diff --git a/sys/conf/files.riscv b/sys/conf/files.riscv
index d325502e03ee..915bce34603d 100644
--- a/sys/conf/files.riscv
+++ b/sys/conf/files.riscv
@@ -1,87 +1,88 @@
cddl/dev/dtrace/riscv/dtrace_asm.S optional dtrace compile-with "${DTRACE_S}"
cddl/dev/dtrace/riscv/dtrace_isa.c optional dtrace compile-with "${DTRACE_C}"
cddl/dev/dtrace/riscv/dtrace_subr.c optional dtrace compile-with "${DTRACE_C}"
cddl/dev/dtrace/riscv/instr_size.c optional dtrace compile-with "${DTRACE_C}"
cddl/dev/fbt/riscv/fbt_isa.c optional dtrace_fbt | dtraceall compile-with "${FBT_C}"
crypto/des/des_enc.c optional netsmb
dev/ofw/ofw_cpu.c optional fdt
dev/ofw/ofw_pcib.c optional pci fdt
dev/pci/pci_dw.c optional pci fdt
dev/pci/pci_dw_if.m optional pci fdt
dev/pci/pci_host_generic.c optional pci
dev/pci/pci_host_generic_fdt.c optional pci fdt
dev/uart/uart_cpu_fdt.c optional uart fdt
dev/uart/uart_dev_lowrisc.c optional uart_lowrisc
dev/vmm/vmm_dev.c optional vmm
dev/vmm/vmm_stat.c optional vmm
dev/xilinx/axi_quad_spi.c optional xilinx_spi
dev/xilinx/axidma.c optional axidma xdma
dev/xilinx/if_xae.c optional xae
dev/xilinx/xlnx_pcib.c optional pci fdt xlnx_pcib
kern/msi_if.m standard
kern/pic_if.m standard
kern/subr_devmap.c standard
kern/subr_dummy_vdso_tc.c standard
kern/subr_intr.c standard
kern/subr_physmem.c standard
libkern/bcopy.c standard
libkern/memcmp.c standard
libkern/memset.c standard
libkern/strcmp.c standard
libkern/strlen.c standard
libkern/strncmp.c standard
riscv/riscv/aplic.c standard
riscv/riscv/autoconf.c standard
riscv/riscv/bus_machdep.c standard
riscv/riscv/bus_space_asm.S standard
riscv/riscv/busdma_bounce.c standard
riscv/riscv/busdma_machdep.c standard
+riscv/riscv/cache.c standard
riscv/riscv/clock.c standard
riscv/riscv/copyinout.S standard
riscv/riscv/cpufunc_asm.S standard
riscv/riscv/db_disasm.c optional ddb
riscv/riscv/db_interface.c optional ddb
riscv/riscv/db_trace.c optional ddb
riscv/riscv/dump_machdep.c standard
riscv/riscv/elf_machdep.c standard
riscv/riscv/exception.S standard
riscv/riscv/exec_machdep.c standard
riscv/riscv/fpe.c standard
riscv/riscv/gdb_machdep.c optional gdb
riscv/riscv/intc.c standard
riscv/riscv/identcpu.c standard
riscv/riscv/locore.S standard no-obj
riscv/riscv/machdep.c standard
riscv/riscv/minidump_machdep.c standard
riscv/riscv/mp_machdep.c optional smp
riscv/riscv/mem.c standard
riscv/riscv/nexus.c standard
riscv/riscv/ofw_machdep.c optional fdt
riscv/riscv/plic.c standard
riscv/riscv/pmap.c standard
riscv/riscv/ptrace_machdep.c standard
riscv/riscv/riscv_console.c optional rcons
riscv/riscv/riscv_syscon.c optional syscon riscv_syscon fdt
riscv/riscv/sigtramp.S standard
riscv/riscv/sbi.c standard
riscv/riscv/sbi_ipi.c optional smp
riscv/riscv/sdt_machdep.c optional kdtrace_hooks
riscv/riscv/stack_machdep.c optional ddb | stack
riscv/riscv/support.S standard
riscv/riscv/swtch.S standard
riscv/riscv/sys_machdep.c standard
riscv/riscv/trap.c standard
riscv/riscv/timer.c standard
riscv/riscv/uio_machdep.c standard
riscv/riscv/unwind.c optional ddb | kdtrace_hooks | stack
riscv/riscv/vm_machdep.c standard
riscv/vmm/vmm.c optional vmm
riscv/vmm/vmm_aplic.c optional vmm
riscv/vmm/vmm_dev_machdep.c optional vmm
riscv/vmm/vmm_instruction_emul.c optional vmm
riscv/vmm/vmm_riscv.c optional vmm
riscv/vmm/vmm_sbi.c optional vmm
riscv/vmm/vmm_switch.S optional vmm
# Zstd
contrib/zstd/lib/freebsd/zstd_kfreebsd.c optional zstdio compile-with ${ZSTD_C}
diff --git a/sys/riscv/include/cpufunc.h b/sys/riscv/include/cpufunc.h
index 4521e1605d8f..8f5b87d24ce3 100644
--- a/sys/riscv/include/cpufunc.h
+++ b/sys/riscv/include/cpufunc.h
@@ -1,126 +1,154 @@
/*-
* Copyright (c) 2015-2016 Ruslan Bukin
* All rights reserved.
*
* Portions of this software were developed by SRI International and the
* University of Cambridge Computer Laboratory under DARPA/AFRL contract
* FA8750-10-C-0237 ("CTSRD"), as part of the DARPA CRASH research programme.
*
* Portions of this software were developed by the University of Cambridge
* Computer Laboratory as part of the CTSRD Project, with support from the
* UK Higher Education Innovation Fund (HEIF).
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef _MACHINE_CPUFUNC_H_
#define _MACHINE_CPUFUNC_H_
static __inline void
breakpoint(void)
{
__asm("ebreak");
}
#ifdef _KERNEL
+#include
+
#include
static __inline register_t
intr_disable(void)
{
uint64_t ret;
__asm __volatile(
"csrrci %0, sstatus, %1"
: "=&r" (ret) : "i" (SSTATUS_SIE)
);
return (ret & (SSTATUS_SIE));
}
static __inline void
intr_restore(register_t s)
{
__asm __volatile(
"csrs sstatus, %0"
:: "r" (s)
);
}
static __inline void
intr_enable(void)
{
__asm __volatile(
"csrsi sstatus, %0"
:: "i" (SSTATUS_SIE)
);
}
/* NB: fence() is defined as a macro in . */
static __inline void
fence_i(void)
{
__asm __volatile("fence.i" ::: "memory");
}
static __inline void
sfence_vma(void)
{
__asm __volatile("sfence.vma" ::: "memory");
}
static __inline void
sfence_vma_page(uintptr_t addr)
{
__asm __volatile("sfence.vma %0" :: "r" (addr) : "memory");
}
#define rdcycle() csr_read64(cycle)
#define rdtime() csr_read64(time)
#define rdinstret() csr_read64(instret)
#define rdhpmcounter(n) csr_read64(hpmcounter##n)
+/* Cache hooks. */
+
extern int64_t dcache_line_size;
-extern int64_t icache_line_size;
-#define cpu_dcache_wbinv_range(a, s)
-#define cpu_dcache_inv_range(a, s)
-#define cpu_dcache_wb_range(a, s)
+typedef void (*cache_op_t)(vm_offset_t start, vm_size_t size);
+
+struct riscv_cache_ops {
+ cache_op_t dcache_wbinv_range;
+ cache_op_t dcache_inv_range;
+ cache_op_t dcache_wb_range;
+};
+
+extern struct riscv_cache_ops cache_ops;
+
+static __inline void
+cpu_dcache_wbinv_range(vm_offset_t addr, vm_size_t size)
+{
+ if (cache_ops.dcache_wbinv_range != NULL)
+ cache_ops.dcache_wbinv_range(addr, size);
+}
+
+static __inline void
+cpu_dcache_inv_range(vm_offset_t addr, vm_size_t size)
+{
+ if (cache_ops.dcache_inv_range != NULL)
+ cache_ops.dcache_inv_range(addr, size);
+}
+
+static __inline void
+cpu_dcache_wb_range(vm_offset_t addr, vm_size_t size)
+{
+ if (cache_ops.dcache_wb_range != NULL)
+ cache_ops.dcache_wb_range(addr, size);
+}
-#define cpu_idcache_wbinv_range(a, s)
-#define cpu_icache_sync_range(a, s)
-#define cpu_icache_sync_range_checked(a, s)
+void riscv_cache_install_hooks(struct riscv_cache_ops *, u_int);
#define cpufunc_nullop() riscv_nullop()
void riscv_nullop(void);
#endif /* _KERNEL */
#endif /* _MACHINE_CPUFUNC_H_ */
diff --git a/sys/riscv/riscv/cache.c b/sys/riscv/riscv/cache.c
new file mode 100644
index 000000000000..edbaebc9abd6
--- /dev/null
+++ b/sys/riscv/riscv/cache.c
@@ -0,0 +1,53 @@
+/*-
+ * SPDX-License-Identifier: BSD-2-Clause
+ *
+ * Copyright (c) 2024 The FreeBSD Foundation
+ *
+ * This software was developed by Mitchell Horne under
+ * sponsorship from the FreeBSD Foundation.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#include
+#include
+#include
+
+#include
+
+struct riscv_cache_ops __read_frequently cache_ops;
+
+int64_t __read_frequently dcache_line_size; /* The minimum D cache line size */
+
+static bool cache_initialized;
+
+void
+riscv_cache_install_hooks(struct riscv_cache_ops *newops, u_int line_size)
+{
+ if (cache_initialized)
+ panic("cache hooks already installed!");
+
+ bcopy(newops, &cache_ops, sizeof(cache_ops));
+ dcache_line_size = line_size;
+
+ cache_initialized = true;
+}
diff --git a/sys/riscv/riscv/machdep.c b/sys/riscv/riscv/machdep.c
index eda7ebc32bbf..c5da4832dd36 100644
--- a/sys/riscv/riscv/machdep.c
+++ b/sys/riscv/riscv/machdep.c
@@ -1,612 +1,595 @@
/*-
* Copyright (c) 2014 Andrew Turner
* Copyright (c) 2015-2017 Ruslan Bukin
* All rights reserved.
