diff --git a/sys/kern/vfs_subr.c b/sys/kern/vfs_subr.c
index 54796fe6ef7d..8c831034a8e5 100644
--- a/sys/kern/vfs_subr.c
+++ b/sys/kern/vfs_subr.c
@@ -1,7288 +1,7304 @@
 /*-
  * SPDX-License-Identifier: BSD-3-Clause
  *
  * Copyright (c) 1989, 1993
  *	The Regents of the University of California.  All rights reserved.
  * (c) UNIX System Laboratories, Inc.
  * All or some portions of this file are derived from material licensed
  * to the University of California by American Telephone and Telegraph
  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
  * the permission of UNIX System Laboratories, Inc.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
  */
 
 /*
  * External virtual filesystem routines
  */
 
 #include <sys/cdefs.h>
 #include "opt_ddb.h"
 #include "opt_watchdog.h"
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/asan.h>
 #include <sys/bio.h>
 #include <sys/buf.h>
 #include <sys/capsicum.h>
 #include <sys/condvar.h>
 #include <sys/conf.h>
 #include <sys/counter.h>
 #include <sys/dirent.h>
 #include <sys/event.h>
 #include <sys/eventhandler.h>
 #include <sys/extattr.h>
 #include <sys/file.h>
 #include <sys/fcntl.h>
 #include <sys/jail.h>
 #include <sys/kdb.h>
 #include <sys/kernel.h>
 #include <sys/kthread.h>
 #include <sys/ktr.h>
 #include <sys/lockf.h>
 #include <sys/malloc.h>
 #include <sys/mount.h>
 #include <sys/namei.h>
 #include <sys/pctrie.h>
 #include <sys/priv.h>
 #include <sys/reboot.h>
 #include <sys/refcount.h>
 #include <sys/rwlock.h>
 #include <sys/sched.h>
 #include <sys/sleepqueue.h>
 #include <sys/smr.h>
 #include <sys/smp.h>
 #include <sys/stat.h>
 #include <sys/sysctl.h>
 #include <sys/syslog.h>
 #include <sys/vmmeter.h>
 #include <sys/vnode.h>
 #include <sys/watchdog.h>
 
 #include <machine/stdarg.h>
 
 #include <security/mac/mac_framework.h>
 
 #include <vm/vm.h>
 #include <vm/vm_object.h>
 #include <vm/vm_extern.h>
 #include <vm/pmap.h>
 #include <vm/vm_map.h>
 #include <vm/vm_page.h>
 #include <vm/vm_kern.h>
 #include <vm/uma.h>
 
 #if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS))
 #error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS
 #endif
 
 #ifdef DDB
 #include <ddb/ddb.h>
 #endif
 
 static void	delmntque(struct vnode *vp);
 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
 		    int slpflag, int slptimeo);
 static void	syncer_shutdown(void *arg, int howto);
 static int	vtryrecycle(struct vnode *vp);
 static void	v_init_counters(struct vnode *);
 static void	vn_seqc_init(struct vnode *);
 static void	vn_seqc_write_end_free(struct vnode *vp);
 static void	vgonel(struct vnode *);
 static bool	vhold_recycle_free(struct vnode *);
 static void	vdropl_recycle(struct vnode *vp);
 static void	vdrop_recycle(struct vnode *vp);
 static void	vfs_knllock(void *arg);
 static void	vfs_knlunlock(void *arg);
 static void	vfs_knl_assert_lock(void *arg, int what);
 static void	destroy_vpollinfo(struct vpollinfo *vi);
 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
 		    daddr_t startlbn, daddr_t endlbn);
 static void	vnlru_recalc(void);
 
 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
     "vnode configuration and statistics");
 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
     "vnode configuration");
 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
     "vnode statistics");
 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
     "vnode recycling");
 
 /*
  * Number of vnodes in existence.  Increased whenever getnewvnode()
  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
  */
 static u_long __exclusive_cache_line numvnodes;
 
 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
     "Number of vnodes in existence (legacy)");
 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0,
     "Number of vnodes in existence");
 
 static counter_u64_t vnodes_created;
 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
     "Number of vnodes created by getnewvnode (legacy)");
 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created,
     "Number of vnodes created by getnewvnode");
 
 /*
  * Conversion tables for conversion from vnode types to inode formats
  * and back.
  */
 enum vtype iftovt_tab[16] = {
 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
 };
 int vttoif_tab[10] = {
 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
 };
 
 /*
  * List of allocates vnodes in the system.
  */
 static TAILQ_HEAD(freelst, vnode) vnode_list;
 static struct vnode *vnode_list_free_marker;
 static struct vnode *vnode_list_reclaim_marker;
 
 /*
  * "Free" vnode target.  Free vnodes are rarely completely free, but are
  * just ones that are cheap to recycle.  Usually they are for files which
  * have been stat'd but not read; these usually have inode and namecache
  * data attached to them.  This target is the preferred minimum size of a
  * sub-cache consisting mostly of such files. The system balances the size
  * of this sub-cache with its complement to try to prevent either from
  * thrashing while the other is relatively inactive.  The targets express
  * a preference for the best balance.
  *
  * "Above" this target there are 2 further targets (watermarks) related
  * to recyling of free vnodes.  In the best-operating case, the cache is
  * exactly full, the free list has size between vlowat and vhiwat above the
  * free target, and recycling from it and normal use maintains this state.
  * Sometimes the free list is below vlowat or even empty, but this state
  * is even better for immediate use provided the cache is not full.
  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
  * ones) to reach one of these states.  The watermarks are currently hard-
  * coded as 4% and 9% of the available space higher.  These and the default
  * of 25% for wantfreevnodes are too large if the memory size is large.
  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
  * whenever vnlru_proc() becomes active.
  */
 static long wantfreevnodes;
 static long __exclusive_cache_line freevnodes;
 static long freevnodes_old;
 
 static counter_u64_t recycles_count;
 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
     "Number of vnodes recycled to meet vnode cache targets (legacy)");
 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
     "Number of vnodes recycled to meet vnode cache targets");
 
 static counter_u64_t recycles_free_count;
 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
     "Number of free vnodes recycled to meet vnode cache targets (legacy)");
 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
     "Number of free vnodes recycled to meet vnode cache targets");
 
 static counter_u64_t vnode_skipped_requeues;
 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues,
     "Number of times LRU requeue was skipped due to lock contention");
 
 static u_long deferred_inact;
 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
     &deferred_inact, 0, "Number of times inactive processing was deferred");
 
 /* To keep more than one thread at a time from running vfs_getnewfsid */
 static struct mtx mntid_mtx;
 
 /*
  * Lock for any access to the following:
  *	vnode_list
  *	numvnodes
  *	freevnodes
  */
 static struct mtx __exclusive_cache_line vnode_list_mtx;
 
 /* Publicly exported FS */
 struct nfs_public nfs_pub;
 
 static uma_zone_t buf_trie_zone;
 static smr_t buf_trie_smr;
 
 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
 static uma_zone_t vnode_zone;
 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
 
 __read_frequently smr_t vfs_smr;
 
 /*
  * The workitem queue.
  *
  * It is useful to delay writes of file data and filesystem metadata
  * for tens of seconds so that quickly created and deleted files need
  * not waste disk bandwidth being created and removed. To realize this,
  * we append vnodes to a "workitem" queue. When running with a soft
  * updates implementation, most pending metadata dependencies should
  * not wait for more than a few seconds. Thus, mounted on block devices
  * are delayed only about a half the time that file data is delayed.
  * Similarly, directory updates are more critical, so are only delayed
  * about a third the time that file data is delayed. Thus, there are
  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
  * one each second (driven off the filesystem syncer process). The
  * syncer_delayno variable indicates the next queue that is to be processed.
  * Items that need to be processed soon are placed in this queue:
  *
  *	syncer_workitem_pending[syncer_delayno]
  *
  * A delay of fifteen seconds is done by placing the request fifteen
  * entries later in the queue:
  *
  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
  *
  */
 static int syncer_delayno;
 static long syncer_mask;
 LIST_HEAD(synclist, bufobj);
 static struct synclist *syncer_workitem_pending;
 /*
  * The sync_mtx protects:
  *	bo->bo_synclist
  *	sync_vnode_count
  *	syncer_delayno
  *	syncer_state
  *	syncer_workitem_pending
  *	syncer_worklist_len
  *	rushjob
  */
 static struct mtx sync_mtx;
 static struct cv sync_wakeup;
 
 #define SYNCER_MAXDELAY		32
 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
 static int syncdelay = 30;		/* max time to delay syncing data */
 static int filedelay = 30;		/* time to delay syncing files */
 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
     "Time to delay syncing files (in seconds)");
 static int dirdelay = 29;		/* time to delay syncing directories */
 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
     "Time to delay syncing directories (in seconds)");
 static int metadelay = 28;		/* time to delay syncing metadata */
 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
     "Time to delay syncing metadata (in seconds)");
 static int rushjob;		/* number of slots to run ASAP */
 static int stat_rush_requests;	/* number of times I/O speeded up */
 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
     "Number of times I/O speeded up (rush requests)");
 
 #define	VDBATCH_SIZE 8
 struct vdbatch {
 	u_int index;
 	struct mtx lock;
 	struct vnode *tab[VDBATCH_SIZE];
 };
 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
 
 static void	vdbatch_dequeue(struct vnode *vp);
 
 /*
  * When shutting down the syncer, run it at four times normal speed.
  */
 #define SYNCER_SHUTDOWN_SPEEDUP		4
 static int sync_vnode_count;
 static int syncer_worklist_len;
 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
     syncer_state;
 
 /* Target for maximum number of vnodes. */
 u_long desiredvnodes;
 static u_long gapvnodes;		/* gap between wanted and desired */
 static u_long vhiwat;		/* enough extras after expansion */
 static u_long vlowat;		/* minimal extras before expansion */
 static bool vstir;		/* nonzero to stir non-free vnodes */
 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
 
 static u_long vnlru_read_freevnodes(void);
 
 /*
  * Note that no attempt is made to sanitize these parameters.
  */
 static int
 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
 {
 	u_long val;
 	int error;
 
 	val = desiredvnodes;
 	error = sysctl_handle_long(oidp, &val, 0, req);
 	if (error != 0 || req->newptr == NULL)
 		return (error);
 
 	if (val == desiredvnodes)
 		return (0);
 	mtx_lock(&vnode_list_mtx);
 	desiredvnodes = val;
 	wantfreevnodes = desiredvnodes / 4;
 	vnlru_recalc();
 	mtx_unlock(&vnode_list_mtx);
 	/*
 	 * XXX There is no protection against multiple threads changing
 	 * desiredvnodes at the same time. Locking above only helps vnlru and
 	 * getnewvnode.
 	 */
 	vfs_hash_changesize(desiredvnodes);
 	cache_changesize(desiredvnodes);
 	return (0);
 }
 
 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
     "LU", "Target for maximum number of vnodes (legacy)");
 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit,
     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
     "LU", "Target for maximum number of vnodes");
 
 static int
 sysctl_freevnodes(SYSCTL_HANDLER_ARGS)
 {
 	u_long rfreevnodes;
 
 	rfreevnodes = vnlru_read_freevnodes();
 	return (sysctl_handle_long(oidp, &rfreevnodes, 0, req));
 }
 
 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes,
     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
     "LU", "Number of \"free\" vnodes (legacy)");
 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free,
     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
     "LU", "Number of \"free\" vnodes");
 
 static int
 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
 {
 	u_long val;
 	int error;
 
 	val = wantfreevnodes;
 	error = sysctl_handle_long(oidp, &val, 0, req);
 	if (error != 0 || req->newptr == NULL)
 		return (error);
 
 	if (val == wantfreevnodes)
 		return (0);
 	mtx_lock(&vnode_list_mtx);
 	wantfreevnodes = val;
 	vnlru_recalc();
 	mtx_unlock(&vnode_list_mtx);
 	return (0);
 }
 
 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
     "LU", "Target for minimum number of \"free\" vnodes (legacy)");
 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree,
     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
     "LU", "Target for minimum number of \"free\" vnodes");
 
 static int vnlru_nowhere;
 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS,
     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
 
 static int
 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
 {
 	struct vnode *vp;
 	struct nameidata nd;
 	char *buf;
 	unsigned long ndflags;
 	int error;
 
 	if (req->newptr == NULL)
 		return (EINVAL);
 	if (req->newlen >= PATH_MAX)
 		return (E2BIG);
 
 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
 	error = SYSCTL_IN(req, buf, req->newlen);
 	if (error != 0)
 		goto out;
 
 	buf[req->newlen] = '\0';
 
 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1 | SAVENAME;
 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf, curthread);
 	if ((error = namei(&nd)) != 0)
 		goto out;
 	vp = nd.ni_vp;
 
 	if (VN_IS_DOOMED(vp)) {
 		/*
 		 * This vnode is being recycled.  Return != 0 to let the caller
 		 * know that the sysctl had no effect.  Return EAGAIN because a
 		 * subsequent call will likely succeed (since namei will create
 		 * a new vnode if necessary)
 		 */
 		error = EAGAIN;
 		goto putvnode;
 	}
 
 	counter_u64_add(recycles_count, 1);
 	vgone(vp);
 putvnode:
 	NDFREE(&nd, 0);
 out:
 	free(buf, M_TEMP);
 	return (error);
 }
 
 static int
 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
 {
 	struct thread *td = curthread;
 	struct vnode *vp;
 	struct file *fp;
 	int error;
 	int fd;
 
 	if (req->newptr == NULL)
 		return (EBADF);
 
         error = sysctl_handle_int(oidp, &fd, 0, req);
         if (error != 0)
                 return (error);
 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
 	if (error != 0)
 		return (error);
 	vp = fp->f_vnode;
 
 	error = vn_lock(vp, LK_EXCLUSIVE);
 	if (error != 0)
 		goto drop;
 
 	counter_u64_add(recycles_count, 1);
 	vgone(vp);
 	VOP_UNLOCK(vp);
 drop:
 	fdrop(fp, td);
 	return (error);
 }
 
 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
     sysctl_ftry_reclaim_vnode, "I",
     "Try to reclaim a vnode by its file descriptor");
 
 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
 static int vnsz2log;
 
 /*
  * Support for the bufobj clean & dirty pctrie.
  */
 static void *
 buf_trie_alloc(struct pctrie *ptree)
 {
 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
 }
 
 static void
 buf_trie_free(struct pctrie *ptree, void *node)
 {
 	uma_zfree_smr(buf_trie_zone, node);
 }
 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
     buf_trie_smr);
 
 /*
  * Initialize the vnode management data structures.
  *
  * Reevaluate the following cap on the number of vnodes after the physical
  * memory size exceeds 512GB.  In the limit, as the physical memory size
  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
  */
 #ifndef	MAXVNODES_MAX
 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
 #endif
 
 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
 
 static struct vnode *
 vn_alloc_marker(struct mount *mp)
 {
 	struct vnode *vp;
 
 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
 	vp->v_type = VMARKER;
 	vp->v_mount = mp;
 
 	return (vp);
 }
 
 static void
 vn_free_marker(struct vnode *vp)
 {
 
 	MPASS(vp->v_type == VMARKER);
 	free(vp, M_VNODE_MARKER);
 }
 
 #ifdef KASAN
 static int
 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
 {
 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
 	return (0);
 }
 
 static void
 vnode_dtor(void *mem, int size, void *arg __unused)
 {
 	size_t end1, end2, off1, off2;
 
 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
 	    offsetof(struct vnode, v_dbatchcpu),
 	    "KASAN marks require updating");
 
 	off1 = offsetof(struct vnode, v_vnodelist);
 	off2 = offsetof(struct vnode, v_dbatchcpu);
 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
 
 	/*
 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
 	 * after the vnode has been freed.  Try to get some KASAN coverage by
 	 * marking everything except those two fields as invalid.  Because
 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
 	 * the same 8-byte aligned word must also be marked valid.
 	 */
 
 	/* Handle the area from the start until v_vnodelist... */
 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
 
 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
 	if (off2 > off1)
 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
 		    off2 - off1, KASAN_UMA_FREED);
 
 	/* ... and finally the area from v_dbatchcpu to the end. */
 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
 	    KASAN_UMA_FREED);
 }
 #endif /* KASAN */
 
 /*
  * Initialize a vnode as it first enters the zone.
  */
 static int
 vnode_init(void *mem, int size, int flags)
 {
 	struct vnode *vp;
 
 	vp = mem;
 	bzero(vp, size);
 	/*
 	 * Setup locks.
 	 */
 	vp->v_vnlock = &vp->v_lock;
 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
 	/*
 	 * By default, don't allow shared locks unless filesystems opt-in.
 	 */
 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
 	    LK_NOSHARE | LK_IS_VNODE);
 	/*
 	 * Initialize bufobj.
 	 */
 	bufobj_init(&vp->v_bufobj, vp);
 	/*
 	 * Initialize namecache.
 	 */
 	cache_vnode_init(vp);
 	/*
 	 * Initialize rangelocks.
 	 */
 	rangelock_init(&vp->v_rl);
 
 	vp->v_dbatchcpu = NOCPU;
 
 	/*
 	 * Check vhold_recycle_free for an explanation.
 	 */
 	vp->v_holdcnt = VHOLD_NO_SMR;
 	vp->v_type = VNON;
 	mtx_lock(&vnode_list_mtx);
 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
 	mtx_unlock(&vnode_list_mtx);
 	return (0);
 }
 
 /*
  * Free a vnode when it is cleared from the zone.
  */
 static void
 vnode_fini(void *mem, int size)
 {
 	struct vnode *vp;
 	struct bufobj *bo;
 
 	vp = mem;
 	vdbatch_dequeue(vp);
 	mtx_lock(&vnode_list_mtx);
 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
 	mtx_unlock(&vnode_list_mtx);
 	rangelock_destroy(&vp->v_rl);
 	lockdestroy(vp->v_vnlock);
 	mtx_destroy(&vp->v_interlock);
 	bo = &vp->v_bufobj;
 	rw_destroy(BO_LOCKPTR(bo));
 
 	kasan_mark(mem, size, size, 0);
 }
 
 /*
  * Provide the size of NFS nclnode and NFS fh for calculation of the
  * vnode memory consumption.  The size is specified directly to
  * eliminate dependency on NFS-private header.
  *
  * Other filesystems may use bigger or smaller (like UFS and ZFS)
  * private inode data, but the NFS-based estimation is ample enough.
  * Still, we care about differences in the size between 64- and 32-bit
  * platforms.
  *
  * Namecache structure size is heuristically
  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
  */
 #ifdef _LP64
 #define	NFS_NCLNODE_SZ	(528 + 64)
 #define	NC_SZ		148
 #else
 #define	NFS_NCLNODE_SZ	(360 + 32)
 #define	NC_SZ		92
 #endif
 
 static void
 vntblinit(void *dummy __unused)
 {
 	struct vdbatch *vd;
 	uma_ctor ctor;
 	uma_dtor dtor;
 	int cpu, physvnodes, virtvnodes;
 	u_int i;
 
 	/*
 	 * Desiredvnodes is a function of the physical memory size and the
 	 * kernel's heap size.  Generally speaking, it scales with the
 	 * physical memory size.  The ratio of desiredvnodes to the physical
 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
 	 * Thereafter, the
 	 * marginal ratio of desiredvnodes to the physical memory size is
 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
 	 * size.  The memory required by desiredvnodes vnodes and vm objects
 	 * must not exceed 1/10th of the kernel's heap size.
 	 */
 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
 	desiredvnodes = min(physvnodes, virtvnodes);
 	if (desiredvnodes > MAXVNODES_MAX) {
 		if (bootverbose)
 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
 			    desiredvnodes, MAXVNODES_MAX);
 		desiredvnodes = MAXVNODES_MAX;
 	}
 	wantfreevnodes = desiredvnodes / 4;
 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
 	TAILQ_INIT(&vnode_list);
 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
 	/*
 	 * The lock is taken to appease WITNESS.
 	 */
 	mtx_lock(&vnode_list_mtx);
 	vnlru_recalc();
 	mtx_unlock(&vnode_list_mtx);
 	vnode_list_free_marker = vn_alloc_marker(NULL);
 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
 
 #ifdef KASAN
 	ctor = vnode_ctor;
 	dtor = vnode_dtor;
 #else
 	ctor = NULL;
 	dtor = NULL;
 #endif
 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
 	uma_zone_set_smr(vnode_zone, vfs_smr);
 
 	/*
 	 * Preallocate enough nodes to support one-per buf so that
 	 * we can not fail an insert.  reassignbuf() callers can not
 	 * tolerate the insertion failure.
 	 */
 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR, 
 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
 	uma_prealloc(buf_trie_zone, nbuf);
 
 	vnodes_created = counter_u64_alloc(M_WAITOK);
 	recycles_count = counter_u64_alloc(M_WAITOK);
 	recycles_free_count = counter_u64_alloc(M_WAITOK);
 	vnode_skipped_requeues = counter_u64_alloc(M_WAITOK);
 
 	/*
 	 * Initialize the filesystem syncer.
 	 */
 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
 	    &syncer_mask);
 	syncer_maxdelay = syncer_mask + 1;
 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
 	cv_init(&sync_wakeup, "syncer");
 	for (i = 1; i <= sizeof(struct vnode); i <<= 1)
 		vnsz2log++;
 	vnsz2log--;
 
 	CPU_FOREACH(cpu) {
 		vd = DPCPU_ID_PTR((cpu), vd);
 		bzero(vd, sizeof(*vd));
 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
 	}
 }
 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
 
 /*
  * Mark a mount point as busy. Used to synchronize access and to delay
  * unmounting. Eventually, mountlist_mtx is not released on failure.
  *
  * vfs_busy() is a custom lock, it can block the caller.
  * vfs_busy() only sleeps if the unmount is active on the mount point.
  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
  * vnode belonging to mp.
  *
  * Lookup uses vfs_busy() to traverse mount points.
  * root fs			var fs
  * / vnode lock		A	/ vnode lock (/var)		D
  * /var vnode lock	B	/log vnode lock(/var/log)	E
  * vfs_busy lock	C	vfs_busy lock			F
  *
  * Within each file system, the lock order is C->A->B and F->D->E.
  *
  * When traversing across mounts, the system follows that lock order:
  *
  *        C->A->B
  *              |
  *              +->F->D->E
  *
  * The lookup() process for namei("/var") illustrates the process:
  *  VOP_LOOKUP() obtains B while A is held
  *  vfs_busy() obtains a shared lock on F while A and B are held
  *  vput() releases lock on B
  *  vput() releases lock on A
  *  VFS_ROOT() obtains lock on D while shared lock on F is held
  *  vfs_unbusy() releases shared lock on F
  *  vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
  *    Attempt to lock A (instead of vp_crossmp) while D is held would
  *    violate the global order, causing deadlocks.
  *
  * dounmount() locks B while F is drained.
  */
 int
 vfs_busy(struct mount *mp, int flags)
 {
 	struct mount_pcpu *mpcpu;
 
 	MPASS((flags & ~MBF_MASK) == 0);
 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
 
 	if (vfs_op_thread_enter(mp, mpcpu)) {
 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
 		vfs_op_thread_exit(mp, mpcpu);
 		if (flags & MBF_MNTLSTLOCK)
 			mtx_unlock(&mountlist_mtx);
 		return (0);
 	}
 
 	MNT_ILOCK(mp);
 	vfs_assert_mount_counters(mp);
 	MNT_REF(mp);
 	/*
 	 * If mount point is currently being unmounted, sleep until the
 	 * mount point fate is decided.  If thread doing the unmounting fails,
 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
 	 * that this mount point has survived the unmount attempt and vfs_busy
 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
 	 * about to be really destroyed.  vfs_busy needs to release its
 	 * reference on the mount point in this case and return with ENOENT,
 	 * telling the caller that mount mount it tried to busy is no longer
 	 * valid.
 	 */
 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
 			MNT_REL(mp);
 			MNT_IUNLOCK(mp);
 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
 			    __func__);
 			return (ENOENT);
 		}
 		if (flags & MBF_MNTLSTLOCK)
 			mtx_unlock(&mountlist_mtx);
 		mp->mnt_kern_flag |= MNTK_MWAIT;
 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
 		if (flags & MBF_MNTLSTLOCK)
 			mtx_lock(&mountlist_mtx);
 		MNT_ILOCK(mp);
 	}
 	if (flags & MBF_MNTLSTLOCK)
 		mtx_unlock(&mountlist_mtx);
 	mp->mnt_lockref++;
 	MNT_IUNLOCK(mp);
 	return (0);
 }
 
