diff --git a/sys/netinet/tcp_subr.c b/sys/netinet/tcp_subr.c
index 90e1496a822c..97d60ceba24d 100644
--- a/sys/netinet/tcp_subr.c
+++ b/sys/netinet/tcp_subr.c
@@ -1,4701 +1,4702 @@
 /*-
  * SPDX-License-Identifier: BSD-3-Clause
  *
  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
  *	The Regents of the University of California.  All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 #include "opt_inet.h"
 #include "opt_inet6.h"
 #include "opt_ipsec.h"
 #include "opt_kern_tls.h"
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/arb.h>
 #include <sys/callout.h>
 #include <sys/eventhandler.h>
 #ifdef TCP_HHOOK
 #include <sys/hhook.h>
 #endif
 #include <sys/kernel.h>
 #ifdef TCP_HHOOK
 #include <sys/khelp.h>
 #endif
 #ifdef KERN_TLS
 #include <sys/ktls.h>
 #endif
 #include <sys/qmath.h>
 #include <sys/stats.h>
 #include <sys/sysctl.h>
 #include <sys/jail.h>
 #include <sys/malloc.h>
 #include <sys/refcount.h>
 #include <sys/mbuf.h>
 #include <sys/priv.h>
 #include <sys/proc.h>
 #include <sys/sdt.h>
 #include <sys/socket.h>
 #include <sys/socketvar.h>
 #include <sys/protosw.h>
 #include <sys/random.h>
 
 #include <vm/uma.h>
 
 #include <net/route.h>
 #include <net/route/nhop.h>
 #include <net/if.h>
 #include <net/if_var.h>
 #include <net/if_private.h>
 #include <net/vnet.h>
 
 #include <netinet/in.h>
 #include <netinet/in_fib.h>
 #include <netinet/in_kdtrace.h>
 #include <netinet/in_pcb.h>
 #include <netinet/in_systm.h>
 #include <netinet/in_var.h>
 #include <netinet/ip.h>
 #include <netinet/ip_icmp.h>
 #include <netinet/ip_var.h>
 #ifdef INET6
 #include <netinet/icmp6.h>
 #include <netinet/ip6.h>
 #include <netinet6/in6_fib.h>
 #include <netinet6/in6_pcb.h>
 #include <netinet6/ip6_var.h>
 #include <netinet6/scope6_var.h>
 #include <netinet6/nd6.h>
 #endif
 
 #include <netinet/tcp.h>
 #ifdef INVARIANTS
 #define TCPSTATES
 #endif
 #include <netinet/tcp_fsm.h>
 #include <netinet/tcp_seq.h>
 #include <netinet/tcp_timer.h>
 #include <netinet/tcp_var.h>
 #include <netinet/tcp_ecn.h>
 #include <netinet/tcp_log_buf.h>
 #include <netinet/tcp_syncache.h>
 #include <netinet/tcp_hpts.h>
 #include <netinet/tcp_lro.h>
 #include <netinet/cc/cc.h>
 #include <netinet/tcpip.h>
 #include <netinet/tcp_fastopen.h>
 #include <netinet/tcp_accounting.h>
 #ifdef TCPPCAP
 #include <netinet/tcp_pcap.h>
 #endif
 #ifdef TCP_OFFLOAD
 #include <netinet/tcp_offload.h>
 #endif
 #include <netinet/udp.h>
 #include <netinet/udp_var.h>
 #ifdef INET6
 #include <netinet6/tcp6_var.h>
 #endif
 
 #include <netipsec/ipsec_support.h>
 
 #include <machine/in_cksum.h>
 #include <crypto/siphash/siphash.h>
 
 #include <security/mac/mac_framework.h>
 
 #ifdef INET6
 static ip6proto_ctlinput_t tcp6_ctlinput;
 static udp_tun_icmp_t tcp6_ctlinput_viaudp;
 #endif
 
 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
 #ifdef INET6
 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
 #endif
 
 #ifdef TCP_SAD_DETECTION
 /*  Sack attack detection thresholds and such */
 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, sack_attack,
     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
     "Sack Attack detection thresholds");
 int32_t tcp_force_detection = 0;
 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, force_detection,
     CTLFLAG_RW,
     &tcp_force_detection, 0,
     "Do we force detection even if the INP has it off?");
 int32_t tcp_sad_limit = 10000;
 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, limit,
     CTLFLAG_RW,
     &tcp_sad_limit, 10000,
     "If SaD is enabled, what is the limit to sendmap entries (0 = unlimited)?");
 int32_t tcp_sack_to_ack_thresh = 700;	/* 70 % */
 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, sack_to_ack_thresh,
     CTLFLAG_RW,
     &tcp_sack_to_ack_thresh, 700,
     "Percentage of sacks to acks we must see above (10.1 percent is 101)?");
 int32_t tcp_sack_to_move_thresh = 600;	/* 60 % */
 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, move_thresh,
     CTLFLAG_RW,
     &tcp_sack_to_move_thresh, 600,
     "Percentage of sack moves we must see above (10.1 percent is 101)");
 int32_t tcp_restoral_thresh = 450;	/* 45 % (sack:2:ack -25%) (mv:ratio -15%) **/
 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, restore_thresh,
     CTLFLAG_RW,
     &tcp_restoral_thresh, 450,
     "Percentage of sack to ack percentage we must see below to restore(10.1 percent is 101)");
 int32_t tcp_sad_decay_val = 800;
 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, decay_per,
     CTLFLAG_RW,
     &tcp_sad_decay_val, 800,
     "The decay percentage (10.1 percent equals 101 )");
 int32_t tcp_map_minimum = 500;
 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, nummaps,
     CTLFLAG_RW,
     &tcp_map_minimum, 500,
     "Number of Map enteries before we start detection");
 int32_t tcp_sad_pacing_interval = 2000;
 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, sad_pacing_int,
     CTLFLAG_RW,
     &tcp_sad_pacing_interval, 2000,
     "What is the minimum pacing interval for a classified attacker?");
 
 int32_t tcp_sad_low_pps = 100;
 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, sad_low_pps,
     CTLFLAG_RW,
     &tcp_sad_low_pps, 100,
     "What is the input pps that below which we do not decay?");
 #endif
 uint32_t tcp_ack_war_time_window = 1000;
 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, ack_war_timewindow,
     CTLFLAG_RW,
     &tcp_ack_war_time_window, 1000,
    "If the tcp_stack does ack-war prevention how many milliseconds are in its time window?");
 uint32_t tcp_ack_war_cnt = 5;
 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, ack_war_cnt,
     CTLFLAG_RW,
     &tcp_ack_war_cnt, 5,
    "If the tcp_stack does ack-war prevention how many acks can be sent in its time window?");
 
 struct rwlock tcp_function_lock;
 
 static int
 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
 {
 	int error, new;
 
 	new = V_tcp_mssdflt;
 	error = sysctl_handle_int(oidp, &new, 0, req);
 	if (error == 0 && req->newptr) {
 		if (new < TCP_MINMSS)
 			error = EINVAL;
 		else
 			V_tcp_mssdflt = new;
 	}
 	return (error);
 }
 
 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
     &VNET_NAME(tcp_mssdflt), 0, &sysctl_net_inet_tcp_mss_check, "I",
     "Default TCP Maximum Segment Size");
 
 #ifdef INET6
 static int
 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
 {
 	int error, new;
 
 	new = V_tcp_v6mssdflt;
 	error = sysctl_handle_int(oidp, &new, 0, req);
 	if (error == 0 && req->newptr) {
 		if (new < TCP_MINMSS)
 			error = EINVAL;
 		else
 			V_tcp_v6mssdflt = new;
 	}
 	return (error);
 }
 
 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
     &VNET_NAME(tcp_v6mssdflt), 0, &sysctl_net_inet_tcp_mss_v6_check, "I",
    "Default TCP Maximum Segment Size for IPv6");
 #endif /* INET6 */
 
 /*
  * Minimum MSS we accept and use. This prevents DoS attacks where
  * we are forced to a ridiculous low MSS like 20 and send hundreds
  * of packets instead of one. The effect scales with the available
  * bandwidth and quickly saturates the CPU and network interface
  * with packet generation and sending. Set to zero to disable MINMSS
  * checking. This setting prevents us from sending too small packets.
  */
 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW,
      &VNET_NAME(tcp_minmss), 0,
     "Minimum TCP Maximum Segment Size");
 
 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW,
     &VNET_NAME(tcp_do_rfc1323), 0,
     "Enable rfc1323 (high performance TCP) extensions");
 
 /*
  * As of June 2021, several TCP stacks violate RFC 7323 from September 2014.
  * Some stacks negotiate TS, but never send them after connection setup. Some
  * stacks negotiate TS, but don't send them when sending keep-alive segments.
  * These include modern widely deployed TCP stacks.
  * Therefore tolerating violations for now...
  */
 VNET_DEFINE(int, tcp_tolerate_missing_ts) = 1;
 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tolerate_missing_ts, CTLFLAG_VNET | CTLFLAG_RW,
     &VNET_NAME(tcp_tolerate_missing_ts), 0,
     "Tolerate missing TCP timestamps");
 
 VNET_DEFINE(int, tcp_ts_offset_per_conn) = 1;
 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ts_offset_per_conn, CTLFLAG_VNET | CTLFLAG_RW,
     &VNET_NAME(tcp_ts_offset_per_conn), 0,
     "Initialize TCP timestamps per connection instead of per host pair");
 
 /* How many connections are pacing */
 static volatile uint32_t number_of_tcp_connections_pacing = 0;
 static uint32_t shadow_num_connections = 0;
 static counter_u64_t tcp_pacing_failures;
 
 static int tcp_pacing_limit = 10000;
 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pacing_limit, CTLFLAG_RW,
     &tcp_pacing_limit, 1000,
     "If the TCP stack does pacing, is there a limit (-1 = no, 0 = no pacing N = number of connections)");
 
 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pacing_count, CTLFLAG_RD,
     &shadow_num_connections, 0, "Number of TCP connections being paced");
 
 SYSCTL_COUNTER_U64(_net_inet_tcp, OID_AUTO, pacing_failures, CTLFLAG_RD,
     &tcp_pacing_failures, "Number of times we failed to enable pacing to avoid exceeding the limit");
 
 static int	tcp_log_debug = 0;
 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
 
 /*
  * Target size of TCP PCB hash tables. Must be a power of two.
  *
  * Note that this can be overridden by the kernel environment
  * variable net.inet.tcp.tcbhashsize
  */
 #ifndef TCBHASHSIZE
 #define TCBHASHSIZE	0
 #endif
 static int	tcp_tcbhashsize = TCBHASHSIZE;
 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
 
 static int	do_tcpdrain = 1;
 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
     "Enable tcp_drain routine for extra help when low on mbufs");
 
 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD,
     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
 
 VNET_DEFINE_STATIC(int, icmp_may_rst) = 1;
 #define	V_icmp_may_rst			VNET(icmp_may_rst)
 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW,
     &VNET_NAME(icmp_may_rst), 0,
     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
 
 VNET_DEFINE_STATIC(int, tcp_isn_reseed_interval) = 0;
 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW,
     &VNET_NAME(tcp_isn_reseed_interval), 0,
     "Seconds between reseeding of ISN secret");
 
 static int	tcp_soreceive_stream;
 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
 
 VNET_DEFINE(uma_zone_t, sack_hole_zone);
 #define	V_sack_hole_zone		VNET(sack_hole_zone)
 VNET_DEFINE(uint32_t, tcp_map_entries_limit) = 0;	/* unlimited */
 static int
 sysctl_net_inet_tcp_map_limit_check(SYSCTL_HANDLER_ARGS)
 {
 	int error;
 	uint32_t new;
 
 	new = V_tcp_map_entries_limit;
 	error = sysctl_handle_int(oidp, &new, 0, req);
 	if (error == 0 && req->newptr) {
 		/* only allow "0" and value > minimum */
 		if (new > 0 && new < TCP_MIN_MAP_ENTRIES_LIMIT)
 			error = EINVAL;
 		else
 			V_tcp_map_entries_limit = new;
 	}
 	return (error);
 }
 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, map_limit,
     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
     &VNET_NAME(tcp_map_entries_limit), 0,
     &sysctl_net_inet_tcp_map_limit_check, "IU",
     "Total sendmap entries limit");
 
 VNET_DEFINE(uint32_t, tcp_map_split_limit) = 0;	/* unlimited */
 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, split_limit, CTLFLAG_VNET | CTLFLAG_RW,
      &VNET_NAME(tcp_map_split_limit), 0,
     "Total sendmap split entries limit");
 
 #ifdef TCP_HHOOK
 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
 #endif
 
 #define TS_OFFSET_SECRET_LENGTH SIPHASH_KEY_LENGTH
 VNET_DEFINE_STATIC(u_char, ts_offset_secret[TS_OFFSET_SECRET_LENGTH]);
 #define	V_ts_offset_secret	VNET(ts_offset_secret)
 
 static int	tcp_default_fb_init(struct tcpcb *tp, void **ptr);
 static void	tcp_default_fb_fini(struct tcpcb *tp, int tcb_is_purged);
 static int	tcp_default_handoff_ok(struct tcpcb *tp);
 static struct inpcb *tcp_notify(struct inpcb *, int);
 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
 static struct inpcb *tcp_mtudisc(struct inpcb *, int);
 static struct inpcb *tcp_drop_syn_sent(struct inpcb *, int);
 static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
 		    const void *ip4hdr, const void *ip6hdr);
 static void	tcp_default_switch_failed(struct tcpcb *tp);
 static ipproto_ctlinput_t	tcp_ctlinput;
 static udp_tun_icmp_t		tcp_ctlinput_viaudp;
 
 static struct tcp_function_block tcp_def_funcblk = {
 	.tfb_tcp_block_name = "freebsd",
 	.tfb_tcp_output = tcp_default_output,
 	.tfb_tcp_do_segment = tcp_do_segment,
 	.tfb_tcp_ctloutput = tcp_default_ctloutput,
 	.tfb_tcp_handoff_ok = tcp_default_handoff_ok,
 	.tfb_tcp_fb_init = tcp_default_fb_init,
 	.tfb_tcp_fb_fini = tcp_default_fb_fini,
 	.tfb_switch_failed = tcp_default_switch_failed,
 };
 
 static int tcp_fb_cnt = 0;
 struct tcp_funchead t_functions;
 VNET_DEFINE_STATIC(struct tcp_function_block *, tcp_func_set_ptr) = &tcp_def_funcblk;
 #define	V_tcp_func_set_ptr VNET(tcp_func_set_ptr)
 
 void
 tcp_record_dsack(struct tcpcb *tp, tcp_seq start, tcp_seq end, int tlp)
 {
 	TCPSTAT_INC(tcps_dsack_count);
 	tp->t_dsack_pack++;
 	if (tlp == 0) {
 		if (SEQ_GT(end, start)) {
 			tp->t_dsack_bytes += (end - start);
 			TCPSTAT_ADD(tcps_dsack_bytes, (end - start));
 		} else {
 			tp->t_dsack_tlp_bytes += (start - end);
 			TCPSTAT_ADD(tcps_dsack_bytes, (start - end));
 		}
 	} else {
 		if (SEQ_GT(end, start)) {
 			tp->t_dsack_bytes += (end - start);
 			TCPSTAT_ADD(tcps_dsack_tlp_bytes, (end - start));
 		} else {
 			tp->t_dsack_tlp_bytes += (start - end);
 			TCPSTAT_ADD(tcps_dsack_tlp_bytes, (start - end));
 		}
 	}
 }
 
 static struct tcp_function_block *
 find_tcp_functions_locked(struct tcp_function_set *fs)
 {
 	struct tcp_function *f;
 	struct tcp_function_block *blk=NULL;
 
 	TAILQ_FOREACH(f, &t_functions, tf_next) {
 		if (strcmp(f->tf_name, fs->function_set_name) == 0) {
 			blk = f->tf_fb;
 			break;
 		}
 	}
 	return(blk);
 }
 
 static struct tcp_function_block *
 find_tcp_fb_locked(struct tcp_function_block *blk, struct tcp_function **s)
 {
 	struct tcp_function_block *rblk=NULL;
 	struct tcp_function *f;
 
 	TAILQ_FOREACH(f, &t_functions, tf_next) {
 		if (f->tf_fb == blk) {
 			rblk = blk;
 			if (s) {
 				*s = f;
 			}
 			break;
 		}
 	}
 	return (rblk);
 }
 
 struct tcp_function_block *
 find_and_ref_tcp_functions(struct tcp_function_set *fs)
 {
 	struct tcp_function_block *blk;
 
 	rw_rlock(&tcp_function_lock);
 	blk = find_tcp_functions_locked(fs);
 	if (blk)
 		refcount_acquire(&blk->tfb_refcnt);
 	rw_runlock(&tcp_function_lock);
 	return(blk);
 }
 
 struct tcp_function_block *
 find_and_ref_tcp_fb(struct tcp_function_block *blk)
 {
 	struct tcp_function_block *rblk;
 
 	rw_rlock(&tcp_function_lock);
 	rblk = find_tcp_fb_locked(blk, NULL);
 	if (rblk)
 		refcount_acquire(&rblk->tfb_refcnt);
 	rw_runlock(&tcp_function_lock);
 	return(rblk);
 }
 
 /* Find a matching alias for the given tcp_function_block. */
 int
 find_tcp_function_alias(struct tcp_function_block *blk,
     struct tcp_function_set *fs)
 {
 	struct tcp_function *f;
 	int found;
 
 	found = 0;
 	rw_rlock(&tcp_function_lock);
 	TAILQ_FOREACH(f, &t_functions, tf_next) {
 		if ((f->tf_fb == blk) &&
 		    (strncmp(f->tf_name, blk->tfb_tcp_block_name,
 		        TCP_FUNCTION_NAME_LEN_MAX) != 0)) {
 			/* Matching function block with different name. */
 			strncpy(fs->function_set_name, f->tf_name,
 			    TCP_FUNCTION_NAME_LEN_MAX);
 			found = 1;
 			break;
 		}
 	}
 	/* Null terminate the string appropriately. */
 	if (found) {
 		fs->function_set_name[TCP_FUNCTION_NAME_LEN_MAX - 1] = '\0';
 	} else {
 		fs->function_set_name[0] = '\0';
 	}
 	rw_runlock(&tcp_function_lock);
 	return (found);
 }
 
 static struct tcp_function_block *
 find_and_ref_tcp_default_fb(void)
 {
 	struct tcp_function_block *rblk;
 
 	rw_rlock(&tcp_function_lock);
 	rblk = V_tcp_func_set_ptr;
 	refcount_acquire(&rblk->tfb_refcnt);
 	rw_runlock(&tcp_function_lock);
 	return (rblk);
 }
 
 void
 tcp_switch_back_to_default(struct tcpcb *tp)
 {
 	struct tcp_function_block *tfb;
 	void *ptr = NULL;
 
 	KASSERT(tp->t_fb != &tcp_def_funcblk,
 	    ("%s: called by the built-in default stack", __func__));
 
 	if (tp->t_fb->tfb_tcp_timer_stop_all != NULL)
 		tp->t_fb->tfb_tcp_timer_stop_all(tp);
 
 	/*
 	 * Now, we'll find a new function block to use.
 	 * Start by trying the current user-selected
 	 * default, unless this stack is the user-selected
 	 * default.
 	 */
 	tfb = find_and_ref_tcp_default_fb();
 	if (tfb == tp->t_fb) {
 		refcount_release(&tfb->tfb_refcnt);
 		tfb = NULL;
 	}
 	/* Does the stack accept this connection? */
 	if (tfb != NULL && tfb->tfb_tcp_handoff_ok != NULL &&
 	    (*tfb->tfb_tcp_handoff_ok)(tp)) {
 		refcount_release(&tfb->tfb_refcnt);
 		tfb = NULL;
 	}
 	/* Try to use that stack. */
 	if (tfb != NULL) {
 		/* Initialize the new stack. If it succeeds, we are done. */
 		if (tfb->tfb_tcp_fb_init == NULL ||
 		    (*tfb->tfb_tcp_fb_init)(tp, &ptr) == 0) {
 			/* Release the old stack */
 			if (tp->t_fb->tfb_tcp_fb_fini != NULL)
 				(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
 			refcount_release(&tp->t_fb->tfb_refcnt);
 			/* Now set in all the pointers */
 			tp->t_fb = tfb;
 			tp->t_fb_ptr = ptr;
 			return;
 		}
 		/*
 		 * Initialization failed. Release the reference count on
 		 * the looked up default stack.
 		 */
 		refcount_release(&tfb->tfb_refcnt);
 	}
 
