diff --git a/sys/arm64/iommu/iommu.c b/sys/arm64/iommu/iommu.c index e7f51e8693a1..690c11f4777c 100644 --- a/sys/arm64/iommu/iommu.c +++ b/sys/arm64/iommu/iommu.c @@ -1,399 +1,397 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2020 Ruslan Bukin * * This software was developed by SRI International and the University of * Cambridge Computer Laboratory (Department of Computer Science and * Technology) under DARPA contract HR0011-18-C-0016 ("ECATS"), as part of the * DARPA SSITH research programme. * * Portions of this work was supported by Innovate UK project 105694, * "Digital Security by Design (DSbD) Technology Platform Prototype". * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_platform.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "iommu.h" #include "iommu_if.h" static MALLOC_DEFINE(M_IOMMU, "IOMMU", "IOMMU framework"); #define IOMMU_LIST_LOCK() mtx_lock(&iommu_mtx) #define IOMMU_LIST_UNLOCK() mtx_unlock(&iommu_mtx) #define IOMMU_LIST_ASSERT_LOCKED() mtx_assert(&iommu_mtx, MA_OWNED) #define dprintf(fmt, ...) static struct mtx iommu_mtx; struct iommu_entry { struct iommu_unit *iommu; LIST_ENTRY(iommu_entry) next; }; static LIST_HEAD(, iommu_entry) iommu_list = LIST_HEAD_INITIALIZER(iommu_list); static int iommu_domain_unmap_buf(struct iommu_domain *iodom, iommu_gaddr_t base, iommu_gaddr_t size, int flags) { struct iommu_unit *iommu; int error; iommu = iodom->iommu; error = IOMMU_UNMAP(iommu->dev, iodom, base, size); return (error); } static int iommu_domain_map_buf(struct iommu_domain *iodom, iommu_gaddr_t base, iommu_gaddr_t size, vm_page_t *ma, uint64_t eflags, int flags) { struct iommu_unit *iommu; vm_prot_t prot; vm_offset_t va; int error; dprintf("%s: base %lx, size %lx\n", __func__, base, size); prot = 0; if (eflags & IOMMU_MAP_ENTRY_READ) prot |= VM_PROT_READ; if (eflags & IOMMU_MAP_ENTRY_WRITE) prot |= VM_PROT_WRITE; va = base; iommu = iodom->iommu; error = IOMMU_MAP(iommu->dev, iodom, va, ma, size, prot); return (error); } static const struct iommu_domain_map_ops domain_map_ops = { .map = iommu_domain_map_buf, .unmap = iommu_domain_unmap_buf, }; static struct iommu_domain * iommu_domain_alloc(struct iommu_unit *iommu) { struct iommu_domain *iodom; iodom = IOMMU_DOMAIN_ALLOC(iommu->dev, iommu); if (iodom == NULL) return (NULL); iommu_domain_init(iommu, iodom, &domain_map_ops); iodom->end = VM_MAXUSER_ADDRESS; iodom->iommu = iommu; iommu_gas_init_domain(iodom); return (iodom); } static int iommu_domain_free(struct iommu_domain *iodom) { struct iommu_unit *iommu; iommu = iodom->iommu; IOMMU_LOCK(iommu); if ((iodom->flags & IOMMU_DOMAIN_GAS_INITED) != 0) { IOMMU_DOMAIN_LOCK(iodom); iommu_gas_fini_domain(iodom); IOMMU_DOMAIN_UNLOCK(iodom); } iommu_domain_fini(iodom); IOMMU_DOMAIN_FREE(iommu->dev, iodom); IOMMU_UNLOCK(iommu); return (0); } static void iommu_tag_init(struct bus_dma_tag_iommu *t) { bus_addr_t maxaddr; maxaddr = BUS_SPACE_MAXADDR; t->common.ref_count = 0; t->common.impl = &bus_dma_iommu_impl; t->common.alignment = 1; t->common.boundary = 0; t->common.lowaddr = maxaddr; t->common.highaddr = maxaddr; t->common.maxsize = maxaddr; t->common.nsegments = BUS_SPACE_UNRESTRICTED; t->common.maxsegsz = maxaddr; } static struct iommu_ctx * iommu_ctx_alloc(device_t dev, struct iommu_domain *iodom, bool disabled) { struct iommu_unit *iommu; struct iommu_ctx *ioctx; iommu = iodom->iommu; ioctx = IOMMU_CTX_ALLOC(iommu->dev, iodom, dev, disabled); if (ioctx == NULL) return (NULL); /* * iommu can also be used for non-PCI based devices. * This should be reimplemented as new newbus method with * pci_get_rid() as a default for PCI device class. */ ioctx->rid = pci_get_rid(dev); return (ioctx); } struct iommu_ctx * iommu_get_ctx(struct iommu_unit *iommu, device_t requester, uint16_t rid, bool disabled, bool rmrr) { struct iommu_ctx *ioctx; struct iommu_domain *iodom; struct bus_dma_tag_iommu *tag; IOMMU_LOCK(iommu); ioctx = IOMMU_CTX_LOOKUP(iommu->dev, requester); if (ioctx) { IOMMU_UNLOCK(iommu); return (ioctx); } IOMMU_UNLOCK(iommu); /* * In our current configuration we have a domain per each ctx. * So allocate a domain first. */ iodom = iommu_domain_alloc(iommu); if (iodom == NULL) return (NULL); ioctx = iommu_ctx_alloc(requester, iodom, disabled); if (ioctx == NULL) { iommu_domain_free(iodom); return (NULL); } tag = ioctx->tag = malloc(sizeof(struct bus_dma_tag_iommu), M_IOMMU, M_WAITOK | M_ZERO); tag->owner = requester; tag->ctx = ioctx; tag->ctx->domain = iodom; iommu_tag_init(tag); ioctx->domain = iodom; return (ioctx); } void iommu_free_ctx_locked(struct iommu_unit *iommu, struct iommu_ctx *ioctx) { struct bus_dma_tag_iommu *tag; IOMMU_ASSERT_LOCKED(iommu); tag = ioctx->tag; IOMMU_CTX_FREE(iommu->dev, ioctx); free(tag, M_IOMMU); } void iommu_free_ctx(struct iommu_ctx *ioctx) { struct iommu_unit *iommu; struct iommu_domain *iodom; int error; iodom = ioctx->domain; iommu = iodom->iommu; IOMMU_LOCK(iommu); iommu_free_ctx_locked(iommu, ioctx); IOMMU_UNLOCK(iommu); /* Since we have a domain per each ctx, remove the domain too. */ error = iommu_domain_free(iodom); if (error) device_printf(iommu->dev, "Could not free a domain\n"); } static void iommu_domain_free_entry(struct iommu_map_entry *entry, bool free) { struct iommu_domain *iodom; iodom = entry->domain; IOMMU_DOMAIN_LOCK(iodom); iommu_gas_free_space(iodom, entry); IOMMU_DOMAIN_UNLOCK(iodom); if (free) iommu_gas_free_entry(iodom, entry); else entry->flags = 0; } void iommu_domain_unload(struct iommu_domain *iodom, struct iommu_map_entries_tailq *entries, bool cansleep) { struct iommu_map_entry *entry, *entry1; -#ifdef INVARIANTS - int error; -#endif + int error __unused; TAILQ_FOREACH_SAFE(entry, entries, dmamap_link, entry1) { KASSERT((entry->flags & IOMMU_MAP_ENTRY_MAP) != 0, ("not mapped entry %p %p", iodom, entry)); error = iodom->ops->unmap(iodom, entry->start, entry->end - entry->start, cansleep ? IOMMU_PGF_WAITOK : 0); KASSERT(error == 0, ("unmap %p error %d", iodom, error)); TAILQ_REMOVE(entries, entry, dmamap_link); iommu_domain_free_entry(entry, true); } if (TAILQ_EMPTY(entries)) return; panic("entries map is not empty"); } int iommu_register(struct iommu_unit *iommu) { struct iommu_entry *entry; mtx_init(&iommu->lock, "IOMMU", NULL, MTX_DEF); entry = malloc(sizeof(struct iommu_entry), M_IOMMU, M_WAITOK | M_ZERO); entry->iommu = iommu; IOMMU_LIST_LOCK(); LIST_INSERT_HEAD(&iommu_list, entry, next); IOMMU_LIST_UNLOCK(); iommu_init_busdma(iommu); return (0); } int iommu_unregister(struct iommu_unit *iommu) { struct iommu_entry *entry, *tmp; IOMMU_LIST_LOCK(); LIST_FOREACH_SAFE(entry, &iommu_list, next, tmp) { if (entry->iommu == iommu) { LIST_REMOVE(entry, next); free(entry, M_IOMMU); } } IOMMU_LIST_UNLOCK(); iommu_fini_busdma(iommu); mtx_destroy(&iommu->lock); return (0); } struct iommu_unit * iommu_find(device_t dev, bool verbose) { struct iommu_entry *entry; struct iommu_unit *iommu; int error; IOMMU_LIST_LOCK(); LIST_FOREACH(entry, &iommu_list, next) { iommu = entry->iommu; error = IOMMU_FIND(iommu->dev, dev); if (error == 0) { IOMMU_LIST_UNLOCK(); return (entry->iommu); } } IOMMU_LIST_UNLOCK(); return (NULL); } void iommu_domain_unload_entry(struct iommu_map_entry *entry, bool free) { dprintf("%s\n", __func__); iommu_domain_free_entry(entry, free); } static void iommu_init(void) { mtx_init(&iommu_mtx, "IOMMU", NULL, MTX_DEF); } SYSINIT(iommu, SI_SUB_DRIVERS, SI_ORDER_FIRST, iommu_init, NULL); diff --git a/sys/arm64/iommu/iommu_pmap.c b/sys/arm64/iommu/iommu_pmap.c index 586620ef9ba9..06775efedfe9 100644 --- a/sys/arm64/iommu/iommu_pmap.c +++ b/sys/arm64/iommu/iommu_pmap.c @@ -1,890 +1,892 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2020-2021 Ruslan Bukin * Copyright (c) 2014-2021 Andrew Turner * Copyright (c) 2014-2016 The FreeBSD Foundation * All rights reserved. * * This work was supported by Innovate UK project 105694, "Digital Security * by Design (DSbD) Technology Platform Prototype". * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Manages physical address maps for ARM SMMUv3 and ARM Mali GPU. */ #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define IOMMU_PAGE_SIZE 4096 #define NL0PG (IOMMU_PAGE_SIZE/(sizeof (pd_entry_t))) #define NL1PG (IOMMU_PAGE_SIZE/(sizeof (pd_entry_t))) #define NL2PG (IOMMU_PAGE_SIZE/(sizeof (pd_entry_t))) #define NL3PG (IOMMU_PAGE_SIZE/(sizeof (pt_entry_t))) #define NUL0E IOMMU_L0_ENTRIES #define NUL1E (NUL0E * NL1PG) #define NUL2E (NUL1E * NL2PG) #define iommu_l0_pindex(v) (NUL2E + NUL1E + ((v) >> IOMMU_L0_SHIFT)) #define iommu_l1_pindex(v) (NUL2E + ((v) >> IOMMU_L1_SHIFT)) #define iommu_l2_pindex(v) ((v) >> IOMMU_L2_SHIFT) /* This code assumes all L1 DMAP entries will be used */ CTASSERT((DMAP_MIN_ADDRESS & ~IOMMU_L0_OFFSET) == DMAP_MIN_ADDRESS); CTASSERT((DMAP_MAX_ADDRESS & ~IOMMU_L0_OFFSET) == DMAP_MAX_ADDRESS); static vm_page_t _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex); static void _pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free); /* * These load the old table data and store the new value. * They need to be atomic as the System MMU may write to the table at * the same time as the CPU. */ #define pmap_load(table) (*table) #define pmap_clear(table) atomic_store_64(table, 0) #define pmap_store(table, entry) atomic_store_64(table, entry) /********************/ /* Inline functions */ /********************/ static __inline pd_entry_t * pmap_l0(pmap_t pmap, vm_offset_t va) { return (&pmap->pm_l0[iommu_l0_index(va)]); } static __inline pd_entry_t * pmap_l0_to_l1(pd_entry_t *l0, vm_offset_t va) { pd_entry_t *l1; l1 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l0) & ~ATTR_MASK); return (&l1[iommu_l1_index(va)]); } static __inline pd_entry_t * pmap_l1(pmap_t pmap, vm_offset_t va) { pd_entry_t *l0; l0 = pmap_l0(pmap, va); if ((pmap_load(l0) & ATTR_DESCR_MASK) != IOMMU_L0_TABLE) return (NULL); return (pmap_l0_to_l1(l0, va)); } static __inline pd_entry_t * pmap_l1_to_l2(pd_entry_t *l1p, vm_offset_t va) { pd_entry_t l1, *l2p; l1 = pmap_load(l1p); /* * The valid bit may be clear if pmap_update_entry() is concurrently * modifying the entry, so for KVA only the entry type may be checked. */ KASSERT(va >= VM_MAX_USER_ADDRESS || (l1 & ATTR_DESCR_VALID) != 0, ("%s: L1 entry %#lx for %#lx is invalid", __func__, l1, va)); KASSERT((l1 & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_TABLE, ("%s: L1 entry %#lx for %#lx is a leaf", __func__, l1, va)); l2p = (pd_entry_t *)PHYS_TO_DMAP(l1 & ~ATTR_MASK); return (&l2p[iommu_l2_index(va)]); } static __inline pd_entry_t * pmap_l2(pmap_t pmap, vm_offset_t va) { pd_entry_t *l1; l1 = pmap_l1(pmap, va); if ((pmap_load(l1) & ATTR_DESCR_MASK) != IOMMU_L1_TABLE) return (NULL); return (pmap_l1_to_l2(l1, va)); } static __inline pt_entry_t * pmap_l2_to_l3(pd_entry_t *l2p, vm_offset_t va) { pd_entry_t l2; pt_entry_t *l3p; l2 = pmap_load(l2p); /* * The valid bit may be clear if pmap_update_entry() is concurrently * modifying the entry, so for KVA only the entry type may be checked. */ KASSERT(va >= VM_MAX_USER_ADDRESS || (l2 & ATTR_DESCR_VALID) != 0, ("%s: L2 entry %#lx for %#lx is invalid", __func__, l2, va)); KASSERT((l2 & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_TABLE, ("%s: L2 entry %#lx for %#lx is a leaf", __func__, l2, va)); l3p = (pt_entry_t *)PHYS_TO_DMAP(l2 & ~ATTR_MASK); return (&l3p[iommu_l3_index(va)]); } /* * Returns the lowest valid pde for a given virtual address. * The next level may or may not point to a valid page or block. */ static __inline pd_entry_t * pmap_pde(pmap_t pmap, vm_offset_t va, int *level) { pd_entry_t *l0, *l1, *l2, desc; l0 = pmap_l0(pmap, va); desc = pmap_load(l0) & ATTR_DESCR_MASK; if (desc != IOMMU_L0_TABLE) { *level = -1; return (NULL); } l1 = pmap_l0_to_l1(l0, va); desc = pmap_load(l1) & ATTR_DESCR_MASK; if (desc != IOMMU_L1_TABLE) { *level = 0; return (l0); } l2 = pmap_l1_to_l2(l1, va); desc = pmap_load(l2) & ATTR_DESCR_MASK; if (desc != IOMMU_L2_TABLE) { *level = 1; return (l1); } *level = 2; return (l2); } /* * Returns the lowest valid pte block or table entry for a given virtual * address. If there are no valid entries return NULL and set the level to * the first invalid level. */ static __inline pt_entry_t * pmap_pte(pmap_t pmap, vm_offset_t va, int *level) { pd_entry_t *l1, *l2, desc; pt_entry_t *l3; l1 = pmap_l1(pmap, va); if (l1 == NULL) { *level = 0; return (NULL); } desc = pmap_load(l1) & ATTR_DESCR_MASK; if (desc == IOMMU_L1_BLOCK) { *level = 1; return (l1); } if (desc != IOMMU_L1_TABLE) { *level = 1; return (NULL); } l2 = pmap_l1_to_l2(l1, va); desc = pmap_load(l2) & ATTR_DESCR_MASK; if (desc == IOMMU_L2_BLOCK) { *level = 2; return (l2); } if (desc != IOMMU_L2_TABLE) { *level = 2; return (NULL); } *level = 3; l3 = pmap_l2_to_l3(l2, va); if ((pmap_load(l3) & ATTR_DESCR_MASK) != IOMMU_L3_PAGE) return (NULL); return (l3); } static __inline int pmap_l3_valid(pt_entry_t l3) { return ((l3 & ATTR_DESCR_MASK) == IOMMU_L3_PAGE); } CTASSERT(IOMMU_L1_BLOCK == IOMMU_L2_BLOCK); static __inline void pmap_resident_count_inc(pmap_t pmap, int count) { PMAP_LOCK_ASSERT(pmap, MA_OWNED); pmap->pm_stats.resident_count += count; } static __inline void pmap_resident_count_dec(pmap_t pmap, int count) { PMAP_LOCK_ASSERT(pmap, MA_OWNED); KASSERT(pmap->pm_stats.resident_count >= count, ("pmap %p resident count underflow %ld %d", pmap, pmap->pm_stats.resident_count, count)); pmap->pm_stats.resident_count -= count; } /*************************************************** * Page table page management routines..... ***************************************************/ /* * Schedule