diff --git a/CHANGES b/CHANGES index a5522e5fa564..18c320f85c84 100644 --- a/CHANGES +++ b/CHANGES @@ -1,13740 +1,13766 @@ OpenSSL CHANGES _______________ This is a high-level summary of the most important changes. For a full list of changes, see the git commit log; for example, https://github.com/openssl/openssl/commits/ and pick the appropriate release branch. + Changes between 1.1.1o and 1.1.1p [21 Jun 2022] + + *) In addition to the c_rehash shell command injection identified in + CVE-2022-1292, further bugs where the c_rehash script does not + properly sanitise shell metacharacters to prevent command injection have been + fixed. + + When the CVE-2022-1292 was fixed it was not discovered that there + are other places in the script where the file names of certificates + being hashed were possibly passed to a command executed through the shell. + + This script is distributed by some operating systems in a manner where + it is automatically executed. On such operating systems, an attacker + could execute arbitrary commands with the privileges of the script. + + Use of the c_rehash script is considered obsolete and should be replaced + by the OpenSSL rehash command line tool. + (CVE-2022-2068) + [Daniel Fiala, Tomáš Mráz] + + *) When OpenSSL TLS client is connecting without any supported elliptic + curves and TLS-1.3 protocol is disabled the connection will no longer fail + if a ciphersuite that does not use a key exchange based on elliptic + curves can be negotiated. + [Tomáš Mráz] + Changes between 1.1.1n and 1.1.1o [3 May 2022] *) Fixed a bug in the c_rehash script which was not properly sanitising shell - metacharacters to prevent command injection. This script is distributed by - some operating systems in a manner where it is automatically executed. On - such operating systems, an attacker could execute arbitrary commands with the - privileges of the script. - - Use of the c_rehash script is considered obsolete and should be replaced - by the OpenSSL rehash command line tool. - (CVE-2022-1292) - [Tomáš Mráz] + metacharacters to prevent command injection. This script is distributed + by some operating systems in a manner where it is automatically executed. + On such operating systems, an attacker could execute arbitrary commands + with the privileges of the script. + + Use of the c_rehash script is considered obsolete and should be replaced + by the OpenSSL rehash command line tool. + (CVE-2022-1292) + [Tomáš Mráz] Changes between 1.1.1m and 1.1.1n [15 Mar 2022] *) Fixed a bug in the BN_mod_sqrt() function that can cause it to loop forever for non-prime moduli. Internally this function is used when parsing certificates that contain elliptic curve public keys in compressed form or explicit elliptic curve parameters with a base point encoded in compressed form. It is possible to trigger the infinite loop by crafting a certificate that has invalid explicit curve parameters. Since certificate parsing happens prior to verification of the certificate signature, any process that parses an externally supplied certificate may thus be subject to a denial of service attack. The infinite loop can also be reached when parsing crafted private keys as they can contain explicit elliptic curve parameters. Thus vulnerable situations include: - TLS clients consuming server certificates - TLS servers consuming client certificates - Hosting providers taking certificates or private keys from customers - Certificate authorities parsing certification requests from subscribers - Anything else which parses ASN.1 elliptic curve parameters Also any other applications that use the BN_mod_sqrt() where the attacker can control the parameter values are vulnerable to this DoS issue. (CVE-2022-0778) [Tomáš Mráz] *) Add ciphersuites based on DHE_PSK (RFC 4279) and ECDHE_PSK (RFC 5489) to the list of ciphersuites providing Perfect Forward Secrecy as required by SECLEVEL >= 3. [Dmitry Belyavskiy, Nicola Tuveri] Changes between 1.1.1l and 1.1.1m [14 Dec 2021] *) Avoid loading of a dynamic engine twice. [Bernd Edlinger] *) Fixed building on Debian with kfreebsd kernels [Mattias Ellert] *) Prioritise DANE TLSA issuer certs over peer certs [Viktor Dukhovni] *) Fixed random API for MacOS prior to 10.12 These MacOS versions don't support the CommonCrypto APIs [Lenny Primak] Changes between 1.1.1k and 1.1.1l [24 Aug 2021] *) Fixed an SM2 Decryption Buffer Overflow. In order to decrypt SM2 encrypted data an application is expected to call the API function EVP_PKEY_decrypt(). Typically an application will call this function twice. The first time, on entry, the "out" parameter can be NULL and, on exit, the "outlen" parameter is populated with the buffer size required to hold the decrypted plaintext. The application can then allocate a sufficiently sized buffer and call EVP_PKEY_decrypt() again, but this time passing a non-NULL value for the "out" parameter. A bug in the implementation of the SM2 decryption code means that the calculation of the buffer size required to hold the plaintext returned by the first call to EVP_PKEY_decrypt() can be smaller than the actual size required by the second call. This can lead to a buffer overflow when EVP_PKEY_decrypt() is called by the application a second time with a buffer that is too small. A malicious attacker who is able present SM2 content for decryption to an application could cause attacker chosen data to overflow the buffer by up to a maximum of 62 bytes altering the contents of other data held after the buffer, possibly changing application behaviour or causing the application to crash. The location of the buffer is application dependent but is typically heap allocated. (CVE-2021-3711) [Matt Caswell] *) Fixed various read buffer overruns processing ASN.1 strings ASN.1 strings are represented internally within OpenSSL as an ASN1_STRING structure which contains a buffer holding the string data and a field holding the buffer length. This contrasts with normal C strings which are repesented as a buffer for the string data which is terminated with a NUL (0) byte. Although not a strict requirement, ASN.1 strings that are parsed using OpenSSL's own "d2i" functions (and other similar parsing functions) as well as any string whose value has been set with the ASN1_STRING_set() function will additionally NUL terminate the byte array in the ASN1_STRING structure. However, it is possible for applications to directly construct valid ASN1_STRING structures which do not NUL terminate the byte array by directly setting the "data" and "length" fields in the ASN1_STRING array. This can also happen by using the ASN1_STRING_set0() function. Numerous OpenSSL functions that print ASN.1 data have been found to assume that the ASN1_STRING byte array will be NUL terminated, even though this is not guaranteed for strings that have been directly constructed. Where an application requests an ASN.1 structure to be printed, and where that ASN.1 structure contains ASN1_STRINGs that have been directly constructed by the application without NUL terminating the "data" field, then a read buffer overrun can occur. The same thing can also occur during name constraints processing of certificates (for example if a certificate has been directly constructed by the application instead of loading it via the OpenSSL parsing functions, and the certificate contains non NUL terminated ASN1_STRING structures). It can also occur in the X509_get1_email(), X509_REQ_get1_email() and X509_get1_ocsp() functions. If a malicious actor can cause an application to directly construct an ASN1_STRING and then process it through one of the affected OpenSSL functions then this issue could be hit. This might result in a crash (causing a Denial of Service attack). It could also result in the disclosure of private memory contents (such as private keys, or sensitive plaintext). (CVE-2021-3712) [Matt Caswell] Changes between 1.1.1j and 1.1.1k [25 Mar 2021] *) Fixed a problem with verifying a certificate chain when using the X509_V_FLAG_X509_STRICT flag. This flag enables additional security checks of the certificates present in a certificate chain. It is not set by default. Starting from OpenSSL version 1.1.1h a check to disallow certificates in the chain that have explicitly encoded elliptic curve parameters was added as an additional strict check. An error in the implementation of this check meant that the result of a previous check to confirm that certificates in the chain are valid CA certificates was overwritten. This effectively bypasses the check that non-CA certificates must not be able to issue other certificates. If a "purpose" has been configured then there is a subsequent opportunity for checks that the certificate is a valid CA. All of the named "purpose" values implemented in libcrypto perform this check. Therefore, where a purpose is set the certificate chain will still be rejected even when the strict flag has been used. A purpose is set by default in libssl client and server certificate verification routines, but it can be overridden or removed by an application. In order to be affected, an application must explicitly set the X509_V_FLAG_X509_STRICT verification flag and either not set a purpose for the certificate verification or, in the case of TLS client or server applications, override the default purpose. (CVE-2021-3450) [Tomáš Mráz] *) Fixed an issue where an OpenSSL TLS server may crash if sent a maliciously crafted renegotiation ClientHello message from a client. If a TLSv1.2 renegotiation ClientHello omits the signature_algorithms extension (where it was present in the initial ClientHello), but includes a signature_algorithms_cert extension then a NULL pointer dereference will result, leading to a crash and a denial of service attack. A server is only vulnerable if it has TLSv1.2 and renegotiation enabled (which is the default configuration). OpenSSL TLS clients are not impacted by this issue. (CVE-2021-3449) [Peter Kästle and Samuel Sapalski] Changes between 1.1.1i and 1.1.1j [16 Feb 2021] *) Fixed the X509_issuer_and_serial_hash() function. It attempts to create a unique hash value based on the issuer and serial number data contained within an X509 certificate. However it was failing to correctly handle any errors that may occur while parsing the issuer field (which might occur if the issuer field is maliciously constructed). This may subsequently result in a NULL pointer deref and a crash leading to a potential denial of service attack. (CVE-2021-23841) [Matt Caswell] *) Fixed the RSA_padding_check_SSLv23() function and the RSA_SSLV23_PADDING padding mode to correctly check for rollback attacks. This is considered a bug in OpenSSL 1.1.1 because it does not support SSLv2. In 1.0.2 this is CVE-2021-23839. [Matt Caswell] *) Fixed the EVP_CipherUpdate, EVP_EncryptUpdate and EVP_DecryptUpdate functions. Previously they could overflow the output length argument in some cases where the input length is close to the maximum permissable length for an integer on the platform. In such cases the return value from the function call would be 1 (indicating success), but the output length value would be negative. This could cause applications to behave incorrectly or crash. (CVE-2021-23840) [Matt Caswell] *) Fixed SRP_Calc_client_key so that it runs in constant time. The previous implementation called BN_mod_exp without setting BN_FLG_CONSTTIME. This could be exploited in a side channel attack to recover the password. Since the attack is local host only this is outside of the current OpenSSL threat model and therefore no CVE is assigned. Thanks to Mohammed Sabt and Daniel De Almeida Braga for reporting this issue. [Matt Caswell] Changes between 1.1.1h and 1.1.1i [8 Dec 2020] *) Fixed NULL pointer deref in the GENERAL_NAME_cmp function This function could crash if both GENERAL_NAMEs contain an EDIPARTYNAME. If an attacker can control both items being compared then this could lead to a possible denial of service attack. OpenSSL itself uses the GENERAL_NAME_cmp function for two purposes: 1) Comparing CRL distribution point names between an available CRL and a CRL distribution point embedded in an X509 certificate 2) When verifying that a timestamp response token signer matches the timestamp authority name (exposed via the API functions TS_RESP_verify_response and TS_RESP_verify_token) (CVE-2020-1971) [Matt Caswell] *) Add support for Apple Silicon M1 Macs with the darwin64-arm64-cc target. [Stuart Carnie] *) The security callback, which can be customised by application code, supports the security operation SSL_SECOP_TMP_DH. This is defined to take an EVP_PKEY in the "other" parameter. In most places this is what is passed. All these places occur server side. However there was one client side call of this security operation and it passed a DH object instead. This is incorrect according to the definition of SSL_SECOP_TMP_DH, and is inconsistent with all of the other locations. Therefore this client side call has been changed to pass an EVP_PKEY instead. [Matt Caswell] *) In 1.1.1h, an expired trusted (root) certificate was not anymore rejected when validating a certificate path. This check is restored in 1.1.1i. [David von Oheimb] Changes between 1.1.1g and 1.1.1h [22 Sep 2020] *) Certificates with explicit curve parameters are now disallowed in verification chains if the X509_V_FLAG_X509_STRICT flag is used. [Tomas Mraz] *) The 'MinProtocol' and 'MaxProtocol' configuration commands now silently ignore TLS protocol version bounds when configuring DTLS-based contexts, and conversely, silently ignore DTLS protocol version bounds when configuring TLS-based contexts. The commands can be repeated to set bounds of both types. The same applies with the corresponding "min_protocol" and "max_protocol" command-line switches, in case some application uses both TLS and DTLS. SSL_CTX instances that are created for a fixed protocol version (e.g. TLSv1_server_method()) also silently ignore version bounds. Previously attempts to apply bounds to these protocol versions would result in an error. Now only the "version-flexible" SSL_CTX instances are subject to limits in configuration files in command-line options. [Viktor Dukhovni] *) Handshake now fails if Extended Master Secret extension is dropped on renegotiation. [Tomas Mraz] *) Accidentally, an expired trusted (root) certificate is not anymore rejected when validating a certificate path. [David von Oheimb] *) The Oracle Developer Studio compiler will start reporting deprecated APIs Changes between 1.1.1f and 1.1.1g [21 Apr 2020] *) Fixed segmentation fault in SSL_check_chain() Server or client applications that call the SSL_check_chain() function during or after a TLS 1.3 handshake may crash due to a NULL pointer dereference as a result of incorrect handling of the "signature_algorithms_cert" TLS extension. The crash occurs if an invalid or unrecognised signature algorithm is received from the peer. This could be exploited by a malicious peer in a Denial of Service attack. (CVE-2020-1967) [Benjamin Kaduk] *) Added AES consttime code for no-asm configurations an optional constant time support for AES was added when building openssl for no-asm. Enable with: ./config no-asm -DOPENSSL_AES_CONST_TIME Disable with: ./config no-asm -DOPENSSL_NO_AES_CONST_TIME At this time this feature is by default disabled. It will be enabled by default in 3.0. [Bernd Edlinger] Changes between 1.1.1e and 1.1.1f [31 Mar 2020] *) Revert the change of EOF detection while reading in libssl to avoid regressions in applications depending on the current way of reporting the EOF. As the existing method is not fully accurate the change to reporting the EOF via SSL_ERROR_SSL is kept on the current development branch and will be present in the 3.0 release. [Tomas Mraz] *) Revised BN_generate_prime_ex to not avoid factors 3..17863 in p-1 when primes for RSA keys are computed. Since we previously always generated primes == 2 (mod 3) for RSA keys, the 2-prime and 3-prime RSA modules were easy to distinguish, since N = p*q = 1 (mod 3), but N = p*q*r = 2 (mod 3). Therefore fingerprinting 2-prime vs. 3-prime RSA keys was possible by computing N mod 3. This avoids possible fingerprinting of newly generated RSA modules. [Bernd Edlinger] Changes between 1.1.1d and 1.1.1e [17 Mar 2020] *) Properly detect EOF while reading in libssl. Previously if we hit an EOF while reading in libssl then we would report an error back to the application (SSL_ERROR_SYSCALL) but errno would be 0. We now add an error to the stack (which means we instead return SSL_ERROR_SSL) and therefore give a hint as to what went wrong. [Matt Caswell] *) Check that ed25519 and ed448 are allowed by the security level. Previously signature algorithms not using an MD were not being checked that they were allowed by the security level. [Kurt Roeckx] *) Fixed SSL_get_servername() behaviour. The behaviour of SSL_get_servername() was not quite right. The behaviour was not consistent between resumption and normal handshakes, and also not quite consistent with historical behaviour. The behaviour in various scenarios has been clarified and it has been updated to make it match historical behaviour as closely as possible. [Matt Caswell] *) [VMS only] The header files that the VMS compilers include automatically, __DECC_INCLUDE_PROLOGUE.H and __DECC_INCLUDE_EPILOGUE.H, use pragmas that the C++ compiler doesn't understand. This is a shortcoming in the compiler, but can be worked around with __cplusplus guards. C++ applications that use OpenSSL libraries must be compiled using the qualifier '/NAMES=(AS_IS,SHORTENED)' to be able to use all the OpenSSL functions. Otherwise, only functions with symbols of less than 31 characters can be used, as the linker will not be able to successfully resolve symbols with longer names. [Richard Levitte] *) Corrected the documentation of the return values from the EVP_DigestSign* set of functions. The documentation mentioned negative values for some errors, but this was never the case, so the mention of negative values was removed. Code that followed the documentation and thereby check with something like 'EVP_DigestSignInit(...) <= 0' will continue to work undisturbed. [Richard Levitte] *) Fixed an an overflow bug in the x64_64 Montgomery squaring procedure used in exponentiation with 512-bit moduli. No EC algorithms are affected. Analysis suggests that attacks against 2-prime RSA1024, 3-prime RSA1536, and DSA1024 as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH512 are considered just feasible. However, for an attack the target would have to re-use the DH512 private key, which is not recommended anyway. Also applications directly using the low level API BN_mod_exp may be affected if they use BN_FLG_CONSTTIME. (CVE-2019-1551) [Andy Polyakov] *) Added a new method to gather entropy on VMS, based on SYS$GET_ENTROPY. The presence of this system service is determined at run-time. [Richard Levitte] *) Added newline escaping functionality to a filename when using openssl dgst. This output format is to replicate the output format found in the '*sum' checksum programs. This aims to preserve backward compatibility. [Matt Eaton, Richard Levitte, and Paul Dale] *) Print all values for a PKCS#12 attribute with 'openssl pkcs12', not just the first value. [Jon Spillett] Changes between 1.1.1c and 1.1.1d [10 Sep 2019] *) Fixed a fork protection issue. OpenSSL 1.1.1 introduced a rewritten random number generator (RNG). This was intended to include protection in the event of a fork() system call in order to ensure that the parent and child processes did not share the same RNG state. However this protection was not being used in the default case. A partial mitigation for this issue is that the output from a high precision timer is mixed into the RNG state so the likelihood of a parent and child process sharing state is significantly reduced. If an application already calls OPENSSL_init_crypto() explicitly using OPENSSL_INIT_ATFORK then this problem does not occur at all. (CVE-2019-1549) [Matthias St. Pierre] *) For built-in EC curves, ensure an EC_GROUP built from the curve name is used even when parsing explicit parameters, when loading a serialized key or calling `EC_GROUP_new_from_ecpkparameters()`/ `EC_GROUP_new_from_ecparameters()`. This prevents bypass of security hardening and performance gains, especially for curves with specialized EC_METHODs. By default, if a key encoded with explicit parameters is loaded and later serialized, the output is still encoded with explicit parameters, even if internally a "named" EC_GROUP is used for computation. [Nicola Tuveri] *) Compute ECC cofactors if not provided during EC_GROUP construction. Before this change, EC_GROUP_set_generator would accept order and/or cofactor as NULL. After this change, only the cofactor parameter can be NULL. It also does some minimal sanity checks on the passed order. (CVE-2019-1547) [Billy Bob Brumley] *) Fixed a padding oracle in PKCS7_dataDecode and CMS_decrypt_set1_pkey. An attack is simple, if the first CMS_recipientInfo is valid but the second CMS_recipientInfo is chosen ciphertext. If the second recipientInfo decodes to PKCS #1 v1.5 form plaintext, the correct encryption key will be replaced by garbage, and the message cannot be decoded, but if the RSA decryption fails, the correct encryption key is used and the recipient will not notice the attack. As a work around for this potential attack the length of the decrypted key must be equal to the cipher default key length, in case the certifiate is not given and all recipientInfo are tried out. The old behaviour can be re-enabled in the CMS code by setting the CMS_DEBUG_DECRYPT flag. (CVE-2019-1563) [Bernd Edlinger] *) Early start up entropy quality from the DEVRANDOM seed source has been improved for older Linux systems. The RAND subsystem will wait for /dev/random to be producing output before seeding from /dev/urandom. The seeded state is stored for future library initialisations using a system global shared memory segment. The shared memory identifier can be configured by defining OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID to the desired value. The default identifier is 114. [Paul Dale] *) Correct the extended master secret constant on EBCDIC systems. Without this fix TLS connections between an EBCDIC system and a non-EBCDIC system that negotiate EMS will fail. Unfortunately this also means that TLS connections between EBCDIC systems with this fix, and EBCDIC systems without this fix will fail if they negotiate EMS. [Matt Caswell] *) Use Windows installation paths in the mingw builds Mingw isn't a POSIX environment per se, which means that Windows paths should be used for installation. (CVE-2019-1552) [Richard Levitte] *) Changed DH_check to accept parameters with order q and 2q subgroups. With order 2q subgroups the bit 0 of the private key is not secret but DH_generate_key works around that by clearing bit 0 of the private key for those. This avoids leaking bit 0 of the private key. [Bernd Edlinger] *) Significantly reduce secure memory usage by the randomness pools. [Paul Dale] *) Revert the DEVRANDOM_WAIT feature for Linux systems The DEVRANDOM_WAIT feature added a select() call to wait for the /dev/random device to become readable before reading from the /dev/urandom device. It turned out that this change had negative side effects on performance which were not acceptable. After some discussion it was decided to revert this feature and leave it up to the OS resp. the platform maintainer to ensure a proper initialization during early boot time. [Matthias St. Pierre] Changes between 1.1.1b and 1.1.1c [28 May 2019] *) Add build tests for C++. These are generated files that only do one thing, to include one public OpenSSL head file each. This tests that the public header files can be usefully included in a C++ application. This test isn't enabled by default. It can be enabled with the option 'enable-buildtest-c++'. [Richard Levitte] *) Enable SHA3 pre-hashing for ECDSA and DSA. [Patrick Steuer] *) Change the default RSA, DSA and DH size to 2048 bit instead of 1024. This changes the size when using the genpkey app when no size is given. It fixes an omission in earlier changes that changed all RSA, DSA and DH generation apps to use 2048 bits by default. [Kurt Roeckx] *) Reorganize the manual pages to consistently have RETURN VALUES, EXAMPLES, SEE ALSO and HISTORY come in that order, and adjust util/fix-doc-nits accordingly. [Paul Yang, Joshua Lock] *) Add the missing accessor EVP_PKEY_get0_engine() [Matt Caswell] *) Have apps like 's_client' and 's_server' output the signature scheme along with other cipher suite parameters when debugging. [Lorinczy Zsigmond] *) Make OPENSSL_config() error agnostic again. [Richard Levitte] *) Do the error handling in RSA decryption constant time. [Bernd Edlinger] *) Prevent over long nonces in ChaCha20-Poly1305. ChaCha20-Poly1305 is an AEAD cipher, and requires a unique nonce input for every encryption operation. RFC 7539 specifies that the nonce value (IV) should be 96 bits (12 bytes). OpenSSL allows a variable nonce length and front pads the nonce with 0 bytes if it is less than 12 bytes. However it also incorrectly allows a nonce to be set of up to 16 bytes. In this case only the last 12 bytes are significant and any additional leading bytes are ignored. It is a requirement of using this cipher that nonce values are unique. Messages encrypted using a reused nonce value are susceptible to serious confidentiality and integrity attacks. If an application changes the default nonce length to be longer than 12 bytes and then makes a change to the leading bytes of the nonce expecting the new value to be a new unique nonce then such an application could inadvertently encrypt messages with a reused nonce. Additionally the ignored bytes in a long nonce are not covered by the integrity guarantee of this cipher. Any application that relies on the integrity of these ignored leading bytes of a long nonce may be further affected. Any OpenSSL internal use of this cipher, including in SSL/TLS, is safe because no such use sets such a long nonce value. However user applications that use this cipher directly and set a non-default nonce length to be longer than 12 bytes may be vulnerable. This issue was reported to OpenSSL on 16th of March 2019 by Joran Dirk Greef of Ronomon. (CVE-2019-1543) [Matt Caswell] *) Add DEVRANDOM_WAIT feature for Linux systems On older Linux systems where the getrandom() system call is not available, OpenSSL normally uses the /dev/urandom device for seeding its CSPRNG. Contrary to getrandom(), the /dev/urandom device will not block during early boot when the kernel CSPRNG has not been seeded yet. To mitigate this known weakness, use select() to wait for /dev/random to become readable before reading from /dev/urandom. *) Ensure that SM2 only uses SM3 as digest algorithm [Paul Yang] Changes between 1.1.1a and 1.1.1b [26 Feb 2019] *) Added SCA hardening for modular field inversion in EC_GROUP through a new dedicated field_inv() pointer in EC_METHOD. This also addresses a leakage affecting conversions from projective to affine coordinates. [Billy Bob Brumley, Nicola Tuveri] *) Change the info callback signals for the start and end of a post-handshake message exchange in TLSv1.3. In 1.1.1/1.1.1a we used SSL_CB_HANDSHAKE_START and SSL_CB_HANDSHAKE_DONE. Experience has shown that many applications get confused by this and assume that a TLSv1.2 renegotiation has started. This can break KeyUpdate handling. Instead we no longer signal the start and end of a post handshake message exchange (although the messages themselves are still signalled). This could break some applications that were expecting the old signals. However without this KeyUpdate is not usable for many applications. [Matt Caswell] *) Fix a bug in the computation of the endpoint-pair shared secret used by DTLS over SCTP. This breaks interoperability with older versions of OpenSSL like OpenSSL 1.1.0 and OpenSSL 1.0.2. There is a runtime switch SSL_MODE_DTLS_SCTP_LABEL_LENGTH_BUG (off by default) enabling interoperability with such broken implementations. However, enabling this switch breaks interoperability with correct implementations. *) Fix a use after free bug in d2i_X509_PUBKEY when overwriting a re-used X509_PUBKEY object if the second PUBKEY is malformed. [Bernd Edlinger] *) Move strictness check from EVP_PKEY_asn1_new() to EVP_PKEY_asn1_add0(). [Richard Levitte] *) Remove the 'dist' target and add a tarball building script. The 'dist' target has fallen out of use, and it shouldn't be necessary to configure just to create a source distribution. [Richard Levitte] Changes between 1.1.1 and 1.1.1a [20 Nov 2018] *) Timing vulnerability in DSA signature generation The OpenSSL DSA signature algorithm has been shown to be vulnerable to a timing side channel attack. An attacker could use variations in the signing algorithm to recover the private key. This issue was reported to OpenSSL on 16th October 2018 by Samuel Weiser. (CVE-2018-0734) [Paul Dale] *) Timing vulnerability in ECDSA signature generation The OpenSSL ECDSA signature algorithm has been shown to be vulnerable to a timing side channel attack. An attacker could use variations in the signing algorithm to recover the private key. This issue was reported to OpenSSL on 25th October 2018 by Samuel Weiser. (CVE-2018-0735) [Paul Dale] *) Added EVP_PKEY_ECDH_KDF_X9_63 and ecdh_KDF_X9_63() as replacements for the EVP_PKEY_ECDH_KDF_X9_62 KDF type and ECDH_KDF_X9_62(). The old names are retained for backwards compatibility. [Antoine Salon] *) Fixed the issue that RAND_add()/RAND_seed() silently discards random input if its length exceeds 4096 bytes. The limit has been raised to a buffer size of two gigabytes and the error handling improved. This issue was reported to OpenSSL by Dr. Falko Strenzke. It has been categorized as a normal bug, not a security issue, because the DRBG reseeds automatically and is fully functional even without additional randomness provided by the application. Changes between 1.1.0i and 1.1.1 [11 Sep 2018] *) Add a new ClientHello callback. Provides a callback interface that gives the application the ability to adjust the nascent SSL object at the earliest stage of ClientHello processing, immediately after extensions have been collected but before they have been processed. In particular, this callback can adjust the supported TLS versions in response to the contents of the ClientHello [Benjamin Kaduk] *) Add SM2 base algorithm support. [Jack Lloyd] *) s390x assembly pack: add (improved) hardware-support for the following cryptographic primitives: sha3, shake, aes-gcm, aes-ccm, aes-ctr, aes-ofb, aes-cfb/cfb8, aes-ecb. [Patrick Steuer] *) Make EVP_PKEY_asn1_new() a bit stricter about its input. A NULL pem_str parameter is no longer accepted, as it leads to a corrupt table. NULL pem_str is reserved for alias entries only. [Richard Levitte] *) Use the new ec_scalar_mul_ladder scaffold to implement a specialized ladder step for prime curves. The new implementation is based on formulae from differential addition-and-doubling in homogeneous projective coordinates from Izu-Takagi "A fast parallel elliptic curve multiplication resistant against side channel attacks" and Brier-Joye "Weierstrass Elliptic Curves and Side-Channel Attacks" Eq. (8) for y-coordinate recovery, modified to work in projective coordinates. [Billy Bob Brumley, Nicola Tuveri] *) Change generating and checking of primes so that the error rate of not being prime depends on the intended use based on the size of the input. For larger primes this will result in more rounds of Miller-Rabin. The maximal error rate for primes with more than 1080 bits is lowered to 2^-128. [Kurt Roeckx, Annie Yousar] *) Increase the number of Miller-Rabin rounds for DSA key generating to 64. [Kurt Roeckx] *) The 'tsget' script is renamed to 'tsget.pl', to avoid confusion when moving between systems, and to avoid confusion when a Windows build is done with mingw vs with MSVC. For POSIX installs, there's still a symlink or copy named 'tsget' to avoid that confusion as well. [Richard Levitte] *) Revert blinding in ECDSA sign and instead make problematic addition length-invariant. Switch even to fixed-length Montgomery multiplication. [Andy Polyakov] *) Use the new ec_scalar_mul_ladder scaffold to implement a specialized ladder step for binary curves. The new implementation is based on formulae from differential addition-and-doubling in mixed Lopez-Dahab projective coordinates, modified to independently blind the operands. [Billy Bob Brumley, Sohaib ul Hassan, Nicola Tuveri] *) Add a scaffold to optionally enhance the Montgomery ladder implementation for `ec_scalar_mul_ladder` (formerly `ec_mul_consttime`) allowing EC_METHODs to implement their own specialized "ladder step", to take advantage of more favorable coordinate systems or more efficient differential addition-and-doubling algorithms. [Billy Bob Brumley, Sohaib ul Hassan, Nicola Tuveri] *) Modified the random device based seed sources to keep the relevant file descriptors open rather than reopening them on each access. This allows such sources to operate in a chroot() jail without the associated device nodes being available. This behaviour can be controlled using RAND_keep_random_devices_open(). [Paul Dale] *) Numerous side-channel attack mitigations have been applied. This may have performance impacts for some algorithms for the benefit of improved security. Specific changes are noted in this change log by their respective authors. [Matt Caswell] *) AIX shared library support overhaul. Switch to AIX "natural" way of handling shared libraries, which means collecting shared objects of different versions and bitnesses in one common archive. This allows to mitigate conflict between 1.0 and 1.1 side-by-side installations. It doesn't affect the way 3rd party applications are linked, only how multi-version installation is managed. [Andy Polyakov] *) Make ec_group_do_inverse_ord() more robust and available to other EC cryptosystems, so that irrespective of BN_FLG_CONSTTIME, SCA mitigations are applied to the fallback BN_mod_inverse(). When using this function rather than BN_mod_inverse() directly, new EC cryptosystem implementations are then safer-by-default. [Billy Bob Brumley] *) Add coordinate blinding for EC_POINT and implement projective coordinate blinding for generic prime curves as a countermeasure to chosen point SCA attacks. [Sohaib ul Hassan, Nicola Tuveri, Billy Bob Brumley] *) Add blinding to ECDSA and DSA signatures to protect against side channel attacks discovered by Keegan Ryan (NCC Group). [Matt Caswell] *) Enforce checking in the pkeyutl command line app to ensure that the input length does not exceed the maximum supported digest length when performing a sign, verify or verifyrecover operation. [Matt Caswell] *) SSL_MODE_AUTO_RETRY is enabled by default. Applications that use blocking I/O in combination with something like select() or poll() will hang. This can be turned off again using SSL_CTX_clear_mode(). Many applications do not properly handle non-application data records, and TLS 1.3 sends more of such records. Setting SSL_MODE_AUTO_RETRY works around the problems in those applications, but can also break some. It's recommended to read the manpages about SSL_read(), SSL_write(), SSL_get_error(), SSL_shutdown(), SSL_CTX_set_mode() and SSL_CTX_set_read_ahead() again. [Kurt Roeckx] *) When unlocking a pass phrase protected PEM file or PKCS#8 container, we now allow empty (zero character) pass phrases. [Richard Levitte] *) Apply blinding to binary field modular inversion and remove patent pending (OPENSSL_SUN_GF2M_DIV) BN_GF2m_mod_div implementation. [Billy Bob Brumley] *) Deprecate ec2_mult.c and unify scalar multiplication code paths for binary and prime elliptic curves. [Billy Bob Brumley] *) Remove ECDSA nonce padding: EC_POINT_mul is now responsible for constant time fixed point multiplication. [Billy Bob Brumley] *) Revise elliptic curve scalar multiplication with timing attack defenses: ec_wNAF_mul redirects to a constant time implementation when computing fixed point and variable point multiplication (which in OpenSSL are mostly used with secret scalars in keygen, sign, ECDH derive operations). [Billy Bob Brumley, Nicola Tuveri, Cesar Pereida García, Sohaib ul Hassan] *) Updated CONTRIBUTING [Rich Salz] *) Updated DRBG / RAND to request nonce and additional low entropy randomness from the system. [Matthias St. Pierre] *) Updated 'openssl rehash' to use OpenSSL consistent default. [Richard Levitte] *) Moved the load of the ssl_conf module to libcrypto, which helps loading engines that libssl uses before libssl is initialised. [Matt Caswell] *) Added EVP_PKEY_sign() and EVP_PKEY_verify() for EdDSA [Matt Caswell] *) Fixed X509_NAME_ENTRY_set to get multi-valued RDNs right in all cases. [Ingo Schwarze, Rich Salz] *) Added output of accepting IP address and port for 'openssl s_server' [Richard Levitte] *) Added a new API for TLSv1.3 ciphersuites: SSL_CTX_set_ciphersuites() SSL_set_ciphersuites() [Matt Caswell] *) Memory allocation failures consistently add an error to the error stack. [Rich Salz] *) Don't use OPENSSL_ENGINES and OPENSSL_CONF environment values in libcrypto when run as setuid/setgid. [Bernd Edlinger] *) Load any config file by default when libssl is used. [Matt Caswell] *) Added new public header file and documentation for the RAND_DRBG API. See manual page RAND_DRBG(7) for an overview. [Matthias St. Pierre] *) QNX support removed (cannot find contributors to get their approval for the license change). [Rich Salz] *) TLSv1.3 replay protection for early data has been implemented. See the SSL_read_early_data() man page for further details. [Matt Caswell] *) Separated TLSv1.3 ciphersuite configuration out from TLSv1.2 ciphersuite configuration. TLSv1.3 ciphersuites are not compatible with TLSv1.2 and below. Similarly TLSv1.2 ciphersuites are not compatible with TLSv1.3. In order to avoid issues where legacy TLSv1.2 ciphersuite configuration would otherwise inadvertently disable all TLSv1.3 ciphersuites the configuration has been separated out. See the ciphers man page or the SSL_CTX_set_ciphersuites() man page for more information. [Matt Caswell] *) On POSIX (BSD, Linux, ...) systems the ocsp(1) command running in responder mode now supports the new "-multi" option, which spawns the specified number of child processes to handle OCSP requests. The "-timeout" option now also limits the OCSP responder's patience to wait to receive the full client request on a newly accepted connection. Child processes are respawned as needed, and the CA index file is automatically reloaded when changed. This makes it possible to run the "ocsp" responder as a long-running service, making the OpenSSL CA somewhat more feature-complete. In this mode, most diagnostic messages logged after entering the event loop are logged via syslog(3) rather than written to stderr. [Viktor Dukhovni] *) Added support for X448 and Ed448. Heavily based on original work by Mike Hamburg. [Matt Caswell] *) Extend OSSL_STORE with capabilities to search and to narrow the set of objects loaded. This adds the functions OSSL_STORE_expect() and OSSL_STORE_find() as well as needed tools to construct searches and get the search data out of them. [Richard Levitte] *) Support for TLSv1.3 added. Note that users upgrading from an earlier version of OpenSSL should review their configuration settings to ensure that they are still appropriate for TLSv1.3. For further information see: https://wiki.openssl.org/index.php/TLS1.3 [Matt Caswell] *) Grand redesign of the OpenSSL random generator The default RAND method now utilizes an AES-CTR DRBG according to NIST standard SP 800-90Ar1. The new random generator is essentially a port of the default random generator from the OpenSSL FIPS 2.0 object module. It is a hybrid deterministic random bit generator using an AES-CTR bit stream and which seeds and reseeds itself automatically using trusted system entropy sources. Some of its new features are: o Support for multiple DRBG instances with seed chaining. o The default RAND method makes use of a DRBG. o There is a public and private DRBG instance. o The DRBG instances are fork-safe. o Keep all global DRBG instances on the secure heap if it is enabled. o The public and private DRBG instance are per thread for lock free operation [Paul Dale, Benjamin Kaduk, Kurt Roeckx, Rich Salz, Matthias St. Pierre] *) Changed Configure so it only says what it does and doesn't dump so much data. Instead, ./configdata.pm should be used as a script to display all sorts of configuration data. [Richard Levitte] *) Added processing of "make variables" to Configure. [Richard Levitte] *) Added SHA512/224 and SHA512/256 algorithm support. [Paul Dale] *) The last traces of Netware support, first removed in 1.1.0, have now been removed. [Rich Salz] *) Get rid of Makefile.shared, and in the process, make the processing of certain files (rc.obj, or the .def/.map/.opt files produced from the ordinal files) more visible and hopefully easier to trace and debug (or make silent). [Richard Levitte] *) Make it possible to have environment variable assignments as arguments to config / Configure. [Richard Levitte] *) Add multi-prime RSA (RFC 8017) support. [Paul Yang] *) Add SM3 implemented according to GB/T 32905-2016 [ Jack Lloyd , Ronald Tse , Erick Borsboom ] *) Add 'Maximum Fragment Length' TLS extension negotiation and support as documented in RFC6066. Based on a patch from Tomasz Moń [Filipe Raimundo da Silva] *) Add SM4 implemented according to GB/T 32907-2016. [ Jack Lloyd , Ronald Tse , Erick Borsboom ] *) Reimplement -newreq-nodes and ERR_error_string_n; the original author does not agree with the license change. [Rich Salz] *) Add ARIA AEAD TLS support. [Jon Spillett] *) Some macro definitions to support VS6 have been removed. Visual Studio 6 has not worked since 1.1.0 [Rich Salz] *) Add ERR_clear_last_mark(), to allow callers to clear the last mark without clearing the errors. [Richard Levitte] *) Add "atfork" functions. If building on a system that without pthreads, see doc/man3/OPENSSL_fork_prepare.pod for application requirements. The RAND facility now uses/requires this. [Rich Salz] *) Add SHA3. [Andy Polyakov] *) The UI API becomes a permanent and integral part of libcrypto, i.e. not possible to disable entirely. However, it's still possible to disable the console reading UI method, UI_OpenSSL() (use UI_null() as a fallback). To disable, configure with 'no-ui-console'. 'no-ui' is still possible to use as an alias. Check at compile time with the macro OPENSSL_NO_UI_CONSOLE. The macro OPENSSL_NO_UI is still possible to check and is an alias for OPENSSL_NO_UI_CONSOLE. [Richard Levitte] *) Add a STORE module, which implements a uniform and URI based reader of stores that can contain keys, certificates, CRLs and numerous other objects. The main API is loosely based on a few stdio functions, and includes OSSL_STORE_open, OSSL_STORE_load, OSSL_STORE_eof, OSSL_STORE_error and OSSL_STORE_close. The implementation uses backends called "loaders" to implement arbitrary URI schemes. There is one built in "loader" for the 'file' scheme. [Richard Levitte] *) Add devcrypto engine. This has been implemented against cryptodev-linux, then adjusted to work on FreeBSD 8.4 as well. Enable by configuring with 'enable-devcryptoeng'. This is done by default on BSD implementations, as cryptodev.h is assumed to exist on all of them. [Richard Levitte] *) Module names can prefixed with OSSL_ or OPENSSL_. This affects util/mkerr.pl, which is adapted to allow those prefixes, leading to error code calls like this: OSSL_FOOerr(OSSL_FOO_F_SOMETHING, OSSL_FOO_R_WHATEVER); With this change, we claim the namespaces OSSL and OPENSSL in a manner that can be encoded in C. For the foreseeable future, this will only affect new modules. [Richard Levitte and Tim Hudson] *) Removed BSD cryptodev engine. [Rich Salz] *) Add a build target 'build_all_generated', to build all generated files and only that. This can be used to prepare everything that requires things like perl for a system that lacks perl and then move everything to that system and do the rest of the build there. [Richard Levitte] *) In the UI interface, make it possible to duplicate the user data. This can be used by engines that need to retain the data for a longer time than just the call where this user data is passed. [Richard Levitte] *) Ignore the '-named_curve auto' value for compatibility of applications with OpenSSL 1.0.2. [Tomas Mraz ] *) Fragmented SSL/TLS alerts are no longer accepted. An alert message is 2 bytes long. In theory it is permissible in SSLv3 - TLSv1.2 to fragment such alerts across multiple records (some of which could be empty). In practice it make no sense to send an empty alert record, or to fragment one. TLSv1.3 prohibits this altogether and other libraries (BoringSSL, NSS) do not support this at all. Supporting it adds significant complexity to the record layer, and its removal is unlikely to cause interoperability issues. [Matt Caswell] *) Add the ASN.1 types INT32, UINT32, INT64, UINT64 and variants prefixed with Z. These are meant to replace LONG and ZLONG and to be size safe. The use of LONG and ZLONG is discouraged and scheduled for deprecation in OpenSSL 1.2.0. [Richard Levitte] *) Add the 'z' and 'j' modifiers to BIO_printf() et al formatting string, 'z' is to be used for [s]size_t, and 'j' - with [u]int64_t. [Richard Levitte, Andy Polyakov] *) Add EC_KEY_get0_engine(), which does for EC_KEY what RSA_get0_engine() does for RSA, etc. [Richard Levitte] *) Have 'config' recognise 64-bit mingw and choose 'mingw64' as the target platform rather than 'mingw'. [Richard Levitte] *) The functions X509_STORE_add_cert and X509_STORE_add_crl return success if they are asked to add an object which already exists in the store. This change cascades to other functions which load certificates and CRLs. [Paul Dale] *) x86_64 assembly pack: annotate code with DWARF CFI directives to facilitate stack unwinding even from assembly subroutines. [Andy Polyakov] *) Remove VAX C specific definitions of OPENSSL_EXPORT, OPENSSL_EXTERN. Also remove OPENSSL_GLOBAL entirely, as it became a no-op. [Richard Levitte] *) Remove the VMS-specific reimplementation of gmtime from crypto/o_times.c. VMS C's RTL has a fully up to date gmtime() and gmtime_r() since V7.1, which is the minimum version we support. [Richard Levitte] *) Certificate time validation (X509_cmp_time) enforces stricter compliance with RFC 5280. Fractional seconds and timezone offsets are no longer allowed. [Emilia Käsper] *) Add support for ARIA [Paul Dale] *) s_client will now send the Server Name Indication (SNI) extension by default unless the new "-noservername" option is used. The server name is based on the host provided to the "-connect" option unless overridden by using "-servername". [Matt Caswell] *) Add support for SipHash [Todd Short] *) OpenSSL now fails if it receives an unrecognised record type in TLS1.0 or TLS1.1. Previously this only happened in SSLv3 and TLS1.2. This is to prevent issues where no progress is being made and the peer continually sends unrecognised record types, using up resources processing them. [Matt Caswell] *) 'openssl passwd' can now produce SHA256 and SHA512 based output, using the algorithm defined in https://www.akkadia.org/drepper/SHA-crypt.txt [Richard Levitte] *) Heartbeat support has been removed; the ABI is changed for now. [Richard Levitte, Rich Salz] *) Support for SSL_OP_NO_ENCRYPT_THEN_MAC in SSL_CONF_cmd. [Emilia Käsper] *) The RSA "null" method, which was partially supported to avoid patent issues, has been replaced to always returns NULL. [Rich Salz] Changes between 1.1.0h and 1.1.0i [xx XXX xxxx] *) Client DoS due to large DH parameter During key agreement in a TLS handshake using a DH(E) based ciphersuite a malicious server can send a very large prime value to the client. This will cause the client to spend an unreasonably long period of time generating a key for this prime resulting in a hang until the client has finished. This could be exploited in a Denial Of Service attack. This issue was reported to OpenSSL on 5th June 2018 by Guido Vranken (CVE-2018-0732) [Guido Vranken] *) Cache timing vulnerability in RSA Key Generation The OpenSSL RSA Key generation algorithm has been shown to be vulnerable to a cache timing side channel attack. An attacker with sufficient access to mount cache timing attacks during the RSA key generation process could recover the private key. This issue was reported to OpenSSL on 4th April 2018 by Alejandro Cabrera Aldaya, Billy Brumley, Cesar Pereida Garcia and Luis Manuel Alvarez Tapia. (CVE-2018-0737) [Billy Brumley] *) Make EVP_PKEY_asn1_new() a bit stricter about its input. A NULL pem_str parameter is no longer accepted, as it leads to a corrupt table. NULL pem_str is reserved for alias entries only. [Richard Levitte] *) Revert blinding in ECDSA sign and instead make problematic addition length-invariant. Switch even to fixed-length Montgomery multiplication. [Andy Polyakov] *) Change generating and checking of primes so that the error rate of not being prime depends on the intended use based on the size of the input. For larger primes this will result in more rounds of Miller-Rabin. The maximal error rate for primes with more than 1080 bits is lowered to 2^-128. [Kurt Roeckx, Annie Yousar] *) Increase the number of Miller-Rabin rounds for DSA key generating to 64. [Kurt Roeckx] *) Add blinding to ECDSA and DSA signatures to protect against side channel attacks discovered by Keegan Ryan (NCC Group). [Matt Caswell] *) When unlocking a pass phrase protected PEM file or PKCS#8 container, we now allow empty (zero character) pass phrases. [Richard Levitte] *) Certificate time validation (X509_cmp_time) enforces stricter compliance with RFC 5280. Fractional seconds and timezone offsets are no longer allowed. [Emilia Käsper] *) Fixed a text canonicalisation bug in CMS Where a CMS detached signature is used with text content the text goes through a canonicalisation process first prior to signing or verifying a signature. This process strips trailing space at the end of lines, converts line terminators to CRLF and removes additional trailing line terminators at the end of a file. A bug in the canonicalisation process meant that some characters, such as form-feed, were incorrectly treated as whitespace and removed. This is contrary to the specification (RFC5485). This fix could mean that detached text data signed with an earlier version of OpenSSL 1.1.0 may fail to verify using the fixed version, or text data signed with a fixed OpenSSL may fail to verify with an earlier version of OpenSSL 1.1.0. A workaround is to only verify the canonicalised text data and use the "-binary" flag (for the "cms" command line application) or set the SMIME_BINARY/PKCS7_BINARY/CMS_BINARY flags (if using CMS_verify()). [Matt Caswell] Changes between 1.1.0g and 1.1.0h [27 Mar 2018] *) Constructed ASN.1 types with a recursive definition could exceed the stack Constructed ASN.1 types with a recursive definition (such as can be found in PKCS7) could eventually exceed the stack given malicious input with excessive recursion. This could result in a Denial Of Service attack. There are no such structures used within SSL/TLS that come from untrusted sources so this is considered safe. This issue was reported to OpenSSL on 4th January 2018 by the OSS-fuzz project. (CVE-2018-0739) [Matt Caswell] *) Incorrect CRYPTO_memcmp on HP-UX PA-RISC Because of an implementation bug the PA-RISC CRYPTO_memcmp function is effectively reduced to only comparing the least significant bit of each byte. This allows an attacker to forge messages that would be considered as authenticated in an amount of tries lower than that guaranteed by the security claims of the scheme. The module can only be compiled by the HP-UX assembler, so that only HP-UX PA-RISC targets are affected. This issue was reported to OpenSSL on 2nd March 2018 by Peter Waltenberg (IBM). (CVE-2018-0733) [Andy Polyakov] *) Add a build target 'build_all_generated', to build all generated files and only that. This can be used to prepare everything that requires things like perl for a system that lacks perl and then move everything to that system and do the rest of the build there. [Richard Levitte] *) Backport SSL_OP_NO_RENGOTIATION OpenSSL 1.0.2 and below had the ability to disable renegotiation using the (undocumented) SSL3_FLAGS_NO_RENEGOTIATE_CIPHERS flag. Due to the opacity changes this is no longer possible in 1.1.0. Therefore the new SSL_OP_NO_RENEGOTIATION option from 1.1.1-dev has been backported to 1.1.0 to provide equivalent functionality. Note that if an application built against 1.1.0h headers (or above) is run using an older version of 1.1.0 (prior to 1.1.0h) then the option will be accepted but nothing will happen, i.e. renegotiation will not be prevented. [Matt Caswell] *) Removed the OS390-Unix config target. It relied on a script that doesn't exist. [Rich Salz] *) rsaz_1024_mul_avx2 overflow bug on x86_64 There is an overflow bug in the AVX2 Montgomery multiplication procedure used in exponentiation with 1024-bit moduli. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH1024 are considered just feasible, because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be significant. However, for an attack on TLS to be meaningful, the server would have to share the DH1024 private key among multiple clients, which is no longer an option since CVE-2016-0701. This only affects processors that support the AVX2 but not ADX extensions like Intel Haswell (4th generation). This issue was reported to OpenSSL by David Benjamin (Google). The issue was originally found via the OSS-Fuzz project. (CVE-2017-3738) [Andy Polyakov] Changes between 1.1.0f and 1.1.0g [2 Nov 2017] *) bn_sqrx8x_internal carry bug on x86_64 There is a carry propagating bug in the x86_64 Montgomery squaring procedure. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH are considered just feasible (although very difficult) because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be very significant and likely only accessible to a limited number of attackers. An attacker would additionally need online access to an unpatched system using the target private key in a scenario with persistent DH parameters and a private key that is shared between multiple clients. This only affects processors that support the BMI1, BMI2 and ADX extensions like Intel Broadwell (5th generation) and later or AMD Ryzen. This issue was reported to OpenSSL by the OSS-Fuzz project. (CVE-2017-3736) [Andy Polyakov] *) Malformed X.509 IPAddressFamily could cause OOB read If an X.509 certificate has a malformed IPAddressFamily extension, OpenSSL could do a one-byte buffer overread. The most likely result would be an erroneous display of the certificate in text format. This issue was reported to OpenSSL by the OSS-Fuzz project. (CVE-2017-3735) [Rich Salz] Changes between 1.1.0e and 1.1.0f [25 May 2017] *) Have 'config' recognise 64-bit mingw and choose 'mingw64' as the target platform rather than 'mingw'. [Richard Levitte] *) Remove the VMS-specific reimplementation of gmtime from crypto/o_times.c. VMS C's RTL has a fully up to date gmtime() and gmtime_r() since V7.1, which is the minimum version we support. [Richard Levitte] Changes between 1.1.0d and 1.1.0e [16 Feb 2017] *) Encrypt-Then-Mac renegotiation crash During a renegotiation handshake if the Encrypt-Then-Mac extension is negotiated where it was not in the original handshake (or vice-versa) then this can cause OpenSSL to crash (dependant on ciphersuite). Both clients and servers are affected. This issue was reported to OpenSSL by Joe Orton (Red Hat). (CVE-2017-3733) [Matt Caswell] Changes between 1.1.0c and 1.1.0d [26 Jan 2017] *) Truncated packet could crash via OOB read If one side of an SSL/TLS path is running on a 32-bit host and a specific cipher is being used, then a truncated packet can cause that host to perform an out-of-bounds read, usually resulting in a crash. This issue was reported to OpenSSL by Robert Święcki of Google. (CVE-2017-3731) [Andy Polyakov] *) Bad (EC)DHE parameters cause a client crash If a malicious server supplies bad parameters for a DHE or ECDHE key exchange then this can result in the client attempting to dereference a NULL pointer leading to a client crash. This could be exploited in a Denial of Service attack. This issue was reported to OpenSSL by Guido Vranken. (CVE-2017-3730) [Matt Caswell] *) BN_mod_exp may produce incorrect results on x86_64 There is a carry propagating bug in the x86_64 Montgomery squaring procedure. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH are considered just feasible (although very difficult) because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be very significant and likely only accessible to a limited number of attackers. An attacker would additionally need online access to an unpatched system using the target private key in a scenario with persistent DH parameters and a private key that is shared between multiple clients. For example this can occur by default in OpenSSL DHE based SSL/TLS ciphersuites. Note: This issue is very similar to CVE-2015-3193 but must be treated as a separate problem. This issue was reported to OpenSSL by the OSS-Fuzz project. (CVE-2017-3732) [Andy Polyakov] Changes between 1.1.0b and 1.1.0c [10 Nov 2016] *) ChaCha20/Poly1305 heap-buffer-overflow TLS connections using *-CHACHA20-POLY1305 ciphersuites are susceptible to a DoS attack by corrupting larger payloads. This can result in an OpenSSL crash. This issue is not considered to be exploitable beyond a DoS. This issue was reported to OpenSSL by Robert Święcki (Google Security Team) (CVE-2016-7054) [Richard Levitte] *) CMS Null dereference Applications parsing invalid CMS structures can crash with a NULL pointer dereference. This is caused by a bug in the handling of the ASN.1 CHOICE type in OpenSSL 1.1.0 which can result in a NULL value being passed to the structure callback if an attempt is made to free certain invalid encodings. Only CHOICE structures using a callback which do not handle NULL value are affected. This issue was reported to OpenSSL by Tyler Nighswander of ForAllSecure. (CVE-2016-7053) [Stephen Henson] *) Montgomery multiplication may produce incorrect results There is a carry propagating bug in the Broadwell-specific Montgomery multiplication procedure that handles input lengths divisible by, but longer than 256 bits. Analysis suggests that attacks against RSA, DSA and DH private keys are impossible. This is because the subroutine in question is not used in operations with the private key itself and an input of the attacker's direct choice. Otherwise the bug can manifest itself as transient authentication and key negotiation failures or reproducible erroneous outcome of public-key operations with specially crafted input. Among EC algorithms only Brainpool P-512 curves are affected and one presumably can attack ECDH key negotiation. Impact was not analyzed in detail, because pre-requisites for attack are considered unlikely. Namely multiple clients have to choose the curve in question and the server has to share the private key among them, neither of which is default behaviour. Even then only clients that chose the curve will be affected. This issue was publicly reported as transient failures and was not initially recognized as a security issue. Thanks to Richard Morgan for providing reproducible case. (CVE-2016-7055) [Andy Polyakov] *) Removed automatic addition of RPATH in shared libraries and executables, as this was a remainder from OpenSSL 1.0.x and isn't needed any more. [Richard Levitte] Changes between 1.1.0a and 1.1.0b [26 Sep 2016] *) Fix Use After Free for large message sizes The patch applied to address CVE-2016-6307 resulted in an issue where if a message larger than approx 16k is received then the underlying buffer to store the incoming message is reallocated and moved. Unfortunately a dangling pointer to the old location is left which results in an attempt to write to the previously freed location. This is likely to result in a crash, however it could potentially lead to execution of arbitrary code. This issue only affects OpenSSL 1.1.0a. This issue was reported to OpenSSL by Robert Święcki. (CVE-2016-6309) [Matt Caswell] Changes between 1.1.0 and 1.1.0a [22 Sep 2016] *) OCSP Status Request extension unbounded memory growth A malicious client can send an excessively large OCSP Status Request extension. If that client continually requests renegotiation, sending a large OCSP Status Request extension each time, then there will be unbounded memory growth on the server. This will eventually lead to a Denial Of Service attack through memory exhaustion. Servers with a default configuration are vulnerable even if they do not support OCSP. Builds using the "no-ocsp" build time option are not affected. This issue was reported to OpenSSL by Shi Lei (Gear Team, Qihoo 360 Inc.) (CVE-2016-6304) [Matt Caswell] *) SSL_peek() hang on empty record OpenSSL 1.1.0 SSL/TLS will hang during a call to SSL_peek() if the peer sends an empty record. This could be exploited by a malicious peer in a Denial Of Service attack. This issue was reported to OpenSSL by Alex Gaynor. (CVE-2016-6305) [Matt Caswell] *) Excessive allocation of memory in tls_get_message_header() and dtls1_preprocess_fragment() A (D)TLS message includes 3 bytes for its length in the header for the message. This would allow for messages up to 16Mb in length. Messages of this length are excessive and OpenSSL includes a check to ensure that a peer is sending reasonably sized messages in order to avoid too much memory being consumed to service a connection. A flaw in the logic of version 1.1.0 means that memory for the message is allocated too early, prior to the excessive message length check. Due to way memory is allocated in OpenSSL this could mean an attacker could force up to 21Mb to be allocated to service a connection. This could lead to a Denial of Service through memory exhaustion. However, the excessive message length check still takes place, and this would cause the connection to immediately fail. Assuming that the application calls SSL_free() on the failed connection in a timely manner then the 21Mb of allocated memory will then be immediately freed again. Therefore the excessive memory allocation will be transitory in nature. This then means that there is only a security impact if: 1) The application does not call SSL_free() in a timely manner in the event that the connection fails or 2) The application is working in a constrained environment where there is very little free memory or 3) The attacker initiates multiple connection attempts such that there are multiple connections in a state where memory has been allocated for the connection; SSL_free() has not yet been called; and there is insufficient memory to service the multiple requests. Except in the instance of (1) above any Denial Of Service is likely to be transitory because as soon as the connection fails the memory is subsequently freed again in the SSL_free() call. However there is an increased risk during this period of application crashes due to the lack of memory - which would then mean a more serious Denial of Service. This issue was reported to OpenSSL by Shi Lei (Gear Team, Qihoo 360 Inc.) (CVE-2016-6307 and CVE-2016-6308) [Matt Caswell] *) solaris-x86-cc, i.e. 32-bit configuration with vendor compiler, had to be removed. Primary reason is that vendor assembler can't assemble our modules with -KPIC flag. As result it, assembly support, was not even available as option. But its lack means lack of side-channel resistant code, which is incompatible with security by todays standards. Fortunately gcc is readily available prepackaged option, which we firmly point at... [Andy Polyakov] Changes between 1.0.2h and 1.1.0 [25 Aug 2016] *) Windows command-line tool supports UTF-8 opt-in option for arguments and console input. Setting OPENSSL_WIN32_UTF8 environment variable (to any value) allows Windows user to access PKCS#12 file generated with Windows CryptoAPI and protected with non-ASCII password, as well as files generated under UTF-8 locale on Linux also protected with non-ASCII password. [Andy Polyakov] *) To mitigate the SWEET32 attack (CVE-2016-2183), 3DES cipher suites have been disabled by default and removed from DEFAULT, just like RC4. See the RC4 item below to re-enable both. [Rich Salz] *) The method for finding the storage location for the Windows RAND seed file has changed. First we check %RANDFILE%. If that is not set then we check the directories %HOME%, %USERPROFILE% and %SYSTEMROOT% in that order. If all else fails we fall back to C:\. [Matt Caswell] *) The EVP_EncryptUpdate() function has had its return type changed from void to int. A return of 0 indicates and error while a return of 1 indicates success. [Matt Caswell] *) The flags RSA_FLAG_NO_CONSTTIME, DSA_FLAG_NO_EXP_CONSTTIME and DH_FLAG_NO_EXP_CONSTTIME which previously provided the ability to switch off the constant time implementation for RSA, DSA and DH have been made no-ops and deprecated. [Matt Caswell] *) Windows RAND implementation was simplified to only get entropy by calling CryptGenRandom(). Various other RAND-related tickets were also closed. [Joseph Wylie Yandle, Rich Salz] *) The stack and lhash API's were renamed to start with OPENSSL_SK_ and OPENSSL_LH_, respectively. The old names are available with API compatibility. They new names are now completely documented. [Rich Salz] *) Unify TYPE_up_ref(obj) methods signature. SSL_CTX_up_ref(), SSL_up_ref(), X509_up_ref(), EVP_PKEY_up_ref(), X509_CRL_up_ref(), X509_OBJECT_up_ref_count() methods are now returning an int (instead of void) like all others TYPE_up_ref() methods. So now these methods also check the return value of CRYPTO_atomic_add(), and the validity of object reference counter. [fdasilvayy@gmail.com] *) With Windows Visual Studio builds, the .pdb files are installed alongside the installed libraries and executables. For a static library installation, ossl_static.pdb is the associate compiler generated .pdb file to be used when linking programs. [Richard Levitte] *) Remove openssl.spec. Packaging files belong with the packagers. [Richard Levitte] *) Automatic Darwin/OSX configuration has had a refresh, it will now recognise x86_64 architectures automatically. You can still decide to build for a different bitness with the environment variable KERNEL_BITS (can be 32 or 64), for example: KERNEL_BITS=32 ./config [Richard Levitte] *) Change default algorithms in pkcs8 utility to use PKCS#5 v2.0, 256 bit AES and HMAC with SHA256. [Steve Henson] *) Remove support for MIPS o32 ABI on IRIX (and IRIX only). [Andy Polyakov] *) Triple-DES ciphers have been moved from HIGH to MEDIUM. [Rich Salz] *) To enable users to have their own config files and build file templates, Configure looks in the directory indicated by the environment variable OPENSSL_LOCAL_CONFIG_DIR as well as the in-source Configurations/ directory. On VMS, OPENSSL_LOCAL_CONFIG_DIR is expected to be a logical name and is used as is. [Richard Levitte] *) The following datatypes were made opaque: X509_OBJECT, X509_STORE_CTX, X509_STORE, X509_LOOKUP, and X509_LOOKUP_METHOD. The unused type X509_CERT_FILE_CTX was removed. [Rich Salz] *) "shared" builds are now the default. To create only static libraries use the "no-shared" Configure option. [Matt Caswell] *) Remove the no-aes, no-hmac, no-rsa, no-sha and no-md5 Configure options. All of these option have not worked for some while and are fundamental algorithms. [Matt Caswell] *) Make various cleanup routines no-ops and mark them as deprecated. Most global cleanup functions are no longer required because they are handled via auto-deinit (see OPENSSL_init_crypto and OPENSSL_init_ssl man pages). Explicitly de-initing can cause problems (e.g. where a library that uses OpenSSL de-inits, but an application is still using it). The affected functions are CONF_modules_free(), ENGINE_cleanup(), OBJ_cleanup(), EVP_cleanup(), BIO_sock_cleanup(), CRYPTO_cleanup_all_ex_data(), RAND_cleanup(), SSL_COMP_free_compression_methods(), ERR_free_strings() and COMP_zlib_cleanup(). [Matt Caswell] *) --strict-warnings no longer enables runtime debugging options such as REF_DEBUG. Instead, debug options are automatically enabled with '--debug' builds. [Andy Polyakov, Emilia Käsper] *) Made DH and DH_METHOD opaque. The structures for managing DH objects have been moved out of the public header files. New functions for managing these have been added. [Matt Caswell] *) Made RSA and RSA_METHOD opaque. The structures for managing RSA objects have been moved out of the public header files. New functions for managing these have been added. [Richard Levitte] *) Made DSA and DSA_METHOD opaque. The structures for managing DSA objects have been moved out of the public header files. New functions for managing these have been added. [Matt Caswell] *) Made BIO and BIO_METHOD opaque. The structures for managing BIOs have been moved out of the public header files. New functions for managing these have been added. [Matt Caswell] *) Removed no-rijndael as a config option. Rijndael is an old name for AES. [Matt Caswell] *) Removed the mk1mf build scripts. [Richard Levitte] *) Headers are now wrapped, if necessary, with OPENSSL_NO_xxx, so it is always safe to #include a header now. [Rich Salz] *) Removed the aged BC-32 config and all its supporting scripts [Richard Levitte] *) Removed support for Ultrix, Netware, and OS/2. [Rich Salz] *) Add support for HKDF. [Alessandro Ghedini] *) Add support for blake2b and blake2s [Bill Cox] *) Added support for "pipelining". Ciphers that have the EVP_CIPH_FLAG_PIPELINE flag set have a capability to process multiple encryptions/decryptions simultaneously. There are currently no built-in ciphers with this property but the expectation is that engines will be able to offer it to significantly improve throughput. Support has been extended into libssl so that multiple records for a single connection can be processed in one go (for >=TLS 1.1). [Matt Caswell] *) Added the AFALG engine. This is an async capable engine which is able to offload work to the Linux kernel. In this initial version it only supports AES128-CBC. The kernel must be version 4.1.0 or greater. [Catriona Lucey] *) OpenSSL now uses a new threading API. It is no longer necessary to set locking callbacks to use OpenSSL in a multi-threaded environment. There are two supported threading models: pthreads and windows threads. It is also possible to configure OpenSSL at compile time for "no-threads". The old threading API should no longer be used. The functions have been replaced with "no-op" compatibility macros. [Alessandro Ghedini, Matt Caswell] *) Modify behavior of ALPN to invoke callback after SNI/servername callback, such that updates to the SSL_CTX affect ALPN. [Todd Short] *) Add SSL_CIPHER queries for authentication and key-exchange. [Todd Short] *) Changes to the DEFAULT cipherlist: - Prefer (EC)DHE handshakes over plain RSA. - Prefer AEAD ciphers over legacy ciphers. - Prefer ECDSA over RSA when both certificates are available. - Prefer TLSv1.2 ciphers/PRF. - Remove DSS, SEED, IDEA, CAMELLIA, and AES-CCM from the default cipherlist. [Emilia Käsper] *) Change the ECC default curve list to be this, in order: x25519, secp256r1, secp521r1, secp384r1. [Rich Salz] *) RC4 based libssl ciphersuites are now classed as "weak" ciphers and are disabled by default. They can be re-enabled using the enable-weak-ssl-ciphers option to Configure. [Matt Caswell] *) If the server has ALPN configured, but supports no protocols that the client advertises, send a fatal "no_application_protocol" alert. This behaviour is SHALL in RFC 7301, though it isn't universally implemented by other servers. [Emilia Käsper] *) Add X25519 support. Add ASN.1 and EVP_PKEY methods for X25519. This includes support for public and private key encoding using the format documented in draft-ietf-curdle-pkix-02. The corresponding EVP_PKEY method supports key generation and key derivation. TLS support complies with draft-ietf-tls-rfc4492bis-08 and uses X25519(29). [Steve Henson] *) Deprecate SRP_VBASE_get_by_user. SRP_VBASE_get_by_user had inconsistent memory management behaviour. In order to fix an unavoidable memory leak (CVE-2016-0798), SRP_VBASE_get_by_user was changed to ignore the "fake user" SRP seed, even if the seed is configured. Users should use SRP_VBASE_get1_by_user instead. Note that in SRP_VBASE_get1_by_user, caller must free the returned value. Note also that even though configuring the SRP seed attempts to hide invalid usernames by continuing the handshake with fake credentials, this behaviour is not constant time and no strong guarantees are made that the handshake is indistinguishable from that of a valid user. [Emilia Käsper] *) Configuration change; it's now possible to build dynamic engines without having to build shared libraries and vice versa. This only applies to the engines in engines/, those in crypto/engine/ will always be built into libcrypto (i.e. "static"). Building dynamic engines is enabled by default; to disable, use the configuration option "disable-dynamic-engine". The only requirements for building dynamic engines are the presence of the DSO module and building with position independent code, so they will also automatically be disabled if configuring with "disable-dso" or "disable-pic". The macros OPENSSL_NO_STATIC_ENGINE and OPENSSL_NO_DYNAMIC_ENGINE are also taken away from openssl/opensslconf.h, as they are irrelevant. [Richard Levitte] *) Configuration change; if there is a known flag to compile position independent code, it will always be applied on the libcrypto and libssl object files, and never on the application object files. This means other libraries that use routines from libcrypto / libssl can be made into shared libraries regardless of how OpenSSL was configured. If this isn't desirable, the configuration options "disable-pic" or "no-pic" can be used to disable the use of PIC. This will also disable building shared libraries and dynamic engines. [Richard Levitte] *) Removed JPAKE code. It was experimental and has no wide use. [Rich Salz] *) The INSTALL_PREFIX Makefile variable has been renamed to DESTDIR. That makes for less confusion on what this variable is for. Also, the configuration option --install_prefix is removed. [Richard Levitte] *) Heartbeat for TLS has been removed and is disabled by default for DTLS; configure with enable-heartbeats. Code that uses the old #define's might need to be updated. [Emilia Käsper, Rich Salz] *) Rename REF_CHECK to REF_DEBUG. [Rich Salz] *) New "unified" build system The "unified" build system is aimed to be a common system for all platforms we support. With it comes new support for VMS. This system builds supports building in a different directory tree than the source tree. It produces one Makefile (for unix family or lookalikes), or one descrip.mms (for VMS). The source of information to make the Makefile / descrip.mms is small files called 'build.info', holding the necessary information for each directory with source to compile, and a template in Configurations, like unix-Makefile.tmpl or descrip.mms.tmpl. With this change, the library names were also renamed on Windows and on VMS. They now have names that are closer to the standard on Unix, and include the major version number, and in certain cases, the architecture they are built for. See "Notes on shared libraries" in INSTALL. We rely heavily on the perl module Text::Template. [Richard Levitte] *) Added support for auto-initialisation and de-initialisation of the library. OpenSSL no longer requires explicit init or deinit routines to be called, except in certain circumstances. See the OPENSSL_init_crypto() and OPENSSL_init_ssl() man pages for further information. [Matt Caswell] *) The arguments to the DTLSv1_listen function have changed. Specifically the "peer" argument is now expected to be a BIO_ADDR object. *) Rewrite of BIO networking library. The BIO library lacked consistent support of IPv6, and adding it required some more extensive modifications. This introduces the BIO_ADDR and BIO_ADDRINFO types, which hold all types of addresses and chains of address information. It also introduces a new API, with functions like BIO_socket, BIO_connect, BIO_listen, BIO_lookup and a rewrite of BIO_accept. The source/sink BIOs BIO_s_connect, BIO_s_accept and BIO_s_datagram have been adapted accordingly. [Richard Levitte] *) RSA_padding_check_PKCS1_type_1 now accepts inputs with and without the leading 0-byte. [Emilia Käsper] *) CRIME protection: disable compression by default, even if OpenSSL is compiled with zlib enabled. Applications can still enable compression by calling SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION), or by using the SSL_CONF library to configure compression. [Emilia Käsper] *) The signature of the session callback configured with SSL_CTX_sess_set_get_cb was changed. The read-only input buffer was explicitly marked as 'const unsigned char*' instead of 'unsigned char*'. [Emilia Käsper] *) Always DPURIFY. Remove the use of uninitialized memory in the RNG, and other conditional uses of DPURIFY. This makes -DPURIFY a no-op. [Emilia Käsper] *) Removed many obsolete configuration items, including DES_PTR, DES_RISC1, DES_RISC2, DES_INT MD2_CHAR, MD2_INT, MD2_LONG BF_PTR, BF_PTR2 IDEA_SHORT, IDEA_LONG RC2_SHORT, RC2_LONG, RC4_LONG, RC4_CHUNK, RC4_INDEX [Rich Salz, with advice from Andy Polyakov] *) Many BN internals have been moved to an internal header file. [Rich Salz with help from Andy Polyakov] *) Configuration and writing out the results from it has changed. Files such as Makefile include/openssl/opensslconf.h and are now produced through general templates, such as Makefile.in and crypto/opensslconf.h.in and some help from the perl module Text::Template. Also, the center of configuration information is no longer Makefile. Instead, Configure produces a perl module in configdata.pm which holds most of the config data (in the hash table %config), the target data that comes from the target configuration in one of the Configurations/*.conf files (in %target). [Richard Levitte] *) To clarify their intended purposes, the Configure options --prefix and --openssldir change their semantics, and become more straightforward and less interdependent. --prefix shall be used exclusively to give the location INSTALLTOP where programs, scripts, libraries, include files and manuals are going to be installed. The default is now /usr/local. --openssldir shall be used exclusively to give the default location OPENSSLDIR where certificates, private keys, CRLs are managed. This is also where the default openssl.cnf gets installed. If the directory given with this option is a relative path, the values of both the --prefix value and the --openssldir value will be combined to become OPENSSLDIR. The default for --openssldir is INSTALLTOP/ssl. Anyone who uses --openssldir to specify where OpenSSL is to be installed MUST change to use --prefix instead. [Richard Levitte] *) The GOST engine was out of date and therefore it has been removed. An up to date GOST engine is now being maintained in an external repository. See: https://wiki.openssl.org/index.php/Binaries. Libssl still retains support for GOST ciphersuites (these are only activated if a GOST engine is present). [Matt Caswell] *) EGD is no longer supported by default; use enable-egd when configuring. [Ben Kaduk and Rich Salz] *) The distribution now has Makefile.in files, which are used to create Makefile's when Configure is run. *Configure must be run before trying to build now.* [Rich Salz] *) The return value for SSL_CIPHER_description() for error conditions has changed. [Rich Salz] *) Support for RFC6698/RFC7671 DANE TLSA peer authentication. Obtaining and performing DNSSEC validation of TLSA records is the application's responsibility. The application provides the TLSA records of its choice to OpenSSL, and these are then used to authenticate the peer. The TLSA records need not even come from DNS. They can, for example, be used to implement local end-entity certificate or trust-anchor "pinning", where the "pin" data takes the form of TLSA records, which can augment or replace verification based on the usual WebPKI public certification authorities. [Viktor Dukhovni] *) Revert default OPENSSL_NO_DEPRECATED setting. Instead OpenSSL continues to support deprecated interfaces in default builds. However, applications are strongly advised to compile their source files with -DOPENSSL_API_COMPAT=0x10100000L, which hides the declarations of all interfaces deprecated in 0.9.8, 1.0.0 or the 1.1.0 releases. In environments in which all applications have been ported to not use any deprecated interfaces OpenSSL's Configure script should be used with the --api=1.1.0 option to entirely remove support for the deprecated features from the library and unconditionally disable them in the installed headers. Essentially the same effect can be achieved with the "no-deprecated" argument to Configure, except that this will always restrict the build to just the latest API, rather than a fixed API version. As applications are ported to future revisions of the API, they should update their compile-time OPENSSL_API_COMPAT define accordingly, but in most cases should be able to continue to compile with later releases. The OPENSSL_API_COMPAT versions for 1.0.0, and 0.9.8 are 0x10000000L and 0x00908000L, respectively. However those versions did not support the OPENSSL_API_COMPAT feature, and so applications are not typically tested for explicit support of just the undeprecated features of either release. [Viktor Dukhovni] *) Add support for setting the minimum and maximum supported protocol. It can bet set via the SSL_set_min_proto_version() and SSL_set_max_proto_version(), or via the SSL_CONF's MinProtocol and MaxProtocol. It's recommended to use the new APIs to disable protocols instead of disabling individual protocols using SSL_set_options() or SSL_CONF's Protocol. This change also removes support for disabling TLS 1.2 in the OpenSSL TLS client at compile time by defining OPENSSL_NO_TLS1_2_CLIENT. [Kurt Roeckx] *) Support for ChaCha20 and Poly1305 added to libcrypto and libssl. [Andy Polyakov] *) New EC_KEY_METHOD, this replaces the older ECDSA_METHOD and ECDH_METHOD and integrates ECDSA and ECDH functionality into EC. Implementations can now redirect key generation and no longer need to convert to or from ECDSA_SIG format. Note: the ecdsa.h and ecdh.h headers are now no longer needed and just include the ec.h header file instead. [Steve Henson] *) Remove support for all 40 and 56 bit ciphers. This includes all the export ciphers who are no longer supported and drops support the ephemeral RSA key exchange. The LOW ciphers currently doesn't have any ciphers in it. [Kurt Roeckx] *) Made EVP_MD_CTX, EVP_MD, EVP_CIPHER_CTX, EVP_CIPHER and HMAC_CTX opaque. For HMAC_CTX, the following constructors and destructors were added: HMAC_CTX *HMAC_CTX_new(void); void HMAC_CTX_free(HMAC_CTX *ctx); For EVP_MD and EVP_CIPHER, complete APIs to create, fill and destroy such methods has been added. See EVP_MD_meth_new(3) and EVP_CIPHER_meth_new(3) for documentation. Additional changes: 1) EVP_MD_CTX_cleanup(), EVP_CIPHER_CTX_cleanup() and HMAC_CTX_cleanup() were removed. HMAC_CTX_reset() and EVP_MD_CTX_reset() should be called instead to reinitialise an already created structure. 2) For consistency with the majority of our object creators and destructors, EVP_MD_CTX_(create|destroy) were renamed to EVP_MD_CTX_(new|free). The old names are retained as macros for deprecated builds. [Richard Levitte] *) Added ASYNC support. Libcrypto now includes the async sub-library to enable cryptographic operations to be performed asynchronously as long as an asynchronous capable engine is used. See the ASYNC_start_job() man page for further details. Libssl has also had this capability integrated with the introduction of the new mode SSL_MODE_ASYNC and associated error SSL_ERROR_WANT_ASYNC. See the SSL_CTX_set_mode() and SSL_get_error() man pages. This work was developed in partnership with Intel Corp. [Matt Caswell] *) SSL_{CTX_}set_ecdh_auto() has been removed and ECDH is support is always enabled now. If you want to disable the support you should exclude it using the list of supported ciphers. This also means that the "-no_ecdhe" option has been removed from s_server. [Kurt Roeckx] *) SSL_{CTX}_set_tmp_ecdh() which can set 1 EC curve now internally calls SSL_{CTX_}set1_curves() which can set a list. [Kurt Roeckx] *) Remove support for SSL_{CTX_}set_tmp_ecdh_callback(). You should set the curve you want to support using SSL_{CTX_}set1_curves(). [Kurt Roeckx] *) State machine rewrite. The state machine code has been significantly refactored in order to remove much duplication of code and solve issues with the old code (see ssl/statem/README for further details). This change does have some associated API changes. Notably the SSL_state() function has been removed and replaced by SSL_get_state which now returns an "OSSL_HANDSHAKE_STATE" instead of an int. SSL_set_state() has been removed altogether. The previous handshake states defined in ssl.h and ssl3.h have also been removed. [Matt Caswell] *) All instances of the string "ssleay" in the public API were replaced with OpenSSL (case-matching; e.g., OPENSSL_VERSION for #define's) Some error codes related to internal RSA_eay API's were renamed. [Rich Salz] *) The demo files in crypto/threads were moved to demo/threads. [Rich Salz] *) Removed obsolete engines: 4758cca, aep, atalla, cswift, nuron, gmp, sureware and ubsec. [Matt Caswell, Rich Salz] *) New ASN.1 embed macro. New ASN.1 macro ASN1_EMBED. This is the same as ASN1_SIMPLE except the structure is not allocated: it is part of the parent. That is instead of FOO *x; it must be: FOO x; This reduces memory fragmentation and make it impossible to accidentally set a mandatory field to NULL. This currently only works for some fields specifically a SEQUENCE, CHOICE, or ASN1_STRING type which is part of a parent SEQUENCE. Since it is equivalent to ASN1_SIMPLE it cannot be tagged, OPTIONAL, SET OF or SEQUENCE OF. [Steve Henson] *) Remove EVP_CHECK_DES_KEY, a compile-time option that never compiled. [Emilia Käsper] *) Removed DES and RC4 ciphersuites from DEFAULT. Also removed RC2 although in 1.0.2 EXPORT was already removed and the only RC2 ciphersuite is also an EXPORT one. COMPLEMENTOFDEFAULT has been updated accordingly to add DES and RC4 ciphersuites. [Matt Caswell] *) Rewrite EVP_DecodeUpdate (base64 decoding) to fix several bugs. This changes the decoding behaviour for some invalid messages, though the change is mostly in the more lenient direction, and legacy behaviour is preserved as much as possible. [Emilia Käsper] *) Fix no-stdio build. [ David Woodhouse and also Ivan Nestlerode ] *) New testing framework The testing framework has been largely rewritten and is now using perl and the perl modules Test::Harness and an extended variant of Test::More called OpenSSL::Test to do its work. All test scripts in test/ have been rewritten into test recipes, and all direct calls to executables in test/Makefile have become individual recipes using the simplified testing OpenSSL::Test::Simple. For documentation on our testing modules, do: perldoc test/testlib/OpenSSL/Test/Simple.pm perldoc test/testlib/OpenSSL/Test.pm [Richard Levitte] *) Revamped memory debug; only -DCRYPTO_MDEBUG and -DCRYPTO_MDEBUG_ABORT are used; the latter aborts on memory leaks (usually checked on exit). Some undocumented "set malloc, etc., hooks" functions were removed and others were changed. All are now documented. [Rich Salz] *) In DSA_generate_parameters_ex, if the provided seed is too short, return an error [Rich Salz and Ismo Puustinen ] *) Rewrite PSK to support ECDHE_PSK, DHE_PSK and RSA_PSK. Add ciphersuites from RFC4279, RFC4785, RFC5487, RFC5489. Thanks to Christian J. Dietrich and Giuseppe D'Angelo for the original RSA_PSK patch. [Steve Henson] *) Dropped support for the SSL3_FLAGS_DELAY_CLIENT_FINISHED flag. This SSLeay era flag was never set throughout the codebase (only read). Also removed SSL3_FLAGS_POP_BUFFER which was only used if SSL3_FLAGS_DELAY_CLIENT_FINISHED was also set. [Matt Caswell] *) Changed the default name options in the "ca", "crl", "req" and "x509" to be "oneline" instead of "compat". [Richard Levitte] *) Remove SSL_OP_TLS_BLOCK_PADDING_BUG. This is SSLeay legacy, we're not aware of clients that still exhibit this bug, and the workaround hasn't been working properly for a while. [Emilia Käsper] *) The return type of BIO_number_read() and BIO_number_written() as well as the corresponding num_read and num_write members in the BIO structure has changed from unsigned long to uint64_t. On platforms where an unsigned long is 32 bits (e.g. Windows) these counters could overflow if >4Gb is transferred. [Matt Caswell] *) Given the pervasive nature of TLS extensions it is inadvisable to run OpenSSL without support for them. It also means that maintaining the OPENSSL_NO_TLSEXT option within the code is very invasive (and probably not well tested). Therefore the OPENSSL_NO_TLSEXT option has been removed. [Matt Caswell] *) Removed support for the two export grade static DH ciphersuites EXP-DH-RSA-DES-CBC-SHA and EXP-DH-DSS-DES-CBC-SHA. These two ciphersuites were newly added (along with a number of other static DH ciphersuites) to 1.0.2. However the two export ones have *never* worked since they were introduced. It seems strange in any case to be adding new export ciphersuites, and given "logjam" it also does not seem correct to fix them. [Matt Caswell] *) Version negotiation has been rewritten. In particular SSLv23_method(), SSLv23_client_method() and SSLv23_server_method() have been deprecated, and turned into macros which simply call the new preferred function names TLS_method(), TLS_client_method() and TLS_server_method(). All new code should use the new names instead. Also as part of this change the ssl23.h header file has been removed. [Matt Caswell] *) Support for Kerberos ciphersuites in TLS (RFC2712) has been removed. This code and the associated standard is no longer considered fit-for-purpose. [Matt Caswell] *) RT2547 was closed. When generating a private key, try to make the output file readable only by the owner. This behavior change might be noticeable when interacting with other software. *) Documented all exdata functions. Added CRYPTO_free_ex_index. Added a test. [Rich Salz] *) Added HTTP GET support to the ocsp command. [Rich Salz] *) Changed default digest for the dgst and enc commands from MD5 to sha256 [Rich Salz] *) RAND_pseudo_bytes has been deprecated. Users should use RAND_bytes instead. [Matt Caswell] *) Added support for TLS extended master secret from draft-ietf-tls-session-hash-03.txt. Thanks for Alfredo Pironti for an initial patch which was a great help during development. [Steve Henson] *) All libssl internal structures have been removed from the public header files, and the OPENSSL_NO_SSL_INTERN option has been removed (since it is now redundant). Users should not attempt to access internal structures directly. Instead they should use the provided API functions. [Matt Caswell] *) config has been changed so that by default OPENSSL_NO_DEPRECATED is used. Access to deprecated functions can be re-enabled by running config with "enable-deprecated". In addition applications wishing to use deprecated functions must define OPENSSL_USE_DEPRECATED. Note that this new behaviour will, by default, disable some transitive includes that previously existed in the header files (e.g. ec.h will no longer, by default, include bn.h) [Matt Caswell] *) Added support for OCB mode. OpenSSL has been granted a patent license compatible with the OpenSSL license for use of OCB. Details are available at https://www.openssl.org/source/OCB-patent-grant-OpenSSL.pdf. Support for OCB can be removed by calling config with no-ocb. [Matt Caswell] *) SSLv2 support has been removed. It still supports receiving a SSLv2 compatible client hello. [Kurt Roeckx] *) Increased the minimal RSA keysize from 256 to 512 bits [Rich Salz], done while fixing the error code for the key-too-small case. [Annie Yousar ] *) CA.sh has been removed; use CA.pl instead. [Rich Salz] *) Removed old DES API. [Rich Salz] *) Remove various unsupported platforms: Sony NEWS4 BEOS and BEOS_R5 NeXT SUNOS MPE/iX Sinix/ReliantUNIX RM400 DGUX NCR Tandem Cray 16-bit platforms such as WIN16 [Rich Salz] *) Clean up OPENSSL_NO_xxx #define's Use setbuf() and remove OPENSSL_NO_SETVBUF_IONBF Rename OPENSSL_SYSNAME_xxx to OPENSSL_SYS_xxx OPENSSL_NO_EC{DH,DSA} merged into OPENSSL_NO_EC OPENSSL_NO_RIPEMD160, OPENSSL_NO_RIPEMD merged into OPENSSL_NO_RMD160 OPENSSL_NO_FP_API merged into OPENSSL_NO_STDIO Remove OPENSSL_NO_BIO OPENSSL_NO_BUFFER OPENSSL_NO_CHAIN_VERIFY OPENSSL_NO_EVP OPENSSL_NO_FIPS_ERR OPENSSL_NO_HASH_COMP OPENSSL_NO_LHASH OPENSSL_NO_OBJECT OPENSSL_NO_SPEED OPENSSL_NO_STACK OPENSSL_NO_X509 OPENSSL_NO_X509_VERIFY Remove MS_STATIC; it's a relic from platforms <32 bits. [Rich Salz] *) Cleaned up dead code Remove all but one '#ifdef undef' which is to be looked at. [Rich Salz] *) Clean up calling of xxx_free routines. Just like free(), fix most of the xxx_free routines to accept NULL. Remove the non-null checks from callers. Save much code. [Rich Salz] *) Add secure heap for storage of private keys (when possible). Add BIO_s_secmem(), CBIGNUM, etc. Contributed by Akamai Technologies under our Corporate CLA. [Rich Salz] *) Experimental support for a new, fast, unbiased prime candidate generator, bn_probable_prime_dh_coprime(). Not currently used by any prime generator. [Felix Laurie von Massenbach ] *) New output format NSS in the sess_id command line tool. This allows exporting the session id and the master key in NSS keylog format. [Martin Kaiser ] *) Harmonize version and its documentation. -f flag is used to display compilation flags. [mancha ] *) Fix eckey_priv_encode so it immediately returns an error upon a failure in i2d_ECPrivateKey. Thanks to Ted Unangst for feedback on this issue. [mancha ] *) Fix some double frees. These are not thought to be exploitable. [mancha ] *) A missing bounds check in the handling of the TLS heartbeat extension can be used to reveal up to 64k of memory to a connected client or server. Thanks for Neel Mehta of Google Security for discovering this bug and to Adam Langley and Bodo Moeller for preparing the fix (CVE-2014-0160) [Adam Langley, Bodo Moeller] *) Fix for the attack described in the paper "Recovering OpenSSL ECDSA Nonces Using the FLUSH+RELOAD Cache Side-channel Attack" by Yuval Yarom and Naomi Benger. Details can be obtained from: http://eprint.iacr.org/2014/140 Thanks to Yuval Yarom and Naomi Benger for discovering this flaw and to Yuval Yarom for supplying a fix (CVE-2014-0076) [Yuval Yarom and Naomi Benger] *) Use algorithm specific chains in SSL_CTX_use_certificate_chain_file(): this fixes a limitation in previous versions of OpenSSL. [Steve Henson] *) Experimental encrypt-then-mac support. Experimental support for encrypt then mac from draft-gutmann-tls-encrypt-then-mac-02.txt To enable it set the appropriate extension number (0x42 for the test server) using e.g. -DTLSEXT_TYPE_encrypt_then_mac=0x42 For non-compliant peers (i.e. just about everything) this should have no effect. WARNING: EXPERIMENTAL, SUBJECT TO CHANGE. [Steve Henson] *) Add EVP support for key wrapping algorithms, to avoid problems with existing code the flag EVP_CIPHER_CTX_WRAP_ALLOW has to be set in the EVP_CIPHER_CTX or an error is returned. Add AES and DES3 wrap algorithms and include tests cases. [Steve Henson] *) Extend CMS code to support RSA-PSS signatures and RSA-OAEP for enveloped data. [Steve Henson] *) Extended RSA OAEP support via EVP_PKEY API. Options to specify digest, MGF1 digest and OAEP label. [Steve Henson] *) Make openssl verify return errors. [Chris Palmer and Ben Laurie] *) New function ASN1_TIME_diff to calculate the difference between two ASN1_TIME structures or one structure and the current time. [Steve Henson] *) Update fips_test_suite to support multiple command line options. New test to induce all self test errors in sequence and check expected failures. [Steve Henson] *) Add FIPS_{rsa,dsa,ecdsa}_{sign,verify} functions which digest and sign or verify all in one operation. [Steve Henson] *) Add fips_algvs: a multicall fips utility incorporating all the algorithm test programs and fips_test_suite. Includes functionality to parse the minimal script output of fipsalgest.pl directly. [Steve Henson] *) Add authorisation parameter to FIPS_module_mode_set(). [Steve Henson] *) Add FIPS selftest for ECDH algorithm using P-224 and B-233 curves. [Steve Henson] *) Use separate DRBG fields for internal and external flags. New function FIPS_drbg_health_check() to perform on demand health checking. Add generation tests to fips_test_suite with reduced health check interval to demonstrate periodic health checking. Add "nodh" option to fips_test_suite to skip very slow DH test. [Steve Henson] *) New function FIPS_get_cipherbynid() to lookup FIPS supported ciphers based on NID. [Steve Henson] *) More extensive health check for DRBG checking many more failure modes. New function FIPS_selftest_drbg_all() to handle every possible DRBG combination: call this in fips_test_suite. [Steve Henson] *) Add support for canonical generation of DSA parameter 'g'. See FIPS 186-3 A.2.3. *) Add support for HMAC DRBG from SP800-90. Update DRBG algorithm test and POST to handle HMAC cases. [Steve Henson] *) Add functions FIPS_module_version() and FIPS_module_version_text() to return numerical and string versions of the FIPS module number. [Steve Henson] *) Rename FIPS_mode_set and FIPS_mode to FIPS_module_mode_set and FIPS_module_mode. FIPS_mode and FIPS_mode_set will be implemented outside the validated module in the FIPS capable OpenSSL. [Steve Henson] *) Minor change to DRBG entropy callback semantics. In some cases there is no multiple of the block length between min_len and max_len. Allow the callback to return more than max_len bytes of entropy but discard any extra: it is the callback's responsibility to ensure that the extra data discarded does not impact the requested amount of entropy. [Steve Henson] *) Add PRNG security strength checks to RSA, DSA and ECDSA using information in FIPS186-3, SP800-57 and SP800-131A. [Steve Henson] *) CCM support via EVP. Interface is very similar to GCM case except we must supply all data in one chunk (i.e. no update, final) and the message length must be supplied if AAD is used. Add algorithm test support. [Steve Henson] *) Initial version of POST overhaul. Add POST callback to allow the status of POST to be monitored and/or failures induced. Modify fips_test_suite to use callback. Always run all selftests even if one fails. [Steve Henson] *) XTS support including algorithm test driver in the fips_gcmtest program. Note: this does increase the maximum key length from 32 to 64 bytes but there should be no binary compatibility issues as existing applications will never use XTS mode. [Steve Henson] *) Extensive reorganisation of FIPS PRNG behaviour. Remove all dependencies to OpenSSL RAND code and replace with a tiny FIPS RAND API which also performs algorithm blocking for unapproved PRNG types. Also do not set PRNG type in FIPS_mode_set(): leave this to the application. Add default OpenSSL DRBG handling: sets up FIPS PRNG and seeds with the standard OpenSSL PRNG: set additional data to a date time vector. [Steve Henson] *) Rename old X9.31 PRNG functions of the form FIPS_rand* to FIPS_x931*. This shouldn't present any incompatibility problems because applications shouldn't be using these directly and any that are will need to rethink anyway as the X9.31 PRNG is now deprecated by FIPS 140-2 [Steve Henson] *) Extensive self tests and health checking required by SP800-90 DRBG. Remove strength parameter from FIPS_drbg_instantiate and always instantiate at maximum supported strength. [Steve Henson] *) Add ECDH code to fips module and fips_ecdhvs for primitives only testing. [Steve Henson] *) New algorithm test program fips_dhvs to handle DH primitives only testing. [Steve Henson] *) New function DH_compute_key_padded() to compute a DH key and pad with leading zeroes if needed: this complies with SP800-56A et al. [Steve Henson] *) Initial implementation of SP800-90 DRBGs for Hash and CTR. Not used by anything, incomplete, subject to change and largely untested at present. [Steve Henson] *) Modify fipscanisteronly build option to only build the necessary object files by filtering FIPS_EX_OBJ through a perl script in crypto/Makefile. [Steve Henson] *) Add experimental option FIPSSYMS to give all symbols in fipscanister.o and FIPS or fips prefix. This will avoid conflicts with future versions of OpenSSL. Add perl script util/fipsas.pl to preprocess assembly language source files and rename any affected symbols. [Steve Henson] *) Add selftest checks and algorithm block of non-fips algorithms in FIPS mode. Remove DES2 from selftests. [Steve Henson] *) Add ECDSA code to fips module. Add tiny fips_ecdsa_check to just return internal method without any ENGINE dependencies. Add new tiny fips sign and verify functions. [Steve Henson] *) New build option no-ec2m to disable characteristic 2 code. [Steve Henson] *) New build option "fipscanisteronly". This only builds fipscanister.o and (currently) associated fips utilities. Uses the file Makefile.fips instead of Makefile.org as the prototype. [Steve Henson] *) Add some FIPS mode restrictions to GCM. Add internal IV generator. Update fips_gcmtest to use IV generator. [Steve Henson] *) Initial, experimental EVP support for AES-GCM. AAD can be input by setting output buffer to NULL. The *Final function must be called although it will not retrieve any additional data. The tag can be set or retrieved with a ctrl. The IV length is by default 12 bytes (96 bits) but can be set to an alternative value. If the IV length exceeds the maximum IV length (currently 16 bytes) it cannot be set before the key. [Steve Henson] *) New flag in ciphers: EVP_CIPH_FLAG_CUSTOM_CIPHER. This means the underlying do_cipher function handles all cipher semantics itself including padding and finalisation. This is useful if (for example) an ENGINE cipher handles block padding itself. The behaviour of do_cipher is subtly changed if this flag is set: the return value is the number of characters written to the output buffer (zero is no longer an error code) or a negative error code. Also if the input buffer is NULL and length 0 finalisation should be performed. [Steve Henson] *) If a candidate issuer certificate is already part of the constructed path ignore it: new debug notification X509_V_ERR_PATH_LOOP for this case. [Steve Henson] *) Improve forward-security support: add functions void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx, int (*cb)(SSL *ssl, int is_forward_secure)) void SSL_set_not_resumable_session_callback(SSL *ssl, int (*cb)(SSL *ssl, int is_forward_secure)) for use by SSL/TLS servers; the callback function will be called whenever a new session is created, and gets to decide whether the session may be cached to make it resumable (return 0) or not (return 1). (As by the SSL/TLS protocol specifications, the session_id sent by the server will be empty to indicate that the session is not resumable; also, the server will not generate RFC 4507 (RFC 5077) session tickets.) A simple reasonable callback implementation is to return is_forward_secure. This parameter will be set to 1 or 0 depending on the ciphersuite selected by the SSL/TLS server library, indicating whether it can provide forward security. [Emilia Käsper (Google)] *) New -verify_name option in command line utilities to set verification parameters by name. [Steve Henson] *) Initial CMAC implementation. WARNING: EXPERIMENTAL, API MAY CHANGE. Add CMAC pkey methods. [Steve Henson] *) Experimental renegotiation in s_server -www mode. If the client browses /reneg connection is renegotiated. If /renegcert it is renegotiated requesting a certificate. [Steve Henson] *) Add an "external" session cache for debugging purposes to s_server. This should help trace issues which normally are only apparent in deployed multi-process servers. [Steve Henson] *) Extensive audit of libcrypto with DEBUG_UNUSED. Fix many cases where return value is ignored. NB. The functions RAND_add(), RAND_seed(), BIO_set_cipher() and some obscure PEM functions were changed so they can now return an error. The RAND changes required a change to the RAND_METHOD structure. [Steve Henson] *) New macro __owur for "OpenSSL Warn Unused Result". This makes use of a gcc attribute to warn if the result of a function is ignored. This is enable if DEBUG_UNUSED is set. Add to several functions in evp.h whose return value is often ignored. [Steve Henson] *) New -noct, -requestct, -requirect and -ctlogfile options for s_client. These allow SCTs (signed certificate timestamps) to be requested and validated when establishing a connection. [Rob Percival ] Changes between 1.0.2g and 1.0.2h [3 May 2016] *) Prevent padding oracle in AES-NI CBC MAC check A MITM attacker can use a padding oracle attack to decrypt traffic when the connection uses an AES CBC cipher and the server support AES-NI. This issue was introduced as part of the fix for Lucky 13 padding attack (CVE-2013-0169). The padding check was rewritten to be in constant time by making sure that always the same bytes are read and compared against either the MAC or padding bytes. But it no longer checked that there was enough data to have both the MAC and padding bytes. This issue was reported by Juraj Somorovsky using TLS-Attacker. (CVE-2016-2107) [Kurt Roeckx] *) Fix EVP_EncodeUpdate overflow An overflow can occur in the EVP_EncodeUpdate() function which is used for Base64 encoding of binary data. If an attacker is able to supply very large amounts of input data then a length check can overflow resulting in a heap corruption. Internally to OpenSSL the EVP_EncodeUpdate() function is primarily used by the PEM_write_bio* family of functions. These are mainly used within the OpenSSL command line applications, so any application which processes data from an untrusted source and outputs it as a PEM file should be considered vulnerable to this issue. User applications that call these APIs directly with large amounts of untrusted data may also be vulnerable. This issue was reported by Guido Vranken. (CVE-2016-2105) [Matt Caswell] *) Fix EVP_EncryptUpdate overflow An overflow can occur in the EVP_EncryptUpdate() function. If an attacker is able to supply very large amounts of input data after a previous call to EVP_EncryptUpdate() with a partial block then a length check can overflow resulting in a heap corruption. Following an analysis of all OpenSSL internal usage of the EVP_EncryptUpdate() function all usage is one of two forms. The first form is where the EVP_EncryptUpdate() call is known to be the first called function after an EVP_EncryptInit(), and therefore that specific call must be safe. The second form is where the length passed to EVP_EncryptUpdate() can be seen from the code to be some small value and therefore there is no possibility of an overflow. Since all instances are one of these two forms, it is believed that there can be no overflows in internal code due to this problem. It should be noted that EVP_DecryptUpdate() can call EVP_EncryptUpdate() in certain code paths. Also EVP_CipherUpdate() is a synonym for EVP_EncryptUpdate(). All instances of these calls have also been analysed too and it is believed there are no instances in internal usage where an overflow could occur. This issue was reported by Guido Vranken. (CVE-2016-2106) [Matt Caswell] *) Prevent ASN.1 BIO excessive memory allocation When ASN.1 data is read from a BIO using functions such as d2i_CMS_bio() a short invalid encoding can cause allocation of large amounts of memory potentially consuming excessive resources or exhausting memory. Any application parsing untrusted data through d2i BIO functions is affected. The memory based functions such as d2i_X509() are *not* affected. Since the memory based functions are used by the TLS library, TLS applications are not affected. This issue was reported by Brian Carpenter. (CVE-2016-2109) [Stephen Henson] *) EBCDIC overread ASN1 Strings that are over 1024 bytes can cause an overread in applications using the X509_NAME_oneline() function on EBCDIC systems. This could result in arbitrary stack data being returned in the buffer. This issue was reported by Guido Vranken. (CVE-2016-2176) [Matt Caswell] *) Modify behavior of ALPN to invoke callback after SNI/servername callback, such that updates to the SSL_CTX affect ALPN. [Todd Short] *) Remove LOW from the DEFAULT cipher list. This removes singles DES from the default. [Kurt Roeckx] *) Only remove the SSLv2 methods with the no-ssl2-method option. When the methods are enabled and ssl2 is disabled the methods return NULL. [Kurt Roeckx] Changes between 1.0.2f and 1.0.2g [1 Mar 2016] * Disable weak ciphers in SSLv3 and up in default builds of OpenSSL. Builds that are not configured with "enable-weak-ssl-ciphers" will not provide any "EXPORT" or "LOW" strength ciphers. [Viktor Dukhovni] * Disable SSLv2 default build, default negotiation and weak ciphers. SSLv2 is by default disabled at build-time. Builds that are not configured with "enable-ssl2" will not support SSLv2. Even if "enable-ssl2" is used, users who want to negotiate SSLv2 via the version-flexible SSLv23_method() will need to explicitly call either of: SSL_CTX_clear_options(ctx, SSL_OP_NO_SSLv2); or SSL_clear_options(ssl, SSL_OP_NO_SSLv2); as appropriate. Even if either of those is used, or the application explicitly uses the version-specific SSLv2_method() or its client and server variants, SSLv2 ciphers vulnerable to exhaustive search key recovery have been removed. Specifically, the SSLv2 40-bit EXPORT ciphers, and SSLv2 56-bit DES are no longer available. (CVE-2016-0800) [Viktor Dukhovni] *) Fix a double-free in DSA code A double free bug was discovered when OpenSSL parses malformed DSA private keys and could lead to a DoS attack or memory corruption for applications that receive DSA private keys from untrusted sources. This scenario is considered rare. This issue was reported to OpenSSL by Adam Langley(Google/BoringSSL) using libFuzzer. (CVE-2016-0705) [Stephen Henson] *) Disable SRP fake user seed to address a server memory leak. Add a new method SRP_VBASE_get1_by_user that handles the seed properly. SRP_VBASE_get_by_user had inconsistent memory management behaviour. In order to fix an unavoidable memory leak, SRP_VBASE_get_by_user was changed to ignore the "fake user" SRP seed, even if the seed is configured. Users should use SRP_VBASE_get1_by_user instead. Note that in SRP_VBASE_get1_by_user, caller must free the returned value. Note also that even though configuring the SRP seed attempts to hide invalid usernames by continuing the handshake with fake credentials, this behaviour is not constant time and no strong guarantees are made that the handshake is indistinguishable from that of a valid user. (CVE-2016-0798) [Emilia Käsper] *) Fix BN_hex2bn/BN_dec2bn NULL pointer deref/heap corruption In the BN_hex2bn function the number of hex digits is calculated using an int value |i|. Later |bn_expand| is called with a value of |i * 4|. For large values of |i| this can result in |bn_expand| not allocating any memory because |i * 4| is negative. This can leave the internal BIGNUM data field as NULL leading to a subsequent NULL ptr deref. For very large values of |i|, the calculation |i * 4| could be a positive value smaller than |i|. In this case memory is allocated to the internal BIGNUM data field, but it is insufficiently sized leading to heap corruption. A similar issue exists in BN_dec2bn. This could have security consequences if BN_hex2bn/BN_dec2bn is ever called by user applications with very large untrusted hex/dec data. This is anticipated to be a rare occurrence. All OpenSSL internal usage of these functions use data that is not expected to be untrusted, e.g. config file data or application command line arguments. If user developed applications generate config file data based on untrusted data then it is possible that this could also lead to security consequences. This is also anticipated to be rare. This issue was reported to OpenSSL by Guido Vranken. (CVE-2016-0797) [Matt Caswell] *) Fix memory issues in BIO_*printf functions The internal |fmtstr| function used in processing a "%s" format string in the BIO_*printf functions could overflow while calculating the length of a string and cause an OOB read when printing very long strings. Additionally the internal |doapr_outch| function can attempt to write to an OOB memory location (at an offset from the NULL pointer) in the event of a memory allocation failure. In 1.0.2 and below this could be caused where the size of a buffer to be allocated is greater than INT_MAX. E.g. this could be in processing a very long "%s" format string. Memory leaks can also occur. The first issue may mask the second issue dependent on compiler behaviour. These problems could enable attacks where large amounts of untrusted data is passed to the BIO_*printf functions. If applications use these functions in this way then they could be vulnerable. OpenSSL itself uses these functions when printing out human-readable dumps of ASN.1 data. Therefore applications that print this data could be vulnerable if the data is from untrusted sources. OpenSSL command line applications could also be vulnerable where they print out ASN.1 data, or if untrusted data is passed as command line arguments. Libssl is not considered directly vulnerable. Additionally certificates etc received via remote connections via libssl are also unlikely to be able to trigger these issues because of message size limits enforced within libssl. This issue was reported to OpenSSL Guido Vranken. (CVE-2016-0799) [Matt Caswell] *) Side channel attack on modular exponentiation A side-channel attack was found which makes use of cache-bank conflicts on the Intel Sandy-Bridge microarchitecture which could lead to the recovery of RSA keys. The ability to exploit this issue is limited as it relies on an attacker who has control of code in a thread running on the same hyper-threaded core as the victim thread which is performing decryptions. This issue was reported to OpenSSL by Yuval Yarom, The University of Adelaide and NICTA, Daniel Genkin, Technion and Tel Aviv University, and Nadia Heninger, University of Pennsylvania with more information at http://cachebleed.info. (CVE-2016-0702) [Andy Polyakov] *) Change the req app to generate a 2048-bit RSA/DSA key by default, if no keysize is specified with default_bits. This fixes an omission in an earlier change that changed all RSA/DSA key generation apps to use 2048 bits by default. [Emilia Käsper] Changes between 1.0.2e and 1.0.2f [28 Jan 2016] *) DH small subgroups Historically OpenSSL only ever generated DH parameters based on "safe" primes. More recently (in version 1.0.2) support was provided for generating X9.42 style parameter files such as those required for RFC 5114 support. The primes used in such files may not be "safe". Where an application is using DH configured with parameters based on primes that are not "safe" then an attacker could use this fact to find a peer's private DH exponent. This attack requires that the attacker complete multiple handshakes in which the peer uses the same private DH exponent. For example this could be used to discover a TLS server's private DH exponent if it's reusing the private DH exponent or it's using a static DH ciphersuite. OpenSSL provides the option SSL_OP_SINGLE_DH_USE for ephemeral DH (DHE) in TLS. It is not on by default. If the option is not set then the server reuses the same private DH exponent for the life of the server process and would be vulnerable to this attack. It is believed that many popular applications do set this option and would therefore not be at risk. The fix for this issue adds an additional check where a "q" parameter is available (as is the case in X9.42 based parameters). This detects the only known attack, and is the only possible defense for static DH ciphersuites. This could have some performance impact. Additionally the SSL_OP_SINGLE_DH_USE option has been switched on by default and cannot be disabled. This could have some performance impact. This issue was reported to OpenSSL by Antonio Sanso (Adobe). (CVE-2016-0701) [Matt Caswell] *) SSLv2 doesn't block disabled ciphers A malicious client can negotiate SSLv2 ciphers that have been disabled on the server and complete SSLv2 handshakes even if all SSLv2 ciphers have been disabled, provided that the SSLv2 protocol was not also disabled via SSL_OP_NO_SSLv2. This issue was reported to OpenSSL on 26th December 2015 by Nimrod Aviram and Sebastian Schinzel. (CVE-2015-3197) [Viktor Dukhovni] Changes between 1.0.2d and 1.0.2e [3 Dec 2015] *) BN_mod_exp may produce incorrect results on x86_64 There is a carry propagating bug in the x86_64 Montgomery squaring procedure. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH are considered just feasible (although very difficult) because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be very significant and likely only accessible to a limited number of attackers. An attacker would additionally need online access to an unpatched system using the target private key in a scenario with persistent DH parameters and a private key that is shared between multiple clients. For example this can occur by default in OpenSSL DHE based SSL/TLS ciphersuites. This issue was reported to OpenSSL by Hanno Böck. (CVE-2015-3193) [Andy Polyakov] *) Certificate verify crash with missing PSS parameter The signature verification routines will crash with a NULL pointer dereference if presented with an ASN.1 signature using the RSA PSS algorithm and absent mask generation function parameter. Since these routines are used to verify certificate signature algorithms this can be used to crash any certificate verification operation and exploited in a DoS attack. Any application which performs certificate verification is vulnerable including OpenSSL clients and servers which enable client authentication. This issue was reported to OpenSSL by Loïc Jonas Etienne (Qnective AG). (CVE-2015-3194) [Stephen Henson] *) X509_ATTRIBUTE memory leak When presented with a malformed X509_ATTRIBUTE structure OpenSSL will leak memory. This structure is used by the PKCS#7 and CMS routines so any application which reads PKCS#7 or CMS data from untrusted sources is affected. SSL/TLS is not affected. This issue was reported to OpenSSL by Adam Langley (Google/BoringSSL) using libFuzzer. (CVE-2015-3195) [Stephen Henson] *) Rewrite EVP_DecodeUpdate (base64 decoding) to fix several bugs. This changes the decoding behaviour for some invalid messages, though the change is mostly in the more lenient direction, and legacy behaviour is preserved as much as possible. [Emilia Käsper] *) In DSA_generate_parameters_ex, if the provided seed is too short, return an error [Rich Salz and Ismo Puustinen ] Changes between 1.0.2c and 1.0.2d [9 Jul 2015] *) Alternate chains certificate forgery During certificate verification, OpenSSL will attempt to find an alternative certificate chain if the first attempt to build such a chain fails. An error in the implementation of this logic can mean that an attacker could cause certain checks on untrusted certificates to be bypassed, such as the CA flag, enabling them to use a valid leaf certificate to act as a CA and "issue" an invalid certificate. This issue was reported to OpenSSL by Adam Langley/David Benjamin (Google/BoringSSL). [Matt Caswell] Changes between 1.0.2b and 1.0.2c [12 Jun 2015] *) Fix HMAC ABI incompatibility. The previous version introduced an ABI incompatibility in the handling of HMAC. The previous ABI has now been restored. [Matt Caswell] Changes between 1.0.2a and 1.0.2b [11 Jun 2015] *) Malformed ECParameters causes infinite loop When processing an ECParameters structure OpenSSL enters an infinite loop if the curve specified is over a specially malformed binary polynomial field. This can be used to perform denial of service against any system which processes public keys, certificate requests or certificates. This includes TLS clients and TLS servers with client authentication enabled. This issue was reported to OpenSSL by Joseph Barr-Pixton. (CVE-2015-1788) [Andy Polyakov] *) Exploitable out-of-bounds read in X509_cmp_time X509_cmp_time does not properly check the length of the ASN1_TIME string and can read a few bytes out of bounds. In addition, X509_cmp_time accepts an arbitrary number of fractional seconds in the time string. An attacker can use this to craft malformed certificates and CRLs of various sizes and potentially cause a segmentation fault, resulting in a DoS on applications that verify certificates or CRLs. TLS clients that verify CRLs are affected. TLS clients and servers with client authentication enabled may be affected if they use custom verification callbacks. This issue was reported to OpenSSL by Robert Swiecki (Google), and independently by Hanno Böck. (CVE-2015-1789) [Emilia Käsper] *) PKCS7 crash with missing EnvelopedContent The PKCS#7 parsing code does not handle missing inner EncryptedContent correctly. An attacker can craft malformed ASN.1-encoded PKCS#7 blobs with missing content and trigger a NULL pointer dereference on parsing. Applications that decrypt PKCS#7 data or otherwise parse PKCS#7 structures from untrusted sources are affected. OpenSSL clients and servers are not affected. This issue was reported to OpenSSL by Michal Zalewski (Google). (CVE-2015-1790) [Emilia Käsper] *) CMS verify infinite loop with unknown hash function When verifying a signedData message the CMS code can enter an infinite loop if presented with an unknown hash function OID. This can be used to perform denial of service against any system which verifies signedData messages using the CMS code. This issue was reported to OpenSSL by Johannes Bauer. (CVE-2015-1792) [Stephen Henson] *) Race condition handling NewSessionTicket If a NewSessionTicket is received by a multi-threaded client when attempting to reuse a previous ticket then a race condition can occur potentially leading to a double free of the ticket data. (CVE-2015-1791) [Matt Caswell] *) Only support 256-bit or stronger elliptic curves with the 'ecdh_auto' setting (server) or by default (client). Of supported curves, prefer P-256 (both). [Emilia Kasper] Changes between 1.0.2 and 1.0.2a [19 Mar 2015] *) ClientHello sigalgs DoS fix If a client connects to an OpenSSL 1.0.2 server and renegotiates with an invalid signature algorithms extension a NULL pointer dereference will occur. This can be exploited in a DoS attack against the server. This issue was was reported to OpenSSL by David Ramos of Stanford University. (CVE-2015-0291) [Stephen Henson and Matt Caswell] *) Multiblock corrupted pointer fix OpenSSL 1.0.2 introduced the "multiblock" performance improvement. This feature only applies on 64 bit x86 architecture platforms that support AES NI instructions. A defect in the implementation of "multiblock" can cause OpenSSL's internal write buffer to become incorrectly set to NULL when using non-blocking IO. Typically, when the user application is using a socket BIO for writing, this will only result in a failed connection. However if some other BIO is used then it is likely that a segmentation fault will be triggered, thus enabling a potential DoS attack. This issue was reported to OpenSSL by Daniel Danner and Rainer Mueller. (CVE-2015-0290) [Matt Caswell] *) Segmentation fault in DTLSv1_listen fix The DTLSv1_listen function is intended to be stateless and processes the initial ClientHello from many peers. It is common for user code to loop over the call to DTLSv1_listen until a valid ClientHello is received with an associated cookie. A defect in the implementation of DTLSv1_listen means that state is preserved in the SSL object from one invocation to the next that can lead to a segmentation fault. Errors processing the initial ClientHello can trigger this scenario. An example of such an error could be that a DTLS1.0 only client is attempting to connect to a DTLS1.2 only server. This issue was reported to OpenSSL by Per Allansson. (CVE-2015-0207) [Matt Caswell] *) Segmentation fault in ASN1_TYPE_cmp fix The function ASN1_TYPE_cmp will crash with an invalid read if an attempt is made to compare ASN.1 boolean types. Since ASN1_TYPE_cmp is used to check certificate signature algorithm consistency this can be used to crash any certificate verification operation and exploited in a DoS attack. Any application which performs certificate verification is vulnerable including OpenSSL clients and servers which enable client authentication. (CVE-2015-0286) [Stephen Henson] *) Segmentation fault for invalid PSS parameters fix The signature verification routines will crash with a NULL pointer dereference if presented with an ASN.1 signature using the RSA PSS algorithm and invalid parameters. Since these routines are used to verify certificate signature algorithms this can be used to crash any certificate verification operation and exploited in a DoS attack. Any application which performs certificate verification is vulnerable including OpenSSL clients and servers which enable client authentication. This issue was was reported to OpenSSL by Brian Carpenter. (CVE-2015-0208) [Stephen Henson] *) ASN.1 structure reuse memory corruption fix Reusing a structure in ASN.1 parsing may allow an attacker to cause memory corruption via an invalid write. Such reuse is and has been strongly discouraged and is believed to be rare. Applications that parse structures containing CHOICE or ANY DEFINED BY components may be affected. Certificate parsing (d2i_X509 and related functions) are however not affected. OpenSSL clients and servers are not affected. (CVE-2015-0287) [Stephen Henson] *) PKCS7 NULL pointer dereferences fix The PKCS#7 parsing code does not handle missing outer ContentInfo correctly. An attacker can craft malformed ASN.1-encoded PKCS#7 blobs with missing content and trigger a NULL pointer dereference on parsing. Applications that verify PKCS#7 signatures, decrypt PKCS#7 data or otherwise parse PKCS#7 structures from untrusted sources are affected. OpenSSL clients and servers are not affected. This issue was reported to OpenSSL by Michal Zalewski (Google). (CVE-2015-0289) [Emilia Käsper] *) DoS via reachable assert in SSLv2 servers fix A malicious client can trigger an OPENSSL_assert (i.e., an abort) in servers that both support SSLv2 and enable export cipher suites by sending a specially crafted SSLv2 CLIENT-MASTER-KEY message. This issue was discovered by Sean Burford (Google) and Emilia Käsper (OpenSSL development team). (CVE-2015-0293) [Emilia Käsper] *) Empty CKE with client auth and DHE fix If client auth is used then a server can seg fault in the event of a DHE ciphersuite being selected and a zero length ClientKeyExchange message being sent by the client. This could be exploited in a DoS attack. (CVE-2015-1787) [Matt Caswell] *) Handshake with unseeded PRNG fix Under certain conditions an OpenSSL 1.0.2 client can complete a handshake with an unseeded PRNG. The conditions are: - The client is on a platform where the PRNG has not been seeded automatically, and the user has not seeded manually - A protocol specific client method version has been used (i.e. not SSL_client_methodv23) - A ciphersuite is used that does not require additional random data from the PRNG beyond the initial ClientHello client random (e.g. PSK-RC4-SHA). If the handshake succeeds then the client random that has been used will have been generated from a PRNG with insufficient entropy and therefore the output may be predictable. For example using the following command with an unseeded openssl will succeed on an unpatched platform: openssl s_client -psk 1a2b3c4d -tls1_2 -cipher PSK-RC4-SHA (CVE-2015-0285) [Matt Caswell] *) Use After Free following d2i_ECPrivatekey error fix A malformed EC private key file consumed via the d2i_ECPrivateKey function could cause a use after free condition. This, in turn, could cause a double free in several private key parsing functions (such as d2i_PrivateKey or EVP_PKCS82PKEY) and could lead to a DoS attack or memory corruption for applications that receive EC private keys from untrusted sources. This scenario is considered rare. This issue was discovered by the BoringSSL project and fixed in their commit 517073cd4b. (CVE-2015-0209) [Matt Caswell] *) X509_to_X509_REQ NULL pointer deref fix The function X509_to_X509_REQ will crash with a NULL pointer dereference if the certificate key is invalid. This function is rarely used in practice. This issue was discovered by Brian Carpenter. (CVE-2015-0288) [Stephen Henson] *) Removed the export ciphers from the DEFAULT ciphers [Kurt Roeckx] Changes between 1.0.1l and 1.0.2 [22 Jan 2015] *) Facilitate "universal" ARM builds targeting range of ARM ISAs, e.g. ARMv5 through ARMv8, as opposite to "locking" it to single one. So far those who have to target multiple platforms would compromise and argue that binary targeting say ARMv5 would still execute on ARMv8. "Universal" build resolves this compromise by providing near-optimal performance even on newer platforms. [Andy Polyakov] *) Accelerated NIST P-256 elliptic curve implementation for x86_64 (other platforms pending). [Shay Gueron & Vlad Krasnov (Intel Corp), Andy Polyakov] *) Add support for the SignedCertificateTimestampList certificate and OCSP response extensions from RFC6962. [Rob Stradling] *) Fix ec_GFp_simple_points_make_affine (thus, EC_POINTs_mul etc.) for corner cases. (Certain input points at infinity could lead to bogus results, with non-infinity inputs mapped to infinity too.) [Bodo Moeller] *) Initial support for PowerISA 2.0.7, first implemented in POWER8. This covers AES, SHA256/512 and GHASH. "Initial" means that most common cases are optimized and there still is room for further improvements. Vector Permutation AES for Altivec is also added. [Andy Polyakov] *) Add support for little-endian ppc64 Linux target. [Marcelo Cerri (IBM)] *) Initial support for AMRv8 ISA crypto extensions. This covers AES, SHA1, SHA256 and GHASH. "Initial" means that most common cases are optimized and there still is room for further improvements. Both 32- and 64-bit modes are supported. [Andy Polyakov, Ard Biesheuvel (Linaro)] *) Improved ARMv7 NEON support. [Andy Polyakov] *) Support for SPARC Architecture 2011 crypto extensions, first implemented in SPARC T4. This covers AES, DES, Camellia, SHA1, SHA256/512, MD5, GHASH and modular exponentiation. [Andy Polyakov, David Miller] *) Accelerated modular exponentiation for Intel processors, a.k.a. RSAZ. [Shay Gueron & Vlad Krasnov (Intel Corp)] *) Support for new and upcoming Intel processors, including AVX2, BMI and SHA ISA extensions. This includes additional "stitched" implementations, AESNI-SHA256 and GCM, and multi-buffer support for TLS encrypt. This work was sponsored by Intel Corp. [Andy Polyakov] *) Support for DTLS 1.2. This adds two sets of DTLS methods: DTLS_*_method() supports both DTLS 1.2 and 1.0 and should use whatever version the peer supports and DTLSv1_2_*_method() which supports DTLS 1.2 only. [Steve Henson] *) Use algorithm specific chains in SSL_CTX_use_certificate_chain_file(): this fixes a limitation in previous versions of OpenSSL. [Steve Henson] *) Extended RSA OAEP support via EVP_PKEY API. Options to specify digest, MGF1 digest and OAEP label. [Steve Henson] *) Add EVP support for key wrapping algorithms, to avoid problems with existing code the flag EVP_CIPHER_CTX_WRAP_ALLOW has to be set in the EVP_CIPHER_CTX or an error is returned. Add AES and DES3 wrap algorithms and include tests cases. [Steve Henson] *) Add functions to allocate and set the fields of an ECDSA_METHOD structure. [Douglas E. Engert, Steve Henson] *) New functions OPENSSL_gmtime_diff and ASN1_TIME_diff to find the difference in days and seconds between two tm or ASN1_TIME structures. [Steve Henson] *) Add -rev test option to s_server to just reverse order of characters received by client and send back to server. Also prints an abbreviated summary of the connection parameters. [Steve Henson] *) New option -brief for s_client and s_server to print out a brief summary of connection parameters. [Steve Henson] *) Add callbacks for arbitrary TLS extensions. [Trevor Perrin and Ben Laurie] *) New option -crl_download in several openssl utilities to download CRLs from CRLDP extension in certificates. [Steve Henson] *) New options -CRL and -CRLform for s_client and s_server for CRLs. [Steve Henson] *) New function X509_CRL_diff to generate a delta CRL from the difference of two full CRLs. Add support to "crl" utility. [Steve Henson] *) New functions to set lookup_crls function and to retrieve X509_STORE from X509_STORE_CTX. [Steve Henson] *) Print out deprecated issuer and subject unique ID fields in certificates. [Steve Henson] *) Extend OCSP I/O functions so they can be used for simple general purpose HTTP as well as OCSP. New wrapper function which can be used to download CRLs using the OCSP API. [Steve Henson] *) Delegate command line handling in s_client/s_server to SSL_CONF APIs. [Steve Henson] *) SSL_CONF* functions. These provide a common framework for application configuration using configuration files or command lines. [Steve Henson] *) SSL/TLS tracing code. This parses out SSL/TLS records using the message callback and prints the results. Needs compile time option "enable-ssl-trace". New options to s_client and s_server to enable tracing. [Steve Henson] *) New ctrl and macro to retrieve supported points extensions. Print out extension in s_server and s_client. [Steve Henson] *) New functions to retrieve certificate signature and signature OID NID. [Steve Henson] *) Add functions to retrieve and manipulate the raw cipherlist sent by a client to OpenSSL. [Steve Henson] *) New Suite B modes for TLS code. These use and enforce the requirements of RFC6460: restrict ciphersuites, only permit Suite B algorithms and only use Suite B curves. The Suite B modes can be set by using the strings "SUITEB128", "SUITEB192" or "SUITEB128ONLY" for the cipherstring. [Steve Henson] *) New chain verification flags for Suite B levels of security. Check algorithms are acceptable when flags are set in X509_verify_cert. [Steve Henson] *) Make tls1_check_chain return a set of flags indicating checks passed by a certificate chain. Add additional tests to handle client certificates: checks for matching certificate type and issuer name comparison. [Steve Henson] *) If an attempt is made to use a signature algorithm not in the peer preference list abort the handshake. If client has no suitable signature algorithms in response to a certificate request do not use the certificate. [Steve Henson] *) If server EC tmp key is not in client preference list abort handshake. [Steve Henson] *) Add support for certificate stores in CERT structure. This makes it possible to have different stores per SSL structure or one store in the parent SSL_CTX. Include distinct stores for certificate chain verification and chain building. New ctrl SSL_CTRL_BUILD_CERT_CHAIN to build and store a certificate chain in CERT structure: returning an error if the chain cannot be built: this will allow applications to test if a chain is correctly configured. Note: if the CERT based stores are not set then the parent SSL_CTX store is used to retain compatibility with existing behaviour. [Steve Henson] *) New function ssl_set_client_disabled to set a ciphersuite disabled mask based on the current session, check mask when sending client hello and checking the requested ciphersuite. [Steve Henson] *) New ctrls to retrieve and set certificate types in a certificate request message. Print out received values in s_client. If certificate types is not set with custom values set sensible values based on supported signature algorithms. [Steve Henson] *) Support for distinct client and server supported signature algorithms. [Steve Henson] *) Add certificate callback. If set this is called whenever a certificate is required by client or server. An application can decide which certificate chain to present based on arbitrary criteria: for example supported signature algorithms. Add very simple example to s_server. This fixes many of the problems and restrictions of the existing client certificate callback: for example you can now clear an existing certificate and specify the whole chain. [Steve Henson] *) Add new "valid_flags" field to CERT_PKEY structure which determines what the certificate can be used for (if anything). Set valid_flags field in new tls1_check_chain function. Simplify ssl_set_cert_masks which used to have similar checks in it. Add new "cert_flags" field to CERT structure and include a "strict mode". This enforces some TLS certificate requirements (such as only permitting certificate signature algorithms contained in the supported algorithms extension) which some implementations ignore: this option should be used with caution as it could cause interoperability issues. [Steve Henson] *) Update and tidy signature algorithm extension processing. Work out shared signature algorithms based on preferences and peer algorithms and print them out in s_client and s_server. Abort handshake if no shared signature algorithms. [Steve Henson] *) Add new functions to allow customised supported signature algorithms for SSL and SSL_CTX structures. Add options to s_client and s_server to support them. [Steve Henson] *) New function SSL_certs_clear() to delete all references to certificates from an SSL structure. Before this once a certificate had been added it couldn't be removed. [Steve Henson] *) Integrate hostname, email address and IP address checking with certificate verification. New verify options supporting checking in openssl utility. [Steve Henson] *) Fixes and wildcard matching support to hostname and email checking functions. Add manual page. [Florian Weimer (Red Hat Product Security Team)] *) New functions to check a hostname email or IP address against a certificate. Add options x509 utility to print results of checks against a certificate. [Steve Henson] *) Fix OCSP checking. [Rob Stradling and Ben Laurie] *) Initial experimental support for explicitly trusted non-root CAs. OpenSSL still tries to build a complete chain to a root but if an intermediate CA has a trust setting included that is used. The first setting is used: whether to trust (e.g., -addtrust option to the x509 utility) or reject. [Steve Henson] *) Add -trusted_first option which attempts to find certificates in the trusted store even if an untrusted chain is also supplied. [Steve Henson] *) MIPS assembly pack updates: support for MIPS32r2 and SmartMIPS ASE, platform support for Linux and Android. [Andy Polyakov] *) Support for linux-x32, ILP32 environment in x86_64 framework. [Andy Polyakov] *) Experimental multi-implementation support for FIPS capable OpenSSL. When in FIPS mode the approved implementations are used as normal, when not in FIPS mode the internal unapproved versions are used instead. This means that the FIPS capable OpenSSL isn't forced to use the (often lower performance) FIPS implementations outside FIPS mode. [Steve Henson] *) Transparently support X9.42 DH parameters when calling PEM_read_bio_DHparameters. This means existing applications can handle the new parameter format automatically. [Steve Henson] *) Initial experimental support for X9.42 DH parameter format: mainly to support use of 'q' parameter for RFC5114 parameters. [Steve Henson] *) Add DH parameters from RFC5114 including test data to dhtest. [Steve Henson] *) Support for automatic EC temporary key parameter selection. If enabled the most preferred EC parameters are automatically used instead of hardcoded fixed parameters. Now a server just has to call: SSL_CTX_set_ecdh_auto(ctx, 1) and the server will automatically support ECDH and use the most appropriate parameters. [Steve Henson] *) Enhance and tidy EC curve and point format TLS extension code. Use static structures instead of allocation if default values are used. New ctrls to set curves we wish to support and to retrieve shared curves. Print out shared curves in s_server. New options to s_server and s_client to set list of supported curves. [Steve Henson] *) New ctrls to retrieve supported signature algorithms and supported curve values as an array of NIDs. Extend openssl utility to print out received values. [Steve Henson] *) Add new APIs EC_curve_nist2nid and EC_curve_nid2nist which convert between NIDs and the more common NIST names such as "P-256". Enhance ecparam utility and ECC method to recognise the NIST names for curves. [Steve Henson] *) Enhance SSL/TLS certificate chain handling to support different chains for each certificate instead of one chain in the parent SSL_CTX. [Steve Henson] *) Support for fixed DH ciphersuite client authentication: where both server and client use DH certificates with common parameters. [Steve Henson] *) Support for fixed DH ciphersuites: those requiring DH server certificates. [Steve Henson] *) New function i2d_re_X509_tbs for re-encoding the TBS portion of the certificate. Note: Related 1.0.2-beta specific macros X509_get_cert_info, X509_CINF_set_modified, X509_CINF_get_issuer, X509_CINF_get_extensions and X509_CINF_get_signature were reverted post internal team review. Changes between 1.0.1k and 1.0.1l [15 Jan 2015] *) Build fixes for the Windows and OpenVMS platforms [Matt Caswell and Richard Levitte] Changes between 1.0.1j and 1.0.1k [8 Jan 2015] *) Fix DTLS segmentation fault in dtls1_get_record. A carefully crafted DTLS message can cause a segmentation fault in OpenSSL due to a NULL pointer dereference. This could lead to a Denial Of Service attack. Thanks to Markus Stenberg of Cisco Systems, Inc. for reporting this issue. (CVE-2014-3571) [Steve Henson] *) Fix DTLS memory leak in dtls1_buffer_record. A memory leak can occur in the dtls1_buffer_record function under certain conditions. In particular this could occur if an attacker sent repeated DTLS records with the same sequence number but for the next epoch. The memory leak could be exploited by an attacker in a Denial of Service attack through memory exhaustion. Thanks to Chris Mueller for reporting this issue. (CVE-2015-0206) [Matt Caswell] *) Fix issue where no-ssl3 configuration sets method to NULL. When openssl is built with the no-ssl3 option and a SSL v3 ClientHello is received the ssl method would be set to NULL which could later result in a NULL pointer dereference. Thanks to Frank Schmirler for reporting this issue. (CVE-2014-3569) [Kurt Roeckx] *) Abort handshake if server key exchange message is omitted for ephemeral ECDH ciphersuites. Thanks to Karthikeyan Bhargavan of the PROSECCO team at INRIA for reporting this issue. (CVE-2014-3572) [Steve Henson] *) Remove non-export ephemeral RSA code on client and server. This code violated the TLS standard by allowing the use of temporary RSA keys in non-export ciphersuites and could be used by a server to effectively downgrade the RSA key length used to a value smaller than the server certificate. Thanks for Karthikeyan Bhargavan of the PROSECCO team at INRIA or reporting this issue. (CVE-2015-0204) [Steve Henson] *) Fixed issue where DH client certificates are accepted without verification. An OpenSSL server will accept a DH certificate for client authentication without the certificate verify message. This effectively allows a client to authenticate without the use of a private key. This only affects servers which trust a client certificate authority which issues certificates containing DH keys: these are extremely rare and hardly ever encountered. Thanks for Karthikeyan Bhargavan of the PROSECCO team at INRIA or reporting this issue. (CVE-2015-0205) [Steve Henson] *) Ensure that the session ID context of an SSL is updated when its SSL_CTX is updated via SSL_set_SSL_CTX. The session ID context is typically set from the parent SSL_CTX, and can vary with the CTX. [Adam Langley] *) Fix various certificate fingerprint issues. By using non-DER or invalid encodings outside the signed portion of a certificate the fingerprint can be changed without breaking the signature. Although no details of the signed portion of the certificate can be changed this can cause problems with some applications: e.g. those using the certificate fingerprint for blacklists. 1. Reject signatures with non zero unused bits. If the BIT STRING containing the signature has non zero unused bits reject the signature. All current signature algorithms require zero unused bits. 2. Check certificate algorithm consistency. Check the AlgorithmIdentifier inside TBS matches the one in the certificate signature. NB: this will result in signature failure errors for some broken certificates. Thanks to Konrad Kraszewski from Google for reporting this issue. 3. Check DSA/ECDSA signatures use DER. Re-encode DSA/ECDSA signatures and compare with the original received signature. Return an error if there is a mismatch. This will reject various cases including garbage after signature (thanks to Antti Karjalainen and Tuomo Untinen from the Codenomicon CROSS program for discovering this case) and use of BER or invalid ASN.1 INTEGERs (negative or with leading zeroes). Further analysis was conducted and fixes were developed by Stephen Henson of the OpenSSL core team. (CVE-2014-8275) [Steve Henson] *) Correct Bignum squaring. Bignum squaring (BN_sqr) may produce incorrect results on some platforms, including x86_64. This bug occurs at random with a very low probability, and is not known to be exploitable in any way, though its exact impact is difficult to determine. Thanks to Pieter Wuille (Blockstream) who reported this issue and also suggested an initial fix. Further analysis was conducted by the OpenSSL development team and Adam Langley of Google. The final fix was developed by Andy Polyakov of the OpenSSL core team. (CVE-2014-3570) [Andy Polyakov] *) Do not resume sessions on the server if the negotiated protocol version does not match the session's version. Resuming with a different version, while not strictly forbidden by the RFC, is of questionable sanity and breaks all known clients. [David Benjamin, Emilia Käsper] *) Tighten handling of the ChangeCipherSpec (CCS) message: reject early CCS messages during renegotiation. (Note that because renegotiation is encrypted, this early CCS was not exploitable.) [Emilia Käsper] *) Tighten client-side session ticket handling during renegotiation: ensure that the client only accepts a session ticket if the server sends the extension anew in the ServerHello. Previously, a TLS client would reuse the old extension state and thus accept a session ticket if one was announced in the initial ServerHello. Similarly, ensure that the client requires a session ticket if one was advertised in the ServerHello. Previously, a TLS client would ignore a missing NewSessionTicket message. [Emilia Käsper] Changes between 1.0.1i and 1.0.1j [15 Oct 2014] *) SRTP Memory Leak. A flaw in the DTLS SRTP extension parsing code allows an attacker, who sends a carefully crafted handshake message, to cause OpenSSL to fail to free up to 64k of memory causing a memory leak. This could be exploited in a Denial Of Service attack. This issue affects OpenSSL 1.0.1 server implementations for both SSL/TLS and DTLS regardless of whether SRTP is used or configured. Implementations of OpenSSL that have been compiled with OPENSSL_NO_SRTP defined are not affected. The fix was developed by the OpenSSL team. (CVE-2014-3513) [OpenSSL team] *) Session Ticket Memory Leak. When an OpenSSL SSL/TLS/DTLS server receives a session ticket the integrity of that ticket is first verified. In the event of a session ticket integrity check failing, OpenSSL will fail to free memory causing a memory leak. By sending a large number of invalid session tickets an attacker could exploit this issue in a Denial Of Service attack. (CVE-2014-3567) [Steve Henson] *) Build option no-ssl3 is incomplete. When OpenSSL is configured with "no-ssl3" as a build option, servers could accept and complete a SSL 3.0 handshake, and clients could be configured to send them. (CVE-2014-3568) [Akamai and the OpenSSL team] *) Add support for TLS_FALLBACK_SCSV. Client applications doing fallback retries should call SSL_set_mode(s, SSL_MODE_SEND_FALLBACK_SCSV). (CVE-2014-3566) [Adam Langley, Bodo Moeller] *) Add additional DigestInfo checks. Re-encode DigestInto in DER and check against the original when verifying RSA signature: this will reject any improperly encoded DigestInfo structures. Note: this is a precautionary measure and no attacks are currently known. [Steve Henson] Changes between 1.0.1h and 1.0.1i [6 Aug 2014] *) Fix SRP buffer overrun vulnerability. Invalid parameters passed to the SRP code can be overrun an internal buffer. Add sanity check that g, A, B < N to SRP code. Thanks to Sean Devlin and Watson Ladd of Cryptography Services, NCC Group for discovering this issue. (CVE-2014-3512) [Steve Henson] *) A flaw in the OpenSSL SSL/TLS server code causes the server to negotiate TLS 1.0 instead of higher protocol versions when the ClientHello message is badly fragmented. This allows a man-in-the-middle attacker to force a downgrade to TLS 1.0 even if both the server and the client support a higher protocol version, by modifying the client's TLS records. Thanks to David Benjamin and Adam Langley (Google) for discovering and researching this issue. (CVE-2014-3511) [David Benjamin] *) OpenSSL DTLS clients enabling anonymous (EC)DH ciphersuites are subject to a denial of service attack. A malicious server can crash the client with a null pointer dereference (read) by specifying an anonymous (EC)DH ciphersuite and sending carefully crafted handshake messages. Thanks to Felix Gröbert (Google) for discovering and researching this issue. (CVE-2014-3510) [Emilia Käsper] *) By sending carefully crafted DTLS packets an attacker could cause openssl to leak memory. This can be exploited through a Denial of Service attack. Thanks to Adam Langley for discovering and researching this issue. (CVE-2014-3507) [Adam Langley] *) An attacker can force openssl to consume large amounts of memory whilst processing DTLS handshake messages. This can be exploited through a Denial of Service attack. Thanks to Adam Langley for discovering and researching this issue. (CVE-2014-3506) [Adam Langley] *) An attacker can force an error condition which causes openssl to crash whilst processing DTLS packets due to memory being freed twice. This can be exploited through a Denial of Service attack. Thanks to Adam Langley and Wan-Teh Chang for discovering and researching this issue. (CVE-2014-3505) [Adam Langley] *) If a multithreaded client connects to a malicious server using a resumed session and the server sends an ec point format extension it could write up to 255 bytes to freed memory. Thanks to Gabor Tyukasz (LogMeIn Inc) for discovering and researching this issue. (CVE-2014-3509) [Gabor Tyukasz] *) A malicious server can crash an OpenSSL client with a null pointer dereference (read) by specifying an SRP ciphersuite even though it was not properly negotiated with the client. This can be exploited through a Denial of Service attack. Thanks to Joonas Kuorilehto and Riku Hietamäki (Codenomicon) for discovering and researching this issue. (CVE-2014-5139) [Steve Henson] *) A flaw in OBJ_obj2txt may cause pretty printing functions such as X509_name_oneline, X509_name_print_ex et al. to leak some information from the stack. Applications may be affected if they echo pretty printing output to the attacker. Thanks to Ivan Fratric (Google) for discovering this issue. (CVE-2014-3508) [Emilia Käsper, and Steve Henson] *) Fix ec_GFp_simple_points_make_affine (thus, EC_POINTs_mul etc.) for corner cases. (Certain input points at infinity could lead to bogus results, with non-infinity inputs mapped to infinity too.) [Bodo Moeller] Changes between 1.0.1g and 1.0.1h [5 Jun 2014] *) Fix for SSL/TLS MITM flaw. An attacker using a carefully crafted handshake can force the use of weak keying material in OpenSSL SSL/TLS clients and servers. Thanks to KIKUCHI Masashi (Lepidum Co. Ltd.) for discovering and researching this issue. (CVE-2014-0224) [KIKUCHI Masashi, Steve Henson] *) Fix DTLS recursion flaw. By sending an invalid DTLS handshake to an OpenSSL DTLS client the code can be made to recurse eventually crashing in a DoS attack. Thanks to Imre Rad (Search-Lab Ltd.) for discovering this issue. (CVE-2014-0221) [Imre Rad, Steve Henson] *) Fix DTLS invalid fragment vulnerability. A buffer overrun attack can be triggered by sending invalid DTLS fragments to an OpenSSL DTLS client or server. This is potentially exploitable to run arbitrary code on a vulnerable client or server. Thanks to Jüri Aedla for reporting this issue. (CVE-2014-0195) [Jüri Aedla, Steve Henson] *) Fix bug in TLS code where clients enable anonymous ECDH ciphersuites are subject to a denial of service attack. Thanks to Felix Gröbert and Ivan Fratric at Google for discovering this issue. (CVE-2014-3470) [Felix Gröbert, Ivan Fratric, Steve Henson] *) Harmonize version and its documentation. -f flag is used to display compilation flags. [mancha ] *) Fix eckey_priv_encode so it immediately returns an error upon a failure in i2d_ECPrivateKey. [mancha ] *) Fix some double frees. These are not thought to be exploitable. [mancha ] Changes between 1.0.1f and 1.0.1g [7 Apr 2014] *) A missing bounds check in the handling of the TLS heartbeat extension can be used to reveal up to 64k of memory to a connected client or server. Thanks for Neel Mehta of Google Security for discovering this bug and to Adam Langley and Bodo Moeller for preparing the fix (CVE-2014-0160) [Adam Langley, Bodo Moeller] *) Fix for the attack described in the paper "Recovering OpenSSL ECDSA Nonces Using the FLUSH+RELOAD Cache Side-channel Attack" by Yuval Yarom and Naomi Benger. Details can be obtained from: http://eprint.iacr.org/2014/140 Thanks to Yuval Yarom and Naomi Benger for discovering this flaw and to Yuval Yarom for supplying a fix (CVE-2014-0076) [Yuval Yarom and Naomi Benger] *) TLS pad extension: draft-agl-tls-padding-03 Workaround for the "TLS hang bug" (see FAQ and PR#2771): if the TLS client Hello record length value would otherwise be > 255 and less that 512 pad with a dummy extension containing zeroes so it is at least 512 bytes long. [Adam Langley, Steve Henson] Changes between 1.0.1e and 1.0.1f [6 Jan 2014] *) Fix for TLS record tampering bug. A carefully crafted invalid handshake could crash OpenSSL with a NULL pointer exception. Thanks to Anton Johansson for reporting this issues. (CVE-2013-4353) *) Keep original DTLS digest and encryption contexts in retransmission structures so we can use the previous session parameters if they need to be resent. (CVE-2013-6450) [Steve Henson] *) Add option SSL_OP_SAFARI_ECDHE_ECDSA_BUG (part of SSL_OP_ALL) which avoids preferring ECDHE-ECDSA ciphers when the client appears to be Safari on OS X. Safari on OS X 10.8..10.8.3 advertises support for several ECDHE-ECDSA ciphers, but fails to negotiate them. The bug is fixed in OS X 10.8.4, but Apple have ruled out both hot fixing 10.8..10.8.3 and forcing users to upgrade to 10.8.4 or newer. [Rob Stradling, Adam Langley] Changes between 1.0.1d and 1.0.1e [11 Feb 2013] *) Correct fix for CVE-2013-0169. The original didn't work on AES-NI supporting platforms or when small records were transferred. [Andy Polyakov, Steve Henson] Changes between 1.0.1c and 1.0.1d [5 Feb 2013] *) Make the decoding of SSLv3, TLS and DTLS CBC records constant time. This addresses the flaw in CBC record processing discovered by Nadhem Alfardan and Kenny Paterson. Details of this attack can be found at: http://www.isg.rhul.ac.uk/tls/ Thanks go to Nadhem Alfardan and Kenny Paterson of the Information Security Group at Royal Holloway, University of London (www.isg.rhul.ac.uk) for discovering this flaw and Adam Langley and Emilia Käsper for the initial patch. (CVE-2013-0169) [Emilia Käsper, Adam Langley, Ben Laurie, Andy Polyakov, Steve Henson] *) Fix flaw in AESNI handling of TLS 1.2 and 1.1 records for CBC mode ciphersuites which can be exploited in a denial of service attack. Thanks go to and to Adam Langley for discovering and detecting this bug and to Wolfgang Ettlinger for independently discovering this issue. (CVE-2012-2686) [Adam Langley] *) Return an error when checking OCSP signatures when key is NULL. This fixes a DoS attack. (CVE-2013-0166) [Steve Henson] *) Make openssl verify return errors. [Chris Palmer and Ben Laurie] *) Call OCSP Stapling callback after ciphersuite has been chosen, so the right response is stapled. Also change SSL_get_certificate() so it returns the certificate actually sent. See http://rt.openssl.org/Ticket/Display.html?id=2836. [Rob Stradling ] *) Fix possible deadlock when decoding public keys. [Steve Henson] *) Don't use TLS 1.0 record version number in initial client hello if renegotiating. [Steve Henson] Changes between 1.0.1b and 1.0.1c [10 May 2012] *) Sanity check record length before skipping explicit IV in TLS 1.2, 1.1 and DTLS to fix DoS attack. Thanks to Codenomicon for discovering this issue using Fuzz-o-Matic fuzzing as a service testing platform. (CVE-2012-2333) [Steve Henson] *) Initialise tkeylen properly when encrypting CMS messages. Thanks to Solar Designer of Openwall for reporting this issue. [Steve Henson] *) In FIPS mode don't try to use composite ciphers as they are not approved. [Steve Henson] Changes between 1.0.1a and 1.0.1b [26 Apr 2012] *) OpenSSL 1.0.0 sets SSL_OP_ALL to 0x80000FFFL and OpenSSL 1.0.1 and 1.0.1a set SSL_OP_NO_TLSv1_1 to 0x00000400L which would unfortunately mean any application compiled against OpenSSL 1.0.0 headers setting SSL_OP_ALL would also set SSL_OP_NO_TLSv1_1, unintentionally disabling TLS 1.1 also. Fix this by changing the value of SSL_OP_NO_TLSv1_1 to 0x10000000L Any application which was previously compiled against OpenSSL 1.0.1 or 1.0.1a headers and which cares about SSL_OP_NO_TLSv1_1 will need to be recompiled as a result. Letting be results in inability to disable specifically TLS 1.1 and in client context, in unlike event, limit maximum offered version to TLS 1.0 [see below]. [Steve Henson] *) In order to ensure interoperability SSL_OP_NO_protocolX does not disable just protocol X, but all protocols above X *if* there are protocols *below* X still enabled. In more practical terms it means that if application wants to disable TLS1.0 in favor of TLS1.1 and above, it's not sufficient to pass SSL_OP_NO_TLSv1, one has to pass SSL_OP_NO_TLSv1|SSL_OP_NO_SSLv3|SSL_OP_NO_SSLv2. This applies to client side. [Andy Polyakov] Changes between 1.0.1 and 1.0.1a [19 Apr 2012] *) Check for potentially exploitable overflows in asn1_d2i_read_bio BUF_mem_grow and BUF_mem_grow_clean. Refuse attempts to shrink buffer in CRYPTO_realloc_clean. Thanks to Tavis Ormandy, Google Security Team, for discovering this issue and to Adam Langley for fixing it. (CVE-2012-2110) [Adam Langley (Google), Tavis Ormandy, Google Security Team] *) Don't allow TLS 1.2 SHA-256 ciphersuites in TLS 1.0, 1.1 connections. [Adam Langley] *) Workarounds for some broken servers that "hang" if a client hello record length exceeds 255 bytes. 