 	/*
 	 * If that wasn't feasible, use the built-in default
 	 * stack which is not allowed to reject anyone.
 	 */
 	tfb = find_and_ref_tcp_fb(&tcp_def_funcblk);
 	if (tfb == NULL) {
 		/* there always should be a default */
 		panic("Can't refer to tcp_def_funcblk");
 	}
 	if (tfb->tfb_tcp_handoff_ok != NULL) {
 		if ((*tfb->tfb_tcp_handoff_ok) (tp)) {
 			/* The default stack cannot say no */
 			panic("Default stack rejects a new session?");
 		}
 	}
 	if (tfb->tfb_tcp_fb_init != NULL &&
 	    (*tfb->tfb_tcp_fb_init)(tp, &ptr)) {
 		/* The default stack cannot fail */
 		panic("Default stack initialization failed");
 	}
 	/* Now release the old stack */
 	if (tp->t_fb->tfb_tcp_fb_fini != NULL)
 		(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
 	refcount_release(&tp->t_fb->tfb_refcnt);
 	/* And set in the pointers to the new */
 	tp->t_fb = tfb;
 	tp->t_fb_ptr = ptr;
 }
 
 static bool
 tcp_recv_udp_tunneled_packet(struct mbuf *m, int off, struct inpcb *inp,
     const struct sockaddr *sa, void *ctx)
 {
 	struct ip *iph;
 #ifdef INET6
 	struct ip6_hdr *ip6;
 #endif
 	struct udphdr *uh;
 	struct tcphdr *th;
 	int thlen;
 	uint16_t port;
 
 	TCPSTAT_INC(tcps_tunneled_pkts);
 	if ((m->m_flags & M_PKTHDR) == 0) {
 		/* Can't handle one that is not a pkt hdr */
 		TCPSTAT_INC(tcps_tunneled_errs);
 		goto out;
 	}
 	thlen = sizeof(struct tcphdr);
 	if (m->m_len < off + sizeof(struct udphdr) + thlen &&
 	    (m =  m_pullup(m, off + sizeof(struct udphdr) + thlen)) == NULL) {
 		TCPSTAT_INC(tcps_tunneled_errs);
 		goto out;
 	}
 	iph = mtod(m, struct ip *);
 	uh = (struct udphdr *)((caddr_t)iph + off);
 	th = (struct tcphdr *)(uh + 1);
 	thlen = th->th_off << 2;
 	if (m->m_len < off + sizeof(struct udphdr) + thlen) {
 		m =  m_pullup(m, off + sizeof(struct udphdr) + thlen);
 		if (m == NULL) {
 			TCPSTAT_INC(tcps_tunneled_errs);
 			goto out;
 		} else {
 			iph = mtod(m, struct ip *);
 			uh = (struct udphdr *)((caddr_t)iph + off);
 			th = (struct tcphdr *)(uh + 1);
 		}
 	}
 	m->m_pkthdr.tcp_tun_port = port = uh->uh_sport;
 	bcopy(th, uh, m->m_len - off);
 	m->m_len -= sizeof(struct udphdr);
 	m->m_pkthdr.len -= sizeof(struct udphdr);
 	/*
 	 * We use the same algorithm for
 	 * both UDP and TCP for c-sum. So
 	 * the code in tcp_input will skip
 	 * the checksum. So we do nothing
 	 * with the flag (m->m_pkthdr.csum_flags).
 	 */
 	switch (iph->ip_v) {
 #ifdef INET
 	case IPVERSION:
 		iph->ip_len = htons(ntohs(iph->ip_len) - sizeof(struct udphdr));
 		tcp_input_with_port(&m, &off, IPPROTO_TCP, port);
 		break;
 #endif
 #ifdef INET6
 	case IPV6_VERSION >> 4:
 		ip6 = mtod(m, struct ip6_hdr *);
 		ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) - sizeof(struct udphdr));
 		tcp6_input_with_port(&m, &off, IPPROTO_TCP, port);
 		break;
 #endif
 	default:
 		goto out;
 		break;
 	}
 	return (true);
 out:
 	m_freem(m);
 
 	return (true);
 }
 
 static int
 sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS)
 {
 	int error=ENOENT;
 	struct tcp_function_set fs;
 	struct tcp_function_block *blk;
 
 	memset(&fs, 0, sizeof(fs));
 	rw_rlock(&tcp_function_lock);
 	blk = find_tcp_fb_locked(V_tcp_func_set_ptr, NULL);
 	if (blk) {
 		/* Found him */
 		strcpy(fs.function_set_name, blk->tfb_tcp_block_name);
 		fs.pcbcnt = blk->tfb_refcnt;
 	}
 	rw_runlock(&tcp_function_lock);
 	error = sysctl_handle_string(oidp, fs.function_set_name,
 				     sizeof(fs.function_set_name), req);
 
 	/* Check for error or no change */
 	if (error != 0 || req->newptr == NULL)
 		return(error);
 
 	rw_wlock(&tcp_function_lock);
 	blk = find_tcp_functions_locked(&fs);
 	if ((blk == NULL) ||
 	    (blk->tfb_flags & TCP_FUNC_BEING_REMOVED)) {
 		error = ENOENT;
 		goto done;
 	}
 	V_tcp_func_set_ptr = blk;
 done:
 	rw_wunlock(&tcp_function_lock);
 	return (error);
 }
 
 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_default,
     CTLFLAG_VNET | CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
     NULL, 0, sysctl_net_inet_default_tcp_functions, "A",
     "Set/get the default TCP functions");
 
 static int
 sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS)
 {
 	int error, cnt, linesz;
 	struct tcp_function *f;
 	char *buffer, *cp;
 	size_t bufsz, outsz;
 	bool alias;
 
 	cnt = 0;
 	rw_rlock(&tcp_function_lock);
 	TAILQ_FOREACH(f, &t_functions, tf_next) {
 		cnt++;
 	}
 	rw_runlock(&tcp_function_lock);
 
 	bufsz = (cnt+2) * ((TCP_FUNCTION_NAME_LEN_MAX * 2) + 13) + 1;
 	buffer = malloc(bufsz, M_TEMP, M_WAITOK);
 
 	error = 0;
 	cp = buffer;
 
 	linesz = snprintf(cp, bufsz, "\n%-32s%c %-32s %s\n", "Stack", 'D',
 	    "Alias", "PCB count");
 	cp += linesz;
 	bufsz -= linesz;
 	outsz = linesz;
 
 	rw_rlock(&tcp_function_lock);
 	TAILQ_FOREACH(f, &t_functions, tf_next) {
 		alias = (f->tf_name != f->tf_fb->tfb_tcp_block_name);
 		linesz = snprintf(cp, bufsz, "%-32s%c %-32s %u\n",
 		    f->tf_fb->tfb_tcp_block_name,
 		    (f->tf_fb == V_tcp_func_set_ptr) ? '*' : ' ',
 		    alias ? f->tf_name : "-",
 		    f->tf_fb->tfb_refcnt);
 		if (linesz >= bufsz) {
 			error = EOVERFLOW;
 			break;
 		}
 		cp += linesz;
 		bufsz -= linesz;
 		outsz += linesz;
 	}
 	rw_runlock(&tcp_function_lock);
 	if (error == 0)
 		error = sysctl_handle_string(oidp, buffer, outsz + 1, req);
 	free(buffer, M_TEMP);
 	return (error);
 }
 
 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_available,
     CTLFLAG_VNET | CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
     NULL, 0, sysctl_net_inet_list_available, "A",
     "list available TCP Function sets");
 
 VNET_DEFINE(int, tcp_udp_tunneling_port) = TCP_TUNNELING_PORT_DEFAULT;
 
 #ifdef INET
 VNET_DEFINE(struct socket *, udp4_tun_socket) = NULL;
 #define	V_udp4_tun_socket	VNET(udp4_tun_socket)
 #endif
 #ifdef INET6
 VNET_DEFINE(struct socket *, udp6_tun_socket) = NULL;
 #define	V_udp6_tun_socket	VNET(udp6_tun_socket)
 #endif
 
 static struct sx tcpoudp_lock;
 
 static void
 tcp_over_udp_stop(void)
 {
 
 	sx_assert(&tcpoudp_lock, SA_XLOCKED);
 
 #ifdef INET
 	if (V_udp4_tun_socket != NULL) {
 		soclose(V_udp4_tun_socket);
 		V_udp4_tun_socket = NULL;
 	}
 #endif
 #ifdef INET6
 	if (V_udp6_tun_socket != NULL) {
 		soclose(V_udp6_tun_socket);
 		V_udp6_tun_socket = NULL;
 	}
 #endif
 }
 
 static int
 tcp_over_udp_start(void)
 {
 	uint16_t port;
 	int ret;
 #ifdef INET
 	struct sockaddr_in sin;
 #endif
 #ifdef INET6
 	struct sockaddr_in6 sin6;
 #endif
 
 	sx_assert(&tcpoudp_lock, SA_XLOCKED);
 
 	port = V_tcp_udp_tunneling_port;
 	if (ntohs(port) == 0) {
 		/* Must have a port set */
 		return (EINVAL);
 	}
 #ifdef INET
 	if (V_udp4_tun_socket != NULL) {
 		/* Already running -- must stop first */
 		return (EALREADY);
 	}
 #endif
 #ifdef INET6
 	if (V_udp6_tun_socket != NULL) {
 		/* Already running -- must stop first */
 		return (EALREADY);
 	}
 #endif
 #ifdef INET
 	if ((ret = socreate(PF_INET, &V_udp4_tun_socket,
 	    SOCK_DGRAM, IPPROTO_UDP,
 	    curthread->td_ucred, curthread))) {
 		tcp_over_udp_stop();
 		return (ret);
 	}
 	/* Call the special UDP hook. */
 	if ((ret = udp_set_kernel_tunneling(V_udp4_tun_socket,
 	    tcp_recv_udp_tunneled_packet,
 	    tcp_ctlinput_viaudp,
 	    NULL))) {
 		tcp_over_udp_stop();
 		return (ret);
 	}
 	/* Ok, we have a socket, bind it to the port. */
 	memset(&sin, 0, sizeof(struct sockaddr_in));
 	sin.sin_len = sizeof(struct sockaddr_in);
 	sin.sin_family = AF_INET;
 	sin.sin_port = htons(port);
 	if ((ret = sobind(V_udp4_tun_socket,
 	    (struct sockaddr *)&sin, curthread))) {
 		tcp_over_udp_stop();
 		return (ret);
 	}
 #endif
 #ifdef INET6
 	if ((ret = socreate(PF_INET6, &V_udp6_tun_socket,
 	    SOCK_DGRAM, IPPROTO_UDP,
 	    curthread->td_ucred, curthread))) {
 		tcp_over_udp_stop();
 		return (ret);
 	}
 	/* Call the special UDP hook. */
 	if ((ret = udp_set_kernel_tunneling(V_udp6_tun_socket,
 	    tcp_recv_udp_tunneled_packet,
 	    tcp6_ctlinput_viaudp,
 	    NULL))) {
 		tcp_over_udp_stop();
 		return (ret);
 	}
 	/* Ok, we have a socket, bind it to the port. */
 	memset(&sin6, 0, sizeof(struct sockaddr_in6));
 	sin6.sin6_len = sizeof(struct sockaddr_in6);
 	sin6.sin6_family = AF_INET6;
 	sin6.sin6_port = htons(port);
 	if ((ret = sobind(V_udp6_tun_socket,
 	    (struct sockaddr *)&sin6, curthread))) {
 		tcp_over_udp_stop();
 		return (ret);
 	}
 #endif
 	return (0);
 }
 
 static int
 sysctl_net_inet_tcp_udp_tunneling_port_check(SYSCTL_HANDLER_ARGS)
 {
 	int error;
 	uint32_t old, new;
 
 	old = V_tcp_udp_tunneling_port;
 	new = old;
 	error = sysctl_handle_int(oidp, &new, 0, req);
 	if ((error == 0) &&
 	    (req->newptr != NULL)) {
 		if ((new < TCP_TUNNELING_PORT_MIN) ||
 		    (new > TCP_TUNNELING_PORT_MAX)) {
 			error = EINVAL;
 		} else {
 			sx_xlock(&tcpoudp_lock);
 			V_tcp_udp_tunneling_port = new;
 			if (old != 0) {
 				tcp_over_udp_stop();
 			}
 			if (new != 0) {
 				error = tcp_over_udp_start();
 				if (error != 0) {
 					V_tcp_udp_tunneling_port = 0;
 				}
 			}
 			sx_xunlock(&tcpoudp_lock);
 		}
 	}
 	return (error);
 }
 
 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, udp_tunneling_port,
     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
     &VNET_NAME(tcp_udp_tunneling_port),
     0, &sysctl_net_inet_tcp_udp_tunneling_port_check, "IU",
     "Tunneling port for tcp over udp");
 
 VNET_DEFINE(int, tcp_udp_tunneling_overhead) = TCP_TUNNELING_OVERHEAD_DEFAULT;
 
 static int
 sysctl_net_inet_tcp_udp_tunneling_overhead_check(SYSCTL_HANDLER_ARGS)
 {
 	int error, new;
 
 	new = V_tcp_udp_tunneling_overhead;
 	error = sysctl_handle_int(oidp, &new, 0, req);
 	if (error == 0 && req->newptr) {
 		if ((new < TCP_TUNNELING_OVERHEAD_MIN) ||
 		    (new > TCP_TUNNELING_OVERHEAD_MAX))
 			error = EINVAL;
 		else
 			V_tcp_udp_tunneling_overhead = new;
 	}
 	return (error);
 }
 
 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, udp_tunneling_overhead,
     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
     &VNET_NAME(tcp_udp_tunneling_overhead),
     0, &sysctl_net_inet_tcp_udp_tunneling_overhead_check, "IU",
     "MSS reduction when using tcp over udp");
 
 /*
  * Exports one (struct tcp_function_info) for each alias/name.
  */
 static int
 sysctl_net_inet_list_func_info(SYSCTL_HANDLER_ARGS)
 {
 	int cnt, error;
 	struct tcp_function *f;
 	struct tcp_function_info tfi;
 
 	/*
 	 * We don't allow writes.
 	 */
 	if (req->newptr != NULL)
 		return (EINVAL);
 
 	/*
 	 * Wire the old buffer so we can directly copy the functions to
 	 * user space without dropping the lock.
 	 */
 	if (req->oldptr != NULL) {
 		error = sysctl_wire_old_buffer(req, 0);
 		if (error)
 			return (error);
 	}
 
 	/*
 	 * Walk the list and copy out matching entries. If INVARIANTS
 	 * is compiled in, also walk the list to verify the length of
 	 * the list matches what we have recorded.
 	 */
 	rw_rlock(&tcp_function_lock);
 
 	cnt = 0;
 #ifndef INVARIANTS
 	if (req->oldptr == NULL) {
 		cnt = tcp_fb_cnt;
 		goto skip_loop;
 	}
 #endif
 	TAILQ_FOREACH(f, &t_functions, tf_next) {
 #ifdef INVARIANTS
 		cnt++;
 #endif
 		if (req->oldptr != NULL) {
 			bzero(&tfi, sizeof(tfi));
 			tfi.tfi_refcnt = f->tf_fb->tfb_refcnt;
 			tfi.tfi_id = f->tf_fb->tfb_id;
 			(void)strlcpy(tfi.tfi_alias, f->tf_name,
 			    sizeof(tfi.tfi_alias));
 			(void)strlcpy(tfi.tfi_name,
 			    f->tf_fb->tfb_tcp_block_name, sizeof(tfi.tfi_name));
 			error = SYSCTL_OUT(req, &tfi, sizeof(tfi));
 			/*
 			 * Don't stop on error, as that is the
 			 * mechanism we use to accumulate length
 			 * information if the buffer was too short.
 			 */
 		}
 	}
 	KASSERT(cnt == tcp_fb_cnt,
 	    ("%s: cnt (%d) != tcp_fb_cnt (%d)", __func__, cnt, tcp_fb_cnt));
 #ifndef INVARIANTS
 skip_loop:
 #endif
 	rw_runlock(&tcp_function_lock);
 	if (req->oldptr == NULL)
 		error = SYSCTL_OUT(req, NULL,
 		    (cnt + 1) * sizeof(struct tcp_function_info));
 
 	return (error);
 }
 
 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, function_info,
 	    CTLTYPE_OPAQUE | CTLFLAG_SKIP | CTLFLAG_RD | CTLFLAG_MPSAFE,
 	    NULL, 0, sysctl_net_inet_list_func_info, "S,tcp_function_info",
 	    "List TCP function block name-to-ID mappings");
 
 /*
  * tfb_tcp_handoff_ok() function for the default stack.
  * Note that we'll basically try to take all comers.
  */
 static int
 tcp_default_handoff_ok(struct tcpcb *tp)
 {
 
 	return (0);
 }
 
 /*
  * tfb_tcp_fb_init() function for the default stack.
  *
  * This handles making sure we have appropriate timers set if you are
  * transitioning a socket that has some amount of setup done.
  *
  * The init() fuction from the default can *never* return non-zero i.e.
  * it is required to always succeed since it is the stack of last resort!
  */
 static int
 tcp_default_fb_init(struct tcpcb *tp, void **ptr)
 {
 	struct socket *so = tptosocket(tp);
 	int rexmt;
 
 	INP_WLOCK_ASSERT(tptoinpcb(tp));
 	/* We don't use the pointer */
 	*ptr = NULL;
 
 	KASSERT(tp->t_state >= 0 && tp->t_state < TCPS_TIME_WAIT,
 	    ("%s: connection %p in unexpected state %d", __func__, tp,
 	    tp->t_state));
 
 	/* Make sure we get no interesting mbuf queuing behavior */
 	/* All mbuf queue/ack compress flags should be off */
 	tcp_lro_features_off(tp);
 
 	/* Cancel the GP measurement in progress */
 	tp->t_flags &= ~TF_GPUTINPROG;
 	/* Validate the timers are not in usec, if they are convert */
 	tcp_change_time_units(tp, TCP_TMR_GRANULARITY_TICKS);
 	if ((tp->t_state == TCPS_SYN_SENT) ||
 	    (tp->t_state == TCPS_SYN_RECEIVED))
 		rexmt = tcp_rexmit_initial * tcp_backoff[tp->t_rxtshift];
 	else
 		rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift];
 	if (tp->t_rxtshift == 0)
 		tp->t_rxtcur = rexmt;
 	else
 		TCPT_RANGESET(tp->t_rxtcur, rexmt, tp->t_rttmin, TCPTV_REXMTMAX);
 
 	/*
 	 * Nothing to do for ESTABLISHED or LISTEN states. And, we don't
 	 * know what to do for unexpected states (which includes TIME_WAIT).
 	 */
 	if (tp->t_state <= TCPS_LISTEN || tp->t_state >= TCPS_TIME_WAIT)
 		return (0);
 
 	/*
 	 * Make sure some kind of transmission timer is set if there is
 	 * outstanding data.
 	 */
 	if ((!TCPS_HAVEESTABLISHED(tp->t_state) || sbavail(&so->so_snd) ||
 	    tp->snd_una != tp->snd_max) && !(tcp_timer_active(tp, TT_REXMT) ||
 	    tcp_timer_active(tp, TT_PERSIST))) {
 		/*
 		 * If the session has established and it looks like it should
 		 * be in the persist state, set the persist timer. Otherwise,
 		 * set the retransmit timer.
 		 */
 		if (TCPS_HAVEESTABLISHED(tp->t_state) && tp->snd_wnd == 0 &&
 		    (int32_t)(tp->snd_nxt - tp->snd_una) <
 		    (int32_t)sbavail(&so->so_snd))
 			tcp_setpersist(tp);
 		else
 			tcp_timer_activate(tp, TT_REXMT, TP_RXTCUR(tp));
 	}
 
 	/* All non-embryonic sessions get a keepalive timer. */
 	if (!tcp_timer_active(tp, TT_KEEP))
 		tcp_timer_activate(tp, TT_KEEP,
 		    TCPS_HAVEESTABLISHED(tp->t_state) ? TP_KEEPIDLE(tp) :
 		    TP_KEEPINIT(tp));
 
