diff --git a/sys/dev/sound/midi/sequencer.c b/sys/dev/sound/midi/sequencer.c index ed8ba6dde699..6c80b3ec261c 100644 --- a/sys/dev/sound/midi/sequencer.c +++ b/sys/dev/sound/midi/sequencer.c @@ -1,2105 +1,2105 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2003 Mathew Kanner * Copyright (c) 1993 Hannu Savolainen * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * The sequencer personality manager. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include /* for DATA_SET */ #include #include #include #include #include #include #include #include #include #include #include /* for DELAY */ #include #include #include #include #include #include #include #include #include #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_snd.h" #endif #include #include #include "synth_if.h" #include #define TMR_TIMERBASE 13 #define SND_DEV_SEQ 1 /* Sequencer output /dev/sequencer (FM * synthesizer and MIDI output) */ #define SND_DEV_MUSIC 8 /* /dev/music, level 2 interface */ /* Length of a sequencer event. */ #define EV_SZ 8 #define IEV_SZ 8 /* Lookup modes */ #define LOOKUP_EXIST (0) #define LOOKUP_OPEN (1) #define LOOKUP_CLOSE (2) #define PCMMKMINOR(u, d, c) \ ((((c) & 0xff) << 16) | (((u) & 0x0f) << 4) | ((d) & 0x0f)) #define MIDIMKMINOR(u, d, c) PCMMKMINOR(u, d, c) #define MIDIUNIT(y) ((dev2unit(y) >> 4) & 0x0f) #define MIDIDEV(y) (dev2unit(y) & 0x0f) /* These are the entries to the sequencer driver. */ static d_open_t mseq_open; static d_close_t mseq_close; static d_ioctl_t mseq_ioctl; static d_read_t mseq_read; static d_write_t mseq_write; static d_poll_t mseq_poll; static struct cdevsw seq_cdevsw = { .d_version = D_VERSION, .d_open = mseq_open, .d_close = mseq_close, .d_read = mseq_read, .d_write = mseq_write, .d_ioctl = mseq_ioctl, .d_poll = mseq_poll, .d_name = "sequencer", }; struct seq_softc { KOBJ_FIELDS; struct mtx seq_lock, q_lock; struct cv empty_cv, reset_cv, in_cv, out_cv, state_cv, th_cv; MIDIQ_HEAD(, u_char) in_q, out_q; u_long flags; /* Flags (protected by flag_mtx of mididev_info) */ int fflags; /* Access mode */ int music; int out_water; /* Sequence output threshould */ snd_sync_parm sync_parm; /* AIOSYNC parameter set */ struct thread *sync_thread; /* AIOSYNCing thread */ struct selinfo in_sel, out_sel; int midi_number; struct cdev *seqdev, *musicdev; int unit; int maxunits; kobj_t *midis; int *midi_flags; kobj_t mapper; void *mapper_cookie; struct timeval timerstop, timersub; int timerbase, tempo; int timerrun; int done; int playing; int recording; int busy; int pre_event_timeout; int waiting; }; /* * Module specific stuff, including how many sequecers * we currently own. */ SYSCTL_NODE(_hw_midi, OID_AUTO, seq, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Midi sequencer"); int seq_debug; /* XXX: should this be moved into debug.midi? */ SYSCTL_INT(_hw_midi_seq, OID_AUTO, debug, CTLFLAG_RW, &seq_debug, 0, ""); midi_cmdtab cmdtab_seqevent[] = { {SEQ_NOTEOFF, "SEQ_NOTEOFF"}, {SEQ_NOTEON, "SEQ_NOTEON"}, {SEQ_WAIT, "SEQ_WAIT"}, {SEQ_PGMCHANGE, "SEQ_PGMCHANGE"}, {SEQ_SYNCTIMER, "SEQ_SYNCTIMER"}, {SEQ_MIDIPUTC, "SEQ_MIDIPUTC"}, {SEQ_DRUMON, "SEQ_DRUMON"}, {SEQ_DRUMOFF, "SEQ_DRUMOFF"}, {SEQ_ECHO, "SEQ_ECHO"}, {SEQ_AFTERTOUCH, "SEQ_AFTERTOUCH"}, {SEQ_CONTROLLER, "SEQ_CONTROLLER"}, {SEQ_BALANCE, "SEQ_BALANCE"}, {SEQ_VOLMODE, "SEQ_VOLMODE"}, {SEQ_FULLSIZE, "SEQ_FULLSIZE"}, {SEQ_PRIVATE, "SEQ_PRIVATE"}, {SEQ_EXTENDED, "SEQ_EXTENDED"}, {EV_SEQ_LOCAL, "EV_SEQ_LOCAL"}, {EV_TIMING, "EV_TIMING"}, {EV_CHN_COMMON, "EV_CHN_COMMON"}, {EV_CHN_VOICE, "EV_CHN_VOICE"}, {EV_SYSEX, "EV_SYSEX"}, {-1, NULL}, }; midi_cmdtab cmdtab_seqioctl[] = { {SNDCTL_SEQ_RESET, "SNDCTL_SEQ_RESET"}, {SNDCTL_SEQ_SYNC, "SNDCTL_SEQ_SYNC"}, {SNDCTL_SYNTH_INFO, "SNDCTL_SYNTH_INFO"}, {SNDCTL_SEQ_CTRLRATE, "SNDCTL_SEQ_CTRLRATE"}, {SNDCTL_SEQ_GETOUTCOUNT, "SNDCTL_SEQ_GETOUTCOUNT"}, {SNDCTL_SEQ_GETINCOUNT, "SNDCTL_SEQ_GETINCOUNT"}, {SNDCTL_SEQ_PERCMODE, "SNDCTL_SEQ_PERCMODE"}, {SNDCTL_FM_LOAD_INSTR, "SNDCTL_FM_LOAD_INSTR"}, {SNDCTL_SEQ_TESTMIDI, "SNDCTL_SEQ_TESTMIDI"}, {SNDCTL_SEQ_RESETSAMPLES, "SNDCTL_SEQ_RESETSAMPLES"}, {SNDCTL_SEQ_NRSYNTHS, "SNDCTL_SEQ_NRSYNTHS"}, {SNDCTL_SEQ_NRMIDIS, "SNDCTL_SEQ_NRMIDIS"}, {SNDCTL_SEQ_GETTIME, "SNDCTL_SEQ_GETTIME"}, {SNDCTL_MIDI_INFO, "SNDCTL_MIDI_INFO"}, {SNDCTL_SEQ_THRESHOLD, "SNDCTL_SEQ_THRESHOLD"}, {SNDCTL_SYNTH_MEMAVL, "SNDCTL_SYNTH_MEMAVL"}, {SNDCTL_FM_4OP_ENABLE, "SNDCTL_FM_4OP_ENABLE"}, {SNDCTL_PMGR_ACCESS, "SNDCTL_PMGR_ACCESS"}, {SNDCTL_SEQ_PANIC, "SNDCTL_SEQ_PANIC"}, {SNDCTL_SEQ_OUTOFBAND, "SNDCTL_SEQ_OUTOFBAND"}, {SNDCTL_TMR_TIMEBASE, "SNDCTL_TMR_TIMEBASE"}, {SNDCTL_TMR_START, "SNDCTL_TMR_START"}, {SNDCTL_TMR_STOP, "SNDCTL_TMR_STOP"}, {SNDCTL_TMR_CONTINUE, "SNDCTL_TMR_CONTINUE"}, {SNDCTL_TMR_TEMPO, "SNDCTL_TMR_TEMPO"}, {SNDCTL_TMR_SOURCE, "SNDCTL_TMR_SOURCE"}, {SNDCTL_TMR_METRONOME, "SNDCTL_TMR_METRONOME"}, {SNDCTL_TMR_SELECT, "SNDCTL_TMR_SELECT"}, {SNDCTL_MIDI_PRETIME, "SNDCTL_MIDI_PRETIME"}, {AIONWRITE, "AIONWRITE"}, {AIOGSIZE, "AIOGSIZE"}, {AIOSSIZE, "AIOSSIZE"}, {AIOGFMT, "AIOGFMT"}, {AIOSFMT, "AIOSFMT"}, {AIOGMIX, "AIOGMIX"}, {AIOSMIX, "AIOSMIX"}, {AIOSTOP, "AIOSTOP"}, {AIOSYNC, "AIOSYNC"}, {AIOGCAP, "AIOGCAP"}, {-1, NULL}, }; midi_cmdtab cmdtab_timer[] = { {TMR_WAIT_REL, "TMR_WAIT_REL"}, {TMR_WAIT_ABS, "TMR_WAIT_ABS"}, {TMR_STOP, "TMR_STOP"}, {TMR_START, "TMR_START"}, {TMR_CONTINUE, "TMR_CONTINUE"}, {TMR_TEMPO, "TMR_TEMPO"}, {TMR_ECHO, "TMR_ECHO"}, {TMR_CLOCK, "TMR_CLOCK"}, {TMR_SPP, "TMR_SPP"}, {TMR_TIMESIG, "TMR_TIMESIG"}, {-1, NULL}, }; midi_cmdtab cmdtab_seqcv[] = { {MIDI_NOTEOFF, "MIDI_NOTEOFF"}, {MIDI_NOTEON, "MIDI_NOTEON"}, {MIDI_KEY_PRESSURE, "MIDI_KEY_PRESSURE"}, {-1, NULL}, }; midi_cmdtab cmdtab_seqccmn[] = { {MIDI_CTL_CHANGE, "MIDI_CTL_CHANGE"}, {MIDI_PGM_CHANGE, "MIDI_PGM_CHANGE"}, {MIDI_CHN_PRESSURE, "MIDI_CHN_PRESSURE"}, {MIDI_PITCH_BEND, "MIDI_PITCH_BEND"}, {MIDI_SYSTEM_PREFIX, "MIDI_SYSTEM_PREFIX"}, {-1, NULL}, }; #ifndef KOBJMETHOD_END #define KOBJMETHOD_END { NULL, NULL } #endif /* * static const char *mpu401_mprovider(kobj_t obj, struct mpu401 *m); */ static kobj_method_t seq_methods[] = { /* KOBJMETHOD(mpu_provider,mpu401_mprovider), */ KOBJMETHOD_END }; DEFINE_CLASS(sequencer, seq_methods, 0); /* The followings are the local function. */ static int seq_convertold(u_char *event, u_char *out); /* * static void seq_midiinput(struct seq_softc * scp, void *md); */ static void seq_reset(struct seq_softc *scp); static int seq_sync(struct seq_softc *scp); static int seq_processevent(struct seq_softc *scp, u_char *event); static int seq_timing(struct seq_softc *scp, u_char *event); static int seq_local(struct seq_softc *scp, u_char *event); static int seq_chnvoice(struct seq_softc *scp, kobj_t md, u_char *event); static int seq_chncommon(struct seq_softc *scp, kobj_t md, u_char *event); static int seq_sysex(struct seq_softc *scp, kobj_t md, u_char *event); static int seq_fetch_mid(struct seq_softc *scp, int unit, kobj_t *md); void seq_copytoinput(struct seq_softc *scp, u_char *event, int len); int seq_modevent(module_t mod, int type, void *data); struct seq_softc *seqs[10]; static struct mtx seqinfo_mtx; static u_long nseq = 0; static void timer_start(struct seq_softc *t); static void timer_stop(struct seq_softc *t); static void timer_setvals(struct seq_softc *t, int tempo, int timerbase); static void timer_wait(struct seq_softc *t, int ticks, int wait_abs); static int timer_now(struct seq_softc *t); static void timer_start(struct seq_softc *t) { t->timerrun = 1; getmicrotime(&t->timersub); } static void timer_continue(struct seq_softc *t) { struct timeval now; if (t->timerrun == 1) return; t->timerrun = 1; getmicrotime(&now); timevalsub(&now, &t->timerstop); timevaladd(&t->timersub, &now); } static void timer_stop(struct seq_softc *t) { t->timerrun = 0; getmicrotime(&t->timerstop); } static void timer_setvals(struct seq_softc *t, int tempo, int timerbase) { t->tempo = tempo; t->timerbase = timerbase; } static void timer_wait(struct seq_softc *t, int ticks, int wait_abs) { struct timeval now, when; int ret; unsigned long long i; while (t->timerrun == 0) { SEQ_DEBUG(2, printf("Timer wait when timer isn't running\n")); /* * The old sequencer used timeouts that only increased * the timer when the timer was running. * Hence the sequencer would stick (?) if the * timer was disabled. */ cv_wait(&t->reset_cv, &t->seq_lock); if (t->playing == 0) return; } i = ticks * 60ull * 1000000ull / (t->tempo * t->timerbase); when.tv_sec = i / 1000000; when.tv_usec = i % 1000000; #if 0 printf("timer_wait tempo %d timerbase %d ticks %d abs %d u_sec %llu\n", t->tempo, t->timerbase, ticks, wait_abs, i); #endif if (wait_abs != 0) { getmicrotime(&now); timevalsub(&now, &t->timersub); timevalsub(&when, &now); } if (when.tv_sec < 0 || when.tv_usec < 0) { SEQ_DEBUG(3, printf("seq_timer error negative time %lds.