hw->phy.media_type == e1000_media_type_unknown)) { /* * If media type was not identified then return media * type defined by the CTRL_EXT settings. */ hw->phy.media_type = e1000_media_type_internal_serdes; if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) { hw->phy.media_type = e1000_media_type_copper; dev_spec->sgmii_active = TRUE; } break; } /* do not change link mode for 100BaseFX */ if (dev_spec->eth_flags.e100_base_fx) break; /* change current link mode setting */ ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK; if (hw->phy.media_type == e1000_media_type_copper) ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII; else ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); break; } return ret_val; } /** * e1000_set_sfp_media_type_82575 - derives SFP module media type. * @hw: pointer to the HW structure * * The media type is chosen based on SFP module. * compatibility flags retrieved from SFP ID EEPROM. **/ static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw) { s32 ret_val = E1000_ERR_CONFIG; u32 ctrl_ext = 0; struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; struct sfp_e1000_flags *eth_flags = &dev_spec->eth_flags; u8 tranceiver_type = 0; s32 timeout = 3; /* Turn I2C interface ON and power on sfp cage */ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA); E1000_WRITE_FLUSH(hw); /* Read SFP module data */ while (timeout) { ret_val = e1000_read_sfp_data_byte(hw, E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET), &tranceiver_type); if (ret_val == E1000_SUCCESS) break; msec_delay(100); timeout--; } if (ret_val != E1000_SUCCESS) goto out; ret_val = e1000_read_sfp_data_byte(hw, E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET), (u8 *)eth_flags); if (ret_val != E1000_SUCCESS) goto out; /* Check if there is some SFP module plugged and powered */ if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) || (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) { dev_spec->module_plugged = TRUE; if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) { hw->phy.media_type = e1000_media_type_internal_serdes; } else if (eth_flags->e100_base_fx) { dev_spec->sgmii_active = TRUE; hw->phy.media_type = e1000_media_type_internal_serdes; } else if (eth_flags->e1000_base_t) { dev_spec->sgmii_active = TRUE; hw->phy.media_type = e1000_media_type_copper; } else { hw->phy.media_type = e1000_media_type_unknown; DEBUGOUT("PHY module has not been recognized\n"); goto out; } } else { hw->phy.media_type = e1000_media_type_unknown; } ret_val = E1000_SUCCESS; out: /* Restore I2C interface setting */ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); return ret_val; } /** * e1000_valid_led_default_82575 - Verify a valid default LED config * @hw: pointer to the HW structure * @data: pointer to the NVM (EEPROM) * * Read the EEPROM for the current default LED configuration. If the * LED configuration is not valid, set to a valid LED configuration. **/ static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data) { s32 ret_val; DEBUGFUNC("e1000_valid_led_default_82575"); ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); goto out; } if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { switch (hw->phy.media_type) { case e1000_media_type_internal_serdes: *data = ID_LED_DEFAULT_82575_SERDES; break; case e1000_media_type_copper: default: *data = ID_LED_DEFAULT; break; } } out: return ret_val; } /** * e1000_sgmii_active_82575 - Return sgmii state * @hw: pointer to the HW structure * * 82575 silicon has a serialized gigabit media independent interface (sgmii) * which can be enabled for use in the embedded applications. Simply * return the current state of the sgmii interface. **/ static bool e1000_sgmii_active_82575(struct e1000_hw *hw) { struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; return dev_spec->sgmii_active; } /** * e1000_reset_init_script_82575 - Inits HW defaults after reset * @hw: pointer to the HW structure * * Inits recommended HW defaults after a reset when there is no EEPROM * detected. This is only for the 82575. **/ s32 e1000_reset_init_script_82575(struct e1000_hw *hw) { DEBUGFUNC("e1000_reset_init_script_82575"); if (hw->mac.type == e1000_82575) { DEBUGOUT("Running reset init script for 82575\n"); /* SerDes configuration via SERDESCTRL */ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C); e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78); e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23); e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15); /* CCM configuration via CCMCTL register */ e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00); e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00); /* PCIe lanes configuration */ e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC); e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF); e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05); e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81); /* PCIe PLL Configuration */ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47); e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00); e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00); } return E1000_SUCCESS; } /** * e1000_read_mac_addr_82575 - Read device MAC address * @hw: pointer to the HW structure **/ static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw) { s32 ret_val; DEBUGFUNC("e1000_read_mac_addr_82575"); /* * If there's an alternate MAC address place it in RAR0 * so that it will override the Si installed default perm * address. */ ret_val = e1000_check_alt_mac_addr_generic(hw); if (ret_val) goto out; ret_val = e1000_read_mac_addr_generic(hw); out: return ret_val; } /** * e1000_config_collision_dist_82575 - Configure collision distance * @hw: pointer to the HW structure * * Configures the collision distance to the default value and is used * during link setup. **/ static void e1000_config_collision_dist_82575(struct e1000_hw *hw) { u32 tctl_ext; DEBUGFUNC("e1000_config_collision_dist_82575"); tctl_ext = E1000_READ_REG(hw, E1000_TCTL_EXT); tctl_ext &= ~E1000_TCTL_EXT_COLD; tctl_ext |= E1000_COLLISION_DISTANCE << E1000_TCTL_EXT_COLD_SHIFT; E1000_WRITE_REG(hw, E1000_TCTL_EXT, tctl_ext); E1000_WRITE_FLUSH(hw); } /** * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters * @hw: pointer to the HW structure * * Clears the hardware counters by reading the counter registers. **/ static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw) { DEBUGFUNC("e1000_clear_hw_cntrs_82575"); e1000_clear_hw_cntrs_base_generic(hw); E1000_READ_REG(hw, E1000_PRC64); E1000_READ_REG(hw, E1000_PRC127); E1000_READ_REG(hw, E1000_PRC255); E1000_READ_REG(hw, E1000_PRC511); E1000_READ_REG(hw, E1000_PRC1023); E1000_READ_REG(hw, E1000_PRC1522); E1000_READ_REG(hw, E1000_PTC64); E1000_READ_REG(hw, E1000_PTC127); E1000_READ_REG(hw, E1000_PTC255); E1000_READ_REG(hw, E1000_PTC511); E1000_READ_REG(hw, E1000_PTC1023); E1000_READ_REG(hw, E1000_PTC1522); E1000_READ_REG(hw, E1000_ALGNERRC); E1000_READ_REG(hw, E1000_RXERRC); E1000_READ_REG(hw, E1000_TNCRS); E1000_READ_REG(hw, E1000_CEXTERR); E1000_READ_REG(hw, E1000_TSCTC); E1000_READ_REG(hw, E1000_TSCTFC); E1000_READ_REG(hw, E1000_MGTPRC); E1000_READ_REG(hw, E1000_MGTPDC); E1000_READ_REG(hw, E1000_MGTPTC); E1000_READ_REG(hw, E1000_IAC); E1000_READ_REG(hw, E1000_ICRXOC); E1000_READ_REG(hw, E1000_ICRXPTC); E1000_READ_REG(hw, E1000_ICRXATC); E1000_READ_REG(hw, E1000_ICTXPTC); E1000_READ_REG(hw, E1000_ICTXATC); E1000_READ_REG(hw, E1000_ICTXQEC); E1000_READ_REG(hw, E1000_ICTXQMTC); E1000_READ_REG(hw, E1000_ICRXDMTC); E1000_READ_REG(hw, E1000_CBTMPC); E1000_READ_REG(hw, E1000_HTDPMC); E1000_READ_REG(hw, E1000_CBRMPC); E1000_READ_REG(hw, E1000_RPTHC); E1000_READ_REG(hw, E1000_HGPTC); E1000_READ_REG(hw, E1000_HTCBDPC); E1000_READ_REG(hw, E1000_HGORCL); E1000_READ_REG(hw, E1000_HGORCH); E1000_READ_REG(hw, E1000_HGOTCL); E1000_READ_REG(hw, E1000_HGOTCH); E1000_READ_REG(hw, E1000_LENERRS); /* This register should not be read in copper configurations */ if ((hw->phy.media_type == e1000_media_type_internal_serdes) || e1000_sgmii_active_82575(hw)) E1000_READ_REG(hw, E1000_SCVPC); } /** * e1000_set_pcie_completion_timeout - set pci-e completion timeout * @hw: pointer to the HW structure * * The defaults for 82575 and 82576 should be in the range of 50us to 50ms, * however the hardware default for these parts is 500us to 1ms which is less * than the 10ms recommended by the pci-e spec. To address this we need to * increase the value to either 10ms to 200ms for capability version 1 config, * or 16ms to 55ms for version 2. **/ static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw) { u32 gcr = E1000_READ_REG(hw, E1000_GCR); s32 ret_val = E1000_SUCCESS; u16 pcie_devctl2; /* only take action if timeout value is defaulted to 0 */ if (gcr & E1000_GCR_CMPL_TMOUT_MASK) goto out; /* * if capababilities version is type 1 we can write the * timeout of 10ms to 200ms through the GCR register */ if (!(gcr & E1000_GCR_CAP_VER2)) { gcr |= E1000_GCR_CMPL_TMOUT_10ms; goto out; } /* * for version 2 capabilities we need to write the config space * directly in order to set the completion timeout value for * 16ms to 55ms */ ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, &pcie_devctl2); if (ret_val) goto out; pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms; ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, &pcie_devctl2); out: /* disable completion timeout resend */ gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND; E1000_WRITE_REG(hw, E1000_GCR, gcr); return ret_val; } /** * e1000_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing * @hw: pointer to the hardware struct * @enable: state to enter, either enabled or disabled * @pf: Physical Function pool - do not set anti-spoofing for the PF * * enables/disables L2 switch anti-spoofing functionality. **/ void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf) { u32 reg_val, reg_offset; switch (hw->mac.type) { case e1000_82576: reg_offset = E1000_DTXSWC; break; case e1000_i350: case e1000_i354: reg_offset = E1000_TXSWC; break; default: return; } reg_val = E1000_READ_REG(hw, reg_offset); if (enable) { reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK | E1000_DTXSWC_VLAN_SPOOF_MASK); /* The PF can spoof - it has to in order to * support emulation mode NICs */ reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS)); } else { reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK | E1000_DTXSWC_VLAN_SPOOF_MASK); } E1000_WRITE_REG(hw, reg_offset, reg_val); } /** * e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback * @hw: pointer to the hardware struct * @enable: state to enter, either enabled or disabled * * enables/disables L2 switch loopback functionality. **/ void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable) { u32 dtxswc; switch (hw->mac.type) { case e1000_82576: dtxswc = E1000_READ_REG(hw, E1000_DTXSWC); if (enable) dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; else dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc); break; case e1000_i350: case e1000_i354: dtxswc = E1000_READ_REG(hw, E1000_TXSWC); if (enable) dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; else dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc); break; default: /* Currently no other hardware supports loopback */ break; } } /** * e1000_vmdq_set_replication_pf - enable or disable vmdq replication * @hw: pointer to the hardware struct * @enable: state to enter, either enabled or disabled * * enables/disables replication of packets across multiple pools. **/ void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable) { u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL); if (enable) vt_ctl |= E1000_VT_CTL_VM_REPL_EN; else vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN; E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl); } /** * e1000_read_phy_reg_82580 - Read 82580 MDI control register * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * * Reads the MDI control register in the PHY at offset and stores the * information read to data. **/ static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data) { s32 ret_val; DEBUGFUNC("e1000_read_phy_reg_82580"); ret_val = hw->phy.ops.acquire(hw); if (ret_val) goto out; ret_val = e1000_read_phy_reg_mdic(hw, offset, data); hw->phy.ops.release(hw); out: return ret_val; } /** * e1000_write_phy_reg_82580 - Write 82580 MDI control register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write to register at offset * * Writes data to MDI control register in the PHY at offset. **/ static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data) { s32 ret_val; DEBUGFUNC("e1000_write_phy_reg_82580"); ret_val = hw->phy.ops.acquire(hw); if (ret_val) goto out; ret_val = e1000_write_phy_reg_mdic(hw, offset, data); hw->phy.ops.release(hw); out: return ret_val; } /** * e1000_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits * @hw: pointer to the HW structure * * This resets the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on * the values found in the EEPROM. This addresses an issue in which these * bits are not restored from EEPROM after reset. **/ static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u32 mdicnfg; u16 nvm_data = 0; DEBUGFUNC("e1000_reset_mdicnfg_82580"); if (hw->mac.type != e1000_82580) goto out; if (!e1000_sgmii_active_82575(hw)) goto out; ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, &nvm_data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); goto out; } mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG); if (nvm_data & NVM_WORD24_EXT_MDIO) mdicnfg |= E1000_MDICNFG_EXT_MDIO; if (nvm_data & NVM_WORD24_COM_MDIO) mdicnfg |= E1000_MDICNFG_COM_MDIO; E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg); out: return ret_val; } /** * e1000_reset_hw_82580 - Reset hardware * @hw: pointer to the HW structure * * This resets function or entire device (all ports, etc.) * to a known state. **/ static s32 e1000_reset_hw_82580(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; /* BH SW mailbox bit in SW_FW_SYNC */ u16 swmbsw_mask = E1000_SW_SYNCH_MB; u32 ctrl; bool global_device_reset = hw->dev_spec._82575.global_device_reset; DEBUGFUNC("e1000_reset_hw_82580"); hw->dev_spec._82575.global_device_reset = FALSE; /* 82580 does not reliably do global_device_reset due to hw errata */ if (hw->mac.type == e1000_82580) global_device_reset = FALSE; /* Get current control state. */ ctrl = E1000_READ_REG(hw, E1000_CTRL); /* * Prevent the PCI-E bus from sticking if there is no TLP connection * on the last TLP read/write transaction when MAC is reset. */ ret_val = e1000_disable_pcie_master_generic(hw); if (ret_val) DEBUGOUT("PCI-E Master disable polling has failed.\n"); DEBUGOUT("Masking off all interrupts\n"); E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); E1000_WRITE_REG(hw, E1000_RCTL, 0); E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); E1000_WRITE_FLUSH(hw); msec_delay(10); /* Determine whether or not a global dev reset is requested */ if (global_device_reset && hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask)) global_device_reset = FALSE; if (global_device_reset && !(E1000_READ_REG(hw, E1000_STATUS) & E1000_STAT_DEV_RST_SET)) ctrl |= E1000_CTRL_DEV_RST; else ctrl |= E1000_CTRL_RST; E1000_WRITE_REG(hw, E1000_CTRL, ctrl); switch (hw->device_id) { case E1000_DEV_ID_DH89XXCC_SGMII: break; default: E1000_WRITE_FLUSH(hw); break; } /* Add delay to insure DEV_RST or RST has time to complete */ msec_delay(5); ret_val = e1000_get_auto_rd_done_generic(hw); if (ret_val) { /* * When auto config read does not complete, do not * return with an error. This can happen in situations * where there is no eeprom and prevents getting link. */ DEBUGOUT("Auto Read Done did not complete\n"); } /* clear global device reset status bit */ E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET); /* Clear any pending interrupt events. */ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); E1000_READ_REG(hw, E1000_ICR); ret_val = e1000_reset_mdicnfg_82580(hw); if (ret_val) DEBUGOUT("Could not reset MDICNFG based on EEPROM\n"); /* Install any alternate MAC address into RAR0 */ ret_val = e1000_check_alt_mac_addr_generic(hw); /* Release semaphore */ if (global_device_reset) hw->mac.ops.release_swfw_sync(hw, swmbsw_mask); return ret_val; } /** * e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual Rx PBA size * @data: data received by reading RXPBS register * * The 82580 uses a table based approach for packet buffer allocation sizes. * This function converts the retrieved value into the correct table value * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 * 0x0 36 72 144 1 2 4 8 16 * 0x8 35 70 140 rsv rsv rsv rsv rsv */ u16 e1000_rxpbs_adjust_82580(u32 data) { u16 ret_val = 0; if (data < E1000_82580_RXPBS_TABLE_SIZE) ret_val = e1000_82580_rxpbs_table[data]; return ret_val; } /** * e1000_validate_nvm_checksum_with_offset - Validate EEPROM * checksum * @hw: pointer to the HW structure * @offset: offset in words of the checksum protected region * * Calculates the EEPROM checksum by reading/adding each word of the EEPROM * and then verifies that the sum of the EEPROM is equal to 0xBABA. **/ s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) { s32 ret_val = E1000_SUCCESS; u16 checksum = 0; u16 i, nvm_data; DEBUGFUNC("e1000_validate_nvm_checksum_with_offset"); for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) { ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); goto out; } checksum += nvm_data; } if (checksum != (u16) NVM_SUM) { DEBUGOUT("NVM Checksum Invalid\n"); ret_val = -E1000_ERR_NVM; goto out; } out: return ret_val; } /** * e1000_update_nvm_checksum_with_offset - Update EEPROM * checksum * @hw: pointer to the HW structure * @offset: offset in words of the checksum protected region * * Updates the EEPROM checksum by reading/adding each word of the EEPROM * up to the checksum. Then calculates the EEPROM checksum and writes the * value to the EEPROM. **/ s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) { s32 ret_val; u16 checksum = 0; u16 i, nvm_data; DEBUGFUNC("e1000_update_nvm_checksum_with_offset"); for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) { ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); if (ret_val) { DEBUGOUT("NVM Read Error while updating checksum.\n"); goto out; } checksum += nvm_data; } checksum = (u16) NVM_SUM - checksum; ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1, &checksum); if (ret_val) DEBUGOUT("NVM Write Error while updating checksum.\n"); out: return ret_val; } /** * e1000_validate_nvm_checksum_82580 - Validate EEPROM checksum * @hw: pointer to the HW structure * * Calculates the EEPROM section checksum by reading/adding each word of * the EEPROM and then verifies that the sum of the EEPROM is * equal to 0xBABA. **/ static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw) { s32 ret_val; u16 eeprom_regions_count = 1; u16 j, nvm_data; u16 nvm_offset; DEBUGFUNC("e1000_validate_nvm_checksum_82580"); ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); goto out; } if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) { /* if chekcsums compatibility bit is set validate checksums * for all 4 ports. */ eeprom_regions_count = 4; } for (j = 0; j < eeprom_regions_count; j++) { nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); ret_val = e1000_validate_nvm_checksum_with_offset(hw, nvm_offset); if (ret_val != E1000_SUCCESS) goto out; } out: return ret_val; } /** * e1000_update_nvm_checksum_82580 - Update EEPROM checksum * @hw: pointer to the HW structure * * Updates the EEPROM section checksums for all 4 ports by reading/adding * each word of the EEPROM up to the checksum. Then calculates the EEPROM * checksum and writes the value to the EEPROM. **/ static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw) { s32 ret_val; u16 j, nvm_data; u16 nvm_offset; DEBUGFUNC("e1000_update_nvm_checksum_82580"); ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); if (ret_val) { DEBUGOUT("NVM Read Error while updating checksum compatibility bit.\n"); goto out; } if (!(nvm_data & NVM_COMPATIBILITY_BIT_MASK)) { /* set compatibility bit to validate checksums appropriately */ nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK; ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); if (ret_val) { DEBUGOUT("NVM Write Error while updating checksum compatibility bit.\n"); goto out; } } for (j = 0; j < 4; j++) { nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset); if (ret_val) goto out; } out: return ret_val; } /** * e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum * @hw: pointer to the HW structure * * Calculates the EEPROM section checksum by reading/adding each word of * the EEPROM and then verifies that the sum of the EEPROM is * equal to 0xBABA. **/ static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u16 j; u16 nvm_offset; DEBUGFUNC("e1000_validate_nvm_checksum_i350"); for (j = 0; j < 4; j++) { nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); ret_val = e1000_validate_nvm_checksum_with_offset(hw, nvm_offset); if (ret_val != E1000_SUCCESS) goto out; } out: return ret_val; } /** * e1000_update_nvm_checksum_i350 - Update EEPROM checksum * @hw: pointer to the HW structure * * Updates the EEPROM section checksums for all 4 ports by reading/adding * each word of the EEPROM up to the checksum. Then calculates the EEPROM * checksum and writes the value to the EEPROM. **/ static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u16 j; u16 nvm_offset; DEBUGFUNC("e1000_update_nvm_checksum_i350"); for (j = 0; j < 4; j++) { nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset); if (ret_val != E1000_SUCCESS) goto out; } out: return ret_val; } /** * __e1000_access_emi_reg - Read/write EMI register * @hw: pointer to the HW structure * @address: EMI address to program * @data: pointer to value to read/write from/to the EMI address * @read: boolean flag to indicate read or write **/ static s32 __e1000_access_emi_reg(struct e1000_hw *hw, u16 address, u16 *data, bool read) { s32 ret_val; DEBUGFUNC("__e1000_access_emi_reg"); ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address); if (ret_val) return ret_val; if (read) ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data); else ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data); return ret_val; } /** * e1000_read_emi_reg - Read Extended Management Interface register * @hw: pointer to the HW structure * @addr: EMI address to program * @data: value to be read from the EMI address **/ s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data) { DEBUGFUNC("e1000_read_emi_reg"); return __e1000_access_emi_reg(hw, addr, data, TRUE); } /** * e1000_initialize_M88E1512_phy - Initialize M88E1512 PHY * @hw: pointer to the HW structure * * Initialize Marvell 1512 to work correctly with Avoton. **/ s32 e1000_initialize_M88E1512_phy(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_initialize_M88E1512_phy"); /* Check if this is correct PHY. */ if (phy->id != M88E1512_E_PHY_ID) goto out; /* Switch to PHY page 0xFF. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159); if (ret_val) goto out; /* Switch to PHY page 0xFB. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D); if (ret_val) goto out; /* Switch to PHY page 0x12. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12); if (ret_val) goto out; /* Change mode to SGMII-to-Copper */ ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001); if (ret_val) goto out; /* Return the PHY to page 0. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); if (ret_val) goto out; ret_val = phy->ops.commit(hw); if (ret_val) { DEBUGOUT("Error committing the PHY changes\n"); return ret_val; } msec_delay(1000); out: return ret_val; } /** * e1000_initialize_M88E1543_phy - Initialize M88E1543 PHY * @hw: pointer to the HW structure * * Initialize Marvell 1543 to work correctly with Avoton. **/ s32 e1000_initialize_M88E1543_phy(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_initialize_M88E1543_phy"); /* Check if this is correct PHY. */ if (phy->id != M88E1543_E_PHY_ID) goto out; /* Switch to PHY page 0xFF. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xDC0C); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159); if (ret_val) goto out; /* Switch to PHY page 0xFB. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0xC00D); if (ret_val) goto out; /* Switch to PHY page 0x12. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12); if (ret_val) goto out; /* Change mode to SGMII-to-Copper */ ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001); if (ret_val) goto out; /* Switch to PHY page 1. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x1); if (ret_val) goto out; /* Change mode to 1000BASE-X/SGMII and autoneg enable; reset */ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_FIBER_CTRL, 0x9140); if (ret_val) goto out; /* Return the PHY to page 0. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); if (ret_val) goto out; ret_val = phy->ops.commit(hw); if (ret_val) { DEBUGOUT("Error committing the PHY changes\n"); return ret_val; } msec_delay(1000); out: return ret_val; } /** * e1000_set_eee_i350 - Enable/disable EEE support * @hw: pointer to the HW structure * @adv1G: boolean flag enabling 1G EEE advertisement * @adv100M: boolean flag enabling 100M EEE advertisement * * Enable/disable EEE based on setting in dev_spec structure. * **/ s32 e1000_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M) { u32 ipcnfg, eeer; DEBUGFUNC("e1000_set_eee_i350"); if ((hw->mac.type < e1000_i350) || (hw->phy.media_type != e1000_media_type_copper)) goto out; ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG); eeer = E1000_READ_REG(hw, E1000_EEER); /* enable or disable per user setting */ if (!(hw->dev_spec._82575.eee_disable)) { u32 eee_su = E1000_READ_REG(hw, E1000_EEE_SU); if (adv100M) ipcnfg |= E1000_IPCNFG_EEE_100M_AN; else ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN; if (adv1G) ipcnfg |= E1000_IPCNFG_EEE_1G_AN; else ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN; eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN | E1000_EEER_LPI_FC); /* This bit should not be set in normal operation. */ if (eee_su & E1000_EEE_SU_LPI_CLK_STP) DEBUGOUT("LPI Clock Stop Bit should not be set!\n"); } else { ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN); eeer &= ~(E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN | E1000_EEER_LPI_FC); } E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg); E1000_WRITE_REG(hw, E1000_EEER, eeer); E1000_READ_REG(hw, E1000_IPCNFG); E1000_READ_REG(hw, E1000_EEER); out: return E1000_SUCCESS; } /** * e1000_set_eee_i354 - Enable/disable EEE support * @hw: pointer to the HW structure * @adv1G: boolean flag enabling 1G EEE advertisement * @adv100M: boolean flag enabling 100M EEE advertisement * * Enable/disable EEE legacy mode based on setting in dev_spec structure. * **/ s32 e1000_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = E1000_SUCCESS; u16 phy_data; DEBUGFUNC("e1000_set_eee_i354"); if ((hw->phy.media_type != e1000_media_type_copper) || ((phy->id != M88E1543_E_PHY_ID) && (phy->id != M88E1512_E_PHY_ID))) goto out; if (!hw->dev_spec._82575.eee_disable) { /* Switch to PHY page 18. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18); if (ret_val) goto out; ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1, &phy_data); if (ret_val) goto out; phy_data |= E1000_M88E1543_EEE_CTRL_1_MS; ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1, phy_data); if (ret_val) goto out; /* Return the PHY to page 0. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); if (ret_val) goto out; /* Turn on EEE advertisement. */ ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, E1000_EEE_ADV_DEV_I354, &phy_data); if (ret_val) goto out; if (adv100M) phy_data |= E1000_EEE_ADV_100_SUPPORTED; else phy_data &= ~E1000_EEE_ADV_100_SUPPORTED; if (adv1G) phy_data |= E1000_EEE_ADV_1000_SUPPORTED; else phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED; ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, E1000_EEE_ADV_DEV_I354, phy_data); } else { /* Turn off EEE advertisement. */ ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, E1000_EEE_ADV_DEV_I354, &phy_data); if (ret_val) goto out; phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED | E1000_EEE_ADV_1000_SUPPORTED); ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, E1000_EEE_ADV_DEV_I354, phy_data); } out: return ret_val; } /** * e1000_get_eee_status_i354 - Get EEE status * @hw: pointer to the HW structure * @status: EEE status * * Get EEE status by guessing based on whether Tx or Rx LPI indications have * been received. **/ s32 e1000_get_eee_status_i354(struct e1000_hw *hw, bool *status) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = E1000_SUCCESS; u16 phy_data; DEBUGFUNC("e1000_get_eee_status_i354"); /* Check if EEE is supported on this device. */ if ((hw->phy.media_type != e1000_media_type_copper) || ((phy->id != M88E1543_E_PHY_ID) && (phy->id != M88E1512_E_PHY_ID))) goto out; ret_val = e1000_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354, E1000_PCS_STATUS_DEV_I354, &phy_data); if (ret_val) goto out; *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD | E1000_PCS_STATUS_RX_LPI_RCVD) ? TRUE : FALSE; out: return ret_val; } /* Due to a hw errata, if the host tries to configure the VFTA register * while performing queries from the BMC or DMA, then the VFTA in some * cases won't be written. */ /** * e1000_clear_vfta_i350 - Clear VLAN filter table * @hw: pointer to the HW structure * * Clears the register array which contains the VLAN filter table by * setting all the values to 0. **/ void e1000_clear_vfta_i350(struct e1000_hw *hw) { u32 offset; int i; DEBUGFUNC("e1000_clear_vfta_350"); for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { for (i = 0; i < 10; i++) E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); E1000_WRITE_FLUSH(hw); } } /** * e1000_write_vfta_i350 - Write value to VLAN filter table * @hw: pointer to the HW structure * @offset: register offset in VLAN filter table * @value: register value written to VLAN filter table * * Writes value at the given offset in the register array which stores * the VLAN filter table. **/ void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value) { int i; DEBUGFUNC("e1000_write_vfta_350"); for (i = 0; i < 10; i++) E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); E1000_WRITE_FLUSH(hw); } /** * e1000_set_i2c_bb - Enable I2C bit-bang * @hw: pointer to the HW structure * * Enable I2C bit-bang interface * **/ s32 e1000_set_i2c_bb(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u32 ctrl_ext, i2cparams; DEBUGFUNC("e1000_set_i2c_bb"); ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); ctrl_ext |= E1000_CTRL_I2C_ENA; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); E1000_WRITE_FLUSH(hw); i2cparams = E1000_READ_REG(hw, E1000_I2CPARAMS); i2cparams |= E1000_I2CBB_EN; i2cparams |= E1000_I2C_DATA_OE_N; i2cparams |= E1000_I2C_CLK_OE_N; E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cparams); E1000_WRITE_FLUSH(hw); return ret_val; } /** * e1000_read_i2c_byte_generic - Reads 8 bit word over I2C * @hw: pointer to hardware structure * @byte_offset: byte offset to read * @dev_addr: device address * @data: value read * * Performs byte read operation over I2C interface at * a specified device address. **/ s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, u8 dev_addr, u8 *data) { s32 status = E1000_SUCCESS; u32 max_retry = 10; u32 retry = 1; u16 swfw_mask = 0; bool nack = TRUE; DEBUGFUNC("e1000_read_i2c_byte_generic"); swfw_mask = E1000_SWFW_PHY0_SM; do { if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) { status = E1000_ERR_SWFW_SYNC; goto read_byte_out; } e1000_i2c_start(hw); /* Device Address and write indication */ status = e1000_clock_out_i2c_byte(hw, dev_addr); if (status != E1000_SUCCESS) goto fail; status = e1000_get_i2c_ack(hw); if (status != E1000_SUCCESS) goto fail; status = e1000_clock_out_i2c_byte(hw, byte_offset); if (status != E1000_SUCCESS) goto fail; status = e1000_get_i2c_ack(hw); if (status != E1000_SUCCESS) goto fail; e1000_i2c_start(hw); /* Device Address and read indication */ status = e1000_clock_out_i2c_byte(hw, (dev_addr | 0x1)); if (status != E1000_SUCCESS) goto fail; status = e1000_get_i2c_ack(hw); if (status != E1000_SUCCESS) goto fail; e1000_clock_in_i2c_byte(hw, data); status = e1000_clock_out_i2c_bit(hw, nack); if (status != E1000_SUCCESS) goto fail; e1000_i2c_stop(hw); break; fail: hw->mac.ops.release_swfw_sync(hw, swfw_mask); msec_delay(100); e1000_i2c_bus_clear(hw); retry++; if (retry < max_retry) DEBUGOUT("I2C byte read error - Retrying.\n"); else DEBUGOUT("I2C byte read error.\n"); } while (retry < max_retry); hw->mac.ops.release_swfw_sync(hw, swfw_mask); read_byte_out: return status; } /** * e1000_write_i2c_byte_generic - Writes 8 bit word over I2C * @hw: pointer to hardware structure * @byte_offset: byte offset to write * @dev_addr: device address * @data: value to write * * Performs byte write operation over I2C interface at * a specified device address. **/ s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, u8 dev_addr, u8 data) { s32 status = E1000_SUCCESS; u32 max_retry = 1; u32 retry = 0; u16 swfw_mask = 0; DEBUGFUNC("e1000_write_i2c_byte_generic"); swfw_mask = E1000_SWFW_PHY0_SM; if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) { status = E1000_ERR_SWFW_SYNC; goto write_byte_out; } do { e1000_i2c_start(hw); status = e1000_clock_out_i2c_byte(hw, dev_addr); if (status != E1000_SUCCESS) goto fail; status = e1000_get_i2c_ack(hw); if (status != E1000_SUCCESS) goto fail; status = e1000_clock_out_i2c_byte(hw, byte_offset); if (status != E1000_SUCCESS) goto fail; status = e1000_get_i2c_ack(hw); if (status != E1000_SUCCESS) goto fail; status = e1000_clock_out_i2c_byte(hw, data); if (status != E1000_SUCCESS) goto fail; status = e1000_get_i2c_ack(hw); if (status != E1000_SUCCESS) goto fail; e1000_i2c_stop(hw); break; fail: e1000_i2c_bus_clear(hw); retry++; if (retry < max_retry) DEBUGOUT("I2C byte write error - Retrying.