1. Do not use record version number > TLS 1.0 in initial client hello: some (but not all) hanging servers will now work. 2. If we set OPENSSL_MAX_TLS1_2_CIPHER_LENGTH this will truncate the number of ciphers sent in the client hello. This should be set to an even number, such as 50, for example by passing: -DOPENSSL_MAX_TLS1_2_CIPHER_LENGTH=50 to config or Configure. Most broken servers should now work. 3. If all else fails setting OPENSSL_NO_TLS1_2_CLIENT will disable TLS 1.2 client support entirely. [Steve Henson] *) Fix SEGV in Vector Permutation AES module observed in OpenSSH. [Andy Polyakov] Changes between 1.0.0h and 1.0.1 [14 Mar 2012] *) Add compatibility with old MDC2 signatures which use an ASN1 OCTET STRING form instead of a DigestInfo. [Steve Henson] *) The format used for MDC2 RSA signatures is inconsistent between EVP and the RSA_sign/RSA_verify functions. This was made more apparent when OpenSSL used RSA_sign/RSA_verify for some RSA signatures in particular those which went through EVP_PKEY_METHOD in 1.0.0 and later. Detect the correct format in RSA_verify so both forms transparently work. [Steve Henson] *) Some servers which support TLS 1.0 can choke if we initially indicate support for TLS 1.2 and later renegotiate using TLS 1.0 in the RSA encrypted premaster secret. As a workaround use the maximum permitted client version in client hello, this should keep such servers happy and still work with previous versions of OpenSSL. [Steve Henson] *) Add support for TLS/DTLS heartbeats. [Robin Seggelmann ] *) Add support for SCTP. [Robin Seggelmann ] *) Improved PRNG seeding for VOS. [Paul Green ] *) Extensive assembler packs updates, most notably: - x86[_64]: AES-NI, PCLMULQDQ, RDRAND support; - x86[_64]: SSSE3 support (SHA1, vector-permutation AES); - x86_64: bit-sliced AES implementation; - ARM: NEON support, contemporary platforms optimizations; - s390x: z196 support; - *: GHASH and GF(2^m) multiplication implementations; [Andy Polyakov] *) Make TLS-SRP code conformant with RFC 5054 API cleanup (removal of unnecessary code) [Peter Sylvester ] *) Add TLS key material exporter from RFC 5705. [Eric Rescorla] *) Add DTLS-SRTP negotiation from RFC 5764. [Eric Rescorla] *) Add Next Protocol Negotiation, http://tools.ietf.org/html/draft-agl-tls-nextprotoneg-00. Can be disabled with a no-npn flag to config or Configure. Code donated by Google. [Adam Langley and Ben Laurie] *) Add optional 64-bit optimized implementations of elliptic curves NIST-P224, NIST-P256, NIST-P521, with constant-time single point multiplication on typical inputs. Compiler support for the nonstandard type __uint128_t is required to use this (present in gcc 4.4 and later, for 64-bit builds). Code made available under Apache License version 2.0. Specify "enable-ec_nistp_64_gcc_128" on the Configure (or config) command line to include this in your build of OpenSSL, and run "make depend" (or "make update"). This enables the following EC_METHODs: EC_GFp_nistp224_method() EC_GFp_nistp256_method() EC_GFp_nistp521_method() EC_GROUP_new_by_curve_name() will automatically use these (while EC_GROUP_new_curve_GFp() currently prefers the more flexible implementations). [Emilia Käsper, Adam Langley, Bodo Moeller (Google)] *) Use type ossl_ssize_t instead of ssize_t which isn't available on all platforms. Move ssize_t definition from e_os.h to the public header file e_os2.h as it now appears in public header file cms.h [Steve Henson] *) New -sigopt option to the ca, req and x509 utilities. Additional signature parameters can be passed using this option and in particular PSS. [Steve Henson] *) Add RSA PSS signing function. This will generate and set the appropriate AlgorithmIdentifiers for PSS based on those in the corresponding EVP_MD_CTX structure. No application support yet. [Steve Henson] *) Support for companion algorithm specific ASN1 signing routines. New function ASN1_item_sign_ctx() signs a pre-initialised EVP_MD_CTX structure and sets AlgorithmIdentifiers based on the appropriate parameters. [Steve Henson] *) Add new algorithm specific ASN1 verification initialisation function to EVP_PKEY_ASN1_METHOD: this is not in EVP_PKEY_METHOD since the ASN1 handling will be the same no matter what EVP_PKEY_METHOD is used. Add a PSS handler to support verification of PSS signatures: checked against a number of sample certificates. [Steve Henson] *) Add signature printing for PSS. Add PSS OIDs. [Steve Henson, Martin Kaiser ] *) Add algorithm specific signature printing. An individual ASN1 method can now print out signatures instead of the standard hex dump. More complex signatures (e.g. PSS) can print out more meaningful information. Include DSA version that prints out the signature parameters r, s. [Steve Henson] *) Password based recipient info support for CMS library: implementing RFC3211. [Steve Henson] *) Split password based encryption into PBES2 and PBKDF2 functions. This neatly separates the code into cipher and PBE sections and is required for some algorithms that split PBES2 into separate pieces (such as password based CMS). [Steve Henson] *) Session-handling fixes: - Fix handling of connections that are resuming with a session ID, but also support Session Tickets. - Fix a bug that suppressed issuing of a new ticket if the client presented a ticket with an expired session. - Try to set the ticket lifetime hint to something reasonable. - Make tickets shorter by excluding irrelevant information. - On the client side, don't ignore renewed tickets. [Adam Langley, Bodo Moeller (Google)] *) Fix PSK session representation. [Bodo Moeller] *) Add RC4-MD5 and AESNI-SHA1 "stitched" implementations. This work was sponsored by Intel. [Andy Polyakov] *) Add GCM support to TLS library. Some custom code is needed to split the IV between the fixed (from PRF) and explicit (from TLS record) portions. This adds all GCM ciphersuites supported by RFC5288 and RFC5289. Generalise some AES* cipherstrings to include GCM and add a special AESGCM string for GCM only. [Steve Henson] *) Expand range of ctrls for AES GCM. Permit setting invocation field on decrypt and retrieval of invocation field only on encrypt. [Steve Henson] *) Add HMAC ECC ciphersuites from RFC5289. Include SHA384 PRF support. As required by RFC5289 these ciphersuites cannot be used if for versions of TLS earlier than 1.2. [Steve Henson] *) For FIPS capable OpenSSL interpret a NULL default public key method as unset and return the appropriate default but do *not* set the default. This means we can return the appropriate method in applications that switch between FIPS and non-FIPS modes. [Steve Henson] *) Redirect HMAC and CMAC operations to FIPS module in FIPS mode. If an ENGINE is used then we cannot handle that in the FIPS module so we keep original code iff non-FIPS operations are allowed. [Steve Henson] *) Add -attime option to openssl utilities. [Peter Eckersley , Ben Laurie and Steve Henson] *) Redirect DSA and DH operations to FIPS module in FIPS mode. [Steve Henson] *) Redirect ECDSA and ECDH operations to FIPS module in FIPS mode. Also use FIPS EC methods unconditionally for now. [Steve Henson] *) New build option no-ec2m to disable characteristic 2 code. [Steve Henson] *) Backport libcrypto audit of return value checking from 1.1.0-dev; not all cases can be covered as some introduce binary incompatibilities. [Steve Henson] *) Redirect RSA operations to FIPS module including keygen, encrypt, decrypt, sign and verify. Block use of non FIPS RSA methods. [Steve Henson] *) Add similar low level API blocking to ciphers. [Steve Henson] *) Low level digest APIs are not approved in FIPS mode: any attempt to use these will cause a fatal error. Applications that *really* want to use them can use the private_* version instead. [Steve Henson] *) Redirect cipher operations to FIPS module for FIPS builds. [Steve Henson] *) Redirect digest operations to FIPS module for FIPS builds. [Steve Henson] *) Update build system to add "fips" flag which will link in fipscanister.o for static and shared library builds embedding a signature if needed. [Steve Henson] *) Output TLS supported curves in preference order instead of numerical order. This is currently hardcoded for the highest order curves first. This should be configurable so applications can judge speed vs strength. [Steve Henson] *) Add TLS v1.2 server support for client authentication. [Steve Henson] *) Add support for FIPS mode in ssl library: disable SSLv3, non-FIPS ciphers and enable MD5. [Steve Henson] *) Functions FIPS_mode_set() and FIPS_mode() which call the underlying FIPS modules versions. [Steve Henson] *) Add TLS v1.2 client side support for client authentication. Keep cache of handshake records longer as we don't know the hash algorithm to use until after the certificate request message is received. [Steve Henson] *) Initial TLS v1.2 client support. Add a default signature algorithms extension including all the algorithms we support. Parse new signature format in client key exchange. Relax some ECC signing restrictions for TLS v1.2 as indicated in RFC5246. [Steve Henson] *) Add server support for TLS v1.2 signature algorithms extension. Switch to new signature format when needed using client digest preference. All server ciphersuites should now work correctly in TLS v1.2. No client support yet and no support for client certificates. [Steve Henson] *) Initial TLS v1.2 support. Add new SHA256 digest to ssl code, switch to SHA256 for PRF when using TLS v1.2 and later. Add new SHA256 based ciphersuites. At present only RSA key exchange ciphersuites work with TLS v1.2. Add new option for TLS v1.2 replacing the old and obsolete SSL_OP_PKCS1_CHECK flags with SSL_OP_NO_TLSv1_2. New TLSv1.2 methods and version checking. [Steve Henson] *) New option OPENSSL_NO_SSL_INTERN. If an application can be compiled with this defined it will not be affected by any changes to ssl internal structures. Add several utility functions to allow openssl application to work with OPENSSL_NO_SSL_INTERN defined. [Steve Henson] *) A long standing patch to add support for SRP from EdelWeb (Peter Sylvester and Christophe Renou) was integrated. [Christophe Renou , Peter Sylvester , Tom Wu , and Ben Laurie] *) Add functions to copy EVP_PKEY_METHOD and retrieve flags and id. [Steve Henson] *) Permit abbreviated handshakes when renegotiating using the function SSL_renegotiate_abbreviated(). [Robin Seggelmann ] *) Add call to ENGINE_register_all_complete() to ENGINE_load_builtin_engines(), so some implementations get used automatically instead of needing explicit application support. [Steve Henson] *) Add support for TLS key exporter as described in RFC5705. [Robin Seggelmann , Steve Henson] *) Initial TLSv1.1 support. Since TLSv1.1 is very similar to TLS v1.0 only a few changes are required: Add SSL_OP_NO_TLSv1_1 flag. Add TLSv1_1 methods. Update version checking logic to handle version 1.1. Add explicit IV handling (ported from DTLS code). Add command line options to s_client/s_server. [Steve Henson] Changes between 1.0.0g and 1.0.0h [12 Mar 2012] *) Fix MMA (Bleichenbacher's attack on PKCS #1 v1.5 RSA padding) weakness in CMS and PKCS7 code. When RSA decryption fails use a random key for content decryption and always return the same error. Note: this attack needs on average 2^20 messages so it only affects automated senders. The old behaviour can be re-enabled in the CMS code by setting the CMS_DEBUG_DECRYPT flag: this is useful for debugging and testing where an MMA defence is not necessary. Thanks to Ivan Nestlerode for discovering this issue. (CVE-2012-0884) [Steve Henson] *) Fix CVE-2011-4619: make sure we really are receiving a client hello before rejecting multiple SGC restarts. Thanks to Ivan Nestlerode for discovering this bug. [Steve Henson] Changes between 1.0.0f and 1.0.0g [18 Jan 2012] *) Fix for DTLS DoS issue introduced by fix for CVE-2011-4109. Thanks to Antonio Martin, Enterprise Secure Access Research and Development, Cisco Systems, Inc. for discovering this bug and preparing a fix. (CVE-2012-0050) [Antonio Martin] Changes between 1.0.0e and 1.0.0f [4 Jan 2012] *) Nadhem Alfardan and Kenny Paterson have discovered an extension of the Vaudenay padding oracle attack on CBC mode encryption which enables an efficient plaintext recovery attack against the OpenSSL implementation of DTLS. Their attack exploits timing differences arising during decryption processing. A research paper describing this attack can be found at: http://www.isg.rhul.ac.uk/~kp/dtls.pdf Thanks go to Nadhem Alfardan and Kenny Paterson of the Information Security Group at Royal Holloway, University of London (www.isg.rhul.ac.uk) for discovering this flaw and to Robin Seggelmann and Michael Tuexen for preparing the fix. (CVE-2011-4108) [Robin Seggelmann, Michael Tuexen] *) Clear bytes used for block padding of SSL 3.0 records. (CVE-2011-4576) [Adam Langley (Google)] *) Only allow one SGC handshake restart for SSL/TLS. Thanks to George Kadianakis for discovering this issue and Adam Langley for preparing the fix. (CVE-2011-4619) [Adam Langley (Google)] *) Check parameters are not NULL in GOST ENGINE. (CVE-2012-0027) [Andrey Kulikov ] *) Prevent malformed RFC3779 data triggering an assertion failure. Thanks to Andrew Chi, BBN Technologies, for discovering the flaw and Rob Austein for fixing it. (CVE-2011-4577) [Rob Austein ] *) Improved PRNG seeding for VOS. [Paul Green ] *) Fix ssl_ciph.c set-up race. [Adam Langley (Google)] *) Fix spurious failures in ecdsatest.c. [Emilia Käsper (Google)] *) Fix the BIO_f_buffer() implementation (which was mixing different interpretations of the '..._len' fields). [Adam Langley (Google)] *) Fix handling of BN_BLINDING: now BN_BLINDING_invert_ex (rather than BN_BLINDING_invert_ex) calls BN_BLINDING_update, ensuring that concurrent threads won't reuse the same blinding coefficients. This also avoids the need to obtain the CRYPTO_LOCK_RSA_BLINDING lock to call BN_BLINDING_invert_ex, and avoids one use of BN_BLINDING_update for each BN_BLINDING structure (previously, the last update always remained unused). [Emilia Käsper (Google)] *) In ssl3_clear, preserve s3->init_extra along with s3->rbuf. [Bob Buckholz (Google)] Changes between 1.0.0d and 1.0.0e [6 Sep 2011] *) Fix bug where CRLs with nextUpdate in the past are sometimes accepted by initialising X509_STORE_CTX properly. (CVE-2011-3207) [Kaspar Brand ] *) Fix SSL memory handling for (EC)DH ciphersuites, in particular for multi-threaded use of ECDH. (CVE-2011-3210) [Adam Langley (Google)] *) Fix x509_name_ex_d2i memory leak on bad inputs. [Bodo Moeller] *) Remove hard coded ecdsaWithSHA1 signature tests in ssl code and check signature public key algorithm by using OID xref utilities instead. Before this you could only use some ECC ciphersuites with SHA1 only. [Steve Henson] *) Add protection against ECDSA timing attacks as mentioned in the paper by Billy Bob Brumley and Nicola Tuveri, see: http://eprint.iacr.org/2011/232.pdf [Billy Bob Brumley and Nicola Tuveri] Changes between 1.0.0c and 1.0.0d [8 Feb 2011] *) Fix parsing of OCSP stapling ClientHello extension. CVE-2011-0014 [Neel Mehta, Adam Langley, Bodo Moeller (Google)] *) Fix bug in string printing code: if *any* escaping is enabled we must escape the escape character (backslash) or the resulting string is ambiguous. [Steve Henson] Changes between 1.0.0b and 1.0.0c [2 Dec 2010] *) Disable code workaround for ancient and obsolete Netscape browsers and servers: an attacker can use it in a ciphersuite downgrade attack. Thanks to Martin Rex for discovering this bug. CVE-2010-4180 [Steve Henson] *) Fixed J-PAKE implementation error, originally discovered by Sebastien Martini, further info and confirmation from Stefan Arentz and Feng Hao. Note that this fix is a security fix. CVE-2010-4252 [Ben Laurie] Changes between 1.0.0a and 1.0.0b [16 Nov 2010] *) Fix extension code to avoid race conditions which can result in a buffer overrun vulnerability: resumed sessions must not be modified as they can be shared by multiple threads. CVE-2010-3864 [Steve Henson] *) Fix WIN32 build system to correctly link an ENGINE directory into a DLL. [Steve Henson] Changes between 1.0.0 and 1.0.0a [01 Jun 2010] *) Check return value of int_rsa_verify in pkey_rsa_verifyrecover (CVE-2010-1633) [Steve Henson, Peter-Michael Hager ] Changes between 0.9.8n and 1.0.0 [29 Mar 2010] *) Add "missing" function EVP_CIPHER_CTX_copy(). This copies a cipher context. The operation can be customised via the ctrl mechanism in case ENGINEs want to include additional functionality. [Steve Henson] *) Tolerate yet another broken PKCS#8 key format: private key value negative. [Steve Henson] *) Add new -subject_hash_old and -issuer_hash_old options to x509 utility to output hashes compatible with older versions of OpenSSL. [Willy Weisz ] *) Fix compression algorithm handling: if resuming a session use the compression algorithm of the resumed session instead of determining it from client hello again. Don't allow server to change algorithm. [Steve Henson] *) Add load_crls() function to apps tidying load_certs() too. Add option to verify utility to allow additional CRLs to be included. [Steve Henson] *) Update OCSP request code to permit adding custom headers to the request: some responders need this. [Steve Henson] *) The function EVP_PKEY_sign() returns <=0 on error: check return code correctly. [Julia Lawall ] *) Update verify callback code in apps/s_cb.c and apps/verify.c, it needlessly dereferenced structures, used obsolete functions and didn't handle all updated verify codes correctly. [Steve Henson] *) Disable MD2 in the default configuration. [Steve Henson] *) In BIO_pop() and BIO_push() use the ctrl argument (which was NULL) to indicate the initial BIO being pushed or popped. This makes it possible to determine whether the BIO is the one explicitly called or as a result of the ctrl being passed down the chain. Fix BIO_pop() and SSL BIOs so it handles reference counts correctly and doesn't zero out the I/O bio when it is not being explicitly popped. WARNING: applications which included workarounds for the old buggy behaviour will need to be modified or they could free up already freed BIOs. [Steve Henson] *) Extend the uni2asc/asc2uni => OPENSSL_uni2asc/OPENSSL_asc2uni renaming to all platforms (within the 0.9.8 branch, this was done conditionally on Netware platforms to avoid a name clash). [Guenter ] *) Add ECDHE and PSK support to DTLS. [Michael Tuexen ] *) Add CHECKED_STACK_OF macro to safestack.h, otherwise safestack can't be used on C++. [Steve Henson] *) Add "missing" function EVP_MD_flags() (without this the only way to retrieve a digest flags is by accessing the structure directly. Update EVP_MD_do_all*() and EVP_CIPHER_do_all*() to include the name a digest or cipher is registered as in the "from" argument. Print out all registered digests in the dgst usage message instead of manually attempting to work them out. [Steve Henson] *) If no SSLv2 ciphers are used don't use an SSLv2 compatible client hello: this allows the use of compression and extensions. Change default cipher string to remove SSLv2 ciphersuites. This effectively avoids ancient SSLv2 by default unless an application cipher string requests it. [Steve Henson] *) Alter match criteria in PKCS12_parse(). It used to try to use local key ids to find matching certificates and keys but some PKCS#12 files don't follow the (somewhat unwritten) rules and this strategy fails. Now just gather all certificates together and the first private key then look for the first certificate that matches the key. [Steve Henson] *) Support use of registered digest and cipher names for dgst and cipher commands instead of having to add each one as a special case. So now you can do: openssl sha256 foo as well as: openssl dgst -sha256 foo and this works for ENGINE based algorithms too. [Steve Henson] *) Update Gost ENGINE to support parameter files. [Victor B. Wagner ] *) Support GeneralizedTime in ca utility. [Oliver Martin , Steve Henson] *) Enhance the hash format used for certificate directory links. The new form uses the canonical encoding (meaning equivalent names will work even if they aren't identical) and uses SHA1 instead of MD5. This form is incompatible with the older format and as a result c_rehash should be used to rebuild symbolic links. [Steve Henson] *) Make PKCS#8 the default write format for private keys, replacing the traditional format. This form is standardised, more secure and doesn't include an implicit MD5 dependency. [Steve Henson] *) Add a $gcc_devteam_warn option to Configure. The idea is that any code committed to OpenSSL should pass this lot as a minimum. [Steve Henson] *) Add session ticket override functionality for use by EAP-FAST. [Jouni Malinen ] *) Modify HMAC functions to return a value. Since these can be implemented in an ENGINE errors can occur. [Steve Henson] *) Type-checked OBJ_bsearch_ex. [Ben Laurie] *) Type-checked OBJ_bsearch. Also some constification necessitated by type-checking. Still to come: TXT_DB, bsearch(?), OBJ_bsearch_ex, qsort, CRYPTO_EX_DATA, ASN1_VALUE, ASN1_STRING, CONF_VALUE. [Ben Laurie] *) New function OPENSSL_gmtime_adj() to add a specific number of days and seconds to a tm structure directly, instead of going through OS specific date routines. This avoids any issues with OS routines such as the year 2038 bug. New *_adj() functions for ASN1 time structures and X509_time_adj_ex() to cover the extended range. The existing X509_time_adj() is still usable and will no longer have any date issues. [Steve Henson] *) Delta CRL support. New use deltas option which will attempt to locate and search any appropriate delta CRLs available. This work was sponsored by Google. [Steve Henson] *) Support for CRLs partitioned by reason code. Reorganise CRL processing code and add additional score elements. Validate alternate CRL paths as part of the CRL checking and indicate a new error "CRL path validation error" in this case. Applications wanting additional details can use the verify callback and check the new "parent" field. If this is not NULL CRL path validation is taking place. Existing applications won't see this because it requires extended CRL support which is off by default. This work was sponsored by Google. [Steve Henson] *) Support for freshest CRL extension. This work was sponsored by Google. [Steve Henson] *) Initial indirect CRL support. Currently only supported in the CRLs passed directly and not via lookup. Process certificate issuer CRL entry extension and lookup CRL entries by bother issuer name and serial number. Check and process CRL issuer entry in IDP extension. This work was sponsored by Google. [Steve Henson] *) Add support for distinct certificate and CRL paths. The CRL issuer certificate is validated separately in this case. Only enabled if an extended CRL support flag is set: this flag will enable additional CRL functionality in future. This work was sponsored by Google. [Steve Henson] *) Add support for policy mappings extension. This work was sponsored by Google. [Steve Henson] *) Fixes to pathlength constraint, self issued certificate handling, policy processing to align with RFC3280 and PKITS tests. This work was sponsored by Google. [Steve Henson] *) Support for name constraints certificate extension. DN, email, DNS and URI types are currently supported. This work was sponsored by Google. [Steve Henson] *) To cater for systems that provide a pointer-based thread ID rather than numeric, deprecate the current numeric thread ID mechanism and replace it with a structure and associated callback type. This mechanism allows a numeric "hash" to be extracted from a thread ID in either case, and on platforms where pointers are larger than 'long', mixing is done to help ensure the numeric 'hash' is usable even if it can't be guaranteed unique. The default mechanism is to use "&errno" as a pointer-based thread ID to distinguish between threads. Applications that want to provide their own thread IDs should now use CRYPTO_THREADID_set_callback() to register a callback that will call either CRYPTO_THREADID_set_numeric() or CRYPTO_THREADID_set_pointer(). Note that ERR_remove_state() is now deprecated, because it is tied to the assumption that thread IDs are numeric. ERR_remove_state(0) to free the current thread's error state should be replaced by ERR_remove_thread_state(NULL). (This new approach replaces the functions CRYPTO_set_idptr_callback(), CRYPTO_get_idptr_callback(), and CRYPTO_thread_idptr() that existed in OpenSSL 0.9.9-dev between June 2006 and August 2008. Also, if an application was previously providing a numeric thread callback that was inappropriate for distinguishing threads, then uniqueness might have been obtained with &errno that happened immediately in the intermediate development versions of OpenSSL; this is no longer the case, the numeric thread callback will now override the automatic use of &errno.) [Geoff Thorpe, with help from Bodo Moeller] *) Initial support for different CRL issuing certificates. This covers a simple case where the self issued certificates in the chain exist and the real CRL issuer is higher in the existing chain. This work was sponsored by Google. [Steve Henson] *) Removed effectively defunct crypto/store from the build. [Ben Laurie] *) Revamp of STACK to provide stronger type-checking. Still to come: TXT_DB, bsearch(?), OBJ_bsearch, qsort, CRYPTO_EX_DATA, ASN1_VALUE, ASN1_STRING, CONF_VALUE. [Ben Laurie] *) Add a new SSL_MODE_RELEASE_BUFFERS mode flag to release unused buffer RAM on SSL connections. This option can save about 34k per idle SSL. [Nick Mathewson] *) Revamp of LHASH to provide stronger type-checking. Still to come: STACK, TXT_DB, bsearch, qsort. [Ben Laurie] *) Initial support for Cryptographic Message Syntax (aka CMS) based on RFC3850, RFC3851 and RFC3852. New cms directory and cms utility, support for data, signedData, compressedData, digestedData and encryptedData, envelopedData types included. Scripts to check against RFC4134 examples draft and interop and consistency checks of many content types and variants. [Steve Henson] *) Add options to enc utility to support use of zlib compression BIO. [Steve Henson] *) Extend mk1mf to support importing of options and assembly language files from Configure script, currently only included in VC-WIN32. The assembly language rules can now optionally generate the source files from the associated perl scripts. [Steve Henson] *) Implement remaining functionality needed to support GOST ciphersuites. Interop testing has been performed using CryptoPro implementations. [Victor B. Wagner ] *) s390x assembler pack. [Andy Polyakov] *) ARMv4 assembler pack. ARMv4 refers to v4 and later ISA, not CPU "family." [Andy Polyakov] *) Implement Opaque PRF Input TLS extension as specified in draft-rescorla-tls-opaque-prf-input-00.txt. Since this is not an official specification yet and no extension type assignment by IANA exists, this extension (for now) will have to be explicitly enabled when building OpenSSL by providing the extension number to use. For example, specify an option -DTLSEXT_TYPE_opaque_prf_input=0x9527 to the "config" or "Configure" script to enable the extension, assuming extension number 0x9527 (which is a completely arbitrary and unofficial assignment based on the MD5 hash of the Internet Draft). Note that by doing so, you potentially lose interoperability with other TLS implementations since these might be using the same extension number for other purposes. SSL_set_tlsext_opaque_prf_input(ssl, src, len) is used to set the opaque PRF input value to use in the handshake. This will create an internal copy of the length-'len' string at 'src', and will return non-zero for success. To get more control and flexibility, provide a callback function by using SSL_CTX_set_tlsext_opaque_prf_input_callback(ctx, cb) SSL_CTX_set_tlsext_opaque_prf_input_callback_arg(ctx, arg) where int (*cb)(SSL *, void *peerinput, size_t len, void *arg); void *arg; Callback function 'cb' will be called in handshakes, and is expected to use SSL_set_tlsext_opaque_prf_input() as appropriate. Argument 'arg' is for application purposes (the value as given to SSL_CTX_set_tlsext_opaque_prf_input_callback_arg() will directly be provided to the callback function). The callback function has to return non-zero to report success: usually 1 to use opaque PRF input just if possible, or 2 to enforce use of the opaque PRF input. In the latter case, the library will abort the handshake if opaque PRF input is not successfully negotiated. Arguments 'peerinput' and 'len' given to the callback function will always be NULL and 0 in the case of a client. A server will see the client's opaque PRF input through these variables if available (NULL and 0 otherwise). Note that if the server provides an opaque PRF input, the length must be the same as the length of the client's opaque PRF input. Note that the callback function will only be called when creating a new session (session resumption can resume whatever was previously negotiated), and will not be called in SSL 2.0 handshakes; thus, SSL_CTX_set_options(ctx, SSL_OP_NO_SSLv2) or SSL_set_options(ssl, SSL_OP_NO_SSLv2) is especially recommended for applications that need to enforce opaque PRF input. [Bodo Moeller] *) Update ssl code to support digests other than SHA1+MD5 for handshake MAC. [Victor B. Wagner ] *) Add RFC4507 support to OpenSSL. This includes the corrections in RFC4507bis. The encrypted ticket format is an encrypted encoded SSL_SESSION structure, that way new session features are automatically supported. If a client application caches session in an SSL_SESSION structure support is transparent because tickets are now stored in the encoded SSL_SESSION. The SSL_CTX structure automatically generates keys for ticket protection in servers so again support should be possible with no application modification. If a client or server wishes to disable RFC4507 support then the option SSL_OP_NO_TICKET can be set. Add a TLS extension debugging callback to allow the contents of any client or server extensions to be examined. This work was sponsored by Google. [Steve Henson] *) Final changes to avoid use of pointer pointer casts in OpenSSL. OpenSSL should now compile cleanly on gcc 4.2 [Peter Hartley , Steve Henson] *) Update SSL library to use new EVP_PKEY MAC API. Include generic MAC support including streaming MAC support: this is required for GOST ciphersuite support. [Victor B. Wagner , Steve Henson] *) Add option -stream to use PKCS#7 streaming in smime utility. New function i2d_PKCS7_bio_stream() and PEM_write_PKCS7_bio_stream() to output in BER and PEM format. [Steve Henson] *) Experimental support for use of HMAC via EVP_PKEY interface. This allows HMAC to be handled via the EVP_DigestSign*() interface. The EVP_PKEY "key" in this case is the HMAC key, potentially allowing ENGINE support for HMAC keys which are unextractable. New -mac and -macopt options to dgst utility. [Steve Henson] *) New option -sigopt to dgst utility. Update dgst to use EVP_Digest{Sign,Verify}*. These two changes make it possible to use alternative signing parameters such as X9.31 or PSS in the dgst utility. [Steve Henson] *) Change ssl_cipher_apply_rule(), the internal function that does the work each time a ciphersuite string requests enabling ("foo+bar"), moving ("+foo+bar"), disabling ("-foo+bar", or removing ("!foo+bar") a class of ciphersuites: Now it maintains the order of disabled ciphersuites such that those ciphersuites that most recently went from enabled to disabled not only stay in order with respect to each other, but also have higher priority than other disabled ciphersuites the next time ciphersuites are enabled again. This means that you can now say, e.g., "PSK:-PSK:HIGH" to enable the same ciphersuites as with "HIGH" alone, but in a specific order where the PSK ciphersuites come first (since they are the most recently disabled ciphersuites when "HIGH" is parsed). Also, change ssl_create_cipher_list() (using this new functionality) such that between otherwise identical ciphersuites, ephemeral ECDH is preferred over ephemeral DH in the default order. [Bodo Moeller] *) Change ssl_create_cipher_list() so that it automatically arranges the ciphersuites in reasonable order before starting to process the rule string. Thus, the definition for "DEFAULT" (SSL_DEFAULT_CIPHER_LIST) now is just "ALL:!aNULL:!eNULL", but remains equivalent to "AES:ALL:!aNULL:!eNULL:+aECDH:+kRSA:+RC4:@STRENGTH". This makes it much easier to arrive at a reasonable default order in applications for which anonymous ciphers are OK (meaning that you can't actually use DEFAULT). [Bodo Moeller; suggested by Victor Duchovni] *) Split the SSL/TLS algorithm mask (as used for ciphersuite string processing) into multiple integers instead of setting "SSL_MKEY_MASK" bits, "SSL_AUTH_MASK" bits, "SSL_ENC_MASK", "SSL_MAC_MASK", and "SSL_SSL_MASK" bits all in a single integer. (These masks as well as the individual bit definitions are hidden away into the non-exported interface ssl/ssl_locl.h, so this change to the definition of the SSL_CIPHER structure shouldn't affect applications.) This give us more bits for each of these categories, so there is no longer a need to coagulate AES128 and AES256 into a single algorithm bit, and to coagulate Camellia128 and Camellia256 into a single algorithm bit, which has led to all kinds of kludges. Thus, among other things, the kludge introduced in 0.9.7m and 0.9.8e for masking out AES256 independently of AES128 or masking out Camellia256 independently of AES256 is not needed here in 0.9.9. With the change, we also introduce new ciphersuite aliases that so far were missing: "AES128", "AES256", "CAMELLIA128", and "CAMELLIA256". [Bodo Moeller] *) Add support for dsa-with-SHA224 and dsa-with-SHA256. Use the leftmost N bytes of the signature input if the input is larger than the prime q (with N being the size in bytes of q). [Nils Larsch] *) Very *very* experimental PKCS#7 streaming encoder support. Nothing uses it yet and it is largely untested. [Steve Henson] *) Add support for the ecdsa-with-SHA224/256/384/512 signature types. [Nils Larsch] *) Initial incomplete changes to avoid need for function casts in OpenSSL some compilers (gcc 4.2 and later) reject their use. Safestack is reimplemented. Update ASN1 to avoid use of legacy functions. [Steve Henson] *) Win32/64 targets are linked with Winsock2. [Andy Polyakov] *) Add an X509_CRL_METHOD structure to allow CRL processing to be redirected to external functions. This can be used to increase CRL handling efficiency especially when CRLs are very large by (for example) storing the CRL revoked certificates in a database. [Steve Henson] *) Overhaul of by_dir code. Add support for dynamic loading of CRLs so new CRLs added to a directory can be used. New command line option -verify_return_error to s_client and s_server. This causes real errors to be returned by the verify callback instead of carrying on no matter what. This reflects the way a "real world" verify callback would behave. [Steve Henson] *) GOST engine, supporting several GOST algorithms and public key formats. Kindly donated by Cryptocom. [Cryptocom] *) Partial support for Issuing Distribution Point CRL extension. CRLs partitioned by DP are handled but no indirect CRL or reason partitioning (yet). Complete overhaul of CRL handling: now the most suitable CRL is selected via a scoring technique which handles IDP and AKID in CRLs. [Steve Henson] *) New X509_STORE_CTX callbacks lookup_crls() and lookup_certs() which will ultimately be used for all verify operations: this will remove the X509_STORE dependency on certificate verification and allow alternative lookup methods. X509_STORE based implementations of these two callbacks. [Steve Henson] *) Allow multiple CRLs to exist in an X509_STORE with matching issuer names. Modify get_crl() to find a valid (unexpired) CRL if possible. [Steve Henson] *) New function X509_CRL_match() to check if two CRLs are identical. Normally this would be called X509_CRL_cmp() but that name is already used by a function that just compares CRL issuer names. Cache several CRL extensions in X509_CRL structure and cache CRLDP in X509. [Steve Henson] *) Store a "canonical" representation of X509_NAME structure (ASN1 Name) this maps equivalent X509_NAME structures into a consistent structure. Name comparison can then be performed rapidly using memcmp(). [Steve Henson] *) Non-blocking OCSP request processing. Add -timeout option to ocsp utility. [Steve Henson] *) Allow digests to supply their own micalg string for S/MIME type using the ctrl EVP_MD_CTRL_MICALG. [Steve Henson] *) During PKCS7 signing pass the PKCS7 SignerInfo structure to the EVP_PKEY_METHOD before and after signing via the EVP_PKEY_CTRL_PKCS7_SIGN ctrl. It can then customise the structure before and/or after signing if necessary. [Steve Henson] *) New function OBJ_add_sigid() to allow application defined signature OIDs to be added to OpenSSLs internal tables. New function OBJ_sigid_free() to free up any added signature OIDs. [Steve Henson] *) New functions EVP_CIPHER_do_all(), EVP_CIPHER_do_all_sorted(), EVP_MD_do_all() and EVP_MD_do_all_sorted() to enumerate internal digest and cipher tables. New options added to openssl utility: list-message-digest-algorithms and list-cipher-algorithms. [Steve Henson] *) Change the array representation of binary polynomials: the list of degrees of non-zero coefficients is now terminated with -1. Previously it was terminated with 0, which was also part of the value; thus, the array representation was not applicable to polynomials where t^0 has coefficient zero. This change makes the array representation useful in a more general context. [Douglas Stebila] *) Various modifications and fixes to SSL/TLS cipher string handling. For ECC, the code now distinguishes between fixed ECDH with RSA certificates on the one hand and with ECDSA certificates on the other hand, since these are separate ciphersuites. The unused code for Fortezza ciphersuites has been removed. For consistency with EDH, ephemeral ECDH is now called "EECDH" (not "ECDHE"). For consistency with the code for DH certificates, use of ECDH certificates is now considered ECDH authentication, not RSA or ECDSA authentication (the latter is merely the CA's signing algorithm and not actively used in the protocol). The temporary ciphersuite alias "ECCdraft" is no longer available, and ECC ciphersuites are no longer excluded from "ALL" and "DEFAULT". The following aliases now exist for RFC 4492 ciphersuites, most of these by analogy with the DH case: kECDHr - ECDH cert, signed with RSA kECDHe - ECDH cert, signed with ECDSA kECDH - ECDH cert (signed with either RSA or ECDSA) kEECDH - ephemeral ECDH ECDH - ECDH cert or ephemeral ECDH aECDH - ECDH cert aECDSA - ECDSA cert ECDSA - ECDSA cert AECDH - anonymous ECDH EECDH - non-anonymous ephemeral ECDH (equivalent to "kEECDH:-AECDH") [Bodo Moeller] *) Add additional S/MIME capabilities for AES and GOST ciphers if supported. Use correct micalg parameters depending on digest(s) in signed message. [Steve Henson] *) Add engine support for EVP_PKEY_ASN1_METHOD. Add functions to process an ENGINE asn1 method. Support ENGINE lookups in the ASN1 code. [Steve Henson] *) Initial engine support for EVP_PKEY_METHOD. New functions to permit an engine to register a method. Add ENGINE lookups for methods and functional reference processing. [Steve Henson] *) New functions EVP_Digest{Sign,Verify)*. These are enhanced versions of EVP_{Sign,Verify}* which allow an application to customise the signature process. [Steve Henson] *) New -resign option to smime utility. This adds one or more signers to an existing PKCS#7 signedData structure. Also -md option to use an alternative message digest algorithm for signing. [Steve Henson] *) Tidy up PKCS#7 routines and add new functions to make it easier to create PKCS7 structures containing multiple signers. Update smime application to support multiple signers. [Steve Henson] *) New -macalg option to pkcs12 utility to allow setting of an alternative digest MAC. [Steve Henson] *) Initial support for PKCS#5 v2.0 PRFs other than default SHA1 HMAC. Reorganize PBE internals to lookup from a static table using NIDs, add support for HMAC PBE OID translation. Add a EVP_CIPHER ctrl: EVP_CTRL_PBE_PRF_NID this allows a cipher to specify an alternative PRF which will be automatically used with PBES2. [Steve Henson] *) Replace the algorithm specific calls to generate keys in "req" with the new API. [Steve Henson] *) Update PKCS#7 enveloped data routines to use new API. This is now supported by any public key method supporting the encrypt operation. A ctrl is added to allow the public key algorithm to examine or modify the PKCS#7 RecipientInfo structure if it needs to: for RSA this is a no op. [Steve Henson] *) Add a ctrl to asn1 method to allow a public key algorithm to express a default digest type to use. In most cases this will be SHA1 but some algorithms (such as GOST) need to specify an alternative digest. The return value indicates how strong the preference is 1 means optional and 2 is mandatory (that is it is the only supported type). Modify ASN1_item_sign() to accept a NULL digest argument to indicate it should use the default md. Update openssl utilities to use the default digest type for signing if it is not explicitly indicated. [Steve Henson] *) Use OID cross reference table in ASN1_sign() and ASN1_verify(). New EVP_MD flag EVP_MD_FLAG_PKEY_METHOD_SIGNATURE. This uses the relevant signing method from the key type. This effectively removes the link between digests and public key types. [Steve Henson] *) Add an OID cross reference table and utility functions. Its purpose is to translate between signature OIDs such as SHA1WithrsaEncryption and SHA1, rsaEncryption. This will allow some of the algorithm specific hackery needed to use the correct OID to be removed. [Steve Henson] *) Remove algorithm specific dependencies when setting PKCS7_SIGNER_INFO structures for PKCS7_sign(). They are now set up by the relevant public key ASN1 method. [Steve Henson] *) Add provisional EC pkey method with support for ECDSA and ECDH. [Steve Henson] *) Add support for key derivation (agreement) in the API, DH method and pkeyutl. [Steve Henson] *) Add DSA pkey method and DH pkey methods, extend DH ASN1 method to support public and private key formats. As a side effect these add additional command line functionality not previously available: DSA signatures can be generated and verified using pkeyutl and DH key support and generation in pkey, genpkey. [Steve Henson] *) BeOS support. [Oliver Tappe ] *) New make target "install_html_docs" installs HTML renditions of the manual pages. [Oliver Tappe ] *) New utility "genpkey" this is analogous to "genrsa" etc except it can generate keys for any algorithm. Extend and update EVP_PKEY_METHOD to support key and parameter generation and add initial key generation functionality for RSA. [Steve Henson] *) Add functions for main EVP_PKEY_method operations. The undocumented functions EVP_PKEY_{encrypt,decrypt} have been renamed to EVP_PKEY_{encrypt,decrypt}_old. [Steve Henson] *) Initial definitions for EVP_PKEY_METHOD. This will be a high level public key API, doesn't do much yet. [Steve Henson] *) New function EVP_PKEY_asn1_get0_info() to retrieve information about public key algorithms. New option to openssl utility: "list-public-key-algorithms" to print out info. [Steve Henson] *) Implement the Supported Elliptic Curves Extension for ECC ciphersuites from draft-ietf-tls-ecc-12.txt. [Douglas Stebila] *) Don't free up OIDs in OBJ_cleanup() if they are in use by EVP_MD or EVP_CIPHER structures to avoid later problems in EVP_cleanup(). [Steve Henson] *) New utilities pkey and pkeyparam. These are similar to algorithm specific utilities such as rsa, dsa, dsaparam etc except they process any key type. [Steve Henson] *) Transfer public key printing routines to EVP_PKEY_ASN1_METHOD. New functions EVP_PKEY_print_public(), EVP_PKEY_print_private(), EVP_PKEY_print_param() to print public key data from an EVP_PKEY structure. [Steve Henson] *) Initial support for pluggable public key ASN1. De-spaghettify the public key ASN1 handling. Move public and private key ASN1 handling to a new EVP_PKEY_ASN1_METHOD structure. Relocate algorithm specific handling to a single module within the relevant algorithm directory. Add functions to allow (near) opaque processing of public and private key structures. [Steve Henson] *) Implement the Supported Point Formats Extension for ECC ciphersuites from draft-ietf-tls-ecc-12.txt. [Douglas Stebila] *) Add initial support for RFC 4279 PSK TLS ciphersuites. Add members for the psk identity [hint] and the psk callback functions to the SSL_SESSION, SSL and SSL_CTX structure. New ciphersuites: PSK-RC4-SHA, PSK-3DES-EDE-CBC-SHA, PSK-AES128-CBC-SHA, PSK-AES256-CBC-SHA New functions: SSL_CTX_use_psk_identity_hint SSL_get_psk_identity_hint SSL_get_psk_identity SSL_use_psk_identity_hint [Mika Kousa and Pasi Eronen of Nokia Corporation] *) Add RFC 3161 compliant time stamp request creation, response generation and response verification functionality. [Zoltán Glózik , The OpenTSA Project] *) Add initial support for TLS extensions, specifically for the server_name extension so far. The SSL_SESSION, SSL_CTX, and SSL data structures now have new members for a host name. The SSL data structure has an additional member SSL_CTX *initial_ctx so that new sessions can be stored in that context to allow for session resumption, even after the SSL has been switched to a new SSL_CTX in reaction to a client's server_name extension. New functions (subject to change): SSL_get_servername() SSL_get_servername_type() SSL_set_SSL_CTX() New CTRL codes and macros (subject to change): SSL_CTRL_SET_TLSEXT_SERVERNAME_CB - SSL_CTX_set_tlsext_servername_callback() SSL_CTRL_SET_TLSEXT_SERVERNAME_ARG - SSL_CTX_set_tlsext_servername_arg() SSL_CTRL_SET_TLSEXT_HOSTNAME - SSL_set_tlsext_host_name() openssl s_client has a new '-servername ...' option. openssl s_server has new options '-servername_host ...', '-cert2 ...', '-key2 ...', '-servername_fatal' (subject to change). This allows testing the HostName extension for a specific single host name ('-cert' and '-key' remain fallbacks for handshakes without HostName negotiation). If the unrecognized_name alert has to be sent, this by default is a warning; it becomes fatal with the '-servername_fatal' option. [Peter Sylvester, Remy Allais, Christophe Renou] *) Whirlpool hash implementation is added. [Andy Polyakov] *) BIGNUM code on 64-bit SPARCv9 targets is switched from bn(64,64) to bn(64,32). Because of instruction set limitations it doesn't have any negative impact on performance. This was done mostly in order to make it possible to share assembler modules, such as bn_mul_mont implementations, between 32- and 64-bit builds without hassle. [Andy Polyakov] *) Move code previously exiled into file crypto/ec/ec2_smpt.c to ec2_smpl.c, and no longer require the OPENSSL_EC_BIN_PT_COMP macro. [Bodo Moeller] *) New candidate for BIGNUM assembler implementation, bn_mul_mont, dedicated Montgomery multiplication procedure, is introduced. BN_MONT_CTX is modified to allow bn_mul_mont to reach for higher "64-bit" performance on certain 32-bit targets. [Andy Polyakov] *) New option SSL_OP_NO_COMP to disable use of compression selectively in SSL structures. New SSL ctrl to set maximum send fragment size. Save memory by setting the I/O buffer sizes dynamically instead of using the maximum available value. [Steve Henson] *) New option -V for 'openssl ciphers'. This prints the ciphersuite code in addition to the text details. [Bodo Moeller] *) Very, very preliminary EXPERIMENTAL support for printing of general ASN1 structures. This currently produces rather ugly output and doesn't handle several customised structures at all. [Steve Henson] *) Integrated support for PVK file format and some related formats such as MS PUBLICKEYBLOB and PRIVATEKEYBLOB. Command line switches to support these in the 'rsa' and 'dsa' utilities. [Steve Henson] *) Support for PKCS#1 RSAPublicKey format on rsa utility command line. [Steve Henson] *) Remove the ancient ASN1_METHOD code. This was only ever used in one place for the (very old) "NETSCAPE" format certificates which are now handled using new ASN1 code equivalents. [Steve Henson] *) Let the TLSv1_method() etc. functions return a 'const' SSL_METHOD pointer and make the SSL_METHOD parameter in SSL_CTX_new, SSL_CTX_set_ssl_version and SSL_set_ssl_method 'const'. [Nils Larsch] *) Modify CRL distribution points extension code to print out previously unsupported fields. Enhance extension setting code to allow setting of all fields. [Steve Henson] *) Add print and set support for Issuing Distribution Point CRL extension. [Steve Henson] *) Change 'Configure' script to enable Camellia by default. [NTT] Changes between 0.9.8m and 0.9.8n [24 Mar 2010] *) When rejecting SSL/TLS records due to an incorrect version number, never update s->server with a new major version number. As of - OpenSSL 0.9.8m if 'short' is a 16-bit type, - OpenSSL 0.9.8f if 'short' is longer than 16 bits, the previous behavior could result in a read attempt at NULL when receiving specific incorrect SSL/TLS records once record payload protection is active. (CVE-2010-0740) [Bodo Moeller, Adam Langley ] *) Fix for CVE-2010-0433 where some kerberos enabled versions of OpenSSL could be crashed if the relevant tables were not present (e.g. chrooted). [Tomas Hoger ] Changes between 0.9.8l and 0.9.8m [25 Feb 2010] *) Always check bn_wexpand() return values for failure. (CVE-2009-3245) [Martin Olsson, Neel Mehta] *) Fix X509_STORE locking: Every 'objs' access requires a lock (to accommodate for stack sorting, always a write lock!). [Bodo Moeller] *) On some versions of WIN32 Heap32Next is very slow. This can cause excessive delays in the RAND_poll(): over a minute. As a workaround include a time check in the inner Heap32Next loop too. [Steve Henson] *) The code that handled flushing of data in SSL/TLS originally used the BIO_CTRL_INFO ctrl to see if any data was pending first. This caused the problem outlined in PR#1949. The fix suggested there however can trigger problems with buggy BIO_CTRL_WPENDING (e.g. some versions of Apache). So instead simplify the code to flush unconditionally. This should be fine since flushing with no data to flush is a no op. [Steve Henson] *) Handle TLS versions 2.0 and later properly and correctly use the highest version of TLS/SSL supported. Although TLS >= 2.0 is some way off ancient servers have a habit of sticking around for a while... [Steve Henson] *) Modify compression code so it frees up structures without using the ex_data callbacks. This works around a problem where some applications call CRYPTO_cleanup_all_ex_data() before application exit (e.g. when restarting) then use compression (e.g. SSL with compression) later. This results in significant per-connection memory leaks and has caused some security issues including CVE-2008-1678 and CVE-2009-4355. [Steve Henson] *) Constify crypto/cast (i.e., ): a CAST_KEY doesn't change when encrypting or decrypting. [Bodo Moeller] *) Add option SSL_OP_LEGACY_SERVER_CONNECT which will allow clients to connect and renegotiate with servers which do not support RI. Until RI is more widely deployed this option is enabled by default. [Steve Henson] *) Add "missing" ssl ctrls to clear options and mode. [Steve Henson] *) If client attempts to renegotiate and doesn't support RI respond with a no_renegotiation alert as required by RFC5746. Some renegotiating TLS clients will continue a connection gracefully when they receive the alert. Unfortunately OpenSSL mishandled this alert and would hang waiting for a server hello which it will never receive. Now we treat a received no_renegotiation alert as a fatal error. This is because applications requesting a renegotiation might well expect it to succeed and would have no code in place to handle the server denying it so the only safe thing to do is to terminate the connection. [Steve Henson] *) Add ctrl macro SSL_get_secure_renegotiation_support() which returns 1 if peer supports secure renegotiation and 0 otherwise. Print out peer renegotiation support in s_client/s_server. [Steve Henson] *) Replace the highly broken and deprecated SPKAC certification method with the updated NID creation version. This should correctly handle UTF8. [Steve Henson] *) Implement RFC5746. Re-enable renegotiation but require the extension as needed. Unfortunately, SSL3_FLAGS_ALLOW_UNSAFE_LEGACY_RENEGOTIATION turns out to be a bad idea. It has been replaced by SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION which can be set with SSL_CTX_set_options(). This is really not recommended unless you know what you are doing. [Eric Rescorla , Ben Laurie, Steve Henson] *) Fixes to stateless session resumption handling. Use initial_ctx when issuing and attempting to decrypt tickets in case it has changed during servername handling. Use a non-zero length session ID when attempting stateless session resumption: this makes it possible to determine if a resumption has occurred immediately after receiving server hello (several places in OpenSSL subtly assume this) instead of later in the handshake. [Steve Henson] *) The functions ENGINE_ctrl(), OPENSSL_isservice(), CMS_get1_RecipientRequest() and RAND_bytes() can return <=0 on error fixes for a few places where the return code is not checked correctly. [Julia Lawall ] *) Add --strict-warnings option to Configure script to include devteam warnings in other configurations. [Steve Henson] *) Add support for --libdir option and LIBDIR variable in makefiles. This makes it possible to install openssl libraries in locations which have names other than "lib", for example "/usr/lib64" which some systems need. [Steve Henson, based on patch from Jeremy Utley] *) Don't allow the use of leading 0x80 in OIDs. This is a violation of X690 8.9.12 and can produce some misleading textual output of OIDs. [Steve Henson, reported by Dan Kaminsky] *) Delete MD2 from algorithm tables. This follows the recommendation in several standards that it is not used in new applications due to several cryptographic weaknesses. For binary compatibility reasons the MD2 API is still compiled in by default. [Steve Henson] *) Add compression id to {d2i,i2d}_SSL_SESSION so it is correctly saved and restored. [Steve Henson] *) Rename uni2asc and asc2uni functions to OPENSSL_uni2asc and OPENSSL_asc2uni conditionally on Netware platforms to avoid a name clash. [Guenter ] *) Fix the server certificate chain building code to use X509_verify_cert(), it used to have an ad-hoc builder which was unable to cope with anything other than a simple chain. [David Woodhouse , Steve Henson] *) Don't check self signed certificate signatures in X509_verify_cert() by default (a flag can override this): it just wastes time without adding any security. As a useful side effect self signed root CAs with non-FIPS digests are now usable in FIPS mode. [Steve Henson] *) In dtls1_process_out_of_seq_message() the check if the current message is already buffered was missing. For every new message was memory allocated, allowing an attacker to perform an denial of service attack with sending out of seq handshake messages until there is no memory left. Additionally every future message was buffered, even if the sequence number made no sense and would be part of another handshake. So only messages with sequence numbers less than 10 in advance will be buffered. (CVE-2009-1378) [Robin Seggelmann, discovered by Daniel Mentz] *) Records are buffered if they arrive with a future epoch to be processed after finishing the corresponding handshake. There is currently no limitation to this buffer allowing an attacker to perform a DOS attack with sending records with future epochs until there is no memory left. This patch adds the pqueue_size() function to determine the size of a buffer and limits the record buffer to 100 entries. (CVE-2009-1377) [Robin Seggelmann, discovered by Daniel Mentz] *) Keep a copy of frag->msg_header.frag_len so it can be used after the parent structure is freed. (CVE-2009-1379) [Daniel Mentz] *) Handle non-blocking I/O properly in SSL_shutdown() call. [Darryl Miles ] *) Add 2.5.4.* OIDs [Ilya O. ] Changes between 0.9.8k and 0.9.8l [5 Nov 2009] *) Disable renegotiation completely - this fixes a severe security problem (CVE-2009-3555) at the cost of breaking all renegotiation. Renegotiation can be re-enabled by setting SSL3_FLAGS_ALLOW_UNSAFE_LEGACY_RENEGOTIATION in s3->flags at run-time. This is really not recommended unless you know what you're doing. [Ben Laurie] Changes between 0.9.8j and 0.9.8k [25 Mar 2009] *) Don't set val to NULL when freeing up structures, it is freed up by underlying code. If sizeof(void *) > sizeof(long) this can result in zeroing past the valid field. (CVE-2009-0789) [Paolo Ganci ] *) Fix bug where return value of CMS_SignerInfo_verify_content() was not checked correctly. This would allow some invalid signed attributes to appear to verify correctly. (CVE-2009-0591) [Ivan Nestlerode ] *) Reject UniversalString and BMPString types with invalid lengths. This prevents a crash in ASN1_STRING_print_ex() which assumes the strings have a legal length. (CVE-2009-0590) [Steve Henson] *) Set S/MIME signing as the default purpose rather than setting it unconditionally. This allows applications to override it at the store level. [Steve Henson] *) Permit restricted recursion of ASN1 strings. This is needed in practice to handle some structures. [Steve Henson] *) Improve efficiency of mem_gets: don't search whole buffer each time for a '\n' [Jeremy Shapiro ] *) New -hex option for openssl rand. [Matthieu Herrb] *) Print out UTF8String and NumericString when parsing ASN1. [Steve Henson] *) Support NumericString type for name components. [Steve Henson] *) Allow CC in the environment to override the automatically chosen compiler. Note that nothing is done to ensure flags work with the chosen compiler. [Ben Laurie] Changes between 0.9.8i and 0.9.8j [07 Jan 2009] *) Properly check EVP_VerifyFinal() and similar return values (CVE-2008-5077). [Ben Laurie, Bodo Moeller, Google Security Team] *) Enable TLS extensions by default. [Ben Laurie] *) Allow the CHIL engine to be loaded, whether the application is multithreaded or not. (This does not release the developer from the obligation to set up the dynamic locking callbacks.) [Sander Temme ] *) Use correct exit code if there is an error in dgst command. [Steve Henson; problem pointed out by Roland Dirlewanger] *) Tweak Configure so that you need to say "experimental-jpake" to enable JPAKE, and need to use -DOPENSSL_EXPERIMENTAL_JPAKE in applications. [Bodo Moeller] *) Add experimental JPAKE support, including demo authentication in s_client and s_server. [Ben Laurie] *) Set the comparison function in v3_addr_canonize(). [Rob Austein ] *) Add support for XMPP STARTTLS in s_client. [Philip Paeps ] *) Change the server-side SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG behavior to ensure that even with this option, only ciphersuites in the server's preference list will be accepted. (Note that the option applies only when resuming a session, so the earlier behavior was just about the algorithm choice for symmetric cryptography.) [Bodo Moeller] Changes between 0.9.8h and 0.9.8i [15 Sep 2008] *) Fix NULL pointer dereference if a DTLS server received ChangeCipherSpec as first record (CVE-2009-1386). [PR #1679] *) Fix a state transition in s3_srvr.c and d1_srvr.c (was using SSL3_ST_CW_CLNT_HELLO_B, should be ..._ST_SW_SRVR_...). [Nagendra Modadugu] *) The fix in 0.9.8c that supposedly got rid of unsafe double-checked locking was incomplete for RSA blinding, addressing just one layer of what turns out to have been doubly unsafe triple-checked locking. So now fix this for real by retiring the MONT_HELPER macro in crypto/rsa/rsa_eay.c. [Bodo Moeller; problem pointed out by Marius Schilder] *) Various precautionary measures: - Avoid size_t integer overflow in HASH_UPDATE (md32_common.h). - Avoid a buffer overflow in d2i_SSL_SESSION() (ssl_asn1.c). (NB: This would require knowledge of the secret session ticket key to exploit, in which case you'd be SOL either way.) - Change bn_nist.c so that it will properly handle input BIGNUMs outside the expected range. - Enforce the 'num' check in BN_div() (bn_div.c) for non-BN_DEBUG builds. [Neel Mehta, Bodo Moeller] *) Allow engines to be "soft loaded" - i.e. optionally don't die if the load fails. Useful for distros. [Ben Laurie and the FreeBSD team] *) Add support for Local Machine Keyset attribute in PKCS#12 files. [Steve Henson] *) Fix BN_GF2m_mod_arr() top-bit cleanup code. [Huang Ying] *) Expand ENGINE to support engine supplied SSL client certificate functions. This work was sponsored by Logica. [Steve Henson] *) Add CryptoAPI ENGINE to support use of RSA and DSA keys held in Windows keystores. Support for SSL/TLS client authentication too. Not compiled unless enable-capieng specified to Configure. This work was sponsored by Logica. [Steve Henson] *) Fix bug in X509_ATTRIBUTE creation: don't set attribute using ASN1_TYPE_set1 if MBSTRING flag set. This bug would crash certain attribute creation routines such as certificate requests and PKCS#12 files. [Steve Henson] Changes between 0.9.8g and 0.9.8h [28 May 2008] *) Fix flaw if 'Server Key exchange message' is omitted from a TLS handshake which could lead to a client crash as found using the Codenomicon TLS test suite (CVE-2008-1672) [Steve Henson, Mark Cox] *) Fix double free in TLS server name extensions which could lead to a remote crash found by Codenomicon TLS test suite (CVE-2008-0891) [Joe Orton] *) Clear error queue in SSL_CTX_use_certificate_chain_file() Clear the error queue to ensure that error entries left from older function calls do not interfere with the correct operation. [Lutz Jaenicke, Erik de Castro Lopo] *) Remove root CA certificates of commercial CAs: The OpenSSL project does not recommend any specific CA and does not have any policy with respect to including or excluding any CA. Therefore it does not make any sense to ship an arbitrary selection of root CA certificates with the OpenSSL software. [Lutz Jaenicke] *) RSA OAEP patches to fix two separate invalid memory reads. The first one involves inputs when 'lzero' is greater than 'SHA_DIGEST_LENGTH' (it would read about SHA_DIGEST_LENGTH bytes before the beginning of from). The second one involves inputs where the 'db' section contains nothing but zeroes (there is a one-byte invalid read after the end of 'db'). [Ivan Nestlerode ] *) Partial backport from 0.9.9-dev: Introduce bn_mul_mont (dedicated Montgomery multiplication procedure) as a candidate for BIGNUM assembler implementation. While 0.9.9-dev uses assembler for various architectures, only x86_64 is available by default here in the 0.9.8 branch, and 32-bit x86 is available through a compile-time setting. To try the 32-bit x86 assembler implementation, use Configure option "enable-montasm" (which exists only for this backport). As "enable-montasm" for 32-bit x86 disclaims code stability anyway, in this constellation we activate additional code backported from 0.9.9-dev for further performance improvements, namely BN_from_montgomery_word. (To enable this otherwise, e.g. x86_64, try "-DMONT_FROM_WORD___NON_DEFAULT_0_9_8_BUILD".) [Andy Polyakov (backport partially by Bodo Moeller)] *) Add TLS session ticket callback. This allows an application to set TLS ticket cipher and HMAC keys rather than relying on hardcoded fixed values. This is useful for key rollover for example where several key sets may exist with different names. [Steve Henson] *) Reverse ENGINE-internal logic for caching default ENGINE handles. This was broken until now in 0.9.8 releases, such that the only way a registered ENGINE could be used (assuming it initialises successfully on the host) was to explicitly set it as the default for the relevant algorithms. This is in contradiction with 0.9.7 behaviour and the documentation. With this fix, when an ENGINE is registered into a given algorithm's table of implementations, the 'uptodate' flag is reset so that auto-discovery will be used next time a new context for that algorithm attempts to select an implementation. [Ian Lister (tweaked by Geoff Thorpe)] *) Backport of CMS code to OpenSSL 0.9.8. This differs from the 0.9.9 implementation in the following ways: Lack of EVP_PKEY_ASN1_METHOD means algorithm parameters have to be hard coded. Lack of BER streaming support means one pass streaming processing is only supported if data is detached: setting the streaming flag is ignored for embedded content. CMS support is disabled by default and must be explicitly enabled with the enable-cms configuration option. [Steve Henson] *) Update the GMP engine glue to do direct copies between BIGNUM and mpz_t when openssl and GMP use the same limb size. Otherwise the existing "conversion via a text string export" trick is still used. [Paul Sheer ] *) Zlib compression BIO. This is a filter BIO which compressed and uncompresses any data passed through it. [Steve Henson] *) Add AES_wrap_key() and AES_unwrap_key() functions to implement RFC3394 compatible AES key wrapping. [Steve Henson] *) Add utility functions to handle ASN1 structures. ASN1_STRING_set0(): sets string data without copying. X509_ALGOR_set0() and X509_ALGOR_get0(): set and retrieve X509_ALGOR (AlgorithmIdentifier) data. Attribute function X509at_get0_data_by_OBJ(): retrieves data from an X509_ATTRIBUTE structure optionally checking it occurs only once. ASN1_TYPE_set1(): set and ASN1_TYPE structure copying supplied data. [Steve Henson] *) Fix BN flag handling in RSA_eay_mod_exp() and BN_MONT_CTX_set() to get the expected BN_FLG_CONSTTIME behavior. [Bodo Moeller (Google)] *) Netware support: - fixed wrong usage of ioctlsocket() when build for LIBC BSD sockets - fixed do_tests.pl to run the test suite with CLIB builds too (CLIB_OPT) - added some more tests to do_tests.pl - fixed RunningProcess usage so that it works with newer LIBC NDKs too - removed usage of BN_LLONG for CLIB builds to avoid runtime dependency - added new Configure targets netware-clib-bsdsock, netware-clib-gcc, netware-clib-bsdsock-gcc, netware-libc-bsdsock-gcc - various changes to netware.pl to enable gcc-cross builds on Win32 platform - changed crypto/bio/b_sock.c to work with macro functions (CLIB BSD) - various changes to fix missing prototype warnings - fixed x86nasm.pl to create correct asm files for NASM COFF output - added AES, WHIRLPOOL and CPUID assembler code to build files - added missing AES assembler make rules to mk1mf.pl - fixed order of includes in apps/ocsp.c so that e_os.h settings apply [Guenter Knauf ] *) Implement certificate status request TLS extension defined in RFC3546. A client can set the appropriate parameters and receive the encoded OCSP response via a callback. A server can query the supplied parameters and set the encoded OCSP response in the callback. Add simplified examples to s_client and s_server. [Steve Henson] Changes between 0.9.8f and 0.9.8g [19 Oct 2007] *) Fix various bugs: + Binary incompatibility of ssl_ctx_st structure + DTLS interoperation with non-compliant servers + Don't call get_session_cb() without proposed session + Fix ia64 assembler code [Andy Polyakov, Steve Henson] Changes between 0.9.8e and 0.9.8f [11 Oct 2007] *) DTLS Handshake overhaul. There were longstanding issues with OpenSSL DTLS implementation, which were making it impossible for RFC 4347 compliant client to communicate with OpenSSL server. Unfortunately just fixing these incompatibilities would "cut off" pre-0.9.8f clients. To allow for hassle free upgrade post-0.9.8e server keeps tolerating non RFC compliant syntax. The opposite is not true, 0.9.8f client can not communicate with earlier server. This update even addresses CVE-2007-4995. [Andy Polyakov] *) Changes to avoid need for function casts in OpenSSL: some compilers (gcc 4.2 and later) reject their use. [Kurt Roeckx , Peter Hartley , Steve Henson] *) Add RFC4507 support to OpenSSL. This includes the corrections in RFC4507bis. The encrypted ticket format is an encrypted encoded SSL_SESSION structure, that way new session features are automatically supported. If a client application caches session in an SSL_SESSION structure support is transparent because tickets are now stored in the encoded SSL_SESSION. The SSL_CTX structure automatically generates keys for ticket protection in servers so again support should be possible with no application modification. If a client or server wishes to disable RFC4507 support then the option SSL_OP_NO_TICKET can be set. Add a TLS extension debugging callback to allow the contents of any client or server extensions to be examined. This work was sponsored by Google. [Steve Henson] *) Add initial support for TLS extensions, specifically for the server_name extension so far. The SSL_SESSION, SSL_CTX, and SSL data structures now have new members for a host name. The SSL data structure has an additional member SSL_CTX *initial_ctx so that new sessions can be stored in that context to allow for session resumption, even after the SSL has been switched to a new SSL_CTX in reaction to a client's server_name extension. New functions (subject to change): SSL_get_servername() SSL_get_servername_type() SSL_set_SSL_CTX() New CTRL codes and macros (subject to change): SSL_CTRL_SET_TLSEXT_SERVERNAME_CB - SSL_CTX_set_tlsext_servername_callback() SSL_CTRL_SET_TLSEXT_SERVERNAME_ARG - SSL_CTX_set_tlsext_servername_arg() SSL_CTRL_SET_TLSEXT_HOSTNAME - SSL_set_tlsext_host_name() openssl s_client has a new '-servername ...' option. openssl s_server has new options '-servername_host ...', '-cert2 ...', '-key2 ...', '-servername_fatal' (subject to change). This allows testing the HostName extension for a specific single host name ('-cert' and '-key' remain fallbacks for handshakes without HostName negotiation). If the unrecognized_name alert has to be sent, this by default is a warning; it becomes fatal with the '-servername_fatal' option. [Peter Sylvester, Remy Allais, Christophe Renou, Steve Henson] *) Add AES and SSE2 assembly language support to VC++ build. [Steve Henson] *) Mitigate attack on final subtraction in Montgomery reduction. [Andy Polyakov] *) Fix crypto/ec/ec_mult.c to work properly with scalars of value 0 (which previously caused an internal error). [Bodo Moeller] *) Squeeze another 10% out of IGE mode when in != out. [Ben Laurie] *) AES IGE mode speedup. [Dean Gaudet (Google)] *) Add the Korean symmetric 128-bit cipher SEED (see http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp) and add SEED ciphersuites from RFC 4162: TLS_RSA_WITH_SEED_CBC_SHA = "SEED-SHA" TLS_DHE_DSS_WITH_SEED_CBC_SHA = "DHE-DSS-SEED-SHA" TLS_DHE_RSA_WITH_SEED_CBC_SHA = "DHE-RSA-SEED-SHA" TLS_DH_anon_WITH_SEED_CBC_SHA = "ADH-SEED-SHA" To minimize changes between patchlevels in the OpenSSL 0.9.8 series, SEED remains excluded from compilation unless OpenSSL is configured with 'enable-seed'. [KISA, Bodo Moeller] *) Mitigate branch prediction attacks, which can be practical if a single processor is shared, allowing a spy process to extract information. For detailed background information, see http://eprint.iacr.org/2007/039 (O. Aciicmez, S. Gueron, J.-P. Seifert, "New Branch Prediction Vulnerabilities in OpenSSL and Necessary Software Countermeasures"). The core of the change are new versions BN_div_no_branch() and BN_mod_inverse_no_branch() of BN_div() and BN_mod_inverse(), respectively, which are slower, but avoid the security-relevant conditional branches. These are automatically called by BN_div() and BN_mod_inverse() if the flag BN_FLG_CONSTTIME is set for one of the input BIGNUMs. Also, BN_is_bit_set() has been changed to remove a conditional branch. BN_FLG_CONSTTIME is the new name for the previous BN_FLG_EXP_CONSTTIME flag, since it now affects more than just modular exponentiation. (Since OpenSSL 0.9.7h, setting this flag in the exponent causes BN_mod_exp_mont() to use the alternative implementation in BN_mod_exp_mont_consttime().) The old name remains as a deprecated alias. Similarly, RSA_FLAG_NO_EXP_CONSTTIME is replaced by a more general RSA_FLAG_NO_CONSTTIME flag since the RSA implementation now uses constant-time implementations for more than just exponentiation. Here too the old name is kept as a deprecated alias. BN_BLINDING_new() will now use BN_dup() for the modulus so that the BN_BLINDING structure gets an independent copy of the modulus. This means that the previous "BIGNUM *m" argument to BN_BLINDING_new() and to BN_BLINDING_create_param() now essentially becomes "const BIGNUM *m", although we can't actually change this in the header file before 0.9.9. It allows RSA_setup_blinding() to use BN_with_flags() on the modulus to enable BN_FLG_CONSTTIME. [Matthew D Wood (Intel Corp)] *) In the SSL/TLS server implementation, be strict about session ID context matching (which matters if an application uses a single external cache for different purposes). Previously, out-of-context reuse was forbidden only if SSL_VERIFY_PEER was set. This did ensure strict client verification, but meant that, with applications using a single external cache for quite different requirements, clients could circumvent ciphersuite restrictions for a given session ID context by starting a session in a different context. [Bodo Moeller] *) Include "!eNULL" in SSL_DEFAULT_CIPHER_LIST to make sure that a ciphersuite string such as "DEFAULT:RSA" cannot enable authentication-only ciphersuites. [Bodo Moeller] *) Update the SSL_get_shared_ciphers() fix CVE-2006-3738 which was not complete and could lead to a possible single byte overflow (CVE-2007-5135) [Ben Laurie] Changes between 0.9.8d and 0.9.8e [23 Feb 2007] *) Since AES128 and AES256 (and similarly Camellia128 and Camellia256) share a single mask bit in the logic of ssl/ssl_ciph.c, the code for masking out disabled ciphers needs a kludge to work properly if AES128 is available and AES256 isn't (or if Camellia128 is available and Camellia256 isn't). [Victor Duchovni] *) Fix the BIT STRING encoding generated by crypto/ec/ec_asn1.c (within i2d_ECPrivateKey, i2d_ECPKParameters, i2d_ECParameters): When a point or a seed is encoded in a BIT STRING, we need to prevent the removal of trailing zero bits to get the proper DER encoding. (By default, crypto/asn1/a_bitstr.c assumes the case of a NamedBitList, for which trailing 0 bits need to be removed.) [Bodo Moeller] *) Have SSL/TLS server implementation tolerate "mismatched" record protocol version while receiving ClientHello even if the ClientHello is fragmented. (The server can't insist on the particular protocol version it has chosen before the ServerHello message has informed the client about his choice.) [Bodo Moeller] *) Add RFC 3779 support. [Rob Austein for ARIN, Ben Laurie] *) Load error codes if they are not already present instead of using a static variable. This allows them to be cleanly unloaded and reloaded. Improve header file function name parsing. [Steve Henson] *) extend SMTP and IMAP protocol emulation in s_client to use EHLO or CAPABILITY handshake as required by RFCs. [Goetz Babin-Ebell] Changes between 0.9.8c and 0.9.8d [28 Sep 2006] *) Introduce limits to prevent malicious keys being able to cause a denial of service. (CVE-2006-2940) [Steve Henson, Bodo Moeller] *) Fix ASN.1 parsing of certain invalid structures that can result in a denial of service. (CVE-2006-2937) [Steve Henson] *) Fix buffer overflow in SSL_get_shared_ciphers() function. (CVE-2006-3738) [Tavis Ormandy and Will Drewry, Google Security Team] *) Fix SSL client code which could crash if connecting to a malicious SSLv2 server. (CVE-2006-4343) [Tavis Ormandy and Will Drewry, Google Security Team] *) Since 0.9.8b, ciphersuite strings naming explicit ciphersuites match only those. Before that, "AES256-SHA" would be interpreted as a pattern and match "AES128-SHA" too (since AES128-SHA got the same strength classification in 0.9.7h) as we currently only have a single AES bit in the ciphersuite description bitmap. That change, however, also applied to ciphersuite strings such as "RC4-MD5" that intentionally matched multiple ciphersuites -- namely, SSL 2.0 ciphersuites in addition to the more common ones from SSL 3.0/TLS 1.0. So we change the selection algorithm again: Naming an explicit ciphersuite selects this one ciphersuite, and any other similar ciphersuite (same bitmap) from *other* protocol versions. Thus, "RC4-MD5" again will properly select both the SSL 2.0 ciphersuite and the SSL 3.0/TLS 1.0 ciphersuite. Since SSL 2.0 does not have any ciphersuites for which the 128/256 bit distinction would be relevant, this works for now. The proper fix will be to use different bits for AES128 and AES256, which would have avoided the problems from the beginning; however, bits are scarce, so we can only do this in a new release (not just a patchlevel) when we can change the SSL_CIPHER definition to split the single 'unsigned long mask' bitmap into multiple values to extend the available space. [Bodo Moeller] Changes between 0.9.8b and 0.9.8c [05 Sep 2006] *) Avoid PKCS #1 v1.5 signature attack discovered by Daniel Bleichenbacher (CVE-2006-4339) [Ben Laurie and Google Security Team] *) Add AES IGE and biIGE modes. [Ben Laurie] *) Change the Unix randomness entropy gathering to use poll() when possible instead of select(), since the latter has some undesirable limitations. [Darryl Miles via Richard Levitte and Bodo Moeller] *) Disable "ECCdraft" ciphersuites more thoroughly. Now special treatment in ssl/ssl_ciph.s makes sure that these ciphersuites cannot be implicitly activated as part of, e.g., the "AES" alias. However, please upgrade to OpenSSL 0.9.9[-dev] for non-experimental use of the ECC ciphersuites to get TLS extension support, which is required for curve and point format negotiation to avoid potential handshake problems. [Bodo Moeller] *) Disable rogue ciphersuites: - SSLv2 0x08 0x00 0x80 ("RC4-64-MD5") - SSLv3/TLSv1 0x00 0x61 ("EXP1024-RC2-CBC-MD5") - SSLv3/TLSv1 0x00 0x60 ("EXP1024-RC4-MD5") The latter two were purportedly from draft-ietf-tls-56-bit-ciphersuites-0[01].txt, but do not really appear there. Also deactivate the remaining ciphersuites from draft-ietf-tls-56-bit-ciphersuites-01.txt. These are just as unofficial, and the ID has long expired. [Bodo Moeller] *) Fix RSA blinding Heisenbug (problems sometimes occurred on dual-core machines) and other potential thread-safety issues. [Bodo Moeller] *) Add the symmetric cipher Camellia (128-bit, 192-bit, 256-bit key versions), which is now available for royalty-free use (see http://info.isl.ntt.co.jp/crypt/eng/info/chiteki.html). Also, add Camellia TLS ciphersuites from RFC 4132. To minimize changes between patchlevels in the OpenSSL 0.9.8 series, Camellia remains excluded from compilation unless OpenSSL is configured with 'enable-camellia'. [NTT] *) Disable the padding bug check when compression is in use. The padding bug check assumes the first packet is of even length, this is not necessarily true if compression is enabled and can result in false positives causing handshake failure. The actual bug test is ancient code so it is hoped that implementations will either have fixed it by now or any which still have the bug do not support compression. [Steve Henson] Changes between 0.9.8a and 0.9.8b [04 May 2006] *) When applying a cipher rule check to see if string match is an explicit cipher suite and only match that one cipher suite if it is. [Steve Henson] *) Link in manifests for VC++ if needed. [Austin Ziegler ] *) Update support for ECC-based TLS ciphersuites according to draft-ietf-tls-ecc-12.txt with proposed changes (but without TLS extensions, which are supported starting with the 0.9.9 branch, not in the OpenSSL 0.9.8 branch). [Douglas Stebila] *) New functions EVP_CIPHER_CTX_new() and EVP_CIPHER_CTX_free() to support opaque EVP_CIPHER_CTX handling. [Steve Henson] *) Fixes and enhancements to zlib compression code. We now only use "zlib1.dll" and use the default __cdecl calling convention on Win32 to conform with the standards mentioned here: http://www.zlib.net/DLL_FAQ.txt Static zlib linking now works on Windows and the new --with-zlib-include --with-zlib-lib options to Configure can be used to supply the location of the headers and library. Gracefully handle case where zlib library can't be loaded. [Steve Henson] *) Several fixes and enhancements to the OID generation code. The old code sometimes allowed invalid OIDs (1.X for X >= 40 for example), couldn't handle numbers larger than ULONG_MAX, truncated printing and had a non standard OBJ_obj2txt() behaviour. [Steve Henson] *) Add support for building of engines under engine/ as shared libraries under VC++ build system. [Steve Henson] *) Corrected the numerous bugs in the Win32 path splitter in DSO. Hopefully, we will not see any false combination of paths any more. [Richard Levitte] Changes between 0.9.8 and 0.9.8a [11 Oct 2005] *) Remove the functionality of SSL_OP_MSIE_SSLV2_RSA_PADDING (part of SSL_OP_ALL). This option used to disable the countermeasure against man-in-the-middle protocol-version rollback in the SSL 2.0 server implementation, which is a bad idea. (CVE-2005-2969) [Bodo Moeller; problem pointed out by Yutaka Oiwa (Research Center for Information Security, National Institute of Advanced Industrial Science and Technology [AIST], Japan)] *) Add two function to clear and return the verify parameter flags. [Steve Henson] *) Keep cipherlists sorted in the source instead of sorting them at runtime, thus removing the need for a lock. [Nils Larsch] *) Avoid some small subgroup attacks in Diffie-Hellman. [Nick Mathewson and Ben Laurie] *) Add functions for well-known primes. [Nick Mathewson] *) Extended Windows CE support. [Satoshi Nakamura and Andy Polyakov] *) Initialize SSL_METHOD structures at compile time instead of during runtime, thus removing the need for a lock. [Steve Henson] *) Make PKCS7_decrypt() work even if no certificate is supplied by attempting to decrypt each encrypted key in turn. Add support to smime utility. [Steve Henson] Changes between 0.9.7h and 0.9.8 [05 Jul 2005] [NB: OpenSSL 0.9.7i and later 0.9.7 patch levels were released after OpenSSL 0.9.8.] *) Add libcrypto.pc and libssl.pc for those who feel they need them. [Richard Levitte] *) Change CA.sh and CA.pl so they don't bundle the CSR and the private key into the same file any more. [Richard Levitte] *) Add initial support for Win64, both IA64 and AMD64/x64 flavors. [Andy Polyakov] *) Add -utf8 command line and config file option to 'ca'. [Stefan and Geoff Thorpe] *) Add attribute functions to EVP_PKEY structure. Modify PKCS12_create() to recognize a CSP name attribute and use it. Make -CSP option work again in pkcs12 utility. [Steve Henson] *) Add new functionality to the bn blinding code: - automatic re-creation of the BN_BLINDING parameters after a fixed number of uses (currently 32) - add new function for parameter creation - introduce flags to control the update behaviour of the BN_BLINDING parameters - hide BN_BLINDING structure Add a second BN_BLINDING slot to the RSA structure to improve performance when a single RSA object is shared among several threads. [Nils Larsch] *) Add support for DTLS. [Nagendra Modadugu and Ben Laurie] *) Add support for DER encoded private keys (SSL_FILETYPE_ASN1) to SSL_CTX_use_PrivateKey_file() and SSL_use_PrivateKey_file() [Walter Goulet] *) Remove buggy and incomplete DH cert support from ssl/ssl_rsa.c and ssl/s3_both.c [Nils Larsch] *) Use SHA-1 instead of MD5 as the default digest algorithm for the apps/openssl applications. [Nils Larsch] *) Compile clean with "-Wall -Wmissing-prototypes -Wstrict-prototypes -Wmissing-declarations -Werror". Currently DEBUG_SAFESTACK must also be set. [Ben Laurie] *) Change ./Configure so that certain algorithms can be disabled by default. The new counterpiece to "no-xxx" is "enable-xxx". The patented RC5 and MDC2 algorithms will now be disabled unless "enable-rc5" and "enable-mdc2", respectively, are specified. (IDEA remains enabled despite being patented. This is because IDEA is frequently required for interoperability, and there is no license fee for non-commercial use. As before, "no-idea" can be used to avoid this algorithm.) [Bodo Moeller] *) Add processing of proxy certificates (see RFC 3820). This work was sponsored by KTH (The Royal Institute of Technology in Stockholm) and EGEE (Enabling Grids for E-science in Europe). [Richard Levitte] *) RC4 performance overhaul on modern architectures/implementations, such as Intel P4, IA-64 and AMD64. [Andy Polyakov] *) New utility extract-section.pl. This can be used specify an alternative section number in a pod file instead of having to treat each file as a separate case in Makefile. This can be done by adding two lines to the pod file: =for comment openssl_section:XXX The blank line is mandatory. [Steve Henson] *) New arguments -certform, -keyform and -pass for s_client and s_server to allow alternative format key and certificate files and passphrase sources. [Steve Henson] *) New structure X509_VERIFY_PARAM which combines current verify parameters, update associated structures and add various utility functions. Add new policy related verify parameters, include policy checking in standard verify code. Enhance 'smime' application with extra parameters to support policy checking and print out. [Steve Henson] *) Add a new engine to support VIA PadLock ACE extensions in the VIA C3 Nehemiah processors. These extensions support AES encryption in hardware as well as RNG (though RNG support is currently disabled). [Michal Ludvig , with help from Andy Polyakov] *) Deprecate BN_[get|set]_params() functions (they were ignored internally). [Geoff Thorpe] *) New FIPS 180-2 algorithms, SHA-224/-256/-384/-512 are implemented. [Andy Polyakov and a number of other people] *) Improved PowerPC platform support. Most notably BIGNUM assembler implementation contributed by IBM. [Suresh Chari, Peter Waltenberg, Andy Polyakov] *) The new 'RSA_generate_key_ex' function now takes a BIGNUM for the public exponent rather than 'unsigned long'. There is a corresponding change to the new 'rsa_keygen' element of the RSA_METHOD structure. [Jelte Jansen, Geoff Thorpe] *) Functionality for creating the initial serial number file is now moved from CA.pl to the 'ca' utility with a new option -create_serial. (Before OpenSSL 0.9.7e, CA.pl used to initialize the serial number file to 1, which is bound to cause problems. To avoid the problems while respecting compatibility between different 0.9.7 patchlevels, 0.9.7e employed 'openssl x509 -next_serial' in CA.pl for serial number initialization. With the new release 0.9.8, we can fix the problem directly in the 'ca' utility.) [Steve Henson] *) Reduced header interdependencies by declaring more opaque objects in ossl_typ.h. As a consequence, including some headers (eg. engine.h) will give fewer recursive includes, which could break lazy source code - so this change is covered by the OPENSSL_NO_DEPRECATED symbol. As always, developers should define this symbol when building and using openssl to ensure they track the recommended behaviour, interfaces, [etc], but backwards-compatible behaviour prevails when this isn't defined. [Geoff Thorpe] *) New function X509_POLICY_NODE_print() which prints out policy nodes. [Steve Henson] *) Add new EVP function EVP_CIPHER_CTX_rand_key and associated functionality. This will generate a random key of the appropriate length based on the cipher context. The EVP_CIPHER can provide its own random key generation routine to support keys of a specific form. This is used in the des and 3des routines to generate a key of the correct parity. Update S/MIME code to use new functions and hence generate correct parity DES keys. Add EVP_CHECK_DES_KEY #define to return an error if the key is not valid (weak or incorrect parity). [Steve Henson] *) Add a local set of CRLs that can be used by X509_verify_cert() as well as looking them up. This is useful when the verified structure may contain CRLs, for example PKCS#7 signedData. Modify PKCS7_verify() to use any CRLs present unless the new PKCS7_NO_CRL flag is asserted. [Steve Henson] *) Extend ASN1 oid configuration module. It now additionally accepts the syntax: shortName = some long name, 1.2.3.4 [Steve Henson] *) Reimplemented the BN_CTX implementation. There is now no more static limitation on the number of variables it can handle nor the depth of the "stack" handling for BN_CTX_start()/BN_CTX_end() pairs. The stack information can now expand as required, and rather than having a single static array of bignums, BN_CTX now uses a linked-list of such arrays allowing it to expand on demand whilst maintaining the usefulness of BN_CTX's "bundling". [Geoff Thorpe] *) Add a missing BN_CTX parameter to the 'rsa_mod_exp' callback in RSA_METHOD to allow all RSA operations to function using a single BN_CTX. [Geoff Thorpe] *) Preliminary support for certificate policy evaluation and checking. This is initially intended to pass the tests outlined in "Conformance Testing of Relying Party Client Certificate Path Processing Logic" v1.07. [Steve Henson] *) bn_dup_expand() has been deprecated, it was introduced in 0.9.7 and remained unused and not that useful. A variety of other little bignum tweaks and fixes have also been made continuing on from the audit (see below). [Geoff Thorpe] *) Constify all or almost all d2i, c2i, s2i and r2i functions, along with associated ASN1, EVP and SSL functions and old ASN1 macros. [Richard Levitte] *) BN_zero() only needs to set 'top' and 'neg' to zero for correct results, and this should never fail. So the return value from the use of BN_set_word() (which can fail due to needless expansion) is now deprecated; if OPENSSL_NO_DEPRECATED is defined, BN_zero() is a void macro. [Geoff Thorpe] *) BN_CTX_get() should return zero-valued bignums, providing the same initialised value as BN_new(). [Geoff Thorpe, suggested by Ulf Möller] *) Support for inhibitAnyPolicy certificate extension. [Steve Henson] *) An audit of the BIGNUM code is underway, for which debugging code is enabled when BN_DEBUG is defined. This makes stricter enforcements on what is considered valid when processing BIGNUMs, and causes execution to assert() when a problem is discovered. If BN_DEBUG_RAND is defined, further steps are taken to deliberately pollute unused data in BIGNUM structures to try and expose faulty code further on. For now, openssl will (in its default mode of operation) continue to tolerate the inconsistent forms that it has tolerated in the past, but authors and packagers should consider trying openssl and their own applications when compiled with these debugging symbols defined. It will help highlight potential bugs in their own code, and will improve the test coverage for OpenSSL itself. At some point, these tighter rules will become openssl's default to improve maintainability, though the assert()s and other overheads will remain only in debugging configurations. See bn.h for more details. [Geoff Thorpe, Nils Larsch, Ulf Möller] *) BN_CTX_init() has been deprecated, as BN_CTX is an opaque structure that can only be obtained through BN_CTX_new() (which implicitly initialises it). The presence of this function only made it possible to overwrite an existing structure (and cause memory leaks). [Geoff Thorpe] *) Because of the callback-based approach for implementing LHASH as a template type, lh_insert() adds opaque objects to hash-tables and lh_doall() or lh_doall_arg() are typically used with a destructor callback to clean up those corresponding objects before destroying the hash table (and losing the object pointers). So some over-zealous constifications in LHASH have been relaxed so that lh_insert() does not take (nor store) the objects as "const" and the lh_doall[_arg] callback wrappers are not prototyped to have "const" restrictions on the object pointers they are given (and so aren't required to cast them away any more). [Geoff Thorpe] *) The tmdiff.h API was so ugly and minimal that our own timing utility (speed) prefers to use its own implementation. The two implementations haven't been consolidated as yet (volunteers?) but the tmdiff API has had its object type properly exposed (MS_TM) instead of casting to/from "char *". This may still change yet if someone realises MS_TM and "ms_time_***" aren't necessarily the greatest nomenclatures - but this is what was used internally to the implementation so I've used that for now. [Geoff Thorpe] *) Ensure that deprecated functions do not get compiled when OPENSSL_NO_DEPRECATED is defined. Some "openssl" subcommands and a few of the self-tests were still using deprecated key-generation functions so these have been updated also. [Geoff Thorpe] *) Reorganise PKCS#7 code to separate the digest location functionality into PKCS7_find_digest(), digest addition into PKCS7_bio_add_digest(). New function PKCS7_set_digest() to set the digest type for PKCS#7 digestedData type. Add additional code to correctly generate the digestedData type and add support for this type in PKCS7 initialization functions. [Steve Henson] *) New function PKCS7_set0_type_other() this initializes a PKCS7 structure of type "other". [Steve Henson] *) Fix prime generation loop in crypto/bn/bn_prime.pl by making sure the loop does correctly stop and breaking ("division by zero") modulus operations are not performed. The (pre-generated) prime table crypto/bn/bn_prime.h was already correct, but it could not be re-generated on some platforms because of the "division by zero" situation in the script. [Ralf S. Engelschall] *) Update support for ECC-based TLS ciphersuites according to draft-ietf-tls-ecc-03.txt: the KDF1 key derivation function with SHA-1 now is only used for "small" curves (where the representation of a field element takes up to 24 bytes); for larger curves, the field element resulting from ECDH is directly used as premaster secret. [Douglas Stebila (Sun Microsystems Laboratories)] *) Add code for kP+lQ timings to crypto/ec/ectest.c, and add SEC2 curve secp160r1 to the tests. [Douglas Stebila (Sun Microsystems Laboratories)] *) Add the possibility to load symbols globally with DSO. [Götz Babin-Ebell via Richard Levitte] *) Add the functions ERR_set_mark() and ERR_pop_to_mark() for better control of the error stack. [Richard Levitte] *) Add support for STORE in ENGINE. [Richard Levitte] *) Add the STORE type. The intention is to provide a common interface to certificate and key stores, be they simple file-based stores, or HSM-type store, or LDAP stores, or... NOTE: The code is currently UNTESTED and isn't really used anywhere. [Richard Levitte] *) Add a generic structure called OPENSSL_ITEM. This can be used to pass a list of arguments to any function as well as provide a way for a function to pass data back to the caller. [Richard Levitte] *) Add the functions BUF_strndup() and BUF_memdup(). BUF_strndup() works like BUF_strdup() but can be used to duplicate a portion of a string. The copy gets NUL-terminated. BUF_memdup() duplicates a memory area. [Richard Levitte] *) Add the function sk_find_ex() which works like sk_find(), but will return an index to an element even if an exact match couldn't be found. The index is guaranteed to point at the element where the searched-for key would be inserted to preserve sorting order. [Richard Levitte] *) Add the function OBJ_bsearch_ex() which works like OBJ_bsearch() but takes an extra flags argument for optional functionality. Currently, the following flags are defined: OBJ_BSEARCH_VALUE_ON_NOMATCH This one gets OBJ_bsearch_ex() to return a pointer to the first element where the comparing function returns a negative or zero number. OBJ_BSEARCH_FIRST_VALUE_ON_MATCH This one gets OBJ_bsearch_ex() to return a pointer to the first element where the comparing function returns zero. This is useful if there are more than one element where the comparing function returns zero. [Richard Levitte] *) Make it possible to create self-signed certificates with 'openssl ca' in such a way that the self-signed certificate becomes part of the CA database and uses the same mechanisms for serial number generation as all other certificate signing. The new flag '-selfsign' enables this functionality. Adapt CA.sh and CA.pl.in. [Richard Levitte] *) Add functionality to check the public key of a certificate request against a given private. This is useful to check that a certificate request can be signed by that key (self-signing). [Richard Levitte] *) Make it possible to have multiple active certificates with the same subject in the CA index file. This is done only if the keyword 'unique_subject' is set to 'no' in the main CA section (default if 'CA_default') of the configuration file. The value is saved with the database itself in a separate index attribute file, named like the index file with '.attr' appended to the name. [Richard Levitte] *) Generate multi-valued AVAs using '+' notation in config files for req and dirName. [Steve Henson] *) Support for nameConstraints certificate extension. [Steve Henson] *) Support for policyConstraints certificate extension. [Steve Henson] *) Support for policyMappings certificate extension. [Steve Henson] *) Make sure the default DSA_METHOD implementation only uses its dsa_mod_exp() and/or bn_mod_exp() handlers if they are non-NULL, and change its own handlers to be NULL so as to remove unnecessary indirection. This lets alternative implementations fallback to the default implementation more easily. [Geoff Thorpe] *) Support for directoryName in GeneralName related extensions in config files. [Steve Henson] *) Make it possible to link applications using Makefile.shared. Make that possible even when linking against static libraries! [Richard Levitte] *) Support for single pass processing for S/MIME signing. This now means that S/MIME signing can be done from a pipe, in addition cleartext signing (multipart/signed type) is effectively streaming and the signed data does not need to be all held in memory. This is done with a new flag PKCS7_STREAM. When this flag is set PKCS7_sign() only initializes the PKCS7 structure and the actual signing is done after the data is output (and digests calculated) in SMIME_write_PKCS7(). [Steve Henson] *) Add full support for -rpath/-R, both in shared libraries and applications, at least on the platforms where it's known how to do it. [Richard Levitte] *) In crypto/ec/ec_mult.c, implement fast point multiplication with precomputation, based on wNAF splitting: EC_GROUP_precompute_mult() will now compute a table of multiples of the generator that makes subsequent invocations of EC_POINTs_mul() or EC_POINT_mul() faster (notably in the case of a single point multiplication, scalar * generator). [Nils Larsch, Bodo Moeller] *) IPv6 support for certificate extensions. The various extensions which use the IP:a.b.c.d can now take IPv6 addresses using the formats of RFC1884 2.2 . IPv6 addresses are now also displayed correctly. [Steve Henson] *) Added an ENGINE that implements RSA by performing private key exponentiations with the GMP library. The conversions to and from GMP's mpz_t format aren't optimised nor are any montgomery forms cached, and on x86 it appears OpenSSL's own performance has caught up. However there are likely to be other architectures where GMP could provide a boost. This ENGINE is not built in by default, but it can be specified at Configure time and should be accompanied by the necessary linker additions, eg; ./config -DOPENSSL_USE_GMP -lgmp [Geoff Thorpe] *) "openssl engine" will not display ENGINE/DSO load failure errors when testing availability of engines with "-t" - the old behaviour is produced by increasing the feature's verbosity with "-tt". [Geoff Thorpe] *) ECDSA routines: under certain error conditions uninitialized BN objects could be freed. Solution: make sure initialization is performed early enough. (Reported and fix supplied by Nils Larsch via PR#459) [Lutz Jaenicke] *) Key-generation can now be implemented in RSA_METHOD, DSA_METHOD and DH_METHOD (eg. by ENGINE implementations) to override the normal software implementations. For DSA and DH, parameter generation can also be overridden by providing the appropriate method callbacks. [Geoff Thorpe] *) Change the "progress" mechanism used in key-generation and primality testing to functions that take a new BN_GENCB pointer in place of callback/argument pairs. The new API functions have "_ex" postfixes and the older functions are reimplemented as wrappers for the new ones. The OPENSSL_NO_DEPRECATED symbol can be used to hide declarations of the old functions to help (graceful) attempts to migrate to the new functions. Also, the new key-generation API functions operate on a caller-supplied key-structure and return success/failure rather than returning a key or NULL - this is to help make "keygen" another member function of RSA_METHOD etc. Example for using the new callback interface: int (*my_callback)(int a, int b, BN_GENCB *cb) = ...; void *my_arg = ...; BN_GENCB my_cb; BN_GENCB_set(&my_cb, my_callback, my_arg); return BN_is_prime_ex(some_bignum, BN_prime_checks, NULL, &cb); /* For the meaning of a, b in calls to my_callback(), see the * documentation of the function that calls the callback. * cb will point to my_cb; my_arg can be retrieved as cb->arg. * my_callback should return 1 if it wants BN_is_prime_ex() * to continue, or 0 to stop. */ [Geoff Thorpe] *) Change the ZLIB compression method to be stateful, and make it available to TLS with the number defined in draft-ietf-tls-compression-04.txt. [Richard Levitte] *) Add the ASN.1 structures and functions for CertificatePair, which is defined as follows (according to X.509_4thEditionDraftV6.pdf): CertificatePair ::= SEQUENCE { forward [0] Certificate OPTIONAL, reverse [1] Certificate OPTIONAL, -- at least one of the pair shall be present -- } Also implement the PEM functions to read and write certificate pairs, and defined the PEM tag as "CERTIFICATE PAIR". This needed to be defined, mostly for the sake of the LDAP attribute crossCertificatePair, but may prove useful elsewhere as well. [Richard Levitte] *) Make it possible to inhibit symlinking of shared libraries in Makefile.shared, for Cygwin's sake. [Richard Levitte] *) Extend the BIGNUM API by creating a function void BN_set_negative(BIGNUM *a, int neg); and a macro that behave like int BN_is_negative(const BIGNUM *a); to avoid the need to access 'a->neg' directly in applications. [Nils Larsch] *) Implement fast modular reduction for pseudo-Mersenne primes used in NIST curves (crypto/bn/bn_nist.c, crypto/ec/ecp_nist.c). EC_GROUP_new_curve_GFp() will now automatically use this if applicable. [Nils Larsch ] *) Add new lock type (CRYPTO_LOCK_BN). [Bodo Moeller] *) Change the ENGINE framework to automatically load engines dynamically from specific directories unless they could be found to already be built in or loaded. Move all the current engines except for the cryptodev one to a new directory engines/. The engines in engines/ are built as shared libraries if the "shared" options was given to ./Configure or ./config. Otherwise, they are inserted in libcrypto.a. /usr/local/ssl/engines is the default directory for dynamic engines, but that can be overridden at configure time through the usual use of --prefix and/or --openssldir, and at run time with the environment variable OPENSSL_ENGINES. [Geoff Thorpe and Richard Levitte] *) Add Makefile.shared, a helper makefile to build shared libraries. Adapt Makefile.org. [Richard Levitte] *) Add version info to Win32 DLLs. [Peter 'Luna' Runestig" ] *) Add new 'medium level' PKCS#12 API. Certificates and keys can be added using this API to created arbitrary PKCS#12 files while avoiding the low level API. New options to PKCS12_create(), key or cert can be NULL and will then be omitted from the output file. The encryption algorithm NIDs can be set to -1 for no encryption, the mac iteration count can be set to 0 to omit the mac. Enhance pkcs12 utility by making the -nokeys and -nocerts options work when creating a PKCS#12 file. New option -nomac to omit the mac, NONE can be set for an encryption algorithm. New code is modified to use the enhanced PKCS12_create() instead of the low level API. [Steve Henson] *) Extend ASN1 encoder to support indefinite length constructed encoding. This can output sequences tags and octet strings in this form. Modify pk7_asn1.c to support indefinite length encoding. This is experimental and needs additional code to be useful, such as an ASN1 bio and some enhanced streaming PKCS#7 code. Extend template encode functionality so that tagging is passed down to the template encoder. [Steve Henson] *) Let 'openssl req' fail if an argument to '-newkey' is not recognized instead of using RSA as a default. [Bodo Moeller] *) Add support for ECC-based ciphersuites from draft-ietf-tls-ecc-01.txt. As these are not official, they are not included in "ALL"; the "ECCdraft" ciphersuite group alias can be used to select them. [Vipul Gupta and Sumit Gupta (Sun Microsystems Laboratories)] *) Add ECDH engine support. [Nils Gura and Douglas Stebila (Sun Microsystems Laboratories)] *) Add ECDH in new directory crypto/ecdh/. [Douglas Stebila (Sun Microsystems Laboratories)] *) Let BN_rand_range() abort with an error after 100 iterations without success (which indicates a broken PRNG). [Bodo Moeller] *) Change BN_mod_sqrt() so that it verifies that the input value is really the square of the return value. (Previously, BN_mod_sqrt would show GIGO behaviour.) [Bodo Moeller] *) Add named elliptic curves over binary fields from X9.62, SECG, and WAP/WTLS; add OIDs that were still missing. [Sheueling Chang Shantz and Douglas Stebila (Sun Microsystems Laboratories)] *) Extend the EC library for elliptic curves over binary fields (new files ec2_smpl.c, ec2_smpt.c, ec2_mult.c in crypto/ec/). New EC_METHOD: EC_GF2m_simple_method New API functions: EC_GROUP_new_curve_GF2m EC_GROUP_set_curve_GF2m EC_GROUP_get_curve_GF2m EC_POINT_set_affine_coordinates_GF2m EC_POINT_get_affine_coordinates_GF2m EC_POINT_set_compressed_coordinates_GF2m Point compression for binary fields is disabled by default for patent reasons (compile with OPENSSL_EC_BIN_PT_COMP defined to enable it). As binary polynomials are represented as BIGNUMs, various members of the EC_GROUP and EC_POINT data structures can be shared between the implementations for prime fields and binary fields; the above ..._GF2m functions (except for EX_GROUP_new_curve_GF2m) are essentially identical to their ..._GFp counterparts. (For simplicity, the '..._GFp' prefix has been dropped from various internal method names.) An internal 'field_div' method (similar to 'field_mul' and 'field_sqr') has been added; this is used only for binary fields. [Sheueling Chang Shantz and Douglas Stebila (Sun Microsystems Laboratories)] *) Optionally dispatch EC_POINT_mul(), EC_POINT_precompute_mult() through methods ('mul', 'precompute_mult'). The generic implementations (now internally called 'ec_wNAF_mul' and 'ec_wNAF_precomputed_mult') remain the default if these methods are undefined. [Sheueling Chang Shantz and Douglas Stebila (Sun Microsystems Laboratories)] *) New function EC_GROUP_get_degree, which is defined through EC_METHOD. For curves over prime fields, this returns the bit length of the modulus. [Sheueling Chang Shantz and Douglas Stebila (Sun Microsystems Laboratories)] *) New functions EC_GROUP_dup, EC_POINT_dup. (These simply call ..._new and ..._copy). [Sheueling Chang Shantz and Douglas Stebila (Sun Microsystems Laboratories)] *) Add binary polynomial arithmetic software in crypto/bn/bn_gf2m.c. Polynomials are represented as BIGNUMs (where the sign bit is not used) in the following functions [macros]: BN_GF2m_add BN_GF2m_sub [= BN_GF2m_add] BN_GF2m_mod [wrapper for BN_GF2m_mod_arr] BN_GF2m_mod_mul [wrapper for BN_GF2m_mod_mul_arr] BN_GF2m_mod_sqr [wrapper for BN_GF2m_mod_sqr_arr] BN_GF2m_mod_inv BN_GF2m_mod_exp [wrapper for BN_GF2m_mod_exp_arr] BN_GF2m_mod_sqrt [wrapper for BN_GF2m_mod_sqrt_arr] BN_GF2m_mod_solve_quad [wrapper for BN_GF2m_mod_solve_quad_arr] BN_GF2m_cmp [= BN_ucmp] (Note that only the 'mod' functions are actually for fields GF(2^m). BN_GF2m_add() is misnomer, but this is for the sake of consistency.) For some functions, an the irreducible polynomial defining a field can be given as an 'unsigned int[]' with strictly decreasing elements giving the indices of those bits that are set; i.e., p[] represents the polynomial f(t) = t^p[0] + t^p[1] + ... + t^p[k] where p[0] > p[1] > ... > p[k] = 0. This applies to the following functions: BN_GF2m_mod_arr BN_GF2m_mod_mul_arr BN_GF2m_mod_sqr_arr BN_GF2m_mod_inv_arr [wrapper for BN_GF2m_mod_inv] BN_GF2m_mod_div_arr [wrapper for BN_GF2m_mod_div] BN_GF2m_mod_exp_arr BN_GF2m_mod_sqrt_arr BN_GF2m_mod_solve_quad_arr BN_GF2m_poly2arr BN_GF2m_arr2poly Conversion can be performed by the following functions: BN_GF2m_poly2arr BN_GF2m_arr2poly bntest.c has additional tests for binary polynomial arithmetic. Two implementations for BN_GF2m_mod_div() are available. The default algorithm simply uses BN_GF2m_mod_inv() and BN_GF2m_mod_mul(). The alternative algorithm is compiled in only if OPENSSL_SUN_GF2M_DIV is defined (patent pending; read the copyright notice in crypto/bn/bn_gf2m.c before enabling it). [Sheueling Chang Shantz and Douglas Stebila (Sun Microsystems Laboratories)] *) Add new error code 'ERR_R_DISABLED' that can be used when some functionality is disabled at compile-time. [Douglas Stebila ] *) Change default behaviour of 'openssl asn1parse' so that more information is visible when viewing, e.g., a certificate: Modify asn1_parse2 (crypto/asn1/asn1_par.c) so that in non-'dump' mode the content of non-printable OCTET STRINGs is output in a style similar to INTEGERs, but with '[HEX DUMP]' prepended to avoid the appearance of a printable string. [Nils Larsch ] *) Add 'asn1_flag' and 'asn1_form' member to EC_GROUP with access functions EC_GROUP_set_asn1_flag() EC_GROUP_get_asn1_flag() EC_GROUP_set_point_conversion_form() EC_GROUP_get_point_conversion_form() These control ASN1 encoding details: - Curves (i.e., groups) are encoded explicitly unless asn1_flag has been set to OPENSSL_EC_NAMED_CURVE. - Points are encoded in uncompressed form by default; options for asn1_for are as for point2oct, namely POINT_CONVERSION_COMPRESSED POINT_CONVERSION_UNCOMPRESSED POINT_CONVERSION_HYBRID Also add 'seed' and 'seed_len' members to EC_GROUP with access functions EC_GROUP_set_seed() EC_GROUP_get0_seed() EC_GROUP_get_seed_len() This is used only for ASN1 purposes (so far). [Nils Larsch ] *) Add 'field_type' member to EC_METHOD, which holds the NID of the appropriate field type OID. The new function EC_METHOD_get_field_type() returns this value. [Nils Larsch ] *) Add functions EC_POINT_point2bn() EC_POINT_bn2point() EC_POINT_point2hex() EC_POINT_hex2point() providing useful interfaces to EC_POINT_point2oct() and EC_POINT_oct2point(). [Nils Larsch ] *) Change internals of the EC library so that the functions EC_GROUP_set_generator() EC_GROUP_get_generator() EC_GROUP_get_order() EC_GROUP_get_cofactor() are implemented directly in crypto/ec/ec_lib.c and not dispatched to methods, which would lead to unnecessary code duplication when adding different types of curves. [Nils Larsch with input by Bodo Moeller] *) Implement compute_wNAF (crypto/ec/ec_mult.c) without BIGNUM arithmetic, and such that modified wNAFs are generated (which avoid length expansion in many cases). [Bodo Moeller] *) Add a function EC_GROUP_check_discriminant() (defined via EC_METHOD) that verifies that the curve discriminant is non-zero. Add a function EC_GROUP_check() that makes some sanity tests on a EC_GROUP, its generator and order. This includes EC_GROUP_check_discriminant(). [Nils Larsch ] *) Add ECDSA in new directory crypto/ecdsa/. Add applications 'openssl ecparam' and 'openssl ecdsa' (these are based on 'openssl dsaparam' and 'openssl dsa'). ECDSA support is also included in various other files across the library. Most notably, - 'openssl req' now has a '-newkey ecdsa:file' option; - EVP_PKCS82PKEY (crypto/evp/evp_pkey.c) now can handle ECDSA; - X509_PUBKEY_get (crypto/asn1/x_pubkey.c) and d2i_PublicKey (crypto/asn1/d2i_pu.c) have been modified to make them suitable for ECDSA where domain parameters must be extracted before the specific public key; - ECDSA engine support has been added. [Nils Larsch ] *) Include some named elliptic curves, and add OIDs from X9.62, SECG, and WAP/WTLS. Each curve can be obtained from the new function EC_GROUP_new_by_curve_name(), and the list of available named curves can be obtained with EC_get_builtin_curves(). Also add a 'curve_name' member to EC_GROUP objects, which can be accessed via EC_GROUP_set_curve_name() EC_GROUP_get_curve_name() [Nils Larsch ] *) Include "!eNULL" in SSL_DEFAULT_CIPHER_LIST to make sure that a ciphersuite string such as "DEFAULT:RSA" cannot enable authentication-only ciphersuites. [Bodo Moeller] *) Since AES128 and AES256 share a single mask bit in the logic of ssl/ssl_ciph.c, the code for masking out disabled ciphers needs a kludge to work properly if AES128 is available and AES256 isn't. [Victor Duchovni] *) Expand security boundary to match 1.1.1 module. [Steve Henson] *) Remove redundant features: hash file source, editing of test vectors modify fipsld to use external fips_premain.c signature. [Steve Henson] *) New perl script mkfipsscr.pl to create shell scripts or batch files to run algorithm test programs. [Steve Henson] *) Make algorithm test programs more tolerant of whitespace. [Steve Henson] *) Have SSL/TLS server implementation tolerate "mismatched" record protocol version while receiving ClientHello even if the ClientHello is fragmented. (The server can't insist on the particular protocol version it has chosen before the ServerHello message has informed the client about his choice.) [Bodo Moeller] *) Load error codes if they are not already present instead of using a static variable. This allows them to be cleanly unloaded and reloaded. [Steve Henson] Changes between 0.9.7k and 0.9.7l [28 Sep 2006] *) Introduce limits to prevent malicious keys being able to cause a denial of service. (CVE-2006-2940) [Steve Henson, Bodo Moeller] *) Fix ASN.1 parsing of certain invalid structures that can result in a denial of service. (CVE-2006-2937) [Steve Henson] *) Fix buffer overflow in SSL_get_shared_ciphers() function. (CVE-2006-3738) [Tavis Ormandy and Will Drewry, Google Security Team] *) Fix SSL client code which could crash if connecting to a malicious SSLv2 server. (CVE-2006-4343) [Tavis Ormandy and Will Drewry, Google Security Team] *) Change ciphersuite string processing so that an explicit ciphersuite selects this one ciphersuite (so that "AES256-SHA" will no longer include "AES128-SHA"), and any other similar ciphersuite (same bitmap) from *other* protocol versions (so that "RC4-MD5" will still include both the SSL 2.0 ciphersuite and the SSL 3.0/TLS 1.0 ciphersuite). This is a backport combining changes from 0.9.8b and 0.9.8d. [Bodo Moeller] Changes between 0.9.7j and 0.9.7k [05 Sep 2006] *) Avoid PKCS #1 v1.5 signature attack discovered by Daniel Bleichenbacher (CVE-2006-4339) [Ben Laurie and Google Security Team] *) Change the Unix randomness entropy gathering to use poll() when possible instead of select(), since the latter has some undesirable limitations. [Darryl Miles via Richard Levitte and Bodo Moeller] *) Disable rogue ciphersuites: - SSLv2 0x08 0x00 0x80 ("RC4-64-MD5") - SSLv3/TLSv1 0x00 0x61 ("EXP1024-RC2-CBC-MD5") - SSLv3/TLSv1 0x00 0x60 ("EXP1024-RC4-MD5") The latter two were purportedly from draft-ietf-tls-56-bit-ciphersuites-0[01].txt, but do not really appear there. Also deactivate the remaining ciphersuites from draft-ietf-tls-56-bit-ciphersuites-01.txt. These are just as unofficial, and the ID has long expired. [Bodo Moeller] *) Fix RSA blinding Heisenbug (problems sometimes occurred on dual-core machines) and other potential thread-safety issues. [Bodo Moeller] Changes between 0.9.7i and 0.9.7j [04 May 2006] *) Adapt fipsld and the build system to link against the validated FIPS module in FIPS mode. [Steve Henson] *) Fixes for VC++ 2005 build under Windows. [Steve Henson] *) Add new Windows build target VC-32-GMAKE for VC++. This uses GNU make from a Windows bash shell such as MSYS. It is autodetected from the "config" script when run from a VC++ environment. Modify standard VC++ build to use fipscanister.o from the GNU make build. [Steve Henson] Changes between 0.9.7h and 0.9.7i [14 Oct 2005] *) Wrapped the definition of EVP_MAX_MD_SIZE in a #ifdef OPENSSL_FIPS. The value now differs depending on if you build for FIPS or not. BEWARE! A program linked with a shared FIPSed libcrypto can't be safely run with a non-FIPSed libcrypto, as it may crash because of the difference induced by this change. [Andy Polyakov] Changes between 0.9.7g and 0.9.7h [11 Oct 2005] *) Remove the functionality of SSL_OP_MSIE_SSLV2_RSA_PADDING (part of SSL_OP_ALL). This option used to disable the countermeasure against man-in-the-middle protocol-version rollback in the SSL 2.0 server implementation, which is a bad idea. (CVE-2005-2969) [Bodo Moeller; problem pointed out by Yutaka Oiwa (Research Center for Information Security, National Institute of Advanced Industrial Science and Technology [AIST], Japan)] *) Minimal support for X9.31 signatures and PSS padding modes. This is mainly for FIPS compliance and not fully integrated at this stage. [Steve Henson] *) For DSA signing, unless DSA_FLAG_NO_EXP_CONSTTIME is set, perform the exponentiation using a fixed-length exponent. (Otherwise, the information leaked through timing could expose the secret key after many signatures; cf. Bleichenbacher's attack on DSA with biased k.) [Bodo Moeller] *) Make a new fixed-window mod_exp implementation the default for RSA, DSA, and DH private-key operations so that the sequence of squares and multiplies and the memory access pattern are independent of the particular secret key. This will mitigate cache-timing and potential related attacks. BN_mod_exp_mont_consttime() is the new exponentiation implementation, and this is automatically used by BN_mod_exp_mont() if the new flag BN_FLG_EXP_CONSTTIME is set for the exponent. RSA, DSA, and DH will use this BN flag for private exponents unless the flag RSA_FLAG_NO_EXP_CONSTTIME, DSA_FLAG_NO_EXP_CONSTTIME, or DH_FLAG_NO_EXP_CONSTTIME, respectively, is set. [Matthew D Wood (Intel Corp), with some changes by Bodo Moeller] *) Change the client implementation for SSLv23_method() and SSLv23_client_method() so that is uses the SSL 3.0/TLS 1.0 Client Hello message format if the SSL_OP_NO_SSLv2 option is set. (Previously, the SSL 2.0 backwards compatible Client Hello message format would be used even with SSL_OP_NO_SSLv2.) [Bodo Moeller] *) Add support for smime-type MIME parameter in S/MIME messages which some clients need. [Steve Henson] *) New function BN_MONT_CTX_set_locked() to set montgomery parameters in a threadsafe manner. Modify rsa code to use new function and add calls to dsa and dh code (which had race conditions before). [Steve Henson] *) Include the fixed error library code in the C error file definitions instead of fixing them up at runtime. This keeps the error code structures constant. [Steve Henson] Changes between 0.9.7f and 0.9.7g [11 Apr 2005] [NB: OpenSSL 0.9.7h and later 0.9.7 patch levels were released after OpenSSL 0.9.8.] *) Fixes for newer kerberos headers. NB: the casts are needed because the 'length' field is signed on one version and unsigned on another with no (?) obvious way to tell the difference, without these VC++ complains. Also the "definition" of FAR (blank) is no longer included nor is the error ENOMEM. KRB5_PRIVATE has to be set to 1 to pick up some needed definitions. [Steve Henson] *) Undo Cygwin change. [Ulf Möller] *) Added support for proxy certificates according to RFC 3820. Because they may be a security thread to unaware applications, they must be explicitly allowed in run-time. See docs/HOWTO/proxy_certificates.txt for further information. [Richard Levitte] Changes between 0.9.7e and 0.9.7f [22 Mar 2005] *) Use (SSL_RANDOM_VALUE - 4) bytes of pseudo random data when generating server and client random values. Previously (SSL_RANDOM_VALUE - sizeof(time_t)) would be used which would result in less random data when sizeof(time_t) > 4 (some 64 bit platforms). This change has negligible security impact because: 1. Server and client random values still have 24 bytes of pseudo random data. 2. Server and client random values are sent in the clear in the initial handshake. 3. The master secret is derived using the premaster secret (48 bytes in size for static RSA ciphersuites) as well as client server and random values. The OpenSSL team would like to thank the UK NISCC for bringing this issue to our attention. [Stephen Henson, reported by UK NISCC] *) Use Windows randomness collection on Cygwin. [Ulf Möller] *) Fix hang in EGD/PRNGD query when communication socket is closed prematurely by EGD/PRNGD. [Darren Tucker via Lutz Jänicke, resolves #1014] *) Prompt for pass phrases when appropriate for PKCS12 input format. [Steve Henson] *) Back-port of selected performance improvements from development branch, as well as improved support for PowerPC platforms. [Andy Polyakov] *) Add lots of checks for memory allocation failure, error codes to indicate failure and freeing up memory if a failure occurs. [Nauticus Networks SSL Team , Steve Henson] *) Add new -passin argument to dgst. [Steve Henson] *) Perform some character comparisons of different types in X509_NAME_cmp: this is needed for some certificates that re-encode DNs into UTF8Strings (in violation of RFC3280) and can't or won't issue name rollover certificates. [Steve Henson] *) Make an explicit check during certificate validation to see that the CA setting in each certificate on the chain is correct. As a side effect always do the following basic checks on extensions, not just when there's an associated purpose to the check: - if there is an unhandled critical extension (unless the user has chosen to ignore this fault) - if the path length has been exceeded (if one is set at all) - that certain extensions fit the associated purpose (if one has been given) [Richard Levitte] Changes between 0.9.7d and 0.9.7e [25 Oct 2004] *) Avoid a race condition when CRLs are checked in a multi threaded environment. This would happen due to the reordering of the revoked entries during signature checking and serial number lookup. Now the encoding is cached and the serial number sort performed under a lock. Add new STACK function sk_is_sorted(). [Steve Henson] *) Add Delta CRL to the extension code. [Steve Henson] *) Various fixes to s3_pkt.c so alerts are sent properly. [David Holmes ] *) Reduce the chances of duplicate issuer name and serial numbers (in violation of RFC3280) using the OpenSSL certificate creation utilities. This is done by creating a random 64 bit value for the initial serial number when a serial number file is created or when a self signed certificate is created using 'openssl req -x509'. The initial serial number file is created using 'openssl x509 -next_serial' in CA.pl rather than being initialized to 1. [Steve Henson] Changes between 0.9.7c and 0.9.7d [17 Mar 2004] *) Fix null-pointer assignment in do_change_cipher_spec() revealed by using the Codenomicon TLS Test Tool (CVE-2004-0079) [Joe Orton, Steve Henson] *) Fix flaw in SSL/TLS handshaking when using Kerberos ciphersuites (CVE-2004-0112) [Joe Orton, Steve Henson] *) Make it possible to have multiple active certificates with the same subject in the CA index file. This is done only if the keyword 'unique_subject' is set to 'no' in the main CA section (default if 'CA_default') of the configuration file. The value is saved with the database itself in a separate index attribute file, named like the index file with '.attr' appended to the name. [Richard Levitte] *) X509 verify fixes. Disable broken certificate workarounds when X509_V_FLAGS_X509_STRICT is set. Check CRL issuer has cRLSign set if keyUsage extension present. Don't accept CRLs with unhandled critical extensions: since verify currently doesn't process CRL extensions this rejects a CRL with *any* critical extensions. Add new verify error codes for these cases. [Steve Henson] *) When creating an OCSP nonce use an OCTET STRING inside the extnValue. A clarification of RFC2560 will require the use of OCTET STRINGs and some implementations cannot handle the current raw format. Since OpenSSL copies and compares OCSP nonces as opaque blobs without any attempt at parsing them this should not create any compatibility issues. [Steve Henson] *) New md flag EVP_MD_CTX_FLAG_REUSE this allows md_data to be reused when calling EVP_MD_CTX_copy_ex() to avoid calling OPENSSL_malloc(). Without this HMAC (and other) operations are several times slower than OpenSSL < 0.9.7. [Steve Henson] *) Print out GeneralizedTime and UTCTime in ASN1_STRING_print_ex(). [Peter Sylvester ] *) Use the correct content when signing type "other". [Steve Henson] Changes between 0.9.7b and 0.9.7c [30 Sep 2003] *) Fix various bugs revealed by running the NISCC test suite: Stop out of bounds reads in the ASN1 code when presented with invalid tags (CVE-2003-0543 and CVE-2003-0544). Free up ASN1_TYPE correctly if ANY type is invalid (CVE-2003-0545). If verify callback ignores invalid public key errors don't try to check certificate signature with the NULL public key. [Steve Henson] *) New -ignore_err option in ocsp application to stop the server exiting on the first error in a request. [Steve Henson] *) In ssl3_accept() (ssl/s3_srvr.c) only accept a client certificate if the server requested one: as stated in TLS 1.0 and SSL 3.0 specifications. [Steve Henson] *) In ssl3_get_client_hello() (ssl/s3_srvr.c), tolerate additional extra data after the compression methods not only for TLS 1.0 but also for SSL 3.0 (as required by the specification). [Bodo Moeller; problem pointed out by Matthias Loepfe] *) Change X509_certificate_type() to mark the key as exported/exportable when it's 512 *bits* long, not 512 bytes. [Richard Levitte] *) Change AES_cbc_encrypt() so it outputs exact multiple of blocks during encryption. [Richard Levitte] *) Various fixes to base64 BIO and non blocking I/O. On write flushes were not handled properly if the BIO retried. On read data was not being buffered properly and had various logic bugs. This also affects blocking I/O when the data being decoded is a certain size. [Steve Henson] *) Various S/MIME bugfixes and compatibility changes: output correct application/pkcs7 MIME type if PKCS7_NOOLDMIMETYPE is set. Tolerate some broken signatures. Output CR+LF for EOL if PKCS7_CRLFEOL is set (this makes opening of files as .eml work). Correctly handle very long lines in MIME parser. [Steve Henson] Changes between 0.9.7a and 0.9.7b [10 Apr 2003] *) Countermeasure against the Klima-Pokorny-Rosa extension of Bleichbacher's attack on PKCS #1 v1.5 padding: treat a protocol version number mismatch like a decryption error in ssl3_get_client_key_exchange (ssl/s3_srvr.c). [Bodo Moeller] *) Turn on RSA blinding by default in the default implementation to avoid a timing attack. Applications that don't want it can call RSA_blinding_off() or use the new flag RSA_FLAG_NO_BLINDING. They would be ill-advised to do so in most cases. [Ben Laurie, Steve Henson, Geoff Thorpe, Bodo Moeller] *) Change RSA blinding code so that it works when the PRNG is not seeded (in this case, the secret RSA exponent is abused as an unpredictable seed -- if it is not unpredictable, there is no point in blinding anyway). Make RSA blinding thread-safe by remembering the creator's thread ID in rsa->blinding and having all other threads use local one-time blinding factors (this requires more computation than sharing rsa->blinding, but avoids excessive locking; and if an RSA object is not shared between threads, blinding will still be very fast). [Bodo Moeller] *) Fixed a typo bug that would cause ENGINE_set_default() to set an ENGINE as defaults for all supported algorithms irrespective of the 'flags' parameter. 'flags' is now honoured, so applications should make sure they are passing it correctly. [Geoff Thorpe] *) Target "mingw" now allows native Windows code to be generated in the Cygwin environment as well as with the MinGW compiler. [Ulf Moeller] Changes between 0.9.7 and 0.9.7a [19 Feb 2003] *) In ssl3_get_record (ssl/s3_pkt.c), minimize information leaked via timing by performing a MAC computation even if incorrect block cipher padding has been found. This is a countermeasure against active attacks where the attacker has to distinguish between bad padding and a MAC verification error. (CVE-2003-0078) [Bodo Moeller; problem pointed out by Brice Canvel (EPFL), Alain Hiltgen (UBS), Serge Vaudenay (EPFL), and Martin Vuagnoux (EPFL, Ilion)] *) Make the no-err option work as intended. The intention with no-err is not to have the whole error stack handling routines removed from libcrypto, it's only intended to remove all the function name and reason texts, thereby removing some of the footprint that may not be interesting if those errors aren't displayed anyway. NOTE: it's still possible for any application or module to have its own set of error texts inserted. The routines are there, just not used by default when no-err is given. [Richard Levitte] *) Add support for FreeBSD on IA64. [dirk.meyer@dinoex.sub.org via Richard Levitte, resolves #454] *) Adjust DES_cbc_cksum() so it returns the same value as the MIT Kerberos function mit_des_cbc_cksum(). Before this change, the value returned by DES_cbc_cksum() was like the one from mit_des_cbc_cksum(), except the bytes were swapped. [Kevin Greaney and Richard Levitte] *) Allow an application to disable the automatic SSL chain building. Before this a rather primitive chain build was always performed in ssl3_output_cert_chain(): an application had no way to send the correct chain if the automatic operation produced an incorrect result. Now the chain builder is disabled if either: 1. Extra certificates are added via SSL_CTX_add_extra_chain_cert(). 2. The mode flag SSL_MODE_NO_AUTO_CHAIN is set. The reasoning behind this is that an application would not want the auto chain building to take place if extra chain certificates are present and it might also want a means of sending no additional certificates (for example the chain has two certificates and the root is omitted). [Steve Henson] *) Add the possibility to build without the ENGINE framework. [Steven Reddie via Richard Levitte] *) Under Win32 gmtime() can return NULL: check return value in OPENSSL_gmtime(). Add error code for case where gmtime() fails. [Steve Henson] *) DSA routines: under certain error conditions uninitialized BN objects could be freed. Solution: make sure initialization is performed early enough. (Reported and fix supplied by Ivan D Nestlerode , Nils Larsch via PR#459) [Lutz Jaenicke] *) Another fix for SSLv2 session ID handling: the session ID was incorrectly checked on reconnect on the client side, therefore session resumption could still fail with a "ssl session id is different" error. This behaviour is masked when SSL_OP_ALL is used due to SSL_OP_MICROSOFT_SESS_ID_BUG being set. Behaviour observed by Crispin Flowerday as followup to PR #377. [Lutz Jaenicke] *) IA-32 assembler support enhancements: unified ELF targets, support for SCO/Caldera platforms, fix for Cygwin shared build. [Andy Polyakov] *) Add support for FreeBSD on sparc64. As a consequence, support for FreeBSD on non-x86 processors is separate from x86 processors on the config script, much like the NetBSD support. [Richard Levitte & Kris Kennaway ] Changes between 0.9.6h and 0.9.7 [31 Dec 2002] [NB: OpenSSL 0.9.6i and later 0.9.6 patch levels were released after OpenSSL 0.9.7.] *) Fix session ID handling in SSLv2 client code: the SERVER FINISHED code (06) was taken as the first octet of the session ID and the last octet was ignored consequently. As a result SSLv2 client side session caching could not have worked due to the session ID mismatch between client and server. Behaviour observed by Crispin Flowerday as PR #377. [Lutz Jaenicke] *) Change the declaration of needed Kerberos libraries to use EX_LIBS instead of the special (and badly supported) LIBKRB5. LIBKRB5 is removed entirely. [Richard Levitte] *) The hw_ncipher.c engine requires dynamic locks. Unfortunately, it seems that in spite of existing for more than a year, many application author have done nothing to provide the necessary callbacks, which means that this particular engine will not work properly anywhere. This is a very unfortunate situation which forces us, in the name of usability, to give the hw_ncipher.c a static lock, which is part of libcrypto. NOTE: This is for the 0.9.7 series ONLY. This hack will never appear in 0.9.8 or later. We EXPECT application authors to have dealt properly with this when 0.9.8 is released (unless we actually make such changes in the libcrypto locking code that changes will have to be made anyway). [Richard Levitte] *) In asn1_d2i_read_bio() repeatedly call BIO_read() until all content octets have been read, EOF or an error occurs. Without this change some truncated ASN1 structures will not produce an error. [Steve Henson] *) Disable Heimdal support, since it hasn't been fully implemented. Still give the possibility to force the use of Heimdal, but with warnings and a request that patches get sent to openssl-dev. [Richard Levitte] *) Add the VC-CE target, introduce the WINCE sysname, and add INSTALL.WCE and appropriate conditionals to make it build. [Steven Reddie via Richard Levitte] *) Change the DLL names for Cygwin to cygcrypto-x.y.z.dll and cygssl-x.y.z.dll, where x, y and z are the major, minor and edit numbers of the version. [Corinna Vinschen and Richard Levitte] *) Introduce safe string copy and catenation functions (BUF_strlcpy() and BUF_strlcat()). [Ben Laurie (CHATS) and Richard Levitte] *) Avoid using fixed-size buffers for one-line DNs. [Ben Laurie (CHATS)] *) Add BUF_MEM_grow_clean() to avoid information leakage when resizing buffers containing secrets, and use where appropriate. [Ben Laurie (CHATS)] *) Avoid using fixed size buffers for configuration file location. [Ben Laurie (CHATS)] *) Avoid filename truncation for various CA files. [Ben Laurie (CHATS)] *) Use sizeof in preference to magic numbers. [Ben Laurie (CHATS)] *) Avoid filename truncation in cert requests. [Ben Laurie (CHATS)] *) Add assertions to check for (supposedly impossible) buffer overflows. [Ben Laurie (CHATS)] *) Don't cache truncated DNS entries in the local cache (this could potentially lead to a spoofing attack). [Ben Laurie (CHATS)] *) Fix various buffers to be large enough for hex/decimal representations in a platform independent manner. [Ben Laurie (CHATS)] *) Add CRYPTO_realloc_clean() to avoid information leakage when resizing buffers containing secrets, and use where appropriate. [Ben Laurie (CHATS)] *) Add BIO_indent() to avoid much slightly worrying code to do indents. [Ben Laurie (CHATS)] *) Convert sprintf()/BIO_puts() to BIO_printf(). [Ben Laurie (CHATS)] *) buffer_gets() could terminate with the buffer only half full. Fixed. [Ben Laurie (CHATS)] *) Add assertions to prevent user-supplied crypto functions from overflowing internal buffers by having large block sizes, etc. [Ben Laurie (CHATS)] *) New OPENSSL_assert() macro (similar to assert(), but enabled unconditionally). [Ben Laurie (CHATS)] *) Eliminate unused copy of key in RC4. [Ben Laurie (CHATS)] *) Eliminate unused and incorrectly sized buffers for IV in pem.h. [Ben Laurie (CHATS)] *) Fix off-by-one error in EGD path. [Ben Laurie (CHATS)] *) If RANDFILE path is too long, ignore instead of truncating. [Ben Laurie (CHATS)] *) Eliminate unused and incorrectly sized X.509 structure CBCParameter. [Ben Laurie (CHATS)] *) Eliminate unused and dangerous function knumber(). [Ben Laurie (CHATS)] *) Eliminate unused and dangerous structure, KSSL_ERR. [Ben Laurie (CHATS)] *) Protect against overlong session ID context length in an encoded session object. Since these are local, this does not appear to be exploitable. [Ben Laurie (CHATS)] *) Change from security patch (see 0.9.6e below) that did not affect the 0.9.6 release series: Remote buffer overflow in SSL3 protocol - an attacker could supply an oversized master key in Kerberos-enabled versions. (CVE-2002-0657) [Ben Laurie (CHATS)] *) Change the SSL kerb5 codes to match RFC 2712. [Richard Levitte] *) Make -nameopt work fully for req and add -reqopt switch. [Michael Bell , Steve Henson] *) The "block size" for block ciphers in CFB and OFB mode should be 1. [Steve Henson, reported by Yngve Nysaeter Pettersen ] *) Make sure tests can be performed even if the corresponding algorithms have been removed entirely. This was also the last step to make OpenSSL compilable with DJGPP under all reasonable conditions. [Richard Levitte, Doug Kaufman ] *) Add cipher selection rules COMPLEMENTOFALL and COMPLEMENTOFDEFAULT to allow version independent disabling of normally unselected ciphers, which may be activated as a side-effect of selecting a single cipher. (E.g., cipher list string "RSA" enables ciphersuites that are left out of "ALL" because they do not provide symmetric encryption. "RSA:!COMPLEMEMENTOFALL" avoids these unsafe ciphersuites.) [Lutz Jaenicke, Bodo Moeller] *) Add appropriate support for separate platform-dependent build directories. The recommended way to make a platform-dependent build directory is the following (tested on Linux), maybe with some local tweaks: # Place yourself outside of the OpenSSL source tree. In # this example, the environment variable OPENSSL_SOURCE # is assumed to contain the absolute OpenSSL source directory. mkdir -p objtree/"`uname -s`-`uname -r`-`uname -m`" cd objtree/"`uname -s`-`uname -r`-`uname -m`" (cd $OPENSSL_SOURCE; find . -type f) | while read F; do mkdir -p `dirname $F` ln -s $OPENSSL_SOURCE/$F $F done To be absolutely sure not to disturb the source tree, a "make clean" is a good thing. If it isn't successful, don't worry about it, it probably means the source directory is very clean. [Richard Levitte] *) Make sure any ENGINE control commands make local copies of string pointers passed to them whenever necessary. Otherwise it is possible the caller may have overwritten (or deallocated) the original string data when a later ENGINE operation tries to use the stored values. [Götz Babin-Ebell ] *) Improve diagnostics in file reading and command-line digests. [Ben Laurie aided and abetted by Solar Designer ] *) Add AES modes CFB and OFB to the object database. Correct an error in AES-CFB decryption. [Richard Levitte] *) Remove most calls to EVP_CIPHER_CTX_cleanup() in evp_enc.c, this allows existing EVP_CIPHER_CTX structures to be reused after calling EVP_*Final(). This behaviour is used by encryption BIOs and some applications. This has the side effect that applications must explicitly clean up cipher contexts with EVP_CIPHER_CTX_cleanup() or they will leak memory. [Steve Henson] *) Check the values of dna and dnb in bn_mul_recursive before calling bn_mul_comba (a non zero value means the a or b arrays do not contain n2 elements) and fallback to bn_mul_normal if either is not zero. [Steve Henson] *) Fix escaping of non-ASCII characters when using the -subj option of the "openssl req" command line tool. (Robert Joop ) [Lutz Jaenicke] *) Make object definitions compliant to LDAP (RFC2256): SN is the short form for "surname", serialNumber has no short form. Use "mail" as the short name for "rfc822Mailbox" according to RFC2798; therefore remove "mail" short name for "internet 7". The OID for unique identifiers in X509 certificates is x500UniqueIdentifier, not uniqueIdentifier. Some more OID additions. (Michael Bell ) [Lutz Jaenicke] *) Add an "init" command to the ENGINE config module and auto initialize ENGINEs. Without any "init" command the ENGINE will be initialized after all ctrl commands have been executed on it. If init=1 the ENGINE is initialized at that point (ctrls before that point are run on the uninitialized ENGINE and after on the initialized one). If init=0 then the ENGINE will not be initialized at all. [Steve Henson] *) Fix the 'app_verify_callback' interface so that the user-defined argument is actually passed to the callback: In the SSL_CTX_set_cert_verify_callback() prototype, the callback declaration has been changed from int (*cb)() into int (*cb)(X509_STORE_CTX *,void *); in ssl_verify_cert_chain (ssl/ssl_cert.c), the call i=s->ctx->app_verify_callback(&ctx) has been changed into i=s->ctx->app_verify_callback(&ctx, s->ctx->app_verify_arg). To update applications using SSL_CTX_set_cert_verify_callback(), a dummy argument can be added to their callback functions. [D. K. Smetters ] *) Added the '4758cca' ENGINE to support IBM 4758 cards. [Maurice Gittens , touchups by Geoff Thorpe] *) Add and OPENSSL_LOAD_CONF define which will cause OpenSSL_add_all_algorithms() to load the openssl.cnf config file. This allows older applications to transparently support certain OpenSSL features: such as crypto acceleration and dynamic ENGINE loading. Two new functions OPENSSL_add_all_algorithms_noconf() which will never load the config file and OPENSSL_add_all_algorithms_conf() which will always load it have also been added. [Steve Henson] *) Add the OFB, CFB and CTR (all with 128 bit feedback) to AES. Adjust NIDs and EVP layer. [Stephen Sprunk and Richard Levitte] *) Config modules support in openssl utility. Most commands now load modules from the config file, though in a few (such as version) this isn't done because it couldn't be used for anything. In the case of ca and req the config file used is the same as the utility itself: that is the -config command line option can be used to specify an alternative file. [Steve Henson] *) Move default behaviour from OPENSSL_config(). If appname is NULL use "openssl_conf" if filename is NULL use default openssl config file. [Steve Henson] *) Add an argument to OPENSSL_config() to allow the use of an alternative config section name. Add a new flag to tolerate a missing config file and move code to CONF_modules_load_file(). [Steve Henson] *) Support for crypto accelerator cards from Accelerated Encryption Processing, www.aep.ie. (Use engine 'aep') The support was copied from 0.9.6c [engine] and adapted/corrected to work with the new engine framework. [AEP Inc. and Richard Levitte] *) Support for SureWare crypto accelerator cards from Baltimore Technologies. (Use engine 'sureware') The support was copied from 0.9.6c [engine] and adapted to work with the new engine framework. [Richard Levitte] *) Have the CHIL engine fork-safe (as defined by nCipher) and actually make the newer ENGINE framework commands for the CHIL engine work. [Toomas Kiisk and Richard Levitte] *) Make it possible to produce shared libraries on ReliantUNIX. [Robert Dahlem via Richard Levitte] *) Add the configuration target debug-linux-ppro. Make 'openssl rsa' use the general key loading routines implemented in apps.c, and make those routines able to handle the key format FORMAT_NETSCAPE and the variant FORMAT_IISSGC. [Toomas Kiisk via Richard Levitte] *) Fix a crashbug and a logic bug in hwcrhk_load_pubkey(). [Toomas Kiisk via Richard Levitte] *) Add -keyform to rsautl, and document -engine. [Richard Levitte, inspired by Toomas Kiisk ] *) Change BIO_new_file (crypto/bio/bss_file.c) to use new BIO_R_NO_SUCH_FILE error code rather than the generic ERR_R_SYS_LIB error code if fopen() fails with ENOENT. [Ben Laurie] *) Add new functions ERR_peek_last_error ERR_peek_last_error_line ERR_peek_last_error_line_data. These are similar to ERR_peek_error ERR_peek_error_line ERR_peek_error_line_data, but report on the latest error recorded rather than the first one still in the error queue. [Ben Laurie, Bodo Moeller] *) default_algorithms option in ENGINE config module. This allows things like: default_algorithms = ALL default_algorithms = RSA, DSA, RAND, CIPHERS, DIGESTS [Steve Henson] *) Preliminary ENGINE config module. [Steve Henson] *) New experimental application configuration code. [Steve Henson] *) Change the AES code to follow the same name structure as all other symmetric ciphers, and behave the same way. Move everything to the directory crypto/aes, thereby obsoleting crypto/rijndael. [Stephen Sprunk and Richard Levitte] *) SECURITY: remove unsafe setjmp/signal interaction from ui_openssl.c. [Ben Laurie and Theo de Raadt] *) Add option to output public keys in req command. [Massimiliano Pala madwolf@openca.org] *) Use wNAFs in EC_POINTs_mul() for improved efficiency (up to about 10% better than before for P-192 and P-224). [Bodo Moeller] *) New functions/macros SSL_CTX_set_msg_callback(ctx, cb) SSL_CTX_set_msg_callback_arg(ctx, arg) SSL_set_msg_callback(ssl, cb) SSL_set_msg_callback_arg(ssl, arg) to request calling a callback function void cb(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg) whenever a protocol message has been completely received (write_p == 0) or sent (write_p == 1). Here 'version' is the protocol version according to which the SSL library interprets the current protocol message (SSL2_VERSION, SSL3_VERSION, or TLS1_VERSION). 'content_type' is 0 in the case of SSL 2.0, or the content type as defined in the SSL 3.0/TLS 1.0 protocol specification (change_cipher_spec(20), alert(21), handshake(22)). 'buf' and 'len' point to the actual message, 'ssl' to the SSL object, and 'arg' is the application-defined value set by SSL[_CTX]_set_msg_callback_arg(). 'openssl s_client' and 'openssl s_server' have new '-msg' options to enable a callback that displays all protocol messages. [Bodo Moeller] *) Change the shared library support so shared libraries are built as soon as the corresponding static library is finished, and thereby get openssl and the test programs linked against the shared library. This still only happens when the keyword "shard" has been given to the configuration scripts. NOTE: shared library support is still an experimental thing, and backward binary compatibility is still not guaranteed. ["Maciej W. Rozycki" and Richard Levitte] *) Add support for Subject Information Access extension. [Peter Sylvester ] *) Make BUF_MEM_grow() behaviour more consistent: Initialise to zero additional bytes when new memory had to be allocated, not just when reusing an existing buffer. [Bodo Moeller] *) New command line and configuration option 'utf8' for the req command. This allows field values to be specified as UTF8 strings. [Steve Henson] *) Add -multi and -mr options to "openssl speed" - giving multiple parallel runs for the former and machine-readable output for the latter. [Ben Laurie] *) Add '-noemailDN' option to 'openssl ca'. This prevents inclusion of the e-mail address in the DN (i.e., it will go into a certificate extension only). The new configuration file option 'email_in_dn = no' has the same effect. [Massimiliano Pala madwolf@openca.org] *) Change all functions with names starting with des_ to be starting with DES_ instead. Add wrappers that are compatible with libdes, but are named _ossl_old_des_*. Finally, add macros that map the des_* symbols to the corresponding _ossl_old_des_* if libdes compatibility is desired. If OpenSSL 0.9.6c compatibility is desired, the des_* symbols will be mapped to DES_*, with one exception. Since we provide two compatibility mappings, the user needs to define the macro OPENSSL_DES_LIBDES_COMPATIBILITY if libdes compatibility is desired. The default (i.e., when that macro isn't defined) is OpenSSL 0.9.6c compatibility. There are also macros that enable and disable the support of old des functions altogether. Those are OPENSSL_ENABLE_OLD_DES_SUPPORT and OPENSSL_DISABLE_OLD_DES_SUPPORT. If none or both of those are defined, the default will apply: to support the old des routines. In either case, one must include openssl/des.h to get the correct definitions. Do not try to just include openssl/des_old.h, that won't work. NOTE: This is a major break of an old API into a new one. Software authors are encouraged to switch to the DES_ style functions. Some time in the future, des_old.h and the libdes compatibility functions will be disable (i.e. OPENSSL_DISABLE_OLD_DES_SUPPORT will be the default), and then completely removed. [Richard Levitte] *) Test for certificates which contain unsupported critical extensions. If such a certificate is found during a verify operation it is rejected by default: this behaviour can be overridden by either handling the new error X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION or by setting the verify flag X509_V_FLAG_IGNORE_CRITICAL. A new function X509_supported_extension() has also been added which returns 1 if a particular extension is supported. [Steve Henson] *) Modify the behaviour of EVP cipher functions in similar way to digests to retain compatibility with existing code. [Steve Henson] *) Modify the behaviour of EVP_DigestInit() and EVP_DigestFinal() to retain compatibility with existing code. In particular the 'ctx' parameter does not have to be to be initialized before the call to EVP_DigestInit() and it is tidied up after a call to EVP_DigestFinal(). New function EVP_DigestFinal_ex() which does not tidy up the ctx. Similarly function EVP_MD_CTX_copy() changed to not require the destination to be initialized valid and new function EVP_MD_CTX_copy_ex() added which requires the destination to be valid. Modify all the OpenSSL digest calls to use EVP_DigestInit_ex(), EVP_DigestFinal_ex() and EVP_MD_CTX_copy_ex(). [Steve Henson] *) Change ssl3_get_message (ssl/s3_both.c) and the functions using it so that complete 'Handshake' protocol structures are kept in memory instead of overwriting 'msg_type' and 'length' with 'body' data. [Bodo Moeller] *) Add an implementation of SSL_add_dir_cert_subjects_to_stack for Win32. [Massimo Santin via Richard Levitte] *) Major restructuring to the underlying ENGINE code. This includes reduction of linker bloat, separation of pure "ENGINE" manipulation (initialisation, etc) from functionality dealing with implementations of specific crypto interfaces. This change also introduces integrated support for symmetric ciphers and digest implementations - so ENGINEs can now accelerate these by providing EVP_CIPHER and EVP_MD implementations of their own. This is detailed in crypto/engine/README as it couldn't be adequately described here. However, there are a few API changes worth noting - some RSA, DSA, DH, and RAND functions that were changed in the original introduction of ENGINE code have now reverted back - the hooking from this code to ENGINE is now a good deal more passive and at run-time, operations deal directly with RSA_METHODs, DSA_METHODs (etc) as they did before, rather than dereferencing through an ENGINE pointer any more. Also, the ENGINE functions dealing with BN_MOD_EXP[_CRT] handlers have been removed - they were not being used by the framework as there is no concept of a BIGNUM_METHOD and they could not be generalised to the new 'ENGINE_TABLE' mechanism that underlies the new code. Similarly, ENGINE_cpy() has been removed as it cannot be consistently defined in the new code. [Geoff Thorpe] *) Change ASN1_GENERALIZEDTIME_check() to allow fractional seconds. [Steve Henson] *) Change mkdef.pl to sort symbols that get the same entry number, and make sure the automatically generated functions ERR_load_* become part of libeay.num as well. [Richard Levitte] *) New function SSL_renegotiate_pending(). This returns true once renegotiation has been requested (either SSL_renegotiate() call or HelloRequest/ClientHello received from the peer) and becomes false once a handshake has been completed. (For servers, SSL_renegotiate() followed by SSL_do_handshake() sends a HelloRequest, but does not ensure that a handshake takes place. SSL_renegotiate_pending() is useful for checking if the client has followed the request.) [Bodo Moeller] *) New SSL option SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION. By default, clients may request session resumption even during renegotiation (if session ID contexts permit); with this option, session resumption is possible only in the first handshake. SSL_OP_ALL is now 0x00000FFFL instead of 0x000FFFFFL. This makes more bits available for options that should not be part of SSL_OP_ALL (such as SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION). [Bodo Moeller] *) Add some demos for certificate and certificate request creation. [Steve Henson] *) Make maximum certificate chain size accepted from the peer application settable (SSL*_get/set_max_cert_list()), as proposed by "Douglas E. Engert" . [Lutz Jaenicke] *) Add support for shared libraries for Unixware-7 (Boyd Lynn Gerber ). [Lutz Jaenicke] *) Add a "destroy" handler to ENGINEs that allows structural cleanup to be done prior to destruction. Use this to unload error strings from ENGINEs that load their own error strings. NB: This adds two new API functions to "get" and "set" this destroy handler in an ENGINE. [Geoff Thorpe] *) Alter all existing ENGINE implementations (except "openssl" and "openbsd") to dynamically instantiate their own error strings. This makes them more flexible to be built both as statically-linked ENGINEs and self-contained shared-libraries loadable via the "dynamic" ENGINE. Also, add stub code to each that makes building them as self-contained shared-libraries easier (see README.ENGINE). [Geoff Thorpe] *) Add a "dynamic" ENGINE that provides a mechanism for binding ENGINE implementations into applications that are completely implemented in self-contained shared-libraries. The "dynamic" ENGINE exposes control commands that can be used to configure what shared-library to load and to control aspects of the way it is handled. Also, made an update to the README.ENGINE file that brings its information up-to-date and provides some information and instructions on the "dynamic" ENGINE (ie. how to use it, how to build "dynamic"-loadable ENGINEs, etc). [Geoff Thorpe] *) Make it possible to unload ranges of ERR strings with a new "ERR_unload_strings" function. [Geoff Thorpe] *) Add a copy() function to EVP_MD. [Ben Laurie] *) Make EVP_MD routines take a context pointer instead of just the md_data void pointer. [Ben Laurie] *) Add flags to EVP_MD and EVP_MD_CTX. EVP_MD_FLAG_ONESHOT indicates that the digest can only process a single chunk of data (typically because it is provided by a piece of hardware). EVP_MD_CTX_FLAG_ONESHOT indicates that the application is only going to provide a single chunk of data, and hence the framework needn't accumulate the data for oneshot drivers. [Ben Laurie] *) As with "ERR", make it possible to replace the underlying "ex_data" functions. This change also alters the storage and management of global ex_data state - it's now all inside ex_data.c and all "class" code (eg. RSA, BIO, SSL_CTX, etc) no longer stores its own STACKS and per-class index counters. The API functions that use this state have been changed to take a "class_index" rather than pointers to the class's local STACK and counter, and there is now an API function to dynamically create new classes. This centralisation allows us to (a) plug a lot of the thread-safety problems that existed, and (b) makes it possible to clean up all allocated state using "CRYPTO_cleanup_all_ex_data()". W.r.t. (b) such data would previously have always leaked in application code and workarounds were in place to make the memory debugging turn a blind eye to it. Application code that doesn't use this new function will still leak as before, but their memory debugging output will announce it now rather than letting it slide. Besides the addition of CRYPTO_cleanup_all_ex_data(), another API change induced by the "ex_data" overhaul is that X509_STORE_CTX_init() now has a return value to indicate success or failure. [Geoff Thorpe] *) Make it possible to replace the underlying "ERR" functions such that the global state (2 LHASH tables and 2 locks) is only used by the "default" implementation. This change also adds two functions to "get" and "set" the implementation prior to it being automatically set the first time any other ERR function takes place. Ie. an application can call "get", pass the return value to a module it has just loaded, and that module can call its own "set" function using that value. This means the module's "ERR" operations will use (and modify) the error state in the application and not in its own statically linked copy of OpenSSL code. [Geoff Thorpe] *) Give DH, DSA, and RSA types their own "**_up_ref()" function to increment reference counts. This performs normal REF_PRINT/REF_CHECK macros on the operation, and provides a more encapsulated way for external code (crypto/evp/ and ssl/) to do this. Also changed the evp and ssl code to use these functions rather than manually incrementing the counts. Also rename "DSO_up()" function to more descriptive "DSO_up_ref()". [Geoff Thorpe] *) Add EVP test program. [Ben Laurie] *) Add symmetric cipher support to ENGINE. Expect the API to change! [Ben Laurie] *) New CRL functions: X509_CRL_set_version(), X509_CRL_set_issuer_name() X509_CRL_set_lastUpdate(), X509_CRL_set_nextUpdate(), X509_CRL_sort(), X509_REVOKED_set_serialNumber(), and X509_REVOKED_set_revocationDate(). These allow a CRL to be built without having to access X509_CRL fields directly. Modify 'ca' application to use new functions. [Steve Henson] *) Move SSL_OP_TLS_ROLLBACK_BUG out of the SSL_OP_ALL list of recommended bug workarounds. Rollback attack detection is a security feature. The problem will only arise on OpenSSL servers when TLSv1 is not available (sslv3_server_method() or SSL_OP_NO_TLSv1). Software authors not wanting to support TLSv1 will have special reasons for their choice and can explicitly enable this option. [Bodo Moeller, Lutz Jaenicke] *) Rationalise EVP so it can be extended: don't include a union of cipher/digest structures, add init/cleanup functions for EVP_MD_CTX (similar to those existing for EVP_CIPHER_CTX). Usage example: EVP_MD_CTX md; EVP_MD_CTX_init(&md); /* new function call */ EVP_DigestInit(&md, EVP_sha1()); EVP_DigestUpdate(&md, in, len); EVP_DigestFinal(&md, out, NULL); EVP_MD_CTX_cleanup(&md); /* new function call */ [Ben Laurie] *) Make DES key schedule conform to the usual scheme, as well as correcting its structure. This means that calls to DES functions now have to pass a pointer to a des_key_schedule instead of a plain des_key_schedule (which was actually always a pointer anyway): E.g., des_key_schedule ks; des_set_key_checked(..., &ks); des_ncbc_encrypt(..., &ks, ...); (Note that a later change renames 'des_...' into 'DES_...'.) [Ben Laurie] *) Initial reduction of linker bloat: the use of some functions, such as PEM causes large amounts of unused functions to be linked in due to poor organisation. For example pem_all.c contains every PEM function which has a knock on effect of linking in large amounts of (unused) ASN1 code. Grouping together similar functions and splitting unrelated functions prevents this. [Steve Henson] *) Cleanup of EVP macros. [Ben Laurie] *) Change historical references to {NID,SN,LN}_des_ede and ede3 to add the correct _ecb suffix. [Ben Laurie] *) Add initial OCSP responder support to ocsp application. The revocation information is handled using the text based index use by the ca application. The responder can either handle requests generated internally, supplied in files (for example via a CGI script) or using an internal minimal server. [Steve Henson] *) Add configuration choices to get zlib compression for TLS. [Richard Levitte] *) Changes to Kerberos SSL for RFC 2712 compliance: 1. Implemented real KerberosWrapper, instead of just using KRB5 AP_REQ message. [Thanks to Simon Wilkinson ] 2. Implemented optional authenticator field of KerberosWrapper. Added openssl-style ASN.1 macros for Kerberos ticket, ap_req, and authenticator structs; see crypto/krb5/. Generalized Kerberos calls to support multiple Kerberos libraries. [Vern Staats , Jeffrey Altman via Richard Levitte] *) Cause 'openssl speed' to use fully hard-coded DSA keys as it already does with RSA. testdsa.h now has 'priv_key/pub_key' values for each of the key sizes rather than having just parameters (and 'speed' generating keys each time). [Geoff Thorpe] *) Speed up EVP routines. Before: encrypt type 8 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes des-cbc 4408.85k 5560.51k 5778.46k 5862.20k 5825.16k des-cbc 4389.55k 5571.17k 5792.23k 5846.91k 5832.11k des-cbc 4394.32k 5575.92k 5807.44k 5848.37k 5841.30k decrypt des-cbc 3482.66k 5069.49k 5496.39k 5614.16k 5639.28k des-cbc 3480.74k 5068.76k 5510.34k 5609.87k 5635.52k des-cbc 3483.72k 5067.62k 5504.60k 5708.01k 5724.80k After: encrypt des-cbc 4660.16k 5650.19k 5807.19k 5827.13k 5783.32k decrypt des-cbc 3624.96k 5258.21k 5530.91k 5624.30k 5628.26k [Ben Laurie] *) Added the OS2-EMX target. ["Brian Havard" and Richard Levitte] *) Rewrite apps to use NCONF routines instead of the old CONF. New functions to support NCONF routines in extension code. New function CONF_set_nconf() to allow functions which take an NCONF to also handle the old LHASH structure: this means that the old CONF compatible routines can be retained (in particular wrt extensions) without having to duplicate the code. New function X509V3_add_ext_nconf_sk to add extensions to a stack. [Steve Henson] *) Enhance the general user interface with mechanisms for inner control and with possibilities to have yes/no kind of prompts. [Richard Levitte] *) Change all calls to low level digest routines in the library and applications to use EVP. Add missing calls to HMAC_cleanup() and don't assume HMAC_CTX can be copied using memcpy(). [Verdon Walker , Steve Henson] *) Add the possibility to control engines through control names but with arbitrary arguments instead of just a string. Change the key loaders to take a UI_METHOD instead of a callback function pointer. NOTE: this breaks binary compatibility with earlier versions of OpenSSL [engine]. Adapt the nCipher code for these new conditions and add a card insertion callback. [Richard Levitte] *) Enhance the general user interface with mechanisms to better support dialog box interfaces, application-defined prompts, the possibility to use defaults (for example default passwords from somewhere else) and interrupts/cancellations. [Richard Levitte] *) Tidy up PKCS#12 attribute handling. Add support for the CSP name attribute in PKCS#12 files, add new -CSP option to pkcs12 utility. [Steve Henson] *) Fix a memory leak in 'sk_dup()' in the case reallocation fails. (Also tidy up some unnecessarily weird code in 'sk_new()'). [Geoff, reported by Diego Tartara ] *) Change the key loading routines for ENGINEs to use the same kind callback (pem_password_cb) as all other routines that need this kind of callback. [Richard Levitte] *) Increase ENTROPY_NEEDED to 32 bytes, as Rijndael can operate with 256 bit (=32 byte) keys. Of course seeding with more entropy bytes than this minimum value is recommended. [Lutz Jaenicke] *) New random seeder for OpenVMS, using the system process statistics that are easily reachable. [Richard Levitte] *) Windows apparently can't transparently handle global variables defined in DLLs. Initialisations such as: const ASN1_ITEM *it = &ASN1_INTEGER_it; won't compile. This is used by the any applications that need to declare their own ASN1 modules. This was fixed by adding the option EXPORT_VAR_AS_FN to all Win32 platforms, although this isn't strictly needed for static libraries under Win32. [Steve Henson] *) New functions X509_PURPOSE_set() and X509_TRUST_set() to handle setting of purpose and trust fields. New X509_STORE trust and purpose functions and tidy up setting in other SSL functions. [Steve Henson] *) Add copies of X509_STORE_CTX fields and callbacks to X509_STORE structure. These are inherited by X509_STORE_CTX when it is initialised. This allows various defaults to be set in the X509_STORE structure (such as flags for CRL checking and custom purpose or trust settings) for functions which only use X509_STORE_CTX internally such as S/MIME. Modify X509_STORE_CTX_purpose_inherit() so it only sets purposes and trust settings if they are not set in X509_STORE. This allows X509_STORE purposes and trust (in S/MIME for example) to override any set by default. Add command line options for CRL checking to smime, s_client and s_server applications. [Steve Henson] *) Initial CRL based revocation checking. If the CRL checking flag(s) are set then the CRL is looked up in the X509_STORE structure and its validity and signature checked, then if the certificate is found in the CRL the verify fails with a revoked error. Various new CRL related callbacks added to X509_STORE_CTX structure. Command line options added to 'verify' application to support this. This needs some additional work, such as being able to handle multiple CRLs with different times, extension based lookup (rather than just by subject name) and ultimately more complete V2 CRL extension handling. [Steve Henson] *) Add a general user interface API (crypto/ui/). This is designed to replace things like des_read_password and friends (backward compatibility functions using this new API are provided). The purpose is to remove prompting functions from the DES code section as well as provide for prompting through dialog boxes in a window system and the like. [Richard Levitte] *) Add "ex_data" support to ENGINE so implementations can add state at a per-structure level rather than having to store it globally. [Geoff] *) Make it possible for ENGINE structures to be copied when retrieved by ENGINE_by_id() if the ENGINE specifies a new flag: ENGINE_FLAGS_BY_ID_COPY. This causes the "original" ENGINE structure to act like a template, analogous to the RSA vs. RSA_METHOD type of separation. Because of this operational state can be localised to each ENGINE structure, despite the fact they all share the same "methods". New ENGINE structures returned in this case have no functional references and the return value is the single structural reference. This matches the single structural reference returned by ENGINE_by_id() normally, when it is incremented on the pre-existing ENGINE structure. [Geoff] *) Fix ASN1 decoder when decoding type ANY and V_ASN1_OTHER: since this needs to match any other type at all we need to manually clear the tag cache. [Steve Henson] *) Changes to the "openssl engine" utility to include; - verbosity levels ('-v', '-vv', and '-vvv') that provide information about an ENGINE's available control commands. - executing control commands from command line arguments using the '-pre' and '-post' switches. '-post' is only used if '-t' is specified and the ENGINE is successfully initialised. The syntax for the individual commands are colon-separated, for example; openssl engine chil -pre FORK_CHECK:0 -pre SO_PATH:/lib/test.so [Geoff] *) New dynamic control command support for ENGINEs. ENGINEs can now declare their own commands (numbers), names (strings), descriptions, and input types for run-time discovery by calling applications. A subset of these commands are implicitly classed as "executable" depending on their input type, and only these can be invoked through the new string-based API function ENGINE_ctrl_cmd_string(). (Eg. this can be based on user input, config files, etc). The distinction is that "executable" commands cannot return anything other than a boolean result and can only support numeric or string input, whereas some discoverable commands may only be for direct use through ENGINE_ctrl(), eg. supporting the exchange of binary data, function pointers, or other custom uses. The "executable" commands are to support parameterisations of ENGINE behaviour that can be unambiguously defined by ENGINEs and used consistently across any OpenSSL-based application. Commands have been added to all the existing hardware-supporting ENGINEs, noticeably "SO_PATH" to allow control over shared-library paths without source code alterations. [Geoff] *) Changed all ENGINE implementations to dynamically allocate their ENGINEs rather than declaring them statically. Apart from this being necessary with the removal of the ENGINE_FLAGS_MALLOCED distinction, this also allows the implementations to compile without using the internal engine_int.h header. [Geoff] *) Minor adjustment to "rand" code. RAND_get_rand_method() now returns a 'const' value. Any code that should be able to modify a RAND_METHOD should already have non-const pointers to it (ie. they should only modify their own ones). [Geoff] *) Made a variety of little tweaks to the ENGINE code. - "atalla" and "ubsec" string definitions were moved from header files to C code. "nuron" string definitions were placed in variables rather than hard-coded - allowing parameterisation of these values later on via ctrl() commands. - Removed unused "#if 0"'d code. - Fixed engine list iteration code so it uses ENGINE_free() to release structural references. - Constified the RAND_METHOD element of ENGINE structures. - Constified various get/set functions as appropriate and added missing functions (including a catch-all ENGINE_cpy that duplicates all ENGINE values onto a new ENGINE except reference counts/state). - Removed NULL parameter checks in get/set functions. Setting a method or function to NULL is a way of cancelling out a previously set value. Passing a NULL ENGINE parameter is just plain stupid anyway and doesn't justify the extra error symbols and code. - Deprecate the ENGINE_FLAGS_MALLOCED define and move the area for flags from engine_int.h to engine.h. - Changed prototypes for ENGINE handler functions (init(), finish(), ctrl(), key-load functions, etc) to take an (ENGINE*) parameter. [Geoff] *) Implement binary inversion algorithm for BN_mod_inverse in addition to the algorithm using long division. The binary algorithm can be used only if the modulus is odd. On 32-bit systems, it is faster only for relatively small moduli (roughly 20-30% for 128-bit moduli, roughly 5-15% for 256-bit moduli), so we use it only for moduli up to 450 bits. In 64-bit environments, the binary algorithm appears to be advantageous for much longer moduli; here we use it for moduli up to 2048 bits. [Bodo Moeller] *) Rewrite CHOICE field setting in ASN1_item_ex_d2i(). The old code could not support the combine flag in choice fields. [Steve Henson] *) Add a 'copy_extensions' option to the 'ca' utility. This copies extensions from a certificate request to the certificate. [Steve Henson] *) Allow multiple 'certopt' and 'nameopt' options to be separated by commas. Add 'namopt' and 'certopt' options to the 'ca' config file: this allows the display of the certificate about to be signed to be customised, to allow certain fields to be included or excluded and extension details. The old system didn't display multicharacter strings properly, omitted fields not in the policy and couldn't display additional details such as extensions. [Steve Henson] *) Function EC_POINTs_mul for multiple scalar multiplication of an arbitrary number of elliptic curve points \sum scalars[i]*points[i], optionally including the generator defined for the EC_GROUP: scalar*generator + \sum scalars[i]*points[i]. EC_POINT_mul is a simple wrapper function for the typical case that the point list has just one item (besides the optional generator). [Bodo Moeller] *) First EC_METHODs for curves over GF(p): EC_GFp_simple_method() uses the basic BN_mod_mul and BN_mod_sqr operations and provides various method functions that can also operate with faster implementations of modular arithmetic. EC_GFp_mont_method() reuses most functions that are part of EC_GFp_simple_method, but uses Montgomery arithmetic. [Bodo Moeller; point addition and point doubling implementation directly derived from source code provided by Lenka Fibikova ] *) Framework for elliptic curves (crypto/ec/ec.h, crypto/ec/ec_lcl.h, crypto/ec/ec_lib.c): Curves are EC_GROUP objects (with an optional group generator) based on EC_METHODs that are built into the library. Points are EC_POINT objects based on EC_GROUP objects. Most of the framework would be able to handle curves over arbitrary finite fields, but as there are no obvious types for fields other than GF(p), some functions are limited to that for now. [Bodo Moeller] *) Add the -HTTP option to s_server. It is similar to -WWW, but requires that the file contains a complete HTTP response. [Richard Levitte] *) Add the ec directory to mkdef.pl and mkfiles.pl. In mkdef.pl change the def and num file printf format specifier from "%-40sXXX" to "%-39s XXX". The latter will always guarantee a space after the field while the former will cause them to run together if the field is 40 of more characters long. [Steve Henson] *) Constify the cipher and digest 'method' functions and structures and modify related functions to take constant EVP_MD and EVP_CIPHER pointers. [Steve Henson] *) Hide BN_CTX structure details in bn_lcl.h instead of publishing them in . Also further increase BN_CTX_NUM to 32. [Bodo Moeller] *) Modify EVP_Digest*() routines so they now return values. Although the internal software routines can never fail additional hardware versions might. [Steve Henson] *) Clean up crypto/err/err.h and change some error codes to avoid conflicts: Previously ERR_R_FATAL was too small and coincided with ERR_LIB_PKCS7 (= ERR_R_PKCS7_LIB); it is now 64 instead of 32. ASN1 error codes ERR_R_NESTED_ASN1_ERROR ... ERR_R_MISSING_ASN1_EOS were 4 .. 9, conflicting with ERR_LIB_RSA (= ERR_R_RSA_LIB) ... ERR_LIB_PEM (= ERR_R_PEM_LIB). They are now 58 .. 63 (i.e., just below ERR_R_FATAL). Add new error code 'ERR_R_INTERNAL_ERROR'. [Bodo Moeller] *) Don't overuse locks in crypto/err/err.c: For data retrieval, CRYPTO_r_lock suffices. [Bodo Moeller] *) New option '-subj arg' for 'openssl req' and 'openssl ca'. This sets the subject name for a new request or supersedes the subject name in a given request. Formats that can be parsed are 'CN=Some Name, OU=myOU, C=IT' and 'CN=Some Name/OU=myOU/C=IT'. Add options '-batch' and '-verbose' to 'openssl req'. [Massimiliano Pala ] *) Introduce the possibility to access global variables through functions on platform were that's the best way to handle exporting global variables in shared libraries. To enable this functionality, one must configure with "EXPORT_VAR_AS_FN" or defined the C macro "OPENSSL_EXPORT_VAR_AS_FUNCTION" in crypto/opensslconf.h (the latter is normally done by Configure or something similar). To implement a global variable, use the macro OPENSSL_IMPLEMENT_GLOBAL in the source file (foo.c) like this: OPENSSL_IMPLEMENT_GLOBAL(int,foo)=1; OPENSSL_IMPLEMENT_GLOBAL(double,bar); To declare a global variable, use the macros OPENSSL_DECLARE_GLOBAL and OPENSSL_GLOBAL_REF in the header file (foo.h) like this: OPENSSL_DECLARE_GLOBAL(int,foo); #define foo OPENSSL_GLOBAL_REF(foo) OPENSSL_DECLARE_GLOBAL(double,bar); #define bar OPENSSL_GLOBAL_REF(bar) The #defines are very important, and therefore so is including the header file everywhere where the defined globals are used. The macro OPENSSL_EXPORT_VAR_AS_FUNCTION also affects the definition of ASN.1 items, but that structure is a bit different. The largest change is in util/mkdef.pl which has been enhanced with better and easier to understand logic to choose which symbols should go into the Windows .def files as well as a number of fixes and code cleanup (among others, algorithm keywords are now sorted lexicographically to avoid constant rewrites). [Richard Levitte] *) In BN_div() keep a copy of the sign of 'num' before writing the result to 'rm' because if rm==num the value will be overwritten and produce the wrong result if 'num' is negative: this caused problems with BN_mod() and BN_nnmod(). [Steve Henson] *) Function OCSP_request_verify(). This checks the signature on an OCSP request and verifies the signer certificate. The signer certificate is just checked for a generic purpose and OCSP request trust settings. [Steve Henson] *) Add OCSP_check_validity() function to check the validity of OCSP responses. OCSP responses are prepared in real time and may only be a few seconds old. Simply checking that the current time lies between thisUpdate and nextUpdate max reject otherwise valid responses caused by either OCSP responder or client clock inaccuracy. Instead we allow thisUpdate and nextUpdate to fall within a certain period of the current time. The age of the response can also optionally be checked. Two new options -validity_period and -status_age added to ocsp utility. [Steve Henson] *) If signature or public key algorithm is unrecognized print out its OID rather that just UNKNOWN. [Steve Henson] *) Change OCSP_cert_to_id() to tolerate a NULL subject certificate and OCSP_cert_id_new() a NULL serialNumber. This allows a partial certificate ID to be generated from the issuer certificate alone which can then be passed to OCSP_id_issuer_cmp(). [Steve Henson] *) New compilation option ASN1_ITEM_FUNCTIONS. This causes the new ASN1 modules to export functions returning ASN1_ITEM pointers instead of the ASN1_ITEM structures themselves. This adds several new macros which allow the underlying ASN1 function/structure to be accessed transparently. As a result code should not use ASN1_ITEM references directly (such as &X509_it) but instead use the relevant macros (such as ASN1_ITEM_rptr(X509)). This option is to allow use of the new ASN1 code on platforms where exporting structures is problematical (for example in shared libraries) but exporting functions returning pointers to structures is not. [Steve Henson] *) Add support for overriding the generation of SSL/TLS session IDs. These callbacks can be registered either in an SSL_CTX or per SSL. The purpose of this is to allow applications to control, if they wish, the arbitrary values chosen for use as session IDs, particularly as it can be useful for session caching in multiple-server environments. A command-line switch for testing this (and any client code that wishes to use such a feature) has been added to "s_server". [Geoff Thorpe, Lutz Jaenicke] *) Modify mkdef.pl to recognise and parse preprocessor conditionals of the form '#if defined(...) || defined(...) || ...' and '#if !defined(...) && !defined(...) && ...'. This also avoids the growing number of special cases it was previously handling. [Richard Levitte] *) Make all configuration macros available for application by making sure they are available in opensslconf.h, by giving them names starting with "OPENSSL_" to avoid conflicts with other packages and by making sure e_os2.h will cover all platform-specific cases together with opensslconf.h. Additionally, it is now possible to define configuration/platform- specific names (called "system identities"). In the C code, these are prefixed with "OPENSSL_SYSNAME_". e_os2.h will create another macro with the name beginning with "OPENSSL_SYS_", which is determined from "OPENSSL_SYSNAME_*" or compiler-specific macros depending on what is available. [Richard Levitte] *) New option -set_serial to 'req' and 'x509' this allows the serial number to use to be specified on the command line. Previously self signed certificates were hard coded with serial number 0 and the CA options of 'x509' had to use a serial number in a file which was auto incremented. [Steve Henson] *) New options to 'ca' utility to support V2 CRL entry extensions. Currently CRL reason, invalidity date and hold instruction are supported. Add new CRL extensions to V3 code and some new objects. [Steve Henson] *) New function EVP_CIPHER_CTX_set_padding() this is used to disable standard block padding (aka PKCS#5 padding) in the EVP API, which was previously mandatory. This means that the data is not padded in any way and so the total length much be a multiple of the block size, otherwise an error occurs. [Steve Henson] *) Initial (incomplete) OCSP SSL support. [Steve Henson] *) New function OCSP_parse_url(). This splits up a URL into its host, port and path components: primarily to parse OCSP URLs. New -url option to ocsp utility. [Steve Henson] *) New nonce behavior. The return value of OCSP_check_nonce() now reflects the various checks performed. Applications can decide whether to tolerate certain situations such as an absent nonce in a response when one was present in a request: the ocsp application just prints out a warning. New function OCSP_add1_basic_nonce() this is to allow responders to include a nonce in a response even if the request is nonce-less. [Steve Henson] *) Disable stdin buffering in load_cert (apps/apps.c) so that no certs are skipped when using openssl x509 multiple times on a single input file, e.g. "(openssl x509 -out cert1; openssl x509 -out cert2) ] *) New OCSP verify flag OCSP_TRUSTOTHER. When set the "other" certificates passed by the function are trusted implicitly. If any of them signed the response then it is assumed to be valid and is not verified. [Steve Henson] *) In PKCS7_set_type() initialise content_type in PKCS7_ENC_CONTENT to data. This was previously part of the PKCS7 ASN1 code. This was causing problems with OpenSSL created PKCS#12 and PKCS#7 structures. [Steve Henson, reported by Kenneth R. Robinette ] *) Add CRYPTO_push_info() and CRYPTO_pop_info() calls to new ASN1 routines: without these tracing memory leaks is very painful. Fix leaks in PKCS12 and PKCS7 routines. [Steve Henson] *) Make X509_time_adj() cope with the new behaviour of ASN1_TIME_new(). Previously it initialised the 'type' argument to V_ASN1_UTCTIME which effectively meant GeneralizedTime would never be used. Now it is initialised to -1 but X509_time_adj() now has to check the value and use ASN1_TIME_set() if the value is not V_ASN1_UTCTIME or V_ASN1_GENERALIZEDTIME, without this it always uses GeneralizedTime. [Steve Henson, reported by Kenneth R. Robinette ] *) Fixes to BN_to_ASN1_INTEGER when bn is zero. This would previously result in a zero length in the ASN1_INTEGER structure which was not consistent with the structure when d2i_ASN1_INTEGER() was used and would cause ASN1_INTEGER_cmp() to fail. Enhance s2i_ASN1_INTEGER() to cope with hex and negative integers. Fix bug in i2a_ASN1_INTEGER() where it did not print out a minus for negative ASN1_INTEGER. [Steve Henson] *) Add summary printout to ocsp utility. The various functions which convert status values to strings have been renamed to: OCSP_response_status_str(), OCSP_cert_status_str() and OCSP_crl_reason_str() and are no longer static. New options to verify nonce values and to disable verification. OCSP response printout format cleaned up. [Steve Henson] *) Add additional OCSP certificate checks. These are those specified in RFC2560. This consists of two separate checks: the CA of the certificate being checked must either be the OCSP signer certificate or the issuer of the OCSP signer certificate. In the latter case the OCSP signer certificate must contain the OCSP signing extended key usage. This check is performed by attempting to match the OCSP signer or the OCSP signer CA to the issuerNameHash and issuerKeyHash in the OCSP_CERTID structures of the response. [Steve Henson] *) Initial OCSP certificate verification added to OCSP_basic_verify() and related routines. This uses the standard OpenSSL certificate verify routines to perform initial checks (just CA validity) and to obtain the certificate chain. Then additional checks will be performed on the chain. Currently the root CA is checked to see if it is explicitly trusted for OCSP signing. This is used to set a root CA as a global signing root: that is any certificate that chains to that CA is an acceptable OCSP signing certificate. [Steve Henson] *) New '-extfile ...' option to 'openssl ca' for reading X.509v3 extensions from a separate configuration file. As when reading extensions from the main configuration file, the '-extensions ...' option may be used for specifying the section to use. [Massimiliano Pala ] *) New OCSP utility. Allows OCSP requests to be generated or read. The request can be sent to a responder and the output parsed, outputted or printed in text form. Not complete yet: still needs to check the OCSP response validity. [Steve Henson] *) New subcommands for 'openssl ca': 'openssl ca -status ' prints the status of the cert with the given serial number (according to the index file). 