%06lds\n", (long)when.tv_sec, (long)when.tv_usec)); return; } i = when.tv_sec * 1000000ull; i += when.tv_usec; i *= hz; i /= 1000000ull; #if 0 printf("seq_timer usec %llu ticks %llu\n", when.tv_sec * 1000000ull + when.tv_usec, i); #endif t->waiting = 1; ret = cv_timedwait(&t->reset_cv, &t->seq_lock, i + 1); t->waiting = 0; if (ret != EWOULDBLOCK) SEQ_DEBUG(3, printf("seq_timer didn't timeout\n")); } static int timer_now(struct seq_softc *t) { struct timeval now; unsigned long long i; int ret; if (t->timerrun == 0) now = t->timerstop; else getmicrotime(&now); timevalsub(&now, &t->timersub); i = now.tv_sec * 1000000ull; i += now.tv_usec; i *= t->timerbase; /* i /= t->tempo; */ i /= 1000000ull; ret = i; /* * printf("timer_now: %llu %d\n", i, ret); */ return ret; } static void seq_eventthread(void *arg) { struct seq_softc *scp = arg; u_char event[EV_SZ]; mtx_lock(&scp->seq_lock); SEQ_DEBUG(2, printf("seq_eventthread started\n")); while (scp->done == 0) { restart: while (scp->playing == 0) { cv_wait(&scp->state_cv, &scp->seq_lock); if (scp->done) goto done; } while (MIDIQ_EMPTY(scp->out_q)) { cv_broadcast(&scp->empty_cv); cv_wait(&scp->out_cv, &scp->seq_lock); if (scp->playing == 0) goto restart; if (scp->done) goto done; } MIDIQ_DEQ(scp->out_q, event, EV_SZ); if (MIDIQ_AVAIL(scp->out_q) < scp->out_water) { cv_broadcast(&scp->out_cv); selwakeup(&scp->out_sel); } seq_processevent(scp, event); } done: cv_broadcast(&scp->th_cv); mtx_unlock(&scp->seq_lock); SEQ_DEBUG(2, printf("seq_eventthread finished\n")); kproc_exit(0); } /* * seq_processevent: This maybe called by the event thread or the IOCTL * handler for queued and out of band events respectively. */ static int seq_processevent(struct seq_softc *scp, u_char *event) { int ret; kobj_t m; ret = 0; if (event[0] == EV_SEQ_LOCAL) ret = seq_local(scp, event); else if (event[0] == EV_TIMING) ret = seq_timing(scp, event); else if (event[0] != EV_CHN_VOICE && event[0] != EV_CHN_COMMON && event[0] != EV_SYSEX && event[0] != SEQ_MIDIPUTC) { ret = 1; SEQ_DEBUG(2, printf("seq_processevent not known %d\n", event[0])); } else if (seq_fetch_mid(scp, event[1], &m) != 0) { ret = 1; SEQ_DEBUG(2, printf("seq_processevent midi unit not found %d\n", event[1])); } else switch (event[0]) { case EV_CHN_VOICE: ret = seq_chnvoice(scp, m, event); break; case EV_CHN_COMMON: ret = seq_chncommon(scp, m, event); break; case EV_SYSEX: ret = seq_sysex(scp, m, event); break; case SEQ_MIDIPUTC: mtx_unlock(&scp->seq_lock); ret = SYNTH_WRITERAW(m, &event[2], 1); mtx_lock(&scp->seq_lock); break; } return ret; } static int seq_addunit(void) { struct seq_softc *scp; int ret; u_char *buf; /* Allocate the softc. */ ret = ENOMEM; scp = malloc(sizeof(*scp), M_DEVBUF, M_NOWAIT | M_ZERO); if (scp == NULL) { SEQ_DEBUG(1, printf("seq_addunit: softc allocation failed.\n")); goto err; } kobj_init((kobj_t)scp, &sequencer_class); buf = malloc(sizeof(*buf) * EV_SZ * 1024, M_TEMP, M_NOWAIT | M_ZERO); if (buf == NULL) goto err; MIDIQ_INIT(scp->in_q, buf, EV_SZ * 1024); buf = malloc(sizeof(*buf) * EV_SZ * 1024, M_TEMP, M_NOWAIT | M_ZERO); if (buf == NULL) goto err; MIDIQ_INIT(scp->out_q, buf, EV_SZ * 1024); ret = EINVAL; scp->midis = malloc(sizeof(kobj_t) * 32, M_TEMP, M_NOWAIT | M_ZERO); scp->midi_flags = malloc(sizeof(*scp->midi_flags) * 32, M_TEMP, M_NOWAIT | M_ZERO); if (scp->midis == NULL || scp->midi_flags == NULL) goto err; scp->flags = 0; mtx_init(&scp->seq_lock, "seqflq", NULL, 0); cv_init(&scp->state_cv, "seqstate"); cv_init(&scp->empty_cv, "seqempty"); cv_init(&scp->reset_cv, "seqtimer"); cv_init(&scp->out_cv, "seqqout"); cv_init(&scp->in_cv, "seqqin"); cv_init(&scp->th_cv, "seqstart"); /* * Init the damn timer */ scp->mapper = midimapper_addseq(scp, &scp->unit, &scp->mapper_cookie); if (scp->mapper == NULL) goto err; scp->seqdev = make_dev(&seq_cdevsw, MIDIMKMINOR(scp->unit, SND_DEV_SEQ, 0), UID_ROOT, GID_WHEEL, 0666, "sequencer%d", scp->unit); scp->musicdev = make_dev(&seq_cdevsw, MIDIMKMINOR(scp->unit, SND_DEV_MUSIC, 0), UID_ROOT, GID_WHEEL, 0666, "music%d", scp->unit); if (scp->seqdev == NULL || scp->musicdev == NULL) goto err; /* * TODO: Add to list of sequencers this module provides */ ret = kproc_create (seq_eventthread, scp, NULL, RFHIGHPID, 0, "sequencer %02d", scp->unit); if (ret) goto err; scp->seqdev->si_drv1 = scp->musicdev->si_drv1 = scp; SEQ_DEBUG(2, printf("sequencer %d created scp %p\n", scp->unit, scp)); ret = 0; mtx_lock(&seqinfo_mtx); seqs[nseq++] = scp; mtx_unlock(&seqinfo_mtx); goto ok; err: if (scp != NULL) { if (scp->seqdev != NULL) destroy_dev(scp->seqdev); if (scp->musicdev != NULL) destroy_dev(scp->musicdev); /* * TODO: Destroy mutex and cv */ if (scp->midis != NULL) free(scp->midis, M_TEMP); if (scp->midi_flags != NULL) free(scp->midi_flags, M_TEMP); if (scp->out_q.b) free(scp->out_q.b, M_TEMP); if (scp->in_q.b) free(scp->in_q.b, M_TEMP); free(scp, M_DEVBUF); } ok: return ret; } static int seq_delunit(int unit) { struct seq_softc *scp = seqs[unit]; int i; //SEQ_DEBUG(4, printf("seq_delunit: %d\n", unit)); SEQ_DEBUG(1, printf("seq_delunit: 1 \n")); mtx_lock(&scp->seq_lock); scp->playing = 0; scp->done = 1; cv_broadcast(&scp->out_cv); cv_broadcast(&scp->state_cv); cv_broadcast(&scp->reset_cv); SEQ_DEBUG(1, printf("seq_delunit: 2 \n")); cv_wait(&scp->th_cv, &scp->seq_lock); SEQ_DEBUG(1, printf("seq_delunit: 3.0 \n")); mtx_unlock(&scp->seq_lock); SEQ_DEBUG(1, printf("seq_delunit: 3.1 \n")); cv_destroy(&scp->state_cv); SEQ_DEBUG(1, printf("seq_delunit: 4 \n")); cv_destroy(&scp->empty_cv); SEQ_DEBUG(1, printf("seq_delunit: 5 \n")); cv_destroy(&scp->reset_cv); SEQ_DEBUG(1, printf("seq_delunit: 6 \n")); cv_destroy(&scp->out_cv); SEQ_DEBUG(1, printf("seq_delunit: 7 \n")); cv_destroy(&scp->in_cv); SEQ_DEBUG(1, printf("seq_delunit: 8 \n")); cv_destroy(&scp->th_cv); SEQ_DEBUG(1, printf("seq_delunit: 10 \n")); if (scp->seqdev) destroy_dev(scp->seqdev); SEQ_DEBUG(1, printf("seq_delunit: 11 \n")); if (scp->musicdev) destroy_dev(scp->musicdev); SEQ_DEBUG(1, printf("seq_delunit: 12 \n")); scp->seqdev = scp->musicdev = NULL; if (scp->midis != NULL) free(scp->midis, M_TEMP); SEQ_DEBUG(1, printf("seq_delunit: 13 \n")); if (scp->midi_flags != NULL) free(scp->midi_flags, M_TEMP); SEQ_DEBUG(1, printf("seq_delunit: 14 \n")); free(scp->out_q.b, M_TEMP); SEQ_DEBUG(1, printf("seq_delunit: 15 \n")); free(scp->in_q.b, M_TEMP); SEQ_DEBUG(1, printf("seq_delunit: 16 \n")); mtx_destroy(&scp->seq_lock); SEQ_DEBUG(1, printf("seq_delunit: 17 \n")); free(scp, M_DEVBUF); mtx_lock(&seqinfo_mtx); for (i = unit; i < (nseq - 1); i++) seqs[i] = seqs[i + 1]; nseq--; mtx_unlock(&seqinfo_mtx); return 0; } int seq_modevent(module_t mod, int type, void *data) { int retval, r; retval = 0; switch (type) { case MOD_LOAD: mtx_init(&seqinfo_mtx, "seqmod", NULL, 0); retval = seq_addunit(); break; case MOD_UNLOAD: while (nseq) { r = seq_delunit(nseq - 1); if (r) { retval = r; break; } } if (nseq == 0) { retval = 0; mtx_destroy(&seqinfo_mtx); } break; default: break; } return retval; } static int seq_fetch_mid(struct seq_softc *scp, int unit, kobj_t *md) { if (unit >= scp->midi_number || unit < 0) return EINVAL; *md = scp->midis[unit]; return 0; } int mseq_open(struct cdev *i_dev, int flags, int mode, struct thread *td) { struct seq_softc *scp = i_dev->si_drv1; int i; if (scp == NULL) return ENXIO; SEQ_DEBUG(3, printf("seq_open: scp %p unit %d, flags 0x%x.\n", scp, scp->unit, flags)); /* * Mark this device busy. */ mtx_lock(&scp->seq_lock); if (scp->busy) { mtx_unlock(&scp->seq_lock); SEQ_DEBUG(2, printf("seq_open: unit %d is busy.\n", scp->unit)); return EBUSY; } scp->fflags = flags; /* if ((scp->fflags & O_NONBLOCK) != 0) scp->flags |= SEQ_F_NBIO; */ scp->music = MIDIDEV(i_dev) == SND_DEV_MUSIC; /* * Enumerate the available midi devices */ scp->midi_number = 0; scp->maxunits = midimapper_open(scp->mapper, &scp->mapper_cookie); if (scp->maxunits == 0) SEQ_DEBUG(2, printf("seq_open: no midi devices\n")); for (i = 0; i < scp->maxunits; i++) { scp->midis[scp->midi_number] = midimapper_fetch_synth(scp->mapper, scp->mapper_cookie, i); if (scp->midis[scp->midi_number]) { if (SYNTH_OPEN(scp->midis[scp->midi_number], scp, scp->fflags) != 0) scp->midis[scp->midi_number] = NULL; else { scp->midi_flags[scp->midi_number] = SYNTH_QUERY(scp->midis[scp->midi_number]); scp->midi_number++; } } } timer_setvals(scp, 60, 100); timer_start(scp); timer_stop(scp); /* * actually, if we're in rdonly mode, we should start the timer */ /* * TODO: Handle recording now */ scp->out_water = MIDIQ_SIZE(scp->out_q) / 2; scp->busy = 1; mtx_unlock(&scp->seq_lock); SEQ_DEBUG(2, printf("seq_open: opened, mode %s.\n", scp->music ? "music" : "sequencer")); SEQ_DEBUG(2, printf("Sequencer %d %p opened maxunits %d midi_number %d:\n", scp->unit, scp, scp->maxunits, scp->midi_number)); for (i = 0; i < scp->midi_number; i++) SEQ_DEBUG(3, printf(" midi %d %p\n", i, scp->midis[i])); return 0; } /* * mseq_close */ int mseq_close(struct cdev *i_dev, int flags, int mode, struct thread *td) { int i; struct seq_softc *scp = i_dev->si_drv1; int ret; if (scp == NULL) return ENXIO; SEQ_DEBUG(2, printf("seq_close: unit %d.\n", scp->unit)); mtx_lock(&scp->seq_lock); ret = ENXIO; if (scp->busy == 0) goto err; seq_reset(scp); seq_sync(scp); for (i = 0; i < scp->midi_number; i++) if (scp->midis[i]) SYNTH_CLOSE(scp->midis[i]); midimapper_close(scp->mapper, scp->mapper_cookie); timer_stop(scp); scp->busy = 0; ret = 0; err: SEQ_DEBUG(3, printf("seq_close: closed ret = %d.\n", ret)); mtx_unlock(&scp->seq_lock); return ret; } int mseq_read(struct cdev *i_dev, struct uio *uio, int ioflag) { int retval, used; struct seq_softc *scp = i_dev->si_drv1; #define SEQ_RSIZE 32 u_char buf[SEQ_RSIZE]; if (scp == NULL) return ENXIO; SEQ_DEBUG(7, printf("mseq_read: unit %d, resid %zd.\n", scp->unit, uio->uio_resid)); mtx_lock(&scp->seq_lock); if ((scp->fflags & FREAD) == 0) { SEQ_DEBUG(2, printf("mseq_read: unit %d is not for reading.\n", scp->unit)); retval = EIO; goto err1; } /* * Begin recording. */ /* * if ((scp->flags & SEQ_F_READING) == 0) */ /* * TODO, start recording if not alread */ /* * I think the semantics are to return as soon * as possible. - * Second thought, it doens't seem like midimoutain + * Second thought, it doesn't seem like midimoutain * expects that at all. * TODO: Look up in some sort of spec */ while (uio->uio_resid > 0) { while (MIDIQ_EMPTY(scp->in_q)) { retval = EWOULDBLOCK; /* * I wish I knew which one to care about */ if (scp->fflags & O_NONBLOCK) goto err1; if (ioflag & O_NONBLOCK) goto err1; retval = cv_wait_sig(&scp->in_cv, &scp->seq_lock); if (retval != 0) goto err1; } used = MIN(MIDIQ_LEN(scp->in_q), uio->uio_resid); used = MIN(used, SEQ_RSIZE); SEQ_DEBUG(8, printf("midiread: uiomove cc=%d\n", used)); MIDIQ_DEQ(scp->in_q, buf, used); mtx_unlock(&scp->seq_lock); retval = uiomove(buf, used, uio); mtx_lock(&scp->seq_lock); if (retval) goto err1; } retval = 0; err1: mtx_unlock(&scp->seq_lock); SEQ_DEBUG(6, printf("mseq_read: ret %d, resid %zd.\n", retval, uio->uio_resid)); return retval; } int mseq_write(struct cdev *i_dev, struct uio *uio, int ioflag) { u_char event[EV_SZ], newevent[EV_SZ], ev_code; struct seq_softc *scp = i_dev->si_drv1; int retval; int used; SEQ_DEBUG(7, printf("seq_write: unit %d, resid %zd.\n", scp->unit, uio->uio_resid)); if (scp == NULL) return ENXIO; mtx_lock(&scp->seq_lock); if ((scp->fflags & FWRITE) == 0) { SEQ_DEBUG(2, printf("seq_write: unit %d is not for writing.