*
* Portions of this software were developed by SRI International and the
* University of Cambridge Computer Laboratory under DARPA/AFRL contract
* FA8750-10-C-0237 ("CTSRD"), as part of the DARPA CRASH research programme.
*
* Portions of this software were developed by the University of Cambridge
* Computer Laboratory as part of the CTSRD Project, with support from the
* UK Higher Education Innovation Fund (HEIF).
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "opt_ddb.h"
#include "opt_kstack_pages.h"
#include "opt_platform.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef DDB
#include
#endif
#ifdef FDT
#include
#include
#include
#endif
struct pcpu __pcpu[MAXCPU];
static struct trapframe proc0_tf;
int early_boot = 1;
int cold = 1;
#define DTB_SIZE_MAX (1024 * 1024)
struct kva_md_info kmi;
-int64_t dcache_line_size; /* The minimum D cache line size */
-int64_t icache_line_size; /* The minimum I cache line size */
-int64_t idcache_line_size; /* The minimum cache line size */
-
#define BOOT_HART_INVALID 0xffffffff
uint32_t boot_hart = BOOT_HART_INVALID; /* The hart we booted on. */
cpuset_t all_harts;
extern int *end;
static char static_kenv[PAGE_SIZE];
static void
cpu_startup(void *dummy)
{
sbi_print_version();
printcpuinfo(0);
printf("real memory = %ju (%ju MB)\n", ptoa((uintmax_t)realmem),
ptoa((uintmax_t)realmem) / (1024 * 1024));
/*
* Display any holes after the first chunk of extended memory.
*/
if (bootverbose) {
int indx;
printf("Physical memory chunk(s):\n");
for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
vm_paddr_t size;
size = phys_avail[indx + 1] - phys_avail[indx];
printf(
"0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
(uintmax_t)phys_avail[indx],
(uintmax_t)phys_avail[indx + 1] - 1,
(uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
}
}
vm_ksubmap_init(&kmi);
printf("avail memory = %ju (%ju MB)\n",
ptoa((uintmax_t)vm_free_count()),
ptoa((uintmax_t)vm_free_count()) / (1024 * 1024));
if (bootverbose)
devmap_print_table();
bufinit();
vm_pager_bufferinit();
}
SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
int
cpu_idle_wakeup(int cpu)
{
return (0);
}
void
cpu_idle(int busy)
{
spinlock_enter();
if (!busy)
cpu_idleclock();
if (!sched_runnable())
__asm __volatile(
"fence \n"
"wfi \n");
if (!busy)
cpu_activeclock();
spinlock_exit();
}
void
cpu_halt(void)
{
/*
* Try to power down using the HSM SBI extension and fall back to a
* simple wfi loop.
*/
intr_disable();
if (sbi_probe_extension(SBI_EXT_ID_HSM) != 0)
sbi_hsm_hart_stop();
for (;;)
__asm __volatile("wfi");
/* NOTREACHED */
}
/*
* Flush the D-cache for non-DMA I/O so that the I-cache can
* be made coherent later.
*/
void
cpu_flush_dcache(void *ptr, size_t len)
{
/* TBD */
}
/* Get current clock frequency for the given CPU ID. */
int
cpu_est_clockrate(int cpu_id, uint64_t *rate)
{
panic("cpu_est_clockrate");
}
void
cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
{
}
void
spinlock_enter(void)
{
struct thread *td;
register_t reg;
td = curthread;
if (td->td_md.md_spinlock_count == 0) {
reg = intr_disable();
td->td_md.md_spinlock_count = 1;
td->td_md.md_saved_sstatus_ie = reg;
critical_enter();
} else
td->td_md.md_spinlock_count++;
}
void
spinlock_exit(void)
{
struct thread *td;
register_t sstatus_ie;
td = curthread;
sstatus_ie = td->td_md.md_saved_sstatus_ie;
td->td_md.md_spinlock_count--;
if (td->td_md.md_spinlock_count == 0) {
critical_exit();
intr_restore(sstatus_ie);
}
}
/*
* Construct a PCB from a trapframe. This is called from kdb_trap() where
* we want to start a backtrace from the function that caused us to enter
* the debugger. We have the context in the trapframe, but base the trace
* on the PCB. The PCB doesn't have to be perfect, as long as it contains
* enough for a backtrace.
*/
void
makectx(struct trapframe *tf, struct pcb *pcb)
{
memcpy(pcb->pcb_s, tf->tf_s, sizeof(tf->tf_s));
pcb->pcb_ra = tf->tf_sepc;
pcb->pcb_sp = tf->tf_sp;
pcb->pcb_gp = tf->tf_gp;
pcb->pcb_tp = tf->tf_tp;
}
static void
init_proc0(vm_offset_t kstack)
{
struct pcpu *pcpup;
pcpup = &__pcpu[0];
proc_linkup0(&proc0, &thread0);
thread0.td_kstack = kstack;
thread0.td_kstack_pages = KSTACK_PAGES;
thread0.td_pcb = (struct pcb *)(thread0.td_kstack +
thread0.td_kstack_pages * PAGE_SIZE) - 1;
thread0.td_pcb->pcb_fpflags = 0;
thread0.td_frame = &proc0_tf;
pcpup->pc_curpcb = thread0.td_pcb;
}
#ifdef FDT
static void
try_load_dtb(caddr_t kmdp)
{
vm_offset_t dtbp;
dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
#if defined(FDT_DTB_STATIC)
/*
* In case the device tree blob was not retrieved (from metadata) try
* to use the statically embedded one.
*/
if (dtbp == (vm_offset_t)NULL)
dtbp = (vm_offset_t)&fdt_static_dtb;
#endif
if (dtbp == (vm_offset_t)NULL) {
printf("ERROR loading DTB\n");
return;
}
if (!OF_install(OFW_FDT, 0))
panic("Cannot install FDT");
if (OF_init((void *)dtbp) != 0)
panic("OF_init failed with the found device tree");
}
#endif
-static void
-cache_setup(void)
-{
-
- /* TODO */
-
- dcache_line_size = 0;
- icache_line_size = 0;
- idcache_line_size = 0;
-}
-
/*
* Fake up a boot descriptor table.
*/
static void
fake_preload_metadata(struct riscv_bootparams *rvbp)
{
static uint32_t fake_preload[48];
vm_offset_t lastaddr;
size_t fake_size, dtb_size;
#define PRELOAD_PUSH_VALUE(type, value) do { \
*(type *)((char *)fake_preload + fake_size) = (value); \
fake_size += sizeof(type); \
} while (0)
#define PRELOAD_PUSH_STRING(str) do { \
uint32_t ssize; \
ssize = strlen(str) + 1; \
PRELOAD_PUSH_VALUE(uint32_t, ssize); \
strcpy(((char *)fake_preload + fake_size), str); \
fake_size += ssize; \
fake_size = roundup(fake_size, sizeof(u_long)); \
} while (0)
fake_size = 0;
lastaddr = (vm_offset_t)&end;
PRELOAD_PUSH_VALUE(uint32_t, MODINFO_NAME);
PRELOAD_PUSH_STRING("kernel");
PRELOAD_PUSH_VALUE(uint32_t, MODINFO_TYPE);
PRELOAD_PUSH_STRING("elf kernel");
PRELOAD_PUSH_VALUE(uint32_t, MODINFO_ADDR);
PRELOAD_PUSH_VALUE(uint32_t, sizeof(vm_offset_t));
PRELOAD_PUSH_VALUE(uint64_t, KERNBASE);
PRELOAD_PUSH_VALUE(uint32_t, MODINFO_SIZE);
PRELOAD_PUSH_VALUE(uint32_t, sizeof(size_t));
PRELOAD_PUSH_VALUE(uint64_t, (size_t)((vm_offset_t)&end - KERNBASE));
/*
* Copy the DTB to KVA space. We are able to dereference the physical
* address due to the identity map created in locore.