 /*
  * Free a busy filesystem.
  */
 void
 vfs_unbusy(struct mount *mp)
 {
 	struct mount_pcpu *mpcpu;
 	int c;
 
 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
 
 	if (vfs_op_thread_enter(mp, mpcpu)) {
 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
 		vfs_op_thread_exit(mp, mpcpu);
 		return;
 	}
 
 	MNT_ILOCK(mp);
 	vfs_assert_mount_counters(mp);
 	MNT_REL(mp);
 	c = --mp->mnt_lockref;
 	if (mp->mnt_vfs_ops == 0) {
 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
 		MNT_IUNLOCK(mp);
 		return;
 	}
 	if (c < 0)
 		vfs_dump_mount_counters(mp);
 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
 		wakeup(&mp->mnt_lockref);
 	}
 	MNT_IUNLOCK(mp);
 }
 
 /*
  * Lookup a mount point by filesystem identifier.
  */
 struct mount *
 vfs_getvfs(fsid_t *fsid)
 {
 	struct mount *mp;
 
 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
 	mtx_lock(&mountlist_mtx);
 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
 			vfs_ref(mp);
 			mtx_unlock(&mountlist_mtx);
 			return (mp);
 		}
 	}
 	mtx_unlock(&mountlist_mtx);
 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
 	return ((struct mount *) 0);
 }
 
 /*
  * Lookup a mount point by filesystem identifier, busying it before
  * returning.
  *
  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
  * cache for popular filesystem identifiers.  The cache is lockess, using
  * the fact that struct mount's are never freed.  In worst case we may
  * get pointer to unmounted or even different filesystem, so we have to
  * check what we got, and go slow way if so.
  */
 struct mount *
 vfs_busyfs(fsid_t *fsid)
 {
 #define	FSID_CACHE_SIZE	256
 	typedef struct mount * volatile vmp_t;
 	static vmp_t cache[FSID_CACHE_SIZE];
 	struct mount *mp;
 	int error;
 	uint32_t hash;
 
 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
 	hash = fsid->val[0] ^ fsid->val[1];
 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
 	mp = cache[hash];
 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
 		goto slow;
 	if (vfs_busy(mp, 0) != 0) {
 		cache[hash] = NULL;
 		goto slow;
 	}
 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
 		return (mp);
 	else
 	    vfs_unbusy(mp);
 
 slow:
 	mtx_lock(&mountlist_mtx);
 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
 			if (error) {
 				cache[hash] = NULL;
 				mtx_unlock(&mountlist_mtx);
 				return (NULL);
 			}
 			cache[hash] = mp;
 			return (mp);
 		}
 	}
 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
 	mtx_unlock(&mountlist_mtx);
 	return ((struct mount *) 0);
 }
 
 /*
  * Check if a user can access privileged mount options.
  */
 int
 vfs_suser(struct mount *mp, struct thread *td)
 {
 	int error;
 
 	if (jailed(td->td_ucred)) {
 		/*
 		 * If the jail of the calling thread lacks permission for
 		 * this type of file system, deny immediately.
 		 */
 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
 			return (EPERM);
 
 		/*
 		 * If the file system was mounted outside the jail of the
 		 * calling thread, deny immediately.
 		 */
 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
 			return (EPERM);
 	}
 
 	/*
 	 * If file system supports delegated administration, we don't check
 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
 	 * by the file system itself.
 	 * If this is not the user that did original mount, we check for
 	 * the PRIV_VFS_MOUNT_OWNER privilege.
 	 */
 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
 			return (error);
 	}
 	return (0);
 }
 
 /*
  * Get a new unique fsid.  Try to make its val[0] unique, since this value
  * will be used to create fake device numbers for stat().  Also try (but
  * not so hard) make its val[0] unique mod 2^16, since some emulators only
  * support 16-bit device numbers.  We end up with unique val[0]'s for the
  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
  *
  * Keep in mind that several mounts may be running in parallel.  Starting
  * the search one past where the previous search terminated is both a
  * micro-optimization and a defense against returning the same fsid to
  * different mounts.
  */
 void
 vfs_getnewfsid(struct mount *mp)
 {
 	static uint16_t mntid_base;
 	struct mount *nmp;
 	fsid_t tfsid;
 	int mtype;
 
 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
 	mtx_lock(&mntid_mtx);
 	mtype = mp->mnt_vfc->vfc_typenum;
 	tfsid.val[1] = mtype;
 	mtype = (mtype & 0xFF) << 24;
 	for (;;) {
 		tfsid.val[0] = makedev(255,
 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
 		mntid_base++;
 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
 			break;
 		vfs_rel(nmp);
 	}
 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
 	mtx_unlock(&mntid_mtx);
 }
 
 /*
  * Knob to control the precision of file timestamps:
  *
  *   0 = seconds only; nanoseconds zeroed.
  *   1 = seconds and nanoseconds, accurate within 1/HZ.
  *   2 = seconds and nanoseconds, truncated to microseconds.
  * >=3 = seconds and nanoseconds, maximum precision.
  */
 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
 
 static int timestamp_precision = TSP_USEC;
 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
     "3+: sec + ns (max. precision))");
 
 /*
  * Get a current timestamp.
  */
 void
 vfs_timestamp(struct timespec *tsp)
 {
 	struct timeval tv;
 
 	switch (timestamp_precision) {
 	case TSP_SEC:
 		tsp->tv_sec = time_second;
 		tsp->tv_nsec = 0;
 		break;
 	case TSP_HZ:
 		getnanotime(tsp);
 		break;
 	case TSP_USEC:
 		microtime(&tv);
 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
 		break;
 	case TSP_NSEC:
 	default:
 		nanotime(tsp);
 		break;
 	}
 }
 
 /*
  * Set vnode attributes to VNOVAL
  */
 void
 vattr_null(struct vattr *vap)
 {
 
 	vap->va_type = VNON;
 	vap->va_size = VNOVAL;
 	vap->va_bytes = VNOVAL;
 	vap->va_mode = VNOVAL;
 	vap->va_nlink = VNOVAL;
 	vap->va_uid = VNOVAL;
 	vap->va_gid = VNOVAL;
 	vap->va_fsid = VNOVAL;
 	vap->va_fileid = VNOVAL;
 	vap->va_blocksize = VNOVAL;
 	vap->va_rdev = VNOVAL;
 	vap->va_atime.tv_sec = VNOVAL;
 	vap->va_atime.tv_nsec = VNOVAL;
 	vap->va_mtime.tv_sec = VNOVAL;
 	vap->va_mtime.tv_nsec = VNOVAL;
 	vap->va_ctime.tv_sec = VNOVAL;
 	vap->va_ctime.tv_nsec = VNOVAL;
 	vap->va_birthtime.tv_sec = VNOVAL;
 	vap->va_birthtime.tv_nsec = VNOVAL;
 	vap->va_flags = VNOVAL;
 	vap->va_gen = VNOVAL;
 	vap->va_vaflags = 0;
 }
 
 /*
  * Try to reduce the total number of vnodes.
  *
  * This routine (and its user) are buggy in at least the following ways:
  * - all parameters were picked years ago when RAM sizes were significantly
  *   smaller
  * - it can pick vnodes based on pages used by the vm object, but filesystems
  *   like ZFS don't use it making the pick broken
  * - since ZFS has its own aging policy it gets partially combated by this one
  * - a dedicated method should be provided for filesystems to let them decide
  *   whether the vnode should be recycled
  *
  * This routine is called when we have too many vnodes.  It attempts
  * to free <count> vnodes and will potentially free vnodes that still
  * have VM backing store (VM backing store is typically the cause
  * of a vnode blowout so we want to do this).  Therefore, this operation
  * is not considered cheap.
  *
  * A number of conditions may prevent a vnode from being reclaimed.
  * the buffer cache may have references on the vnode, a directory
  * vnode may still have references due to the namei cache representing
  * underlying files, or the vnode may be in active use.   It is not
  * desirable to reuse such vnodes.  These conditions may cause the
  * number of vnodes to reach some minimum value regardless of what
  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
  *
  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
  * 			 entries if this argument is strue
  * @param trigger	 Only reclaim vnodes with fewer than this many resident
  *			 pages.
  * @param target	 How many vnodes to reclaim.
  * @return		 The number of vnodes that were reclaimed.
  */
 static int
 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
 {
 	struct vnode *vp, *mvp;
 	struct mount *mp;
 	struct vm_object *object;
 	u_long done;
 	bool retried;
 
 	mtx_assert(&vnode_list_mtx, MA_OWNED);
 
 	retried = false;
 	done = 0;
 
 	mvp = vnode_list_reclaim_marker;
 restart:
 	vp = mvp;
 	while (done < target) {
 		vp = TAILQ_NEXT(vp, v_vnodelist);
 		if (__predict_false(vp == NULL))
 			break;
 
 		if (__predict_false(vp->v_type == VMARKER))
 			continue;
 
 		/*
 		 * If it's been deconstructed already, it's still
 		 * referenced, or it exceeds the trigger, skip it.
 		 * Also skip free vnodes.  We are trying to make space
 		 * to expand the free list, not reduce it.
 		 */
 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
 			goto next_iter;
 
 		if (vp->v_type == VBAD || vp->v_type == VNON)
 			goto next_iter;
 
 		object = atomic_load_ptr(&vp->v_object);
 		if (object == NULL || object->resident_page_count > trigger) {
 			goto next_iter;
 		}
 
 		/*
 		 * Handle races against vnode allocation. Filesystems lock the
 		 * vnode some time after it gets returned from getnewvnode,
 		 * despite type and hold count being manipulated earlier.
 		 * Resorting to checking v_mount restores guarantees present
 		 * before the global list was reworked to contain all vnodes.
 		 */
 		if (!VI_TRYLOCK(vp))
 			goto next_iter;
 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
 			VI_UNLOCK(vp);
 			goto next_iter;
 		}
 		if (vp->v_mount == NULL) {
 			VI_UNLOCK(vp);
 			goto next_iter;
 		}
 		vholdl(vp);
 		VI_UNLOCK(vp);
 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
 		mtx_unlock(&vnode_list_mtx);
 
 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
 			vdrop_recycle(vp);
 			goto next_iter_unlocked;
 		}
 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
 			vdrop_recycle(vp);
 			vn_finished_write(mp);
 			goto next_iter_unlocked;
 		}
 
 		VI_LOCK(vp);
 		if (vp->v_usecount > 0 ||
 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
 		    vp->v_object->resident_page_count > trigger)) {
 			VOP_UNLOCK(vp);
 			vdropl_recycle(vp);
 			vn_finished_write(mp);
 			goto next_iter_unlocked;
 		}
 		counter_u64_add(recycles_count, 1);
 		vgonel(vp);
 		VOP_UNLOCK(vp);
 		vdropl_recycle(vp);
 		vn_finished_write(mp);
 		done++;
 next_iter_unlocked:
 		maybe_yield();
 		mtx_lock(&vnode_list_mtx);
 		goto restart;
 next_iter:
 		MPASS(vp->v_type != VMARKER);
 		if (!should_yield())
 			continue;
 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
 		mtx_unlock(&vnode_list_mtx);
 		kern_yield(PRI_USER);
 		mtx_lock(&vnode_list_mtx);
 		goto restart;
 	}
 	if (done == 0 && !retried) {
 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
 		retried = true;
 		goto restart;
 	}
 	return (done);
 }
 
 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
     0,
     "limit on vnode free requests per call to the vnlru_free routine");
 
 /*
  * Attempt to reduce the free list by the requested amount.
  */
 static int
 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp)
 {
 	struct vnode *vp;
 	struct mount *mp;
 	int ocount;
 	bool retried;
 
 	mtx_assert(&vnode_list_mtx, MA_OWNED);
 	if (count > max_vnlru_free)
 		count = max_vnlru_free;
 	if (count == 0) {
 		mtx_unlock(&vnode_list_mtx);
 		return (0);
 	}
 	ocount = count;
 	retried = false;
 	vp = mvp;
 	for (;;) {
 		vp = TAILQ_NEXT(vp, v_vnodelist);
 		if (__predict_false(vp == NULL)) {
 			/*
 			 * The free vnode marker can be past eligible vnodes:
 			 * 1. if vdbatch_process trylock failed
 			 * 2. if vtryrecycle failed
 			 *
 			 * If so, start the scan from scratch.
 			 */
 			if (!retried && vnlru_read_freevnodes() > 0) {
 				TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
 				TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
 				vp = mvp;
 				retried = true;
 				continue;
 			}
 
 			/*
 			 * Give up
 			 */
 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
 			mtx_unlock(&vnode_list_mtx);
 			break;
 		}
 		if (__predict_false(vp->v_type == VMARKER))
 			continue;
 		if (vp->v_holdcnt > 0)
 			continue;
 		/*
 		 * Don't recycle if our vnode is from different type
 		 * of mount point.  Note that mp is type-safe, the
 		 * check does not reach unmapped address even if
 		 * vnode is reclaimed.
 		 */
 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
 		    mp->mnt_op != mnt_op) {
 			continue;
 		}
 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
 			continue;
 		}
 		if (!vhold_recycle_free(vp))
 			continue;
 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
 		mtx_unlock(&vnode_list_mtx);
 		/*
 		 * FIXME: ignores the return value, meaning it may be nothing
 		 * got recycled but it claims otherwise to the caller.
 		 *
 		 * Originally the value started being ignored in 2005 with
 		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
 		 *
 		 * Respecting the value can run into significant stalls if most
 		 * vnodes belong to one file system and it has writes
 		 * suspended.  In presence of many threads and millions of
 		 * vnodes they keep contending on the vnode_list_mtx lock only
 		 * to find vnodes they can't recycle.
 		 *
 		 * The solution would be to pre-check if the vnode is likely to
 		 * be recycle-able, but it needs to happen with the
 		 * vnode_list_mtx lock held. This runs into a problem where
 		 * VOP_GETWRITEMOUNT (currently needed to find out about if
 		 * writes are frozen) can take locks which LOR against it.
 		 *
 		 * Check nullfs for one example (null_getwritemount).
 		 */
 		vtryrecycle(vp);
 		count--;
 		if (count == 0) {
 			break;
 		}
 		mtx_lock(&vnode_list_mtx);
 		vp = mvp;
 	}
 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
 	return (ocount - count);
 }
 
 /*
  * XXX: returns without vnode_list_mtx locked!
  */
 static int
 vnlru_free_locked(int count)
 {
 	int ret;
 
 	mtx_assert(&vnode_list_mtx, MA_OWNED);
 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker);
 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
 	return (ret);
 }
 
 static int
 vnlru_free(int count)
 {
 
 	mtx_lock(&vnode_list_mtx);
 	return (vnlru_free_locked(count));
 }
 
 void
 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
 {
 
 	MPASS(mnt_op != NULL);
 	MPASS(mvp != NULL);
 	VNPASS(mvp->v_type == VMARKER, mvp);
 	mtx_lock(&vnode_list_mtx);
 	vnlru_free_impl(count, mnt_op, mvp);
 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
 }
 
 /*
  * Temporary binary compat, don't use. Call vnlru_free_vfsops instead.
  */
 void
 vnlru_free(int count, struct vfsops *mnt_op)
 {
 	struct vnode *mvp;
 
 	if (count == 0)
 		return;
 	mtx_lock(&vnode_list_mtx);
 	mvp = vnode_list_free_marker;
 	if (vnlru_free_impl(count, mnt_op, mvp) == 0) {
 		/*
 		 * It is possible the marker was moved over eligible vnodes by
 		 * callers which filtered by different ops. If so, start from
 		 * scratch.
 		 */
 		if (vnlru_read_freevnodes() > 0) {
 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
 			TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
 		}
 		vnlru_free_impl(count, mnt_op, mvp);
 	}
 	mtx_unlock(&vnode_list_mtx);
 }
 
 struct vnode *
 vnlru_alloc_marker(void)
 {
 	struct vnode *mvp;
 
 	mvp = vn_alloc_marker(NULL);
 	mtx_lock(&vnode_list_mtx);
 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
 	mtx_unlock(&vnode_list_mtx);
 	return (mvp);
 }
 
 void
 vnlru_free_marker(struct vnode *mvp)
 {
 	mtx_lock(&vnode_list_mtx);
 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
 	mtx_unlock(&vnode_list_mtx);
 	vn_free_marker(mvp);
 }
 
 static void
 vnlru_recalc(void)
 {
 
 	mtx_assert(&vnode_list_mtx, MA_OWNED);
 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
 	vlowat = vhiwat / 2;
 }
 
 /*
  * Attempt to recycle vnodes in a context that is always safe to block.
  * Calling vlrurecycle() from the bowels of filesystem code has some
  * interesting deadlock problems.
  */
 static struct proc *vnlruproc;
 static int vnlruproc_sig;
 static u_long vnlruproc_kicks;
 
 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0,
     "Number of times vnlru got woken up due to vnode shortage");
 
+#define VNLRU_COUNT_SLOP 100
+
 /*
  * The main freevnodes counter is only updated when a counter local to CPU
  * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally
  * walked to compute a more accurate total.
  *
  * Note: the actual value at any given moment can still exceed slop, but it
  * should not be by significant margin in practice.
  */
 #define VNLRU_FREEVNODES_SLOP 126
 
 static void __noinline
 vfs_freevnodes_rollup(int8_t *lfreevnodes)
 {
 
 	atomic_add_long(&freevnodes, *lfreevnodes);
 	*lfreevnodes = 0;
 	critical_exit();
 }
 
 static __inline void
 vfs_freevnodes_inc(void)
 {
 	int8_t *lfreevnodes;
 
 	critical_enter();
 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
 	(*lfreevnodes)++;
 	if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
 		vfs_freevnodes_rollup(lfreevnodes);
 	else
 		critical_exit();
 }
 
 static __inline void
 vfs_freevnodes_dec(void)
 {
 	int8_t *lfreevnodes;
 
 	critical_enter();
 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
 	(*lfreevnodes)--;
 	if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
 		vfs_freevnodes_rollup(lfreevnodes);
 	else
 		critical_exit();
 }
 
 static u_long
 vnlru_read_freevnodes(void)
 {
 	long slop, rfreevnodes, rfreevnodes_old;
 	int cpu;
 
 	rfreevnodes = atomic_load_long(&freevnodes);
 	rfreevnodes_old = atomic_load_long(&freevnodes_old);
 
 	if (rfreevnodes > rfreevnodes_old)
 		slop = rfreevnodes - rfreevnodes_old;
 	else
 		slop = rfreevnodes_old - rfreevnodes;
 	if (slop < VNLRU_FREEVNODES_SLOP)
 		return (rfreevnodes >= 0 ? rfreevnodes : 0);
 	CPU_FOREACH(cpu) {
 		rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
 	}
 	atomic_store_long(&freevnodes_old, rfreevnodes);
 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
 }
 
 static bool
 vnlru_under(u_long rnumvnodes, u_long limit)
 {
 	u_long rfreevnodes, space;
 
 	if (__predict_false(rnumvnodes > desiredvnodes))
 		return (true);
 
 	space = desiredvnodes - rnumvnodes;
 	if (space < limit) {
 		rfreevnodes = vnlru_read_freevnodes();
 		if (rfreevnodes > wantfreevnodes)
 			space += rfreevnodes - wantfreevnodes;
 	}
 	return (space < limit);
 }
 
 static void
 vnlru_kick_locked(void)
 {
 
 	mtx_assert(&vnode_list_mtx, MA_OWNED);
 	if (vnlruproc_sig == 0) {
 		vnlruproc_sig = 1;
 		vnlruproc_kicks++;
 		wakeup(vnlruproc);
 	}
 }
 
 static void
 vnlru_kick_cond(void)
 {
 
 	if (vnlru_read_freevnodes() > wantfreevnodes)
 		return;
 
 	if (vnlruproc_sig)
 		return;
 	mtx_lock(&vnode_list_mtx);
 	vnlru_kick_locked();
 	mtx_unlock(&vnode_list_mtx);
 }
 
 static void
 vnlru_proc_sleep(void)
 {
 
 	if (vnlruproc_sig) {
 		vnlruproc_sig = 0;
 		wakeup(&vnlruproc_sig);
 	}
 	msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz);
 }
 
 /*
  * A lighter version of the machinery below.
  *
  * Tries to reach goals only by recycling free vnodes and does not invoke
  * uma_reclaim(UMA_RECLAIM_DRAIN).
  *
  * This works around pathological behavior in vnlru in presence of tons of free
  * vnodes, but without having to rewrite the machinery at this time. Said
  * behavior boils down to continuously trying to reclaim all kinds of vnodes
  * (cycling through all levels of "force") when the count is transiently above
  * limit. This happens a lot when all vnodes are used up and vn_alloc
  * speculatively increments the counter.
  *
  * Sample testcase: vnode limit 8388608, 20 separate directory trees each with
  * 1 million files in total and 20 find(1) processes stating them in parallel
  * (one per each tree).
  *
  * On a kernel with only stock machinery this needs anywhere between 60 and 120
  * seconds to execute (time varies *wildly* between runs). With the workaround
- * it consistently stays around 20 seconds.
+ * it consistently stays around 20 seconds [it got further down with later
+ * changes].
  *
  * That is to say the entire thing needs a fundamental redesign (most notably
  * to accommodate faster recycling), the above only tries to get it ouf the way.
  *
  * Return values are:
  * -1 -- fallback to regular vnlru loop
  *  0 -- do nothing, go to sleep
  * >0 -- recycle this many vnodes
  */
 static long
 vnlru_proc_light_pick(void)
 {
 	u_long rnumvnodes, rfreevnodes;
 
 	if (vstir || vnlruproc_sig == 1)
 		return (-1);
 
 	rnumvnodes = atomic_load_long(&numvnodes);
 	rfreevnodes = vnlru_read_freevnodes();
 
 	/*
 	 * vnode limit might have changed and now we may be at a significant
 	 * excess. Bail if we can't sort it out with free vnodes.
 	 *
 	 * Due to atomic updates the count can legitimately go above
 	 * the limit for a short period, don't bother doing anything in
 	 * that case.
 	 */
-	if (rnumvnodes > desiredvnodes + 10) {
+	if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP + 10) {
 		if (rnumvnodes - rfreevnodes >= desiredvnodes ||
 		    rfreevnodes <= wantfreevnodes) {
 			return (-1);
 		}
 
 		return (rnumvnodes - desiredvnodes);
 	}
 
 	/*
 	 * Don't try to reach wantfreevnodes target if there are too few vnodes
 	 * to begin with.
 	 */
 	if (rnumvnodes < wantfreevnodes) {
 		return (0);
 	}
 
 	if (rfreevnodes < wantfreevnodes) {
 		return (-1);
 	}
 
 	return (0);
 }
 
 static bool
 vnlru_proc_light(void)
 {
 	long freecount;
 
 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
 
 	freecount = vnlru_proc_light_pick();
 	if (freecount == -1)
 		return (false);
 
 	if (freecount != 0) {
 		vnlru_free(freecount);
 	}
 
 	mtx_lock(&vnode_list_mtx);
 	vnlru_proc_sleep();
 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
 	return (true);
 }
 
 static void
 vnlru_proc(void)
 {
 	u_long rnumvnodes, rfreevnodes, target;
 	unsigned long onumvnodes;
 	int done, force, trigger, usevnodes;
 	bool reclaim_nc_src, want_reread;
 
 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
 	    SHUTDOWN_PRI_FIRST);
 
 	force = 0;
 	want_reread = false;
 	for (;;) {
 		kproc_suspend_check(vnlruproc);
 
 		if (force == 0 && vnlru_proc_light())
 			continue;
 
 		mtx_lock(&vnode_list_mtx);
 		rnumvnodes = atomic_load_long(&numvnodes);
 
 		if (want_reread) {
 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
 			want_reread = false;
 		}
 