\n", scp->unit)); retval = EIO; goto err0; } while (uio->uio_resid > 0) { while (MIDIQ_AVAIL(scp->out_q) == 0) { retval = EWOULDBLOCK; if (scp->fflags & O_NONBLOCK) goto err0; if (ioflag & O_NONBLOCK) goto err0; SEQ_DEBUG(8, printf("seq_write cvwait\n")); scp->playing = 1; cv_broadcast(&scp->out_cv); cv_broadcast(&scp->state_cv); retval = cv_wait_sig(&scp->out_cv, &scp->seq_lock); /* * We slept, maybe things have changed since last * dying check */ if (retval != 0) goto err0; #if 0 /* * Useless test */ if (scp != i_dev->si_drv1) retval = ENXIO; #endif } used = MIN(uio->uio_resid, 4); SEQ_DEBUG(8, printf("seqout: resid %zd len %jd avail %jd\n", uio->uio_resid, (intmax_t)MIDIQ_LEN(scp->out_q), (intmax_t)MIDIQ_AVAIL(scp->out_q))); if (used != 4) { retval = ENXIO; goto err0; } mtx_unlock(&scp->seq_lock); retval = uiomove(event, used, uio); mtx_lock(&scp->seq_lock); if (retval) goto err0; ev_code = event[0]; SEQ_DEBUG(8, printf("seq_write: unit %d, event %s.\n", scp->unit, midi_cmdname(ev_code, cmdtab_seqevent))); /* Have a look at the event code. */ if (ev_code == SEQ_FULLSIZE) { /* * TODO: restore code for SEQ_FULLSIZE */ #if 0 /* * A long event, these are the patches/samples for a * synthesizer. */ midiunit = *(u_short *)&event[2]; mtx_lock(&sd->seq_lock); ret = lookup_mididev(scp, midiunit, LOOKUP_OPEN, &md); mtx_unlock(&sd->seq_lock); if (ret != 0) return (ret); SEQ_DEBUG(printf("seq_write: loading a patch to the unit %d.\n", midiunit)); ret = md->synth.loadpatch(md, *(short *)&event[0], buf, p + 4, count, 0); return (ret); #else /* * For now, just flush the darn buffer */ SEQ_DEBUG(2, printf("seq_write: SEQ_FULLSIZE flusing buffer.\n")); while (uio->uio_resid > 0) { mtx_unlock(&scp->seq_lock); retval = uiomove(event, MIN(EV_SZ, uio->uio_resid), uio); mtx_lock(&scp->seq_lock); if (retval) goto err0; } retval = 0; goto err0; #endif } retval = EINVAL; if (ev_code >= 128) { int error; /* * Some sort of an extended event. The size is eight * bytes. scoop extra info. */ if (scp->music && ev_code == SEQ_EXTENDED) { SEQ_DEBUG(2, printf("seq_write: invalid level two event %x.\n", ev_code)); goto err0; } mtx_unlock(&scp->seq_lock); if (uio->uio_resid < 4) error = EINVAL; else error = uiomove((caddr_t)&event[4], 4, uio); mtx_lock(&scp->seq_lock); if (error) { SEQ_DEBUG(2, printf("seq_write: user memory mangled?\n")); goto err0; } } else { /* * Size four event. */ if (scp->music) { SEQ_DEBUG(2, printf("seq_write: four byte event in music mode.\n")); goto err0; } } if (ev_code == SEQ_MIDIPUTC) { /* * TODO: event[2] is unit number to receive char. * Range check it. */ } if (scp->music) { #ifdef not_ever_ever if (event[0] == EV_TIMING && (event[1] == TMR_START || event[1] == TMR_STOP)) { /* * For now, try to make midimoutain work by * forcing these events to be processed * immediatly. */ seq_processevent(scp, event); } else MIDIQ_ENQ(scp->out_q, event, EV_SZ); #else MIDIQ_ENQ(scp->out_q, event, EV_SZ); #endif } else { if (seq_convertold(event, newevent) > 0) MIDIQ_ENQ(scp->out_q, newevent, EV_SZ); #if 0 else goto err0; #endif } } scp->playing = 1; cv_broadcast(&scp->state_cv); cv_broadcast(&scp->out_cv); retval = 0; err0: SEQ_DEBUG(6, printf("seq_write done: leftover buffer length %zd retval %d\n", uio->uio_resid, retval)); mtx_unlock(&scp->seq_lock); return retval; } int mseq_ioctl(struct cdev *i_dev, u_long cmd, caddr_t arg, int mode, struct thread *td) { int midiunit, ret, tmp; struct seq_softc *scp = i_dev->si_drv1; struct synth_info *synthinfo; struct midi_info *midiinfo; u_char event[EV_SZ]; u_char newevent[EV_SZ]; kobj_t md; /* * struct snd_size *sndsize; */ if (scp == NULL) return ENXIO; SEQ_DEBUG(6, printf("seq_ioctl: unit %d, cmd %s.\n", scp->unit, midi_cmdname(cmd, cmdtab_seqioctl))); ret = 0; switch (cmd) { case SNDCTL_SEQ_GETTIME: /* * ioctl needed by libtse */ mtx_lock(&scp->seq_lock); *(int *)arg = timer_now(scp); mtx_unlock(&scp->seq_lock); SEQ_DEBUG(6, printf("seq_ioctl: gettime %d.\n", *(int *)arg)); ret = 0; break; case SNDCTL_TMR_METRONOME: /* fallthrough */ case SNDCTL_TMR_SOURCE: /* * Not implemented */ ret = 0; break; case SNDCTL_TMR_TEMPO: event[1] = TMR_TEMPO; event[4] = *(int *)arg & 0xFF; event[5] = (*(int *)arg >> 8) & 0xFF; event[6] = (*(int *)arg >> 16) & 0xFF; event[7] = (*(int *)arg >> 24) & 0xFF; goto timerevent; case SNDCTL_TMR_TIMEBASE: event[1] = TMR_TIMERBASE; event[4] = *(int *)arg & 0xFF; event[5] = (*(int *)arg >> 8) & 0xFF; event[6] = (*(int *)arg >> 16) & 0xFF; event[7] = (*(int *)arg >> 24) & 0xFF; goto timerevent; case SNDCTL_TMR_START: event[1] = TMR_START; goto timerevent; case SNDCTL_TMR_STOP: event[1] = TMR_STOP; goto timerevent; case SNDCTL_TMR_CONTINUE: event[1] = TMR_CONTINUE; timerevent: event[0] = EV_TIMING; mtx_lock(&scp->seq_lock); if (!scp->music) { ret = EINVAL; mtx_unlock(&scp->seq_lock); break; } seq_processevent(scp, event); mtx_unlock(&scp->seq_lock); break; case SNDCTL_TMR_SELECT: SEQ_DEBUG(2, printf("seq_ioctl: SNDCTL_TMR_SELECT not supported\n")); ret = EINVAL; break; case SNDCTL_SEQ_SYNC: if (mode == O_RDONLY) { ret = 0; break; } mtx_lock(&scp->seq_lock); ret = seq_sync(scp); mtx_unlock(&scp->seq_lock); break; case SNDCTL_SEQ_PANIC: /* fallthrough */ case SNDCTL_SEQ_RESET: /* * SNDCTL_SEQ_PANIC == SNDCTL_SEQ_RESET */ mtx_lock(&scp->seq_lock); seq_reset(scp); mtx_unlock(&scp->seq_lock); ret = 0; break; case SNDCTL_SEQ_TESTMIDI: mtx_lock(&scp->seq_lock); /* * TODO: SNDCTL_SEQ_TESTMIDI now means "can I write to the * device?". */ mtx_unlock(&scp->seq_lock); break; #if 0 case SNDCTL_SEQ_GETINCOUNT: if (mode == O_WRONLY) *(int *)arg = 0; else { mtx_lock(&scp->seq_lock); *(int *)arg = scp->in_q.rl; mtx_unlock(&scp->seq_lock); SEQ_DEBUG(printf("seq_ioctl: incount %d.\n", *(int *)arg)); } ret = 0; break; case SNDCTL_SEQ_GETOUTCOUNT: if (mode == O_RDONLY) *(int *)arg = 0; else { mtx_lock(&scp->seq_lock); *(int *)arg = scp->out_q.fl; mtx_unlock(&scp->seq_lock); SEQ_DEBUG(printf("seq_ioctl: outcount %d.\n", *(int *)arg)); } ret = 0; break; #endif case SNDCTL_SEQ_CTRLRATE: if (*(int *)arg != 0) { ret = EINVAL; break; } mtx_lock(&scp->seq_lock); *(int *)arg = scp->timerbase; mtx_unlock(&scp->seq_lock); SEQ_DEBUG(3, printf("seq_ioctl: ctrlrate %d.\n", *(int *)arg)); ret = 0; break; /* * TODO: ioctl SNDCTL_SEQ_RESETSAMPLES */ #if 0 case SNDCTL_SEQ_RESETSAMPLES: mtx_lock(&scp->seq_lock); ret = lookup_mididev(scp, *(int *)arg, LOOKUP_OPEN, &md); mtx_unlock(&scp->seq_lock); if (ret != 0) break; ret = midi_ioctl(MIDIMKDEV(major(i_dev), *(int *)arg, SND_DEV_MIDIN), cmd, arg, mode, td); break; #endif case SNDCTL_SEQ_NRSYNTHS: mtx_lock(&scp->seq_lock); *(int *)arg = scp->midi_number; mtx_unlock(&scp->seq_lock); SEQ_DEBUG(3, printf("seq_ioctl: synths %d.\n", *(int *)arg)); ret = 0; break; case SNDCTL_SEQ_NRMIDIS: mtx_lock(&scp->seq_lock); if (scp->music) *(int *)arg = 0; else { /* * TODO: count the numbder of devices that can WRITERAW */ *(int *)arg = scp->midi_number; } mtx_unlock(&scp->seq_lock); SEQ_DEBUG(3, printf("seq_ioctl: midis %d.\n", *(int *)arg)); ret = 0; break; /* * TODO: ioctl SNDCTL_SYNTH_MEMAVL */ #if 0 case SNDCTL_SYNTH_MEMAVL: mtx_lock(&scp->seq_lock); ret = lookup_mididev(scp, *(int *)arg, LOOKUP_OPEN, &md); mtx_unlock(&scp->seq_lock); if (ret != 0) break; ret = midi_ioctl(MIDIMKDEV(major(i_dev), *(int *)arg, SND_DEV_MIDIN), cmd, arg, mode, td); break; #endif case SNDCTL_SEQ_OUTOFBAND: for (ret = 0; ret < EV_SZ; ret++) event[ret] = (u_char)arg[0]; mtx_lock(&scp->seq_lock); if (scp->music) ret = seq_processevent(scp, event); else { if (seq_convertold(event, newevent) > 0) ret = seq_processevent(scp, newevent); else ret = EINVAL; } mtx_unlock(&scp->seq_lock); break; case SNDCTL_SYNTH_INFO: synthinfo = (struct synth_info *)arg; midiunit = synthinfo->device; mtx_lock(&scp->seq_lock); if (seq_fetch_mid(scp, midiunit, &md) == 0) { bzero(synthinfo, sizeof(*synthinfo)); synthinfo->name[0] = 'f'; synthinfo->name[1] = 'a'; synthinfo->name[2] = 'k'; synthinfo->name[3] = 'e'; synthinfo->name[4] = 's'; synthinfo->name[5] = 'y'; synthinfo->name[6] = 'n'; synthinfo->name[7] = 't'; synthinfo->name[8] = 'h'; synthinfo->device = midiunit; synthinfo->synth_type = SYNTH_TYPE_MIDI; synthinfo->capabilities = scp->midi_flags[midiunit]; ret = 0; } else ret = EINVAL; mtx_unlock(&scp->seq_lock); break; case SNDCTL_MIDI_INFO: midiinfo = (struct midi_info *)arg; midiunit = midiinfo->device; mtx_lock(&scp->seq_lock); if (seq_fetch_mid(scp, midiunit, &md) == 0) { bzero(midiinfo, sizeof(*midiinfo)); midiinfo->name[0] = 'f'; midiinfo->name[1] = 'a'; midiinfo->name[2] = 'k'; midiinfo->name[3] = 'e'; midiinfo->name[4] = 'm'; midiinfo->name[5] = 'i'; midiinfo->name[6] = 'd'; midiinfo->name[7] = 'i'; midiinfo->device = midiunit; midiinfo->capabilities = scp->midi_flags[midiunit]; /* * TODO: What devtype? */ midiinfo->dev_type = 0x01; ret = 0; } else ret = EINVAL; mtx_unlock(&scp->seq_lock); break; case SNDCTL_SEQ_THRESHOLD: mtx_lock(&scp->seq_lock); RANGE(*(int *)arg, 1, MIDIQ_SIZE(scp->out_q) - 1); scp->out_water = *(int *)arg; mtx_unlock(&scp->seq_lock); SEQ_DEBUG(3, printf("seq_ioctl: water %d.\n", *(int *)arg)); ret = 0; break; case SNDCTL_MIDI_PRETIME: tmp = *(int *)arg; if (tmp < 0) tmp = 0; mtx_lock(&scp->seq_lock); scp->pre_event_timeout = (hz * tmp) / 10; *(int *)arg = scp->pre_event_timeout; mtx_unlock(&scp->seq_lock); SEQ_DEBUG(3, printf("seq_ioctl: pretime %d.\n", *(int *)arg)); ret = 0; break; case SNDCTL_FM_4OP_ENABLE: case SNDCTL_PMGR_IFACE: case SNDCTL_PMGR_ACCESS: /* * Patch manager and fm are ded, ded, ded. */ /* fallthrough */ default: /* * TODO: Consider ioctl default case. * Old code used to * if ((scp->fflags & O_ACCMODE) == FREAD) { * ret = EIO; * break; * } * Then pass on the ioctl to device 0 */ SEQ_DEBUG(2, printf("seq_ioctl: unsupported IOCTL %ld.\n", cmd)); ret = EINVAL; break; } return ret; } int mseq_poll(struct cdev *i_dev, int events, struct thread *td) { int ret, lim; struct seq_softc *scp = i_dev->si_drv1; SEQ_DEBUG(3, printf("seq_poll: unit %d.\n", scp->unit)); SEQ_DEBUG(1, printf("seq_poll: unit %d.