diff --git a/sys/dev/firewire/if_fwe.c b/sys/dev/firewire/if_fwe.c index e6abebdab527..a7d9bc35d494 100644 --- a/sys/dev/firewire/if_fwe.c +++ b/sys/dev/firewire/if_fwe.c @@ -1,736 +1,732 @@ /*- * Copyright (c) 2002-2003 * Hidetoshi Shimokawa. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * * This product includes software developed by Hidetoshi Shimokawa. * * 4. Neither the name of the author nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_device_polling.h" #include "opt_inet.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __DragonFly__ #include #include #include #include "if_fwevar.h" #else #include #include #include #include #endif #define FWEDEBUG if (fwedebug) if_printf #define TX_MAX_QUEUE (FWMAXQUEUE - 1) /* network interface */ static void fwe_start (struct ifnet *); static int fwe_ioctl (struct ifnet *, u_long, caddr_t); static void fwe_init (void *); static void fwe_output_callback (struct fw_xfer *); static void fwe_as_output (struct fwe_softc *, struct ifnet *); static void fwe_as_input (struct fw_xferq *); static int fwedebug = 0; static int stream_ch = 1; static int tx_speed = 2; static int rx_queue_len = FWMAXQUEUE; static MALLOC_DEFINE(M_FWE, "if_fwe", "Ethernet over FireWire interface"); SYSCTL_INT(_debug, OID_AUTO, if_fwe_debug, CTLFLAG_RW, &fwedebug, 0, ""); SYSCTL_DECL(_hw_firewire); static SYSCTL_NODE(_hw_firewire, OID_AUTO, fwe, CTLFLAG_RD, 0, "Ethernet emulation subsystem"); SYSCTL_INT(_hw_firewire_fwe, OID_AUTO, stream_ch, CTLFLAG_RW, &stream_ch, 0, "Stream channel to use"); SYSCTL_INT(_hw_firewire_fwe, OID_AUTO, tx_speed, CTLFLAG_RW, &tx_speed, 0, "Transmission speed"); SYSCTL_INT(_hw_firewire_fwe, OID_AUTO, rx_queue_len, CTLFLAG_RW, &rx_queue_len, 0, "Length of the receive queue"); TUNABLE_INT("hw.firewire.fwe.stream_ch", &stream_ch); TUNABLE_INT("hw.firewire.fwe.tx_speed", &tx_speed); TUNABLE_INT("hw.firewire.fwe.rx_queue_len", &rx_queue_len); #ifdef DEVICE_POLLING static poll_handler_t fwe_poll; static int fwe_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) { struct fwe_softc *fwe; struct firewire_comm *fc; if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) return (0); fwe = ((struct fwe_eth_softc *)ifp->if_softc)->fwe; fc = fwe->fd.fc; fc->poll(fc, (cmd == POLL_AND_CHECK_STATUS)?0:1, count); return (0); } #endif /* DEVICE_POLLING */ static void fwe_identify(driver_t *driver, device_t parent) { BUS_ADD_CHILD(parent, 0, "fwe", device_get_unit(parent)); } static int fwe_probe(device_t dev) { device_t pa; pa = device_get_parent(dev); if(device_get_unit(dev) != device_get_unit(pa)){ return(ENXIO); } device_set_desc(dev, "Ethernet over FireWire"); return (0); } static int fwe_attach(device_t dev) { struct fwe_softc *fwe; struct ifnet *ifp; int unit, s; #if defined(__DragonFly__) || __FreeBSD_version < 500000 u_char *eaddr; #else u_char eaddr[6]; #endif struct fw_eui64 *eui; fwe = ((struct fwe_softc *)device_get_softc(dev)); unit = device_get_unit(dev); bzero(fwe, sizeof(struct fwe_softc)); mtx_init(&fwe->mtx, "fwe", NULL, MTX_DEF); /* XXX */ fwe->stream_ch = stream_ch; fwe->dma_ch = -1; fwe->fd.fc = device_get_ivars(dev); if (tx_speed < 0) tx_speed = fwe->fd.fc->speed; fwe->fd.dev = dev; fwe->fd.post_explore = NULL; fwe->eth_softc.fwe = fwe; fwe->pkt_hdr.mode.stream.tcode = FWTCODE_STREAM; fwe->pkt_hdr.mode.stream.sy = 0; fwe->pkt_hdr.mode.stream.chtag = fwe->stream_ch; /* generate fake MAC address: first and last 3bytes from eui64 */ #define LOCAL (0x02) #define GROUP (0x01) #if defined(__DragonFly__) || __FreeBSD_version < 500000 eaddr = &IFP2ENADDR(fwe->eth_softc.ifp)[0]; #endif eui = &fwe->fd.fc->eui; eaddr[0] = (FW_EUI64_BYTE(eui, 0) | LOCAL) & ~GROUP; eaddr[1] = FW_EUI64_BYTE(eui, 1); eaddr[2] = FW_EUI64_BYTE(eui, 2); eaddr[3] = FW_EUI64_BYTE(eui, 5); eaddr[4] = FW_EUI64_BYTE(eui, 6); eaddr[5] = FW_EUI64_BYTE(eui, 7); printf("if_fwe%d: Fake Ethernet address: " "%02x:%02x:%02x:%02x:%02x:%02x\n", unit, eaddr[0], eaddr[1], eaddr[2], eaddr[3], eaddr[4], eaddr[5]); /* fill the rest and attach interface */ ifp = fwe->eth_softc.ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "can not if_alloc()\n"); return (ENOSPC); } ifp->if_softc = &fwe->eth_softc; #if __FreeBSD_version >= 501113 || defined(__DragonFly__) if_initname(ifp, device_get_name(dev), unit); #else ifp->if_unit = unit; ifp->if_name = "fwe"; #endif ifp->if_init = fwe_init; #if defined(__DragonFly__) || __FreeBSD_version < 500000 ifp->if_output = ether_output; #endif ifp->if_start = fwe_start; ifp->if_ioctl = fwe_ioctl; ifp->if_flags = (IFF_BROADCAST|IFF_SIMPLEX|IFF_MULTICAST); ifp->if_snd.ifq_maxlen = TX_MAX_QUEUE; s = splimp(); #if defined(__DragonFly__) || __FreeBSD_version < 500000 ether_ifattach(ifp, 1); #else ether_ifattach(ifp, eaddr); #endif splx(s); /* Tell the upper layer(s) we support long frames. */ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); #if defined(__FreeBSD__) && __FreeBSD_version >= 500000 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_POLLING; ifp->if_capenable |= IFCAP_VLAN_MTU; #endif FWEDEBUG(ifp, "interface created\n"); return 0; } static void fwe_stop(struct fwe_softc *fwe) { struct firewire_comm *fc; struct fw_xferq *xferq; struct ifnet *ifp = fwe->eth_softc.ifp; struct fw_xfer *xfer, *next; int i; fc = fwe->fd.fc; if (fwe->dma_ch >= 0) { xferq = fc->ir[fwe->dma_ch]; if (xferq->flag & FWXFERQ_RUNNING) fc->irx_disable(fc, fwe->dma_ch); xferq->flag &= ~(FWXFERQ_MODEMASK | FWXFERQ_OPEN | FWXFERQ_STREAM | FWXFERQ_EXTBUF | FWXFERQ_HANDLER | FWXFERQ_CHTAGMASK); xferq->hand = NULL; for (i = 0; i < xferq->bnchunk; i ++) m_freem(xferq->bulkxfer[i].mbuf); free(xferq->bulkxfer, M_FWE); for (xfer = STAILQ_FIRST(&fwe->xferlist); xfer != NULL; xfer = next) { next = STAILQ_NEXT(xfer, link); fw_xfer_free(xfer); } STAILQ_INIT(&fwe->xferlist); xferq->bulkxfer = NULL; fwe->dma_ch = -1; } #if defined(__FreeBSD__) ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); #else ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); #endif } static int fwe_detach(device_t dev) { struct fwe_softc *fwe; struct ifnet *ifp; int s; fwe = device_get_softc(dev); ifp = fwe->eth_softc.ifp; #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) ether_poll_deregister(ifp); #endif s = splimp(); fwe_stop(fwe); #if defined(__DragonFly__) || __FreeBSD_version < 500000 ether_ifdetach(ifp, 1); #else ether_ifdetach(ifp); if_free(ifp); #endif splx(s); mtx_destroy(&fwe->mtx); return 0; } static void fwe_init(void *arg) { struct fwe_softc *fwe = ((struct fwe_eth_softc *)arg)->fwe; struct firewire_comm *fc; struct ifnet *ifp = fwe->eth_softc.ifp; struct fw_xferq *xferq; struct fw_xfer *xfer; struct mbuf *m; int i; FWEDEBUG(ifp, "initializing\n"); /* XXX keep promiscoud mode */ ifp->if_flags |= IFF_PROMISC; fc = fwe->fd.fc; if (fwe->dma_ch < 0) { fwe->dma_ch = fw_open_isodma(fc, /* tx */0); if (fwe->dma_ch < 0) return; xferq = fc->ir[fwe->dma_ch]; xferq->flag |= FWXFERQ_EXTBUF | FWXFERQ_HANDLER | FWXFERQ_STREAM; fwe->stream_ch = stream_ch; fwe->pkt_hdr.mode.stream.chtag = fwe->stream_ch; xferq->flag &= ~0xff; xferq->flag |= fwe->stream_ch & 0xff; /* register fwe_input handler */ xferq->sc = (caddr_t) fwe; xferq->hand = fwe_as_input; xferq->bnchunk = rx_queue_len; xferq->bnpacket = 1; xferq->psize = MCLBYTES; xferq->queued = 0; xferq->buf = NULL; xferq->bulkxfer = (struct fw_bulkxfer *) malloc( sizeof(struct fw_bulkxfer) * xferq->bnchunk, M_FWE, M_WAITOK); if (xferq->bulkxfer == NULL) { printf("if_fwe: malloc failed\n"); return; } STAILQ_INIT(&xferq->stvalid); STAILQ_INIT(&xferq->stfree); STAILQ_INIT(&xferq->stdma); xferq->stproc = NULL; for (i = 0; i < xferq->bnchunk; i ++) { m = m_getcl(M_WAITOK, MT_DATA, M_PKTHDR); xferq->bulkxfer[i].mbuf = m; m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; STAILQ_INSERT_TAIL(&xferq->stfree, &xferq->bulkxfer[i], link); } STAILQ_INIT(&fwe->xferlist); for (i = 0; i < TX_MAX_QUEUE; i++) { xfer = fw_xfer_alloc(M_FWE); if (xfer == NULL) break; xfer->send.spd = tx_speed; xfer->fc = fwe->fd.fc; xfer->sc = (caddr_t)fwe; xfer->hand = fwe_output_callback; STAILQ_INSERT_TAIL(&fwe->xferlist, xfer, link); } } else xferq = fc->ir[fwe->dma_ch]; /* start dma */ if ((xferq->flag & FWXFERQ_RUNNING) == 0) fc->irx_enable(fc, fwe->dma_ch); #if defined(__FreeBSD__) ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; #else ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; #endif #if 0 /* attempt to start output */ fwe_start(ifp); #endif } static int fwe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct fwe_softc *fwe = ((struct fwe_eth_softc *)ifp->if_softc)->fwe; struct ifstat *ifs = NULL; - int s, error, len; + int s, error; switch (cmd) { case SIOCSIFFLAGS: s = splimp(); if (ifp->if_flags & IFF_UP) { #if defined(__FreeBSD__) if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) #else if (!(ifp->if_flags & IFF_RUNNING)) #endif fwe_init(&fwe->eth_softc); } else { #if defined(__FreeBSD__) if (ifp->if_drv_flags & IFF_DRV_RUNNING) #else if (ifp->if_flags & IFF_RUNNING) #endif fwe_stop(fwe); } /* XXX keep promiscoud mode */ ifp->if_flags |= IFF_PROMISC; splx(s); break; case SIOCADDMULTI: case SIOCDELMULTI: break; case SIOCGIFSTATUS: s = splimp(); ifs = (struct ifstat *)data; - len = strlen(ifs->ascii); - if (len < sizeof(ifs->ascii)) - snprintf(ifs->ascii + len, - sizeof(ifs->ascii) - len, - "\tch %d dma %d\n", - fwe->stream_ch, fwe->dma_ch); + snprintf(ifs->ascii, sizeof(ifs->ascii), + "\tch %d dma %d\n", fwe->stream_ch, fwe->dma_ch); splx(s); break; case SIOCSIFCAP: #ifdef DEVICE_POLLING { struct ifreq *ifr = (struct ifreq *) data; struct firewire_comm *fc = fwe->fd.fc; if (ifr->ifr_reqcap & IFCAP_POLLING && !(ifp->if_capenable & IFCAP_POLLING)) { error = ether_poll_register(fwe_poll, ifp); if (error) return(error); /* Disable interrupts */ fc->set_intr(fc, 0); ifp->if_capenable |= IFCAP_POLLING; ifp->if_capenable |= IFCAP_POLLING_NOCOUNT; return (error); } if (!(ifr->ifr_reqcap & IFCAP_POLLING) && ifp->if_capenable & IFCAP_POLLING) { error = ether_poll_deregister(ifp); /* Enable interrupts. */ fc->set_intr(fc, 1); ifp->if_capenable &= ~IFCAP_POLLING; ifp->if_capenable &= ~IFCAP_POLLING_NOCOUNT; return (error); } } #endif /* DEVICE_POLLING */ break; #if defined(__FreeBSD__) && __FreeBSD_version >= 500000 default: #else case SIOCSIFADDR: case SIOCGIFADDR: case SIOCSIFMTU: #endif s = splimp(); error = ether_ioctl(ifp, cmd, data); splx(s); return (error); #if defined(__DragonFly__) || __FreeBSD_version < 500000 default: return (EINVAL); #endif } return (0); } static void fwe_output_callback(struct fw_xfer *xfer) { struct fwe_softc *fwe; struct ifnet *ifp; int s; fwe = (struct fwe_softc *)xfer->sc; ifp = fwe->eth_softc.ifp; /* XXX error check */ FWEDEBUG(ifp, "resp = %d\n", xfer->resp); if (xfer->resp != 0) ifp->if_oerrors ++; m_freem(xfer->mbuf); fw_xfer_unload(xfer); s = splimp(); FWE_LOCK(fwe); STAILQ_INSERT_TAIL(&fwe->xferlist, xfer, link); FWE_UNLOCK(fwe); splx(s); /* for queue full */ if (ifp->if_snd.ifq_head != NULL) fwe_start(ifp); } static void fwe_start(struct ifnet *ifp) { struct fwe_softc *fwe = ((struct fwe_eth_softc *)ifp->if_softc)->fwe; int s; FWEDEBUG(ifp, "starting\n"); if (fwe->dma_ch < 0) { struct mbuf *m = NULL; FWEDEBUG(ifp, "not ready\n"); s = splimp(); do { IF_DEQUEUE(&ifp->if_snd, m); if (m != NULL) m_freem(m); ifp->if_oerrors ++; } while (m != NULL); splx(s); return; } s = splimp(); #if defined(__FreeBSD__) ifp->if_drv_flags |= IFF_DRV_OACTIVE; #else ifp->if_flags |= IFF_OACTIVE; #endif if (ifp->if_snd.ifq_len != 0) fwe_as_output(fwe, ifp); #if defined(__FreeBSD__) ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; #else ifp->if_flags &= ~IFF_OACTIVE; #endif splx(s); } #define HDR_LEN 4 #ifndef ETHER_ALIGN #define ETHER_ALIGN 2 #endif /* Async. stream output */ static void fwe_as_output(struct fwe_softc *fwe, struct ifnet *ifp) { struct mbuf *m; struct fw_xfer *xfer; struct fw_xferq *xferq; struct fw_pkt *fp; int i = 0; xfer = NULL; xferq = fwe->fd.fc->atq; while ((xferq->queued < xferq->maxq - 1) && (ifp->if_snd.ifq_head != NULL)) { FWE_LOCK(fwe); xfer = STAILQ_FIRST(&fwe->xferlist); if (xfer == NULL) { #if 0 printf("if_fwe: lack of xfer\n"); #endif FWE_UNLOCK(fwe); break; } STAILQ_REMOVE_HEAD(&fwe->xferlist, link); FWE_UNLOCK(fwe); IF_DEQUEUE(&ifp->if_snd, m); if (m == NULL) { FWE_LOCK(fwe); STAILQ_INSERT_HEAD(&fwe->xferlist, xfer, link); FWE_UNLOCK(fwe); break; } #if defined(__DragonFly__) || __FreeBSD_version < 500000 if (ifp->if_bpf != NULL) bpf_mtap(ifp, m); #else BPF_MTAP(ifp, m); #endif /* keep ip packet alignment for alpha */ M_PREPEND(m, ETHER_ALIGN, M_NOWAIT); fp = &xfer->send.hdr; *(uint32_t *)&xfer->send.hdr = *(int32_t *)&fwe->pkt_hdr; fp->mode.stream.len = m->m_pkthdr.len; xfer->mbuf = m; xfer->send.pay_len = m->m_pkthdr.len; if (fw_asyreq(fwe->fd.fc, -1, xfer) != 0) { /* error */ ifp->if_oerrors ++; /* XXX set error code */ fwe_output_callback(xfer); } else { ifp->if_opackets ++; i++; } } #if 0 if (i > 1) printf("%d queued\n", i); #endif if (i > 0) xferq->start(fwe->fd.fc); } /* Async. stream output */ static void fwe_as_input(struct fw_xferq *xferq) { struct mbuf *m, *m0; struct ifnet *ifp; struct fwe_softc *fwe; struct fw_bulkxfer *sxfer; struct fw_pkt *fp; u_char *c; #if defined(__DragonFly__) || __FreeBSD_version < 500000 struct ether_header *eh; #endif fwe = (struct fwe_softc *)xferq->sc; ifp = fwe->eth_softc.ifp; /* We do not need a lock here because the bottom half is serialized */ while ((sxfer = STAILQ_FIRST(&xferq->stvalid)) != NULL) { STAILQ_REMOVE_HEAD(&xferq->stvalid, link); fp = mtod(sxfer->mbuf, struct fw_pkt *); if (fwe->fd.fc->irx_post != NULL) fwe->fd.fc->irx_post(fwe->fd.fc, fp->mode.ld); m = sxfer->mbuf; /* insert new rbuf */ sxfer->mbuf = m0 = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m0 != NULL) { m0->m_len = m0->m_pkthdr.len = m0->m_ext.ext_size; STAILQ_INSERT_TAIL(&xferq->stfree, sxfer, link); } else printf("%s: m_getcl failed\n", __FUNCTION__); if (sxfer->resp != 0 || fp->mode.stream.len < ETHER_ALIGN + sizeof(struct ether_header)) { m_freem(m); ifp->if_ierrors ++; continue; } m->m_data += HDR_LEN + ETHER_ALIGN; c = mtod(m, u_char *); #if defined(__DragonFly__) || __FreeBSD_version < 500000 eh = (struct ether_header *)c; m->m_data += sizeof(struct ether_header); m->m_len = m->m_pkthdr.len = fp->mode.stream.len - ETHER_ALIGN - sizeof(struct ether_header); #else m->m_len = m->m_pkthdr.len = fp->mode.stream.len - ETHER_ALIGN; #endif m->m_pkthdr.rcvif = ifp; #if 0 FWEDEBUG(ifp, "%02x %02x %02x %02x %02x %02x\n" "%02x %02x %02x %02x %02x %02x\n" "%02x %02x %02x %02x\n" "%02x %02x %02x %02x\n" "%02x %02x %02x %02x\n" "%02x %02x %02x %02x\n", c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7], c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15], c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23], c[20], c[21], c[22], c[23] ); #endif #if defined(__DragonFly__) || __FreeBSD_version < 500000 ether_input(ifp, eh, m); #else (*ifp->if_input)(ifp, m); #endif ifp->if_ipackets ++; } if (STAILQ_FIRST(&xferq->stfree) != NULL) fwe->fd.fc->irx_enable(fwe->fd.fc, fwe->dma_ch); } static devclass_t fwe_devclass; static device_method_t fwe_methods[] = { /* device interface */ DEVMETHOD(device_identify, fwe_identify), DEVMETHOD(device_probe, fwe_probe), DEVMETHOD(device_attach, fwe_attach), DEVMETHOD(device_detach, fwe_detach), { 0, 0 } }; static driver_t fwe_driver = { "fwe", fwe_methods, sizeof(struct fwe_softc), }; #ifdef __DragonFly__ DECLARE_DUMMY_MODULE(fwe); #endif DRIVER_MODULE(fwe, firewire, fwe_driver, fwe_devclass, 0, 0); MODULE_VERSION(fwe, 1); MODULE_DEPEND(fwe, firewire, 1, 1, 1); diff --git a/sys/net/if.c b/sys/net/if.c index f190bb47d26a..e0ef442152d7 100644 --- a/sys/net/if.c +++ b/sys/net/if.c @@ -1,3415 +1,3411 @@ /*- * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if.c 8.5 (Berkeley) 1/9/95 * $FreeBSD$ */ #include "opt_compat.h" #include "opt_inet6.h" #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #include #include #include #ifdef INET #include #endif /* INET */ #ifdef INET6 #include #include #endif /* INET6 */ #endif /* INET || INET6 */ #include #ifdef COMPAT_FREEBSD32 #include #include #endif struct ifindex_entry { struct ifnet *ife_ifnet; }; SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers"); SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management"); TUNABLE_INT("net.link.ifqmaxlen", &ifqmaxlen); SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN, &ifqmaxlen, 0, "max send queue size"); /* Log link state change events */ static int log_link_state_change = 1; SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW, &log_link_state_change, 0, "log interface link state change events"); /* Interface description */ static unsigned int ifdescr_maxlen = 1024; SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW, &ifdescr_maxlen, 