 		/*
 		 * If numvnodes is too large (due to desiredvnodes being
 		 * adjusted using its sysctl, or emergency growth), first
 		 * try to reduce it by discarding from the free list.
 		 */
 		if (rnumvnodes > desiredvnodes + 10) {
 			vnlru_free_locked(rnumvnodes - desiredvnodes);
 			mtx_lock(&vnode_list_mtx);
 			rnumvnodes = atomic_load_long(&numvnodes);
 		}
 		/*
 		 * Sleep if the vnode cache is in a good state.  This is
 		 * when it is not over-full and has space for about a 4%
 		 * or 9% expansion (by growing its size or inexcessively
 		 * reducing its free list).  Otherwise, try to reclaim
 		 * space for a 10% expansion.
 		 */
 		if (vstir && force == 0) {
 			force = 1;
 			vstir = false;
 		}
 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
 			vnlru_proc_sleep();
 			continue;
 		}
 		rfreevnodes = vnlru_read_freevnodes();
 
 		onumvnodes = rnumvnodes;
 		/*
 		 * Calculate parameters for recycling.  These are the same
 		 * throughout the loop to give some semblance of fairness.
 		 * The trigger point is to avoid recycling vnodes with lots
 		 * of resident pages.  We aren't trying to free memory; we
 		 * are trying to recycle or at least free vnodes.
 		 */
 		if (rnumvnodes <= desiredvnodes)
 			usevnodes = rnumvnodes - rfreevnodes;
 		else
 			usevnodes = rnumvnodes;
 		if (usevnodes <= 0)
 			usevnodes = 1;
 		/*
 		 * The trigger value is chosen to give a conservatively
 		 * large value to ensure that it alone doesn't prevent
 		 * making progress.  The value can easily be so large that
 		 * it is effectively infinite in some congested and
 		 * misconfigured cases, and this is necessary.  Normally
 		 * it is about 8 to 100 (pages), which is quite large.
 		 */
 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
 		if (force < 2)
 			trigger = vsmalltrigger;
 		reclaim_nc_src = force >= 3;
 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
 		target = target / 10 + 1;
 		done = vlrureclaim(reclaim_nc_src, trigger, target);
 		mtx_unlock(&vnode_list_mtx);
 		/*
 		 * Total number of vnodes can transiently go slightly above the
 		 * limit (see vn_alloc_hard), no need to call uma_reclaim if
 		 * this happens.
 		 */
-		if (onumvnodes + 1000 > desiredvnodes && numvnodes <= desiredvnodes)
+		if (onumvnodes + VNLRU_COUNT_SLOP + 1000 > desiredvnodes &&
+		    numvnodes <= desiredvnodes)
 			uma_reclaim(UMA_RECLAIM_DRAIN);
 		if (done == 0) {
 			if (force == 0 || force == 1) {
 				force = 2;
 				continue;
 			}
 			if (force == 2) {
 				force = 3;
 				continue;
 			}
 			want_reread = true;
 			force = 0;
 			vnlru_nowhere++;
 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
 		} else {
 			want_reread = true;
 			kern_yield(PRI_USER);
 		}
 	}
 }
 
 static struct kproc_desc vnlru_kp = {
 	"vnlru",
 	vnlru_proc,
 	&vnlruproc
 };
 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
     &vnlru_kp);
 
 /*
  * Routines having to do with the management of the vnode table.
  */
 
 /*
  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
  * before we actually vgone().  This function must be called with the vnode
  * held to prevent the vnode from being returned to the free list midway
  * through vgone().
  */
 static int
 vtryrecycle(struct vnode *vp)
 {
 	struct mount *vnmp;
 
 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
 	VNASSERT(vp->v_holdcnt, vp,
 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
 	/*
 	 * This vnode may found and locked via some other list, if so we
 	 * can't recycle it yet.
 	 */
 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
 		CTR2(KTR_VFS,
 		    "%s: impossible to recycle, vp %p lock is already held",
 		    __func__, vp);
 		vdrop_recycle(vp);
 		return (EWOULDBLOCK);
 	}
 	/*
 	 * Don't recycle if its filesystem is being suspended.
 	 */
 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
 		VOP_UNLOCK(vp);
 		CTR2(KTR_VFS,
 		    "%s: impossible to recycle, cannot start the write for %p",
 		    __func__, vp);
 		vdrop_recycle(vp);
 		return (EBUSY);
 	}
 	/*
 	 * If we got this far, we need to acquire the interlock and see if
 	 * anyone picked up this vnode from another list.  If not, we will
 	 * mark it with DOOMED via vgonel() so that anyone who does find it
 	 * will skip over it.
 	 */
 	VI_LOCK(vp);
 	if (vp->v_usecount) {
 		VOP_UNLOCK(vp);
 		vdropl_recycle(vp);
 		vn_finished_write(vnmp);
 		CTR2(KTR_VFS,
 		    "%s: impossible to recycle, %p is already referenced",
 		    __func__, vp);
 		return (EBUSY);
 	}
 	if (!VN_IS_DOOMED(vp)) {
 		counter_u64_add(recycles_free_count, 1);
 		vgonel(vp);
 	}
 	VOP_UNLOCK(vp);
 	vdropl_recycle(vp);
 	vn_finished_write(vnmp);
 	return (0);
 }
 
 /*
  * Allocate a new vnode.
  *
  * The operation never returns an error. Returning an error was disabled
  * in r145385 (dated 2005) with the following comment:
  *
  * XXX Not all VFS_VGET/ffs_vget callers check returns.
  *
  * Given the age of this commit (almost 15 years at the time of writing this
  * comment) restoring the ability to fail requires a significant audit of
  * all codepaths.
  *
  * The routine can try to free a vnode or stall for up to 1 second waiting for
  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
  */
 static u_long vn_alloc_cyclecount;
 static u_long vn_alloc_sleeps;
 
 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0,
     "Number of times vnode allocation blocked waiting on vnlru");
 
 static struct vnode * __noinline
-vn_alloc_hard(struct mount *mp)
+vn_alloc_hard(struct mount *mp, u_long rnumvnodes, bool bumped)
 {
-	u_long rnumvnodes, rfreevnodes;
+	u_long rfreevnodes;
 
-	mtx_lock(&vnode_list_mtx);
-	rnumvnodes = atomic_load_long(&numvnodes);
-	if (rnumvnodes + 1 < desiredvnodes) {
-		vn_alloc_cyclecount = 0;
-		mtx_unlock(&vnode_list_mtx);
-		goto alloc;
+	if (bumped) {
+		if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP) {
+			atomic_subtract_long(&numvnodes, 1);
+			bumped = false;
+		}
 	}
 
+	mtx_lock(&vnode_list_mtx);
+
 	if (vn_alloc_cyclecount != 0) {
+		rnumvnodes = atomic_load_long(&numvnodes);
+		if (rnumvnodes + 1 < desiredvnodes) {
+			vn_alloc_cyclecount = 0;
+			mtx_unlock(&vnode_list_mtx);
+			goto alloc;
+		}
+
 		rfreevnodes = vnlru_read_freevnodes();
 		if (rfreevnodes < wantfreevnodes) {
 			if (vn_alloc_cyclecount++ >= rfreevnodes) {
 				vn_alloc_cyclecount = 0;
 				vstir = true;
 			}
 		} else {
 			vn_alloc_cyclecount = 0;
 		}
 	}
 
 	/*
 	 * Grow the vnode cache if it will not be above its target max
 	 * after growing.  Otherwise, if the free list is nonempty, try
 	 * to reclaim 1 item from it before growing the cache (possibly
 	 * above its target max if the reclamation failed or is delayed).
 	 * Otherwise, wait for some space.  In all cases, schedule
 	 * vnlru_proc() if we are getting short of space.  The watermarks
 	 * should be chosen so that we never wait or even reclaim from
 	 * the free list to below its target minimum.
 	 */
 	if (vnlru_free_locked(1) > 0)
 		goto alloc;
 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
 		/*
 		 * Wait for space for a new vnode.
 		 */
+		if (bumped) {
+			atomic_subtract_long(&numvnodes, 1);
+			bumped = false;
+		}
 		mtx_lock(&vnode_list_mtx);
 		vnlru_kick_locked();
 		vn_alloc_sleeps++;
 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
 		    vnlru_read_freevnodes() > 1)
 			vnlru_free_locked(1);
 		else
 			mtx_unlock(&vnode_list_mtx);
 	}
 alloc:
 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
-	atomic_add_long(&numvnodes, 1);
+	if (!bumped)
+		atomic_add_long(&numvnodes, 1);
 	vnlru_kick_cond();
 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
 }
 
 static struct vnode *
 vn_alloc(struct mount *mp)
 {
 	u_long rnumvnodes;
 
 	if (__predict_false(vn_alloc_cyclecount != 0))
-		return (vn_alloc_hard(mp));
+		return (vn_alloc_hard(mp, 0, false));
 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
 	if (__predict_false(vnlru_under(rnumvnodes, vlowat))) {
-		atomic_subtract_long(&numvnodes, 1);
-		return (vn_alloc_hard(mp));
+		return (vn_alloc_hard(mp, rnumvnodes, true));
 	}
 
 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
 }
 
 static void
 vn_free(struct vnode *vp)
 {
 
 	atomic_subtract_long(&numvnodes, 1);
 	uma_zfree_smr(vnode_zone, vp);
 }
 
 /*
  * Return the next vnode from the free list.
  */
 int
 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
     struct vnode **vpp)
 {
 	struct vnode *vp;
 	struct thread *td;
 	struct lock_object *lo;
 
 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
 
 	KASSERT(vops->registered,
 	    ("%s: not registered vector op %p\n", __func__, vops));
 
 	td = curthread;
 	if (td->td_vp_reserved != NULL) {
 		vp = td->td_vp_reserved;
 		td->td_vp_reserved = NULL;
 	} else {
 		vp = vn_alloc(mp);
 	}
 	counter_u64_add(vnodes_created, 1);
 	/*
 	 * Locks are given the generic name "vnode" when created.
 	 * Follow the historic practice of using the filesystem
 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
 	 *
 	 * Locks live in a witness group keyed on their name. Thus,
 	 * when a lock is renamed, it must also move from the witness
 	 * group of its old name to the witness group of its new name.
 	 *
 	 * The change only needs to be made when the vnode moves
 	 * from one filesystem type to another. We ensure that each
 	 * filesystem use a single static name pointer for its tag so
 	 * that we can compare pointers rather than doing a strcmp().
 	 */
 	lo = &vp->v_vnlock->lock_object;
 #ifdef WITNESS
 	if (lo->lo_name != tag) {
 #endif
 		lo->lo_name = tag;
 #ifdef WITNESS
 		WITNESS_DESTROY(lo);
 		WITNESS_INIT(lo, tag);
 	}
 #endif
 	/*
 	 * By default, don't allow shared locks unless filesystems opt-in.
 	 */
 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
 	/*
 	 * Finalize various vnode identity bits.
 	 */
 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
 	vp->v_type = VNON;
 	vp->v_op = vops;
 	vp->v_irflag = 0;
 	v_init_counters(vp);
 	vn_seqc_init(vp);
 	vp->v_bufobj.bo_ops = &buf_ops_bio;
 #ifdef DIAGNOSTIC
 	if (mp == NULL && vops != &dead_vnodeops)
 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
 #endif
 #ifdef MAC
 	mac_vnode_init(vp);
 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
 		mac_vnode_associate_singlelabel(mp, vp);
 #endif
 	if (mp != NULL) {
 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
 		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
 			vp->v_vflag |= VV_NOKNOTE;
 	}
 
 	/*
 	 * For the filesystems which do not use vfs_hash_insert(),
 	 * still initialize v_hash to have vfs_hash_index() useful.
 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
 	 * its own hashing.
 	 */
 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
 
 	*vpp = vp;
 	return (0);
 }
 
 void
 getnewvnode_reserve(void)
 {
 	struct thread *td;
 
 	td = curthread;
 	MPASS(td->td_vp_reserved == NULL);
 	td->td_vp_reserved = vn_alloc(NULL);
 }
 
 void
 getnewvnode_drop_reserve(void)
 {
 	struct thread *td;
 
 	td = curthread;
 	if (td->td_vp_reserved != NULL) {
 		vn_free(td->td_vp_reserved);
 		td->td_vp_reserved = NULL;
 	}
 }
 
 static void __noinline
 freevnode(struct vnode *vp)
 {
 	struct bufobj *bo;
 
 	/*
 	 * The vnode has been marked for destruction, so free it.
 	 *
 	 * The vnode will be returned to the zone where it will
 	 * normally remain until it is needed for another vnode. We
 	 * need to cleanup (or verify that the cleanup has already
 	 * been done) any residual data left from its current use
 	 * so as not to contaminate the freshly allocated vnode.
 	 */
 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
 	/*
 	 * Paired with vgone.
 	 */
 	vn_seqc_write_end_free(vp);
 
 	bo = &vp->v_bufobj;
 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
 	    ("clean blk trie not empty"));
 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
 	    ("dirty blk trie not empty"));
 	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
 	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
 	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
 	    ("Dangling rangelock waiters"));
 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
 	    ("Leaked inactivation"));
 	VI_UNLOCK(vp);
 #ifdef MAC
 	mac_vnode_destroy(vp);
 #endif
 	if (vp->v_pollinfo != NULL) {
 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 		destroy_vpollinfo(vp->v_pollinfo);
 		VOP_UNLOCK(vp);
 		vp->v_pollinfo = NULL;
 	}
 	vp->v_mountedhere = NULL;
 	vp->v_unpcb = NULL;
 	vp->v_rdev = NULL;
 	vp->v_fifoinfo = NULL;
 	vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
 	vp->v_iflag = 0;
 	vp->v_vflag = 0;
 	bo->bo_flag = 0;
 	vn_free(vp);
 }
 
 /*
  * Delete from old mount point vnode list, if on one.
  */
 static void
 delmntque(struct vnode *vp)
 {
 	struct mount *mp;
 
 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
 
 	mp = vp->v_mount;
 	if (mp == NULL)
 		return;
 	MNT_ILOCK(mp);
 	VI_LOCK(vp);
 	vp->v_mount = NULL;
 	VI_UNLOCK(vp);
 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
 		("bad mount point vnode list size"));
 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
 	mp->mnt_nvnodelistsize--;
 	MNT_REL(mp);
 	MNT_IUNLOCK(mp);
 }
 
 static void
 insmntque_stddtr(struct vnode *vp, void *dtr_arg)
 {
 
 	vp->v_data = NULL;
 	vp->v_op = &dead_vnodeops;
 	vgone(vp);
 	vput(vp);
 }
 
 /*
  * Insert into list of vnodes for the new mount point, if available.
  */
 int
 insmntque1(struct vnode *vp, struct mount *mp,
 	void (*dtr)(struct vnode *, void *), void *dtr_arg)
 {
 
 	KASSERT(vp->v_mount == NULL,
 		("insmntque: vnode already on per mount vnode list"));
 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
 	ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
 
 	/*
 	 * We acquire the vnode interlock early to ensure that the
 	 * vnode cannot be recycled by another process releasing a
 	 * holdcnt on it before we get it on both the vnode list
 	 * and the active vnode list. The mount mutex protects only
 	 * manipulation of the vnode list and the vnode freelist
 	 * mutex protects only manipulation of the active vnode list.
 	 * Hence the need to hold the vnode interlock throughout.
 	 */
 	MNT_ILOCK(mp);
 	VI_LOCK(vp);
 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
 	    mp->mnt_nvnodelistsize == 0)) &&
 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
 		VI_UNLOCK(vp);
 		MNT_IUNLOCK(mp);
 		if (dtr != NULL)
 			dtr(vp, dtr_arg);
 		return (EBUSY);
 	}
 	vp->v_mount = mp;
 	MNT_REF(mp);
 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
 		("neg mount point vnode list size"));
 	mp->mnt_nvnodelistsize++;
 	VI_UNLOCK(vp);
 	MNT_IUNLOCK(mp);
 	return (0);
 }
 
 int
 insmntque(struct vnode *vp, struct mount *mp)
 {
 
 	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
 }
 
 /*
  * Flush out and invalidate all buffers associated with a bufobj
  * Called with the underlying object locked.
  */
 int
 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
 {
 	int error;
 
 	BO_LOCK(bo);
 	if (flags & V_SAVE) {
 		error = bufobj_wwait(bo, slpflag, slptimeo);
 		if (error) {
 			BO_UNLOCK(bo);
 			return (error);
 		}
 		if (bo->bo_dirty.bv_cnt > 0) {
 			BO_UNLOCK(bo);
 			do {
 				error = BO_SYNC(bo, MNT_WAIT);
 			} while (error == ERELOOKUP);
 			if (error != 0)
 				return (error);
 			BO_LOCK(bo);
 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
 				BO_UNLOCK(bo);
 				return (EBUSY);
 			}
 		}
 	}
 	/*
 	 * If you alter this loop please notice that interlock is dropped and
 	 * reacquired in flushbuflist.  Special care is needed to ensure that
 	 * no race conditions occur from this.
 	 */
 	do {
 		error = flushbuflist(&bo->bo_clean,
 		    flags, bo, slpflag, slptimeo);
 		if (error == 0 && !(flags & V_CLEANONLY))
 			error = flushbuflist(&bo->bo_dirty,
 			    flags, bo, slpflag, slptimeo);
 		if (error != 0 && error != EAGAIN) {
 			BO_UNLOCK(bo);
 			return (error);
 		}
 	} while (error != 0);
 
 	/*
 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
 	 * have write I/O in-progress but if there is a VM object then the
 	 * VM object can also have read-I/O in-progress.
 	 */
 	do {
 		bufobj_wwait(bo, 0, 0);
 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
 			BO_UNLOCK(bo);
 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
 			BO_LOCK(bo);
 		}
 	} while (bo->bo_numoutput > 0);
 	BO_UNLOCK(bo);
 
 	/*
 	 * Destroy the copy in the VM cache, too.
 	 */
 	if (bo->bo_object != NULL &&
 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
 		VM_OBJECT_WLOCK(bo->bo_object);
 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
 		    OBJPR_CLEANONLY : 0);
 		VM_OBJECT_WUNLOCK(bo->bo_object);
 	}
 
 #ifdef INVARIANTS
 	BO_LOCK(bo);
 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
 	    bo->bo_clean.bv_cnt > 0))
 		panic("vinvalbuf: flush failed");
 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
 	    bo->bo_dirty.bv_cnt > 0)
 		panic("vinvalbuf: flush dirty failed");
 	BO_UNLOCK(bo);
 #endif
 	return (0);
 }
 
 /*
  * Flush out and invalidate all buffers associated with a vnode.
  * Called with the underlying object locked.
  */
 int
 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
 {
 
 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
 	if (vp->v_object != NULL && vp->v_object->handle != vp)
 		return (0);
 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
 }
 
 /*
  * Flush out buffers on the specified list.
  *
  */
 static int
 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
     int slptimeo)
 {
 	struct buf *bp, *nbp;
 	int retval, error;
 	daddr_t lblkno;
 	b_xflags_t xflags;
 
 	ASSERT_BO_WLOCKED(bo);
 
 	retval = 0;
 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
 		/*
 		 * If we are flushing both V_NORMAL and V_ALT buffers then
 		 * do not skip any buffers. If we are flushing only V_NORMAL
 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
 		 * flushing only V_ALT buffers then skip buffers not marked
 		 * as BX_ALTDATA.
 		 */
 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
 			continue;
 		}
 		if (nbp != NULL) {
 			lblkno = nbp->b_lblkno;
 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
 		}
 		retval = EAGAIN;
 		error = BUF_TIMELOCK(bp,
 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
 		    "flushbuf", slpflag, slptimeo);
 		if (error) {
 			BO_LOCK(bo);
 			return (error != ENOLCK ? error : EAGAIN);
 		}
 		KASSERT(bp->b_bufobj == bo,
 		    ("bp %p wrong b_bufobj %p should be %p",
 		    bp, bp->b_bufobj, bo));
 		/*
 		 * XXX Since there are no node locks for NFS, I
 		 * believe there is a slight chance that a delayed
 		 * write will occur while sleeping just above, so
 		 * check for it.
 		 */
 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
 		    (flags & V_SAVE)) {
 			bremfree(bp);
 			bp->b_flags |= B_ASYNC;
 			bwrite(bp);
 			BO_LOCK(bo);
 			return (EAGAIN);	/* XXX: why not loop ? */
 		}
 		bremfree(bp);
 		bp->b_flags |= (B_INVAL | B_RELBUF);
 		bp->b_flags &= ~B_ASYNC;
 		brelse(bp);
 		BO_LOCK(bo);
 		if (nbp == NULL)
 			break;
 		nbp = gbincore(bo, lblkno);
 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
 		    != xflags)
 			break;			/* nbp invalid */
 	}
 	return (retval);
 }
 
 int
 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
 {
 	struct buf *bp;
 	int error;
 	daddr_t lblkno;
 
 	ASSERT_BO_LOCKED(bo);
 
 	for (lblkno = startn;;) {
 again:
 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
 		if (bp == NULL || bp->b_lblkno >= endn ||
 		    bp->b_lblkno < startn)
 			break;
 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
 		if (error != 0) {
 			BO_RLOCK(bo);
 			if (error == ENOLCK)
 				goto again;
 			return (error);
 		}
 		KASSERT(bp->b_bufobj == bo,
 		    ("bp %p wrong b_bufobj %p should be %p",
 		    bp, bp->b_bufobj, bo));
 		lblkno = bp->b_lblkno + 1;
 		if ((bp->b_flags & B_MANAGED) == 0)
 			bremfree(bp);
 		bp->b_flags |= B_RELBUF;
 		/*
 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
 		 * pages backing each buffer in the range are unlikely to be
 		 * reused.  Dirty buffers will have the hint applied once
 		 * they've been written.
 		 */
 		if ((bp->b_flags & B_VMIO) != 0)
 			bp->b_flags |= B_NOREUSE;
 		brelse(bp);
 		BO_RLOCK(bo);
 	}
 	return (0);
 }
 
 /*
  * Truncate a file's buffer and pages to a specified length.  This
  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
  * sync activity.
  */
 int
 vtruncbuf(struct vnode *vp, off_t length, int blksize)
 {
 	struct buf *bp, *nbp;
 	struct bufobj *bo;
 	daddr_t startlbn;
 
 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
 	    vp, blksize, (uintmax_t)length);
 
 	/*
 	 * Round up to the *next* lbn.
 	 */
 	startlbn = howmany(length, blksize);
 
 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
 
 	bo = &vp->v_bufobj;
 restart_unlocked:
 	BO_LOCK(bo);
 
 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
 		;
 
 	if (length > 0) {
 restartsync:
 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
 			if (bp->b_lblkno > 0)
 				continue;
 			/*
 			 * Since we hold the vnode lock this should only
 			 * fail if we're racing with the buf daemon.
 			 */
 			if (BUF_LOCK(bp,
 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
 			    BO_LOCKPTR(bo)) == ENOLCK)
 				goto restart_unlocked;
 
 			VNASSERT((bp->b_flags & B_DELWRI), vp,
 			    ("buf(%p) on dirty queue without DELWRI", bp));
 
 			bremfree(bp);
 			bawrite(bp);
 			BO_LOCK(bo);
 			goto restartsync;
 		}
 	}
 
 	bufobj_wwait(bo, 0, 0);
 	BO_UNLOCK(bo);
 	vnode_pager_setsize(vp, length);
 
 	return (0);
 }
 
 /*
  * Invalidate the cached pages of a file's buffer within the range of block
  * numbers [startlbn, endlbn).
  */
 void
 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
     int blksize)
 {
 	struct bufobj *bo;
 	off_t start, end;
 
 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
 
 	start = blksize * startlbn;
 	end = blksize * endlbn;
 
 	bo = &vp->v_bufobj;
 	BO_LOCK(bo);
 	MPASS(blksize == bo->bo_bsize);
 
 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
 		;
 
 	BO_UNLOCK(bo);
 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
 }
 
 static int
 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
     daddr_t startlbn, daddr_t endlbn)
 {
 	struct buf *bp, *nbp;
 	bool anyfreed;
 
 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
 	ASSERT_BO_LOCKED(bo);
 
 	do {
 		anyfreed = false;
 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
 				continue;
 			if (BUF_LOCK(bp,
 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
 			    BO_LOCKPTR(bo)) == ENOLCK) {
 				BO_LOCK(bo);
 				return (EAGAIN);
 			}
 
 			bremfree(bp);
 			bp->b_flags |= B_INVAL | B_RELBUF;
 			bp->b_flags &= ~B_ASYNC;
 			brelse(bp);
 			anyfreed = true;
 