\n"); else DEBUGOUT("I2C byte write error.\n"); } while (retry < max_retry); hw->mac.ops.release_swfw_sync(hw, swfw_mask); write_byte_out: return status; } /** * e1000_i2c_start - Sets I2C start condition * @hw: pointer to hardware structure * * Sets I2C start condition (High -> Low on SDA while SCL is High) **/ static void e1000_i2c_start(struct e1000_hw *hw) { u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); DEBUGFUNC("e1000_i2c_start"); /* Start condition must begin with data and clock high */ e1000_set_i2c_data(hw, &i2cctl, 1); e1000_raise_i2c_clk(hw, &i2cctl); /* Setup time for start condition (4.7us) */ usec_delay(E1000_I2C_T_SU_STA); e1000_set_i2c_data(hw, &i2cctl, 0); /* Hold time for start condition (4us) */ usec_delay(E1000_I2C_T_HD_STA); e1000_lower_i2c_clk(hw, &i2cctl); /* Minimum low period of clock is 4.7 us */ usec_delay(E1000_I2C_T_LOW); } /** * e1000_i2c_stop - Sets I2C stop condition * @hw: pointer to hardware structure * * Sets I2C stop condition (Low -> High on SDA while SCL is High) **/ static void e1000_i2c_stop(struct e1000_hw *hw) { u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); DEBUGFUNC("e1000_i2c_stop"); /* Stop condition must begin with data low and clock high */ e1000_set_i2c_data(hw, &i2cctl, 0); e1000_raise_i2c_clk(hw, &i2cctl); /* Setup time for stop condition (4us) */ usec_delay(E1000_I2C_T_SU_STO); e1000_set_i2c_data(hw, &i2cctl, 1); /* bus free time between stop and start (4.7us)*/ usec_delay(E1000_I2C_T_BUF); } /** * e1000_clock_in_i2c_byte - Clocks in one byte via I2C * @hw: pointer to hardware structure * @data: data byte to clock in * * Clocks in one byte data via I2C data/clock **/ static void e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data) { s32 i; bool bit = 0; DEBUGFUNC("e1000_clock_in_i2c_byte"); *data = 0; for (i = 7; i >= 0; i--) { e1000_clock_in_i2c_bit(hw, &bit); *data |= bit << i; } } /** * e1000_clock_out_i2c_byte - Clocks out one byte via I2C * @hw: pointer to hardware structure * @data: data byte clocked out * * Clocks out one byte data via I2C data/clock **/ static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data) { s32 status = E1000_SUCCESS; s32 i; u32 i2cctl; bool bit = 0; DEBUGFUNC("e1000_clock_out_i2c_byte"); for (i = 7; i >= 0; i--) { bit = (data >> i) & 0x1; status = e1000_clock_out_i2c_bit(hw, bit); if (status != E1000_SUCCESS) break; } /* Release SDA line (set high) */ i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); i2cctl |= E1000_I2C_DATA_OE_N; E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl); E1000_WRITE_FLUSH(hw); return status; } /** * e1000_get_i2c_ack - Polls for I2C ACK * @hw: pointer to hardware structure * * Clocks in/out one bit via I2C data/clock **/ static s32 e1000_get_i2c_ack(struct e1000_hw *hw) { s32 status = E1000_SUCCESS; u32 i = 0; u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); u32 timeout = 10; bool ack = TRUE; DEBUGFUNC("e1000_get_i2c_ack"); e1000_raise_i2c_clk(hw, &i2cctl); /* Minimum high period of clock is 4us */ usec_delay(E1000_I2C_T_HIGH); /* Wait until SCL returns high */ for (i = 0; i < timeout; i++) { usec_delay(1); i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); if (i2cctl & E1000_I2C_CLK_IN) break; } if (!(i2cctl & E1000_I2C_CLK_IN)) return E1000_ERR_I2C; ack = e1000_get_i2c_data(&i2cctl); if (ack) { DEBUGOUT("I2C ack was not received.\n"); status = E1000_ERR_I2C; } e1000_lower_i2c_clk(hw, &i2cctl); /* Minimum low period of clock is 4.7 us */ usec_delay(E1000_I2C_T_LOW); return status; } /** * e1000_clock_in_i2c_bit - Clocks in one bit via I2C data/clock * @hw: pointer to hardware structure * @data: read data value * * Clocks in one bit via I2C data/clock **/ static void e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data) { u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); DEBUGFUNC("e1000_clock_in_i2c_bit"); e1000_raise_i2c_clk(hw, &i2cctl); /* Minimum high period of clock is 4us */ usec_delay(E1000_I2C_T_HIGH); i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); *data = e1000_get_i2c_data(&i2cctl); e1000_lower_i2c_clk(hw, &i2cctl); /* Minimum low period of clock is 4.7 us */ usec_delay(E1000_I2C_T_LOW); } /** * e1000_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock * @hw: pointer to hardware structure * @data: data value to write * * Clocks out one bit via I2C data/clock **/ static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data) { s32 status; u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); DEBUGFUNC("e1000_clock_out_i2c_bit"); status = e1000_set_i2c_data(hw, &i2cctl, data); if (status == E1000_SUCCESS) { e1000_raise_i2c_clk(hw, &i2cctl); /* Minimum high period of clock is 4us */ usec_delay(E1000_I2C_T_HIGH); e1000_lower_i2c_clk(hw, &i2cctl); /* Minimum low period of clock is 4.7 us. * This also takes care of the data hold time. */ usec_delay(E1000_I2C_T_LOW); } else { status = E1000_ERR_I2C; DEBUGOUT1("I2C data was not set to %X\n", data); } return status; } /** * e1000_raise_i2c_clk - Raises the I2C SCL clock * @hw: pointer to hardware structure * @i2cctl: Current value of I2CCTL register * * Raises the I2C clock line '0'->'1' **/ static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl) { DEBUGFUNC("e1000_raise_i2c_clk"); *i2cctl |= E1000_I2C_CLK_OUT; *i2cctl &= ~E1000_I2C_CLK_OE_N; E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl); E1000_WRITE_FLUSH(hw); /* SCL rise time (1000ns) */ usec_delay(E1000_I2C_T_RISE); } /** * e1000_lower_i2c_clk - Lowers the I2C SCL clock * @hw: pointer to hardware structure * @i2cctl: Current value of I2CCTL register * * Lowers the I2C clock line '1'->'0' **/ static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl) { DEBUGFUNC("e1000_lower_i2c_clk"); *i2cctl &= ~E1000_I2C_CLK_OUT; *i2cctl &= ~E1000_I2C_CLK_OE_N; E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl); E1000_WRITE_FLUSH(hw); /* SCL fall time (300ns) */ usec_delay(E1000_I2C_T_FALL); } /** * e1000_set_i2c_data - Sets the I2C data bit * @hw: pointer to hardware structure * @i2cctl: Current value of I2CCTL register * @data: I2C data value (0 or 1) to set * * Sets the I2C data bit **/ static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data) { s32 status = E1000_SUCCESS; DEBUGFUNC("e1000_set_i2c_data"); if (data) *i2cctl |= E1000_I2C_DATA_OUT; else *i2cctl &= ~E1000_I2C_DATA_OUT; *i2cctl &= ~E1000_I2C_DATA_OE_N; *i2cctl |= E1000_I2C_CLK_OE_N; E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl); E1000_WRITE_FLUSH(hw); /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */ usec_delay(E1000_I2C_T_RISE + E1000_I2C_T_FALL + E1000_I2C_T_SU_DATA); *i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); if (data != e1000_get_i2c_data(i2cctl)) { status = E1000_ERR_I2C; DEBUGOUT1("Error - I2C data was not set to %X.\n", data); } return status; } /** * e1000_get_i2c_data - Reads the I2C SDA data bit * @i2cctl: Current value of I2CCTL register * * Returns the I2C data bit value **/ static bool e1000_get_i2c_data(u32 *i2cctl) { bool data; DEBUGFUNC("e1000_get_i2c_data"); if (*i2cctl & E1000_I2C_DATA_IN) data = 1; else data = 0; return data; } /** * e1000_i2c_bus_clear - Clears the I2C bus * @hw: pointer to hardware structure * * Clears the I2C bus by sending nine clock pulses. * Used when data line is stuck low. **/ void e1000_i2c_bus_clear(struct e1000_hw *hw) { u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); u32 i; DEBUGFUNC("e1000_i2c_bus_clear"); e1000_i2c_start(hw); e1000_set_i2c_data(hw, &i2cctl, 1); for (i = 0; i < 9; i++) { e1000_raise_i2c_clk(hw, &i2cctl); /* Min high period of clock is 4us */ usec_delay(E1000_I2C_T_HIGH); e1000_lower_i2c_clk(hw, &i2cctl); /* Min low period of clock is 4.7us*/ usec_delay(E1000_I2C_T_LOW); } e1000_i2c_start(hw); /* Put the i2c bus back to default state */ e1000_i2c_stop(hw); } diff --git a/sys/dev/e1000/e1000_api.c b/sys/dev/e1000/e1000_api.c index 6e0f51ab7ffa..b28ab77f3794 100644 --- a/sys/dev/e1000/e1000_api.c +++ b/sys/dev/e1000/e1000_api.c @@ -1,1418 +1,1433 @@ /****************************************************************************** SPDX-License-Identifier: BSD-3-Clause Copyright (c) 2001-2020, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************/ /*$FreeBSD$*/ #include "e1000_api.h" /** * e1000_init_mac_params - Initialize MAC function pointers * @hw: pointer to the HW structure * * This function initializes the function pointers for the MAC * set of functions. Called by drivers or by e1000_setup_init_funcs. **/ s32 e1000_init_mac_params(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; if (hw->mac.ops.init_params) { ret_val = hw->mac.ops.init_params(hw); if (ret_val) { DEBUGOUT("MAC Initialization Error\n"); goto out; } } else { DEBUGOUT("mac.init_mac_params was NULL\n"); ret_val = -E1000_ERR_CONFIG; } out: return ret_val; } /** * e1000_init_nvm_params - Initialize NVM function pointers * @hw: pointer to the HW structure * * This function initializes the function pointers for the NVM * set of functions. Called by drivers or by e1000_setup_init_funcs. **/ s32 e1000_init_nvm_params(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; if (hw->nvm.ops.init_params) { ret_val = hw->nvm.ops.init_params(hw); if (ret_val) { DEBUGOUT("NVM Initialization Error\n"); goto out; } } else { DEBUGOUT("nvm.init_nvm_params was NULL\n"); ret_val = -E1000_ERR_CONFIG; } out: return ret_val; } /** * e1000_init_phy_params - Initialize PHY function pointers * @hw: pointer to the HW structure * * This function initializes the function pointers for the PHY * set of functions. Called by drivers or by e1000_setup_init_funcs. **/ s32 e1000_init_phy_params(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; if (hw->phy.ops.init_params) { ret_val = hw->phy.ops.init_params(hw); if (ret_val) { DEBUGOUT("PHY Initialization Error\n"); goto out; } } else { DEBUGOUT("phy.init_phy_params was NULL\n"); ret_val = -E1000_ERR_CONFIG; } out: return ret_val; } /** * e1000_init_mbx_params - Initialize mailbox function pointers * @hw: pointer to the HW structure * * This function initializes the function pointers for the PHY * set of functions. Called by drivers or by e1000_setup_init_funcs. **/ s32 e1000_init_mbx_params(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; if (hw->mbx.ops.init_params) { ret_val = hw->mbx.ops.init_params(hw); if (ret_val) { DEBUGOUT("Mailbox Initialization Error\n"); goto out; } } else { DEBUGOUT("mbx.init_mbx_params was NULL\n"); ret_val = -E1000_ERR_CONFIG; } out: return ret_val; } /** * e1000_set_mac_type - Sets MAC type * @hw: pointer to the HW structure * * This function sets the mac type of the adapter based on the * device ID stored in the hw structure. * MUST BE FIRST FUNCTION CALLED (explicitly or through * e1000_setup_init_funcs()). **/ s32 e1000_set_mac_type(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_set_mac_type"); switch (hw->device_id) { case E1000_DEV_ID_82542: mac->type = e1000_82542; break; case E1000_DEV_ID_82543GC_FIBER: case E1000_DEV_ID_82543GC_COPPER: mac->type = e1000_82543; break; case E1000_DEV_ID_82544EI_COPPER: case E1000_DEV_ID_82544EI_FIBER: case E1000_DEV_ID_82544GC_COPPER: case E1000_DEV_ID_82544GC_LOM: mac->type = e1000_82544; break; case E1000_DEV_ID_82540EM: case E1000_DEV_ID_82540EM_LOM: case E1000_DEV_ID_82540EP: case E1000_DEV_ID_82540EP_LOM: case E1000_DEV_ID_82540EP_LP: mac->type = e1000_82540; break; case E1000_DEV_ID_82545EM_COPPER: case E1000_DEV_ID_82545EM_FIBER: mac->type = e1000_82545; break; case E1000_DEV_ID_82545GM_COPPER: case E1000_DEV_ID_82545GM_FIBER: case E1000_DEV_ID_82545GM_SERDES: mac->type = e1000_82545_rev_3; break; case E1000_DEV_ID_82546EB_COPPER: case E1000_DEV_ID_82546EB_FIBER: case E1000_DEV_ID_82546EB_QUAD_COPPER: mac->type = e1000_82546; break; case E1000_DEV_ID_82546GB_COPPER: case E1000_DEV_ID_82546GB_FIBER: case E1000_DEV_ID_82546GB_SERDES: case E1000_DEV_ID_82546GB_PCIE: case E1000_DEV_ID_82546GB_QUAD_COPPER: case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: mac->type = e1000_82546_rev_3; break; case E1000_DEV_ID_82541EI: case E1000_DEV_ID_82541EI_MOBILE: case E1000_DEV_ID_82541ER_LOM: mac->type = e1000_82541; break; case E1000_DEV_ID_82541ER: case E1000_DEV_ID_82541GI: case E1000_DEV_ID_82541GI_LF: case E1000_DEV_ID_82541GI_MOBILE: mac->type = e1000_82541_rev_2; break; case E1000_DEV_ID_82547EI: case E1000_DEV_ID_82547EI_MOBILE: mac->type = e1000_82547; break; case E1000_DEV_ID_82547GI: mac->type = e1000_82547_rev_2; break; case E1000_DEV_ID_82571EB_COPPER: case E1000_DEV_ID_82571EB_FIBER: case E1000_DEV_ID_82571EB_SERDES: case E1000_DEV_ID_82571EB_SERDES_DUAL: case E1000_DEV_ID_82571EB_SERDES_QUAD: case E1000_DEV_ID_82571EB_QUAD_COPPER: case E1000_DEV_ID_82571PT_QUAD_COPPER: case E1000_DEV_ID_82571EB_QUAD_FIBER: case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: mac->type = e1000_82571; break; case E1000_DEV_ID_82572EI: case E1000_DEV_ID_82572EI_COPPER: case E1000_DEV_ID_82572EI_FIBER: case E1000_DEV_ID_82572EI_SERDES: mac->type = e1000_82572; break; case E1000_DEV_ID_82573E: case E1000_DEV_ID_82573E_IAMT: case E1000_DEV_ID_82573L: mac->type = e1000_82573; break; case E1000_DEV_ID_82574L: case E1000_DEV_ID_82574LA: mac->type = e1000_82574; break; case E1000_DEV_ID_82583V: mac->type = e1000_82583; break; case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: mac->type = e1000_80003es2lan; break; case E1000_DEV_ID_ICH8_IFE: case E1000_DEV_ID_ICH8_IFE_GT: case E1000_DEV_ID_ICH8_IFE_G: case E1000_DEV_ID_ICH8_IGP_M: case E1000_DEV_ID_ICH8_IGP_M_AMT: case E1000_DEV_ID_ICH8_IGP_AMT: case E1000_DEV_ID_ICH8_IGP_C: case E1000_DEV_ID_ICH8_82567V_3: mac->type = e1000_ich8lan; break; case E1000_DEV_ID_ICH9_IFE: case E1000_DEV_ID_ICH9_IFE_GT: case E1000_DEV_ID_ICH9_IFE_G: case E1000_DEV_ID_ICH9_IGP_M: case E1000_DEV_ID_ICH9_IGP_M_AMT: case E1000_DEV_ID_ICH9_IGP_M_V: case E1000_DEV_ID_ICH9_IGP_AMT: case E1000_DEV_ID_ICH9_BM: case E1000_DEV_ID_ICH9_IGP_C: case E1000_DEV_ID_ICH10_R_BM_LM: case E1000_DEV_ID_ICH10_R_BM_LF: case E1000_DEV_ID_ICH10_R_BM_V: mac->type = e1000_ich9lan; break; case E1000_DEV_ID_ICH10_D_BM_LM: case E1000_DEV_ID_ICH10_D_BM_LF: case E1000_DEV_ID_ICH10_D_BM_V: mac->type = e1000_ich10lan; break; case E1000_DEV_ID_PCH_D_HV_DM: case E1000_DEV_ID_PCH_D_HV_DC: case E1000_DEV_ID_PCH_M_HV_LM: case E1000_DEV_ID_PCH_M_HV_LC: mac->type = e1000_pchlan; break; case E1000_DEV_ID_PCH2_LV_LM: case E1000_DEV_ID_PCH2_LV_V: mac->type = e1000_pch2lan; break; case E1000_DEV_ID_PCH_LPT_I217_LM: case E1000_DEV_ID_PCH_LPT_I217_V: case E1000_DEV_ID_PCH_LPTLP_I218_LM: case E1000_DEV_ID_PCH_LPTLP_I218_V: case E1000_DEV_ID_PCH_I218_LM2: case E1000_DEV_ID_PCH_I218_V2: case E1000_DEV_ID_PCH_I218_LM3: case E1000_DEV_ID_PCH_I218_V3: mac->type = e1000_pch_lpt; break; case E1000_DEV_ID_PCH_SPT_I219_LM: case E1000_DEV_ID_PCH_SPT_I219_V: case E1000_DEV_ID_PCH_SPT_I219_LM2: case E1000_DEV_ID_PCH_SPT_I219_V2: case E1000_DEV_ID_PCH_LBG_I219_LM3: case E1000_DEV_ID_PCH_SPT_I219_LM4: case E1000_DEV_ID_PCH_SPT_I219_V4: case E1000_DEV_ID_PCH_SPT_I219_LM5: case E1000_DEV_ID_PCH_SPT_I219_V5: case E1000_DEV_ID_PCH_CMP_I219_LM12: case E1000_DEV_ID_PCH_CMP_I219_V12: mac->type = e1000_pch_spt; break; case E1000_DEV_ID_PCH_CNP_I219_LM6: case E1000_DEV_ID_PCH_CNP_I219_V6: case E1000_DEV_ID_PCH_CNP_I219_LM7: case E1000_DEV_ID_PCH_CNP_I219_V7: case E1000_DEV_ID_PCH_ICP_I219_LM8: case E1000_DEV_ID_PCH_ICP_I219_V8: case E1000_DEV_ID_PCH_ICP_I219_LM9: case E1000_DEV_ID_PCH_ICP_I219_V9: case E1000_DEV_ID_PCH_CMP_I219_LM10: case E1000_DEV_ID_PCH_CMP_I219_V10: case E1000_DEV_ID_PCH_CMP_I219_LM11: case E1000_DEV_ID_PCH_CMP_I219_V11: mac->type = e1000_pch_cnp; break; case E1000_DEV_ID_PCH_TGP_I219_LM13: case E1000_DEV_ID_PCH_TGP_I219_V13: case E1000_DEV_ID_PCH_TGP_I219_LM14: case E1000_DEV_ID_PCH_TGP_I219_V14: case E1000_DEV_ID_PCH_TGP_I219_LM15: case E1000_DEV_ID_PCH_TGP_I219_V15: mac->type = e1000_pch_tgp; break; case E1000_DEV_ID_PCH_ADL_I219_LM16: case E1000_DEV_ID_PCH_ADL_I219_V16: case E1000_DEV_ID_PCH_ADL_I219_LM17: case E1000_DEV_ID_PCH_ADL_I219_V17: mac->type = e1000_pch_adp; break; case E1000_DEV_ID_PCH_MTP_I219_LM18: case E1000_DEV_ID_PCH_MTP_I219_V18: case E1000_DEV_ID_PCH_MTP_I219_LM19: case E1000_DEV_ID_PCH_MTP_I219_V19: mac->type = e1000_pch_mtp; break; case E1000_DEV_ID_82575EB_COPPER: case E1000_DEV_ID_82575EB_FIBER_SERDES: case E1000_DEV_ID_82575GB_QUAD_COPPER: mac->type = e1000_82575; break; case E1000_DEV_ID_82576: case E1000_DEV_ID_82576_FIBER: case E1000_DEV_ID_82576_SERDES: case E1000_DEV_ID_82576_QUAD_COPPER: case E1000_DEV_ID_82576_QUAD_COPPER_ET2: case E1000_DEV_ID_82576_NS: case E1000_DEV_ID_82576_NS_SERDES: case E1000_DEV_ID_82576_SERDES_QUAD: mac->type = e1000_82576; break; case E1000_DEV_ID_82580_COPPER: case E1000_DEV_ID_82580_FIBER: case E1000_DEV_ID_82580_SERDES: case E1000_DEV_ID_82580_SGMII: case E1000_DEV_ID_82580_COPPER_DUAL: case E1000_DEV_ID_82580_QUAD_FIBER: case E1000_DEV_ID_DH89XXCC_SGMII: case E1000_DEV_ID_DH89XXCC_SERDES: case E1000_DEV_ID_DH89XXCC_BACKPLANE: case E1000_DEV_ID_DH89XXCC_SFP: mac->type = e1000_82580; break; case E1000_DEV_ID_I350_COPPER: case E1000_DEV_ID_I350_FIBER: case E1000_DEV_ID_I350_SERDES: case E1000_DEV_ID_I350_SGMII: case E1000_DEV_ID_I350_DA4: mac->type = e1000_i350; break; case E1000_DEV_ID_I210_COPPER_FLASHLESS: case E1000_DEV_ID_I210_SERDES_FLASHLESS: case E1000_DEV_ID_I210_SGMII_FLASHLESS: case E1000_DEV_ID_I210_COPPER: case E1000_DEV_ID_I210_COPPER_OEM1: case E1000_DEV_ID_I210_COPPER_IT: case E1000_DEV_ID_I210_FIBER: case E1000_DEV_ID_I210_SERDES: case E1000_DEV_ID_I210_SGMII: mac->type = e1000_i210; break; case E1000_DEV_ID_I211_COPPER: mac->type = e1000_i211; break; case E1000_DEV_ID_82576_VF: case E1000_DEV_ID_82576_VF_HV: mac->type = e1000_vfadapt; break; case E1000_DEV_ID_I350_VF: case E1000_DEV_ID_I350_VF_HV: mac->type = e1000_vfadapt_i350; break; case E1000_DEV_ID_I354_BACKPLANE_1GBPS: case E1000_DEV_ID_I354_SGMII: case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS: mac->type = e1000_i354; break; default: /* Should never have loaded on this device */ ret_val = -E1000_ERR_MAC_INIT; break; } return ret_val; } /** * e1000_setup_init_funcs - Initializes function pointers * @hw: pointer to the HW structure * @init_device: TRUE will initialize the rest of the function pointers * getting the device ready for use. FALSE will only set * MAC type and the function pointers for the other init * functions. Passing FALSE will not generate any hardware * reads or writes. * * This function must be called by a driver in order to use the rest * of the 'shared' code files. Called by drivers only. **/ s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) { s32 ret_val; /* Can't do much good without knowing the MAC type. */ ret_val = e1000_set_mac_type(hw); if (ret_val) { DEBUGOUT("ERROR: MAC type could not be set properly.\n"); goto out; } if (!hw->hw_addr) { DEBUGOUT("ERROR: Registers not mapped\n"); ret_val = -E1000_ERR_CONFIG; goto out; } /* * Init function pointers to generic implementations. We do this first * allowing a driver module to override it afterward. */ e1000_init_mac_ops_generic(hw); e1000_init_phy_ops_generic(hw); e1000_init_nvm_ops_generic(hw); e1000_init_mbx_ops_generic(hw); /* * Set up the init function pointers. These are functions within the * adapter family file that sets up function pointers for the rest of * the functions in that family. */ switch (hw->mac.type) { case e1000_82542: e1000_init_function_pointers_82542(hw); break; case e1000_82543: case e1000_82544: e1000_init_function_pointers_82543(hw); break; case e1000_82540: case e1000_82545: case e1000_82545_rev_3: case e1000_82546: case e1000_82546_rev_3: e1000_init_function_pointers_82540(hw); break; case e1000_82541: case e1000_82541_rev_2: case e1000_82547: case e1000_82547_rev_2: e1000_init_function_pointers_82541(hw); break; case e1000_82571: case e1000_82572: case e1000_82573: case e1000_82574: case e1000_82583: e1000_init_function_pointers_82571(hw); break; case e1000_80003es2lan: e1000_init_function_pointers_80003es2lan(hw); break; case e1000_ich8lan: case e1000_ich9lan: case e1000_ich10lan: case e1000_pchlan: case e1000_pch2lan: case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: case e1000_pch_tgp: case e1000_pch_adp: case e1000_pch_mtp: e1000_init_function_pointers_ich8lan(hw); break; case e1000_82575: case e1000_82576: case e1000_82580: case e1000_i350: case e1000_i354: e1000_init_function_pointers_82575(hw); break; case e1000_i210: case e1000_i211: e1000_init_function_pointers_i210(hw); break; case e1000_vfadapt: e1000_init_function_pointers_vf(hw); break; case e1000_vfadapt_i350: e1000_init_function_pointers_vf(hw); break; default: DEBUGOUT("Hardware not supported\n"); ret_val = -E1000_ERR_CONFIG; break; } /* * Initialize the rest of the function pointers. These require some * register reads/writes in some cases. */ if (!(ret_val) && init_device) { ret_val = e1000_init_mac_params(hw); if (ret_val) goto out; ret_val = e1000_init_nvm_params(hw); if (ret_val) goto out; ret_val = e1000_init_phy_params(hw); if (ret_val) goto out; ret_val = e1000_init_mbx_params(hw); if (ret_val) goto out; } out: return ret_val; } /** * e1000_get_bus_info - Obtain bus information for adapter * @hw: pointer to the HW structure * * This will obtain information about the HW bus for which the * adapter is attached and stores it in the hw structure. This is a * function pointer entry point called by drivers. **/ s32 e1000_get_bus_info(struct e1000_hw *hw) { if (hw->mac.ops.get_bus_info) return hw->mac.ops.get_bus_info(hw); return E1000_SUCCESS; } /** * e1000_clear_vfta - Clear VLAN filter table * @hw: pointer to the HW structure * * This clears the VLAN filter table on the adapter. This is a function * pointer entry point called by drivers. **/ void e1000_clear_vfta(struct e1000_hw *hw) { if (hw->mac.ops.clear_vfta) hw->mac.ops.clear_vfta(hw); } /** * e1000_write_vfta - Write value to VLAN filter table * @hw: pointer to the HW structure * @offset: the 32-bit offset in which to write the value to. * @value: the 32-bit value to write at location offset. * * This writes a 32-bit value to a 32-bit offset in the VLAN filter * table. This is a function pointer entry point called by drivers. **/ void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) { if (hw->mac.ops.write_vfta) hw->mac.ops.write_vfta(hw, offset, value); } /** * e1000_update_mc_addr_list - Update Multicast addresses * @hw: pointer to the HW structure * @mc_addr_list: array of multicast addresses to program * @mc_addr_count: number of multicast addresses to program * * Updates the Multicast Table Array. * The caller must have a packed mc_addr_list of multicast addresses. **/ void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, u32 mc_addr_count) { if (hw->mac.ops.update_mc_addr_list) hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count); } /** * e1000_force_mac_fc - Force MAC flow control * @hw: pointer to the HW structure * * Force the MAC's flow control settings. Currently no func pointer exists * and all implementations are handled in the generic version of this * function. **/ s32 e1000_force_mac_fc(struct e1000_hw *hw) { return e1000_force_mac_fc_generic(hw); } /** * e1000_check_for_link - Check/Store link connection * @hw: pointer to the HW structure * * This checks the link condition of the adapter and stores the * results in the hw->mac structure. This is a function pointer entry * point called by drivers. **/ s32 e1000_check_for_link(struct e1000_hw *hw) { if (hw->mac.ops.check_for_link) return hw->mac.ops.check_for_link(hw); return -E1000_ERR_CONFIG; } /** * e1000_check_mng_mode - Check management mode * @hw: pointer to the HW structure * * This checks if the adapter has manageability enabled. * This is a function pointer entry point called by drivers. **/ bool e1000_check_mng_mode(struct e1000_hw *hw) { if (hw->mac.ops.check_mng_mode) return hw->mac.ops.check_mng_mode(hw); return FALSE; } /** * e1000_mng_write_dhcp_info - Writes DHCP info to host interface * @hw: pointer to the HW structure * @buffer: pointer to the host interface * @length: size of the buffer * * Writes the DHCP information to the host interface. **/ s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) { return e1000_mng_write_dhcp_info_generic(hw, buffer, length); } /** * e1000_reset_hw - Reset hardware * @hw: pointer to the HW structure * * This resets the hardware into a known state. This is a function pointer * entry point called by drivers. **/ s32 e1000_reset_hw(struct e1000_hw *hw) { if (hw->mac.ops.reset_hw) return hw->mac.ops.reset_hw(hw); return -E1000_ERR_CONFIG; } /** * e1000_init_hw - Initialize hardware * @hw: pointer to the HW structure * * This inits the hardware readying it for operation. This is a function * pointer entry point called by drivers. **/ s32 e1000_init_hw(struct e1000_hw *hw) { if (hw->mac.ops.init_hw) return hw->mac.ops.init_hw(hw); return -E1000_ERR_CONFIG; } /** * e1000_setup_link - Configures link and flow control * @hw: pointer to the HW structure * * This configures link and flow control settings for the adapter. This * is a function pointer entry point called by drivers. While modules can * also call this, they probably call their own version of this function. **/ s32 e1000_setup_link(struct e1000_hw *hw) { if (hw->mac.ops.setup_link) return hw->mac.ops.setup_link(hw); return -E1000_ERR_CONFIG; } /** * e1000_get_speed_and_duplex - Returns current speed and duplex * @hw: pointer to the HW structure * @speed: pointer to a 16-bit value to store the speed * @duplex: pointer to a 16-bit value to store the duplex. * * This returns the speed and duplex of the adapter in the two 'out' * variables passed in. This is a function pointer entry point called * by drivers. **/ s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) { if (hw->mac.ops.get_link_up_info) return hw->mac.ops.get_link_up_info(hw, speed, duplex); return -E1000_ERR_CONFIG; } /** * e1000_setup_led - Configures SW controllable LED * @hw: pointer to the HW structure * * This prepares the SW controllable LED for use and saves the current state * of the LED so it can be later restored. This is a function pointer entry * point called by drivers. **/ s32 e1000_setup_led(struct e1000_hw *hw) { if (hw->mac.ops.setup_led) return hw->mac.ops.setup_led(hw); return E1000_SUCCESS; } /** * e1000_cleanup_led - Restores SW controllable LED * @hw: pointer to the HW structure * * This restores the SW controllable LED to the value saved off by * e1000_setup_led. This is a function pointer entry point called by drivers. **/ s32 e1000_cleanup_led(struct e1000_hw *hw) { if (hw->mac.ops.cleanup_led) return hw->mac.ops.cleanup_led(hw); return E1000_SUCCESS; } /** * e1000_blink_led - Blink SW controllable LED * @hw: pointer to the HW structure * * This starts the adapter LED blinking. Request the LED to be setup first * and cleaned up after. This is a function pointer entry point called by * drivers. **/ s32 e1000_blink_led(struct e1000_hw *hw) { if (hw->mac.ops.blink_led) return hw->mac.ops.blink_led(hw); return E1000_SUCCESS; } /** * e1000_id_led_init - store LED configurations in SW * @hw: pointer to the HW structure * * Initializes the LED config in SW. This is a function pointer entry point * called by drivers. **/ s32 e1000_id_led_init(struct e1000_hw *hw) { if (hw->mac.ops.id_led_init) return hw->mac.ops.id_led_init(hw); return E1000_SUCCESS; } /** * e1000_led_on - Turn on SW controllable LED * @hw: pointer to the HW structure * * Turns the SW defined LED on. This is a function pointer entry point * called by drivers. **/ s32 e1000_led_on(struct e1000_hw *hw) { if (hw->mac.ops.led_on) return hw->mac.ops.led_on(hw); return E1000_SUCCESS; } /** * e1000_led_off - Turn off SW controllable LED * @hw: pointer to the HW structure * * Turns the SW defined LED off. This is a function pointer entry point * called by drivers. **/ s32 e1000_led_off(struct e1000_hw *hw) { if (hw->mac.ops.led_off) return hw->mac.ops.led_off(hw); return E1000_SUCCESS; } /** * e1000_reset_adaptive - Reset adaptive IFS * @hw: pointer to the HW structure * * Resets the adaptive IFS. Currently no func pointer exists and all * implementations are handled in the generic version of this function. **/ void e1000_reset_adaptive(struct e1000_hw *hw) { e1000_reset_adaptive_generic(hw); } /** * e1000_update_adaptive - Update adaptive IFS * @hw: pointer to the HW structure * * Updates adapter IFS. Currently no func pointer exists and all * implementations are handled in the generic version of this function. **/ void e1000_update_adaptive(struct e1000_hw *hw) { e1000_update_adaptive_generic(hw); } /** * e1000_disable_pcie_master - Disable PCI-Express master access * @hw: pointer to the HW structure * * Disables PCI-Express master access and verifies there are no pending * requests. Currently no func pointer exists and all implementations are * handled in the generic version of this function. **/ s32 e1000_disable_pcie_master(struct e1000_hw *hw) { return e1000_disable_pcie_master_generic(hw); } /** * e1000_config_collision_dist - Configure collision distance * @hw: pointer to the HW structure * * Configures the collision distance to the default value and is used * during link setup. **/ void e1000_config_collision_dist(struct e1000_hw *hw) { if (hw->mac.ops.config_collision_dist) hw->mac.ops.config_collision_dist(hw); } /** * e1000_rar_set - Sets a receive address register * @hw: pointer to the HW structure * @addr: address to set the RAR to * @index: the RAR to set * * Sets a Receive Address Register (RAR) to the specified address. **/ int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) { if (hw->mac.ops.rar_set) return hw->mac.ops.rar_set(hw, addr, index); return E1000_SUCCESS; } /** * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state * @hw: pointer to the HW structure * * Ensures that the MDI/MDIX SW state is valid. **/ s32 e1000_validate_mdi_setting(struct e1000_hw *hw) { if (hw->mac.ops.validate_mdi_setting) return hw->mac.ops.validate_mdi_setting(hw); return E1000_SUCCESS; } /** * e1000_hash_mc_addr - Determines address location in multicast table * @hw: pointer to the HW structure * @mc_addr: Multicast address to hash. * * This hashes an address to determine its location in the multicast * table. Currently no func pointer exists and all implementations * are handled in the generic version of this function. **/ u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) { return e1000_hash_mc_addr_generic(hw, mc_addr); } /** * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX * @hw: pointer to the HW structure * * Enables packet filtering on transmit packets if manageability is enabled * and host interface is enabled. * Currently no func pointer exists and all implementations are handled in the * generic version of this function. **/ bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) { return e1000_enable_tx_pkt_filtering_generic(hw); } /** * e1000_mng_host_if_write - Writes to the manageability host interface * @hw: pointer to the HW structure * @buffer: pointer to the host interface buffer * @length: size of the buffer * @offset: location in the buffer to write to * @sum: sum of the data (not checksum) * * This function writes the buffer content at the offset given on the host if. * It also does alignment considerations to do the writes in most efficient * way. Also fills up the sum of the buffer in *buffer parameter. **/ s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, u16 offset, u8 *sum) { return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum); } /** * e1000_mng_write_cmd_header - Writes manageability command header * @hw: pointer to the HW structure * @hdr: pointer to the host interface command header * * Writes the command header after does the checksum calculation. **/ s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, struct e1000_host_mng_command_header *hdr) { return e1000_mng_write_cmd_header_generic(hw, hdr); } /** * e1000_mng_enable_host_if - Checks host interface is enabled * @hw: pointer to the HW structure * * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND * * This function checks whether the HOST IF is enabled for command operation * and also checks whether the previous command is completed. It busy waits * in case of previous command is not completed. **/ s32 e1000_mng_enable_host_if(struct e1000_hw *hw) { return e1000_mng_enable_host_if_generic(hw); } /** * e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer * @hw: pointer to the HW structure * @itr: u32 indicating itr value * * Set the OBFF timer based on the given interrupt rate. **/ s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr) { if (hw->mac.ops.set_obff_timer) return hw->mac.ops.set_obff_timer(hw, itr); return E1000_SUCCESS; } /** * e1000_check_reset_block - Verifies PHY can be reset * @hw: pointer to the HW structure * * Checks if the PHY is in a state that can be reset or if manageability * has it tied up. This is a function pointer entry point called by drivers. **/ s32 e1000_check_reset_block(struct e1000_hw *hw) { if (hw->phy.ops.check_reset_block) return hw->phy.ops.check_reset_block(hw); return E1000_SUCCESS; } /** * e1000_read_phy_reg - Reads PHY register * @hw: pointer to the HW structure * @offset: the register to read * @data: the buffer to store the 16-bit read. * * Reads the PHY register and returns the value in data. * This is a function pointer entry point called by drivers. **/ s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) { if (hw->phy.ops.read_reg) return hw->phy.ops.read_reg(hw, offset, data); return E1000_SUCCESS; } /** * e1000_write_phy_reg - Writes PHY register * @hw: pointer to the HW structure * @offset: the register to write * @data: the value to write. * * Writes the PHY register at offset with the value in data. * This is a function pointer entry point called by drivers. **/ s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) { if (hw->phy.ops.write_reg) return hw->phy.ops.write_reg(hw, offset, data); return E1000_SUCCESS; } /** * e1000_release_phy - Generic release PHY * @hw: pointer to the HW structure * * Return if silicon family does not require a semaphore when accessing the * PHY. **/ void e1000_release_phy(struct e1000_hw *hw) { if (hw->phy.ops.release) hw->phy.ops.release(hw); } /** * e1000_acquire_phy - Generic acquire PHY * @hw: pointer to the HW structure * * Return success if silicon family does not require a semaphore when * accessing the PHY. **/ s32 e1000_acquire_phy(struct e1000_hw *hw) { if (hw->phy.ops.acquire) return hw->phy.ops.acquire(hw); return E1000_SUCCESS; } /** * e1000_cfg_on_link_up - Configure PHY upon link up * @hw: pointer to the HW structure **/ s32 e1000_cfg_on_link_up(struct e1000_hw *hw) { if (hw->phy.ops.cfg_on_link_up) return hw->phy.ops.cfg_on_link_up(hw); return E1000_SUCCESS; } /** * e1000_read_kmrn_reg - Reads register using Kumeran interface * @hw: pointer to the HW structure * @offset: the register to read * @data: the location to store the 16-bit value read. * * Reads a register out of the Kumeran interface. Currently no func pointer * exists and all implementations are handled in the generic version of * this function. **/ s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) { return e1000_read_kmrn_reg_generic(hw, offset, data); } /** * e1000_write_kmrn_reg - Writes register using Kumeran interface * @hw: pointer to the HW structure * @offset: the register to write * @data: the value to write. * * Writes a register to the Kumeran interface. Currently no func pointer * exists and all implementations are handled in the generic version of * this function. **/ s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) { return e1000_write_kmrn_reg_generic(hw, offset, data); } /** * e1000_get_cable_length - Retrieves cable length estimation * @hw: pointer to the HW structure * * This function estimates the cable length and stores them in * hw->phy.min_length and hw->phy.max_length. This is a function pointer * entry point called by drivers. **/ s32 e1000_get_cable_length(struct e1000_hw *hw) { if (hw->phy.ops.get_cable_length) return hw->phy.ops.get_cable_length(hw); return E1000_SUCCESS; } /** * e1000_get_phy_info - Retrieves PHY information from registers * @hw: pointer to the HW structure * * This function gets some information from various PHY registers and * populates hw->phy values with it. This is a function pointer entry * point called by drivers. **/ s32 e1000_get_phy_info(struct e1000_hw *hw) { if (hw->phy.ops.get_info) return hw->phy.ops.get_info(hw); return E1000_SUCCESS; } /** * e1000_phy_hw_reset - Hard PHY reset * @hw: pointer to the HW structure * * Performs a hard PHY reset. This is a function pointer entry point called * by drivers. **/ s32 e1000_phy_hw_reset(struct e1000_hw *hw) { if (hw->phy.ops.reset) return hw->phy.ops.reset(hw); return E1000_SUCCESS; } /** * e1000_phy_commit - Soft PHY reset * @hw: pointer to the HW structure * * Performs a soft PHY reset on those that apply. This is a function pointer * entry point called by drivers. **/ s32 e1000_phy_commit(struct e1000_hw *hw) { if (hw->phy.ops.commit) return hw->phy.ops.commit(hw); return E1000_SUCCESS; } /** * e1000_set_d0_lplu_state - Sets low power link up state for D0 * @hw: pointer to the HW structure * @active: boolean used to enable/disable lplu * * Success returns 0, Failure returns 1 * * The low power link up (lplu) state is set to the power management level D0 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU * is used during Dx states where the power conservation is most important. * During driver activity, SmartSpeed should be enabled so performance is * maintained. This is a function pointer entry point called by drivers. **/ s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) { if (hw->phy.ops.set_d0_lplu_state) return hw->phy.ops.set_d0_lplu_state(hw, active); return E1000_SUCCESS; } /** * e1000_set_d3_lplu_state - Sets low power link up state for D3 * @hw: pointer to the HW structure * @active: boolean used to enable/disable lplu * * Success returns 0, Failure returns 1 * * The low power link up (lplu) state is set to the power management level D3 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU * is used during Dx states where the power conservation is most important. * During driver activity, SmartSpeed should be enabled so performance is * maintained. This is a function pointer entry point called by drivers. **/ s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) { if (hw->phy.ops.set_d3_lplu_state) return hw->phy.ops.set_d3_lplu_state(hw, active); return E1000_SUCCESS; } /** * e1000_read_mac_addr - Reads MAC address * @hw: pointer to the HW structure * * Reads the MAC address out of the adapter and stores it in the HW structure. * Currently no func pointer exists and all implementations are handled in the * generic version of this function. **/ s32 e1000_read_mac_addr(struct e1000_hw *hw) { if (hw->mac.ops.read_mac_addr) return hw->mac.ops.read_mac_addr(hw); return e1000_read_mac_addr_generic(hw); } /** * e1000_read_pba_string - Read device part number string * @hw: pointer to the HW structure * @pba_num: pointer to device part number * @pba_num_size: size of part number buffer * * Reads the product board assembly (PBA) number from the EEPROM and stores * the value in pba_num. * Currently no func pointer exists and all implementations are handled in the * generic version of this function. **/ s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) { return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); } /** * e1000_read_pba_length - Read device part number string length * @hw: pointer to the HW structure * @pba_num_size: size of part number buffer * * Reads the product board assembly (PBA) number length from the EEPROM and * stores the value in pba_num. * Currently no func pointer exists and all implementations are handled in the * generic version of this function. **/ s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) { return e1000_read_pba_length_generic(hw, pba_num_size); } +/** + * e1000_read_pba_num - Read device part number + * @hw: pointer to the HW structure + * @pba_num: pointer to device part number + * + * Reads the product board assembly (PBA) number from the EEPROM and stores + * the value in pba_num. + * Currently no func pointer exists and all implementations are handled in the + * generic version of this function. + **/ +s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num) +{ + return e1000_read_pba_num_generic(hw, pba_num); +} + /** * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum * @hw: pointer to the HW structure * * Validates the NVM checksum is correct. This is a function pointer entry * point called by drivers. **/ s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) { if (hw->nvm.ops.validate) return hw->nvm.ops.validate(hw); return -E1000_ERR_CONFIG; } /** * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum * @hw: pointer to the HW structure * * Updates the NVM checksum. Currently no func pointer exists and all * implementations are handled in the generic version of this function. **/ s32 e1000_update_nvm_checksum(struct e1000_hw *hw) { if (hw->nvm.ops.update) return hw->nvm.ops.update(hw); return -E1000_ERR_CONFIG; } /** * e1000_reload_nvm - Reloads EEPROM * @hw: pointer to the HW structure * * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the * extended control register. **/ void e1000_reload_nvm(struct e1000_hw *hw) { if (hw->nvm.ops.reload) hw->nvm.ops.reload(hw); } /** * e1000_read_nvm - Reads NVM (EEPROM) * @hw: pointer to the HW structure * @offset: the word offset to read * @words: number of 16-bit words to read * @data: pointer to the properly sized buffer for the data. * * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function * pointer entry point called by drivers. **/ s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { if (hw->nvm.ops.read) return hw->nvm.ops.read(hw, offset, words, data); return -E1000_ERR_CONFIG; } /** * e1000_write_nvm - Writes to NVM (EEPROM) * @hw: pointer to the HW structure * @offset: the word offset to read * @words: number of 16-bit words to write * @data: pointer to the properly sized buffer for the data. * * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function * pointer entry point called by drivers. **/ s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { if (hw->nvm.ops.write) return hw->nvm.ops.write(hw, offset, words, data); return E1000_SUCCESS; } /** * e1000_write_8bit_ctrl_reg - Writes 8bit Control register * @hw: pointer to the HW structure * @reg: 32bit register offset * @offset: the register to write * @data: the value to write. * * Writes the PHY register at offset with the value in data. * This is a function pointer entry point called by drivers. **/ s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, u8 data) { return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); } /** * e1000_power_up_phy - Restores link in case of PHY power down * @hw: pointer to the HW structure * * The phy may be powered down to save power, to turn off link when the * driver is unloaded, or wake on lan is not enabled (among others). **/ void e1000_power_up_phy(struct e1000_hw *hw) { if (hw->phy.ops.power_up) hw->phy.ops.power_up(hw); e1000_setup_link(hw); } /** * e1000_power_down_phy - Power down PHY * @hw: pointer to the HW structure * * The phy may be powered down to save power, to turn off link when the * driver is unloaded, or wake on lan is not enabled (among others). **/ void e1000_power_down_phy(struct e1000_hw *hw) { if (hw->phy.ops.power_down) hw->phy.ops.power_down(hw); } /** * e1000_power_up_fiber_serdes_link - Power up serdes link * @hw: pointer to the HW structure * * Power on the optics and PCS. **/ void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) { if (hw->mac.ops.power_up_serdes) hw->mac.ops.power_up_serdes(hw); } /** * e1000_shutdown_fiber_serdes_link - Remove link during power down * @hw: pointer to the HW structure * * Shutdown the optics and PCS on driver unload. **/ void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) { if (hw->mac.ops.shutdown_serdes) hw->mac.ops.shutdown_serdes(hw); } diff --git a/sys/dev/e1000/e1000_api.h b/sys/dev/e1000/e1000_api.h index db4caac37e97..c96030b567db 100644 --- a/sys/dev/e1000/e1000_api.h +++ b/sys/dev/e1000/e1000_api.h @@ -1,167 +1,168 @@ /****************************************************************************** SPDX-License-Identifier: BSD-3-Clause Copyright (c) 2001-2020, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************/ /*$FreeBSD$*/ #ifndef _E1000_API_H_ #define _E1000_API_H_ #include "e1000_hw.h" extern void e1000_init_function_pointers_82542(struct e1000_hw *hw); extern void e1000_init_function_pointers_82543(struct e1000_hw *hw); extern void e1000_init_function_pointers_82540(struct e1000_hw *hw); extern void e1000_init_function_pointers_82571(struct e1000_hw *hw); extern void e1000_init_function_pointers_82541(struct e1000_hw *hw); extern void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw); extern void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw); extern void e1000_init_function_pointers_82575(struct e1000_hw *hw); extern void e1000_init_function_pointers_vf(struct e1000_hw *hw); extern void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw); extern void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw); extern void e1000_init_function_pointers_i210(struct e1000_hw *hw); s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr); s32 e1000_set_mac_type(struct e1000_hw *hw); s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device); s32 e1000_init_mac_params(struct e1000_hw *hw); s32 e1000_init_nvm_params(struct e1000_hw *hw); s32 e1000_init_phy_params(struct e1000_hw *hw); s32 e1000_init_mbx_params(struct e1000_hw *hw); s32 e1000_get_bus_info(struct e1000_hw *hw); void e1000_clear_vfta(struct e1000_hw *hw); void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value); s32 e1000_force_mac_fc(struct e1000_hw *hw); s32 e1000_check_for_link(struct e1000_hw *hw); s32 e1000_reset_hw(struct e1000_hw *hw); s32 e1000_init_hw(struct e1000_hw *hw); s32 e1000_setup_link(struct e1000_hw *hw); s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex); s32 e1000_disable_pcie_master(struct e1000_hw *hw); void e1000_config_collision_dist(struct e1000_hw *hw); int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index); u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr); void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, u32 mc_addr_count); s32 e1000_setup_led(struct e1000_hw *hw); s32 e1000_cleanup_led(struct e1000_hw *hw); s32 e1000_check_reset_block(struct e1000_hw *hw); s32 e1000_blink_led(struct e1000_hw *hw); s32 e1000_led_on(struct e1000_hw *hw); s32 e1000_led_off(struct e1000_hw *hw); s32 e1000_id_led_init(struct e1000_hw *hw); void e1000_reset_adaptive(struct e1000_hw *hw); void e1000_update_adaptive(struct e1000_hw *hw); s32 e1000_get_cable_length(struct e1000_hw *hw); s32 e1000_validate_mdi_setting(struct e1000_hw *hw); s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data); s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data); s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, u8 data); s32 e1000_get_phy_info(struct e1000_hw *hw); void e1000_release_phy(struct e1000_hw *hw); s32 e1000_acquire_phy(struct e1000_hw *hw); s32 e1000_cfg_on_link_up(struct e1000_hw *hw); s32 e1000_phy_hw_reset(struct e1000_hw *hw); s32 e1000_phy_commit(struct e1000_hw *hw); void e1000_power_up_phy(struct e1000_hw *hw); void e1000_power_down_phy(struct e1000_hw *hw); s32 e1000_read_mac_addr(struct e1000_hw *hw); +s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *part_num); s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size); s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size); void e1000_reload_nvm(struct e1000_hw *hw); s32 e1000_update_nvm_checksum(struct e1000_hw *hw); s32 e1000_validate_nvm_checksum(struct e1000_hw *hw); s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data); s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data); s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active); bool e1000_check_mng_mode(struct e1000_hw *hw); bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw); s32 e1000_mng_enable_host_if(struct e1000_hw *hw); s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, u16 offset, u8 *sum); s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, struct e1000_host_mng_command_header *hdr); s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length); u32 e1000_translate_register_82542(u32 reg); /* * TBI_ACCEPT macro definition: * * This macro requires: * a = a pointer to struct e1000_hw * status = the 8 bit status field of the Rx descriptor with EOP set * errors = the 8 bit error field of the Rx descriptor with EOP set * length = the sum of all the length fields of the Rx descriptors that * make up the current frame * last_byte = the last byte of the frame DMAed by the hardware * min_frame_size = the minimum frame length we want to accept. * max_frame_size = the maximum frame length we want to accept. * * This macro is a conditional that should be used in the interrupt * handler's Rx processing routine when RxErrors have been detected. * * Typical use: * ... * if (TBI_ACCEPT) { * accept_frame = TRUE; * e1000_tbi_adjust_stats(adapter, MacAddress); * frame_length--; * } else { * accept_frame = FALSE; * } * ... */ /* The carrier extension symbol, as received by the NIC. */ #define CARRIER_EXTENSION 0x0F #define TBI_ACCEPT(a, status, errors, length, last_byte, \ min_frame_size, max_frame_size) \ (e1000_tbi_sbp_enabled_82543(a) && \ (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \ ((last_byte) == CARRIER_EXTENSION) && \ (((status) & E1000_RXD_STAT_VP) ? \ (((length) > ((min_frame_size) - VLAN_TAG_SIZE)) && \ ((length) <= ((max_frame_size) + 1))) : \ (((length) > (min_frame_size)) && \ ((length) <= ((max_frame_size) + VLAN_TAG_SIZE + 1))))) #define E1000_MAX(a, b) ((a) > (b) ? (a) : (b)) #define E1000_DIVIDE_ROUND_UP(a, b) (((a) + (b) - 1) / (b)) /* ceil(a/b) */ #endif /* _E1000_API_H_ */ diff --git a/sys/dev/e1000/e1000_defines.h b/sys/dev/e1000/e1000_defines.h index 30629cce8ddc..18e905527a88 100644 --- a/sys/dev/e1000/e1000_defines.h +++ b/sys/dev/e1000/e1000_defines.h @@ -1,1497 +1,1530 @@ /****************************************************************************** SPDX-License-Identifier: BSD-3-Clause Copyright (c) 2001-2020, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************/ /*$FreeBSD$*/ #ifndef _E1000_DEFINES_H_ #define _E1000_DEFINES_H_ /* Number of Transmit and Receive Descriptors must be a multiple of 8 */ #define REQ_TX_DESCRIPTOR_MULTIPLE 8 #define REQ_RX_DESCRIPTOR_MULTIPLE 8 /* Definitions for power management and wakeup registers */ /* Wake Up Control */ #define E1000_WUC_APME 0x00000001 /* APM Enable */ #define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ #define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */ #define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */ #define E1000_WUC_PHY_WAKE 0x00000100 /* if PHY supports wakeup */ /* Wake Up Filter Control */ #define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ #define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ #define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ #define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ #define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ #define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ #define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ #define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ /* Wake Up Status */ #define E1000_WUS_LNKC E1000_WUFC_LNKC #define E1000_WUS_MAG E1000_WUFC_MAG #define E1000_WUS_EX E1000_WUFC_EX #define E1000_WUS_MC E1000_WUFC_MC #define E1000_WUS_BC E1000_WUFC_BC /* Extended Device Control */ #define E1000_CTRL_EXT_LPCD 0x00000004 /* LCD Power Cycle Done */ #define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* SW Definable Pin 4 data */ #define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* SW Definable Pin 6 data */ #define E1000_CTRL_EXT_SDP3_DATA 0x00000080 /* SW Definable Pin 3 data */ /* SDP 4/5 (bits 8,9) are reserved in >= 82575 */ #define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */ #define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */ #define E1000_CTRL_EXT_SDP3_DIR 0x00000800 /* Direction of SDP3 0=in 1=out */ #define E1000_CTRL_EXT_FORCE_SMBUS 0x00000800 /* Force SMBus mode */ #define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */ /* Physical Func Reset Done Indication */ #define E1000_CTRL_EXT_PFRSTD 0x00004000 #define E1000_CTRL_EXT_SDLPE 0X00040000 /* SerDes Low Power Enable */ #define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */ #define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */ #define E1000_CTRL_EXT_DMA_DYN_CLK_EN 0x00080000 /* DMA Dynamic Clk Gating */ #define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 /* Offset of the link mode field in Ctrl Ext register */ #define E1000_CTRL_EXT_LINK_MODE_OFFSET 22 #define E1000_CTRL_EXT_LINK_MODE_1000BASE_KX 0x00400000 #define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000 #define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000 #define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000 #define E1000_CTRL_EXT_EIAME 0x01000000 #define E1000_CTRL_EXT_IRCA 0x00000001 #define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Drv loaded bit for FW */ #define E1000_CTRL_EXT_IAME 0x08000000 /* Int ACK Auto-mask */ #define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */ #define E1000_CTRL_EXT_LSECCK 0x00001000 #define E1000_CTRL_EXT_PHYPDEN 0x00100000 #define E1000_I2CCMD_REG_ADDR_SHIFT 16 #define E1000_I2CCMD_PHY_ADDR_SHIFT 24 #define E1000_I2CCMD_OPCODE_READ 0x08000000 #define E1000_I2CCMD_OPCODE_WRITE 0x00000000 #define E1000_I2CCMD_READY 0x20000000 #define E1000_I2CCMD_ERROR 0x80000000 #define E1000_I2CCMD_SFP_DATA_ADDR(a) (0x0000 + (a)) #define E1000_I2CCMD_SFP_DIAG_ADDR(a) (0x0100 + (a)) #define E1000_MAX_SGMII_PHY_REG_ADDR 255 #define E1000_I2CCMD_PHY_TIMEOUT 200 #define E1000_IVAR_VALID 0x80 #define E1000_GPIE_NSICR 0x00000001 #define E1000_GPIE_MSIX_MODE 0x00000010 #define E1000_GPIE_EIAME 0x40000000 #define E1000_GPIE_PBA 0x80000000 /* Receive Descriptor bit definitions */ #define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ #define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ #define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ #define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ #define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */ #define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ #define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */ #define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */ #define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */ #define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */ #define E1000_RXD_STAT_DYNINT 0x800 /* Pkt caused INT via DYNINT */ #define E1000_RXD_ERR_CE 0x01 /* CRC Error */ #define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ #define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ #define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */ #define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */ #define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */ #define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ #define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ #define E1000_RXDEXT_STATERR_TST 0x00000100 /* Time Stamp taken */ #define E1000_RXDEXT_STATERR_LB 0x00040000 #define E1000_RXDEXT_STATERR_CE 0x01000000 #define E1000_RXDEXT_STATERR_SE 0x02000000 #define E1000_RXDEXT_STATERR_SEQ 0x04000000 #define E1000_RXDEXT_STATERR_CXE 0x10000000 #define E1000_RXDEXT_STATERR_TCPE 0x20000000 #define E1000_RXDEXT_STATERR_IPE 0x40000000 #define E1000_RXDEXT_STATERR_RXE 0x80000000 /* mask to determine if packets should be dropped due to frame errors */ #define E1000_RXD_ERR_FRAME_ERR_MASK ( \ E1000_RXD_ERR_CE | \ E1000_RXD_ERR_SE | \ E1000_RXD_ERR_SEQ | \ E1000_RXD_ERR_CXE | \ E1000_RXD_ERR_RXE) /* Same mask, but for extended and packet split descriptors */ #define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \ E1000_RXDEXT_STATERR_CE | \ E1000_RXDEXT_STATERR_SE | \ E1000_RXDEXT_STATERR_SEQ | \ E1000_RXDEXT_STATERR_CXE | \ E1000_RXDEXT_STATERR_RXE) #define E1000_MRQC_RSS_ENABLE_2Q 0x00000001 #define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000 #define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000 #define E1000_MRQC_RSS_FIELD_IPV4 0x00020000 #define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000 #define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000 #define E1000_MRQC_RSS_FIELD_IPV6 0x00100000 #define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000 #define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000 /* Management Control */ #define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ #define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ #define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ #define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ #define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ /* Enable MAC address filtering */ #define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 /* Enable MNG packets to host memory */ #define E1000_MANC_EN_MNG2HOST 0x00200000 #define E1000_MANC2H_PORT_623 0x00000020 /* Port 0x26f */ #define E1000_MANC2H_PORT_664 0x00000040 /* Port 0x298 */ #define E1000_MDEF_PORT_623 0x00000800 /* Port 0x26f */ #define E1000_MDEF_PORT_664 0x00000400 /* Port 0x298 */ /* Receive Control */ #define E1000_RCTL_RST 0x00000001 /* Software reset */ #define E1000_RCTL_EN 0x00000002 /* enable */ #define E1000_RCTL_SBP 0x00000004 /* store bad packet */ #define E1000_RCTL_UPE 0x00000008 /* unicast promisc enable */ #define E1000_RCTL_MPE 0x00000010 /* multicast promisc enable */ #define E1000_RCTL_LPE 0x00000020 /* long packet enable */ #define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */ #define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ #define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ #define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */ #define E1000_RCTL_RDMTS_HALF 0x00000000 /* Rx desc min thresh size */ #define E1000_RCTL_RDMTS_HEX 0x00010000 #define E1000_RCTL_RDMTS1_HEX E1000_RCTL_RDMTS_HEX #define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ #define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */ #define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ /* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ #define E1000_RCTL_SZ_2048 0x00000000 /* Rx buffer size 2048 */ #define E1000_RCTL_SZ_1024 0x00010000 /* Rx buffer size 1024 */ #define E1000_RCTL_SZ_512 0x00020000 /* Rx buffer size 512 */ #define E1000_RCTL_SZ_256 0x00030000 /* Rx buffer size 256 */ /* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ #define E1000_RCTL_SZ_16384 0x00010000 /* Rx buffer size 16384 */ #define E1000_RCTL_SZ_8192 0x00020000 /* Rx buffer size 8192 */ #define E1000_RCTL_SZ_4096 0x00030000 /* Rx buffer size 4096 */ #define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ #define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ #define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */ #define E1000_RCTL_DPF 0x00400000 /* discard pause frames */ #define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ #define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ #define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ /* Use byte values for the following shift parameters * Usage: * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) & * E1000_PSRCTL_BSIZE0_MASK) | * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) & * E1000_PSRCTL_BSIZE1_MASK) | * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) & * E1000_PSRCTL_BSIZE2_MASK) | * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |; * E1000_PSRCTL_BSIZE3_MASK)) * where value0 = [128..16256], default=256 * value1 = [1024..64512], default=4096 * value2 = [0..64512], default=4096 * value3 = [0..64512], default=0 */ #define E1000_PSRCTL_BSIZE0_MASK 0x0000007F #define E1000_PSRCTL_BSIZE1_MASK 0x00003F00 #define E1000_PSRCTL_BSIZE2_MASK 0x003F0000 #define E1000_PSRCTL_BSIZE3_MASK 0x3F000000 #define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */ #define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */ #define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */ #define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */ /* SWFW_SYNC Definitions */ #define E1000_SWFW_EEP_SM 0x01 #define E1000_SWFW_PHY0_SM 0x02 #define E1000_SWFW_PHY1_SM 0x04 #define E1000_SWFW_CSR_SM 0x08 #define E1000_SWFW_PHY2_SM 0x20 #define E1000_SWFW_PHY3_SM 0x40 #define E1000_SWFW_SW_MNG_SM 0x400 /* Device Control */ #define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ #define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */ #define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master reqs */ #define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ #define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ #define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ #define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ #define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ #define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */ #define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ #define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ #define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ #define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ #define E1000_CTRL_LANPHYPC_OVERRIDE 0x00010000 /* SW control of LANPHYPC */ #define E1000_CTRL_LANPHYPC_VALUE 0x00020000 /* SW value of LANPHYPC */ #define E1000_CTRL_MEHE 0x00080000 /* Memory Error Handling Enable */ #define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ #define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ #define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ #define E1000_CTRL_ADVD3WUC 0x00100000 /* D3 WUC */ #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 /* PHY PM enable */ #define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */ #define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ #define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */ #define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */ #define E1000_CTRL_DEV_RST 0x20000000 /* Device reset */ #define E1000_CTRL_RST 0x04000000 /* Global reset */ #define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ #define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ #define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ #define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ #define E1000_CTRL_I2C_ENA 0x02000000 /* I2C enable */ #define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2 #define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2 #define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3 #define E1000_CTRL_MDC E1000_CTRL_SWDPIN3 #define E1000_CONNSW_ENRGSRC 0x4 #define E1000_CONNSW_PHYSD 0x400 #define E1000_CONNSW_PHY_PDN 0x800 #define E1000_CONNSW_SERDESD 0x200 #define E1000_CONNSW_AUTOSENSE_CONF 0x2 #define E1000_CONNSW_AUTOSENSE_EN 0x1 #define E1000_PCS_CFG_PCS_EN 8 #define E1000_PCS_LCTL_FLV_LINK_UP 1 #define E1000_PCS_LCTL_FSV_10 0 #define E1000_PCS_LCTL_FSV_100 2 #define E1000_PCS_LCTL_FSV_1000 4 #define E1000_PCS_LCTL_FDV_FULL 8 #define E1000_PCS_LCTL_FSD 0x10 #define E1000_PCS_LCTL_FORCE_LINK 0x20 #define E1000_PCS_LCTL_FORCE_FCTRL 0x80 #define E1000_PCS_LCTL_AN_ENABLE 0x10000 #define E1000_PCS_LCTL_AN_RESTART 0x20000 #define E1000_PCS_LCTL_AN_TIMEOUT 0x40000 #define E1000_ENABLE_SERDES_LOOPBACK 0x0410 #define E1000_PCS_LSTS_LINK_OK 1 #define E1000_PCS_LSTS_SPEED_100 2 #define E1000_PCS_LSTS_SPEED_1000 4 #define E1000_PCS_LSTS_DUPLEX_FULL 8 #define E1000_PCS_LSTS_SYNK_OK 0x10 #define E1000_PCS_LSTS_AN_COMPLETE 0x10000 /* Device Status */ #define E1000_STATUS_FD 0x00000001 /* Duplex 0=half 1=full */ #define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ #define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ #define E1000_STATUS_FUNC_SHIFT 2 #define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ #define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ #define E1000_STATUS_SPEED_MASK 0x000000C0 #define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ #define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ #define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ #define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Compltn by NVM */ #define E1000_STATUS_PHYRA 0x00000400 /* PHY Reset Asserted */ #define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Master request status */ #define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */ #define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */ #define E1000_STATUS_2P5_SKU 0x00001000 /* Val of 2.5GBE SKU strap */ #define E1000_STATUS_2P5_SKU_OVER 0x00002000 /* Val of 2.5GBE SKU Over */ #define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */ #define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */ /* Constants used to interpret the masked PCI-X bus speed. */ #define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus spd 50-66MHz */ #define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus spd 66-100MHz */ #define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus spd 100-133MHz*/ #define E1000_STATUS_PCIM_STATE 0x40000000 /* PCIm function state */ #define SPEED_10 10 #define SPEED_100 100 #define SPEED_1000 1000 #define SPEED_2500 2500 #define HALF_DUPLEX 1 #define FULL_DUPLEX 2 #define PHY_FORCE_TIME 20 #define ADVERTISE_10_HALF 0x0001 #define ADVERTISE_10_FULL 0x0002 #define ADVERTISE_100_HALF 0x0004 #define ADVERTISE_100_FULL 0x0008 #define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */ #define ADVERTISE_1000_FULL 0x0020 /* 1000/H is not supported, nor spec-compliant. */ #define E1000_ALL_SPEED_DUPLEX ( \ ADVERTISE_10_HALF | ADVERTISE_10_FULL | ADVERTISE_100_HALF | \ ADVERTISE_100_FULL | ADVERTISE_1000_FULL) #define E1000_ALL_NOT_GIG ( \ ADVERTISE_10_HALF | ADVERTISE_10_FULL | ADVERTISE_100_HALF | \ ADVERTISE_100_FULL) #define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL) #define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL) #define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF) #define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX /* LED Control */ #define E1000_PHY_LED0_MODE_MASK 0x00000007 #define E1000_PHY_LED0_IVRT 0x00000008 #define E1000_PHY_LED0_MASK 0x0000001F #define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F #define E1000_LEDCTL_LED0_MODE_SHIFT 0 #define E1000_LEDCTL_LED0_IVRT 0x00000040 #define E1000_LEDCTL_LED0_BLINK 0x00000080 #define E1000_LEDCTL_MODE_LINK_UP 0x2 #define E1000_LEDCTL_MODE_LED_ON 0xE #define E1000_LEDCTL_MODE_LED_OFF 0xF /* Transmit Descriptor bit definitions */ #define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */ #define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */ #define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ #define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ #define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ #define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ #define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ #define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ #define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ #define E1000_TXD_CMD_DEXT 0x20000000 /* Desc extension (0 = legacy) */ #define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ #define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ #define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ #define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ #define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ #define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ #define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ #define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ #define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ #define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ #define E1000_TXD_EXTCMD_TSTAMP 0x00000010 /* IEEE1588 Timestamp packet */ /* Transmit Control */ #define E1000_TCTL_EN 0x00000002 /* enable Tx */ #define E1000_TCTL_PSP 0x00000008 /* pad short packets */ #define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ #define E1000_TCTL_COLD 0x003ff000 /* collision distance */ #define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ #define E1000_TCTL_MULR 0x10000000 /* Multiple request support */ /* Transmit Arbitration Count */ #define E1000_TARC0_ENABLE 0x00000400 /* Enable Tx Queue 0 */ /* SerDes Control */ #define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400 #define E1000_SCTL_ENABLE_SERDES_LOOPBACK 0x0410 /* Receive Checksum Control */ #define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ #define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ #define E1000_RXCSUM_IPV6OFL 0x00000400 /* lem(4) IPv6 checksum offload */ #define E1000_RXCSUM_CRCOFL 0x00000800 /* CRC32 offload enable */ #define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */ #define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */ /* Header split receive */ #define E1000_RFCTL_NFSW_DIS 0x00000040 #define E1000_RFCTL_NFSR_DIS 0x00000080 #define E1000_RFCTL_ACK_DIS 0x00001000 #define E1000_RFCTL_EXTEN 0x00008000 #define E1000_RFCTL_IPV6_EX_DIS 0x00010000 #define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000 #define E1000_RFCTL_LEF 0x00040000 /* Collision related configuration parameters */ #define E1000_CT_SHIFT 4 #define E1000_COLLISION_THRESHOLD 15 #define E1000_COLLISION_DISTANCE 63 #define E1000_COLD_SHIFT 12 /* Default values for the transmit IPG register */ #define DEFAULT_82542_TIPG_IPGT 10 #define DEFAULT_82543_TIPG_IPGT_FIBER 9 #define DEFAULT_82543_TIPG_IPGT_COPPER 8 #define E1000_TIPG_IPGT_MASK 0x000003FF #define DEFAULT_82542_TIPG_IPGR1 2 #define DEFAULT_82543_TIPG_IPGR1 8 #define E1000_TIPG_IPGR1_SHIFT 10 #define DEFAULT_82542_TIPG_IPGR2 10 #define DEFAULT_82543_TIPG_IPGR2 6 #define DEFAULT_80003ES2LAN_TIPG_IPGR2 7 #define E1000_TIPG_IPGR2_SHIFT 20 /* Ethertype field values */ #define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */ #define ETHERNET_FCS_SIZE 4 #define MAX_JUMBO_FRAME_SIZE 0x3F00 /* The datasheet maximum supported RX size is 9.5KB (9728 bytes) */ #define MAX_RX_JUMBO_FRAME_SIZE 0x2600 #define E1000_TX_PTR_GAP 0x1F /* Extended Configuration Control and Size */ #define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020 #define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001 #define E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE 0x00000008 #define E1000_EXTCNF_CTRL_SWFLAG 0x00000020 #define E1000_EXTCNF_CTRL_GATE_PHY_CFG 0x00000080 #define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000 #define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16 #define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000 #define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16 #define E1000_PHY_CTRL_D0A_LPLU 0x00000002 #define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004 #define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008 #define E1000_PHY_CTRL_GBE_DISABLE 0x00000040 #define E1000_KABGTXD_BGSQLBIAS 0x00050000 /* Low Power IDLE Control */ #define E1000_LPIC_LPIET_SHIFT 24 /* Low Power Idle Entry Time */ /* PBA constants */ #define E1000_PBA_8K 0x0008 /* 8KB */ #define E1000_PBA_10K 0x000A /* 10KB */ #define E1000_PBA_12K 0x000C /* 12KB */ #define E1000_PBA_14K 0x000E /* 14KB */ #define E1000_PBA_16K 0x0010 /* 16KB */ #define E1000_PBA_18K 0x0012 #define E1000_PBA_20K 0x0014 #define E1000_PBA_22K 0x0016 #define E1000_PBA_24K 0x0018 #define E1000_PBA_26K 0x001A #define E1000_PBA_30K 0x001E #define E1000_PBA_32K 0x0020 #define E1000_PBA_34K 0x0022 #define E1000_PBA_35K 0x0023 #define E1000_PBA_38K 0x0026 #define E1000_PBA_40K 0x0028 #define E1000_PBA_48K 0x0030 /* 48KB */ #define E1000_PBA_64K 0x0040 /* 64KB */ #define E1000_PBA_RXA_MASK 0xFFFF #define E1000_PBS_16K E1000_PBA_16K /* Uncorrectable/correctable ECC Error counts and enable bits */ #define E1000_PBECCSTS_CORR_ERR_CNT_MASK 0x000000FF #define E1000_PBECCSTS_UNCORR_ERR_CNT_MASK 0x0000FF00 #define E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT 8 #define E1000_PBECCSTS_ECC_ENABLE 0x00010000 #define IFS_MAX 80 #define IFS_MIN 40 #define IFS_RATIO 4 #define IFS_STEP 10 #define MIN_NUM_XMITS 1000 /* SW Semaphore Register */ #define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ #define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ #define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */ #define E1000_SWSM2_LOCK 0x00000002 /* Secondary driver semaphore bit */ /* Interrupt Cause Read */ #define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ #define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */ #define E1000_ICR_LSC 0x00000004 /* Link Status Change */ #define E1000_ICR_RXSEQ 0x00000008 /* Rx sequence error */ #define E1000_ICR_RXDMT0 0x00000010 /* Rx desc min. threshold (0) */ #define E1000_ICR_RXO 0x00000040 /* Rx overrun */ #define E1000_ICR_RXT0 0x00000080 /* Rx timer intr (ring 0) */ #define E1000_ICR_VMMB 0x00000100 /* VM MB event */ #define E1000_ICR_RXCFG 0x00000400 /* Rx /c/ ordered set */ #define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */ #define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */ #define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */ #define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ #define E1000_ICR_TXD_LOW 0x00008000 #define E1000_ICR_MNG 0x00040000 /* Manageability event */ #define E1000_ICR_ECCER 0x00400000 /* Uncorrectable ECC Error */ #define E1000_ICR_TS 0x00080000 /* Time Sync Interrupt */ #define E1000_ICR_DRSTA 0x40000000 /* Device Reset Asserted */ /* If this bit asserted, the driver should claim the interrupt */ #define E1000_ICR_INT_ASSERTED 0x80000000 #define E1000_ICR_DOUTSYNC 0x10000000 /* NIC DMA out of sync */ #define E1000_ICR_RXQ0 0x00100000 /* Rx Queue 0 Interrupt */ #define E1000_ICR_RXQ1 0x00200000 /* Rx Queue 1 Interrupt */ #define E1000_ICR_TXQ0 0x00400000 /* Tx Queue 0 Interrupt */ #define E1000_ICR_TXQ1 0x00800000 /* Tx Queue 1 Interrupt */ #define E1000_ICR_OTHER 0x01000000 /* Other Interrupts */ #define E1000_ICR_FER 0x00400000 /* Fatal Error */ #define E1000_ICR_THS 0x00800000 /* ICR.THS: Thermal Sensor Event*/ #define E1000_ICR_MDDET 0x10000000 /* Malicious Driver Detect */ #define E1000_ITR_MASK 0x000FFFFF /* ITR value bitfield */ #define E1000_ITR_MULT 256 /* ITR mulitplier in nsec */ /* PBA ECC Register */ #define E1000_PBA_ECC_COUNTER_MASK 0xFFF00000 /* ECC counter mask */ #define E1000_PBA_ECC_COUNTER_SHIFT 20 /* ECC counter shift value */ #define E1000_PBA_ECC_CORR_EN 0x00000001 /* Enable ECC error correction */ #define E1000_PBA_ECC_STAT_CLR 0x00000002 /* Clear ECC error counter */ #define E1000_PBA_ECC_INT_EN 0x00000004 /* Enable ICR bit 5 on ECC error */ /* Extended Interrupt Cause Read */ #define E1000_EICR_RX_QUEUE0 0x00000001 /* Rx Queue 0 Interrupt */ #define E1000_EICR_RX_QUEUE1 0x00000002 /* Rx Queue 1 Interrupt */ #define E1000_EICR_RX_QUEUE2 0x00000004 /* Rx Queue 2 Interrupt */ #define E1000_EICR_RX_QUEUE3 0x00000008 /* Rx Queue 3 Interrupt */ #define E1000_EICR_TX_QUEUE0 0x00000100 /* Tx Queue 0 Interrupt */ #define E1000_EICR_TX_QUEUE1 0x00000200 /* Tx Queue 1 Interrupt */ #define E1000_EICR_TX_QUEUE2 0x00000400 /* Tx Queue 2 Interrupt */ #define E1000_EICR_TX_QUEUE3 0x00000800 /* Tx Queue 3 Interrupt */ #define E1000_EICR_TCP_TIMER 0x40000000 /* TCP Timer */ #define E1000_EICR_OTHER 0x80000000 /* Interrupt Cause Active */ /* TCP Timer */ #define E1000_TCPTIMER_KS 0x00000100 /* KickStart */ #define E1000_TCPTIMER_COUNT_ENABLE 0x00000200 /* Count Enable */ #define E1000_TCPTIMER_COUNT_FINISH 0x00000400 /* Count finish */ #define E1000_TCPTIMER_LOOP 0x00000800 /* Loop */ /* This defines the bits that are set in the Interrupt Mask * Set/Read Register. Each bit is documented below: * o RXT0 = Receiver Timer Interrupt (ring 0) * o TXDW = Transmit Descriptor Written Back * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) * o RXSEQ = Receive Sequence Error * o LSC = Link Status Change */ #define IMS_ENABLE_MASK ( \ E1000_IMS_RXT0 | \ E1000_IMS_TXDW | \ E1000_IMS_RXDMT0 | \ E1000_IMS_RXSEQ | \ E1000_IMS_LSC) /* Interrupt Mask Set */ #define E1000_IMS_TXDW E1000_ICR_TXDW /* Tx desc written back */ #define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ #define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ #define E1000_IMS_VMMB E1000_ICR_VMMB /* Mail box activity */ #define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */ #define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */ #define E1000_IMS_RXO E1000_ICR_RXO /* Rx overrun */ #define E1000_IMS_RXT0 E1000_ICR_RXT0 /* Rx timer intr */ #define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW #define E1000_IMS_ECCER E1000_ICR_ECCER /* Uncorrectable ECC Error */ #define E1000_IMS_TS E1000_ICR_TS /* Time Sync Interrupt */ #define E1000_IMS_DRSTA E1000_ICR_DRSTA /* Device Reset Asserted */ #define E1000_IMS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */ #define E1000_IMS_RXQ0 E1000_ICR_RXQ0 /* Rx Queue 0 Interrupt */ #define E1000_IMS_RXQ1 E1000_ICR_RXQ1 /* Rx Queue 1 Interrupt */ #define E1000_IMS_TXQ0 E1000_ICR_TXQ0 /* Tx Queue 0 Interrupt */ #define E1000_IMS_TXQ1 E1000_ICR_TXQ1 /* Tx Queue 1 Interrupt */ #define E1000_IMS_OTHER E1000_ICR_OTHER /* Other Interrupts */ #define E1000_IMS_FER E1000_ICR_FER /* Fatal Error */ #define E1000_IMS_THS E1000_ICR_THS /* ICR.TS: Thermal Sensor Event*/ #define E1000_IMS_MDDET E1000_ICR_MDDET /* Malicious Driver Detect */ /* Extended Interrupt Mask Set */ #define E1000_EIMS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */ #define E1000_EIMS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */ #define E1000_EIMS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */ #define E1000_EIMS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */ #define E1000_EIMS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */ #define E1000_EIMS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */ #define E1000_EIMS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */ #define E1000_EIMS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */ #define E1000_EIMS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */ #define E1000_EIMS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */ /* Interrupt Cause Set */ #define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ #define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */ #define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */ /* Extended Interrupt Cause Set */ #define E1000_EICS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */ #define E1000_EICS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */ #define E1000_EICS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */ #define E1000_EICS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */ #define E1000_EICS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */ #define E1000_EICS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */ #define E1000_EICS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */ #define E1000_EICS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */ #define E1000_EICS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */ #define E1000_EICS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */ #define E1000_EITR_ITR_INT_MASK 0x0000FFFF /* E1000_EITR_CNT_IGNR is only for 82576 and newer */ #define E1000_EITR_CNT_IGNR 0x80000000 /* Don't reset counters on write */ #define E1000_EITR_INTERVAL 0x00007FFC /* Transmit Descriptor Control */ #define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */ #define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */ #define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */ #define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ #define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ #define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */ /* Enable the counting of descriptors still to be processed. */ #define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Flow Control Constants */ #define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 #define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 #define FLOW_CONTROL_TYPE 0x8808 /* 802.1q VLAN Packet Size */ #define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */ #define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ /* Receive Address * Number of high/low register pairs in the RAR. The RAR (Receive Address * Registers) holds the directed and multicast addresses that we monitor. * Technically, we have 16 spots. However, we reserve one of these spots * (RAR[15]) for our directed address used by controllers with * manageability enabled, allowing us room for 15 multicast addresses. */ #define E1000_RAR_ENTRIES 15 #define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ #define E1000_RAL_MAC_ADDR_LEN 4 #define E1000_RAH_MAC_ADDR_LEN 2 #define E1000_RAH_QUEUE_MASK_82575 0x000C0000 #define E1000_RAH_POOL_1 0x00040000 /* Error Codes */ #define E1000_SUCCESS 0 #define E1000_ERR_NVM 1 #define E1000_ERR_PHY 2 #define E1000_ERR_CONFIG 3 #define E1000_ERR_PARAM 4 #define E1000_ERR_MAC_INIT 5 #define E1000_ERR_PHY_TYPE 6 #define E1000_ERR_RESET 9 #define E1000_ERR_MASTER_REQUESTS_PENDING 10 #define E1000_ERR_HOST_INTERFACE_COMMAND 11 #define E1000_BLK_PHY_RESET 12 #define E1000_ERR_SWFW_SYNC 13 #define E1000_NOT_IMPLEMENTED 14 #define E1000_ERR_MBX 15 #define E1000_ERR_INVALID_ARGUMENT 16 #define E1000_ERR_NO_SPACE 17 #define E1000_ERR_NVM_PBA_SECTION 18 #define E1000_ERR_I2C 19 #define E1000_ERR_INVM_VALUE_NOT_FOUND 20 /* Loop limit on how long we wait for auto-negotiation to complete */ #define FIBER_LINK_UP_LIMIT 50 #define COPPER_LINK_UP_LIMIT 10 #define PHY_AUTO_NEG_LIMIT 45 #define PHY_FORCE_LIMIT 20 /* Number of 100 microseconds we wait for PCI Express master disable */ #define MASTER_DISABLE_TIMEOUT 800 /* Number of milliseconds we wait for PHY configuration done after MAC reset */ #define PHY_CFG_TIMEOUT 100 /* Number of 2 milliseconds we wait for acquiring MDIO ownership. */ #define MDIO_OWNERSHIP_TIMEOUT 10 /* Number of milliseconds for NVM auto read done after MAC reset. */ #define AUTO_READ_DONE_TIMEOUT 10 /* Flow Control */ #define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */ #define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ #define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ /* Transmit Configuration Word */ #define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ #define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */ #define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */ #define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */ #define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */ /* Receive Configuration Word */ #define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */ #define E1000_RXCW_IV 0x08000000 /* Receive config invalid */ #define E1000_RXCW_C 0x20000000 /* Receive config */ #define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */ #define E1000_TSYNCTXCTL_VALID 0x00000001 /* Tx timestamp valid */ #define E1000_TSYNCTXCTL_ENABLED 0x00000010 /* enable Tx timestamping */ /* HH Time Sync */ #define E1000_TSYNCTXCTL_MAX_ALLOWED_DLY_MASK 0x0000F000 /* max delay */ #define E1000_TSYNCTXCTL_SYNC_COMP_ERR 0x20000000 /* sync err */ #define E1000_TSYNCTXCTL_SYNC_COMP 0x40000000 /* sync complete */ #define E1000_TSYNCTXCTL_START_SYNC 0x80000000 /* initiate sync */ #define E1000_TSYNCRXCTL_VALID 0x00000001 /* Rx timestamp valid */ #define E1000_TSYNCRXCTL_TYPE_MASK 0x0000000E /* Rx type mask */ #define E1000_TSYNCRXCTL_TYPE_L2_V2 0x00 #define E1000_TSYNCRXCTL_TYPE_L4_V1 0x02 #define E1000_TSYNCRXCTL_TYPE_L2_L4_V2 0x04 #define E1000_TSYNCRXCTL_TYPE_ALL 0x08 #define E1000_TSYNCRXCTL_TYPE_EVENT_V2 0x0A #define E1000_TSYNCRXCTL_ENABLED 0x00000010 /* enable Rx timestamping */ #define E1000_TSYNCRXCTL_SYSCFI 0x00000020 /* Sys clock frequency */ #define E1000_RXMTRL_PTP_V1_SYNC_MESSAGE 0x00000000 #define E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE 0x00010000 #define E1000_RXMTRL_PTP_V2_SYNC_MESSAGE 0x00000000 #define E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE 0x01000000 #define E1000_TSYNCRXCFG_PTP_V1_CTRLT_MASK 0x000000FF #define E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE 0x00 #define E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE 0x01 #define E1000_TSYNCRXCFG_PTP_V1_FOLLOWUP_MESSAGE 0x02 #define E1000_TSYNCRXCFG_PTP_V1_DELAY_RESP_MESSAGE 0x03 #define E1000_TSYNCRXCFG_PTP_V1_MANAGEMENT_MESSAGE 0x04 #define E1000_TSYNCRXCFG_PTP_V2_MSGID_MASK 0x00000F00 #define E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE 0x0000 #define E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE 0x0100 #define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_REQ_MESSAGE 0x0200 #define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_RESP_MESSAGE 0x0300 #define E1000_TSYNCRXCFG_PTP_V2_FOLLOWUP_MESSAGE 0x0800 #define E1000_TSYNCRXCFG_PTP_V2_DELAY_RESP_MESSAGE 0x0900 #define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_FOLLOWUP_MESSAGE 0x0A00 #define E1000_TSYNCRXCFG_PTP_V2_ANNOUNCE_MESSAGE 0x0B00 #define E1000_TSYNCRXCFG_PTP_V2_SIGNALLING_MESSAGE 0x0C00 #define E1000_TSYNCRXCFG_PTP_V2_MANAGEMENT_MESSAGE 0x0D00 #define E1000_TIMINCA_16NS_SHIFT 24 #define E1000_TIMINCA_INCPERIOD_SHIFT 24 #define E1000_TIMINCA_INCVALUE_MASK 0x00FFFFFF /* ETQF register bit definitions */ #define E1000_ETQF_1588 (1 << 30) #define E1000_FTQF_VF_BP 0x00008000 #define E1000_FTQF_1588_TIME_STAMP 0x08000000 #define E1000_FTQF_MASK 0xF0000000 #define E1000_FTQF_MASK_PROTO_BP 0x10000000 /* Immediate Interrupt Rx (A.K.A. Low Latency Interrupt) */ #define E1000_IMIREXT_CTRL_BP 0x00080000 /* Bypass check of ctrl bits */ #define E1000_IMIREXT_SIZE_BP 0x00001000 /* Packet size bypass */ #define E1000_RXDADV_STAT_TSIP 0x08000 /* timestamp in packet */ #define E1000_TSICR_TXTS 0x00000002 #define E1000_TSIM_TXTS 0x00000002 /* TUPLE Filtering Configuration */ #define E1000_TTQF_DISABLE_MASK 0xF0008000 /* TTQF Disable Mask */ #define E1000_TTQF_QUEUE_ENABLE 0x100 /* TTQF Queue Enable Bit */ #define E1000_TTQF_PROTOCOL_MASK 0xFF /* TTQF Protocol Mask */ /* TTQF TCP Bit, shift with E1000_TTQF_PROTOCOL SHIFT */ #define E1000_TTQF_PROTOCOL_TCP 0x0 /* TTQF UDP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */ #define E1000_TTQF_PROTOCOL_UDP 0x1 /* TTQF SCTP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */ #define E1000_TTQF_PROTOCOL_SCTP 0x2 #define E1000_TTQF_PROTOCOL_SHIFT 5 /* TTQF Protocol Shift */ #define E1000_TTQF_QUEUE_SHIFT 16 /* TTQF Queue Shfit */ #define E1000_TTQF_RX_QUEUE_MASK 0x70000 /* TTQF Queue Mask */ #define E1000_TTQF_MASK_ENABLE 0x10000000 /* TTQF Mask Enable Bit */ #define E1000_IMIR_CLEAR_MASK 0xF001FFFF /* IMIR Reg Clear Mask */ #define E1000_IMIR_PORT_BYPASS 0x20000 /* IMIR Port Bypass Bit */ #define E1000_IMIR_PRIORITY_SHIFT 29 /* IMIR Priority Shift */ #define E1000_IMIREXT_CLEAR_MASK 0x7FFFF /* IMIREXT Reg Clear Mask */ #define E1000_MDICNFG_EXT_MDIO 0x80000000 /* MDI ext/int destination */ #define E1000_MDICNFG_COM_MDIO 0x40000000 /* MDI shared w/ lan 0 */ #define E1000_MDICNFG_PHY_MASK 0x03E00000 #define E1000_MDICNFG_PHY_SHIFT 21 #define E1000_MEDIA_PORT_COPPER 1 #define E1000_MEDIA_PORT_OTHER 2 #define E1000_M88E1112_AUTO_COPPER_SGMII 0x2 #define E1000_M88E1112_AUTO_COPPER_BASEX 0x3 #define E1000_M88E1112_STATUS_LINK 0x0004 /* Interface Link Bit */ #define E1000_M88E1112_MAC_CTRL_1 0x10 #define E1000_M88E1112_MAC_CTRL_1_MODE_MASK 0x0380 /* Mode Select */ #define E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT 7 #define E1000_M88E1112_PAGE_ADDR 0x16 #define E1000_M88E1112_STATUS 0x01 #define E1000_THSTAT_LOW_EVENT 0x20000000 /* Low thermal threshold */ #define E1000_THSTAT_MID_EVENT 0x00200000 /* Mid thermal threshold */ #define E1000_THSTAT_HIGH_EVENT 0x00002000 /* High thermal threshold */ #define E1000_THSTAT_PWR_DOWN 0x00000001 /* Power Down Event */ #define E1000_THSTAT_LINK_THROTTLE 0x00000002 /* Link Spd Throttle Event */ /* I350 EEE defines */ #define E1000_IPCNFG_EEE_1G_AN 0x00000008 /* IPCNFG EEE Ena 1G AN */ #define E1000_IPCNFG_EEE_100M_AN 0x00000004 /* IPCNFG EEE Ena 100M AN */ #define E1000_EEER_TX_LPI_EN 0x00010000 /* EEER Tx LPI Enable */ #define E1000_EEER_RX_LPI_EN 0x00020000 /* EEER Rx LPI Enable */ #define E1000_EEER_LPI_FC 0x00040000 /* EEER Ena on Flow Cntrl */ /* EEE status */ #define E1000_EEER_EEE_NEG 0x20000000 /* EEE capability nego */ #define E1000_EEER_RX_LPI_STATUS 0x40000000 /* Rx in LPI state */ #define E1000_EEER_TX_LPI_STATUS 0x80000000 /* Tx in LPI state */ #define E1000_EEE_LP_ADV_ADDR_I350 0x040F /* EEE LP Advertisement */ #define E1000_M88E1543_PAGE_ADDR 0x16 /* Page Offset Register */ #define E1000_M88E1543_EEE_CTRL_1 0x0 #define E1000_M88E1543_EEE_CTRL_1_MS 0x0001 /* EEE Master/Slave */ #define E1000_M88E1543_FIBER_CTRL 0x0 /* Fiber Control Register */ #define E1000_EEE_ADV_DEV_I354 7 #define E1000_EEE_ADV_ADDR_I354 60 #define E1000_EEE_ADV_100_SUPPORTED (1 << 1) /* 100BaseTx EEE Supported */ #define E1000_EEE_ADV_1000_SUPPORTED (1 << 2) /* 1000BaseT EEE Supported */ #define E1000_PCS_STATUS_DEV_I354 3 #define E1000_PCS_STATUS_ADDR_I354 1 #define E1000_PCS_STATUS_RX_LPI_RCVD 0x0400 #define E1000_PCS_STATUS_TX_LPI_RCVD 0x0800 #define E1000_M88E1512_CFG_REG_1 0x0010 #define E1000_M88E1512_CFG_REG_2 0x0011 #define E1000_M88E1512_CFG_REG_3 0x0007 #define E1000_M88E1512_MODE 0x0014 #define E1000_EEE_SU_LPI_CLK_STP 0x00800000 /* EEE LPI Clock Stop */ #define E1000_EEE_LP_ADV_DEV_I210 7 /* EEE LP Adv Device */ #define E1000_EEE_LP_ADV_ADDR_I210 61 /* EEE LP Adv Register */ /* PCI Express Control */ #define E1000_GCR_RXD_NO_SNOOP 0x00000001 #define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002 #define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004 #define E1000_GCR_TXD_NO_SNOOP 0x00000008 #define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010 #define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020 #define E1000_GCR_CMPL_TMOUT_MASK 0x0000F000 #define E1000_GCR_CMPL_TMOUT_10ms 0x00001000 #define E1000_GCR_CMPL_TMOUT_RESEND 0x00010000 #define E1000_GCR_CAP_VER2 0x00040000 #define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \ E1000_GCR_RXDSCW_NO_SNOOP | \ E1000_GCR_RXDSCR_NO_SNOOP | \ E1000_GCR_TXD_NO_SNOOP | \ E1000_GCR_TXDSCW_NO_SNOOP | \ E1000_GCR_TXDSCR_NO_SNOOP) #define E1000_MMDAC_FUNC_DATA 0x4000 /* Data, no post increment */ /* mPHY address control and data registers */ #define E1000_MPHY_ADDR_CTL 0x0024 /* Address Control Reg */ #define E1000_MPHY_ADDR_CTL_OFFSET_MASK 0xFFFF0000 #define E1000_MPHY_DATA 0x0E10 /* Data Register */ /* AFE CSR Offset for PCS CLK */ #define E1000_MPHY_PCS_CLK_REG_OFFSET 0x0004 /* Override for near end digital loopback. */ #define E1000_MPHY_PCS_CLK_REG_DIGINELBEN 0x10 /* PHY Control Register */ #define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */ #define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */ #define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ #define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ #define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */ #define MII_CR_POWER_DOWN 0x0800 /* Power down */ #define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ #define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */ #define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ #define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ #define MII_CR_SPEED_1000 0x0040 #define MII_CR_SPEED_100 0x2000 #define MII_CR_SPEED_10 0x0000 /* PHY Status Register */ #define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */ #define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */ #define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ #define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */ #define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */ #define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ #define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */ #define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */ #define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */ #define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */ #define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */ #define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */ #define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */ #define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */ #define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */ /* Autoneg Advertisement Register */ #define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */ #define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ #define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ #define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ #define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ #define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */ #define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ #define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ #define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */ #define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */ /* Link Partner Ability Register (Base Page) */ #define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */ #define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP 10T Half Dplx Capable */ #define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP 10T Full Dplx Capable */ #define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP 100TX Half Dplx Capable */ #define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP 100TX Full Dplx Capable */ #define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */ #define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ #define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asym Pause Direction bit */ #define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP detected Remote Fault */ #define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP rx'd link code word */ #define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */ /* Autoneg Expansion Register */ #define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */ #define NWAY_ER_PAGE_RXD 0x0002 /* LP 10T Half Dplx Capable */ #define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP 10T Full Dplx Capable */ #define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP 100TX Half Dplx Capable */ #define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP 100TX Full Dplx Capable */ /* 1000BASE-T Control Register */ #define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */ #define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ #define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ /* 1=Repeater/switch device port 0=DTE device */ #define CR_1000T_REPEATER_DTE 0x0400 /* 1=Configure PHY as Master 0=Configure PHY as Slave */ #define CR_1000T_MS_VALUE 0x0800 /* 1=Master/Slave manual config value 0=Automatic Master/Slave config */ #define CR_1000T_MS_ENABLE 0x1000 #define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */ #define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */ #define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */ #define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */ #define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */ /* 1000BASE-T Status Register */ #define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle err since last rd */ #define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asym pause direction bit */ #define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */ #define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */ #define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ #define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ #define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local Tx Master, 0=Slave */ #define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */ #define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5 /* PHY 1000 MII Register/Bit Definitions */ /* PHY Registers defined by IEEE */ #define PHY_CONTROL 0x00 /* Control Register */ #define PHY_STATUS 0x01 /* Status Register */ #define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ #define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ #define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ #define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ #define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */ #define PHY_NEXT_PAGE_TX 0x07 /* Next Page Tx */ #define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */ #define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ #define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ #define PHY_EXT_STATUS 0x0F /* Extended Status Reg */ #define PHY_CONTROL_LB 0x4000 /* PHY Loopback bit */ /* NVM Control */ #define E1000_EECD_SK 0x00000001 /* NVM Clock */ #define E1000_EECD_CS 0x00000002 /* NVM Chip Select */ #define E1000_EECD_DI 0x00000004 /* NVM Data In */ #define E1000_EECD_DO 0x00000008 /* NVM Data Out */ #define E1000_EECD_REQ 0x00000040 /* NVM Access Request */ #define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */ #define E1000_EECD_PRES 0x00000100 /* NVM Present */ #define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */ #define E1000_EECD_BLOCKED 0x00008000 /* Bit banging access blocked flag */ #define E1000_EECD_ABORT 0x00010000 /* NVM operation aborted flag */ #define E1000_EECD_TIMEOUT 0x00020000 /* NVM read operation timeout flag */ #define E1000_EECD_ERROR_CLR 0x00040000 /* NVM error status clear bit */ /* NVM Addressing bits based on type 0=small, 1=large */ #define E1000_EECD_ADDR_BITS 0x00000400 #define E1000_EECD_TYPE 0x00002000 /* NVM Type (1-SPI, 0-Microwire) */ #define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */ #define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */ #define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */ #define E1000_EECD_SIZE_EX_SHIFT 11 #define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */ #define E1000_EECD_AUPDEN 0x00100000 /* Ena Auto FLASH update */ #define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */ #define E1000_EECD_SEC1VAL_VALID_MASK (E1000_EECD_AUTO_RD | E1000_EECD_PRES) #define E1000_EECD_FLUPD_I210 0x00800000 /* Update FLASH */ #define E1000_EECD_FLUDONE_I210 0x04000000 /* Update FLASH done */ #define E1000_EECD_FLASH_DETECTED_I210 0x00080000 /* FLASH detected */ #define E1000_EECD_SEC1VAL_I210 0x02000000 /* Sector One Valid */ #define E1000_FLUDONE_ATTEMPTS 20000 #define E1000_EERD_EEWR_MAX_COUNT 512 /* buffered EEPROM words rw */ #define E1000_I210_FIFO_SEL_RX 0x00 #define E1000_I210_FIFO_SEL_TX_QAV(_i) (0x02 + (_i)) #define E1000_I210_FIFO_SEL_TX_LEGACY E1000_I210_FIFO_SEL_TX_QAV(0) #define E1000_I210_FIFO_SEL_BMC2OS_TX 0x06 #define E1000_I210_FIFO_SEL_BMC2OS_RX 0x01 #define E1000_I210_FLASH_SECTOR_SIZE 0x1000 /* 4KB FLASH sector unit size */ /* Secure FLASH mode requires removing MSb */ #define E1000_I210_FW_PTR_MASK 0x7FFF /* Firmware code revision field word offset*/ #define E1000_I210_FW_VER_OFFSET 328 #define E1000_NVM_RW_REG_DATA 16 /* Offset to data in NVM read/write regs */ #define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */ #define E1000_NVM_RW_REG_START 1 /* Start operation */ #define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */ #define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */ #define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */ #define E1000_FLASH_UPDATES 2000 /* NVM Word Offsets */ #define NVM_COMPAT 0x0003 #define NVM_ID_LED_SETTINGS 0x0004 +#define NVM_VERSION 0x0005 #define NVM_SERDES_AMPLITUDE 0x0006 /* SERDES output amplitude */ #define NVM_PHY_CLASS_WORD 0x0007 #define E1000_I210_NVM_FW_MODULE_PTR 0x0010 #define E1000_I350_NVM_FW_MODULE_PTR 0x0051 #define NVM_FUTURE_INIT_WORD1 0x0019 +#define NVM_ETRACK_WORD 0x0042 +#define NVM_ETRACK_HIWORD 0x0043 +#define NVM_COMB_VER_OFF 0x0083 +#define NVM_COMB_VER_PTR 0x003d + +/* NVM version defines */ +#define NVM_MAJOR_MASK 0xF000 +#define NVM_MINOR_MASK 0x0FF0 +#define NVM_IMAGE_ID_MASK 0x000F +#define NVM_COMB_VER_MASK 0x00FF +#define NVM_MAJOR_SHIFT 12 +#define NVM_MINOR_SHIFT 4 +#define NVM_COMB_VER_SHFT 8 +#define NVM_VER_INVALID 0xFFFF +#define NVM_ETRACK_SHIFT 16 +#define NVM_ETRACK_VALID 0x8000 +#define NVM_NEW_DEC_MASK 0x0F00 +#define NVM_HEX_CONV 16 +#define NVM_HEX_TENS 10 + +/* FW version defines */ +/* Offset of "Loader patch ptr" in Firmware Header */ +#define E1000_I350_NVM_FW_LOADER_PATCH_PTR_OFFSET 0x01 +/* Patch generation hour & minutes */ +#define E1000_I350_NVM_FW_VER_WORD1_OFFSET 0x04 +/* Patch generation month & day */ +#define E1000_I350_NVM_FW_VER_WORD2_OFFSET 0x05 +/* Patch generation year */ +#define E1000_I350_NVM_FW_VER_WORD3_OFFSET 0x06 +/* Patch major & minor numbers */ +#define E1000_I350_NVM_FW_VER_WORD4_OFFSET 0x07 + #define NVM_MAC_ADDR 0x0000 #define NVM_SUB_DEV_ID 0x000B #define NVM_SUB_VEN_ID 0x000C #define NVM_DEV_ID 0x000D #define NVM_VEN_ID 0x000E #define NVM_INIT_CTRL_2 0x000F #define NVM_INIT_CTRL_4 0x0013 #define NVM_LED_1_CFG 0x001C #define NVM_LED_0_2_CFG 0x001F #define NVM_COMPAT_VALID_CSUM 0x0001 #define NVM_FUTURE_INIT_WORD1_VALID_CSUM 0x0040 #define NVM_INIT_CONTROL2_REG 0x000F #define NVM_INIT_CONTROL3_PORT_B 0x0014 #define NVM_INIT_3GIO_3 0x001A #define NVM_SWDEF_PINS_CTRL_PORT_0 