\n", scp->unit)); mtx_lock(&scp->seq_lock); ret = 0; - /* Look up the apropriate queue and select it. */ + /* Look up the appropriate queue and select it. */ if ((events & (POLLOUT | POLLWRNORM)) != 0) { /* Start playing. */ scp->playing = 1; cv_broadcast(&scp->state_cv); cv_broadcast(&scp->out_cv); lim = scp->out_water; if (MIDIQ_AVAIL(scp->out_q) < lim) /* No enough space, record select. */ selrecord(td, &scp->out_sel); else /* We can write now. */ ret |= events & (POLLOUT | POLLWRNORM); } if ((events & (POLLIN | POLLRDNORM)) != 0) { /* TODO: Start recording. */ /* Find out the boundary. */ lim = 1; if (MIDIQ_LEN(scp->in_q) < lim) /* No data ready, record select. */ selrecord(td, &scp->in_sel); else /* We can read now. */ ret |= events & (POLLIN | POLLRDNORM); } mtx_unlock(&scp->seq_lock); return (ret); } #if 0 static void sein_qtr(void *p, void /* mididev_info */ *md) { struct seq_softc *scp; scp = (struct seq_softc *)p; mtx_lock(&scp->seq_lock); /* Restart playing if we have the data to output. */ if (scp->queueout_pending) seq_callback(scp, SEQ_CB_START | SEQ_CB_WR); /* Check the midi device if we are reading. */ if ((scp->flags & SEQ_F_READING) != 0) seq_midiinput(scp, md); mtx_unlock(&scp->seq_lock); } #endif /* * seq_convertold * Was the old playevent. Use this to convert and old * style /dev/sequencer event to a /dev/music event */ static int seq_convertold(u_char *event, u_char *out) { int used; u_char dev, chn, note, vel; out[0] = out[1] = out[2] = out[3] = out[4] = out[5] = out[6] = out[7] = 0; dev = 0; chn = event[1]; note = event[2]; vel = event[3]; used = 0; restart: /* * TODO: Debug statement */ switch (event[0]) { case EV_TIMING: case EV_CHN_VOICE: case EV_CHN_COMMON: case EV_SYSEX: case EV_SEQ_LOCAL: out[0] = event[0]; out[1] = event[1]; out[2] = event[2]; out[3] = event[3]; out[4] = event[4]; out[5] = event[5]; out[6] = event[6]; out[7] = event[7]; used += 8; break; case SEQ_NOTEOFF: out[0] = EV_CHN_VOICE; out[1] = dev; out[2] = MIDI_NOTEOFF; out[3] = chn; out[4] = note; out[5] = 255; used += 4; break; case SEQ_NOTEON: out[0] = EV_CHN_VOICE; out[1] = dev; out[2] = MIDI_NOTEON; out[3] = chn; out[4] = note; out[5] = vel; used += 4; break; /* * wait delay = (event[2] << 16) + (event[3] << 8) + event[4] */ case SEQ_PGMCHANGE: out[0] = EV_CHN_COMMON; out[1] = dev; out[2] = MIDI_PGM_CHANGE; out[3] = chn; out[4] = note; out[5] = vel; used += 4; break; /* out[0] = EV_TIMING; out[1] = dev; out[2] = MIDI_PGM_CHANGE; out[3] = chn; out[4] = note; out[5] = vel; SEQ_DEBUG(4,printf("seq_playevent: synctimer\n")); break; */ case SEQ_MIDIPUTC: SEQ_DEBUG(4, printf("seq_playevent: put data 0x%02x, unit %d.\n", event[1], event[2])); /* * Pass through to the midi device. * device = event[2] * data = event[1] */ out[0] = SEQ_MIDIPUTC; out[1] = dev; out[2] = chn; used += 4; break; #ifdef notyet case SEQ_ECHO: /* * This isn't handled here yet because I don't know if I can * just use four bytes events. There might be consequences * in the _read routing */ if (seq_copytoinput(scp, event, 4) == EAGAIN) { ret = QUEUEFULL; break; } ret = MORE; break; #endif case SEQ_EXTENDED: switch (event[1]) { case SEQ_NOTEOFF: case SEQ_NOTEON: case SEQ_PGMCHANGE: event++; used = 4; goto restart; break; case SEQ_AFTERTOUCH: /* * SYNTH_AFTERTOUCH(md, event[3], event[4]) */ case SEQ_BALANCE: /* * SYNTH_PANNING(md, event[3], (char)event[4]) */ case SEQ_CONTROLLER: /* * SYNTH_CONTROLLER(md, event[3], event[4], *(short *)&event[5]) */ case SEQ_VOLMODE: /* * SYNTH_VOLUMEMETHOD(md, event[3]) */ default: SEQ_DEBUG(2, printf("seq_convertold: SEQ_EXTENDED type %d" "not handled\n", event[1])); break; } break; case SEQ_WAIT: out[0] = EV_TIMING; out[1] = TMR_WAIT_REL; out[4] = event[2]; out[5] = event[3]; out[6] = event[4]; SEQ_DEBUG(5, printf("SEQ_WAIT %d", event[2] + (event[3] << 8) + (event[4] << 24))); used += 4; break; case SEQ_ECHO: case SEQ_SYNCTIMER: case SEQ_PRIVATE: default: SEQ_DEBUG(2, printf("seq_convertold: event type %d not handled %d %d %d\n", event[0], event[1], event[2], event[3])); break; } return used; } /* * Writting to the sequencer buffer never blocks and drops * input which cannot be queued */ void seq_copytoinput(struct seq_softc *scp, u_char *event, int len) { mtx_assert(&scp->seq_lock, MA_OWNED); if (MIDIQ_AVAIL(scp->in_q) < len) { /* * ENOROOM? EINPUTDROPPED? ETOUGHLUCK? */ SEQ_DEBUG(2, printf("seq_copytoinput: queue full\n")); } else { MIDIQ_ENQ(scp->in_q, event, len); selwakeup(&scp->in_sel); cv_broadcast(&scp->in_cv); } } static int seq_chnvoice(struct seq_softc *scp, kobj_t md, u_char *event) { int ret, voice; u_char cmd, chn, note, parm; ret = 0; cmd = event[2]; chn = event[3]; note = event[4]; parm = event[5]; mtx_assert(&scp->seq_lock, MA_OWNED); SEQ_DEBUG(5, printf("seq_chnvoice: unit %d, dev %d, cmd %s," " chn %d, note %d, parm %d.\n", scp->unit, event[1], midi_cmdname(cmd, cmdtab_seqcv), chn, note, parm)); voice = SYNTH_ALLOC(md, chn, note); mtx_unlock(&scp->seq_lock); switch (cmd) { case MIDI_NOTEON: if (note < 128 || note == 255) { #if 0 if (scp->music && chn == 9) { /* * This channel is a percussion. The note * number is the patch number. */ /* mtx_unlock(&scp->seq_lock); if (SYNTH_SETINSTR(md, voice, 128 + note) == EAGAIN) { mtx_lock(&scp->seq_lock); return (QUEUEFULL); } mtx_lock(&scp->seq_lock); */ note = 60; /* Middle C. */ } #endif if (scp->music) { /* mtx_unlock(&scp->seq_lock); if (SYNTH_SETUPVOICE(md, voice, chn) == EAGAIN) { mtx_lock(&scp->seq_lock); return (QUEUEFULL); } mtx_lock(&scp->seq_lock); */ } SYNTH_STARTNOTE(md, voice, note, parm); } break; case MIDI_NOTEOFF: SYNTH_KILLNOTE(md, voice, note, parm); break; case MIDI_KEY_PRESSURE: SYNTH_AFTERTOUCH(md, voice, parm); break; default: ret = 1; SEQ_DEBUG(2, printf("seq_chnvoice event type %d not handled\n", event[1])); break; } mtx_lock(&scp->seq_lock); return ret; } static int seq_chncommon(struct seq_softc *scp, kobj_t md, u_char *event) { int ret; u_short w14; u_char cmd, chn, p1; ret = 0; cmd = event[2]; chn = event[3]; p1 = event[4]; w14 = *(u_short *)&event[6]; SEQ_DEBUG(5, printf("seq_chncommon: unit %d, dev %d, cmd %s, chn %d," " p1 %d, w14 %d.\n", scp->unit, event[1], midi_cmdname(cmd, cmdtab_seqccmn), chn, p1, w14)); mtx_unlock(&scp->seq_lock); switch (cmd) { case MIDI_PGM_CHANGE: SEQ_DEBUG(4, printf("seq_chncommon pgmchn chn %d pg %d\n", chn, p1)); SYNTH_SETINSTR(md, chn, p1); break; case MIDI_CTL_CHANGE: SEQ_DEBUG(4, printf("seq_chncommon ctlch chn %d pg %d %d\n", chn, p1, w14)); SYNTH_CONTROLLER(md, chn, p1, w14); break; case MIDI_PITCH_BEND: if (scp->music) { /* * TODO: MIDI_PITCH_BEND */ #if 0 mtx_lock(&md->synth.vc_mtx); md->synth.chn_info[chn].bender_value = w14; if (md->midiunit >= 0) { /* * Handle all of the notes playing on this * channel. */ key = ((int)chn << 8); for (i = 0; i < md->synth.alloc.max_voice; i++) if ((md->synth.alloc.map[i] & 0xff00) == key) { mtx_unlock(&md->synth.vc_mtx); mtx_unlock(&scp->seq_lock); if (md->synth.bender(md, i, w14) == EAGAIN) { mtx_lock(&scp->seq_lock); return (QUEUEFULL); } mtx_lock(&scp->seq_lock); } } else { mtx_unlock(&md->synth.vc_mtx); mtx_unlock(&scp->seq_lock); if (md->synth.bender(md, chn, w14) == EAGAIN) { mtx_lock(&scp->seq_lock); return (QUEUEFULL); } mtx_lock(&scp->seq_lock); } #endif } else SYNTH_BENDER(md, chn, w14); break; default: ret = 1; SEQ_DEBUG(2, printf("seq_chncommon event type %d not handled.\n", event[1])); break; } mtx_lock(&scp->seq_lock); return ret; } static int seq_timing(struct seq_softc *scp, u_char *event) { int param; int ret; ret = 0; param = event[4] + (event[5] << 8) + (event[6] << 16) + (event[7] << 24); SEQ_DEBUG(5, printf("seq_timing: unit %d, cmd %d, param %d.\n", scp->unit, event[1], param)); switch (event[1]) { case TMR_WAIT_REL: timer_wait(scp, param, 0); break; case TMR_WAIT_ABS: timer_wait(scp, param, 1); break; case TMR_START: timer_start(scp); cv_broadcast(&scp->reset_cv); break; case TMR_STOP: timer_stop(scp); /* * The following cv_broadcast isn't needed since we only * wait for 0->1 transitions. It probably won't hurt */ cv_broadcast(&scp->reset_cv); break; case TMR_CONTINUE: timer_continue(scp); cv_broadcast(&scp->reset_cv); break; case TMR_TEMPO: if (param < 8) param = 8; if (param > 360) param = 360; SEQ_DEBUG(4, printf("Timer set tempo %d\n", param)); timer_setvals(scp, param, scp->timerbase); break; case TMR_TIMERBASE: if (param < 1) param = 1; if (param > 1000) param = 1000; SEQ_DEBUG(4, printf("Timer set timerbase %d\n", param)); timer_setvals(scp, scp->tempo, param); break; case TMR_ECHO: /* * TODO: Consider making 4-byte events for /dev/sequencer * PRO: Maybe needed by legacy apps * CON: soundcard.h has been warning for a while many years * to expect 8 byte events. */ #if 0 if (scp->music) seq_copytoinput(scp, event, 8); else { param = (param << 8 | SEQ_ECHO); seq_copytoinput(scp, (u_char *)¶m, 4); } #else seq_copytoinput(scp, event, 8); #endif break; default: SEQ_DEBUG(2, printf("seq_timing event type %d not handled.\n", event[1])); ret = 1; break; } return ret; } static int seq_local(struct seq_softc *scp, u_char *event) { int ret; ret = 0; mtx_assert(&scp->seq_lock, MA_OWNED); SEQ_DEBUG(5, printf("seq_local: unit %d, cmd %d\n", scp->unit, event[1])); switch (event[1]) { default: SEQ_DEBUG(1, printf("seq_local event type %d not handled\n", event[1])); ret = 1; break; } return ret; } static int seq_sysex(struct seq_softc *scp, kobj_t md, u_char *event) { int i, l; mtx_assert(&scp->seq_lock, MA_OWNED); SEQ_DEBUG(5, printf("seq_sysex: unit %d device %d\n", scp->unit, event[1])); l = 0; for (i = 0; i < 6 && event[i + 2] != 0xff; i++) l = i + 1; if (l > 0) { mtx_unlock(&scp->seq_lock); if (SYNTH_SENDSYSEX(md, &event[2], l) == EAGAIN) { mtx_lock(&scp->seq_lock); return 1; } mtx_lock(&scp->seq_lock); } return 0; } /* * Reset no longer closes the raw devices nor seq_sync's * Callers are IOCTL and seq_close */ static void seq_reset(struct seq_softc *scp) { int chn, i; kobj_t m; mtx_assert(&scp->seq_lock, MA_OWNED); SEQ_DEBUG(5, printf("seq_reset: unit %d.