 			BO_LOCK(bo);
 			if (nbp != NULL &&
 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
 			    nbp->b_vp != vp ||
 			    (nbp->b_flags & B_DELWRI) != 0))
 				return (EAGAIN);
 		}
 
 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
 				continue;
 			if (BUF_LOCK(bp,
 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
 			    BO_LOCKPTR(bo)) == ENOLCK) {
 				BO_LOCK(bo);
 				return (EAGAIN);
 			}
 			bremfree(bp);
 			bp->b_flags |= B_INVAL | B_RELBUF;
 			bp->b_flags &= ~B_ASYNC;
 			brelse(bp);
 			anyfreed = true;
 
 			BO_LOCK(bo);
 			if (nbp != NULL &&
 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
 			    (nbp->b_vp != vp) ||
 			    (nbp->b_flags & B_DELWRI) == 0))
 				return (EAGAIN);
 		}
 	} while (anyfreed);
 	return (0);
 }
 
 static void
 buf_vlist_remove(struct buf *bp)
 {
 	struct bufv *bv;
 	b_xflags_t flags;
 
 	flags = bp->b_xflags;
 
 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 	ASSERT_BO_WLOCKED(bp->b_bufobj);
 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
 	    ("%s: buffer %p has invalid queue state", __func__, bp));
 
 	if ((flags & BX_VNDIRTY) != 0)
 		bv = &bp->b_bufobj->bo_dirty;
 	else
 		bv = &bp->b_bufobj->bo_clean;
 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
 	bv->bv_cnt--;
 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
 }
 
 /*
  * Add the buffer to the sorted clean or dirty block list.
  *
  * NOTE: xflags is passed as a constant, optimizing this inline function!
  */
 static void
 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
 {
 	struct bufv *bv;
 	struct buf *n;
 	int error;
 
 	ASSERT_BO_WLOCKED(bo);
 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
 	    ("dead bo %p", bo));
 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
 	bp->b_xflags |= xflags;
 	if (xflags & BX_VNDIRTY)
 		bv = &bo->bo_dirty;
 	else
 		bv = &bo->bo_clean;
 
 	/*
 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
 	 * we tend to grow at the tail so lookup_le should usually be cheaper
 	 * than _ge. 
 	 */
 	if (bv->bv_cnt == 0 ||
 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
 	else
 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
 	if (error)
 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
 	bv->bv_cnt++;
 }
 
 /*
  * Look up a buffer using the buffer tries.
  */
 struct buf *
 gbincore(struct bufobj *bo, daddr_t lblkno)
 {
 	struct buf *bp;
 
 	ASSERT_BO_LOCKED(bo);
 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
 	if (bp != NULL)
 		return (bp);
 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
 }
 
 /*
  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
  * stability of the result.  Like other lockless lookups, the found buf may
  * already be invalid by the time this function returns.
  */
 struct buf *
 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
 {
 	struct buf *bp;
 
 	ASSERT_BO_UNLOCKED(bo);
 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
 	if (bp != NULL)
 		return (bp);
 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
 }
 
 /*
  * Associate a buffer with a vnode.
  */
 void
 bgetvp(struct vnode *vp, struct buf *bp)
 {
 	struct bufobj *bo;
 
 	bo = &vp->v_bufobj;
 	ASSERT_BO_WLOCKED(bo);
 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
 
 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
 	    ("bgetvp: bp already attached! %p", bp));
 
 	vhold(vp);
 	bp->b_vp = vp;
 	bp->b_bufobj = bo;
 	/*
 	 * Insert onto list for new vnode.
 	 */
 	buf_vlist_add(bp, bo, BX_VNCLEAN);
 }
 
 /*
  * Disassociate a buffer from a vnode.
  */
 void
 brelvp(struct buf *bp)
 {
 	struct bufobj *bo;
 	struct vnode *vp;
 
 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
 
 	/*
 	 * Delete from old vnode list, if on one.
 	 */
 	vp = bp->b_vp;		/* XXX */
 	bo = bp->b_bufobj;
 	BO_LOCK(bo);
 	buf_vlist_remove(bp);
 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
 		bo->bo_flag &= ~BO_ONWORKLST;
 		mtx_lock(&sync_mtx);
 		LIST_REMOVE(bo, bo_synclist);
 		syncer_worklist_len--;
 		mtx_unlock(&sync_mtx);
 	}
 	bp->b_vp = NULL;
 	bp->b_bufobj = NULL;
 	BO_UNLOCK(bo);
 	vdrop(vp);
 }
 
 /*
  * Add an item to the syncer work queue.
  */
 static void
 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
 {
 	int slot;
 
 	ASSERT_BO_WLOCKED(bo);
 
 	mtx_lock(&sync_mtx);
 	if (bo->bo_flag & BO_ONWORKLST)
 		LIST_REMOVE(bo, bo_synclist);
 	else {
 		bo->bo_flag |= BO_ONWORKLST;
 		syncer_worklist_len++;
 	}
 
 	if (delay > syncer_maxdelay - 2)
 		delay = syncer_maxdelay - 2;
 	slot = (syncer_delayno + delay) & syncer_mask;
 
 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
 	mtx_unlock(&sync_mtx);
 }
 
 static int
 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
 {
 	int error, len;
 
 	mtx_lock(&sync_mtx);
 	len = syncer_worklist_len - sync_vnode_count;
 	mtx_unlock(&sync_mtx);
 	error = SYSCTL_OUT(req, &len, sizeof(len));
 	return (error);
 }
 
 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
 
 static struct proc *updateproc;
 static void sched_sync(void);
 static struct kproc_desc up_kp = {
 	"syncer",
 	sched_sync,
 	&updateproc
 };
 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
 
 static int
 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
 {
 	struct vnode *vp;
 	struct mount *mp;
 
 	*bo = LIST_FIRST(slp);
 	if (*bo == NULL)
 		return (0);
 	vp = bo2vnode(*bo);
 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
 		return (1);
 	/*
 	 * We use vhold in case the vnode does not
 	 * successfully sync.  vhold prevents the vnode from
 	 * going away when we unlock the sync_mtx so that
 	 * we can acquire the vnode interlock.
 	 */
 	vholdl(vp);
 	mtx_unlock(&sync_mtx);
 	VI_UNLOCK(vp);
 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
 		vdrop(vp);
 		mtx_lock(&sync_mtx);
 		return (*bo == LIST_FIRST(slp));
 	}
 	MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
 	    (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
 	    ("suspended mp syncing vp %p", vp));
 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
 	VOP_UNLOCK(vp);
 	vn_finished_write(mp);
 	BO_LOCK(*bo);
 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
 		/*
 		 * Put us back on the worklist.  The worklist
 		 * routine will remove us from our current
 		 * position and then add us back in at a later
 		 * position.
 		 */
 		vn_syncer_add_to_worklist(*bo, syncdelay);
 	}
 	BO_UNLOCK(*bo);
 	vdrop(vp);
 	mtx_lock(&sync_mtx);
 	return (0);
 }
 
 static int first_printf = 1;
 
 /*
  * System filesystem synchronizer daemon.
  */
 static void
 sched_sync(void)
 {
 	struct synclist *next, *slp;
 	struct bufobj *bo;
 	long starttime;
 	struct thread *td = curthread;
 	int last_work_seen;
 	int net_worklist_len;
 	int syncer_final_iter;
 	int error;
 
 	last_work_seen = 0;
 	syncer_final_iter = 0;
 	syncer_state = SYNCER_RUNNING;
 	starttime = time_uptime;
 	td->td_pflags |= TDP_NORUNNINGBUF;
 
 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
 	    SHUTDOWN_PRI_LAST);
 
 	mtx_lock(&sync_mtx);
 	for (;;) {
 		if (syncer_state == SYNCER_FINAL_DELAY &&
 		    syncer_final_iter == 0) {
 			mtx_unlock(&sync_mtx);
 			kproc_suspend_check(td->td_proc);
 			mtx_lock(&sync_mtx);
 		}
 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
 		if (syncer_state != SYNCER_RUNNING &&
 		    starttime != time_uptime) {
 			if (first_printf) {
 				printf("\nSyncing disks, vnodes remaining... ");
 				first_printf = 0;
 			}
 			printf("%d ", net_worklist_len);
 		}
 		starttime = time_uptime;
 
 		/*
 		 * Push files whose dirty time has expired.  Be careful
 		 * of interrupt race on slp queue.
 		 *
 		 * Skip over empty worklist slots when shutting down.
 		 */
 		do {
 			slp = &syncer_workitem_pending[syncer_delayno];
 			syncer_delayno += 1;
 			if (syncer_delayno == syncer_maxdelay)
 				syncer_delayno = 0;
 			next = &syncer_workitem_pending[syncer_delayno];
 			/*
 			 * If the worklist has wrapped since the
 			 * it was emptied of all but syncer vnodes,
 			 * switch to the FINAL_DELAY state and run
 			 * for one more second.
 			 */
 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
 			    net_worklist_len == 0 &&
 			    last_work_seen == syncer_delayno) {
 				syncer_state = SYNCER_FINAL_DELAY;
 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
 			}
 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
 		    syncer_worklist_len > 0);
 
 		/*
 		 * Keep track of the last time there was anything
 		 * on the worklist other than syncer vnodes.
 		 * Return to the SHUTTING_DOWN state if any
 		 * new work appears.
 		 */
 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
 			last_work_seen = syncer_delayno;
 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
 			syncer_state = SYNCER_SHUTTING_DOWN;
 		while (!LIST_EMPTY(slp)) {
 			error = sync_vnode(slp, &bo, td);
 			if (error == 1) {
 				LIST_REMOVE(bo, bo_synclist);
 				LIST_INSERT_HEAD(next, bo, bo_synclist);
 				continue;
 			}
 
 			if (first_printf == 0) {
 				/*
 				 * Drop the sync mutex, because some watchdog
 				 * drivers need to sleep while patting
 				 */
 				mtx_unlock(&sync_mtx);
 				wdog_kern_pat(WD_LASTVAL);
 				mtx_lock(&sync_mtx);
 			}
 		}
 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
 			syncer_final_iter--;
 		/*
 		 * The variable rushjob allows the kernel to speed up the
 		 * processing of the filesystem syncer process. A rushjob
 		 * value of N tells the filesystem syncer to process the next
 		 * N seconds worth of work on its queue ASAP. Currently rushjob
 		 * is used by the soft update code to speed up the filesystem
 		 * syncer process when the incore state is getting so far
 		 * ahead of the disk that the kernel memory pool is being
 		 * threatened with exhaustion.
 		 */
 		if (rushjob > 0) {
 			rushjob -= 1;
 			continue;
 		}
 		/*
 		 * Just sleep for a short period of time between
 		 * iterations when shutting down to allow some I/O
 		 * to happen.
 		 *
 		 * If it has taken us less than a second to process the
 		 * current work, then wait. Otherwise start right over
 		 * again. We can still lose time if any single round
 		 * takes more than two seconds, but it does not really
 		 * matter as we are just trying to generally pace the
 		 * filesystem activity.
 		 */
 		if (syncer_state != SYNCER_RUNNING ||
 		    time_uptime == starttime) {
 			thread_lock(td);
 			sched_prio(td, PPAUSE);
 			thread_unlock(td);
 		}
 		if (syncer_state != SYNCER_RUNNING)
 			cv_timedwait(&sync_wakeup, &sync_mtx,
 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
 		else if (time_uptime == starttime)
 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
 	}
 }
 
 /*
  * Request the syncer daemon to speed up its work.
  * We never push it to speed up more than half of its
  * normal turn time, otherwise it could take over the cpu.
  */
 int
 speedup_syncer(void)
 {
 	int ret = 0;
 
 	mtx_lock(&sync_mtx);
 	if (rushjob < syncdelay / 2) {
 		rushjob += 1;
 		stat_rush_requests += 1;
 		ret = 1;
 	}
 	mtx_unlock(&sync_mtx);
 	cv_broadcast(&sync_wakeup);
 	return (ret);
 }
 
 /*
  * Tell the syncer to speed up its work and run though its work
  * list several times, then tell it to shut down.
  */
 static void
 syncer_shutdown(void *arg, int howto)
 {
 
 	if (howto & RB_NOSYNC)
 		return;
 	mtx_lock(&sync_mtx);
 	syncer_state = SYNCER_SHUTTING_DOWN;
 	rushjob = 0;
 	mtx_unlock(&sync_mtx);
 	cv_broadcast(&sync_wakeup);
 	kproc_shutdown(arg, howto);
 }
 
 void
 syncer_suspend(void)
 {
 
 	syncer_shutdown(updateproc, 0);
 }
 
 void
 syncer_resume(void)
 {
 
 	mtx_lock(&sync_mtx);
 	first_printf = 1;
 	syncer_state = SYNCER_RUNNING;
 	mtx_unlock(&sync_mtx);
 	cv_broadcast(&sync_wakeup);
 	kproc_resume(updateproc);
 }
 
 /*
  * Move the buffer between the clean and dirty lists of its vnode.
  */
 void
 reassignbuf(struct buf *bp)
 {
 	struct vnode *vp;
 	struct bufobj *bo;
 	int delay;
 #ifdef INVARIANTS
 	struct bufv *bv;
 #endif
 
 	vp = bp->b_vp;
 	bo = bp->b_bufobj;
 
 	KASSERT((bp->b_flags & B_PAGING) == 0,
 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
 
 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
 	    bp, bp->b_vp, bp->b_flags);
 
 	BO_LOCK(bo);
 	buf_vlist_remove(bp);
 
 	/*
 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
 	 * of clean buffers.
 	 */
 	if (bp->b_flags & B_DELWRI) {
 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
 			switch (vp->v_type) {
 			case VDIR:
 				delay = dirdelay;
 				break;
 			case VCHR:
 				delay = metadelay;
 				break;
 			default:
 				delay = filedelay;
 			}
 			vn_syncer_add_to_worklist(bo, delay);
 		}
 		buf_vlist_add(bp, bo, BX_VNDIRTY);
 	} else {
 		buf_vlist_add(bp, bo, BX_VNCLEAN);
 
 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
 			mtx_lock(&sync_mtx);
 			LIST_REMOVE(bo, bo_synclist);
 			syncer_worklist_len--;
 			mtx_unlock(&sync_mtx);
 			bo->bo_flag &= ~BO_ONWORKLST;
 		}
 	}
 #ifdef INVARIANTS
 	bv = &bo->bo_clean;
 	bp = TAILQ_FIRST(&bv->bv_hd);
 	KASSERT(bp == NULL || bp->b_bufobj == bo,
 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
 	KASSERT(bp == NULL || bp->b_bufobj == bo,
 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
 	bv = &bo->bo_dirty;
 	bp = TAILQ_FIRST(&bv->bv_hd);
 	KASSERT(bp == NULL || bp->b_bufobj == bo,
 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
 	KASSERT(bp == NULL || bp->b_bufobj == bo,
 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
 #endif
 	BO_UNLOCK(bo);
 }
 
 static void
 v_init_counters(struct vnode *vp)
 {
 
 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
 
 	refcount_init(&vp->v_holdcnt, 1);
 	refcount_init(&vp->v_usecount, 1);
 }
 
 /*
  * Grab a particular vnode from the free list, increment its
  * reference count and lock it.  VIRF_DOOMED is set if the vnode
  * is being destroyed.  Only callers who specify LK_RETRY will
  * see doomed vnodes.  If inactive processing was delayed in
  * vput try to do it here.
  *
  * usecount is manipulated using atomics without holding any locks.
  *
  * holdcnt can be manipulated using atomics without holding any locks,
  * except when transitioning 1<->0, in which case the interlock is held.
  *
  * Consumers which don't guarantee liveness of the vnode can use SMR to
  * try to get a reference. Note this operation can fail since the vnode
  * may be awaiting getting freed by the time they get to it.
  */
 enum vgetstate
 vget_prep_smr(struct vnode *vp)
 {
 	enum vgetstate vs;
 
 	VFS_SMR_ASSERT_ENTERED();
 
 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
 		vs = VGET_USECOUNT;
 	} else {
 		if (vhold_smr(vp))
 			vs = VGET_HOLDCNT;
 		else
 			vs = VGET_NONE;
 	}
 	return (vs);
 }
 
 enum vgetstate
 vget_prep(struct vnode *vp)
 {
 	enum vgetstate vs;
 
 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
 		vs = VGET_USECOUNT;
 	} else {
 		vhold(vp);
 		vs = VGET_HOLDCNT;
 	}
 	return (vs);
 }
 
 void
 vget_abort(struct vnode *vp, enum vgetstate vs)
 {
 
 	switch (vs) {
 	case VGET_USECOUNT:
 		vrele(vp);
 		break;
 	case VGET_HOLDCNT:
 		vdrop(vp);
 		break;
 	default:
 		__assert_unreachable();
 	}
 }
 
 int
 vget(struct vnode *vp, int flags)
 {
 	enum vgetstate vs;
 
 	vs = vget_prep(vp);
 	return (vget_finish(vp, flags, vs));
 }
 
 int
 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
 {
 	int error;
 
 	if ((flags & LK_INTERLOCK) != 0)
 		ASSERT_VI_LOCKED(vp, __func__);
 	else
 		ASSERT_VI_UNLOCKED(vp, __func__);
 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
 	VNPASS(vp->v_holdcnt > 0, vp);
 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
 
 	error = vn_lock(vp, flags);
 	if (__predict_false(error != 0)) {
 		vget_abort(vp, vs);
 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
 		    vp);
 		return (error);
 	}
 
 	vget_finish_ref(vp, vs);
 	return (0);
 }
 
 void
 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
 {
 	int old;
 
 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
 	VNPASS(vp->v_holdcnt > 0, vp);
 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
 
 	if (vs == VGET_USECOUNT)
 		return;
 
 	/*
 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
 	 * the vnode around. Otherwise someone else lended their hold count and
 	 * we have to drop ours.
 	 */
 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
 	if (old != 0) {
 #ifdef INVARIANTS
 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
 #else
 		refcount_release(&vp->v_holdcnt);
 #endif
 	}
 }
 
 void
 vref(struct vnode *vp)
 {
 	enum vgetstate vs;
 
 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
 	vs = vget_prep(vp);
 	vget_finish_ref(vp, vs);
 }
 
 void
 vrefact(struct vnode *vp)
 {
 
 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
 #ifdef INVARIANTS
 	int old = atomic_fetchadd_int(&vp->v_usecount, 1);
 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
 #else
 	refcount_acquire(&vp->v_usecount);
 #endif
 }
 
 void
 vlazy(struct vnode *vp)
 {
 	struct mount *mp;
 
 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
 
 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
 		return;
 	/*
 	 * We may get here for inactive routines after the vnode got doomed.
 	 */
 	if (VN_IS_DOOMED(vp))
 		return;
 	mp = vp->v_mount;
 	mtx_lock(&mp->mnt_listmtx);
 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
 		vp->v_mflag |= VMP_LAZYLIST;
 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
 		mp->mnt_lazyvnodelistsize++;
 	}
 	mtx_unlock(&mp->mnt_listmtx);
 }
 
 static void
 vunlazy(struct vnode *vp)
 {
 	struct mount *mp;
 
 	ASSERT_VI_LOCKED(vp, __func__);
 	VNPASS(!VN_IS_DOOMED(vp), vp);
 
 	mp = vp->v_mount;
 	mtx_lock(&mp->mnt_listmtx);
 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
 	/*
 	 * Don't remove the vnode from the lazy list if another thread
 	 * has increased the hold count. It may have re-enqueued the
 	 * vnode to the lazy list and is now responsible for its
 	 * removal.
 	 */
 	if (vp->v_holdcnt == 0) {
 		vp->v_mflag &= ~VMP_LAZYLIST;
 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
 		mp->mnt_lazyvnodelistsize--;
 	}
 	mtx_unlock(&mp->mnt_listmtx);
 }
 
 /*
  * This routine is only meant to be called from vgonel prior to dooming
  * the vnode.
  */
 static void
 vunlazy_gone(struct vnode *vp)
 {
 	struct mount *mp;
 
 	ASSERT_VOP_ELOCKED(vp, __func__);
 	ASSERT_VI_LOCKED(vp, __func__);
 	VNPASS(!VN_IS_DOOMED(vp), vp);
 
 	if (vp->v_mflag & VMP_LAZYLIST) {
 		mp = vp->v_mount;
 		mtx_lock(&mp->mnt_listmtx);
 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
 		vp->v_mflag &= ~VMP_LAZYLIST;
 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
 		mp->mnt_lazyvnodelistsize--;
 		mtx_unlock(&mp->mnt_listmtx);
 	}
 }
 
 static void
 vdefer_inactive(struct vnode *vp)
 {
 
 	ASSERT_VI_LOCKED(vp, __func__);
 	VNASSERT(vp->v_holdcnt > 0, vp,
 	    ("%s: vnode without hold count", __func__));
 	if (VN_IS_DOOMED(vp)) {
 		vdropl(vp);
 		return;
 	}
 	if (vp->v_iflag & VI_DEFINACT) {
 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
 		vdropl(vp);
 		return;
 	}
 	if (vp->v_usecount > 0) {
 		vp->v_iflag &= ~VI_OWEINACT;
 		vdropl(vp);
 		return;
 	}
 	vlazy(vp);
 	vp->v_iflag |= VI_DEFINACT;
 	VI_UNLOCK(vp);
 	atomic_add_long(&deferred_inact, 1);
 }
 
 static void
 vdefer_inactive_unlocked(struct vnode *vp)
 {
 
 	VI_LOCK(vp);
 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
 		vdropl(vp);
 		return;
 	}
 	vdefer_inactive(vp);
 }
 
 enum vput_op { VRELE, VPUT, VUNREF };
 
 /*
  * Handle ->v_usecount transitioning to 0.
  *
  * By releasing the last usecount we take ownership of the hold count which
  * provides liveness of the vnode, meaning we have to vdrop.
  *
  * For all vnodes we may need to perform inactive processing. It requires an
  * exclusive lock on the vnode, while it is legal to call here with only a
  * shared lock (or no locks). If locking the vnode in an expected manner fails,
  * inactive processing gets deferred to the syncer.
  *
  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
  * on the lock being held all the way until VOP_INACTIVE. This in particular
  * happens with UFS which adds half-constructed vnodes to the hash, where they
  * can be found by other code.
  */
 static void
 vput_final(struct vnode *vp, enum vput_op func)
 {
 	int error;
 	bool want_unlock;
 
 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
 	VNPASS(vp->v_holdcnt > 0, vp);
 
 	VI_LOCK(vp);
 
 	/*
 	 * By the time we got here someone else might have transitioned
 	 * the count back to > 0.
 	 */
 	if (vp->v_usecount > 0)
 		goto out;
 
 	/*
 	 * If the vnode is doomed vgone already performed inactive processing
 	 * (if needed).
 	 */
 	if (VN_IS_DOOMED(vp))
 		goto out;
 
 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
 		goto out;
 
 	if (vp->v_iflag & VI_DOINGINACT)
 		goto out;
 
 	/*
 	 * Locking operations here will drop the interlock and possibly the
 	 * vnode lock, opening a window where the vnode can get doomed all the
 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
 	 * perform inactive.
 	 */
 	vp->v_iflag |= VI_OWEINACT;
 	want_unlock = false;
 	error = 0;
 	switch (func) {
 	case VRELE:
 		switch (VOP_ISLOCKED(vp)) {
 		case LK_EXCLUSIVE:
 			break;
 		case LK_EXCLOTHER:
 		case 0:
 			want_unlock = true;
 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
 			VI_LOCK(vp);
 			break;
 		default:
 			/*
 			 * The lock has at least one sharer, but we have no way
 			 * to conclude whether this is us. Play it safe and
 			 * defer processing.
 			 */
 			error = EAGAIN;
 			break;
 		}
 		break;
 	case VPUT:
 		want_unlock = true;
 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
 			    LK_NOWAIT);
 			VI_LOCK(vp);
 		}
 		break;
 	case VUNREF:
 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
 			VI_LOCK(vp);
 		}
 		break;
 	}
 	if (error == 0) {
 		if (func == VUNREF) {
 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
 			    ("recursive vunref"));
 			vp->v_vflag |= VV_UNREF;
 		}
 		for (;;) {
 			error = vinactive(vp);
 			if (want_unlock)
 				VOP_UNLOCK(vp);
 			if (error != ERELOOKUP || !want_unlock)
 				break;
 			VOP_LOCK(vp, LK_EXCLUSIVE);
 		}
 		if (func == VUNREF)
 			vp->v_vflag &= ~VV_UNREF;
 		vdropl(vp);
 	} else {
 		vdefer_inactive(vp);
 	}
 	return;
 out:
 	if (func == VPUT)
 		VOP_UNLOCK(vp);
 	vdropl(vp);
 }
 