the specified unused page table page to be freed. Specifically, * add the page to the specified list of pages that will be released to the * physical memory manager after the TLB has been updated. */ static __inline void pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, boolean_t set_PG_ZERO) { if (set_PG_ZERO) m->flags |= PG_ZERO; else m->flags &= ~PG_ZERO; SLIST_INSERT_HEAD(free, m, plinks.s.ss); } /*************************************************** * Low level mapping routines..... ***************************************************/ /* * Decrements a page table page's reference count, which is used to record the * number of valid page table entries within the page. If the reference count * drops to zero, then the page table page is unmapped. Returns TRUE if the * page table page was unmapped and FALSE otherwise. */ static inline boolean_t pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free) { --m->ref_count; if (m->ref_count == 0) { _pmap_unwire_l3(pmap, va, m, free); return (TRUE); } else return (FALSE); } static void _pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free) { PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* * unmap the page table page */ if (m->pindex >= (NUL2E + NUL1E)) { /* l1 page */ pd_entry_t *l0; l0 = pmap_l0(pmap, va); pmap_clear(l0); } else if (m->pindex >= NUL2E) { /* l2 page */ pd_entry_t *l1; l1 = pmap_l1(pmap, va); pmap_clear(l1); } else { /* l3 page */ pd_entry_t *l2; l2 = pmap_l2(pmap, va); pmap_clear(l2); } pmap_resident_count_dec(pmap, 1); if (m->pindex < NUL2E) { /* We just released an l3, unhold the matching l2 */ pd_entry_t *l1, tl1; vm_page_t l2pg; l1 = pmap_l1(pmap, va); tl1 = pmap_load(l1); l2pg = PHYS_TO_VM_PAGE(tl1 & ~ATTR_MASK); pmap_unwire_l3(pmap, va, l2pg, free); } else if (m->pindex < (NUL2E + NUL1E)) { /* We just released an l2, unhold the matching l1 */ pd_entry_t *l0, tl0; vm_page_t l1pg; l0 = pmap_l0(pmap, va); tl0 = pmap_load(l0); l1pg = PHYS_TO_VM_PAGE(tl0 & ~ATTR_MASK); pmap_unwire_l3(pmap, va, l1pg, free); } /* * Put page on a list so that it is released after * *ALL* TLB shootdown is done */ pmap_add_delayed_free_list(m, free, TRUE); } static int iommu_pmap_pinit_levels(pmap_t pmap, int levels) { vm_page_t m; /* * allocate the l0 page */ m = vm_page_alloc_noobj(VM_ALLOC_WAITOK | VM_ALLOC_WIRED | VM_ALLOC_ZERO); pmap->pm_l0_paddr = VM_PAGE_TO_PHYS(m); pmap->pm_l0 = (pd_entry_t *)PHYS_TO_DMAP(pmap->pm_l0_paddr); vm_radix_init(&pmap->pm_root); bzero(&pmap->pm_stats, sizeof(pmap->pm_stats)); MPASS(levels == 3 || levels == 4); pmap->pm_levels = levels; /* * Allocate the level 1 entry to use as the root. This will increase * the refcount on the level 1 page so it won't be removed until * pmap_release() is called. */ if (pmap->pm_levels == 3) { PMAP_LOCK(pmap); m = _pmap_alloc_l3(pmap, NUL2E + NUL1E); PMAP_UNLOCK(pmap); } pmap->pm_ttbr = VM_PAGE_TO_PHYS(m); return (1); } int iommu_pmap_pinit(pmap_t pmap) { return (iommu_pmap_pinit_levels(pmap, 4)); } /* * This routine is called if the desired page table page does not exist. * * If page table page allocation fails, this routine may sleep before * returning NULL. It sleeps only if a lock pointer was given. * * Note: If a page allocation fails at page table level two or three, * one or two pages may be held during the wait, only to be released * afterwards. This conservative approach is easily argued