 	/*
 	 * Make sure critical variables are initialized
 	 * if transitioning while in Recovery.
 	 */
 	if IN_FASTRECOVERY(tp->t_flags) {
 		if (tp->sackhint.recover_fs == 0)
 			tp->sackhint.recover_fs = max(1,
 			    tp->snd_nxt - tp->snd_una);
 	}
 
 	return (0);
 }
 
 /*
  * tfb_tcp_fb_fini() function for the default stack.
  *
  * This changes state as necessary (or prudent) to prepare for another stack
  * to assume responsibility for the connection.
  */
 static void
 tcp_default_fb_fini(struct tcpcb *tp, int tcb_is_purged)
 {
 
 	INP_WLOCK_ASSERT(tptoinpcb(tp));
 
 #ifdef TCP_BLACKBOX
 	tcp_log_flowend(tp);
 #endif
 	tp->t_acktime = 0;
 	return;
 }
 
 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
 MALLOC_DEFINE(M_TCPFUNCTIONS, "tcpfunc", "TCP function set memory");
 
 static struct mtx isn_mtx;
 
 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
 
 INPCBSTORAGE_DEFINE(tcpcbstor, tcpcb, "tcpinp", "tcp_inpcb", "tcp", "tcphash");
 
 /*
  * Take a value and get the next power of 2 that doesn't overflow.
  * Used to size the tcp_inpcb hash buckets.
  */
 static int
 maketcp_hashsize(int size)
 {
 	int hashsize;
 
 	/*
 	 * auto tune.
 	 * get the next power of 2 higher than maxsockets.
 	 */
 	hashsize = 1 << fls(size);
 	/* catch overflow, and just go one power of 2 smaller */
 	if (hashsize < size) {
 		hashsize = 1 << (fls(size) - 1);
 	}
 	return (hashsize);
 }
 
 static volatile int next_tcp_stack_id = 1;
 
 /*
  * Register a TCP function block with the name provided in the names
  * array.  (Note that this function does NOT automatically register
  * blk->tfb_tcp_block_name as a stack name.  Therefore, you should
  * explicitly include blk->tfb_tcp_block_name in the list of names if
  * you wish to register the stack with that name.)
  *
  * Either all name registrations will succeed or all will fail.  If
  * a name registration fails, the function will update the num_names
  * argument to point to the array index of the name that encountered
  * the failure.
  *
  * Returns 0 on success, or an error code on failure.
  */
 int
 register_tcp_functions_as_names(struct tcp_function_block *blk, int wait,
     const char *names[], int *num_names)
 {
 	struct tcp_function *n;
 	struct tcp_function_set fs;
 	int error, i;
 
 	KASSERT(names != NULL && *num_names > 0,
 	    ("%s: Called with 0-length name list", __func__));
 	KASSERT(names != NULL, ("%s: Called with NULL name list", __func__));
 	KASSERT(rw_initialized(&tcp_function_lock),
 	    ("%s: called too early", __func__));
 
 	if ((blk->tfb_tcp_output == NULL) ||
 	    (blk->tfb_tcp_do_segment == NULL) ||
 	    (blk->tfb_tcp_ctloutput == NULL) ||
 	    (strlen(blk->tfb_tcp_block_name) == 0)) {
 		/*
 		 * These functions are required and you
 		 * need a name.
 		 */
 		*num_names = 0;
 		return (EINVAL);
 	}
 
 	if (blk->tfb_flags & TCP_FUNC_BEING_REMOVED) {
 		*num_names = 0;
 		return (EINVAL);
 	}
 
 	refcount_init(&blk->tfb_refcnt, 0);
 	blk->tfb_id = atomic_fetchadd_int(&next_tcp_stack_id, 1);
 	for (i = 0; i < *num_names; i++) {
 		n = malloc(sizeof(struct tcp_function), M_TCPFUNCTIONS, wait);
 		if (n == NULL) {
 			error = ENOMEM;
 			goto cleanup;
 		}
 		n->tf_fb = blk;
 
 		(void)strlcpy(fs.function_set_name, names[i],
 		    sizeof(fs.function_set_name));
 		rw_wlock(&tcp_function_lock);
 		if (find_tcp_functions_locked(&fs) != NULL) {
 			/* Duplicate name space not allowed */
 			rw_wunlock(&tcp_function_lock);
 			free(n, M_TCPFUNCTIONS);
 			error = EALREADY;
 			goto cleanup;
 		}
 		(void)strlcpy(n->tf_name, names[i], sizeof(n->tf_name));
 		TAILQ_INSERT_TAIL(&t_functions, n, tf_next);
 		tcp_fb_cnt++;
 		rw_wunlock(&tcp_function_lock);
 	}
 	return(0);
 
 cleanup:
 	/*
 	 * Deregister the names we just added. Because registration failed
 	 * for names[i], we don't need to deregister that name.
 	 */
 	*num_names = i;
 	rw_wlock(&tcp_function_lock);
 	while (--i >= 0) {
 		TAILQ_FOREACH(n, &t_functions, tf_next) {
 			if (!strncmp(n->tf_name, names[i],
 			    TCP_FUNCTION_NAME_LEN_MAX)) {
 				TAILQ_REMOVE(&t_functions, n, tf_next);
 				tcp_fb_cnt--;
 				n->tf_fb = NULL;
 				free(n, M_TCPFUNCTIONS);
 				break;
 			}
 		}
 	}
 	rw_wunlock(&tcp_function_lock);
 	return (error);
 }
 
 /*
  * Register a TCP function block using the name provided in the name
  * argument.
  *
  * Returns 0 on success, or an error code on failure.
  */
 int
 register_tcp_functions_as_name(struct tcp_function_block *blk, const char *name,
     int wait)
 {
 	const char *name_list[1];
 	int num_names, rv;
 
 	num_names = 1;
 	if (name != NULL)
 		name_list[0] = name;
 	else
 		name_list[0] = blk->tfb_tcp_block_name;
 	rv = register_tcp_functions_as_names(blk, wait, name_list, &num_names);
 	return (rv);
 }
 
 /*
  * Register a TCP function block using the name defined in
  * blk->tfb_tcp_block_name.
  *
  * Returns 0 on success, or an error code on failure.
  */
 int
 register_tcp_functions(struct tcp_function_block *blk, int wait)
 {
 
 	return (register_tcp_functions_as_name(blk, NULL, wait));
 }
 
 /*
  * Deregister all names associated with a function block. This
  * functionally removes the function block from use within the system.
  *
  * When called with a true quiesce argument, mark the function block
  * as being removed so no more stacks will use it and determine
  * whether the removal would succeed.
  *
  * When called with a false quiesce argument, actually attempt the
  * removal.
  *
  * When called with a force argument, attempt to switch all TCBs to
  * use the default stack instead of returning EBUSY.
  *
  * Returns 0 on success (or if the removal would succeed), or an error
  * code on failure.
  */
 int
 deregister_tcp_functions(struct tcp_function_block *blk, bool quiesce,
     bool force)
 {
 	struct tcp_function *f;
 	VNET_ITERATOR_DECL(vnet_iter);
 
 	if (blk == &tcp_def_funcblk) {
 		/* You can't un-register the default */
 		return (EPERM);
 	}
 	rw_wlock(&tcp_function_lock);
 	VNET_LIST_RLOCK_NOSLEEP();
 	VNET_FOREACH(vnet_iter) {
 		CURVNET_SET(vnet_iter);
 		if (blk == V_tcp_func_set_ptr) {
 			/* You can't free the current default in some vnet. */
 			CURVNET_RESTORE();
 			VNET_LIST_RUNLOCK_NOSLEEP();
 			rw_wunlock(&tcp_function_lock);
 			return (EBUSY);
 		}
 		CURVNET_RESTORE();
 	}
 	VNET_LIST_RUNLOCK_NOSLEEP();
 	/* Mark the block so no more stacks can use it. */
 	blk->tfb_flags |= TCP_FUNC_BEING_REMOVED;
 	/*
 	 * If TCBs are still attached to the stack, attempt to switch them
 	 * to the default stack.
 	 */
 	if (force && blk->tfb_refcnt) {
 		struct inpcb *inp;
 		struct tcpcb *tp;
 		VNET_ITERATOR_DECL(vnet_iter);
 
 		rw_wunlock(&tcp_function_lock);
 
 		VNET_LIST_RLOCK();
 		VNET_FOREACH(vnet_iter) {
 			CURVNET_SET(vnet_iter);
 			struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo,
 			    INPLOOKUP_WLOCKPCB);
 
 			while ((inp = inp_next(&inpi)) != NULL) {
 				tp = intotcpcb(inp);
 				if (tp == NULL || tp->t_fb != blk)
 					continue;
 				tcp_switch_back_to_default(tp);
 			}
 			CURVNET_RESTORE();
 		}
 		VNET_LIST_RUNLOCK();
 
 		rw_wlock(&tcp_function_lock);
 	}
 	if (blk->tfb_refcnt) {
 		/* TCBs still attached. */
 		rw_wunlock(&tcp_function_lock);
 		return (EBUSY);
 	}
 	if (quiesce) {
 		/* Skip removal. */
 		rw_wunlock(&tcp_function_lock);
 		return (0);
 	}
 	/* Remove any function names that map to this function block. */
 	while (find_tcp_fb_locked(blk, &f) != NULL) {
 		TAILQ_REMOVE(&t_functions, f, tf_next);
 		tcp_fb_cnt--;
 		f->tf_fb = NULL;
 		free(f, M_TCPFUNCTIONS);
 	}
 	rw_wunlock(&tcp_function_lock);
 	return (0);
 }
 
 static void
 tcp_drain(void)
 {
 	struct epoch_tracker et;
 	VNET_ITERATOR_DECL(vnet_iter);
 
 	if (!do_tcpdrain)
 		return;
 
 	NET_EPOCH_ENTER(et);
 	VNET_LIST_RLOCK_NOSLEEP();
 	VNET_FOREACH(vnet_iter) {
 		CURVNET_SET(vnet_iter);
 		struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo,
 		    INPLOOKUP_WLOCKPCB);
 		struct inpcb *inpb;
 		struct tcpcb *tcpb;
 
 	/*
 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
 	 * if there is one...
 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
 	 *      reassembly queue should be flushed, but in a situation
 	 *	where we're really low on mbufs, this is potentially
 	 *	useful.
 	 */
 		while ((inpb = inp_next(&inpi)) != NULL) {
 			if ((tcpb = intotcpcb(inpb)) != NULL) {
 				tcp_reass_flush(tcpb);
 				tcp_clean_sackreport(tcpb);
 #ifdef TCP_BLACKBOX
 				tcp_log_drain(tcpb);
 #endif
 #ifdef TCPPCAP
 				if (tcp_pcap_aggressive_free) {
 					/* Free the TCP PCAP queues. */
 					tcp_pcap_drain(&(tcpb->t_inpkts));
 					tcp_pcap_drain(&(tcpb->t_outpkts));
 				}
 #endif
 			}
 		}
 		CURVNET_RESTORE();
 	}
 	VNET_LIST_RUNLOCK_NOSLEEP();
 	NET_EPOCH_EXIT(et);
 }
 
 static void
 tcp_vnet_init(void *arg __unused)
 {
 
 #ifdef TCP_HHOOK
 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
 	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
 		printf("%s: WARNING: unable to register helper hook\n", __func__);
 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
 	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
 		printf("%s: WARNING: unable to register helper hook\n", __func__);
 #endif
 #ifdef STATS
 	if (tcp_stats_init())
 		printf("%s: WARNING: unable to initialise TCP stats\n",
 		    __func__);
 #endif
 	in_pcbinfo_init(&V_tcbinfo, &tcpcbstor, tcp_tcbhashsize,
 	    tcp_tcbhashsize);
 
 	syncache_init();
 	tcp_hc_init();
 
 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
 
 	tcp_fastopen_init();
 
 	COUNTER_ARRAY_ALLOC(V_tcps_states, TCP_NSTATES, M_WAITOK);
 	VNET_PCPUSTAT_ALLOC(tcpstat, M_WAITOK);
 
 	V_tcp_msl = TCPTV_MSL;
 }
 VNET_SYSINIT(tcp_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH,
     tcp_vnet_init, NULL);
 
 static void
 tcp_init(void *arg __unused)
 {
 	int hashsize;
 
 	tcp_reass_global_init();
 
 	/* XXX virtualize those below? */
 	tcp_delacktime = TCPTV_DELACK;
 	tcp_keepinit = TCPTV_KEEP_INIT;
 	tcp_keepidle = TCPTV_KEEP_IDLE;
 	tcp_keepintvl = TCPTV_KEEPINTVL;
 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
 	tcp_rexmit_initial = TCPTV_RTOBASE;
 	if (tcp_rexmit_initial < 1)
 		tcp_rexmit_initial = 1;
 	tcp_rexmit_min = TCPTV_MIN;
 	if (tcp_rexmit_min < 1)
 		tcp_rexmit_min = 1;
 	tcp_persmin = TCPTV_PERSMIN;
 	tcp_persmax = TCPTV_PERSMAX;
 	tcp_rexmit_slop = TCPTV_CPU_VAR;
 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
 
 	/* Setup the tcp function block list */
 	TAILQ_INIT(&t_functions);
 	rw_init(&tcp_function_lock, "tcp_func_lock");
 	register_tcp_functions(&tcp_def_funcblk, M_WAITOK);
 	sx_init(&tcpoudp_lock, "TCP over UDP configuration");
 #ifdef TCP_BLACKBOX
 	/* Initialize the TCP logging data. */
 	tcp_log_init();
 #endif
 	arc4rand(&V_ts_offset_secret, sizeof(V_ts_offset_secret), 0);
 
 	if (tcp_soreceive_stream) {
 #ifdef INET
 		tcp_protosw.pr_soreceive = soreceive_stream;
 #endif
 #ifdef INET6
 		tcp6_protosw.pr_soreceive = soreceive_stream;
 #endif /* INET6 */
 	}
 
 #ifdef INET6
 	max_protohdr_grow(sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
 #else /* INET6 */
 	max_protohdr_grow(sizeof(struct tcpiphdr));
 #endif /* INET6 */
 
 	ISN_LOCK_INIT();
 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
 		SHUTDOWN_PRI_DEFAULT);
 	EVENTHANDLER_REGISTER(vm_lowmem, tcp_drain, NULL, LOWMEM_PRI_DEFAULT);
 	EVENTHANDLER_REGISTER(mbuf_lowmem, tcp_drain, NULL, LOWMEM_PRI_DEFAULT);
 
 	tcp_inp_lro_direct_queue = counter_u64_alloc(M_WAITOK);
 	tcp_inp_lro_wokeup_queue = counter_u64_alloc(M_WAITOK);
 	tcp_inp_lro_compressed = counter_u64_alloc(M_WAITOK);
 	tcp_inp_lro_locks_taken = counter_u64_alloc(M_WAITOK);
 	tcp_extra_mbuf = counter_u64_alloc(M_WAITOK);
 	tcp_would_have_but = counter_u64_alloc(M_WAITOK);
 	tcp_comp_total = counter_u64_alloc(M_WAITOK);
 	tcp_uncomp_total = counter_u64_alloc(M_WAITOK);
 	tcp_bad_csums = counter_u64_alloc(M_WAITOK);
 	tcp_pacing_failures = counter_u64_alloc(M_WAITOK);
 #ifdef TCPPCAP
 	tcp_pcap_init();
 #endif
 
 	hashsize = tcp_tcbhashsize;
 	if (hashsize == 0) {
 		/*
 		 * Auto tune the hash size based on maxsockets.
 		 * A perfect hash would have a 1:1 mapping
 		 * (hashsize = maxsockets) however it's been
 		 * suggested that O(2) average is better.
 		 */
 		hashsize = maketcp_hashsize(maxsockets / 4);
 		/*
 		 * Our historical default is 512,
 		 * do not autotune lower than this.
 		 */
 		if (hashsize < 512)
 			hashsize = 512;
 		if (bootverbose)
 			printf("%s: %s auto tuned to %d\n", __func__,
 			    "net.inet.tcp.tcbhashsize", hashsize);
 	}
 	/*
 	 * We require a hashsize to be a power of two.
 	 * Previously if it was not a power of two we would just reset it
 	 * back to 512, which could be a nasty surprise if you did not notice
 	 * the error message.
 	 * Instead what we do is clip it to the closest power of two lower
 	 * than the specified hash value.
 	 */
 	if (!powerof2(hashsize)) {
 		int oldhashsize = hashsize;
 
 		hashsize = maketcp_hashsize(hashsize);
 		/* prevent absurdly low value */
 		if (hashsize < 16)
 			hashsize = 16;
 		printf("%s: WARNING: TCB hash size not a power of 2, "
 		    "clipped from %d to %d.\n", __func__, oldhashsize,
 		    hashsize);
 	}
 	tcp_tcbhashsize = hashsize;
 
 #ifdef INET
 	IPPROTO_REGISTER(IPPROTO_TCP, tcp_input, tcp_ctlinput);
 #endif
 #ifdef INET6
 	IP6PROTO_REGISTER(IPPROTO_TCP, tcp6_input, tcp6_ctlinput);
 #endif
 }
 SYSINIT(tcp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, tcp_init, NULL);
 
 #ifdef VIMAGE
 static void
 tcp_destroy(void *unused __unused)
 {
 	int n;
 #ifdef TCP_HHOOK
 	int error;
 #endif
 
 	/*
 	 * All our processes are gone, all our sockets should be cleaned
 	 * up, which means, we should be past the tcp_discardcb() calls.
 	 * Sleep to let all tcpcb timers really disappear and cleanup.
 	 */
 	for (;;) {
 		INP_INFO_WLOCK(&V_tcbinfo);
 		n = V_tcbinfo.ipi_count;
 		INP_INFO_WUNLOCK(&V_tcbinfo);
 		if (n == 0)
 			break;
 		pause("tcpdes", hz / 10);
 	}
 	tcp_hc_destroy();
 	syncache_destroy();
 	in_pcbinfo_destroy(&V_tcbinfo);
 	/* tcp_discardcb() clears the sack_holes up. */
 	uma_zdestroy(V_sack_hole_zone);
 
 	/*
 	 * Cannot free the zone until all tcpcbs are released as we attach
 	 * the allocations to them.
 	 */
 	tcp_fastopen_destroy();
 
 	COUNTER_ARRAY_FREE(V_tcps_states, TCP_NSTATES);
 	VNET_PCPUSTAT_FREE(tcpstat);
 
 #ifdef TCP_HHOOK
 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]);
 	if (error != 0) {
 		printf("%s: WARNING: unable to deregister helper hook "
 		    "type=%d, id=%d: error %d returned\n", __func__,
 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error);
 	}
 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]);
 	if (error != 0) {
 		printf("%s: WARNING: unable to deregister helper hook "
 		    "type=%d, id=%d: error %d returned\n", __func__,
 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error);
 	}
 #endif
 }
 VNET_SYSUNINIT(tcp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, tcp_destroy, NULL);
 #endif
 
 void
 tcp_fini(void *xtp)
 {
 
 }
 
 /*
  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
  * tcp_template used to store this data in mbufs, but we now recopy it out
  * of the tcpcb each time to conserve mbufs.
  */
 void
 tcpip_fillheaders(struct inpcb *inp, uint16_t port, void *ip_ptr, void *tcp_ptr)
 {
 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
 
 	INP_WLOCK_ASSERT(inp);
 
 #ifdef INET6
 	if ((inp->inp_vflag & INP_IPV6) != 0) {
 		struct ip6_hdr *ip6;
 
 		ip6 = (struct ip6_hdr *)ip_ptr;
 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
 			(IPV6_VERSION & IPV6_VERSION_MASK);
 		if (port == 0)
 			ip6->ip6_nxt = IPPROTO_TCP;
 		else
 			ip6->ip6_nxt = IPPROTO_UDP;
 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
 		ip6->ip6_src = inp->in6p_laddr;
 		ip6->ip6_dst = inp->in6p_faddr;
 	}
 #endif /* INET6 */
 #if defined(INET6) && defined(INET)
 	else
 #endif
 #ifdef INET
 	{
 		struct ip *ip;
 
 		ip = (struct ip *)ip_ptr;
 		ip->ip_v = IPVERSION;
 		ip->ip_hl = 5;
 		ip->ip_tos = inp->inp_ip_tos;
 		ip->ip_len = 0;
 		ip->ip_id = 0;
 		ip->ip_off = 0;
 		ip->ip_ttl = inp->inp_ip_ttl;
 		ip->ip_sum = 0;
 		if (port == 0)
 			ip->ip_p = IPPROTO_TCP;
 		else
 			ip->ip_p = IPPROTO_UDP;
 		ip->ip_src = inp->inp_laddr;
 		ip->ip_dst = inp->inp_faddr;
 	}
 #endif /* INET */
 	th->th_sport = inp->inp_lport;
 	th->th_dport = inp->inp_fport;
 	th->th_seq = 0;
 	th->th_ack = 0;
 	th->th_off = 5;
 	tcp_set_flags(th, 0);
 	th->th_win = 0;
 	th->th_urp = 0;
 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
 }
 
