diff --git a/usr.sbin/bhyve/bhyverun.c b/usr.sbin/bhyve/bhyverun.c index 63ca9439d6e6..4db8274335cd 100644 --- a/usr.sbin/bhyve/bhyverun.c +++ b/usr.sbin/bhyve/bhyverun.c @@ -1,1640 +1,1640 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2011 NetApp, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include __FBSDID("$FreeBSD$"); #include #ifndef WITHOUT_CAPSICUM #include #endif #include #ifdef BHYVE_SNAPSHOT #include #include #endif #include #ifdef BHYVE_SNAPSHOT #include #endif #include #include #include #include #ifndef WITHOUT_CAPSICUM #include #endif #include #include #include #include #include #ifdef BHYVE_SNAPSHOT #include #endif #include #include #include #include #include #include #include #include #ifdef BHYVE_SNAPSHOT #include #include #include #endif #include #ifndef WITHOUT_CAPSICUM #include #endif #include #include #include "bhyverun.h" #include "acpi.h" #include "atkbdc.h" #include "bootrom.h" #include "config.h" #include "inout.h" #include "debug.h" #include "e820.h" #include "fwctl.h" #include "gdb.h" #include "ioapic.h" #include "kernemu_dev.h" #include "mem.h" #include "mevent.h" #include "mptbl.h" #include "pci_emul.h" #include "pci_irq.h" #include "pci_lpc.h" #include "qemu_fwcfg.h" #include "smbiostbl.h" #ifdef BHYVE_SNAPSHOT #include "snapshot.h" #endif #include "xmsr.h" #include "spinup_ap.h" #include "rtc.h" #include "vmgenc.h" #define GUEST_NIO_PORT 0x488 /* guest upcalls via i/o port */ #define MB (1024UL * 1024) #define GB (1024UL * MB) static const char * const vmx_exit_reason_desc[] = { [EXIT_REASON_EXCEPTION] = "Exception or non-maskable interrupt (NMI)", [EXIT_REASON_EXT_INTR] = "External interrupt", [EXIT_REASON_TRIPLE_FAULT] = "Triple fault", [EXIT_REASON_INIT] = "INIT signal", [EXIT_REASON_SIPI] = "Start-up IPI (SIPI)", [EXIT_REASON_IO_SMI] = "I/O system-management interrupt (SMI)", [EXIT_REASON_SMI] = "Other SMI", [EXIT_REASON_INTR_WINDOW] = "Interrupt window", [EXIT_REASON_NMI_WINDOW] = "NMI window", [EXIT_REASON_TASK_SWITCH] = "Task switch", [EXIT_REASON_CPUID] = "CPUID", [EXIT_REASON_GETSEC] = "GETSEC", [EXIT_REASON_HLT] = "HLT", [EXIT_REASON_INVD] = "INVD", [EXIT_REASON_INVLPG] = "INVLPG", [EXIT_REASON_RDPMC] = "RDPMC", [EXIT_REASON_RDTSC] = "RDTSC", [EXIT_REASON_RSM] = "RSM", [EXIT_REASON_VMCALL] = "VMCALL", [EXIT_REASON_VMCLEAR] = "VMCLEAR", [EXIT_REASON_VMLAUNCH] = "VMLAUNCH", [EXIT_REASON_VMPTRLD] = "VMPTRLD", [EXIT_REASON_VMPTRST] = "VMPTRST", [EXIT_REASON_VMREAD] = "VMREAD", [EXIT_REASON_VMRESUME] = "VMRESUME", [EXIT_REASON_VMWRITE] = "VMWRITE", [EXIT_REASON_VMXOFF] = "VMXOFF", [EXIT_REASON_VMXON] = "VMXON", [EXIT_REASON_CR_ACCESS] = "Control-register accesses", [EXIT_REASON_DR_ACCESS] = "MOV DR", [EXIT_REASON_INOUT] = "I/O instruction", [EXIT_REASON_RDMSR] = "RDMSR", [EXIT_REASON_WRMSR] = "WRMSR", [EXIT_REASON_INVAL_VMCS] = "VM-entry failure due to invalid guest state", [EXIT_REASON_INVAL_MSR] = "VM-entry failure due to MSR loading", [EXIT_REASON_MWAIT] = "MWAIT", [EXIT_REASON_MTF] = "Monitor trap flag", [EXIT_REASON_MONITOR] = "MONITOR", [EXIT_REASON_PAUSE] = "PAUSE", [EXIT_REASON_MCE_DURING_ENTRY] = "VM-entry failure due to machine-check event", [EXIT_REASON_TPR] = "TPR below threshold", [EXIT_REASON_APIC_ACCESS] = "APIC access", [EXIT_REASON_VIRTUALIZED_EOI] = "Virtualized EOI", [EXIT_REASON_GDTR_IDTR] = "Access to GDTR or IDTR", [EXIT_REASON_LDTR_TR] = "Access to LDTR or TR", [EXIT_REASON_EPT_FAULT] = "EPT violation", [EXIT_REASON_EPT_MISCONFIG] = "EPT misconfiguration", [EXIT_REASON_INVEPT] = "INVEPT", [EXIT_REASON_RDTSCP] = "RDTSCP", [EXIT_REASON_VMX_PREEMPT] = "VMX-preemption timer expired", [EXIT_REASON_INVVPID] = "INVVPID", [EXIT_REASON_WBINVD] = "WBINVD", [EXIT_REASON_XSETBV] = "XSETBV", [EXIT_REASON_APIC_WRITE] = "APIC write", [EXIT_REASON_RDRAND] = "RDRAND", [EXIT_REASON_INVPCID] = "INVPCID", [EXIT_REASON_VMFUNC] = "VMFUNC", [EXIT_REASON_ENCLS] = "ENCLS", [EXIT_REASON_RDSEED] = "RDSEED", [EXIT_REASON_PM_LOG_FULL] = "Page-modification log full", [EXIT_REASON_XSAVES] = "XSAVES", [EXIT_REASON_XRSTORS] = "XRSTORS" }; typedef int (*vmexit_handler_t)(struct vmctx *, struct vm_exit *, int *vcpu); int guest_ncpus; uint16_t cpu_cores, cpu_sockets, cpu_threads; int raw_stdio = 0; static char *progname; static const int BSP = 0; static cpuset_t cpumask; static void vm_loop(struct vmctx *ctx, int vcpu); static struct bhyvestats { uint64_t vmexit_bogus; uint64_t vmexit_reqidle; uint64_t vmexit_hlt; uint64_t vmexit_pause; uint64_t vmexit_mtrap; uint64_t vmexit_inst_emul; uint64_t cpu_switch_rotate; uint64_t cpu_switch_direct; } stats; static struct mt_vmm_info { pthread_t mt_thr; struct vmctx *mt_ctx; int mt_vcpu; } *mt_vmm_info; static cpuset_t **vcpumap; static void usage(int code) { fprintf(stderr, "Usage: %s [-AaCDeHhPSuWwxY]\n" " %*s [-c [[cpus=]numcpus][,sockets=n][,cores=n][,threads=n]]\n" " %*s [-G port] [-k config_file] [-l lpc] [-m mem] [-o var=value]\n" " %*s [-p vcpu:hostcpu] [-r file] [-s pci] [-U uuid] vmname\n" " -A: create ACPI tables\n" " -a: local apic is in xAPIC mode (deprecated)\n" " -C: include guest memory in core file\n" " -c: number of CPUs and/or topology specification\n" " -D: destroy on power-off\n" " -e: exit on unhandled I/O access\n" " -G: start a debug server\n" " -H: vmexit from the guest on HLT\n" " -h: help\n" " -k: key=value flat config file\n" " -K: PS2 keyboard layout\n" " -l: LPC device configuration\n" " -m: memory size\n" " -o: set config 'var' to 'value'\n" " -P: vmexit from the guest on pause\n" " -p: pin 'vcpu' to 'hostcpu'\n" #ifdef BHYVE_SNAPSHOT " -r: path to checkpoint file\n" #endif " -S: guest memory cannot be swapped\n" " -s: PCI slot config\n" " -U: UUID\n" " -u: RTC keeps UTC time\n" " -W: force virtio to use single-vector MSI\n" " -w: ignore unimplemented MSRs\n" " -x: local APIC is in x2APIC mode\n" " -Y: disable MPtable generation\n", progname, (int)strlen(progname), "", (int)strlen(progname), "", (int)strlen(progname), ""); exit(code); } /* * XXX This parser is known to have the following issues: * 1. It accepts null key=value tokens ",," as setting "cpus" to an * empty string. * * The acceptance of a null specification ('-c ""') is by design to match the * manual page syntax specification, this results in a topology of 1 vCPU. */ static int topology_parse(const char *opt) { char *cp, *str, *tofree; if (*opt == '\0') { set_config_value("sockets", "1"); set_config_value("cores", "1"); set_config_value("threads", "1"); set_config_value("cpus", "1"); return (0); } tofree = str = strdup(opt); if (str == NULL) errx(4, "Failed to allocate memory"); while ((cp = strsep(&str, ",")) != NULL) { if (strncmp(cp, "cpus=", strlen("cpus=")) == 0) set_config_value("cpus", cp + strlen("cpus=")); else if (strncmp(cp, "sockets=", strlen("sockets=")) == 0) set_config_value("sockets", cp + strlen("sockets=")); else if (strncmp(cp, "cores=", strlen("cores=")) == 0) set_config_value("cores", cp + strlen("cores=")); else if (strncmp(cp, "threads=", strlen("threads=")) == 0) set_config_value("threads", cp + strlen("threads=")); else if (strchr(cp, '=') != NULL) goto out; else set_config_value("cpus", cp); } free(tofree); return (0); out: free(tofree); return (-1); } static int parse_int_value(const char *key, const char *value, int minval, int maxval) { char *cp; long lval; errno = 0; lval = strtol(value, &cp, 0); if (errno != 0 || *cp != '\0' || cp == value || lval < minval || lval > maxval) errx(4, "Invalid value for %s: '%s'", key, value); return (lval); } /* * Set the sockets, cores, threads, and guest_cpus variables based on * the configured topology. * * The limits of UINT16_MAX are due to the types passed to * vm_set_topology(). vmm.ko may enforce tighter limits. */ static void calc_topology(void) { const char *value; bool explicit_cpus; uint64_t ncpus; value = get_config_value("cpus"); if (value != NULL) { guest_ncpus = parse_int_value("cpus", value, 1, UINT16_MAX); explicit_cpus = true; } else { guest_ncpus = 1; explicit_cpus = false; } value = get_config_value("cores"); if (value != NULL) cpu_cores = parse_int_value("cores", value, 1, UINT16_MAX); else cpu_cores = 1; value = get_config_value("threads"); if (value != NULL) cpu_threads = parse_int_value("threads", value, 1, UINT16_MAX); else cpu_threads = 1; value = get_config_value("sockets"); if (value != NULL) cpu_sockets = parse_int_value("sockets", value, 1, UINT16_MAX); else cpu_sockets = guest_ncpus; /* * Compute sockets * cores * threads avoiding overflow. The * range check above insures these are 16 bit values. */ ncpus = (uint64_t)cpu_sockets * cpu_cores * cpu_threads; if (ncpus > UINT16_MAX) errx(4, "Computed number of vCPUs too high: %ju", (uintmax_t)ncpus); if (explicit_cpus) { if (guest_ncpus != (int)ncpus) errx(4, "Topology (%d sockets, %d cores, %d threads) " "does not match %d vCPUs", cpu_sockets, cpu_cores, cpu_threads, guest_ncpus); } else guest_ncpus = ncpus; } static int pincpu_parse(const char *opt) { const char *value; char *newval; char key[16]; int vcpu, pcpu; if (sscanf(opt, "%d:%d", &vcpu, &pcpu) != 2) { fprintf(stderr, "invalid format: %s\n", opt); return (-1); } if (vcpu < 0) { fprintf(stderr, "invalid vcpu '%d'\n", vcpu); return (-1); } if (pcpu < 0 || pcpu >= CPU_SETSIZE) { fprintf(stderr, "hostcpu '%d' outside valid range from " "0 to %d\n", pcpu, CPU_SETSIZE - 1); return (-1); } snprintf(key, sizeof(key), "vcpu.