\n", scp->unit)); /* * Stop reading and writing. */ /* scp->recording = 0; */ scp->playing = 0; cv_broadcast(&scp->state_cv); cv_broadcast(&scp->out_cv); cv_broadcast(&scp->reset_cv); /* * For now, don't reset the timers. */ MIDIQ_CLEAR(scp->in_q); MIDIQ_CLEAR(scp->out_q); for (i = 0; i < scp->midi_number; i++) { m = scp->midis[i]; mtx_unlock(&scp->seq_lock); SYNTH_RESET(m); for (chn = 0; chn < 16; chn++) { SYNTH_CONTROLLER(m, chn, 123, 0); SYNTH_CONTROLLER(m, chn, 121, 0); SYNTH_BENDER(m, chn, 1 << 13); } mtx_lock(&scp->seq_lock); } } /* * seq_sync * *really* flush the output queue * flush the event queue, then flush the synthsisers. * Callers are IOCTL and close */ #define SEQ_SYNC_TIMEOUT 8 static int seq_sync(struct seq_softc *scp) { int i, rl, sync[16], done; mtx_assert(&scp->seq_lock, MA_OWNED); SEQ_DEBUG(4, printf("seq_sync: unit %d.\n", scp->unit)); /* * Wait until output queue is empty. Check every so often to see if * the queue is moving along. If it isn't just abort. */ while (!MIDIQ_EMPTY(scp->out_q)) { if (!scp->playing) { scp->playing = 1; cv_broadcast(&scp->state_cv); cv_broadcast(&scp->out_cv); } rl = MIDIQ_LEN(scp->out_q); i = cv_timedwait_sig(&scp->out_cv, &scp->seq_lock, SEQ_SYNC_TIMEOUT * hz); if (i == EINTR || i == ERESTART) { if (i == EINTR) { /* * XXX: I don't know why we stop playing */ scp->playing = 0; cv_broadcast(&scp->out_cv); } return i; } if (i == EWOULDBLOCK && rl == MIDIQ_LEN(scp->out_q) && scp->waiting == 0) { /* * A queue seems to be stuck up. Give up and clear * queues. */ MIDIQ_CLEAR(scp->out_q); scp->playing = 0; cv_broadcast(&scp->state_cv); cv_broadcast(&scp->out_cv); cv_broadcast(&scp->reset_cv); /* * TODO: Consider if the raw devices need to be flushed */ SEQ_DEBUG(1, printf("seq_sync queue stuck, aborting\n")); return i; } } scp->playing = 0; /* * Since syncing a midi device might block, unlock scp->seq_lock. */ mtx_unlock(&scp->seq_lock); for (i = 0; i < scp->midi_number; i++) sync[i] = 1; do { done = 1; for (i = 0; i < scp->midi_number; i++) if (sync[i]) { if (SYNTH_INSYNC(scp->midis[i]) == 0) sync[i] = 0; else done = 0; } if (!done) DELAY(5000); } while (!done); mtx_lock(&scp->seq_lock); return 0; } char * midi_cmdname(int cmd, midi_cmdtab *tab) { while (tab->name != NULL) { if (cmd == tab->cmd) return (tab->name); tab++; } return ("unknown"); } diff --git a/sys/dev/sound/pcm/feeder_chain.c b/sys/dev/sound/pcm/feeder_chain.c index 73922ab55396..b2d48abd71d1 100644 --- a/sys/dev/sound/pcm/feeder_chain.c +++ b/sys/dev/sound/pcm/feeder_chain.c @@ -1,859 +1,859 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2008-2009 Ariff Abdullah * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_snd.h" #endif #include #include "feeder_if.h" SND_DECLARE_FILE("$FreeBSD$"); /* chain state */ struct feeder_chain_state { uint32_t afmt; /* audio format */ uint32_t rate; /* sampling rate */ struct pcmchan_matrix *matrix; /* matrix map */ }; /* * chain descriptor that will be passed around from the beginning until the * end of chain process. */ struct feeder_chain_desc { struct feeder_chain_state origin; /* original state */ struct feeder_chain_state current; /* current state */ struct feeder_chain_state target; /* target state */ struct pcm_feederdesc desc; /* feeder descriptor */ uint32_t afmt_ne; /* prefered native endian */ int mode; /* chain mode */ int use_eq; /* need EQ? */ int use_matrix; /* need channel matrixing? */ int use_volume; /* need softpcmvol? */ int dummy; /* dummy passthrough */ int expensive; /* possibly expensive */ }; #define FEEDER_CHAIN_LEAN 0 #define FEEDER_CHAIN_16 1 #define FEEDER_CHAIN_32 2 #define FEEDER_CHAIN_MULTI 3 #define FEEDER_CHAIN_FULLMULTI 4 #define FEEDER_CHAIN_LAST 5 #if defined(SND_FEEDER_FULL_MULTIFORMAT) #define FEEDER_CHAIN_DEFAULT FEEDER_CHAIN_FULLMULTI #elif defined(SND_FEEDER_MULTIFORMAT) #define FEEDER_CHAIN_DEFAULT FEEDER_CHAIN_MULTI #else #define FEEDER_CHAIN_DEFAULT FEEDER_CHAIN_LEAN #endif /* * List of prefered formats that might be required during * processing. It will be decided through snd_fmtbest(). */ /* 'Lean' mode, signed 16 or 32 bit native endian. */ static uint32_t feeder_chain_formats_lean[] = { AFMT_S16_NE, AFMT_S32_NE, 0 }; /* Force everything to signed 16 bit native endian. */ static uint32_t feeder_chain_formats_16[] = { AFMT_S16_NE, 0 }; /* Force everything to signed 32 bit native endian. */ static uint32_t feeder_chain_formats_32[] = { AFMT_S32_NE, 0 }; /* Multiple choices, all except 8 bit. */ static uint32_t feeder_chain_formats_multi[] = { AFMT_S16_LE, AFMT_S16_BE, AFMT_U16_LE, AFMT_U16_BE, AFMT_S24_LE, AFMT_S24_BE, AFMT_U24_LE, AFMT_U24_BE, AFMT_S32_LE, AFMT_S32_BE, AFMT_U32_LE, AFMT_U32_BE, 0 }; /* Everything that is convertible. */ static uint32_t feeder_chain_formats_fullmulti[] = { AFMT_S8, AFMT_U8, AFMT_S16_LE, AFMT_S16_BE, AFMT_U16_LE, AFMT_U16_BE, AFMT_S24_LE, AFMT_S24_BE, AFMT_U24_LE, AFMT_U24_BE, AFMT_S32_LE, AFMT_S32_BE, AFMT_U32_LE, AFMT_U32_BE, 0 }; static uint32_t *feeder_chain_formats[FEEDER_CHAIN_LAST] = { [FEEDER_CHAIN_LEAN] = feeder_chain_formats_lean, [FEEDER_CHAIN_16] = feeder_chain_formats_16, [FEEDER_CHAIN_32] = feeder_chain_formats_32, [FEEDER_CHAIN_MULTI] = feeder_chain_formats_multi, [FEEDER_CHAIN_FULLMULTI] = feeder_chain_formats_fullmulti }; static int feeder_chain_mode = FEEDER_CHAIN_DEFAULT; #if defined(_KERNEL) && defined(SND_DEBUG) && defined(SND_FEEDER_FULL_MULTIFORMAT) SYSCTL_INT(_hw_snd, OID_AUTO, feeder_chain_mode, CTLFLAG_RWTUN, &feeder_chain_mode, 0, "feeder chain mode " "(0=lean, 1=16bit, 2=32bit, 3=multiformat, 4=fullmultiformat)"); #endif /* * feeder_build_format(): Chain any format converter. */ static int feeder_build_format(struct pcm_channel *c, struct feeder_chain_desc *cdesc) { struct feeder_class *fc; struct pcm_feederdesc *desc; int ret; desc = &(cdesc->desc); desc->type = FEEDER_FORMAT; desc->in = 0; desc->out = 0; desc->flags = 0; fc = feeder_getclass(desc); if (fc == NULL) { device_printf(c->dev, "%s(): can't find feeder_format\n", __func__); return (ENOTSUP); } desc->in = cdesc->current.afmt; desc->out = cdesc->target.afmt; ret = chn_addfeeder(c, fc, desc); if (ret != 0) { device_printf(c->dev, "%s(): can't add feeder_format\n", __func__); return (ret); } c->feederflags |= 1 << FEEDER_FORMAT; cdesc->current.afmt = cdesc->target.afmt; return (0); } /* * feeder_build_formatne(): Chain format converter that suite best for native * endian format. */ static int feeder_build_formatne(struct pcm_channel *c, struct feeder_chain_desc *cdesc) { struct feeder_chain_state otarget; int ret; if (cdesc->afmt_ne == 0 || AFMT_ENCODING(cdesc->current.afmt) == cdesc->afmt_ne) return (0); otarget = cdesc->target; cdesc->target = cdesc->current; cdesc->target.afmt = SND_FORMAT(cdesc->afmt_ne, cdesc->current.matrix->channels, cdesc->current.matrix->ext); ret = feeder_build_format(c, cdesc); if (ret != 0) return (ret); cdesc->target = otarget; return (0); } /* * feeder_build_rate(): Chain sample rate converter. */ static int feeder_build_rate(struct pcm_channel *c, struct feeder_chain_desc *cdesc) { struct feeder_class *fc; struct pcm_feeder *f; struct pcm_feederdesc *desc; int ret; ret = feeder_build_formatne(c, cdesc); if (ret != 0) return (ret); desc = &(cdesc->desc); desc->type = FEEDER_RATE; desc->in = 0; desc->out = 0; desc->flags = 0; fc = feeder_getclass(desc); if (fc == NULL) { device_printf(c->dev, "%s(): can't find feeder_rate\n", __func__); return (ENOTSUP); } desc->in = cdesc->current.afmt; desc->out = desc->in; ret = chn_addfeeder(c, fc, desc); if (ret != 0) { device_printf(c->dev, "%s(): can't add feeder_rate\n", __func__); return (ret); } f = c->feeder; /* * If in 'dummy' mode (possibly due to passthrough mode), set the * conversion quality to the lowest possible (should be fastest) since * listener won't be hearing anything. Theoretically we can just * disable it, but that will cause weird runtime behaviour: * application appear to play something that is either too fast or too * slow. */ if (cdesc->dummy != 0) { ret = FEEDER_SET(f, FEEDRATE_QUALITY, 0); if (ret != 0) { device_printf(c->dev, "%s(): can't set resampling quality\n", __func__); return (ret); } } ret = FEEDER_SET(f, FEEDRATE_SRC, cdesc->current.rate); if (ret != 0) { device_printf(c->dev, "%s(): can't set source rate\n", __func__); return (ret); } ret = FEEDER_SET(f, FEEDRATE_DST, cdesc->target.rate); if (ret != 0) { device_printf(c->dev, "%s(): can't set destination rate\n", __func__); return (ret); } c->feederflags |= 1 << FEEDER_RATE; cdesc->current.rate = cdesc->target.rate; return (0); } /* * feeder_build_matrix(): Chain channel matrixing converter. */ static int feeder_build_matrix(struct pcm_channel *c, struct feeder_chain_desc *cdesc) { struct feeder_class *fc; struct pcm_feeder *f; struct pcm_feederdesc *desc; int ret; ret = feeder_build_formatne(c, cdesc); if (ret != 0) return (ret); desc = &(cdesc->desc); desc->type = FEEDER_MATRIX; desc->in = 0; desc->out = 0; desc->flags = 0; fc = feeder_getclass(desc); if (fc == NULL) { device_printf(c->dev, "%s(): can't find feeder_matrix\n", __func__); return (ENOTSUP); } desc->in = cdesc->current.afmt; desc->out = SND_FORMAT(cdesc->current.afmt, cdesc->target.matrix->channels, cdesc->target.matrix->ext); ret = chn_addfeeder(c, fc, desc); if (ret != 0) { device_printf(c->dev, "%s(): can't add feeder_matrix\n", __func__); return (ret); } f = c->feeder; ret = feeder_matrix_setup(f, cdesc->current.matrix, cdesc->target.matrix); if (ret != 0) { device_printf(c->dev, "%s(): feeder_matrix_setup() failed\n", __func__); return (ret); } c->feederflags |= 1 << FEEDER_MATRIX; cdesc->current.afmt = desc->out; cdesc->current.matrix = cdesc->target.matrix; cdesc->use_matrix = 0; return (0); } /* * feeder_build_volume(): Chain soft volume. */ static int feeder_build_volume(struct pcm_channel *c, struct feeder_chain_desc *cdesc) { struct feeder_class *fc; struct pcm_feeder *f; struct pcm_feederdesc *desc; int ret; ret = feeder_build_formatne(c, cdesc); if (ret != 0) return (ret); desc = &(cdesc->desc); desc->type = FEEDER_VOLUME; desc->in = 0; desc->out = 0; desc->flags = 0; fc = feeder_getclass(desc); if (fc == NULL) { device_printf(c->dev, "%s(): can't find feeder_volume\n", __func__); return (ENOTSUP); } desc->in = cdesc->current.afmt; desc->out = desc->in; ret = chn_addfeeder(c, fc, desc); if (ret != 0) { device_printf(c->dev, "%s(): can't