0, "administrative maximum length for interface description"); static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions"); /* global sx for non-critical path ifdescr */ static struct sx ifdescr_sx; SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr"); void (*bridge_linkstate_p)(struct ifnet *ifp); void (*ng_ether_link_state_p)(struct ifnet *ifp, int state); void (*lagg_linkstate_p)(struct ifnet *ifp, int state); /* These are external hooks for CARP. */ void (*carp_linkstate_p)(struct ifnet *ifp); void (*carp_demote_adj_p)(int, char *); int (*carp_master_p)(struct ifaddr *); #if defined(INET) || defined(INET6) int (*carp_forus_p)(struct ifnet *ifp, u_char *dhost); int (*carp_output_p)(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *sa); int (*carp_ioctl_p)(struct ifreq *, u_long, struct thread *); int (*carp_attach_p)(struct ifaddr *, int); void (*carp_detach_p)(struct ifaddr *); #endif #ifdef INET int (*carp_iamatch_p)(struct ifaddr *, uint8_t **); #endif #ifdef INET6 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6); caddr_t (*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m, const struct in6_addr *taddr); #endif struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL; /* * XXX: Style; these should be sorted alphabetically, and unprototyped * static functions should be prototyped. Currently they are sorted by * declaration order. */ static void if_attachdomain(void *); static void if_attachdomain1(struct ifnet *); static int ifconf(u_long, caddr_t); static void if_freemulti(struct ifmultiaddr *); static void if_init(void *); static void if_grow(void); static void if_route(struct ifnet *, int flag, int fam); static int if_setflag(struct ifnet *, int, int, int *, int); static int if_transmit(struct ifnet *ifp, struct mbuf *m); static void if_unroute(struct ifnet *, int flag, int fam); static void link_rtrequest(int, struct rtentry *, struct rt_addrinfo *); static int if_rtdel(struct radix_node *, void *); static int ifhwioctl(u_long, struct ifnet *, caddr_t, struct thread *); static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int); static void do_link_state_change(void *, int); static int if_getgroup(struct ifgroupreq *, struct ifnet *); static int if_getgroupmembers(struct ifgroupreq *); static void if_delgroups(struct ifnet *); static void if_attach_internal(struct ifnet *, int); static void if_detach_internal(struct ifnet *, int); #ifdef INET6 /* * XXX: declare here to avoid to include many inet6 related files.. * should be more generalized? */ extern void nd6_setmtu(struct ifnet *); #endif VNET_DEFINE(int, if_index); int ifqmaxlen = IFQ_MAXLEN; VNET_DEFINE(struct ifnethead, ifnet); /* depend on static init XXX */ VNET_DEFINE(struct ifgrouphead, ifg_head); static VNET_DEFINE(int, if_indexlim) = 8; /* Table of ifnet by index. */ VNET_DEFINE(struct ifindex_entry *, ifindex_table); #define V_if_indexlim VNET(if_indexlim) #define V_ifindex_table VNET(ifindex_table) /* * The global network interface list (V_ifnet) and related state (such as * if_index, if_indexlim, and ifindex_table) are protected by an sxlock and * an rwlock. Either may be acquired shared to stablize the list, but both * must be acquired writable to modify the list. This model allows us to * both stablize the interface list during interrupt thread processing, but * also to stablize it over long-running ioctls, without introducing priority * inversions and deadlocks. */ struct rwlock ifnet_rwlock; struct sx ifnet_sxlock; /* * The allocation of network interfaces is a rather non-atomic affair; we * need to select an index before we are ready to expose the interface for * use, so will use this pointer value to indicate reservation. */ #define IFNET_HOLD (void *)(uintptr_t)(-1) static if_com_alloc_t *if_com_alloc[256]; static if_com_free_t *if_com_free[256]; static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals"); MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); struct ifnet * ifnet_byindex_locked(u_short idx) { if (idx > V_if_index) return (NULL); if (V_ifindex_table[idx].ife_ifnet == IFNET_HOLD) return (NULL); return (V_ifindex_table[idx].ife_ifnet); } struct ifnet * ifnet_byindex(u_short idx) { struct ifnet *ifp; IFNET_RLOCK_NOSLEEP(); ifp = ifnet_byindex_locked(idx); IFNET_RUNLOCK_NOSLEEP(); return (ifp); } struct ifnet * ifnet_byindex_ref(u_short idx) { struct ifnet *ifp; IFNET_RLOCK_NOSLEEP(); ifp = ifnet_byindex_locked(idx); if (ifp == NULL || (ifp->if_flags & IFF_DYING)) { IFNET_RUNLOCK_NOSLEEP(); return (NULL); } if_ref(ifp); IFNET_RUNLOCK_NOSLEEP(); return (ifp); } /* * Allocate an ifindex array entry; return 0 on success or an error on * failure. */ static int ifindex_alloc_locked(u_short *idxp) { u_short idx; IFNET_WLOCK_ASSERT(); retry: /* * Try to find an empty slot below V_if_index. If we fail, take the * next slot. */ for (idx = 1; idx <= V_if_index; idx++) { if (V_ifindex_table[idx].ife_ifnet == NULL) break; } /* Catch if_index overflow. */ if (idx < 1) return (ENOSPC); if (idx >= V_if_indexlim) { if_grow(); goto retry; } if (idx > V_if_index) V_if_index = idx; *idxp = idx; return (0); } static void ifindex_free_locked(u_short idx) { IFNET_WLOCK_ASSERT(); V_ifindex_table[idx].ife_ifnet = NULL; while (V_if_index > 0 && V_ifindex_table[V_if_index].ife_ifnet == NULL) V_if_index--; } static void ifindex_free(u_short idx) { IFNET_WLOCK(); ifindex_free_locked(idx); IFNET_WUNLOCK(); } static void ifnet_setbyindex_locked(u_short idx, struct ifnet *ifp) { IFNET_WLOCK_ASSERT(); V_ifindex_table[idx].ife_ifnet = ifp; } static void ifnet_setbyindex(u_short idx, struct ifnet *ifp) { IFNET_WLOCK(); ifnet_setbyindex_locked(idx, ifp); IFNET_WUNLOCK(); } struct ifaddr * ifaddr_byindex(u_short idx) { struct ifaddr *ifa; IFNET_RLOCK_NOSLEEP(); ifa = ifnet_byindex_locked(idx)->if_addr; if (ifa != NULL) ifa_ref(ifa); IFNET_RUNLOCK_NOSLEEP(); return (ifa); } /* * Network interface utility routines. * * Routines with ifa_ifwith* names take sockaddr *'s as * parameters. */ static void vnet_if_init(const void *unused __unused) { TAILQ_INIT(&V_ifnet); TAILQ_INIT(&V_ifg_head); IFNET_WLOCK(); if_grow(); /* create initial table */ IFNET_WUNLOCK(); vnet_if_clone_init(); } VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init, NULL); /* ARGSUSED*/ static void if_init(void *dummy __unused) { IFNET_LOCK_INIT(); if_clone_init(); } SYSINIT(interfaces, SI_SUB_INIT_IF, SI_ORDER_FIRST, if_init, NULL); #ifdef VIMAGE static void vnet_if_uninit(const void *unused __unused) { VNET_ASSERT(TAILQ_EMPTY(&V_ifnet), ("%s:%d tailq &V_ifnet=%p " "not empty", __func__, __LINE__, &V_ifnet)); VNET_ASSERT(TAILQ_EMPTY(&V_ifg_head), ("%s:%d tailq &V_ifg_head=%p " "not empty", __func__, __LINE__, &V_ifg_head)); free((caddr_t)V_ifindex_table, M_IFNET); } VNET_SYSUNINIT(vnet_if_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST, vnet_if_uninit, NULL); #endif static void if_grow(void) { int oldlim; u_int n; struct ifindex_entry *e; IFNET_WLOCK_ASSERT(); oldlim = V_if_indexlim; IFNET_WUNLOCK(); n = (oldlim << 1) * sizeof(*e); e = malloc(n, M_IFNET, M_WAITOK | M_ZERO); IFNET_WLOCK(); if (V_if_indexlim != oldlim) { free(e, M_IFNET); return; } if (V_ifindex_table != NULL) { memcpy((caddr_t)e, (caddr_t)V_ifindex_table, n/2); free((caddr_t)V_ifindex_table, M_IFNET); } V_if_indexlim <<= 1; V_ifindex_table = e; } /* * Allocate a struct ifnet and an index for an interface. A layer 2 * common structure will also be allocated if an allocation routine is * registered for the passed type. */ struct ifnet * if_alloc(u_char type) { struct ifnet *ifp; u_short idx; ifp = malloc(sizeof(struct ifnet), M_IFNET, M_WAITOK|M_ZERO); IFNET_WLOCK(); if (ifindex_alloc_locked(&idx) != 0) { IFNET_WUNLOCK(); free(ifp, M_IFNET); return (NULL); } ifnet_setbyindex_locked(idx, IFNET_HOLD); IFNET_WUNLOCK(); ifp->if_index = idx; ifp->if_type = type; ifp->if_alloctype = type; if (if_com_alloc[type] != NULL) { ifp->if_l2com = if_com_alloc[type](type, ifp); if (ifp->if_l2com == NULL) { free(ifp, M_IFNET); ifindex_free(idx); return (NULL); } } IF_ADDR_LOCK_INIT(ifp); TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp); ifp->if_afdata_initialized = 0; IF_AFDATA_LOCK_INIT(ifp); TAILQ_INIT(&ifp->if_addrhead); TAILQ_INIT(&ifp->if_multiaddrs); TAILQ_INIT(&ifp->if_groups); #ifdef MAC mac_ifnet_init(ifp); #endif ifq_init(&ifp->if_snd, ifp); refcount_init(&ifp->if_refcount, 1); /* Index reference. */ ifnet_setbyindex(ifp->if_index, ifp); return (ifp); } /* * Do the actual work of freeing a struct ifnet, and layer 2 common * structure. This call is made when the last reference to an * interface is released. */ static void if_free_internal(struct ifnet *ifp) { KASSERT((ifp->if_flags & IFF_DYING), ("if_free_internal: interface not dying")); if (if_com_free[ifp->if_alloctype] != NULL) if_com_free[ifp->if_alloctype](ifp->if_l2com, ifp->if_alloctype); #ifdef MAC mac_ifnet_destroy(ifp); #endif /* MAC */ if (ifp->if_description != NULL) free(ifp->if_description, M_IFDESCR); IF_AFDATA_DESTROY(ifp); IF_ADDR_LOCK_DESTROY(ifp); ifq_delete(&ifp->if_snd); free(ifp, M_IFNET); } /* * Deregister an interface and free the associated storage. */ void if_free(struct ifnet *ifp) { ifp->if_flags |= IFF_DYING; /* XXX: Locking */ CURVNET_SET_QUIET(ifp->if_vnet); IFNET_WLOCK(); KASSERT(ifp == ifnet_byindex_locked(ifp->if_index), ("%s: freeing unallocated ifnet", ifp->if_xname)); ifindex_free_locked(ifp->if_index); IFNET_WUNLOCK(); if (refcount_release(&ifp->if_refcount)) if_free_internal(ifp); CURVNET_RESTORE(); } /* * Interfaces to keep an ifnet type-stable despite the possibility of the * driver calling if_free(). If there are additional references, we defer * freeing the underlying data structure. */ void if_ref(struct ifnet *ifp) { /* We don't assert the ifnet list lock here, but arguably should. */ refcount_acquire(&ifp->if_refcount); } void if_rele(struct ifnet *ifp) { if (!refcount_release(&ifp->if_refcount)) return; if_free_internal(ifp); } void ifq_init(struct ifaltq *ifq, struct ifnet *ifp) { mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF); if (ifq->ifq_maxlen == 0) ifq->ifq_maxlen = ifqmaxlen; ifq->altq_type = 0; ifq->altq_disc = NULL; ifq->altq_flags &= ALTQF_CANTCHANGE; ifq->altq_tbr = NULL; ifq->altq_ifp = ifp; } void ifq_delete(struct ifaltq *ifq) { mtx_destroy(&ifq->ifq_mtx); } /* * Perform generic interface initalization tasks and attach the interface * to the list of "active" interfaces. If vmove flag is set on entry * to if_attach_internal(), perform only a limited subset of initialization * tasks, given that we are moving from one vnet to another an ifnet which * has already been fully initialized. * * XXX: * - The decision to return void and thus require this function to * succeed is questionable. * - We should probably do more sanity checking. For instance we don't * do anything to insure if_xname is unique or non-empty. */ void if_attach(struct ifnet *ifp) { if_attach_internal(ifp, 0); } static void if_attach_internal(struct ifnet *ifp, int vmove) { unsigned socksize, ifasize; int namelen, masklen; struct sockaddr_dl *sdl; struct ifaddr *ifa; if (ifp->if_index == 0 || ifp != ifnet_byindex(ifp->if_index)) panic ("%s: BUG: if_attach called without if_alloc'd input()\n", ifp->if_xname); #ifdef VIMAGE ifp->if_vnet = curvnet; if (ifp->if_home_vnet == NULL) ifp->if_home_vnet = curvnet; #endif if_addgroup(ifp, IFG_ALL); getmicrotime(&ifp->if_lastchange); ifp->if_data.ifi_epoch = time_uptime; ifp->if_data.ifi_datalen = sizeof(struct if_data); KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) || (ifp->if_transmit != NULL && ifp->if_qflush != NULL), ("transmit and qflush must both either be set or both be NULL")); if (ifp->if_transmit == NULL) { ifp->if_transmit = if_transmit; ifp->if_qflush = if_qflush; } if (!vmove) { #ifdef MAC mac_ifnet_create(ifp); #endif /* * Create a Link Level name for this device. */ namelen = strlen(ifp->if_xname); /* * Always save enough space for any possiable name so we * can do a rename in place later. */ masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ; socksize = masklen + ifp->if_addrlen; if (socksize < sizeof(*sdl)) socksize = sizeof(*sdl); socksize = roundup2(socksize, sizeof(long)); ifasize = sizeof(*ifa) + 2 * socksize; ifa = ifa_alloc(ifasize, M_WAITOK); sdl = (struct sockaddr_dl *)(ifa + 1); sdl->sdl_len = socksize; sdl->sdl_family = AF_LINK; bcopy(ifp->if_xname, sdl->sdl_data, namelen); sdl->sdl_nlen = namelen; sdl->sdl_index = ifp->if_index; sdl->sdl_type = ifp->if_type; ifp->if_addr = ifa; ifa->ifa_ifp = ifp; ifa->ifa_rtrequest = link_rtrequest; ifa->ifa_addr = (struct sockaddr *)sdl; sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); ifa->ifa_netmask = (struct sockaddr *)sdl; sdl->sdl_len = masklen; while (namelen != 0) sdl->sdl_data[--namelen] = 0xff; TAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link); /* Reliably crash if used uninitialized. */ ifp->if_broadcastaddr = NULL; #if defined(INET) || defined(INET6) /* Initialize to max value. */ if (ifp->if_hw_tsomax == 0) ifp->if_hw_tsomax = IP_MAXPACKET; KASSERT(ifp->if_hw_tsomax <= IP_MAXPACKET && ifp->if_hw_tsomax >= IP_MAXPACKET / 8, ("%s: tsomax outside of range", __func__)); #endif } #ifdef VIMAGE else { /* * Update the interface index in the link layer address * of the interface. */ for (ifa = ifp->if_addr; ifa != NULL; ifa = TAILQ_NEXT(ifa, ifa_link)) { if (ifa->ifa_addr->sa_family == AF_LINK) { sdl = (struct sockaddr_dl *)ifa->ifa_addr; sdl->sdl_index = ifp->if_index; } } } #endif IFNET_WLOCK(); TAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link); #ifdef VIMAGE curvnet->vnet_ifcnt++; #endif IFNET_WUNLOCK(); if (domain_init_status >= 2) if_attachdomain1(ifp); EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); if (IS_DEFAULT_VNET(curvnet)) devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); /* Announce the interface. */ rt_ifannouncemsg(ifp, IFAN_ARRIVAL); } static void if_attachdomain(void *dummy) { struct ifnet *ifp; TAILQ_FOREACH(ifp, &V_ifnet, if_link) if_attachdomain1(ifp); } SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND, if_attachdomain, NULL); static void if_attachdomain1(struct ifnet *ifp) { struct domain *dp; /* * Since dp->dom_ifattach calls malloc() with M_WAITOK, we * cannot lock ifp->if_afdata initialization, entirely. */ if (IF_AFDATA_TRYLOCK(ifp) == 0) return; if (ifp->if_afdata_initialized >= domain_init_status) { IF_AFDATA_UNLOCK(ifp); log(LOG_WARNING, "%s called more than once on %s\n", __func__, ifp->if_xname); return; } ifp->if_afdata_initialized = domain_init_status; IF_AFDATA_UNLOCK(ifp); /* address family dependent data region */ bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); for (dp = domains; dp; dp = dp->dom_next) { if (dp->dom_ifattach) ifp->if_afdata[dp->dom_family] = (*dp->dom_ifattach)(ifp); } } /* * Remove any unicast or broadcast network addresses from an interface. */ void if_purgeaddrs(struct ifnet *ifp) { struct ifaddr *ifa, *next; TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { if (ifa->ifa_addr->sa_family == AF_LINK) continue; #ifdef INET /* XXX: Ugly!! ad hoc just for INET */ if (ifa->ifa_addr->sa_family == AF_INET) { struct ifaliasreq ifr; bzero(&ifr, sizeof(ifr)); ifr.ifra_addr = *ifa->ifa_addr; if (ifa->ifa_dstaddr) ifr.ifra_broadaddr = *ifa->ifa_dstaddr; if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, NULL) == 0) continue; } #endif /* INET */ #ifdef INET6 if (ifa->ifa_addr->sa_family == AF_INET6) { in6_purgeaddr(ifa); /* ifp_addrhead is already updated */ continue; } #endif /* INET6 */ TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); ifa_free(ifa); } } /* * Remove any multicast network addresses from an interface when an ifnet * is going away. */ static void if_purgemaddrs(struct ifnet *ifp) { struct ifmultiaddr *ifma; struct ifmultiaddr *next; IF_ADDR_WLOCK(ifp); TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) if_delmulti_locked(ifp, ifma, 1); IF_ADDR_WUNLOCK(ifp); } /* * Detach an interface, removing it from the list of "active" interfaces. * If vmove flag is set on entry to if_detach_internal(), perform only a * limited subset of cleanup tasks, given that we are moving an ifnet from * one vnet to another, where it must be fully operational. * * XXXRW: There are some significant questions about event ordering, and * how to prevent things from starting to use the interface during detach. */ void if_detach(struct ifnet *ifp) { CURVNET_SET_QUIET(ifp->if_vnet); if_detach_internal(ifp, 0); CURVNET_RESTORE(); } static void if_detach_internal(struct ifnet *ifp, int vmove) { struct ifaddr *ifa; struct radix_node_head *rnh; int i, j; struct domain *dp; struct ifnet *iter; int found = 0; IFNET_WLOCK(); TAILQ_FOREACH(iter, &V_ifnet, if_link) if (iter == ifp) { TAILQ_REMOVE(&V_ifnet, ifp, if_link); found = 1; break; } #ifdef VIMAGE if (found) curvnet->vnet_ifcnt--; #endif IFNET_WUNLOCK(); if (!found) { if (vmove) panic("%s: ifp=%p not on the ifnet tailq %p", __func__, ifp, &V_ifnet); else return; /* XXX this should panic as well? */ } /* * Remove/wait for pending events. */ taskqueue_drain(taskqueue_swi, &ifp->if_linktask); /* * Remove routes and flush queues. */ if_down(ifp); #ifdef ALTQ if (ALTQ_IS_ENABLED(&ifp->if_snd)) altq_disable(&ifp->if_snd); if (ALTQ_IS_ATTACHED(&ifp->if_snd)) altq_detach(&ifp->if_snd); #endif if_purgeaddrs(ifp); #ifdef INET in_ifdetach(ifp); #endif #ifdef INET6 /* * Remove all IPv6 kernel structs related to ifp. This should be done * before removing routing entries below, since IPv6 interface direct * routes are expected to be removed by the IPv6-specific kernel API. * Otherwise, the kernel will detect some inconsistency and bark it. */ in6_ifdetach(ifp); #endif if_purgemaddrs(ifp); if (!vmove) { /* * Prevent further calls into the device driver via ifnet. */ if_dead(ifp); /* * Remove link ifaddr pointer and maybe decrement if_index. * Clean up all addresses. */ ifp->if_addr = NULL; /* We can now free link ifaddr. */ if (!TAILQ_EMPTY(&ifp->if_addrhead)) { ifa = TAILQ_FIRST(&ifp->if_addrhead); TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); ifa_free(ifa); } } /* * Delete all remaining routes using this interface * Unfortuneatly the only way to do this is to slog through * the entire routing table looking for routes which point * to this interface...oh well... */ for (i = 1; i <= AF_MAX; i++) { for (j = 0; j < rt_numfibs; j++) { rnh = rt_tables_get_rnh(j, i); if (rnh == NULL) continue; RADIX_NODE_HEAD_LOCK(rnh); (void) rnh->rnh_walktree(rnh, if_rtdel, ifp); RADIX_NODE_HEAD_UNLOCK(rnh); } } /* Announce that the interface is gone. */ rt_ifannouncemsg(ifp, IFAN_DEPARTURE); EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); if (IS_DEFAULT_VNET(curvnet)) devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); if_delgroups(ifp); /* * We cannot hold the lock over dom_ifdetach calls as they might * sleep, for example trying to drain a callout, thus open up the * theoretical race with re-attaching. */ IF_AFDATA_LOCK(ifp); i = ifp->if_afdata_initialized; ifp->if_afdata_initialized = 0; IF_AFDATA_UNLOCK(ifp); for (dp = domains; i > 0 && dp; dp = dp->dom_next) { if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) (*dp->dom_ifdetach)(ifp, ifp->if_afdata[dp->dom_family]); } } #ifdef VIMAGE /* * if_vmove() performs a limited version of if_detach() in current * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg. * An attempt is made to shrink if_index in current vnet, find an * unused if_index in target vnet and calls if_grow() if necessary, * and finally find an unused if_xname for the target vnet. */ void if_vmove(struct ifnet *ifp, struct vnet *new_vnet) { u_short idx; /* * Detach from current vnet, but preserve LLADDR info, do not * mark as dead etc. so that the ifnet can be reattached later. */ if_detach_internal(ifp, 1); /* * Unlink the ifnet from ifindex_table[] in current vnet, and shrink * the if_index for that vnet if possible. * * NOTE: IFNET_WLOCK/IFNET_WUNLOCK() are assumed to be unvirtualized, * or we'd lock on one vnet and unlock on another. */ IFNET_WLOCK(); ifindex_free_locked(ifp->if_index); IFNET_WUNLOCK(); /* * Perform interface-specific reassignment tasks, if provided by * the driver. */ if (ifp->if_reassign != NULL) ifp->if_reassign(ifp, new_vnet, NULL); /* * Switch to the context of the target vnet. */ CURVNET_SET_QUIET(new_vnet); IFNET_WLOCK(); if (ifindex_alloc_locked(&idx) != 0) { IFNET_WUNLOCK(); panic("if_index overflow"); } ifp->if_index = idx; ifnet_setbyindex_locked(ifp->if_index, ifp); IFNET_WUNLOCK(); if_attach_internal(ifp, 1); CURVNET_RESTORE(); } /* * Move an ifnet to or from another child prison/vnet, specified by the jail id. */ static int if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid) { struct prison *pr; struct ifnet *difp; /* Try to find the prison within our visibility. */ sx_slock(&allprison_lock); pr = prison_find_child(td->td_ucred->cr_prison, jid); sx_sunlock(&allprison_lock); if (pr == NULL) return (ENXIO); prison_hold_locked(pr); mtx_unlock(&pr->pr_mtx); /* Do not try to move the iface from and to the same prison. */ if (pr->pr_vnet == ifp->if_vnet) { prison_free(pr); return (EEXIST); } /* Make sure the named iface does not exists in the dst. prison/vnet. */ /* XXX Lock interfaces to avoid races. */ CURVNET_SET_QUIET(pr->pr_vnet); difp = ifunit(ifname); CURVNET_RESTORE(); if (difp != NULL) { prison_free(pr); return (EEXIST); } /* Move the interface into the child jail/vnet. */ if_vmove(ifp, pr->pr_vnet); /* Report the new if_xname back to the userland. */ sprintf(ifname, "%s", ifp->if_xname); prison_free(pr); return (0); } static int if_vmove_reclaim(struct thread *td, char *ifname, int jid) { struct prison *pr; struct vnet *vnet_dst; struct ifnet *ifp; /* Try to find the prison within our visibility. */ sx_slock(&allprison_lock); pr = prison_find_child(td->td_ucred->cr_prison, jid); sx_sunlock(&allprison_lock); if (pr == NULL) return (ENXIO); prison_hold_locked(pr); mtx_unlock(&pr->pr_mtx); /* Make sure the named iface exists in the source prison/vnet. */ CURVNET_SET(pr->pr_vnet); ifp = ifunit(ifname); /* XXX Lock to avoid races. */ if (ifp == NULL) { CURVNET_RESTORE(); prison_free(pr); return (ENXIO); } /* Do not try to move the iface from and to the same prison. */ vnet_dst = TD_TO_VNET(td); if (vnet_dst == ifp->if_vnet) { CURVNET_RESTORE(); prison_free(pr); return (EEXIST); } /* Get interface back from child jail/vnet. */ if_vmove(ifp, vnet_dst); CURVNET_RESTORE(); /* Report the new if_xname back to the userland. */ sprintf(ifname, "%s", ifp->if_xname); prison_free(pr); return (0); } #endif /* VIMAGE */ /* * Add a group to an interface */ int if_addgroup(struct ifnet *ifp, const char *groupname) { struct ifg_list *ifgl; struct ifg_group *ifg = NULL; struct ifg_member *ifgm; int new = 0; if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && groupname[strlen(groupname) - 1] <= '9') return (EINVAL); IFNET_WLOCK(); TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) { IFNET_WUNLOCK(); return (EEXIST); } if ((ifgl = (struct ifg_list *)malloc(sizeof(struct ifg_list), M_TEMP, M_NOWAIT)) == NULL) { IFNET_WUNLOCK(); return (ENOMEM); } if ((ifgm = (struct ifg_member *)malloc(sizeof(struct ifg_member), M_TEMP, M_NOWAIT)) == NULL) { free(ifgl, M_TEMP); IFNET_WUNLOCK(); return (ENOMEM); } TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) if (!strcmp(ifg->ifg_group, groupname)) break; if (ifg == NULL) { if ((ifg = (struct ifg_group *)malloc(sizeof(struct ifg_group), M_TEMP, M_NOWAIT)) == NULL) { free(ifgl, M_TEMP); free(ifgm, M_TEMP); IFNET_WUNLOCK(); return (ENOMEM); } strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); ifg->ifg_refcnt = 0; TAILQ_INIT(&ifg->ifg_members); TAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next); new = 1; } ifg->ifg_refcnt++; ifgl->ifgl_group = ifg; ifgm->ifgm_ifp = ifp; IF_ADDR_WLOCK(ifp); TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); IF_ADDR_WUNLOCK(ifp); IFNET_WUNLOCK(); if (new) EVENTHANDLER_INVOKE(group_attach_event, ifg); EVENTHANDLER_INVOKE(group_change_event, groupname); return (0); } /* * Remove a group from an interface */ int if_delgroup(struct ifnet *ifp, const char *groupname) { struct ifg_list *ifgl; struct ifg_member *ifgm; IFNET_WLOCK(); TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) break; if (ifgl == NULL) { IFNET_WUNLOCK(); return (ENOENT); } IF_ADDR_WLOCK(ifp); TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); IF_ADDR_WUNLOCK(ifp); TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) if (ifgm->ifgm_ifp == ifp) break; if (ifgm != NULL) { TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next); free(ifgm, M_TEMP); } if (--ifgl->ifgl_group->ifg_refcnt == 0) { TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next); IFNET_WUNLOCK(); EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group); free(ifgl->ifgl_group, M_TEMP); } else IFNET_WUNLOCK(); free(ifgl, M_TEMP); EVENTHANDLER_INVOKE(group_change_event, groupname); return (0); } /* * Remove an interface from all groups */ static void if_delgroups(struct ifnet *ifp) { struct ifg_list *ifgl; struct ifg_member *ifgm; char groupname[IFNAMSIZ]; IFNET_WLOCK(); while (!TAILQ_EMPTY(&ifp->if_groups)) { ifgl = TAILQ_FIRST(&ifp->if_groups); strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ); IF_ADDR_WLOCK(ifp); TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); IF_ADDR_WUNLOCK(ifp); TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) if (ifgm->ifgm_ifp == ifp) break; if (ifgm != NULL) { TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next); free(ifgm, M_TEMP); } if (--ifgl->ifgl_group->ifg_refcnt == 0) { TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next); IFNET_WUNLOCK(); EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group); free(ifgl->ifgl_group, M_TEMP); } else IFNET_WUNLOCK(); free(ifgl, M_TEMP); EVENTHANDLER_INVOKE(group_change_event, groupname); IFNET_WLOCK(); } IFNET_WUNLOCK(); } /* * Stores all groups from an interface in memory pointed * to by data */ static int if_getgroup(struct ifgroupreq *data, struct ifnet *ifp) { int len, error; struct ifg_list *ifgl; struct ifg_req ifgrq, *ifgp; struct ifgroupreq *ifgr = data; if (ifgr->ifgr_len == 0) { IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) ifgr->ifgr_len += sizeof(struct ifg_req); IF_ADDR_RUNLOCK(ifp); return (0); } len = ifgr->ifgr_len; ifgp = ifgr->ifgr_groups; /* XXX: wire */ IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { if (len < sizeof(ifgrq)) { IF_ADDR_RUNLOCK(ifp); return (EINVAL); } bzero(&ifgrq, sizeof ifgrq); strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, sizeof(ifgrq.ifgrq_group)); if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { IF_ADDR_RUNLOCK(ifp); return (error); } len -= sizeof(ifgrq); ifgp++; } IF_ADDR_RUNLOCK(ifp); return (0); } /* * Stores all members of a group in memory pointed to by data */ static int if_getgroupmembers(struct ifgroupreq *data) { struct ifgroupreq *ifgr = data; struct ifg_group *ifg; struct ifg_member *ifgm; struct ifg_req ifgrq, *ifgp; int len, error; IFNET_RLOCK(); TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) if (!strcmp(ifg->ifg_group, ifgr->ifgr_name)) break; if (ifg == NULL) { IFNET_RUNLOCK(); return (ENOENT); } if (ifgr->ifgr_len == 0) { TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) ifgr->ifgr_len += sizeof(ifgrq); IFNET_RUNLOCK(); return (0); } len = ifgr->ifgr_len; ifgp = ifgr->ifgr_groups; TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { if (len < sizeof(ifgrq)) { IFNET_RUNLOCK(); return (EINVAL); } bzero(&ifgrq, sizeof ifgrq); strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, sizeof(ifgrq.ifgrq_member)); if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { IFNET_RUNLOCK(); return (error); } len -= sizeof(ifgrq); ifgp++; } IFNET_RUNLOCK(); return (0); } /* * Delete Routes for a Network Interface * * Called for each routing entry via the rnh->rnh_walktree() call above * to delete all route entries referencing a detaching network interface. * * Arguments: * rn pointer to node in the routing table * arg argument passed to rnh->rnh_walktree() - detaching interface * * Returns: * 0 successful * errno failed - reason indicated * */ static int if_rtdel(struct radix_node *rn, void *arg) { struct rtentry *rt = (struct rtentry *)rn; struct ifnet *ifp = arg; int err; if (rt->rt_ifp == ifp) { /* * Protect (sorta) against walktree recursion problems * with cloned routes */ if ((rt->rt_flags & RTF_UP) == 0) return (0); err = rtrequest_fib(RTM_DELETE, rt_key(rt), rt->rt_gateway, rt_mask(rt), rt->rt_flags|RTF_RNH_LOCKED|RTF_PINNED, (struct rtentry **) NULL, rt->rt_fibnum); if (err) { log(LOG_WARNING, "if_rtdel: error %d\n", err); } } return (0); } /* * Wrapper functions for struct ifnet address list locking macros. These are * used by kernel modules to avoid encoding programming interface or binary * interface assumptions that may be violated when kernel-internal locking * approaches change. */ void if_addr_rlock(struct ifnet *ifp) { IF_ADDR_RLOCK(ifp); } void if_addr_runlock(struct ifnet *ifp) { IF_ADDR_RUNLOCK(ifp); } void if_maddr_rlock(struct ifnet *ifp) { IF_ADDR_RLOCK(ifp); } void if_maddr_runlock(struct ifnet *ifp) { IF_ADDR_RUNLOCK(ifp); } /* * Initialization, destruction and refcounting functions for ifaddrs. */ struct ifaddr * ifa_alloc(size_t size, int flags) { struct ifaddr *ifa; KASSERT(size >= sizeof(struct ifaddr), ("%s: invalid size %zu", __func__, size)); ifa = malloc(size, M_IFADDR, M_ZERO | flags); if (ifa == NULL) return (NULL); if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL) goto fail; if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL) goto fail; if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL) goto fail; if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL) goto fail; refcount_init(&ifa->ifa_refcnt, 1); return (ifa); fail: /* free(NULL) is okay */ counter_u64_free(ifa->ifa_opackets); counter_u64_free(ifa->ifa_ipackets); counter_u64_free(ifa->ifa_obytes); counter_u64_free(ifa->ifa_ibytes); free(ifa, M_IFADDR); return (NULL); } void ifa_ref(struct ifaddr *ifa) { refcount_acquire(&ifa->ifa_refcnt); } void ifa_free(struct ifaddr *ifa) { if (refcount_release(&ifa->ifa_refcnt)) { counter_u64_free(ifa->ifa_opackets); counter_u64_free(ifa->ifa_ipackets); counter_u64_free(ifa->ifa_obytes); counter_u64_free(ifa->ifa_ibytes); free(ifa, M_IFADDR); } } int ifa_add_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) { int error = 0; struct rtentry *rt = NULL; struct rt_addrinfo info; static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; bzero(&info, sizeof(info)); info.rti_ifp = V_loif; info.rti_flags = ifa->ifa_flags | RTF_HOST | RTF_STATIC; info.rti_info[RTAX_DST] = ia; info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl; error = rtrequest1_fib(RTM_ADD, &info, &rt, 0); if (error == 0 && rt != NULL) { RT_LOCK(rt); ((struct sockaddr_dl *)rt->rt_gateway)->sdl_type = ifa->ifa_ifp->if_type; ((struct sockaddr_dl *)rt->rt_gateway)->sdl_index = ifa->ifa_ifp->if_index; RT_REMREF(rt); RT_UNLOCK(rt); } else if (error != 0) log(LOG_DEBUG, "%s: insertion failed: %u\n", __func__, error); return (error); } int ifa_del_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) { int error = 0; struct rt_addrinfo info; struct sockaddr_dl null_sdl; bzero(&null_sdl, sizeof(null_sdl)); null_sdl.sdl_len = sizeof(null_sdl); null_sdl.sdl_family = AF_LINK; null_sdl.sdl_type = ifa->ifa_ifp->if_type; null_sdl.sdl_index = ifa->ifa_ifp->if_index; bzero(&info, sizeof(info)); info.rti_flags = ifa->ifa_flags | RTF_HOST | RTF_STATIC; info.rti_info[RTAX_DST] = ia; info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl; error = rtrequest1_fib(RTM_DELETE, &info, NULL, 0); if (error != 0) log(LOG_DEBUG, "%s: deletion failed: %u\n", __func__, error); return (error); } int ifa_switch_loopback_route(struct ifaddr *ifa, struct sockaddr *sa) { struct rtentry *rt; rt = rtalloc1_fib(sa, 0, 0, 0); if (rt == NULL) { log(LOG_DEBUG, "%s: fail", __func__); return (EHOSTUNREACH); } ((struct sockaddr_dl *)rt->rt_gateway)->sdl_type = ifa->ifa_ifp->if_type; ((struct sockaddr_dl *)rt->rt_gateway)->sdl_index = ifa->ifa_ifp->if_index; RTFREE_LOCKED(rt); return (0); } /* * XXX: Because sockaddr_dl has deeper structure than the sockaddr * structs used to represent other address families, it is necessary * to perform a different comparison. */ #define sa_equal(a1, a2) \ (bcmp((a1), (a2), ((a1))->sa_len) == 0) #define sa_dl_equal(a1, a2) \ ((((struct sockaddr_dl *)(a1))->sdl_len == \ ((struct sockaddr_dl *)(a2))->sdl_len) && \ (bcmp(LLADDR((struct sockaddr_dl *)(a1)), \ LLADDR((struct sockaddr_dl *)(a2)), \ ((struct sockaddr_dl *)(a1))->sdl_alen) == 0)) /* * Locate an interface based on a complete address. */ /*ARGSUSED*/ static struct ifaddr * ifa_ifwithaddr_internal(struct sockaddr *addr, int getref) { struct ifnet *ifp; struct ifaddr *ifa; IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (sa_equal(addr, ifa->ifa_addr)) { if (getref) ifa_ref(ifa); IF_ADDR_RUNLOCK(ifp); goto done; } /* IP6 doesn't have broadcast */ if ((ifp->if_flags & IFF_BROADCAST) && ifa->ifa_broadaddr && ifa->ifa_broadaddr->sa_len != 0 && sa_equal(ifa->ifa_broadaddr, addr)) { if (getref) ifa_ref(ifa); IF_ADDR_RUNLOCK(ifp); goto done; } } IF_ADDR_RUNLOCK(ifp); } ifa = NULL; done: IFNET_RUNLOCK_NOSLEEP(); return (ifa); } struct ifaddr * ifa_ifwithaddr(struct sockaddr *addr) { return (ifa_ifwithaddr_internal(addr, 1)); } int ifa_ifwithaddr_check(struct sockaddr *addr) { return (ifa_ifwithaddr_internal(addr, 0) != NULL); } /* * Locate an interface based on the