diff --git a/sys/amd64/linux/linux_sysvec.c b/sys/amd64/linux/linux_sysvec.c index 5237e32b614d..bcc8cbf0b0bd 100644 --- a/sys/amd64/linux/linux_sysvec.c +++ b/sys/amd64/linux/linux_sysvec.c @@ -1,940 +1,950 @@ /*- * Copyright (c) 2013 Dmitry Chagin * Copyright (c) 2004 Tim J. Robbins * Copyright (c) 2003 Peter Wemm * Copyright (c) 2002 Doug Rabson * Copyright (c) 1998-1999 Andrew Gallatin * Copyright (c) 1994-1996 Søren Schmidt * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #define __ELF_WORD_SIZE 64 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_VERSION(linux64, 1); static int linux_szsigcode; static vm_object_t linux_shared_page_obj; static char *linux_shared_page_mapping; extern char _binary_linux_locore_o_start; extern char _binary_linux_locore_o_end; extern struct sysent linux_sysent[LINUX_SYS_MAXSYSCALL]; SET_DECLARE(linux_ioctl_handler_set, struct linux_ioctl_handler); static int linux_copyout_strings(struct image_params *imgp, uintptr_t *stack_base); static int linux_fixup_elf(uintptr_t *stack_base, struct image_params *iparams); static bool linux_trans_osrel(const Elf_Note *note, int32_t *osrel); static void linux_vdso_install(void *param); static void linux_vdso_deinstall(void *param); static void linux_set_syscall_retval(struct thread *td, int error); static int linux_fetch_syscall_args(struct thread *td); static void linux_exec_setregs(struct thread *td, struct image_params *imgp, uintptr_t stack); +static int linux_on_exec_vmspace(struct proc *p, + struct image_params *imgp); static int linux_vsyscall(struct thread *td); #define LINUX_T_UNKNOWN 255 static int _bsd_to_linux_trapcode[] = { LINUX_T_UNKNOWN, /* 0 */ 6, /* 1 T_PRIVINFLT */ LINUX_T_UNKNOWN, /* 2 */ 3, /* 3 T_BPTFLT */ LINUX_T_UNKNOWN, /* 4 */ LINUX_T_UNKNOWN, /* 5 */ 16, /* 6 T_ARITHTRAP */ 254, /* 7 T_ASTFLT */ LINUX_T_UNKNOWN, /* 8 */ 13, /* 9 T_PROTFLT */ 1, /* 10 T_TRCTRAP */ LINUX_T_UNKNOWN, /* 11 */ 14, /* 12 T_PAGEFLT */ LINUX_T_UNKNOWN, /* 13 */ 17, /* 14 T_ALIGNFLT */ LINUX_T_UNKNOWN, /* 15 */ LINUX_T_UNKNOWN, /* 16 */ LINUX_T_UNKNOWN, /* 17 */ 0, /* 18 T_DIVIDE */ 2, /* 19 T_NMI */ 4, /* 20 T_OFLOW */ 5, /* 21 T_BOUND */ 7, /* 22 T_DNA */ 8, /* 23 T_DOUBLEFLT */ 9, /* 24 T_FPOPFLT */ 10, /* 25 T_TSSFLT */ 11, /* 26 T_SEGNPFLT */ 12, /* 27 T_STKFLT */ 18, /* 28 T_MCHK */ 19, /* 29 T_XMMFLT */ 15 /* 30 T_RESERVED */ }; #define bsd_to_linux_trapcode(code) \ ((code)td_proc; frame = td->td_frame; sa = &td->td_sa; sa->args[0] = frame->tf_rdi; sa->args[1] = frame->tf_rsi; sa->args[2] = frame->tf_rdx; sa->args[3] = frame->tf_rcx; sa->args[4] = frame->tf_r8; sa->args[5] = frame->tf_r9; sa->code = frame->tf_rax; if (sa->code >= p->p_sysent->sv_size) /* nosys */ sa->callp = &p->p_sysent->sv_table[p->p_sysent->sv_size - 1]; else sa->callp = &p->p_sysent->sv_table[sa->code]; td->td_retval[0] = 0; return (0); } static void linux_set_syscall_retval(struct thread *td, int error) { struct trapframe *frame; frame = td->td_frame; switch (error) { case 0: frame->tf_rax = td->td_retval[0]; frame->tf_r10 = frame->tf_rcx; break; case ERESTART: /* * Reconstruct pc, we know that 'syscall' is 2 bytes, * lcall $X,y is 7 bytes, int 0x80 is 2 bytes. * We saved this in tf_err. * */ frame->tf_rip -= frame->tf_err; frame->tf_r10 = frame->tf_rcx; break; case EJUSTRETURN: break; default: frame->tf_rax = bsd_to_linux_errno(error); frame->tf_r10 = frame->tf_rcx; break; } /* * Differently from FreeBSD native ABI, on Linux only %rcx * and %r11 values are not preserved across the syscall. * Require full context restore to get all registers except * those two restored at return to usermode. * * XXX: Would be great to be able to avoid PCB_FULL_IRET * for the error == 0 case. */ set_pcb_flags(td->td_pcb, PCB_FULL_IRET); } static int linux_copyout_auxargs(struct image_params *imgp, uintptr_t base) { Elf_Auxargs *args; Elf_Auxinfo *argarray, *pos; struct proc *p; int error, issetugid; p = imgp->proc; args = (Elf64_Auxargs *)imgp->auxargs; argarray = pos = malloc(LINUX_AT_COUNT * sizeof(*pos), M_TEMP, M_WAITOK | M_ZERO); issetugid = p->p_flag & P_SUGID ? 1 : 0; AUXARGS_ENTRY(pos, LINUX_AT_SYSINFO_EHDR, imgp->proc->p_sysent->sv_shared_page_base); AUXARGS_ENTRY(pos, LINUX_AT_HWCAP, cpu_feature); AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); AUXARGS_ENTRY(pos, LINUX_AT_CLKTCK, stclohz); AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); AUXARGS_ENTRY(pos, AT_PHENT, args->phent); AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); AUXARGS_ENTRY(pos, AT_BASE, args->base); AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); AUXARGS_ENTRY(pos, AT_UID, imgp->proc->p_ucred->cr_ruid); AUXARGS_ENTRY(pos, AT_EUID, imgp->proc->p_ucred->cr_svuid); AUXARGS_ENTRY(pos, AT_GID, imgp->proc->p_ucred->cr_rgid); AUXARGS_ENTRY(pos, AT_EGID, imgp->proc->p_ucred->cr_svgid); AUXARGS_ENTRY(pos, LINUX_AT_SECURE, issetugid); AUXARGS_ENTRY_PTR(pos, LINUX_AT_RANDOM, imgp->canary); AUXARGS_ENTRY(pos, LINUX_AT_HWCAP2, 0); if (imgp->execpathp != 0) AUXARGS_ENTRY_PTR(pos, LINUX_AT_EXECFN, imgp->execpathp); if (args->execfd != -1) AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); AUXARGS_ENTRY(pos, LINUX_AT_PLATFORM, PTROUT(linux_platform)); AUXARGS_ENTRY(pos, AT_NULL, 0); free(imgp->auxargs, M_TEMP); imgp->auxargs = NULL; KASSERT(pos - argarray <= LINUX_AT_COUNT, ("Too many auxargs")); error = copyout(argarray, (void *)base, sizeof(*argarray) * LINUX_AT_COUNT); free(argarray, M_TEMP); return (error); } static int linux_fixup_elf(uintptr_t *stack_base, struct image_params *imgp) { Elf_Addr *base; base = (Elf64_Addr *)*stack_base; base--; if (suword(base, (uint64_t)imgp->args->argc) == -1) return (EFAULT); *stack_base = (uintptr_t)base; return (0); } /* * Copy strings out to the new process address space, constructing new arg * and env vector tables. Return a pointer to the base so that it can be used * as the initial stack pointer. */ static int linux_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) { int argc, envc, error; char **vectp; char *stringp; uintptr_t destp, ustringp; struct ps_strings *arginfo; char canary[LINUX_AT_RANDOM_LEN]; size_t execpath_len; struct proc *p; p = imgp->proc; arginfo = (struct ps_strings *)PROC_PS_STRINGS(p); destp = (uintptr_t)arginfo; if (imgp->execpath != NULL && imgp->auxargs != NULL) { execpath_len = strlen(imgp->execpath) + 1; destp -= execpath_len; destp = rounddown2(destp, sizeof(void *)); imgp->execpathp = (void *)destp; error = copyout(imgp->execpath, imgp->execpathp, execpath_len); if (error != 0) return (error); } /* Prepare the canary for SSP. */ arc4rand(canary, sizeof(canary), 0); destp -= roundup(sizeof(canary), sizeof(void *)); imgp->canary = (void *)destp; error = copyout(canary, imgp->canary, sizeof(canary)); if (error != 0) return (error); /* Allocate room for the argument and environment strings. */ destp -= ARG_MAX - imgp->args->stringspace; destp = rounddown2(destp, sizeof(void *)); ustringp = destp; if (imgp->auxargs) { /* * Allocate room on the stack for the ELF auxargs * array. It has LINUX_AT_COUNT entries. */ destp -= LINUX_AT_COUNT * sizeof(Elf64_Auxinfo); destp = rounddown2(destp, sizeof(void *)); } vectp = (char **)destp; /* * Allocate room for the argv[] and env vectors including the * terminating NULL pointers. */ vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; /* * Starting with 2.24, glibc depends on a 16-byte stack alignment. * One "long argc" will be prepended later. */ vectp = (char **)((((uintptr_t)vectp + 8) & ~0xF) - 8); /* vectp also becomes our initial stack base. */ *stack_base = (uintptr_t)vectp; stringp = imgp->args->begin_argv; argc = imgp->args->argc; envc = imgp->args->envc; /* Copy out strings - arguments and environment. */ error = copyout(stringp, (void *)ustringp, ARG_MAX - imgp->args->stringspace); if (error != 0) return (error); /* Fill in "ps_strings" struct for ps, w, etc. */ if (suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp) != 0 || suword(&arginfo->ps_nargvstr, argc) != 0) return (EFAULT); /* Fill in argument portion of vector table. */ for (; argc > 0; --argc) { if (suword(vectp++, ustringp) != 0) return (EFAULT); while (*stringp++ != 0) ustringp++; ustringp++; } /* A null vector table pointer separates the argp's from the envp's. */ if (suword(vectp++, 0) != 0) return (EFAULT); if (suword(&arginfo->ps_envstr, (long)(intptr_t)vectp) != 0 || suword(&arginfo->ps_nenvstr, envc) != 0) return (EFAULT); /* Fill in environment portion of vector table. */ for (; envc > 0; --envc) { if (suword(vectp++, ustringp) != 0) return (EFAULT); while (*stringp++ != 0) ustringp++; ustringp++; } /* The end of the vector table is a null pointer. */ if (suword(vectp, 0) != 0) return (EFAULT); if (imgp->auxargs) { vectp++; error = imgp->sysent->sv_copyout_auxargs(imgp, (uintptr_t)vectp); if (error != 0) return (error); } return (0); } /* * Reset registers to default values on exec. */ static void linux_exec_setregs(struct thread *td, struct image_params *imgp, uintptr_t stack) { struct trapframe *regs; struct pcb *pcb; register_t saved_rflags; regs = td->td_frame; pcb = td->td_pcb; if (td->td_proc->p_md.md_ldt != NULL) user_ldt_free(td); pcb->pcb_fsbase = 0; pcb->pcb_gsbase = 0; clear_pcb_flags(pcb, PCB_32BIT); pcb->pcb_initial_fpucw = __LINUX_NPXCW__; set_pcb_flags(pcb, PCB_FULL_IRET); saved_rflags = regs->tf_rflags & PSL_T; bzero((char *)regs, sizeof(struct trapframe)); regs->tf_rip = imgp->entry_addr; regs->tf_rsp = stack; regs->tf_rflags = PSL_USER | saved_rflags; regs->tf_ss = _udatasel; regs->tf_cs = _ucodesel; regs->tf_ds = _udatasel; regs->tf_es = _udatasel; regs->tf_fs = _ufssel; regs->tf_gs = _ugssel; regs->tf_flags = TF_HASSEGS; x86_clear_dbregs(pcb); /* * Drop the FP state if we hold it, so that the process gets a * clean FP state if it uses the FPU again. */ fpstate_drop(td); } /* * Copied from amd64/amd64/machdep.c * * XXX fpu state need? don't think so */ int linux_rt_sigreturn(struct thread *td, struct linux_rt_sigreturn_args *args) { struct proc *p; struct l_ucontext uc; struct l_sigcontext *context; struct trapframe *regs; unsigned long rflags; int error; ksiginfo_t ksi; regs = td->td_frame; error = copyin((void *)regs->tf_rbx, &uc, sizeof(uc)); if (error != 0) return (error); p = td->td_proc; context = &uc.uc_mcontext; rflags = context->sc_rflags; /* * Don't allow users to change privileged or reserved flags. */ /* * XXX do allow users to change the privileged flag PSL_RF. * The cpu sets PSL_RF in tf_rflags for faults. Debuggers * should sometimes set it there too. tf_rflags is kept in * the signal context during signal handling and there is no * other place to remember it, so the PSL_RF bit may be * corrupted by the signal handler without us knowing. * Corruption of the PSL_RF bit at worst causes one more or * one less debugger trap, so allowing it is fairly harmless. */ if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) { uprintf("pid %d comm %s linux mangled rflags %#lx\n", p->p_pid, p->p_comm, rflags); return (EINVAL); } /* * Don't allow users to load a valid privileged %cs. Let the * hardware check for invalid selectors, excess privilege in * other selectors, invalid %eip's and invalid %esp's. */ if (!CS_SECURE(context->sc_cs)) { uprintf("pid %d comm %s linux mangled cs %#x\n", p->p_pid, p->p_comm, context->sc_cs); ksiginfo_init_trap(&ksi); ksi.ksi_signo = SIGBUS; ksi.ksi_code = BUS_OBJERR; ksi.ksi_trapno = T_PROTFLT; ksi.ksi_addr = (void *)regs->tf_rip; trapsignal(td, &ksi); return (EINVAL); } PROC_LOCK(p); linux_to_bsd_sigset(&uc.uc_sigmask, &td->td_sigmask); SIG_CANTMASK(td->td_sigmask); signotify(td); PROC_UNLOCK(p); regs->tf_rdi = context->sc_rdi; regs->tf_rsi = context->sc_rsi; regs->tf_rdx = context->sc_rdx; regs->tf_rbp = context->sc_rbp; regs->tf_rbx = context->sc_rbx; regs->tf_rcx = context->sc_rcx; regs->tf_rax = context->sc_rax; regs->tf_rip = context->sc_rip; regs->tf_rsp = context->sc_rsp; regs->tf_r8 = context->sc_r8; regs->tf_r9 = context->sc_r9; regs->tf_r10 = context->sc_r10; regs->tf_r11 = context->sc_r11; regs->tf_r12 = context->sc_r12; regs->tf_r13 = context->sc_r13; regs->tf_r14 = context->sc_r14; regs->tf_r15 = context->sc_r15; regs->tf_cs = context->sc_cs; regs->tf_err = context->sc_err; regs->tf_rflags = rflags; set_pcb_flags(td->td_pcb, PCB_FULL_IRET); return (EJUSTRETURN); } /* * copied from amd64/amd64/machdep.c * * Send an interrupt to process. */ static void linux_rt_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask) { struct l_rt_sigframe sf, *sfp; struct proc *p; struct thread *td; struct sigacts *psp; caddr_t sp; struct trapframe *regs; int sig, code; int oonstack; td = curthread; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); sig = ksi->ksi_signo; psp = p->p_sigacts; code = ksi->ksi_code; mtx_assert(&psp->ps_mtx, MA_OWNED); regs = td->td_frame; oonstack = sigonstack(regs->tf_rsp); LINUX_CTR4(rt_sendsig, "%p, %d, %p, %u", catcher, sig, mask, code); /* Save user context. */ bzero(&sf, sizeof(sf)); bsd_to_linux_sigset(mask, &sf.sf_sc.uc_sigmask); bsd_to_linux_sigset(mask, &sf.sf_sc.uc_mcontext.sc_mask); sf.sf_sc.uc_stack.ss_sp = PTROUT(td->td_sigstk.ss_sp); sf.sf_sc.uc_stack.ss_size = td->td_sigstk.ss_size; sf.sf_sc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ? ((oonstack) ? LINUX_SS_ONSTACK : 0) : LINUX_SS_DISABLE; sf.sf_sc.uc_mcontext.sc_rdi = regs->tf_rdi; sf.sf_sc.uc_mcontext.sc_rsi = regs->tf_rsi; sf.sf_sc.uc_mcontext.sc_rdx = regs->tf_rdx; sf.sf_sc.uc_mcontext.sc_rbp = regs->tf_rbp; sf.sf_sc.uc_mcontext.sc_rbx = regs->tf_rbx; sf.sf_sc.uc_mcontext.sc_rcx = regs->tf_rcx; sf.sf_sc.uc_mcontext.sc_rax = regs->tf_rax; sf.sf_sc.uc_mcontext.sc_rip = regs->tf_rip; sf.sf_sc.uc_mcontext.sc_rsp = regs->tf_rsp; sf.sf_sc.uc_mcontext.sc_r8 = regs->tf_r8; sf.sf_sc.uc_mcontext.sc_r9 = regs->tf_r9; sf.sf_sc.uc_mcontext.sc_r10 = regs->tf_r10; sf.sf_sc.uc_mcontext.sc_r11 = regs->tf_r11; sf.sf_sc.uc_mcontext.sc_r12 = regs->tf_r12; sf.sf_sc.uc_mcontext.sc_r13 = regs->tf_r13; sf.sf_sc.uc_mcontext.sc_r14 = regs->tf_r14; sf.sf_sc.uc_mcontext.sc_r15 = regs->tf_r15; sf.sf_sc.uc_mcontext.sc_cs = regs->tf_cs; sf.sf_sc.uc_mcontext.sc_rflags = regs->tf_rflags; sf.sf_sc.uc_mcontext.sc_err = regs->tf_err; sf.sf_sc.uc_mcontext.sc_trapno = bsd_to_linux_trapcode(code); sf.sf_sc.uc_mcontext.sc_cr2 = (register_t)ksi->ksi_addr; /* Allocate space for the signal handler context. */ if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack && SIGISMEMBER(psp->ps_sigonstack, sig)) { sp = (caddr_t)td->td_sigstk.ss_sp + td->td_sigstk.ss_size - sizeof(struct l_rt_sigframe); } else sp = (caddr_t)regs->tf_rsp - sizeof(struct l_rt_sigframe) - 128; /* Align to 16 bytes. */ sfp = (struct l_rt_sigframe *)((unsigned long)sp & ~0xFul); /* Translate the signal. */ sig = bsd_to_linux_signal(sig); /* Build the argument list for the signal handler. */ regs->tf_rdi = sig; /* arg 1 in %rdi */ regs->tf_rax = 0; regs->tf_rsi = (register_t)&sfp->sf_si; /* arg 2 in %rsi */ regs->tf_rdx = (register_t)&sfp->sf_sc; /* arg 3 in %rdx */ /* Fill in POSIX parts. */ siginfo_to_lsiginfo(&ksi->ksi_info, &sf.sf_si, sig); sf.sf_handler = catcher; mtx_unlock(&psp->ps_mtx); PROC_UNLOCK(p); /* Copy the sigframe out to the user's stack. */ if (copyout(&sf, sfp, sizeof(*sfp)) != 0) { PROC_LOCK(p); sigexit(td, SIGILL); } regs->tf_rsp = (long)sfp; regs->tf_rip = linux_rt_sigcode; regs->tf_rflags &= ~(PSL_T | PSL_D); regs->tf_cs = _ucodesel; set_pcb_flags(td->td_pcb, PCB_FULL_IRET); PROC_LOCK(p); mtx_lock(&psp->ps_mtx); } #define LINUX_VSYSCALL_START (-10UL << 20) #define LINUX_VSYSCALL_SZ 1024 const unsigned long linux_vsyscall_vector[] = { LINUX_SYS_gettimeofday, LINUX_SYS_linux_time, LINUX_SYS_linux_getcpu, }; static int linux_vsyscall(struct thread *td) { struct trapframe *frame; uint64_t retqaddr; int code, traced; int error; frame = td->td_frame; /* Check %rip for vsyscall area. */ if (__predict_true(frame->tf_rip < LINUX_VSYSCALL_START)) return (EINVAL); if ((frame->tf_rip & (LINUX_VSYSCALL_SZ - 1)) != 0) return (EINVAL); code = (frame->tf_rip - LINUX_VSYSCALL_START) / LINUX_VSYSCALL_SZ; if (code >= nitems(linux_vsyscall_vector)) return (EINVAL); /* * vsyscall called as callq *(%rax), so we must * use return address from %rsp and also fixup %rsp. */ error = copyin((void *)frame->tf_rsp, &retqaddr, sizeof(retqaddr)); if (error) return (error); frame->tf_rip = retqaddr; frame->tf_rax = linux_vsyscall_vector[code]; frame->tf_rsp += 8; traced = (frame->tf_flags & PSL_T); amd64_syscall(td, traced); return (0); } struct sysentvec elf_linux_sysvec = { .sv_size = LINUX_SYS_MAXSYSCALL, .sv_table = linux_sysent, .sv_transtrap = linux_translate_traps, .sv_fixup = linux_fixup_elf, .sv_sendsig = linux_rt_sendsig, .sv_sigcode = &_binary_linux_locore_o_start, .sv_szsigcode = &linux_szsigcode, .sv_name = "Linux ELF64", .sv_coredump = elf64_coredump, .sv_elf_core_osabi = ELFOSABI_NONE, .sv_elf_core_abi_vendor = LINUX_ABI_VENDOR, .sv_elf_core_prepare_notes = linux64_prepare_notes, .sv_imgact_try = linux_exec_imgact_try, .sv_minsigstksz = LINUX_MINSIGSTKSZ, .sv_minuser = VM_MIN_ADDRESS, .sv_maxuser = VM_MAXUSER_ADDRESS_LA48, .sv_usrstack = USRSTACK_LA48, .sv_psstrings = PS_STRINGS_LA48, .sv_psstringssz = sizeof(struct ps_strings), .sv_stackprot = VM_PROT_ALL, .sv_copyout_auxargs = linux_copyout_auxargs, .sv_copyout_strings = linux_copyout_strings, .sv_setregs = linux_exec_setregs, .sv_fixlimit = NULL, .sv_maxssiz = NULL, .sv_flags = SV_ABI_LINUX | SV_LP64 | SV_SHP | SV_SIG_DISCIGN | SV_SIG_WAITNDQ, .sv_set_syscall_retval = linux_set_syscall_retval, .sv_fetch_syscall_args = linux_fetch_syscall_args, .sv_syscallnames = NULL, .sv_shared_page_base = SHAREDPAGE_LA48, .sv_shared_page_len = PAGE_SIZE, .sv_schedtail = linux_schedtail, .sv_thread_detach = linux_thread_detach, .sv_trap = linux_vsyscall, - .sv_onexec = linux_on_exec, + .sv_onexec = linux_on_exec_vmspace, .sv_onexit = linux_on_exit, .sv_ontdexit = linux_thread_dtor, .sv_setid_allowed = &linux_setid_allowed_query, }; +static int +linux_on_exec_vmspace(struct proc *p, struct image_params *imgp) +{ + + linux_on_exec(p, imgp); + return (0); +} + static void linux_vdso_install(void *param) { amd64_lower_shared_page(&elf_linux_sysvec); linux_szsigcode = (&_binary_linux_locore_o_end - &_binary_linux_locore_o_start); if (linux_szsigcode > elf_linux_sysvec.sv_shared_page_len) panic("Linux invalid vdso size\n"); __elfN(linux_vdso_fixup)(&elf_linux_sysvec); linux_shared_page_obj = __elfN(linux_shared_page_init) (&linux_shared_page_mapping); __elfN(linux_vdso_reloc)(&elf_linux_sysvec); bcopy(elf_linux_sysvec.sv_sigcode, linux_shared_page_mapping, linux_szsigcode); elf_linux_sysvec.sv_shared_page_obj = linux_shared_page_obj; } SYSINIT(elf_linux_vdso_init, SI_SUB_EXEC, SI_ORDER_ANY, linux_vdso_install, NULL); static void linux_vdso_deinstall(void *param) { __elfN(linux_shared_page_fini)(linux_shared_page_obj, linux_shared_page_mapping); } SYSUNINIT(elf_linux_vdso_uninit, SI_SUB_EXEC, SI_ORDER_FIRST, linux_vdso_deinstall, NULL); static char GNULINUX_ABI_VENDOR[] = "GNU"; static int GNULINUX_ABI_DESC = 0; static bool linux_trans_osrel(const Elf_Note *note, int32_t *osrel) { const Elf32_Word *desc; uintptr_t p; p = (uintptr_t)(note + 1); p += roundup2(note->n_namesz, sizeof(Elf32_Addr)); desc = (const Elf32_Word *)p; if (desc[0] != GNULINUX_ABI_DESC) return (false); /* * For Linux we encode osrel using the Linux convention of * (version << 16) | (major << 8) | (minor) * See macro in linux_mib.h */ *osrel = LINUX_KERNVER(desc[1], desc[2], desc[3]); return (true); } static Elf_Brandnote linux64_brandnote = { .hdr.n_namesz = sizeof(GNULINUX_ABI_VENDOR), .hdr.n_descsz = 16, .hdr.n_type = 1, .vendor = GNULINUX_ABI_VENDOR, .flags = BN_TRANSLATE_OSREL, .trans_osrel = linux_trans_osrel }; static Elf64_Brandinfo linux_glibc2brand = { .brand = ELFOSABI_LINUX, .machine = EM_X86_64, .compat_3_brand = "Linux", .emul_path = linux_emul_path, .interp_path = "/lib64/ld-linux-x86-64.so.2", .sysvec = &elf_linux_sysvec, .interp_newpath = NULL, .brand_note = &linux64_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE }; static Elf64_Brandinfo linux_glibc2brandshort = { .brand = ELFOSABI_LINUX, .machine = EM_X86_64, .compat_3_brand = "Linux", .emul_path = linux_emul_path, .interp_path = "/lib64/ld-linux.so.2", .sysvec = &elf_linux_sysvec, .interp_newpath = NULL, .brand_note = &linux64_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE }; static Elf64_Brandinfo linux_muslbrand = { .brand = ELFOSABI_LINUX, .machine = EM_X86_64, .compat_3_brand = "Linux", .emul_path = linux_emul_path, .interp_path = "/lib/ld-musl-x86_64.so.1", .sysvec = &elf_linux_sysvec, .interp_newpath = NULL, .brand_note = &linux64_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE }; Elf64_Brandinfo *linux_brandlist[] = { &linux_glibc2brand, &linux_glibc2brandshort, &linux_muslbrand, NULL }; static int linux64_elf_modevent(module_t mod, int type, void *data) { Elf64_Brandinfo **brandinfo; int error; struct linux_ioctl_handler **lihp; error = 0; switch(type) { case MOD_LOAD: for (brandinfo = &linux_brandlist[0]; *brandinfo != NULL; ++brandinfo) if (elf64_insert_brand_entry(*brandinfo) < 0) error = EINVAL; if (error == 0) { SET_FOREACH(lihp, linux_ioctl_handler_set) linux_ioctl_register_handler(*lihp); stclohz = (stathz ? stathz : hz); if (bootverbose) printf("Linux x86-64 ELF exec handler installed\n"); } else printf("cannot insert Linux x86-64 ELF brand handler\n"); break; case MOD_UNLOAD: for (brandinfo = &linux_brandlist[0]; *brandinfo != NULL; ++brandinfo) if (elf64_brand_inuse(*brandinfo)) error = EBUSY; if (error == 0) { for (brandinfo = &linux_brandlist[0]; *brandinfo != NULL; ++brandinfo) if (elf64_remove_brand_entry(*brandinfo) < 0) error = EINVAL; } if (error == 0) { SET_FOREACH(lihp, linux_ioctl_handler_set) linux_ioctl_unregister_handler(*lihp); if (bootverbose) printf("Linux ELF exec handler removed\n"); } else printf("Could not deinstall ELF interpreter entry\n"); break; default: return (EOPNOTSUPP); } return (error); } static moduledata_t linux64_elf_mod = { "linux64elf", linux64_elf_modevent, 0 }; DECLARE_MODULE_TIED(linux64elf, linux64_elf_mod, SI_SUB_EXEC, SI_ORDER_ANY); MODULE_DEPEND(linux64elf, linux_common, 1, 1, 1); FEATURE(linux64, "Linux 64bit support"); diff --git a/sys/amd64/linux32/linux32_sysvec.c b/sys/amd64/linux32/linux32_sysvec.c index 398ac51d4203..2a3fde78852d 100644 --- a/sys/amd64/linux32/linux32_sysvec.c +++ b/sys/amd64/linux32/linux32_sysvec.c @@ -1,1107 +1,1117 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2004 Tim J. Robbins * Copyright (c) 2003 Peter Wemm * Copyright (c) 2002 Doug Rabson * Copyright (c) 1998-1999 Andrew Gallatin * Copyright (c) 1994-1996 Søren Schmidt * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "opt_compat.h" #include __FBSDID("$FreeBSD$"); #ifndef COMPAT_FREEBSD32 #error "Unable to compile Linux-emulator due to missing COMPAT_FREEBSD32 option!" #endif #define __ELF_WORD_SIZE 32 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_VERSION(linux, 1); #define LINUX32_MAXUSER ((1ul << 32) - PAGE_SIZE) #define LINUX32_SHAREDPAGE (LINUX32_MAXUSER - PAGE_SIZE) #define LINUX32_USRSTACK LINUX32_SHAREDPAGE static int linux_szsigcode; static vm_object_t linux_shared_page_obj; static char *linux_shared_page_mapping; extern char _binary_linux32_locore_o_start; extern char _binary_linux32_locore_o_end; extern struct sysent linux32_sysent[LINUX32_SYS_MAXSYSCALL]; SET_DECLARE(linux_ioctl_handler_set, struct linux_ioctl_handler); static int linux_fixup_elf(uintptr_t *stack_base, struct image_params *iparams); static int linux_copyout_strings(struct image_params *imgp, uintptr_t *stack_base); static void linux_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask); static void linux_exec_setregs(struct thread *td, struct image_params *imgp, uintptr_t stack); +static int linux_on_exec_vmspace(struct proc *p, + struct image_params *imgp); static void linux32_fixlimit(struct rlimit *rl, int which); static bool linux32_trans_osrel(const Elf_Note *note, int32_t *osrel); static void linux_vdso_install(void *param); static void linux_vdso_deinstall(void *param); static void linux32_set_syscall_retval(struct thread *td, int error); #define LINUX_T_UNKNOWN 255 static int _bsd_to_linux_trapcode[] = { LINUX_T_UNKNOWN, /* 0 */ 6, /* 1 T_PRIVINFLT */ LINUX_T_UNKNOWN, /* 2 */ 3, /* 3 T_BPTFLT */ LINUX_T_UNKNOWN, /* 4 */ LINUX_T_UNKNOWN, /* 5 */ 16, /* 6 T_ARITHTRAP */ 254, /* 7 T_ASTFLT */ LINUX_T_UNKNOWN, /* 8 */ 13, /* 9 T_PROTFLT */ 1, /* 10 T_TRCTRAP */ LINUX_T_UNKNOWN, /* 11 */ 14, /* 12 T_PAGEFLT */ LINUX_T_UNKNOWN, /* 13 */ 17, /* 14 T_ALIGNFLT */ LINUX_T_UNKNOWN, /* 15 */ LINUX_T_UNKNOWN, /* 16 */ LINUX_T_UNKNOWN, /* 17 */ 0, /* 18 T_DIVIDE */ 2, /* 19 T_NMI */ 4, /* 20 T_OFLOW */ 5, /* 21 T_BOUND */ 7, /* 22 T_DNA */ 8, /* 23 T_DOUBLEFLT */ 9, /* 24 T_FPOPFLT */ 10, /* 25 T_TSSFLT */ 11, /* 26 T_SEGNPFLT */ 12, /* 27 T_STKFLT */ 18, /* 28 T_MCHK */ 19, /* 29 T_XMMFLT */ 15 /* 30 T_RESERVED */ }; #define bsd_to_linux_trapcode(code) \ ((code)auxargs; argarray = pos = malloc(LINUX_AT_COUNT * sizeof(*pos), M_TEMP, M_WAITOK | M_ZERO); issetugid = imgp->proc->p_flag & P_SUGID ? 1 : 0; AUXARGS_ENTRY(pos, LINUX_AT_SYSINFO, linux32_vsyscall); AUXARGS_ENTRY(pos, LINUX_AT_SYSINFO_EHDR, imgp->proc->p_sysent->sv_shared_page_base); AUXARGS_ENTRY(pos, LINUX_AT_HWCAP, cpu_feature); AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); /* * Do not export AT_CLKTCK when emulating Linux kernel prior to 2.4.0, * as it has appeared in the 2.4.0-rc7 first time. * Being exported, AT_CLKTCK is returned by sysconf(_SC_CLK_TCK), * glibc falls back to the hard-coded CLK_TCK value when aux entry * is not present. * Also see linux_times() implementation. */ if (linux_kernver(curthread) >= LINUX_KERNVER_2004000) AUXARGS_ENTRY(pos, LINUX_AT_CLKTCK, stclohz); AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); AUXARGS_ENTRY(pos, AT_PHENT, args->phent); AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); AUXARGS_ENTRY(pos, AT_BASE, args->base); AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); AUXARGS_ENTRY(pos, AT_UID, imgp->proc->p_ucred->cr_ruid); AUXARGS_ENTRY(pos, AT_EUID, imgp->proc->p_ucred->cr_svuid); AUXARGS_ENTRY(pos, AT_GID, imgp->proc->p_ucred->cr_rgid); AUXARGS_ENTRY(pos, AT_EGID, imgp->proc->p_ucred->cr_svgid); AUXARGS_ENTRY(pos, LINUX_AT_SECURE, issetugid); AUXARGS_ENTRY(pos, LINUX_AT_RANDOM, PTROUT(imgp->canary)); AUXARGS_ENTRY(pos, LINUX_AT_HWCAP2, 0); if (imgp->execpathp != 0) AUXARGS_ENTRY(pos, LINUX_AT_EXECFN, PTROUT(imgp->execpathp)); if (args->execfd != -1) AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); AUXARGS_ENTRY(pos, LINUX_AT_PLATFORM, PTROUT(linux_platform)); AUXARGS_ENTRY(pos, AT_NULL, 0); free(imgp->auxargs, M_TEMP); imgp->auxargs = NULL; KASSERT(pos - argarray <= LINUX_AT_COUNT, ("Too many auxargs")); error = copyout(argarray, (void *)base, sizeof(*argarray) * LINUX_AT_COUNT); free(argarray, M_TEMP); return (error); } static int linux_fixup_elf(uintptr_t *stack_base, struct image_params *imgp) { Elf32_Addr *base; base = (Elf32_Addr *)*stack_base; base--; if (suword32(base, (uint32_t)imgp->args->argc) == -1) return (EFAULT); *stack_base = (uintptr_t)base; return (0); } static void linux_rt_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask) { struct thread *td = curthread; struct proc *p = td->td_proc; struct sigacts *psp; struct trapframe *regs; struct l_rt_sigframe *fp, frame; int oonstack; int sig; int code; sig = ksi->ksi_signo; code = ksi->ksi_code; PROC_LOCK_ASSERT(p, MA_OWNED); psp = p->p_sigacts; mtx_assert(&psp->ps_mtx, MA_OWNED); regs = td->td_frame; oonstack = sigonstack(regs->tf_rsp); /* Allocate space for the signal handler context. */ if ((td->td_pflags & TDP_ALTSTACK) && !oonstack && SIGISMEMBER(psp->ps_sigonstack, sig)) { fp = (struct l_rt_sigframe *)((uintptr_t)td->td_sigstk.ss_sp + td->td_sigstk.ss_size - sizeof(struct l_rt_sigframe)); } else fp = (struct l_rt_sigframe *)regs->tf_rsp - 1; mtx_unlock(&psp->ps_mtx); /* Build the argument list for the signal handler. */ sig = bsd_to_linux_signal(sig); bzero(&frame, sizeof(frame)); frame.sf_handler = PTROUT(catcher); frame.sf_sig = sig; frame.sf_siginfo = PTROUT(&fp->sf_si); frame.sf_ucontext = PTROUT(&fp->sf_sc); /* Fill in POSIX parts. */ siginfo_to_lsiginfo(&ksi->ksi_info, &frame.sf_si, sig); /* * Build the signal context to be used by sigreturn and libgcc unwind. */ frame.sf_sc.uc_flags = 0; /* XXX ??? */ frame.sf_sc.uc_link = 0; /* XXX ??? */ frame.sf_sc.uc_stack.ss_sp = PTROUT(td->td_sigstk.ss_sp); frame.sf_sc.uc_stack.ss_size = td->td_sigstk.ss_size; frame.sf_sc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ? ((oonstack) ? LINUX_SS_ONSTACK : 0) : LINUX_SS_DISABLE; PROC_UNLOCK(p); bsd_to_linux_sigset(mask, &frame.sf_sc.uc_sigmask); frame.sf_sc.uc_mcontext.sc_mask = frame.sf_sc.uc_sigmask.__mask; frame.sf_sc.uc_mcontext.sc_edi = regs->tf_rdi; frame.sf_sc.uc_mcontext.sc_esi = regs->tf_rsi; frame.sf_sc.uc_mcontext.sc_ebp = regs->tf_rbp; frame.sf_sc.uc_mcontext.sc_ebx = regs->tf_rbx; frame.sf_sc.uc_mcontext.sc_esp = regs->tf_rsp; frame.sf_sc.uc_mcontext.sc_edx = regs->tf_rdx; frame.sf_sc.uc_mcontext.sc_ecx = regs->tf_rcx; frame.sf_sc.uc_mcontext.sc_eax = regs->tf_rax; frame.sf_sc.uc_mcontext.sc_eip = regs->tf_rip; frame.sf_sc.uc_mcontext.sc_cs = regs->tf_cs; frame.sf_sc.uc_mcontext.sc_gs = regs->tf_gs; frame.sf_sc.uc_mcontext.sc_fs = regs->tf_fs; frame.sf_sc.uc_mcontext.sc_es = regs->tf_es; frame.sf_sc.uc_mcontext.sc_ds = regs->tf_ds; frame.sf_sc.uc_mcontext.sc_eflags = regs->tf_rflags; frame.sf_sc.uc_mcontext.sc_esp_at_signal = regs->tf_rsp; frame.sf_sc.uc_mcontext.sc_ss = regs->tf_ss; frame.sf_sc.uc_mcontext.sc_err = regs->tf_err; frame.sf_sc.uc_mcontext.sc_cr2 = (u_int32_t)(uintptr_t)ksi->ksi_addr; frame.sf_sc.uc_mcontext.sc_trapno = bsd_to_linux_trapcode(code); if (copyout(&frame, fp, sizeof(frame)) != 0) { /* * Process has trashed its stack; give it an illegal * instruction to halt it in its tracks. */ PROC_LOCK(p); sigexit(td, SIGILL); } /* Build context to run handler in. */ regs->tf_rsp = PTROUT(fp); regs->tf_rip = linux32_rt_sigcode; regs->tf_rflags &= ~(PSL_T | PSL_D); regs->tf_cs = _ucode32sel; regs->tf_ss = _udatasel; regs->tf_ds = _udatasel; regs->tf_es = _udatasel; regs->tf_fs = _ufssel; regs->tf_gs = _ugssel; regs->tf_flags = TF_HASSEGS; set_pcb_flags(td->td_pcb, PCB_FULL_IRET); PROC_LOCK(p); mtx_lock(&psp->ps_mtx); } /* * Send an interrupt to process. * * Stack is set up to allow sigcode stored * in u. to call routine, followed by kcall * to sigreturn routine below. After sigreturn * resets the signal mask, the stack, and the * frame pointer, it returns to the user * specified pc, psl. */ static void linux_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask) { struct thread *td = curthread; struct proc *p = td->td_proc; struct sigacts *psp; struct trapframe *regs; struct l_sigframe *fp, frame; l_sigset_t lmask; int oonstack; int sig, code; sig = ksi->ksi_signo; code = ksi->ksi_code; PROC_LOCK_ASSERT(p, MA_OWNED); psp = p->p_sigacts; mtx_assert(&psp->ps_mtx, MA_OWNED); if (SIGISMEMBER(psp->ps_siginfo, sig)) { /* Signal handler installed with SA_SIGINFO. */ linux_rt_sendsig(catcher, ksi, mask); return; } regs = td->td_frame; oonstack = sigonstack(regs->tf_rsp); /* Allocate space for the signal handler context. */ if ((td->td_pflags & TDP_ALTSTACK) && !oonstack && SIGISMEMBER(psp->ps_sigonstack, sig)) { fp = (struct l_sigframe *)((uintptr_t)td->td_sigstk.ss_sp + td->td_sigstk.ss_size - sizeof(struct l_sigframe)); } else fp = (struct l_sigframe *)regs->tf_rsp - 1; mtx_unlock(&psp->ps_mtx); PROC_UNLOCK(p); /* Build the argument list for the signal handler. */ sig = bsd_to_linux_signal(sig); bzero(&frame, sizeof(frame)); frame.sf_handler = PTROUT(catcher); frame.sf_sig = sig; bsd_to_linux_sigset(mask, &lmask); /* Build the signal context to be used by sigreturn. */ frame.sf_sc.sc_mask = lmask.__mask; frame.sf_sc.sc_gs = regs->tf_gs; frame.sf_sc.sc_fs = regs->tf_fs; frame.sf_sc.sc_es = regs->tf_es; frame.sf_sc.sc_ds = regs->tf_ds; frame.sf_sc.sc_edi = regs->tf_rdi; frame.sf_sc.sc_esi = regs->tf_rsi; frame.sf_sc.sc_ebp = regs->tf_rbp; frame.sf_sc.sc_ebx = regs->tf_rbx; frame.sf_sc.sc_esp = regs->tf_rsp; frame.sf_sc.sc_edx = regs->tf_rdx; frame.sf_sc.sc_ecx = regs->tf_rcx; frame.sf_sc.sc_eax = regs->tf_rax; frame.sf_sc.sc_eip = regs->tf_rip; frame.sf_sc.sc_cs = regs->tf_cs; frame.sf_sc.sc_eflags = regs->tf_rflags; frame.sf_sc.sc_esp_at_signal = regs->tf_rsp; frame.sf_sc.sc_ss = regs->tf_ss; frame.sf_sc.sc_err = regs->tf_err; frame.sf_sc.sc_cr2 = (u_int32_t)(uintptr_t)ksi->ksi_addr; frame.sf_sc.sc_trapno = bsd_to_linux_trapcode(code); frame.sf_extramask[0] = lmask.__mask; if (copyout(&frame, fp, sizeof(frame)) != 0) { /* * Process has trashed its stack; give it an illegal * instruction to halt it in its tracks. */ PROC_LOCK(p); sigexit(td, SIGILL); } /* Build context to run handler in. */ regs->tf_rsp = PTROUT(fp); regs->tf_rip = linux32_sigcode; regs->tf_rflags &= ~(PSL_T | PSL_D); regs->tf_cs = _ucode32sel; regs->tf_ss = _udatasel; regs->tf_ds = _udatasel; regs->tf_es = _udatasel; regs->tf_fs = _ufssel; regs->tf_gs = _ugssel; regs->tf_flags = TF_HASSEGS; set_pcb_flags(td->td_pcb, PCB_FULL_IRET); PROC_LOCK(p); mtx_lock(&psp->ps_mtx); } /* * System call to cleanup state after a signal * has been taken. Reset signal mask and * stack state from context left by sendsig (above). * Return to previous pc and psl as specified by * context left by sendsig. Check carefully to * make sure that the user has not modified the * psl to gain improper privileges or to cause * a machine fault. */ int linux_sigreturn(struct thread *td, struct linux_sigreturn_args *args) { struct l_sigframe frame; struct trapframe *regs; sigset_t bmask; l_sigset_t lmask; int eflags; ksiginfo_t ksi; regs = td->td_frame; /* * The trampoline code hands us the sigframe. * It is unsafe to keep track of it ourselves, in the event that a * program jumps out of a signal handler. */ if (copyin(args->sfp, &frame, sizeof(frame)) != 0) return (EFAULT); /* Check for security violations. */ eflags = frame.sf_sc.sc_eflags; if (!EFL_SECURE(eflags, regs->tf_rflags)) return(EINVAL); /* * Don't allow users to load a valid privileged %cs. Let the * hardware check for invalid selectors, excess privilege in * other selectors, invalid %eip's and invalid %esp's. */ if (!CS_SECURE(frame.sf_sc.sc_cs)) { ksiginfo_init_trap(&ksi); ksi.ksi_signo = SIGBUS; ksi.ksi_code = BUS_OBJERR; ksi.ksi_trapno = T_PROTFLT; ksi.ksi_addr = (void *)regs->tf_rip; trapsignal(td, &ksi); return(EINVAL); } lmask.__mask = frame.sf_sc.sc_mask; lmask.