add feeder_volume\n", __func__); return (ret); } f = c->feeder; /* * If in 'dummy' mode (possibly due to passthrough mode), set BYPASS * mode since listener won't be hearing anything. Theoretically we can * just disable it, but that will confuse volume per channel mixer. */ if (cdesc->dummy != 0) { ret = FEEDER_SET(f, FEEDVOLUME_STATE, FEEDVOLUME_BYPASS); if (ret != 0) { device_printf(c->dev, "%s(): can't set volume bypass\n", __func__); return (ret); } } ret = feeder_volume_apply_matrix(f, cdesc->current.matrix); if (ret != 0) { device_printf(c->dev, "%s(): feeder_volume_apply_matrix() failed\n", __func__); return (ret); } c->feederflags |= 1 << FEEDER_VOLUME; cdesc->use_volume = 0; return (0); } /* * feeder_build_eq(): Chain parametric software equalizer. */ static int feeder_build_eq(struct pcm_channel *c, struct feeder_chain_desc *cdesc) { struct feeder_class *fc; struct pcm_feeder *f; struct pcm_feederdesc *desc; int ret; ret = feeder_build_formatne(c, cdesc); if (ret != 0) return (ret); desc = &(cdesc->desc); desc->type = FEEDER_EQ; desc->in = 0; desc->out = 0; desc->flags = 0; fc = feeder_getclass(desc); if (fc == NULL) { device_printf(c->dev, "%s(): can't find feeder_eq\n", __func__); return (ENOTSUP); } desc->in = cdesc->current.afmt; desc->out = desc->in; ret = chn_addfeeder(c, fc, desc); if (ret != 0) { device_printf(c->dev, "%s(): can't add feeder_eq\n", __func__); return (ret); } f = c->feeder; ret = FEEDER_SET(f, FEEDEQ_RATE, cdesc->current.rate); if (ret != 0) { device_printf(c->dev, "%s(): can't set rate on feeder_eq\n", __func__); return (ret); } c->feederflags |= 1 << FEEDER_EQ; cdesc->use_eq = 0; return (0); } /* * feeder_build_root(): Chain root feeder, the top, father of all. */ static int feeder_build_root(struct pcm_channel *c, struct feeder_chain_desc *cdesc) { struct feeder_class *fc; int ret; fc = feeder_getclass(NULL); if (fc == NULL) { device_printf(c->dev, "%s(): can't find feeder_root\n", __func__); return (ENOTSUP); } ret = chn_addfeeder(c, fc, NULL); if (ret != 0) { device_printf(c->dev, "%s(): can't add feeder_root\n", __func__); return (ret); } c->feederflags |= 1 << FEEDER_ROOT; c->feeder->desc->in = cdesc->current.afmt; c->feeder->desc->out = cdesc->current.afmt; return (0); } /* * feeder_build_mixer(): Chain software mixer for virtual channels. */ static int feeder_build_mixer(struct pcm_channel *c, struct feeder_chain_desc *cdesc) { struct feeder_class *fc; struct pcm_feederdesc *desc; int ret; desc = &(cdesc->desc); desc->type = FEEDER_MIXER; desc->in = 0; desc->out = 0; desc->flags = 0; fc = feeder_getclass(desc); if (fc == NULL) { device_printf(c->dev, "%s(): can't find feeder_mixer\n", __func__); return (ENOTSUP); } desc->in = cdesc->current.afmt; desc->out = desc->in; ret = chn_addfeeder(c, fc, desc); if (ret != 0) { device_printf(c->dev, "%s(): can't add feeder_mixer\n", __func__); return (ret); } c->feederflags |= 1 << FEEDER_MIXER; return (0); } /* Macrosses to ease our job doing stuffs later. */ #define FEEDER_BW(c, t) ((c)->t.matrix->channels * (c)->t.rate) #define FEEDRATE_UP(c) ((c)->target.rate > (c)->current.rate) #define FEEDRATE_DOWN(c) ((c)->target.rate < (c)->current.rate) #define FEEDRATE_REQUIRED(c) (FEEDRATE_UP(c) || FEEDRATE_DOWN(c)) #define FEEDMATRIX_UP(c) ((c)->target.matrix->channels > \ (c)->current.matrix->channels) #define FEEDMATRIX_DOWN(c) ((c)->target.matrix->channels < \ (c)->current.matrix->channels) #define FEEDMATRIX_REQUIRED(c) (FEEDMATRIX_UP(c) || \ FEEDMATRIX_DOWN(c) || (c)->use_matrix != 0) #define FEEDFORMAT_REQUIRED(c) (AFMT_ENCODING((c)->current.afmt) != \ AFMT_ENCODING((c)->target.afmt)) #define FEEDVOLUME_REQUIRED(c) ((c)->use_volume != 0) #define FEEDEQ_VALIDRATE(c, t) (feeder_eq_validrate((c)->t.rate) != 0) #define FEEDEQ_ECONOMY(c) (FEEDER_BW(c, current) < FEEDER_BW(c, target)) #define FEEDEQ_REQUIRED(c) ((c)->use_eq != 0 && \ FEEDEQ_VALIDRATE(c, current)) #define FEEDFORMAT_NE_REQUIRED(c) \ ((c)->afmt_ne != AFMT_S32_NE && \ (((c)->mode == FEEDER_CHAIN_16 && \ AFMT_ENCODING((c)->current.afmt) != AFMT_S16_NE) || \ ((c)->mode == FEEDER_CHAIN_32 && \ AFMT_ENCODING((c)->current.afmt) != AFMT_S32_NE) || \ (c)->mode == FEEDER_CHAIN_FULLMULTI || \ ((c)->mode == FEEDER_CHAIN_MULTI && \ ((c)->current.afmt & AFMT_8BIT)) || \ ((c)->mode == FEEDER_CHAIN_LEAN && \ !((c)->current.afmt & (AFMT_S16_NE | AFMT_S32_NE))))) static void feeder_default_matrix(struct pcmchan_matrix *m, uint32_t fmt, int id) { int x; memset(m, 0, sizeof(*m)); m->id = id; m->channels = AFMT_CHANNEL(fmt); m->ext = AFMT_EXTCHANNEL(fmt); for (x = 0; x != SND_CHN_T_MAX; x++) m->offset[x] = -1; } int feeder_chain(struct pcm_channel *c) { struct snddev_info *d; struct pcmchan_caps *caps; struct feeder_chain_desc cdesc; struct pcmchan_matrix *hwmatrix, *softmatrix; uint32_t hwfmt, softfmt; int ret; CHN_LOCKASSERT(c); /* Remove everything first. */ while (chn_removefeeder(c) == 0) ; KASSERT(c->feeder == NULL, ("feeder chain not empty")); /* clear and populate chain descriptor. */ bzero(&cdesc, sizeof(cdesc)); switch (feeder_chain_mode) { case FEEDER_CHAIN_LEAN: case FEEDER_CHAIN_16: case FEEDER_CHAIN_32: #if defined(SND_FEEDER_MULTIFORMAT) || defined(SND_FEEDER_FULL_MULTIFORMAT) case FEEDER_CHAIN_MULTI: #endif #if defined(SND_FEEDER_FULL_MULTIFORMAT) case FEEDER_CHAIN_FULLMULTI: #endif break; default: feeder_chain_mode = FEEDER_CHAIN_DEFAULT; break; } cdesc.mode = feeder_chain_mode; cdesc.expensive = 1; /* XXX faster.. */ #define VCHAN_PASSTHROUGH(c) (((c)->flags & (CHN_F_VIRTUAL | \ CHN_F_PASSTHROUGH)) == \ (CHN_F_VIRTUAL | CHN_F_PASSTHROUGH)) /* Get the best possible hardware format. */ if (VCHAN_PASSTHROUGH(c)) hwfmt = c->parentchannel->format; else { caps = chn_getcaps(c); if (caps == NULL || caps->fmtlist == NULL) { device_printf(c->dev, "%s(): failed to get channel caps\n", __func__); return (ENODEV); } if ((c->format & AFMT_PASSTHROUGH) && !snd_fmtvalid(c->format, caps->fmtlist)) return (ENODEV); hwfmt = snd_fmtbest(c->format, caps->fmtlist); if (hwfmt == 0 || !snd_fmtvalid(hwfmt, caps->fmtlist)) { device_printf(c->dev, "%s(): invalid hardware format 0x%08x\n", __func__, hwfmt); { int i; for (i = 0; caps->fmtlist[i] != 0; i++) printf("0x%08x\n", caps->fmtlist[i]); printf("Req: 0x%08x\n", c->format); } return (ENODEV); } } /* - * The 'hardware' possibly have different intepretation of channel + * The 'hardware' possibly have different interpretation of channel * matrixing, so get it first ..... */ hwmatrix = CHANNEL_GETMATRIX(c->methods, c->devinfo, hwfmt); if (hwmatrix == NULL) { /* setup a default matrix */ hwmatrix = &c->matrix_scratch; feeder_default_matrix(hwmatrix, hwfmt, SND_CHN_MATRIX_UNKNOWN); } /* ..... and rebuild hwfmt. */ hwfmt = SND_FORMAT(hwfmt, hwmatrix->channels, hwmatrix->ext); /* Reset and rebuild default channel format/matrix map. */ softfmt = c->format; softmatrix = &c->matrix; if (softmatrix->channels != AFMT_CHANNEL(softfmt) || softmatrix->ext != AFMT_EXTCHANNEL(softfmt)) { softmatrix = feeder_matrix_format_map(softfmt); if (softmatrix == NULL) { /* setup a default matrix */ softmatrix = &c->matrix; feeder_default_matrix(softmatrix, softfmt, SND_CHN_MATRIX_PCMCHANNEL); } else { c->matrix = *softmatrix; c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL; } } softfmt = SND_FORMAT(softfmt, softmatrix->channels, softmatrix->ext); if (softfmt != c->format) device_printf(c->dev, "%s(): WARNING: %s Soft format 0x%08x -> 0x%08x\n", __func__, CHN_DIRSTR(c), c->format, softfmt); /* * PLAY and REC are opposite. */ if (c->direction == PCMDIR_PLAY) { cdesc.origin.afmt = softfmt; cdesc.origin.matrix = softmatrix; cdesc.origin.rate = c->speed; cdesc.target.afmt = hwfmt; cdesc.target.matrix = hwmatrix; cdesc.target.rate = sndbuf_getspd(c->bufhard); } else { cdesc.origin.afmt = hwfmt; cdesc.origin.matrix = hwmatrix; cdesc.origin.rate = sndbuf_getspd(c->bufhard); cdesc.target.afmt = softfmt; cdesc.target.matrix = softmatrix; cdesc.target.rate = c->speed; } d = c->parentsnddev; /* * If channel is in bitperfect or passthrough mode, make it appear * that 'origin' and 'target' identical, skipping mostly chain * procedures. */ if (CHN_BITPERFECT(c) || (c->format & AFMT_PASSTHROUGH)) { if (c->direction == PCMDIR_PLAY) cdesc.origin = cdesc.target; else cdesc.target = cdesc.origin; c->format = cdesc.target.afmt; c->speed = cdesc.target.rate; } else { /* hwfmt is not convertible, so 'dummy' it. */ if (hwfmt & AFMT_PASSTHROUGH) cdesc.dummy = 1; if ((softfmt & AFMT_CONVERTIBLE) && (((d->flags & SD_F_VPC) && !(c->flags & CHN_F_HAS_VCHAN)) || (!(d->flags & SD_F_VPC) && (d->flags & SD_F_SOFTPCMVOL) && !(c->flags & CHN_F_VIRTUAL)))) cdesc.use_volume = 1; if (feeder_matrix_compare(cdesc.origin.matrix, cdesc.target.matrix) != 0) cdesc.use_matrix = 1; /* Soft EQ only applicable for PLAY. */ if (cdesc.dummy == 0 && c->direction == PCMDIR_PLAY && (d->flags & SD_F_EQ) && (((d->flags & SD_F_EQ_PC) && !(c->flags & CHN_F_HAS_VCHAN)) || (!(d->flags & SD_F_EQ_PC) && !(c->flags & CHN_F_VIRTUAL)))) cdesc.use_eq = 1; if (FEEDFORMAT_NE_REQUIRED(&cdesc)) { cdesc.afmt_ne = (cdesc.dummy != 0) ? snd_fmtbest(AFMT_ENCODING(softfmt), feeder_chain_formats[cdesc.mode]) : snd_fmtbest(AFMT_ENCODING(cdesc.target.afmt), feeder_chain_formats[cdesc.mode]); if (cdesc.afmt_ne == 0) { device_printf(c->dev, "%s(): snd_fmtbest failed!\n", __func__); cdesc.afmt_ne = (((cdesc.dummy != 0) ? softfmt : cdesc.target.afmt) & (AFMT_24BIT | AFMT_32BIT)) ? AFMT_S32_NE : AFMT_S16_NE; } } } cdesc.current = cdesc.origin; /* Build everything. */ c->feederflags = 0; #define FEEDER_BUILD(t) do { \ ret = feeder_build_##t(c, &cdesc); \ if (ret != 0) \ return (ret); \ } while (0) if (!