to avoid * race conditions. */ static vm_page_t _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex) { vm_page_t m, l1pg, l2pg; PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* * Allocate a page table page. */ if ((m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) { /* * Indicate the need to retry. While waiting, the page table * page may have been allocated. */ return (NULL); } m->pindex = ptepindex; /* * Because of AArch64's weak memory consistency model, we must have a * barrier here to ensure that the stores for zeroing "m", whether by * pmap_zero_page() or an earlier function, are visible before adding * "m" to the page table. Otherwise, a page table walk by another * processor's MMU could see the mapping to "m" and a stale, non-zero * PTE within "m". */ dmb(ishst); /* * Map the pagetable page into the process address space, if * it isn't already there. */ if (ptepindex >= (NUL2E + NUL1E)) { pd_entry_t *l0; vm_pindex_t l0index; l0index = ptepindex - (NUL2E + NUL1E); l0 = &pmap->pm_l0[l0index]; pmap_store(l0, VM_PAGE_TO_PHYS(m) | IOMMU_L0_TABLE); } else if (ptepindex >= NUL2E) { vm_pindex_t l0index, l1index; pd_entry_t *l0, *l1; pd_entry_t tl0; l1index = ptepindex - NUL2E; l0index = l1index >> IOMMU_L0_ENTRIES_SHIFT; l0 = &pmap->pm_l0[l0index]; tl0 = pmap_load(l0); if (tl0 == 0) { /* recurse for allocating page dir */ if (_pmap_alloc_l3(pmap, NUL2E + NUL1E + l0index) == NULL) { vm_page_unwire_noq(m); vm_page_free_zero(m); return (NULL); } } else { l1pg = PHYS_TO_VM_PAGE(tl0 & ~ATTR_MASK); l1pg->ref_count++; } l1 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l0) & ~ATTR_MASK); l1 = &l1[ptepindex & Ln_ADDR_MASK]; pmap_store(l1, VM_PAGE_TO_PHYS(m) | IOMMU_L1_TABLE); } else { vm_pindex_t l0index, l1index; pd_entry_t *l0, *l1, *l2; pd_entry_t tl0, tl1; l1index = ptepindex >> Ln_ENTRIES_SHIFT; l0index = l1index >> IOMMU_L0_ENTRIES_SHIFT; l0 = &pmap->pm_l0[l0index]; tl0 = pmap_load(l0); if (tl0 == 0) { /* recurse for allocating page dir */ if (_pmap_alloc_l3(pmap, NUL2E + l1index) == NULL) { vm_page_unwire_noq(m); vm_page_free_zero(m); return (NULL); } tl0 = pmap_load(l0); l1 = (pd_entry_t *)PHYS_TO_DMAP(tl0 & ~ATTR_MASK); l1 = &l1[l1index & Ln_ADDR_MASK]; } else { l1 = (pd_entry_t *)PHYS_TO_DMAP(tl0 & ~ATTR_MASK); l1 = &l1[l1index & Ln_ADDR_MASK]; tl1 = pmap_load(l1); if (tl1 == 0) { /* recurse for allocating page dir */ if (_pmap_alloc_l3(pmap, NUL2E + l1index) == NULL) { vm_page_unwire_noq(m); vm_page_free_zero(m); return (NULL); } } else { l2pg = PHYS_TO_VM_PAGE(tl1 & ~ATTR_MASK); l2pg->ref_count++; } } l2 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l1) & ~ATTR_MASK); l2 = &l2[ptepindex & Ln_ADDR_MASK]; pmap_store(l2, VM_PAGE_TO_PHYS(m) | IOMMU_L2_TABLE); } pmap_resident_count_inc(pmap, 1); return (m); } /*************************************************** * Pmap allocation/deallocation routines. ***************************************************/ /* * Release any resources held by the given physical map. * Called when a pmap initialized by pmap_pinit is being released. * Should only be called if the map contains no valid mappings. */ void iommu_pmap_release(pmap_t pmap) { - boolean_t rv; + boolean_t rv __unused; struct spglist free; vm_page_t m; if (pmap->pm_levels != 4) { KASSERT(pmap->pm_stats.resident_count == 1, ("pmap_release: pmap resident count %ld != 