%d.cpuset", vcpu); value = get_config_value(key); if (asprintf(&newval, "%s%s%d", value != NULL ? value : "", value != NULL ? "," : "", pcpu) == -1) { perror("failed to build new cpuset string"); return (-1); } set_config_value(key, newval); free(newval); return (0); } static void parse_cpuset(int vcpu, const char *list, cpuset_t *set) { char *cp, *token; int pcpu, start; CPU_ZERO(set); start = -1; token = __DECONST(char *, list); for (;;) { pcpu = strtoul(token, &cp, 0); if (cp == token) errx(4, "invalid cpuset for vcpu %d: '%s'", vcpu, list); if (pcpu < 0 || pcpu >= CPU_SETSIZE) errx(4, "hostcpu '%d' outside valid range from 0 to %d", pcpu, CPU_SETSIZE - 1); switch (*cp) { case ',': case '\0': if (start >= 0) { if (start > pcpu) errx(4, "Invalid hostcpu range %d-%d", start, pcpu); while (start < pcpu) { CPU_SET(start, set); start++; } start = -1; } CPU_SET(pcpu, set); break; case '-': if (start >= 0) errx(4, "invalid cpuset for vcpu %d: '%s'", vcpu, list); start = pcpu; break; default: errx(4, "invalid cpuset for vcpu %d: '%s'", vcpu, list); } if (*cp == '\0') break; token = cp + 1; } } static void build_vcpumaps(void) { char key[16]; const char *value; int vcpu; vcpumap = calloc(guest_ncpus, sizeof(*vcpumap)); for (vcpu = 0; vcpu < guest_ncpus; vcpu++) { snprintf(key, sizeof(key), "vcpu.%d.cpuset", vcpu); value = get_config_value(key); if (value == NULL) continue; vcpumap[vcpu] = malloc(sizeof(cpuset_t)); if (vcpumap[vcpu] == NULL) err(4, "Failed to allocate cpuset for vcpu %d", vcpu); parse_cpuset(vcpu, value, vcpumap[vcpu]); } } void vm_inject_fault(void *arg, int vcpu, int vector, int errcode_valid, int errcode) { struct vmctx *ctx; int error, restart_instruction; ctx = arg; restart_instruction = 1; error = vm_inject_exception(ctx, vcpu, vector, errcode_valid, errcode, restart_instruction); assert(error == 0); } void * paddr_guest2host(struct vmctx *ctx, uintptr_t gaddr, size_t len) { return (vm_map_gpa(ctx, gaddr, len)); } #ifdef BHYVE_SNAPSHOT uintptr_t paddr_host2guest(struct vmctx *ctx, void *addr) { return (vm_rev_map_gpa(ctx, addr)); } #endif int fbsdrun_virtio_msix(void) { return (get_config_bool_default("virtio_msix", true)); } static void * fbsdrun_start_thread(void *param) { char tname[MAXCOMLEN + 1]; struct mt_vmm_info *mtp; int error, vcpu; mtp = param; vcpu = mtp->mt_vcpu; snprintf(tname, sizeof(tname), "vcpu %d", vcpu); pthread_set_name_np(mtp->mt_thr, tname); if (vcpumap[vcpu] != NULL) { error = pthread_setaffinity_np(mtp->mt_thr, sizeof(cpuset_t), vcpumap[vcpu]); assert(error == 0); } #ifdef BHYVE_SNAPSHOT checkpoint_cpu_add(vcpu); #endif gdb_cpu_add(vcpu); vm_loop(mtp->mt_ctx, vcpu); /* not reached */ exit(1); return (NULL); } static void fbsdrun_addcpu(struct vmctx *ctx, int newcpu) { int error; error = vm_activate_cpu(ctx, newcpu); if (error != 0) err(EX_OSERR, "could not activate CPU %d", newcpu); CPU_SET_ATOMIC(newcpu, &cpumask); vm_suspend_cpu(ctx, newcpu); mt_vmm_info[newcpu].mt_ctx = ctx; mt_vmm_info[newcpu].mt_vcpu = newcpu; error = pthread_create(&mt_vmm_info[newcpu].mt_thr, NULL, fbsdrun_start_thread, &mt_vmm_info[newcpu]); assert(error == 0); } static int fbsdrun_deletecpu(int vcpu) { if (!CPU_ISSET(vcpu, &cpumask)) { fprintf(stderr, "Attempting to delete unknown cpu %d\n", vcpu); exit(4); } CPU_CLR_ATOMIC(vcpu, &cpumask); return (CPU_EMPTY(&cpumask)); } static int vmexit_handle_notify(struct vmctx *ctx __unused, struct vm_exit *vme __unused, int *pvcpu __unused, uint32_t eax __unused) { #if BHYVE_DEBUG /* * put guest-driven debug here */ #endif return (VMEXIT_CONTINUE); } static int vmexit_inout(struct vmctx *ctx, struct vm_exit *vme, int *pvcpu) { int error; int bytes, port, in, out; int vcpu; vcpu = *pvcpu; port = vme->u.inout.port; bytes = vme->u.inout.bytes; in = vme->u.inout.in; out = !in; /* Extra-special case of host notifications */ if (out && port == GUEST_NIO_PORT) { error = vmexit_handle_notify(ctx, vme, pvcpu, vme->u.inout.eax); return (error); } error = emulate_inout(ctx, vcpu, vme); if (error) { fprintf(stderr, "Unhandled %s%c 0x%04x at 0x%lx\n", in ? "in" : "out", bytes == 1 ? 'b' : (bytes == 2 ? 'w' : 'l'), port, vme->rip); return (VMEXIT_ABORT); } else { return (VMEXIT_CONTINUE); } } static int vmexit_rdmsr(struct vmctx *ctx, struct vm_exit *vme, int *pvcpu) { uint64_t val; uint32_t eax, edx; int error; val = 0; error = emulate_rdmsr(ctx, *pvcpu, vme->u.msr.code, &val); if (error != 0) { fprintf(stderr, "rdmsr to register %#x on vcpu %d\n", vme->u.msr.code, *pvcpu); if (get_config_bool("x86.strictmsr")) { vm_inject_gp(ctx, *pvcpu); return (VMEXIT_CONTINUE); } } eax = val; error = vm_set_register(ctx, *pvcpu, VM_REG_GUEST_RAX, eax); assert(error == 0); edx = val >> 32; error = vm_set_register(ctx, *pvcpu, VM_REG_GUEST_RDX, edx); assert(error == 0); return (VMEXIT_CONTINUE); } static int vmexit_wrmsr(struct vmctx *ctx, struct vm_exit *vme, int *pvcpu) { int error; error = emulate_wrmsr(ctx, *pvcpu, vme->u.msr.code, vme->u.msr.wval); if (error != 0) { fprintf(stderr, "wrmsr to register %#x(%#lx) on vcpu %d\n", vme->u.msr.code, vme->u.msr.wval, *pvcpu); if (get_config_bool("x86.strictmsr")) { vm_inject_gp(ctx, *pvcpu); return (VMEXIT_CONTINUE); } } return (VMEXIT_CONTINUE); } #define DEBUG_EPT_MISCONFIG #ifdef DEBUG_EPT_MISCONFIG #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400 static uint64_t ept_misconfig_gpa, ept_misconfig_pte[4]; static int ept_misconfig_ptenum; #endif static const char * vmexit_vmx_desc(uint32_t exit_reason) { if (exit_reason >= nitems(vmx_exit_reason_desc) || vmx_exit_reason_desc[exit_reason] == NULL) return ("Unknown"); return (vmx_exit_reason_desc[exit_reason]); } static int vmexit_vmx(struct vmctx *ctx, struct vm_exit *vme, int *pvcpu) { fprintf(stderr, "vm exit[%d]\n", *pvcpu); fprintf(stderr, "\treason\t\tVMX\n"); fprintf(stderr, "\trip\t\t0x%016lx\n", vme->rip); fprintf(stderr, "\tinst_length\t%d\n", vme->inst_length); fprintf(stderr, "\tstatus\t\t%d\n", vme->u.vmx.status); fprintf(stderr, "\texit_reason\t%u (%s)\n", vme->u.vmx.exit_reason, vmexit_vmx_desc(vme->u.vmx.exit_reason)); fprintf(stderr, "\tqualification\t0x%016lx\n", vme->u.vmx.exit_qualification); fprintf(stderr, "\tinst_type\t\t%d\n", vme->u.vmx.inst_type); fprintf(stderr, "\tinst_error\t\t%d\n", vme->u.vmx.inst_error); #ifdef DEBUG_EPT_MISCONFIG if (vme->u.vmx.exit_reason == EXIT_REASON_EPT_MISCONFIG) { vm_get_register(ctx, *pvcpu, VMCS_IDENT(VMCS_GUEST_PHYSICAL_ADDRESS), &ept_misconfig_gpa); vm_get_gpa_pmap(ctx, ept_misconfig_gpa, ept_misconfig_pte, &ept_misconfig_ptenum); fprintf(stderr, "\tEPT misconfiguration:\n"); fprintf(stderr, "\t\tGPA: %#lx\n", ept_misconfig_gpa); fprintf(stderr, "\t\tPTE(%d): %#lx %#lx %#lx %#lx\n", ept_misconfig_ptenum, ept_misconfig_pte[0], ept_misconfig_pte[1], ept_misconfig_pte[2], ept_misconfig_pte[3]); } #endif /* DEBUG_EPT_MISCONFIG */ return (VMEXIT_ABORT); } static int vmexit_svm(struct vmctx *ctx __unused, struct vm_exit *vme, int *pvcpu) { fprintf(stderr, "vm exit[%d]\n", *pvcpu); fprintf(stderr, "\treason\t\tSVM\n"); fprintf(stderr, "\trip\t\t0x%016lx\n", vme->rip); fprintf(stderr, "\tinst_length\t%d\n", vme->inst_length); fprintf(stderr, "\texitcode\t%#lx\n", vme->u.svm.exitcode); fprintf(stderr, "\texitinfo1\t%#lx\n", vme->u.svm.exitinfo1); fprintf(stderr, "\texitinfo2\t%#lx\n", vme->u.svm.exitinfo2); return (VMEXIT_ABORT); } static int vmexit_bogus(struct vmctx *ctx __unused, struct vm_exit *vme, int *pvcpu __unused) { assert(vme->inst_length == 0); stats.vmexit_bogus++; return (VMEXIT_CONTINUE); } static int vmexit_reqidle(struct vmctx *ctx __unused, struct vm_exit *vme, int *pvcpu __unused) { assert(vme->inst_length == 0); stats.vmexit_reqidle++; return (VMEXIT_CONTINUE); } static int vmexit_hlt(struct vmctx *ctx __unused, struct vm_exit *vme __unused, int *pvcpu __unused) { stats.vmexit_hlt++; /* * Just continue execution with the next instruction. We use * the HLT VM exit as a way to be friendly with the host * scheduler. */ return (VMEXIT_CONTINUE); } static int vmexit_pause(struct vmctx *ctx __unused, struct vm_exit *vme __unused, int *pvcpu __unused) { stats.vmexit_pause++; return (VMEXIT_CONTINUE); } static int vmexit_mtrap(struct vmctx *ctx __unused, struct vm_exit *vme, int *pvcpu) { assert(vme->inst_length == 0); stats.vmexit_mtrap++; #ifdef BHYVE_SNAPSHOT checkpoint_cpu_suspend(*pvcpu); #endif gdb_cpu_mtrap(*pvcpu); #ifdef BHYVE_SNAPSHOT checkpoint_cpu_resume(*pvcpu); #endif return (VMEXIT_CONTINUE); } static int vmexit_inst_emul(struct vmctx *ctx, struct vm_exit *vme, int *pvcpu) { int err, i, cs_d; struct vie *vie; enum vm_cpu_mode mode; stats.vmexit_inst_emul++; vie = &vme->u.inst_emul.vie; if (!vie->decoded) { /* * Attempt to decode in userspace as a