'openssl ca -updatedb' updates the expiry status of certificates in the index file. [Massimiliano Pala ] *) New '-newreq-nodes' command option to CA.pl. This is like '-newreq', but calls 'openssl req' with the '-nodes' option so that the resulting key is not encrypted. [Damien Miller ] *) New configuration for the GNU Hurd. [Jonathan Bartlett via Richard Levitte] *) Initial code to implement OCSP basic response verify. This is currently incomplete. Currently just finds the signer's certificate and verifies the signature on the response. [Steve Henson] *) New SSLeay_version code SSLEAY_DIR to determine the compiled-in value of OPENSSLDIR. This is available via the new '-d' option to 'openssl version', and is also included in 'openssl version -a'. [Bodo Moeller] *) Allowing defining memory allocation callbacks that will be given file name and line number information in additional arguments (a const char* and an int). The basic functionality remains, as well as the original possibility to just replace malloc(), realloc() and free() by functions that do not know about these additional arguments. To register and find out the current settings for extended allocation functions, the following functions are provided: CRYPTO_set_mem_ex_functions CRYPTO_set_locked_mem_ex_functions CRYPTO_get_mem_ex_functions CRYPTO_get_locked_mem_ex_functions These work the same way as CRYPTO_set_mem_functions and friends. CRYPTO_get_[locked_]mem_functions now writes 0 where such an extended allocation function is enabled. Similarly, CRYPTO_get_[locked_]mem_ex_functions writes 0 where a conventional allocation function is enabled. [Richard Levitte, Bodo Moeller] *) Finish off removing the remaining LHASH function pointer casts. There should no longer be any prototype-casting required when using the LHASH abstraction, and any casts that remain are "bugs". See the callback types and macros at the head of lhash.h for details (and "OBJ_cleanup" in crypto/objects/obj_dat.c as an example). [Geoff Thorpe] *) Add automatic query of EGD sockets in RAND_poll() for the unix variant. If /dev/[u]random devices are not available or do not return enough entropy, EGD style sockets (served by EGD or PRNGD) will automatically be queried. The locations /var/run/egd-pool, /dev/egd-pool, /etc/egd-pool, and /etc/entropy will be queried once each in this sequence, querying stops when enough entropy was collected without querying more sockets. [Lutz Jaenicke] *) Change the Unix RAND_poll() variant to be able to poll several random devices, as specified by DEVRANDOM, until a sufficient amount of data has been collected. We spend at most 10 ms on each file (select timeout) and read in non-blocking mode. DEVRANDOM now defaults to the list "/dev/urandom", "/dev/random", "/dev/srandom" (previously it was just the string "/dev/urandom"), so on typical platforms the 10 ms delay will never occur. Also separate out the Unix variant to its own file, rand_unix.c. For VMS, there's a currently-empty rand_vms.c. [Richard Levitte] *) Move OCSP client related routines to ocsp_cl.c. These provide utility functions which an application needing to issue a request to an OCSP responder and analyse the response will typically need: as opposed to those which an OCSP responder itself would need which will be added later. OCSP_request_sign() signs an OCSP request with an API similar to PKCS7_sign(). OCSP_response_status() returns status of OCSP response. OCSP_response_get1_basic() extracts basic response from response. OCSP_resp_find_status(): finds and extracts status information from an OCSP_CERTID structure (which will be created when the request structure is built). These are built from lower level functions which work on OCSP_SINGLERESP structures but won't normally be used unless the application wishes to examine extensions in the OCSP response for example. Replace nonce routines with a pair of functions. OCSP_request_add1_nonce() adds a nonce value and optionally generates a random value. OCSP_check_nonce() checks the validity of the nonce in an OCSP response. [Steve Henson] *) Change function OCSP_request_add() to OCSP_request_add0_id(). This doesn't copy the supplied OCSP_CERTID and avoids the need to free up the newly created id. Change return type to OCSP_ONEREQ to return the internal OCSP_ONEREQ structure. This can then be used to add extensions to the request. Deleted OCSP_request_new(), since most of its functionality is now in OCSP_REQUEST_new() (and the case insensitive name clash) apart from the ability to set the request name which will be added elsewhere. [Steve Henson] *) Update OCSP API. Remove obsolete extensions argument from various functions. Extensions are now handled using the new OCSP extension code. New simple OCSP HTTP function which can be used to send requests and parse the response. [Steve Henson] *) Fix the PKCS#7 (S/MIME) code to work with new ASN1. Two new ASN1_ITEM structures help with sign and verify. PKCS7_ATTR_SIGN uses the special reorder version of SET OF to sort the attributes and reorder them to match the encoded order. This resolves a long standing problem: a verify on a PKCS7 structure just after signing it used to fail because the attribute order did not match the encoded order. PKCS7_ATTR_VERIFY does not reorder the attributes: it uses the received order. This is necessary to tolerate some broken software that does not order SET OF. This is handled by encoding as a SEQUENCE OF but using implicit tagging (with UNIVERSAL class) to produce the required SET OF. [Steve Henson] *) Have mk1mf.pl generate the macros OPENSSL_BUILD_SHLIBCRYPTO and OPENSSL_BUILD_SHLIBSSL and use them appropriately in the header files to get correct declarations of the ASN.1 item variables. [Richard Levitte] *) Rewrite of PKCS#12 code to use new ASN1 functionality. Replace many PKCS#12 macros with real functions. Fix two unrelated ASN1 bugs: asn1_check_tlen() would sometimes attempt to use 'ctx' when it was NULL and ASN1_TYPE was not dereferenced properly in asn1_ex_c2i(). New ASN1 macro: DECLARE_ASN1_ITEM() which just declares the relevant ASN1_ITEM and no wrapper functions. [Steve Henson] *) New functions or ASN1_item_d2i_fp() and ASN1_item_d2i_bio(). These replace the old function pointer based I/O routines. Change most of the *_d2i_bio() and *_d2i_fp() functions to use these. [Steve Henson] *) Enhance mkdef.pl to be more accepting about spacing in C preprocessor lines, recognize more "algorithms" that can be deselected, and make it complain about algorithm deselection that isn't recognised. [Richard Levitte] *) New ASN1 functions to handle dup, sign, verify, digest, pack and unpack operations in terms of ASN1_ITEM. Modify existing wrappers to use new functions. Add NO_ASN1_OLD which can be set to remove some old style ASN1 functions: this can be used to determine if old code will still work when these eventually go away. [Steve Henson] *) New extension functions for OCSP structures, these follow the same conventions as certificates and CRLs. [Steve Henson] *) New function X509V3_add1_i2d(). This automatically encodes and adds an extension. Its behaviour can be customised with various flags to append, replace or delete. Various wrappers added for certificates and CRLs. [Steve Henson] *) Fix to avoid calling the underlying ASN1 print routine when an extension cannot be parsed. Correct a typo in the OCSP_SERVICELOC extension. Tidy up print OCSP format. [Steve Henson] *) Make mkdef.pl parse some of the ASN1 macros and add appropriate entries for variables. [Steve Henson] *) Add functionality to apps/openssl.c for detecting locking problems: As the program is single-threaded, all we have to do is register a locking callback using an array for storing which locks are currently held by the program. [Bodo Moeller] *) Use a lock around the call to CRYPTO_get_ex_new_index() in SSL_get_ex_data_X509_STORE_idx(), which is used in ssl_verify_cert_chain() and thus can be called at any time during TLS/SSL handshakes so that thread-safety is essential. Unfortunately, the ex_data design is not at all suited for multi-threaded use, so it probably should be abolished. [Bodo Moeller] *) Added Broadcom "ubsec" ENGINE to OpenSSL. [Broadcom, tweaked and integrated by Geoff Thorpe] *) Move common extension printing code to new function X509V3_print_extensions(). Reorganise OCSP print routines and implement some needed OCSP ASN1 functions. Add OCSP extensions. [Steve Henson] *) New function X509_signature_print() to remove duplication in some print routines. [Steve Henson] *) Add a special meaning when SET OF and SEQUENCE OF flags are both set (this was treated exactly the same as SET OF previously). This is used to reorder the STACK representing the structure to match the encoding. This will be used to get round a problem where a PKCS7 structure which was signed could not be verified because the STACK order did not reflect the encoded order. [Steve Henson] *) Reimplement the OCSP ASN1 module using the new code. [Steve Henson] *) Update the X509V3 code to permit the use of an ASN1_ITEM structure for its ASN1 operations. The old style function pointers still exist for now but they will eventually go away. [Steve Henson] *) Merge in replacement ASN1 code from the ASN1 branch. This almost completely replaces the old ASN1 functionality with a table driven encoder and decoder which interprets an ASN1_ITEM structure describing the ASN1 module. Compatibility with the existing ASN1 API (i2d,d2i) is largely maintained. Almost all of the old asn1_mac.h macro based ASN1 has also been converted to the new form. [Steve Henson] *) Change BN_mod_exp_recp so that negative moduli are tolerated (the sign is ignored). Similarly, ignore the sign in BN_MONT_CTX_set so that BN_mod_exp_mont and BN_mod_exp_mont_word work for negative moduli. [Bodo Moeller] *) Fix BN_uadd and BN_usub: Always return non-negative results instead of not touching the result's sign bit. [Bodo Moeller] *) BN_div bugfix: If the result is 0, the sign (res->neg) must not be set. [Bodo Moeller] *) Changed the LHASH code to use prototypes for callbacks, and created macros to declare and implement thin (optionally static) functions that provide type-safety and avoid function pointer casting for the type-specific callbacks. [Geoff Thorpe] *) Added Kerberos Cipher Suites to be used with TLS, as written in RFC 2712. [Veers Staats , Jeffrey Altman , via Richard Levitte] *) Reformat the FAQ so the different questions and answers can be divided in sections depending on the subject. [Richard Levitte] *) Have the zlib compression code load ZLIB.DLL dynamically under Windows. [Richard Levitte] *) New function BN_mod_sqrt for computing square roots modulo a prime (using the probabilistic Tonelli-Shanks algorithm unless p == 3 (mod 4) or p == 5 (mod 8), which are cases that can be handled deterministically). [Lenka Fibikova , Bodo Moeller] *) Make BN_mod_inverse faster by explicitly handling small quotients in the Euclid loop. (Speed gain about 20% for small moduli [256 or 512 bits], about 30% for larger ones [1024 or 2048 bits].) [Bodo Moeller] *) New function BN_kronecker. [Bodo Moeller] *) Fix BN_gcd so that it works on negative inputs; the result is positive unless both parameters are zero. Previously something reasonably close to an infinite loop was possible because numbers could be growing instead of shrinking in the implementation of Euclid's algorithm. [Bodo Moeller] *) Fix BN_is_word() and BN_is_one() macros to take into account the sign of the number in question. Fix BN_is_word(a,w) to work correctly for w == 0. The old BN_is_word(a,w) macro is now called BN_abs_is_word(a,w) because its test if the absolute value of 'a' equals 'w'. Note that BN_abs_is_word does *not* handle w == 0 reliably; it exists mostly for use in the implementations of BN_is_zero(), BN_is_one(), and BN_is_word(). [Bodo Moeller] *) New function BN_swap. [Bodo Moeller] *) Use BN_nnmod instead of BN_mod in crypto/bn/bn_exp.c so that the exponentiation functions are more likely to produce reasonable results on negative inputs. [Bodo Moeller] *) Change BN_mod_mul so that the result is always non-negative. Previously, it could be negative if one of the factors was negative; I don't think anyone really wanted that behaviour. [Bodo Moeller] *) Move BN_mod_... functions into new file crypto/bn/bn_mod.c (except for exponentiation, which stays in crypto/bn/bn_exp.c, and BN_mod_mul_reciprocal, which stays in crypto/bn/bn_recp.c) and add new functions: BN_nnmod BN_mod_sqr BN_mod_add BN_mod_add_quick BN_mod_sub BN_mod_sub_quick BN_mod_lshift1 BN_mod_lshift1_quick BN_mod_lshift BN_mod_lshift_quick These functions always generate non-negative results. BN_nnmod otherwise is like BN_mod (if BN_mod computes a remainder r such that |m| < r < 0, BN_nnmod will output rem + |m| instead). BN_mod_XXX_quick(r, a, [b,] m) generates the same result as BN_mod_XXX(r, a, [b,] m, ctx), but requires that a [and b] be reduced modulo m. [Lenka Fibikova , Bodo Moeller] #if 0 The following entry accidentally appeared in the CHANGES file distributed with OpenSSL 0.9.7. The modifications described in it do *not* apply to OpenSSL 0.9.7. *) Remove a few calls to bn_wexpand() in BN_sqr() (the one in there was actually never needed) and in BN_mul(). The removal in BN_mul() required a small change in bn_mul_part_recursive() and the addition of the functions bn_cmp_part_words(), bn_sub_part_words() and bn_add_part_words(), which do the same thing as bn_cmp_words(), bn_sub_words() and bn_add_words() except they take arrays with differing sizes. [Richard Levitte] #endif *) In 'openssl passwd', verify passwords read from the terminal unless the '-salt' option is used (which usually means that verification would just waste user's time since the resulting hash is going to be compared with some given password hash) or the new '-noverify' option is used. This is an incompatible change, but it does not affect non-interactive use of 'openssl passwd' (passwords on the command line, '-stdin' option, '-in ...' option) and thus should not cause any problems. [Bodo Moeller] *) Remove all references to RSAref, since there's no more need for it. [Richard Levitte] *) Make DSO load along a path given through an environment variable (SHLIB_PATH) with shl_load(). [Richard Levitte] *) Constify the ENGINE code as a result of BIGNUM constification. Also constify the RSA code and most things related to it. In a few places, most notable in the depth of the ASN.1 code, ugly casts back to non-const were required (to be solved at a later time) [Richard Levitte] *) Make it so the openssl application has all engines loaded by default. [Richard Levitte] *) Constify the BIGNUM routines a little more. [Richard Levitte] *) Add the following functions: ENGINE_load_cswift() ENGINE_load_chil() ENGINE_load_atalla() ENGINE_load_nuron() ENGINE_load_builtin_engines() That way, an application can itself choose if external engines that are built-in in OpenSSL shall ever be used or not. The benefit is that applications won't have to be linked with libdl or other dso libraries unless it's really needed. Changed 'openssl engine' to load all engines on demand. Changed the engine header files to avoid the duplication of some declarations (they differed!). [Richard Levitte] *) 'openssl engine' can now list capabilities. [Richard Levitte] *) Better error reporting in 'openssl engine'. [Richard Levitte] *) Never call load_dh_param(NULL) in s_server. [Bodo Moeller] *) Add engine application. It can currently list engines by name and identity, and test if they are actually available. [Richard Levitte] *) Improve RPM specification file by forcing symbolic linking and making sure the installed documentation is also owned by root.root. [Damien Miller ] *) Give the OpenSSL applications more possibilities to make use of keys (public as well as private) handled by engines. [Richard Levitte] *) Add OCSP code that comes from CertCo. [Richard Levitte] *) Add VMS support for the Rijndael code. [Richard Levitte] *) Added untested support for Nuron crypto accelerator. [Ben Laurie] *) Add support for external cryptographic devices. This code was previously distributed separately as the "engine" branch. [Geoff Thorpe, Richard Levitte] *) Rework the filename-translation in the DSO code. It is now possible to have far greater control over how a "name" is turned into a filename depending on the operating environment and any oddities about the different shared library filenames on each system. [Geoff Thorpe] *) Support threads on FreeBSD-elf in Configure. [Richard Levitte] *) Fix for SHA1 assembly problem with MASM: it produces warnings about corrupt line number information when assembling with debugging information. This is caused by the overlapping of two sections. [Bernd Matthes , Steve Henson] *) NCONF changes. NCONF_get_number() has no error checking at all. As a replacement, NCONF_get_number_e() is defined (_e for "error checking") and is promoted strongly. The old NCONF_get_number is kept around for binary backward compatibility. Make it possible for methods to load from something other than a BIO, by providing a function pointer that is given a name instead of a BIO. For example, this could be used to load configuration data from an LDAP server. [Richard Levitte] *) Fix for non blocking accept BIOs. Added new I/O special reason BIO_RR_ACCEPT to cover this case. Previously use of accept BIOs with non blocking I/O was not possible because no retry code was implemented. Also added new SSL code SSL_WANT_ACCEPT to cover this case. [Steve Henson] *) Added the beginnings of Rijndael support. [Ben Laurie] *) Fix for bug in DirectoryString mask setting. Add support for X509_NAME_print_ex() in 'req' and X509_print_ex() function to allow certificate printing to more controllable, additional 'certopt' option to 'x509' to allow new printing options to be set. [Steve Henson] *) Clean old EAY MD5 hack from e_os.h. [Richard Levitte] Changes between 0.9.6l and 0.9.6m [17 Mar 2004] *) Fix null-pointer assignment in do_change_cipher_spec() revealed by using the Codenomicon TLS Test Tool (CVE-2004-0079) [Joe Orton, Steve Henson] Changes between 0.9.6k and 0.9.6l [04 Nov 2003] *) Fix additional bug revealed by the NISCC test suite: Stop bug triggering large recursion when presented with certain ASN.1 tags (CVE-2003-0851) [Steve Henson] Changes between 0.9.6j and 0.9.6k [30 Sep 2003] *) Fix various bugs revealed by running the NISCC test suite: Stop out of bounds reads in the ASN1 code when presented with invalid tags (CVE-2003-0543 and CVE-2003-0544). If verify callback ignores invalid public key errors don't try to check certificate signature with the NULL public key. [Steve Henson] *) In ssl3_accept() (ssl/s3_srvr.c) only accept a client certificate if the server requested one: as stated in TLS 1.0 and SSL 3.0 specifications. [Steve Henson] *) In ssl3_get_client_hello() (ssl/s3_srvr.c), tolerate additional extra data after the compression methods not only for TLS 1.0 but also for SSL 3.0 (as required by the specification). [Bodo Moeller; problem pointed out by Matthias Loepfe] *) Change X509_certificate_type() to mark the key as exported/exportable when it's 512 *bits* long, not 512 bytes. [Richard Levitte] Changes between 0.9.6i and 0.9.6j [10 Apr 2003] *) Countermeasure against the Klima-Pokorny-Rosa extension of Bleichbacher's attack on PKCS #1 v1.5 padding: treat a protocol version number mismatch like a decryption error in ssl3_get_client_key_exchange (ssl/s3_srvr.c). [Bodo Moeller] *) Turn on RSA blinding by default in the default implementation to avoid a timing attack. Applications that don't want it can call RSA_blinding_off() or use the new flag RSA_FLAG_NO_BLINDING. They would be ill-advised to do so in most cases. [Ben Laurie, Steve Henson, Geoff Thorpe, Bodo Moeller] *) Change RSA blinding code so that it works when the PRNG is not seeded (in this case, the secret RSA exponent is abused as an unpredictable seed -- if it is not unpredictable, there is no point in blinding anyway). Make RSA blinding thread-safe by remembering the creator's thread ID in rsa->blinding and having all other threads use local one-time blinding factors (this requires more computation than sharing rsa->blinding, but avoids excessive locking; and if an RSA object is not shared between threads, blinding will still be very fast). [Bodo Moeller] Changes between 0.9.6h and 0.9.6i [19 Feb 2003] *) In ssl3_get_record (ssl/s3_pkt.c), minimize information leaked via timing by performing a MAC computation even if incorrect block cipher padding has been found. This is a countermeasure against active attacks where the attacker has to distinguish between bad padding and a MAC verification error. (CVE-2003-0078) [Bodo Moeller; problem pointed out by Brice Canvel (EPFL), Alain Hiltgen (UBS), Serge Vaudenay (EPFL), and Martin Vuagnoux (EPFL, Ilion)] Changes between 0.9.6g and 0.9.6h [5 Dec 2002] *) New function OPENSSL_cleanse(), which is used to cleanse a section of memory from its contents. This is done with a counter that will place alternating values in each byte. This can be used to solve two issues: 1) the removal of calls to memset() by highly optimizing compilers, and 2) cleansing with other values than 0, since those can be read through on certain media, for example a swap space on disk. [Geoff Thorpe] *) Bugfix: client side session caching did not work with external caching, because the session->cipher setting was not restored when reloading from the external cache. This problem was masked, when SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG (part of SSL_OP_ALL) was set. (Found by Steve Haslam .) [Lutz Jaenicke] *) Fix client_certificate (ssl/s2_clnt.c): The permissible total length of the REQUEST-CERTIFICATE message is 18 .. 34, not 17 .. 33. [Zeev Lieber ] *) Undo an undocumented change introduced in 0.9.6e which caused repeated calls to OpenSSL_add_all_ciphers() and OpenSSL_add_all_digests() to be ignored, even after calling EVP_cleanup(). [Richard Levitte] *) Change the default configuration reader to deal with last line not being properly terminated. [Richard Levitte] *) Change X509_NAME_cmp() so it applies the special rules on handling DN values that are of type PrintableString, as well as RDNs of type emailAddress where the value has the type ia5String. [stefank@valicert.com via Richard Levitte] *) Add a SSL_SESS_CACHE_NO_INTERNAL_STORE flag to take over half the job SSL_SESS_CACHE_NO_INTERNAL_LOOKUP was inconsistently doing, define a new flag (SSL_SESS_CACHE_NO_INTERNAL) to be the bitwise-OR of the two for use by the majority of applications wanting this behaviour, and update the docs. The documented behaviour and actual behaviour were inconsistent and had been changing anyway, so this is more a bug-fix than a behavioural change. [Geoff Thorpe, diagnosed by Nadav Har'El] *) Don't impose a 16-byte length minimum on session IDs in ssl/s3_clnt.c (the SSL 3.0 and TLS 1.0 specifications allow any length up to 32 bytes). [Bodo Moeller] *) Fix initialization code race conditions in SSLv23_method(), SSLv23_client_method(), SSLv23_server_method(), SSLv2_method(), SSLv2_client_method(), SSLv2_server_method(), SSLv3_method(), SSLv3_client_method(), SSLv3_server_method(), TLSv1_method(), TLSv1_client_method(), TLSv1_server_method(), ssl2_get_cipher_by_char(), ssl3_get_cipher_by_char(). [Patrick McCormick , Bodo Moeller] *) Reorder cleanup sequence in SSL_CTX_free(): only remove the ex_data after the cached sessions are flushed, as the remove_cb() might use ex_data contents. Bug found by Sam Varshavchik (see [openssl.org #212]). [Geoff Thorpe, Lutz Jaenicke] *) Fix typo in OBJ_txt2obj which incorrectly passed the content length, instead of the encoding length to d2i_ASN1_OBJECT. [Steve Henson] Changes between 0.9.6f and 0.9.6g [9 Aug 2002] *) [In 0.9.6g-engine release:] Fix crypto/engine/vendor_defns/cswift.h for WIN32 (use '_stdcall'). [Lynn Gazis ] Changes between 0.9.6e and 0.9.6f [8 Aug 2002] *) Fix ASN1 checks. Check for overflow by comparing with LONG_MAX and get fix the header length calculation. [Florian Weimer , Alon Kantor (and others), Steve Henson] *) Use proper error handling instead of 'assertions' in buffer overflow checks added in 0.9.6e. This prevents DoS (the assertions could call abort()). [Arne Ansper , Bodo Moeller] Changes between 0.9.6d and 0.9.6e [30 Jul 2002] *) Add various sanity checks to asn1_get_length() to reject the ASN1 length bytes if they exceed sizeof(long), will appear negative or the content length exceeds the length of the supplied buffer. [Steve Henson, Adi Stav , James Yonan ] *) Fix cipher selection routines: ciphers without encryption had no flags for the cipher strength set and where therefore not handled correctly by the selection routines (PR #130). [Lutz Jaenicke] *) Fix EVP_dsa_sha macro. [Nils Larsch] *) New option SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS for disabling the SSL 3.0/TLS 1.0 CBC vulnerability countermeasure that was added in OpenSSL 0.9.6d. As the countermeasure turned out to be incompatible with some broken SSL implementations, the new option is part of SSL_OP_ALL. SSL_OP_ALL is usually employed when compatibility with weird SSL implementations is desired (e.g. '-bugs' option to 's_client' and 's_server'), so the new option is automatically set in many applications. [Bodo Moeller] *) Changes in security patch: Changes marked "(CHATS)" were sponsored by the Defense Advanced Research Projects Agency (DARPA) and Air Force Research Laboratory, Air Force Materiel Command, USAF, under agreement number F30602-01-2-0537. *) Add various sanity checks to asn1_get_length() to reject the ASN1 length bytes if they exceed sizeof(long), will appear negative or the content length exceeds the length of the supplied buffer. (CVE-2002-0659) [Steve Henson, Adi Stav , James Yonan ] *) Assertions for various potential buffer overflows, not known to happen in practice. [Ben Laurie (CHATS)] *) Various temporary buffers to hold ASCII versions of integers were too small for 64 bit platforms. (CVE-2002-0655) [Matthew Byng-Maddick and Ben Laurie (CHATS)> *) Remote buffer overflow in SSL3 protocol - an attacker could supply an oversized session ID to a client. (CVE-2002-0656) [Ben Laurie (CHATS)] *) Remote buffer overflow in SSL2 protocol - an attacker could supply an oversized client master key. (CVE-2002-0656) [Ben Laurie (CHATS)] Changes between 0.9.6c and 0.9.6d [9 May 2002] *) Fix crypto/asn1/a_sign.c so that 'parameters' is omitted (not encoded as NULL) with id-dsa-with-sha1. [Nils Larsch ; problem pointed out by Bodo Moeller] *) Check various X509_...() return values in apps/req.c. [Nils Larsch ] *) Fix BASE64 decode (EVP_DecodeUpdate) for data with CR/LF ended lines: an end-of-file condition would erroneously be flagged, when the CRLF was just at the end of a processed block. The bug was discovered when processing data through a buffering memory BIO handing the data to a BASE64-decoding BIO. Bug fund and patch submitted by Pavel Tsekov and Nedelcho Stanev. [Lutz Jaenicke] *) Implement a countermeasure against a vulnerability recently found in CBC ciphersuites in SSL 3.0/TLS 1.0: Send an empty fragment before application data chunks to avoid the use of known IVs with data potentially chosen by the attacker. [Bodo Moeller] *) Fix length checks in ssl3_get_client_hello(). [Bodo Moeller] *) TLS/SSL library bugfix: use s->s3->in_read_app_data differently to prevent ssl3_read_internal() from incorrectly assuming that ssl3_read_bytes() found application data while handshake processing was enabled when in fact s->s3->in_read_app_data was merely automatically cleared during the initial handshake. [Bodo Moeller; problem pointed out by Arne Ansper ] *) Fix object definitions for Private and Enterprise: they were not recognized in their shortname (=lowercase) representation. Extend obj_dat.pl to issue an error when using undefined keywords instead of silently ignoring the problem (Svenning Sorensen ). [Lutz Jaenicke] *) Fix DH_generate_parameters() so that it works for 'non-standard' generators, i.e. generators other than 2 and 5. (Previously, the code did not properly initialise the 'add' and 'rem' values to BN_generate_prime().) In the new general case, we do not insist that 'generator' is actually a primitive root: This requirement is rather pointless; a generator of the order-q subgroup is just as good, if not better. [Bodo Moeller] *) Map new X509 verification errors to alerts. Discovered and submitted by Tom Wu . [Lutz Jaenicke] *) Fix ssl3_pending() (ssl/s3_lib.c) to prevent SSL_pending() from returning non-zero before the data has been completely received when using non-blocking I/O. [Bodo Moeller; problem pointed out by John Hughes] *) Some of the ciphers missed the strength entry (SSL_LOW etc). [Ben Laurie, Lutz Jaenicke] *) Fix bug in SSL_clear(): bad sessions were not removed (found by Yoram Zahavi ). [Lutz Jaenicke] *) Add information about CygWin 1.3 and on, and preserve proper configuration for the versions before that. [Corinna Vinschen and Richard Levitte] *) Make removal from session cache (SSL_CTX_remove_session()) more robust: check whether we deal with a copy of a session and do not delete from the cache in this case. Problem reported by "Izhar Shoshani Levi" . [Lutz Jaenicke] *) Do not store session data into the internal session cache, if it is never intended to be looked up (SSL_SESS_CACHE_NO_INTERNAL_LOOKUP flag is set). Proposed by Aslam . [Lutz Jaenicke] *) Have ASN1_BIT_STRING_set_bit() really clear a bit when the requested value is 0. [Richard Levitte] *) [In 0.9.6d-engine release:] Fix a crashbug and a logic bug in hwcrhk_load_pubkey(). [Toomas Kiisk via Richard Levitte] *) Add the configuration target linux-s390x. [Neale Ferguson via Richard Levitte] *) The earlier bugfix for the SSL3_ST_SW_HELLO_REQ_C case of ssl3_accept (ssl/s3_srvr.c) incorrectly used a local flag variable as an indication that a ClientHello message has been received. As the flag value will be lost between multiple invocations of ssl3_accept when using non-blocking I/O, the function may not be aware that a handshake has actually taken place, thus preventing a new session from being added to the session cache. To avoid this problem, we now set s->new_session to 2 instead of using a local variable. [Lutz Jaenicke, Bodo Moeller] *) Bugfix: Return -1 from ssl3_get_server_done (ssl3/s3_clnt.c) if the SSL_R_LENGTH_MISMATCH error is detected. [Geoff Thorpe, Bodo Moeller] *) New 'shared_ldflag' column in Configure platform table. [Richard Levitte] *) Fix EVP_CIPHER_mode macro. ["Dan S. Camper" ] *) Fix ssl3_read_bytes (ssl/s3_pkt.c): To ignore messages of unknown type, we must throw them away by setting rr->length to 0. [D P Chang ] Changes between 0.9.6b and 0.9.6c [21 dec 2001] *) Fix BN_rand_range bug pointed out by Dominikus Scherkl . (The previous implementation worked incorrectly for those cases where range = 10..._2 and 3*range is two bits longer than range.) [Bodo Moeller] *) Only add signing time to PKCS7 structures if it is not already present. [Steve Henson] *) Fix crypto/objects/objects.h: "ld-ce" should be "id-ce", OBJ_ld_ce should be OBJ_id_ce. Also some ip-pda OIDs in crypto/objects/objects.txt were incorrect (cf. RFC 3039). [Matt Cooper, Frederic Giudicelli, Bodo Moeller] *) Release CRYPTO_LOCK_DYNLOCK when CRYPTO_destroy_dynlockid() returns early because it has nothing to do. [Andy Schneider ] *) [In 0.9.6c-engine release:] Fix mutex callback return values in crypto/engine/hw_ncipher.c. [Andy Schneider ] *) [In 0.9.6c-engine release:] Add support for Cryptographic Appliance's keyserver technology. (Use engine 'keyclient') [Cryptographic Appliances and Geoff Thorpe] *) Add a configuration entry for OS/390 Unix. The C compiler 'c89' is called via tools/c89.sh because arguments have to be rearranged (all '-L' options must appear before the first object modules). [Richard Shapiro ] *) [In 0.9.6c-engine release:] Add support for Broadcom crypto accelerator cards, backported from 0.9.7. [Broadcom, Nalin Dahyabhai , Mark Cox] *) [In 0.9.6c-engine release:] Add support for SureWare crypto accelerator cards from Baltimore Technologies. (Use engine 'sureware') [Baltimore Technologies and Mark Cox] *) [In 0.9.6c-engine release:] Add support for crypto accelerator cards from Accelerated Encryption Processing, www.aep.ie. (Use engine 'aep') [AEP Inc. and Mark Cox] *) Add a configuration entry for gcc on UnixWare. [Gary Benson ] *) Change ssl/s2_clnt.c and ssl/s2_srvr.c so that received handshake messages are stored in a single piece (fixed-length part and variable-length part combined) and fix various bugs found on the way. [Bodo Moeller] *) Disable caching in BIO_gethostbyname(), directly use gethostbyname() instead. BIO_gethostbyname() does not know what timeouts are appropriate, so entries would stay in cache even when they have become invalid. [Bodo Moeller; problem pointed out by Rich Salz *) Change ssl23_get_client_hello (ssl/s23_srvr.c) behaviour when faced with a pathologically small ClientHello fragment that does not contain client_version: Instead of aborting with an error, simply choose the highest available protocol version (i.e., TLS 1.0 unless it is disabled). In practice, ClientHello messages are never sent like this, but this change gives us strictly correct behaviour at least for TLS. [Bodo Moeller] *) Fix SSL handshake functions and SSL_clear() such that SSL_clear() never resets s->method to s->ctx->method when called from within one of the SSL handshake functions. [Bodo Moeller; problem pointed out by Niko Baric] *) In ssl3_get_client_hello (ssl/s3_srvr.c), generate a fatal alert (sent using the client's version number) if client_version is smaller than the protocol version in use. Also change ssl23_get_client_hello (ssl/s23_srvr.c) to select TLS 1.0 if the client demanded SSL 3.0 but only TLS 1.0 is enabled; then the client will at least see that alert. [Bodo Moeller] *) Fix ssl3_get_message (ssl/s3_both.c) to handle message fragmentation correctly. [Bodo Moeller] *) Avoid infinite loop in ssl3_get_message (ssl/s3_both.c) if a client receives HelloRequest while in a handshake. [Bodo Moeller; bug noticed by Andy Schneider ] *) Bugfix in ssl3_accept (ssl/s3_srvr.c): Case SSL3_ST_SW_HELLO_REQ_C should end in 'break', not 'goto end' which circumvents various cleanups done in state SSL_ST_OK. But session related stuff must be disabled for SSL_ST_OK in the case that we just sent a HelloRequest. Also avoid some overhead by not calling ssl_init_wbio_buffer() before just sending a HelloRequest. [Bodo Moeller, Eric Rescorla ] *) Fix ssl/s3_enc.c, ssl/t1_enc.c and ssl/s3_pkt.c so that we don't reveal whether illegal block cipher padding was found or a MAC verification error occurred. (Neither SSLerr() codes nor alerts are directly visible to potential attackers, but the information may leak via logfiles.) Similar changes are not required for the SSL 2.0 implementation because the number of padding bytes is sent in clear for SSL 2.0, and the extra bytes are just ignored. However ssl/s2_pkt.c failed to verify that the purported number of padding bytes is in the legal range. [Bodo Moeller] *) Add OpenUNIX-8 support including shared libraries (Boyd Lynn Gerber ). [Lutz Jaenicke] *) Improve RSA_padding_check_PKCS1_OAEP() check again to avoid 'wristwatch attack' using huge encoding parameters (cf. James H. Manger's CRYPTO 2001 paper). Note that the RSA_PKCS1_OAEP_PADDING case of RSA_private_decrypt() does not use encoding parameters and hence was not vulnerable. [Bodo Moeller] *) BN_sqr() bug fix. [Ulf Möller, reported by Jim Ellis ] *) Rabin-Miller test analyses assume uniformly distributed witnesses, so use BN_pseudo_rand_range() instead of using BN_pseudo_rand() followed by modular reduction. [Bodo Moeller; pointed out by Adam Young ] *) Add BN_pseudo_rand_range() with obvious functionality: BN_rand_range() equivalent based on BN_pseudo_rand() instead of BN_rand(). [Bodo Moeller] *) s3_srvr.c: allow sending of large client certificate lists (> 16 kB). This function was broken, as the check for a new client hello message to handle SGC did not allow these large messages. (Tracked down by "Douglas E. Engert" .) [Lutz Jaenicke] *) Add alert descriptions for TLSv1 to SSL_alert_desc_string[_long](). [Lutz Jaenicke] *) Fix buggy behaviour of BIO_get_num_renegotiates() and BIO_ctrl() for BIO_C_GET_WRITE_BUF_SIZE ("Stephen Hinton" ). [Lutz Jaenicke] *) Rework the configuration and shared library support for Tru64 Unix. The configuration part makes use of modern compiler features and still retains old compiler behavior for those that run older versions of the OS. The shared library support part includes a variant that uses the RPATH feature, and is available through the special configuration target "alpha-cc-rpath", which will never be selected automatically. [Tim Mooney via Richard Levitte] *) In ssl3_get_key_exchange (ssl/s3_clnt.c), call ssl3_get_message() with the same message size as in ssl3_get_certificate_request(). Otherwise, if no ServerKeyExchange message occurs, CertificateRequest messages might inadvertently be reject as too long. [Petr Lampa ] *) Enhanced support for IA-64 Unix platforms (well, Linux and HP-UX). [Andy Polyakov] *) Modified SSL library such that the verify_callback that has been set specifically for an SSL object with SSL_set_verify() is actually being used. Before the change, a verify_callback set with this function was ignored and the verify_callback() set in the SSL_CTX at the time of the call was used. New function X509_STORE_CTX_set_verify_cb() introduced to allow the necessary settings. [Lutz Jaenicke] *) Initialize static variable in crypto/dsa/dsa_lib.c and crypto/dh/dh_lib.c explicitly to NULL, as at least on Solaris 8 this seems not always to be done automatically (in contradiction to the requirements of the C standard). This made problems when used from OpenSSH. [Lutz Jaenicke] *) In OpenSSL 0.9.6a and 0.9.6b, crypto/dh/dh_key.c ignored dh->length and always used BN_rand_range(priv_key, dh->p). BN_rand_range() is not necessary for Diffie-Hellman, and this specific range makes Diffie-Hellman unnecessarily inefficient if dh->length (recommended exponent length) is much smaller than the length of dh->p. We could use BN_rand_range() if the order of the subgroup was stored in the DH structure, but we only have dh->length. So switch back to BN_rand(priv_key, l, ...) where 'l' is dh->length if this is defined, or BN_num_bits(dh->p)-1 otherwise. [Bodo Moeller] *) In RSA_eay_public_encrypt RSA_eay_private_decrypt RSA_eay_private_encrypt (signing) RSA_eay_public_decrypt (signature verification) (default implementations for RSA_public_encrypt, RSA_private_decrypt, RSA_private_encrypt, RSA_public_decrypt), always reject numbers >= n. [Bodo Moeller] *) In crypto/rand/md_rand.c, use a new short-time lock CRYPTO_LOCK_RAND2 to synchronize access to 'locking_thread'. This is necessary on systems where access to 'locking_thread' (an 'unsigned long' variable) is not atomic. [Bodo Moeller] *) In crypto/rand/md_rand.c, set 'locking_thread' to current thread's ID *before* setting the 'crypto_lock_rand' flag. The previous code had a race condition if 0 is a valid thread ID. [Travis Vitek ] *) Add support for shared libraries under Irix. [Albert Chin-A-Young ] *) Add configuration option to build on Linux on both big-endian and little-endian MIPS. [Ralf Baechle ] *) Add the possibility to create shared libraries on HP-UX. [Richard Levitte] Changes between 0.9.6a and 0.9.6b [9 Jul 2001] *) Change ssleay_rand_bytes (crypto/rand/md_rand.c) to avoid a SSLeay/OpenSSL PRNG weakness pointed out by Markku-Juhani O. Saarinen : PRNG state recovery was possible based on the output of one PRNG request appropriately sized to gain knowledge on 'md' followed by enough consecutive 1-byte PRNG requests to traverse all of 'state'. 1. When updating 'md_local' (the current thread's copy of 'md') during PRNG output generation, hash all of the previous 'md_local' value, not just the half used for PRNG output. 2. Make the number of bytes from 'state' included into the hash independent from the number of PRNG bytes requested. The first measure alone would be sufficient to avoid Markku-Juhani's attack. (Actually it had never occurred to me that the half of 'md_local' used for chaining was the half from which PRNG output bytes were taken -- I had always assumed that the secret half would be used.) The second measure makes sure that additional data from 'state' is never mixed into 'md_local' in small portions; this heuristically further strengthens the PRNG. [Bodo Moeller] *) Fix crypto/bn/asm/mips3.s. [Andy Polyakov] *) When only the key is given to "enc", the IV is undefined. Print out an error message in this case. [Lutz Jaenicke] *) Handle special case when X509_NAME is empty in X509 printing routines. [Steve Henson] *) In dsa_do_verify (crypto/dsa/dsa_ossl.c), verify that r and s are positive and less than q. [Bodo Moeller] *) Don't change *pointer in CRYPTO_add_lock() is add_lock_callback is used: it isn't thread safe and the add_lock_callback should handle that itself. [Paul Rose ] *) Verify that incoming data obeys the block size in ssl3_enc (ssl/s3_enc.c) and tls1_enc (ssl/t1_enc.c). [Bodo Moeller] *) Fix OAEP check. [Ulf Möller, Bodo Möller] *) The countermeasure against Bleichbacher's attack on PKCS #1 v1.5 RSA encryption was accidentally removed in s3_srvr.c in OpenSSL 0.9.5 when fixing the server behaviour for backwards-compatible 'client hello' messages. (Note that the attack is impractical against SSL 3.0 and TLS 1.0 anyway because length and version checking means that the probability of guessing a valid ciphertext is around 2^-40; see section 5 in Bleichenbacher's CRYPTO '98 paper.) Before 0.9.5, the countermeasure (hide the error by generating a random 'decryption result') did not work properly because ERR_clear_error() was missing, meaning that SSL_get_error() would detect the supposedly ignored error. Both problems are now fixed. [Bodo Moeller] *) In crypto/bio/bf_buff.c, increase DEFAULT_BUFFER_SIZE to 4096 (previously it was 1024). [Bodo Moeller] *) Fix for compatibility mode trust settings: ignore trust settings unless some valid trust or reject settings are present. [Steve Henson] *) Fix for blowfish EVP: its a variable length cipher. [Steve Henson] *) Fix various bugs related to DSA S/MIME verification. Handle missing parameters in DSA public key structures and return an error in the DSA routines if parameters are absent. [Steve Henson] *) In versions up to 0.9.6, RAND_file_name() resorted to file ".rnd" in the current directory if neither $RANDFILE nor $HOME was set. RAND_file_name() in 0.9.6a returned NULL in this case. This has caused some confusion to Windows users who haven't defined $HOME. Thus RAND_file_name() is changed again: e_os.h can define a DEFAULT_HOME, which will be used if $HOME is not set. For Windows, we use "C:"; on other platforms, we still require environment variables. *) Move 'if (!initialized) RAND_poll()' into regions protected by CRYPTO_LOCK_RAND. This is not strictly necessary, but avoids having multiple threads call RAND_poll() concurrently. [Bodo Moeller] *) In crypto/rand/md_rand.c, replace 'add_do_not_lock' flag by a combination of a flag and a thread ID variable. Otherwise while one thread is in ssleay_rand_bytes (which sets the flag), *other* threads can enter ssleay_add_bytes without obeying the CRYPTO_LOCK_RAND lock (and may even illegally release the lock that they do not hold after the first thread unsets add_do_not_lock). [Bodo Moeller] *) Change bctest again: '-x' expressions are not available in all versions of 'test'. [Bodo Moeller] Changes between 0.9.6 and 0.9.6a [5 Apr 2001] *) Fix a couple of memory leaks in PKCS7_dataDecode() [Steve Henson, reported by Heyun Zheng ] *) Change Configure and Makefiles to provide EXE_EXT, which will contain the default extension for executables, if any. Also, make the perl scripts that use symlink() to test if it really exists and use "cp" if it doesn't. All this made OpenSSL compilable and installable in CygWin. [Richard Levitte] *) Fix for asn1_GetSequence() for indefinite length constructed data. If SEQUENCE is length is indefinite just set c->slen to the total amount of data available. [Steve Henson, reported by shige@FreeBSD.org] [This change does not apply to 0.9.7.] *) Change bctest to avoid here-documents inside command substitution (workaround for FreeBSD /bin/sh bug). For compatibility with Ultrix, avoid shell functions (introduced in the bctest version that searches along $PATH). [Bodo Moeller] *) Rename 'des_encrypt' to 'des_encrypt1'. This avoids the clashes with des_encrypt() defined on some operating systems, like Solaris and UnixWare. [Richard Levitte] *) Check the result of RSA-CRT (see D. Boneh, R. DeMillo, R. Lipton: On the Importance of Eliminating Errors in Cryptographic Computations, J. Cryptology 14 (2001) 2, 101-119, http://theory.stanford.edu/~dabo/papers/faults.ps.gz). [Ulf Moeller] *) MIPS assembler BIGNUM division bug fix. [Andy Polyakov] *) Disabled incorrect Alpha assembler code. [Richard Levitte] *) Fix PKCS#7 decode routines so they correctly update the length after reading an EOC for the EXPLICIT tag. [Steve Henson] [This change does not apply to 0.9.7.] *) Fix bug in PKCS#12 key generation routines. This was triggered if a 3DES key was generated with a 0 initial byte. Include PKCS12_BROKEN_KEYGEN compilation option to retain the old (but broken) behaviour. [Steve Henson] *) Enhance bctest to search for a working bc along $PATH and print it when found. [Tim Rice via Richard Levitte] *) Fix memory leaks in err.c: free err_data string if necessary; don't write to the wrong index in ERR_set_error_data. [Bodo Moeller] *) Implement ssl23_peek (analogous to ssl23_read), which previously did not exist. [Bodo Moeller] *) Replace rdtsc with _emit statements for VC++ version 5. [Jeremy Cooper ] *) Make it possible to reuse SSLv2 sessions. [Richard Levitte] *) In copy_email() check for >= 0 as a return value for X509_NAME_get_index_by_NID() since 0 is a valid index. [Steve Henson reported by Massimiliano Pala ] *) Avoid coredump with unsupported or invalid public keys by checking if X509_get_pubkey() fails in PKCS7_verify(). Fix memory leak when PKCS7_verify() fails with non detached data. [Steve Henson] *) Don't use getenv in library functions when run as setuid/setgid. New function OPENSSL_issetugid(). [Ulf Moeller] *) Avoid false positives in memory leak detection code (crypto/mem_dbg.c) due to incorrect handling of multi-threading: 1. Fix timing glitch in the MemCheck_off() portion of CRYPTO_mem_ctrl(). 2. Fix logical glitch in is_MemCheck_on() aka CRYPTO_is_mem_check_on(). 3. Count how many times MemCheck_off() has been called so that nested use can be treated correctly. This also avoids inband-signalling in the previous code (which relied on the assumption that thread ID 0 is impossible). [Bodo Moeller] *) Add "-rand" option also to s_client and s_server. [Lutz Jaenicke] *) Fix CPU detection on Irix 6.x. [Kurt Hockenbury and "Bruce W. Forsberg" ] *) Fix X509_NAME bug which produced incorrect encoding if X509_NAME was empty. [Steve Henson] [This change does not apply to 0.9.7.] *) Use the cached encoding of an X509_NAME structure rather than copying it. This is apparently the reason for the libsafe "errors" but the code is actually correct. [Steve Henson] *) Add new function BN_rand_range(), and fix DSA_sign_setup() to prevent Bleichenbacher's DSA attack. Extend BN_[pseudo_]rand: As before, top=1 forces the highest two bits to be set and top=0 forces the highest bit to be set; top=-1 is new and leaves the highest bit random. [Ulf Moeller, Bodo Moeller] *) In the NCONF_...-based implementations for CONF_... queries (crypto/conf/conf_lib.c), if the input LHASH is NULL, avoid using a temporary CONF structure with the data component set to NULL (which gives segmentation faults in lh_retrieve). Instead, use NULL for the CONF pointer in CONF_get_string and CONF_get_number (which may use environment variables) and directly return NULL from CONF_get_section. [Bodo Moeller] *) Fix potential buffer overrun for EBCDIC. [Ulf Moeller] *) Tolerate nonRepudiation as being valid for S/MIME signing and certSign keyUsage if basicConstraints absent for a CA. [Steve Henson] *) Make SMIME_write_PKCS7() write mail header values with a format that is more generally accepted (no spaces before the semicolon), since some programs can't parse those values properly otherwise. Also make sure BIO's that break lines after each write do not create invalid headers. [Richard Levitte] *) Make the CRL encoding routines work with empty SEQUENCE OF. The macros previously used would not encode an empty SEQUENCE OF and break the signature. [Steve Henson] [This change does not apply to 0.9.7.] *) Zero the premaster secret after deriving the master secret in DH ciphersuites. [Steve Henson] *) Add some EVP_add_digest_alias registrations (as found in OpenSSL_add_all_digests()) to SSL_library_init() aka OpenSSL_add_ssl_algorithms(). This provides improved compatibility with peers using X.509 certificates with unconventional AlgorithmIdentifier OIDs. [Bodo Moeller] *) Fix for Irix with NO_ASM. ["Bruce W. Forsberg" ] *) ./config script fixes. [Ulf Moeller, Richard Levitte] *) Fix 'openssl passwd -1'. [Bodo Moeller] *) Change PKCS12_key_gen_asc() so it can cope with non null terminated strings whose length is passed in the passlen parameter, for example from PEM callbacks. This was done by adding an extra length parameter to asc2uni(). [Steve Henson, reported by ] *) Fix C code generated by 'openssl dsaparam -C': If a BN_bin2bn call failed, free the DSA structure. [Bodo Moeller] *) Fix to uni2asc() to cope with zero length Unicode strings. These are present in some PKCS#12 files. [Steve Henson] *) Increase s2->wbuf allocation by one byte in ssl2_new (ssl/s2_lib.c). Otherwise do_ssl_write (ssl/s2_pkt.c) will write beyond buffer limits when writing a 32767 byte record. [Bodo Moeller; problem reported by Eric Day ] *) In RSA_eay_public_{en,ed}crypt and RSA_eay_mod_exp (rsa_eay.c), obtain lock CRYPTO_LOCK_RSA before setting rsa->_method_mod_{n,p,q}. (RSA objects have a reference count access to which is protected by CRYPTO_LOCK_RSA [see rsa_lib.c, s3_srvr.c, ssl_cert.c, ssl_rsa.c], so they are meant to be shared between threads.) [Bodo Moeller, Geoff Thorpe; original patch submitted by "Reddie, Steven" ] *) Fix a deadlock in CRYPTO_mem_leaks(). [Bodo Moeller] *) Use better test patterns in bntest. [Ulf Möller] *) rand_win.c fix for Borland C. [Ulf Möller] *) BN_rshift bugfix for n == 0. [Bodo Moeller] *) Add a 'bctest' script that checks for some known 'bc' bugs so that 'make test' does not abort just because 'bc' is broken. [Bodo Moeller] *) Store verify_result within SSL_SESSION also for client side to avoid potential security hole. (Re-used sessions on the client side always resulted in verify_result==X509_V_OK, not using the original result of the server certificate verification.) [Lutz Jaenicke] *) Fix ssl3_pending: If the record in s->s3->rrec is not of type SSL3_RT_APPLICATION_DATA, return 0. Similarly, change ssl2_pending to return 0 if SSL_in_init(s) is true. [Bodo Moeller] *) Fix SSL_peek: Both ssl2_peek and ssl3_peek, which were totally broken in earlier releases, have been re-implemented by renaming the previous implementations of ssl2_read and ssl3_read to ssl2_read_internal and ssl3_read_internal, respectively, and adding 'peek' parameters to them. The new ssl[23]_{read,peek} functions are calls to ssl[23]_read_internal with the 'peek' flag set appropriately. A 'peek' parameter has also been added to ssl3_read_bytes, which does the actual work for ssl3_read_internal. [Bodo Moeller] *) Initialise "ex_data" member of RSA/DSA/DH structures prior to calling the method-specific "init()" handler. Also clean up ex_data after calling the method-specific "finish()" handler. Previously, this was happening the other way round. [Geoff Thorpe] *) Increase BN_CTX_NUM (the number of BIGNUMs in a BN_CTX) to 16. The previous value, 12, was not always sufficient for BN_mod_exp(). [Bodo Moeller] *) Make sure that shared libraries get the internal name engine with the full version number and not just 0. This should mark the shared libraries as not backward compatible. Of course, this should be changed again when we can guarantee backward binary compatibility. [Richard Levitte] *) Fix typo in get_cert_by_subject() in by_dir.c [Jean-Marc Desperrier ] *) Rework the system to generate shared libraries: - Make note of the expected extension for the shared libraries and if there is a need for symbolic links from for example libcrypto.so.0 to libcrypto.so.0.9.7. There is extended info in Configure for that. - Make as few rebuilds of the shared libraries as possible. - Still avoid linking the OpenSSL programs with the shared libraries. - When installing, install the shared libraries separately from the static ones. [Richard Levitte] *) Fix SSL_CTX_set_read_ahead macro to actually use its argument. Copy SSL_CTX's read_ahead flag to SSL object directly in SSL_new and not in SSL_clear because the latter is also used by the accept/connect functions; previously, the settings made by SSL_set_read_ahead would be lost during the handshake. [Bodo Moeller; problems reported by Anders Gertz ] *) Correct util/mkdef.pl to be selective about disabled algorithms. Previously, it would create entries for disabled algorithms no matter what. [Richard Levitte] *) Added several new manual pages for SSL_* function. [Lutz Jaenicke] Changes between 0.9.5a and 0.9.6 [24 Sep 2000] *) In ssl23_get_client_hello, generate an error message when faced with an initial SSL 3.0/TLS record that is too small to contain the first two bytes of the ClientHello message, i.e. client_version. (Note that this is a pathologic case that probably has never happened in real life.) The previous approach was to use the version number from the record header as a substitute; but our protocol choice should not depend on that one because it is not authenticated by the Finished messages. [Bodo Moeller] *) More robust randomness gathering functions for Windows. [Jeffrey Altman ] *) For compatibility reasons if the flag X509_V_FLAG_ISSUER_CHECK is not set then we don't setup the error code for issuer check errors to avoid possibly overwriting other errors which the callback does handle. If an application does set the flag then we assume it knows what it is doing and can handle the new informational codes appropriately. [Steve Henson] *) Fix for a nasty bug in ASN1_TYPE handling. ASN1_TYPE is used for a general "ANY" type, as such it should be able to decode anything including tagged types. However it didn't check the class so it would wrongly interpret tagged types in the same way as their universal counterpart and unknown types were just rejected. Changed so that the tagged and unknown types are handled in the same way as a SEQUENCE: that is the encoding is stored intact. There is also a new type "V_ASN1_OTHER" which is used when the class is not universal, in this case we have no idea what the actual type is so we just lump them all together. [Steve Henson] *) On VMS, stdout may very well lead to a file that is written to in a record-oriented fashion. That means that every write() will write a separate record, which will be read separately by the programs trying to read from it. This can be very confusing. The solution is to put a BIO filter in the way that will buffer text until a linefeed is reached, and then write everything a line at a time, so every record written will be an actual line, not chunks of lines and not (usually doesn't happen, but I've seen it once) several lines in one record. BIO_f_linebuffer() is the answer. Currently, it's a VMS-only method, because that's where it has been tested well enough. [Richard Levitte] *) Remove 'optimized' squaring variant in BN_mod_mul_montgomery, it can return incorrect results. (Note: The buggy variant was not enabled in OpenSSL 0.9.5a, but it was in 0.9.6-beta[12].) [Bodo Moeller] *) Disable the check for content being present when verifying detached signatures in pk7_smime.c. Some versions of Netscape (wrongly) include zero length content when signing messages. [Steve Henson] *) New BIO_shutdown_wr macro, which invokes the BIO_C_SHUTDOWN_WR BIO_ctrl (for BIO pairs). [Bodo Möller] *) Add DSO method for VMS. [Richard Levitte] *) Bug fix: Montgomery multiplication could produce results with the wrong sign. [Ulf Möller] *) Add RPM specification openssl.spec and modify it to build three packages. The default package contains applications, application documentation and run-time libraries. The devel package contains include files, static libraries and function documentation. The doc package contains the contents of the doc directory. The original openssl.spec was provided by Damien Miller . [Richard Levitte] *) Add a large number of documentation files for many SSL routines. [Lutz Jaenicke ] *) Add a configuration entry for Sony News 4. [NAKAJI Hiroyuki ] *) Don't set the two most significant bits to one when generating a random number < q in the DSA library. [Ulf Möller] *) New SSL API mode 'SSL_MODE_AUTO_RETRY'. This disables the default behaviour that SSL_read may result in SSL_ERROR_WANT_READ (even if the underlying transport is blocking) if a handshake took place. (The default behaviour is needed by applications such as s_client and s_server that use select() to determine when to use SSL_read; but for applications that know in advance when to expect data, it just makes things more complicated.) [Bodo Moeller] *) Add RAND_egd_bytes(), which gives control over the number of bytes read from EGD. [Ben Laurie] *) Add a few more EBCDIC conditionals that make `req' and `x509' work better on such systems. [Martin Kraemer ] *) Add two demo programs for PKCS12_parse() and PKCS12_create(). Update PKCS12_parse() so it copies the friendlyName and the keyid to the certificates aux info. [Steve Henson] *) Fix bug in PKCS7_verify() which caused an infinite loop if there was more than one signature. [Sven Uszpelkat ] *) Major change in util/mkdef.pl to include extra information about each symbol, as well as presenting variables as well as functions. This change means that there's n more need to rebuild the .num files when some algorithms are excluded. [Richard Levitte] *) Allow the verify time to be set by an application, rather than always using the current time. [Steve Henson] *) Phase 2 verify code reorganisation. The certificate verify code now looks up an issuer certificate by a number of criteria: subject name, authority key id and key usage. It also verifies self signed certificates by the same criteria. The main comparison function is X509_check_issued() which performs these checks. Lot of changes were necessary in order to support this without completely rewriting the lookup code. Authority and subject key identifier are now cached. The LHASH 'certs' is X509_STORE has now been replaced by a STACK_OF(X509_OBJECT). This is mainly because an LHASH can't store or retrieve multiple objects with the same hash value. As a result various functions (which were all internal use only) have changed to handle the new X509_STORE structure. This will break anything that messed round with X509_STORE internally. The functions X509_STORE_add_cert() now checks for an exact match, rather than just subject name. The X509_STORE API doesn't directly support the retrieval of multiple certificates matching a given criteria, however this can be worked round by performing a lookup first (which will fill the cache with candidate certificates) and then examining the cache for matches. This is probably the best we can do without throwing out X509_LOOKUP entirely (maybe later...). The X509_VERIFY_CTX structure has been enhanced considerably. All certificate lookup operations now go via a get_issuer() callback. Although this currently uses an X509_STORE it can be replaced by custom lookups. This is a simple way to bypass the X509_STORE hackery necessary to make this work and makes it possible to use more efficient techniques in future. A very simple version which uses a simple STACK for its trusted certificate store is also provided using X509_STORE_CTX_trusted_stack(). The verify_cb() and verify() callbacks now have equivalents in the X509_STORE_CTX structure. X509_STORE_CTX also has a 'flags' field which can be used to customise the verify behaviour. [Steve Henson] *) Add new PKCS#7 signing option PKCS7_NOSMIMECAP which excludes S/MIME capabilities. [Steve Henson] *) When a certificate request is read in keep a copy of the original encoding of the signed data and use it when outputting again. Signatures then use the original encoding rather than a decoded, encoded version which may cause problems if the request is improperly encoded. [Steve Henson] *) For consistency with other BIO_puts implementations, call buffer_write(b, ...) directly in buffer_puts instead of calling BIO_write(b, ...). In BIO_puts, increment b->num_write as in BIO_write. [Peter.Sylvester@EdelWeb.fr] *) Fix BN_mul_word for the case where the word is 0. (We have to use BN_zero, we may not return a BIGNUM with an array consisting of words set to zero.) [Bodo Moeller] *) Avoid calling abort() from within the library when problems are detected, except if preprocessor symbols have been defined (such as REF_CHECK, BN_DEBUG etc.). [Bodo Moeller] *) New openssl application 'rsautl'. This utility can be used for low level RSA operations. DER public key BIO/fp routines also added. [Steve Henson] *) New Configure entry and patches for compiling on QNX 4. [Andreas Schneider ] *) A demo state-machine implementation was sponsored by Nuron (http://www.nuron.com/) and is now available in demos/state_machine. [Ben Laurie] *) New options added to the 'dgst' utility for signature generation and verification. [Steve Henson] *) Unrecognized PKCS#7 content types are now handled via a catch all ASN1_TYPE structure. This allows unsupported types to be stored as a "blob" and an application can encode and decode it manually. [Steve Henson] *) Fix various signed/unsigned issues to make a_strex.c compile under VC++. [Oscar Jacobsson ] *) ASN1 fixes. i2d_ASN1_OBJECT was not returning the correct length if passed a buffer. ASN1_INTEGER_to_BN failed if passed a NULL BN and its argument was negative. [Steve Henson, pointed out by Sven Heiberg ] *) Modification to PKCS#7 encoding routines to output definite length encoding. Since currently the whole structures are in memory there's not real point in using indefinite length constructed encoding. However if OpenSSL is compiled with the flag PKCS7_INDEFINITE_ENCODING the old form is used. [Steve Henson] *) Added BIO_vprintf() and BIO_vsnprintf(). [Richard Levitte] *) Added more prefixes to parse for in the strings written through a logging bio, to cover all the levels that are available through syslog. The prefixes are now: PANIC, EMERG, EMR => LOG_EMERG ALERT, ALR => LOG_ALERT CRIT, CRI => LOG_CRIT ERROR, ERR => LOG_ERR WARNING, WARN, WAR => LOG_WARNING NOTICE, NOTE, NOT => LOG_NOTICE INFO, INF => LOG_INFO DEBUG, DBG => LOG_DEBUG and as before, if none of those prefixes are present at the beginning of the string, LOG_ERR is chosen. On Win32, the LOG_* levels are mapped according to this: LOG_EMERG, LOG_ALERT, LOG_CRIT, LOG_ERR => EVENTLOG_ERROR_TYPE LOG_WARNING => EVENTLOG_WARNING_TYPE LOG_NOTICE, LOG_INFO, LOG_DEBUG => EVENTLOG_INFORMATION_TYPE [Richard Levitte] *) Made it possible to reconfigure with just the configuration argument "reconf" or "reconfigure". The command line arguments are stored in Makefile.ssl in the variable CONFIGURE_ARGS, and are retrieved from there when reconfiguring. [Richard Levitte] *) MD4 implemented. [Assar Westerlund , Richard Levitte] *) Add the arguments -CAfile and -CApath to the pkcs12 utility. [Richard Levitte] *) The obj_dat.pl script was messing up the sorting of object names. The reason was that it compared the quoted version of strings as a result "OCSP" > "OCSP Signing" because " > SPACE. Changed script to store unquoted versions of names and add quotes on output. It was also omitting some names from the lookup table if they were given a default value (that is if SN is missing it is given the same value as LN and vice versa), these are now added on the grounds that if an object has a name we should be able to look it up. Finally added warning output when duplicate short or long names are found. [Steve Henson] *) Changes needed for Tandem NSK. [Scott Uroff ] *) Fix SSL 2.0 rollback checking: Due to an off-by-one error in RSA_padding_check_SSLv23(), special padding was never detected and thus the SSL 3.0/TLS 1.0 countermeasure against protocol version rollback attacks was not effective. In s23_clnt.c, don't use special rollback-attack detection padding (RSA_SSLV23_PADDING) if SSL 2.0 is the only protocol enabled in the client; similarly, in s23_srvr.c, don't do the rollback check if SSL 2.0 is the only protocol enabled in the server. [Bodo Moeller] *) Make it possible to get hexdumps of unprintable data with 'openssl asn1parse'. By implication, the functions ASN1_parse_dump() and BIO_dump_indent() are added. [Richard Levitte] *) New functions ASN1_STRING_print_ex() and X509_NAME_print_ex() these print out strings and name structures based on various flags including RFC2253 support and proper handling of multibyte characters. Added options to the 'x509' utility to allow the various flags to be set. [Steve Henson] *) Various fixes to use ASN1_TIME instead of ASN1_UTCTIME. Also change the functions X509_cmp_current_time() and X509_gmtime_adj() work with an ASN1_TIME structure, this will enable certificates using GeneralizedTime in validity dates to be checked. [Steve Henson] *) Make the NEG_PUBKEY_BUG code (which tolerates invalid negative public key encodings) on by default, NO_NEG_PUBKEY_BUG can be set to disable it. [Steve Henson] *) New function c2i_ASN1_OBJECT() which acts on ASN1_OBJECT content octets. An i2c_ASN1_OBJECT is unnecessary because the encoding can be trivially obtained from the structure. [Steve Henson] *) crypto/err.c locking bugfix: Use write locks (CRYPTO_w_[un]lock), not read locks (CRYPTO_r_[un]lock). [Bodo Moeller] *) A first attempt at creating official support for shared libraries through configuration. I've kept it so the default is static libraries only, and the OpenSSL programs are always statically linked for now, but there are preparations for dynamic linking in place. This has been tested on Linux and Tru64. [Richard Levitte] *) Randomness polling function for Win9x, as described in: Peter Gutmann, Software Generation of Practically Strong Random Numbers. [Ulf Möller] *) Fix so PRNG is seeded in req if using an already existing DSA key. [Steve Henson] *) New options to smime application. -inform and -outform allow alternative formats for the S/MIME message including PEM and DER. The -content option allows the content to be specified separately. This should allow things like Netscape form signing output easier to verify. [Steve Henson] *) Fix the ASN1 encoding of tags using the 'long form'. [Steve Henson] *) New ASN1 functions, i2c_* and c2i_* for INTEGER and BIT STRING types. These convert content octets to and from the underlying type. The actual tag and length octets are already assumed to have been read in and checked. These are needed because all other string types have virtually identical handling apart from the tag. By having versions of the ASN1 functions that just operate on content octets IMPLICIT tagging can be handled properly. It also allows the ASN1_ENUMERATED code to be cut down because ASN1_ENUMERATED and ASN1_INTEGER are identical apart from the tag. [Steve Henson] *) Change the handling of OID objects as follows: - New object identifiers are inserted in objects.txt, following the syntax given in objects.README. - objects.pl is used to process obj_mac.num and create a new obj_mac.h. - obj_dat.pl is used to create a new obj_dat.h, using the data in obj_mac.h. This is currently kind of a hack, and the perl code in objects.pl isn't very elegant, but it works as I intended. The simplest way to check that it worked correctly is to look in obj_dat.h and check the array nid_objs and make sure the objects haven't moved around (this is important!). Additions are OK, as well as consistent name changes. [Richard Levitte] *) Add BSD-style MD5-based passwords to 'openssl passwd' (option '-1'). [Bodo Moeller] *) Addition of the command line parameter '-rand file' to 'openssl req'. The given file adds to whatever has already been seeded into the random pool through the RANDFILE configuration file option or environment variable, or the default random state file. [Richard Levitte] *) mkstack.pl now sorts each macro group into lexical order. Previously the output order depended on the order the files appeared in the directory, resulting in needless rewriting of safestack.h . [Steve Henson] *) Patches to make OpenSSL compile under Win32 again. Mostly work arounds for the VC++ problem that it treats func() as func(void). Also stripped out the parts of mkdef.pl that added extra typesafe functions: these no longer exist. [Steve Henson] *) Reorganisation of the stack code. The macros are now all collected in safestack.h . Each macro is defined in terms of a "stack macro" of the form SKM_(type, a, b). The DEBUG_SAFESTACK is now handled in terms of function casts, this has the advantage of retaining type safety without the use of additional functions. If DEBUG_SAFESTACK is not defined then the non typesafe macros are used instead. Also modified the mkstack.pl script to handle the new form. Needs testing to see if which (if any) compilers it chokes and maybe make DEBUG_SAFESTACK the default if no major problems. Similar behaviour for ASN1_SET_OF and PKCS12_STACK_OF. [Steve Henson] *) When some versions of IIS use the 'NET' form of private key the key derivation algorithm is different. Normally MD5(password) is used as a 128 bit RC4 key. In the modified case MD5(MD5(password) + "SGCKEYSALT") is used instead. Added some new functions i2d_RSA_NET(), d2i_RSA_NET() etc which are the same as the old Netscape_RSA functions except they have an additional 'sgckey' parameter which uses the modified algorithm. Also added an -sgckey command line option to the rsa utility. Thanks to Adrian Peck for posting details of the modified algorithm to openssl-dev. [Steve Henson] *) The evp_local.h macros were using 'c.##kname' which resulted in invalid expansion on some systems (SCO 5.0.5 for example). Corrected to 'c.kname'. [Phillip Porch ] *) New X509_get1_email() and X509_REQ_get1_email() functions that return a STACK of email addresses from a certificate or request, these look in the subject name and the subject alternative name extensions and omit any duplicate addresses. [Steve Henson] *) Re-implement BN_mod_exp2_mont using independent (and larger) windows. This makes DSA verification about 2 % faster. [Bodo Moeller] *) Increase maximum window size in BN_mod_exp_... to 6 bits instead of 5 (meaning that now 2^5 values will be precomputed, which is only 4 KB plus overhead for 1024 bit moduli). This makes exponentiations about 0.5 % faster for 1024 bit exponents (as measured by "openssl speed rsa2048"). [Bodo Moeller] *) Rename memory handling macros to avoid conflicts with other software: Malloc => OPENSSL_malloc Malloc_locked => OPENSSL_malloc_locked Realloc => OPENSSL_realloc Free => OPENSSL_free [Richard Levitte] *) New function BN_mod_exp_mont_word for small bases (roughly 15% faster than BN_mod_exp_mont, i.e. 7% for a full DH exchange). [Bodo Moeller] *) CygWin32 support. [John Jarvie ] *) The type-safe stack code has been rejigged. It is now only compiled in when OpenSSL is configured with the DEBUG_SAFESTACK option and by default all type-specific stack functions are "#define"d back to standard stack functions. This results in more streamlined output but retains the type-safety checking possibilities of the original approach. [Geoff Thorpe] *) The STACK code has been cleaned up, and certain type declarations that didn't make a lot of sense have been brought in line. This has also involved a cleanup of sorts in safestack.h to more correctly map type-safe stack functions onto their plain stack counterparts. This work has also resulted in a variety of "const"ifications of lots of the code, especially "_cmp" operations which should normally be prototyped with "const" parameters anyway. [Geoff Thorpe] *) When generating bytes for the first time in md_rand.c, 'stir the pool' by seeding with STATE_SIZE dummy bytes (with zero entropy count). (The PRNG state consists of two parts, the large pool 'state' and 'md', where all of 'md' is used each time the PRNG is used, but 'state' is used only indexed by a cyclic counter. As entropy may not be well distributed from the beginning, 'md' is important as a chaining variable. However, the output function chains only half of 'md', i.e. 80 bits. ssleay_rand_add, on the other hand, chains all of 'md', and seeding with STATE_SIZE dummy bytes will result in all of 'state' being rewritten, with the new values depending on virtually all of 'md'. This overcomes the 80 bit limitation.) [Bodo Moeller] *) In ssl/s2_clnt.c and ssl/s3_clnt.c, call ERR_clear_error() when the handshake is continued after ssl_verify_cert_chain(); otherwise, if SSL_VERIFY_NONE is set, remaining error codes can lead to 'unexplainable' connection aborts later. [Bodo Moeller; problem tracked down by Lutz Jaenicke] *) Major EVP API cipher revision. Add hooks for extra EVP features. This allows various cipher parameters to be set in the EVP interface. Support added for variable key length ciphers via the EVP_CIPHER_CTX_set_key_length() function and setting of RC2 and RC5 parameters. Modify EVP_OpenInit() and EVP_SealInit() to cope with variable key length ciphers. Remove lots of duplicated code from the EVP library. For example *every* cipher init() function handles the 'iv' in the same way according to the cipher mode. They also all do nothing if the 'key' parameter is NULL and for CFB and OFB modes they zero ctx->num. New functionality allows removal of S/MIME code RC2 hack. Most of the routines have the same form and so can be declared in terms of macros. By shifting this to the top level EVP_CipherInit() it can be removed from all individual ciphers. If the cipher wants to handle IVs or keys differently it can set the EVP_CIPH_CUSTOM_IV or EVP_CIPH_ALWAYS_CALL_INIT flags. Change lots of functions like EVP_EncryptUpdate() to now return a value: although software versions of the algorithms cannot fail any installed hardware versions can. [Steve Henson] *) Implement SSL_OP_TLS_ROLLBACK_BUG: In ssl3_get_client_key_exchange, if this option is set, tolerate broken clients that send the negotiated protocol version number instead of the requested protocol version number. [Bodo Moeller] *) Call dh_tmp_cb (set by ..._TMP_DH_CB) with correct 'is_export' flag; i.e. non-zero for export ciphersuites, zero otherwise. Previous versions had this flag inverted, inconsistent with rsa_tmp_cb (..._TMP_RSA_CB). [Bodo Moeller; problem reported by Amit Chopra] *) Add missing DSA library text string. Work around for some IIS key files with invalid SEQUENCE encoding. [Steve Henson] *) Add a document (doc/standards.txt) that list all kinds of standards and so on that are implemented in OpenSSL. [Richard Levitte] *) Enhance c_rehash script. Old version would mishandle certificates with the same subject name hash and wouldn't handle CRLs at all. Added -fingerprint option to crl utility, to support new c_rehash features. [Steve Henson] *) Eliminate non-ANSI declarations in crypto.h and stack.h. [Ulf Möller] *) Fix for SSL server purpose checking. Server checking was rejecting certificates which had extended key usage present but no ssl client purpose. [Steve Henson, reported by Rene Grosser ] *) Make PKCS#12 code work with no password. The PKCS#12 spec is a little unclear about how a blank password is handled. Since the password in encoded as a BMPString with terminating double NULL a zero length password would end up as just the double NULL. However no password at all is different and is handled differently in the PKCS#12 key generation code. NS treats a blank password as zero length. MSIE treats it as no password on export: but it will try both on import. We now do the same: PKCS12_parse() tries zero length and no password if the password is set to "" or NULL (NULL is now a valid password: it wasn't before) as does the pkcs12 application. [Steve Henson] *) Bugfixes in apps/x509.c: Avoid a memory leak; and don't use perror when PEM_read_bio_X509_REQ fails, the error message must be obtained from the error queue. [Bodo Moeller] *) Avoid 'thread_hash' memory leak in crypto/err/err.c by freeing it in ERR_remove_state if appropriate, and change ERR_get_state accordingly to avoid race conditions (this is necessary because thread_hash is no longer constant once set). [Bodo Moeller] *) Bugfix for linux-elf makefile.one. [Ulf Möller] *) RSA_get_default_method() will now cause a default RSA_METHOD to be chosen if one doesn't exist already. Previously this was only set during a call to RSA_new() or RSA_new_method(NULL) meaning it was possible for RSA_get_default_method() to return NULL. [Geoff Thorpe] *) Added native name translation to the existing DSO code that will convert (if the flag to do so is set) filenames that are sufficiently small and have no path information into a canonical native form. Eg. "blah" converted to "libblah.so" or "blah.dll" etc. [Geoff Thorpe] *) New function ERR_error_string_n(e, buf, len) which is like ERR_error_string(e, buf), but writes at most 'len' bytes including the 0 terminator. For ERR_error_string_n, 'buf' may not be NULL. [Damien Miller , Bodo Moeller] *) CONF library reworked to become more general. A new CONF configuration file reader "class" is implemented as well as a new functions (NCONF_*, for "New CONF") to handle it. The now old CONF_* functions are still there, but are reimplemented to work in terms of the new functions. Also, a set of functions to handle the internal storage of the configuration data is provided to make it easier to write new configuration file reader "classes" (I can definitely see something reading a configuration file in XML format, for example), called _CONF_*, or "the configuration storage API"... The new configuration file reading functions are: NCONF_new, NCONF_free, NCONF_load, NCONF_load_fp, NCONF_load_bio, NCONF_get_section, NCONF_get_string, NCONF_get_numbre NCONF_default, NCONF_WIN32 NCONF_dump_fp, NCONF_dump_bio NCONF_default and NCONF_WIN32 are method (or "class") choosers, NCONF_new creates a new CONF object. This works in the same way as other interfaces in OpenSSL, like the BIO interface. NCONF_dump_* dump the internal storage of the configuration file, which is useful for debugging. All other functions take the same arguments as the old CONF_* functions with the exception of the first that must be a `CONF *' instead of a `LHASH *'. To make it easier to use the new classes with the old CONF_* functions, the function CONF_set_default_method is provided. [Richard Levitte] *) Add '-tls1' option to 'openssl ciphers', which was already mentioned in the documentation but had not been implemented. (This option is not yet really useful because even the additional experimental TLS 1.0 ciphers are currently treated as SSL 3.0 ciphers.) [Bodo Moeller] *) Initial DSO code added into libcrypto for letting OpenSSL (and OpenSSL-based applications) load shared libraries and bind to them in a portable way. [Geoff Thorpe, with contributions from Richard Levitte] Changes between 0.9.5 and 0.9.5a [1 Apr 2000] *) Make sure _lrotl and _lrotr are only used with MSVC. *) Use lock CRYPTO_LOCK_RAND correctly in ssleay_rand_status (the default implementation of RAND_status). *) Rename openssl x509 option '-crlext', which was added in 0.9.5, to '-clrext' (= clear extensions), as intended and documented. [Bodo Moeller; inconsistency pointed out by Michael Attili ] *) Fix for HMAC. It wasn't zeroing the rest of the block if the key length was larger than the MD block size. [Steve Henson, pointed out by Yost William ] *) Modernise PKCS12_parse() so it uses STACK_OF(X509) for its ca argument fix a leak when the ca argument was passed as NULL. Stop X509_PUBKEY_set() using the passed key: if the passed key was a private key the result of X509_print(), for example, would be to print out all the private key components. [Steve Henson] *) des_quad_cksum() byte order bug fix. [Ulf Möller, using the problem description in krb4-0.9.7, where the solution is attributed to Derrick J Brashear ] *) Fix so V_ASN1_APP_CHOOSE works again: however its use is strongly discouraged. [Steve Henson, pointed out by Brian Korver ] *) For easily testing in shell scripts whether some command 'openssl XXX' exists, the new pseudo-command 'openssl no-XXX' returns with exit code 0 iff no command of the given name is available. 'no-XXX' is printed in this case, 'XXX' otherwise. In both cases, the output goes to stdout and nothing is printed to stderr. Additional arguments are always ignored. Since for each cipher there is a command of the same name, the 'no-cipher' compilation switches can be tested this way. ('openssl no-XXX' is not able to detect pseudo-commands such as 'quit', 'list-XXX-commands', or 'no-XXX' itself.) [Bodo Moeller] *) Update test suite so that 'make test' succeeds in 'no-rsa' configuration. [Bodo Moeller] *) For SSL_[CTX_]set_tmp_dh, don't create a DH key if SSL_OP_SINGLE_DH_USE is set; it will be thrown away anyway because each handshake creates its own key. ssl_cert_dup, which is used by SSL_new, now copies DH keys in addition to parameters -- in previous versions (since OpenSSL 0.9.3) the 'default key' from SSL_CTX_set_tmp_dh would always be lost, meaning you effectively got SSL_OP_SINGLE_DH_USE when using this macro. [Bodo Moeller] *) New s_client option -ign_eof: EOF at stdin is ignored, and 'Q' and 'R' lose their special meanings (quit/renegotiate). This is part of what -quiet does; unlike -quiet, -ign_eof does not suppress any output. [Richard Levitte] *) Add compatibility options to the purpose and trust code. The purpose X509_PURPOSE_ANY is "any purpose" which automatically accepts a certificate or CA, this was the previous behaviour, with all the associated security issues. X509_TRUST_COMPAT is the old trust behaviour: only and automatically trust self signed roots in certificate store. A new trust setting X509_TRUST_DEFAULT is used to specify that a purpose has no associated trust setting and it should instead use the value in the default purpose. [Steve Henson] *) Fix the PKCS#8 DSA private key code so it decodes keys again and fix a memory leak. [Steve Henson] *) In util/mkerr.pl (which implements 'make errors'), preserve reason strings from the previous version of the .c file, as the default to have only downcase letters (and digits) in automatically generated reasons codes is not always appropriate. [Bodo Moeller] *) In ERR_load_ERR_strings(), build an ERR_LIB_SYS error reason table using strerror. Previously, ERR_reason_error_string() returned library names as reason strings for SYSerr; but SYSerr is a special case where small numbers are errno values, not library numbers. [Bodo Moeller] *) Add '-dsaparam' option to 'openssl dhparam' application. This converts DSA parameters into DH parameters. (When creating parameters, DSA_generate_parameters is used.) [Bodo Moeller] *) Include 'length' (recommended exponent length) in C code generated by 'openssl dhparam -C'. [Bodo Moeller] *) The second argument to set_label in perlasm was already being used so couldn't be used as a "file scope" flag. Moved to third argument which was free. [Steve Henson] *) In PEM_ASN1_write_bio and some other functions, use RAND_pseudo_bytes instead of RAND_bytes for encryption IVs and salts. [Bodo Moeller] *) Include RAND_status() into RAND_METHOD instead of implementing it only for md_rand.c Otherwise replacing the PRNG by calling RAND_set_rand_method would be impossible. [Bodo Moeller] *) Don't let DSA_generate_key() enter an infinite loop if the random number generation fails. [Bodo Moeller] *) New 'rand' application for creating pseudo-random output. [Bodo Moeller] *) Added configuration support for Linux/IA64 [Rolf Haberrecker ] *) Assembler module support for Mingw32. [Ulf Möller] *) Shared library support for HPUX (in shlib/). [Lutz Jaenicke and Anonymous] *) Shared library support for Solaris gcc. [Lutz Behnke ] Changes between 0.9.4 and 0.9.5 [28 Feb 2000] *) PKCS7_encrypt() was adding text MIME headers twice because they were added manually and by SMIME_crlf_copy(). [Steve Henson] *) In bntest.c don't call BN_rand with zero bits argument. [Steve Henson, pointed out by Andrew W. Gray ] *) BN_mul bugfix: In bn_mul_part_recursion() only the a>a[n] && b>b[n] case was implemented. This caused BN_div_recp() to fail occasionally. [Ulf Möller] *) Add an optional second argument to the set_label() in the perl assembly language builder. If this argument exists and is set to 1 it signals that the assembler should use a symbol whose scope is the entire file, not just the current function. This is needed with MASM which uses the format label:: for this scope. [Steve Henson, pointed out by Peter Runestig ] *) Change the ASN1 types so they are typedefs by default. Before almost all types were #define'd to ASN1_STRING which was causing STACK_OF() problems: you couldn't declare STACK_OF(ASN1_UTF8STRING) for example. [Steve Henson] *) Change names of new functions to the new get1/get0 naming convention: After 'get1', the caller owns a reference count and has to call ..._free; 'get0' returns a pointer to some data structure without incrementing reference counters. (Some of the existing 'get' functions increment a reference counter, some don't.) Similarly, 'set1' and 'add1' functions increase reference counters or duplicate objects. [Steve Henson] *) Allow for the possibility of temp RSA key generation failure: the code used to assume it always worked and crashed on failure. [Steve Henson] *) Fix potential buffer overrun problem in BIO_printf(). [Ulf Möller, using public domain code by Patrick Powell; problem pointed out by David Sacerdote ] *) Support EGD . New functions RAND_egd() and RAND_status(). In the command line application, the EGD socket can be specified like a seed file using RANDFILE or -rand. [Ulf Möller] *) Allow the string CERTIFICATE to be tolerated in PKCS#7 structures. Some CAs (e.g. Verisign) distribute certificates in this form. [Steve Henson] *) Remove the SSL_ALLOW_ADH compile option and set the default cipher list to exclude them. This means that no special compilation option is needed to use anonymous DH: it just needs to be included in the cipher list. [Steve Henson] *) Change the EVP_MD_CTX_type macro so its meaning consistent with EVP_MD_type. The old functionality is available in a new macro called EVP_MD_md(). Change code that uses it and update docs. [Steve Henson] *) ..._ctrl functions now have corresponding ..._callback_ctrl functions where the 'void *' argument is replaced by a function pointer argument. Previously 'void *' was abused to point to functions, which works on many platforms, but is not correct. As these functions are usually called by macros defined in OpenSSL header files, most source code should work without changes. [Richard Levitte] *) (which is created by Configure) now contains sections with information on -D... compiler switches used for compiling the library so that applications can see them. To enable one of these sections, a pre-processor symbol OPENSSL_..._DEFINES must be defined. E.g., #define OPENSSL_ALGORITHM_DEFINES #include defines all pertinent NO_ symbols, such as NO_IDEA, NO_RSA, etc. [Richard Levitte, Ulf and Bodo Möller] *) Bugfix: Tolerate fragmentation and interleaving in the SSL 3/TLS record layer. [Bodo Moeller] *) Change the 'other' type in certificate aux info to a STACK_OF X509_ALGOR. Although not an AlgorithmIdentifier as such it has the required ASN1 format: arbitrary types determined by an OID. [Steve Henson] *) Add some PEM_write_X509_REQ_NEW() functions and a command line argument to 'req'. This is not because the function is newer or better than others it just uses the work 'NEW' in the certificate request header lines. Some software needs this. [Steve Henson] *) Reorganise password command line arguments: now passwords can be obtained from various sources. Delete the PEM_cb function and make it the default behaviour: i.e. if the callback is NULL and the usrdata argument is not NULL interpret it as a null terminated pass phrase. If usrdata and the callback are NULL then the pass phrase is prompted for as usual. [Steve Henson] *) Add support for the Compaq Atalla crypto accelerator. If it is installed, the support is automatically enabled. The resulting binaries will autodetect the card and use it if present. [Ben Laurie and Compaq Inc.] *) Work around for Netscape hang bug. This sends certificate request and server done in one record. Since this is perfectly legal in the SSL/TLS protocol it isn't a "bug" option and is on by default. See the bugs/SSLv3 entry for more info. [Steve Henson] *) HP-UX tune-up: new unified configs, HP C compiler bug workaround. [Andy Polyakov] *) Add -rand argument to smime and pkcs12 applications and read/write of seed file. [Steve Henson] *) New 'passwd' tool for crypt(3) and apr1 password hashes. [Bodo Moeller] *) Add command line password options to the remaining applications. [Steve Henson] *) Bug fix for BN_div_recp() for numerators with an even number of bits. [Ulf Möller] *) More tests in bntest.c, and changed test_bn output. [Ulf Möller] *) ./config recognizes MacOS X now. [Andy Polyakov] *) Bug fix for BN_div() when the first words of num and divisor are equal (it gave wrong results if (rem=(n1-q*d0)&BN_MASK2) < d0). [Ulf Möller] *) Add support for various broken PKCS#8 formats, and command line options to produce them. [Steve Henson] *) New functions BN_CTX_start(), BN_CTX_get() and BT_CTX_end() to get temporary BIGNUMs from a BN_CTX. [Ulf Möller] *) Correct return values in BN_mod_exp_mont() and BN_mod_exp2_mont() for p == 0. [Ulf Möller] *) Change the SSLeay_add_all_*() functions to OpenSSL_add_all_*() and include a #define from the old name to the new. The original intent was that statically linked binaries could for example just call SSLeay_add_all_ciphers() to just add ciphers to the table and not link with digests. This never worked because SSLeay_add_all_digests() and SSLeay_add_all_ciphers() were in the same source file so calling one would link with the other. They are now in separate source files. [Steve Henson] *) Add a new -notext option to 'ca' and a -pubkey option to 'spkac'. [Steve Henson] *) Use a less unusual form of the Miller-Rabin primality test (it used a binary algorithm for exponentiation integrated into the Miller-Rabin loop, our standard modexp algorithms are faster). [Bodo Moeller] *) Support for the EBCDIC character set completed. [Martin Kraemer ] *) Source code cleanups: use const where appropriate, eliminate casts, use void * instead of char * in lhash. [Ulf Möller] *) Bugfix: ssl3_send_server_key_exchange was not restartable (the state was not changed to SSL3_ST_SW_KEY_EXCH_B, and because of this the server could overwrite ephemeral keys that the client has already seen). [Bodo Moeller] *) Turn DSA_is_prime into a macro that calls BN_is_prime, using 50 iterations of the Rabin-Miller test. DSA_generate_parameters now uses BN_is_prime_fasttest (with 50 iterations of the Rabin-Miller test as required by the appendix to FIPS PUB 186[-1]) instead of DSA_is_prime. As BN_is_prime_fasttest includes trial division, DSA parameter generation becomes much faster. This implies a change for the callback functions in DSA_is_prime and DSA_generate_parameters: The callback function is called once for each positive witness in the Rabin-Miller test, not just occasionally in the inner loop; and the parameters to the callback function now provide an iteration count for the outer loop rather than for the current invocation of the inner loop. DSA_generate_parameters additionally can call the callback function with an 'iteration count' of -1, meaning that a candidate has passed the trial division test (when q is generated from an application-provided seed, trial division is skipped). [Bodo Moeller] *) New function BN_is_prime_fasttest that optionally does trial division before starting the Rabin-Miller test and has an additional BN_CTX * argument (whereas BN_is_prime always has to allocate at least one BN_CTX). 'callback(1, -1, cb_arg)' is called when a number has passed the trial division stage. [Bodo Moeller] *) Fix for bug in CRL encoding. The validity dates weren't being handled as ASN1_TIME. [Steve Henson] *) New -pkcs12 option to CA.pl script to write out a PKCS#12 file. [Steve Henson] *) New function BN_pseudo_rand(). [Ulf Möller] *) Clean up BN_mod_mul_montgomery(): replace the broken (and unreadable) bignum version of BN_from_montgomery() with the working code from SSLeay 0.9.0 (the word based version is faster anyway), and clean up the comments. [Ulf Möller] *) Avoid a race condition in s2_clnt.c (function get_server_hello) that made it impossible to use the same SSL_SESSION data structure in SSL2 clients in multiple threads. [Bodo Moeller] *) The return value of RAND_load_file() no longer counts bytes obtained by stat(). RAND_load_file(..., -1) is new and uses the complete file to seed the PRNG (previously an explicit byte count was required). [Ulf Möller, Bodo Möller] *) Clean up CRYPTO_EX_DATA functions, some of these didn't have prototypes used (char *) instead of (void *) and had casts all over the place. [Steve Henson] *) Make BN_generate_prime() return NULL on error if ret!=NULL. [Ulf Möller] *) Retain source code compatibility for BN_prime_checks macro: BN_is_prime(..., BN_prime_checks, ...) now uses BN_prime_checks_for_size to determine the appropriate number of Rabin-Miller iterations. [Ulf Möller] *) Diffie-Hellman uses "safe" primes: DH_check() return code renamed to DH_CHECK_P_NOT_SAFE_PRIME. (Check if this is true? OpenPGP calls them "strong".) [Ulf Möller] *) Merge the functionality of "dh" and "gendh" programs into a new program "dhparam". The old programs are retained for now but will handle DH keys (instead of parameters) in future. [Steve Henson] *) Make the ciphers, s_server and s_client programs check the return values when a new cipher list is set. [Steve Henson] *) Enhance the SSL/TLS cipher mechanism to correctly handle the TLS 56bit ciphers. Before when the 56bit ciphers were enabled the sorting was wrong. The syntax for the cipher sorting has been extended to support sorting by cipher-strength (using the strength_bits hard coded in the tables). The new command is "@STRENGTH" (see also doc/apps/ciphers.pod). Fix a bug in the cipher-command parser: when supplying a cipher command string with an "undefined" symbol (neither command nor alphanumeric [A-Za-z0-9], ssl_set_cipher_list used to hang in an endless loop. Now an error is flagged. Due to the strength-sorting extension, the code of the ssl_create_cipher_list() function was completely rearranged. I hope that the readability was also increased :-) [Lutz Jaenicke ] *) Minor change to 'x509' utility. The -CAcreateserial option now uses 1 for the first serial number and places 2 in the serial number file. This avoids problems when the root CA is created with serial number zero and the first user certificate has the same issuer name and serial number as the root CA. [Steve Henson] *) Fixes to X509_ATTRIBUTE utilities, change the 'req' program so it uses the new code. Add documentation for this stuff. [Steve Henson] *) Changes to X509_ATTRIBUTE utilities. These have been renamed from X509_*() to X509at_*() on the grounds that they don't handle X509 structures and behave in an analogous way to the X509v3 functions: they shouldn't be called directly but wrapper functions should be used instead. So we also now have some wrapper functions that call the X509at functions when passed certificate requests. (TO DO: similar things can be done with PKCS#7 signed and unsigned attributes, PKCS#12 attributes and a few other things. Some of these need some d2i or i2d and print functionality because they handle more complex structures.) [Steve Henson] *) Add missing #ifndefs that caused missing symbols when building libssl as a shared library without RSA. Use #ifndef NO_SSL2 instead of NO_RSA in ssl/s2*.c. [Kris Kennaway , modified by Ulf Möller] *) Precautions against using the PRNG uninitialized: RAND_bytes() now has a return value which indicates the quality of the random data (1 = ok, 0 = not seeded). Also an error is recorded on the thread's error queue. New function RAND_pseudo_bytes() generates output that is guaranteed to be unique but not unpredictable. RAND_add is like RAND_seed, but takes an extra argument for an entropy estimate (RAND_seed always assumes full entropy). [Ulf Möller] *) Do more iterations of Rabin-Miller probable prime test (specifically, 3 for 1024-bit primes, 6 for 512-bit primes, 12 for 256-bit primes instead of only 2 for all lengths; see BN_prime_checks_for_size definition in crypto/bn/bn_prime.c for the complete table). This guarantees a false-positive rate of at most 2^-80 for random input. [Bodo Moeller] *) Rewrite ssl3_read_n (ssl/s3_pkt.c) avoiding a couple of bugs. [Bodo Moeller] *) New function X509_CTX_rget_chain() (renamed to X509_CTX_get1_chain in the 0.9.5 release), this returns the chain from an X509_CTX structure with a dup of the stack and all the X509 reference counts upped: so the stack will exist after X509_CTX_cleanup() has been called. Modify pkcs12.c to use this. Also make SSL_SESSION_print() print out the verify return code. [Steve Henson] *) Add manpage for the pkcs12 command. Also change the default behaviour so MAC iteration counts are used unless the new -nomaciter option is used. This improves file security and only older versions of MSIE (4.0 for example) need it. [Steve Henson] *) Honor the no-xxx Configure options when creating .DEF files. [Ulf Möller] *) Add PKCS#10 attributes to field table: challengePassword, unstructuredName and unstructuredAddress. These are taken from draft PKCS#9 v2.0 but are compatible with v1.2 provided no international characters are used. More changes to X509_ATTRIBUTE code: allow the setting of types based on strings. Remove the 'loc' parameter when adding attributes because these will be a SET OF encoding which is sorted in ASN1 order. [Steve Henson] *) Initial changes to the 'req' utility to allow request generation automation. This will allow an application to just generate a template file containing all the field values and have req construct the request. Initial support for X509_ATTRIBUTE handling. Stacks of these are used all over the place including certificate requests and PKCS#7 structures. They are currently handled manually where necessary with some primitive wrappers for PKCS#7. The new functions behave in a manner analogous to the X509 extension functions: they allow attributes to be looked up by NID and added. Later something similar to the X509V3 code would be desirable to automatically handle the encoding, decoding and printing of the more complex types. The string types like challengePassword can be handled by the string table functions. Also modified the multi byte string table handling. Now there is a 'global mask' which masks out certain types. The table itself can use the flag STABLE_NO_MASK to ignore the mask setting: this is useful when for example there is only one permissible type (as in countryName) and using the mask might result in no valid types at all. [Steve Henson] *) Clean up 'Finished' handling, and add functions SSL_get_finished and SSL_get_peer_finished to allow applications to obtain the latest Finished messages sent to the peer or expected from the peer, respectively. (SSL_get_peer_finished is usually the Finished message actually received from the peer, otherwise the protocol will be aborted.) As the Finished message are message digests of the complete handshake (with a total of 192 bits for TLS 1.0 and more for SSL 3.0), they can be used for external authentication procedures when the authentication provided by SSL/TLS is not desired or is not enough. [Bodo Moeller] *) Enhanced support for Alpha Linux is added. Now ./config checks if the host supports BWX extension and if Compaq C is present on the $PATH. Just exploiting of the BWX extension results in 20-30% performance kick for some algorithms, e.g. DES and RC4 to mention a couple. Compaq C in turn generates ~20% faster code for MD5 and SHA1. [Andy Polyakov] *) Add support for MS "fast SGC". This is arguably a violation of the SSL3/TLS protocol. Netscape SGC does two handshakes: the first with weak crypto and after checking the certificate is SGC a second one with strong crypto. MS SGC stops the first handshake after receiving the server certificate message and sends a second client hello. Since a server will typically do all the time consuming operations before expecting any further messages from the client (server key exchange is the most expensive) there is little difference between the two. To get OpenSSL to support MS SGC we have to permit a second client hello message after we have sent server done. In addition we have to reset the MAC if we do get this second client hello. [Steve Henson] *) Add a function 'd2i_AutoPrivateKey()' this will automatically decide if a DER encoded private key is RSA or DSA traditional format. Changed d2i_PrivateKey_bio() to use it. This is only needed for the "traditional" format DER encoded private key. Newer code should use PKCS#8 format which has the key type encoded in the ASN1 structure. Added DER private key support to pkcs8 application. [Steve Henson] *) SSL 3/TLS 1 servers now don't request certificates when an anonymous ciphersuites has been selected (as required by the SSL 3/TLS 1 specifications). Exception: When SSL_VERIFY_FAIL_IF_NO_PEER_CERT is set, we interpret this as a request to violate the specification (the worst that can happen is a handshake failure, and 'correct' behaviour would result in a handshake failure anyway). [Bodo Moeller] *) In SSL_CTX_add_session, take into account that there might be multiple SSL_SESSION structures with the same session ID (e.g. when two threads concurrently obtain them from an external cache). The internal cache can handle only one SSL_SESSION with a given ID, so if there's a conflict, we now throw out the old one to achieve consistency. [Bodo Moeller] *) Add OIDs for idea and blowfish in CBC mode. This will allow both to be used in PKCS#5 v2.0 and S/MIME. Also add checking to some routines that use cipher OIDs: some ciphers do not have OIDs defined and so they cannot be used for S/MIME and PKCS#5 v2.0 for example. [Steve Henson] *) Simplify the trust setting structure and code. Now we just have two sequences of OIDs for trusted and rejected settings. These will typically have values the same as the extended key usage extension and any application specific purposes. The trust checking code now has a default behaviour: it will just check for an object with the same NID as the passed id. Functions can be provided to override either the default behaviour or the behaviour for a given id. SSL client, server and email already have functions in place for compatibility: they check the NID and also return "trusted" if the certificate is self signed. [Steve Henson] *) Add d2i,i2d bio/fp functions for PrivateKey: these convert the traditional format into an EVP_PKEY structure. [Steve Henson] *) Add a password callback function PEM_cb() which either prompts for a password if usr_data is NULL or otherwise assumes it is a null terminated password. Allow passwords to be passed on command line environment or config files in a few more utilities. [Steve Henson] *) Add a bunch of DER and PEM functions to handle PKCS#8 format private keys. Add some short names for PKCS#8 PBE algorithms and allow them to be specified on the command line for the pkcs8 and pkcs12 utilities. Update documentation. [Steve Henson] *) Support for ASN1 "NULL" type. This could be handled before by using ASN1_TYPE but there wasn't any function that would try to read a NULL and produce an error if it couldn't. For compatibility we also have ASN1_NULL_new() and ASN1_NULL_free() functions but these are faked and don't allocate anything because they don't need to. [Steve Henson] *) Initial support for MacOS is now provided. Examine INSTALL.MacOS for details. [Andy Polyakov, Roy Woods ] *) Rebuild of the memory allocation routines used by OpenSSL code and possibly others as well. The purpose is to make an interface that provide hooks so anyone can build a separate set of allocation and deallocation routines to be used by OpenSSL, for example memory pool implementations, or something else, which was previously hard since Malloc(), Realloc() and Free() were defined as macros having the values malloc, realloc and free, respectively (except for Win32 compilations). The same is provided for memory debugging code. OpenSSL already comes with functionality to find memory leaks, but this gives people a chance to debug other memory problems. With these changes, a new set of functions and macros have appeared: CRYPTO_set_mem_debug_functions() [F] CRYPTO_get_mem_debug_functions() [F] CRYPTO_dbg_set_options() [F] CRYPTO_dbg_get_options() [F] CRYPTO_malloc_debug_init() [M] The memory debug functions are NULL by default, unless the library is compiled with CRYPTO_MDEBUG or friends is defined. If someone wants to debug memory anyway, CRYPTO_malloc_debug_init() (which gives the standard debugging functions that come with OpenSSL) or CRYPTO_set_mem_debug_functions() (tells OpenSSL to use functions provided by the library user) must be used. When the standard debugging functions are used, CRYPTO_dbg_set_options can be used to request additional information: CRYPTO_dbg_set_options(V_CYRPTO_MDEBUG_xxx) corresponds to setting the CRYPTO_MDEBUG_xxx macro when compiling the library. Also, things like CRYPTO_set_mem_functions will always give the expected result (the new set of functions is used for allocation and deallocation) at all times, regardless of platform and compiler options. To finish it up, some functions that were never use in any other way than through macros have a new API and new semantic: CRYPTO_dbg_malloc() CRYPTO_dbg_realloc() CRYPTO_dbg_free() All macros of value have retained their old syntax. [Richard Levitte and Bodo Moeller] *) Some S/MIME fixes. The OID for SMIMECapabilities was wrong, the ordering of SMIMECapabilities wasn't in "strength order" and there was a missing NULL in the AlgorithmIdentifier for the SHA1 signature algorithm. [Steve Henson] *) Some ASN1 types with illegal zero length encoding (INTEGER, ENUMERATED and OBJECT IDENTIFIER) choked the ASN1 routines. [Frans Heymans , modified by Steve Henson] *) Merge in my S/MIME library for OpenSSL. This provides a simple S/MIME API on top of the PKCS#7 code, a MIME parser (with enough functionality to handle multipart/signed properly) and a utility called 'smime' to call all this stuff. This is based on code I originally wrote for Celo who have kindly allowed it to be included in OpenSSL. [Steve Henson] *) Add variants des_set_key_checked and des_set_key_unchecked of des_set_key (aka des_key_sched). Global variable des_check_key decides which of these is called by des_set_key; this way des_check_key behaves as it always did, but applications and the library itself, which was buggy for des_check_key == 1, have a cleaner way to pick the version they need. [Bodo Moeller] *) New function PKCS12_newpass() which changes the password of a PKCS12 structure. [Steve Henson] *) Modify X509_TRUST and X509_PURPOSE so it also uses a static and dynamic mix. In both cases the ids can be used as an index into the table. Also modified the X509_TRUST_add() and X509_PURPOSE_add() functions so they accept a list of the field values and the application doesn't need to directly manipulate the X509_TRUST structure. [Steve Henson] *) Modify the ASN1_STRING_TABLE stuff so it also uses bsearch and doesn't need initialising. [Steve Henson] *) Modify the way the V3 extension code looks up extensions. This now works in a similar way to the object code: we have some "standard" extensions in a static table which is searched with OBJ_bsearch() and the application can add dynamic ones if needed. The file crypto/x509v3/ext_dat.h now has the info: this file needs to be updated whenever a new extension is added to the core code and kept in ext_nid order. There is a simple program 'tabtest.c' which checks this. New extensions are not added too often so this file can readily be maintained manually. There are two big advantages in doing things this way. The extensions can be looked up immediately and no longer need to be "added" using X509V3_add_standard_extensions(): this function now does nothing. [Side note: I get *lots* of email saying the extension code doesn't work because people forget to call this function] Also no dynamic allocation is done unless new extensions are added: so if we don't add custom extensions there is no need to call X509V3_EXT_cleanup(). [Steve Henson] *) Modify enc utility's salting as follows: make salting the default. Add a magic header, so unsalted files fail gracefully instead of just decrypting to garbage. This is because not salting is a big security hole, so people should be discouraged from doing it. [Ben Laurie] *) Fixes and enhancements to the 'x509' utility. It allowed a message digest to be passed on the command line but it only used this parameter when signing a certificate. Modified so all relevant operations are affected by the digest parameter including the -fingerprint and -x509toreq options. Also -x509toreq choked if a DSA key was used because it didn't fix the digest. [Steve Henson] *) Initial certificate chain verify code. Currently tests the untrusted certificates for consistency with the verify purpose (which is set when the X509_STORE_CTX structure is set up) and checks the pathlength. There is a NO_CHAIN_VERIFY compilation option to keep the old behaviour: this is because it will reject chains with invalid extensions whereas every previous version of OpenSSL and SSLeay made no checks at all. Trust code: checks the root CA for the relevant trust settings. Trust settings have an initial value consistent with the verify purpose: e.g. if the verify purpose is for SSL client use it expects the CA to be trusted for SSL client use. However the default value can be changed to permit custom trust settings: one example of this would be to only trust certificates from a specific "secure" set of CAs. Also added X509_STORE_CTX_new() and X509_STORE_CTX_free() functions which should be used for version portability: especially since the verify structure is likely to change more often now. SSL integration. Add purpose and trust to SSL_CTX and SSL and functions to set them. If not set then assume SSL clients will verify SSL servers and vice versa. Two new options to the verify program: -untrusted allows a set of untrusted certificates to be passed in and -purpose which sets the intended purpose of the certificate. If a purpose is set then the new chain verify code is used to check extension consistency. [Steve Henson] *) Support for the authority information access extension. [Steve Henson] *) Modify RSA and DSA PEM read routines to transparently handle PKCS#8 format private keys. New *_PUBKEY_* functions that handle public keys in a format compatible with certificate SubjectPublicKeyInfo structures. Unfortunately there were already functions called *_PublicKey_* which used various odd formats so these are retained for compatibility: however the DSA variants were never in a public release so they have been deleted. Changed dsa/rsa utilities to handle the new format: note no releases ever handled public keys so we should be OK. The primary motivation for this change is to avoid the same fiasco that dogs private keys: there are several incompatible private key formats some of which are standard and some OpenSSL specific and require various evil hacks to allow partial transparent handling and even then it doesn't work with DER formats. Given the option anything other than PKCS#8 should be dumped: but the other formats have to stay in the name of compatibility. With public keys and the benefit of hindsight one standard format is used which works with EVP_PKEY, RSA or DSA structures: though it clearly returns an error if you try to read the wrong kind of key. Added a -pubkey option to the 'x509' utility to output the public key. Also rename the EVP_PKEY_get_*() to EVP_PKEY_rget_*() (renamed to EVP_PKEY_get1_*() in the OpenSSL 0.9.5 release) and add EVP_PKEY_rset_*() functions (renamed to EVP_PKEY_set1_*()) that do the same as the EVP_PKEY_assign_*() except they up the reference count of the added key (they don't "swallow" the supplied key). [Steve Henson] *) Fixes to crypto/x509/by_file.c the code to read in certificates and CRLs would fail if the file contained no certificates or no CRLs: added a new function to read in both types and return the number read: this means that if none are read it will be an error. The DER versions of the certificate and CRL reader would always fail because it isn't possible to mix certificates and CRLs in DER format without choking one or the other routine. Changed this to just read a certificate: this is the best we can do. Also modified the code in apps/verify.c to take notice of return codes: it was previously attempting to read in certificates from NULL pointers and ignoring any errors: this is one reason why the cert and CRL reader seemed to work. It doesn't check return codes from the default certificate routines: these may well fail if the certificates aren't installed. [Steve Henson] *) Code to support otherName option in GeneralName. [Steve Henson] *) First update to verify code. Change the verify utility so it warns if it is passed a self signed certificate: for consistency with the normal behaviour. X509_verify has been modified to it will now verify a self signed certificate if *exactly* the same certificate appears in the store: it was previously impossible to trust a single self signed certificate. This means that: openssl verify ss.pem now gives a warning about a self signed certificate but openssl verify -CAfile ss.pem ss.pem is OK. [Steve Henson] *) For servers, store verify_result in SSL_SESSION data structure (and add it to external session representation). This is needed when client certificate verifications fails, but an application-provided verification callback (set by SSL_CTX_set_cert_verify_callback) allows accepting the session anyway (i.e. leaves x509_store_ctx->error != X509_V_OK but returns 1): When the session is reused, we have to set ssl->verify_result to the appropriate error code to avoid security holes. [Bodo Moeller, problem pointed out by Lutz Jaenicke] *) Fix a bug in the new PKCS#7 code: it didn't consider the case in PKCS7_dataInit() where the signed PKCS7 structure didn't contain any existing data because it was being created. [Po-Cheng Chen , slightly modified by Steve Henson] *) Add a salt to the key derivation routines in enc.c. This forms the first 8 bytes of the encrypted file. Also add a -S option to allow a salt to be input on the command line. [Steve Henson] *) New function X509_cmp(). Oddly enough there wasn't a function to compare two certificates. We do this by working out the SHA1 hash and comparing that. X509_cmp() will be needed by the trust code. [Steve Henson] *) SSL_get1_session() is like SSL_get_session(), but increments the reference count in the SSL_SESSION returned. [Geoff Thorpe ] *) Fix for 'req': it was adding a null to request attributes. Also change the X509_LOOKUP and X509_INFO code to handle certificate auxiliary information. [Steve Henson] *) Add support for 40 and 64 bit RC2 and RC4 algorithms: document the 'enc' command. [Steve Henson] *) Add the possibility to add extra information to the memory leak detecting output, to form tracebacks, showing from where each allocation was originated: CRYPTO_push_info("constant string") adds the string plus current file name and line number to a per-thread stack, CRYPTO_pop_info() does the obvious, CRYPTO_remove_all_info() is like calling CYRPTO_pop_info() until the stack is empty. Also updated memory leak detection code to be multi-thread-safe. [Richard Levitte] *) Add options -text and -noout to pkcs7 utility and delete the encryption options which never did anything. Update docs. [Steve Henson] *) Add options to some of the utilities to allow the pass phrase to be included on either the command line (not recommended on OSes like Unix) or read from the environment. Update the manpages and fix a few bugs. [Steve Henson] *) Add a few manpages for some of the openssl commands. [Steve Henson] *) Fix the -revoke option in ca. It was freeing up memory twice, leaking and not finding already revoked certificates. [Steve Henson] *) Extensive changes to support certificate auxiliary information. This involves the use of X509_CERT_AUX structure and X509_AUX functions. An X509_AUX function such as PEM_read_X509_AUX() can still read in a certificate file in the usual way but it will also read in any additional "auxiliary information". By doing things this way a fair degree of compatibility can be retained: existing certificates can have this information added using the new 'x509' options. Current auxiliary information includes an "alias" and some trust settings. The trust settings will ultimately be used in enhanced certificate chain verification routines: currently a certificate can only be trusted if it is self signed and then it is trusted for all purposes. [Steve Henson] *) Fix assembler for Alpha (tested only on DEC OSF not Linux or *BSD). The problem was that one of the replacement routines had not been working since SSLeay releases. For now the offending routine has been replaced with non-optimised assembler. Even so, this now gives around 95% performance improvement for 1024 bit RSA signs. [Mark Cox] *) Hack to fix PKCS#7 decryption when used with some unorthodox RC2 handling. Most clients have the effective key size in bits equal to the key length in bits: so a 40 bit RC2 key uses a 40 bit (5 byte) key. A few however don't do this and instead use the size of the decrypted key to determine the RC2 key length and the AlgorithmIdentifier to determine the effective key length. In this case the effective key length can still be 40 bits but the key length can be 168 bits for example. This is fixed by manually forcing an RC2 key into the EVP_PKEY structure because the EVP code can't currently handle unusual RC2 key sizes: it always assumes the key length and effective key length are equal. [Steve Henson] *) Add a bunch of functions that should simplify the creation of X509_NAME structures. Now you should be able to do: X509_NAME_add_entry_by_txt(nm, "CN", MBSTRING_ASC, "Steve", -1, -1, 0); and have it automatically work out the correct field type and fill in the structures. The more adventurous can try: X509_NAME_add_entry_by_txt(nm, field, MBSTRING_UTF8, str, -1, -1, 0); and it will (hopefully) work out the correct multibyte encoding. [Steve Henson] *) Change the 'req' utility to use the new field handling and multibyte copy routines. Before the DN field creation was handled in an ad hoc way in req, ca, and x509 which was rather broken and didn't support BMPStrings or UTF8Strings. Since some software doesn't implement BMPStrings or UTF8Strings yet, they can be enabled using the config file using the dirstring_type option. See the new comment in the default openssl.cnf for more info. [Steve Henson] *) Make crypto/rand/md_rand.c more robust: - Assure unique random numbers after fork(). - Make sure that concurrent threads access the global counter and md serializably so that we never lose entropy in them or use exactly the same state in multiple threads. Access to the large state is not always serializable because the additional locking could be a performance killer, and md should be large enough anyway. [Bodo Moeller] *) New file apps/app_rand.c with commonly needed functionality for handling the random seed file. Use the random seed file in some applications that previously did not: ca, dsaparam -genkey (which also ignored its '-rand' option), s_client, s_server, x509 (when signing). Except on systems with /dev/urandom, it is crucial to have a random seed file at least for key creation, DSA signing, and for DH exchanges; for RSA signatures we could do without one. gendh and gendsa (unlike genrsa) used to read only the first byte of each file listed in the '-rand' option. The function as previously found in genrsa is now in app_rand.c and is used by all programs that support '-rand'. [Bodo Moeller] *) In RAND_write_file, use mode 0600 for creating files; don't just chmod when it may be too late. [Bodo Moeller] *) Report an error from X509_STORE_load_locations when X509_LOOKUP_load_file or X509_LOOKUP_add_dir failed. [Bill Perry] *) New function ASN1_mbstring_copy() this copies a string in either ASCII, Unicode, Universal (4 bytes per character) or UTF8 format into an ASN1_STRING type. A mask of permissible types is passed and it chooses the "minimal" type to use or an error if not type is suitable. [Steve Henson] *) Add function equivalents to the various macros in asn1.h. The old macros are retained with an M_ prefix. Code inside the library can use the M_ macros. External code (including the openssl utility) should *NOT* in order to be "shared library friendly". [Steve Henson] *) Add various functions that can check a certificate's extensions to see if it usable for various purposes such as SSL client, server or S/MIME and CAs of these types. This is currently VERY EXPERIMENTAL but will ultimately be used for certificate chain verification. Also added a -purpose flag to x509 utility to print out all the purposes. [Steve Henson] *) Add a CRYPTO_EX_DATA to X509 certificate structure and associated functions. [Steve Henson] *) New X509V3_{X509,CRL,REVOKED}_get_d2i() functions. These will search for, obtain and decode and extension and obtain its critical flag. This allows all the necessary extension code to be handled in a single function call. [Steve Henson] *) RC4 tune-up featuring 30-40% performance improvement on most RISC platforms. See crypto/rc4/rc4_enc.c for further details. [Andy Polyakov] *) New -noout option to asn1parse. This causes no output to be produced its main use is when combined with -strparse and -out to extract data from a file (which may not be in ASN.1 format). [Steve Henson] *) Fix for pkcs12 program. It was hashing an invalid certificate pointer when producing the local key id. [Richard Levitte ] *) New option -dhparam in s_server. This allows a DH parameter file to be stated explicitly. If it is not stated then it tries the first server certificate file. The previous behaviour hard coded the filename "server.pem". [Steve Henson] *) Add -pubin and -pubout options to the rsa and dsa commands. These allow a public key to be input or output. For example: openssl rsa -in key.pem -pubout -out pubkey.pem Also added necessary DSA public key functions to handle this. [Steve Henson] *) Fix so PKCS7_dataVerify() doesn't crash if no certificates are contained in the message. This was handled by allowing X509_find_by_issuer_and_serial() to tolerate a NULL passed to it. [Steve Henson, reported by Sampo Kellomaki ] *) Fix for bug in d2i_ASN1_bytes(): other ASN1 functions add an extra null to the end of the strings whereas this didn't. This would cause problems if strings read with d2i_ASN1_bytes() were later modified. [Steve Henson, reported by Arne Ansper ] *) Fix for base64 decode bug. When a base64 bio reads only one line of data and it contains EOF it will end up returning an error. This is caused by input 46 bytes long. The cause is due to the way base64 BIOs find the start of base64 encoded data. They do this by trying a trial decode on each line until they find one that works. When they do a flag is set and it starts again knowing it can pass all the data directly through the decoder. Unfortunately it doesn't reset the context it uses. This means that if EOF is reached an attempt is made to pass two EOFs through the context and this causes the resulting error. This can also cause other problems as well. As is usual with these problems it takes *ages* to find and the fix is trivial: move one line. [Steve Henson, reported by ian@uns.ns.ac.yu (Ivan Nejgebauer) ] *) Ugly workaround to get s_client and s_server working under Windows. The old code wouldn't work because it needed to select() on sockets and the tty (for keypresses and to see if data could be written). Win32 only supports select() on sockets so we select() with a 1s timeout on the sockets and then see if any characters are waiting to be read, if none are present then we retry, we also assume we can always write data to the tty. This isn't nice because the code then blocks until we've received a complete line of data and it is effectively polling the keyboard at 1s intervals: however it's quite a bit better than not working at all :-) A dedicated Windows application might handle this with an event loop for example. [Steve Henson] *) Enhance RSA_METHOD structure. Now there are two extra methods, rsa_sign and rsa_verify. When the RSA_FLAGS_SIGN_VER option is set these functions will be called when RSA_sign() and RSA_verify() are used. This is useful if rsa_pub_dec() and rsa_priv_enc() equivalents are not available. For this to work properly RSA_public_decrypt() and RSA_private_encrypt() should *not* be used: RSA_sign() and RSA_verify() must be used instead. This necessitated the support of an extra signature type NID_md5_sha1 for SSL signatures and modifications to the SSL library to use it instead of calling RSA_public_decrypt() and RSA_private_encrypt(). [Steve Henson] *) Add new -verify -CAfile and -CApath options to the crl program, these will lookup a CRL issuers certificate and verify the signature in a similar way to the verify program. Tidy up the crl program so it no longer accesses structures directly. Make the ASN1 CRL parsing a bit less strict. It will now permit CRL extensions even if it is not a V2 CRL: this will allow it to tolerate some broken CRLs. [Steve Henson] *) Initialize all non-automatic variables each time one of the openssl sub-programs is started (this is necessary as they may be started multiple times from the "OpenSSL>" prompt). [Lennart Bang, Bodo Moeller] *) Preliminary compilation option RSA_NULL which disables RSA crypto without removing all other RSA functionality (this is what NO_RSA does). This is so (for example) those in the US can disable those operations covered by the RSA patent while allowing storage and parsing of RSA keys and RSA key generation. [Steve Henson] *) Non-copying interface to BIO pairs. (still largely untested) [Bodo Moeller] *) New function ANS1_tag2str() to convert an ASN1 tag to a descriptive ASCII string. This was handled independently in various places before. [Steve Henson] *) New functions UTF8_getc() and UTF8_putc() that parse and generate UTF8 strings a character at a time. [Steve Henson] *) Use client_version from client hello to select the protocol (s23_srvr.c) and for RSA client key exchange verification (s3_srvr.c), as required by the SSL 3.0/TLS 1.0 specifications. [Bodo Moeller] *) Add various utility functions to handle SPKACs, these were previously handled by poking round in the structure internals. Added new function NETSCAPE_SPKI_print() to print out SPKAC and a new utility 'spkac' to print, verify and generate SPKACs. Based on an original idea from Massimiliano Pala but extensively modified. [Steve Henson] *) RIPEMD160 is operational on all platforms and is back in 'make test'. [Andy Polyakov] *) Allow the config file extension section to be overwritten on the command line. Based on an original idea from Massimiliano Pala . The new option is called -extensions and can be applied to ca, req and x509. Also -reqexts to override the request extensions in req and -crlexts to override the crl extensions in ca. [Steve Henson] *) Add new feature to the SPKAC handling in ca. Now you can include the same field multiple times by preceding it by "XXXX." for example: 1.OU="Unit name 1" 2.OU="Unit name 2" this is the same syntax as used in the req config file. [Steve Henson] *) Allow certificate extensions to be added to certificate requests. These are specified in a 'req_extensions' option of the req section of the config file. They can be printed out with the -text option to req but are otherwise ignored at present. [Steve Henson] *) Fix a horrible bug in enc_read() in crypto/evp/bio_enc.c: if the first data read consists of only the final block it would not decrypted because EVP_CipherUpdate() would correctly report zero bytes had been decrypted. A misplaced 'break' also meant the decrypted final block might not be copied until the next read. [Steve Henson] *) Initial support for DH_METHOD. Again based on RSA_METHOD. Also added a few extra parameters to the DH structure: these will be useful if for example we want the value of 'q' or implement X9.42 DH. [Steve Henson] *) Initial support for DSA_METHOD. This is based on the RSA_METHOD and provides hooks that allow the default DSA functions or functions on a "per key" basis to be replaced. This allows hardware acceleration and hardware key storage to be handled without major modification to the library. Also added low level modexp hooks and CRYPTO_EX structure and associated functions. [Steve Henson] *) Add a new flag to memory BIOs, BIO_FLAG_MEM_RDONLY. This marks the BIO as "read only": it can't be written to and the buffer it points to will not be freed. Reading from a read only BIO is much more efficient than a normal memory BIO. This was added because there are several times when an area of memory needs to be read from a BIO. The previous method was to create a memory BIO and write the data to it, this results in two copies of the data and an O(n^2) reading algorithm. There is a new function BIO_new_mem_buf() which creates a read only memory BIO from an area of memory. Also modified the PKCS#7 routines to use read only memory BIOs. [Steve Henson] *) Bugfix: ssl23_get_client_hello did not work properly when called in state SSL23_ST_SR_CLNT_HELLO_B, i.e. when the first 7 bytes of a SSLv2-compatible client hello for SSLv3 or TLSv1 could be read, but a retry condition occurred while trying to read the rest. [Bodo Moeller] *) The PKCS7_ENC_CONTENT_new() function was setting the content type as NID_pkcs7_encrypted by default: this was wrong since this should almost always be NID_pkcs7_data. Also modified the PKCS7_set_type() to handle the encrypted data type: this is a more sensible place to put it and it allows the PKCS#12 code to be tidied up that duplicated this functionality. [Steve Henson] *) Changed obj_dat.pl script so it takes its input and output files on the command line. This should avoid shell escape redirection problems under Win32. [Steve Henson] *) Initial support for certificate extension requests, these are included in things like Xenroll certificate requests. Included functions to allow extensions to be obtained and added. [Steve Henson] *) -crlf option to s_client and s_server for sending newlines as CRLF (as required by many protocols). [Bodo Moeller] Changes between 0.9.3a and 0.9.4 [09 Aug 1999] *) Install libRSAglue.a when OpenSSL is built with RSAref. [Ralf S. Engelschall] *) A few more ``#ifndef NO_FP_API / #endif'' pairs for consistency. [Andrija Antonijevic ] *) Fix -startdate and -enddate (which was missing) arguments to 'ca' program. [Steve Henson] *) New function DSA_dup_DH, which duplicates DSA parameters/keys as DH parameters/keys (q is lost during that conversion, but the resulting DH parameters contain its length). For 1024-bit p, DSA_generate_parameters followed by DSA_dup_DH is much faster than DH_generate_parameters (which creates parameters where p = 2*q + 1), and also the smaller q makes DH computations much more efficient (160-bit exponentiation instead of 1024-bit exponentiation); so this provides a convenient way to support DHE ciphersuites in SSL/TLS servers (see ssl/ssltest.c). It is of utter importance to use SSL_CTX_set_options(s_ctx, SSL_OP_SINGLE_DH_USE); or SSL_set_options(s_ctx, SSL_OP_SINGLE_DH_USE); when such DH parameters are used, because otherwise small subgroup attacks may become possible! [Bodo Moeller] *) Avoid memory leak in i2d_DHparams. [Bodo Moeller] *) Allow the -k option to be used more than once in the enc program: this allows the same encrypted message to be read by multiple recipients. [Steve Henson] *) New function OBJ_obj2txt(buf, buf_len, a, no_name), this converts an ASN1_OBJECT to a text string. If the "no_name" parameter is set then it will always use the numerical form of the OID, even if it has a short or long name. [Steve Henson] *) Added an extra RSA flag: RSA_FLAG_EXT_PKEY. Previously the rsa_mod_exp method only got called if p,q,dmp1,dmq1,iqmp components were present, otherwise bn_mod_exp was called. In the case of hardware keys for example no private key components need be present and it might store extra data in the RSA structure, which cannot be accessed from bn_mod_exp. By setting RSA_FLAG_EXT_PKEY rsa_mod_exp will always be called for private key operations. [Steve Henson] *) Added support for SPARC Linux. [Andy Polyakov] *) pem_password_cb function type incompatibly changed from typedef int pem_password_cb(char *buf, int size, int rwflag); to ....(char *buf, int size, int rwflag, void *userdata); so that applications can pass data to their callbacks: The PEM[_ASN1]_{read,write}... functions and macros now take an additional void * argument, which is just handed through whenever the password callback is called. [Damien Miller ; tiny changes by Bodo Moeller] New function SSL_CTX_set_default_passwd_cb_userdata. Compatibility note: As many C implementations push function arguments onto the stack in reverse order, the new library version is likely to interoperate with programs that have been compiled with the old pem_password_cb definition (PEM_whatever takes some data that happens to be on the stack as its last argument, and the callback just ignores this garbage); but there is no guarantee whatsoever that this will work. *) The -DPLATFORM="\"$(PLATFORM)\"" definition and the similar -DCFLAGS=... (both in crypto/Makefile.ssl for use by crypto/cversion.c) caused problems not only on Windows, but also on some Unix platforms. To avoid problematic command lines, these definitions are now in an auto-generated file crypto/buildinf.h (created by crypto/Makefile.ssl for standard "make" builds, by util/mk1mf.pl for "mk1mf" builds). [Bodo Moeller] *) MIPS III/IV assembler module is reimplemented. [Andy Polyakov] *) More DES library cleanups: remove references to srand/rand and delete an unused file. [Ulf Möller] *) Add support for the free Netwide assembler (NASM) under Win32, since not many people have MASM (ml) and it can be hard to obtain. This is currently experimental but it seems to work OK and pass all the tests. Check out INSTALL.W32 for info. [Steve Henson] *) Fix memory leaks in s3_clnt.c: All non-anonymous SSL3/TLS1 connections without temporary keys kept an extra copy of the server key, and connections with temporary keys did not free everything in case of an error. [Bodo Moeller] *) New function RSA_check_key and new openssl rsa option -check for verifying the consistency of RSA keys. [Ulf Moeller, Bodo Moeller] *) Various changes to make Win32 compile work: 1. Casts to avoid "loss of data" warnings in p5_crpt2.c 2. Change unsigned int to int in b_dump.c to avoid "signed/unsigned comparison" warnings. 3. Add sk__sort to DEF file generator and do make update. [Steve Henson] *) Add a debugging option to PKCS#5 v2 key generation function: when you #define DEBUG_PKCS5V2 passwords, salts, iteration counts and derived keys are printed to stderr. [Steve Henson] *) Copy the flags in ASN1_STRING_dup(). [Roman E. Pavlov ] *) The x509 application mishandled signing requests containing DSA keys when the signing key was also DSA and the parameters didn't match. It was supposed to omit the parameters when they matched the signing key: the verifying software was then supposed to automatically use the CA's parameters if they were absent from the end user certificate. Omitting parameters is no longer recommended. The test was also the wrong way round! This was probably due to unusual behaviour in EVP_cmp_parameters() which returns 1 if the parameters match. This meant that parameters were omitted when they *didn't* match and the certificate was useless. Certificates signed with 'ca' didn't have this bug. [Steve Henson, reported by Doug Erickson ] *) Memory leak checking (-DCRYPTO_MDEBUG) had some problems. The interface is as follows: Applications can use CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ON) aka MemCheck_start(), CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_OFF) aka MemCheck_stop(); "off" is now the default. The library internally uses CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE) aka MemCheck_off(), CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE) aka MemCheck_on() to disable memory-checking temporarily. Some inconsistent states that previously were possible (and were even the default) are now avoided. -DCRYPTO_MDEBUG_TIME is new and additionally stores the current time with each memory chunk allocated; this is occasionally more helpful than just having a counter. -DCRYPTO_MDEBUG_THREAD is also new and adds the thread ID. -DCRYPTO_MDEBUG_ALL enables all of the above, plus any future extensions. [Bodo Moeller] *) Introduce "mode" for SSL structures (with defaults in SSL_CTX), which largely parallels "options", but is for changing API behaviour, whereas "options" are about protocol behaviour. Initial "mode" flags are: SSL_MODE_ENABLE_PARTIAL_WRITE Allow SSL_write to report success when a single record has been written. SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER Don't insist that SSL_write retries use the same buffer location. (But all of the contents must be copied!) [Bodo Moeller] *) Bugfix: SSL_set_options ignored its parameter, only SSL_CTX_set_options worked. *) Fix problems with no-hmac etc. [Ulf Möller, pointed out by Brian Wellington ] *) New functions RSA_get_default_method(), RSA_set_method() and RSA_get_method(). These allows replacement of RSA_METHODs without having to mess around with the internals of an RSA structure. [Steve Henson] *) Fix memory leaks in DSA_do_sign and DSA_is_prime. Also really enable memory leak checks in openssl.c and in some test programs. [Chad C. Mulligan, Bodo Moeller] *) Fix a bug in d2i_ASN1_INTEGER() and i2d_ASN1_INTEGER() which can mess up the length of negative integers. This has now been simplified to just store the length when it is first determined and use it later, rather than trying to keep track of where data is copied and updating it to point to the end. [Steve Henson, reported by Brien Wheeler ] *) Add a new function PKCS7_signatureVerify. This allows the verification of a PKCS#7 signature but with the signing certificate passed to the function itself. This contrasts with PKCS7_dataVerify which assumes the certificate is present in the PKCS#7 structure. This isn't always the case: certificates can be omitted from a PKCS#7 structure and be distributed by "out of band" means (such as a certificate database). [Steve Henson] *) Complete the PEM_* macros with DECLARE_PEM versions to replace the function prototypes in pem.h, also change util/mkdef.pl to add the necessary function names. [Steve Henson] *) mk1mf.pl (used by Windows builds) did not properly read the options set by Configure in the top level Makefile, and Configure was not even able to write more than one option correctly. Fixed, now "no-idea no-rc5 -DCRYPTO_MDEBUG" etc. works as intended. [Bodo Moeller] *) New functions CONF_load_bio() and CONF_load_fp() to allow a config file to be loaded from a BIO or FILE pointer. The BIO version will for example allow memory BIOs to contain config info. [Steve Henson] *) New function "CRYPTO_num_locks" that returns CRYPTO_NUM_LOCKS. Whoever hopes to achieve shared-library compatibility across versions must use this, not the compile-time macro. (Exercise 0.9.4: Which is the minimum library version required by such programs?) Note: All this applies only to multi-threaded programs, others don't need locks. [Bodo Moeller] *) Add missing case to s3_clnt.c state machine -- one of the new SSL tests through a BIO pair triggered the default case, i.e. SSLerr(...,SSL_R_UNKNOWN_STATE). [Bodo Moeller] *) New "BIO pair" concept (crypto/bio/bss_bio.c) so that applications can use the SSL library even if none of the specific BIOs is appropriate. [Bodo Moeller] *) Fix a bug in i2d_DSAPublicKey() which meant it returned the wrong value for the encoded length. [Jeon KyoungHo ] *) Add initial documentation of the X509V3 functions. [Steve Henson] *) Add a new pair of functions PEM_write_PKCS8PrivateKey() and PEM_write_bio_PKCS8PrivateKey() that are equivalent to PEM_write_PrivateKey() and PEM_write_bio_PrivateKey() but use the more secure PKCS#8 private key format with a high iteration count. [Steve Henson] *) Fix determination of Perl interpreter: A perl or perl5 _directory_ in $PATH was also accepted as the interpreter. [Ralf S. Engelschall] *) Fix demos/sign/sign.c: well there wasn't anything strictly speaking wrong with it but it was very old and did things like calling PEM_ASN1_read() directly and used MD5 for the hash not to mention some unusual formatting. [Steve Henson] *) Fix demos/selfsign.c: it used obsolete and deleted functions, changed to use the new extension code. [Steve Henson] *) Implement the PEM_read/PEM_write functions in crypto/pem/pem_all.c with macros. This should make it easier to change their form, add extra arguments etc. Fix a few PEM prototypes which didn't have cipher as a constant. [Steve Henson] *) Add to configuration table a new entry that can specify an alternative name for unistd.h (for pre-POSIX systems); we need this for NeXTstep, according to Mark Crispin . [Bodo Moeller] #if 0 *) DES CBC did not update the IV. Weird. [Ben Laurie] #else des_cbc_encrypt does not update the IV, but des_ncbc_encrypt does. Changing the behaviour of the former might break existing programs -- where IV updating is needed, des_ncbc_encrypt can be used. #endif *) When bntest is run from "make test" it drives bc to check its calculations, as well as internally checking them. If an internal check fails, it needs to cause bc to give a non-zero result or make test carries on without noticing the failure. Fixed. [Ben Laurie] *) DES library cleanups. [Ulf Möller] *) Add support for PKCS#5 v2.0 PBE algorithms. This will permit PKCS#8 to be used with any cipher unlike PKCS#5 v1.5 which can at most handle 64 bit ciphers. NOTE: although the key derivation function has been verified against some published test vectors it has not been extensively tested yet. Added a -v2 "cipher" option to pkcs8 application to allow the use of v2.0. [Steve Henson] *) Instead of "mkdir -p", which is not fully portable, use new Perl script "util/mkdir-p.pl". [Bodo Moeller] *) Rewrite the way password based encryption (PBE) is handled. It used to assume that the ASN1 AlgorithmIdentifier parameter was a PBEParameter structure. This was true for the PKCS#5 v1.5 and PKCS#12 PBE algorithms but doesn't apply to PKCS#5 v2.0 where it can be something else. Now the 'parameter' field of the AlgorithmIdentifier is passed to the underlying key generation function so it must do its own ASN1 parsing. This has also changed the EVP_PBE_CipherInit() function which now has a 'parameter' argument instead of literal salt and iteration count values and the function EVP_PBE_ALGOR_CipherInit() has been deleted. [Steve Henson] *) Support for PKCS#5 v1.5 compatible password based encryption algorithms and PKCS#8 functionality. New 'pkcs8' application linked to openssl. Needed to change the PEM_STRING_EVP_PKEY value which was just "PRIVATE KEY" because this clashed with PKCS#8 unencrypted string. Since this value was just used as a "magic string" and not used directly its value doesn't matter. [Steve Henson] *) Introduce some semblance of const correctness to BN. Shame C doesn't support mutable. [Ben Laurie] *) "linux-sparc64" configuration (ultrapenguin). [Ray Miller ] "linux-sparc" configuration. [Christian Forster ] *) config now generates no-xxx options for missing ciphers. [Ulf Möller] *) Support the EBCDIC character set (work in progress). File ebcdic.c not yet included because it has a different license. [Martin Kraemer ] *) Support BS2000/OSD-POSIX. [Martin Kraemer ] *) Make callbacks for key generation use void * instead of char *. [Ben Laurie] *) Make S/MIME samples compile (not yet tested). [Ben Laurie] *) Additional typesafe stacks. [Ben Laurie] *) New configuration variants "bsdi-elf-gcc" (BSD/OS 4.x). [Bodo Moeller] Changes between 0.9.3 and 0.9.3a [29 May 1999] *) New configuration variant "sco5-gcc". *) Updated some demos. [Sean O Riordain, Wade Scholine] *) Add missing BIO_free at exit of pkcs12 application. [Wu Zhigang] *) Fix memory leak in conf.c. [Steve Henson] *) Updates for Win32 to assembler version of MD5. [Steve Henson] *) Set #! path to perl in apps/der_chop to where we found it instead of using a fixed path. [Bodo Moeller] *) SHA library changes for irix64-mips4-cc. [Andy Polyakov] *) Improvements for VMS support. [Richard Levitte] Changes between 0.9.2b and 0.9.3 [24 May 1999] *) Bignum library bug fix. IRIX 6 passes "make test" now! This also avoids the problems with SC4.2 and unpatched SC5. [Andy Polyakov ] *) New functions sk_num, sk_value and sk_set to replace the previous macros. These are required because of the typesafe stack would otherwise break existing code. If old code used a structure member which used to be STACK and is now STACK_OF (for example cert in a PKCS7_SIGNED structure) with sk_num or sk_value it would produce an error because the num, data members are not present in STACK_OF. Now it just produces a warning. sk_set replaces the old method of assigning a value to sk_value (e.g. sk_value(x, i) = y) which the library used in a few cases. Any code that does this will no longer work (and should use sk_set instead) but this could be regarded as a "questionable" behaviour anyway. [Steve Henson] *) Fix most of the other PKCS#7 bugs. The "experimental" code can now correctly handle encrypted S/MIME data. [Steve Henson] *) Change type of various DES function arguments from des_cblock (which means, in function argument declarations, pointer to char) to des_cblock * (meaning pointer to array with 8 char elements), which allows the compiler to do more typechecking; it was like that back in SSLeay, but with lots of ugly casts. Introduce new type const_des_cblock. [Bodo Moeller] *) Reorganise the PKCS#7 library and get rid of some of the more obvious problems: find RecipientInfo structure that matches recipient certificate and initialise the ASN1 structures properly based on passed cipher. [Steve Henson] *) Belatedly make the BN tests actually check the results. [Ben Laurie] *) Fix the encoding and decoding of negative ASN1 INTEGERS and conversion to and from BNs: it was completely broken. New compilation option NEG_PUBKEY_BUG to allow for some broken certificates that encode public key elements as negative integers. [Steve Henson] *) Reorganize and speed up MD5. [Andy Polyakov ] *) VMS support. [Richard Levitte ] *) New option -out to asn1parse to allow the parsed structure to be output to a file. This is most useful when combined with the -strparse option to examine the output of things like OCTET STRINGS. [Steve Henson] *) Make SSL library a little more fool-proof by not requiring any longer that SSL_set_{accept,connect}_state be called before SSL_{accept,connect} may be used (SSL_set_..._state is omitted in many applications because usually everything *appeared* to work as intended anyway -- now it really works as intended). [Bodo Moeller] *) Move openssl.cnf out of lib/. [Ulf Möller] *) Fix various things to let OpenSSL even pass ``egcc -pipe -O2 -Wall -Wshadow -Wpointer-arith -Wcast-align -Wmissing-prototypes -Wmissing-declarations -Wnested-externs -Winline'' with EGCS 1.1.2+ [Ralf S. Engelschall] *) Various fixes to the EVP and PKCS#7 code. It may now be able to handle PKCS#7 enveloped data properly. [Sebastian Akerman , modified by Steve] *) Create a duplicate of the SSL_CTX's CERT in SSL_new instead of copying pointers. The cert_st handling is changed by this in various ways (and thus what used to be known as ctx->default_cert is now called ctx->cert, since we don't resort to s->ctx->[default_]cert any longer when s->cert does not give us what we need). ssl_cert_instantiate becomes obsolete by this change. As soon as we've got the new code right (possibly it already is?), we have solved a couple of bugs of the earlier code where s->cert was used as if it could not have been shared with other SSL structures. Note that using the SSL API in certain dirty ways now will result in different behaviour than observed with earlier library versions: Changing settings for an SSL_CTX *ctx after having done s = SSL_new(ctx) does not influence s as it used to. In order to clean up things more thoroughly, inside SSL_SESSION we don't use CERT any longer, but a new structure SESS_CERT that holds per-session data (if available); currently, this is the peer's certificate chain and, for clients, the server's certificate and temporary key. CERT holds only those values that can have meaningful defaults in an SSL_CTX. [Bodo Moeller] *) New function X509V3_EXT_i2d() to create an X509_EXTENSION structure from the internal representation. Various PKCS#7 fixes: remove some evil casts and set the enc_dig_alg field properly based on the signing key type. [Steve Henson] *) Allow PKCS#12 password to be set from the command line or the environment. Let 'ca' get its config file name from the environment variables "OPENSSL_CONF" or "SSLEAY_CONF" (for consistency with 'req' and 'x509'). [Steve Henson] *) Allow certificate policies extension to use an IA5STRING for the organization field. This is contrary to the PKIX definition but VeriSign uses it and IE5 only recognises this form. Document 'x509' extension option. [Steve Henson] *) Add PEDANTIC compiler flag to allow compilation with gcc -pedantic, without disallowing inline assembler and the like for non-pedantic builds. [Ben Laurie] *) Support Borland C++ builder. [Janez Jere , modified by Ulf Möller] *) Support Mingw32. [Ulf Möller] *) SHA-1 cleanups and performance enhancements. [Andy Polyakov ] *) Sparc v8plus assembler for the bignum library. [Andy Polyakov ] *) Accept any -xxx and +xxx compiler options in Configure. [Ulf Möller] *) Update HPUX configuration. [Anonymous] *) Add missing sk__unshift() function to safestack.h [Ralf S. Engelschall] *) New function SSL_CTX_use_certificate_chain_file that sets the "extra_cert"s in addition to the certificate. (This makes sense only for "PEM" format files, as chains as a whole are not DER-encoded.) [Bodo Moeller] *) Support verify_depth from the SSL API. x509_vfy.c had what can be considered an off-by-one-error: Its depth (which was not part of the external interface) was actually counting the number of certificates in a chain; now it really counts the depth. [Bodo Moeller] *) Bugfix in crypto/x509/x509_cmp.c: The SSLerr macro was used instead of X509err, which often resulted in confusing error messages since the error codes are not globally unique (e.g. an alleged error in ssl3_accept when a certificate didn't match the private key). *) New function SSL_CTX_set_session_id_context that allows to set a default value (so that you don't need SSL_set_session_id_context for each connection using the SSL_CTX). [Bodo Moeller] *) OAEP decoding bug fix. [Ulf Möller] *) Support INSTALL_PREFIX for package builders, as proposed by David Harris. [Bodo Moeller] *) New Configure options "threads" and "no-threads". For systems where the proper compiler options are known (currently Solaris and Linux), "threads" is the default. [Bodo Moeller] *) New script util/mklink.pl as a faster substitute for util/mklink.sh. [Bodo Moeller] *) Install various scripts to $(OPENSSLDIR)/misc, not to $(INSTALLTOP)/bin -- they shouldn't clutter directories such as /usr/local/bin. [Bodo Moeller] *) "make linux-shared" to build shared libraries. [Niels Poppe ] *) New Configure option no- (rsa, idea, rc5, ...). [Ulf Möller] *) Add the PKCS#12 API documentation to openssl.txt. Preliminary support for extension adding in x509 utility. [Steve Henson] *) Remove NOPROTO sections and error code comments. [Ulf Möller] *) Partial rewrite of the DEF file generator to now parse the ANSI prototypes. [Steve Henson] *) New Configure options --prefix=DIR and --openssldir=DIR. [Ulf Möller] *) Complete rewrite of the error code script(s). It is all now handled by one script at the top level which handles error code gathering, header rewriting and C source file generation. It should be much better than the old method: it now uses a modified version of Ulf's parser to read the ANSI prototypes in all header files (thus the old K&R definitions aren't needed for error creation any more) and do a better job of translating function codes into names. The old 'ASN1 error code embedded in a comment' is no longer necessary and it doesn't use .err files which have now been deleted. Also the error code call doesn't have to appear all on one line (which resulted in some large lines...). [Steve Henson] *) Change #include filenames from to . [Bodo Moeller] *) Change behaviour of ssl2_read when facing length-0 packets: Don't return 0 (which usually indicates a closed connection), but continue reading. [Bodo Moeller] *) Fix some race conditions. [Bodo Moeller] *) Add support for CRL distribution points extension. Add Certificate Policies and CRL distribution points documentation. [Steve Henson] *) Move the autogenerated header file parts to crypto/opensslconf.h. [Ulf Möller] *) Fix new 56-bit DES export ciphersuites: they were using 7 bytes instead of 8 of keying material. Merlin has also confirmed interop with this fix between OpenSSL and Baltimore C/SSL 2.0 and J/SSL 2.0. [Merlin Hughes ] *) Fix lots of warnings. [Richard Levitte ] *) In add_cert_dir() in crypto/x509/by_dir.c, break out of the loop if the directory spec didn't end with a LIST_SEPARATOR_CHAR. [Richard Levitte ] *) Fix problems with sizeof(long) == 8. [Andy Polyakov ] *) Change functions to ANSI C. [Ulf Möller] *) Fix typos in error codes. [Martin Kraemer , Ulf Möller] *) Remove defunct assembler files from Configure. [Ulf Möller] *) SPARC v8 assembler BIGNUM implementation. [Andy Polyakov ] *) Support for Certificate Policies extension: both print and set. Various additions to support the r2i method this uses. [Steve Henson] *) A lot of constification, and fix a bug in X509_NAME_oneline() that could return a const string when you are expecting an allocated buffer. [Ben Laurie] *) Add support for ASN1 types UTF8String and VISIBLESTRING, also the CHOICE types DirectoryString and DisplayText. [Steve Henson] *) Add code to allow r2i extensions to access the configuration database, add an LHASH database driver and add several ctx helper functions. [Steve Henson] *) Fix an evil bug in bn_expand2() which caused various BN functions to fail when they extended the size of a BIGNUM. [Steve Henson] *) Various utility functions to handle SXNet extension. Modify mkdef.pl to support typesafe stack. [Steve Henson] *) Fix typo in SSL_[gs]et_options(). [Nils Frostberg ] *) Delete various functions and files that belonged to the (now obsolete) old X509V3 handling code. [Steve Henson] *) New Configure option "rsaref". [Ulf Möller] *) Don't auto-generate pem.h. [Bodo Moeller] *) Introduce type-safe ASN.1 SETs. [Ben Laurie] *) Convert various additional casted stacks to type-safe STACK_OF() variants. [Ben Laurie, Ralf S. Engelschall, Steve Henson] *) Introduce type-safe STACKs. This will almost certainly break lots of code that links with OpenSSL (well at least cause lots of warnings), but fear not: the conversion is trivial, and it eliminates loads of evil casts. A few STACKed things have been converted already. Feel free to convert more. In the fullness of time, I'll do away with the STACK type altogether. [Ben Laurie] *) Add `openssl ca -revoke ' facility which revokes a certificate specified in by updating the entry in the index.txt file. This way one no longer has to edit the index.txt file manually for revoking a certificate. The -revoke option does the gory details now. [Massimiliano Pala , Ralf S. Engelschall] *) Fix `openssl crl -noout -text' combination where `-noout' killed the `-text' option at all and this way the `-noout -text' combination was inconsistent in `openssl crl' with the friends in `openssl x509|rsa|dsa'. [Ralf S. Engelschall] *) Make sure a corresponding plain text error message exists for the X509_V_ERR_CERT_REVOKED/23 error number which can occur when a verify callback function determined that a certificate was revoked. [Ralf S. Engelschall] *) Bugfix: In test/testenc, don't test "openssl " for ciphers that were excluded, e.g. by -DNO_IDEA. Also, test all available ciphers including rc5, which was forgotten until now. In order to let the testing shell script know which algorithms are available, a new (up to now undocumented) command "openssl list-cipher-commands" is used. [Bodo Moeller] *) Bugfix: s_client occasionally would sleep in select() when it should have checked SSL_pending() first. [Bodo Moeller] *) New functions DSA_do_sign and DSA_do_verify to provide access to the raw DSA values prior to ASN.1 encoding. [Ulf Möller] *) Tweaks to Configure [Niels Poppe ] *) Add support for PKCS#5 v2.0 ASN1 PBES2 structures. No other support, yet... [Steve Henson] *) New variables $(RANLIB) and $(PERL) in the Makefiles. [Ulf Möller] *) New config option to avoid instructions that are illegal on the 80386. The default code is faster, but requires at least a 486. [Ulf Möller] *) Got rid of old SSL2_CLIENT_VERSION (inconsistently used) and SSL2_SERVER_VERSION (not used at all) macros, which are now the same as SSL2_VERSION anyway. [Bodo Moeller] *) New "-showcerts" option for s_client. [Bodo Moeller] *) Still more PKCS#12 integration. Add pkcs12 application to openssl application. Various cleanups and fixes. [Steve Henson] *) More PKCS#12 integration. Add new pkcs12 directory with Makefile.ssl and modify error routines to work internally. Add error codes and PBE init to library startup routines. [Steve Henson] *) Further PKCS#12 integration. Added password based encryption, PKCS#8 and packing functions to asn1 and evp. Changed function names and error codes along the way. [Steve Henson] *) PKCS12 integration: and so it begins... First of several patches to slowly integrate PKCS#12 functionality into OpenSSL. Add PKCS#12 objects to objects.h [Steve Henson] *) Add a new 'indent' option to some X509V3 extension code. Initial ASN1 and display support for Thawte strong extranet extension. [Steve Henson] *) Add LinuxPPC support. [Jeff Dubrule ] *) Get rid of redundant BN file bn_mulw.c, and rename bn_div64 to bn_div_words in alpha.s. [Hannes Reinecke and Ben Laurie] *) Make sure the RSA OAEP test is skipped under -DRSAref because OAEP isn't supported when OpenSSL is built with RSAref. [Ulf Moeller ] *) Move definitions of IS_SET/IS_SEQUENCE inside crypto/asn1/asn1.h so they no longer are missing under -DNOPROTO. [Soren S. Jorvang ] Changes between 0.9.1c and 0.9.2b [22 Mar 1999] *) Make SSL_get_peer_cert_chain() work in servers. Unfortunately, it still doesn't work when the session is reused. Coming soon! [Ben Laurie] *) Fix a security hole, that allows sessions to be reused in the wrong context thus bypassing client cert protection! All software that uses client certs and session caches in multiple contexts NEEDS PATCHING to allow session reuse! A fuller solution is in the works. [Ben Laurie, problem pointed out by Holger Reif, Bodo Moeller (and ???)] *) Some more source tree cleanups (removed obsolete files crypto/bf/asm/bf586.pl, test/test.txt and crypto/sha/asm/f.s; changed permission on "config" script to be executable) and a fix for the INSTALL document. [Ulf Moeller ] *) Remove some legacy and erroneous uses of malloc, free instead of Malloc, Free. [Lennart Bang , with minor changes by Steve] *) Make rsa_oaep_test return non-zero on error. [Ulf Moeller ] *) Add support for native Solaris shared libraries. Configure solaris-sparc-sc4-pic, make, then run shlib/solaris-sc4.sh. It'd be nice if someone would make that last step automatic. [Matthias Loepfe ] *) ctx_size was not built with the right compiler during "make links". Fixed. [Ben Laurie] *) Change the meaning of 'ALL' in the cipher list. It now means "everything except NULL ciphers". This means the default cipher list will no longer enable NULL ciphers. They need to be specifically enabled e.g. with the string "DEFAULT:eNULL". [Steve Henson] *) Fix to RSA private encryption routines: if p < q then it would occasionally produce an invalid result. This will only happen with externally generated keys because OpenSSL (and SSLeay) ensure p > q. [Steve Henson] *) Be less restrictive and allow also `perl util/perlpath.pl /path/to/bin/perl' in addition to `perl util/perlpath.pl /path/to/bin', because this way one can also use an interpreter named `perl5' (which is usually the name of Perl 5.xxx on platforms where an Perl 4.x is still installed as `perl'). [Matthias Loepfe ] *) Let util/clean-depend.pl work also with older Perl 5.00x versions. [Matthias Loepfe ] *) Fix Makefile.org so CC,CFLAG etc are passed to 'make links' add advapi32.lib to Win32 build and change the pem test comparison to fc.exe (thanks to Ulrich Kroener for the suggestion). Fix misplaced ASNI prototypes and declarations in evp.h and crypto/des/ede_cbcm_enc.c. [Steve Henson] *) DES quad checksum was broken on big-endian architectures. Fixed. [Ben Laurie] *) Comment out two functions in bio.h that aren't implemented. Fix up the Win32 test batch file so it (might) work again. The Win32 test batch file is horrible: I feel ill.... [Steve Henson] *) Move various #ifdefs around so NO_SYSLOG, NO_DIRENT etc are now selected in e_os.h. Audit of header files to check ANSI and non ANSI sections: 10 functions were absent from non ANSI section and not exported from Windows DLLs. Fixed up libeay.num for new functions. [Steve Henson] *) Make `openssl version' output lines consistent. [Ralf S. Engelschall] *) Fix Win32 symbol export lists for BIO functions: Added BIO_get_ex_new_index, BIO_get_ex_num, BIO_get_ex_data and BIO_set_ex_data to ms/libeay{16,32}.def. [Ralf S. Engelschall] *) Second round of fixing the OpenSSL perl/ stuff. It now at least compiled fine under Unix and passes some trivial tests I've now added. But the whole stuff is horribly incomplete, so a README.1ST with a disclaimer was added to make sure no one expects that this stuff really works in the OpenSSL 0.9.2 release. Additionally I've started to clean the XS sources up and fixed a few little bugs and inconsistencies in OpenSSL.{pm,xs} and openssl_bio.xs. [Ralf S. Engelschall] *) Fix the generation of two part addresses in perl. [Kenji Miyake , integrated by Ben Laurie] *) Add config entry for Linux on MIPS. [John Tobey ] *) Make links whenever Configure is run, unless we are on Windoze. [Ben Laurie] *) Permit extensions to be added to CRLs using crl_section in openssl.cnf. Currently only issuerAltName and AuthorityKeyIdentifier make any sense in CRLs. [Steve Henson] *) Add a useful kludge to allow package maintainers to specify compiler and other platforms details on the command line without having to patch the Configure script every time: One now can use ``perl Configure :
'', i.e. platform ids are allowed to have details appended to them (separated by colons). This is treated as there would be a static pre-configured entry in Configure's %table under key with value