0x0020 #define NVM_INIT_CONTROL3_PORT_A 0x0024 #define NVM_CFG 0x0012 #define NVM_ALT_MAC_ADDR_PTR 0x0037 #define NVM_CHECKSUM_REG 0x003F #define NVM_COMPATIBILITY_REG_3 0x0003 #define NVM_COMPATIBILITY_BIT_MASK 0x8000 #define E1000_NVM_CFG_DONE_PORT_0 0x040000 /* MNG config cycle done */ #define E1000_NVM_CFG_DONE_PORT_1 0x080000 /* ...for second port */ #define E1000_NVM_CFG_DONE_PORT_2 0x100000 /* ...for third port */ #define E1000_NVM_CFG_DONE_PORT_3 0x200000 /* ...for fourth port */ #define NVM_82580_LAN_FUNC_OFFSET(a) ((a) ? (0x40 + (0x40 * (a))) : 0) /* Mask bits for fields in Word 0x24 of the NVM */ #define NVM_WORD24_COM_MDIO 0x0008 /* MDIO interface shared */ #define NVM_WORD24_EXT_MDIO 0x0004 /* MDIO accesses routed extrnl */ /* Offset of Link Mode bits for 82575/82576 */ #define NVM_WORD24_LNK_MODE_OFFSET 8 /* Offset of Link Mode bits for 82580 up */ #define NVM_WORD24_82580_LNK_MODE_OFFSET 4 /* Mask bits for fields in Word 0x0f of the NVM */ #define NVM_WORD0F_PAUSE_MASK 0x3000 #define NVM_WORD0F_PAUSE 0x1000 #define NVM_WORD0F_ASM_DIR 0x2000 #define NVM_WORD0F_SWPDIO_EXT_MASK 0x00F0 /* Mask bits for fields in Word 0x1a of the NVM */ #define NVM_WORD1A_ASPM_MASK 0x000C /* Mask bits for fields in Word 0x03 of the EEPROM */ #define NVM_COMPAT_LOM 0x0800 /* length of string needed to store PBA number */ #define E1000_PBANUM_LENGTH 11 /* For checksumming, the sum of all words in the NVM should equal 0xBABA. */ #define NVM_SUM 0xBABA /* PBA (printed board assembly) number words */ #define NVM_PBA_OFFSET_0 8 #define NVM_PBA_OFFSET_1 9 #define NVM_PBA_PTR_GUARD 0xFAFA #define NVM_RESERVED_WORD 0xFFFF #define NVM_PHY_CLASS_A 0x8000 #define NVM_SERDES_AMPLITUDE_MASK 0x000F #define NVM_SIZE_MASK 0x1C00 #define NVM_SIZE_SHIFT 10 #define NVM_WORD_SIZE_BASE_SHIFT 6 #define NVM_SWDPIO_EXT_SHIFT 4 /* NVM Commands - Microwire */ #define NVM_READ_OPCODE_MICROWIRE 0x6 /* NVM read opcode */ #define NVM_WRITE_OPCODE_MICROWIRE 0x5 /* NVM write opcode */ #define NVM_ERASE_OPCODE_MICROWIRE 0x7 /* NVM erase opcode */ #define NVM_EWEN_OPCODE_MICROWIRE 0x13 /* NVM erase/write enable */ #define NVM_EWDS_OPCODE_MICROWIRE 0x10 /* NVM erase/write disable */ /* NVM Commands - SPI */ #define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ #define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */ #define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */ #define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */ #define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */ #define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */ /* SPI NVM Status Register */ #define NVM_STATUS_RDY_SPI 0x01 /* Word definitions for ID LED Settings */ #define ID_LED_RESERVED_0000 0x0000 #define ID_LED_RESERVED_FFFF 0xFFFF #define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ (ID_LED_OFF1_OFF2 << 8) | \ (ID_LED_DEF1_DEF2 << 4) | \ (ID_LED_DEF1_DEF2)) #define ID_LED_DEF1_DEF2 0x1 #define ID_LED_DEF1_ON2 0x2 #define ID_LED_DEF1_OFF2 0x3 #define ID_LED_ON1_DEF2 0x4 #define ID_LED_ON1_ON2 0x5 #define ID_LED_ON1_OFF2 0x6 #define ID_LED_OFF1_DEF2 0x7 #define ID_LED_OFF1_ON2 0x8 #define ID_LED_OFF1_OFF2 0x9 #define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF #define IGP_ACTIVITY_LED_ENABLE 0x0300 #define IGP_LED3_MODE 0x07000000 /* PCI/PCI-X/PCI-EX Config space */ #define PCIX_COMMAND_REGISTER 0xE6 #define PCIX_STATUS_REGISTER_LO 0xE8 #define PCIX_STATUS_REGISTER_HI 0xEA #define PCI_HEADER_TYPE_REGISTER 0x0E #define PCIE_LINK_STATUS 0x12 #define PCIE_DEVICE_CONTROL2 0x28 #define PCIX_COMMAND_MMRBC_MASK 0x000C #define PCIX_COMMAND_MMRBC_SHIFT 0x2 #define PCIX_STATUS_HI_MMRBC_MASK 0x0060 #define PCIX_STATUS_HI_MMRBC_SHIFT 0x5 #define PCIX_STATUS_HI_MMRBC_4K 0x3 #define PCIX_STATUS_HI_MMRBC_2K 0x2 #define PCIX_STATUS_LO_FUNC_MASK 0x7 #define PCI_HEADER_TYPE_MULTIFUNC 0x80 #define PCIE_LINK_WIDTH_MASK 0x3F0 #define PCIE_LINK_WIDTH_SHIFT 4 #define PCIE_LINK_SPEED_MASK 0x0F #define PCIE_LINK_SPEED_2500 0x01 #define PCIE_LINK_SPEED_5000 0x02 #define PCIE_DEVICE_CONTROL2_16ms 0x0005 #ifndef ETH_ADDR_LEN #define ETH_ADDR_LEN 6 #endif #define PHY_REVISION_MASK 0xFFFFFFF0 #define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ #define MAX_PHY_MULTI_PAGE_REG 0xF /* Bit definitions for valid PHY IDs. * I = Integrated * E = External */ #define M88E1000_E_PHY_ID 0x01410C50 #define M88E1000_I_PHY_ID 0x01410C30 #define M88E1011_I_PHY_ID 0x01410C20 #define IGP01E1000_I_PHY_ID 0x02A80380 #define M88E1111_I_PHY_ID 0x01410CC0 #define M88E1543_E_PHY_ID 0x01410EA0 #define M88E1512_E_PHY_ID 0x01410DD0 #define M88E1112_E_PHY_ID 0x01410C90 #define I347AT4_E_PHY_ID 0x01410DC0 #define M88E1340M_E_PHY_ID 0x01410DF0 #define GG82563_E_PHY_ID 0x01410CA0 #define IGP03E1000_E_PHY_ID 0x02A80390 #define IFE_E_PHY_ID 0x02A80330 #define IFE_PLUS_E_PHY_ID 0x02A80320 #define IFE_C_E_PHY_ID 0x02A80310 #define BME1000_E_PHY_ID 0x01410CB0 #define BME1000_E_PHY_ID_R2 0x01410CB1 #define I82577_E_PHY_ID 0x01540050 #define I82578_E_PHY_ID 0x004DD040 #define I82579_E_PHY_ID 0x01540090 #define I217_E_PHY_ID 0x015400A0 #define I82580_I_PHY_ID 0x015403A0 #define I350_I_PHY_ID 0x015403B0 #define I210_I_PHY_ID 0x01410C00 #define IGP04E1000_E_PHY_ID 0x02A80391 #define M88_VENDOR 0x0141 /* M88E1000 Specific Registers */ #define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Reg */ #define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Reg */ #define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Cntrl */ #define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */ #define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */ #define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for pg number setting */ #define M88E1000_PHY_GEN_CONTROL 0x1E /* meaning depends on reg 29 */ #define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */ #define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */ /* M88E1000 PHY Specific Control Register */ #define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reverse enabled */ /* MDI Crossover Mode bits 6:5 Manual MDI configuration */ #define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 #define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ /* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */ #define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* Auto crossover enabled all speeds */ #define M88E1000_PSCR_AUTO_X_MODE 0x0060 #define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Tx */ /* M88E1000 PHY Specific Status Register */ #define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ #define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */ #define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ /* 0 = <50M * 1 = 50-80M * 2 = 80-110M * 3 = 110-140M * 4 = >140M */ #define M88E1000_PSSR_CABLE_LENGTH 0x0380 #define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */ #define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */ #define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */ #define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ #define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */ #define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ #define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 /* Number of times we will attempt to autonegotiate before downshifting if we * are the master */ #define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 #define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 /* Number of times we will attempt to autonegotiate before downshifting if we * are the slave */ #define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 #define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 #define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ /* Intel I347AT4 Registers */ #define I347AT4_PCDL 0x10 /* PHY Cable Diagnostics Length */ #define I347AT4_PCDC 0x15 /* PHY Cable Diagnostics Control */ #define I347AT4_PAGE_SELECT 0x16 /* I347AT4 Extended PHY Specific Control Register */ /* Number of times we will attempt to autonegotiate before downshifting if we * are the master */ #define I347AT4_PSCR_DOWNSHIFT_ENABLE 0x0800 #define I347AT4_PSCR_DOWNSHIFT_MASK 0x7000 #define I347AT4_PSCR_DOWNSHIFT_1X 0x0000 #define I347AT4_PSCR_DOWNSHIFT_2X 0x1000 #define I347AT4_PSCR_DOWNSHIFT_3X 0x2000 #define I347AT4_PSCR_DOWNSHIFT_4X 0x3000 #define I347AT4_PSCR_DOWNSHIFT_5X 0x4000 #define I347AT4_PSCR_DOWNSHIFT_6X 0x5000 #define I347AT4_PSCR_DOWNSHIFT_7X 0x6000 #define I347AT4_PSCR_DOWNSHIFT_8X 0x7000 /* I347AT4 PHY Cable Diagnostics Control */ #define I347AT4_PCDC_CABLE_LENGTH_UNIT 0x0400 /* 0=cm 1=meters */ /* M88E1112 only registers */ #define M88E1112_VCT_DSP_DISTANCE 0x001A /* M88EC018 Rev 2 specific DownShift settings */ #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800 #define I82578_EPSCR_DOWNSHIFT_ENABLE 0x0020 #define I82578_EPSCR_DOWNSHIFT_COUNTER_MASK 0x001C /* BME1000 PHY Specific Control Register */ #define BME1000_PSCR_ENABLE_DOWNSHIFT 0x0800 /* 1 = enable downshift */ /* Bits... * 15-5: page * 4-0: register offset */ #define GG82563_PAGE_SHIFT 5 #define GG82563_REG(page, reg) \ (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS)) #define GG82563_MIN_ALT_REG 30 /* GG82563 Specific Registers */ #define GG82563_PHY_SPEC_CTRL GG82563_REG(0, 16) /* PHY Spec Cntrl */ #define GG82563_PHY_PAGE_SELECT GG82563_REG(0, 22) /* Page Select */ #define GG82563_PHY_SPEC_CTRL_2 GG82563_REG(0, 26) /* PHY Spec Cntrl2 */ #define GG82563_PHY_PAGE_SELECT_ALT GG82563_REG(0, 29) /* Alt Page Select */ /* MAC Specific Control Register */ #define GG82563_PHY_MAC_SPEC_CTRL GG82563_REG(2, 21) #define GG82563_PHY_DSP_DISTANCE GG82563_REG(5, 26) /* DSP Distance */ /* Page 193 - Port Control Registers */ /* Kumeran Mode Control */ #define GG82563_PHY_KMRN_MODE_CTRL GG82563_REG(193, 16) #define GG82563_PHY_PWR_MGMT_CTRL GG82563_REG(193, 20) /* Pwr Mgt Ctrl */ /* Page 194 - KMRN Registers */ #define GG82563_PHY_INBAND_CTRL GG82563_REG(194, 18) /* Inband Ctrl */ /* MDI Control */ #define E1000_MDIC_REG_MASK 0x001F0000 #define E1000_MDIC_REG_SHIFT 16 #define E1000_MDIC_PHY_MASK 0x03E00000 #define E1000_MDIC_PHY_SHIFT 21 #define E1000_MDIC_OP_WRITE 0x04000000 #define E1000_MDIC_OP_READ 0x08000000 #define E1000_MDIC_READY 0x10000000 #define E1000_MDIC_ERROR 0x40000000 #define E1000_MDIC_DEST 0x80000000 #define E1000_VFTA_BLOCK_SIZE 8 /* SerDes Control */ #define E1000_GEN_CTL_READY 0x80000000 #define E1000_GEN_CTL_ADDRESS_SHIFT 8 #define E1000_GEN_POLL_TIMEOUT 640 /* LinkSec register fields */ #define E1000_LSECTXCAP_SUM_MASK 0x00FF0000 #define E1000_LSECTXCAP_SUM_SHIFT 16 #define E1000_LSECRXCAP_SUM_MASK 0x00FF0000 #define E1000_LSECRXCAP_SUM_SHIFT 16 #define E1000_LSECTXCTRL_EN_MASK 0x00000003 #define E1000_LSECTXCTRL_DISABLE 0x0 #define E1000_LSECTXCTRL_AUTH 0x1 #define E1000_LSECTXCTRL_AUTH_ENCRYPT 0x2 #define E1000_LSECTXCTRL_AISCI 0x00000020 #define E1000_LSECTXCTRL_PNTHRSH_MASK 0xFFFFFF00 #define E1000_LSECTXCTRL_RSV_MASK 0x000000D8 #define E1000_LSECRXCTRL_EN_MASK 0x0000000C #define E1000_LSECRXCTRL_EN_SHIFT 2 #define E1000_LSECRXCTRL_DISABLE 0x0 #define E1000_LSECRXCTRL_CHECK 0x1 #define E1000_LSECRXCTRL_STRICT 0x2 #define E1000_LSECRXCTRL_DROP 0x3 #define E1000_LSECRXCTRL_PLSH 0x00000040 #define E1000_LSECRXCTRL_RP 0x00000080 #define E1000_LSECRXCTRL_RSV_MASK 0xFFFFFF33 /* Tx Rate-Scheduler Config fields */ #define E1000_RTTBCNRC_RS_ENA 0x80000000 #define E1000_RTTBCNRC_RF_DEC_MASK 0x00003FFF #define E1000_RTTBCNRC_RF_INT_SHIFT 14 #define E1000_RTTBCNRC_RF_INT_MASK \ (E1000_RTTBCNRC_RF_DEC_MASK << E1000_RTTBCNRC_RF_INT_SHIFT) /* DMA Coalescing register fields */ /* DMA Coalescing Watchdog Timer */ #define E1000_DMACR_DMACWT_MASK 0x00003FFF /* DMA Coalescing Rx Threshold */ #define E1000_DMACR_DMACTHR_MASK 0x00FF0000 #define E1000_DMACR_DMACTHR_SHIFT 16 /* Lx when no PCIe transactions */ #define E1000_DMACR_DMAC_LX_MASK 0x30000000 #define E1000_DMACR_DMAC_LX_SHIFT 28 #define E1000_DMACR_DMAC_EN 0x80000000 /* Enable DMA Coalescing */ /* DMA Coalescing BMC-to-OS Watchdog Enable */ #define E1000_DMACR_DC_BMC2OSW_EN 0x00008000 /* DMA Coalescing Transmit Threshold */ #define E1000_DMCTXTH_DMCTTHR_MASK 0x00000FFF #define E1000_DMCTLX_TTLX_MASK 0x00000FFF /* Time to LX request */ /* Rx Traffic Rate Threshold */ #define E1000_DMCRTRH_UTRESH_MASK 0x0007FFFF /* Rx packet rate in current window */ #define E1000_DMCRTRH_LRPRCW 0x80000000 /* DMA Coal Rx Traffic Current Count */ #define E1000_DMCCNT_CCOUNT_MASK 0x01FFFFFF /* Flow ctrl Rx Threshold High val */ #define E1000_FCRTC_RTH_COAL_MASK 0x0003FFF0 #define E1000_FCRTC_RTH_COAL_SHIFT 4 /* Lx power decision based on DMA coal */ #define E1000_PCIEMISC_LX_DECISION 0x00000080 #define E1000_RXPBS_CFG_TS_EN 0x80000000 /* Timestamp in Rx buffer */ #define E1000_RXPBS_SIZE_I210_MASK 0x0000003F /* Rx packet buffer size */ #define E1000_TXPB0S_SIZE_I210_MASK 0x0000003F /* Tx packet buffer 0 size */ #define I210_RXPBSIZE_DEFAULT 0x000000A2 /* RXPBSIZE default */ #define I210_TXPBSIZE_DEFAULT 0x04000014 /* TXPBSIZE default */ #define E1000_DOBFFCTL_OBFFTHR_MASK 0x000000FF /* OBFF threshold */ #define E1000_DOBFFCTL_EXIT_ACT_MASK 0x01000000 /* Exit active CB */ /* Proxy Filter Control */ #define E1000_PROXYFC_D0 0x00000001 /* Enable offload in D0 */ #define E1000_PROXYFC_EX 0x00000004 /* Directed exact proxy */ #define E1000_PROXYFC_MC 0x00000008 /* Directed MC Proxy */ #define E1000_PROXYFC_BC 0x00000010 /* Broadcast Proxy Enable */ #define E1000_PROXYFC_ARP_DIRECTED 0x00000020 /* Directed ARP Proxy Ena */ #define E1000_PROXYFC_IPV4 0x00000040 /* Directed IPv4 Enable */ #define E1000_PROXYFC_IPV6 0x00000080 /* Directed IPv6 Enable */ #define E1000_PROXYFC_NS 0x00000200 /* IPv6 Neighbor Solicitation */ #define E1000_PROXYFC_ARP 0x00000800 /* ARP Request Proxy Ena */ /* Proxy Status */ #define E1000_PROXYS_CLEAR 0xFFFFFFFF /* Clear */ /* Firmware Status */ #define E1000_FWSTS_FWRI 0x80000000 /* FW Reset Indication */ /* VF Control */ #define E1000_VTCTRL_RST 0x04000000 /* Reset VF */ #define E1000_STATUS_LAN_ID_MASK 0x00000000C /* Mask for Lan ID field */ /* Lan ID bit field offset in status register */ #define E1000_STATUS_LAN_ID_OFFSET 2 #define E1000_VFTA_ENTRIES 128 #define E1000_UNUSEDARG #ifndef ERROR_REPORT #define ERROR_REPORT(fmt) do { } while (0) #endif /* ERROR_REPORT */ #endif /* _E1000_DEFINES_H_ */ diff --git a/sys/dev/e1000/e1000_hw.h b/sys/dev/e1000/e1000_hw.h index f3acfa5cfc79..42dbb2e0717e 100644 --- a/sys/dev/e1000/e1000_hw.h +++ b/sys/dev/e1000/e1000_hw.h @@ -1,1072 +1,1072 @@ /****************************************************************************** SPDX-License-Identifier: BSD-3-Clause Copyright (c) 2001-2020, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************/ /*$FreeBSD$*/ #ifndef _E1000_HW_H_ #define _E1000_HW_H_ #include "e1000_osdep.h" #include "e1000_regs.h" #include "e1000_defines.h" struct e1000_hw; #define E1000_DEV_ID_82542 0x1000 #define E1000_DEV_ID_82543GC_FIBER 0x1001 #define E1000_DEV_ID_82543GC_COPPER 0x1004 #define E1000_DEV_ID_82544EI_COPPER 0x1008 #define E1000_DEV_ID_82544EI_FIBER 0x1009 #define E1000_DEV_ID_82544GC_COPPER 0x100C #define E1000_DEV_ID_82544GC_LOM 0x100D #define E1000_DEV_ID_82540EM 0x100E #define E1000_DEV_ID_82540EM_LOM 0x1015 #define E1000_DEV_ID_82540EP_LOM 0x1016 #define E1000_DEV_ID_82540EP 0x1017 #define E1000_DEV_ID_82540EP_LP 0x101E #define E1000_DEV_ID_82545EM_COPPER 0x100F #define E1000_DEV_ID_82545EM_FIBER 0x1011 #define E1000_DEV_ID_82545GM_COPPER 0x1026 #define E1000_DEV_ID_82545GM_FIBER 0x1027 #define E1000_DEV_ID_82545GM_SERDES 0x1028 #define E1000_DEV_ID_82546EB_COPPER 0x1010 #define E1000_DEV_ID_82546EB_FIBER 0x1012 #define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D #define E1000_DEV_ID_82546GB_COPPER 0x1079 #define E1000_DEV_ID_82546GB_FIBER 0x107A #define E1000_DEV_ID_82546GB_SERDES 0x107B #define E1000_DEV_ID_82546GB_PCIE 0x108A #define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099 #define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5 #define E1000_DEV_ID_82541EI 0x1013 #define E1000_DEV_ID_82541EI_MOBILE 0x1018 #define E1000_DEV_ID_82541ER_LOM 0x1014 #define E1000_DEV_ID_82541ER 0x1078 #define E1000_DEV_ID_82541GI 0x1076 #define E1000_DEV_ID_82541GI_LF 0x107C #define E1000_DEV_ID_82541GI_MOBILE 0x1077 #define E1000_DEV_ID_82547EI 0x1019 #define E1000_DEV_ID_82547EI_MOBILE 0x101A #define E1000_DEV_ID_82547GI 0x1075 #define E1000_DEV_ID_82571EB_COPPER 0x105E #define E1000_DEV_ID_82571EB_FIBER 0x105F #define E1000_DEV_ID_82571EB_SERDES 0x1060 #define E1000_DEV_ID_82571EB_SERDES_DUAL 0x10D9 #define E1000_DEV_ID_82571EB_SERDES_QUAD 0x10DA #define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4 #define E1000_DEV_ID_82571PT_QUAD_COPPER 0x10D5 #define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5 #define E1000_DEV_ID_82571EB_QUAD_COPPER_LP 0x10BC #define E1000_DEV_ID_82572EI_COPPER 0x107D #define E1000_DEV_ID_82572EI_FIBER 0x107E #define E1000_DEV_ID_82572EI_SERDES 0x107F #define E1000_DEV_ID_82572EI 0x10B9 #define E1000_DEV_ID_82573E 0x108B #define E1000_DEV_ID_82573E_IAMT 0x108C #define E1000_DEV_ID_82573L 0x109A #define E1000_DEV_ID_82574L 0x10D3 #define E1000_DEV_ID_82574LA 0x10F6 #define E1000_DEV_ID_82583V 0x150C #define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096 #define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098 #define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA #define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB #define E1000_DEV_ID_ICH8_82567V_3 0x1501 #define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049 #define E1000_DEV_ID_ICH8_IGP_AMT 0x104A #define E1000_DEV_ID_ICH8_IGP_C 0x104B #define E1000_DEV_ID_ICH8_IFE 0x104C #define E1000_DEV_ID_ICH8_IFE_GT 0x10C4 #define E1000_DEV_ID_ICH8_IFE_G 0x10C5 #define E1000_DEV_ID_ICH8_IGP_M 0x104D #define E1000_DEV_ID_ICH9_IGP_M 0x10BF #define E1000_DEV_ID_ICH9_IGP_M_AMT 0x10F5 #define E1000_DEV_ID_ICH9_IGP_M_V 0x10CB #define E1000_DEV_ID_ICH9_IGP_AMT 0x10BD #define E1000_DEV_ID_ICH9_BM 0x10E5 #define E1000_DEV_ID_ICH9_IGP_C 0x294C #define E1000_DEV_ID_ICH9_IFE 0x10C0 #define E1000_DEV_ID_ICH9_IFE_GT 0x10C3 #define E1000_DEV_ID_ICH9_IFE_G 0x10C2 #define E1000_DEV_ID_ICH10_R_BM_LM 0x10CC #define E1000_DEV_ID_ICH10_R_BM_LF 0x10CD #define E1000_DEV_ID_ICH10_R_BM_V 0x10CE #define E1000_DEV_ID_ICH10_D_BM_LM 0x10DE #define E1000_DEV_ID_ICH10_D_BM_LF 0x10DF #define E1000_DEV_ID_ICH10_D_BM_V 0x1525 #define E1000_DEV_ID_PCH_M_HV_LM 0x10EA #define E1000_DEV_ID_PCH_M_HV_LC 0x10EB #define E1000_DEV_ID_PCH_D_HV_DM 0x10EF #define E1000_DEV_ID_PCH_D_HV_DC 0x10F0 #define E1000_DEV_ID_PCH2_LV_LM 0x1502 #define E1000_DEV_ID_PCH2_LV_V 0x1503 #define E1000_DEV_ID_PCH_LPT_I217_LM 0x153A #define E1000_DEV_ID_PCH_LPT_I217_V 0x153B #define E1000_DEV_ID_PCH_LPTLP_I218_LM 0x155A #define E1000_DEV_ID_PCH_LPTLP_I218_V 0x1559 #define E1000_DEV_ID_PCH_I218_LM2 0x15A0 #define E1000_DEV_ID_PCH_I218_V2 0x15A1 #define E1000_DEV_ID_PCH_I218_LM3 0x15A2 /* Wildcat Point PCH */ #define E1000_DEV_ID_PCH_I218_V3 0x15A3 /* Wildcat Point PCH */ #define E1000_DEV_ID_PCH_SPT_I219_LM 0x156F /* Sunrise Point PCH */ #define E1000_DEV_ID_PCH_SPT_I219_V 0x1570 /* Sunrise Point PCH */ #define E1000_DEV_ID_PCH_SPT_I219_LM2 0x15B7 /* Sunrise Point-H PCH */ #define E1000_DEV_ID_PCH_SPT_I219_V2 0x15B8 /* Sunrise Point-H PCH */ #define E1000_DEV_ID_PCH_LBG_I219_LM3 0x15B9 /* LEWISBURG PCH */ #define E1000_DEV_ID_PCH_SPT_I219_LM4 0x15D7 #define E1000_DEV_ID_PCH_SPT_I219_V4 0x15D8 #define E1000_DEV_ID_PCH_SPT_I219_LM5 0x15E3 #define E1000_DEV_ID_PCH_SPT_I219_V5 0x15D6 #define E1000_DEV_ID_PCH_CNP_I219_LM6 0x15BD #define E1000_DEV_ID_PCH_CNP_I219_V6 0x15BE #define E1000_DEV_ID_PCH_CNP_I219_LM7 0x15BB #define E1000_DEV_ID_PCH_CNP_I219_V7 0x15BC #define E1000_DEV_ID_PCH_ICP_I219_LM8 0x15DF #define E1000_DEV_ID_PCH_ICP_I219_V8 0x15E0 #define E1000_DEV_ID_PCH_ICP_I219_LM9 0x15E1 #define E1000_DEV_ID_PCH_ICP_I219_V9 0x15E2 #define E1000_DEV_ID_PCH_CMP_I219_LM10 0x0D4E #define E1000_DEV_ID_PCH_CMP_I219_V10 0x0D4F #define E1000_DEV_ID_PCH_CMP_I219_LM11 0x0D4C #define E1000_DEV_ID_PCH_CMP_I219_V11 0x0D4D #define E1000_DEV_ID_PCH_CMP_I219_LM12 0x0D53 #define E1000_DEV_ID_PCH_CMP_I219_V12 0x0D55 #define E1000_DEV_ID_PCH_TGP_I219_LM13 0x15FB #define E1000_DEV_ID_PCH_TGP_I219_V13 0x15FC #define E1000_DEV_ID_PCH_TGP_I219_LM14 0x15F9 #define E1000_DEV_ID_PCH_TGP_I219_V14 0x15FA #define E1000_DEV_ID_PCH_TGP_I219_LM15 0x15F4 #define E1000_DEV_ID_PCH_TGP_I219_V15 0x15F5 #define E1000_DEV_ID_PCH_ADL_I219_LM16 0x1A1E #define E1000_DEV_ID_PCH_ADL_I219_V16 0x1A1F #define E1000_DEV_ID_PCH_ADL_I219_LM17 0x1A1C #define E1000_DEV_ID_PCH_ADL_I219_V17 0x1A1D #define E1000_DEV_ID_PCH_MTP_I219_LM18 0x550A #define E1000_DEV_ID_PCH_MTP_I219_V18 0x550B #define E1000_DEV_ID_PCH_MTP_I219_LM19 0x550C #define E1000_DEV_ID_PCH_MTP_I219_V19 0x550D #define E1000_DEV_ID_82576 0x10C9 #define E1000_DEV_ID_82576_FIBER 0x10E6 #define E1000_DEV_ID_82576_SERDES 0x10E7 #define E1000_DEV_ID_82576_QUAD_COPPER 0x10E8 #define E1000_DEV_ID_82576_QUAD_COPPER_ET2 0x1526 #define E1000_DEV_ID_82576_NS 0x150A #define E1000_DEV_ID_82576_NS_SERDES 0x1518 #define E1000_DEV_ID_82576_SERDES_QUAD 0x150D #define E1000_DEV_ID_82576_VF 0x10CA #define E1000_DEV_ID_82576_VF_HV 0x152D #define E1000_DEV_ID_I350_VF 0x1520 #define E1000_DEV_ID_I350_VF_HV 0x152F #define E1000_DEV_ID_82575EB_COPPER 0x10A7 #define E1000_DEV_ID_82575EB_FIBER_SERDES 0x10A9 #define E1000_DEV_ID_82575GB_QUAD_COPPER 0x10D6 #define E1000_DEV_ID_82580_COPPER 0x150E #define E1000_DEV_ID_82580_FIBER 0x150F #define E1000_DEV_ID_82580_SERDES 0x1510 #define E1000_DEV_ID_82580_SGMII 0x1511 #define E1000_DEV_ID_82580_COPPER_DUAL 0x1516 #define E1000_DEV_ID_82580_QUAD_FIBER 0x1527 #define E1000_DEV_ID_I350_COPPER 0x1521 #define E1000_DEV_ID_I350_FIBER 0x1522 #define E1000_DEV_ID_I350_SERDES 0x1523 #define E1000_DEV_ID_I350_SGMII 0x1524 #define E1000_DEV_ID_I350_DA4 0x1546 #define E1000_DEV_ID_I210_COPPER 0x1533 #define E1000_DEV_ID_I210_COPPER_OEM1 0x1534 #define E1000_DEV_ID_I210_COPPER_IT 0x1535 #define E1000_DEV_ID_I210_FIBER 0x1536 #define E1000_DEV_ID_I210_SERDES 0x1537 #define E1000_DEV_ID_I210_SGMII 0x1538 #define E1000_DEV_ID_I210_COPPER_FLASHLESS 0x157B #define E1000_DEV_ID_I210_SERDES_FLASHLESS 0x157C #define E1000_DEV_ID_I210_SGMII_FLASHLESS 0x15F6 #define E1000_DEV_ID_I211_COPPER 0x1539 #define E1000_DEV_ID_I354_BACKPLANE_1GBPS 0x1F40 #define E1000_DEV_ID_I354_SGMII 0x1F41 #define E1000_DEV_ID_I354_BACKPLANE_2_5GBPS 0x1F45 #define E1000_DEV_ID_DH89XXCC_SGMII 0x0438 #define E1000_DEV_ID_DH89XXCC_SERDES 0x043A #define E1000_DEV_ID_DH89XXCC_BACKPLANE 0x043C #define E1000_DEV_ID_DH89XXCC_SFP 0x0440 #define E1000_REVISION_0 0 #define E1000_REVISION_1 1 #define E1000_REVISION_2 2 #define E1000_REVISION_3 3 #define E1000_REVISION_4 4 #define E1000_FUNC_0 0 #define E1000_FUNC_1 1 #define E1000_FUNC_2 2 #define E1000_FUNC_3 3 #define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0 0 #define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1 3 #define E1000_ALT_MAC_ADDRESS_OFFSET_LAN2 6 #define E1000_ALT_MAC_ADDRESS_OFFSET_LAN3 9 enum e1000_mac_type { e1000_undefined = 0, e1000_82542, e1000_82543, e1000_82544, e1000_82540, e1000_82545, e1000_82545_rev_3, e1000_82546, e1000_82546_rev_3, e1000_82541, e1000_82541_rev_2, e1000_82547, e1000_82547_rev_2, e1000_82571, e1000_82572, e1000_82573, e1000_82574, e1000_82583, e1000_80003es2lan, e1000_ich8lan, e1000_ich9lan, e1000_ich10lan, e1000_pchlan, e1000_pch2lan, e1000_pch_lpt, e1000_pch_spt, e1000_pch_cnp, e1000_pch_tgp, e1000_pch_adp, e1000_pch_mtp, e1000_82575, e1000_82576, e1000_82580, e1000_i350, e1000_i354, e1000_i210, e1000_i211, e1000_vfadapt, e1000_vfadapt_i350, e1000_num_macs /* List is 1-based, so subtract 1 for TRUE count. */ }; enum e1000_media_type { e1000_media_type_unknown = 0, e1000_media_type_copper = 1, e1000_media_type_fiber = 2, e1000_media_type_internal_serdes = 3, e1000_num_media_types }; enum e1000_nvm_type { e1000_nvm_unknown = 0, e1000_nvm_none, e1000_nvm_eeprom_spi, e1000_nvm_eeprom_microwire, e1000_nvm_flash_hw, e1000_nvm_invm, e1000_nvm_flash_sw }; enum e1000_nvm_override { e1000_nvm_override_none = 0, e1000_nvm_override_spi_small, e1000_nvm_override_spi_large, e1000_nvm_override_microwire_small, e1000_nvm_override_microwire_large }; enum e1000_phy_type { e1000_phy_unknown = 0, e1000_phy_none, e1000_phy_m88, e1000_phy_igp, e1000_phy_igp_2, e1000_phy_gg82563, e1000_phy_igp_3, e1000_phy_ife, e1000_phy_bm, e1000_phy_82578, e1000_phy_82577, e1000_phy_82579, e1000_phy_i217, e1000_phy_82580, e1000_phy_vf, e1000_phy_i210, }; enum e1000_bus_type { e1000_bus_type_unknown = 0, e1000_bus_type_pci, e1000_bus_type_pcix, e1000_bus_type_pci_express, e1000_bus_type_reserved }; enum e1000_bus_speed { e1000_bus_speed_unknown = 0, e1000_bus_speed_33, e1000_bus_speed_66, e1000_bus_speed_100, e1000_bus_speed_120, e1000_bus_speed_133, e1000_bus_speed_2500, e1000_bus_speed_5000, e1000_bus_speed_reserved }; enum e1000_bus_width { e1000_bus_width_unknown = 0, e1000_bus_width_pcie_x1, e1000_bus_width_pcie_x2, e1000_bus_width_pcie_x4 = 4, e1000_bus_width_pcie_x8 = 8, e1000_bus_width_32, e1000_bus_width_64, e1000_bus_width_reserved }; enum e1000_1000t_rx_status { e1000_1000t_rx_status_not_ok = 0, e1000_1000t_rx_status_ok, e1000_1000t_rx_status_undefined = 0xFF }; enum e1000_rev_polarity { e1000_rev_polarity_normal = 0, e1000_rev_polarity_reversed, e1000_rev_polarity_undefined = 0xFF }; enum e1000_fc_mode { e1000_fc_none = 0, e1000_fc_rx_pause, e1000_fc_tx_pause, e1000_fc_full, e1000_fc_default = 0xFF }; enum e1000_ffe_config { e1000_ffe_config_enabled = 0, e1000_ffe_config_active, e1000_ffe_config_blocked }; enum e1000_dsp_config { e1000_dsp_config_disabled = 0, e1000_dsp_config_enabled, e1000_dsp_config_activated, e1000_dsp_config_undefined = 0xFF }; enum e1000_ms_type { e1000_ms_hw_default = 0, e1000_ms_force_master, e1000_ms_force_slave, e1000_ms_auto }; enum e1000_smart_speed { e1000_smart_speed_default = 0, e1000_smart_speed_on, e1000_smart_speed_off }; enum e1000_serdes_link_state { e1000_serdes_link_down = 0, e1000_serdes_link_autoneg_progress, e1000_serdes_link_autoneg_complete, e1000_serdes_link_forced_up }; #define __le16 u16 #define __le32 u32 #define __le64 u64 /* Receive Descriptor */ struct e1000_rx_desc { __le64 buffer_addr; /* Address of the descriptor's data buffer */ __le16 length; /* Length of data DMAed into data buffer */ __le16 csum; /* Packet checksum */ u8 status; /* Descriptor status */ u8 errors; /* Descriptor Errors */ __le16 special; }; /* Receive Descriptor - Extended */ union e1000_rx_desc_extended { struct { __le64 buffer_addr; __le64 reserved; } read; struct { struct { __le32 mrq; /* Multiple Rx Queues */ union { __le32 rss; /* RSS Hash */ struct { __le16 ip_id; /* IP id */ __le16 csum; /* Packet Checksum */ } csum_ip; } hi_dword; } lower; struct { __le32 status_error; /* ext status/error */ __le16 length; __le16 vlan; /* VLAN tag */ } upper; } wb; /* writeback */ }; #define MAX_PS_BUFFERS 4 /* Number of packet split data buffers (not including the header buffer) */ #define PS_PAGE_BUFFERS (MAX_PS_BUFFERS - 1) /* Receive Descriptor - Packet Split */ union e1000_rx_desc_packet_split { struct { /* one buffer for protocol header(s), three data buffers */ __le64 buffer_addr[MAX_PS_BUFFERS]; } read; struct { struct { __le32 mrq; /* Multiple Rx Queues */ union { __le32 rss; /* RSS Hash */ struct { __le16 ip_id; /* IP id */ __le16 csum; /* Packet Checksum */ } csum_ip; } hi_dword; } lower; struct { __le32 status_error; /* ext status/error */ __le16 length0; /* length of buffer 0 */ __le16 vlan; /* VLAN tag */ } middle; struct { __le16 header_status; /* length of buffers 1-3 */ __le16 length[PS_PAGE_BUFFERS]; } upper; __le64 reserved; } wb; /* writeback */ }; /* Transmit Descriptor */ struct e1000_tx_desc { __le64 buffer_addr; /* Address of the descriptor's data buffer */ union { __le32 data; struct { __le16 length; /* Data buffer length */ u8 cso; /* Checksum offset */ u8 cmd; /* Descriptor control */ } flags; } lower; union { __le32 data; struct { u8 status; /* Descriptor status */ u8 css; /* Checksum start */ __le16 special; } fields; } upper; }; /* Offload Context Descriptor */ struct e1000_context_desc { union { __le32 ip_config; struct { u8 ipcss; /* IP checksum start */ u8 ipcso; /* IP checksum offset */ __le16 ipcse; /* IP checksum end */ } ip_fields; } lower_setup; union { __le32 tcp_config; struct { u8 tucss; /* TCP checksum start */ u8 tucso; /* TCP checksum offset */ __le16 tucse; /* TCP checksum end */ } tcp_fields; } upper_setup; __le32 cmd_and_length; union { __le32 data; struct { u8 status; /* Descriptor status */ u8 hdr_len; /* Header length */ __le16 mss; /* Maximum segment size */ } fields; } tcp_seg_setup; }; /* Offload data descriptor */ struct e1000_data_desc { __le64 buffer_addr; /* Address of the descriptor's buffer address */ union { __le32 data; struct { __le16 length; /* Data buffer length */ u8 typ_len_ext; u8 cmd; } flags; } lower; union { __le32 data; struct { u8 status; /* Descriptor status */ u8 popts; /* Packet Options */ __le16 special; } fields; } upper; }; /* Statistics counters collected by the MAC */ struct e1000_hw_stats { u64 crcerrs; u64 algnerrc; u64 symerrs; u64 rxerrc; u64 mpc; u64 scc; u64 ecol; u64 mcc; u64 latecol; u64 colc; u64 dc; u64 tncrs; u64 sec; u64 cexterr; u64 rlec; u64 xonrxc; u64 xontxc; u64 xoffrxc; u64 xofftxc; u64 fcruc; u64 prc64; u64 prc127; u64 prc255; u64 prc511; u64 prc1023; u64 prc1522; u64 gprc; u64 bprc; u64 mprc; u64 gptc; u64 gorc; u64 gotc; u64 rnbc; u64 ruc; u64 rfc; u64 roc; u64 rjc; u64 mgprc; u64 mgpdc; u64 mgptc; u64 tor; u64 tot; u64 tpr; u64 tpt; u64 ptc64; u64 ptc127; u64 ptc255; u64 ptc511; u64 ptc1023; u64 ptc1522; u64 mptc; u64 bptc; u64 tsctc; u64 tsctfc; u64 iac; u64 icrxptc; u64 icrxatc; u64 ictxptc; u64 ictxatc; u64 ictxqec; u64 ictxqmtc; u64 icrxdmtc; u64 icrxoc; u64 cbtmpc; u64 htdpmc; u64 cbrdpc; u64 cbrmpc; u64 rpthc; u64 hgptc; u64 htcbdpc; u64 hgorc; u64 hgotc; u64 lenerrs; u64 scvpc; u64 hrmpc; u64 doosync; u64 o2bgptc; u64 o2bspc; u64 b2ospc; u64 b2ogprc; }; struct e1000_vf_stats { u64 base_gprc; u64 base_gptc; u64 base_gorc; u64 base_gotc; u64 base_mprc; u64 base_gotlbc; u64 base_gptlbc; u64 base_gorlbc; u64 base_gprlbc; u32 last_gprc; u32 last_gptc; u32 last_gorc; u32 last_gotc; u32 last_mprc; u32 last_gotlbc; u32 last_gptlbc; u32 last_gorlbc; u32 last_gprlbc; u64 gprc; u64 gptc; u64 gorc; u64 gotc; u64 mprc; u64 gotlbc; u64 gptlbc; u64 gorlbc; u64 gprlbc; }; struct e1000_phy_stats { u32 idle_errors; u32 receive_errors; }; struct e1000_host_mng_dhcp_cookie { u32 signature; u8 status; u8 reserved0; u16 vlan_id; u32 reserved1; u16 reserved2; u8 reserved3; u8 checksum; }; /* Host Interface "Rev 1" */ struct e1000_host_command_header { u8 command_id; u8 command_length; u8 command_options; u8 checksum; }; #define E1000_HI_MAX_DATA_LENGTH 252 struct e1000_host_command_info { struct e1000_host_command_header command_header; u8 command_data[E1000_HI_MAX_DATA_LENGTH]; }; /* Host Interface "Rev 2" */ struct e1000_host_mng_command_header { u8 command_id; u8 checksum; u16 reserved1; u16 reserved2; u16 command_length; }; #define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 struct e1000_host_mng_command_info { struct e1000_host_mng_command_header command_header; u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; }; #include "e1000_mac.h" #include "e1000_phy.h" #include "e1000_nvm.h" #include "e1000_manage.h" #include "e1000_mbx.h" /* Function pointers for the MAC. */ struct e1000_mac_operations { s32 (*init_params)(struct e1000_hw *); s32 (*id_led_init)(struct e1000_hw *); s32 (*blink_led)(struct e1000_hw *); bool (*check_mng_mode)(struct e1000_hw *); s32 (*check_for_link)(struct e1000_hw *); s32 (*cleanup_led)(struct e1000_hw *); void (*clear_hw_cntrs)(struct e1000_hw *); void (*clear_vfta)(struct e1000_hw *); s32 (*get_bus_info)(struct e1000_hw *); void (*set_lan_id)(struct e1000_hw *); s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *); s32 (*led_on)(struct e1000_hw *); s32 (*led_off)(struct e1000_hw *); void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32); s32 (*reset_hw)(struct e1000_hw *); s32 (*init_hw)(struct e1000_hw *); void (*shutdown_serdes)(struct e1000_hw *); void (*power_up_serdes)(struct e1000_hw *); s32 (*setup_link)(struct e1000_hw *); s32 (*setup_physical_interface)(struct e1000_hw *); s32 (*setup_led)(struct e1000_hw *); void (*write_vfta)(struct e1000_hw *, u32, u32); void (*config_collision_dist)(struct e1000_hw *); int (*rar_set)(struct e1000_hw *, u8*, u32); s32 (*read_mac_addr)(struct e1000_hw *); s32 (*validate_mdi_setting)(struct e1000_hw *); s32 (*set_obff_timer)(struct e1000_hw *, u32); s32 (*acquire_swfw_sync)(struct e1000_hw *, u16); void (*release_swfw_sync)(struct e1000_hw *, u16); }; /* When to use various PHY register access functions: * * Func Caller * Function Does Does When to use * ~~~~~~~~~~~~ ~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * X_reg L,P,A n/a for simple PHY reg accesses * X_reg_locked P,A L for multiple accesses of different regs * on different pages * X_reg_page A L,P for multiple accesses of different regs * on the same page * * Where X=[read|write], L=locking, P=sets page, A=register access * */ struct e1000_phy_operations { s32 (*init_params)(struct e1000_hw *); s32 (*acquire)(struct e1000_hw *); s32 (*cfg_on_link_up)(struct e1000_hw *); s32 (*check_polarity)(struct e1000_hw *); s32 (*check_reset_block)(struct e1000_hw *); s32 (*commit)(struct e1000_hw *); s32 (*force_speed_duplex)(struct e1000_hw *); s32 (*get_cfg_done)(struct e1000_hw *hw); s32 (*get_cable_length)(struct e1000_hw *); s32 (*get_info)(struct e1000_hw *); s32 (*set_page)(struct e1000_hw *, u16); s32 (*read_reg)(struct e1000_hw *, u32, u16 *); s32 (*read_reg_locked)(struct e1000_hw *, u32, u16 *); s32 (*read_reg_page)(struct e1000_hw *, u32, u16 *); void (*release)(struct e1000_hw *); s32 (*reset)(struct e1000_hw *); s32 (*set_d0_lplu_state)(struct e1000_hw *, bool); s32 (*set_d3_lplu_state)(struct e1000_hw *, bool); s32 (*write_reg)(struct e1000_hw *, u32, u16); s32 (*write_reg_locked)(struct e1000_hw *, u32, u16); s32 (*write_reg_page)(struct e1000_hw *, u32, u16); void (*power_up)(struct e1000_hw *); void (*power_down)(struct e1000_hw *); s32 (*read_i2c_byte)(struct e1000_hw *, u8, u8, u8 *); s32 (*write_i2c_byte)(struct e1000_hw *, u8, u8, u8); }; /* Function pointers for the NVM. */ struct e1000_nvm_operations { s32 (*init_params)(struct e1000_hw *); s32 (*acquire)(struct e1000_hw *); s32 (*read)(struct e1000_hw *, u16, u16, u16 *); void (*release)(struct e1000_hw *); void (*reload)(struct e1000_hw *); s32 (*update)(struct e1000_hw *); s32 (*valid_led_default)(struct e1000_hw *, u16 *); s32 (*validate)(struct e1000_hw *); s32 (*write)(struct e1000_hw *, u16, u16, u16 *); }; struct e1000_mac_info { struct e1000_mac_operations ops; u8 addr[ETH_ADDR_LEN]; u8 perm_addr[ETH_ADDR_LEN]; enum e1000_mac_type type; u32 collision_delta; u32 ledctl_default; u32 ledctl_mode1; u32 ledctl_mode2; u32 mc_filter_type; u32 tx_packet_delta; u32 txcw; u16 current_ifs_val; u16 ifs_max_val; u16 ifs_min_val; u16 ifs_ratio; u16 ifs_step_size; u16 mta_reg_count; u16 uta_reg_count; /* Maximum size of the MTA register table in all supported adapters */ #define MAX_MTA_REG 128 u32 mta_shadow[MAX_MTA_REG]; u16 rar_entry_count; u8 forced_speed_duplex; bool adaptive_ifs; bool has_fwsm; bool arc_subsystem_valid; bool asf_firmware_present; bool autoneg; bool autoneg_failed; bool get_link_status; bool in_ifs_mode; bool report_tx_early; enum e1000_serdes_link_state serdes_link_state; bool serdes_has_link; bool tx_pkt_filtering; u32 max_frame_size; }; struct e1000_phy_info { struct e1000_phy_operations ops; enum e1000_phy_type type; enum e1000_1000t_rx_status local_rx; enum e1000_1000t_rx_status remote_rx; enum e1000_ms_type ms_type; enum e1000_ms_type original_ms_type; enum e1000_rev_polarity cable_polarity; enum e1000_smart_speed smart_speed; u32 addr; u32 id; u32 reset_delay_us; /* in usec */ u32 revision; enum e1000_media_type media_type; u16 autoneg_advertised; u16 autoneg_mask; u16 cable_length; u16 max_cable_length; u16 min_cable_length; u8 mdix; bool disable_polarity_correction; bool is_mdix; bool polarity_correction; bool speed_downgraded; bool autoneg_wait_to_complete; }; struct e1000_nvm_info { struct e1000_nvm_operations ops; enum e1000_nvm_type type; enum e1000_nvm_override override; u32 flash_bank_size; u32 flash_base_addr; u16 word_size; u16 delay_usec; u16 address_bits; u16 opcode_bits; u16 page_size; }; struct e1000_bus_info { enum e1000_bus_type type; enum e1000_bus_speed speed; enum e1000_bus_width width; u16 func; u16 pci_cmd_word; }; struct e1000_fc_info { u32 high_water; /* Flow control high-water mark */ u32 low_water; /* Flow control low-water mark */ u16 pause_time; /* Flow control pause timer */ u16 refresh_time; /* Flow control refresh timer */ bool send_xon; /* Flow control send XON */ bool strict_ieee; /* Strict IEEE mode */ enum e1000_fc_mode current_mode; /* FC mode in effect */ enum e1000_fc_mode requested_mode; /* FC mode requested by caller */ }; struct e1000_mbx_operations { s32 (*init_params)(struct e1000_hw *hw); s32 (*read)(struct e1000_hw *, u32 *, u16, u16); s32 (*write)(struct e1000_hw *, u32 *, u16, u16); s32 (*read_posted)(struct e1000_hw *, u32 *, u16, u16); s32 (*write_posted)(struct e1000_hw *, u32 *, u16, u16); s32 (*check_for_msg)(struct e1000_hw *, u16); s32 (*check_for_ack)(struct e1000_hw *, u16); s32 (*check_for_rst)(struct e1000_hw *, u16); }; struct e1000_mbx_stats { u32 msgs_tx; u32 msgs_rx; u32 acks; u32 reqs; u32 rsts; }; struct e1000_mbx_info { struct e1000_mbx_operations ops; struct e1000_mbx_stats stats; u32 timeout; u32 usec_delay; u16 size; }; struct e1000_dev_spec_82541 { enum e1000_dsp_config dsp_config; enum e1000_ffe_config ffe_config; u16 spd_default; bool phy_init_script; }; struct e1000_dev_spec_82542 { bool dma_fairness; }; struct e1000_dev_spec_82543 { u32 tbi_compatibility; bool dma_fairness; bool init_phy_disabled; }; struct e1000_dev_spec_82571 { bool laa_is_present; u32 smb_counter; }; struct e1000_dev_spec_80003es2lan { bool mdic_wa_enable; }; struct e1000_shadow_ram { u16 value; bool modified; }; #define E1000_SHADOW_RAM_WORDS 2048 /* I218 PHY Ultra Low Power (ULP) states */ enum e1000_ulp_state { e1000_ulp_state_unknown, e1000_ulp_state_off, e1000_ulp_state_on, }; struct e1000_dev_spec_ich8lan { bool kmrn_lock_loss_workaround_enabled; struct e1000_shadow_ram shadow_ram[E1000_SHADOW_RAM_WORDS]; bool nvm_k1_enabled; bool disable_k1_off; bool eee_disable; u16 eee_lp_ability; enum e1000_ulp_state ulp_state; bool ulp_capability_disabled; bool during_suspend_flow; - bool during_dpg_exit; + bool smbus_disable; }; struct e1000_dev_spec_82575 { bool sgmii_active; bool global_device_reset; bool eee_disable; bool module_plugged; bool clear_semaphore_once; u32 mtu; struct sfp_e1000_flags eth_flags; u8 media_port; bool media_changed; }; struct e1000_dev_spec_vf { u32 vf_number; u32 v2p_mailbox; }; struct e1000_hw { void *back; u8 *hw_addr; u8 *flash_address; unsigned long io_base; struct e1000_mac_info mac; struct e1000_fc_info fc; struct e1000_phy_info phy; struct e1000_nvm_info nvm; struct e1000_bus_info bus; struct e1000_mbx_info mbx; struct e1000_host_mng_dhcp_cookie mng_cookie; union { struct e1000_dev_spec_82541 _82541; struct e1000_dev_spec_82542 _82542; struct e1000_dev_spec_82543 _82543; struct e1000_dev_spec_82571 _82571; struct e1000_dev_spec_80003es2lan _80003es2lan; struct e1000_dev_spec_ich8lan ich8lan; struct e1000_dev_spec_82575 _82575; struct e1000_dev_spec_vf vf; } dev_spec; u16 device_id; u16 subsystem_vendor_id; u16 subsystem_device_id; u16 vendor_id; u8 revision_id; }; #include "e1000_82541.h" #include "e1000_82543.h" #include "e1000_82571.h" #include "e1000_80003es2lan.h" #include "e1000_ich8lan.h" #include "e1000_82575.h" #include "e1000_i210.h" #include "e1000_base.h" /* These functions must be implemented by drivers */ void e1000_pci_clear_mwi(struct e1000_hw *hw); void e1000_pci_set_mwi(struct e1000_hw *hw); s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value); s32 e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value); void e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value); void e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value); #endif diff --git a/sys/dev/e1000/e1000_i210.c b/sys/dev/e1000/e1000_i210.c index d3692db11245..0d810fecf3bd 100644 --- a/sys/dev/e1000/e1000_i210.c +++ b/sys/dev/e1000/e1000_i210.c @@ -1,730 +1,830 @@ /****************************************************************************** SPDX-License-Identifier: BSD-3-Clause Copyright (c) 2001-2020, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************/ /*$FreeBSD$*/ #include "e1000_api.h" static s32 e1000_acquire_nvm_i210(struct e1000_hw *hw); static void e1000_release_nvm_i210(struct e1000_hw *hw); static s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); static s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw); static s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data); /** * e1000_acquire_nvm_i210 - Request for access to EEPROM * @hw: pointer to the HW structure * * Acquire the necessary semaphores for exclusive access to the EEPROM. * Set the EEPROM access request bit and wait for EEPROM access grant bit. * Return successful if access grant bit set, else clear the request for * EEPROM access and return -E1000_ERR_NVM (-1). **/ static s32 e1000_acquire_nvm_i210(struct e1000_hw *hw) { s32 ret_val; DEBUGFUNC("e1000_acquire_nvm_i210"); ret_val = e1000_acquire_swfw_sync(hw, E1000_SWFW_EEP_SM); return ret_val; } /** * e1000_release_nvm_i210 - Release exclusive access to EEPROM * @hw: pointer to the HW structure * * Stop any current commands to the EEPROM and clear the EEPROM request bit, * then release the semaphores acquired. **/ static void e1000_release_nvm_i210(struct e1000_hw *hw) { DEBUGFUNC("e1000_release_nvm_i210"); e1000_release_swfw_sync(hw, E1000_SWFW_EEP_SM); } /** * e1000_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register * @hw: pointer to the HW structure * @offset: offset of word in the Shadow Ram to read * @words: number of words to read * @data: word read from the Shadow Ram * * Reads a 16 bit word from the Shadow Ram using the EERD register. * Uses necessary synchronization semaphores. **/ s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { s32 status = E1000_SUCCESS; u16 i, count; DEBUGFUNC("e1000_read_nvm_srrd_i210"); /* We cannot hold synchronization semaphores for too long, * because of forceful takeover procedure. However it is more efficient * to read in bursts than synchronizing access for each word. */ for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) { count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ? E1000_EERD_EEWR_MAX_COUNT : (words - i); if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { status = e1000_read_nvm_eerd(hw, offset, count, data + i); hw->nvm.ops.release(hw); } else { status = E1000_ERR_SWFW_SYNC; } if (status != E1000_SUCCESS) break; } return status; } /** * e1000_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR * @hw: pointer to the HW structure * @offset: offset within the Shadow RAM to be written to * @words: number of words to write * @data: 16 bit word(s) to be written to the Shadow RAM * * Writes data to Shadow RAM at offset using EEWR register. * * If e1000_update_nvm_checksum is not called after this function , the * data will not be committed to FLASH and also Shadow RAM will most likely * contain an invalid checksum. * * If error code is returned, data and Shadow RAM may be inconsistent - buffer * partially written. **/ s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { s32 status = E1000_SUCCESS; u16 i, count; DEBUGFUNC("e1000_write_nvm_srwr_i210"); /* We cannot hold synchronization semaphores for too long, * because of forceful takeover procedure. However it is more efficient * to write in bursts than synchronizing access for each word. */ for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) { count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ? E1000_EERD_EEWR_MAX_COUNT : (words - i); if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { status = e1000_write_nvm_srwr(hw, offset, count, data + i); hw->nvm.ops.release(hw); } else { status = E1000_ERR_SWFW_SYNC; } if (status != E1000_SUCCESS) break; } return status; } /** * e1000_write_nvm_srwr - Write to Shadow Ram using EEWR * @hw: pointer to the HW structure * @offset: offset within the Shadow Ram to be written to * @words: number of words to write * @data: 16 bit word(s) to be written to the Shadow Ram * * Writes data to Shadow Ram at offset using EEWR register. * * If e1000_update_nvm_checksum is not called after this function , the * Shadow Ram will most likely contain an invalid checksum. **/ static s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; u32 i, k, eewr = 0; u32 attempts = 100000; s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_write_nvm_srwr"); /* * A check for invalid values: offset too large, too many words, * too many words for the offset, and not enough words. */ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || (words == 0)) { DEBUGOUT("nvm parameter(s) out of bounds\n"); ret_val = -E1000_ERR_NVM; goto out; } for (i = 0; i < words; i++) { ret_val = -E1000_ERR_NVM; eewr = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) | (data[i] << E1000_NVM_RW_REG_DATA) | E1000_NVM_RW_REG_START; E1000_WRITE_REG(hw, E1000_SRWR, eewr); for (k = 0; k < attempts; k++) { if (E1000_NVM_RW_REG_DONE & E1000_READ_REG(hw, E1000_SRWR)) { ret_val = E1000_SUCCESS; break; } usec_delay(5); } if (ret_val != E1000_SUCCESS) { DEBUGOUT("Shadow RAM write EEWR timed out\n"); break; } } out: return ret_val; } /** e1000_read_invm_word_i210 - Reads OTP * @hw: pointer to the HW structure * @address: the word address (aka eeprom offset) to read * @data: pointer to the data read * * Reads 16-bit words from the OTP. Return error when the word is not * stored in OTP. **/ static s32 e1000_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data) { s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND; u32 invm_dword; u16 i; u8 record_type, word_address; DEBUGFUNC("e1000_read_invm_word_i210"); for (i = 0; i < E1000_INVM_SIZE; i++) { invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i)); /* Get record type */ record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword); if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE) break; if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE) i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS; if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE) i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS; if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) { word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword); if (word_address == address) { *data = INVM_DWORD_TO_WORD_DATA(invm_dword); DEBUGOUT2("Read INVM Word 0x%02x = %x", address, *data); status = E1000_SUCCESS; break; } } } if (status != E1000_SUCCESS) DEBUGOUT1("Requested word 0x%02x not found in OTP\n", address); return status; } /** e1000_read_invm_i210 - Read invm wrapper function for I210/I211 * @hw: pointer to the HW structure * @address: the word address (aka eeprom offset) to read * @data: pointer to the data read * * Wrapper function to return data formerly found in the NVM. **/ static s32 e1000_read_invm_i210(struct e1000_hw *hw, u16 offset, u16 E1000_UNUSEDARG words, u16 *data) { s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_read_invm_i210"); /* Only the MAC addr is required to be present in the iNVM */ switch (offset) { case NVM_MAC_ADDR: ret_val = e1000_read_invm_word_i210(hw, (u8)offset, &data[0]); ret_val |= e1000_read_invm_word_i210(hw, (u8)offset + 1, &data[1]); ret_val |= e1000_read_invm_word_i210(hw, (u8)offset + 2, &data[2]); if (ret_val != E1000_SUCCESS) DEBUGOUT("MAC Addr not found in iNVM\n"); break; case NVM_INIT_CTRL_2: ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); if (ret_val != E1000_SUCCESS) { *data = NVM_INIT_CTRL_2_DEFAULT_I211; ret_val = E1000_SUCCESS; } break; case NVM_INIT_CTRL_4: ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); if (ret_val != E1000_SUCCESS) { *data = NVM_INIT_CTRL_4_DEFAULT_I211; ret_val = E1000_SUCCESS; } break; case NVM_LED_1_CFG: ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); if (ret_val != E1000_SUCCESS) { *data = NVM_LED_1_CFG_DEFAULT_I211; ret_val = E1000_SUCCESS; } break; case NVM_LED_0_2_CFG: ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); if (ret_val != E1000_SUCCESS) { *data = NVM_LED_0_2_CFG_DEFAULT_I211; ret_val = E1000_SUCCESS; } break; case NVM_ID_LED_SETTINGS: ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); if (ret_val != E1000_SUCCESS) { *data = ID_LED_RESERVED_FFFF; ret_val = E1000_SUCCESS; } break; case NVM_SUB_DEV_ID: *data = hw->subsystem_device_id; break; case NVM_SUB_VEN_ID: *data = hw->subsystem_vendor_id; break; case NVM_DEV_ID: *data = hw->device_id; break; case NVM_VEN_ID: *data = hw->vendor_id; break; default: DEBUGOUT1("NVM word 0x%02x is not mapped.\n", offset); *data = NVM_RESERVED_WORD; break; } return ret_val; } +/** + * e1000_read_invm_version - Reads iNVM version and image type + * @hw: pointer to the HW structure + * @invm_ver: version structure for the version read + * + * Reads iNVM version and image type. + **/ +s32 e1000_read_invm_version(struct e1000_hw *hw, + struct e1000_fw_version *invm_ver) +{ + u32 *record = NULL; + u32 *next_record = NULL; + u32 i = 0; + u32 invm_dword = 0; + u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE / + E1000_INVM_RECORD_SIZE_IN_BYTES); + u32 buffer[E1000_INVM_SIZE]; + s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND; + u16 version = 0; + + DEBUGFUNC("e1000_read_invm_version"); + + /* Read iNVM memory */ + for (i = 0; i < E1000_INVM_SIZE; i++) { + invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i)); + buffer[i] = invm_dword; + } + + /* Read version number */ + for (i = 1; i < invm_blocks; i++) { + record = &buffer[invm_blocks - i]; + next_record = &buffer[invm_blocks - i + 1]; + + /* Check if we have first version location used */ + if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) { + version = 0; + status = E1000_SUCCESS; + break; + } + /* Check if we have second version location used */ + else if ((i == 1) && + ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) { + version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3; + status = E1000_SUCCESS; + break; + } + /* + * Check if we have odd version location + * used and it is the last one used + */ + else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) && + ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) && + (i != 1))) { + version = (*next_record & E1000_INVM_VER_FIELD_TWO) + >> 13; + status = E1000_SUCCESS; + break; + } + /* + * Check if we have even version location + * used and it is the last one used + */ + else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) && + ((*record & 0x3) == 0)) { + version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3; + status = E1000_SUCCESS; + break; + } + } + + if (status == E1000_SUCCESS) { + invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK) + >> E1000_INVM_MAJOR_SHIFT; + invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK; + } + /* Read Image Type */ + for (i = 1; i < invm_blocks; i++) { + record = &buffer[invm_blocks - i]; + next_record = &buffer[invm_blocks - i + 1]; + + /* Check if we have image type in first location used */ + if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) { + invm_ver->invm_img_type = 0; + status = E1000_SUCCESS; + break; + } + /* Check if we have image type in first location used */ + else if ((((*record & 0x3) == 0) && + ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) || + ((((*record & 0x3) != 0) && (i != 1)))) { + invm_ver->invm_img_type = + (*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23; + status = E1000_SUCCESS; + break; + } + } + return status; +} + /** * e1000_validate_nvm_checksum_i210 - Validate EEPROM checksum * @hw: pointer to the HW structure * * Calculates the EEPROM checksum by reading/adding each word of the EEPROM * and then verifies that the sum of the EEPROM is equal to 0xBABA. **/ s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw) { s32 status = E1000_SUCCESS; s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *); DEBUGFUNC("e1000_validate_nvm_checksum_i210"); if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { /* * Replace the read function with semaphore grabbing with * the one that skips this for a while. * We have semaphore taken already here. */ read_op_ptr = hw->nvm.ops.read; hw->nvm.ops.read = e1000_read_nvm_eerd; status = e1000_validate_nvm_checksum_generic(hw); /* Revert original read operation. */ hw->nvm.ops.read = read_op_ptr; hw->nvm.ops.release(hw); } else { status = E1000_ERR_SWFW_SYNC; } return status; } /** * e1000_update_nvm_checksum_i210 - Update EEPROM checksum * @hw: pointer to the HW structure * * Updates the EEPROM checksum by reading/adding each word of the EEPROM * up to the checksum. Then calculates the EEPROM checksum and writes the * value to the EEPROM. Next commit EEPROM data onto the Flash. **/ s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw) { s32 ret_val; u16 checksum = 0; u16 i, nvm_data; DEBUGFUNC("e1000_update_nvm_checksum_i210"); /* * Read the first word from the EEPROM. If this times out or fails, do * not continue or we could be in for a very long wait while every * EEPROM read fails */ ret_val = e1000_read_nvm_eerd(hw, 0, 1, &nvm_data); if (ret_val != E1000_SUCCESS) { DEBUGOUT("EEPROM read failed\n"); goto out; } if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { /* * Do not use hw->nvm.ops.write, hw->nvm.ops.read * because we do not want to take the synchronization * semaphores twice here. */ for (i = 0; i < NVM_CHECKSUM_REG; i++) { ret_val = e1000_read_nvm_eerd(hw, i, 1, &nvm_data); if (ret_val) { hw->nvm.ops.release(hw); DEBUGOUT("NVM Read Error while updating checksum.\n"); goto out; } checksum += nvm_data; } checksum = (u16) NVM_SUM - checksum; ret_val = e1000_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1, &checksum); if (ret_val != E1000_SUCCESS) { hw->nvm.ops.release(hw); DEBUGOUT("NVM Write Error while updating checksum.\n"); goto out; } hw->nvm.ops.release(hw); ret_val = e1000_update_flash_i210(hw); } else { ret_val = E1000_ERR_SWFW_SYNC; } out: return ret_val; } /** * e1000_get_flash_presence_i210 - Check if flash device is detected. * @hw: pointer to the HW structure * **/ bool e1000_get_flash_presence_i210(struct e1000_hw *hw) { u32 eec = 0; bool ret_val = FALSE; DEBUGFUNC("e1000_get_flash_presence_i210"); eec = E1000_READ_REG(hw, E1000_EECD); if (eec & E1000_EECD_FLASH_DETECTED_I210) ret_val = TRUE; return ret_val; } /** * e1000_update_flash_i210 - Commit EEPROM to the flash * @hw: pointer to the HW structure * **/ s32 e1000_update_flash_i210(struct e1000_hw *hw) { s32 ret_val; u32 flup; DEBUGFUNC("e1000_update_flash_i210"); ret_val = e1000_pool_flash_update_done_i210(hw); if (ret_val == -E1000_ERR_NVM) { DEBUGOUT("Flash update time out\n"); goto out; } flup = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD_I210; E1000_WRITE_REG(hw, E1000_EECD, flup); ret_val = e1000_pool_flash_update_done_i210(hw); if (ret_val == E1000_SUCCESS) DEBUGOUT("Flash update complete\n"); else DEBUGOUT("Flash update time out\n"); out: return ret_val; } /** * e1000_pool_flash_update_done_i210 - Pool FLUDONE status. * @hw: pointer to the HW structure * **/ s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw) { s32 ret_val = -E1000_ERR_NVM; u32 i, reg; DEBUGFUNC("e1000_pool_flash_update_done_i210"); for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) { reg = E1000_READ_REG(hw, E1000_EECD); if (reg & E1000_EECD_FLUDONE_I210) { ret_val = E1000_SUCCESS; break; } usec_delay(5); } return ret_val; } /** * e1000_init_nvm_params_i210 - Initialize i210 NVM function pointers * @hw: pointer to the HW structure * * Initialize the i210/i211 NVM parameters and function pointers. **/ static s32 e1000_init_nvm_params_i210(struct e1000_hw *hw) { s32 ret_val; struct e1000_nvm_info *nvm = &hw->nvm; DEBUGFUNC("e1000_init_nvm_params_i210"); ret_val = e1000_init_nvm_params_82575(hw); nvm->ops.acquire = e1000_acquire_nvm_i210; nvm->ops.release = e1000_release_nvm_i210; nvm->ops.valid_led_default = e1000_valid_led_default_i210; if (e1000_get_flash_presence_i210(hw)) { hw->nvm.type = e1000_nvm_flash_hw; nvm->ops.read = e1000_read_nvm_srrd_i210; nvm->ops.write = e1000_write_nvm_srwr_i210; nvm->ops.validate = e1000_validate_nvm_checksum_i210; nvm->ops.update = e1000_update_nvm_checksum_i210; } else { hw->nvm.type = e1000_nvm_invm; nvm->ops.read = e1000_read_invm_i210; nvm->ops.write = e1000_null_write_nvm; nvm->ops.validate = e1000_null_ops_generic; nvm->ops.update = e1000_null_ops_generic; } return ret_val; } /** * e1000_init_function_pointers_i210 - Init func ptrs. * @hw: pointer to the HW structure * * Called to initialize all function pointers and parameters. **/ void e1000_init_function_pointers_i210(struct e1000_hw *hw) { e1000_init_function_pointers_82575(hw); hw->nvm.ops.init_params = e1000_init_nvm_params_i210; } /** * e1000_valid_led_default_i210 - Verify a valid default LED config * @hw: pointer to the HW structure * @data: pointer to the NVM (EEPROM) * * Read the EEPROM for the current default LED configuration. If the * LED configuration is not valid, set to a valid LED configuration. **/ static s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data) { s32 ret_val; DEBUGFUNC("e1000_valid_led_default_i210"); ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); goto out; } if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { switch (hw->phy.media_type) { case e1000_media_type_internal_serdes: *data = ID_LED_DEFAULT_I210_SERDES; break; case e1000_media_type_copper: default: *data = ID_LED_DEFAULT_I210; break; } } out: return ret_val; } /** * e1000_pll_workaround_i210 * @hw: pointer to the HW structure * * Works around an errata in the PLL circuit where it occasionally * provides the wrong clock frequency after power up. **/ static s32 e1000_pll_workaround_i210(struct e1000_hw *hw) { s32 ret_val; u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val; u16 nvm_word, phy_word, pci_word, tmp_nvm; int i; /* Get PHY semaphore */ hw->phy.ops.acquire(hw); /* Get and set needed register values */ wuc = E1000_READ_REG(hw, E1000_WUC); mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG); reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO; E1000_WRITE_REG(hw, E1000_MDICNFG, reg_val); /* Get data from NVM, or set default */ ret_val = e1000_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD, &nvm_word); if (ret_val != E1000_SUCCESS) nvm_word = E1000_INVM_DEFAULT_AL; tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL; + phy_word = E1000_PHY_PLL_UNCONF; for (i = 0; i < E1000_MAX_PLL_TRIES; i++) { /* check current state directly from internal PHY */ e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, 0xFC); usec_delay(20); e1000_read_phy_reg_mdic(hw, E1000_PHY_PLL_FREQ_REG, &phy_word); usec_delay(20); e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, 0); if ((phy_word & E1000_PHY_PLL_UNCONF) != E1000_PHY_PLL_UNCONF) { ret_val = E1000_SUCCESS; break; } else { ret_val = -E1000_ERR_PHY; } /* directly reset the internal PHY */ ctrl = E1000_READ_REG(hw, E1000_CTRL); E1000_WRITE_REG(hw, E1000_CTRL, ctrl|E1000_CTRL_PHY_RST); ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE); E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); E1000_WRITE_REG(hw, E1000_WUC, 0); reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16); E1000_WRITE_REG(hw, E1000_EEARBC_I210, reg_val); e1000_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word); pci_word |= E1000_PCI_PMCSR_D3; e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word); msec_delay(1); pci_word &= ~E1000_PCI_PMCSR_D3; e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word); reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16); E1000_WRITE_REG(hw, E1000_EEARBC_I210, reg_val); /* restore WUC register */ E1000_WRITE_REG(hw, E1000_WUC, wuc); } /* restore MDICNFG setting */ E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg); /* Release PHY semaphore */ hw->phy.ops.release(hw); return ret_val; } /** * e1000_get_cfg_done_i210 - Read config done bit * @hw: pointer to the HW structure * * Read the management control register for the config done bit for * completion status. NOTE: silicon which is EEPROM-less will fail trying * to read the config done bit, so an error is *ONLY* logged and returns * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon * would not be able to be reset or change link. **/ static s32 e1000_get_cfg_done_i210(struct e1000_hw *hw) { s32 timeout = PHY_CFG_TIMEOUT; u32 mask = E1000_NVM_CFG_DONE_PORT_0; DEBUGFUNC("e1000_get_cfg_done_i210"); while (timeout) { if (E1000_READ_REG(hw, E1000_EEMNGCTL_I210) & mask) break; msec_delay(1); timeout--; } if (!timeout) DEBUGOUT("MNG configuration cycle has not completed.\n"); return E1000_SUCCESS; } /** * e1000_init_hw_i210 - Init hw for I210/I211 * @hw: pointer to the HW structure * * Called to initialize hw for i210 hw family. **/ s32 e1000_init_hw_i210(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val; DEBUGFUNC("e1000_init_hw_i210"); if ((hw->mac.type >= e1000_i210) && !(e1000_get_flash_presence_i210(hw))) { ret_val = e1000_pll_workaround_i210(hw); if (ret_val != E1000_SUCCESS) return ret_val; } hw->phy.ops.get_cfg_done = e1000_get_cfg_done_i210; /* Initialize identification LED */ mac->ops.id_led_init(hw); ret_val = e1000_init_hw_base(hw); return ret_val; } diff --git a/sys/dev/e1000/e1000_i210.h b/sys/dev/e1000/e1000_i210.h index 9ad9e28c363b..77414b851a76 100644 --- a/sys/dev/e1000/e1000_i210.h +++ b/sys/dev/e1000/e1000_i210.h @@ -1,104 +1,106 @@ /****************************************************************************** SPDX-License-Identifier: BSD-3-Clause Copyright (c) 2001-2020, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************/ /*$FreeBSD$*/ #ifndef _E1000_I210_H_ #define _E1000_I210_H_ bool e1000_get_flash_presence_i210(struct e1000_hw *hw); s32 e1000_update_flash_i210(struct e1000_hw *hw); s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw); s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw); s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); +s32 e1000_read_invm_version(struct e1000_hw *hw, + struct e1000_fw_version *invm_ver); s32 e1000_init_hw_i210(struct e1000_hw *hw); #define E1000_STM_OPCODE 0xDB00 #define E1000_EEPROM_FLASH_SIZE_WORD 0x11 #define INVM_DWORD_TO_RECORD_TYPE(invm_dword) \ (u8)((invm_dword) & 0x7) #define INVM_DWORD_TO_WORD_ADDRESS(invm_dword) \ (u8)(((invm_dword) & 0x0000FE00) >> 9) #define INVM_DWORD_TO_WORD_DATA(invm_dword) \ (u16)(((invm_dword) & 0xFFFF0000) >> 16) enum E1000_INVM_STRUCTURE_TYPE { E1000_INVM_UNINITIALIZED_STRUCTURE = 0x00, E1000_INVM_WORD_AUTOLOAD_STRUCTURE = 0x01, E1000_INVM_CSR_AUTOLOAD_STRUCTURE = 0x02, E1000_INVM_PHY_REGISTER_AUTOLOAD_STRUCTURE = 0x03, E1000_INVM_RSA_KEY_SHA256_STRUCTURE = 0x04, E1000_INVM_INVALIDATED_STRUCTURE = 0x0F, }; #define E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS 8 #define E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS 1 #define E1000_INVM_ULT_BYTES_SIZE 8 #define E1000_INVM_RECORD_SIZE_IN_BYTES 4 #define E1000_INVM_VER_FIELD_ONE 0x1FF8 #define E1000_INVM_VER_FIELD_TWO 0x7FE000 #define E1000_INVM_IMGTYPE_FIELD 0x1F800000 #define E1000_INVM_MAJOR_MASK 0x3F0 #define E1000_INVM_MINOR_MASK 0xF #define E1000_INVM_MAJOR_SHIFT 4 #define ID_LED_DEFAULT_I210 ((ID_LED_OFF1_ON2 << 8) | \ (ID_LED_DEF1_DEF2 << 4) | \ (ID_LED_OFF1_OFF2)) #define ID_LED_DEFAULT_I210_SERDES ((ID_LED_DEF1_DEF2 << 8) | \ (ID_LED_DEF1_DEF2 << 4) | \ (ID_LED_OFF1_ON2)) /* NVM offset defaults for I211 devices */ #define NVM_INIT_CTRL_2_DEFAULT_I211 0X7243 #define NVM_INIT_CTRL_4_DEFAULT_I211 0x00C1 #define NVM_LED_1_CFG_DEFAULT_I211 0x0184 #define NVM_LED_0_2_CFG_DEFAULT_I211 0x200C /* PLL Defines */ #define E1000_PCI_PMCSR 0x44 #define E1000_PCI_PMCSR_D3 0x03 #define E1000_MAX_PLL_TRIES 5 #define E1000_PHY_PLL_UNCONF 0xFF #define E1000_PHY_PLL_FREQ_PAGE 0xFC0000 #define E1000_PHY_PLL_FREQ_REG 0x000E #define E1000_INVM_DEFAULT_AL 0x202F #define E1000_INVM_AUTOLOAD 0x0A #define E1000_INVM_PLL_WO_VAL 0x0010 #endif diff --git a/sys/dev/e1000/e1000_nvm.c b/sys/dev/e1000/e1000_nvm.c index 95f00e4d681f..ef6f31f30c18 100644 --- a/sys/dev/e1000/e1000_nvm.c +++ b/sys/dev/e1000/e1000_nvm.c @@ -1,1244 +1,1391 @@ /****************************************************************************** SPDX-License-Identifier: BSD-3-Clause Copyright (c) 2001-2020, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************/ /*$FreeBSD$*/ #include "e1000_api.h" static void e1000_reload_nvm_generic(struct e1000_hw *hw); /** * e1000_init_nvm_ops_generic - Initialize NVM function pointers * @hw: pointer to the HW structure * * Setups up the function pointers to no-op functions **/ void e1000_init_nvm_ops_generic(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; DEBUGFUNC("e1000_init_nvm_ops_generic"); /* Initialize function pointers */ nvm->ops.init_params = e1000_null_ops_generic; nvm->ops.acquire = e1000_null_ops_generic; nvm->ops.read = e1000_null_read_nvm; nvm->ops.release = e1000_null_nvm_generic; nvm->ops.reload = e1000_reload_nvm_generic; nvm->ops.update = e1000_null_ops_generic; nvm->ops.valid_led_default = e1000_null_led_default; nvm->ops.validate = e1000_null_ops_generic; nvm->ops.write = e1000_null_write_nvm; } /** * e1000_null_nvm_read - No-op function, return 0 * @hw: pointer to the HW structure * @a: dummy variable * @b: dummy variable * @c: dummy variable **/ s32 e1000_null_read_nvm(struct e1000_hw E1000_UNUSEDARG *hw, u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b, u16 E1000_UNUSEDARG *c) { DEBUGFUNC("e1000_null_read_nvm"); return E1000_SUCCESS; } /** * e1000_null_nvm_generic - No-op function, return void * @hw: pointer to the HW structure **/ void e1000_null_nvm_generic(struct e1000_hw E1000_UNUSEDARG *hw) { DEBUGFUNC("e1000_null_nvm_generic"); return; } /** * e1000_null_led_default - No-op function, return 0 * @hw: pointer to the HW structure * @data: dummy variable **/ s32 e1000_null_led_default(struct e1000_hw E1000_UNUSEDARG *hw, u16 E1000_UNUSEDARG *data) { DEBUGFUNC("e1000_null_led_default"); return E1000_SUCCESS; } /** * e1000_null_write_nvm - No-op function, return 0 * @hw: pointer to the HW structure * @a: dummy variable * @b: dummy variable * @c: dummy variable **/ s32 e1000_null_write_nvm(struct e1000_hw E1000_UNUSEDARG *hw, u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b, u16 E1000_UNUSEDARG *c) { DEBUGFUNC("e1000_null_write_nvm"); return E1000_SUCCESS; } /** * e1000_raise_eec_clk - Raise EEPROM clock * @hw: pointer to the HW structure * @eecd: pointer to the EEPROM * * Enable/Raise the EEPROM clock bit. **/ static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) { *eecd = *eecd | E1000_EECD_SK; E1000_WRITE_REG(hw, E1000_EECD, *eecd); E1000_WRITE_FLUSH(hw); usec_delay(hw->nvm.delay_usec); } /** * e1000_lower_eec_clk - Lower EEPROM clock * @hw: pointer to the HW structure * @eecd: pointer to the EEPROM * * Clear/Lower the EEPROM clock bit. **/ static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) { *eecd = *eecd & ~E1000_EECD_SK; E1000_WRITE_REG(hw, E1000_EECD, *eecd); E1000_WRITE_FLUSH(hw); usec_delay(hw->nvm.delay_usec); } /** * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM * @hw: pointer to the HW structure * @data: data to send to the EEPROM * @count: number of bits to shift out * * We need to shift 'count' bits out to the EEPROM. So, the value in the * "data" parameter will be shifted out to the