fallback. This allows * updating instruction decode in bhyve without rebooting the * kernel (rapid prototyping), albeit with much slower * emulation. */ vie_restart(vie); mode = vme->u.inst_emul.paging.cpu_mode; cs_d = vme->u.inst_emul.cs_d; if (vmm_decode_instruction(mode, cs_d, vie) != 0) goto fail; if (vm_set_register(ctx, *pvcpu, VM_REG_GUEST_RIP, vme->rip + vie->num_processed) != 0) goto fail; } err = emulate_mem(ctx, *pvcpu, vme->u.inst_emul.gpa, vie, &vme->u.inst_emul.paging); if (err) { if (err == ESRCH) { EPRINTLN("Unhandled memory access to 0x%lx\n", vme->u.inst_emul.gpa); } goto fail; } return (VMEXIT_CONTINUE); fail: fprintf(stderr, "Failed to emulate instruction sequence [ "); for (i = 0; i < vie->num_valid; i++) fprintf(stderr, "%02x", vie->inst[i]); FPRINTLN(stderr, " ] at 0x%lx", vme->rip); return (VMEXIT_ABORT); } static pthread_mutex_t resetcpu_mtx = PTHREAD_MUTEX_INITIALIZER; static pthread_cond_t resetcpu_cond = PTHREAD_COND_INITIALIZER; static int vmexit_suspend(struct vmctx *ctx, struct vm_exit *vme, int *pvcpu) { enum vm_suspend_how how; how = vme->u.suspended.how; fbsdrun_deletecpu(*pvcpu); if (*pvcpu != BSP) { pthread_mutex_lock(&resetcpu_mtx); pthread_cond_signal(&resetcpu_cond); pthread_mutex_unlock(&resetcpu_mtx); pthread_exit(NULL); } pthread_mutex_lock(&resetcpu_mtx); while (!CPU_EMPTY(&cpumask)) { pthread_cond_wait(&resetcpu_cond, &resetcpu_mtx); } pthread_mutex_unlock(&resetcpu_mtx); switch (how) { case VM_SUSPEND_RESET: exit(0); case VM_SUSPEND_POWEROFF: if (get_config_bool_default("destroy_on_poweroff", false)) vm_destroy(ctx); exit(1); case VM_SUSPEND_HALT: exit(2); case VM_SUSPEND_TRIPLEFAULT: exit(3); default: fprintf(stderr, "vmexit_suspend: invalid reason %d\n", how); exit(100); } return (0); /* NOTREACHED */ } static int vmexit_debug(struct vmctx *ctx __unused, struct vm_exit *vme __unused, int *pvcpu) { #ifdef BHYVE_SNAPSHOT checkpoint_cpu_suspend(*pvcpu); #endif gdb_cpu_suspend(*pvcpu); #ifdef BHYVE_SNAPSHOT checkpoint_cpu_resume(*pvcpu); #endif /* * XXX-MJ sleep for a short period to avoid chewing up the CPU in the * window between activation of the vCPU thread and the STARTUP IPI. */ usleep(1000); return (VMEXIT_CONTINUE); } static int vmexit_breakpoint(struct vmctx *ctx __unused, struct vm_exit *vme, int *pvcpu) { gdb_cpu_breakpoint(*pvcpu, vme); return (VMEXIT_CONTINUE); } static int vmexit_ipi(struct vmctx *ctx, struct vm_exit *vme, int *pvcpu __unused) { int error = -1; int i; switch (vme->u.ipi.mode) { case APIC_DELMODE_INIT: CPU_FOREACH_ISSET(i, &vme->u.ipi.dmask) { error = vm_suspend_cpu(ctx, i); if (error) { warnx("%s: failed to suspend cpu %d\n", __func__, i); break; } } break; case APIC_DELMODE_STARTUP: CPU_FOREACH_ISSET(i, &vme->u.ipi.dmask) { spinup_ap(ctx, i, vme->u.ipi.vector << PAGE_SHIFT); } error = 0; break; default: break; } return (error); } static vmexit_handler_t handler[VM_EXITCODE_MAX] = { [VM_EXITCODE_INOUT] = vmexit_inout, [VM_EXITCODE_INOUT_STR] = vmexit_inout, [VM_EXITCODE_VMX] = vmexit_vmx, [VM_EXITCODE_SVM] = vmexit_svm, [VM_EXITCODE_BOGUS] = vmexit_bogus, [VM_EXITCODE_REQIDLE] = vmexit_reqidle, [VM_EXITCODE_RDMSR] = vmexit_rdmsr, [VM_EXITCODE_WRMSR] = vmexit_wrmsr, [VM_EXITCODE_MTRAP] = vmexit_mtrap, [VM_EXITCODE_INST_EMUL] = vmexit_inst_emul, [VM_EXITCODE_SUSPENDED] = vmexit_suspend, [VM_EXITCODE_TASK_SWITCH] = vmexit_task_switch, [VM_EXITCODE_DEBUG] = vmexit_debug, [VM_EXITCODE_BPT] = vmexit_breakpoint, [VM_EXITCODE_IPI] = vmexit_ipi, }; static void vm_loop(struct vmctx *ctx, int vcpu) { struct vm_exit vme; int error, rc; enum vm_exitcode exitcode; cpuset_t active_cpus; error = vm_active_cpus(ctx, &active_cpus); assert(CPU_ISSET(vcpu, &active_cpus)); while (1) { error = vm_run(ctx, vcpu, &vme); if (error != 0) break; exitcode = vme.exitcode; if (exitcode >= VM_EXITCODE_MAX || handler[exitcode] == NULL) { fprintf(stderr, "vm_loop: unexpected exitcode 0x%x\n", exitcode); exit(4); } rc = (*handler[exitcode])(ctx, &vme, &vcpu); switch (rc) { case VMEXIT_CONTINUE: break; case VMEXIT_ABORT: abort(); default: exit(4); } } fprintf(stderr, "vm_run error %d, errno %d\n", error, errno); } static int num_vcpus_allowed(struct vmctx *ctx) { uint16_t sockets, cores, threads, maxcpus; int tmp, error; /* * The guest is allowed to spinup more than one processor only if the * UNRESTRICTED_GUEST capability is available. */ error = vm_get_capability(ctx, BSP, VM_CAP_UNRESTRICTED_GUEST, &tmp); if (error != 0) return (1); error = vm_get_topology(ctx, &sockets, &cores, &threads, &maxcpus); if (error == 0) return (maxcpus); else return (1); } static void fbsdrun_set_capabilities(struct vmctx *ctx, int cpu) { int err, tmp; if (get_config_bool_default("x86.vmexit_on_hlt", false)) { err = vm_get_capability(ctx, cpu, VM_CAP_HALT_EXIT, &tmp); if (err < 0) { fprintf(stderr, "VM exit on HLT not supported\n"); exit(4); } vm_set_capability(ctx, cpu, VM_CAP_HALT_EXIT, 1); if (cpu == BSP) handler[VM_EXITCODE_HLT] = vmexit_hlt; } if (get_config_bool_default("x86.vmexit_on_pause", false)) { /* * pause exit support required for this mode */ err = vm_get_capability(ctx, cpu, VM_CAP_PAUSE_EXIT, &tmp); if (err < 0) { fprintf(stderr, "SMP mux requested, no pause support\n"); exit(4); } vm_set_capability(ctx, cpu, VM_CAP_PAUSE_EXIT, 1); if (cpu == BSP) handler[VM_EXITCODE_PAUSE] = vmexit_pause; } if (get_config_bool_default("x86.x2apic", false)) err = vm_set_x2apic_state(ctx, cpu, X2APIC_ENABLED); else err = vm_set_x2apic_state(ctx, cpu, X2APIC_DISABLED); if (err) { fprintf(stderr, "Unable to set x2apic state (%d)\n", err); exit(4); } vm_set_capability(ctx, cpu, VM_CAP_ENABLE_INVPCID, 1); err = vm_set_capability(ctx, cpu, VM_CAP_IPI_EXIT, 1); assert(err == 0); } static struct vmctx * do_open(const char *vmname) { struct vmctx *ctx; int error; bool reinit, romboot; reinit = romboot = false; if (lpc_bootrom()) romboot = true; error = vm_create(vmname); if (error) { if (errno == EEXIST) { if (romboot) { reinit = true; } else { /* * The virtual machine has been setup by the * userspace bootloader. */ } } else { perror("vm_create"); exit(4); } } else { if (!romboot) { /* * If the virtual machine was just created then a * bootrom must be configured to boot it. */ fprintf(stderr, "virtual machine cannot be booted\n"); exit(4); } } ctx = vm_open(vmname); if (ctx == NULL) { perror("vm_open"); exit(4); } #ifndef WITHOUT_CAPSICUM if (vm_limit_rights(ctx) != 0) err(EX_OSERR, "vm_limit_rights"); #endif if (reinit) { error = vm_reinit(ctx); if (error) { perror("vm_reinit"); exit(4); } } error = vm_set_topology(ctx, cpu_sockets, cpu_cores, cpu_threads, 0); if (error) errx(EX_OSERR, "vm_set_topology"); return (ctx); } static void spinup_vcpu(struct vmctx *ctx, int vcpu) { int error; if (vcpu != BSP) { fbsdrun_set_capabilities(ctx, vcpu); /* * Enable the 'unrestricted guest' mode for APs. * * APs startup in power-on 16-bit mode. */ error = vm_set_capability(ctx, vcpu, VM_CAP_UNRESTRICTED_GUEST, 1); assert(error == 0); } fbsdrun_addcpu(ctx, vcpu); } static bool parse_config_option(const char *option) { const char *value; char *path; value = strchr(option, '='); if (value == NULL || value[1] == '\0') return (false); path = strndup(option, value - option); if (path == NULL) err(4, "Failed to allocate memory"); set_config_value(path, value + 1); return (true); } static void parse_simple_config_file(const char *path) { FILE *fp; char *line, *cp; size_t linecap; unsigned int lineno; fp = fopen(path, "r"); if (fp == NULL) err(4, "Failed to open configuration file %s", path); line = NULL; linecap = 0; lineno = 1; for (lineno = 1; getline(&line, &linecap, fp) > 0; lineno++) { if (*line == '#' || *line == '\n') continue; cp = strchr(line, '\n'); if (cp != NULL) *cp = '\0'; if (!parse_config_option(line)) errx(4, "%s line %u: invalid config option '%s'", path, lineno, line); } free(line); fclose(fp); } static void parse_gdb_options(const char *opt) { const char *sport; char *colon; if (opt[0] == 'w') { set_config_bool("gdb.wait", true); opt++; } colon = strrchr(opt, ':'); if (colon == NULL) { sport = opt; } else { *colon = '\0'; colon++; sport = colon; set_config_value("gdb.address", opt); } set_config_value("gdb.port", sport); } static void set_defaults(void) { set_config_bool("acpi_tables", false); set_config_value("memory.size", "256M"); set_config_bool("x86.strictmsr", true); set_config_value("lpc.fwcfg", "bhyve"); } int main(int argc, char *argv[]) { int c, error; int max_vcpus, memflags; struct vmctx *ctx; struct qemu_fwcfg_item *e820_fwcfg_item; uint64_t rip; size_t memsize; const char *optstr, *value, *vmname; #ifdef BHYVE_SNAPSHOT char *restore_file; struct restore_state rstate; restore_file = NULL; #endif init_config(); set_defaults(); progname = basename(argv[0]); #ifdef BHYVE_SNAPSHOT optstr = "aehuwxACDHIPSWYk:o:p:G:c:s:m:l:K:U:r:"; #else optstr = "aehuwxACDHIPSWYk:o:p:G:c:s:m:l:K:U:"; #endif while ((c = getopt(argc, argv, optstr)) != -1) { switch (c) { case 'a': set_config_bool("x86.x2apic", false); break; case 'A': set_config_bool("acpi_tables", true); break; case 