 /*
  * Create template to be used to send tcp packets on a connection.
  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
  * use for this function is in keepalives, which use tcp_respond.
  */
 struct tcptemp *
 tcpip_maketemplate(struct inpcb *inp)
 {
 	struct tcptemp *t;
 
 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
 	if (t == NULL)
 		return (NULL);
 	tcpip_fillheaders(inp, 0, (void *)&t->tt_ipgen, (void *)&t->tt_t);
 	return (t);
 }
 
 /*
  * Send a single message to the TCP at address specified by
  * the given TCP/IP header.  If m == NULL, then we make a copy
  * of the tcpiphdr at th and send directly to the addressed host.
  * This is used to force keep alive messages out using the TCP
  * template for a connection.  If flags are given then we send
  * a message back to the TCP which originated the segment th,
  * and discard the mbuf containing it and any other attached mbufs.
  *
  * In any case the ack and sequence number of the transmitted
  * segment are as specified by the parameters.
  *
  * NOTE: If m != NULL, then th must point to *inside* the mbuf.
  */
 void
 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
     tcp_seq ack, tcp_seq seq, uint16_t flags)
 {
 	struct tcpopt to;
 	struct inpcb *inp;
 	struct ip *ip;
 	struct mbuf *optm;
 	struct udphdr *uh = NULL;
 	struct tcphdr *nth;
 	struct tcp_log_buffer *lgb;
 	u_char *optp;
 #ifdef INET6
 	struct ip6_hdr *ip6;
 	int isipv6;
 #endif /* INET6 */
 	int optlen, tlen, win, ulen;
 	int ect = 0;
 	bool incl_opts;
 	uint16_t port;
 	int output_ret;
 #ifdef INVARIANTS
 	int thflags = tcp_get_flags(th);
 #endif
 
 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
 	NET_EPOCH_ASSERT();
 
 #ifdef INET6
 	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
 	ip6 = ipgen;
 #endif /* INET6 */
 	ip = ipgen;
 
 	if (tp != NULL) {
 		inp = tptoinpcb(tp);
 		INP_LOCK_ASSERT(inp);
 	} else
 		inp = NULL;
 
 	if (m != NULL) {
 #ifdef INET6
 		if (isipv6 && ip6 && (ip6->ip6_nxt == IPPROTO_UDP))
 			port = m->m_pkthdr.tcp_tun_port;
 		else
 #endif
 		if (ip && (ip->ip_p == IPPROTO_UDP))
 			port = m->m_pkthdr.tcp_tun_port;
 		else
 			port = 0;
 	} else
 		port = tp->t_port;
 
 	incl_opts = false;
 	win = 0;
 	if (tp != NULL) {
 		if (!(flags & TH_RST)) {
 			win = sbspace(&inp->inp_socket->so_rcv);
 			if (win > TCP_MAXWIN << tp->rcv_scale)
 				win = TCP_MAXWIN << tp->rcv_scale;
 		}
 		if ((tp->t_flags & TF_NOOPT) == 0)
 			incl_opts = true;
 	}
 	if (m == NULL) {
 		m = m_gethdr(M_NOWAIT, MT_DATA);
 		if (m == NULL)
 			return;
 		m->m_data += max_linkhdr;
 #ifdef INET6
 		if (isipv6) {
 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
 			      sizeof(struct ip6_hdr));
 			ip6 = mtod(m, struct ip6_hdr *);
 			nth = (struct tcphdr *)(ip6 + 1);
 			if (port) {
 				/* Insert a UDP header */
 				uh = (struct udphdr *)nth;
 				uh->uh_sport = htons(V_tcp_udp_tunneling_port);
 				uh->uh_dport = port;
 				nth = (struct tcphdr *)(uh + 1);
 			}
 		} else
 #endif /* INET6 */
 		{
 			bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
 			ip = mtod(m, struct ip *);
 			nth = (struct tcphdr *)(ip + 1);
 			if (port) {
 				/* Insert a UDP header */
 				uh = (struct udphdr *)nth;
 				uh->uh_sport = htons(V_tcp_udp_tunneling_port);
 				uh->uh_dport = port;
 				nth = (struct tcphdr *)(uh + 1);
 			}
 		}
 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
 		flags = TH_ACK;
 	} else if ((!M_WRITABLE(m)) || (port != 0)) {
 		struct mbuf *n;
 
 		/* Can't reuse 'm', allocate a new mbuf. */
 		n = m_gethdr(M_NOWAIT, MT_DATA);
 		if (n == NULL) {
 			m_freem(m);
 			return;
 		}
 
 		if (!m_dup_pkthdr(n, m, M_NOWAIT)) {
 			m_freem(m);
 			m_freem(n);
 			return;
 		}
 
 		n->m_data += max_linkhdr;
 		/* m_len is set later */
 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
 #ifdef INET6
 		if (isipv6) {
 			bcopy((caddr_t)ip6, mtod(n, caddr_t),
 			      sizeof(struct ip6_hdr));
 			ip6 = mtod(n, struct ip6_hdr *);
 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
 			nth = (struct tcphdr *)(ip6 + 1);
 			if (port) {
 				/* Insert a UDP header */
 				uh = (struct udphdr *)nth;
 				uh->uh_sport = htons(V_tcp_udp_tunneling_port);
 				uh->uh_dport = port;
 				nth = (struct tcphdr *)(uh + 1);
 			}
 		} else
 #endif /* INET6 */
 		{
 			bcopy((caddr_t)ip, mtod(n, caddr_t), sizeof(struct ip));
 			ip = mtod(n, struct ip *);
 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
 			nth = (struct tcphdr *)(ip + 1);
 			if (port) {
 				/* Insert a UDP header */
 				uh = (struct udphdr *)nth;
 				uh->uh_sport = htons(V_tcp_udp_tunneling_port);
 				uh->uh_dport = port;
 				nth = (struct tcphdr *)(uh + 1);
 			}
 		}
 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
 		xchg(nth->th_dport, nth->th_sport, uint16_t);
 		th = nth;
 		m_freem(m);
 		m = n;
 	} else {
 		/*
 		 *  reuse the mbuf.
 		 * XXX MRT We inherit the FIB, which is lucky.
 		 */
 		m_freem(m->m_next);
 		m->m_next = NULL;
 		m->m_data = (caddr_t)ipgen;
 		/* clear any receive flags for proper bpf timestamping */
 		m->m_flags &= ~(M_TSTMP | M_TSTMP_LRO);
 		/* m_len is set later */
 #ifdef INET6
 		if (isipv6) {
 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
 			nth = (struct tcphdr *)(ip6 + 1);
 		} else
 #endif /* INET6 */
 		{
 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
 			nth = (struct tcphdr *)(ip + 1);
 		}
 		if (th != nth) {
 			/*
 			 * this is usually a case when an extension header
 			 * exists between the IPv6 header and the
 			 * TCP header.
 			 */
 			nth->th_sport = th->th_sport;
 			nth->th_dport = th->th_dport;
 		}
 		xchg(nth->th_dport, nth->th_sport, uint16_t);
 #undef xchg
 	}
 	tlen = 0;
 #ifdef INET6
 	if (isipv6)
 		tlen = sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
 #endif
 #if defined(INET) && defined(INET6)
 	else
 #endif
 #ifdef INET
 		tlen = sizeof (struct tcpiphdr);
 #endif
 	if (port)
 		tlen += sizeof (struct udphdr);
 #ifdef INVARIANTS
 	m->m_len = 0;
 	KASSERT(M_TRAILINGSPACE(m) >= tlen,
 	    ("Not enough trailing space for message (m=%p, need=%d, have=%ld)",
 	    m, tlen, (long)M_TRAILINGSPACE(m)));
 #endif
 	m->m_len = tlen;
 	to.to_flags = 0;
 	if (incl_opts) {
 		ect = tcp_ecn_output_established(tp, &flags, 0, false);
 		/* Make sure we have room. */
 		if (M_TRAILINGSPACE(m) < TCP_MAXOLEN) {
 			m->m_next = m_get(M_NOWAIT, MT_DATA);
 			if (m->m_next) {
 				optp = mtod(m->m_next, u_char *);
 				optm = m->m_next;
 			} else
 				incl_opts = false;
 		} else {
 			optp = (u_char *) (nth + 1);
 			optm = m;
 		}
 	}
 	if (incl_opts) {
 		/* Timestamps. */
 		if (tp->t_flags & TF_RCVD_TSTMP) {
 			to.to_tsval = tcp_ts_getticks() + tp->ts_offset;
 			to.to_tsecr = tp->ts_recent;
 			to.to_flags |= TOF_TS;
 		}
 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
 		/* TCP-MD5 (RFC2385). */
 		if (tp->t_flags & TF_SIGNATURE)
 			to.to_flags |= TOF_SIGNATURE;
 #endif
 		/* Add the options. */
 		tlen += optlen = tcp_addoptions(&to, optp);
 
 		/* Update m_len in the correct mbuf. */
 		optm->m_len += optlen;
 	} else
 		optlen = 0;
 #ifdef INET6
 	if (isipv6) {
 		if (uh) {
 			ulen = tlen - sizeof(struct ip6_hdr);
 			uh->uh_ulen = htons(ulen);
 		}
 		ip6->ip6_flow = htonl(ect << IPV6_FLOWLABEL_LEN);
 		ip6->ip6_vfc = IPV6_VERSION;
 		if (port)
 			ip6->ip6_nxt = IPPROTO_UDP;
 		else
 			ip6->ip6_nxt = IPPROTO_TCP;
 		ip6->ip6_plen = htons(tlen - sizeof(*ip6));
 	}
 #endif
 #if defined(INET) && defined(INET6)
 	else
 #endif
 #ifdef INET
 	{
 		if (uh) {
 			ulen = tlen - sizeof(struct ip);
 			uh->uh_ulen = htons(ulen);
 		}
 		ip->ip_len = htons(tlen);
 		if (inp != NULL) {
 			ip->ip_tos = inp->inp_ip_tos & ~IPTOS_ECN_MASK;
 			ip->ip_ttl = inp->inp_ip_ttl;
 		} else {
 			ip->ip_tos = 0;
 			ip->ip_ttl = V_ip_defttl;
 		}
 		ip->ip_tos |= ect;
 		if (port) {
 			ip->ip_p = IPPROTO_UDP;
 		} else {
 			ip->ip_p = IPPROTO_TCP;
 		}
 		if (V_path_mtu_discovery)
 			ip->ip_off |= htons(IP_DF);
 	}
 #endif
 	m->m_pkthdr.len = tlen;
 	m->m_pkthdr.rcvif = NULL;
 #ifdef MAC
 	if (inp != NULL) {
 		/*
 		 * Packet is associated with a socket, so allow the
 		 * label of the response to reflect the socket label.
 		 */
 		INP_LOCK_ASSERT(inp);
 		mac_inpcb_create_mbuf(inp, m);
 	} else {
 		/*
 		 * Packet is not associated with a socket, so possibly
 		 * update the label in place.
 		 */
 		mac_netinet_tcp_reply(m);
 	}
 #endif
 	nth->th_seq = htonl(seq);
 	nth->th_ack = htonl(ack);
 	nth->th_off = (sizeof (struct tcphdr) + optlen) >> 2;
 	tcp_set_flags(nth, flags);
 	if (tp && (flags & TH_RST)) {
 		/* Log the reset */
 		tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
 	}
 	if (tp != NULL)
 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
 	else
 		nth->th_win = htons((u_short)win);
 	nth->th_urp = 0;
 
 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
 	if (to.to_flags & TOF_SIGNATURE) {
 		if (!TCPMD5_ENABLED() ||
 		    TCPMD5_OUTPUT(m, nth, to.to_signature) != 0) {
 			m_freem(m);
 			return;
 		}
 	}
 #endif
 
 #ifdef INET6
 	if (isipv6) {
 		if (port) {
 			m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
 			uh->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
 			nth->th_sum = 0;
 		} else {
 			m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
 			nth->th_sum = in6_cksum_pseudo(ip6,
 			    tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
 		}
 		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
 	}
 #endif /* INET6 */
 #if defined(INET6) && defined(INET)
 	else
 #endif
 #ifdef INET
 	{
 		if (port) {
 			uh->uh_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
 			    htons(ulen + IPPROTO_UDP));
 			m->m_pkthdr.csum_flags = CSUM_UDP;
 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
 			nth->th_sum = 0;
 		} else {
 			m->m_pkthdr.csum_flags = CSUM_TCP;
 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
 			nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
 			    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
 		}
 	}
 #endif /* INET */
 	TCP_PROBE3(debug__output, tp, th, m);
 	if (flags & TH_RST)
 		TCP_PROBE5(accept__refused, NULL, NULL, m, tp, nth);
 	lgb = NULL;
 	if ((tp != NULL) && tcp_bblogging_on(tp)) {
 		if (INP_WLOCKED(inp)) {
 			union tcp_log_stackspecific log;
 			struct timeval tv;
 
 			memset(&log.u_bbr, 0, sizeof(log.u_bbr));
 			log.u_bbr.inhpts = tcp_in_hpts(tp);
 			log.u_bbr.flex8 = 4;
 			log.u_bbr.pkts_out = tp->t_maxseg;
 			log.u_bbr.timeStamp = tcp_get_usecs(&tv);
 			log.u_bbr.delivered = 0;
 			lgb = tcp_log_event(tp, nth, NULL, NULL, TCP_LOG_OUT,
 			    ERRNO_UNK, 0, &log, false, NULL, NULL, 0, &tv);
 		} else {
 			/*
 			 * We can not log the packet, since we only own the
 			 * read lock, but a write lock is needed. The read lock
 			 * is not upgraded to a write lock, since only getting
 			 * the read lock was done intentionally to improve the
 			 * handling of SYN flooding attacks.
 			 * This happens only for pure SYN segments received in
 			 * the initial CLOSED state, or received in a more
 			 * advanced state than listen and the UDP encapsulation
 			 * port is unexpected.
 			 * The incoming SYN segments do not really belong to
 			 * the TCP connection and the handling does not change
 			 * the state of the TCP connection. Therefore, the
 			 * sending of the RST segments is not logged. Please
 			 * note that also the incoming SYN segments are not
 			 * logged.
 			 *
 			 * The following code ensures that the above description
 			 * is and stays correct.
 			 */
 			KASSERT((thflags & (TH_ACK|TH_SYN)) == TH_SYN &&
 			    (tp->t_state == TCPS_CLOSED ||
 			    (tp->t_state > TCPS_LISTEN && tp->t_port != port)),
 			    ("%s: Logging of TCP segment with flags 0x%b and "
 			    "UDP encapsulation port %u skipped in state %s",
 			    __func__, thflags, PRINT_TH_FLAGS,
 			    ntohs(port), tcpstates[tp->t_state]));
 		}
 	}
 
 	if (flags & TH_ACK)
 		TCPSTAT_INC(tcps_sndacks);
 	else if (flags & (TH_SYN|TH_FIN|TH_RST))
 		TCPSTAT_INC(tcps_sndctrl);
 	TCPSTAT_INC(tcps_sndtotal);
 
 #ifdef INET6
 	if (isipv6) {
 		TCP_PROBE5(send, NULL, tp, ip6, tp, nth);
 		output_ret = ip6_output(m, inp ? inp->in6p_outputopts : NULL,
 		    NULL, 0, NULL, NULL, inp);
 	}
 #endif /* INET6 */
 #if defined(INET) && defined(INET6)
 	else
 #endif
 #ifdef INET
 	{
 		TCP_PROBE5(send, NULL, tp, ip, tp, nth);
 		output_ret = ip_output(m, NULL, NULL, 0, NULL, inp);
 	}
 #endif
 	if (lgb != NULL)
 		lgb->tlb_errno = output_ret;
 }
 
 /*
  * Create a new TCP control block, making an empty reassembly queue and hooking
  * it to the argument protocol control block.  The `inp' parameter must have
  * come from the zone allocator set up by tcpcbstor declaration.
  */
 struct tcpcb *
 tcp_newtcpcb(struct inpcb *inp)
 {
 	struct tcpcb *tp = intotcpcb(inp);
 #ifdef INET6
 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
 #endif /* INET6 */
 
 	/*
 	 * Historically allocation was done with M_ZERO.  There is a lot of
 	 * code that rely on that.  For now take safe approach and zero whole
 	 * tcpcb.  This definitely can be optimized.
 	 */
 	bzero(&tp->t_start_zero, t_zero_size);
 
 	/* Initialise cc_var struct for this tcpcb. */
 	tp->t_ccv.type = IPPROTO_TCP;
 	tp->t_ccv.ccvc.tcp = tp;
 	rw_rlock(&tcp_function_lock);
 	tp->t_fb = V_tcp_func_set_ptr;
 	refcount_acquire(&tp->t_fb->tfb_refcnt);
 	rw_runlock(&tcp_function_lock);
 	/*
 	 * Use the current system default CC algorithm.
 	 */
 	cc_attach(tp, CC_DEFAULT_ALGO());
 
 	if (CC_ALGO(tp)->cb_init != NULL)
 		if (CC_ALGO(tp)->cb_init(&tp->t_ccv, NULL) > 0) {
 			cc_detach(tp);
 			if (tp->t_fb->tfb_tcp_fb_fini)
 				(*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
 			refcount_release(&tp->t_fb->tfb_refcnt);
 			return (NULL);
 		}
 
 #ifdef TCP_HHOOK
 	if (khelp_init_osd(HELPER_CLASS_TCP, &tp->t_osd)) {
 		if (tp->t_fb->tfb_tcp_fb_fini)
 			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
 		refcount_release(&tp->t_fb->tfb_refcnt);
 		return (NULL);
 	}
 #endif
 
 	TAILQ_INIT(&tp->t_segq);
 	STAILQ_INIT(&tp->t_inqueue);
 	tp->t_maxseg =
 #ifdef INET6
 		isipv6 ? V_tcp_v6mssdflt :
 #endif /* INET6 */
 		V_tcp_mssdflt;
 
 	/* All mbuf queue/ack compress flags should be off */
 	tcp_lro_features_off(tp);
 
 	tp->t_hpts_cpu = HPTS_CPU_NONE;
 	tp->t_lro_cpu = HPTS_CPU_NONE;
 
 	callout_init_rw(&tp->t_callout, &inp->inp_lock, CALLOUT_RETURNUNLOCKED);
 	for (int i = 0; i < TT_N; i++)
 		tp->t_timers[i] = SBT_MAX;
 
 	switch (V_tcp_do_rfc1323) {
 		case 0:
 			break;
 		default:
 		case 1:
 			tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
 			break;
 		case 2:
 			tp->t_flags = TF_REQ_SCALE;
 			break;
 		case 3:
 			tp->t_flags = TF_REQ_TSTMP;
 			break;
 	}
 	if (V_tcp_do_sack)
 		tp->t_flags |= TF_SACK_PERMIT;
 	TAILQ_INIT(&tp->snd_holes);
 
 	/*
 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
 	 * reasonable initial retransmit time.
 	 */
 	tp->t_srtt = TCPTV_SRTTBASE;
 	tp->t_rttvar = ((tcp_rexmit_initial - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
 	tp->t_rttmin = tcp_rexmit_min;
 	tp->t_rxtcur = tcp_rexmit_initial;
 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
 	tp->t_rcvtime = ticks;
 	/* We always start with ticks granularity */
 	tp->t_tmr_granularity = TCP_TMR_GRANULARITY_TICKS;
 	/*
 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
 	 * because the socket may be bound to an IPv6 wildcard address,
 	 * which may match an IPv4-mapped IPv6 address.
 	 */
 	inp->inp_ip_ttl = V_ip_defttl;
 #ifdef TCPPCAP
 	/*
 	 * Init the TCP PCAP queues.
 	 */
 	tcp_pcap_tcpcb_init(tp);
 #endif
 #ifdef TCP_BLACKBOX
 	/* Initialize the per-TCPCB log data. */
 	tcp_log_tcpcbinit(tp);
 #endif
 	tp->t_pacing_rate = -1;
 	if (tp->t_fb->tfb_tcp_fb_init) {
 		if ((*tp->t_fb->tfb_tcp_fb_init)(tp, &tp->t_fb_ptr)) {
 			refcount_release(&tp->t_fb->tfb_refcnt);
 			return (NULL);
 		}
 	}
 #ifdef STATS
 	if (V_tcp_perconn_stats_enable == 1)
 		tp->t_stats = stats_blob_alloc(V_tcp_perconn_stats_dflt_tpl, 0);
 #endif
 	if (V_tcp_do_lrd)
 		tp->t_flags |= TF_LRD;
 
 	return (tp);
 }
 
 /*
  * Drop a TCP connection, reporting
  * the specified error.  If connection is synchronized,
  * then send a RST to peer.
  */
 struct tcpcb *
 tcp_drop(struct tcpcb *tp, int errno)
 {
 	struct socket *so = tptosocket(tp);
 