 /*
  * Decrement ->v_usecount for a vnode.
  *
  * Releasing the last use count requires additional processing, see vput_final
  * above for details.
  *
  * Comment above each variant denotes lock state on entry and exit.
  */
 
 /*
  * in: any
  * out: same as passed in
  */
 void
 vrele(struct vnode *vp)
 {
 
 	ASSERT_VI_UNLOCKED(vp, __func__);
 	if (!refcount_release(&vp->v_usecount))
 		return;
 	vput_final(vp, VRELE);
 }
 
 /*
  * in: locked
  * out: unlocked
  */
 void
 vput(struct vnode *vp)
 {
 
 	ASSERT_VOP_LOCKED(vp, __func__);
 	ASSERT_VI_UNLOCKED(vp, __func__);
 	if (!refcount_release(&vp->v_usecount)) {
 		VOP_UNLOCK(vp);
 		return;
 	}
 	vput_final(vp, VPUT);
 }
 
 /*
  * in: locked
  * out: locked
  */
 void
 vunref(struct vnode *vp)
 {
 
 	ASSERT_VOP_LOCKED(vp, __func__);
 	ASSERT_VI_UNLOCKED(vp, __func__);
 	if (!refcount_release(&vp->v_usecount))
 		return;
 	vput_final(vp, VUNREF);
 }
 
 void
 vhold(struct vnode *vp)
 {
 	int old;
 
 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
 	    ("%s: wrong hold count %d", __func__, old));
 	if (old == 0)
 		vfs_freevnodes_dec();
 }
 
 void
 vholdnz(struct vnode *vp)
 {
 
 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
 #ifdef INVARIANTS
 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
 	    ("%s: wrong hold count %d", __func__, old));
 #else
 	atomic_add_int(&vp->v_holdcnt, 1);
 #endif
 }
 
 /*
  * Grab a hold count unless the vnode is freed.
  *
  * Only use this routine if vfs smr is the only protection you have against
  * freeing the vnode.
  *
  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
  * is not set.  After the flag is set the vnode becomes immutable to anyone but
  * the thread which managed to set the flag.
  *
  * It may be tempting to replace the loop with:
  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
  * if (count & VHOLD_NO_SMR) {
  *     backpedal and error out;
  * }
  *
  * However, while this is more performant, it hinders debugging by eliminating
  * the previously mentioned invariant.
  */
 bool
 vhold_smr(struct vnode *vp)
 {
 	int count;
 
 	VFS_SMR_ASSERT_ENTERED();
 
 	count = atomic_load_int(&vp->v_holdcnt);
 	for (;;) {
 		if (count & VHOLD_NO_SMR) {
 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
 			    ("non-zero hold count with flags %d\n", count));
 			return (false);
 		}
 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
 			if (count == 0)
 				vfs_freevnodes_dec();
 			return (true);
 		}
 	}
 }
 
 /*
  * Hold a free vnode for recycling.
  *
  * Note: vnode_init references this comment.
  *
  * Attempts to recycle only need the global vnode list lock and have no use for
  * SMR.
  *
  * However, vnodes get inserted into the global list before they get fully
  * initialized and stay there until UMA decides to free the memory. This in
  * particular means the target can be found before it becomes usable and after
  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
  * VHOLD_NO_SMR.
  *
  * Note: the vnode may gain more references after we transition the count 0->1.
  */
 static bool
 vhold_recycle_free(struct vnode *vp)
 {
 	int count;
 
 	mtx_assert(&vnode_list_mtx, MA_OWNED);
 
 	count = atomic_load_int(&vp->v_holdcnt);
 	for (;;) {
 		if (count & VHOLD_NO_SMR) {
 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
 			    ("non-zero hold count with flags %d\n", count));
 			return (false);
 		}
 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
 		if (count > 0) {
 			return (false);
 		}
 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
 			vfs_freevnodes_dec();
 			return (true);
 		}
 	}
 }
 
 static void __noinline
 vdbatch_process(struct vdbatch *vd)
 {
 	struct vnode *vp;
 	int i;
 
 	mtx_assert(&vd->lock, MA_OWNED);
 	MPASS(curthread->td_pinned > 0);
 	MPASS(vd->index == VDBATCH_SIZE);
 
 	/*
 	 * Attempt to requeue the passed batch, but give up easily.
 	 *
 	 * Despite batching the mechanism is prone to transient *significant*
 	 * lock contention, where vnode_list_mtx becomes the primary bottleneck
 	 * if multiple CPUs get here (one real-world example is highly parallel
 	 * do-nothing make , which will stat *tons* of vnodes). Since it is
 	 * quasi-LRU (read: not that great even if fully honoured) just dodge
 	 * the problem. Parties which don't like it are welcome to implement
 	 * something better.
 	 */
 	critical_enter();
 	if (mtx_trylock(&vnode_list_mtx)) {
 		for (i = 0; i < VDBATCH_SIZE; i++) {
 			vp = vd->tab[i];
 			vd->tab[i] = NULL;
 			TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
 			TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
 			MPASS(vp->v_dbatchcpu != NOCPU);
 			vp->v_dbatchcpu = NOCPU;
 		}
 		mtx_unlock(&vnode_list_mtx);
 	} else {
 		counter_u64_add(vnode_skipped_requeues, 1);
 
 		for (i = 0; i < VDBATCH_SIZE; i++) {
 			vp = vd->tab[i];
 			vd->tab[i] = NULL;
 			MPASS(vp->v_dbatchcpu != NOCPU);
 			vp->v_dbatchcpu = NOCPU;
 		}
 	}
 	vd->index = 0;
 	critical_exit();
 }
 
 static void
 vdbatch_enqueue(struct vnode *vp)
 {
 	struct vdbatch *vd;
 
 	ASSERT_VI_LOCKED(vp, __func__);
 	VNASSERT(!VN_IS_DOOMED(vp), vp,
 	    ("%s: deferring requeue of a doomed vnode", __func__));
 
 	if (vp->v_dbatchcpu != NOCPU) {
 		VI_UNLOCK(vp);
 		return;
 	}
 
 	sched_pin();
 	vd = DPCPU_PTR(vd);
 	mtx_lock(&vd->lock);
 	MPASS(vd->index < VDBATCH_SIZE);
 	MPASS(vd->tab[vd->index] == NULL);
 	/*
 	 * A hack: we depend on being pinned so that we know what to put in
 	 * ->v_dbatchcpu.
 	 */
 	vp->v_dbatchcpu = curcpu;
 	vd->tab[vd->index] = vp;
 	vd->index++;
 	VI_UNLOCK(vp);
 	if (vd->index == VDBATCH_SIZE)
 		vdbatch_process(vd);
 	mtx_unlock(&vd->lock);
 	sched_unpin();
 }
 
 /*
  * This routine must only be called for vnodes which are about to be
  * deallocated. Supporting dequeue for arbitrary vndoes would require
  * validating that the locked batch matches.
  */
 static void
 vdbatch_dequeue(struct vnode *vp)
 {
 	struct vdbatch *vd;
 	int i;
 	short cpu;
 
 	VNASSERT(vp->v_type == VBAD || vp->v_type == VNON, vp,
 	    ("%s: called for a used vnode\n", __func__));
 
 	cpu = vp->v_dbatchcpu;
 	if (cpu == NOCPU)
 		return;
 
 	vd = DPCPU_ID_PTR(cpu, vd);
 	mtx_lock(&vd->lock);
 	for (i = 0; i < vd->index; i++) {
 		if (vd->tab[i] != vp)
 			continue;
 		vp->v_dbatchcpu = NOCPU;
 		vd->index--;
 		vd->tab[i] = vd->tab[vd->index];
 		vd->tab[vd->index] = NULL;
 		break;
 	}
 	mtx_unlock(&vd->lock);
 	/*
 	 * Either we dequeued the vnode above or the target CPU beat us to it.
 	 */
 	MPASS(vp->v_dbatchcpu == NOCPU);
 }
 
 /*
  * Drop the hold count of the vnode.  If this is the last reference to
  * the vnode we place it on the free list unless it has been vgone'd
  * (marked VIRF_DOOMED) in which case we will free it.
  *
  * Because the vnode vm object keeps a hold reference on the vnode if
  * there is at least one resident non-cached page, the vnode cannot
  * leave the active list without the page cleanup done.
  */
 static void __noinline
 vdropl_final(struct vnode *vp)
 {
 
 	ASSERT_VI_LOCKED(vp, __func__);
 	VNPASS(VN_IS_DOOMED(vp), vp);
 	/*
 	 * Set the VHOLD_NO_SMR flag.
 	 *
 	 * We may be racing against vhold_smr. If they win we can just pretend
 	 * we never got this far, they will vdrop later.
 	 */
 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
 		vfs_freevnodes_inc();
 		VI_UNLOCK(vp);
 		/*
 		 * We lost the aforementioned race. Any subsequent access is
 		 * invalid as they might have managed to vdropl on their own.
 		 */
 		return;
 	}
 	/*
 	 * Don't bump freevnodes as this one is going away.
 	 */
 	freevnode(vp);
 }
 
 void
 vdrop(struct vnode *vp)
 {
 
 	ASSERT_VI_UNLOCKED(vp, __func__);
 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
 	if (refcount_release_if_not_last(&vp->v_holdcnt))
 		return;
 	VI_LOCK(vp);
 	vdropl(vp);
 }
 
 static void __always_inline
 vdropl_impl(struct vnode *vp, bool enqueue)
 {
 
 	ASSERT_VI_LOCKED(vp, __func__);
 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
 	if (!refcount_release(&vp->v_holdcnt)) {
 		VI_UNLOCK(vp);
 		return;
 	}
 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
 	if (VN_IS_DOOMED(vp)) {
 		vdropl_final(vp);
 		return;
 	}
 
 	vfs_freevnodes_inc();
 	if (vp->v_mflag & VMP_LAZYLIST) {
 		vunlazy(vp);
 	}
 
 	if (!enqueue) {
 		VI_UNLOCK(vp);
 		return;
 	}
 
 	/*
 	 * Also unlocks the interlock. We can't assert on it as we
 	 * released our hold and by now the vnode might have been
 	 * freed.
 	 */
 	vdbatch_enqueue(vp);
 }
 
 void
 vdropl(struct vnode *vp)
 {
 
 	vdropl_impl(vp, true);
 }
 
 /*
  * vdrop a vnode when recycling
  *
  * This is a special case routine only to be used when recycling, differs from
  * regular vdrop by not requeieing the vnode on LRU.
  *
  * Consider a case where vtryrecycle continuously fails with all vnodes (due to
  * e.g., frozen writes on the filesystem), filling the batch and causing it to
  * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
  * loop which can last for as long as writes are frozen.
  */
 static void
 vdropl_recycle(struct vnode *vp)
 {
 
 	vdropl_impl(vp, false);
 }
 
 static void
 vdrop_recycle(struct vnode *vp)
 {
 
 	VI_LOCK(vp);
 	vdropl_recycle(vp);
 }
 
 /*
  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
  */
 static int
 vinactivef(struct vnode *vp)
 {
 	struct vm_object *obj;
 	int error;
 
 	ASSERT_VOP_ELOCKED(vp, "vinactive");
 	ASSERT_VI_LOCKED(vp, "vinactive");
 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
 	    ("vinactive: recursed on VI_DOINGINACT"));
 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
 	vp->v_iflag |= VI_DOINGINACT;
 	vp->v_iflag &= ~VI_OWEINACT;
 	VI_UNLOCK(vp);
 	/*
 	 * Before moving off the active list, we must be sure that any
 	 * modified pages are converted into the vnode's dirty
 	 * buffers, since these will no longer be checked once the
 	 * vnode is on the inactive list.
 	 *
 	 * The write-out of the dirty pages is asynchronous.  At the
 	 * point that VOP_INACTIVE() is called, there could still be
 	 * pending I/O and dirty pages in the object.
 	 */
 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
 	    vm_object_mightbedirty(obj)) {
 		VM_OBJECT_WLOCK(obj);
 		vm_object_page_clean(obj, 0, 0, 0);
 		VM_OBJECT_WUNLOCK(obj);
 	}
 	error = VOP_INACTIVE(vp);
 	VI_LOCK(vp);
 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
 	    ("vinactive: lost VI_DOINGINACT"));
 	vp->v_iflag &= ~VI_DOINGINACT;
 	return (error);
 }
 
 int
 vinactive(struct vnode *vp)
 {
 
 	ASSERT_VOP_ELOCKED(vp, "vinactive");
 	ASSERT_VI_LOCKED(vp, "vinactive");
 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
 
 	if ((vp->v_iflag & VI_OWEINACT) == 0)
 		return (0);
 	if (vp->v_iflag & VI_DOINGINACT)
 		return (0);
 	if (vp->v_usecount > 0) {
 		vp->v_iflag &= ~VI_OWEINACT;
 		return (0);
 	}
 	return (vinactivef(vp));
 }
 
 /*
  * Remove any vnodes in the vnode table belonging to mount point mp.
  *
  * If FORCECLOSE is not specified, there should not be any active ones,
  * return error if any are found (nb: this is a user error, not a
  * system error). If FORCECLOSE is specified, detach any active vnodes
  * that are found.
  *
  * If WRITECLOSE is set, only flush out regular file vnodes open for
  * writing.
  *
  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
  *
  * `rootrefs' specifies the base reference count for the root vnode
  * of this filesystem. The root vnode is considered busy if its
  * v_usecount exceeds this value. On a successful return, vflush(, td)
  * will call vrele() on the root vnode exactly rootrefs times.
  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
  * be zero.
  */
 #ifdef DIAGNOSTIC
 static int busyprt = 0;		/* print out busy vnodes */
 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
 #endif
 
 int
 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
 {
 	struct vnode *vp, *mvp, *rootvp = NULL;
 	struct vattr vattr;
 	int busy = 0, error;
 
 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
 	    rootrefs, flags);
 	if (rootrefs > 0) {
 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
 		    ("vflush: bad args"));
 		/*
 		 * Get the filesystem root vnode. We can vput() it
 		 * immediately, since with rootrefs > 0, it won't go away.
 		 */
 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
 			    __func__, error);
 			return (error);
 		}
 		vput(rootvp);
 	}
 loop:
 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
 		vholdl(vp);
 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
 		if (error) {
 			vdrop(vp);
 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
 			goto loop;
 		}
 		/*
 		 * Skip over a vnodes marked VV_SYSTEM.
 		 */
 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
 			VOP_UNLOCK(vp);
 			vdrop(vp);
 			continue;
 		}
 		/*
 		 * If WRITECLOSE is set, flush out unlinked but still open
 		 * files (even if open only for reading) and regular file
 		 * vnodes open for writing.
 		 */
 		if (flags & WRITECLOSE) {
 			if (vp->v_object != NULL) {
 				VM_OBJECT_WLOCK(vp->v_object);
 				vm_object_page_clean(vp->v_object, 0, 0, 0);
 				VM_OBJECT_WUNLOCK(vp->v_object);
 			}
 			do {
 				error = VOP_FSYNC(vp, MNT_WAIT, td);
 			} while (error == ERELOOKUP);
 			if (error != 0) {
 				VOP_UNLOCK(vp);
 				vdrop(vp);
 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
 				return (error);
 			}
 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
 			VI_LOCK(vp);
 
 			if ((vp->v_type == VNON ||
 			    (error == 0 && vattr.va_nlink > 0)) &&
 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
 				VOP_UNLOCK(vp);
 				vdropl(vp);
 				continue;
 			}
 		} else
 			VI_LOCK(vp);
 		/*
 		 * With v_usecount == 0, all we need to do is clear out the
 		 * vnode data structures and we are done.
 		 *
 		 * If FORCECLOSE is set, forcibly close the vnode.
 		 */
 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
 			vgonel(vp);
 		} else {
 			busy++;
 #ifdef DIAGNOSTIC
 			if (busyprt)
 				vn_printf(vp, "vflush: busy vnode ");
 #endif
 		}
 		VOP_UNLOCK(vp);
 		vdropl(vp);
 	}
 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
 		/*
 		 * If just the root vnode is busy, and if its refcount
 		 * is equal to `rootrefs', then go ahead and kill it.
 		 */
 		VI_LOCK(rootvp);
 		KASSERT(busy > 0, ("vflush: not busy"));
 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
 		    ("vflush: usecount %d < rootrefs %d",
 		     rootvp->v_usecount, rootrefs));
 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
 			vgone(rootvp);
 			VOP_UNLOCK(rootvp);
 			busy = 0;
 		} else
 			VI_UNLOCK(rootvp);
 	}
 	if (busy) {
 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
 		    busy);
 		return (EBUSY);
 	}
 	for (; rootrefs > 0; rootrefs--)
 		vrele(rootvp);
 	return (0);
 }
 
 /*
  * Recycle an unused vnode to the front of the free list.
  */
 int
 vrecycle(struct vnode *vp)
 {
 	int recycled;
 
 	VI_LOCK(vp);
 	recycled = vrecyclel(vp);
 	VI_UNLOCK(vp);
 	return (recycled);
 }
 
 /*
  * vrecycle, with the vp interlock held.
  */
 int
 vrecyclel(struct vnode *vp)
 {
 	int recycled;
 
 	ASSERT_VOP_ELOCKED(vp, __func__);
 	ASSERT_VI_LOCKED(vp, __func__);
 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
 	recycled = 0;
 	if (vp->v_usecount == 0) {
 		recycled = 1;
 		vgonel(vp);
 	}
 	return (recycled);
 }
 
 /*
  * Eliminate all activity associated with a vnode
  * in preparation for reuse.
  */
 void
 vgone(struct vnode *vp)
 {
 	VI_LOCK(vp);
 	vgonel(vp);
 	VI_UNLOCK(vp);
 }
 
 static void
 notify_lowervp_vfs_dummy(struct mount *mp __unused,
     struct vnode *lowervp __unused)
 {
 }
 
 /*
  * Notify upper mounts about reclaimed or unlinked vnode.
  */
 void
 vfs_notify_upper(struct vnode *vp, int event)
 {
 	static struct vfsops vgonel_vfsops = {
 		.vfs_reclaim_lowervp = notify_lowervp_vfs_dummy,
 		.vfs_unlink_lowervp = notify_lowervp_vfs_dummy,
 	};
 	struct mount *mp, *ump, *mmp;
 
 	mp = vp->v_mount;
 	if (mp == NULL)
 		return;
 	if (TAILQ_EMPTY(&mp->mnt_uppers))
 		return;
 
 	mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO);
 	mmp->mnt_op = &vgonel_vfsops;
 	mmp->mnt_kern_flag |= MNTK_MARKER;
 	MNT_ILOCK(mp);
 	mp->mnt_kern_flag |= MNTK_VGONE_UPPER;
 	for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) {
 		if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) {
 			ump = TAILQ_NEXT(ump, mnt_upper_link);
 			continue;
 		}
 		TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link);
 		MNT_IUNLOCK(mp);
 		switch (event) {
 		case VFS_NOTIFY_UPPER_RECLAIM:
 			VFS_RECLAIM_LOWERVP(ump, vp);
 			break;
 		case VFS_NOTIFY_UPPER_UNLINK:
 			VFS_UNLINK_LOWERVP(ump, vp);
 			break;
 		default:
 			KASSERT(0, ("invalid event %d", event));
 			break;
 		}
 		MNT_ILOCK(mp);
 		ump = TAILQ_NEXT(mmp, mnt_upper_link);
 		TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link);
 	}
 	free(mmp, M_TEMP);
 	mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER;
 	if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) {
 		mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER;
 		wakeup(&mp->mnt_uppers);
 	}
 	MNT_IUNLOCK(mp);
 }
 
 /*
  * vgone, with the vp interlock held.
  */
 static void
 vgonel(struct vnode *vp)
 {
 	struct thread *td;
 	struct mount *mp;
 	vm_object_t object;
 	bool active, doinginact, oweinact;
 
 	ASSERT_VOP_ELOCKED(vp, "vgonel");
 	ASSERT_VI_LOCKED(vp, "vgonel");
 	VNASSERT(vp->v_holdcnt, vp,
 	    ("vgonel: vp %p has no reference.", vp));
 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
 	td = curthread;
 
 	/*
 	 * Don't vgonel if we're already doomed.
 	 */
 	if (VN_IS_DOOMED(vp))
 		return;
 	/*
 	 * Paired with freevnode.
 	 */
 	vn_seqc_write_begin_locked(vp);
 	vunlazy_gone(vp);
 	vn_irflag_set_locked(vp, VIRF_DOOMED);
 
 	/*
 	 * Check to see if the vnode is in use.  If so, we have to
 	 * call VOP_CLOSE() and VOP_INACTIVE().
 	 *
 	 * It could be that VOP_INACTIVE() requested reclamation, in
 	 * which case we should avoid recursion, so check
 	 * VI_DOINGINACT.  This is not precise but good enough.
 	 */
 	active = vp->v_usecount > 0;
 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
 
 	/*
 	 * If we need to do inactive VI_OWEINACT will be set.
 	 */
 	if (vp->v_iflag & VI_DEFINACT) {
 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
 		vp->v_iflag &= ~VI_DEFINACT;
 		vdropl(vp);
 	} else {
 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
 		VI_UNLOCK(vp);
 	}
 	cache_purge_vgone(vp);
 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
 
 	/*
 	 * If purging an active vnode, it must be closed and
 	 * deactivated before being reclaimed.
 	 */
 	if (active)
 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
 	if (!doinginact) {
 		do {
 			if (oweinact || active) {
 				VI_LOCK(vp);
 				vinactivef(vp);
 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
 				VI_UNLOCK(vp);
 			}
 		} while (oweinact);
 	}
 	if (vp->v_type == VSOCK)
 		vfs_unp_reclaim(vp);
 
 	/*
 	 * Clean out any buffers associated with the vnode.
 	 * If the flush fails, just toss the buffers.
 	 */
 	mp = NULL;
 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
 		while (vinvalbuf(vp, 0, 0, 0) != 0)
 			;
 	}
 
 	BO_LOCK(&vp->v_bufobj);
 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
 	    ("vp %p bufobj not invalidated", vp));
 
 	/*
 	 * For VMIO bufobj, BO_DEAD is set later, or in
 	 * vm_object_terminate() after the object's page queue is
 	 * flushed.
 	 */
 	object = vp->v_bufobj.bo_object;
 	if (object == NULL)
 		vp->v_bufobj.bo_flag |= BO_DEAD;
 	BO_UNLOCK(&vp->v_bufobj);
 
 	/*
 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
 	 * should not touch the object borrowed from the lower vnode
 	 * (the handle check).
 	 */
 	if (object != NULL && object->type == OBJT_VNODE &&
 	    object->handle == vp)
 		vnode_destroy_vobject(vp);
 
 	/*
 	 * Reclaim the vnode.
 	 */
 	if (VOP_RECLAIM(vp))
 		panic("vgone: cannot reclaim");
 	if (mp != NULL)
 		vn_finished_secondary_write(mp);
 	VNASSERT(vp->v_object == NULL, vp,
 	    ("vop_reclaim left v_object vp=%p", vp));
 	/*
 	 * Clear the advisory locks and wake up waiting threads.
 	 */
 	(void)VOP_ADVLOCKPURGE(vp);
 	vp->v_lockf = NULL;
 	/*
 	 * Delete from old mount point vnode list.
 	 */
 	delmntque(vp);
 	/*
 	 * Done with purge, reset to the standard lock and invalidate
 	 * the vnode.
 	 */
 	VI_LOCK(vp);
 	vp->v_vnlock = &vp->v_lock;
 	vp->v_op = &dead_vnodeops;
 	vp->v_type = VBAD;
 }
 
 /*
  * Print out a description of a vnode.
  */
 static const char * const typename[] =
 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
  "VMARKER"};
 