*/
lastaddr = roundup(lastaddr, sizeof(int));
PRELOAD_PUSH_VALUE(uint32_t, MODINFO_METADATA | MODINFOMD_DTBP);
PRELOAD_PUSH_VALUE(uint32_t, sizeof(vm_offset_t));
PRELOAD_PUSH_VALUE(vm_offset_t, lastaddr);
dtb_size = fdt_totalsize(rvbp->dtbp_phys);
memmove((void *)lastaddr, (const void *)rvbp->dtbp_phys, dtb_size);
lastaddr = roundup(lastaddr + dtb_size, sizeof(int));
PRELOAD_PUSH_VALUE(uint32_t, MODINFO_METADATA | MODINFOMD_KERNEND);
PRELOAD_PUSH_VALUE(uint32_t, sizeof(vm_offset_t));
PRELOAD_PUSH_VALUE(vm_offset_t, lastaddr);
PRELOAD_PUSH_VALUE(uint32_t, MODINFO_METADATA | MODINFOMD_HOWTO);
PRELOAD_PUSH_VALUE(uint32_t, sizeof(int));
PRELOAD_PUSH_VALUE(int, RB_VERBOSE);
/* End marker */
PRELOAD_PUSH_VALUE(uint32_t, 0);
PRELOAD_PUSH_VALUE(uint32_t, 0);
preload_metadata = (caddr_t)fake_preload;
/* Check if bootloader clobbered part of the kernel with the DTB. */
KASSERT(rvbp->dtbp_phys + dtb_size <= rvbp->kern_phys ||
rvbp->dtbp_phys >= rvbp->kern_phys + (lastaddr - KERNBASE),
("FDT (%lx-%lx) and kernel (%lx-%lx) overlap", rvbp->dtbp_phys,
rvbp->dtbp_phys + dtb_size, rvbp->kern_phys,
rvbp->kern_phys + (lastaddr - KERNBASE)));
KASSERT(fake_size < sizeof(fake_preload),
("Too many fake_preload items"));
if (boothowto & RB_VERBOSE)
printf("FDT phys (%lx-%lx), kernel phys (%lx-%lx)\n",
rvbp->dtbp_phys, rvbp->dtbp_phys + dtb_size,
rvbp->kern_phys, rvbp->kern_phys + (lastaddr - KERNBASE));
}
/* Support for FDT configurations only. */
CTASSERT(FDT);
#ifdef FDT
static void
parse_fdt_bootargs(void)
{
char bootargs[512];
bootargs[sizeof(bootargs) - 1] = '\0';
if (fdt_get_chosen_bootargs(bootargs, sizeof(bootargs) - 1) == 0) {
boothowto |= boot_parse_cmdline(bootargs);
}
}
#endif
static vm_offset_t
parse_metadata(void)
{
caddr_t kmdp;
vm_offset_t lastaddr;
#ifdef DDB
vm_offset_t ksym_start, ksym_end;
#endif
char *kern_envp;
/* Find the kernel address */
kmdp = preload_search_by_type("elf kernel");
if (kmdp == NULL)
kmdp = preload_search_by_type("elf64 kernel");
KASSERT(kmdp != NULL, ("No preload metadata found!"));
/* Read the boot metadata */
boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
lastaddr = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
if (kern_envp != NULL)
init_static_kenv(kern_envp, 0);
else
init_static_kenv(static_kenv, sizeof(static_kenv));
#ifdef DDB
ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
db_fetch_ksymtab(ksym_start, ksym_end, 0);
#endif
#ifdef FDT
try_load_dtb(kmdp);
if (kern_envp == NULL)
parse_fdt_bootargs();
#endif
return (lastaddr);
}
void
initriscv(struct riscv_bootparams *rvbp)
{
struct mem_region mem_regions[FDT_MEM_REGIONS];
struct pcpu *pcpup;
int mem_regions_sz;
vm_offset_t lastaddr;
vm_size_t kernlen;
#ifdef FDT
phandle_t chosen;
uint32_t hart;
#endif
char *env;
TSRAW(&thread0, TS_ENTER, __func__, NULL);
/* Set the pcpu data, this is needed by pmap_bootstrap */
pcpup = &__pcpu[0];
pcpu_init(pcpup, 0, sizeof(struct pcpu));
/* Set the pcpu pointer */
__asm __volatile("mv tp, %0" :: "r"(pcpup));
PCPU_SET(curthread, &thread0);
/* Initialize SBI interface. */
sbi_init();
/* Parse the boot metadata. */
if (rvbp->modulep != 0) {
preload_metadata = (caddr_t)rvbp->modulep;
} else {
fake_preload_metadata(rvbp);
}
lastaddr = parse_metadata();
#ifdef FDT
/*
* Look for the boot hart ID. This was either passed in directly from
* the SBI firmware and handled by locore, or was stored in the device
* tree by an earlier boot stage.
*/
chosen = OF_finddevice("/chosen");
if (OF_getencprop(chosen, "boot-hartid", &hart, sizeof(hart)) != -1) {
boot_hart = hart;
}
#endif
if (boot_hart == BOOT_HART_INVALID) {
panic("Boot hart ID was not properly set");
}
pcpup->pc_hart = boot_hart;
#ifdef FDT
/*
* Exclude reserved memory specified by the device tree. Typically,
* this contains an entry for memory used by the runtime SBI firmware.
*/
if (fdt_get_reserved_mem(mem_regions, &mem_regions_sz) == 0) {
physmem_exclude_regions(mem_regions, mem_regions_sz,
EXFLAG_NODUMP | EXFLAG_NOALLOC);
}
/* Grab physical memory regions information from device tree. */
if (fdt_get_mem_regions(mem_regions, &mem_regions_sz, NULL) != 0) {
panic("Cannot get physical memory regions");
}
physmem_hardware_regions(mem_regions, mem_regions_sz);
#endif
/*
* Identify CPU/ISA features.
*/
identify_cpu(0);
/* Do basic tuning, hz etc */
init_param1();
- cache_setup();
-
#ifdef FDT
/*
* XXX: Unconditionally exclude the lowest 2MB of physical memory, as
* this area is assumed to contain the SBI firmware. This is a little
* fragile, but it is consistent with the platforms we support so far.
*
* TODO: remove this when the all regular booting methods properly
* report their reserved memory in the device tree.
*/
physmem_exclude_region(mem_regions[0].mr_start, L2_SIZE,
EXFLAG_NODUMP | EXFLAG_NOALLOC);
#endif
/* Bootstrap enough of pmap to enter the kernel proper */
kernlen = (lastaddr - KERNBASE);
pmap_bootstrap(rvbp->kern_phys, kernlen);
physmem_init_kernel_globals();
/* Establish static device mappings */
devmap_bootstrap();
cninit();
/*
* Dump the boot metadata. We have to wait for cninit() since console
* output is required. If it's grossly incorrect the kernel will never
* make it this far.
*/
if (getenv_is_true("debug.dump_modinfo_at_boot"))
preload_dump();
init_proc0(rvbp->kern_stack);
msgbufinit(msgbufp, msgbufsize);
mutex_init();
init_param2(physmem);
kdb_init();
#ifdef KDB
if ((boothowto & RB_KDB) != 0)
kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
#endif
env = kern_getenv("kernelname");
if (env != NULL)
strlcpy(kernelname, env, sizeof(kernelname));
if (boothowto & RB_VERBOSE)
physmem_print_tables();
early_boot = 0;
if (bootverbose && kstack_pages != KSTACK_PAGES)
printf("kern.kstack_pages = %d ignored for thread0\n",
kstack_pages);
TSEXIT();
}
diff --git a/sys/riscv/riscv/pmap.c b/sys/riscv/riscv/pmap.c
index 69eb36c2cd4c..e11adba0d832 100644
--- a/sys/riscv/riscv/pmap.c
+++ b/sys/riscv/riscv/pmap.c
@@ -1,5488 +1,5488 @@
/*-
* SPDX-License-Identifier: BSD-4-Clause
*
* Copyright (c) 1991 Regents of the University of California.
* All rights reserved.
* Copyright (c) 1994 John S. Dyson
* All rights reserved.
* Copyright (c) 1994 David Greenman
* All rights reserved.
* Copyright (c) 2003 Peter Wemm
* All rights reserved.
* Copyright (c) 2005-2010 Alan L. Cox
* All rights reserved.
* Copyright (c) 2014 Andrew Turner
* All rights reserved.
* Copyright (c) 2014 The FreeBSD Foundation
* All rights reserved.
* Copyright (c) 2015-2018 Ruslan Bukin
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department and William Jolitz of UUNET Technologies Inc.
*
* Portions of this software were developed by Andrew Turner under
* sponsorship from The FreeBSD Foundation.
*
* Portions of this software were developed by SRI International and the
* University of Cambridge Computer Laboratory under DARPA/AFRL contract
* FA8750-10-C-0237 ("CTSRD"), as part of the DARPA CRASH research programme.
*
* Portions of this software were developed by the University of Cambridge
* Computer Laboratory as part of the CTSRD Project, with support from the
* UK Higher Education Innovation Fund (HEIF).
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright (c) 2003 Networks Associates Technology, Inc.
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Jake Burkholder,
* Safeport Network Services, and Network Associates Laboratories, the
* Security Research Division of Network Associates, Inc. under
* DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
* CHATS research program.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Manages physical address maps.
*
* Since the information managed by this module is
* also stored by the logical address mapping module,
* this module may throw away valid virtual-to-physical
* mappings at almost any time. However, invalidations
* of virtual-to-physical mappings must be done as
* requested.
*
* In order to cope with hardware architectures which
* make virtual-to-physical map invalidates expensive,
* this module may delay invalidate or reduced protection
* operations until such time as they are actually
* necessary. This module is given full information as
* to which processors are currently using which maps,
* and to when physical maps must be made correct.
*/
#include "opt_pmap.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
/*
* Boundary values for the page table page index space:
*
* L3 pages: [0, NUL2E)
* L2 pages: [NUL2E, NUL2E + NUL1E)
* L1 pages: [NUL2E + NUL1E, NUL2E + NUL1E + NUL0E)
*
* Note that these ranges are used in both SV39 and SV48 mode. In SV39 mode the
* ranges are not fully populated since there are at most Ln_ENTRIES^2 L3 pages
* in a set of page tables.