and ``perl Configure '' is called. So, when you want to perform a quick test-compile under FreeBSD 3.1 with pgcc and without assembler stuff you can use ``perl Configure "FreeBSD-elf:pgcc:-O6:::"'' now, which overrides the FreeBSD-elf entry on-the-fly. [Ralf S. Engelschall] *) Disable new TLS1 ciphersuites by default: they aren't official yet. [Ben Laurie] *) Allow DSO flags like -fpic, -fPIC, -KPIC etc. to be specified on the `perl Configure ...' command line. This way one can compile OpenSSL libraries with Position Independent Code (PIC) which is needed for linking it into DSOs. [Ralf S. Engelschall] *) Remarkably, export ciphers were totally broken and no-one had noticed! Fixed. [Ben Laurie] *) Cleaned up the LICENSE document: The official contact for any license questions now is the OpenSSL core team under openssl-core@openssl.org. And add a paragraph about the dual-license situation to make sure people recognize that _BOTH_ the OpenSSL license _AND_ the SSLeay license apply to the OpenSSL toolkit. [Ralf S. Engelschall] *) General source tree makefile cleanups: Made `making xxx in yyy...' display consistent in the source tree and replaced `/bin/rm' by `rm'. Additionally cleaned up the `make links' target: Remove unnecessary semicolons, subsequent redundant removes, inline point.sh into mklink.sh to speed processing and no longer clutter the display with confusing stuff. Instead only the actually done links are displayed. [Ralf S. Engelschall] *) Permit null encryption ciphersuites, used for authentication only. It used to be necessary to set the preprocessor define SSL_ALLOW_ENULL to do this. It is now necessary to set SSL_FORBID_ENULL to prevent the use of null encryption. [Ben Laurie] *) Add a bunch of fixes to the PKCS#7 stuff. It used to sometimes reorder signed attributes when verifying signatures (this would break them), the detached data encoding was wrong and public keys obtained using X509_get_pubkey() weren't freed. [Steve Henson] *) Add text documentation for the BUFFER functions. Also added a work around to a Win95 console bug. This was triggered by the password read stuff: the last character typed gets carried over to the next fread(). If you were generating a new cert request using 'req' for example then the last character of the passphrase would be CR which would then enter the first field as blank. [Steve Henson] *) Added the new `Includes OpenSSL Cryptography Software' button as doc/openssl_button.{gif,html} which is similar in style to the old SSLeay button and can be used by applications based on OpenSSL to show the relationship to the OpenSSL project. [Ralf S. Engelschall] *) Remove confusing variables in function signatures in files ssl/ssl_lib.c and ssl/ssl.h. [Lennart Bong ] *) Don't install bss_file.c under PREFIX/include/ [Lennart Bong ] *) Get the Win32 compile working again. Modify mkdef.pl so it can handle functions that return function pointers and has support for NT specific stuff. Fix mk1mf.pl and VC-32.pl to support NT differences also. Various #ifdef WIN32 and WINNTs sprinkled about the place and some changes from unsigned to signed types: this was killing the Win32 compile. [Steve Henson] *) Add new certificate file to stack functions, SSL_add_dir_cert_subjects_to_stack() and SSL_add_file_cert_subjects_to_stack(). These largely supplant SSL_load_client_CA_file(), and can be used to add multiple certs easily to a stack (usually this is then handed to SSL_CTX_set_client_CA_list()). This means that Apache-SSL and similar packages don't have to mess around to add as many CAs as they want to the preferred list. [Ben Laurie] *) Experiment with doxygen documentation. Currently only partially applied to ssl/ssl_lib.c. See http://www.stack.nl/~dimitri/doxygen/index.html, and run doxygen with openssl.doxy as the configuration file. [Ben Laurie] *) Get rid of remaining C++-style comments which strict C compilers hate. [Ralf S. Engelschall, pointed out by Carlos Amengual] *) Changed BN_RECURSION in bn_mont.c to BN_RECURSION_MONT so it is not compiled in by default: it has problems with large keys. [Steve Henson] *) Add a bunch of SSL_xxx() functions for configuring the temporary RSA and DH private keys and/or callback functions which directly correspond to their SSL_CTX_xxx() counterparts but work on a per-connection basis. This is needed for applications which have to configure certificates on a per-connection basis (e.g. Apache+mod_ssl) instead of a per-context basis (e.g. s_server). For the RSA certificate situation is makes no difference, but for the DSA certificate situation this fixes the "no shared cipher" problem where the OpenSSL cipher selection procedure failed because the temporary keys were not overtaken from the context and the API provided no way to reconfigure them. The new functions now let applications reconfigure the stuff and they are in detail: SSL_need_tmp_RSA, SSL_set_tmp_rsa, SSL_set_tmp_dh, SSL_set_tmp_rsa_callback and SSL_set_tmp_dh_callback. Additionally a new non-public-API function ssl_cert_instantiate() is used as a helper function and also to reduce code redundancy inside ssl_rsa.c. [Ralf S. Engelschall] *) Move s_server -dcert and -dkey options out of the undocumented feature area because they are useful for the DSA situation and should be recognized by the users. [Ralf S. Engelschall] *) Fix the cipher decision scheme for export ciphers: the export bits are *not* within SSL_MKEY_MASK or SSL_AUTH_MASK, they are within SSL_EXP_MASK. So, the original variable has to be used instead of the already masked variable. [Richard Levitte ] *) Fix 'port' variable from `int' to `unsigned int' in crypto/bio/b_sock.c [Richard Levitte ] *) Change type of another md_len variable in pk7_doit.c:PKCS7_dataFinal() from `int' to `unsigned int' because it's a length and initialized by EVP_DigestFinal() which expects an `unsigned int *'. [Richard Levitte ] *) Don't hard-code path to Perl interpreter on shebang line of Configure script. Instead use the usual Shell->Perl transition trick. [Ralf S. Engelschall] *) Make `openssl x509 -noout -modulus' functional also for DSA certificates (in addition to RSA certificates) to match the behaviour of `openssl dsa -noout -modulus' as it's already the case for `openssl rsa -noout -modulus'. For RSA the -modulus is the real "modulus" while for DSA currently the public key is printed (a decision which was already done by `openssl dsa -modulus' in the past) which serves a similar purpose. Additionally the NO_RSA no longer completely removes the whole -modulus option; it now only avoids using the RSA stuff. Same applies to NO_DSA now, too. [Ralf S. Engelschall] *) Add Arne Ansper's reliable BIO - this is an encrypted, block-digested BIO. See the source (crypto/evp/bio_ok.c) for more info. [Arne Ansper ] *) Dump the old yucky req code that tried (and failed) to allow raw OIDs to be added. Now both 'req' and 'ca' can use new objects defined in the config file. [Steve Henson] *) Add cool BIO that does syslog (or event log on NT). [Arne Ansper , integrated by Ben Laurie] *) Add support for new TLS ciphersuites, TLS_RSA_EXPORT56_WITH_RC4_56_MD5, TLS_RSA_EXPORT56_WITH_RC2_CBC_56_MD5 and TLS_RSA_EXPORT56_WITH_DES_CBC_SHA, as specified in "56-bit Export Cipher Suites For TLS", draft-ietf-tls-56-bit-ciphersuites-00.txt. [Ben Laurie] *) Add preliminary config info for new extension code. [Steve Henson] *) Make RSA_NO_PADDING really use no padding. [Ulf Moeller ] *) Generate errors when private/public key check is done. [Ben Laurie] *) Overhaul for 'crl' utility. New function X509_CRL_print. Partial support for some CRL extensions and new objects added. [Steve Henson] *) Really fix the ASN1 IMPLICIT bug this time... Partial support for private key usage extension and fuller support for authority key id. [Steve Henson] *) Add OAEP encryption for the OpenSSL crypto library. OAEP is the improved padding method for RSA, which is recommended for new applications in PKCS #1 v2.0 (RFC 2437, October 1998). OAEP (Optimal Asymmetric Encryption Padding) has better theoretical foundations than the ad-hoc padding used in PKCS #1 v1.5. It is secure against Bleichbacher's attack on RSA. [Ulf Moeller , reformatted, corrected and integrated by Ben Laurie] *) Updates to the new SSL compression code [Eric A. Young, (from changes to C2Net SSLeay, integrated by Mark Cox)] *) Fix so that the version number in the master secret, when passed via RSA, checks that if TLS was proposed, but we roll back to SSLv3 (because the server will not accept higher), that the version number is 0x03,0x01, not 0x03,0x00 [Eric A. Young, (from changes to C2Net SSLeay, integrated by Mark Cox)] *) Run extensive memory leak checks on SSL apps. Fixed *lots* of memory leaks in ssl/ relating to new X509_get_pubkey() behaviour. Also fixes in apps/ and an unrelated leak in crypto/dsa/dsa_vrf.c [Steve Henson] *) Support for RAW extensions where an arbitrary extension can be created by including its DER encoding. See apps/openssl.cnf for an example. [Steve Henson] *) Make sure latest Perl versions don't interpret some generated C array code as Perl array code in the crypto/err/err_genc.pl script. [Lars Weber <3weber@informatik.uni-hamburg.de>] *) Modify ms/do_ms.bat to not generate assembly language makefiles since not many people have the assembler. Various Win32 compilation fixes and update to the INSTALL.W32 file with (hopefully) more accurate Win32 build instructions. [Steve Henson] *) Modify configure script 'Configure' to automatically create crypto/date.h file under Win32 and also build pem.h from pem.org. New script util/mkfiles.pl to create the MINFO file on environments that can't do a 'make files': perl util/mkfiles.pl >MINFO should work. [Steve Henson] *) Major rework of DES function declarations, in the pursuit of correctness and purity. As a result, many evil casts evaporated, and some weirdness, too. You may find this causes warnings in your code. Zapping your evil casts will probably fix them. Mostly. [Ben Laurie] *) Fix for a typo in asn1.h. Bug fix to object creation script obj_dat.pl. It considered a zero in an object definition to mean "end of object": none of the objects in objects.h have any zeros so it wasn't spotted. [Steve Henson, reported by Erwann ABALEA ] *) Add support for Triple DES Cipher Block Chaining with Output Feedback Masking (CBCM). In the absence of test vectors, the best I have been able to do is check that the decrypt undoes the encrypt, so far. Send me test vectors if you have them. [Ben Laurie] *) Correct calculation of key length for export ciphers (too much space was allocated for null ciphers). This has not been tested! [Ben Laurie] *) Modifications to the mkdef.pl for Win32 DEF file creation. The usage message is now correct (it understands "crypto" and "ssl" on its command line). There is also now an "update" option. This will update the util/ssleay.num and util/libeay.num files with any new functions. If you do a: perl util/mkdef.pl crypto ssl update it will update them. [Steve Henson] *) Overhauled the Perl interface (perl/*): - ported BN stuff to OpenSSL's different BN library - made the perl/ source tree CVS-aware - renamed the package from SSLeay to OpenSSL (the files still contain their history because I've copied them in the repository) - removed obsolete files (the test scripts will be replaced by better Test::Harness variants in the future) [Ralf S. Engelschall] *) First cut for a very conservative source tree cleanup: 1. merge various obsolete readme texts into doc/ssleay.txt where we collect the old documents and readme texts. 2. remove the first part of files where I'm already sure that we no longer need them because of three reasons: either they are just temporary files which were left by Eric or they are preserved original files where I've verified that the diff is also available in the CVS via "cvs diff -rSSLeay_0_8_1b" or they were renamed (as it was definitely the case for the crypto/md/ stuff). [Ralf S. Engelschall] *) More extension code. Incomplete support for subject and issuer alt name, issuer and authority key id. Change the i2v function parameters and add an extra 'crl' parameter in the X509V3_CTX structure: guess what that's for :-) Fix to ASN1 macro which messed up IMPLICIT tag and add f_enum.c which adds a2i, i2a for ENUMERATED. [Steve Henson] *) Preliminary support for ENUMERATED type. This is largely copied from the INTEGER code. [Steve Henson] *) Add new function, EVP_MD_CTX_copy() to replace frequent use of memcpy. [Eric A. Young, (from changes to C2Net SSLeay, integrated by Mark Cox)] *) Make sure `make rehash' target really finds the `openssl' program. [Ralf S. Engelschall, Matthias Loepfe ] *) Squeeze another 7% of speed out of MD5 assembler, at least on a P2. I'd like to hear about it if this slows down other processors. [Ben Laurie] *) Add CygWin32 platform information to Configure script. [Alan Batie ] *) Fixed ms/32all.bat script: `no_asm' -> `no-asm' [Rainer W. Gerling ] *) New program nseq to manipulate netscape certificate sequences [Steve Henson] *) Modify crl2pkcs7 so it supports multiple -certfile arguments. Fix a few typos. [Steve Henson] *) Fixes to BN code. Previously the default was to define BN_RECURSION but the BN code had some problems that would cause failures when doing certificate verification and some other functions. [Eric A. Young, (from changes to C2Net SSLeay, integrated by Mark Cox)] *) Add ASN1 and PEM code to support netscape certificate sequences. [Steve Henson] *) Add ASN1 and PEM code to support netscape certificate sequences. [Steve Henson] *) Add several PKIX and private extended key usage OIDs. [Steve Henson] *) Modify the 'ca' program to handle the new extension code. Modify openssl.cnf for new extension format, add comments. [Steve Henson] *) More X509 V3 changes. Fix typo in v3_bitstr.c. Add support to 'req' and add a sample to openssl.cnf so req -x509 now adds appropriate CA extensions. [Steve Henson] *) Continued X509 V3 changes. Add to other makefiles, integrate with the error code, add initial support to X509_print() and x509 application. [Steve Henson] *) Takes a deep breath and start adding X509 V3 extension support code. Add files in crypto/x509v3. Move original stuff to crypto/x509v3/old. All this stuff is currently isolated and isn't even compiled yet. [Steve Henson] *) Continuing patches for GeneralizedTime. Fix up certificate and CRL ASN1 to use ASN1_TIME and modify print routines to use ASN1_TIME_print. Removed the versions check from X509 routines when loading extensions: this allows certain broken certificates that don't set the version properly to be processed. [Steve Henson] *) Deal with irritating shit to do with dependencies, in YAAHW (Yet Another Ad Hoc Way) - Makefile.ssls now all contain local dependencies, which can still be regenerated with "make depend". [Ben Laurie] *) Spelling mistake in C version of CAST-128. [Ben Laurie, reported by Jeremy Hylton ] *) Changes to the error generation code. The perl script err-code.pl now reads in the old error codes and retains the old numbers, only adding new ones if necessary. It also only changes the .err files if new codes are added. The makefiles have been modified to only insert errors when needed (to avoid needlessly modifying header files). This is done by only inserting errors if the .err file is newer than the auto generated C file. To rebuild all the error codes from scratch (the old behaviour) either modify crypto/Makefile.ssl to pass the -regen flag to err_code.pl or delete all the .err files. [Steve Henson] *) CAST-128 was incorrectly implemented for short keys. The C version has been fixed, but is untested. The assembler versions are also fixed, but new assembler HAS NOT BEEN GENERATED FOR WIN32 - the Makefile needs fixing to regenerate it if needed. [Ben Laurie, reported (with fix for C version) by Jun-ichiro itojun Hagino ] *) File was opened incorrectly in randfile.c. [Ulf Möller ] *) Beginning of support for GeneralizedTime. d2i, i2d, check and print functions. Also ASN1_TIME suite which is a CHOICE of UTCTime or GeneralizedTime. ASN1_TIME is the proper type used in certificates et al: it's just almost always a UTCTime. Note this patch adds new error codes so do a "make errors" if there are problems. [Steve Henson] *) Correct Linux 1 recognition in config. [Ulf Möller ] *) Remove pointless MD5 hash when using DSA keys in ca. [Anonymous ] *) Generate an error if given an empty string as a cert directory. Also generate an error if handed NULL (previously returned 0 to indicate an error, but didn't set one). [Ben Laurie, reported by Anonymous ] *) Add prototypes to SSL methods. Make SSL_write's buffer const, at last. [Ben Laurie] *) Fix the dummy function BN_ref_mod_exp() in rsaref.c to have the correct parameters. This was causing a warning which killed off the Win32 compile. [Steve Henson] *) Remove C++ style comments from crypto/bn/bn_local.h. [Neil Costigan ] *) The function OBJ_txt2nid was broken. It was supposed to return a nid based on a text string, looking up short and long names and finally "dot" format. The "dot" format stuff didn't work. Added new function OBJ_txt2obj to do the same but return an ASN1_OBJECT and rewrote OBJ_txt2nid to use it. OBJ_txt2obj can also return objects even if the OID is not part of the table. [Steve Henson] *) Add prototypes to X509 lookup/verify methods, fixing a bug in X509_LOOKUP_by_alias(). [Ben Laurie] *) Sort openssl functions by name. [Ben Laurie] *) Get the gendsa program working (hopefully) and add it to app list. Remove encryption from sample DSA keys (in case anyone is interested the password was "1234"). [Steve Henson] *) Make _all_ *_free functions accept a NULL pointer. [Frans Heymans ] *) If a DH key is generated in s3_srvr.c, don't blow it by trying to use NULL pointers. [Anonymous ] *) s_server should send the CAfile as acceptable CAs, not its own cert. [Bodo Moeller <3moeller@informatik.uni-hamburg.de>] *) Don't blow it for numeric -newkey arguments to apps/req. [Bodo Moeller <3moeller@informatik.uni-hamburg.de>] *) Temp key "for export" tests were wrong in s3_srvr.c. [Anonymous ] *) Add prototype for temp key callback functions SSL_CTX_set_tmp_{rsa,dh}_callback(). [Ben Laurie] *) Make DH_free() tolerate being passed a NULL pointer (like RSA_free() and DSA_free()). Make X509_PUBKEY_set() check for errors in d2i_PublicKey(). [Steve Henson] *) X509_name_add_entry() freed the wrong thing after an error. [Arne Ansper ] *) rsa_eay.c would attempt to free a NULL context. [Arne Ansper ] *) BIO_s_socket() had a broken should_retry() on Windoze. [Arne Ansper ] *) BIO_f_buffer() didn't pass on BIO_CTRL_FLUSH. [Arne Ansper ] *) Make sure the already existing X509_STORE->depth variable is initialized in X509_STORE_new(), but document the fact that this variable is still unused in the certificate verification process. [Ralf S. Engelschall] *) Fix the various library and apps files to free up pkeys obtained from X509_PUBKEY_get() et al. Also allow x509.c to handle netscape extensions. [Steve Henson] *) Fix reference counting in X509_PUBKEY_get(). This makes demos/maurice/example2.c work, amongst others, probably. [Steve Henson and Ben Laurie] *) First cut of a cleanup for apps/. First the `ssleay' program is now named `openssl' and second, the shortcut symlinks for the `openssl ' are no longer created. This way we have a single and consistent command line interface `openssl ', similar to `cvs '. [Ralf S. Engelschall, Paul Sutton and Ben Laurie] *) ca.c: move test for DSA keys inside #ifndef NO_DSA. Make pubkey BIT STRING wrapper always have zero unused bits. [Steve Henson] *) Add CA.pl, perl version of CA.sh, add extended key usage OID. [Steve Henson] *) Make the top-level INSTALL documentation easier to understand. [Paul Sutton] *) Makefiles updated to exit if an error occurs in a sub-directory make (including if user presses ^C) [Paul Sutton] *) Make Montgomery context stuff explicit in RSA data structure. [Ben Laurie] *) Fix build order of pem and err to allow for generated pem.h. [Ben Laurie] *) Fix renumbering bug in X509_NAME_delete_entry(). [Ben Laurie] *) Enhanced the err-ins.pl script so it makes the error library number global and can add a library name. This is needed for external ASN1 and other error libraries. [Steve Henson] *) Fixed sk_insert which never worked properly. [Steve Henson] *) Fix ASN1 macros so they can handle indefinite length constructed EXPLICIT tags. Some non standard certificates use these: they can now be read in. [Steve Henson] *) Merged the various old/obsolete SSLeay documentation files (doc/xxx.doc) into a single doc/ssleay.txt bundle. This way the information is still preserved but no longer messes up this directory. Now it's new room for the new set of documentation files. [Ralf S. Engelschall] *) SETs were incorrectly DER encoded. This was a major pain, because they shared code with SEQUENCEs, which aren't coded the same. This means that almost everything to do with SETs or SEQUENCEs has either changed name or number of arguments. [Ben Laurie, based on a partial fix by GP Jayan ] *) Fix test data to work with the above. [Ben Laurie] *) Fix the RSA header declarations that hid a bug I fixed in 0.9.0b but was already fixed by Eric for 0.9.1 it seems. [Ben Laurie - pointed out by Ulf Möller ] *) Autodetect FreeBSD3. [Ben Laurie] *) Fix various bugs in Configure. This affects the following platforms: nextstep ncr-scde unixware-2.0 unixware-2.0-pentium sco5-cc. [Ben Laurie] *) Eliminate generated files from CVS. Reorder tests to regenerate files before they are needed. [Ben Laurie] *) Generate Makefile.ssl from Makefile.org (to keep CVS happy). [Ben Laurie] Changes between 0.9.1b and 0.9.1c [23-Dec-1998] *) Added OPENSSL_VERSION_NUMBER to crypto/crypto.h and changed SSLeay to OpenSSL in version strings. [Ralf S. Engelschall] *) Some fixups to the top-level documents. [Paul Sutton] *) Fixed the nasty bug where rsaref.h was not found under compile-time because the symlink to include/ was missing. [Ralf S. Engelschall] *) Incorporated the popular no-RSA/DSA-only patches which allow to compile a RSA-free SSLeay. [Andrew Cooke / Interrader Ldt., Ralf S. Engelschall] *) Fixed nasty rehash problem under `make -f Makefile.ssl links' when "ssleay" is still not found. [Ralf S. Engelschall] *) Added more platforms to Configure: Cray T3E, HPUX 11, [Ralf S. Engelschall, Beckmann ] *) Updated the README file. [Ralf S. Engelschall] *) Added various .cvsignore files in the CVS repository subdirs to make a "cvs update" really silent. [Ralf S. Engelschall] *) Recompiled the error-definition header files and added missing symbols to the Win32 linker tables. [Ralf S. Engelschall] *) Cleaned up the top-level documents; o new files: CHANGES and LICENSE o merged VERSION, HISTORY* and README* files a CHANGES.SSLeay o merged COPYRIGHT into LICENSE o removed obsolete TODO file o renamed MICROSOFT to INSTALL.W32 [Ralf S. Engelschall] *) Removed dummy files from the 0.9.1b source tree: crypto/asn1/x crypto/bio/cd crypto/bio/fg crypto/bio/grep crypto/bio/vi crypto/bn/asm/......add.c crypto/bn/asm/a.out crypto/dsa/f crypto/md5/f crypto/pem/gmon.out crypto/perlasm/f crypto/pkcs7/build crypto/rsa/f crypto/sha/asm/f crypto/threads/f ms/zzz ssl/f ssl/f.mak test/f util/f.mak util/pl/f util/pl/f.mak crypto/bf/bf_locl.old apps/f [Ralf S. Engelschall] *) Added various platform portability fixes. [Mark J. Cox] *) The Genesis of the OpenSSL rpject: We start with the latest (unreleased) SSLeay version 0.9.1b which Eric A. Young and Tim J. Hudson created while they were working for C2Net until summer 1998. [The OpenSSL Project] Changes between 0.9.0b and 0.9.1b [not released] *) Updated a few CA certificates under certs/ [Eric A. Young] *) Changed some BIGNUM api stuff. [Eric A. Young] *) Various platform ports: OpenBSD, Ultrix, IRIX 64bit, NetBSD, DGUX x86, Linux Alpha, etc. [Eric A. Young] *) New COMP library [crypto/comp/] for SSL Record Layer Compression: RLE (dummy implemented) and ZLIB (really implemented when ZLIB is available). [Eric A. Young] *) Add -strparse option to asn1pars program which parses nested binary structures [Dr Stephen Henson ] *) Added "oid_file" to ssleay.cnf for "ca" and "req" programs. [Eric A. Young] *) DSA fix for "ca" program. [Eric A. Young] *) Added "-genkey" option to "dsaparam" program. [Eric A. Young] *) Added RIPE MD160 (rmd160) message digest. [Eric A. Young] *) Added -a (all) option to "ssleay version" command. [Eric A. Young] *) Added PLATFORM define which is the id given to Configure. [Eric A. Young] *) Added MemCheck_XXXX functions to crypto/mem.c for memory checking. [Eric A. Young] *) Extended the ASN.1 parser routines. [Eric A. Young] *) Extended BIO routines to support REUSEADDR, seek, tell, etc. [Eric A. Young] *) Added a BN_CTX to the BN library. [Eric A. Young] *) Fixed the weak key values in DES library [Eric A. Young] *) Changed API in EVP library for cipher aliases. [Eric A. Young] *) Added support for RC2/64bit cipher. [Eric A. Young] *) Converted the lhash library to the crypto/mem.c functions. [Eric A. Young] *) Added more recognized ASN.1 object ids. [Eric A. Young] *) Added more RSA padding checks for SSL/TLS. [Eric A. Young] *) Added BIO proxy/filter functionality. [Eric A. Young] *) Added extra_certs to SSL_CTX which can be used send extra CA certificates to the client in the CA cert chain sending process. It can be configured with SSL_CTX_add_extra_chain_cert(). [Eric A. Young] *) Now Fortezza is denied in the authentication phase because this is key exchange mechanism is not supported by SSLeay at all. [Eric A. Young] *) Additional PKCS1 checks. [Eric A. Young] *) Support the string "TLSv1" for all TLS v1 ciphers. [Eric A. Young] *) Added function SSL_get_ex_data_X509_STORE_CTX_idx() which gives the ex_data index of the SSL context in the X509_STORE_CTX ex_data. [Eric A. Young] *) Fixed a few memory leaks. [Eric A. Young] *) Fixed various code and comment typos. [Eric A. Young] *) A minor bug in ssl/s3_clnt.c where there would always be 4 0 bytes sent in the client random. [Edward Bishop ] diff --git a/NEWS b/NEWS index d32cf5bb48dd..f5f5759c0ff2 100644 --- a/NEWS +++ b/NEWS @@ -1,1017 +1,1023 @@ NEWS ==== This file gives a brief overview of the major changes between each OpenSSL release. For more details please read the CHANGES file. + Major changes between OpenSSL 1.1.1o and OpenSSL 1.1.1p [21 Jun 2022] + + o Fixed additional bugs in the c_rehash script which was not properly + sanitising shell metacharacters to prevent command injection + (CVE-2022-2068) + Major changes between OpenSSL 1.1.1n and OpenSSL 1.1.1o [3 May 2022] o Fixed a bug in the c_rehash script which was not properly sanitising shell metacharacters to prevent command injection (CVE-2022-1292) Major changes between OpenSSL 1.1.1m and OpenSSL 1.1.1n [15 Mar 2022] o Fixed a bug in the BN_mod_sqrt() function that can cause it to loop forever for non-prime moduli (CVE-2022-0778) Major changes between OpenSSL 1.1.1l and OpenSSL 1.1.1m [14 Dec 2021] o None Major changes between OpenSSL 1.1.1k and OpenSSL 1.1.1l [24 Aug 2021] o Fixed an SM2 Decryption Buffer Overflow (CVE-2021-3711) o Fixed various read buffer overruns processing ASN.1 strings (CVE-2021-3712) Major changes between OpenSSL 1.1.1j and OpenSSL 1.1.1k [25 Mar 2021] o Fixed a problem with verifying a certificate chain when using the X509_V_FLAG_X509_STRICT flag (CVE-2021-3450) o Fixed an issue where an OpenSSL TLS server may crash if sent a maliciously crafted renegotiation ClientHello message from a client (CVE-2021-3449) Major changes between OpenSSL 1.1.1i and OpenSSL 1.1.1j [16 Feb 2021] o Fixed a NULL pointer deref in the X509_issuer_and_serial_hash() function (CVE-2021-23841) o Fixed the RSA_padding_check_SSLv23() function and the RSA_SSLV23_PADDING padding mode to correctly check for rollback attacks o Fixed an overflow in the EVP_CipherUpdate, EVP_EncryptUpdate and EVP_DecryptUpdate functions (CVE-2021-23840) o Fixed SRP_Calc_client_key so that it runs in constant time Major changes between OpenSSL 1.1.1h and OpenSSL 1.1.1i [8 Dec 2020] o Fixed NULL pointer deref in GENERAL_NAME_cmp (CVE-2020-1971) Major changes between OpenSSL 1.1.1g and OpenSSL 1.1.1h [22 Sep 2020] o Disallow explicit curve parameters in verifications chains when X509_V_FLAG_X509_STRICT is used o Enable 'MinProtocol' and 'MaxProtocol' to configure both TLS and DTLS contexts o Oracle Developer Studio will start reporting deprecation warnings Major changes between OpenSSL 1.1.1f and OpenSSL 1.1.1g [21 Apr 2020] o Fixed segmentation fault in SSL_check_chain() (CVE-2020-1967) Major changes between OpenSSL 1.1.1e and OpenSSL 1.1.1f [31 Mar 2020] o Revert the unexpected EOF reporting via SSL_ERROR_SSL Major changes between OpenSSL 1.1.1d and OpenSSL 1.1.1e [17 Mar 2020] o Fixed an overflow bug in the x64_64 Montgomery squaring procedure used in exponentiation with 512-bit moduli (CVE-2019-1551) o Properly detect unexpected EOF while reading in libssl and report it via SSL_ERROR_SSL Major changes between OpenSSL 1.1.1c and OpenSSL 1.1.1d [10 Sep 2019] o Fixed a fork protection issue (CVE-2019-1549) o Fixed a padding oracle in PKCS7_dataDecode and CMS_decrypt_set1_pkey (CVE-2019-1563) o For built-in EC curves, ensure an EC_GROUP built from the curve name is used even when parsing explicit parameters o Compute ECC cofactors if not provided during EC_GROUP construction (CVE-2019-1547) o Early start up entropy quality from the DEVRANDOM seed source has been improved for older Linux systems o Correct the extended master secret constant on EBCDIC systems o Use Windows installation paths in the mingw builds (CVE-2019-1552) o Changed DH_check to accept parameters with order q and 2q subgroups o Significantly reduce secure memory usage by the randomness pools o Revert the DEVRANDOM_WAIT feature for Linux systems Major changes between OpenSSL 1.1.1b and OpenSSL 1.1.1c [28 May 2019] o Prevent over long nonces in ChaCha20-Poly1305 (CVE-2019-1543) Major changes between OpenSSL 1.1.1a and OpenSSL 1.1.1b [26 Feb 2019] o Change the info callback signals for the start and end of a post-handshake message exchange in TLSv1.3. o Fix a bug in DTLS over SCTP. This breaks interoperability with older versions of OpenSSL like OpenSSL 1.1.0 and OpenSSL 1.0.2. Major changes between OpenSSL 1.1.1 and OpenSSL 1.1.1a [20 Nov 2018] o Timing vulnerability in DSA signature generation (CVE-2018-0734) o Timing vulnerability in ECDSA signature generation (CVE-2018-0735) Major changes between OpenSSL 1.1.0i and OpenSSL 1.1.1 [11 Sep 2018] o Support for TLSv1.3 added (see https://wiki.openssl.org/index.php/TLS1.3 for further important information). The TLSv1.3 implementation includes: o Fully compliant implementation of RFC8446 (TLSv1.3) on by default o Early data (0-RTT) o Post-handshake authentication and key update o Middlebox Compatibility Mode o TLSv1.3 PSKs o Support for all five RFC8446 ciphersuites o RSA-PSS signature algorithms (backported to TLSv1.2) o Configurable session ticket support o Stateless server support o Rewrite of the packet construction code for "safer" packet handling o Rewrite of the extension handling code o Complete rewrite of the OpenSSL random number generator to introduce the following capabilities o The default RAND method now utilizes an AES-CTR DRBG according to NIST standard SP 800-90Ar1. o Support for multiple DRBG instances with seed chaining. o There is a public and private DRBG instance. o The DRBG instances are fork-safe. o Keep all global DRBG instances on the secure heap if it is enabled. o The public and private DRBG instance are per thread for lock free operation o Support for various new cryptographic algorithms including: o SHA3 o SHA512/224 and SHA512/256 o EdDSA (both Ed25519 and Ed448) including X509 and TLS support o X448 (adding to the existing X25519 support in 1.1.0) o Multi-prime RSA o SM2 o SM3 o SM4 o SipHash o ARIA (including TLS support) o Significant Side-Channel attack security improvements o Add a new ClientHello callback to provide the ability to adjust the SSL object at an early stage. o Add 'Maximum Fragment Length' TLS extension negotiation and support o A new STORE module, which implements a uniform and URI based reader of stores that can contain keys, certificates, CRLs and numerous other objects. o Move the display of configuration data to configdata.pm. o Allow GNU style "make variables" to be used with Configure. o Claim the namespaces OSSL and OPENSSL, represented as symbol prefixes o Rewrite of devcrypto engine Major changes between OpenSSL 1.1.0h and OpenSSL 1.1.0i [under development] o Client DoS due to large DH parameter (CVE-2018-0732) o Cache timing vulnerability in RSA Key Generation (CVE-2018-0737) Major changes between OpenSSL 1.1.0g and OpenSSL 1.1.0h [under development] o Constructed ASN.1 types with a recursive definition could exceed the stack (CVE-2018-0739) o Incorrect CRYPTO_memcmp on HP-UX PA-RISC (CVE-2018-0733) o rsaz_1024_mul_avx2 overflow bug on x86_64 (CVE-2017-3738) Major changes between OpenSSL 1.1.0f and OpenSSL 1.1.0g [2 Nov 2017] o bn_sqrx8x_internal carry bug on x86_64 (CVE-2017-3736) o Malformed X.509 IPAddressFamily could cause OOB read (CVE-2017-3735) Major changes between OpenSSL 1.1.0e and OpenSSL 1.1.0f [25 May 2017] o config now recognises 64-bit mingw and chooses mingw64 instead of mingw Major changes between OpenSSL 1.1.0d and OpenSSL 1.1.0e [16 Feb 2017] o Encrypt-Then-Mac renegotiation crash (CVE-2017-3733) Major changes between OpenSSL 1.1.0c and OpenSSL 1.1.0d [26 Jan 2017] o Truncated packet could crash via OOB read (CVE-2017-3731) o Bad (EC)DHE parameters cause a client crash (CVE-2017-3730) o BN_mod_exp may produce incorrect results on x86_64 (CVE-2017-3732) Major changes between OpenSSL 1.1.0b and OpenSSL 1.1.0c [10 Nov 2016] o ChaCha20/Poly1305 heap-buffer-overflow (CVE-2016-7054) o CMS Null dereference (CVE-2016-7053) o Montgomery multiplication may produce incorrect results (CVE-2016-7055) Major changes between OpenSSL 1.1.0a and OpenSSL 1.1.0b [26 Sep 2016] o Fix Use After Free for large message sizes (CVE-2016-6309) Major changes between OpenSSL 1.1.0 and OpenSSL 1.1.0a [22 Sep 2016] o OCSP Status Request extension unbounded memory growth (CVE-2016-6304) o SSL_peek() hang on empty record (CVE-2016-6305) o Excessive allocation of memory in tls_get_message_header() (CVE-2016-6307) o Excessive allocation of memory in dtls1_preprocess_fragment() (CVE-2016-6308) Major changes between OpenSSL 1.0.2h and OpenSSL 1.1.0 [25 Aug 2016] o Copyright text was shrunk to a boilerplate that points to the license o "shared" builds are now the default when possible o Added support for "pipelining" o Added the AFALG engine o New threading API implemented o Support for ChaCha20 and Poly1305 added to libcrypto and libssl o Support for extended master secret o CCM ciphersuites o Reworked test suite, now based on perl, Test::Harness and Test::More o *Most* libcrypto and libssl public structures were made opaque, including: BIGNUM and associated types, EC_KEY and EC_KEY_METHOD, DH and DH_METHOD, DSA and DSA_METHOD, RSA and RSA_METHOD, BIO and BIO_METHOD, EVP_MD_CTX, EVP_MD, EVP_CIPHER_CTX, EVP_CIPHER, EVP_PKEY and associated types, HMAC_CTX, X509, X509_CRL, X509_OBJECT, X509_STORE_CTX, X509_STORE, X509_LOOKUP, X509_LOOKUP_METHOD o libssl internal structures made opaque o SSLv2 support removed o Kerberos ciphersuite support removed o RC4 removed from DEFAULT ciphersuites in libssl o 40 and 56 bit cipher support removed from libssl o All public header files moved to include/openssl, no more symlinking o SSL/TLS state machine, version negotiation and record layer rewritten o EC revision: now operations use new EC_KEY_METHOD. o Support for OCB mode added to libcrypto o Support for asynchronous crypto operations added to libcrypto and libssl o Deprecated interfaces can now be disabled at build time either relative to the latest release via the "no-deprecated" Configure argument, or via the "--api=1.1.0|1.0.0|0.9.8" option. o Application software can be compiled with -DOPENSSL_API_COMPAT=version to ensure that features deprecated in that version are not exposed. o Support for RFC6698/RFC7671 DANE TLSA peer authentication o Change of Configure to use --prefix as the main installation directory location rather than --openssldir. The latter becomes the directory for certs, private key and openssl.cnf exclusively. o Reworked BIO networking library, with full support for IPv6. o New "unified" build system o New security levels o Support for scrypt algorithm o Support for X25519 o Extended SSL_CONF support using configuration files o KDF algorithm support. Implement TLS PRF as a KDF. o Support for Certificate Transparency o HKDF support. Major changes between OpenSSL 1.0.2g and OpenSSL 1.0.2h [3 May 2016] o Prevent padding oracle in AES-NI CBC MAC check (CVE-2016-2107) o Fix EVP_EncodeUpdate overflow (CVE-2016-2105) o Fix EVP_EncryptUpdate overflow (CVE-2016-2106) o Prevent ASN.1 BIO excessive memory allocation (CVE-2016-2109) o EBCDIC overread (CVE-2016-2176) o Modify behavior of ALPN to invoke callback after SNI/servername callback, such that updates to the SSL_CTX affect ALPN. o Remove LOW from the DEFAULT cipher list. This removes singles DES from the default. o Only remove the SSLv2 methods with the no-ssl2-method option. Major changes between OpenSSL 1.0.2f and OpenSSL 1.0.2g [1 Mar 2016] o Disable weak ciphers in SSLv3 and up in default builds of OpenSSL. o Disable SSLv2 default build, default negotiation and weak ciphers (CVE-2016-0800) o Fix a double-free in DSA code (CVE-2016-0705) o Disable SRP fake user seed to address a server memory leak (CVE-2016-0798) o Fix BN_hex2bn/BN_dec2bn NULL pointer deref/heap corruption (CVE-2016-0797) o Fix memory issues in BIO_*printf functions (CVE-2016-0799) o Fix side channel attack on modular exponentiation (CVE-2016-0702) Major changes between OpenSSL 1.0.2e and OpenSSL 1.0.2f [28 Jan 2016] o DH small subgroups (CVE-2016-0701) o SSLv2 doesn't block disabled ciphers (CVE-2015-3197) Major changes between OpenSSL 1.0.2d and OpenSSL 1.0.2e [3 Dec 2015] o BN_mod_exp may produce incorrect results on x86_64 (CVE-2015-3193) o Certificate verify crash with missing PSS parameter (CVE-2015-3194) o X509_ATTRIBUTE memory leak (CVE-2015-3195) o Rewrite EVP_DecodeUpdate (base64 decoding) to fix several bugs o In DSA_generate_parameters_ex, if the provided seed is too short, return an error Major changes between OpenSSL 1.0.2c and OpenSSL 1.0.2d [9 Jul 2015] o Alternate chains certificate forgery (CVE-2015-1793) o Race condition handling PSK identify hint (CVE-2015-3196) Major changes between OpenSSL 1.0.2b and OpenSSL 1.0.2c [12 Jun 2015] o Fix HMAC ABI incompatibility Major changes between OpenSSL 1.0.2a and OpenSSL 1.0.2b [11 Jun 2015] o Malformed ECParameters causes infinite loop (CVE-2015-1788) o Exploitable out-of-bounds read in X509_cmp_time (CVE-2015-1789) o PKCS7 crash with missing EnvelopedContent (CVE-2015-1790) o CMS verify infinite loop with unknown hash function (CVE-2015-1792) o Race condition handling NewSessionTicket (CVE-2015-1791) Major changes between OpenSSL 1.0.2 and OpenSSL 1.0.2a [19 Mar 2015] o OpenSSL 1.0.2 ClientHello sigalgs DoS fix (CVE-2015-0291) o Multiblock corrupted pointer fix (CVE-2015-0290) o Segmentation fault in DTLSv1_listen fix (CVE-2015-0207) o Segmentation fault in ASN1_TYPE_cmp fix (CVE-2015-0286) o Segmentation fault for invalid PSS parameters fix (CVE-2015-0208) o ASN.1 structure reuse memory corruption fix (CVE-2015-0287) o PKCS7 NULL pointer dereferences fix (CVE-2015-0289) o DoS via reachable assert in SSLv2 servers fix (CVE-2015-0293) o Empty CKE with client auth and DHE fix (CVE-2015-1787) o Handshake with unseeded PRNG fix (CVE-2015-0285) o Use After Free following d2i_ECPrivatekey error fix (CVE-2015-0209) o X509_to_X509_REQ NULL pointer deref fix (CVE-2015-0288) o Removed the export ciphers from the DEFAULT ciphers Major changes between OpenSSL 1.0.1l and OpenSSL 1.0.2 [22 Jan 2015]: o Suite B support for TLS 1.2 and DTLS 1.2 o Support for DTLS 1.2 o TLS automatic EC curve selection. o API to set TLS supported signature algorithms and curves o SSL_CONF configuration API. o TLS Brainpool support. o ALPN support. o CMS support for RSA-PSS, RSA-OAEP, ECDH and X9.42 DH. Major changes between OpenSSL 1.0.1k and OpenSSL 1.0.1l [15 Jan 2015] o Build fixes for the Windows and OpenVMS platforms Major changes between OpenSSL 1.0.1j and OpenSSL 1.0.1k [8 Jan 2015] o Fix for CVE-2014-3571 o Fix for CVE-2015-0206 o Fix for CVE-2014-3569 o Fix for CVE-2014-3572 o Fix for CVE-2015-0204 o Fix for CVE-2015-0205 o Fix for CVE-2014-8275 o Fix for CVE-2014-3570 Major changes between OpenSSL 1.0.1i and OpenSSL 1.0.1j [15 Oct 2014] o Fix for CVE-2014-3513 o Fix for CVE-2014-3567 o Mitigation for CVE-2014-3566 (SSL protocol vulnerability) o Fix for CVE-2014-3568 Major changes between OpenSSL 1.0.1h and OpenSSL 1.0.1i [6 Aug 2014] o Fix for CVE-2014-3512 o Fix for CVE-2014-3511 o Fix for CVE-2014-3510 o Fix for CVE-2014-3507 o Fix for CVE-2014-3506 o Fix for CVE-2014-3505 o Fix for CVE-2014-3509 o Fix for CVE-2014-5139 o Fix for CVE-2014-3508 Major changes between OpenSSL 1.0.1g and OpenSSL 1.0.1h [5 Jun 2014] o Fix for CVE-2014-0224 o Fix for CVE-2014-0221 o Fix for CVE-2014-0198 o Fix for CVE-2014-0195 o Fix for CVE-2014-3470 o Fix for CVE-2010-5298 Major changes between OpenSSL 1.0.1f and OpenSSL 1.0.1g [7 Apr 2014] o Fix for CVE-2014-0160 o Add TLS padding extension workaround for broken servers. o Fix for CVE-2014-0076 Major changes between OpenSSL 1.0.1e and OpenSSL 1.0.1f [6 Jan 2014] o Don't include gmt_unix_time in TLS server and client random values o Fix for TLS record tampering bug CVE-2013-4353 o Fix for TLS version checking bug CVE-2013-6449 o Fix for DTLS retransmission bug CVE-2013-6450 Major changes between OpenSSL 1.0.1d and OpenSSL 1.0.1e [11 Feb 2013]: o Corrected fix for CVE-2013-0169 Major changes between OpenSSL 1.0.1c and OpenSSL 1.0.1d [4 Feb 2013]: o Fix renegotiation in TLS 1.1, 1.2 by using the correct TLS version. o Include the fips configuration module. o Fix OCSP bad key DoS attack CVE-2013-0166 o Fix for SSL/TLS/DTLS CBC plaintext recovery attack CVE-2013-0169 o Fix for TLS AESNI record handling flaw CVE-2012-2686 Major changes between OpenSSL 1.0.1b and OpenSSL 1.0.1c [10 May 2012]: o Fix TLS/DTLS record length checking bug CVE-2012-2333 o Don't attempt to use non-FIPS composite ciphers in FIPS mode. Major changes between OpenSSL 1.0.1a and OpenSSL 1.0.1b [26 Apr 2012]: o Fix compilation error on non-x86 platforms. o Make FIPS capable OpenSSL ciphers work in non-FIPS mode. o Fix SSL_OP_NO_TLSv1_1 clash with SSL_OP_ALL in OpenSSL 1.0.0 Major changes between OpenSSL 1.0.1 and OpenSSL 1.0.1a [19 Apr 2012]: o Fix for ASN1 overflow bug CVE-2012-2110 o Workarounds for some servers that hang on long client hellos. o Fix SEGV in AES code. Major changes between OpenSSL 1.0.0h and OpenSSL 1.0.1 [14 Mar 2012]: o TLS/DTLS heartbeat support. o SCTP support. o RFC 5705 TLS key material exporter. o RFC 5764 DTLS-SRTP negotiation. o Next Protocol Negotiation. o PSS signatures in certificates, requests and CRLs. o Support for password based recipient info for CMS. o Support TLS v1.2 and TLS v1.1. o Preliminary FIPS capability for unvalidated 2.0 FIPS module. o SRP support. Major changes between OpenSSL 1.0.0g and OpenSSL 1.0.0h [12 Mar 2012]: o Fix for CMS/PKCS#7 MMA CVE-2012-0884 o Corrected fix for CVE-2011-4619 o Various DTLS fixes. Major changes between OpenSSL 1.0.0f and OpenSSL 1.0.0g [18 Jan 2012]: o Fix for DTLS DoS issue CVE-2012-0050 Major changes between OpenSSL 1.0.0e and OpenSSL 1.0.0f [4 Jan 2012]: o Fix for DTLS plaintext recovery attack CVE-2011-4108 o Clear block padding bytes of SSL 3.0 records CVE-2011-4576 o Only allow one SGC handshake restart for SSL/TLS CVE-2011-4619 o Check parameters are not NULL in GOST ENGINE CVE-2012-0027 o Check for malformed RFC3779 data CVE-2011-4577 Major changes between OpenSSL 1.0.0d and OpenSSL 1.0.0e [6 Sep 2011]: o Fix for CRL vulnerability issue CVE-2011-3207 o Fix for ECDH crashes CVE-2011-3210 o Protection against EC timing attacks. o Support ECDH ciphersuites for certificates using SHA2 algorithms. o Various DTLS fixes. Major changes between OpenSSL 1.0.0c and OpenSSL 1.0.0d [8 Feb 2011]: o Fix for security issue CVE-2011-0014 Major changes between OpenSSL 1.0.0b and OpenSSL 1.0.0c [2 Dec 2010]: o Fix for security issue CVE-2010-4180 o Fix for CVE-2010-4252 o Fix mishandling of absent EC point format extension. o Fix various platform compilation issues. o Corrected fix for security issue CVE-2010-3864. Major changes between OpenSSL 1.0.0a and OpenSSL 1.0.0b [16 Nov 2010]: o Fix for security issue CVE-2010-3864. o Fix for CVE-2010-2939 o Fix WIN32 build system for GOST ENGINE. Major changes between OpenSSL 1.0.0 and OpenSSL 1.0.0a [1 Jun 2010]: o Fix for security issue CVE-2010-1633. o GOST MAC and CFB fixes. Major changes between OpenSSL 0.9.8n and OpenSSL 1.0.0 [29 Mar 2010]: o RFC3280 path validation: sufficient to process PKITS tests. o Integrated support for PVK files and keyblobs. o Change default private key format to PKCS#8. o CMS support: able to process all examples in RFC4134 o Streaming ASN1 encode support for PKCS#7 and CMS. o Multiple signer and signer add support for PKCS#7 and CMS. o ASN1 printing support. o Whirlpool hash algorithm added. o RFC3161 time stamp support. o New generalised public key API supporting ENGINE based algorithms. o New generalised public key API utilities. o New ENGINE supporting GOST algorithms. o SSL/TLS GOST ciphersuite support. o PKCS#7 and CMS GOST support. o RFC4279 PSK ciphersuite support. o Supported points format extension for ECC ciphersuites. o ecdsa-with-SHA224/256/384/512 signature types. o dsa-with-SHA224 and dsa-with-SHA256 signature types. o Opaque PRF Input TLS extension support. o Updated time routines to avoid OS limitations. Major changes between OpenSSL 0.9.8m and OpenSSL 0.9.8n [24 Mar 2010]: o CFB cipher definition fixes. o Fix security issues CVE-2010-0740 and CVE-2010-0433. Major changes between OpenSSL 0.9.8l and OpenSSL 0.9.8m [25 Feb 2010]: o Cipher definition fixes. o Workaround for slow RAND_poll() on some WIN32 versions. o Remove MD2 from algorithm tables. o SPKAC handling fixes. o Support for RFC5746 TLS renegotiation extension. o Compression memory leak fixed. o Compression session resumption fixed. o Ticket and SNI coexistence fixes. o Many fixes to DTLS handling. Major changes between OpenSSL 0.9.8k and OpenSSL 0.9.8l [5 Nov 2009]: o Temporary work around for CVE-2009-3555: disable renegotiation. Major changes between OpenSSL 0.9.8j and OpenSSL 0.9.8k [25 Mar 2009]: o Fix various build issues. o Fix security issues (CVE-2009-0590, CVE-2009-0591, CVE-2009-0789) Major changes between OpenSSL 0.9.8i and OpenSSL 0.9.8j [7 Jan 2009]: o Fix security issue (CVE-2008-5077) o Merge FIPS 140-2 branch code. Major changes between OpenSSL 0.9.8g and OpenSSL 0.9.8h [28 May 2008]: o CryptoAPI ENGINE support. o Various precautionary measures. o Fix for bugs affecting certificate request creation. o Support for local machine keyset attribute in PKCS#12 files. Major changes between OpenSSL 0.9.8f and OpenSSL 0.9.8g [19 Oct 2007]: o Backport of CMS functionality to 0.9.8. o Fixes for bugs introduced with 0.9.8f. Major changes between OpenSSL 0.9.8e and OpenSSL 0.9.8f [11 Oct 2007]: o Add gcc 4.2 support. o Add support for AES and SSE2 assembly language optimization for VC++ build. o Support for RFC4507bis and server name extensions if explicitly selected at compile time. o DTLS improvements. o RFC4507bis support. o TLS Extensions support. Major changes between OpenSSL 0.9.8d and OpenSSL 0.9.8e [23 Feb 2007]: o Various ciphersuite selection fixes. o RFC3779 support. Major changes between OpenSSL 0.9.8c and OpenSSL 0.9.8d [28 Sep 2006]: o Introduce limits to prevent malicious key DoS (CVE-2006-2940) o Fix security issues (CVE-2006-2937, CVE-2006-3737, CVE-2006-4343) o Changes to ciphersuite selection algorithm Major changes between OpenSSL 0.9.8b and OpenSSL 0.9.8c [5 Sep 2006]: o Fix Daniel Bleichenbacher forged signature attack, CVE-2006-4339 o New cipher Camellia Major changes between OpenSSL 0.9.8a and OpenSSL 0.9.8b [4 May 2006]: o Cipher string fixes. o Fixes for VC++ 2005. o Updated ECC cipher suite support. o New functions EVP_CIPHER_CTX_new() and EVP_CIPHER_CTX_free(). o Zlib compression usage fixes. o Built in dynamic engine compilation support on Win32. o Fixes auto dynamic engine loading in Win32. Major changes between OpenSSL 0.9.8 and OpenSSL 0.9.8a [11 Oct 2005]: o Fix potential SSL 2.0 rollback, CVE-2005-2969 o Extended Windows CE support Major changes between OpenSSL 0.9.7g and OpenSSL 0.9.8 [5 Jul 2005]: o Major work on the BIGNUM library for higher efficiency and to make operations more streamlined and less contradictory. This is the result of a major audit of the BIGNUM library. o Addition of BIGNUM functions for fields GF(2^m) and NIST curves, to support the Elliptic Crypto functions. o Major work on Elliptic Crypto; ECDH and ECDSA added, including the use through EVP, X509 and ENGINE. o New ASN.1 mini-compiler that's usable through the OpenSSL configuration file. o Added support for ASN.1 indefinite length constructed encoding. o New PKCS#12 'medium level' API to manipulate PKCS#12 files. o Complete rework of shared library construction and linking programs with shared or static libraries, through a separate Makefile.shared. o Rework of the passing of parameters from one Makefile to another. o Changed ENGINE framework to load dynamic engine modules automatically from specifically given directories. o New structure and ASN.1 functions for CertificatePair. o Changed the ZLIB compression method to be stateful. o Changed the key-generation and primality testing "progress" mechanism to take a structure that contains the ticker function and an argument. o New engine module: GMP (performs private key exponentiation). o New engine module: VIA PadLOck ACE extension in VIA C3 Nehemiah processors. o Added support for IPv6 addresses in certificate extensions. See RFC 1884, section 2.2. o Added support for certificate policy mappings, policy constraints and name constraints. o Added support for multi-valued AVAs in the OpenSSL configuration file. o Added support for multiple certificates with the same subject in the 'openssl ca' index file. o Make it possible to create self-signed certificates using 'openssl ca -selfsign'. o Make it possible to generate a serial number file with 'openssl ca -create_serial'. o New binary search functions with extended functionality. o New BUF functions. o New STORE structure and library to provide an interface to all sorts of data repositories. Supports storage of public and private keys, certificates, CRLs, numbers and arbitrary blobs. This library is unfortunately unfinished and unused within OpenSSL. o New control functions for the error stack. o Changed the PKCS#7 library to support one-pass S/MIME processing. o Added the possibility to compile without old deprecated functionality with the OPENSSL_NO_DEPRECATED macro or the 'no-deprecated' argument to the config and Configure scripts. o Constification of all ASN.1 conversion functions, and other affected functions. o Improved platform support for PowerPC. o New FIPS 180-2 algorithms (SHA-224, -256, -384 and -512). o New X509_VERIFY_PARAM structure to support parameterisation of X.509 path validation. o Major overhaul of RC4 performance on Intel P4, IA-64 and AMD64. o Changed the Configure script to have some algorithms disabled by default. Those can be explicitly enabled with the new argument form 'enable-xxx'. o Change the default digest in 'openssl' commands from MD5 to SHA-1. o Added support for DTLS. o New BIGNUM blinding. o Added support for the RSA-PSS encryption scheme o Added support for the RSA X.931 padding. o Added support for BSD sockets on NetWare. o Added support for files larger than 2GB. o Added initial support for Win64. o Added alternate pkg-config files. Major changes between OpenSSL 0.9.7l and OpenSSL 0.9.7m [23 Feb 2007]: o FIPS 1.1.1 module linking. o Various ciphersuite selection fixes. Major changes between OpenSSL 0.9.7k and OpenSSL 0.9.7l [28 Sep 2006]: o Introduce limits to prevent malicious key DoS (CVE-2006-2940) o Fix security issues (CVE-2006-2937, CVE-2006-3737, CVE-2006-4343) Major changes between OpenSSL 0.9.7j and OpenSSL 0.9.7k [5 Sep 2006]: o Fix Daniel Bleichenbacher forged signature attack, CVE-2006-4339 Major changes between OpenSSL 0.9.7i and OpenSSL 0.9.7j [4 May 2006]: o Visual C++ 2005 fixes. o Update Windows build system for FIPS. Major changes between OpenSSL 0.9.7h and OpenSSL 0.9.7i [14 Oct 2005]: o Give EVP_MAX_MD_SIZE its old value, except for a FIPS build. Major changes between OpenSSL 0.9.7g and OpenSSL 0.9.7h [11 Oct 2005]: o Fix SSL 2.0 Rollback, CVE-2005-2969 o Allow use of fixed-length exponent on DSA signing o Default fixed-window RSA, DSA, DH private-key operations Major changes between OpenSSL 0.9.7f and OpenSSL 0.9.7g [11 Apr 2005]: o More compilation issues fixed. o Adaptation to more modern Kerberos API. o Enhanced or corrected configuration for Solaris64, Mingw and Cygwin. o Enhanced x86_64 assembler BIGNUM module. o More constification. o Added processing of proxy certificates (RFC 3820). Major changes between OpenSSL 0.9.7e and OpenSSL 0.9.7f [22 Mar 2005]: o Several compilation issues fixed. o Many memory allocation failure checks added. o Improved comparison of X509 Name type. o Mandatory basic checks on certificates. o Performance improvements. Major changes between OpenSSL 0.9.7d and OpenSSL 0.9.7e [25 Oct 2004]: o Fix race condition in CRL checking code. o Fixes to PKCS#7 (S/MIME) code. Major changes between OpenSSL 0.9.7c and OpenSSL 0.9.7d [17 Mar 2004]: o Security: Fix Kerberos ciphersuite SSL/TLS handshaking bug o Security: Fix null-pointer assignment in do_change_cipher_spec() o Allow multiple active certificates with same subject in CA index o Multiple X509 verification fixes o Speed up HMAC and other operations Major changes between OpenSSL 0.9.7b and OpenSSL 0.9.7c [30 Sep 2003]: o Security: fix various ASN1 parsing bugs. o New -ignore_err option to OCSP utility. o Various interop and bug fixes in S/MIME code. o SSL/TLS protocol fix for unrequested client certificates. Major changes between OpenSSL 0.9.7a and OpenSSL 0.9.7b [10 Apr 2003]: o Security: counter the Klima-Pokorny-Rosa extension of Bleichbacher's attack o Security: make RSA blinding default. o Configuration: Irix fixes, AIX fixes, better mingw support. o Support for new platforms: linux-ia64-ecc. o Build: shared library support fixes. o ASN.1: treat domainComponent correctly. o Documentation: fixes and additions. Major changes between OpenSSL 0.9.7 and OpenSSL 0.9.7a [19 Feb 2003]: o Security: Important security related bugfixes. o Enhanced compatibility with MIT Kerberos. o Can be built without the ENGINE framework. o IA32 assembler enhancements. o Support for new platforms: FreeBSD/IA64 and FreeBSD/Sparc64. o Configuration: the no-err option now works properly. o SSL/TLS: now handles manual certificate chain building. o SSL/TLS: certain session ID malfunctions corrected. Major changes between OpenSSL 0.9.6 and OpenSSL 0.9.7 [30 Dec 2002]: o New library section OCSP. o Complete rewrite of ASN1 code. o CRL checking in verify code and openssl utility. o Extension copying in 'ca' utility. o Flexible display options in 'ca' utility. o Provisional support for international characters with UTF8. o Support for external crypto devices ('engine') is no longer a separate distribution. o New elliptic curve library section. o New AES (Rijndael) library section. o Support for new platforms: Windows CE, Tandem OSS, A/UX, AIX 64-bit, Linux x86_64, Linux 64-bit on Sparc v9 o Extended support for some platforms: VxWorks o Enhanced support for shared libraries. o Now only builds PIC code when shared library support is requested. o Support for pkg-config. o Lots of new manuals. o Makes symbolic links to or copies of manuals to cover all described functions. o Change DES API to clean up the namespace (some applications link also against libdes providing similar functions having the same name). Provide macros for backward compatibility (will be removed in the future). o Unify handling of cryptographic algorithms (software and engine) to be available via EVP routines for asymmetric and symmetric ciphers. o NCONF: new configuration handling routines. o Change API to use more 'const' modifiers to improve error checking and help optimizers. o Finally remove references to RSAref. o Reworked parts of the BIGNUM code. o Support for new engines: Broadcom ubsec, Accelerated Encryption Processing, IBM 4758. o A few new engines added in the demos area. o Extended and corrected OID (object identifier) table. o PRNG: query at more locations for a random device, automatic query for EGD style random sources at several locations. o SSL/TLS: allow optional cipher choice according to server's preference. o SSL/TLS: allow server to explicitly set new session ids. o SSL/TLS: support Kerberos cipher suites (RFC2712). Only supports MIT Kerberos for now. o SSL/TLS: allow more precise control of renegotiations and sessions. o SSL/TLS: add callback to retrieve SSL/TLS messages. o SSL/TLS: support AES cipher suites (RFC3268). Major changes between OpenSSL 0.9.6j and OpenSSL 0.9.6k [30 Sep 2003]: o Security: fix various ASN1 parsing bugs. o SSL/TLS protocol fix for unrequested client certificates. Major changes between OpenSSL 0.9.6i and OpenSSL 0.9.6j [10 Apr 2003]: o Security: counter the Klima-Pokorny-Rosa extension of Bleichbacher's attack o Security: make RSA blinding default. o Build: shared library support fixes. Major changes between OpenSSL 0.9.6h and OpenSSL 0.9.6i [19 Feb 2003]: o Important security related bugfixes. Major changes between OpenSSL 0.9.6g and OpenSSL 0.9.6h [5 Dec 2002]: o New configuration targets for Tandem OSS and A/UX. o New OIDs for Microsoft attributes. o Better handling of SSL session caching. o Better comparison of distinguished names. o Better handling of shared libraries in a mixed GNU/non-GNU environment. o Support assembler code with Borland C. o Fixes for length problems. o Fixes for uninitialised variables. o Fixes for memory leaks, some unusual crashes and some race conditions. o Fixes for smaller building problems. o Updates of manuals, FAQ and other instructive documents. Major changes between OpenSSL 0.9.6f and OpenSSL 0.9.6g [9 Aug 2002]: o Important building fixes on Unix. Major changes between OpenSSL 0.9.6e and OpenSSL 0.9.6f [8 Aug 2002]: o Various important bugfixes. Major changes between OpenSSL 0.9.6d and OpenSSL 0.9.6e [30 Jul 2002]: o Important security related bugfixes. o Various SSL/TLS library bugfixes. Major changes between OpenSSL 0.9.6c and OpenSSL 0.9.6d [9 May 2002]: o Various SSL/TLS library bugfixes. o Fix DH parameter generation for 'non-standard' generators. Major changes between OpenSSL 0.9.6b and OpenSSL 0.9.6c [21 Dec 2001]: o Various SSL/TLS library bugfixes. o BIGNUM library fixes. o RSA OAEP and random number generation fixes. o Object identifiers corrected and added. o Add assembler BN routines for IA64. o Add support for OS/390 Unix, UnixWare with gcc, OpenUNIX 8, MIPS Linux; shared library support for Irix, HP-UX. o Add crypto accelerator support for AEP, Baltimore SureWare, Broadcom and Cryptographic Appliance's keyserver [in 0.9.6c-engine release]. Major changes between OpenSSL 0.9.6a and OpenSSL 0.9.6b [9 Jul 2001]: o Security fix: PRNG improvements. o Security fix: RSA OAEP check. o Security fix: Reinsert and fix countermeasure to Bleichbacher's attack. o MIPS bug fix in BIGNUM. o Bug fix in "openssl enc". o Bug fix in X.509 printing routine. o Bug fix in DSA verification routine and DSA S/MIME verification. o Bug fix to make PRNG thread-safe. o Bug fix in RAND_file_name(). o Bug fix in compatibility mode trust settings. o Bug fix in blowfish EVP. o Increase default size for BIO buffering filter. o Compatibility fixes in some scripts. Major changes between OpenSSL 0.9.6 and OpenSSL 0.9.6a [5 Apr 2001]: o Security fix: change behavior of OpenSSL to avoid using environment variables when running as root. o Security fix: check the result of RSA-CRT to reduce the possibility of deducing the private key from an incorrectly calculated signature. o Security fix: prevent Bleichenbacher's DSA attack. o Security fix: Zero the premaster secret after deriving the master secret in DH ciphersuites. o Reimplement SSL_peek(), which had various problems. o Compatibility fix: the function des_encrypt() renamed to des_encrypt1() to avoid clashes with some Unixen libc. o Bug fixes for Win32, HP/UX and Irix. o Bug fixes in BIGNUM, SSL, PKCS#7, PKCS#12, X.509, CONF and memory checking routines. o Bug fixes for RSA operations in threaded environments. o Bug fixes in misc. openssl applications. o Remove a few potential memory leaks. o Add tighter checks of BIGNUM routines. o Shared library support has been reworked for generality. o More documentation. o New function BN_rand_range(). o Add "-rand" option to openssl s_client and s_server. Major changes between OpenSSL 0.9.5a and OpenSSL 0.9.6 [10 Oct 2000]: o Some documentation for BIO and SSL libraries. o Enhanced chain verification using key identifiers. o New sign and verify options to 'dgst' application. o Support for DER and PEM encoded messages in 'smime' application. o New 'rsautl' application, low level RSA utility. o MD4 now included. o Bugfix for SSL rollback padding check. o Support for external crypto devices [1]. o Enhanced EVP interface. [1] The support for external crypto devices is currently a separate distribution. See the file README.ENGINE. Major changes between OpenSSL 0.9.5 and OpenSSL 0.9.5a [1 Apr 2000]: o Bug fixes for Win32, SuSE Linux, NeXTSTEP and FreeBSD 2.2.8 o Shared library support for HPUX and Solaris-gcc o Support of Linux/IA64 o Assembler support for Mingw32 o New 'rand' application o New way to check for existence of algorithms from scripts Major changes between OpenSSL 0.9.4 and OpenSSL 0.9.5 [25 May 2000]: o S/MIME support in new 'smime' command o Documentation for the OpenSSL command line application o Automation of 'req' application o Fixes to make s_client, s_server work under Windows o Support for multiple fieldnames in SPKACs o New SPKAC command line utility and associated library functions o Options to allow passwords to be obtained from various sources o New public key PEM format and options to handle it o Many other fixes and enhancements to command line utilities o Usable certificate chain verification o Certificate purpose checking o Certificate trust settings o Support of authority information access extension o Extensions in certificate requests o Simplified X509 name and attribute routines o Initial (incomplete) support for international character sets o New DH_METHOD, DSA_METHOD and enhanced RSA_METHOD o Read only memory BIOs and simplified creation function o TLS/SSL protocol bugfixes: Accept TLS 'client hello' in SSL 3.0 record; allow fragmentation and interleaving of handshake and other data o TLS/SSL code now "tolerates" MS SGC o Work around for Netscape client certificate hang bug o RSA_NULL option that removes RSA patent code but keeps other RSA functionality o Memory leak detection now allows applications to add extra information via a per-thread stack o PRNG robustness improved o EGD support o BIGNUM library bug fixes o Faster DSA parameter generation o Enhanced support for Alpha Linux o Experimental MacOS support Major changes between OpenSSL 0.9.3 and OpenSSL 0.9.4 [9 Aug 1999]: o Transparent support for PKCS#8 format private keys: these are used by several software packages and are more secure than the standard form o PKCS#5 v2.0 implementation o Password callbacks have a new void * argument for application data o Avoid various memory leaks o New pipe-like BIO that allows using the SSL library when actual I/O must be handled by the application (BIO pair) Major changes between OpenSSL 0.9.2b and OpenSSL 0.9.3 [24 May 1999]: o Lots of enhancements and cleanups to the Configuration mechanism o RSA OEAP related fixes o Added `openssl ca -revoke' option for revoking a certificate o Source cleanups: const correctness, type-safe stacks and ASN.1 SETs o Source tree cleanups: removed lots of obsolete files o Thawte SXNet, certificate policies and CRL distribution points extension support o Preliminary (experimental) S/MIME support o Support for ASN.1 UTF8String and VisibleString o Full integration of PKCS#12 code o Sparc assembler bignum implementation, optimized hash functions o Option to disable selected ciphers Major changes between OpenSSL 0.9.1c and OpenSSL 0.9.2b [22 Mar 1999]: o Fixed a security hole related to session resumption o Fixed RSA encryption routines for the p < q case o "ALL" in cipher lists now means "everything except NULL ciphers" o Support for Triple-DES CBCM cipher o Support of Optimal Asymmetric Encryption Padding (OAEP) for RSA o First support for new TLSv1 ciphers o Added a few new BIOs (syslog BIO, reliable BIO) o Extended support for DSA certificate/keys. o Extended support for Certificate Signing Requests (CSR) o Initial support for X.509v3 extensions o Extended support for compression inside the SSL record layer o Overhauled Win32 builds o Cleanups and fixes to the Big Number (BN) library o Support for ASN.1 GeneralizedTime o Splitted ASN.1 SETs from SEQUENCEs o ASN1 and PEM support for Netscape Certificate Sequences o Overhauled Perl interface o Lots of source tree cleanups. o Lots of memory leak fixes. o Lots of bug fixes. Major changes between SSLeay 0.9.0b and OpenSSL 0.9.1c [23 Dec 1998]: o Integration of the popular NO_RSA/NO_DSA patches o Initial support for compression inside the SSL record layer o Added BIO proxy and filtering functionality o Extended Big Number (BN) library o Added RIPE MD160 message digest o Added support for RC2/64bit cipher o Extended ASN.1 parser routines o Adjustments of the source tree for CVS o Support for various new platforms diff --git a/README b/README index a56311a4d186..97a0042b8651 100644 --- a/README +++ b/README @@ -1,93 +1,93 @@ - OpenSSL 1.1.1o 3 May 2022 + OpenSSL 1.1.1p 21 Jun 2022 Copyright (c) 1998-2022 The OpenSSL Project Copyright (c) 1995-1998 Eric A. Young, Tim J. Hudson All rights reserved. DESCRIPTION ----------- The OpenSSL Project is a collaborative effort to develop a robust, commercial-grade, fully featured, and Open Source toolkit implementing the Transport Layer Security (TLS) protocols (including SSLv3) as well as a full-strength general purpose cryptographic library. OpenSSL is descended from the SSLeay library developed by Eric A. Young and Tim J. Hudson. The OpenSSL toolkit is licensed under a dual-license (the OpenSSL license plus the SSLeay license), which means that you are free to get and use it for commercial and non-commercial purposes as long as you fulfill the conditions of both licenses. OVERVIEW -------- The OpenSSL toolkit includes: libssl (with platform specific naming): Provides the client and server-side implementations for SSLv3 and TLS. libcrypto (with platform specific naming): Provides general cryptographic and X.509 support needed by SSL/TLS but not logically part of it. openssl: A command line tool that can be used for: Creation of key parameters Creation of X.509 certificates, CSRs and CRLs Calculation of message digests Encryption and decryption SSL/TLS client and server tests Handling of S/MIME signed or encrypted mail And more... INSTALLATION ------------ See the appropriate file: INSTALL Linux, Unix, Windows, OpenVMS, ... NOTES.* INSTALL addendums for different platforms SUPPORT ------- See the OpenSSL website www.openssl.org for details on how to obtain commercial technical support. Free community support is available through the openssl-users email list (see https://www.openssl.org/community/mailinglists.html for further details). If you have any problems with OpenSSL then please take the following steps first: - Download the latest version from the repository to see if the problem has already been addressed - Configure with no-asm - Remove compiler optimization flags If you wish to report a bug then please include the following information and create an issue on GitHub: - OpenSSL version: output of 'openssl version -a' - Configuration data: output of 'perl configdata.pm --dump' - OS Name, Version, Hardware platform - Compiler Details (name, version) - Application Details (name, version) - Problem Description (steps that will reproduce the problem, if known) - Stack Traceback (if the application dumps core) Just because something doesn't work the way you expect does not mean it is necessarily a bug in OpenSSL. Use the openssl-users email list for this type of query. HOW TO CONTRIBUTE TO OpenSSL ---------------------------- See CONTRIBUTING LEGALITIES ---------- A number of nations restrict the use or export of cryptography. If you are potentially subject to such restrictions you should seek competent professional legal advice before attempting to develop or distribute cryptographic code. diff --git a/apps/s_server.c b/apps/s_server.c index 64d53e68d0ee..1a42bf89c7a0 100644 --- a/apps/s_server.c +++ b/apps/s_server.c @@ -1,3646 +1,3685 @@ /* - * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. + * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * Copyright 2005 Nokia. All rights reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #if defined(_WIN32) /* Included before async.h to avoid some warnings */ # include #endif #include #include #include #ifndef OPENSSL_NO_SOCK /* * With IPv6, it looks like Digital has mixed up the proper order of * recursive header file inclusion, resulting in the compiler complaining * that u_int isn't defined, but only if _POSIX_C_SOURCE is defined, which is * needed to have fileno() declared correctly... So let's define u_int */ #if defined(OPENSSL_SYS_VMS_DECC) && !defined(__U_INT) # define __U_INT typedef unsigned int u_int; #endif #include #include "apps.h" #include "progs.h" #include #include #include #include #include #include #ifndef OPENSSL_NO_DH # include #endif #ifndef OPENSSL_NO_RSA # include #endif #ifndef OPENSSL_NO_SRP # include #endif #include "s_apps.h" #include "timeouts.h" #ifdef CHARSET_EBCDIC #include #endif #include "internal/sockets.h" static int not_resumable_sess_cb(SSL *s, int is_forward_secure); static int sv_body(int s, int stype, int prot, unsigned char *context); static int www_body(int s, int stype, int prot, unsigned char *context); static int rev_body(int s, int stype, int prot, unsigned char *context); static void close_accept_socket(void); static int init_ssl_connection(SSL *s); static void print_stats(BIO *bp, SSL_CTX *ctx); static int generate_session_id(SSL *ssl, unsigned char *id, unsigned int *id_len); static void init_session_cache_ctx(SSL_CTX *sctx); static void free_sessions(void); #ifndef OPENSSL_NO_DH static DH *load_dh_param(const char *dhfile); #endif static void print_connection_info(SSL *con); static const int bufsize = 16 * 1024; static int accept_socket = -1; #define TEST_CERT "server.pem" #define TEST_CERT2 "server2.pem" static int s_nbio = 0; static int s_nbio_test = 0; static int s_crlf = 0; static SSL_CTX *ctx = NULL; static SSL_CTX *ctx2 = NULL; static int www = 0; static BIO *bio_s_out = NULL; static BIO *bio_s_msg = NULL; static int s_debug = 0; static int s_tlsextdebug = 0; static int s_msg = 0; static int s_quiet = 0; static int s_ign_eof = 0; static int s_brief = 0; static char *keymatexportlabel = NULL; static int keymatexportlen = 20; static int async = 0; static const char *session_id_prefix = NULL; #ifndef OPENSSL_NO_DTLS static int enable_timeouts = 0; static long socket_mtu; #endif /* * We define this but make it always be 0 in no-dtls builds to simplify the * code. */ static int dtlslisten = 0; static int stateless = 0; static int early_data = 0; static SSL_SESSION *psksess = NULL; static char *psk_identity = "Client_identity"; char *psk_key = NULL; /* by default PSK is not used */ #ifndef OPENSSL_NO_PSK static unsigned int psk_server_cb(SSL *ssl, const char *identity, unsigned char *psk, unsigned int max_psk_len) { long key_len = 0; unsigned char *key; if (s_debug) BIO_printf(bio_s_out, "psk_server_cb\n"); if (!SSL_is_dtls(ssl) && SSL_version(ssl) >= TLS1_3_VERSION) { /* * This callback is designed for use in (D)TLSv1.2 (or below). It is * possible to use a single callback for all protocol versions - but it * is preferred to use a dedicated callback for TLSv1.3. For TLSv1.3 we * have psk_find_session_cb. */ return 0; } if (identity == NULL) { BIO_printf(bio_err, "Error: client did not send PSK identity\n"); goto out_err; } if (s_debug) BIO_printf(bio_s_out, "identity_len=%d identity=%s\n", (int)strlen(identity), identity); /* here we could lookup the given identity e.g. from a database */ if (strcmp(identity, psk_identity) != 0) { BIO_printf(bio_s_out, "PSK warning: client identity not what we expected" " (got '%s' expected '%s')\n", identity, psk_identity); } else { if (s_debug) BIO_printf(bio_s_out, "PSK client identity found\n"); } /* convert the PSK key to binary */ key = OPENSSL_hexstr2buf(psk_key, &key_len); if (key == NULL) { BIO_printf(bio_err, "Could not convert PSK key '%s' to buffer\n", psk_key); return 0; } if (key_len > (int)max_psk_len) { BIO_printf(bio_err, "psk buffer of callback is too small (%d) for key (%ld)\n", max_psk_len, key_len); OPENSSL_free(key); return 0; } memcpy(psk, key, key_len); OPENSSL_free(key); if (s_debug) BIO_printf(bio_s_out, "fetched PSK len=%ld\n", key_len); return key_len; out_err: if (s_debug) BIO_printf(bio_err, "Error in PSK server callback\n"); (void)BIO_flush(bio_err); (void)BIO_flush(bio_s_out); return 0; } #endif static int psk_find_session_cb(SSL *ssl, const unsigned char *identity, size_t identity_len, SSL_SESSION **sess) { SSL_SESSION *tmpsess = NULL; unsigned char *key; long key_len; const SSL_CIPHER *cipher = NULL; if (strlen(psk_identity) != identity_len || memcmp(psk_identity, identity, identity_len) != 0) { *sess = NULL; return 1; } if (psksess != NULL) { SSL_SESSION_up_ref(psksess); *sess = psksess; return 1; } key = OPENSSL_hexstr2buf(psk_key, &key_len); if (key == NULL) { BIO_printf(bio_err, "Could not convert PSK key '%s' to buffer\n", psk_key); return 0; } /* We default to SHA256 */ cipher = SSL_CIPHER_find(ssl, tls13_aes128gcmsha256_id); if (cipher == NULL) { BIO_printf(bio_err, "Error finding suitable ciphersuite\n"); OPENSSL_free(key); return 0; } tmpsess = SSL_SESSION_new(); if (tmpsess == NULL || !SSL_SESSION_set1_master_key(tmpsess, key, key_len) || !SSL_SESSION_set_cipher(tmpsess, cipher) || !SSL_SESSION_set_protocol_version(tmpsess, SSL_version(ssl))) { OPENSSL_free(key); return 0; } OPENSSL_free(key); *sess = tmpsess; return 1; } #ifndef OPENSSL_NO_SRP /* This is a context that we pass to callbacks */ typedef struct srpsrvparm_st { char *login; SRP_VBASE *vb; SRP_user_pwd *user; } srpsrvparm; static srpsrvparm srp_callback_parm; /* * This callback pretends to require some asynchronous logic in order to * obtain a verifier. When the callback is called for a new connection we * return with a negative value. This will provoke the accept etc to return * with an LOOKUP_X509. The main logic of the reinvokes the suspended call * (which would normally occur after a worker has finished) and we set the * user parameters. */ static int ssl_srp_server_param_cb(SSL *s, int *ad, void *arg) { srpsrvparm *p = (srpsrvparm *) arg; int ret = SSL3_AL_FATAL; if (p->login == NULL && p->user == NULL) { p->login = SSL_get_srp_username(s); BIO_printf(bio_err, "SRP username = \"%s\"\n", p->login); return -1; } if (p->user == NULL) { BIO_printf(bio_err, "User %s doesn't exist\n", p->login); goto err; } if (SSL_set_srp_server_param (s, p->user->N, p->user->g, p->user->s, p->user->v, p->user->info) < 0) { *ad = SSL_AD_INTERNAL_ERROR; goto err; } BIO_printf(bio_err, "SRP parameters set: username = \"%s\" info=\"%s\" \n", p->login, p->user->info); ret = SSL_ERROR_NONE; err: SRP_user_pwd_free(p->user); p->user = NULL; p->login = NULL; return ret; } #endif static int local_argc = 0; static char **local_argv; #ifdef CHARSET_EBCDIC static int ebcdic_new(BIO *bi); static int ebcdic_free(BIO *a); static int ebcdic_read(BIO *b, char *out, int outl); static int ebcdic_write(BIO *b, const char *in, int inl); static long ebcdic_ctrl(BIO *b, int cmd, long num, void *ptr); static int ebcdic_gets(BIO *bp, char *buf, int size); static int ebcdic_puts(BIO *bp, const char *str); # define BIO_TYPE_EBCDIC_FILTER (18|0x0200) static BIO_METHOD *methods_ebcdic = NULL; /* This struct is "unwarranted chumminess with the compiler." */ typedef struct { size_t alloced; char buff[1]; } EBCDIC_OUTBUFF; static const BIO_METHOD *BIO_f_ebcdic_filter() { if (methods_ebcdic == NULL) { methods_ebcdic = BIO_meth_new(BIO_TYPE_EBCDIC_FILTER, "EBCDIC/ASCII filter"); if (methods_ebcdic == NULL || !BIO_meth_set_write(methods_ebcdic, ebcdic_write) || !BIO_meth_set_read(methods_ebcdic, ebcdic_read) || !BIO_meth_set_puts(methods_ebcdic, ebcdic_puts) || !BIO_meth_set_gets(methods_ebcdic, ebcdic_gets) || !BIO_meth_set_ctrl(methods_ebcdic, ebcdic_ctrl) || !BIO_meth_set_create(methods_ebcdic, ebcdic_new) || !BIO_meth_set_destroy(methods_ebcdic, ebcdic_free)) return NULL; } return methods_ebcdic; } static int ebcdic_new(BIO *bi) { EBCDIC_OUTBUFF *wbuf; wbuf = app_malloc(sizeof(*wbuf) + 1024, "ebcdic wbuf"); wbuf->alloced = 1024; wbuf->buff[0] = '\0'; BIO_set_data(bi, wbuf); BIO_set_init(bi, 1); return 1; } static int ebcdic_free(BIO *a) { EBCDIC_OUTBUFF *wbuf; if (a == NULL) return 0; wbuf = BIO_get_data(a); OPENSSL_free(wbuf); BIO_set_data(a, NULL); BIO_set_init(a, 0); return 1; } static int ebcdic_read(BIO *b, char *out, int outl) { int ret = 0; BIO *next = BIO_next(b); if (out == NULL || outl == 0) return 0; if (next == NULL) return 0; ret = BIO_read(next, out, outl); if (ret > 0) ascii2ebcdic(out, out, ret); return ret; } static int ebcdic_write(BIO *b, const char *in, int inl) { EBCDIC_OUTBUFF *wbuf; BIO *next = BIO_next(b); int ret = 0; int num; if ((in == NULL) || (inl <= 0)) return 0; if (next == NULL) return 0; wbuf = (EBCDIC_OUTBUFF *) BIO_get_data(b); if (inl > (num = wbuf->alloced)) { num = num + num; /* double the size */ if (num < inl) num = inl; OPENSSL_free(wbuf); wbuf = app_malloc(sizeof(*wbuf) + num, "grow ebcdic wbuf"); wbuf->alloced = num; wbuf->buff[0] = '\0'; BIO_set_data(b, wbuf); } ebcdic2ascii(wbuf->buff, in, inl); ret = BIO_write(next, wbuf->buff, inl); return ret; } static long ebcdic_ctrl(BIO *b, int cmd, long num, void *ptr) { long ret; BIO *next = BIO_next(b); if (next == NULL) return 0; switch (cmd) { case BIO_CTRL_DUP: ret = 0L; break; default: ret = BIO_ctrl(next, cmd, num, ptr); break; } return ret; } static int ebcdic_gets(BIO *bp, char *buf, int size) { int i, ret = 0; BIO *next = BIO_next(bp); if (next == NULL) return 0; /* return(BIO_gets(bp->next_bio,buf,size));*/ for (i = 0; i < size - 1; ++i) { ret = ebcdic_read(bp, &buf[i], 1); if (ret <= 0) break; else if (buf[i] == '\n') { ++i; break; } } if (i < size) buf[i] = '\0'; return (ret < 0 && i == 0) ? ret : i; } static int ebcdic_puts(BIO *bp, const char *str) { if (BIO_next(bp) == NULL) return 0; return ebcdic_write(bp, str, strlen(str)); } #endif /* This is a context that we pass to callbacks */ typedef struct tlsextctx_st { char *servername; BIO *biodebug; int extension_error; } tlsextctx; static int ssl_servername_cb(SSL *s, int *ad, void *arg) { tlsextctx *p = (tlsextctx *) arg; const char *servername = SSL_get_servername(s, TLSEXT_NAMETYPE_host_name); if (servername != NULL && p->biodebug != NULL) { const char *cp = servername; unsigned char uc; BIO_printf(p->biodebug, "Hostname in TLS extension: \""); while ((uc = *cp++) != 0) BIO_printf(p->biodebug, isascii(uc) && isprint(uc) ? "%c" : "\\x%02x", uc); BIO_printf(p->biodebug, "\"\n"); } if (p->servername == NULL) return SSL_TLSEXT_ERR_NOACK; if (servername != NULL) { if (strcasecmp(servername, p->servername)) return p->extension_error; if (ctx2 != NULL) { BIO_printf(p->biodebug, "Switching server context.\n"); SSL_set_SSL_CTX(s, ctx2); } } return SSL_TLSEXT_ERR_OK; } /* Structure passed to cert status callback */ typedef struct tlsextstatusctx_st { int timeout; /* File to load OCSP Response from (or NULL if no file) */ char *respin; /* Default responder to use */ char *host, *path, *port; int use_ssl; int verbose; } tlsextstatusctx; static tlsextstatusctx tlscstatp = { -1 }; #ifndef OPENSSL_NO_OCSP /* * Helper function to get an OCSP_RESPONSE from a responder. This is a * simplified version. It examines certificates each time and makes one OCSP * responder query for each request. A full version would store details such as * the OCSP certificate IDs and minimise the number of OCSP responses by caching * them until they were considered "expired". */ static int get_ocsp_resp_from_responder(SSL *s, tlsextstatusctx *srctx, OCSP_RESPONSE **resp) { char *host = NULL, *port = NULL, *path = NULL; int use_ssl; STACK_OF(OPENSSL_STRING) *aia = NULL; X509 *x = NULL; X509_STORE_CTX *inctx = NULL; X509_OBJECT *obj; OCSP_REQUEST *req = NULL; OCSP_CERTID *id = NULL; STACK_OF(X509_EXTENSION) *exts; int ret = SSL_TLSEXT_ERR_NOACK; int i; /* Build up OCSP query from server certificate */ x = SSL_get_certificate(s); aia = X509_get1_ocsp(x); if (aia != NULL) { if (!OCSP_parse_url(sk_OPENSSL_STRING_value(aia, 0), &host, &port, &path, &use_ssl)) { BIO_puts(bio_err, "cert_status: can't parse AIA URL\n"); goto err; } if (srctx->verbose) BIO_printf(bio_err, "cert_status: AIA URL: %s\n", sk_OPENSSL_STRING_value(aia, 0)); } else { if (srctx->host == NULL) { BIO_puts(bio_err, "cert_status: no AIA and no default responder URL\n"); goto done; } host = srctx->host; path = srctx->path; port = srctx->port; use_ssl = srctx->use_ssl; } inctx = X509_STORE_CTX_new(); if (inctx == NULL) goto err; if (!X509_STORE_CTX_init(inctx, SSL_CTX_get_cert_store(SSL_get_SSL_CTX(s)), NULL, NULL)) goto err; obj = X509_STORE_CTX_get_obj_by_subject(inctx, X509_LU_X509, X509_get_issuer_name(x)); if (obj == NULL) { BIO_puts(bio_err, "cert_status: Can't retrieve issuer certificate.\n"); goto done; } id = OCSP_cert_to_id(NULL, x, X509_OBJECT_get0_X509(obj)); X509_OBJECT_free(obj); if (id == NULL) goto err; req = OCSP_REQUEST_new(); if (req == NULL) goto err; if (!OCSP_request_add0_id(req, id)) goto err; id = NULL; /* Add any extensions to the request */ SSL_get_tlsext_status_exts(s, &exts); for (i = 0; i < sk_X509_EXTENSION_num(exts); i++) { X509_EXTENSION *ext = sk_X509_EXTENSION_value(exts, i); if (!OCSP_REQUEST_add_ext(req, ext, -1)) goto err; } *resp = process_responder(req, host, path, port, use_ssl, NULL, srctx->timeout); if (*resp == NULL) { BIO_puts(bio_err, "cert_status: error querying responder\n"); goto done; } ret = SSL_TLSEXT_ERR_OK; goto done; err: ret = SSL_TLSEXT_ERR_ALERT_FATAL; done: /* * If we parsed aia we need to free; otherwise they were copied and we * don't */ if (aia != NULL) { OPENSSL_free(host); OPENSSL_free(path); OPENSSL_free(port); X509_email_free(aia); } OCSP_CERTID_free(id); OCSP_REQUEST_free(req); X509_STORE_CTX_free(inctx); return ret; } /* * Certificate Status callback. This is called when a client includes a * certificate status request extension. The response is either obtained from a * file, or from an OCSP responder. */ static int cert_status_cb(SSL *s, void *arg) { tlsextstatusctx *srctx = arg; OCSP_RESPONSE *resp = NULL; unsigned char *rspder = NULL; int rspderlen; int ret = SSL_TLSEXT_ERR_ALERT_FATAL; if (srctx->verbose) BIO_puts(bio_err, "cert_status: callback called\n"); if (srctx->respin != NULL) { BIO *derbio = bio_open_default(srctx->respin, 'r', FORMAT_ASN1); if (derbio == NULL) { BIO_puts(bio_err, "cert_status: Cannot open OCSP response file\n"); goto err; } resp = d2i_OCSP_RESPONSE_bio(derbio, NULL); BIO_free(derbio); if (resp == NULL) { BIO_puts(bio_err, "cert_status: Error reading OCSP response\n"); goto err; } } else { ret = get_ocsp_resp_from_responder(s, srctx, &resp); if (ret != SSL_TLSEXT_ERR_OK) goto err; } rspderlen = i2d_OCSP_RESPONSE(resp, &rspder); if (rspderlen <= 0) goto err; SSL_set_tlsext_status_ocsp_resp(s, rspder, rspderlen); if (srctx->verbose) { BIO_puts(bio_err, "cert_status: ocsp response sent:\n"); OCSP_RESPONSE_print(bio_err, resp, 2); } ret = SSL_TLSEXT_ERR_OK; err: if (ret != SSL_TLSEXT_ERR_OK) ERR_print_errors(bio_err); OCSP_RESPONSE_free(resp); return ret; } #endif #ifndef OPENSSL_NO_NEXTPROTONEG /* This is the context that we pass to next_proto_cb */ typedef struct tlsextnextprotoctx_st { unsigned char *data; size_t len; } tlsextnextprotoctx; static int next_proto_cb(SSL *s, const unsigned char **data, unsigned int *len, void *arg) { tlsextnextprotoctx *next_proto = arg; *data = next_proto->data; *len = next_proto->len; return SSL_TLSEXT_ERR_OK; } #endif /* ndef OPENSSL_NO_NEXTPROTONEG */ /* This the context that we pass to alpn_cb */ typedef struct tlsextalpnctx_st { unsigned char *data; size_t len; } tlsextalpnctx; static int alpn_cb(SSL *s, const unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, void *arg) { tlsextalpnctx *alpn_ctx = arg; if (!s_quiet) { /* We can assume that |in| is syntactically valid. */ unsigned int i; BIO_printf(bio_s_out, "ALPN protocols advertised by the client: "); for (i = 0; i < inlen;) { if (i) BIO_write(bio_s_out, ", ", 2); BIO_write(bio_s_out, &in[i + 1], in[i]); i += in[i] + 1; } BIO_write(bio_s_out, "\n", 1); } if (SSL_select_next_proto ((unsigned char **)out, outlen, alpn_ctx->data, alpn_ctx->len, in, inlen) != OPENSSL_NPN_NEGOTIATED) { return SSL_TLSEXT_ERR_NOACK; } if (!s_quiet) { BIO_printf(bio_s_out, "ALPN protocols selected: "); BIO_write(bio_s_out, *out, *outlen); BIO_write(bio_s_out, "\n", 1); } return SSL_TLSEXT_ERR_OK; } static int not_resumable_sess_cb(SSL *s, int is_forward_secure) { /* disable resumption for sessions with forward secure ciphers */ return is_forward_secure; } typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_ENGINE, OPT_4, OPT_6, OPT_ACCEPT, OPT_PORT, OPT_UNIX, OPT_UNLINK, OPT_NACCEPT, OPT_VERIFY, OPT_NAMEOPT, OPT_UPPER_V_VERIFY, OPT_CONTEXT, OPT_CERT, OPT_CRL, OPT_CRL_DOWNLOAD, OPT_SERVERINFO, OPT_CERTFORM, OPT_KEY, OPT_KEYFORM, OPT_PASS, OPT_CERT_CHAIN, OPT_DHPARAM, OPT_DCERTFORM, OPT_DCERT, OPT_DKEYFORM, OPT_DPASS, OPT_DKEY, OPT_DCERT_CHAIN, OPT_NOCERT, OPT_CAPATH, OPT_NOCAPATH, OPT_CHAINCAPATH, OPT_VERIFYCAPATH, OPT_NO_CACHE, OPT_EXT_CACHE, OPT_CRLFORM, OPT_VERIFY_RET_ERROR, OPT_VERIFY_QUIET, OPT_BUILD_CHAIN, OPT_CAFILE, OPT_NOCAFILE, OPT_CHAINCAFILE, OPT_VERIFYCAFILE, OPT_NBIO, OPT_NBIO_TEST, OPT_IGN_EOF, OPT_NO_IGN_EOF, OPT_DEBUG, OPT_TLSEXTDEBUG, OPT_STATUS, OPT_STATUS_VERBOSE, OPT_STATUS_TIMEOUT, OPT_STATUS_URL, OPT_STATUS_FILE, OPT_MSG, OPT_MSGFILE, OPT_TRACE, OPT_SECURITY_DEBUG, OPT_SECURITY_DEBUG_VERBOSE, OPT_STATE, OPT_CRLF, OPT_QUIET, OPT_BRIEF, OPT_NO_DHE, OPT_NO_RESUME_EPHEMERAL, OPT_PSK_IDENTITY, OPT_PSK_HINT, OPT_PSK, OPT_PSK_SESS, OPT_SRPVFILE, OPT_SRPUSERSEED, OPT_REV, OPT_WWW, OPT_UPPER_WWW, OPT_HTTP, OPT_ASYNC, OPT_SSL_CONFIG, OPT_MAX_SEND_FRAG, OPT_SPLIT_SEND_FRAG, OPT_MAX_PIPELINES, OPT_READ_BUF, OPT_SSL3, OPT_TLS1_3, OPT_TLS1_2, OPT_TLS1_1, OPT_TLS1, OPT_DTLS, OPT_DTLS1, OPT_DTLS1_2, OPT_SCTP, OPT_TIMEOUT, OPT_MTU, OPT_LISTEN, OPT_STATELESS, OPT_ID_PREFIX, OPT_SERVERNAME, OPT_SERVERNAME_FATAL, OPT_CERT2, OPT_KEY2, OPT_NEXTPROTONEG, OPT_ALPN, OPT_SRTP_PROFILES, OPT_KEYMATEXPORT, OPT_KEYMATEXPORTLEN, OPT_KEYLOG_FILE, OPT_MAX_EARLY, OPT_RECV_MAX_EARLY, OPT_EARLY_DATA, OPT_S_NUM_TICKETS, OPT_ANTI_REPLAY, OPT_NO_ANTI_REPLAY, OPT_SCTP_LABEL_BUG, OPT_R_ENUM, OPT_S_ENUM, OPT_V_ENUM, OPT_X_ENUM } OPTION_CHOICE; const OPTIONS s_server_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"port", OPT_PORT, 'p', "TCP/IP port to listen on for connections (default is " PORT ")"}, {"accept", OPT_ACCEPT, 's', "TCP/IP optional host and port to listen on for connections (default is *:" PORT ")"}, #ifdef AF_UNIX {"unix", OPT_UNIX, 's', "Unix domain socket to accept on"}, #endif {"4", OPT_4, '-', "Use IPv4 only"}, {"6", OPT_6, '-', "Use IPv6 only"}, #ifdef AF_UNIX {"unlink", OPT_UNLINK, '-', "For -unix, unlink existing socket first"}, #endif {"context", OPT_CONTEXT, 's', "Set session ID context"}, {"verify", OPT_VERIFY, 'n', "Turn on peer certificate verification"}, {"Verify", OPT_UPPER_V_VERIFY, 'n', "Turn on peer certificate verification, must have a cert"}, {"cert", OPT_CERT, '<', "Certificate file to use; default is " TEST_CERT}, {"nameopt", OPT_NAMEOPT, 's', "Various certificate name options"}, {"naccept", OPT_NACCEPT, 'p', "Terminate after #num connections"}, {"serverinfo", OPT_SERVERINFO, 's', "PEM serverinfo file for certificate"}, {"certform", OPT_CERTFORM, 'F', "Certificate format (PEM or DER) PEM default"}, {"key", OPT_KEY, 's', "Private Key if not in -cert; default is " TEST_CERT}, {"keyform", OPT_KEYFORM, 'f', "Key format (PEM, DER or ENGINE) PEM default"}, {"pass", OPT_PASS, 's', "Private key file pass phrase source"}, {"dcert", OPT_DCERT, '<', "Second certificate file to use (usually for DSA)"}, {"dhparam", OPT_DHPARAM, '<', "DH parameters file to use"}, {"dcertform", OPT_DCERTFORM, 'F', "Second certificate format (PEM or DER) PEM default"}, {"dkey", OPT_DKEY, '<', "Second private key file to use (usually for DSA)"}, {"dkeyform", OPT_DKEYFORM, 'F', "Second key format (PEM, DER or ENGINE) PEM default"}, {"dpass", OPT_DPASS, 's', "Second private key file pass phrase source"}, {"nbio_test", OPT_NBIO_TEST, '-', "Test with the non-blocking test bio"}, {"crlf", OPT_CRLF, '-', "Convert LF from terminal into CRLF"}, {"debug", OPT_DEBUG, '-', "Print more output"}, {"msg", OPT_MSG, '-', "Show protocol messages"}, {"msgfile", OPT_MSGFILE, '>', "File to send output of -msg or -trace, instead of stdout"}, {"state", OPT_STATE, '-', "Print the SSL states"}, {"CAfile", OPT_CAFILE, '<', "PEM format file of CA's"}, {"CApath", OPT_CAPATH, '/', "PEM format directory of CA's"}, {"no-CAfile", OPT_NOCAFILE, '-', "Do not load the default certificates file"}, {"no-CApath", OPT_NOCAPATH, '-', "Do not load certificates from the default certificates directory"}, {"nocert", OPT_NOCERT, '-', "Don't use any certificates (Anon-DH)"}, {"quiet", OPT_QUIET, '-', "No server output"}, {"no_resume_ephemeral", OPT_NO_RESUME_EPHEMERAL, '-', "Disable caching and tickets if ephemeral (EC)DH is used"}, {"www", OPT_WWW, '-', "Respond to a 'GET /' with a status page"}, {"WWW", OPT_UPPER_WWW, '-', "Respond to a 'GET with the file ./path"}, {"servername", OPT_SERVERNAME, 's', "Servername for HostName TLS extension"}, {"servername_fatal", OPT_SERVERNAME_FATAL, '-', "mismatch send fatal alert (default warning alert)"}, {"cert2", OPT_CERT2, '<', "Certificate file to use for servername; default is" TEST_CERT2}, {"key2", OPT_KEY2, '<', "-Private Key file to use for servername if not in -cert2"}, {"tlsextdebug", OPT_TLSEXTDEBUG, '-', "Hex dump of all TLS extensions received"}, {"HTTP", OPT_HTTP, '-', "Like -WWW but ./path includes HTTP headers"}, {"id_prefix", OPT_ID_PREFIX, 's', "Generate SSL/TLS session IDs prefixed by arg"}, OPT_R_OPTIONS, {"keymatexport", OPT_KEYMATEXPORT, 's', "Export keying material using label"}, {"keymatexportlen", OPT_KEYMATEXPORTLEN, 'p', "Export len bytes of keying material (default 20)"}, {"CRL", OPT_CRL, '<', "CRL file to use"}, {"crl_download", OPT_CRL_DOWNLOAD, '-', "Download CRL from distribution points"}, {"cert_chain", OPT_CERT_CHAIN, '<', "certificate chain file in PEM format"}, {"dcert_chain", OPT_DCERT_CHAIN, '<', "second certificate chain file in PEM format"}, {"chainCApath", OPT_CHAINCAPATH, '/', "use dir as certificate store path to build CA certificate chain"}, {"verifyCApath", OPT_VERIFYCAPATH, '/', "use dir as certificate store path to verify CA certificate"}, {"no_cache", OPT_NO_CACHE, '-', "Disable session cache"}, {"ext_cache", OPT_EXT_CACHE, '-', "Disable internal cache, setup and use external cache"}, {"CRLform", OPT_CRLFORM, 'F', "CRL format (PEM or DER) PEM is default"}, {"verify_return_error", OPT_VERIFY_RET_ERROR, '-', "Close connection on verification error"}, {"verify_quiet", OPT_VERIFY_QUIET, '-', "No verify output except verify errors"}, {"build_chain", OPT_BUILD_CHAIN, '-', "Build certificate chain"}, {"chainCAfile", OPT_CHAINCAFILE, '<', "CA file for certificate chain (PEM format)"}, {"verifyCAfile", OPT_VERIFYCAFILE, '<', "CA file for certificate verification (PEM format)"}, {"ign_eof", OPT_IGN_EOF, '-', "ignore input eof (default when -quiet)"}, {"no_ign_eof", OPT_NO_IGN_EOF, '-', "Do not ignore input eof"}, #ifndef OPENSSL_NO_OCSP {"status", OPT_STATUS, '-', "Request certificate status from server"}, {"status_verbose", OPT_STATUS_VERBOSE, '-', "Print more output in certificate status callback"}, {"status_timeout", OPT_STATUS_TIMEOUT, 'n', "Status request responder timeout"}, {"status_url", OPT_STATUS_URL, 's', "Status request fallback URL"}, {"status_file", OPT_STATUS_FILE, '<', "File containing DER encoded OCSP Response"}, #endif #ifndef OPENSSL_NO_SSL_TRACE {"trace", OPT_TRACE, '-', "trace protocol messages"}, #endif {"security_debug", OPT_SECURITY_DEBUG, '-', "Print output from SSL/TLS security framework"}, {"security_debug_verbose", OPT_SECURITY_DEBUG_VERBOSE, '-', "Print more output from SSL/TLS security framework"}, {"brief", OPT_BRIEF, '-', "Restrict output to brief summary of connection parameters"}, {"rev", OPT_REV, '-', "act as a simple test server which just sends back with the received text reversed"}, {"async", OPT_ASYNC, '-', "Operate in asynchronous mode"}, {"ssl_config", OPT_SSL_CONFIG, 's', "Configure SSL_CTX using the configuration 'val'"}, {"max_send_frag", OPT_MAX_SEND_FRAG, 'p', "Maximum Size of send frames "}, {"split_send_frag", OPT_SPLIT_SEND_FRAG, 'p', "Size used to split data for encrypt pipelines"}, {"max_pipelines", OPT_MAX_PIPELINES, 'p', "Maximum number of encrypt/decrypt pipelines to be used"}, {"read_buf", OPT_READ_BUF, 'p', "Default read buffer size to be used for connections"}, OPT_S_OPTIONS, OPT_V_OPTIONS, OPT_X_OPTIONS, {"nbio", OPT_NBIO, '-', "Use non-blocking IO"}, {"psk_identity", OPT_PSK_IDENTITY, 's', "PSK identity to expect"}, #ifndef OPENSSL_NO_PSK {"psk_hint", OPT_PSK_HINT, 's', "PSK identity hint to use"}, #endif {"psk", OPT_PSK, 's', "PSK in hex (without 0x)"}, {"psk_session", OPT_PSK_SESS, '<', "File to read PSK SSL session from"}, #ifndef OPENSSL_NO_SRP {"srpvfile", OPT_SRPVFILE, '<', "The verifier file for SRP"}, {"srpuserseed", OPT_SRPUSERSEED, 's', "A seed string for a default user salt"}, #endif #ifndef OPENSSL_NO_SSL3 {"ssl3", OPT_SSL3, '-', "Just talk SSLv3"}, #endif #ifndef OPENSSL_NO_TLS1 {"tls1", OPT_TLS1, '-', "Just talk TLSv1"}, #endif #ifndef OPENSSL_NO_TLS1_1 {"tls1_1", OPT_TLS1_1, '-', "Just talk TLSv1.1"}, #endif #ifndef OPENSSL_NO_TLS1_2 {"tls1_2", OPT_TLS1_2, '-', "just talk TLSv1.2"}, #endif #ifndef OPENSSL_NO_TLS1_3 {"tls1_3", OPT_TLS1_3, '-', "just talk TLSv1.3"}, #endif #ifndef OPENSSL_NO_DTLS {"dtls", OPT_DTLS, '-', "Use any DTLS version"}, {"timeout", OPT_TIMEOUT, '-', "Enable timeouts"}, {"mtu", OPT_MTU, 'p', "Set link layer MTU"}, {"listen", OPT_LISTEN, '-', "Listen for a DTLS ClientHello with a cookie and then connect"}, #endif {"stateless", OPT_STATELESS, '-', "Require TLSv1.3 cookies"}, #ifndef OPENSSL_NO_DTLS1 {"dtls1", OPT_DTLS1, '-', "Just talk DTLSv1"}, #endif #ifndef OPENSSL_NO_DTLS1_2 {"dtls1_2", OPT_DTLS1_2, '-', "Just talk DTLSv1.2"}, #endif #ifndef OPENSSL_NO_SCTP {"sctp", OPT_SCTP, '-', "Use SCTP"}, {"sctp_label_bug", OPT_SCTP_LABEL_BUG, '-', "Enable SCTP label length bug"}, #endif #ifndef OPENSSL_NO_DH {"no_dhe", OPT_NO_DHE, '-', "Disable ephemeral DH"}, #endif #ifndef OPENSSL_NO_NEXTPROTONEG {"nextprotoneg", OPT_NEXTPROTONEG, 's', "Set the advertised protocols for the NPN extension (comma-separated list)"}, #endif #ifndef OPENSSL_NO_SRTP {"use_srtp", OPT_SRTP_PROFILES, 's', "Offer SRTP key management with a colon-separated profile list"}, #endif {"alpn", OPT_ALPN, 's', "Set the advertised protocols for the ALPN extension (comma-separated list)"}, #ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, #endif {"keylogfile", OPT_KEYLOG_FILE, '>', "Write TLS secrets to file"}, {"max_early_data", OPT_MAX_EARLY, 'n', "The maximum number of bytes of early data as advertised in tickets"}, {"recv_max_early_data", OPT_RECV_MAX_EARLY, 'n', "The maximum number of bytes of early data (hard limit)"}, {"early_data", OPT_EARLY_DATA, '-', "Attempt to read early data"}, {"num_tickets", OPT_S_NUM_TICKETS, 'n', "The number of TLSv1.3 session tickets that a server will automatically issue" }, {"anti_replay", OPT_ANTI_REPLAY, '-', "Switch on anti-replay protection (default)"}, {"no_anti_replay", OPT_NO_ANTI_REPLAY, '-', "Switch off anti-replay protection"}, {NULL, OPT_EOF, 0, NULL} }; #define IS_PROT_FLAG(o) \ (o == OPT_SSL3 || o == OPT_TLS1 || o == OPT_TLS1_1 || o == OPT_TLS1_2 \ || o == OPT_TLS1_3 || o == OPT_DTLS || o == OPT_DTLS1 || o == OPT_DTLS1_2) int s_server_main(int argc, char *argv[]) { ENGINE *engine = NULL; EVP_PKEY *s_key = NULL, *s_dkey = NULL; SSL_CONF_CTX *cctx = NULL; const SSL_METHOD *meth = TLS_server_method(); SSL_EXCERT *exc = NULL; STACK_OF(OPENSSL_STRING) *ssl_args = NULL; STACK_OF(X509) *s_chain = NULL, *s_dchain = NULL; STACK_OF(X509_CRL) *crls = NULL; X509 *s_cert = NULL, *s_dcert = NULL; X509_VERIFY_PARAM *vpm = NULL; const char *CApath = NULL, *CAfile = NULL, *chCApath = NULL, *chCAfile = NULL; char *dpassarg = NULL, *dpass = NULL; char *passarg = NULL, *pass = NULL, *vfyCApath = NULL, *vfyCAfile = NULL; char *crl_file = NULL, *prog; #ifdef AF_UNIX int unlink_unix_path = 0; #endif do_server_cb server_cb; int vpmtouched = 0, build_chain = 0, no_cache = 0, ext_cache = 0; #ifndef OPENSSL_NO_DH char *dhfile = NULL; int no_dhe = 0; #endif int nocert = 0, ret = 1; int noCApath = 0, noCAfile = 0; int s_cert_format = FORMAT_PEM, s_key_format = FORMAT_PEM; int s_dcert_format = FORMAT_PEM, s_dkey_format = FORMAT_PEM; int rev = 0, naccept = -1, sdebug = 0; int socket_family = AF_UNSPEC, socket_type = SOCK_STREAM, protocol = 0; int state = 0, crl_format = FORMAT_PEM, crl_download = 0; char *host = NULL; char *port = BUF_strdup(PORT); unsigned char *context = NULL; OPTION_CHOICE o; EVP_PKEY *s_key2 = NULL; X509 *s_cert2 = NULL; tlsextctx tlsextcbp = { NULL, NULL, SSL_TLSEXT_ERR_ALERT_WARNING }; const char *ssl_config = NULL; int read_buf_len = 0; #ifndef OPENSSL_NO_NEXTPROTONEG const char *next_proto_neg_in = NULL; tlsextnextprotoctx next_proto = { NULL, 0 }; #endif const char *alpn_in = NULL; tlsextalpnctx alpn_ctx = { NULL, 0 }; #ifndef OPENSSL_NO_PSK /* by default do not send a PSK identity hint */ char *psk_identity_hint = NULL; #endif char *p; #ifndef OPENSSL_NO_SRP char *srpuserseed = NULL; char *srp_verifier_file = NULL; #endif #ifndef OPENSSL_NO_SRTP char *srtp_profiles = NULL; #endif int min_version = 0, max_version = 0, prot_opt = 0, no_prot_opt = 0; int s_server_verify = SSL_VERIFY_NONE; int s_server_session_id_context = 1; /* anything will do */ const char *s_cert_file = TEST_CERT, *s_key_file = NULL, *s_chain_file = NULL; const char *s_cert_file2 = TEST_CERT2, *s_key_file2 = NULL; char *s_dcert_file = NULL, *s_dkey_file = NULL, *s_dchain_file = NULL; #ifndef OPENSSL_NO_OCSP int s_tlsextstatus = 0; #endif int no_resume_ephemeral = 0; unsigned int max_send_fragment = 0; unsigned int split_send_fragment = 0, max_pipelines = 0; const char *s_serverinfo_file = NULL; const char *keylog_file = NULL; int max_early_data = -1, recv_max_early_data = -1; char *psksessf = NULL; #ifndef OPENSSL_NO_SCTP int sctp_label_bug = 0; #endif /* Init of few remaining global variables */ local_argc = argc; local_argv = argv; ctx = ctx2 = NULL; s_nbio = s_nbio_test = 0; www = 0; bio_s_out = NULL; s_debug = 0; s_msg = 0; s_quiet = 0; s_brief = 0; async = 0; cctx = SSL_CONF_CTX_new(); vpm = X509_VERIFY_PARAM_new(); if (cctx == NULL || vpm == NULL) goto end; SSL_CONF_CTX_set_flags(cctx, SSL_CONF_FLAG_SERVER | SSL_CONF_FLAG_CMDLINE); prog = opt_init(argc, argv, s_server_options); while ((o = opt_next()) != OPT_EOF) { if (IS_PROT_FLAG(o) && ++prot_opt > 1) { BIO_printf(bio_err, "Cannot supply multiple protocol flags\n"); goto end; } if (IS_NO_PROT_FLAG(o)) no_prot_opt++; if (prot_opt == 1 && no_prot_opt) { BIO_printf(bio_err, "Cannot supply both a protocol flag and '-no_'\n"); goto end; } switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(s_server_options); ret = 0; goto end; case OPT_4: #ifdef AF_UNIX if (socket_family == AF_UNIX) { OPENSSL_free(host); host = NULL; OPENSSL_free(port); port = NULL; } #endif socket_family = AF_INET; break; case OPT_6: if (1) { #ifdef AF_INET6 #ifdef AF_UNIX if (socket_family == AF_UNIX) { OPENSSL_free(host); host = NULL; OPENSSL_free(port); port = NULL; } #endif socket_family = AF_INET6; } else { #endif BIO_printf(bio_err, "%s: IPv6 domain sockets unsupported\n", prog); goto end; } break; case OPT_PORT: #ifdef AF_UNIX if (socket_family == AF_UNIX) { socket_family = AF_UNSPEC; } #endif OPENSSL_free(port); port = NULL; OPENSSL_free(host); host = NULL; if (BIO_parse_hostserv(opt_arg(), NULL, &port, BIO_PARSE_PRIO_SERV) < 1) { BIO_printf(bio_err, "%s: -port argument malformed or ambiguous\n", port); goto end; } break; case OPT_ACCEPT: #ifdef AF_UNIX if (socket_family == AF_UNIX) { socket_family = AF_UNSPEC; } #endif OPENSSL_free(port); port = NULL; OPENSSL_free(host); host = NULL; if (BIO_parse_hostserv(opt_arg(), &host, &port, BIO_PARSE_PRIO_SERV) < 1) { BIO_printf(bio_err, "%s: -accept argument malformed or ambiguous\n", port); goto end; } break; #ifdef AF_UNIX case OPT_UNIX: socket_family = AF_UNIX; OPENSSL_free(host); host = BUF_strdup(opt_arg()); OPENSSL_free(port); port = NULL; break; case OPT_UNLINK: unlink_unix_path = 1; break; #endif case OPT_NACCEPT: naccept = atol(opt_arg()); break; case OPT_VERIFY: s_server_verify = SSL_VERIFY_PEER | SSL_VERIFY_CLIENT_ONCE; verify_args.depth = atoi(opt_arg()); if (!s_quiet) BIO_printf(bio_err, "verify depth is %d\n", verify_args.depth); break; case OPT_UPPER_V_VERIFY: s_server_verify = SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT | SSL_VERIFY_CLIENT_ONCE; verify_args.depth = atoi(opt_arg()); if (!s_quiet) BIO_printf(bio_err, "verify depth is %d, must return a certificate\n", verify_args.depth); break; case OPT_CONTEXT: context = (unsigned char *)opt_arg(); break; case OPT_CERT: s_cert_file = opt_arg(); break; case OPT_NAMEOPT: if (!set_nameopt(opt_arg())) goto end; break; case OPT_CRL: crl_file = opt_arg(); break; case OPT_CRL_DOWNLOAD: crl_download = 1; break; case OPT_SERVERINFO: s_serverinfo_file = opt_arg(); break; case OPT_CERTFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &s_cert_format)) goto opthelp; break; case OPT_KEY: s_key_file = opt_arg(); break; case OPT_KEYFORM: if (!opt_format(opt_arg(), OPT_FMT_ANY, &s_key_format)) goto opthelp; break; case OPT_PASS: passarg = opt_arg(); break; case OPT_CERT_CHAIN: s_chain_file = opt_arg(); break; case OPT_DHPARAM: #ifndef OPENSSL_NO_DH dhfile = opt_arg(); #endif break; case OPT_DCERTFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &s_dcert_format)) goto opthelp; break; case OPT_DCERT: s_dcert_file = opt_arg(); break; case OPT_DKEYFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &s_dkey_format)) goto opthelp; break; case OPT_DPASS: dpassarg = opt_arg(); break; case OPT_DKEY: s_dkey_file = opt_arg(); break; case OPT_DCERT_CHAIN: s_dchain_file = opt_arg(); break; case OPT_NOCERT: nocert = 1; break; case OPT_CAPATH: CApath = opt_arg(); break; case OPT_NOCAPATH: noCApath = 1; break; case OPT_CHAINCAPATH: chCApath = opt_arg(); break; case OPT_VERIFYCAPATH: vfyCApath = opt_arg(); break; case OPT_NO_CACHE: no_cache = 1; break; case OPT_EXT_CACHE: ext_cache = 1; break; case OPT_CRLFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &crl_format)) goto opthelp; break; case OPT_S_CASES: case OPT_S_NUM_TICKETS: case OPT_ANTI_REPLAY: case OPT_NO_ANTI_REPLAY: if (ssl_args == NULL) ssl_args = sk_OPENSSL_STRING_new_null(); if (ssl_args == NULL || !sk_OPENSSL_STRING_push(ssl_args, opt_flag()) || !sk_OPENSSL_STRING_push(ssl_args, opt_arg())) { BIO_printf(bio_err, "%s: Memory allocation failure\n", prog); goto end; } break; case OPT_V_CASES: if (!opt_verify(o, vpm)) goto end; vpmtouched++; break; case OPT_X_CASES: if (!args_excert(o, &exc)) goto end; break; case OPT_VERIFY_RET_ERROR: verify_args.return_error = 1; break; case OPT_VERIFY_QUIET: verify_args.quiet = 1; break; case OPT_BUILD_CHAIN: build_chain = 1; break; case OPT_CAFILE: CAfile = opt_arg(); break; case OPT_NOCAFILE: noCAfile = 1; break; case OPT_CHAINCAFILE: chCAfile = opt_arg(); break; case OPT_VERIFYCAFILE: vfyCAfile = opt_arg(); break; case OPT_NBIO: s_nbio = 1; break; case OPT_NBIO_TEST: s_nbio = s_nbio_test = 1; break; case OPT_IGN_EOF: s_ign_eof = 1; break; case OPT_NO_IGN_EOF: s_ign_eof = 0; break; case OPT_DEBUG: s_debug = 1; break; case OPT_TLSEXTDEBUG: s_tlsextdebug = 1; break; case OPT_STATUS: #ifndef OPENSSL_NO_OCSP s_tlsextstatus = 1; #endif break; case OPT_STATUS_VERBOSE: #ifndef OPENSSL_NO_OCSP s_tlsextstatus = tlscstatp.verbose = 1; #endif break; case OPT_STATUS_TIMEOUT: #ifndef OPENSSL_NO_OCSP s_tlsextstatus = 1; tlscstatp.timeout = atoi(opt_arg()); #endif break; case OPT_STATUS_URL: #ifndef OPENSSL_NO_OCSP s_tlsextstatus = 1; if (!OCSP_parse_url(opt_arg(), &tlscstatp.host, &tlscstatp.port, &tlscstatp.path, &tlscstatp.use_ssl)) { BIO_printf(bio_err, "Error parsing URL\n"); goto end; } #endif break; case OPT_STATUS_FILE: #ifndef OPENSSL_NO_OCSP s_tlsextstatus = 1; tlscstatp.respin = opt_arg(); #endif break; case OPT_MSG: s_msg = 1; break; case OPT_MSGFILE: bio_s_msg = BIO_new_file(opt_arg(), "w"); break; case OPT_TRACE: #ifndef OPENSSL_NO_SSL_TRACE s_msg = 2; #endif break; case OPT_SECURITY_DEBUG: sdebug = 1; break; case OPT_SECURITY_DEBUG_VERBOSE: sdebug = 2; break; case OPT_STATE: state = 1; break; case OPT_CRLF: s_crlf = 1; break; case OPT_QUIET: s_quiet = 1; break; case OPT_BRIEF: s_quiet = s_brief = verify_args.quiet = 1; break; case OPT_NO_DHE: #ifndef OPENSSL_NO_DH no_dhe = 1; #endif break; case OPT_NO_RESUME_EPHEMERAL: no_resume_ephemeral = 1; break; case OPT_PSK_IDENTITY: psk_identity = opt_arg(); break; case OPT_PSK_HINT: #ifndef OPENSSL_NO_PSK psk_identity_hint = opt_arg(); #endif break; case OPT_PSK: for (p = psk_key = opt_arg(); *p; p++) { if (isxdigit(_UC(*p))) continue; BIO_printf(bio_err, "Not a hex number '%s'\n", psk_key); goto end; } break; case OPT_PSK_SESS: psksessf = opt_arg(); break; case OPT_SRPVFILE: #ifndef OPENSSL_NO_SRP srp_verifier_file = opt_arg(); if (min_version < TLS1_VERSION) min_version = TLS1_VERSION; #endif break; case OPT_SRPUSERSEED: #ifndef OPENSSL_NO_SRP srpuserseed = opt_arg(); if (min_version < TLS1_VERSION) min_version = TLS1_VERSION; #endif break; case OPT_REV: rev = 1; break; case OPT_WWW: www = 1; break; case OPT_UPPER_WWW: www = 2; break; case OPT_HTTP: www = 3; break; case OPT_SSL_CONFIG: ssl_config = opt_arg(); break; case OPT_SSL3: min_version = SSL3_VERSION; max_version = SSL3_VERSION; break; case OPT_TLS1_3: min_version = TLS1_3_VERSION; max_version = TLS1_3_VERSION; break; case OPT_TLS1_2: min_version = TLS1_2_VERSION; max_version = TLS1_2_VERSION; break; case OPT_TLS1_1: min_version = TLS1_1_VERSION; max_version = TLS1_1_VERSION; break; case OPT_TLS1: min_version = TLS1_VERSION; max_version = TLS1_VERSION; break; case OPT_DTLS: #ifndef OPENSSL_NO_DTLS meth = DTLS_server_method(); socket_type = SOCK_DGRAM; #endif break; case OPT_DTLS1: #ifndef OPENSSL_NO_DTLS meth = DTLS_server_method(); min_version = DTLS1_VERSION; max_version = DTLS1_VERSION; socket_type = SOCK_DGRAM; #endif break; case OPT_DTLS1_2: #ifndef OPENSSL_NO_DTLS meth = DTLS_server_method(); min_version = DTLS1_2_VERSION; max_version = DTLS1_2_VERSION; socket_type = SOCK_DGRAM; #endif break; case OPT_SCTP: #ifndef OPENSSL_NO_SCTP protocol = IPPROTO_SCTP; #endif break; case OPT_SCTP_LABEL_BUG: #ifndef OPENSSL_NO_SCTP sctp_label_bug = 1; #endif break; case OPT_TIMEOUT: #ifndef OPENSSL_NO_DTLS enable_timeouts = 1; #endif break; case OPT_MTU: #ifndef OPENSSL_NO_DTLS socket_mtu = atol(opt_arg()); #endif break; case OPT_LISTEN: #ifndef OPENSSL_NO_DTLS dtlslisten = 1; #endif break; case OPT_STATELESS: stateless = 1; break; case OPT_ID_PREFIX: session_id_prefix = opt_arg(); break; case OPT_ENGINE: engine = setup_engine(opt_arg(), 1); break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; case OPT_SERVERNAME: tlsextcbp.servername = opt_arg(); break; case OPT_SERVERNAME_FATAL: tlsextcbp.extension_error = SSL_TLSEXT_ERR_ALERT_FATAL; break; case OPT_CERT2: s_cert_file2 = opt_arg(); break; case OPT_KEY2: s_key_file2 = opt_arg(); break; case OPT_NEXTPROTONEG: # ifndef OPENSSL_NO_NEXTPROTONEG next_proto_neg_in = opt_arg(); #endif break; case OPT_ALPN: alpn_in = opt_arg(); break; case OPT_SRTP_PROFILES: #ifndef OPENSSL_NO_SRTP srtp_profiles = opt_arg(); #endif break; case OPT_KEYMATEXPORT: keymatexportlabel = opt_arg(); break; case OPT_KEYMATEXPORTLEN: keymatexportlen = atoi(opt_arg()); break; case OPT_ASYNC: async = 1; break; case OPT_MAX_SEND_FRAG: max_send_fragment = atoi(opt_arg()); break; case OPT_SPLIT_SEND_FRAG: split_send_fragment = atoi(opt_arg()); break; case OPT_MAX_PIPELINES: max_pipelines = atoi(opt_arg()); break; case OPT_READ_BUF: read_buf_len = atoi(opt_arg()); break; case OPT_KEYLOG_FILE: keylog_file = opt_arg(); break; case OPT_MAX_EARLY: max_early_data = atoi(opt_arg()); if (max_early_data < 0) { BIO_printf(bio_err, "Invalid value for max_early_data\n"); goto end; } break; case OPT_RECV_MAX_EARLY: recv_max_early_data = atoi(opt_arg()); if (recv_max_early_data < 0) { BIO_printf(bio_err, "Invalid value for recv_max_early_data\n"); goto end; } break; case OPT_EARLY_DATA: early_data = 1; if (max_early_data == -1) max_early_data = SSL3_RT_MAX_PLAIN_LENGTH; break; } } argc = opt_num_rest(); argv = opt_rest(); #ifndef OPENSSL_NO_NEXTPROTONEG if (min_version == TLS1_3_VERSION && next_proto_neg_in != NULL) { BIO_printf(bio_err, "Cannot supply -nextprotoneg with TLSv1.3\n"); goto opthelp; } #endif #ifndef OPENSSL_NO_DTLS if (www && socket_type == SOCK_DGRAM) { BIO_printf(bio_err, "Can't use -HTTP, -www or -WWW with DTLS\n"); goto end; } if (dtlslisten && socket_type != SOCK_DGRAM) { BIO_printf(bio_err, "Can only use -listen with DTLS\n"); goto end; } #endif if (stateless && socket_type != SOCK_STREAM) { BIO_printf(bio_err, "Can only use --stateless with TLS\n"); goto end; } #ifdef AF_UNIX if (socket_family == AF_UNIX && socket_type != SOCK_STREAM) { BIO_printf(bio_err, "Can't use unix sockets and datagrams together\n"); goto end; } #endif if (early_data && (www > 0 || rev)) { BIO_printf(bio_err, "Can't use -early_data in combination with -www, -WWW, -HTTP, or -rev\n"); goto end; } #ifndef OPENSSL_NO_SCTP if (protocol == IPPROTO_SCTP) { if (socket_type != SOCK_DGRAM) { BIO_printf(bio_err, "Can't use -sctp without DTLS\n"); goto end; } /* SCTP is unusual. It uses DTLS over a SOCK_STREAM protocol */ socket_type = SOCK_STREAM; } #endif if (!app_passwd(passarg, dpassarg, &pass, &dpass)) { BIO_printf(bio_err, "Error getting password\n"); goto end; } if (s_key_file == NULL) s_key_file = s_cert_file; if (s_key_file2 == NULL) s_key_file2 = s_cert_file2; if (!load_excert(&exc)) goto end; if (nocert == 0) { s_key = load_key(s_key_file, s_key_format, 0, pass, engine, "server certificate private key file"); if (s_key == NULL) { ERR_print_errors(bio_err); goto end; } s_cert = load_cert(s_cert_file, s_cert_format, "server certificate file"); if (s_cert == NULL) { ERR_print_errors(bio_err); goto end; } if (s_chain_file != NULL) { if (!load_certs(s_chain_file, &s_chain, FORMAT_PEM, NULL, "server certificate chain")) goto end; } if (tlsextcbp.servername != NULL) { s_key2 = load_key(s_key_file2, s_key_format, 0, pass, engine, "second server certificate private key file"); if (s_key2 == NULL) { ERR_print_errors(bio_err); goto end; } s_cert2 = load_cert(s_cert_file2, s_cert_format, "second server certificate file"); if (s_cert2 == NULL) { ERR_print_errors(bio_err); goto end; } } } #if !defined(OPENSSL_NO_NEXTPROTONEG) if (next_proto_neg_in) { next_proto.data = next_protos_parse(&next_proto.len, next_proto_neg_in); if (next_proto.data == NULL) goto end; } #endif alpn_ctx.data = NULL; if (alpn_in) { alpn_ctx.data = next_protos_parse(&alpn_ctx.len, alpn_in); if (alpn_ctx.data == NULL) goto end; } if (crl_file != NULL) { X509_CRL *crl; crl = load_crl(crl_file, crl_format); if (crl == NULL) { BIO_puts(bio_err, "Error loading CRL\n"); ERR_print_errors(bio_err); goto end; } crls = sk_X509_CRL_new_null(); if (crls == NULL || !sk_X509_CRL_push(crls, crl)) { BIO_puts(bio_err, "Error adding CRL\n"); ERR_print_errors(bio_err); X509_CRL_free(crl); goto end; } } if (s_dcert_file != NULL) { if (s_dkey_file == NULL) s_dkey_file = s_dcert_file; s_dkey = load_key(s_dkey_file, s_dkey_format, 0, dpass, engine, "second certificate private key file"); if (s_dkey == NULL) { ERR_print_errors(bio_err); goto end; } s_dcert = load_cert(s_dcert_file, s_dcert_format, "second server certificate file"); if (s_dcert == NULL) { ERR_print_errors(bio_err); goto end; } if (s_dchain_file != NULL) { if (!load_certs(s_dchain_file, &s_dchain, FORMAT_PEM, NULL, "second server certificate chain")) goto end; } } if (bio_s_out == NULL) { if (s_quiet && !s_debug) { bio_s_out = BIO_new(BIO_s_null()); if (s_msg && bio_s_msg == NULL) bio_s_msg = dup_bio_out(FORMAT_TEXT); } else { if (bio_s_out == NULL) bio_s_out = dup_bio_out(FORMAT_TEXT); } } #if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA) || !defined(OPENSSL_NO_EC) if (nocert) #endif { s_cert_file = NULL; s_key_file = NULL; s_dcert_file = NULL; s_dkey_file = NULL; s_cert_file2 = NULL; s_key_file2 = NULL; } ctx = SSL_CTX_new(meth); if (ctx == NULL) { ERR_print_errors(bio_err); goto end; } SSL_CTX_clear_mode(ctx, SSL_MODE_AUTO_RETRY); if (sdebug) ssl_ctx_security_debug(ctx, sdebug); if (!config_ctx(cctx, ssl_args, ctx)) goto end; if (ssl_config) { if (SSL_CTX_config(ctx, ssl_config) == 0) { BIO_printf(bio_err, "Error using configuration \"%s\"\n", ssl_config); ERR_print_errors(bio_err); goto end; } } #ifndef OPENSSL_NO_SCTP if (protocol == IPPROTO_SCTP && sctp_label_bug == 1) SSL_CTX_set_mode(ctx, SSL_MODE_DTLS_SCTP_LABEL_LENGTH_BUG); #endif if (min_version != 0 && SSL_CTX_set_min_proto_version(ctx, min_version) == 0) goto end; if (max_version != 0 && SSL_CTX_set_max_proto_version(ctx, max_version) == 0) goto end; if (session_id_prefix) { if (strlen(session_id_prefix) >= 32) BIO_printf(bio_err, "warning: id_prefix is too long, only one new session will be possible\n"); if (!SSL_CTX_set_generate_session_id(ctx, generate_session_id)) { BIO_printf(bio_err, "error setting 'id_prefix'\n"); ERR_print_errors(bio_err); goto end; } BIO_printf(bio_err, "id_prefix '%s' set.\n", session_id_prefix); } SSL_CTX_set_quiet_shutdown(ctx, 1); if (exc != NULL) ssl_ctx_set_excert(ctx, exc); if (state) SSL_CTX_set_info_callback(ctx, apps_ssl_info_callback); if (no_cache) SSL_CTX_set_session_cache_mode(ctx, SSL_SESS_CACHE_OFF); else if (ext_cache) init_session_cache_ctx(ctx); else SSL_CTX_sess_set_cache_size(ctx, 128); if (async) { SSL_CTX_set_mode(ctx, SSL_MODE_ASYNC); } if (max_send_fragment > 0 && !SSL_CTX_set_max_send_fragment(ctx, max_send_fragment)) { BIO_printf(bio_err, "%s: Max send fragment size %u is out of permitted range\n", prog, max_send_fragment); goto end; } if (split_send_fragment > 0 && !SSL_CTX_set_split_send_fragment(ctx, split_send_fragment)) { BIO_printf(bio_err, "%s: Split send fragment size %u is out of permitted range\n", prog, split_send_fragment); goto end; } if (max_pipelines > 0 && !SSL_CTX_set_max_pipelines(ctx, max_pipelines)) { BIO_printf(bio_err, "%s: Max pipelines %u is out of permitted range\n", prog, max_pipelines); goto end; } if (read_buf_len > 0) { SSL_CTX_set_default_read_buffer_len(ctx, read_buf_len); } #ifndef OPENSSL_NO_SRTP if (srtp_profiles != NULL) { /* Returns 0 on success! */ if (SSL_CTX_set_tlsext_use_srtp(ctx, srtp_profiles) != 0) { BIO_printf(bio_err, "Error setting SRTP profile\n"); ERR_print_errors(bio_err); goto end; } } #endif if (!ctx_set_verify_locations(ctx, CAfile, CApath, noCAfile, noCApath)) { ERR_print_errors(bio_err); goto end; } if (vpmtouched && !SSL_CTX_set1_param(ctx, vpm)) { BIO_printf(bio_err, "Error setting verify params\n"); ERR_print_errors(bio_err); goto end; } ssl_ctx_add_crls(ctx, crls, 0); if (!ssl_load_stores(ctx, vfyCApath, vfyCAfile, chCApath, chCAfile, crls, crl_download)) { BIO_printf(bio_err, "Error loading store locations\n"); ERR_print_errors(bio_err); goto end; } if (s_cert2) { ctx2 = SSL_CTX_new(meth); if (ctx2 == NULL) { ERR_print_errors(bio_err); goto end; } } if (ctx2 != NULL) { BIO_printf(bio_s_out, "Setting secondary ctx parameters\n"); if (sdebug) ssl_ctx_security_debug(ctx2, sdebug); if (session_id_prefix) { if (strlen(session_id_prefix) >= 32) BIO_printf(bio_err, "warning: id_prefix is too long, only one new session will be possible\n"); if (!SSL_CTX_set_generate_session_id(ctx2, generate_session_id)) { BIO_printf(bio_err, "error setting 'id_prefix'\n"); ERR_print_errors(bio_err); goto end; } BIO_printf(bio_err, "id_prefix '%s' set.\n", session_id_prefix); } SSL_CTX_set_quiet_shutdown(ctx2, 1); if (exc != NULL) ssl_ctx_set_excert(ctx2, exc); if (state) SSL_CTX_set_info_callback(ctx2, apps_ssl_info_callback); if (no_cache) SSL_CTX_set_session_cache_mode(ctx2, SSL_SESS_CACHE_OFF); else if (ext_cache) init_session_cache_ctx(ctx2); else SSL_CTX_sess_set_cache_size(ctx2, 128); if (async) SSL_CTX_set_mode(ctx2, SSL_MODE_ASYNC); if (!ctx_set_verify_locations(ctx2, CAfile, CApath, noCAfile, noCApath)) { ERR_print_errors(bio_err); goto end; } if (vpmtouched && !SSL_CTX_set1_param(ctx2, vpm)) { BIO_printf(bio_err, "Error setting verify params\n"); ERR_print_errors(bio_err); goto end; } ssl_ctx_add_crls(ctx2, crls, 0); if (!config_ctx(cctx, ssl_args, ctx2)) goto end; } #ifndef OPENSSL_NO_NEXTPROTONEG if (next_proto.data) SSL_CTX_set_next_protos_advertised_cb(ctx, next_proto_cb, &next_proto); #endif if (alpn_ctx.data) SSL_CTX_set_alpn_select_cb(ctx, alpn_cb, &alpn_ctx); #ifndef OPENSSL_NO_DH if (!no_dhe) { DH *dh = NULL; if (dhfile != NULL) dh = load_dh_param(dhfile); else if (s_cert_file != NULL) dh = load_dh_param(s_cert_file); if (dh != NULL) { BIO_printf(bio_s_out, "Setting temp DH parameters\n"); } else { BIO_printf(bio_s_out, "Using default temp DH parameters\n"); } (void)BIO_flush(bio_s_out); if (dh == NULL) { SSL_CTX_set_dh_auto(ctx, 1); } else if (!SSL_CTX_set_tmp_dh(ctx, dh)) { BIO_puts(bio_err, "Error setting temp DH parameters\n"); ERR_print_errors(bio_err); DH_free(dh); goto end; } if (ctx2 != NULL) { if (!dhfile) { DH *dh2 = load_dh_param(s_cert_file2); if (dh2 != NULL) { BIO_printf(bio_s_out, "Setting temp DH parameters\n"); (void)BIO_flush(bio_s_out); DH_free(dh); dh = dh2; } } if (dh == NULL) { SSL_CTX_set_dh_auto(ctx2, 1); } else if (!SSL_CTX_set_tmp_dh(ctx2, dh)) { BIO_puts(bio_err, "Error setting temp DH parameters\n"); ERR_print_errors(bio_err); DH_free(dh); goto end; } } DH_free(dh); } #endif if (!set_cert_key_stuff(ctx, s_cert, s_key, s_chain, build_chain)) goto end; if (s_serverinfo_file != NULL && !SSL_CTX_use_serverinfo_file(ctx, s_serverinfo_file)) { ERR_print_errors(bio_err); goto end; } if (ctx2 != NULL && !set_cert_key_stuff(ctx2, s_cert2, s_key2, NULL, build_chain)) goto end; if (s_dcert != NULL) { if (!set_cert_key_stuff(ctx, s_dcert, s_dkey, s_dchain, build_chain)) goto end; } if (no_resume_ephemeral) { SSL_CTX_set_not_resumable_session_callback(ctx, not_resumable_sess_cb); if (ctx2 != NULL) SSL_CTX_set_not_resumable_session_callback(ctx2, not_resumable_sess_cb); } #ifndef OPENSSL_NO_PSK if (psk_key != NULL) { if (s_debug) BIO_printf(bio_s_out, "PSK key given, setting server callback\n"); SSL_CTX_set_psk_server_callback(ctx, psk_server_cb); } if (!SSL_CTX_use_psk_identity_hint(ctx, psk_identity_hint)) { BIO_printf(bio_err, "error setting PSK identity hint to context\n"); ERR_print_errors(bio_err); goto end; } #endif if (psksessf != NULL) { BIO *stmp = BIO_new_file(psksessf, "r"); if (stmp == NULL) { BIO_printf(bio_err, "Can't open PSK session file %s\n", psksessf); ERR_print_errors(bio_err); goto end; } psksess = PEM_read_bio_SSL_SESSION(stmp, NULL, 0, NULL); BIO_free(stmp); if (psksess == NULL) { BIO_printf(bio_err, "Can't read PSK session file %s\n", psksessf); ERR_print_errors(bio_err); goto end; } } if (psk_key != NULL || psksess != NULL) SSL_CTX_set_psk_find_session_callback(ctx, psk_find_session_cb); SSL_CTX_set_verify(ctx, s_server_verify, verify_callback); if (!SSL_CTX_set_session_id_context(ctx, (void *)&s_server_session_id_context, sizeof(s_server_session_id_context))) { BIO_printf(bio_err, "error setting session id context\n"); ERR_print_errors(bio_err); goto end; } /* Set DTLS cookie generation and verification callbacks */ SSL_CTX_set_cookie_generate_cb(ctx, generate_cookie_callback); SSL_CTX_set_cookie_verify_cb(ctx, verify_cookie_callback); /* Set TLS1.3 cookie generation and verification callbacks */ SSL_CTX_set_stateless_cookie_generate_cb(ctx, generate_stateless_cookie_callback); SSL_CTX_set_stateless_cookie_verify_cb(ctx, verify_stateless_cookie_callback); if (ctx2 != NULL) { SSL_CTX_set_verify(ctx2, s_server_verify, verify_callback); if (!SSL_CTX_set_session_id_context(ctx2, (void *)&s_server_session_id_context, sizeof(s_server_session_id_context))) { BIO_printf(bio_err, "error setting session id context\n"); ERR_print_errors(bio_err); goto end; } tlsextcbp.biodebug = bio_s_out; SSL_CTX_set_tlsext_servername_callback(ctx2, ssl_servername_cb); SSL_CTX_set_tlsext_servername_arg(ctx2, &tlsextcbp); SSL_CTX_set_tlsext_servername_callback(ctx, ssl_servername_cb); SSL_CTX_set_tlsext_servername_arg(ctx, &tlsextcbp); } #ifndef OPENSSL_NO_SRP if (srp_verifier_file != NULL) { srp_callback_parm.vb = SRP_VBASE_new(srpuserseed); srp_callback_parm.user = NULL; srp_callback_parm.login = NULL; if ((ret = SRP_VBASE_init(srp_callback_parm.vb, srp_verifier_file)) != SRP_NO_ERROR) { BIO_printf(bio_err, "Cannot initialize SRP verifier file \"%s\":ret=%d\n", srp_verifier_file, ret); goto end; } SSL_CTX_set_verify(ctx, SSL_VERIFY_NONE, verify_callback); SSL_CTX_set_srp_cb_arg(ctx, &srp_callback_parm); SSL_CTX_set_srp_username_callback(ctx, ssl_srp_server_param_cb); } else #endif if (CAfile != NULL) { SSL_CTX_set_client_CA_list(ctx, SSL_load_client_CA_file(CAfile)); if (ctx2) SSL_CTX_set_client_CA_list(ctx2, SSL_load_client_CA_file(CAfile)); } #ifndef OPENSSL_NO_OCSP if (s_tlsextstatus) { SSL_CTX_set_tlsext_status_cb(ctx, cert_status_cb); SSL_CTX_set_tlsext_status_arg(ctx, &tlscstatp); if (ctx2) { SSL_CTX_set_tlsext_status_cb(ctx2, cert_status_cb); SSL_CTX_set_tlsext_status_arg(ctx2, &tlscstatp); } } #endif if (set_keylog_file(ctx, keylog_file)) goto end; if (max_early_data >= 0) SSL_CTX_set_max_early_data(ctx, max_early_data); if (recv_max_early_data >= 0) SSL_CTX_set_recv_max_early_data(ctx, recv_max_early_data); if (rev) server_cb = rev_body; else if (www) server_cb = www_body; else server_cb = sv_body; #ifdef AF_UNIX if (socket_family == AF_UNIX && unlink_unix_path) unlink(host); #endif do_server(&accept_socket, host, port, socket_family, socket_type, protocol, server_cb, context, naccept, bio_s_out); print_stats(bio_s_out, ctx); ret = 0; end: SSL_CTX_free(ctx); SSL_SESSION_free(psksess); set_keylog_file(NULL, NULL); X509_free(s_cert); sk_X509_CRL_pop_free(crls, X509_CRL_free); X509_free(s_dcert); EVP_PKEY_free(s_key); EVP_PKEY_free(s_dkey); sk_X509_pop_free(s_chain, X509_free); sk_X509_pop_free(s_dchain, X509_free); OPENSSL_free(pass); OPENSSL_free(dpass); OPENSSL_free(host); OPENSSL_free(port); X509_VERIFY_PARAM_free(vpm); free_sessions(); OPENSSL_free(tlscstatp.host); OPENSSL_free(tlscstatp.port); OPENSSL_free(tlscstatp.path); SSL_CTX_free(ctx2); X509_free(s_cert2); EVP_PKEY_free(s_key2); #ifndef OPENSSL_NO_NEXTPROTONEG OPENSSL_free(next_proto.data); #endif OPENSSL_free(alpn_ctx.data); ssl_excert_free(exc); sk_OPENSSL_STRING_free(ssl_args); SSL_CONF_CTX_free(cctx); release_engine(engine); BIO_free(bio_s_out); bio_s_out = NULL; BIO_free(bio_s_msg); bio_s_msg = NULL; #ifdef CHARSET_EBCDIC BIO_meth_free(methods_ebcdic); #endif return ret; } static void print_stats(BIO *bio, SSL_CTX *ssl_ctx) { BIO_printf(bio, "%4ld items in the session cache\n", SSL_CTX_sess_number(ssl_ctx)); BIO_printf(bio, "%4ld client connects (SSL_connect())\n", SSL_CTX_sess_connect(ssl_ctx)); BIO_printf(bio, "%4ld client renegotiates (SSL_connect())\n", SSL_CTX_sess_connect_renegotiate(ssl_ctx)); BIO_printf(bio, "%4ld client connects that finished\n", SSL_CTX_sess_connect_good(ssl_ctx)); BIO_printf(bio, "%4ld server accepts (SSL_accept())\n", SSL_CTX_sess_accept(ssl_ctx)); BIO_printf(bio, "%4ld server renegotiates (SSL_accept())\n", SSL_CTX_sess_accept_renegotiate(ssl_ctx)); BIO_printf(bio, "%4ld server accepts that finished\n", SSL_CTX_sess_accept_good(ssl_ctx)); BIO_printf(bio, "%4ld session cache hits\n", SSL_CTX_sess_hits(ssl_ctx)); BIO_printf(bio, "%4ld session cache misses\n", SSL_CTX_sess_misses(ssl_ctx)); BIO_printf(bio, "%4ld session cache timeouts\n", SSL_CTX_sess_timeouts(ssl_ctx)); BIO_printf(bio, "%4ld callback cache hits\n", SSL_CTX_sess_cb_hits(ssl_ctx)); BIO_printf(bio, "%4ld cache full overflows (%ld allowed)\n", SSL_CTX_sess_cache_full(ssl_ctx), SSL_CTX_sess_get_cache_size(ssl_ctx)); } +static long int count_reads_callback(BIO *bio, int cmd, const char *argp, + int argi, long int argl, long int ret) +{ + unsigned int *p_counter = (unsigned int *)BIO_get_callback_arg(bio); + + switch (cmd) { + case BIO_CB_READ: /* No break here */ + case BIO_CB_GETS: + if (p_counter != NULL) + ++*p_counter; + break; + default: + break; + } + + if (s_debug) { + BIO_set_callback_arg(bio, (char *)bio_s_out); + ret = bio_dump_callback(bio, cmd, argp, argi, argl, ret); + BIO_set_callback_arg(bio, (char *)p_counter); + } + + return ret; +} + static int sv_body(int s, int stype, int prot, unsigned char *context) { char *buf = NULL; fd_set readfds; int ret = 1, width; int k, i; unsigned long l; SSL *con = NULL; BIO *sbio; struct timeval timeout; #if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_MSDOS)) struct timeval *timeoutp; #endif #ifndef OPENSSL_NO_DTLS # ifndef OPENSSL_NO_SCTP int isdtls = (stype == SOCK_DGRAM || prot == IPPROTO_SCTP); # else int isdtls = (stype == SOCK_DGRAM); # endif #endif buf = app_malloc(bufsize, "server buffer"); if (s_nbio) { if (!BIO_socket_nbio(s, 1)) ERR_print_errors(bio_err); else if (!s_quiet) BIO_printf(bio_err, "Turned on non blocking io\n"); } con = SSL_new(ctx); if (con == NULL) { ret = -1; goto err; } if (s_tlsextdebug) { SSL_set_tlsext_debug_callback(con, tlsext_cb); SSL_set_tlsext_debug_arg(con, bio_s_out); } if (context != NULL && !SSL_set_session_id_context(con, context, strlen((char *)context))) { BIO_printf(bio_err, "Error setting session id context\n"); ret = -1; goto err; } if (!SSL_clear(con)) { BIO_printf(bio_err, "Error clearing SSL connection\n"); ret = -1; goto err; } #ifndef OPENSSL_NO_DTLS if (isdtls) { # ifndef OPENSSL_NO_SCTP if (prot == IPPROTO_SCTP) sbio = BIO_new_dgram_sctp(s, BIO_NOCLOSE); else # endif sbio = BIO_new_dgram(s, BIO_NOCLOSE); if (enable_timeouts) { timeout.tv_sec = 0; timeout.tv_usec = DGRAM_RCV_TIMEOUT; BIO_ctrl(sbio, BIO_CTRL_DGRAM_SET_RECV_TIMEOUT, 0, &timeout); timeout.tv_sec = 0; timeout.tv_usec = DGRAM_SND_TIMEOUT; BIO_ctrl(sbio, BIO_CTRL_DGRAM_SET_SEND_TIMEOUT, 0, &timeout); } if (socket_mtu) { if (socket_mtu < DTLS_get_link_min_mtu(con)) { BIO_printf(bio_err, "MTU too small. Must be at least %ld\n", DTLS_get_link_min_mtu(con)); ret = -1; BIO_free(sbio); goto err; } SSL_set_options(con, SSL_OP_NO_QUERY_MTU); if (!DTLS_set_link_mtu(con, socket_mtu)) { BIO_printf(bio_err, "Failed to set MTU\n"); ret = -1; BIO_free(sbio); goto err; } } else /* want to do MTU discovery */ BIO_ctrl(sbio, BIO_CTRL_DGRAM_MTU_DISCOVER, 0, NULL); # ifndef OPENSSL_NO_SCTP if (prot != IPPROTO_SCTP) # endif /* Turn on cookie exchange. Not necessary for SCTP */ SSL_set_options(con, SSL_OP_COOKIE_EXCHANGE); } else #endif sbio = BIO_new_socket(s, BIO_NOCLOSE); if (sbio == NULL) { BIO_printf(bio_err, "Unable to create BIO\n"); ERR_print_errors(bio_err); goto err; } if (s_nbio_test) { BIO *test; test = BIO_new(BIO_f_nbio_test()); sbio = BIO_push(test, sbio); } SSL_set_bio(con, sbio, sbio); SSL_set_accept_state(con); /* SSL_set_fd(con,s); */ - if (s_debug) { - BIO_set_callback(SSL_get_rbio(con), bio_dump_callback); - BIO_set_callback_arg(SSL_get_rbio(con), (char *)bio_s_out); - } + BIO_set_callback(SSL_get_rbio(con), count_reads_callback); if (s_msg) { #ifndef OPENSSL_NO_SSL_TRACE if (s_msg == 2) SSL_set_msg_callback(con, SSL_trace); else #endif SSL_set_msg_callback(con, msg_cb); SSL_set_msg_callback_arg(con, bio_s_msg ? bio_s_msg : bio_s_out); } if (s_tlsextdebug) { SSL_set_tlsext_debug_callback(con, tlsext_cb); SSL_set_tlsext_debug_arg(con, bio_s_out); } if (early_data) { int write_header = 1, edret = SSL_READ_EARLY_DATA_ERROR; size_t readbytes; while (edret != SSL_READ_EARLY_DATA_FINISH) { for (;;) { edret = SSL_read_early_data(con, buf, bufsize, &readbytes); if (edret != SSL_READ_EARLY_DATA_ERROR) break; switch (SSL_get_error(con, 0)) { case SSL_ERROR_WANT_WRITE: case SSL_ERROR_WANT_ASYNC: case SSL_ERROR_WANT_READ: /* Just keep trying - busy waiting */ continue; default: BIO_printf(bio_err, "Error reading early data\n"); ERR_print_errors(bio_err); goto err; } } if (readbytes > 0) { if (write_header) { BIO_printf(bio_s_out, "Early data received:\n"); write_header = 0; } raw_write_stdout(buf, (unsigned int)readbytes); (void)BIO_flush(bio_s_out); } } if (write_header) { if (SSL_get_early_data_status(con) == SSL_EARLY_DATA_NOT_SENT) BIO_printf(bio_s_out, "No early data received\n"); else BIO_printf(bio_s_out, "Early data was rejected\n"); } else { BIO_printf(bio_s_out, "\nEnd of early data\n"); } if (SSL_is_init_finished(con)) print_connection_info(con); } if (fileno_stdin() > s) width = fileno_stdin() + 1; else width = s + 1; for (;;) { int read_from_terminal; int read_from_sslcon; read_from_terminal = 0; read_from_sslcon = SSL_has_pending(con) || (async && SSL_waiting_for_async(con)); if (!read_from_sslcon) { FD_ZERO(&readfds); #if !defined(OPENSSL_SYS_WINDOWS) && !defined(OPENSSL_SYS_MSDOS) openssl_fdset(fileno_stdin(), &readfds); #endif openssl_fdset(s, &readfds); /* * Note: under VMS with SOCKETSHR the second parameter is * currently of type (int *) whereas under other systems it is * (void *) if you don't have a cast it will choke the compiler: * if you do have a cast then you can either go for (int *) or * (void *). */ #if defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_MSDOS) /* * Under DOS (non-djgpp) and Windows we can't select on stdin: * only on sockets. As a workaround we timeout the select every * second and check for any keypress. In a proper Windows * application we wouldn't do this because it is inefficient. */ timeout.tv_sec = 1; timeout.tv_usec = 0; i = select(width, (void *)&readfds, NULL, NULL, &timeout); if (has_stdin_waiting()) read_from_terminal = 1; if ((i < 0) || (!i && !read_from_terminal)) continue; #else if (SSL_is_dtls(con) && DTLSv1_get_timeout(con, &timeout)) timeoutp = &timeout; else timeoutp = NULL; i = select(width, (void *)&readfds, NULL, NULL, timeoutp); if ((SSL_is_dtls(con)) && DTLSv1_handle_timeout(con) > 0) BIO_printf(bio_err, "TIMEOUT occurred\n"); if (i <= 0) continue; if (FD_ISSET(fileno_stdin(), &readfds)) read_from_terminal = 1; #endif if (FD_ISSET(s, &readfds)) read_from_sslcon = 1; } if (read_from_terminal) { if (s_crlf) { int j, lf_num; i = raw_read_stdin(buf, bufsize / 2); lf_num = 0; /* both loops are skipped when i <= 0 */ for (j = 0; j < i; j++) if (buf[j] == '\n') lf_num++; for (j = i - 1; j >= 0; j--) { buf[j + lf_num] = buf[j]; if (buf[j] == '\n') { lf_num--; i++; buf[j + lf_num] = '\r'; } } assert(lf_num == 0); } else { i = raw_read_stdin(buf, bufsize); } if (!s_quiet && !s_brief) { if ((i <= 0) || (buf[0] == 'Q')) { BIO_printf(bio_s_out, "DONE\n"); (void)BIO_flush(bio_s_out); BIO_closesocket(s); close_accept_socket(); ret = -11; goto err; } if ((i <= 0) || (buf[0] == 'q')) { BIO_printf(bio_s_out, "DONE\n"); (void)BIO_flush(bio_s_out); if (SSL_version(con) != DTLS1_VERSION) BIO_closesocket(s); /* * close_accept_socket(); ret= -11; */ goto err; } #ifndef OPENSSL_NO_HEARTBEATS if ((buf[0] == 'B') && ((buf[1] == '\n') || (buf[1] == '\r'))) { BIO_printf(bio_err, "HEARTBEATING\n"); SSL_heartbeat(con); i = 0; continue; } #endif if ((buf[0] == 'r') && ((buf[1] == '\n') || (buf[1] == '\r'))) { SSL_renegotiate(con); i = SSL_do_handshake(con); printf("SSL_do_handshake -> %d\n", i); i = 0; /* 13; */ continue; } if ((buf[0] == 'R') && ((buf[1] == '\n') || (buf[1] == '\r'))) { SSL_set_verify(con, SSL_VERIFY_PEER | SSL_VERIFY_CLIENT_ONCE, NULL); SSL_renegotiate(con); i = SSL_do_handshake(con); printf("SSL_do_handshake -> %d\n", i); i = 0; /* 13; */ continue; } if ((buf[0] == 'K' || buf[0] == 'k') && ((buf[1] == '\n') || (buf[1] == '\r'))) { SSL_key_update(con, buf[0] == 'K' ? SSL_KEY_UPDATE_REQUESTED : SSL_KEY_UPDATE_NOT_REQUESTED); i = SSL_do_handshake(con); printf("SSL_do_handshake -> %d\n", i); i = 0; continue; } if (buf[0] == 'c' && ((buf[1] == '\n') || (buf[1] == '\r'))) { SSL_set_verify(con, SSL_VERIFY_PEER, NULL); i = SSL_verify_client_post_handshake(con); if (i == 0) { printf("Failed to initiate request\n"); ERR_print_errors(bio_err); } else { i = SSL_do_handshake(con); printf("SSL_do_handshake -> %d\n", i); i = 0; } continue; } if (buf[0] == 'P') { static const char *str = "Lets print some clear text\n"; BIO_write(SSL_get_wbio(con), str, strlen(str)); } if (buf[0] == 'S') { print_stats(bio_s_out, SSL_get_SSL_CTX(con)); } } #ifdef CHARSET_EBCDIC ebcdic2ascii(buf, buf, i); #endif l = k = 0; for (;;) { /* should do a select for the write */ #ifdef RENEG static count = 0; if (++count == 100) { count = 0; SSL_renegotiate(con); } #endif k = SSL_write(con, &(buf[l]), (unsigned int)i); #ifndef OPENSSL_NO_SRP while (SSL_get_error(con, k) == SSL_ERROR_WANT_X509_LOOKUP) { BIO_printf(bio_s_out, "LOOKUP renego during write\n"); SRP_user_pwd_free(srp_callback_parm.user); srp_callback_parm.user = SRP_VBASE_get1_by_user(srp_callback_parm.vb, srp_callback_parm.login); if (srp_callback_parm.user) BIO_printf(bio_s_out, "LOOKUP done %s\n", srp_callback_parm.user->info); else BIO_printf(bio_s_out, "LOOKUP not successful\n"); k = SSL_write(con, &(buf[l]), (unsigned int)i); } #endif switch (SSL_get_error(con, k)) { case SSL_ERROR_NONE: break; case SSL_ERROR_WANT_ASYNC: BIO_printf(bio_s_out, "Write BLOCK (Async)\n"); (void)BIO_flush(bio_s_out); wait_for_async(con); break; case SSL_ERROR_WANT_WRITE: case SSL_ERROR_WANT_READ: case SSL_ERROR_WANT_X509_LOOKUP: BIO_printf(bio_s_out, "Write BLOCK\n"); (void)BIO_flush(bio_s_out); break; case SSL_ERROR_WANT_ASYNC_JOB: /* * This shouldn't ever happen in s_server. Treat as an error */ case SSL_ERROR_SYSCALL: case SSL_ERROR_SSL: BIO_printf(bio_s_out, "ERROR\n"); (void)BIO_flush(bio_s_out); ERR_print_errors(bio_err); ret = 1; goto err; /* break; */ case SSL_ERROR_ZERO_RETURN: BIO_printf(bio_s_out, "DONE\n"); (void)BIO_flush(bio_s_out); ret = 1; goto err; } if (k > 0) { l += k; i -= k; } if (i <= 0) break; } } if (read_from_sslcon) { /* * init_ssl_connection handles all async events itself so if we're * waiting for async then we shouldn't go back into * init_ssl_connection */ if ((!async || !SSL_waiting_for_async(con)) && !SSL_is_init_finished(con)) { + /* + * Count number of reads during init_ssl_connection. + * It helps us to distinguish configuration errors from errors + * caused by a client. + */ + unsigned int read_counter = 0; + + BIO_set_callback_arg(SSL_get_rbio(con), (char *)&read_counter); i = init_ssl_connection(con); + BIO_set_callback_arg(SSL_get_rbio(con), NULL); + + /* + * If initialization fails without reads, then + * there was a fatal error in configuration. + */ + if (i <= 0 && read_counter == 0) { + ret = -1; + goto err; + } if (i < 0) { ret = 0; goto err; } else if (i == 0) { ret = 1; goto err; } } else { again: i = SSL_read(con, (char *)buf, bufsize); #ifndef OPENSSL_NO_SRP while (SSL_get_error(con, i) == SSL_ERROR_WANT_X509_LOOKUP) { BIO_printf(bio_s_out, "LOOKUP renego during read\n"); SRP_user_pwd_free(srp_callback_parm.user); srp_callback_parm.user = SRP_VBASE_get1_by_user(srp_callback_parm.vb, srp_callback_parm.login); if (srp_callback_parm.user) BIO_printf(bio_s_out, "LOOKUP done %s\n", srp_callback_parm.user->info); else BIO_printf(bio_s_out, "LOOKUP not successful\n"); i = SSL_read(con, (char *)buf, bufsize); } #endif switch (SSL_get_error(con, i)) { case SSL_ERROR_NONE: #ifdef CHARSET_EBCDIC ascii2ebcdic(buf, buf, i); #endif raw_write_stdout(buf, (unsigned int)i); (void)BIO_flush(bio_s_out); if (SSL_has_pending(con)) goto again; break; case SSL_ERROR_WANT_ASYNC: BIO_printf(bio_s_out, "Read BLOCK (Async)\n"); (void)BIO_flush(bio_s_out); wait_for_async(con); break; case SSL_ERROR_WANT_WRITE: case SSL_ERROR_WANT_READ: BIO_printf(bio_s_out, "Read BLOCK\n"); (void)BIO_flush(bio_s_out); break; case SSL_ERROR_WANT_ASYNC_JOB: /* * This shouldn't ever happen in s_server. Treat as an error */ case SSL_ERROR_SYSCALL: case SSL_ERROR_SSL: BIO_printf(bio_s_out, "ERROR\n"); (void)BIO_flush(bio_s_out); ERR_print_errors(bio_err); ret = 1; goto err; case SSL_ERROR_ZERO_RETURN: BIO_printf(bio_s_out, "DONE\n"); (void)BIO_flush(bio_s_out); ret = 1; goto err; } } } } err: if (con != NULL) { BIO_printf(bio_s_out, "shutting down SSL\n"); SSL_set_shutdown(con, SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN); SSL_free(con); } BIO_printf(bio_s_out, "CONNECTION CLOSED\n"); OPENSSL_clear_free(buf, bufsize); return ret; } static void close_accept_socket(void) { BIO_printf(bio_err, "shutdown accept socket\n"); if (accept_socket >= 0) { BIO_closesocket(accept_socket); } } static int is_retryable(SSL *con, int i) { int err = SSL_get_error(con, i); /* If it's not a fatal error, it must be retryable */ return (err != SSL_ERROR_SSL) && (err != SSL_ERROR_SYSCALL) && (err != SSL_ERROR_ZERO_RETURN); } static int init_ssl_connection(SSL *con) { int i; long verify_err; int retry = 0; if (dtlslisten || stateless) { BIO_ADDR *client = NULL; if (dtlslisten) { if ((client = BIO_ADDR_new()) == NULL) { BIO_printf(bio_err, "ERROR - memory\n"); return 0; } i = DTLSv1_listen(con, client); } else { i = SSL_stateless(con); } if (i > 0) { BIO *wbio; int fd = -1; if (dtlslisten) { wbio = SSL_get_wbio(con); if (wbio) { BIO_get_fd(wbio, &fd); } if (!wbio || BIO_connect(fd, client, 0) == 0) { BIO_printf(bio_err, "ERROR - unable to connect\n"); BIO_ADDR_free(client); return 0; } (void)BIO_ctrl_set_connected(wbio, client); BIO_ADDR_free(client); dtlslisten = 0; } else { stateless = 0; } i = SSL_accept(con); } else { BIO_ADDR_free(client); } } else { do { i = SSL_accept(con); if (i <= 0) retry = is_retryable(con, i); #ifdef CERT_CB_TEST_RETRY { while (i <= 0 && SSL_get_error(con, i) == SSL_ERROR_WANT_X509_LOOKUP && SSL_get_state(con) == TLS_ST_SR_CLNT_HELLO) { BIO_printf(bio_err, "LOOKUP from certificate callback during accept\n"); i = SSL_accept(con); if (i <= 0) retry = is_retryable(con, i); } } #endif #ifndef OPENSSL_NO_SRP while (i <= 0 && SSL_get_error(con, i) == SSL_ERROR_WANT_X509_LOOKUP) { BIO_printf(bio_s_out, "LOOKUP during accept %s\n", srp_callback_parm.login); SRP_user_pwd_free(srp_callback_parm.user); srp_callback_parm.user = SRP_VBASE_get1_by_user(srp_callback_parm.vb, srp_callback_parm.login); if (srp_callback_parm.user) BIO_printf(bio_s_out, "LOOKUP done %s\n", srp_callback_parm.user->info); else BIO_printf(bio_s_out, "LOOKUP not successful\n"); i = SSL_accept(con); if (i <= 0) retry = is_retryable(con, i); } #endif } while (i < 0 && SSL_waiting_for_async(con)); } if (i <= 0) { if (((dtlslisten || stateless) && i == 0) || (!dtlslisten && !stateless && retry)) { BIO_printf(bio_s_out, "DELAY\n"); return 1; } BIO_printf(bio_err, "ERROR\n"); verify_err = SSL_get_verify_result(con); if (verify_err != X509_V_OK) { BIO_printf(bio_err, "verify error:%s\n", X509_verify_cert_error_string(verify_err)); } /* Always print any error messages */ ERR_print_errors(bio_err); return 0; } print_connection_info(con); return 1; } static void print_connection_info(SSL *con) { const char *str; X509 *peer; char buf[BUFSIZ]; #if !defined(OPENSSL_NO_NEXTPROTONEG) const unsigned char *next_proto_neg; unsigned next_proto_neg_len; #endif unsigned char *exportedkeymat; int i; if (s_brief) print_ssl_summary(con); PEM_write_bio_SSL_SESSION(bio_s_out, SSL_get_session(con)); peer = SSL_get_peer_certificate(con); if (peer != NULL) { BIO_printf(bio_s_out, "Client certificate\n"); PEM_write_bio_X509(bio_s_out, peer); dump_cert_text(bio_s_out, peer); X509_free(peer); peer = NULL; } if (SSL_get_shared_ciphers(con, buf, sizeof(buf)) != NULL) BIO_printf(bio_s_out, "Shared ciphers:%s\n", buf); str = SSL_CIPHER_get_name(SSL_get_current_cipher(con)); ssl_print_sigalgs(bio_s_out, con); #ifndef OPENSSL_NO_EC ssl_print_point_formats(bio_s_out, con); ssl_print_groups(bio_s_out, con, 0); #endif print_ca_names(bio_s_out, con); BIO_printf(bio_s_out, "CIPHER is %s\n", (str != NULL) ? str : "(NONE)"); #if !defined(OPENSSL_NO_NEXTPROTONEG) SSL_get0_next_proto_negotiated(con, &next_proto_neg, &next_proto_neg_len); if (next_proto_neg) { BIO_printf(bio_s_out, "NEXTPROTO is "); BIO_write(bio_s_out, next_proto_neg, next_proto_neg_len); BIO_printf(bio_s_out, "\n"); } #endif #ifndef OPENSSL_NO_SRTP { SRTP_PROTECTION_PROFILE *srtp_profile = SSL_get_selected_srtp_profile(con); if (srtp_profile) BIO_printf(bio_s_out, "SRTP Extension negotiated, profile=%s\n", srtp_profile->name); } #endif if (SSL_session_reused(con)) BIO_printf(bio_s_out, "Reused session-id\n"); BIO_printf(bio_s_out, "Secure Renegotiation IS%s supported\n", SSL_get_secure_renegotiation_support(con) ? "" : " NOT"); if ((SSL_get_options(con) & SSL_OP_NO_RENEGOTIATION)) BIO_printf(bio_s_out, "Renegotiation is DISABLED\n"); if (keymatexportlabel != NULL) { BIO_printf(bio_s_out, "Keying material exporter:\n"); BIO_printf(bio_s_out, " Label: '%s'\n", keymatexportlabel); BIO_printf(bio_s_out, " Length: %i bytes\n", keymatexportlen); exportedkeymat = app_malloc(keymatexportlen, "export key"); if (!SSL_export_keying_material(con, exportedkeymat, keymatexportlen, keymatexportlabel, strlen(keymatexportlabel), NULL, 0, 0)) { BIO_printf(bio_s_out, " Error\n"); } else { BIO_printf(bio_s_out, " Keying material: "); for (i = 0; i < keymatexportlen; i++) BIO_printf(bio_s_out, "%02X", exportedkeymat[i]); BIO_printf(bio_s_out, "\n"); } OPENSSL_free(exportedkeymat); } (void)BIO_flush(bio_s_out); } #ifndef OPENSSL_NO_DH static DH *load_dh_param(const char *dhfile) { DH *ret = NULL; BIO *bio; if ((bio = BIO_new_file(dhfile, "r")) == NULL) goto err; ret = PEM_read_bio_DHparams(bio, NULL, NULL, NULL); err: BIO_free(bio); return ret; } #endif static int www_body(int s, int stype, int prot, unsigned char *context) { char *buf = NULL; int ret = 1; int i, j, k, dot; SSL *con; const SSL_CIPHER *c; BIO *io, *ssl_bio, *sbio; #ifdef RENEG int total_bytes = 0; #endif int width; fd_set readfds; /* Set width for a select call if needed */ width = s + 1; buf = app_malloc(bufsize, "server www buffer"); io = BIO_new(BIO_f_buffer()); ssl_bio = BIO_new(BIO_f_ssl()); if ((io == NULL) || (ssl_bio == NULL)) goto err; if (s_nbio) { if (!BIO_socket_nbio(s, 1)) ERR_print_errors(bio_err); else if (!s_quiet) BIO_printf(bio_err, "Turned on non blocking io\n"); } /* lets make the output buffer a reasonable size */ if (!BIO_set_write_buffer_size(io, bufsize)) goto err; if ((con = SSL_new(ctx)) == NULL) goto err; if (s_tlsextdebug) { SSL_set_tlsext_debug_callback(con, tlsext_cb); SSL_set_tlsext_debug_arg(con, bio_s_out); } if (context != NULL && !SSL_set_session_id_context(con, context, strlen((char *)context))) { SSL_free(con); goto err; } sbio = BIO_new_socket(s, BIO_NOCLOSE); if (s_nbio_test) { BIO *test; test = BIO_new(BIO_f_nbio_test()); sbio = BIO_push(test, sbio); } SSL_set_bio(con, sbio, sbio); SSL_set_accept_state(con); /* No need to free |con| after this. Done by BIO_free(ssl_bio) */ BIO_set_ssl(ssl_bio, con, BIO_CLOSE); BIO_push(io, ssl_bio); #ifdef CHARSET_EBCDIC io = BIO_push(BIO_new(BIO_f_ebcdic_filter()), io); #endif if (s_debug) { BIO_set_callback(SSL_get_rbio(con), bio_dump_callback); BIO_set_callback_arg(SSL_get_rbio(con), (char *)bio_s_out); } if (s_msg) { #ifndef OPENSSL_NO_SSL_TRACE if (s_msg == 2) SSL_set_msg_callback(con, SSL_trace); else #endif SSL_set_msg_callback(con, msg_cb); SSL_set_msg_callback_arg(con, bio_s_msg ? bio_s_msg : bio_s_out); } for (;;) { i = BIO_gets(io, buf, bufsize - 1); if (i < 0) { /* error */ if (!BIO_should_retry(io) && !SSL_waiting_for_async(con)) { if (!s_quiet) ERR_print_errors(bio_err); goto err; } else { BIO_printf(bio_s_out, "read R BLOCK\n"); #ifndef OPENSSL_NO_SRP if (BIO_should_io_special(io) && BIO_get_retry_reason(io) == BIO_RR_SSL_X509_LOOKUP) { BIO_printf(bio_s_out, "LOOKUP renego during read\n"); SRP_user_pwd_free(srp_callback_parm.user); srp_callback_parm.user = SRP_VBASE_get1_by_user(srp_callback_parm.vb, srp_callback_parm.login); if (srp_callback_parm.user) BIO_printf(bio_s_out, "LOOKUP done %s\n", srp_callback_parm.user->info); else BIO_printf(bio_s_out, "LOOKUP not successful\n"); continue; } #endif #if !defined(OPENSSL_SYS_MSDOS) sleep(1); #endif continue; } } else if (i == 0) { /* end of input */ ret = 1; goto end; } /* else we have data */ if (((www == 1) && (strncmp("GET ", buf, 4) == 0)) || ((www == 2) && (strncmp("GET /stats ", buf, 11) == 0))) { char *p; X509 *peer = NULL; STACK_OF(SSL_CIPHER) *sk; static const char *space = " "; if (www == 1 && strncmp("GET /reneg", buf, 10) == 0) { if (strncmp("GET /renegcert", buf, 14) == 0) SSL_set_verify(con, SSL_VERIFY_PEER | SSL_VERIFY_CLIENT_ONCE, NULL); i = SSL_renegotiate(con); BIO_printf(bio_s_out, "SSL_renegotiate -> %d\n", i); /* Send the HelloRequest */ i = SSL_do_handshake(con); if (i <= 0) { BIO_printf(bio_s_out, "SSL_do_handshake() Retval %d\n", SSL_get_error(con, i)); ERR_print_errors(bio_err); goto err; } /* Wait for a ClientHello to come back */ FD_ZERO(&readfds); openssl_fdset(s, &readfds); i = select(width, (void *)&readfds, NULL, NULL, NULL); if (i <= 0 || !FD_ISSET(s, &readfds)) { BIO_printf(bio_s_out, "Error waiting for client response\n"); ERR_print_errors(bio_err); goto err; } /* * We're not actually expecting any data here and we ignore * any that is sent. This is just to force the handshake that * we're expecting to come from the client. If they haven't * sent one there's not much we can do. */ BIO_gets(io, buf, bufsize - 1); } BIO_puts(io, "HTTP/1.0 200 ok\r\nContent-type: text/html\r\n\r\n"); BIO_puts(io, "\n"); BIO_puts(io, "
\n");
             /* BIO_puts(io, OpenSSL_version(OPENSSL_VERSION)); */
             BIO_puts(io, "\n");
             for (i = 0; i < local_argc; i++) {
                 const char *myp;
                 for (myp = local_argv[i]; *myp; myp++)
                     switch (*myp) {
                     case '<':
                         BIO_puts(io, "<");
                         break;
                     case '>':
                         BIO_puts(io, ">");
                         break;
                     case '&':
                         BIO_puts(io, "&");
                         break;
                     default:
                         BIO_write(io, myp, 1);
                         break;
                     }
                 BIO_write(io, " ", 1);
             }
             BIO_puts(io, "\n");
 
             BIO_printf(io,
                        "Secure Renegotiation IS%s supported\n",
                        SSL_get_secure_renegotiation_support(con) ?
                        "" : " NOT");
 
             /*
              * The following is evil and should not really be done
              */
             BIO_printf(io, "Ciphers supported in s_server binary\n");
             sk = SSL_get_ciphers(con);
             j = sk_SSL_CIPHER_num(sk);
             for (i = 0; i < j; i++) {
                 c = sk_SSL_CIPHER_value(sk, i);
                 BIO_printf(io, "%-11s:%-25s ",
                            SSL_CIPHER_get_version(c), SSL_CIPHER_get_name(c));
                 if ((((i + 1) % 2) == 0) && (i + 1 != j))
                     BIO_puts(io, "\n");
             }
             BIO_puts(io, "\n");
             p = SSL_get_shared_ciphers(con, buf, bufsize);
             if (p != NULL) {
                 BIO_printf(io,
                            "---\nCiphers common between both SSL end points:\n");
                 j = i = 0;
                 while (*p) {
                     if (*p == ':') {
                         BIO_write(io, space, 26 - j);
                         i++;
                         j = 0;
                         BIO_write(io, ((i % 3) ? " " : "\n"), 1);
                     } else {
                         BIO_write(io, p, 1);
                         j++;
                     }
                     p++;
                 }
                 BIO_puts(io, "\n");
             }
             ssl_print_sigalgs(io, con);
 #ifndef OPENSSL_NO_EC
             ssl_print_groups(io, con, 0);
 #endif
             print_ca_names(io, con);
             BIO_printf(io, (SSL_session_reused(con)
                             ? "---\nReused, " : "---\nNew, "));
             c = SSL_get_current_cipher(con);
             BIO_printf(io, "%s, Cipher is %s\n",
                        SSL_CIPHER_get_version(c), SSL_CIPHER_get_name(c));
             SSL_SESSION_print(io, SSL_get_session(con));
             BIO_printf(io, "---\n");
             print_stats(io, SSL_get_SSL_CTX(con));
             BIO_printf(io, "---\n");
             peer = SSL_get_peer_certificate(con);
             if (peer != NULL) {
                 BIO_printf(io, "Client certificate\n");
                 X509_print(io, peer);
                 PEM_write_bio_X509(io, peer);
                 X509_free(peer);
                 peer = NULL;
             } else {
                 BIO_puts(io, "no client certificate available\n");
             }
             BIO_puts(io, "
\r\n\r\n"); break; } else if ((www == 2 || www == 3) && (strncmp("GET /", buf, 5) == 0)) { BIO *file; char *p, *e; static const char *text = "HTTP/1.0 200 ok\r\nContent-type: text/plain\r\n\r\n"; /* skip the '/' */ p = &(buf[5]); dot = 1; for (e = p; *e != '\0'; e++) { if (e[0] == ' ') break; if (e[0] == ':') { /* Windows drive. We treat this the same way as ".." */ dot = -1; break; } switch (dot) { case 1: dot = (e[0] == '.') ? 2 : 0; break; case 2: dot = (e[0] == '.') ? 3 : 0; break; case 3: dot = (e[0] == '/' || e[0] == '\\') ? -1 : 0; break; } if (dot == 0) dot = (e[0] == '/' || e[0] == '\\') ? 1 : 0; } dot = (dot == 3) || (dot == -1); /* filename contains ".." * component */ if (*e == '\0') { BIO_puts(io, text); BIO_printf(io, "'%s' is an invalid file name\r\n", p); break; } *e = '\0'; if (dot) { BIO_puts(io, text); BIO_printf(io, "'%s' contains '..' or ':'\r\n", p); break; } if (*p == '/' || *p == '\\') { BIO_puts(io, text); BIO_printf(io, "'%s' is an invalid path\r\n", p); break; } /* if a directory, do the index thang */ if (app_isdir(p) > 0) { BIO_puts(io, text); BIO_printf(io, "'%s' is a directory\r\n", p); break; } if ((file = BIO_new_file(p, "r")) == NULL) { BIO_puts(io, text); BIO_printf(io, "Error opening '%s'\r\n", p); ERR_print_errors(io); break; } if (!s_quiet) BIO_printf(bio_err, "FILE:%s\n", p); if (www == 2) { i = strlen(p); if (((i > 5) && (strcmp(&(p[i - 5]), ".html") == 0)) || ((i > 4) && (strcmp(&(p[i - 4]), ".php") == 0)) || ((i > 4) && (strcmp(&(p[i - 4]), ".htm") == 0))) BIO_puts(io, "HTTP/1.0 200 ok\r\nContent-type: text/html\r\n\r\n"); else BIO_puts(io, "HTTP/1.0 200 ok\r\nContent-type: text/plain\r\n\r\n"); } /* send the file */ for (;;) { i = BIO_read(file, buf, bufsize); if (i <= 0) break; #ifdef RENEG total_bytes += i; BIO_printf(bio_err, "%d\n", i); if (total_bytes > 3 * 1024) { total_bytes = 0; BIO_printf(bio_err, "RENEGOTIATE\n"); SSL_renegotiate(con); } #endif for (j = 0; j < i;) { #ifdef RENEG static count = 0; if (++count == 13) { SSL_renegotiate(con); } #endif k = BIO_write(io, &(buf[j]), i - j); if (k <= 0) { if (!BIO_should_retry(io) && !SSL_waiting_for_async(con)) goto write_error; else { BIO_printf(bio_s_out, "rwrite W BLOCK\n"); } } else { j += k; } } } write_error: BIO_free(file); break; } } for (;;) { i = (int)BIO_flush(io); if (i <= 0) { if (!BIO_should_retry(io)) break; } else break; } end: /* make sure we re-use sessions */ SSL_set_shutdown(con, SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN); err: OPENSSL_free(buf); BIO_free_all(io); return ret; } static int rev_body(int s, int stype, int prot, unsigned char *context) { char *buf = NULL; int i; int ret = 1; SSL *con; BIO *io, *ssl_bio, *sbio; buf = app_malloc(bufsize, "server rev buffer"); io = BIO_new(BIO_f_buffer()); ssl_bio = BIO_new(BIO_f_ssl()); if ((io == NULL) || (ssl_bio == NULL)) goto err; /* lets make the output buffer a reasonable size */ if (!BIO_set_write_buffer_size(io, bufsize)) goto err; if ((con = SSL_new(ctx)) == NULL) goto err; if (s_tlsextdebug) { SSL_set_tlsext_debug_callback(con, tlsext_cb); SSL_set_tlsext_debug_arg(con, bio_s_out); } if (context != NULL && !SSL_set_session_id_context(con, context, strlen((char *)context))) { SSL_free(con); ERR_print_errors(bio_err); goto err; } sbio = BIO_new_socket(s, BIO_NOCLOSE); SSL_set_bio(con, sbio, sbio); SSL_set_accept_state(con); /* No need to free |con| after this. Done by BIO_free(ssl_bio) */ BIO_set_ssl(ssl_bio, con, BIO_CLOSE); BIO_push(io, ssl_bio); #ifdef CHARSET_EBCDIC io = BIO_push(BIO_new(BIO_f_ebcdic_filter()), io); #endif if (s_debug) { BIO_set_callback(SSL_get_rbio(con), bio_dump_callback); BIO_set_callback_arg(SSL_get_rbio(con), (char *)bio_s_out); } if (s_msg) { #ifndef OPENSSL_NO_SSL_TRACE if (s_msg == 2) SSL_set_msg_callback(con, SSL_trace); else #endif SSL_set_msg_callback(con, msg_cb); SSL_set_msg_callback_arg(con, bio_s_msg ? bio_s_msg : bio_s_out); } for (;;) { i = BIO_do_handshake(io); if (i > 0) break; if (!BIO_should_retry(io)) { BIO_puts(bio_err, "CONNECTION FAILURE\n"); ERR_print_errors(bio_err); goto end; } #ifndef OPENSSL_NO_SRP if (BIO_should_io_special(io) && BIO_get_retry_reason(io) == BIO_RR_SSL_X509_LOOKUP) { BIO_printf(bio_s_out, "LOOKUP renego during accept\n"); SRP_user_pwd_free(srp_callback_parm.user); srp_callback_parm.user = SRP_VBASE_get1_by_user(srp_callback_parm.vb, srp_callback_parm.login); if (srp_callback_parm.user) BIO_printf(bio_s_out, "LOOKUP done %s\n", srp_callback_parm.user->info); else BIO_printf(bio_s_out, "LOOKUP not successful\n"); continue; } #endif } BIO_printf(bio_err, "CONNECTION ESTABLISHED\n"); print_ssl_summary(con); for (;;) { i = BIO_gets(io, buf, bufsize - 1); if (i < 0) { /* error */ if (!BIO_should_retry(io)) { if (!s_quiet) ERR_print_errors(bio_err); goto err; } else { BIO_printf(bio_s_out, "read R BLOCK\n"); #ifndef OPENSSL_NO_SRP if (BIO_should_io_special(io) && BIO_get_retry_reason(io) == BIO_RR_SSL_X509_LOOKUP) { BIO_printf(bio_s_out, "LOOKUP renego during read\n"); SRP_user_pwd_free(srp_callback_parm.user); srp_callback_parm.user = SRP_VBASE_get1_by_user(srp_callback_parm.vb, srp_callback_parm.login); if (srp_callback_parm.user) BIO_printf(bio_s_out, "LOOKUP done %s\n", srp_callback_parm.user->info); else BIO_printf(bio_s_out, "LOOKUP not successful\n"); continue; } #endif #if !defined(OPENSSL_SYS_MSDOS) sleep(1); #endif continue; } } else if (i == 0) { /* end of input */ ret = 1; BIO_printf(bio_err, "CONNECTION CLOSED\n"); goto end; } else { char *p = buf + i - 1; while (i && (*p == '\n' || *p == '\r')) { p--; i--; } if (!s_ign_eof && (i == 5) && (strncmp(buf, "CLOSE", 5) == 0)) { ret = 1; BIO_printf(bio_err, "CONNECTION CLOSED\n"); goto end; } BUF_reverse((unsigned char *)buf, NULL, i); buf[i] = '\n'; BIO_write(io, buf, i + 1); for (;;) { i = BIO_flush(io); if (i > 0) break; if (!BIO_should_retry(io)) goto end; } } } end: /* make sure we re-use sessions */ SSL_set_shutdown(con, SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN); err: OPENSSL_free(buf); BIO_free_all(io); return ret; } #define MAX_SESSION_ID_ATTEMPTS 10 static int generate_session_id(SSL *ssl, unsigned char *id, unsigned int *id_len) { unsigned int count = 0; do { if (RAND_bytes(id, *id_len) <= 0) return 0; /* * Prefix the session_id with the required prefix. NB: If our prefix * is too long, clip it - but there will be worse effects anyway, eg. * the server could only possibly create 1 session ID (ie. the * prefix!) so all future session negotiations will fail due to * conflicts. */ memcpy(id, session_id_prefix, (strlen(session_id_prefix) < *id_len) ? strlen(session_id_prefix) : *id_len); } while (SSL_has_matching_session_id(ssl, id, *id_len) && (++count < MAX_SESSION_ID_ATTEMPTS)); if (count >= MAX_SESSION_ID_ATTEMPTS) return 0; return 1; } /* * By default s_server uses an in-memory cache which caches SSL_SESSION * structures without any serialisation. This hides some bugs which only * become apparent in deployed servers. By implementing a basic external * session cache some issues can be debugged using s_server. */ typedef struct simple_ssl_session_st { unsigned char *id; unsigned int idlen; unsigned char *der; int derlen; struct simple_ssl_session_st *next; } simple_ssl_session; static simple_ssl_session *first = NULL; static int add_session(SSL *ssl, SSL_SESSION *session) { simple_ssl_session *sess = app_malloc(sizeof(*sess), "get session"); unsigned char *p; SSL_SESSION_get_id(session, &sess->idlen); sess->derlen = i2d_SSL_SESSION(session, NULL); if (sess->derlen < 0) { BIO_printf(bio_err, "Error encoding session\n"); OPENSSL_free(sess); return 0; } sess->id = OPENSSL_memdup(SSL_SESSION_get_id(session, NULL), sess->idlen); sess->der = app_malloc(sess->derlen, "get session buffer"); if (!sess->id) { BIO_printf(bio_err, "Out of memory adding to external cache\n"); OPENSSL_free(sess->id); OPENSSL_free(sess->der); OPENSSL_free(sess); return 0; } p = sess->der; /* Assume it still works. */ if (i2d_SSL_SESSION(session, &p) != sess->derlen) { BIO_printf(bio_err, "Unexpected session encoding length\n"); OPENSSL_free(sess->id); OPENSSL_free(sess->der); OPENSSL_free(sess); return 0; } sess->next = first; first = sess; BIO_printf(bio_err, "New session added to external cache\n"); return 0; } static SSL_SESSION *get_session(SSL *ssl, const unsigned char *id, int idlen, int *do_copy) { simple_ssl_session *sess; *do_copy = 0; for (sess = first; sess; sess = sess->next) { if (idlen == (int)sess->idlen && !memcmp(sess->id, id, idlen)) { const unsigned char *p = sess->der; BIO_printf(bio_err, "Lookup session: cache hit\n"); return d2i_SSL_SESSION(NULL, &p, sess->derlen); } } BIO_printf(bio_err, "Lookup session: cache miss\n"); return NULL; } static void del_session(SSL_CTX *sctx, SSL_SESSION *session) { simple_ssl_session *sess, *prev = NULL; const unsigned char *id; unsigned int idlen; id = SSL_SESSION_get_id(session, &idlen); for (sess = first; sess; sess = sess->next) { if (idlen == sess->idlen && !memcmp(sess->id, id, idlen)) { if (prev) prev->next = sess->next; else first = sess->next; OPENSSL_free(sess->id); OPENSSL_free(sess->der); OPENSSL_free(sess); return; } prev = sess; } } static void init_session_cache_ctx(SSL_CTX *sctx) { SSL_CTX_set_session_cache_mode(sctx, SSL_SESS_CACHE_NO_INTERNAL | SSL_SESS_CACHE_SERVER); SSL_CTX_sess_set_new_cb(sctx, add_session); SSL_CTX_sess_set_get_cb(sctx, get_session); SSL_CTX_sess_set_remove_cb(sctx, del_session); } static void free_sessions(void) { simple_ssl_session *sess, *tsess; for (sess = first; sess;) { OPENSSL_free(sess->id); OPENSSL_free(sess->der); tsess = sess; sess = sess->next; OPENSSL_free(tsess); } first = NULL; } #endif /* OPENSSL_NO_SOCK */ diff --git a/config b/config index 49422981ae84..c7b035a0c57c 100755 --- a/config +++ b/config @@ -1,945 +1,946 @@ #!/bin/sh -# Copyright 1998-2020 The OpenSSL Project Authors. All Rights Reserved. +# Copyright 1998-2022 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # OpenSSL config: determine the operating system and run ./Configure # Derived from minarch and GuessOS from Apache. # # Do "config -h" for usage information. SUFFIX="" DRYRUN="false" VERBOSE="false" EXE="" THERE=`dirname $0` # pick up any command line args to config for i do case "$i" in -d*) options=$options" --debug";; -t*) DRYRUN="true" VERBOSE="true";; -v*) VERBOSE="true";; -h*) DRYRUN="true"; cat </dev/null` || MACHINE="unknown" [ "$RELEASE" ] || RELEASE=`(uname -r) 2>/dev/null` || RELEASE="unknown" [ "$SYSTEM" ] || SYSTEM=`(uname -s) 2>/dev/null` || SYSTEM="unknown" [ "$BUILD" ] || VERSION=`(uname -v) 2>/dev/null` || VERSION="unknown" # Now test for ISC and SCO, since it is has a braindamaged uname. # # We need to work around FreeBSD 1.1.5.1 ( XREL=`uname -X 2>/dev/null | grep "^Release" | awk '{print $3}'` if [ "x$XREL" != "x" ]; then if [ -f /etc/kconfig ]; then case "$XREL" in 4.0|4.1) echo "${MACHINE}-whatever-isc4"; exit 0 ;; esac else case "$XREL" in 3.2v4.2) echo "whatever-whatever-sco3"; exit 0 ;; 3.2v5.0*) echo "whatever-whatever-sco5"; exit 0 ;; 4.2MP) case "x${VERSION}" in x2.0*) echo "whatever-whatever-unixware20"; exit 0 ;; x2.1*) echo "whatever-whatever-unixware21"; exit 0 ;; x2*) echo "whatever-whatever-unixware2"; exit 0 ;; esac ;; 4.2) echo "whatever-whatever-unixware1"; exit 0 ;; 5*) case "x${VERSION}" in # We hardcode i586 in place of ${MACHINE} for the # following reason. The catch is that even though Pentium # is minimum requirement for platforms in question, # ${MACHINE} gets always assigned to i386. Now, problem # with i386 is that it makes ./config pass 386 to # ./Configure, which in turn makes make generate # inefficient SHA-1 (for this moment) code. x[678]*) echo "i586-sco-unixware7"; exit 0 ;; esac ;; esac fi fi # Now we simply scan though... In most cases, the SYSTEM info is enough # case "${SYSTEM}:${RELEASE}:${VERSION}:${MACHINE}" in A/UX:*) echo "m68k-apple-aux3"; exit 0 ;; AIX:[3-9]:4:*) echo "${MACHINE}-ibm-aix"; exit 0 ;; AIX:*:[5-9]:*) echo "${MACHINE}-ibm-aix"; exit 0 ;; AIX:*) echo "${MACHINE}-ibm-aix3"; exit 0 ;; HI-UX:*) echo "${MACHINE}-hi-hiux"; exit 0 ;; HP-UX:*) HPUXVER=`echo ${RELEASE}|sed -e 's/[^.]*.[0B]*//'` case "$HPUXVER" in 1[0-9].*) # HPUX 10 and 11 targets are unified echo "${MACHINE}-hp-hpux1x"; exit 0 ;; *) echo "${MACHINE}-hp-hpux"; exit 0 ;; esac ;; IRIX:6.*) echo "mips3-sgi-irix"; exit 0 ;; IRIX64:*) echo "mips4-sgi-irix64"; exit 0 ;; Linux:[2-9].*) echo "${MACHINE}-whatever-linux2"; exit 0 ;; Linux:1.*) echo "${MACHINE}-whatever-linux1"; exit 0 ;; GNU*) echo "hurd-x86"; exit 0; ;; LynxOS:*) echo "${MACHINE}-lynx-lynxos"; exit 0 ;; BSD/OS:4.*) # BSD/OS always says 386 echo "i486-whatever-bsdi4"; exit 0 ;; BSD/386:*:*:*486*|BSD/OS:*:*:*:*486*) case `/sbin/sysctl -n hw.model` in Pentium*) echo "i586-whatever-bsdi"; exit 0 ;; *) echo "i386-whatever-bsdi"; exit 0 ;; esac; ;; BSD/386:*|BSD/OS:*) echo "${MACHINE}-whatever-bsdi"; exit 0 ;; FreeBSD:*:*:*386*) VERS=`echo ${RELEASE} | sed -e 's/[-(].*//'` MACH=`sysctl -n hw.model` ARCH='whatever' case ${MACH} in *386* ) MACH="i386" ;; *486* ) MACH="i486" ;; Pentium\ II*) MACH="i686" ;; Pentium* ) MACH="i586" ;; * ) MACH="$MACHINE" ;; esac case ${MACH} in i[0-9]86 ) ARCH="pc" ;; esac echo "${MACH}-${ARCH}-freebsd${VERS}"; exit 0 ;; DragonFly:*) echo "${MACHINE}-whatever-dragonfly"; exit 0 ;; FreeBSD:*) echo "${MACHINE}-whatever-freebsd"; exit 0 ;; Haiku:*) echo "${MACHINE}-whatever-haiku"; exit 0 ;; NetBSD:*:*:*386*) echo "`(/usr/sbin/sysctl -n hw.model || /sbin/sysctl -n hw.model) | sed 's,.*\(.\)86-class.*,i\186,'`-whatever-netbsd"; exit 0 ;; NetBSD:*) echo "${MACHINE}-whatever-netbsd"; exit 0 ;; OpenBSD:*) echo "${MACHINE}-whatever-openbsd"; exit 0 ;; OpenUNIX:*) echo "${MACHINE}-unknown-OpenUNIX${VERSION}"; exit 0 ;; OSF1:*:*:*alpha*) OSFMAJOR=`echo ${RELEASE}| sed -e 's/^V\([0-9]*\)\..*$/\1/'` case "$OSFMAJOR" in 4|5) echo "${MACHINE}-dec-tru64"; exit 0 ;; 1|2|3) echo "${MACHINE}-dec-osf"; exit 0 ;; *) echo "${MACHINE}-dec-osf"; exit 0 ;; esac ;; Paragon*:*:*:*) echo "i860-intel-osf1"; exit 0 ;; Rhapsody:*) echo "ppc-apple-rhapsody"; exit 0 ;; Darwin:*) case "$MACHINE" in Power*) echo "ppc-apple-darwin${VERSION}" ;; *) echo "${MACHINE}-apple-darwin${VERSION}" ;; esac exit 0 ;; SunOS:5.*) echo "${MACHINE}-whatever-solaris2"; exit 0 ;; SunOS:*) echo "${MACHINE}-sun-sunos4"; exit 0 ;; UNIX_System_V:4.*:*) echo "${MACHINE}-whatever-sysv4"; exit 0 ;; VOS:*:*:i786) echo "i386-stratus-vos"; exit 0 ;; VOS:*:*:*) echo "hppa1.1-stratus-vos"; exit 0 ;; *:4*:R4*:m88k) echo "${MACHINE}-whatever-sysv4"; exit 0 ;; DYNIX/ptx:4*:*) echo "${MACHINE}-whatever-sysv4"; exit 0 ;; *:4.0:3.0:3[34]?? | *:4.0:3.0:3[34]??,*) echo "i486-ncr-sysv4"; exit 0 ;; ULTRIX:*) echo "${MACHINE}-unknown-ultrix"; exit 0 ;; POSIX-BC*) echo "${MACHINE}-siemens-sysv4"; exit 0 # Here, $MACHINE == "BS2000" ;; machten:*) echo "${MACHINE}-tenon-${SYSTEM}"; exit 0; ;; library:*) echo "${MACHINE}-ncr-sysv4"; exit 0 ;; ConvexOS:*:11.0:*) echo "${MACHINE}-v11-${SYSTEM}"; exit 0; ;; # The following combinations are supported # MINGW64* on x86_64 => mingw64 # MINGW32* on x86_64 => mingw # MINGW32* on i?86 => mingw # # MINGW64* on i?86 isn't expected to work... MINGW64*:*:*:x86_64) echo "${MACHINE}-whatever-mingw64"; exit 0; ;; MINGW*) echo "${MACHINE}-whatever-mingw"; exit 0; ;; CYGWIN*) echo "${MACHINE}-pc-cygwin"; exit 0 ;; vxworks*) echo "${MACHINE}-whatever-vxworks"; exit 0; ;; esac # # Ugg. These are all we can determine by what we know about # the output of uname. Be more creative: # # Do the Apollo stuff first. Here, we just simply assume # that the existence of the /usr/apollo directory is proof # enough if [ -d /usr/apollo ]; then echo "whatever-apollo-whatever" exit 0 fi # Now NeXT ISNEXT=`hostinfo 2>/dev/null` case "$ISNEXT" in *'NeXT Mach 3.3'*) echo "whatever-next-nextstep3.3"; exit 0 ;; *NeXT*) echo "whatever-next-nextstep"; exit 0 ;; esac # At this point we gone through all the one's # we know of: Punt echo "${MACHINE}-whatever-${SYSTEM}" exit 0 ) 2>/dev/null | ( # --------------------------------------------------------------------------- # this is where the translation occurs into SSLeay terms # --------------------------------------------------------------------------- # Only set CC if not supplied already if [ -z "$CROSS_COMPILE$CC" ]; then GCCVER=`sh -c "gcc -dumpversion" 2>/dev/null` if [ "$GCCVER" != "" ]; then # then strip off whatever prefix egcs prepends the number with... # Hopefully, this will work for any future prefixes as well. GCCVER=`echo $GCCVER | LC_ALL=C sed 's/^[a-zA-Z]*\-//'` # Since gcc 3.1 gcc --version behaviour has changed. gcc -dumpversion # does give us what we want though, so we use that. We just just the # major and minor version numbers. # peak single digit before and after first dot, e.g. 2.95.1 gives 29 GCCVER=`echo $GCCVER | sed 's/\([0-9]\)\.\([0-9]\).*/\1\2/'` CC=gcc else CC=cc fi fi GCCVER=${GCCVER:-0} if [ "$SYSTEM" = "HP-UX" ];then # By default gcc is a ILP32 compiler (with long long == 64). GCC_BITS="32" if [ $GCCVER -ge 30 ]; then # PA64 support only came in with gcc 3.0.x. # We check if the preprocessor symbol __LP64__ is defined... if echo "__LP64__" | gcc -v -E -x c - 2>/dev/null | grep "^__LP64__" 2>&1 > /dev/null; then : # __LP64__ has slipped through, it therefore is not defined else GCC_BITS="64" fi fi fi if [ "$SYSTEM" = "SunOS" ]; then if [ $GCCVER -ge 30 ]; then # 64-bit ABI isn't officially supported in gcc 3.0, but it appears # to be working, at the very least 'make test' passes... if gcc -v -E -x c /dev/null 2>&1 | grep __arch64__ > /dev/null; then GCC_ARCH="-m64" else GCC_ARCH="-m32" fi fi # check for WorkShop C, expected output is "cc: blah-blah C x.x" CCVER=`(cc -V 2>&1) 2>/dev/null | \ egrep -e '^cc: .* C [0-9]\.[0-9]' | \ sed 's/.* C \([0-9]\)\.\([0-9]\).*/\1\2/'` CCVER=${CCVER:-0} if [ $MACHINE != i86pc -a $CCVER -gt 40 ]; then CC=cc # overrides gcc!!! if [ $CCVER -eq 50 ]; then echo "WARNING! Detected WorkShop C 5.0. Do make sure you have" echo " patch #107357-01 or later applied." sleep 5 fi fi fi if [ "${SYSTEM}" = "AIX" ]; then # favor vendor cc over gcc (cc) 2>&1 | grep -iv "not found" > /dev/null && CC=cc fi CCVER=${CCVER:-0} # read the output of the embedded GuessOS read GUESSOS echo Operating system: $GUESSOS # now map the output into SSLeay terms ... really should hack into the # script above so we end up with values in vars but that would take # more time that I want to waste at the moment case "$GUESSOS" in uClinux*64*) OUT=uClinux-dist64 ;; uClinux*) OUT=uClinux-dist ;; mips3-sgi-irix) OUT="irix-mips3-$CC" ;; mips4-sgi-irix64) echo "WARNING! If you wish to build 64-bit library, then you have to" echo " invoke '$THERE/Configure irix64-mips4-$CC' *manually*." if [ "$DRYRUN" = "false" -a -t 1 ]; then echo " You have about 5 seconds to press Ctrl-C to abort." (trap "stty `stty -g`; exit 0" 2 0; stty -icanon min 0 time 50; read waste) <&1 fi OUT="irix-mips3-$CC" ;; ppc-apple-rhapsody) OUT="rhapsody-ppc-cc" ;; ppc-apple-darwin*) ISA64=`(sysctl -n hw.optional.64bitops) 2>/dev/null` if [ "$ISA64" = "1" -a -z "$KERNEL_BITS" ]; then echo "WARNING! If you wish to build 64-bit library, then you have to" echo " invoke '$THERE/Configure darwin64-ppc-cc' *manually*." if [ "$DRYRUN" = "false" -a -t 1 ]; then echo " You have about 5 seconds to press Ctrl-C to abort." (trap "stty `stty -g`; exit 0" 2 0; stty -icanon min 0 time 50; read waste) <&1 fi fi if [ "$ISA64" = "1" -a "$KERNEL_BITS" = "64" ]; then OUT="darwin64-ppc-cc" else OUT="darwin-ppc-cc" fi ;; i?86-apple-darwin*) ISA64=`(sysctl -n hw.optional.x86_64) 2>/dev/null` if [ "$ISA64" = "1" -a -z "$KERNEL_BITS" ]; then echo "WARNING! If you wish to build 64-bit library, then you have to" echo " invoke 'KERNEL_BITS=64 $THERE/config $options'." if [ "$DRYRUN" = "false" -a -t 1 ]; then echo " You have about 5 seconds to press Ctrl-C to abort." (trap "stty `stty -g`; exit 1" 2; stty -icanon min 0 time 50; read waste; exit 0) <&1 || exit fi fi if [ "$ISA64" = "1" -a "$KERNEL_BITS" = "64" ]; then OUT="darwin64-x86_64-cc" else OUT="darwin-i386-cc" fi ;; x86_64-apple-darwin*) if [ "$KERNEL_BITS" = "32" ]; then OUT="darwin-i386-cc" else OUT="darwin64-x86_64-cc" fi ;; $MACHINE-apple-darwin*) OUT="darwin64-$MACHINE-cc" ;; armv6+7-*-iphoneos) __CNF_CFLAGS="$__CNF_CFLAGS -arch armv6 -arch armv7" __CNF_CXXFLAGS="$__CNF_CXXFLAGS -arch armv6 -arch armv7" OUT="iphoneos-cross" ;; *-*-iphoneos) __CNF_CFLAGS="$__CNF_CFLAGS -arch ${MACHINE}" __CNF_CXXFLAGS="$__CNF_CXXFLAGS -arch ${MACHINE}" OUT="iphoneos-cross" ;; arm64-*-iphoneos|*-*-ios64) OUT="ios64-cross" ;; alpha-*-linux2) ISA=`awk '/cpu model/{print$4;exit(0);}' /proc/cpuinfo` OUT="linux-alpha-$CC" if [ "$CC" = "gcc" ]; then case ${ISA:-generic} in EV5|EV45) __CNF_CFLAGS="$__CNF_CFLAGS -mcpu=ev5" __CNF_CXXFLAGS="$__CNF_CFLAGS -mcpu=ev5";; EV56|PCA56) __CNF_CFLAGS="$__CNF_CFLAGS -mcpu=ev56" __CNF_CXXFLAGS="$__CNF_CXXFLAGS -mcpu=ev56";; *) __CNF_CFLAGS="$__CNF_CFLAGS -mcpu=ev6" __CNF_CXXFLAGS="$__CNF_CXXFLAGS -mcpu=ev6";; esac fi ;; ppc64-*-linux2) if [ -z "$KERNEL_BITS" ]; then echo "WARNING! If you wish to build 64-bit library, then you have to" echo " invoke '$THERE/Configure linux-ppc64' *manually*." if [ "$DRYRUN" = "false" -a -t 1 ]; then echo " You have about 5 seconds to press Ctrl-C to abort." (trap "stty `stty -g`; exit 0" 2 0; stty -icanon min 0 time 50; read waste) <&1 fi fi if [ "$KERNEL_BITS" = "64" ]; then OUT="linux-ppc64" else OUT="linux-ppc" if (echo "__LP64__" | gcc -E -x c - 2>/dev/null | grep "^__LP64__" 2>&1 > /dev/null); then :; else __CNF_CFLAGS="$__CNF_CFLAGS -m32" __CNF_CXXFLAGS="$__CNF_CXXFLAGS -m32" fi fi ;; ppc64le-*-linux2) OUT="linux-ppc64le" ;; ppc-*-linux2) OUT="linux-ppc" ;; mips64*-*-linux2) echo "WARNING! If you wish to build 64-bit library, then you have to" echo " invoke '$THERE/Configure linux64-mips64' *manually*." if [ "$DRYRUN" = "false" -a -t 1 ]; then echo " You have about 5 seconds to press Ctrl-C to abort." (trap "stty `stty -g`; exit 0" 2 0; stty -icanon min 0 time 50; read waste) <&1 fi OUT="linux-mips64" ;; mips*-*-linux2) OUT="linux-mips32" ;; ppc60x-*-vxworks*) OUT="vxworks-ppc60x" ;; ppcgen-*-vxworks*) OUT="vxworks-ppcgen" ;; pentium-*-vxworks*) OUT="vxworks-pentium" ;; simlinux-*-vxworks*) OUT="vxworks-simlinux" ;; mips-*-vxworks*) OUT="vxworks-mips";; ia64-*-linux?) OUT="linux-ia64" ;; sparc64-*-linux2) echo "WARNING! If you *know* that your GNU C supports 64-bit/V9 ABI" echo " and wish to build 64-bit library, then you have to" echo " invoke '$THERE/Configure linux64-sparcv9' *manually*." if [ "$DRYRUN" = "false" -a -t 1 ]; then echo " You have about 5 seconds to press Ctrl-C to abort." (trap "stty `stty -g`; exit 0" 2 0; stty -icanon min 0 time 50; read waste) <&1 fi OUT="linux-sparcv9" ;; sparc-*-linux2) KARCH=`awk '/^type/{print$3;exit(0);}' /proc/cpuinfo` case ${KARCH:-sun4} in sun4u*) OUT="linux-sparcv9" ;; sun4m) OUT="linux-sparcv8" ;; sun4d) OUT="linux-sparcv8" ;; *) OUT="linux-generic32"; __CNF_CPPFLAGS="$__CNF_CPPFLAGS -DB_ENDIAN" ;; esac ;; parisc*-*-linux2) # 64-bit builds under parisc64 linux are not supported and # compiler is expected to generate 32-bit objects... CPUARCH=`awk '/cpu family/{print substr($5,1,3); exit(0);}' /proc/cpuinfo` CPUSCHEDULE=`awk '/^cpu.[ ]*: PA/{print substr($3,3); exit(0);}' /proc/cpuinfo` # ??TODO ?? Model transformations # 0. CPU Architecture for the 1.1 processor has letter suffixes. We strip that off # assuming no further arch. identification will ever be used by GCC. # 1. I'm most concerned about whether is a 7300LC is closer to a 7100 versus a 7100LC. # 2. The variant 64-bit processors cause concern should GCC support explicit schedulers # for these chips in the future. # PA7300LC -> 7100LC (1.1) # PA8200 -> 8000 (2.0) # PA8500 -> 8000 (2.0) # PA8600 -> 8000 (2.0) CPUSCHEDULE=`echo $CPUSCHEDULE|sed -e 's/7300LC/7100LC/' -e 's/8.00/8000/'` # Finish Model transformations __CNF_CPPFLAGS="$__CNF_CPPFLAGS -DB_ENDIAN" __CNF_CFLAGS="$__CNF_CFLAGS -mschedule=$CPUSCHEDULE -march=$CPUARCH" __CNF_CXXFLAGS="$__CNF_CXXFLAGS -mschedule=$CPUSCHEDULE -march=$CPUARCH" OUT="linux-generic32" ;; armv[1-3]*-*-linux2) OUT="linux-generic32" ;; armv[7-9]*-*-linux2) OUT="linux-armv4" __CNF_CFLAGS="$__CNF_CFLAGS -march=armv7-a" __CNF_CXXFLAGS="$__CNF_CXXFLAGS -march=armv7-a" ;; arm*-*-linux2) OUT="linux-armv4" ;; aarch64-*-linux2) OUT="linux-aarch64" ;; sh*b-*-linux2) OUT="linux-generic32"; __CNF_CPPFLAGS="$__CNF_CPPFLAGS -DB_ENDIAN" ;; sh*-*-linux2) OUT="linux-generic32"; __CNF_CPPFLAGS="$__CNF_CPPFLAGS -DL_ENDIAN" ;; m68k*-*-linux2) OUT="linux-generic32"; __CNF_CPPFLAGS="$__CNF_CPPFLAGS -DB_ENDIAN" ;; s390-*-linux2) OUT="linux-generic32"; __CNF_CPPFLAGS="$__CNF_CPPFLAGS -DB_ENDIAN" ;; s390x-*-linux2) # To be uncommented when glibc bug is fixed, see Configure... #if egrep -e '^features.* highgprs' /proc/cpuinfo >/dev/null ; then # echo "WARNING! If you wish to build \"highgprs\" 32-bit library, then you" # echo " have to invoke './Configure linux32-s390x' *manually*." # if [ "$DRYRUN" = "false" -a -t -1 ]; then # echo " You have about 5 seconds to press Ctrl-C to abort." # (trap "stty `stty -g`; exit 0" 2 0; stty -icanon min 0 time 50; read waste) <&1 # fi #fi OUT="linux64-s390x" ;; x86_64-*-linux?) if $CC -dM -E -x c /dev/null 2>&1 | grep -q ILP32 > /dev/null; then OUT="linux-x32" else OUT="linux-x86_64" fi ;; *86-*-linux2) # On machines where the compiler understands -m32, prefer a # config target that uses it if $CC -m32 -E -x c /dev/null > /dev/null 2>&1; then OUT="linux-x86" else OUT="linux-elf" fi ;; *86-*-linux1) OUT="linux-aout" ;; *-*-linux?) OUT="linux-generic32" ;; sun4[uv]*-*-solaris2) OUT="solaris-sparcv9-$CC" ISA64=`(isainfo) 2>/dev/null | grep sparcv9` if [ "$ISA64" != "" -a "$KERNEL_BITS" = "" ]; then if [ "$CC" = "cc" -a $CCVER -ge 50 ]; then echo "WARNING! If you wish to build 64-bit library, then you have to" echo " invoke '$THERE/Configure solaris64-sparcv9-cc' *manually*." if [ "$DRYRUN" = "false" -a -t 1 ]; then echo " You have about 5 seconds to press Ctrl-C to abort." (trap "stty `stty -g`; exit 0" 2 0; stty -icanon min 0 time 50; read waste) <&1 fi elif [ "$CC" = "gcc" -a "$GCC_ARCH" = "-m64" ]; then # $GCC_ARCH denotes default ABI chosen by compiler driver # (first one found on the $PATH). I assume that user # expects certain consistency with the rest of his builds # and therefore switch over to 64-bit. OUT="solaris64-sparcv9-gcc" echo "WARNING! If you wish to build 32-bit library, then you have to" echo " invoke '$THERE/Configure solaris-sparcv9-gcc' *manually*." if [ "$DRYRUN" = "false" -a -t 1 ]; then echo " You have about 5 seconds to press Ctrl-C to abort." (trap "stty `stty -g`; exit 0" 2 0; stty -icanon min 0 time 50; read waste) <&1 fi elif [ "$GCC_ARCH" = "-m32" ]; then echo "NOTICE! If you *know* that your GNU C supports 64-bit/V9 ABI" echo " and wish to build 64-bit library, then you have to" echo " invoke '$THERE/Configure solaris64-sparcv9-gcc' *manually*." if [ "$DRYRUN" = "false" -a -t 1 ]; then echo " You have about 5 seconds to press Ctrl-C to abort." (trap "stty `stty -g`; exit 0" 2 0; stty -icanon min 0 time 50; read waste) <&1 fi fi fi if [ "$ISA64" != "" -a "$KERNEL_BITS" = "64" ]; then OUT="solaris64-sparcv9-$CC" fi ;; sun4m-*-solaris2) OUT="solaris-sparcv8-$CC" ;; sun4d-*-solaris2) OUT="solaris-sparcv8-$CC" ;; sun4*-*-solaris2) OUT="solaris-sparcv7-$CC" ;; *86*-*-solaris2) ISA64=`(isainfo) 2>/dev/null | grep amd64` if [ "$ISA64" != "" -a ${KERNEL_BITS:-64} -eq 64 ]; then OUT="solaris64-x86_64-$CC" else OUT="solaris-x86-$CC" if [ `uname -r | sed -e 's/5\.//'` -lt 10 ]; then options="$options no-sse2" fi fi ;; *-*-sunos4) OUT="sunos-$CC" ;; *86*-*-bsdi4) OUT="BSD-x86-elf"; options="$options no-sse2"; __CNF_LDFLAGS="$__CNF_LDFLAGS -ldl" ;; alpha*-*-*bsd*) OUT="BSD-generic64"; __CNF_CPPFLAGS="$__CNF_CPPFLAGS -DL_ENDIAN" ;; powerpc64-*-*bsd*) OUT="BSD-generic64"; __CNF_CPPFLAGS="$__CNF_CPPFLAGS -DB_ENDIAN" ;; riscv64-*-*bsd*) OUT="BSD-riscv64" ;; sparc64-*-*bsd*) OUT="BSD-sparc64" ;; ia64-*-*bsd*) OUT="BSD-ia64" ;; x86_64-*-dragonfly*) OUT="BSD-x86_64" ;; amd64-*-*bsd*) OUT="BSD-x86_64" ;; + arm64-*-*bsd*) OUT="BSD-aarch64" ;; *86*-*-*bsd*) # mimic ld behaviour when it's looking for libc... if [ -L /usr/lib/libc.so ]; then # [Free|Net]BSD libc=/usr/lib/libc.so else # OpenBSD # ld searches for highest libc.so.* and so do we libc=`(ls /usr/lib/libc.so.* /lib/libc.so.* | tail -1) 2>/dev/null` fi case "`(file -L $libc) 2>/dev/null`" in *ELF*) OUT="BSD-x86-elf" ;; *) OUT="BSD-x86"; options="$options no-sse2" ;; esac ;; *-*-*bsd*) OUT="BSD-generic32" ;; x86_64-*-haiku) OUT="haiku-x86_64" ;; *-*-haiku) OUT="haiku-x86" ;; *-*-osf) OUT="osf1-alpha-cc" ;; *-*-tru64) OUT="tru64-alpha-cc" ;; *-*-[Uu]nix[Ww]are7) if [ "$CC" = "gcc" ]; then OUT="unixware-7-gcc" ; options="$options no-sse2" else OUT="unixware-7" ; options="$options no-sse2" __CNF_CPPFLAGS="$__CNF_CPPFLAGS -D__i386__" fi ;; *-*-[Uu]nix[Ww]are20*) OUT="unixware-2.0"; options="$options no-sse2 no-sha512" ;; *-*-[Uu]nix[Ww]are21*) OUT="unixware-2.1"; options="$options no-sse2 no-sha512" ;; *-*-vos) options="$options no-threads no-shared no-asm no-dso" EXE=".pm" OUT="vos-$CC" ;; BS2000-siemens-sysv4) OUT="BS2000-OSD" ;; *-hpux1*) if [ $CC = "gcc" -a $GCC_BITS = "64" ]; then OUT="hpux64-parisc2-gcc" fi [ "$KERNEL_BITS" ] || KERNEL_BITS=`(getconf KERNEL_BITS) 2>/dev/null` KERNEL_BITS=${KERNEL_BITS:-32} CPU_VERSION=`(getconf CPU_VERSION) 2>/dev/null` CPU_VERSION=${CPU_VERSION:-0} # See for further info on CPU_VERSION. if [ $CPU_VERSION -ge 768 ]; then # IA-64 CPU if [ $KERNEL_BITS -eq 64 -a "$CC" = "cc" ]; then OUT="hpux64-ia64-cc" else OUT="hpux-ia64-cc" fi elif [ $CPU_VERSION -ge 532 ]; then # PA-RISC 2.x CPU # PA-RISC 2.0 is no longer supported as separate 32-bit # target. This is compensated for by run-time detection # in most critical assembly modules and taking advantage # of 2.0 architecture in PA-RISC 1.1 build. OUT=${OUT:-"hpux-parisc1_1-${CC}"} if [ $KERNEL_BITS -eq 64 -a "$CC" = "cc" ]; then echo "WARNING! If you wish to build 64-bit library then you have to" echo " invoke '$THERE/Configure hpux64-parisc2-cc' *manually*." if [ "$DRYRUN" = "false" -a -t 1 ]; then echo " You have about 5 seconds to press Ctrl-C to abort." (trap "stty `stty -g`; exit 0" 2 0; stty -icanon min 0 time 50; read waste) <&1 fi fi elif [ $CPU_VERSION -ge 528 ]; then # PA-RISC 1.1+ CPU OUT="hpux-parisc1_1-${CC}" elif [ $CPU_VERSION -ge 523 ]; then # PA-RISC 1.0 CPU OUT="hpux-parisc-${CC}" else # Motorola(?) CPU OUT="hpux-$CC" fi __CNF_CPPFLAGS="$__CNF_CPPFLAGS -D_REENTRANT" ;; *-hpux) OUT="hpux-parisc-$CC" ;; *-aix) [ "$KERNEL_BITS" ] || KERNEL_BITS=`(getconf KERNEL_BITMODE) 2>/dev/null` KERNEL_BITS=${KERNEL_BITS:-32} OBJECT_MODE=${OBJECT_MODE:-32} if [ "$CC" = "gcc" ]; then OUT="aix-gcc" if [ $OBJECT_MODE -eq 64 ]; then echo 'Your $OBJECT_MODE was found to be set to 64' OUT="aix64-gcc" fi elif [ $OBJECT_MODE -eq 64 ]; then echo 'Your $OBJECT_MODE was found to be set to 64' OUT="aix64-cc" else OUT="aix-cc" if [ $KERNEL_BITS -eq 64 ]; then echo "WARNING! If you wish to build 64-bit kit, then you have to" echo " invoke '$THERE/Configure aix64-cc' *manually*." if [ "$DRYRUN" = "false" -a -t 1 ]; then echo " You have ~5 seconds to press Ctrl-C to abort." (trap "stty `stty -g`; exit 0" 2 0; stty -icanon min 0 time 50; read waste) <&1 fi fi fi if (lsattr -E -O -l `lsdev -c processor|awk '{print$1;exit}'` | grep -i powerpc) >/dev/null 2>&1; then : # this applies even to Power3 and later, as they return PowerPC_POWER[345] else options="$options no-asm" fi ;; # these are all covered by the catchall below i[3456]86-*-cygwin) OUT="Cygwin-x86" ;; *-*-cygwin) OUT="Cygwin-${MACHINE}" ;; x86-*-android|i?86-*-android) OUT="android-x86" ;; armv[7-9]*-*-android) OUT="android-armeabi" __CNF_CFLAGS="$__CNF_CFLAGS -march=armv7-a" __CNF_CXXFLAGS="$__CNF_CXXFLAGS -march=armv7-a";; arm*-*-android) OUT="android-armeabi" ;; *) OUT=`echo $GUESSOS | awk -F- '{print $3}'`;; esac # NB: This atalla support has been superseded by the ENGINE support # That contains its own header and definitions anyway. Support can # be enabled or disabled on any supported platform without external # headers, eg. by adding the "hw-atalla" switch to ./config or # perl Configure # # See whether we can compile Atalla support #if [ -f /usr/include/atasi.h ] #then # __CNF_CPPFLAGS="$__CNF_CPPFLAGS -DATALLA" #fi if [ -n "$CONFIG_OPTIONS" ]; then options="$options $CONFIG_OPTIONS" fi # gcc < 2.8 does not support -march=ultrasparc if [ "$OUT" = solaris-sparcv9-gcc -a $GCCVER -lt 28 ] then echo "WARNING! Falling down to 'solaris-sparcv8-gcc'." echo " Upgrade to gcc-2.8 or later." sleep 5 OUT=solaris-sparcv8-gcc fi if [ "$OUT" = "linux-sparcv9" -a $GCCVER -lt 28 ] then echo "WARNING! Falling down to 'linux-sparcv8'." echo " Upgrade to gcc-2.8 or later." sleep 5 OUT=linux-sparcv8 fi case "$GUESSOS" in i386-*) options="$options 386" ;; esac for i in aes aria bf camellia cast des dh dsa ec hmac idea md2 md5 mdc2 rc2 rc4 rc5 ripemd rsa seed sha sm2 sm3 sm4 do if [ ! -d $THERE/crypto/$i ] then options="$options no-$i" fi done if [ -z "$OUT" ]; then OUT="$CC" fi if [ ".$PERL" = . ] ; then for i in . `echo $PATH | sed 's/:/ /g'`; do if [ -f "$i/perl5$EXE" ] ; then PERL="$i/perl5$EXE" break; fi; done fi if [ ".$PERL" = . ] ; then for i in . `echo $PATH | sed 's/:/ /g'`; do if [ -f "$i/perl$EXE" ] ; then if "$i/perl$EXE" -e 'exit($]<5.0)'; then PERL="$i/perl$EXE" break; fi; fi; done fi if [ ".$PERL" = . ] ; then echo "You need Perl 5." exit 1 fi # run Configure to check to see if we need to specify the # compiler for the platform ... in which case we add it on # the end ... otherwise we leave it off $PERL $THERE/Configure LIST | grep "$OUT-$CC" > /dev/null if [ $? = "0" ]; then OUT="$OUT-$CC" fi OUT="$OUT" if [ "$OUT" = "darwin64-x86_64-cc" ]; then echo "WARNING! If you wish to build 32-bit libraries, then you have to" echo " invoke 'KERNEL_BITS=32 $THERE/config $options'." fi if $PERL $THERE/Configure LIST | grep "$OUT" > /dev/null; then if [ "$VERBOSE" = "true" ]; then echo /usr/bin/env \ __CNF_CPPDEFINES="'$__CNF_CPPDEFINES'" \ __CNF_CPPINCLUDES="'$__CNF_CPPINCLUDES'" \ __CNF_CPPFLAGS="'$__CNF_CPPFLAGS'" \ __CNF_CFLAGS="'$__CNF_CFLAGS'" \ __CNF_CXXFLAGS="'$__CNF_CXXFLAGS'" \ __CNF_LDFLAGS="'$__CNF_LDFLAGS'" \ __CNF_LDLIBS="'$__CNF_LDLIBS'" \ $PERL $THERE/Configure $OUT $options fi if [ "$DRYRUN" = "false" ]; then # eval to make sure quoted options, possibly with spaces inside, # are treated right eval /usr/bin/env \ __CNF_CPPDEFINES="'$__CNF_CPPDEFINES'" \ __CNF_CPPINCLUDES="'$__CNF_CPPINCLUDES'" \ __CNF_CPPFLAGS="'$__CNF_CPPFLAGS'" \ __CNF_CFLAGS="'$__CNF_CFLAGS'" \ __CNF_CXXFLAGS="'$__CNF_CXXFLAGS'" \ __CNF_LDFLAGS="'$__CNF_LDFLAGS'" \ __CNF_LDLIBS="'$__CNF_LDLIBS'" \ $PERL $THERE/Configure $OUT $options fi else echo "This system ($OUT) is not supported. See file INSTALL for details." exit 1 fi # Do not add anothing from here on, so we don't lose the Configure exit code ) diff --git a/crypto/bn/asm/x86_64-mont5.pl b/crypto/bn/asm/x86_64-mont5.pl index 8c37d132e476..33cb769c36d5 100755 --- a/crypto/bn/asm/x86_64-mont5.pl +++ b/crypto/bn/asm/x86_64-mont5.pl @@ -1,3963 +1,3767 @@ #! /usr/bin/env perl -# Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved. +# Copyright 2011-2022 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # August 2011. # # Companion to x86_64-mont.pl that optimizes cache-timing attack # countermeasures. The subroutines are produced by replacing bp[i] # references in their x86_64-mont.pl counterparts with cache-neutral # references to powers table computed in BN_mod_exp_mont_consttime. # In addition subroutine that scatters elements of the powers table # is implemented, so that scatter-/gathering can be tuned without # bn_exp.c modifications. # August 2013. # # Add MULX/AD*X code paths and additional interfaces to optimize for # branch prediction unit. For input lengths that are multiples of 8 # the np argument is not just modulus value, but one interleaved # with 0. This is to optimize post-condition... $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { $addx = ($1>=2.23); } if (!$addx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) { $addx = ($1>=2.10); } if (!$addx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) && `ml64 2>&1` =~ /Version ([0-9]+)\./) { $addx = ($1>=12); } if (!$addx && `$ENV{CC} -v 2>&1` =~ /((?:clang|LLVM) version|.*based on LLVM) ([0-9]+)\.