EEPROM one bit at a time. * In order to do this, "data" must be broken down into bits. **/ static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) { struct e1000_nvm_info *nvm = &hw->nvm; u32 eecd = E1000_READ_REG(hw, E1000_EECD); u32 mask; DEBUGFUNC("e1000_shift_out_eec_bits"); mask = 0x01 << (count - 1); if (nvm->type == e1000_nvm_eeprom_microwire) eecd &= ~E1000_EECD_DO; else if (nvm->type == e1000_nvm_eeprom_spi) eecd |= E1000_EECD_DO; do { eecd &= ~E1000_EECD_DI; if (data & mask) eecd |= E1000_EECD_DI; E1000_WRITE_REG(hw, E1000_EECD, eecd); E1000_WRITE_FLUSH(hw); usec_delay(nvm->delay_usec); e1000_raise_eec_clk(hw, &eecd); e1000_lower_eec_clk(hw, &eecd); mask >>= 1; } while (mask); eecd &= ~E1000_EECD_DI; E1000_WRITE_REG(hw, E1000_EECD, eecd); } /** * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM * @hw: pointer to the HW structure * @count: number of bits to shift in * * In order to read a register from the EEPROM, we need to shift 'count' bits * in from the EEPROM. Bits are "shifted in" by raising the clock input to * the EEPROM (setting the SK bit), and then reading the value of the data out * "DO" bit. During this "shifting in" process the data in "DI" bit should * always be clear. **/ static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) { u32 eecd; u32 i; u16 data; DEBUGFUNC("e1000_shift_in_eec_bits"); eecd = E1000_READ_REG(hw, E1000_EECD); eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); data = 0; for (i = 0; i < count; i++) { data <<= 1; e1000_raise_eec_clk(hw, &eecd); eecd = E1000_READ_REG(hw, E1000_EECD); eecd &= ~E1000_EECD_DI; if (eecd & E1000_EECD_DO) data |= 1; e1000_lower_eec_clk(hw, &eecd); } return data; } /** * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion * @hw: pointer to the HW structure * @ee_reg: EEPROM flag for polling * * Polls the EEPROM status bit for either read or write completion based * upon the value of 'ee_reg'. **/ s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) { u32 attempts = 100000; u32 i, reg = 0; DEBUGFUNC("e1000_poll_eerd_eewr_done"); for (i = 0; i < attempts; i++) { if (ee_reg == E1000_NVM_POLL_READ) reg = E1000_READ_REG(hw, E1000_EERD); else reg = E1000_READ_REG(hw, E1000_EEWR); if (reg & E1000_NVM_RW_REG_DONE) return E1000_SUCCESS; usec_delay(5); } return -E1000_ERR_NVM; } /** * e1000_acquire_nvm_generic - Generic request for access to EEPROM * @hw: pointer to the HW structure * * Set the EEPROM access request bit and wait for EEPROM access grant bit. * Return successful if access grant bit set, else clear the request for * EEPROM access and return -E1000_ERR_NVM (-1). **/ s32 e1000_acquire_nvm_generic(struct e1000_hw *hw) { u32 eecd = E1000_READ_REG(hw, E1000_EECD); s32 timeout = E1000_NVM_GRANT_ATTEMPTS; DEBUGFUNC("e1000_acquire_nvm_generic"); E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ); eecd = E1000_READ_REG(hw, E1000_EECD); while (timeout) { if (eecd & E1000_EECD_GNT) break; usec_delay(5); eecd = E1000_READ_REG(hw, E1000_EECD); timeout--; } if (!timeout) { eecd &= ~E1000_EECD_REQ; E1000_WRITE_REG(hw, E1000_EECD, eecd); DEBUGOUT("Could not acquire NVM grant\n"); return -E1000_ERR_NVM; } return E1000_SUCCESS; } /** * e1000_standby_nvm - Return EEPROM to standby state * @hw: pointer to the HW structure * * Return the EEPROM to a standby state. **/ static void e1000_standby_nvm(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; u32 eecd = E1000_READ_REG(hw, E1000_EECD); DEBUGFUNC("e1000_standby_nvm"); if (nvm->type == e1000_nvm_eeprom_microwire) { eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); E1000_WRITE_REG(hw, E1000_EECD, eecd); E1000_WRITE_FLUSH(hw); usec_delay(nvm->delay_usec); e1000_raise_eec_clk(hw, &eecd); /* Select EEPROM */ eecd |= E1000_EECD_CS; E1000_WRITE_REG(hw, E1000_EECD, eecd); E1000_WRITE_FLUSH(hw); usec_delay(nvm->delay_usec); e1000_lower_eec_clk(hw, &eecd); } else if (nvm->type == e1000_nvm_eeprom_spi) { /* Toggle CS to flush commands */ eecd |= E1000_EECD_CS; E1000_WRITE_REG(hw, E1000_EECD, eecd); E1000_WRITE_FLUSH(hw); usec_delay(nvm->delay_usec); eecd &= ~E1000_EECD_CS; E1000_WRITE_REG(hw, E1000_EECD, eecd); E1000_WRITE_FLUSH(hw); usec_delay(nvm->delay_usec); } } /** * e1000_stop_nvm - Terminate EEPROM command * @hw: pointer to the HW structure * * Terminates the current command by inverting the EEPROM's chip select pin. **/ void e1000_stop_nvm(struct e1000_hw *hw) { u32 eecd; DEBUGFUNC("e1000_stop_nvm"); eecd = E1000_READ_REG(hw, E1000_EECD); if (hw->nvm.type == e1000_nvm_eeprom_spi) { /* Pull CS high */ eecd |= E1000_EECD_CS; e1000_lower_eec_clk(hw, &eecd); } else if (hw->nvm.type == e1000_nvm_eeprom_microwire) { /* CS on Microwire is active-high */ eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); E1000_WRITE_REG(hw, E1000_EECD, eecd); e1000_raise_eec_clk(hw, &eecd); e1000_lower_eec_clk(hw, &eecd); } } /** * e1000_release_nvm_generic - Release exclusive access to EEPROM * @hw: pointer to the HW structure * * Stop any current commands to the EEPROM and clear the EEPROM request bit. **/ void e1000_release_nvm_generic(struct e1000_hw *hw) { u32 eecd; DEBUGFUNC("e1000_release_nvm_generic"); e1000_stop_nvm(hw); eecd = E1000_READ_REG(hw, E1000_EECD); eecd &= ~E1000_EECD_REQ; E1000_WRITE_REG(hw, E1000_EECD, eecd); } /** * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write * @hw: pointer to the HW structure * * Setups the EEPROM for reading and writing. **/ static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; u32 eecd = E1000_READ_REG(hw, E1000_EECD); u8 spi_stat_reg; DEBUGFUNC("e1000_ready_nvm_eeprom"); if (nvm->type == e1000_nvm_eeprom_microwire) { /* Clear SK and DI */ eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); E1000_WRITE_REG(hw, E1000_EECD, eecd); /* Set CS */ eecd |= E1000_EECD_CS; E1000_WRITE_REG(hw, E1000_EECD, eecd); } else if (nvm->type == e1000_nvm_eeprom_spi) { u16 timeout = NVM_MAX_RETRY_SPI; /* Clear SK and CS */ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); E1000_WRITE_REG(hw, E1000_EECD, eecd); E1000_WRITE_FLUSH(hw); usec_delay(1); /* Read "Status Register" repeatedly until the LSB is cleared. * The EEPROM will signal that the command has been completed * by clearing bit 0 of the internal status register. If it's * not cleared within 'timeout', then error out. */ while (timeout) { e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, hw->nvm.opcode_bits); spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) break; usec_delay(5); e1000_standby_nvm(hw); timeout--; } if (!timeout) { DEBUGOUT("SPI NVM Status error\n"); return -E1000_ERR_NVM; } } return E1000_SUCCESS; } /** * e1000_read_nvm_spi - Read EEPROM's using SPI * @hw: pointer to the HW structure * @offset: offset of word in the EEPROM to read * @words: number of words to read * @data: word read from the EEPROM * * Reads a 16 bit word from the EEPROM. **/ s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; u32 i = 0; s32 ret_val; u16 word_in; u8 read_opcode = NVM_READ_OPCODE_SPI; DEBUGFUNC("e1000_read_nvm_spi"); /* A check for invalid values: offset too large, too many words, * and not enough words. */ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || (words == 0)) { DEBUGOUT("nvm parameter(s) out of bounds\n"); return -E1000_ERR_NVM; } ret_val = nvm->ops.acquire(hw); if (ret_val) return ret_val; ret_val = e1000_ready_nvm_eeprom(hw); if (ret_val) goto release; e1000_standby_nvm(hw); if ((nvm->address_bits == 8) && (offset >= 128)) read_opcode |= NVM_A8_OPCODE_SPI; /* Send the READ command (opcode + addr) */ e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits); /* Read the data. SPI NVMs increment the address with each byte * read and will roll over if reading beyond the end. This allows * us to read the whole NVM from any offset */ for (i = 0; i < words; i++) { word_in = e1000_shift_in_eec_bits(hw, 16); data[i] = (word_in >> 8) | (word_in << 8); } release: nvm->ops.release(hw); return ret_val; } /** * e1000_read_nvm_microwire - Reads EEPROM's using microwire * @hw: pointer to the HW structure * @offset: offset of word in the EEPROM to read * @words: number of words to read * @data: word read from the EEPROM * * Reads a 16 bit word from the EEPROM. **/ s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; u32 i = 0; s32 ret_val; u8 read_opcode = NVM_READ_OPCODE_MICROWIRE; DEBUGFUNC("e1000_read_nvm_microwire"); /* A check for invalid values: offset too large, too many words, * and not enough words. */ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || (words == 0)) { DEBUGOUT("nvm parameter(s) out of bounds\n"); return -E1000_ERR_NVM; } ret_val = nvm->ops.acquire(hw); if (ret_val) return ret_val; ret_val = e1000_ready_nvm_eeprom(hw); if (ret_val) goto release; for (i = 0; i < words; i++) { /* Send the READ command (opcode + addr) */ e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); e1000_shift_out_eec_bits(hw, (u16)(offset + i), nvm->address_bits); /* Read the data. For microwire, each word requires the * overhead of setup and tear-down. */ data[i] = e1000_shift_in_eec_bits(hw, 16); e1000_standby_nvm(hw); } release: nvm->ops.release(hw); return ret_val; } /** * e1000_read_nvm_eerd - Reads EEPROM using EERD register * @hw: pointer to the HW structure * @offset: offset of word in the EEPROM to read * @words: number of words to read * @data: word read from the EEPROM * * Reads a 16 bit word from the EEPROM using the EERD register. **/ s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; u32 i, eerd = 0; s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_read_nvm_eerd"); /* A check for invalid values: offset too large, too many words, * too many words for the offset, and not enough words. */ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || (words == 0)) { DEBUGOUT("nvm parameter(s) out of bounds\n"); return -E1000_ERR_NVM; } for (i = 0; i < words; i++) { eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) + E1000_NVM_RW_REG_START; E1000_WRITE_REG(hw, E1000_EERD, eerd); ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); if (ret_val) break; data[i] = (E1000_READ_REG(hw, E1000_EERD) >> E1000_NVM_RW_REG_DATA); } if (ret_val) DEBUGOUT1("NVM read error: %d\n", ret_val); return ret_val; } /** * e1000_write_nvm_spi - Write to EEPROM using SPI * @hw: pointer to the HW structure * @offset: offset within the EEPROM to be written to * @words: number of words to write * @data: 16 bit word(s) to be written to the EEPROM * * Writes data to EEPROM at offset using SPI interface. * * If e1000_update_nvm_checksum is not called after this function , the * EEPROM will most likely contain an invalid checksum. **/ s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; s32 ret_val = -E1000_ERR_NVM; u16 widx = 0; DEBUGFUNC("e1000_write_nvm_spi"); /* A check for invalid values: offset too large, too many words, * and not enough words. */ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || (words == 0)) { DEBUGOUT("nvm parameter(s) out of bounds\n"); return -E1000_ERR_NVM; } while (widx < words) { u8 write_opcode = NVM_WRITE_OPCODE_SPI; ret_val = nvm->ops.acquire(hw); if (ret_val) return ret_val; ret_val = e1000_ready_nvm_eeprom(hw); if (ret_val) { nvm->ops.release(hw); return ret_val; } e1000_standby_nvm(hw); /* Send the WRITE ENABLE command (8 bit opcode) */ e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, nvm->opcode_bits); e1000_standby_nvm(hw); /* Some SPI eeproms use the 8th address bit embedded in the * opcode */ if ((nvm->address_bits == 8) && (offset >= 128)) write_opcode |= NVM_A8_OPCODE_SPI; /* Send the Write command (8-bit opcode + addr) */ e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), nvm->address_bits); /* Loop to allow for up to whole page write of eeprom */ while (widx < words) { u16 word_out = data[widx]; word_out = (word_out >> 8) | (word_out << 8); e1000_shift_out_eec_bits(hw, word_out, 16); widx++; if ((((offset + widx) * 2) % nvm->page_size) == 0) { e1000_standby_nvm(hw); break; } } msec_delay(10); nvm->ops.release(hw); } return ret_val; } /** * e1000_write_nvm_microwire - Writes EEPROM using microwire * @hw: pointer to the HW structure * @offset: offset within the EEPROM to be written to * @words: number of words to write * @data: 16 bit word(s) to be written to the EEPROM * * Writes data to EEPROM at offset using microwire interface. * * If e1000_update_nvm_checksum is not called after this function , the * EEPROM will most likely contain an invalid checksum. **/ s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; s32 ret_val; u32 eecd; u16 words_written = 0; u16 widx = 0; DEBUGFUNC("e1000_write_nvm_microwire"); /* A check for invalid values: offset too large, too many words, * and not enough words. */ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || (words == 0)) { DEBUGOUT("nvm parameter(s) out of bounds\n"); return -E1000_ERR_NVM; } ret_val = nvm->ops.acquire(hw); if (ret_val) return ret_val; ret_val = e1000_ready_nvm_eeprom(hw); if (ret_val) goto release; e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE, (u16)(nvm->opcode_bits + 2)); e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2)); e1000_standby_nvm(hw); while (words_written < words) { e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE, nvm->opcode_bits); e1000_shift_out_eec_bits(hw, (u16)(offset + words_written), nvm->address_bits); e1000_shift_out_eec_bits(hw, data[words_written], 16); e1000_standby_nvm(hw); for (widx = 0; widx < 200; widx++) { eecd = E1000_READ_REG(hw, E1000_EECD); if (eecd & E1000_EECD_DO) break; usec_delay(50); } if (widx == 200) { DEBUGOUT("NVM Write did not complete\n"); ret_val = -E1000_ERR_NVM; goto release; } e1000_standby_nvm(hw); words_written++; } e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE, (u16)(nvm->opcode_bits + 2)); e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2)); release: nvm->ops.release(hw); return ret_val; } /** * e1000_read_pba_string_generic - Read device part number * @hw: pointer to the HW structure * @pba_num: pointer to device part number * @pba_num_size: size of part number buffer * * Reads the product board assembly (PBA) number from the EEPROM and stores * the value in pba_num. **/ s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) { s32 ret_val; u16 nvm_data; u16 pba_ptr; u16 offset; u16 length; DEBUGFUNC("e1000_read_pba_string_generic"); if ((hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) && !e1000_get_flash_presence_i210(hw)) { DEBUGOUT("Flashless no PBA string\n"); return -E1000_ERR_NVM_PBA_SECTION; } if (pba_num == NULL) { DEBUGOUT("PBA string buffer was null\n"); return -E1000_ERR_INVALID_ARGUMENT; } ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } /* if nvm_data is not ptr guard the PBA must be in legacy format which * means pba_ptr is actually our second data word for the PBA number * and we can decode it into an ascii string */ if (nvm_data != NVM_PBA_PTR_GUARD) { DEBUGOUT("NVM PBA number is not stored as string\n"); /* make sure callers buffer is big enough to store the PBA */ if (pba_num_size < E1000_PBANUM_LENGTH) { DEBUGOUT("PBA string buffer too small\n"); return E1000_ERR_NO_SPACE; } /* extract hex string from data and pba_ptr */ pba_num[0] = (nvm_data >> 12) & 0xF; pba_num[1] = (nvm_data >> 8) & 0xF; pba_num[2] = (nvm_data >> 4) & 0xF; pba_num[3] = nvm_data & 0xF; pba_num[4] = (pba_ptr >> 12) & 0xF; pba_num[5] = (pba_ptr >> 8) & 0xF; pba_num[6] = '-'; pba_num[7] = 0; pba_num[8] = (pba_ptr >> 4) & 0xF; pba_num[9] = pba_ptr & 0xF; /* put a null character on the end of our string */ pba_num[10] = '\0'; /* switch all the data but the '-' to hex char */ for (offset = 0; offset < 10; offset++) { if (pba_num[offset] < 0xA) pba_num[offset] += '0'; else if (pba_num[offset] < 0x10) pba_num[offset] += 'A' - 0xA; } return E1000_SUCCESS; } ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } if (length == 0xFFFF || length == 0) { DEBUGOUT("NVM PBA number section invalid length\n"); return -E1000_ERR_NVM_PBA_SECTION; } /* check if pba_num buffer is big enough */ if (pba_num_size < (((u32)length * 2) - 1)) { DEBUGOUT("PBA string buffer too small\n"); return -E1000_ERR_NO_SPACE; } /* trim pba length from start of string */ pba_ptr++; length--; for (offset = 0; offset < length; offset++) { ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } pba_num[offset * 2] = (u8)(nvm_data >> 8); pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); } pba_num[offset * 2] = '\0'; return E1000_SUCCESS; } /** * e1000_read_pba_length_generic - Read device part number length * @hw: pointer to the HW structure * @pba_num_size: size of part number buffer * * Reads the product board assembly (PBA) number length from the EEPROM and * stores the value in pba_num_size. **/ s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size) { s32 ret_val; u16 nvm_data; u16 pba_ptr; u16 length; DEBUGFUNC("e1000_read_pba_length_generic"); if (pba_num_size == NULL) { DEBUGOUT("PBA buffer size was null\n"); return -E1000_ERR_INVALID_ARGUMENT; } ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } /* if data is not ptr guard the PBA must be in legacy format */ if (nvm_data != NVM_PBA_PTR_GUARD) { *pba_num_size = E1000_PBANUM_LENGTH; return E1000_SUCCESS; } ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } if (length == 0xFFFF || length == 0) { DEBUGOUT("NVM PBA number section invalid length\n"); return -E1000_ERR_NVM_PBA_SECTION; } /* Convert from length in u16 values to u8 chars, add 1 for NULL, * and subtract 2 because length field is included in length. */ *pba_num_size = ((u32)length * 2) - 1; return E1000_SUCCESS; } +/** + * e1000_read_pba_num_generic - Read device part number + * @hw: pointer to the HW structure + * @pba_num: pointer to device part number + * + * Reads the product board assembly (PBA) number from the EEPROM and stores + * the value in pba_num. + **/ +s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num) +{ + s32 ret_val; + u16 nvm_data; + + DEBUGFUNC("e1000_read_pba_num_generic"); + + ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } else if (nvm_data == NVM_PBA_PTR_GUARD) { + DEBUGOUT("NVM Not Supported\n"); + return -E1000_NOT_IMPLEMENTED; + } + *pba_num = (u32)(nvm_data << 16); + + ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + *pba_num |= nvm_data; + + return E1000_SUCCESS; +} + /** * e1000_read_pba_raw * @hw: pointer to the HW structure * @eeprom_buf: optional pointer to EEPROM image * @eeprom_buf_size: size of EEPROM image in words * @max_pba_block_size: PBA block size limit * @pba: pointer to output PBA structure * * Reads PBA from EEPROM image when eeprom_buf is not NULL. * Reads PBA from physical EEPROM device when eeprom_buf is NULL. * **/ s32 e1000_read_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf, u32 eeprom_buf_size, u16 max_pba_block_size, struct e1000_pba *pba) { s32 ret_val; u16 pba_block_size; if (pba == NULL) return -E1000_ERR_PARAM; if (eeprom_buf == NULL) { ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2, &pba->word[0]); if (ret_val) return ret_val; } else { if (eeprom_buf_size > NVM_PBA_OFFSET_1) { pba->word[0] = eeprom_buf[NVM_PBA_OFFSET_0]; pba->word[1] = eeprom_buf[NVM_PBA_OFFSET_1]; } else { return -E1000_ERR_PARAM; } } if (pba->word[0] == NVM_PBA_PTR_GUARD) { if (pba->pba_block == NULL) return -E1000_ERR_PARAM; ret_val = e1000_get_pba_block_size(hw, eeprom_buf, eeprom_buf_size, &pba_block_size); if (ret_val) return ret_val; if (pba_block_size > max_pba_block_size) return -E1000_ERR_PARAM; if (eeprom_buf == NULL) { ret_val = e1000_read_nvm(hw, pba->word[1], pba_block_size, pba->pba_block); if (ret_val) return ret_val; } else { if (eeprom_buf_size > (u32)(pba->word[1] + pba_block_size)) { memcpy(pba->pba_block, &eeprom_buf[pba->word[1]], pba_block_size * sizeof(u16)); } else { return -E1000_ERR_PARAM; } } } return E1000_SUCCESS; } /** * e1000_write_pba_raw * @hw: pointer to the HW structure * @eeprom_buf: optional pointer to EEPROM image * @eeprom_buf_size: size of EEPROM image in words * @pba: pointer to PBA structure * * Writes PBA to EEPROM image when eeprom_buf is not NULL. * Writes PBA to physical EEPROM device when eeprom_buf is NULL. * **/ s32 e1000_write_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf, u32 eeprom_buf_size, struct e1000_pba *pba) { s32 ret_val; if (pba == NULL) return -E1000_ERR_PARAM; if (eeprom_buf == NULL) { ret_val = e1000_write_nvm(hw, NVM_PBA_OFFSET_0, 2, &pba->word[0]); if (ret_val) return ret_val; } else { if (eeprom_buf_size > NVM_PBA_OFFSET_1) { eeprom_buf[NVM_PBA_OFFSET_0] = pba->word[0]; eeprom_buf[NVM_PBA_OFFSET_1] = pba->word[1]; } else { return -E1000_ERR_PARAM; } } if (pba->word[0] == NVM_PBA_PTR_GUARD) { if (pba->pba_block == NULL) return -E1000_ERR_PARAM; if (eeprom_buf == NULL) { ret_val = e1000_write_nvm(hw, pba->word[1], pba->pba_block[0], pba->pba_block); if (ret_val) return ret_val; } else { if (eeprom_buf_size > (u32)(pba->word[1] + pba->pba_block[0])) { memcpy(&eeprom_buf[pba->word[1]], pba->pba_block, pba->pba_block[0] * sizeof(u16)); } else { return -E1000_ERR_PARAM; } } } return E1000_SUCCESS; } /** * e1000_get_pba_block_size * @hw: pointer to the HW structure * @eeprom_buf: optional pointer to EEPROM image * @eeprom_buf_size: size of EEPROM image in words * @pba_data_size: pointer to output variable * * Returns the size of the PBA block in words. Function operates on EEPROM * image if the eeprom_buf pointer is not NULL otherwise it accesses physical * EEPROM device. * **/ s32 e1000_get_pba_block_size(struct e1000_hw *hw, u16 *eeprom_buf, u32 eeprom_buf_size, u16 *pba_block_size) { s32 ret_val; u16 pba_word[2]; u16 length; DEBUGFUNC("e1000_get_pba_block_size"); if (eeprom_buf == NULL) { ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2, &pba_word[0]); if (ret_val) return ret_val; } else { if (eeprom_buf_size > NVM_PBA_OFFSET_1) { pba_word[0] = eeprom_buf[NVM_PBA_OFFSET_0]; pba_word[1] = eeprom_buf[NVM_PBA_OFFSET_1]; } else { return -E1000_ERR_PARAM; } } if (pba_word[0] == NVM_PBA_PTR_GUARD) { if (eeprom_buf == NULL) { ret_val = e1000_read_nvm(hw, pba_word[1] + 0, 1, &length); if (ret_val) return ret_val; } else { if (eeprom_buf_size > pba_word[1]) length = eeprom_buf[pba_word[1] + 0]; else return -E1000_ERR_PARAM; } if (length == 0xFFFF || length == 0) return -E1000_ERR_NVM_PBA_SECTION; } else { /* PBA number in legacy format, there is no PBA Block. */ length = 0; } if (pba_block_size != NULL) *pba_block_size = length; return E1000_SUCCESS; } /** * e1000_read_mac_addr_generic - Read device MAC address * @hw: pointer to the HW structure * * Reads the device MAC address from the EEPROM and stores the value. * Since devices with two ports use the same EEPROM, we increment the * last bit in the MAC address for the second port. **/ s32 e1000_read_mac_addr_generic(struct e1000_hw *hw) { u32 rar_high; u32 rar_low; u16 i; rar_high = E1000_READ_REG(hw, E1000_RAH(0)); rar_low = E1000_READ_REG(hw, E1000_RAL(0)); for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); for (i = 0; i < ETH_ADDR_LEN; i++) hw->mac.addr[i] = hw->mac.perm_addr[i]; return E1000_SUCCESS; } /** * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum * @hw: pointer to the HW structure * * Calculates the EEPROM checksum by reading/adding each word of the EEPROM * and then verifies that the sum of the EEPROM is equal to 0xBABA. **/ s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw) { s32 ret_val; u16 checksum = 0; u16 i, nvm_data; DEBUGFUNC("e1000_validate_nvm_checksum_generic"); for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } checksum += nvm_data; } if (checksum != (u16) NVM_SUM) { DEBUGOUT("NVM Checksum Invalid\n"); return -E1000_ERR_NVM; } return E1000_SUCCESS; } /** * e1000_update_nvm_checksum_generic - Update EEPROM checksum * @hw: pointer to the HW structure * * Updates the EEPROM checksum by reading/adding each word of the EEPROM * up to the checksum. Then calculates the EEPROM checksum and writes the * value to the EEPROM. **/ s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw) { s32 ret_val; u16 checksum = 0; u16 i, nvm_data; DEBUGFUNC("e1000_update_nvm_checksum"); for (i = 0; i < NVM_CHECKSUM_REG; i++) { ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); if (ret_val) { DEBUGOUT("NVM Read Error while updating checksum.\n"); return ret_val; } checksum += nvm_data; } checksum = (u16) NVM_SUM - checksum; ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum); if (ret_val) DEBUGOUT("NVM Write Error while updating checksum.\n"); return ret_val; } /** * e1000_reload_nvm_generic - Reloads EEPROM * @hw: pointer to the HW structure * * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the * extended control register. **/ static void e1000_reload_nvm_generic(struct e1000_hw *hw) { u32 ctrl_ext; DEBUGFUNC("e1000_reload_nvm_generic"); usec_delay(10); ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); ctrl_ext |= E1000_CTRL_EXT_EE_RST; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); E1000_WRITE_FLUSH(hw); } +/** + * e1000_get_fw_version - Get firmware version information + * @hw: pointer to the HW structure + * @fw_vers: pointer to output version structure + * + * unsupported/not present features return 0 in version structure + **/ +void e1000_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers) +{ + u16 eeprom_verh, eeprom_verl, etrack_test, fw_version; + u8 q, hval, rem, result; + u16 comb_verh, comb_verl, comb_offset; + + memset(fw_vers, 0, sizeof(struct e1000_fw_version)); + + /* basic eeprom version numbers, bits used vary by part and by tool + * used to create the nvm images */ + /* Check which data format we have */ + switch (hw->mac.type) { + case e1000_i211: + e1000_read_invm_version(hw, fw_vers); + return; + case e1000_82575: + case e1000_82576: + case e1000_82580: + case e1000_i354: + hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test); + /* Use this format, unless EETRACK ID exists, + * then use alternate format + */ + if ((etrack_test & NVM_MAJOR_MASK) != NVM_ETRACK_VALID) { + hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); + fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) + >> NVM_MAJOR_SHIFT; + fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK) + >> NVM_MINOR_SHIFT; + fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK); + goto etrack_id; + } + break; + case e1000_i210: + if (!(e1000_get_flash_presence_i210(hw))) { + e1000_read_invm_version(hw, fw_vers); + return; + } + /* fall through */ + case e1000_i350: + hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test); + /* find combo image version */ + hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset); + if ((comb_offset != 0x0) && + (comb_offset != NVM_VER_INVALID)) { + + hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset + + 1), 1, &comb_verh); + hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset), + 1, &comb_verl); + + /* get Option Rom version if it exists and is valid */ + if ((comb_verh && comb_verl) && + ((comb_verh != NVM_VER_INVALID) && + (comb_verl != NVM_VER_INVALID))) { + + fw_vers->or_valid = true; + fw_vers->or_major = + comb_verl >> NVM_COMB_VER_SHFT; + fw_vers->or_build = + (comb_verl << NVM_COMB_VER_SHFT) + | (comb_verh >> NVM_COMB_VER_SHFT); + fw_vers->or_patch = + comb_verh & NVM_COMB_VER_MASK; + } + } + break; + default: + hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test); + return; + } + hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); + fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) + >> NVM_MAJOR_SHIFT; + + /* check for old style version format in newer images*/ + if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) { + eeprom_verl = (fw_version & NVM_COMB_VER_MASK); + } else { + eeprom_verl = (fw_version & NVM_MINOR_MASK) + >> NVM_MINOR_SHIFT; + } + /* Convert minor value to hex before assigning to output struct + * Val to be converted will not be higher than 99, per tool output + */ + q = eeprom_verl / NVM_HEX_CONV; + hval = q * NVM_HEX_TENS; + rem = eeprom_verl % NVM_HEX_CONV; + result = hval + rem; + fw_vers->eep_minor = result; + +etrack_id: + if ((etrack_test & NVM_MAJOR_MASK) == NVM_ETRACK_VALID) { + hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl); + hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh); + fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT) + | eeprom_verl; + } else if ((etrack_test & NVM_ETRACK_VALID) == 0) { + hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verh); + hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verl); + fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT) | + eeprom_verl; + } +} + diff --git a/sys/dev/e1000/e1000_nvm.h b/sys/dev/e1000/e1000_nvm.h index fc7ceab17e32..86fd5d1e892f 100644 --- a/sys/dev/e1000/e1000_nvm.h +++ b/sys/dev/e1000/e1000_nvm.h @@ -1,81 +1,100 @@ /****************************************************************************** SPDX-License-Identifier: BSD-3-Clause Copyright (c) 2001-2020, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************/ /*$FreeBSD$*/ #ifndef _E1000_NVM_H_ #define _E1000_NVM_H_ struct e1000_pba { u16 word[2]; u16 *pba_block; }; +struct e1000_fw_version { + u32 etrack_id; + u16 eep_major; + u16 eep_minor; + u16 eep_build; + + u8 invm_major; + u8 invm_minor; + u8 invm_img_type; + + bool or_valid; + u16 or_major; + u16 or_build; + u16 or_patch; +}; + void e1000_init_nvm_ops_generic(struct e1000_hw *hw); s32 e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c); void e1000_null_nvm_generic(struct e1000_hw *hw); s32 e1000_null_led_default(struct e1000_hw *hw, u16 *data); s32 e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c); s32 e1000_acquire_nvm_generic(struct e1000_hw *hw); s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg); s32 e1000_read_mac_addr_generic(struct e1000_hw *hw); +s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num); s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size); s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size); s32 e1000_read_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf, u32 eeprom_buf_size, u16 max_pba_block_size, struct e1000_pba *pba); s32 e1000_write_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf, u32 eeprom_buf_size, struct e1000_pba *pba); s32 e1000_get_pba_block_size(struct e1000_hw *hw, u16 *eeprom_buf, u32 eeprom_buf_size, u16 *pba_block_size); s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data); s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw); s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw); void e1000_stop_nvm(struct e1000_hw *hw); void e1000_release_nvm_generic(struct e1000_hw *hw); +void e1000_get_fw_version(struct e1000_hw *hw, + struct e1000_fw_version *fw_vers); #define E1000_STM_OPCODE 0xDB00 #endif diff --git a/sys/dev/e1000/e1000_regs.h b/sys/dev/e1000/e1000_regs.h index c09856e55275..b3fb854f8adc 100644 --- a/sys/dev/e1000/e1000_regs.h +++ b/sys/dev/e1000/e1000_regs.h @@ -1,722 +1,723 @@ /****************************************************************************** SPDX-License-Identifier: BSD-3-Clause Copyright (c) 2001-2020, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************/ /*$FreeBSD$*/ #ifndef _E1000_REGS_H_ #define _E1000_REGS_H_ #define E1000_CTRL 0x00000 /* Device Control - RW */ #define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */ #define E1000_STATUS 0x00008 /* Device Status - RO */ #define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */ #define E1000_EERD 0x00014 /* EEPROM Read - RW */ #define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */ #define E1000_FLA 0x0001C /* Flash Access - RW */ #define E1000_MDIC 0x00020 /* MDI Control - RW */ #define E1000_MDICNFG 0x00E04 /* MDI Config - RW */ #define E1000_REGISTER_SET_SIZE 0x20000 /* CSR Size */ #define E1000_EEPROM_INIT_CTRL_WORD_2 0x0F /* EEPROM Init Ctrl Word 2 */ #define E1000_EEPROM_PCIE_CTRL_WORD_2 0x28 /* EEPROM PCIe Ctrl Word 2 */ #define E1000_BARCTRL 0x5BBC /* BAR ctrl reg */ #define E1000_BARCTRL_FLSIZE 0x0700 /* BAR ctrl Flsize */ #define E1000_BARCTRL_CSRSIZE 0x2000 /* BAR ctrl CSR size */ #define E1000_MPHY_ADDR_CTRL 0x0024 /* GbE MPHY Address Control */ #define E1000_MPHY_DATA 0x0E10 /* GBE MPHY Data */ #define E1000_MPHY_STAT 0x0E0C /* GBE MPHY Statistics */ #define E1000_PPHY_CTRL 0x5b48 /* PCIe PHY Control */ #define E1000_I350_BARCTRL 0x5BFC /* BAR ctrl reg */ #define E1000_I350_DTXMXPKTSZ 0x355C /* Maximum sent packet size reg*/ #define E1000_SCTL 0x00024 /* SerDes Control - RW */ #define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ #define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ #define E1000_FEXT 0x0002C /* Future Extended - RW */ #define E1000_FEXTNVM 0x00028 /* Future Extended NVM - RW */ #define E1000_FEXTNVM3 0x0003C /* Future Extended NVM 3 - RW */ #define E1000_FEXTNVM4 0x00024 /* Future Extended NVM 4 - RW */ +#define E1000_FEXTNVM5 0x00014 /* Future Extended NVM 5 - RW */ #define E1000_FEXTNVM6 0x00010 /* Future Extended NVM 6 - RW */ #define E1000_FEXTNVM7 0x000E4 /* Future Extended NVM 7 - RW */ #define E1000_FEXTNVM8 0x5BB0 /* Future Extended NVM 8 - RW */ #define E1000_FEXTNVM9 0x5BB4 /* Future Extended NVM 9 - RW */ #define E1000_FEXTNVM11 0x5BBC /* Future Extended NVM 11 - RW */ #define E1000_FEXTNVM12 0x5BC0 /* Future Extended NVM 12 - RW */ #define E1000_PCIEANACFG 0x00F18 /* PCIE Analog Config */ #define E1000_DPGFR 0x00FAC /* Dynamic Power Gate Force Control Register */ #define E1000_FCT 0x00030 /* Flow Control Type - RW */ #define E1000_CONNSW 0x00034 /* Copper/Fiber switch control - RW */ #define E1000_VET 0x00038 /* VLAN Ether Type - RW */ #define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */ #define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */ #define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ #define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ #define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ #define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */ #define E1000_IVAR 0x000E4 /* Interrupt Vector Allocation Register - RW */ #define E1000_SVCR 0x000F0 #define E1000_SVT 0x000F4 #define E1000_LPIC 