'D': set_config_bool("destroy_on_poweroff", true); break; case 'p': if (pincpu_parse(optarg) != 0) { errx(EX_USAGE, "invalid vcpu pinning " "configuration '%s'", optarg); } break; case 'c': if (topology_parse(optarg) != 0) { errx(EX_USAGE, "invalid cpu topology " "'%s'", optarg); } break; case 'C': set_config_bool("memory.guest_in_core", true); break; case 'G': parse_gdb_options(optarg); break; case 'k': parse_simple_config_file(optarg); break; case 'K': set_config_value("keyboard.layout", optarg); break; case 'l': if (strncmp(optarg, "help", strlen(optarg)) == 0) { lpc_print_supported_devices(); exit(0); } else if (lpc_device_parse(optarg) != 0) { errx(EX_USAGE, "invalid lpc device " "configuration '%s'", optarg); } break; #ifdef BHYVE_SNAPSHOT case 'r': restore_file = optarg; break; #endif case 's': if (strncmp(optarg, "help", strlen(optarg)) == 0) { pci_print_supported_devices(); exit(0); } else if (pci_parse_slot(optarg) != 0) exit(4); else break; case 'S': set_config_bool("memory.wired", true); break; case 'm': set_config_value("memory.size", optarg); break; case 'o': if (!parse_config_option(optarg)) errx(EX_USAGE, "invalid configuration option '%s'", optarg); break; case 'H': set_config_bool("x86.vmexit_on_hlt", true); break; case 'I': /* * The "-I" option was used to add an ioapic to the * virtual machine. * * An ioapic is now provided unconditionally for each * virtual machine and this option is now deprecated. */ break; case 'P': set_config_bool("x86.vmexit_on_pause", true); break; case 'e': set_config_bool("x86.strictio", true); break; case 'u': set_config_bool("rtc.use_localtime", false); break; case 'U': set_config_value("uuid", optarg); break; case 'w': set_config_bool("x86.strictmsr", false); break; case 'W': set_config_bool("virtio_msix", false); break; case 'x': set_config_bool("x86.x2apic", true); break; case 'Y': set_config_bool("x86.mptable", false); break; case 'h': usage(0); default: usage(1); } } argc -= optind; argv += optind; if (argc > 1) usage(1); #ifdef BHYVE_SNAPSHOT if (restore_file != NULL) { error = load_restore_file(restore_file, &rstate); if (error) { fprintf(stderr, "Failed to read checkpoint info from " "file: '%s'.\n", restore_file); exit(1); } vmname = lookup_vmname(&rstate); if (vmname != NULL) set_config_value("name", vmname); } #endif if (argc == 1) set_config_value("name", argv[0]); vmname = get_config_value("name"); if (vmname == NULL) usage(1); if (get_config_bool_default("config.dump", false)) { dump_config(); exit(1); } calc_topology(); build_vcpumaps(); value = get_config_value("memory.size"); error = vm_parse_memsize(value, &memsize); if (error) errx(EX_USAGE, "invalid memsize '%s'", value); ctx = do_open(vmname); #ifdef BHYVE_SNAPSHOT if (restore_file != NULL) { guest_ncpus = lookup_guest_ncpus(&rstate); memflags = lookup_memflags(&rstate); memsize = lookup_memsize(&rstate); } if (guest_ncpus < 1) { fprintf(stderr, "Invalid guest vCPUs (%d)\n", guest_ncpus); exit(1); } #endif max_vcpus = num_vcpus_allowed(ctx); if (guest_ncpus > max_vcpus) { fprintf(stderr, "%d vCPUs requested but only %d available\n", guest_ncpus, max_vcpus); exit(4); } fbsdrun_set_capabilities(ctx, BSP); memflags = 0; if (get_config_bool_default("memory.wired", false)) memflags |= VM_MEM_F_WIRED; if (get_config_bool_default("memory.guest_in_core", false)) memflags |= VM_MEM_F_INCORE; vm_set_memflags(ctx, memflags); error = vm_setup_memory(ctx, memsize, VM_MMAP_ALL); if (error) { fprintf(stderr, "Unable to setup memory (%d)\n", errno); exit(4); } error = init_msr(); if (error) { fprintf(stderr, "init_msr error %d", error); exit(4); } init_mem(guest_ncpus); init_inout(); kernemu_dev_init(); init_bootrom(ctx); atkbdc_init(ctx); pci_irq_init(ctx); ioapic_init(ctx); rtc_init(ctx); sci_init(ctx); if (qemu_fwcfg_init(ctx) != 0) { fprintf(stderr, "qemu fwcfg initialization error"); exit(4); } if (qemu_fwcfg_add_file("opt/bhyve/hw.ncpu", sizeof(guest_ncpus), &guest_ncpus) != 0) { fprintf(stderr, "Could not add qemu fwcfg opt/bhyve/hw.ncpu"); exit(4); } if (e820_init(ctx) != 0) { fprintf(stderr, "Unable to setup E820"); exit(4); } /* * Exit if a device emulation finds an error in its initilization */ if (init_pci(ctx) != 0) { perror("device emulation initialization error"); exit(4); } /* * Initialize after PCI, to allow a bootrom file to reserve the high * region. */ if (get_config_bool("acpi_tables")) vmgenc_init(ctx); init_gdb(ctx); if (lpc_bootrom()) { if (vm_set_capability(ctx, BSP, VM_CAP_UNRESTRICTED_GUEST, 1)) { fprintf(stderr, "ROM boot failed: unrestricted guest " "capability not available\n"); exit(4); } error = vcpu_reset(ctx, BSP); assert(error == 0); } /* Allocate per-VCPU resources. */ mt_vmm_info = calloc(guest_ncpus, sizeof(*mt_vmm_info)); /* * Add all vCPUs. */ for (int vcpu = 0; vcpu < guest_ncpus; vcpu++) { spinup_vcpu(ctx, vcpu); } #ifdef BHYVE_SNAPSHOT if (restore_file != NULL) { fprintf(stdout, "Pausing pci devs...\r\n"); - if (vm_pause_user_devs() != 0) { + if (vm_pause_devices() != 0) { fprintf(stderr, "Failed to pause PCI device state.\n"); exit(1); } fprintf(stdout, "Restoring vm mem...\r\n"); if (restore_vm_mem(ctx, &rstate) != 0) { fprintf(stderr, "Failed to restore VM memory.\n"); exit(1); } fprintf(stdout, "Restoring pci devs...\r\n"); - if (vm_restore_user_devs(ctx, &rstate) != 0) { + if (vm_restore_devices(ctx, &rstate) != 0) { fprintf(stderr, "Failed to restore PCI device state.\n"); exit(1); } fprintf(stdout, "Restoring kernel structs...\r\n"); if (vm_restore_kern_structs(ctx, &rstate) != 0) { fprintf(stderr, "Failed to restore kernel structs.\n"); exit(1); } fprintf(stdout, "Resuming pci devs...\r\n"); - if (vm_resume_user_devs() != 0) { + if (vm_resume_devices() != 0) { fprintf(stderr, "Failed to resume PCI device state.\n"); exit(1); } } #endif error = vm_get_register(ctx, BSP, VM_REG_GUEST_RIP, &rip); assert(error == 0); /* * build the guest tables, MP etc. */ if (get_config_bool_default("x86.mptable", true)) { error = mptable_build(ctx, guest_ncpus); if (error) { perror("error to build the guest tables"); exit(4); } } error = smbios_build(ctx); if (error != 0) exit(4); if (get_config_bool("acpi_tables")) { error = acpi_build(ctx, guest_ncpus); assert(error == 0); } e820_fwcfg_item = e820_get_fwcfg_item(); if (e820_fwcfg_item == NULL) { fprintf(stderr, "invalid e820 table"); exit(4); } if (qemu_fwcfg_add_file("etc/e820", e820_fwcfg_item->size, e820_fwcfg_item->data) != 0) { fprintf(stderr, "could not add qemu fwcfg etc/e820"); exit(4); } free(e820_fwcfg_item); if (lpc_bootrom() && strcmp(lpc_fwcfg(), "bhyve") == 0) { fwctl_init(); } /* * Change the proc title to include the VM name. */ setproctitle("%s", vmname); #ifdef BHYVE_SNAPSHOT /* initialize mutex/cond variables */ init_snapshot(); /* * checkpointing thread for communication with bhyvectl */ if (init_checkpoint_thread(ctx) != 0) errx(EX_OSERR, "Failed to start checkpoint thread"); #endif #ifndef WITHOUT_CAPSICUM caph_cache_catpages(); if (caph_limit_stdout() == -1 || caph_limit_stderr() == -1) errx(EX_OSERR, "Unable to apply rights for sandbox"); if (caph_enter() == -1) errx(EX_OSERR, "cap_enter() failed"); #endif #ifdef BHYVE_SNAPSHOT if (restore_file != NULL) { destroy_restore_state(&rstate); if (vm_restore_time(ctx) < 0) err(EX_OSERR, "Unable to restore time"); for (int i = 0; i < guest_ncpus; i++) { if (i == BSP) continue; vm_resume_cpu(ctx, i); } } #endif vm_resume_cpu(ctx, BSP); /* * Head off to the main event dispatch loop */ mevent_dispatch(); exit(4); } diff --git a/usr.sbin/bhyve/snapshot.c b/usr.sbin/bhyve/snapshot.c index 5f9ef2053990..451839944bd6 100644 --- a/usr.sbin/bhyve/snapshot.c +++ b/usr.sbin/bhyve/snapshot.c @@ -1,1707 +1,1706 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2016 Flavius Anton * Copyright (c) 2016 Mihai Tiganus * Copyright (c) 2016-2019 Mihai Carabas * Copyright (c) 2017-2019 Darius Mihai * Copyright (c) 2017-2019 Elena Mihailescu * Copyright (c) 2018-2019 Sergiu Weisz * All rights reserved. * The bhyve-snapshot feature was developed under sponsorships * from Matthew Grooms. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #ifndef WITHOUT_CAPSICUM #include #endif #include #include #include #include #include #include #ifndef WITHOUT_CAPSICUM #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef WITHOUT_CAPSICUM #include #endif #include #include #include "bhyverun.h" #include "acpi.h" #include "atkbdc.h" #include "debug.h" #include "inout.h" #include "ipc.h" #include "fwctl.h" #include "ioapic.h" #include "mem.h" #include "mevent.h" #include "mptbl.h" #include "pci_emul.h" #include "pci_irq.h" #include "pci_lpc.h" #include "smbiostbl.h" #include "snapshot.h" #include "xmsr.h" #include "spinup_ap.h" #include "rtc.h" #include #include struct spinner_info { const size_t *crtval; const size_t maxval; const size_t total; }; extern int guest_ncpus; static struct winsize winsize; static sig_t old_winch_handler; #define KB (1024UL) #define MB (1024UL * KB) #define GB (1024UL * MB) #define SNAPSHOT_CHUNK (4 * MB) #define PROG_BUF_SZ (8192) #define SNAPSHOT_BUFFER_SIZE (20 * MB) #define JSON_STRUCT_ARR_KEY "structs" #define JSON_DEV_ARR_KEY "devices" #define JSON_BASIC_METADATA_KEY "basic metadata" #define JSON_SNAPSHOT_REQ_KEY "snapshot_req" #define JSON_SIZE_KEY "size" #define JSON_FILE_OFFSET_KEY "file_offset" #define JSON_NCPUS_KEY "ncpus" #define JSON_VMNAME_KEY "vmname" #define JSON_MEMSIZE_KEY "memsize" #define JSON_MEMFLAGS_KEY "memflags" #define min(a,b) \ ({ \ __typeof__ (a) _a = (a); \ __typeof__ (b) _b = (b); \ _a < _b ? _a : _b; \ }) static const struct vm_snapshot_dev_info snapshot_devs[] = { { "atkbdc", atkbdc_snapshot, NULL, NULL }, { "virtio-net", pci_snapshot, pci_pause, pci_resume }, { "virtio-blk", pci_snapshot, pci_pause, pci_resume }, { "virtio-rnd", pci_snapshot, NULL, NULL }, { "lpc", pci_snapshot, NULL, NULL }, { "fbuf", pci_snapshot, NULL, NULL }, { "xhci", pci_snapshot, NULL, NULL }, { "e1000", pci_snapshot, NULL, NULL }, { "ahci", pci_snapshot, pci_pause, pci_resume }, { "ahci-hd", pci_snapshot, pci_pause, pci_resume }, { "ahci-cd", pci_snapshot, pci_pause, pci_resume }, }; static const struct vm_snapshot_kern_info snapshot_kern_structs[] = { { "vhpet", STRUCT_VHPET }, { "vm", STRUCT_VM }, { "vioapic", STRUCT_VIOAPIC }, { "vlapic", STRUCT_VLAPIC }, { "vmcx", STRUCT_VMCX }, { "vatpit", STRUCT_VATPIT }, { "vatpic", STRUCT_VATPIC }, { "vpmtmr", STRUCT_VPMTMR }, { "vrtc", STRUCT_VRTC }, }; static cpuset_t vcpus_active, vcpus_suspended; static pthread_mutex_t vcpu_lock; static pthread_cond_t vcpus_idle, vcpus_can_run; static bool checkpoint_active; /* * TODO: Harden this function and all of its callers since 'base_str' is a user * provided string. */ static char * strcat_extension(const char *base_str, const char *ext) { char *res; size_t base_len, ext_len; base_len = strnlen(base_str, NAME_MAX); ext_len = strnlen(ext, NAME_MAX); if (base_len + ext_len > NAME_MAX) { fprintf(stderr, "Filename exceeds maximum length.\n"); return (NULL); } res = malloc(base_len + ext_len + 1); if (res == NULL) { perror("Failed to allocate memory."); return (NULL); } memcpy(res, base_str, base_len); memcpy(res + base_len, ext, ext_len); res[base_len + ext_len] = 0; return (res); } void destroy_restore_state(struct restore_state *rstate) { if (rstate == NULL) { fprintf(stderr, "Attempting to destroy NULL restore struct.\n"); return; } if (rstate->kdata_map != MAP_FAILED) munmap(rstate->kdata_map, rstate->kdata_len); if (rstate->kdata_fd > 0) close(rstate->kdata_fd); if (rstate->vmmem_fd > 0) close(rstate->vmmem_fd); if (rstate->meta_root_obj != NULL) ucl_object_unref(rstate->meta_root_obj); if (rstate->meta_parser != NULL) ucl_parser_free(rstate->meta_parser); } static int load_vmmem_file(const char *filename, struct restore_state *rstate) { struct stat sb; int err; rstate->vmmem_fd = open(filename, O_RDONLY); if (rstate->vmmem_fd < 0) { perror("Failed to open restore file"); return (-1); } err = fstat(rstate->vmmem_fd, &sb); if (err < 0) { perror("Failed to stat restore file"); goto err_load_vmmem; } if (sb.st_size == 0) { fprintf(stderr, "Restore file is empty.\n"); goto err_load_vmmem; } rstate->vmmem_len = sb.st_size; return (0); err_load_vmmem: if (rstate->vmmem_fd > 0) close(rstate->vmmem_fd); return (-1); } static int load_kdata_file(const char *filename, struct restore_state *rstate) { struct stat sb; int err; rstate->kdata_fd = open(filename, O_RDONLY); if (rstate->kdata_fd < 0) { perror("Failed to open kernel data file"); return (-1); } err = fstat(rstate->kdata_fd, &sb); if (err < 0) { perror("Failed to stat kernel data file"); goto err_load_kdata; } if (sb.st_size == 0) { fprintf(stderr, "Kernel data file is empty.\n"); goto err_load_kdata; } rstate->kdata_len = sb.st_size; rstate->kdata_map = mmap(NULL, rstate->kdata_len, PROT_READ, MAP_SHARED, rstate->kdata_fd, 0); if (rstate->kdata_map == MAP_FAILED) { perror("Failed to map restore file"); goto err_load_kdata; } return (0); err_load_kdata: if (rstate->kdata_fd > 0) close(rstate->kdata_fd); return (-1); } static int load_metadata_file(const char *filename, struct restore_state *rstate) { ucl_object_t *obj; struct ucl_parser *parser; int err; parser = ucl_parser_new(UCL_PARSER_DEFAULT); if (parser == NULL) { fprintf(stderr, "Failed to initialize UCL parser.\n"); err = -1; goto err_load_metadata; } err = ucl_parser_add_file(parser, filename); if (err == 0) { fprintf(stderr, "Failed to parse metadata file: '%s'\n", filename); err = -1; goto err_load_metadata; } obj = ucl_parser_get_object(parser); if (obj == NULL) { fprintf(stderr, "Failed to parse object.\n"); err = -1; goto err_load_metadata; } rstate->meta_parser = parser; rstate->meta_root_obj = (ucl_object_t *)obj; return (0); err_load_metadata: if (parser != NULL) ucl_parser_free(parser); return (err); } int load_restore_file(const char *filename, struct restore_state *rstate) { int err = 0; char *kdata_filename = NULL, *meta_filename = NULL; assert(filename != NULL); assert(rstate != NULL); memset(rstate, 0, sizeof(*rstate)); rstate->kdata_map = MAP_FAILED; err = load_vmmem_file(filename, rstate); if (err != 0) { fprintf(stderr, "Failed to load guest RAM file.\n"); goto err_restore; } kdata_filename = strcat_extension(filename, ".kern"); if (kdata_filename == NULL) { fprintf(stderr, "Failed to construct kernel data filename.\n"); goto err_restore; } err = load_kdata_file(kdata_filename, rstate); if (err != 0) { fprintf(stderr, "Failed to load guest kernel data file.\n"); goto err_restore; } meta_filename = strcat_extension(filename, ".meta"); if (meta_filename == NULL) { fprintf(stderr, "Failed to construct kernel metadata filename.\n"); goto err_restore; } err = load_metadata_file(meta_filename, rstate); if (err != 0) { fprintf(stderr, "Failed to load guest metadata file.\n"); goto err_restore; } return (0); err_restore: destroy_restore_state(rstate); if (kdata_filename != NULL) free(kdata_filename); if (meta_filename != NULL) free(meta_filename); return (-1); } #define JSON_GET_INT_OR_RETURN(key, obj, result_ptr, ret) \ do { \ const ucl_object_t *obj__; \ obj__ = ucl_object_lookup(obj, key); \ if (obj__ == NULL) { \ fprintf(stderr, "Missing key: '%s'", key); \ return (ret); \ } \ if (!ucl_object_toint_safe(obj__, result_ptr)) { \ fprintf(stderr, "Cannot convert '%s' value to int.", key); \ return (ret); \ } \ } while(0) #define JSON_GET_STRING_OR_RETURN(key, obj, result_ptr, ret) \ do { \ const ucl_object_t *obj__; \ obj__ = ucl_object_lookup(obj, key); \ if (obj__ == NULL) { \ fprintf(stderr, "Missing key: '%s'", key); \ return (ret); \ } \ if (!ucl_object_tostring_safe(obj__, result_ptr)) { \ fprintf(stderr, "Cannot convert '%s' value to string.", key); \ return (ret); \ } \ } while(0) static void * lookup_struct(enum snapshot_req struct_id, struct restore_state *rstate, size_t *struct_size) { const ucl_object_t *structs = NULL, *obj = NULL; ucl_object_iter_t it = NULL; int64_t snapshot_req, size, file_offset; structs = ucl_object_lookup(rstate->meta_root_obj, JSON_STRUCT_ARR_KEY); if (structs == NULL) { fprintf(stderr, "Failed to find '%s' object.\n", JSON_STRUCT_ARR_KEY); return (NULL); } if (ucl_object_type(structs) != UCL_ARRAY) { fprintf(stderr, "Object '%s' is not an array.\n", JSON_STRUCT_ARR_KEY); return (NULL); } while ((obj = ucl_object_iterate(structs, &it, true)) != NULL) { snapshot_req = -1; JSON_GET_INT_OR_RETURN(JSON_SNAPSHOT_REQ_KEY, obj, &snapshot_req, NULL); assert(snapshot_req >= 0); if ((enum snapshot_req) snapshot_req == struct_id) { JSON_GET_INT_OR_RETURN(JSON_SIZE_KEY, obj, &size, NULL); assert(size >= 0); JSON_GET_INT_OR_RETURN(JSON_FILE_OFFSET_KEY, obj, &file_offset, NULL); assert(file_offset >= 0); assert((uint64_t)file_offset + size <= rstate->kdata_len); *struct_size = (size_t)size; return ((uint8_t *)rstate->kdata_map + file_offset); } } return (NULL); } static void * lookup_check_dev(const char *dev_name, struct restore_state *rstate, const ucl_object_t *obj, size_t *data_size) { const char *snapshot_req; int64_t size, file_offset; snapshot_req = NULL; JSON_GET_STRING_OR_RETURN(JSON_SNAPSHOT_REQ_KEY, obj, &snapshot_req, NULL); assert(snapshot_req != NULL); if (!strcmp(snapshot_req, dev_name)) { JSON_GET_INT_OR_RETURN(JSON_SIZE_KEY, obj, &size, NULL); assert(size >= 0); JSON_GET_INT_OR_RETURN(JSON_FILE_OFFSET_KEY, obj, &file_offset, NULL); assert(file_offset >= 0); assert((uint64_t)file_offset + size <= rstate->kdata_len); *data_size = (size_t)size; return ((uint8_t *)rstate->kdata_map + file_offset); } return (NULL); } static void* lookup_dev(const char *dev_name, struct restore_state *rstate, size_t *data_size) { const ucl_object_t *devs = NULL, *obj = NULL; ucl_object_iter_t it = NULL; void *ret; devs = ucl_object_lookup(rstate->meta_root_obj, JSON_DEV_ARR_KEY); if (devs == NULL) { fprintf(stderr, "Failed to find '%s' object.\n", JSON_DEV_ARR_KEY); return (NULL); } if (ucl_object_type(devs) != UCL_ARRAY) { fprintf(stderr, "Object '%s' is not an array.