(c->flags & CHN_F_HAS_VCHAN) || c->direction == PCMDIR_REC) FEEDER_BUILD(root); else if (c->direction == PCMDIR_PLAY && (c->flags & CHN_F_HAS_VCHAN)) FEEDER_BUILD(mixer); else return (ENOTSUP); /* * The basic idea is: The smaller the bandwidth, the cheaper the * conversion process, with following constraints:- * * 1) Almost all feeders work best in 16/32 native endian. * 2) Try to avoid 8bit feeders due to poor dynamic range. * 3) Avoid volume, format, matrix and rate in BITPERFECT or * PASSTHROUGH mode. * 4) Try putting volume before EQ or rate. Should help to * avoid/reduce possible clipping. * 5) EQ require specific, valid rate, unless it allow sloppy * conversion. */ if (FEEDMATRIX_UP(&cdesc)) { if (FEEDEQ_REQUIRED(&cdesc) && (!FEEDEQ_VALIDRATE(&cdesc, target) || (cdesc.expensive == 0 && FEEDEQ_ECONOMY(&cdesc)))) FEEDER_BUILD(eq); if (FEEDRATE_REQUIRED(&cdesc)) FEEDER_BUILD(rate); FEEDER_BUILD(matrix); if (FEEDVOLUME_REQUIRED(&cdesc)) FEEDER_BUILD(volume); if (FEEDEQ_REQUIRED(&cdesc)) FEEDER_BUILD(eq); } else if (FEEDMATRIX_DOWN(&cdesc)) { FEEDER_BUILD(matrix); if (FEEDVOLUME_REQUIRED(&cdesc)) FEEDER_BUILD(volume); if (FEEDEQ_REQUIRED(&cdesc) && (!FEEDEQ_VALIDRATE(&cdesc, target) || FEEDEQ_ECONOMY(&cdesc))) FEEDER_BUILD(eq); if (FEEDRATE_REQUIRED(&cdesc)) FEEDER_BUILD(rate); if (FEEDEQ_REQUIRED(&cdesc)) FEEDER_BUILD(eq); } else { if (FEEDRATE_DOWN(&cdesc)) { if (FEEDEQ_REQUIRED(&cdesc) && !FEEDEQ_VALIDRATE(&cdesc, target)) { if (FEEDVOLUME_REQUIRED(&cdesc)) FEEDER_BUILD(volume); FEEDER_BUILD(eq); } FEEDER_BUILD(rate); } if (FEEDMATRIX_REQUIRED(&cdesc)) FEEDER_BUILD(matrix); if (FEEDVOLUME_REQUIRED(&cdesc)) FEEDER_BUILD(volume); if (FEEDRATE_UP(&cdesc)) { if (FEEDEQ_REQUIRED(&cdesc) && !FEEDEQ_VALIDRATE(&cdesc, target)) FEEDER_BUILD(eq); FEEDER_BUILD(rate); } if (FEEDEQ_REQUIRED(&cdesc)) FEEDER_BUILD(eq); } if (FEEDFORMAT_REQUIRED(&cdesc)) FEEDER_BUILD(format); if (c->direction == PCMDIR_REC && (c->flags & CHN_F_HAS_VCHAN)) FEEDER_BUILD(mixer); sndbuf_setfmt(c->bufsoft, c->format); sndbuf_setspd(c->bufsoft, c->speed); sndbuf_setfmt(c->bufhard, hwfmt); chn_syncstate(c); return (0); } diff --git a/sys/dev/sound/pcm/feeder_matrix.c b/sys/dev/sound/pcm/feeder_matrix.c index 7d965860f886..c6a65113574a 100644 --- a/sys/dev/sound/pcm/feeder_matrix.c +++ b/sys/dev/sound/pcm/feeder_matrix.c @@ -1,828 +1,828 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2008-2009 Ariff Abdullah * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * feeder_matrix: Generic any-to-any channel matrixing. Probably not the * accurate way of doing things, but it should be fast and * transparent enough, not to mention capable of handling * possible non-standard way of multichannel interleaving * order. In other words, it is tough to break. * * The Good: * + very generic and compact, provided that the supplied matrix map is in a * sane form. * + should be fast enough. * * The Bad: * + somebody might disagree with it. * + 'matrix' is kind of 0x7a69, due to prolong mental block. */ #ifdef _KERNEL #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_snd.h" #endif #include #include #include "feeder_if.h" #define SND_USE_FXDIV #include "snd_fxdiv_gen.h" SND_DECLARE_FILE("$FreeBSD$"); #endif #define FEEDMATRIX_RESERVOIR (SND_CHN_MAX * PCM_32_BPS) #define SND_CHN_T_EOF 0x00e0fe0f #define SND_CHN_T_NULL 0x0e0e0e0e struct feed_matrix_info; typedef void (*feed_matrix_t)(struct feed_matrix_info *, uint8_t *, uint8_t *, uint32_t); struct feed_matrix_info { uint32_t bps; uint32_t ialign, oalign; uint32_t in, out; feed_matrix_t apply; #ifdef FEEDMATRIX_GENERIC intpcm_read_t *rd; intpcm_write_t *wr; #endif struct { int chn[SND_CHN_T_MAX + 1]; int mul, shift; } matrix[SND_CHN_T_MAX + 1]; uint8_t reservoir[FEEDMATRIX_RESERVOIR]; }; static struct pcmchan_matrix feeder_matrix_maps[SND_CHN_MATRIX_MAX] = { [SND_CHN_MATRIX_1_0] = SND_CHN_MATRIX_MAP_1_0, [SND_CHN_MATRIX_2_0] = SND_CHN_MATRIX_MAP_2_0, [SND_CHN_MATRIX_2_1] = SND_CHN_MATRIX_MAP_2_1, [SND_CHN_MATRIX_3_0] = SND_CHN_MATRIX_MAP_3_0, [SND_CHN_MATRIX_3_1] = SND_CHN_MATRIX_MAP_3_1, [SND_CHN_MATRIX_4_0] = SND_CHN_MATRIX_MAP_4_0, [SND_CHN_MATRIX_4_1] = SND_CHN_MATRIX_MAP_4_1, [SND_CHN_MATRIX_5_0] = SND_CHN_MATRIX_MAP_5_0, [SND_CHN_MATRIX_5_1] = SND_CHN_MATRIX_MAP_5_1, [SND_CHN_MATRIX_6_0] = SND_CHN_MATRIX_MAP_6_0, [SND_CHN_MATRIX_6_1] = SND_CHN_MATRIX_MAP_6_1, [SND_CHN_MATRIX_7_0] = SND_CHN_MATRIX_MAP_7_0, [SND_CHN_MATRIX_7_1] = SND_CHN_MATRIX_MAP_7_1 }; static int feeder_matrix_default_ids[9] = { [0] = SND_CHN_MATRIX_UNKNOWN, [1] = SND_CHN_MATRIX_1, [2] = SND_CHN_MATRIX_2, [3] = SND_CHN_MATRIX_3, [4] = SND_CHN_MATRIX_4, [5] = SND_CHN_MATRIX_5, [6] = SND_CHN_MATRIX_6, [7] = SND_CHN_MATRIX_7, [8] = SND_CHN_MATRIX_8 }; #ifdef _KERNEL #define FEEDMATRIX_CLIP_CHECK(...) #else #define FEEDMATRIX_CLIP_CHECK(v, BIT) do { \ if ((v) < PCM_S##BIT##_MIN || (v) > PCM_S##BIT##_MAX) \ errx(1, "\n\n%s(): Sample clipping: %jd\n", \ __func__, (intmax_t)(v)); \ } while (0) #endif #define FEEDMATRIX_DECLARE(SIGN, BIT, ENDIAN) \ static void \ feed_matrix_##SIGN##BIT##ENDIAN(struct feed_matrix_info *info, \ uint8_t *src, uint8_t *dst, uint32_t count) \ { \ intpcm64_t accum; \ intpcm_t v; \ int i, j; \ \ do { \ for (i = 0; info->matrix[i].chn[0] != SND_CHN_T_EOF; \ i++) { \ if (info->matrix[i].chn[0] == SND_CHN_T_NULL) { \ _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, \ 0); \ dst += PCM_##BIT##_BPS; \ continue; \ } else if (info->matrix[i].chn[1] == \ SND_CHN_T_EOF) { \ v = _PCM_READ_##SIGN##BIT##_##ENDIAN( \ src + info->matrix[i].chn[0]); \ _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, \ v); \ dst += PCM_##BIT##_BPS; \ continue; \ } \ \ accum = 0; \ for (j = 0; \ info->matrix[i].chn[j] != SND_CHN_T_EOF; \ j++) { \ v = _PCM_READ_##SIGN##BIT##_##ENDIAN( \ src + info->matrix[i].chn[j]); \ accum += v; \ } \ \ accum = (accum * info->matrix[i].mul) >> \ info->matrix[i].shift; \ \ FEEDMATRIX_CLIP_CHECK(accum, BIT); \ \ v = (accum > PCM_S##BIT##_MAX) ? \ PCM_S##BIT##_MAX : \ ((accum < PCM_S##BIT##_MIN) ? \ PCM_S##BIT##_MIN : \ accum); \ _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, v); \ dst += PCM_##BIT##_BPS; \ } \ src += info->ialign; \ } while (--count != 0); \ } #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) FEEDMATRIX_DECLARE(S, 16, LE) FEEDMATRIX_DECLARE(S, 32, LE) #endif #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) FEEDMATRIX_DECLARE(S, 16, BE) FEEDMATRIX_DECLARE(S, 32, BE) #endif #ifdef SND_FEEDER_MULTIFORMAT FEEDMATRIX_DECLARE(S, 8, NE) FEEDMATRIX_DECLARE(S, 24, LE) FEEDMATRIX_DECLARE(S, 24, BE) FEEDMATRIX_DECLARE(U, 8, NE) FEEDMATRIX_DECLARE(U, 16, LE) FEEDMATRIX_DECLARE(U, 24, LE) FEEDMATRIX_DECLARE(U, 32, LE) FEEDMATRIX_DECLARE(U, 16, BE) FEEDMATRIX_DECLARE(U, 24, BE) FEEDMATRIX_DECLARE(U, 32, BE) #endif #define FEEDMATRIX_ENTRY(SIGN, BIT, ENDIAN) \ { \ AFMT_##SIGN##BIT##_##ENDIAN, \ feed_matrix_##SIGN##BIT##ENDIAN \ } static const struct { uint32_t format; feed_matrix_t apply; } feed_matrix_tab[] = { #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) FEEDMATRIX_ENTRY(S, 16, LE), FEEDMATRIX_ENTRY(S, 32, LE), #endif #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) FEEDMATRIX_ENTRY(S, 16, BE), FEEDMATRIX_ENTRY(S, 32, BE), #endif #ifdef SND_FEEDER_MULTIFORMAT FEEDMATRIX_ENTRY(S, 8, NE), FEEDMATRIX_ENTRY(S, 24, LE), FEEDMATRIX_ENTRY(S, 24, BE), FEEDMATRIX_ENTRY(U, 8, NE), FEEDMATRIX_ENTRY(U, 16, LE), FEEDMATRIX_ENTRY(U, 24, LE), FEEDMATRIX_ENTRY(U, 32, LE), FEEDMATRIX_ENTRY(U, 16, BE), FEEDMATRIX_ENTRY(U, 24, BE), FEEDMATRIX_ENTRY(U, 32, BE) #endif }; static void feed_matrix_reset(struct feed_matrix_info *info) { uint32_t i, j; for (i = 0; i < (sizeof(info->matrix) / sizeof(info->matrix[0])); i++) { for (j = 0; j < (sizeof(info->matrix[i].chn) / sizeof(info->matrix[i].chn[0])); j++) { info->matrix[i].chn[j] = SND_CHN_T_EOF; } info->matrix[i].mul = 1; info->matrix[i].shift = 0; } } #ifdef FEEDMATRIX_GENERIC static void feed_matrix_apply_generic(struct feed_matrix_info *info, uint8_t *src, uint8_t *dst, uint32_t count) { intpcm64_t accum; intpcm_t v; int i, j; do { for (i = 0; info->matrix[i].chn[0] != SND_CHN_T_EOF; i++) { if (info->matrix[i].chn[0] == SND_CHN_T_NULL) { info->wr(dst, 0); dst += info->bps; continue; } else if (info->matrix[i].chn[1] == SND_CHN_T_EOF) { v = info->rd(src + info->matrix[i].chn[0]); info->wr(dst, v); dst += info->bps; continue; } accum = 0; for (j = 0; info->matrix[i].chn[j] != SND_CHN_T_EOF; j++) { v = info->rd(src + info->matrix[i].chn[j]); accum += v; } accum = (accum * info->matrix[i].mul) >> info->matrix[i].shift; FEEDMATRIX_CLIP_CHECK(accum, 32); v = (accum > PCM_S32_MAX) ? PCM_S32_MAX : ((accum < PCM_S32_MIN) ? PCM_S32_MIN : accum); info->wr(dst, v); dst += info->bps; } src += info->ialign; } while (--count != 0); } #endif static int feed_matrix_setup(struct feed_matrix_info *info, struct pcmchan_matrix *m_in, struct pcmchan_matrix *m_out) { uint32_t i, j, ch, in_mask, merge_mask; int mul, shift; if (info == NULL || m_in == NULL || m_out == NULL || AFMT_CHANNEL(info->in) != m_in->channels || AFMT_CHANNEL(info->out) != m_out->channels || m_in->channels < SND_CHN_MIN || m_in->channels > SND_CHN_MAX || m_out->channels < SND_CHN_MIN || m_out->channels > SND_CHN_MAX) return (EINVAL); feed_matrix_reset(info); /* * If both in and out are part of standard matrix and identical, skip * everything alltogether. */ if (m_in->id == m_out->id && !(m_in->id < SND_CHN_MATRIX_BEGIN || m_in->id > SND_CHN_MATRIX_END)) return (0); /* * Special case for mono input matrix. If the output supports * possible 'center' channel, route it there. Otherwise, let it be * matrixed to left/right. */ if (m_in->id == SND_CHN_MATRIX_1_0) { if (m_out->id == SND_CHN_MATRIX_1_0) in_mask = SND_CHN_T_MASK_FL; else if (m_out->mask & SND_CHN_T_MASK_FC) in_mask = SND_CHN_T_MASK_FC; else in_mask = SND_CHN_T_MASK_FL | SND_CHN_T_MASK_FR; } else in_mask = m_in->mask; /* Merge, reduce, expand all possibilites. */ for (ch = SND_CHN_T_BEGIN; ch <= SND_CHN_T_END && m_out->map[ch].type != SND_CHN_T_MAX; ch += SND_CHN_T_STEP) { merge_mask = m_out->map[ch].members & in_mask; if (merge_mask == 0) { info->matrix[ch].chn[0] = SND_CHN_T_NULL; continue; } j = 0; for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; i += SND_CHN_T_STEP) { if (merge_mask & (1 << i)) { if (m_in->offset[i] >= 0 && m_in->offset[i] < (int)m_in->channels) info->matrix[ch].chn[j++] = m_in->offset[i] * info->bps; else { info->matrix[ch].chn[j++] = SND_CHN_T_EOF; break; } } } #define FEEDMATRIX_ATTN_SHIFT 16 if (j > 1) { /* * XXX For channel that require accumulation from * multiple channels, apply a slight attenuation to * avoid clipping. */ mul = (1 << (FEEDMATRIX_ATTN_SHIFT - 1)) + 143 - j; shift = FEEDMATRIX_ATTN_SHIFT; while ((mul & 1) == 0 && shift > 0) { mul >>= 1; shift--; } info->matrix[ch].mul = mul; info->matrix[ch].shift = shift; } } #ifndef _KERNEL fprintf(stderr, "Total: %d\n", ch); for (i = 0; info->matrix[i].chn[0] != SND_CHN_T_EOF; i++) { fprintf(stderr, "%d: [", i); for (j = 0; info->matrix[i].chn[j] != SND_CHN_T_EOF; j++) { if (j != 0) fprintf(stderr, ", "); fprintf(stderr, "%d", (info->matrix[i].chn[j] == SND_CHN_T_NULL) ? 