 	NET_EPOCH_ASSERT();
 	INP_WLOCK_ASSERT(tptoinpcb(tp));
 
 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
 		tcp_state_change(tp, TCPS_CLOSED);
 		/* Don't use tcp_output() here due to possible recursion. */
 		(void)tcp_output_nodrop(tp);
 		TCPSTAT_INC(tcps_drops);
 	} else
 		TCPSTAT_INC(tcps_conndrops);
 	if (errno == ETIMEDOUT && tp->t_softerror)
 		errno = tp->t_softerror;
 	so->so_error = errno;
 	return (tcp_close(tp));
 }
 
 void
 tcp_discardcb(struct tcpcb *tp)
 {
 	struct inpcb *inp = tptoinpcb(tp);
 	struct socket *so = tptosocket(tp);
 	struct mbuf *m;
 #ifdef INET6
 	bool isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
 #endif
 
 	INP_WLOCK_ASSERT(inp);
-	MPASS(!callout_active(&tp->t_callout));
 	MPASS(TAILQ_EMPTY(&tp->snd_holes));
 
+	tcp_timer_stop(tp);
+
 	/* free the reassembly queue, if any */
 	tcp_reass_flush(tp);
 
 #ifdef TCP_OFFLOAD
 	/* Disconnect offload device, if any. */
 	if (tp->t_flags & TF_TOE)
 		tcp_offload_detach(tp);
 #endif
 #ifdef TCPPCAP
 	/* Free the TCP PCAP queues. */
 	tcp_pcap_drain(&(tp->t_inpkts));
 	tcp_pcap_drain(&(tp->t_outpkts));
 #endif
 
 	/* Allow the CC algorithm to clean up after itself. */
 	if (CC_ALGO(tp)->cb_destroy != NULL)
 		CC_ALGO(tp)->cb_destroy(&tp->t_ccv);
 	CC_DATA(tp) = NULL;
 	/* Detach from the CC algorithm */
 	cc_detach(tp);
 
 #ifdef TCP_HHOOK
 	khelp_destroy_osd(&tp->t_osd);
 #endif
 #ifdef STATS
 	stats_blob_destroy(tp->t_stats);
 #endif
 
 	CC_ALGO(tp) = NULL;
 	if ((m = STAILQ_FIRST(&tp->t_inqueue)) != NULL) {
 		struct mbuf *prev;
 
 		STAILQ_INIT(&tp->t_inqueue);
 		STAILQ_FOREACH_FROM_SAFE(m, &tp->t_inqueue, m_stailqpkt, prev)
 			m_freem(m);
 	}
 	TCPSTATES_DEC(tp->t_state);
 
 	if (tp->t_fb->tfb_tcp_fb_fini)
 		(*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
 	MPASS(!tcp_in_hpts(tp));
 #ifdef TCP_BLACKBOX
 	tcp_log_tcpcbfini(tp);
 #endif
 
 	/*
 	 * If we got enough samples through the srtt filter,
 	 * save the rtt and rttvar in the routing entry.
 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
 	 * 4 samples is enough for the srtt filter to converge
 	 * to within enough % of the correct value; fewer samples
 	 * and we could save a bogus rtt. The danger is not high
 	 * as tcp quickly recovers from everything.
 	 * XXX: Works very well but needs some more statistics!
 	 *
 	 * XXXRRS: Updating must be after the stack fini() since
 	 * that may be converting some internal representation of
 	 * say srtt etc into the general one used by other stacks.
 	 * Lets also at least protect against the so being NULL
 	 * as RW stated below.
 	 */
 	if ((tp->t_rttupdated >= 4) && (so != NULL)) {
 		struct hc_metrics_lite metrics;
 		uint32_t ssthresh;
 
 		bzero(&metrics, sizeof(metrics));
 		/*
 		 * Update the ssthresh always when the conditions below
 		 * are satisfied. This gives us better new start value
 		 * for the congestion avoidance for new connections.
 		 * ssthresh is only set if packet loss occurred on a session.
 		 *
 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
 		 * being torn down.  Ideally this code would not use 'so'.
 		 */
 		ssthresh = tp->snd_ssthresh;
 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
 			/*
 			 * convert the limit from user data bytes to
 			 * packets then to packet data bytes.
 			 */
 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
 			if (ssthresh < 2)
 				ssthresh = 2;
 			ssthresh *= (tp->t_maxseg +
 #ifdef INET6
 			    (isipv6 ? sizeof (struct ip6_hdr) +
 			    sizeof (struct tcphdr) :
 #endif
 			    sizeof (struct tcpiphdr)
 #ifdef INET6
 			    )
 #endif
 			    );
 		} else
 			ssthresh = 0;
 		metrics.rmx_ssthresh = ssthresh;
 
 		metrics.rmx_rtt = tp->t_srtt;
 		metrics.rmx_rttvar = tp->t_rttvar;
 		metrics.rmx_cwnd = tp->snd_cwnd;
 		metrics.rmx_sendpipe = 0;
 		metrics.rmx_recvpipe = 0;
 
 		tcp_hc_update(&inp->inp_inc, &metrics);
 	}
 
 	refcount_release(&tp->t_fb->tfb_refcnt);
 }
 
 /*
  * Attempt to close a TCP control block, marking it as dropped, and freeing
  * the socket if we hold the only reference.
  */
 struct tcpcb *
 tcp_close(struct tcpcb *tp)
 {
 	struct inpcb *inp = tptoinpcb(tp);
 	struct socket *so = tptosocket(tp);
 
 	INP_WLOCK_ASSERT(inp);
 
 #ifdef TCP_OFFLOAD
 	if (tp->t_state == TCPS_LISTEN)
 		tcp_offload_listen_stop(tp);
 #endif
 	/*
 	 * This releases the TFO pending counter resource for TFO listen
 	 * sockets as well as passively-created TFO sockets that transition
 	 * from SYN_RECEIVED to CLOSED.
 	 */
 	if (tp->t_tfo_pending) {
 		tcp_fastopen_decrement_counter(tp->t_tfo_pending);
 		tp->t_tfo_pending = NULL;
 	}
 	tcp_timer_stop(tp);
 	if (tp->t_fb->tfb_tcp_timer_stop_all != NULL)
 		tp->t_fb->tfb_tcp_timer_stop_all(tp);
 	in_pcbdrop(inp);
 	TCPSTAT_INC(tcps_closed);
 	if (tp->t_state != TCPS_CLOSED)
 		tcp_state_change(tp, TCPS_CLOSED);
 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
 	tcp_free_sackholes(tp);
 	soisdisconnected(so);
 	if (inp->inp_flags & INP_SOCKREF) {
 		inp->inp_flags &= ~INP_SOCKREF;
 		INP_WUNLOCK(inp);
 		sorele(so);
 		return (NULL);
 	}
 	return (tp);
 }
 
 /*
  * Notify a tcp user of an asynchronous error;
  * store error as soft error, but wake up user
  * (for now, won't do anything until can select for soft error).
  *
  * Do not wake up user since there currently is no mechanism for
  * reporting soft errors (yet - a kqueue filter may be added).
  */
 static struct inpcb *
 tcp_notify(struct inpcb *inp, int error)
 {
 	struct tcpcb *tp;
 
 	INP_WLOCK_ASSERT(inp);
 
 	tp = intotcpcb(inp);
 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
 
 	/*
 	 * Ignore some errors if we are hooked up.
 	 * If connection hasn't completed, has retransmitted several times,
 	 * and receives a second error, give up now.  This is better
 	 * than waiting a long time to establish a connection that
 	 * can never complete.
 	 */
 	if (tp->t_state == TCPS_ESTABLISHED &&
 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
 	     error == EHOSTDOWN)) {
 		if (inp->inp_route.ro_nh) {
 			NH_FREE(inp->inp_route.ro_nh);
 			inp->inp_route.ro_nh = (struct nhop_object *)NULL;
 		}
 		return (inp);
 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
 	    tp->t_softerror) {
 		tp = tcp_drop(tp, error);
 		if (tp != NULL)
 			return (inp);
 		else
 			return (NULL);
 	} else {
 		tp->t_softerror = error;
 		return (inp);
 	}
 #if 0
 	wakeup( &so->so_timeo);
 	sorwakeup(so);
 	sowwakeup(so);
 #endif
 }
 
 static int
 tcp_pcblist(SYSCTL_HANDLER_ARGS)
 {
 	struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo,
 	    INPLOOKUP_RLOCKPCB);
 	struct xinpgen xig;
 	struct inpcb *inp;
 	int error;
 
 	if (req->newptr != NULL)
 		return (EPERM);
 
 	if (req->oldptr == NULL) {
 		int n;
 
 		n = V_tcbinfo.ipi_count +
 		    counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]);
 		n += imax(n / 8, 10);
 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
 		return (0);
 	}
 
 	if ((error = sysctl_wire_old_buffer(req, 0)) != 0)
 		return (error);
 
 	bzero(&xig, sizeof(xig));
 	xig.xig_len = sizeof xig;
 	xig.xig_count = V_tcbinfo.ipi_count +
 	    counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]);
 	xig.xig_gen = V_tcbinfo.ipi_gencnt;
 	xig.xig_sogen = so_gencnt;
 	error = SYSCTL_OUT(req, &xig, sizeof xig);
 	if (error)
 		return (error);
 
 	error = syncache_pcblist(req);
 	if (error)
 		return (error);
 
 	while ((inp = inp_next(&inpi)) != NULL) {
 		if (inp->inp_gencnt <= xig.xig_gen &&
 		    cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
 			struct xtcpcb xt;
 
 			tcp_inptoxtp(inp, &xt);
 			error = SYSCTL_OUT(req, &xt, sizeof xt);
 			if (error) {
 				INP_RUNLOCK(inp);
 				break;
 			} else
 				continue;
 		}
 	}
 
 	if (!error) {
 		/*
 		 * Give the user an updated idea of our state.
 		 * If the generation differs from what we told
 		 * her before, she knows that something happened
 		 * while we were processing this request, and it
 		 * might be necessary to retry.
 		 */
 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
 		xig.xig_sogen = so_gencnt;
 		xig.xig_count = V_tcbinfo.ipi_count +
 		    counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]);
 		error = SYSCTL_OUT(req, &xig, sizeof xig);
 	}
 
 	return (error);
 }
 
 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
     NULL, 0, tcp_pcblist, "S,xtcpcb",
     "List of active TCP connections");
 
 #ifdef INET
 static int
 tcp_getcred(SYSCTL_HANDLER_ARGS)
 {
 	struct xucred xuc;
 	struct sockaddr_in addrs[2];
 	struct epoch_tracker et;
 	struct inpcb *inp;
 	int error;
 
 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
 	if (error)
 		return (error);
 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
 	if (error)
 		return (error);
 	NET_EPOCH_ENTER(et);
 	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
 	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
 	NET_EPOCH_EXIT(et);
 	if (inp != NULL) {
 		if (error == 0)
 			error = cr_canseeinpcb(req->td->td_ucred, inp);
 		if (error == 0)
 			cru2x(inp->inp_cred, &xuc);
 		INP_RUNLOCK(inp);
 	} else
 		error = ENOENT;
 	if (error == 0)
 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
 	return (error);
 }
 
 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
     CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_NEEDGIANT,
     0, 0, tcp_getcred, "S,xucred",
     "Get the xucred of a TCP connection");
 #endif /* INET */
 
 #ifdef INET6
 static int
 tcp6_getcred(SYSCTL_HANDLER_ARGS)
 {
 	struct epoch_tracker et;
 	struct xucred xuc;
 	struct sockaddr_in6 addrs[2];
 	struct inpcb *inp;
 	int error;
 #ifdef INET
 	int mapped = 0;
 #endif
 
 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
 	if (error)
 		return (error);
 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
 	if (error)
 		return (error);
 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
 		return (error);
 	}
 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
 #ifdef INET
 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
 			mapped = 1;
 		else
 #endif
 			return (EINVAL);
 	}
 
 	NET_EPOCH_ENTER(et);
 #ifdef INET
 	if (mapped == 1)
 		inp = in_pcblookup(&V_tcbinfo,
 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
 			addrs[1].sin6_port,
 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
 			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
 	else
 #endif
 		inp = in6_pcblookup(&V_tcbinfo,
 			&addrs[1].sin6_addr, addrs[1].sin6_port,
 			&addrs[0].sin6_addr, addrs[0].sin6_port,
 			INPLOOKUP_RLOCKPCB, NULL);
 	NET_EPOCH_EXIT(et);
 	if (inp != NULL) {
 		if (error == 0)
 			error = cr_canseeinpcb(req->td->td_ucred, inp);
 		if (error == 0)
 			cru2x(inp->inp_cred, &xuc);
 		INP_RUNLOCK(inp);
 	} else
 		error = ENOENT;
 	if (error == 0)
 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
 	return (error);
 }
 
 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
     CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_NEEDGIANT,
     0, 0, tcp6_getcred, "S,xucred",
     "Get the xucred of a TCP6 connection");
 #endif /* INET6 */
 
 #ifdef INET
 /* Path MTU to try next when a fragmentation-needed message is received. */
 static inline int
 tcp_next_pmtu(const struct icmp *icp, const struct ip *ip)
 {
 	int mtu = ntohs(icp->icmp_nextmtu);
 
 	/* If no alternative MTU was proposed, try the next smaller one. */
 	if (!mtu)
 		mtu = ip_next_mtu(ntohs(ip->ip_len), 1);
 	if (mtu < V_tcp_minmss + sizeof(struct tcpiphdr))
 		mtu = V_tcp_minmss + sizeof(struct tcpiphdr);
 
 	return (mtu);
 }
 
 static void
 tcp_ctlinput_with_port(struct icmp *icp, uint16_t port)
 {
 	struct ip *ip;
 	struct tcphdr *th;
 	struct inpcb *inp;
 	struct tcpcb *tp;
 	struct inpcb *(*notify)(struct inpcb *, int);
 	struct in_conninfo inc;
 	tcp_seq icmp_tcp_seq;
 	int errno, mtu;
 
 	errno = icmp_errmap(icp);
 	switch (errno) {
 	case 0:
 		return;
 	case EMSGSIZE:
 		notify = tcp_mtudisc_notify;
 		break;
 	case ECONNREFUSED:
 		if (V_icmp_may_rst)
 			notify = tcp_drop_syn_sent;
 		else
 			notify = tcp_notify;
 		break;
 	case EHOSTUNREACH:
 		if (V_icmp_may_rst && icp->icmp_type == ICMP_TIMXCEED)
 			notify = tcp_drop_syn_sent;
 		else
 			notify = tcp_notify;
 		break;
 	default:
 		notify = tcp_notify;
 	}
 
 	ip = &icp->icmp_ip;
 	th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
 	icmp_tcp_seq = th->th_seq;
 	inp = in_pcblookup(&V_tcbinfo, ip->ip_dst, th->th_dport, ip->ip_src,
 	    th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
 	if (inp != NULL)  {
 		tp = intotcpcb(inp);
 #ifdef TCP_OFFLOAD
 		if (tp->t_flags & TF_TOE && errno == EMSGSIZE) {
 			/*
 			 * MTU discovery for offloaded connections.  Let
 			 * the TOE driver verify seq# and process it.
 			 */
 			mtu = tcp_next_pmtu(icp, ip);
 			tcp_offload_pmtu_update(tp, icmp_tcp_seq, mtu);
 			goto out;
 		}
 #endif
 		if (tp->t_port != port)
 			goto out;
 		if (SEQ_GEQ(ntohl(icmp_tcp_seq), tp->snd_una) &&
 		    SEQ_LT(ntohl(icmp_tcp_seq), tp->snd_max)) {
 			if (errno == EMSGSIZE) {
 				/*
 				 * MTU discovery: we got a needfrag and
 				 * will potentially try a lower MTU.
 				 */
 				mtu = tcp_next_pmtu(icp, ip);
 
 				/*
 				 * Only process the offered MTU if it
 				 * is smaller than the current one.
 				 */
 				if (mtu < tp->t_maxseg +
 				    sizeof(struct tcpiphdr)) {
 					bzero(&inc, sizeof(inc));
 					inc.inc_faddr = ip->ip_dst;
 					inc.inc_fibnum =
 					    inp->inp_inc.inc_fibnum;
 					tcp_hc_updatemtu(&inc, mtu);
 					inp = tcp_mtudisc(inp, mtu);
 				}
 			} else
 				inp = (*notify)(inp, errno);
 		}
 	} else {
 		bzero(&inc, sizeof(inc));
 		inc.inc_fport = th->th_dport;
 		inc.inc_lport = th->th_sport;
 		inc.inc_faddr = ip->ip_dst;
 		inc.inc_laddr = ip->ip_src;
 		syncache_unreach(&inc, icmp_tcp_seq, port);
 	}
 out:
 	if (inp != NULL)
 		INP_WUNLOCK(inp);
 }
 
 static void
 tcp_ctlinput(struct icmp *icmp)
 {
 	tcp_ctlinput_with_port(icmp, htons(0));
 }
 
 static void
 tcp_ctlinput_viaudp(udp_tun_icmp_param_t param)
 {
 	/* Its a tunneled TCP over UDP icmp */
 	struct icmp *icmp = param.icmp;
 	struct ip *outer_ip, *inner_ip;
 	struct udphdr *udp;
 	struct tcphdr *th, ttemp;
 	int i_hlen, o_len;
 	uint16_t port;
 
 	outer_ip = (struct ip *)((caddr_t)icmp - sizeof(struct ip));
 	inner_ip = &icmp->icmp_ip;
 	i_hlen = inner_ip->ip_hl << 2;
 	o_len = ntohs(outer_ip->ip_len);
 	if (o_len <
 	    (sizeof(struct ip) + 8 + i_hlen + sizeof(struct udphdr) + offsetof(struct tcphdr, th_ack))) {
 		/* Not enough data present */
 		return;
 	}
 	/* Ok lets strip out the inner udphdr header by copying up on top of it the tcp hdr */
 	udp = (struct udphdr *)(((caddr_t)inner_ip) + i_hlen);
 	if (ntohs(udp->uh_sport) != V_tcp_udp_tunneling_port) {
 		return;
 	}
 	port = udp->uh_dport;
 	th = (struct tcphdr *)(udp + 1);
 	memcpy(&ttemp, th, sizeof(struct tcphdr));
 	memcpy(udp, &ttemp, sizeof(struct tcphdr));
 	/* Now adjust down the size of the outer IP header */
 	o_len -= sizeof(struct udphdr);
 	outer_ip->ip_len = htons(o_len);
 	/* Now call in to the normal handling code */
 	tcp_ctlinput_with_port(icmp, port);
 }
 #endif /* INET */
 
 #ifdef INET6
 static inline int
 tcp6_next_pmtu(const struct icmp6_hdr *icmp6)
 {
 	int mtu = ntohl(icmp6->icmp6_mtu);
 