 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
     "new hold count flag not added to vn_printf");
 
 void
 vn_printf(struct vnode *vp, const char *fmt, ...)
 {
 	va_list ap;
 	char buf[256], buf2[16];
 	u_long flags;
 	u_int holdcnt;
 	short irflag;
 
 	va_start(ap, fmt);
 	vprintf(fmt, ap);
 	va_end(ap);
 	printf("%p: ", (void *)vp);
 	printf("type %s\n", typename[vp->v_type]);
 	holdcnt = atomic_load_int(&vp->v_holdcnt);
 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
 	    vp->v_seqc_users);
 	switch (vp->v_type) {
 	case VDIR:
 		printf(" mountedhere %p\n", vp->v_mountedhere);
 		break;
 	case VCHR:
 		printf(" rdev %p\n", vp->v_rdev);
 		break;
 	case VSOCK:
 		printf(" socket %p\n", vp->v_unpcb);
 		break;
 	case VFIFO:
 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
 		break;
 	default:
 		printf("\n");
 		break;
 	}
 	buf[0] = '\0';
 	buf[1] = '\0';
 	if (holdcnt & VHOLD_NO_SMR)
 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
 	printf("    hold count flags (%s)\n", buf + 1);
 
 	buf[0] = '\0';
 	buf[1] = '\0';
 	irflag = vn_irflag_read(vp);
 	if (irflag & VIRF_DOOMED)
 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
 	if (irflag & VIRF_PGREAD)
 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
 	if (irflag & VIRF_MOUNTPOINT)
 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT);
 	if (flags != 0) {
 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
 		strlcat(buf, buf2, sizeof(buf));
 	}
 	if (vp->v_vflag & VV_ROOT)
 		strlcat(buf, "|VV_ROOT", sizeof(buf));
 	if (vp->v_vflag & VV_ISTTY)
 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
 	if (vp->v_vflag & VV_NOSYNC)
 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
 	if (vp->v_vflag & VV_ETERNALDEV)
 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
 	if (vp->v_vflag & VV_CACHEDLABEL)
 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
 	if (vp->v_vflag & VV_COPYONWRITE)
 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
 	if (vp->v_vflag & VV_SYSTEM)
 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
 	if (vp->v_vflag & VV_PROCDEP)
 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
 	if (vp->v_vflag & VV_NOKNOTE)
 		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
 	if (vp->v_vflag & VV_DELETED)
 		strlcat(buf, "|VV_DELETED", sizeof(buf));
 	if (vp->v_vflag & VV_MD)
 		strlcat(buf, "|VV_MD", sizeof(buf));
 	if (vp->v_vflag & VV_FORCEINSMQ)
 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
 	if (vp->v_vflag & VV_READLINK)
 		strlcat(buf, "|VV_READLINK", sizeof(buf));
 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
 	    VV_PROCDEP | VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
 	if (flags != 0) {
 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
 		strlcat(buf, buf2, sizeof(buf));
 	}
 	if (vp->v_iflag & VI_TEXT_REF)
 		strlcat(buf, "|VI_TEXT_REF", sizeof(buf));
 	if (vp->v_iflag & VI_MOUNT)
 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
 	if (vp->v_iflag & VI_DOINGINACT)
 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
 	if (vp->v_iflag & VI_OWEINACT)
 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
 	if (vp->v_iflag & VI_DEFINACT)
 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
 	if (vp->v_iflag & VI_FOPENING)
 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
 	flags = vp->v_iflag & ~(VI_TEXT_REF | VI_MOUNT | VI_DOINGINACT |
 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
 	if (flags != 0) {
 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
 		strlcat(buf, buf2, sizeof(buf));
 	}
 	if (vp->v_mflag & VMP_LAZYLIST)
 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
 	if (flags != 0) {
 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
 		strlcat(buf, buf2, sizeof(buf));
 	}
 	printf("    flags (%s)", buf + 1);
 	if (mtx_owned(VI_MTX(vp)))
 		printf(" VI_LOCKed");
 	printf("\n");
 	if (vp->v_object != NULL)
 		printf("    v_object %p ref %d pages %d "
 		    "cleanbuf %d dirtybuf %d\n",
 		    vp->v_object, vp->v_object->ref_count,
 		    vp->v_object->resident_page_count,
 		    vp->v_bufobj.bo_clean.bv_cnt,
 		    vp->v_bufobj.bo_dirty.bv_cnt);
 	printf("    ");
 	lockmgr_printinfo(vp->v_vnlock);
 	if (vp->v_data != NULL)
 		VOP_PRINT(vp);
 }
 
 #ifdef DDB
 /*
  * List all of the locked vnodes in the system.
  * Called when debugging the kernel.
  */
 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
 {
 	struct mount *mp;
 	struct vnode *vp;
 
 	/*
 	 * Note: because this is DDB, we can't obey the locking semantics
 	 * for these structures, which means we could catch an inconsistent
 	 * state and dereference a nasty pointer.  Not much to be done
 	 * about that.
 	 */
 	db_printf("Locked vnodes\n");
 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
 				vn_printf(vp, "vnode ");
 		}
 	}
 }
 
 /*
  * Show details about the given vnode.
  */
 DB_SHOW_COMMAND(vnode, db_show_vnode)
 {
 	struct vnode *vp;
 
 	if (!have_addr)
 		return;
 	vp = (struct vnode *)addr;
 	vn_printf(vp, "vnode ");
 }
 
 /*
  * Show details about the given mount point.
  */
 DB_SHOW_COMMAND(mount, db_show_mount)
 {
 	struct mount *mp;
 	struct vfsopt *opt;
 	struct statfs *sp;
 	struct vnode *vp;
 	char buf[512];
 	uint64_t mflags;
 	u_int flags;
 
 	if (!have_addr) {
 		/* No address given, print short info about all mount points. */
 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
 			db_printf("%p %s on %s (%s)\n", mp,
 			    mp->mnt_stat.f_mntfromname,
 			    mp->mnt_stat.f_mntonname,
 			    mp->mnt_stat.f_fstypename);
 			if (db_pager_quit)
 				break;
 		}
 		db_printf("\nMore info: show mount <addr>\n");
 		return;
 	}
 
 	mp = (struct mount *)addr;
 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
 
 	buf[0] = '\0';
 	mflags = mp->mnt_flag;
 #define	MNT_FLAG(flag)	do {						\
 	if (mflags & (flag)) {						\
 		if (buf[0] != '\0')					\
 			strlcat(buf, ", ", sizeof(buf));		\
 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
 		mflags &= ~(flag);					\
 	}								\
 } while (0)
 	MNT_FLAG(MNT_RDONLY);
 	MNT_FLAG(MNT_SYNCHRONOUS);
 	MNT_FLAG(MNT_NOEXEC);
 	MNT_FLAG(MNT_NOSUID);
 	MNT_FLAG(MNT_NFS4ACLS);
 	MNT_FLAG(MNT_UNION);
 	MNT_FLAG(MNT_ASYNC);
 	MNT_FLAG(MNT_SUIDDIR);
 	MNT_FLAG(MNT_SOFTDEP);
 	MNT_FLAG(MNT_NOSYMFOLLOW);
 	MNT_FLAG(MNT_GJOURNAL);
 	MNT_FLAG(MNT_MULTILABEL);
 	MNT_FLAG(MNT_ACLS);
 	MNT_FLAG(MNT_NOATIME);
 	MNT_FLAG(MNT_NOCLUSTERR);
 	MNT_FLAG(MNT_NOCLUSTERW);
 	MNT_FLAG(MNT_SUJ);
 	MNT_FLAG(MNT_EXRDONLY);
 	MNT_FLAG(MNT_EXPORTED);
 	MNT_FLAG(MNT_DEFEXPORTED);
 	MNT_FLAG(MNT_EXPORTANON);
 	MNT_FLAG(MNT_EXKERB);
 	MNT_FLAG(MNT_EXPUBLIC);
 	MNT_FLAG(MNT_LOCAL);
 	MNT_FLAG(MNT_QUOTA);
 	MNT_FLAG(MNT_ROOTFS);
 	MNT_FLAG(MNT_USER);
 	MNT_FLAG(MNT_IGNORE);
 	MNT_FLAG(MNT_UPDATE);
 	MNT_FLAG(MNT_DELEXPORT);
 	MNT_FLAG(MNT_RELOAD);
 	MNT_FLAG(MNT_FORCE);
 	MNT_FLAG(MNT_SNAPSHOT);
 	MNT_FLAG(MNT_BYFSID);
 #undef MNT_FLAG
 	if (mflags != 0) {
 		if (buf[0] != '\0')
 			strlcat(buf, ", ", sizeof(buf));
 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
 		    "0x%016jx", mflags);
 	}
 	db_printf("    mnt_flag = %s\n", buf);
 
 	buf[0] = '\0';
 	flags = mp->mnt_kern_flag;
 #define	MNT_KERN_FLAG(flag)	do {					\
 	if (flags & (flag)) {						\
 		if (buf[0] != '\0')					\
 			strlcat(buf, ", ", sizeof(buf));		\
 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
 		flags &= ~(flag);					\
 	}								\
 } while (0)
 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
 	MNT_KERN_FLAG(MNTK_ASYNC);
 	MNT_KERN_FLAG(MNTK_SOFTDEP);
 	MNT_KERN_FLAG(MNTK_DRAINING);
 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
 	MNT_KERN_FLAG(MNTK_NO_IOPF);
 	MNT_KERN_FLAG(MNTK_VGONE_UPPER);
 	MNT_KERN_FLAG(MNTK_VGONE_WAITER);
 	MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT);
 	MNT_KERN_FLAG(MNTK_MARKER);
 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
 	MNT_KERN_FLAG(MNTK_NOASYNC);
 	MNT_KERN_FLAG(MNTK_UNMOUNT);
 	MNT_KERN_FLAG(MNTK_MWAIT);
 	MNT_KERN_FLAG(MNTK_SUSPEND);
 	MNT_KERN_FLAG(MNTK_SUSPEND2);
 	MNT_KERN_FLAG(MNTK_SUSPENDED);
 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
 	MNT_KERN_FLAG(MNTK_NOKNOTE);
 #undef MNT_KERN_FLAG
 	if (flags != 0) {
 		if (buf[0] != '\0')
 			strlcat(buf, ", ", sizeof(buf));
 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
 		    "0x%08x", flags);
 	}
 	db_printf("    mnt_kern_flag = %s\n", buf);
 
 	db_printf("    mnt_opt = ");
 	opt = TAILQ_FIRST(mp->mnt_opt);
 	if (opt != NULL) {
 		db_printf("%s", opt->name);
 		opt = TAILQ_NEXT(opt, link);
 		while (opt != NULL) {
 			db_printf(", %s", opt->name);
 			opt = TAILQ_NEXT(opt, link);
 		}
 	}
 	db_printf("\n");
 
 	sp = &mp->mnt_stat;
 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
 
 	db_printf("    mnt_cred = { uid=%u ruid=%u",
 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
 	if (jailed(mp->mnt_cred))
 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
 	db_printf(" }\n");
 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
 	db_printf("    mnt_lazyvnodelistsize = %d\n",
 	    mp->mnt_lazyvnodelistsize);
 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
 	db_printf("    mnt_secondary_accwrites = %d\n",
 	    mp->mnt_secondary_accwrites);
 	db_printf("    mnt_gjprovider = %s\n",
 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
 
 	db_printf("\n\nList of active vnodes\n");
 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
 			vn_printf(vp, "vnode ");
 			if (db_pager_quit)
 				break;
 		}
 	}
 	db_printf("\n\nList of inactive vnodes\n");
 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
 			vn_printf(vp, "vnode ");
 			if (db_pager_quit)
 				break;
 		}
 	}
 }
 #endif	/* DDB */
 
 /*
  * Fill in a struct xvfsconf based on a struct vfsconf.
  */
 static int
 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
 {
 	struct xvfsconf xvfsp;
 
 	bzero(&xvfsp, sizeof(xvfsp));
 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
 	xvfsp.vfc_flags = vfsp->vfc_flags;
 	/*
 	 * These are unused in userland, we keep them
 	 * to not break binary compatibility.
 	 */
 	xvfsp.vfc_vfsops = NULL;
 	xvfsp.vfc_next = NULL;
 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
 }
 
 #ifdef COMPAT_FREEBSD32
 struct xvfsconf32 {
 	uint32_t	vfc_vfsops;
 	char		vfc_name[MFSNAMELEN];
 	int32_t		vfc_typenum;
 	int32_t		vfc_refcount;
 	int32_t		vfc_flags;
 	uint32_t	vfc_next;
 };
 
 static int
 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
 {
 	struct xvfsconf32 xvfsp;
 
 	bzero(&xvfsp, sizeof(xvfsp));
 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
 	xvfsp.vfc_flags = vfsp->vfc_flags;
 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
 }
 #endif
 
 /*
  * Top level filesystem related information gathering.
  */
 static int
 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
 {
 	struct vfsconf *vfsp;
 	int error;
 
 	error = 0;
 	vfsconf_slock();
 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
 #ifdef COMPAT_FREEBSD32
 		if (req->flags & SCTL_MASK32)
 			error = vfsconf2x32(req, vfsp);
 		else
 #endif
 			error = vfsconf2x(req, vfsp);
 		if (error)
 			break;
 	}
 	vfsconf_sunlock();
 	return (error);
 }
 
 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
     "S,xvfsconf", "List of all configured filesystems");
 
 #ifndef BURN_BRIDGES
 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
 
 static int
 vfs_sysctl(SYSCTL_HANDLER_ARGS)
 {
 	int *name = (int *)arg1 - 1;	/* XXX */
 	u_int namelen = arg2 + 1;	/* XXX */
 	struct vfsconf *vfsp;
 
 	log(LOG_WARNING, "userland calling deprecated sysctl, "
 	    "please rebuild world\n");
 
 #if 1 || defined(COMPAT_PRELITE2)
 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
 	if (namelen == 1)
 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
 #endif
 
 	switch (name[1]) {
 	case VFS_MAXTYPENUM:
 		if (namelen != 2)
 			return (ENOTDIR);
 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
 	case VFS_CONF:
 		if (namelen != 3)
 			return (ENOTDIR);	/* overloaded */
 		vfsconf_slock();
 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
 			if (vfsp->vfc_typenum == name[2])
 				break;
 		}
 		vfsconf_sunlock();
 		if (vfsp == NULL)
 			return (EOPNOTSUPP);
 #ifdef COMPAT_FREEBSD32
 		if (req->flags & SCTL_MASK32)
 			return (vfsconf2x32(req, vfsp));
 		else
 #endif
 			return (vfsconf2x(req, vfsp));
 	}
 	return (EOPNOTSUPP);
 }
 
 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
     CTLFLAG_MPSAFE, vfs_sysctl,
     "Generic filesystem");
 
 #if 1 || defined(COMPAT_PRELITE2)
 
 static int
 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
 {
 	int error;
 	struct vfsconf *vfsp;
 	struct ovfsconf ovfs;
 
 	vfsconf_slock();
 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
 		bzero(&ovfs, sizeof(ovfs));
 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
 		ovfs.vfc_index = vfsp->vfc_typenum;
 		ovfs.vfc_refcount = vfsp->vfc_refcount;
 		ovfs.vfc_flags = vfsp->vfc_flags;
 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
 		if (error != 0) {
 			vfsconf_sunlock();
 			return (error);
 		}
 	}
 	vfsconf_sunlock();
 	return (0);
 }
 
 #endif /* 1 || COMPAT_PRELITE2 */
 #endif /* !BURN_BRIDGES */
 
 #define KINFO_VNODESLOP		10
 #ifdef notyet
 /*
  * Dump vnode list (via sysctl).
  */
 /* ARGSUSED */
 static int
 sysctl_vnode(SYSCTL_HANDLER_ARGS)
 {
 	struct xvnode *xvn;
 	struct mount *mp;
 	struct vnode *vp;
 	int error, len, n;
 
 	/*
 	 * Stale numvnodes access is not fatal here.
 	 */
 	req->lock = 0;
 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
 	if (!req->oldptr)
 		/* Make an estimate */
 		return (SYSCTL_OUT(req, 0, len));
 
 	error = sysctl_wire_old_buffer(req, 0);
 	if (error != 0)
 		return (error);
 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
 	n = 0;
 	mtx_lock(&mountlist_mtx);
 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
 			continue;
 		MNT_ILOCK(mp);
 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
 			if (n == len)
 				break;
 			vref(vp);
 			xvn[n].xv_size = sizeof *xvn;
 			xvn[n].xv_vnode = vp;
 			xvn[n].xv_id = 0;	/* XXX compat */
 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
 			XV_COPY(usecount);
 			XV_COPY(writecount);
 			XV_COPY(holdcnt);
 			XV_COPY(mount);
 			XV_COPY(numoutput);
 			XV_COPY(type);
 #undef XV_COPY
 			xvn[n].xv_flag = vp->v_vflag;
 
 			switch (vp->v_type) {
 			case VREG:
 			case VDIR:
 			case VLNK:
 				break;
 			case VBLK:
 			case VCHR:
 				if (vp->v_rdev == NULL) {
 					vrele(vp);
 					continue;
 				}
 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
 				break;
 			case VSOCK:
 				xvn[n].xv_socket = vp->v_socket;
 				break;
 			case VFIFO:
 				xvn[n].xv_fifo = vp->v_fifoinfo;
 				break;
 			case VNON:
 			case VBAD:
 			default:
 				/* shouldn't happen? */
 				vrele(vp);
 				continue;
 			}
 			vrele(vp);
 			++n;
 		}
 		MNT_IUNLOCK(mp);
 		mtx_lock(&mountlist_mtx);
 		vfs_unbusy(mp);
 		if (n == len)
 			break;
 	}
 	mtx_unlock(&mountlist_mtx);
 
 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
 	free(xvn, M_TEMP);
 	return (error);
 }
 
 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
     CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
     "");
 #endif
 
 static void
 unmount_or_warn(struct mount *mp)
 {
 	int error;
 
 	error = dounmount(mp, MNT_FORCE, curthread);
 	if (error != 0) {
 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
 		if (error == EBUSY)
 			printf("BUSY)\n");
 		else
 			printf("%d)\n", error);
 	}
 }
 
 /*
  * Unmount all filesystems. The list is traversed in reverse order
  * of mounting to avoid dependencies.
  */
 void
 vfs_unmountall(void)
 {
 	struct mount *mp, *tmp;
 
 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
 
 	/*
 	 * Since this only runs when rebooting, it is not interlocked.
 	 */
 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
 		vfs_ref(mp);
 
 		/*
 		 * Forcibly unmounting "/dev" before "/" would prevent clean
 		 * unmount of the latter.
 		 */
 		if (mp == rootdevmp)
 			continue;
 
 		unmount_or_warn(mp);
 	}
 
 	if (rootdevmp != NULL)
 		unmount_or_warn(rootdevmp);
 }
 
 static void
 vfs_deferred_inactive(struct vnode *vp, int lkflags)
 {
 
 	ASSERT_VI_LOCKED(vp, __func__);
 	VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp, ("VI_DEFINACT still set"));
 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
 		vdropl(vp);
 		return;
 	}
 	if (vn_lock(vp, lkflags) == 0) {
 		VI_LOCK(vp);
 		vinactive(vp);
 		VOP_UNLOCK(vp);
 		vdropl(vp);
 		return;
 	}
 	vdefer_inactive_unlocked(vp);
 }
 
 static int
 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
 {
 
 	return (vp->v_iflag & VI_DEFINACT);
 }
 
 static void __noinline
 vfs_periodic_inactive(struct mount *mp, int flags)
 {
 	struct vnode *vp, *mvp;
 	int lkflags;
 
 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
 	if (flags != MNT_WAIT)
 		lkflags |= LK_NOWAIT;
 
 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
 			VI_UNLOCK(vp);
 			continue;
 		}
 		vp->v_iflag &= ~VI_DEFINACT;
 		vfs_deferred_inactive(vp, lkflags);
 	}
 }
 
 static inline bool
 vfs_want_msync(struct vnode *vp)
 {
 	struct vm_object *obj;
 
 	/*
 	 * This test may be performed without any locks held.
 	 * We rely on vm_object's type stability.
 	 */
 	if (vp->v_vflag & VV_NOSYNC)
 		return (false);
 	obj = vp->v_object;
 	return (obj != NULL && vm_object_mightbedirty(obj));
 }
 
 static int
 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
 {
 
 	if (vp->v_vflag & VV_NOSYNC)
 		return (false);
 	if (vp->v_iflag & VI_DEFINACT)
 		return (true);
 	return (vfs_want_msync(vp));
 }
 
 static void __noinline
 vfs_periodic_msync_inactive(struct mount *mp, int flags)
 {
 	struct vnode *vp, *mvp;
 	struct vm_object *obj;
 	int lkflags, objflags;
 	bool seen_defer;
 
 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
 	if (flags != MNT_WAIT) {
 		lkflags |= LK_NOWAIT;
 		objflags = OBJPC_NOSYNC;
 	} else {
 		objflags = OBJPC_SYNC;
 	}
 
 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
 		seen_defer = false;
 		if (vp->v_iflag & VI_DEFINACT) {
 			vp->v_iflag &= ~VI_DEFINACT;
 			seen_defer = true;
 		}
 		if (!vfs_want_msync(vp)) {
 			if (seen_defer)
 				vfs_deferred_inactive(vp, lkflags);
 			else
 				VI_UNLOCK(vp);
 			continue;
 		}
 		if (vget(vp, lkflags) == 0) {
 			obj = vp->v_object;
 			if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
 				VM_OBJECT_WLOCK(obj);
 				vm_object_page_clean(obj, 0, 0, objflags);
 				VM_OBJECT_WUNLOCK(obj);
 			}
 			vput(vp);
 			if (seen_defer)
 				vdrop(vp);
 		} else {
 			if (seen_defer)
 				vdefer_inactive_unlocked(vp);
 		}
 	}
 }
 
 void
 vfs_periodic(struct mount *mp, int flags)
 {
 
 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
 
 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
 		vfs_periodic_inactive(mp, flags);
 	else
 		vfs_periodic_msync_inactive(mp, flags);
 }
 
 static void
 destroy_vpollinfo_free(struct vpollinfo *vi)
 {
 
 	knlist_destroy(&vi->vpi_selinfo.si_note);
 	mtx_destroy(&vi->vpi_lock);
 	free(vi, M_VNODEPOLL);
 }
 
 static void
 destroy_vpollinfo(struct vpollinfo *vi)
 {
 
 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
 	seldrain(&vi->vpi_selinfo);
 	destroy_vpollinfo_free(vi);
 }
 
 /*
  * Initialize per-vnode helper structure to hold poll-related state.
  */
 void
 v_addpollinfo(struct vnode *vp)
 {
 	struct vpollinfo *vi;
 
 	if (vp->v_pollinfo != NULL)
 		return;
 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
 	    vfs_knlunlock, vfs_knl_assert_lock);
 	VI_LOCK(vp);
 	if (vp->v_pollinfo != NULL) {
 		VI_UNLOCK(vp);
 		destroy_vpollinfo_free(vi);
 		return;
 	}
 	vp->v_pollinfo = vi;
 	VI_UNLOCK(vp);
 }
 
 /*
  * Record a process's interest in events which might happen to
  * a vnode.  Because poll uses the historic select-style interface
  * internally, this routine serves as both the ``check for any
  * pending events'' and the ``record my interest in future events''
  * functions.  (These are done together, while the lock is held,
  * to avoid race conditions.)
  */
 int
 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
 {
 
 	v_addpollinfo(vp);
 	mtx_lock(&vp->v_pollinfo->vpi_lock);
 	if (vp->v_pollinfo->vpi_revents & events) {
 		/*
 		 * This leaves events we are not interested
 		 * in available for the other process which
 		 * which presumably had requested them
 		 * (otherwise they would never have been
 		 * recorded).
 		 */
 		events &= vp->v_pollinfo->vpi_revents;
 		vp->v_pollinfo->vpi_revents &= ~events;
 
 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
 		return (events);
 	}
 	vp->v_pollinfo->vpi_events |= events;
 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
 	return (0);
 }
 