*/
#define NUL0E Ln_ENTRIES
#define NUL1E (Ln_ENTRIES * NUL0E)
#define NUL2E (Ln_ENTRIES * NUL1E)
#ifdef PV_STATS
#define PV_STAT(x) do { x ; } while (0)
#define __pv_stat_used
#else
#define PV_STAT(x) do { } while (0)
#define __pv_stat_used __unused
#endif
#define pmap_l1_pindex(v) (NUL2E + ((v) >> L1_SHIFT))
#define pmap_l2_pindex(v) ((v) >> L2_SHIFT)
#define pa_to_pvh(pa) (&pv_table[pa_index(pa)])
#define NPV_LIST_LOCKS MAXCPU
#define PHYS_TO_PV_LIST_LOCK(pa) \
(&pv_list_locks[pmap_l2_pindex(pa) % NPV_LIST_LOCKS])
#define CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa) do { \
struct rwlock **_lockp = (lockp); \
struct rwlock *_new_lock; \
\
_new_lock = PHYS_TO_PV_LIST_LOCK(pa); \
if (_new_lock != *_lockp) { \
if (*_lockp != NULL) \
rw_wunlock(*_lockp); \
*_lockp = _new_lock; \
rw_wlock(*_lockp); \
} \
} while (0)
#define CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m) \
CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
#define RELEASE_PV_LIST_LOCK(lockp) do { \
struct rwlock **_lockp = (lockp); \
\
if (*_lockp != NULL) { \
rw_wunlock(*_lockp); \
*_lockp = NULL; \
} \
} while (0)
#define VM_PAGE_TO_PV_LIST_LOCK(m) \
PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"VM/pmap parameters");
/* The list of all the user pmaps */
LIST_HEAD(pmaplist, pmap);
static struct pmaplist allpmaps = LIST_HEAD_INITIALIZER();
enum pmap_mode __read_frequently pmap_mode = PMAP_MODE_SV39;
SYSCTL_INT(_vm_pmap, OID_AUTO, mode, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
&pmap_mode, 0,
"translation mode, 0 = SV39, 1 = SV48");
struct pmap kernel_pmap_store;
vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */
vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
vm_offset_t kernel_vm_end = 0;
vm_paddr_t dmap_phys_base; /* The start of the dmap region */
vm_paddr_t dmap_phys_max; /* The limit of the dmap region */
vm_offset_t dmap_max_addr; /* The virtual address limit of the dmap */
/* This code assumes all L1 DMAP entries will be used */
CTASSERT((DMAP_MIN_ADDRESS & ~L1_OFFSET) == DMAP_MIN_ADDRESS);
CTASSERT((DMAP_MAX_ADDRESS & ~L1_OFFSET) == DMAP_MAX_ADDRESS);
/*
* This code assumes that the early DEVMAP is L2_SIZE aligned.
*/
CTASSERT((PMAP_MAPDEV_EARLY_SIZE & L2_OFFSET) == 0);
static struct rwlock_padalign pvh_global_lock;
static struct mtx_padalign allpmaps_lock;
static int __read_frequently superpages_enabled = 1;
SYSCTL_INT(_vm_pmap, OID_AUTO, superpages_enabled,
CTLFLAG_RDTUN, &superpages_enabled, 0,
"Enable support for transparent superpages");
static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"2MB page mapping counters");
static u_long pmap_l2_demotions;
SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, demotions, CTLFLAG_RD,
&pmap_l2_demotions, 0,
"2MB page demotions");
static u_long pmap_l2_mappings;
SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, mappings, CTLFLAG_RD,
&pmap_l2_mappings, 0,
"2MB page mappings");
static u_long pmap_l2_p_failures;
SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, p_failures, CTLFLAG_RD,
&pmap_l2_p_failures, 0,
"2MB page promotion failures");
static u_long pmap_l2_promotions;
SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, promotions, CTLFLAG_RD,
&pmap_l2_promotions, 0,
"2MB page promotions");
static SYSCTL_NODE(_vm_pmap, OID_AUTO, l1, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"L1 (1GB) page mapping counters");
static COUNTER_U64_DEFINE_EARLY(pmap_l1_demotions);
SYSCTL_COUNTER_U64(_vm_pmap_l1, OID_AUTO, demotions, CTLFLAG_RD,
&pmap_l1_demotions, "L1 (1GB) page demotions");
/*
* Data for the pv entry allocation mechanism
*/
static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
static struct mtx pv_chunks_mutex;
static struct rwlock pv_list_locks[NPV_LIST_LOCKS];
static struct md_page *pv_table;
static struct md_page pv_dummy;
extern cpuset_t all_harts;
/*
* Internal flags for pmap_enter()'s helper functions.
*/
#define PMAP_ENTER_NORECLAIM 0x1000000 /* Don't reclaim PV entries. */
#define PMAP_ENTER_NOREPLACE 0x2000000 /* Don't replace mappings. */
static void free_pv_chunk(struct pv_chunk *pc);
static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
vm_offset_t va);
static bool pmap_demote_l1(pmap_t pmap, pd_entry_t *l1, vm_offset_t va);
static bool pmap_demote_l2(pmap_t pmap, pd_entry_t *l2, vm_offset_t va);
static bool pmap_demote_l2_locked(pmap_t pmap, pd_entry_t *l2,
vm_offset_t va, struct rwlock **lockp);
static int pmap_enter_l2(pmap_t pmap, vm_offset_t va, pd_entry_t new_l2,
u_int flags, vm_page_t m, struct rwlock **lockp);
static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
static int pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t sva,
pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
static bool pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
vm_page_t m, struct rwlock **lockp);
static vm_page_t _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex,
struct rwlock **lockp);
static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
struct spglist *free);
static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode);
static uint64_t pmap_satp_mode(void);
#define pmap_clear(pte) pmap_store(pte, 0)
#define pmap_clear_bits(pte, bits) atomic_clear_64(pte, bits)
#define pmap_load_store(pte, entry) atomic_swap_64(pte, entry)
#define pmap_load_clear(pte) pmap_load_store(pte, 0)
#define pmap_load(pte) atomic_load_64(pte)
#define pmap_store(pte, entry) atomic_store_64(pte, entry)
#define pmap_store_bits(pte, bits) atomic_set_64(pte, bits)
/********************/
/* Inline functions */
/********************/
static __inline void
pagecopy(void *s, void *d)
{
memcpy(d, s, PAGE_SIZE);
}
static __inline void
pagezero(void *p)
{
bzero(p, PAGE_SIZE);
}
#define pmap_l0_index(va) (((va) >> L0_SHIFT) & Ln_ADDR_MASK)
#define pmap_l1_index(va) (((va) >> L1_SHIFT) & Ln_ADDR_MASK)
#define pmap_l2_index(va) (((va) >> L2_SHIFT) & Ln_ADDR_MASK)
#define pmap_l3_index(va) (((va) >> L3_SHIFT) & Ln_ADDR_MASK)
#define PTE_TO_PHYS(pte) \
((((pte) & ~PTE_HI_MASK) >> PTE_PPN0_S) * PAGE_SIZE)
#define L2PTE_TO_PHYS(l2) \
((((l2) & ~PTE_HI_MASK) >> PTE_PPN1_S) << L2_SHIFT)
#define L1PTE_TO_PHYS(l1) \
((((l1) & ~PTE_HI_MASK) >> PTE_PPN2_S) << L1_SHIFT)
#define PTE_TO_VM_PAGE(pte) PHYS_TO_VM_PAGE(PTE_TO_PHYS(pte))
/*
* Construct a page table entry of the specified level pointing to physical
* address pa, with PTE bits 'bits'.
*
* A leaf PTE of any level must point to an address matching its alignment,
* e.g. L2 pages must be 2MB aligned in memory.
*/
#define L1_PTE(pa, bits) ((((pa) >> L1_SHIFT) << PTE_PPN2_S) | (bits))
#define L2_PTE(pa, bits) ((((pa) >> L2_SHIFT) << PTE_PPN1_S) | (bits))
#define L3_PTE(pa, bits) ((((pa) >> L3_SHIFT) << PTE_PPN0_S) | (bits))
/*
* Construct a page directory entry (PDE), pointing to next level entry at pa,
* with PTE bits 'bits'.
*
* Unlike PTEs, page directory entries can point to any 4K-aligned physical
* address.
*/
#define L0_PDE(pa, bits) L3_PTE(pa, bits)
#define L1_PDE(pa, bits) L3_PTE(pa, bits)
#define L2_PDE(pa, bits) L3_PTE(pa, bits)
static __inline pd_entry_t *
pmap_l0(pmap_t pmap, vm_offset_t va)
{
KASSERT(pmap_mode != PMAP_MODE_SV39, ("%s: in SV39 mode", __func__));
KASSERT(VIRT_IS_VALID(va),
("%s: malformed virtual address %#lx", __func__, va));
return (&pmap->pm_top[pmap_l0_index(va)]);
}
static __inline pd_entry_t *
pmap_l0_to_l1(pd_entry_t *l0, vm_offset_t va)
{
vm_paddr_t phys;
pd_entry_t *l1;
KASSERT(pmap_mode != PMAP_MODE_SV39, ("%s: in SV39 mode", __func__));
phys = PTE_TO_PHYS(pmap_load(l0));
l1 = (pd_entry_t *)PHYS_TO_DMAP(phys);
return (&l1[pmap_l1_index(va)]);
}
static __inline pd_entry_t *
pmap_l1(pmap_t pmap, vm_offset_t va)
{
pd_entry_t *l0;
KASSERT(VIRT_IS_VALID(va),
("%s: malformed virtual address %#lx", __func__, va));
if (pmap_mode == PMAP_MODE_SV39) {
return (&pmap->pm_top[pmap_l1_index(va)]);
} else {
l0 = pmap_l0(pmap, va);
if ((pmap_load(l0) & PTE_V) == 0)
return (NULL);
if ((pmap_load(l0) & PTE_RX) != 0)
return (NULL);
return (pmap_l0_to_l1(l0, va));
}
}
static __inline pd_entry_t *
pmap_l1_to_l2(pd_entry_t *l1, vm_offset_t va)
{
vm_paddr_t phys;
pd_entry_t *l2;
phys = PTE_TO_PHYS(pmap_load(l1));
l2 = (pd_entry_t *)PHYS_TO_DMAP(phys);
return (&l2[pmap_l2_index(va)]);
}
static __inline pd_entry_t *
pmap_l2(pmap_t pmap, vm_offset_t va)
{
pd_entry_t *l1;
l1 = pmap_l1(pmap, va);
if (l1 == NULL)
return (NULL);
if ((pmap_load(l1) & PTE_V) == 0)
return (NULL);
if ((pmap_load(l1) & PTE_RX) != 0)
return (NULL);
return (pmap_l1_to_l2(l1, va));
}
static __inline pt_entry_t *
pmap_l2_to_l3(pd_entry_t *l2, vm_offset_t va)
{
vm_paddr_t phys;
pt_entry_t *l3;
phys = PTE_TO_PHYS(pmap_load(l2));
l3 = (pd_entry_t *)PHYS_TO_DMAP(phys);
return (&l3[pmap_l3_index(va)]);
}
static __inline pt_entry_t *
pmap_l3(pmap_t pmap, vm_offset_t va)
{
pd_entry_t *l2;
l2 = pmap_l2(pmap, va);
if (l2 == NULL)
return (NULL);
if ((pmap_load(l2) & PTE_V) == 0)
return (NULL);
if ((pmap_load(l2) & PTE_RX) != 0)
return (NULL);
return (pmap_l2_to_l3(l2, va));
}
static __inline void
pmap_resident_count_inc(pmap_t pmap, int count)
{
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
pmap->pm_stats.resident_count += count;
}
static __inline void
pmap_resident_count_dec(pmap_t pmap, int count)
{
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
KASSERT(pmap->pm_stats.resident_count >= count,
("pmap %p resident count underflow %ld %d", pmap,
pmap->pm_stats.resident_count, count));
pmap->pm_stats.resident_count -= count;
}
static void
pmap_distribute_l1(struct pmap *pmap, vm_pindex_t l1index,
pt_entry_t entry)
{
struct pmap *user_pmap;
pd_entry_t *l1;
/*
* Distribute new kernel L1 entry to all the user pmaps. This is only
* necessary with three-level paging configured: with four-level paging
* the kernel's half of the top-level page table page is static and can
* simply be copied at pmap initialization time.