([0-9]+)/) { my $ver = $2 + $3/100.0; # 3.1->3.01, 3.10->3.10 $addx = ($ver>=3.03); } # int bn_mul_mont_gather5( $rp="%rdi"; # BN_ULONG *rp, $ap="%rsi"; # const BN_ULONG *ap, $bp="%rdx"; # const BN_ULONG *bp, $np="%rcx"; # const BN_ULONG *np, $n0="%r8"; # const BN_ULONG *n0, $num="%r9"; # int num, # int idx); # 0 to 2^5-1, "index" in $bp holding # pre-computed powers of a', interlaced # in such manner that b[0] is $bp[idx], # b[1] is [2^5+idx], etc. $lo0="%r10"; $hi0="%r11"; $hi1="%r13"; $i="%r14"; $j="%r15"; $m0="%rbx"; $m1="%rbp"; $code=<<___; .text .extern OPENSSL_ia32cap_P .globl bn_mul_mont_gather5 .type bn_mul_mont_gather5,\@function,6 .align 64 bn_mul_mont_gather5: .cfi_startproc mov ${num}d,${num}d mov %rsp,%rax .cfi_def_cfa_register %rax test \$7,${num}d jnz .Lmul_enter ___ $code.=<<___ if ($addx); mov OPENSSL_ia32cap_P+8(%rip),%r11d ___ $code.=<<___; jmp .Lmul4x_enter .align 16 .Lmul_enter: movd `($win64?56:8)`(%rsp),%xmm5 # load 7th argument push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 neg $num mov %rsp,%r11 lea -280(%rsp,$num,8),%r10 # future alloca(8*(num+2)+256+8) neg $num # restore $num and \$-1024,%r10 # minimize TLB usage # An OS-agnostic version of __chkstk. # # Some OSes (Windows) insist on stack being "wired" to # physical memory in strictly sequential manner, i.e. if stack # allocation spans two pages, then reference to farmost one can # be punishable by SEGV. But page walking can do good even on # other OSes, because it guarantees that villain thread hits # the guard page before it can make damage to innocent one... sub %r10,%r11 and \$-4096,%r11 lea (%r10,%r11),%rsp mov (%rsp),%r11 cmp %r10,%rsp ja .Lmul_page_walk jmp .Lmul_page_walk_done .Lmul_page_walk: lea -4096(%rsp),%rsp mov (%rsp),%r11 cmp %r10,%rsp ja .Lmul_page_walk .Lmul_page_walk_done: lea .Linc(%rip),%r10 mov %rax,8(%rsp,$num,8) # tp[num+1]=%rsp .cfi_cfa_expression %rsp+8,$num,8,mul,plus,deref,+8 .Lmul_body: lea 128($bp),%r12 # reassign $bp (+size optimization) ___ $bp="%r12"; $STRIDE=2**5*8; # 5 is "window size" $N=$STRIDE/4; # should match cache line size $code.=<<___; movdqa 0(%r10),%xmm0 # 00000001000000010000000000000000 movdqa 16(%r10),%xmm1 # 00000002000000020000000200000002 lea 24-112(%rsp,$num,8),%r10# place the mask after tp[num+3] (+ICache optimization) and \$-16,%r10 pshufd \$0,%xmm5,%xmm5 # broadcast index movdqa %xmm1,%xmm4 movdqa %xmm1,%xmm2 ___ ######################################################################## # calculate mask by comparing 0..31 to index and save result to stack # $code.=<<___; paddd %xmm0,%xmm1 pcmpeqd %xmm5,%xmm0 # compare to 1,0 .byte 0x67 movdqa %xmm4,%xmm3 ___ for($k=0;$k<$STRIDE/16-4;$k+=4) { $code.=<<___; paddd %xmm1,%xmm2 pcmpeqd %xmm5,%xmm1 # compare to 3,2 movdqa %xmm0,`16*($k+0)+112`(%r10) movdqa %xmm4,%xmm0 paddd %xmm2,%xmm3 pcmpeqd %xmm5,%xmm2 # compare to 5,4 movdqa %xmm1,`16*($k+1)+112`(%r10) movdqa %xmm4,%xmm1 paddd %xmm3,%xmm0 pcmpeqd %xmm5,%xmm3 # compare to 7,6 movdqa %xmm2,`16*($k+2)+112`(%r10) movdqa %xmm4,%xmm2 paddd %xmm0,%xmm1 pcmpeqd %xmm5,%xmm0 movdqa %xmm3,`16*($k+3)+112`(%r10) movdqa %xmm4,%xmm3 ___ } $code.=<<___; # last iteration can be optimized paddd %xmm1,%xmm2 pcmpeqd %xmm5,%xmm1 movdqa %xmm0,`16*($k+0)+112`(%r10) paddd %xmm2,%xmm3 .byte 0x67 pcmpeqd %xmm5,%xmm2 movdqa %xmm1,`16*($k+1)+112`(%r10) pcmpeqd %xmm5,%xmm3 movdqa %xmm2,`16*($k+2)+112`(%r10) pand `16*($k+0)-128`($bp),%xmm0 # while it's still in register pand `16*($k+1)-128`($bp),%xmm1 pand `16*($k+2)-128`($bp),%xmm2 movdqa %xmm3,`16*($k+3)+112`(%r10) pand `16*($k+3)-128`($bp),%xmm3 por %xmm2,%xmm0 por %xmm3,%xmm1 ___ for($k=0;$k<$STRIDE/16-4;$k+=4) { $code.=<<___; movdqa `16*($k+0)-128`($bp),%xmm4 movdqa `16*($k+1)-128`($bp),%xmm5 movdqa `16*($k+2)-128`($bp),%xmm2 pand `16*($k+0)+112`(%r10),%xmm4 movdqa `16*($k+3)-128`($bp),%xmm3 pand `16*($k+1)+112`(%r10),%xmm5 por %xmm4,%xmm0 pand `16*($k+2)+112`(%r10),%xmm2 por %xmm5,%xmm1 pand `16*($k+3)+112`(%r10),%xmm3 por %xmm2,%xmm0 por %xmm3,%xmm1 ___ } $code.=<<___; por %xmm1,%xmm0 pshufd \$0x4e,%xmm0,%xmm1 por %xmm1,%xmm0 lea $STRIDE($bp),$bp movq %xmm0,$m0 # m0=bp[0] mov ($n0),$n0 # pull n0[0] value mov ($ap),%rax xor $i,$i # i=0 xor $j,$j # j=0 mov $n0,$m1 mulq $m0 # ap[0]*bp[0] mov %rax,$lo0 mov ($np),%rax imulq $lo0,$m1 # "tp[0]"*n0 mov %rdx,$hi0 mulq $m1 # np[0]*m1 add %rax,$lo0 # discarded mov 8($ap),%rax adc \$0,%rdx mov %rdx,$hi1 lea 1($j),$j # j++ jmp .L1st_enter .align 16 .L1st: add %rax,$hi1 mov ($ap,$j,8),%rax adc \$0,%rdx add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0] mov $lo0,$hi0 adc \$0,%rdx mov $hi1,-16(%rsp,$j,8) # tp[j-1] mov %rdx,$hi1 .L1st_enter: mulq $m0 # ap[j]*bp[0] add %rax,$hi0 mov ($np,$j,8),%rax adc \$0,%rdx lea 1($j),$j # j++ mov %rdx,$lo0 mulq $m1 # np[j]*m1 cmp $num,$j jne .L1st # note that upon exit $j==$num, so # they can be used interchangeably add %rax,$hi1 adc \$0,%rdx add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $hi1,-16(%rsp,$num,8) # tp[num-1] mov %rdx,$hi1 mov $lo0,$hi0 xor %rdx,%rdx add $hi0,$hi1 adc \$0,%rdx mov $hi1,-8(%rsp,$num,8) mov %rdx,(%rsp,$num,8) # store upmost overflow bit lea 1($i),$i # i++ jmp .Louter .align 16 .Louter: lea 24+128(%rsp,$num,8),%rdx # where 256-byte mask is (+size optimization) and \$-16,%rdx pxor %xmm4,%xmm4 pxor %xmm5,%xmm5 ___ for($k=0;$k<$STRIDE/16;$k+=4) { $code.=<<___; movdqa `16*($k+0)-128`($bp),%xmm0 movdqa `16*($k+1)-128`($bp),%xmm1 movdqa `16*($k+2)-128`($bp),%xmm2 movdqa `16*($k+3)-128`($bp),%xmm3 pand `16*($k+0)-128`(%rdx),%xmm0 pand `16*($k+1)-128`(%rdx),%xmm1 por %xmm0,%xmm4 pand `16*($k+2)-128`(%rdx),%xmm2 por %xmm1,%xmm5 pand `16*($k+3)-128`(%rdx),%xmm3 por %xmm2,%xmm4 por %xmm3,%xmm5 ___ } $code.=<<___; por %xmm5,%xmm4 pshufd \$0x4e,%xmm4,%xmm0 por %xmm4,%xmm0 lea $STRIDE($bp),$bp mov ($ap),%rax # ap[0] movq %xmm0,$m0 # m0=bp[i] xor $j,$j # j=0 mov $n0,$m1 mov (%rsp),$lo0 mulq $m0 # ap[0]*bp[i] add %rax,$lo0 # ap[0]*bp[i]+tp[0] mov ($np),%rax adc \$0,%rdx imulq $lo0,$m1 # tp[0]*n0 mov %rdx,$hi0 mulq $m1 # np[0]*m1 add %rax,$lo0 # discarded mov 8($ap),%rax adc \$0,%rdx mov 8(%rsp),$lo0 # tp[1] mov %rdx,$hi1 lea 1($j),$j # j++ jmp .Linner_enter .align 16 .Linner: add %rax,$hi1 mov ($ap,$j,8),%rax adc \$0,%rdx add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j] mov (%rsp,$j,8),$lo0 adc \$0,%rdx mov $hi1,-16(%rsp,$j,8) # tp[j-1] mov %rdx,$hi1 .Linner_enter: mulq $m0 # ap[j]*bp[i] add %rax,$hi0 mov ($np,$j,8),%rax adc \$0,%rdx add $hi0,$lo0 # ap[j]*bp[i]+tp[j] mov %rdx,$hi0 adc \$0,$hi0 lea 1($j),$j # j++ mulq $m1 # np[j]*m1 cmp $num,$j jne .Linner # note that upon exit $j==$num, so # they can be used interchangeably add %rax,$hi1 adc \$0,%rdx add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j] mov (%rsp,$num,8),$lo0 adc \$0,%rdx mov $hi1,-16(%rsp,$num,8) # tp[num-1] mov %rdx,$hi1 xor %rdx,%rdx add $hi0,$hi1 adc \$0,%rdx add $lo0,$hi1 # pull upmost overflow bit adc \$0,%rdx mov $hi1,-8(%rsp,$num,8) mov %rdx,(%rsp,$num,8) # store upmost overflow bit lea 1($i),$i # i++ cmp $num,$i jb .Louter xor $i,$i # i=0 and clear CF! mov (%rsp),%rax # tp[0] lea (%rsp),$ap # borrow ap for tp mov $num,$j # j=num jmp .Lsub .align 16 .Lsub: sbb ($np,$i,8),%rax mov %rax,($rp,$i,8) # rp[i]=tp[i]-np[i] mov 8($ap,$i,8),%rax # tp[i+1] lea 1($i),$i # i++ dec $j # doesn't affect CF! jnz .Lsub sbb \$0,%rax # handle upmost overflow bit mov \$-1,%rbx xor %rax,%rbx xor $i,$i mov $num,$j # j=num .Lcopy: # conditional copy mov ($rp,$i,8),%rcx mov (%rsp,$i,8),%rdx and %rbx,%rcx and %rax,%rdx mov $i,(%rsp,$i,8) # zap temporary vector or %rcx,%rdx mov %rdx,($rp,$i,8) # rp[i]=tp[i] lea 1($i),$i sub \$1,$j jnz .Lcopy mov 8(%rsp,$num,8),%rsi # restore %rsp .cfi_def_cfa %rsi,8 mov \$1,%rax mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lmul_epilogue: ret .cfi_endproc .size bn_mul_mont_gather5,.-bn_mul_mont_gather5 ___ {{{ my @A=("%r10","%r11"); my @N=("%r13","%rdi"); $code.=<<___; .type bn_mul4x_mont_gather5,\@function,6 .align 32 bn_mul4x_mont_gather5: .cfi_startproc .byte 0x67 mov %rsp,%rax .cfi_def_cfa_register %rax .Lmul4x_enter: ___ $code.=<<___ if ($addx); and \$0x80108,%r11d cmp \$0x80108,%r11d # check for AD*X+BMI2+BMI1 je .Lmulx4x_enter ___ $code.=<<___; push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lmul4x_prologue: .byte 0x67 shl \$3,${num}d # convert $num to bytes lea ($num,$num,2),%r10 # 3*$num in bytes neg $num # -$num ############################################################## # Ensure that stack frame doesn't alias with $rptr+3*$num # modulo 4096, which covers ret[num], am[num] and n[num] # (see bn_exp.c). This is done to allow memory disambiguation # logic do its magic. [Extra [num] is allocated in order # to align with bn_power5's frame, which is cleansed after # completing exponentiation. Extra 256 bytes is for power mask # calculated from 7th argument, the index.] # lea -320(%rsp,$num,2),%r11 mov %rsp,%rbp sub $rp,%r11 and \$4095,%r11 cmp %r11,%r10 jb .Lmul4xsp_alt sub %r11,%rbp # align with $rp lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*num*8+256) jmp .Lmul4xsp_done .align 32 .Lmul4xsp_alt: lea 4096-320(,$num,2),%r10 lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*num*8+256) sub %r10,%r11 mov \$0,%r10 cmovc %r10,%r11 sub %r11,%rbp .Lmul4xsp_done: and \$-64,%rbp mov %rsp,%r11 sub %rbp,%r11 and \$-4096,%r11 lea (%rbp,%r11),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lmul4x_page_walk jmp .Lmul4x_page_walk_done .Lmul4x_page_walk: lea -4096(%rsp),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lmul4x_page_walk .Lmul4x_page_walk_done: neg $num mov %rax,40(%rsp) .cfi_cfa_expression %rsp+40,deref,+8 .Lmul4x_body: call mul4x_internal mov 40(%rsp),%rsi # restore %rsp .cfi_def_cfa %rsi,8 mov \$1,%rax mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lmul4x_epilogue: ret .cfi_endproc .size bn_mul4x_mont_gather5,.-bn_mul4x_mont_gather5 .type mul4x_internal,\@abi-omnipotent .align 32 mul4x_internal: .cfi_startproc shl \$5,$num # $num was in bytes movd `($win64?56:8)`(%rax),%xmm5 # load 7th argument, index lea .Linc(%rip),%rax lea 128(%rdx,$num),%r13 # end of powers table (+size optimization) shr \$5,$num # restore $num ___ $bp="%r12"; $STRIDE=2**5*8; # 5 is "window size" $N=$STRIDE/4; # should match cache line size $tp=$i; $code.=<<___; movdqa 0(%rax),%xmm0 # 00000001000000010000000000000000 movdqa 16(%rax),%xmm1 # 00000002000000020000000200000002 lea 88-112(%rsp,$num),%r10 # place the mask after tp[num+1] (+ICache optimization) lea 128(%rdx),$bp # size optimization pshufd \$0,%xmm5,%xmm5 # broadcast index movdqa %xmm1,%xmm4 .byte 0x67,0x67 movdqa %xmm1,%xmm2 ___ ######################################################################## # calculate mask by comparing 0..31 to index and save result to stack # $code.=<<___; paddd %xmm0,%xmm1 pcmpeqd %xmm5,%xmm0 # compare to 1,0 .byte 0x67 movdqa %xmm4,%xmm3 ___ for($i=0;$i<$STRIDE/16-4;$i+=4) { $code.=<<___; paddd %xmm1,%xmm2 pcmpeqd %xmm5,%xmm1 # compare to 3,2 movdqa %xmm0,`16*($i+0)+112`(%r10) movdqa %xmm4,%xmm0 paddd %xmm2,%xmm3 pcmpeqd %xmm5,%xmm2 # compare to 5,4 movdqa %xmm1,`16*($i+1)+112`(%r10) movdqa %xmm4,%xmm1 paddd %xmm3,%xmm0 pcmpeqd %xmm5,%xmm3 # compare to 7,6 movdqa %xmm2,`16*($i+2)+112`(%r10) movdqa %xmm4,%xmm2 paddd %xmm0,%xmm1 pcmpeqd %xmm5,%xmm0 movdqa %xmm3,`16*($i+3)+112`(%r10) movdqa %xmm4,%xmm3 ___ } $code.=<<___; # last iteration can be optimized paddd %xmm1,%xmm2 pcmpeqd %xmm5,%xmm1 movdqa %xmm0,`16*($i+0)+112`(%r10) paddd %xmm2,%xmm3 .byte 0x67 pcmpeqd %xmm5,%xmm2 movdqa %xmm1,`16*($i+1)+112`(%r10) pcmpeqd %xmm5,%xmm3 movdqa %xmm2,`16*($i+2)+112`(%r10) pand `16*($i+0)-128`($bp),%xmm0 # while it's still in register pand `16*($i+1)-128`($bp),%xmm1 pand `16*($i+2)-128`($bp),%xmm2 movdqa %xmm3,`16*($i+3)+112`(%r10) pand `16*($i+3)-128`($bp),%xmm3 por %xmm2,%xmm0 por %xmm3,%xmm1 ___ for($i=0;$i<$STRIDE/16-4;$i+=4) { $code.=<<___; movdqa `16*($i+0)-128`($bp),%xmm4 movdqa `16*($i+1)-128`($bp),%xmm5 movdqa `16*($i+2)-128`($bp),%xmm2 pand `16*($i+0)+112`(%r10),%xmm4 movdqa `16*($i+3)-128`($bp),%xmm3 pand `16*($i+1)+112`(%r10),%xmm5 por %xmm4,%xmm0 pand `16*($i+2)+112`(%r10),%xmm2 por %xmm5,%xmm1 pand `16*($i+3)+112`(%r10),%xmm3 por %xmm2,%xmm0 por %xmm3,%xmm1 ___ } $code.=<<___; por %xmm1,%xmm0 pshufd \$0x4e,%xmm0,%xmm1 por %xmm1,%xmm0 lea $STRIDE($bp),$bp movq %xmm0,$m0 # m0=bp[0] mov %r13,16+8(%rsp) # save end of b[num] mov $rp, 56+8(%rsp) # save $rp mov ($n0),$n0 # pull n0[0] value mov ($ap),%rax lea ($ap,$num),$ap # end of a[num] neg $num mov $n0,$m1 mulq $m0 # ap[0]*bp[0] mov %rax,$A[0] mov ($np),%rax imulq $A[0],$m1 # "tp[0]"*n0 lea 64+8(%rsp),$tp mov %rdx,$A[1] mulq $m1 # np[0]*m1 add %rax,$A[0] # discarded mov 8($ap,$num),%rax adc \$0,%rdx mov %rdx,$N[1] mulq $m0 add %rax,$A[1] mov 8*1($np),%rax adc \$0,%rdx mov %rdx,$A[0] mulq $m1 add %rax,$N[1] mov 16($ap,$num),%rax adc \$0,%rdx add $A[1],$N[1] lea 4*8($num),$j # j=4 lea 8*4($np),$np adc \$0,%rdx mov $N[1],($tp) mov %rdx,$N[0] jmp .L1st4x .align 32 .L1st4x: mulq $m0 # ap[j]*bp[0] add %rax,$A[0] mov -8*2($np),%rax lea 32($tp),$tp adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov -8($ap,$j),%rax adc \$0,%rdx add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[0],-24($tp) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[0] add %rax,$A[1] mov -8*1($np),%rax adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov ($ap,$j),%rax adc \$0,%rdx add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[1],-16($tp) # tp[j-1] mov %rdx,$N[0] mulq $m0 # ap[j]*bp[0] add %rax,$A[0] mov 8*0($np),%rax adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov 8($ap,$j),%rax adc \$0,%rdx add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[0],-8($tp) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[0] add %rax,$A[1] mov 8*1($np),%rax adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov 16($ap,$j),%rax adc \$0,%rdx add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] lea 8*4($np),$np adc \$0,%rdx mov $N[1],($tp) # tp[j-1] mov %rdx,$N[0] add \$32,$j # j+=4 jnz .L1st4x mulq $m0 # ap[j]*bp[0] add %rax,$A[0] mov -8*2($np),%rax lea 32($tp),$tp adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov -8($ap),%rax adc \$0,%rdx add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[0],-24($tp) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[0] add %rax,$A[1] mov -8*1($np),%rax adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov ($ap,$num),%rax # ap[0] adc \$0,%rdx add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[1],-16($tp) # tp[j-1] mov %rdx,$N[0] lea ($np,$num),$np # rewind $np xor $N[1],$N[1] add $A[0],$N[0] adc \$0,$N[1] mov $N[0],-8($tp) jmp .Louter4x .align 32 .Louter4x: lea 16+128($tp),%rdx # where 256-byte mask is (+size optimization) pxor %xmm4,%xmm4 pxor %xmm5,%xmm5 ___ for($i=0;$i<$STRIDE/16;$i+=4) { $code.=<<___; movdqa `16*($i+0)-128`($bp),%xmm0 movdqa `16*($i+1)-128`($bp),%xmm1 movdqa `16*($i+2)-128`($bp),%xmm2 movdqa `16*($i+3)-128`($bp),%xmm3 pand `16*($i+0)-128`(%rdx),%xmm0 pand `16*($i+1)-128`(%rdx),%xmm1 por %xmm0,%xmm4 pand `16*($i+2)-128`(%rdx),%xmm2 por %xmm1,%xmm5 pand `16*($i+3)-128`(%rdx),%xmm3 por %xmm2,%xmm4 por %xmm3,%xmm5 ___ } $code.=<<___; por %xmm5,%xmm4 pshufd \$0x4e,%xmm4,%xmm0 por %xmm4,%xmm0 lea $STRIDE($bp),$bp movq %xmm0,$m0 # m0=bp[i] mov ($tp,$num),$A[0] mov $n0,$m1 mulq $m0 # ap[0]*bp[i] add %rax,$A[0] # ap[0]*bp[i]+tp[0] mov ($np),%rax adc \$0,%rdx imulq $A[0],$m1 # tp[0]*n0 mov %rdx,$A[1] mov $N[1],($tp) # store upmost overflow bit lea ($tp,$num),$tp # rewind $tp mulq $m1 # np[0]*m1 add %rax,$A[0] # "$N[0]", discarded mov 8($ap,$num),%rax adc \$0,%rdx mov %rdx,$N[1] mulq $m0 # ap[j]*bp[i] add %rax,$A[1] mov 8*1($np),%rax adc \$0,%rdx add 8($tp),$A[1] # +tp[1] adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov 16($ap,$num),%rax adc \$0,%rdx add $A[1],$N[1] # np[j]*m1+ap[j]*bp[i]+tp[j] lea 4*8($num),$j # j=4 lea 8*4($np),$np adc \$0,%rdx mov %rdx,$N[0] jmp .Linner4x .align 32 .Linner4x: mulq $m0 # ap[j]*bp[i] add %rax,$A[0] mov -8*2($np),%rax adc \$0,%rdx add 16($tp),$A[0] # ap[j]*bp[i]+tp[j] lea 32($tp),$tp adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov -8($ap,$j),%rax adc \$0,%rdx add $A[0],$N[0] adc \$0,%rdx mov $N[1],-32($tp) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[i] add %rax,$A[1] mov -8*1($np),%rax adc \$0,%rdx add -8($tp),$A[1] adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov ($ap,$j),%rax adc \$0,%rdx add $A[1],$N[1] adc \$0,%rdx mov $N[0],-24($tp) # tp[j-1] mov %rdx,$N[0] mulq $m0 # ap[j]*bp[i] add %rax,$A[0] mov 8*0($np),%rax adc \$0,%rdx add ($tp),$A[0] # ap[j]*bp[i]+tp[j] adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov 8($ap,$j),%rax adc \$0,%rdx add $A[0],$N[0] adc \$0,%rdx mov $N[1],-16($tp) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[i] add %rax,$A[1] mov 8*1($np),%rax adc \$0,%rdx add 8($tp),$A[1] adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov 16($ap,$j),%rax adc \$0,%rdx add $A[1],$N[1] lea 8*4($np),$np adc \$0,%rdx mov $N[0],-8($tp) # tp[j-1] mov %rdx,$N[0] add \$32,$j # j+=4 jnz .Linner4x mulq $m0 # ap[j]*bp[i] add %rax,$A[0] mov -8*2($np),%rax adc \$0,%rdx add 16($tp),$A[0] # ap[j]*bp[i]+tp[j] lea 32($tp),$tp adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov -8($ap),%rax adc \$0,%rdx add $A[0],$N[0] adc \$0,%rdx mov $N[1],-32($tp) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[i] add %rax,$A[1] mov $m1,%rax mov -8*1($np),$m1 adc \$0,%rdx add -8($tp),$A[1] adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov ($ap,$num),%rax # ap[0] adc \$0,%rdx add $A[1],$N[1] adc \$0,%rdx mov $N[0],-24($tp) # tp[j-1] mov %rdx,$N[0] mov $N[1],-16($tp) # tp[j-1] lea ($np,$num),$np # rewind $np xor $N[1],$N[1] add $A[0],$N[0] adc \$0,$N[1] add ($tp),$N[0] # pull upmost overflow bit adc \$0,$N[1] # upmost overflow bit mov $N[0],-8($tp) cmp 16+8(%rsp),$bp jb .Louter4x ___ if (1) { $code.=<<___; xor %rax,%rax sub $N[0],$m1 # compare top-most words adc $j,$j # $j is zero or $j,$N[1] sub $N[1],%rax # %rax=-$N[1] lea ($tp,$num),%rbx # tptr in .sqr4x_sub mov ($np),%r12 lea ($np),%rbp # nptr in .sqr4x_sub mov %r9,%rcx sar \$3+2,%rcx mov 56+8(%rsp),%rdi # rptr in .sqr4x_sub dec %r12 # so that after 'not' we get -n[0] xor %r10,%r10 mov 8*1(%rbp),%r13 mov 8*2(%rbp),%r14 mov 8*3(%rbp),%r15 jmp .Lsqr4x_sub_entry ___ } else { my @ri=("%rax",$bp,$m0,$m1); my $rp="%rdx"; $code.=<<___ xor \$1,$N[1] lea ($tp,$num),$tp # rewind $tp sar \$5,$num # cf=0 lea ($np,$N[1],8),$np mov 56+8(%rsp),$rp # restore $rp jmp .Lsub4x .align 32 .Lsub4x: .byte 0x66 mov 8*0($tp),@ri[0] mov 8*1($tp),@ri[1] .byte 0x66 sbb 16*0($np),@ri[0] mov 8*2($tp),@ri[2] sbb 16*1($np),@ri[1] mov 3*8($tp),@ri[3] lea 4*8($tp),$tp sbb 16*2($np),@ri[2] mov @ri[0],8*0($rp) sbb 16*3($np),@ri[3] lea 16*4($np),$np mov @ri[1],8*1($rp) mov @ri[2],8*2($rp) mov @ri[3],8*3($rp) lea 8*4($rp),$rp inc $num jnz .Lsub4x ret ___ } $code.=<<___; .cfi_endproc .size mul4x_internal,.-mul4x_internal ___ }}} {{{ ###################################################################### # void bn_power5( my $rptr="%rdi"; # BN_ULONG *rptr, my $aptr="%rsi"; # const BN_ULONG *aptr, my $bptr="%rdx"; # const void *table, my $nptr="%rcx"; # const BN_ULONG *nptr, my $n0 ="%r8"; # const BN_ULONG *n0); my $num ="%r9"; # int num, has to be divisible by 8 # int pwr my ($i,$j,$tptr)=("%rbp","%rcx",$rptr); my @A0=("%r10","%r11"); my @A1=("%r12","%r13"); my ($a0,$a1,$ai)=("%r14","%r15","%rbx"); $code.=<<___; .globl bn_power5 .type bn_power5,\@function,6 .align 32 bn_power5: .cfi_startproc mov %rsp,%rax .cfi_def_cfa_register %rax ___ $code.=<<___ if ($addx); mov OPENSSL_ia32cap_P+8(%rip),%r11d and \$0x80108,%r11d cmp \$0x80108,%r11d # check for AD*X+BMI2+BMI1 je .Lpowerx5_enter ___ $code.=<<___; push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lpower5_prologue: shl \$3,${num}d # convert $num to bytes lea ($num,$num,2),%r10d # 3*$num neg $num mov ($n0),$n0 # *n0 ############################################################## # Ensure that stack frame doesn't alias with $rptr+3*$num # modulo 4096, which covers ret[num], am[num] and n[num] # (see bn_exp.c). This is done to allow memory disambiguation # logic do its magic. [Extra 256 bytes is for power mask # calculated from 7th argument, the index.] # lea -320(%rsp,$num,2),%r11 mov %rsp,%rbp sub $rptr,%r11 and \$4095,%r11 cmp %r11,%r10 jb .Lpwr_sp_alt sub %r11,%rbp # align with $aptr lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*num*8+256) jmp .Lpwr_sp_done .align 32 .Lpwr_sp_alt: lea 4096-320(,$num,2),%r10 lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*num*8+256) sub %r10,%r11 mov \$0,%r10 cmovc %r10,%r11 sub %r11,%rbp .Lpwr_sp_done: and \$-64,%rbp mov %rsp,%r11 sub %rbp,%r11 and \$-4096,%r11 lea (%rbp,%r11),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lpwr_page_walk jmp .Lpwr_page_walk_done .Lpwr_page_walk: lea -4096(%rsp),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lpwr_page_walk .Lpwr_page_walk_done: mov $num,%r10 neg $num ############################################################## # Stack layout # # +0 saved $num, used in reduction section # +8 &t[2*$num], used in reduction section # +32 saved *n0 # +40 saved %rsp # +48 t[2*$num] # mov $n0, 32(%rsp) mov %rax, 40(%rsp) # save original %rsp .cfi_cfa_expression %rsp+40,deref,+8 .Lpower5_body: movq $rptr,%xmm1 # save $rptr, used in sqr8x movq $nptr,%xmm2 # save $nptr movq %r10, %xmm3 # -$num, used in sqr8x movq $bptr,%xmm4 call __bn_sqr8x_internal call __bn_post4x_internal call __bn_sqr8x_internal call __bn_post4x_internal call __bn_sqr8x_internal call __bn_post4x_internal call __bn_sqr8x_internal call __bn_post4x_internal call __bn_sqr8x_internal call __bn_post4x_internal movq %xmm2,$nptr movq %xmm4,$bptr mov $aptr,$rptr mov 40(%rsp),%rax lea 32(%rsp),$n0 call mul4x_internal mov 40(%rsp),%rsi # restore %rsp .cfi_def_cfa %rsi,8 mov \$1,%rax mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lpower5_epilogue: ret .cfi_endproc .size bn_power5,.-bn_power5 .globl bn_sqr8x_internal .hidden bn_sqr8x_internal .type bn_sqr8x_internal,\@abi-omnipotent .align 32 bn_sqr8x_internal: __bn_sqr8x_internal: .cfi_startproc ############################################################## # Squaring part: # # a) multiply-n-add everything but a[i]*a[i]; # b) shift result of a) by 1 to the left and accumulate # a[i]*a[i] products; # ############################################################## # a[1]a[0] # a[2]a[0] # a[3]a[0] # a[2]a[1] # a[4]a[0] # a[3]a[1] # a[5]a[0] # a[4]a[1] # a[3]a[2] # a[6]a[0] # a[5]a[1] # a[4]a[2] # a[7]a[0] # a[6]a[1] # a[5]a[2] # a[4]a[3] # a[7]a[1] # a[6]a[2] # a[5]a[3] # a[7]a[2] # a[6]a[3] # a[5]a[4] # a[7]a[3] # a[6]a[4] # a[7]a[4] # a[6]a[5] # a[7]a[5] # a[7]a[6] # a[1]a[0] # a[2]a[0] # a[3]a[0] # a[4]a[0] # a[5]a[0] # a[6]a[0] # a[7]a[0] # a[2]a[1] # a[3]a[1] # a[4]a[1] # a[5]a[1] # a[6]a[1] # a[7]a[1] # a[3]a[2] # a[4]a[2] # a[5]a[2] # a[6]a[2] # a[7]a[2] # a[4]a[3] # a[5]a[3] # a[6]a[3] # a[7]a[3] # a[5]a[4] # a[6]a[4] # a[7]a[4] # a[6]a[5] # a[7]a[5] # a[7]a[6] # a[0]a[0] # a[1]a[1] # a[2]a[2] # a[3]a[3] # a[4]a[4] # a[5]a[5] # a[6]a[6] # a[7]a[7] lea 32(%r10),$i # $i=-($num-32) lea ($aptr,$num),$aptr # end of a[] buffer, ($aptr,$i)=&ap[2] mov $num,$j # $j=$num # comments apply to $num==8 case mov -32($aptr,$i),$a0 # a[0] lea 48+8(%rsp,$num,2),$tptr # end of tp[] buffer, &tp[2*$num] mov -24($aptr,$i),%rax # a[1] lea -32($tptr,$i),$tptr # end of tp[] window, &tp[2*$num-"$i"] mov -16($aptr,$i),$ai # a[2] mov %rax,$a1 mul $a0 # a[1]*a[0] mov %rax,$A0[0] # a[1]*a[0] mov $ai,%rax # a[2] mov %rdx,$A0[1] mov $A0[0],-24($tptr,$i) # t[1] mul $a0 # a[2]*a[0] add %rax,$A0[1] mov $ai,%rax adc \$0,%rdx mov $A0[1],-16($tptr,$i) # t[2] mov %rdx,$A0[0] mov -8($aptr,$i),$ai # a[3] mul $a1 # a[2]*a[1] mov %rax,$A1[0] # a[2]*a[1]+t[3] mov $ai,%rax mov %rdx,$A1[1] lea ($i),$j mul $a0 # a[3]*a[0] add %rax,$A0[0] # a[3]*a[0]+a[2]*a[1]+t[3] mov $ai,%rax mov %rdx,$A0[1] adc \$0,$A0[1] add $A1[0],$A0[0] adc \$0,$A0[1] mov $A0[0],-8($tptr,$j) # t[3] jmp .Lsqr4x_1st .align 32 .Lsqr4x_1st: mov ($aptr,$j),$ai # a[4] mul $a1 # a[3]*a[1] add %rax,$A1[1] # a[3]*a[1]+t[4] mov $ai,%rax mov %rdx,$A1[0] adc \$0,$A1[0] mul $a0 # a[4]*a[0] add %rax,$A0[1] # a[4]*a[0]+a[3]*a[1]+t[4] mov $ai,%rax # a[3] mov 8($aptr,$j),$ai # a[5] mov %rdx,$A0[0] adc \$0,$A0[0] add $A1[1],$A0[1] adc \$0,$A0[0] mul $a1 # a[4]*a[3] add %rax,$A1[0] # a[4]*a[3]+t[5] mov $ai,%rax mov $A0[1],($tptr,$j) # t[4] mov %rdx,$A1[1] adc \$0,$A1[1] mul $a0 # a[5]*a[2] add %rax,$A0[0] # a[5]*a[2]+a[4]*a[3]+t[5] mov $ai,%rax mov 16($aptr,$j),$ai # a[6] mov %rdx,$A0[1] adc \$0,$A0[1] add $A1[0],$A0[0] adc \$0,$A0[1] mul $a1 # a[5]*a[3] add %rax,$A1[1] # a[5]*a[3]+t[6] mov $ai,%rax mov $A0[0],8($tptr,$j) # t[5] mov %rdx,$A1[0] adc \$0,$A1[0] mul $a0 # a[6]*a[2] add %rax,$A0[1] # a[6]*a[2]+a[5]*a[3]+t[6] mov $ai,%rax # a[3] mov 24($aptr,$j),$ai # a[7] mov %rdx,$A0[0] adc \$0,$A0[0] add $A1[1],$A0[1] adc \$0,$A0[0] mul $a1 # a[6]*a[5] add %rax,$A1[0] # a[6]*a[5]+t[7] mov $ai,%rax mov $A0[1],16($tptr,$j) # t[6] mov %rdx,$A1[1] adc \$0,$A1[1] lea 32($j),$j mul $a0 # a[7]*a[4] add %rax,$A0[0] # a[7]*a[4]+a[6]*a[5]+t[6] mov $ai,%rax mov %rdx,$A0[1] adc \$0,$A0[1] add $A1[0],$A0[0] adc \$0,$A0[1] mov $A0[0],-8($tptr,$j) # t[7] cmp \$0,$j jne .Lsqr4x_1st mul $a1 # a[7]*a[5] add %rax,$A1[1] lea 16($i),$i adc \$0,%rdx add $A0[1],$A1[1] adc \$0,%rdx mov $A1[1],($tptr) # t[8] mov %rdx,$A1[0] mov %rdx,8($tptr) # t[9] jmp .Lsqr4x_outer .align 32 .Lsqr4x_outer: # comments apply to $num==6 case mov -32($aptr,$i),$a0 # a[0] lea 48+8(%rsp,$num,2),$tptr # end of tp[] buffer, &tp[2*$num] mov -24($aptr,$i),%rax # a[1] lea -32($tptr,$i),$tptr # end of tp[] window, &tp[2*$num-"$i"] mov -16($aptr,$i),$ai # a[2] mov %rax,$a1 mul $a0 # a[1]*a[0] mov -24($tptr,$i),$A0[0] # t[1] add %rax,$A0[0] # a[1]*a[0]+t[1] mov $ai,%rax # a[2] adc \$0,%rdx mov $A0[0],-24($tptr,$i) # t[1] mov %rdx,$A0[1] mul $a0 # a[2]*a[0] add %rax,$A0[1] mov $ai,%rax adc \$0,%rdx add -16($tptr,$i),$A0[1] # a[2]*a[0]+t[2] mov %rdx,$A0[0] adc \$0,$A0[0] mov $A0[1],-16($tptr,$i) # t[2] xor $A1[0],$A1[0] mov -8($aptr,$i),$ai # a[3] mul $a1 # a[2]*a[1] add %rax,$A1[0] # a[2]*a[1]+t[3] mov $ai,%rax adc \$0,%rdx add -8($tptr,$i),$A1[0] mov %rdx,$A1[1] adc \$0,$A1[1] mul $a0 # a[3]*a[0] add %rax,$A0[0] # a[3]*a[0]+a[2]*a[1]+t[3] mov $ai,%rax adc \$0,%rdx add $A1[0],$A0[0] mov %rdx,$A0[1] adc \$0,$A0[1] mov $A0[0],-8($tptr,$i) # t[3] lea ($i),$j jmp .Lsqr4x_inner .align 32 .Lsqr4x_inner: mov ($aptr,$j),$ai # a[4] mul $a1 # a[3]*a[1] add %rax,$A1[1] # a[3]*a[1]+t[4] mov $ai,%rax mov %rdx,$A1[0] adc \$0,$A1[0] add ($tptr,$j),$A1[1] adc \$0,$A1[0] .byte 0x67 mul $a0 # a[4]*a[0] add %rax,$A0[1] # a[4]*a[0]+a[3]*a[1]+t[4] mov $ai,%rax # a[3] mov 8($aptr,$j),$ai # a[5] mov %rdx,$A0[0] adc \$0,$A0[0] add $A1[1],$A0[1] adc \$0,$A0[0] mul $a1 # a[4]*a[3] add %rax,$A1[0] # a[4]*a[3]+t[5] mov $A0[1],($tptr,$j) # t[4] mov $ai,%rax mov %rdx,$A1[1] adc \$0,$A1[1] add 8($tptr,$j),$A1[0] lea 16($j),$j # j++ adc \$0,$A1[1] mul $a0 # a[5]*a[2] add %rax,$A0[0] # a[5]*a[2]+a[4]*a[3]+t[5] mov $ai,%rax adc \$0,%rdx add $A1[0],$A0[0] mov %rdx,$A0[1] adc \$0,$A0[1] mov $A0[0],-8($tptr,$j) # t[5], "preloaded t[1]" below cmp \$0,$j jne .Lsqr4x_inner .byte 0x67 mul $a1 # a[5]*a[3] add %rax,$A1[1] adc \$0,%rdx add $A0[1],$A1[1] adc \$0,%rdx mov $A1[1],($tptr) # t[6], "preloaded t[2]" below mov %rdx,$A1[0] mov %rdx,8($tptr) # t[7], "preloaded t[3]" below add \$16,$i jnz .Lsqr4x_outer # comments apply to $num==4 case mov -32($aptr),$a0 # a[0] lea 48+8(%rsp,$num,2),$tptr # end of tp[] buffer, &tp[2*$num] mov -24($aptr),%rax # a[1] lea -32($tptr,$i),$tptr # end of tp[] window, &tp[2*$num-"$i"] mov -16($aptr),$ai # a[2] mov %rax,$a1 mul $a0 # a[1]*a[0] add %rax,$A0[0] # a[1]*a[0]+t[1], preloaded t[1] mov $ai,%rax # a[2] mov %rdx,$A0[1] adc \$0,$A0[1] mul $a0 # a[2]*a[0] add %rax,$A0[1] mov $ai,%rax mov $A0[0],-24($tptr) # t[1] mov %rdx,$A0[0] adc \$0,$A0[0] add $A1[1],$A0[1] # a[2]*a[0]+t[2], preloaded t[2] mov -8($aptr),$ai # a[3] adc \$0,$A0[0] mul $a1 # a[2]*a[1] add %rax,$A1[0] # a[2]*a[1]+t[3], preloaded t[3] mov $ai,%rax mov $A0[1],-16($tptr) # t[2] mov %rdx,$A1[1] adc \$0,$A1[1] mul $a0 # a[3]*a[0] add %rax,$A0[0] # a[3]*a[0]+a[2]*a[1]+t[3] mov $ai,%rax mov %rdx,$A0[1] adc \$0,$A0[1] add $A1[0],$A0[0] adc \$0,$A0[1] mov $A0[0],-8($tptr) # t[3] mul $a1 # a[3]*a[1] add %rax,$A1[1] mov -16($aptr),%rax # a[2] adc \$0,%rdx add $A0[1],$A1[1] adc \$0,%rdx mov $A1[1],($tptr) # t[4] mov %rdx,$A1[0] mov %rdx,8($tptr) # t[5] mul $ai # a[2]*a[3] ___ { my ($shift,$carry)=($a0,$a1); my @S=(@A1,$ai,$n0); $code.=<<___; add \$16,$i xor $shift,$shift sub $num,$i # $i=16-$num xor $carry,$carry add $A1[0],%rax # t[5] adc \$0,%rdx mov %rax,8($tptr) # t[5] mov %rdx,16($tptr) # t[6] mov $carry,24($tptr) # t[7] mov -16($aptr,$i),%rax # a[0] lea 48+8(%rsp),$tptr xor $A0[0],$A0[0] # t[0] mov 8($tptr),$A0[1] # t[1] lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift shr \$63,$A0[0] lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 | shr \$63,$A0[1] or $A0[0],$S[1] # | t[2*i]>>63 mov 16($tptr),$A0[0] # t[2*i+2] # prefetch mov $A0[1],$shift # shift=t[2*i+1]>>63 mul %rax # a[i]*a[i] neg $carry # mov $carry,cf mov 24($tptr),$A0[1] # t[2*i+2+1] # prefetch adc %rax,$S[0] mov -8($aptr,$i),%rax # a[i+1] # prefetch mov $S[0],($tptr) adc %rdx,$S[1] lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1 | shift mov $S[1],8($tptr) sbb $carry,$carry # mov cf,$carry shr \$63,$A0[0] lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 | shr \$63,$A0[1] or $A0[0],$S[3] # | t[2*i]>>63 mov 32($tptr),$A0[0] # t[2*i+2] # prefetch mov $A0[1],$shift # shift=t[2*i+1]>>63 mul %rax # a[i]*a[i] neg $carry # mov $carry,cf mov 40($tptr),$A0[1] # t[2*i+2+1] # prefetch adc %rax,$S[2] mov 0($aptr,$i),%rax # a[i+1] # prefetch mov $S[2],16($tptr) adc %rdx,$S[3] lea 16($i),$i mov $S[3],24($tptr) sbb $carry,$carry # mov cf,$carry lea 64($tptr),$tptr jmp .Lsqr4x_shift_n_add .align 32 .Lsqr4x_shift_n_add: lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift shr \$63,$A0[0] lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 | shr \$63,$A0[1] or $A0[0],$S[1] # | t[2*i]>>63 mov -16($tptr),$A0[0] # t[2*i+2] # prefetch mov $A0[1],$shift # shift=t[2*i+1]>>63 mul %rax # a[i]*a[i] neg $carry # mov $carry,cf mov -8($tptr),$A0[1] # t[2*i+2+1] # prefetch adc %rax,$S[0] mov -8($aptr,$i),%rax # a[i+1] # prefetch mov $S[0],-32($tptr) adc %rdx,$S[1] lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1 | shift mov $S[1],-24($tptr) sbb $carry,$carry # mov cf,$carry shr \$63,$A0[0] lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 | shr \$63,$A0[1] or $A0[0],$S[3] # | t[2*i]>>63 mov 0($tptr),$A0[0] # t[2*i+2] # prefetch mov $A0[1],$shift # shift=t[2*i+1]>>63 mul %rax # a[i]*a[i] neg $carry # mov $carry,cf mov 8($tptr),$A0[1] # t[2*i+2+1] # prefetch adc %rax,$S[2] mov 0($aptr,$i),%rax # a[i+1] # prefetch mov $S[2],-16($tptr) adc %rdx,$S[3] lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift mov $S[3],-8($tptr) sbb $carry,$carry # mov cf,$carry shr \$63,$A0[0] lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 | shr \$63,$A0[1] or $A0[0],$S[1] # | t[2*i]>>63 mov 16($tptr),$A0[0] # t[2*i+2] # prefetch mov $A0[1],$shift # shift=t[2*i+1]>>63 mul %rax # a[i]*a[i] neg $carry # mov $carry,cf mov 24($tptr),$A0[1] # t[2*i+2+1] # prefetch adc %rax,$S[0] mov 8($aptr,$i),%rax # a[i+1] # prefetch mov $S[0],0($tptr) adc %rdx,$S[1] lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1 | shift mov $S[1],8($tptr) sbb $carry,$carry # mov cf,$carry shr \$63,$A0[0] lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 | shr \$63,$A0[1] or $A0[0],$S[3] # | t[2*i]>>63 mov 32($tptr),$A0[0] # t[2*i+2] # prefetch mov $A0[1],$shift # shift=t[2*i+1]>>63 mul %rax # a[i]*a[i] neg $carry # mov $carry,cf mov 40($tptr),$A0[1] # t[2*i+2+1] # prefetch adc %rax,$S[2] mov 16($aptr,$i),%rax # a[i+1] # prefetch mov $S[2],16($tptr) adc %rdx,$S[3] mov $S[3],24($tptr) sbb $carry,$carry # mov cf,$carry lea 64($tptr),$tptr add \$32,$i jnz .Lsqr4x_shift_n_add lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift .byte 0x67 shr \$63,$A0[0] lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 | shr \$63,$A0[1] or $A0[0],$S[1] # | t[2*i]>>63 mov -16($tptr),$A0[0] # t[2*i+2] # prefetch mov $A0[1],$shift # shift=t[2*i+1]>>63 mul %rax # a[i]*a[i] neg $carry # mov $carry,cf mov -8($tptr),$A0[1] # t[2*i+2+1] # prefetch adc %rax,$S[0] mov -8($aptr),%rax # a[i+1] # prefetch mov $S[0],-32($tptr) adc %rdx,$S[1] lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1|shift mov $S[1],-24($tptr) sbb $carry,$carry # mov cf,$carry shr \$63,$A0[0] lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 | shr \$63,$A0[1] or $A0[0],$S[3] # | t[2*i]>>63 mul %rax # a[i]*a[i] neg $carry # mov $carry,cf adc %rax,$S[2] adc %rdx,$S[3] mov $S[2],-16($tptr) mov $S[3],-8($tptr) ___ } ###################################################################### # Montgomery reduction part, "word-by-word" algorithm. # # This new path is inspired by multiple submissions from Intel, by # Shay Gueron, Vlad Krasnov, Erdinc Ozturk, James Guilford, # Vinodh Gopal... { my ($nptr,$tptr,$carry,$m0)=("%rbp","%rdi","%rsi","%rbx"); $code.=<<___; movq %xmm2,$nptr __bn_sqr8x_reduction: xor %rax,%rax lea ($nptr,$num),%rcx # end of n[] lea 48+8(%rsp,$num,2),%rdx # end of t[] buffer mov %rcx,0+8(%rsp) lea 48+8(%rsp,$num),$tptr # end of initial t[] window mov %rdx,8+8(%rsp) neg $num jmp .L8x_reduction_loop .align 32 .L8x_reduction_loop: lea ($tptr,$num),$tptr # start of current t[] window .byte 0x66 mov 8*0($tptr),$m0 mov 8*1($tptr),%r9 mov 8*2($tptr),%r10 mov 8*3($tptr),%r11 mov 8*4($tptr),%r12 mov 8*5($tptr),%r13 mov 8*6($tptr),%r14 mov 8*7($tptr),%r15 mov %rax,(%rdx) # store top-most carry bit lea 8*8($tptr),$tptr .byte 0x67 mov $m0,%r8 imulq 32+8(%rsp),$m0 # n0*a[0] mov 8*0($nptr),%rax # n[0] mov \$8,%ecx jmp .L8x_reduce .align 32 .L8x_reduce: mulq $m0 mov 8*1($nptr),%rax # n[1] neg %r8 mov %rdx,%r8 adc \$0,%r8 mulq $m0 add %rax,%r9 mov 8*2($nptr),%rax adc \$0,%rdx add %r9,%r8 mov $m0,48-8+8(%rsp,%rcx,8) # put aside n0*a[i] mov %rdx,%r9 adc \$0,%r9 mulq $m0 add %rax,%r10 mov 8*3($nptr),%rax adc \$0,%rdx add %r10,%r9 mov 32+8(%rsp),$carry # pull n0, borrow $carry mov %rdx,%r10 adc \$0,%r10 mulq $m0 add %rax,%r11 mov 8*4($nptr),%rax adc \$0,%rdx imulq %r8,$carry # modulo-scheduled add %r11,%r10 mov %rdx,%r11 adc \$0,%r11 mulq $m0 add %rax,%r12 mov 8*5($nptr),%rax adc \$0,%rdx add %r12,%r11 mov %rdx,%r12 adc \$0,%r12 mulq $m0 add %rax,%r13 mov 8*6($nptr),%rax adc \$0,%rdx add %r13,%r12 mov %rdx,%r13 adc \$0,%r13 mulq $m0 add %rax,%r14 mov 8*7($nptr),%rax adc \$0,%rdx add %r14,%r13 mov %rdx,%r14 adc \$0,%r14 mulq $m0 mov $carry,$m0 # n0*a[i] add %rax,%r15 mov 8*0($nptr),%rax # n[0] adc \$0,%rdx add %r15,%r14 mov %rdx,%r15 adc \$0,%r15 dec %ecx jnz .L8x_reduce lea 8*8($nptr),$nptr xor %rax,%rax mov 8+8(%rsp),%rdx # pull end of t[] cmp 0+8(%rsp),$nptr # end of n[]? jae .L8x_no_tail .byte 0x66 add 8*0($tptr),%r8 adc 8*1($tptr),%r9 adc 8*2($tptr),%r10 adc 8*3($tptr),%r11 adc 8*4($tptr),%r12 adc 8*5($tptr),%r13 adc 8*6($tptr),%r14 adc 8*7($tptr),%r15 sbb $carry,$carry # top carry mov 48+56+8(%rsp),$m0 # pull n0*a[0] mov \$8,%ecx mov 8*0($nptr),%rax jmp .L8x_tail .align 32 .L8x_tail: mulq $m0 add %rax,%r8 mov 8*1($nptr),%rax mov %r8,($tptr) # save result mov %rdx,%r8 adc \$0,%r8 mulq $m0 add %rax,%r9 mov 8*2($nptr),%rax adc \$0,%rdx add %r9,%r8 lea 8($tptr),$tptr # $tptr++ mov %rdx,%r9 adc \$0,%r9 mulq $m0 add %rax,%r10 mov 8*3($nptr),%rax adc \$0,%rdx add %r10,%r9 mov %rdx,%r10 adc \$0,%r10 mulq $m0 add %rax,%r11 mov 8*4($nptr),%rax adc \$0,%rdx add %r11,%r10 mov %rdx,%r11 adc \$0,%r11 mulq $m0 add %rax,%r12 mov 8*5($nptr),%rax adc \$0,%rdx add %r12,%r11 mov %rdx,%r12 adc \$0,%r12 mulq $m0 add %rax,%r13 mov 8*6($nptr),%rax adc \$0,%rdx add %r13,%r12 mov %rdx,%r13 adc \$0,%r13 mulq $m0 add %rax,%r14 mov 8*7($nptr),%rax adc \$0,%rdx add %r14,%r13 mov %rdx,%r14 adc \$0,%r14 mulq $m0 mov 48-16+8(%rsp,%rcx,8),$m0# pull n0*a[i] add %rax,%r15 adc \$0,%rdx add %r15,%r14 mov 8*0($nptr),%rax # pull n[0] mov %rdx,%r15 adc \$0,%r15 dec %ecx jnz .L8x_tail lea 8*8($nptr),$nptr mov 8+8(%rsp),%rdx # pull end of t[] cmp 0+8(%rsp),$nptr # end of n[]? jae .L8x_tail_done # break out of loop mov 48+56+8(%rsp),$m0 # pull n0*a[0] neg $carry mov 8*0($nptr),%rax # pull n[0] adc 8*0($tptr),%r8 adc 8*1($tptr),%r9 adc 8*2($tptr),%r10 adc 8*3($tptr),%r11 adc 8*4($tptr),%r12 adc 8*5($tptr),%r13 adc 8*6($tptr),%r14 adc 8*7($tptr),%r15 sbb $carry,$carry # top carry mov \$8,%ecx jmp .L8x_tail .align 32 .L8x_tail_done: xor %rax,%rax add (%rdx),%r8 # can this overflow? adc \$0,%r9 adc \$0,%r10 adc \$0,%r11 adc \$0,%r12 adc \$0,%r13 adc \$0,%r14 adc \$0,%r15 adc \$0,%rax neg $carry .L8x_no_tail: adc 8*0($tptr),%r8 adc 8*1($tptr),%r9 adc 8*2($tptr),%r10 adc 8*3($tptr),%r11 adc 8*4($tptr),%r12 adc 8*5($tptr),%r13 adc 8*6($tptr),%r14 adc 8*7($tptr),%r15 adc \$0,%rax # top-most carry mov -8($nptr),%rcx # np[num-1] xor $carry,$carry movq %xmm2,$nptr # restore $nptr mov %r8,8*0($tptr) # store top 512 bits mov %r9,8*1($tptr) movq %xmm3,$num # $num is %r9, can't be moved upwards mov %r10,8*2($tptr) mov %r11,8*3($tptr) mov %r12,8*4($tptr) mov %r13,8*5($tptr) mov %r14,8*6($tptr) mov %r15,8*7($tptr) lea 8*8($tptr),$tptr cmp %rdx,$tptr # end of t[]? jb .L8x_reduction_loop ret .cfi_endproc .size bn_sqr8x_internal,.-bn_sqr8x_internal ___ } ############################################################## # Post-condition, 4x unrolled # { my ($tptr,$nptr)=("%rbx","%rbp"); $code.=<<___; .type __bn_post4x_internal,\@abi-omnipotent .align 32 __bn_post4x_internal: .cfi_startproc mov 8*0($nptr),%r12 lea (%rdi,$num),$tptr # %rdi was $tptr above mov $num,%rcx movq %xmm1,$rptr # restore $rptr neg %rax movq %xmm1,$aptr # prepare for back-to-back call sar \$3+2,%rcx dec %r12 # so that after 'not' we get -n[0] xor %r10,%r10 mov 8*1($nptr),%r13 mov 8*2($nptr),%r14 mov 8*3($nptr),%r15 jmp .Lsqr4x_sub_entry .align 16 .Lsqr4x_sub: mov 8*0($nptr),%r12 mov 8*1($nptr),%r13 mov 8*2($nptr),%r14 mov 8*3($nptr),%r15 .Lsqr4x_sub_entry: lea 8*4($nptr),$nptr not %r12 not %r13 not %r14 not %r15 and %rax,%r12 and %rax,%r13 and %rax,%r14 and %rax,%r15 neg %r10 # mov %r10,%cf adc 8*0($tptr),%r12 adc 8*1($tptr),%r13 adc 8*2($tptr),%r14 adc 8*3($tptr),%r15 mov %r12,8*0($rptr) lea 8*4($tptr),$tptr mov %r13,8*1($rptr) sbb %r10,%r10 # mov %cf,%r10 mov %r14,8*2($rptr) mov %r15,8*3($rptr) lea 8*4($rptr),$rptr inc %rcx # pass %cf jnz .Lsqr4x_sub mov $num,%r10 # prepare for back-to-back call neg $num # restore $num ret .cfi_endproc .size __bn_post4x_internal,.-__bn_post4x_internal ___ } -{ -$code.=<<___; -.globl bn_from_montgomery -.type bn_from_montgomery,\@abi-omnipotent -.align 32 -bn_from_montgomery: -.cfi_startproc - testl \$7,`($win64?"48(%rsp)":"%r9d")` - jz bn_from_mont8x - xor %eax,%eax - ret -.cfi_endproc -.size bn_from_montgomery,.-bn_from_montgomery - -.type bn_from_mont8x,\@function,6 -.align 32 -bn_from_mont8x: -.cfi_startproc - .byte 0x67 - mov %rsp,%rax -.cfi_def_cfa_register %rax - push %rbx -.cfi_push %rbx - push %rbp -.cfi_push %rbp - push %r12 -.cfi_push %r12 - push %r13 -.cfi_push %r13 - push %r14 -.cfi_push %r14 - push %r15 -.cfi_push %r15 -.Lfrom_prologue: - - shl \$3,${num}d # convert $num to bytes - lea ($num,$num,2),%r10 # 3*$num in bytes - neg $num - mov ($n0),$n0 # *n0 - - ############################################################## - # Ensure that stack frame doesn't alias with $rptr+3*$num - # modulo 4096, which covers ret[num], am[num] and n[num] - # (see bn_exp.c). The stack is allocated to aligned with - # bn_power5's frame, and as bn_from_montgomery happens to be - # last operation, we use the opportunity to cleanse it. - # - lea -320(%rsp,$num,2),%r11 - mov %rsp,%rbp - sub $rptr,%r11 - and \$4095,%r11 - cmp %r11,%r10 - jb .Lfrom_sp_alt - sub %r11,%rbp # align with $aptr - lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*$num*8+256) - jmp .Lfrom_sp_done - -.align 32 -.Lfrom_sp_alt: - lea 4096-320(,$num,2),%r10 - lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*$num*8+256) - sub %r10,%r11 - mov \$0,%r10 - cmovc %r10,%r11 - sub %r11,%rbp -.Lfrom_sp_done: - and \$-64,%rbp - mov %rsp,%r11 - sub %rbp,%r11 - and \$-4096,%r11 - lea (%rbp,%r11),%rsp - mov (%rsp),%r10 - cmp %rbp,%rsp - ja .Lfrom_page_walk - jmp .Lfrom_page_walk_done - -.Lfrom_page_walk: - lea -4096(%rsp),%rsp - mov (%rsp),%r10 - cmp %rbp,%rsp - ja .Lfrom_page_walk -.Lfrom_page_walk_done: - - mov $num,%r10 - neg $num - - ############################################################## - # Stack layout - # - # +0 saved $num, used in reduction section - # +8 &t[2*$num], used in reduction section - # +32 saved *n0 - # +40 saved %rsp - # +48 t[2*$num] - # - mov $n0, 32(%rsp) - mov %rax, 40(%rsp) # save original %rsp -.cfi_cfa_expression %rsp+40,deref,+8 -.Lfrom_body: - mov $num,%r11 - lea 48(%rsp),%rax - pxor %xmm0,%xmm0 - jmp .Lmul_by_1 - -.align 32 -.Lmul_by_1: - movdqu ($aptr),%xmm1 - movdqu 16($aptr),%xmm2 - movdqu 32($aptr),%xmm3 - movdqa %xmm0,(%rax,$num) - movdqu 48($aptr),%xmm4 - movdqa %xmm0,16(%rax,$num) - .byte 0x48,0x8d,0xb6,0x40,0x00,0x00,0x00 # lea 64($aptr),$aptr - movdqa %xmm1,(%rax) - movdqa %xmm0,32(%rax,$num) - movdqa %xmm2,16(%rax) - movdqa %xmm0,48(%rax,$num) - movdqa %xmm3,32(%rax) - movdqa %xmm4,48(%rax) - lea 64(%rax),%rax - sub \$64,%r11 - jnz .Lmul_by_1 - - movq $rptr,%xmm1 - movq $nptr,%xmm2 - .byte 0x67 - mov $nptr,%rbp - movq %r10, %xmm3 # -num -___ -$code.=<<___ if ($addx); - mov OPENSSL_ia32cap_P+8(%rip),%r11d - and \$0x80108,%r11d - cmp \$0x80108,%r11d # check for AD*X+BMI2+BMI1 - jne .Lfrom_mont_nox - - lea (%rax,$num),$rptr - call __bn_sqrx8x_reduction - call __bn_postx4x_internal - - pxor %xmm0,%xmm0 - lea 48(%rsp),%rax - jmp .Lfrom_mont_zero - -.align 32 -.Lfrom_mont_nox: -___ -$code.=<<___; - call __bn_sqr8x_reduction - call __bn_post4x_internal - - pxor %xmm0,%xmm0 - lea 48(%rsp),%rax - jmp .Lfrom_mont_zero - -.align 32 -.Lfrom_mont_zero: - mov 40(%rsp),%rsi # restore %rsp -.cfi_def_cfa %rsi,8 - movdqa %xmm0,16*0(%rax) - movdqa %xmm0,16*1(%rax) - movdqa %xmm0,16*2(%rax) - movdqa %xmm0,16*3(%rax) - lea 16*4(%rax),%rax - sub \$32,$num - jnz .Lfrom_mont_zero - - mov \$1,%rax - mov -48(%rsi),%r15 -.cfi_restore %r15 - mov -40(%rsi),%r14 -.cfi_restore %r14 - mov -32(%rsi),%r13 -.cfi_restore %r13 - mov -24(%rsi),%r12 -.cfi_restore %r12 - mov -16(%rsi),%rbp -.cfi_restore %rbp - mov -8(%rsi),%rbx -.cfi_restore %rbx - lea (%rsi),%rsp -.cfi_def_cfa_register %rsp -.Lfrom_epilogue: - ret -.cfi_endproc -.size bn_from_mont8x,.-bn_from_mont8x -___ -} }}} if ($addx) {{{ my $bp="%rdx"; # restore original value $code.=<<___; .type bn_mulx4x_mont_gather5,\@function,6 .align 32 bn_mulx4x_mont_gather5: .cfi_startproc mov %rsp,%rax .cfi_def_cfa_register %rax .Lmulx4x_enter: push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lmulx4x_prologue: shl \$3,${num}d # convert $num to bytes lea ($num,$num,2),%r10 # 3*$num in bytes neg $num # -$num mov ($n0),$n0 # *n0 ############################################################## # Ensure that stack frame doesn't alias with $rptr+3*$num # modulo 4096, which covers ret[num], am[num] and n[num] # (see bn_exp.c). This is done to allow memory disambiguation # logic do its magic. [Extra [num] is allocated in order # to align with bn_power5's frame, which is cleansed after # completing exponentiation. Extra 256 bytes is for power mask # calculated from 7th argument, the index.] # lea -320(%rsp,$num,2),%r11 mov %rsp,%rbp sub $rp,%r11 and \$4095,%r11 cmp %r11,%r10 jb .Lmulx4xsp_alt sub %r11,%rbp # align with $aptr lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*$num*8+256) jmp .Lmulx4xsp_done .Lmulx4xsp_alt: lea 4096-320(,$num,2),%r10 lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*$num*8+256) sub %r10,%r11 mov \$0,%r10 cmovc %r10,%r11 sub %r11,%rbp .Lmulx4xsp_done: and \$-64,%rbp # ensure alignment mov %rsp,%r11 sub %rbp,%r11 and \$-4096,%r11 lea (%rbp,%r11),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lmulx4x_page_walk jmp .Lmulx4x_page_walk_done .Lmulx4x_page_walk: lea -4096(%rsp),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lmulx4x_page_walk .Lmulx4x_page_walk_done: ############################################################## # Stack layout # +0 -num # +8 off-loaded &b[i] # +16 end of b[num] # +24 inner counter # +32 saved n0 # +40 saved %rsp # +48 # +56 saved rp # +64 tmp[num+1] # mov $n0, 32(%rsp) # save *n0 mov %rax,40(%rsp) # save original %rsp .cfi_cfa_expression %rsp+40,deref,+8 .Lmulx4x_body: call mulx4x_internal mov 40(%rsp),%rsi # restore %rsp .cfi_def_cfa %rsi,8 mov \$1,%rax mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lmulx4x_epilogue: ret .cfi_endproc .size bn_mulx4x_mont_gather5,.-bn_mulx4x_mont_gather5 .type mulx4x_internal,\@abi-omnipotent .align 32 mulx4x_internal: .cfi_startproc mov $num,8(%rsp) # save -$num (it was in bytes) mov $num,%r10 neg $num # restore $num shl \$5,$num neg %r10 # restore $num lea 128($bp,$num),%r13 # end of powers table (+size optimization) shr \$5+5,$num movd `($win64?56:8)`(%rax),%xmm5 # load 7th argument sub \$1,$num lea .Linc(%rip),%rax mov %r13,16+8(%rsp) # end of b[num] mov $num,24+8(%rsp) # inner counter mov $rp, 56+8(%rsp) # save $rp ___ my ($aptr, $bptr, $nptr, $tptr, $mi, $bi, $zero, $num)= ("%rsi","%rdi","%rcx","%rbx","%r8","%r9","%rbp","%rax"); my $rptr=$bptr; my $STRIDE=2**5*8; # 5 is "window size" my $N=$STRIDE/4; # should match cache line size $code.=<<___; movdqa 0(%rax),%xmm0 # 00000001000000010000000000000000 movdqa 16(%rax),%xmm1 # 00000002000000020000000200000002 lea 88-112(%rsp,%r10),%r10 # place the mask after tp[num+1] (+ICache optimization) lea 128($bp),$bptr # size optimization pshufd \$0,%xmm5,%xmm5 # broadcast index movdqa %xmm1,%xmm4 .byte 0x67 movdqa %xmm1,%xmm2 ___ ######################################################################## # calculate mask by comparing 0..31 to index and save result to stack # $code.=<<___; .byte 0x67 paddd %xmm0,%xmm1 pcmpeqd %xmm5,%xmm0 # compare to 1,0 movdqa %xmm4,%xmm3 ___ for($i=0;$i<$STRIDE/16-4;$i+=4) { $code.=<<___; paddd %xmm1,%xmm2 pcmpeqd %xmm5,%xmm1 # compare to 3,2 movdqa %xmm0,`16*($i+0)+112`(%r10) movdqa %xmm4,%xmm0 paddd %xmm2,%xmm3 pcmpeqd %xmm5,%xmm2 # compare to 5,4 movdqa %xmm1,`16*($i+1)+112`(%r10) movdqa %xmm4,%xmm1 paddd %xmm3,%xmm0 pcmpeqd %xmm5,%xmm3 # compare to 7,6 movdqa %xmm2,`16*($i+2)+112`(%r10) movdqa %xmm4,%xmm2 paddd %xmm0,%xmm1 pcmpeqd %xmm5,%xmm0 movdqa %xmm3,`16*($i+3)+112`(%r10) movdqa %xmm4,%xmm3 ___ } $code.=<<___; # last iteration can be optimized .byte 0x67 paddd %xmm1,%xmm2 pcmpeqd %xmm5,%xmm1 movdqa %xmm0,`16*($i+0)+112`(%r10) paddd %xmm2,%xmm3 pcmpeqd %xmm5,%xmm2 movdqa %xmm1,`16*($i+1)+112`(%r10) pcmpeqd %xmm5,%xmm3 movdqa %xmm2,`16*($i+2)+112`(%r10) pand `16*($i+0)-128`($bptr),%xmm0 # while it's still in register pand `16*($i+1)-128`($bptr),%xmm1 pand `16*($i+2)-128`($bptr),%xmm2 movdqa %xmm3,`16*($i+3)+112`(%r10) pand `16*($i+3)-128`($bptr),%xmm3 por %xmm2,%xmm0 por %xmm3,%xmm1 ___ for($i=0;$i<$STRIDE/16-4;$i+=4) { $code.=<<___; movdqa `16*($i+0)-128`($bptr),%xmm4 movdqa `16*($i+1)-128`($bptr),%xmm5 movdqa `16*($i+2)-128`($bptr),%xmm2 pand `16*($i+0)+112`(%r10),%xmm4 movdqa `16*($i+3)-128`($bptr),%xmm3 pand `16*($i+1)+112`(%r10),%xmm5 por %xmm4,%xmm0 pand `16*($i+2)+112`(%r10),%xmm2 por %xmm5,%xmm1 pand `16*($i+3)+112`(%r10),%xmm3 por %xmm2,%xmm0 por %xmm3,%xmm1 ___ } $code.=<<___; pxor %xmm1,%xmm0 pshufd \$0x4e,%xmm0,%xmm1 por %xmm1,%xmm0 lea $STRIDE($bptr),$bptr movq %xmm0,%rdx # bp[0] lea 64+8*4+8(%rsp),$tptr mov %rdx,$bi mulx 0*8($aptr),$mi,%rax # a[0]*b[0] mulx 1*8($aptr),%r11,%r12 # a[1]*b[0] add %rax,%r11 mulx 2*8($aptr),%rax,%r13 # ... adc %rax,%r12 adc \$0,%r13 mulx 3*8($aptr),%rax,%r14 mov $mi,%r15 imulq 32+8(%rsp),$mi # "t[0]"*n0 xor $zero,$zero # cf=0, of=0 mov $mi,%rdx mov $bptr,8+8(%rsp) # off-load &b[i] lea 4*8($aptr),$aptr adcx %rax,%r13 adcx $zero,%r14 # cf=0 mulx 0*8($nptr),%rax,%r10 adcx %rax,%r15 # discarded adox %r11,%r10 mulx 1*8($nptr),%rax,%r11 adcx %rax,%r10 adox %r12,%r11 mulx 2*8($nptr),%rax,%r12 mov 24+8(%rsp),$bptr # counter value mov %r10,-8*4($tptr) adcx %rax,%r11 adox %r13,%r12 mulx 3*8($nptr),%rax,%r15 mov $bi,%rdx mov %r11,-8*3($tptr) adcx %rax,%r12 adox $zero,%r15 # of=0 lea 4*8($nptr),$nptr mov %r12,-8*2($tptr) jmp .Lmulx4x_1st .align 32 .Lmulx4x_1st: adcx $zero,%r15 # cf=0, modulo-scheduled mulx 0*8($aptr),%r10,%rax # a[4]*b[0] adcx %r14,%r10 mulx 1*8($aptr),%r11,%r14 # a[5]*b[0] adcx %rax,%r11 mulx 2*8($aptr),%r12,%rax # ... adcx %r14,%r12 mulx 3*8($aptr),%r13,%r14 .byte 0x67,0x67 mov $mi,%rdx adcx %rax,%r13 adcx $zero,%r14 # cf=0 lea 4*8($aptr),$aptr lea 4*8($tptr),$tptr adox %r15,%r10 mulx 0*8($nptr),%rax,%r15 adcx %rax,%r10 adox %r15,%r11 mulx 1*8($nptr),%rax,%r15 adcx %rax,%r11 adox %r15,%r12 mulx 2*8($nptr),%rax,%r15 mov %r10,-5*8($tptr) adcx %rax,%r12 mov %r11,-4*8($tptr) adox %r15,%r13 mulx 3*8($nptr),%rax,%r15 mov $bi,%rdx mov %r12,-3*8($tptr) adcx %rax,%r13 adox $zero,%r15 lea 4*8($nptr),$nptr mov %r13,-2*8($tptr) dec $bptr # of=0, pass cf jnz .Lmulx4x_1st mov 8(%rsp),$num # load -num adc $zero,%r15 # modulo-scheduled lea ($aptr,$num),$aptr # rewind $aptr add %r15,%r14 mov 8+8(%rsp),$bptr # re-load &b[i] adc $zero,$zero # top-most carry mov %r14,-1*8($tptr) jmp .Lmulx4x_outer .align 32 .Lmulx4x_outer: lea 16-256($tptr),%r10 # where 256-byte mask is (+density control) pxor %xmm4,%xmm4 .byte 0x67,0x67 pxor %xmm5,%xmm5 ___ for($i=0;$i<$STRIDE/16;$i+=4) { $code.=<<___; movdqa `16*($i+0)-128`($bptr),%xmm0 movdqa `16*($i+1)-128`($bptr),%xmm1 movdqa `16*($i+2)-128`($bptr),%xmm2 pand `16*($i+0)+256`(%r10),%xmm0 movdqa `16*($i+3)-128`($bptr),%xmm3 pand `16*($i+1)+256`(%r10),%xmm1 por %xmm0,%xmm4 pand `16*($i+2)+256`(%r10),%xmm2 por %xmm1,%xmm5 pand `16*($i+3)+256`(%r10),%xmm3 por %xmm2,%xmm4 por %xmm3,%xmm5 ___ } $code.=<<___; por %xmm5,%xmm4 pshufd \$0x4e,%xmm4,%xmm0 por %xmm4,%xmm0 lea $STRIDE($bptr),$bptr movq %xmm0,%rdx # m0=bp[i] mov $zero,($tptr) # save top-most carry lea 4*8($tptr,$num),$tptr # rewind $tptr mulx 0*8($aptr),$mi,%r11 # a[0]*b[i] xor $zero,$zero # cf=0, of=0 mov %rdx,$bi mulx 1*8($aptr),%r14,%r12 # a[1]*b[i] adox -4*8($tptr),$mi # +t[0] adcx %r14,%r11 mulx 2*8($aptr),%r15,%r13 # ... adox -3*8($tptr),%r11 adcx %r15,%r12 mulx 3*8($aptr),%rdx,%r14 adox -2*8($tptr),%r12 adcx %rdx,%r13 lea ($nptr,$num),$nptr # rewind $nptr lea 4*8($aptr),$aptr adox -1*8($tptr),%r13 adcx $zero,%r14 adox $zero,%r14 mov $mi,%r15 imulq 32+8(%rsp),$mi # "t[0]"*n0 mov $mi,%rdx xor $zero,$zero # cf=0, of=0 mov $bptr,8+8(%rsp) # off-load &b[i] mulx 0*8($nptr),%rax,%r10 adcx %rax,%r15 # discarded adox %r11,%r10 mulx 1*8($nptr),%rax,%r11 adcx %rax,%r10 adox %r12,%r11 mulx 2*8($nptr),%rax,%r12 adcx %rax,%r11 adox %r13,%r12 mulx 3*8($nptr),%rax,%r15 mov $bi,%rdx mov 24+8(%rsp),$bptr # counter value mov %r10,-8*4($tptr) adcx %rax,%r12 mov %r11,-8*3($tptr) adox $zero,%r15 # of=0 mov %r12,-8*2($tptr) lea 4*8($nptr),$nptr jmp .Lmulx4x_inner .align 32 .Lmulx4x_inner: mulx 0*8($aptr),%r10,%rax # a[4]*b[i] adcx $zero,%r15 # cf=0, modulo-scheduled adox %r14,%r10 mulx 1*8($aptr),%r11,%r14 # a[5]*b[i] adcx 0*8($tptr),%r10 adox %rax,%r11 mulx 2*8($aptr),%r12,%rax # ... adcx 1*8($tptr),%r11 adox %r14,%r12 mulx 3*8($aptr),%r13,%r14 mov $mi,%rdx adcx 2*8($tptr),%r12 adox %rax,%r13 adcx 3*8($tptr),%r13 adox $zero,%r14 # of=0 lea 4*8($aptr),$aptr lea 4*8($tptr),$tptr adcx $zero,%r14 # cf=0 adox %r15,%r10 mulx 0*8($nptr),%rax,%r15 adcx %rax,%r10 adox %r15,%r11 mulx 1*8($nptr),%rax,%r15 adcx %rax,%r11 adox %r15,%r12 mulx 2*8($nptr),%rax,%r15 mov %r10,-5*8($tptr) adcx %rax,%r12 adox %r15,%r13 mov %r11,-4*8($tptr) mulx 3*8($nptr),%rax,%r15 mov $bi,%rdx lea 4*8($nptr),$nptr mov %r12,-3*8($tptr) adcx %rax,%r13 adox $zero,%r15 mov %r13,-2*8($tptr) dec $bptr # of=0, pass cf jnz .Lmulx4x_inner mov 0+8(%rsp),$num # load -num adc $zero,%r15 # modulo-scheduled sub 0*8($tptr),$bptr # pull top-most carry to %cf mov 8+8(%rsp),$bptr # re-load &b[i] mov 16+8(%rsp),%r10 adc %r15,%r14 lea ($aptr,$num),$aptr # rewind $aptr adc $zero,$zero # top-most carry mov %r14,-1*8($tptr) cmp %r10,$bptr jb .Lmulx4x_outer mov -8($nptr),%r10 mov $zero,%r8 mov ($nptr,$num),%r12 lea ($nptr,$num),%rbp # rewind $nptr mov $num,%rcx lea ($tptr,$num),%rdi # rewind $tptr xor %eax,%eax xor %r15,%r15 sub %r14,%r10 # compare top-most words adc %r15,%r15 or %r15,%r8 sar \$3+2,%rcx sub %r8,%rax # %rax=-%r8 mov 56+8(%rsp),%rdx # restore rp dec %r12 # so that after 'not' we get -n[0] mov 8*1(%rbp),%r13 xor %r8,%r8 mov 8*2(%rbp),%r14 mov 8*3(%rbp),%r15 jmp .Lsqrx4x_sub_entry # common post-condition .cfi_endproc .size mulx4x_internal,.-mulx4x_internal ___ } { ###################################################################### # void bn_power5( my $rptr="%rdi"; # BN_ULONG *rptr, my $aptr="%rsi"; # const BN_ULONG *aptr, my $bptr="%rdx"; # const void *table, my $nptr="%rcx"; # const BN_ULONG *nptr, my $n0 ="%r8"; # const BN_ULONG *n0); my $num ="%r9"; # int num, has to be divisible by 8 # int pwr); my ($i,$j,$tptr)=("%rbp","%rcx",$rptr); my @A0=("%r10","%r11"); my @A1=("%r12","%r13"); my ($a0,$a1,$ai)=("%r14","%r15","%rbx"); $code.=<<___; .type bn_powerx5,\@function,6 .align 32 bn_powerx5: .cfi_startproc mov %rsp,%rax .cfi_def_cfa_register %rax .Lpowerx5_enter: push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lpowerx5_prologue: shl \$3,${num}d # convert $num to bytes lea ($num,$num,2),%r10 # 3*$num in bytes neg $num mov ($n0),$n0 # *n0 ############################################################## # Ensure that stack frame doesn't alias with $rptr+3*$num # modulo 4096, which covers ret[num], am[num] and n[num] # (see bn_exp.c). This is done to allow memory disambiguation # logic do its magic. [Extra 256 bytes is for power mask # calculated from 7th argument, the index.] # lea -320(%rsp,$num,2),%r11 mov %rsp,%rbp sub $rptr,%r11 and \$4095,%r11 cmp %r11,%r10 jb .Lpwrx_sp_alt sub %r11,%rbp # align with $aptr lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*$num*8+256) jmp .Lpwrx_sp_done .align 32 .Lpwrx_sp_alt: lea 4096-320(,$num,2),%r10 lea -320(%rbp,$num,2),%rbp # alloca(frame+2*$num*8+256) sub %r10,%r11 mov \$0,%r10 cmovc %r10,%r11 sub %r11,%rbp .Lpwrx_sp_done: and \$-64,%rbp mov %rsp,%r11 sub %rbp,%r11 and \$-4096,%r11 lea (%rbp,%r11),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lpwrx_page_walk jmp .Lpwrx_page_walk_done .Lpwrx_page_walk: lea -4096(%rsp),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lpwrx_page_walk .Lpwrx_page_walk_done: mov $num,%r10 neg $num ############################################################## # Stack layout # # +0 saved $num, used in reduction section # +8 &t[2*$num], used in reduction section # +16 intermediate carry bit # +24 top-most carry bit, used in reduction section # +32 saved *n0 # +40 saved %rsp # +48 t[2*$num] # pxor %xmm0,%xmm0 movq $rptr,%xmm1 # save $rptr movq $nptr,%xmm2 # save $nptr movq %r10, %xmm3 # -$num movq $bptr,%xmm4 mov $n0, 32(%rsp) mov %rax, 40(%rsp) # save original %rsp .cfi_cfa_expression %rsp+40,deref,+8 .Lpowerx5_body: call __bn_sqrx8x_internal call __bn_postx4x_internal call __bn_sqrx8x_internal call __bn_postx4x_internal call __bn_sqrx8x_internal call __bn_postx4x_internal call __bn_sqrx8x_internal call __bn_postx4x_internal call __bn_sqrx8x_internal call __bn_postx4x_internal mov %r10,$num # -num mov $aptr,$rptr movq %xmm2,$nptr movq %xmm4,$bptr mov 40(%rsp),%rax call mulx4x_internal mov 40(%rsp),%rsi # restore %rsp .cfi_def_cfa %rsi,8 mov \$1,%rax mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lpowerx5_epilogue: ret .cfi_endproc .size bn_powerx5,.-bn_powerx5 .globl bn_sqrx8x_internal .hidden bn_sqrx8x_internal .type bn_sqrx8x_internal,\@abi-omnipotent .align 32 bn_sqrx8x_internal: __bn_sqrx8x_internal: .cfi_startproc ################################################################## # Squaring part: # # a) multiply-n-add everything but a[i]*a[i]; # b) shift result of a) by 1 to the left and accumulate # a[i]*a[i] products; # ################################################################## # a[7]a[7]a[6]a[6]a[5]a[5]a[4]a[4]a[3]a[3]a[2]a[2]a[1]a[1]a[0]a[0] # a[1]a[0] # a[2]a[0] # a[3]a[0] # a[2]a[1] # a[3]a[1] # a[3]a[2] # # a[4]a[0] # a[5]a[0] # a[6]a[0] # a[7]a[0] # a[4]a[1] # a[5]a[1] # a[6]a[1] # a[7]a[1] # a[4]a[2] # a[5]a[2] # a[6]a[2] # a[7]a[2] # a[4]a[3] # a[5]a[3] # a[6]a[3] # a[7]a[3] # # a[5]a[4] # a[6]a[4] # a[7]a[4] # a[6]a[5] # a[7]a[5] # a[7]a[6] # a[7]a[7]a[6]a[6]a[5]a[5]a[4]a[4]a[3]a[3]a[2]a[2]a[1]a[1]a[0]a[0] ___ { my ($zero,$carry)=("%rbp","%rcx"); my $aaptr=$zero; $code.=<<___; lea 48+8(%rsp),$tptr lea ($aptr,$num),$aaptr mov $num,0+8(%rsp) # save $num mov $aaptr,8+8(%rsp) # save end of $aptr jmp .Lsqr8x_zero_start .align 32 .byte 0x66,0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00 .Lsqrx8x_zero: .byte 0x3e movdqa %xmm0,0*8($tptr) movdqa %xmm0,2*8($tptr) movdqa %xmm0,4*8($tptr) movdqa %xmm0,6*8($tptr) .Lsqr8x_zero_start: # aligned at 32 movdqa %xmm0,8*8($tptr) movdqa %xmm0,10*8($tptr) movdqa %xmm0,12*8($tptr) movdqa %xmm0,14*8($tptr) lea 16*8($tptr),$tptr sub \$64,$num jnz .Lsqrx8x_zero mov 0*8($aptr),%rdx # a[0], modulo-scheduled #xor %r9,%r9 # t[1], ex-$num, zero already xor %r10,%r10 xor %r11,%r11 xor %r12,%r12 xor %r13,%r13 xor %r14,%r14 xor %r15,%r15 lea 48+8(%rsp),$tptr xor $zero,$zero # cf=0, cf=0 jmp .Lsqrx8x_outer_loop .align 32 .Lsqrx8x_outer_loop: mulx 1*8($aptr),%r8,%rax # a[1]*a[0] adcx %r9,%r8 # a[1]*a[0]+=t[1] adox %rax,%r10 mulx 2*8($aptr),%r9,%rax # a[2]*a[0] adcx %r10,%r9 adox %rax,%r11 .byte 0xc4,0xe2,0xab,0xf6,0x86,0x18,0x00,0x00,0x00 # mulx 3*8($aptr),%r10,%rax # ... adcx %r11,%r10 adox %rax,%r12 .byte 0xc4,0xe2,0xa3,0xf6,0x86,0x20,0x00,0x00,0x00 # mulx 4*8($aptr),%r11,%rax adcx %r12,%r11 adox %rax,%r13 mulx 5*8($aptr),%r12,%rax adcx %r13,%r12 adox %rax,%r14 mulx 6*8($aptr),%r13,%rax adcx %r14,%r13 adox %r15,%rax mulx 7*8($aptr),%r14,%r15 mov 1*8($aptr),%rdx # a[1] adcx %rax,%r14 adox $zero,%r15 adc 8*8($tptr),%r15 mov %r8,1*8($tptr) # t[1] mov %r9,2*8($tptr) # t[2] sbb $carry,$carry # mov %cf,$carry xor $zero,$zero # cf=0, of=0 mulx 2*8($aptr),%r8,%rbx # a[2]*a[1] mulx 3*8($aptr),%r9,%rax # a[3]*a[1] adcx %r10,%r8 adox %rbx,%r9 mulx 4*8($aptr),%r10,%rbx # ... adcx %r11,%r9 adox %rax,%r10 .byte 0xc4,0xe2,0xa3,0xf6,0x86,0x28,0x00,0x00,0x00 # mulx 5*8($aptr),%r11,%rax adcx %r12,%r10 adox %rbx,%r11 .byte 0xc4,0xe2,0x9b,0xf6,0x9e,0x30,0x00,0x00,0x00 # mulx 6*8($aptr),%r12,%rbx adcx %r13,%r11 adox %r14,%r12 .byte 0xc4,0x62,0x93,0xf6,0xb6,0x38,0x00,0x00,0x00 # mulx 7*8($aptr),%r13,%r14 mov 2*8($aptr),%rdx # a[2] adcx %rax,%r12 adox %rbx,%r13 adcx %r15,%r13 adox $zero,%r14 # of=0 adcx $zero,%r14 # cf=0 mov %r8,3*8($tptr) # t[3] mov %r9,4*8($tptr) # t[4] mulx 3*8($aptr),%r8,%rbx # a[3]*a[2] mulx 4*8($aptr),%r9,%rax # a[4]*a[2] adcx %r10,%r8 adox %rbx,%r9 mulx 5*8($aptr),%r10,%rbx # ... adcx %r11,%r9 adox %rax,%r10 .byte 0xc4,0xe2,0xa3,0xf6,0x86,0x30,0x00,0x00,0x00 # mulx 6*8($aptr),%r11,%rax adcx %r12,%r10 adox %r13,%r11 .byte 0xc4,0x62,0x9b,0xf6,0xae,0x38,0x00,0x00,0x00 # mulx 7*8($aptr),%r12,%r13 .byte 0x3e mov 3*8($aptr),%rdx # a[3] adcx %rbx,%r11 adox %rax,%r12 adcx %r14,%r12 mov %r8,5*8($tptr) # t[5] mov %r9,6*8($tptr) # t[6] mulx 4*8($aptr),%r8,%rax # a[4]*a[3] adox $zero,%r13 # of=0 adcx $zero,%r13 # cf=0 mulx 5*8($aptr),%r9,%rbx # a[5]*a[3] adcx %r10,%r8 adox %rax,%r9 mulx 6*8($aptr),%r10,%rax # ... adcx %r11,%r9 adox %r12,%r10 mulx 7*8($aptr),%r11,%r12 mov 4*8($aptr),%rdx # a[4] mov 5*8($aptr),%r14 # a[5] adcx %rbx,%r10 adox %rax,%r11 mov 6*8($aptr),%r15 # a[6] adcx %r13,%r11 adox $zero,%r12 # of=0 adcx $zero,%r12 # cf=0 mov %r8,7*8($tptr) # t[7] mov %r9,8*8($tptr) # t[8] mulx %r14,%r9,%rax # a[5]*a[4] mov 7*8($aptr),%r8 # a[7] adcx %r10,%r9 mulx %r15,%r10,%rbx # a[6]*a[4] adox %rax,%r10 adcx %r11,%r10 mulx %r8,%r11,%rax # a[7]*a[4] mov %r14,%rdx # a[5] adox %rbx,%r11 adcx %r12,%r11 #adox $zero,%rax # of=0 adcx $zero,%rax # cf=0 mulx %r15,%r14,%rbx # a[6]*a[5] mulx %r8,%r12,%r13 # a[7]*a[5] mov %r15,%rdx # a[6] lea 8*8($aptr),$aptr adcx %r14,%r11 adox %rbx,%r12 adcx %rax,%r12 adox $zero,%r13 .byte 0x67,0x67 mulx %r8,%r8,%r14 # a[7]*a[6] adcx %r8,%r13 adcx $zero,%r14 cmp 8+8(%rsp),$aptr je .Lsqrx8x_outer_break neg $carry # mov $carry,%cf mov \$-8,%rcx mov $zero,%r15 mov 8*8($tptr),%r8 adcx 9*8($tptr),%r9 # +=t[9] adcx 10*8($tptr),%r10 # ... adcx 11*8($tptr),%r11 adc 12*8($tptr),%r12 adc 13*8($tptr),%r13 adc 14*8($tptr),%r14 adc 15*8($tptr),%r15 lea ($aptr),$aaptr lea 2*64($tptr),$tptr sbb %rax,%rax # mov %cf,$carry mov -64($aptr),%rdx # a[0] mov %rax,16+8(%rsp) # offload $carry mov $tptr,24+8(%rsp) #lea 8*8($tptr),$tptr # see 2*8*8($tptr) above xor %eax,%eax # cf=0, of=0 jmp .Lsqrx8x_loop .align 32 .Lsqrx8x_loop: mov %r8,%rbx mulx 0*8($aaptr),%rax,%r8 # a[8]*a[i] adcx %rax,%rbx # +=t[8] adox %r9,%r8 mulx 1*8($aaptr),%rax,%r9 # ... adcx %rax,%r8 adox %r10,%r9 mulx 2*8($aaptr),%rax,%r10 adcx %rax,%r9 adox %r11,%r10 mulx 3*8($aaptr),%rax,%r11 adcx %rax,%r10 adox %r12,%r11 .byte 0xc4,0x62,0xfb,0xf6,0xa5,0x20,0x00,0x00,0x00 # mulx 4*8($aaptr),%rax,%r12 adcx %rax,%r11 adox %r13,%r12 mulx 5*8($aaptr),%rax,%r13 adcx %rax,%r12 adox %r14,%r13 mulx 6*8($aaptr),%rax,%r14 mov %rbx,($tptr,%rcx,8) # store t[8+i] mov \$0,%ebx adcx %rax,%r13 adox %r15,%r14 .byte 0xc4,0x62,0xfb,0xf6,0xbd,0x38,0x00,0x00,0x00 # mulx 7*8($aaptr),%rax,%r15 mov 8($aptr,%rcx,8),%rdx # a[i] adcx %rax,%r14 adox %rbx,%r15 # %rbx is 0, of=0 adcx %rbx,%r15 # cf=0 .byte 0x67 inc %rcx # of=0 jnz .Lsqrx8x_loop lea 8*8($aaptr),$aaptr mov \$-8,%rcx cmp 8+8(%rsp),$aaptr # done? je .Lsqrx8x_break sub 16+8(%rsp),%rbx # mov 16(%rsp),%cf .byte 0x66 mov -64($aptr),%rdx adcx 0*8($tptr),%r8 adcx 1*8($tptr),%r9 adc 2*8($tptr),%r10 adc 3*8($tptr),%r11 adc 4*8($tptr),%r12 adc 5*8($tptr),%r13 adc 6*8($tptr),%r14 adc 7*8($tptr),%r15 lea 8*8($tptr),$tptr .byte 0x67 sbb %rax,%rax # mov %cf,%rax xor %ebx,%ebx # cf=0, of=0 mov %rax,16+8(%rsp) # offload carry jmp .Lsqrx8x_loop .align 32 .Lsqrx8x_break: xor $zero,$zero sub 16+8(%rsp),%rbx # mov 16(%rsp),%cf adcx $zero,%r8 mov 24+8(%rsp),$carry # initial $tptr, borrow $carry adcx $zero,%r9 mov 0*8($aptr),%rdx # a[8], modulo-scheduled adc \$0,%r10 mov %r8,0*8($tptr) adc \$0,%r11 adc \$0,%r12 adc \$0,%r13 adc \$0,%r14 adc \$0,%r15 cmp $carry,$tptr # cf=0, of=0 je .Lsqrx8x_outer_loop mov %r9,1*8($tptr) mov 1*8($carry),%r9 mov %r10,2*8($tptr) mov 2*8($carry),%r10 mov %r11,3*8($tptr) mov 3*8($carry),%r11 mov %r12,4*8($tptr) mov 4*8($carry),%r12 mov %r13,5*8($tptr) mov 5*8($carry),%r13 mov %r14,6*8($tptr) mov 6*8($carry),%r14 mov %r15,7*8($tptr) mov 7*8($carry),%r15 mov $carry,$tptr jmp .Lsqrx8x_outer_loop .align 32 .Lsqrx8x_outer_break: mov %r9,9*8($tptr) # t[9] movq %xmm3,%rcx # -$num mov %r10,10*8($tptr) # ... mov %r11,11*8($tptr) mov %r12,12*8($tptr) mov %r13,13*8($tptr) mov %r14,14*8($tptr) ___ } { my $i="%rcx"; $code.=<<___; lea 48+8(%rsp),$tptr mov ($aptr,$i),%rdx # a[0] mov 8($tptr),$A0[1] # t[1] xor $A0[0],$A0[0] # t[0], of=0, cf=0 mov 0+8(%rsp),$num # restore $num adox $A0[1],$A0[1] mov 16($tptr),$A1[0] # t[2] # prefetch mov 24($tptr),$A1[1] # t[3] # prefetch #jmp .Lsqrx4x_shift_n_add # happens to be aligned .align 32 .Lsqrx4x_shift_n_add: mulx %rdx,%rax,%rbx adox $A1[0],$A1[0] adcx $A0[0],%rax .byte 0x48,0x8b,0x94,0x0e,0x08,0x00,0x00,0x00 # mov 8($aptr,$i),%rdx # a[i+1] # prefetch .byte 0x4c,0x8b,0x97,0x20,0x00,0x00,0x00 # mov 32($tptr),$A0[0] # t[2*i+4] # prefetch adox $A1[1],$A1[1] adcx $A0[1],%rbx mov 40($tptr),$A0[1] # t[2*i+4+1] # prefetch mov %rax,0($tptr) mov %rbx,8($tptr) mulx %rdx,%rax,%rbx adox $A0[0],$A0[0] adcx $A1[0],%rax mov 16($aptr,$i),%rdx # a[i+2] # prefetch mov 48($tptr),$A1[0] # t[2*i+6] # prefetch adox $A0[1],$A0[1] adcx $A1[1],%rbx mov 56($tptr),$A1[1] # t[2*i+6+1] # prefetch mov %rax,16($tptr) mov %rbx,24($tptr) mulx %rdx,%rax,%rbx adox $A1[0],$A1[0] adcx $A0[0],%rax mov 24($aptr,$i),%rdx # a[i+3] # prefetch lea 32($i),$i mov 64($tptr),$A0[0] # t[2*i+8] # prefetch adox $A1[1],$A1[1] adcx $A0[1],%rbx mov 72($tptr),$A0[1] # t[2*i+8+1] # prefetch mov %rax,32($tptr) mov %rbx,40($tptr) mulx %rdx,%rax,%rbx adox $A0[0],$A0[0] adcx $A1[0],%rax jrcxz .Lsqrx4x_shift_n_add_break .byte 0x48,0x8b,0x94,0x0e,0x00,0x00,0x00,0x00 # mov 0($aptr,$i),%rdx # a[i+4] # prefetch adox $A0[1],$A0[1] adcx $A1[1],%rbx mov 80($tptr),$A1[0] # t[2*i+10] # prefetch mov 88($tptr),$A1[1] # t[2*i+10+1] # prefetch mov %rax,48($tptr) mov %rbx,56($tptr) lea 64($tptr),$tptr nop jmp .Lsqrx4x_shift_n_add .align 32 .Lsqrx4x_shift_n_add_break: adcx $A1[1],%rbx mov %rax,48($tptr) mov %rbx,56($tptr) lea 64($tptr),$tptr # end of t[] buffer ___ } ###################################################################### # Montgomery reduction part, "word-by-word" algorithm. # # This new path is inspired by multiple submissions from Intel, by # Shay Gueron, Vlad Krasnov, Erdinc Ozturk, James Guilford, # Vinodh Gopal... { my ($nptr,$carry,$m0)=("%rbp","%rsi","%rdx"); $code.=<<___; movq %xmm2,$nptr __bn_sqrx8x_reduction: xor %eax,%eax # initial top-most carry bit mov 32+8(%rsp),%rbx # n0 mov 48+8(%rsp),%rdx # "%r8", 8*0($tptr) lea -8*8($nptr,$num),%rcx # end of n[] #lea 48+8(%rsp,$num,2),$tptr # end of t[] buffer mov %rcx, 0+8(%rsp) # save end of n[] mov $tptr,8+8(%rsp) # save end of t[] lea 48+8(%rsp),$tptr # initial t[] window jmp .Lsqrx8x_reduction_loop .align 32 .Lsqrx8x_reduction_loop: mov 8*1($tptr),%r9 mov 8*2($tptr),%r10 mov 8*3($tptr),%r11 mov 8*4($tptr),%r12 mov %rdx,%r8 imulq %rbx,%rdx # n0*a[i] mov 8*5($tptr),%r13 mov 8*6($tptr),%r14 mov 8*7($tptr),%r15 mov %rax,24+8(%rsp) # store top-most carry bit lea 8*8($tptr),$tptr xor $carry,$carry # cf=0,of=0 mov \$-8,%rcx jmp .Lsqrx8x_reduce .align 32 .Lsqrx8x_reduce: mov %r8, %rbx mulx 8*0($nptr),%rax,%r8 # n[0] adcx %rbx,%rax # discarded adox %r9,%r8 mulx 8*1($nptr),%rbx,%r9 # n[1] adcx %rbx,%r8 adox %r10,%r9 mulx 8*2($nptr),%rbx,%r10 adcx %rbx,%r9 adox %r11,%r10 mulx 8*3($nptr),%rbx,%r11 adcx %rbx,%r10 adox %r12,%r11 .byte 0xc4,0x62,0xe3,0xf6,0xa5,0x20,0x00,0x00,0x00 # mulx 8*4($nptr),%rbx,%r12 mov %rdx,%rax mov %r8,%rdx adcx %rbx,%r11 adox %r13,%r12 mulx 32+8(%rsp),%rbx,%rdx # %rdx discarded mov %rax,%rdx mov %rax,64+48+8(%rsp,%rcx,8) # put aside n0*a[i] mulx 8*5($nptr),%rax,%r13 adcx %rax,%r12 adox %r14,%r13 mulx 8*6($nptr),%rax,%r14 adcx %rax,%r13 adox %r15,%r14 mulx 8*7($nptr),%rax,%r15 mov %rbx,%rdx adcx %rax,%r14 adox $carry,%r15 # $carry is 0 adcx $carry,%r15 # cf=0 .byte 0x67,0x67,0x67 inc %rcx # of=0 jnz .Lsqrx8x_reduce mov $carry,%rax # xor %rax,%rax cmp 0+8(%rsp),$nptr # end of n[]? jae .Lsqrx8x_no_tail mov 48+8(%rsp),%rdx # pull n0*a[0] add 8*0($tptr),%r8 lea 8*8($nptr),$nptr mov \$-8,%rcx adcx 8*1($tptr),%r9 adcx 8*2($tptr),%r10 adc 8*3($tptr),%r11 adc 8*4($tptr),%r12 adc 8*5($tptr),%r13 adc 8*6($tptr),%r14 adc 8*7($tptr),%r15 lea 8*8($tptr),$tptr sbb %rax,%rax # top carry xor $carry,$carry # of=0, cf=0 mov %rax,16+8(%rsp) jmp .Lsqrx8x_tail .align 32 .Lsqrx8x_tail: mov %r8,%rbx mulx 8*0($nptr),%rax,%r8 adcx %rax,%rbx adox %r9,%r8 mulx 8*1($nptr),%rax,%r9 adcx %rax,%r8 adox %r10,%r9 mulx 8*2($nptr),%rax,%r10 adcx %rax,%r9 adox %r11,%r10 mulx 8*3($nptr),%rax,%r11 adcx %rax,%r10 adox %r12,%r11 .byte 0xc4,0x62,0xfb,0xf6,0xa5,0x20,0x00,0x00,0x00 # mulx 8*4($nptr),%rax,%r12 adcx %rax,%r11 adox %r13,%r12 mulx 8*5($nptr),%rax,%r13 adcx %rax,%r12 adox %r14,%r13 mulx 8*6($nptr),%rax,%r14 adcx %rax,%r13 adox %r15,%r14 mulx 8*7($nptr),%rax,%r15 mov 72+48+8(%rsp,%rcx,8),%rdx # pull n0*a[i] adcx %rax,%r14 adox $carry,%r15 mov %rbx,($tptr,%rcx,8) # save result mov %r8,%rbx adcx $carry,%r15 # cf=0 inc %rcx # of=0 jnz .Lsqrx8x_tail cmp 0+8(%rsp),$nptr # end of n[]? jae .Lsqrx8x_tail_done # break out of loop sub 16+8(%rsp),$carry # mov 16(%rsp),%cf mov 48+8(%rsp),%rdx # pull n0*a[0] lea 8*8($nptr),$nptr adc 8*0($tptr),%r8 adc 8*1($tptr),%r9 adc 8*2($tptr),%r10 adc 8*3($tptr),%r11 adc 8*4($tptr),%r12 adc 8*5($tptr),%r13 adc 8*6($tptr),%r14 adc 8*7($tptr),%r15 lea 8*8($tptr),$tptr sbb %rax,%rax sub \$8,%rcx # mov \$-8,%rcx xor $carry,$carry # of=0, cf=0 mov %rax,16+8(%rsp) jmp .Lsqrx8x_tail .align 32 .Lsqrx8x_tail_done: xor %rax,%rax add 24+8(%rsp),%r8 # can this overflow? adc \$0,%r9 adc \$0,%r10 adc \$0,%r11 adc \$0,%r12 adc \$0,%r13 adc \$0,%r14 adc \$0,%r15 adc \$0,%rax sub 16+8(%rsp),$carry # mov 16(%rsp),%cf .Lsqrx8x_no_tail: # %cf is 0 if jumped here adc 8*0($tptr),%r8 movq %xmm3,%rcx adc 8*1($tptr),%r9 mov 8*7($nptr),$carry movq %xmm2,$nptr # restore $nptr adc 8*2($tptr),%r10 adc 8*3($tptr),%r11 adc 8*4($tptr),%r12 adc 8*5($tptr),%r13 adc 8*6($tptr),%r14 adc 8*7($tptr),%r15 adc \$0,%rax # top-most carry mov 32+8(%rsp),%rbx # n0 mov 8*8($tptr,%rcx),%rdx # modulo-scheduled "%r8" mov %r8,8*0($tptr) # store top 512 bits lea 8*8($tptr),%r8 # borrow %r8 mov %r9,8*1($tptr) mov %r10,8*2($tptr) mov %r11,8*3($tptr) mov %r12,8*4($tptr) mov %r13,8*5($tptr) mov %r14,8*6($tptr) mov %r15,8*7($tptr) lea 8*8($tptr,%rcx),$tptr # start of current t[] window cmp 8+8(%rsp),%r8 # end of t[]? jb .Lsqrx8x_reduction_loop ret .cfi_endproc .size bn_sqrx8x_internal,.-bn_sqrx8x_internal ___ } ############################################################## # Post-condition, 4x unrolled # { my ($rptr,$nptr)=("%rdx","%rbp"); $code.=<<___; .align 32 __bn_postx4x_internal: .cfi_startproc mov 8*0($nptr),%r12 mov %rcx,%r10 # -$num mov %rcx,%r9 # -$num neg %rax sar \$3+2,%rcx #lea 48+8(%rsp,%r9),$tptr movq %xmm1,$rptr # restore $rptr movq %xmm1,$aptr # prepare for back-to-back call dec %r12 # so that after 'not' we get -n[0] mov 8*1($nptr),%r13 xor %r8,%r8 mov 8*2($nptr),%r14 mov 8*3($nptr),%r15 jmp .Lsqrx4x_sub_entry .align 16 .Lsqrx4x_sub: mov 8*0($nptr),%r12 mov 8*1($nptr),%r13 mov 8*2($nptr),%r14 mov 8*3($nptr),%r15 .Lsqrx4x_sub_entry: andn %rax,%r12,%r12 lea 8*4($nptr),$nptr andn %rax,%r13,%r13 andn %rax,%r14,%r14 andn %rax,%r15,%r15 neg %r8 # mov %r8,%cf adc 8*0($tptr),%r12 adc 8*1($tptr),%r13 adc 8*2($tptr),%r14 adc 8*3($tptr),%r15 mov %r12,8*0($rptr) lea 8*4($tptr),$tptr mov %r13,8*1($rptr) sbb %r8,%r8 # mov %cf,%r8 mov %r14,8*2($rptr) mov %r15,8*3($rptr) lea 8*4($rptr),$rptr inc %rcx jnz .Lsqrx4x_sub neg %r9 # restore $num ret .cfi_endproc .size __bn_postx4x_internal,.-__bn_postx4x_internal ___ } }}} { my ($inp,$num,$tbl,$idx)=$win64?("%rcx","%edx","%r8", "%r9d") : # Win64 order ("%rdi","%esi","%rdx","%ecx"); # Unix order my $out=$inp; my $STRIDE=2**5*8; my $N=$STRIDE/4; $code.=<<___; .globl bn_get_bits5 .type bn_get_bits5,\@abi-omnipotent .align 16 bn_get_bits5: .cfi_startproc lea 0($inp),%r10 lea 1($inp),%r11 mov $num,%ecx shr \$4,$num and \$15,%ecx lea -8(%ecx),%eax cmp \$11,%ecx cmova %r11,%r10 cmova %eax,%ecx movzw (%r10,$num,2),%eax shrl %cl,%eax and \$31,%eax ret .cfi_endproc .size bn_get_bits5,.-bn_get_bits5 .globl bn_scatter5 .type bn_scatter5,\@abi-omnipotent .align 16 bn_scatter5: .cfi_startproc cmp \$0, $num jz .Lscatter_epilogue lea ($tbl,$idx,8),$tbl .Lscatter: mov ($inp),%rax lea 8($inp),$inp mov %rax,($tbl) lea 32*8($tbl),$tbl sub \$1,$num jnz .Lscatter .Lscatter_epilogue: ret .cfi_endproc .size bn_scatter5,.-bn_scatter5 .globl bn_gather5 .type bn_gather5,\@abi-omnipotent .align 32 bn_gather5: .LSEH_begin_bn_gather5: # Win64 thing, but harmless in other cases .cfi_startproc # I can't trust assembler to use specific encoding:-( .byte 0x4c,0x8d,0x14,0x24 #lea (%rsp),%r10 .byte 0x48,0x81,0xec,0x08,0x01,0x00,0x00 #sub $0x108,%rsp lea .Linc(%rip),%rax and \$-16,%rsp # shouldn't be formally required movd $idx,%xmm5 movdqa 0(%rax),%xmm0 # 00000001000000010000000000000000 movdqa 16(%rax),%xmm1 # 00000002000000020000000200000002 lea 128($tbl),%r11 # size optimization lea 128(%rsp),%rax # size optimization pshufd \$0,%xmm5,%xmm5 # broadcast $idx movdqa %xmm1,%xmm4 movdqa %xmm1,%xmm2 ___ ######################################################################## # calculate mask by comparing 0..31 to $idx and save result to stack # for($i=0;$i<$STRIDE/16;$i+=4) { $code.=<<___; paddd %xmm0,%xmm1 pcmpeqd %xmm5,%xmm0 # compare to 1,0 ___ $code.=<<___ if ($i); movdqa %xmm3,`16*($i-1)-128`(%rax) ___ $code.=<<___; movdqa %xmm4,%xmm3 paddd %xmm1,%xmm2 pcmpeqd %xmm5,%xmm1 # compare to 3,2 movdqa %xmm0,`16*($i+0)-128`(%rax) movdqa %xmm4,%xmm0 paddd %xmm2,%xmm3 pcmpeqd %xmm5,%xmm2 # compare to 5,4 movdqa %xmm1,`16*($i+1)-128`(%rax) movdqa %xmm4,%xmm1 paddd %xmm3,%xmm0 pcmpeqd %xmm5,%xmm3 # compare to 7,6 movdqa %xmm2,`16*($i+2)-128`(%rax) movdqa %xmm4,%xmm2 ___ } $code.=<<___; movdqa %xmm3,`16*($i-1)-128`(%rax) jmp .Lgather .align 32 .Lgather: pxor %xmm4,%xmm4 pxor %xmm5,%xmm5 ___ for($i=0;$i<$STRIDE/16;$i+=4) { $code.=<<___; movdqa `16*($i+0)-128`(%r11),%xmm0 movdqa `16*($i+1)-128`(%r11),%xmm1 movdqa `16*($i+2)-128`(%r11),%xmm2 pand `16*($i+0)-128`(%rax),%xmm0 movdqa `16*($i+3)-128`(%r11),%xmm3 pand `16*($i+1)-128`(%rax),%xmm1 por %xmm0,%xmm4 pand `16*($i+2)-128`(%rax),%xmm2 por %xmm1,%xmm5 pand `16*($i+3)-128`(%rax),%xmm3 por %xmm2,%xmm4 por %xmm3,%xmm5 ___ } $code.=<<___; por %xmm5,%xmm4 lea $STRIDE(%r11),%r11 pshufd \$0x4e,%xmm4,%xmm0 por %xmm4,%xmm0 movq %xmm0,($out) # m0=bp[0] lea 8($out),$out sub \$1,$num jnz .Lgather lea (%r10),%rsp ret .LSEH_end_bn_gather5: .cfi_endproc .size bn_gather5,.-bn_gather5 ___ } $code.=<<___; .align 64 .Linc: .long 0,0, 1,1 .long 2,2, 2,2 .asciz "Montgomery Multiplication with scatter/gather for x86_64, CRYPTOGAMS by " ___ # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type mul_handler,\@abi-omnipotent .align 16 mul_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # end of prologue label cmp %r10,%rbx # context->RipRipRsp mov 8(%r11),%r10d # HandlerData[2] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lcommon_seh_tail lea .Lmul_epilogue(%rip),%r10 cmp %r10,%rbx ja .Lbody_40 mov 192($context),%r10 # pull $num mov 8(%rax,%r10,8),%rax # pull saved stack pointer jmp .Lcommon_pop_regs .Lbody_40: mov 40(%rax),%rax # pull saved stack pointer .Lcommon_pop_regs: mov -8(%rax),%rbx mov -16(%rax),%rbp mov -24(%rax),%r12 mov -32(%rax),%r13 mov -40(%rax),%r14 mov -48(%rax),%r15 mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R15 .Lcommon_seh_tail: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size mul_handler,.-mul_handler .section .pdata .align 4 .rva .LSEH_begin_bn_mul_mont_gather5 .rva .LSEH_end_bn_mul_mont_gather5 .rva .LSEH_info_bn_mul_mont_gather5 .rva .LSEH_begin_bn_mul4x_mont_gather5 .rva .LSEH_end_bn_mul4x_mont_gather5 .rva .LSEH_info_bn_mul4x_mont_gather5 .rva .LSEH_begin_bn_power5 .rva .LSEH_end_bn_power5 .rva .LSEH_info_bn_power5 - - .rva .LSEH_begin_bn_from_mont8x - .rva .LSEH_end_bn_from_mont8x - .rva .LSEH_info_bn_from_mont8x ___ $code.=<<___ if ($addx); .rva .LSEH_begin_bn_mulx4x_mont_gather5 .rva .LSEH_end_bn_mulx4x_mont_gather5 .rva .LSEH_info_bn_mulx4x_mont_gather5 .rva .LSEH_begin_bn_powerx5 .rva .LSEH_end_bn_powerx5 .rva .LSEH_info_bn_powerx5 ___ $code.=<<___; .rva .LSEH_begin_bn_gather5 .rva .LSEH_end_bn_gather5 .rva .LSEH_info_bn_gather5 .section .xdata .align 8 .LSEH_info_bn_mul_mont_gather5: .byte 9,0,0,0 .rva mul_handler .rva .Lmul_body,.Lmul_body,.Lmul_epilogue # HandlerData[] .align 8 .LSEH_info_bn_mul4x_mont_gather5: .byte 9,0,0,0 .rva mul_handler .rva .Lmul4x_prologue,.Lmul4x_body,.Lmul4x_epilogue # HandlerData[] .align 8 .LSEH_info_bn_power5: .byte 9,0,0,0 .rva mul_handler .rva .Lpower5_prologue,.Lpower5_body,.Lpower5_epilogue # HandlerData[] -.align 8 -.LSEH_info_bn_from_mont8x: - .byte 9,0,0,0 - .rva mul_handler - .rva .Lfrom_prologue,.Lfrom_body,.Lfrom_epilogue # HandlerData[] ___ $code.=<<___ if ($addx); .align 8 .LSEH_info_bn_mulx4x_mont_gather5: .byte 9,0,0,0 .rva mul_handler .rva .Lmulx4x_prologue,.Lmulx4x_body,.Lmulx4x_epilogue # HandlerData[] .align 8 .LSEH_info_bn_powerx5: .byte 9,0,0,0 .rva mul_handler .rva .Lpowerx5_prologue,.Lpowerx5_body,.Lpowerx5_epilogue # HandlerData[] ___ $code.=<<___; .align 8 .LSEH_info_bn_gather5: .byte 0x01,0x0b,0x03,0x0a .byte 0x0b,0x01,0x21,0x00 # sub rsp,0x108 .byte 0x04,0xa3,0x00,0x00 # lea r10,(rsp) .align 8 ___ } $code =~ s/\`([^\`]*)\`/eval($1)/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; diff --git a/crypto/bn/bn_exp.c b/crypto/bn/bn_exp.c index 8c54ab005ca6..e21dcff027c5 100644 --- a/crypto/bn/bn_exp.c +++ b/crypto/bn/bn_exp.c @@ -1,1396 +1,1404 @@ /* * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include "internal/constant_time.h" #include "bn_local.h" #include #ifdef _WIN32 # include # ifndef alloca # define alloca _alloca # endif #elif defined(__GNUC__) # ifndef alloca # define alloca(s) __builtin_alloca((s)) # endif #elif defined(__sun) # include #endif #include "rsaz_exp.h" #undef SPARC_T4_MONT #if defined(OPENSSL_BN_ASM_MONT) && (defined(__sparc__) || defined(__sparc)) # include "sparc_arch.h" extern unsigned int OPENSSL_sparcv9cap_P[]; # define SPARC_T4_MONT #endif /* maximum precomputation table size for *variable* sliding windows */ #define TABLE_SIZE 32 /* this one works - simple but works */ int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { int i, bits, ret = 0; BIGNUM *v, *rr; if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0 || BN_get_flags(a, BN_FLG_CONSTTIME) != 0) { /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ BNerr(BN_F_BN_EXP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } BN_CTX_start(ctx); rr = ((r == a) || (r == p)) ? BN_CTX_get(ctx) : r; v = BN_CTX_get(ctx); if (rr == NULL || v == NULL) goto err; if (BN_copy(v, a) == NULL) goto err; bits = BN_num_bits(p); if (BN_is_odd(p)) { if (BN_copy(rr, a) == NULL) goto err; } else { if (!BN_one(rr)) goto err; } for (i = 1; i < bits; i++) { if (!BN_sqr(v, v, ctx)) goto err; if (BN_is_bit_set(p, i)) { if (!BN_mul(rr, rr, v, ctx)) goto err; } } if (r != rr && BN_copy(r, rr) == NULL) goto err; ret = 1; err: BN_CTX_end(ctx); bn_check_top(r); return ret; } int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx) { int ret; bn_check_top(a); bn_check_top(p); bn_check_top(m); /*- * For even modulus m = 2^k*m_odd, it might make sense to compute * a^p mod m_odd and a^p mod 2^k separately (with Montgomery * exponentiation for the odd part), using appropriate exponent * reductions, and combine the results using the CRT. * * For now, we use Montgomery only if the modulus is odd; otherwise, * exponentiation using the reciprocal-based quick remaindering * algorithm is used. * * (Timing obtained with expspeed.c [computations a^p mod m * where a, p, m are of the same length: 256, 512, 1024, 2048, * 4096, 8192 bits], compared to the running time of the * standard algorithm: * * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration] * 55 .. 77 % [UltraSparc processor, but * debug-solaris-sparcv8-gcc conf.] * * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration] * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc] * * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont * at 2048 and more bits, but at 512 and 1024 bits, it was * slower even than the standard algorithm! * * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations] * should be obtained when the new Montgomery reduction code * has been integrated into OpenSSL.) */ #define MONT_MUL_MOD #define MONT_EXP_WORD #define RECP_MUL_MOD #ifdef MONT_MUL_MOD if (BN_is_odd(m)) { # ifdef MONT_EXP_WORD if (a->top == 1 && !a->neg && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0) && (BN_get_flags(a, BN_FLG_CONSTTIME) == 0) && (BN_get_flags(m, BN_FLG_CONSTTIME) == 0)) { BN_ULONG A = a->d[0]; ret = BN_mod_exp_mont_word(r, A, p, m, ctx, NULL); } else # endif ret = BN_mod_exp_mont(r, a, p, m, ctx, NULL); } else #endif #ifdef RECP_MUL_MOD { ret = BN_mod_exp_recp(r, a, p, m, ctx); } #else { ret = BN_mod_exp_simple(r, a, p, m, ctx); } #endif bn_check_top(r); return ret; } int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx) { int i, j, bits, ret = 0, wstart, wend, window, wvalue; int start = 1; BIGNUM *aa; /* Table of variables obtained from 'ctx' */ BIGNUM *val[TABLE_SIZE]; BN_RECP_CTX recp; if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0 || BN_get_flags(a, BN_FLG_CONSTTIME) != 0 || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) { /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ BNerr(BN_F_BN_MOD_EXP_RECP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } bits = BN_num_bits(p); if (bits == 0) { /* x**0 mod 1, or x**0 mod -1 is still zero. */ if (BN_abs_is_word(m, 1)) { ret = 1; BN_zero(r); } else { ret = BN_one(r); } return ret; } BN_RECP_CTX_init(&recp); BN_CTX_start(ctx); aa = BN_CTX_get(ctx); val[0] = BN_CTX_get(ctx); if (val[0] == NULL) goto err; if (m->neg) { /* ignore sign of 'm' */ if (!BN_copy(aa, m)) goto err; aa->neg = 0; if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) goto err; } else { if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) goto err; } if (!BN_nnmod(val[0], a, m, ctx)) goto err; /* 1 */ if (BN_is_zero(val[0])) { BN_zero(r); ret = 1; goto err; } window = BN_window_bits_for_exponent_size(bits); if (window > 1) { if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) goto err; /* 2 */ j = 1 << (window - 1); for (i = 1; i < j; i++) { if (((val[i] = BN_CTX_get(ctx)) == NULL) || !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx)) goto err; } } start = 1; /* This is used to avoid multiplication etc * when there is only the value '1' in the * buffer. */ wvalue = 0; /* The 'value' of the window */ wstart = bits - 1; /* The top bit of the window */ wend = 0; /* The bottom bit of the window */ if (!BN_one(r)) goto err; for (;;) { if (BN_is_bit_set(p, wstart) == 0) { if (!start) if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) goto err; if (wstart == 0) break; wstart--; continue; } /* * We now have wstart on a 'set' bit, we now need to work out how bit * a window to do. To do this we need to scan forward until the last * set bit before the end of the window */ j = wstart; wvalue = 1; wend = 0; for (i = 1; i < window; i++) { if (wstart - i < 0) break; if (BN_is_bit_set(p, wstart - i)) { wvalue <<= (i - wend); wvalue |= 1; wend = i; } } /* wend is the size of the current window */ j = wend + 1; /* add the 'bytes above' */ if (!start) for (i = 0; i < j; i++) { if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) goto err; } /* wvalue will be an odd number < 2^window */ if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx)) goto err; /* move the 'window' down further */ wstart -= wend + 1; wvalue = 0; start = 0; if (wstart < 0) break; } ret = 1; err: BN_CTX_end(ctx); BN_RECP_CTX_free(&recp); bn_check_top(r); return ret; } int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) { int i, j, bits, ret = 0, wstart, wend, window, wvalue; int start = 1; BIGNUM *d, *r; const BIGNUM *aa; /* Table of variables obtained from 'ctx' */ BIGNUM *val[TABLE_SIZE]; BN_MONT_CTX *mont = NULL; if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0 || BN_get_flags(a, BN_FLG_CONSTTIME) != 0 || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) { return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont); } bn_check_top(a); bn_check_top(p); bn_check_top(m); if (!BN_is_odd(m)) { BNerr(BN_F_BN_MOD_EXP_MONT, BN_R_CALLED_WITH_EVEN_MODULUS); return 0; } bits = BN_num_bits(p); if (bits == 0) { /* x**0 mod 1, or x**0 mod -1 is still zero. */ if (BN_abs_is_word(m, 1)) { ret = 1; BN_zero(rr); } else { ret = BN_one(rr); } return ret; } BN_CTX_start(ctx); d = BN_CTX_get(ctx); r = BN_CTX_get(ctx); val[0] = BN_CTX_get(ctx); if (val[0] == NULL) goto err; /* * If this is not done, things will break in the montgomery part */ if (in_mont != NULL) mont = in_mont; else { if ((mont = BN_MONT_CTX_new()) == NULL) goto err; if (!BN_MONT_CTX_set(mont, m, ctx)) goto err; } if (a->neg || BN_ucmp(a, m) >= 0) { if (!BN_nnmod(val[0], a, m, ctx)) goto err; aa = val[0]; } else aa = a; if (!bn_to_mont_fixed_top(val[0], aa, mont, ctx)) goto err; /* 1 */ window = BN_window_bits_for_exponent_size(bits); if (window > 1) { if (!bn_mul_mont_fixed_top(d, val[0], val[0], mont, ctx)) goto err; /* 2 */ j = 1 << (window - 1); for (i = 1; i < j; i++) { if (((val[i] = BN_CTX_get(ctx)) == NULL) || !bn_mul_mont_fixed_top(val[i], val[i - 1], d, mont, ctx)) goto err; } } start = 1; /* This is used to avoid multiplication etc * when there is only the value '1' in the * buffer. */ wvalue = 0; /* The 'value' of the window */ wstart = bits - 1; /* The top bit of the window */ wend = 0; /* The bottom bit of the window */ #if 1 /* by Shay Gueron's suggestion */ j = m->top; /* borrow j */ if (m->d[j - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) { if (bn_wexpand(r, j) == NULL) goto err; /* 2^(top*BN_BITS2) - m */ r->d[0] = (0 - m->d[0]) & BN_MASK2; for (i = 1; i < j; i++) r->d[i] = (~m->d[i]) & BN_MASK2; r->top = j; r->flags |= BN_FLG_FIXED_TOP; } else #endif if (!bn_to_mont_fixed_top(r, BN_value_one(), mont, ctx)) goto err; for (;;) { if (BN_is_bit_set(p, wstart) == 0) { if (!start) { if (!bn_mul_mont_fixed_top(r, r, r, mont, ctx)) goto err; } if (wstart == 0) break; wstart--; continue; } /* * We now have wstart on a 'set' bit, we now need to work out how bit * a window to do. To do this we need to scan forward until the last * set bit before the end of the window */ j = wstart; wvalue = 1; wend = 0; for (i = 1; i < window; i++) { if (wstart - i < 0) break; if (BN_is_bit_set(p, wstart - i)) { wvalue <<= (i - wend); wvalue |= 1; wend = i; } } /* wend is the size of the current window */ j = wend + 1; /* add the 'bytes above' */ if (!start) for (i = 0; i < j; i++) { if (!bn_mul_mont_fixed_top(r, r, r, mont, ctx)) goto err; } /* wvalue will be an odd number < 2^window */ if (!bn_mul_mont_fixed_top(r, r, val[wvalue >> 1], mont, ctx)) goto err; /* move the 'window' down further */ wstart -= wend + 1; wvalue = 0; start = 0; if (wstart < 0) break; } /* * Done with zero-padded intermediate BIGNUMs. Final BN_from_montgomery * removes padding [if any] and makes return value suitable for public * API consumer. */ #if defined(SPARC_T4_MONT) if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) { j = mont->N.top; /* borrow j */ val[0]->d[0] = 1; /* borrow val[0] */ for (i = 1; i < j; i++) val[0]->d[i] = 0; val[0]->top = j; if (!BN_mod_mul_montgomery(rr, r, val[0], mont, ctx)) goto err; } else #endif if (!BN_from_montgomery(rr, r, mont, ctx)) goto err; ret = 1; err: if (in_mont == NULL) BN_MONT_CTX_free(mont); BN_CTX_end(ctx); bn_check_top(rr); return ret; } static BN_ULONG bn_get_bits(const BIGNUM *a, int bitpos) { BN_ULONG ret = 0; int wordpos; wordpos = bitpos / BN_BITS2; bitpos %= BN_BITS2; if (wordpos >= 0 && wordpos < a->top) { ret = a->d[wordpos] & BN_MASK2; if (bitpos) { ret >>= bitpos; if (++wordpos < a->top) ret |= a->d[wordpos] << (BN_BITS2 - bitpos); } } return ret & BN_MASK2; } /* * BN_mod_exp_mont_consttime() stores the precomputed powers in a specific * layout so that accessing any of these table values shows the same access * pattern as far as cache lines are concerned. The following functions are * used to transfer a BIGNUM from/to that table. */ static int MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top, unsigned char *buf, int idx, int window) { int i, j; int width = 1 << window; BN_ULONG *table = (BN_ULONG *)buf; if (top > b->top) top = b->top; /* this works because 'buf' is explicitly * zeroed */ for (i = 0, j = idx; i < top; i++, j += width) { table[j] = b->d[i]; } return 1; } static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, int window) { int i, j; int width = 1 << window; /* * We declare table 'volatile' in order to discourage compiler * from reordering loads from the table. Concern is that if * reordered in specific manner loads might give away the * information we are trying to conceal. Some would argue that * compiler can reorder them anyway, but it can as well be * argued that doing so would be violation of standard... */ volatile BN_ULONG *table = (volatile BN_ULONG *)buf; if (bn_wexpand(b, top) == NULL) return 0; if (window <= 3) { for (i = 0; i < top; i++, table += width) { BN_ULONG acc = 0; for (j = 0; j < width; j++) { acc |= table[j] & ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1)); } b->d[i] = acc; } } else { int xstride = 1 << (window - 2); BN_ULONG y0, y1, y2, y3; i = idx >> (window - 2); /* equivalent of idx / xstride */ idx &= xstride - 1; /* equivalent of idx % xstride */ y0 = (BN_ULONG)0 - (constant_time_eq_int(i,0)&1); y1 = (BN_ULONG)0 - (constant_time_eq_int(i,1)&1); y2 = (BN_ULONG)0 - (constant_time_eq_int(i,2)&1); y3 = (BN_ULONG)0 - (constant_time_eq_int(i,3)&1); for (i = 0; i < top; i++, table += width) { BN_ULONG acc = 0; for (j = 0; j < xstride; j++) { acc |= ( (table[j + 0 * xstride] & y0) | (table[j + 1 * xstride] & y1) | (table[j + 2 * xstride] & y2) | (table[j + 3 * xstride] & y3) ) & ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1)); } b->d[i] = acc; } } b->top = top; b->flags |= BN_FLG_FIXED_TOP; return 1; } /* * Given a pointer value, compute the next address that is a cache line * multiple. */ #define MOD_EXP_CTIME_ALIGN(x_) \ ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK)))) /* * This variant of BN_mod_exp_mont() uses fixed windows and the special * precomputation memory layout to limit data-dependency to a minimum to * protect secret exponents (cf. the hyper-threading timing attacks pointed * out by Colin Percival, * http://www.daemonology.net/hyperthreading-considered-harmful/) */ int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) { int i, bits, ret = 0, window, wvalue, wmask, window0; int top; BN_MONT_CTX *mont = NULL; int numPowers; unsigned char *powerbufFree = NULL; int powerbufLen = 0; unsigned char *powerbuf = NULL; BIGNUM tmp, am; #if defined(SPARC_T4_MONT) unsigned int t4 = 0; #endif bn_check_top(a); bn_check_top(p); bn_check_top(m); if (!BN_is_odd(m)) { BNerr(BN_F_BN_MOD_EXP_MONT_CONSTTIME, BN_R_CALLED_WITH_EVEN_MODULUS); return 0; } top = m->top; /* * Use all bits stored in |p|, rather than |BN_num_bits|, so we do not leak * whether the top bits are zero. */ bits = p->top * BN_BITS2; if (bits == 0) { /* x**0 mod 1, or x**0 mod -1 is still zero. */ if (BN_abs_is_word(m, 1)) { ret = 1; BN_zero(rr); } else { ret = BN_one(rr); } return ret; } BN_CTX_start(ctx); /* * Allocate a montgomery context if it was not supplied by the caller. If * this is not done, things will break in the montgomery part. */ if (in_mont != NULL) mont = in_mont; else { if ((mont = BN_MONT_CTX_new()) == NULL) goto err; if (!BN_MONT_CTX_set(mont, m, ctx)) goto err; } if (a->neg || BN_ucmp(a, m) >= 0) { BIGNUM *reduced = BN_CTX_get(ctx); if (reduced == NULL || !BN_nnmod(reduced, a, m, ctx)) { goto err; } a = reduced; } #ifdef RSAZ_ENABLED /* * If the size of the operands allow it, perform the optimized * RSAZ exponentiation. For further information see * crypto/bn/rsaz_exp.c and accompanying assembly modules. */ if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024) && rsaz_avx2_eligible()) { if (NULL == bn_wexpand(rr, 16)) goto err; RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0]); rr->top = 16; rr->neg = 0; bn_correct_top(rr); ret = 1; goto err; } else if ((8 == a->top) && (8 == p->top) && (BN_num_bits(m) == 512)) { if (NULL == bn_wexpand(rr, 8)) goto err; RSAZ_512_mod_exp(rr->d, a->d, p->d, m->d, mont->n0[0], mont->RR.d); rr->top = 8; rr->neg = 0; bn_correct_top(rr); ret = 1; goto err; } #endif /* Get the window size to use with size of p. */ window = BN_window_bits_for_ctime_exponent_size(bits); #if defined(SPARC_T4_MONT) if (window >= 5 && (top & 15) == 0 && top <= 64 && (OPENSSL_sparcv9cap_P[1] & (CFR_MONTMUL | CFR_MONTSQR)) == (CFR_MONTMUL | CFR_MONTSQR) && (t4 = OPENSSL_sparcv9cap_P[0])) window = 5; else #endif #if defined(OPENSSL_BN_ASM_MONT5) if (window >= 5) { window = 5; /* ~5% improvement for RSA2048 sign, and even * for RSA4096 */ /* reserve space for mont->N.d[] copy */ powerbufLen += top * sizeof(mont->N.d[0]); } #endif (void)0; /* * Allocate a buffer large enough to hold all of the pre-computed powers * of am, am itself and tmp. */ numPowers = 1 << window; powerbufLen += sizeof(m->d[0]) * (top * numPowers + ((2 * top) > numPowers ? (2 * top) : numPowers)); #ifdef alloca if (powerbufLen < 3072) powerbufFree = alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH); else #endif if ((powerbufFree = OPENSSL_malloc(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL) goto err; powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree); memset(powerbuf, 0, powerbufLen); #ifdef alloca if (powerbufLen < 3072) powerbufFree = NULL; #endif /* lay down tmp and am right after powers table */ tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers); am.d = tmp.d + top; tmp.top = am.top = 0; tmp.dmax = am.dmax = top; tmp.neg = am.neg = 0; tmp.flags = am.flags = BN_FLG_STATIC_DATA; /* prepare a^0 in Montgomery domain */ #if 1 /* by Shay Gueron's suggestion */ if (m->d[top - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) { /* 2^(top*BN_BITS2) - m */ tmp.d[0] = (0 - m->d[0]) & BN_MASK2; for (i = 1; i < top; i++) tmp.d[i] = (~m->d[i]) & BN_MASK2; tmp.top = top; } else #endif if (!bn_to_mont_fixed_top(&tmp, BN_value_one(), mont, ctx)) goto err; /* prepare a^1 in Montgomery domain */ if (!bn_to_mont_fixed_top(&am, a, mont, ctx)) goto err; #if defined(SPARC_T4_MONT) if (t4) { typedef int (*bn_pwr5_mont_f) (BN_ULONG *tp, const BN_ULONG *np, const BN_ULONG *n0, const void *table, int power, int bits); int bn_pwr5_mont_t4_8(BN_ULONG *tp, const BN_ULONG *np, const BN_ULONG *n0, const void *table, int power, int bits); int bn_pwr5_mont_t4_16(BN_ULONG *tp, const BN_ULONG *np, const BN_ULONG *n0, const void *table, int power, int bits); int bn_pwr5_mont_t4_24(BN_ULONG *tp, const BN_ULONG *np, const BN_ULONG *n0, const void *table, int power, int bits); int bn_pwr5_mont_t4_32(BN_ULONG *tp, const BN_ULONG *np, const BN_ULONG *n0, const void *table, int power, int bits); static const bn_pwr5_mont_f pwr5_funcs[4] = { bn_pwr5_mont_t4_8, bn_pwr5_mont_t4_16, bn_pwr5_mont_t4_24, bn_pwr5_mont_t4_32 }; bn_pwr5_mont_f pwr5_worker = pwr5_funcs[top / 16 - 1]; typedef int (*bn_mul_mont_f) (BN_ULONG *rp, const BN_ULONG *ap, const void *bp, const BN_ULONG *np, const BN_ULONG *n0); int bn_mul_mont_t4_8(BN_ULONG *rp, const BN_ULONG *ap, const void *bp, const BN_ULONG *np, const BN_ULONG *n0); int bn_mul_mont_t4_16(BN_ULONG *rp, const BN_ULONG *ap, const void *bp, const BN_ULONG *np, const BN_ULONG *n0); int bn_mul_mont_t4_24(BN_ULONG *rp, const BN_ULONG *ap, const void *bp, const BN_ULONG *np, const BN_ULONG *n0); int bn_mul_mont_t4_32(BN_ULONG *rp, const BN_ULONG *ap, const void *bp, const BN_ULONG *np, const BN_ULONG *n0); static const bn_mul_mont_f mul_funcs[4] = { bn_mul_mont_t4_8, bn_mul_mont_t4_16, bn_mul_mont_t4_24, bn_mul_mont_t4_32 }; bn_mul_mont_f mul_worker = mul_funcs[top / 16 - 1]; void bn_mul_mont_vis3(BN_ULONG *rp, const BN_ULONG *ap, const void *bp, const BN_ULONG *np, const BN_ULONG *n0, int num); void bn_mul_mont_t4(BN_ULONG *rp, const BN_ULONG *ap, const void *bp, const BN_ULONG *np, const BN_ULONG *n0, int num); void bn_mul_mont_gather5_t4(BN_ULONG *rp, const BN_ULONG *ap, const void *table, const BN_ULONG *np, const BN_ULONG *n0, int num, int power); void bn_flip_n_scatter5_t4(const BN_ULONG *inp, size_t num, void *table, size_t power); void bn_gather5_t4(BN_ULONG *out, size_t num, void *table, size_t power); void bn_flip_t4(BN_ULONG *dst, BN_ULONG *src, size_t num); BN_ULONG *np = mont->N.d, *n0 = mont->n0; int stride = 5 * (6 - (top / 16 - 1)); /* multiple of 5, but less * than 32 */ /* * BN_to_montgomery can contaminate words above .top [in * BN_DEBUG[_DEBUG] build]... */ for (i = am.top; i < top; i++) am.d[i] = 0; for (i = tmp.top; i < top; i++) tmp.d[i] = 0; bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 0); bn_flip_n_scatter5_t4(am.d, top, powerbuf, 1); if (!(*mul_worker) (tmp.d, am.d, am.d, np, n0) && !(*mul_worker) (tmp.d, am.d, am.d, np, n0)) bn_mul_mont_vis3(tmp.d, am.d, am.d, np, n0, top); bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 2); for (i = 3; i < 32; i++) { /* Calculate a^i = a^(i-1) * a */ if (!(*mul_worker) (tmp.d, tmp.d, am.d, np, n0) && !(*mul_worker) (tmp.d, tmp.d, am.d, np, n0)) bn_mul_mont_vis3(tmp.d, tmp.d, am.d, np, n0, top); bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, i); } /* switch to 64-bit domain */ np = alloca(top * sizeof(BN_ULONG)); top /= 2; bn_flip_t4(np, mont->N.d, top); /* * The exponent may not have a whole number of fixed-size windows. * To simplify the main loop, the initial window has between 1 and * full-window-size bits such that what remains is always a whole * number of windows */ window0 = (bits - 1) % 5 + 1; wmask = (1 << window0) - 1; bits -= window0; wvalue = bn_get_bits(p, bits) & wmask; bn_gather5_t4(tmp.d, top, powerbuf, wvalue); /* * Scan the exponent one window at a time starting from the most * significant bits. */ while (bits > 0) { if (bits < stride) stride = bits; bits -= stride; wvalue = bn_get_bits(p, bits); if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride)) continue; /* retry once and fall back */ if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride)) continue; bits += stride - 5; wvalue >>= stride - 5; wvalue &= 31; bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top); bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top); bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top); bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top); bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top); bn_mul_mont_gather5_t4(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue); } bn_flip_t4(tmp.d, tmp.d, top); top *= 2; /* back to 32-bit domain */ tmp.top = top; bn_correct_top(&tmp); OPENSSL_cleanse(np, top * sizeof(BN_ULONG)); } else #endif #if defined(OPENSSL_BN_ASM_MONT5) if (window == 5 && top > 1) { /* - * This optimization uses ideas from http://eprint.iacr.org/2011/239, - * specifically optimization of cache-timing attack countermeasures - * and pre-computation optimization. - */ - - /* - * Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as - * 512-bit RSA is hardly relevant, we omit it to spare size... + * This optimization uses ideas from https://eprint.iacr.org/2011/239, + * specifically optimization of cache-timing attack countermeasures, + * pre-computation optimization, and Almost Montgomery Multiplication. + * + * The paper discusses a 4-bit window to optimize 512-bit modular + * exponentiation, used in RSA-1024 with CRT, but RSA-1024 is no longer + * important. + * + * |bn_mul_mont_gather5| and |bn_power5| implement the "almost" + * reduction variant, so the values here may not be fully reduced. + * They are bounded by R (i.e. they fit in |top| words), not |m|. + * Additionally, we pass these "almost" reduced inputs into + * |bn_mul_mont|, which implements the normal reduction variant. + * Given those inputs, |bn_mul_mont| may not give reduced + * output, but it will still produce "almost" reduced output. */ void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap, const void *table, const BN_ULONG *np, const BN_ULONG *n0, int num, int power); void bn_scatter5(const BN_ULONG *inp, size_t num, void *table, size_t power); void bn_gather5(BN_ULONG *out, size_t num, void *table, size_t power); void bn_power5(BN_ULONG *rp, const BN_ULONG *ap, const void *table, const BN_ULONG *np, const BN_ULONG *n0, int num, int power); int bn_get_bits5(const BN_ULONG *ap, int off); - int bn_from_montgomery(BN_ULONG *rp, const BN_ULONG *ap, - const BN_ULONG *not_used, const BN_ULONG *np, - const BN_ULONG *n0, int num); BN_ULONG *n0 = mont->n0, *np; /* * BN_to_montgomery can contaminate words above .top [in * BN_DEBUG[_DEBUG] build]... */ for (i = am.top; i < top; i++) am.d[i] = 0; for (i = tmp.top; i < top; i++) tmp.d[i] = 0; /* * copy mont->N.d[] to improve cache locality */ for (np = am.d + top, i = 0; i < top; i++) np[i] = mont->N.d[i]; bn_scatter5(tmp.d, top, powerbuf, 0); bn_scatter5(am.d, am.top, powerbuf, 1); bn_mul_mont(tmp.d, am.d, am.d, np, n0, top); bn_scatter5(tmp.d, top, powerbuf, 2); # if 0 for (i = 3; i < 32; i++) { /* Calculate a^i = a^(i-1) * a */ bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); bn_scatter5(tmp.d, top, powerbuf, i); } # else /* same as above, but uses squaring for 1/2 of operations */ for (i = 4; i < 32; i *= 2) { bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); bn_scatter5(tmp.d, top, powerbuf, i); } for (i = 3; i < 8; i += 2) { int j; bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); bn_scatter5(tmp.d, top, powerbuf, i); for (j = 2 * i; j < 32; j *= 2) { bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); bn_scatter5(tmp.d, top, powerbuf, j); } } for (; i < 16; i += 2) { bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); bn_scatter5(tmp.d, top, powerbuf, i); bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); bn_scatter5(tmp.d, top, powerbuf, 2 * i); } for (; i < 32; i += 2) { bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); bn_scatter5(tmp.d, top, powerbuf, i); } # endif /* * The exponent may not have a whole number of fixed-size windows. * To simplify the main loop, the initial window has between 1 and * full-window-size bits such that what remains is always a whole * number of windows */ window0 = (bits - 1) % 5 + 1; wmask = (1 << window0) - 1; bits -= window0; wvalue = bn_get_bits(p, bits) & wmask; bn_gather5(tmp.d, top, powerbuf, wvalue); /* * Scan the exponent one window at a time starting from the most * significant bits. */ if (top & 7) { while (bits > 0) { bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, bn_get_bits5(p->d, bits -= 5)); } } else { while (bits > 0) { bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, bn_get_bits5(p->d, bits -= 5)); } } - ret = bn_from_montgomery(tmp.d, tmp.d, NULL, np, n0, top); tmp.top = top; - bn_correct_top(&tmp); - if (ret) { - if (!BN_copy(rr, &tmp)) - ret = 0; - goto err; /* non-zero ret means it's not error */ - } + /* + * The result is now in |tmp| in Montgomery form, but it may not be + * fully reduced. This is within bounds for |BN_from_montgomery| + * (tmp < R <= m*R) so it will, when converting from Montgomery form, + * produce a fully reduced result. + * + * This differs from Figure 2 of the paper, which uses AMM(h, 1) to + * convert from Montgomery form with unreduced output, followed by an + * extra reduction step. In the paper's terminology, we replace + * steps 9 and 10 with MM(h, 1). + */ } else #endif { if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, window)) goto err; if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am, top, powerbuf, 1, window)) goto err; /* * If the window size is greater than 1, then calculate * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) (even * powers could instead be computed as (a^(i/2))^2 to use the slight * performance advantage of sqr over mul). */ if (window > 1) { if (!bn_mul_mont_fixed_top(&tmp, &am, &am, mont, ctx)) goto err; if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 2, window)) goto err; for (i = 3; i < numPowers; i++) { /* Calculate a^i = a^(i-1) * a */ if (!bn_mul_mont_fixed_top(&tmp, &am, &tmp, mont, ctx)) goto err; if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, i, window)) goto err; } } /* * The exponent may not have a whole number of fixed-size windows. * To simplify the main loop, the initial window has between 1 and * full-window-size bits such that what remains is always a whole * number of windows */ window0 = (bits - 1) % window + 1; wmask = (1 << window0) - 1; bits -= window0; wvalue = bn_get_bits(p, bits) & wmask; if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp, top, powerbuf, wvalue, window)) goto err; wmask = (1 << window) - 1; /* * Scan the exponent one window at a time starting from the most * significant bits. */ while (bits > 0) { /* Square the result window-size times */ for (i = 0; i < window; i++) if (!bn_mul_mont_fixed_top(&tmp, &tmp, &tmp, mont, ctx)) goto err; /* * Get a window's worth of bits from the exponent * This avoids calling BN_is_bit_set for each bit, which * is not only slower but also makes each bit vulnerable to * EM (and likely other) side-channel attacks like One&Done * (for details see "One&Done: A Single-Decryption EM-Based * Attack on OpenSSL's Constant-Time Blinded RSA" by M. Alam, * H. Khan, M. Dey, N. Sinha, R. Callan, A. Zajic, and * M. Prvulovic, in USENIX Security'18) */ bits -= window; wvalue = bn_get_bits(p, bits) & wmask; /* * Fetch the appropriate pre-computed value from the pre-buf */ if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, wvalue, window)) goto err; /* Multiply the result into the intermediate result */ if (!bn_mul_mont_fixed_top(&tmp, &tmp, &am, mont, ctx)) goto err; } } /* * Done with zero-padded intermediate BIGNUMs. Final BN_from_montgomery * removes padding [if any] and makes return value suitable for public * API consumer. */ #if defined(SPARC_T4_MONT) if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) { am.d[0] = 1; /* borrow am */ for (i = 1; i < top; i++) am.d[i] = 0; if (!BN_mod_mul_montgomery(rr, &tmp, &am, mont, ctx)) goto err; } else #endif if (!BN_from_montgomery(rr, &tmp, mont, ctx)) goto err; ret = 1; err: if (in_mont == NULL) BN_MONT_CTX_free(mont); if (powerbuf != NULL) { OPENSSL_cleanse(powerbuf, powerbufLen); OPENSSL_free(powerbufFree); } BN_CTX_end(ctx); return ret; } int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) { BN_MONT_CTX *mont = NULL; int b, bits, ret = 0; int r_is_one; BN_ULONG w, next_w; BIGNUM *r, *t; BIGNUM *swap_tmp; #define BN_MOD_MUL_WORD(r, w, m) \ (BN_mul_word(r, (w)) && \ (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \ (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1)))) /* * BN_MOD_MUL_WORD is only used with 'w' large, so the BN_ucmp test is * probably more overhead than always using BN_mod (which uses BN_copy if * a similar test returns true). */ /* * We can use BN_mod and do not need BN_nnmod because our accumulator is * never negative (the result of BN_mod does not depend on the sign of * the modulus). */ #define BN_TO_MONTGOMERY_WORD(r, w, mont) \ (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx)) if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0 || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) { /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ BNerr(BN_F_BN_MOD_EXP_MONT_WORD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } bn_check_top(p); bn_check_top(m); if (!BN_is_odd(m)) { BNerr(BN_F_BN_MOD_EXP_MONT_WORD, BN_R_CALLED_WITH_EVEN_MODULUS); return 0; } if (m->top == 1) a %= m->d[0]; /* make sure that 'a' is reduced */ bits = BN_num_bits(p); if (bits == 0) { /* x**0 mod 1, or x**0 mod -1 is still zero. */ if (BN_abs_is_word(m, 1)) { ret = 1; BN_zero(rr); } else { ret = BN_one(rr); } return ret; } if (a == 0) { BN_zero(rr); ret = 1; return ret; } BN_CTX_start(ctx); r = BN_CTX_get(ctx); t = BN_CTX_get(ctx); if (t == NULL) goto err; if (in_mont != NULL) mont = in_mont; else { if ((mont = BN_MONT_CTX_new()) == NULL) goto err; if (!BN_MONT_CTX_set(mont, m, ctx)) goto err; } r_is_one = 1; /* except for Montgomery factor */ /* bits-1 >= 0 */ /* The result is accumulated in the product r*w. */ w = a; /* bit 'bits-1' of 'p' is always set */ for (b = bits - 2; b >= 0; b--) { /* First, square r*w. */ next_w = w * w; if ((next_w / w) != w) { /* overflow */ if (r_is_one) { if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; r_is_one = 0; } else { if (!BN_MOD_MUL_WORD(r, w, m)) goto err; } next_w = 1; } w = next_w; if (!r_is_one) { if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) goto err; } /* Second, multiply r*w by 'a' if exponent bit is set. */ if (BN_is_bit_set(p, b)) { next_w = w * a; if ((next_w / a) != w) { /* overflow */ if (r_is_one) { if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; r_is_one = 0; } else { if (!BN_MOD_MUL_WORD(r, w, m)) goto err; } next_w = a; } w = next_w; } } /* Finally, set r:=r*w. */ if (w != 1) { if (r_is_one) { if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; r_is_one = 0; } else { if (!BN_MOD_MUL_WORD(r, w, m)) goto err; } } if (r_is_one) { /* can happen only if a == 1 */ if (!BN_one(rr)) goto err; } else { if (!BN_from_montgomery(rr, r, mont, ctx)) goto err; } ret = 1; err: if (in_mont == NULL) BN_MONT_CTX_free(mont); BN_CTX_end(ctx); bn_check_top(rr); return ret; } /* The old fallback, simple version :-) */ int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx) { int i, j, bits, ret = 0, wstart, wend, window, wvalue; int start = 1; BIGNUM *d; /* Table of variables obtained from 'ctx' */ BIGNUM *val[TABLE_SIZE]; if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0 || BN_get_flags(a, BN_FLG_CONSTTIME) != 0 || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) { /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ BNerr(BN_F_BN_MOD_EXP_SIMPLE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } bits = BN_num_bits(p); if (bits == 0) { /* x**0 mod 1, or x**0 mod -1 is still zero. */ if (BN_abs_is_word(m, 1)) { ret = 1; BN_zero(r); } else { ret = BN_one(r); } return ret; } BN_CTX_start(ctx); d = BN_CTX_get(ctx); val[0] = BN_CTX_get(ctx); if (val[0] == NULL) goto err; if (!BN_nnmod(val[0], a, m, ctx)) goto err; /* 1 */ if (BN_is_zero(val[0])) { BN_zero(r); ret = 1; goto err; } window = BN_window_bits_for_exponent_size(bits); if (window > 1) { if (!BN_mod_mul(d, val[0], val[0], m, ctx)) goto err; /* 2 */ j = 1 << (window - 1); for (i = 1; i < j; i++) { if (((val[i] = BN_CTX_get(ctx)) == NULL) || !BN_mod_mul(val[i], val[i - 1], d, m, ctx)) goto err; } } start = 1; /* This is used to avoid multiplication etc * when there is only the value '1' in the * buffer. */ wvalue = 0; /* The 'value' of the window */ wstart = bits - 1; /* The top bit of the window */ wend = 0; /* The bottom bit of the window */ if (!BN_one(r)) goto err; for (;;) { if (BN_is_bit_set(p, wstart) == 0) { if (!start) if (!BN_mod_mul(r, r, r, m, ctx)) goto err; if (wstart == 0) break; wstart--; continue; } /* * We now have wstart on a 'set' bit, we now need to work out how bit * a window to do. To do this we need to scan forward until the last * set bit before the end of the window */ j = wstart; wvalue = 1; wend = 0; for (i = 1; i < window; i++) { if (wstart - i < 0) break; if (BN_is_bit_set(p, wstart - i)) { wvalue <<= (i - wend); wvalue |= 1; wend = i; } } /* wend is the size of the current window */ j = wend + 1; /* add the 'bytes above' */ if (!start) for (i = 0; i < j; i++) { if (!BN_mod_mul(r, r, r, m, ctx)) goto err; } /* wvalue will be an odd number < 2^window */ if (!BN_mod_mul(r, r, val[wvalue >> 1], m, ctx)) goto err; /* move the 'window' down further */ wstart -= wend + 1; wvalue = 0; start = 0; if (wstart < 0) break; } ret = 1; err: BN_CTX_end(ctx); bn_check_top(r); return ret; } diff --git a/crypto/bn/rsaz_exp.c b/crypto/bn/rsaz_exp.c index 22455b8a6374..a2ab58bbeb4c 100644 --- a/crypto/bn/rsaz_exp.c +++ b/crypto/bn/rsaz_exp.c @@ -1,315 +1,323 @@ /* - * Copyright 2013-2016 The OpenSSL Project Authors. All Rights Reserved. + * Copyright 2013-2022 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2012, Intel Corporation. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1) * (1) Intel Corporation, Israel Development Center, Haifa, Israel * (2) University of Haifa, Israel */ #include #include "rsaz_exp.h" #ifndef RSAZ_ENABLED NON_EMPTY_TRANSLATION_UNIT #else /* * See crypto/bn/asm/rsaz-avx2.pl for further details. */ void rsaz_1024_norm2red_avx2(void *red, const void *norm); void rsaz_1024_mul_avx2(void *ret, const void *a, const void *b, const void *n, BN_ULONG k); void rsaz_1024_sqr_avx2(void *ret, const void *a, const void *n, BN_ULONG k, int cnt); void rsaz_1024_scatter5_avx2(void *tbl, const void *val, int i); void rsaz_1024_gather5_avx2(void *val, const void *tbl, int i); void rsaz_1024_red2norm_avx2(void *norm, const void *red); #if defined(__GNUC__) # define ALIGN64 __attribute__((aligned(64))) #elif defined(_MSC_VER) # define ALIGN64 __declspec(align(64)) #elif defined(__SUNPRO_C) # define ALIGN64 # pragma align 64(one,two80) #else /* not fatal, might hurt performance a little */ # define ALIGN64 #endif ALIGN64 static const BN_ULONG one[40] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; ALIGN64 static const BN_ULONG two80[40] = { 0, 0, 1 << 22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; void RSAZ_1024_mod_exp_avx2(BN_ULONG result_norm[16], const BN_ULONG base_norm[16], const BN_ULONG exponent[16], const BN_ULONG m_norm[16], const BN_ULONG RR[16], BN_ULONG k0) { unsigned char storage[320 * 3 + 32 * 9 * 16 + 64]; /* 5.5KB */ unsigned char *p_str = storage + (64 - ((size_t)storage % 64)); unsigned char *a_inv, *m, *result; unsigned char *table_s = p_str + 320 * 3; unsigned char *R2 = table_s; /* borrow */ int index; int wvalue; + BN_ULONG tmp[16]; if ((((size_t)p_str & 4095) + 320) >> 12) { result = p_str; a_inv = p_str + 320; m = p_str + 320 * 2; /* should not cross page */ } else { m = p_str; /* should not cross page */ result = p_str + 320; a_inv = p_str + 320 * 2; } rsaz_1024_norm2red_avx2(m, m_norm); rsaz_1024_norm2red_avx2(a_inv, base_norm); rsaz_1024_norm2red_avx2(R2, RR); rsaz_1024_mul_avx2(R2, R2, R2, m, k0); rsaz_1024_mul_avx2(R2, R2, two80, m, k0); /* table[0] = 1 */ rsaz_1024_mul_avx2(result, R2, one, m, k0); /* table[1] = a_inv^1 */ rsaz_1024_mul_avx2(a_inv, a_inv, R2, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 0); rsaz_1024_scatter5_avx2(table_s, a_inv, 1); /* table[2] = a_inv^2 */ rsaz_1024_sqr_avx2(result, a_inv, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 2); #if 0 /* this is almost 2x smaller and less than 1% slower */ for (index = 3; index < 32; index++) { rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, index); } #else /* table[4] = a_inv^4 */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 4); /* table[8] = a_inv^8 */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 8); /* table[16] = a_inv^16 */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 16); /* table[17] = a_inv^17 */ rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 17); /* table[3] */ rsaz_1024_gather5_avx2(result, table_s, 2); rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 3); /* table[6] */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 6); /* table[12] */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 12); /* table[24] */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 24); /* table[25] */ rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 25); /* table[5] */ rsaz_1024_gather5_avx2(result, table_s, 4); rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 5); /* table[10] */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 10); /* table[20] */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 20); /* table[21] */ rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 21); /* table[7] */ rsaz_1024_gather5_avx2(result, table_s, 6); rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 7); /* table[14] */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 14); /* table[28] */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 28); /* table[29] */ rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 29); /* table[9] */ rsaz_1024_gather5_avx2(result, table_s, 8); rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 9); /* table[18] */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 18); /* table[19] */ rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 19); /* table[11] */ rsaz_1024_gather5_avx2(result, table_s, 10); rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 11); /* table[22] */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 22); /* table[23] */ rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 23); /* table[13] */ rsaz_1024_gather5_avx2(result, table_s, 12); rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 13); /* table[26] */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 26); /* table[27] */ rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 27); /* table[15] */ rsaz_1024_gather5_avx2(result, table_s, 14); rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 15); /* table[30] */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 30); /* table[31] */ rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 31); #endif /* load first window */ p_str = (unsigned char *)exponent; wvalue = p_str[127] >> 3; rsaz_1024_gather5_avx2(result, table_s, wvalue); index = 1014; while (index > -1) { /* loop for the remaining 127 windows */ rsaz_1024_sqr_avx2(result, result, m, k0, 5); wvalue = (p_str[(index / 8) + 1] << 8) | p_str[index / 8]; wvalue = (wvalue >> (index % 8)) & 31; index -= 5; rsaz_1024_gather5_avx2(a_inv, table_s, wvalue); /* borrow a_inv */ rsaz_1024_mul_avx2(result, result, a_inv, m, k0); } /* square four times */ rsaz_1024_sqr_avx2(result, result, m, k0, 4); wvalue = p_str[0] & 15; rsaz_1024_gather5_avx2(a_inv, table_s, wvalue); /* borrow a_inv */ rsaz_1024_mul_avx2(result, result, a_inv, m, k0); /* from Montgomery */ rsaz_1024_mul_avx2(result, result, one, m, k0); rsaz_1024_red2norm_avx2(result_norm, result); + bn_reduce_once_in_place(result_norm, /*carry=*/0, m_norm, tmp, 16); + OPENSSL_cleanse(storage, sizeof(storage)); + OPENSSL_cleanse(tmp, sizeof(tmp)); } /* * See crypto/bn/rsaz-x86_64.pl for further details. */ void rsaz_512_mul(void *ret, const void *a, const void *b, const void *n, BN_ULONG k); void rsaz_512_mul_scatter4(void *ret, const void *a, const void *n, BN_ULONG k, const void *tbl, unsigned int power); void rsaz_512_mul_gather4(void *ret, const void *a, const void *tbl, const void *n, BN_ULONG k, unsigned int power); void rsaz_512_mul_by_one(void *ret, const void *a, const void *n, BN_ULONG k); void rsaz_512_sqr(void *ret, const void *a, const void *n, BN_ULONG k, int cnt); void rsaz_512_scatter4(void *tbl, const BN_ULONG *val, int power); void rsaz_512_gather4(BN_ULONG *val, const void *tbl, int power); void RSAZ_512_mod_exp(BN_ULONG result[8], const BN_ULONG base[8], const BN_ULONG exponent[8], const BN_ULONG m[8], BN_ULONG k0, const BN_ULONG RR[8]) { unsigned char storage[16 * 8 * 8 + 64 * 2 + 64]; /* 1.2KB */ unsigned char *table = storage + (64 - ((size_t)storage % 64)); BN_ULONG *a_inv = (BN_ULONG *)(table + 16 * 8 * 8); BN_ULONG *temp = (BN_ULONG *)(table + 16 * 8 * 8 + 8 * 8); unsigned char *p_str = (unsigned char *)exponent; int index; unsigned int wvalue; + BN_ULONG tmp[8]; /* table[0] = 1_inv */ temp[0] = 0 - m[0]; temp[1] = ~m[1]; temp[2] = ~m[2]; temp[3] = ~m[3]; temp[4] = ~m[4]; temp[5] = ~m[5]; temp[6] = ~m[6]; temp[7] = ~m[7]; rsaz_512_scatter4(table, temp, 0); /* table [1] = a_inv^1 */ rsaz_512_mul(a_inv, base, RR, m, k0); rsaz_512_scatter4(table, a_inv, 1); /* table [2] = a_inv^2 */ rsaz_512_sqr(temp, a_inv, m, k0, 1); rsaz_512_scatter4(table, temp, 2); for (index = 3; index < 16; index++) rsaz_512_mul_scatter4(temp, a_inv, m, k0, table, index); /* load first window */ wvalue = p_str[63]; rsaz_512_gather4(temp, table, wvalue >> 4); rsaz_512_sqr(temp, temp, m, k0, 4); rsaz_512_mul_gather4(temp, temp, table, m, k0, wvalue & 0xf); for (index = 62; index >= 0; index--) { wvalue = p_str[index]; rsaz_512_sqr(temp, temp, m, k0, 4); rsaz_512_mul_gather4(temp, temp, table, m, k0, wvalue >> 4); rsaz_512_sqr(temp, temp, m, k0, 4); rsaz_512_mul_gather4(temp, temp, table, m, k0, wvalue & 0x0f); } /* from Montgomery */ rsaz_512_mul_by_one(result, temp, m, k0); + bn_reduce_once_in_place(result, /*carry=*/0, m, tmp, 8); + OPENSSL_cleanse(storage, sizeof(storage)); + OPENSSL_cleanse(tmp, sizeof(tmp)); } #endif diff --git a/crypto/bn/rsaz_exp.h b/crypto/bn/rsaz_exp.h index 88f65a4bae46..1532a7e07179 100644 --- a/crypto/bn/rsaz_exp.h +++ b/crypto/bn/rsaz_exp.h @@ -1,40 +1,63 @@ /* - * Copyright 2013-2018 The OpenSSL Project Authors. All Rights Reserved. + * Copyright 2013-2022 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2012, Intel Corporation. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1) * (1) Intel Corporation, Israel Development Center, Haifa, Israel * (2) University of Haifa, Israel */ #ifndef OSSL_CRYPTO_BN_RSAZ_EXP_H # define OSSL_CRYPTO_BN_RSAZ_EXP_H # undef RSAZ_ENABLED # if defined(OPENSSL_BN_ASM_MONT) && \ (defined(__x86_64) || defined(__x86_64__) || \ defined(_M_AMD64) || defined(_M_X64)) # define RSAZ_ENABLED # include +# include "internal/constant_time.h" +# include "bn_local.h" void RSAZ_1024_mod_exp_avx2(BN_ULONG result[16], const BN_ULONG base_norm[16], const BN_ULONG exponent[16], const BN_ULONG m_norm[16], const BN_ULONG RR[16], BN_ULONG k0); int rsaz_avx2_eligible(void); void RSAZ_512_mod_exp(BN_ULONG result[8], const BN_ULONG base_norm[8], const BN_ULONG exponent[8], const BN_ULONG m_norm[8], BN_ULONG k0, const BN_ULONG RR[8]); +static ossl_inline void bn_select_words(BN_ULONG *r, BN_ULONG mask, + const BN_ULONG *a, + const BN_ULONG *b, size_t num) +{ + size_t i; + + for (i = 0; i < num; i++) { + r[i] = constant_time_select_64(mask, a[i], b[i]); + } +} + +static ossl_inline BN_ULONG bn_reduce_once_in_place(BN_ULONG *r, + BN_ULONG carry, + const BN_ULONG *m, + BN_ULONG *tmp, size_t num) +{ + carry -= bn_sub_words(tmp, r, m, num); + bn_select_words(r, carry, r /* tmp < 0 */, tmp /* tmp >= 0 */, num); + return carry; +} + # endif #endif diff --git a/crypto/ec/ec_asn1.c b/crypto/ec/ec_asn1.c index 4335b3da1a54..34de7b2aabf7 100644 --- a/crypto/ec/ec_asn1.c +++ b/crypto/ec/ec_asn1.c @@ -1,1328 +1,1338 @@ /* - * Copyright 2002-2021 The OpenSSL Project Authors. All Rights Reserved. + * Copyright 2002-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "ec_local.h" #include #include #include #include "internal/nelem.h" int EC_GROUP_get_basis_type(const EC_GROUP *group) { int i; if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) != NID_X9_62_characteristic_two_field) /* everything else is currently not supported */ return 0; /* Find the last non-zero element of group->poly[] */ for (i = 0; i < (int)OSSL_NELEM(group->poly) && group->poly[i] != 0; i++) continue; if (i == 4) return NID_X9_62_ppBasis; else if (i == 2) return NID_X9_62_tpBasis; else /* everything else is currently not supported */ return 0; } #ifndef OPENSSL_NO_EC2M int EC_GROUP_get_trinomial_basis(const EC_GROUP *group, unsigned int *k) { if (group == NULL) return 0; if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) != NID_X9_62_characteristic_two_field || !((group->poly[0] != 0) && (group->poly[1] != 0) && (group->poly[2] == 0))) { ECerr(EC_F_EC_GROUP_GET_TRINOMIAL_BASIS, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (k) *k = group->poly[1]; return 1; } int EC_GROUP_get_pentanomial_basis(const EC_GROUP *group, unsigned int *k1, unsigned int *k2, unsigned int *k3) { if (group == NULL) return 0; if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) != NID_X9_62_characteristic_two_field || !((group->poly[0] != 0) && (group->poly[1] != 0) && (group->poly[2] != 0) && (group->poly[3] != 0) && (group->poly[4] == 0))) { ECerr(EC_F_EC_GROUP_GET_PENTANOMIAL_BASIS, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (k1) *k1 = group->poly[3]; if (k2) *k2 = group->poly[2]; if (k3) *k3 = group->poly[1]; return 1; } #endif /* some structures needed for the asn1 encoding */ typedef struct x9_62_pentanomial_st { int32_t k1; int32_t k2; int32_t k3; } X9_62_PENTANOMIAL; typedef struct x9_62_characteristic_two_st { int32_t m; ASN1_OBJECT *type; union { char *ptr; /* NID_X9_62_onBasis */ ASN1_NULL *onBasis; /* NID_X9_62_tpBasis */ ASN1_INTEGER *tpBasis; /* NID_X9_62_ppBasis */ X9_62_PENTANOMIAL *ppBasis; /* anything else */ ASN1_TYPE *other; } p; } X9_62_CHARACTERISTIC_TWO; typedef struct x9_62_fieldid_st { ASN1_OBJECT *fieldType; union { char *ptr; /* NID_X9_62_prime_field */ ASN1_INTEGER *prime; /* NID_X9_62_characteristic_two_field */ X9_62_CHARACTERISTIC_TWO *char_two; /* anything else */ ASN1_TYPE *other; } p; } X9_62_FIELDID; typedef struct x9_62_curve_st { ASN1_OCTET_STRING *a; ASN1_OCTET_STRING *b; ASN1_BIT_STRING *seed; } X9_62_CURVE; struct ec_parameters_st { int32_t version; X9_62_FIELDID *fieldID; X9_62_CURVE *curve; ASN1_OCTET_STRING *base; ASN1_INTEGER *order; ASN1_INTEGER *cofactor; } /* ECPARAMETERS */ ; typedef enum { ECPKPARAMETERS_TYPE_NAMED = 0, ECPKPARAMETERS_TYPE_EXPLICIT, ECPKPARAMETERS_TYPE_IMPLICIT } ecpk_parameters_type_t; struct ecpk_parameters_st { int type; union { ASN1_OBJECT *named_curve; ECPARAMETERS *parameters; ASN1_NULL *implicitlyCA; } value; } /* ECPKPARAMETERS */ ; /* SEC1 ECPrivateKey */ typedef struct ec_privatekey_st { int32_t version; ASN1_OCTET_STRING *privateKey; ECPKPARAMETERS *parameters; ASN1_BIT_STRING *publicKey; } EC_PRIVATEKEY; /* the OpenSSL ASN.1 definitions */ ASN1_SEQUENCE(X9_62_PENTANOMIAL) = { ASN1_EMBED(X9_62_PENTANOMIAL, k1, INT32), ASN1_EMBED(X9_62_PENTANOMIAL, k2, INT32), ASN1_EMBED(X9_62_PENTANOMIAL, k3, INT32) } static_ASN1_SEQUENCE_END(X9_62_PENTANOMIAL) DECLARE_ASN1_ALLOC_FUNCTIONS(X9_62_PENTANOMIAL) IMPLEMENT_ASN1_ALLOC_FUNCTIONS(X9_62_PENTANOMIAL) ASN1_ADB_TEMPLATE(char_two_def) = ASN1_SIMPLE(X9_62_CHARACTERISTIC_TWO, p.other, ASN1_ANY); ASN1_ADB(X9_62_CHARACTERISTIC_TWO) = { ADB_ENTRY(NID_X9_62_onBasis, ASN1_SIMPLE(X9_62_CHARACTERISTIC_TWO, p.onBasis, ASN1_NULL)), ADB_ENTRY(NID_X9_62_tpBasis, ASN1_SIMPLE(X9_62_CHARACTERISTIC_TWO, p.tpBasis, ASN1_INTEGER)), ADB_ENTRY(NID_X9_62_ppBasis, ASN1_SIMPLE(X9_62_CHARACTERISTIC_TWO, p.ppBasis, X9_62_PENTANOMIAL)) } ASN1_ADB_END(X9_62_CHARACTERISTIC_TWO, 0, type, 0, &char_two_def_tt, NULL); ASN1_SEQUENCE(X9_62_CHARACTERISTIC_TWO) = { ASN1_EMBED(X9_62_CHARACTERISTIC_TWO, m, INT32), ASN1_SIMPLE(X9_62_CHARACTERISTIC_TWO, type, ASN1_OBJECT), ASN1_ADB_OBJECT(X9_62_CHARACTERISTIC_TWO) } static_ASN1_SEQUENCE_END(X9_62_CHARACTERISTIC_TWO) DECLARE_ASN1_ALLOC_FUNCTIONS(X9_62_CHARACTERISTIC_TWO) IMPLEMENT_ASN1_ALLOC_FUNCTIONS(X9_62_CHARACTERISTIC_TWO) ASN1_ADB_TEMPLATE(fieldID_def) = ASN1_SIMPLE(X9_62_FIELDID, p.other, ASN1_ANY); ASN1_ADB(X9_62_FIELDID) = { ADB_ENTRY(NID_X9_62_prime_field, ASN1_SIMPLE(X9_62_FIELDID, p.prime, ASN1_INTEGER)), ADB_ENTRY(NID_X9_62_characteristic_two_field, ASN1_SIMPLE(X9_62_FIELDID, p.char_two, X9_62_CHARACTERISTIC_TWO)) } ASN1_ADB_END(X9_62_FIELDID, 0, fieldType, 0, &fieldID_def_tt, NULL); ASN1_SEQUENCE(X9_62_FIELDID) = { ASN1_SIMPLE(X9_62_FIELDID, fieldType, ASN1_OBJECT), ASN1_ADB_OBJECT(X9_62_FIELDID) } static_ASN1_SEQUENCE_END(X9_62_FIELDID) ASN1_SEQUENCE(X9_62_CURVE) = { ASN1_SIMPLE(X9_62_CURVE, a, ASN1_OCTET_STRING), ASN1_SIMPLE(X9_62_CURVE, b, ASN1_OCTET_STRING), ASN1_OPT(X9_62_CURVE, seed, ASN1_BIT_STRING) } static_ASN1_SEQUENCE_END(X9_62_CURVE) ASN1_SEQUENCE(ECPARAMETERS) = { ASN1_EMBED(ECPARAMETERS, version, INT32), ASN1_SIMPLE(ECPARAMETERS, fieldID, X9_62_FIELDID), ASN1_SIMPLE(ECPARAMETERS, curve, X9_62_CURVE), ASN1_SIMPLE(ECPARAMETERS, base, ASN1_OCTET_STRING), ASN1_SIMPLE(ECPARAMETERS, order, ASN1_INTEGER), ASN1_OPT(ECPARAMETERS, cofactor, ASN1_INTEGER) } ASN1_SEQUENCE_END(ECPARAMETERS) DECLARE_ASN1_ALLOC_FUNCTIONS(ECPARAMETERS) IMPLEMENT_ASN1_ALLOC_FUNCTIONS(ECPARAMETERS) ASN1_CHOICE(ECPKPARAMETERS) = { ASN1_SIMPLE(ECPKPARAMETERS, value.named_curve, ASN1_OBJECT), ASN1_SIMPLE(ECPKPARAMETERS, value.parameters, ECPARAMETERS), ASN1_SIMPLE(ECPKPARAMETERS, value.implicitlyCA, ASN1_NULL) } ASN1_CHOICE_END(ECPKPARAMETERS) DECLARE_ASN1_FUNCTIONS_const(ECPKPARAMETERS) DECLARE_ASN1_ENCODE_FUNCTIONS_const(ECPKPARAMETERS, ECPKPARAMETERS) IMPLEMENT_ASN1_FUNCTIONS_const(ECPKPARAMETERS) ASN1_SEQUENCE(EC_PRIVATEKEY) = { ASN1_EMBED(EC_PRIVATEKEY, version, INT32), ASN1_SIMPLE(EC_PRIVATEKEY, privateKey, ASN1_OCTET_STRING), ASN1_EXP_OPT(EC_PRIVATEKEY, parameters, ECPKPARAMETERS, 0), ASN1_EXP_OPT(EC_PRIVATEKEY, publicKey, ASN1_BIT_STRING, 1) } static_ASN1_SEQUENCE_END(EC_PRIVATEKEY) DECLARE_ASN1_FUNCTIONS_const(EC_PRIVATEKEY) DECLARE_ASN1_ENCODE_FUNCTIONS_const(EC_PRIVATEKEY, EC_PRIVATEKEY) IMPLEMENT_ASN1_FUNCTIONS_const(EC_PRIVATEKEY) /* some declarations of internal function */ /* ec_asn1_group2field() sets the values in a X9_62_FIELDID object */ static int ec_asn1_group2fieldid(const EC_GROUP *, X9_62_FIELDID *); /* ec_asn1_group2curve() sets the values in a X9_62_CURVE object */ static int ec_asn1_group2curve(const EC_GROUP *, X9_62_CURVE *); /* the function definitions */ static int ec_asn1_group2fieldid(const EC_GROUP *group, X9_62_FIELDID *field) { int ok = 0, nid; BIGNUM *tmp = NULL; if (group == NULL || field == NULL) return 0; /* clear the old values (if necessary) */ ASN1_OBJECT_free(field->fieldType); ASN1_TYPE_free(field->p.other); nid = EC_METHOD_get_field_type(EC_GROUP_method_of(group)); /* set OID for the field */ if ((field->fieldType = OBJ_nid2obj(nid)) == NULL) { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_OBJ_LIB); goto err; } if (nid == NID_X9_62_prime_field) { if ((tmp = BN_new()) == NULL) { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_MALLOC_FAILURE); goto err; } /* the parameters are specified by the prime number p */ if (!EC_GROUP_get_curve(group, tmp, NULL, NULL, NULL)) { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_EC_LIB); goto err; } /* set the prime number */ field->p.prime = BN_to_ASN1_INTEGER(tmp, NULL); if (field->p.prime == NULL) { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_ASN1_LIB); goto err; } } else if (nid == NID_X9_62_characteristic_two_field) #ifdef OPENSSL_NO_EC2M { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, EC_R_GF2M_NOT_SUPPORTED); goto err; } #else { int field_type; X9_62_CHARACTERISTIC_TWO *char_two; field->p.char_two = X9_62_CHARACTERISTIC_TWO_new(); char_two = field->p.char_two; if (char_two == NULL) { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_MALLOC_FAILURE); goto err; } char_two->m = (long)EC_GROUP_get_degree(group); field_type = EC_GROUP_get_basis_type(group); if (field_type == 0) { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_EC_LIB); goto err; } /* set base type OID */ if ((char_two->type = OBJ_nid2obj(field_type)) == NULL) { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_OBJ_LIB); goto err; } if (field_type == NID_X9_62_tpBasis) { unsigned int k; if (!EC_GROUP_get_trinomial_basis(group, &k)) goto err; char_two->p.tpBasis = ASN1_INTEGER_new(); if (char_two->p.tpBasis == NULL) { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_MALLOC_FAILURE); goto err; } if (!ASN1_INTEGER_set(char_two->p.tpBasis, (long)k)) { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_ASN1_LIB); goto err; } } else if (field_type == NID_X9_62_ppBasis) { unsigned int k1, k2, k3; if (!EC_GROUP_get_pentanomial_basis(group, &k1, &k2, &k3)) goto err; char_two->p.ppBasis = X9_62_PENTANOMIAL_new(); if (char_two->p.ppBasis == NULL) { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_MALLOC_FAILURE); goto err; } /* set k? values */ char_two->p.ppBasis->k1 = (long)k1; char_two->p.ppBasis->k2 = (long)k2; char_two->p.ppBasis->k3 = (long)k3; } else { /* field_type == NID_X9_62_onBasis */ /* for ONB the parameters are (asn1) NULL */ char_two->p.onBasis = ASN1_NULL_new(); if (char_two->p.onBasis == NULL) { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_MALLOC_FAILURE); goto err; } } } #endif else { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, EC_R_UNSUPPORTED_FIELD); goto err; } ok = 1; err: BN_free(tmp); return ok; } static int ec_asn1_group2curve(const EC_GROUP *group, X9_62_CURVE *curve) { int ok = 0; BIGNUM *tmp_1 = NULL, *tmp_2 = NULL; unsigned char *a_buf = NULL, *b_buf = NULL; size_t len; if (!group || !curve || !curve->a || !curve->b) return 0; if ((tmp_1 = BN_new()) == NULL || (tmp_2 = BN_new()) == NULL) { ECerr(EC_F_EC_ASN1_GROUP2CURVE, ERR_R_MALLOC_FAILURE); goto err; } /* get a and b */ if (!EC_GROUP_get_curve(group, NULL, tmp_1, tmp_2, NULL)) { ECerr(EC_F_EC_ASN1_GROUP2CURVE, ERR_R_EC_LIB); goto err; } /* * Per SEC 1, the curve coefficients must be padded up to size. See C.2's * definition of Curve, C.1's definition of FieldElement, and 2.3.5's * definition of how to encode the field elements. */ len = ((size_t)EC_GROUP_get_degree(group) + 7) / 8; if ((a_buf = OPENSSL_malloc(len)) == NULL || (b_buf = OPENSSL_malloc(len)) == NULL) { ECerr(EC_F_EC_ASN1_GROUP2CURVE, ERR_R_MALLOC_FAILURE); goto err; } if (BN_bn2binpad(tmp_1, a_buf, len) < 0 || BN_bn2binpad(tmp_2, b_buf, len) < 0) { ECerr(EC_F_EC_ASN1_GROUP2CURVE, ERR_R_BN_LIB); goto err; } /* set a and b */ if (!ASN1_OCTET_STRING_set(curve->a, a_buf, len) || !ASN1_OCTET_STRING_set(curve->b, b_buf, len)) { ECerr(EC_F_EC_ASN1_GROUP2CURVE, ERR_R_ASN1_LIB); goto err; } /* set the seed (optional) */ if (group->seed) { if (!curve->seed) if ((curve->seed = ASN1_BIT_STRING_new()) == NULL) { ECerr(EC_F_EC_ASN1_GROUP2CURVE, ERR_R_MALLOC_FAILURE); goto err; } curve->seed->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07); curve->seed->flags |= ASN1_STRING_FLAG_BITS_LEFT; if (!ASN1_BIT_STRING_set(curve->seed, group->seed, (int)group->seed_len)) { ECerr(EC_F_EC_ASN1_GROUP2CURVE, ERR_R_ASN1_LIB); goto err; } } else { ASN1_BIT_STRING_free(curve->seed); curve->seed = NULL; } ok = 1; err: OPENSSL_free(a_buf); OPENSSL_free(b_buf); BN_free(tmp_1); BN_free(tmp_2); return ok; } ECPARAMETERS *EC_GROUP_get_ecparameters(const EC_GROUP *group, ECPARAMETERS *params) { size_t len = 0; ECPARAMETERS *ret = NULL; const BIGNUM *tmp; unsigned char *buffer = NULL; const EC_POINT *point = NULL; point_conversion_form_t form; ASN1_INTEGER *orig; if (params == NULL) { if ((ret = ECPARAMETERS_new()) == NULL) { ECerr(EC_F_EC_GROUP_GET_ECPARAMETERS, ERR_R_MALLOC_FAILURE); goto err; } } else ret = params; /* set the version (always one) */ ret->version = (long)0x1; /* set the fieldID */ if (!ec_asn1_group2fieldid(group, ret->fieldID)) { ECerr(EC_F_EC_GROUP_GET_ECPARAMETERS, ERR_R_EC_LIB); goto err; } /* set the curve */ if (!ec_asn1_group2curve(group, ret->curve)) { ECerr(EC_F_EC_GROUP_GET_ECPARAMETERS, ERR_R_EC_LIB); goto err; } /* set the base point */ if ((point = EC_GROUP_get0_generator(group)) == NULL) { ECerr(EC_F_EC_GROUP_GET_ECPARAMETERS, EC_R_UNDEFINED_GENERATOR); goto err; } form = EC_GROUP_get_point_conversion_form(group); len = EC_POINT_point2buf(group, point, form, &buffer, NULL); if (len == 0) { ECerr(EC_F_EC_GROUP_GET_ECPARAMETERS, ERR_R_EC_LIB); goto err; } if (ret->base == NULL && (ret->base = ASN1_OCTET_STRING_new()) == NULL) { OPENSSL_free(buffer); ECerr(EC_F_EC_GROUP_GET_ECPARAMETERS, ERR_R_MALLOC_FAILURE); goto err; } ASN1_STRING_set0(ret->base, buffer, len); /* set the order */ tmp = EC_GROUP_get0_order(group); if (tmp == NULL) { ECerr(EC_F_EC_GROUP_GET_ECPARAMETERS, ERR_R_EC_LIB); goto err; } ret->order = BN_to_ASN1_INTEGER(tmp, orig = ret->order); if (ret->order == NULL) { ret->order = orig; ECerr(EC_F_EC_GROUP_GET_ECPARAMETERS, ERR_R_ASN1_LIB); goto err; } /* set the cofactor (optional) */ tmp = EC_GROUP_get0_cofactor(group); if (tmp != NULL) { ret->cofactor = BN_to_ASN1_INTEGER(tmp, orig = ret->cofactor); if (ret->cofactor == NULL) { ret->cofactor = orig; ECerr(EC_F_EC_GROUP_GET_ECPARAMETERS, ERR_R_ASN1_LIB); goto err; } } return ret; err: if (params == NULL) ECPARAMETERS_free(ret); return NULL; } ECPKPARAMETERS *EC_GROUP_get_ecpkparameters(const EC_GROUP *group, ECPKPARAMETERS *params) { int ok = 1, tmp; ECPKPARAMETERS *ret = params; if (ret == NULL) { if ((ret = ECPKPARAMETERS_new()) == NULL) { ECerr(EC_F_EC_GROUP_GET_ECPKPARAMETERS, ERR_R_MALLOC_FAILURE); return NULL; } } else { if (ret->type == ECPKPARAMETERS_TYPE_NAMED) ASN1_OBJECT_free(ret->value.named_curve); else if (ret->type == ECPKPARAMETERS_TYPE_EXPLICIT && ret->value.parameters != NULL) ECPARAMETERS_free(ret->value.parameters); } if (EC_GROUP_get_asn1_flag(group) == OPENSSL_EC_NAMED_CURVE) { /* * use the asn1 OID to describe the elliptic curve parameters */ tmp = EC_GROUP_get_curve_name(group); if (tmp) { ASN1_OBJECT *asn1obj = OBJ_nid2obj(tmp); if (asn1obj == NULL || OBJ_length(asn1obj) == 0) { ASN1_OBJECT_free(asn1obj); ECerr(EC_F_EC_GROUP_GET_ECPKPARAMETERS, EC_R_MISSING_OID); ok = 0; } else { ret->type = ECPKPARAMETERS_TYPE_NAMED; ret->value.named_curve = asn1obj; } } else /* we don't know the nid => ERROR */ ok = 0; } else { /* use the ECPARAMETERS structure */ ret->type = ECPKPARAMETERS_TYPE_EXPLICIT; if ((ret->value.parameters = EC_GROUP_get_ecparameters(group, NULL)) == NULL) ok = 0; } if (!ok) { ECPKPARAMETERS_free(ret); return NULL; } return ret; } EC_GROUP *EC_GROUP_new_from_ecparameters(const ECPARAMETERS *params) { int ok = 0, tmp; EC_GROUP *ret = NULL, *dup = NULL; BIGNUM *p = NULL, *a = NULL, *b = NULL; EC_POINT *point = NULL; long field_bits; int curve_name = NID_undef; BN_CTX *ctx = NULL; if (!params->fieldID || !params->fieldID->fieldType || !params->fieldID->p.ptr) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_ASN1_ERROR); goto err; } /* * Now extract the curve parameters a and b. Note that, although SEC 1 * specifies the length of their encodings, historical versions of OpenSSL * encoded them incorrectly, so we must accept any length for backwards * compatibility. */ if (!params->curve || !params->curve->a || !params->curve->a->data || !params->curve->b || !params->curve->b->data) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_ASN1_ERROR); goto err; } a = BN_bin2bn(params->curve->a->data, params->curve->a->length, NULL); if (a == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_BN_LIB); goto err; } b = BN_bin2bn(params->curve->b->data, params->curve->b->length, NULL); if (b == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_BN_LIB); goto err; } /* get the field parameters */ tmp = OBJ_obj2nid(params->fieldID->fieldType); if (tmp == NID_X9_62_characteristic_two_field) #ifdef OPENSSL_NO_EC2M { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_GF2M_NOT_SUPPORTED); goto err; } #else { X9_62_CHARACTERISTIC_TWO *char_two; char_two = params->fieldID->p.char_two; field_bits = char_two->m; if (field_bits > OPENSSL_ECC_MAX_FIELD_BITS) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_FIELD_TOO_LARGE); goto err; } if ((p = BN_new()) == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_MALLOC_FAILURE); goto err; } /* get the base type */ tmp = OBJ_obj2nid(char_two->type); if (tmp == NID_X9_62_tpBasis) { long tmp_long; if (!char_two->p.tpBasis) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_ASN1_ERROR); goto err; } tmp_long = ASN1_INTEGER_get(char_two->p.tpBasis); if (!(char_two->m > tmp_long && tmp_long > 0)) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_INVALID_TRINOMIAL_BASIS); goto err; } /* create the polynomial */ if (!BN_set_bit(p, (int)char_two->m)) goto err; if (!BN_set_bit(p, (int)tmp_long)) goto err; if (!BN_set_bit(p, 0)) goto err; } else if (tmp == NID_X9_62_ppBasis) { X9_62_PENTANOMIAL *penta; penta = char_two->p.ppBasis; if (!penta) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_ASN1_ERROR); goto err; } if (! (char_two->m > penta->k3 && penta->k3 > penta->k2 && penta->k2 > penta->k1 && penta->k1 > 0)) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_INVALID_PENTANOMIAL_BASIS); goto err; } /* create the polynomial */ if (!BN_set_bit(p, (int)char_two->m)) goto err; if (!BN_set_bit(p, (int)penta->k1)) goto err; if (!BN_set_bit(p, (int)penta->k2)) goto err; if (!BN_set_bit(p, (int)penta->k3)) goto err; if (!BN_set_bit(p, 0)) goto err; } else if (tmp == NID_X9_62_onBasis) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_NOT_IMPLEMENTED); goto err; } else { /* error */ ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_ASN1_ERROR); goto err; } /* create the EC_GROUP structure */ ret = EC_GROUP_new_curve_GF2m(p, a, b, NULL); } #endif else if (tmp == NID_X9_62_prime_field) { /* we have a curve over a prime field */ /* extract the prime number */ if (!params->fieldID->p.prime) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_ASN1_ERROR); goto err; } p = ASN1_INTEGER_to_BN(params->fieldID->p.prime, NULL); if (p == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_ASN1_LIB); goto err; } if (BN_is_negative(p) || BN_is_zero(p)) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_INVALID_FIELD); goto err; } field_bits = BN_num_bits(p); if (field_bits > OPENSSL_ECC_MAX_FIELD_BITS) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_FIELD_TOO_LARGE); goto err; } /* create the EC_GROUP structure */ ret = EC_GROUP_new_curve_GFp(p, a, b, NULL); } else { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_INVALID_FIELD); goto err; } if (ret == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_EC_LIB); goto err; } /* extract seed (optional) */ if (params->curve->seed != NULL) { + /* + * This happens for instance with + * fuzz/corpora/asn1/65cf44e85614c62f10cf3b7a7184c26293a19e4a + * and causes the OPENSSL_malloc below to choke on the + * zero length allocation request. + */ + if (params->curve->seed->length == 0) { + ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_ASN1_ERROR); + goto err; + } OPENSSL_free(ret->seed); if ((ret->seed = OPENSSL_malloc(params->curve->seed->length)) == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_MALLOC_FAILURE); goto err; } memcpy(ret->seed, params->curve->seed->data, params->curve->seed->length); ret->seed_len = params->curve->seed->length; } if (params->order == NULL || params->base == NULL || params->base->data == NULL || params->base->length == 0) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_ASN1_ERROR); goto err; } if ((point = EC_POINT_new(ret)) == NULL) goto err; /* set the point conversion form */ EC_GROUP_set_point_conversion_form(ret, (point_conversion_form_t) (params->base->data[0] & ~0x01)); /* extract the ec point */ if (!EC_POINT_oct2point(ret, point, params->base->data, params->base->length, NULL)) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_EC_LIB); goto err; } /* extract the order */ if ((a = ASN1_INTEGER_to_BN(params->order, a)) == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_ASN1_LIB); goto err; } if (BN_is_negative(a) || BN_is_zero(a)) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_INVALID_GROUP_ORDER); goto err; } if (BN_num_bits(a) > (int)field_bits + 1) { /* Hasse bound */ ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_INVALID_GROUP_ORDER); goto err; } /* extract the cofactor (optional) */ if (params->cofactor == NULL) { BN_free(b); b = NULL; } else if ((b = ASN1_INTEGER_to_BN(params->cofactor, b)) == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_ASN1_LIB); goto err; } /* set the generator, order and cofactor (if present) */ if (!EC_GROUP_set_generator(ret, point, a, b)) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_EC_LIB); goto err; } /* * Check if the explicit parameters group just created matches one of the * built-in curves. * * We create a copy of the group just built, so that we can remove optional * fields for the lookup: we do this to avoid the possibility that one of * the optional parameters is used to force the library into using a less * performant and less secure EC_METHOD instead of the specialized one. * In any case, `seed` is not really used in any computation, while a * cofactor different from the one in the built-in table is just * mathematically wrong anyway and should not be used. */ if ((ctx = BN_CTX_new()) == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_BN_LIB); goto err; } if ((dup = EC_GROUP_dup(ret)) == NULL || EC_GROUP_set_seed(dup, NULL, 0) != 1 || !EC_GROUP_set_generator(dup, point, a, NULL)) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_EC_LIB); goto err; } if ((curve_name = ec_curve_nid_from_params(dup, ctx)) != NID_undef) { /* * The input explicit parameters successfully matched one of the * built-in curves: often for built-in curves we have specialized * methods with better performance and hardening. * * In this case we replace the `EC_GROUP` created through explicit * parameters with one created from a named group. */ EC_GROUP *named_group = NULL; #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 /* * NID_wap_wsg_idm_ecid_wtls12 and NID_secp224r1 are both aliases for * the same curve, we prefer the SECP nid when matching explicit * parameters as that is associated with a specialized EC_METHOD. */ if (curve_name == NID_wap_wsg_idm_ecid_wtls12) curve_name = NID_secp224r1; #endif /* !def(OPENSSL_NO_EC_NISTP_64_GCC_128) */ if ((named_group = EC_GROUP_new_by_curve_name(curve_name)) == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_EC_LIB); goto err; } EC_GROUP_free(ret); ret = named_group; /* * Set the flag so that EC_GROUPs created from explicit parameters are * serialized using explicit parameters by default. */ EC_GROUP_set_asn1_flag(ret, OPENSSL_EC_EXPLICIT_CURVE); /* * If the input params do not contain the optional seed field we make * sure it is not added to the returned group. * * The seed field is not really used inside libcrypto anyway, and * adding it to parsed explicit parameter keys would alter their DER * encoding output (because of the extra field) which could impact * applications fingerprinting keys by their DER encoding. */ if (params->curve->seed == NULL) { if (EC_GROUP_set_seed(ret, NULL, 0) != 1) goto err; } } ok = 1; err: if (!ok) { EC_GROUP_free(ret); ret = NULL; } EC_GROUP_free(dup); BN_free(p); BN_free(a); BN_free(b); EC_POINT_free(point); BN_CTX_free(ctx); return ret; } EC_GROUP *EC_GROUP_new_from_ecpkparameters(const ECPKPARAMETERS *params) { EC_GROUP *ret = NULL; int tmp = 0; if (params == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPKPARAMETERS, EC_R_MISSING_PARAMETERS); return NULL; } if (params->type == ECPKPARAMETERS_TYPE_NAMED) { /* the curve is given by an OID */ tmp = OBJ_obj2nid(params->value.named_curve); if ((ret = EC_GROUP_new_by_curve_name(tmp)) == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPKPARAMETERS, EC_R_EC_GROUP_NEW_BY_NAME_FAILURE); return NULL; } EC_GROUP_set_asn1_flag(ret, OPENSSL_EC_NAMED_CURVE); } else if (params->type == ECPKPARAMETERS_TYPE_EXPLICIT) { /* the parameters are given by an ECPARAMETERS structure */ ret = EC_GROUP_new_from_ecparameters(params->value.parameters); if (!ret) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPKPARAMETERS, ERR_R_EC_LIB); return NULL; } EC_GROUP_set_asn1_flag(ret, OPENSSL_EC_EXPLICIT_CURVE); } else if (params->type == ECPKPARAMETERS_TYPE_IMPLICIT) { /* implicit parameters inherited from CA - unsupported */ return NULL; } else { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPKPARAMETERS, EC_R_ASN1_ERROR); return NULL; } return ret; } /* EC_GROUP <-> DER encoding of ECPKPARAMETERS */ EC_GROUP *d2i_ECPKParameters(EC_GROUP **a, const unsigned char **in, long len) { EC_GROUP *group = NULL; ECPKPARAMETERS *params = NULL; const unsigned char *p = *in; if ((params = d2i_ECPKPARAMETERS(NULL, &p, len)) == NULL) { ECerr(EC_F_D2I_ECPKPARAMETERS, EC_R_D2I_ECPKPARAMETERS_FAILURE); ECPKPARAMETERS_free(params); return NULL; } if ((group = EC_GROUP_new_from_ecpkparameters(params)) == NULL) { ECerr(EC_F_D2I_ECPKPARAMETERS, EC_R_PKPARAMETERS2GROUP_FAILURE); ECPKPARAMETERS_free(params); return NULL; } if (params->type == ECPKPARAMETERS_TYPE_EXPLICIT) group->decoded_from_explicit_params = 1; if (a) { EC_GROUP_free(*a); *a = group; } ECPKPARAMETERS_free(params); *in = p; return group; } int i2d_ECPKParameters(const EC_GROUP *a, unsigned char **out) { int ret = 0; ECPKPARAMETERS *tmp = EC_GROUP_get_ecpkparameters(a, NULL); if (tmp == NULL) { ECerr(EC_F_I2D_ECPKPARAMETERS, EC_R_GROUP2PKPARAMETERS_FAILURE); return 0; } if ((ret = i2d_ECPKPARAMETERS(tmp, out)) == 0) { ECerr(EC_F_I2D_ECPKPARAMETERS, EC_R_I2D_ECPKPARAMETERS_FAILURE); ECPKPARAMETERS_free(tmp); return 0; } ECPKPARAMETERS_free(tmp); return ret; } /* some EC_KEY functions */ EC_KEY *d2i_ECPrivateKey(EC_KEY **a, const unsigned char **in, long len) { EC_KEY *ret = NULL; EC_PRIVATEKEY *priv_key = NULL; const unsigned char *p = *in; if ((priv_key = d2i_EC_PRIVATEKEY(NULL, &p, len)) == NULL) { ECerr(EC_F_D2I_ECPRIVATEKEY, ERR_R_EC_LIB); return NULL; } if (a == NULL || *a == NULL) { if ((ret = EC_KEY_new()) == NULL) { ECerr(EC_F_D2I_ECPRIVATEKEY, ERR_R_MALLOC_FAILURE); goto err; } } else ret = *a; if (priv_key->parameters) { EC_GROUP_free(ret->group); ret->group = EC_GROUP_new_from_ecpkparameters(priv_key->parameters); if (ret->group != NULL && priv_key->parameters->type == ECPKPARAMETERS_TYPE_EXPLICIT) ret->group->decoded_from_explicit_params = 1; } if (ret->group == NULL) { ECerr(EC_F_D2I_ECPRIVATEKEY, ERR_R_EC_LIB); goto err; } ret->version = priv_key->version; if (priv_key->privateKey) { ASN1_OCTET_STRING *pkey = priv_key->privateKey; if (EC_KEY_oct2priv(ret, ASN1_STRING_get0_data(pkey), ASN1_STRING_length(pkey)) == 0) goto err; } else { ECerr(EC_F_D2I_ECPRIVATEKEY, EC_R_MISSING_PRIVATE_KEY); goto err; } EC_POINT_clear_free(ret->pub_key); ret->pub_key = EC_POINT_new(ret->group); if (ret->pub_key == NULL) { ECerr(EC_F_D2I_ECPRIVATEKEY, ERR_R_EC_LIB); goto err; } if (priv_key->publicKey) { const unsigned char *pub_oct; int pub_oct_len; pub_oct = ASN1_STRING_get0_data(priv_key->publicKey); pub_oct_len = ASN1_STRING_length(priv_key->publicKey); if (!EC_KEY_oct2key(ret, pub_oct, pub_oct_len, NULL)) { ECerr(EC_F_D2I_ECPRIVATEKEY, ERR_R_EC_LIB); goto err; } } else { if (ret->group->meth->keygenpub == NULL || ret->group->meth->keygenpub(ret) == 0) goto err; /* Remember the original private-key-only encoding. */ ret->enc_flag |= EC_PKEY_NO_PUBKEY; } if (a) *a = ret; EC_PRIVATEKEY_free(priv_key); *in = p; return ret; err: if (a == NULL || *a != ret) EC_KEY_free(ret); EC_PRIVATEKEY_free(priv_key); return NULL; } int i2d_ECPrivateKey(EC_KEY *a, unsigned char **out) { int ret = 0, ok = 0; unsigned char *priv= NULL, *pub= NULL; size_t privlen = 0, publen = 0; EC_PRIVATEKEY *priv_key = NULL; if (a == NULL || a->group == NULL || (!(a->enc_flag & EC_PKEY_NO_PUBKEY) && a->pub_key == NULL)) { ECerr(EC_F_I2D_ECPRIVATEKEY, ERR_R_PASSED_NULL_PARAMETER); goto err; } if ((priv_key = EC_PRIVATEKEY_new()) == NULL) { ECerr(EC_F_I2D_ECPRIVATEKEY, ERR_R_MALLOC_FAILURE); goto err; } priv_key->version = a->version; privlen = EC_KEY_priv2buf(a, &priv); if (privlen == 0) { ECerr(EC_F_I2D_ECPRIVATEKEY, ERR_R_EC_LIB); goto err; } ASN1_STRING_set0(priv_key->privateKey, priv, privlen); priv = NULL; if (!(a->enc_flag & EC_PKEY_NO_PARAMETERS)) { if ((priv_key->parameters = EC_GROUP_get_ecpkparameters(a->group, priv_key->parameters)) == NULL) { ECerr(EC_F_I2D_ECPRIVATEKEY, ERR_R_EC_LIB); goto err; } } if (!(a->enc_flag & EC_PKEY_NO_PUBKEY)) { priv_key->publicKey = ASN1_BIT_STRING_new(); if (priv_key->publicKey == NULL) { ECerr(EC_F_I2D_ECPRIVATEKEY, ERR_R_MALLOC_FAILURE); goto err; } publen = EC_KEY_key2buf(a, a->conv_form, &pub, NULL); if (publen == 0) { ECerr(EC_F_I2D_ECPRIVATEKEY, ERR_R_EC_LIB); goto err; } priv_key->publicKey->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07); priv_key->publicKey->flags |= ASN1_STRING_FLAG_BITS_LEFT; ASN1_STRING_set0(priv_key->publicKey, pub, publen); pub = NULL; } if ((ret = i2d_EC_PRIVATEKEY(priv_key, out)) == 0) { ECerr(EC_F_I2D_ECPRIVATEKEY, ERR_R_EC_LIB); goto err; } ok = 1; err: OPENSSL_clear_free(priv, privlen); OPENSSL_free(pub); EC_PRIVATEKEY_free(priv_key); return (ok ? ret : 0); } int i2d_ECParameters(EC_KEY *a, unsigned char **out) { if (a == NULL) { ECerr(EC_F_I2D_ECPARAMETERS, ERR_R_PASSED_NULL_PARAMETER); return 0; } return i2d_ECPKParameters(a->group, out); } EC_KEY *d2i_ECParameters(EC_KEY **a, const unsigned char **in, long len) { EC_KEY *ret; if (in == NULL || *in == NULL) { ECerr(EC_F_D2I_ECPARAMETERS, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (a == NULL || *a == NULL) { if ((ret = EC_KEY_new()) == NULL) { ECerr(EC_F_D2I_ECPARAMETERS, ERR_R_MALLOC_FAILURE); return NULL; } } else ret = *a; if (!d2i_ECPKParameters(&ret->group, in, len)) { ECerr(EC_F_D2I_ECPARAMETERS, ERR_R_EC_LIB); if (a == NULL || *a != ret) EC_KEY_free(ret); return NULL; } if (a) *a = ret; return ret; } EC_KEY *o2i_ECPublicKey(EC_KEY **a, const unsigned char **in, long len) { EC_KEY *ret = NULL; if (a == NULL || (*a) == NULL || (*a)->group == NULL) { /* * sorry, but a EC_GROUP-structure is necessary to set the public key */ ECerr(EC_F_O2I_ECPUBLICKEY, ERR_R_PASSED_NULL_PARAMETER); return 0; } ret = *a; if (!EC_KEY_oct2key(ret, *in, len, NULL)) { ECerr(EC_F_O2I_ECPUBLICKEY, ERR_R_EC_LIB); return 0; } *in += len; return ret; } int i2o_ECPublicKey(const EC_KEY *a, unsigned char **out) { size_t buf_len = 0; int new_buffer = 0; if (a == NULL) { ECerr(EC_F_I2O_ECPUBLICKEY, ERR_R_PASSED_NULL_PARAMETER); return 0; } buf_len = EC_POINT_point2oct(a->group, a->pub_key, a->conv_form, NULL, 0, NULL); if (out == NULL || buf_len == 0) /* out == NULL => just return the length of the octet string */ return buf_len; if (*out == NULL) { if ((*out = OPENSSL_malloc(buf_len)) == NULL) { ECerr(EC_F_I2O_ECPUBLICKEY, ERR_R_MALLOC_FAILURE); return 0; } new_buffer = 1; } if (!EC_POINT_point2oct(a->group, a->pub_key, a->conv_form, *out, buf_len, NULL)) { ECerr(EC_F_I2O_ECPUBLICKEY, ERR_R_EC_LIB); if (new_buffer) { OPENSSL_free(*out); *out = NULL; } return 0; } if (!new_buffer) *out += buf_len; return buf_len; } ASN1_SEQUENCE(ECDSA_SIG) = { ASN1_SIMPLE(ECDSA_SIG, r, CBIGNUM), ASN1_SIMPLE(ECDSA_SIG, s, CBIGNUM) } static_ASN1_SEQUENCE_END(ECDSA_SIG) DECLARE_ASN1_FUNCTIONS_const(ECDSA_SIG) DECLARE_ASN1_ENCODE_FUNCTIONS_const(ECDSA_SIG, ECDSA_SIG) IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(ECDSA_SIG, ECDSA_SIG, ECDSA_SIG) ECDSA_SIG *ECDSA_SIG_new(void) { ECDSA_SIG *sig = OPENSSL_zalloc(sizeof(*sig)); if (sig == NULL) ECerr(EC_F_ECDSA_SIG_NEW, ERR_R_MALLOC_FAILURE); return sig; } void ECDSA_SIG_free(ECDSA_SIG *sig) { if (sig == NULL) return; BN_clear_free(sig->r); BN_clear_free(sig->s); OPENSSL_free(sig); } void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **pr, const BIGNUM **ps) { if (pr != NULL) *pr = sig->r; if (ps != NULL) *ps = sig->s; } const BIGNUM *ECDSA_SIG_get0_r(const ECDSA_SIG *sig) { return sig->r; } const BIGNUM *ECDSA_SIG_get0_s(const ECDSA_SIG *sig) { return sig->s; } int ECDSA_SIG_set0(ECDSA_SIG *sig, BIGNUM *r, BIGNUM *s) { if (r == NULL || s == NULL) return 0; BN_clear_free(sig->r); BN_clear_free(sig->s); sig->r = r; sig->s = s; return 1; } int ECDSA_size(const EC_KEY *r) { int ret, i; ASN1_INTEGER bs; unsigned char buf[4]; const EC_GROUP *group; if (r == NULL) return 0; group = EC_KEY_get0_group(r); if (group == NULL) return 0; i = EC_GROUP_order_bits(group); if (i == 0) return 0; bs.length = (i + 7) / 8; bs.data = buf; bs.type = V_ASN1_INTEGER; /* If the top bit is set the asn1 encoding is 1 larger. */ buf[0] = 0xff; i = i2d_ASN1_INTEGER(&bs, NULL); i += i; /* r and s */ ret = ASN1_object_size(1, i, V_ASN1_SEQUENCE); if (ret < 0) return 0; return ret; } diff --git a/crypto/ec/ec_key.c b/crypto/ec/ec_key.c index 23efbd015ca4..3017f0936c0d 100644 --- a/crypto/ec/ec_key.c +++ b/crypto/ec/ec_key.c @@ -1,695 +1,694 @@ /* - * Copyright 2002-2020 The OpenSSL Project Authors. All Rights Reserved. + * Copyright 2002-2022 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include "ec_local.h" #include "internal/refcount.h" #include #include #include "crypto/bn.h" EC_KEY *EC_KEY_new(void) { return EC_KEY_new_method(NULL); } EC_KEY *EC_KEY_new_by_curve_name(int nid) { EC_KEY *ret = EC_KEY_new(); if (ret == NULL) return NULL; ret->group = EC_GROUP_new_by_curve_name(nid); if (ret->group == NULL) { EC_KEY_free(ret); return NULL; } if (ret->meth->set_group != NULL && ret->meth->set_group(ret, ret->group) == 0) { EC_KEY_free(ret); return NULL; } return ret; } void EC_KEY_free(EC_KEY *r) { int i; if (r == NULL) return; CRYPTO_DOWN_REF(&r->references, &i, r->lock); REF_PRINT_COUNT("EC_KEY", r); if (i > 0) return; REF_ASSERT_ISNT(i < 0); if (r->meth != NULL && r->meth->finish != NULL) r->meth->finish(r); #ifndef OPENSSL_NO_ENGINE ENGINE_finish(r->engine); #endif if (r->group && r->group->meth->keyfinish) r->group->meth->keyfinish(r); CRYPTO_free_ex_data(CRYPTO_EX_INDEX_EC_KEY, r, &r->ex_data); CRYPTO_THREAD_lock_free(r->lock); EC_GROUP_free(r->group); EC_POINT_free(r->pub_key); BN_clear_free(r->priv_key); OPENSSL_clear_free((void *)r, sizeof(EC_KEY)); } EC_KEY *EC_KEY_copy(EC_KEY *dest, const EC_KEY *src) { if (dest == NULL || src == NULL) { ECerr(EC_F_EC_KEY_COPY, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (src->meth != dest->meth) { if (dest->meth->finish != NULL) dest->meth->finish(dest); if (dest->group && dest->group->meth->keyfinish) dest->group->meth->keyfinish(dest); #ifndef OPENSSL_NO_ENGINE if (ENGINE_finish(dest->engine) == 0) return 0; dest->engine = NULL; #endif } /* copy the parameters */ if (src->group != NULL) { const EC_METHOD *meth = EC_GROUP_method_of(src->group); /* clear the old group */ EC_GROUP_free(dest->group); dest->group = EC_GROUP_new(meth); if (dest->group == NULL) return NULL; if (!EC_GROUP_copy(dest->group, src->group)) return NULL; /* copy the public key */ if (src->pub_key != NULL) { EC_POINT_free(dest->pub_key); dest->pub_key = EC_POINT_new(src->group); if (dest->pub_key == NULL) return NULL; if (!EC_POINT_copy(dest->pub_key, src->pub_key)) return NULL; } /* copy the private key */ if (src->priv_key != NULL) { if (dest->priv_key == NULL) { dest->priv_key = BN_new(); if (dest->priv_key == NULL) return NULL; } if (!BN_copy(dest->priv_key, src->priv_key)) return NULL; if (src->group->meth->keycopy && src->group->meth->keycopy(dest, src) == 0) return NULL; } } /* copy the rest */ dest->enc_flag = src->enc_flag; dest->conv_form = src->conv_form; dest->version = src->version; dest->flags = src->flags; if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_EC_KEY, &dest->ex_data, &src->ex_data)) return NULL; if (src->meth != dest->meth) { #ifndef OPENSSL_NO_ENGINE if (src->engine != NULL && ENGINE_init(src->engine) == 0) return NULL; dest->engine = src->engine; #endif dest->meth = src->meth; } if (src->meth->copy != NULL && src->meth->copy(dest, src) == 0) return NULL; return dest; } EC_KEY *EC_KEY_dup(const EC_KEY *ec_key) { EC_KEY *ret = EC_KEY_new_method(ec_key->engine); if (ret == NULL) return NULL; if (EC_KEY_copy(ret, ec_key) == NULL) { EC_KEY_free(ret); return NULL; } return ret; } int EC_KEY_up_ref(EC_KEY *r) { int i; if (CRYPTO_UP_REF(&r->references, &i, r->lock) <= 0) return 0; REF_PRINT_COUNT("EC_KEY", r); REF_ASSERT_ISNT(i < 2); return ((i > 1) ? 1 : 0); } ENGINE *EC_KEY_get0_engine(const EC_KEY *eckey) { return eckey->engine; } int EC_KEY_generate_key(EC_KEY *eckey) { if (eckey == NULL || eckey->group == NULL) { ECerr(EC_F_EC_KEY_GENERATE_KEY, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (eckey->meth->keygen != NULL) return eckey->meth->keygen(eckey); ECerr(EC_F_EC_KEY_GENERATE_KEY, EC_R_OPERATION_NOT_SUPPORTED); return 0; } int ossl_ec_key_gen(EC_KEY *eckey) { return eckey->group->meth->keygen(eckey); } int ec_key_simple_generate_key(EC_KEY *eckey) { int ok = 0; BN_CTX *ctx = NULL; BIGNUM *priv_key = NULL; const BIGNUM *order = NULL; EC_POINT *pub_key = NULL; if ((ctx = BN_CTX_new()) == NULL) goto err; if (eckey->priv_key == NULL) { priv_key = BN_new(); if (priv_key == NULL) goto err; } else priv_key = eckey->priv_key; order = EC_GROUP_get0_order(eckey->group); if (order == NULL) goto err; do if (!BN_priv_rand_range(priv_key, order)) goto err; while (BN_is_zero(priv_key)) ; if (eckey->pub_key == NULL) { pub_key = EC_POINT_new(eckey->group); if (pub_key == NULL) goto err; } else pub_key = eckey->pub_key; if (!EC_POINT_mul(eckey->group, pub_key, priv_key, NULL, NULL, ctx)) goto err; eckey->priv_key = priv_key; eckey->pub_key = pub_key; ok = 1; err: if (eckey->pub_key == NULL) EC_POINT_free(pub_key); if (eckey->priv_key != priv_key) BN_free(priv_key); BN_CTX_free(ctx); return ok; } int ec_key_simple_generate_public_key(EC_KEY *eckey) { return EC_POINT_mul(eckey->group, eckey->pub_key, eckey->priv_key, NULL, NULL, NULL); } int EC_KEY_check_key(const EC_KEY *eckey) { if (eckey == NULL || eckey->group == NULL || eckey->pub_key == NULL) { ECerr(EC_F_EC_KEY_CHECK_KEY, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (eckey->group->meth->keycheck == NULL) { ECerr(EC_F_EC_KEY_CHECK_KEY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } return eckey->group->meth->keycheck(eckey); } int ec_key_simple_check_key(const EC_KEY *eckey) { int ok = 0; BN_CTX *ctx = NULL; const BIGNUM *order = NULL; EC_POINT *point = NULL; if (eckey == NULL || eckey->group == NULL || eckey->pub_key == NULL) { ECerr(EC_F_EC_KEY_SIMPLE_CHECK_KEY, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (EC_POINT_is_at_infinity(eckey->group, eckey->pub_key)) { ECerr(EC_F_EC_KEY_SIMPLE_CHECK_KEY, EC_R_POINT_AT_INFINITY); goto err; } if ((ctx = BN_CTX_new()) == NULL) goto err; if ((point = EC_POINT_new(eckey->group)) == NULL) goto err; /* testing whether the pub_key is on the elliptic curve */ if (EC_POINT_is_on_curve(eckey->group, eckey->pub_key, ctx) <= 0) { ECerr(EC_F_EC_KEY_SIMPLE_CHECK_KEY, EC_R_POINT_IS_NOT_ON_CURVE); goto err; } /* testing whether pub_key * order is the point at infinity */ order = eckey->group->order; if (BN_is_zero(order)) { ECerr(EC_F_EC_KEY_SIMPLE_CHECK_KEY, EC_R_INVALID_GROUP_ORDER); goto err; } if (!EC_POINT_mul(eckey->group, point, NULL, eckey->pub_key, order, ctx)) { ECerr(EC_F_EC_KEY_SIMPLE_CHECK_KEY, ERR_R_EC_LIB); goto err; } if (!EC_POINT_is_at_infinity(eckey->group, point)) { ECerr(EC_F_EC_KEY_SIMPLE_CHECK_KEY, EC_R_WRONG_ORDER); goto err; } /* * in case the priv_key is present : check if generator * priv_key == * pub_key */ if (eckey->priv_key != NULL) { if (BN_cmp(eckey->priv_key, order) >= 0) { ECerr(EC_F_EC_KEY_SIMPLE_CHECK_KEY, EC_R_WRONG_ORDER); goto err; } if (!EC_POINT_mul(eckey->group, point, eckey->priv_key, NULL, NULL, ctx)) { ECerr(EC_F_EC_KEY_SIMPLE_CHECK_KEY, ERR_R_EC_LIB); goto err; } if (EC_POINT_cmp(eckey->group, point, eckey->pub_key, ctx) != 0) { ECerr(EC_F_EC_KEY_SIMPLE_CHECK_KEY, EC_R_INVALID_PRIVATE_KEY); goto err; } } ok = 1; err: BN_CTX_free(ctx); EC_POINT_free(point); return ok; } int EC_KEY_set_public_key_affine_coordinates(EC_KEY *key, BIGNUM *x, BIGNUM *y) { BN_CTX *ctx = NULL; BIGNUM *tx, *ty; EC_POINT *point = NULL; int ok = 0; if (key == NULL || key->group == NULL || x == NULL || y == NULL) { ECerr(EC_F_EC_KEY_SET_PUBLIC_KEY_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER); return 0; } ctx = BN_CTX_new(); if (ctx == NULL) return 0; BN_CTX_start(ctx); point = EC_POINT_new(key->group); if (point == NULL) goto err; tx = BN_CTX_get(ctx); ty = BN_CTX_get(ctx); if (ty == NULL) goto err; if (!EC_POINT_set_affine_coordinates(key->group, point, x, y, ctx)) goto err; if (!EC_POINT_get_affine_coordinates(key->group, point, tx, ty, ctx)) goto err; /* * Check if retrieved coordinates match originals and are less than field * order: if not values are out of range. */ if (BN_cmp(x, tx) || BN_cmp(y, ty) || (BN_cmp(x, key->group->field) >= 0) || (BN_cmp(y, key->group->field) >= 0)) { ECerr(EC_F_EC_KEY_SET_PUBLIC_KEY_AFFINE_COORDINATES, EC_R_COORDINATES_OUT_OF_RANGE); goto err; } if (!EC_KEY_set_public_key(key, point)) goto err; if (EC_KEY_check_key(key) == 0) goto err; ok = 1; err: BN_CTX_end(ctx); BN_CTX_free(ctx); EC_POINT_free(point); return ok; } const EC_GROUP *EC_KEY_get0_group(const EC_KEY *key) { return key->group; } int EC_KEY_set_group(EC_KEY *key, const EC_GROUP *group) { if (key->meth->set_group != NULL && key->meth->set_group(key, group) == 0) return 0; EC_GROUP_free(key->group); key->group = EC_GROUP_dup(group); return (key->group == NULL) ? 0 : 1; } const BIGNUM *EC_KEY_get0_private_key(const EC_KEY *key) { return key->priv_key; } int EC_KEY_set_private_key(EC_KEY *key, const BIGNUM *priv_key) { int fixed_top; const BIGNUM *order = NULL; BIGNUM *tmp_key = NULL; if (key->group == NULL || key->group->meth == NULL) return 0; /* * Not only should key->group be set, but it should also be in a valid * fully initialized state. * * Specifically, to operate in constant time, we need that the group order * is set, as we use its length as the fixed public size of any scalar used * as an EC private key. */ order = EC_GROUP_get0_order(key->group); if (order == NULL || BN_is_zero(order)) return 0; /* This should never happen */ if (key->group->meth->set_private != NULL && key->group->meth->set_private(key, priv_key) == 0) return 0; if (key->meth->set_private != NULL && key->meth->set_private(key, priv_key) == 0) return 0; /* * We should never leak the bit length of the secret scalar in the key, * so we always set the `BN_FLG_CONSTTIME` flag on the internal `BIGNUM` * holding the secret scalar. * * This is important also because `BN_dup()` (and `BN_copy()`) do not * propagate the `BN_FLG_CONSTTIME` flag from the source `BIGNUM`, and * this brings an extra risk of inadvertently losing the flag, even when * the caller specifically set it. * * The propagation has been turned on and off a few times in the past * years because in some conditions has shown unintended consequences in * some code paths, so at the moment we can't fix this in the BN layer. * * In `EC_KEY_set_private_key()` we can work around the propagation by * manually setting the flag after `BN_dup()` as we know for sure that * inside the EC module the `BN_FLG_CONSTTIME` is always treated * correctly and should not generate unintended consequences. * * Setting the BN_FLG_CONSTTIME flag alone is never enough, we also have * to preallocate the BIGNUM internal buffer to a fixed public size big * enough that operations performed during the processing never trigger * a realloc which would leak the size of the scalar through memory * accesses. * * Fixed Length * ------------ * * The order of the large prime subgroup of the curve is our choice for * a fixed public size, as that is generally the upper bound for * generating a private key in EC cryptosystems and should fit all valid * secret scalars. * * For preallocating the BIGNUM storage we look at the number of "words" * required for the internal representation of the order, and we * preallocate 2 extra "words" in case any of the subsequent processing * might temporarily overflow the order length. */ tmp_key = BN_dup(priv_key); if (tmp_key == NULL) return 0; BN_set_flags(tmp_key, BN_FLG_CONSTTIME); fixed_top = bn_get_top(order) + 2; if (bn_wexpand(tmp_key, fixed_top) == NULL) { BN_clear_free(tmp_key); return 0; } BN_clear_free(key->priv_key); key->priv_key = tmp_key; return 1; } const EC_POINT *EC_KEY_get0_public_key(const EC_KEY *key) { return key->pub_key; } int EC_KEY_set_public_key(EC_KEY *key, const EC_POINT *pub_key) { if (key->meth->set_public != NULL && key->meth->set_public(key, pub_key) == 0) return 0; EC_POINT_free(key->pub_key); key->pub_key = EC_POINT_dup(pub_key, key->group); return (key->pub_key == NULL) ? 0 : 1; } unsigned int EC_KEY_get_enc_flags(const EC_KEY *key) { return key->enc_flag; } void EC_KEY_set_enc_flags(EC_KEY *key, unsigned int flags) { key->enc_flag = flags; } point_conversion_form_t EC_KEY_get_conv_form(const EC_KEY *key) { return key->conv_form; } void EC_KEY_set_conv_form(EC_KEY *key, point_conversion_form_t cform) { key->conv_form = cform; if (key->group != NULL) EC_GROUP_set_point_conversion_form(key->group, cform); } void EC_KEY_set_asn1_flag(EC_KEY *key, int flag) { if (key->group != NULL) EC_GROUP_set_asn1_flag(key->group, flag); } int EC_KEY_precompute_mult(EC_KEY *key, BN_CTX *ctx) { if (key->group == NULL) return 0; return EC_GROUP_precompute_mult(key->group, ctx); } int EC_KEY_get_flags(const EC_KEY *key) { return key->flags; } void EC_KEY_set_flags(EC_KEY *key, int flags) { key->flags |= flags; } void EC_KEY_clear_flags(EC_KEY *key, int flags) { key->flags &= ~flags; } int EC_KEY_decoded_from_explicit_params(const EC_KEY *key) { if (key == NULL || key->group == NULL) return -1; return key->group->decoded_from_explicit_params; } size_t EC_KEY_key2buf(const EC_KEY *key, point_conversion_form_t form, unsigned char **pbuf, BN_CTX *ctx) { if (key == NULL || key->pub_key == NULL || key->group == NULL) return 0; return EC_POINT_point2buf(key->group, key->pub_key, form, pbuf, ctx); } int EC_KEY_oct2key(EC_KEY *key, const unsigned char *buf, size_t len, BN_CTX *ctx) { if (key == NULL || key->group == NULL) return 0; if (key->pub_key == NULL) key->pub_key = EC_POINT_new(key->group); if (key->pub_key == NULL) return 0; if (EC_POINT_oct2point(key->group, key->pub_key, buf, len, ctx) == 0) return 0; /* * Save the point conversion form. * For non-custom curves the first octet of the buffer (excluding * the last significant bit) contains the point conversion form. * EC_POINT_oct2point() has already performed sanity checking of * the buffer so we know it is valid. */ if ((key->group->meth->flags & EC_FLAGS_CUSTOM_CURVE) == 0) key->conv_form = (point_conversion_form_t)(buf[0] & ~0x01); return 1; } size_t EC_KEY_priv2oct(const EC_KEY *eckey, unsigned char *buf, size_t len) { if (eckey->group == NULL || eckey->group->meth == NULL) return 0; if (eckey->group->meth->priv2oct == NULL) { ECerr(EC_F_EC_KEY_PRIV2OCT, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } return eckey->group->meth->priv2oct(eckey, buf, len); } size_t ec_key_simple_priv2oct(const EC_KEY *eckey, unsigned char *buf, size_t len) { size_t buf_len; buf_len = (EC_GROUP_order_bits(eckey->group) + 7) / 8; if (eckey->priv_key == NULL) return 0; if (buf == NULL) return buf_len; else if (len < buf_len) return 0; /* Octetstring may need leading zeros if BN is to short */ if (BN_bn2binpad(eckey->priv_key, buf, buf_len) == -1) { ECerr(EC_F_EC_KEY_SIMPLE_PRIV2OCT, EC_R_BUFFER_TOO_SMALL); return 0; } return buf_len; } int EC_KEY_oct2priv(EC_KEY *eckey, const unsigned char *buf, size_t len) { if (eckey->group == NULL || eckey->group->meth == NULL) return 0; if (eckey->group->meth->oct2priv == NULL) { ECerr(EC_F_EC_KEY_OCT2PRIV, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } return eckey->group->meth->oct2priv(eckey, buf, len); } int ec_key_simple_oct2priv(EC_KEY *eckey, const unsigned char *buf, size_t len) { if (eckey->priv_key == NULL) eckey->priv_key = BN_secure_new(); if (eckey->priv_key == NULL) { ECerr(EC_F_EC_KEY_SIMPLE_OCT2PRIV, ERR_R_MALLOC_FAILURE); return 0; } - eckey->priv_key = BN_bin2bn(buf, len, eckey->priv_key); - if (eckey->priv_key == NULL) { + if (BN_bin2bn(buf, len, eckey->priv_key) == NULL) { ECerr(EC_F_EC_KEY_SIMPLE_OCT2PRIV, ERR_R_BN_LIB); return 0; } return 1; } size_t EC_KEY_priv2buf(const EC_KEY *eckey, unsigned char **pbuf) { size_t len; unsigned char *buf; len = EC_KEY_priv2oct(eckey, NULL, 0); if (len == 0) return 0; if ((buf = OPENSSL_malloc(len)) == NULL) { ECerr(EC_F_EC_KEY_PRIV2BUF, ERR_R_MALLOC_FAILURE); return 0; } len = EC_KEY_priv2oct(eckey, buf, len); if (len == 0) { OPENSSL_free(buf); return 0; } *pbuf = buf; return len; } int EC_KEY_can_sign(const EC_KEY *eckey) { if (eckey->group == NULL || eckey->group->meth == NULL || (eckey->group->meth->flags & EC_FLAGS_NO_SIGN)) return 0; return 1; } diff --git a/crypto/x509/x509_cmp.c b/crypto/x509/x509_cmp.c index 1d8d2d7b28e9..3724a118f343 100644 --- a/crypto/x509/x509_cmp.c +++ b/crypto/x509/x509_cmp.c @@ -1,475 +1,475 @@ /* - * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. + * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "crypto/x509.h" int X509_issuer_and_serial_cmp(const X509 *a, const X509 *b) { int i; const X509_CINF *ai, *bi; ai = &a->cert_info; bi = &b->cert_info; i = ASN1_INTEGER_cmp(&ai->serialNumber, &bi->serialNumber); if (i) return i; return X509_NAME_cmp(ai->issuer, bi->issuer); } #ifndef OPENSSL_NO_MD5 unsigned long X509_issuer_and_serial_hash(X509 *a) { unsigned long ret = 0; EVP_MD_CTX *ctx = EVP_MD_CTX_new(); unsigned char md[16]; - char *f; + char *f = NULL; if (ctx == NULL) goto err; f = X509_NAME_oneline(a->cert_info.issuer, NULL, 0); if (f == NULL) goto err; if (!EVP_DigestInit_ex(ctx, EVP_md5(), NULL)) goto err; if (!EVP_DigestUpdate(ctx, (unsigned char *)f, strlen(f))) goto err; - OPENSSL_free(f); if (!EVP_DigestUpdate (ctx, (unsigned char *)a->cert_info.serialNumber.data, (unsigned long)a->cert_info.serialNumber.length)) goto err; if (!EVP_DigestFinal_ex(ctx, &(md[0]), NULL)) goto err; ret = (((unsigned long)md[0]) | ((unsigned long)md[1] << 8L) | ((unsigned long)md[2] << 16L) | ((unsigned long)md[3] << 24L) ) & 0xffffffffL; err: + OPENSSL_free(f); EVP_MD_CTX_free(ctx); return ret; } #endif int X509_issuer_name_cmp(const X509 *a, const X509 *b) { return X509_NAME_cmp(a->cert_info.issuer, b->cert_info.issuer); } int X509_subject_name_cmp(const X509 *a, const X509 *b) { return X509_NAME_cmp(a->cert_info.subject, b->cert_info.subject); } int X509_CRL_cmp(const X509_CRL *a, const X509_CRL *b) { return X509_NAME_cmp(a->crl.issuer, b->crl.issuer); } int X509_CRL_match(const X509_CRL *a, const X509_CRL *b) { return memcmp(a->sha1_hash, b->sha1_hash, 20); } X509_NAME *X509_get_issuer_name(const X509 *a) { return a->cert_info.issuer; } unsigned long X509_issuer_name_hash(X509 *x) { return X509_NAME_hash(x->cert_info.issuer); } #ifndef OPENSSL_NO_MD5 unsigned long X509_issuer_name_hash_old(X509 *x) { return X509_NAME_hash_old(x->cert_info.issuer); } #endif X509_NAME *X509_get_subject_name(const X509 *a) { return a->cert_info.subject; } ASN1_INTEGER *X509_get_serialNumber(X509 *a) { return &a->cert_info.serialNumber; } const ASN1_INTEGER *X509_get0_serialNumber(const X509 *a) { return &a->cert_info.serialNumber; } unsigned long X509_subject_name_hash(X509 *x) { return X509_NAME_hash(x->cert_info.subject); } #ifndef OPENSSL_NO_MD5 unsigned long X509_subject_name_hash_old(X509 *x) { return X509_NAME_hash_old(x->cert_info.subject); } #endif /* * Compare two certificates: they must be identical for this to work. NB: * Although "cmp" operations are generally prototyped to take "const" * arguments (eg. for use in STACKs), the way X509 handling is - these * operations may involve ensuring the hashes are up-to-date and ensuring * certain cert information is cached. So this is the point where the * "depth-first" constification tree has to halt with an evil cast. */ int X509_cmp(const X509 *a, const X509 *b) { int rv = 0; if (a == b) /* for efficiency */ return 0; /* try to make sure hash is valid */ (void)X509_check_purpose((X509 *)a, -1, 0); (void)X509_check_purpose((X509 *)b, -1, 0); if ((a->ex_flags & EXFLAG_NO_FINGERPRINT) == 0 && (b->ex_flags & EXFLAG_NO_FINGERPRINT) == 0) rv = memcmp(a->sha1_hash, b->sha1_hash, SHA_DIGEST_LENGTH); if (rv != 0) return rv; /* Check for match against stored encoding too */ if (!a->cert_info.enc.modified && !b->cert_info.enc.modified) { if (a->cert_info.enc.len < b->cert_info.enc.len) return -1; if (a->cert_info.enc.len > b->cert_info.enc.len) return 1; return memcmp(a->cert_info.enc.enc, b->cert_info.enc.enc, a->cert_info.enc.len); } return rv; } int X509_NAME_cmp(const X509_NAME *a, const X509_NAME *b) { int ret; /* Ensure canonical encoding is present and up to date */ if (!a->canon_enc || a->modified) { ret = i2d_X509_NAME((X509_NAME *)a, NULL); if (ret < 0) return -2; } if (!b->canon_enc || b->modified) { ret = i2d_X509_NAME((X509_NAME *)b, NULL); if (ret < 0) return -2; } ret = a->canon_enclen - b->canon_enclen; if (ret != 0 || a->canon_enclen == 0) return ret; return memcmp(a->canon_enc, b->canon_enc, a->canon_enclen); } unsigned long X509_NAME_hash(X509_NAME *x) { unsigned long ret = 0; unsigned char md[SHA_DIGEST_LENGTH]; /* Make sure X509_NAME structure contains valid cached encoding */ i2d_X509_NAME(x, NULL); if (!EVP_Digest(x->canon_enc, x->canon_enclen, md, NULL, EVP_sha1(), NULL)) return 0; ret = (((unsigned long)md[0]) | ((unsigned long)md[1] << 8L) | ((unsigned long)md[2] << 16L) | ((unsigned long)md[3] << 24L) ) & 0xffffffffL; return ret; } #ifndef OPENSSL_NO_MD5 /* * I now DER encode the name and hash it. Since I cache the DER encoding, * this is reasonably efficient. */ unsigned long X509_NAME_hash_old(X509_NAME *x) { EVP_MD_CTX *md_ctx = EVP_MD_CTX_new(); unsigned long ret = 0; unsigned char md[16]; if (md_ctx == NULL) return ret; /* Make sure X509_NAME structure contains valid cached encoding */ i2d_X509_NAME(x, NULL); EVP_MD_CTX_set_flags(md_ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW); if (EVP_DigestInit_ex(md_ctx, EVP_md5(), NULL) && EVP_DigestUpdate(md_ctx, x->bytes->data, x->bytes->length) && EVP_DigestFinal_ex(md_ctx, md, NULL)) ret = (((unsigned long)md[0]) | ((unsigned long)md[1] << 8L) | ((unsigned long)md[2] << 16L) | ((unsigned long)md[3] << 24L) ) & 0xffffffffL; EVP_MD_CTX_free(md_ctx); return ret; } #endif /* Search a stack of X509 for a match */ X509 *X509_find_by_issuer_and_serial(STACK_OF(X509) *sk, X509_NAME *name, ASN1_INTEGER *serial) { int i; X509 x, *x509 = NULL; if (!sk) return NULL; x.cert_info.serialNumber = *serial; x.cert_info.issuer = name; for (i = 0; i < sk_X509_num(sk); i++) { x509 = sk_X509_value(sk, i); if (X509_issuer_and_serial_cmp(x509, &x) == 0) return x509; } return NULL; } X509 *X509_find_by_subject(STACK_OF(X509) *sk, X509_NAME *name) { X509 *x509; int i; for (i = 0; i < sk_X509_num(sk); i++) { x509 = sk_X509_value(sk, i); if (X509_NAME_cmp(X509_get_subject_name(x509), name) == 0) return x509; } return NULL; } EVP_PKEY *X509_get0_pubkey(const X509 *x) { if (x == NULL) return NULL; return X509_PUBKEY_get0(x->cert_info.key); } EVP_PKEY *X509_get_pubkey(X509 *x) { if (x == NULL) return NULL; return X509_PUBKEY_get(x->cert_info.key); } int X509_check_private_key(const X509 *x, const EVP_PKEY *k) { const EVP_PKEY *xk; int ret; xk = X509_get0_pubkey(x); if (xk) ret = EVP_PKEY_cmp(xk, k); else ret = -2; switch (ret) { case 1: break; case 0: X509err(X509_F_X509_CHECK_PRIVATE_KEY, X509_R_KEY_VALUES_MISMATCH); break; case -1: X509err(X509_F_X509_CHECK_PRIVATE_KEY, X509_R_KEY_TYPE_MISMATCH); break; case -2: X509err(X509_F_X509_CHECK_PRIVATE_KEY, X509_R_UNKNOWN_KEY_TYPE); } if (ret > 0) return 1; return 0; } /* * Check a suite B algorithm is permitted: pass in a public key and the NID * of its signature (or 0 if no signature). The pflags is a pointer to a * flags field which must contain the suite B verification flags. */ #ifndef OPENSSL_NO_EC static int check_suite_b(EVP_PKEY *pkey, int sign_nid, unsigned long *pflags) { const EC_GROUP *grp = NULL; int curve_nid; if (pkey && EVP_PKEY_id(pkey) == EVP_PKEY_EC) grp = EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(pkey)); if (!grp) return X509_V_ERR_SUITE_B_INVALID_ALGORITHM; curve_nid = EC_GROUP_get_curve_name(grp); /* Check curve is consistent with LOS */ if (curve_nid == NID_secp384r1) { /* P-384 */ /* * Check signature algorithm is consistent with curve. */ if (sign_nid != -1 && sign_nid != NID_ecdsa_with_SHA384) return X509_V_ERR_SUITE_B_INVALID_SIGNATURE_ALGORITHM; if (!