0", pmap->pm_stats.resident_count)); KASSERT((pmap->pm_l0[0] & ATTR_DESCR_VALID) == ATTR_DESCR_VALID, ("pmap_release: Invalid l0 entry: %lx", pmap->pm_l0[0])); SLIST_INIT(&free); m = PHYS_TO_VM_PAGE(pmap->pm_ttbr); PMAP_LOCK(pmap); rv = pmap_unwire_l3(pmap, 0, m, &free); PMAP_UNLOCK(pmap); MPASS(rv == TRUE); vm_page_free_pages_toq(&free, true); } KASSERT(pmap->pm_stats.resident_count == 0, ("pmap_release: pmap resident count %ld != 0", pmap->pm_stats.resident_count)); KASSERT(vm_radix_is_empty(&pmap->pm_root), ("pmap_release: pmap has reserved page table page(s)")); m = PHYS_TO_VM_PAGE(pmap->pm_l0_paddr); vm_page_unwire_noq(m); vm_page_free_zero(m); } /*************************************************** * page management routines. ***************************************************/ /* * Add a single Mali GPU entry. This function does not sleep. */ int pmap_gpu_enter(pmap_t pmap, vm_offset_t va, vm_paddr_t pa, vm_prot_t prot, u_int flags) { pd_entry_t *pde; - pt_entry_t new_l3, orig_l3; + pt_entry_t new_l3; + pt_entry_t orig_l3 __unused; pt_entry_t *l3; vm_page_t mpte; pd_entry_t *l1p; pd_entry_t *l2p; int lvl; int rv; KASSERT(pmap != kernel_pmap, ("kernel pmap used for GPU")); KASSERT(va < VM_MAXUSER_ADDRESS, ("wrong address space")); KASSERT((va & PAGE_MASK) == 0, ("va is misaligned")); KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned")); new_l3 = (pt_entry_t)(pa | ATTR_SH(ATTR_SH_IS) | IOMMU_L3_BLOCK); if ((prot & VM_PROT_WRITE) != 0) new_l3 |= ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE); if ((prot & VM_PROT_READ) != 0) new_l3 |= ATTR_S2_S2AP(ATTR_S2_S2AP_READ); if ((prot & VM_PROT_EXECUTE) == 0) new_l3 |= ATTR_S2_XN(ATTR_S2_XN_ALL); CTR2(KTR_PMAP, "pmap_gpu_enter: %.16lx -> %.16lx", va, pa); PMAP_LOCK(pmap); /* * In the case that a page table page is not * resident, we are creating it here. */ retry: pde = pmap_pde(pmap, va, &lvl); if (pde != NULL && lvl == 2) { l3 = pmap_l2_to_l3(pde, va); } else { mpte = _pmap_alloc_l3(pmap, iommu_l2_pindex(va)); if (mpte == NULL) { CTR0(KTR_PMAP, "pmap_enter: mpte == NULL"); rv = KERN_RESOURCE_SHORTAGE; goto out; } /* * Ensure newly created l1, l2 are visible to GPU. * l0 is already visible by similar call in panfrost driver. * The cache entry for l3 handled below. */ l1p = pmap_l1(pmap, va); l2p = pmap_l2(pmap, va); cpu_dcache_wb_range((vm_offset_t)l1p, sizeof(pd_entry_t)); cpu_dcache_wb_range((vm_offset_t)l2p, sizeof(pd_entry_t)); goto retry; } orig_l3 = pmap_load(l3); KASSERT(!pmap_l3_valid(orig_l3), ("l3 is valid")); /* New mapping */ pmap_store(l3, new_l3); cpu_dcache_wb_range((vm_offset_t)l3, sizeof(pt_entry_t)); pmap_resident_count_inc(pmap, 1); dsb(ishst); rv = KERN_SUCCESS; out: PMAP_UNLOCK(pmap); return (rv); } /* * Remove a single Mali GPU entry. */ int pmap_gpu_remove(pmap_t pmap, vm_offset_t va) { pd_entry_t *pde; pt_entry_t *pte; int lvl; int rc; KASSERT((va & PAGE_MASK) == 0, ("va is misaligned")); KASSERT(pmap != kernel_pmap, ("kernel pmap used for GPU")); PMAP_LOCK(pmap); pde = pmap_pde(pmap, va, &lvl); if (pde == NULL || lvl != 2) { rc = KERN_FAILURE; goto out; } pte = pmap_l2_to_l3(pde, va); pmap_resident_count_dec(pmap, 1); pmap_clear(pte); cpu_dcache_wb_range((vm_offset_t)pte, sizeof(pt_entry_t)); rc = KERN_SUCCESS; out: PMAP_UNLOCK(pmap); return (rc); } /* * Add a single SMMU entry. This function does not sleep. */ int pmap_smmu_enter(pmap_t pmap, vm_offset_t va, vm_paddr_t