0x000FC /* Low Power IDLE control */ #define E1000_RCTL 0x00100 /* Rx Control - RW */ #define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ #define E1000_TXCW 0x00178 /* Tx Configuration Word - RW */ #define E1000_RXCW 0x00180 /* Rx Configuration Word - RO */ #define E1000_PBA_ECC 0x01100 /* PBA ECC Register */ #define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */ #define E1000_EITR(_n) (0x01680 + (0x4 * (_n))) #define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */ #define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */ #define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */ #define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */ #define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */ #define E1000_GPIE 0x01514 /* General Purpose Interrupt Enable - RW */ #define E1000_IVAR0 0x01700 /* Interrupt Vector Allocation (array) - RW */ #define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes - RW */ #define E1000_TCTL 0x00400 /* Tx Control - RW */ #define E1000_TCTL_EXT 0x00404 /* Extended Tx Control - RW */ #define E1000_TIPG 0x00410 /* Tx Inter-packet gap -RW */ #define E1000_TBT 0x00448 /* Tx Burst Timer - RW */ #define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ #define E1000_LEDCTL 0x00E00 /* LED Control - RW */ #define E1000_LEDMUX 0x08130 /* LED MUX Control */ #define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ #define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ #define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */ #define E1000_POEMB E1000_PHY_CTRL /* PHY OEM Bits */ #define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ #define E1000_PBS 0x01008 /* Packet Buffer Size */ #define E1000_PBECCSTS 0x0100C /* Packet Buffer ECC Status - RW */ #define E1000_IOSFPC 0x00F28 /* TX corrupted data */ #define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ #define E1000_EEMNGCTL_I210 0x01010 /* i210 MNG EEprom Mode Control */ #define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */ #define E1000_EEARBC_I210 0x12024 /* EEPROM Auto Read Bus Control */ #define E1000_FLASHT 0x01028 /* FLASH Timer Register */ #define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */ #define E1000_FLSWCTL 0x01030 /* FLASH control register */ #define E1000_FLSWDATA 0x01034 /* FLASH data register */ #define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */ #define E1000_FLOP 0x0103C /* FLASH Opcode Register */ #define E1000_I2CCMD 0x01028 /* SFPI2C Command Register - RW */ #define E1000_I2CPARAMS 0x0102C /* SFPI2C Parameters Register - RW */ #define E1000_I2CBB_EN 0x00000100 /* I2C - Bit Bang Enable */ #define E1000_I2C_CLK_OUT 0x00000200 /* I2C- Clock */ #define E1000_I2C_DATA_OUT 0x00000400 /* I2C- Data Out */ #define E1000_I2C_DATA_OE_N 0x00000800 /* I2C- Data Output Enable */ #define E1000_I2C_DATA_IN 0x00001000 /* I2C- Data In */ #define E1000_I2C_CLK_OE_N 0x00002000 /* I2C- Clock Output Enable */ #define E1000_I2C_CLK_IN 0x00004000 /* I2C- Clock In */ #define E1000_I2C_CLK_STRETCH_DIS 0x00008000 /* I2C- Dis Clk Stretching */ #define E1000_WDSTP 0x01040 /* Watchdog Setup - RW */ #define E1000_SWDSTS 0x01044 /* SW Device Status - RW */ #define E1000_FRTIMER 0x01048 /* Free Running Timer - RW */ #define E1000_TCPTIMER 0x0104C /* TCP Timer - RW */ #define E1000_VPDDIAG 0x01060 /* VPD Diagnostic - RO */ #define E1000_ICR_V2 0x01500 /* Intr Cause - new location - RC */ #define E1000_ICS_V2 0x01504 /* Intr Cause Set - new location - WO */ #define E1000_IMS_V2 0x01508 /* Intr Mask Set/Read - new location - RW */ #define E1000_IMC_V2 0x0150C /* Intr Mask Clear - new location - WO */ #define E1000_IAM_V2 0x01510 /* Intr Ack Auto Mask - new location - RW */ #define E1000_ERT 0x02008 /* Early Rx Threshold - RW */ #define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ #define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ #define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */ #define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */ #define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */ #define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */ #define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */ #define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */ #define E1000_PBRTH 0x02458 /* PB Rx Arbitration Threshold - RW */ #define E1000_FCRTV 0x02460 /* Flow Control Refresh Timer Value - RW */ /* Split and Replication Rx Control - RW */ #define E1000_RDPUMB 0x025CC /* DMA Rx Descriptor uC Mailbox - RW */ #define E1000_RDPUAD 0x025D0 /* DMA Rx Descriptor uC Addr Command - RW */ #define E1000_RDPUWD 0x025D4 /* DMA Rx Descriptor uC Data Write - RW */ #define E1000_RDPURD 0x025D8 /* DMA Rx Descriptor uC Data Read - RW */ #define E1000_RDPUCTL 0x025DC /* DMA Rx Descriptor uC Control - RW */ #define E1000_PBDIAG 0x02458 /* Packet Buffer Diagnostic - RW */ #define E1000_RXPBS 0x02404 /* Rx Packet Buffer Size - RW */ #define E1000_IRPBS 0x02404 /* Same as RXPBS, renamed for newer Si - RW */ #define E1000_PBRWAC 0x024E8 /* Rx packet buffer wrap around counter - RO */ #define E1000_RDTR 0x02820 /* Rx Delay Timer - RW */ #define E1000_RADV 0x0282C /* Rx Interrupt Absolute Delay Timer - RW */ #define E1000_EMIADD 0x10 /* Extended Memory Indirect Address */ #define E1000_EMIDATA 0x11 /* Extended Memory Indirect Data */ /* Shadow Ram Write Register - RW */ #define E1000_SRWR 0x12018 #define E1000_EEC_REG 0x12010 #define E1000_I210_FLMNGCTL 0x12038 #define E1000_I210_FLMNGDATA 0x1203C #define E1000_I210_FLMNGCNT 0x12040 #define E1000_I210_FLSWCTL 0x12048 #define E1000_I210_FLSWDATA 0x1204C #define E1000_I210_FLSWCNT 0x12050 #define E1000_I210_FLA 0x1201C #define E1000_SHADOWINF 0x12068 #define E1000_FLFWUPDATE 0x12108 #define E1000_INVM_DATA_REG(_n) (0x12120 + 4*(_n)) #define E1000_INVM_SIZE 64 /* Number of INVM Data Registers */ /* QAV Tx mode control register */ #define E1000_I210_TQAVCTRL 0x3570 /* QAV Tx mode control register bitfields masks */ /* QAV enable */ #define E1000_TQAVCTRL_MODE (1 << 0) /* Fetching arbitration type */ #define E1000_TQAVCTRL_FETCH_ARB (1 << 4) /* Fetching timer enable */ #define E1000_TQAVCTRL_FETCH_TIMER_ENABLE (1 << 5) /* Launch arbitration type */ #define E1000_TQAVCTRL_LAUNCH_ARB (1 << 8) /* Launch timer enable */ #define E1000_TQAVCTRL_LAUNCH_TIMER_ENABLE (1 << 9) /* SP waits for SR enable */ #define E1000_TQAVCTRL_SP_WAIT_SR (1 << 10) /* Fetching timer correction */ #define E1000_TQAVCTRL_FETCH_TIMER_DELTA_OFFSET 16 #define E1000_TQAVCTRL_FETCH_TIMER_DELTA \ (0xFFFF << E1000_TQAVCTRL_FETCH_TIMER_DELTA_OFFSET) /* High credit registers where _n can be 0 or 1. */ #define E1000_I210_TQAVHC(_n) (0x300C + 0x40 * (_n)) /* Queues fetch arbitration priority control register */ #define E1000_I210_TQAVARBCTRL 0x3574 /* Queues priority masks where _n and _p can be 0-3. */ #define E1000_TQAVARBCTRL_QUEUE_PRI(_n, _p) ((_p) << (2 * (_n))) /* QAV Tx mode control registers where _n can be 0 or 1. */ #define E1000_I210_TQAVCC(_n) (0x3004 + 0x40 * (_n)) /* QAV Tx mode control register bitfields masks */ #define E1000_TQAVCC_IDLE_SLOPE 0xFFFF /* Idle slope */ #define E1000_TQAVCC_KEEP_CREDITS (1 << 30) /* Keep credits opt enable */ #define E1000_TQAVCC_QUEUE_MODE (1U << 31) /* SP vs. SR Tx mode */ /* Good transmitted packets counter registers */ #define E1000_PQGPTC(_n) (0x010014 + (0x100 * (_n))) /* Queues packet buffer size masks where _n can be 0-3 and _s 0-63 [kB] */ #define E1000_I210_TXPBS_SIZE(_n, _s) ((_s) << (6 * (_n))) #define E1000_MMDAC 13 /* MMD Access Control */ #define E1000_MMDAAD 14 /* MMD Access Address/Data */ /* Convenience macros * * Note: "_n" is the queue number of the register to be written to. * * Example usage: * E1000_RDBAL_REG(current_rx_queue) */ #define E1000_RDBAL(_n) ((_n) < 4 ? (0x02800 + ((_n) * 0x100)) : \ (0x0C000 + ((_n) * 0x40))) #define E1000_RDBAH(_n) ((_n) < 4 ? (0x02804 + ((_n) * 0x100)) : \ (0x0C004 + ((_n) * 0x40))) #define E1000_RDLEN(_n) ((_n) < 4 ? (0x02808 + ((_n) * 0x100)) : \ (0x0C008 + ((_n) * 0x40))) #define E1000_SRRCTL(_n) ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : \ (0x0C00C + ((_n) * 0x40))) #define E1000_RDH(_n) ((_n) < 4 ? (0x02810 + ((_n) * 0x100)) : \ (0x0C010 + ((_n) * 0x40))) #define E1000_RXCTL(_n) ((_n) < 4 ? (0x02814 + ((_n) * 0x100)) : \ (0x0C014 + ((_n) * 0x40))) #define E1000_DCA_RXCTRL(_n) E1000_RXCTL(_n) #define E1000_RDT(_n) ((_n) < 4 ? (0x02818 + ((_n) * 0x100)) : \ (0x0C018 + ((_n) * 0x40))) #define E1000_RXDCTL(_n) ((_n) < 4 ? (0x02828 + ((_n) * 0x100)) : \ (0x0C028 + ((_n) * 0x40))) #define E1000_RQDPC(_n) ((_n) < 4 ? (0x02830 + ((_n) * 0x100)) : \ (0x0C030 + ((_n) * 0x40))) #define E1000_TDBAL(_n) ((_n) < 4 ? (0x03800 + ((_n) * 0x100)) : \ (0x0E000 + ((_n) * 0x40))) #define E1000_TDBAH(_n) ((_n) < 4 ? (0x03804 + ((_n) * 0x100)) : \ (0x0E004 + ((_n) * 0x40))) #define E1000_TDLEN(_n) ((_n) < 4 ? (0x03808 + ((_n) * 0x100)) : \ (0x0E008 + ((_n) * 0x40))) #define E1000_TDH(_n) ((_n) < 4 ? (0x03810 + ((_n) * 0x100)) : \ (0x0E010 + ((_n) * 0x40))) #define E1000_TXCTL(_n) ((_n) < 4 ? (0x03814 + ((_n) * 0x100)) : \ (0x0E014 + ((_n) * 0x40))) #define E1000_DCA_TXCTRL(_n) E1000_TXCTL(_n) #define E1000_TDT(_n) ((_n) < 4 ? (0x03818 + ((_n) * 0x100)) : \ (0x0E018 + ((_n) * 0x40))) #define E1000_TXDCTL(_n) ((_n) < 4 ? (0x03828 + ((_n) * 0x100)) : \ (0x0E028 + ((_n) * 0x40))) #define E1000_TDWBAL(_n) ((_n) < 4 ? (0x03838 + ((_n) * 0x100)) : \ (0x0E038 + ((_n) * 0x40))) #define E1000_TDWBAH(_n) ((_n) < 4 ? (0x0383C + ((_n) * 0x100)) : \ (0x0E03C + ((_n) * 0x40))) #define E1000_TARC(_n) (0x03840 + ((_n) * 0x100)) #define E1000_RSRPD 0x02C00 /* Rx Small Packet Detect - RW */ #define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */ #define E1000_TXDMAC 0x03000 /* Tx DMA Control - RW */ #define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */ #define E1000_PSRTYPE(_i) (0x05480 + ((_i) * 4)) #define E1000_RAL(_i) (((_i) <= 15) ? (0x05400 + ((_i) * 8)) : \ (0x054E0 + ((_i - 16) * 8))) #define E1000_RAH(_i) (((_i) <= 15) ? (0x05404 + ((_i) * 8)) : \ (0x054E4 + ((_i - 16) * 8))) #define E1000_SHRAL(_i) (0x05438 + ((_i) * 8)) #define E1000_SHRAH(_i) (0x0543C + ((_i) * 8)) #define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8)) #define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4)) #define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4)) #define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8)) #define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8)) #define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8)) #define E1000_PBSLAC 0x03100 /* Pkt Buffer Slave Access Control */ #define E1000_PBSLAD(_n) (0x03110 + (0x4 * (_n))) /* Pkt Buffer DWORD */ #define E1000_TXPBS 0x03404 /* Tx Packet Buffer Size - RW */ /* Same as TXPBS, renamed for newer Si - RW */ #define E1000_ITPBS 0x03404 #define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */ #define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */ #define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */ #define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */ #define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */ #define E1000_TDPUMB 0x0357C /* DMA Tx Desc uC Mail Box - RW */ #define E1000_TDPUAD 0x03580 /* DMA Tx Desc uC Addr Command - RW */ #define E1000_TDPUWD 0x03584 /* DMA Tx Desc uC Data Write - RW */ #define E1000_TDPURD 0x03588 /* DMA Tx Desc uC Data Read - RW */ #define E1000_TDPUCTL 0x0358C /* DMA Tx Desc uC Control - RW */ #define E1000_DTXCTL 0x03590 /* DMA Tx Control - RW */ #define E1000_DTXTCPFLGL 0x0359C /* DMA Tx Control flag low - RW */ #define E1000_DTXTCPFLGH 0x035A0 /* DMA Tx Control flag high - RW */ /* DMA Tx Max Total Allow Size Reqs - RW */ #define E1000_DTXMXSZRQ 0x03540 #define E1000_TIDV 0x03820 /* Tx Interrupt Delay Value - RW */ #define E1000_TADV 0x0382C /* Tx Interrupt Absolute Delay Val - RW */ #define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */ /* Statistics Register Descriptions */ #define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ #define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ #define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ #define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */ #define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */ #define E1000_SCC 0x04014 /* Single Collision Count - R/clr */ #define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */ #define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */ #define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */ #define E1000_COLC 0x04028 /* Collision Count - R/clr */ #define E1000_DC 0x04030 /* Defer Count - R/clr */ #define E1000_TNCRS 0x04034 /* Tx-No CRS - R/clr */ #define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */ #define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */ #define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */ #define E1000_XONRXC 0x04048 /* XON Rx Count - R/clr */ #define E1000_XONTXC 0x0404C /* XON Tx Count - R/clr */ #define E1000_XOFFRXC 0x04050 /* XOFF Rx Count - R/clr */ #define E1000_XOFFTXC 0x04054 /* XOFF Tx Count - R/clr */ #define E1000_FCRUC 0x04058 /* Flow Control Rx Unsupported Count- R/clr */ #define E1000_PRC64 0x0405C /* Packets Rx (64 bytes) - R/clr */ #define E1000_PRC127 0x04060 /* Packets Rx (65-127 bytes) - R/clr */ #define E1000_PRC255 0x04064 /* Packets Rx (128-255 bytes) - R/clr */ #define E1000_PRC511 0x04068 /* Packets Rx (255-511 bytes) - R/clr */ #define E1000_PRC1023 0x0406C /* Packets Rx (512-1023 bytes) - R/clr */ #define E1000_PRC1522 0x04070 /* Packets Rx (1024-1522 bytes) - R/clr */ #define E1000_GPRC 0x04074 /* Good Packets Rx Count - R/clr */ #define E1000_BPRC 0x04078 /* Broadcast Packets Rx Count - R/clr */ #define E1000_MPRC 0x0407C /* Multicast Packets Rx Count - R/clr */ #define E1000_GPTC 0x04080 /* Good Packets Tx Count - R/clr */ #define E1000_GORCL 0x04088 /* Good Octets Rx Count Low - R/clr */ #define E1000_GORCH 0x0408C /* Good Octets Rx Count High - R/clr */ #define E1000_GOTCL 0x04090 /* Good Octets Tx Count Low - R/clr */ #define E1000_GOTCH 0x04094 /* Good Octets Tx Count High - R/clr */ #define E1000_RNBC 0x040A0 /* Rx No Buffers Count - R/clr */ #define E1000_RUC 0x040A4 /* Rx Undersize Count - R/clr */ #define E1000_RFC 0x040A8 /* Rx Fragment Count - R/clr */ #define E1000_ROC 0x040AC /* Rx Oversize Count - R/clr */ #define E1000_RJC 0x040B0 /* Rx Jabber Count - R/clr */ #define E1000_MGTPRC 0x040B4 /* Management Packets Rx Count - R/clr */ #define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */ #define E1000_MGTPTC 0x040BC /* Management Packets Tx Count - R/clr */ #define E1000_TORL 0x040C0 /* Total Octets Rx Low - R/clr */ #define E1000_TORH 0x040C4 /* Total Octets Rx High - R/clr */ #define E1000_TOTL 0x040C8 /* Total Octets Tx Low - R/clr */ #define E1000_TOTH 0x040CC /* Total Octets Tx High - R/clr */ #define E1000_TPR 0x040D0 /* Total Packets Rx - R/clr */ #define E1000_TPT 0x040D4 /* Total Packets Tx - R/clr */ #define E1000_PTC64 0x040D8 /* Packets Tx (64 bytes) - R/clr */ #define E1000_PTC127 0x040DC /* Packets Tx (65-127 bytes) - R/clr */ #define E1000_PTC255 0x040E0 /* Packets Tx (128-255 bytes) - R/clr */ #define E1000_PTC511 0x040E4 /* Packets Tx (256-511 bytes) - R/clr */ #define E1000_PTC1023 0x040E8 /* Packets Tx (512-1023 bytes) - R/clr */ #define E1000_PTC1522 0x040EC /* Packets Tx (1024-1522 Bytes) - R/clr */ #define E1000_MPTC 0x040F0 /* Multicast Packets Tx Count - R/clr */ #define E1000_BPTC 0x040F4 /* Broadcast Packets Tx Count - R/clr */ #define E1000_TSCTC 0x040F8 /* TCP Segmentation Context Tx - R/clr */ #define E1000_TSCTFC 0x040FC /* TCP Segmentation Context Tx Fail - R/clr */ #define E1000_IAC 0x04100 /* Interrupt Assertion Count */ /* Interrupt Cause */ #define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Pkt Timer Expire Count */ #define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Abs Timer Expire Count */ #define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Pkt Timer Expire Count */ #define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Abs Timer Expire Count */ #define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */ #define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Min Thresh Count */ #define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Desc Min Thresh Count */ #define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */ #define E1000_CRC_OFFSET 0x05F50 /* CRC Offset register */ #define E1000_VFGPRC 0x00F10 #define E1000_VFGORC 0x00F18 #define E1000_VFMPRC 0x00F3C #define E1000_VFGPTC 0x00F14 #define E1000_VFGOTC 0x00F34 #define E1000_VFGOTLBC 0x00F50 #define E1000_VFGPTLBC 0x00F44 #define E1000_VFGORLBC 0x00F48 #define E1000_VFGPRLBC 0x00F40 /* Virtualization statistical counters */ #define E1000_PFVFGPRC(_n) (0x010010 + (0x100 * (_n))) #define E1000_PFVFGPTC(_n) (0x010014 + (0x100 * (_n))) #define E1000_PFVFGORC(_n) (0x010018 + (0x100 * (_n))) #define E1000_PFVFGOTC(_n) (0x010034 + (0x100 * (_n))) #define E1000_PFVFMPRC(_n) (0x010038 + (0x100 * (_n))) #define E1000_PFVFGPRLBC(_n) (0x010040 + (0x100 * (_n))) #define E1000_PFVFGPTLBC(_n) (0x010044 + (0x100 * (_n))) #define E1000_PFVFGORLBC(_n) (0x010048 + (0x100 * (_n))) #define E1000_PFVFGOTLBC(_n) (0x010050 + (0x100 * (_n))) /* LinkSec */ #define E1000_LSECTXUT 0x04300 /* Tx Untagged Pkt Cnt */ #define E1000_LSECTXPKTE 0x04304 /* Encrypted Tx Pkts Cnt */ #define E1000_LSECTXPKTP 0x04308 /* Protected Tx Pkt Cnt */ #define E1000_LSECTXOCTE 0x0430C /* Encrypted Tx Octets Cnt */ #define E1000_LSECTXOCTP 0x04310 /* Protected Tx Octets Cnt */ #define E1000_LSECRXUT 0x04314 /* Untagged non-Strict Rx Pkt Cnt */ #define E1000_LSECRXOCTD 0x0431C /* Rx Octets Decrypted Count */ #define E1000_LSECRXOCTV 0x04320 /* Rx Octets Validated */ #define E1000_LSECRXBAD 0x04324 /* Rx Bad Tag */ #define E1000_LSECRXNOSCI 0x04328 /* Rx Packet No SCI Count */ #define E1000_LSECRXUNSCI 0x0432C /* Rx Packet Unknown SCI Count */ #define E1000_LSECRXUNCH 0x04330 /* Rx Unchecked Packets Count */ #define E1000_LSECRXDELAY 0x04340 /* Rx Delayed Packet Count */ #define E1000_LSECRXLATE 0x04350 /* Rx Late Packets Count */ #define E1000_LSECRXOK(_n) (0x04360 + (0x04 * (_n))) /* Rx Pkt OK Cnt */ #define E1000_LSECRXINV(_n) (0x04380 + (0x04 * (_n))) /* Rx Invalid Cnt */ #define E1000_LSECRXNV(_n) (0x043A0 + (0x04 * (_n))) /* Rx Not Valid Cnt */ #define E1000_LSECRXUNSA 0x043C0 /* Rx Unused SA Count */ #define E1000_LSECRXNUSA 0x043D0 /* Rx Not Using SA Count */ #define E1000_LSECTXCAP 0x0B000 /* Tx Capabilities Register - RO */ #define E1000_LSECRXCAP 0x0B300 /* Rx Capabilities Register - RO */ #define E1000_LSECTXCTRL 0x0B004 /* Tx Control - RW */ #define E1000_LSECRXCTRL 0x0B304 /* Rx Control - RW */ #define E1000_LSECTXSCL 0x0B008 /* Tx SCI Low - RW */ #define E1000_LSECTXSCH 0x0B00C /* Tx SCI High - RW */ #define E1000_LSECTXSA 0x0B010 /* Tx SA0 - RW */ #define E1000_LSECTXPN0 0x0B018 /* Tx SA PN 0 - RW */ #define E1000_LSECTXPN1 0x0B01C /* Tx SA PN 1 - RW */ #define E1000_LSECRXSCL 0x0B3D0 /* Rx SCI Low - RW */ #define E1000_LSECRXSCH 0x0B3E0 /* Rx SCI High - RW */ /* LinkSec Tx 128-bit Key 0 - WO */ #define E1000_LSECTXKEY0(_n) (0x0B020 + (0x04 * (_n))) /* LinkSec Tx 128-bit Key 1 - WO */ #define E1000_LSECTXKEY1(_n) (0x0B030 + (0x04 * (_n))) #define E1000_LSECRXSA(_n) (0x0B310 + (0x04 * (_n))) /* Rx SAs - RW */ #define E1000_LSECRXPN(_n) (0x0B330 + (0x04 * (_n))) /* Rx SAs - RW */ /* LinkSec Rx Keys - where _n is the SA no. and _m the 4 dwords of the 128 bit * key - RW. */ #define E1000_LSECRXKEY(_n, _m) (0x0B350 + (0x10 * (_n)) + (0x04 * (_m))) #define E1000_SSVPC 0x041A0 /* Switch Security Violation Pkt Cnt */ #define E1000_IPSCTRL 0xB430 /* IpSec Control Register */ #define E1000_IPSRXCMD 0x0B408 /* IPSec Rx Command Register - RW */ #define E1000_IPSRXIDX 0x0B400 /* IPSec Rx Index - RW */ /* IPSec Rx IPv4/v6 Address - RW */ #define E1000_IPSRXIPADDR(_n) (0x0B420 + (0x04 * (_n))) /* IPSec Rx 128-bit Key - RW */ #define E1000_IPSRXKEY(_n) (0x0B410 + (0x04 * (_n))) #define E1000_IPSRXSALT 0x0B404 /* IPSec Rx Salt - RW */ #define E1000_IPSRXSPI 0x0B40C /* IPSec Rx SPI - RW */ /* IPSec Tx 128-bit Key - RW */ #define E1000_IPSTXKEY(_n) (0x0B460 + (0x04 * (_n))) #define E1000_IPSTXSALT 0x0B454 /* IPSec Tx Salt - RW */ #define E1000_IPSTXIDX 0x0B450 /* IPSec Tx SA IDX - RW */ #define E1000_PCS_CFG0 0x04200 /* PCS Configuration 0 - RW */ #define E1000_PCS_LCTL 0x04208 /* PCS Link Control - RW */ #define E1000_PCS_LSTAT 0x0420C /* PCS Link Status - RO */ #define E1000_CBTMPC 0x0402C /* Circuit Breaker Tx Packet Count */ #define E1000_HTDPMC 0x0403C /* Host Transmit Discarded Packets */ #define E1000_CBRDPC 0x04044 /* Circuit Breaker Rx Dropped Count */ #define E1000_CBRMPC 0x040FC /* Circuit Breaker Rx Packet Count */ #define E1000_RPTHC 0x04104 /* Rx Packets To Host */ #define E1000_HGPTC 0x04118 /* Host Good Packets Tx Count */ #define E1000_HTCBDPC 0x04124 /* Host Tx Circuit Breaker Dropped Count */ #define E1000_HGORCL 0x04128 /* Host Good Octets Received Count Low */ #define E1000_HGORCH 0x0412C /* Host Good Octets Received Count High */ #define E1000_HGOTCL 0x04130 /* Host Good Octets Transmit Count Low */ #define E1000_HGOTCH 0x04134 /* Host Good Octets Transmit Count High */ #define E1000_LENERRS 0x04138 /* Length Errors Count */ #define E1000_SCVPC 0x04228 /* SerDes/SGMII Code Violation Pkt Count */ #define E1000_HRMPC 0x0A018 /* Header Redirection Missed Packet Count */ #define E1000_PCS_ANADV 0x04218 /* AN advertisement - RW */ #define E1000_PCS_LPAB 0x0421C /* Link Partner Ability - RW */ #define E1000_PCS_NPTX 0x04220 /* AN Next Page Transmit - RW */ #define E1000_PCS_LPABNP 0x04224 /* Link Partner Ability Next Pg - RW */ #define E1000_RXCSUM 0x05000 /* Rx Checksum Control - RW */ #define E1000_RLPML 0x05004 /* Rx Long Packet Max Length */ #define E1000_RFCTL 0x05008 /* Receive Filter Control*/ #define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ #define E1000_RA 0x05400 /* Receive Address - RW Array */ #define E1000_RA2 0x054E0 /* 2nd half of Rx address array - RW Array */ #define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ #define E1000_VT_CTL 0x0581C /* VMDq Control - RW */ #define E1000_CIAA 0x05B88 /* Config Indirect Access Address - RW */ #define E1000_CIAD 0x05B8C /* Config Indirect Access Data - RW */ #define E1000_VFQA0 0x0B000 /* VLAN Filter Queue Array 0 - RW Array */ #define E1000_VFQA1 0x0B200 /* VLAN Filter Queue Array 1 - RW Array */ #define E1000_WUC 0x05800 /* Wakeup Control - RW */ #define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */ #define E1000_WUS 0x05810 /* Wakeup Status - RO */ /* Management registers */ #define E1000_MANC 0x05820 /* Management Control - RW */ #define E1000_IPAV 0x05838 /* IP Address Valid - RW */ #define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */ #define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */ #define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */ #define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */ /* MSI-X Table Register Descriptions */ #define E1000_PBACL 0x05B68 /* MSIx PBA Clear - Read/Write 1's to clear */ #define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */ #define E1000_HOST_IF 0x08800 /* Host Interface */ #define E1000_HIBBA 0x8F40 /* Host Interface Buffer Base Address */ /* Flexible Host Filter Table */ #define E1000_FHFT(_n) (0x09000 + ((_n) * 0x100)) /* Ext Flexible Host Filter Table */ #define E1000_FHFT_EXT(_n) (0x09A00 + ((_n) * 0x100)) #define E1000_KMRNCTRLSTA 0x00034 /* MAC-PHY interface - RW */ #define E1000_MANC2H 0x05860 /* Management Control To Host - RW */ /* Management Decision Filters */ #define E1000_MDEF(_n) (0x05890 + (4 * (_n))) /* Semaphore registers */ #define E1000_SW_FW_SYNC 0x05B5C /* SW-FW Synchronization - RW */ #define E1000_CCMCTL 0x05B48 /* CCM Control Register */ #define E1000_GIOCTL 0x05B44 /* GIO Analog Control Register */ #define E1000_SCCTL 0x05B4C /* PCIc PLL Configuration Register */ /* PCIe Register Description */ #define E1000_GCR 0x05B00 /* PCI-Ex Control */ #define E1000_GCR2 0x05B64 /* PCI-Ex Control #2 */ #define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */ #define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */ #define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */ #define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */ /* Function Active and Power State to MNG */ #define E1000_FACTPS 0x05B30 #define E1000_SWSM 0x05B50 /* SW Semaphore */ #define E1000_FWSM 0x05B54 /* FW Semaphore */ /* Driver-only SW semaphore (not used by BOOT agents) */ #define E1000_SWSM2 0x05B58 #define E1000_DCA_ID 0x05B70 /* DCA Requester ID Information - RO */ #define E1000_DCA_CTRL 0x05B74 /* DCA Control - RW */ #define E1000_UFUSE 0x05B78 /* UFUSE - RO */ #define E1000_FFLT_DBG 0x05F04 /* Debug Register */ #define E1000_HICR 0x08F00 /* Host Interface Control */ #define E1000_FWSTS 0x08F0C /* FW Status */ /* RSS registers */ #define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */ #define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */ #define E1000_IMIR(_i) (0x05A80 + ((_i) * 4)) /* Immediate Interrupt */ #define E1000_IMIREXT(_i) (0x05AA0 + ((_i) * 4)) /* Immediate INTR Ext*/ #define E1000_IMIRVP 0x05AC0 /* Immediate INT Rx VLAN Priority -RW */ #define E1000_MSIXBM(_i) (0x01600 + ((_i) * 4)) /* MSI-X Alloc Reg -RW */ /* Redirection Table - RW Array */ #define E1000_RETA(_i) (0x05C00 + ((_i) * 4)) /* RSS Random Key - RW Array */ #define E1000_RSSRK(_i) (0x05C80 + ((_i) * 4)) #define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */ #define E1000_RSSIR 0x05868 /* RSS Interrupt Request */ /* VT Registers */ #define E1000_SWPBS 0x03004 /* Switch Packet Buffer Size - RW */ #define E1000_MBVFICR 0x00C80 /* Mailbox VF Cause - RWC */ #define E1000_MBVFIMR 0x00C84 /* Mailbox VF int Mask - RW */ #define E1000_VFLRE 0x00C88 /* VF Register Events - RWC */ #define E1000_VFRE 0x00C8C /* VF Receive Enables */ #define E1000_VFTE 0x00C90 /* VF Transmit Enables */ #define E1000_QDE 0x02408 /* Queue Drop Enable - RW */ #define E1000_DTXSWC 0x03500 /* DMA Tx Switch Control - RW */ #define E1000_WVBR 0x03554 /* VM Wrong Behavior - RWS */ #define E1000_RPLOLR 0x05AF0 /* Replication Offload - RW */ #define E1000_UTA 0x0A000 /* Unicast Table Array - RW */ #define E1000_IOVCTL 0x05BBC /* IOV Control Register */ #define E1000_VMRCTL 0X05D80 /* Virtual Mirror Rule Control */ #define E1000_VMRVLAN 0x05D90 /* Virtual Mirror Rule VLAN */ #define E1000_VMRVM 0x05DA0 /* Virtual Mirror Rule VM */ #define E1000_MDFB 0x03558 /* Malicious Driver free block */ #define E1000_LVMMC 0x03548 /* Last VM Misbehavior cause */ #define E1000_TXSWC 0x05ACC /* Tx Switch Control */ #define E1000_SCCRL 0x05DB0 /* Storm Control Control */ #define E1000_BSCTRH 0x05DB8 /* Broadcast Storm Control Threshold */ #define E1000_MSCTRH 0x05DBC /* Multicast Storm Control Threshold */ /* These act per VF so an array friendly macro is used */ #define E1000_V2PMAILBOX(_n) (0x00C40 + (4 * (_n))) #define E1000_P2VMAILBOX(_n) (0x00C00 + (4 * (_n))) #define E1000_VMBMEM(_n) (0x00800 + (64 * (_n))) #define E1000_VFVMBMEM(_n) (0x00800 + (_n)) #define E1000_VMOLR(_n) (0x05AD0 + (4 * (_n))) /* VLAN Virtual Machine Filter - RW */ #define E1000_VLVF(_n) (0x05D00 + (4 * (_n))) #define E1000_VMVIR(_n) (0x03700 + (4 * (_n))) #define E1000_DVMOLR(_n) (0x0C038 + (0x40 * (_n))) /* DMA VM offload */ #define E1000_VTCTRL(_n) (0x10000 + (0x100 * (_n))) /* VT Control */ #define E1000_TSYNCRXCTL 0x0B620 /* Rx Time Sync Control register - RW */ #define E1000_TSYNCTXCTL 0x0B614 /* Tx Time Sync Control register - RW */ #define E1000_TSYNCRXCFG 0x05F50 /* Time Sync Rx Configuration - RW */ #define E1000_RXSTMPL 0x0B624 /* Rx timestamp Low - RO */ #define E1000_RXSTMPH 0x0B628 /* Rx timestamp High - RO */ #define E1000_RXSATRL 0x0B62C /* Rx timestamp attribute low - RO */ #define E1000_RXSATRH 0x0B630 /* Rx timestamp attribute high - RO */ #define E1000_TXSTMPL 0x0B618 /* Tx timestamp value Low - RO */ #define E1000_TXSTMPH 0x0B61C /* Tx timestamp value High - RO */ #define E1000_SYSTIML 0x0B600 /* System time register Low - RO */ #define E1000_SYSTIMH 0x0B604 /* System time register High - RO */ #define E1000_TIMINCA 0x0B608 /* Increment attributes register - RW */ #define E1000_TIMADJL 0x0B60C /* Time sync time adjustment offset Low - RW */ #define E1000_TIMADJH 0x0B610 /* Time sync time adjustment offset High - RW */ #define E1000_TSAUXC 0x0B640 /* Timesync Auxiliary Control register */ #define E1000_SYSSTMPL 0x0B648 /* HH Timesync system stamp low register */ #define E1000_SYSSTMPH 0x0B64C /* HH Timesync system stamp hi register */ #define E1000_PLTSTMPL 0x0B640 /* HH Timesync platform stamp low register */ #define E1000_PLTSTMPH 0x0B644 /* HH Timesync platform stamp hi register */ #define E1000_SYSTIMR 0x0B6F8 /* System time register Residue */ #define E1000_TSICR 0x0B66C /* Interrupt Cause Register */ #define E1000_TSIM 0x0B674 /* Interrupt Mask Register */ #define E1000_RXMTRL 0x0B634 /* Time sync Rx EtherType and Msg Type - RW */ #define E1000_RXUDP 0x0B638 /* Time Sync Rx UDP Port - RW */ /* Filtering Registers */ #define E1000_SAQF(_n) (0x05980 + (4 * (_n))) /* Source Address Queue Fltr */ #define E1000_DAQF(_n) (0x059A0 + (4 * (_n))) /* Dest Address Queue Fltr */ #define E1000_SPQF(_n) (0x059C0 + (4 * (_n))) /* Source Port Queue Fltr */ #define E1000_FTQF(_n) (0x059E0 + (4 * (_n))) /* 5-tuple Queue Fltr */ #define E1000_TTQF(_n) (0x059E0 + (4 * (_n))) /* 2-tuple Queue Fltr */ #define E1000_SYNQF(_n) (0x055FC + (4 * (_n))) /* SYN Packet Queue Fltr */ #define E1000_ETQF(_n) (0x05CB0 + (4 * (_n))) /* EType Queue Fltr */ /* ETQF register bit definitions */ #define E1000_ETQF_FILTER_ENABLE (1 << 26) #define E1000_ETQF_IMM_INT (1 << 29) -#define E1000_ETQF_QUEUE_ENABLE (1 << 31) +#define E1000_ETQF_QUEUE_ENABLE (1U << 31) #define E1000_ETQF_QUEUE_SHIFT 16 #define E1000_ETQF_QUEUE_MASK 0x00070000 #define E1000_ETQF_ETYPE_MASK 0x0000FFFF #define E1000_RTTDCS 0x3600 /* Reedtown Tx Desc plane control and status */ #define E1000_RTTPCS 0x3474 /* Reedtown Tx Packet Plane control and status */ #define E1000_RTRPCS 0x2474 /* Rx packet plane control and status */ #define E1000_RTRUP2TC 0x05AC4 /* Rx User Priority to Traffic Class */ #define E1000_RTTUP2TC 0x0418 /* Transmit User Priority to Traffic Class */ /* Tx Desc plane TC Rate-scheduler config */ #define E1000_RTTDTCRC(_n) (0x3610 + ((_n) * 4)) /* Tx Packet plane TC Rate-Scheduler Config */ #define E1000_RTTPTCRC(_n) (0x3480 + ((_n) * 4)) /* Rx Packet plane TC Rate-Scheduler Config */ #define E1000_RTRPTCRC(_n) (0x2480 + ((_n) * 4)) /* Tx Desc Plane TC Rate-Scheduler Status */ #define E1000_RTTDTCRS(_n) (0x3630 + ((_n) * 4)) /* Tx Desc Plane TC Rate-Scheduler MMW */ #define E1000_RTTDTCRM(_n) (0x3650 + ((_n) * 4)) /* Tx Packet plane TC Rate-Scheduler Status */ #define E1000_RTTPTCRS(_n) (0x34A0 + ((_n) * 4)) /* Tx Packet plane TC Rate-scheduler MMW */ #define E1000_RTTPTCRM(_n) (0x34C0 + ((_n) * 4)) /* Rx Packet plane TC Rate-Scheduler Status */ #define E1000_RTRPTCRS(_n) (0x24A0 + ((_n) * 4)) /* Rx Packet plane TC Rate-Scheduler MMW */ #define E1000_RTRPTCRM(_n) (0x24C0 + ((_n) * 4)) /* Tx Desc plane VM Rate-Scheduler MMW*/ #define E1000_RTTDVMRM(_n) (0x3670 + ((_n) * 4)) /* Tx BCN Rate-Scheduler MMW */ #define E1000_RTTBCNRM(_n) (0x3690 + ((_n) * 4)) #define E1000_RTTDQSEL 0x3604 /* Tx Desc Plane Queue Select */ #define E1000_RTTDVMRC 0x3608 /* Tx Desc Plane VM Rate-Scheduler Config */ #define E1000_RTTDVMRS 0x360C /* Tx Desc Plane VM Rate-Scheduler Status */ #define E1000_RTTBCNRC 0x36B0 /* Tx BCN Rate-Scheduler Config */ #define E1000_RTTBCNRS 0x36B4 /* Tx BCN Rate-Scheduler Status */ #define E1000_RTTBCNCR 0xB200 /* Tx BCN Control Register */ #define E1000_RTTBCNTG 0x35A4 /* Tx BCN Tagging */ #define E1000_RTTBCNCP 0xB208 /* Tx BCN Congestion point */ #define E1000_RTRBCNCR 0xB20C /* Rx BCN Control Register */ #define E1000_RTTBCNRD 0x36B8 /* Tx BCN Rate Drift */ #define E1000_PFCTOP 0x1080 /* Priority Flow Control Type and Opcode */ #define E1000_RTTBCNIDX 0xB204 /* Tx BCN Congestion Point */ #define E1000_RTTBCNACH 0x0B214 /* Tx BCN Control High */ #define E1000_RTTBCNACL 0x0B210 /* Tx BCN Control Low */ /* DMA Coalescing registers */ #define E1000_DMACR 0x02508 /* Control Register */ #define E1000_DMCTXTH 0x03550 /* Transmit Threshold */ #define E1000_DMCTLX 0x02514 /* Time to Lx Request */ #define E1000_DMCRTRH 0x05DD0 /* Receive Packet Rate Threshold */ #define E1000_DMCCNT 0x05DD4 /* Current Rx Count */ #define E1000_FCRTC 0x02170 /* Flow Control Rx high watermark */ #define E1000_PCIEMISC 0x05BB8 /* PCIE misc config register */ /* PCIe Parity Status Register */ #define E1000_PCIEERRSTS 0x05BA8 #define E1000_PROXYS 0x5F64 /* Proxying Status */ #define E1000_PROXYFC 0x5F60 /* Proxying Filter Control */ /* Thermal sensor configuration and status registers */ #define E1000_THMJT 0x08100 /* Junction Temperature */ #define E1000_THLOWTC 0x08104 /* Low Threshold Control */ #define E1000_THMIDTC 0x08108 /* Mid Threshold Control */ #define E1000_THHIGHTC 0x0810C /* High Threshold Control */ #define E1000_THSTAT 0x08110 /* Thermal Sensor Status */ /* Energy Efficient Ethernet "EEE" registers */ #define E1000_IPCNFG 0x0E38 /* Internal PHY Configuration */ #define E1000_LTRC 0x01A0 /* Latency Tolerance Reporting Control */ #define E1000_EEER 0x0E30 /* Energy Efficient Ethernet "EEE"*/ #define E1000_EEE_SU 0x0E34 /* EEE Setup */ #define E1000_TLPIC 0x4148 /* EEE Tx LPI Count - TLPIC */ #define E1000_RLPIC 0x414C /* EEE Rx LPI Count - RLPIC */ /* OS2BMC Registers */ #define E1000_B2OSPC 0x08FE0 /* BMC2OS packets sent by BMC */ #define E1000_B2OGPRC 0x04158 /* BMC2OS packets received by host */ #define E1000_O2BGPTC 0x08FE4 /* OS2BMC packets received by BMC */ #define E1000_O2BSPC 0x0415C /* OS2BMC packets transmitted by host */ #define E1000_DOBFFCTL 0x3F24 /* DMA OBFF Control Register */ #endif