(*pflags & X509_V_FLAG_SUITEB_192_LOS)) return X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED; /* If we encounter P-384 we cannot use P-256 later */ *pflags &= ~X509_V_FLAG_SUITEB_128_LOS_ONLY; } else if (curve_nid == NID_X9_62_prime256v1) { /* P-256 */ if (sign_nid != -1 && sign_nid != NID_ecdsa_with_SHA256) return X509_V_ERR_SUITE_B_INVALID_SIGNATURE_ALGORITHM; if (!(*pflags & X509_V_FLAG_SUITEB_128_LOS_ONLY)) return X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED; } else return X509_V_ERR_SUITE_B_INVALID_CURVE; return X509_V_OK; } int X509_chain_check_suiteb(int *perror_depth, X509 *x, STACK_OF(X509) *chain, unsigned long flags) { int rv, i, sign_nid; EVP_PKEY *pk; unsigned long tflags = flags; if (!(flags & X509_V_FLAG_SUITEB_128_LOS)) return X509_V_OK; /* If no EE certificate passed in must be first in chain */ if (x == NULL) { x = sk_X509_value(chain, 0); i = 1; } else i = 0; pk = X509_get0_pubkey(x); /* * With DANE-EE(3) success, or DANE-EE(3)/PKIX-EE(1) failure we don't build * a chain all, just report trust success or failure, but must also report * Suite-B errors if applicable. This is indicated via a NULL chain * pointer. All we need to do is check the leaf key algorithm. */ if (chain == NULL) return check_suite_b(pk, -1, &tflags); if (X509_get_version(x) != 2) { rv = X509_V_ERR_SUITE_B_INVALID_VERSION; /* Correct error depth */ i = 0; goto end; } /* Check EE key only */ rv = check_suite_b(pk, -1, &tflags); if (rv != X509_V_OK) { /* Correct error depth */ i = 0; goto end; } for (; i < sk_X509_num(chain); i++) { sign_nid = X509_get_signature_nid(x); x = sk_X509_value(chain, i); if (X509_get_version(x) != 2) { rv = X509_V_ERR_SUITE_B_INVALID_VERSION; goto end; } pk = X509_get0_pubkey(x); rv = check_suite_b(pk, sign_nid, &tflags); if (rv != X509_V_OK) goto end; } /* Final check: root CA signature */ rv = check_suite_b(pk, X509_get_signature_nid(x), &tflags); end: if (rv != X509_V_OK) { /* Invalid signature or LOS errors are for previous cert */ if ((rv == X509_V_ERR_SUITE_B_INVALID_SIGNATURE_ALGORITHM || rv == X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED) && i) i--; /* * If we have LOS error and flags changed then we are signing P-384 * with P-256. Use more meaningful error. */ if (rv == X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED && flags != tflags) rv = X509_V_ERR_SUITE_B_CANNOT_SIGN_P_384_WITH_P_256; if (perror_depth) *perror_depth = i; } return rv; } int X509_CRL_check_suiteb(X509_CRL *crl, EVP_PKEY *pk, unsigned long flags) { int sign_nid; if (!(flags & X509_V_FLAG_SUITEB_128_LOS)) return X509_V_OK; sign_nid = OBJ_obj2nid(crl->crl.sig_alg.algorithm); return check_suite_b(pk, sign_nid, &flags); } #else int X509_chain_check_suiteb(int *perror_depth, X509 *x, STACK_OF(X509) *chain, unsigned long flags) { return 0; } int X509_CRL_check_suiteb(X509_CRL *crl, EVP_PKEY *pk, unsigned long flags) { return 0; } #endif /* * Not strictly speaking an "up_ref" as a STACK doesn't have a reference * count but it has the same effect by duping the STACK and upping the ref of * each X509 structure. */ STACK_OF(X509) *X509_chain_up_ref(STACK_OF(X509) *chain) { STACK_OF(X509) *ret; int i; ret = sk_X509_dup(chain); if (ret == NULL) return NULL; for (i = 0; i < sk_X509_num(ret); i++) { X509 *x = sk_X509_value(ret, i); if (!X509_up_ref(x)) goto err; } return ret; err: while (i-- > 0) X509_free (sk_X509_value(ret, i)); sk_X509_free(ret); return NULL; } diff --git a/crypto/x509/x_crl.c b/crypto/x509/x_crl.c index c9762f9e2394..df0041c0108c 100644 --- a/crypto/x509/x_crl.c +++ b/crypto/x509/x_crl.c @@ -1,491 +1,495 @@ /* - * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. + * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include "crypto/x509.h" #include #include "x509_local.h" static int X509_REVOKED_cmp(const X509_REVOKED *const *a, const X509_REVOKED *const *b); static int setup_idp(X509_CRL *crl, ISSUING_DIST_POINT *idp); ASN1_SEQUENCE(X509_REVOKED) = { ASN1_EMBED(X509_REVOKED,serialNumber, ASN1_INTEGER), ASN1_SIMPLE(X509_REVOKED,revocationDate, ASN1_TIME), ASN1_SEQUENCE_OF_OPT(X509_REVOKED,extensions, X509_EXTENSION) } ASN1_SEQUENCE_END(X509_REVOKED) static int def_crl_verify(X509_CRL *crl, EVP_PKEY *r); static int def_crl_lookup(X509_CRL *crl, X509_REVOKED **ret, ASN1_INTEGER *serial, X509_NAME *issuer); static X509_CRL_METHOD int_crl_meth = { 0, 0, 0, def_crl_lookup, def_crl_verify }; static const X509_CRL_METHOD *default_crl_method = &int_crl_meth; /* * The X509_CRL_INFO structure needs a bit of customisation. Since we cache * the original encoding the signature won't be affected by reordering of the * revoked field. */ static int crl_inf_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { X509_CRL_INFO *a = (X509_CRL_INFO *)*pval; if (!a || !a->revoked) return 1; switch (operation) { /* * Just set cmp function here. We don't sort because that would * affect the output of X509_CRL_print(). */ case ASN1_OP_D2I_POST: (void)sk_X509_REVOKED_set_cmp_func(a->revoked, X509_REVOKED_cmp); break; } return 1; } ASN1_SEQUENCE_enc(X509_CRL_INFO, enc, crl_inf_cb) = { ASN1_OPT(X509_CRL_INFO, version, ASN1_INTEGER), ASN1_EMBED(X509_CRL_INFO, sig_alg, X509_ALGOR), ASN1_SIMPLE(X509_CRL_INFO, issuer, X509_NAME), ASN1_SIMPLE(X509_CRL_INFO, lastUpdate, ASN1_TIME), ASN1_OPT(X509_CRL_INFO, nextUpdate, ASN1_TIME), ASN1_SEQUENCE_OF_OPT(X509_CRL_INFO, revoked, X509_REVOKED), ASN1_EXP_SEQUENCE_OF_OPT(X509_CRL_INFO, extensions, X509_EXTENSION, 0) } ASN1_SEQUENCE_END_enc(X509_CRL_INFO, X509_CRL_INFO) /* * Set CRL entry issuer according to CRL certificate issuer extension. Check * for unhandled critical CRL entry extensions. */ static int crl_set_issuers(X509_CRL *crl) { int i, j; GENERAL_NAMES *gens, *gtmp; STACK_OF(X509_REVOKED) *revoked; revoked = X509_CRL_get_REVOKED(crl); gens = NULL; for (i = 0; i < sk_X509_REVOKED_num(revoked); i++) { X509_REVOKED *rev = sk_X509_REVOKED_value(revoked, i); STACK_OF(X509_EXTENSION) *exts; ASN1_ENUMERATED *reason; X509_EXTENSION *ext; gtmp = X509_REVOKED_get_ext_d2i(rev, NID_certificate_issuer, &j, NULL); if (!gtmp && (j != -1)) { crl->flags |= EXFLAG_INVALID; return 1; } if (gtmp) { gens = gtmp; - if (!crl->issuers) { + if (crl->issuers == NULL) { crl->issuers = sk_GENERAL_NAMES_new_null(); - if (!crl->issuers) + if (crl->issuers == NULL) { + GENERAL_NAMES_free(gtmp); return 0; + } } - if (!sk_GENERAL_NAMES_push(crl->issuers, gtmp)) + if (!sk_GENERAL_NAMES_push(crl->issuers, gtmp)) { + GENERAL_NAMES_free(gtmp); return 0; + } } rev->issuer = gens; reason = X509_REVOKED_get_ext_d2i(rev, NID_crl_reason, &j, NULL); if (!reason && (j != -1)) { crl->flags |= EXFLAG_INVALID; return 1; } if (reason) { rev->reason = ASN1_ENUMERATED_get(reason); ASN1_ENUMERATED_free(reason); } else rev->reason = CRL_REASON_NONE; /* Check for critical CRL entry extensions */ exts = rev->extensions; for (j = 0; j < sk_X509_EXTENSION_num(exts); j++) { ext = sk_X509_EXTENSION_value(exts, j); if (X509_EXTENSION_get_critical(ext)) { if (OBJ_obj2nid(X509_EXTENSION_get_object(ext)) == NID_certificate_issuer) continue; crl->flags |= EXFLAG_CRITICAL; break; } } } return 1; } /* * The X509_CRL structure needs a bit of customisation. Cache some extensions * and hash of the whole CRL. */ static int crl_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { X509_CRL *crl = (X509_CRL *)*pval; STACK_OF(X509_EXTENSION) *exts; X509_EXTENSION *ext; int idx, i; switch (operation) { case ASN1_OP_D2I_PRE: if (crl->meth->crl_free) { if (!crl->meth->crl_free(crl)) return 0; } AUTHORITY_KEYID_free(crl->akid); ISSUING_DIST_POINT_free(crl->idp); ASN1_INTEGER_free(crl->crl_number); ASN1_INTEGER_free(crl->base_crl_number); sk_GENERAL_NAMES_pop_free(crl->issuers, GENERAL_NAMES_free); /* fall thru */ case ASN1_OP_NEW_POST: crl->idp = NULL; crl->akid = NULL; crl->flags = 0; crl->idp_flags = 0; crl->idp_reasons = CRLDP_ALL_REASONS; crl->meth = default_crl_method; crl->meth_data = NULL; crl->issuers = NULL; crl->crl_number = NULL; crl->base_crl_number = NULL; break; case ASN1_OP_D2I_POST: if (!X509_CRL_digest(crl, EVP_sha1(), crl->sha1_hash, NULL)) crl->flags |= EXFLAG_INVALID; crl->idp = X509_CRL_get_ext_d2i(crl, NID_issuing_distribution_point, &i, NULL); if (crl->idp != NULL) { if (!setup_idp(crl, crl->idp)) crl->flags |= EXFLAG_INVALID; } else if (i != -1) { crl->flags |= EXFLAG_INVALID; } crl->akid = X509_CRL_get_ext_d2i(crl, NID_authority_key_identifier, &i, NULL); if (crl->akid == NULL && i != -1) crl->flags |= EXFLAG_INVALID; crl->crl_number = X509_CRL_get_ext_d2i(crl, NID_crl_number, &i, NULL); if (crl->crl_number == NULL && i != -1) crl->flags |= EXFLAG_INVALID; crl->base_crl_number = X509_CRL_get_ext_d2i(crl, NID_delta_crl, &i, NULL); if (crl->base_crl_number == NULL && i != -1) crl->flags |= EXFLAG_INVALID; /* Delta CRLs must have CRL number */ if (crl->base_crl_number && !crl->crl_number) crl->flags |= EXFLAG_INVALID; /* * See if we have any unhandled critical CRL extensions and indicate * this in a flag. We only currently handle IDP so anything else * critical sets the flag. This code accesses the X509_CRL structure * directly: applications shouldn't do this. */ exts = crl->crl.extensions; for (idx = 0; idx < sk_X509_EXTENSION_num(exts); idx++) { int nid; ext = sk_X509_EXTENSION_value(exts, idx); nid = OBJ_obj2nid(X509_EXTENSION_get_object(ext)); if (nid == NID_freshest_crl) crl->flags |= EXFLAG_FRESHEST; if (X509_EXTENSION_get_critical(ext)) { /* We handle IDP and deltas */ if ((nid == NID_issuing_distribution_point) || (nid == NID_authority_key_identifier) || (nid == NID_delta_crl)) continue; crl->flags |= EXFLAG_CRITICAL; break; } } if (!crl_set_issuers(crl)) return 0; if (crl->meth->crl_init) { if (crl->meth->crl_init(crl) == 0) return 0; } crl->flags |= EXFLAG_SET; break; case ASN1_OP_FREE_POST: - if (crl->meth->crl_free) { + if (crl->meth != NULL && crl->meth->crl_free != NULL) { if (!crl->meth->crl_free(crl)) return 0; } AUTHORITY_KEYID_free(crl->akid); ISSUING_DIST_POINT_free(crl->idp); ASN1_INTEGER_free(crl->crl_number); ASN1_INTEGER_free(crl->base_crl_number); sk_GENERAL_NAMES_pop_free(crl->issuers, GENERAL_NAMES_free); break; } return 1; } /* Convert IDP into a more convenient form */ static int setup_idp(X509_CRL *crl, ISSUING_DIST_POINT *idp) { int idp_only = 0; /* Set various flags according to IDP */ crl->idp_flags |= IDP_PRESENT; if (idp->onlyuser > 0) { idp_only++; crl->idp_flags |= IDP_ONLYUSER; } if (idp->onlyCA > 0) { idp_only++; crl->idp_flags |= IDP_ONLYCA; } if (idp->onlyattr > 0) { idp_only++; crl->idp_flags |= IDP_ONLYATTR; } if (idp_only > 1) crl->idp_flags |= IDP_INVALID; if (idp->indirectCRL > 0) crl->idp_flags |= IDP_INDIRECT; if (idp->onlysomereasons) { crl->idp_flags |= IDP_REASONS; if (idp->onlysomereasons->length > 0) crl->idp_reasons = idp->onlysomereasons->data[0]; if (idp->onlysomereasons->length > 1) crl->idp_reasons |= (idp->onlysomereasons->data[1] << 8); crl->idp_reasons &= CRLDP_ALL_REASONS; } return DIST_POINT_set_dpname(idp->distpoint, X509_CRL_get_issuer(crl)); } ASN1_SEQUENCE_ref(X509_CRL, crl_cb) = { ASN1_EMBED(X509_CRL, crl, X509_CRL_INFO), ASN1_EMBED(X509_CRL, sig_alg, X509_ALGOR), ASN1_EMBED(X509_CRL, signature, ASN1_BIT_STRING) } ASN1_SEQUENCE_END_ref(X509_CRL, X509_CRL) IMPLEMENT_ASN1_FUNCTIONS(X509_REVOKED) IMPLEMENT_ASN1_DUP_FUNCTION(X509_REVOKED) IMPLEMENT_ASN1_FUNCTIONS(X509_CRL_INFO) IMPLEMENT_ASN1_FUNCTIONS(X509_CRL) IMPLEMENT_ASN1_DUP_FUNCTION(X509_CRL) static int X509_REVOKED_cmp(const X509_REVOKED *const *a, const X509_REVOKED *const *b) { return (ASN1_STRING_cmp((ASN1_STRING *)&(*a)->serialNumber, (ASN1_STRING *)&(*b)->serialNumber)); } int X509_CRL_add0_revoked(X509_CRL *crl, X509_REVOKED *rev) { X509_CRL_INFO *inf; inf = &crl->crl; if (inf->revoked == NULL) inf->revoked = sk_X509_REVOKED_new(X509_REVOKED_cmp); if (inf->revoked == NULL || !sk_X509_REVOKED_push(inf->revoked, rev)) { ASN1err(ASN1_F_X509_CRL_ADD0_REVOKED, ERR_R_MALLOC_FAILURE); return 0; } inf->enc.modified = 1; return 1; } int X509_CRL_verify(X509_CRL *crl, EVP_PKEY *r) { if (crl->meth->crl_verify) return crl->meth->crl_verify(crl, r); return 0; } int X509_CRL_get0_by_serial(X509_CRL *crl, X509_REVOKED **ret, ASN1_INTEGER *serial) { if (crl->meth->crl_lookup) return crl->meth->crl_lookup(crl, ret, serial, NULL); return 0; } int X509_CRL_get0_by_cert(X509_CRL *crl, X509_REVOKED **ret, X509 *x) { if (crl->meth->crl_lookup) return crl->meth->crl_lookup(crl, ret, X509_get_serialNumber(x), X509_get_issuer_name(x)); return 0; } static int def_crl_verify(X509_CRL *crl, EVP_PKEY *r) { return (ASN1_item_verify(ASN1_ITEM_rptr(X509_CRL_INFO), &crl->sig_alg, &crl->signature, &crl->crl, r)); } static int crl_revoked_issuer_match(X509_CRL *crl, X509_NAME *nm, X509_REVOKED *rev) { int i; if (!rev->issuer) { if (!nm) return 1; if (!X509_NAME_cmp(nm, X509_CRL_get_issuer(crl))) return 1; return 0; } if (!nm) nm = X509_CRL_get_issuer(crl); for (i = 0; i < sk_GENERAL_NAME_num(rev->issuer); i++) { GENERAL_NAME *gen = sk_GENERAL_NAME_value(rev->issuer, i); if (gen->type != GEN_DIRNAME) continue; if (!X509_NAME_cmp(nm, gen->d.directoryName)) return 1; } return 0; } static int def_crl_lookup(X509_CRL *crl, X509_REVOKED **ret, ASN1_INTEGER *serial, X509_NAME *issuer) { X509_REVOKED rtmp, *rev; int idx, num; if (crl->crl.revoked == NULL) return 0; /* * Sort revoked into serial number order if not already sorted. Do this * under a lock to avoid race condition. */ if (!sk_X509_REVOKED_is_sorted(crl->crl.revoked)) { CRYPTO_THREAD_write_lock(crl->lock); sk_X509_REVOKED_sort(crl->crl.revoked); CRYPTO_THREAD_unlock(crl->lock); } rtmp.serialNumber = *serial; idx = sk_X509_REVOKED_find(crl->crl.revoked, &rtmp); if (idx < 0) return 0; /* Need to look for matching name */ for (num = sk_X509_REVOKED_num(crl->crl.revoked); idx < num; idx++) { rev = sk_X509_REVOKED_value(crl->crl.revoked, idx); if (ASN1_INTEGER_cmp(&rev->serialNumber, serial)) return 0; if (crl_revoked_issuer_match(crl, issuer, rev)) { if (ret) *ret = rev; if (rev->reason == CRL_REASON_REMOVE_FROM_CRL) return 2; return 1; } } return 0; } void X509_CRL_set_default_method(const X509_CRL_METHOD *meth) { if (meth == NULL) default_crl_method = &int_crl_meth; else default_crl_method = meth; } X509_CRL_METHOD *X509_CRL_METHOD_new(int (*crl_init) (X509_CRL *crl), int (*crl_free) (X509_CRL *crl), int (*crl_lookup) (X509_CRL *crl, X509_REVOKED **ret, ASN1_INTEGER *ser, X509_NAME *issuer), int (*crl_verify) (X509_CRL *crl, EVP_PKEY *pk)) { X509_CRL_METHOD *m = OPENSSL_malloc(sizeof(*m)); if (m == NULL) { X509err(X509_F_X509_CRL_METHOD_NEW, ERR_R_MALLOC_FAILURE); return NULL; } m->crl_init = crl_init; m->crl_free = crl_free; m->crl_lookup = crl_lookup; m->crl_verify = crl_verify; m->flags = X509_CRL_METHOD_DYNAMIC; return m; } void X509_CRL_METHOD_free(X509_CRL_METHOD *m) { if (m == NULL || !(m->flags & X509_CRL_METHOD_DYNAMIC)) return; OPENSSL_free(m); } void X509_CRL_set_meth_data(X509_CRL *crl, void *dat) { crl->meth_data = dat; } void *X509_CRL_get_meth_data(X509_CRL *crl) { return crl->meth_data; } diff --git a/crypto/x509v3/v3_asid.c b/crypto/x509v3/v3_asid.c index ac6857267291..8e9e919804d0 100644 --- a/crypto/x509v3/v3_asid.c +++ b/crypto/x509v3/v3_asid.c @@ -1,894 +1,907 @@ /* - * Copyright 2006-2018 The OpenSSL Project Authors. All Rights Reserved. + * Copyright 2006-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Implementation of RFC 3779 section 3.2. */ #include #include #include #include "internal/cryptlib.h" #include #include #include #include #include #include "crypto/x509.h" #include #include "ext_dat.h" #ifndef OPENSSL_NO_RFC3779 /* * OpenSSL ASN.1 template translation of RFC 3779 3.2.3. */ ASN1_SEQUENCE(ASRange) = { ASN1_SIMPLE(ASRange, min, ASN1_INTEGER), ASN1_SIMPLE(ASRange, max, ASN1_INTEGER) } ASN1_SEQUENCE_END(ASRange) ASN1_CHOICE(ASIdOrRange) = { ASN1_SIMPLE(ASIdOrRange, u.id, ASN1_INTEGER), ASN1_SIMPLE(ASIdOrRange, u.range, ASRange) } ASN1_CHOICE_END(ASIdOrRange) ASN1_CHOICE(ASIdentifierChoice) = { ASN1_SIMPLE(ASIdentifierChoice, u.inherit, ASN1_NULL), ASN1_SEQUENCE_OF(ASIdentifierChoice, u.asIdsOrRanges, ASIdOrRange) } ASN1_CHOICE_END(ASIdentifierChoice) ASN1_SEQUENCE(ASIdentifiers) = { ASN1_EXP_OPT(ASIdentifiers, asnum, ASIdentifierChoice, 0), ASN1_EXP_OPT(ASIdentifiers, rdi, ASIdentifierChoice, 1) } ASN1_SEQUENCE_END(ASIdentifiers) IMPLEMENT_ASN1_FUNCTIONS(ASRange) IMPLEMENT_ASN1_FUNCTIONS(ASIdOrRange) IMPLEMENT_ASN1_FUNCTIONS(ASIdentifierChoice) IMPLEMENT_ASN1_FUNCTIONS(ASIdentifiers) /* * i2r method for an ASIdentifierChoice. */ static int i2r_ASIdentifierChoice(BIO *out, ASIdentifierChoice *choice, int indent, const char *msg) { int i; char *s; if (choice == NULL) return 1; BIO_printf(out, "%*s%s:\n", indent, "", msg); switch (choice->type) { case ASIdentifierChoice_inherit: BIO_printf(out, "%*sinherit\n", indent + 2, ""); break; case ASIdentifierChoice_asIdsOrRanges: for (i = 0; i < sk_ASIdOrRange_num(choice->u.asIdsOrRanges); i++) { ASIdOrRange *aor = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i); switch (aor->type) { case ASIdOrRange_id: if ((s = i2s_ASN1_INTEGER(NULL, aor->u.id)) == NULL) return 0; BIO_printf(out, "%*s%s\n", indent + 2, "", s); OPENSSL_free(s); break; case ASIdOrRange_range: if ((s = i2s_ASN1_INTEGER(NULL, aor->u.range->min)) == NULL) return 0; BIO_printf(out, "%*s%s-", indent + 2, "", s); OPENSSL_free(s); if ((s = i2s_ASN1_INTEGER(NULL, aor->u.range->max)) == NULL) return 0; BIO_printf(out, "%s\n", s); OPENSSL_free(s); break; default: return 0; } } break; default: return 0; } return 1; } /* * i2r method for an ASIdentifier extension. */ static int i2r_ASIdentifiers(const X509V3_EXT_METHOD *method, void *ext, BIO *out, int indent) { ASIdentifiers *asid = ext; return (i2r_ASIdentifierChoice(out, asid->asnum, indent, "Autonomous System Numbers") && i2r_ASIdentifierChoice(out, asid->rdi, indent, "Routing Domain Identifiers")); } /* * Sort comparison function for a sequence of ASIdOrRange elements. */ static int ASIdOrRange_cmp(const ASIdOrRange *const *a_, const ASIdOrRange *const *b_) { const ASIdOrRange *a = *a_, *b = *b_; assert((a->type == ASIdOrRange_id && a->u.id != NULL) || (a->type == ASIdOrRange_range && a->u.range != NULL && a->u.range->min != NULL && a->u.range->max != NULL)); assert((b->type == ASIdOrRange_id && b->u.id != NULL) || (b->type == ASIdOrRange_range && b->u.range != NULL && b->u.range->min != NULL && b->u.range->max != NULL)); if (a->type == ASIdOrRange_id && b->type == ASIdOrRange_id) return ASN1_INTEGER_cmp(a->u.id, b->u.id); if (a->type == ASIdOrRange_range && b->type == ASIdOrRange_range) { int r = ASN1_INTEGER_cmp(a->u.range->min, b->u.range->min); return r != 0 ? r : ASN1_INTEGER_cmp(a->u.range->max, b->u.range->max); } if (a->type == ASIdOrRange_id) return ASN1_INTEGER_cmp(a->u.id, b->u.range->min); else return ASN1_INTEGER_cmp(a->u.range->min, b->u.id); } /* * Add an inherit element. */ int X509v3_asid_add_inherit(ASIdentifiers *asid, int which) { ASIdentifierChoice **choice; if (asid == NULL) return 0; switch (which) { case V3_ASID_ASNUM: choice = &asid->asnum; break; case V3_ASID_RDI: choice = &asid->rdi; break; default: return 0; } if (*choice == NULL) { if ((*choice = ASIdentifierChoice_new()) == NULL) return 0; if (((*choice)->u.inherit = ASN1_NULL_new()) == NULL) return 0; (*choice)->type = ASIdentifierChoice_inherit; } return (*choice)->type == ASIdentifierChoice_inherit; } /* * Add an ID or range to an ASIdentifierChoice. */ int X509v3_asid_add_id_or_range(ASIdentifiers *asid, int which, ASN1_INTEGER *min, ASN1_INTEGER *max) { ASIdentifierChoice **choice; ASIdOrRange *aor; if (asid == NULL) return 0; switch (which) { case V3_ASID_ASNUM: choice = &asid->asnum; break; case V3_ASID_RDI: choice = &asid->rdi; break; default: return 0; } if (*choice != NULL && (*choice)->type == ASIdentifierChoice_inherit) return 0; if (*choice == NULL) { if ((*choice = ASIdentifierChoice_new()) == NULL) return 0; (*choice)->u.asIdsOrRanges = sk_ASIdOrRange_new(ASIdOrRange_cmp); if ((*choice)->u.asIdsOrRanges == NULL) return 0; (*choice)->type = ASIdentifierChoice_asIdsOrRanges; } if ((aor = ASIdOrRange_new()) == NULL) return 0; if (max == NULL) { aor->type = ASIdOrRange_id; aor->u.id = min; } else { aor->type = ASIdOrRange_range; if ((aor->u.range = ASRange_new()) == NULL) goto err; ASN1_INTEGER_free(aor->u.range->min); aor->u.range->min = min; ASN1_INTEGER_free(aor->u.range->max); aor->u.range->max = max; } if (!(sk_ASIdOrRange_push((*choice)->u.asIdsOrRanges, aor))) goto err; return 1; err: ASIdOrRange_free(aor); return 0; } /* * Extract min and max values from an ASIdOrRange. */ static int extract_min_max(ASIdOrRange *aor, ASN1_INTEGER **min, ASN1_INTEGER **max) { if (!ossl_assert(aor != NULL)) return 0; switch (aor->type) { case ASIdOrRange_id: *min = aor->u.id; *max = aor->u.id; return 1; case ASIdOrRange_range: *min = aor->u.range->min; *max = aor->u.range->max; return 1; } return 0; } /* * Check whether an ASIdentifierChoice is in canonical form. */ static int ASIdentifierChoice_is_canonical(ASIdentifierChoice *choice) { ASN1_INTEGER *a_max_plus_one = NULL; ASN1_INTEGER *orig; BIGNUM *bn = NULL; int i, ret = 0; /* * Empty element or inheritance is canonical. */ if (choice == NULL || choice->type == ASIdentifierChoice_inherit) return 1; /* * If not a list, or if empty list, it's broken. */ if (choice->type != ASIdentifierChoice_asIdsOrRanges || sk_ASIdOrRange_num(choice->u.asIdsOrRanges) == 0) return 0; /* * It's a list, check it. */ for (i = 0; i < sk_ASIdOrRange_num(choice->u.asIdsOrRanges) - 1; i++) { ASIdOrRange *a = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i); ASIdOrRange *b = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i + 1); ASN1_INTEGER *a_min = NULL, *a_max = NULL, *b_min = NULL, *b_max = NULL; if (!extract_min_max(a, &a_min, &a_max) || !extract_min_max(b, &b_min, &b_max)) goto done; /* * Punt misordered list, overlapping start, or inverted range. */ if (ASN1_INTEGER_cmp(a_min, b_min) >= 0 || ASN1_INTEGER_cmp(a_min, a_max) > 0 || ASN1_INTEGER_cmp(b_min, b_max) > 0) goto done; /* * Calculate a_max + 1 to check for adjacency. */ if ((bn == NULL && (bn = BN_new()) == NULL) || ASN1_INTEGER_to_BN(a_max, bn) == NULL || !BN_add_word(bn, 1)) { X509V3err(X509V3_F_ASIDENTIFIERCHOICE_IS_CANONICAL, ERR_R_MALLOC_FAILURE); goto done; } if ((a_max_plus_one = BN_to_ASN1_INTEGER(bn, orig = a_max_plus_one)) == NULL) { a_max_plus_one = orig; X509V3err(X509V3_F_ASIDENTIFIERCHOICE_IS_CANONICAL, ERR_R_MALLOC_FAILURE); goto done; } /* * Punt if adjacent or overlapping. */ if (ASN1_INTEGER_cmp(a_max_plus_one, b_min) >= 0) goto done; } /* * Check for inverted range. */ i = sk_ASIdOrRange_num(choice->u.asIdsOrRanges) - 1; { ASIdOrRange *a = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i); ASN1_INTEGER *a_min, *a_max; if (a != NULL && a->type == ASIdOrRange_range) { if (!extract_min_max(a, &a_min, &a_max) || ASN1_INTEGER_cmp(a_min, a_max) > 0) goto done; } } ret = 1; done: ASN1_INTEGER_free(a_max_plus_one); BN_free(bn); return ret; } /* * Check whether an ASIdentifier extension is in canonical form. */ int X509v3_asid_is_canonical(ASIdentifiers *asid) { return (asid == NULL || (ASIdentifierChoice_is_canonical(asid->asnum) && ASIdentifierChoice_is_canonical(asid->rdi))); } /* * Whack an ASIdentifierChoice into canonical form. */ static int ASIdentifierChoice_canonize(ASIdentifierChoice *choice) { ASN1_INTEGER *a_max_plus_one = NULL; ASN1_INTEGER *orig; BIGNUM *bn = NULL; int i, ret = 0; /* * Nothing to do for empty element or inheritance. */ if (choice == NULL || choice->type == ASIdentifierChoice_inherit) return 1; /* * If not a list, or if empty list, it's broken. */ if (choice->type != ASIdentifierChoice_asIdsOrRanges || sk_ASIdOrRange_num(choice->u.asIdsOrRanges) == 0) { X509V3err(X509V3_F_ASIDENTIFIERCHOICE_CANONIZE, X509V3_R_EXTENSION_VALUE_ERROR); return 0; } /* * We have a non-empty list. Sort it. */ sk_ASIdOrRange_sort(choice->u.asIdsOrRanges); /* * Now check for errors and suboptimal encoding, rejecting the * former and fixing the latter. */ for (i = 0; i < sk_ASIdOrRange_num(choice->u.asIdsOrRanges) - 1; i++) { ASIdOrRange *a = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i); ASIdOrRange *b = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i + 1); ASN1_INTEGER *a_min = NULL, *a_max = NULL, *b_min = NULL, *b_max = NULL; if (!extract_min_max(a, &a_min, &a_max) || !extract_min_max(b, &b_min, &b_max)) goto done; /* * Make sure we're properly sorted (paranoia). */ if (!ossl_assert(ASN1_INTEGER_cmp(a_min, b_min) <= 0)) goto done; /* * Punt inverted ranges. */ if (ASN1_INTEGER_cmp(a_min, a_max) > 0 || ASN1_INTEGER_cmp(b_min, b_max) > 0) goto done; /* * Check for overlaps. */ if (ASN1_INTEGER_cmp(a_max, b_min) >= 0) { X509V3err(X509V3_F_ASIDENTIFIERCHOICE_CANONIZE, X509V3_R_EXTENSION_VALUE_ERROR); goto done; } /* * Calculate a_max + 1 to check for adjacency. */ if ((bn == NULL && (bn = BN_new()) == NULL) || ASN1_INTEGER_to_BN(a_max, bn) == NULL || !BN_add_word(bn, 1)) { X509V3err(X509V3_F_ASIDENTIFIERCHOICE_CANONIZE, ERR_R_MALLOC_FAILURE); goto done; } if ((a_max_plus_one = BN_to_ASN1_INTEGER(bn, orig = a_max_plus_one)) == NULL) { a_max_plus_one = orig; X509V3err(X509V3_F_ASIDENTIFIERCHOICE_CANONIZE, ERR_R_MALLOC_FAILURE); goto done; } /* * If a and b are adjacent, merge them. */ if (ASN1_INTEGER_cmp(a_max_plus_one, b_min) == 0) { ASRange *r; switch (a->type) { case ASIdOrRange_id: if ((r = OPENSSL_malloc(sizeof(*r))) == NULL) { X509V3err(X509V3_F_ASIDENTIFIERCHOICE_CANONIZE, ERR_R_MALLOC_FAILURE); goto done; } r->min = a_min; r->max = b_max; a->type = ASIdOrRange_range; a->u.range = r; break; case ASIdOrRange_range: ASN1_INTEGER_free(a->u.range->max); a->u.range->max = b_max; break; } switch (b->type) { case ASIdOrRange_id: b->u.id = NULL; break; case ASIdOrRange_range: b->u.range->max = NULL; break; } ASIdOrRange_free(b); (void)sk_ASIdOrRange_delete(choice->u.asIdsOrRanges, i + 1); i--; continue; } } /* * Check for final inverted range. */ i = sk_ASIdOrRange_num(choice->u.asIdsOrRanges) - 1; { ASIdOrRange *a = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i); ASN1_INTEGER *a_min, *a_max; if (a != NULL && a->type == ASIdOrRange_range) { if (!extract_min_max(a, &a_min, &a_max) || ASN1_INTEGER_cmp(a_min, a_max) > 0) goto done; } } /* Paranoia */ if (!ossl_assert(ASIdentifierChoice_is_canonical(choice))) goto done; ret = 1; done: ASN1_INTEGER_free(a_max_plus_one); BN_free(bn); return ret; } /* * Whack an ASIdentifier extension into canonical form. */ int X509v3_asid_canonize(ASIdentifiers *asid) { return (asid == NULL || (ASIdentifierChoice_canonize(asid->asnum) && ASIdentifierChoice_canonize(asid->rdi))); } /* * v2i method for an ASIdentifier extension. */ static void *v2i_ASIdentifiers(const struct v3_ext_method *method, struct v3_ext_ctx *ctx, STACK_OF(CONF_VALUE) *values) { ASN1_INTEGER *min = NULL, *max = NULL; ASIdentifiers *asid = NULL; int i; if ((asid = ASIdentifiers_new()) == NULL) { X509V3err(X509V3_F_V2I_ASIDENTIFIERS, ERR_R_MALLOC_FAILURE); return NULL; } for (i = 0; i < sk_CONF_VALUE_num(values); i++) { CONF_VALUE *val = sk_CONF_VALUE_value(values, i); int i1 = 0, i2 = 0, i3 = 0, is_range = 0, which = 0; /* * Figure out whether this is an AS or an RDI. */ if (!name_cmp(val->name, "AS")) { which = V3_ASID_ASNUM; } else if (!name_cmp(val->name, "RDI")) { which = V3_ASID_RDI; } else { X509V3err(X509V3_F_V2I_ASIDENTIFIERS, X509V3_R_EXTENSION_NAME_ERROR); X509V3_conf_err(val); goto err; } /* * Handle inheritance. */ if (strcmp(val->value, "inherit") == 0) { if (X509v3_asid_add_inherit(asid, which)) continue; X509V3err(X509V3_F_V2I_ASIDENTIFIERS, X509V3_R_INVALID_INHERITANCE); X509V3_conf_err(val); goto err; } /* * Number, range, or mistake, pick it apart and figure out which. */ i1 = strspn(val->value, "0123456789"); if (val->value[i1] == '\0') { is_range = 0; } else { is_range = 1; i2 = i1 + strspn(val->value + i1, " \t"); if (val->value[i2] != '-') { X509V3err(X509V3_F_V2I_ASIDENTIFIERS, X509V3_R_INVALID_ASNUMBER); X509V3_conf_err(val); goto err; } i2++; i2 = i2 + strspn(val->value + i2, " \t"); i3 = i2 + strspn(val->value + i2, "0123456789"); if (val->value[i3] != '\0') { X509V3err(X509V3_F_V2I_ASIDENTIFIERS, X509V3_R_INVALID_ASRANGE); X509V3_conf_err(val); goto err; } } /* * Syntax is ok, read and add it. */ if (!is_range) { if (!X509V3_get_value_int(val, &min)) { X509V3err(X509V3_F_V2I_ASIDENTIFIERS, ERR_R_MALLOC_FAILURE); goto err; } } else { char *s = OPENSSL_strdup(val->value); if (s == NULL) { X509V3err(X509V3_F_V2I_ASIDENTIFIERS, ERR_R_MALLOC_FAILURE); goto err; } s[i1] = '\0'; min = s2i_ASN1_INTEGER(NULL, s); max = s2i_ASN1_INTEGER(NULL, s + i2); OPENSSL_free(s); if (min == NULL || max == NULL) { X509V3err(X509V3_F_V2I_ASIDENTIFIERS, ERR_R_MALLOC_FAILURE); goto err; } if (ASN1_INTEGER_cmp(min, max) > 0) { X509V3err(X509V3_F_V2I_ASIDENTIFIERS, X509V3_R_EXTENSION_VALUE_ERROR); goto err; } } if (!X509v3_asid_add_id_or_range(asid, which, min, max)) { X509V3err(X509V3_F_V2I_ASIDENTIFIERS, ERR_R_MALLOC_FAILURE); goto err; } min = max = NULL; } /* * Canonize the result, then we're done. */ if (!X509v3_asid_canonize(asid)) goto err; return asid; err: ASIdentifiers_free(asid); ASN1_INTEGER_free(min); ASN1_INTEGER_free(max); return NULL; } /* * OpenSSL dispatch. */ const X509V3_EXT_METHOD v3_asid = { NID_sbgp_autonomousSysNum, /* nid */ 0, /* flags */ ASN1_ITEM_ref(ASIdentifiers), /* template */ 0, 0, 0, 0, /* old functions, ignored */ 0, /* i2s */ 0, /* s2i */ 0, /* i2v */ v2i_ASIdentifiers, /* v2i */ i2r_ASIdentifiers, /* i2r */ 0, /* r2i */ NULL /* extension-specific data */ }; /* * Figure out whether extension uses inheritance. */ int X509v3_asid_inherits(ASIdentifiers *asid) { return (asid != NULL && ((asid->asnum != NULL && asid->asnum->type == ASIdentifierChoice_inherit) || (asid->rdi != NULL && asid->rdi->type == ASIdentifierChoice_inherit))); } /* * Figure out whether parent contains child. */ static int asid_contains(ASIdOrRanges *parent, ASIdOrRanges *child) { ASN1_INTEGER *p_min = NULL, *p_max = NULL, *c_min = NULL, *c_max = NULL; int p, c; if (child == NULL || parent == child) return 1; if (parent == NULL) return 0; p = 0; for (c = 0; c < sk_ASIdOrRange_num(child); c++) { if (!extract_min_max(sk_ASIdOrRange_value(child, c), &c_min, &c_max)) return 0; for (;; p++) { if (p >= sk_ASIdOrRange_num(parent)) return 0; if (!extract_min_max(sk_ASIdOrRange_value(parent, p), &p_min, &p_max)) return 0; if (ASN1_INTEGER_cmp(p_max, c_max) < 0) continue; if (ASN1_INTEGER_cmp(p_min, c_min) > 0) return 0; break; } } return 1; } /* * Test whether a is a subset of b. */ int X509v3_asid_subset(ASIdentifiers *a, ASIdentifiers *b) { - return (a == NULL || - a == b || - (b != NULL && - !X509v3_asid_inherits(a) && - !X509v3_asid_inherits(b) && - asid_contains(b->asnum->u.asIdsOrRanges, - a->asnum->u.asIdsOrRanges) && - asid_contains(b->rdi->u.asIdsOrRanges, - a->rdi->u.asIdsOrRanges))); + int subset; + + if (a == NULL || a == b) + return 1; + + if (b == NULL) + return 0; + + if (X509v3_asid_inherits(a) || X509v3_asid_inherits(b)) + return 0; + + subset = a->asnum == NULL + || (b->asnum != NULL + && asid_contains(b->asnum->u.asIdsOrRanges, + a->asnum->u.asIdsOrRanges)); + if (!subset) + return 0; + + return a->rdi == NULL + || (b->rdi != NULL + && asid_contains(b->rdi->u.asIdsOrRanges, + a->rdi->u.asIdsOrRanges)); } /* * Validation error handling via callback. */ #define validation_err(_err_) \ do { \ if (ctx != NULL) { \ ctx->error = _err_; \ ctx->error_depth = i; \ ctx->current_cert = x; \ ret = ctx->verify_cb(0, ctx); \ } else { \ ret = 0; \ } \ if (!ret) \ goto done; \ } while (0) /* * Core code for RFC 3779 3.3 path validation. */ static int asid_validate_path_internal(X509_STORE_CTX *ctx, STACK_OF(X509) *chain, ASIdentifiers *ext) { ASIdOrRanges *child_as = NULL, *child_rdi = NULL; int i, ret = 1, inherit_as = 0, inherit_rdi = 0; X509 *x; if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0) || !ossl_assert(ctx != NULL || ext != NULL) || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) { if (ctx != NULL) ctx->error = X509_V_ERR_UNSPECIFIED; return 0; } /* * Figure out where to start. If we don't have an extension to * check, we're done. Otherwise, check canonical form and * set up for walking up the chain. */ if (ext != NULL) { i = -1; x = NULL; } else { i = 0; x = sk_X509_value(chain, i); if ((ext = x->rfc3779_asid) == NULL) goto done; } if (!X509v3_asid_is_canonical(ext)) validation_err(X509_V_ERR_INVALID_EXTENSION); if (ext->asnum != NULL) { switch (ext->asnum->type) { case ASIdentifierChoice_inherit: inherit_as = 1; break; case ASIdentifierChoice_asIdsOrRanges: child_as = ext->asnum->u.asIdsOrRanges; break; } } if (ext->rdi != NULL) { switch (ext->rdi->type) { case ASIdentifierChoice_inherit: inherit_rdi = 1; break; case ASIdentifierChoice_asIdsOrRanges: child_rdi = ext->rdi->u.asIdsOrRanges; break; } } /* * Now walk up the chain. Extensions must be in canonical form, no * cert may list resources that its parent doesn't list. */ for (i++; i < sk_X509_num(chain); i++) { x = sk_X509_value(chain, i); if (!ossl_assert(x != NULL)) { if (ctx != NULL) ctx->error = X509_V_ERR_UNSPECIFIED; return 0; } if (x->rfc3779_asid == NULL) { if (child_as != NULL || child_rdi != NULL) validation_err(X509_V_ERR_UNNESTED_RESOURCE); continue; } if (!X509v3_asid_is_canonical(x->rfc3779_asid)) validation_err(X509_V_ERR_INVALID_EXTENSION); if (x->rfc3779_asid->asnum == NULL && child_as != NULL) { validation_err(X509_V_ERR_UNNESTED_RESOURCE); child_as = NULL; inherit_as = 0; } if (x->rfc3779_asid->asnum != NULL && x->rfc3779_asid->asnum->type == ASIdentifierChoice_asIdsOrRanges) { if (inherit_as || asid_contains(x->rfc3779_asid->asnum->u.asIdsOrRanges, child_as)) { child_as = x->rfc3779_asid->asnum->u.asIdsOrRanges; inherit_as = 0; } else { validation_err(X509_V_ERR_UNNESTED_RESOURCE); } } if (x->rfc3779_asid->rdi == NULL && child_rdi != NULL) { validation_err(X509_V_ERR_UNNESTED_RESOURCE); child_rdi = NULL; inherit_rdi = 0; } if (x->rfc3779_asid->rdi != NULL && x->rfc3779_asid->rdi->type == ASIdentifierChoice_asIdsOrRanges) { if (inherit_rdi || asid_contains(x->rfc3779_asid->rdi->u.asIdsOrRanges, child_rdi)) { child_rdi = x->rfc3779_asid->rdi->u.asIdsOrRanges; inherit_rdi = 0; } else { validation_err(X509_V_ERR_UNNESTED_RESOURCE); } } } /* * Trust anchor can't inherit. */ if (!ossl_assert(x != NULL)) { if (ctx != NULL) ctx->error = X509_V_ERR_UNSPECIFIED; return 0; } if (x->rfc3779_asid != NULL) { if (x->rfc3779_asid->asnum != NULL && x->rfc3779_asid->asnum->type == ASIdentifierChoice_inherit) validation_err(X509_V_ERR_UNNESTED_RESOURCE); if (x->rfc3779_asid->rdi != NULL && x->rfc3779_asid->rdi->type == ASIdentifierChoice_inherit) validation_err(X509_V_ERR_UNNESTED_RESOURCE); } done: return ret; } #undef validation_err /* * RFC 3779 3.3 path validation -- called from X509_verify_cert(). */ int X509v3_asid_validate_path(X509_STORE_CTX *ctx) { if (ctx->chain == NULL || sk_X509_num(ctx->chain) == 0 || ctx->verify_cb == NULL) { ctx->error = X509_V_ERR_UNSPECIFIED; return 0; } return asid_validate_path_internal(ctx, ctx->chain, NULL); } /* * RFC 3779 3.3 path validation of an extension. * Test whether chain covers extension. */ int X509v3_asid_validate_resource_set(STACK_OF(X509) *chain, ASIdentifiers *ext, int allow_inheritance) { if (ext == NULL) return 1; if (chain == NULL || sk_X509_num(chain) == 0) return 0; if (!allow_inheritance && X509v3_asid_inherits(ext)) return 0; return asid_validate_path_internal(NULL, chain, ext); } #endif /* OPENSSL_NO_RFC3779 */ diff --git a/crypto/x509v3/v3_sxnet.c b/crypto/x509v3/v3_sxnet.c index 89cda01be2a5..144e8bee84ad 100644 --- a/crypto/x509v3/v3_sxnet.c +++ b/crypto/x509v3/v3_sxnet.c @@ -1,226 +1,238 @@ /* - * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. + * Copyright 1999-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "ext_dat.h" /* Support for Thawte strong extranet extension */ #define SXNET_TEST static int sxnet_i2r(X509V3_EXT_METHOD *method, SXNET *sx, BIO *out, int indent); #ifdef SXNET_TEST static SXNET *sxnet_v2i(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval); #endif const X509V3_EXT_METHOD v3_sxnet = { NID_sxnet, X509V3_EXT_MULTILINE, ASN1_ITEM_ref(SXNET), 0, 0, 0, 0, 0, 0, 0, #ifdef SXNET_TEST (X509V3_EXT_V2I)sxnet_v2i, #else 0, #endif (X509V3_EXT_I2R)sxnet_i2r, 0, NULL }; ASN1_SEQUENCE(SXNETID) = { ASN1_SIMPLE(SXNETID, zone, ASN1_INTEGER), ASN1_SIMPLE(SXNETID, user, ASN1_OCTET_STRING) } ASN1_SEQUENCE_END(SXNETID) IMPLEMENT_ASN1_FUNCTIONS(SXNETID) ASN1_SEQUENCE(SXNET) = { ASN1_SIMPLE(SXNET, version, ASN1_INTEGER), ASN1_SEQUENCE_OF(SXNET, ids, SXNETID) } ASN1_SEQUENCE_END(SXNET) IMPLEMENT_ASN1_FUNCTIONS(SXNET) static int sxnet_i2r(X509V3_EXT_METHOD *method, SXNET *sx, BIO *out, int indent) { - long v; + int64_t v; char *tmp; SXNETID *id; int i; - v = ASN1_INTEGER_get(sx->version); - BIO_printf(out, "%*sVersion: %ld (0x%lX)", indent, "", v + 1, v); + + /* + * Since we add 1 to the version number to display it, we don't support + * LONG_MAX since that would cause on overflow. + */ + if (!ASN1_INTEGER_get_int64(&v, sx->version) + || v >= LONG_MAX + || v < LONG_MIN) { + BIO_printf(out, "%*sVersion: ", indent, ""); + } else { + long vl = (long)v; + + BIO_printf(out, "%*sVersion: %ld (0x%lX)", indent, "", vl + 1, vl); + } for (i = 0; i < sk_SXNETID_num(sx->ids); i++) { id = sk_SXNETID_value(sx->ids, i); tmp = i2s_ASN1_INTEGER(NULL, id->zone); BIO_printf(out, "\n%*sZone: %s, User: ", indent, "", tmp); OPENSSL_free(tmp); ASN1_STRING_print(out, id->user); } return 1; } #ifdef SXNET_TEST /* * NBB: this is used for testing only. It should *not* be used for anything * else because it will just take static IDs from the configuration file and * they should really be separate values for each user. */ static SXNET *sxnet_v2i(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval) { CONF_VALUE *cnf; SXNET *sx = NULL; int i; for (i = 0; i < sk_CONF_VALUE_num(nval); i++) { cnf = sk_CONF_VALUE_value(nval, i); if (!SXNET_add_id_asc(&sx, cnf->name, cnf->value, -1)) return NULL; } return sx; } #endif /* Strong Extranet utility functions */ /* Add an id given the zone as an ASCII number */ int SXNET_add_id_asc(SXNET **psx, const char *zone, const char *user, int userlen) { ASN1_INTEGER *izone; if ((izone = s2i_ASN1_INTEGER(NULL, zone)) == NULL) { X509V3err(X509V3_F_SXNET_ADD_ID_ASC, X509V3_R_ERROR_CONVERTING_ZONE); return 0; } return SXNET_add_id_INTEGER(psx, izone, user, userlen); } /* Add an id given the zone as an unsigned long */ int SXNET_add_id_ulong(SXNET **psx, unsigned long lzone, const char *user, int userlen) { ASN1_INTEGER *izone; if ((izone = ASN1_INTEGER_new()) == NULL || !ASN1_INTEGER_set(izone, lzone)) { X509V3err(X509V3_F_SXNET_ADD_ID_ULONG, ERR_R_MALLOC_FAILURE); ASN1_INTEGER_free(izone); return 0; } return SXNET_add_id_INTEGER(psx, izone, user, userlen); } /* * Add an id given the zone as an ASN1_INTEGER. Note this version uses the * passed integer and doesn't make a copy so don't free it up afterwards. */ int SXNET_add_id_INTEGER(SXNET **psx, ASN1_INTEGER *zone, const char *user, int userlen) { SXNET *sx = NULL; SXNETID *id = NULL; if (!psx || !zone || !user) { X509V3err(X509V3_F_SXNET_ADD_ID_INTEGER, X509V3_R_INVALID_NULL_ARGUMENT); return 0; } if (userlen == -1) userlen = strlen(user); if (userlen > 64) { X509V3err(X509V3_F_SXNET_ADD_ID_INTEGER, X509V3_R_USER_TOO_LONG); return 0; } if (*psx == NULL) { if ((sx = SXNET_new()) == NULL) goto err; if (!ASN1_INTEGER_set(sx->version, 0)) goto err; *psx = sx; } else sx = *psx; if (SXNET_get_id_INTEGER(sx, zone)) { X509V3err(X509V3_F_SXNET_ADD_ID_INTEGER, X509V3_R_DUPLICATE_ZONE_ID); return 0; } if ((id = SXNETID_new()) == NULL) goto err; if (userlen == -1) userlen = strlen(user); if (!ASN1_OCTET_STRING_set(id->user, (const unsigned char *)user, userlen)) goto err; if (!sk_SXNETID_push(sx->ids, id)) goto err; id->zone = zone; return 1; err: X509V3err(X509V3_F_SXNET_ADD_ID_INTEGER, ERR_R_MALLOC_FAILURE); SXNETID_free(id); SXNET_free(sx); *psx = NULL; return 0; } ASN1_OCTET_STRING *SXNET_get_id_asc(SXNET *sx, const char *zone) { ASN1_INTEGER *izone; ASN1_OCTET_STRING *oct; if ((izone = s2i_ASN1_INTEGER(NULL, zone)) == NULL) { X509V3err(X509V3_F_SXNET_GET_ID_ASC, X509V3_R_ERROR_CONVERTING_ZONE); return NULL; } oct = SXNET_get_id_INTEGER(sx, izone); ASN1_INTEGER_free(izone); return oct; } ASN1_OCTET_STRING *SXNET_get_id_ulong(SXNET *sx, unsigned long lzone) { ASN1_INTEGER *izone; ASN1_OCTET_STRING *oct; if ((izone = ASN1_INTEGER_new()) == NULL || !ASN1_INTEGER_set(izone, lzone)) { X509V3err(X509V3_F_SXNET_GET_ID_ULONG, ERR_R_MALLOC_FAILURE); ASN1_INTEGER_free(izone); return NULL; } oct = SXNET_get_id_INTEGER(sx, izone); ASN1_INTEGER_free(izone); return oct; } ASN1_OCTET_STRING *SXNET_get_id_INTEGER(SXNET *sx, ASN1_INTEGER *zone) { SXNETID *id; int i; for (i = 0; i < sk_SXNETID_num(sx->ids); i++) { id = sk_SXNETID_value(sx->ids, i); if (!ASN1_INTEGER_cmp(id->zone, zone)) return id->user; } return NULL; } diff --git a/doc/man3/BIO_f_base64.pod b/doc/man3/BIO_f_base64.pod index c2c5309a6017..55ca5d4de30f 100644 --- a/doc/man3/BIO_f_base64.pod +++ b/doc/man3/BIO_f_base64.pod @@ -1,104 +1,103 @@ =pod =head1 NAME BIO_f_base64 - base64 BIO filter =head1 SYNOPSIS =for comment multiple includes #include #include const BIO_METHOD *BIO_f_base64(void); =head1 DESCRIPTION BIO_f_base64() returns the base64 BIO method. This is a filter BIO that base64 encodes any data written through it and decodes any data read through it. Base64 BIOs do not support BIO_gets() or BIO_puts(). For writing, output is by default divided to lines of length 64 characters and there is always a newline at the end of output. For reading, first line should be at most 1024 characters long. If it is longer then it is ignored completely. Other input lines can be of any length. There must be a newline at the end of input. This behavior can be changed with BIO_FLAGS_BASE64_NO_NL flag. BIO_flush() on a base64 BIO that is being written through is used to signal that no more data is to be encoded: this is used to flush the final block through the BIO. The flag BIO_FLAGS_BASE64_NO_NL can be set with BIO_set_flags(). For writing, it causes all data to be written on one line without newline at the end. -For reading, it forces the decoder to process the data regardless -of newlines. All newlines are ignored and the input does not need -to contain any newline at all. +For reading, it expects the data to be all on one line (with or +without a trailing newline). =head1 NOTES Because of the format of base64 encoding the end of the encoded block cannot always be reliably determined. =head1 RETURN VALUES BIO_f_base64() returns the base64 BIO method. =head1 EXAMPLES Base64 encode the string "Hello World\n" and write the result to standard output: BIO *bio, *b64; char message[] = "Hello World \n"; b64 = BIO_new(BIO_f_base64()); bio = BIO_new_fp(stdout, BIO_NOCLOSE); BIO_push(b64, bio); BIO_write(b64, message, strlen(message)); BIO_flush(b64); BIO_free_all(b64); Read Base64 encoded data from standard input and write the decoded data to standard output: BIO *bio, *b64, *bio_out; char inbuf[512]; int inlen; b64 = BIO_new(BIO_f_base64()); bio = BIO_new_fp(stdin, BIO_NOCLOSE); bio_out = BIO_new_fp(stdout, BIO_NOCLOSE); BIO_push(b64, bio); while ((inlen = BIO_read(b64, inbuf, 512)) > 0) BIO_write(bio_out, inbuf, inlen); BIO_flush(bio_out); BIO_free_all(b64); =head1 BUGS The ambiguity of EOF in base64 encoded data can cause additional data following the base64 encoded block to be misinterpreted. There should be some way of specifying a test that the BIO can perform to reliably determine EOF (for example a MIME boundary). =head1 COPYRIGHT Copyright 2000-2022 The OpenSSL Project Authors. All Rights Reserved. Licensed under the OpenSSL license (the "License"). You may not use this file except in compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or at L. =cut diff --git a/doc/man3/SSL_CTX_set1_verify_cert_store.pod b/doc/man3/SSL_CTX_set1_verify_cert_store.pod index b42f2a499f13..a7f2a53a80af 100644 --- a/doc/man3/SSL_CTX_set1_verify_cert_store.pod +++ b/doc/man3/SSL_CTX_set1_verify_cert_store.pod @@ -1,100 +1,111 @@ =pod =head1 NAME SSL_CTX_set0_verify_cert_store, SSL_CTX_set1_verify_cert_store, SSL_CTX_set0_chain_cert_store, SSL_CTX_set1_chain_cert_store, SSL_set0_verify_cert_store, SSL_set1_verify_cert_store, -SSL_set0_chain_cert_store, SSL_set1_chain_cert_store - set certificate +SSL_set0_chain_cert_store, SSL_set1_chain_cert_store, +SSL_CTX_get0_verify_cert_store, SSL_CTX_get0_chain_cert_store, +SSL_get0_verify_cert_store, SSL_get0_chain_cert_store - set certificate verification or chain store =head1 SYNOPSIS #include int SSL_CTX_set0_verify_cert_store(SSL_CTX *ctx, X509_STORE *st); int SSL_CTX_set1_verify_cert_store(SSL_CTX *ctx, X509_STORE *st); int SSL_CTX_set0_chain_cert_store(SSL_CTX *ctx, X509_STORE *st); int SSL_CTX_set1_chain_cert_store(SSL_CTX *ctx, X509_STORE *st); + int SSL_CTX_get0_verify_cert_store(SSL_CTX *ctx, X509_STORE **st); + int SSL_CTX_get0_chain_cert_store(SSL_CTX *ctx, X509_STORE **st); int SSL_set0_verify_cert_store(SSL *ctx, X509_STORE *st); int SSL_set1_verify_cert_store(SSL *ctx, X509_STORE *st); int SSL_set0_chain_cert_store(SSL *ctx, X509_STORE *st); int SSL_set1_chain_cert_store(SSL *ctx, X509_STORE *st); + int SSL_get0_verify_cert_store(SSL *ctx, X509_STORE **st); + int SSL_get0_chain_cert_store(SSL *ctx, X509_STORE **st); =head1 DESCRIPTION SSL_CTX_set0_verify_cert_store() and SSL_CTX_set1_verify_cert_store() set the certificate store used for certificate verification to B. SSL_CTX_set0_chain_cert_store() and SSL_CTX_set1_chain_cert_store() set the certificate store used for certificate chain building to B. SSL_set0_verify_cert_store(), SSL_set1_verify_cert_store(), SSL_set0_chain_cert_store() and SSL_set1_chain_cert_store() are similar except they apply to SSL structure B. +SSL_CTX_get0_verify_chain_store(), SSL_get0_verify_chain_store(), +SSL_CTX_get0_chain_cert_store() and SSL_get0_chain_cert_store() retrieve the +objects previously set via the above calls. A pointer to the object (or NULL if +no such object has been set) is written to B<*st>. + All these functions are implemented as macros. Those containing a B<1> increment the reference count of the supplied store so it must be freed at some point after the operation. Those containing a B<0> do not increment reference counts and the supplied store B be freed after the operation. =head1 NOTES The stores pointers associated with an SSL_CTX structure are copied to any SSL structures when SSL_new() is called. As a result SSL structures will not be affected if the parent SSL_CTX store pointer is set to a new value. The verification store is used to verify the certificate chain sent by the peer: that is an SSL/TLS client will use the verification store to verify the server's certificate chain and a SSL/TLS server will use it to verify any client certificate chain. The chain store is used to build the certificate chain. If the mode B is set or a certificate chain is configured already (for example using the functions such as L or L) then automatic chain building is disabled. If the mode B is set then automatic chain building is disabled. If the chain or the verification store is not set then the store associated with the parent SSL_CTX is used instead to retain compatibility with previous versions of OpenSSL. =head1 RETURN VALUES All these functions return 1 for success and 0 for failure. =head1 SEE ALSO L L L L L L L L L L L =head1 HISTORY These functions were added in OpenSSL 1.0.2. =head1 COPYRIGHT -Copyright 2013-2016 The OpenSSL Project Authors. All Rights Reserved. +Copyright 2013-2022 The OpenSSL Project Authors. All Rights Reserved. Licensed under the OpenSSL license (the "License"). You may not use this file except in compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or at L. =cut diff --git a/include/openssl/opensslv.h b/include/openssl/opensslv.h index bd9dc9209163..7fb1b21f7ae8 100644 --- a/include/openssl/opensslv.h +++ b/include/openssl/opensslv.h @@ -1,101 +1,101 @@ /* * Copyright 1999-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef HEADER_OPENSSLV_H # define HEADER_OPENSSLV_H #ifdef __cplusplus extern "C" { #endif /*- * Numeric release version identifier: * MNNFFPPS: major minor fix patch status * The status nibble has one of the values 0 for development, 1 to e for betas * 1 to 14, and f for release. The patch level is exactly that. * For example: * 0.9.3-dev 0x00903000 * 0.9.3-beta1 0x00903001 * 0.9.3-beta2-dev 0x00903002 * 0.9.3-beta2 0x00903002 (same as ...beta2-dev) * 0.9.3 0x0090300f * 0.9.3a 0x0090301f * 0.9.4 0x0090400f * 1.2.3z 0x102031af * * For continuity reasons (because 0.9.5 is already out, and is coded * 0x00905100), between 0.9.5 and 0.9.6 the coding of the patch level * part is slightly different, by setting the highest bit. This means * that 0.9.5a looks like this: 0x0090581f. At 0.9.6, we can start * with 0x0090600S... * * (Prior to 0.9.3-dev a different scheme was used: 0.9.2b is 0x0922.) * (Prior to 0.9.5a beta1, a different scheme was used: MMNNFFRBB for * major minor fix final patch/beta) */ -# define OPENSSL_VERSION_NUMBER 0x101010ffL -# define OPENSSL_VERSION_TEXT "OpenSSL 1.1.1o 3 May 2022" +# define OPENSSL_VERSION_NUMBER 0x1010110fL +# define OPENSSL_VERSION_TEXT "OpenSSL 1.1.1p 21 Jun 2022" /*- * The macros below are to be used for shared library (.so, .dll, ...) * versioning. That kind of versioning works a bit differently between * operating systems. The most usual scheme is to set a major and a minor * number, and have the runtime loader check that the major number is equal * to what it was at application link time, while the minor number has to * be greater or equal to what it was at application link time. With this * scheme, the version number is usually part of the file name, like this: * * libcrypto.so.0.9 * * Some unixen also make a softlink with the major version number only: * * libcrypto.so.0 * * On Tru64 and IRIX 6.x it works a little bit differently. There, the * shared library version is stored in the file, and is actually a series * of versions, separated by colons. The rightmost version present in the * library when linking an application is stored in the application to be * matched at run time. When the application is run, a check is done to * see if the library version stored in the application matches any of the * versions in the version string of the library itself. * This version string can be constructed in any way, depending on what * kind of matching is desired. However, to implement the same scheme as * the one used in the other unixen, all compatible versions, from lowest * to highest, should be part of the string. Consecutive builds would * give the following versions strings: * * 3.0 * 3.0:3.1 * 3.0:3.1:3.2 * 4.0 * 4.0:4.1 * * Notice how version 4 is completely incompatible with version, and * therefore give the breach you can see. * * There may be other schemes as well that I haven't yet discovered. * * So, here's the way it works here: first of all, the library version * number doesn't need at all to match the overall OpenSSL version. * However, it's nice and more understandable if it actually does. * The current library version is stored in the macro SHLIB_VERSION_NUMBER, * which is just a piece of text in the format "M.m.e" (Major, minor, edit). * For the sake of Tru64, IRIX, and any other OS that behaves in similar ways, * we need to keep a history of version numbers, which is done in the * macro SHLIB_VERSION_HISTORY. The numbers are separated by colons and * should only keep the versions that are binary compatible with the current. */ # define SHLIB_VERSION_HISTORY "" # define SHLIB_VERSION_NUMBER "1.1" #ifdef __cplusplus } #endif #endif /* HEADER_OPENSSLV_H */ diff --git a/include/openssl/ssl.h b/include/openssl/ssl.h index fd0c5a99967f..9af0c8995ecc 100644 --- a/include/openssl/ssl.h +++ b/include/openssl/ssl.h @@ -1,2438 +1,2448 @@ /* - * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. + * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * Copyright 2005 Nokia. All rights reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef HEADER_SSL_H # define HEADER_SSL_H # include # include # include # include # if OPENSSL_API_COMPAT < 0x10100000L # include # include # include # endif # include # include # include # include # include # include # include # include #ifdef __cplusplus extern "C" { #endif /* OpenSSL version number for ASN.1 encoding of the session information */ /*- * Version 0 - initial version * Version 1 - added the optional peer certificate */ # define SSL_SESSION_ASN1_VERSION 0x0001 # define SSL_MAX_SSL_SESSION_ID_LENGTH 32 # define SSL_MAX_SID_CTX_LENGTH 32 # define SSL_MIN_RSA_MODULUS_LENGTH_IN_BYTES (512/8) # define SSL_MAX_KEY_ARG_LENGTH 8 # define SSL_MAX_MASTER_KEY_LENGTH 48 /* The maximum number of encrypt/decrypt pipelines we can support */ # define SSL_MAX_PIPELINES 32 /* text strings for the ciphers */ /* These are used to specify which ciphers to use and not to use */ # define SSL_TXT_LOW "LOW" # define SSL_TXT_MEDIUM "MEDIUM" # define SSL_TXT_HIGH "HIGH" # define SSL_TXT_FIPS "FIPS" # define SSL_TXT_aNULL "aNULL" # define SSL_TXT_eNULL "eNULL" # define SSL_TXT_NULL "NULL" # define SSL_TXT_kRSA "kRSA" # define SSL_TXT_kDHr "kDHr"/* this cipher class has been removed */ # define SSL_TXT_kDHd "kDHd"/* this cipher class has been removed */ # define SSL_TXT_kDH "kDH"/* this cipher class has been removed */ # define SSL_TXT_kEDH "kEDH"/* alias for kDHE */ # define SSL_TXT_kDHE "kDHE" # define SSL_TXT_kECDHr "kECDHr"/* this cipher class has been removed */ # define SSL_TXT_kECDHe "kECDHe"/* this cipher class has been removed */ # define SSL_TXT_kECDH "kECDH"/* this cipher class has been removed */ # define SSL_TXT_kEECDH "kEECDH"/* alias for kECDHE */ # define SSL_TXT_kECDHE "kECDHE" # define SSL_TXT_kPSK "kPSK" # define SSL_TXT_kRSAPSK "kRSAPSK" # define SSL_TXT_kECDHEPSK "kECDHEPSK" # define SSL_TXT_kDHEPSK "kDHEPSK" # define SSL_TXT_kGOST "kGOST" # define SSL_TXT_kSRP "kSRP" # define SSL_TXT_aRSA "aRSA" # define SSL_TXT_aDSS "aDSS" # define SSL_TXT_aDH "aDH"/* this cipher class has been removed */ # define SSL_TXT_aECDH "aECDH"/* this cipher class has been removed */ # define SSL_TXT_aECDSA "aECDSA" # define SSL_TXT_aPSK "aPSK" # define SSL_TXT_aGOST94 "aGOST94" # define SSL_TXT_aGOST01 "aGOST01" # define SSL_TXT_aGOST12 "aGOST12" # define SSL_TXT_aGOST "aGOST" # define SSL_TXT_aSRP "aSRP" # define SSL_TXT_DSS "DSS" # define SSL_TXT_DH "DH" # define SSL_TXT_DHE "DHE"/* same as "kDHE:-ADH" */ # define SSL_TXT_EDH "EDH"/* alias for DHE */ # define SSL_TXT_ADH "ADH" # define SSL_TXT_RSA "RSA" # define SSL_TXT_ECDH "ECDH" # define SSL_TXT_EECDH "EECDH"/* alias for ECDHE" */ # define SSL_TXT_ECDHE "ECDHE"/* same as "kECDHE:-AECDH" */ # define SSL_TXT_AECDH "AECDH" # define SSL_TXT_ECDSA "ECDSA" # define SSL_TXT_PSK "PSK" # define SSL_TXT_SRP "SRP" # define SSL_TXT_DES "DES" # define SSL_TXT_3DES "3DES" # define SSL_TXT_RC4 "RC4" # define SSL_TXT_RC2 "RC2" # define SSL_TXT_IDEA "IDEA" # define SSL_TXT_SEED "SEED" # define SSL_TXT_AES128 "AES128" # define SSL_TXT_AES256 "AES256" # define SSL_TXT_AES "AES" # define SSL_TXT_AES_GCM "AESGCM" # define SSL_TXT_AES_CCM "AESCCM" # define SSL_TXT_AES_CCM_8 "AESCCM8" # define SSL_TXT_CAMELLIA128 "CAMELLIA128" # define SSL_TXT_CAMELLIA256 "CAMELLIA256" # define SSL_TXT_CAMELLIA "CAMELLIA" # define SSL_TXT_CHACHA20 "CHACHA20" # define SSL_TXT_GOST "GOST89" # define SSL_TXT_ARIA "ARIA" # define SSL_TXT_ARIA_GCM "ARIAGCM" # define SSL_TXT_ARIA128 "ARIA128" # define SSL_TXT_ARIA256 "ARIA256" # define SSL_TXT_MD5 "MD5" # define SSL_TXT_SHA1 "SHA1" # define SSL_TXT_SHA "SHA"/* same as "SHA1" */ # define SSL_TXT_GOST94 "GOST94" # define SSL_TXT_GOST89MAC "GOST89MAC" # define SSL_TXT_GOST12 "GOST12" # define SSL_TXT_GOST89MAC12 "GOST89MAC12" # define SSL_TXT_SHA256 "SHA256" # define SSL_TXT_SHA384 "SHA384" # define SSL_TXT_SSLV3 "SSLv3" # define SSL_TXT_TLSV1 "TLSv1" # define SSL_TXT_TLSV1_1 "TLSv1.1" # define SSL_TXT_TLSV1_2 "TLSv1.2" # define SSL_TXT_ALL "ALL" /*- * COMPLEMENTOF* definitions. These identifiers are used to (de-select) * ciphers normally not being used. * Example: "RC4" will activate all ciphers using RC4 including ciphers * without authentication, which would normally disabled by DEFAULT (due * the "!ADH" being part of default). Therefore "RC4:!COMPLEMENTOFDEFAULT" * will make sure that it is also disabled in the specific selection. * COMPLEMENTOF* identifiers are portable between version, as adjustments * to the default cipher setup will also be included here. * * COMPLEMENTOFDEFAULT does not experience the same special treatment that * DEFAULT gets, as only selection is being done and no sorting as needed * for DEFAULT. */ # define SSL_TXT_CMPALL "COMPLEMENTOFALL" # define SSL_TXT_CMPDEF "COMPLEMENTOFDEFAULT" /* * The following cipher list is used by default. It also is substituted when * an application-defined cipher list string starts with 'DEFAULT'. * This applies to ciphersuites for TLSv1.2 and below. */ # define SSL_DEFAULT_CIPHER_LIST "ALL:!COMPLEMENTOFDEFAULT:!eNULL" /* This is the default set of TLSv1.3 ciphersuites */ # if !defined(OPENSSL_NO_CHACHA) && !defined(OPENSSL_NO_POLY1305) # define TLS_DEFAULT_CIPHERSUITES "TLS_AES_256_GCM_SHA384:" \ "TLS_CHACHA20_POLY1305_SHA256:" \ "TLS_AES_128_GCM_SHA256" # else # define TLS_DEFAULT_CIPHERSUITES "TLS_AES_256_GCM_SHA384:" \ "TLS_AES_128_GCM_SHA256" #endif /* * As of OpenSSL 1.0.0, ssl_create_cipher_list() in ssl/ssl_ciph.c always * starts with a reasonable order, and all we have to do for DEFAULT is * throwing out anonymous and unencrypted ciphersuites! (The latter are not * actually enabled by ALL, but "ALL:RSA" would enable some of them.) */ /* Used in SSL_set_shutdown()/SSL_get_shutdown(); */ # define SSL_SENT_SHUTDOWN 1 # define SSL_RECEIVED_SHUTDOWN 2 #ifdef __cplusplus } #endif #ifdef __cplusplus extern "C" { #endif # define SSL_FILETYPE_ASN1 X509_FILETYPE_ASN1 # define SSL_FILETYPE_PEM X509_FILETYPE_PEM /* * This is needed to stop compilers complaining about the 'struct ssl_st *' * function parameters used to prototype callbacks in SSL_CTX. */ typedef struct ssl_st *ssl_crock_st; typedef struct tls_session_ticket_ext_st TLS_SESSION_TICKET_EXT; typedef struct ssl_method_st SSL_METHOD; typedef struct ssl_cipher_st SSL_CIPHER; typedef struct ssl_session_st SSL_SESSION; typedef struct tls_sigalgs_st TLS_SIGALGS; typedef struct ssl_conf_ctx_st SSL_CONF_CTX; typedef struct ssl_comp_st SSL_COMP; STACK_OF(SSL_CIPHER); STACK_OF(SSL_COMP); /* SRTP protection profiles for use with the use_srtp extension (RFC 5764)*/ typedef struct srtp_protection_profile_st { const char *name; unsigned long id; } SRTP_PROTECTION_PROFILE; DEFINE_STACK_OF(SRTP_PROTECTION_PROFILE) typedef int (*tls_session_ticket_ext_cb_fn)(SSL *s, const unsigned char *data, int len, void *arg); typedef int (*tls_session_secret_cb_fn)(SSL *s, void *secret, int *secret_len, STACK_OF(SSL_CIPHER) *peer_ciphers, const SSL_CIPHER **cipher, void *arg); /* Extension context codes */ /* This extension is only allowed in TLS */ #define SSL_EXT_TLS_ONLY 0x0001 /* This extension is only allowed in DTLS */ #define SSL_EXT_DTLS_ONLY 0x0002 /* Some extensions may be allowed in DTLS but we don't implement them for it */ #define SSL_EXT_TLS_IMPLEMENTATION_ONLY 0x0004 /* Most extensions are not defined for SSLv3 but EXT_TYPE_renegotiate is */ #define SSL_EXT_SSL3_ALLOWED 0x0008 /* Extension is only defined for TLS1.2 and below */ #define SSL_EXT_TLS1_2_AND_BELOW_ONLY 0x0010 /* Extension is only defined for TLS1.3 and above */ #define SSL_EXT_TLS1_3_ONLY 0x0020 /* Ignore this extension during parsing if we are resuming */ #define SSL_EXT_IGNORE_ON_RESUMPTION 0x0040 #define SSL_EXT_CLIENT_HELLO 0x0080 /* Really means TLS1.2 or below */ #define SSL_EXT_TLS1_2_SERVER_HELLO 0x0100 #define SSL_EXT_TLS1_3_SERVER_HELLO 0x0200 #define SSL_EXT_TLS1_3_ENCRYPTED_EXTENSIONS 0x0400 #define SSL_EXT_TLS1_3_HELLO_RETRY_REQUEST 0x0800 #define SSL_EXT_TLS1_3_CERTIFICATE 0x1000 #define SSL_EXT_TLS1_3_NEW_SESSION_TICKET 0x2000 #define SSL_EXT_TLS1_3_CERTIFICATE_REQUEST 0x4000 /* Typedefs for handling custom extensions */ typedef int (*custom_ext_add_cb)(SSL *s, unsigned int ext_type, const unsigned char **out, size_t *outlen, int *al, void *add_arg); typedef void (*custom_ext_free_cb)(SSL *s, unsigned int ext_type, const unsigned char *out, void *add_arg); typedef int (*custom_ext_parse_cb)(SSL *s, unsigned int ext_type, const unsigned char *in, size_t inlen, int *al, void *parse_arg); typedef int (*SSL_custom_ext_add_cb_ex)(SSL *s, unsigned int ext_type, unsigned int context, const unsigned char **out, size_t *outlen, X509 *x, size_t chainidx, int *al, void *add_arg); typedef void (*SSL_custom_ext_free_cb_ex)(SSL *s, unsigned int ext_type, unsigned int context, const unsigned char *out, void *add_arg); typedef int (*SSL_custom_ext_parse_cb_ex)(SSL *s, unsigned int ext_type, unsigned int context, const unsigned char *in, size_t inlen, X509 *x, size_t chainidx, int *al, void *parse_arg); /* Typedef for verification callback */ typedef int (*SSL_verify_cb)(int preverify_ok, X509_STORE_CTX *x509_ctx); /* * Some values are reserved until OpenSSL 1.2.0 because they were previously * included in SSL_OP_ALL in a 1.1.x release. * * Reserved value (until OpenSSL 1.2.0) 0x00000001U * Reserved value (until OpenSSL 1.2.0) 0x00000002U */ /* Allow initial connection to servers that don't support RI */ # define SSL_OP_LEGACY_SERVER_CONNECT 0x00000004U /* Reserved value (until OpenSSL 1.2.0) 0x00000008U */ # define SSL_OP_TLSEXT_PADDING 0x00000010U /* Reserved value (until OpenSSL 1.2.0) 0x00000020U */ # define SSL_OP_SAFARI_ECDHE_ECDSA_BUG 0x00000040U /* * Reserved value (until OpenSSL 1.2.0) 0x00000080U * Reserved value (until OpenSSL 1.2.0) 0x00000100U * Reserved value (until OpenSSL 1.2.0) 0x00000200U */ /* In TLSv1.3 allow a non-(ec)dhe based kex_mode */ # define SSL_OP_ALLOW_NO_DHE_KEX 0x00000400U /* * Disable SSL 3.0/TLS 1.0 CBC vulnerability workaround that was added in * OpenSSL 0.9.6d. Usually (depending on the application protocol) the * workaround is not needed. Unfortunately some broken SSL/TLS * implementations cannot handle it at all, which is why we include it in * SSL_OP_ALL. Added in 0.9.6e */ # define SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS 0x00000800U /* DTLS options */ # define SSL_OP_NO_QUERY_MTU 0x00001000U /* Turn on Cookie Exchange (on relevant for servers) */ # define SSL_OP_COOKIE_EXCHANGE 0x00002000U /* Don't use RFC4507 ticket extension */ # define SSL_OP_NO_TICKET 0x00004000U # ifndef OPENSSL_NO_DTLS1_METHOD /* Use Cisco's "speshul" version of DTLS_BAD_VER * (only with deprecated DTLSv1_client_method()) */ # define SSL_OP_CISCO_ANYCONNECT 0x00008000U # endif /* As server, disallow session resumption on renegotiation */ # define SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION 0x00010000U /* Don't use compression even if supported */ # define SSL_OP_NO_COMPRESSION 0x00020000U /* Permit unsafe legacy renegotiation */ # define SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION 0x00040000U /* Disable encrypt-then-mac */ # define SSL_OP_NO_ENCRYPT_THEN_MAC 0x00080000U /* * Enable TLSv1.3 Compatibility mode. This is on by default. A future version * of OpenSSL may have this disabled by default. */ # define SSL_OP_ENABLE_MIDDLEBOX_COMPAT 0x00100000U /* Prioritize Chacha20Poly1305 when client does. * Modifies SSL_OP_CIPHER_SERVER_PREFERENCE */ # define SSL_OP_PRIORITIZE_CHACHA 0x00200000U /* * Set on servers to choose the cipher according to the server's preferences */ # define SSL_OP_CIPHER_SERVER_PREFERENCE 0x00400000U /* * If set, a server will allow a client to issue a SSLv3.0 version number as * latest version supported in the premaster secret, even when TLSv1.0 * (version 3.1) was announced in the client hello. Normally this is * forbidden to prevent version rollback attacks. */ # define SSL_OP_TLS_ROLLBACK_BUG 0x00800000U /* * Switches off automatic TLSv1.3 anti-replay protection for early data. This * is a server-side option only (no effect on the client). */ # define SSL_OP_NO_ANTI_REPLAY 0x01000000U # define SSL_OP_NO_SSLv3 0x02000000U # define SSL_OP_NO_TLSv1 0x04000000U # define SSL_OP_NO_TLSv1_2 0x08000000U # define SSL_OP_NO_TLSv1_1 0x10000000U # define SSL_OP_NO_TLSv1_3 0x20000000U # define SSL_OP_NO_DTLSv1 0x04000000U # define SSL_OP_NO_DTLSv1_2 0x08000000U # define SSL_OP_NO_SSL_MASK (SSL_OP_NO_SSLv3|\ SSL_OP_NO_TLSv1|SSL_OP_NO_TLSv1_1|SSL_OP_NO_TLSv1_2|SSL_OP_NO_TLSv1_3) # define SSL_OP_NO_DTLS_MASK (SSL_OP_NO_DTLSv1|SSL_OP_NO_DTLSv1_2) /* Disallow all renegotiation */ # define SSL_OP_NO_RENEGOTIATION 0x40000000U /* * Make server add server-hello extension from early version of cryptopro * draft, when GOST ciphersuite is negotiated. Required for interoperability * with CryptoPro CSP 3.x */ # define SSL_OP_CRYPTOPRO_TLSEXT_BUG 0x80000000U /* * SSL_OP_ALL: various bug workarounds that should be rather harmless. * This used to be 0x000FFFFFL before 0.9.7. * This used to be 0x80000BFFU before 1.1.1. */ # define SSL_OP_ALL (SSL_OP_CRYPTOPRO_TLSEXT_BUG|\ SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS|\ SSL_OP_LEGACY_SERVER_CONNECT|\ SSL_OP_TLSEXT_PADDING|\ SSL_OP_SAFARI_ECDHE_ECDSA_BUG) /* OBSOLETE OPTIONS: retained for compatibility */ /* Removed from OpenSSL 1.1.0. Was 0x00000001L */ /* Related to removed SSLv2. */ # define SSL_OP_MICROSOFT_SESS_ID_BUG 0x0 /* Removed from OpenSSL 1.1.0. Was 0x00000002L */ /* Related to removed SSLv2. */ # define SSL_OP_NETSCAPE_CHALLENGE_BUG 0x0 /* Removed from OpenSSL 0.9.8q and 1.0.0c. Was 0x00000008L */ /* Dead forever, see CVE-2010-4180 */ # define SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG 0x0 /* Removed from OpenSSL 1.0.1h and 1.0.2. Was 0x00000010L */ /* Refers to ancient SSLREF and SSLv2. */ # define SSL_OP_SSLREF2_REUSE_CERT_TYPE_BUG 0x0 /* Removed from OpenSSL 1.1.0. Was 0x00000020 */ # define SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER 0x0 /* Removed from OpenSSL 0.9.7h and 0.9.8b. Was 0x00000040L */ # define SSL_OP_MSIE_SSLV2_RSA_PADDING 0x0 /* Removed from OpenSSL 1.1.0. Was 0x00000080 */ /* Ancient SSLeay version. */ # define SSL_OP_SSLEAY_080_CLIENT_DH_BUG 0x0 /* Removed from OpenSSL 1.1.0. Was 0x00000100L */ # define SSL_OP_TLS_D5_BUG 0x0 /* Removed from OpenSSL 1.1.0. Was 0x00000200L */ # define SSL_OP_TLS_BLOCK_PADDING_BUG 0x0 /* Removed from OpenSSL 1.1.0. Was 0x00080000L */ # define SSL_OP_SINGLE_ECDH_USE 0x0 /* Removed from OpenSSL 1.1.0. Was 0x00100000L */ # define SSL_OP_SINGLE_DH_USE 0x0 /* Removed from OpenSSL 1.0.1k and 1.0.2. Was 0x00200000L */ # define SSL_OP_EPHEMERAL_RSA 0x0 /* Removed from OpenSSL 1.1.0. Was 0x01000000L */ # define SSL_OP_NO_SSLv2 0x0 /* Removed from OpenSSL 1.0.1. Was 0x08000000L */ # define SSL_OP_PKCS1_CHECK_1 0x0 /* Removed from OpenSSL 1.0.1. Was 0x10000000L */ # define SSL_OP_PKCS1_CHECK_2 0x0 /* Removed from OpenSSL 1.1.0. Was 0x20000000L */ # define SSL_OP_NETSCAPE_CA_DN_BUG 0x0 /* Removed from OpenSSL 1.1.0. Was 0x40000000L */ # define SSL_OP_NETSCAPE_DEMO_CIPHER_CHANGE_BUG 0x0 /* * Allow SSL_write(..., n) to return r with 0 < r < n (i.e. report success * when just a single record has been written): */ # define SSL_MODE_ENABLE_PARTIAL_WRITE 0x00000001U /* * Make it possible to retry SSL_write() with changed buffer location (buffer * contents must stay the same!); this is not the default to avoid the * misconception that non-blocking SSL_write() behaves like non-blocking * write(): */ # define SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER 0x00000002U /* * Never bother the application with retries if the transport is blocking: */ # define SSL_MODE_AUTO_RETRY 0x00000004U /* Don't attempt to automatically build certificate chain */ # define SSL_MODE_NO_AUTO_CHAIN 0x00000008U /* * Save RAM by releasing read and write buffers when they're empty. (SSL3 and * TLS only.) Released buffers are freed. */ # define SSL_MODE_RELEASE_BUFFERS 0x00000010U /* * Send the current time in the Random fields of the ClientHello and * ServerHello records for compatibility with hypothetical implementations * that require it. */ # define SSL_MODE_SEND_CLIENTHELLO_TIME 0x00000020U # define SSL_MODE_SEND_SERVERHELLO_TIME 0x00000040U /* * Send TLS_FALLBACK_SCSV in the ClientHello. To be set only by applications * that reconnect with a downgraded protocol version; see * draft-ietf-tls-downgrade-scsv-00 for details. DO NOT ENABLE THIS if your * application attempts a normal handshake. Only use this in explicit * fallback retries, following the guidance in * draft-ietf-tls-downgrade-scsv-00. */ # define SSL_MODE_SEND_FALLBACK_SCSV 0x00000080U /* * Support Asynchronous operation */ # define SSL_MODE_ASYNC 0x00000100U /* * When using DTLS/SCTP, include the terminating zero in the label * used for computing the endpoint-pair shared secret. Required for * interoperability with implementations having this bug like these * older version of OpenSSL: * - OpenSSL 1.0.0 series * - OpenSSL 1.0.1 series * - OpenSSL 1.0.2 series * - OpenSSL 1.1.0 series * - OpenSSL 1.1.1 and 1.1.1a */ # define SSL_MODE_DTLS_SCTP_LABEL_LENGTH_BUG 0x00000400U /* Cert related flags */ /* * Many implementations ignore some aspects of the TLS standards such as * enforcing certificate chain algorithms. When this is set we enforce them. */ # define SSL_CERT_FLAG_TLS_STRICT 0x00000001U /* Suite B modes, takes same values as certificate verify flags */ # define SSL_CERT_FLAG_SUITEB_128_LOS_ONLY 0x10000 /* Suite B 192 bit only mode */ # define SSL_CERT_FLAG_SUITEB_192_LOS 0x20000 /* Suite B 128 bit mode allowing 192 bit algorithms */ # define SSL_CERT_FLAG_SUITEB_128_LOS 0x30000 /* Perform all sorts of protocol violations for testing purposes */ # define SSL_CERT_FLAG_BROKEN_PROTOCOL 0x10000000 /* Flags for building certificate chains */ /* Treat any existing certificates as untrusted CAs */ # define SSL_BUILD_CHAIN_FLAG_UNTRUSTED 0x1 /* Don't include root CA in chain */ # define SSL_BUILD_CHAIN_FLAG_NO_ROOT 0x2 /* Just check certificates already there */ # define SSL_BUILD_CHAIN_FLAG_CHECK 0x4 /* Ignore verification errors */ # define SSL_BUILD_CHAIN_FLAG_IGNORE_ERROR 0x8 /* Clear verification errors from queue */ # define SSL_BUILD_CHAIN_FLAG_CLEAR_ERROR 0x10 /* Flags returned by SSL_check_chain */ /* Certificate can be used with this session */ # define CERT_PKEY_VALID 0x1 /* Certificate can also be used for signing */ # define CERT_PKEY_SIGN 0x2 /* EE certificate signing algorithm OK */ # define CERT_PKEY_EE_SIGNATURE 0x10 /* CA signature algorithms OK */ # define CERT_PKEY_CA_SIGNATURE 0x20 /* EE certificate parameters OK */ # define CERT_PKEY_EE_PARAM 0x40 /* CA certificate parameters OK */ # define CERT_PKEY_CA_PARAM 0x80 /* Signing explicitly allowed as opposed to SHA1 fallback */ # define CERT_PKEY_EXPLICIT_SIGN 0x100 /* Client CA issuer names match (always set for server cert) */ # define CERT_PKEY_ISSUER_NAME 0x200 /* Cert type matches client types (always set for server cert) */ # define CERT_PKEY_CERT_TYPE 0x400 /* Cert chain suitable to Suite B */ # define CERT_PKEY_SUITEB 0x800 # define SSL_CONF_FLAG_CMDLINE 0x1 # define SSL_CONF_FLAG_FILE 0x2 # define SSL_CONF_FLAG_CLIENT 0x4 # define SSL_CONF_FLAG_SERVER 0x8 # define SSL_CONF_FLAG_SHOW_ERRORS 0x10 # define SSL_CONF_FLAG_CERTIFICATE 0x20 # define SSL_CONF_FLAG_REQUIRE_PRIVATE 0x40 /* Configuration value types */ # define SSL_CONF_TYPE_UNKNOWN 0x0 # define SSL_CONF_TYPE_STRING 0x1 # define SSL_CONF_TYPE_FILE 0x2 # define SSL_CONF_TYPE_DIR 0x3 # define SSL_CONF_TYPE_NONE 0x4 /* Maximum length of the application-controlled segment of a a TLSv1.3 cookie */ # define SSL_COOKIE_LENGTH 4096 /* * Note: SSL[_CTX]_set_{options,mode} use |= op on the previous value, they * cannot be used to clear bits. */ unsigned long SSL_CTX_get_options(const SSL_CTX *ctx); unsigned long SSL_get_options(const SSL *s); unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op); unsigned long SSL_clear_options(SSL *s, unsigned long op); unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op); unsigned long SSL_set_options(SSL *s, unsigned long op); # define SSL_CTX_set_mode(ctx,op) \ SSL_CTX_ctrl((ctx),SSL_CTRL_MODE,(op),NULL) # define SSL_CTX_clear_mode(ctx,op) \ SSL_CTX_ctrl((ctx),SSL_CTRL_CLEAR_MODE,(op),NULL) # define SSL_CTX_get_mode(ctx) \ SSL_CTX_ctrl((ctx),SSL_CTRL_MODE,0,NULL) # define SSL_clear_mode(ssl,op) \ SSL_ctrl((ssl),SSL_CTRL_CLEAR_MODE,(op),NULL) # define SSL_set_mode(ssl,op) \ SSL_ctrl((ssl),SSL_CTRL_MODE,(op),NULL) # define SSL_get_mode(ssl) \ SSL_ctrl((ssl),SSL_CTRL_MODE,0,NULL) # define SSL_set_mtu(ssl, mtu) \ SSL_ctrl((ssl),SSL_CTRL_SET_MTU,(mtu),NULL) # define DTLS_set_link_mtu(ssl, mtu) \ SSL_ctrl((ssl),DTLS_CTRL_SET_LINK_MTU,(mtu),NULL) # define DTLS_get_link_min_mtu(ssl) \ SSL_ctrl((ssl),DTLS_CTRL_GET_LINK_MIN_MTU,0,NULL) # define SSL_get_secure_renegotiation_support(ssl) \ SSL_ctrl((ssl), SSL_CTRL_GET_RI_SUPPORT, 0, NULL) # ifndef OPENSSL_NO_HEARTBEATS # define SSL_heartbeat(ssl) \ SSL_ctrl((ssl),SSL_CTRL_DTLS_EXT_SEND_HEARTBEAT,0,NULL) # endif # define SSL_CTX_set_cert_flags(ctx,op) \ SSL_CTX_ctrl((ctx),SSL_CTRL_CERT_FLAGS,(op),NULL) # define SSL_set_cert_flags(s,op) \ SSL_ctrl((s),SSL_CTRL_CERT_FLAGS,(op),NULL) # define SSL_CTX_clear_cert_flags(ctx,op) \ SSL_CTX_ctrl((ctx),SSL_CTRL_CLEAR_CERT_FLAGS,(op),NULL) # define SSL_clear_cert_flags(s,op) \ SSL_ctrl((s),SSL_CTRL_CLEAR_CERT_FLAGS,(op),NULL) void SSL_CTX_set_msg_callback(SSL_CTX *ctx, void (*cb) (int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg)); void SSL_set_msg_callback(SSL *ssl, void (*cb) (int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg)); # define SSL_CTX_set_msg_callback_arg(ctx, arg) SSL_CTX_ctrl((ctx), SSL_CTRL_SET_MSG_CALLBACK_ARG, 0, (arg)) # define SSL_set_msg_callback_arg(ssl, arg) SSL_ctrl((ssl), SSL_CTRL_SET_MSG_CALLBACK_ARG, 0, (arg)) # define SSL_get_extms_support(s) \ SSL_ctrl((s),SSL_CTRL_GET_EXTMS_SUPPORT,0,NULL) # ifndef OPENSSL_NO_SRP /* see tls_srp.c */ __owur int SSL_SRP_CTX_init(SSL *s); __owur int SSL_CTX_SRP_CTX_init(SSL_CTX *ctx); int SSL_SRP_CTX_free(SSL *ctx); int SSL_CTX_SRP_CTX_free(SSL_CTX *ctx); __owur int SSL_srp_server_param_with_username(SSL *s, int *ad); __owur int SRP_Calc_A_param(SSL *s); # endif /* 100k max cert list */ # define SSL_MAX_CERT_LIST_DEFAULT 1024*100 # define SSL_SESSION_CACHE_MAX_SIZE_DEFAULT (1024*20) /* * This callback type is used inside SSL_CTX, SSL, and in the functions that * set them. It is used to override the generation of SSL/TLS session IDs in * a server. Return value should be zero on an error, non-zero to proceed. * Also, callbacks should themselves check if the id they generate is unique * otherwise the SSL handshake will fail with an error - callbacks can do * this using the 'ssl' value they're passed by; * SSL_has_matching_session_id(ssl, id, *id_len) The length value passed in * is set at the maximum size the session ID can be. In SSLv3/TLSv1 it is 32 * bytes. The callback can alter this length to be less if desired. It is * also an error for the callback to set the size to zero. */ typedef int (*GEN_SESSION_CB) (SSL *ssl, unsigned char *id, unsigned int *id_len); # define SSL_SESS_CACHE_OFF 0x0000 # define SSL_SESS_CACHE_CLIENT 0x0001 # define SSL_SESS_CACHE_SERVER 0x0002 # define SSL_SESS_CACHE_BOTH (SSL_SESS_CACHE_CLIENT|SSL_SESS_CACHE_SERVER) # define SSL_SESS_CACHE_NO_AUTO_CLEAR 0x0080 /* enough comments already ... see SSL_CTX_set_session_cache_mode(3) */ # define SSL_SESS_CACHE_NO_INTERNAL_LOOKUP 0x0100 # define SSL_SESS_CACHE_NO_INTERNAL_STORE 0x0200 # define SSL_SESS_CACHE_NO_INTERNAL \ (SSL_SESS_CACHE_NO_INTERNAL_LOOKUP|SSL_SESS_CACHE_NO_INTERNAL_STORE) LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx); # define SSL_CTX_sess_number(ctx) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SESS_NUMBER,0,NULL) # define SSL_CTX_sess_connect(ctx) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SESS_CONNECT,0,NULL) # define SSL_CTX_sess_connect_good(ctx) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SESS_CONNECT_GOOD,0,NULL) # define SSL_CTX_sess_connect_renegotiate(ctx) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SESS_CONNECT_RENEGOTIATE,0,NULL) # define SSL_CTX_sess_accept(ctx) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SESS_ACCEPT,0,NULL) # define SSL_CTX_sess_accept_renegotiate(ctx) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SESS_ACCEPT_RENEGOTIATE,0,NULL) # define SSL_CTX_sess_accept_good(ctx) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SESS_ACCEPT_GOOD,0,NULL) # define SSL_CTX_sess_hits(ctx) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SESS_HIT,0,NULL) # define SSL_CTX_sess_cb_hits(ctx) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SESS_CB_HIT,0,NULL) # define SSL_CTX_sess_misses(ctx) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SESS_MISSES,0,NULL) # define SSL_CTX_sess_timeouts(ctx) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SESS_TIMEOUTS,0,NULL) # define SSL_CTX_sess_cache_full(ctx) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SESS_CACHE_FULL,0,NULL) void SSL_CTX_sess_set_new_cb(SSL_CTX *ctx, int (*new_session_cb) (struct ssl_st *ssl, SSL_SESSION *sess)); int (*SSL_CTX_sess_get_new_cb(SSL_CTX *ctx)) (struct ssl_st *ssl, SSL_SESSION *sess); void SSL_CTX_sess_set_remove_cb(SSL_CTX *ctx, void (*remove_session_cb) (struct ssl_ctx_st *ctx, SSL_SESSION *sess)); void (*SSL_CTX_sess_get_remove_cb(SSL_CTX *ctx)) (struct ssl_ctx_st *ctx, SSL_SESSION *sess); void SSL_CTX_sess_set_get_cb(SSL_CTX *ctx, SSL_SESSION *(*get_session_cb) (struct ssl_st *ssl, const unsigned char *data, int len, int *copy)); SSL_SESSION *(*SSL_CTX_sess_get_get_cb(SSL_CTX *ctx)) (struct ssl_st *ssl, const unsigned char *data, int len, int *copy); void SSL_CTX_set_info_callback(SSL_CTX *ctx, void (*cb) (const SSL *ssl, int type, int val)); void (*SSL_CTX_get_info_callback(SSL_CTX *ctx)) (const SSL *ssl, int type, int val); void SSL_CTX_set_client_cert_cb(SSL_CTX *ctx, int (*client_cert_cb) (SSL *ssl, X509 **x509, EVP_PKEY **pkey)); int (*SSL_CTX_get_client_cert_cb(SSL_CTX *ctx)) (SSL *ssl, X509 **x509, EVP_PKEY **pkey); # ifndef OPENSSL_NO_ENGINE __owur int SSL_CTX_set_client_cert_engine(SSL_CTX *ctx, ENGINE *e); # endif void SSL_CTX_set_cookie_generate_cb(SSL_CTX *ctx, int (*app_gen_cookie_cb) (SSL *ssl, unsigned char *cookie, unsigned int *cookie_len)); void SSL_CTX_set_cookie_verify_cb(SSL_CTX *ctx, int (*app_verify_cookie_cb) (SSL *ssl, const unsigned char *cookie, unsigned int cookie_len)); void SSL_CTX_set_stateless_cookie_generate_cb( SSL_CTX *ctx, int (*gen_stateless_cookie_cb) (SSL *ssl, unsigned char *cookie, size_t *cookie_len)); void SSL_CTX_set_stateless_cookie_verify_cb( SSL_CTX *ctx, int (*verify_stateless_cookie_cb) (SSL *ssl, const unsigned char *cookie, size_t cookie_len)); # ifndef OPENSSL_NO_NEXTPROTONEG typedef int (*SSL_CTX_npn_advertised_cb_func)(SSL *ssl, const unsigned char **out, unsigned int *outlen, void *arg); void SSL_CTX_set_next_protos_advertised_cb(SSL_CTX *s, SSL_CTX_npn_advertised_cb_func cb, void *arg); # define SSL_CTX_set_npn_advertised_cb SSL_CTX_set_next_protos_advertised_cb typedef int (*SSL_CTX_npn_select_cb_func)(SSL *s, unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, void *arg); void SSL_CTX_set_next_proto_select_cb(SSL_CTX *s, SSL_CTX_npn_select_cb_func cb, void *arg); # define SSL_CTX_set_npn_select_cb SSL_CTX_set_next_proto_select_cb void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data, unsigned *len); # define SSL_get0_npn_negotiated SSL_get0_next_proto_negotiated # endif __owur int SSL_select_next_proto(unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, const unsigned char *client, unsigned int client_len); # define OPENSSL_NPN_UNSUPPORTED 0 # define OPENSSL_NPN_NEGOTIATED 1 # define OPENSSL_NPN_NO_OVERLAP 2 __owur int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos, unsigned int protos_len); __owur int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos, unsigned int protos_len); typedef int (*SSL_CTX_alpn_select_cb_func)(SSL *ssl, const unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, void *arg); void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx, SSL_CTX_alpn_select_cb_func cb, void *arg); void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data, unsigned int *len); # ifndef OPENSSL_NO_PSK /* * the maximum length of the buffer given to callbacks containing the * resulting identity/psk */ # define PSK_MAX_IDENTITY_LEN 128 # define PSK_MAX_PSK_LEN 256 typedef unsigned int (*SSL_psk_client_cb_func)(SSL *ssl, const char *hint, char *identity, unsigned int max_identity_len, unsigned char *psk, unsigned int max_psk_len); void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb); void SSL_set_psk_client_callback(SSL *ssl, SSL_psk_client_cb_func cb); typedef unsigned int (*SSL_psk_server_cb_func)(SSL *ssl, const char *identity, unsigned char *psk, unsigned int max_psk_len); void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb); void SSL_set_psk_server_callback(SSL *ssl, SSL_psk_server_cb_func cb); __owur int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint); __owur int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint); const char *SSL_get_psk_identity_hint(const SSL *s); const char *SSL_get_psk_identity(const SSL *s); # endif typedef int (*SSL_psk_find_session_cb_func)(SSL *ssl, const unsigned char *identity, size_t identity_len, SSL_SESSION **sess); typedef int (*SSL_psk_use_session_cb_func)(SSL *ssl, const EVP_MD *md, const unsigned char **id, size_t *idlen, SSL_SESSION **sess); void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb); void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx, SSL_psk_find_session_cb_func cb); void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb); void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx, SSL_psk_use_session_cb_func cb); /* Register callbacks to handle custom TLS Extensions for client or server. */ __owur int SSL_CTX_has_client_custom_ext(const SSL_CTX *ctx, unsigned int ext_type); __owur int SSL_CTX_add_client_custom_ext(SSL_CTX *ctx, unsigned int ext_type, custom_ext_add_cb add_cb, custom_ext_free_cb free_cb, void *add_arg, custom_ext_parse_cb parse_cb, void *parse_arg); __owur int SSL_CTX_add_server_custom_ext(SSL_CTX *ctx, unsigned int ext_type, custom_ext_add_cb add_cb, custom_ext_free_cb free_cb, void *add_arg, custom_ext_parse_cb parse_cb, void *parse_arg); __owur int SSL_CTX_add_custom_ext(SSL_CTX *ctx, unsigned int ext_type, unsigned int context, SSL_custom_ext_add_cb_ex add_cb, SSL_custom_ext_free_cb_ex free_cb, void *add_arg, SSL_custom_ext_parse_cb_ex parse_cb, void *parse_arg); __owur int SSL_extension_supported(unsigned int ext_type); # define SSL_NOTHING 1 # define SSL_WRITING 2 # define SSL_READING 3 # define SSL_X509_LOOKUP 4 # define SSL_ASYNC_PAUSED 5 # define SSL_ASYNC_NO_JOBS 6 # define SSL_CLIENT_HELLO_CB 7 /* These will only be used when doing non-blocking IO */ # define SSL_want_nothing(s) (SSL_want(s) == SSL_NOTHING) # define SSL_want_read(s) (SSL_want(s) == SSL_READING) # define SSL_want_write(s) (SSL_want(s) == SSL_WRITING) # define SSL_want_x509_lookup(s) (SSL_want(s) == SSL_X509_LOOKUP) # define SSL_want_async(s) (SSL_want(s) == SSL_ASYNC_PAUSED) # define SSL_want_async_job(s) (SSL_want(s) == SSL_ASYNC_NO_JOBS) # define SSL_want_client_hello_cb(s) (SSL_want(s) == SSL_CLIENT_HELLO_CB) # define SSL_MAC_FLAG_READ_MAC_STREAM 1 # define SSL_MAC_FLAG_WRITE_MAC_STREAM 2 /* * A callback for logging out TLS key material. This callback should log out * |line| followed by a newline. */ typedef void (*SSL_CTX_keylog_cb_func)(const SSL *ssl, const char *line); /* * SSL_CTX_set_keylog_callback configures a callback to log key material. This * is intended for debugging use with tools like Wireshark. The cb function * should log line followed by a newline. */ void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb); /* * SSL_CTX_get_keylog_callback returns the callback configured by * SSL_CTX_set_keylog_callback. */ SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx); int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data); uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx); int SSL_set_max_early_data(SSL *s, uint32_t max_early_data); uint32_t SSL_get_max_early_data(const SSL *s); int SSL_CTX_set_recv_max_early_data(SSL_CTX *ctx, uint32_t recv_max_early_data); uint32_t SSL_CTX_get_recv_max_early_data(const SSL_CTX *ctx); int SSL_set_recv_max_early_data(SSL *s, uint32_t recv_max_early_data); uint32_t SSL_get_recv_max_early_data(const SSL *s); #ifdef __cplusplus } #endif # include # include # include /* This is mostly sslv3 with a few tweaks */ # include /* Datagram TLS */ # include /* Support for the use_srtp extension */ #ifdef __cplusplus extern "C" { #endif /* * These need to be after the above set of includes due to a compiler bug * in VisualStudio 2015 */ DEFINE_STACK_OF_CONST(SSL_CIPHER) DEFINE_STACK_OF(SSL_COMP) /* compatibility */ # define SSL_set_app_data(s,arg) (SSL_set_ex_data(s,0,(char *)(arg))) # define SSL_get_app_data(s) (SSL_get_ex_data(s,0)) # define SSL_SESSION_set_app_data(s,a) (SSL_SESSION_set_ex_data(s,0, \ (char *)(a))) # define SSL_SESSION_get_app_data(s) (SSL_SESSION_get_ex_data(s,0)) # define SSL_CTX_get_app_data(ctx) (SSL_CTX_get_ex_data(ctx,0)) # define SSL_CTX_set_app_data(ctx,arg) (SSL_CTX_set_ex_data(ctx,0, \ (char *)(arg))) DEPRECATEDIN_1_1_0(void SSL_set_debug(SSL *s, int debug)) /* TLSv1.3 KeyUpdate message types */ /* -1 used so that this is an invalid value for the on-the-wire protocol */ #define SSL_KEY_UPDATE_NONE -1 /* Values as defined for the on-the-wire protocol */ #define SSL_KEY_UPDATE_NOT_REQUESTED 0 #define SSL_KEY_UPDATE_REQUESTED 1 /* * The valid handshake states (one for each type message sent and one for each * type of message received). There are also two "special" states: * TLS = TLS or DTLS state * DTLS = DTLS specific state * CR/SR = Client Read/Server Read * CW/SW = Client Write/Server Write * * The "special" states are: * TLS_ST_BEFORE = No handshake has been initiated yet * TLS_ST_OK = A handshake has been successfully completed */ typedef enum { TLS_ST_BEFORE, TLS_ST_OK, DTLS_ST_CR_HELLO_VERIFY_REQUEST, TLS_ST_CR_SRVR_HELLO, TLS_ST_CR_CERT, TLS_ST_CR_CERT_STATUS, TLS_ST_CR_KEY_EXCH, TLS_ST_CR_CERT_REQ, TLS_ST_CR_SRVR_DONE, TLS_ST_CR_SESSION_TICKET, TLS_ST_CR_CHANGE, TLS_ST_CR_FINISHED, TLS_ST_CW_CLNT_HELLO, TLS_ST_CW_CERT, TLS_ST_CW_KEY_EXCH, TLS_ST_CW_CERT_VRFY, TLS_ST_CW_CHANGE, TLS_ST_CW_NEXT_PROTO, TLS_ST_CW_FINISHED, TLS_ST_SW_HELLO_REQ, TLS_ST_SR_CLNT_HELLO, DTLS_ST_SW_HELLO_VERIFY_REQUEST, TLS_ST_SW_SRVR_HELLO, TLS_ST_SW_CERT, TLS_ST_SW_KEY_EXCH, TLS_ST_SW_CERT_REQ, TLS_ST_SW_SRVR_DONE, TLS_ST_SR_CERT, TLS_ST_SR_KEY_EXCH, TLS_ST_SR_CERT_VRFY, TLS_ST_SR_NEXT_PROTO, TLS_ST_SR_CHANGE, TLS_ST_SR_FINISHED, TLS_ST_SW_SESSION_TICKET, TLS_ST_SW_CERT_STATUS, TLS_ST_SW_CHANGE, TLS_ST_SW_FINISHED, TLS_ST_SW_ENCRYPTED_EXTENSIONS, TLS_ST_CR_ENCRYPTED_EXTENSIONS, TLS_ST_CR_CERT_VRFY, TLS_ST_SW_CERT_VRFY, TLS_ST_CR_HELLO_REQ, TLS_ST_SW_KEY_UPDATE, TLS_ST_CW_KEY_UPDATE, TLS_ST_SR_KEY_UPDATE, TLS_ST_CR_KEY_UPDATE, TLS_ST_EARLY_DATA, TLS_ST_PENDING_EARLY_DATA_END, TLS_ST_CW_END_OF_EARLY_DATA, TLS_ST_SR_END_OF_EARLY_DATA } OSSL_HANDSHAKE_STATE; /* * Most of the following state values are no longer used and are defined to be * the closest equivalent value in the current state machine code. Not all * defines have an equivalent and are set to a dummy value (-1). SSL_ST_CONNECT * and SSL_ST_ACCEPT are still in use in the definition of SSL_CB_ACCEPT_LOOP, * SSL_CB_ACCEPT_EXIT, SSL_CB_CONNECT_LOOP and SSL_CB_CONNECT_EXIT. */ # define SSL_ST_CONNECT 0x1000 # define SSL_ST_ACCEPT 0x2000 # define SSL_ST_MASK 0x0FFF # define SSL_CB_LOOP 0x01 # define SSL_CB_EXIT 0x02 # define SSL_CB_READ 0x04 # define SSL_CB_WRITE 0x08 # define SSL_CB_ALERT 0x4000/* used in callback */ # define SSL_CB_READ_ALERT (SSL_CB_ALERT|SSL_CB_READ) # define SSL_CB_WRITE_ALERT (SSL_CB_ALERT|SSL_CB_WRITE) # define SSL_CB_ACCEPT_LOOP (SSL_ST_ACCEPT|SSL_CB_LOOP) # define SSL_CB_ACCEPT_EXIT (SSL_ST_ACCEPT|SSL_CB_EXIT) # define SSL_CB_CONNECT_LOOP (SSL_ST_CONNECT|SSL_CB_LOOP) # define SSL_CB_CONNECT_EXIT (SSL_ST_CONNECT|SSL_CB_EXIT) # define SSL_CB_HANDSHAKE_START 0x10 # define SSL_CB_HANDSHAKE_DONE 0x20 /* Is the SSL_connection established? */ # define SSL_in_connect_init(a) (SSL_in_init(a) && !SSL_is_server(a)) # define SSL_in_accept_init(a) (SSL_in_init(a) && SSL_is_server(a)) int SSL_in_init(const SSL *s); int SSL_in_before(const SSL *s); int SSL_is_init_finished(const SSL *s); /* * The following 3 states are kept in ssl->rlayer.rstate when reads fail, you * should not need these */ # define SSL_ST_READ_HEADER 0xF0 # define SSL_ST_READ_BODY 0xF1 # define SSL_ST_READ_DONE 0xF2 /*- * Obtain latest Finished message * -- that we sent (SSL_get_finished) * -- that we expected from peer (SSL_get_peer_finished). * Returns length (0 == no Finished so far), copies up to 'count' bytes. */ size_t SSL_get_finished(const SSL *s, void *buf, size_t count); size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count); /* * use either SSL_VERIFY_NONE or SSL_VERIFY_PEER, the last 3 options are * 'ored' with SSL_VERIFY_PEER if they are desired */ # define SSL_VERIFY_NONE 0x00 # define SSL_VERIFY_PEER 0x01 # define SSL_VERIFY_FAIL_IF_NO_PEER_CERT 0x02 # define SSL_VERIFY_CLIENT_ONCE 0x04 # define SSL_VERIFY_POST_HANDSHAKE 0x08 # if OPENSSL_API_COMPAT < 0x10100000L # define OpenSSL_add_ssl_algorithms() SSL_library_init() # define SSLeay_add_ssl_algorithms() SSL_library_init() # endif /* More backward compatibility */ # define SSL_get_cipher(s) \ SSL_CIPHER_get_name(SSL_get_current_cipher(s)) # define SSL_get_cipher_bits(s,np) \ SSL_CIPHER_get_bits(SSL_get_current_cipher(s),np) # define SSL_get_cipher_version(s) \ SSL_CIPHER_get_version(SSL_get_current_cipher(s)) # define SSL_get_cipher_name(s) \ SSL_CIPHER_get_name(SSL_get_current_cipher(s)) # define SSL_get_time(a) SSL_SESSION_get_time(a) # define SSL_set_time(a,b) SSL_SESSION_set_time((a),(b)) # define SSL_get_timeout(a) SSL_SESSION_get_timeout(a) # define SSL_set_timeout(a,b) SSL_SESSION_set_timeout((a),(b)) # define d2i_SSL_SESSION_bio(bp,s_id) ASN1_d2i_bio_of(SSL_SESSION,SSL_SESSION_new,d2i_SSL_SESSION,bp,s_id) # define i2d_SSL_SESSION_bio(bp,s_id) ASN1_i2d_bio_of(SSL_SESSION,i2d_SSL_SESSION,bp,s_id) DECLARE_PEM_rw(SSL_SESSION, SSL_SESSION) # define SSL_AD_REASON_OFFSET 1000/* offset to get SSL_R_... value * from SSL_AD_... */ /* These alert types are for SSLv3 and TLSv1 */ # define SSL_AD_CLOSE_NOTIFY SSL3_AD_CLOSE_NOTIFY /* fatal */ # define SSL_AD_UNEXPECTED_MESSAGE SSL3_AD_UNEXPECTED_MESSAGE /* fatal */ # define SSL_AD_BAD_RECORD_MAC SSL3_AD_BAD_RECORD_MAC # define SSL_AD_DECRYPTION_FAILED TLS1_AD_DECRYPTION_FAILED # define SSL_AD_RECORD_OVERFLOW TLS1_AD_RECORD_OVERFLOW /* fatal */ # define SSL_AD_DECOMPRESSION_FAILURE SSL3_AD_DECOMPRESSION_FAILURE /* fatal */ # define SSL_AD_HANDSHAKE_FAILURE SSL3_AD_HANDSHAKE_FAILURE /* Not for TLS */ # define SSL_AD_NO_CERTIFICATE SSL3_AD_NO_CERTIFICATE # define SSL_AD_BAD_CERTIFICATE SSL3_AD_BAD_CERTIFICATE # define SSL_AD_UNSUPPORTED_CERTIFICATE SSL3_AD_UNSUPPORTED_CERTIFICATE # define SSL_AD_CERTIFICATE_REVOKED SSL3_AD_CERTIFICATE_REVOKED # define SSL_AD_CERTIFICATE_EXPIRED SSL3_AD_CERTIFICATE_EXPIRED # define SSL_AD_CERTIFICATE_UNKNOWN SSL3_AD_CERTIFICATE_UNKNOWN /* fatal */ # define SSL_AD_ILLEGAL_PARAMETER SSL3_AD_ILLEGAL_PARAMETER /* fatal */ # define SSL_AD_UNKNOWN_CA TLS1_AD_UNKNOWN_CA /* fatal */ # define SSL_AD_ACCESS_DENIED TLS1_AD_ACCESS_DENIED /* fatal */ # define SSL_AD_DECODE_ERROR TLS1_AD_DECODE_ERROR # define SSL_AD_DECRYPT_ERROR TLS1_AD_DECRYPT_ERROR /* fatal */ # define SSL_AD_EXPORT_RESTRICTION TLS1_AD_EXPORT_RESTRICTION /* fatal */ # define SSL_AD_PROTOCOL_VERSION TLS1_AD_PROTOCOL_VERSION /* fatal */ # define SSL_AD_INSUFFICIENT_SECURITY TLS1_AD_INSUFFICIENT_SECURITY /* fatal */ # define SSL_AD_INTERNAL_ERROR TLS1_AD_INTERNAL_ERROR # define SSL_AD_USER_CANCELLED TLS1_AD_USER_CANCELLED # define SSL_AD_NO_RENEGOTIATION TLS1_AD_NO_RENEGOTIATION # define SSL_AD_MISSING_EXTENSION TLS13_AD_MISSING_EXTENSION # define SSL_AD_CERTIFICATE_REQUIRED TLS13_AD_CERTIFICATE_REQUIRED # define SSL_AD_UNSUPPORTED_EXTENSION TLS1_AD_UNSUPPORTED_EXTENSION # define SSL_AD_CERTIFICATE_UNOBTAINABLE TLS1_AD_CERTIFICATE_UNOBTAINABLE # define SSL_AD_UNRECOGNIZED_NAME TLS1_AD_UNRECOGNIZED_NAME # define SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE # define SSL_AD_BAD_CERTIFICATE_HASH_VALUE TLS1_AD_BAD_CERTIFICATE_HASH_VALUE /* fatal */ # define SSL_AD_UNKNOWN_PSK_IDENTITY TLS1_AD_UNKNOWN_PSK_IDENTITY /* fatal */ # define SSL_AD_INAPPROPRIATE_FALLBACK TLS1_AD_INAPPROPRIATE_FALLBACK # define SSL_AD_NO_APPLICATION_PROTOCOL TLS1_AD_NO_APPLICATION_PROTOCOL # define SSL_ERROR_NONE 0 # define SSL_ERROR_SSL 1 # define SSL_ERROR_WANT_READ 2 # define SSL_ERROR_WANT_WRITE 3 # define SSL_ERROR_WANT_X509_LOOKUP 4 # define SSL_ERROR_SYSCALL 5/* look at error stack/return * value/errno */ # define SSL_ERROR_ZERO_RETURN 6 # define SSL_ERROR_WANT_CONNECT 7 # define SSL_ERROR_WANT_ACCEPT 8 # define SSL_ERROR_WANT_ASYNC 9 # define SSL_ERROR_WANT_ASYNC_JOB 10 # define SSL_ERROR_WANT_CLIENT_HELLO_CB 11 # define SSL_CTRL_SET_TMP_DH 3 # define SSL_CTRL_SET_TMP_ECDH 4 # define SSL_CTRL_SET_TMP_DH_CB 6 # define SSL_CTRL_GET_CLIENT_CERT_REQUEST 9 # define SSL_CTRL_GET_NUM_RENEGOTIATIONS 10 # define SSL_CTRL_CLEAR_NUM_RENEGOTIATIONS 11 # define SSL_CTRL_GET_TOTAL_RENEGOTIATIONS 12 # define SSL_CTRL_GET_FLAGS 13 # define SSL_CTRL_EXTRA_CHAIN_CERT 14 # define SSL_CTRL_SET_MSG_CALLBACK 15 # define SSL_CTRL_SET_MSG_CALLBACK_ARG 16 /* only applies to datagram connections */ # define SSL_CTRL_SET_MTU 17 /* Stats */ # define SSL_CTRL_SESS_NUMBER 20 # define SSL_CTRL_SESS_CONNECT 21 # define SSL_CTRL_SESS_CONNECT_GOOD 22 # define SSL_CTRL_SESS_CONNECT_RENEGOTIATE 23 # define SSL_CTRL_SESS_ACCEPT 24 # define SSL_CTRL_SESS_ACCEPT_GOOD 25 # define SSL_CTRL_SESS_ACCEPT_RENEGOTIATE 26 # define SSL_CTRL_SESS_HIT 27 # define SSL_CTRL_SESS_CB_HIT 28 # define SSL_CTRL_SESS_MISSES 29 # define SSL_CTRL_SESS_TIMEOUTS 30 # define SSL_CTRL_SESS_CACHE_FULL 31 # define SSL_CTRL_MODE 33 # define SSL_CTRL_GET_READ_AHEAD 40 # define SSL_CTRL_SET_READ_AHEAD 41 # define SSL_CTRL_SET_SESS_CACHE_SIZE 42 # define SSL_CTRL_GET_SESS_CACHE_SIZE 43 # define SSL_CTRL_SET_SESS_CACHE_MODE 44 # define SSL_CTRL_GET_SESS_CACHE_MODE 45 # define SSL_CTRL_GET_MAX_CERT_LIST 50 # define SSL_CTRL_SET_MAX_CERT_LIST 51 # define SSL_CTRL_SET_MAX_SEND_FRAGMENT 52 /* see tls1.h for macros based on these */ # define SSL_CTRL_SET_TLSEXT_SERVERNAME_CB 53 # define SSL_CTRL_SET_TLSEXT_SERVERNAME_ARG 54 # define SSL_CTRL_SET_TLSEXT_HOSTNAME 55 # define SSL_CTRL_SET_TLSEXT_DEBUG_CB 56 # define SSL_CTRL_SET_TLSEXT_DEBUG_ARG 57 # define SSL_CTRL_GET_TLSEXT_TICKET_KEYS 58 # define SSL_CTRL_SET_TLSEXT_TICKET_KEYS 59 /*# define SSL_CTRL_SET_TLSEXT_OPAQUE_PRF_INPUT 60 */ /*# define SSL_CTRL_SET_TLSEXT_OPAQUE_PRF_INPUT_CB 61 */ /*# define SSL_CTRL_SET_TLSEXT_OPAQUE_PRF_INPUT_CB_ARG 62 */ # define SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB 63 # define SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB_ARG 64 # define SSL_CTRL_SET_TLSEXT_STATUS_REQ_TYPE 65 # define SSL_CTRL_GET_TLSEXT_STATUS_REQ_EXTS 66 # define SSL_CTRL_SET_TLSEXT_STATUS_REQ_EXTS 67 # define SSL_CTRL_GET_TLSEXT_STATUS_REQ_IDS 68 # define SSL_CTRL_SET_TLSEXT_STATUS_REQ_IDS 69 # define SSL_CTRL_GET_TLSEXT_STATUS_REQ_OCSP_RESP 70 # define SSL_CTRL_SET_TLSEXT_STATUS_REQ_OCSP_RESP 71 # define SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB 72 # define SSL_CTRL_SET_TLS_EXT_SRP_USERNAME_CB 75 # define SSL_CTRL_SET_SRP_VERIFY_PARAM_CB 76 # define SSL_CTRL_SET_SRP_GIVE_CLIENT_PWD_CB 77 # define SSL_CTRL_SET_SRP_ARG 78 # define SSL_CTRL_SET_TLS_EXT_SRP_USERNAME 79 # define SSL_CTRL_SET_TLS_EXT_SRP_STRENGTH 80 # define SSL_CTRL_SET_TLS_EXT_SRP_PASSWORD 81 # ifndef OPENSSL_NO_HEARTBEATS # define SSL_CTRL_DTLS_EXT_SEND_HEARTBEAT 85 # define SSL_CTRL_GET_DTLS_EXT_HEARTBEAT_PENDING 86 # define SSL_CTRL_SET_DTLS_EXT_HEARTBEAT_NO_REQUESTS 87 # endif # define DTLS_CTRL_GET_TIMEOUT 73 # define DTLS_CTRL_HANDLE_TIMEOUT 74 # define SSL_CTRL_GET_RI_SUPPORT 76 # define SSL_CTRL_CLEAR_MODE 78 # define SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB 79 # define SSL_CTRL_GET_EXTRA_CHAIN_CERTS 82 # define SSL_CTRL_CLEAR_EXTRA_CHAIN_CERTS 83 # define SSL_CTRL_CHAIN 88 # define SSL_CTRL_CHAIN_CERT 89 # define SSL_CTRL_GET_GROUPS 90 # define SSL_CTRL_SET_GROUPS 91 # define SSL_CTRL_SET_GROUPS_LIST 92 # define SSL_CTRL_GET_SHARED_GROUP 93 # define SSL_CTRL_SET_SIGALGS 97 # define SSL_CTRL_SET_SIGALGS_LIST 98 # define SSL_CTRL_CERT_FLAGS 99 # define SSL_CTRL_CLEAR_CERT_FLAGS 100 # define SSL_CTRL_SET_CLIENT_SIGALGS 101 # define SSL_CTRL_SET_CLIENT_SIGALGS_LIST 102 # define SSL_CTRL_GET_CLIENT_CERT_TYPES 103 # define SSL_CTRL_SET_CLIENT_CERT_TYPES 104 # define SSL_CTRL_BUILD_CERT_CHAIN 105 # define SSL_CTRL_SET_VERIFY_CERT_STORE 106 # define SSL_CTRL_SET_CHAIN_CERT_STORE 107 # define SSL_CTRL_GET_PEER_SIGNATURE_NID 108 # define SSL_CTRL_GET_PEER_TMP_KEY 109 # define SSL_CTRL_GET_RAW_CIPHERLIST 110 # define SSL_CTRL_GET_EC_POINT_FORMATS 111 # define SSL_CTRL_GET_CHAIN_CERTS 115 # define SSL_CTRL_SELECT_CURRENT_CERT 116 # define SSL_CTRL_SET_CURRENT_CERT 117 # define SSL_CTRL_SET_DH_AUTO 118 # define DTLS_CTRL_SET_LINK_MTU 120 # define DTLS_CTRL_GET_LINK_MIN_MTU 121 # define SSL_CTRL_GET_EXTMS_SUPPORT 122 # define SSL_CTRL_SET_MIN_PROTO_VERSION 123 # define SSL_CTRL_SET_MAX_PROTO_VERSION 124 # define SSL_CTRL_SET_SPLIT_SEND_FRAGMENT 125 # define SSL_CTRL_SET_MAX_PIPELINES 126 # define SSL_CTRL_GET_TLSEXT_STATUS_REQ_TYPE 127 # define SSL_CTRL_GET_TLSEXT_STATUS_REQ_CB 128 # define SSL_CTRL_GET_TLSEXT_STATUS_REQ_CB_ARG 129 # define SSL_CTRL_GET_MIN_PROTO_VERSION 130 # define SSL_CTRL_GET_MAX_PROTO_VERSION 131 # define SSL_CTRL_GET_SIGNATURE_NID 132 # define SSL_CTRL_GET_TMP_KEY 133 +# define SSL_CTRL_GET_VERIFY_CERT_STORE 137 +# define SSL_CTRL_GET_CHAIN_CERT_STORE 138 # define SSL_CERT_SET_FIRST 1 # define SSL_CERT_SET_NEXT 2 # define SSL_CERT_SET_SERVER 3 # define DTLSv1_get_timeout(ssl, arg) \ SSL_ctrl(ssl,DTLS_CTRL_GET_TIMEOUT,0, (void *)(arg)) # define DTLSv1_handle_timeout(ssl) \ SSL_ctrl(ssl,DTLS_CTRL_HANDLE_TIMEOUT,0, NULL) # define SSL_num_renegotiations(ssl) \ SSL_ctrl((ssl),SSL_CTRL_GET_NUM_RENEGOTIATIONS,0,NULL) # define SSL_clear_num_renegotiations(ssl) \ SSL_ctrl((ssl),SSL_CTRL_CLEAR_NUM_RENEGOTIATIONS,0,NULL) # define SSL_total_renegotiations(ssl) \ SSL_ctrl((ssl),SSL_CTRL_GET_TOTAL_RENEGOTIATIONS,0,NULL) # define SSL_CTX_set_tmp_dh(ctx,dh) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SET_TMP_DH,0,(char *)(dh)) # define SSL_CTX_set_tmp_ecdh(ctx,ecdh) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SET_TMP_ECDH,0,(char *)(ecdh)) # define SSL_CTX_set_dh_auto(ctx, onoff) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SET_DH_AUTO,onoff,NULL) # define SSL_set_dh_auto(s, onoff) \ SSL_ctrl(s,SSL_CTRL_SET_DH_AUTO,onoff,NULL) # define SSL_set_tmp_dh(ssl,dh) \ SSL_ctrl(ssl,SSL_CTRL_SET_TMP_DH,0,(char *)(dh)) # define SSL_set_tmp_ecdh(ssl,ecdh) \ SSL_ctrl(ssl,SSL_CTRL_SET_TMP_ECDH,0,(char *)(ecdh)) # define SSL_CTX_add_extra_chain_cert(ctx,x509) \ SSL_CTX_ctrl(ctx,SSL_CTRL_EXTRA_CHAIN_CERT,0,(char *)(x509)) # define SSL_CTX_get_extra_chain_certs(ctx,px509) \ SSL_CTX_ctrl(ctx,SSL_CTRL_GET_EXTRA_CHAIN_CERTS,0,px509) # define SSL_CTX_get_extra_chain_certs_only(ctx,px509) \ SSL_CTX_ctrl(ctx,SSL_CTRL_GET_EXTRA_CHAIN_CERTS,1,px509) # define SSL_CTX_clear_extra_chain_certs(ctx) \ SSL_CTX_ctrl(ctx,SSL_CTRL_CLEAR_EXTRA_CHAIN_CERTS,0,NULL) # define SSL_CTX_set0_chain(ctx,sk) \ SSL_CTX_ctrl(ctx,SSL_CTRL_CHAIN,0,(char *)(sk)) # define SSL_CTX_set1_chain(ctx,sk) \ SSL_CTX_ctrl(ctx,SSL_CTRL_CHAIN,1,(char *)(sk)) # define SSL_CTX_add0_chain_cert(ctx,x509) \ SSL_CTX_ctrl(ctx,SSL_CTRL_CHAIN_CERT,0,(char *)(x509)) # define SSL_CTX_add1_chain_cert(ctx,x509) \ SSL_CTX_ctrl(ctx,SSL_CTRL_CHAIN_CERT,1,(char *)(x509)) # define SSL_CTX_get0_chain_certs(ctx,px509) \ SSL_CTX_ctrl(ctx,SSL_CTRL_GET_CHAIN_CERTS,0,px509) # define SSL_CTX_clear_chain_certs(ctx) \ SSL_CTX_set0_chain(ctx,NULL) # define SSL_CTX_build_cert_chain(ctx, flags) \ SSL_CTX_ctrl(ctx,SSL_CTRL_BUILD_CERT_CHAIN, flags, NULL) # define SSL_CTX_select_current_cert(ctx,x509) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SELECT_CURRENT_CERT,0,(char *)(x509)) # define SSL_CTX_set_current_cert(ctx, op) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SET_CURRENT_CERT, op, NULL) # define SSL_CTX_set0_verify_cert_store(ctx,st) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SET_VERIFY_CERT_STORE,0,(char *)(st)) # define SSL_CTX_set1_verify_cert_store(ctx,st) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SET_VERIFY_CERT_STORE,1,(char *)(st)) +# define SSL_CTX_get0_verify_cert_store(ctx,st) \ + SSL_CTX_ctrl(ctx,SSL_CTRL_GET_VERIFY_CERT_STORE,0,(char *)(st)) # define SSL_CTX_set0_chain_cert_store(ctx,st) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SET_CHAIN_CERT_STORE,0,(char *)(st)) # define SSL_CTX_set1_chain_cert_store(ctx,st) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SET_CHAIN_CERT_STORE,1,(char *)(st)) +# define SSL_CTX_get0_chain_cert_store(ctx,st) \ + SSL_CTX_ctrl(ctx,SSL_CTRL_GET_CHAIN_CERT_STORE,0,(char *)(st)) # define SSL_set0_chain(s,sk) \ SSL_ctrl(s,SSL_CTRL_CHAIN,0,(char *)(sk)) # define SSL_set1_chain(s,sk) \ SSL_ctrl(s,SSL_CTRL_CHAIN,1,(char *)(sk)) # define SSL_add0_chain_cert(s,x509) \ SSL_ctrl(s,SSL_CTRL_CHAIN_CERT,0,(char *)(x509)) # define SSL_add1_chain_cert(s,x509) \ SSL_ctrl(s,SSL_CTRL_CHAIN_CERT,1,(char *)(x509)) # define SSL_get0_chain_certs(s,px509) \ SSL_ctrl(s,SSL_CTRL_GET_CHAIN_CERTS,0,px509) # define SSL_clear_chain_certs(s) \ SSL_set0_chain(s,NULL) # define SSL_build_cert_chain(s, flags) \ SSL_ctrl(s,SSL_CTRL_BUILD_CERT_CHAIN, flags, NULL) # define SSL_select_current_cert(s,x509) \ SSL_ctrl(s,SSL_CTRL_SELECT_CURRENT_CERT,0,(char *)(x509)) # define SSL_set_current_cert(s,op) \ SSL_ctrl(s,SSL_CTRL_SET_CURRENT_CERT, op, NULL) # define SSL_set0_verify_cert_store(s,st) \ SSL_ctrl(s,SSL_CTRL_SET_VERIFY_CERT_STORE,0,(char *)(st)) # define SSL_set1_verify_cert_store(s,st) \ SSL_ctrl(s,SSL_CTRL_SET_VERIFY_CERT_STORE,1,(char *)(st)) +#define SSL_get0_verify_cert_store(s,st) \ + SSL_ctrl(s,SSL_CTRL_GET_VERIFY_CERT_STORE,0,(char *)(st)) # define SSL_set0_chain_cert_store(s,st) \ SSL_ctrl(s,SSL_CTRL_SET_CHAIN_CERT_STORE,0,(char *)(st)) # define SSL_set1_chain_cert_store(s,st) \ SSL_ctrl(s,SSL_CTRL_SET_CHAIN_CERT_STORE,1,(char *)(st)) +#define SSL_get0_chain_cert_store(s,st) \ + SSL_ctrl(s,SSL_CTRL_GET_CHAIN_CERT_STORE,0,(char *)(st)) # define SSL_get1_groups(s, glist) \ SSL_ctrl(s,SSL_CTRL_GET_GROUPS,0,(int*)(glist)) # define SSL_CTX_set1_groups(ctx, glist, glistlen) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SET_GROUPS,glistlen,(int *)(glist)) # define SSL_CTX_set1_groups_list(ctx, s) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SET_GROUPS_LIST,0,(char *)(s)) # define SSL_set1_groups(s, glist, glistlen) \ SSL_ctrl(s,SSL_CTRL_SET_GROUPS,glistlen,(char *)(glist)) # define SSL_set1_groups_list(s, str) \ SSL_ctrl(s,SSL_CTRL_SET_GROUPS_LIST,0,(char *)(str)) # define SSL_get_shared_group(s, n) \ SSL_ctrl(s,SSL_CTRL_GET_SHARED_GROUP,n,NULL) # define SSL_CTX_set1_sigalgs(ctx, slist, slistlen) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SET_SIGALGS,slistlen,(int *)(slist)) # define SSL_CTX_set1_sigalgs_list(ctx, s) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SET_SIGALGS_LIST,0,(char *)(s)) # define SSL_set1_sigalgs(s, slist, slistlen) \ SSL_ctrl(s,SSL_CTRL_SET_SIGALGS,slistlen,(int *)(slist)) # define SSL_set1_sigalgs_list(s, str) \ SSL_ctrl(s,SSL_CTRL_SET_SIGALGS_LIST,0,(char *)(str)) # define SSL_CTX_set1_client_sigalgs(ctx, slist, slistlen) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SET_CLIENT_SIGALGS,slistlen,(int *)(slist)) # define SSL_CTX_set1_client_sigalgs_list(ctx, s) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SET_CLIENT_SIGALGS_LIST,0,(char *)(s)) # define SSL_set1_client_sigalgs(s, slist, slistlen) \ SSL_ctrl(s,SSL_CTRL_SET_CLIENT_SIGALGS,slistlen,(int *)(slist)) # define SSL_set1_client_sigalgs_list(s, str) \ SSL_ctrl(s,SSL_CTRL_SET_CLIENT_SIGALGS_LIST,0,(char *)(str)) # define SSL_get0_certificate_types(s, clist) \ SSL_ctrl(s, SSL_CTRL_GET_CLIENT_CERT_TYPES, 0, (char *)(clist)) # define SSL_CTX_set1_client_certificate_types(ctx, clist, clistlen) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SET_CLIENT_CERT_TYPES,clistlen, \ (char *)(clist)) # define SSL_set1_client_certificate_types(s, clist, clistlen) \ SSL_ctrl(s,SSL_CTRL_SET_CLIENT_CERT_TYPES,clistlen,(char *)(clist)) # define SSL_get_signature_nid(s, pn) \ SSL_ctrl(s,SSL_CTRL_GET_SIGNATURE_NID,0,pn) # define SSL_get_peer_signature_nid(s, pn) \ SSL_ctrl(s,SSL_CTRL_GET_PEER_SIGNATURE_NID,0,pn) # define SSL_get_peer_tmp_key(s, pk) \ SSL_ctrl(s,SSL_CTRL_GET_PEER_TMP_KEY,0,pk) # define SSL_get_tmp_key(s, pk) \ SSL_ctrl(s,SSL_CTRL_GET_TMP_KEY,0,pk) # define SSL_get0_raw_cipherlist(s, plst) \ SSL_ctrl(s,SSL_CTRL_GET_RAW_CIPHERLIST,0,plst) # define SSL_get0_ec_point_formats(s, plst) \ SSL_ctrl(s,SSL_CTRL_GET_EC_POINT_FORMATS,0,plst) # define SSL_CTX_set_min_proto_version(ctx, version) \ SSL_CTX_ctrl(ctx, SSL_CTRL_SET_MIN_PROTO_VERSION, version, NULL) # define SSL_CTX_set_max_proto_version(ctx, version) \ SSL_CTX_ctrl(ctx, SSL_CTRL_SET_MAX_PROTO_VERSION, version, NULL) # define SSL_CTX_get_min_proto_version(ctx) \ SSL_CTX_ctrl(ctx, SSL_CTRL_GET_MIN_PROTO_VERSION, 0, NULL) # define SSL_CTX_get_max_proto_version(ctx) \ SSL_CTX_ctrl(ctx, SSL_CTRL_GET_MAX_PROTO_VERSION, 0, NULL) # define SSL_set_min_proto_version(s, version) \ SSL_ctrl(s, SSL_CTRL_SET_MIN_PROTO_VERSION, version, NULL) # define SSL_set_max_proto_version(s, version) \ SSL_ctrl(s, SSL_CTRL_SET_MAX_PROTO_VERSION, version, NULL) # define SSL_get_min_proto_version(s) \ SSL_ctrl(s, SSL_CTRL_GET_MIN_PROTO_VERSION, 0, NULL) # define SSL_get_max_proto_version(s) \ SSL_ctrl(s, SSL_CTRL_GET_MAX_PROTO_VERSION, 0, NULL) /* Backwards compatibility, original 1.1.0 names */ # define SSL_CTRL_GET_SERVER_TMP_KEY \ SSL_CTRL_GET_PEER_TMP_KEY # define SSL_get_server_tmp_key(s, pk) \ SSL_get_peer_tmp_key(s, pk) /* * The following symbol names are old and obsolete. They are kept * for compatibility reasons only and should not be used anymore. */ # define SSL_CTRL_GET_CURVES SSL_CTRL_GET_GROUPS # define SSL_CTRL_SET_CURVES SSL_CTRL_SET_GROUPS # define SSL_CTRL_SET_CURVES_LIST SSL_CTRL_SET_GROUPS_LIST # define SSL_CTRL_GET_SHARED_CURVE SSL_CTRL_GET_SHARED_GROUP # define SSL_get1_curves SSL_get1_groups # define SSL_CTX_set1_curves SSL_CTX_set1_groups # define SSL_CTX_set1_curves_list SSL_CTX_set1_groups_list # define SSL_set1_curves SSL_set1_groups # define SSL_set1_curves_list SSL_set1_groups_list # define SSL_get_shared_curve SSL_get_shared_group # if OPENSSL_API_COMPAT < 0x10100000L /* Provide some compatibility macros for removed functionality. */ # define SSL_CTX_need_tmp_RSA(ctx) 0 # define SSL_CTX_set_tmp_rsa(ctx,rsa) 1 # define SSL_need_tmp_RSA(ssl) 0 # define SSL_set_tmp_rsa(ssl,rsa) 1 # define SSL_CTX_set_ecdh_auto(dummy, onoff) ((onoff) != 0) # define SSL_set_ecdh_auto(dummy, onoff) ((onoff) != 0) /* * We "pretend" to call the callback to avoid warnings about unused static * functions. */ # define SSL_CTX_set_tmp_rsa_callback(ctx, cb) while(0) (cb)(NULL, 0, 0) # define SSL_set_tmp_rsa_callback(ssl, cb) while(0) (cb)(NULL, 0, 0) # endif __owur const BIO_METHOD *BIO_f_ssl(void); __owur BIO *BIO_new_ssl(SSL_CTX *ctx, int client); __owur BIO *BIO_new_ssl_connect(SSL_CTX *ctx); __owur BIO *BIO_new_buffer_ssl_connect(SSL_CTX *ctx); __owur int BIO_ssl_copy_session_id(BIO *to, BIO *from); void BIO_ssl_shutdown(BIO *ssl_bio); __owur int SSL_CTX_set_cipher_list(SSL_CTX *, const char *str); __owur SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth); int SSL_CTX_up_ref(SSL_CTX *ctx); void SSL_CTX_free(SSL_CTX *); __owur long SSL_CTX_set_timeout(SSL_CTX *ctx, long t); __owur long SSL_CTX_get_timeout(const SSL_CTX *ctx); __owur X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *); void SSL_CTX_set_cert_store(SSL_CTX *, X509_STORE *); void SSL_CTX_set1_cert_store(SSL_CTX *, X509_STORE *); __owur int SSL_want(const SSL *s); __owur int SSL_clear(SSL *s); void SSL_CTX_flush_sessions(SSL_CTX *ctx, long tm); __owur const SSL_CIPHER *SSL_get_current_cipher(const SSL *s); __owur const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s); __owur int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits); __owur const char *SSL_CIPHER_get_version(const SSL_CIPHER *c); __owur const char *SSL_CIPHER_get_name(const SSL_CIPHER *c); __owur const char *SSL_CIPHER_standard_name(const SSL_CIPHER *c); __owur const char *OPENSSL_cipher_name(const char *rfc_name); __owur uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c); __owur uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *c); __owur int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c); __owur int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c); __owur const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *c); __owur int SSL_CIPHER_is_aead(const SSL_CIPHER *c); __owur int SSL_get_fd(const SSL *s); __owur int SSL_get_rfd(const SSL *s); __owur int SSL_get_wfd(const SSL *s); __owur const char *SSL_get_cipher_list(const SSL *s, int n); __owur char *SSL_get_shared_ciphers(const SSL *s, char *buf, int size); __owur int SSL_get_read_ahead(const SSL *s); __owur int SSL_pending(const SSL *s); __owur int SSL_has_pending(const SSL *s); # ifndef OPENSSL_NO_SOCK __owur int SSL_set_fd(SSL *s, int fd); __owur int SSL_set_rfd(SSL *s, int fd); __owur int SSL_set_wfd(SSL *s, int fd); # endif void SSL_set0_rbio(SSL *s, BIO *rbio); void SSL_set0_wbio(SSL *s, BIO *wbio); void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio); __owur BIO *SSL_get_rbio(const SSL *s); __owur BIO *SSL_get_wbio(const SSL *s); __owur int SSL_set_cipher_list(SSL *s, const char *str); __owur int SSL_CTX_set_ciphersuites(SSL_CTX *ctx, const char *str); __owur int SSL_set_ciphersuites(SSL *s, const char *str); void SSL_set_read_ahead(SSL *s, int yes); __owur int SSL_get_verify_mode(const SSL *s); __owur int SSL_get_verify_depth(const SSL *s); __owur SSL_verify_cb SSL_get_verify_callback(const SSL *s); void SSL_set_verify(SSL *s, int mode, SSL_verify_cb callback); void SSL_set_verify_depth(SSL *s, int depth); void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg); # ifndef OPENSSL_NO_RSA __owur int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa); __owur int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, const unsigned char *d, long len); # endif __owur int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey); __owur int SSL_use_PrivateKey_ASN1(int pk, SSL *ssl, const unsigned char *d, long len); __owur int SSL_use_certificate(SSL *ssl, X509 *x); __owur int SSL_use_certificate_ASN1(SSL *ssl, const unsigned char *d, int len); __owur int SSL_use_cert_and_key(SSL *ssl, X509 *x509, EVP_PKEY *privatekey, STACK_OF(X509) *chain, int override); /* serverinfo file format versions */ # define SSL_SERVERINFOV1 1 # define SSL_SERVERINFOV2 2 /* Set serverinfo data for the current active cert. */ __owur int SSL_CTX_use_serverinfo(SSL_CTX *ctx, const unsigned char *serverinfo, size_t serverinfo_length); __owur int SSL_CTX_use_serverinfo_ex(SSL_CTX *ctx, unsigned int version, const unsigned char *serverinfo, size_t serverinfo_length); __owur int SSL_CTX_use_serverinfo_file(SSL_CTX *ctx, const char *file); #ifndef OPENSSL_NO_RSA __owur int SSL_use_RSAPrivateKey_file(SSL *ssl, const char *file, int type); #endif __owur int SSL_use_PrivateKey_file(SSL *ssl, const char *file, int type); __owur int SSL_use_certificate_file(SSL *ssl, const char *file, int type); #ifndef OPENSSL_NO_RSA __owur int SSL_CTX_use_RSAPrivateKey_file(SSL_CTX *ctx, const char *file, int type); #endif __owur int SSL_CTX_use_PrivateKey_file(SSL_CTX *ctx, const char *file, int type); __owur int SSL_CTX_use_certificate_file(SSL_CTX *ctx, const char *file, int type); /* PEM type */ __owur int SSL_CTX_use_certificate_chain_file(SSL_CTX *ctx, const char *file); __owur int SSL_use_certificate_chain_file(SSL *ssl, const char *file); __owur STACK_OF(X509_NAME) *SSL_load_client_CA_file(const char *file); __owur int SSL_add_file_cert_subjects_to_stack(STACK_OF(X509_NAME) *stackCAs, const char *file); int SSL_add_dir_cert_subjects_to_stack(STACK_OF(X509_NAME) *stackCAs, const char *dir); # if OPENSSL_API_COMPAT < 0x10100000L # define SSL_load_error_strings() \ OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS \ | OPENSSL_INIT_LOAD_CRYPTO_STRINGS, NULL) # endif __owur const char *SSL_state_string(const SSL *s); __owur const char *SSL_rstate_string(const SSL *s); __owur const char *SSL_state_string_long(const SSL *s); __owur const char *SSL_rstate_string_long(const SSL *s); __owur long SSL_SESSION_get_time(const SSL_SESSION *s); __owur long SSL_SESSION_set_time(SSL_SESSION *s, long t); __owur long SSL_SESSION_get_timeout(const SSL_SESSION *s); __owur long SSL_SESSION_set_timeout(SSL_SESSION *s, long t); __owur int SSL_SESSION_get_protocol_version(const SSL_SESSION *s); __owur int SSL_SESSION_set_protocol_version(SSL_SESSION *s, int version); __owur const char *SSL_SESSION_get0_hostname(const SSL_SESSION *s); __owur int SSL_SESSION_set1_hostname(SSL_SESSION *s, const char *hostname); void SSL_SESSION_get0_alpn_selected(const SSL_SESSION *s, const unsigned char **alpn, size_t *len); __owur int SSL_SESSION_set1_alpn_selected(SSL_SESSION *s, const unsigned char *alpn, size_t len); __owur const SSL_CIPHER *SSL_SESSION_get0_cipher(const SSL_SESSION *s); __owur int SSL_SESSION_set_cipher(SSL_SESSION *s, const SSL_CIPHER *cipher); __owur int SSL_SESSION_has_ticket(const SSL_SESSION *s); __owur unsigned long SSL_SESSION_get_ticket_lifetime_hint(const SSL_SESSION *s); void SSL_SESSION_get0_ticket(const SSL_SESSION *s, const unsigned char **tick, size_t *len); __owur uint32_t SSL_SESSION_get_max_early_data(const SSL_SESSION *s); __owur int SSL_SESSION_set_max_early_data(SSL_SESSION *s, uint32_t max_early_data); __owur int SSL_copy_session_id(SSL *to, const SSL *from); __owur X509 *SSL_SESSION_get0_peer(SSL_SESSION *s); __owur int SSL_SESSION_set1_id_context(SSL_SESSION *s, const unsigned char *sid_ctx, unsigned int sid_ctx_len); __owur int SSL_SESSION_set1_id(SSL_SESSION *s, const unsigned char *sid, unsigned int sid_len); __owur int SSL_SESSION_is_resumable(const SSL_SESSION *s); __owur SSL_SESSION *SSL_SESSION_new(void); __owur SSL_SESSION *SSL_SESSION_dup(SSL_SESSION *src); const unsigned char *SSL_SESSION_get_id(const SSL_SESSION *s, unsigned int *len); const unsigned char *SSL_SESSION_get0_id_context(const SSL_SESSION *s, unsigned int *len); __owur unsigned int SSL_SESSION_get_compress_id(const SSL_SESSION *s); # ifndef OPENSSL_NO_STDIO int SSL_SESSION_print_fp(FILE *fp, const SSL_SESSION *ses); # endif int SSL_SESSION_print(BIO *fp, const SSL_SESSION *ses); int SSL_SESSION_print_keylog(BIO *bp, const SSL_SESSION *x); int SSL_SESSION_up_ref(SSL_SESSION *ses); void SSL_SESSION_free(SSL_SESSION *ses); __owur int i2d_SSL_SESSION(SSL_SESSION *in, unsigned char **pp); __owur int SSL_set_session(SSL *to, SSL_SESSION *session); int SSL_CTX_add_session(SSL_CTX *ctx, SSL_SESSION *session); int SSL_CTX_remove_session(SSL_CTX *ctx, SSL_SESSION *session); __owur int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb); __owur int SSL_set_generate_session_id(SSL *s, GEN_SESSION_CB cb); __owur int SSL_has_matching_session_id(const SSL *s, const unsigned char *id, unsigned int id_len); SSL_SESSION *d2i_SSL_SESSION(SSL_SESSION **a, const unsigned char **pp, long length); # ifdef HEADER_X509_H __owur X509 *SSL_get_peer_certificate(const SSL *s); # endif __owur STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s); __owur int SSL_CTX_get_verify_mode(const SSL_CTX *ctx); __owur int SSL_CTX_get_verify_depth(const SSL_CTX *ctx); __owur SSL_verify_cb SSL_CTX_get_verify_callback(const SSL_CTX *ctx); void SSL_CTX_set_verify(SSL_CTX *ctx, int mode, SSL_verify_cb callback); void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth); void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx, int (*cb) (X509_STORE_CTX *, void *), void *arg); void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg); # ifndef OPENSSL_NO_RSA __owur int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa); __owur int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const unsigned char *d, long len); # endif __owur int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey); __owur int SSL_CTX_use_PrivateKey_ASN1(int pk, SSL_CTX *ctx, const unsigned char *d, long len); __owur int SSL_CTX_use_certificate(SSL_CTX *ctx, X509 *x); __owur int SSL_CTX_use_certificate_ASN1(SSL_CTX *ctx, int len, const unsigned char *d); __owur int SSL_CTX_use_cert_and_key(SSL_CTX *ctx, X509 *x509, EVP_PKEY *privatekey, STACK_OF(X509) *chain, int override); void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb); void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u); pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx); void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx); void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb); void SSL_set_default_passwd_cb_userdata(SSL *s, void *u); pem_password_cb *SSL_get_default_passwd_cb(SSL *s); void *SSL_get_default_passwd_cb_userdata(SSL *s); __owur int SSL_CTX_check_private_key(const SSL_CTX *ctx); __owur int SSL_check_private_key(const SSL *ctx); __owur int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx, unsigned int sid_ctx_len); SSL *SSL_new(SSL_CTX *ctx); int SSL_up_ref(SSL *s); int SSL_is_dtls(const SSL *s); __owur int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx, unsigned int sid_ctx_len); __owur int SSL_CTX_set_purpose(SSL_CTX *ctx, int purpose); __owur int SSL_set_purpose(SSL *ssl, int purpose); __owur int SSL_CTX_set_trust(SSL_CTX *ctx, int trust); __owur int SSL_set_trust(SSL *ssl, int trust); __owur int SSL_set1_host(SSL *s, const char *hostname); __owur int SSL_add1_host(SSL *s, const char *hostname); __owur const char *SSL_get0_peername(SSL *s); void SSL_set_hostflags(SSL *s, unsigned int flags); __owur int SSL_CTX_dane_enable(SSL_CTX *ctx); __owur int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype, uint8_t ord); __owur int SSL_dane_enable(SSL *s, const char *basedomain); __owur int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector, uint8_t mtype, unsigned const char *data, size_t dlen); __owur int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki); __owur int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector, uint8_t *mtype, unsigned const char **data, size_t *dlen); /* * Bridge opacity barrier between libcrypt and libssl, also needed to support * offline testing in test/danetest.c */ SSL_DANE *SSL_get0_dane(SSL *ssl); /* * DANE flags */ unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags); unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags); unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags); unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags); __owur int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm); __owur int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm); __owur X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx); __owur X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl); # ifndef OPENSSL_NO_SRP int SSL_CTX_set_srp_username(SSL_CTX *ctx, char *name); int SSL_CTX_set_srp_password(SSL_CTX *ctx, char *password); int SSL_CTX_set_srp_strength(SSL_CTX *ctx, int strength); int SSL_CTX_set_srp_client_pwd_callback(SSL_CTX *ctx, char *(*cb) (SSL *, void *)); int SSL_CTX_set_srp_verify_param_callback(SSL_CTX *ctx, int (*cb) (SSL *, void *)); int SSL_CTX_set_srp_username_callback(SSL_CTX *ctx, int (*cb) (SSL *, int *, void *)); int SSL_CTX_set_srp_cb_arg(SSL_CTX *ctx, void *arg); int SSL_set_srp_server_param(SSL *s, const BIGNUM *N, const BIGNUM *g, BIGNUM *sa, BIGNUM *v, char *info); int SSL_set_srp_server_param_pw(SSL *s, const char *user, const char *pass, const char *grp); __owur BIGNUM *SSL_get_srp_g(SSL *s); __owur BIGNUM *SSL_get_srp_N(SSL *s); __owur char *SSL_get_srp_username(SSL *s); __owur char *SSL_get_srp_userinfo(SSL *s); # endif /* * ClientHello callback and helpers. */ # define SSL_CLIENT_HELLO_SUCCESS 1 # define SSL_CLIENT_HELLO_ERROR 0 # define SSL_CLIENT_HELLO_RETRY (-1) typedef int (*SSL_client_hello_cb_fn) (SSL *s, int *al, void *arg); void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb, void *arg); int SSL_client_hello_isv2(SSL *s); unsigned int SSL_client_hello_get0_legacy_version(SSL *s); size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out); size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out); size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out); size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out); int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen); int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out, size_t *outlen); void SSL_certs_clear(SSL *s); void SSL_free(SSL *ssl); # ifdef OSSL_ASYNC_FD /* * Windows application developer has to include windows.h to use these. */ __owur int SSL_waiting_for_async(SSL *s); __owur int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds); __owur int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds, OSSL_ASYNC_FD *delfd, size_t *numdelfds); # endif __owur int SSL_accept(SSL *ssl); __owur int SSL_stateless(SSL *s); __owur int SSL_connect(SSL *ssl); __owur int SSL_read(SSL *ssl, void *buf, int num); __owur int SSL_read_ex(SSL *ssl, void *buf, size_t num, size_t *readbytes); # define SSL_READ_EARLY_DATA_ERROR 0 # define SSL_READ_EARLY_DATA_SUCCESS 1 # define SSL_READ_EARLY_DATA_FINISH 2 __owur int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes); __owur int SSL_peek(SSL *ssl, void *buf, int num); __owur int SSL_peek_ex(SSL *ssl, void *buf, size_t num, size_t *readbytes); __owur int SSL_write(SSL *ssl, const void *buf, int num); __owur int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written); __owur int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written); long SSL_ctrl(SSL *ssl, int cmd, long larg, void *parg); long SSL_callback_ctrl(SSL *, int, void (*)(void)); long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg); long SSL_CTX_callback_ctrl(SSL_CTX *, int, void (*)(void)); # define SSL_EARLY_DATA_NOT_SENT 0 # define SSL_EARLY_DATA_REJECTED 1 # define SSL_EARLY_DATA_ACCEPTED 2 __owur int SSL_get_early_data_status(const SSL *s); __owur int SSL_get_error(const SSL *s, int ret_code); __owur const char *SSL_get_version(const SSL *s); /* This sets the 'default' SSL version that SSL_new() will create */ __owur int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth); # ifndef OPENSSL_NO_SSL3_METHOD DEPRECATEDIN_1_1_0(__owur const SSL_METHOD *SSLv3_method(void)) /* SSLv3 */ DEPRECATEDIN_1_1_0(__owur const SSL_METHOD *SSLv3_server_method(void)) DEPRECATEDIN_1_1_0(__owur const SSL_METHOD *SSLv3_client_method(void)) # endif #define SSLv23_method TLS_method #define SSLv23_server_method TLS_server_method #define SSLv23_client_method TLS_client_method /* Negotiate highest available SSL/TLS version */ __owur const SSL_METHOD *TLS_method(void); __owur const SSL_METHOD *TLS_server_method(void); __owur const SSL_METHOD *TLS_client_method(void); # ifndef OPENSSL_NO_TLS1_METHOD DEPRECATEDIN_1_1_0(__owur const SSL_METHOD *TLSv1_method(void)) /* TLSv1.0 */ DEPRECATEDIN_1_1_0(__owur const SSL_METHOD *TLSv1_server_method(void)) DEPRECATEDIN_1_1_0(__owur const SSL_METHOD *TLSv1_client_method(void)) # endif # ifndef OPENSSL_NO_TLS1_1_METHOD DEPRECATEDIN_1_1_0(__owur const SSL_METHOD *TLSv1_1_method(void)) /* TLSv1.1 */ DEPRECATEDIN_1_1_0(__owur const SSL_METHOD *TLSv1_1_server_method(void)) DEPRECATEDIN_1_1_0(__owur const SSL_METHOD *TLSv1_1_client_method(void)) # endif # ifndef OPENSSL_NO_TLS1_2_METHOD DEPRECATEDIN_1_1_0(__owur const SSL_METHOD *TLSv1_2_method(void)) /* TLSv1.2 */ DEPRECATEDIN_1_1_0(__owur const SSL_METHOD *TLSv1_2_server_method(void)) DEPRECATEDIN_1_1_0(__owur const SSL_METHOD *TLSv1_2_client_method(void)) # endif # ifndef OPENSSL_NO_DTLS1_METHOD DEPRECATEDIN_1_1_0(__owur const SSL_METHOD *DTLSv1_method(void)) /* DTLSv1.0 */ DEPRECATEDIN_1_1_0(__owur const SSL_METHOD *DTLSv1_server_method(void)) DEPRECATEDIN_1_1_0(__owur const SSL_METHOD *DTLSv1_client_method(void)) # endif # ifndef OPENSSL_NO_DTLS1_2_METHOD /* DTLSv1.2 */ DEPRECATEDIN_1_1_0(__owur const SSL_METHOD *DTLSv1_2_method(void)) DEPRECATEDIN_1_1_0(__owur const SSL_METHOD *DTLSv1_2_server_method(void)) DEPRECATEDIN_1_1_0(__owur const SSL_METHOD *DTLSv1_2_client_method(void)) # endif __owur const SSL_METHOD *DTLS_method(void); /* DTLS 1.0 and 1.2 */ __owur const SSL_METHOD *DTLS_server_method(void); /* DTLS 1.0 and 1.2 */ __owur const SSL_METHOD *DTLS_client_method(void); /* DTLS 1.0 and 1.2 */ __owur size_t DTLS_get_data_mtu(const SSL *s); __owur STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s); __owur STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx); __owur STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s); __owur STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s); __owur int SSL_do_handshake(SSL *s); int SSL_key_update(SSL *s, int updatetype); int SSL_get_key_update_type(const SSL *s); int SSL_renegotiate(SSL *s); int SSL_renegotiate_abbreviated(SSL *s); __owur int SSL_renegotiate_pending(const SSL *s); int SSL_shutdown(SSL *s); __owur int SSL_verify_client_post_handshake(SSL *s); void SSL_CTX_set_post_handshake_auth(SSL_CTX *ctx, int val); void SSL_set_post_handshake_auth(SSL *s, int val); __owur const SSL_METHOD *SSL_CTX_get_ssl_method(const SSL_CTX *ctx); __owur const SSL_METHOD *SSL_get_ssl_method(const SSL *s); __owur int SSL_set_ssl_method(SSL *s, const SSL_METHOD *method); __owur const char *SSL_alert_type_string_long(int value); __owur const char *SSL_alert_type_string(int value); __owur const char *SSL_alert_desc_string_long(int value); __owur const char *SSL_alert_desc_string(int value); void SSL_set0_CA_list(SSL *s, STACK_OF(X509_NAME) *name_list); void SSL_CTX_set0_CA_list(SSL_CTX *ctx, STACK_OF(X509_NAME) *name_list); __owur const STACK_OF(X509_NAME) *SSL_get0_CA_list(const SSL *s); __owur const STACK_OF(X509_NAME) *SSL_CTX_get0_CA_list(const SSL_CTX *ctx); __owur int SSL_add1_to_CA_list(SSL *ssl, const X509 *x); __owur int SSL_CTX_add1_to_CA_list(SSL_CTX *ctx, const X509 *x); __owur const STACK_OF(X509_NAME) *SSL_get0_peer_CA_list(const SSL *s); void SSL_set_client_CA_list(SSL *s, STACK_OF(X509_NAME) *name_list); void SSL_CTX_set_client_CA_list(SSL_CTX *ctx, STACK_OF(X509_NAME) *name_list); __owur STACK_OF(X509_NAME) *SSL_get_client_CA_list(const SSL *s); __owur STACK_OF(X509_NAME) *SSL_CTX_get_client_CA_list(const SSL_CTX *s); __owur int SSL_add_client_CA(SSL *ssl, X509 *x); __owur int SSL_CTX_add_client_CA(SSL_CTX *ctx, X509 *x); void SSL_set_connect_state(SSL *s); void SSL_set_accept_state(SSL *s); __owur long SSL_get_default_timeout(const SSL *s); # if OPENSSL_API_COMPAT < 0x10100000L # define SSL_library_init() OPENSSL_init_ssl(0, NULL) # endif __owur char *SSL_CIPHER_description(const SSL_CIPHER *, char *buf, int size); __owur STACK_OF(X509_NAME) *SSL_dup_CA_list(const STACK_OF(X509_NAME) *sk); __owur SSL *SSL_dup(SSL *ssl); __owur X509 *SSL_get_certificate(const SSL *ssl); /* * EVP_PKEY */ struct evp_pkey_st *SSL_get_privatekey(const SSL *ssl); __owur X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx); __owur EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx); void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode); __owur int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx); void SSL_set_quiet_shutdown(SSL *ssl, int mode); __owur int SSL_get_quiet_shutdown(const SSL *ssl); void SSL_set_shutdown(SSL *ssl, int mode); __owur int SSL_get_shutdown(const SSL *ssl); __owur int SSL_version(const SSL *ssl); __owur int SSL_client_version(const SSL *s); __owur int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx); __owur int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx); __owur int SSL_CTX_set_default_verify_file(SSL_CTX *ctx); __owur int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile, const char *CApath); # define SSL_get0_session SSL_get_session/* just peek at pointer */ __owur SSL_SESSION *SSL_get_session(const SSL *ssl); __owur SSL_SESSION *SSL_get1_session(SSL *ssl); /* obtain a reference count */ __owur SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl); SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx); void SSL_set_info_callback(SSL *ssl, void (*cb) (const SSL *ssl, int type, int val)); void (*SSL_get_info_callback(const SSL *ssl)) (const SSL *ssl, int type, int val); __owur OSSL_HANDSHAKE_STATE SSL_get_state(const SSL *ssl); void SSL_set_verify_result(SSL *ssl, long v); __owur long SSL_get_verify_result(const SSL *ssl); __owur STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s); __owur size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen); __owur size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen); __owur size_t SSL_SESSION_get_master_key(const SSL_SESSION *sess, unsigned char *out, size_t outlen); __owur int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in, size_t len); uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *sess); #define SSL_get_ex_new_index(l, p, newf, dupf, freef) \ CRYPTO_get_ex_new_index(CRYPTO_EX_INDEX_SSL, l, p, newf, dupf, freef) __owur int SSL_set_ex_data(SSL *ssl, int idx, void *data); void *SSL_get_ex_data(const SSL *ssl, int idx); #define SSL_SESSION_get_ex_new_index(l, p, newf, dupf, freef) \ CRYPTO_get_ex_new_index(CRYPTO_EX_INDEX_SSL_SESSION, l, p, newf, dupf, freef) __owur int SSL_SESSION_set_ex_data(SSL_SESSION *ss, int idx, void *data); void *SSL_SESSION_get_ex_data(const SSL_SESSION *ss, int idx); #define SSL_CTX_get_ex_new_index(l, p, newf, dupf, freef) \ CRYPTO_get_ex_new_index(CRYPTO_EX_INDEX_SSL_CTX, l, p, newf, dupf, freef) __owur int SSL_CTX_set_ex_data(SSL_CTX *ssl, int idx, void *data); void *SSL_CTX_get_ex_data(const SSL_CTX *ssl, int idx); __owur int SSL_get_ex_data_X509_STORE_CTX_idx(void); # define SSL_CTX_sess_set_cache_size(ctx,t) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SET_SESS_CACHE_SIZE,t,NULL) # define SSL_CTX_sess_get_cache_size(ctx) \ SSL_CTX_ctrl(ctx,SSL_CTRL_GET_SESS_CACHE_SIZE,0,NULL) # define SSL_CTX_set_session_cache_mode(ctx,m) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SET_SESS_CACHE_MODE,m,NULL) # define SSL_CTX_get_session_cache_mode(ctx) \ SSL_CTX_ctrl(ctx,SSL_CTRL_GET_SESS_CACHE_MODE,0,NULL) # define SSL_CTX_get_default_read_ahead(ctx) SSL_CTX_get_read_ahead(ctx) # define SSL_CTX_set_default_read_ahead(ctx,m) SSL_CTX_set_read_ahead(ctx,m) # define SSL_CTX_get_read_ahead(ctx) \ SSL_CTX_ctrl(ctx,SSL_CTRL_GET_READ_AHEAD,0,NULL) # define SSL_CTX_set_read_ahead(ctx,m) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SET_READ_AHEAD,m,NULL) # define SSL_CTX_get_max_cert_list(ctx) \ SSL_CTX_ctrl(ctx,SSL_CTRL_GET_MAX_CERT_LIST,0,NULL) # define SSL_CTX_set_max_cert_list(ctx,m) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SET_MAX_CERT_LIST,m,NULL) # define SSL_get_max_cert_list(ssl) \ SSL_ctrl(ssl,SSL_CTRL_GET_MAX_CERT_LIST,0,NULL) # define SSL_set_max_cert_list(ssl,m) \ SSL_ctrl(ssl,SSL_CTRL_SET_MAX_CERT_LIST,m,NULL) # define SSL_CTX_set_max_send_fragment(ctx,m) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SET_MAX_SEND_FRAGMENT,m,NULL) # define SSL_set_max_send_fragment(ssl,m) \ SSL_ctrl(ssl,SSL_CTRL_SET_MAX_SEND_FRAGMENT,m,NULL) # define SSL_CTX_set_split_send_fragment(ctx,m) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SET_SPLIT_SEND_FRAGMENT,m,NULL) # define SSL_set_split_send_fragment(ssl,m) \ SSL_ctrl(ssl,SSL_CTRL_SET_SPLIT_SEND_FRAGMENT,m,NULL) # define SSL_CTX_set_max_pipelines(ctx,m) \ SSL_CTX_ctrl(ctx,SSL_CTRL_SET_MAX_PIPELINES,m,NULL) # define SSL_set_max_pipelines(ssl,m) \ SSL_ctrl(ssl,SSL_CTRL_SET_MAX_PIPELINES,m,NULL) void SSL_CTX_set_default_read_buffer_len(SSL_CTX *ctx, size_t len); void SSL_set_default_read_buffer_len(SSL *s, size_t len); # ifndef OPENSSL_NO_DH /* NB: the |keylength| is only applicable when is_export is true */ void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx, DH *(*dh) (SSL *ssl, int is_export, int keylength)); void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export, int keylength)); # endif __owur const COMP_METHOD *SSL_get_current_compression(const SSL *s); __owur const COMP_METHOD *SSL_get_current_expansion(const SSL *s); __owur const char *SSL_COMP_get_name(const COMP_METHOD *comp); __owur const char *SSL_COMP_get0_name(const SSL_COMP *comp); __owur int SSL_COMP_get_id(const SSL_COMP *comp); STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void); __owur STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP) *meths); # if OPENSSL_API_COMPAT < 0x10100000L # define SSL_COMP_free_compression_methods() while(0) continue # endif __owur int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm); const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr); int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c); int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c); int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len, int isv2format, STACK_OF(SSL_CIPHER) **sk, STACK_OF(SSL_CIPHER) **scsvs); /* TLS extensions functions */ __owur int SSL_set_session_ticket_ext(SSL *s, void *ext_data, int ext_len); __owur int SSL_set_session_ticket_ext_cb(SSL *s, tls_session_ticket_ext_cb_fn cb, void *arg); /* Pre-shared secret session resumption functions */ __owur int SSL_set_session_secret_cb(SSL *s, tls_session_secret_cb_fn session_secret_cb, void *arg); void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx, int (*cb) (SSL *ssl, int is_forward_secure)); void SSL_set_not_resumable_session_callback(SSL *ssl, int (*cb) (SSL *ssl, int is_forward_secure)); void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx, size_t (*cb) (SSL *ssl, int type, size_t len, void *arg)); void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg); void *SSL_CTX_get_record_padding_callback_arg(const SSL_CTX *ctx); int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size); void SSL_set_record_padding_callback(SSL *ssl, size_t (*cb) (SSL *ssl, int type, size_t len, void *arg)); void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg); void *SSL_get_record_padding_callback_arg(const SSL *ssl); int SSL_set_block_padding(SSL *ssl, size_t block_size); int SSL_set_num_tickets(SSL *s, size_t num_tickets); size_t SSL_get_num_tickets(const SSL *s); int SSL_CTX_set_num_tickets(SSL_CTX *ctx, size_t num_tickets); size_t SSL_CTX_get_num_tickets(const SSL_CTX *ctx); # if OPENSSL_API_COMPAT < 0x10100000L # define SSL_cache_hit(s) SSL_session_reused(s) # endif __owur int SSL_session_reused(const SSL *s); __owur int SSL_is_server(const SSL *s); __owur __owur SSL_CONF_CTX *SSL_CONF_CTX_new(void); int SSL_CONF_CTX_finish(SSL_CONF_CTX *cctx); void SSL_CONF_CTX_free(SSL_CONF_CTX *cctx); unsigned int SSL_CONF_CTX_set_flags(SSL_CONF_CTX *cctx, unsigned int flags); __owur unsigned int SSL_CONF_CTX_clear_flags(SSL_CONF_CTX *cctx, unsigned int flags); __owur int SSL_CONF_CTX_set1_prefix(SSL_CONF_CTX *cctx, const char *pre); void SSL_CONF_CTX_set_ssl(SSL_CONF_CTX *cctx, SSL *ssl); void SSL_CONF_CTX_set_ssl_ctx(SSL_CONF_CTX *cctx, SSL_CTX *ctx); __owur int SSL_CONF_cmd(SSL_CONF_CTX *cctx, const char *cmd, const char *value); __owur int SSL_CONF_cmd_argv(SSL_CONF_CTX *cctx, int *pargc, char ***pargv); __owur int SSL_CONF_cmd_value_type(SSL_CONF_CTX *cctx, const char *cmd); void SSL_add_ssl_module(void); int SSL_config(SSL *s, const char *name); int SSL_CTX_config(SSL_CTX *ctx, const char *name); # ifndef OPENSSL_NO_SSL_TRACE void SSL_trace(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg); # endif # ifndef OPENSSL_NO_SOCK int DTLSv1_listen(SSL *s, BIO_ADDR *client); # endif # ifndef OPENSSL_NO_CT /* * A callback for verifying that the received SCTs are sufficient. * Expected to return 1 if they are sufficient, otherwise 0. * May return a negative integer if an error occurs. * A connection should be aborted if the SCTs are deemed insufficient. */ typedef int (*ssl_ct_validation_cb)(const CT_POLICY_EVAL_CTX *ctx, const STACK_OF(SCT) *scts, void *arg); /* * Sets a |callback| that is invoked upon receipt of ServerHelloDone to validate * the received SCTs. * If the callback returns a non-positive result, the connection is terminated. * Call this function before beginning a handshake. * If a NULL |callback| is provided, SCT validation is disabled. * |arg| is arbitrary userdata that will be passed to the callback whenever it * is invoked. Ownership of |arg| remains with the caller. * * NOTE: A side-effect of setting a CT callback is that an OCSP stapled response * will be requested. */ int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback, void *arg); int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx, ssl_ct_validation_cb callback, void *arg); #define SSL_disable_ct(s) \ ((void) SSL_set_validation_callback((s), NULL, NULL)) #define SSL_CTX_disable_ct(ctx) \ ((void) SSL_CTX_set_validation_callback((ctx), NULL, NULL)) /* * The validation type enumerates the available behaviours of the built-in SSL * CT validation callback selected via SSL_enable_ct() and SSL_CTX_enable_ct(). * The underlying callback is a static function in libssl. */ enum { SSL_CT_VALIDATION_PERMISSIVE = 0, SSL_CT_VALIDATION_STRICT }; /* * Enable CT by setting up a callback that implements one of the built-in * validation variants. The SSL_CT_VALIDATION_PERMISSIVE variant always * continues the handshake, the application can make appropriate decisions at * handshake completion. The SSL_CT_VALIDATION_STRICT variant requires at * least one valid SCT, or else handshake termination will be requested. The * handshake may continue anyway if SSL_VERIFY_NONE is in effect. */ int SSL_enable_ct(SSL *s, int validation_mode); int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode); /* * Report whether a non-NULL callback is enabled. */ int SSL_ct_is_enabled(const SSL *s); int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx); /* Gets the SCTs received from a connection */ const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s); /* * Loads the CT log list from the default location. * If a CTLOG_STORE has previously been set using SSL_CTX_set_ctlog_store, * the log information loaded from this file will be appended to the * CTLOG_STORE. * Returns 1 on success, 0 otherwise. */ int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx); /* * Loads the CT log list from the specified file path. * If a CTLOG_STORE has previously been set using SSL_CTX_set_ctlog_store, * the log information loaded from this file will be appended to the * CTLOG_STORE. * Returns 1 on success, 0 otherwise. */ int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path); /* * Sets the CT log list used by all SSL connections created from this SSL_CTX. * Ownership of the CTLOG_STORE is transferred to the SSL_CTX. */ void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE *logs); /* * Gets the CT log list used by all SSL connections created from this SSL_CTX. * This will be NULL unless one of the following functions has been called: * - SSL_CTX_set_default_ctlog_list_file * - SSL_CTX_set_ctlog_list_file * - SSL_CTX_set_ctlog_store */ const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx); # endif /* OPENSSL_NO_CT */ /* What the "other" parameter contains in security callback */ /* Mask for type */ # define SSL_SECOP_OTHER_TYPE 0xffff0000 # define SSL_SECOP_OTHER_NONE 0 # define SSL_SECOP_OTHER_CIPHER (1 << 16) # define SSL_SECOP_OTHER_CURVE (2 << 16) # define SSL_SECOP_OTHER_DH (3 << 16) # define SSL_SECOP_OTHER_PKEY (4 << 16) # define SSL_SECOP_OTHER_SIGALG (5 << 16) # define SSL_SECOP_OTHER_CERT (6 << 16) /* Indicated operation refers to peer key or certificate */ # define SSL_SECOP_PEER 0x1000 /* Values for "op" parameter in security callback */ /* Called to filter ciphers */ /* Ciphers client supports */ # define SSL_SECOP_CIPHER_SUPPORTED (1 | SSL_SECOP_OTHER_CIPHER) /* Cipher shared by client/server */ # define SSL_SECOP_CIPHER_SHARED (2 | SSL_SECOP_OTHER_CIPHER) /* Sanity check of cipher server selects */ # define SSL_SECOP_CIPHER_CHECK (3 | SSL_SECOP_OTHER_CIPHER) /* Curves supported by client */ # define SSL_SECOP_CURVE_SUPPORTED (4 | SSL_SECOP_OTHER_CURVE) /* Curves shared by client/server */ # define SSL_SECOP_CURVE_SHARED (5 | SSL_SECOP_OTHER_CURVE) /* Sanity check of curve server selects */ # define SSL_SECOP_CURVE_CHECK (6 | SSL_SECOP_OTHER_CURVE) /* Temporary DH key */ # define SSL_SECOP_TMP_DH (7 | SSL_SECOP_OTHER_PKEY) /* SSL/TLS version */ # define SSL_SECOP_VERSION (9 | SSL_SECOP_OTHER_NONE) /* Session tickets */ # define SSL_SECOP_TICKET (10 | SSL_SECOP_OTHER_NONE) /* Supported signature algorithms sent to peer */ # define SSL_SECOP_SIGALG_SUPPORTED (11 | SSL_SECOP_OTHER_SIGALG) /* Shared signature algorithm */ # define SSL_SECOP_SIGALG_SHARED (12 | SSL_SECOP_OTHER_SIGALG) /* Sanity check signature algorithm allowed */ # define SSL_SECOP_SIGALG_CHECK (13 | SSL_SECOP_OTHER_SIGALG) /* Used to get mask of supported public key signature algorithms */ # define SSL_SECOP_SIGALG_MASK (14 | SSL_SECOP_OTHER_SIGALG) /* Use to see if compression is allowed */ # define SSL_SECOP_COMPRESSION (15 | SSL_SECOP_OTHER_NONE) /* EE key in certificate */ # define SSL_SECOP_EE_KEY (16 | SSL_SECOP_OTHER_CERT) /* CA key in certificate */ # define SSL_SECOP_CA_KEY (17 | SSL_SECOP_OTHER_CERT) /* CA digest algorithm in certificate */ # define SSL_SECOP_CA_MD (18 | SSL_SECOP_OTHER_CERT) /* Peer EE key in certificate */ # define SSL_SECOP_PEER_EE_KEY (SSL_SECOP_EE_KEY | SSL_SECOP_PEER) /* Peer CA key in certificate */ # define SSL_SECOP_PEER_CA_KEY (SSL_SECOP_CA_KEY | SSL_SECOP_PEER) /* Peer CA digest algorithm in certificate */ # define SSL_SECOP_PEER_CA_MD (SSL_SECOP_CA_MD | SSL_SECOP_PEER) void SSL_set_security_level(SSL *s, int level); __owur int SSL_get_security_level(const SSL *s); void SSL_set_security_callback(SSL *s, int (*cb) (const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid, void *other, void *ex)); int (*SSL_get_security_callback(const SSL *s)) (const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid, void *other, void *ex); void SSL_set0_security_ex_data(SSL *s, void *ex); __owur void *SSL_get0_security_ex_data(const SSL *s); void SSL_CTX_set_security_level(SSL_CTX *ctx, int level); __owur int SSL_CTX_get_security_level(const SSL_CTX *ctx); void SSL_CTX_set_security_callback(SSL_CTX *ctx, int (*cb) (const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid, void *other, void *ex)); int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid, void *other, void *ex); void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex); __owur void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx); /* OPENSSL_INIT flag 0x010000 reserved for internal use */ # define OPENSSL_INIT_NO_LOAD_SSL_STRINGS 0x00100000L # define OPENSSL_INIT_LOAD_SSL_STRINGS 0x00200000L # define OPENSSL_INIT_SSL_DEFAULT \ (OPENSSL_INIT_LOAD_SSL_STRINGS | OPENSSL_INIT_LOAD_CRYPTO_STRINGS) int OPENSSL_init_ssl(uint64_t opts, const OPENSSL_INIT_SETTINGS *settings); # ifndef OPENSSL_NO_UNIT_TEST __owur const struct openssl_ssl_test_functions *SSL_test_functions(void); # endif __owur int SSL_free_buffers(SSL *ssl); __owur int SSL_alloc_buffers(SSL *ssl); /* Status codes passed to the decrypt session ticket callback. Some of these * are for internal use only and are never passed to the callback. */ typedef int SSL_TICKET_STATUS; /* Support for ticket appdata */ /* fatal error, malloc failure */ # define SSL_TICKET_FATAL_ERR_MALLOC 0 /* fatal error, either from parsing or decrypting the ticket */ # define SSL_TICKET_FATAL_ERR_OTHER 1 /* No ticket present */ # define SSL_TICKET_NONE 2 /* Empty ticket present */ # define SSL_TICKET_EMPTY 3 /* the ticket couldn't be decrypted */ # define SSL_TICKET_NO_DECRYPT 4 /* a ticket was successfully decrypted */ # define SSL_TICKET_SUCCESS 5 /* same as above but the ticket needs to be renewed */ # define SSL_TICKET_SUCCESS_RENEW 6 /* Return codes for the decrypt session ticket callback */ typedef int SSL_TICKET_RETURN; /* An error occurred */ #define SSL_TICKET_RETURN_ABORT 0 /* Do not use the ticket, do not send a renewed ticket to the client */ #define SSL_TICKET_RETURN_IGNORE 1 /* Do not use the ticket, send a renewed ticket to the client */ #define SSL_TICKET_RETURN_IGNORE_RENEW 2 /* Use the ticket, do not send a renewed ticket to the client */ #define SSL_TICKET_RETURN_USE 3 /* Use the ticket, send a renewed ticket to the client */ #define SSL_TICKET_RETURN_USE_RENEW 4 typedef int (*SSL_CTX_generate_session_ticket_fn)(SSL *s, void *arg); typedef SSL_TICKET_RETURN (*SSL_CTX_decrypt_session_ticket_fn)(SSL *s, SSL_SESSION *ss, const unsigned char *keyname, size_t keyname_length, SSL_TICKET_STATUS status, void *arg); int SSL_CTX_set_session_ticket_cb(SSL_CTX *ctx, SSL_CTX_generate_session_ticket_fn gen_cb, SSL_CTX_decrypt_session_ticket_fn dec_cb, void *arg); int SSL_SESSION_set1_ticket_appdata(SSL_SESSION *ss, const void *data, size_t len); int SSL_SESSION_get0_ticket_appdata(SSL_SESSION *ss, void **data, size_t *len); extern const char SSL_version_str[]; typedef unsigned int (*DTLS_timer_cb)(SSL *s, unsigned int timer_us); void DTLS_set_timer_cb(SSL *s, DTLS_timer_cb cb); typedef int (*SSL_allow_early_data_cb_fn)(SSL *s, void *arg); void SSL_CTX_set_allow_early_data_cb(SSL_CTX *ctx, SSL_allow_early_data_cb_fn cb, void *arg); void SSL_set_allow_early_data_cb(SSL *s, SSL_allow_early_data_cb_fn cb, void *arg); # ifdef __cplusplus } # endif #endif diff --git a/ssl/record/ssl3_record.c b/ssl/record/ssl3_record.c index f158544789bb..47c7369ed549 100644 --- a/ssl/record/ssl3_record.c +++ b/ssl/record/ssl3_record.c @@ -1,2063 +1,2071 @@ /* - * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. + * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "../ssl_local.h" #include "internal/constant_time.h" #include #include "record_local.h" #include "internal/cryptlib.h" static const unsigned char ssl3_pad_1[48] = { 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36 }; static const unsigned char ssl3_pad_2[48] = { 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c }; /* * Clear the contents of an SSL3_RECORD but retain any memory allocated */ void SSL3_RECORD_clear(SSL3_RECORD *r, size_t num_recs) { unsigned char *comp; size_t i; for (i = 0; i < num_recs; i++) { comp = r[i].comp; memset(&r[i], 0, sizeof(*r)); r[i].comp = comp; } } void SSL3_RECORD_release(SSL3_RECORD *r, size_t num_recs) { size_t i; for (i = 0; i < num_recs; i++) { OPENSSL_free(r[i].comp); r[i].comp = NULL; } } void SSL3_RECORD_set_seq_num(SSL3_RECORD *r, const unsigned char *seq_num) { memcpy(r->seq_num, seq_num, SEQ_NUM_SIZE); } /* * Peeks ahead into "read_ahead" data to see if we have a whole record waiting * for us in the buffer. */ static int ssl3_record_app_data_waiting(SSL *s) { SSL3_BUFFER *rbuf; size_t left, len; unsigned char *p; rbuf = RECORD_LAYER_get_rbuf(&s->rlayer); p = SSL3_BUFFER_get_buf(rbuf); if (p == NULL) return 0; left = SSL3_BUFFER_get_left(rbuf); if (left < SSL3_RT_HEADER_LENGTH) return 0; p += SSL3_BUFFER_get_offset(rbuf); /* * We only check the type and record length, we will sanity check version * etc later */ if (*p != SSL3_RT_APPLICATION_DATA) return 0; p += 3; n2s(p, len); if (left < SSL3_RT_HEADER_LENGTH + len) return 0; return 1; } int early_data_count_ok(SSL *s, size_t length, size_t overhead, int send) { uint32_t max_early_data; SSL_SESSION *sess = s->session; /* * If we are a client then we always use the max_early_data from the * session/psksession. Otherwise we go with the lowest out of the max early * data set in the session and the configured max_early_data. */ if (!s->server && sess->ext.max_early_data == 0) { if (!ossl_assert(s->psksession != NULL && s->psksession->ext.max_early_data > 0)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_EARLY_DATA_COUNT_OK, ERR_R_INTERNAL_ERROR); return 0; } sess = s->psksession; } if (!s->server) max_early_data = sess->ext.max_early_data; else if (s->ext.early_data != SSL_EARLY_DATA_ACCEPTED) max_early_data = s->recv_max_early_data; else max_early_data = s->recv_max_early_data < sess->ext.max_early_data ? s->recv_max_early_data : sess->ext.max_early_data; if (max_early_data == 0) { SSLfatal(s, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE, SSL_F_EARLY_DATA_COUNT_OK, SSL_R_TOO_MUCH_EARLY_DATA); return 0; } /* If we are dealing with ciphertext we need to allow for the overhead */ max_early_data += overhead; if (s->early_data_count + length > max_early_data) { SSLfatal(s, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE, SSL_F_EARLY_DATA_COUNT_OK, SSL_R_TOO_MUCH_EARLY_DATA); return 0; } s->early_data_count += length; return 1; } /* * MAX_EMPTY_RECORDS defines the number of consecutive, empty records that * will be processed per call to ssl3_get_record. Without this limit an * attacker could send empty records at a faster rate than we can process and * cause ssl3_get_record to loop forever. */ #define MAX_EMPTY_RECORDS 32 #define SSL2_RT_HEADER_LENGTH 2 /*- * Call this to get new input records. * It will return <= 0 if more data is needed, normally due to an error * or non-blocking IO. * When it finishes, |numrpipes| records have been decoded. For each record 'i': * rr[i].type - is the type of record * rr[i].data, - data * rr[i].length, - number of bytes * Multiple records will only be returned if the record types are all * SSL3_RT_APPLICATION_DATA. The number of records returned will always be <= * |max_pipelines| */ /* used only by ssl3_read_bytes */ int ssl3_get_record(SSL *s) { int enc_err, rret; int i; size_t more, n; SSL3_RECORD *rr, *thisrr; SSL3_BUFFER *rbuf; SSL_SESSION *sess; unsigned char *p; unsigned char md[EVP_MAX_MD_SIZE]; unsigned int version; size_t mac_size; int imac_size; size_t num_recs = 0, max_recs, j; PACKET pkt, sslv2pkt; size_t first_rec_len; rr = RECORD_LAYER_get_rrec(&s->rlayer); rbuf = RECORD_LAYER_get_rbuf(&s->rlayer); max_recs = s->max_pipelines; if (max_recs == 0) max_recs = 1; sess = s->session; do { thisrr = &rr[num_recs]; /* check if we have the header */ if ((RECORD_LAYER_get_rstate(&s->rlayer) != SSL_ST_READ_BODY) || (RECORD_LAYER_get_packet_length(&s->rlayer) < SSL3_RT_HEADER_LENGTH)) { size_t sslv2len; unsigned int type; rret = ssl3_read_n(s, SSL3_RT_HEADER_LENGTH, SSL3_BUFFER_get_len(rbuf), 0, num_recs == 0 ? 1 : 0, &n); if (rret <= 0) return rret; /* error or non-blocking */ RECORD_LAYER_set_rstate(&s->rlayer, SSL_ST_READ_BODY); p = RECORD_LAYER_get_packet(&s->rlayer); if (!PACKET_buf_init(&pkt, RECORD_LAYER_get_packet(&s->rlayer), RECORD_LAYER_get_packet_length(&s->rlayer))) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GET_RECORD, ERR_R_INTERNAL_ERROR); return -1; } sslv2pkt = pkt; if (!PACKET_get_net_2_len(&sslv2pkt, &sslv2len) || !PACKET_get_1(&sslv2pkt, &type)) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD, ERR_R_INTERNAL_ERROR); return -1; } /* * The first record received by the server may be a V2ClientHello. */ if (s->server && RECORD_LAYER_is_first_record(&s->rlayer) && (sslv2len & 0x8000) != 0 && (type == SSL2_MT_CLIENT_HELLO)) { /* * SSLv2 style record * * |num_recs| here will actually always be 0 because * |num_recs > 0| only ever occurs when we are processing * multiple app data records - which we know isn't the case here * because it is an SSLv2ClientHello. We keep it using * |num_recs| for the sake of consistency */ thisrr->type = SSL3_RT_HANDSHAKE; thisrr->rec_version = SSL2_VERSION; thisrr->length = sslv2len & 0x7fff; if (thisrr->length > SSL3_BUFFER_get_len(rbuf) - SSL2_RT_HEADER_LENGTH) { SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, SSL_R_PACKET_LENGTH_TOO_LONG); return -1; } if (thisrr->length < MIN_SSL2_RECORD_LEN) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD, SSL_R_LENGTH_TOO_SHORT); return -1; } } else { /* SSLv3+ style record */ if (s->msg_callback) s->msg_callback(0, 0, SSL3_RT_HEADER, p, 5, s, s->msg_callback_arg); /* Pull apart the header into the SSL3_RECORD */ if (!PACKET_get_1(&pkt, &type) || !PACKET_get_net_2(&pkt, &version) || !PACKET_get_net_2_len(&pkt, &thisrr->length)) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD, ERR_R_INTERNAL_ERROR); return -1; } thisrr->type = type; thisrr->rec_version = version; /* * Lets check version. In TLSv1.3 we only check this field * when encryption is occurring (see later check). For the * ServerHello after an HRR we haven't actually selected TLSv1.3 * yet, but we still treat it as TLSv1.3, so we must check for * that explicitly */ if (!s->first_packet && !SSL_IS_TLS13(s) && s->hello_retry_request != SSL_HRR_PENDING && version != (unsigned int)s->version) { if ((s->version & 0xFF00) == (version & 0xFF00) && !s->enc_write_ctx && !s->write_hash) { if (thisrr->type == SSL3_RT_ALERT) { /* * The record is using an incorrect version number, * but what we've got appears to be an alert. We * haven't read the body yet to check whether its a * fatal or not - but chances are it is. We probably * shouldn't send a fatal alert back. We'll just * end. */ SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_GET_RECORD, SSL_R_WRONG_VERSION_NUMBER); return -1; } /* * Send back error using their minor version number :-) */ s->version = (unsigned short)version; } SSLfatal(s, SSL_AD_PROTOCOL_VERSION, SSL_F_SSL3_GET_RECORD, SSL_R_WRONG_VERSION_NUMBER); return -1; } if ((version >> 8) != SSL3_VERSION_MAJOR) { if (RECORD_LAYER_is_first_record(&s->rlayer)) { /* Go back to start of packet, look at the five bytes * that we have. */ p = RECORD_LAYER_get_packet(&s->rlayer); if (strncmp((char *)p, "GET ", 4) == 0 || strncmp((char *)p, "POST ", 5) == 0 || strncmp((char *)p, "HEAD ", 5) == 0 || strncmp((char *)p, "PUT ", 4) == 0) { SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_GET_RECORD, SSL_R_HTTP_REQUEST); return -1; } else if (strncmp((char *)p, "CONNE", 5) == 0) { SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_GET_RECORD, SSL_R_HTTPS_PROXY_REQUEST); return -1; } /* Doesn't look like TLS - don't send an alert */ SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_GET_RECORD, SSL_R_WRONG_VERSION_NUMBER); return -1; } else { SSLfatal(s, SSL_AD_PROTOCOL_VERSION, SSL_F_SSL3_GET_RECORD, SSL_R_WRONG_VERSION_NUMBER); return -1; } } if (SSL_IS_TLS13(s) && s->enc_read_ctx != NULL) { if (thisrr->type != SSL3_RT_APPLICATION_DATA && (thisrr->type != SSL3_RT_CHANGE_CIPHER_SPEC || !SSL_IS_FIRST_HANDSHAKE(s)) && (thisrr->type != SSL3_RT_ALERT || s->statem.enc_read_state != ENC_READ_STATE_ALLOW_PLAIN_ALERTS)) { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD, SSL_R_BAD_RECORD_TYPE); return -1; } if (thisrr->rec_version != TLS1_2_VERSION) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD, SSL_R_WRONG_VERSION_NUMBER); return -1; } } if (thisrr->length > SSL3_BUFFER_get_len(rbuf) - SSL3_RT_HEADER_LENGTH) { SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, SSL_R_PACKET_LENGTH_TOO_LONG); return -1; } } /* now s->rlayer.rstate == SSL_ST_READ_BODY */ } if (SSL_IS_TLS13(s)) { if (thisrr->length > SSL3_RT_MAX_TLS13_ENCRYPTED_LENGTH) { SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, SSL_R_ENCRYPTED_LENGTH_TOO_LONG); return -1; } } else { size_t len = SSL3_RT_MAX_ENCRYPTED_LENGTH; #ifndef OPENSSL_NO_COMP /* * If OPENSSL_NO_COMP is defined then SSL3_RT_MAX_ENCRYPTED_LENGTH * does not include the compression overhead anyway. */ if (s->expand == NULL) len -= SSL3_RT_MAX_COMPRESSED_OVERHEAD; #endif if (thisrr->length > len) { SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, SSL_R_ENCRYPTED_LENGTH_TOO_LONG); return -1; } } /* * s->rlayer.rstate == SSL_ST_READ_BODY, get and decode the data. * Calculate how much more data we need to read for the rest of the * record */ if (thisrr->rec_version == SSL2_VERSION) { more = thisrr->length + SSL2_RT_HEADER_LENGTH - SSL3_RT_HEADER_LENGTH; } else { more = thisrr->length; } if (more > 0) { /* now s->rlayer.packet_length == SSL3_RT_HEADER_LENGTH */ rret = ssl3_read_n(s, more, more, 1, 0, &n); if (rret <= 0) return rret; /* error or non-blocking io */ } /* set state for later operations */ RECORD_LAYER_set_rstate(&s->rlayer, SSL_ST_READ_HEADER); /* * At this point, s->rlayer.packet_length == SSL3_RT_HEADER_LENGTH * + thisrr->length, or s->rlayer.packet_length == SSL2_RT_HEADER_LENGTH * + thisrr->length and we have that many bytes in s->rlayer.packet */ if (thisrr->rec_version == SSL2_VERSION) { thisrr->input = &(RECORD_LAYER_get_packet(&s->rlayer)[SSL2_RT_HEADER_LENGTH]); } else { thisrr->input = &(RECORD_LAYER_get_packet(&s->rlayer)[SSL3_RT_HEADER_LENGTH]); } /* * ok, we can now read from 's->rlayer.packet' data into 'thisrr'. * thisrr->input points at thisrr->length bytes, which need to be copied * into thisrr->data by either the decryption or by the decompression. * When the data is 'copied' into the thisrr->data buffer, * thisrr->input will be updated to point at the new buffer */ /* * We now have - encrypted [ MAC [ compressed [ plain ] ] ] * thisrr->length bytes of encrypted compressed stuff. */ /* decrypt in place in 'thisrr->input' */ thisrr->data = thisrr->input; thisrr->orig_len = thisrr->length; /* Mark this record as not read by upper layers yet */ thisrr->read = 0; num_recs++; /* we have pulled in a full packet so zero things */ RECORD_LAYER_reset_packet_length(&s->rlayer); RECORD_LAYER_clear_first_record(&s->rlayer); } while (num_recs < max_recs && thisrr->type == SSL3_RT_APPLICATION_DATA && SSL_USE_EXPLICIT_IV(s) && s->enc_read_ctx != NULL && (EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(s->enc_read_ctx)) & EVP_CIPH_FLAG_PIPELINE) && ssl3_record_app_data_waiting(s)); if (num_recs == 1 && thisrr->type == SSL3_RT_CHANGE_CIPHER_SPEC && (SSL_IS_TLS13(s) || s->hello_retry_request != SSL_HRR_NONE) && SSL_IS_FIRST_HANDSHAKE(s)) { /* * CCS messages must be exactly 1 byte long, containing the value 0x01 */ if (thisrr->length != 1 || thisrr->data[0] != 0x01) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_SSL3_GET_RECORD, SSL_R_INVALID_CCS_MESSAGE); return -1; } /* * CCS messages are ignored in TLSv1.3. We treat it like an empty * handshake record */ thisrr->type = SSL3_RT_HANDSHAKE; RECORD_LAYER_inc_empty_record_count(&s->rlayer); if (RECORD_LAYER_get_empty_record_count(&s->rlayer) > MAX_EMPTY_RECORDS) { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD, SSL_R_UNEXPECTED_CCS_MESSAGE); return -1; } thisrr->read = 1; RECORD_LAYER_set_numrpipes(&s->rlayer, 1); return 1; } /* * If in encrypt-then-mac mode calculate mac from encrypted record. All * the details below are public so no timing details can leak. */ if (SSL_READ_ETM(s) && s->read_hash) { unsigned char *mac; /* TODO(size_t): convert this to do size_t properly */ imac_size = EVP_MD_CTX_size(s->read_hash); if (!ossl_assert(imac_size >= 0 && imac_size <= EVP_MAX_MD_SIZE)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GET_RECORD, ERR_LIB_EVP); return -1; } mac_size = (size_t)imac_size; for (j = 0; j < num_recs; j++) { thisrr = &rr[j]; if (thisrr->length < mac_size) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD, SSL_R_LENGTH_TOO_SHORT); return -1; } thisrr->length -= mac_size; mac = thisrr->data + thisrr->length; i = s->method->ssl3_enc->mac(s, thisrr, md, 0 /* not send */ ); if (i == 0 || CRYPTO_memcmp(md, mac, mac_size) != 0) { SSLfatal(s, SSL_AD_BAD_RECORD_MAC, SSL_F_SSL3_GET_RECORD, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC); return -1; } } } first_rec_len = rr[0].length; enc_err = s->method->ssl3_enc->enc(s, rr, num_recs, 0); /*- * enc_err is: * 0: (in non-constant time) if the record is publicly invalid. * 1: if the padding is valid * -1: if the padding is invalid */ if (enc_err == 0) { if (ossl_statem_in_error(s)) { /* SSLfatal() already got called */ return -1; } if (num_recs == 1 && ossl_statem_skip_early_data(s)) { /* * Valid early_data that we cannot decrypt might fail here as * publicly invalid. We treat it like an empty record. */ thisrr = &rr[0]; if (!early_data_count_ok(s, thisrr->length, EARLY_DATA_CIPHERTEXT_OVERHEAD, 0)) { /* SSLfatal() already called */ return -1; } thisrr->length = 0; thisrr->read = 1; RECORD_LAYER_set_numrpipes(&s->rlayer, 1); RECORD_LAYER_reset_read_sequence(&s->rlayer); return 1; } SSLfatal(s, SSL_AD_BAD_RECORD_MAC, SSL_F_SSL3_GET_RECORD, SSL_R_BLOCK_CIPHER_PAD_IS_WRONG); return -1; } #ifdef SSL_DEBUG printf("dec %lu\n", (unsigned long)rr[0].length); { size_t z; for (z = 0; z < rr[0].length; z++) printf("%02X%c", rr[0].data[z], ((z + 1) % 16) ? ' ' : '\n'); } printf("\n"); #endif /* r->length is now the compressed data plus mac */ if ((sess != NULL) && (s->enc_read_ctx != NULL) && (!SSL_READ_ETM(s) && EVP_MD_CTX_md(s->read_hash) != NULL)) { /* s->read_hash != NULL => mac_size != -1 */ unsigned char *mac = NULL; unsigned char mac_tmp[EVP_MAX_MD_SIZE]; mac_size = EVP_MD_CTX_size(s->read_hash); if (!ossl_assert(mac_size <= EVP_MAX_MD_SIZE)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GET_RECORD, ERR_R_INTERNAL_ERROR); return -1; } for (j = 0; j < num_recs; j++) { thisrr = &rr[j]; /* * orig_len is the length of the record before any padding was * removed. This is public information, as is the MAC in use, * therefore we can safely process the record in a different amount * of time if it's too short to possibly contain a MAC. */ if (thisrr->orig_len < mac_size || /* CBC records must have a padding length byte too. */ (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE && thisrr->orig_len < mac_size + 1)) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD, SSL_R_LENGTH_TOO_SHORT); return -1; } if (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE) { /* * We update the length so that the TLS header bytes can be * constructed correctly but we need to extract the MAC in * constant time from within the record, without leaking the * contents of the padding bytes. */ mac = mac_tmp; if (!ssl3_cbc_copy_mac(mac_tmp, thisrr, mac_size)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GET_RECORD, ERR_R_INTERNAL_ERROR); return -1; } thisrr->length -= mac_size; } else { /* * In this case there's no padding, so |rec->orig_len| equals * |rec->length| and we checked that there's enough bytes for * |mac_size| above. */ thisrr->length -= mac_size; mac = &thisrr->data[thisrr->length]; } i = s->method->ssl3_enc->mac(s, thisrr, md, 0 /* not send */ ); if (i == 0 || mac == NULL || CRYPTO_memcmp(md, mac, (size_t)mac_size) != 0) enc_err = -1; if (thisrr->length > SSL3_RT_MAX_COMPRESSED_LENGTH + mac_size) enc_err = -1; } } if (enc_err < 0) { if (ossl_statem_in_error(s)) { /* We already called SSLfatal() */ return -1; } if (num_recs == 1 && ossl_statem_skip_early_data(s)) { /* * We assume this is unreadable early_data - we treat it like an * empty record */ /* * The record length may have been modified by the mac check above * so we use the previously saved value */ if (!early_data_count_ok(s, first_rec_len, EARLY_DATA_CIPHERTEXT_OVERHEAD, 0)) { /* SSLfatal() already called */ return -1; } thisrr = &rr[0]; thisrr->length = 0; thisrr->read = 1; RECORD_LAYER_set_numrpipes(&s->rlayer, 1); RECORD_LAYER_reset_read_sequence(&s->rlayer); return 1; } /* * A separate 'decryption_failed' alert was introduced with TLS 1.0, * SSL 3.0 only has 'bad_record_mac'. But unless a decryption * failure is directly visible from the ciphertext anyway, we should * not reveal which kind of error occurred -- this might become * visible to an attacker (e.g. via a logfile) */ SSLfatal(s, SSL_AD_BAD_RECORD_MAC, SSL_F_SSL3_GET_RECORD, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC); return -1; } for (j = 0; j < num_recs; j++) { thisrr = &rr[j]; /* thisrr->length is now just compressed */ if (s->expand != NULL) { if (thisrr->length > SSL3_RT_MAX_COMPRESSED_LENGTH) { SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, SSL_R_COMPRESSED_LENGTH_TOO_LONG); return -1; } if (!ssl3_do_uncompress(s, thisrr)) { SSLfatal(s, SSL_AD_DECOMPRESSION_FAILURE, SSL_F_SSL3_GET_RECORD, SSL_R_BAD_DECOMPRESSION); return -1; } } if (SSL_IS_TLS13(s) && s->enc_read_ctx != NULL && thisrr->type != SSL3_RT_ALERT) { size_t end; if (thisrr->length == 0 || thisrr->type != SSL3_RT_APPLICATION_DATA) { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD, SSL_R_BAD_RECORD_TYPE); return -1; } /* Strip trailing padding */ for (end = thisrr->length - 1; end > 0 && thisrr->data[end] == 0; end--) continue; thisrr->length = end; thisrr->type = thisrr->data[end]; if (thisrr->type != SSL3_RT_APPLICATION_DATA && thisrr->type != SSL3_RT_ALERT && thisrr->type != SSL3_RT_HANDSHAKE) { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD, SSL_R_BAD_RECORD_TYPE); return -1; } if (s->msg_callback) s->msg_callback(0, s->version, SSL3_RT_INNER_CONTENT_TYPE, &thisrr->data[end], 1, s, s->msg_callback_arg); } /* * TLSv1.3 alert and handshake records are required to be non-zero in * length. */ if (SSL_IS_TLS13(s) && (thisrr->type == SSL3_RT_HANDSHAKE || thisrr->type == SSL3_RT_ALERT) && thisrr->length == 0) { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD, SSL_R_BAD_LENGTH); return -1; } if (thisrr->length > SSL3_RT_MAX_PLAIN_LENGTH) { SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, SSL_R_DATA_LENGTH_TOO_LONG); return -1; } /* If received packet overflows current Max Fragment Length setting */ if (s->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(s->session) && thisrr->length > GET_MAX_FRAGMENT_LENGTH(s->session)) { SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, SSL_R_DATA_LENGTH_TOO_LONG); return -1; } thisrr->off = 0; /*- * So at this point the following is true * thisrr->type is the type of record * thisrr->length == number of bytes in record * thisrr->off == offset to first valid byte * thisrr->data == where to take bytes from, increment after use :-). */ /* just read a 0 length packet */ if (thisrr->length == 0) { RECORD_LAYER_inc_empty_record_count(&s->rlayer); if (RECORD_LAYER_get_empty_record_count(&s->rlayer) > MAX_EMPTY_RECORDS) { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD, SSL_R_RECORD_TOO_SMALL); return -1; } } else { RECORD_LAYER_reset_empty_record_count(&s->rlayer); } } if (s->early_data_state == SSL_EARLY_DATA_READING) { thisrr = &rr[0]; if (thisrr->type == SSL3_RT_APPLICATION_DATA && !early_data_count_ok(s, thisrr->length, 0, 0)) { /* SSLfatal already called */ return -1; } } RECORD_LAYER_set_numrpipes(&s->rlayer, num_recs); return 1; } int ssl3_do_uncompress(SSL *ssl, SSL3_RECORD *rr) { #ifndef OPENSSL_NO_COMP int i; if (rr->comp == NULL) { rr->comp = (unsigned char *) OPENSSL_malloc(SSL3_RT_MAX_ENCRYPTED_LENGTH); } if (rr->comp == NULL) return 0; /* TODO(size_t): Convert this call */ i = COMP_expand_block(ssl->expand, rr->comp, SSL3_RT_MAX_PLAIN_LENGTH, rr->data, (int)rr->length); if (i < 0) return 0; else rr->length = i; rr->data = rr->comp; #endif return 1; } int ssl3_do_compress(SSL *ssl, SSL3_RECORD *wr) { #ifndef OPENSSL_NO_COMP int i; /* TODO(size_t): Convert this call */ i = COMP_compress_block(ssl->compress, wr->data, (int)(wr->length + SSL3_RT_MAX_COMPRESSED_OVERHEAD), wr->input, (int)wr->length); if (i < 0) return 0; else wr->length = i; wr->input = wr->data; #endif return 1; } /*- * ssl3_enc encrypts/decrypts |n_recs| records in |inrecs|. Will call * SSLfatal() for internal errors, but not otherwise. * * Returns: * 0: (in non-constant time) if the record is publicly invalid (i.e. too * short etc). * 1: if the record's padding is valid / the encryption was successful. * -1: if the record's padding is invalid or, if sending, an internal error * occurred. */ int ssl3_enc(SSL *s, SSL3_RECORD *inrecs, size_t n_recs, int sending) { SSL3_RECORD *rec; EVP_CIPHER_CTX *ds; size_t l, i; size_t bs, mac_size = 0; int imac_size; const EVP_CIPHER *enc; rec = inrecs; /* * We shouldn't ever be called with more than one record in the SSLv3 case */ if (n_recs != 1) return 0; if (sending) { ds = s->enc_write_ctx; if (s->enc_write_ctx == NULL) enc = NULL; else enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx); } else { ds = s->enc_read_ctx; if (s->enc_read_ctx == NULL) enc = NULL; else enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx); } if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) { memmove(rec->data, rec->input, rec->length); rec->input = rec->data; } else { l = rec->length; /* TODO(size_t): Convert this call */ bs = EVP_CIPHER_CTX_block_size(ds); /* COMPRESS */ if ((bs != 1) && sending) { i = bs - (l % bs); /* we need to add 'i-1' padding bytes */ l += i; /* * the last of these zero bytes will be overwritten with the * padding length. */ memset(&rec->input[rec->length], 0, i); rec->length += i; rec->input[l - 1] = (unsigned char)(i - 1); } if (!sending) { if (l == 0 || l % bs != 0) return 0; /* otherwise, rec->length >= bs */ } /* TODO(size_t): Convert this call */ if (EVP_Cipher(ds, rec->data, rec->input, (unsigned int)l) < 1) return -1; if (EVP_MD_CTX_md(s->read_hash) != NULL) { /* TODO(size_t): convert me */ imac_size = EVP_MD_CTX_size(s->read_hash); if (imac_size < 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_ENC, ERR_R_INTERNAL_ERROR); return -1; } mac_size = (size_t)imac_size; } if ((bs != 1) && !sending) return ssl3_cbc_remove_padding(rec, bs, mac_size); } return 1; } #define MAX_PADDING 256 /*- * tls1_enc encrypts/decrypts |n_recs| in |recs|. Will call SSLfatal() for * internal errors, but not otherwise. * * Returns: * 0: (in non-constant time) if the record is publicly invalid (i.e. too * short etc). * 1: if the record's padding is valid / the encryption was successful. * -1: if the record's padding/AEAD-authenticator is invalid or, if sending, * an internal error occurred. */ int tls1_enc(SSL *s, SSL3_RECORD *recs, size_t n_recs, int sending) { EVP_CIPHER_CTX *ds; size_t reclen[SSL_MAX_PIPELINES]; unsigned char buf[SSL_MAX_PIPELINES][EVP_AEAD_TLS1_AAD_LEN]; int i, pad = 0, ret, tmpr; size_t bs, mac_size = 0, ctr, padnum, loop; unsigned char padval; int imac_size; const EVP_CIPHER *enc; if (n_recs == 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, ERR_R_INTERNAL_ERROR); return 0; } if (sending) { if (EVP_MD_CTX_md(s->write_hash)) { int n = EVP_MD_CTX_size(s->write_hash); if (!ossl_assert(n >= 0)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, ERR_R_INTERNAL_ERROR); return -1; } } ds = s->enc_write_ctx; if (s->enc_write_ctx == NULL) enc = NULL; else { int ivlen; enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx); /* For TLSv1.1 and later explicit IV */ if (SSL_USE_EXPLICIT_IV(s) && EVP_CIPHER_mode(enc) == EVP_CIPH_CBC_MODE) ivlen = EVP_CIPHER_iv_length(enc); else ivlen = 0; if (ivlen > 1) { for (ctr = 0; ctr < n_recs; ctr++) { if (recs[ctr].data != recs[ctr].input) { /* * we can't write into the input stream: Can this ever * happen?? (steve) */ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, ERR_R_INTERNAL_ERROR); return -1; } else if (RAND_bytes(recs[ctr].input, ivlen) <= 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, ERR_R_INTERNAL_ERROR); return -1; } } } } } else { if (EVP_MD_CTX_md(s->read_hash)) { int n = EVP_MD_CTX_size(s->read_hash); if (!ossl_assert(n >= 0)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, ERR_R_INTERNAL_ERROR); return -1; } } ds = s->enc_read_ctx; if (s->enc_read_ctx == NULL) enc = NULL; else enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx); } if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) { for (ctr = 0; ctr < n_recs; ctr++) { memmove(recs[ctr].data, recs[ctr].input, recs[ctr].length); recs[ctr].input = recs[ctr].data; } ret = 1; } else { bs = EVP_CIPHER_block_size(EVP_CIPHER_CTX_cipher(ds)); if (n_recs > 1) { if (!(EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ds)) & EVP_CIPH_FLAG_PIPELINE)) { /* * We shouldn't have been called with pipeline data if the * cipher doesn't support pipelining */ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, SSL_R_PIPELINE_FAILURE); return -1; } } for (ctr = 0; ctr < n_recs; ctr++) { reclen[ctr] = recs[ctr].length; if (EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ds)) & EVP_CIPH_FLAG_AEAD_CIPHER) { unsigned char *seq; seq = sending ? RECORD_LAYER_get_write_sequence(&s->rlayer) : RECORD_LAYER_get_read_sequence(&s->rlayer); if (SSL_IS_DTLS(s)) { /* DTLS does not support pipelining */ unsigned char dtlsseq[8], *p = dtlsseq; s2n(sending ? DTLS_RECORD_LAYER_get_w_epoch(&s->rlayer) : DTLS_RECORD_LAYER_get_r_epoch(&s->rlayer), p); memcpy(p, &seq[2], 6); memcpy(buf[ctr], dtlsseq, 8); } else { memcpy(buf[ctr], seq, 8); for (i = 7; i >= 0; i--) { /* increment */ ++seq[i]; if (seq[i] != 0) break; } } buf[ctr][8] = recs[ctr].type; buf[ctr][9] = (unsigned char)(s->version >> 8); buf[ctr][10] = (unsigned char)(s->version); buf[ctr][11] = (unsigned char)(recs[ctr].length >> 8); buf[ctr][12] = (unsigned char)(recs[ctr].length & 0xff); pad = EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_AEAD_TLS1_AAD, EVP_AEAD_TLS1_AAD_LEN, buf[ctr]); if (pad <= 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, ERR_R_INTERNAL_ERROR); return -1; } if (sending) { reclen[ctr] += pad; recs[ctr].length += pad; } } else if ((bs != 1) && sending) { padnum = bs - (reclen[ctr] % bs); /* Add weird padding of up to 256 bytes */ if (padnum > MAX_PADDING) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, ERR_R_INTERNAL_ERROR); return -1; } /* we need to add 'padnum' padding bytes of value padval */ padval = (unsigned char)(padnum - 1); for (loop = reclen[ctr]; loop < reclen[ctr] + padnum; loop++) recs[ctr].input[loop] = padval; reclen[ctr] += padnum; recs[ctr].length += padnum; } if (!sending) { if (reclen[ctr] == 0 || reclen[ctr] % bs != 0) return 0; } } if (n_recs > 1) { unsigned char *data[SSL_MAX_PIPELINES]; /* Set the output buffers */ for (ctr = 0; ctr < n_recs; ctr++) { data[ctr] = recs[ctr].data; } if (EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_SET_PIPELINE_OUTPUT_BUFS, (int)n_recs, data) <= 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, SSL_R_PIPELINE_FAILURE); return -1; } /* Set the input buffers */ for (ctr = 0; ctr < n_recs; ctr++) { data[ctr] = recs[ctr].input; } if (EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_SET_PIPELINE_INPUT_BUFS, (int)n_recs, data) <= 0 || EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_SET_PIPELINE_INPUT_LENS, (int)n_recs, reclen) <= 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, SSL_R_PIPELINE_FAILURE); return -1; } } /* TODO(size_t): Convert this call */ tmpr = EVP_Cipher(ds, recs[0].data, recs[0].input, (unsigned int)reclen[0]); if ((EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ds)) & EVP_CIPH_FLAG_CUSTOM_CIPHER) ? (tmpr < 0) : (tmpr == 0)) return -1; /* AEAD can fail to verify MAC */ if (sending == 0) { if (EVP_CIPHER_mode(enc) == EVP_CIPH_GCM_MODE) { for (ctr = 0; ctr < n_recs; ctr++) { recs[ctr].data += EVP_GCM_TLS_EXPLICIT_IV_LEN; recs[ctr].input += EVP_GCM_TLS_EXPLICIT_IV_LEN; recs[ctr].length -= EVP_GCM_TLS_EXPLICIT_IV_LEN; } } else if (EVP_CIPHER_mode(enc) == EVP_CIPH_CCM_MODE) { for (ctr = 0; ctr < n_recs; ctr++) { recs[ctr].data += EVP_CCM_TLS_EXPLICIT_IV_LEN; recs[ctr].input += EVP_CCM_TLS_EXPLICIT_IV_LEN; recs[ctr].length -= EVP_CCM_TLS_EXPLICIT_IV_LEN; } } } ret = 1; if (!SSL_READ_ETM(s) && EVP_MD_CTX_md(s->read_hash) != NULL) { imac_size = EVP_MD_CTX_size(s->read_hash); if (imac_size < 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, ERR_R_INTERNAL_ERROR); return -1; } mac_size = (size_t)imac_size; } if ((bs != 1) && !sending) { int tmpret; for (ctr = 0; ctr < n_recs; ctr++) { tmpret = tls1_cbc_remove_padding(s, &recs[ctr], bs, mac_size); /* * If tmpret == 0 then this means publicly invalid so we can * short circuit things here. Otherwise we must respect constant * time behaviour. */ if (tmpret == 0) return 0; ret = constant_time_select_int(constant_time_eq_int(tmpret, 1), ret, -1); } } if (pad && !sending) { for (ctr = 0; ctr < n_recs; ctr++) { recs[ctr].length -= pad; } } } return ret; } int n_ssl3_mac(SSL *ssl, SSL3_RECORD *rec, unsigned char *md, int sending) { unsigned char *mac_sec, *seq; const EVP_MD_CTX *hash; unsigned char *p, rec_char; size_t md_size; size_t npad; int t; if (sending) { mac_sec = &(ssl->s3->write_mac_secret[0]); seq = RECORD_LAYER_get_write_sequence(&ssl->rlayer); hash = ssl->write_hash; } else { mac_sec = &(ssl->s3->read_mac_secret[0]); seq = RECORD_LAYER_get_read_sequence(&ssl->rlayer); hash = ssl->read_hash; } t = EVP_MD_CTX_size(hash); if (t < 0) return 0; md_size = t; npad = (48 / md_size) * md_size; if (!sending && EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE && ssl3_cbc_record_digest_supported(hash)) { /* * This is a CBC-encrypted record. We must avoid leaking any * timing-side channel information about how many blocks of data we * are hashing because that gives an attacker a timing-oracle. */ /*- * npad is, at most, 48 bytes and that's with MD5: * 16 + 48 + 8 (sequence bytes) + 1 + 2 = 75. * * With SHA-1 (the largest hash speced for SSLv3) the hash size * goes up 4, but npad goes down by 8, resulting in a smaller * total size. */ unsigned char header[75]; size_t j = 0; memcpy(header + j, mac_sec, md_size); j += md_size; memcpy(header + j, ssl3_pad_1, npad); j += npad; memcpy(header + j, seq, 8); j += 8; header[j++] = rec->type; header[j++] = (unsigned char)(rec->length >> 8); header[j++] = (unsigned char)(rec->length & 0xff); /* Final param == is SSLv3 */ if (ssl3_cbc_digest_record(hash, md, &md_size, header, rec->input, rec->length + md_size, rec->orig_len, mac_sec, md_size, 1) <= 0) return 0; } else { unsigned int md_size_u; /* Chop the digest off the end :-) */ EVP_MD_CTX *md_ctx = EVP_MD_CTX_new(); if (md_ctx == NULL) return 0; rec_char = rec->type; p = md; s2n(rec->length, p); if (EVP_MD_CTX_copy_ex(md_ctx, hash) <= 0 || EVP_DigestUpdate(md_ctx, mac_sec, md_size) <= 0 || EVP_DigestUpdate(md_ctx, ssl3_pad_1, npad) <= 0 || EVP_DigestUpdate(md_ctx, seq, 8) <= 0 || EVP_DigestUpdate(md_ctx, &rec_char, 1) <= 0 || EVP_DigestUpdate(md_ctx, md, 2) <= 0 || EVP_DigestUpdate(md_ctx, rec->input, rec->length) <= 0 || EVP_DigestFinal_ex(md_ctx, md, NULL) <= 0 || EVP_MD_CTX_copy_ex(md_ctx, hash) <= 0 || EVP_DigestUpdate(md_ctx, mac_sec, md_size) <= 0 || EVP_DigestUpdate(md_ctx, ssl3_pad_2, npad) <= 0 || EVP_DigestUpdate(md_ctx, md, md_size) <= 0 || EVP_DigestFinal_ex(md_ctx, md, &md_size_u) <= 0) { EVP_MD_CTX_free(md_ctx); return 0; } EVP_MD_CTX_free(md_ctx); } ssl3_record_sequence_update(seq); return 1; } int tls1_mac(SSL *ssl, SSL3_RECORD *rec, unsigned char *md, int sending) { unsigned char *seq; EVP_MD_CTX *hash; size_t md_size; int i; EVP_MD_CTX *hmac = NULL, *mac_ctx; unsigned char header[13]; int stream_mac = (sending ? (ssl->mac_flags & SSL_MAC_FLAG_WRITE_MAC_STREAM) : (ssl->mac_flags & SSL_MAC_FLAG_READ_MAC_STREAM)); int t; if (sending) { seq = RECORD_LAYER_get_write_sequence(&ssl->rlayer); hash = ssl->write_hash; } else { seq = RECORD_LAYER_get_read_sequence(&ssl->rlayer); hash = ssl->read_hash; } t = EVP_MD_CTX_size(hash); if (!ossl_assert(t >= 0)) return 0; md_size = t; /* I should fix this up TLS TLS TLS TLS TLS XXXXXXXX */ if (stream_mac) { mac_ctx = hash; } else { hmac = EVP_MD_CTX_new(); if (hmac == NULL || !EVP_MD_CTX_copy(hmac, hash)) { EVP_MD_CTX_free(hmac); return 0; } mac_ctx = hmac; } if (SSL_IS_DTLS(ssl)) { unsigned char dtlsseq[8], *p = dtlsseq; s2n(sending ? DTLS_RECORD_LAYER_get_w_epoch(&ssl->rlayer) : DTLS_RECORD_LAYER_get_r_epoch(&ssl->rlayer), p); memcpy(p, &seq[2], 6); memcpy(header, dtlsseq, 8); } else memcpy(header, seq, 8); header[8] = rec->type; header[9] = (unsigned char)(ssl->version >> 8); header[10] = (unsigned char)(ssl->version); header[11] = (unsigned char)(rec->length >> 8); header[12] = (unsigned char)(rec->length & 0xff); if (!sending && !SSL_READ_ETM(ssl) && EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE && ssl3_cbc_record_digest_supported(mac_ctx)) { /* * This is a CBC-encrypted record. We must avoid leaking any * timing-side channel information about how many blocks of data we * are hashing because that gives an attacker a timing-oracle. */ /* Final param == not SSLv3 */ if (ssl3_cbc_digest_record(mac_ctx, md, &md_size, header, rec->input, rec->length + md_size, rec->orig_len, ssl->s3->read_mac_secret, ssl->s3->read_mac_secret_size, 0) <= 0) { EVP_MD_CTX_free(hmac); return 0; } } else { /* TODO(size_t): Convert these calls */ if (EVP_DigestSignUpdate(mac_ctx, header, sizeof(header)) <= 0 || EVP_DigestSignUpdate(mac_ctx, rec->input, rec->length) <= 0 || EVP_DigestSignFinal(mac_ctx, md, &md_size) <= 0) { EVP_MD_CTX_free(hmac); return 0; } } EVP_MD_CTX_free(hmac); #ifdef SSL_DEBUG fprintf(stderr, "seq="); { int z; for (z = 0; z < 8; z++) fprintf(stderr, "%02X ", seq[z]); fprintf(stderr, "\n"); } fprintf(stderr, "rec="); { size_t z; for (z = 0; z < rec->length; z++) fprintf(stderr, "%02X ", rec->data[z]); fprintf(stderr, "\n"); } #endif if (!SSL_IS_DTLS(ssl)) { for (i = 7; i >= 0; i--) { ++seq[i]; if (seq[i] != 0) break; } } #ifdef SSL_DEBUG { unsigned int z; for (z = 0; z < md_size; z++) fprintf(stderr, "%02X ", md[z]); fprintf(stderr, "\n"); } #endif return 1; } /*- * ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC * record in |rec| by updating |rec->length| in constant time. * * block_size: the block size of the cipher used to encrypt the record. * returns: * 0: (in non-constant time) if the record is publicly invalid. * 1: if the padding was valid * -1: otherwise. */ int ssl3_cbc_remove_padding(SSL3_RECORD *rec, size_t block_size, size_t mac_size) { size_t padding_length; size_t good; const size_t overhead = 1 /* padding length byte */ + mac_size; /* * These lengths are all public so we can test them in non-constant time. */ if (overhead > rec->length) return 0; padding_length = rec->data[rec->length - 1]; good = constant_time_ge_s(rec->length, padding_length + overhead); /* SSLv3 requires that the padding is minimal. */ good &= constant_time_ge_s(block_size, padding_length + 1); rec->length -= good & (padding_length + 1); return constant_time_select_int_s(good, 1, -1); } /*- * tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC * record in |rec| in constant time and returns 1 if the padding is valid and * -1 otherwise. It also removes any explicit IV from the start of the record * without leaking any timing about whether there was enough space after the * padding was removed. * * block_size: the block size of the cipher used to encrypt the record. * returns: * 0: (in non-constant time) if the record is publicly invalid. * 1: if the padding was valid * -1: otherwise. */ int tls1_cbc_remove_padding(const SSL *s, SSL3_RECORD *rec, size_t block_size, size_t mac_size) { size_t good; size_t padding_length, to_check, i; const size_t overhead = 1 /* padding length byte */ + mac_size; /* Check if version requires explicit IV */ if (SSL_USE_EXPLICIT_IV(s)) { /* * These lengths are all public so we can test them in non-constant * time. */ if (overhead + block_size > rec->length) return 0; /* We can now safely skip explicit IV */ rec->data += block_size; rec->input += block_size; rec->length -= block_size; rec->orig_len -= block_size; } else if (overhead > rec->length) return 0; padding_length = rec->data[rec->length - 1]; if (EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(s->enc_read_ctx)) & EVP_CIPH_FLAG_AEAD_CIPHER) { /* padding is already verified */ rec->length -= padding_length + 1; return 1; } good = constant_time_ge_s(rec->length, overhead + padding_length); /* * The padding consists of a length byte at the end of the record and * then that many bytes of padding, all with the same value as the length * byte. Thus, with the length byte included, there are i+1 bytes of * padding. We can't check just |padding_length+1| bytes because that * leaks decrypted information. Therefore we always have to check the * maximum amount of padding possible. (Again, the length of the record * is public information so we can use it.) */ to_check = 256; /* maximum amount of padding, inc length byte. */ if (to_check > rec->length) to_check = rec->length; for (i = 0; i < to_check; i++) { unsigned char mask = constant_time_ge_8_s(padding_length, i); unsigned char b = rec->data[rec->length - 1 - i]; /* * The final |padding_length+1| bytes should all have the value * |padding_length|. Therefore the XOR should be zero. */ good &= ~(mask & (padding_length ^ b)); } /* * If any of the final |padding_length+1| bytes had the wrong value, one * or more of the lower eight bits of |good| will be cleared. */ good = constant_time_eq_s(0xff, good & 0xff); rec->length -= good & (padding_length + 1); return constant_time_select_int_s(good, 1, -1); } /*- * ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in * constant time (independent of the concrete value of rec->length, which may * vary within a 256-byte window). * * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to * this function. * * On entry: * rec->orig_len >= md_size * md_size <= EVP_MAX_MD_SIZE * * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into * a single or pair of cache-lines, then the variable memory accesses don't * actually affect the timing. CPUs with smaller cache-lines [if any] are * not multi-core and are not considered vulnerable to cache-timing attacks. */ #define CBC_MAC_ROTATE_IN_PLACE int ssl3_cbc_copy_mac(unsigned char *out, const SSL3_RECORD *rec, size_t md_size) { #if defined(CBC_MAC_ROTATE_IN_PLACE) unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE]; unsigned char *rotated_mac; + char aux1, aux2, aux3, mask; #else unsigned char rotated_mac[EVP_MAX_MD_SIZE]; #endif /* * mac_end is the index of |rec->data| just after the end of the MAC. */ size_t mac_end = rec->length; size_t mac_start = mac_end - md_size; size_t in_mac; /* * scan_start contains the number of bytes that we can ignore because the * MAC's position can only vary by 255 bytes. */ size_t scan_start = 0; size_t i, j; size_t rotate_offset; if (!ossl_assert(rec->orig_len >= md_size && md_size <= EVP_MAX_MD_SIZE)) return 0; #if defined(CBC_MAC_ROTATE_IN_PLACE) rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf) & 63); #endif /* This information is public so it's safe to branch based on it. */ if (rec->orig_len > md_size + 255 + 1) scan_start = rec->orig_len - (md_size + 255 + 1); in_mac = 0; rotate_offset = 0; memset(rotated_mac, 0, md_size); for (i = scan_start, j = 0; i < rec->orig_len; i++) { size_t mac_started = constant_time_eq_s(i, mac_start); size_t mac_ended = constant_time_lt_s(i, mac_end); unsigned char b = rec->data[i]; in_mac |= mac_started; in_mac &= mac_ended; rotate_offset |= j & mac_started; rotated_mac[j++] |= b & in_mac; j &= constant_time_lt_s(j, md_size); } /* Now rotate the MAC */ #if defined(CBC_MAC_ROTATE_IN_PLACE) j = 0; for (i = 0; i < md_size; i++) { - /* in case cache-line is 32 bytes, touch second line */ - ((volatile unsigned char *)rotated_mac)[rotate_offset ^ 32]; - out[j++] = rotated_mac[rotate_offset++]; + /* + * in case cache-line is 32 bytes, + * load from both lines and select appropriately + */ + aux1 = rotated_mac[rotate_offset & ~32]; + aux2 = rotated_mac[rotate_offset | 32]; + mask = constant_time_eq_8(rotate_offset & ~32, rotate_offset); + aux3 = constant_time_select_8(mask, aux1, aux2); + out[j++] = aux3; + rotate_offset++; rotate_offset &= constant_time_lt_s(rotate_offset, md_size); } #else memset(out, 0, md_size); rotate_offset = md_size - rotate_offset; rotate_offset &= constant_time_lt_s(rotate_offset, md_size); for (i = 0; i < md_size; i++) { for (j = 0; j < md_size; j++) out[j] |= rotated_mac[i] & constant_time_eq_8_s(j, rotate_offset); rotate_offset++; rotate_offset &= constant_time_lt_s(rotate_offset, md_size); } #endif return 1; } int dtls1_process_record(SSL *s, DTLS1_BITMAP *bitmap) { int i; int enc_err; SSL_SESSION *sess; SSL3_RECORD *rr; int imac_size; size_t mac_size; unsigned char md[EVP_MAX_MD_SIZE]; size_t max_plain_length = SSL3_RT_MAX_PLAIN_LENGTH; rr = RECORD_LAYER_get_rrec(&s->rlayer); sess = s->session; /* * At this point, s->rlayer.packet_length == SSL3_RT_HEADER_LNGTH + rr->length, * and we have that many bytes in s->rlayer.packet */ rr->input = &(RECORD_LAYER_get_packet(&s->rlayer)[DTLS1_RT_HEADER_LENGTH]); /* * ok, we can now read from 's->rlayer.packet' data into 'rr'. rr->input * points at rr->length bytes, which need to be copied into rr->data by * either the decryption or by the decompression. When the data is 'copied' * into the rr->data buffer, rr->input will be pointed at the new buffer */ /* * We now have - encrypted [ MAC [ compressed [ plain ] ] ] rr->length * bytes of encrypted compressed stuff. */ /* check is not needed I believe */ if (rr->length > SSL3_RT_MAX_ENCRYPTED_LENGTH) { SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_DTLS1_PROCESS_RECORD, SSL_R_ENCRYPTED_LENGTH_TOO_LONG); return 0; } /* decrypt in place in 'rr->input' */ rr->data = rr->input; rr->orig_len = rr->length; if (SSL_READ_ETM(s) && s->read_hash) { unsigned char *mac; mac_size = EVP_MD_CTX_size(s->read_hash); if (!ossl_assert(mac_size <= EVP_MAX_MD_SIZE)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DTLS1_PROCESS_RECORD, ERR_R_INTERNAL_ERROR); return 0; } if (rr->orig_len < mac_size) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_DTLS1_PROCESS_RECORD, SSL_R_LENGTH_TOO_SHORT); return 0; } rr->length -= mac_size; mac = rr->data + rr->length; i = s->method->ssl3_enc->mac(s, rr, md, 0 /* not send */ ); if (i == 0 || CRYPTO_memcmp(md, mac, (size_t)mac_size) != 0) { SSLfatal(s, SSL_AD_BAD_RECORD_MAC, SSL_F_DTLS1_PROCESS_RECORD, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC); return 0; } } enc_err = s->method->ssl3_enc->enc(s, rr, 1, 0); /*- * enc_err is: * 0: (in non-constant time) if the record is publicly invalid. * 1: if the padding is valid * -1: if the padding is invalid */ if (enc_err == 0) { if (ossl_statem_in_error(s)) { /* SSLfatal() got called */ return 0; } /* For DTLS we simply ignore bad packets. */ rr->length = 0; RECORD_LAYER_reset_packet_length(&s->rlayer); return 0; } #ifdef SSL_DEBUG printf("dec %ld\n", rr->length); { size_t z; for (z = 0; z < rr->length; z++) printf("%02X%c", rr->data[z], ((z + 1) % 16) ? ' ' : '\n'); } printf("\n"); #endif /* r->length is now the compressed data plus mac */ if ((sess != NULL) && !SSL_READ_ETM(s) && (s->enc_read_ctx != NULL) && (EVP_MD_CTX_md(s->read_hash) != NULL)) { /* s->read_hash != NULL => mac_size != -1 */ unsigned char *mac = NULL; unsigned char mac_tmp[EVP_MAX_MD_SIZE]; /* TODO(size_t): Convert this to do size_t properly */ imac_size = EVP_MD_CTX_size(s->read_hash); if (imac_size < 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DTLS1_PROCESS_RECORD, ERR_LIB_EVP); return 0; } mac_size = (size_t)imac_size; if (!ossl_assert(mac_size <= EVP_MAX_MD_SIZE)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DTLS1_PROCESS_RECORD, ERR_R_INTERNAL_ERROR); return 0; } /* * orig_len is the length of the record before any padding was * removed. This is public information, as is the MAC in use, * therefore we can safely process the record in a different amount * of time if it's too short to possibly contain a MAC. */ if (rr->orig_len < mac_size || /* CBC records must have a padding length byte too. */ (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE && rr->orig_len < mac_size + 1)) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_DTLS1_PROCESS_RECORD, SSL_R_LENGTH_TOO_SHORT); return 0; } if (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE) { /* * We update the length so that the TLS header bytes can be * constructed correctly but we need to extract the MAC in * constant time from within the record, without leaking the * contents of the padding bytes. */ mac = mac_tmp; if (!ssl3_cbc_copy_mac(mac_tmp, rr, mac_size)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DTLS1_PROCESS_RECORD, ERR_R_INTERNAL_ERROR); return 0; } rr->length -= mac_size; } else { /* * In this case there's no padding, so |rec->orig_len| equals * |rec->length| and we checked that there's enough bytes for * |mac_size| above. */ rr->length -= mac_size; mac = &rr->data[rr->length]; } i = s->method->ssl3_enc->mac(s, rr, md, 0 /* not send */ ); if (i == 0 || mac == NULL || CRYPTO_memcmp(md, mac, mac_size) != 0) enc_err = -1; if (rr->length > SSL3_RT_MAX_COMPRESSED_LENGTH + mac_size) enc_err = -1; } if (enc_err < 0) { /* decryption failed, silently discard message */ rr->length = 0; RECORD_LAYER_reset_packet_length(&s->rlayer); return 0; } /* r->length is now just compressed */ if (s->expand != NULL) { if (rr->length > SSL3_RT_MAX_COMPRESSED_LENGTH) { SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_DTLS1_PROCESS_RECORD, SSL_R_COMPRESSED_LENGTH_TOO_LONG); return 0; } if (!ssl3_do_uncompress(s, rr)) { SSLfatal(s, SSL_AD_DECOMPRESSION_FAILURE, SSL_F_DTLS1_PROCESS_RECORD, SSL_R_BAD_DECOMPRESSION); return 0; } } /* use current Max Fragment Length setting if applicable */ if (s->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(s->session)) max_plain_length = GET_MAX_FRAGMENT_LENGTH(s->session); /* send overflow if the plaintext is too long now it has passed MAC */ if (rr->length > max_plain_length) { SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_DTLS1_PROCESS_RECORD, SSL_R_DATA_LENGTH_TOO_LONG); return 0; } rr->off = 0; /*- * So at this point the following is true * ssl->s3->rrec.type is the type of record * ssl->s3->rrec.length == number of bytes in record * ssl->s3->rrec.off == offset to first valid byte * ssl->s3->rrec.data == where to take bytes from, increment * after use :-). */ /* we have pulled in a full packet so zero things */ RECORD_LAYER_reset_packet_length(&s->rlayer); /* Mark receipt of record. */ dtls1_record_bitmap_update(s, bitmap); return 1; } /* * Retrieve a buffered record that belongs to the current epoch, i.e. processed */ #define dtls1_get_processed_record(s) \ dtls1_retrieve_buffered_record((s), \ &(DTLS_RECORD_LAYER_get_processed_rcds(&s->rlayer))) /*- * Call this to get a new input record. * It will return <= 0 if more data is needed, normally due to an error * or non-blocking IO. * When it finishes, one packet has been decoded and can be found in * ssl->s3->rrec.type - is the type of record * ssl->s3->rrec.data, - data * ssl->s3->rrec.length, - number of bytes */ /* used only by dtls1_read_bytes */ int dtls1_get_record(SSL *s) { int ssl_major, ssl_minor; int rret; size_t more, n; SSL3_RECORD *rr; unsigned char *p = NULL; unsigned short version; DTLS1_BITMAP *bitmap; unsigned int is_next_epoch; rr = RECORD_LAYER_get_rrec(&s->rlayer); again: /* * The epoch may have changed. If so, process all the pending records. * This is a non-blocking operation. */ if (!dtls1_process_buffered_records(s)) { /* SSLfatal() already called */ return -1; } /* if we're renegotiating, then there may be buffered records */ if (dtls1_get_processed_record(s)) return 1; /* get something from the wire */ /* check if we have the header */ if ((RECORD_LAYER_get_rstate(&s->rlayer) != SSL_ST_READ_BODY) || (RECORD_LAYER_get_packet_length(&s->rlayer) < DTLS1_RT_HEADER_LENGTH)) { rret = ssl3_read_n(s, DTLS1_RT_HEADER_LENGTH, SSL3_BUFFER_get_len(&s->rlayer.rbuf), 0, 1, &n); /* read timeout is handled by dtls1_read_bytes */ if (rret <= 0) { /* SSLfatal() already called if appropriate */ return rret; /* error or non-blocking */ } /* this packet contained a partial record, dump it */ if (RECORD_LAYER_get_packet_length(&s->rlayer) != DTLS1_RT_HEADER_LENGTH) { RECORD_LAYER_reset_packet_length(&s->rlayer); goto again; } RECORD_LAYER_set_rstate(&s->rlayer, SSL_ST_READ_BODY); p = RECORD_LAYER_get_packet(&s->rlayer); if (s->msg_callback) s->msg_callback(0, 0, SSL3_RT_HEADER, p, DTLS1_RT_HEADER_LENGTH, s, s->msg_callback_arg); /* Pull apart the header into the DTLS1_RECORD */ rr->type = *(p++); ssl_major = *(p++); ssl_minor = *(p++); version = (ssl_major << 8) | ssl_minor; /* sequence number is 64 bits, with top 2 bytes = epoch */ n2s(p, rr->epoch); memcpy(&(RECORD_LAYER_get_read_sequence(&s->rlayer)[2]), p, 6); p += 6; n2s(p, rr->length); rr->read = 0; /* * Lets check the version. We tolerate alerts that don't have the exact * version number (e.g. because of protocol version errors) */ if (!s->first_packet && rr->type != SSL3_RT_ALERT) { if (version != s->version) { /* unexpected version, silently discard */ rr->length = 0; rr->read = 1; RECORD_LAYER_reset_packet_length(&s->rlayer); goto again; } } if ((version & 0xff00) != (s->version & 0xff00)) { /* wrong version, silently discard record */ rr->length = 0; rr->read = 1; RECORD_LAYER_reset_packet_length(&s->rlayer); goto again; } if (rr->length > SSL3_RT_MAX_ENCRYPTED_LENGTH) { /* record too long, silently discard it */ rr->length = 0; rr->read = 1; RECORD_LAYER_reset_packet_length(&s->rlayer); goto again; } /* If received packet overflows own-client Max Fragment Length setting */ if (s->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(s->session) && rr->length > GET_MAX_FRAGMENT_LENGTH(s->session) + SSL3_RT_MAX_ENCRYPTED_OVERHEAD) { /* record too long, silently discard it */ rr->length = 0; rr->read = 1; RECORD_LAYER_reset_packet_length(&s->rlayer); goto again; } /* now s->rlayer.rstate == SSL_ST_READ_BODY */ } /* s->rlayer.rstate == SSL_ST_READ_BODY, get and decode the data */ if (rr->length > RECORD_LAYER_get_packet_length(&s->rlayer) - DTLS1_RT_HEADER_LENGTH) { /* now s->rlayer.packet_length == DTLS1_RT_HEADER_LENGTH */ more = rr->length; rret = ssl3_read_n(s, more, more, 1, 1, &n); /* this packet contained a partial record, dump it */ if (rret <= 0 || n != more) { if (ossl_statem_in_error(s)) { /* ssl3_read_n() called SSLfatal() */ return -1; } rr->length = 0; rr->read = 1; RECORD_LAYER_reset_packet_length(&s->rlayer); goto again; } /* * now n == rr->length, and s->rlayer.packet_length == * DTLS1_RT_HEADER_LENGTH + rr->length */ } /* set state for later operations */ RECORD_LAYER_set_rstate(&s->rlayer, SSL_ST_READ_HEADER); /* match epochs. NULL means the packet is dropped on the floor */ bitmap = dtls1_get_bitmap(s, rr, &is_next_epoch); if (bitmap == NULL) { rr->length = 0; RECORD_LAYER_reset_packet_length(&s->rlayer); /* dump this record */ goto again; /* get another record */ } #ifndef OPENSSL_NO_SCTP /* Only do replay check if no SCTP bio */ if (!BIO_dgram_is_sctp(SSL_get_rbio(s))) { #endif /* Check whether this is a repeat, or aged record. */ /* * TODO: Does it make sense to have replay protection in epoch 0 where * we have no integrity negotiated yet? */ if (!dtls1_record_replay_check(s, bitmap)) { rr->length = 0; rr->read = 1; RECORD_LAYER_reset_packet_length(&s->rlayer); /* dump this record */ goto again; /* get another record */ } #ifndef OPENSSL_NO_SCTP } #endif /* just read a 0 length packet */ if (rr->length == 0) { rr->read = 1; goto again; } /* * If this record is from the next epoch (either HM or ALERT), and a * handshake is currently in progress, buffer it since it cannot be * processed at this time. */ if (is_next_epoch) { if ((SSL_in_init(s) || ossl_statem_get_in_handshake(s))) { if (dtls1_buffer_record (s, &(DTLS_RECORD_LAYER_get_unprocessed_rcds(&s->rlayer)), rr->seq_num) < 0) { /* SSLfatal() already called */ return -1; } } rr->length = 0; rr->read = 1; RECORD_LAYER_reset_packet_length(&s->rlayer); goto again; } if (!dtls1_process_record(s, bitmap)) { if (ossl_statem_in_error(s)) { /* dtls1_process_record() called SSLfatal */ return -1; } rr->length = 0; rr->read = 1; RECORD_LAYER_reset_packet_length(&s->rlayer); /* dump this record */ goto again; /* get another record */ } return 1; } int dtls_buffer_listen_record(SSL *s, size_t len, unsigned char *seq, size_t off) { SSL3_RECORD *rr; rr = RECORD_LAYER_get_rrec(&s->rlayer); memset(rr, 0, sizeof(SSL3_RECORD)); rr->length = len; rr->type = SSL3_RT_HANDSHAKE; memcpy(rr->seq_num, seq, sizeof(rr->seq_num)); rr->off = off; s->rlayer.packet = RECORD_LAYER_get_rbuf(&s->rlayer)->buf; s->rlayer.packet_length = DTLS1_RT_HEADER_LENGTH + len; rr->data = s->rlayer.packet + DTLS1_RT_HEADER_LENGTH; if (dtls1_buffer_record(s, &(s->rlayer.d->processed_rcds), SSL3_RECORD_get_seq_num(s->rlayer.rrec)) <= 0) { /* SSLfatal() already called */ return 0; } return 1; } diff --git a/ssl/s3_lib.c b/ssl/s3_lib.c index e4cf007f82a5..32f9b257106b 100644 --- a/ssl/s3_lib.c +++ b/ssl/s3_lib.c @@ -1,4858 +1,4870 @@ /* * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * Copyright 2005 Nokia. All rights reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/nelem.h" #include "ssl_local.h" #include #include #include #include "internal/cryptlib.h" #define TLS13_NUM_CIPHERS OSSL_NELEM(tls13_ciphers) #define SSL3_NUM_CIPHERS OSSL_NELEM(ssl3_ciphers) #define SSL3_NUM_SCSVS OSSL_NELEM(ssl3_scsvs) /* TLSv1.3 downgrade protection sentinel values */ const unsigned char tls11downgrade[] = { 0x44, 0x4f, 0x57, 0x4e, 0x47, 0x52, 0x44, 0x00 }; const unsigned char tls12downgrade[] = { 0x44, 0x4f, 0x57, 0x4e, 0x47, 0x52, 0x44, 0x01 }; /* The list of available TLSv1.3 ciphers */ static SSL_CIPHER tls13_ciphers[] = { { 1, TLS1_3_RFC_AES_128_GCM_SHA256, TLS1_3_RFC_AES_128_GCM_SHA256, TLS1_3_CK_AES_128_GCM_SHA256, SSL_kANY, SSL_aANY, SSL_AES128GCM, SSL_AEAD, TLS1_3_VERSION, TLS1_3_VERSION, 0, 0, SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256, 128, 128, }, { 1, TLS1_3_RFC_AES_256_GCM_SHA384, TLS1_3_RFC_AES_256_GCM_SHA384, TLS1_3_CK_AES_256_GCM_SHA384, SSL_kANY, SSL_aANY, SSL_AES256GCM, SSL_AEAD, TLS1_3_VERSION, TLS1_3_VERSION, 0, 0, SSL_HIGH, SSL_HANDSHAKE_MAC_SHA384, 256, 256, }, #if !defined(OPENSSL_NO_CHACHA) && !defined(OPENSSL_NO_POLY1305) { 1, TLS1_3_RFC_CHACHA20_POLY1305_SHA256, TLS1_3_RFC_CHACHA20_POLY1305_SHA256, TLS1_3_CK_CHACHA20_POLY1305_SHA256, SSL_kANY, SSL_aANY, SSL_CHACHA20POLY1305, SSL_AEAD, TLS1_3_VERSION, TLS1_3_VERSION, 0, 0, SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256, 256, 256, }, #endif { 1, TLS1_3_RFC_AES_128_CCM_SHA256, TLS1_3_RFC_AES_128_CCM_SHA256, TLS1_3_CK_AES_128_CCM_SHA256, SSL_kANY, SSL_aANY, SSL_AES128CCM, SSL_AEAD, TLS1_3_VERSION, TLS1_3_VERSION, 0, 0, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256, 128, 128, }, { 1, TLS1_3_RFC_AES_128_CCM_8_SHA256, TLS1_3_RFC_AES_128_CCM_8_SHA256, TLS1_3_CK_AES_128_CCM_8_SHA256, SSL_kANY, SSL_aANY, SSL_AES128CCM8, SSL_AEAD, TLS1_3_VERSION, TLS1_3_VERSION, 0, 0, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256, 128, 128, } }; /* * The list of available ciphers, mostly organized into the following * groups: * Always there * EC * PSK * SRP (within that: RSA EC PSK) * Cipher families: Chacha/poly, Camellia, Gost, IDEA, SEED * Weak ciphers */ static SSL_CIPHER ssl3_ciphers[] = { { 1, SSL3_TXT_RSA_NULL_MD5, SSL3_RFC_RSA_NULL_MD5, SSL3_CK_RSA_NULL_MD5, SSL_kRSA, SSL_aRSA, SSL_eNULL, SSL_MD5, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_STRONG_NONE, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 0, 0, }, { 1, SSL3_TXT_RSA_NULL_SHA, SSL3_RFC_RSA_NULL_SHA, SSL3_CK_RSA_NULL_SHA, SSL_kRSA, SSL_aRSA, SSL_eNULL, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_STRONG_NONE | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 0, 0, }, #ifndef OPENSSL_NO_WEAK_SSL_CIPHERS { 1, SSL3_TXT_RSA_DES_192_CBC3_SHA, SSL3_RFC_RSA_DES_192_CBC3_SHA, SSL3_CK_RSA_DES_192_CBC3_SHA, SSL_kRSA, SSL_aRSA, SSL_3DES, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_MEDIUM | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 112, 168, }, { 1, SSL3_TXT_DHE_DSS_DES_192_CBC3_SHA, SSL3_RFC_DHE_DSS_DES_192_CBC3_SHA, SSL3_CK_DHE_DSS_DES_192_CBC3_SHA, SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_MEDIUM | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 112, 168, }, { 1, SSL3_TXT_DHE_RSA_DES_192_CBC3_SHA, SSL3_RFC_DHE_RSA_DES_192_CBC3_SHA, SSL3_CK_DHE_RSA_DES_192_CBC3_SHA, SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_MEDIUM | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 112, 168, }, { 1, SSL3_TXT_ADH_DES_192_CBC_SHA, SSL3_RFC_ADH_DES_192_CBC_SHA, SSL3_CK_ADH_DES_192_CBC_SHA, SSL_kDHE, SSL_aNULL, SSL_3DES, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_MEDIUM | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 112, 168, }, #endif { 1, TLS1_TXT_RSA_WITH_AES_128_SHA, TLS1_RFC_RSA_WITH_AES_128_SHA, TLS1_CK_RSA_WITH_AES_128_SHA, SSL_kRSA, SSL_aRSA, SSL_AES128, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_DHE_DSS_WITH_AES_128_SHA, TLS1_RFC_DHE_DSS_WITH_AES_128_SHA, TLS1_CK_DHE_DSS_WITH_AES_128_SHA, SSL_kDHE, SSL_aDSS, SSL_AES128, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_DHE_RSA_WITH_AES_128_SHA, TLS1_RFC_DHE_RSA_WITH_AES_128_SHA, TLS1_CK_DHE_RSA_WITH_AES_128_SHA, SSL_kDHE, SSL_aRSA, SSL_AES128, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_ADH_WITH_AES_128_SHA, TLS1_RFC_ADH_WITH_AES_128_SHA, TLS1_CK_ADH_WITH_AES_128_SHA, SSL_kDHE, SSL_aNULL, SSL_AES128, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_RSA_WITH_AES_256_SHA, TLS1_RFC_RSA_WITH_AES_256_SHA, TLS1_CK_RSA_WITH_AES_256_SHA, SSL_kRSA, SSL_aRSA, SSL_AES256, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, { 1, TLS1_TXT_DHE_DSS_WITH_AES_256_SHA, TLS1_RFC_DHE_DSS_WITH_AES_256_SHA, TLS1_CK_DHE_DSS_WITH_AES_256_SHA, SSL_kDHE, SSL_aDSS, SSL_AES256, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, { 1, TLS1_TXT_DHE_RSA_WITH_AES_256_SHA, TLS1_RFC_DHE_RSA_WITH_AES_256_SHA, TLS1_CK_DHE_RSA_WITH_AES_256_SHA, SSL_kDHE, SSL_aRSA, SSL_AES256, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, { 1, TLS1_TXT_ADH_WITH_AES_256_SHA, TLS1_RFC_ADH_WITH_AES_256_SHA, TLS1_CK_ADH_WITH_AES_256_SHA, SSL_kDHE, SSL_aNULL, SSL_AES256, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, { 1, TLS1_TXT_RSA_WITH_NULL_SHA256, TLS1_RFC_RSA_WITH_NULL_SHA256, TLS1_CK_RSA_WITH_NULL_SHA256, SSL_kRSA, SSL_aRSA, SSL_eNULL, SSL_SHA256, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_STRONG_NONE | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 0, 0, }, { 1, TLS1_TXT_RSA_WITH_AES_128_SHA256, TLS1_RFC_RSA_WITH_AES_128_SHA256, TLS1_CK_RSA_WITH_AES_128_SHA256, SSL_kRSA, SSL_aRSA, SSL_AES128, SSL_SHA256, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_RSA_WITH_AES_256_SHA256, TLS1_RFC_RSA_WITH_AES_256_SHA256, TLS1_CK_RSA_WITH_AES_256_SHA256, SSL_kRSA, SSL_aRSA, SSL_AES256, SSL_SHA256, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, { 1, TLS1_TXT_DHE_DSS_WITH_AES_128_SHA256, TLS1_RFC_DHE_DSS_WITH_AES_128_SHA256, TLS1_CK_DHE_DSS_WITH_AES_128_SHA256, SSL_kDHE, SSL_aDSS, SSL_AES128, SSL_SHA256, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_DHE_RSA_WITH_AES_128_SHA256, TLS1_RFC_DHE_RSA_WITH_AES_128_SHA256, TLS1_CK_DHE_RSA_WITH_AES_128_SHA256, SSL_kDHE, SSL_aRSA, SSL_AES128, SSL_SHA256, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_DHE_DSS_WITH_AES_256_SHA256, TLS1_RFC_DHE_DSS_WITH_AES_256_SHA256, TLS1_CK_DHE_DSS_WITH_AES_256_SHA256, SSL_kDHE, SSL_aDSS, SSL_AES256, SSL_SHA256, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, { 1, TLS1_TXT_DHE_RSA_WITH_AES_256_SHA256, TLS1_RFC_DHE_RSA_WITH_AES_256_SHA256, TLS1_CK_DHE_RSA_WITH_AES_256_SHA256, SSL_kDHE, SSL_aRSA, SSL_AES256, SSL_SHA256, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, { 1, TLS1_TXT_ADH_WITH_AES_128_SHA256, TLS1_RFC_ADH_WITH_AES_128_SHA256, TLS1_CK_ADH_WITH_AES_128_SHA256, SSL_kDHE, SSL_aNULL, SSL_AES128, SSL_SHA256, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_ADH_WITH_AES_256_SHA256, TLS1_RFC_ADH_WITH_AES_256_SHA256, TLS1_CK_ADH_WITH_AES_256_SHA256, SSL_kDHE, SSL_aNULL, SSL_AES256, SSL_SHA256, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, { 1, TLS1_TXT_RSA_WITH_AES_128_GCM_SHA256, TLS1_RFC_RSA_WITH_AES_128_GCM_SHA256, TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, SSL_kRSA, SSL_aRSA, SSL_AES128GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_RSA_WITH_AES_256_GCM_SHA384, TLS1_RFC_RSA_WITH_AES_256_GCM_SHA384, TLS1_CK_RSA_WITH_AES_256_GCM_SHA384, SSL_kRSA, SSL_aRSA, SSL_AES256GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_DHE_RSA_WITH_AES_128_GCM_SHA256, TLS1_RFC_DHE_RSA_WITH_AES_128_GCM_SHA256, TLS1_CK_DHE_RSA_WITH_AES_128_GCM_SHA256, SSL_kDHE, SSL_aRSA, SSL_AES128GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_DHE_RSA_WITH_AES_256_GCM_SHA384, TLS1_RFC_DHE_RSA_WITH_AES_256_GCM_SHA384, TLS1_CK_DHE_RSA_WITH_AES_256_GCM_SHA384, SSL_kDHE, SSL_aRSA, SSL_AES256GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_DHE_DSS_WITH_AES_128_GCM_SHA256, TLS1_RFC_DHE_DSS_WITH_AES_128_GCM_SHA256, TLS1_CK_DHE_DSS_WITH_AES_128_GCM_SHA256, SSL_kDHE, SSL_aDSS, SSL_AES128GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_DHE_DSS_WITH_AES_256_GCM_SHA384, TLS1_RFC_DHE_DSS_WITH_AES_256_GCM_SHA384, TLS1_CK_DHE_DSS_WITH_AES_256_GCM_SHA384, SSL_kDHE, SSL_aDSS, SSL_AES256GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_ADH_WITH_AES_128_GCM_SHA256, TLS1_RFC_ADH_WITH_AES_128_GCM_SHA256, TLS1_CK_ADH_WITH_AES_128_GCM_SHA256, SSL_kDHE, SSL_aNULL, SSL_AES128GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_ADH_WITH_AES_256_GCM_SHA384, TLS1_RFC_ADH_WITH_AES_256_GCM_SHA384, TLS1_CK_ADH_WITH_AES_256_GCM_SHA384, SSL_kDHE, SSL_aNULL, SSL_AES256GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_RSA_WITH_AES_128_CCM, TLS1_RFC_RSA_WITH_AES_128_CCM, TLS1_CK_RSA_WITH_AES_128_CCM, SSL_kRSA, SSL_aRSA, SSL_AES128CCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_RSA_WITH_AES_256_CCM, TLS1_RFC_RSA_WITH_AES_256_CCM, TLS1_CK_RSA_WITH_AES_256_CCM, SSL_kRSA, SSL_aRSA, SSL_AES256CCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256, }, { 1, TLS1_TXT_DHE_RSA_WITH_AES_128_CCM, TLS1_RFC_DHE_RSA_WITH_AES_128_CCM, TLS1_CK_DHE_RSA_WITH_AES_128_CCM, SSL_kDHE, SSL_aRSA, SSL_AES128CCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_DHE_RSA_WITH_AES_256_CCM, TLS1_RFC_DHE_RSA_WITH_AES_256_CCM, TLS1_CK_DHE_RSA_WITH_AES_256_CCM, SSL_kDHE, SSL_aRSA, SSL_AES256CCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256, }, { 1, TLS1_TXT_RSA_WITH_AES_128_CCM_8, TLS1_RFC_RSA_WITH_AES_128_CCM_8, TLS1_CK_RSA_WITH_AES_128_CCM_8, SSL_kRSA, SSL_aRSA, SSL_AES128CCM8, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_RSA_WITH_AES_256_CCM_8, TLS1_RFC_RSA_WITH_AES_256_CCM_8, TLS1_CK_RSA_WITH_AES_256_CCM_8, SSL_kRSA, SSL_aRSA, SSL_AES256CCM8, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256, }, { 1, TLS1_TXT_DHE_RSA_WITH_AES_128_CCM_8, TLS1_RFC_DHE_RSA_WITH_AES_128_CCM_8, TLS1_CK_DHE_RSA_WITH_AES_128_CCM_8, SSL_kDHE, SSL_aRSA, SSL_AES128CCM8, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_DHE_RSA_WITH_AES_256_CCM_8, TLS1_RFC_DHE_RSA_WITH_AES_256_CCM_8, TLS1_CK_DHE_RSA_WITH_AES_256_CCM_8, SSL_kDHE, SSL_aRSA, SSL_AES256CCM8, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256, }, { 1, TLS1_TXT_PSK_WITH_AES_128_CCM, TLS1_RFC_PSK_WITH_AES_128_CCM, TLS1_CK_PSK_WITH_AES_128_CCM, SSL_kPSK, SSL_aPSK, SSL_AES128CCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_PSK_WITH_AES_256_CCM, TLS1_RFC_PSK_WITH_AES_256_CCM, TLS1_CK_PSK_WITH_AES_256_CCM, SSL_kPSK, SSL_aPSK, SSL_AES256CCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256, }, { 1, TLS1_TXT_DHE_PSK_WITH_AES_128_CCM, TLS1_RFC_DHE_PSK_WITH_AES_128_CCM, TLS1_CK_DHE_PSK_WITH_AES_128_CCM, SSL_kDHEPSK, SSL_aPSK, SSL_AES128CCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_DHE_PSK_WITH_AES_256_CCM, TLS1_RFC_DHE_PSK_WITH_AES_256_CCM, TLS1_CK_DHE_PSK_WITH_AES_256_CCM, SSL_kDHEPSK, SSL_aPSK, SSL_AES256CCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256, }, { 1, TLS1_TXT_PSK_WITH_AES_128_CCM_8, TLS1_RFC_PSK_WITH_AES_128_CCM_8, TLS1_CK_PSK_WITH_AES_128_CCM_8, SSL_kPSK, SSL_aPSK, SSL_AES128CCM8, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_PSK_WITH_AES_256_CCM_8, TLS1_RFC_PSK_WITH_AES_256_CCM_8, TLS1_CK_PSK_WITH_AES_256_CCM_8, SSL_kPSK, SSL_aPSK, SSL_AES256CCM8, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256, }, { 1, TLS1_TXT_DHE_PSK_WITH_AES_128_CCM_8, TLS1_RFC_DHE_PSK_WITH_AES_128_CCM_8, TLS1_CK_DHE_PSK_WITH_AES_128_CCM_8, SSL_kDHEPSK, SSL_aPSK, SSL_AES128CCM8, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_DHE_PSK_WITH_AES_256_CCM_8, TLS1_RFC_DHE_PSK_WITH_AES_256_CCM_8, TLS1_CK_DHE_PSK_WITH_AES_256_CCM_8, SSL_kDHEPSK, SSL_aPSK, SSL_AES256CCM8, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256, }, { 1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_CCM, TLS1_RFC_ECDHE_ECDSA_WITH_AES_128_CCM, TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CCM, SSL_kECDHE, SSL_aECDSA, SSL_AES128CCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_CCM, TLS1_RFC_ECDHE_ECDSA_WITH_AES_256_CCM, TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CCM, SSL_kECDHE, SSL_aECDSA, SSL_AES256CCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256, }, { 1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_CCM_8, TLS1_RFC_ECDHE_ECDSA_WITH_AES_128_CCM_8, TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CCM_8, SSL_kECDHE, SSL_aECDSA, SSL_AES128CCM8, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_CCM_8, TLS1_RFC_ECDHE_ECDSA_WITH_AES_256_CCM_8, TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CCM_8, SSL_kECDHE, SSL_aECDSA, SSL_AES256CCM8, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256, }, { 1, TLS1_TXT_ECDHE_ECDSA_WITH_NULL_SHA, TLS1_RFC_ECDHE_ECDSA_WITH_NULL_SHA, TLS1_CK_ECDHE_ECDSA_WITH_NULL_SHA, SSL_kECDHE, SSL_aECDSA, SSL_eNULL, SSL_SHA1, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_STRONG_NONE | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 0, 0, }, # ifndef OPENSSL_NO_WEAK_SSL_CIPHERS { 1, TLS1_TXT_ECDHE_ECDSA_WITH_DES_192_CBC3_SHA, TLS1_RFC_ECDHE_ECDSA_WITH_DES_192_CBC3_SHA, TLS1_CK_ECDHE_ECDSA_WITH_DES_192_CBC3_SHA, SSL_kECDHE, SSL_aECDSA, SSL_3DES, SSL_SHA1, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_MEDIUM | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 112, 168, }, # endif { 1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, TLS1_RFC_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, SSL_kECDHE, SSL_aECDSA, SSL_AES128, SSL_SHA1, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, TLS1_RFC_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, SSL_kECDHE, SSL_aECDSA, SSL_AES256, SSL_SHA1, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, { 1, TLS1_TXT_ECDHE_RSA_WITH_NULL_SHA, TLS1_RFC_ECDHE_RSA_WITH_NULL_SHA, TLS1_CK_ECDHE_RSA_WITH_NULL_SHA, SSL_kECDHE, SSL_aRSA, SSL_eNULL, SSL_SHA1, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_STRONG_NONE | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 0, 0, }, # ifndef OPENSSL_NO_WEAK_SSL_CIPHERS { 1, TLS1_TXT_ECDHE_RSA_WITH_DES_192_CBC3_SHA, TLS1_RFC_ECDHE_RSA_WITH_DES_192_CBC3_SHA, TLS1_CK_ECDHE_RSA_WITH_DES_192_CBC3_SHA, SSL_kECDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_MEDIUM | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 112, 168, }, # endif { 1, TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA, TLS1_RFC_ECDHE_RSA_WITH_AES_128_CBC_SHA, TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA, SSL_kECDHE, SSL_aRSA, SSL_AES128, SSL_SHA1, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA, TLS1_RFC_ECDHE_RSA_WITH_AES_256_CBC_SHA, TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA, SSL_kECDHE, SSL_aRSA, SSL_AES256, SSL_SHA1, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, { 1, TLS1_TXT_ECDH_anon_WITH_NULL_SHA, TLS1_RFC_ECDH_anon_WITH_NULL_SHA, TLS1_CK_ECDH_anon_WITH_NULL_SHA, SSL_kECDHE, SSL_aNULL, SSL_eNULL, SSL_SHA1, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_STRONG_NONE | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 0, 0, }, # ifndef OPENSSL_NO_WEAK_SSL_CIPHERS { 1, TLS1_TXT_ECDH_anon_WITH_DES_192_CBC3_SHA, TLS1_RFC_ECDH_anon_WITH_DES_192_CBC3_SHA, TLS1_CK_ECDH_anon_WITH_DES_192_CBC3_SHA, SSL_kECDHE, SSL_aNULL, SSL_3DES, SSL_SHA1, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_MEDIUM | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 112, 168, }, # endif { 1, TLS1_TXT_ECDH_anon_WITH_AES_128_CBC_SHA, TLS1_RFC_ECDH_anon_WITH_AES_128_CBC_SHA, TLS1_CK_ECDH_anon_WITH_AES_128_CBC_SHA, SSL_kECDHE, SSL_aNULL, SSL_AES128, SSL_SHA1, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_ECDH_anon_WITH_AES_256_CBC_SHA, TLS1_RFC_ECDH_anon_WITH_AES_256_CBC_SHA, TLS1_CK_ECDH_anon_WITH_AES_256_CBC_SHA, SSL_kECDHE, SSL_aNULL, SSL_AES256, SSL_SHA1, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, { 1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_SHA256, TLS1_RFC_ECDHE_ECDSA_WITH_AES_128_SHA256, TLS1_CK_ECDHE_ECDSA_WITH_AES_128_SHA256, SSL_kECDHE, SSL_aECDSA, SSL_AES128, SSL_SHA256, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_SHA384, TLS1_RFC_ECDHE_ECDSA_WITH_AES_256_SHA384, TLS1_CK_ECDHE_ECDSA_WITH_AES_256_SHA384, SSL_kECDHE, SSL_aECDSA, SSL_AES256, SSL_SHA384, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_ECDHE_RSA_WITH_AES_128_SHA256, TLS1_RFC_ECDHE_RSA_WITH_AES_128_SHA256, TLS1_CK_ECDHE_RSA_WITH_AES_128_SHA256, SSL_kECDHE, SSL_aRSA, SSL_AES128, SSL_SHA256, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_ECDHE_RSA_WITH_AES_256_SHA384, TLS1_RFC_ECDHE_RSA_WITH_AES_256_SHA384, TLS1_CK_ECDHE_RSA_WITH_AES_256_SHA384, SSL_kECDHE, SSL_aRSA, SSL_AES256, SSL_SHA384, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, TLS1_RFC_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, SSL_kECDHE, SSL_aECDSA, SSL_AES128GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, TLS1_RFC_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, SSL_kECDHE, SSL_aECDSA, SSL_AES256GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_ECDHE_RSA_WITH_AES_128_GCM_SHA256, TLS1_RFC_ECDHE_RSA_WITH_AES_128_GCM_SHA256, TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, SSL_kECDHE, SSL_aRSA, SSL_AES128GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_ECDHE_RSA_WITH_AES_256_GCM_SHA384, TLS1_RFC_ECDHE_RSA_WITH_AES_256_GCM_SHA384, TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, SSL_kECDHE, SSL_aRSA, SSL_AES256GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_PSK_WITH_NULL_SHA, TLS1_RFC_PSK_WITH_NULL_SHA, TLS1_CK_PSK_WITH_NULL_SHA, SSL_kPSK, SSL_aPSK, SSL_eNULL, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_STRONG_NONE | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 0, 0, }, { 1, TLS1_TXT_DHE_PSK_WITH_NULL_SHA, TLS1_RFC_DHE_PSK_WITH_NULL_SHA, TLS1_CK_DHE_PSK_WITH_NULL_SHA, SSL_kDHEPSK, SSL_aPSK, SSL_eNULL, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_STRONG_NONE | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 0, 0, }, { 1, TLS1_TXT_RSA_PSK_WITH_NULL_SHA, TLS1_RFC_RSA_PSK_WITH_NULL_SHA, TLS1_CK_RSA_PSK_WITH_NULL_SHA, SSL_kRSAPSK, SSL_aRSA, SSL_eNULL, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_STRONG_NONE | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 0, 0, }, # ifndef OPENSSL_NO_WEAK_SSL_CIPHERS { 1, TLS1_TXT_PSK_WITH_3DES_EDE_CBC_SHA, TLS1_RFC_PSK_WITH_3DES_EDE_CBC_SHA, TLS1_CK_PSK_WITH_3DES_EDE_CBC_SHA, SSL_kPSK, SSL_aPSK, SSL_3DES, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_MEDIUM | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 112, 168, }, # endif { 1, TLS1_TXT_PSK_WITH_AES_128_CBC_SHA, TLS1_RFC_PSK_WITH_AES_128_CBC_SHA, TLS1_CK_PSK_WITH_AES_128_CBC_SHA, SSL_kPSK, SSL_aPSK, SSL_AES128, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_PSK_WITH_AES_256_CBC_SHA, TLS1_RFC_PSK_WITH_AES_256_CBC_SHA, TLS1_CK_PSK_WITH_AES_256_CBC_SHA, SSL_kPSK, SSL_aPSK, SSL_AES256, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, # ifndef OPENSSL_NO_WEAK_SSL_CIPHERS { 1, TLS1_TXT_DHE_PSK_WITH_3DES_EDE_CBC_SHA, TLS1_RFC_DHE_PSK_WITH_3DES_EDE_CBC_SHA, TLS1_CK_DHE_PSK_WITH_3DES_EDE_CBC_SHA, SSL_kDHEPSK, SSL_aPSK, SSL_3DES, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_MEDIUM | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 112, 168, }, # endif { 1, TLS1_TXT_DHE_PSK_WITH_AES_128_CBC_SHA, TLS1_RFC_DHE_PSK_WITH_AES_128_CBC_SHA, TLS1_CK_DHE_PSK_WITH_AES_128_CBC_SHA, SSL_kDHEPSK, SSL_aPSK, SSL_AES128, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_DHE_PSK_WITH_AES_256_CBC_SHA, TLS1_RFC_DHE_PSK_WITH_AES_256_CBC_SHA, TLS1_CK_DHE_PSK_WITH_AES_256_CBC_SHA, SSL_kDHEPSK, SSL_aPSK, SSL_AES256, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, # ifndef OPENSSL_NO_WEAK_SSL_CIPHERS { 1, TLS1_TXT_RSA_PSK_WITH_3DES_EDE_CBC_SHA, TLS1_RFC_RSA_PSK_WITH_3DES_EDE_CBC_SHA, TLS1_CK_RSA_PSK_WITH_3DES_EDE_CBC_SHA, SSL_kRSAPSK, SSL_aRSA, SSL_3DES, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_MEDIUM | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 112, 168, }, # endif { 1, TLS1_TXT_RSA_PSK_WITH_AES_128_CBC_SHA, TLS1_RFC_RSA_PSK_WITH_AES_128_CBC_SHA, TLS1_CK_RSA_PSK_WITH_AES_128_CBC_SHA, SSL_kRSAPSK, SSL_aRSA, SSL_AES128, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_RSA_PSK_WITH_AES_256_CBC_SHA, TLS1_RFC_RSA_PSK_WITH_AES_256_CBC_SHA, TLS1_CK_RSA_PSK_WITH_AES_256_CBC_SHA, SSL_kRSAPSK, SSL_aRSA, SSL_AES256, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, { 1, TLS1_TXT_PSK_WITH_AES_128_GCM_SHA256, TLS1_RFC_PSK_WITH_AES_128_GCM_SHA256, TLS1_CK_PSK_WITH_AES_128_GCM_SHA256, SSL_kPSK, SSL_aPSK, SSL_AES128GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_PSK_WITH_AES_256_GCM_SHA384, TLS1_RFC_PSK_WITH_AES_256_GCM_SHA384, TLS1_CK_PSK_WITH_AES_256_GCM_SHA384, SSL_kPSK, SSL_aPSK, SSL_AES256GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_DHE_PSK_WITH_AES_128_GCM_SHA256, TLS1_RFC_DHE_PSK_WITH_AES_128_GCM_SHA256, TLS1_CK_DHE_PSK_WITH_AES_128_GCM_SHA256, SSL_kDHEPSK, SSL_aPSK, SSL_AES128GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_DHE_PSK_WITH_AES_256_GCM_SHA384, TLS1_RFC_DHE_PSK_WITH_AES_256_GCM_SHA384, TLS1_CK_DHE_PSK_WITH_AES_256_GCM_SHA384, SSL_kDHEPSK, SSL_aPSK, SSL_AES256GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_RSA_PSK_WITH_AES_128_GCM_SHA256, TLS1_RFC_RSA_PSK_WITH_AES_128_GCM_SHA256, TLS1_CK_RSA_PSK_WITH_AES_128_GCM_SHA256, SSL_kRSAPSK, SSL_aRSA, SSL_AES128GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_RSA_PSK_WITH_AES_256_GCM_SHA384, TLS1_RFC_RSA_PSK_WITH_AES_256_GCM_SHA384, TLS1_CK_RSA_PSK_WITH_AES_256_GCM_SHA384, SSL_kRSAPSK, SSL_aRSA, SSL_AES256GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_PSK_WITH_AES_128_CBC_SHA256, TLS1_RFC_PSK_WITH_AES_128_CBC_SHA256, TLS1_CK_PSK_WITH_AES_128_CBC_SHA256, SSL_kPSK, SSL_aPSK, SSL_AES128, SSL_SHA256, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_PSK_WITH_AES_256_CBC_SHA384, TLS1_RFC_PSK_WITH_AES_256_CBC_SHA384, TLS1_CK_PSK_WITH_AES_256_CBC_SHA384, SSL_kPSK, SSL_aPSK, SSL_AES256, SSL_SHA384, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_PSK_WITH_NULL_SHA256, TLS1_RFC_PSK_WITH_NULL_SHA256, TLS1_CK_PSK_WITH_NULL_SHA256, SSL_kPSK, SSL_aPSK, SSL_eNULL, SSL_SHA256, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_STRONG_NONE | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 0, 0, }, { 1, TLS1_TXT_PSK_WITH_NULL_SHA384, TLS1_RFC_PSK_WITH_NULL_SHA384, TLS1_CK_PSK_WITH_NULL_SHA384, SSL_kPSK, SSL_aPSK, SSL_eNULL, SSL_SHA384, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_STRONG_NONE | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 0, 0, }, { 1, TLS1_TXT_DHE_PSK_WITH_AES_128_CBC_SHA256, TLS1_RFC_DHE_PSK_WITH_AES_128_CBC_SHA256, TLS1_CK_DHE_PSK_WITH_AES_128_CBC_SHA256, SSL_kDHEPSK, SSL_aPSK, SSL_AES128, SSL_SHA256, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_DHE_PSK_WITH_AES_256_CBC_SHA384, TLS1_RFC_DHE_PSK_WITH_AES_256_CBC_SHA384, TLS1_CK_DHE_PSK_WITH_AES_256_CBC_SHA384, SSL_kDHEPSK, SSL_aPSK, SSL_AES256, SSL_SHA384, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_DHE_PSK_WITH_NULL_SHA256, TLS1_RFC_DHE_PSK_WITH_NULL_SHA256, TLS1_CK_DHE_PSK_WITH_NULL_SHA256, SSL_kDHEPSK, SSL_aPSK, SSL_eNULL, SSL_SHA256, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_STRONG_NONE | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 0, 0, }, { 1, TLS1_TXT_DHE_PSK_WITH_NULL_SHA384, TLS1_RFC_DHE_PSK_WITH_NULL_SHA384, TLS1_CK_DHE_PSK_WITH_NULL_SHA384, SSL_kDHEPSK, SSL_aPSK, SSL_eNULL, SSL_SHA384, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_STRONG_NONE | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 0, 0, }, { 1, TLS1_TXT_RSA_PSK_WITH_AES_128_CBC_SHA256, TLS1_RFC_RSA_PSK_WITH_AES_128_CBC_SHA256, TLS1_CK_RSA_PSK_WITH_AES_128_CBC_SHA256, SSL_kRSAPSK, SSL_aRSA, SSL_AES128, SSL_SHA256, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_RSA_PSK_WITH_AES_256_CBC_SHA384, TLS1_RFC_RSA_PSK_WITH_AES_256_CBC_SHA384, TLS1_CK_RSA_PSK_WITH_AES_256_CBC_SHA384, SSL_kRSAPSK, SSL_aRSA, SSL_AES256, SSL_SHA384, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_RSA_PSK_WITH_NULL_SHA256, TLS1_RFC_RSA_PSK_WITH_NULL_SHA256, TLS1_CK_RSA_PSK_WITH_NULL_SHA256, SSL_kRSAPSK, SSL_aRSA, SSL_eNULL, SSL_SHA256, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_STRONG_NONE | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 0, 0, }, { 1, TLS1_TXT_RSA_PSK_WITH_NULL_SHA384, TLS1_RFC_RSA_PSK_WITH_NULL_SHA384, TLS1_CK_RSA_PSK_WITH_NULL_SHA384, SSL_kRSAPSK, SSL_aRSA, SSL_eNULL, SSL_SHA384, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_STRONG_NONE | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 0, 0, }, # ifndef OPENSSL_NO_WEAK_SSL_CIPHERS { 1, TLS1_TXT_ECDHE_PSK_WITH_3DES_EDE_CBC_SHA, TLS1_RFC_ECDHE_PSK_WITH_3DES_EDE_CBC_SHA, TLS1_CK_ECDHE_PSK_WITH_3DES_EDE_CBC_SHA, SSL_kECDHEPSK, SSL_aPSK, SSL_3DES, SSL_SHA1, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_MEDIUM | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 112, 168, }, # endif { 1, TLS1_TXT_ECDHE_PSK_WITH_AES_128_CBC_SHA, TLS1_RFC_ECDHE_PSK_WITH_AES_128_CBC_SHA, TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA, SSL_kECDHEPSK, SSL_aPSK, SSL_AES128, SSL_SHA1, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_ECDHE_PSK_WITH_AES_256_CBC_SHA, TLS1_RFC_ECDHE_PSK_WITH_AES_256_CBC_SHA, TLS1_CK_ECDHE_PSK_WITH_AES_256_CBC_SHA, SSL_kECDHEPSK, SSL_aPSK, SSL_AES256, SSL_SHA1, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, { 1, TLS1_TXT_ECDHE_PSK_WITH_AES_128_CBC_SHA256, TLS1_RFC_ECDHE_PSK_WITH_AES_128_CBC_SHA256, TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA256, SSL_kECDHEPSK, SSL_aPSK, SSL_AES128, SSL_SHA256, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_ECDHE_PSK_WITH_AES_256_CBC_SHA384, TLS1_RFC_ECDHE_PSK_WITH_AES_256_CBC_SHA384, TLS1_CK_ECDHE_PSK_WITH_AES_256_CBC_SHA384, SSL_kECDHEPSK, SSL_aPSK, SSL_AES256, SSL_SHA384, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_ECDHE_PSK_WITH_NULL_SHA, TLS1_RFC_ECDHE_PSK_WITH_NULL_SHA, TLS1_CK_ECDHE_PSK_WITH_NULL_SHA, SSL_kECDHEPSK, SSL_aPSK, SSL_eNULL, SSL_SHA1, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_STRONG_NONE | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 0, 0, }, { 1, TLS1_TXT_ECDHE_PSK_WITH_NULL_SHA256, TLS1_RFC_ECDHE_PSK_WITH_NULL_SHA256, TLS1_CK_ECDHE_PSK_WITH_NULL_SHA256, SSL_kECDHEPSK, SSL_aPSK, SSL_eNULL, SSL_SHA256, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_STRONG_NONE | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 0, 0, }, { 1, TLS1_TXT_ECDHE_PSK_WITH_NULL_SHA384, TLS1_RFC_ECDHE_PSK_WITH_NULL_SHA384, TLS1_CK_ECDHE_PSK_WITH_NULL_SHA384, SSL_kECDHEPSK, SSL_aPSK, SSL_eNULL, SSL_SHA384, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_STRONG_NONE | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 0, 0, }, # ifndef OPENSSL_NO_WEAK_SSL_CIPHERS { 1, TLS1_TXT_SRP_SHA_WITH_3DES_EDE_CBC_SHA, TLS1_RFC_SRP_SHA_WITH_3DES_EDE_CBC_SHA, TLS1_CK_SRP_SHA_WITH_3DES_EDE_CBC_SHA, SSL_kSRP, SSL_aSRP, SSL_3DES, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 112, 168, }, { 1, TLS1_TXT_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA, TLS1_RFC_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA, TLS1_CK_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA, SSL_kSRP, SSL_aRSA, SSL_3DES, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 112, 168, }, { 1, TLS1_TXT_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA, TLS1_RFC_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA, TLS1_CK_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA, SSL_kSRP, SSL_aDSS, SSL_3DES, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 112, 168, }, # endif { 1, TLS1_TXT_SRP_SHA_WITH_AES_128_CBC_SHA, TLS1_RFC_SRP_SHA_WITH_AES_128_CBC_SHA, TLS1_CK_SRP_SHA_WITH_AES_128_CBC_SHA, SSL_kSRP, SSL_aSRP, SSL_AES128, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_SRP_SHA_RSA_WITH_AES_128_CBC_SHA, TLS1_RFC_SRP_SHA_RSA_WITH_AES_128_CBC_SHA, TLS1_CK_SRP_SHA_RSA_WITH_AES_128_CBC_SHA, SSL_kSRP, SSL_aRSA, SSL_AES128, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_SRP_SHA_DSS_WITH_AES_128_CBC_SHA, TLS1_RFC_SRP_SHA_DSS_WITH_AES_128_CBC_SHA, TLS1_CK_SRP_SHA_DSS_WITH_AES_128_CBC_SHA, SSL_kSRP, SSL_aDSS, SSL_AES128, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_SRP_SHA_WITH_AES_256_CBC_SHA, TLS1_RFC_SRP_SHA_WITH_AES_256_CBC_SHA, TLS1_CK_SRP_SHA_WITH_AES_256_CBC_SHA, SSL_kSRP, SSL_aSRP, SSL_AES256, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, { 1, TLS1_TXT_SRP_SHA_RSA_WITH_AES_256_CBC_SHA, TLS1_RFC_SRP_SHA_RSA_WITH_AES_256_CBC_SHA, TLS1_CK_SRP_SHA_RSA_WITH_AES_256_CBC_SHA, SSL_kSRP, SSL_aRSA, SSL_AES256, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_HIGH, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, { 1, TLS1_TXT_SRP_SHA_DSS_WITH_AES_256_CBC_SHA, TLS1_RFC_SRP_SHA_DSS_WITH_AES_256_CBC_SHA, TLS1_CK_SRP_SHA_DSS_WITH_AES_256_CBC_SHA, SSL_kSRP, SSL_aDSS, SSL_AES256, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, #if !defined(OPENSSL_NO_CHACHA) && !defined(OPENSSL_NO_POLY1305) { 1, TLS1_TXT_DHE_RSA_WITH_CHACHA20_POLY1305, TLS1_RFC_DHE_RSA_WITH_CHACHA20_POLY1305, TLS1_CK_DHE_RSA_WITH_CHACHA20_POLY1305, SSL_kDHE, SSL_aRSA, SSL_CHACHA20POLY1305, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256, }, { 1, TLS1_TXT_ECDHE_RSA_WITH_CHACHA20_POLY1305, TLS1_RFC_ECDHE_RSA_WITH_CHACHA20_POLY1305, TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305, SSL_kECDHE, SSL_aRSA, SSL_CHACHA20POLY1305, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256, }, { 1, TLS1_TXT_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, TLS1_RFC_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, SSL_kECDHE, SSL_aECDSA, SSL_CHACHA20POLY1305, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256, }, { 1, TLS1_TXT_PSK_WITH_CHACHA20_POLY1305, TLS1_RFC_PSK_WITH_CHACHA20_POLY1305, TLS1_CK_PSK_WITH_CHACHA20_POLY1305, SSL_kPSK, SSL_aPSK, SSL_CHACHA20POLY1305, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256, }, { 1, TLS1_TXT_ECDHE_PSK_WITH_CHACHA20_POLY1305, TLS1_RFC_ECDHE_PSK_WITH_CHACHA20_POLY1305, TLS1_CK_ECDHE_PSK_WITH_CHACHA20_POLY1305, SSL_kECDHEPSK, SSL_aPSK, SSL_CHACHA20POLY1305, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256, }, { 1, TLS1_TXT_DHE_PSK_WITH_CHACHA20_POLY1305, TLS1_RFC_DHE_PSK_WITH_CHACHA20_POLY1305, TLS1_CK_DHE_PSK_WITH_CHACHA20_POLY1305, SSL_kDHEPSK, SSL_aPSK, SSL_CHACHA20POLY1305, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256, }, { 1, TLS1_TXT_RSA_PSK_WITH_CHACHA20_POLY1305, TLS1_RFC_RSA_PSK_WITH_CHACHA20_POLY1305, TLS1_CK_RSA_PSK_WITH_CHACHA20_POLY1305, SSL_kRSAPSK, SSL_aRSA, SSL_CHACHA20POLY1305, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256, }, #endif /* !defined(OPENSSL_NO_CHACHA) && * !defined(OPENSSL_NO_POLY1305) */ #ifndef OPENSSL_NO_CAMELLIA { 1, TLS1_TXT_RSA_WITH_CAMELLIA_128_CBC_SHA256, TLS1_RFC_RSA_WITH_CAMELLIA_128_CBC_SHA256, TLS1_CK_RSA_WITH_CAMELLIA_128_CBC_SHA256, SSL_kRSA, SSL_aRSA, SSL_CAMELLIA128, SSL_SHA256, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA256, TLS1_RFC_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA256, TLS1_CK_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA256, SSL_kDHE, SSL_aDSS, SSL_CAMELLIA128, SSL_SHA256, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256, TLS1_RFC_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256, TLS1_CK_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256, SSL_kDHE, SSL_aRSA, SSL_CAMELLIA128, SSL_SHA256, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_ADH_WITH_CAMELLIA_128_CBC_SHA256, TLS1_RFC_ADH_WITH_CAMELLIA_128_CBC_SHA256, TLS1_CK_ADH_WITH_CAMELLIA_128_CBC_SHA256, SSL_kDHE, SSL_aNULL, SSL_CAMELLIA128, SSL_SHA256, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_RSA_WITH_CAMELLIA_256_CBC_SHA256, TLS1_RFC_RSA_WITH_CAMELLIA_256_CBC_SHA256, TLS1_CK_RSA_WITH_CAMELLIA_256_CBC_SHA256, SSL_kRSA, SSL_aRSA, SSL_CAMELLIA256, SSL_SHA256, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256, }, { 1, TLS1_TXT_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA256, TLS1_RFC_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA256, TLS1_CK_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA256, SSL_kDHE, SSL_aDSS, SSL_CAMELLIA256, SSL_SHA256, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256, }, { 1, TLS1_TXT_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256, TLS1_RFC_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256, TLS1_CK_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256, SSL_kDHE, SSL_aRSA, SSL_CAMELLIA256, SSL_SHA256, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256, }, { 1, TLS1_TXT_ADH_WITH_CAMELLIA_256_CBC_SHA256, TLS1_RFC_ADH_WITH_CAMELLIA_256_CBC_SHA256, TLS1_CK_ADH_WITH_CAMELLIA_256_CBC_SHA256, SSL_kDHE, SSL_aNULL, SSL_CAMELLIA256, SSL_SHA256, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256, }, { 1, TLS1_TXT_RSA_WITH_CAMELLIA_256_CBC_SHA, TLS1_RFC_RSA_WITH_CAMELLIA_256_CBC_SHA, TLS1_CK_RSA_WITH_CAMELLIA_256_CBC_SHA, SSL_kRSA, SSL_aRSA, SSL_CAMELLIA256, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, { 1, TLS1_TXT_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA, TLS1_RFC_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA, TLS1_CK_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA, SSL_kDHE, SSL_aDSS, SSL_CAMELLIA256, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, { 1, TLS1_TXT_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA, TLS1_RFC_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA, TLS1_CK_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA, SSL_kDHE, SSL_aRSA, SSL_CAMELLIA256, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, { 1, TLS1_TXT_ADH_WITH_CAMELLIA_256_CBC_SHA, TLS1_RFC_ADH_WITH_CAMELLIA_256_CBC_SHA, TLS1_CK_ADH_WITH_CAMELLIA_256_CBC_SHA, SSL_kDHE, SSL_aNULL, SSL_CAMELLIA256, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, { 1, TLS1_TXT_RSA_WITH_CAMELLIA_128_CBC_SHA, TLS1_RFC_RSA_WITH_CAMELLIA_128_CBC_SHA, TLS1_CK_RSA_WITH_CAMELLIA_128_CBC_SHA, SSL_kRSA, SSL_aRSA, SSL_CAMELLIA128, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA, TLS1_RFC_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA, TLS1_CK_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA, SSL_kDHE, SSL_aDSS, SSL_CAMELLIA128, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA, TLS1_RFC_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA, TLS1_CK_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA, SSL_kDHE, SSL_aRSA, SSL_CAMELLIA128, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_ADH_WITH_CAMELLIA_128_CBC_SHA, TLS1_RFC_ADH_WITH_CAMELLIA_128_CBC_SHA, TLS1_CK_ADH_WITH_CAMELLIA_128_CBC_SHA, SSL_kDHE, SSL_aNULL, SSL_CAMELLIA128, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_ECDHE_ECDSA_WITH_CAMELLIA_128_CBC_SHA256, TLS1_RFC_ECDHE_ECDSA_WITH_CAMELLIA_128_CBC_SHA256, TLS1_CK_ECDHE_ECDSA_WITH_CAMELLIA_128_CBC_SHA256, SSL_kECDHE, SSL_aECDSA, SSL_CAMELLIA128, SSL_SHA256, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_ECDHE_ECDSA_WITH_CAMELLIA_256_CBC_SHA384, TLS1_RFC_ECDHE_ECDSA_WITH_CAMELLIA_256_CBC_SHA384, TLS1_CK_ECDHE_ECDSA_WITH_CAMELLIA_256_CBC_SHA384, SSL_kECDHE, SSL_aECDSA, SSL_CAMELLIA256, SSL_SHA384, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_ECDHE_RSA_WITH_CAMELLIA_128_CBC_SHA256, TLS1_RFC_ECDHE_RSA_WITH_CAMELLIA_128_CBC_SHA256, TLS1_CK_ECDHE_RSA_WITH_CAMELLIA_128_CBC_SHA256, SSL_kECDHE, SSL_aRSA, SSL_CAMELLIA128, SSL_SHA256, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_ECDHE_RSA_WITH_CAMELLIA_256_CBC_SHA384, TLS1_RFC_ECDHE_RSA_WITH_CAMELLIA_256_CBC_SHA384, TLS1_CK_ECDHE_RSA_WITH_CAMELLIA_256_CBC_SHA384, SSL_kECDHE, SSL_aRSA, SSL_CAMELLIA256, SSL_SHA384, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_PSK_WITH_CAMELLIA_128_CBC_SHA256, TLS1_RFC_PSK_WITH_CAMELLIA_128_CBC_SHA256, TLS1_CK_PSK_WITH_CAMELLIA_128_CBC_SHA256, SSL_kPSK, SSL_aPSK, SSL_CAMELLIA128, SSL_SHA256, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_PSK_WITH_CAMELLIA_256_CBC_SHA384, TLS1_RFC_PSK_WITH_CAMELLIA_256_CBC_SHA384, TLS1_CK_PSK_WITH_CAMELLIA_256_CBC_SHA384, SSL_kPSK, SSL_aPSK, SSL_CAMELLIA256, SSL_SHA384, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_DHE_PSK_WITH_CAMELLIA_128_CBC_SHA256, TLS1_RFC_DHE_PSK_WITH_CAMELLIA_128_CBC_SHA256, TLS1_CK_DHE_PSK_WITH_CAMELLIA_128_CBC_SHA256, SSL_kDHEPSK, SSL_aPSK, SSL_CAMELLIA128, SSL_SHA256, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_DHE_PSK_WITH_CAMELLIA_256_CBC_SHA384, TLS1_RFC_DHE_PSK_WITH_CAMELLIA_256_CBC_SHA384, TLS1_CK_DHE_PSK_WITH_CAMELLIA_256_CBC_SHA384, SSL_kDHEPSK, SSL_aPSK, SSL_CAMELLIA256, SSL_SHA384, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_RSA_PSK_WITH_CAMELLIA_128_CBC_SHA256, TLS1_RFC_RSA_PSK_WITH_CAMELLIA_128_CBC_SHA256, TLS1_CK_RSA_PSK_WITH_CAMELLIA_128_CBC_SHA256, SSL_kRSAPSK, SSL_aRSA, SSL_CAMELLIA128, SSL_SHA256, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_RSA_PSK_WITH_CAMELLIA_256_CBC_SHA384, TLS1_RFC_RSA_PSK_WITH_CAMELLIA_256_CBC_SHA384, TLS1_CK_RSA_PSK_WITH_CAMELLIA_256_CBC_SHA384, SSL_kRSAPSK, SSL_aRSA, SSL_CAMELLIA256, SSL_SHA384, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_ECDHE_PSK_WITH_CAMELLIA_128_CBC_SHA256, TLS1_RFC_ECDHE_PSK_WITH_CAMELLIA_128_CBC_SHA256, TLS1_CK_ECDHE_PSK_WITH_CAMELLIA_128_CBC_SHA256, SSL_kECDHEPSK, SSL_aPSK, SSL_CAMELLIA128, SSL_SHA256, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_ECDHE_PSK_WITH_CAMELLIA_256_CBC_SHA384, TLS1_RFC_ECDHE_PSK_WITH_CAMELLIA_256_CBC_SHA384, TLS1_CK_ECDHE_PSK_WITH_CAMELLIA_256_CBC_SHA384, SSL_kECDHEPSK, SSL_aPSK, SSL_CAMELLIA256, SSL_SHA384, TLS1_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, #endif /* OPENSSL_NO_CAMELLIA */ #ifndef OPENSSL_NO_GOST { 1, "GOST2001-GOST89-GOST89", "TLS_GOSTR341001_WITH_28147_CNT_IMIT", 0x3000081, SSL_kGOST, SSL_aGOST01, SSL_eGOST2814789CNT, SSL_GOST89MAC, TLS1_VERSION, TLS1_2_VERSION, 0, 0, SSL_HIGH, SSL_HANDSHAKE_MAC_GOST94 | TLS1_PRF_GOST94 | TLS1_STREAM_MAC, 256, 256, }, { 1, "GOST2001-NULL-GOST94", "TLS_GOSTR341001_WITH_NULL_GOSTR3411", 0x3000083, SSL_kGOST, SSL_aGOST01, SSL_eNULL, SSL_GOST94, TLS1_VERSION, TLS1_2_VERSION, 0, 0, SSL_STRONG_NONE, SSL_HANDSHAKE_MAC_GOST94 | TLS1_PRF_GOST94, 0, 0, }, { 1, "GOST2012-GOST8912-GOST8912", NULL, 0x0300ff85, SSL_kGOST, SSL_aGOST12 | SSL_aGOST01, SSL_eGOST2814789CNT12, SSL_GOST89MAC12, TLS1_VERSION, TLS1_2_VERSION, 0, 0, SSL_HIGH, SSL_HANDSHAKE_MAC_GOST12_256 | TLS1_PRF_GOST12_256 | TLS1_STREAM_MAC, 256, 256, }, { 1, "GOST2012-NULL-GOST12", NULL, 0x0300ff87, SSL_kGOST, SSL_aGOST12 | SSL_aGOST01, SSL_eNULL, SSL_GOST12_256, TLS1_VERSION, TLS1_2_VERSION, 0, 0, SSL_STRONG_NONE, SSL_HANDSHAKE_MAC_GOST12_256 | TLS1_PRF_GOST12_256 | TLS1_STREAM_MAC, 0, 0, }, #endif /* OPENSSL_NO_GOST */ #ifndef OPENSSL_NO_IDEA { 1, SSL3_TXT_RSA_IDEA_128_SHA, SSL3_RFC_RSA_IDEA_128_SHA, SSL3_CK_RSA_IDEA_128_SHA, SSL_kRSA, SSL_aRSA, SSL_IDEA, SSL_SHA1, SSL3_VERSION, TLS1_1_VERSION, DTLS1_BAD_VER, DTLS1_VERSION, SSL_NOT_DEFAULT | SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, #endif #ifndef OPENSSL_NO_SEED { 1, TLS1_TXT_RSA_WITH_SEED_SHA, TLS1_RFC_RSA_WITH_SEED_SHA, TLS1_CK_RSA_WITH_SEED_SHA, SSL_kRSA, SSL_aRSA, SSL_SEED, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_DHE_DSS_WITH_SEED_SHA, TLS1_RFC_DHE_DSS_WITH_SEED_SHA, TLS1_CK_DHE_DSS_WITH_SEED_SHA, SSL_kDHE, SSL_aDSS, SSL_SEED, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_DHE_RSA_WITH_SEED_SHA, TLS1_RFC_DHE_RSA_WITH_SEED_SHA, TLS1_CK_DHE_RSA_WITH_SEED_SHA, SSL_kDHE, SSL_aRSA, SSL_SEED, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_ADH_WITH_SEED_SHA, TLS1_RFC_ADH_WITH_SEED_SHA, TLS1_CK_ADH_WITH_SEED_SHA, SSL_kDHE, SSL_aNULL, SSL_SEED, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, DTLS1_BAD_VER, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, #endif /* OPENSSL_NO_SEED */ #ifndef OPENSSL_NO_WEAK_SSL_CIPHERS { 1, SSL3_TXT_RSA_RC4_128_MD5, SSL3_RFC_RSA_RC4_128_MD5, SSL3_CK_RSA_RC4_128_MD5, SSL_kRSA, SSL_aRSA, SSL_RC4, SSL_MD5, SSL3_VERSION, TLS1_2_VERSION, 0, 0, SSL_NOT_DEFAULT | SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, SSL3_TXT_RSA_RC4_128_SHA, SSL3_RFC_RSA_RC4_128_SHA, SSL3_CK_RSA_RC4_128_SHA, SSL_kRSA, SSL_aRSA, SSL_RC4, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, 0, 0, SSL_NOT_DEFAULT | SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, SSL3_TXT_ADH_RC4_128_MD5, SSL3_RFC_ADH_RC4_128_MD5, SSL3_CK_ADH_RC4_128_MD5, SSL_kDHE, SSL_aNULL, SSL_RC4, SSL_MD5, SSL3_VERSION, TLS1_2_VERSION, 0, 0, SSL_NOT_DEFAULT | SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_ECDHE_PSK_WITH_RC4_128_SHA, TLS1_RFC_ECDHE_PSK_WITH_RC4_128_SHA, TLS1_CK_ECDHE_PSK_WITH_RC4_128_SHA, SSL_kECDHEPSK, SSL_aPSK, SSL_RC4, SSL_SHA1, TLS1_VERSION, TLS1_2_VERSION, 0, 0, SSL_NOT_DEFAULT | SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_ECDH_anon_WITH_RC4_128_SHA, TLS1_RFC_ECDH_anon_WITH_RC4_128_SHA, TLS1_CK_ECDH_anon_WITH_RC4_128_SHA, SSL_kECDHE, SSL_aNULL, SSL_RC4, SSL_SHA1, TLS1_VERSION, TLS1_2_VERSION, 0, 0, SSL_NOT_DEFAULT | SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_ECDHE_ECDSA_WITH_RC4_128_SHA, TLS1_RFC_ECDHE_ECDSA_WITH_RC4_128_SHA, TLS1_CK_ECDHE_ECDSA_WITH_RC4_128_SHA, SSL_kECDHE, SSL_aECDSA, SSL_RC4, SSL_SHA1, TLS1_VERSION, TLS1_2_VERSION, 0, 0, SSL_NOT_DEFAULT | SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_ECDHE_RSA_WITH_RC4_128_SHA, TLS1_RFC_ECDHE_RSA_WITH_RC4_128_SHA, TLS1_CK_ECDHE_RSA_WITH_RC4_128_SHA, SSL_kECDHE, SSL_aRSA, SSL_RC4, SSL_SHA1, TLS1_VERSION, TLS1_2_VERSION, 0, 0, SSL_NOT_DEFAULT | SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_PSK_WITH_RC4_128_SHA, TLS1_RFC_PSK_WITH_RC4_128_SHA, TLS1_CK_PSK_WITH_RC4_128_SHA, SSL_kPSK, SSL_aPSK, SSL_RC4, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, 0, 0, SSL_NOT_DEFAULT | SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_RSA_PSK_WITH_RC4_128_SHA, TLS1_RFC_RSA_PSK_WITH_RC4_128_SHA, TLS1_CK_RSA_PSK_WITH_RC4_128_SHA, SSL_kRSAPSK, SSL_aRSA, SSL_RC4, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, 0, 0, SSL_NOT_DEFAULT | SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, { 1, TLS1_TXT_DHE_PSK_WITH_RC4_128_SHA, TLS1_RFC_DHE_PSK_WITH_RC4_128_SHA, TLS1_CK_DHE_PSK_WITH_RC4_128_SHA, SSL_kDHEPSK, SSL_aPSK, SSL_RC4, SSL_SHA1, SSL3_VERSION, TLS1_2_VERSION, 0, 0, SSL_NOT_DEFAULT | SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, #endif /* OPENSSL_NO_WEAK_SSL_CIPHERS */ #ifndef OPENSSL_NO_ARIA { 1, TLS1_TXT_RSA_WITH_ARIA_128_GCM_SHA256, TLS1_RFC_RSA_WITH_ARIA_128_GCM_SHA256, TLS1_CK_RSA_WITH_ARIA_128_GCM_SHA256, SSL_kRSA, SSL_aRSA, SSL_ARIA128GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_RSA_WITH_ARIA_256_GCM_SHA384, TLS1_RFC_RSA_WITH_ARIA_256_GCM_SHA384, TLS1_CK_RSA_WITH_ARIA_256_GCM_SHA384, SSL_kRSA, SSL_aRSA, SSL_ARIA256GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_DHE_RSA_WITH_ARIA_128_GCM_SHA256, TLS1_RFC_DHE_RSA_WITH_ARIA_128_GCM_SHA256, TLS1_CK_DHE_RSA_WITH_ARIA_128_GCM_SHA256, SSL_kDHE, SSL_aRSA, SSL_ARIA128GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_DHE_RSA_WITH_ARIA_256_GCM_SHA384, TLS1_RFC_DHE_RSA_WITH_ARIA_256_GCM_SHA384, TLS1_CK_DHE_RSA_WITH_ARIA_256_GCM_SHA384, SSL_kDHE, SSL_aRSA, SSL_ARIA256GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_DHE_DSS_WITH_ARIA_128_GCM_SHA256, TLS1_RFC_DHE_DSS_WITH_ARIA_128_GCM_SHA256, TLS1_CK_DHE_DSS_WITH_ARIA_128_GCM_SHA256, SSL_kDHE, SSL_aDSS, SSL_ARIA128GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_DHE_DSS_WITH_ARIA_256_GCM_SHA384, TLS1_RFC_DHE_DSS_WITH_ARIA_256_GCM_SHA384, TLS1_CK_DHE_DSS_WITH_ARIA_256_GCM_SHA384, SSL_kDHE, SSL_aDSS, SSL_ARIA256GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256, TLS1_RFC_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256, TLS1_CK_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256, SSL_kECDHE, SSL_aECDSA, SSL_ARIA128GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384, TLS1_RFC_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384, TLS1_CK_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384, SSL_kECDHE, SSL_aECDSA, SSL_ARIA256GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256, TLS1_RFC_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256, TLS1_CK_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256, SSL_kECDHE, SSL_aRSA, SSL_ARIA128GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384, TLS1_RFC_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384, TLS1_CK_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384, SSL_kECDHE, SSL_aRSA, SSL_ARIA256GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_PSK_WITH_ARIA_128_GCM_SHA256, TLS1_RFC_PSK_WITH_ARIA_128_GCM_SHA256, TLS1_CK_PSK_WITH_ARIA_128_GCM_SHA256, SSL_kPSK, SSL_aPSK, SSL_ARIA128GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_PSK_WITH_ARIA_256_GCM_SHA384, TLS1_RFC_PSK_WITH_ARIA_256_GCM_SHA384, TLS1_CK_PSK_WITH_ARIA_256_GCM_SHA384, SSL_kPSK, SSL_aPSK, SSL_ARIA256GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_DHE_PSK_WITH_ARIA_128_GCM_SHA256, TLS1_RFC_DHE_PSK_WITH_ARIA_128_GCM_SHA256, TLS1_CK_DHE_PSK_WITH_ARIA_128_GCM_SHA256, SSL_kDHEPSK, SSL_aPSK, SSL_ARIA128GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_DHE_PSK_WITH_ARIA_256_GCM_SHA384, TLS1_RFC_DHE_PSK_WITH_ARIA_256_GCM_SHA384, TLS1_CK_DHE_PSK_WITH_ARIA_256_GCM_SHA384, SSL_kDHEPSK, SSL_aPSK, SSL_ARIA256GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, { 1, TLS1_TXT_RSA_PSK_WITH_ARIA_128_GCM_SHA256, TLS1_RFC_RSA_PSK_WITH_ARIA_128_GCM_SHA256, TLS1_CK_RSA_PSK_WITH_ARIA_128_GCM_SHA256, SSL_kRSAPSK, SSL_aRSA, SSL_ARIA128GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, { 1, TLS1_TXT_RSA_PSK_WITH_ARIA_256_GCM_SHA384, TLS1_RFC_RSA_PSK_WITH_ARIA_256_GCM_SHA384, TLS1_CK_RSA_PSK_WITH_ARIA_256_GCM_SHA384, SSL_kRSAPSK, SSL_aRSA, SSL_ARIA256GCM, SSL_AEAD, TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION, SSL_NOT_DEFAULT | SSL_HIGH, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, #endif /* OPENSSL_NO_ARIA */ }; /* * The list of known Signalling Cipher-Suite Value "ciphers", non-valid * values stuffed into the ciphers field of the wire protocol for signalling * purposes. */ static SSL_CIPHER ssl3_scsvs[] = { { 0, "TLS_EMPTY_RENEGOTIATION_INFO_SCSV", "TLS_EMPTY_RENEGOTIATION_INFO_SCSV", SSL3_CK_SCSV, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, { 0, "TLS_FALLBACK_SCSV", "TLS_FALLBACK_SCSV", SSL3_CK_FALLBACK_SCSV, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, }; static int cipher_compare(const void *a, const void *b) { const SSL_CIPHER *ap = (const SSL_CIPHER *)a; const SSL_CIPHER *bp = (const SSL_CIPHER *)b; if (ap->id == bp->id) return 0; return ap->id < bp->id ? -1 : 1; } void ssl_sort_cipher_list(void) { qsort(tls13_ciphers, TLS13_NUM_CIPHERS, sizeof(tls13_ciphers[0]), cipher_compare); qsort(ssl3_ciphers, SSL3_NUM_CIPHERS, sizeof(ssl3_ciphers[0]), cipher_compare); qsort(ssl3_scsvs, SSL3_NUM_SCSVS, sizeof(ssl3_scsvs[0]), cipher_compare); } static int ssl_undefined_function_1(SSL *ssl, unsigned char *r, size_t s, const char * t, size_t u, const unsigned char * v, size_t w, int x) { (void)r; (void)s; (void)t; (void)u; (void)v; (void)w; (void)x; return ssl_undefined_function(ssl); } const SSL3_ENC_METHOD SSLv3_enc_data = { ssl3_enc, n_ssl3_mac, ssl3_setup_key_block, ssl3_generate_master_secret, ssl3_change_cipher_state, ssl3_final_finish_mac, SSL3_MD_CLIENT_FINISHED_CONST, 4, SSL3_MD_SERVER_FINISHED_CONST, 4, ssl3_alert_code, ssl_undefined_function_1, 0, ssl3_set_handshake_header, tls_close_construct_packet, ssl3_handshake_write }; long ssl3_default_timeout(void) { /* * 2 hours, the 24 hours mentioned in the SSLv3 spec is way too long for * http, the cache would over fill */ return (60 * 60 * 2); } int ssl3_num_ciphers(void) { return SSL3_NUM_CIPHERS; } const SSL_CIPHER *ssl3_get_cipher(unsigned int u) { if (u < SSL3_NUM_CIPHERS) return &(ssl3_ciphers[SSL3_NUM_CIPHERS - 1 - u]); else return NULL; } int ssl3_set_handshake_header(SSL *s, WPACKET *pkt, int htype) { /* No header in the event of a CCS */ if (htype == SSL3_MT_CHANGE_CIPHER_SPEC) return 1; /* Set the content type and 3 bytes for the message len */ if (!WPACKET_put_bytes_u8(pkt, htype) || !WPACKET_start_sub_packet_u24(pkt)) return 0; return 1; } int ssl3_handshake_write(SSL *s) { return ssl3_do_write(s, SSL3_RT_HANDSHAKE); } int ssl3_new(SSL *s) { SSL3_STATE *s3; if ((s3 = OPENSSL_zalloc(sizeof(*s3))) == NULL) goto err; s->s3 = s3; #ifndef OPENSSL_NO_SRP if (!SSL_SRP_CTX_init(s)) goto err; #endif if (!s->method->ssl_clear(s)) return 0; return 1; err: return 0; } void ssl3_free(SSL *s) { if (s == NULL || s->s3 == NULL) return; ssl3_cleanup_key_block(s); #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) EVP_PKEY_free(s->s3->peer_tmp); s->s3->peer_tmp = NULL; EVP_PKEY_free(s->s3->tmp.pkey); s->s3->tmp.pkey = NULL; #endif OPENSSL_free(s->s3->tmp.ctype); sk_X509_NAME_pop_free(s->s3->tmp.peer_ca_names, X509_NAME_free); OPENSSL_free(s->s3->tmp.ciphers_raw); OPENSSL_clear_free(s->s3->tmp.pms, s->s3->tmp.pmslen); OPENSSL_free(s->s3->tmp.peer_sigalgs); OPENSSL_free(s->s3->tmp.peer_cert_sigalgs); ssl3_free_digest_list(s); OPENSSL_free(s->s3->alpn_selected); OPENSSL_free(s->s3->alpn_proposed); #ifndef OPENSSL_NO_SRP SSL_SRP_CTX_free(s); #endif OPENSSL_clear_free(s->s3, sizeof(*s->s3)); s->s3 = NULL; } int ssl3_clear(SSL *s) { ssl3_cleanup_key_block(s); OPENSSL_free(s->s3->tmp.ctype); sk_X509_NAME_pop_free(s->s3->tmp.peer_ca_names, X509_NAME_free); OPENSSL_free(s->s3->tmp.ciphers_raw); OPENSSL_clear_free(s->s3->tmp.pms, s->s3->tmp.pmslen); OPENSSL_free(s->s3->tmp.peer_sigalgs); OPENSSL_free(s->s3->tmp.peer_cert_sigalgs); #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) EVP_PKEY_free(s->s3->tmp.pkey); EVP_PKEY_free(s->s3->peer_tmp); #endif /* !OPENSSL_NO_EC */ ssl3_free_digest_list(s); OPENSSL_free(s->s3->alpn_selected); OPENSSL_free(s->s3->alpn_proposed); /* NULL/zero-out everything in the s3 struct */ memset(s->s3, 0, sizeof(*s->s3)); if (!ssl_free_wbio_buffer(s)) return 0; s->version = SSL3_VERSION; #if !defined(OPENSSL_NO_NEXTPROTONEG) OPENSSL_free(s->ext.npn); s->ext.npn = NULL; s->ext.npn_len = 0; #endif return 1; } #ifndef OPENSSL_NO_SRP static char *srp_password_from_info_cb(SSL *s, void *arg) { return OPENSSL_strdup(s->srp_ctx.info); } #endif static int ssl3_set_req_cert_type(CERT *c, const unsigned char *p, size_t len); long ssl3_ctrl(SSL *s, int cmd, long larg, void *parg) { int ret = 0; switch (cmd) { case SSL_CTRL_GET_CLIENT_CERT_REQUEST: break; case SSL_CTRL_GET_NUM_RENEGOTIATIONS: ret = s->s3->num_renegotiations; break; case SSL_CTRL_CLEAR_NUM_RENEGOTIATIONS: ret = s->s3->num_renegotiations; s->s3->num_renegotiations = 0; break; case SSL_CTRL_GET_TOTAL_RENEGOTIATIONS: ret = s->s3->total_renegotiations; break; case SSL_CTRL_GET_FLAGS: ret = (int)(s->s3->flags); break; #ifndef OPENSSL_NO_DH case SSL_CTRL_SET_TMP_DH: { DH *dh = (DH *)parg; EVP_PKEY *pkdh = NULL; if (dh == NULL) { SSLerr(SSL_F_SSL3_CTRL, ERR_R_PASSED_NULL_PARAMETER); return ret; } pkdh = ssl_dh_to_pkey(dh); if (pkdh == NULL) { SSLerr(SSL_F_SSL3_CTRL, ERR_R_MALLOC_FAILURE); return 0; } if (!ssl_security(s, SSL_SECOP_TMP_DH, EVP_PKEY_security_bits(pkdh), 0, pkdh)) { SSLerr(SSL_F_SSL3_CTRL, SSL_R_DH_KEY_TOO_SMALL); EVP_PKEY_free(pkdh); return ret; } EVP_PKEY_free(s->cert->dh_tmp); s->cert->dh_tmp = pkdh; ret = 1; } break; case SSL_CTRL_SET_TMP_DH_CB: { SSLerr(SSL_F_SSL3_CTRL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return ret; } case SSL_CTRL_SET_DH_AUTO: s->cert->dh_tmp_auto = larg; return 1; #endif #ifndef OPENSSL_NO_EC case SSL_CTRL_SET_TMP_ECDH: { const EC_GROUP *group = NULL; int nid; if (parg == NULL) { SSLerr(SSL_F_SSL3_CTRL, ERR_R_PASSED_NULL_PARAMETER); return 0; } group = EC_KEY_get0_group((const EC_KEY *)parg); if (group == NULL) { SSLerr(SSL_F_SSL3_CTRL, EC_R_MISSING_PARAMETERS); return 0; } nid = EC_GROUP_get_curve_name(group); if (nid == NID_undef) return 0; return tls1_set_groups(&s->ext.supportedgroups, &s->ext.supportedgroups_len, &nid, 1); } break; #endif /* !OPENSSL_NO_EC */ case SSL_CTRL_SET_TLSEXT_HOSTNAME: /* * TODO(OpenSSL1.2) * This API is only used for a client to set what SNI it will request * from the server, but we currently allow it to be used on servers * as well, which is a programming error. Currently we just clear * the field in SSL_do_handshake() for server SSLs, but when we can * make ABI-breaking changes, we may want to make use of this API * an error on server SSLs. */ if (larg == TLSEXT_NAMETYPE_host_name) { size_t len; OPENSSL_free(s->ext.hostname); s->ext.hostname = NULL; ret = 1; if (parg == NULL) break; len = strlen((char *)parg); if (len == 0 || len > TLSEXT_MAXLEN_host_name) { SSLerr(SSL_F_SSL3_CTRL, SSL_R_SSL3_EXT_INVALID_SERVERNAME); return 0; } if ((s->ext.hostname = OPENSSL_strdup((char *)parg)) == NULL) { SSLerr(SSL_F_SSL3_CTRL, ERR_R_INTERNAL_ERROR); return 0; } } else { SSLerr(SSL_F_SSL3_CTRL, SSL_R_SSL3_EXT_INVALID_SERVERNAME_TYPE); return 0; } break; case SSL_CTRL_SET_TLSEXT_DEBUG_ARG: s->ext.debug_arg = parg; ret = 1; break; case SSL_CTRL_GET_TLSEXT_STATUS_REQ_TYPE: ret = s->ext.status_type; break; case SSL_CTRL_SET_TLSEXT_STATUS_REQ_TYPE: s->ext.status_type = larg; ret = 1; break; case SSL_CTRL_GET_TLSEXT_STATUS_REQ_EXTS: *(STACK_OF(X509_EXTENSION) **)parg = s->ext.ocsp.exts; ret = 1; break; case SSL_CTRL_SET_TLSEXT_STATUS_REQ_EXTS: s->ext.ocsp.exts = parg; ret = 1; break; case SSL_CTRL_GET_TLSEXT_STATUS_REQ_IDS: *(STACK_OF(OCSP_RESPID) **)parg = s->ext.ocsp.ids; ret = 1; break; case SSL_CTRL_SET_TLSEXT_STATUS_REQ_IDS: s->ext.ocsp.ids = parg; ret = 1; break; case SSL_CTRL_GET_TLSEXT_STATUS_REQ_OCSP_RESP: *(unsigned char **)parg = s->ext.ocsp.resp; if (s->ext.ocsp.resp_len == 0 || s->ext.ocsp.resp_len > LONG_MAX) return -1; return (long)s->ext.ocsp.resp_len; case SSL_CTRL_SET_TLSEXT_STATUS_REQ_OCSP_RESP: OPENSSL_free(s->ext.ocsp.resp); s->ext.ocsp.resp = parg; s->ext.ocsp.resp_len = larg; ret = 1; break; #ifndef OPENSSL_NO_HEARTBEATS case SSL_CTRL_DTLS_EXT_SEND_HEARTBEAT: case SSL_CTRL_GET_DTLS_EXT_HEARTBEAT_PENDING: case SSL_CTRL_SET_DTLS_EXT_HEARTBEAT_NO_REQUESTS: break; #endif case SSL_CTRL_CHAIN: if (larg) return ssl_cert_set1_chain(s, NULL, (STACK_OF(X509) *)parg); else return ssl_cert_set0_chain(s, NULL, (STACK_OF(X509) *)parg); case SSL_CTRL_CHAIN_CERT: if (larg) return ssl_cert_add1_chain_cert(s, NULL, (X509 *)parg); else return ssl_cert_add0_chain_cert(s, NULL, (X509 *)parg); case SSL_CTRL_GET_CHAIN_CERTS: *(STACK_OF(X509) **)parg = s->cert->key->chain; ret = 1; break; case SSL_CTRL_SELECT_CURRENT_CERT: return ssl_cert_select_current(s->cert, (X509 *)parg); case SSL_CTRL_SET_CURRENT_CERT: if (larg == SSL_CERT_SET_SERVER) { const SSL_CIPHER *cipher; if (!s->server) return 0; cipher = s->s3->tmp.new_cipher; if (cipher == NULL) return 0; /* * No certificate for unauthenticated ciphersuites or using SRP * authentication */ if (cipher->algorithm_auth & (SSL_aNULL | SSL_aSRP)) return 2; if (s->s3->tmp.cert == NULL) return 0; s->cert->key = s->s3->tmp.cert; return 1; } return ssl_cert_set_current(s->cert, larg); #ifndef OPENSSL_NO_EC case SSL_CTRL_GET_GROUPS: { uint16_t *clist; size_t clistlen; if (!s->session) return 0; clist = s->ext.peer_supportedgroups; clistlen = s->ext.peer_supportedgroups_len; if (parg) { size_t i; int *cptr = parg; for (i = 0; i < clistlen; i++) { const TLS_GROUP_INFO *cinf = tls1_group_id_lookup(clist[i]); if (cinf != NULL) cptr[i] = cinf->nid; else cptr[i] = TLSEXT_nid_unknown | clist[i]; } } return (int)clistlen; } case SSL_CTRL_SET_GROUPS: return tls1_set_groups(&s->ext.supportedgroups, &s->ext.supportedgroups_len, parg, larg); case SSL_CTRL_SET_GROUPS_LIST: return tls1_set_groups_list(&s->ext.supportedgroups, &s->ext.supportedgroups_len, parg); case SSL_CTRL_GET_SHARED_GROUP: { uint16_t id = tls1_shared_group(s, larg); if (larg != -1) { const TLS_GROUP_INFO *ginf = tls1_group_id_lookup(id); return ginf == NULL ? 0 : ginf->nid; } return id; } #endif case SSL_CTRL_SET_SIGALGS: return tls1_set_sigalgs(s->cert, parg, larg, 0); case SSL_CTRL_SET_SIGALGS_LIST: return tls1_set_sigalgs_list(s->cert, parg, 0); case SSL_CTRL_SET_CLIENT_SIGALGS: return tls1_set_sigalgs(s->cert, parg, larg, 1); case SSL_CTRL_SET_CLIENT_SIGALGS_LIST: return tls1_set_sigalgs_list(s->cert, parg, 1); case SSL_CTRL_GET_CLIENT_CERT_TYPES: { const unsigned char **pctype = parg; if (s->server || !s->s3->tmp.cert_req) return 0; if (pctype) *pctype = s->s3->tmp.ctype; return s->s3->tmp.ctype_len; } case SSL_CTRL_SET_CLIENT_CERT_TYPES: if (!s->server) return 0; return ssl3_set_req_cert_type(s->cert, parg, larg); case SSL_CTRL_BUILD_CERT_CHAIN: return ssl_build_cert_chain(s, NULL, larg); case SSL_CTRL_SET_VERIFY_CERT_STORE: return ssl_cert_set_cert_store(s->cert, parg, 0, larg); case SSL_CTRL_SET_CHAIN_CERT_STORE: return ssl_cert_set_cert_store(s->cert, parg, 1, larg); + case SSL_CTRL_GET_VERIFY_CERT_STORE: + return ssl_cert_get_cert_store(s->cert, parg, 0); + + case SSL_CTRL_GET_CHAIN_CERT_STORE: + return ssl_cert_get_cert_store(s->cert, parg, 1); + case SSL_CTRL_GET_PEER_SIGNATURE_NID: if (s->s3->tmp.peer_sigalg == NULL) return 0; *(int *)parg = s->s3->tmp.peer_sigalg->hash; return 1; case SSL_CTRL_GET_SIGNATURE_NID: if (s->s3->tmp.sigalg == NULL) return 0; *(int *)parg = s->s3->tmp.sigalg->hash; return 1; case SSL_CTRL_GET_PEER_TMP_KEY: #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC) if (s->session == NULL || s->s3->peer_tmp == NULL) { return 0; } else { EVP_PKEY_up_ref(s->s3->peer_tmp); *(EVP_PKEY **)parg = s->s3->peer_tmp; return 1; } #else return 0; #endif case SSL_CTRL_GET_TMP_KEY: #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC) if (s->session == NULL || s->s3->tmp.pkey == NULL) { return 0; } else { EVP_PKEY_up_ref(s->s3->tmp.pkey); *(EVP_PKEY **)parg = s->s3->tmp.pkey; return 1; } #else return 0; #endif #ifndef OPENSSL_NO_EC case SSL_CTRL_GET_EC_POINT_FORMATS: { const unsigned char **pformat = parg; if (s->ext.peer_ecpointformats == NULL) return 0; *pformat = s->ext.peer_ecpointformats; return (int)s->ext.peer_ecpointformats_len; } #endif default: break; } return ret; } long ssl3_callback_ctrl(SSL *s, int cmd, void (*fp) (void)) { int ret = 0; switch (cmd) { #ifndef OPENSSL_NO_DH case SSL_CTRL_SET_TMP_DH_CB: { s->cert->dh_tmp_cb = (DH *(*)(SSL *, int, int))fp; } break; #endif case SSL_CTRL_SET_TLSEXT_DEBUG_CB: s->ext.debug_cb = (void (*)(SSL *, int, int, const unsigned char *, int, void *))fp; break; case SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB: { s->not_resumable_session_cb = (int (*)(SSL *, int))fp; } break; default: break; } return ret; } long ssl3_ctx_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg) { switch (cmd) { #ifndef OPENSSL_NO_DH case SSL_CTRL_SET_TMP_DH: { DH *dh = (DH *)parg; EVP_PKEY *pkdh = NULL; if (dh == NULL) { SSLerr(SSL_F_SSL3_CTX_CTRL, ERR_R_PASSED_NULL_PARAMETER); return 0; } pkdh = ssl_dh_to_pkey(dh); if (pkdh == NULL) { SSLerr(SSL_F_SSL3_CTX_CTRL, ERR_R_MALLOC_FAILURE); return 0; } if (!ssl_ctx_security(ctx, SSL_SECOP_TMP_DH, EVP_PKEY_security_bits(pkdh), 0, pkdh)) { SSLerr(SSL_F_SSL3_CTX_CTRL, SSL_R_DH_KEY_TOO_SMALL); EVP_PKEY_free(pkdh); return 0; } EVP_PKEY_free(ctx->cert->dh_tmp); ctx->cert->dh_tmp = pkdh; return 1; } case SSL_CTRL_SET_TMP_DH_CB: { SSLerr(SSL_F_SSL3_CTX_CTRL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } case SSL_CTRL_SET_DH_AUTO: ctx->cert->dh_tmp_auto = larg; return 1; #endif #ifndef OPENSSL_NO_EC case SSL_CTRL_SET_TMP_ECDH: { const EC_GROUP *group = NULL; int nid; if (parg == NULL) { SSLerr(SSL_F_SSL3_CTX_CTRL, ERR_R_PASSED_NULL_PARAMETER); return 0; } group = EC_KEY_get0_group((const EC_KEY *)parg); if (group == NULL) { SSLerr(SSL_F_SSL3_CTX_CTRL, EC_R_MISSING_PARAMETERS); return 0; } nid = EC_GROUP_get_curve_name(group); if (nid == NID_undef) return 0; return tls1_set_groups(&ctx->ext.supportedgroups, &ctx->ext.supportedgroups_len, &nid, 1); } #endif /* !OPENSSL_NO_EC */ case SSL_CTRL_SET_TLSEXT_SERVERNAME_ARG: ctx->ext.servername_arg = parg; break; case SSL_CTRL_SET_TLSEXT_TICKET_KEYS: case SSL_CTRL_GET_TLSEXT_TICKET_KEYS: { unsigned char *keys = parg; long tick_keylen = (sizeof(ctx->ext.tick_key_name) + sizeof(ctx->ext.secure->tick_hmac_key) + sizeof(ctx->ext.secure->tick_aes_key)); if (keys == NULL) return tick_keylen; if (larg != tick_keylen) { SSLerr(SSL_F_SSL3_CTX_CTRL, SSL_R_INVALID_TICKET_KEYS_LENGTH); return 0; } if (cmd == SSL_CTRL_SET_TLSEXT_TICKET_KEYS) { memcpy(ctx->ext.tick_key_name, keys, sizeof(ctx->ext.tick_key_name)); memcpy(ctx->ext.secure->tick_hmac_key, keys + sizeof(ctx->ext.tick_key_name), sizeof(ctx->ext.secure->tick_hmac_key)); memcpy(ctx->ext.secure->tick_aes_key, keys + sizeof(ctx->ext.tick_key_name) + sizeof(ctx->ext.secure->tick_hmac_key), sizeof(ctx->ext.secure->tick_aes_key)); } else { memcpy(keys, ctx->ext.tick_key_name, sizeof(ctx->ext.tick_key_name)); memcpy(keys + sizeof(ctx->ext.tick_key_name), ctx->ext.secure->tick_hmac_key, sizeof(ctx->ext.secure->tick_hmac_key)); memcpy(keys + sizeof(ctx->ext.tick_key_name) + sizeof(ctx->ext.secure->tick_hmac_key), ctx->ext.secure->tick_aes_key, sizeof(ctx->ext.secure->tick_aes_key)); } return 1; } case SSL_CTRL_GET_TLSEXT_STATUS_REQ_TYPE: return ctx->ext.status_type; case SSL_CTRL_SET_TLSEXT_STATUS_REQ_TYPE: ctx->ext.status_type = larg; break; case SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB_ARG: ctx->ext.status_arg = parg; return 1; case SSL_CTRL_GET_TLSEXT_STATUS_REQ_CB_ARG: *(void**)parg = ctx->ext.status_arg; break; case SSL_CTRL_GET_TLSEXT_STATUS_REQ_CB: *(int (**)(SSL*, void*))parg = ctx->ext.status_cb; break; #ifndef OPENSSL_NO_SRP case SSL_CTRL_SET_TLS_EXT_SRP_USERNAME: ctx->srp_ctx.srp_Mask |= SSL_kSRP; OPENSSL_free(ctx->srp_ctx.login); ctx->srp_ctx.login = NULL; if (parg == NULL) break; if (strlen((const char *)parg) > 255 || strlen((const char *)parg) < 1) { SSLerr(SSL_F_SSL3_CTX_CTRL, SSL_R_INVALID_SRP_USERNAME); return 0; } if ((ctx->srp_ctx.login = OPENSSL_strdup((char *)parg)) == NULL) { SSLerr(SSL_F_SSL3_CTX_CTRL, ERR_R_INTERNAL_ERROR); return 0; } break; case SSL_CTRL_SET_TLS_EXT_SRP_PASSWORD: ctx->srp_ctx.SRP_give_srp_client_pwd_callback = srp_password_from_info_cb; if (ctx->srp_ctx.info != NULL) OPENSSL_free(ctx->srp_ctx.info); if ((ctx->srp_ctx.info = BUF_strdup((char *)parg)) == NULL) { SSLerr(SSL_F_SSL3_CTX_CTRL, ERR_R_INTERNAL_ERROR); return 0; } break; case SSL_CTRL_SET_SRP_ARG: ctx->srp_ctx.srp_Mask |= SSL_kSRP; ctx->srp_ctx.SRP_cb_arg = parg; break; case SSL_CTRL_SET_TLS_EXT_SRP_STRENGTH: ctx->srp_ctx.strength = larg; break; #endif #ifndef OPENSSL_NO_EC case SSL_CTRL_SET_GROUPS: return tls1_set_groups(&ctx->ext.supportedgroups, &ctx->ext.supportedgroups_len, parg, larg); case SSL_CTRL_SET_GROUPS_LIST: return tls1_set_groups_list(&ctx->ext.supportedgroups, &ctx->ext.supportedgroups_len, parg); #endif case SSL_CTRL_SET_SIGALGS: return tls1_set_sigalgs(ctx->cert, parg, larg, 0); case SSL_CTRL_SET_SIGALGS_LIST: return tls1_set_sigalgs_list(ctx->cert, parg, 0); case SSL_CTRL_SET_CLIENT_SIGALGS: return tls1_set_sigalgs(ctx->cert, parg, larg, 1); case SSL_CTRL_SET_CLIENT_SIGALGS_LIST: return tls1_set_sigalgs_list(ctx->cert, parg, 1); case SSL_CTRL_SET_CLIENT_CERT_TYPES: return ssl3_set_req_cert_type(ctx->cert, parg, larg); case SSL_CTRL_BUILD_CERT_CHAIN: return ssl_build_cert_chain(NULL, ctx, larg); case SSL_CTRL_SET_VERIFY_CERT_STORE: return ssl_cert_set_cert_store(ctx->cert, parg, 0, larg); case SSL_CTRL_SET_CHAIN_CERT_STORE: return ssl_cert_set_cert_store(ctx->cert, parg, 1, larg); + case SSL_CTRL_GET_VERIFY_CERT_STORE: + return ssl_cert_get_cert_store(ctx->cert, parg, 0); + + case SSL_CTRL_GET_CHAIN_CERT_STORE: + return ssl_cert_get_cert_store(ctx->cert, parg, 1); + /* A Thawte special :-) */ case SSL_CTRL_EXTRA_CHAIN_CERT: if (ctx->extra_certs == NULL) { if ((ctx->extra_certs = sk_X509_new_null()) == NULL) { SSLerr(SSL_F_SSL3_CTX_CTRL, ERR_R_MALLOC_FAILURE); return 0; } } if (!sk_X509_push(ctx->extra_certs, (X509 *)parg)) { SSLerr(SSL_F_SSL3_CTX_CTRL, ERR_R_MALLOC_FAILURE); return 0; } break; case SSL_CTRL_GET_EXTRA_CHAIN_CERTS: if (ctx->extra_certs == NULL && larg == 0) *(STACK_OF(X509) **)parg = ctx->cert->key->chain; else *(STACK_OF(X509) **)parg = ctx->extra_certs; break; case SSL_CTRL_CLEAR_EXTRA_CHAIN_CERTS: sk_X509_pop_free(ctx->extra_certs, X509_free); ctx->extra_certs = NULL; break; case SSL_CTRL_CHAIN: if (larg) return ssl_cert_set1_chain(NULL, ctx, (STACK_OF(X509) *)parg); else return ssl_cert_set0_chain(NULL, ctx, (STACK_OF(X509) *)parg); case SSL_CTRL_CHAIN_CERT: if (larg) return ssl_cert_add1_chain_cert(NULL, ctx, (X509 *)parg); else return ssl_cert_add0_chain_cert(NULL, ctx, (X509 *)parg); case SSL_CTRL_GET_CHAIN_CERTS: *(STACK_OF(X509) **)parg = ctx->cert->key->chain; break; case SSL_CTRL_SELECT_CURRENT_CERT: return ssl_cert_select_current(ctx->cert, (X509 *)parg); case SSL_CTRL_SET_CURRENT_CERT: return ssl_cert_set_current(ctx->cert, larg); default: return 0; } return 1; } long ssl3_ctx_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void)) { switch (cmd) { #ifndef OPENSSL_NO_DH case SSL_CTRL_SET_TMP_DH_CB: { ctx->cert->dh_tmp_cb = (DH *(*)(SSL *, int, int))fp; } break; #endif case SSL_CTRL_SET_TLSEXT_SERVERNAME_CB: ctx->ext.servername_cb = (int (*)(SSL *, int *, void *))fp; break; case SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB: ctx->ext.status_cb = (int (*)(SSL *, void *))fp; break; case SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB: ctx->ext.ticket_key_cb = (int (*)(SSL *, unsigned char *, unsigned char *, EVP_CIPHER_CTX *, HMAC_CTX *, int))fp; break; #ifndef OPENSSL_NO_SRP case SSL_CTRL_SET_SRP_VERIFY_PARAM_CB: ctx->srp_ctx.srp_Mask |= SSL_kSRP; ctx->srp_ctx.SRP_verify_param_callback = (int (*)(SSL *, void *))fp; break; case SSL_CTRL_SET_TLS_EXT_SRP_USERNAME_CB: ctx->srp_ctx.srp_Mask |= SSL_kSRP; ctx->srp_ctx.TLS_ext_srp_username_callback = (int (*)(SSL *, int *, void *))fp; break; case SSL_CTRL_SET_SRP_GIVE_CLIENT_PWD_CB: ctx->srp_ctx.srp_Mask |= SSL_kSRP; ctx->srp_ctx.SRP_give_srp_client_pwd_callback = (char *(*)(SSL *, void *))fp; break; #endif case SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB: { ctx->not_resumable_session_cb = (int (*)(SSL *, int))fp; } break; default: return 0; } return 1; } const SSL_CIPHER *ssl3_get_cipher_by_id(uint32_t id) { SSL_CIPHER c; const SSL_CIPHER *cp; c.id = id; cp = OBJ_bsearch_ssl_cipher_id(&c, tls13_ciphers, TLS13_NUM_CIPHERS); if (cp != NULL) return cp; cp = OBJ_bsearch_ssl_cipher_id(&c, ssl3_ciphers, SSL3_NUM_CIPHERS); if (cp != NULL) return cp; return OBJ_bsearch_ssl_cipher_id(&c, ssl3_scsvs, SSL3_NUM_SCSVS); } const SSL_CIPHER *ssl3_get_cipher_by_std_name(const char *stdname) { SSL_CIPHER *tbl; SSL_CIPHER *alltabs[] = {tls13_ciphers, ssl3_ciphers, ssl3_scsvs}; size_t i, j, tblsize[] = {TLS13_NUM_CIPHERS, SSL3_NUM_CIPHERS, SSL3_NUM_SCSVS}; /* this is not efficient, necessary to optimize this? */ for (j = 0; j < OSSL_NELEM(alltabs); j++) { for (i = 0, tbl = alltabs[j]; i < tblsize[j]; i++, tbl++) { if (tbl->stdname == NULL) continue; if (strcmp(stdname, tbl->stdname) == 0) { return tbl; } } } return NULL; } /* * This function needs to check if the ciphers required are actually * available */ const SSL_CIPHER *ssl3_get_cipher_by_char(const unsigned char *p) { return ssl3_get_cipher_by_id(SSL3_CK_CIPHERSUITE_FLAG | ((uint32_t)p[0] << 8L) | (uint32_t)p[1]); } int ssl3_put_cipher_by_char(const SSL_CIPHER *c, WPACKET *pkt, size_t *len) { if ((c->id & 0xff000000) != SSL3_CK_CIPHERSUITE_FLAG) { *len = 0; return 1; } if (!WPACKET_put_bytes_u16(pkt, c->id & 0xffff)) return 0; *len = 2; return 1; } /* * ssl3_choose_cipher - choose a cipher from those offered by the client * @s: SSL connection * @clnt: ciphers offered by the client * @srvr: ciphers enabled on the server? * * Returns the selected cipher or NULL when no common ciphers. */ const SSL_CIPHER *ssl3_choose_cipher(SSL *s, STACK_OF(SSL_CIPHER) *clnt, STACK_OF(SSL_CIPHER) *srvr) { const SSL_CIPHER *c, *ret = NULL; STACK_OF(SSL_CIPHER) *prio, *allow; int i, ii, ok, prefer_sha256 = 0; unsigned long alg_k = 0, alg_a = 0, mask_k = 0, mask_a = 0; const EVP_MD *mdsha256 = EVP_sha256(); #ifndef OPENSSL_NO_CHACHA STACK_OF(SSL_CIPHER) *prio_chacha = NULL; #endif /* Let's see which ciphers we can support */ /* * Do not set the compare functions, because this may lead to a * reordering by "id". We want to keep the original ordering. We may pay * a price in performance during sk_SSL_CIPHER_find(), but would have to * pay with the price of sk_SSL_CIPHER_dup(). */ #ifdef CIPHER_DEBUG fprintf(stderr, "Server has %d from %p:\n", sk_SSL_CIPHER_num(srvr), (void *)srvr); for (i = 0; i < sk_SSL_CIPHER_num(srvr); ++i) { c = sk_SSL_CIPHER_value(srvr, i); fprintf(stderr, "%p:%s\n", (void *)c, c->name); } fprintf(stderr, "Client sent %d from %p:\n", sk_SSL_CIPHER_num(clnt), (void *)clnt); for (i = 0; i < sk_SSL_CIPHER_num(clnt); ++i) { c = sk_SSL_CIPHER_value(clnt, i); fprintf(stderr, "%p:%s\n", (void *)c, c->name); } #endif /* SUITE-B takes precedence over server preference and ChaCha priortiy */ if (tls1_suiteb(s)) { prio = srvr; allow = clnt; } else if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) { prio = srvr; allow = clnt; #ifndef OPENSSL_NO_CHACHA /* If ChaCha20 is at the top of the client preference list, and there are ChaCha20 ciphers in the server list, then temporarily prioritize all ChaCha20 ciphers in the servers list. */ if (s->options & SSL_OP_PRIORITIZE_CHACHA && sk_SSL_CIPHER_num(clnt) > 0) { c = sk_SSL_CIPHER_value(clnt, 0); if (c->algorithm_enc == SSL_CHACHA20POLY1305) { /* ChaCha20 is client preferred, check server... */ int num = sk_SSL_CIPHER_num(srvr); int found = 0; for (i = 0; i < num; i++) { c = sk_SSL_CIPHER_value(srvr, i); if (c->algorithm_enc == SSL_CHACHA20POLY1305) { found = 1; break; } } if (found) { prio_chacha = sk_SSL_CIPHER_new_reserve(NULL, num); /* if reserve fails, then there's likely a memory issue */ if (prio_chacha != NULL) { /* Put all ChaCha20 at the top, starting with the one we just found */ sk_SSL_CIPHER_push(prio_chacha, c); for (i++; i < num; i++) { c = sk_SSL_CIPHER_value(srvr, i); if (c->algorithm_enc == SSL_CHACHA20POLY1305) sk_SSL_CIPHER_push(prio_chacha, c); } /* Pull in the rest */ for (i = 0; i < num; i++) { c = sk_SSL_CIPHER_value(srvr, i); if (c->algorithm_enc != SSL_CHACHA20POLY1305) sk_SSL_CIPHER_push(prio_chacha, c); } prio = prio_chacha; } } } } # endif } else { prio = clnt; allow = srvr; } if (SSL_IS_TLS13(s)) { #ifndef OPENSSL_NO_PSK int j; /* * If we allow "old" style PSK callbacks, and we have no certificate (so * we're not going to succeed without a PSK anyway), and we're in * TLSv1.3 then the default hash for a PSK is SHA-256 (as per the * TLSv1.3 spec). Therefore we should prioritise ciphersuites using * that. */ if (s->psk_server_callback != NULL) { for (j = 0; j < SSL_PKEY_NUM && !ssl_has_cert(s, j); j++); if (j == SSL_PKEY_NUM) { /* There are no certificates */ prefer_sha256 = 1; } } #endif } else { tls1_set_cert_validity(s); ssl_set_masks(s); } for (i = 0; i < sk_SSL_CIPHER_num(prio); i++) { c = sk_SSL_CIPHER_value(prio, i); /* Skip ciphers not supported by the protocol version */ if (!SSL_IS_DTLS(s) && ((s->version < c->min_tls) || (s->version > c->max_tls))) continue; if (SSL_IS_DTLS(s) && (DTLS_VERSION_LT(s->version, c->min_dtls) || DTLS_VERSION_GT(s->version, c->max_dtls))) continue; /* * Since TLS 1.3 ciphersuites can be used with any auth or * key exchange scheme skip tests. */ if (!SSL_IS_TLS13(s)) { mask_k = s->s3->tmp.mask_k; mask_a = s->s3->tmp.mask_a; #ifndef OPENSSL_NO_SRP if (s->srp_ctx.srp_Mask & SSL_kSRP) { mask_k |= SSL_kSRP; mask_a |= SSL_aSRP; } #endif alg_k = c->algorithm_mkey; alg_a = c->algorithm_auth; #ifndef OPENSSL_NO_PSK /* with PSK there must be server callback set */ if ((alg_k & SSL_PSK) && s->psk_server_callback == NULL) continue; #endif /* OPENSSL_NO_PSK */ ok = (alg_k & mask_k) && (alg_a & mask_a); #ifdef CIPHER_DEBUG fprintf(stderr, "%d:[%08lX:%08lX:%08lX:%08lX]%p:%s\n", ok, alg_k, alg_a, mask_k, mask_a, (void *)c, c->name); #endif #ifndef OPENSSL_NO_EC /* * if we are considering an ECC cipher suite that uses an ephemeral * EC key check it */ if (alg_k & SSL_kECDHE) ok = ok && tls1_check_ec_tmp_key(s, c->id); #endif /* OPENSSL_NO_EC */ if (!ok) continue; } ii = sk_SSL_CIPHER_find(allow, c); if (ii >= 0) { /* Check security callback permits this cipher */ if (!ssl_security(s, SSL_SECOP_CIPHER_SHARED, c->strength_bits, 0, (void *)c)) continue; #if !defined(OPENSSL_NO_EC) if ((alg_k & SSL_kECDHE) && (alg_a & SSL_aECDSA) && s->s3->is_probably_safari) { if (!ret) ret = sk_SSL_CIPHER_value(allow, ii); continue; } #endif if (prefer_sha256) { const SSL_CIPHER *tmp = sk_SSL_CIPHER_value(allow, ii); if (ssl_md(tmp->algorithm2) == mdsha256) { ret = tmp; break; } if (ret == NULL) ret = tmp; continue; } ret = sk_SSL_CIPHER_value(allow, ii); break; } } #ifndef OPENSSL_NO_CHACHA sk_SSL_CIPHER_free(prio_chacha); #endif return ret; } int ssl3_get_req_cert_type(SSL *s, WPACKET *pkt) { uint32_t alg_k, alg_a = 0; /* If we have custom certificate types set, use them */ if (s->cert->ctype) return WPACKET_memcpy(pkt, s->cert->ctype, s->cert->ctype_len); /* Get mask of algorithms disabled by signature list */ ssl_set_sig_mask(&alg_a, s, SSL_SECOP_SIGALG_MASK); alg_k = s->s3->tmp.new_cipher->algorithm_mkey; #ifndef OPENSSL_NO_GOST if (s->version >= TLS1_VERSION && (alg_k & SSL_kGOST)) return WPACKET_put_bytes_u8(pkt, TLS_CT_GOST01_SIGN) && WPACKET_put_bytes_u8(pkt, TLS_CT_GOST12_SIGN) && WPACKET_put_bytes_u8(pkt, TLS_CT_GOST12_512_SIGN); #endif if ((s->version == SSL3_VERSION) && (alg_k & SSL_kDHE)) { #ifndef OPENSSL_NO_DH # ifndef OPENSSL_NO_RSA if (!WPACKET_put_bytes_u8(pkt, SSL3_CT_RSA_EPHEMERAL_DH)) return 0; # endif # ifndef OPENSSL_NO_DSA if (!WPACKET_put_bytes_u8(pkt, SSL3_CT_DSS_EPHEMERAL_DH)) return 0; # endif #endif /* !OPENSSL_NO_DH */ } #ifndef OPENSSL_NO_RSA if (!(alg_a & SSL_aRSA) && !WPACKET_put_bytes_u8(pkt, SSL3_CT_RSA_SIGN)) return 0; #endif #ifndef OPENSSL_NO_DSA if (!(alg_a & SSL_aDSS) && !WPACKET_put_bytes_u8(pkt, SSL3_CT_DSS_SIGN)) return 0; #endif #ifndef OPENSSL_NO_EC /* * ECDSA certs can be used with RSA cipher suites too so we don't * need to check for SSL_kECDH or SSL_kECDHE */ if (s->version >= TLS1_VERSION && !(alg_a & SSL_aECDSA) && !WPACKET_put_bytes_u8(pkt, TLS_CT_ECDSA_SIGN)) return 0; #endif return 1; } static int ssl3_set_req_cert_type(CERT *c, const unsigned char *p, size_t len) { OPENSSL_free(c->ctype); c->ctype = NULL; c->ctype_len = 0; if (p == NULL || len == 0) return 1; if (len > 0xff) return 0; c->ctype = OPENSSL_memdup(p, len); if (c->ctype == NULL) return 0; c->ctype_len = len; return 1; } int ssl3_shutdown(SSL *s) { int ret; /* * Don't do anything much if we have not done the handshake or we don't * want to send messages :-) */ if (s->quiet_shutdown || SSL_in_before(s)) { s->shutdown = (SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN); return 1; } if (!(s->shutdown & SSL_SENT_SHUTDOWN)) { s->shutdown |= SSL_SENT_SHUTDOWN; ssl3_send_alert(s, SSL3_AL_WARNING, SSL_AD_CLOSE_NOTIFY); /* * our shutdown alert has been sent now, and if it still needs to be * written, s->s3->alert_dispatch will be true */ if (s->s3->alert_dispatch) return -1; /* return WANT_WRITE */ } else if (s->s3->alert_dispatch) { /* resend it if not sent */ ret = s->method->ssl_dispatch_alert(s); if (ret == -1) { /* * we only get to return -1 here the 2nd/Nth invocation, we must * have already signalled return 0 upon a previous invocation, * return WANT_WRITE */ return ret; } } else if (!(s->shutdown & SSL_RECEIVED_SHUTDOWN)) { size_t readbytes; /* * If we are waiting for a close from our peer, we are closed */ s->method->ssl_read_bytes(s, 0, NULL, NULL, 0, 0, &readbytes); if (!(s->shutdown & SSL_RECEIVED_SHUTDOWN)) { return -1; /* return WANT_READ */ } } if ((s->shutdown == (SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN)) && !s->s3->alert_dispatch) return 1; else return 0; } int ssl3_write(SSL *s, const void *buf, size_t len, size_t *written) { clear_sys_error(); if (s->s3->renegotiate) ssl3_renegotiate_check(s, 0); return s->method->ssl_write_bytes(s, SSL3_RT_APPLICATION_DATA, buf, len, written); } static int ssl3_read_internal(SSL *s, void *buf, size_t len, int peek, size_t *readbytes) { int ret; clear_sys_error(); if (s->s3->renegotiate) ssl3_renegotiate_check(s, 0); s->s3->in_read_app_data = 1; ret = s->method->ssl_read_bytes(s, SSL3_RT_APPLICATION_DATA, NULL, buf, len, peek, readbytes); if ((ret == -1) && (s->s3->in_read_app_data == 2)) { /* * ssl3_read_bytes decided to call s->handshake_func, which called * ssl3_read_bytes to read handshake data. However, ssl3_read_bytes * actually found application data and thinks that application data * makes sense here; so disable handshake processing and try to read * application data again. */ ossl_statem_set_in_handshake(s, 1); ret = s->method->ssl_read_bytes(s, SSL3_RT_APPLICATION_DATA, NULL, buf, len, peek, readbytes); ossl_statem_set_in_handshake(s, 0); } else s->s3->in_read_app_data = 0; return ret; } int ssl3_read(SSL *s, void *buf, size_t len, size_t *readbytes) { return ssl3_read_internal(s, buf, len, 0, readbytes); } int ssl3_peek(SSL *s, void *buf, size_t len, size_t *readbytes) { return ssl3_read_internal(s, buf, len, 1, readbytes); } int ssl3_renegotiate(SSL *s) { if (s->handshake_func == NULL) return 1; s->s3->renegotiate = 1; return 1; } /* * Check if we are waiting to do a renegotiation and if so whether now is a * good time to do it. If |initok| is true then we are being called from inside * the state machine so ignore the result of SSL_in_init(s). Otherwise we * should not do a renegotiation if SSL_in_init(s) is true. Returns 1 if we * should do a renegotiation now and sets up the state machine for it. Otherwise * returns 0. */ int ssl3_renegotiate_check(SSL *s, int initok) { int ret = 0; if (s->s3->renegotiate) { if (!RECORD_LAYER_read_pending(&s->rlayer) && !RECORD_LAYER_write_pending(&s->rlayer) && (initok || !SSL_in_init(s))) { /* * if we are the server, and we have sent a 'RENEGOTIATE' * message, we need to set the state machine into the renegotiate * state. */ ossl_statem_set_renegotiate(s); s->s3->renegotiate = 0; s->s3->num_renegotiations++; s->s3->total_renegotiations++; ret = 1; } } return ret; } /* * If we are using default SHA1+MD5 algorithms switch to new SHA256 PRF and * handshake macs if required. * * If PSK and using SHA384 for TLS < 1.2 switch to default. */ long ssl_get_algorithm2(SSL *s) { long alg2; if (s->s3 == NULL || s->s3->tmp.new_cipher == NULL) return -1; alg2 = s->s3->tmp.new_cipher->algorithm2; if (s->method->ssl3_enc->enc_flags & SSL_ENC_FLAG_SHA256_PRF) { if (alg2 == (SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF)) return SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256; } else if (s->s3->tmp.new_cipher->algorithm_mkey & SSL_PSK) { if (alg2 == (SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384)) return SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF; } return alg2; } /* * Fill a ClientRandom or ServerRandom field of length len. Returns <= 0 on * failure, 1 on success. */ int ssl_fill_hello_random(SSL *s, int server, unsigned char *result, size_t len, DOWNGRADE dgrd) { int send_time = 0, ret; if (len < 4) return 0; if (server) send_time = (s->mode & SSL_MODE_SEND_SERVERHELLO_TIME) != 0; else send_time = (s->mode & SSL_MODE_SEND_CLIENTHELLO_TIME) != 0; if (send_time) { unsigned long Time = (unsigned long)time(NULL); unsigned char *p = result; l2n(Time, p); ret = RAND_bytes(p, len - 4); } else { ret = RAND_bytes(result, len); } if (ret > 0) { if (!ossl_assert(sizeof(tls11downgrade) < len) || !ossl_assert(sizeof(tls12downgrade) < len)) return 0; if (dgrd == DOWNGRADE_TO_1_2) memcpy(result + len - sizeof(tls12downgrade), tls12downgrade, sizeof(tls12downgrade)); else if (dgrd == DOWNGRADE_TO_1_1) memcpy(result + len - sizeof(tls11downgrade), tls11downgrade, sizeof(tls11downgrade)); } return ret; } int ssl_generate_master_secret(SSL *s, unsigned char *pms, size_t pmslen, int free_pms) { unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey; int ret = 0; if (alg_k & SSL_PSK) { #ifndef OPENSSL_NO_PSK unsigned char *pskpms, *t; size_t psklen = s->s3->tmp.psklen; size_t pskpmslen; /* create PSK premaster_secret */ /* For plain PSK "other_secret" is psklen zeroes */ if (alg_k & SSL_kPSK) pmslen = psklen; pskpmslen = 4 + pmslen + psklen; pskpms = OPENSSL_malloc(pskpmslen); if (pskpms == NULL) goto err; t = pskpms; s2n(pmslen, t); if (alg_k & SSL_kPSK) memset(t, 0, pmslen); else memcpy(t, pms, pmslen); t += pmslen; s2n(psklen, t); memcpy(t, s->s3->tmp.psk, psklen); OPENSSL_clear_free(s->s3->tmp.psk, psklen); s->s3->tmp.psk = NULL; s->s3->tmp.psklen = 0; if (!s->method->ssl3_enc->generate_master_secret(s, s->session->master_key, pskpms, pskpmslen, &s->session->master_key_length)) { OPENSSL_clear_free(pskpms, pskpmslen); /* SSLfatal() already called */ goto err; } OPENSSL_clear_free(pskpms, pskpmslen); #else /* Should never happen */ goto err; #endif } else { if (!s->method->ssl3_enc->generate_master_secret(s, s->session->master_key, pms, pmslen, &s->session->master_key_length)) { /* SSLfatal() already called */ goto err; } } ret = 1; err: if (pms) { if (free_pms) OPENSSL_clear_free(pms, pmslen); else OPENSSL_cleanse(pms, pmslen); } if (s->server == 0) { s->s3->tmp.pms = NULL; s->s3->tmp.pmslen = 0; } return ret; } /* Generate a private key from parameters */ EVP_PKEY *ssl_generate_pkey(EVP_PKEY *pm) { EVP_PKEY_CTX *pctx = NULL; EVP_PKEY *pkey = NULL; if (pm == NULL) return NULL; pctx = EVP_PKEY_CTX_new(pm, NULL); if (pctx == NULL) goto err; if (EVP_PKEY_keygen_init(pctx) <= 0) goto err; if (EVP_PKEY_keygen(pctx, &pkey) <= 0) { EVP_PKEY_free(pkey); pkey = NULL; } err: EVP_PKEY_CTX_free(pctx); return pkey; } #ifndef OPENSSL_NO_EC /* Generate a private key from a group ID */ EVP_PKEY *ssl_generate_pkey_group(SSL *s, uint16_t id) { EVP_PKEY_CTX *pctx = NULL; EVP_PKEY *pkey = NULL; const TLS_GROUP_INFO *ginf = tls1_group_id_lookup(id); uint16_t gtype; if (ginf == NULL) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_GENERATE_PKEY_GROUP, ERR_R_INTERNAL_ERROR); goto err; } gtype = ginf->flags & TLS_CURVE_TYPE; if (gtype == TLS_CURVE_CUSTOM) pctx = EVP_PKEY_CTX_new_id(ginf->nid, NULL); else pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL); if (pctx == NULL) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_GENERATE_PKEY_GROUP, ERR_R_MALLOC_FAILURE); goto err; } if (EVP_PKEY_keygen_init(pctx) <= 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_GENERATE_PKEY_GROUP, ERR_R_EVP_LIB); goto err; } if (gtype != TLS_CURVE_CUSTOM && EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx, ginf->nid) <= 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_GENERATE_PKEY_GROUP, ERR_R_EVP_LIB); goto err; } if (EVP_PKEY_keygen(pctx, &pkey) <= 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_GENERATE_PKEY_GROUP, ERR_R_EVP_LIB); EVP_PKEY_free(pkey); pkey = NULL; } err: EVP_PKEY_CTX_free(pctx); return pkey; } /* * Generate parameters from a group ID */ EVP_PKEY *ssl_generate_param_group(uint16_t id) { EVP_PKEY_CTX *pctx = NULL; EVP_PKEY *pkey = NULL; const TLS_GROUP_INFO *ginf = tls1_group_id_lookup(id); if (ginf == NULL) goto err; if ((ginf->flags & TLS_CURVE_TYPE) == TLS_CURVE_CUSTOM) { pkey = EVP_PKEY_new(); if (pkey != NULL && EVP_PKEY_set_type(pkey, ginf->nid)) return pkey; EVP_PKEY_free(pkey); return NULL; } pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL); if (pctx == NULL) goto err; if (EVP_PKEY_paramgen_init(pctx) <= 0) goto err; if (EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx, ginf->nid) <= 0) goto err; if (EVP_PKEY_paramgen(pctx, &pkey) <= 0) { EVP_PKEY_free(pkey); pkey = NULL; } err: EVP_PKEY_CTX_free(pctx); return pkey; } #endif /* Derive secrets for ECDH/DH */ int ssl_derive(SSL *s, EVP_PKEY *privkey, EVP_PKEY *pubkey, int gensecret) { int rv = 0; unsigned char *pms = NULL; size_t pmslen = 0; EVP_PKEY_CTX *pctx; if (privkey == NULL || pubkey == NULL) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_DERIVE, ERR_R_INTERNAL_ERROR); return 0; } pctx = EVP_PKEY_CTX_new(privkey, NULL); if (EVP_PKEY_derive_init(pctx) <= 0 || EVP_PKEY_derive_set_peer(pctx, pubkey) <= 0 || EVP_PKEY_derive(pctx, NULL, &pmslen) <= 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_DERIVE, ERR_R_INTERNAL_ERROR); goto err; } pms = OPENSSL_malloc(pmslen); if (pms == NULL) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_DERIVE, ERR_R_MALLOC_FAILURE); goto err; } if (EVP_PKEY_derive(pctx, pms, &pmslen) <= 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_DERIVE, ERR_R_INTERNAL_ERROR); goto err; } if (gensecret) { /* SSLfatal() called as appropriate in the below functions */ if (SSL_IS_TLS13(s)) { /* * If we are resuming then we already generated the early secret * when we created the ClientHello, so don't recreate it. */ if (!s->hit) rv = tls13_generate_secret(s, ssl_handshake_md(s), NULL, NULL, 0, (unsigned char *)&s->early_secret); else rv = 1; rv = rv && tls13_generate_handshake_secret(s, pms, pmslen); } else { rv = ssl_generate_master_secret(s, pms, pmslen, 0); } } else { /* Save premaster secret */ s->s3->tmp.pms = pms; s->s3->tmp.pmslen = pmslen; pms = NULL; rv = 1; } err: OPENSSL_clear_free(pms, pmslen); EVP_PKEY_CTX_free(pctx); return rv; } #ifndef OPENSSL_NO_DH EVP_PKEY *ssl_dh_to_pkey(DH *dh) { EVP_PKEY *ret; if (dh == NULL) return NULL; ret = EVP_PKEY_new(); if (EVP_PKEY_set1_DH(ret, dh) <= 0) { EVP_PKEY_free(ret); return NULL; } return ret; } #endif diff --git a/ssl/ssl_cert.c b/ssl/ssl_cert.c index eba96b207eee..b615e7048da4 100644 --- a/ssl/ssl_cert.c +++ b/ssl/ssl_cert.c @@ -1,1025 +1,1031 @@ /* * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/nelem.h" #include "internal/o_dir.h" #include #include #include #include #include #include #include "internal/refcount.h" #include "ssl_local.h" #include "ssl_cert_table.h" #include "internal/thread_once.h" static int ssl_security_default_callback(const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid, void *other, void *ex); static CRYPTO_ONCE ssl_x509_store_ctx_once = CRYPTO_ONCE_STATIC_INIT; static volatile int ssl_x509_store_ctx_idx = -1; DEFINE_RUN_ONCE_STATIC(ssl_x509_store_ctx_init) { ssl_x509_store_ctx_idx = X509_STORE_CTX_get_ex_new_index(0, "SSL for verify callback", NULL, NULL, NULL); return ssl_x509_store_ctx_idx >= 0; } int SSL_get_ex_data_X509_STORE_CTX_idx(void) { if (!RUN_ONCE(&ssl_x509_store_ctx_once, ssl_x509_store_ctx_init)) return -1; return ssl_x509_store_ctx_idx; } CERT *ssl_cert_new(void) { CERT *ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { SSLerr(SSL_F_SSL_CERT_NEW, ERR_R_MALLOC_FAILURE); return NULL; } ret->key = &(ret->pkeys[SSL_PKEY_RSA]); ret->references = 1; ret->sec_cb = ssl_security_default_callback; ret->sec_level = OPENSSL_TLS_SECURITY_LEVEL; ret->sec_ex = NULL; ret->lock = CRYPTO_THREAD_lock_new(); if (ret->lock == NULL) { SSLerr(SSL_F_SSL_CERT_NEW, ERR_R_MALLOC_FAILURE); OPENSSL_free(ret); return NULL; } return ret; } CERT *ssl_cert_dup(CERT *cert) { CERT *ret = OPENSSL_zalloc(sizeof(*ret)); int i; if (ret == NULL) { SSLerr(SSL_F_SSL_CERT_DUP, ERR_R_MALLOC_FAILURE); return NULL; } ret->references = 1; ret->key = &ret->pkeys[cert->key - cert->pkeys]; ret->lock = CRYPTO_THREAD_lock_new(); if (ret->lock == NULL) { SSLerr(SSL_F_SSL_CERT_DUP, ERR_R_MALLOC_FAILURE); OPENSSL_free(ret); return NULL; } #ifndef OPENSSL_NO_DH if (cert->dh_tmp != NULL) { ret->dh_tmp = cert->dh_tmp; EVP_PKEY_up_ref(ret->dh_tmp); } ret->dh_tmp_cb = cert->dh_tmp_cb; ret->dh_tmp_auto = cert->dh_tmp_auto; #endif for (i = 0; i < SSL_PKEY_NUM; i++) { CERT_PKEY *cpk = cert->pkeys + i; CERT_PKEY *rpk = ret->pkeys + i; if (cpk->x509 != NULL) { rpk->x509 = cpk->x509; X509_up_ref(rpk->x509); } if (cpk->privatekey != NULL) { rpk->privatekey = cpk->privatekey; EVP_PKEY_up_ref(cpk->privatekey); } if (cpk->chain) { rpk->chain = X509_chain_up_ref(cpk->chain); if (!rpk->chain) { SSLerr(SSL_F_SSL_CERT_DUP, ERR_R_MALLOC_FAILURE); goto err; } } if (cert->pkeys[i].serverinfo != NULL) { /* Just copy everything. */ ret->pkeys[i].serverinfo = OPENSSL_malloc(cert->pkeys[i].serverinfo_length); if (ret->pkeys[i].serverinfo == NULL) { SSLerr(SSL_F_SSL_CERT_DUP, ERR_R_MALLOC_FAILURE); goto err; } ret->pkeys[i].serverinfo_length = cert->pkeys[i].serverinfo_length; memcpy(ret->pkeys[i].serverinfo, cert->pkeys[i].serverinfo, cert->pkeys[i].serverinfo_length); } } /* Configured sigalgs copied across */ if (cert->conf_sigalgs) { ret->conf_sigalgs = OPENSSL_malloc(cert->conf_sigalgslen * sizeof(*cert->conf_sigalgs)); if (ret->conf_sigalgs == NULL) goto err; memcpy(ret->conf_sigalgs, cert->conf_sigalgs, cert->conf_sigalgslen * sizeof(*cert->conf_sigalgs)); ret->conf_sigalgslen = cert->conf_sigalgslen; } else ret->conf_sigalgs = NULL; if (cert->client_sigalgs) { ret->client_sigalgs = OPENSSL_malloc(cert->client_sigalgslen * sizeof(*cert->client_sigalgs)); if (ret->client_sigalgs == NULL) goto err; memcpy(ret->client_sigalgs, cert->client_sigalgs, cert->client_sigalgslen * sizeof(*cert->client_sigalgs)); ret->client_sigalgslen = cert->client_sigalgslen; } else ret->client_sigalgs = NULL; /* Copy any custom client certificate types */ if (cert->ctype) { ret->ctype = OPENSSL_memdup(cert->ctype, cert->ctype_len); if (ret->ctype == NULL) goto err; ret->ctype_len = cert->ctype_len; } ret->cert_flags = cert->cert_flags; ret->cert_cb = cert->cert_cb; ret->cert_cb_arg = cert->cert_cb_arg; if (cert->verify_store) { X509_STORE_up_ref(cert->verify_store); ret->verify_store = cert->verify_store; } if (cert->chain_store) { X509_STORE_up_ref(cert->chain_store); ret->chain_store = cert->chain_store; } ret->sec_cb = cert->sec_cb; ret->sec_level = cert->sec_level; ret->sec_ex = cert->sec_ex; if (!custom_exts_copy(&ret->custext, &cert->custext)) goto err; #ifndef OPENSSL_NO_PSK if (cert->psk_identity_hint) { ret->psk_identity_hint = OPENSSL_strdup(cert->psk_identity_hint); if (ret->psk_identity_hint == NULL) goto err; } #endif return ret; err: ssl_cert_free(ret); return NULL; } /* Free up and clear all certificates and chains */ void ssl_cert_clear_certs(CERT *c) { int i; if (c == NULL) return; for (i = 0; i < SSL_PKEY_NUM; i++) { CERT_PKEY *cpk = c->pkeys + i; X509_free(cpk->x509); cpk->x509 = NULL; EVP_PKEY_free(cpk->privatekey); cpk->privatekey = NULL; sk_X509_pop_free(cpk->chain, X509_free); cpk->chain = NULL; OPENSSL_free(cpk->serverinfo); cpk->serverinfo = NULL; cpk->serverinfo_length = 0; } } void ssl_cert_free(CERT *c) { int i; if (c == NULL) return; CRYPTO_DOWN_REF(&c->references, &i, c->lock); REF_PRINT_COUNT("CERT", c); if (i > 0) return; REF_ASSERT_ISNT(i < 0); #ifndef OPENSSL_NO_DH EVP_PKEY_free(c->dh_tmp); #endif ssl_cert_clear_certs(c); OPENSSL_free(c->conf_sigalgs); OPENSSL_free(c->client_sigalgs); OPENSSL_free(c->ctype); X509_STORE_free(c->verify_store); X509_STORE_free(c->chain_store); custom_exts_free(&c->custext); #ifndef OPENSSL_NO_PSK OPENSSL_free(c->psk_identity_hint); #endif CRYPTO_THREAD_lock_free(c->lock); OPENSSL_free(c); } int ssl_cert_set0_chain(SSL *s, SSL_CTX *ctx, STACK_OF(X509) *chain) { int i, r; CERT_PKEY *cpk = s ? s->cert->key : ctx->cert->key; if (!cpk) return 0; for (i = 0; i < sk_X509_num(chain); i++) { r = ssl_security_cert(s, ctx, sk_X509_value(chain, i), 0, 0); if (r != 1) { SSLerr(SSL_F_SSL_CERT_SET0_CHAIN, r); return 0; } } sk_X509_pop_free(cpk->chain, X509_free); cpk->chain = chain; return 1; } int ssl_cert_set1_chain(SSL *s, SSL_CTX *ctx, STACK_OF(X509) *chain) { STACK_OF(X509) *dchain; if (!chain) return ssl_cert_set0_chain(s, ctx, NULL); dchain = X509_chain_up_ref(chain); if (!dchain) return 0; if (!ssl_cert_set0_chain(s, ctx, dchain)) { sk_X509_pop_free(dchain, X509_free); return 0; } return 1; } int ssl_cert_add0_chain_cert(SSL *s, SSL_CTX *ctx, X509 *x) { int r; CERT_PKEY *cpk = s ? s->cert->key : ctx->cert->key; if (!cpk) return 0; r = ssl_security_cert(s, ctx, x, 0, 0); if (r != 1) { SSLerr(SSL_F_SSL_CERT_ADD0_CHAIN_CERT, r); return 0; } if (!cpk->chain) cpk->chain = sk_X509_new_null(); if (!cpk->chain || !sk_X509_push(cpk->chain, x)) return 0; return 1; } int ssl_cert_add1_chain_cert(SSL *s, SSL_CTX *ctx, X509 *x) { if (!ssl_cert_add0_chain_cert(s, ctx, x)) return 0; X509_up_ref(x); return 1; } int ssl_cert_select_current(CERT *c, X509 *x) { int i; if (x == NULL) return 0; for (i = 0; i < SSL_PKEY_NUM; i++) { CERT_PKEY *cpk = c->pkeys + i; if (cpk->x509 == x && cpk->privatekey) { c->key = cpk; return 1; } } for (i = 0; i < SSL_PKEY_NUM; i++) { CERT_PKEY *cpk = c->pkeys + i; if (cpk->privatekey && cpk->x509 && !X509_cmp(cpk->x509, x)) { c->key = cpk; return 1; } } return 0; } int ssl_cert_set_current(CERT *c, long op) { int i, idx; if (!c) return 0; if (op == SSL_CERT_SET_FIRST) idx = 0; else if (op == SSL_CERT_SET_NEXT) { idx = (int)(c->key - c->pkeys + 1); if (idx >= SSL_PKEY_NUM) return 0; } else return 0; for (i = idx; i < SSL_PKEY_NUM; i++) { CERT_PKEY *cpk = c->pkeys + i; if (cpk->x509 && cpk->privatekey) { c->key = cpk; return 1; } } return 0; } void ssl_cert_set_cert_cb(CERT *c, int (*cb) (SSL *ssl, void *arg), void *arg) { c->cert_cb = cb; c->cert_cb_arg = arg; } int ssl_verify_cert_chain(SSL *s, STACK_OF(X509) *sk) { X509 *x; int i = 0; X509_STORE *verify_store; X509_STORE_CTX *ctx = NULL; X509_VERIFY_PARAM *param; if ((sk == NULL) || (sk_X509_num(sk) == 0)) return 0; if (s->cert->verify_store) verify_store = s->cert->verify_store; else verify_store = s->ctx->cert_store; ctx = X509_STORE_CTX_new(); if (ctx == NULL) { SSLerr(SSL_F_SSL_VERIFY_CERT_CHAIN, ERR_R_MALLOC_FAILURE); return 0; } x = sk_X509_value(sk, 0); if (!X509_STORE_CTX_init(ctx, verify_store, x, sk)) { SSLerr(SSL_F_SSL_VERIFY_CERT_CHAIN, ERR_R_X509_LIB); goto end; } param = X509_STORE_CTX_get0_param(ctx); /* * XXX: Separate @AUTHSECLEVEL and @TLSSECLEVEL would be useful at some * point, for now a single @SECLEVEL sets the same policy for TLS crypto * and PKI authentication. */ X509_VERIFY_PARAM_set_auth_level(param, SSL_get_security_level(s)); /* Set suite B flags if needed */ X509_STORE_CTX_set_flags(ctx, tls1_suiteb(s)); if (!X509_STORE_CTX_set_ex_data (ctx, SSL_get_ex_data_X509_STORE_CTX_idx(), s)) { goto end; } /* Verify via DANE if enabled */ if (DANETLS_ENABLED(&s->dane)) X509_STORE_CTX_set0_dane(ctx, &s->dane); /* * We need to inherit the verify parameters. These can be determined by * the context: if its a server it will verify SSL client certificates or * vice versa. */ X509_STORE_CTX_set_default(ctx, s->server ? "ssl_client" : "ssl_server"); /* * Anything non-default in "s->param" should overwrite anything in the ctx. */ X509_VERIFY_PARAM_set1(param, s->param); if (s->verify_callback) X509_STORE_CTX_set_verify_cb(ctx, s->verify_callback); if (s->ctx->app_verify_callback != NULL) i = s->ctx->app_verify_callback(ctx, s->ctx->app_verify_arg); else i = X509_verify_cert(ctx); s->verify_result = X509_STORE_CTX_get_error(ctx); sk_X509_pop_free(s->verified_chain, X509_free); s->verified_chain = NULL; if (X509_STORE_CTX_get0_chain(ctx) != NULL) { s->verified_chain = X509_STORE_CTX_get1_chain(ctx); if (s->verified_chain == NULL) { SSLerr(SSL_F_SSL_VERIFY_CERT_CHAIN, ERR_R_MALLOC_FAILURE); i = 0; } } /* Move peername from the store context params to the SSL handle's */ X509_VERIFY_PARAM_move_peername(s->param, param); end: X509_STORE_CTX_free(ctx); return i; } static void set0_CA_list(STACK_OF(X509_NAME) **ca_list, STACK_OF(X509_NAME) *name_list) { sk_X509_NAME_pop_free(*ca_list, X509_NAME_free); *ca_list = name_list; } STACK_OF(X509_NAME) *SSL_dup_CA_list(const STACK_OF(X509_NAME) *sk) { int i; const int num = sk_X509_NAME_num(sk); STACK_OF(X509_NAME) *ret; X509_NAME *name; ret = sk_X509_NAME_new_reserve(NULL, num); if (ret == NULL) { SSLerr(SSL_F_SSL_DUP_CA_LIST, ERR_R_MALLOC_FAILURE); return NULL; } for (i = 0; i < num; i++) { name = X509_NAME_dup(sk_X509_NAME_value(sk, i)); if (name == NULL) { SSLerr(SSL_F_SSL_DUP_CA_LIST, ERR_R_MALLOC_FAILURE); sk_X509_NAME_pop_free(ret, X509_NAME_free); return NULL; } sk_X509_NAME_push(ret, name); /* Cannot fail after reserve call */ } return ret; } void SSL_set0_CA_list(SSL *s, STACK_OF(X509_NAME) *name_list) { set0_CA_list(&s->ca_names, name_list); } void SSL_CTX_set0_CA_list(SSL_CTX *ctx, STACK_OF(X509_NAME) *name_list) { set0_CA_list(&ctx->ca_names, name_list); } const STACK_OF(X509_NAME) *SSL_CTX_get0_CA_list(const SSL_CTX *ctx) { return ctx->ca_names; } const STACK_OF(X509_NAME) *SSL_get0_CA_list(const SSL *s) { return s->ca_names != NULL ? s->ca_names : s->ctx->ca_names; } void SSL_CTX_set_client_CA_list(SSL_CTX *ctx, STACK_OF(X509_NAME) *name_list) { set0_CA_list(&ctx->client_ca_names, name_list); } STACK_OF(X509_NAME) *SSL_CTX_get_client_CA_list(const SSL_CTX *ctx) { return ctx->client_ca_names; } void SSL_set_client_CA_list(SSL *s, STACK_OF(X509_NAME) *name_list) { set0_CA_list(&s->client_ca_names, name_list); } const STACK_OF(X509_NAME) *SSL_get0_peer_CA_list(const SSL *s) { return s->s3 != NULL ? s->s3->tmp.peer_ca_names : NULL; } STACK_OF(X509_NAME) *SSL_get_client_CA_list(const SSL *s) { if (!s->server) return s->s3 != NULL ? s->s3->tmp.peer_ca_names : NULL; return s->client_ca_names != NULL ? s->client_ca_names : s->ctx->client_ca_names; } static int add_ca_name(STACK_OF(X509_NAME) **sk, const X509 *x) { X509_NAME *name; if (x == NULL) return 0; if (*sk == NULL && ((*sk = sk_X509_NAME_new_null()) == NULL)) return 0; if ((name = X509_NAME_dup(X509_get_subject_name(x))) == NULL) return 0; if (!sk_X509_NAME_push(*sk, name)) { X509_NAME_free(name); return 0; } return 1; } int SSL_add1_to_CA_list(SSL *ssl, const X509 *x) { return add_ca_name(&ssl->ca_names, x); } int SSL_CTX_add1_to_CA_list(SSL_CTX *ctx, const X509 *x) { return add_ca_name(&ctx->ca_names, x); } /* * The following two are older names are to be replaced with * SSL(_CTX)_add1_to_CA_list */ int SSL_add_client_CA(SSL *ssl, X509 *x) { return add_ca_name(&ssl->client_ca_names, x); } int SSL_CTX_add_client_CA(SSL_CTX *ctx, X509 *x) { return add_ca_name(&ctx->client_ca_names, x); } static int xname_cmp(const X509_NAME *a, const X509_NAME *b) { unsigned char *abuf = NULL, *bbuf = NULL; int alen, blen, ret; /* X509_NAME_cmp() itself casts away constness in this way, so * assume it's safe: */ alen = i2d_X509_NAME((X509_NAME *)a, &abuf); blen = i2d_X509_NAME((X509_NAME *)b, &bbuf); if (alen < 0 || blen < 0) ret = -2; else if (alen != blen) ret = alen - blen; else /* alen == blen */ ret = memcmp(abuf, bbuf, alen); OPENSSL_free(abuf); OPENSSL_free(bbuf); return ret; } static int xname_sk_cmp(const X509_NAME *const *a, const X509_NAME *const *b) { return xname_cmp(*a, *b); } static unsigned long xname_hash(const X509_NAME *a) { return X509_NAME_hash((X509_NAME *)a); } STACK_OF(X509_NAME) *SSL_load_client_CA_file(const char *file) { BIO *in = BIO_new(BIO_s_file()); X509 *x = NULL; X509_NAME *xn = NULL; STACK_OF(X509_NAME) *ret = NULL; LHASH_OF(X509_NAME) *name_hash = lh_X509_NAME_new(xname_hash, xname_cmp); if ((name_hash == NULL) || (in == NULL)) { SSLerr(SSL_F_SSL_LOAD_CLIENT_CA_FILE, ERR_R_MALLOC_FAILURE); goto err; } if (!BIO_read_filename(in, file)) goto err; for (;;) { if (PEM_read_bio_X509(in, &x, NULL, NULL) == NULL) break; if (ret == NULL) { ret = sk_X509_NAME_new_null(); if (ret == NULL) { SSLerr(SSL_F_SSL_LOAD_CLIENT_CA_FILE, ERR_R_MALLOC_FAILURE); goto err; } } if ((xn = X509_get_subject_name(x)) == NULL) goto err; /* check for duplicates */ xn = X509_NAME_dup(xn); if (xn == NULL) goto err; if (lh_X509_NAME_retrieve(name_hash, xn) != NULL) { /* Duplicate. */ X509_NAME_free(xn); xn = NULL; } else { lh_X509_NAME_insert(name_hash, xn); if (!sk_X509_NAME_push(ret, xn)) goto err; } } goto done; err: X509_NAME_free(xn); sk_X509_NAME_pop_free(ret, X509_NAME_free); ret = NULL; done: BIO_free(in); X509_free(x); lh_X509_NAME_free(name_hash); if (ret != NULL) ERR_clear_error(); return ret; } int SSL_add_file_cert_subjects_to_stack(STACK_OF(X509_NAME) *stack, const char *file) { BIO *in; X509 *x = NULL; X509_NAME *xn = NULL; int ret = 1; int (*oldcmp) (const X509_NAME *const *a, const X509_NAME *const *b); oldcmp = sk_X509_NAME_set_cmp_func(stack, xname_sk_cmp); in = BIO_new(BIO_s_file()); if (in == NULL) { SSLerr(SSL_F_SSL_ADD_FILE_CERT_SUBJECTS_TO_STACK, ERR_R_MALLOC_FAILURE); goto err; } if (!BIO_read_filename(in, file)) goto err; for (;;) { if (PEM_read_bio_X509(in, &x, NULL, NULL) == NULL) break; if ((xn = X509_get_subject_name(x)) == NULL) goto err; xn = X509_NAME_dup(xn); if (xn == NULL) goto err; if (sk_X509_NAME_find(stack, xn) >= 0) { /* Duplicate. */ X509_NAME_free(xn); } else if (!sk_X509_NAME_push(stack, xn)) { X509_NAME_free(xn); goto err; } } ERR_clear_error(); goto done; err: ret = 0; done: BIO_free(in); X509_free(x); (void)sk_X509_NAME_set_cmp_func(stack, oldcmp); return ret; } int SSL_add_dir_cert_subjects_to_stack(STACK_OF(X509_NAME) *stack, const char *dir) { OPENSSL_DIR_CTX *d = NULL; const char *filename; int ret = 0; /* Note that a side effect is that the CAs will be sorted by name */ while ((filename = OPENSSL_DIR_read(&d, dir))) { char buf[1024]; int r; if (strlen(dir) + strlen(filename) + 2 > sizeof(buf)) { SSLerr(SSL_F_SSL_ADD_DIR_CERT_SUBJECTS_TO_STACK, SSL_R_PATH_TOO_LONG); goto err; } #ifdef OPENSSL_SYS_VMS r = BIO_snprintf(buf, sizeof(buf), "%s%s", dir, filename); #else r = BIO_snprintf(buf, sizeof(buf), "%s/%s", dir, filename); #endif if (r <= 0 || r >= (int)sizeof(buf)) goto err; if (!SSL_add_file_cert_subjects_to_stack(stack, buf)) goto err; } if (errno) { SYSerr(SYS_F_OPENDIR, get_last_sys_error()); ERR_add_error_data(3, "OPENSSL_DIR_read(&ctx, '", dir, "')"); SSLerr(SSL_F_SSL_ADD_DIR_CERT_SUBJECTS_TO_STACK, ERR_R_SYS_LIB); goto err; } ret = 1; err: if (d) OPENSSL_DIR_end(&d); return ret; } /* Build a certificate chain for current certificate */ int ssl_build_cert_chain(SSL *s, SSL_CTX *ctx, int flags) { CERT *c = s ? s->cert : ctx->cert; CERT_PKEY *cpk = c->key; X509_STORE *chain_store = NULL; X509_STORE_CTX *xs_ctx = NULL; STACK_OF(X509) *chain = NULL, *untrusted = NULL; X509 *x; int i, rv = 0; if (!cpk->x509) { SSLerr(SSL_F_SSL_BUILD_CERT_CHAIN, SSL_R_NO_CERTIFICATE_SET); goto err; } /* Rearranging and check the chain: add everything to a store */ if (flags & SSL_BUILD_CHAIN_FLAG_CHECK) { chain_store = X509_STORE_new(); if (chain_store == NULL) goto err; for (i = 0; i < sk_X509_num(cpk->chain); i++) { x = sk_X509_value(cpk->chain, i); if (!X509_STORE_add_cert(chain_store, x)) goto err; } /* Add EE cert too: it might be self signed */ if (!X509_STORE_add_cert(chain_store, cpk->x509)) goto err; } else { if (c->chain_store) chain_store = c->chain_store; else if (s) chain_store = s->ctx->cert_store; else chain_store = ctx->cert_store; if (flags & SSL_BUILD_CHAIN_FLAG_UNTRUSTED) untrusted = cpk->chain; } xs_ctx = X509_STORE_CTX_new(); if (xs_ctx == NULL) { SSLerr(SSL_F_SSL_BUILD_CERT_CHAIN, ERR_R_MALLOC_FAILURE); goto err; } if (!X509_STORE_CTX_init(xs_ctx, chain_store, cpk->x509, untrusted)) { SSLerr(SSL_F_SSL_BUILD_CERT_CHAIN, ERR_R_X509_LIB); goto err; } /* Set suite B flags if needed */ X509_STORE_CTX_set_flags(xs_ctx, c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS); i = X509_verify_cert(xs_ctx); if (i <= 0 && flags & SSL_BUILD_CHAIN_FLAG_IGNORE_ERROR) { if (flags & SSL_BUILD_CHAIN_FLAG_CLEAR_ERROR) ERR_clear_error(); i = 1; rv = 2; } if (i > 0) chain = X509_STORE_CTX_get1_chain(xs_ctx); if (i <= 0) { SSLerr(SSL_F_SSL_BUILD_CERT_CHAIN, SSL_R_CERTIFICATE_VERIFY_FAILED); i = X509_STORE_CTX_get_error(xs_ctx); ERR_add_error_data(2, "Verify error:", X509_verify_cert_error_string(i)); goto err; } /* Remove EE certificate from chain */ x = sk_X509_shift(chain); X509_free(x); if (flags & SSL_BUILD_CHAIN_FLAG_NO_ROOT) { if (sk_X509_num(chain) > 0) { /* See if last cert is self signed */ x = sk_X509_value(chain, sk_X509_num(chain) - 1); if (X509_get_extension_flags(x) & EXFLAG_SS) { x = sk_X509_pop(chain); X509_free(x); } } } /* * Check security level of all CA certificates: EE will have been checked * already. */ for (i = 0; i < sk_X509_num(chain); i++) { x = sk_X509_value(chain, i); rv = ssl_security_cert(s, ctx, x, 0, 0); if (rv != 1) { SSLerr(SSL_F_SSL_BUILD_CERT_CHAIN, rv); sk_X509_pop_free(chain, X509_free); rv = 0; goto err; } } sk_X509_pop_free(cpk->chain, X509_free); cpk->chain = chain; if (rv == 0) rv = 1; err: if (flags & SSL_BUILD_CHAIN_FLAG_CHECK) X509_STORE_free(chain_store); X509_STORE_CTX_free(xs_ctx); return rv; } int ssl_cert_set_cert_store(CERT *c, X509_STORE *store, int chain, int ref) { X509_STORE **pstore; if (chain) pstore = &c->chain_store; else pstore = &c->verify_store; X509_STORE_free(*pstore); *pstore = store; if (ref && store) X509_STORE_up_ref(store); return 1; } +int ssl_cert_get_cert_store(CERT *c, X509_STORE **pstore, int chain) +{ + *pstore = (chain ? c->chain_store : c->verify_store); + return 1; +} + int ssl_get_security_level_bits(const SSL *s, const SSL_CTX *ctx, int *levelp) { int level; static const int minbits_table[5 + 1] = { 0, 80, 112, 128, 192, 256 }; if (ctx != NULL) level = SSL_CTX_get_security_level(ctx); else level = SSL_get_security_level(s); if (level > 5) level = 5; else if (level < 0) level = 0; if (levelp != NULL) *levelp = level; return minbits_table[level]; } static int ssl_security_default_callback(const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid, void *other, void *ex) { int level, minbits, pfs_mask; minbits = ssl_get_security_level_bits(s, ctx, &level); if (level == 0) { /* * No EDH keys weaker than 1024-bits even at level 0, otherwise, * anything goes. */ if (op == SSL_SECOP_TMP_DH && bits < 80) return 0; return 1; } switch (op) { case SSL_SECOP_CIPHER_SUPPORTED: case SSL_SECOP_CIPHER_SHARED: case SSL_SECOP_CIPHER_CHECK: { const SSL_CIPHER *c = other; /* No ciphers below security level */ if (bits < minbits) return 0; /* No unauthenticated ciphersuites */ if (c->algorithm_auth & SSL_aNULL) return 0; /* No MD5 mac ciphersuites */ if (c->algorithm_mac & SSL_MD5) return 0; /* SHA1 HMAC is 160 bits of security */ if (minbits > 160 && c->algorithm_mac & SSL_SHA1) return 0; /* Level 2: no RC4 */ if (level >= 2 && c->algorithm_enc == SSL_RC4) return 0; /* Level 3: forward secure ciphersuites only */ pfs_mask = SSL_kDHE | SSL_kECDHE | SSL_kDHEPSK | SSL_kECDHEPSK; if (level >= 3 && c->min_tls != TLS1_3_VERSION && !(c->algorithm_mkey & pfs_mask)) return 0; break; } case SSL_SECOP_VERSION: if (!SSL_IS_DTLS(s)) { /* SSLv3 not allowed at level 2 */ if (nid <= SSL3_VERSION && level >= 2) return 0; /* TLS v1.1 and above only for level 3 */ if (nid <= TLS1_VERSION && level >= 3) return 0; /* TLS v1.2 only for level 4 and above */ if (nid <= TLS1_1_VERSION && level >= 4) return 0; } else { /* DTLS v1.2 only for level 4 and above */ if (DTLS_VERSION_LT(nid, DTLS1_2_VERSION) && level >= 4) return 0; } break; case SSL_SECOP_COMPRESSION: if (level >= 2) return 0; break; case SSL_SECOP_TICKET: if (level >= 3) return 0; break; default: if (bits < minbits) return 0; } return 1; } int ssl_security(const SSL *s, int op, int bits, int nid, void *other) { return s->cert->sec_cb(s, NULL, op, bits, nid, other, s->cert->sec_ex); } int ssl_ctx_security(const SSL_CTX *ctx, int op, int bits, int nid, void *other) { return ctx->cert->sec_cb(NULL, ctx, op, bits, nid, other, ctx->cert->sec_ex); } int ssl_cert_lookup_by_nid(int nid, size_t *pidx) { size_t i; for (i = 0; i < OSSL_NELEM(ssl_cert_info); i++) { if (ssl_cert_info[i].nid == nid) { *pidx = i; return 1; } } return 0; } const SSL_CERT_LOOKUP *ssl_cert_lookup_by_pkey(const EVP_PKEY *pk, size_t *pidx) { int nid = EVP_PKEY_id(pk); size_t tmpidx; if (nid == NID_undef) return NULL; if (!ssl_cert_lookup_by_nid(nid, &tmpidx)) return NULL; if (pidx != NULL) *pidx = tmpidx; return &ssl_cert_info[tmpidx]; } const SSL_CERT_LOOKUP *ssl_cert_lookup_by_idx(size_t idx) { if (idx >= OSSL_NELEM(ssl_cert_info)) return NULL; return &ssl_cert_info[idx]; } diff --git a/ssl/ssl_local.h b/ssl/ssl_local.h index 9f346e30e8f4..5c7921542310 100644 --- a/ssl/ssl_local.h +++ b/ssl/ssl_local.h @@ -1,2671 +1,2672 @@ /* - * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. + * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * Copyright 2005 Nokia. All rights reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef OSSL_SSL_LOCAL_H # define OSSL_SSL_LOCAL_H # include "e_os.h" /* struct timeval for DTLS */ # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include "record/record.h" # include "statem/statem.h" # include "packet_local.h" # include "internal/dane.h" # include "internal/refcount.h" # include "internal/tsan_assist.h" # ifdef OPENSSL_BUILD_SHLIBSSL # undef OPENSSL_EXTERN # define OPENSSL_EXTERN OPENSSL_EXPORT # endif # define c2l(c,l) (l = ((unsigned long)(*((c)++))) , \ l|=(((unsigned long)(*((c)++)))<< 8), \ l|=(((unsigned long)(*((c)++)))<<16), \ l|=(((unsigned long)(*((c)++)))<<24)) /* NOTE - c is not incremented as per c2l */ # define c2ln(c,l1,l2,n) { \ c+=n; \ l1=l2=0; \ switch (n) { \ case 8: l2 =((unsigned long)(*(--(c))))<<24; \ case 7: l2|=((unsigned long)(*(--(c))))<<16; \ case 6: l2|=((unsigned long)(*(--(c))))<< 8; \ case 5: l2|=((unsigned long)(*(--(c)))); \ case 4: l1 =((unsigned long)(*(--(c))))<<24; \ case 3: l1|=((unsigned long)(*(--(c))))<<16; \ case 2: l1|=((unsigned long)(*(--(c))))<< 8; \ case 1: l1|=((unsigned long)(*(--(c)))); \ } \ } # define l2c(l,c) (*((c)++)=(unsigned char)(((l) )&0xff), \ *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ *((c)++)=(unsigned char)(((l)>>16)&0xff), \ *((c)++)=(unsigned char)(((l)>>24)&0xff)) # define n2l(c,l) (l =((unsigned long)(*((c)++)))<<24, \ l|=((unsigned long)(*((c)++)))<<16, \ l|=((unsigned long)(*((c)++)))<< 8, \ l|=((unsigned long)(*((c)++)))) # define n2l8(c,l) (l =((uint64_t)(*((c)++)))<<56, \ l|=((uint64_t)(*((c)++)))<<48, \ l|=((uint64_t)(*((c)++)))<<40, \ l|=((uint64_t)(*((c)++)))<<32, \ l|=((uint64_t)(*((c)++)))<<24, \ l|=((uint64_t)(*((c)++)))<<16, \ l|=((uint64_t)(*((c)++)))<< 8, \ l|=((uint64_t)(*((c)++)))) # define l2n(l,c) (*((c)++)=(unsigned char)(((l)>>24)&0xff), \ *((c)++)=(unsigned char)(((l)>>16)&0xff), \ *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ *((c)++)=(unsigned char)(((l) )&0xff)) # define l2n6(l,c) (*((c)++)=(unsigned char)(((l)>>40)&0xff), \ *((c)++)=(unsigned char)(((l)>>32)&0xff), \ *((c)++)=(unsigned char)(((l)>>24)&0xff), \ *((c)++)=(unsigned char)(((l)>>16)&0xff), \ *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ *((c)++)=(unsigned char)(((l) )&0xff)) # define l2n8(l,c) (*((c)++)=(unsigned char)(((l)>>56)&0xff), \ *((c)++)=(unsigned char)(((l)>>48)&0xff), \ *((c)++)=(unsigned char)(((l)>>40)&0xff), \ *((c)++)=(unsigned char)(((l)>>32)&0xff), \ *((c)++)=(unsigned char)(((l)>>24)&0xff), \ *((c)++)=(unsigned char)(((l)>>16)&0xff), \ *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ *((c)++)=(unsigned char)(((l) )&0xff)) /* NOTE - c is not incremented as per l2c */ # define l2cn(l1,l2,c,n) { \ c+=n; \ switch (n) { \ case 8: *(--(c))=(unsigned char)(((l2)>>24)&0xff); \ case 7: *(--(c))=(unsigned char)(((l2)>>16)&0xff); \ case 6: *(--(c))=(unsigned char)(((l2)>> 8)&0xff); \ case 5: *(--(c))=(unsigned char)(((l2) )&0xff); \ case 4: *(--(c))=(unsigned char)(((l1)>>24)&0xff); \ case 3: *(--(c))=(unsigned char)(((l1)>>16)&0xff); \ case 2: *(--(c))=(unsigned char)(((l1)>> 8)&0xff); \ case 1: *(--(c))=(unsigned char)(((l1) )&0xff); \ } \ } # define n2s(c,s) ((s=(((unsigned int)((c)[0]))<< 8)| \ (((unsigned int)((c)[1])) )),(c)+=2) # define s2n(s,c) (((c)[0]=(unsigned char)(((s)>> 8)&0xff), \ (c)[1]=(unsigned char)(((s) )&0xff)),(c)+=2) # define n2l3(c,l) ((l =(((unsigned long)((c)[0]))<<16)| \ (((unsigned long)((c)[1]))<< 8)| \ (((unsigned long)((c)[2])) )),(c)+=3) # define l2n3(l,c) (((c)[0]=(unsigned char)(((l)>>16)&0xff), \ (c)[1]=(unsigned char)(((l)>> 8)&0xff), \ (c)[2]=(unsigned char)(((l) )&0xff)),(c)+=3) /* * DTLS version numbers are strange because they're inverted. Except for * DTLS1_BAD_VER, which should be considered "lower" than the rest. */ # define dtls_ver_ordinal(v1) (((v1) == DTLS1_BAD_VER) ? 0xff00 : (v1)) # define DTLS_VERSION_GT(v1, v2) (dtls_ver_ordinal(v1) < dtls_ver_ordinal(v2)) # define DTLS_VERSION_GE(v1, v2) (dtls_ver_ordinal(v1) <= dtls_ver_ordinal(v2)) # define DTLS_VERSION_LT(v1, v2) (dtls_ver_ordinal(v1) > dtls_ver_ordinal(v2)) # define DTLS_VERSION_LE(v1, v2) (dtls_ver_ordinal(v1) >= dtls_ver_ordinal(v2)) /* * Define the Bitmasks for SSL_CIPHER.algorithms. * This bits are used packed as dense as possible. If new methods/ciphers * etc will be added, the bits a likely to change, so this information * is for internal library use only, even though SSL_CIPHER.algorithms * can be publicly accessed. * Use the according functions for cipher management instead. * * The bit mask handling in the selection and sorting scheme in * ssl_create_cipher_list() has only limited capabilities, reflecting * that the different entities within are mutually exclusive: * ONLY ONE BIT PER MASK CAN BE SET AT A TIME. */ /* Bits for algorithm_mkey (key exchange algorithm) */ /* RSA key exchange */ # define SSL_kRSA 0x00000001U /* tmp DH key no DH cert */ # define SSL_kDHE 0x00000002U /* synonym */ # define SSL_kEDH SSL_kDHE /* ephemeral ECDH */ # define SSL_kECDHE 0x00000004U /* synonym */ # define SSL_kEECDH SSL_kECDHE /* PSK */ # define SSL_kPSK 0x00000008U /* GOST key exchange */ # define SSL_kGOST 0x00000010U /* SRP */ # define SSL_kSRP 0x00000020U # define SSL_kRSAPSK 0x00000040U # define SSL_kECDHEPSK 0x00000080U # define SSL_kDHEPSK 0x00000100U /* all PSK */ # define SSL_PSK (SSL_kPSK | SSL_kRSAPSK | SSL_kECDHEPSK | SSL_kDHEPSK) /* Any appropriate key exchange algorithm (for TLS 1.3 ciphersuites) */ # define SSL_kANY 0x00000000U /* Bits for algorithm_auth (server authentication) */ /* RSA auth */ # define SSL_aRSA 0x00000001U /* DSS auth */ # define SSL_aDSS 0x00000002U /* no auth (i.e. use ADH or AECDH) */ # define SSL_aNULL 0x00000004U /* ECDSA auth*/ # define SSL_aECDSA 0x00000008U /* PSK auth */ # define SSL_aPSK 0x00000010U /* GOST R 34.10-2001 signature auth */ # define SSL_aGOST01 0x00000020U /* SRP auth */ # define SSL_aSRP 0x00000040U /* GOST R 34.10-2012 signature auth */ # define SSL_aGOST12 0x00000080U /* Any appropriate signature auth (for TLS 1.3 ciphersuites) */ # define SSL_aANY 0x00000000U /* All bits requiring a certificate */ #define SSL_aCERT \ (SSL_aRSA | SSL_aDSS | SSL_aECDSA | SSL_aGOST01 | SSL_aGOST12) /* Bits for algorithm_enc (symmetric encryption) */ # define SSL_DES 0x00000001U # define SSL_3DES 0x00000002U # define SSL_RC4 0x00000004U # define SSL_RC2 0x00000008U # define SSL_IDEA 0x00000010U # define SSL_eNULL 0x00000020U # define SSL_AES128 0x00000040U # define SSL_AES256 0x00000080U # define SSL_CAMELLIA128 0x00000100U # define SSL_CAMELLIA256 0x00000200U # define SSL_eGOST2814789CNT 0x00000400U # define SSL_SEED 0x00000800U # define SSL_AES128GCM 0x00001000U # define SSL_AES256GCM 0x00002000U # define SSL_AES128CCM 0x00004000U # define SSL_AES256CCM 0x00008000U # define SSL_AES128CCM8 0x00010000U # define SSL_AES256CCM8 0x00020000U # define SSL_eGOST2814789CNT12 0x00040000U # define SSL_CHACHA20POLY1305 0x00080000U # define SSL_ARIA128GCM 0x00100000U # define SSL_ARIA256GCM 0x00200000U # define SSL_AESGCM (SSL_AES128GCM | SSL_AES256GCM) # define SSL_AESCCM (SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8) # define SSL_AES (SSL_AES128|SSL_AES256|SSL_AESGCM|SSL_AESCCM) # define SSL_CAMELLIA (SSL_CAMELLIA128|SSL_CAMELLIA256) # define SSL_CHACHA20 (SSL_CHACHA20POLY1305) # define SSL_ARIAGCM (SSL_ARIA128GCM | SSL_ARIA256GCM) # define SSL_ARIA (SSL_ARIAGCM) /* Bits for algorithm_mac (symmetric authentication) */ # define SSL_MD5 0x00000001U # define SSL_SHA1 0x00000002U # define SSL_GOST94 0x00000004U # define SSL_GOST89MAC 0x00000008U # define SSL_SHA256 0x00000010U # define SSL_SHA384 0x00000020U /* Not a real MAC, just an indication it is part of cipher */ # define SSL_AEAD 0x00000040U # define SSL_GOST12_256 0x00000080U # define SSL_GOST89MAC12 0x00000100U # define SSL_GOST12_512 0x00000200U /* * When adding new digest in the ssl_ciph.c and increment SSL_MD_NUM_IDX make * sure to update this constant too */ # define SSL_MD_MD5_IDX 0 # define SSL_MD_SHA1_IDX 1 # define SSL_MD_GOST94_IDX 2 # define SSL_MD_GOST89MAC_IDX 3 # define SSL_MD_SHA256_IDX 4 # define SSL_MD_SHA384_IDX 5 # define SSL_MD_GOST12_256_IDX 6 # define SSL_MD_GOST89MAC12_IDX 7 # define SSL_MD_GOST12_512_IDX 8 # define SSL_MD_MD5_SHA1_IDX 9 # define SSL_MD_SHA224_IDX 10 # define SSL_MD_SHA512_IDX 11 # define SSL_MAX_DIGEST 12 /* Bits for algorithm2 (handshake digests and other extra flags) */ /* Bits 0-7 are handshake MAC */ # define SSL_HANDSHAKE_MAC_MASK 0xFF # define SSL_HANDSHAKE_MAC_MD5_SHA1 SSL_MD_MD5_SHA1_IDX # define SSL_HANDSHAKE_MAC_SHA256 SSL_MD_SHA256_IDX # define SSL_HANDSHAKE_MAC_SHA384 SSL_MD_SHA384_IDX # define SSL_HANDSHAKE_MAC_GOST94 SSL_MD_GOST94_IDX # define SSL_HANDSHAKE_MAC_GOST12_256 SSL_MD_GOST12_256_IDX # define SSL_HANDSHAKE_MAC_GOST12_512 SSL_MD_GOST12_512_IDX # define SSL_HANDSHAKE_MAC_DEFAULT SSL_HANDSHAKE_MAC_MD5_SHA1 /* Bits 8-15 bits are PRF */ # define TLS1_PRF_DGST_SHIFT 8 # define TLS1_PRF_SHA1_MD5 (SSL_MD_MD5_SHA1_IDX << TLS1_PRF_DGST_SHIFT) # define TLS1_PRF_SHA256 (SSL_MD_SHA256_IDX << TLS1_PRF_DGST_SHIFT) # define TLS1_PRF_SHA384 (SSL_MD_SHA384_IDX << TLS1_PRF_DGST_SHIFT) # define TLS1_PRF_GOST94 (SSL_MD_GOST94_IDX << TLS1_PRF_DGST_SHIFT) # define TLS1_PRF_GOST12_256 (SSL_MD_GOST12_256_IDX << TLS1_PRF_DGST_SHIFT) # define TLS1_PRF_GOST12_512 (SSL_MD_GOST12_512_IDX << TLS1_PRF_DGST_SHIFT) # define TLS1_PRF (SSL_MD_MD5_SHA1_IDX << TLS1_PRF_DGST_SHIFT) /* * Stream MAC for GOST ciphersuites from cryptopro draft (currently this also * goes into algorithm2) */ # define TLS1_STREAM_MAC 0x10000 # define SSL_STRONG_MASK 0x0000001FU # define SSL_DEFAULT_MASK 0X00000020U # define SSL_STRONG_NONE 0x00000001U # define SSL_LOW 0x00000002U # define SSL_MEDIUM 0x00000004U # define SSL_HIGH 0x00000008U # define SSL_FIPS 0x00000010U # define SSL_NOT_DEFAULT 0x00000020U /* we have used 0000003f - 26 bits left to go */ /* Flag used on OpenSSL ciphersuite ids to indicate they are for SSLv3+ */ # define SSL3_CK_CIPHERSUITE_FLAG 0x03000000 /* Check if an SSL structure is using DTLS */ # define SSL_IS_DTLS(s) (s->method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) /* Check if we are using TLSv1.3 */ # define SSL_IS_TLS13(s) (!SSL_IS_DTLS(s) \ && (s)->method->version >= TLS1_3_VERSION \ && (s)->method->version != TLS_ANY_VERSION) # define SSL_TREAT_AS_TLS13(s) \ (SSL_IS_TLS13(s) || (s)->early_data_state == SSL_EARLY_DATA_CONNECTING \ || (s)->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY \ || (s)->early_data_state == SSL_EARLY_DATA_WRITING \ || (s)->early_data_state == SSL_EARLY_DATA_WRITE_RETRY \ || (s)->hello_retry_request == SSL_HRR_PENDING) # define SSL_IS_FIRST_HANDSHAKE(S) ((s)->s3->tmp.finish_md_len == 0 \ || (s)->s3->tmp.peer_finish_md_len == 0) /* See if we need explicit IV */ # define SSL_USE_EXPLICIT_IV(s) \ (s->method->ssl3_enc->enc_flags & SSL_ENC_FLAG_EXPLICIT_IV) /* * See if we use signature algorithms extension and signature algorithm * before signatures. */ # define SSL_USE_SIGALGS(s) \ (s->method->ssl3_enc->enc_flags & SSL_ENC_FLAG_SIGALGS) /* * Allow TLS 1.2 ciphersuites: applies to DTLS 1.2 as well as TLS 1.2: may * apply to others in future. */ # define SSL_USE_TLS1_2_CIPHERS(s) \ (s->method->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS) /* * Determine if a client can use TLS 1.2 ciphersuites: can't rely on method * flags because it may not be set to correct version yet. */ # define SSL_CLIENT_USE_TLS1_2_CIPHERS(s) \ ((!SSL_IS_DTLS(s) && s->client_version >= TLS1_2_VERSION) || \ (SSL_IS_DTLS(s) && DTLS_VERSION_GE(s->client_version, DTLS1_2_VERSION))) /* * Determine if a client should send signature algorithms extension: * as with TLS1.2 cipher we can't rely on method flags. */ # define SSL_CLIENT_USE_SIGALGS(s) \ SSL_CLIENT_USE_TLS1_2_CIPHERS(s) # define IS_MAX_FRAGMENT_LENGTH_EXT_VALID(value) \ (((value) >= TLSEXT_max_fragment_length_512) && \ ((value) <= TLSEXT_max_fragment_length_4096)) # define USE_MAX_FRAGMENT_LENGTH_EXT(session) \ IS_MAX_FRAGMENT_LENGTH_EXT_VALID(session->ext.max_fragment_len_mode) # define GET_MAX_FRAGMENT_LENGTH(session) \ (512U << (session->ext.max_fragment_len_mode - 1)) # define SSL_READ_ETM(s) (s->s3->flags & TLS1_FLAGS_ENCRYPT_THEN_MAC_READ) # define SSL_WRITE_ETM(s) (s->s3->flags & TLS1_FLAGS_ENCRYPT_THEN_MAC_WRITE) /* Mostly for SSLv3 */ # define SSL_PKEY_RSA 0 # define SSL_PKEY_RSA_PSS_SIGN 1 # define SSL_PKEY_DSA_SIGN 2 # define SSL_PKEY_ECC 3 # define SSL_PKEY_GOST01 4 # define SSL_PKEY_GOST12_256 5 # define SSL_PKEY_GOST12_512 6 # define SSL_PKEY_ED25519 7 # define SSL_PKEY_ED448 8 # define SSL_PKEY_NUM 9 /*- * SSL_kRSA <- RSA_ENC * SSL_kDH <- DH_ENC & (RSA_ENC | RSA_SIGN | DSA_SIGN) * SSL_kDHE <- RSA_ENC | RSA_SIGN | DSA_SIGN * SSL_aRSA <- RSA_ENC | RSA_SIGN * SSL_aDSS <- DSA_SIGN */ /*- #define CERT_INVALID 0 #define CERT_PUBLIC_KEY 1 #define CERT_PRIVATE_KEY 2 */ /* Post-Handshake Authentication state */ typedef enum { SSL_PHA_NONE = 0, SSL_PHA_EXT_SENT, /* client-side only: extension sent */ SSL_PHA_EXT_RECEIVED, /* server-side only: extension received */ SSL_PHA_REQUEST_PENDING, /* server-side only: request pending */ SSL_PHA_REQUESTED /* request received by client, or sent by server */ } SSL_PHA_STATE; /* CipherSuite length. SSLv3 and all TLS versions. */ # define TLS_CIPHER_LEN 2 /* used to hold info on the particular ciphers used */ struct ssl_cipher_st { uint32_t valid; const char *name; /* text name */ const char *stdname; /* RFC name */ uint32_t id; /* id, 4 bytes, first is version */ /* * changed in 1.0.0: these four used to be portions of a single value * 'algorithms' */ uint32_t algorithm_mkey; /* key exchange algorithm */ uint32_t algorithm_auth; /* server authentication */ uint32_t algorithm_enc; /* symmetric encryption */ uint32_t algorithm_mac; /* symmetric authentication */ int min_tls; /* minimum SSL/TLS protocol version */ int max_tls; /* maximum SSL/TLS protocol version */ int min_dtls; /* minimum DTLS protocol version */ int max_dtls; /* maximum DTLS protocol version */ uint32_t algo_strength; /* strength and export flags */ uint32_t algorithm2; /* Extra flags */ int32_t strength_bits; /* Number of bits really used */ uint32_t alg_bits; /* Number of bits for algorithm */ }; /* Used to hold SSL/TLS functions */ struct ssl_method_st { int version; unsigned flags; unsigned long mask; int (*ssl_new) (SSL *s); int (*ssl_clear) (SSL *s); void (*ssl_free) (SSL *s); int (*ssl_accept) (SSL *s); int (*ssl_connect) (SSL *s); int (*ssl_read) (SSL *s, void *buf, size_t len, size_t *readbytes); int (*ssl_peek) (SSL *s, void *buf, size_t len, size_t *readbytes); int (*ssl_write) (SSL *s, const void *buf, size_t len, size_t *written); int (*ssl_shutdown) (SSL *s); int (*ssl_renegotiate) (SSL *s); int (*ssl_renegotiate_check) (SSL *s, int); int (*ssl_read_bytes) (SSL *s, int type, int *recvd_type, unsigned char *buf, size_t len, int peek, size_t *readbytes); int (*ssl_write_bytes) (SSL *s, int type, const void *buf_, size_t len, size_t *written); int (*ssl_dispatch_alert) (SSL *s); long (*ssl_ctrl) (SSL *s, int cmd, long larg, void *parg); long (*ssl_ctx_ctrl) (SSL_CTX *ctx, int cmd, long larg, void *parg); const SSL_CIPHER *(*get_cipher_by_char) (const unsigned char *ptr); int (*put_cipher_by_char) (const SSL_CIPHER *cipher, WPACKET *pkt, size_t *len); size_t (*ssl_pending) (const SSL *s); int (*num_ciphers) (void); const SSL_CIPHER *(*get_cipher) (unsigned ncipher); long (*get_timeout) (void); const struct ssl3_enc_method *ssl3_enc; /* Extra SSLv3/TLS stuff */ int (*ssl_version) (void); long (*ssl_callback_ctrl) (SSL *s, int cb_id, void (*fp) (void)); long (*ssl_ctx_callback_ctrl) (SSL_CTX *s, int cb_id, void (*fp) (void)); }; /* * Matches the length of PSK_MAX_PSK_LEN. We keep it the same value for * consistency, even in the event of OPENSSL_NO_PSK being defined. */ # define TLS13_MAX_RESUMPTION_PSK_LENGTH 256 /*- * Lets make this into an ASN.1 type structure as follows * SSL_SESSION_ID ::= SEQUENCE { * version INTEGER, -- structure version number * SSLversion INTEGER, -- SSL version number * Cipher OCTET STRING, -- the 3 byte cipher ID * Session_ID OCTET STRING, -- the Session ID * Master_key OCTET STRING, -- the master key * Key_Arg [ 0 ] IMPLICIT OCTET STRING, -- the optional Key argument * Time [ 1 ] EXPLICIT INTEGER, -- optional Start Time * Timeout [ 2 ] EXPLICIT INTEGER, -- optional Timeout ins seconds * Peer [ 3 ] EXPLICIT X509, -- optional Peer Certificate * Session_ID_context [ 4 ] EXPLICIT OCTET STRING, -- the Session ID context * Verify_result [ 5 ] EXPLICIT INTEGER, -- X509_V_... code for `Peer' * HostName [ 6 ] EXPLICIT OCTET STRING, -- optional HostName from servername TLS extension * PSK_identity_hint [ 7 ] EXPLICIT OCTET STRING, -- optional PSK identity hint * PSK_identity [ 8 ] EXPLICIT OCTET STRING, -- optional PSK identity * Ticket_lifetime_hint [9] EXPLICIT INTEGER, -- server's lifetime hint for session ticket * Ticket [10] EXPLICIT OCTET STRING, -- session ticket (clients only) * Compression_meth [11] EXPLICIT OCTET STRING, -- optional compression method * SRP_username [ 12 ] EXPLICIT OCTET STRING -- optional SRP username * flags [ 13 ] EXPLICIT INTEGER -- optional flags * } * Look in ssl/ssl_asn1.c for more details * I'm using EXPLICIT tags so I can read the damn things using asn1parse :-). */ struct ssl_session_st { int ssl_version; /* what ssl version session info is being kept * in here? */ size_t master_key_length; /* TLSv1.3 early_secret used for external PSKs */ unsigned char early_secret[EVP_MAX_MD_SIZE]; /* * For <=TLS1.2 this is the master_key. For TLS1.3 this is the resumption * PSK */ unsigned char master_key[TLS13_MAX_RESUMPTION_PSK_LENGTH]; /* session_id - valid? */ size_t session_id_length; unsigned char session_id[SSL_MAX_SSL_SESSION_ID_LENGTH]; /* * this is used to determine whether the session is being reused in the * appropriate context. It is up to the application to set this, via * SSL_new */ size_t sid_ctx_length; unsigned char sid_ctx[SSL_MAX_SID_CTX_LENGTH]; # ifndef OPENSSL_NO_PSK char *psk_identity_hint; char *psk_identity; # endif /* * Used to indicate that session resumption is not allowed. Applications * can also set this bit for a new session via not_resumable_session_cb * to disable session caching and tickets. */ int not_resumable; /* This is the cert and type for the other end. */ X509 *peer; /* Certificate chain peer sent. */ STACK_OF(X509) *peer_chain; /* * when app_verify_callback accepts a session where the peer's * certificate is not ok, we must remember the error for session reuse: */ long verify_result; /* only for servers */ CRYPTO_REF_COUNT references; long timeout; long time; unsigned int compress_meth; /* Need to lookup the method */ const SSL_CIPHER *cipher; unsigned long cipher_id; /* when ASN.1 loaded, this needs to be used to * load the 'cipher' structure */ CRYPTO_EX_DATA ex_data; /* application specific data */ /* * These are used to make removal of session-ids more efficient and to * implement a maximum cache size. */ struct ssl_session_st *prev, *next; struct { char *hostname; /* RFC4507 info */ unsigned char *tick; /* Session ticket */ size_t ticklen; /* Session ticket length */ /* Session lifetime hint in seconds */ unsigned long tick_lifetime_hint; uint32_t tick_age_add; /* Max number of bytes that can be sent as early data */ uint32_t max_early_data; /* The ALPN protocol selected for this session */ unsigned char *alpn_selected; size_t alpn_selected_len; /* * Maximum Fragment Length as per RFC 4366. * If this value does not contain RFC 4366 allowed values (1-4) then * either the Maximum Fragment Length Negotiation failed or was not * performed at all. */ uint8_t max_fragment_len_mode; } ext; # ifndef OPENSSL_NO_SRP char *srp_username; # endif unsigned char *ticket_appdata; size_t ticket_appdata_len; uint32_t flags; CRYPTO_RWLOCK *lock; }; /* Extended master secret support */ # define SSL_SESS_FLAG_EXTMS 0x1 # ifndef OPENSSL_NO_SRP typedef struct srp_ctx_st { /* param for all the callbacks */ void *SRP_cb_arg; /* set client Hello login callback */ int (*TLS_ext_srp_username_callback) (SSL *, int *, void *); /* set SRP N/g param callback for verification */ int (*SRP_verify_param_callback) (SSL *, void *); /* set SRP client passwd callback */ char *(*SRP_give_srp_client_pwd_callback) (SSL *, void *); char *login; BIGNUM *N, *g, *s, *B, *A; BIGNUM *a, *b, *v; char *info; int strength; unsigned long srp_Mask; } SRP_CTX; # endif typedef enum { SSL_EARLY_DATA_NONE = 0, SSL_EARLY_DATA_CONNECT_RETRY, SSL_EARLY_DATA_CONNECTING, SSL_EARLY_DATA_WRITE_RETRY, SSL_EARLY_DATA_WRITING, SSL_EARLY_DATA_WRITE_FLUSH, SSL_EARLY_DATA_UNAUTH_WRITING, SSL_EARLY_DATA_FINISHED_WRITING, SSL_EARLY_DATA_ACCEPT_RETRY, SSL_EARLY_DATA_ACCEPTING, SSL_EARLY_DATA_READ_RETRY, SSL_EARLY_DATA_READING, SSL_EARLY_DATA_FINISHED_READING } SSL_EARLY_DATA_STATE; /* * We check that the amount of unreadable early data doesn't exceed * max_early_data. max_early_data is given in plaintext bytes. However if it is * unreadable then we only know the number of ciphertext bytes. We also don't * know how much the overhead should be because it depends on the ciphersuite. * We make a small allowance. We assume 5 records of actual data plus the end * of early data alert record. Each record has a tag and a content type byte. * The longest tag length we know of is EVP_GCM_TLS_TAG_LEN. We don't count the * content of the alert record either which is 2 bytes. */ # define EARLY_DATA_CIPHERTEXT_OVERHEAD ((6 * (EVP_GCM_TLS_TAG_LEN + 1)) + 2) /* * The allowance we have between the client's calculated ticket age and our own. * We allow for 10 seconds (units are in ms). If a ticket is presented and the * client's age calculation is different by more than this than our own then we * do not allow that ticket for early_data. */ # define TICKET_AGE_ALLOWANCE (10 * 1000) #define MAX_COMPRESSIONS_SIZE 255 struct ssl_comp_st { int id; const char *name; COMP_METHOD *method; }; typedef struct raw_extension_st { /* Raw packet data for the extension */ PACKET data; /* Set to 1 if the extension is present or 0 otherwise */ int present; /* Set to 1 if we have already parsed the extension or 0 otherwise */ int parsed; /* The type of this extension, i.e. a TLSEXT_TYPE_* value */ unsigned int type; /* Track what order extensions are received in (0-based). */ size_t received_order; } RAW_EXTENSION; typedef struct { unsigned int isv2; unsigned int legacy_version; unsigned char random[SSL3_RANDOM_SIZE]; size_t session_id_len; unsigned char session_id[SSL_MAX_SSL_SESSION_ID_LENGTH]; size_t dtls_cookie_len; unsigned char dtls_cookie[DTLS1_COOKIE_LENGTH]; PACKET ciphersuites; size_t compressions_len; unsigned char compressions[MAX_COMPRESSIONS_SIZE]; PACKET extensions; size_t pre_proc_exts_len; RAW_EXTENSION *pre_proc_exts; } CLIENTHELLO_MSG; /* * Extension index values NOTE: Any updates to these defines should be mirrored * with equivalent updates to ext_defs in extensions.c */ typedef enum tlsext_index_en { TLSEXT_IDX_renegotiate, TLSEXT_IDX_server_name, TLSEXT_IDX_max_fragment_length, TLSEXT_IDX_srp, TLSEXT_IDX_ec_point_formats, TLSEXT_IDX_supported_groups, TLSEXT_IDX_session_ticket, TLSEXT_IDX_status_request, TLSEXT_IDX_next_proto_neg, TLSEXT_IDX_application_layer_protocol_negotiation, TLSEXT_IDX_use_srtp, TLSEXT_IDX_encrypt_then_mac, TLSEXT_IDX_signed_certificate_timestamp, TLSEXT_IDX_extended_master_secret, TLSEXT_IDX_signature_algorithms_cert, TLSEXT_IDX_post_handshake_auth, TLSEXT_IDX_signature_algorithms, TLSEXT_IDX_supported_versions, TLSEXT_IDX_psk_kex_modes, TLSEXT_IDX_key_share, TLSEXT_IDX_cookie, TLSEXT_IDX_cryptopro_bug, TLSEXT_IDX_early_data, TLSEXT_IDX_certificate_authorities, TLSEXT_IDX_padding, TLSEXT_IDX_psk, /* Dummy index - must always be the last entry */ TLSEXT_IDX_num_builtins } TLSEXT_INDEX; DEFINE_LHASH_OF(SSL_SESSION); /* Needed in ssl_cert.c */ DEFINE_LHASH_OF(X509_NAME); # define TLSEXT_KEYNAME_LENGTH 16 # define TLSEXT_TICK_KEY_LENGTH 32 typedef struct ssl_ctx_ext_secure_st { unsigned char tick_hmac_key[TLSEXT_TICK_KEY_LENGTH]; unsigned char tick_aes_key[TLSEXT_TICK_KEY_LENGTH]; } SSL_CTX_EXT_SECURE; struct ssl_ctx_st { const SSL_METHOD *method; STACK_OF(SSL_CIPHER) *cipher_list; /* same as above but sorted for lookup */ STACK_OF(SSL_CIPHER) *cipher_list_by_id; /* TLSv1.3 specific ciphersuites */ STACK_OF(SSL_CIPHER) *tls13_ciphersuites; struct x509_store_st /* X509_STORE */ *cert_store; LHASH_OF(SSL_SESSION) *sessions; /* * Most session-ids that will be cached, default is * SSL_SESSION_CACHE_MAX_SIZE_DEFAULT. 