*/
if (pmap != kernel_pmap || pmap_mode != PMAP_MODE_SV39)
return;
mtx_lock(&allpmaps_lock);
LIST_FOREACH(user_pmap, &allpmaps, pm_list) {
l1 = &user_pmap->pm_top[l1index];
pmap_store(l1, entry);
}
mtx_unlock(&allpmaps_lock);
}
/*
* Holds the PTE mode bits (defined in pte.h) for defining e.g. cacheability.
*
* The indices correspond to the VM_MEMATTR_* defines in riscv/include/vm.h.
*
* The array will be empty if no mode bits are supported by the CPU, e.g. when
* lacking the Svpbmt extension.
*/
static __read_frequently pt_entry_t memattr_bits[VM_MEMATTR_TOTAL];
static __read_frequently pt_entry_t memattr_mask;
static __inline pt_entry_t
pmap_memattr_bits(vm_memattr_t mode)
{
KASSERT(pmap_is_valid_memattr(kernel_pmap, mode),
("invalid memory mode %u\n", mode));
return (memattr_bits[(int)mode]);
}
/*
* This should only be used during pmap bootstrap e.g. by
* pmap_create_pagetables().
*/
static pt_entry_t *
pmap_early_alloc_tables(vm_paddr_t *freemempos, int npages)
{
pt_entry_t *pt;
pt = (pt_entry_t *)*freemempos;
*freemempos += npages * PAGE_SIZE;
bzero(pt, npages * PAGE_SIZE);
return (pt);
}
/*
* Construct the direct map -- a linear mapping of physical memory into
* the kernel address space.
*
* We walk the list of physical memory segments (of arbitrary size and
* address) mapping each appropriately using L2 and L1 superpages.
* Consequently, the DMAP address space will have unmapped regions
* corresponding to any holes between physical memory segments.
*
* The lowest usable physical address will always be mapped to
* DMAP_MIN_ADDRESS.
*/
static vm_paddr_t
pmap_bootstrap_dmap(pd_entry_t *l1, vm_paddr_t freemempos)
{
vm_paddr_t physmap[PHYS_AVAIL_ENTRIES];
vm_offset_t va;
vm_paddr_t min_pa, max_pa, pa, endpa;
pd_entry_t *l2;
pt_entry_t memattr;
u_int l1slot, l2slot;
int physmap_idx;
physmap_idx = physmem_avail(physmap, nitems(physmap));
min_pa = physmap[0];
max_pa = physmap[physmap_idx - 1];
printf("physmap_idx %u\n", physmap_idx);
printf("min_pa %lx\n", min_pa);
printf("max_pa %lx\n", max_pa);
/* Set the limits of the DMAP region. */
dmap_phys_base = rounddown(min_pa, L1_SIZE);
dmap_phys_max = max_pa;
memattr = pmap_memattr_bits(VM_MEMATTR_DEFAULT);
/* Walk the physmap table. */
l2 = NULL;
l1slot = Ln_ENTRIES; /* sentinel value */
for (int idx = 0; idx < physmap_idx; idx += 2) {
pa = rounddown(physmap[idx], L2_SIZE);
endpa = physmap[idx + 1];
/* Virtual address for this range. */
va = PHYS_TO_DMAP(pa);
/* Any 1GB possible for this range? */
if (roundup(pa, L1_SIZE) + L1_SIZE > endpa)
goto l2end;
/* Loop until the next 1GB boundary. */
while ((pa & L1_OFFSET) != 0) {
if (l2 == NULL || pmap_l1_index(va) != l1slot) {
/* Need to alloc another page table. */
l2 = pmap_early_alloc_tables(&freemempos, 1);
/* Link it. */
l1slot = pmap_l1_index(va);
pmap_store(&l1[l1slot],
L1_PDE((vm_paddr_t)l2, PTE_V));
}
/* map l2 pages */
l2slot = pmap_l2_index(va);
pmap_store(&l2[l2slot], L2_PTE(pa, PTE_KERN | memattr));
pa += L2_SIZE;
va += L2_SIZE;
}
/* Map what we can with 1GB superpages. */
while (pa + L1_SIZE - 1 < endpa) {
/* map l1 pages */
l1slot = pmap_l1_index(va);
pmap_store(&l1[l1slot], L1_PTE(pa, PTE_KERN | memattr));
pa += L1_SIZE;
va += L1_SIZE;
}
l2end:
while (pa < endpa) {
if (l2 == NULL || pmap_l1_index(va) != l1slot) {
/* Need to alloc another page table. */
l2 = pmap_early_alloc_tables(&freemempos, 1);
/* Link it. */
l1slot = pmap_l1_index(va);
pmap_store(&l1[l1slot],
L1_PDE((vm_paddr_t)l2, PTE_V));
}
/* map l2 pages */
l2slot = pmap_l2_index(va);
pmap_store(&l2[l2slot], L2_PTE(pa, PTE_KERN | memattr));
pa += L2_SIZE;
va += L2_SIZE;
}
}
/* And finally, the limit on DMAP VA. */
dmap_max_addr = va;
return (freemempos);
}
/*
* Create a new set of pagetables to run the kernel with.
*
* An initial, temporary setup was created in locore.S, which serves well
* enough to get us this far. It mapped kernstart -> KERNBASE, using 2MB
* superpages, and created a 1GB identity map, which allows this function
* to dereference physical addresses.
*
* The memory backing these page tables is allocated in the space
* immediately following the kernel's preload area. Depending on the size
* of this area, some, all, or none of these pages can be implicitly
* mapped by the kernel's 2MB mappings. This memory will only ever be
* accessed through the direct map, however.
*/
static vm_paddr_t
pmap_create_pagetables(vm_paddr_t kernstart, vm_size_t kernlen,
vm_paddr_t *root_pt_phys)
{
pt_entry_t *l0, *l1, *kern_l2, *kern_l3, *devmap_l3;
pt_entry_t memattr;
pd_entry_t *devmap_l2;
vm_paddr_t kernend, freemempos, pa;
int nkernl2, nkernl3, ndevmapl3;
int i, slot;
int mode;
kernend = kernstart + kernlen;
/* Static allocations begin after the kernel staging area. */
freemempos = roundup2(kernend, PAGE_SIZE);
/* Detect Sv48 mode. */
mode = PMAP_MODE_SV39;
TUNABLE_INT_FETCH("vm.pmap.mode", &mode);
if (mode == PMAP_MODE_SV48 && (mmu_caps & MMU_SV48) != 0) {
/*
* Sv48 mode: allocate an L0 page table to be the root. The
* layout of KVA is otherwise identical to Sv39.
*/
l0 = pmap_early_alloc_tables(&freemempos, 1);
*root_pt_phys = (vm_paddr_t)l0;
pmap_mode = PMAP_MODE_SV48;
} else {
l0 = NULL;
}
/*
* Allocate an L1 page table.
*/
l1 = pmap_early_alloc_tables(&freemempos, 1);
if (pmap_mode == PMAP_MODE_SV39)
*root_pt_phys = (vm_paddr_t)l1;
/*
* Allocate a set of L2 page tables for KVA. Most likely, only 1 is
* needed.
*/
nkernl2 = howmany(howmany(kernlen, L2_SIZE), Ln_ENTRIES);
kern_l2 = pmap_early_alloc_tables(&freemempos, nkernl2);
/*
* Allocate an L2 page table for the static devmap, located at the end
* of KVA. We can expect that the devmap will always be less than 1GB
* in size.
*/
devmap_l2 = pmap_early_alloc_tables(&freemempos, 1);
/* Allocate L3 page tables for the devmap. */
ndevmapl3 = howmany(howmany(PMAP_MAPDEV_EARLY_SIZE, L3_SIZE),
Ln_ENTRIES);
devmap_l3 = pmap_early_alloc_tables(&freemempos, ndevmapl3);
/*
* Allocate some L3 bootstrap pages, for early KVA allocations before
* vm_mem_init() has run. For example, the message buffer.
*
* A somewhat arbitrary choice of 32MB. This should be more than enough
* for any early allocations. There is no need to worry about waste, as
* whatever is not used will be consumed by later calls to
* pmap_growkernel().