broadcast address. */ /* ARGSUSED */ struct ifaddr * ifa_ifwithbroadaddr(struct sockaddr *addr) { struct ifnet *ifp; struct ifaddr *ifa; IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if ((ifp->if_flags & IFF_BROADCAST) && ifa->ifa_broadaddr && ifa->ifa_broadaddr->sa_len != 0 && sa_equal(ifa->ifa_broadaddr, addr)) { ifa_ref(ifa); IF_ADDR_RUNLOCK(ifp); goto done; } } IF_ADDR_RUNLOCK(ifp); } ifa = NULL; done: IFNET_RUNLOCK_NOSLEEP(); return (ifa); } /* * Locate the point to point interface with a given destination address. */ /*ARGSUSED*/ struct ifaddr * ifa_ifwithdstaddr(struct sockaddr *addr) { struct ifnet *ifp; struct ifaddr *ifa; IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { if ((ifp->if_flags & IFF_POINTOPOINT) == 0) continue; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (ifa->ifa_dstaddr != NULL && sa_equal(addr, ifa->ifa_dstaddr)) { ifa_ref(ifa); IF_ADDR_RUNLOCK(ifp); goto done; } } IF_ADDR_RUNLOCK(ifp); } ifa = NULL; done: IFNET_RUNLOCK_NOSLEEP(); return (ifa); } /* * Find an interface on a specific network. If many, choice * is most specific found. */ struct ifaddr * ifa_ifwithnet(struct sockaddr *addr, int ignore_ptp) { struct ifnet *ifp; struct ifaddr *ifa; struct ifaddr *ifa_maybe = NULL; u_int af = addr->sa_family; char *addr_data = addr->sa_data, *cplim; /* * AF_LINK addresses can be looked up directly by their index number, * so do that if we can. */ if (af == AF_LINK) { struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr; if (sdl->sdl_index && sdl->sdl_index <= V_if_index) return (ifaddr_byindex(sdl->sdl_index)); } /* * Scan though each interface, looking for ones that have addresses * in this address family. Maintain a reference on ifa_maybe once * we find one, as we release the IF_ADDR_RLOCK() that kept it stable * when we move onto the next interface. */ IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { char *cp, *cp2, *cp3; if (ifa->ifa_addr->sa_family != af) next: continue; if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) { /* * This is a bit broken as it doesn't * take into account that the remote end may * be a single node in the network we are * looking for. * The trouble is that we don't know the * netmask for the remote end. */ if (ifa->ifa_dstaddr != NULL && sa_equal(addr, ifa->ifa_dstaddr)) { ifa_ref(ifa); IF_ADDR_RUNLOCK(ifp); goto done; } } else { /* * if we have a special address handler, * then use it instead of the generic one. */ if (ifa->ifa_claim_addr) { if ((*ifa->ifa_claim_addr)(ifa, addr)) { ifa_ref(ifa); IF_ADDR_RUNLOCK(ifp); goto done; } continue; } /* * Scan all the bits in the ifa's address. * If a bit dissagrees with what we are * looking for, mask it with the netmask * to see if it really matters. * (A byte at a time) */ if (ifa->ifa_netmask == 0) continue; cp = addr_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; while (cp3 < cplim) if ((*cp++ ^ *cp2++) & *cp3++) goto next; /* next address! */ /* * If the netmask of what we just found * is more specific than what we had before * (if we had one), or if the virtual status * of new prefix is better than of the old one, * then remember the new one before continuing * to search for an even better one. */ if (ifa_maybe == NULL || ifa_preferred(ifa_maybe, ifa) || rn_refines((caddr_t)ifa->ifa_netmask, (caddr_t)ifa_maybe->ifa_netmask)) { if (ifa_maybe != NULL) ifa_free(ifa_maybe); ifa_maybe = ifa; ifa_ref(ifa_maybe); } } } IF_ADDR_RUNLOCK(ifp); } ifa = ifa_maybe; ifa_maybe = NULL; done: IFNET_RUNLOCK_NOSLEEP(); if (ifa_maybe != NULL) ifa_free(ifa_maybe); return (ifa); } /* * Find an interface address specific to an interface best matching * a given address. */ struct ifaddr * ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp) { struct ifaddr *ifa; char *cp, *cp2, *cp3; char *cplim; struct ifaddr *ifa_maybe = NULL; u_int af = addr->sa_family; if (af >= AF_MAX) return (NULL); IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != af) continue; if (ifa_maybe == NULL) ifa_maybe = ifa; if (ifa->ifa_netmask == 0) { if (sa_equal(addr, ifa->ifa_addr) || (ifa->ifa_dstaddr && sa_equal(addr, ifa->ifa_dstaddr))) goto done; continue; } if (ifp->if_flags & IFF_POINTOPOINT) { if (sa_equal(addr, ifa->ifa_dstaddr)) goto done; } else { cp = addr->sa_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; for (; cp3 < cplim; cp3++) if ((*cp++ ^ *cp2++) & *cp3) break; if (cp3 == cplim) goto done; } } ifa = ifa_maybe; done: if (ifa != NULL) ifa_ref(ifa); IF_ADDR_RUNLOCK(ifp); return (ifa); } /* * See whether new ifa is better than current one: * 1) A non-virtual one is preferred over virtual. * 2) A virtual in master state preferred over any other state. * * Used in several address selecting functions. */ int ifa_preferred(struct ifaddr *cur, struct ifaddr *next) { return (cur->ifa_carp && (!next->ifa_carp || ((*carp_master_p)(next) && !(*carp_master_p)(cur)))); } #include /* * Default action when installing a route with a Link Level gateway. * Lookup an appropriate real ifa to point to. * This should be moved to /sys/net/link.c eventually. */ static void link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info) { struct ifaddr *ifa, *oifa; struct sockaddr *dst; struct ifnet *ifp; RT_LOCK_ASSERT(rt); if (cmd != RTM_ADD || ((ifa = rt->rt_ifa) == 0) || ((ifp = ifa->ifa_ifp) == 0) || ((dst = rt_key(rt)) == 0)) return; ifa = ifaof_ifpforaddr(dst, ifp); if (ifa) { oifa = rt->rt_ifa; rt->rt_ifa = ifa; ifa_free(oifa); if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) ifa->ifa_rtrequest(cmd, rt, info); } } /* * Mark an interface down and notify protocols of * the transition. */ static void if_unroute(struct ifnet *ifp, int flag, int fam) { struct ifaddr *ifa; KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP")); ifp->if_flags &= ~flag; getmicrotime(&ifp->if_lastchange); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) pfctlinput(PRC_IFDOWN, ifa->ifa_addr); ifp->if_qflush(ifp); if (ifp->if_carp) (*carp_linkstate_p)(ifp); rt_ifmsg(ifp); } /* * Mark an interface up and notify protocols of * the transition. */ static void if_route(struct ifnet *ifp, int flag, int fam) { struct ifaddr *ifa; KASSERT(flag == IFF_UP, ("if_route: flag != IFF_UP")); ifp->if_flags |= flag; getmicrotime(&ifp->if_lastchange); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) pfctlinput(PRC_IFUP, ifa->ifa_addr); if (ifp->if_carp) (*carp_linkstate_p)(ifp); rt_ifmsg(ifp); #ifdef INET6 in6_if_up(ifp); #endif } void (*vlan_link_state_p)(struct ifnet *); /* XXX: private from if_vlan */ void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */ struct ifnet *(*vlan_trunkdev_p)(struct ifnet *); struct ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t); int (*vlan_tag_p)(struct ifnet *, uint16_t *); int (*vlan_setcookie_p)(struct ifnet *, void *); void *(*vlan_cookie_p)(struct ifnet *); /* * Handle a change in the interface link state. To avoid LORs * between driver lock and upper layer locks, as well as possible * recursions, we post event to taskqueue, and all job * is done in static do_link_state_change(). */ void if_link_state_change(struct ifnet *ifp, int link_state) { /* Return if state hasn't changed. */ if (ifp->if_link_state == link_state) return; ifp->if_link_state = link_state; taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask); } static void do_link_state_change(void *arg, int pending) { struct ifnet *ifp = (struct ifnet *)arg; int link_state = ifp->if_link_state; CURVNET_SET(ifp->if_vnet); /* Notify that the link state has changed. */ rt_ifmsg(ifp); if (ifp->if_vlantrunk != NULL) (*vlan_link_state_p)(ifp); if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) && IFP2AC(ifp)->ac_netgraph != NULL) (*ng_ether_link_state_p)(ifp, link_state); if (ifp->if_carp) (*carp_linkstate_p)(ifp); if (ifp->if_bridge) (*bridge_linkstate_p)(ifp); if (ifp->if_lagg) (*lagg_linkstate_p)(ifp, link_state); if (IS_DEFAULT_VNET(curvnet)) devctl_notify("IFNET", ifp->if_xname, (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL); if (pending > 1) if_printf(ifp, "%d link states coalesced\n", pending); if (log_link_state_change) log(LOG_NOTICE, "%s: link state changed to %s\n", ifp->if_xname, (link_state == LINK_STATE_UP) ? "UP" : "DOWN" ); EVENTHANDLER_INVOKE(ifnet_link_event, ifp, ifp->if_link_state); CURVNET_RESTORE(); } /* * Mark an interface down and notify protocols of * the transition. */ void if_down(struct ifnet *ifp) { if_unroute(ifp, IFF_UP, AF_UNSPEC); } /* * Mark an interface up and notify protocols of * the transition. */ void if_up(struct ifnet *ifp) { if_route(ifp, IFF_UP, AF_UNSPEC); } /* * Flush an interface queue. */ void if_qflush(struct ifnet *ifp) { struct mbuf *m, *n; struct ifaltq *ifq; ifq = &ifp->if_snd; IFQ_LOCK(ifq); #ifdef ALTQ if (ALTQ_IS_ENABLED(ifq)) ALTQ_PURGE(ifq); #endif n = ifq->ifq_head; while ((m = n) != 0) { n = m->m_act; m_freem(m); } ifq->ifq_head = 0; ifq->ifq_tail = 0; ifq->ifq_len = 0; IFQ_UNLOCK(ifq); } /* * Map interface name to interface structure pointer, with or without * returning a reference. */ struct ifnet * ifunit_ref(const char *name) { struct ifnet *ifp; IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 && !(ifp->if_flags & IFF_DYING)) break; } if (ifp != NULL) if_ref(ifp); IFNET_RUNLOCK_NOSLEEP(); return (ifp); } struct ifnet * ifunit(const char *name) { struct ifnet *ifp; IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0) break; } IFNET_RUNLOCK_NOSLEEP(); return (ifp); } /* * Hardware specific interface ioctls. */ static int ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td) { struct ifreq *ifr; - struct ifstat *ifs; int error = 0; int new_flags, temp_flags; size_t namelen, onamelen; size_t descrlen; char *descrbuf, *odescrbuf; char new_name[IFNAMSIZ]; struct ifaddr *ifa; struct sockaddr_dl *sdl; ifr = (struct ifreq *)data; switch (cmd) { case SIOCGIFINDEX: ifr->ifr_index = ifp->if_index; break; case SIOCGIFFLAGS: temp_flags = ifp->if_flags | ifp->if_drv_flags; ifr->ifr_flags = temp_flags & 0xffff; ifr->ifr_flagshigh = temp_flags >> 16; break; case SIOCGIFCAP: ifr->ifr_reqcap = ifp->if_capabilities; ifr->ifr_curcap = ifp->if_capenable; break; #ifdef MAC case SIOCGIFMAC: error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp); break; #endif case SIOCGIFMETRIC: ifr->ifr_metric = ifp->if_metric; break; case SIOCGIFMTU: ifr->ifr_mtu = ifp->if_mtu; break; case SIOCGIFPHYS: ifr->ifr_phys = ifp->if_physical; break; case SIOCGIFDESCR: error = 0; sx_slock(&ifdescr_sx); if (ifp->if_description == NULL) error = ENOMSG; else { /* space for terminating nul */ descrlen = strlen(ifp->if_description) + 1; if (ifr->ifr_buffer.length < descrlen) ifr->ifr_buffer.buffer = NULL; else error = copyout(ifp->if_description, ifr->ifr_buffer.buffer, descrlen); ifr->ifr_buffer.length = descrlen; } sx_sunlock(&ifdescr_sx); break; case SIOCSIFDESCR: error = priv_check(td, PRIV_NET_SETIFDESCR); if (error) return (error); /* * Copy only (length-1) bytes to make sure that * if_description is always nul terminated. The * length parameter is supposed to count the * terminating nul in. */ if (ifr->ifr_buffer.length > ifdescr_maxlen) return (ENAMETOOLONG); else if (ifr->ifr_buffer.length == 0) descrbuf = NULL; else { descrbuf = malloc(ifr->ifr_buffer.length, M_IFDESCR, M_WAITOK | M_ZERO); error = copyin(ifr->ifr_buffer.buffer, descrbuf, ifr->ifr_buffer.length - 1); if (error) { free(descrbuf, M_IFDESCR); break; } } sx_xlock(&ifdescr_sx); odescrbuf = ifp->if_description; ifp->if_description = descrbuf; sx_xunlock(&ifdescr_sx); getmicrotime(&ifp->if_lastchange); free(odescrbuf, M_IFDESCR); break; case SIOCGIFFIB: ifr->ifr_fib = ifp->if_fib; break; case SIOCSIFFIB: error = priv_check(td, PRIV_NET_SETIFFIB); if (error) return (error); if (ifr->ifr_fib >= rt_numfibs) return (EINVAL); ifp->if_fib = ifr->ifr_fib; break; case SIOCSIFFLAGS: error = priv_check(td, PRIV_NET_SETIFFLAGS); if (error) return (error); /* * Currently, no driver owned flags pass the IFF_CANTCHANGE * check, so we don't need special handling here yet. */ new_flags = (ifr->ifr_flags & 0xffff) | (ifr->ifr_flagshigh << 16); if (ifp->if_flags & IFF_UP && (new_flags & IFF_UP) == 0) { if_down(ifp); } else if (new_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { if_up(ifp); } /* See if permanently promiscuous mode bit is about to flip */ if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) { if (new_flags & IFF_PPROMISC) ifp->if_flags |= IFF_PROMISC; else if (ifp->if_pcount == 0) ifp->if_flags &= ~IFF_PROMISC; log(LOG_INFO, "%s: permanently promiscuous mode %s\n", ifp->if_xname, (new_flags & IFF_PPROMISC) ? "enabled" : "disabled"); } ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | (new_flags &~ IFF_CANTCHANGE); if (ifp->if_ioctl) { (void) (*ifp->if_ioctl)(ifp, cmd, data); } getmicrotime(&ifp->if_lastchange); break; case SIOCSIFCAP: error = priv_check(td, PRIV_NET_SETIFCAP); if (error) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); if (ifr->ifr_reqcap & ~ifp->if_capabilities) return (EINVAL); error = (*ifp->if_ioctl)(ifp, cmd, data); if (error == 0) getmicrotime(&ifp->if_lastchange); break; #ifdef MAC case SIOCSIFMAC: error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp); break; #endif case SIOCSIFNAME: error = priv_check(td, PRIV_NET_SETIFNAME); if (error) return (error); error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL); if (error != 0) return (error); if (new_name[0] == '\0') return (EINVAL); if (ifunit(new_name) != NULL) return (EEXIST); /* * XXX: Locking. Nothing else seems to lock if_flags, * and there are numerous other races with the * ifunit() checks not being atomic with namespace * changes (renames, vmoves, if_attach, etc). */ ifp->if_flags |= IFF_RENAMING; /* Announce the departure of the interface. */ rt_ifannouncemsg(ifp, IFAN_DEPARTURE); EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); log(LOG_INFO, "%s: changing name to '%s'\n", ifp->if_xname, new_name); IF_ADDR_WLOCK(ifp); strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); ifa = ifp->if_addr; sdl = (struct sockaddr_dl *)ifa->ifa_addr; namelen = strlen(new_name); onamelen = sdl->sdl_nlen; /* * Move the address if needed. This is safe because we * allocate space for a name of length IFNAMSIZ when we * create this in if_attach(). */ if (namelen != onamelen) { bcopy(sdl->sdl_data + onamelen, sdl->sdl_data + namelen, sdl->sdl_alen); } bcopy(new_name, sdl->sdl_data, namelen); sdl->sdl_nlen = namelen; sdl = (struct sockaddr_dl *)ifa->ifa_netmask; bzero(sdl->sdl_data, onamelen); while (namelen != 0) sdl->sdl_data[--namelen] = 0xff; IF_ADDR_WUNLOCK(ifp); EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); /* Announce the return of the interface. */ rt_ifannouncemsg(ifp, IFAN_ARRIVAL); ifp->if_flags &= ~IFF_RENAMING; break; #ifdef VIMAGE case SIOCSIFVNET: error = priv_check(td, PRIV_NET_SETIFVNET); if (error) return (error); error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid); break; #endif case SIOCSIFMETRIC: error = priv_check(td, PRIV_NET_SETIFMETRIC); if (error) return (error); ifp->if_metric = ifr->ifr_metric; getmicrotime(&ifp->if_lastchange); break; case SIOCSIFPHYS: error = priv_check(td, PRIV_NET_SETIFPHYS); if (error) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); error = (*ifp->if_ioctl)(ifp, cmd, data); if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCSIFMTU: { u_long oldmtu = ifp->if_mtu; error = priv_check(td, PRIV_NET_SETIFMTU); if (error) return (error); if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) return (EINVAL); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); error = (*ifp->if_ioctl)(ifp, cmd, data); if (error == 0) { getmicrotime(&ifp->if_lastchange); rt_ifmsg(ifp); } /* * If the link MTU changed, do network layer specific procedure. */ if (ifp->if_mtu != oldmtu) { #ifdef INET6 nd6_setmtu(ifp); #endif } break; } case SIOCADDMULTI: case SIOCDELMULTI: if (cmd == SIOCADDMULTI) error = priv_check(td, PRIV_NET_ADDMULTI); else error = priv_check(td, PRIV_NET_DELMULTI); if (error) return (error); /* Don't allow group membership on non-multicast interfaces. */ if ((ifp->if_flags & IFF_MULTICAST) == 0) return (EOPNOTSUPP); /* Don't let users screw up protocols' entries. */ if (ifr->ifr_addr.sa_family != AF_LINK) return (EINVAL); if (cmd == SIOCADDMULTI) { struct ifmultiaddr *ifma; /* * Userland is only permitted to join groups once * via the if_addmulti() KPI, because it cannot hold * struct ifmultiaddr * between calls. It may also * lose a race while we check if the membership * already exists. */ IF_ADDR_RLOCK(ifp); ifma = if_findmulti(ifp, &ifr->ifr_addr); IF_ADDR_RUNLOCK(ifp); if (ifma != NULL) error = EADDRINUSE; else error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); } else { error = if_delmulti(ifp, &ifr->ifr_addr); } if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCSIFPHYADDR: case SIOCDIFPHYADDR: #ifdef INET6 case SIOCSIFPHYADDR_IN6: #endif case SIOCSIFMEDIA: case SIOCSIFGENERIC: error = priv_check(td, PRIV_NET_HWIOCTL); if (error) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); error = (*ifp->if_ioctl)(ifp, cmd, data); if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCGIFSTATUS: - ifs = (struct ifstat *)data; - ifs->ascii[0] = '\0'; - case SIOCGIFPSRCADDR: case SIOCGIFPDSTADDR: case SIOCGIFMEDIA: case SIOCGIFGENERIC: if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); error = (*ifp->if_ioctl)(ifp, cmd, data); break; case SIOCSIFLLADDR: error = priv_check(td, PRIV_NET_SETLLADDR); if (error) return (error); error = if_setlladdr(ifp, ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); EVENTHANDLER_INVOKE(iflladdr_event, ifp); break; case SIOCAIFGROUP: { struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr; error = priv_check(td, PRIV_NET_ADDIFGROUP); if (error) return (error); if ((error = if_addgroup(ifp, ifgr->ifgr_group))) return (error); break; } case SIOCGIFGROUP: if ((error = if_getgroup((struct ifgroupreq *)ifr, ifp))) return (error); break; case SIOCDIFGROUP: { struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr; error = priv_check(td, PRIV_NET_DELIFGROUP); if (error) return (error); if ((error = if_delgroup(ifp, ifgr->ifgr_group))) return (error); break; } default: error = ENOIOCTL; break; } return (error); } #ifdef COMPAT_FREEBSD32 struct ifconf32 { int32_t ifc_len; union { uint32_t ifcu_buf; uint32_t ifcu_req; } ifc_ifcu; }; #define SIOCGIFCONF32 _IOWR('i', 36, struct ifconf32) #endif /* * Interface ioctls. */ int ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td) { struct ifnet *ifp; struct ifreq *ifr; int error; int oif_flags; CURVNET_SET(so->so_vnet); switch (cmd) { case SIOCGIFCONF: error = ifconf(cmd, data); CURVNET_RESTORE(); return (error); #ifdef COMPAT_FREEBSD32 case SIOCGIFCONF32: { struct ifconf32 *ifc32; struct ifconf ifc; ifc32 = (struct ifconf32 *)data; ifc.ifc_len = ifc32->ifc_len; ifc.ifc_buf = PTRIN(ifc32->ifc_buf); error = ifconf(SIOCGIFCONF, (void *)&ifc); CURVNET_RESTORE(); if (error == 0) ifc32->ifc_len = ifc.ifc_len; return (error); } #endif } ifr = (struct ifreq *)data; switch (cmd) { #ifdef VIMAGE case SIOCSIFRVNET: error = priv_check(td, PRIV_NET_SETIFVNET); if (error == 0) error = if_vmove_reclaim(td, ifr->ifr_name, ifr->ifr_jid); CURVNET_RESTORE(); return (error); #endif case SIOCIFCREATE: case SIOCIFCREATE2: error = priv_check(td, PRIV_NET_IFCREATE); if (error == 0) error = if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name), cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL); CURVNET_RESTORE(); return (error); case SIOCIFDESTROY: error = priv_check(td, PRIV_NET_IFDESTROY); if (error == 0) error = if_clone_destroy(ifr->ifr_name); CURVNET_RESTORE(); return (error); case SIOCIFGCLONERS: error = if_clone_list((struct if_clonereq *)data); CURVNET_RESTORE(); return (error); case SIOCGIFGMEMB: error = if_getgroupmembers((struct ifgroupreq *)data); CURVNET_RESTORE(); return (error); #if defined(INET) || defined(INET6) case SIOCSVH: case SIOCGVH: if (carp_ioctl_p == NULL) error = EPROTONOSUPPORT; else error = (*carp_ioctl_p)(ifr, cmd, td); CURVNET_RESTORE(); return (error); #endif } ifp = ifunit_ref(ifr->ifr_name); if (ifp == NULL) { CURVNET_RESTORE(); return (ENXIO); } error = ifhwioctl(cmd, ifp, data, td); if (error != ENOIOCTL) { if_rele(ifp); CURVNET_RESTORE(); return (error); } oif_flags = ifp->if_flags; if (so->so_proto == NULL) { if_rele(ifp); CURVNET_RESTORE(); return (EOPNOTSUPP); } /* * Pass the request on to the socket control method, and if the * latter returns EOPNOTSUPP, directly to the interface. * * Make an exception for the legacy SIOCSIF* requests. Drivers * trust SIOCSIFADDR et al to come from an already privileged * layer, and do not perform any credentials checks or input * validation. */ error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data, ifp, td)); if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL && cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR && cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK) error = (*ifp->if_ioctl)(ifp, cmd, data); if ((oif_flags ^ ifp->if_flags) & IFF_UP) { #ifdef INET6 if (ifp->if_flags & IFF_UP) in6_if_up(ifp); #endif } if_rele(ifp); CURVNET_RESTORE(); return (error); } /* * The code common to handling reference counted flags, * e.g., in ifpromisc() and if_allmulti(). * The "pflag" argument can specify a permanent mode flag to check, * such as IFF_PPROMISC for promiscuous mode; should be 0 if none. * * Only to be used on stack-owned flags, not driver-owned flags. */ static int if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch) { struct ifreq ifr; int error; int oldflags, oldcount; /* Sanity checks to catch programming errors */ KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0, ("%s: setting driver-owned flag %d", __func__, flag)); if (onswitch) KASSERT(*refcount >= 0, ("%s: increment negative refcount %d for flag %d", __func__, *refcount, flag)); else KASSERT(*refcount > 0, ("%s: decrement non-positive refcount %d for flag %d", __func__, *refcount, flag)); /* In case this mode is permanent, just touch refcount */ if (ifp->if_flags & pflag) { *refcount += onswitch ? 1 : -1; return (0); } /* Save ifnet parameters for if_ioctl() may fail */ oldcount = *refcount; oldflags = ifp->if_flags; /* * See if we aren't the only and touching refcount is enough. * Actually toggle interface flag if we are the first or last. */ if (onswitch) { if ((*refcount)++) return (0); ifp->if_flags |= flag; } else { if (--(*refcount)) return (0); ifp->if_flags &= ~flag; } /* Call down the driver since we've changed interface flags */ if (ifp->if_ioctl == NULL) { error = EOPNOTSUPP; goto recover; } ifr.ifr_flags = ifp->if_flags & 0xffff; ifr.ifr_flagshigh = ifp->if_flags >> 16; error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); if (error) goto recover; /* Notify userland that interface flags have changed */ rt_ifmsg(ifp); return (0); recover: /* Recover after driver error */ *refcount = oldcount; ifp->if_flags = oldflags; return (error); } /* * Set/clear promiscuous mode on interface ifp based on the truth value * of pswitch. The calls are reference counted so that only the first * "on" request actually has an effect, as does the final "off" request. * Results are undefined if the "off" and "on" requests are not matched. */ int ifpromisc(struct ifnet *ifp, int pswitch) { int error; int oldflags = ifp->if_flags; error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC, &ifp->if_pcount, pswitch); /* If promiscuous mode status has changed, log a message */ if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC)) log(LOG_INFO, "%s: promiscuous mode %s\n", ifp->if_xname, (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled"); return (error); } /* * Return interface configuration * of system. List may be used * in later ioctl's (above) to get * other information. */ /*ARGSUSED*/ static int ifconf(u_long cmd, caddr_t data) { struct ifconf *ifc = (struct ifconf *)data; struct ifnet *ifp; struct ifaddr *ifa; struct ifreq ifr; struct sbuf *sb; int error, full = 0, valid_len, max_len; /* Limit initial buffer size to MAXPHYS to avoid DoS from userspace. */ max_len = MAXPHYS - 1; /* Prevent hostile input from being able to crash the system */ if (ifc->ifc_len <= 0) return (EINVAL); again: if (ifc->ifc_len <= max_len) { max_len = ifc->ifc_len; full = 1; } sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN); max_len = 0; valid_len = 0; IFNET_RLOCK(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { int addrs; /* * Zero the ifr_name buffer to make sure we don't * disclose the contents of the stack. */ memset(ifr.ifr_name, 0, sizeof(ifr.ifr_name)); if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) >= sizeof(ifr.ifr_name)) { sbuf_delete(sb); IFNET_RUNLOCK(); return (ENAMETOOLONG); } addrs = 0; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct sockaddr *sa = ifa->ifa_addr; if (prison_if(curthread->td_ucred, sa) != 0) continue; addrs++; if (sa->sa_len <= sizeof(*sa)) { ifr.ifr_addr = *sa; sbuf_bcat(sb, &ifr, sizeof(ifr)); max_len += sizeof(ifr); } else { sbuf_bcat(sb, &ifr, offsetof(struct ifreq, ifr_addr)); max_len += offsetof(struct ifreq, ifr_addr); sbuf_bcat(sb, sa, sa->sa_len); max_len += sa->sa_len; } if (sbuf_error(sb) == 0) valid_len = sbuf_len(sb); } IF_ADDR_RUNLOCK(ifp); if (addrs == 0) { bzero((caddr_t)&ifr.ifr_addr, sizeof(ifr.ifr_addr)); sbuf_bcat(sb, &ifr, sizeof(ifr)); max_len += sizeof(ifr); if (sbuf_error(sb) == 0) valid_len = sbuf_len(sb); } } IFNET_RUNLOCK(); /* * If we didn't allocate enough space (uncommon), try again. If * we have already allocated as much space as we are allowed, * return what we've got. */ if (valid_len != max_len && !full) { sbuf_delete(sb); goto again; } ifc->ifc_len = valid_len; sbuf_finish(sb); error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len); sbuf_delete(sb); return (error); } /* * Just like ifpromisc(), but for all-multicast-reception mode. */ int if_allmulti(struct ifnet *ifp, int onswitch) { return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch)); } struct ifmultiaddr * if_findmulti(struct ifnet *ifp, struct sockaddr *sa) { struct ifmultiaddr *ifma; IF_ADDR_LOCK_ASSERT(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (sa->sa_family == AF_LINK) { if (sa_dl_equal(ifma->ifma_addr, sa)) break; } else { if (sa_equal(ifma->ifma_addr, sa)) break; } } return ifma; } /* * Allocate a new ifmultiaddr and initialize based on passed arguments. We * make copies of passed sockaddrs. The ifmultiaddr will not be added to * the ifnet multicast address list here, so the caller must do that and * other setup work (such as notifying the device driver). The reference * count is initialized to 1. */ static struct ifmultiaddr * if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa, int mflags) { struct ifmultiaddr *ifma; struct sockaddr *dupsa; ifma = malloc(sizeof *ifma, M_IFMADDR, mflags | M_ZERO); if (ifma == NULL) return (NULL); dupsa = malloc(sa->sa_len, M_IFMADDR, mflags); if (dupsa == NULL) { free(ifma, M_IFMADDR); return (NULL); } bcopy(sa, dupsa, sa->sa_len); ifma->ifma_addr = dupsa; ifma->ifma_ifp = ifp; ifma->ifma_refcount = 1; ifma->ifma_protospec = NULL; if (llsa == NULL) { ifma->ifma_lladdr = NULL; return (ifma); } dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags); if (dupsa == NULL) { free(ifma->ifma_addr, M_IFMADDR); free(ifma, M_IFMADDR); return (NULL); } bcopy(llsa, dupsa, llsa->sa_len); ifma->ifma_lladdr = dupsa; return (ifma); } /* * if_freemulti: free ifmultiaddr structure and possibly attached related * addresses. The caller is responsible for implementing reference * counting, notifying the driver, handling routing messages, and releasing * any dependent link layer state. */ static void if_freemulti(struct ifmultiaddr *ifma) { KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d", ifma->ifma_refcount)); KASSERT(ifma->ifma_protospec == NULL, ("if_freemulti: protospec not NULL")); if (ifma->ifma_lladdr != NULL) free(ifma->ifma_lladdr, M_IFMADDR); free(ifma->ifma_addr, M_IFMADDR); free(ifma, M_IFMADDR); } /* * Register an additional multicast address with a network interface. * * - If the address is already present, bump the reference count on the * address and return. * - If the address is not link-layer, look up a link layer address. * - Allocate address structures for one or both addresses, and attach to the * multicast address list on the interface. If automatically adding a link * layer address, the protocol address will own a reference to the link * layer address, to be freed when it is freed. * - Notify the network device driver of an addition to the multicast address * list. * * 'sa' points to caller-owned memory with the desired multicast address. * * 'retifma' will be used to return a pointer to the resulting multicast * address reference, if desired. */ int if_addmulti(struct ifnet *ifp, struct sockaddr *sa, struct ifmultiaddr **retifma) { struct ifmultiaddr *ifma, *ll_ifma; struct sockaddr *llsa; int error; /* * If the address is already present, return a new reference to it; * otherwise, allocate storage and set up a new address. */ IF_ADDR_WLOCK(ifp); ifma = if_findmulti(ifp, sa); if (ifma != NULL) { ifma->ifma_refcount++; if (retifma != NULL) *retifma = ifma; IF_ADDR_WUNLOCK(ifp); return (0); } /* * The address isn't already present; resolve the protocol address * into a link layer address, and then look that up, bump its * refcount or allocate an ifma for that also. If 'llsa' was * returned, we will need to free it later. */ llsa = NULL; ll_ifma = NULL; if (ifp->if_resolvemulti != NULL) { error = ifp->if_resolvemulti(ifp, &llsa, sa); if (error) goto unlock_out; } /* * Allocate the new address. Don't hook it up yet, as we may also * need to allocate a link layer multicast address. */ ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT); if (ifma == NULL) { error = ENOMEM; goto free_llsa_out; } /* * If a link layer address is found, we'll need to see if it's * already present in the address list, or allocate is as well. * When this block finishes, the link layer address will be on the * list. */ if (llsa != NULL) { ll_ifma = if_findmulti(ifp, llsa); if (ll_ifma == NULL) { ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT); if (ll_ifma == NULL) { --ifma->ifma_refcount; if_freemulti(ifma); error = ENOMEM; goto free_llsa_out; } TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma, ifma_link); } else ll_ifma->ifma_refcount++; ifma->ifma_llifma = ll_ifma; } /* * We now have a new multicast address, ifma, and possibly a new or * referenced link layer address. Add the primary address to the * ifnet address list. */ TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); if (retifma != NULL) *retifma = ifma; /* * Must generate the message while holding the lock so that 'ifma' * pointer is still valid. */ rt_newmaddrmsg(RTM_NEWMADDR, ifma); IF_ADDR_WUNLOCK(ifp); /* * We are certain we have added something, so call down to the * interface to let them know about it. */ if (ifp->if_ioctl != NULL) { (void) (*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); } if (llsa != NULL) free(llsa, M_IFMADDR); return (0); free_llsa_out: if (llsa != NULL) free(llsa, M_IFMADDR); unlock_out: IF_ADDR_WUNLOCK(ifp); return (error); } /* * Delete a multicast group membership by network-layer group address. * * Returns ENOENT if the entry could not be found. If ifp no longer * exists, results are undefined. This entry point should only be used * from subsystems which do appropriate locking to hold ifp for the * duration of the call. * Network-layer protocol domains must use if_delmulti_ifma(). */ int if_delmulti(struct ifnet *ifp, struct sockaddr *sa) { struct ifmultiaddr *ifma; int lastref; #ifdef INVARIANTS struct ifnet *oifp; IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(oifp, &V_ifnet, if_link) if (ifp == oifp) break; if (ifp != oifp) ifp = NULL; IFNET_RUNLOCK_NOSLEEP(); KASSERT(ifp != NULL, ("%s: ifnet went away", __func__)); #endif if (ifp == NULL) return (ENOENT); IF_ADDR_WLOCK(ifp); lastref = 0; ifma = if_findmulti(ifp, sa); if (ifma != NULL) lastref = if_delmulti_locked(ifp, ifma, 0); IF_ADDR_WUNLOCK(ifp); if (ifma == NULL) return (ENOENT); if (lastref && ifp->if_ioctl != NULL) { (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); } return (0); } /* * Delete all multicast group membership for an interface. * Should be used to quickly flush all multicast filters. */ void if_delallmulti(struct ifnet *ifp) { struct ifmultiaddr *ifma; struct ifmultiaddr *next; IF_ADDR_WLOCK(ifp); TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) if_delmulti_locked(ifp, ifma, 0); IF_ADDR_WUNLOCK(ifp); } /* * Delete a multicast group membership by group membership pointer. * Network-layer protocol domains must use this routine. * * It is safe to call this routine if the ifp disappeared. */ void if_delmulti_ifma(struct ifmultiaddr *ifma) { struct ifnet *ifp; int lastref; ifp = ifma->ifma_ifp; #ifdef DIAGNOSTIC if (ifp == NULL) { printf("%s: ifma_ifp seems to be detached\n", __func__); } else { struct ifnet *oifp; IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(oifp, &V_ifnet, if_link) if (ifp == oifp) break; if (ifp != oifp) { printf("%s: ifnet %p disappeared\n", __func__, ifp); ifp = NULL; } IFNET_RUNLOCK_NOSLEEP(); } #endif /* * If and only if the ifnet instance exists: Acquire the address lock. */ if (ifp != NULL) IF_ADDR_WLOCK(ifp); lastref = if_delmulti_locked(ifp, ifma, 0); if (ifp != NULL) { /* * If and only if the ifnet instance exists: * Release the address lock. * If the group was left: update the hardware hash filter. */ IF_ADDR_WUNLOCK(ifp); if (lastref && ifp->if_ioctl != NULL) { (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); } } } /* * Perform deletion of network-layer and/or link-layer multicast address. * * Return 0 if the reference count was decremented. * Return 1 if the final reference was released, indicating that the * hardware hash filter should be reprogrammed. */ static int if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching) { struct ifmultiaddr *ll_ifma; if (ifp != NULL && ifma->ifma_ifp != NULL) { KASSERT(ifma->ifma_ifp == ifp, ("%s: inconsistent ifp %p", __func__, ifp)); IF_ADDR_WLOCK_ASSERT(ifp); } ifp = ifma->ifma_ifp; /* * If the ifnet is detaching, null out references to ifnet, * so that upper protocol layers will notice, and not attempt * to obtain locks for an ifnet which no longer exists. The * routing socket announcement must happen before the ifnet * instance is detached from the system. */ if (detaching) { #ifdef DIAGNOSTIC printf("%s: detaching ifnet instance %p\n", __func__, ifp); #endif /* * ifp may already be nulled out if we are being reentered * to delete the ll_ifma. */ if (ifp != NULL) { rt_newmaddrmsg(RTM_DELMADDR, ifma); ifma->ifma_ifp = NULL; } } if (--ifma->ifma_refcount > 0) return 0; /* * If this ifma is a network-layer ifma, a link-layer ifma may * have been associated with it. Release it first if so. */ ll_ifma = ifma->ifma_llifma; if (ll_ifma != NULL) { KASSERT(ifma->ifma_lladdr != NULL, ("%s: llifma w/o lladdr", __func__)); if (detaching) ll_ifma->ifma_ifp = NULL; /* XXX */ if (--ll_ifma->ifma_refcount == 0) { if (ifp != NULL) { TAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifma_link); } if_freemulti(ll_ifma); } } if (ifp != NULL) TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); if_freemulti(ifma); /* * The last reference to this instance of struct ifmultiaddr * was released; the hardware should be notified of this change. */ return 1; } /* * Set the link layer address on an interface. * * At this time we only support certain types of interfaces, * and we don't allow the length of the address to change. */ int if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) { struct sockaddr_dl *sdl; struct ifaddr *ifa; struct ifreq ifr; IF_ADDR_RLOCK(ifp); ifa = ifp->if_addr; if (ifa == NULL) { IF_ADDR_RUNLOCK(ifp); return (EINVAL); } ifa_ref(ifa); IF_ADDR_RUNLOCK(ifp); sdl = (struct sockaddr_dl *)ifa->ifa_addr; if (sdl == NULL) { ifa_free(ifa); return (EINVAL); } if (len != sdl->sdl_alen) { /* don't allow length to change */ ifa_free(ifa); return (EINVAL); } switch (ifp->if_type) { case IFT_ETHER: case IFT_FDDI: case IFT_XETHER: case IFT_ISO88025: case IFT_L2VLAN: case IFT_BRIDGE: case IFT_ARCNET: case IFT_IEEE8023ADLAG: case IFT_IEEE80211: bcopy(lladdr, LLADDR(sdl), len); ifa_free(ifa); break; default: ifa_free(ifa); return (ENODEV); } /* * If the interface is already up, we need * to re-init it in order to reprogram its * address filter. */ if ((ifp->if_flags & IFF_UP) != 0) { if (ifp->if_ioctl) { ifp->if_flags &= ~IFF_UP; ifr.ifr_flags = ifp->if_flags & 0xffff; ifr.ifr_flagshigh = ifp->if_flags >> 16; (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); ifp->if_flags |= IFF_UP; ifr.ifr_flags = ifp->if_flags & 0xffff; ifr.ifr_flagshigh = ifp->if_flags >> 16; (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); } #ifdef INET /* * Also send gratuitous ARPs to notify other nodes about * the address change. */ TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(ifp, ifa); } #endif } return (0); } /* * The name argument must be a pointer to storage which will last as * long as the interface does. For physical devices, the result of * device_get_name(dev) is a good choice and for pseudo-devices a * static string works well. */ void if_initname(struct ifnet *ifp, const char *name, int unit) { ifp->if_dname = name; ifp->if_dunit = unit; if (unit != IF_DUNIT_NONE) snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); else strlcpy(ifp->if_xname, name, IFNAMSIZ); } int if_printf(struct ifnet *ifp, const char * fmt, ...) { va_list ap; int retval; retval = printf("%s: ", ifp->if_xname); va_start(ap, fmt); retval += vprintf(fmt, ap); va_end(ap); return (retval); } void if_start(struct ifnet *ifp) { (*(ifp)->if_start)(ifp); } /* * Backwards compatibility interface for drivers * that have not implemented it */ static int if_transmit(struct ifnet *ifp, struct mbuf *m) { int error; IFQ_HANDOFF(ifp, m, error); return (error); } int if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust) { int active = 0; IF_LOCK(ifq); if (_IF_QFULL(ifq)) { _IF_DROP(ifq); IF_UNLOCK(ifq); m_freem(m); return (0); } if (ifp != NULL) { ifp->if_obytes += m->m_pkthdr.len + adjust; if (m->m_flags & (M_BCAST|M_MCAST)) ifp->if_omcasts++; active = ifp->if_drv_flags & IFF_DRV_OACTIVE; } _IF_ENQUEUE(ifq, m); IF_UNLOCK(ifq); if (ifp != NULL && !active) (*(ifp)->if_start)(ifp); return (1); } void if_register_com_alloc(u_char type, if_com_alloc_t *a, if_com_free_t *f) { KASSERT(if_com_alloc[type] == NULL, ("if_register_com_alloc: %d already registered", type)); KASSERT(if_com_free[type] == NULL, ("if_register_com_alloc: %d free already registered", type)); if_com_alloc[type] = a; if_com_free[type] = f; } void if_deregister_com_alloc(u_char type) { KASSERT(if_com_alloc[type] != NULL, ("if_deregister_com_alloc: %d not registered", type)); KASSERT(if_com_free[type] != NULL, ("if_deregister_com_alloc: %d free not registered", type)); if_com_alloc[type] = NULL; if_com_free[type] = NULL; } diff --git a/sys/net/if_tap.c b/sys/net/if_tap.c index 5153b2adbc4d..d788635a59e1 100644 --- a/sys/net/if_tap.c +++ b/sys/net/if_tap.c @@ -1,1115 +1,1115 @@ /*- * Copyright (C) 1999-2000 by Maksim Yevmenkin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * BASED ON: * ------------------------------------------------------------------------- * * Copyright (c) 1988, Julian Onions * Nottingham University 1987. */ /* * $FreeBSD$ * $Id: if_tap.c,v 0.21 2000/07/23 21:46:02 max Exp $ */ #include "opt_compat.h" #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CDEV_NAME "tap" #define TAPDEBUG if (tapdebug) printf static const char tapname[] = "tap"; static const char vmnetname[] = "vmnet"; #define TAPMAXUNIT 0x7fff #define VMNET_DEV_MASK CLONE_FLAG0 /* module */ static int tapmodevent(module_t, int, void *); /* device */ static void tapclone(void *, struct ucred *, char *, int, struct cdev **); static void tapcreate(struct cdev *); /* network interface */ static void tapifstart(struct ifnet *); static int tapifioctl(struct ifnet *, u_long, caddr_t); static void tapifinit(void *); static int tap_clone_create(struct if_clone *, int, caddr_t); static void tap_clone_destroy(struct ifnet *); static struct if_clone *tap_cloner; static int vmnet_clone_create(struct if_clone *, int, caddr_t); static void vmnet_clone_destroy(struct ifnet *); static struct if_clone *vmnet_cloner; /* character device */ static d_open_t tapopen; static d_close_t tapclose; static d_read_t tapread; static d_write_t tapwrite; static d_ioctl_t tapioctl; static d_poll_t tappoll; static d_kqfilter_t tapkqfilter; /* kqueue(2) */ static int tapkqread(struct knote *, long); static int tapkqwrite(struct knote *, long); static void tapkqdetach(struct knote *); static struct filterops tap_read_filterops = { .f_isfd = 1, .f_attach = NULL, .f_detach = tapkqdetach, .f_event = tapkqread, }; static struct filterops tap_write_filterops = { .f_isfd = 1, .f_attach = NULL, .f_detach = tapkqdetach, .f_event = tapkqwrite, }; static struct cdevsw tap_cdevsw = { .d_version = D_VERSION, .d_flags = D_NEEDMINOR, .d_open = tapopen, .d_close = tapclose, .d_read = tapread, .d_write = tapwrite, .d_ioctl = tapioctl, .d_poll = tappoll, .d_name = CDEV_NAME, .d_kqfilter = tapkqfilter, }; /* * All global variables in if_tap.c are locked with tapmtx, with the * exception of tapdebug, which is accessed unlocked; tapclones is * static at runtime. */ static struct mtx tapmtx; static int tapdebug = 0; /* debug flag */ static int tapuopen = 0; /* allow user open() */ static int tapuponopen = 0; /* IFF_UP on open() */ static int tapdclone = 1; /* enable devfs cloning */ static SLIST_HEAD(, tap_softc) taphead; /* first device */ static struct clonedevs *tapclones; MALLOC_DECLARE(M_TAP); MALLOC_DEFINE(M_TAP, CDEV_NAME, "Ethernet tunnel interface"); SYSCTL_INT(_debug, OID_AUTO, if_tap_debug, CTLFLAG_RW, &tapdebug, 0, ""); SYSCTL_DECL(_net_link); static SYSCTL_NODE(_net_link, OID_AUTO, tap, CTLFLAG_RW, 0, "Ethernet tunnel software network interface"); SYSCTL_INT(_net_link_tap, OID_AUTO, user_open, CTLFLAG_RW, &tapuopen, 0, "Allow user to open /dev/tap (based on node permissions)"); SYSCTL_INT(_net_link_tap, OID_AUTO, up_on_open, CTLFLAG_RW, &tapuponopen, 0, "Bring interface up when /dev/tap is opened"); SYSCTL_INT(_net_link_tap, OID_AUTO, devfs_cloning, CTLFLAG_RW, &tapdclone, 0, "Enably legacy devfs interface creation"); SYSCTL_INT(_net_link_tap, OID_AUTO, debug, CTLFLAG_RW, &tapdebug, 0, ""); TUNABLE_INT("net.link.tap.devfs_cloning", &tapdclone); DEV_MODULE(if_tap, tapmodevent, NULL); static int tap_clone_create(struct if_clone *ifc, int unit, caddr_t params) { struct cdev *dev; int i; /* Find any existing device, or allocate new unit number. */ i = clone_create(&tapclones, &tap_cdevsw, &unit, &dev, 0); if (i) { dev = make_dev(&tap_cdevsw, unit, UID_ROOT, GID_WHEEL, 0600, "%s%d", tapname, unit); } tapcreate(dev); return (0); } /* vmnet devices are tap devices in disguise */ static int vmnet_clone_create(struct if_clone *ifc, int unit, caddr_t params) { struct cdev *dev; int i; /* Find any existing device, or allocate new unit number. */ i = clone_create(&tapclones, &tap_cdevsw, &unit, &dev, VMNET_DEV_MASK); if (i) { dev = make_dev(&tap_cdevsw, unit | VMNET_DEV_MASK, UID_ROOT, GID_WHEEL, 0600, "%s%d", vmnetname, unit); } tapcreate(dev); return (0); } static void tap_destroy(struct tap_softc *tp) { struct ifnet *ifp = tp->tap_ifp; CURVNET_SET(ifp->if_vnet); destroy_dev(tp->tap_dev); seldrain(&tp->tap_rsel); knlist_clear(&tp->tap_rsel.si_note, 0); knlist_destroy(&tp->tap_rsel.si_note); ether_ifdetach(ifp); if_free(ifp); mtx_destroy(&tp->tap_mtx); free(tp, M_TAP); CURVNET_RESTORE(); } static void tap_clone_destroy(struct ifnet *ifp) { struct tap_softc *tp = ifp->if_softc; mtx_lock(&tapmtx); SLIST_REMOVE(&taphead, tp, tap_softc, tap_next); mtx_unlock(&tapmtx); tap_destroy(tp); } /* vmnet devices are tap devices in disguise */ static void vmnet_clone_destroy(struct ifnet *ifp) { tap_clone_destroy(ifp); } /* * tapmodevent * * module event handler */ static int tapmodevent(module_t mod, int type, void *data) { static eventhandler_tag eh_tag = NULL; struct tap_softc *tp = NULL; struct ifnet *ifp = NULL; switch (type) { case MOD_LOAD: /* intitialize device */ mtx_init(&tapmtx, "tapmtx", NULL, MTX_DEF); SLIST_INIT(&taphead); clone_setup(&tapclones); eh_tag = EVENTHANDLER_REGISTER(dev_clone, tapclone, 0, 1000); if (eh_tag == NULL) { clone_cleanup(&tapclones); mtx_destroy(&tapmtx); return (ENOMEM); } tap_cloner = if_clone_simple(tapname, tap_clone_create, tap_clone_destroy, 0); vmnet_cloner = if_clone_simple(vmnetname, vmnet_clone_create, vmnet_clone_destroy, 0); return (0); case MOD_UNLOAD: /* * The EBUSY algorithm here can't quite atomically * guarantee that this is race-free since we have to * release the tap mtx to deregister the clone handler. */ mtx_lock(&tapmtx); SLIST_FOREACH(tp, &taphead, tap_next) { mtx_lock(&tp->tap_mtx); if (tp->tap_flags & TAP_OPEN) { mtx_unlock(&tp->tap_mtx); mtx_unlock(&tapmtx); return (EBUSY); } mtx_unlock(&tp->tap_mtx); } mtx_unlock(&tapmtx); EVENTHANDLER_DEREGISTER(dev_clone, eh_tag); if_clone_detach(tap_cloner); if_clone_detach(vmnet_cloner); drain_dev_clone_events(); mtx_lock(&tapmtx); while ((tp = SLIST_FIRST(&taphead)) != NULL) { SLIST_REMOVE_HEAD(&taphead, tap_next); mtx_unlock(&tapmtx); ifp = tp->tap_ifp; TAPDEBUG("detaching %s\n", ifp->if_xname); tap_destroy(tp); mtx_lock(&tapmtx); } mtx_unlock(&tapmtx); clone_cleanup(&tapclones); mtx_destroy(&tapmtx); break; default: return (EOPNOTSUPP); } return (0); } /* tapmodevent */ /* * DEVFS handler * * We need to support two kind of devices - tap and vmnet */ static void tapclone(void *arg, struct ucred *cred, char *name, int namelen, struct cdev **dev) { char devname[SPECNAMELEN + 1]; int i, unit, append_unit; int extra; if (*dev != NULL) return; if (!tapdclone || (!tapuopen && priv_check_cred(cred, PRIV_NET_IFCREATE, 0) != 0)) return; unit = 0; append_unit = 0; extra = 0; /* We're interested in only tap/vmnet devices. */ if (strcmp(name, tapname) == 0) { unit = -1; } else if (strcmp(name, vmnetname) == 0) { unit = -1; extra = VMNET_DEV_MASK; } else if (dev_stdclone(name, NULL, tapname, &unit) != 1) { if (dev_stdclone(name, NULL, vmnetname, &unit) != 1) { return; } else { extra = VMNET_DEV_MASK; } } if (unit == -1) append_unit = 1; CURVNET_SET(CRED_TO_VNET(cred)); /* find any existing device, or allocate new unit number */ i = clone_create(&tapclones, &tap_cdevsw, &unit, dev, extra); if (i) { if (append_unit) { /* * We were passed 'tun' or 'tap', with no unit specified * so we'll need to append it now. */ namelen = snprintf(devname, sizeof(devname), "%s%d", name, unit); name = devname; } *dev = make_dev_credf(MAKEDEV_REF, &tap_cdevsw, unit | extra, cred, UID_ROOT, GID_WHEEL, 0600, "%s", name); } if_clone_create(name, namelen, NULL); CURVNET_RESTORE(); } /* tapclone */ /* * tapcreate * * to create interface */ static void tapcreate(struct cdev *dev) { struct ifnet *ifp = NULL; struct tap_softc *tp = NULL; unsigned short macaddr_hi; uint32_t macaddr_mid; int unit; const char *name = NULL; u_char eaddr[6]; /* allocate driver storage and create device */ tp = malloc(sizeof(*tp), M_TAP, M_WAITOK | M_ZERO); mtx_init(&tp->tap_mtx, "tap_mtx", NULL, MTX_DEF); mtx_lock(&tapmtx); SLIST_INSERT_HEAD(&taphead, tp, tap_next); mtx_unlock(&tapmtx); unit = dev2unit(dev); /* select device: tap or vmnet */ if (unit & VMNET_DEV_MASK) { name = vmnetname; tp->tap_flags |= TAP_VMNET; } else name = tapname; unit &= TAPMAXUNIT; TAPDEBUG("tapcreate(%s%d). minor = %#x\n", name, unit, dev2unit(dev)); /* generate fake MAC address: 00 bd xx xx xx unit_no */ macaddr_hi = htons(0x00bd); macaddr_mid = (uint32_t) ticks; bcopy(&macaddr_hi, eaddr, sizeof(short)); bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t)); eaddr[5] = (u_char)unit; /* fill the rest and attach interface */ ifp = tp->tap_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) panic("%s%d: can not if_alloc()", name, unit); ifp->if_softc = tp; if_initname(ifp, name, unit); ifp->if_init = tapifinit; ifp->if_start = tapifstart; ifp->if_ioctl = tapifioctl; ifp->if_mtu = ETHERMTU; ifp->if_flags = (IFF_BROADCAST|IFF_SIMPLEX|IFF_MULTICAST); IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); ifp->if_capabilities |= IFCAP_LINKSTATE; ifp->if_capenable |= IFCAP_LINKSTATE; dev->si_drv1 = tp; tp->tap_dev = dev; ether_ifattach(ifp, eaddr); mtx_lock(&tp->tap_mtx); tp->tap_flags |= TAP_INITED; mtx_unlock(&tp->tap_mtx); knlist_init_mtx(&tp->tap_rsel.si_note, &tp->tap_mtx); TAPDEBUG("interface %s is created. minor = %#x\n", ifp->if_xname, dev2unit(dev)); } /* tapcreate */ /* * tapopen * * to open tunnel. must be superuser */ static int tapopen(struct cdev *dev, int flag, int mode, struct thread *td) { struct tap_softc *tp = NULL; struct ifnet *ifp = NULL; int error; if (tapuopen == 0) { error = priv_check(td, PRIV_NET_TAP); if (error) return (error); } if ((dev2unit(dev) & CLONE_UNITMASK) > TAPMAXUNIT) return (ENXIO); tp = dev->si_drv1; mtx_lock(&tp->tap_mtx); if (tp->tap_flags & TAP_OPEN) { mtx_unlock(&tp->tap_mtx); return (EBUSY); } bcopy(IF_LLADDR(tp->tap_ifp), tp->ether_addr, sizeof(tp->ether_addr)); tp->tap_pid = td->td_proc->p_pid; tp->tap_flags |= TAP_OPEN; ifp = tp->tap_ifp; ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; if (tapuponopen) ifp->if_flags |= IFF_UP; if_link_state_change(ifp, LINK_STATE_UP); mtx_unlock(&tp->tap_mtx); TAPDEBUG("%s is open. minor = %#x\n", ifp->if_xname, dev2unit(dev)); return (0); } /* tapopen */ /* * tapclose * * close the device - mark i/f down & delete routing info */ static int tapclose(struct cdev *dev, int foo, int bar, struct thread *td) { struct ifaddr *ifa; struct tap_softc *tp = dev->si_drv1; struct ifnet *ifp = tp->tap_ifp; /* junk all pending output */ mtx_lock(&tp->tap_mtx); CURVNET_SET(ifp->if_vnet); IF_DRAIN(&ifp->if_snd); /* * do not bring the interface down, and do not anything with * interface, if we are in VMnet mode. just close the device. */ if (((tp->tap_flags & TAP_VMNET) == 0) && (ifp->if_flags & IFF_UP)) { mtx_unlock(&tp->tap_mtx); if_down(ifp); mtx_lock(&tp->tap_mtx); if (ifp->if_drv_flags & IFF_DRV_RUNNING) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; mtx_unlock(&tp->tap_mtx); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { rtinit(ifa, (int)RTM_DELETE, 0); } if_purgeaddrs(ifp); mtx_lock(&tp->tap_mtx); } } if_link_state_change(ifp, LINK_STATE_DOWN); CURVNET_RESTORE(); funsetown(&tp->tap_sigio); selwakeuppri(&tp->tap_rsel, PZERO+1); KNOTE_LOCKED(&tp->tap_rsel.si_note, 0); tp->tap_flags &= ~TAP_OPEN; tp->tap_pid = 0; mtx_unlock(&tp->tap_mtx); TAPDEBUG("%s is closed. minor = %#x\n", ifp->if_xname, dev2unit(dev)); return (0); } /* tapclose */ /* * tapifinit * * network interface initialization function */ static void tapifinit(void *xtp) { struct tap_softc *tp = (struct tap_softc *)xtp; struct ifnet *ifp = tp->tap_ifp; TAPDEBUG("initializing %s\n", ifp->if_xname); mtx_lock(&tp->tap_mtx); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; mtx_unlock(&tp->tap_mtx); /* attempt to start output */ tapifstart(ifp); } /* tapifinit */ /* * tapifioctl * * Process an ioctl request on network interface */ static int tapifioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct tap_softc *tp = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; struct ifstat *ifs = NULL; struct ifmediareq *ifmr = NULL; int dummy, error = 0; switch (cmd) { case SIOCSIFFLAGS: /* XXX -- just like vmnet does */ case SIOCADDMULTI: case SIOCDELMULTI: break; case SIOCGIFMEDIA: ifmr = (struct ifmediareq *)data; dummy = ifmr->ifm_count; ifmr->ifm_count = 1; ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; if (tp->tap_flags & TAP_OPEN) ifmr->ifm_status |= IFM_ACTIVE; ifmr->ifm_current = ifmr->ifm_active; if (dummy >= 1) { int media = IFM_ETHER; error = copyout(&media, ifmr->ifm_ulist, sizeof(int)); } break; case SIOCSIFMTU: ifp->if_mtu = ifr->ifr_mtu; break; case SIOCGIFSTATUS: ifs = (struct ifstat *)data; - dummy = strlen(ifs->ascii); mtx_lock(&tp->tap_mtx); - if (tp->tap_pid != 0 && dummy < sizeof(ifs->ascii)) - snprintf(ifs->ascii + dummy, - sizeof(ifs->ascii) - dummy, + if (tp->tap_pid != 0) + snprintf(ifs->ascii, sizeof(ifs->ascii), "\tOpened by PID %d\n", tp->tap_pid); + else + ifs->ascii[0] = '\0'; mtx_unlock(&tp->tap_mtx); break; default: error = ether_ioctl(ifp, cmd, data); break; } return (error); } /* tapifioctl */ /* * tapifstart * * queue packets from higher level ready to put out */ static void tapifstart(struct ifnet *ifp) { struct tap_softc *tp = ifp->if_softc; TAPDEBUG("%s starting\n", ifp->if_xname); /* * do not junk pending output if we are in VMnet mode. * XXX: can this do any harm because of queue overflow? */ mtx_lock(&tp->tap_mtx); if (((tp->tap_flags & TAP_VMNET) == 0) && ((tp->tap_flags & TAP_READY) != TAP_READY)) { struct mbuf *m; /* Unlocked read. */ TAPDEBUG("%s not ready, tap_flags = 0x%x\n", ifp->if_xname, tp->tap_flags); for (;;) { IF_DEQUEUE(&ifp->if_snd, m); if (m != NULL) { m_freem(m); ifp->if_oerrors++; } else break; } mtx_unlock(&tp->tap_mtx); return; } ifp->if_drv_flags |= IFF_DRV_OACTIVE; if (!IFQ_IS_EMPTY(&ifp->if_snd)) { if (tp->tap_flags & TAP_RWAIT) { tp->tap_flags &= ~TAP_RWAIT; wakeup(tp); } if ((tp->tap_flags & TAP_ASYNC) && (tp->tap_sigio != NULL)) { mtx_unlock(&tp->tap_mtx); pgsigio(&tp->tap_sigio, SIGIO, 0); mtx_lock(&tp->tap_mtx); } selwakeuppri(&tp->tap_rsel, PZERO+1); KNOTE_LOCKED(&tp->tap_rsel.si_note, 0); ifp->if_opackets ++; /* obytes are counted in ether_output */ } ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; mtx_unlock(&tp->tap_mtx); } /* tapifstart */ /* * tapioctl * * the cdevsw interface is now pretty minimal */ static int tapioctl(struct cdev *dev, u_long cmd, caddr_t data, int flag, struct thread *td) { struct tap_softc *tp = dev->si_drv1; struct ifnet *ifp = tp->tap_ifp; struct tapinfo *tapp = NULL; int f; #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) int ival; #endif switch (cmd) { case TAPSIFINFO: tapp = (struct tapinfo *)data; mtx_lock(&tp->tap_mtx); ifp->if_mtu = tapp->mtu; ifp->if_type = tapp->type; ifp->if_baudrate = tapp->baudrate; mtx_unlock(&tp->tap_mtx); break; case TAPGIFINFO: tapp = (struct tapinfo *)data; mtx_lock(&tp->tap_mtx); tapp->mtu = ifp->if_mtu; tapp->type = ifp->if_type; tapp->baudrate = ifp->if_baudrate; mtx_unlock(&tp->tap_mtx); break; case TAPSDEBUG: tapdebug = *(int *)data; break; case TAPGDEBUG: *(int *)data = tapdebug; break; case TAPGIFNAME: { struct ifreq *ifr = (struct ifreq *) data; strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ); } break; case FIONBIO: break; case FIOASYNC: mtx_lock(&tp->tap_mtx); if (*(int *)data) tp->tap_flags |= TAP_ASYNC; else tp->tap_flags &= ~TAP_ASYNC; mtx_unlock(&tp->tap_mtx); break; case FIONREAD: if (!IFQ_IS_EMPTY(&ifp->if_snd)) { struct mbuf *mb; IFQ_LOCK(&ifp->if_snd); IFQ_POLL_NOLOCK(&ifp->if_snd, mb); for (*(int *)data = 0; mb != NULL; mb = mb->m_next) *(int *)data += mb->m_len; IFQ_UNLOCK(&ifp->if_snd); } else *(int *)data = 0; break; case FIOSETOWN: return (fsetown(*(int *)data, &tp->tap_sigio)); case FIOGETOWN: *(int *)data = fgetown(&tp->tap_sigio); return (0); /* this is deprecated, FIOSETOWN should be used instead */ case TIOCSPGRP: return (fsetown(-(*(int *)data), &tp->tap_sigio)); /* this is deprecated, FIOGETOWN should be used instead */ case TIOCGPGRP: *(int *)data = -fgetown(&tp->tap_sigio); return (0); /* VMware/VMnet port ioctl's */ #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) case _IO('V', 0): ival = IOCPARM_IVAL(data); data = (caddr_t)&ival; /* FALLTHROUGH */ #endif case VMIO_SIOCSIFFLAGS: /* VMware/VMnet SIOCSIFFLAGS */ f = *(int *)data; f &= 0x0fff; f &= ~IFF_CANTCHANGE; f |= IFF_UP; mtx_lock(&tp->tap_mtx); ifp->if_flags = f | (ifp->if_flags & IFF_CANTCHANGE); mtx_unlock(&tp->tap_mtx); break; case SIOCGIFADDR: /* get MAC address of the remote side */ mtx_lock(&tp->tap_mtx); bcopy(tp->ether_addr, data, sizeof(tp->ether_addr)); mtx_unlock(&tp->tap_mtx); break; case SIOCSIFADDR: /* set MAC address of the remote side */ mtx_lock(&tp->tap_mtx); bcopy(data, tp->ether_addr, sizeof(tp->ether_addr)); mtx_unlock(&tp->tap_mtx); break; default: return (ENOTTY); } return (0); } /* tapioctl */ /* * tapread * * the cdevsw read interface - reads a packet at a time, or at * least as much of a packet as can be read */ static int tapread(struct cdev *dev, struct uio *uio, int flag) { struct tap_softc *tp = dev->si_drv1; struct ifnet *ifp = tp->tap_ifp; struct mbuf *m = NULL; int error = 0, len; TAPDEBUG("%s reading, minor = %#x\n", ifp->if_xname, dev2unit(dev)); mtx_lock(&tp->tap_mtx); if ((tp->tap_flags & TAP_READY) != TAP_READY) { mtx_unlock(&tp->tap_mtx); /* Unlocked read. */ TAPDEBUG("%s not ready. minor = %#x, tap_flags = 0x%x\n", ifp->if_xname, dev2unit(dev), tp->tap_flags); return (EHOSTDOWN); } tp->tap_flags &= ~TAP_RWAIT; /* sleep until we get a packet */ do { IF_DEQUEUE(&ifp->if_snd, m); if (m == NULL) { if (flag & O_NONBLOCK) { mtx_unlock(&tp->tap_mtx); return (EWOULDBLOCK); } tp->tap_flags |= TAP_RWAIT; error = mtx_sleep(tp, &tp->tap_mtx, PCATCH | (PZERO + 1), "taprd", 0); if (error) { mtx_unlock(&tp->tap_mtx); return (error); } } } while (m == NULL); mtx_unlock(&tp->tap_mtx); /* feed packet to bpf */ BPF_MTAP(ifp, m); /* xfer packet to user space */ while ((m != NULL) && (uio->uio_resid > 0) && (error == 0)) { len = min(uio->uio_resid, m->m_len); if (len == 0) break; error = uiomove(mtod(m, void *), len, uio); m = m_free(m); } if (m != NULL) { TAPDEBUG("%s dropping mbuf, minor = %#x\n", ifp->if_xname, dev2unit(dev)); m_freem(m); } return (error); } /* tapread */ /* * tapwrite * * the cdevsw write interface - an atomic write is a packet - or else! */ static int tapwrite(struct cdev *dev, struct uio *uio, int flag) { struct ether_header *eh; struct tap_softc *tp = dev->si_drv1; struct ifnet *ifp = tp->tap_ifp; struct mbuf *m; TAPDEBUG("%s writing, minor = %#x\n", ifp->if_xname, dev2unit(dev)); if (uio->uio_resid == 0) return (0); if ((uio->uio_resid < 0) || (uio->uio_resid > TAPMRU)) { TAPDEBUG("%s invalid packet len = %zd, minor = %#x\n", ifp->if_xname, uio->uio_resid, dev2unit(dev)); return (EIO); } if ((m = m_uiotombuf(uio, M_NOWAIT, 0, ETHER_ALIGN, M_PKTHDR)) == NULL) { ifp->if_ierrors ++; return (ENOBUFS); } m->m_pkthdr.rcvif = ifp; /* * Only pass a unicast frame to ether_input(), if it would actually * have been received by non-virtual hardware. */ if (m->m_len < sizeof(struct ether_header)) { m_freem(m); return (0); } eh = mtod(m, struct ether_header *); if (eh && (ifp->if_flags & IFF_PROMISC) == 0 && !ETHER_IS_MULTICAST(eh->ether_dhost) && bcmp(eh->ether_dhost, IF_LLADDR(ifp), ETHER_ADDR_LEN) != 0) { m_freem(m); return (0); } /* Pass packet up to parent. */ CURVNET_SET(ifp->if_vnet); (*ifp->if_input)(ifp, m); CURVNET_RESTORE(); ifp->if_ipackets ++; /* ibytes are counted in parent */ return (0); } /* tapwrite */ /* * tappoll * * the poll interface, this is only useful on reads * really. the write detect always returns true, write never blocks * anyway, it either accepts the packet or drops it */ static int tappoll(struct cdev *dev, int events, struct thread *td) { struct tap_softc *tp = dev->si_drv1; struct ifnet *ifp = tp->tap_ifp; int revents = 0; TAPDEBUG("%s polling, minor = %#x\n", ifp->if_xname, dev2unit(dev)); if (events & (POLLIN | POLLRDNORM)) { IFQ_LOCK(&ifp->if_snd); if (!IFQ_IS_EMPTY(&ifp->if_snd)) { TAPDEBUG("%s have data in queue. len = %d, " \ "minor = %#x\n", ifp->if_xname, ifp->if_snd.ifq_len, dev2unit(dev)); revents |= (events & (POLLIN | POLLRDNORM)); } else { TAPDEBUG("%s waiting for data, minor = %#x\n", ifp->if_xname, dev2unit(dev)); selrecord(td, &tp->tap_rsel); } IFQ_UNLOCK(&ifp->if_snd); } if (events & (POLLOUT | POLLWRNORM)) revents |= (events & (POLLOUT | POLLWRNORM)); return (revents); } /* tappoll */ /* * tap_kqfilter * * support for kevent() system call */ static int tapkqfilter(struct cdev *dev, struct knote *kn) { struct tap_softc *tp = dev->si_drv1; struct ifnet *ifp = tp->tap_ifp; switch (kn->kn_filter) { case EVFILT_READ: TAPDEBUG("%s kqfilter: EVFILT_READ, minor = %#x\n", ifp->if_xname, dev2unit(dev)); kn->kn_fop = &tap_read_filterops; break; case EVFILT_WRITE: TAPDEBUG("%s kqfilter: EVFILT_WRITE, minor = %#x\n", ifp->if_xname, dev2unit(dev)); kn->kn_fop = &tap_write_filterops; break; default: TAPDEBUG("%s kqfilter: invalid filter, minor = %#x\n", ifp->if_xname, dev2unit(dev)); return (EINVAL); /* NOT REACHED */ } kn->kn_hook = tp; knlist_add(&tp->tap_rsel.si_note, kn, 0); return (0); } /* tapkqfilter */ /* * tap_kqread * * Return true if there is data in the interface queue */ static int tapkqread(struct knote *kn, long hint) { int ret; struct tap_softc *tp = kn->kn_hook; struct cdev *dev = tp->tap_dev; struct ifnet *ifp = tp->tap_ifp; if ((kn->kn_data = ifp->if_snd.ifq_len) > 0) { TAPDEBUG("%s have data in queue. len = %d, minor = %#x\n", ifp->if_xname, ifp->if_snd.ifq_len, dev2unit(dev)); ret = 1; } else { TAPDEBUG("%s waiting for data, minor = %#x\n", ifp->if_xname, dev2unit(dev)); ret = 0; } return (ret); } /* tapkqread */ /* * tap_kqwrite * * Always can write. Return the MTU in kn->data */ static int tapkqwrite(struct knote *kn, long hint) { struct tap_softc *tp = kn->kn_hook; struct ifnet *ifp = tp->tap_ifp; kn->kn_data = ifp->if_mtu; return (1); } /* tapkqwrite */ static void tapkqdetach(struct knote *kn) { struct tap_softc *tp = kn->kn_hook; knlist_remove(&tp->tap_rsel.si_note, kn, 0); } /* tapkqdetach */ diff --git a/sys/net/if_tun.c b/sys/net/if_tun.c index ddef6f90d207..45e10c1c649f 100644 --- a/sys/net/if_tun.c +++ b/sys/net/if_tun.c @@ -1,1045 +1,1047 @@ /* $NetBSD: if_tun.c,v 1.14 1994/06/29 06:36:25 cgd Exp $ */ /*- * Copyright (c) 1988, Julian Onions * Nottingham University 1987. * * This source may be freely distributed, however I would be interested * in any changes that are made. * * This driver takes packets off the IP i/f and hands them up to a * user process to have its wicked way with. This driver has it's * roots in a similar driver written by Phil Cockcroft (formerly) at * UCL. This driver is based much more on read/write/poll mode of * operation though. * * $FreeBSD$ */ #include "opt_atalk.h" #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipx.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #endif #include #include #include #include #include /* * tun_list is protected by global tunmtx. Other mutable fields are * protected by tun->tun_mtx, or by their owning subsystem. tun_dev is * static for the duration of a tunnel interface. */ struct tun_softc { TAILQ_ENTRY(tun_softc) tun_list; struct cdev *tun_dev; u_short tun_flags; /* misc flags */ #define TUN_OPEN 0x0001 #define TUN_INITED 0x0002 #define TUN_RCOLL 0x0004 #define TUN_IASET 0x0008 #define TUN_DSTADDR 0x0010 #define TUN_LMODE 0x0020 #define TUN_RWAIT 0x0040 #define TUN_ASYNC 0x0080 #define TUN_IFHEAD 0x0100 #define TUN_READY (TUN_OPEN | TUN_INITED) /* * XXXRW: tun_pid is used to exclusively lock /dev/tun. Is this * actually needed? Can we just return EBUSY if already open? * Problem is that this involved inherent races when a tun device * is handed off from one process to another, as opposed to just * being slightly stale informationally. */ pid_t tun_pid; /* owning pid */ struct ifnet *tun_ifp; /* the interface */ struct sigio *tun_sigio; /* information for async I/O */ struct selinfo tun_rsel; /* read select */ struct mtx tun_mtx; /* protect mutable softc fields */ struct cv tun_cv; /* protect against ref'd dev destroy */ }; #define TUN2IFP(sc) ((sc)->tun_ifp) #define TUNDEBUG if (tundebug) if_printf /* * All mutable global variables in if_tun are locked using tunmtx, with * the exception of tundebug, which is used unlocked, and tunclones, * which is static after setup. */ static struct mtx tunmtx; static const char tunname[] = "tun"; static MALLOC_DEFINE(M_TUN, tunname, "Tunnel Interface"); static int tundebug = 0; static int tundclone = 1; static struct clonedevs *tunclones; static TAILQ_HEAD(,tun_softc) tunhead = TAILQ_HEAD_INITIALIZER(tunhead); SYSCTL_INT(_debug, OID_AUTO, if_tun_debug, CTLFLAG_RW, &tundebug, 0, ""); SYSCTL_DECL(_net_link); static SYSCTL_NODE(_net_link, OID_AUTO, tun, CTLFLAG_RW, 0, "IP tunnel software network interface."); SYSCTL_INT(_net_link_tun, OID_AUTO, devfs_cloning, CTLFLAG_RW, &tundclone, 0, "Enable legacy devfs interface creation."); TUNABLE_INT("net.link.tun.devfs_cloning", &tundclone); static void tunclone(void *arg, struct ucred *cred, char *name, int namelen, struct cdev **dev); static void tuncreate(const char *name, struct cdev *dev); static int tunifioctl(struct ifnet *, u_long, caddr_t); static void tuninit(struct ifnet *); static int tunmodevent(module_t, int, void *); static int tunoutput(struct ifnet *, struct mbuf *, const struct sockaddr *, struct route *ro); static void tunstart(struct ifnet *); static int tun_clone_create(struct if_clone *, int, caddr_t); static void tun_clone_destroy(struct ifnet *); static struct if_clone *tun_cloner; static d_open_t tunopen; static d_close_t tunclose; static d_read_t tunread; static d_write_t tunwrite; static d_ioctl_t tunioctl; static d_poll_t tunpoll; static d_kqfilter_t tunkqfilter; static int tunkqread(struct knote *, long); static int tunkqwrite(struct knote *, long); static void tunkqdetach(struct knote *); static struct filterops tun_read_filterops = { .f_isfd = 1, .f_attach = NULL, .f_detach = tunkqdetach, .f_event = tunkqread, }; static struct filterops tun_write_filterops = { .f_isfd = 1, .f_attach = NULL, .f_detach = tunkqdetach, .f_event = tunkqwrite, }; static struct cdevsw tun_cdevsw = { .d_version = D_VERSION, .d_flags = D_NEEDMINOR, .d_open = tunopen, .d_close = tunclose, .d_read = tunread, .d_write = tunwrite, .d_ioctl = tunioctl, .d_poll = tunpoll, .d_kqfilter = tunkqfilter, .d_name = tunname, }; static int tun_clone_create(struct if_clone *ifc, int unit, caddr_t params) { struct cdev *dev; int i; /* find any existing device, or allocate new unit number */ i = clone_create(&tunclones, &tun_cdevsw, &unit, &dev, 0); if (i) { /* No preexisting struct cdev *, create one */ dev = make_dev(&tun_cdevsw, unit, UID_UUCP, GID_DIALER, 0600, "%s%d", tunname, unit); } tuncreate(tunname, dev); return (0); } static void tunclone(void *arg, struct ucred *cred, char *name, int namelen, struct cdev **dev) { char devname[SPECNAMELEN + 1]; int u, i, append_unit; if (*dev != NULL) return; /* * If tun cloning is enabled, only the superuser can create an * interface. */ if (!tundclone || priv_check_cred(cred, PRIV_NET_IFCREATE, 0) != 0) return; if (strcmp(name, tunname) == 0) { u = -1; } else if (dev_stdclone(name, NULL, tunname, &u) != 1) return; /* Don't recognise the name */ if (u != -1 && u > IF_MAXUNIT) return; /* Unit number too high */ if (u == -1) append_unit = 1; else append_unit = 0; CURVNET_SET(CRED_TO_VNET(cred)); /* find any existing device, or allocate new unit number */ i = clone_create(&tunclones, &tun_cdevsw, &u, dev, 0); if (i) { if (append_unit) { namelen = snprintf(devname, sizeof(devname), "%s%d", name, u); name = devname; } /* No