__mask = frame.sf_extramask[0]; linux_to_bsd_sigset(&lmask, &bmask); kern_sigprocmask(td, SIG_SETMASK, &bmask, NULL, 0); /* Restore signal context. */ regs->tf_rdi = frame.sf_sc.sc_edi; regs->tf_rsi = frame.sf_sc.sc_esi; regs->tf_rbp = frame.sf_sc.sc_ebp; regs->tf_rbx = frame.sf_sc.sc_ebx; regs->tf_rdx = frame.sf_sc.sc_edx; regs->tf_rcx = frame.sf_sc.sc_ecx; regs->tf_rax = frame.sf_sc.sc_eax; regs->tf_rip = frame.sf_sc.sc_eip; regs->tf_cs = frame.sf_sc.sc_cs; regs->tf_ds = frame.sf_sc.sc_ds; regs->tf_es = frame.sf_sc.sc_es; regs->tf_fs = frame.sf_sc.sc_fs; regs->tf_gs = frame.sf_sc.sc_gs; regs->tf_rflags = eflags; regs->tf_rsp = frame.sf_sc.sc_esp_at_signal; regs->tf_ss = frame.sf_sc.sc_ss; set_pcb_flags(td->td_pcb, PCB_FULL_IRET); return (EJUSTRETURN); } /* * System call to cleanup state after a signal * has been taken. Reset signal mask and * stack state from context left by rt_sendsig (above). * Return to previous pc and psl as specified by * context left by sendsig. Check carefully to * make sure that the user has not modified the * psl to gain improper privileges or to cause * a machine fault. */ int linux_rt_sigreturn(struct thread *td, struct linux_rt_sigreturn_args *args) { struct l_ucontext uc; struct l_sigcontext *context; sigset_t bmask; l_stack_t *lss; stack_t ss; struct trapframe *regs; int eflags; ksiginfo_t ksi; regs = td->td_frame; /* * The trampoline code hands us the ucontext. * It is unsafe to keep track of it ourselves, in the event that a * program jumps out of a signal handler. */ if (copyin(args->ucp, &uc, sizeof(uc)) != 0) return (EFAULT); context = &uc.uc_mcontext; /* Check for security violations. */ eflags = context->sc_eflags; if (!EFL_SECURE(eflags, regs->tf_rflags)) return(EINVAL); /* * Don't allow users to load a valid privileged %cs. Let the * hardware check for invalid selectors, excess privilege in * other selectors, invalid %eip's and invalid %esp's. */ if (!CS_SECURE(context->sc_cs)) { ksiginfo_init_trap(&ksi); ksi.ksi_signo = SIGBUS; ksi.ksi_code = BUS_OBJERR; ksi.ksi_trapno = T_PROTFLT; ksi.ksi_addr = (void *)regs->tf_rip; trapsignal(td, &ksi); return(EINVAL); } linux_to_bsd_sigset(&uc.uc_sigmask, &bmask); kern_sigprocmask(td, SIG_SETMASK, &bmask, NULL, 0); /* * Restore signal context */ regs->tf_gs = context->sc_gs; regs->tf_fs = context->sc_fs; regs->tf_es = context->sc_es; regs->tf_ds = context->sc_ds; regs->tf_rdi = context->sc_edi; regs->tf_rsi = context->sc_esi; regs->tf_rbp = context->sc_ebp; regs->tf_rbx = context->sc_ebx; regs->tf_rdx = context->sc_edx; regs->tf_rcx = context->sc_ecx; regs->tf_rax = context->sc_eax; regs->tf_rip = context->sc_eip; regs->tf_cs = context->sc_cs; regs->tf_rflags = eflags; regs->tf_rsp = context->sc_esp_at_signal; regs->tf_ss = context->sc_ss; set_pcb_flags(td->td_pcb, PCB_FULL_IRET); /* * call sigaltstack & ignore results.. */ lss = &uc.uc_stack; ss.ss_sp = PTRIN(lss->ss_sp); ss.ss_size = lss->ss_size; ss.ss_flags = linux_to_bsd_sigaltstack(lss->ss_flags); (void)kern_sigaltstack(td, &ss, NULL); return (EJUSTRETURN); } static int linux32_fetch_syscall_args(struct thread *td) { struct proc *p; struct trapframe *frame; struct syscall_args *sa; p = td->td_proc; frame = td->td_frame; sa = &td->td_sa; sa->args[0] = frame->tf_rbx; sa->args[1] = frame->tf_rcx; sa->args[2] = frame->tf_rdx; sa->args[3] = frame->tf_rsi; sa->args[4] = frame->tf_rdi; sa->args[5] = frame->tf_rbp; /* Unconfirmed */ sa->code = frame->tf_rax; if (sa->code >= p->p_sysent->sv_size) /* nosys */ sa->callp = &p->p_sysent->sv_table[p->p_sysent->sv_size - 1]; else sa->callp = &p->p_sysent->sv_table[sa->code]; td->td_retval[0] = 0; td->td_retval[1] = frame->tf_rdx; return (0); } static void linux32_set_syscall_retval(struct thread *td, int error) { struct trapframe *frame = td->td_frame; cpu_set_syscall_retval(td, error); if (__predict_false(error != 0)) { if (error != ERESTART && error != EJUSTRETURN) frame->tf_rax = bsd_to_linux_errno(error); } } /* * Clear registers on exec * XXX copied from ia32_signal.c. */ static void linux_exec_setregs(struct thread *td, struct image_params *imgp, uintptr_t stack) { struct trapframe *regs = td->td_frame; struct pcb *pcb = td->td_pcb; register_t saved_rflags; regs = td->td_frame; pcb = td->td_pcb; if (td->td_proc->p_md.md_ldt != NULL) user_ldt_free(td); critical_enter(); wrmsr(MSR_FSBASE, 0); wrmsr(MSR_KGSBASE, 0); /* User value while we're in the kernel */ pcb->pcb_fsbase = 0; pcb->pcb_gsbase = 0; critical_exit(); pcb->pcb_initial_fpucw = __LINUX_NPXCW__; saved_rflags = regs->tf_rflags & PSL_T; bzero((char *)regs, sizeof(struct trapframe)); regs->tf_rip = imgp->entry_addr; regs->tf_rsp = stack; regs->tf_rflags = PSL_USER | saved_rflags; regs->tf_gs = _ugssel; regs->tf_fs = _ufssel; regs->tf_es = _udatasel; regs->tf_ds = _udatasel; regs->tf_ss = _udatasel; regs->tf_flags = TF_HASSEGS; regs->tf_cs = _ucode32sel; regs->tf_rbx = (register_t)imgp->ps_strings; x86_clear_dbregs(pcb); fpstate_drop(td); /* Do full restore on return so that we can change to a different %cs */ set_pcb_flags(pcb, PCB_32BIT | PCB_FULL_IRET); } /* * XXX copied from ia32_sysvec.c. */ static int linux_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) { int argc, envc, error; u_int32_t *vectp; char *stringp; uintptr_t destp, ustringp; struct linux32_ps_strings *arginfo; char canary[LINUX_AT_RANDOM_LEN]; size_t execpath_len; arginfo = (struct linux32_ps_strings *)LINUX32_PS_STRINGS; destp = (uintptr_t)arginfo; if (imgp->execpath != NULL && imgp->auxargs != NULL) { execpath_len = strlen(imgp->execpath) + 1; destp -= execpath_len; destp = rounddown2(destp, sizeof(uint32_t)); imgp->execpathp = (void *)destp; error = copyout(imgp->execpath, imgp->execpathp, execpath_len); if (error != 0) return (error); } /* Prepare the canary for SSP. */ arc4rand(canary, sizeof(canary), 0); destp -= roundup(sizeof(canary), sizeof(uint32_t)); imgp->canary = (void *)destp; error = copyout(canary, imgp->canary, sizeof(canary)); if (error != 0) return (error); /* Allocate room for the argument and environment strings. */ destp -= ARG_MAX - imgp->args->stringspace; destp = rounddown2(destp, sizeof(uint32_t)); ustringp = destp; if (imgp->auxargs) { /* * Allocate room on the stack for the ELF auxargs * array. It has LINUX_AT_COUNT entries. */ destp -= LINUX_AT_COUNT * sizeof(Elf32_Auxinfo); destp = rounddown2(destp, sizeof(uint32_t)); } vectp = (uint32_t *)destp; /* * Allocate room for the argv[] and env vectors including the * terminating NULL pointers. */ vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; /* vectp also becomes our initial stack base. */ *stack_base = (uintptr_t)vectp; stringp = imgp->args->begin_argv; argc = imgp->args->argc; envc = imgp->args->envc; /* Copy out strings - arguments and environment. */ error = copyout(stringp, (void *)ustringp, ARG_MAX - imgp->args->stringspace); if (error != 0) return (error); /* Fill in "ps_strings" struct for ps, w, etc. */ if (suword32(&arginfo->ps_argvstr, (uint32_t)(intptr_t)vectp) != 0 || suword32(&arginfo->ps_nargvstr, argc) != 0) return (EFAULT); /* Fill in argument portion of vector table. */ for (; argc > 0; --argc) { if (suword32(vectp++, ustringp) != 0) return (EFAULT); while (*stringp++ != 0) ustringp++; ustringp++; } /* A null vector table pointer separates the argp's from the envp's. */ if (suword32(vectp++, 0) != 0) return (EFAULT); if (suword32(&arginfo->ps_envstr, (uint32_t)(intptr_t)vectp) != 0 || suword32(&arginfo->ps_nenvstr, envc) != 0) return (EFAULT); /* Fill in environment portion of vector table. */ for (; envc > 0; --envc) { if (suword32(vectp++, ustringp) != 0) return (EFAULT); while (*stringp++ != 0) ustringp++; ustringp++; } /* The end of the vector table is a null pointer. */ if (suword32(vectp, 0) != 0) return (EFAULT); if (imgp->auxargs) { vectp++; error = imgp->sysent->sv_copyout_auxargs(imgp, (uintptr_t)vectp); if (error != 0) return (error); } return (0); } static SYSCTL_NODE(_compat, OID_AUTO, linux32, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "32-bit Linux emulation"); static u_long linux32_maxdsiz = LINUX32_MAXDSIZ; SYSCTL_ULONG(_compat_linux32, OID_AUTO, maxdsiz, CTLFLAG_RW, &linux32_maxdsiz, 0, ""); static u_long linux32_maxssiz = LINUX32_MAXSSIZ; SYSCTL_ULONG(_compat_linux32, OID_AUTO, maxssiz, CTLFLAG_RW, &linux32_maxssiz, 0, ""); static u_long linux32_maxvmem = LINUX32_MAXVMEM; SYSCTL_ULONG(_compat_linux32, OID_AUTO, maxvmem, CTLFLAG_RW, &linux32_maxvmem, 0, ""); static void linux32_fixlimit(struct rlimit *rl, int which) { switch (which) { case RLIMIT_DATA: if (linux32_maxdsiz != 0) { if (rl->rlim_cur > linux32_maxdsiz) rl->rlim_cur = linux32_maxdsiz; if (rl->rlim_max > linux32_maxdsiz) rl->rlim_max = linux32_maxdsiz; } break; case RLIMIT_STACK: if (linux32_maxssiz != 0) { if (rl->rlim_cur > linux32_maxssiz) rl->rlim_cur = linux32_maxssiz; if (rl->rlim_max > linux32_maxssiz) rl->rlim_max = linux32_maxssiz; } break; case RLIMIT_VMEM: if (linux32_maxvmem != 0) { if (rl->rlim_cur > linux32_maxvmem) rl->rlim_cur = linux32_maxvmem; if (rl->rlim_max > linux32_maxvmem) rl->rlim_max = linux32_maxvmem; } break; } } struct sysentvec elf_linux_sysvec = { .sv_size = LINUX32_SYS_MAXSYSCALL, .sv_table = linux32_sysent, .sv_transtrap = linux_translate_traps, .sv_fixup = linux_fixup_elf, .sv_sendsig = linux_sendsig, .sv_sigcode = &_binary_linux32_locore_o_start, .sv_szsigcode = &linux_szsigcode, .sv_name = "Linux ELF32", .sv_coredump = elf32_coredump, .sv_elf_core_osabi = ELFOSABI_NONE, .sv_elf_core_abi_vendor = LINUX_ABI_VENDOR, .sv_elf_core_prepare_notes = linux32_prepare_notes, .sv_imgact_try = linux_exec_imgact_try, .sv_minsigstksz = LINUX_MINSIGSTKSZ, .sv_minuser = VM_MIN_ADDRESS, .sv_maxuser = LINUX32_MAXUSER, .sv_usrstack = LINUX32_USRSTACK, .sv_psstrings = LINUX32_PS_STRINGS, .sv_psstringssz = sizeof(struct linux32_ps_strings), .sv_stackprot = VM_PROT_ALL, .sv_copyout_auxargs = linux_copyout_auxargs, .sv_copyout_strings = linux_copyout_strings, .sv_setregs = linux_exec_setregs, .sv_fixlimit = linux32_fixlimit, .sv_maxssiz = &linux32_maxssiz, .sv_flags = SV_ABI_LINUX | SV_ILP32 | SV_IA32 | SV_SHP | SV_SIG_DISCIGN | SV_SIG_WAITNDQ, .sv_set_syscall_retval = linux32_set_syscall_retval, .sv_fetch_syscall_args = linux32_fetch_syscall_args, .sv_syscallnames = NULL, .sv_shared_page_base = LINUX32_SHAREDPAGE, .sv_shared_page_len = PAGE_SIZE, .sv_schedtail = linux_schedtail, .sv_thread_detach = linux_thread_detach, .sv_trap = NULL, - .sv_onexec = linux_on_exec, + .sv_onexec = linux_on_exec_vmspace, .sv_onexit = linux_on_exit, .sv_ontdexit = linux_thread_dtor, .sv_setid_allowed = &linux_setid_allowed_query, }; +static int +linux_on_exec_vmspace(struct proc *p, struct image_params *imgp) +{ + + linux_on_exec(p, imgp); + return (0); +} + static void linux_vdso_install(void *param) { linux_szsigcode = (&_binary_linux32_locore_o_end - &_binary_linux32_locore_o_start); if (linux_szsigcode > elf_linux_sysvec.sv_shared_page_len) panic("Linux invalid vdso size\n"); __elfN(linux_vdso_fixup)(&elf_linux_sysvec); linux_shared_page_obj = __elfN(linux_shared_page_init) (&linux_shared_page_mapping); __elfN(linux_vdso_reloc)(&elf_linux_sysvec); bcopy(elf_linux_sysvec.sv_sigcode, linux_shared_page_mapping, linux_szsigcode); elf_linux_sysvec.sv_shared_page_obj = linux_shared_page_obj; } SYSINIT(elf_linux_vdso_init, SI_SUB_EXEC, SI_ORDER_ANY, linux_vdso_install, NULL); static void linux_vdso_deinstall(void *param) { __elfN(linux_shared_page_fini)(linux_shared_page_obj, linux_shared_page_mapping); } SYSUNINIT(elf_linux_vdso_uninit, SI_SUB_EXEC, SI_ORDER_FIRST, linux_vdso_deinstall, NULL); static char GNU_ABI_VENDOR[] = "GNU"; static int GNULINUX_ABI_DESC = 0; static bool linux32_trans_osrel(const Elf_Note *note, int32_t *osrel) { const Elf32_Word *desc; uintptr_t p; p = (uintptr_t)(note + 1); p += roundup2(note->n_namesz, sizeof(Elf32_Addr)); desc = (const Elf32_Word *)p; if (desc[0] != GNULINUX_ABI_DESC) return (false); /* * For Linux we encode osrel using the Linux convention of * (version << 16) | (major << 8) | (minor) * See macro in linux_mib.h */ *osrel = LINUX_KERNVER(desc[1], desc[2], desc[3]); return (true); } static Elf_Brandnote linux32_brandnote = { .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), .hdr.n_descsz = 16, /* XXX at least 16 */ .hdr.n_type = 1, .vendor = GNU_ABI_VENDOR, .flags = BN_TRANSLATE_OSREL, .trans_osrel = linux32_trans_osrel }; static Elf32_Brandinfo linux_brand = { .brand = ELFOSABI_LINUX, .machine = EM_386, .compat_3_brand = "Linux", .emul_path = linux_emul_path, .interp_path = "/lib/ld-linux.so.1", .sysvec = &elf_linux_sysvec, .interp_newpath = NULL, .brand_note = &linux32_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE }; static Elf32_Brandinfo linux_glibc2brand = { .brand = ELFOSABI_LINUX, .machine = EM_386, .compat_3_brand = "Linux", .emul_path = linux_emul_path, .interp_path = "/lib/ld-linux.so.2", .sysvec = &elf_linux_sysvec, .interp_newpath = NULL, .brand_note = &linux32_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE }; static Elf32_Brandinfo linux_muslbrand = { .brand = ELFOSABI_LINUX, .machine = EM_386, .compat_3_brand = "Linux", .emul_path = linux_emul_path, .interp_path = "/lib/ld-musl-i386.so.1", .sysvec = &elf_linux_sysvec, .interp_newpath = NULL, .brand_note = &linux32_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE }; Elf32_Brandinfo *linux_brandlist[] = { &linux_brand, &linux_glibc2brand, &linux_muslbrand, NULL }; static int linux_elf_modevent(module_t mod, int type, void *data) { Elf32_Brandinfo **brandinfo; int error; struct linux_ioctl_handler **lihp; error = 0; switch(type) { case MOD_LOAD: for (brandinfo = &linux_brandlist[0]; *brandinfo != NULL; ++brandinfo) if (elf32_insert_brand_entry(*brandinfo) < 0) error = EINVAL; if (error == 0) { SET_FOREACH(lihp, linux_ioctl_handler_set) linux32_ioctl_register_handler(*lihp); stclohz = (stathz ? stathz : hz); if (bootverbose) printf("Linux ELF exec handler installed\n"); } else printf("cannot insert Linux ELF brand handler\n"); break; case MOD_UNLOAD: for (brandinfo = &linux_brandlist[0]; *brandinfo != NULL; ++brandinfo) if (elf32_brand_inuse(*brandinfo)) error = EBUSY; if (error == 0) { for (brandinfo = &linux_brandlist[0]; *brandinfo != NULL; ++brandinfo) if (elf32_remove_brand_entry(*brandinfo) < 0) error = EINVAL; } if (error == 0) { SET_FOREACH(lihp, linux_ioctl_handler_set) linux32_ioctl_unregister_handler(*lihp); if (bootverbose) printf("Linux ELF exec handler removed\n"); } else printf("Could not deinstall ELF interpreter entry\n"); break; default: return (EOPNOTSUPP); } return (error); } static moduledata_t linux_elf_mod = { "linuxelf", linux_elf_modevent, 0 }; DECLARE_MODULE_TIED(linuxelf, linux_elf_mod, SI_SUB_EXEC, SI_ORDER_ANY); MODULE_DEPEND(linuxelf, linux_common, 1, 1, 1); FEATURE(linux, "Linux 32bit support"); diff --git a/sys/arm64/linux/linux_sysvec.c b/sys/arm64/linux/linux_sysvec.c index 1b815b8ac0f2..44f4ffab5286 100644 --- a/sys/arm64/linux/linux_sysvec.c +++ b/sys/arm64/linux/linux_sysvec.c @@ -1,577 +1,587 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1994-1996 Søren Schmidt * Copyright (c) 2018 Turing Robotic Industries Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef VFP #include #endif MODULE_VERSION(linux64elf, 1); static int linux_szsigcode; static vm_object_t linux_shared_page_obj; static char *linux_shared_page_mapping; extern char _binary_linux_locore_o_start; extern char _binary_linux_locore_o_end; extern struct sysent linux_sysent[LINUX_SYS_MAXSYSCALL]; SET_DECLARE(linux_ioctl_handler_set, struct linux_ioctl_handler); static int linux_copyout_strings(struct image_params *imgp, uintptr_t *stack_base); static int linux_elf_fixup(uintptr_t *stack_base, struct image_params *iparams); static bool linux_trans_osrel(const Elf_Note *note, int32_t *osrel); static void linux_vdso_install(const void *param); static void linux_vdso_deinstall(const void *param); static void linux_set_syscall_retval(struct thread *td, int error); static int linux_fetch_syscall_args(struct thread *td); static void linux_exec_setregs(struct thread *td, struct image_params *imgp, uintptr_t stack); +static int linux_on_exec_vmspace(struct proc *p, + struct image_params *imgp); /* DTrace init */ LIN_SDT_PROVIDER_DECLARE(LINUX_DTRACE); /* DTrace probes */ LIN_SDT_PROBE_DEFINE2(sysvec, linux_translate_traps, todo, "int", "int"); LIN_SDT_PROBE_DEFINE0(sysvec, linux_exec_setregs, todo); LIN_SDT_PROBE_DEFINE0(sysvec, linux_copyout_auxargs, todo); LIN_SDT_PROBE_DEFINE0(sysvec, linux_elf_fixup, todo); LIN_SDT_PROBE_DEFINE0(sysvec, linux_rt_sigreturn, todo); LIN_SDT_PROBE_DEFINE0(sysvec, linux_rt_sendsig, todo); LIN_SDT_PROBE_DEFINE0(sysvec, linux_vdso_install, todo); LIN_SDT_PROBE_DEFINE0(sysvec, linux_vdso_deinstall, todo); /* LINUXTODO: do we have traps to translate? */ static int linux_translate_traps(int signal, int trap_code) { LIN_SDT_PROBE2(sysvec, linux_translate_traps, todo, signal, trap_code); return (signal); } LINUX_VDSO_SYM_CHAR(linux_platform); static int linux_fetch_syscall_args(struct thread *td) { struct proc *p; struct syscall_args *sa; register_t *ap; p = td->td_proc; ap = td->td_frame->tf_x; sa = &td->td_sa; sa->code = td->td_frame->tf_x[8]; /* LINUXTODO: generic syscall? */ if (sa->code >= p->p_sysent->sv_size) sa->callp = &p->p_sysent->sv_table[0]; else sa->callp = &p->p_sysent->sv_table[sa->code]; if (sa->callp->sy_narg > MAXARGS) panic("ARM64TODO: Could we have more than %d args?", MAXARGS); memcpy(sa->args, ap, MAXARGS * sizeof(register_t)); td->td_retval[0] = 0; return (0); } static void linux_set_syscall_retval(struct thread *td, int error) { td->td_retval[1] = td->td_frame->tf_x[1]; cpu_set_syscall_retval(td, error); if (__predict_false(error != 0)) { if (error != ERESTART && error != EJUSTRETURN) td->td_frame->tf_x[0] = bsd_to_linux_errno(error); } } static int linux_copyout_auxargs(struct image_params *imgp, uintptr_t base) { Elf_Auxargs *args; Elf_Auxinfo *argarray, *pos; struct proc *p; int error, issetugid; LIN_SDT_PROBE0(sysvec, linux_copyout_auxargs, todo); p = imgp->proc; args = (Elf64_Auxargs *)imgp->auxargs; argarray = pos = malloc(LINUX_AT_COUNT * sizeof(*pos), M_TEMP, M_WAITOK | M_ZERO); issetugid = p->p_flag & P_SUGID ? 1 : 0; AUXARGS_ENTRY(pos, LINUX_AT_SYSINFO_EHDR, imgp->proc->p_sysent->sv_shared_page_base); AUXARGS_ENTRY(pos, LINUX_AT_HWCAP, *imgp->sysent->sv_hwcap); AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); AUXARGS_ENTRY(pos, LINUX_AT_CLKTCK, stclohz); AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); AUXARGS_ENTRY(pos, AT_PHENT, args->phent); AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); AUXARGS_ENTRY(pos, AT_BASE, args->base); AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); AUXARGS_ENTRY(pos, AT_UID, imgp->proc->p_ucred->cr_ruid); AUXARGS_ENTRY(pos, AT_EUID, imgp->proc->p_ucred->cr_svuid); AUXARGS_ENTRY(pos, AT_GID, imgp->proc->p_ucred->cr_rgid); AUXARGS_ENTRY(pos, AT_EGID, imgp->proc->p_ucred->cr_svgid); AUXARGS_ENTRY(pos, LINUX_AT_SECURE, issetugid); AUXARGS_ENTRY_PTR(pos, LINUX_AT_RANDOM, imgp->canary); AUXARGS_ENTRY(pos, LINUX_AT_HWCAP2, *imgp->sysent->sv_hwcap2); if (imgp->execpathp != 0) AUXARGS_ENTRY_PTR(pos, LINUX_AT_EXECFN, imgp->execpathp); if (args->execfd != -1) AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); AUXARGS_ENTRY(pos, LINUX_AT_PLATFORM, PTROUT(linux_platform)); AUXARGS_ENTRY(pos, AT_NULL, 0); free(imgp->auxargs, M_TEMP); imgp->auxargs = NULL; KASSERT(pos - argarray <= LINUX_AT_COUNT, ("Too many auxargs")); error = copyout(argarray, (void *)base, sizeof(*argarray) * LINUX_AT_COUNT); free(argarray, M_TEMP); return (error); } static int linux_elf_fixup(uintptr_t *stack_base, struct image_params *imgp) { LIN_SDT_PROBE0(sysvec, linux_elf_fixup, todo); return (0); } /* * Copy strings out to the new process address space, constructing new arg * and env vector tables. Return a pointer to the base so that it can be used * as the initial stack pointer. * LINUXTODO: deduplicate against other linuxulator archs */ static int linux_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) { char **vectp; char *stringp; uintptr_t destp, ustringp; struct ps_strings *arginfo; char canary[LINUX_AT_RANDOM_LEN]; size_t execpath_len; struct proc *p; int argc, envc, error; p = imgp->proc; arginfo = (struct ps_strings *)PROC_PS_STRINGS(p); destp = (uintptr_t)arginfo; if (imgp->execpath != NULL && imgp->auxargs != NULL) { execpath_len = strlen(imgp->execpath) + 1; destp -= execpath_len; destp = rounddown2(destp, sizeof(void *)); imgp->execpathp = (void *)destp; error = copyout(imgp->execpath, imgp->execpathp, execpath_len); if (error != 0) return (error); } /* Prepare the canary for SSP. */ arc4rand(canary, sizeof(canary), 0); destp -= roundup(sizeof(canary), sizeof(void *)); imgp->canary = (void *)destp; error = copyout(canary, imgp->canary, sizeof(canary)); if (error != 0) return (error); /* Allocate room for the argument and environment strings. */ destp -= ARG_MAX - imgp->args->stringspace; destp = rounddown2(destp, sizeof(void *)); ustringp = destp; if (imgp->auxargs) { /* * Allocate room on the stack for the ELF auxargs * array. It has up to LINUX_AT_COUNT entries. */ destp -= LINUX_AT_COUNT * sizeof(Elf64_Auxinfo); destp = rounddown2(destp, sizeof(void *)); } vectp = (char **)destp; /* * Allocate room for argc and the