\n", JSON_DEV_ARR_KEY); return (NULL); } while ((obj = ucl_object_iterate(devs, &it, true)) != NULL) { ret = lookup_check_dev(dev_name, rstate, obj, data_size); if (ret != NULL) return (ret); } return (NULL); } static const ucl_object_t * lookup_basic_metadata_object(struct restore_state *rstate) { const ucl_object_t *basic_meta_obj = NULL; basic_meta_obj = ucl_object_lookup(rstate->meta_root_obj, JSON_BASIC_METADATA_KEY); if (basic_meta_obj == NULL) { fprintf(stderr, "Failed to find '%s' object.\n", JSON_BASIC_METADATA_KEY); return (NULL); } if (ucl_object_type(basic_meta_obj) != UCL_OBJECT) { fprintf(stderr, "Object '%s' is not a JSON object.\n", JSON_BASIC_METADATA_KEY); return (NULL); } return (basic_meta_obj); } const char * lookup_vmname(struct restore_state *rstate) { const char *vmname; const ucl_object_t *obj; obj = lookup_basic_metadata_object(rstate); if (obj == NULL) return (NULL); JSON_GET_STRING_OR_RETURN(JSON_VMNAME_KEY, obj, &vmname, NULL); return (vmname); } int lookup_memflags(struct restore_state *rstate) { int64_t memflags; const ucl_object_t *obj; obj = lookup_basic_metadata_object(rstate); if (obj == NULL) return (0); JSON_GET_INT_OR_RETURN(JSON_MEMFLAGS_KEY, obj, &memflags, 0); return ((int)memflags); } size_t lookup_memsize(struct restore_state *rstate) { int64_t memsize; const ucl_object_t *obj; obj = lookup_basic_metadata_object(rstate); if (obj == NULL) return (0); JSON_GET_INT_OR_RETURN(JSON_MEMSIZE_KEY, obj, &memsize, 0); if (memsize < 0) memsize = 0; return ((size_t)memsize); } int lookup_guest_ncpus(struct restore_state *rstate) { int64_t ncpus; const ucl_object_t *obj; obj = lookup_basic_metadata_object(rstate); if (obj == NULL) return (0); JSON_GET_INT_OR_RETURN(JSON_NCPUS_KEY, obj, &ncpus, 0); return ((int)ncpus); } static void winch_handler(int signal __unused) { #ifdef TIOCGWINSZ ioctl(STDOUT_FILENO, TIOCGWINSZ, &winsize); #endif /* TIOCGWINSZ */ } static int print_progress(size_t crtval, const size_t maxval) { size_t rc; double crtval_gb, maxval_gb; size_t i, win_width, prog_start, prog_done, prog_end; int mval_len; static char prog_buf[PROG_BUF_SZ]; static const size_t len = sizeof(prog_buf); static size_t div; static const char *div_str; static char wip_bar[] = { '/', '-', '\\', '|' }; static int wip_idx = 0; if (maxval == 0) { printf("[0B / 0B]\r\n"); return (0); } if (crtval > maxval) crtval = maxval; if (maxval > 10 * GB) { div = GB; div_str = "GiB"; } else if (maxval > 10 * MB) { div = MB; div_str = "MiB"; } else { div = KB; div_str = "KiB"; } crtval_gb = (double) crtval / div; maxval_gb = (double) maxval / div; rc = snprintf(prog_buf, len, "%.03lf", maxval_gb); if (rc == len) { fprintf(stderr, "Maxval too big\n"); return (-1); } mval_len = rc; rc = snprintf(prog_buf, len, "\r[%*.03lf%s / %.03lf%s] |", mval_len, crtval_gb, div_str, maxval_gb, div_str); if (rc == len) { fprintf(stderr, "Buffer too small to print progress\n"); return (-1); } win_width = min(winsize.ws_col, len); prog_start = rc; if (prog_start < (win_width - 2)) { prog_end = win_width - prog_start - 2; prog_done = prog_end * (crtval_gb / maxval_gb); for (i = prog_start; i < prog_start + prog_done; i++) prog_buf[i] = '#'; if (crtval != maxval) { prog_buf[i] = wip_bar[wip_idx]; wip_idx = (wip_idx + 1) % sizeof(wip_bar); i++; } else { prog_buf[i++] = '#'; } for (; i < win_width - 2; i++) prog_buf[i] = '_'; prog_buf[win_width - 2] = '|'; } prog_buf[win_width - 1] = '\0'; write(STDOUT_FILENO, prog_buf, win_width); return (0); } static void * snapshot_spinner_cb(void *arg) { int rc; size_t crtval, maxval, total; struct spinner_info *si; struct timespec ts; si = arg; if (si == NULL) pthread_exit(NULL); ts.tv_sec = 0; ts.tv_nsec = 50 * 1000 * 1000; /* 50 ms sleep time */ do { crtval = *si->crtval; maxval = si->maxval; total = si->total; rc = print_progress(crtval, total); if (rc < 0) { fprintf(stderr, "Failed to parse progress\n"); break; } nanosleep(&ts, NULL); } while (crtval < maxval); pthread_exit(NULL); return NULL; } static int vm_snapshot_mem_part(const int snapfd, const size_t foff, void *src, const size_t len, const size_t totalmem, const bool op_wr) { int rc; size_t part_done, todo, rem; ssize_t done; bool show_progress; pthread_t spinner_th; struct spinner_info *si; if (lseek(snapfd, foff, SEEK_SET) < 0) { perror("Failed to change file offset"); return (-1); } show_progress = false; if (isatty(STDIN_FILENO) && (winsize.ws_col != 0)) show_progress = true; part_done = foff; rem = len; if (show_progress) { si = &(struct spinner_info) { .crtval = &part_done, .maxval = foff + len, .total = totalmem }; rc = pthread_create(&spinner_th, 0, snapshot_spinner_cb, si); if (rc) { perror("Unable to create spinner thread"); show_progress = false; } } while (rem > 0) { if (show_progress) todo = min(SNAPSHOT_CHUNK, rem); else todo = rem; if (op_wr) done = write(snapfd, src, todo); else done = read(snapfd, src, todo); if (done < 0) { perror("Failed to write in file"); return (-1); } src = (uint8_t *)src + done; part_done += done; rem -= done; } if (show_progress) { rc = pthread_join(spinner_th, NULL); if (rc) perror("Unable to end spinner thread"); } return (0); } static size_t vm_snapshot_mem(struct vmctx *ctx, int snapfd, size_t memsz, const bool op_wr) { int ret; size_t lowmem, highmem, totalmem; char *baseaddr; ret = vm_get_guestmem_from_ctx(ctx, &baseaddr, &lowmem, &highmem); if (ret) { fprintf(stderr, "%s: unable to retrieve guest memory size\r\n", __func__); return (0); } totalmem = lowmem + highmem; if ((op_wr == false) && (totalmem != memsz)) { fprintf(stderr, "%s: mem size mismatch: %ld vs %ld\r\n", __func__, totalmem, memsz); return (0); } winsize.ws_col = 80; #ifdef TIOCGWINSZ ioctl(STDOUT_FILENO, TIOCGWINSZ, &winsize); #endif /* TIOCGWINSZ */ old_winch_handler = signal(SIGWINCH, winch_handler); ret = vm_snapshot_mem_part(snapfd, 0, baseaddr, lowmem, totalmem, op_wr); if (ret) { fprintf(stderr, "%s: Could not %s lowmem\r\n", __func__, op_wr ? "write" : "read"); totalmem = 0; goto done; } if (highmem == 0) goto done; ret = vm_snapshot_mem_part(snapfd, lowmem, baseaddr + 4*GB, highmem, totalmem, op_wr); if (ret) { fprintf(stderr, "%s: Could not %s highmem\r\n", __func__, op_wr ? "write" : "read"); totalmem = 0; goto done; } done: printf("\r\n"); signal(SIGWINCH, old_winch_handler); return (totalmem); } int restore_vm_mem(struct vmctx *ctx, struct restore_state *rstate) { size_t restored; restored = vm_snapshot_mem(ctx, rstate->vmmem_fd, rstate->vmmem_len, false); if (restored != rstate->vmmem_len) return (-1); return (0); } static int vm_restore_kern_struct(struct vmctx *ctx, struct restore_state *rstate, const struct vm_snapshot_kern_info *info) { void *struct_ptr; size_t struct_size; int ret; struct vm_snapshot_meta *meta; struct_ptr = lookup_struct(info->req, rstate, &struct_size); if (struct_ptr == NULL) { fprintf(stderr, "%s: Failed to lookup struct %s\r\n", __func__, info->struct_name); ret = -1; goto done; } if (struct_size == 0) { fprintf(stderr, "%s: Kernel struct size was 0 for: %s\r\n", __func__, info->struct_name); ret = -1; goto done; } meta = &(struct vm_snapshot_meta) { .ctx = ctx, .dev_name = info->struct_name, .dev_req = info->req, .buffer.buf_start = struct_ptr, .buffer.buf_size = struct_size, .buffer.buf = struct_ptr, .buffer.buf_rem = struct_size, .op = VM_SNAPSHOT_RESTORE, }; ret = vm_snapshot_req(meta); if (ret != 0) { fprintf(stderr, "%s: Failed to restore struct: %s\r\n", __func__, info->struct_name); goto done; } done: return (ret); } int vm_restore_kern_structs(struct vmctx *ctx, struct restore_state *rstate) { size_t i; int ret; for (i = 0; i < nitems(snapshot_kern_structs); i++) { ret = vm_restore_kern_struct(ctx, rstate, &snapshot_kern_structs[i]); if (ret != 0) return (ret); } return (0); } static int -vm_restore_user_dev(struct vmctx *ctx, struct restore_state *rstate, +vm_restore_device(struct vmctx *ctx, struct restore_state *rstate, const struct vm_snapshot_dev_info *info) { void *dev_ptr; size_t dev_size; int ret; struct vm_snapshot_meta *meta; dev_ptr = lookup_dev(info->dev_name, rstate, &dev_size); if (dev_ptr == NULL) { fprintf(stderr, "Failed to lookup dev: %s\r\n", info->dev_name); fprintf(stderr, "Continuing the restore/migration process\r\n"); return (0); } if (dev_size == 0) { fprintf(stderr, "%s: Device size is 0. " "Assuming %s is not used\r\n", __func__, info->dev_name); return (0); } meta = &(struct vm_snapshot_meta) { .ctx = ctx, .dev_name = info->dev_name, .buffer.buf_start = dev_ptr, .buffer.buf_size = dev_size, .buffer.buf = dev_ptr, .buffer.buf_rem = dev_size, .op = VM_SNAPSHOT_RESTORE, }; ret = (*info->snapshot_cb)(meta); if (ret != 0) { fprintf(stderr, "Failed to restore dev: %s\r\n", info->dev_name); return (-1); } return (0); } - int -vm_restore_user_devs(struct vmctx *ctx, struct restore_state *rstate) +vm_restore_devices(struct vmctx *ctx, struct restore_state *rstate) { size_t i; int ret; for (i = 0; i < nitems(snapshot_devs); i++) { - ret = vm_restore_user_dev(ctx, rstate, &snapshot_devs[i]); + ret = vm_restore_device(ctx, rstate, &snapshot_devs[i]); if (ret != 0) return (ret); } return 0; } int -vm_pause_user_devs(void) +vm_pause_devices(void) { const struct vm_snapshot_dev_info *info; size_t i; int ret; for (i = 0; i < nitems(snapshot_devs); i++) { info = &snapshot_devs[i]; if (info->pause_cb == NULL) continue; ret = info->pause_cb(info->dev_name); if (ret != 0) return (ret); } return (0); } int -vm_resume_user_devs(void) +vm_resume_devices(void) { const struct vm_snapshot_dev_info *info; size_t i; int ret; for (i = 0; i < nitems(snapshot_devs); i++) { info = &snapshot_devs[i]; if (info->resume_cb == NULL) continue; ret = info->resume_cb(info->dev_name); if (ret != 0) return (ret); } return (0); } static int vm_snapshot_kern_struct(int data_fd, xo_handle_t *xop, const char *array_key, struct vm_snapshot_meta *meta, off_t *offset) { int ret; size_t data_size; ssize_t write_cnt; ret = vm_snapshot_req(meta); if (ret != 0) { fprintf(stderr, "%s: Failed to snapshot struct %s\r\n", __func__, meta->dev_name); ret = -1; goto done; } data_size = vm_get_snapshot_size(meta); /* XXX-MJ no handling for short writes. */ write_cnt = write(data_fd, meta->buffer.buf_start, data_size); if (write_cnt < 0 || (size_t)write_cnt != data_size) { perror("Failed to write all snapshotted data."); ret = -1; goto done; } /* Write metadata. */ xo_open_instance_h(xop, array_key); xo_emit_h(xop, "{:debug_name/%s}\n", meta->dev_name); xo_emit_h(xop, "{:" JSON_SNAPSHOT_REQ_KEY "/%d}\n", meta->dev_req); xo_emit_h(xop, "{:" JSON_SIZE_KEY "/%lu}\n", data_size); xo_emit_h(xop, "{:" JSON_FILE_OFFSET_KEY "/%lu}\n", *offset); xo_close_instance_h(xop, JSON_STRUCT_ARR_KEY); *offset += data_size; done: return (ret); } static int vm_snapshot_kern_structs(struct vmctx *ctx, int data_fd, xo_handle_t *xop) { int ret, error; size_t buf_size, i, offset; char *buffer; struct vm_snapshot_meta *meta; error = 0; offset = 0; buf_size = SNAPSHOT_BUFFER_SIZE; buffer = malloc(SNAPSHOT_BUFFER_SIZE * sizeof(char)); if (buffer == NULL) { error = ENOMEM; perror("Failed to allocate memory for snapshot buffer"); goto err_vm_snapshot_kern_data; } meta = &(struct vm_snapshot_meta) { .ctx = ctx, .buffer.buf_start = buffer, .buffer.buf_size = buf_size, .op = VM_SNAPSHOT_SAVE, }; xo_open_list_h(xop, JSON_STRUCT_ARR_KEY); for (i = 0; i < nitems(snapshot_kern_structs); i++) { meta->dev_name = snapshot_kern_structs[i].struct_name; meta->dev_req = snapshot_kern_structs[i].req; memset(meta->buffer.buf_start, 0, meta->buffer.buf_size); meta->buffer.buf = meta->buffer.buf_start; meta->buffer.buf_rem = meta->buffer.buf_size; ret = vm_snapshot_kern_struct(data_fd, xop, JSON_DEV_ARR_KEY, meta, &offset); if (ret != 0) { error = -1; goto err_vm_snapshot_kern_data; } } xo_close_list_h(xop, JSON_STRUCT_ARR_KEY); err_vm_snapshot_kern_data: if (buffer != NULL) free(buffer); return (error); } static int vm_snapshot_basic_metadata(struct vmctx *ctx, xo_handle_t *xop, size_t memsz) { xo_open_container_h(xop, JSON_BASIC_METADATA_KEY); xo_emit_h(xop, "{:" JSON_NCPUS_KEY "/%ld}\n", guest_ncpus); xo_emit_h(xop, "{:" JSON_VMNAME_KEY "/%s}\n", vm_get_name(ctx)); xo_emit_h(xop, "{:" JSON_MEMSIZE_KEY "/%lu}\n", memsz); xo_emit_h(xop, "{:" JSON_MEMFLAGS_KEY "/%d}\n", vm_get_memflags(ctx)); xo_close_container_h(xop, JSON_BASIC_METADATA_KEY); return (0); } static int vm_snapshot_dev_write_data(int data_fd, xo_handle_t *xop, const char *array_key, struct vm_snapshot_meta *meta, off_t *offset) { ssize_t ret; size_t data_size; data_size = vm_get_snapshot_size(meta); /* XXX-MJ no handling for short writes. */ ret = write(data_fd, meta->buffer.buf_start, data_size); if (ret < 0 || (size_t)ret != data_size) { perror("Failed to write all snapshotted data."); return (-1); } /* Write metadata. */ xo_open_instance_h(xop, array_key); xo_emit_h(xop, "{:" JSON_SNAPSHOT_REQ_KEY "/%s}\n", meta->dev_name); xo_emit_h(xop, "{:" JSON_SIZE_KEY "/%lu}\n", data_size); xo_emit_h(xop, "{:" JSON_FILE_OFFSET_KEY "/%lu}\n", *offset); xo_close_instance_h(xop, array_key); *offset += data_size; return (0); } static int -vm_snapshot_user_dev(const struct vm_snapshot_dev_info *info, +vm_snapshot_device(const struct vm_snapshot_dev_info *info, int data_fd, xo_handle_t *xop, struct vm_snapshot_meta *meta, off_t *offset) { int ret; ret = (*info->snapshot_cb)(meta); if (ret != 0) { fprintf(stderr, "Failed to snapshot %s; ret=%d\r\n", meta->dev_name, ret); return (ret); } ret = vm_snapshot_dev_write_data(data_fd, xop, JSON_DEV_ARR_KEY, meta, offset); if (ret != 0) return (ret); return (0); } static int -vm_snapshot_user_devs(struct vmctx *ctx, int data_fd, xo_handle_t *xop) +vm_snapshot_devices(struct vmctx *ctx, int data_fd, xo_handle_t *xop) { int ret; off_t offset; void *buffer; size_t buf_size, i; struct vm_snapshot_meta *meta; buf_size = SNAPSHOT_BUFFER_SIZE; offset = lseek(data_fd, 0, SEEK_CUR); if (offset < 0) { perror("Failed to get data file current offset."); return (-1); } buffer = malloc(buf_size); if (buffer == NULL) { perror("Failed to allocate memory for snapshot buffer"); ret = ENOSPC; goto snapshot_err; } meta = &(struct vm_snapshot_meta) { .ctx = ctx, .buffer.buf_start = buffer, .buffer.buf_size = buf_size, .op = VM_SNAPSHOT_SAVE, }; xo_open_list_h(xop, JSON_DEV_ARR_KEY); /* Restore other devices that support this feature */ for (i = 0; i < nitems(snapshot_devs); i++) { meta->dev_name = snapshot_devs[i].dev_name; memset(meta->buffer.buf_start, 0, meta->buffer.buf_size); meta->buffer.buf = meta->buffer.buf_start; meta->buffer.buf_rem = meta->buffer.buf_size; - ret = vm_snapshot_user_dev(&snapshot_devs[i], data_fd, xop, + ret = vm_snapshot_device(&snapshot_devs[i], data_fd, xop, meta, &offset); if (ret != 0) goto snapshot_err; } xo_close_list_h(xop, JSON_DEV_ARR_KEY); snapshot_err: if (buffer != NULL) free(buffer); return (ret); } void checkpoint_cpu_add(int vcpu) { pthread_mutex_lock(&vcpu_lock); CPU_SET(vcpu, &vcpus_active); if (checkpoint_active) { CPU_SET(vcpu, &vcpus_suspended); while (checkpoint_active) pthread_cond_wait(&vcpus_can_run, &vcpu_lock); CPU_CLR(vcpu, &vcpus_suspended); } pthread_mutex_unlock(&vcpu_lock); } /* * When a vCPU is suspended for any reason, it calls * checkpoint_cpu_suspend(). This records that the vCPU is idle. * Before returning from suspension, checkpoint_cpu_resume() is * called. In suspend we note that the vCPU is idle. In resume we * pause the vCPU thread until the checkpoint is complete. The reason * for the two-step process is that vCPUs might already be stopped in * the debug server when a checkpoint is requested. This approach * allows us to account for and handle those vCPUs. */ void checkpoint_cpu_suspend(int vcpu) { pthread_mutex_lock(&vcpu_lock); CPU_SET(vcpu, &vcpus_suspended); if (checkpoint_active && CPU_CMP(&vcpus_active, &vcpus_suspended) == 0) pthread_cond_signal(&vcpus_idle); pthread_mutex_unlock(&vcpu_lock); } void checkpoint_cpu_resume(int vcpu) { pthread_mutex_lock(&vcpu_lock); while (checkpoint_active) pthread_cond_wait(&vcpus_can_run, &vcpu_lock); CPU_CLR(vcpu, &vcpus_suspended); pthread_mutex_unlock(&vcpu_lock); } static void vm_vcpu_pause(struct vmctx *ctx) { pthread_mutex_lock(&vcpu_lock); checkpoint_active = true; vm_suspend_cpu(ctx, -1); while (CPU_CMP(&vcpus_active, &vcpus_suspended) != 0) pthread_cond_wait(&vcpus_idle, &vcpu_lock); pthread_mutex_unlock(&vcpu_lock); } static void vm_vcpu_resume(struct vmctx *ctx) { pthread_mutex_lock(&vcpu_lock); checkpoint_active = false; pthread_mutex_unlock(&vcpu_lock); vm_resume_cpu(ctx, -1); pthread_cond_broadcast(&vcpus_can_run); } static int vm_checkpoint(struct vmctx *ctx, const char *checkpoint_file, bool stop_vm) { int fd_checkpoint = 0, kdata_fd = 0; int ret = 0; int error = 0; size_t memsz; xo_handle_t *xop = NULL; char *meta_filename = NULL; char *kdata_filename = NULL; FILE *meta_file = NULL; kdata_filename = strcat_extension(checkpoint_file, ".kern"); if (kdata_filename == NULL) { fprintf(stderr, "Failed to construct kernel data filename.\n"); return (-1); } kdata_fd = open(kdata_filename, O_WRONLY | O_CREAT | O_TRUNC, 0700); if (kdata_fd < 0) { perror("Failed to open kernel data snapshot file."); error = -1; goto done; } fd_checkpoint = open(checkpoint_file, O_RDWR | O_CREAT | O_TRUNC, 0700); if (fd_checkpoint < 0) { perror("Failed to create checkpoint file"); error = -1; goto done; } meta_filename = strcat_extension(checkpoint_file, ".meta"); if (meta_filename == NULL) { fprintf(stderr, "Failed to construct vm metadata filename.\n"); goto done; } meta_file = fopen(meta_filename, "w"); if (meta_file == NULL) { perror("Failed to open vm metadata snapshot file."); goto done; } xop = xo_create_to_file(meta_file, XO_STYLE_JSON, XOF_PRETTY); if (xop == NULL) { perror("Failed to get libxo handle on metadata file."); goto done; } vm_vcpu_pause(ctx); - ret = vm_pause_user_devs(); + ret = vm_pause_devices(); if (ret != 0) { fprintf(stderr, "Could not pause devices\r\n"); error = ret; goto done; } memsz = vm_snapshot_mem(ctx, fd_checkpoint, 0, true); if (memsz == 0) { perror("Could not write guest memory to file"); error = -1; goto done; } ret = vm_snapshot_basic_metadata(ctx, xop, memsz); if (ret != 0) { fprintf(stderr, "Failed to snapshot vm basic metadata.