preexisting struct cdev *, create one */ *dev = make_dev_credf(MAKEDEV_REF, &tun_cdevsw, u, cred, UID_UUCP, GID_DIALER, 0600, "%s", name); } if_clone_create(name, namelen, NULL); CURVNET_RESTORE(); } static void tun_destroy(struct tun_softc *tp) { struct cdev *dev; mtx_lock(&tp->tun_mtx); if ((tp->tun_flags & TUN_OPEN) != 0) cv_wait_unlock(&tp->tun_cv, &tp->tun_mtx); else mtx_unlock(&tp->tun_mtx); CURVNET_SET(TUN2IFP(tp)->if_vnet); dev = tp->tun_dev; bpfdetach(TUN2IFP(tp)); if_detach(TUN2IFP(tp)); if_free(TUN2IFP(tp)); destroy_dev(dev); seldrain(&tp->tun_rsel); knlist_clear(&tp->tun_rsel.si_note, 0); knlist_destroy(&tp->tun_rsel.si_note); mtx_destroy(&tp->tun_mtx); cv_destroy(&tp->tun_cv); free(tp, M_TUN); CURVNET_RESTORE(); } static void tun_clone_destroy(struct ifnet *ifp) { struct tun_softc *tp = ifp->if_softc; mtx_lock(&tunmtx); TAILQ_REMOVE(&tunhead, tp, tun_list); mtx_unlock(&tunmtx); tun_destroy(tp); } static int tunmodevent(module_t mod, int type, void *data) { static eventhandler_tag tag; struct tun_softc *tp; switch (type) { case MOD_LOAD: mtx_init(&tunmtx, "tunmtx", NULL, MTX_DEF); clone_setup(&tunclones); tag = EVENTHANDLER_REGISTER(dev_clone, tunclone, 0, 1000); if (tag == NULL) return (ENOMEM); tun_cloner = if_clone_simple(tunname, tun_clone_create, tun_clone_destroy, 0); break; case MOD_UNLOAD: if_clone_detach(tun_cloner); EVENTHANDLER_DEREGISTER(dev_clone, tag); drain_dev_clone_events(); mtx_lock(&tunmtx); while ((tp = TAILQ_FIRST(&tunhead)) != NULL) { TAILQ_REMOVE(&tunhead, tp, tun_list); mtx_unlock(&tunmtx); tun_destroy(tp); mtx_lock(&tunmtx); } mtx_unlock(&tunmtx); clone_cleanup(&tunclones); mtx_destroy(&tunmtx); break; default: return EOPNOTSUPP; } return 0; } static moduledata_t tun_mod = { "if_tun", tunmodevent, 0 }; DECLARE_MODULE(if_tun, tun_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); MODULE_VERSION(if_tun, 1); static void tunstart(struct ifnet *ifp) { struct tun_softc *tp = ifp->if_softc; struct mbuf *m; TUNDEBUG(ifp,"%s starting\n", ifp->if_xname); if (ALTQ_IS_ENABLED(&ifp->if_snd)) { IFQ_LOCK(&ifp->if_snd); IFQ_POLL_NOLOCK(&ifp->if_snd, m); if (m == NULL) { IFQ_UNLOCK(&ifp->if_snd); return; } IFQ_UNLOCK(&ifp->if_snd); } mtx_lock(&tp->tun_mtx); if (tp->tun_flags & TUN_RWAIT) { tp->tun_flags &= ~TUN_RWAIT; wakeup(tp); } selwakeuppri(&tp->tun_rsel, PZERO + 1); KNOTE_LOCKED(&tp->tun_rsel.si_note, 0); if (tp->tun_flags & TUN_ASYNC && tp->tun_sigio) { mtx_unlock(&tp->tun_mtx); pgsigio(&tp->tun_sigio, SIGIO, 0); } else mtx_unlock(&tp->tun_mtx); } /* XXX: should return an error code so it can fail. */ static void tuncreate(const char *name, struct cdev *dev) { struct tun_softc *sc; struct ifnet *ifp; sc = malloc(sizeof(*sc), M_TUN, M_WAITOK | M_ZERO); mtx_init(&sc->tun_mtx, "tun_mtx", NULL, MTX_DEF); cv_init(&sc->tun_cv, "tun_condvar"); sc->tun_flags = TUN_INITED; sc->tun_dev = dev; mtx_lock(&tunmtx); TAILQ_INSERT_TAIL(&tunhead, sc, tun_list); mtx_unlock(&tunmtx); ifp = sc->tun_ifp = if_alloc(IFT_PPP); if (ifp == NULL) panic("%s%d: failed to if_alloc() interface.\n", name, dev2unit(dev)); if_initname(ifp, name, dev2unit(dev)); ifp->if_mtu = TUNMTU; ifp->if_ioctl = tunifioctl; ifp->if_output = tunoutput; ifp->if_start = tunstart; ifp->if_flags = IFF_POINTOPOINT | IFF_MULTICAST; ifp->if_softc = sc; IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); ifp->if_snd.ifq_drv_maxlen = 0; IFQ_SET_READY(&ifp->if_snd); knlist_init_mtx(&sc->tun_rsel.si_note, &sc->tun_mtx); ifp->if_capabilities |= IFCAP_LINKSTATE; ifp->if_capenable |= IFCAP_LINKSTATE; if_attach(ifp); bpfattach(ifp, DLT_NULL, sizeof(u_int32_t)); dev->si_drv1 = sc; TUNDEBUG(ifp, "interface %s is created, minor = %#x\n", ifp->if_xname, dev2unit(dev)); } static int tunopen(struct cdev *dev, int flag, int mode, struct thread *td) { struct ifnet *ifp; struct tun_softc *tp; /* * XXXRW: Non-atomic test and set of dev->si_drv1 requires * synchronization. */ tp = dev->si_drv1; if (!tp) { tuncreate(tunname, dev); tp = dev->si_drv1; } /* * XXXRW: This use of tun_pid is subject to error due to the * fact that a reference to the tunnel can live beyond the * death of the process that created it. Can we replace this * with a simple busy flag? */ mtx_lock(&tp->tun_mtx); if (tp->tun_pid != 0 && tp->tun_pid != td->td_proc->p_pid) { mtx_unlock(&tp->tun_mtx); return (EBUSY); } tp->tun_pid = td->td_proc->p_pid; tp->tun_flags |= TUN_OPEN; ifp = TUN2IFP(tp); if_link_state_change(ifp, LINK_STATE_UP); TUNDEBUG(ifp, "open\n"); mtx_unlock(&tp->tun_mtx); return (0); } /* * tunclose - close the device - mark i/f down & delete * routing info */ static int tunclose(struct cdev *dev, int foo, int bar, struct thread *td) { struct tun_softc *tp; struct ifnet *ifp; tp = dev->si_drv1; ifp = TUN2IFP(tp); mtx_lock(&tp->tun_mtx); tp->tun_flags &= ~TUN_OPEN; tp->tun_pid = 0; /* * junk all pending output */ CURVNET_SET(ifp->if_vnet); IFQ_PURGE(&ifp->if_snd); if (ifp->if_flags & IFF_UP) { mtx_unlock(&tp->tun_mtx); if_down(ifp); mtx_lock(&tp->tun_mtx); } /* Delete all addresses and routes which reference this interface. */ if (ifp->if_drv_flags & IFF_DRV_RUNNING) { struct ifaddr *ifa; ifp->if_drv_flags &= ~IFF_DRV_RUNNING; mtx_unlock(&tp->tun_mtx); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { /* deal w/IPv4 PtP destination; unlocked read */ if (ifa->ifa_addr->sa_family == AF_INET) { rtinit(ifa, (int)RTM_DELETE, tp->tun_flags & TUN_DSTADDR ? RTF_HOST : 0); } else { rtinit(ifa, (int)RTM_DELETE, 0); } } if_purgeaddrs(ifp); mtx_lock(&tp->tun_mtx); } if_link_state_change(ifp, LINK_STATE_DOWN); CURVNET_RESTORE(); funsetown(&tp->tun_sigio); selwakeuppri(&tp->tun_rsel, PZERO + 1); KNOTE_LOCKED(&tp->tun_rsel.si_note, 0); TUNDEBUG (ifp, "closed\n"); cv_broadcast(&tp->tun_cv); mtx_unlock(&tp->tun_mtx); return (0); } static void tuninit(struct ifnet *ifp) { struct tun_softc *tp = ifp->if_softc; #ifdef INET struct ifaddr *ifa; #endif TUNDEBUG(ifp, "tuninit\n"); mtx_lock(&tp->tun_mtx); ifp->if_flags |= IFF_UP; ifp->if_drv_flags |= IFF_DRV_RUNNING; getmicrotime(&ifp->if_lastchange); #ifdef INET if_addr_rlock(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family == AF_INET) { struct sockaddr_in *si; si = (struct sockaddr_in *)ifa->ifa_addr; if (si->sin_addr.s_addr) tp->tun_flags |= TUN_IASET; si = (struct sockaddr_in *)ifa->ifa_dstaddr; if (si && si->sin_addr.s_addr) tp->tun_flags |= TUN_DSTADDR; } } if_addr_runlock(ifp); #endif mtx_unlock(&tp->tun_mtx); } /* * Process an ioctl request. */ static int tunifioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct ifreq *ifr = (struct ifreq *)data; struct tun_softc *tp = ifp->if_softc; struct ifstat *ifs; int error = 0; switch(cmd) { case SIOCGIFSTATUS: ifs = (struct ifstat *)data; mtx_lock(&tp->tun_mtx); if (tp->tun_pid) - sprintf(ifs->ascii + strlen(ifs->ascii), + snprintf(ifs->ascii, sizeof(ifs->ascii), "\tOpened by PID %d\n", tp->tun_pid); + else + ifs->ascii[0] = '\0'; mtx_unlock(&tp->tun_mtx); break; case SIOCSIFADDR: tuninit(ifp); TUNDEBUG(ifp, "address set\n"); break; case SIOCSIFMTU: ifp->if_mtu = ifr->ifr_mtu; TUNDEBUG(ifp, "mtu set\n"); break; case SIOCSIFFLAGS: case SIOCADDMULTI: case SIOCDELMULTI: break; default: error = EINVAL; } return (error); } /* * tunoutput - queue packets from higher level ready to put out. */ static int tunoutput(struct ifnet *ifp, struct mbuf *m0, const struct sockaddr *dst, struct route *ro) { struct tun_softc *tp = ifp->if_softc; u_short cached_tun_flags; int error; u_int32_t af; TUNDEBUG (ifp, "tunoutput\n"); #ifdef MAC error = mac_ifnet_check_transmit(ifp, m0); if (error) { m_freem(m0); return (error); } #endif /* Could be unlocked read? */ mtx_lock(&tp->tun_mtx); cached_tun_flags = tp->tun_flags; mtx_unlock(&tp->tun_mtx); if ((cached_tun_flags & TUN_READY) != TUN_READY) { TUNDEBUG (ifp, "not ready 0%o\n", tp->tun_flags); m_freem (m0); return (EHOSTDOWN); } if ((ifp->if_flags & IFF_UP) != IFF_UP) { m_freem (m0); return (EHOSTDOWN); } /* BPF writes need to be handled specially. */ if (dst->sa_family == AF_UNSPEC) bcopy(dst->sa_data, &af, sizeof(af)); else af = dst->sa_family; if (bpf_peers_present(ifp->if_bpf)) bpf_mtap2(ifp->if_bpf, &af, sizeof(af), m0); /* prepend sockaddr? this may abort if the mbuf allocation fails */ if (cached_tun_flags & TUN_LMODE) { /* allocate space for sockaddr */ M_PREPEND(m0, dst->sa_len, M_NOWAIT); /* if allocation failed drop packet */ if (m0 == NULL) { ifp->if_iqdrops++; ifp->if_oerrors++; return (ENOBUFS); } else { bcopy(dst, m0->m_data, dst->sa_len); } } if (cached_tun_flags & TUN_IFHEAD) { /* Prepend the address family */ M_PREPEND(m0, 4, M_NOWAIT); /* if allocation failed drop packet */ if (m0 == NULL) { ifp->if_iqdrops++; ifp->if_oerrors++; return (ENOBUFS); } else *(u_int32_t *)m0->m_data = htonl(af); } else { #ifdef INET if (af != AF_INET) #endif { m_freem(m0); return (EAFNOSUPPORT); } } error = (ifp->if_transmit)(ifp, m0); if (error) return (ENOBUFS); ifp->if_opackets++; return (0); } /* * the cdevsw interface is now pretty minimal. */ static int tunioctl(struct cdev *dev, u_long cmd, caddr_t data, int flag, struct thread *td) { int error; struct tun_softc *tp = dev->si_drv1; struct tuninfo *tunp; switch (cmd) { case TUNSIFINFO: tunp = (struct tuninfo *)data; if (tunp->mtu < IF_MINMTU) return (EINVAL); if (TUN2IFP(tp)->if_mtu != tunp->mtu) { error = priv_check(td, PRIV_NET_SETIFMTU); if (error) return (error); } mtx_lock(&tp->tun_mtx); TUN2IFP(tp)->if_mtu = tunp->mtu; TUN2IFP(tp)->if_type = tunp->type; TUN2IFP(tp)->if_baudrate = tunp->baudrate; mtx_unlock(&tp->tun_mtx); break; case TUNGIFINFO: tunp = (struct tuninfo *)data; mtx_lock(&tp->tun_mtx); tunp->mtu = TUN2IFP(tp)->if_mtu; tunp->type = TUN2IFP(tp)->if_type; tunp->baudrate = TUN2IFP(tp)->if_baudrate; mtx_unlock(&tp->tun_mtx); break; case TUNSDEBUG: tundebug = *(int *)data; break; case TUNGDEBUG: *(int *)data = tundebug; break; case TUNSLMODE: mtx_lock(&tp->tun_mtx); if (*(int *)data) { tp->tun_flags |= TUN_LMODE; tp->tun_flags &= ~TUN_IFHEAD; } else tp->tun_flags &= ~TUN_LMODE; mtx_unlock(&tp->tun_mtx); break; case TUNSIFHEAD: mtx_lock(&tp->tun_mtx); if (*(int *)data) { tp->tun_flags |= TUN_IFHEAD; tp->tun_flags &= ~TUN_LMODE; } else tp->tun_flags &= ~TUN_IFHEAD; mtx_unlock(&tp->tun_mtx); break; case TUNGIFHEAD: mtx_lock(&tp->tun_mtx); *(int *)data = (tp->tun_flags & TUN_IFHEAD) ? 1 : 0; mtx_unlock(&tp->tun_mtx); break; case TUNSIFMODE: /* deny this if UP */ if (TUN2IFP(tp)->if_flags & IFF_UP) return(EBUSY); switch (*(int *)data & ~IFF_MULTICAST) { case IFF_POINTOPOINT: case IFF_BROADCAST: mtx_lock(&tp->tun_mtx); TUN2IFP(tp)->if_flags &= ~(IFF_BROADCAST|IFF_POINTOPOINT|IFF_MULTICAST); TUN2IFP(tp)->if_flags |= *(int *)data; mtx_unlock(&tp->tun_mtx); break; default: return(EINVAL); } break; case TUNSIFPID: mtx_lock(&tp->tun_mtx); tp->tun_pid = curthread->td_proc->p_pid; mtx_unlock(&tp->tun_mtx); break; case FIONBIO: break; case FIOASYNC: mtx_lock(&tp->tun_mtx); if (*(int *)data) tp->tun_flags |= TUN_ASYNC; else tp->tun_flags &= ~TUN_ASYNC; mtx_unlock(&tp->tun_mtx); break; case FIONREAD: if (!IFQ_IS_EMPTY(&TUN2IFP(tp)->if_snd)) { struct mbuf *mb; IFQ_LOCK(&TUN2IFP(tp)->if_snd); IFQ_POLL_NOLOCK(&TUN2IFP(tp)->if_snd, mb); for (*(int *)data = 0; mb != NULL; mb = mb->m_next) *(int *)data += mb->m_len; IFQ_UNLOCK(&TUN2IFP(tp)->if_snd); } else *(int *)data = 0; break; case FIOSETOWN: return (fsetown(*(int *)data, &tp->tun_sigio)); case FIOGETOWN: *(int *)data = fgetown(&tp->tun_sigio); return (0); /* This is deprecated, FIOSETOWN should be used instead. */ case TIOCSPGRP: return (fsetown(-(*(int *)data), &tp->tun_sigio)); /* This is deprecated, FIOGETOWN should be used instead. */ case TIOCGPGRP: *(int *)data = -fgetown(&tp->tun_sigio); return (0); default: return (ENOTTY); } return (0); } /* * The cdevsw read interface - reads a packet at a time, or at * least as much of a packet as can be read. */ static int tunread(struct cdev *dev, struct uio *uio, int flag) { struct tun_softc *tp = dev->si_drv1; struct ifnet *ifp = TUN2IFP(tp); struct mbuf *m; int error=0, len; TUNDEBUG (ifp, "read\n"); mtx_lock(&tp->tun_mtx); if ((tp->tun_flags & TUN_READY) != TUN_READY) { mtx_unlock(&tp->tun_mtx); TUNDEBUG (ifp, "not ready 0%o\n", tp->tun_flags); return (EHOSTDOWN); } tp->tun_flags &= ~TUN_RWAIT; do { IFQ_DEQUEUE(&ifp->if_snd, m); if (m == NULL) { if (flag & O_NONBLOCK) { mtx_unlock(&tp->tun_mtx); return (EWOULDBLOCK); } tp->tun_flags |= TUN_RWAIT; error = mtx_sleep(tp, &tp->tun_mtx, PCATCH | (PZERO + 1), "tunread", 0); if (error != 0) { mtx_unlock(&tp->tun_mtx); return (error); } } } while (m == NULL); mtx_unlock(&tp->tun_mtx); while (m && uio->uio_resid > 0 && error == 0) { len = min(uio->uio_resid, m->m_len); if (len != 0) error = uiomove(mtod(m, void *), len, uio); m = m_free(m); } if (m) { TUNDEBUG(ifp, "Dropping mbuf\n"); m_freem(m); } return (error); } /* * the cdevsw write interface - an atomic write is a packet - or else! */ static int tunwrite(struct cdev *dev, struct uio *uio, int flag) { struct tun_softc *tp = dev->si_drv1; struct ifnet *ifp = TUN2IFP(tp); struct mbuf *m; uint32_t family; int isr; TUNDEBUG(ifp, "tunwrite\n"); if ((ifp->if_flags & IFF_UP) != IFF_UP) /* ignore silently */ return (0); if (uio->uio_resid == 0) return (0); if (uio->uio_resid < 0 || uio->uio_resid > TUNMRU) { TUNDEBUG(ifp, "len=%zd!\n", uio->uio_resid); return (EIO); } if ((m = m_uiotombuf(uio, M_NOWAIT, 0, 0, M_PKTHDR)) == NULL) { ifp->if_ierrors++; return (ENOBUFS); } m->m_pkthdr.rcvif = ifp; #ifdef MAC mac_ifnet_create_mbuf(ifp, m); #endif /* Could be unlocked read? */ mtx_lock(&tp->tun_mtx); if (tp->tun_flags & TUN_IFHEAD) { mtx_unlock(&tp->tun_mtx); if (m->m_len < sizeof(family) && (m = m_pullup(m, sizeof(family))) == NULL) return (ENOBUFS); family = ntohl(*mtod(m, u_int32_t *)); m_adj(m, sizeof(family)); } else { mtx_unlock(&tp->tun_mtx); family = AF_INET; } BPF_MTAP2(ifp, &family, sizeof(family), m); switch (family) { #ifdef INET case AF_INET: isr = NETISR_IP; break; #endif #ifdef INET6 case AF_INET6: isr = NETISR_IPV6; break; #endif #ifdef IPX case AF_IPX: isr = NETISR_IPX; break; #endif #ifdef NETATALK case AF_APPLETALK: isr = NETISR_ATALK2; break; #endif default: m_freem(m); return (EAFNOSUPPORT); } if (harvest.point_to_point) random_harvest(&(m->m_data), 12, 2, RANDOM_NET_TUN); ifp->if_ibytes += m->m_pkthdr.len; ifp->if_ipackets++; CURVNET_SET(ifp->if_vnet); M_SETFIB(m, ifp->if_fib); netisr_dispatch(isr, m); CURVNET_RESTORE(); return (0); } /* * tunpoll - the poll interface, this is only useful on reads * really. The write detect always returns true, write never blocks * anyway, it either accepts the packet or drops it. */ static int tunpoll(struct cdev *dev, int events, struct thread *td) { struct tun_softc *tp = dev->si_drv1; struct ifnet *ifp = TUN2IFP(tp); int revents = 0; struct mbuf *m; TUNDEBUG(ifp, "tunpoll\n"); if (events & (POLLIN | POLLRDNORM)) { IFQ_LOCK(&ifp->if_snd); IFQ_POLL_NOLOCK(&ifp->if_snd, m); if (m != NULL) { TUNDEBUG(ifp, "tunpoll q=%d\n", ifp->if_snd.ifq_len); revents |= events & (POLLIN | POLLRDNORM); } else { TUNDEBUG(ifp, "tunpoll waiting\n"); selrecord(td, &tp->tun_rsel); } IFQ_UNLOCK(&ifp->if_snd); } if (events & (POLLOUT | POLLWRNORM)) revents |= events & (POLLOUT | POLLWRNORM); return (revents); } /* * tunkqfilter - support for the kevent() system call. */ static int tunkqfilter(struct cdev *dev, struct knote *kn) { struct tun_softc *tp = dev->si_drv1; struct ifnet *ifp = TUN2IFP(tp); switch(kn->kn_filter) { case EVFILT_READ: TUNDEBUG(ifp, "%s kqfilter: EVFILT_READ, minor = %#x\n", ifp->if_xname, dev2unit(dev)); kn->kn_fop = &tun_read_filterops; break; case EVFILT_WRITE: TUNDEBUG(ifp, "%s kqfilter: EVFILT_WRITE, minor = %#x\n", ifp->if_xname, dev2unit(dev)); kn->kn_fop = &tun_write_filterops; break; default: TUNDEBUG(ifp, "%s kqfilter: invalid filter, minor = %#x\n", ifp->if_xname, dev2unit(dev)); return(EINVAL); } kn->kn_hook = tp; knlist_add(&tp->tun_rsel.si_note, kn, 0); return (0); } /* * Return true of there is data in the interface queue. */ static int tunkqread(struct knote *kn, long hint) { int ret; struct tun_softc *tp = kn->kn_hook; struct cdev *dev = tp->tun_dev; struct ifnet *ifp = TUN2IFP(tp); if ((kn->kn_data = ifp->if_snd.ifq_len) > 0) { TUNDEBUG(ifp, "%s have data in the queue. Len = %d, minor = %#x\n", ifp->if_xname, ifp->if_snd.ifq_len, dev2unit(dev)); ret = 1; } else { TUNDEBUG(ifp, "%s waiting for data, minor = %#x\n", ifp->if_xname, dev2unit(dev)); ret = 0; } return (ret); } /* * Always can write, always return MTU in kn->data. */ static int tunkqwrite(struct knote *kn, long hint) { struct tun_softc *tp = kn->kn_hook; struct ifnet *ifp = TUN2IFP(tp); kn->kn_data = ifp->if_mtu; return (1); } static void tunkqdetach(struct knote *kn) { struct tun_softc *tp = kn->kn_hook; knlist_remove(&tp->tun_rsel.si_note, kn, 0); }