*/
nkernl3 = 16;
kern_l3 = pmap_early_alloc_tables(&freemempos, nkernl3);
/* Bootstrap the direct map. */
freemempos = pmap_bootstrap_dmap(l1, freemempos);
/* Allocations are done. */
if (freemempos < roundup2(kernend, L2_SIZE))
freemempos = roundup2(kernend, L2_SIZE);
/* Memory attributes for standard/main memory. */
memattr = pmap_memattr_bits(VM_MEMATTR_DEFAULT);
/*
* Map the kernel (and preloaded modules or data) using L2 superpages.
*
* kernstart is 2MB-aligned. This is enforced by loader(8) and required
* by locore assembly.
*
* TODO: eventually, this should be done with proper permissions for
* each segment, rather than mapping the entire kernel and preloaded
* modules RWX.
*/
slot = pmap_l2_index(KERNBASE);
for (pa = kernstart; pa < kernend; pa += L2_SIZE, slot++) {
pmap_store(&kern_l2[slot],
L2_PTE(pa, PTE_KERN | PTE_X | memattr));
}
/*
* Connect the L3 bootstrap pages to the kernel L2 table. The L3 PTEs
* themselves are invalid.
*/
slot = pmap_l2_index(freemempos - kernstart + KERNBASE);
for (i = 0; i < nkernl3; i++, slot++) {
pa = (vm_paddr_t)kern_l3 + ptoa(i);
pmap_store(&kern_l2[slot], L2_PDE(pa, PTE_V));
}
/* Connect the L2 tables to the L1 table. */
slot = pmap_l1_index(KERNBASE);
for (i = 0; i < nkernl2; i++, slot++) {
pa = (vm_paddr_t)kern_l2 + ptoa(i);
pmap_store(&l1[slot], L1_PDE(pa, PTE_V));
}
/* Connect the L1 table to L0, if in use. */
if (pmap_mode == PMAP_MODE_SV48) {
slot = pmap_l0_index(KERNBASE);
pmap_store(&l0[slot], L0_PDE((vm_paddr_t)l1, PTE_V));
}
/*
* Connect the devmap L3 pages to the L2 table. The devmap PTEs
* themselves are invalid.
*/
slot = pmap_l2_index(DEVMAP_MIN_VADDR);
for (i = 0; i < ndevmapl3; i++, slot++) {
pa = (vm_paddr_t)devmap_l3 + ptoa(i);
pmap_store(&devmap_l2[slot], L2_PDE(pa, PTE_V));
}
/* Connect the devmap L2 pages to the L1 table. */
slot = pmap_l1_index(DEVMAP_MIN_VADDR);
pa = (vm_paddr_t)devmap_l2;
pmap_store(&l1[slot], L1_PDE(pa, PTE_V));
/* Return the next position of free memory */
return (freemempos);
}
/*
* Bootstrap the system enough to run with virtual memory.
*/
void
pmap_bootstrap(vm_paddr_t kernstart, vm_size_t kernlen)
{
vm_paddr_t freemempos, pa;
vm_paddr_t root_pt_phys;
vm_offset_t freeva;
vm_offset_t dpcpu, msgbufpv;
pt_entry_t *pte;
int i;
printf("pmap_bootstrap %lx %lx\n", kernstart, kernlen);
PMAP_LOCK_INIT(kernel_pmap);
TAILQ_INIT(&kernel_pmap->pm_pvchunk);
vm_radix_init(&kernel_pmap->pm_root);
rw_init(&pvh_global_lock, "pmap pv global");
/*
* Set the current CPU as active in the kernel pmap. Secondary cores
* will add themselves later in init_secondary(). The SBI firmware
* may rely on this mask being precise, so CPU_FILL() is not used.
*/
CPU_SET(PCPU_GET(hart), &kernel_pmap->pm_active);
/*
* Set up the memory attribute bits.
*/
if (has_svpbmt) {
memattr_bits[VM_MEMATTR_PMA] = PTE_MA_NONE;
memattr_bits[VM_MEMATTR_UNCACHEABLE] = PTE_MA_NC;
memattr_bits[VM_MEMATTR_DEVICE] = PTE_MA_IO;
memattr_mask = PTE_MA_MASK;
}
/* Create a new set of pagetables to run the kernel in. */
freemempos = pmap_create_pagetables(kernstart, kernlen, &root_pt_phys);
/* Switch to the newly created page tables. */
kernel_pmap->pm_stage = PM_STAGE1;
kernel_pmap->pm_top = (pd_entry_t *)PHYS_TO_DMAP(root_pt_phys);
kernel_pmap->pm_satp = atop(root_pt_phys) | pmap_satp_mode();
csr_write(satp, kernel_pmap->pm_satp);
sfence_vma();
/*
* Now, we need to make a few more static reservations from KVA.
*
* Set freeva to freemempos virtual address, and be sure to advance
* them together.
*/
freeva = freemempos - kernstart + KERNBASE;
#define reserve_space(var, pa, size) \
do { \
var = freeva; \
pa = freemempos; \
freeva += size; \
freemempos += size; \
} while (0)
/* Allocate the dynamic per-cpu area. */
reserve_space(dpcpu, pa, DPCPU_SIZE);
/* Map it. */
pte = pmap_l3(kernel_pmap, dpcpu);
KASSERT(pte != NULL, ("Bootstrap pages missing"));
for (i = 0; i < howmany(DPCPU_SIZE, PAGE_SIZE); i++)
pmap_store(&pte[i], L3_PTE(pa + ptoa(i), PTE_KERN |
pmap_memattr_bits(VM_MEMATTR_DEFAULT)));
/* Now, it can be initialized. */
dpcpu_init((void *)dpcpu, 0);
/* Allocate memory for the msgbuf, e.g. for /sbin/dmesg */
reserve_space(msgbufpv, pa, round_page(msgbufsize));
msgbufp = (void *)msgbufpv;
/* Map it. */
pte = pmap_l3(kernel_pmap, msgbufpv);
KASSERT(pte != NULL, ("Bootstrap pages missing"));
for (i = 0; i < howmany(msgbufsize, PAGE_SIZE); i++)
pmap_store(&pte[i], L3_PTE(pa + ptoa(i), PTE_KERN |
pmap_memattr_bits(VM_MEMATTR_DEFAULT)));
#undef reserve_space
/* Mark the bounds of our available virtual address space */
virtual_avail = kernel_vm_end = freeva;
virtual_end = DEVMAP_MIN_VADDR;
/* Exclude the reserved physical memory from allocations. */
physmem_exclude_region(kernstart, freemempos - kernstart,
EXFLAG_NOALLOC);
}
/*
* Initialize a vm_page's machine-dependent fields.
*/
void
pmap_page_init(vm_page_t m)
{
TAILQ_INIT(&m->md.pv_list);
m->md.pv_memattr = VM_MEMATTR_DEFAULT;
}
/*
* Initialize the pmap module.
*
* Called by vm_mem_init(), to initialize any structures that the pmap
* system needs to map virtual memory.
*/
void
pmap_init(void)
{
vm_size_t s;
int i, pv_npg;
/*
* Initialize the pv chunk and pmap list mutexes.
*/
mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_DEF);
/*
* Initialize the pool of pv list locks.
*/
for (i = 0; i < NPV_LIST_LOCKS; i++)
rw_init(&pv_list_locks[i], "pmap pv list");
/*
* Calculate the size of the pv head table for superpages.
*/
pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, L2_SIZE);
/*
* Allocate memory for the pv head table for superpages.
*/
s = (vm_size_t)(pv_npg * sizeof(struct md_page));
s = round_page(s);
pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
for (i = 0; i < pv_npg; i++)
TAILQ_INIT(&pv_table[i].pv_list);
TAILQ_INIT(&pv_dummy.pv_list);
if (superpages_enabled)
pagesizes[1] = L2_SIZE;
}
#ifdef SMP
/*
* For SMP, these functions have to use IPIs for coherence.
*
* In general, the calling thread uses a plain fence to order the
* writes to the page tables before invoking an SBI callback to invoke
* sfence_vma() on remote CPUs.
*/
static void
pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
{
cpuset_t mask;
sched_pin();
mask = pmap->pm_active;
CPU_CLR(PCPU_GET(hart), &mask);
fence();
if (!CPU_EMPTY(&mask) && smp_started)
sbi_remote_sfence_vma(mask.__bits, va, 1);
sfence_vma_page(va);
sched_unpin();
}
static void
pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
cpuset_t mask;
sched_pin();
mask = pmap->pm_active;
CPU_CLR(PCPU_GET(hart), &mask);
fence();
if (!CPU_EMPTY(&mask) && smp_started)
sbi_remote_sfence_vma(mask.__bits, sva, eva - sva + 1);
/*
* Might consider a loop of sfence_vma_page() for a small
* number of pages in the future.
*/
sfence_vma();
sched_unpin();
}
static void
pmap_invalidate_all(pmap_t pmap)
{
cpuset_t mask;
sched_pin();
mask = pmap->pm_active;
CPU_CLR(PCPU_GET(hart), &mask);
/*
* XXX: The SBI doc doesn't detail how to specify x0 as the
* address to perform a global fence. BBL currently treats
* all sfence_vma requests as global however.
*/
fence();
if (!CPU_EMPTY(&mask) && smp_started)
sbi_remote_sfence_vma(mask.__bits, 0, 0);
sfence_vma();
sched_unpin();
}
#else
/*
* Normal, non-SMP, invalidation functions.
* We inline these within pmap.c for speed.
*/
static __inline void
pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
{
sfence_vma_page(va);
}
static __inline void
pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
/*
* Might consider a loop of sfence_vma_page() for a small
* number of pages in the future.