 /*
  * Routine to create and manage a filesystem syncer vnode.
  */
 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
 static int	sync_fsync(struct  vop_fsync_args *);
 static int	sync_inactive(struct  vop_inactive_args *);
 static int	sync_reclaim(struct  vop_reclaim_args *);
 
 static struct vop_vector sync_vnodeops = {
 	.vop_bypass =	VOP_EOPNOTSUPP,
 	.vop_close =	sync_close,		/* close */
 	.vop_fsync =	sync_fsync,		/* fsync */
 	.vop_getwritemount = vop_stdgetwritemount,
 	.vop_inactive =	sync_inactive,	/* inactive */
 	.vop_need_inactive = vop_stdneed_inactive, /* need_inactive */
 	.vop_reclaim =	sync_reclaim,	/* reclaim */
 	.vop_lock1 =	vop_stdlock,	/* lock */
 	.vop_unlock =	vop_stdunlock,	/* unlock */
 	.vop_islocked =	vop_stdislocked,	/* islocked */
 };
 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
 
 /*
  * Create a new filesystem syncer vnode for the specified mount point.
  */
 void
 vfs_allocate_syncvnode(struct mount *mp)
 {
 	struct vnode *vp;
 	struct bufobj *bo;
 	static long start, incr, next;
 	int error;
 
 	/* Allocate a new vnode */
 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
 	if (error != 0)
 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
 	vp->v_type = VNON;
 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 	vp->v_vflag |= VV_FORCEINSMQ;
 	error = insmntque(vp, mp);
 	if (error != 0)
 		panic("vfs_allocate_syncvnode: insmntque() failed");
 	vp->v_vflag &= ~VV_FORCEINSMQ;
 	VOP_UNLOCK(vp);
 	/*
 	 * Place the vnode onto the syncer worklist. We attempt to
 	 * scatter them about on the list so that they will go off
 	 * at evenly distributed times even if all the filesystems
 	 * are mounted at once.
 	 */
 	next += incr;
 	if (next == 0 || next > syncer_maxdelay) {
 		start /= 2;
 		incr /= 2;
 		if (start == 0) {
 			start = syncer_maxdelay / 2;
 			incr = syncer_maxdelay;
 		}
 		next = start;
 	}
 	bo = &vp->v_bufobj;
 	BO_LOCK(bo);
 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
 	mtx_lock(&sync_mtx);
 	sync_vnode_count++;
 	if (mp->mnt_syncer == NULL) {
 		mp->mnt_syncer = vp;
 		vp = NULL;
 	}
 	mtx_unlock(&sync_mtx);
 	BO_UNLOCK(bo);
 	if (vp != NULL) {
 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 		vgone(vp);
 		vput(vp);
 	}
 }
 
 void
 vfs_deallocate_syncvnode(struct mount *mp)
 {
 	struct vnode *vp;
 
 	mtx_lock(&sync_mtx);
 	vp = mp->mnt_syncer;
 	if (vp != NULL)
 		mp->mnt_syncer = NULL;
 	mtx_unlock(&sync_mtx);
 	if (vp != NULL)
 		vrele(vp);
 }
 
 /*
  * Do a lazy sync of the filesystem.
  */
 static int
 sync_fsync(struct vop_fsync_args *ap)
 {
 	struct vnode *syncvp = ap->a_vp;
 	struct mount *mp = syncvp->v_mount;
 	int error, save;
 	struct bufobj *bo;
 
 	/*
 	 * We only need to do something if this is a lazy evaluation.
 	 */
 	if (ap->a_waitfor != MNT_LAZY)
 		return (0);
 
 	/*
 	 * Move ourselves to the back of the sync list.
 	 */
 	bo = &syncvp->v_bufobj;
 	BO_LOCK(bo);
 	vn_syncer_add_to_worklist(bo, syncdelay);
 	BO_UNLOCK(bo);
 
 	/*
 	 * Walk the list of vnodes pushing all that are dirty and
 	 * not already on the sync list.
 	 */
 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
 		return (0);
 	VOP_UNLOCK(syncvp);
 	save = curthread_pflags_set(TDP_SYNCIO);
 	/*
 	 * The filesystem at hand may be idle with free vnodes stored in the
 	 * batch.  Return them instead of letting them stay there indefinitely.
 	 */
 	vfs_periodic(mp, MNT_NOWAIT);
 	error = VFS_SYNC(mp, MNT_LAZY);
 	curthread_pflags_restore(save);
 	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
 	vfs_unbusy(mp);
 	return (error);
 }
 
 /*
  * The syncer vnode is no referenced.
  */
 static int
 sync_inactive(struct vop_inactive_args *ap)
 {
 
 	vgone(ap->a_vp);
 	return (0);
 }
 
 /*
  * The syncer vnode is no longer needed and is being decommissioned.
  *
  * Modifications to the worklist must be protected by sync_mtx.
  */
 static int
 sync_reclaim(struct vop_reclaim_args *ap)
 {
 	struct vnode *vp = ap->a_vp;
 	struct bufobj *bo;
 
 	bo = &vp->v_bufobj;
 	BO_LOCK(bo);
 	mtx_lock(&sync_mtx);
 	if (vp->v_mount->mnt_syncer == vp)
 		vp->v_mount->mnt_syncer = NULL;
 	if (bo->bo_flag & BO_ONWORKLST) {
 		LIST_REMOVE(bo, bo_synclist);
 		syncer_worklist_len--;
 		sync_vnode_count--;
 		bo->bo_flag &= ~BO_ONWORKLST;
 	}
 	mtx_unlock(&sync_mtx);
 	BO_UNLOCK(bo);
 
 	return (0);
 }
 
 int
 vn_need_pageq_flush(struct vnode *vp)
 {
 	struct vm_object *obj;
 
 	obj = vp->v_object;
 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
 	    vm_object_mightbedirty(obj));
 }
 
 /*
  * Check if vnode represents a disk device
  */
 bool
 vn_isdisk_error(struct vnode *vp, int *errp)
 {
 	int error;
 
 	if (vp->v_type != VCHR) {
 		error = ENOTBLK;
 		goto out;
 	}
 	error = 0;
 	dev_lock();
 	if (vp->v_rdev == NULL)
 		error = ENXIO;
 	else if (vp->v_rdev->si_devsw == NULL)
 		error = ENXIO;
 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
 		error = ENOTBLK;
 	dev_unlock();
 out:
 	*errp = error;
 	return (error == 0);
 }
 
 bool
 vn_isdisk(struct vnode *vp)
 {
 	int error;
 
 	return (vn_isdisk_error(vp, &error));
 }
 
 /*
  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
  * the comment above cache_fplookup for details.
  */
 int
 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
 {
 	int error;
 
 	VFS_SMR_ASSERT_ENTERED();
 
 	/* Check the owner. */
 	if (cred->cr_uid == file_uid) {
 		if (file_mode & S_IXUSR)
 			return (0);
 		goto out_error;
 	}
 
 	/* Otherwise, check the groups (first match) */
 	if (groupmember(file_gid, cred)) {
 		if (file_mode & S_IXGRP)
 			return (0);
 		goto out_error;
 	}
 
 	/* Otherwise, check everyone else. */
 	if (file_mode & S_IXOTH)
 		return (0);
 out_error:
 	/*
 	 * Permission check failed, but it is possible denial will get overwritten
 	 * (e.g., when root is traversing through a 700 directory owned by someone
 	 * else).
 	 *
 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
 	 * modules overriding this result. It's quite unclear what semantics
 	 * are allowed for them to operate, thus for safety we don't call them
 	 * from within the SMR section. This also means if any such modules
 	 * are present, we have to let the regular lookup decide.
 	 */
 	error = priv_check_cred_vfs_lookup_nomac(cred);
 	switch (error) {
 	case 0:
 		return (0);
 	case EAGAIN:
 		/*
 		 * MAC modules present.
 		 */
 		return (EAGAIN);
 	case EPERM:
 		return (EACCES);
 	default:
 		return (error);
 	}
 }
 
 /*
  * Common filesystem object access control check routine.  Accepts a
  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
  * Returns 0 on success, or an errno on failure.
  */
 int
 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
     accmode_t accmode, struct ucred *cred)
 {
 	accmode_t dac_granted;
 	accmode_t priv_granted;
 
 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
 	    ("invalid bit in accmode"));
 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
 	    ("VAPPEND without VWRITE"));
 
 	/*
 	 * Look for a normal, non-privileged way to access the file/directory
 	 * as requested.  If it exists, go with that.
 	 */
 
 	dac_granted = 0;
 
 	/* Check the owner. */
 	if (cred->cr_uid == file_uid) {
 		dac_granted |= VADMIN;
 		if (file_mode & S_IXUSR)
 			dac_granted |= VEXEC;
 		if (file_mode & S_IRUSR)
 			dac_granted |= VREAD;
 		if (file_mode & S_IWUSR)
 			dac_granted |= (VWRITE | VAPPEND);
 
 		if ((accmode & dac_granted) == accmode)
 			return (0);
 
 		goto privcheck;
 	}
 
 	/* Otherwise, check the groups (first match) */
 	if (groupmember(file_gid, cred)) {
 		if (file_mode & S_IXGRP)
 			dac_granted |= VEXEC;
 		if (file_mode & S_IRGRP)
 			dac_granted |= VREAD;
 		if (file_mode & S_IWGRP)
 			dac_granted |= (VWRITE | VAPPEND);
 
 		if ((accmode & dac_granted) == accmode)
 			return (0);
 
 		goto privcheck;
 	}
 
 	/* Otherwise, check everyone else. */
 	if (file_mode & S_IXOTH)
 		dac_granted |= VEXEC;
 	if (file_mode & S_IROTH)
 		dac_granted |= VREAD;
 	if (file_mode & S_IWOTH)
 		dac_granted |= (VWRITE | VAPPEND);
 	if ((accmode & dac_granted) == accmode)
 		return (0);
 
 privcheck:
 	/*
 	 * Build a privilege mask to determine if the set of privileges
 	 * satisfies the requirements when combined with the granted mask
 	 * from above.  For each privilege, if the privilege is required,
 	 * bitwise or the request type onto the priv_granted mask.
 	 */
 	priv_granted = 0;
 
 	if (type == VDIR) {
 		/*
 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
 		 * requests, instead of PRIV_VFS_EXEC.
 		 */
 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
 			priv_granted |= VEXEC;
 	} else {
 		/*
 		 * Ensure that at least one execute bit is on. Otherwise,
 		 * a privileged user will always succeed, and we don't want
 		 * this to happen unless the file really is executable.
 		 */
 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
 			priv_granted |= VEXEC;
 	}
 
 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
 	    !priv_check_cred(cred, PRIV_VFS_READ))
 		priv_granted |= VREAD;
 
 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
 		priv_granted |= (VWRITE | VAPPEND);
 
 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
 		priv_granted |= VADMIN;
 
 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
 		return (0);
 	}
 
 	return ((accmode & VADMIN) ? EPERM : EACCES);
 }
 
 /*
  * Credential check based on process requesting service, and per-attribute
  * permissions.
  */
 int
 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
     struct thread *td, accmode_t accmode)
 {
 
 	/*
 	 * Kernel-invoked always succeeds.
 	 */
 	if (cred == NOCRED)
 		return (0);
 
 	/*
 	 * Do not allow privileged processes in jail to directly manipulate
 	 * system attributes.
 	 */
 	switch (attrnamespace) {
 	case EXTATTR_NAMESPACE_SYSTEM:
 		/* Potentially should be: return (EPERM); */
 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
 	case EXTATTR_NAMESPACE_USER:
 		return (VOP_ACCESS(vp, accmode, cred, td));
 	default:
 		return (EPERM);
 	}
 }
 
 #ifdef DEBUG_VFS_LOCKS
 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
     "Drop into debugger on lock violation");
 
 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
     0, "Check for interlock across VOPs");
 
 int vfs_badlock_print = 1;	/* Print lock violations. */
 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
     0, "Print lock violations");
 
 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
     0, "Print vnode details on lock violations");
 
 #ifdef KDB
 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
 #endif
 
 static void
 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
 {
 
 #ifdef KDB
 	if (vfs_badlock_backtrace)
 		kdb_backtrace();
 #endif
 	if (vfs_badlock_vnode)
 		vn_printf(vp, "vnode ");
 	if (vfs_badlock_print)
 		printf("%s: %p %s\n", str, (void *)vp, msg);
 	if (vfs_badlock_ddb)
 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
 }
 
 void
 assert_vi_locked(struct vnode *vp, const char *str)
 {
 
 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
 		vfs_badlock("interlock is not locked but should be", str, vp);
 }
 
 void
 assert_vi_unlocked(struct vnode *vp, const char *str)
 {
 
 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
 		vfs_badlock("interlock is locked but should not be", str, vp);
 }
 
 void
 assert_vop_locked(struct vnode *vp, const char *str)
 {
 	if (KERNEL_PANICKED() || vp == NULL)
 		return;
 
 #ifdef WITNESS
 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
 	    witness_is_owned(&vp->v_vnlock->lock_object) == -1)
 #else
 	int locked = VOP_ISLOCKED(vp);
 	if (locked == 0 || locked == LK_EXCLOTHER)
 #endif
 		vfs_badlock("is not locked but should be", str, vp);
 }
 
 void
 assert_vop_unlocked(struct vnode *vp, const char *str)
 {
 	if (KERNEL_PANICKED() || vp == NULL)
 		return;
 
 #ifdef WITNESS
 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
 	    witness_is_owned(&vp->v_vnlock->lock_object) == 1)
 #else
 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
 #endif
 		vfs_badlock("is locked but should not be", str, vp);
 }
 
 void
 assert_vop_elocked(struct vnode *vp, const char *str)
 {
 	if (KERNEL_PANICKED() || vp == NULL)
 		return;
 
 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
 		vfs_badlock("is not exclusive locked but should be", str, vp);
 }
 #endif /* DEBUG_VFS_LOCKS */
 
 void
 vop_rename_fail(struct vop_rename_args *ap)
 {
 
 	if (ap->a_tvp != NULL)
 		vput(ap->a_tvp);
 	if (ap->a_tdvp == ap->a_tvp)
 		vrele(ap->a_tdvp);
 	else
 		vput(ap->a_tdvp);
 	vrele(ap->a_fdvp);
 	vrele(ap->a_fvp);
 }
 
 void
 vop_rename_pre(void *ap)
 {
 	struct vop_rename_args *a = ap;
 
 #ifdef DEBUG_VFS_LOCKS
 	if (a->a_tvp)
 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
 
 	/* Check the source (from). */
 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
 
 	/* Check the target. */
 	if (a->a_tvp)
 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
 #endif
 	/*
 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
 	 * in vop_rename_post but that's not going to work out since some
 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
 	 *
 	 * For now filesystems are expected to do the relevant calls after they
 	 * decide what vnodes to operate on.
 	 */
 	if (a->a_tdvp != a->a_fdvp)
 		vhold(a->a_fdvp);
 	if (a->a_tvp != a->a_fvp)
 		vhold(a->a_fvp);
 	vhold(a->a_tdvp);
 	if (a->a_tvp)
 		vhold(a->a_tvp);
 }
 
 #ifdef DEBUG_VFS_LOCKS
 void
 vop_fplookup_vexec_debugpre(void *ap __unused)
 {
 
 	VFS_SMR_ASSERT_ENTERED();
 }
 
 void
 vop_fplookup_vexec_debugpost(void *ap __unused, int rc __unused)
 {
 
 	VFS_SMR_ASSERT_ENTERED();
 }
 
 void
 vop_fplookup_symlink_debugpre(void *ap __unused)
 {
 
 	VFS_SMR_ASSERT_ENTERED();
 }
 
 void
 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
 {
 
 	VFS_SMR_ASSERT_ENTERED();
 }
 
 static void
 vop_fsync_debugprepost(struct vnode *vp, const char *name)
 {
 	if (vp->v_type == VCHR)
 		;
 	else if (MNT_EXTENDED_SHARED(vp->v_mount))
 		ASSERT_VOP_LOCKED(vp, name);
 	else
 		ASSERT_VOP_ELOCKED(vp, name);
 }
 
 void
 vop_fsync_debugpre(void *a)
 {
 	struct vop_fsync_args *ap;
 
 	ap = a;
 	vop_fsync_debugprepost(ap->a_vp, "fsync");
 }
 
 void
 vop_fsync_debugpost(void *a, int rc __unused)
 {
 	struct vop_fsync_args *ap;
 
 	ap = a;
 	vop_fsync_debugprepost(ap->a_vp, "fsync");
 }
 
 void
 vop_fdatasync_debugpre(void *a)
 {
 	struct vop_fdatasync_args *ap;
 
 	ap = a;
 	vop_fsync_debugprepost(ap->a_vp, "fsync");
 }
 
 void
 vop_fdatasync_debugpost(void *a, int rc __unused)
 {
 	struct vop_fdatasync_args *ap;
 
 	ap = a;
 	vop_fsync_debugprepost(ap->a_vp, "fsync");
 }
 
 void
 vop_strategy_debugpre(void *ap)
 {
 	struct vop_strategy_args *a;
 	struct buf *bp;
 
 	a = ap;
 	bp = a->a_bp;
 
 	/*
 	 * Cluster ops lock their component buffers but not the IO container.
 	 */
 	if ((bp->b_flags & B_CLUSTER) != 0)
 		return;
 
 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
 		if (vfs_badlock_print)
 			printf(
 			    "VOP_STRATEGY: bp is not locked but should be\n");
 		if (vfs_badlock_ddb)
 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
 	}
 }
 
 void
 vop_lock_debugpre(void *ap)
 {
 	struct vop_lock1_args *a = ap;
 
 	if ((a->a_flags & LK_INTERLOCK) == 0)
 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
 	else
 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
 }
 
 void
 vop_lock_debugpost(void *ap, int rc)
 {
 	struct vop_lock1_args *a = ap;
 
 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
 }
 
 void
 vop_unlock_debugpre(void *ap)
 {
 	struct vop_unlock_args *a = ap;
 
 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
 }
 
 void
 vop_need_inactive_debugpre(void *ap)
 {
 	struct vop_need_inactive_args *a = ap;
 
 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
 }
 
 void
 vop_need_inactive_debugpost(void *ap, int rc)
 {
 	struct vop_need_inactive_args *a = ap;
 
 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
 }
 #endif
 
 void
 vop_create_pre(void *ap)
 {
 	struct vop_create_args *a;
 	struct vnode *dvp;
 
 	a = ap;
 	dvp = a->a_dvp;
 	vn_seqc_write_begin(dvp);
 }
 
 void
 vop_create_post(void *ap, int rc)
 {
 	struct vop_create_args *a;
 	struct vnode *dvp;
 
 	a = ap;
 	dvp = a->a_dvp;
 	vn_seqc_write_end(dvp);
 	if (!rc)
 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
 }
 
 void
 vop_whiteout_pre(void *ap)
 {
 	struct vop_whiteout_args *a;
 	struct vnode *dvp;
 
 	a = ap;
 	dvp = a->a_dvp;
 	vn_seqc_write_begin(dvp);
 }
 
 void
 vop_whiteout_post(void *ap, int rc)
 {
 	struct vop_whiteout_args *a;
 	struct vnode *dvp;
 
 	a = ap;
 	dvp = a->a_dvp;
 	vn_seqc_write_end(dvp);
 }
 
 void
 vop_deleteextattr_pre(void *ap)
 {
 	struct vop_deleteextattr_args *a;
 	struct vnode *vp;
 
 	a = ap;
 	vp = a->a_vp;
 	vn_seqc_write_begin(vp);
 }
 
 void
 vop_deleteextattr_post(void *ap, int rc)
 {
 	struct vop_deleteextattr_args *a;
 	struct vnode *vp;
 
 	a = ap;
 	vp = a->a_vp;
 	vn_seqc_write_end(vp);
 	if (!rc)
 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
 }
 
 void
 vop_link_pre(void *ap)
 {
 	struct vop_link_args *a;
 	struct vnode *vp, *tdvp;
 
 	a = ap;
 	vp = a->a_vp;
 	tdvp = a->a_tdvp;
 	vn_seqc_write_begin(vp);
 	vn_seqc_write_begin(tdvp);
 }
 
 void
 vop_link_post(void *ap, int rc)
 {
 	struct vop_link_args *a;
 	struct vnode *vp, *tdvp;
 
 	a = ap;
 	vp = a->a_vp;
 	tdvp = a->a_tdvp;
 	vn_seqc_write_end(vp);
 	vn_seqc_write_end(tdvp);
 	if (!rc) {
 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
 	}
 }
 
 void
 vop_mkdir_pre(void *ap)
 {
 	struct vop_mkdir_args *a;
 	struct vnode *dvp;
 
 	a = ap;
 	dvp = a->a_dvp;
 	vn_seqc_write_begin(dvp);
 }
 
 void
 vop_mkdir_post(void *ap, int rc)
 {
 	struct vop_mkdir_args *a;
 	struct vnode *dvp;
 
 	a = ap;
 	dvp = a->a_dvp;
 	vn_seqc_write_end(dvp);
 	if (!rc)
 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
 }
 
 #ifdef DEBUG_VFS_LOCKS
 void
 vop_mkdir_debugpost(void *ap, int rc)
 {
 	struct vop_mkdir_args *a;
 
 	a = ap;
 	if (!rc)
 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
 }
 #endif
 
 void
 vop_mknod_pre(void *ap)
 {
 	struct vop_mknod_args *a;
 	struct vnode *dvp;
 
 	a = ap;
 	dvp = a->a_dvp;
 	vn_seqc_write_begin(dvp);
 }
 
 void
 vop_mknod_post(void *ap, int rc)
 {
 	struct vop_mknod_args *a;
 	struct vnode *dvp;
 
 	a = ap;
 	dvp = a->a_dvp;
 	vn_seqc_write_end(dvp);
 	if (!rc)
 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
 }
 
 void
 vop_reclaim_post(void *ap, int rc)
 {
 	struct vop_reclaim_args *a;
 	struct vnode *vp;
 
 	a = ap;
 	vp = a->a_vp;
 	ASSERT_VOP_IN_SEQC(vp);
 	if (!rc)
 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
 }
 
 void
 vop_remove_pre(void *ap)
 {
 	struct vop_remove_args *a;
 	struct vnode *dvp, *vp;
 
 	a = ap;
 	dvp = a->a_dvp;
 	vp = a->a_vp;
 	vn_seqc_write_begin(dvp);
 	vn_seqc_write_begin(vp);
 }
 
 void
 vop_remove_post(void *ap, int rc)
 {
 	struct vop_remove_args *a;
 	struct vnode *dvp, *vp;
 
 	a = ap;
 	dvp = a->a_dvp;
 	vp = a->a_vp;
 	vn_seqc_write_end(dvp);
 	vn_seqc_write_end(vp);
 	if (!rc) {
 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
 	}
 }
 
 void
 vop_rename_post(void *ap, int rc)
 {
 	struct vop_rename_args *a = ap;
 	long hint;
 
 	if (!rc) {
 		hint = NOTE_WRITE;
 		if (a->a_fdvp == a->a_tdvp) {
 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
 				hint |= NOTE_LINK;
 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
 		} else {
 			hint |= NOTE_EXTEND;
 			if (a->a_fvp->v_type == VDIR)
 				hint |= NOTE_LINK;
 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
 
 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
 			    a->a_tvp->v_type == VDIR)
 				hint &= ~NOTE_LINK;
 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
 		}
 