0xffffffff : info->matrix[i].chn[j] / info->bps); } fprintf(stderr, "] attn: (x * %d) >> %d\n", info->matrix[i].mul, info->matrix[i].shift); } #endif return (0); } static int feed_matrix_init(struct pcm_feeder *f) { struct feed_matrix_info *info; struct pcmchan_matrix *m_in, *m_out; uint32_t i; int ret; if (AFMT_ENCODING(f->desc->in) != AFMT_ENCODING(f->desc->out)) return (EINVAL); info = malloc(sizeof(*info), M_DEVBUF, M_NOWAIT | M_ZERO); if (info == NULL) return (ENOMEM); info->in = f->desc->in; info->out = f->desc->out; info->bps = AFMT_BPS(info->in); info->ialign = AFMT_ALIGN(info->in); info->oalign = AFMT_ALIGN(info->out); info->apply = NULL; for (i = 0; info->apply == NULL && i < (sizeof(feed_matrix_tab) / sizeof(feed_matrix_tab[0])); i++) { if (AFMT_ENCODING(info->in) == feed_matrix_tab[i].format) info->apply = feed_matrix_tab[i].apply; } if (info->apply == NULL) { #ifdef FEEDMATRIX_GENERIC info->rd = feeder_format_read_op(info->in); info->wr = feeder_format_write_op(info->out); if (info->rd == NULL || info->wr == NULL) { free(info, M_DEVBUF); return (EINVAL); } info->apply = feed_matrix_apply_generic; #else free(info, M_DEVBUF); return (EINVAL); #endif } m_in = feeder_matrix_format_map(info->in); m_out = feeder_matrix_format_map(info->out); ret = feed_matrix_setup(info, m_in, m_out); if (ret != 0) { free(info, M_DEVBUF); return (ret); } f->data = info; return (0); } static int feed_matrix_free(struct pcm_feeder *f) { struct feed_matrix_info *info; info = f->data; if (info != NULL) free(info, M_DEVBUF); f->data = NULL; return (0); } static int feed_matrix_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b, uint32_t count, void *source) { struct feed_matrix_info *info; uint32_t j, inmax; uint8_t *src, *dst; info = f->data; if (info->matrix[0].chn[0] == SND_CHN_T_EOF) return (FEEDER_FEED(f->source, c, b, count, source)); dst = b; count = SND_FXROUND(count, info->oalign); inmax = info->ialign + info->oalign; /* * This loop might look simmilar to other feeder_* loops, but be * advised: matrixing might involve overlapping (think about * swapping end to front or something like that). In this regard it * might be simmilar to feeder_format, but feeder_format works on * 'sample' domain where it can be fitted into single 32bit integer * while matrixing works on 'sample frame' domain. */ do { if (count < info->oalign) break; if (count < inmax) { src = info->reservoir; j = info->ialign; } else { if (info->ialign == info->oalign) j = count - info->oalign; else if (info->ialign > info->oalign) j = SND_FXROUND(count - info->oalign, info->ialign); else j = (SND_FXDIV(count, info->oalign) - 1) * info->ialign; src = dst + count - j; } j = SND_FXDIV(FEEDER_FEED(f->source, c, src, j, source), info->ialign); if (j == 0) break; info->apply(info, src, dst, j); j *= info->oalign; dst += j; count -= j; } while (count != 0); return (dst - b); } static struct pcm_feederdesc feeder_matrix_desc[] = { { FEEDER_MATRIX, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0 } }; static kobj_method_t feeder_matrix_methods[] = { KOBJMETHOD(feeder_init, feed_matrix_init), KOBJMETHOD(feeder_free, feed_matrix_free), KOBJMETHOD(feeder_feed, feed_matrix_feed), KOBJMETHOD_END }; FEEDER_DECLARE(feeder_matrix, NULL); /* External */ int feeder_matrix_setup(struct pcm_feeder *f, struct pcmchan_matrix *m_in, struct pcmchan_matrix *m_out) { if (f == NULL || f->desc == NULL || f->desc->type != FEEDER_MATRIX || f->data == NULL) return (EINVAL); return (feed_matrix_setup(f->data, m_in, m_out)); } /* * feeder_matrix_default_id(): For a given number of channels, return * default prefered id (example: both 5.1 and * 6.0 are simply 6 channels, but 5.1 is more * preferable). */ int feeder_matrix_default_id(uint32_t ch) { if (ch < feeder_matrix_maps[SND_CHN_MATRIX_BEGIN].channels || ch > feeder_matrix_maps[SND_CHN_MATRIX_END].channels) return (SND_CHN_MATRIX_UNKNOWN); return (feeder_matrix_maps[feeder_matrix_default_ids[ch]].id); } /* * feeder_matrix_default_channel_map(): Ditto, but return matrix map * instead. */ struct pcmchan_matrix * feeder_matrix_default_channel_map(uint32_t ch) { if (ch < feeder_matrix_maps[SND_CHN_MATRIX_BEGIN].channels || ch > feeder_matrix_maps[SND_CHN_MATRIX_END].channels) return (NULL); return (&feeder_matrix_maps[feeder_matrix_default_ids[ch]]); } /* * feeder_matrix_default_format(): For a given audio format, return the * proper audio format based on preferable * matrix. */ uint32_t feeder_matrix_default_format(uint32_t format) { struct pcmchan_matrix *m; uint32_t i, ch, ext; ch = AFMT_CHANNEL(format); ext = AFMT_EXTCHANNEL(format); if (ext != 0) { for (i = SND_CHN_MATRIX_BEGIN; i <= SND_CHN_MATRIX_END; i++) { if (feeder_matrix_maps[i].channels == ch && feeder_matrix_maps[i].ext == ext) return (SND_FORMAT(format, ch, ext)); } } m = feeder_matrix_default_channel_map(ch); if (m == NULL) return (0x00000000); return (SND_FORMAT(format, ch, m->ext)); } /* * feeder_matrix_format_id(): For a given audio format, return its matrix * id. */ int feeder_matrix_format_id(uint32_t format) { uint32_t i, ch, ext; ch = AFMT_CHANNEL(format); ext = AFMT_EXTCHANNEL(format); for (i = SND_CHN_MATRIX_BEGIN; i <= SND_CHN_MATRIX_END; i++) { if (feeder_matrix_maps[i].channels == ch && feeder_matrix_maps[i].ext == ext) return (feeder_matrix_maps[i].id); } return (SND_CHN_MATRIX_UNKNOWN); } /* * feeder_matrix_format_map(): For a given audio format, return its matrix * map. */ struct pcmchan_matrix * feeder_matrix_format_map(uint32_t format) { uint32_t i, ch, ext; ch = AFMT_CHANNEL(format); ext = AFMT_EXTCHANNEL(format); for (i = SND_CHN_MATRIX_BEGIN; i <= SND_CHN_MATRIX_END; i++) { if (feeder_matrix_maps[i].channels == ch && feeder_matrix_maps[i].ext == ext) return (&feeder_matrix_maps[i]); } return (NULL); } /* * feeder_matrix_id_map(): For a given matrix id, return its matrix map. */ struct pcmchan_matrix * feeder_matrix_id_map(int id) { if (id < SND_CHN_MATRIX_BEGIN || id > SND_CHN_MATRIX_END) return (NULL); return (&feeder_matrix_maps[id]); } /* * feeder_matrix_compare(): Compare the simmilarities of matrices. */ int feeder_matrix_compare(struct pcmchan_matrix *m_in, struct pcmchan_matrix *m_out) { uint32_t i; if (m_in == m_out) return (0); if (m_in->channels != m_out->channels || m_in->ext != m_out->ext || m_in->mask != m_out->mask) return (1); for (i = 0; i < (sizeof(m_in->map) / sizeof(m_in->map[0])); i++) { if (m_in->map[i].type != m_out->map[i].type) return (1); if (m_in->map[i].type == SND_CHN_T_MAX) break; if (m_in->map[i].members != m_out->map[i].members) return (1); if (i <= SND_CHN_T_END) { if (m_in->offset[m_in->map[i].type] != m_out->offset[m_out->map[i].type]) return (1); } } return (0); } /* - * XXX 4front intepretation of "surround" is ambigous and sort of + * XXX 4front interpretation of "surround" is ambigous and sort of * conflicting with "rear"/"back". Map it to "side". Well.. * who cares? */ static int snd_chn_to_oss[SND_CHN_T_MAX] = { [SND_CHN_T_FL] = CHID_L, [SND_CHN_T_FR] = CHID_R, [SND_CHN_T_FC] = CHID_C, [SND_CHN_T_LF] = CHID_LFE, [SND_CHN_T_SL] = CHID_LS, [SND_CHN_T_SR] = CHID_RS, [SND_CHN_T_BL] = CHID_LR, [SND_CHN_T_BR] = CHID_RR }; #define SND_CHN_OSS_VALIDMASK \ (SND_CHN_T_MASK_FL | SND_CHN_T_MASK_FR | \ SND_CHN_T_MASK_FC | SND_CHN_T_MASK_LF | \ SND_CHN_T_MASK_SL | SND_CHN_T_MASK_SR | \ SND_CHN_T_MASK_BL | SND_CHN_T_MASK_BR) #define SND_CHN_OSS_MAX 8 #define SND_CHN_OSS_BEGIN CHID_L #define SND_CHN_OSS_END CHID_RR static int oss_to_snd_chn[SND_CHN_OSS_END + 1] = { [CHID_L] = SND_CHN_T_FL, [CHID_R] = SND_CHN_T_FR, [CHID_C] = SND_CHN_T_FC, [CHID_LFE] = SND_CHN_T_LF, [CHID_LS] = SND_CHN_T_SL, [CHID_RS] = SND_CHN_T_SR, [CHID_LR] = SND_CHN_T_BL, [CHID_RR] = SND_CHN_T_BR }; /* * Used by SNDCTL_DSP_GET_CHNORDER. */ int feeder_matrix_oss_get_channel_order(struct pcmchan_matrix *m, unsigned long long *map) { unsigned long long tmpmap; uint32_t i; if (m == NULL || map == NULL || (m->mask & ~SND_CHN_OSS_VALIDMASK) || m->channels > SND_CHN_OSS_MAX) return (EINVAL); tmpmap = 0x0000000000000000ULL; for (i = 0; i < SND_CHN_OSS_MAX && m->map[i].type != SND_CHN_T_MAX; i++) { if ((1 << m->map[i].type) & ~SND_CHN_OSS_VALIDMASK) return (EINVAL); tmpmap |= (unsigned long long)snd_chn_to_oss[m->map[i].type] << (i * 4); } *map = tmpmap; return (0); } /* * Used by SNDCTL_DSP_SET_CHNORDER. */ int feeder_matrix_oss_set_channel_order(struct pcmchan_matrix *m, unsigned long long *map) { struct pcmchan_matrix tmp; uint32_t chmask, i; int ch, cheof; if (m == NULL || map == NULL || (m->mask & ~SND_CHN_OSS_VALIDMASK) || m->channels > SND_CHN_OSS_MAX || (*map & 0xffffffff00000000ULL)) return (EINVAL); tmp = *m; tmp.channels = 0; tmp.ext = 0; tmp.mask = 0; memset(tmp.offset, -1, sizeof(tmp.offset)); cheof = 0; for (i = 0; i < SND_CHN_OSS_MAX; i++) { ch = (*map >> (i * 4)) & 0xf; if (ch < SND_CHN_OSS_BEGIN) { if (cheof == 0 && m->map[i].type != SND_CHN_T_MAX) return (EINVAL); cheof++; tmp.map[i] = m->map[i]; continue; } else if (ch > SND_CHN_OSS_END) return (EINVAL); else if (cheof != 0) return (EINVAL); ch = oss_to_snd_chn[ch]; chmask = 1 << ch; /* channel not exist in matrix */ if (!(chmask & m->mask)) return (EINVAL); /* duplicated channel */ if (chmask & tmp.mask) return (EINVAL); tmp.map[i] = m->map[m->offset[ch]]; if (tmp.map[i].type != ch) return (EINVAL); tmp.offset[ch] = i; tmp.mask |= chmask; tmp.channels++; if (chmask & SND_CHN_T_MASK_LF) tmp.ext++; } if (tmp.channels != m->channels || tmp.ext != m->ext || tmp.mask != m->mask || tmp.map[m->channels].type != SND_CHN_T_MAX) return (EINVAL); *m = tmp; return (0); }