*/
sfence_vma();
}
static __inline void
pmap_invalidate_all(pmap_t pmap)
{
sfence_vma();
}
#endif
/*
* Routine: pmap_extract
* Function:
* Extract the physical page address associated
* with the given map/virtual_address pair.
*/
vm_paddr_t
pmap_extract(pmap_t pmap, vm_offset_t va)
{
pd_entry_t *l2p, l2;
pt_entry_t *l3p;
vm_paddr_t pa;
pa = 0;
/*
* Start with an L2 lookup, L1 superpages are currently not implemented.
*/
PMAP_LOCK(pmap);
l2p = pmap_l2(pmap, va);
if (l2p != NULL && ((l2 = pmap_load(l2p)) & PTE_V) != 0) {
if ((l2 & PTE_RWX) == 0) {
l3p = pmap_l2_to_l3(l2p, va);
pa = PTE_TO_PHYS(pmap_load(l3p));
pa |= (va & L3_OFFSET);
} else {
/* L2 is a superpage mapping. */
pa = L2PTE_TO_PHYS(l2);
pa |= (va & L2_OFFSET);
}
}
PMAP_UNLOCK(pmap);
return (pa);
}
/*
* Routine: pmap_extract_and_hold
* Function:
* Atomically extract and hold the physical page
* with the given pmap and virtual address pair
* if that mapping permits the given protection.
*/
vm_page_t
pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
{
pt_entry_t *l3p, l3;
vm_page_t m;
m = NULL;
PMAP_LOCK(pmap);
l3p = pmap_l3(pmap, va);
if (l3p != NULL && (l3 = pmap_load(l3p)) != 0) {
if ((l3 & PTE_W) != 0 || (prot & VM_PROT_WRITE) == 0) {
m = PTE_TO_VM_PAGE(l3);
if (!vm_page_wire_mapped(m))
m = NULL;
}
}
PMAP_UNLOCK(pmap);
return (m);
}
/*
* Routine: pmap_kextract
* Function:
* Extract the physical page address associated with the given kernel
* virtual address.
*/
vm_paddr_t
pmap_kextract(vm_offset_t va)
{
pd_entry_t *l2, l2e;
pt_entry_t *l3;
vm_paddr_t pa;
if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
pa = DMAP_TO_PHYS(va);
} else {
l2 = pmap_l2(kernel_pmap, va);
if (l2 == NULL)
panic("pmap_kextract: No l2");
l2e = pmap_load(l2);
/*
* Beware of concurrent promotion and demotion! We must
* use l2e rather than loading from l2 multiple times to
* ensure we see a consistent state, including the
* implicit load in pmap_l2_to_l3. It is, however, safe
* to use an old l2e because the L3 page is preserved by
* promotion.
*/
if ((l2e & PTE_RX) != 0) {
/* superpages */
pa = L2PTE_TO_PHYS(l2e);
pa |= (va & L2_OFFSET);
return (pa);
}
l3 = pmap_l2_to_l3(&l2e, va);
pa = PTE_TO_PHYS(pmap_load(l3));
pa |= (va & PAGE_MASK);
}
return (pa);
}
/***************************************************
* Low level mapping routines.....
***************************************************/
void
pmap_kenter(vm_offset_t sva, vm_size_t size, vm_paddr_t pa, int mode)
{
pt_entry_t entry;
pt_entry_t *l3;
pt_entry_t memattr;
vm_offset_t va;
pn_t pn;
KASSERT((pa & L3_OFFSET) == 0,
("pmap_kenter_device: Invalid physical address"));
KASSERT((sva & L3_OFFSET) == 0,
("pmap_kenter_device: Invalid virtual address"));
KASSERT((size & PAGE_MASK) == 0,
("pmap_kenter_device: Mapping is not page-sized"));
memattr = pmap_memattr_bits(mode);
va = sva;
while (size != 0) {
l3 = pmap_l3(kernel_pmap, va);
KASSERT(l3 != NULL, ("Invalid page table, va: 0x%lx", va));
pn = (pa / PAGE_SIZE);
entry = PTE_KERN;
entry |= memattr;
entry |= (pn << PTE_PPN0_S);
pmap_store(l3, entry);
va += PAGE_SIZE;
pa += PAGE_SIZE;
size -= PAGE_SIZE;
}
pmap_invalidate_range(kernel_pmap, sva, va);
}
void
pmap_kenter_device(vm_offset_t sva, vm_size_t size, vm_paddr_t pa)
{
pmap_kenter(sva, size, pa, VM_MEMATTR_DEVICE);
}
/*
* Remove a page from the kernel pagetables.
* Note: not SMP coherent.
*/
void
pmap_kremove(vm_offset_t va)
{
pt_entry_t *l3;
l3 = pmap_l3(kernel_pmap, va);
KASSERT(l3 != NULL, ("pmap_kremove: Invalid address"));
pmap_clear(l3);
sfence_vma();
}
void
pmap_kremove_device(vm_offset_t sva, vm_size_t size)
{
pt_entry_t *l3;
vm_offset_t va;
KASSERT((sva & L3_OFFSET) == 0,
("pmap_kremove_device: Invalid virtual address"));
KASSERT((size & PAGE_MASK) == 0,
("pmap_kremove_device: Mapping is not page-sized"));
va = sva;
while (size != 0) {
l3 = pmap_l3(kernel_pmap, va);
KASSERT(l3 != NULL, ("Invalid page table, va: 0x%lx", va));
pmap_clear(l3);
va += PAGE_SIZE;
size -= PAGE_SIZE;
}
pmap_invalidate_range(kernel_pmap, sva, va);
}
/*
* Used to map a range of physical addresses into kernel
* virtual address space.
*
* The value passed in '*virt' is a suggested virtual address for
* the mapping. Architectures which can support a direct-mapped
* physical to virtual region can return the appropriate address
* within that region, leaving '*virt' unchanged. Other
* architectures should map the pages starting at '*virt' and
* update '*virt' with the first usable address after the mapped
* region.
*/
vm_offset_t
pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
{
return PHYS_TO_DMAP(start);
}
/*
* Add a list of wired pages to the kva
* this routine is only used for temporary
* kernel mappings that do not need to have
* page modification or references recorded.
* Note that old mappings are simply written
* over. The page *must* be wired.
* Note: SMP coherent. Uses a ranged shootdown IPI.
*/
void
pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
{
pt_entry_t *l3;
vm_paddr_t pa;
vm_offset_t va;
vm_page_t m;
pt_entry_t entry;
pn_t pn;
int i;
va = sva;
for (i = 0; i < count; i++) {
m = ma[i];
pa = VM_PAGE_TO_PHYS(m);
pn = (pa / PAGE_SIZE);
l3 = pmap_l3(kernel_pmap, va);
entry = PTE_KERN;
entry |= pmap_memattr_bits(m->md.pv_memattr);
entry |= (pn << PTE_PPN0_S);
pmap_store(l3, entry);
va += L3_SIZE;
}
pmap_invalidate_range(kernel_pmap, sva, va);
}
/*
* This routine tears out page mappings from the
* kernel -- it is meant only for temporary mappings.
* Note: SMP coherent. Uses a ranged shootdown IPI.
*/
void
pmap_qremove(vm_offset_t sva, int count)
{
pt_entry_t *l3;
vm_offset_t va;
KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", sva));
for (va = sva; count-- > 0; va += PAGE_SIZE) {
l3 = pmap_l3(kernel_pmap, va);
KASSERT(l3 != NULL, ("pmap_kremove: Invalid address"));
pmap_clear(l3);
}
pmap_invalidate_range(kernel_pmap, sva, va);
}
bool
pmap_ps_enabled(pmap_t pmap __unused)
{
return (superpages_enabled);
}
/***************************************************
* Page table page management routines.....
***************************************************/
/*
* Schedule the specified unused page table page to be freed. Specifically,
* add the page to the specified list of pages that will be released to the
* physical memory manager after the TLB has been updated.
*/
static __inline void
pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, bool set_PG_ZERO)
{
if (set_PG_ZERO)
m->flags |= PG_ZERO;
else
m->flags &= ~PG_ZERO;
SLIST_INSERT_HEAD(free, m, plinks.s.ss);
}
/*
* Inserts the specified page table page into the specified pmap's collection
* of idle page table pages. Each of a pmap's page table pages is responsible
* for mapping a distinct range of virtual addresses. The pmap's collection is
* ordered by this virtual address range.
*
* If "promoted" is false, then the page table page "mpte" must be zero filled;
* "mpte"'s valid field will be set to 0.
*
* If "promoted" is true and "all_l3e_PTE_A_set" is false, then "mpte" must
* contain valid mappings with identical attributes except for PTE_A;
* "mpte"'s valid field will be set to 1.
*
* If "promoted" and "all_l3e_PTE_A_set" are both true, then "mpte" must contain
* valid mappings with identical attributes including PTE_A; "mpte"'s valid
* field will be set to VM_PAGE_BITS_ALL.
*/
static __inline int
pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
bool all_l3e_PTE_A_set)
{
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
KASSERT(promoted || !all_l3e_PTE_A_set,
("a zero-filled PTP can't have PTE_A set in every PTE"));
mpte->valid = promoted ? (all_l3e_PTE_A_set ? VM_PAGE_BITS_ALL : 1) : 0;
return (vm_radix_insert(&pmap->pm_root, mpte));
}
/*
* Removes the page table page mapping the specified virtual address from the
* specified pmap's collection of idle page table pages, and returns it.
* Otherwise, returns NULL if there is no page table page corresponding to the
* specified virtual address.
*/
static __inline vm_page_t
pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
{
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
return (vm_radix_remove(&pmap->pm_root, pmap_l2_pindex(va)));
}
/*
* Decrements a page table page's reference count, which is used to record the
* number of valid page table entries within the page. If the reference count
* drops to zero, then the page table page is unmapped. Returns true if the
* page table page was unmapped and false otherwise.