pa, vm_prot_t prot, u_int flags) { pd_entry_t *pde; - pt_entry_t new_l3, orig_l3; + pt_entry_t new_l3; + pt_entry_t orig_l3 __unused; pt_entry_t *l3; vm_page_t mpte; int lvl; int rv; KASSERT(va < VM_MAXUSER_ADDRESS, ("wrong address space")); va = trunc_page(va); new_l3 = (pt_entry_t)(pa | ATTR_DEFAULT | ATTR_S1_IDX(VM_MEMATTR_DEVICE) | IOMMU_L3_PAGE); if ((prot & VM_PROT_WRITE) == 0) new_l3 |= ATTR_S1_AP(ATTR_S1_AP_RO); new_l3 |= ATTR_S1_XN; /* Execute never. */ new_l3 |= ATTR_S1_AP(ATTR_S1_AP_USER); new_l3 |= ATTR_S1_nG; /* Non global. */ CTR2(KTR_PMAP, "pmap_senter: %.16lx -> %.16lx", va, pa); PMAP_LOCK(pmap); /* * In the case that a page table page is not * resident, we are creating it here. */ retry: pde = pmap_pde(pmap, va, &lvl); if (pde != NULL && lvl == 2) { l3 = pmap_l2_to_l3(pde, va); } else { mpte = _pmap_alloc_l3(pmap, iommu_l2_pindex(va)); if (mpte == NULL) { CTR0(KTR_PMAP, "pmap_enter: mpte == NULL"); rv = KERN_RESOURCE_SHORTAGE; goto out; } goto retry; } orig_l3 = pmap_load(l3); KASSERT(!pmap_l3_valid(orig_l3), ("l3 is valid")); /* New mapping */ pmap_store(l3, new_l3); pmap_resident_count_inc(pmap, 1); dsb(ishst); rv = KERN_SUCCESS; out: PMAP_UNLOCK(pmap); return (rv); } /* * Remove a single SMMU entry. */ int pmap_smmu_remove(pmap_t pmap, vm_offset_t va) { pt_entry_t *pte; int lvl; int rc; PMAP_LOCK(pmap); pte = pmap_pte(pmap, va, &lvl); KASSERT(lvl == 3, ("Invalid SMMU pagetable level: %d != 3", lvl)); if (pte != NULL) { pmap_resident_count_dec(pmap, 1); pmap_clear(pte); rc = KERN_SUCCESS; } else rc = KERN_FAILURE; PMAP_UNLOCK(pmap); return (rc); } /* * Remove all the allocated L1, L2 pages from SMMU pmap. * All the L3 entires must be cleared in advance, otherwise * this function panics. */ void iommu_pmap_remove_pages(pmap_t pmap) { pd_entry_t l0e, *l1, l1e, *l2, l2e; pt_entry_t *l3, l3e; vm_page_t m, m0, m1; vm_offset_t sva; vm_paddr_t pa; vm_paddr_t pa0; vm_paddr_t pa1; int i, j, k, l; PMAP_LOCK(pmap); for (sva = VM_MINUSER_ADDRESS, i = iommu_l0_index(sva); (i < Ln_ENTRIES && sva < VM_MAXUSER_ADDRESS); i++) { l0e = pmap->pm_l0[i]; if ((l0e & ATTR_DESCR_VALID) == 0) { sva += IOMMU_L0_SIZE; continue; } pa0 = l0e & ~ATTR_MASK; m0 = PHYS_TO_VM_PAGE(pa0); l1 = (pd_entry_t *)PHYS_TO_DMAP(pa0); for (j = iommu_l1_index(sva); j < Ln_ENTRIES; j++) { l1e = l1[j]; if ((l1e & ATTR_DESCR_VALID) == 0) { sva += IOMMU_L1_SIZE; continue; } if ((l1e & ATTR_DESCR_MASK) == IOMMU_L1_BLOCK) { sva += IOMMU_L1_SIZE; continue; } pa1 = l1e & ~ATTR_MASK; m1 = PHYS_TO_VM_PAGE(pa1); l2 = (pd_entry_t *)PHYS_TO_DMAP(pa1); for (k = iommu_l2_index(sva); k < Ln_ENTRIES; k++) { l2e = l2[k]; if ((l2e & ATTR_DESCR_VALID) == 0) { sva += IOMMU_L2_SIZE; continue; } pa = l2e & ~ATTR_MASK; m = PHYS_TO_VM_PAGE(pa); l3 = (pt_entry_t *)PHYS_TO_DMAP(pa); for (l = iommu_l3_index(sva); l < Ln_ENTRIES; l++, sva += IOMMU_L3_SIZE) { l3e = l3[l]; if ((l3e & ATTR_DESCR_VALID) == 0) continue; panic("%s: l3e found for va %jx\n", __func__, sva); } vm_page_unwire_noq(m1); vm_page_unwire_noq(m); pmap_resident_count_dec(pmap, 1); vm_page_free(m); pmap_clear(&l2[k]); } vm_page_unwire_noq(m0); pmap_resident_count_dec(pmap, 1); vm_page_free(m1); pmap_clear(&l1[j]); } pmap_resident_count_dec(pmap, 1); vm_page_free(m0); pmap_clear(&pmap->pm_l0[i]); } KASSERT(pmap->pm_stats.resident_count == 0, ("Invalid resident count %jd", pmap->pm_stats.resident_count)); PMAP_UNLOCK(pmap); }