 	/*
 	 * If no alternative MTU was proposed, or the proposed MTU was too
 	 * small, set to the min.
 	 */
 	if (mtu < IPV6_MMTU)
 		mtu = IPV6_MMTU - 8;	/* XXXNP: what is the adjustment for? */
 	return (mtu);
 }
 
 static void
 tcp6_ctlinput_with_port(struct ip6ctlparam *ip6cp, uint16_t port)
 {
 	struct in6_addr *dst;
 	struct inpcb *(*notify)(struct inpcb *, int);
 	struct ip6_hdr *ip6;
 	struct mbuf *m;
 	struct inpcb *inp;
 	struct tcpcb *tp;
 	struct icmp6_hdr *icmp6;
 	struct in_conninfo inc;
 	struct tcp_ports {
 		uint16_t th_sport;
 		uint16_t th_dport;
 	} t_ports;
 	tcp_seq icmp_tcp_seq;
 	unsigned int mtu;
 	unsigned int off;
 	int errno;
 
 	icmp6 = ip6cp->ip6c_icmp6;
 	m = ip6cp->ip6c_m;
 	ip6 = ip6cp->ip6c_ip6;
 	off = ip6cp->ip6c_off;
 	dst = &ip6cp->ip6c_finaldst->sin6_addr;
 
 	errno = icmp6_errmap(icmp6);
 	switch (errno) {
 	case 0:
 		return;
 	case EMSGSIZE:
 		notify = tcp_mtudisc_notify;
 		break;
 	case ECONNREFUSED:
 		if (V_icmp_may_rst)
 			notify = tcp_drop_syn_sent;
 		else
 			notify = tcp_notify;
 		break;
 	case EHOSTUNREACH:
 		/*
 		 * There are only four ICMPs that may reset connection:
 		 * - administratively prohibited
 		 * - port unreachable
 		 * - time exceeded in transit
 		 * - unknown next header
 		 */
 		if (V_icmp_may_rst &&
 		    ((icmp6->icmp6_type == ICMP6_DST_UNREACH &&
 		     (icmp6->icmp6_code == ICMP6_DST_UNREACH_ADMIN ||
 		      icmp6->icmp6_code == ICMP6_DST_UNREACH_NOPORT)) ||
 		    (icmp6->icmp6_type == ICMP6_TIME_EXCEEDED &&
 		      icmp6->icmp6_code == ICMP6_TIME_EXCEED_TRANSIT) ||
 		    (icmp6->icmp6_type == ICMP6_PARAM_PROB &&
 		      icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER)))
 			notify = tcp_drop_syn_sent;
 		else
 			notify = tcp_notify;
 		break;
 	default:
 		notify = tcp_notify;
 	}
 
 	/* Check if we can safely get the ports from the tcp hdr */
 	if (m == NULL ||
 	    (m->m_pkthdr.len <
 		(int32_t) (off + sizeof(struct tcp_ports)))) {
 		return;
 	}
 	bzero(&t_ports, sizeof(struct tcp_ports));
 	m_copydata(m, off, sizeof(struct tcp_ports), (caddr_t)&t_ports);
 	inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_dst, t_ports.th_dport,
 	    &ip6->ip6_src, t_ports.th_sport, INPLOOKUP_WLOCKPCB, NULL);
 	off += sizeof(struct tcp_ports);
 	if (m->m_pkthdr.len < (int32_t) (off + sizeof(tcp_seq))) {
 		goto out;
 	}
 	m_copydata(m, off, sizeof(tcp_seq), (caddr_t)&icmp_tcp_seq);
 	if (inp != NULL)  {
 		tp = intotcpcb(inp);
 #ifdef TCP_OFFLOAD
 		if (tp->t_flags & TF_TOE && errno == EMSGSIZE) {
 			/* MTU discovery for offloaded connections. */
 			mtu = tcp6_next_pmtu(icmp6);
 			tcp_offload_pmtu_update(tp, icmp_tcp_seq, mtu);
 			goto out;
 		}
 #endif
 		if (tp->t_port != port)
 			goto out;
 		if (SEQ_GEQ(ntohl(icmp_tcp_seq), tp->snd_una) &&
 		    SEQ_LT(ntohl(icmp_tcp_seq), tp->snd_max)) {
 			if (errno == EMSGSIZE) {
 				/*
 				 * MTU discovery:
 				 * If we got a needfrag set the MTU
 				 * in the route to the suggested new
 				 * value (if given) and then notify.
 				 */
 				mtu = tcp6_next_pmtu(icmp6);
 
 				bzero(&inc, sizeof(inc));
 				inc.inc_fibnum = M_GETFIB(m);
 				inc.inc_flags |= INC_ISIPV6;
 				inc.inc6_faddr = *dst;
 				if (in6_setscope(&inc.inc6_faddr,
 					m->m_pkthdr.rcvif, NULL))
 					goto out;
 				/*
 				 * Only process the offered MTU if it
 				 * is smaller than the current one.
 				 */
 				if (mtu < tp->t_maxseg +
 				    sizeof (struct tcphdr) +
 				    sizeof (struct ip6_hdr)) {
 					tcp_hc_updatemtu(&inc, mtu);
 					tcp_mtudisc(inp, mtu);
 					ICMP6STAT_INC(icp6s_pmtuchg);
 				}
 			} else
 				inp = (*notify)(inp, errno);
 		}
 	} else {
 		bzero(&inc, sizeof(inc));
 		inc.inc_fibnum = M_GETFIB(m);
 		inc.inc_flags |= INC_ISIPV6;
 		inc.inc_fport = t_ports.th_dport;
 		inc.inc_lport = t_ports.th_sport;
 		inc.inc6_faddr = *dst;
 		inc.inc6_laddr = ip6->ip6_src;
 		syncache_unreach(&inc, icmp_tcp_seq, port);
 	}
 out:
 	if (inp != NULL)
 		INP_WUNLOCK(inp);
 }
 
 static void
 tcp6_ctlinput(struct ip6ctlparam *ctl)
 {
 	tcp6_ctlinput_with_port(ctl, htons(0));
 }
 
 static void
 tcp6_ctlinput_viaudp(udp_tun_icmp_param_t param)
 {
 	struct ip6ctlparam *ip6cp = param.ip6cp;
 	struct mbuf *m;
 	struct udphdr *udp;
 	uint16_t port;
 
 	m = m_pulldown(ip6cp->ip6c_m, ip6cp->ip6c_off, sizeof(struct udphdr), NULL);
 	if (m == NULL) {
 		return;
 	}
 	udp = mtod(m, struct udphdr *);
 	if (ntohs(udp->uh_sport) != V_tcp_udp_tunneling_port) {
 		return;
 	}
 	port = udp->uh_dport;
 	m_adj(m, sizeof(struct udphdr));
 	if ((m->m_flags & M_PKTHDR) == 0) {
 		ip6cp->ip6c_m->m_pkthdr.len -= sizeof(struct udphdr);
 	}
 	/* Now call in to the normal handling code */
 	tcp6_ctlinput_with_port(ip6cp, port);
 }
 
 #endif /* INET6 */
 
 static uint32_t
 tcp_keyed_hash(struct in_conninfo *inc, u_char *key, u_int len)
 {
 	SIPHASH_CTX ctx;
 	uint32_t hash[2];
 
 	KASSERT(len >= SIPHASH_KEY_LENGTH,
 	    ("%s: keylen %u too short ", __func__, len));
 	SipHash24_Init(&ctx);
 	SipHash_SetKey(&ctx, (uint8_t *)key);
 	SipHash_Update(&ctx, &inc->inc_fport, sizeof(uint16_t));
 	SipHash_Update(&ctx, &inc->inc_lport, sizeof(uint16_t));
 	switch (inc->inc_flags & INC_ISIPV6) {
 #ifdef INET
 	case 0:
 		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(struct in_addr));
 		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(struct in_addr));
 		break;
 #endif
 #ifdef INET6
 	case INC_ISIPV6:
 		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(struct in6_addr));
 		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(struct in6_addr));
 		break;
 #endif
 	}
 	SipHash_Final((uint8_t *)hash, &ctx);
 
 	return (hash[0] ^ hash[1]);
 }
 
 uint32_t
 tcp_new_ts_offset(struct in_conninfo *inc)
 {
 	struct in_conninfo inc_store, *local_inc;
 
 	if (!V_tcp_ts_offset_per_conn) {
 		memcpy(&inc_store, inc, sizeof(struct in_conninfo));
 		inc_store.inc_lport = 0;
 		inc_store.inc_fport = 0;
 		local_inc = &inc_store;
 	} else {
 		local_inc = inc;
 	}
 	return (tcp_keyed_hash(local_inc, V_ts_offset_secret,
 	    sizeof(V_ts_offset_secret)));
 }
 
 /*
  * Following is where TCP initial sequence number generation occurs.
  *
  * There are two places where we must use initial sequence numbers:
  * 1.  In SYN-ACK packets.
  * 2.  In SYN packets.
  *
  * All ISNs for SYN-ACK packets are generated by the syncache.  See
  * tcp_syncache.c for details.
  *
  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
  * depends on this property.  In addition, these ISNs should be
  * unguessable so as to prevent connection hijacking.  To satisfy
  * the requirements of this situation, the algorithm outlined in
  * RFC 1948 is used, with only small modifications.
  *
  * Implementation details:
  *
  * Time is based off the system timer, and is corrected so that it
  * increases by one megabyte per second.  This allows for proper
  * recycling on high speed LANs while still leaving over an hour
  * before rollover.
  *
  * As reading the *exact* system time is too expensive to be done
  * whenever setting up a TCP connection, we increment the time
  * offset in two ways.  First, a small random positive increment
  * is added to isn_offset for each connection that is set up.
  * Second, the function tcp_isn_tick fires once per clock tick
  * and increments isn_offset as necessary so that sequence numbers
  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
  * random positive increments serve only to ensure that the same
  * exact sequence number is never sent out twice (as could otherwise
  * happen when a port is recycled in less than the system tick
  * interval.)
  *
  * net.inet.tcp.isn_reseed_interval controls the number of seconds
  * between seeding of isn_secret.  This is normally set to zero,
  * as reseeding should not be necessary.
  *
  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
  * isn_offset_old, and isn_ctx is performed using the ISN lock.  In
  * general, this means holding an exclusive (write) lock.
  */
 
 #define ISN_BYTES_PER_SECOND 1048576
 #define ISN_STATIC_INCREMENT 4096
 #define ISN_RANDOM_INCREMENT (4096 - 1)
 #define ISN_SECRET_LENGTH    SIPHASH_KEY_LENGTH
 
 VNET_DEFINE_STATIC(u_char, isn_secret[ISN_SECRET_LENGTH]);
 VNET_DEFINE_STATIC(int, isn_last);
 VNET_DEFINE_STATIC(int, isn_last_reseed);
 VNET_DEFINE_STATIC(u_int32_t, isn_offset);
 VNET_DEFINE_STATIC(u_int32_t, isn_offset_old);
 
 #define	V_isn_secret			VNET(isn_secret)
 #define	V_isn_last			VNET(isn_last)
 #define	V_isn_last_reseed		VNET(isn_last_reseed)
 #define	V_isn_offset			VNET(isn_offset)
 #define	V_isn_offset_old		VNET(isn_offset_old)
 
 tcp_seq
 tcp_new_isn(struct in_conninfo *inc)
 {
 	tcp_seq new_isn;
 	u_int32_t projected_offset;
 
 	ISN_LOCK();
 	/* Seed if this is the first use, reseed if requested. */
 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
 		< (u_int)ticks))) {
 		arc4rand(&V_isn_secret, sizeof(V_isn_secret), 0);
 		V_isn_last_reseed = ticks;
 	}
 
 	/* Compute the hash and return the ISN. */
 	new_isn = (tcp_seq)tcp_keyed_hash(inc, V_isn_secret,
 	    sizeof(V_isn_secret));
 	V_isn_offset += ISN_STATIC_INCREMENT +
 		(arc4random() & ISN_RANDOM_INCREMENT);
 	if (ticks != V_isn_last) {
 		projected_offset = V_isn_offset_old +
 		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
 		if (SEQ_GT(projected_offset, V_isn_offset))
 			V_isn_offset = projected_offset;
 		V_isn_offset_old = V_isn_offset;
 		V_isn_last = ticks;
 	}
 	new_isn += V_isn_offset;
 	ISN_UNLOCK();
 	return (new_isn);
 }
 
 /*
  * When a specific ICMP unreachable message is received and the
  * connection state is SYN-SENT, drop the connection.  This behavior
  * is controlled by the icmp_may_rst sysctl.
  */
 static struct inpcb *
 tcp_drop_syn_sent(struct inpcb *inp, int errno)
 {
 	struct tcpcb *tp;
 
 	NET_EPOCH_ASSERT();
 	INP_WLOCK_ASSERT(inp);
 
 	tp = intotcpcb(inp);
 	if (tp->t_state != TCPS_SYN_SENT)
 		return (inp);
 
 	if (IS_FASTOPEN(tp->t_flags))
 		tcp_fastopen_disable_path(tp);
 
 	tp = tcp_drop(tp, errno);
 	if (tp != NULL)
 		return (inp);
 	else
 		return (NULL);
 }
 
 /*
  * When `need fragmentation' ICMP is received, update our idea of the MSS
  * based on the new value. Also nudge TCP to send something, since we
  * know the packet we just sent was dropped.
  * This duplicates some code in the tcp_mss() function in tcp_input.c.
  */
 static struct inpcb *
 tcp_mtudisc_notify(struct inpcb *inp, int error)
 {
 
 	return (tcp_mtudisc(inp, -1));
 }
 
 static struct inpcb *
 tcp_mtudisc(struct inpcb *inp, int mtuoffer)
 {
 	struct tcpcb *tp;
 	struct socket *so;
 
 	INP_WLOCK_ASSERT(inp);
 
 	tp = intotcpcb(inp);
 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
 
 	tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
 
 	so = inp->inp_socket;
 	SOCKBUF_LOCK(&so->so_snd);
 	/* If the mss is larger than the socket buffer, decrease the mss. */
 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
 		tp->t_maxseg = so->so_snd.sb_hiwat;
 	SOCKBUF_UNLOCK(&so->so_snd);
 
 	TCPSTAT_INC(tcps_mturesent);
 	tp->t_rtttime = 0;
 	tp->snd_nxt = tp->snd_una;
 	tcp_free_sackholes(tp);
 	tp->snd_recover = tp->snd_max;
 	if (tp->t_flags & TF_SACK_PERMIT)
 		EXIT_FASTRECOVERY(tp->t_flags);
 	if (tp->t_fb->tfb_tcp_mtu_chg != NULL) {
 		/*
 		 * Conceptually the snd_nxt setting
 		 * and freeing sack holes should
 		 * be done by the default stacks
 		 * own tfb_tcp_mtu_chg().
 		 */
 		tp->t_fb->tfb_tcp_mtu_chg(tp);
 	}
 	if (tcp_output(tp) < 0)
 		return (NULL);
 	else
 		return (inp);
 }
 
 #ifdef INET
 /*
  * Look-up the routing entry to the peer of this inpcb.  If no route
  * is found and it cannot be allocated, then return 0.  This routine
  * is called by TCP routines that access the rmx structure and by
  * tcp_mss_update to get the peer/interface MTU.
  */
 uint32_t
 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap)
 {
 	struct nhop_object *nh;
 	struct ifnet *ifp;
 	uint32_t maxmtu = 0;
 
 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
 
 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
 		nh = fib4_lookup(inc->inc_fibnum, inc->inc_faddr, 0, NHR_NONE, 0);
 		if (nh == NULL)
 			return (0);
 
 		ifp = nh->nh_ifp;
 		maxmtu = nh->nh_mtu;
 
 		/* Report additional interface capabilities. */
 		if (cap != NULL) {
 			if (ifp->if_capenable & IFCAP_TSO4 &&
 			    ifp->if_hwassist & CSUM_TSO) {
 				cap->ifcap |= CSUM_TSO;
 				cap->tsomax = ifp->if_hw_tsomax;
 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
 			}
 		}
 	}
 	return (maxmtu);
 }
 #endif /* INET */
 
 #ifdef INET6
 uint32_t
 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap)
 {
 	struct nhop_object *nh;
 	struct in6_addr dst6;
 	uint32_t scopeid;
 	struct ifnet *ifp;
 	uint32_t maxmtu = 0;
 
 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
 
 	if (inc->inc_flags & INC_IPV6MINMTU)
 		return (IPV6_MMTU);
 
 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
 		in6_splitscope(&inc->inc6_faddr, &dst6, &scopeid);
 		nh = fib6_lookup(inc->inc_fibnum, &dst6, scopeid, NHR_NONE, 0);
 		if (nh == NULL)
 			return (0);
 
 		ifp = nh->nh_ifp;
 		maxmtu = nh->nh_mtu;
 
 		/* Report additional interface capabilities. */
 		if (cap != NULL) {
 			if (ifp->if_capenable & IFCAP_TSO6 &&
 			    ifp->if_hwassist & CSUM_TSO) {
 				cap->ifcap |= CSUM_TSO;
 				cap->tsomax = ifp->if_hw_tsomax;
 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
 			}
 		}
 	}
 
 	return (maxmtu);
 }
 
 /*
  * Handle setsockopt(IPV6_USE_MIN_MTU) by a TCP stack.
  *
  * XXXGL: we are updating inpcb here with INC_IPV6MINMTU flag.
  * The right place to do that is ip6_setpktopt() that has just been
  * executed.  By the way it just filled ip6po_minmtu for us.
  */
 void
 tcp6_use_min_mtu(struct tcpcb *tp)
 {
 	struct inpcb *inp = tptoinpcb(tp);
 
 	INP_WLOCK_ASSERT(inp);
 	/*
 	 * In case of the IPV6_USE_MIN_MTU socket
 	 * option, the INC_IPV6MINMTU flag to announce
 	 * a corresponding MSS during the initial
 	 * handshake.  If the TCP connection is not in
 	 * the front states, just reduce the MSS being
 	 * used.  This avoids the sending of TCP
 	 * segments which will be fragmented at the
 	 * IPv6 layer.
 	 */
 	inp->inp_inc.inc_flags |= INC_IPV6MINMTU;
 	if ((tp->t_state >= TCPS_SYN_SENT) &&
 	    (inp->inp_inc.inc_flags & INC_ISIPV6)) {
 		struct ip6_pktopts *opt;
 
 		opt = inp->in6p_outputopts;
 		if (opt != NULL && opt->ip6po_minmtu == IP6PO_MINMTU_ALL &&
 		    tp->t_maxseg > TCP6_MSS)
 			tp->t_maxseg = TCP6_MSS;
 	}
 }
 #endif /* INET6 */
 
 /*
  * Calculate effective SMSS per RFC5681 definition for a given TCP
  * connection at its current state, taking into account SACK and etc.
  */
 u_int
 tcp_maxseg(const struct tcpcb *tp)
 {
 	u_int optlen;
 
 	if (tp->t_flags & TF_NOOPT)
 		return (tp->t_maxseg);
 
 	/*
 	 * Here we have a simplified code from tcp_addoptions(),
 	 * without a proper loop, and having most of paddings hardcoded.
 	 * We might make mistakes with padding here in some edge cases,
 	 * but this is harmless, since result of tcp_maxseg() is used
 	 * only in cwnd and ssthresh estimations.
 	 */
 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
 		if (tp->t_flags & TF_RCVD_TSTMP)
 			optlen = TCPOLEN_TSTAMP_APPA;
 		else
 			optlen = 0;
 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
 		if (tp->t_flags & TF_SIGNATURE)
 			optlen += PADTCPOLEN(TCPOLEN_SIGNATURE);
 #endif
 		if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) {
 			optlen += TCPOLEN_SACKHDR;
 			optlen += tp->rcv_numsacks * TCPOLEN_SACK;
 			optlen = PADTCPOLEN(optlen);
 		}
 	} else {
 		if (tp->t_flags & TF_REQ_TSTMP)
 			optlen = TCPOLEN_TSTAMP_APPA;
 		else
 			optlen = PADTCPOLEN(TCPOLEN_MAXSEG);
 		if (tp->t_flags & TF_REQ_SCALE)
 			optlen += PADTCPOLEN(TCPOLEN_WINDOW);
 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
 		if (tp->t_flags & TF_SIGNATURE)
 			optlen += PADTCPOLEN(TCPOLEN_SIGNATURE);
 #endif
 		if (tp->t_flags & TF_SACK_PERMIT)
 			optlen += PADTCPOLEN(TCPOLEN_SACK_PERMITTED);
 	}
 #undef PAD
 	optlen = min(optlen, TCP_MAXOLEN);
 	return (tp->t_maxseg - optlen);
 }
 
 
 u_int
 tcp_fixed_maxseg(const struct tcpcb *tp)
 {
 	int optlen;
 
 	if (tp->t_flags & TF_NOOPT)
 		return (tp->t_maxseg);
 