 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
 		if (a->a_tvp)
 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
 	}
 	if (a->a_tdvp != a->a_fdvp)
 		vdrop(a->a_fdvp);
 	if (a->a_tvp != a->a_fvp)
 		vdrop(a->a_fvp);
 	vdrop(a->a_tdvp);
 	if (a->a_tvp)
 		vdrop(a->a_tvp);
 }
 
 void
 vop_rmdir_pre(void *ap)
 {
 	struct vop_rmdir_args *a;
 	struct vnode *dvp, *vp;
 
 	a = ap;
 	dvp = a->a_dvp;
 	vp = a->a_vp;
 	vn_seqc_write_begin(dvp);
 	vn_seqc_write_begin(vp);
 }
 
 void
 vop_rmdir_post(void *ap, int rc)
 {
 	struct vop_rmdir_args *a;
 	struct vnode *dvp, *vp;
 
 	a = ap;
 	dvp = a->a_dvp;
 	vp = a->a_vp;
 	vn_seqc_write_end(dvp);
 	vn_seqc_write_end(vp);
 	if (!rc) {
 		vp->v_vflag |= VV_UNLINKED;
 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
 	}
 }
 
 void
 vop_setattr_pre(void *ap)
 {
 	struct vop_setattr_args *a;
 	struct vnode *vp;
 
 	a = ap;
 	vp = a->a_vp;
 	vn_seqc_write_begin(vp);
 }
 
 void
 vop_setattr_post(void *ap, int rc)
 {
 	struct vop_setattr_args *a;
 	struct vnode *vp;
 
 	a = ap;
 	vp = a->a_vp;
 	vn_seqc_write_end(vp);
 	if (!rc)
 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
 }
 
 void
 vop_setacl_pre(void *ap)
 {
 	struct vop_setacl_args *a;
 	struct vnode *vp;
 
 	a = ap;
 	vp = a->a_vp;
 	vn_seqc_write_begin(vp);
 }
 
 void
 vop_setacl_post(void *ap, int rc __unused)
 {
 	struct vop_setacl_args *a;
 	struct vnode *vp;
 
 	a = ap;
 	vp = a->a_vp;
 	vn_seqc_write_end(vp);
 }
 
 void
 vop_setextattr_pre(void *ap)
 {
 	struct vop_setextattr_args *a;
 	struct vnode *vp;
 
 	a = ap;
 	vp = a->a_vp;
 	vn_seqc_write_begin(vp);
 }
 
 void
 vop_setextattr_post(void *ap, int rc)
 {
 	struct vop_setextattr_args *a;
 	struct vnode *vp;
 
 	a = ap;
 	vp = a->a_vp;
 	vn_seqc_write_end(vp);
 	if (!rc)
 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
 }
 
 void
 vop_symlink_pre(void *ap)
 {
 	struct vop_symlink_args *a;
 	struct vnode *dvp;
 
 	a = ap;
 	dvp = a->a_dvp;
 	vn_seqc_write_begin(dvp);
 }
 
 void
 vop_symlink_post(void *ap, int rc)
 {
 	struct vop_symlink_args *a;
 	struct vnode *dvp;
 
 	a = ap;
 	dvp = a->a_dvp;
 	vn_seqc_write_end(dvp);
 	if (!rc)
 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
 }
 
 void
 vop_open_post(void *ap, int rc)
 {
 	struct vop_open_args *a = ap;
 
 	if (!rc)
 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
 }
 
 void
 vop_close_post(void *ap, int rc)
 {
 	struct vop_close_args *a = ap;
 
 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
 	    !VN_IS_DOOMED(a->a_vp))) {
 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
 	}
 }
 
 void
 vop_read_post(void *ap, int rc)
 {
 	struct vop_read_args *a = ap;
 
 	if (!rc)
 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
 }
 
 void
 vop_read_pgcache_post(void *ap, int rc)
 {
 	struct vop_read_pgcache_args *a = ap;
 
 	if (!rc)
 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
 }
 
 void
 vop_readdir_post(void *ap, int rc)
 {
 	struct vop_readdir_args *a = ap;
 
 	if (!rc)
 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
 }
 
 static struct knlist fs_knlist;
 
 static void
 vfs_event_init(void *arg)
 {
 	knlist_init_mtx(&fs_knlist, NULL);
 }
 /* XXX - correct order? */
 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
 
 void
 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
 {
 
 	KNOTE_UNLOCKED(&fs_knlist, event);
 }
 
 static int	filt_fsattach(struct knote *kn);
 static void	filt_fsdetach(struct knote *kn);
 static int	filt_fsevent(struct knote *kn, long hint);
 
 struct filterops fs_filtops = {
 	.f_isfd = 0,
 	.f_attach = filt_fsattach,
 	.f_detach = filt_fsdetach,
 	.f_event = filt_fsevent
 };
 
 static int
 filt_fsattach(struct knote *kn)
 {
 
 	kn->kn_flags |= EV_CLEAR;
 	knlist_add(&fs_knlist, kn, 0);
 	return (0);
 }
 
 static void
 filt_fsdetach(struct knote *kn)
 {
 
 	knlist_remove(&fs_knlist, kn, 0);
 }
 
 static int
 filt_fsevent(struct knote *kn, long hint)
 {
 
 	kn->kn_fflags |= hint;
 	return (kn->kn_fflags != 0);
 }
 
 static int
 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
 {
 	struct vfsidctl vc;
 	int error;
 	struct mount *mp;
 
 	error = SYSCTL_IN(req, &vc, sizeof(vc));
 	if (error)
 		return (error);
 	if (vc.vc_vers != VFS_CTL_VERS1)
 		return (EINVAL);
 	mp = vfs_getvfs(&vc.vc_fsid);
 	if (mp == NULL)
 		return (ENOENT);
 	/* ensure that a specific sysctl goes to the right filesystem. */
 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
 		vfs_rel(mp);
 		return (EINVAL);
 	}
 	VCTLTOREQ(&vc, req);
 	error = VFS_SYSCTL(mp, vc.vc_op, req);
 	vfs_rel(mp);
 	return (error);
 }
 
 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
     NULL, 0, sysctl_vfs_ctl, "",
     "Sysctl by fsid");
 
 /*
  * Function to initialize a va_filerev field sensibly.
  * XXX: Wouldn't a random number make a lot more sense ??
  */
 u_quad_t
 init_va_filerev(void)
 {
 	struct bintime bt;
 
 	getbinuptime(&bt);
 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
 }
 
 static int	filt_vfsread(struct knote *kn, long hint);
 static int	filt_vfswrite(struct knote *kn, long hint);
 static int	filt_vfsvnode(struct knote *kn, long hint);
 static void	filt_vfsdetach(struct knote *kn);
 static struct filterops vfsread_filtops = {
 	.f_isfd = 1,
 	.f_detach = filt_vfsdetach,
 	.f_event = filt_vfsread
 };
 static struct filterops vfswrite_filtops = {
 	.f_isfd = 1,
 	.f_detach = filt_vfsdetach,
 	.f_event = filt_vfswrite
 };
 static struct filterops vfsvnode_filtops = {
 	.f_isfd = 1,
 	.f_detach = filt_vfsdetach,
 	.f_event = filt_vfsvnode
 };
 
 static void
 vfs_knllock(void *arg)
 {
 	struct vnode *vp = arg;
 
 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 }
 
 static void
 vfs_knlunlock(void *arg)
 {
 	struct vnode *vp = arg;
 
 	VOP_UNLOCK(vp);
 }
 
 static void
 vfs_knl_assert_lock(void *arg, int what)
 {
 #ifdef DEBUG_VFS_LOCKS
 	struct vnode *vp = arg;
 
 	if (what == LA_LOCKED)
 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
 	else
 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
 #endif
 }
 
 int
 vfs_kqfilter(struct vop_kqfilter_args *ap)
 {
 	struct vnode *vp = ap->a_vp;
 	struct knote *kn = ap->a_kn;
 	struct knlist *knl;
 
 	switch (kn->kn_filter) {
 	case EVFILT_READ:
 		kn->kn_fop = &vfsread_filtops;
 		break;
 	case EVFILT_WRITE:
 		kn->kn_fop = &vfswrite_filtops;
 		break;
 	case EVFILT_VNODE:
 		kn->kn_fop = &vfsvnode_filtops;
 		break;
 	default:
 		return (EINVAL);
 	}
 
 	kn->kn_hook = (caddr_t)vp;
 
 	v_addpollinfo(vp);
 	if (vp->v_pollinfo == NULL)
 		return (ENOMEM);
 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
 	vhold(vp);
 	knlist_add(knl, kn, 0);
 
 	return (0);
 }
 
 /*
  * Detach knote from vnode
  */
 static void
 filt_vfsdetach(struct knote *kn)
 {
 	struct vnode *vp = (struct vnode *)kn->kn_hook;
 
 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
 	vdrop(vp);
 }
 
 /*ARGSUSED*/
 static int
 filt_vfsread(struct knote *kn, long hint)
 {
 	struct vnode *vp = (struct vnode *)kn->kn_hook;
 	struct vattr va;
 	int res;
 
 	/*
 	 * filesystem is gone, so set the EOF flag and schedule
 	 * the knote for deletion.
 	 */
 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
 		VI_LOCK(vp);
 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
 		VI_UNLOCK(vp);
 		return (1);
 	}
 
 	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
 		return (0);
 
 	VI_LOCK(vp);
 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
 	VI_UNLOCK(vp);
 	return (res);
 }
 
 /*ARGSUSED*/
 static int
 filt_vfswrite(struct knote *kn, long hint)
 {
 	struct vnode *vp = (struct vnode *)kn->kn_hook;
 
 	VI_LOCK(vp);
 
 	/*
 	 * filesystem is gone, so set the EOF flag and schedule
 	 * the knote for deletion.
 	 */
 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
 
 	kn->kn_data = 0;
 	VI_UNLOCK(vp);
 	return (1);
 }
 
 static int
 filt_vfsvnode(struct knote *kn, long hint)
 {
 	struct vnode *vp = (struct vnode *)kn->kn_hook;
 	int res;
 
 	VI_LOCK(vp);
 	if (kn->kn_sfflags & hint)
 		kn->kn_fflags |= hint;
 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
 		kn->kn_flags |= EV_EOF;
 		VI_UNLOCK(vp);
 		return (1);
 	}
 	res = (kn->kn_fflags != 0);
 	VI_UNLOCK(vp);
 	return (res);
 }
 
 int
 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
 {
 	int error;
 
 	if (dp->d_reclen > ap->a_uio->uio_resid)
 		return (ENAMETOOLONG);
 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
 	if (error) {
 		if (ap->a_ncookies != NULL) {
 			if (ap->a_cookies != NULL)
 				free(ap->a_cookies, M_TEMP);
 			ap->a_cookies = NULL;
 			*ap->a_ncookies = 0;
 		}
 		return (error);
 	}
 	if (ap->a_ncookies == NULL)
 		return (0);
 
 	KASSERT(ap->a_cookies,
 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
 
 	*ap->a_cookies = realloc(*ap->a_cookies,
 	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
 	(*ap->a_cookies)[*ap->a_ncookies] = off;
 	*ap->a_ncookies += 1;
 	return (0);
 }
 
 /*
  * The purpose of this routine is to remove granularity from accmode_t,
  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
  * VADMIN and VAPPEND.
  *
  * If it returns 0, the caller is supposed to continue with the usual
  * access checks using 'accmode' as modified by this routine.  If it
  * returns nonzero value, the caller is supposed to return that value
  * as errno.
  *
  * Note that after this routine runs, accmode may be zero.
  */
 int
 vfs_unixify_accmode(accmode_t *accmode)
 {
 	/*
 	 * There is no way to specify explicit "deny" rule using
 	 * file mode or POSIX.1e ACLs.
 	 */
 	if (*accmode & VEXPLICIT_DENY) {
 		*accmode = 0;
 		return (0);
 	}
 
 	/*
 	 * None of these can be translated into usual access bits.
 	 * Also, the common case for NFSv4 ACLs is to not contain
 	 * either of these bits. Caller should check for VWRITE
 	 * on the containing directory instead.
 	 */
 	if (*accmode & (VDELETE_CHILD | VDELETE))
 		return (EPERM);
 
 	if (*accmode & VADMIN_PERMS) {
 		*accmode &= ~VADMIN_PERMS;
 		*accmode |= VADMIN;
 	}
 
 	/*
 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
 	 */
 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
 
 	return (0);
 }
 
 /*
  * Clear out a doomed vnode (if any) and replace it with a new one as long
  * as the fs is not being unmounted. Return the root vnode to the caller.
  */
 static int __noinline
 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
 {
 	struct vnode *vp;
 	int error;
 
 restart:
 	if (mp->mnt_rootvnode != NULL) {
 		MNT_ILOCK(mp);
 		vp = mp->mnt_rootvnode;
 		if (vp != NULL) {
 			if (!VN_IS_DOOMED(vp)) {
 				vrefact(vp);
 				MNT_IUNLOCK(mp);
 				error = vn_lock(vp, flags);
 				if (error == 0) {
 					*vpp = vp;
 					return (0);
 				}
 				vrele(vp);
 				goto restart;
 			}
 			/*
 			 * Clear the old one.
 			 */
 			mp->mnt_rootvnode = NULL;
 		}
 		MNT_IUNLOCK(mp);
 		if (vp != NULL) {
 			vfs_op_barrier_wait(mp);
 			vrele(vp);
 		}
 	}
 	error = VFS_CACHEDROOT(mp, flags, vpp);
 	if (error != 0)
 		return (error);
 	if (mp->mnt_vfs_ops == 0) {
 		MNT_ILOCK(mp);
 		if (mp->mnt_vfs_ops != 0) {
 			MNT_IUNLOCK(mp);
 			return (0);
 		}
 		if (mp->mnt_rootvnode == NULL) {
 			vrefact(*vpp);
 			mp->mnt_rootvnode = *vpp;
 		} else {
 			if (mp->mnt_rootvnode != *vpp) {
 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
 					panic("%s: mismatch between vnode returned "
 					    " by VFS_CACHEDROOT and the one cached "
 					    " (%p != %p)",
 					    __func__, *vpp, mp->mnt_rootvnode);
 				}
 			}
 		}
 		MNT_IUNLOCK(mp);
 	}
 	return (0);
 }
 
 int
 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
 {
 	struct mount_pcpu *mpcpu;
 	struct vnode *vp;
 	int error;
 
 	if (!vfs_op_thread_enter(mp, mpcpu))
 		return (vfs_cache_root_fallback(mp, flags, vpp));
 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
 	if (vp == NULL || VN_IS_DOOMED(vp)) {
 		vfs_op_thread_exit(mp, mpcpu);
 		return (vfs_cache_root_fallback(mp, flags, vpp));
 	}
 	vrefact(vp);
 	vfs_op_thread_exit(mp, mpcpu);
 	error = vn_lock(vp, flags);
 	if (error != 0) {
 		vrele(vp);
 		return (vfs_cache_root_fallback(mp, flags, vpp));
 	}
 	*vpp = vp;
 	return (0);
 }
 
 struct vnode *
 vfs_cache_root_clear(struct mount *mp)
 {
 	struct vnode *vp;
 
 	/*
 	 * ops > 0 guarantees there is nobody who can see this vnode
 	 */
 	MPASS(mp->mnt_vfs_ops > 0);
 	vp = mp->mnt_rootvnode;
 	if (vp != NULL)
 		vn_seqc_write_begin(vp);
 	mp->mnt_rootvnode = NULL;
 	return (vp);
 }
 
 void
 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
 {
 
 	MPASS(mp->mnt_vfs_ops > 0);
 	vrefact(vp);
 	mp->mnt_rootvnode = vp;
 }
 
 /*
  * These are helper functions for filesystems to traverse all
  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
  *
  * This interface replaces MNT_VNODE_FOREACH.
  */
 
 struct vnode *
 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
 {
 	struct vnode *vp;
 
 	maybe_yield();
 	MNT_ILOCK(mp);
 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
 			continue;
 		VI_LOCK(vp);
 		if (VN_IS_DOOMED(vp)) {
 			VI_UNLOCK(vp);
 			continue;
 		}
 		break;
 	}
 	if (vp == NULL) {
 		__mnt_vnode_markerfree_all(mvp, mp);
 		/* MNT_IUNLOCK(mp); -- done in above function */
 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
 		return (NULL);
 	}
 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
 	MNT_IUNLOCK(mp);
 	return (vp);
 }
 
 struct vnode *
 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
 {
 	struct vnode *vp;
 
 	*mvp = vn_alloc_marker(mp);
 	MNT_ILOCK(mp);
 	MNT_REF(mp);
 
 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
 			continue;
 		VI_LOCK(vp);
 		if (VN_IS_DOOMED(vp)) {
 			VI_UNLOCK(vp);
 			continue;
 		}
 		break;
 	}
 	if (vp == NULL) {
 		MNT_REL(mp);
 		MNT_IUNLOCK(mp);
 		vn_free_marker(*mvp);
 		*mvp = NULL;
 		return (NULL);
 	}
 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
 	MNT_IUNLOCK(mp);
 	return (vp);
 }
 
 void
 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
 {
 
 	if (*mvp == NULL) {
 		MNT_IUNLOCK(mp);
 		return;
 	}
 
 	mtx_assert(MNT_MTX(mp), MA_OWNED);
 
 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
 	MNT_REL(mp);
 	MNT_IUNLOCK(mp);
 	vn_free_marker(*mvp);
 	*mvp = NULL;
 }
 
 /*
  * These are helper functions for filesystems to traverse their
  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
  */
 static void
 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
 {
 
 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
 
 	MNT_ILOCK(mp);
 	MNT_REL(mp);
 	MNT_IUNLOCK(mp);
 	vn_free_marker(*mvp);
 	*mvp = NULL;
 }
 
 /*
  * Relock the mp mount vnode list lock with the vp vnode interlock in the
  * conventional lock order during mnt_vnode_next_lazy iteration.
  *
  * On entry, the mount vnode list lock is held and the vnode interlock is not.
  * The list lock is dropped and reacquired.  On success, both locks are held.
  * On failure, the mount vnode list lock is held but the vnode interlock is
  * not, and the procedure may have yielded.
  */
 static bool
 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
     struct vnode *vp)
 {
 
 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
 	    ("%s: bad marker", __func__));
 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
 	    ("%s: inappropriate vnode", __func__));
 	ASSERT_VI_UNLOCKED(vp, __func__);
 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
 
 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
 
 	/*
 	 * Note we may be racing against vdrop which transitioned the hold
 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
 	 * if we are the only user after we get the interlock we will just
 	 * vdrop.
 	 */
 	vhold(vp);
 	mtx_unlock(&mp->mnt_listmtx);
 	VI_LOCK(vp);
 	if (VN_IS_DOOMED(vp)) {
 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
 		goto out_lost;
 	}
 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
 	/*
 	 * There is nothing to do if we are the last user.
 	 */
 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
 		goto out_lost;
 	mtx_lock(&mp->mnt_listmtx);
 	return (true);
 out_lost:
 	vdropl(vp);
 	maybe_yield();
 	mtx_lock(&mp->mnt_listmtx);
 	return (false);
 }
 
 static struct vnode *
 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
     void *cbarg)
 {
 	struct vnode *vp;
 
 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
 restart:
 	vp = TAILQ_NEXT(*mvp, v_lazylist);
 	while (vp != NULL) {
 		if (vp->v_type == VMARKER) {
 			vp = TAILQ_NEXT(vp, v_lazylist);
 			continue;
 		}
 		/*
 		 * See if we want to process the vnode. Note we may encounter a
 		 * long string of vnodes we don't care about and hog the list
 		 * as a result. Check for it and requeue the marker.
 		 */
 		VNPASS(!VN_IS_DOOMED(vp), vp);
 		if (!cb(vp, cbarg)) {
 			if (!should_yield()) {
 				vp = TAILQ_NEXT(vp, v_lazylist);
 				continue;
 			}
 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
 			    v_lazylist);
 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
 			    v_lazylist);
 			mtx_unlock(&mp->mnt_listmtx);
 			kern_yield(PRI_USER);
 			mtx_lock(&mp->mnt_listmtx);
 			goto restart;
 		}
 		/*
 		 * Try-lock because this is the wrong lock order.
 		 */
 		if (!VI_TRYLOCK(vp) &&
 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
 			goto restart;
 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
 		    ("alien vnode on the lazy list %p %p", vp, mp));
 		VNPASS(vp->v_mount == mp, vp);
 		VNPASS(!VN_IS_DOOMED(vp), vp);
 		break;
 	}
 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
 
 	/* Check if we are done */
 	if (vp == NULL) {
 		mtx_unlock(&mp->mnt_listmtx);
 		mnt_vnode_markerfree_lazy(mvp, mp);
 		return (NULL);
 	}
 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
 	mtx_unlock(&mp->mnt_listmtx);
 	ASSERT_VI_LOCKED(vp, "lazy iter");
 	return (vp);
 }
 
 struct vnode *
 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
     void *cbarg)
 {
 
 	maybe_yield();
 	mtx_lock(&mp->mnt_listmtx);
 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
 }
 
 struct vnode *
 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
     void *cbarg)
 {
 	struct vnode *vp;
 
 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
 		return (NULL);
 
 	*mvp = vn_alloc_marker(mp);
 	MNT_ILOCK(mp);
 	MNT_REF(mp);
 	MNT_IUNLOCK(mp);
 
 	mtx_lock(&mp->mnt_listmtx);
 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
 	if (vp == NULL) {
 		mtx_unlock(&mp->mnt_listmtx);
 		mnt_vnode_markerfree_lazy(mvp, mp);
 		return (NULL);
 	}
 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
 }
 
 void
 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
 {
 
 	if (*mvp == NULL)
 		return;
 
 	mtx_lock(&mp->mnt_listmtx);
 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
 	mtx_unlock(&mp->mnt_listmtx);
 	mnt_vnode_markerfree_lazy(mvp, mp);
 }
 
 int
 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
 {
 
 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
 		cnp->cn_flags &= ~NOEXECCHECK;
 		return (0);
 	}
 
 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, cnp->cn_thread));
 }
 
 /*
  * Do not use this variant unless you have means other than the hold count
  * to prevent the vnode from getting freed.
  */
 void
 vn_seqc_write_begin_locked(struct vnode *vp)
 {
 
 	ASSERT_VI_LOCKED(vp, __func__);
 	VNPASS(vp->v_holdcnt > 0, vp);
 	VNPASS(vp->v_seqc_users >= 0, vp);
 	vp->v_seqc_users++;
 	if (vp->v_seqc_users == 1)
 		seqc_sleepable_write_begin(&vp->v_seqc);
 }
 
 void
 vn_seqc_write_begin(struct vnode *vp)
 {
 
 	VI_LOCK(vp);
 	vn_seqc_write_begin_locked(vp);
 	VI_UNLOCK(vp);
 }
 
 void
 vn_seqc_write_end_locked(struct vnode *vp)
 {
 
 	ASSERT_VI_LOCKED(vp, __func__);
 	VNPASS(vp->v_seqc_users > 0, vp);
 	vp->v_seqc_users--;
 	if (vp->v_seqc_users == 0)
 		seqc_sleepable_write_end(&vp->v_seqc);
 }
 
 void
 vn_seqc_write_end(struct vnode *vp)
 {
 
 	VI_LOCK(vp);
 	vn_seqc_write_end_locked(vp);
 	VI_UNLOCK(vp);
 }
 
 /*
  * Special case handling for allocating and freeing vnodes.
  *
  * The counter remains unchanged on free so that a doomed vnode will
  * keep testing as in modify as long as it is accessible with SMR.
  */
 static void
 vn_seqc_init(struct vnode *vp)
 {
 
 	vp->v_seqc = 0;
 	vp->v_seqc_users = 0;
 }
 
 static void
 vn_seqc_write_end_free(struct vnode *vp)
 {
 
 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
 	VNPASS(vp->v_seqc_users == 1, vp);
 }
 
 void
 vn_irflag_set_locked(struct vnode *vp, short toset)
 {
 	short flags;
 
 	ASSERT_VI_LOCKED(vp, __func__);
 	flags = vn_irflag_read(vp);
 	VNASSERT((flags & toset) == 0, vp,
 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
 	    __func__, flags, toset));
 	atomic_store_short(&vp->v_irflag, flags | toset);
 }
 
 void
 vn_irflag_set(struct vnode *vp, short toset)
 {
 
 	VI_LOCK(vp);
 	vn_irflag_set_locked(vp, toset);
 	VI_UNLOCK(vp);
 }
 
 void
 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
 {
 	short flags;
 
 	ASSERT_VI_LOCKED(vp, __func__);
 	flags = vn_irflag_read(vp);
 	atomic_store_short(&vp->v_irflag, flags | toset);
 }
 
 void
 vn_irflag_set_cond(struct vnode *vp, short toset)
 {
 
 	VI_LOCK(vp);
 	vn_irflag_set_cond_locked(vp, toset);
 	VI_UNLOCK(vp);
 }
 
 void
 vn_irflag_unset_locked(struct vnode *vp, short tounset)
 {
 	short flags;
 
 	ASSERT_VI_LOCKED(vp, __func__);
 	flags = vn_irflag_read(vp);
 	VNASSERT((flags & tounset) == tounset, vp,
 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
 	    __func__, flags, tounset));
 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
 }
 
 void
 vn_irflag_unset(struct vnode *vp, short tounset)
 {
 
 	VI_LOCK(vp);
 	vn_irflag_unset_locked(vp, tounset);
 	VI_UNLOCK(vp);
 }