0 is unlimited. */ size_t session_cache_size; struct ssl_session_st *session_cache_head; struct ssl_session_st *session_cache_tail; /* * This can have one of 2 values, ored together, SSL_SESS_CACHE_CLIENT, * SSL_SESS_CACHE_SERVER, Default is SSL_SESSION_CACHE_SERVER, which * means only SSL_accept will cache SSL_SESSIONS. */ uint32_t session_cache_mode; /* * If timeout is not 0, it is the default timeout value set when * SSL_new() is called. This has been put in to make life easier to set * things up */ long session_timeout; /* * If this callback is not null, it will be called each time a session id * is added to the cache. If this function returns 1, it means that the * callback will do a SSL_SESSION_free() when it has finished using it. * Otherwise, on 0, it means the callback has finished with it. If * remove_session_cb is not null, it will be called when a session-id is * removed from the cache. After the call, OpenSSL will * SSL_SESSION_free() it. */ int (*new_session_cb) (struct ssl_st *ssl, SSL_SESSION *sess); void (*remove_session_cb) (struct ssl_ctx_st *ctx, SSL_SESSION *sess); SSL_SESSION *(*get_session_cb) (struct ssl_st *ssl, const unsigned char *data, int len, int *copy); struct { TSAN_QUALIFIER int sess_connect; /* SSL new conn - started */ TSAN_QUALIFIER int sess_connect_renegotiate; /* SSL reneg - requested */ TSAN_QUALIFIER int sess_connect_good; /* SSL new conne/reneg - finished */ TSAN_QUALIFIER int sess_accept; /* SSL new accept - started */ TSAN_QUALIFIER int sess_accept_renegotiate; /* SSL reneg - requested */ TSAN_QUALIFIER int sess_accept_good; /* SSL accept/reneg - finished */ TSAN_QUALIFIER int sess_miss; /* session lookup misses */ TSAN_QUALIFIER int sess_timeout; /* reuse attempt on timeouted session */ TSAN_QUALIFIER int sess_cache_full; /* session removed due to full cache */ TSAN_QUALIFIER int sess_hit; /* session reuse actually done */ TSAN_QUALIFIER int sess_cb_hit; /* session-id that was not in * the cache was passed back via * the callback. This indicates * that the application is * supplying session-id's from * other processes - spooky * :-) */ } stats; CRYPTO_REF_COUNT references; /* if defined, these override the X509_verify_cert() calls */ int (*app_verify_callback) (X509_STORE_CTX *, void *); void *app_verify_arg; /* * before OpenSSL 0.9.7, 'app_verify_arg' was ignored * ('app_verify_callback' was called with just one argument) */ /* Default password callback. */ pem_password_cb *default_passwd_callback; /* Default password callback user data. */ void *default_passwd_callback_userdata; /* get client cert callback */ int (*client_cert_cb) (SSL *ssl, X509 **x509, EVP_PKEY **pkey); /* cookie generate callback */ int (*app_gen_cookie_cb) (SSL *ssl, unsigned char *cookie, unsigned int *cookie_len); /* verify cookie callback */ int (*app_verify_cookie_cb) (SSL *ssl, const unsigned char *cookie, unsigned int cookie_len); /* TLS1.3 app-controlled cookie generate callback */ int (*gen_stateless_cookie_cb) (SSL *ssl, unsigned char *cookie, size_t *cookie_len); /* TLS1.3 verify app-controlled cookie callback */ int (*verify_stateless_cookie_cb) (SSL *ssl, const unsigned char *cookie, size_t cookie_len); CRYPTO_EX_DATA ex_data; const EVP_MD *md5; /* For SSLv3/TLSv1 'ssl3-md5' */ const EVP_MD *sha1; /* For SSLv3/TLSv1 'ssl3->sha1' */ STACK_OF(X509) *extra_certs; STACK_OF(SSL_COMP) *comp_methods; /* stack of SSL_COMP, SSLv3/TLSv1 */ /* Default values used when no per-SSL value is defined follow */ /* used if SSL's info_callback is NULL */ void (*info_callback) (const SSL *ssl, int type, int val); /* * What we put in certificate_authorities extension for TLS 1.3 * (ClientHello and CertificateRequest) or just client cert requests for * earlier versions. If client_ca_names is populated then it is only used * for client cert requests, and in preference to ca_names. */ STACK_OF(X509_NAME) *ca_names; STACK_OF(X509_NAME) *client_ca_names; /* * Default values to use in SSL structures follow (these are copied by * SSL_new) */ uint32_t options; uint32_t mode; int min_proto_version; int max_proto_version; size_t max_cert_list; struct cert_st /* CERT */ *cert; int read_ahead; /* callback that allows applications to peek at protocol messages */ void (*msg_callback) (int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg); void *msg_callback_arg; uint32_t verify_mode; size_t sid_ctx_length; unsigned char sid_ctx[SSL_MAX_SID_CTX_LENGTH]; /* called 'verify_callback' in the SSL */ int (*default_verify_callback) (int ok, X509_STORE_CTX *ctx); /* Default generate session ID callback. */ GEN_SESSION_CB generate_session_id; X509_VERIFY_PARAM *param; int quiet_shutdown; # ifndef OPENSSL_NO_CT CTLOG_STORE *ctlog_store; /* CT Log Store */ /* * Validates that the SCTs (Signed Certificate Timestamps) are sufficient. * If they are not, the connection should be aborted. */ ssl_ct_validation_cb ct_validation_callback; void *ct_validation_callback_arg; # endif /* * If we're using more than one pipeline how should we divide the data * up between the pipes? */ size_t split_send_fragment; /* * Maximum amount of data to send in one fragment. actual record size can * be more than this due to padding and MAC overheads. */ size_t max_send_fragment; /* Up to how many pipelines should we use? If 0 then 1 is assumed */ size_t max_pipelines; /* The default read buffer length to use (0 means not set) */ size_t default_read_buf_len; # ifndef OPENSSL_NO_ENGINE /* * Engine to pass requests for client certs to */ ENGINE *client_cert_engine; # endif /* ClientHello callback. Mostly for extensions, but not entirely. */ SSL_client_hello_cb_fn client_hello_cb; void *client_hello_cb_arg; /* TLS extensions. */ struct { /* TLS extensions servername callback */ int (*servername_cb) (SSL *, int *, void *); void *servername_arg; /* RFC 4507 session ticket keys */ unsigned char tick_key_name[TLSEXT_KEYNAME_LENGTH]; SSL_CTX_EXT_SECURE *secure; /* Callback to support customisation of ticket key setting */ int (*ticket_key_cb) (SSL *ssl, unsigned char *name, unsigned char *iv, EVP_CIPHER_CTX *ectx, HMAC_CTX *hctx, int enc); /* certificate status request info */ /* Callback for status request */ int (*status_cb) (SSL *ssl, void *arg); void *status_arg; /* ext status type used for CSR extension (OCSP Stapling) */ int status_type; /* RFC 4366 Maximum Fragment Length Negotiation */ uint8_t max_fragment_len_mode; # ifndef OPENSSL_NO_EC /* EC extension values inherited by SSL structure */ size_t ecpointformats_len; unsigned char *ecpointformats; size_t supportedgroups_len; uint16_t *supportedgroups; # endif /* OPENSSL_NO_EC */ /* * ALPN information (we are in the process of transitioning from NPN to * ALPN.) */ /*- * For a server, this contains a callback function that allows the * server to select the protocol for the connection. * out: on successful return, this must point to the raw protocol * name (without the length prefix). * outlen: on successful return, this contains the length of |*out|. * in: points to the client's list of supported protocols in * wire-format. * inlen: the length of |in|. */ int (*alpn_select_cb) (SSL *s, const unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, void *arg); void *alpn_select_cb_arg; /* * For a client, this contains the list of supported protocols in wire * format. */ unsigned char *alpn; size_t alpn_len; # ifndef OPENSSL_NO_NEXTPROTONEG /* Next protocol negotiation information */ /* * For a server, this contains a callback function by which the set of * advertised protocols can be provided. */ SSL_CTX_npn_advertised_cb_func npn_advertised_cb; void *npn_advertised_cb_arg; /* * For a client, this contains a callback function that selects the next * protocol from the list provided by the server. */ SSL_CTX_npn_select_cb_func npn_select_cb; void *npn_select_cb_arg; # endif unsigned char cookie_hmac_key[SHA256_DIGEST_LENGTH]; } ext; # ifndef OPENSSL_NO_PSK SSL_psk_client_cb_func psk_client_callback; SSL_psk_server_cb_func psk_server_callback; # endif SSL_psk_find_session_cb_func psk_find_session_cb; SSL_psk_use_session_cb_func psk_use_session_cb; # ifndef OPENSSL_NO_SRP SRP_CTX srp_ctx; /* ctx for SRP authentication */ # endif /* Shared DANE context */ struct dane_ctx_st dane; # ifndef OPENSSL_NO_SRTP /* SRTP profiles we are willing to do from RFC 5764 */ STACK_OF(SRTP_PROTECTION_PROFILE) *srtp_profiles; # endif /* * Callback for disabling session caching and ticket support on a session * basis, depending on the chosen cipher. */ int (*not_resumable_session_cb) (SSL *ssl, int is_forward_secure); CRYPTO_RWLOCK *lock; /* * Callback for logging key material for use with debugging tools like * Wireshark. The callback should log `line` followed by a newline. */ SSL_CTX_keylog_cb_func keylog_callback; /* * The maximum number of bytes advertised in session tickets that can be * sent as early data. */ uint32_t max_early_data; /* * The maximum number of bytes of early data that a server will tolerate * (which should be at least as much as max_early_data). */ uint32_t recv_max_early_data; /* TLS1.3 padding callback */ size_t (*record_padding_cb)(SSL *s, int type, size_t len, void *arg); void *record_padding_arg; size_t block_padding; /* Session ticket appdata */ SSL_CTX_generate_session_ticket_fn generate_ticket_cb; SSL_CTX_decrypt_session_ticket_fn decrypt_ticket_cb; void *ticket_cb_data; /* The number of TLS1.3 tickets to automatically send */ size_t num_tickets; /* Callback to determine if early_data is acceptable or not */ SSL_allow_early_data_cb_fn allow_early_data_cb; void *allow_early_data_cb_data; /* Do we advertise Post-handshake auth support? */ int pha_enabled; }; struct ssl_st { /* * protocol version (one of SSL2_VERSION, SSL3_VERSION, TLS1_VERSION, * DTLS1_VERSION) */ int version; /* SSLv3 */ const SSL_METHOD *method; /* * There are 2 BIO's even though they are normally both the same. This * is so data can be read and written to different handlers */ /* used by SSL_read */ BIO *rbio; /* used by SSL_write */ BIO *wbio; /* used during session-id reuse to concatenate messages */ BIO *bbio; /* * This holds a variable that indicates what we were doing when a 0 or -1 * is returned. This is needed for non-blocking IO so we know what * request needs re-doing when in SSL_accept or SSL_connect */ int rwstate; int (*handshake_func) (SSL *); /* * Imagine that here's a boolean member "init" that is switched as soon * as SSL_set_{accept/connect}_state is called for the first time, so * that "state" and "handshake_func" are properly initialized. But as * handshake_func is == 0 until then, we use this test instead of an * "init" member. */ /* are we the server side? */ int server; /* * Generate a new session or reuse an old one. * NB: For servers, the 'new' session may actually be a previously * cached session or even the previous session unless * SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION is set */ int new_session; /* don't send shutdown packets */ int quiet_shutdown; /* we have shut things down, 0x01 sent, 0x02 for received */ int shutdown; /* where we are */ OSSL_STATEM statem; SSL_EARLY_DATA_STATE early_data_state; BUF_MEM *init_buf; /* buffer used during init */ void *init_msg; /* pointer to handshake message body, set by * ssl3_get_message() */ size_t init_num; /* amount read/written */ size_t init_off; /* amount read/written */ struct ssl3_state_st *s3; /* SSLv3 variables */ struct dtls1_state_st *d1; /* DTLSv1 variables */ /* callback that allows applications to peek at protocol messages */ void (*msg_callback) (int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg); void *msg_callback_arg; int hit; /* reusing a previous session */ X509_VERIFY_PARAM *param; /* Per connection DANE state */ SSL_DANE dane; /* crypto */ STACK_OF(SSL_CIPHER) *peer_ciphers; STACK_OF(SSL_CIPHER) *cipher_list; STACK_OF(SSL_CIPHER) *cipher_list_by_id; /* TLSv1.3 specific ciphersuites */ STACK_OF(SSL_CIPHER) *tls13_ciphersuites; /* * These are the ones being used, the ones in SSL_SESSION are the ones to * be 'copied' into these ones */ uint32_t mac_flags; /* * The TLS1.3 secrets. */ unsigned char early_secret[EVP_MAX_MD_SIZE]; unsigned char handshake_secret[EVP_MAX_MD_SIZE]; unsigned char master_secret[EVP_MAX_MD_SIZE]; unsigned char resumption_master_secret[EVP_MAX_MD_SIZE]; unsigned char client_finished_secret[EVP_MAX_MD_SIZE]; unsigned char server_finished_secret[EVP_MAX_MD_SIZE]; unsigned char server_finished_hash[EVP_MAX_MD_SIZE]; unsigned char handshake_traffic_hash[EVP_MAX_MD_SIZE]; unsigned char client_app_traffic_secret[EVP_MAX_MD_SIZE]; unsigned char server_app_traffic_secret[EVP_MAX_MD_SIZE]; unsigned char exporter_master_secret[EVP_MAX_MD_SIZE]; unsigned char early_exporter_master_secret[EVP_MAX_MD_SIZE]; EVP_CIPHER_CTX *enc_read_ctx; /* cryptographic state */ unsigned char read_iv[EVP_MAX_IV_LENGTH]; /* TLSv1.3 static read IV */ EVP_MD_CTX *read_hash; /* used for mac generation */ COMP_CTX *compress; /* compression */ COMP_CTX *expand; /* uncompress */ EVP_CIPHER_CTX *enc_write_ctx; /* cryptographic state */ unsigned char write_iv[EVP_MAX_IV_LENGTH]; /* TLSv1.3 static write IV */ EVP_MD_CTX *write_hash; /* used for mac generation */ /* session info */ /* client cert? */ /* This is used to hold the server certificate used */ struct cert_st /* CERT */ *cert; /* * The hash of all messages prior to the CertificateVerify, and the length * of that hash. */ unsigned char cert_verify_hash[EVP_MAX_MD_SIZE]; size_t cert_verify_hash_len; /* Flag to indicate whether we should send a HelloRetryRequest or not */ enum {SSL_HRR_NONE = 0, SSL_HRR_PENDING, SSL_HRR_COMPLETE} hello_retry_request; /* * the session_id_context is used to ensure sessions are only reused in * the appropriate context */ size_t sid_ctx_length; unsigned char sid_ctx[SSL_MAX_SID_CTX_LENGTH]; /* This can also be in the session once a session is established */ SSL_SESSION *session; /* TLSv1.3 PSK session */ SSL_SESSION *psksession; unsigned char *psksession_id; size_t psksession_id_len; /* Default generate session ID callback. */ GEN_SESSION_CB generate_session_id; /* * The temporary TLSv1.3 session id. This isn't really a session id at all * but is a random value sent in the legacy session id field. */ unsigned char tmp_session_id[SSL_MAX_SSL_SESSION_ID_LENGTH]; size_t tmp_session_id_len; /* Used in SSL3 */ /* * 0 don't care about verify failure. * 1 fail if verify fails */ uint32_t verify_mode; /* fail if callback returns 0 */ int (*verify_callback) (int ok, X509_STORE_CTX *ctx); /* optional informational callback */ void (*info_callback) (const SSL *ssl, int type, int val); /* error bytes to be written */ int error; /* actual code */ int error_code; # ifndef OPENSSL_NO_PSK SSL_psk_client_cb_func psk_client_callback; SSL_psk_server_cb_func psk_server_callback; # endif SSL_psk_find_session_cb_func psk_find_session_cb; SSL_psk_use_session_cb_func psk_use_session_cb; SSL_CTX *ctx; /* Verified chain of peer */ STACK_OF(X509) *verified_chain; long verify_result; /* extra application data */ CRYPTO_EX_DATA ex_data; /* * What we put in certificate_authorities extension for TLS 1.3 * (ClientHello and CertificateRequest) or just client cert requests for * earlier versions. If client_ca_names is populated then it is only used * for client cert requests, and in preference to ca_names. */ STACK_OF(X509_NAME) *ca_names; STACK_OF(X509_NAME) *client_ca_names; CRYPTO_REF_COUNT references; /* protocol behaviour */ uint32_t options; /* API behaviour */ uint32_t mode; int min_proto_version; int max_proto_version; size_t max_cert_list; int first_packet; /* * What was passed in ClientHello.legacy_version. Used for RSA pre-master * secret and SSLv3/TLS (<=1.2) rollback check */ int client_version; /* * If we're using more than one pipeline how should we divide the data * up between the pipes? */ size_t split_send_fragment; /* * Maximum amount of data to send in one fragment. actual record size can * be more than this due to padding and MAC overheads. */ size_t max_send_fragment; /* Up to how many pipelines should we use? If 0 then 1 is assumed */ size_t max_pipelines; struct { /* Built-in extension flags */ uint8_t extflags[TLSEXT_IDX_num_builtins]; /* TLS extension debug callback */ void (*debug_cb)(SSL *s, int client_server, int type, const unsigned char *data, int len, void *arg); void *debug_arg; char *hostname; /* certificate status request info */ /* Status type or -1 if no status type */ int status_type; /* Raw extension data, if seen */ unsigned char *scts; /* Length of raw extension data, if seen */ uint16_t scts_len; /* Expect OCSP CertificateStatus message */ int status_expected; struct { /* OCSP status request only */ STACK_OF(OCSP_RESPID) *ids; X509_EXTENSIONS *exts; /* OCSP response received or to be sent */ unsigned char *resp; size_t resp_len; } ocsp; /* RFC4507 session ticket expected to be received or sent */ int ticket_expected; # ifndef OPENSSL_NO_EC size_t ecpointformats_len; /* our list */ unsigned char *ecpointformats; size_t peer_ecpointformats_len; /* peer's list */ unsigned char *peer_ecpointformats; # endif /* OPENSSL_NO_EC */ size_t supportedgroups_len; /* our list */ uint16_t *supportedgroups; size_t peer_supportedgroups_len; /* peer's list */ uint16_t *peer_supportedgroups; /* TLS Session Ticket extension override */ TLS_SESSION_TICKET_EXT *session_ticket; /* TLS Session Ticket extension callback */ tls_session_ticket_ext_cb_fn session_ticket_cb; void *session_ticket_cb_arg; /* TLS pre-shared secret session resumption */ tls_session_secret_cb_fn session_secret_cb; void *session_secret_cb_arg; /* * For a client, this contains the list of supported protocols in wire * format. */ unsigned char *alpn; size_t alpn_len; /* * Next protocol negotiation. For the client, this is the protocol that * we sent in NextProtocol and is set when handling ServerHello * extensions. For a server, this is the client's selected_protocol from * NextProtocol and is set when handling the NextProtocol message, before * the Finished message. */ unsigned char *npn; size_t npn_len; /* The available PSK key exchange modes */ int psk_kex_mode; /* Set to one if we have negotiated ETM */ int use_etm; /* Are we expecting to receive early data? */ int early_data; /* Is the session suitable for early data? */ int early_data_ok; /* May be sent by a server in HRR. Must be echoed back in ClientHello */ unsigned char *tls13_cookie; size_t tls13_cookie_len; /* Have we received a cookie from the client? */ int cookieok; /* * Maximum Fragment Length as per RFC 4366. * If this member contains one of the allowed values (1-4) * then we should include Maximum Fragment Length Negotiation * extension in Client Hello. * Please note that value of this member does not have direct * effect. The actual (binding) value is stored in SSL_SESSION, * as this extension is optional on server side. */ uint8_t max_fragment_len_mode; /* * On the client side the number of ticket identities we sent in the * ClientHello. On the server side the identity of the ticket we * selected. */ int tick_identity; } ext; /* * Parsed form of the ClientHello, kept around across client_hello_cb * calls. */ CLIENTHELLO_MSG *clienthello; /*- * no further mod of servername * 0 : call the servername extension callback. * 1 : prepare 2, allow last ack just after in server callback. * 2 : don't call servername callback, no ack in server hello */ int servername_done; # ifndef OPENSSL_NO_CT /* * Validates that the SCTs (Signed Certificate Timestamps) are sufficient. * If they are not, the connection should be aborted. */ ssl_ct_validation_cb ct_validation_callback; /* User-supplied argument that is passed to the ct_validation_callback */ void *ct_validation_callback_arg; /* * Consolidated stack of SCTs from all sources. * Lazily populated by CT_get_peer_scts(SSL*) */ STACK_OF(SCT) *scts; /* Have we attempted to find/parse SCTs yet? */ int scts_parsed; # endif SSL_CTX *session_ctx; /* initial ctx, used to store sessions */ # ifndef OPENSSL_NO_SRTP /* What we'll do */ STACK_OF(SRTP_PROTECTION_PROFILE) *srtp_profiles; /* What's been chosen */ SRTP_PROTECTION_PROFILE *srtp_profile; # endif /*- * 1 if we are renegotiating. * 2 if we are a server and are inside a handshake * (i.e. not just sending a HelloRequest) */ int renegotiate; /* If sending a KeyUpdate is pending */ int key_update; /* Post-handshake authentication state */ SSL_PHA_STATE post_handshake_auth; int pha_enabled; uint8_t* pha_context; size_t pha_context_len; int certreqs_sent; EVP_MD_CTX *pha_dgst; /* this is just the digest through ClientFinished */ # ifndef OPENSSL_NO_SRP /* ctx for SRP authentication */ SRP_CTX srp_ctx; # endif /* * Callback for disabling session caching and ticket support on a session * basis, depending on the chosen cipher. */ int (*not_resumable_session_cb) (SSL *ssl, int is_forward_secure); RECORD_LAYER rlayer; /* Default password callback. */ pem_password_cb *default_passwd_callback; /* Default password callback user data. */ void *default_passwd_callback_userdata; /* Async Job info */ ASYNC_JOB *job; ASYNC_WAIT_CTX *waitctx; size_t asyncrw; /* * The maximum number of bytes advertised in session tickets that can be * sent as early data. */ uint32_t max_early_data; /* * The maximum number of bytes of early data that a server will tolerate * (which should be at least as much as max_early_data). */ uint32_t recv_max_early_data; /* * The number of bytes of early data received so far. If we accepted early * data then this is a count of the plaintext bytes. If we rejected it then * this is a count of the ciphertext bytes. */ uint32_t early_data_count; /* TLS1.3 padding callback */ size_t (*record_padding_cb)(SSL *s, int type, size_t len, void *arg); void *record_padding_arg; size_t block_padding; CRYPTO_RWLOCK *lock; /* The number of TLS1.3 tickets to automatically send */ size_t num_tickets; /* The number of TLS1.3 tickets actually sent so far */ size_t sent_tickets; /* The next nonce value to use when we send a ticket on this connection */ uint64_t next_ticket_nonce; /* Callback to determine if early_data is acceptable or not */ SSL_allow_early_data_cb_fn allow_early_data_cb; void *allow_early_data_cb_data; /* * Signature algorithms shared by client and server: cached because these * are used most often. */ const struct sigalg_lookup_st **shared_sigalgs; size_t shared_sigalgslen; }; /* * Structure containing table entry of values associated with the signature * algorithms (signature scheme) extension */ typedef struct sigalg_lookup_st { /* TLS 1.3 signature scheme name */ const char *name; /* Raw value used in extension */ uint16_t sigalg; /* NID of hash algorithm or NID_undef if no hash */ int hash; /* Index of hash algorithm or -1 if no hash algorithm */ int hash_idx; /* NID of signature algorithm */ int sig; /* Index of signature algorithm */ int sig_idx; /* Combined hash and signature NID, if any */ int sigandhash; /* Required public key curve (ECDSA only) */ int curve; } SIGALG_LOOKUP; typedef struct tls_group_info_st { int nid; /* Curve NID */ int secbits; /* Bits of security (from SP800-57) */ uint16_t flags; /* Flags: currently just group type */ } TLS_GROUP_INFO; /* flags values */ # define TLS_CURVE_TYPE 0x3 /* Mask for group type */ # define TLS_CURVE_PRIME 0x0 # define TLS_CURVE_CHAR2 0x1 # define TLS_CURVE_CUSTOM 0x2 typedef struct cert_pkey_st CERT_PKEY; /* * Structure containing table entry of certificate info corresponding to * CERT_PKEY entries */ typedef struct { int nid; /* NID of public key algorithm */ uint32_t amask; /* authmask corresponding to key type */ } SSL_CERT_LOOKUP; typedef struct ssl3_state_st { long flags; size_t read_mac_secret_size; unsigned char read_mac_secret[EVP_MAX_MD_SIZE]; size_t write_mac_secret_size; unsigned char write_mac_secret[EVP_MAX_MD_SIZE]; unsigned char server_random[SSL3_RANDOM_SIZE]; unsigned char client_random[SSL3_RANDOM_SIZE]; /* flags for countermeasure against known-IV weakness */ int need_empty_fragments; int empty_fragment_done; /* used during startup, digest all incoming/outgoing packets */ BIO *handshake_buffer; /* * When handshake digest is determined, buffer is hashed and * freed and MD_CTX for the required digest is stored here. */ EVP_MD_CTX *handshake_dgst; /* * Set whenever an expected ChangeCipherSpec message is processed. * Unset when the peer's Finished message is received. * Unexpected ChangeCipherSpec messages trigger a fatal alert. */ int change_cipher_spec; int warn_alert; int fatal_alert; /* * we allow one fatal and one warning alert to be outstanding, send close * alert via the warning alert */ int alert_dispatch; unsigned char send_alert[2]; /* * This flag is set when we should renegotiate ASAP, basically when there * is no more data in the read or write buffers */ int renegotiate; int total_renegotiations; int num_renegotiations; int in_read_app_data; struct { /* actually only need to be 16+20 for SSLv3 and 12 for TLS */ unsigned char finish_md[EVP_MAX_MD_SIZE * 2]; size_t finish_md_len; unsigned char peer_finish_md[EVP_MAX_MD_SIZE * 2]; size_t peer_finish_md_len; size_t message_size; int message_type; /* used to hold the new cipher we are going to use */ const SSL_CIPHER *new_cipher; # if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) EVP_PKEY *pkey; /* holds short lived DH/ECDH key */ # endif /* used for certificate requests */ int cert_req; /* Certificate types in certificate request message. */ uint8_t *ctype; size_t ctype_len; /* Certificate authorities list peer sent */ STACK_OF(X509_NAME) *peer_ca_names; size_t key_block_length; unsigned char *key_block; const EVP_CIPHER *new_sym_enc; const EVP_MD *new_hash; int new_mac_pkey_type; size_t new_mac_secret_size; # ifndef OPENSSL_NO_COMP const SSL_COMP *new_compression; # else char *new_compression; # endif int cert_request; /* Raw values of the cipher list from a client */ unsigned char *ciphers_raw; size_t ciphers_rawlen; /* Temporary storage for premaster secret */ unsigned char *pms; size_t pmslen; # ifndef OPENSSL_NO_PSK /* Temporary storage for PSK key */ unsigned char *psk; size_t psklen; # endif /* Signature algorithm we actually use */ const SIGALG_LOOKUP *sigalg; /* Pointer to certificate we use */ CERT_PKEY *cert; /* * signature algorithms peer reports: e.g. supported signature * algorithms extension for server or as part of a certificate * request for client. * Keep track of the algorithms for TLS and X.509 usage separately. */ uint16_t *peer_sigalgs; uint16_t *peer_cert_sigalgs; /* Size of above arrays */ size_t peer_sigalgslen; size_t peer_cert_sigalgslen; /* Sigalg peer actually uses */ const SIGALG_LOOKUP *peer_sigalg; /* * Set if corresponding CERT_PKEY can be used with current * SSL session: e.g. appropriate curve, signature algorithms etc. * If zero it can't be used at all. */ uint32_t valid_flags[SSL_PKEY_NUM]; /* * For servers the following masks are for the key and auth algorithms * that are supported by the certs below. For clients they are masks of * *disabled* algorithms based on the current session. */ uint32_t mask_k; uint32_t mask_a; /* * The following are used by the client to see if a cipher is allowed or * not. It contains the minimum and maximum version the client's using * based on what it knows so far. */ int min_ver; int max_ver; } tmp; /* Connection binding to prevent renegotiation attacks */ unsigned char previous_client_finished[EVP_MAX_MD_SIZE]; size_t previous_client_finished_len; unsigned char previous_server_finished[EVP_MAX_MD_SIZE]; size_t previous_server_finished_len; int send_connection_binding; /* TODOEKR */ # ifndef OPENSSL_NO_NEXTPROTONEG /* * Set if we saw the Next Protocol Negotiation extension from our peer. */ int npn_seen; # endif /* * ALPN information (we are in the process of transitioning from NPN to * ALPN.) */ /* * In a server these point to the selected ALPN protocol after the * ClientHello has been processed. In a client these contain the protocol * that the server selected once the ServerHello has been processed. */ unsigned char *alpn_selected; size_t alpn_selected_len; /* used by the server to know what options were proposed */ unsigned char *alpn_proposed; size_t alpn_proposed_len; /* used by the client to know if it actually sent alpn */ int alpn_sent; # ifndef OPENSSL_NO_EC /* * This is set to true if we believe that this is a version of Safari * running on OS X 10.6 or newer. We wish to know this because Safari on * 10.8 .. 10.8.3 has broken ECDHE-ECDSA support. */ char is_probably_safari; # endif /* !OPENSSL_NO_EC */ /* For clients: peer temporary key */ # if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) /* The group_id for the DH/ECDH key */ uint16_t group_id; EVP_PKEY *peer_tmp; # endif } SSL3_STATE; /* DTLS structures */ # ifndef OPENSSL_NO_SCTP # define DTLS1_SCTP_AUTH_LABEL "EXPORTER_DTLS_OVER_SCTP" # endif /* Max MTU overhead we know about so far is 40 for IPv6 + 8 for UDP */ # define DTLS1_MAX_MTU_OVERHEAD 48 /* * Flag used in message reuse to indicate the buffer contains the record * header as well as the handshake message header. */ # define DTLS1_SKIP_RECORD_HEADER 2 struct dtls1_retransmit_state { EVP_CIPHER_CTX *enc_write_ctx; /* cryptographic state */ EVP_MD_CTX *write_hash; /* used for mac generation */ COMP_CTX *compress; /* compression */ SSL_SESSION *session; unsigned short epoch; }; struct hm_header_st { unsigned char type; size_t msg_len; unsigned short seq; size_t frag_off; size_t frag_len; unsigned int is_ccs; struct dtls1_retransmit_state saved_retransmit_state; }; struct dtls1_timeout_st { /* Number of read timeouts so far */ unsigned int read_timeouts; /* Number of write timeouts so far */ unsigned int write_timeouts; /* Number of alerts received so far */ unsigned int num_alerts; }; typedef struct hm_fragment_st { struct hm_header_st msg_header; unsigned char *fragment; unsigned char *reassembly; } hm_fragment; typedef struct pqueue_st pqueue; typedef struct pitem_st pitem; struct pitem_st { unsigned char priority[8]; /* 64-bit value in big-endian encoding */ void *data; pitem *next; }; typedef struct pitem_st *piterator; pitem *pitem_new(unsigned char *prio64be, void *data); void pitem_free(pitem *item); pqueue *pqueue_new(void); void pqueue_free(pqueue *pq); pitem *pqueue_insert(pqueue *pq, pitem *item); pitem *pqueue_peek(pqueue *pq); pitem *pqueue_pop(pqueue *pq); pitem *pqueue_find(pqueue *pq, unsigned char *prio64be); pitem *pqueue_iterator(pqueue *pq); pitem *pqueue_next(piterator *iter); size_t pqueue_size(pqueue *pq); typedef struct dtls1_state_st { unsigned char cookie[DTLS1_COOKIE_LENGTH]; size_t cookie_len; unsigned int cookie_verified; /* handshake message numbers */ unsigned short handshake_write_seq; unsigned short next_handshake_write_seq; unsigned short handshake_read_seq; /* Buffered handshake messages */ pqueue *buffered_messages; /* Buffered (sent) handshake records */ pqueue *sent_messages; size_t link_mtu; /* max on-the-wire DTLS packet size */ size_t mtu; /* max DTLS packet size */ struct hm_header_st w_msg_hdr; struct hm_header_st r_msg_hdr; struct dtls1_timeout_st timeout; /* * Indicates when the last handshake msg sent will timeout */ struct timeval next_timeout; /* Timeout duration */ unsigned int timeout_duration_us; unsigned int retransmitting; # ifndef OPENSSL_NO_SCTP int shutdown_received; # endif DTLS_timer_cb timer_cb; } DTLS1_STATE; # ifndef OPENSSL_NO_EC /* * From ECC-TLS draft, used in encoding the curve type in ECParameters */ # define EXPLICIT_PRIME_CURVE_TYPE 1 # define EXPLICIT_CHAR2_CURVE_TYPE 2 # define NAMED_CURVE_TYPE 3 # endif /* OPENSSL_NO_EC */ struct cert_pkey_st { X509 *x509; EVP_PKEY *privatekey; /* Chain for this certificate */ STACK_OF(X509) *chain; /*- * serverinfo data for this certificate. The data is in TLS Extension * wire format, specifically it's a series of records like: * uint16_t extension_type; // (RFC 5246, 7.4.1.4, Extension) * uint16_t length; * uint8_t data[length]; */ unsigned char *serverinfo; size_t serverinfo_length; }; /* Retrieve Suite B flags */ # define tls1_suiteb(s) (s->cert->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS) /* Uses to check strict mode: suite B modes are always strict */ # define SSL_CERT_FLAGS_CHECK_TLS_STRICT \ (SSL_CERT_FLAG_SUITEB_128_LOS|SSL_CERT_FLAG_TLS_STRICT) typedef enum { ENDPOINT_CLIENT = 0, ENDPOINT_SERVER, ENDPOINT_BOTH } ENDPOINT; typedef struct { unsigned short ext_type; ENDPOINT role; /* The context which this extension applies to */ unsigned int context; /* * Per-connection flags relating to this extension type: not used if * part of an SSL_CTX structure. */ uint32_t ext_flags; SSL_custom_ext_add_cb_ex add_cb; SSL_custom_ext_free_cb_ex free_cb; void *add_arg; SSL_custom_ext_parse_cb_ex parse_cb; void *parse_arg; } custom_ext_method; /* ext_flags values */ /* * Indicates an extension has been received. Used to check for unsolicited or * duplicate extensions. */ # define SSL_EXT_FLAG_RECEIVED 0x1 /* * Indicates an extension has been sent: used to enable sending of * corresponding ServerHello extension. */ # define SSL_EXT_FLAG_SENT 0x2 typedef struct { custom_ext_method *meths; size_t meths_count; } custom_ext_methods; typedef struct cert_st { /* Current active set */ /* * ALWAYS points to an element of the pkeys array * Probably it would make more sense to store * an index, not a pointer. */ CERT_PKEY *key; # ifndef OPENSSL_NO_DH EVP_PKEY *dh_tmp; DH *(*dh_tmp_cb) (SSL *ssl, int is_export, int keysize); int dh_tmp_auto; # endif /* Flags related to certificates */ uint32_t cert_flags; CERT_PKEY pkeys[SSL_PKEY_NUM]; /* Custom certificate types sent in certificate request message. */ uint8_t *ctype; size_t ctype_len; /* * supported signature algorithms. When set on a client this is sent in * the client hello as the supported signature algorithms extension. For * servers it represents the signature algorithms we are willing to use. */ uint16_t *conf_sigalgs; /* Size of above array */ size_t conf_sigalgslen; /* * Client authentication signature algorithms, if not set then uses * conf_sigalgs. On servers these will be the signature algorithms sent * to the client in a certificate request for TLS 1.2. On a client this * represents the signature algorithms we are willing to use for client * authentication. */ uint16_t *client_sigalgs; /* Size of above array */ size_t client_sigalgslen; /* * Certificate setup callback: if set is called whenever a certificate * may be required (client or server). the callback can then examine any * appropriate parameters and setup any certificates required. This * allows advanced applications to select certificates on the fly: for * example based on supported signature algorithms or curves. */ int (*cert_cb) (SSL *ssl, void *arg); void *cert_cb_arg; /* * Optional X509_STORE for chain building or certificate validation If * NULL the parent SSL_CTX store is used instead. */ X509_STORE *chain_store; X509_STORE *verify_store; /* Custom extensions */ custom_ext_methods custext; /* Security callback */ int (*sec_cb) (const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid, void *other, void *ex); /* Security level */ int sec_level; void *sec_ex; # ifndef OPENSSL_NO_PSK /* If not NULL psk identity hint to use for servers */ char *psk_identity_hint; # endif CRYPTO_REF_COUNT references; /* >1 only if SSL_copy_session_id is used */ CRYPTO_RWLOCK *lock; } CERT; # define FP_ICC (int (*)(const void *,const void *)) /* * This is for the SSLv3/TLSv1.0 differences in crypto/hash stuff It is a bit * of a mess of functions, but hell, think of it as an opaque structure :-) */ typedef struct ssl3_enc_method { int (*enc) (SSL *, SSL3_RECORD *, size_t, int); int (*mac) (SSL *, SSL3_RECORD *, unsigned char *, int); int (*setup_key_block) (SSL *); int (*generate_master_secret) (SSL *, unsigned char *, unsigned char *, size_t, size_t *); int (*change_cipher_state) (SSL *, int); size_t (*final_finish_mac) (SSL *, const char *, size_t, unsigned char *); const char *client_finished_label; size_t client_finished_label_len; const char *server_finished_label; size_t server_finished_label_len; int (*alert_value) (int); int (*export_keying_material) (SSL *, unsigned char *, size_t, const char *, size_t, const unsigned char *, size_t, int use_context); /* Various flags indicating protocol version requirements */ uint32_t enc_flags; /* Set the handshake header */ int (*set_handshake_header) (SSL *s, WPACKET *pkt, int type); /* Close construction of the handshake message */ int (*close_construct_packet) (SSL *s, WPACKET *pkt, int htype); /* Write out handshake message */ int (*do_write) (SSL *s); } SSL3_ENC_METHOD; # define ssl_set_handshake_header(s, pkt, htype) \ s->method->ssl3_enc->set_handshake_header((s), (pkt), (htype)) # define ssl_close_construct_packet(s, pkt, htype) \ s->method->ssl3_enc->close_construct_packet((s), (pkt), (htype)) # define ssl_do_write(s) s->method->ssl3_enc->do_write(s) /* Values for enc_flags */ /* Uses explicit IV for CBC mode */ # define SSL_ENC_FLAG_EXPLICIT_IV 0x1 /* Uses signature algorithms extension */ # define SSL_ENC_FLAG_SIGALGS 0x2 /* Uses SHA256 default PRF */ # define SSL_ENC_FLAG_SHA256_PRF 0x4 /* Is DTLS */ # define SSL_ENC_FLAG_DTLS 0x8 /* * Allow TLS 1.2 ciphersuites: applies to DTLS 1.2 as well as TLS 1.2: may * apply to others in future. */ # define SSL_ENC_FLAG_TLS1_2_CIPHERS 0x10 # ifndef OPENSSL_NO_COMP /* Used for holding the relevant compression methods loaded into SSL_CTX */ typedef struct ssl3_comp_st { int comp_id; /* The identifier byte for this compression * type */ char *name; /* Text name used for the compression type */ COMP_METHOD *method; /* The method :-) */ } SSL3_COMP; # endif typedef enum downgrade_en { DOWNGRADE_NONE, DOWNGRADE_TO_1_2, DOWNGRADE_TO_1_1 } DOWNGRADE; /* * Dummy status type for the status_type extension. Indicates no status type * set */ #define TLSEXT_STATUSTYPE_nothing -1 /* Sigalgs values */ #define TLSEXT_SIGALG_ecdsa_secp256r1_sha256 0x0403 #define TLSEXT_SIGALG_ecdsa_secp384r1_sha384 0x0503 #define TLSEXT_SIGALG_ecdsa_secp521r1_sha512 0x0603 #define TLSEXT_SIGALG_ecdsa_sha224 0x0303 #define TLSEXT_SIGALG_ecdsa_sha1 0x0203 #define TLSEXT_SIGALG_rsa_pss_rsae_sha256 0x0804 #define TLSEXT_SIGALG_rsa_pss_rsae_sha384 0x0805 #define TLSEXT_SIGALG_rsa_pss_rsae_sha512 0x0806 #define TLSEXT_SIGALG_rsa_pss_pss_sha256 0x0809 #define TLSEXT_SIGALG_rsa_pss_pss_sha384 0x080a #define TLSEXT_SIGALG_rsa_pss_pss_sha512 0x080b #define TLSEXT_SIGALG_rsa_pkcs1_sha256 0x0401 #define TLSEXT_SIGALG_rsa_pkcs1_sha384 0x0501 #define TLSEXT_SIGALG_rsa_pkcs1_sha512 0x0601 #define TLSEXT_SIGALG_rsa_pkcs1_sha224 0x0301 #define TLSEXT_SIGALG_rsa_pkcs1_sha1 0x0201 #define TLSEXT_SIGALG_dsa_sha256 0x0402 #define TLSEXT_SIGALG_dsa_sha384 0x0502 #define TLSEXT_SIGALG_dsa_sha512 0x0602 #define TLSEXT_SIGALG_dsa_sha224 0x0302 #define TLSEXT_SIGALG_dsa_sha1 0x0202 #define TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256 0xeeee #define TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512 0xefef #define TLSEXT_SIGALG_gostr34102001_gostr3411 0xeded #define TLSEXT_SIGALG_ed25519 0x0807 #define TLSEXT_SIGALG_ed448 0x0808 /* Known PSK key exchange modes */ #define TLSEXT_KEX_MODE_KE 0x00 #define TLSEXT_KEX_MODE_KE_DHE 0x01 /* * Internal representations of key exchange modes */ #define TLSEXT_KEX_MODE_FLAG_NONE 0 #define TLSEXT_KEX_MODE_FLAG_KE 1 #define TLSEXT_KEX_MODE_FLAG_KE_DHE 2 #define SSL_USE_PSS(s) (s->s3->tmp.peer_sigalg != NULL && \ s->s3->tmp.peer_sigalg->sig == EVP_PKEY_RSA_PSS) /* A dummy signature value not valid for TLSv1.2 signature algs */ #define TLSEXT_signature_rsa_pss 0x0101 /* TLSv1.3 downgrade protection sentinel values */ extern const unsigned char tls11downgrade[8]; extern const unsigned char tls12downgrade[8]; extern SSL3_ENC_METHOD ssl3_undef_enc_method; __owur const SSL_METHOD *ssl_bad_method(int ver); __owur const SSL_METHOD *sslv3_method(void); __owur const SSL_METHOD *sslv3_server_method(void); __owur const SSL_METHOD *sslv3_client_method(void); __owur const SSL_METHOD *tlsv1_method(void); __owur const SSL_METHOD *tlsv1_server_method(void); __owur const SSL_METHOD *tlsv1_client_method(void); __owur const SSL_METHOD *tlsv1_1_method(void); __owur const SSL_METHOD *tlsv1_1_server_method(void); __owur const SSL_METHOD *tlsv1_1_client_method(void); __owur const SSL_METHOD *tlsv1_2_method(void); __owur const SSL_METHOD *tlsv1_2_server_method(void); __owur const SSL_METHOD *tlsv1_2_client_method(void); __owur const SSL_METHOD *tlsv1_3_method(void); __owur const SSL_METHOD *tlsv1_3_server_method(void); __owur const SSL_METHOD *tlsv1_3_client_method(void); __owur const SSL_METHOD *dtlsv1_method(void); __owur const SSL_METHOD *dtlsv1_server_method(void); __owur const SSL_METHOD *dtlsv1_client_method(void); __owur const SSL_METHOD *dtls_bad_ver_client_method(void); __owur const SSL_METHOD *dtlsv1_2_method(void); __owur const SSL_METHOD *dtlsv1_2_server_method(void); __owur const SSL_METHOD *dtlsv1_2_client_method(void); extern const SSL3_ENC_METHOD TLSv1_enc_data; extern const SSL3_ENC_METHOD TLSv1_1_enc_data; extern const SSL3_ENC_METHOD TLSv1_2_enc_data; extern const SSL3_ENC_METHOD TLSv1_3_enc_data; extern const SSL3_ENC_METHOD SSLv3_enc_data; extern const SSL3_ENC_METHOD DTLSv1_enc_data; extern const SSL3_ENC_METHOD DTLSv1_2_enc_data; /* * Flags for SSL methods */ # define SSL_METHOD_NO_FIPS (1U<<0) # define SSL_METHOD_NO_SUITEB (1U<<1) # define IMPLEMENT_tls_meth_func(version, flags, mask, func_name, s_accept, \ s_connect, enc_data) \ const SSL_METHOD *func_name(void) \ { \ static const SSL_METHOD func_name##_data= { \ version, \ flags, \ mask, \ tls1_new, \ tls1_clear, \ tls1_free, \ s_accept, \ s_connect, \ ssl3_read, \ ssl3_peek, \ ssl3_write, \ ssl3_shutdown, \ ssl3_renegotiate, \ ssl3_renegotiate_check, \ ssl3_read_bytes, \ ssl3_write_bytes, \ ssl3_dispatch_alert, \ ssl3_ctrl, \ ssl3_ctx_ctrl, \ ssl3_get_cipher_by_char, \ ssl3_put_cipher_by_char, \ ssl3_pending, \ ssl3_num_ciphers, \ ssl3_get_cipher, \ tls1_default_timeout, \ &enc_data, \ ssl_undefined_void_function, \ ssl3_callback_ctrl, \ ssl3_ctx_callback_ctrl, \ }; \ return &func_name##_data; \ } # define IMPLEMENT_ssl3_meth_func(func_name, s_accept, s_connect) \ const SSL_METHOD *func_name(void) \ { \ static const SSL_METHOD func_name##_data= { \ SSL3_VERSION, \ SSL_METHOD_NO_FIPS | SSL_METHOD_NO_SUITEB, \ SSL_OP_NO_SSLv3, \ ssl3_new, \ ssl3_clear, \ ssl3_free, \ s_accept, \ s_connect, \ ssl3_read, \ ssl3_peek, \ ssl3_write, \ ssl3_shutdown, \ ssl3_renegotiate, \ ssl3_renegotiate_check, \ ssl3_read_bytes, \ ssl3_write_bytes, \ ssl3_dispatch_alert, \ ssl3_ctrl, \ ssl3_ctx_ctrl, \ ssl3_get_cipher_by_char, \ ssl3_put_cipher_by_char, \ ssl3_pending, \ ssl3_num_ciphers, \ ssl3_get_cipher, \ ssl3_default_timeout, \ &SSLv3_enc_data, \ ssl_undefined_void_function, \ ssl3_callback_ctrl, \ ssl3_ctx_callback_ctrl, \ }; \ return &func_name##_data; \ } # define IMPLEMENT_dtls1_meth_func(version, flags, mask, func_name, s_accept, \ s_connect, enc_data) \ const SSL_METHOD *func_name(void) \ { \ static const SSL_METHOD func_name##_data= { \ version, \ flags, \ mask, \ dtls1_new, \ dtls1_clear, \ dtls1_free, \ s_accept, \ s_connect, \ ssl3_read, \ ssl3_peek, \ ssl3_write, \ dtls1_shutdown, \ ssl3_renegotiate, \ ssl3_renegotiate_check, \ dtls1_read_bytes, \ dtls1_write_app_data_bytes, \ dtls1_dispatch_alert, \ dtls1_ctrl, \ ssl3_ctx_ctrl, \ ssl3_get_cipher_by_char, \ ssl3_put_cipher_by_char, \ ssl3_pending, \ ssl3_num_ciphers, \ ssl3_get_cipher, \ dtls1_default_timeout, \ &enc_data, \ ssl_undefined_void_function, \ ssl3_callback_ctrl, \ ssl3_ctx_callback_ctrl, \ }; \ return &func_name##_data; \ } struct openssl_ssl_test_functions { int (*p_ssl_init_wbio_buffer) (SSL *s); int (*p_ssl3_setup_buffers) (SSL *s); }; const char *ssl_protocol_to_string(int version); /* Returns true if certificate and private key for 'idx' are present */ static ossl_inline int ssl_has_cert(const SSL *s, int idx) { if (idx < 0 || idx >= SSL_PKEY_NUM) return 0; return s->cert->pkeys[idx].x509 != NULL && s->cert->pkeys[idx].privatekey != NULL; } static ossl_inline void tls1_get_peer_groups(SSL *s, const uint16_t **pgroups, size_t *pgroupslen) { *pgroups = s->ext.peer_supportedgroups; *pgroupslen = s->ext.peer_supportedgroups_len; } # ifndef OPENSSL_UNIT_TEST __owur int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes); __owur int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written); void ssl_clear_cipher_ctx(SSL *s); int ssl_clear_bad_session(SSL *s); __owur CERT *ssl_cert_new(void); __owur CERT *ssl_cert_dup(CERT *cert); void ssl_cert_clear_certs(CERT *c); void ssl_cert_free(CERT *c); __owur int ssl_generate_session_id(SSL *s, SSL_SESSION *ss); __owur int ssl_get_new_session(SSL *s, int session); __owur SSL_SESSION *lookup_sess_in_cache(SSL *s, const unsigned char *sess_id, size_t sess_id_len); __owur int ssl_get_prev_session(SSL *s, CLIENTHELLO_MSG *hello); __owur SSL_SESSION *ssl_session_dup(SSL_SESSION *src, int ticket); __owur int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b); DECLARE_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id); __owur int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap, const SSL_CIPHER *const *bp); __owur STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *ssl_method, STACK_OF(SSL_CIPHER) *tls13_ciphersuites, STACK_OF(SSL_CIPHER) **cipher_list, STACK_OF(SSL_CIPHER) **cipher_list_by_id, const char *rule_str, CERT *c); __owur int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format); __owur int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites, STACK_OF(SSL_CIPHER) **skp, STACK_OF(SSL_CIPHER) **scsvs, int sslv2format, int fatal); void ssl_update_cache(SSL *s, int mode); __owur int ssl_cipher_get_evp(const SSL_SESSION *s, const EVP_CIPHER **enc, const EVP_MD **md, int *mac_pkey_type, size_t *mac_secret_size, SSL_COMP **comp, int use_etm); __owur int ssl_cipher_get_overhead(const SSL_CIPHER *c, size_t *mac_overhead, size_t *int_overhead, size_t *blocksize, size_t *ext_overhead); __owur int ssl_cert_is_disabled(size_t idx); __owur const SSL_CIPHER *ssl_get_cipher_by_char(SSL *ssl, const unsigned char *ptr, int all); __owur int ssl_cert_set0_chain(SSL *s, SSL_CTX *ctx, STACK_OF(X509) *chain); __owur int ssl_cert_set1_chain(SSL *s, SSL_CTX *ctx, STACK_OF(X509) *chain); __owur int ssl_cert_add0_chain_cert(SSL *s, SSL_CTX *ctx, X509 *x); __owur int ssl_cert_add1_chain_cert(SSL *s, SSL_CTX *ctx, X509 *x); __owur int ssl_cert_select_current(CERT *c, X509 *x); __owur int ssl_cert_set_current(CERT *c, long arg); void ssl_cert_set_cert_cb(CERT *c, int (*cb) (SSL *ssl, void *arg), void *arg); __owur int ssl_verify_cert_chain(SSL *s, STACK_OF(X509) *sk); __owur int ssl_build_cert_chain(SSL *s, SSL_CTX *ctx, int flags); __owur int ssl_cert_set_cert_store(CERT *c, X509_STORE *store, int chain, int ref); +__owur int ssl_cert_get_cert_store(CERT *c, X509_STORE **pstore, int chain); __owur int ssl_security(const SSL *s, int op, int bits, int nid, void *other); __owur int ssl_ctx_security(const SSL_CTX *ctx, int op, int bits, int nid, void *other); int ssl_get_security_level_bits(const SSL *s, const SSL_CTX *ctx, int *levelp); __owur int ssl_cert_lookup_by_nid(int nid, size_t *pidx); __owur const SSL_CERT_LOOKUP *ssl_cert_lookup_by_pkey(const EVP_PKEY *pk, size_t *pidx); __owur const SSL_CERT_LOOKUP *ssl_cert_lookup_by_idx(size_t idx); int ssl_undefined_function(SSL *s); __owur int ssl_undefined_void_function(void); __owur int ssl_undefined_const_function(const SSL *s); __owur int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo, size_t *serverinfo_length); void ssl_set_masks(SSL *s); __owur STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s); __owur int ssl_x509err2alert(int type); void ssl_sort_cipher_list(void); int ssl_load_ciphers(void); __owur int ssl_fill_hello_random(SSL *s, int server, unsigned char *field, size_t len, DOWNGRADE dgrd); __owur int ssl_generate_master_secret(SSL *s, unsigned char *pms, size_t pmslen, int free_pms); __owur EVP_PKEY *ssl_generate_pkey(EVP_PKEY *pm); __owur int ssl_derive(SSL *s, EVP_PKEY *privkey, EVP_PKEY *pubkey, int genmaster); __owur EVP_PKEY *ssl_dh_to_pkey(DH *dh); __owur unsigned int ssl_get_max_send_fragment(const SSL *ssl); __owur unsigned int ssl_get_split_send_fragment(const SSL *ssl); __owur const SSL_CIPHER *ssl3_get_cipher_by_id(uint32_t id); __owur const SSL_CIPHER *ssl3_get_cipher_by_std_name(const char *stdname); __owur const SSL_CIPHER *ssl3_get_cipher_by_char(const unsigned char *p); __owur int ssl3_put_cipher_by_char(const SSL_CIPHER *c, WPACKET *pkt, size_t *len); int ssl3_init_finished_mac(SSL *s); __owur int ssl3_setup_key_block(SSL *s); __owur int ssl3_change_cipher_state(SSL *s, int which); void ssl3_cleanup_key_block(SSL *s); __owur int ssl3_do_write(SSL *s, int type); int ssl3_send_alert(SSL *s, int level, int desc); __owur int ssl3_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p, size_t len, size_t *secret_size); __owur int ssl3_get_req_cert_type(SSL *s, WPACKET *pkt); __owur int ssl3_num_ciphers(void); __owur const SSL_CIPHER *ssl3_get_cipher(unsigned int u); int ssl3_renegotiate(SSL *ssl); int ssl3_renegotiate_check(SSL *ssl, int initok); __owur int ssl3_dispatch_alert(SSL *s); __owur size_t ssl3_final_finish_mac(SSL *s, const char *sender, size_t slen, unsigned char *p); __owur int ssl3_finish_mac(SSL *s, const unsigned char *buf, size_t len); void ssl3_free_digest_list(SSL *s); __owur unsigned long ssl3_output_cert_chain(SSL *s, WPACKET *pkt, CERT_PKEY *cpk); __owur const SSL_CIPHER *ssl3_choose_cipher(SSL *ssl, STACK_OF(SSL_CIPHER) *clnt, STACK_OF(SSL_CIPHER) *srvr); __owur int ssl3_digest_cached_records(SSL *s, int keep); __owur int ssl3_new(SSL *s); void ssl3_free(SSL *s); __owur int ssl3_read(SSL *s, void *buf, size_t len, size_t *readbytes); __owur int ssl3_peek(SSL *s, void *buf, size_t len, size_t *readbytes); __owur int ssl3_write(SSL *s, const void *buf, size_t len, size_t *written); __owur int ssl3_shutdown(SSL *s); int ssl3_clear(SSL *s); __owur long ssl3_ctrl(SSL *s, int cmd, long larg, void *parg); __owur long ssl3_ctx_ctrl(SSL_CTX *s, int cmd, long larg, void *parg); __owur long ssl3_callback_ctrl(SSL *s, int cmd, void (*fp) (void)); __owur long ssl3_ctx_callback_ctrl(SSL_CTX *s, int cmd, void (*fp) (void)); __owur int ssl3_do_change_cipher_spec(SSL *ssl); __owur long ssl3_default_timeout(void); __owur int ssl3_set_handshake_header(SSL *s, WPACKET *pkt, int htype); __owur int tls_close_construct_packet(SSL *s, WPACKET *pkt, int htype); __owur int tls_setup_handshake(SSL *s); __owur int dtls1_set_handshake_header(SSL *s, WPACKET *pkt, int htype); __owur int dtls1_close_construct_packet(SSL *s, WPACKET *pkt, int htype); __owur int ssl3_handshake_write(SSL *s); __owur int ssl_allow_compression(SSL *s); __owur int ssl_version_supported(const SSL *s, int version, const SSL_METHOD **meth); __owur int ssl_set_client_hello_version(SSL *s); __owur int ssl_check_version_downgrade(SSL *s); __owur int ssl_set_version_bound(int method_version, int version, int *bound); __owur int ssl_choose_server_version(SSL *s, CLIENTHELLO_MSG *hello, DOWNGRADE *dgrd); __owur int ssl_choose_client_version(SSL *s, int version, RAW_EXTENSION *extensions); __owur int ssl_get_min_max_version(const SSL *s, int *min_version, int *max_version, int *real_max); __owur long tls1_default_timeout(void); __owur int dtls1_do_write(SSL *s, int type); void dtls1_set_message_header(SSL *s, unsigned char mt, size_t len, size_t frag_off, size_t frag_len); int dtls1_write_app_data_bytes(SSL *s, int type, const void *buf_, size_t len, size_t *written); __owur int dtls1_read_failed(SSL *s, int code); __owur int dtls1_buffer_message(SSL *s, int ccs); __owur int dtls1_retransmit_message(SSL *s, unsigned short seq, int *found); __owur int dtls1_get_queue_priority(unsigned short seq, int is_ccs); int dtls1_retransmit_buffered_messages(SSL *s); void dtls1_clear_received_buffer(SSL *s); void dtls1_clear_sent_buffer(SSL *s); void dtls1_get_message_header(unsigned char *data, struct hm_header_st *msg_hdr); __owur long dtls1_default_timeout(void); __owur struct timeval *dtls1_get_timeout(SSL *s, struct timeval *timeleft); __owur int dtls1_check_timeout_num(SSL *s); __owur int dtls1_handle_timeout(SSL *s); void dtls1_start_timer(SSL *s); void dtls1_stop_timer(SSL *s); __owur int dtls1_is_timer_expired(SSL *s); __owur int dtls_raw_hello_verify_request(WPACKET *pkt, unsigned char *cookie, size_t cookie_len); __owur size_t dtls1_min_mtu(SSL *s); void dtls1_hm_fragment_free(hm_fragment *frag); __owur int dtls1_query_mtu(SSL *s); __owur int tls1_new(SSL *s); void tls1_free(SSL *s); int tls1_clear(SSL *s); __owur int dtls1_new(SSL *s); void dtls1_free(SSL *s); int dtls1_clear(SSL *s); long dtls1_ctrl(SSL *s, int cmd, long larg, void *parg); __owur int dtls1_shutdown(SSL *s); __owur int dtls1_dispatch_alert(SSL *s); __owur int ssl_init_wbio_buffer(SSL *s); int ssl_free_wbio_buffer(SSL *s); __owur int tls1_change_cipher_state(SSL *s, int which); __owur int tls1_setup_key_block(SSL *s); __owur size_t tls1_final_finish_mac(SSL *s, const char *str, size_t slen, unsigned char *p); __owur int tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p, size_t len, size_t *secret_size); __owur int tls13_setup_key_block(SSL *s); __owur size_t tls13_final_finish_mac(SSL *s, const char *str, size_t slen, unsigned char *p); __owur int tls13_change_cipher_state(SSL *s, int which); __owur int tls13_update_key(SSL *s, int send); __owur int tls13_hkdf_expand(SSL *s, const EVP_MD *md, const unsigned char *secret, const unsigned char *label, size_t labellen, const unsigned char *data, size_t datalen, unsigned char *out, size_t outlen, int fatal); __owur int tls13_derive_key(SSL *s, const EVP_MD *md, const unsigned char *secret, unsigned char *key, size_t keylen); __owur int tls13_derive_iv(SSL *s, const EVP_MD *md, const unsigned char *secret, unsigned char *iv, size_t ivlen); __owur int tls13_derive_finishedkey(SSL *s, const EVP_MD *md, const unsigned char *secret, unsigned char *fin, size_t finlen); int tls13_generate_secret(SSL *s, const EVP_MD *md, const unsigned char *prevsecret, const unsigned char *insecret, size_t insecretlen, unsigned char *outsecret); __owur int tls13_generate_handshake_secret(SSL *s, const unsigned char *insecret, size_t insecretlen); __owur int tls13_generate_master_secret(SSL *s, unsigned char *out, unsigned char *prev, size_t prevlen, size_t *secret_size); __owur int tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen, const char *label, size_t llen, const unsigned char *p, size_t plen, int use_context); __owur int tls13_export_keying_material(SSL *s, unsigned char *out, size_t olen, const char *label, size_t llen, const unsigned char *context, size_t contextlen, int use_context); __owur int tls13_export_keying_material_early(SSL *s, unsigned char *out, size_t olen, const char *label, size_t llen, const unsigned char *context, size_t contextlen); __owur int tls1_alert_code(int code); __owur int tls13_alert_code(int code); __owur int ssl3_alert_code(int code); # ifndef OPENSSL_NO_EC __owur int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s); # endif SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n); # ifndef OPENSSL_NO_EC __owur const TLS_GROUP_INFO *tls1_group_id_lookup(uint16_t curve_id); __owur int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_curves); __owur uint16_t tls1_shared_group(SSL *s, int nmatch); __owur int tls1_set_groups(uint16_t **pext, size_t *pextlen, int *curves, size_t ncurves); __owur int tls1_set_groups_list(uint16_t **pext, size_t *pextlen, const char *str); void tls1_get_formatlist(SSL *s, const unsigned char **pformats, size_t *num_formats); __owur int tls1_check_ec_tmp_key(SSL *s, unsigned long id); __owur EVP_PKEY *ssl_generate_pkey_group(SSL *s, uint16_t id); __owur EVP_PKEY *ssl_generate_param_group(uint16_t id); # endif /* OPENSSL_NO_EC */ __owur int tls_curve_allowed(SSL *s, uint16_t curve, int op); void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups, size_t *pgroupslen); __owur int tls1_set_server_sigalgs(SSL *s); __owur SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello, SSL_SESSION **ret); __owur SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick, size_t eticklen, const unsigned char *sess_id, size_t sesslen, SSL_SESSION **psess); __owur int tls_use_ticket(SSL *s); void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op); __owur int tls1_set_sigalgs_list(CERT *c, const char *str, int client); __owur int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen, int client); __owur int tls1_set_sigalgs(CERT *c, const int *salg, size_t salglen, int client); int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain, int idx); void tls1_set_cert_validity(SSL *s); # ifndef OPENSSL_NO_CT __owur int ssl_validate_ct(SSL *s); # endif # ifndef OPENSSL_NO_DH __owur DH *ssl_get_auto_dh(SSL *s); # endif __owur int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee); __owur int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *ex, int vfy); int tls_choose_sigalg(SSL *s, int fatalerrs); __owur EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md); void ssl_clear_hash_ctx(EVP_MD_CTX **hash); __owur long ssl_get_algorithm2(SSL *s); __owur int tls12_copy_sigalgs(SSL *s, WPACKET *pkt, const uint16_t *psig, size_t psiglen); __owur int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen); __owur int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert); __owur int tls1_process_sigalgs(SSL *s); __owur int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey); __owur int tls1_lookup_md(const SIGALG_LOOKUP *lu, const EVP_MD **pmd); __owur size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs); # ifndef OPENSSL_NO_EC __owur int tls_check_sigalg_curve(const SSL *s, int curve); # endif __owur int tls12_check_peer_sigalg(SSL *s, uint16_t, EVP_PKEY *pkey); __owur int ssl_set_client_disabled(SSL *s); __owur int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int echde); __owur int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen, size_t *hashlen); __owur const EVP_MD *ssl_md(int idx); __owur const EVP_MD *ssl_handshake_md(SSL *s); __owur const EVP_MD *ssl_prf_md(SSL *s); /* * ssl_log_rsa_client_key_exchange logs |premaster| to the SSL_CTX associated * with |ssl|, if logging is enabled. It returns one on success and zero on * failure. The entry is identified by the first 8 bytes of * |encrypted_premaster|. */ __owur int ssl_log_rsa_client_key_exchange(SSL *ssl, const uint8_t *encrypted_premaster, size_t encrypted_premaster_len, const uint8_t *premaster, size_t premaster_len); /* * ssl_log_secret logs |secret| to the SSL_CTX associated with |ssl|, if * logging is available. It returns one on success and zero on failure. It tags * the entry with |label|. */ __owur int ssl_log_secret(SSL *ssl, const char *label, const uint8_t *secret, size_t secret_len); #define MASTER_SECRET_LABEL "CLIENT_RANDOM" #define CLIENT_EARLY_LABEL "CLIENT_EARLY_TRAFFIC_SECRET" #define CLIENT_HANDSHAKE_LABEL "CLIENT_HANDSHAKE_TRAFFIC_SECRET" #define SERVER_HANDSHAKE_LABEL "SERVER_HANDSHAKE_TRAFFIC_SECRET" #define CLIENT_APPLICATION_LABEL "CLIENT_TRAFFIC_SECRET_0" #define SERVER_APPLICATION_LABEL "SERVER_TRAFFIC_SECRET_0" #define EARLY_EXPORTER_SECRET_LABEL "EARLY_EXPORTER_SECRET" #define EXPORTER_SECRET_LABEL "EXPORTER_SECRET" /* s3_cbc.c */ __owur char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx); __owur int ssl3_cbc_digest_record(const EVP_MD_CTX *ctx, unsigned char *md_out, size_t *md_out_size, const unsigned char *header, const unsigned char *data, size_t data_plus_mac_size, size_t data_plus_mac_plus_padding_size, const unsigned char *mac_secret, size_t mac_secret_length, char is_sslv3); __owur int srp_generate_server_master_secret(SSL *s); __owur int srp_generate_client_master_secret(SSL *s); __owur int srp_verify_server_param(SSL *s); /* statem/statem_srvr.c */ __owur int send_certificate_request(SSL *s); /* statem/extensions_cust.c */ custom_ext_method *custom_ext_find(const custom_ext_methods *exts, ENDPOINT role, unsigned int ext_type, size_t *idx); void custom_ext_init(custom_ext_methods *meths); __owur int custom_ext_parse(SSL *s, unsigned int context, unsigned int ext_type, const unsigned char *ext_data, size_t ext_size, X509 *x, size_t chainidx); __owur int custom_ext_add(SSL *s, int context, WPACKET *pkt, X509 *x, size_t chainidx, int maxversion); __owur int custom_exts_copy(custom_ext_methods *dst, const custom_ext_methods *src); __owur int custom_exts_copy_flags(custom_ext_methods *dst, const custom_ext_methods *src); void custom_exts_free(custom_ext_methods *exts); void ssl_comp_free_compression_methods_int(void); /* ssl_mcnf.c */ void ssl_ctx_system_config(SSL_CTX *ctx); # else /* OPENSSL_UNIT_TEST */ # define ssl_init_wbio_buffer SSL_test_functions()->p_ssl_init_wbio_buffer # define ssl3_setup_buffers SSL_test_functions()->p_ssl3_setup_buffers # endif #endif diff --git a/ssl/statem/extensions_clnt.c b/ssl/statem/extensions_clnt.c index 9d38ac23b5f0..b6f72d685c2c 100644 --- a/ssl/statem/extensions_clnt.c +++ b/ssl/statem/extensions_clnt.c @@ -1,2014 +1,2028 @@ /* - * Copyright 2016-2021 The OpenSSL Project Authors. All Rights Reserved. + * Copyright 2016-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "../ssl_local.h" #include "internal/cryptlib.h" #include "statem_local.h" EXT_RETURN tls_construct_ctos_renegotiate(SSL *s, WPACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { /* Add RI if renegotiating */ if (!s->renegotiate) return EXT_RETURN_NOT_SENT; if (!WPACKET_put_bytes_u16(pkt, TLSEXT_TYPE_renegotiate) || !WPACKET_start_sub_packet_u16(pkt) || !WPACKET_sub_memcpy_u8(pkt, s->s3->previous_client_finished, s->s3->previous_client_finished_len) || !WPACKET_close(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_RENEGOTIATE, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } return EXT_RETURN_SENT; } EXT_RETURN tls_construct_ctos_server_name(SSL *s, WPACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { if (s->ext.hostname == NULL) return EXT_RETURN_NOT_SENT; /* Add TLS extension servername to the Client Hello message */ if (!WPACKET_put_bytes_u16(pkt, TLSEXT_TYPE_server_name) /* Sub-packet for server_name extension */ || !WPACKET_start_sub_packet_u16(pkt) /* Sub-packet for servername list (always 1 hostname)*/ || !WPACKET_start_sub_packet_u16(pkt) || !WPACKET_put_bytes_u8(pkt, TLSEXT_NAMETYPE_host_name) || !WPACKET_sub_memcpy_u16(pkt, s->ext.hostname, strlen(s->ext.hostname)) || !WPACKET_close(pkt) || !WPACKET_close(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_SERVER_NAME, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } return EXT_RETURN_SENT; } /* Push a Max Fragment Len extension into ClientHello */ EXT_RETURN tls_construct_ctos_maxfragmentlen(SSL *s, WPACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { if (s->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_DISABLED) return EXT_RETURN_NOT_SENT; /* Add Max Fragment Length extension if client enabled it. */ /*- * 4 bytes for this extension type and extension length * 1 byte for the Max Fragment Length code value. */ if (!WPACKET_put_bytes_u16(pkt, TLSEXT_TYPE_max_fragment_length) /* Sub-packet for Max Fragment Length extension (1 byte) */ || !WPACKET_start_sub_packet_u16(pkt) || !WPACKET_put_bytes_u8(pkt, s->ext.max_fragment_len_mode) || !WPACKET_close(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_MAXFRAGMENTLEN, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } return EXT_RETURN_SENT; } #ifndef OPENSSL_NO_SRP EXT_RETURN tls_construct_ctos_srp(SSL *s, WPACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { /* Add SRP username if there is one */ if (s->srp_ctx.login == NULL) return EXT_RETURN_NOT_SENT; if (!WPACKET_put_bytes_u16(pkt, TLSEXT_TYPE_srp) /* Sub-packet for SRP extension */ || !WPACKET_start_sub_packet_u16(pkt) || !WPACKET_start_sub_packet_u8(pkt) /* login must not be zero...internal error if so */ || !WPACKET_set_flags(pkt, WPACKET_FLAGS_NON_ZERO_LENGTH) || !WPACKET_memcpy(pkt, s->srp_ctx.login, strlen(s->srp_ctx.login)) || !WPACKET_close(pkt) || !WPACKET_close(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_SRP, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } return EXT_RETURN_SENT; } #endif #ifndef OPENSSL_NO_EC static int use_ecc(SSL *s) { int i, end, ret = 0; unsigned long alg_k, alg_a; STACK_OF(SSL_CIPHER) *cipher_stack = NULL; + const uint16_t *pgroups = NULL; + size_t num_groups, j; /* See if we support any ECC ciphersuites */ if (s->version == SSL3_VERSION) return 0; cipher_stack = SSL_get1_supported_ciphers(s); end = sk_SSL_CIPHER_num(cipher_stack); for (i = 0; i < end; i++) { const SSL_CIPHER *c = sk_SSL_CIPHER_value(cipher_stack, i); alg_k = c->algorithm_mkey; alg_a = c->algorithm_auth; if ((alg_k & (SSL_kECDHE | SSL_kECDHEPSK)) || (alg_a & SSL_aECDSA) || c->min_tls >= TLS1_3_VERSION) { ret = 1; break; } } sk_SSL_CIPHER_free(cipher_stack); - return ret; + if (!ret) + return 0; + + /* Check we have at least one EC supported group */ + tls1_get_supported_groups(s, &pgroups, &num_groups); + for (j = 0; j < num_groups; j++) { + uint16_t ctmp = pgroups[j]; + + if (tls_curve_allowed(s, ctmp, SSL_SECOP_CURVE_SUPPORTED)) + return 1; + } + + return 0; } EXT_RETURN tls_construct_ctos_ec_pt_formats(SSL *s, WPACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { const unsigned char *pformats; size_t num_formats; if (!use_ecc(s)) return EXT_RETURN_NOT_SENT; /* Add TLS extension ECPointFormats to the ClientHello message */ tls1_get_formatlist(s, &pformats, &num_formats); if (!WPACKET_put_bytes_u16(pkt, TLSEXT_TYPE_ec_point_formats) /* Sub-packet for formats extension */ || !WPACKET_start_sub_packet_u16(pkt) || !WPACKET_sub_memcpy_u8(pkt, pformats, num_formats) || !WPACKET_close(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_EC_PT_FORMATS, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } return EXT_RETURN_SENT; } EXT_RETURN tls_construct_ctos_supported_groups(SSL *s, WPACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { const uint16_t *pgroups = NULL; size_t num_groups = 0, i; if (!use_ecc(s)) return EXT_RETURN_NOT_SENT; /* * Add TLS extension supported_groups to the ClientHello message */ /* TODO(TLS1.3): Add support for DHE groups */ tls1_get_supported_groups(s, &pgroups, &num_groups); if (!WPACKET_put_bytes_u16(pkt, TLSEXT_TYPE_supported_groups) /* Sub-packet for supported_groups extension */ || !WPACKET_start_sub_packet_u16(pkt) || !WPACKET_start_sub_packet_u16(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_SUPPORTED_GROUPS, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } /* Copy curve ID if supported */ for (i = 0; i < num_groups; i++) { uint16_t ctmp = pgroups[i]; if (tls_curve_allowed(s, ctmp, SSL_SECOP_CURVE_SUPPORTED)) { if (!WPACKET_put_bytes_u16(pkt, ctmp)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_SUPPORTED_GROUPS, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } } } if (!WPACKET_close(pkt) || !WPACKET_close(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_SUPPORTED_GROUPS, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } return EXT_RETURN_SENT; } #endif EXT_RETURN tls_construct_ctos_session_ticket(SSL *s, WPACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { size_t ticklen; if (!tls_use_ticket(s)) return EXT_RETURN_NOT_SENT; if (!s->new_session && s->session != NULL && s->session->ext.tick != NULL && s->session->ssl_version != TLS1_3_VERSION) { ticklen = s->session->ext.ticklen; } else if (s->session && s->ext.session_ticket != NULL && s->ext.session_ticket->data != NULL) { ticklen = s->ext.session_ticket->length; s->session->ext.tick = OPENSSL_malloc(ticklen); if (s->session->ext.tick == NULL) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_SESSION_TICKET, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } memcpy(s->session->ext.tick, s->ext.session_ticket->data, ticklen); s->session->ext.ticklen = ticklen; } else { ticklen = 0; } if (ticklen == 0 && s->ext.session_ticket != NULL && s->ext.session_ticket->data == NULL) return EXT_RETURN_NOT_SENT; if (!WPACKET_put_bytes_u16(pkt, TLSEXT_TYPE_session_ticket) || !WPACKET_sub_memcpy_u16(pkt, s->session->ext.tick, ticklen)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_SESSION_TICKET, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } return EXT_RETURN_SENT; } EXT_RETURN tls_construct_ctos_sig_algs(SSL *s, WPACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { size_t salglen; const uint16_t *salg; if (!SSL_CLIENT_USE_SIGALGS(s)) return EXT_RETURN_NOT_SENT; salglen = tls12_get_psigalgs(s, 1, &salg); if (!WPACKET_put_bytes_u16(pkt, TLSEXT_TYPE_signature_algorithms) /* Sub-packet for sig-algs extension */ || !WPACKET_start_sub_packet_u16(pkt) /* Sub-packet for the actual list */ || !WPACKET_start_sub_packet_u16(pkt) || !tls12_copy_sigalgs(s, pkt, salg, salglen) || !WPACKET_close(pkt) || !WPACKET_close(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_SIG_ALGS, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } return EXT_RETURN_SENT; } #ifndef OPENSSL_NO_OCSP EXT_RETURN tls_construct_ctos_status_request(SSL *s, WPACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { int i; /* This extension isn't defined for client Certificates */ if (x != NULL) return EXT_RETURN_NOT_SENT; if (s->ext.status_type != TLSEXT_STATUSTYPE_ocsp) return EXT_RETURN_NOT_SENT; if (!WPACKET_put_bytes_u16(pkt, TLSEXT_TYPE_status_request) /* Sub-packet for status request extension */ || !WPACKET_start_sub_packet_u16(pkt) || !WPACKET_put_bytes_u8(pkt, TLSEXT_STATUSTYPE_ocsp) /* Sub-packet for the ids */ || !WPACKET_start_sub_packet_u16(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_STATUS_REQUEST, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } for (i = 0; i < sk_OCSP_RESPID_num(s->ext.ocsp.ids); i++) { unsigned char *idbytes; OCSP_RESPID *id = sk_OCSP_RESPID_value(s->ext.ocsp.ids, i); int idlen = i2d_OCSP_RESPID(id, NULL); if (idlen <= 0 /* Sub-packet for an individual id */ || !WPACKET_sub_allocate_bytes_u16(pkt, idlen, &idbytes) || i2d_OCSP_RESPID(id, &idbytes) != idlen) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_STATUS_REQUEST, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } } if (!WPACKET_close(pkt) || !WPACKET_start_sub_packet_u16(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_STATUS_REQUEST, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } if (s->ext.ocsp.exts) { unsigned char *extbytes; int extlen = i2d_X509_EXTENSIONS(s->ext.ocsp.exts, NULL); if (extlen < 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_STATUS_REQUEST, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } if (!WPACKET_allocate_bytes(pkt, extlen, &extbytes) || i2d_X509_EXTENSIONS(s->ext.ocsp.exts, &extbytes) != extlen) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_STATUS_REQUEST, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } } if (!WPACKET_close(pkt) || !WPACKET_close(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_STATUS_REQUEST, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } return EXT_RETURN_SENT; } #endif #ifndef OPENSSL_NO_NEXTPROTONEG EXT_RETURN tls_construct_ctos_npn(SSL *s, WPACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { if (s->ctx->ext.npn_select_cb == NULL || !SSL_IS_FIRST_HANDSHAKE(s)) return EXT_RETURN_NOT_SENT; /* * The client advertises an empty extension to indicate its support * for Next Protocol Negotiation */ if (!WPACKET_put_bytes_u16(pkt, TLSEXT_TYPE_next_proto_neg) || !WPACKET_put_bytes_u16(pkt, 0)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_NPN, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } return EXT_RETURN_SENT; } #endif EXT_RETURN tls_construct_ctos_alpn(SSL *s, WPACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { s->s3->alpn_sent = 0; if (s->ext.alpn == NULL || !SSL_IS_FIRST_HANDSHAKE(s)) return EXT_RETURN_NOT_SENT; if (!WPACKET_put_bytes_u16(pkt, TLSEXT_TYPE_application_layer_protocol_negotiation) /* Sub-packet ALPN extension */ || !WPACKET_start_sub_packet_u16(pkt) || !WPACKET_sub_memcpy_u16(pkt, s->ext.alpn, s->ext.alpn_len) || !WPACKET_close(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_ALPN, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } s->s3->alpn_sent = 1; return EXT_RETURN_SENT; } #ifndef OPENSSL_NO_SRTP EXT_RETURN tls_construct_ctos_use_srtp(SSL *s, WPACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { STACK_OF(SRTP_PROTECTION_PROFILE) *clnt = SSL_get_srtp_profiles(s); int i, end; if (clnt == NULL) return EXT_RETURN_NOT_SENT; if (!WPACKET_put_bytes_u16(pkt, TLSEXT_TYPE_use_srtp) /* Sub-packet for SRTP extension */ || !WPACKET_start_sub_packet_u16(pkt) /* Sub-packet for the protection profile list */ || !WPACKET_start_sub_packet_u16(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_USE_SRTP, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } end = sk_SRTP_PROTECTION_PROFILE_num(clnt); for (i = 0; i < end; i++) { const SRTP_PROTECTION_PROFILE *prof = sk_SRTP_PROTECTION_PROFILE_value(clnt, i); if (prof == NULL || !WPACKET_put_bytes_u16(pkt, prof->id)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_USE_SRTP, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } } if (!WPACKET_close(pkt) /* Add an empty use_mki value */ || !WPACKET_put_bytes_u8(pkt, 0) || !WPACKET_close(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_USE_SRTP, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } return EXT_RETURN_SENT; } #endif EXT_RETURN tls_construct_ctos_etm(SSL *s, WPACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { if (s->options & SSL_OP_NO_ENCRYPT_THEN_MAC) return EXT_RETURN_NOT_SENT; if (!WPACKET_put_bytes_u16(pkt, TLSEXT_TYPE_encrypt_then_mac) || !WPACKET_put_bytes_u16(pkt, 0)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_ETM, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } return EXT_RETURN_SENT; } #ifndef OPENSSL_NO_CT EXT_RETURN tls_construct_ctos_sct(SSL *s, WPACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { if (s->ct_validation_callback == NULL) return EXT_RETURN_NOT_SENT; /* Not defined for client Certificates */ if (x != NULL) return EXT_RETURN_NOT_SENT; if (!WPACKET_put_bytes_u16(pkt, TLSEXT_TYPE_signed_certificate_timestamp) || !WPACKET_put_bytes_u16(pkt, 0)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_SCT, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } return EXT_RETURN_SENT; } #endif EXT_RETURN tls_construct_ctos_ems(SSL *s, WPACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { if (!WPACKET_put_bytes_u16(pkt, TLSEXT_TYPE_extended_master_secret) || !WPACKET_put_bytes_u16(pkt, 0)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_EMS, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } return EXT_RETURN_SENT; } EXT_RETURN tls_construct_ctos_supported_versions(SSL *s, WPACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { int currv, min_version, max_version, reason; reason = ssl_get_min_max_version(s, &min_version, &max_version, NULL); if (reason != 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_SUPPORTED_VERSIONS, reason); return EXT_RETURN_FAIL; } /* * Don't include this if we can't negotiate TLSv1.3. We can do a straight * comparison here because we will never be called in DTLS. */ if (max_version < TLS1_3_VERSION) return EXT_RETURN_NOT_SENT; if (!WPACKET_put_bytes_u16(pkt, TLSEXT_TYPE_supported_versions) || !WPACKET_start_sub_packet_u16(pkt) || !WPACKET_start_sub_packet_u8(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_SUPPORTED_VERSIONS, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } for (currv = max_version; currv >= min_version; currv--) { if (!WPACKET_put_bytes_u16(pkt, currv)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_SUPPORTED_VERSIONS, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } } if (!WPACKET_close(pkt) || !WPACKET_close(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_SUPPORTED_VERSIONS, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } return EXT_RETURN_SENT; } /* * Construct a psk_kex_modes extension. */ EXT_RETURN tls_construct_ctos_psk_kex_modes(SSL *s, WPACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { #ifndef OPENSSL_NO_TLS1_3 int nodhe = s->options & SSL_OP_ALLOW_NO_DHE_KEX; if (!WPACKET_put_bytes_u16(pkt, TLSEXT_TYPE_psk_kex_modes) || !WPACKET_start_sub_packet_u16(pkt) || !WPACKET_start_sub_packet_u8(pkt) || !WPACKET_put_bytes_u8(pkt, TLSEXT_KEX_MODE_KE_DHE) || (nodhe && !WPACKET_put_bytes_u8(pkt, TLSEXT_KEX_MODE_KE)) || !WPACKET_close(pkt) || !WPACKET_close(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_PSK_KEX_MODES, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } s->ext.psk_kex_mode = TLSEXT_KEX_MODE_FLAG_KE_DHE; if (nodhe) s->ext.psk_kex_mode |= TLSEXT_KEX_MODE_FLAG_KE; #endif return EXT_RETURN_SENT; } #ifndef OPENSSL_NO_TLS1_3 static int add_key_share(SSL *s, WPACKET *pkt, unsigned int curve_id) { unsigned char *encoded_point = NULL; EVP_PKEY *key_share_key = NULL; size_t encodedlen; if (s->s3->tmp.pkey != NULL) { if (!ossl_assert(s->hello_retry_request == SSL_HRR_PENDING)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_ADD_KEY_SHARE, ERR_R_INTERNAL_ERROR); return 0; } /* * Could happen if we got an HRR that wasn't requesting a new key_share */ key_share_key = s->s3->tmp.pkey; } else { key_share_key = ssl_generate_pkey_group(s, curve_id); if (key_share_key == NULL) { /* SSLfatal() already called */ return 0; } } /* Encode the public key. */ encodedlen = EVP_PKEY_get1_tls_encodedpoint(key_share_key, &encoded_point); if (encodedlen == 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_ADD_KEY_SHARE, ERR_R_EC_LIB); goto err; } /* Create KeyShareEntry */ if (!WPACKET_put_bytes_u16(pkt, curve_id) || !WPACKET_sub_memcpy_u16(pkt, encoded_point, encodedlen)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_ADD_KEY_SHARE, ERR_R_INTERNAL_ERROR); goto err; } /* * TODO(TLS1.3): When changing to send more than one key_share we're * going to need to be able to save more than one EVP_PKEY. For now * we reuse the existing tmp.pkey */ s->s3->tmp.pkey = key_share_key; s->s3->group_id = curve_id; OPENSSL_free(encoded_point); return 1; err: if (s->s3->tmp.pkey == NULL) EVP_PKEY_free(key_share_key); OPENSSL_free(encoded_point); return 0; } #endif EXT_RETURN tls_construct_ctos_key_share(SSL *s, WPACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { #ifndef OPENSSL_NO_TLS1_3 size_t i, num_groups = 0; const uint16_t *pgroups = NULL; uint16_t curve_id = 0; /* key_share extension */ if (!WPACKET_put_bytes_u16(pkt, TLSEXT_TYPE_key_share) /* Extension data sub-packet */ || !WPACKET_start_sub_packet_u16(pkt) /* KeyShare list sub-packet */ || !WPACKET_start_sub_packet_u16(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_KEY_SHARE, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } tls1_get_supported_groups(s, &pgroups, &num_groups); /* * TODO(TLS1.3): Make the number of key_shares sent configurable. For * now, just send one */ if (s->s3->group_id != 0) { curve_id = s->s3->group_id; } else { for (i = 0; i < num_groups; i++) { if (!tls_curve_allowed(s, pgroups[i], SSL_SECOP_CURVE_SUPPORTED)) continue; curve_id = pgroups[i]; break; } } if (curve_id == 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_KEY_SHARE, SSL_R_NO_SUITABLE_KEY_SHARE); return EXT_RETURN_FAIL; } if (!add_key_share(s, pkt, curve_id)) { /* SSLfatal() already called */ return EXT_RETURN_FAIL; } if (!WPACKET_close(pkt) || !WPACKET_close(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_KEY_SHARE, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } return EXT_RETURN_SENT; #else return EXT_RETURN_NOT_SENT; #endif } EXT_RETURN tls_construct_ctos_cookie(SSL *s, WPACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { EXT_RETURN ret = EXT_RETURN_FAIL; /* Should only be set if we've had an HRR */ if (s->ext.tls13_cookie_len == 0) return EXT_RETURN_NOT_SENT; if (!WPACKET_put_bytes_u16(pkt, TLSEXT_TYPE_cookie) /* Extension data sub-packet */ || !WPACKET_start_sub_packet_u16(pkt) || !WPACKET_sub_memcpy_u16(pkt, s->ext.tls13_cookie, s->ext.tls13_cookie_len) || !WPACKET_close(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_COOKIE, ERR_R_INTERNAL_ERROR); goto end; } ret = EXT_RETURN_SENT; end: OPENSSL_free(s->ext.tls13_cookie); s->ext.tls13_cookie = NULL; s->ext.tls13_cookie_len = 0; return ret; } EXT_RETURN tls_construct_ctos_early_data(SSL *s, WPACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { #ifndef OPENSSL_NO_PSK char identity[PSK_MAX_IDENTITY_LEN + 1]; #endif /* OPENSSL_NO_PSK */ const unsigned char *id = NULL; size_t idlen = 0; SSL_SESSION *psksess = NULL; SSL_SESSION *edsess = NULL; const EVP_MD *handmd = NULL; if (s->hello_retry_request == SSL_HRR_PENDING) handmd = ssl_handshake_md(s); if (s->psk_use_session_cb != NULL && (!s->psk_use_session_cb(s, handmd, &id, &idlen, &psksess) || (psksess != NULL && psksess->ssl_version != TLS1_3_VERSION))) { SSL_SESSION_free(psksess); SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_EARLY_DATA, SSL_R_BAD_PSK); return EXT_RETURN_FAIL; } #ifndef OPENSSL_NO_PSK if (psksess == NULL && s->psk_client_callback != NULL) { unsigned char psk[PSK_MAX_PSK_LEN]; size_t psklen = 0; memset(identity, 0, sizeof(identity)); psklen = s->psk_client_callback(s, NULL, identity, sizeof(identity) - 1, psk, sizeof(psk)); if (psklen > PSK_MAX_PSK_LEN) { SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS_CONSTRUCT_CTOS_EARLY_DATA, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } else if (psklen > 0) { const unsigned char tls13_aes128gcmsha256_id[] = { 0x13, 0x01 }; const SSL_CIPHER *cipher; idlen = strlen(identity); if (idlen > PSK_MAX_IDENTITY_LEN) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_EARLY_DATA, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } id = (unsigned char *)identity; /* * We found a PSK using an old style callback. We don't know * the digest so we default to SHA256 as per the TLSv1.3 spec */ cipher = SSL_CIPHER_find(s, tls13_aes128gcmsha256_id); if (cipher == NULL) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_EARLY_DATA, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } psksess = SSL_SESSION_new(); if (psksess == NULL || !SSL_SESSION_set1_master_key(psksess, psk, psklen) || !SSL_SESSION_set_cipher(psksess, cipher) || !SSL_SESSION_set_protocol_version(psksess, TLS1_3_VERSION)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_EARLY_DATA, ERR_R_INTERNAL_ERROR); OPENSSL_cleanse(psk, psklen); return EXT_RETURN_FAIL; } OPENSSL_cleanse(psk, psklen); } } #endif /* OPENSSL_NO_PSK */ SSL_SESSION_free(s->psksession); s->psksession = psksess; if (psksess != NULL) { OPENSSL_free(s->psksession_id); s->psksession_id = OPENSSL_memdup(id, idlen); if (s->psksession_id == NULL) { s->psksession_id_len = 0; SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_EARLY_DATA, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } s->psksession_id_len = idlen; } if (s->early_data_state != SSL_EARLY_DATA_CONNECTING || (s->session->ext.max_early_data == 0 && (psksess == NULL || psksess->ext.max_early_data == 0))) { s->max_early_data = 0; return EXT_RETURN_NOT_SENT; } edsess = s->session->ext.max_early_data != 0 ? s->session : psksess; s->max_early_data = edsess->ext.max_early_data; if (edsess->ext.hostname != NULL) { if (s->ext.hostname == NULL || (s->ext.hostname != NULL && strcmp(s->ext.hostname, edsess->ext.hostname) != 0)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_EARLY_DATA, SSL_R_INCONSISTENT_EARLY_DATA_SNI); return EXT_RETURN_FAIL; } } if ((s->ext.alpn == NULL && edsess->ext.alpn_selected != NULL)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_EARLY_DATA, SSL_R_INCONSISTENT_EARLY_DATA_ALPN); return EXT_RETURN_FAIL; } /* * Verify that we are offering an ALPN protocol consistent with the early * data. */ if (edsess->ext.alpn_selected != NULL) { PACKET prots, alpnpkt; int found = 0; if (!PACKET_buf_init(&prots, s->ext.alpn, s->ext.alpn_len)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_EARLY_DATA, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } while (PACKET_get_length_prefixed_1(&prots, &alpnpkt)) { if (PACKET_equal(&alpnpkt, edsess->ext.alpn_selected, edsess->ext.alpn_selected_len)) { found = 1; break; } } if (!found) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_EARLY_DATA, SSL_R_INCONSISTENT_EARLY_DATA_ALPN); return EXT_RETURN_FAIL; } } if (!WPACKET_put_bytes_u16(pkt, TLSEXT_TYPE_early_data) || !WPACKET_start_sub_packet_u16(pkt) || !WPACKET_close(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_EARLY_DATA, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } /* * We set this to rejected here. Later, if the server acknowledges the * extension, we set it to accepted. */ s->ext.early_data = SSL_EARLY_DATA_REJECTED; s->ext.early_data_ok = 1; return EXT_RETURN_SENT; } #define F5_WORKAROUND_MIN_MSG_LEN 0xff #define F5_WORKAROUND_MAX_MSG_LEN 0x200 /* * PSK pre binder overhead = * 2 bytes for TLSEXT_TYPE_psk * 2 bytes for extension length * 2 bytes for identities list length * 2 bytes for identity length * 4 bytes for obfuscated_ticket_age * 2 bytes for binder list length * 1 byte for binder length * The above excludes the number of bytes for the identity itself and the * subsequent binder bytes */ #define PSK_PRE_BINDER_OVERHEAD (2 + 2 + 2 + 2 + 4 + 2 + 1) EXT_RETURN tls_construct_ctos_padding(SSL *s, WPACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { unsigned char *padbytes; size_t hlen; if ((s->options & SSL_OP_TLSEXT_PADDING) == 0) return EXT_RETURN_NOT_SENT; /* * Add padding to workaround bugs in F5 terminators. See RFC7685. * This code calculates the length of all extensions added so far but * excludes the PSK extension (because that MUST be written last). Therefore * this extension MUST always appear second to last. */ if (!WPACKET_get_total_written(pkt, &hlen)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_PADDING, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } /* * If we're going to send a PSK then that will be written out after this * extension, so we need to calculate how long it is going to be. */ if (s->session->ssl_version == TLS1_3_VERSION && s->session->ext.ticklen != 0 && s->session->cipher != NULL) { const EVP_MD *md = ssl_md(s->session->cipher->algorithm2); if (md != NULL) { /* * Add the fixed PSK overhead, the identity length and the binder * length. */ hlen += PSK_PRE_BINDER_OVERHEAD + s->session->ext.ticklen + EVP_MD_size(md); } } if (hlen > F5_WORKAROUND_MIN_MSG_LEN && hlen < F5_WORKAROUND_MAX_MSG_LEN) { /* Calculate the amount of padding we need to add */ hlen = F5_WORKAROUND_MAX_MSG_LEN - hlen; /* * Take off the size of extension header itself (2 bytes for type and * 2 bytes for length bytes), but ensure that the extension is at least * 1 byte long so as not to have an empty extension last (WebSphere 7.x, * 8.x are intolerant of that condition) */ if (hlen > 4) hlen -= 4; else hlen = 1; if (!WPACKET_put_bytes_u16(pkt, TLSEXT_TYPE_padding) || !WPACKET_sub_allocate_bytes_u16(pkt, hlen, &padbytes)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_PADDING, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } memset(padbytes, 0, hlen); } return EXT_RETURN_SENT; } /* * Construct the pre_shared_key extension */ EXT_RETURN tls_construct_ctos_psk(SSL *s, WPACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { #ifndef OPENSSL_NO_TLS1_3 uint32_t now, agesec, agems = 0; size_t reshashsize = 0, pskhashsize = 0, binderoffset, msglen; unsigned char *resbinder = NULL, *pskbinder = NULL, *msgstart = NULL; const EVP_MD *handmd = NULL, *mdres = NULL, *mdpsk = NULL; int dores = 0; s->ext.tick_identity = 0; /* * Note: At this stage of the code we only support adding a single * resumption PSK. If we add support for multiple PSKs then the length * calculations in the padding extension will need to be adjusted. */ /* * If this is an incompatible or new session then we have nothing to resume * so don't add this extension. */ if (s->session->ssl_version != TLS1_3_VERSION || (s->session->ext.ticklen == 0 && s->psksession == NULL)) return EXT_RETURN_NOT_SENT; if (s->hello_retry_request == SSL_HRR_PENDING) handmd = ssl_handshake_md(s); if (s->session->ext.ticklen != 0) { /* Get the digest associated with the ciphersuite in the session */ if (s->session->cipher == NULL) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_PSK, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } mdres = ssl_md(s->session->cipher->algorithm2); if (mdres == NULL) { /* * Don't recognize this cipher so we can't use the session. * Ignore it */ goto dopsksess; } if (s->hello_retry_request == SSL_HRR_PENDING && mdres != handmd) { /* * Selected ciphersuite hash does not match the hash for the session * so we can't use it. */ goto dopsksess; } /* * Technically the C standard just says time() returns a time_t and says * nothing about the encoding of that type. In practice most * implementations follow POSIX which holds it as an integral type in * seconds since epoch. We've already made the assumption that we can do * this in multiple places in the code, so portability shouldn't be an * issue. */ now = (uint32_t)time(NULL); agesec = now - (uint32_t)s->session->time; /* * We calculate the age in seconds but the server may work in ms. Due to * rounding errors we could overestimate the age by up to 1s. It is * better to underestimate it. Otherwise, if the RTT is very short, when * the server calculates the age reported by the client it could be * bigger than the age calculated on the server - which should never * happen. */ if (agesec > 0) agesec--; if (s->session->ext.tick_lifetime_hint < agesec) { /* Ticket is too old. Ignore it. */ goto dopsksess; } /* * Calculate age in ms. We're just doing it to nearest second. Should be * good enough. */ agems = agesec * (uint32_t)1000; if (agesec != 0 && agems / (uint32_t)1000 != agesec) { /* * Overflow. Shouldn't happen unless this is a *really* old session. * If so we just ignore it. */ goto dopsksess; } /* * Obfuscate the age. Overflow here is fine, this addition is supposed * to be mod 2^32. */ agems += s->session->ext.tick_age_add; reshashsize = EVP_MD_size(mdres); s->ext.tick_identity++; dores = 1; } dopsksess: if (!dores && s->psksession == NULL) return EXT_RETURN_NOT_SENT; if (s->psksession != NULL) { mdpsk = ssl_md(s->psksession->cipher->algorithm2); if (mdpsk == NULL) { /* * Don't recognize this cipher so we can't use the session. * If this happens it's an application bug. */ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_PSK, SSL_R_BAD_PSK); return EXT_RETURN_FAIL; } if (s->hello_retry_request == SSL_HRR_PENDING && mdpsk != handmd) { /* * Selected ciphersuite hash does not match the hash for the PSK * session. This is an application bug. */ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_PSK, SSL_R_BAD_PSK); return EXT_RETURN_FAIL; } pskhashsize = EVP_MD_size(mdpsk); } /* Create the extension, but skip over the binder for now */ if (!WPACKET_put_bytes_u16(pkt, TLSEXT_TYPE_psk) || !WPACKET_start_sub_packet_u16(pkt) || !WPACKET_start_sub_packet_u16(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_PSK, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } if (dores) { if (!WPACKET_sub_memcpy_u16(pkt, s->session->ext.tick, s->session->ext.ticklen) || !WPACKET_put_bytes_u32(pkt, agems)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_PSK, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } } if (s->psksession != NULL) { if (!WPACKET_sub_memcpy_u16(pkt, s->psksession_id, s->psksession_id_len) || !WPACKET_put_bytes_u32(pkt, 0)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_PSK, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } s->ext.tick_identity++; } if (!WPACKET_close(pkt) || !WPACKET_get_total_written(pkt, &binderoffset) || !WPACKET_start_sub_packet_u16(pkt) || (dores && !WPACKET_sub_allocate_bytes_u8(pkt, reshashsize, &resbinder)) || (s->psksession != NULL && !WPACKET_sub_allocate_bytes_u8(pkt, pskhashsize, &pskbinder)) || !WPACKET_close(pkt) || !WPACKET_close(pkt) || !WPACKET_get_total_written(pkt, &msglen) /* * We need to fill in all the sub-packet lengths now so we can * calculate the HMAC of the message up to the binders */ || !WPACKET_fill_lengths(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_PSK, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } msgstart = WPACKET_get_curr(pkt) - msglen; if (dores && tls_psk_do_binder(s, mdres, msgstart, binderoffset, NULL, resbinder, s->session, 1, 0) != 1) { /* SSLfatal() already called */ return EXT_RETURN_FAIL; } if (s->psksession != NULL && tls_psk_do_binder(s, mdpsk, msgstart, binderoffset, NULL, pskbinder, s->psksession, 1, 1) != 1) { /* SSLfatal() already called */ return EXT_RETURN_FAIL; } return EXT_RETURN_SENT; #else return EXT_RETURN_NOT_SENT; #endif } EXT_RETURN tls_construct_ctos_post_handshake_auth(SSL *s, WPACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { #ifndef OPENSSL_NO_TLS1_3 if (!s->pha_enabled) return EXT_RETURN_NOT_SENT; /* construct extension - 0 length, no contents */ if (!WPACKET_put_bytes_u16(pkt, TLSEXT_TYPE_post_handshake_auth) || !WPACKET_start_sub_packet_u16(pkt) || !WPACKET_close(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CONSTRUCT_CTOS_POST_HANDSHAKE_AUTH, ERR_R_INTERNAL_ERROR); return EXT_RETURN_FAIL; } s->post_handshake_auth = SSL_PHA_EXT_SENT; return EXT_RETURN_SENT; #else return EXT_RETURN_NOT_SENT; #endif } /* * Parse the server's renegotiation binding and abort if it's not right */ int tls_parse_stoc_renegotiate(SSL *s, PACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { size_t expected_len = s->s3->previous_client_finished_len + s->s3->previous_server_finished_len; size_t ilen; const unsigned char *data; /* Check for logic errors */ if (!ossl_assert(expected_len == 0 || s->s3->previous_client_finished_len != 0) || !ossl_assert(expected_len == 0 || s->s3->previous_server_finished_len != 0)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_PARSE_STOC_RENEGOTIATE, ERR_R_INTERNAL_ERROR); return 0; } /* Parse the length byte */ if (!PACKET_get_1_len(pkt, &ilen)) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_TLS_PARSE_STOC_RENEGOTIATE, SSL_R_RENEGOTIATION_ENCODING_ERR); return 0; } /* Consistency check */ if (PACKET_remaining(pkt) != ilen) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_TLS_PARSE_STOC_RENEGOTIATE, SSL_R_RENEGOTIATION_ENCODING_ERR); return 0; } /* Check that the extension matches */ if (ilen != expected_len) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS_PARSE_STOC_RENEGOTIATE, SSL_R_RENEGOTIATION_MISMATCH); return 0; } if (!PACKET_get_bytes(pkt, &data, s->s3->previous_client_finished_len) || memcmp(data, s->s3->previous_client_finished, s->s3->previous_client_finished_len) != 0) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS_PARSE_STOC_RENEGOTIATE, SSL_R_RENEGOTIATION_MISMATCH); return 0; } if (!PACKET_get_bytes(pkt, &data, s->s3->previous_server_finished_len) || memcmp(data, s->s3->previous_server_finished, s->s3->previous_server_finished_len) != 0) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS_PARSE_STOC_RENEGOTIATE, SSL_R_RENEGOTIATION_MISMATCH); return 0; } s->s3->send_connection_binding = 1; return 1; } /* Parse the server's max fragment len extension packet */ int tls_parse_stoc_maxfragmentlen(SSL *s, PACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { unsigned int value; if (PACKET_remaining(pkt) != 1 || !PACKET_get_1(pkt, &value)) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_TLS_PARSE_STOC_MAXFRAGMENTLEN, SSL_R_BAD_EXTENSION); return 0; } /* |value| should contains a valid max-fragment-length code. */ if (!IS_MAX_FRAGMENT_LENGTH_EXT_VALID(value)) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS_PARSE_STOC_MAXFRAGMENTLEN, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH); return 0; } /* Must be the same value as client-configured one who was sent to server */ /*- * RFC 6066: if a client receives a maximum fragment length negotiation * response that differs from the length it requested, ... * It must abort with SSL_AD_ILLEGAL_PARAMETER alert */ if (value != s->ext.max_fragment_len_mode) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS_PARSE_STOC_MAXFRAGMENTLEN, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH); return 0; } /* * Maximum Fragment Length Negotiation succeeded. * The negotiated Maximum Fragment Length is binding now. */ s->session->ext.max_fragment_len_mode = value; return 1; } int tls_parse_stoc_server_name(SSL *s, PACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { if (s->ext.hostname == NULL) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_PARSE_STOC_SERVER_NAME, ERR_R_INTERNAL_ERROR); return 0; } if (PACKET_remaining(pkt) > 0) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_TLS_PARSE_STOC_SERVER_NAME, SSL_R_BAD_EXTENSION); return 0; } if (!s->hit) { if (s->session->ext.hostname != NULL) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_PARSE_STOC_SERVER_NAME, ERR_R_INTERNAL_ERROR); return 0; } s->session->ext.hostname = OPENSSL_strdup(s->ext.hostname); if (s->session->ext.hostname == NULL) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_PARSE_STOC_SERVER_NAME, ERR_R_INTERNAL_ERROR); return 0; } } return 1; } #ifndef OPENSSL_NO_EC int tls_parse_stoc_ec_pt_formats(SSL *s, PACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { size_t ecpointformats_len; PACKET ecptformatlist; if (!PACKET_as_length_prefixed_1(pkt, &ecptformatlist)) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_TLS_PARSE_STOC_EC_PT_FORMATS, SSL_R_BAD_EXTENSION); return 0; } if (!s->hit) { ecpointformats_len = PACKET_remaining(&ecptformatlist); if (ecpointformats_len == 0) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_TLS_PARSE_STOC_EC_PT_FORMATS, SSL_R_BAD_LENGTH); return 0; } s->ext.peer_ecpointformats_len = 0; OPENSSL_free(s->ext.peer_ecpointformats); s->ext.peer_ecpointformats = OPENSSL_malloc(ecpointformats_len); if (s->ext.peer_ecpointformats == NULL) { s->ext.peer_ecpointformats_len = 0; SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_PARSE_STOC_EC_PT_FORMATS, ERR_R_INTERNAL_ERROR); return 0; } s->ext.peer_ecpointformats_len = ecpointformats_len; if (!PACKET_copy_bytes(&ecptformatlist, s->ext.peer_ecpointformats, ecpointformats_len)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_PARSE_STOC_EC_PT_FORMATS, ERR_R_INTERNAL_ERROR); return 0; } } return 1; } #endif int tls_parse_stoc_session_ticket(SSL *s, PACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { if (s->ext.session_ticket_cb != NULL && !s->ext.session_ticket_cb(s, PACKET_data(pkt), PACKET_remaining(pkt), s->ext.session_ticket_cb_arg)) { SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS_PARSE_STOC_SESSION_TICKET, SSL_R_BAD_EXTENSION); return 0; } if (!tls_use_ticket(s)) { SSLfatal(s, SSL_AD_UNSUPPORTED_EXTENSION, SSL_F_TLS_PARSE_STOC_SESSION_TICKET, SSL_R_BAD_EXTENSION); return 0; } if (PACKET_remaining(pkt) > 0) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_TLS_PARSE_STOC_SESSION_TICKET, SSL_R_BAD_EXTENSION); return 0; } s->ext.ticket_expected = 1; return 1; } #ifndef OPENSSL_NO_OCSP int tls_parse_stoc_status_request(SSL *s, PACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { if (context == SSL_EXT_TLS1_3_CERTIFICATE_REQUEST) { /* We ignore this if the server sends a CertificateRequest */ /* TODO(TLS1.3): Add support for this */ return 1; } /* * MUST only be sent if we've requested a status * request message. In TLS <= 1.2 it must also be empty. */ if (s->ext.status_type != TLSEXT_STATUSTYPE_ocsp) { SSLfatal(s, SSL_AD_UNSUPPORTED_EXTENSION, SSL_F_TLS_PARSE_STOC_STATUS_REQUEST, SSL_R_BAD_EXTENSION); return 0; } if (!SSL_IS_TLS13(s) && PACKET_remaining(pkt) > 0) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_TLS_PARSE_STOC_STATUS_REQUEST, SSL_R_BAD_EXTENSION); return 0; } if (SSL_IS_TLS13(s)) { /* We only know how to handle this if it's for the first Certificate in * the chain. We ignore any other responses. */ if (chainidx != 0) return 1; /* SSLfatal() already called */ return tls_process_cert_status_body(s, pkt); } /* Set flag to expect CertificateStatus message */ s->ext.status_expected = 1; return 1; } #endif #ifndef OPENSSL_NO_CT int tls_parse_stoc_sct(SSL *s, PACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { if (context == SSL_EXT_TLS1_3_CERTIFICATE_REQUEST) { /* We ignore this if the server sends it in a CertificateRequest */ /* TODO(TLS1.3): Add support for this */ return 1; } /* * Only take it if we asked for it - i.e if there is no CT validation * callback set, then a custom extension MAY be processing it, so we * need to let control continue to flow to that. */ if (s->ct_validation_callback != NULL) { size_t size = PACKET_remaining(pkt); /* Simply copy it off for later processing */ OPENSSL_free(s->ext.scts); s->ext.scts = NULL; s->ext.scts_len = (uint16_t)size; if (size > 0) { s->ext.scts = OPENSSL_malloc(size); if (s->ext.scts == NULL) { s->ext.scts_len = 0; SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_PARSE_STOC_SCT, ERR_R_MALLOC_FAILURE); return 0; } if (!PACKET_copy_bytes(pkt, s->ext.scts, size)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_PARSE_STOC_SCT, ERR_R_INTERNAL_ERROR); return 0; } } } else { ENDPOINT role = (context & SSL_EXT_TLS1_2_SERVER_HELLO) != 0 ? ENDPOINT_CLIENT : ENDPOINT_BOTH; /* * If we didn't ask for it then there must be a custom extension, * otherwise this is unsolicited. */ if (custom_ext_find(&s->cert->custext, role, TLSEXT_TYPE_signed_certificate_timestamp, NULL) == NULL) { SSLfatal(s, TLS1_AD_UNSUPPORTED_EXTENSION, SSL_F_TLS_PARSE_STOC_SCT, SSL_R_BAD_EXTENSION); return 0; } if (!custom_ext_parse(s, context, TLSEXT_TYPE_signed_certificate_timestamp, PACKET_data(pkt), PACKET_remaining(pkt), x, chainidx)) { /* SSLfatal already called */ return 0; } } return 1; } #endif #ifndef OPENSSL_NO_NEXTPROTONEG /* * ssl_next_proto_validate validates a Next Protocol Negotiation block. No * elements of zero length are allowed and the set of elements must exactly * fill the length of the block. Returns 1 on success or 0 on failure. */ static int ssl_next_proto_validate(SSL *s, PACKET *pkt) { PACKET tmp_protocol; while (PACKET_remaining(pkt)) { if (!PACKET_get_length_prefixed_1(pkt, &tmp_protocol) || PACKET_remaining(&tmp_protocol) == 0) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_NEXT_PROTO_VALIDATE, SSL_R_BAD_EXTENSION); return 0; } } return 1; } int tls_parse_stoc_npn(SSL *s, PACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { unsigned char *selected; unsigned char selected_len; PACKET tmppkt; /* Check if we are in a renegotiation. If so ignore this extension */ if (!SSL_IS_FIRST_HANDSHAKE(s)) return 1; /* We must have requested it. */ if (s->ctx->ext.npn_select_cb == NULL) { SSLfatal(s, SSL_AD_UNSUPPORTED_EXTENSION, SSL_F_TLS_PARSE_STOC_NPN, SSL_R_BAD_EXTENSION); return 0; } /* The data must be valid */ tmppkt = *pkt; if (!ssl_next_proto_validate(s, &tmppkt)) { /* SSLfatal() already called */ return 0; } if (s->ctx->ext.npn_select_cb(s, &selected, &selected_len, PACKET_data(pkt), PACKET_remaining(pkt), s->ctx->ext.npn_select_cb_arg) != SSL_TLSEXT_ERR_OK) { SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS_PARSE_STOC_NPN, SSL_R_BAD_EXTENSION); return 0; } /* * Could be non-NULL if server has sent multiple NPN extensions in * a single Serverhello */ OPENSSL_free(s->ext.npn); s->ext.npn = OPENSSL_malloc(selected_len); if (s->ext.npn == NULL) { s->ext.npn_len = 0; SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_PARSE_STOC_NPN, ERR_R_INTERNAL_ERROR); return 0; } memcpy(s->ext.npn, selected, selected_len); s->ext.npn_len = selected_len; s->s3->npn_seen = 1; return 1; } #endif int tls_parse_stoc_alpn(SSL *s, PACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { size_t len; /* We must have requested it. */ if (!s->s3->alpn_sent) { SSLfatal(s, SSL_AD_UNSUPPORTED_EXTENSION, SSL_F_TLS_PARSE_STOC_ALPN, SSL_R_BAD_EXTENSION); return 0; } /*- * The extension data consists of: * uint16 list_length * uint8 proto_length; * uint8 proto[proto_length]; */ if (!PACKET_get_net_2_len(pkt, &len) || PACKET_remaining(pkt) != len || !PACKET_get_1_len(pkt, &len) || PACKET_remaining(pkt) != len) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_TLS_PARSE_STOC_ALPN, SSL_R_BAD_EXTENSION); return 0; } OPENSSL_free(s->s3->alpn_selected); s->s3->alpn_selected = OPENSSL_malloc(len); if (s->s3->alpn_selected == NULL) { s->s3->alpn_selected_len = 0; SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_PARSE_STOC_ALPN, ERR_R_INTERNAL_ERROR); return 0; } if (!PACKET_copy_bytes(pkt, s->s3->alpn_selected, len)) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_TLS_PARSE_STOC_ALPN, SSL_R_BAD_EXTENSION); return 0; } s->s3->alpn_selected_len = len; if (s->session->ext.alpn_selected == NULL || s->session->ext.alpn_selected_len != len || memcmp(s->session->ext.alpn_selected, s->s3->alpn_selected, len) != 0) { /* ALPN not consistent with the old session so cannot use early_data */ s->ext.early_data_ok = 0; } if (!s->hit) { /* * This is a new session and so alpn_selected should have been * initialised to NULL. We should update it with the selected ALPN. */ if (!ossl_assert(s->session->ext.alpn_selected == NULL)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_PARSE_STOC_ALPN, ERR_R_INTERNAL_ERROR); return 0; } s->session->ext.alpn_selected = OPENSSL_memdup(s->s3->alpn_selected, s->s3->alpn_selected_len); if (s->session->ext.alpn_selected == NULL) { s->session->ext.alpn_selected_len = 0; SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_PARSE_STOC_ALPN, ERR_R_INTERNAL_ERROR); return 0; } s->session->ext.alpn_selected_len = s->s3->alpn_selected_len; } return 1; } #ifndef OPENSSL_NO_SRTP int tls_parse_stoc_use_srtp(SSL *s, PACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { unsigned int id, ct, mki; int i; STACK_OF(SRTP_PROTECTION_PROFILE) *clnt; SRTP_PROTECTION_PROFILE *prof; if (!PACKET_get_net_2(pkt, &ct) || ct != 2 || !PACKET_get_net_2(pkt, &id) || !PACKET_get_1(pkt, &mki) || PACKET_remaining(pkt) != 0) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_TLS_PARSE_STOC_USE_SRTP, SSL_R_BAD_SRTP_PROTECTION_PROFILE_LIST); return 0; } if (mki != 0) { /* Must be no MKI, since we never offer one */ SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS_PARSE_STOC_USE_SRTP, SSL_R_BAD_SRTP_MKI_VALUE); return 0; } /* Throw an error if the server gave us an unsolicited extension */ clnt = SSL_get_srtp_profiles(s); if (clnt == NULL) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_TLS_PARSE_STOC_USE_SRTP, SSL_R_NO_SRTP_PROFILES); return 0; } /* * Check to see if the server gave us something we support (and * presumably offered) */ for (i = 0; i < sk_SRTP_PROTECTION_PROFILE_num(clnt); i++) { prof = sk_SRTP_PROTECTION_PROFILE_value(clnt, i); if (prof->id == id) { s->srtp_profile = prof; return 1; } } SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_TLS_PARSE_STOC_USE_SRTP, SSL_R_BAD_SRTP_PROTECTION_PROFILE_LIST); return 0; } #endif int tls_parse_stoc_etm(SSL *s, PACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { /* Ignore if inappropriate ciphersuite */ if (!(s->options & SSL_OP_NO_ENCRYPT_THEN_MAC) && s->s3->tmp.new_cipher->algorithm_mac != SSL_AEAD && s->s3->tmp.new_cipher->algorithm_enc != SSL_RC4 && s->s3->tmp.new_cipher->algorithm_enc != SSL_eGOST2814789CNT && s->s3->tmp.new_cipher->algorithm_enc != SSL_eGOST2814789CNT12) s->ext.use_etm = 1; return 1; } int tls_parse_stoc_ems(SSL *s, PACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { s->s3->flags |= TLS1_FLAGS_RECEIVED_EXTMS; if (!s->hit) s->session->flags |= SSL_SESS_FLAG_EXTMS; return 1; } int tls_parse_stoc_supported_versions(SSL *s, PACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { unsigned int version; if (!PACKET_get_net_2(pkt, &version) || PACKET_remaining(pkt) != 0) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_TLS_PARSE_STOC_SUPPORTED_VERSIONS, SSL_R_LENGTH_MISMATCH); return 0; } /* * The only protocol version we support which is valid in this extension in * a ServerHello is TLSv1.3 therefore we shouldn't be getting anything else. */ if (version != TLS1_3_VERSION) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS_PARSE_STOC_SUPPORTED_VERSIONS, SSL_R_BAD_PROTOCOL_VERSION_NUMBER); return 0; } /* We ignore this extension for HRRs except to sanity check it */ if (context == SSL_EXT_TLS1_3_HELLO_RETRY_REQUEST) return 1; /* We just set it here. We validate it in ssl_choose_client_version */ s->version = version; return 1; } int tls_parse_stoc_key_share(SSL *s, PACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { #ifndef OPENSSL_NO_TLS1_3 unsigned int group_id; PACKET encoded_pt; EVP_PKEY *ckey = s->s3->tmp.pkey, *skey = NULL; /* Sanity check */ if (ckey == NULL || s->s3->peer_tmp != NULL) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_PARSE_STOC_KEY_SHARE, ERR_R_INTERNAL_ERROR); return 0; } if (!PACKET_get_net_2(pkt, &group_id)) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_TLS_PARSE_STOC_KEY_SHARE, SSL_R_LENGTH_MISMATCH); return 0; } if ((context & SSL_EXT_TLS1_3_HELLO_RETRY_REQUEST) != 0) { const uint16_t *pgroups = NULL; size_t i, num_groups; if (PACKET_remaining(pkt) != 0) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_TLS_PARSE_STOC_KEY_SHARE, SSL_R_LENGTH_MISMATCH); return 0; } /* * It is an error if the HelloRetryRequest wants a key_share that we * already sent in the first ClientHello */ if (group_id == s->s3->group_id) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS_PARSE_STOC_KEY_SHARE, SSL_R_BAD_KEY_SHARE); return 0; } /* Validate the selected group is one we support */ tls1_get_supported_groups(s, &pgroups, &num_groups); for (i = 0; i < num_groups; i++) { if (group_id == pgroups[i]) break; } if (i >= num_groups || !tls_curve_allowed(s, group_id, SSL_SECOP_CURVE_SUPPORTED)) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS_PARSE_STOC_KEY_SHARE, SSL_R_BAD_KEY_SHARE); return 0; } s->s3->group_id = group_id; EVP_PKEY_free(s->s3->tmp.pkey); s->s3->tmp.pkey = NULL; return 1; } if (group_id != s->s3->group_id) { /* * This isn't for the group that we sent in the original * key_share! */ SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS_PARSE_STOC_KEY_SHARE, SSL_R_BAD_KEY_SHARE); return 0; } if (!PACKET_as_length_prefixed_2(pkt, &encoded_pt) || PACKET_remaining(&encoded_pt) == 0) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_TLS_PARSE_STOC_KEY_SHARE, SSL_R_LENGTH_MISMATCH); return 0; } skey = EVP_PKEY_new(); if (skey == NULL || EVP_PKEY_copy_parameters(skey, ckey) <= 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_PARSE_STOC_KEY_SHARE, ERR_R_MALLOC_FAILURE); EVP_PKEY_free(skey); return 0; } if (!EVP_PKEY_set1_tls_encodedpoint(skey, PACKET_data(&encoded_pt), PACKET_remaining(&encoded_pt))) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS_PARSE_STOC_KEY_SHARE, SSL_R_BAD_ECPOINT); EVP_PKEY_free(skey); return 0; } if (ssl_derive(s, ckey, skey, 1) == 0) { /* SSLfatal() already called */ EVP_PKEY_free(skey); return 0; } s->s3->peer_tmp = skey; #endif return 1; } int tls_parse_stoc_cookie(SSL *s, PACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { PACKET cookie; if (!PACKET_as_length_prefixed_2(pkt, &cookie) || !PACKET_memdup(&cookie, &s->ext.tls13_cookie, &s->ext.tls13_cookie_len)) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_TLS_PARSE_STOC_COOKIE, SSL_R_LENGTH_MISMATCH); return 0; } return 1; } int tls_parse_stoc_early_data(SSL *s, PACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { if (context == SSL_EXT_TLS1_3_NEW_SESSION_TICKET) { unsigned long max_early_data; if (!PACKET_get_net_4(pkt, &max_early_data) || PACKET_remaining(pkt) != 0) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_TLS_PARSE_STOC_EARLY_DATA, SSL_R_INVALID_MAX_EARLY_DATA); return 0; } s->session->ext.max_early_data = max_early_data; return 1; } if (PACKET_remaining(pkt) != 0) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_TLS_PARSE_STOC_EARLY_DATA, SSL_R_BAD_EXTENSION); return 0; } if (!s->ext.early_data_ok || !s->hit) { /* * If we get here then we didn't send early data, or we didn't resume * using the first identity, or the SNI/ALPN is not consistent so the * server should not be accepting it. */ SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS_PARSE_STOC_EARLY_DATA, SSL_R_BAD_EXTENSION); return 0; } s->ext.early_data = SSL_EARLY_DATA_ACCEPTED; return 1; } int tls_parse_stoc_psk(SSL *s, PACKET *pkt, unsigned int context, X509 *x, size_t chainidx) { #ifndef OPENSSL_NO_TLS1_3 unsigned int identity; if (!PACKET_get_net_2(pkt, &identity) || PACKET_remaining(pkt) != 0) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_TLS_PARSE_STOC_PSK, SSL_R_LENGTH_MISMATCH); return 0; } if (identity >= (unsigned int)s->ext.tick_identity) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS_PARSE_STOC_PSK, SSL_R_BAD_PSK_IDENTITY); return 0; } /* * Session resumption tickets are always sent before PSK tickets. If the * ticket index is 0 then it must be for a session resumption ticket if we * sent two tickets, or if we didn't send a PSK ticket. */ if (identity == 0 && (s->psksession == NULL || s->ext.tick_identity == 2)) { s->hit = 1; SSL_SESSION_free(s->psksession); s->psksession = NULL; return 1; } if (s->psksession == NULL) { /* Should never happen */ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_PARSE_STOC_PSK, ERR_R_INTERNAL_ERROR); return 0; } /* * If we used the external PSK for sending early_data then s->early_secret * is already set up, so don't overwrite it. Otherwise we copy the * early_secret across that we generated earlier. */ if ((s->early_data_state != SSL_EARLY_DATA_WRITE_RETRY && s->early_data_state != SSL_EARLY_DATA_FINISHED_WRITING) || s->session->ext.max_early_data > 0 || s->psksession->ext.max_early_data == 0) memcpy(s->early_secret, s->psksession->early_secret, EVP_MAX_MD_SIZE); SSL_SESSION_free(s->session); s->session = s->psksession; s->psksession = NULL; s->hit = 1; /* Early data is only allowed if we used the first ticket */ if (identity != 0) s->ext.early_data_ok = 0; #endif return 1; } diff --git a/ssl/t1_lib.c b/ssl/t1_lib.c index b1d3add18743..5f657f888e0d 100644 --- a/ssl/t1_lib.c +++ b/ssl/t1_lib.c @@ -1,2923 +1,2923 @@ /* - * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. + * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include #include #include #include #include "internal/nelem.h" #include "ssl_local.h" #include static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey); static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu); SSL3_ENC_METHOD const TLSv1_enc_data = { tls1_enc, tls1_mac, tls1_setup_key_block, tls1_generate_master_secret, tls1_change_cipher_state, tls1_final_finish_mac, TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, tls1_alert_code, tls1_export_keying_material, 0, ssl3_set_handshake_header, tls_close_construct_packet, ssl3_handshake_write }; SSL3_ENC_METHOD const TLSv1_1_enc_data = { tls1_enc, tls1_mac, tls1_setup_key_block, tls1_generate_master_secret, tls1_change_cipher_state, tls1_final_finish_mac, TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, tls1_alert_code, tls1_export_keying_material, SSL_ENC_FLAG_EXPLICIT_IV, ssl3_set_handshake_header, tls_close_construct_packet, ssl3_handshake_write }; SSL3_ENC_METHOD const TLSv1_2_enc_data = { tls1_enc, tls1_mac, tls1_setup_key_block, tls1_generate_master_secret, tls1_change_cipher_state, tls1_final_finish_mac, TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, tls1_alert_code, tls1_export_keying_material, SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF | SSL_ENC_FLAG_TLS1_2_CIPHERS, ssl3_set_handshake_header, tls_close_construct_packet, ssl3_handshake_write }; SSL3_ENC_METHOD const TLSv1_3_enc_data = { tls13_enc, tls1_mac, tls13_setup_key_block, tls13_generate_master_secret, tls13_change_cipher_state, tls13_final_finish_mac, TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, tls13_alert_code, tls13_export_keying_material, SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF, ssl3_set_handshake_header, tls_close_construct_packet, ssl3_handshake_write }; long tls1_default_timeout(void) { /* * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for * http, the cache would over fill */ return (60 * 60 * 2); } int tls1_new(SSL *s) { if (!ssl3_new(s)) return 0; if (!s->method->ssl_clear(s)) return 0; return 1; } void tls1_free(SSL *s) { OPENSSL_free(s->ext.session_ticket); ssl3_free(s); } int tls1_clear(SSL *s) { if (!ssl3_clear(s)) return 0; if (s->method->version == TLS_ANY_VERSION) s->version = TLS_MAX_VERSION; else s->version = s->method->version; return 1; } #ifndef OPENSSL_NO_EC /* * Table of curve information. * Do not delete entries or reorder this array! It is used as a lookup * table: the index of each entry is one less than the TLS curve id. */ static const TLS_GROUP_INFO nid_list[] = { {NID_sect163k1, 80, TLS_CURVE_CHAR2}, /* sect163k1 (1) */ {NID_sect163r1, 80, TLS_CURVE_CHAR2}, /* sect163r1 (2) */ {NID_sect163r2, 80, TLS_CURVE_CHAR2}, /* sect163r2 (3) */ {NID_sect193r1, 80, TLS_CURVE_CHAR2}, /* sect193r1 (4) */ {NID_sect193r2, 80, TLS_CURVE_CHAR2}, /* sect193r2 (5) */ {NID_sect233k1, 112, TLS_CURVE_CHAR2}, /* sect233k1 (6) */ {NID_sect233r1, 112, TLS_CURVE_CHAR2}, /* sect233r1 (7) */ {NID_sect239k1, 112, TLS_CURVE_CHAR2}, /* sect239k1 (8) */ {NID_sect283k1, 128, TLS_CURVE_CHAR2}, /* sect283k1 (9) */ {NID_sect283r1, 128, TLS_CURVE_CHAR2}, /* sect283r1 (10) */ {NID_sect409k1, 192, TLS_CURVE_CHAR2}, /* sect409k1 (11) */ {NID_sect409r1, 192, TLS_CURVE_CHAR2}, /* sect409r1 (12) */ {NID_sect571k1, 256, TLS_CURVE_CHAR2}, /* sect571k1 (13) */ {NID_sect571r1, 256, TLS_CURVE_CHAR2}, /* sect571r1 (14) */ {NID_secp160k1, 80, TLS_CURVE_PRIME}, /* secp160k1 (15) */ {NID_secp160r1, 80, TLS_CURVE_PRIME}, /* secp160r1 (16) */ {NID_secp160r2, 80, TLS_CURVE_PRIME}, /* secp160r2 (17) */ {NID_secp192k1, 80, TLS_CURVE_PRIME}, /* secp192k1 (18) */ {NID_X9_62_prime192v1, 80, TLS_CURVE_PRIME}, /* secp192r1 (19) */ {NID_secp224k1, 112, TLS_CURVE_PRIME}, /* secp224k1 (20) */ {NID_secp224r1, 112, TLS_CURVE_PRIME}, /* secp224r1 (21) */ {NID_secp256k1, 128, TLS_CURVE_PRIME}, /* secp256k1 (22) */ {NID_X9_62_prime256v1, 128, TLS_CURVE_PRIME}, /* secp256r1 (23) */ {NID_secp384r1, 192, TLS_CURVE_PRIME}, /* secp384r1 (24) */ {NID_secp521r1, 256, TLS_CURVE_PRIME}, /* secp521r1 (25) */ {NID_brainpoolP256r1, 128, TLS_CURVE_PRIME}, /* brainpoolP256r1 (26) */ {NID_brainpoolP384r1, 192, TLS_CURVE_PRIME}, /* brainpoolP384r1 (27) */ {NID_brainpoolP512r1, 256, TLS_CURVE_PRIME}, /* brainpool512r1 (28) */ {EVP_PKEY_X25519, 128, TLS_CURVE_CUSTOM}, /* X25519 (29) */ {EVP_PKEY_X448, 224, TLS_CURVE_CUSTOM}, /* X448 (30) */ }; static const unsigned char ecformats_default[] = { TLSEXT_ECPOINTFORMAT_uncompressed, TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime, TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2 }; /* The default curves */ static const uint16_t eccurves_default[] = { 29, /* X25519 (29) */ 23, /* secp256r1 (23) */ 30, /* X448 (30) */ 25, /* secp521r1 (25) */ 24, /* secp384r1 (24) */ }; static const uint16_t suiteb_curves[] = { TLSEXT_curve_P_256, TLSEXT_curve_P_384 }; const TLS_GROUP_INFO *tls1_group_id_lookup(uint16_t group_id) { /* ECC curves from RFC 4492 and RFC 7027 */ if (group_id < 1 || group_id > OSSL_NELEM(nid_list)) return NULL; return &nid_list[group_id - 1]; } static uint16_t tls1_nid2group_id(int nid) { size_t i; for (i = 0; i < OSSL_NELEM(nid_list); i++) { if (nid_list[i].nid == nid) return (uint16_t)(i + 1); } return 0; } /* * Set *pgroups to the supported groups list and *pgroupslen to * the number of groups supported. */ void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups, size_t *pgroupslen) { /* For Suite B mode only include P-256, P-384 */ switch (tls1_suiteb(s)) { case SSL_CERT_FLAG_SUITEB_128_LOS: *pgroups = suiteb_curves; *pgroupslen = OSSL_NELEM(suiteb_curves); break; case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: *pgroups = suiteb_curves; *pgroupslen = 1; break; case SSL_CERT_FLAG_SUITEB_192_LOS: *pgroups = suiteb_curves + 1; *pgroupslen = 1; break; default: if (s->ext.supportedgroups == NULL) { *pgroups = eccurves_default; *pgroupslen = OSSL_NELEM(eccurves_default); } else { *pgroups = s->ext.supportedgroups; *pgroupslen = s->ext.supportedgroups_len; } break; } } /* See if curve is allowed by security callback */ int tls_curve_allowed(SSL *s, uint16_t curve, int op) { const TLS_GROUP_INFO *cinfo = tls1_group_id_lookup(curve); unsigned char ctmp[2]; if (cinfo == NULL) return 0; # ifdef OPENSSL_NO_EC2M if (cinfo->flags & TLS_CURVE_CHAR2) return 0; # endif ctmp[0] = curve >> 8; ctmp[1] = curve & 0xff; return ssl_security(s, op, cinfo->secbits, cinfo->nid, (void *)ctmp); } /* Return 1 if "id" is in "list" */ static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen) { size_t i; for (i = 0; i < listlen; i++) if (list[i] == id) return 1; return 0; } /*- * For nmatch >= 0, return the id of the |nmatch|th shared group or 0 * if there is no match. * For nmatch == -1, return number of matches * For nmatch == -2, return the id of the group to use for * a tmp key, or 0 if there is no match. */ uint16_t tls1_shared_group(SSL *s, int nmatch) { const uint16_t *pref, *supp; size_t num_pref, num_supp, i; int k; /* Can't do anything on client side */ if (s->server == 0) return 0; if (nmatch == -2) { if (tls1_suiteb(s)) { /* * For Suite B ciphersuite determines curve: we already know * these are acceptable due to previous checks. */ unsigned long cid = s->s3->tmp.new_cipher->id; if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) return TLSEXT_curve_P_256; if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) return TLSEXT_curve_P_384; /* Should never happen */ return 0; } /* If not Suite B just return first preference shared curve */ nmatch = 0; } /* * If server preference set, our groups are the preference order * otherwise peer decides. */ if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) { tls1_get_supported_groups(s, &pref, &num_pref); tls1_get_peer_groups(s, &supp, &num_supp); } else { tls1_get_peer_groups(s, &pref, &num_pref); tls1_get_supported_groups(s, &supp, &num_supp); } for (k = 0, i = 0; i < num_pref; i++) { uint16_t id = pref[i]; if (!tls1_in_list(id, supp, num_supp) || !tls_curve_allowed(s, id, SSL_SECOP_CURVE_SHARED)) continue; if (nmatch == k) return id; k++; } if (nmatch == -1) return k; /* Out of range (nmatch > k). */ return 0; } int tls1_set_groups(uint16_t **pext, size_t *pextlen, int *groups, size_t ngroups) { uint16_t *glist; size_t i; /* * Bitmap of groups included to detect duplicates: only works while group * ids < 32 */ unsigned long dup_list = 0; if (ngroups == 0) { SSLerr(SSL_F_TLS1_SET_GROUPS, SSL_R_BAD_LENGTH); return 0; } if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) { SSLerr(SSL_F_TLS1_SET_GROUPS, ERR_R_MALLOC_FAILURE); return 0; } for (i = 0; i < ngroups; i++) { unsigned long idmask; uint16_t id; /* TODO(TLS1.3): Convert for DH groups */ id = tls1_nid2group_id(groups[i]); idmask = 1L << id; if (!id || (dup_list & idmask)) { OPENSSL_free(glist); return 0; } dup_list |= idmask; glist[i] = id; } OPENSSL_free(*pext); *pext = glist; *pextlen = ngroups; return 1; } # define MAX_CURVELIST OSSL_NELEM(nid_list) typedef struct { size_t nidcnt; int nid_arr[MAX_CURVELIST]; } nid_cb_st; static int nid_cb(const char *elem, int len, void *arg) { nid_cb_st *narg = arg; size_t i; int nid; char etmp[20]; if (elem == NULL) return 0; if (narg->nidcnt == MAX_CURVELIST) return 0; if (len > (int)(sizeof(etmp) - 1)) return 0; memcpy(etmp, elem, len); etmp[len] = 0; nid = EC_curve_nist2nid(etmp); if (nid == NID_undef) nid = OBJ_sn2nid(etmp); if (nid == NID_undef) nid = OBJ_ln2nid(etmp); if (nid == NID_undef) return 0; for (i = 0; i < narg->nidcnt; i++) if (narg->nid_arr[i] == nid) return 0; narg->nid_arr[narg->nidcnt++] = nid; return 1; } /* Set groups based on a colon separate list */ int tls1_set_groups_list(uint16_t **pext, size_t *pextlen, const char *str) { nid_cb_st ncb; ncb.nidcnt = 0; if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb)) return 0; if (pext == NULL) return 1; return tls1_set_groups(pext, pextlen, ncb.nid_arr, ncb.nidcnt); } /* Return group id of a key */ static uint16_t tls1_get_group_id(EVP_PKEY *pkey) { EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey); const EC_GROUP *grp; if (ec == NULL) return 0; grp = EC_KEY_get0_group(ec); return tls1_nid2group_id(EC_GROUP_get_curve_name(grp)); } /* Check a key is compatible with compression extension */ static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey) { const EC_KEY *ec; const EC_GROUP *grp; unsigned char comp_id; size_t i; /* If not an EC key nothing to check */ if (EVP_PKEY_id(pkey) != EVP_PKEY_EC) return 1; ec = EVP_PKEY_get0_EC_KEY(pkey); grp = EC_KEY_get0_group(ec); /* Get required compression id */ if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) { comp_id = TLSEXT_ECPOINTFORMAT_uncompressed; } else if (SSL_IS_TLS13(s)) { /* * ec_point_formats extension is not used in TLSv1.3 so we ignore * this check. */ return 1; } else { int field_type = EC_METHOD_get_field_type(EC_GROUP_method_of(grp)); if (field_type == NID_X9_62_prime_field) comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime; else if (field_type == NID_X9_62_characteristic_two_field) comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2; else return 0; } /* * If point formats extension present check it, otherwise everything is * supported (see RFC4492). */ if (s->ext.peer_ecpointformats == NULL) return 1; for (i = 0; i < s->ext.peer_ecpointformats_len; i++) { if (s->ext.peer_ecpointformats[i] == comp_id) return 1; } return 0; } /* Check a group id matches preferences */ int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups) { const uint16_t *groups; size_t groups_len; if (group_id == 0) return 0; /* Check for Suite B compliance */ if (tls1_suiteb(s) && s->s3->tmp.new_cipher != NULL) { unsigned long cid = s->s3->tmp.new_cipher->id; if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) { if (group_id != TLSEXT_curve_P_256) return 0; } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) { if (group_id != TLSEXT_curve_P_384) return 0; } else { /* Should never happen */ return 0; } } if (check_own_groups) { /* Check group is one of our preferences */ tls1_get_supported_groups(s, &groups, &groups_len); if (!tls1_in_list(group_id, groups, groups_len)) return 0; } if (!tls_curve_allowed(s, group_id, SSL_SECOP_CURVE_CHECK)) return 0; /* For clients, nothing more to check */ if (!s->server) return 1; /* Check group is one of peers preferences */ tls1_get_peer_groups(s, &groups, &groups_len); /* * RFC 4492 does not require the supported elliptic curves extension * so if it is not sent we can just choose any curve. * It is invalid to send an empty list in the supported groups * extension, so groups_len == 0 always means no extension. */ if (groups_len == 0) return 1; return tls1_in_list(group_id, groups, groups_len); } void tls1_get_formatlist(SSL *s, const unsigned char **pformats, size_t *num_formats) { /* * If we have a custom point format list use it otherwise use default */ if (s->ext.ecpointformats) { *pformats = s->ext.ecpointformats; *num_formats = s->ext.ecpointformats_len; } else { *pformats = ecformats_default; /* For Suite B we don't support char2 fields */ if (tls1_suiteb(s)) *num_formats = sizeof(ecformats_default) - 1; else *num_formats = sizeof(ecformats_default); } } /* * Check cert parameters compatible with extensions: currently just checks EC * certificates have compatible curves and compression. */ static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md) { uint16_t group_id; EVP_PKEY *pkey; pkey = X509_get0_pubkey(x); if (pkey == NULL) return 0; /* If not EC nothing to do */ if (EVP_PKEY_id(pkey) != EVP_PKEY_EC) return 1; /* Check compression */ if (!tls1_check_pkey_comp(s, pkey)) return 0; group_id = tls1_get_group_id(pkey); /* * For a server we allow the certificate to not be in our list of supported * groups. */ if (!tls1_check_group_id(s, group_id, !s->server)) return 0; /* * Special case for suite B. We *MUST* sign using SHA256+P-256 or * SHA384+P-384. */ if (check_ee_md && tls1_suiteb(s)) { int check_md; size_t i; /* Check to see we have necessary signing algorithm */ if (group_id == TLSEXT_curve_P_256) check_md = NID_ecdsa_with_SHA256; else if (group_id == TLSEXT_curve_P_384) check_md = NID_ecdsa_with_SHA384; else return 0; /* Should never happen */ for (i = 0; i < s->shared_sigalgslen; i++) { if (check_md == s->shared_sigalgs[i]->sigandhash) return 1;; } return 0; } return 1; } /* * tls1_check_ec_tmp_key - Check EC temporary key compatibility * @s: SSL connection * @cid: Cipher ID we're considering using * * Checks that the kECDHE cipher suite we're considering using * is compatible with the client extensions. * * Returns 0 when the cipher can't be used or 1 when it can. */ int tls1_check_ec_tmp_key(SSL *s, unsigned long cid) { /* If not Suite B just need a shared group */ if (!tls1_suiteb(s)) return tls1_shared_group(s, 0) != 0; /* * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other * curves permitted. */ if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) return tls1_check_group_id(s, TLSEXT_curve_P_256, 1); if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) return tls1_check_group_id(s, TLSEXT_curve_P_384, 1); return 0; } #else static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md) { return 1; } #endif /* OPENSSL_NO_EC */ /* Default sigalg schemes */ static const uint16_t tls12_sigalgs[] = { #ifndef OPENSSL_NO_EC TLSEXT_SIGALG_ecdsa_secp256r1_sha256, TLSEXT_SIGALG_ecdsa_secp384r1_sha384, TLSEXT_SIGALG_ecdsa_secp521r1_sha512, TLSEXT_SIGALG_ed25519, TLSEXT_SIGALG_ed448, #endif TLSEXT_SIGALG_rsa_pss_pss_sha256, TLSEXT_SIGALG_rsa_pss_pss_sha384, TLSEXT_SIGALG_rsa_pss_pss_sha512, TLSEXT_SIGALG_rsa_pss_rsae_sha256, TLSEXT_SIGALG_rsa_pss_rsae_sha384, TLSEXT_SIGALG_rsa_pss_rsae_sha512, TLSEXT_SIGALG_rsa_pkcs1_sha256, TLSEXT_SIGALG_rsa_pkcs1_sha384, TLSEXT_SIGALG_rsa_pkcs1_sha512, #ifndef OPENSSL_NO_EC TLSEXT_SIGALG_ecdsa_sha224, TLSEXT_SIGALG_ecdsa_sha1, #endif TLSEXT_SIGALG_rsa_pkcs1_sha224, TLSEXT_SIGALG_rsa_pkcs1_sha1, #ifndef OPENSSL_NO_DSA TLSEXT_SIGALG_dsa_sha224, TLSEXT_SIGALG_dsa_sha1, TLSEXT_SIGALG_dsa_sha256, TLSEXT_SIGALG_dsa_sha384, TLSEXT_SIGALG_dsa_sha512, #endif #ifndef OPENSSL_NO_GOST TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, TLSEXT_SIGALG_gostr34102001_gostr3411, #endif }; #ifndef OPENSSL_NO_EC static const uint16_t suiteb_sigalgs[] = { TLSEXT_SIGALG_ecdsa_secp256r1_sha256, TLSEXT_SIGALG_ecdsa_secp384r1_sha384 }; #endif static const SIGALG_LOOKUP sigalg_lookup_tbl[] = { #ifndef OPENSSL_NO_EC {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256, NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, NID_ecdsa_with_SHA256, NID_X9_62_prime256v1}, {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384, NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, NID_ecdsa_with_SHA384, NID_secp384r1}, {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512, NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, NID_ecdsa_with_SHA512, NID_secp521r1}, {"ed25519", TLSEXT_SIGALG_ed25519, NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519, NID_undef, NID_undef}, {"ed448", TLSEXT_SIGALG_ed448, NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448, NID_undef, NID_undef}, {NULL, TLSEXT_SIGALG_ecdsa_sha224, NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, NID_ecdsa_with_SHA224, NID_undef}, {NULL, TLSEXT_SIGALG_ecdsa_sha1, NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, NID_ecdsa_with_SHA1, NID_undef}, #endif {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256, NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, NID_undef, NID_undef}, {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384, NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, NID_undef, NID_undef}, {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512, NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, NID_undef, NID_undef}, {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256, NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, NID_undef, NID_undef}, {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384, NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, NID_undef, NID_undef}, {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512, NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, NID_undef, NID_undef}, {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256, NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, NID_sha256WithRSAEncryption, NID_undef}, {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384, NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, NID_sha384WithRSAEncryption, NID_undef}, {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512, NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, NID_sha512WithRSAEncryption, NID_undef}, {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224, NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, NID_sha224WithRSAEncryption, NID_undef}, {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1, NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, NID_sha1WithRSAEncryption, NID_undef}, #ifndef OPENSSL_NO_DSA {NULL, TLSEXT_SIGALG_dsa_sha256, NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, NID_dsa_with_SHA256, NID_undef}, {NULL, TLSEXT_SIGALG_dsa_sha384, NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, NID_undef, NID_undef}, {NULL, TLSEXT_SIGALG_dsa_sha512, NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, NID_undef, NID_undef}, {NULL, TLSEXT_SIGALG_dsa_sha224, NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, NID_undef, NID_undef}, {NULL, TLSEXT_SIGALG_dsa_sha1, NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, NID_dsaWithSHA1, NID_undef}, #endif #ifndef OPENSSL_NO_GOST {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX, NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256, NID_undef, NID_undef}, {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX, NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512, NID_undef, NID_undef}, {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411, NID_id_GostR3411_94, SSL_MD_GOST94_IDX, NID_id_GostR3410_2001, SSL_PKEY_GOST01, NID_undef, NID_undef} #endif }; /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */ static const SIGALG_LOOKUP legacy_rsa_sigalg = { "rsa_pkcs1_md5_sha1", 0, NID_md5_sha1, SSL_MD_MD5_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, NID_undef, NID_undef }; /* * Default signature algorithm values used if signature algorithms not present. * From RFC5246. Note: order must match certificate index order. */ static const uint16_t tls_default_sigalg[] = { TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */ 0, /* SSL_PKEY_RSA_PSS_SIGN */ TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */ TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */ TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */ TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, /* SSL_PKEY_GOST12_256 */ TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, /* SSL_PKEY_GOST12_512 */ 0, /* SSL_PKEY_ED25519 */ 0, /* SSL_PKEY_ED448 */ }; /* Lookup TLS signature algorithm */ static const SIGALG_LOOKUP *tls1_lookup_sigalg(uint16_t sigalg) { size_t i; const SIGALG_LOOKUP *s; for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) { if (s->sigalg == sigalg) return s; } return NULL; } /* Lookup hash: return 0 if invalid or not enabled */ int tls1_lookup_md(const SIGALG_LOOKUP *lu, const EVP_MD **pmd) { const EVP_MD *md; if (lu == NULL) return 0; /* lu->hash == NID_undef means no associated digest */ if (lu->hash == NID_undef) { md = NULL; } else { md = ssl_md(lu->hash_idx); if (md == NULL) return 0; } if (pmd) *pmd = md; return 1; } /* * Check if key is large enough to generate RSA-PSS signature. * * The key must greater than or equal to 2 * hash length + 2. * SHA512 has a hash length of 64 bytes, which is incompatible * with a 128 byte (1024 bit) key. */ #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_size(md) + 2) static int rsa_pss_check_min_key_size(const RSA *rsa, const SIGALG_LOOKUP *lu) { const EVP_MD *md; if (rsa == NULL) return 0; if (!tls1_lookup_md(lu, &md) || md == NULL) return 0; if (RSA_size(rsa) < RSA_PSS_MINIMUM_KEY_SIZE(md)) return 0; return 1; } /* * Returns a signature algorithm when the peer did not send a list of supported * signature algorithms. The signature algorithm is fixed for the certificate * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the * certificate type from |s| will be used. * Returns the signature algorithm to use, or NULL on error. */ static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx) { if (idx == -1) { if (s->server) { size_t i; /* Work out index corresponding to ciphersuite */ for (i = 0; i < SSL_PKEY_NUM; i++) { const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i); if (clu->amask & s->s3->tmp.new_cipher->algorithm_auth) { idx = i; break; } } /* * Some GOST ciphersuites allow more than one signature algorithms * */ if (idx == SSL_PKEY_GOST01 && s->s3->tmp.new_cipher->algorithm_auth != SSL_aGOST01) { int real_idx; for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01; real_idx--) { if (s->cert->pkeys[real_idx].privatekey != NULL) { idx = real_idx; break; } } } } else { idx = s->cert->key - s->cert->pkeys; } } if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg)) return NULL; if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) { const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(tls_default_sigalg[idx]); if (!tls1_lookup_md(lu, NULL)) return NULL; if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu)) return NULL; return lu; } if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg)) return NULL; return &legacy_rsa_sigalg; } /* Set peer sigalg based key type */ int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey) { size_t idx; const SIGALG_LOOKUP *lu; if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL) return 0; lu = tls1_get_legacy_sigalg(s, idx); if (lu == NULL) return 0; s->s3->tmp.peer_sigalg = lu; return 1; } size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs) { /* * If Suite B mode use Suite B sigalgs only, ignore any other * preferences. */ #ifndef OPENSSL_NO_EC switch (tls1_suiteb(s)) { case SSL_CERT_FLAG_SUITEB_128_LOS: *psigs = suiteb_sigalgs; return OSSL_NELEM(suiteb_sigalgs); case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: *psigs = suiteb_sigalgs; return 1; case SSL_CERT_FLAG_SUITEB_192_LOS: *psigs = suiteb_sigalgs + 1; return 1; } #endif /* * We use client_sigalgs (if not NULL) if we're a server * and sending a certificate request or if we're a client and * determining which shared algorithm to use. */ if ((s->server == sent) && s->cert->client_sigalgs != NULL) { *psigs = s->cert->client_sigalgs; return s->cert->client_sigalgslen; } else if (s->cert->conf_sigalgs) { *psigs = s->cert->conf_sigalgs; return s->cert->conf_sigalgslen; } else { *psigs = tls12_sigalgs; return OSSL_NELEM(tls12_sigalgs); } } #ifndef OPENSSL_NO_EC /* * Called by servers only. Checks that we have a sig alg that supports the * specified EC curve. */ int tls_check_sigalg_curve(const SSL *s, int curve) { const uint16_t *sigs; size_t siglen, i; if (s->cert->conf_sigalgs) { sigs = s->cert->conf_sigalgs; siglen = s->cert->conf_sigalgslen; } else { sigs = tls12_sigalgs; siglen = OSSL_NELEM(tls12_sigalgs); } for (i = 0; i < siglen; i++) { const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(sigs[i]); if (lu == NULL) continue; if (lu->sig == EVP_PKEY_EC && lu->curve != NID_undef && curve == lu->curve) return 1; } return 0; } #endif /* * Return the number of security bits for the signature algorithm, or 0 on * error. */ static int sigalg_security_bits(const SIGALG_LOOKUP *lu) { const EVP_MD *md = NULL; int secbits = 0; if (!tls1_lookup_md(lu, &md)) return 0; if (md != NULL) { /* Security bits: half digest bits */ secbits = EVP_MD_size(md) * 4; } else { /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */ if (lu->sigalg == TLSEXT_SIGALG_ed25519) secbits = 128; else if (lu->sigalg == TLSEXT_SIGALG_ed448) secbits = 224; } return secbits; } /* * Check signature algorithm is consistent with sent supported signature * algorithms and if so set relevant digest and signature scheme in * s. */ int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey) { const uint16_t *sent_sigs; const EVP_MD *md = NULL; char sigalgstr[2]; size_t sent_sigslen, i, cidx; int pkeyid = EVP_PKEY_id(pkey); const SIGALG_LOOKUP *lu; int secbits = 0; /* Should never happen */ if (pkeyid == -1) return -1; if (SSL_IS_TLS13(s)) { /* Disallow DSA for TLS 1.3 */ if (pkeyid == EVP_PKEY_DSA) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } /* Only allow PSS for TLS 1.3 */ if (pkeyid == EVP_PKEY_RSA) pkeyid = EVP_PKEY_RSA_PSS; } lu = tls1_lookup_sigalg(sig); /* * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type * is consistent with signature: RSA keys can be used for RSA-PSS */ if (lu == NULL || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224)) || (pkeyid != lu->sig && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } /* Check the sigalg is consistent with the key OID */ if (!ssl_cert_lookup_by_nid(EVP_PKEY_id(pkey), &cidx) || lu->sig_idx != (int)cidx) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } #ifndef OPENSSL_NO_EC if (pkeyid == EVP_PKEY_EC) { /* Check point compression is permitted */ if (!tls1_check_pkey_comp(s, pkey)) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_ILLEGAL_POINT_COMPRESSION); return 0; } /* For TLS 1.3 or Suite B check curve matches signature algorithm */ if (SSL_IS_TLS13(s) || tls1_suiteb(s)) { EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey); int curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec)); if (lu->curve != NID_undef && curve != lu->curve) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE); return 0; } } if (!SSL_IS_TLS13(s)) { /* Check curve matches extensions */ if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE); return 0; } if (tls1_suiteb(s)) { /* Check sigalg matches a permissible Suite B value */ if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) { SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } } } } else if (tls1_suiteb(s)) { SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } #endif /* Check signature matches a type we sent */ sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); for (i = 0; i < sent_sigslen; i++, sent_sigs++) { if (sig == *sent_sigs) break; } /* Allow fallback to SHA1 if not strict mode */ if (i == sent_sigslen && (lu->hash != NID_sha1 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) { SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } if (!tls1_lookup_md(lu, &md)) { SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_UNKNOWN_DIGEST); return 0; } /* * Make sure security callback allows algorithm. For historical * reasons we have to pass the sigalg as a two byte char array. */ sigalgstr[0] = (sig >> 8) & 0xff; sigalgstr[1] = sig & 0xff; secbits = sigalg_security_bits(lu); if (secbits == 0 || !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits, md != NULL ? EVP_MD_type(md) : NID_undef, (void *)sigalgstr)) { SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } /* Store the sigalg the peer uses */ s->s3->tmp.peer_sigalg = lu; return 1; } int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid) { if (s->s3->tmp.peer_sigalg == NULL) return 0; *pnid = s->s3->tmp.peer_sigalg->sig; return 1; } int SSL_get_signature_type_nid(const SSL *s, int *pnid) { if (s->s3->tmp.sigalg == NULL) return 0; *pnid = s->s3->tmp.sigalg->sig; return 1; } /* * Set a mask of disabled algorithms: an algorithm is disabled if it isn't * supported, doesn't appear in supported signature algorithms, isn't supported * by the enabled protocol versions or by the security level. * * This function should only be used for checking which ciphers are supported * by the client. * * Call ssl_cipher_disabled() to check that it's enabled or not. */ int ssl_set_client_disabled(SSL *s) { s->s3->tmp.mask_a = 0; s->s3->tmp.mask_k = 0; ssl_set_sig_mask(&s->s3->tmp.mask_a, s, SSL_SECOP_SIGALG_MASK); if (ssl_get_min_max_version(s, &s->s3->tmp.min_ver, &s->s3->tmp.max_ver, NULL) != 0) return 0; #ifndef OPENSSL_NO_PSK /* with PSK there must be client callback set */ if (!s->psk_client_callback) { s->s3->tmp.mask_a |= SSL_aPSK; s->s3->tmp.mask_k |= SSL_PSK; } #endif /* OPENSSL_NO_PSK */ #ifndef OPENSSL_NO_SRP if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) { s->s3->tmp.mask_a |= SSL_aSRP; s->s3->tmp.mask_k |= SSL_kSRP; } #endif return 1; } /* * ssl_cipher_disabled - check that a cipher is disabled or not * @s: SSL connection that you want to use the cipher on * @c: cipher to check * @op: Security check that you want to do * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3 * * Returns 1 when it's disabled, 0 when enabled. */ int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe) { if (c->algorithm_mkey & s->s3->tmp.mask_k || c->algorithm_auth & s->s3->tmp.mask_a) return 1; if (s->s3->tmp.max_ver == 0) return 1; if (!SSL_IS_DTLS(s)) { int min_tls = c->min_tls; /* * For historical reasons we will allow ECHDE to be selected by a server * in SSLv3 if we are a client */ if (min_tls == TLS1_VERSION && ecdhe && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0) min_tls = SSL3_VERSION; if ((min_tls > s->s3->tmp.max_ver) || (c->max_tls < s->s3->tmp.min_ver)) return 1; } if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3->tmp.max_ver) || DTLS_VERSION_LT(c->max_dtls, s->s3->tmp.min_ver))) return 1; return !ssl_security(s, op, c->strength_bits, 0, (void *)c); } int tls_use_ticket(SSL *s) { if ((s->options & SSL_OP_NO_TICKET)) return 0; return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL); } int tls1_set_server_sigalgs(SSL *s) { size_t i; /* Clear any shared signature algorithms */ OPENSSL_free(s->shared_sigalgs); s->shared_sigalgs = NULL; s->shared_sigalgslen = 0; /* Clear certificate validity flags */ for (i = 0; i < SSL_PKEY_NUM; i++) s->s3->tmp.valid_flags[i] = 0; /* * If peer sent no signature algorithms check to see if we support * the default algorithm for each certificate type */ if (s->s3->tmp.peer_cert_sigalgs == NULL && s->s3->tmp.peer_sigalgs == NULL) { const uint16_t *sent_sigs; size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); for (i = 0; i < SSL_PKEY_NUM; i++) { const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i); size_t j; if (lu == NULL) continue; /* Check default matches a type we sent */ for (j = 0; j < sent_sigslen; j++) { if (lu->sigalg == sent_sigs[j]) { s->s3->tmp.valid_flags[i] = CERT_PKEY_SIGN; break; } } } return 1; } if (!tls1_process_sigalgs(s)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_INTERNAL_ERROR); return 0; } if (s->shared_sigalgs != NULL) return 1; /* Fatal error if no shared signature algorithms */ SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS1_SET_SERVER_SIGALGS, SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS); return 0; } /*- * Gets the ticket information supplied by the client if any. * * hello: The parsed ClientHello data * ret: (output) on return, if a ticket was decrypted, then this is set to * point to the resulting session. */ SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello, SSL_SESSION **ret) { size_t size; RAW_EXTENSION *ticketext; *ret = NULL; s->ext.ticket_expected = 0; /* * If tickets disabled or not supported by the protocol version * (e.g. TLSv1.3) behave as if no ticket present to permit stateful * resumption. */ if (s->version <= SSL3_VERSION || !tls_use_ticket(s)) return SSL_TICKET_NONE; ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket]; if (!ticketext->present) return SSL_TICKET_NONE; size = PACKET_remaining(&ticketext->data); return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size, hello->session_id, hello->session_id_len, ret); } /*- * tls_decrypt_ticket attempts to decrypt a session ticket. * * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are * expecting a pre-shared key ciphersuite, in which case we have no use for * session tickets and one will never be decrypted, nor will * s->ext.ticket_expected be set to 1. * * Side effects: * Sets s->ext.ticket_expected to 1 if the server will have to issue * a new session ticket to the client because the client indicated support * (and s->tls_session_secret_cb is NULL) but the client either doesn't have * a session ticket or we couldn't use the one it gave us, or if * s->ctx->ext.ticket_key_cb asked to renew the client's ticket. * Otherwise, s->ext.ticket_expected is set to 0. * * etick: points to the body of the session ticket extension. * eticklen: the length of the session tickets extension. * sess_id: points at the session ID. * sesslen: the length of the session ID. * psess: (output) on return, if a ticket was decrypted, then this is set to * point to the resulting session. */ SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick, size_t eticklen, const unsigned char *sess_id, size_t sesslen, SSL_SESSION **psess) { SSL_SESSION *sess = NULL; unsigned char *sdec; const unsigned char *p; int slen, renew_ticket = 0, declen; SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER; size_t mlen; unsigned char tick_hmac[EVP_MAX_MD_SIZE]; HMAC_CTX *hctx = NULL; EVP_CIPHER_CTX *ctx = NULL; SSL_CTX *tctx = s->session_ctx; if (eticklen == 0) { /* * The client will accept a ticket but doesn't currently have * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3 */ ret = SSL_TICKET_EMPTY; goto end; } if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) { /* * Indicate that the ticket couldn't be decrypted rather than * generating the session from ticket now, trigger * abbreviated handshake based on external mechanism to * calculate the master secret later. */ ret = SSL_TICKET_NO_DECRYPT; goto end; } /* Need at least keyname + iv */ if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) { ret = SSL_TICKET_NO_DECRYPT; goto end; } /* Initialize session ticket encryption and HMAC contexts */ hctx = HMAC_CTX_new(); if (hctx == NULL) { ret = SSL_TICKET_FATAL_ERR_MALLOC; goto end; } ctx = EVP_CIPHER_CTX_new(); if (ctx == NULL) { ret = SSL_TICKET_FATAL_ERR_MALLOC; goto end; } if (tctx->ext.ticket_key_cb) { unsigned char *nctick = (unsigned char *)etick; int rv = tctx->ext.ticket_key_cb(s, nctick, nctick + TLSEXT_KEYNAME_LENGTH, ctx, hctx, 0); if (rv < 0) { ret = SSL_TICKET_FATAL_ERR_OTHER; goto end; } if (rv == 0) { ret = SSL_TICKET_NO_DECRYPT; goto end; } if (rv == 2) renew_ticket = 1; } else { /* Check key name matches */ if (memcmp(etick, tctx->ext.tick_key_name, TLSEXT_KEYNAME_LENGTH) != 0) { ret = SSL_TICKET_NO_DECRYPT; goto end; } if (HMAC_Init_ex(hctx, tctx->ext.secure->tick_hmac_key, sizeof(tctx->ext.secure->tick_hmac_key), EVP_sha256(), NULL) <= 0 || EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL, tctx->ext.secure->tick_aes_key, etick + TLSEXT_KEYNAME_LENGTH) <= 0) { ret = SSL_TICKET_FATAL_ERR_OTHER; goto end; } if (SSL_IS_TLS13(s)) renew_ticket = 1; } /* * Attempt to process session ticket, first conduct sanity and integrity * checks on ticket. */ mlen = HMAC_size(hctx); if (mlen == 0) { ret = SSL_TICKET_FATAL_ERR_OTHER; goto end; } /* Sanity check ticket length: must exceed keyname + IV + HMAC */ if (eticklen <= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) { ret = SSL_TICKET_NO_DECRYPT; goto end; } eticklen -= mlen; /* Check HMAC of encrypted ticket */ if (HMAC_Update(hctx, etick, eticklen) <= 0 || HMAC_Final(hctx, tick_hmac, NULL) <= 0) { ret = SSL_TICKET_FATAL_ERR_OTHER; goto end; } if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) { ret = SSL_TICKET_NO_DECRYPT; goto end; } /* Attempt to decrypt session data */ /* Move p after IV to start of encrypted ticket, update length */ p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx); eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx); sdec = OPENSSL_malloc(eticklen); if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p, (int)eticklen) <= 0) { OPENSSL_free(sdec); ret = SSL_TICKET_FATAL_ERR_OTHER; goto end; } if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) { OPENSSL_free(sdec); ret = SSL_TICKET_NO_DECRYPT; goto end; } slen += declen; p = sdec; sess = d2i_SSL_SESSION(NULL, &p, slen); slen -= p - sdec; OPENSSL_free(sdec); if (sess) { /* Some additional consistency checks */ if (slen != 0) { SSL_SESSION_free(sess); sess = NULL; ret = SSL_TICKET_NO_DECRYPT; goto end; } /* * The session ID, if non-empty, is used by some clients to detect * that the ticket has been accepted. So we copy it to the session * structure. If it is empty set length to zero as required by * standard. */ if (sesslen) { memcpy(sess->session_id, sess_id, sesslen); sess->session_id_length = sesslen; } if (renew_ticket) ret = SSL_TICKET_SUCCESS_RENEW; else ret = SSL_TICKET_SUCCESS; goto end; } ERR_clear_error(); /* * For session parse failure, indicate that we need to send a new ticket. */ ret = SSL_TICKET_NO_DECRYPT; end: EVP_CIPHER_CTX_free(ctx); HMAC_CTX_free(hctx); /* * If set, the decrypt_ticket_cb() is called unless a fatal error was * detected above. The callback is responsible for checking |ret| before it * performs any action */ if (s->session_ctx->decrypt_ticket_cb != NULL && (ret == SSL_TICKET_EMPTY || ret == SSL_TICKET_NO_DECRYPT || ret == SSL_TICKET_SUCCESS || ret == SSL_TICKET_SUCCESS_RENEW)) { size_t keyname_len = eticklen; int retcb; if (keyname_len > TLSEXT_KEYNAME_LENGTH) keyname_len = TLSEXT_KEYNAME_LENGTH; retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len, ret, s->session_ctx->ticket_cb_data); switch (retcb) { case SSL_TICKET_RETURN_ABORT: ret = SSL_TICKET_FATAL_ERR_OTHER; break; case SSL_TICKET_RETURN_IGNORE: ret = SSL_TICKET_NONE; SSL_SESSION_free(sess); sess = NULL; break; case SSL_TICKET_RETURN_IGNORE_RENEW: if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT) ret = SSL_TICKET_NO_DECRYPT; /* else the value of |ret| will already do the right thing */ SSL_SESSION_free(sess); sess = NULL; break; case SSL_TICKET_RETURN_USE: case SSL_TICKET_RETURN_USE_RENEW: if (ret != SSL_TICKET_SUCCESS && ret != SSL_TICKET_SUCCESS_RENEW) ret = SSL_TICKET_FATAL_ERR_OTHER; else if (retcb == SSL_TICKET_RETURN_USE) ret = SSL_TICKET_SUCCESS; else ret = SSL_TICKET_SUCCESS_RENEW; break; default: ret = SSL_TICKET_FATAL_ERR_OTHER; } } if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) { switch (ret) { case SSL_TICKET_NO_DECRYPT: case SSL_TICKET_SUCCESS_RENEW: case SSL_TICKET_EMPTY: s->ext.ticket_expected = 1; } } *psess = sess; return ret; } /* Check to see if a signature algorithm is allowed */ static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu) { unsigned char sigalgstr[2]; int secbits; /* See if sigalgs is recognised and if hash is enabled */ if (!tls1_lookup_md(lu, NULL)) return 0; /* DSA is not allowed in TLS 1.3 */ if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA) return 0; /* TODO(OpenSSL1.2) fully axe DSA/etc. in ClientHello per TLS 1.3 spec */ if (!s->server && !SSL_IS_DTLS(s) && s->s3->tmp.min_ver >= TLS1_3_VERSION && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX || lu->hash_idx == SSL_MD_MD5_IDX || lu->hash_idx == SSL_MD_SHA224_IDX)) return 0; /* See if public key algorithm allowed */ if (ssl_cert_is_disabled(lu->sig_idx)) return 0; if (lu->sig == NID_id_GostR3410_2012_256 || lu->sig == NID_id_GostR3410_2012_512 || lu->sig == NID_id_GostR3410_2001) { /* We never allow GOST sig algs on the server with TLSv1.3 */ if (s->server && SSL_IS_TLS13(s)) return 0; if (!s->server && s->method->version == TLS_ANY_VERSION && s->s3->tmp.max_ver >= TLS1_3_VERSION) { int i, num; STACK_OF(SSL_CIPHER) *sk; /* * We're a client that could negotiate TLSv1.3. We only allow GOST * sig algs if we could negotiate TLSv1.2 or below and we have GOST * ciphersuites enabled. */ if (s->s3->tmp.min_ver >= TLS1_3_VERSION) return 0; sk = SSL_get_ciphers(s); num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0; for (i = 0; i < num; i++) { const SSL_CIPHER *c; c = sk_SSL_CIPHER_value(sk, i); /* Skip disabled ciphers */ if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) continue; if ((c->algorithm_mkey & SSL_kGOST) != 0) break; } if (i == num) return 0; } } /* Finally see if security callback allows it */ secbits = sigalg_security_bits(lu); sigalgstr[0] = (lu->sigalg >> 8) & 0xff; sigalgstr[1] = lu->sigalg & 0xff; return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr); } /* * Get a mask of disabled public key algorithms based on supported signature * algorithms. For example if no signature algorithm supports RSA then RSA is * disabled. */ void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op) { const uint16_t *sigalgs; size_t i, sigalgslen; uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA; /* * Go through all signature algorithms seeing if we support any * in disabled_mask. */ sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs); for (i = 0; i < sigalgslen; i++, sigalgs++) { const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*sigalgs); const SSL_CERT_LOOKUP *clu; if (lu == NULL) continue; clu = ssl_cert_lookup_by_idx(lu->sig_idx); if (clu == NULL) continue; /* If algorithm is disabled see if we can enable it */ if ((clu->amask & disabled_mask) != 0 && tls12_sigalg_allowed(s, op, lu)) disabled_mask &= ~clu->amask; } *pmask_a |= disabled_mask; } int tls12_copy_sigalgs(SSL *s, WPACKET *pkt, const uint16_t *psig, size_t psiglen) { size_t i; int rv = 0; for (i = 0; i < psiglen; i++, psig++) { const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*psig); if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu)) continue; if (!WPACKET_put_bytes_u16(pkt, *psig)) return 0; /* * If TLS 1.3 must have at least one valid TLS 1.3 message * signing algorithm: i.e. neither RSA nor SHA1/SHA224 */ if (rv == 0 && (!SSL_IS_TLS13(s) || (lu->sig != EVP_PKEY_RSA && lu->hash != NID_sha1 && lu->hash != NID_sha224))) rv = 1; } if (rv == 0) SSLerr(SSL_F_TLS12_COPY_SIGALGS, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); return rv; } /* Given preference and allowed sigalgs set shared sigalgs */ static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig, const uint16_t *pref, size_t preflen, const uint16_t *allow, size_t allowlen) { const uint16_t *ptmp, *atmp; size_t i, j, nmatch = 0; for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) { const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*ptmp); /* Skip disabled hashes or signature algorithms */ if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu)) continue; for (j = 0, atmp = allow; j < allowlen; j++, atmp++) { if (*ptmp == *atmp) { nmatch++; if (shsig) *shsig++ = lu; break; } } } return nmatch; } /* Set shared signature algorithms for SSL structures */ static int tls1_set_shared_sigalgs(SSL *s) { const uint16_t *pref, *allow, *conf; size_t preflen, allowlen, conflen; size_t nmatch; const SIGALG_LOOKUP **salgs = NULL; CERT *c = s->cert; unsigned int is_suiteb = tls1_suiteb(s); OPENSSL_free(s->shared_sigalgs); s->shared_sigalgs = NULL; s->shared_sigalgslen = 0; /* If client use client signature algorithms if not NULL */ if (!s->server && c->client_sigalgs && !is_suiteb) { conf = c->client_sigalgs; conflen = c->client_sigalgslen; } else if (c->conf_sigalgs && !is_suiteb) { conf = c->conf_sigalgs; conflen = c->conf_sigalgslen; } else conflen = tls12_get_psigalgs(s, 0, &conf); if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) { pref = conf; preflen = conflen; allow = s->s3->tmp.peer_sigalgs; allowlen = s->s3->tmp.peer_sigalgslen; } else { allow = conf; allowlen = conflen; pref = s->s3->tmp.peer_sigalgs; preflen = s->s3->tmp.peer_sigalgslen; } nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen); if (nmatch) { if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) { SSLerr(SSL_F_TLS1_SET_SHARED_SIGALGS, ERR_R_MALLOC_FAILURE); return 0; } nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen); } else { salgs = NULL; } s->shared_sigalgs = salgs; s->shared_sigalgslen = nmatch; return 1; } int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen) { unsigned int stmp; size_t size, i; uint16_t *buf; size = PACKET_remaining(pkt); /* Invalid data length */ if (size == 0 || (size & 1) != 0) return 0; size >>= 1; if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) { SSLerr(SSL_F_TLS1_SAVE_U16, ERR_R_MALLOC_FAILURE); return 0; } for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++) buf[i] = stmp; if (i != size) { OPENSSL_free(buf); return 0; } OPENSSL_free(*pdest); *pdest = buf; *pdestlen = size; return 1; } int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert) { /* Extension ignored for inappropriate versions */ if (!SSL_USE_SIGALGS(s)) return 1; /* Should never happen */ if (s->cert == NULL) return 0; if (cert) return tls1_save_u16(pkt, &s->s3->tmp.peer_cert_sigalgs, &s->s3->tmp.peer_cert_sigalgslen); else return tls1_save_u16(pkt, &s->s3->tmp.peer_sigalgs, &s->s3->tmp.peer_sigalgslen); } /* Set preferred digest for each key type */ int tls1_process_sigalgs(SSL *s) { size_t i; uint32_t *pvalid = s->s3->tmp.valid_flags; if (!tls1_set_shared_sigalgs(s)) return 0; for (i = 0; i < SSL_PKEY_NUM; i++) pvalid[i] = 0; for (i = 0; i < s->shared_sigalgslen; i++) { const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i]; int idx = sigptr->sig_idx; /* Ignore PKCS1 based sig algs in TLSv1.3 */ if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA) continue; /* If not disabled indicate we can explicitly sign */ if (pvalid[idx] == 0 && !ssl_cert_is_disabled(idx)) pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN; } return 1; } int SSL_get_sigalgs(SSL *s, int idx, int *psign, int *phash, int *psignhash, unsigned char *rsig, unsigned char *rhash) { uint16_t *psig = s->s3->tmp.peer_sigalgs; size_t numsigalgs = s->s3->tmp.peer_sigalgslen; if (psig == NULL || numsigalgs > INT_MAX) return 0; if (idx >= 0) { const SIGALG_LOOKUP *lu; if (idx >= (int)numsigalgs) return 0; psig += idx; if (rhash != NULL) *rhash = (unsigned char)((*psig >> 8) & 0xff); if (rsig != NULL) *rsig = (unsigned char)(*psig & 0xff); lu = tls1_lookup_sigalg(*psig); if (psign != NULL) *psign = lu != NULL ? lu->sig : NID_undef; if (phash != NULL) *phash = lu != NULL ? lu->hash : NID_undef; if (psignhash != NULL) *psignhash = lu != NULL ? lu->sigandhash : NID_undef; } return (int)numsigalgs; } int SSL_get_shared_sigalgs(SSL *s, int idx, int *psign, int *phash, int *psignhash, unsigned char *rsig, unsigned char *rhash) { const SIGALG_LOOKUP *shsigalgs; if (s->shared_sigalgs == NULL || idx < 0 || idx >= (int)s->shared_sigalgslen || s->shared_sigalgslen > INT_MAX) return 0; shsigalgs = s->shared_sigalgs[idx]; if (phash != NULL) *phash = shsigalgs->hash; if (psign != NULL) *psign = shsigalgs->sig; if (psignhash != NULL) *psignhash = shsigalgs->sigandhash; if (rsig != NULL) *rsig = (unsigned char)(shsigalgs->sigalg & 0xff); if (rhash != NULL) *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff); return (int)s->shared_sigalgslen; } /* Maximum possible number of unique entries in sigalgs array */ #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2) typedef struct { size_t sigalgcnt; /* TLSEXT_SIGALG_XXX values */ uint16_t sigalgs[TLS_MAX_SIGALGCNT]; } sig_cb_st; static void get_sigorhash(int *psig, int *phash, const char *str) { if (strcmp(str, "RSA") == 0) { *psig = EVP_PKEY_RSA; } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) { *psig = EVP_PKEY_RSA_PSS; } else if (strcmp(str, "DSA") == 0) { *psig = EVP_PKEY_DSA; } else if (strcmp(str, "ECDSA") == 0) { *psig = EVP_PKEY_EC; } else { *phash = OBJ_sn2nid(str); if (*phash == NID_undef) *phash = OBJ_ln2nid(str); } } /* Maximum length of a signature algorithm string component */ #define TLS_MAX_SIGSTRING_LEN 40 static int sig_cb(const char *elem, int len, void *arg) { sig_cb_st *sarg = arg; size_t i; const SIGALG_LOOKUP *s; char etmp[TLS_MAX_SIGSTRING_LEN], *p; int sig_alg = NID_undef, hash_alg = NID_undef; if (elem == NULL) return 0; if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT) return 0; if (len > (int)(sizeof(etmp) - 1)) return 0; memcpy(etmp, elem, len); etmp[len] = 0; p = strchr(etmp, '+'); /* * We only allow SignatureSchemes listed in the sigalg_lookup_tbl; * if there's no '+' in the provided name, look for the new-style combined * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP. * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and * rsa_pss_rsae_* that differ only by public key OID; in such cases * we will pick the _rsae_ variant, by virtue of them appearing earlier * in the table. */ if (p == NULL) { for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) { if (s->name != NULL && strcmp(etmp, s->name) == 0) { sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg; break; } } if (i == OSSL_NELEM(sigalg_lookup_tbl)) return 0; } else { *p = 0; p++; if (*p == 0) return 0; get_sigorhash(&sig_alg, &hash_alg, etmp); get_sigorhash(&sig_alg, &hash_alg, p); if (sig_alg == NID_undef || hash_alg == NID_undef) return 0; for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) { if (s->hash == hash_alg && s->sig == sig_alg) { sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg; break; } } if (i == OSSL_NELEM(sigalg_lookup_tbl)) return 0; } /* Reject duplicates */ for (i = 0; i < sarg->sigalgcnt - 1; i++) { if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) { sarg->sigalgcnt--; return 0; } } return 1; } /* * Set supported signature algorithms based on a colon separated list of the * form sig+hash e.g. RSA+SHA512:DSA+SHA512 */ int tls1_set_sigalgs_list(CERT *c, const char *str, int client) { sig_cb_st sig; sig.sigalgcnt = 0; if (!CONF_parse_list(str, ':', 1, sig_cb, &sig)) return 0; if (c == NULL) return 1; return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client); } int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen, int client) { uint16_t *sigalgs; if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) { SSLerr(SSL_F_TLS1_SET_RAW_SIGALGS, ERR_R_MALLOC_FAILURE); return 0; } memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs)); if (client) { OPENSSL_free(c->client_sigalgs); c->client_sigalgs = sigalgs; c->client_sigalgslen = salglen; } else { OPENSSL_free(c->conf_sigalgs); c->conf_sigalgs = sigalgs; c->conf_sigalgslen = salglen; } return 1; } int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client) { uint16_t *sigalgs, *sptr; size_t i; if (salglen & 1) return 0; if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) { SSLerr(SSL_F_TLS1_SET_SIGALGS, ERR_R_MALLOC_FAILURE); return 0; } for (i = 0, sptr = sigalgs; i < salglen; i += 2) { size_t j; const SIGALG_LOOKUP *curr; int md_id = *psig_nids++; int sig_id = *psig_nids++; for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl); j++, curr++) { if (curr->hash == md_id && curr->sig == sig_id) { *sptr++ = curr->sigalg; break; } } if (j == OSSL_NELEM(sigalg_lookup_tbl)) goto err; } if (client) { OPENSSL_free(c->client_sigalgs); c->client_sigalgs = sigalgs; c->client_sigalgslen = salglen / 2; } else { OPENSSL_free(c->conf_sigalgs); c->conf_sigalgs = sigalgs; c->conf_sigalgslen = salglen / 2; } return 1; err: OPENSSL_free(sigalgs); return 0; } static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid) { int sig_nid, use_pc_sigalgs = 0; size_t i; const SIGALG_LOOKUP *sigalg; size_t sigalgslen; if (default_nid == -1) return 1; sig_nid = X509_get_signature_nid(x); if (default_nid) return sig_nid == default_nid ? 1 : 0; if (SSL_IS_TLS13(s) && s->s3->tmp.peer_cert_sigalgs != NULL) { /* * If we're in TLSv1.3 then we only get here if we're checking the * chain. If the peer has specified peer_cert_sigalgs then we use them * otherwise we default to normal sigalgs. */ sigalgslen = s->s3->tmp.peer_cert_sigalgslen; use_pc_sigalgs = 1; } else { sigalgslen = s->shared_sigalgslen; } for (i = 0; i < sigalgslen; i++) { sigalg = use_pc_sigalgs ? tls1_lookup_sigalg(s->s3->tmp.peer_cert_sigalgs[i]) : s->shared_sigalgs[i]; if (sigalg != NULL && sig_nid == sigalg->sigandhash) return 1; } return 0; } /* Check to see if a certificate issuer name matches list of CA names */ static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x) { X509_NAME *nm; int i; nm = X509_get_issuer_name(x); for (i = 0; i < sk_X509_NAME_num(names); i++) { if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i))) return 1; } return 0; } /* * Check certificate chain is consistent with TLS extensions and is usable by * server. This servers two purposes: it allows users to check chains before * passing them to the server and it allows the server to check chains before * attempting to use them. */ /* Flags which need to be set for a certificate when strict mode not set */ #define CERT_PKEY_VALID_FLAGS \ (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM) /* Strict mode flags */ #define CERT_PKEY_STRICT_FLAGS \ (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \ | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE) int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain, int idx) { int i; int rv = 0; int check_flags = 0, strict_mode; CERT_PKEY *cpk = NULL; CERT *c = s->cert; uint32_t *pvalid; unsigned int suiteb_flags = tls1_suiteb(s); /* idx == -1 means checking server chains */ if (idx != -1) { /* idx == -2 means checking client certificate chains */ if (idx == -2) { cpk = c->key; idx = (int)(cpk - c->pkeys); } else cpk = c->pkeys + idx; pvalid = s->s3->tmp.valid_flags + idx; x = cpk->x509; pk = cpk->privatekey; chain = cpk->chain; strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT; /* If no cert or key, forget it */ if (!x || !pk) goto end; } else { size_t certidx; if (!x || !pk) return 0; if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL) return 0; idx = certidx; pvalid = s->s3->tmp.valid_flags + idx; if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT) check_flags = CERT_PKEY_STRICT_FLAGS; else check_flags = CERT_PKEY_VALID_FLAGS; strict_mode = 1; } if (suiteb_flags) { int ok; if (check_flags) check_flags |= CERT_PKEY_SUITEB; ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags); if (ok == X509_V_OK) rv |= CERT_PKEY_SUITEB; else if (!check_flags) goto end; } /* * Check all signature algorithms are consistent with signature * algorithms extension if TLS 1.2 or later and strict mode. */ if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) { int default_nid; int rsign = 0; if (s->s3->tmp.peer_cert_sigalgs != NULL || s->s3->tmp.peer_sigalgs != NULL) { default_nid = 0; /* If no sigalgs extension use defaults from RFC5246 */ } else { switch (idx) { case SSL_PKEY_RSA: rsign = EVP_PKEY_RSA; default_nid = NID_sha1WithRSAEncryption; break; case SSL_PKEY_DSA_SIGN: rsign = EVP_PKEY_DSA; default_nid = NID_dsaWithSHA1; break; case SSL_PKEY_ECC: rsign = EVP_PKEY_EC; default_nid = NID_ecdsa_with_SHA1; break; case SSL_PKEY_GOST01: rsign = NID_id_GostR3410_2001; default_nid = NID_id_GostR3411_94_with_GostR3410_2001; break; case SSL_PKEY_GOST12_256: rsign = NID_id_GostR3410_2012_256; default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256; break; case SSL_PKEY_GOST12_512: rsign = NID_id_GostR3410_2012_512; default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512; break; default: default_nid = -1; break; } } /* * If peer sent no signature algorithms extension and we have set * preferred signature algorithms check we support sha1. */ if (default_nid > 0 && c->conf_sigalgs) { size_t j; const uint16_t *p = c->conf_sigalgs; for (j = 0; j < c->conf_sigalgslen; j++, p++) { const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*p); if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign) break; } if (j == c->conf_sigalgslen) { if (check_flags) goto skip_sigs; else goto end; } } /* Check signature algorithm of each cert in chain */ if (SSL_IS_TLS13(s)) { /* * We only get here if the application has called SSL_check_chain(), * so check_flags is always set. */ if (find_sig_alg(s, x, pk) != NULL) rv |= CERT_PKEY_EE_SIGNATURE; } else if (!tls1_check_sig_alg(s, x, default_nid)) { if (!check_flags) goto end; } else rv |= CERT_PKEY_EE_SIGNATURE; rv |= CERT_PKEY_CA_SIGNATURE; for (i = 0; i < sk_X509_num(chain); i++) { if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) { if (check_flags) { rv &= ~CERT_PKEY_CA_SIGNATURE; break; } else goto end; } } } /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */ else if (check_flags) rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE; skip_sigs: /* Check cert parameters are consistent */ if (tls1_check_cert_param(s, x, 1)) rv |= CERT_PKEY_EE_PARAM; else if (!check_flags) goto end; if (!s->server) rv |= CERT_PKEY_CA_PARAM; /* In strict mode check rest of chain too */ else if (strict_mode) { rv |= CERT_PKEY_CA_PARAM; for (i = 0; i < sk_X509_num(chain); i++) { X509 *ca = sk_X509_value(chain, i); if (!tls1_check_cert_param(s, ca, 0)) { if (check_flags) { rv &= ~CERT_PKEY_CA_PARAM; break; } else goto end; } } } if (!s->server && strict_mode) { STACK_OF(X509_NAME) *ca_dn; int check_type = 0; switch (EVP_PKEY_id(pk)) { case EVP_PKEY_RSA: check_type = TLS_CT_RSA_SIGN; break; case EVP_PKEY_DSA: check_type = TLS_CT_DSS_SIGN; break; case EVP_PKEY_EC: check_type = TLS_CT_ECDSA_SIGN; break; } if (check_type) { const uint8_t *ctypes = s->s3->tmp.ctype; size_t j; for (j = 0; j < s->s3->tmp.ctype_len; j++, ctypes++) { if (*ctypes == check_type) { rv |= CERT_PKEY_CERT_TYPE; break; } } if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags) goto end; } else { rv |= CERT_PKEY_CERT_TYPE; } ca_dn = s->s3->tmp.peer_ca_names; - if (!sk_X509_NAME_num(ca_dn)) + if (ca_dn == NULL + || sk_X509_NAME_num(ca_dn) == 0 + || ssl_check_ca_name(ca_dn, x)) rv |= CERT_PKEY_ISSUER_NAME; - - if (!(rv & CERT_PKEY_ISSUER_NAME)) { - if (ssl_check_ca_name(ca_dn, x)) - rv |= CERT_PKEY_ISSUER_NAME; - } - if (!(rv & CERT_PKEY_ISSUER_NAME)) { + else for (i = 0; i < sk_X509_num(chain); i++) { X509 *xtmp = sk_X509_value(chain, i); + if (ssl_check_ca_name(ca_dn, xtmp)) { rv |= CERT_PKEY_ISSUER_NAME; break; } } - } + if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME)) goto end; } else rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE; if (!check_flags || (rv & check_flags) == check_flags) rv |= CERT_PKEY_VALID; end: if (TLS1_get_version(s) >= TLS1_2_VERSION) rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN); else rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN; /* * When checking a CERT_PKEY structure all flags are irrelevant if the * chain is invalid. */ if (!check_flags) { if (rv & CERT_PKEY_VALID) { *pvalid = rv; } else { /* Preserve sign and explicit sign flag, clear rest */ *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN; return 0; } } return rv; } /* Set validity of certificates in an SSL structure */ void tls1_set_cert_validity(SSL *s) { tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448); } /* User level utility function to check a chain is suitable */ int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain) { return tls1_check_chain(s, x, pk, chain, -1); } #ifndef OPENSSL_NO_DH DH *ssl_get_auto_dh(SSL *s) { DH *dhp = NULL; BIGNUM *p = NULL, *g = NULL; int dh_secbits = 80, sec_level_bits; if (s->cert->dh_tmp_auto != 2) { if (s->s3->tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) { if (s->s3->tmp.new_cipher->strength_bits == 256) dh_secbits = 128; else dh_secbits = 80; } else { if (s->s3->tmp.cert == NULL) return NULL; dh_secbits = EVP_PKEY_security_bits(s->s3->tmp.cert->privatekey); } } dhp = DH_new(); if (dhp == NULL) return NULL; g = BN_new(); if (g == NULL || !BN_set_word(g, 2)) { DH_free(dhp); BN_free(g); return NULL; } /* Do not pick a prime that is too weak for the current security level */ sec_level_bits = ssl_get_security_level_bits(s, NULL, NULL); if (dh_secbits < sec_level_bits) dh_secbits = sec_level_bits; if (dh_secbits >= 192) p = BN_get_rfc3526_prime_8192(NULL); else if (dh_secbits >= 152) p = BN_get_rfc3526_prime_4096(NULL); else if (dh_secbits >= 128) p = BN_get_rfc3526_prime_3072(NULL); else if (dh_secbits >= 112) p = BN_get_rfc3526_prime_2048(NULL); else p = BN_get_rfc2409_prime_1024(NULL); if (p == NULL || !DH_set0_pqg(dhp, p, NULL, g)) { DH_free(dhp); BN_free(p); BN_free(g); return NULL; } return dhp; } #endif static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op) { int secbits = -1; EVP_PKEY *pkey = X509_get0_pubkey(x); if (pkey) { /* * If no parameters this will return -1 and fail using the default * security callback for any non-zero security level. This will * reject keys which omit parameters but this only affects DSA and * omission of parameters is never (?) done in practice. */ secbits = EVP_PKEY_security_bits(pkey); } if (s) return ssl_security(s, op, secbits, 0, x); else return ssl_ctx_security(ctx, op, secbits, 0, x); } static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op) { /* Lookup signature algorithm digest */ int secbits, nid, pknid; /* Don't check signature if self signed */ if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0) return 1; if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL)) secbits = -1; /* If digest NID not defined use signature NID */ if (nid == NID_undef) nid = pknid; if (s) return ssl_security(s, op, secbits, nid, x); else return ssl_ctx_security(ctx, op, secbits, nid, x); } int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee) { if (vfy) vfy = SSL_SECOP_PEER; if (is_ee) { if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy)) return SSL_R_EE_KEY_TOO_SMALL; } else { if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy)) return SSL_R_CA_KEY_TOO_SMALL; } if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy)) return SSL_R_CA_MD_TOO_WEAK; return 1; } /* * Check security of a chain, if |sk| includes the end entity certificate then * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending * one to the peer. Return values: 1 if ok otherwise error code to use */ int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy) { int rv, start_idx, i; if (x == NULL) { x = sk_X509_value(sk, 0); + if (x == NULL) + return ERR_R_INTERNAL_ERROR; start_idx = 1; } else start_idx = 0; rv = ssl_security_cert(s, NULL, x, vfy, 1); if (rv != 1) return rv; for (i = start_idx; i < sk_X509_num(sk); i++) { x = sk_X509_value(sk, i); rv = ssl_security_cert(s, NULL, x, vfy, 0); if (rv != 1) return rv; } return 1; } /* * For TLS 1.2 servers check if we have a certificate which can be used * with the signature algorithm "lu" and return index of certificate. */ static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu) { int sig_idx = lu->sig_idx; const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx); /* If not recognised or not supported by cipher mask it is not suitable */ if (clu == NULL || (clu->amask & s->s3->tmp.new_cipher->algorithm_auth) == 0 || (clu->nid == EVP_PKEY_RSA_PSS && (s->s3->tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0)) return -1; return s->s3->tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1; } /* * Checks the given cert against signature_algorithm_cert restrictions sent by * the peer (if any) as well as whether the hash from the sigalg is usable with * the key. * Returns true if the cert is usable and false otherwise. */ static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x, EVP_PKEY *pkey) { const SIGALG_LOOKUP *lu; int mdnid, pknid, default_mdnid; size_t i; /* If the EVP_PKEY reports a mandatory digest, allow nothing else. */ ERR_set_mark(); if (EVP_PKEY_get_default_digest_nid(pkey, &default_mdnid) == 2 && sig->hash != default_mdnid) return 0; /* If it didn't report a mandatory NID, for whatever reasons, * just clear the error and allow all hashes to be used. */ ERR_pop_to_mark(); if (s->s3->tmp.peer_cert_sigalgs != NULL) { for (i = 0; i < s->s3->tmp.peer_cert_sigalgslen; i++) { lu = tls1_lookup_sigalg(s->s3->tmp.peer_cert_sigalgs[i]); if (lu == NULL || !X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL)) continue; /* * TODO this does not differentiate between the * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not * have a chain here that lets us look at the key OID in the * signing certificate. */ if (mdnid == lu->hash && pknid == lu->sig) return 1; } return 0; } return 1; } /* * Returns true if |s| has a usable certificate configured for use * with signature scheme |sig|. * "Usable" includes a check for presence as well as applying * the signature_algorithm_cert restrictions sent by the peer (if any). * Returns false if no usable certificate is found. */ static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx) { /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */ if (idx == -1) idx = sig->sig_idx; if (!ssl_has_cert(s, idx)) return 0; return check_cert_usable(s, sig, s->cert->pkeys[idx].x509, s->cert->pkeys[idx].privatekey); } /* * Returns true if the supplied cert |x| and key |pkey| is usable with the * specified signature scheme |sig|, or false otherwise. */ static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x, EVP_PKEY *pkey) { size_t idx; if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL) return 0; /* Check the key is consistent with the sig alg */ if ((int)idx != sig->sig_idx) return 0; return check_cert_usable(s, sig, x, pkey); } /* * Find a signature scheme that works with the supplied certificate |x| and key * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our * available certs/keys to find one that works. */ static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey) { const SIGALG_LOOKUP *lu = NULL; size_t i; #ifndef OPENSSL_NO_EC int curve = -1; #endif EVP_PKEY *tmppkey; /* Look for a shared sigalgs matching possible certificates */ for (i = 0; i < s->shared_sigalgslen; i++) { lu = s->shared_sigalgs[i]; /* Skip SHA1, SHA224, DSA and RSA if not PSS */ if (lu->hash == NID_sha1 || lu->hash == NID_sha224 || lu->sig == EVP_PKEY_DSA || lu->sig == EVP_PKEY_RSA) continue; /* Check that we have a cert, and signature_algorithms_cert */ if (!tls1_lookup_md(lu, NULL)) continue; if ((pkey == NULL && !has_usable_cert(s, lu, -1)) || (pkey != NULL && !is_cert_usable(s, lu, x, pkey))) continue; tmppkey = (pkey != NULL) ? pkey : s->cert->pkeys[lu->sig_idx].privatekey; if (lu->sig == EVP_PKEY_EC) { #ifndef OPENSSL_NO_EC if (curve == -1) { EC_KEY *ec = EVP_PKEY_get0_EC_KEY(tmppkey); curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec)); } if (lu->curve != NID_undef && curve != lu->curve) continue; #else continue; #endif } else if (lu->sig == EVP_PKEY_RSA_PSS) { /* validate that key is large enough for the signature algorithm */ if (!rsa_pss_check_min_key_size(EVP_PKEY_get0(tmppkey), lu)) continue; } break; } if (i == s->shared_sigalgslen) return NULL; return lu; } /* * Choose an appropriate signature algorithm based on available certificates * Sets chosen certificate and signature algorithm. * * For servers if we fail to find a required certificate it is a fatal error, * an appropriate error code is set and a TLS alert is sent. * * For clients fatalerrs is set to 0. If a certificate is not suitable it is not * a fatal error: we will either try another certificate or not present one * to the server. In this case no error is set. */ int tls_choose_sigalg(SSL *s, int fatalerrs) { const SIGALG_LOOKUP *lu = NULL; int sig_idx = -1; s->s3->tmp.cert = NULL; s->s3->tmp.sigalg = NULL; if (SSL_IS_TLS13(s)) { lu = find_sig_alg(s, NULL, NULL); if (lu == NULL) { if (!fatalerrs) return 1; SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS_CHOOSE_SIGALG, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); return 0; } } else { /* If ciphersuite doesn't require a cert nothing to do */ if (!(s->s3->tmp.new_cipher->algorithm_auth & SSL_aCERT)) return 1; if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys)) return 1; if (SSL_USE_SIGALGS(s)) { size_t i; if (s->s3->tmp.peer_sigalgs != NULL) { #ifndef OPENSSL_NO_EC int curve; /* For Suite B need to match signature algorithm to curve */ if (tls1_suiteb(s)) { EC_KEY *ec = EVP_PKEY_get0_EC_KEY(s->cert->pkeys[SSL_PKEY_ECC].privatekey); curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec)); } else { curve = -1; } #endif /* * Find highest preference signature algorithm matching * cert type */ for (i = 0; i < s->shared_sigalgslen; i++) { lu = s->shared_sigalgs[i]; if (s->server) { if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1) continue; } else { int cc_idx = s->cert->key - s->cert->pkeys; sig_idx = lu->sig_idx; if (cc_idx != sig_idx) continue; } /* Check that we have a cert, and sig_algs_cert */ if (!has_usable_cert(s, lu, sig_idx)) continue; if (lu->sig == EVP_PKEY_RSA_PSS) { /* validate that key is large enough for the signature algorithm */ EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey; if (!rsa_pss_check_min_key_size(EVP_PKEY_get0(pkey), lu)) continue; } #ifndef OPENSSL_NO_EC if (curve == -1 || lu->curve == curve) #endif break; } #ifndef OPENSSL_NO_GOST /* * Some Windows-based implementations do not send GOST algorithms indication * in supported_algorithms extension, so when we have GOST-based ciphersuite, * we have to assume GOST support. */ if (i == s->shared_sigalgslen && s->s3->tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) { if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { if (!fatalerrs) return 1; SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS_CHOOSE_SIGALG, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); return 0; } else { i = 0; sig_idx = lu->sig_idx; } } #endif if (i == s->shared_sigalgslen) { if (!fatalerrs) return 1; SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS_CHOOSE_SIGALG, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); return 0; } } else { /* * If we have no sigalg use defaults */ const uint16_t *sent_sigs; size_t sent_sigslen; if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { if (!fatalerrs) return 1; SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR); return 0; } /* Check signature matches a type we sent */ sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); for (i = 0; i < sent_sigslen; i++, sent_sigs++) { if (lu->sigalg == *sent_sigs && has_usable_cert(s, lu, lu->sig_idx)) break; } if (i == sent_sigslen) { if (!fatalerrs) return 1; SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS_CHOOSE_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } } } else { if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { if (!fatalerrs) return 1; SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR); return 0; } } } if (sig_idx == -1) sig_idx = lu->sig_idx; s->s3->tmp.cert = &s->cert->pkeys[sig_idx]; s->cert->key = s->s3->tmp.cert; s->s3->tmp.sigalg = lu; return 1; } int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode) { if (mode != TLSEXT_max_fragment_length_DISABLED && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) { SSLerr(SSL_F_SSL_CTX_SET_TLSEXT_MAX_FRAGMENT_LENGTH, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH); return 0; } ctx->ext.max_fragment_len_mode = mode; return 1; } int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode) { if (mode != TLSEXT_max_fragment_length_DISABLED && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) { SSLerr(SSL_F_SSL_SET_TLSEXT_MAX_FRAGMENT_LENGTH, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH); return 0; } ssl->ext.max_fragment_len_mode = mode; return 1; } uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session) { return session->ext.max_fragment_len_mode; }