 	/*
 	 * Here we have a simplified code from tcp_addoptions(),
 	 * without a proper loop, and having most of paddings hardcoded.
 	 * We only consider fixed options that we would send every
 	 * time I.e. SACK is not considered. This is important
 	 * for cc modules to figure out what the modulo of the
 	 * cwnd should be.
 	 */
 #define	PAD(len)	((((len) / 4) + !!((len) % 4)) * 4)
 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
 		if (tp->t_flags & TF_RCVD_TSTMP)
 			optlen = TCPOLEN_TSTAMP_APPA;
 		else
 			optlen = 0;
 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
 		if (tp->t_flags & TF_SIGNATURE)
 			optlen += PAD(TCPOLEN_SIGNATURE);
 #endif
 	} else {
 		if (tp->t_flags & TF_REQ_TSTMP)
 			optlen = TCPOLEN_TSTAMP_APPA;
 		else
 			optlen = PAD(TCPOLEN_MAXSEG);
 		if (tp->t_flags & TF_REQ_SCALE)
 			optlen += PAD(TCPOLEN_WINDOW);
 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
 		if (tp->t_flags & TF_SIGNATURE)
 			optlen += PAD(TCPOLEN_SIGNATURE);
 #endif
 		if (tp->t_flags & TF_SACK_PERMIT)
 			optlen += PAD(TCPOLEN_SACK_PERMITTED);
 	}
 #undef PAD
 	optlen = min(optlen, TCP_MAXOLEN);
 	return (tp->t_maxseg - optlen);
 }
 
 
 
 static int
 sysctl_drop(SYSCTL_HANDLER_ARGS)
 {
 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
 	struct sockaddr_storage addrs[2];
 	struct inpcb *inp;
 	struct tcpcb *tp;
 #ifdef INET
 	struct sockaddr_in *fin = NULL, *lin = NULL;
 #endif
 	struct epoch_tracker et;
 #ifdef INET6
 	struct sockaddr_in6 *fin6, *lin6;
 #endif
 	int error;
 
 	inp = NULL;
 #ifdef INET6
 	fin6 = lin6 = NULL;
 #endif
 	error = 0;
 
 	if (req->oldptr != NULL || req->oldlen != 0)
 		return (EINVAL);
 	if (req->newptr == NULL)
 		return (EPERM);
 	if (req->newlen < sizeof(addrs))
 		return (ENOMEM);
 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
 	if (error)
 		return (error);
 
 	switch (addrs[0].ss_family) {
 #ifdef INET6
 	case AF_INET6:
 		fin6 = (struct sockaddr_in6 *)&addrs[0];
 		lin6 = (struct sockaddr_in6 *)&addrs[1];
 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
 			return (EINVAL);
 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
 				return (EINVAL);
 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
 #ifdef INET
 			fin = (struct sockaddr_in *)&addrs[0];
 			lin = (struct sockaddr_in *)&addrs[1];
 #endif
 			break;
 		}
 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
 		if (error)
 			return (error);
 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
 		if (error)
 			return (error);
 		break;
 #endif
 #ifdef INET
 	case AF_INET:
 		fin = (struct sockaddr_in *)&addrs[0];
 		lin = (struct sockaddr_in *)&addrs[1];
 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
 		    lin->sin_len != sizeof(struct sockaddr_in))
 			return (EINVAL);
 		break;
 #endif
 	default:
 		return (EINVAL);
 	}
 	NET_EPOCH_ENTER(et);
 	switch (addrs[0].ss_family) {
 #ifdef INET6
 	case AF_INET6:
 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
 		    INPLOOKUP_WLOCKPCB, NULL);
 		break;
 #endif
 #ifdef INET
 	case AF_INET:
 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
 		break;
 #endif
 	}
 	if (inp != NULL) {
 		if (!SOLISTENING(inp->inp_socket)) {
 			tp = intotcpcb(inp);
 			tp = tcp_drop(tp, ECONNABORTED);
 			if (tp != NULL)
 				INP_WUNLOCK(inp);
 		} else
 			INP_WUNLOCK(inp);
 	} else
 		error = ESRCH;
 	NET_EPOCH_EXIT(et);
 	return (error);
 }
 
 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP |
     CTLFLAG_NEEDGIANT, NULL, 0, sysctl_drop, "",
     "Drop TCP connection");
 
 static int
 tcp_sysctl_setsockopt(SYSCTL_HANDLER_ARGS)
 {
 	return (sysctl_setsockopt(oidp, arg1, arg2, req, &V_tcbinfo,
 	    &tcp_ctloutput_set));
 }
 
 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, setsockopt,
     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP |
     CTLFLAG_MPSAFE, NULL, 0, tcp_sysctl_setsockopt, "",
     "Set socket option for TCP endpoint");
 
 #ifdef KERN_TLS
 static int
 sysctl_switch_tls(SYSCTL_HANDLER_ARGS)
 {
 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
 	struct sockaddr_storage addrs[2];
 	struct inpcb *inp;
 #ifdef INET
 	struct sockaddr_in *fin = NULL, *lin = NULL;
 #endif
 	struct epoch_tracker et;
 #ifdef INET6
 	struct sockaddr_in6 *fin6, *lin6;
 #endif
 	int error;
 
 	inp = NULL;
 #ifdef INET6
 	fin6 = lin6 = NULL;
 #endif
 	error = 0;
 
 	if (req->oldptr != NULL || req->oldlen != 0)
 		return (EINVAL);
 	if (req->newptr == NULL)
 		return (EPERM);
 	if (req->newlen < sizeof(addrs))
 		return (ENOMEM);
 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
 	if (error)
 		return (error);
 
 	switch (addrs[0].ss_family) {
 #ifdef INET6
 	case AF_INET6:
 		fin6 = (struct sockaddr_in6 *)&addrs[0];
 		lin6 = (struct sockaddr_in6 *)&addrs[1];
 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
 			return (EINVAL);
 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
 				return (EINVAL);
 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
 #ifdef INET
 			fin = (struct sockaddr_in *)&addrs[0];
 			lin = (struct sockaddr_in *)&addrs[1];
 #endif
 			break;
 		}
 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
 		if (error)
 			return (error);
 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
 		if (error)
 			return (error);
 		break;
 #endif
 #ifdef INET
 	case AF_INET:
 		fin = (struct sockaddr_in *)&addrs[0];
 		lin = (struct sockaddr_in *)&addrs[1];
 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
 		    lin->sin_len != sizeof(struct sockaddr_in))
 			return (EINVAL);
 		break;
 #endif
 	default:
 		return (EINVAL);
 	}
 	NET_EPOCH_ENTER(et);
 	switch (addrs[0].ss_family) {
 #ifdef INET6
 	case AF_INET6:
 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
 		    INPLOOKUP_WLOCKPCB, NULL);
 		break;
 #endif
 #ifdef INET
 	case AF_INET:
 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
 		break;
 #endif
 	}
 	NET_EPOCH_EXIT(et);
 	if (inp != NULL) {
 		struct socket *so;
 
 		so = inp->inp_socket;
 		soref(so);
 		error = ktls_set_tx_mode(so,
 		    arg2 == 0 ? TCP_TLS_MODE_SW : TCP_TLS_MODE_IFNET);
 		INP_WUNLOCK(inp);
 		sorele(so);
 	} else
 		error = ESRCH;
 	return (error);
 }
 
 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, switch_to_sw_tls,
     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP |
     CTLFLAG_NEEDGIANT, NULL, 0, sysctl_switch_tls, "",
     "Switch TCP connection to SW TLS");
 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, switch_to_ifnet_tls,
     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP |
     CTLFLAG_NEEDGIANT, NULL, 1, sysctl_switch_tls, "",
     "Switch TCP connection to ifnet TLS");
 #endif
 
 /*
  * Generate a standardized TCP log line for use throughout the
  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
  * allow use in the interrupt context.
  *
  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
  * NB: The function may return NULL if memory allocation failed.
  *
  * Due to header inclusion and ordering limitations the struct ip
  * and ip6_hdr pointers have to be passed as void pointers.
  */
 char *
 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, const void *ip4hdr,
     const void *ip6hdr)
 {
 
 	/* Is logging enabled? */
 	if (V_tcp_log_in_vain == 0)
 		return (NULL);
 
 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
 }
 
 char *
 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, const void *ip4hdr,
     const void *ip6hdr)
 {
 
 	/* Is logging enabled? */
 	if (tcp_log_debug == 0)
 		return (NULL);
 
 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
 }
 
 static char *
 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, const void *ip4hdr,
     const void *ip6hdr)
 {
 	char *s, *sp;
 	size_t size;
 #ifdef INET
 	const struct ip *ip = (const struct ip *)ip4hdr;
 #endif
 #ifdef INET6
 	const struct ip6_hdr *ip6 = (const struct ip6_hdr *)ip6hdr;
 #endif /* INET6 */
 
 	/*
 	 * The log line looks like this:
 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
 	 */
 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
 	    sizeof(PRINT_TH_FLAGS) + 1 +
 #ifdef INET6
 	    2 * INET6_ADDRSTRLEN;
 #else
 	    2 * INET_ADDRSTRLEN;
 #endif /* INET6 */
 
 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
 	if (s == NULL)
 		return (NULL);
 
 	strcat(s, "TCP: [");
 	sp = s + strlen(s);
 
 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
 		inet_ntoa_r(inc->inc_faddr, sp);
 		sp = s + strlen(s);
 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
 		sp = s + strlen(s);
 		inet_ntoa_r(inc->inc_laddr, sp);
 		sp = s + strlen(s);
 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
 #ifdef INET6
 	} else if (inc) {
 		ip6_sprintf(sp, &inc->inc6_faddr);
 		sp = s + strlen(s);
 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
 		sp = s + strlen(s);
 		ip6_sprintf(sp, &inc->inc6_laddr);
 		sp = s + strlen(s);
 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
 	} else if (ip6 && th) {
 		ip6_sprintf(sp, &ip6->ip6_src);
 		sp = s + strlen(s);
 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
 		sp = s + strlen(s);
 		ip6_sprintf(sp, &ip6->ip6_dst);
 		sp = s + strlen(s);
 		sprintf(sp, "]:%i", ntohs(th->th_dport));
 #endif /* INET6 */
 #ifdef INET
 	} else if (ip && th) {
 		inet_ntoa_r(ip->ip_src, sp);
 		sp = s + strlen(s);
 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
 		sp = s + strlen(s);
 		inet_ntoa_r(ip->ip_dst, sp);
 		sp = s + strlen(s);
 		sprintf(sp, "]:%i", ntohs(th->th_dport));
 #endif /* INET */
 	} else {
 		free(s, M_TCPLOG);
 		return (NULL);
 	}
 	sp = s + strlen(s);
 	if (th)
 		sprintf(sp, " tcpflags 0x%b", tcp_get_flags(th), PRINT_TH_FLAGS);
 	if (*(s + size - 1) != '\0')
 		panic("%s: string too long", __func__);
 	return (s);
 }
 
 /*
  * A subroutine which makes it easy to track TCP state changes with DTrace.
  * This function shouldn't be called for t_state initializations that don't
  * correspond to actual TCP state transitions.
  */
 void
 tcp_state_change(struct tcpcb *tp, int newstate)
 {
 #if defined(KDTRACE_HOOKS)
 	int pstate = tp->t_state;
 #endif
 
 	TCPSTATES_DEC(tp->t_state);
 	TCPSTATES_INC(newstate);
 	tp->t_state = newstate;
 	TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate);
 }
 
 /*
  * Create an external-format (``xtcpcb'') structure using the information in
  * the kernel-format tcpcb structure pointed to by tp.  This is done to
  * reduce the spew of irrelevant information over this interface, to isolate
  * user code from changes in the kernel structure, and potentially to provide
  * information-hiding if we decide that some of this information should be
  * hidden from users.
  */
 void
 tcp_inptoxtp(const struct inpcb *inp, struct xtcpcb *xt)
 {
 	struct tcpcb *tp = intotcpcb(inp);
 	sbintime_t now;
 
 	bzero(xt, sizeof(*xt));
 	xt->t_state = tp->t_state;
 	xt->t_logstate = tcp_get_bblog_state(tp);
 	xt->t_flags = tp->t_flags;
 	xt->t_sndzerowin = tp->t_sndzerowin;
 	xt->t_sndrexmitpack = tp->t_sndrexmitpack;
 	xt->t_rcvoopack = tp->t_rcvoopack;
 	xt->t_rcv_wnd = tp->rcv_wnd;
 	xt->t_snd_wnd = tp->snd_wnd;
 	xt->t_snd_cwnd = tp->snd_cwnd;
 	xt->t_snd_ssthresh = tp->snd_ssthresh;
 	xt->t_dsack_bytes = tp->t_dsack_bytes;
 	xt->t_dsack_tlp_bytes = tp->t_dsack_tlp_bytes;
 	xt->t_dsack_pack = tp->t_dsack_pack;
 	xt->t_maxseg = tp->t_maxseg;
 	xt->xt_ecn = (tp->t_flags2 & TF2_ECN_PERMIT) ? 1 : 0 +
 		     (tp->t_flags2 & TF2_ACE_PERMIT) ? 2 : 0;
 
 	now = getsbinuptime();
 #define	COPYTIMER(which,where)	do {					\
 	if (tp->t_timers[which] != SBT_MAX)				\
 		xt->where = (tp->t_timers[which] - now) / SBT_1MS;	\
 	else								\
 		xt->where = 0;						\
 } while (0)
 	COPYTIMER(TT_DELACK, tt_delack);
 	COPYTIMER(TT_REXMT, tt_rexmt);
 	COPYTIMER(TT_PERSIST, tt_persist);
 	COPYTIMER(TT_KEEP, tt_keep);
 	COPYTIMER(TT_2MSL, tt_2msl);
 #undef COPYTIMER
 	xt->t_rcvtime = 1000 * (ticks - tp->t_rcvtime) / hz;
 
 	xt->xt_encaps_port = tp->t_port;
 	bcopy(tp->t_fb->tfb_tcp_block_name, xt->xt_stack,
 	    TCP_FUNCTION_NAME_LEN_MAX);
 	bcopy(CC_ALGO(tp)->name, xt->xt_cc, TCP_CA_NAME_MAX);
 #ifdef TCP_BLACKBOX
 	(void)tcp_log_get_id(tp, xt->xt_logid);
 #endif
 
 	xt->xt_len = sizeof(struct xtcpcb);
 	in_pcbtoxinpcb(inp, &xt->xt_inp);
 	/*
 	 * TCP doesn't use inp_ppcb pointer, we embed inpcb into tcpcb.
 	 * Fixup the pointer that in_pcbtoxinpcb() has set.  When printing
 	 * TCP netstat(1) used to use this pointer, so this fixup needs to
 	 * stay for stable/14.
 	 */
 	xt->xt_inp.inp_ppcb = (uintptr_t)tp;
 }
 
 void
 tcp_log_end_status(struct tcpcb *tp, uint8_t status)
 {
 	uint32_t bit, i;
 
 	if ((tp == NULL) ||
 	    (status > TCP_EI_STATUS_MAX_VALUE) ||
 	    (status == 0)) {
 		/* Invalid */
 		return;
 	}
 	if (status > (sizeof(uint32_t) * 8)) {
 		/* Should this be a KASSERT? */
 		return;
 	}
 	bit = 1U << (status - 1);
 	if (bit & tp->t_end_info_status) {
 		/* already logged */
 		return;
 	}
 	for (i = 0; i < TCP_END_BYTE_INFO; i++) {
 		if (tp->t_end_info_bytes[i] == TCP_EI_EMPTY_SLOT) {
 			tp->t_end_info_bytes[i] = status;
 			tp->t_end_info_status |= bit;
 			break;
 		}
 	}
 }
 
 int
 tcp_can_enable_pacing(void)
 {
 
 	if ((tcp_pacing_limit == -1) ||
 	    (tcp_pacing_limit > number_of_tcp_connections_pacing)) {
 		atomic_fetchadd_int(&number_of_tcp_connections_pacing, 1);
 		shadow_num_connections = number_of_tcp_connections_pacing;
 		return (1);
 	} else {
 		counter_u64_add(tcp_pacing_failures, 1);
 		return (0);
 	}
 }
 
 static uint8_t tcp_pacing_warning = 0;
 
 void
 tcp_decrement_paced_conn(void)
 {
 	uint32_t ret;
 
 	ret = atomic_fetchadd_int(&number_of_tcp_connections_pacing, -1);
 	shadow_num_connections = number_of_tcp_connections_pacing;
 	KASSERT(ret != 0, ("tcp_paced_connection_exits -1 would cause wrap?"));
 	if (ret == 0) {
 		if (tcp_pacing_limit != -1) {
 			printf("Warning all pacing is now disabled, count decrements invalidly!\n");
 			tcp_pacing_limit = 0;
 		} else if (tcp_pacing_warning == 0) {
 			printf("Warning pacing count is invalid, invalid decrement\n");
 			tcp_pacing_warning = 1;
 		}
 	}
 }
 
 static void
 tcp_default_switch_failed(struct tcpcb *tp)
 {
 	/*
 	 * If a switch fails we only need to
 	 * care about two things:
 	 * a) The t_flags2
 	 * and
 	 * b) The timer granularity.
 	 * Timeouts, at least for now, don't use the
 	 * old callout system in the other stacks so
 	 * those are hopefully safe.
 	 */
 	tcp_lro_features_off(tp);
 	tcp_change_time_units(tp, TCP_TMR_GRANULARITY_TICKS);
 }
 
 #ifdef TCP_ACCOUNTING
 int
 tcp_do_ack_accounting(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to, uint32_t tiwin, int mss)
 {
 	if (SEQ_LT(th->th_ack, tp->snd_una)) {
 		/* Do we have a SACK? */
 		if (to->to_flags & TOF_SACK) {
 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
 				tp->tcp_cnt_counters[ACK_SACK]++;
 			}
 			return (ACK_SACK);
 		} else {
 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
 				tp->tcp_cnt_counters[ACK_BEHIND]++;
 			}
 			return (ACK_BEHIND);
 		}
 	} else if (th->th_ack == tp->snd_una) {
 		/* Do we have a SACK? */
 		if (to->to_flags & TOF_SACK) {
 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
 				tp->tcp_cnt_counters[ACK_SACK]++;
 			}
 			return (ACK_SACK);
 		} else if (tiwin != tp->snd_wnd) {
 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
 				tp->tcp_cnt_counters[ACK_RWND]++;
 			}
 			return (ACK_RWND);
 		} else {
 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
 				tp->tcp_cnt_counters[ACK_DUPACK]++;
 			}
 			return (ACK_DUPACK);
 		}
 	} else {
 		if (!SEQ_GT(th->th_ack, tp->snd_max)) {
 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
 				tp->tcp_cnt_counters[CNT_OF_ACKS_IN] += (((th->th_ack - tp->snd_una) + mss - 1)/mss);
 			}
 		}
 		if (to->to_flags & TOF_SACK) {
 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
 				tp->tcp_cnt_counters[ACK_CUMACK_SACK]++;
 			}
 			return (ACK_CUMACK_SACK);
 		} else {
 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
 				tp->tcp_cnt_counters[ACK_CUMACK]++;
 			}
 			return (ACK_CUMACK);
 		}
 	}
 }
 #endif
 
 void
 tcp_change_time_units(struct tcpcb *tp, int granularity)
 {
 	if (tp->t_tmr_granularity == granularity) {
 		/* We are there */
 		return;
 	}
 	if (granularity == TCP_TMR_GRANULARITY_USEC) {
 		KASSERT((tp->t_tmr_granularity == TCP_TMR_GRANULARITY_TICKS),
 			("Granularity is not TICKS its %u in tp:%p",
 			 tp->t_tmr_granularity, tp));
 		tp->t_rttlow = TICKS_2_USEC(tp->t_rttlow);
 		if (tp->t_srtt > 1) {
 			uint32_t val, frac;
 
 			val = tp->t_srtt >> TCP_RTT_SHIFT;
 			frac = tp->t_srtt & 0x1f;
 			tp->t_srtt = TICKS_2_USEC(val);
 			/*
 			 * frac is the fractional part of the srtt (if any)
 			 * but its in ticks and every bit represents
 			 * 1/32nd of a hz.
 			 */
 			if (frac) {
 				if (hz == 1000) {
 					frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE);
 				} else {
 					frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE));
 				}
 				tp->t_srtt += frac;
 			}
 		}
 		if (tp->t_rttvar) {
 			uint32_t val, frac;
 
 			val = tp->t_rttvar >> TCP_RTTVAR_SHIFT;
 			frac = tp->t_rttvar & 0x1f;
 			tp->t_rttvar = TICKS_2_USEC(val);
 			/*
 			 * frac is the fractional part of the srtt (if any)
 			 * but its in ticks and every bit represents
 			 * 1/32nd of a hz.
 			 */
 			if (frac) {
 				if (hz == 1000) {
 					frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE);
 				} else {
 					frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE));
 				}
 				tp->t_rttvar += frac;
 			}
 		}
 		tp->t_tmr_granularity = TCP_TMR_GRANULARITY_USEC;
 	} else if (granularity == TCP_TMR_GRANULARITY_TICKS) {
 		/* Convert back to ticks, with  */
 		KASSERT((tp->t_tmr_granularity == TCP_TMR_GRANULARITY_USEC),
 			("Granularity is not USEC its %u in tp:%p",
 			 tp->t_tmr_granularity, tp));
 		if (tp->t_srtt > 1) {
 			uint32_t val, frac;
 