argv[] and env vectors including the * terminating NULL pointers. */ vectp -= 1 + imgp->args->argc + 1 + imgp->args->envc + 1; vectp = (char **)STACKALIGN(vectp); /* vectp also becomes our initial stack base. */ *stack_base = (uintptr_t)vectp; stringp = imgp->args->begin_argv; argc = imgp->args->argc; envc = imgp->args->envc; /* Copy out strings - arguments and environment. */ error = copyout(stringp, (void *)ustringp, ARG_MAX - imgp->args->stringspace); if (error != 0) return (error); /* Fill in "ps_strings" struct for ps, w, etc. */ if (suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp) != 0 || suword(&arginfo->ps_nargvstr, argc) != 0) return (EFAULT); if (suword(vectp++, argc) != 0) return (EFAULT); /* Fill in argument portion of vector table. */ for (; argc > 0; --argc) { if (suword(vectp++, ustringp) != 0) return (EFAULT); while (*stringp++ != 0) ustringp++; ustringp++; } /* A null vector table pointer separates the argp's from the envp's. */ if (suword(vectp++, 0) != 0) return (EFAULT); if (suword(&arginfo->ps_envstr, (long)(intptr_t)vectp) != 0 || suword(&arginfo->ps_nenvstr, envc) != 0) return (EFAULT); /* Fill in environment portion of vector table. */ for (; envc > 0; --envc) { if (suword(vectp++, ustringp) != 0) return (EFAULT); while (*stringp++ != 0) ustringp++; ustringp++; } /* The end of the vector table is a null pointer. */ if (suword(vectp, 0) != 0) return (EFAULT); if (imgp->auxargs) { vectp++; error = imgp->sysent->sv_copyout_auxargs(imgp, (uintptr_t)vectp); if (error != 0) return (error); } return (0); } /* * Reset registers to default values on exec. */ static void linux_exec_setregs(struct thread *td, struct image_params *imgp, uintptr_t stack) { struct trapframe *regs = td->td_frame; struct pcb *pcb = td->td_pcb; /* LINUXTODO: validate */ LIN_SDT_PROBE0(sysvec, linux_exec_setregs, todo); memset(regs, 0, sizeof(*regs)); /* glibc start.S registers function pointer in x0 with atexit. */ regs->tf_sp = stack; #if 0 /* LINUXTODO: See if this is used. */ regs->tf_lr = imgp->entry_addr; #else regs->tf_lr = 0xffffffffffffffff; #endif regs->tf_elr = imgp->entry_addr; pcb->pcb_tpidr_el0 = 0; pcb->pcb_tpidrro_el0 = 0; WRITE_SPECIALREG(tpidrro_el0, 0); WRITE_SPECIALREG(tpidr_el0, 0); #ifdef VFP vfp_reset_state(td, pcb); #endif /* * Clear debug register state. It is not applicable to the new process. */ bzero(&pcb->pcb_dbg_regs, sizeof(pcb->pcb_dbg_regs)); } int linux_rt_sigreturn(struct thread *td, struct linux_rt_sigreturn_args *args) { /* LINUXTODO: implement */ LIN_SDT_PROBE0(sysvec, linux_rt_sigreturn, todo); return (EDOOFUS); } static void linux_rt_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask) { /* LINUXTODO: implement */ LIN_SDT_PROBE0(sysvec, linux_rt_sendsig, todo); } struct sysentvec elf_linux_sysvec = { .sv_size = LINUX_SYS_MAXSYSCALL, .sv_table = linux_sysent, .sv_transtrap = linux_translate_traps, .sv_fixup = linux_elf_fixup, .sv_sendsig = linux_rt_sendsig, .sv_sigcode = &_binary_linux_locore_o_start, .sv_szsigcode = &linux_szsigcode, .sv_name = "Linux ELF64", .sv_coredump = elf64_coredump, .sv_elf_core_osabi = ELFOSABI_NONE, .sv_elf_core_abi_vendor = LINUX_ABI_VENDOR, .sv_elf_core_prepare_notes = linux64_prepare_notes, .sv_imgact_try = linux_exec_imgact_try, .sv_minsigstksz = LINUX_MINSIGSTKSZ, .sv_minuser = VM_MIN_ADDRESS, .sv_maxuser = VM_MAXUSER_ADDRESS, .sv_usrstack = USRSTACK, .sv_psstrings = PS_STRINGS, /* XXX */ .sv_psstringssz = sizeof(struct ps_strings), .sv_stackprot = VM_PROT_READ | VM_PROT_WRITE, .sv_copyout_auxargs = linux_copyout_auxargs, .sv_copyout_strings = linux_copyout_strings, .sv_setregs = linux_exec_setregs, .sv_fixlimit = NULL, .sv_maxssiz = NULL, .sv_flags = SV_ABI_LINUX | SV_LP64 | SV_SHP | SV_SIG_DISCIGN | SV_SIG_WAITNDQ, .sv_set_syscall_retval = linux_set_syscall_retval, .sv_fetch_syscall_args = linux_fetch_syscall_args, .sv_syscallnames = NULL, .sv_shared_page_base = SHAREDPAGE, .sv_shared_page_len = PAGE_SIZE, .sv_schedtail = linux_schedtail, .sv_thread_detach = linux_thread_detach, .sv_trap = NULL, .sv_hwcap = &elf_hwcap, .sv_hwcap2 = &elf_hwcap2, - .sv_onexec = linux_on_exec, + .sv_onexec = linux_on_exec_vmspace, .sv_onexit = linux_on_exit, .sv_ontdexit = linux_thread_dtor, .sv_setid_allowed = &linux_setid_allowed_query, }; +static int +linux_on_exec_vmspace(struct proc *p, struct image_params *imgp) +{ + + linux_on_exec(p, imgp); + return (0); +} + static void linux_vdso_install(const void *param) { linux_szsigcode = (&_binary_linux_locore_o_end - &_binary_linux_locore_o_start); if (linux_szsigcode > elf_linux_sysvec.sv_shared_page_len) panic("invalid Linux VDSO size\n"); __elfN(linux_vdso_fixup)(&elf_linux_sysvec); linux_shared_page_obj = __elfN(linux_shared_page_init) (&linux_shared_page_mapping); __elfN(linux_vdso_reloc)(&elf_linux_sysvec); memcpy(linux_shared_page_mapping, elf_linux_sysvec.sv_sigcode, linux_szsigcode); elf_linux_sysvec.sv_shared_page_obj = linux_shared_page_obj; } SYSINIT(elf_linux_vdso_init, SI_SUB_EXEC, SI_ORDER_ANY, linux_vdso_install, NULL); static void linux_vdso_deinstall(const void *param) { LIN_SDT_PROBE0(sysvec, linux_vdso_deinstall, todo); __elfN(linux_shared_page_fini)(linux_shared_page_obj, linux_shared_page_mapping); } SYSUNINIT(elf_linux_vdso_uninit, SI_SUB_EXEC, SI_ORDER_FIRST, linux_vdso_deinstall, NULL); static char GNU_ABI_VENDOR[] = "GNU"; static int GNU_ABI_LINUX = 0; /* LINUXTODO: deduplicate */ static bool linux_trans_osrel(const Elf_Note *note, int32_t *osrel) { const Elf32_Word *desc; uintptr_t p; p = (uintptr_t)(note + 1); p += roundup2(note->n_namesz, sizeof(Elf32_Addr)); desc = (const Elf32_Word *)p; if (desc[0] != GNU_ABI_LINUX) return (false); *osrel = LINUX_KERNVER(desc[1], desc[2], desc[3]); return (true); } static Elf_Brandnote linux64_brandnote = { .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), .hdr.n_descsz = 16, .hdr.n_type = 1, .vendor = GNU_ABI_VENDOR, .flags = BN_TRANSLATE_OSREL, .trans_osrel = linux_trans_osrel }; static Elf64_Brandinfo linux_glibc2brand = { .brand = ELFOSABI_LINUX, .machine = EM_AARCH64, .compat_3_brand = "Linux", .emul_path = linux_emul_path, .interp_path = "/lib64/ld-linux-x86-64.so.2", .sysvec = &elf_linux_sysvec, .interp_newpath = NULL, .brand_note = &linux64_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE }; Elf64_Brandinfo *linux_brandlist[] = { &linux_glibc2brand, NULL }; static int linux64_elf_modevent(module_t mod, int type, void *data) { Elf64_Brandinfo **brandinfo; struct linux_ioctl_handler**lihp; int error; error = 0; switch(type) { case MOD_LOAD: for (brandinfo = &linux_brandlist[0]; *brandinfo != NULL; ++brandinfo) if (elf64_insert_brand_entry(*brandinfo) < 0) error = EINVAL; if (error == 0) { SET_FOREACH(lihp, linux_ioctl_handler_set) linux_ioctl_register_handler(*lihp); stclohz = (stathz ? stathz : hz); if (bootverbose) printf("Linux arm64 ELF exec handler installed\n"); } break; case MOD_UNLOAD: for (brandinfo = &linux_brandlist[0]; *brandinfo != NULL; ++brandinfo) if (elf64_brand_inuse(*brandinfo)) error = EBUSY; if (error == 0) { for (brandinfo = &linux_brandlist[0]; *brandinfo != NULL; ++brandinfo) if (elf64_remove_brand_entry(*brandinfo) < 0) error = EINVAL; } if (error == 0) { SET_FOREACH(lihp, linux_ioctl_handler_set) linux_ioctl_unregister_handler(*lihp); if (bootverbose) printf("Linux ELF exec handler removed\n"); } else printf("Could not deinstall ELF interpreter entry\n"); break; default: return (EOPNOTSUPP); } return (error); } static moduledata_t linux64_elf_mod = { "linux64elf", linux64_elf_modevent, 0 }; DECLARE_MODULE_TIED(linux64elf, linux64_elf_mod, SI_SUB_EXEC, SI_ORDER_ANY); MODULE_DEPEND(linux64elf, linux_common, 1, 1, 1); FEATURE(linux64, "AArch64 Linux 64bit support"); diff --git a/sys/i386/linux/linux_sysvec.c b/sys/i386/linux/linux_sysvec.c index 92bf6a7bed24..b1a5fb5ba062 100644 --- a/sys/i386/linux/linux_sysvec.c +++ b/sys/i386/linux/linux_sysvec.c @@ -1,1061 +1,1071 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1994-1996 Søren Schmidt * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_VERSION(linux, 1); #define LINUX_PS_STRINGS (LINUX_USRSTACK - sizeof(struct ps_strings)) static int linux_szsigcode; static vm_object_t linux_shared_page_obj; static char *linux_shared_page_mapping; extern char _binary_linux_locore_o_start; extern char _binary_linux_locore_o_end; extern struct sysent linux_sysent[LINUX_SYS_MAXSYSCALL]; SET_DECLARE(linux_ioctl_handler_set, struct linux_ioctl_handler); static int linux_fixup(uintptr_t *stack_base, struct image_params *iparams); static int linux_fixup_elf(uintptr_t *stack_base, struct image_params *iparams); static void linux_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask); static void linux_exec_setregs(struct thread *td, struct image_params *imgp, uintptr_t stack); +static int linux_on_exec_vmspace(struct proc *p, + struct image_params *imgp); static int linux_copyout_strings(struct image_params *imgp, uintptr_t *stack_base); static bool linux_trans_osrel(const Elf_Note *note, int32_t *osrel); static void linux_vdso_install(void *param); static void linux_vdso_deinstall(void *param); #define LINUX_T_UNKNOWN 255 static int _bsd_to_linux_trapcode[] = { LINUX_T_UNKNOWN, /* 0 */ 6, /* 1 T_PRIVINFLT */ LINUX_T_UNKNOWN, /* 2 */ 3, /* 3 T_BPTFLT */ LINUX_T_UNKNOWN, /* 4 */ LINUX_T_UNKNOWN, /* 5 */ 16, /* 6 T_ARITHTRAP */ 254, /* 7 T_ASTFLT */ LINUX_T_UNKNOWN, /* 8 */ 13, /* 9 T_PROTFLT */ 1, /* 10 T_TRCTRAP */ LINUX_T_UNKNOWN, /* 11 */ 14, /* 12 T_PAGEFLT */ LINUX_T_UNKNOWN, /* 13 */ 17, /* 14 T_ALIGNFLT */ LINUX_T_UNKNOWN, /* 15 */ LINUX_T_UNKNOWN, /* 16 */ LINUX_T_UNKNOWN, /* 17 */ 0, /* 18 T_DIVIDE */ 2, /* 19 T_NMI */ 4, /* 20 T_OFLOW */ 5, /* 21 T_BOUND */ 7, /* 22 T_DNA */ 8, /* 23 T_DOUBLEFLT */ 9, /* 24 T_FPOPFLT */ 10, /* 25 T_TSSFLT */ 11, /* 26 T_SEGNPFLT */ 12, /* 27 T_STKFLT */ 18, /* 28 T_MCHK */ 19, /* 29 T_XMMFLT */ 15 /* 30 T_RESERVED */ }; #define bsd_to_linux_trapcode(code) \ ((code)args->argc + 1); base--; suword(base, (intptr_t)envp); base--; suword(base, (intptr_t)argv); base--; suword(base, imgp->args->argc); *stack_base = (uintptr_t)base; return (0); } static int linux_copyout_auxargs(struct image_params *imgp, uintptr_t base) { struct proc *p; Elf32_Auxargs *args; Elf32_Auxinfo *argarray, *pos; struct ps_strings *arginfo; int error, issetugid; p = imgp->proc; issetugid = imgp->proc->p_flag & P_SUGID ? 1 : 0; arginfo = (struct ps_strings *)PROC_PS_STRINGS(p); args = (Elf32_Auxargs *)imgp->auxargs; argarray = pos = malloc(LINUX_AT_COUNT * sizeof(*pos), M_TEMP, M_WAITOK | M_ZERO); AUXARGS_ENTRY(pos, LINUX_AT_SYSINFO_EHDR, imgp->proc->p_sysent->sv_shared_page_base); AUXARGS_ENTRY(pos, LINUX_AT_SYSINFO, linux_vsyscall); AUXARGS_ENTRY(pos, LINUX_AT_HWCAP, cpu_feature); /* * Do not export AT_CLKTCK when emulating Linux kernel prior to 2.4.0, * as it has appeared in the 2.4.0-rc7 first time. * Being exported, AT_CLKTCK is returned by sysconf(_SC_CLK_TCK), * glibc falls back to the hard-coded CLK_TCK value when aux entry * is not present. * Also see linux_times() implementation. */ if (linux_kernver(curthread) >= LINUX_KERNVER_2004000) AUXARGS_ENTRY(pos, LINUX_AT_CLKTCK, stclohz); AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); AUXARGS_ENTRY(pos, AT_PHENT, args->phent); AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); AUXARGS_ENTRY(pos, AT_BASE, args->base); AUXARGS_ENTRY(pos, LINUX_AT_SECURE, issetugid); AUXARGS_ENTRY(pos, AT_UID, imgp->proc->p_ucred->cr_ruid); AUXARGS_ENTRY(pos, AT_EUID, imgp->proc->p_ucred->cr_svuid); AUXARGS_ENTRY(pos, AT_GID, imgp->proc->p_ucred->cr_rgid); AUXARGS_ENTRY(pos, AT_EGID, imgp->proc->p_ucred->cr_svgid); AUXARGS_ENTRY(pos, LINUX_AT_PLATFORM, PTROUT(linux_platform)); AUXARGS_ENTRY_PTR(pos, LINUX_AT_RANDOM, imgp->canary); if (imgp->execpathp != 0) AUXARGS_ENTRY_PTR(pos, LINUX_AT_EXECFN, imgp->execpathp); if (args->execfd != -1) AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); AUXARGS_ENTRY(pos, AT_NULL, 0); free(imgp->auxargs, M_TEMP); imgp->auxargs = NULL; KASSERT(pos - argarray <= LINUX_AT_COUNT, ("Too many auxargs")); error = copyout(argarray, (void *)base, sizeof(*argarray) * LINUX_AT_COUNT); free(argarray, M_TEMP); return (error); } static int linux_fixup_elf(uintptr_t *stack_base, struct image_params *imgp) { register_t *base; base = (register_t *)*stack_base; base--; if (suword(base, (register_t)imgp->args->argc) == -1) return (EFAULT); *stack_base = (uintptr_t)base; return (0); } /* * Copied from kern/kern_exec.c */ static int linux_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) { int argc, envc, error; char **vectp; char *stringp; uintptr_t destp, ustringp; struct ps_strings *arginfo; char canary[LINUX_AT_RANDOM_LEN]; size_t execpath_len; struct proc *p; p = imgp->proc; arginfo = (struct ps_strings *)PROC_PS_STRINGS(p); destp = (uintptr_t)arginfo; if (imgp->execpath != NULL && imgp->auxargs != NULL) { execpath_len = strlen(imgp->execpath) + 1; destp -= execpath_len; destp = rounddown2(destp, sizeof(void *)); imgp->execpathp = (void *)destp; error = copyout(imgp->execpath, imgp->execpathp, execpath_len); if (error != 0) return (error); } /* Prepare the canary for SSP. */ arc4rand(canary, sizeof(canary), 0); destp -= roundup(sizeof(canary), sizeof(void *)); imgp->canary = (void *)destp; error = copyout(canary, imgp->canary, sizeof(canary)); if (error != 0) return (error); /* Allocate room for the argument and environment strings. */ destp -= ARG_MAX - imgp->args->stringspace; destp = rounddown2(destp, sizeof(void *)); ustringp = destp; if (imgp->auxargs) { /* * Allocate room on the stack for the ELF auxargs * array. It has LINUX_AT_COUNT entries. */ destp -= LINUX_AT_COUNT * sizeof(Elf32_Auxinfo); destp = rounddown2(destp, sizeof(void *)); } vectp = (char **)destp; /* * Allocate room for the argv[] and env vectors including the * terminating NULL pointers. */ vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; /* vectp also becomes our initial stack base. */ *stack_base = (uintptr_t)vectp; stringp = imgp->args->begin_argv; argc = imgp->args->argc; envc = imgp->args->envc; /* Copy out strings - arguments and environment. */ error = copyout(stringp, (void *)ustringp, ARG_MAX - imgp->args->stringspace); if (error != 0) return (error); /* Fill in "ps_strings" struct for ps, w, etc. */ if (suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp) != 0 || suword(&arginfo->ps_nargvstr, argc) != 0) return (EFAULT); /* Fill in argument portion of vector table. */ for (; argc > 0; --argc) { if (suword(vectp++, ustringp) != 0) return (EFAULT); while (*stringp++ != 0) ustringp++; ustringp++; } /* A null vector table pointer separates the argp's from the envp's. */ if (suword(vectp++, 0) != 0) return (EFAULT); if (suword(&arginfo->ps_envstr, (long)(intptr_t)vectp) != 0 || suword(&arginfo->ps_nenvstr, envc) != 0) return (EFAULT); /* Fill in environment portion of vector table. */ for (; envc > 0; --envc) { if (suword(vectp++, ustringp) != 0) return (EFAULT); while (*stringp++ != 0) ustringp++; ustringp++; } /* The end of the vector table is a null pointer. */ if (suword(vectp, 0) != 0) return (EFAULT); if (imgp->auxargs) { vectp++; error = imgp->sysent->sv_copyout_auxargs(imgp, (uintptr_t)vectp); if (error != 0) return (error); } return (0); } static void linux_rt_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask) { struct thread *td = curthread; struct proc *p = td->td_proc; struct sigacts *psp; struct trapframe *regs; struct l_rt_sigframe *fp, frame; int sig, code; int oonstack; sig = ksi->ksi_signo; code = ksi->ksi_code; PROC_LOCK_ASSERT(p, MA_OWNED); psp = p->p_sigacts; mtx_assert(&psp->ps_mtx, MA_OWNED); regs = td->td_frame; oonstack = sigonstack(regs->tf_esp); /* Allocate space for the signal handler context. */ if ((td->td_pflags & TDP_ALTSTACK) && !oonstack && SIGISMEMBER(psp->ps_sigonstack, sig)) { fp = (struct l_rt_sigframe *)((uintptr_t)td->td_sigstk.ss_sp + td->td_sigstk.ss_size - sizeof(struct l_rt_sigframe)); } else fp = (struct l_rt_sigframe *)regs->tf_esp - 1; mtx_unlock(&psp->ps_mtx); /* Build the argument list for the signal handler. */ sig = bsd_to_linux_signal(sig); bzero(&frame, sizeof(frame)); frame.sf_handler = catcher; frame.sf_sig = sig; frame.sf_siginfo = &fp->sf_si; frame.sf_ucontext = &fp->sf_sc; /* Fill in POSIX parts. */ siginfo_to_lsiginfo(&ksi->ksi_info, &frame.sf_si, sig); /* Build the signal context to be used by sigreturn. */ frame.sf_sc.uc_flags = 0; /* XXX ??? */ frame.sf_sc.uc_link = NULL; /* XXX ??? */ frame.sf_sc.uc_stack.ss_sp = td->td_sigstk.ss_sp; frame.sf_sc.uc_stack.ss_size = td->td_sigstk.ss_size; frame.sf_sc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ? ((oonstack) ? LINUX_SS_ONSTACK : 0) : LINUX_SS_DISABLE; PROC_UNLOCK(p); bsd_to_linux_sigset(mask, &frame.sf_sc.uc_sigmask); frame.sf_sc.uc_mcontext.sc_mask = frame.sf_sc.uc_sigmask.__mask; frame.sf_sc.uc_mcontext.sc_gs = rgs(); frame.sf_sc.uc_mcontext.sc_fs = regs->tf_fs; frame.sf_sc.uc_mcontext.sc_es = regs->tf_es; frame.sf_sc.uc_mcontext.sc_ds = regs->tf_ds; frame.sf_sc.uc_mcontext.sc_edi = regs->tf_edi; frame.sf_sc.uc_mcontext.sc_esi = regs->tf_esi; frame.sf_sc.uc_mcontext.sc_ebp = regs->tf_ebp; frame.sf_sc.uc_mcontext.sc_ebx = regs->tf_ebx; frame.sf_sc.uc_mcontext.sc_esp = regs->tf_esp; frame.sf_sc.uc_mcontext.sc_edx = regs->tf_edx; frame.sf_sc.uc_mcontext.sc_ecx = regs->tf_ecx; frame.sf_sc.uc_mcontext.sc_eax = regs->tf_eax; frame.sf_sc.uc_mcontext.sc_eip = regs->tf_eip; frame.sf_sc.uc_mcontext.sc_cs = regs->tf_cs; frame.sf_sc.uc_mcontext.sc_eflags = regs->tf_eflags; frame.sf_sc.uc_mcontext.sc_esp_at_signal = regs->tf_esp; frame.sf_sc.uc_mcontext.sc_ss = regs->tf_ss; frame.sf_sc.uc_mcontext.sc_err = regs->tf_err; frame.sf_sc.uc_mcontext.sc_cr2 = (register_t)ksi->ksi_addr; frame.sf_sc.uc_mcontext.sc_trapno = bsd_to_linux_trapcode(code); if (copyout(&frame, fp, sizeof(frame)) != 0) { /* * Process has trashed its stack; give it an illegal * instruction to halt it in its tracks. */ PROC_LOCK(p); sigexit(td, SIGILL); } /* Build context to run handler in. */ regs->tf_esp = (int)fp; regs->tf_eip = linux_rt_sigcode; regs->tf_eflags &= ~(PSL_T | PSL_VM | PSL_D); regs->tf_cs = _ucodesel; regs->tf_ds = _udatasel; regs->tf_es = _udatasel; regs->tf_fs = _udatasel; regs->tf_ss = _udatasel; PROC_LOCK(p); mtx_lock(&psp->ps_mtx); } /* * Send an interrupt to process. * * Stack is set up to allow sigcode stored * in u. to call routine, followed by kcall * to sigreturn routine below. After sigreturn * resets the signal mask, the stack, and the * frame pointer, it returns to the user * specified pc, psl. */ static void linux_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask) { struct thread *td = curthread; struct proc *p = td->td_proc; struct sigacts *psp; struct trapframe *regs; struct l_sigframe *fp, frame; l_sigset_t lmask; int sig, code; int oonstack; PROC_LOCK_ASSERT(p, MA_OWNED); psp = p->p_sigacts; sig = ksi->ksi_signo; code = ksi->ksi_code; mtx_assert(&psp->ps_mtx, MA_OWNED); if (SIGISMEMBER(psp->ps_siginfo, sig)) { /* Signal handler installed with SA_SIGINFO. */ linux_rt_sendsig(catcher, ksi, mask); return; } regs = td->td_frame; oonstack = sigonstack(regs->tf_esp); /* Allocate space for the signal handler context. */ if ((td->td_pflags & TDP_ALTSTACK) && !oonstack && SIGISMEMBER(psp->ps_sigonstack, sig)) { fp = (struct l_sigframe *)((uintptr_t)td->td_sigstk.ss_sp + td->td_sigstk.ss_size - sizeof(struct l_sigframe)); } else fp = (struct l_sigframe *)regs->tf_esp - 1; mtx_unlock(&psp->ps_mtx); PROC_UNLOCK(p); /* Build the argument list for the signal handler. */ sig = bsd_to_linux_signal(sig); bzero(&frame, sizeof(frame)); frame.sf_handler = catcher; frame.sf_sig = sig; bsd_to_linux_sigset(mask, &lmask); /* Build the signal context to be used by sigreturn. */ frame.sf_sc.sc_mask = lmask.