\n"); error = -1; goto done; } ret = vm_snapshot_kern_structs(ctx, kdata_fd, xop); if (ret != 0) { fprintf(stderr, "Failed to snapshot vm kernel data.\n"); error = -1; goto done; } - ret = vm_snapshot_user_devs(ctx, kdata_fd, xop); + ret = vm_snapshot_devices(ctx, kdata_fd, xop); if (ret != 0) { fprintf(stderr, "Failed to snapshot device state.\n"); error = -1; goto done; } xo_finish_h(xop); if (stop_vm) { vm_destroy(ctx); exit(0); } done: - ret = vm_resume_user_devs(); + ret = vm_resume_devices(); if (ret != 0) fprintf(stderr, "Could not resume devices\r\n"); vm_vcpu_resume(ctx); if (fd_checkpoint > 0) close(fd_checkpoint); if (meta_filename != NULL) free(meta_filename); if (kdata_filename != NULL) free(kdata_filename); if (xop != NULL) xo_destroy(xop); if (meta_file != NULL) fclose(meta_file); if (kdata_fd > 0) close(kdata_fd); return (error); } static int handle_message(struct vmctx *ctx, nvlist_t *nvl) { const char *cmd; struct ipc_command **ipc_cmd; if (!nvlist_exists_string(nvl, "cmd")) return (EINVAL); cmd = nvlist_get_string(nvl, "cmd"); IPC_COMMAND_FOREACH(ipc_cmd, ipc_cmd_set) { if (strcmp(cmd, (*ipc_cmd)->name) == 0) return ((*ipc_cmd)->handler(ctx, nvl)); } return (EOPNOTSUPP); } /* * Listen for commands from bhyvectl */ void * checkpoint_thread(void *param) { int fd; struct checkpoint_thread_info *thread_info; nvlist_t *nvl; pthread_set_name_np(pthread_self(), "checkpoint thread"); thread_info = (struct checkpoint_thread_info *)param; while ((fd = accept(thread_info->socket_fd, NULL, NULL)) != -1) { nvl = nvlist_recv(fd, 0); if (nvl != NULL) handle_message(thread_info->ctx, nvl); else EPRINTLN("nvlist_recv() failed: %s", strerror(errno)); close(fd); nvlist_destroy(nvl); } return (NULL); } static int vm_do_checkpoint(struct vmctx *ctx, const nvlist_t *nvl) { int error; if (!nvlist_exists_string(nvl, "filename") || !nvlist_exists_bool(nvl, "suspend")) error = EINVAL; else error = vm_checkpoint(ctx, nvlist_get_string(nvl, "filename"), nvlist_get_bool(nvl, "suspend")); return (error); } IPC_COMMAND(ipc_cmd_set, checkpoint, vm_do_checkpoint); void init_snapshot(void) { int err; err = pthread_mutex_init(&vcpu_lock, NULL); if (err != 0) errc(1, err, "checkpoint mutex init"); err = pthread_cond_init(&vcpus_idle, NULL); if (err != 0) errc(1, err, "checkpoint cv init (vcpus_idle)"); err = pthread_cond_init(&vcpus_can_run, NULL); if (err != 0) errc(1, err, "checkpoint cv init (vcpus_can_run)"); } /* * Create the listening socket for IPC with bhyvectl */ int init_checkpoint_thread(struct vmctx *ctx) { struct checkpoint_thread_info *checkpoint_info = NULL; struct sockaddr_un addr; int socket_fd; pthread_t checkpoint_pthread; int err; #ifndef WITHOUT_CAPSICUM cap_rights_t rights; #endif memset(&addr, 0, sizeof(addr)); socket_fd = socket(PF_UNIX, SOCK_STREAM, 0); if (socket_fd < 0) { EPRINTLN("Socket creation failed: %s", strerror(errno)); err = -1; goto fail; } addr.sun_family = AF_UNIX; snprintf(addr.sun_path, sizeof(addr.sun_path), "%s%s", BHYVE_RUN_DIR, vm_get_name(ctx)); addr.sun_len = SUN_LEN(&addr); unlink(addr.sun_path); if (bind(socket_fd, (struct sockaddr *)&addr, addr.sun_len) != 0) { EPRINTLN("Failed to bind socket \"%s\": %s\n", addr.sun_path, strerror(errno)); err = -1; goto fail; } if (listen(socket_fd, 10) < 0) { EPRINTLN("ipc socket listen: %s\n", strerror(errno)); err = errno; goto fail; } #ifndef WITHOUT_CAPSICUM cap_rights_init(&rights, CAP_ACCEPT, CAP_READ, CAP_RECV, CAP_WRITE, CAP_SEND, CAP_GETSOCKOPT); if (caph_rights_limit(socket_fd, &rights) == -1) errx(EX_OSERR, "Unable to apply rights for sandbox"); #endif checkpoint_info = calloc(1, sizeof(*checkpoint_info)); checkpoint_info->ctx = ctx; checkpoint_info->socket_fd = socket_fd; err = pthread_create(&checkpoint_pthread, NULL, checkpoint_thread, checkpoint_info); if (err != 0) goto fail; return (0); fail: free(checkpoint_info); if (socket_fd > 0) close(socket_fd); unlink(addr.sun_path); return (err); } void vm_snapshot_buf_err(const char *bufname, const enum vm_snapshot_op op) { const char *__op; if (op == VM_SNAPSHOT_SAVE) __op = "save"; else if (op == VM_SNAPSHOT_RESTORE) __op = "restore"; else __op = "unknown"; fprintf(stderr, "%s: snapshot-%s failed for %s\r\n", __func__, __op, bufname); } int vm_snapshot_buf(void *data, size_t data_size, struct vm_snapshot_meta *meta) { struct vm_snapshot_buffer *buffer; int op; buffer = &meta->buffer; op = meta->op; if (buffer->buf_rem < data_size) { fprintf(stderr, "%s: buffer too small\r\n", __func__); return (E2BIG); } if (op == VM_SNAPSHOT_SAVE) memcpy(buffer->buf, data, data_size); else if (op == VM_SNAPSHOT_RESTORE) memcpy(data, buffer->buf, data_size); else return (EINVAL); buffer->buf += data_size; buffer->buf_rem -= data_size; return (0); } size_t vm_get_snapshot_size(struct vm_snapshot_meta *meta) { size_t length; struct vm_snapshot_buffer *buffer; buffer = &meta->buffer; if (buffer->buf_size < buffer->buf_rem) { fprintf(stderr, "%s: Invalid buffer: size = %zu, rem = %zu\r\n", __func__, buffer->buf_size, buffer->buf_rem); length = 0; } else { length = buffer->buf_size - buffer->buf_rem; } return (length); } int vm_snapshot_guest2host_addr(void **addrp, size_t len, bool restore_null, struct vm_snapshot_meta *meta) { int ret; vm_paddr_t gaddr; if (meta->op == VM_SNAPSHOT_SAVE) { gaddr = paddr_host2guest(meta->ctx, *addrp); if (gaddr == (vm_paddr_t) -1) { if (!restore_null || (restore_null && (*addrp != NULL))) { ret = EFAULT; goto done; } } SNAPSHOT_VAR_OR_LEAVE(gaddr, meta, ret, done); } else if (meta->op == VM_SNAPSHOT_RESTORE) { SNAPSHOT_VAR_OR_LEAVE(gaddr, meta, ret, done); if (gaddr == (vm_paddr_t) -1) { if (!restore_null) { ret = EFAULT; goto done; } } *addrp = paddr_guest2host(meta->ctx, gaddr, len); } else { ret = EINVAL; } done: return (ret); } int vm_snapshot_buf_cmp(void *data, size_t data_size, struct vm_snapshot_meta *meta) { struct vm_snapshot_buffer *buffer; int op; int ret; buffer = &meta->buffer; op = meta->op; if (buffer->buf_rem < data_size) { fprintf(stderr, "%s: buffer too small\r\n", __func__); ret = E2BIG; goto done; } if (op == VM_SNAPSHOT_SAVE) { ret = 0; memcpy(buffer->buf, data, data_size); } else if (op == VM_SNAPSHOT_RESTORE) { ret = memcmp(data, buffer->buf, data_size); } else { ret = EINVAL; goto done; } buffer->buf += data_size; buffer->buf_rem -= data_size; done: return (ret); } diff --git a/usr.sbin/bhyve/snapshot.h b/usr.sbin/bhyve/snapshot.h index 9bf881fded92..5f98be875544 100644 --- a/usr.sbin/bhyve/snapshot.h +++ b/usr.sbin/bhyve/snapshot.h @@ -1,109 +1,109 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2016 Flavius Anton * Copyright (c) 2016 Mihai Tiganus * Copyright (c) 2016-2019 Mihai Carabas * Copyright (c) 2017-2019 Darius Mihai * Copyright (c) 2017-2019 Elena Mihailescu * Copyright (c) 2018-2019 Sergiu Weisz * All rights reserved. * The bhyve-snapshot feature was developed under sponsorships * from Matthew Grooms. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _BHYVE_SNAPSHOT_ #define _BHYVE_SNAPSHOT_ #include #include #include #define BHYVE_RUN_DIR "/var/run/bhyve/" #define MAX_SNAPSHOT_FILENAME PATH_MAX struct vmctx; struct restore_state { int kdata_fd; int vmmem_fd; void *kdata_map; size_t kdata_len; size_t vmmem_len; struct ucl_parser *meta_parser; ucl_object_t *meta_root_obj; }; struct checkpoint_thread_info { struct vmctx *ctx; int socket_fd; }; typedef int (*vm_snapshot_dev_cb)(struct vm_snapshot_meta *); typedef int (*vm_pause_dev_cb) (const char *); typedef int (*vm_resume_dev_cb) (const char *); struct vm_snapshot_dev_info { const char *dev_name; /* device name */ vm_snapshot_dev_cb snapshot_cb; /* callback for device snapshot */ vm_pause_dev_cb pause_cb; /* callback for device pause */ vm_resume_dev_cb resume_cb; /* callback for device resume */ }; struct vm_snapshot_kern_info { const char *struct_name; /* kernel structure name*/ enum snapshot_req req; /* request type */ }; void destroy_restore_state(struct restore_state *rstate); const char *lookup_vmname(struct restore_state *rstate); int lookup_memflags(struct restore_state *rstate); size_t lookup_memsize(struct restore_state *rstate); int lookup_guest_ncpus(struct restore_state *rstate); void checkpoint_cpu_add(int vcpu); void checkpoint_cpu_resume(int vcpu); void checkpoint_cpu_suspend(int vcpu); int restore_vm_mem(struct vmctx *ctx, struct restore_state *rstate); int vm_restore_kern_structs(struct vmctx *ctx, struct restore_state *rstate); -int vm_restore_user_devs(struct vmctx *ctx, struct restore_state *rstate); -int vm_pause_user_devs(void); -int vm_resume_user_devs(void); +int vm_restore_devices(struct vmctx *ctx, struct restore_state *rstate); +int vm_pause_devices(void); +int vm_resume_devices(void); int get_checkpoint_msg(int conn_fd, struct vmctx *ctx); void *checkpoint_thread(void *param); int init_checkpoint_thread(struct vmctx *ctx); void init_snapshot(void); int load_restore_file(const char *filename, struct restore_state *rstate); #endif