 			val = USEC_2_TICKS(tp->t_srtt);
 			frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz);
 			tp->t_srtt = val << TCP_RTT_SHIFT;
 			/*
 			 * frac is the fractional part here is left
 			 * over from converting to hz and shifting.
 			 * We need to convert this to the 5 bit
 			 * remainder.
 			 */
 			if (frac) {
 				if (hz == 1000) {
 					frac = (((uint64_t)frac *  (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC);
 				} else {
 					frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC);
 				}
 				tp->t_srtt += frac;
 			}
 		}
 		if (tp->t_rttvar) {
 			uint32_t val, frac;
 
 			val = USEC_2_TICKS(tp->t_rttvar);
 			frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz);
 			tp->t_rttvar = val <<  TCP_RTTVAR_SHIFT;
 			/*
 			 * frac is the fractional part here is left
 			 * over from converting to hz and shifting.
 			 * We need to convert this to the 5 bit
 			 * remainder.
 			 */
 			if (frac) {
 				if (hz == 1000) {
 					frac = (((uint64_t)frac *  (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC);
 				} else {
 					frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC);
 				}
 				tp->t_rttvar += frac;
 			}
 		}
 		tp->t_rttlow = USEC_2_TICKS(tp->t_rttlow);
 		tp->t_tmr_granularity = TCP_TMR_GRANULARITY_TICKS;
 	}
 #ifdef INVARIANTS
 	else {
 		panic("Unknown granularity:%d tp:%p",
 		      granularity, tp);
 	}
 #endif	
 }
 
 void
 tcp_handle_orphaned_packets(struct tcpcb *tp)
 {
 	struct mbuf *save, *m, *prev;
 	/*
 	 * Called when a stack switch is occuring from the fini()
 	 * of the old stack. We assue the init() as already been
 	 * run of the new stack and it has set the t_flags2 to
 	 * what it supports. This function will then deal with any
 	 * differences i.e. cleanup packets that maybe queued that
 	 * the newstack does not support.
 	 */
 
 	if (tp->t_flags2 & TF2_MBUF_L_ACKS)
 		return;
 	if ((tp->t_flags2 & TF2_SUPPORTS_MBUFQ) == 0 &&
 	    !STAILQ_EMPTY(&tp->t_inqueue)) {
 		/*
 		 * It is unsafe to process the packets since a
 		 * reset may be lurking in them (its rare but it
 		 * can occur). If we were to find a RST, then we
 		 * would end up dropping the connection and the
 		 * INP lock, so when we return the caller (tcp_usrreq)
 		 * will blow up when it trys to unlock the inp.
 		 * This new stack does not do any fancy LRO features
 		 * so all we can do is toss the packets.
 		 */
 		m = STAILQ_FIRST(&tp->t_inqueue);
 		STAILQ_INIT(&tp->t_inqueue);
 		STAILQ_FOREACH_FROM_SAFE(m, &tp->t_inqueue, m_stailqpkt, save)
 			m_freem(m);
 	} else {
 		/*
 		 * Here we have a stack that does mbuf queuing but
 		 * does not support compressed ack's. We must
 		 * walk all the mbufs and discard any compressed acks.
 		 */
 		STAILQ_FOREACH_SAFE(m, &tp->t_inqueue, m_stailqpkt, save) {
 			if (m->m_flags & M_ACKCMP) {
 				if (m == STAILQ_FIRST(&tp->t_inqueue))
 					STAILQ_REMOVE_HEAD(&tp->t_inqueue,
 					    m_stailqpkt);
 				else
 					STAILQ_REMOVE_AFTER(&tp->t_inqueue,
 					    prev, m_stailqpkt);
 				m_freem(m);
 			} else
 				prev = m;
 		}
 	}
 }
 
 #ifdef TCP_REQUEST_TRK
 uint32_t
 tcp_estimate_tls_overhead(struct socket *so, uint64_t tls_usr_bytes)
 {
 #ifdef KERN_TLS
 	struct ktls_session *tls;
 	uint32_t rec_oh, records;
 
 	tls = so->so_snd.sb_tls_info;
 	if (tls == NULL)
 	    return (0);
 
 	rec_oh = tls->params.tls_hlen + tls->params.tls_tlen;
 	records = ((tls_usr_bytes + tls->params.max_frame_len - 1)/tls->params.max_frame_len);
 	return (records * rec_oh);
 #else
 	return (0);
 #endif
 }
 
 extern uint32_t tcp_stale_entry_time;
 uint32_t tcp_stale_entry_time = 250000;
 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, usrlog_stale, CTLFLAG_RW,
     &tcp_stale_entry_time, 250000, "Time that a tcpreq entry without a sendfile ages out");
 
 void
 tcp_req_log_req_info(struct tcpcb *tp, struct tcp_sendfile_track *req,
     uint16_t slot, uint8_t val, uint64_t offset, uint64_t nbytes)
 {
 	if (tcp_bblogging_on(tp)) {
 		union tcp_log_stackspecific log;
 		struct timeval tv;
 
 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
 		log.u_bbr.inhpts = tcp_in_hpts(tp);
 		log.u_bbr.flex8 = val;
 		log.u_bbr.rttProp = req->timestamp;
 		log.u_bbr.delRate = req->start;
 		log.u_bbr.cur_del_rate = req->end;
 		log.u_bbr.flex1 = req->start_seq;
 		log.u_bbr.flex2 = req->end_seq;
 		log.u_bbr.flex3 = req->flags;
 		log.u_bbr.flex4 = ((req->localtime >> 32) & 0x00000000ffffffff);
 		log.u_bbr.flex5 = (req->localtime & 0x00000000ffffffff);
 		log.u_bbr.flex7 = slot;
 		log.u_bbr.bw_inuse = offset;
 		/* nbytes = flex6 | epoch */
 		log.u_bbr.flex6 = ((nbytes >> 32) & 0x00000000ffffffff);
 		log.u_bbr.epoch = (nbytes & 0x00000000ffffffff);
 		/* cspr =  lt_epoch | pkts_out */
 		log.u_bbr.lt_epoch = ((req->cspr >> 32) & 0x00000000ffffffff);
 		log.u_bbr.pkts_out |= (req->cspr & 0x00000000ffffffff);
 		log.u_bbr.applimited = tp->t_tcpreq_closed;
 		log.u_bbr.applimited <<= 8;
 		log.u_bbr.applimited |= tp->t_tcpreq_open;
 		log.u_bbr.applimited <<= 8;
 		log.u_bbr.applimited |= tp->t_tcpreq_req;
 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
 		TCP_LOG_EVENTP(tp, NULL,
 		    &tptosocket(tp)->so_rcv,
 		    &tptosocket(tp)->so_snd,
 		    TCP_LOG_REQ_T, 0,
 		    0, &log, false, &tv);
 	}
 }
 
 void
 tcp_req_free_a_slot(struct tcpcb *tp, struct tcp_sendfile_track *ent)
 {
 	if (tp->t_tcpreq_req > 0)
 		tp->t_tcpreq_req--;
 	if (ent->flags & TCP_TRK_TRACK_FLG_OPEN) {
 		if (tp->t_tcpreq_open > 0)
 			tp->t_tcpreq_open--;
 	} else {
 		if (tp->t_tcpreq_closed > 0)
 			tp->t_tcpreq_closed--;
 	}
 	ent->flags = TCP_TRK_TRACK_FLG_EMPTY;
 }
 
 static void
 tcp_req_check_for_stale_entries(struct tcpcb *tp, uint64_t ts, int rm_oldest)
 {
 	struct tcp_sendfile_track *ent;
 	uint64_t time_delta, oldest_delta;
 	int i, oldest, oldest_set = 0, cnt_rm = 0;
 
 	for(i = 0; i < MAX_TCP_TRK_REQ; i++) {
 		ent = &tp->t_tcpreq_info[i];
 		if (ent->flags != TCP_TRK_TRACK_FLG_USED) {
 			/*
 			 * We only care about closed end ranges
 			 * that are allocated and have no sendfile
 			 * ever touching them. They would be in
 			 * state USED.
 			 */
 			continue;
 		}
 		if (ts >= ent->localtime)
 			time_delta = ts - ent->localtime;
 		else
 			time_delta = 0;
 		if (time_delta &&
 		    ((oldest_delta < time_delta) || (oldest_set == 0))) {
 			oldest_set = 1;
 			oldest = i;
 			oldest_delta = time_delta;
 		}
 		if (tcp_stale_entry_time && (time_delta >= tcp_stale_entry_time)) {
 			/*
 			 * No sendfile in a our time-limit
 			 * time to purge it.
 			 */
 			cnt_rm++;
 			tcp_req_log_req_info(tp, &tp->t_tcpreq_info[i], i, TCP_TRK_REQ_LOG_STALE,
 					      time_delta, 0);
 			tcp_req_free_a_slot(tp, ent);
 		}
 	}
 	if ((cnt_rm == 0) && rm_oldest && oldest_set) {
 		ent = &tp->t_tcpreq_info[oldest];
 		tcp_req_log_req_info(tp, &tp->t_tcpreq_info[i], i, TCP_TRK_REQ_LOG_STALE,
 				      oldest_delta, 1);
 		tcp_req_free_a_slot(tp, ent);
 	}
 }
 
 int
 tcp_req_check_for_comp(struct tcpcb *tp, tcp_seq ack_point)
 {
 	int i, ret=0;
 	struct tcp_sendfile_track *ent;
 
 	/* Clean up any old closed end requests that are now completed */
 	if (tp->t_tcpreq_req == 0)
 		return(0);
 	if (tp->t_tcpreq_closed == 0)
 		return(0);
 	for(i = 0; i < MAX_TCP_TRK_REQ; i++) {
 		ent = &tp->t_tcpreq_info[i];
 		/* Skip empty ones */
 		if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY)
 			continue;
 		/* Skip open ones */
 		if (ent->flags & TCP_TRK_TRACK_FLG_OPEN)
 			continue;
 		if (SEQ_GEQ(ack_point, ent->end_seq)) {
 			/* We are past it -- free it */
 			tcp_req_log_req_info(tp, ent,
 					      i, TCP_TRK_REQ_LOG_FREED, 0, 0);
 			tcp_req_free_a_slot(tp, ent);
 			ret++;
 		}
 	}
 	return (ret);
 }
 
 int
 tcp_req_is_entry_comp(struct tcpcb *tp, struct tcp_sendfile_track *ent, tcp_seq ack_point)
 {
 	if (tp->t_tcpreq_req == 0)
 		return(-1);
 	if (tp->t_tcpreq_closed == 0)
 		return(-1);
 	if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY)
 		return(-1);
 	if (SEQ_GEQ(ack_point, ent->end_seq)) {
 		return (1);
 	}
 	return (0);
 }
 
 struct tcp_sendfile_track *
 tcp_req_find_a_req_that_is_completed_by(struct tcpcb *tp, tcp_seq th_ack, int *ip)
 {
 	/*
 	 * Given an ack point (th_ack) walk through our entries and
 	 * return the first one found that th_ack goes past the
 	 * end_seq.
 	 */
 	struct tcp_sendfile_track *ent;
 	int i;
 
 	if (tp->t_tcpreq_req == 0) {
 		/* none open */
 		return (NULL);
 	}
 	for(i = 0; i < MAX_TCP_TRK_REQ; i++) {
 		ent = &tp->t_tcpreq_info[i];
 		if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY)
 			continue;
 		if ((ent->flags & TCP_TRK_TRACK_FLG_OPEN) == 0) {
 			if (SEQ_GEQ(th_ack, ent->end_seq)) {
 				*ip = i;
 				return (ent);
 			}
 		}
 	}
 	return (NULL);
 }
 
 struct tcp_sendfile_track *
 tcp_req_find_req_for_seq(struct tcpcb *tp, tcp_seq seq)
 {
 	struct tcp_sendfile_track *ent;
 	int i;
 
 	if (tp->t_tcpreq_req == 0) {
 		/* none open */
 		return (NULL);
 	}
 	for(i = 0; i < MAX_TCP_TRK_REQ; i++) {
 		ent = &tp->t_tcpreq_info[i];
 		tcp_req_log_req_info(tp, ent, i, TCP_TRK_REQ_LOG_SEARCH,
 				      (uint64_t)seq, 0);
 		if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY) {
 			continue;
 		}
 		if (ent->flags & TCP_TRK_TRACK_FLG_OPEN) {
 			/*
 			 * An open end request only needs to
 			 * match the beginning seq or be
 			 * all we have (once we keep going on
 			 * a open end request we may have a seq
 			 * wrap).
 			 */
 			if ((SEQ_GEQ(seq, ent->start_seq)) ||
 			    (tp->t_tcpreq_closed == 0))
 				return (ent);
 		} else {
 			/*
 			 * For this one we need to
 			 * be a bit more careful if its
 			 * completed at least.
 			 */
 			if ((SEQ_GEQ(seq, ent->start_seq)) &&
 			    (SEQ_LT(seq, ent->end_seq))) {
 				return (ent);
 			}
 		}
 	}
 	return (NULL);
 }
 
 /* Should this be in its own file tcp_req.c ? */
 struct tcp_sendfile_track *
 tcp_req_alloc_req_full(struct tcpcb *tp, struct tcp_snd_req *req, uint64_t ts, int rec_dups)
 {
 	struct tcp_sendfile_track *fil;
 	int i, allocated;
 
 	/* In case the stack does not check for completions do so now */
 	tcp_req_check_for_comp(tp, tp->snd_una);
 	/* Check for stale entries */
 	if (tp->t_tcpreq_req)
 		tcp_req_check_for_stale_entries(tp, ts,
 		    (tp->t_tcpreq_req >= MAX_TCP_TRK_REQ));
 	/* Check to see if this is a duplicate of one not started */
 	if (tp->t_tcpreq_req) {
 		for(i = 0, allocated = 0; i < MAX_TCP_TRK_REQ; i++) {
 			fil = &tp->t_tcpreq_info[i];
 			if (fil->flags != TCP_TRK_TRACK_FLG_USED)
 				continue;
 			if ((fil->timestamp == req->timestamp) &&
 			    (fil->start == req->start) &&
 			    ((fil->flags & TCP_TRK_TRACK_FLG_OPEN) ||
 			     (fil->end == req->end))) {
 				/*
 				 * We already have this request
 				 * and it has not been started with sendfile.
 				 * This probably means the user was returned
 				 * a 4xx of some sort and its going to age
 				 * out, lets not duplicate it.
 				 */
 				return(fil);
 			}
 		}
 	}
 	/* Ok if there is no room at the inn we are in trouble */
 	if (tp->t_tcpreq_req >= MAX_TCP_TRK_REQ) {
 		tcp_trace_point(tp, TCP_TP_REQ_LOG_FAIL);
 		for(i = 0; i < MAX_TCP_TRK_REQ; i++) {
 			tcp_req_log_req_info(tp, &tp->t_tcpreq_info[i],
 			    i, TCP_TRK_REQ_LOG_ALLOCFAIL, 0, 0);
 		}
 		return (NULL);
 	}
 	for(i = 0, allocated = 0; i < MAX_TCP_TRK_REQ; i++) {
 		fil = &tp->t_tcpreq_info[i];
 		if (fil->flags == TCP_TRK_TRACK_FLG_EMPTY) {
 			allocated = 1;
 			fil->flags = TCP_TRK_TRACK_FLG_USED;
 			fil->timestamp = req->timestamp;
 			fil->localtime = ts;
 			fil->start = req->start;
 			if (req->flags & TCP_LOG_HTTPD_RANGE_END) {
 				fil->end = req->end;
 			} else {
 				fil->end = 0;
 				fil->flags |= TCP_TRK_TRACK_FLG_OPEN;
 			}
 			/*
 			 * We can set the min boundaries to the TCP Sequence space,
 			 * but it might be found to be further up when sendfile
 			 * actually runs on this range (if it ever does).
 			 */
 			fil->sbcc_at_s = tptosocket(tp)->so_snd.sb_ccc;
 			fil->start_seq = tp->snd_una +
 			    tptosocket(tp)->so_snd.sb_ccc;
 			fil->end_seq = (fil->start_seq + ((uint32_t)(fil->end - fil->start)));
 			if (tptosocket(tp)->so_snd.sb_tls_info) {
 				/*
 				 * This session is doing TLS. Take a swag guess
 				 * at the overhead.
 				 */
 				fil->end_seq += tcp_estimate_tls_overhead(
 				    tptosocket(tp), (fil->end - fil->start));
 			}
 			tp->t_tcpreq_req++;
 			if (fil->flags & TCP_TRK_TRACK_FLG_OPEN)
 				tp->t_tcpreq_open++;
 			else
 				tp->t_tcpreq_closed++;
 			tcp_req_log_req_info(tp, fil, i,
 			    TCP_TRK_REQ_LOG_NEW, 0, 0);
 			break;
 		} else
 			fil = NULL;
 	}
 	return (fil);
 }
 
 void
 tcp_req_alloc_req(struct tcpcb *tp, union tcp_log_userdata *user, uint64_t ts)
 {
 	(void)tcp_req_alloc_req_full(tp, &user->tcp_req, ts, 1);
 }
 #endif
 
 void
 tcp_log_socket_option(struct tcpcb *tp, uint32_t option_num, uint32_t option_val, int err)
 {
 	if (tcp_bblogging_on(tp)) {
 		struct tcp_log_buffer *l;
 
 		l = tcp_log_event(tp, NULL,
 		        &tptosocket(tp)->so_rcv,
 		        &tptosocket(tp)->so_snd,
 		        TCP_LOG_SOCKET_OPT,
 		        err, 0, NULL, 1,
 		        NULL, NULL, 0, NULL);
 		if (l) {
 			l->tlb_flex1 = option_num;
 			l->tlb_flex2 = option_val;
 		}
 	}
 }
 
 uint32_t
 tcp_get_srtt(struct tcpcb *tp, int granularity)
 {
 	uint32_t srtt;
 
 	KASSERT(granularity == TCP_TMR_GRANULARITY_USEC ||
 	    granularity == TCP_TMR_GRANULARITY_TICKS,
 	    ("%s: called with unexpected granularity %d", __func__,
 	    granularity));
 
 	srtt = tp->t_srtt;
 
 	/*
 	 * We only support two granularities. If the stored granularity
 	 * does not match the granularity requested by the caller,
 	 * convert the stored value to the requested unit of granularity.
 	 */
 	if (tp->t_tmr_granularity != granularity) {
 		if (granularity == TCP_TMR_GRANULARITY_USEC)
 			srtt = TICKS_2_USEC(srtt);
 		else
 			srtt = USEC_2_TICKS(srtt);
 	}
 
 	/*
 	 * If the srtt is stored with ticks granularity, we need to
 	 * unshift to get the actual value. We do this after the
 	 * conversion above (if one was necessary) in order to maximize
 	 * precision.
 	 */
 	if (tp->t_tmr_granularity == TCP_TMR_GRANULARITY_TICKS)
 		srtt = srtt >> TCP_RTT_SHIFT;
 
 	return (srtt);
 }
 
 void
 tcp_account_for_send(struct tcpcb *tp, uint32_t len, uint8_t is_rxt,
     uint8_t is_tlp, bool hw_tls)
 {
 
 	if (is_tlp) {
 		tp->t_sndtlppack++;
 		tp->t_sndtlpbyte += len;
 	}
 	/* To get total bytes sent you must add t_snd_rxt_bytes to t_sndbytes */
 	if (is_rxt)
 		tp->t_snd_rxt_bytes += len;
 	else
 		tp->t_sndbytes += len;
 
 #ifdef KERN_TLS
 	if (hw_tls && is_rxt && len != 0) {
 		uint64_t rexmit_percent;
 
 		rexmit_percent = (1000ULL * tp->t_snd_rxt_bytes) /
 		    (10ULL * (tp->t_snd_rxt_bytes + tp->t_sndbytes));
 		if (rexmit_percent > ktls_ifnet_max_rexmit_pct)
 			ktls_disable_ifnet(tp);
 	}
 #endif
 }