__mask; frame.sf_sc.sc_gs = rgs(); frame.sf_sc.sc_fs = regs->tf_fs; frame.sf_sc.sc_es = regs->tf_es; frame.sf_sc.sc_ds = regs->tf_ds; frame.sf_sc.sc_edi = regs->tf_edi; frame.sf_sc.sc_esi = regs->tf_esi; frame.sf_sc.sc_ebp = regs->tf_ebp; frame.sf_sc.sc_ebx = regs->tf_ebx; frame.sf_sc.sc_esp = regs->tf_esp; frame.sf_sc.sc_edx = regs->tf_edx; frame.sf_sc.sc_ecx = regs->tf_ecx; frame.sf_sc.sc_eax = regs->tf_eax; frame.sf_sc.sc_eip = regs->tf_eip; frame.sf_sc.sc_cs = regs->tf_cs; frame.sf_sc.sc_eflags = regs->tf_eflags; frame.sf_sc.sc_esp_at_signal = regs->tf_esp; frame.sf_sc.sc_ss = regs->tf_ss; frame.sf_sc.sc_err = regs->tf_err; frame.sf_sc.sc_cr2 = (register_t)ksi->ksi_addr; frame.sf_sc.sc_trapno = bsd_to_linux_trapcode(ksi->ksi_trapno); frame.sf_extramask[0] = lmask.__mask; if (copyout(&frame, fp, sizeof(frame)) != 0) { /* * Process has trashed its stack; give it an illegal * instruction to halt it in its tracks. */ PROC_LOCK(p); sigexit(td, SIGILL); } /* Build context to run handler in. */ regs->tf_esp = (int)fp; regs->tf_eip = linux_sigcode; regs->tf_eflags &= ~(PSL_T | PSL_VM | PSL_D); regs->tf_cs = _ucodesel; regs->tf_ds = _udatasel; regs->tf_es = _udatasel; regs->tf_fs = _udatasel; regs->tf_ss = _udatasel; PROC_LOCK(p); mtx_lock(&psp->ps_mtx); } /* * System call to cleanup state after a signal * has been taken. Reset signal mask and * stack state from context left by sendsig (above). * Return to previous pc and psl as specified by * context left by sendsig. Check carefully to * make sure that the user has not modified the * psl to gain improper privileges or to cause * a machine fault. */ int linux_sigreturn(struct thread *td, struct linux_sigreturn_args *args) { struct l_sigframe frame; struct trapframe *regs; l_sigset_t lmask; sigset_t bmask; int eflags; ksiginfo_t ksi; regs = td->td_frame; /* * The trampoline code hands us the sigframe. * It is unsafe to keep track of it ourselves, in the event that a * program jumps out of a signal handler. */ if (copyin(args->sfp, &frame, sizeof(frame)) != 0) return (EFAULT); /* Check for security violations. */ #define EFLAGS_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0) eflags = frame.sf_sc.sc_eflags; if (!EFLAGS_SECURE(eflags, regs->tf_eflags)) return (EINVAL); /* * Don't allow users to load a valid privileged %cs. Let the * hardware check for invalid selectors, excess privilege in * other selectors, invalid %eip's and invalid %esp's. */ #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL) if (!CS_SECURE(frame.sf_sc.sc_cs)) { ksiginfo_init_trap(&ksi); ksi.ksi_signo = SIGBUS; ksi.ksi_code = BUS_OBJERR; ksi.ksi_trapno = T_PROTFLT; ksi.ksi_addr = (void *)regs->tf_eip; trapsignal(td, &ksi); return (EINVAL); } lmask.__mask = frame.sf_sc.sc_mask; linux_to_bsd_sigset(&lmask, &bmask); kern_sigprocmask(td, SIG_SETMASK, &bmask, NULL, 0); /* Restore signal context. */ /* %gs was restored by the trampoline. */ regs->tf_fs = frame.sf_sc.sc_fs; regs->tf_es = frame.sf_sc.sc_es; regs->tf_ds = frame.sf_sc.sc_ds; regs->tf_edi = frame.sf_sc.sc_edi; regs->tf_esi = frame.sf_sc.sc_esi; regs->tf_ebp = frame.sf_sc.sc_ebp; regs->tf_ebx = frame.sf_sc.sc_ebx; regs->tf_edx = frame.sf_sc.sc_edx; regs->tf_ecx = frame.sf_sc.sc_ecx; regs->tf_eax = frame.sf_sc.sc_eax; regs->tf_eip = frame.sf_sc.sc_eip; regs->tf_cs = frame.sf_sc.sc_cs; regs->tf_eflags = eflags; regs->tf_esp = frame.sf_sc.sc_esp_at_signal; regs->tf_ss = frame.sf_sc.sc_ss; return (EJUSTRETURN); } /* * System call to cleanup state after a signal * has been taken. Reset signal mask and * stack state from context left by rt_sendsig (above). * Return to previous pc and psl as specified by * context left by sendsig. Check carefully to * make sure that the user has not modified the * psl to gain improper privileges or to cause * a machine fault. */ int linux_rt_sigreturn(struct thread *td, struct linux_rt_sigreturn_args *args) { struct l_ucontext uc; struct l_sigcontext *context; sigset_t bmask; l_stack_t *lss; stack_t ss; struct trapframe *regs; int eflags; ksiginfo_t ksi; regs = td->td_frame; /* * The trampoline code hands us the ucontext. * It is unsafe to keep track of it ourselves, in the event that a * program jumps out of a signal handler. */ if (copyin(args->ucp, &uc, sizeof(uc)) != 0) return (EFAULT); context = &uc.uc_mcontext; /* Check for security violations. */ #define EFLAGS_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0) eflags = context->sc_eflags; if (!EFLAGS_SECURE(eflags, regs->tf_eflags)) return (EINVAL); /* * Don't allow users to load a valid privileged %cs. Let the * hardware check for invalid selectors, excess privilege in * other selectors, invalid %eip's and invalid %esp's. */ #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL) if (!CS_SECURE(context->sc_cs)) { ksiginfo_init_trap(&ksi); ksi.ksi_signo = SIGBUS; ksi.ksi_code = BUS_OBJERR; ksi.ksi_trapno = T_PROTFLT; ksi.ksi_addr = (void *)regs->tf_eip; trapsignal(td, &ksi); return (EINVAL); } linux_to_bsd_sigset(&uc.uc_sigmask, &bmask); kern_sigprocmask(td, SIG_SETMASK, &bmask, NULL, 0); /* Restore signal context. */ /* %gs was restored by the trampoline. */ regs->tf_fs = context->sc_fs; regs->tf_es = context->sc_es; regs->tf_ds = context->sc_ds; regs->tf_edi = context->sc_edi; regs->tf_esi = context->sc_esi; regs->tf_ebp = context->sc_ebp; regs->tf_ebx = context->sc_ebx; regs->tf_edx = context->sc_edx; regs->tf_ecx = context->sc_ecx; regs->tf_eax = context->sc_eax; regs->tf_eip = context->sc_eip; regs->tf_cs = context->sc_cs; regs->tf_eflags = eflags; regs->tf_esp = context->sc_esp_at_signal; regs->tf_ss = context->sc_ss; /* Call sigaltstack & ignore results. */ lss = &uc.uc_stack; ss.ss_sp = lss->ss_sp; ss.ss_size = lss->ss_size; ss.ss_flags = linux_to_bsd_sigaltstack(lss->ss_flags); (void)kern_sigaltstack(td, &ss, NULL); return (EJUSTRETURN); } static int linux_fetch_syscall_args(struct thread *td) { struct proc *p; struct trapframe *frame; struct syscall_args *sa; p = td->td_proc; frame = td->td_frame; sa = &td->td_sa; sa->code = frame->tf_eax; sa->args[0] = frame->tf_ebx; sa->args[1] = frame->tf_ecx; sa->args[2] = frame->tf_edx; sa->args[3] = frame->tf_esi; sa->args[4] = frame->tf_edi; sa->args[5] = frame->tf_ebp; /* Unconfirmed */ if (sa->code >= p->p_sysent->sv_size) /* nosys */ sa->callp = &p->p_sysent->sv_table[p->p_sysent->sv_size - 1]; else sa->callp = &p->p_sysent->sv_table[sa->code]; td->td_retval[0] = 0; td->td_retval[1] = frame->tf_edx; return (0); } static void linux_set_syscall_retval(struct thread *td, int error) { struct trapframe *frame = td->td_frame; cpu_set_syscall_retval(td, error); if (__predict_false(error != 0)) { if (error != ERESTART && error != EJUSTRETURN) frame->tf_eax = bsd_to_linux_errno(error); } } /* * exec_setregs may initialize some registers differently than Linux * does, thus potentially confusing Linux binaries. If necessary, we * override the exec_setregs default(s) here. */ static void linux_exec_setregs(struct thread *td, struct image_params *imgp, uintptr_t stack) { struct pcb *pcb = td->td_pcb; exec_setregs(td, imgp, stack); /* Linux sets %gs to 0, we default to _udatasel. */ pcb->pcb_gs = 0; load_gs(0); pcb->pcb_initial_npxcw = __LINUX_NPXCW__; } struct sysentvec linux_sysvec = { .sv_size = LINUX_SYS_MAXSYSCALL, .sv_table = linux_sysent, .sv_transtrap = linux_translate_traps, .sv_fixup = linux_fixup, .sv_sendsig = linux_sendsig, .sv_sigcode = &_binary_linux_locore_o_start, .sv_szsigcode = &linux_szsigcode, .sv_name = "Linux a.out", .sv_coredump = NULL, .sv_imgact_try = linux_exec_imgact_try, .sv_minsigstksz = LINUX_MINSIGSTKSZ, .sv_minuser = VM_MIN_ADDRESS, .sv_maxuser = VM_MAXUSER_ADDRESS, .sv_usrstack = LINUX_USRSTACK, .sv_psstrings = PS_STRINGS, .sv_psstringssz = sizeof(struct ps_strings), .sv_stackprot = VM_PROT_ALL, .sv_copyout_strings = exec_copyout_strings, .sv_setregs = linux_exec_setregs, .sv_fixlimit = NULL, .sv_maxssiz = NULL, .sv_flags = SV_ABI_LINUX | SV_AOUT | SV_IA32 | SV_ILP32 | SV_SIG_DISCIGN | SV_SIG_WAITNDQ, .sv_set_syscall_retval = linux_set_syscall_retval, .sv_fetch_syscall_args = linux_fetch_syscall_args, .sv_syscallnames = NULL, .sv_schedtail = linux_schedtail, .sv_thread_detach = linux_thread_detach, .sv_trap = NULL, - .sv_onexec = linux_on_exec, + .sv_onexec = linux_on_exec_vmspace, .sv_onexit = linux_on_exit, .sv_ontdexit = linux_thread_dtor, .sv_setid_allowed = &linux_setid_allowed_query, }; INIT_SYSENTVEC(aout_sysvec, &linux_sysvec); struct sysentvec elf_linux_sysvec = { .sv_size = LINUX_SYS_MAXSYSCALL, .sv_table = linux_sysent, .sv_transtrap = linux_translate_traps, .sv_fixup = linux_fixup_elf, .sv_sendsig = linux_sendsig, .sv_sigcode = &_binary_linux_locore_o_start, .sv_szsigcode = &linux_szsigcode, .sv_name = "Linux ELF32", .sv_coredump = elf32_coredump, .sv_elf_core_osabi = ELFOSABI_FREEBSD, .sv_elf_core_abi_vendor = FREEBSD_ABI_VENDOR, .sv_elf_core_prepare_notes = elf32_prepare_notes, .sv_imgact_try = linux_exec_imgact_try, .sv_minsigstksz = LINUX_MINSIGSTKSZ, .sv_minuser = VM_MIN_ADDRESS, .sv_maxuser = VM_MAXUSER_ADDRESS, .sv_usrstack = LINUX_USRSTACK, .sv_psstrings = LINUX_PS_STRINGS, .sv_psstringssz = sizeof(struct ps_strings), .sv_stackprot = VM_PROT_ALL, .sv_copyout_auxargs = linux_copyout_auxargs, .sv_copyout_strings = linux_copyout_strings, .sv_setregs = linux_exec_setregs, .sv_fixlimit = NULL, .sv_maxssiz = NULL, .sv_flags = SV_ABI_LINUX | SV_IA32 | SV_ILP32 | SV_SHP | SV_SIG_DISCIGN | SV_SIG_WAITNDQ, .sv_set_syscall_retval = linux_set_syscall_retval, .sv_fetch_syscall_args = linux_fetch_syscall_args, .sv_syscallnames = NULL, .sv_shared_page_base = LINUX_SHAREDPAGE, .sv_shared_page_len = PAGE_SIZE, .sv_schedtail = linux_schedtail, .sv_thread_detach = linux_thread_detach, .sv_trap = NULL, - .sv_onexec = linux_on_exec, + .sv_onexec = linux_on_exec_vmspace, .sv_onexit = linux_on_exit, .sv_ontdexit = linux_thread_dtor, .sv_setid_allowed = &linux_setid_allowed_query, }; +static int +linux_on_exec_vmspace(struct proc *p, struct image_params *imgp) +{ + + linux_on_exec(p, imgp); + return (0); +} + static void linux_vdso_install(void *param) { linux_szsigcode = (&_binary_linux_locore_o_end - &_binary_linux_locore_o_start); if (linux_szsigcode > elf_linux_sysvec.sv_shared_page_len) panic("Linux invalid vdso size\n"); __elfN(linux_vdso_fixup)(&elf_linux_sysvec); linux_shared_page_obj = __elfN(linux_shared_page_init) (&linux_shared_page_mapping); __elfN(linux_vdso_reloc)(&elf_linux_sysvec); bcopy(elf_linux_sysvec.sv_sigcode, linux_shared_page_mapping, linux_szsigcode); elf_linux_sysvec.sv_shared_page_obj = linux_shared_page_obj; } SYSINIT(elf_linux_vdso_init, SI_SUB_EXEC, SI_ORDER_ANY, linux_vdso_install, NULL); static void linux_vdso_deinstall(void *param) { __elfN(linux_shared_page_fini)(linux_shared_page_obj, linux_shared_page_mapping); } SYSUNINIT(elf_linux_vdso_uninit, SI_SUB_EXEC, SI_ORDER_FIRST, linux_vdso_deinstall, NULL); static char GNU_ABI_VENDOR[] = "GNU"; static int GNULINUX_ABI_DESC = 0; static bool linux_trans_osrel(const Elf_Note *note, int32_t *osrel) { const Elf32_Word *desc; uintptr_t p; p = (uintptr_t)(note + 1); p += roundup2(note->n_namesz, sizeof(Elf32_Addr)); desc = (const Elf32_Word *)p; if (desc[0] != GNULINUX_ABI_DESC) return (false); /* * For Linux we encode osrel using the Linux convention of * (version << 16) | (major << 8) | (minor) * See macro in linux_mib.h */ *osrel = LINUX_KERNVER(desc[1], desc[2], desc[3]); return (true); } static Elf_Brandnote linux_brandnote = { .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), .hdr.n_descsz = 16, /* XXX at least 16 */ .hdr.n_type = 1, .vendor = GNU_ABI_VENDOR, .flags = BN_TRANSLATE_OSREL, .trans_osrel = linux_trans_osrel }; static Elf32_Brandinfo linux_brand = { .brand = ELFOSABI_LINUX, .machine = EM_386, .compat_3_brand = "Linux", .emul_path = linux_emul_path, .interp_path = "/lib/ld-linux.so.1", .sysvec = &elf_linux_sysvec, .interp_newpath = NULL, .brand_note = &linux_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE }; static Elf32_Brandinfo linux_glibc2brand = { .brand = ELFOSABI_LINUX, .machine = EM_386, .compat_3_brand = "Linux", .emul_path = linux_emul_path, .interp_path = "/lib/ld-linux.so.2", .sysvec = &elf_linux_sysvec, .interp_newpath = NULL, .brand_note = &linux_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE }; static Elf32_Brandinfo linux_muslbrand = { .brand = ELFOSABI_LINUX, .machine = EM_386, .compat_3_brand = "Linux", .emul_path = linux_emul_path, .interp_path = "/lib/ld-musl-i386.so.1", .sysvec = &elf_linux_sysvec, .interp_newpath = NULL, .brand_note = &linux_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE }; Elf32_Brandinfo *linux_brandlist[] = { &linux_brand, &linux_glibc2brand, &linux_muslbrand, NULL }; static int linux_elf_modevent(module_t mod, int type, void *data) { Elf32_Brandinfo **brandinfo; int error; struct linux_ioctl_handler **lihp; error = 0; switch(type) { case MOD_LOAD: for (brandinfo = &linux_brandlist[0]; *brandinfo != NULL; ++brandinfo) if (elf32_insert_brand_entry(*brandinfo) < 0) error = EINVAL; if (error == 0) { SET_FOREACH(lihp, linux_ioctl_handler_set) linux_ioctl_register_handler(*lihp); LIST_INIT(&futex_list); mtx_init(&futex_mtx, "ftllk", NULL, MTX_DEF); linux_dev_shm_create(); linux_osd_jail_register(); stclohz = (stathz ? stathz : hz); if (bootverbose) printf("Linux ELF exec handler installed\n"); } else printf("cannot insert Linux ELF brand handler\n"); break; case MOD_UNLOAD: for (brandinfo = &linux_brandlist[0]; *brandinfo != NULL; ++brandinfo) if (elf32_brand_inuse(*brandinfo)) error = EBUSY; if (error == 0) { for (brandinfo = &linux_brandlist[0]; *brandinfo != NULL; ++brandinfo) if (elf32_remove_brand_entry(*brandinfo) < 0) error = EINVAL; } if (error == 0) { SET_FOREACH(lihp, linux_ioctl_handler_set) linux_ioctl_unregister_handler(*lihp); mtx_destroy(&futex_mtx); linux_dev_shm_destroy(); linux_osd_jail_deregister(); if (bootverbose) printf("Linux ELF exec handler removed\n"); } else printf("Could not deinstall ELF interpreter entry\n"); break; default: return (EOPNOTSUPP); } return (error); } static moduledata_t linux_elf_mod = { "linuxelf", linux_elf_modevent, 0 }; DECLARE_MODULE_TIED(linuxelf, linux_elf_mod, SI_SUB_EXEC, SI_ORDER_ANY); FEATURE(linux, "Linux 32bit support"); diff --git a/sys/kern/kern_exec.c b/sys/kern/kern_exec.c index e6081cba7a4b..f62c4582e89a 100644 --- a/sys/kern/kern_exec.c +++ b/sys/kern/kern_exec.c @@ -1,2123 +1,2121 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1993, David Greenman * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_capsicum.h" #include "opt_hwpmc_hooks.h" #include "opt_ktrace.h" #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KTRACE #include #endif #include #include #include #include #include #include #include #include #include #ifdef HWPMC_HOOKS #include #endif #include #include #ifdef KDTRACE_HOOKS #include dtrace_execexit_func_t dtrace_fasttrap_exec; #endif SDT_PROVIDER_DECLARE(proc); SDT_PROBE_DEFINE1(proc, , , exec, "char *"); SDT_PROBE_DEFINE1(proc, , , exec__failure, "int"); SDT_PROBE_DEFINE1(proc, , , exec__success, "char *"); MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments"); int coredump_pack_fileinfo = 1; SYSCTL_INT(_kern, OID_AUTO, coredump_pack_fileinfo, CTLFLAG_RWTUN, &coredump_pack_fileinfo, 0, "Enable file path packing in 'procstat -f' coredump notes"); int coredump_pack_vmmapinfo = 1; SYSCTL_INT(_kern, OID_AUTO, coredump_pack_vmmapinfo, CTLFLAG_RWTUN, &coredump_pack_vmmapinfo, 0, "Enable file path packing in 'procstat -v' coredump notes"); static int sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS); static int sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS); static int sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS); static int do_execve(struct thread *td, struct image_args *args, struct mac *mac_p, struct vmspace *oldvmspace); /* XXX This should be vm_size_t. */ SYSCTL_PROC(_kern, KERN_PS_STRINGS, ps_strings, CTLTYPE_ULONG|CTLFLAG_RD| CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_ps_strings, "LU", "Location of process' ps_strings structure"); /* XXX This should be vm_size_t. */ SYSCTL_PROC(_kern, KERN_USRSTACK, usrstack, CTLTYPE_ULONG|CTLFLAG_RD| CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_usrstack, "LU", "Top of process stack"); SYSCTL_PROC(_kern, OID_AUTO, stackprot, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_stackprot, "I", "Stack memory permissions"); u_long ps_arg_cache_limit = PAGE_SIZE / 16; SYSCTL_ULONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW, &ps_arg_cache_limit, 0, "Process' command line characters cache limit"); static int disallow_high_osrel; SYSCTL_INT(_kern, OID_AUTO, disallow_high_osrel, CTLFLAG_RW, &disallow_high_osrel, 0, "Disallow execution of binaries built for higher version of the world"); static int map_at_zero = 0; SYSCTL_INT(_security_bsd, OID_AUTO, map_at_zero, CTLFLAG_RWTUN, &map_at_zero, 0, "Permit processes to map an object at virtual address 0."); static int core_dump_can_intr = 1; SYSCTL_INT(_kern, OID_AUTO, core_dump_can_intr, CTLFLAG_RWTUN, &core_dump_can_intr, 0, "Core dumping interruptible with SIGKILL"); static int sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS) { struct proc *p; vm_offset_t ps_strings; p = curproc; #ifdef SCTL_MASK32 if (req->flags & SCTL_MASK32) { unsigned int val; val = (unsigned int)PROC_PS_STRINGS(p); return (SYSCTL_OUT(req, &val, sizeof(val))); } #endif ps_strings = PROC_PS_STRINGS(p); return (SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings))); } static int sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS) { struct proc *p; vm_offset_t val; p = curproc; #ifdef SCTL_MASK32 if (req->flags & SCTL_MASK32) { unsigned int val32; val32 = round_page((unsigned int)p->p_vmspace->vm_stacktop); return (SYSCTL_OUT(req, &val32, sizeof(val32))); } #endif val = round_page(p->p_vmspace->vm_stacktop); return (SYSCTL_OUT(req, &val, sizeof(val))); } static int sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS) { struct proc *p; p = curproc; return (SYSCTL_OUT(req, &p->p_sysent->sv_stackprot, sizeof(p->p_sysent->sv_stackprot))); } /* * Each of the items is a pointer to a `const struct execsw', hence the * double pointer here. */ static const struct execsw **execsw; #ifndef _SYS_SYSPROTO_H_ struct execve_args { char *fname; char **argv; char **envv; }; #endif int sys_execve(struct thread *td, struct execve_args *uap) { struct image_args args; struct vmspace *oldvmspace; int error; error = pre_execve(td, &oldvmspace); if (error != 0) return (error); error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE, uap->argv, uap->envv); if (error == 0) error = kern_execve(td, &args, NULL, oldvmspace); post_execve(td, error, oldvmspace); AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); return (error); } #ifndef _SYS_SYSPROTO_H_ struct fexecve_args { int fd; char **argv; char **envv; }; #endif int sys_fexecve(struct thread *td, struct fexecve_args *uap) { struct image_args args; struct vmspace *oldvmspace; int error; error = pre_execve(td, &oldvmspace); if (error != 0) return (error); error = exec_copyin_args(&args, NULL, UIO_SYSSPACE, uap->argv, uap->envv); if (error == 0) { args.fd = uap->fd; error = kern_execve(td, &args, NULL, oldvmspace); } post_execve(td, error, oldvmspace); AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); return (error); } #ifndef _SYS_SYSPROTO_H_ struct __mac_execve_args { char *fname; char **argv; char **envv; struct mac *mac_p; }; #endif int sys___mac_execve(struct thread *td, struct __mac_execve_args *uap) { #ifdef MAC struct image_args args; struct vmspace *oldvmspace; int error; error = pre_execve(td, &oldvmspace); if (error != 0) return (error); error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE, uap->argv, uap->envv); if (error == 0) error = kern_execve(td, &args, uap->mac_p, oldvmspace); post_execve(td, error, oldvmspace); AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); return (error); #else return (ENOSYS); #endif } int pre_execve(struct thread *td, struct vmspace **oldvmspace) { struct proc *p; int error; KASSERT(td == curthread, ("non-current thread %p", td)); error = 0; p = td->td_proc; if ((p->p_flag & P_HADTHREADS) != 0) { PROC_LOCK(p); if (thread_single(p, SINGLE_BOUNDARY) != 0) error = ERESTART; PROC_UNLOCK(p); } KASSERT(error != 0 || (td->td_pflags & TDP_EXECVMSPC) == 0, ("nested execve")); *oldvmspace = p->p_vmspace; return (error); } void post_execve(struct thread *td, int error, struct vmspace *oldvmspace) { struct proc *p; KASSERT(td == curthread, ("non-current thread %p", td)); p = td->td_proc; if ((p->p_flag & P_HADTHREADS) != 0) { PROC_LOCK(p); /* * If success, we upgrade to SINGLE_EXIT state to * force other threads to suicide. */ if (error == EJUSTRETURN) thread_single(p, SINGLE_EXIT); else thread_single_end(p, SINGLE_BOUNDARY); PROC_UNLOCK(p); } exec_cleanup(td, oldvmspace); } /* * kern_execve() has the astonishing property of not always returning to * the caller. If sufficiently bad things happen during the call to * do_execve(), it can end up calling exit1(); as a result, callers must * avoid doing anything which they might need to undo (e.g., allocating * memory). */ int kern_execve(struct thread *td, struct image_args *args, struct mac *mac_p, struct vmspace *oldvmspace) { TSEXEC(td->td_proc->p_pid, args->begin_argv); AUDIT_ARG_ARGV(args->begin_argv, args->argc, exec_args_get_begin_envv(args) - args->begin_argv); AUDIT_ARG_ENVV(exec_args_get_begin_envv(args), args->envc, args->endp - exec_args_get_begin_envv(args)); /* Must have at least one argument. */ if (args->argc == 0) { exec_free_args(args); return (EINVAL); } return (do_execve(td, args, mac_p, oldvmspace)); } static void execve_nosetid(struct image_params *imgp) { imgp->credential_setid = false; if (imgp->newcred != NULL) { crfree(imgp->newcred); imgp->newcred = NULL; } } /* * In-kernel implementation of execve(). All arguments are assumed to be * userspace pointers from the passed thread. */ static int do_execve(struct thread *td, struct image_args *args, struct mac *mac_p, struct vmspace *oldvmspace) { struct proc *p = td->td_proc; struct nameidata nd; struct ucred *oldcred; struct uidinfo *euip = NULL; uintptr_t stack_base; struct image_params image_params, *imgp; struct vattr attr; int (*img_first)(struct image_params *); struct pargs *oldargs = NULL, *newargs = NULL; struct sigacts *oldsigacts = NULL, *newsigacts = NULL; #ifdef KTRACE struct ktr_io_params *kiop; #endif struct vnode *oldtextvp, *newtextvp; struct vnode *oldtextdvp, *newtextdvp; char *oldbinname, *newbinname; bool credential_changing; #ifdef MAC struct label *interpvplabel = NULL; bool will_transition; #endif #ifdef HWPMC_HOOKS struct pmckern_procexec pe; #endif int error, i, orig_osrel; uint32_t orig_fctl0; Elf_Brandinfo *orig_brandinfo; size_t freepath_size; static const char fexecv_proc_title[] = "(fexecv)"; imgp = &image_params; oldtextvp = oldtextdvp = NULL; newtextvp = newtextdvp = NULL; newbinname = oldbinname = NULL; #ifdef KTRACE kiop = NULL; #endif /* * Lock the process and set the P_INEXEC flag to indicate that * it should be left alone until we're done here. This is * necessary to avoid race conditions - e.g. in ptrace() - * that might allow a local user to illicitly obtain elevated * privileges. */ PROC_LOCK(p); KASSERT((p->p_flag & P_INEXEC) == 0, ("%s(): process already has P_INEXEC flag", __func__)); p->p_flag |= P_INEXEC; PROC_UNLOCK(p); /* * Initialize part of the common data */ bzero(imgp, sizeof(*imgp)); imgp->proc = p; imgp->attr = &attr; imgp->args = args; oldcred = p->p_ucred; orig_osrel = p->p_osrel; orig_fctl0 = p->p_fctl0; orig_brandinfo = p->p_elf_brandinfo; #ifdef MAC error = mac_execve_enter(imgp, mac_p); if (error) goto exec_fail; #endif SDT_PROBE1(proc, , , exec, args->fname); interpret: if (args->fname != NULL) { #ifdef CAPABILITY_MODE /* * While capability mode can't reach this point via direct * path arguments to execve(), we also don't allow * interpreters to be used in capability mode (for now). * Catch indirect lookups and return a permissions error. */ if (IN_CAPABILITY_MODE(td)) { error = ECAPMODE; goto exec_fail; } #endif /* * Translate the file name. namei() returns a vnode * pointer in ni_vp among other things. */ NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | LOCKSHARED | FOLLOW | SAVENAME | AUDITVNODE1 | WANTPARENT, UIO_SYSSPACE, args->fname, td); error = namei(&nd); if (error) goto exec_fail; newtextvp = nd.ni_vp; newtextdvp = nd.ni_dvp; nd.ni_dvp = NULL; newbinname = malloc(nd.ni_cnd.cn_namelen + 1, M_PARGS, M_WAITOK); memcpy(newbinname, nd.ni_cnd.cn_nameptr, nd.ni_cnd.cn_namelen); newbinname[nd.ni_cnd.cn_namelen] = '\0'; imgp->vp = newtextvp; /* * Do the best to calculate the full path to the image file. */ if (args->fname[0] == '/') { imgp->execpath = args->fname; } else { VOP_UNLOCK(imgp->vp); freepath_size = MAXPATHLEN; if (vn_fullpath_hardlink(newtextvp, newtextdvp, newbinname, nd.ni_cnd.cn_namelen, &imgp->execpath, &imgp->freepath, &freepath_size) != 0) imgp->execpath = args->fname; vn_lock(imgp->vp, LK_SHARED | LK_RETRY); } } else { AUDIT_ARG_FD(args->fd); /* * If the descriptors was not opened with O_PATH, then * we require that it was opened with O_EXEC or * O_RDONLY. In either case, exec_check_permissions() * below checks _current_ file access mode regardless * of the permissions additionally checked at the * open(2). */ error = fgetvp_exec(td, args->fd, &cap_fexecve_rights, &newtextvp); if (error != 0) goto exec_fail; if (vn_fullpath(newtextvp, &imgp->execpath, &imgp->freepath) != 0) imgp->execpath = args->fname; vn_lock(newtextvp, LK_SHARED | LK_RETRY); AUDIT_ARG_VNODE1(newtextvp); imgp->vp = newtextvp; } /* * Check file permissions. Also 'opens' file and sets its vnode to * text mode. */ error = exec_check_permissions(imgp); if (error) goto exec_fail_dealloc; imgp->object = imgp->vp->v_object; if (imgp->object != NULL) vm_object_reference(imgp->object); error = exec_map_first_page(imgp); if (error) goto exec_fail_dealloc; imgp->proc->p_osrel = 0; imgp->proc->p_fctl0 = 0; imgp->proc->p_elf_brandinfo = NULL; /* * Implement image setuid/setgid. * * Determine new credentials before attempting image activators * so that it can be used by process_exec handlers to determine * credential/setid changes. * * Don't honor setuid/setgid if the filesystem prohibits it or if * the process is being traced. * * We disable setuid/setgid/etc in capability mode on the basis * that most setugid applications are not written with that * environment in mind, and will therefore almost certainly operate * incorrectly. In principle there's no reason that setugid * applications might not be useful in capability mode, so we may want * to reconsider this conservative design choice in the future. * * XXXMAC: For the time being, use NOSUID to also prohibit * transitions on the file system. */ credential_changing = false; credential_changing |= (attr.va_mode & S_ISUID) && oldcred->cr_uid != attr.va_uid; credential_changing |= (attr.va_mode & S_ISGID) && oldcred->cr_gid != attr.va_gid; #ifdef MAC will_transition = mac_vnode_execve_will_transition(oldcred, imgp->vp, interpvplabel, imgp) != 0; credential_changing |= will_transition; #endif /* Don't inherit PROC_PDEATHSIG_CTL value if setuid/setgid. */ if (credential_changing) imgp->proc->p_pdeathsig = 0; if (credential_changing && #ifdef CAPABILITY_MODE ((oldcred->cr_flags & CRED_FLAG_CAPMODE) == 0) && #endif (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 && (p->p_flag & P_TRACED) == 0) { imgp->credential_setid = true; VOP_UNLOCK(imgp->vp); imgp->newcred = crdup(oldcred); if (attr.va_mode & S_ISUID) { euip = uifind(attr.va_uid); change_euid(imgp->newcred, euip); } vn_lock(imgp->vp, LK_SHARED | LK_RETRY); if (attr.va_mode & S_ISGID) change_egid(imgp->newcred, attr.va_gid); /* * Implement correct POSIX saved-id behavior. * * XXXMAC: Note that the current logic will save the * uid and gid if a MAC domain transition occurs, even * though maybe it shouldn't. */ change_svuid(imgp->newcred, imgp->newcred->cr_uid); change_svgid(imgp->newcred, imgp->newcred->cr_gid); } else { /* * Implement correct POSIX saved-id behavior. * * XXX: It's not clear that the existing behavior is * POSIX-compliant. A number of sources indicate that the * saved uid/gid should only be updated if the new ruid is * not equal to the old ruid, or the new euid is not equal * to the old euid and the new euid is not equal to the old * ruid. The FreeBSD code always updates the saved uid/gid. * Also, this code uses the new (replaced) euid and egid as * the source, which may or may not be the right ones to use. */ if (oldcred->cr_svuid != oldcred->cr_uid || oldcred->cr_svgid != oldcred->cr_gid) { VOP_UNLOCK(imgp->vp); imgp->newcred = crdup(oldcred); vn_lock(imgp->vp, LK_SHARED | LK_RETRY); change_svuid(imgp->newcred, imgp->newcred->cr_uid); change_svgid(imgp->newcred, imgp->newcred->cr_gid); } } /* The new credentials are installed into the process later. */ /* * If the current process has a special image activator it * wants to try first, call it. For example, emulating shell * scripts differently. */ error = -1; if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL) error = img_first(imgp); /* * Loop through the list of image activators, calling each one. * An activator returns -1 if there is no match, 0 on success, * and an error otherwise. */ for (i = 0; error == -1 && execsw[i]; ++i) { if (execsw[i]->ex_imgact == NULL || execsw[i]->ex_imgact == img_first) { continue; } error = (*execsw[i]->ex_imgact)(imgp); } if (error) { if (error == -1) error = ENOEXEC; goto exec_fail_dealloc; } /* * Special interpreter operation, cleanup and loop up to try to * activate the interpreter. */ if (imgp->interpreted) { exec_unmap_first_page(imgp); /* * The text reference needs to be removed for scripts. * There is a short period before we determine that * something is a script where text reference is active. * The vnode lock is held over this entire period * so nothing should illegitimately be blocked. */ MPASS(imgp->textset); VOP_UNSET_TEXT_CHECKED(newtextvp); imgp->textset = false; /* free name buffer and old vnode */ #ifdef MAC mac_execve_interpreter_enter(newtextvp, &interpvplabel); #endif if (imgp->opened) { VOP_CLOSE(newtextvp, FREAD, td->td_ucred, td); imgp->opened = false; } vput(newtextvp); imgp->vp = newtextvp = NULL; if (args->fname != NULL) { if (newtextdvp != NULL) { vrele(newtextdvp); newtextdvp = NULL; } NDFREE(&nd, NDF_ONLY_PNBUF); free(newbinname, M_PARGS); newbinname = NULL; } vm_object_deallocate(imgp->object); imgp->object = NULL; execve_nosetid(imgp); imgp->execpath = NULL; free(imgp->freepath, M_TEMP); imgp->freepath = NULL; /* set new name to that of the interpreter */ args->fname = imgp->interpreter_name; goto interpret; } /* * NB: We unlock the vnode here because it is believed that none * of the sv_copyout_strings/sv_fixup operations require the vnode. */ VOP_UNLOCK(imgp->vp); if (disallow_high_osrel && P_OSREL_MAJOR(p->p_osrel) > P_OSREL_MAJOR(__FreeBSD_version)) { error = ENOEXEC; uprintf("Osrel %d for image %s too high\n", p->p_osrel, imgp->execpath != NULL ? imgp->execpath : ""); vn_lock(imgp->vp, LK_SHARED | LK_RETRY); goto exec_fail_dealloc; } /* ABI enforces the use of Capsicum. Switch into capabilities mode. */ if (SV_PROC_FLAG(p, SV_CAPSICUM)) sys_cap_enter(td, NULL); /* * Copy out strings (args and env) and initialize stack base. */ error = (*p->p_sysent->sv_copyout_strings)(imgp, &stack_base); if (error != 0) { vn_lock(imgp->vp, LK_SHARED | LK_RETRY); goto exec_fail_dealloc; } /* * Stack setup. */ error = (*p->p_sysent->sv_fixup)(&stack_base, imgp); if (error != 0) { vn_lock(imgp->vp, LK_SHARED | LK_RETRY); goto exec_fail_dealloc; } if (args->fdp != NULL) { /* Install a brand new file descriptor table. */ fdinstall_remapped(td, args->fdp); args->fdp = NULL; } else { /* * Keep on using the existing file descriptor table. For * security and other reasons, the file descriptor table * cannot be shared after an exec. */ fdunshare(td); pdunshare(td); /* close files on exec */ fdcloseexec(td); } /* * Malloc things before we need locks. */ i = exec_args_get_begin_envv(imgp->args) - imgp->args->begin_argv; /* Cache arguments if they fit inside our allowance */ if (ps_arg_cache_limit >= i + sizeof(struct pargs)) { newargs = pargs_alloc(i); bcopy(imgp->args->begin_argv, newargs->ar_args, i); } /* * For security and other reasons, signal handlers cannot * be shared after an exec. The new process gets a copy of the old * handlers. In execsigs(), the new process will have its signals * reset. */ if (sigacts_shared(p->p_sigacts)) { oldsigacts = p->p_sigacts; newsigacts = sigacts_alloc(); sigacts_copy(newsigacts, oldsigacts); } vn_lock(imgp->vp, LK_SHARED | LK_RETRY); PROC_LOCK(p); if (oldsigacts) p->p_sigacts = newsigacts; /* Stop profiling */ stopprofclock(p); /* reset caught signals */ execsigs(p); /* name this process - nameiexec(p, ndp) */ bzero(p->p_comm, sizeof(p->p_comm)); if (args->fname) bcopy(nd.ni_cnd.cn_nameptr, p->p_comm, min(nd.ni_cnd.cn_namelen, MAXCOMLEN)); else if (vn_commname(newtextvp, p->p_comm, sizeof(p->p_comm)) != 0) bcopy(fexecv_proc_title, p->p_comm, sizeof(fexecv_proc_title)); bcopy(p->p_comm, td->td_name, sizeof(td->td_name)); #ifdef KTR sched_clear_tdname(td); #endif /* * mark as execed, wakeup the process that vforked (if any) and tell * it that it now has its own resources back */ p->p_flag |= P_EXEC; if ((p->p_flag2 & P2_NOTRACE_EXEC) == 0) p->p_flag2 &= ~P2_NOTRACE; if ((p->p_flag2 & P2_STKGAP_DISABLE_EXEC) == 0) p->p_flag2 &= ~P2_STKGAP_DISABLE; if (p->p_flag & P_PPWAIT) { p->p_flag &= ~(P_PPWAIT | P_PPTRACE); cv_broadcast(&p->p_pwait); /* STOPs are no longer ignored, arrange for AST */ signotify(td); } if ((imgp->sysent->sv_setid_allowed != NULL && !(*imgp->sysent->sv_setid_allowed)(td, imgp)) || (p->p_flag2 & P2_NO_NEW_PRIVS) != 0) execve_nosetid(imgp); /* * Implement image setuid/setgid installation. */ if (imgp->credential_setid) { /* * Turn off syscall tracing for set-id programs, except for * root. Record any set-id flags first to make sure that * we do not regain any tracing during a possible block. */ setsugid(p); #ifdef KTRACE kiop = ktrprocexec(p); #endif /* * Close any file descriptors 0..2 that reference procfs, * then make sure file descriptors 0..2 are in use. * * Both fdsetugidsafety() and fdcheckstd() may call functions * taking sleepable locks, so temporarily drop our locks. */ PROC_UNLOCK(p); VOP_UNLOCK(imgp->vp); fdsetugidsafety(td); error = fdcheckstd(td); vn_lock(imgp->vp, LK_SHARED | LK_RETRY); if (error != 0) goto exec_fail_dealloc; PROC_LOCK(p); #ifdef MAC if (will_transition) { mac_vnode_execve_transition(oldcred, imgp->newcred, imgp->vp, interpvplabel, imgp); } #endif } else { if (oldcred->cr_uid == oldcred->cr_ruid && oldcred->cr_gid == oldcred->cr_rgid) p->p_flag &= ~P_SUGID; } /* * Set the new credentials. */ if (imgp->newcred != NULL) { proc_set_cred(p, imgp->newcred); crfree(oldcred); oldcred = NULL; } /* * Store the vp for use in kern.proc.pathname. This vnode was * referenced by namei() or by fexecve variant of fname handling. */ oldtextvp = p->p_textvp; p->p_textvp = newtextvp; oldtextdvp = p->p_textdvp; p->p_textdvp = newtextdvp; newtextdvp = NULL; oldbinname = p->p_binname; p->p_binname = newbinname; newbinname = NULL; #ifdef KDTRACE_HOOKS /* * Tell the DTrace fasttrap provider about the exec if it * has declared an interest. */ if (dtrace_fasttrap_exec) dtrace_fasttrap_exec(p); #endif /* * Notify others that we exec'd, and clear the P_INEXEC flag * as we're now a bona fide freshly-execed process. */ KNOTE_LOCKED(p->p_klist, NOTE_EXEC); p->p_flag &= ~P_INEXEC; /* clear "fork but no exec" flag, as we _are_ execing */ p->p_acflag &= ~AFORK; /* * Free any previous argument cache and replace it with * the new argument cache, if any. */ oldargs = p->p_args; p->p_args = newargs; newargs = NULL; PROC_UNLOCK(p); #ifdef HWPMC_HOOKS /* * Check if system-wide sampling is in effect or if the * current process is using PMCs. If so, do exec() time * processing. This processing needs to happen AFTER the * P_INEXEC flag is cleared. */ if (PMC_SYSTEM_SAMPLING_ACTIVE() || PMC_PROC_IS_USING_PMCS(p)) { VOP_UNLOCK(imgp->vp); pe.pm_credentialschanged = credential_changing; pe.pm_entryaddr = imgp->entry_addr; PMC_CALL_HOOK_X(td, PMC_FN_PROCESS_EXEC, (void *) &pe); vn_lock(imgp->vp, LK_SHARED | LK_RETRY); } #endif /* Set values passed into the program in registers. */ (*p->p_sysent->sv_setregs)(td, imgp, stack_base); VOP_MMAPPED(imgp->vp); SDT_PROBE1(proc, , , exec__success, args->fname); exec_fail_dealloc: if (error != 0) { p->p_osrel = orig_osrel; p->p_fctl0 = orig_fctl0; p->p_elf_brandinfo = orig_brandinfo; } if (imgp->firstpage != NULL) exec_unmap_first_page(imgp); if (imgp->vp != NULL) { if (imgp->opened) VOP_CLOSE(imgp->vp, FREAD, td->td_ucred, td); if (imgp->textset) VOP_UNSET_TEXT_CHECKED(imgp->vp); if (error != 0) vput(imgp->vp); else VOP_UNLOCK(imgp->vp); if (args->fname != NULL) NDFREE(&nd, NDF_ONLY_PNBUF); if (newtextdvp != NULL) vrele(newtextdvp); free(newbinname, M_PARGS); } if (imgp->object != NULL) vm_object_deallocate(imgp->object); free(imgp->freepath, M_TEMP); if (error == 0) { if (p->p_ptevents & PTRACE_EXEC) { PROC_LOCK(p); if (p->p_ptevents & PTRACE_EXEC) td->td_dbgflags |= TDB_EXEC; PROC_UNLOCK(p); } } else { exec_fail: /* we're done here, clear P_INEXEC */ PROC_LOCK(p); p->p_flag &= ~P_INEXEC; PROC_UNLOCK(p); SDT_PROBE1(proc, , , exec__failure, error); } if (imgp->newcred != NULL && oldcred != NULL) crfree(imgp->newcred); #ifdef MAC mac_execve_exit(imgp); mac_execve_interpreter_exit(interpvplabel); #endif exec_free_args(args); /* * Handle deferred decrement of ref counts. */ if (oldtextvp != NULL) vrele(oldtextvp); if (oldtextdvp != NULL) vrele(oldtextdvp); free(oldbinname, M_PARGS); #ifdef KTRACE ktr_io_params_free(kiop); #endif pargs_drop(oldargs); pargs_drop(newargs); if (oldsigacts != NULL) sigacts_free(oldsigacts); if (euip != NULL) uifree(euip); if (error && imgp->vmspace_destroyed) { /* sorry, no more process anymore. exit gracefully */ exec_cleanup(td, oldvmspace); exit1(td, 0, SIGABRT); /* NOT REACHED */ } #ifdef KTRACE if (error == 0) ktrprocctor(p); #endif /* * We don't want cpu_set_syscall_retval() to overwrite any of * the register values put in place by exec_setregs(). * Implementations of cpu_set_syscall_retval() will leave * registers unmodified when returning EJUSTRETURN. */ return (error == 0 ? EJUSTRETURN : error); } void exec_cleanup(struct thread *td, struct vmspace *oldvmspace) { if ((td->td_pflags & TDP_EXECVMSPC) != 0) { KASSERT(td->td_proc->p_vmspace != oldvmspace, ("oldvmspace still used")); vmspace_free(oldvmspace); td->td_pflags &= ~TDP_EXECVMSPC; } } int exec_map_first_page(struct image_params *imgp) { vm_object_t object; vm_page_t m; int error; if (imgp->firstpage != NULL) exec_unmap_first_page(imgp); object = imgp->vp->v_object; if (object == NULL) return (EACCES); #if VM_NRESERVLEVEL > 0 if ((object->flags & OBJ_COLORED) == 0) { VM_OBJECT_WLOCK(object); vm_object_color(object, 0); VM_OBJECT_WUNLOCK(object); } #endif error = vm_page_grab_valid_unlocked(&m, object, 0, VM_ALLOC_COUNT(VM_INITIAL_PAGEIN) | VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED); if (error != VM_PAGER_OK) return (EIO); imgp->firstpage = sf_buf_alloc(m, 0); imgp->image_header = (char *)sf_buf_kva(imgp->firstpage); return (0); } void exec_unmap_first_page(struct image_params *imgp) { vm_page_t m; if (imgp->firstpage != NULL) { m = sf_buf_page(imgp->firstpage); sf_buf_free(imgp->firstpage); imgp->firstpage = NULL; vm_page_unwire(m, PQ_ACTIVE); } } void exec_onexec_old(struct thread *td) { sigfastblock_clear(td); umtx_exec(td->td_proc); } /* * This is an optimization which removes the unmanaged shared page * mapping. In combination with pmap_remove_pages(), which cleans all * managed mappings in the process' vmspace pmap, no work will be left * for pmap_remove(min, max). */ void exec_free_abi_mappings(struct proc *p) { struct vmspace *vmspace; struct sysentvec *sv; vmspace = p->p_vmspace; if (refcount_load(&vmspace->vm_refcnt) != 1) return; sv = p->p_sysent; if (sv->sv_shared_page_obj == NULL) return; pmap_remove(vmspace_pmap(vmspace), sv->sv_shared_page_base, sv->sv_shared_page_base + sv->sv_shared_page_len); } /* * Run down the current address space and install a new one. Map the shared * page. */ int exec_new_vmspace(struct image_params *imgp, struct sysentvec *sv) { int error; struct proc *p = imgp->proc; struct vmspace *vmspace = p->p_vmspace; struct thread *td = curthread; vm_object_t obj; vm_offset_t sv_minuser; vm_map_t map; imgp->vmspace_destroyed = true; imgp->sysent = sv; if (p->p_sysent->sv_onexec_old != NULL) p->p_sysent->sv_onexec_old(td); itimers_exec(p); EVENTHANDLER_DIRECT_INVOKE(process_exec, p, imgp); /* * Blow away entire process VM, if address space not shared, * otherwise, create a new VM space so that other threads are * not disrupted */ map = &vmspace->vm_map; if (map_at_zero) sv_minuser = sv->sv_minuser; else sv_minuser = MAX(sv->sv_minuser, PAGE_SIZE); if (refcount_load(&vmspace->vm_refcnt) == 1 && vm_map_min(map) == sv_minuser && vm_map_max(map) == sv->sv_maxuser && cpu_exec_vmspace_reuse(p, map)) { exec_free_abi_mappings(p); shmexit(vmspace); pmap_remove_pages(vmspace_pmap(vmspace)); vm_map_remove(map, vm_map_min(map), vm_map_max(map)); /* * An exec terminates mlockall(MCL_FUTURE). * ASLR and W^X states must be re-evaluated. */ vm_map_lock(map); vm_map_modflags(map, 0, MAP_WIREFUTURE | MAP_ASLR | MAP_ASLR_IGNSTART | MAP_ASLR_STACK | MAP_WXORX); vm_map_unlock(map); } else { error = vmspace_exec(p, sv_minuser, sv->sv_maxuser); if (error) return (error); vmspace = p->p_vmspace; map = &vmspace->vm_map; } map->flags |= imgp->map_flags; /* Map a shared page */ obj = sv->sv_shared_page_obj; if (obj != NULL) { vm_object_reference(obj); error = vm_map_fixed(map, obj, 0, sv->sv_shared_page_base, sv->sv_shared_page_len, VM_PROT_READ | VM_PROT_EXECUTE, VM_PROT_READ | VM_PROT_EXECUTE, MAP_INHERIT_SHARE | MAP_ACC_NO_CHARGE); if (error != KERN_SUCCESS) { vm_object_deallocate(obj); return (vm_mmap_to_errno(error)); } } - if (sv->sv_onexec != NULL) - sv->sv_onexec(p, imgp); - return (0); + return (sv->sv_onexec != NULL ? sv->sv_onexec(p, imgp) : 0); } /* * Compute the stack size limit and map the main process stack. */ int exec_map_stack(struct image_params *imgp) { struct rlimit rlim_stack; struct sysentvec *sv; struct proc *p; vm_map_t map; struct vmspace *vmspace; vm_offset_t stack_addr, stack_top; u_long ssiz; int error, find_space, stack_off; vm_prot_t stack_prot; p = imgp->proc; sv = p->p_sysent; if (imgp->stack_sz != 0) { ssiz = trunc_page(imgp->stack_sz); PROC_LOCK(p); lim_rlimit_proc(p, RLIMIT_STACK, &rlim_stack); PROC_UNLOCK(p); if (ssiz > rlim_stack.rlim_max) ssiz = rlim_stack.rlim_max; if (ssiz > rlim_stack.rlim_cur) { rlim_stack.rlim_cur = ssiz; kern_setrlimit(curthread, RLIMIT_STACK, &rlim_stack); } } else if (sv->sv_maxssiz != NULL) { ssiz = *sv->sv_maxssiz; } else { ssiz = maxssiz; } vmspace = p->p_vmspace; map = &vmspace->vm_map; stack_prot = sv->sv_shared_page_obj != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : sv->sv_stackprot; if ((map->flags & MAP_ASLR_STACK) != 0) { stack_addr = round_page((vm_offset_t)p->p_vmspace->vm_daddr + lim_max(curthread, RLIMIT_DATA)); find_space = VMFS_ANY_SPACE; } else { stack_addr = sv->sv_usrstack - ssiz; find_space = VMFS_NO_SPACE; } error = vm_map_find(map, NULL, 0, &stack_addr, (vm_size_t)ssiz, sv->sv_usrstack, find_space, stack_prot, VM_PROT_ALL, MAP_STACK_GROWS_DOWN); if (error != KERN_SUCCESS) { uprintf("exec_new_vmspace: mapping stack size %#jx prot %#x " "failed, mach error %d errno %d\n", (uintmax_t)ssiz, stack_prot, error, vm_mmap_to_errno(error)); return (vm_mmap_to_errno(error)); } stack_top = stack_addr + ssiz; if ((map->flags & MAP_ASLR_STACK) != 0) { /* Randomize within the first page of the stack. */ arc4rand(&stack_off, sizeof(stack_off), 0); stack_top -= rounddown2(stack_off & PAGE_MASK, sizeof(void *)); } /* * vm_ssize and vm_maxsaddr are somewhat antiquated concepts, but they * are still used to enforce the stack rlimit on the process stack. */ vmspace->vm_maxsaddr = (char *)stack_addr; vmspace->vm_stacktop = stack_top; vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT; return (0); } /* * Copy out argument and environment strings from the old process address * space into the temporary string buffer. */ int exec_copyin_args(struct image_args *args, const char *fname, enum uio_seg segflg, char **argv, char **envv) { u_long arg, env; int error; bzero(args, sizeof(*args)); if (argv == NULL) return (EFAULT); /* * Allocate demand-paged memory for the file name, argument, and * environment strings. */ error = exec_alloc_args(args); if (error != 0) return (error); /* * Copy the file name. */ error = exec_args_add_fname(args, fname, segflg); if (error != 0) goto err_exit; /* * extract arguments first */ for (;;) { error = fueword(argv++, &arg); if (error == -1) { error = EFAULT; goto err_exit; } if (arg == 0) break; error = exec_args_add_arg(args, (char *)(uintptr_t)arg, UIO_USERSPACE); if (error != 0) goto err_exit; } /* * extract environment strings */ if (envv) { for (;;) { error = fueword(envv++, &env); if (error == -1) { error = EFAULT; goto err_exit; } if (env == 0) break; error = exec_args_add_env(args, (char *)(uintptr_t)env, UIO_USERSPACE); if (error != 0) goto err_exit; } } return (0); err_exit: exec_free_args(args); return (error); } int exec_copyin_data_fds(struct thread *td, struct image_args *args, const void *data, size_t datalen, const int *fds, size_t fdslen) { struct filedesc *ofdp; const char *p; int *kfds; int error; memset(args, '\0', sizeof(*args)); ofdp = td->td_proc->p_fd; if (datalen >= ARG_MAX || fdslen >= ofdp->fd_nfiles) return (E2BIG); error = exec_alloc_args(args); if (error != 0) return (error); args->begin_argv = args->buf; args->stringspace = ARG_MAX; if (datalen > 0) { /* * Argument buffer has been provided. Copy it into the * kernel as a single string and add a terminating null * byte. */ error = copyin(data, args->begin_argv, datalen); if (error != 0) goto err_exit; args->begin_argv[datalen] = '\0'; args->endp = args->begin_argv + datalen + 1; args->stringspace -= datalen + 1; /* * Traditional argument counting. Count the number of * null bytes. */ for (p = args->begin_argv; p < args->endp; ++p) if (*p == '\0') ++args->argc; } else { /* No argument buffer provided. */ args->endp = args->begin_argv; } /* Create new file descriptor table. */ kfds = malloc(fdslen * sizeof(int), M_TEMP, M_WAITOK); error = copyin(fds, kfds, fdslen * sizeof(int)); if (error != 0) { free(kfds, M_TEMP); goto err_exit; } error = fdcopy_remapped(ofdp, kfds, fdslen, &args->fdp); free(kfds, M_TEMP); if (error != 0) goto err_exit; return (0); err_exit: exec_free_args(args); return (error); } struct exec_args_kva { vm_offset_t addr; u_int gen; SLIST_ENTRY(exec_args_kva) next; }; DPCPU_DEFINE_STATIC(struct exec_args_kva *, exec_args_kva); static SLIST_HEAD(, exec_args_kva) exec_args_kva_freelist; static struct mtx exec_args_kva_mtx; static u_int exec_args_gen; static void exec_prealloc_args_kva(void *arg __unused) { struct exec_args_kva *argkva; u_int i; SLIST_INIT(&exec_args_kva_freelist); mtx_init(&exec_args_kva_mtx, "exec args kva", NULL, MTX_DEF); for (i = 0; i < exec_map_entries; i++) { argkva = malloc(sizeof(*argkva), M_PARGS, M_WAITOK); argkva->addr = kmap_alloc_wait(exec_map, exec_map_entry_size); argkva->gen = exec_args_gen; SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next); } } SYSINIT(exec_args_kva, SI_SUB_EXEC, SI_ORDER_ANY, exec_prealloc_args_kva, NULL); static vm_offset_t exec_alloc_args_kva(void **cookie) { struct exec_args_kva *argkva; argkva = (void *)atomic_readandclear_ptr( (uintptr_t *)DPCPU_PTR(exec_args_kva)); if (argkva == NULL) { mtx_lock(&exec_args_kva_mtx); while ((argkva = SLIST_FIRST(&exec_args_kva_freelist)) == NULL) (void)mtx_sleep(&exec_args_kva_freelist, &exec_args_kva_mtx, 0, "execkva", 0); SLIST_REMOVE_HEAD(&exec_args_kva_freelist, next); mtx_unlock(&exec_args_kva_mtx); } kasan_mark((void *)argkva->addr, exec_map_entry_size, exec_map_entry_size, 0); *(struct exec_args_kva **)cookie = argkva; return (argkva->addr); } static void exec_release_args_kva(struct exec_args_kva *argkva, u_int gen) { vm_offset_t base; base = argkva->addr; kasan_mark((void *)argkva->addr, 0, exec_map_entry_size, KASAN_EXEC_ARGS_FREED); if (argkva->gen != gen) { (void)vm_map_madvise(exec_map, base, base + exec_map_entry_size, MADV_FREE); argkva->gen = gen; } if (!atomic_cmpset_ptr((uintptr_t *)DPCPU_PTR(exec_args_kva), (uintptr_t)NULL, (uintptr_t)argkva)) { mtx_lock(&exec_args_kva_mtx); SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next); wakeup_one(&exec_args_kva_freelist); mtx_unlock(&exec_args_kva_mtx); } } static void exec_free_args_kva(void *cookie) { exec_release_args_kva(cookie, exec_args_gen); } static void exec_args_kva_lowmem(void *arg __unused) { SLIST_HEAD(, exec_args_kva) head; struct exec_args_kva *argkva; u_int gen; int i; gen = atomic_fetchadd_int(&exec_args_gen, 1) + 1; /* * Force an madvise of each KVA range. Any currently allocated ranges * will have MADV_FREE applied once they are freed. */ SLIST_INIT(&head); mtx_lock(&exec_args_kva_mtx); SLIST_SWAP(&head, &exec_args_kva_freelist, exec_args_kva); mtx_unlock(&exec_args_kva_mtx); while ((argkva = SLIST_FIRST(&head)) != NULL) { SLIST_REMOVE_HEAD(&head, next); exec_release_args_kva(argkva, gen); } CPU_FOREACH(i) { argkva = (void *)atomic_readandclear_ptr( (uintptr_t *)DPCPU_ID_PTR(i, exec_args_kva)); if (argkva != NULL) exec_release_args_kva(argkva, gen); } } EVENTHANDLER_DEFINE(vm_lowmem, exec_args_kva_lowmem, NULL, EVENTHANDLER_PRI_ANY); /* * Allocate temporary demand-paged, zero-filled memory for the file name, * argument, and environment strings. */ int exec_alloc_args(struct image_args *args) { args->buf = (char *)exec_alloc_args_kva(&args->bufkva); return (0); } void exec_free_args(struct image_args *args) { if (args->buf != NULL) { exec_free_args_kva(args->bufkva); args->buf = NULL; } if (args->fname_buf != NULL) { free(args->fname_buf, M_TEMP); args->fname_buf = NULL; } if (args->fdp != NULL) fdescfree_remapped(args->fdp); } /* * A set to functions to fill struct image args. * * NOTE: exec_args_add_fname() must be called (possibly with a NULL * fname) before the other functions. All exec_args_add_arg() calls must * be made before any exec_args_add_env() calls. exec_args_adjust_args() * may be called any time after exec_args_add_fname(). * * exec_args_add_fname() - install path to be executed * exec_args_add_arg() - append an argument string * exec_args_add_env() - append an env string * exec_args_adjust_args() - adjust location of the argument list to * allow new arguments to be prepended */ int exec_args_add_fname(struct image_args *args, const char *fname, enum uio_seg segflg) { int error; size_t length; KASSERT(args->fname == NULL, ("fname already appended")); KASSERT(args->endp == NULL, ("already appending to args")); if (fname != NULL) { args->fname = args->buf; error = segflg == UIO_SYSSPACE ? copystr(fname, args->fname, PATH_MAX, &length) : copyinstr(fname, args->fname, PATH_MAX, &length); if (error != 0) return (error == ENAMETOOLONG ? E2BIG : error); } else length = 0; /* Set up for _arg_*()/_env_*() */ args->endp = args->buf + length; /* begin_argv must be set and kept updated */ args->begin_argv = args->endp; KASSERT(exec_map_entry_size - length >= ARG_MAX, ("too little space remaining for arguments %zu < %zu", exec_map_entry_size - length, (size_t)ARG_MAX)); args->stringspace = ARG_MAX; return (0); } static int exec_args_add_str(struct image_args *args, const char *str, enum uio_seg segflg, int *countp) { int error; size_t length; KASSERT(args->endp != NULL, ("endp not initialized")); KASSERT(args->begin_argv != NULL, ("begin_argp not initialized")); error = (segflg == UIO_SYSSPACE) ? copystr(str, args->endp, args->stringspace, &length) : copyinstr(str, args->endp, args->stringspace, &length); if (error != 0) return (error == ENAMETOOLONG ? E2BIG : error); args->stringspace -= length; args->endp += length; (*countp)++; return (0); } int exec_args_add_arg(struct image_args *args, const char *argp, enum uio_seg segflg) { KASSERT(args->envc == 0, ("appending args after env")); return (exec_args_add_str(args, argp, segflg, &args->argc)); } int exec_args_add_env(struct image_args *args, const char *envp, enum uio_seg segflg) { if (args->envc == 0) args->begin_envv = args->endp; return (exec_args_add_str(args, envp, segflg, &args->envc)); } int exec_args_adjust_args(struct image_args *args, size_t consume, ssize_t extend) { ssize_t offset; KASSERT(args->endp != NULL, ("endp not initialized")); KASSERT(args->begin_argv != NULL, ("begin_argp not initialized")); offset = extend - consume; if (args->stringspace < offset) return (E2BIG); memmove(args->begin_argv + extend, args->begin_argv + consume, args->endp - args->begin_argv + consume); if (args->envc > 0) args->begin_envv += offset; args->endp += offset; args->stringspace -= offset; return (0); } char * exec_args_get_begin_envv(struct image_args *args) { KASSERT(args->endp != NULL, ("endp not initialized")); if (args->envc > 0) return (args->begin_envv); return (args->endp); } /* * Copy strings out to the new process address space, constructing new arg * and env vector tables. Return a pointer to the base so that it can be used * as the initial stack pointer. */ int exec_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) { int argc, envc; char **vectp; char *stringp; uintptr_t destp, ustringp; struct ps_strings *arginfo; struct proc *p; struct sysentvec *sysent; size_t execpath_len; int error, szsigcode; char canary[sizeof(long) * 8]; p = imgp->proc; sysent = p->p_sysent; destp = PROC_PS_STRINGS(p); arginfo = imgp->ps_strings = (void *)destp; /* * Install sigcode. */ if (sysent->sv_sigcode_base == 0 && sysent->sv_szsigcode != NULL) { szsigcode = *(sysent->sv_szsigcode); destp -= szsigcode; destp = rounddown2(destp, sizeof(void *)); error = copyout(sysent->sv_sigcode, (void *)destp, szsigcode); if (error != 0) return (error); } /* * Copy the image path for the rtld. */ if (imgp->execpath != NULL && imgp->auxargs != NULL) { execpath_len = strlen(imgp->execpath) + 1; destp -= execpath_len; destp = rounddown2(destp, sizeof(void *)); imgp->execpathp = (void *)destp; error = copyout(imgp->execpath, imgp->execpathp, execpath_len); if (error != 0) return (error); } /* * Prepare the canary for SSP. */ arc4rand(canary, sizeof(canary), 0); destp -= sizeof(canary); imgp->canary = (void *)destp; error = copyout(canary, imgp->canary, sizeof(canary)); if (error != 0) return (error); imgp->canarylen = sizeof(canary); /* * Prepare the pagesizes array. */ imgp->pagesizeslen = sizeof(pagesizes[0]) * MAXPAGESIZES; destp -= imgp->pagesizeslen; destp = rounddown2(destp, sizeof(void *)); imgp->pagesizes = (void *)destp; error = copyout(pagesizes, imgp->pagesizes, imgp->pagesizeslen); if (error != 0) return (error); /* * Allocate room for the argument and environment strings. */ destp -= ARG_MAX - imgp->args->stringspace; destp = rounddown2(destp, sizeof(void *)); ustringp = destp; if (imgp->auxargs) { /* * Allocate room on the stack for the ELF auxargs * array. It has up to AT_COUNT entries. */ destp -= AT_COUNT * sizeof(Elf_Auxinfo); destp = rounddown2(destp, sizeof(void *)); } vectp = (char **)destp; /* * Allocate room for the argv[] and env vectors including the * terminating NULL pointers. */ vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; /* * vectp also becomes our initial stack base */ *stack_base = (uintptr_t)vectp; stringp = imgp->args->begin_argv; argc = imgp->args->argc; envc = imgp->args->envc; /* * Copy out strings - arguments and environment. */ error = copyout(stringp, (void *)ustringp, ARG_MAX - imgp->args->stringspace); if (error != 0) return (error); /* * Fill in "ps_strings" struct for ps, w, etc. */ imgp->argv = vectp; if (suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp) != 0 || suword32(&arginfo->ps_nargvstr, argc) != 0) return (EFAULT); /* * Fill in argument portion of vector table. */ for (; argc > 0; --argc) { if (suword(vectp++, ustringp) != 0) return (EFAULT); while (*stringp++ != 0) ustringp++; ustringp++; } /* a null vector table pointer separates the argp's from the envp's */ if (suword(vectp++, 0) != 0) return (EFAULT); imgp->envv = vectp; if (suword(&arginfo->ps_envstr, (long)(intptr_t)vectp) != 0 || suword32(&arginfo->ps_nenvstr, envc) != 0) return (EFAULT); /* * Fill in environment portion of vector table. */ for (; envc > 0; --envc) { if (suword(vectp++, ustringp) != 0) return (EFAULT); while (*stringp++ != 0) ustringp++; ustringp++; } /* end of vector table is a null pointer */ if (suword(vectp, 0) != 0) return (EFAULT); if (imgp->auxargs) { vectp++; error = imgp->sysent->sv_copyout_auxargs(imgp, (uintptr_t)vectp); if (error != 0) return (error); } return (0); } /* * Check permissions of file to execute. * Called with imgp->vp locked. * Return 0 for success or error code on failure. */ int exec_check_permissions(struct image_params *imgp) { struct vnode *vp = imgp->vp; struct vattr *attr = imgp->attr; struct thread *td; int error; td = curthread; /* Get file attributes */ error = VOP_GETATTR(vp, attr, td->td_ucred); if (error) return (error); #ifdef MAC error = mac_vnode_check_exec(td->td_ucred, imgp->vp, imgp); if (error) return (error); #endif /* * 1) Check if file execution is disabled for the filesystem that * this file resides on. * 2) Ensure that at least one execute bit is on. Otherwise, a * privileged user will always succeed, and we don't want this * to happen unless the file really is executable. * 3) Ensure that the file is a regular file. */ if ((vp->v_mount->mnt_flag & MNT_NOEXEC) || (attr->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0 || (attr->va_type != VREG)) return (EACCES); /* * Zero length files can't be exec'd */ if (attr->va_size == 0) return (ENOEXEC); /* * Check for execute permission to file based on current credentials. */ error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td); if (error) return (error); /* * Check number of open-for-writes on the file and deny execution * if there are any. * * Add a text reference now so no one can write to the * executable while we're activating it. * * Remember if this was set before and unset it in case this is not * actually an executable image. */ error = VOP_SET_TEXT(vp); if (error != 0) return (error); imgp->textset = true; /* * Call filesystem specific open routine (which does nothing in the * general case). */ error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL); if (error == 0) imgp->opened = true; return (error); } /* * Exec handler registration */ int exec_register(const struct execsw *execsw_arg) { const struct execsw **es, **xs, **newexecsw; u_int count = 2; /* New slot and trailing NULL */ if (execsw) for (es = execsw; *es; es++) count++; newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK); xs = newexecsw; if (execsw) for (es = execsw; *es; es++) *xs++ = *es; *xs++ = execsw_arg; *xs = NULL; if (execsw) free(execsw, M_TEMP); execsw = newexecsw; return (0); } int exec_unregister(const struct execsw *execsw_arg) { const struct execsw **es, **xs, **newexecsw; int count = 1; if (execsw == NULL) panic("unregister with no handlers left?\n"); for (es = execsw; *es; es++) { if (*es == execsw_arg) break; } if (*es == NULL) return (ENOENT); for (es = execsw; *es; es++) if (*es != execsw_arg) count++; newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK); xs = newexecsw; for (es = execsw; *es; es++) if (*es != execsw_arg) *xs++ = *es; *xs = NULL; if (execsw) free(execsw, M_TEMP); execsw = newexecsw; return (0); } /* * Write out a core segment to the compression stream. */ static int compress_chunk(struct coredump_params *cp, char *base, char *buf, size_t len) { size_t chunk_len; int error; while (len > 0) { chunk_len = MIN(len, CORE_BUF_SIZE); /* * We can get EFAULT error here. * In that case zero out the current chunk of the segment. */ error = copyin(base, buf, chunk_len); if (error != 0) bzero(buf, chunk_len); error = compressor_write(cp->comp, buf, chunk_len); if (error != 0) break; base += chunk_len; len -= chunk_len; } return (error); } int core_write(struct coredump_params *cp, const void *base, size_t len, off_t offset, enum uio_seg seg, size_t *resid) { return (vn_rdwr_inchunks(UIO_WRITE, cp->vp, __DECONST(void *, base), len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, cp->active_cred, cp->file_cred, resid, cp->td)); } int core_output(char *base, size_t len, off_t offset, struct coredump_params *cp, void *tmpbuf) { vm_map_t map; struct mount *mp; size_t resid, runlen; int error; bool success; KASSERT((uintptr_t)base % PAGE_SIZE == 0, ("%s: user address %p is not page-aligned", __func__, base)); if (cp->comp != NULL) return (compress_chunk(cp, base, tmpbuf, len)); map = &cp->td->td_proc->p_vmspace->vm_map; for (; len > 0; base += runlen, offset += runlen, len -= runlen) { /* * Attempt to page in all virtual pages in the range. If a * virtual page is not backed by the pager, it is represented as * a hole in the file. This can occur with zero-filled * anonymous memory or truncated files, for example. */ for (runlen = 0; runlen < len; runlen += PAGE_SIZE) { if (core_dump_can_intr && curproc_sigkilled()) return (EINTR); error = vm_fault(map, (uintptr_t)base + runlen, VM_PROT_READ, VM_FAULT_NOFILL, NULL); if (runlen == 0) success = error == KERN_SUCCESS; else if ((error == KERN_SUCCESS) != success) break; } if (success) { error = core_write(cp, base, runlen, offset, UIO_USERSPACE, &resid); if (error != 0) { if (error != EFAULT) break; /* * EFAULT may be returned if the user mapping * could not be accessed, e.g., because a mapped * file has been truncated. Skip the page if no * progress was made, to protect against a * hypothetical scenario where vm_fault() was * successful but core_write() returns EFAULT * anyway. */ runlen -= resid; if (runlen == 0) { success = false; runlen = PAGE_SIZE; } } } if (!success) { error = vn_start_write(cp->vp, &mp, V_WAIT); if (error != 0) break; vn_lock(cp->vp, LK_EXCLUSIVE | LK_RETRY); error = vn_truncate_locked(cp->vp, offset + runlen, false, cp->td->td_ucred); VOP_UNLOCK(cp->vp); vn_finished_write(mp); if (error != 0) break; } } return (error); } /* * Drain into a core file. */ int sbuf_drain_core_output(void *arg, const char *data, int len) { struct coredump_params *cp; struct proc *p; int error, locked; cp = arg; p = cp->td->td_proc; /* * Some kern_proc out routines that print to this sbuf may * call us with the process lock held. Draining with the * non-sleepable lock held is unsafe. The lock is needed for * those routines when dumping a live process. In our case we * can safely release the lock before draining and acquire * again after. */ locked = PROC_LOCKED(p); if (locked) PROC_UNLOCK(p); if (cp->comp != NULL) error = compressor_write(cp->comp, __DECONST(char *, data), len); else error = core_write(cp, __DECONST(void *, data), len, cp->offset, UIO_SYSSPACE, NULL); if (locked) PROC_LOCK(p); if (error != 0) return (-error); cp->offset += len; return (len); } diff --git a/sys/sys/sysent.h b/sys/sys/sysent.h index f02383bacdbc..7696879112e5 100644 --- a/sys/sys/sysent.h +++ b/sys/sys/sysent.h @@ -1,340 +1,340 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1988, 1991 The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _SYS_SYSENT_H_ #define _SYS_SYSENT_H_ #include struct rlimit; struct sysent; struct thread; struct ksiginfo; struct syscall_args; enum systrace_probe_t { SYSTRACE_ENTRY, SYSTRACE_RETURN, }; typedef int sy_call_t(struct thread *, void *); typedef void (*systrace_probe_func_t)(struct syscall_args *, enum systrace_probe_t, int); typedef void (*systrace_args_func_t)(int, void *, uint64_t *, int *); #ifdef _KERNEL extern systrace_probe_func_t systrace_probe_func; extern bool systrace_enabled; #ifdef KDTRACE_HOOKS #define SYSTRACE_ENABLED() (systrace_enabled) #else #define SYSTRACE_ENABLED() (0) #endif #endif /* _KERNEL */ struct sysent { /* system call table */ sy_call_t *sy_call; /* implementing function */ systrace_args_func_t sy_systrace_args_func; /* optional argument conversion function. */ u_int8_t sy_narg; /* number of arguments */ u_int8_t sy_flags; /* General flags for system calls. */ au_event_t sy_auevent; /* audit event associated with syscall */ u_int32_t sy_entry; /* DTrace entry ID for systrace. */ u_int32_t sy_return; /* DTrace return ID for systrace. */ u_int32_t sy_thrcnt; }; /* * A system call is permitted in capability mode. */ #define SYF_CAPENABLED 0x00000001 #define SY_THR_FLAGMASK 0x7 #define SY_THR_STATIC 0x1 #define SY_THR_DRAINING 0x2 #define SY_THR_ABSENT 0x4 #define SY_THR_INCR 0x8 #ifdef KLD_MODULE #define SY_THR_STATIC_KLD 0 #else #define SY_THR_STATIC_KLD SY_THR_STATIC #endif struct image_params; struct proc; struct __sigset; struct trapframe; struct vnode; struct note_info_list; struct sysentvec { int sv_size; /* number of entries */ struct sysent *sv_table; /* pointer to sysent */ int (*sv_transtrap)(int, int); /* translate trap-to-signal mapping */ int (*sv_fixup)(uintptr_t *, struct image_params *); /* stack fixup function */ void (*sv_sendsig)(void (*)(int), struct ksiginfo *, struct __sigset *); /* send signal */ const char *sv_sigcode; /* start of sigtramp code */ int *sv_szsigcode; /* size of sigtramp code */ int sv_sigcodeoff; char *sv_name; /* name of binary type */ int (*sv_coredump)(struct thread *, struct vnode *, off_t, int); /* function to dump core, or NULL */ int sv_elf_core_osabi; const char *sv_elf_core_abi_vendor; void (*sv_elf_core_prepare_notes)(struct thread *, struct note_info_list *, size_t *); int (*sv_imgact_try)(struct image_params *); int (*sv_copyout_auxargs)(struct image_params *, uintptr_t); int sv_minsigstksz; /* minimum signal stack size */ vm_offset_t sv_minuser; /* VM_MIN_ADDRESS */ vm_offset_t sv_maxuser; /* VM_MAXUSER_ADDRESS */ vm_offset_t sv_usrstack; /* USRSTACK */ vm_offset_t sv_psstrings; /* PS_STRINGS */ size_t sv_psstringssz; /* PS_STRINGS size */ int sv_stackprot; /* vm protection for stack */ int (*sv_copyout_strings)(struct image_params *, uintptr_t *); void (*sv_setregs)(struct thread *, struct image_params *, uintptr_t); void (*sv_fixlimit)(struct rlimit *, int); u_long *sv_maxssiz; u_int sv_flags; void (*sv_set_syscall_retval)(struct thread *, int); int (*sv_fetch_syscall_args)(struct thread *); const char **sv_syscallnames; vm_offset_t sv_timekeep_base; vm_offset_t sv_shared_page_base; vm_offset_t sv_shared_page_len; vm_offset_t sv_sigcode_base; void *sv_shared_page_obj; vm_offset_t sv_vdso_base; void (*sv_schedtail)(struct thread *); void (*sv_thread_detach)(struct thread *); int (*sv_trap)(struct thread *); u_long *sv_hwcap; /* Value passed in AT_HWCAP. */ u_long *sv_hwcap2; /* Value passed in AT_HWCAP2. */ const char *(*sv_machine_arch)(struct proc *); vm_offset_t sv_fxrng_gen_base; void (*sv_onexec_old)(struct thread *td); - void (*sv_onexec)(struct proc *, struct image_params *); + int (*sv_onexec)(struct proc *, struct image_params *); void (*sv_onexit)(struct proc *); void (*sv_ontdexit)(struct thread *td); int (*sv_setid_allowed)(struct thread *td, struct image_params *imgp); struct regset **sv_regset_begin; struct regset **sv_regset_end; }; #define SV_ILP32 0x000100 /* 32-bit executable. */ #define SV_LP64 0x000200 /* 64-bit executable. */ #define SV_IA32 0x004000 /* Intel 32-bit executable. */ #define SV_AOUT 0x008000 /* a.out executable. */ #define SV_SHP 0x010000 /* Shared page. */ #define SV_CAPSICUM 0x020000 /* Force cap_enter() on startup. */ #define SV_TIMEKEEP 0x040000 /* Shared page timehands. */ #define SV_ASLR 0x080000 /* ASLR allowed. */ #define SV_RNG_SEED_VER 0x100000 /* random(4) reseed generation. */ #define SV_SIG_DISCIGN 0x200000 /* Do not discard ignored signals */ #define SV_SIG_WAITNDQ 0x400000 /* Wait does not dequeue SIGCHLD */ #define SV_DSO_SIG 0x800000 /* Signal trampoline packed in dso */ #define SV_ABI_MASK 0xff #define SV_PROC_FLAG(p, x) ((p)->p_sysent->sv_flags & (x)) #define SV_PROC_ABI(p) ((p)->p_sysent->sv_flags & SV_ABI_MASK) #define SV_CURPROC_FLAG(x) SV_PROC_FLAG(curproc, x) #define SV_CURPROC_ABI() SV_PROC_ABI(curproc) /* same as ELFOSABI_XXX, to prevent header pollution */ #define SV_ABI_LINUX 3 #define SV_ABI_FREEBSD 9 #define SV_ABI_CLOUDABI 17 #define SV_ABI_UNDEF 255 /* sv_coredump flags */ #define SVC_PT_COREDUMP 0x00000001 /* dump requested by ptrace(2) */ #define SVC_NOCOMPRESS 0x00000002 /* disable compression. */ #define SVC_ALL 0x00000004 /* dump everything */ #ifdef _KERNEL extern struct sysentvec aout_sysvec; extern struct sysent sysent[]; extern const char *syscallnames[]; #define NO_SYSCALL (-1) struct module; struct syscall_module_data { int (*chainevh)(struct module *, int, void *); /* next handler */ void *chainarg; /* arg for next event handler */ int *offset; /* offset into sysent */ struct sysent *new_sysent; /* new sysent */ struct sysent old_sysent; /* old sysent */ int flags; /* flags for syscall_register */ }; /* separate initialization vector so it can be used in a substructure */ #define SYSENT_INIT_VALS(_syscallname) { \ .sy_narg = (sizeof(struct _syscallname ## _args ) \ / sizeof(register_t)), \ .sy_call = (sy_call_t *)&sys_##_syscallname, \ .sy_auevent = SYS_AUE_##_syscallname, \ .sy_systrace_args_func = NULL, \ .sy_entry = 0, \ .sy_return = 0, \ .sy_flags = 0, \ .sy_thrcnt = 0 \ } #define MAKE_SYSENT(syscallname) \ static struct sysent syscallname##_sysent = SYSENT_INIT_VALS(syscallname); #define MAKE_SYSENT_COMPAT(syscallname) \ static struct sysent syscallname##_sysent = { \ (sizeof(struct syscallname ## _args ) \ / sizeof(register_t)), \ (sy_call_t *)& syscallname, \ SYS_AUE_##syscallname \ } #define SYSCALL_MODULE(name, offset, new_sysent, evh, arg) \ static struct syscall_module_data name##_syscall_mod = { \ evh, arg, offset, new_sysent, { 0, NULL, AUE_NULL } \ }; \ \ static moduledata_t name##_mod = { \ "sys/" #name, \ syscall_module_handler, \ &name##_syscall_mod \ }; \ DECLARE_MODULE(name, name##_mod, SI_SUB_SYSCALLS, SI_ORDER_MIDDLE) #define SYSCALL_MODULE_HELPER(syscallname) \ static int syscallname##_syscall = SYS_##syscallname; \ MAKE_SYSENT(syscallname); \ SYSCALL_MODULE(syscallname, \ & syscallname##_syscall, & syscallname##_sysent, \ NULL, NULL) #define SYSCALL_MODULE_PRESENT(syscallname) \ (sysent[SYS_##syscallname].sy_call != (sy_call_t *)lkmnosys && \ sysent[SYS_##syscallname].sy_call != (sy_call_t *)lkmressys) /* * Syscall registration helpers with resource allocation handling. */ struct syscall_helper_data { struct sysent new_sysent; struct sysent old_sysent; int syscall_no; int registered; }; #define SYSCALL_INIT_HELPER_F(syscallname, flags) { \ .new_sysent = { \ .sy_narg = (sizeof(struct syscallname ## _args ) \ / sizeof(register_t)), \ .sy_call = (sy_call_t *)& sys_ ## syscallname, \ .sy_auevent = SYS_AUE_##syscallname, \ .sy_flags = (flags) \ }, \ .syscall_no = SYS_##syscallname \ } #define SYSCALL_INIT_HELPER_COMPAT_F(syscallname, flags) { \ .new_sysent = { \ .sy_narg = (sizeof(struct syscallname ## _args ) \ / sizeof(register_t)), \ .sy_call = (sy_call_t *)& syscallname, \ .sy_auevent = SYS_AUE_##syscallname, \ .sy_flags = (flags) \ }, \ .syscall_no = SYS_##syscallname \ } #define SYSCALL_INIT_HELPER(syscallname) \ SYSCALL_INIT_HELPER_F(syscallname, 0) #define SYSCALL_INIT_HELPER_COMPAT(syscallname) \ SYSCALL_INIT_HELPER_COMPAT_F(syscallname, 0) #define SYSCALL_INIT_LAST { \ .syscall_no = NO_SYSCALL \ } int syscall_module_handler(struct module *mod, int what, void *arg); int syscall_helper_register(struct syscall_helper_data *sd, int flags); int syscall_helper_unregister(struct syscall_helper_data *sd); /* Implementation, exposed for COMPAT code */ int kern_syscall_register(struct sysent *sysents, int *offset, struct sysent *new_sysent, struct sysent *old_sysent, int flags); int kern_syscall_deregister(struct sysent *sysents, int offset, const struct sysent *old_sysent); int kern_syscall_module_handler(struct sysent *sysents, struct module *mod, int what, void *arg); int kern_syscall_helper_register(struct sysent *sysents, struct syscall_helper_data *sd, int flags); int kern_syscall_helper_unregister(struct sysent *sysents, struct syscall_helper_data *sd); struct proc; const char *syscallname(struct proc *p, u_int code); /* Special purpose system call functions. */ struct nosys_args; int lkmnosys(struct thread *, struct nosys_args *); int lkmressys(struct thread *, struct nosys_args *); int syscall_thread_enter(struct thread *td, struct sysent *se); void syscall_thread_exit(struct thread *td, struct sysent *se); int shared_page_alloc(int size, int align); int shared_page_fill(int size, int align, const void *data); void shared_page_write(int base, int size, const void *data); void exec_sysvec_init(void *param); void exec_sysvec_init_secondary(struct sysentvec *sv, struct sysentvec *sv2); void exec_inittk(void); void exit_onexit(struct proc *p); void exec_free_abi_mappings(struct proc *p); void exec_onexec_old(struct thread *td); #define INIT_SYSENTVEC(name, sv) \ SYSINIT(name, SI_SUB_EXEC, SI_ORDER_ANY, \ (sysinit_cfunc_t)exec_sysvec_init, sv); #endif /* _KERNEL */ #endif /* !_SYS_SYSENT_H_ */