*/
static inline bool
pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
{
KASSERT(m->ref_count > 0,
("%s: page %p ref count underflow", __func__, m));
--m->ref_count;
if (m->ref_count == 0) {
_pmap_unwire_ptp(pmap, va, m, free);
return (true);
} else {
return (false);
}
}
static void
_pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
{
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
if (m->pindex >= NUL2E + NUL1E) {
pd_entry_t *l0;
l0 = pmap_l0(pmap, va);
pmap_clear(l0);
} else if (m->pindex >= NUL2E) {
pd_entry_t *l1;
l1 = pmap_l1(pmap, va);
pmap_clear(l1);
pmap_distribute_l1(pmap, pmap_l1_index(va), 0);
} else {
pd_entry_t *l2;
l2 = pmap_l2(pmap, va);
pmap_clear(l2);
}
pmap_resident_count_dec(pmap, 1);
if (m->pindex < NUL2E) {
pd_entry_t *l1;
vm_page_t pdpg;
l1 = pmap_l1(pmap, va);
pdpg = PTE_TO_VM_PAGE(pmap_load(l1));
pmap_unwire_ptp(pmap, va, pdpg, free);
} else if (m->pindex < NUL2E + NUL1E && pmap_mode != PMAP_MODE_SV39) {
pd_entry_t *l0;
vm_page_t pdpg;
l0 = pmap_l0(pmap, va);
pdpg = PTE_TO_VM_PAGE(pmap_load(l0));
pmap_unwire_ptp(pmap, va, pdpg, free);
}
pmap_invalidate_page(pmap, va);
vm_wire_sub(1);
/*
* Put page on a list so that it is released after
* *ALL* TLB shootdown is done
*/
pmap_add_delayed_free_list(m, free, true);
}
/*
* After removing a page table entry, this routine is used to
* conditionally free the page, and manage the reference count.
*/
static int
pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
struct spglist *free)
{
vm_page_t mpte;
if (va >= VM_MAXUSER_ADDRESS)
return (0);
KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
mpte = PTE_TO_VM_PAGE(ptepde);
return (pmap_unwire_ptp(pmap, va, mpte, free));
}
static uint64_t
pmap_satp_mode(void)
{
return (pmap_mode == PMAP_MODE_SV39 ? SATP_MODE_SV39 : SATP_MODE_SV48);
}
void
pmap_pinit0(pmap_t pmap)
{
PMAP_LOCK_INIT(pmap);
bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
pmap->pm_stage = PM_STAGE1;
pmap->pm_top = kernel_pmap->pm_top;
pmap->pm_satp = pmap_satp_mode() |
(vtophys(pmap->pm_top) >> PAGE_SHIFT);
CPU_ZERO(&pmap->pm_active);
TAILQ_INIT(&pmap->pm_pvchunk);
vm_radix_init(&pmap->pm_root);
pmap_activate_boot(pmap);
}
int
pmap_pinit_stage(pmap_t pmap, enum pmap_stage stage)
{
vm_paddr_t topphys;
vm_page_t m;
size_t i;
/*
* Top directory is 4 pages in hypervisor case.
* Current address space layout makes 3 of them unused.
*/
if (stage == PM_STAGE1)
m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO |
VM_ALLOC_WAITOK);
else
m = vm_page_alloc_noobj_contig(VM_ALLOC_WIRED | VM_ALLOC_ZERO,
4, 0, ~0ul, L2_SIZE, 0, VM_MEMATTR_DEFAULT);
topphys = VM_PAGE_TO_PHYS(m);
pmap->pm_top = (pd_entry_t *)PHYS_TO_DMAP(topphys);
pmap->pm_satp = pmap_satp_mode() | (topphys >> PAGE_SHIFT);
pmap->pm_stage = stage;
bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
CPU_ZERO(&pmap->pm_active);
if (stage == PM_STAGE2)
goto finish;
if (pmap_mode == PMAP_MODE_SV39) {
/*
* Copy L1 entries from the kernel pmap. This must be done with
* the allpmaps lock held to avoid races with
* pmap_distribute_l1().
*/
mtx_lock(&allpmaps_lock);
LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
for (i = pmap_l1_index(VM_MIN_KERNEL_ADDRESS);
i < pmap_l1_index(VM_MAX_KERNEL_ADDRESS); i++)
pmap->pm_top[i] = kernel_pmap->pm_top[i];
for (i = pmap_l1_index(DMAP_MIN_ADDRESS);
i < pmap_l1_index(DMAP_MAX_ADDRESS); i++)
pmap->pm_top[i] = kernel_pmap->pm_top[i];
mtx_unlock(&allpmaps_lock);
} else {
i = pmap_l0_index(VM_MIN_KERNEL_ADDRESS);
pmap->pm_top[i] = kernel_pmap->pm_top[i];
}
finish:
TAILQ_INIT(&pmap->pm_pvchunk);
vm_radix_init(&pmap->pm_root);
return (1);
}
int
pmap_pinit(pmap_t pmap)
{
return (pmap_pinit_stage(pmap, PM_STAGE1));
}
/*
* This routine is called if the desired page table page does not exist.
*
* If page table page allocation fails, this routine may sleep before
* returning NULL. It sleeps only if a lock pointer was given.
*
* Note: If a page allocation fails at page table level two or three,
* one or two pages may be held during the wait, only to be released
* afterwards. This conservative approach is easily argued to avoid
* race conditions.
*/
static vm_page_t
_pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
{
vm_page_t m, pdpg;
pt_entry_t entry;
vm_paddr_t phys;
pn_t pn;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
/*
* Allocate a page table page.
*/
m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO);
if (m == NULL) {
if (lockp != NULL) {
RELEASE_PV_LIST_LOCK(lockp);
PMAP_UNLOCK(pmap);
rw_runlock(&pvh_global_lock);
vm_wait(NULL);
rw_rlock(&pvh_global_lock);
PMAP_LOCK(pmap);
}
/*
* Indicate the need to retry. While waiting, the page table
* page may have been allocated.
*/
return (NULL);
}
m->pindex = ptepindex;
/*
* Map the pagetable page into the process address space, if
* it isn't already there.
*/
pn = VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT;
if (ptepindex >= NUL2E + NUL1E) {
pd_entry_t *l0;
vm_pindex_t l0index;
KASSERT(pmap_mode != PMAP_MODE_SV39,
("%s: pindex %#lx in SV39 mode", __func__, ptepindex));
KASSERT(ptepindex < NUL2E + NUL1E + NUL0E,
("%s: pindex %#lx out of range", __func__, ptepindex));
l0index = ptepindex - (NUL2E + NUL1E);
l0 = &pmap->pm_top[l0index];
KASSERT((pmap_load(l0) & PTE_V) == 0,
("%s: L0 entry %#lx is valid", __func__, pmap_load(l0)));
entry = PTE_V | (pn << PTE_PPN0_S);
pmap_store(l0, entry);
} else if (ptepindex >= NUL2E) {
pd_entry_t *l0, *l1;
vm_pindex_t l0index, l1index;
l1index = ptepindex - NUL2E;
if (pmap_mode == PMAP_MODE_SV39) {
l1 = &pmap->pm_top[l1index];
} else {
l0index = l1index >> Ln_ENTRIES_SHIFT;
l0 = &pmap->pm_top[l0index];
if (pmap_load(l0) == 0) {
/* Recurse to allocate the L1 page. */
if (_pmap_alloc_l3(pmap,
NUL2E + NUL1E + l0index, lockp) == NULL)
goto fail;
phys = PTE_TO_PHYS(pmap_load(l0));
} else {
phys = PTE_TO_PHYS(pmap_load(l0));
pdpg = PHYS_TO_VM_PAGE(phys);
pdpg->ref_count++;
}
l1 = (pd_entry_t *)PHYS_TO_DMAP(phys);
l1 = &l1[ptepindex & Ln_ADDR_MASK];
}
KASSERT((pmap_load(l1) & PTE_V) == 0,
("%s: L1 entry %#lx is valid", __func__, pmap_load(l1)));
entry = PTE_V | (pn << PTE_PPN0_S);
pmap_store(l1, entry);
pmap_distribute_l1(pmap, l1index, entry);
} else {
vm_pindex_t l0index, l1index;
pd_entry_t *l0, *l1, *l2;
l1index = ptepindex >> (L1_SHIFT - L2_SHIFT);
if (pmap_mode == PMAP_MODE_SV39) {
l1 = &pmap->pm_top[l1index];
if (pmap_load(l1) == 0) {
/* recurse for allocating page dir */
if (_pmap_alloc_l3(pmap, NUL2E + l1index,
lockp) == NULL)
goto fail;
} else {
pdpg = PTE_TO_VM_PAGE(pmap_load(l1));
pdpg->ref_count++;
}
} else {
l0index = l1index >> Ln_ENTRIES_SHIFT;
l0 = &pmap->pm_top[l0index];
if (pmap_load(l0) == 0) {
/* Recurse to allocate the L1 entry. */
if (_pmap_alloc_l3(pmap, NUL2E + l1index,
lockp) == NULL)
goto fail;
phys = PTE_TO_PHYS(pmap_load(l0));
l1 = (pd_entry_t *)PHYS_TO_DMAP(phys);
l1 = &l1[l1index & Ln_ADDR_MASK];
} else {
phys = PTE_TO_PHYS(pmap_load(l0));
l1 = (pd_entry_t *)PHYS_TO_DMAP(phys);
l1 = &l1[l1index & Ln_ADDR_MASK];
if (pmap_load(l1) == 0) {
/* Recurse to allocate the L2 page. */
if (_pmap_alloc_l3(pmap,
NUL2E + l1index, lockp) == NULL)
goto fail;
} else {
pdpg = PTE_TO_VM_PAGE(pmap_load(l1));
pdpg->ref_count++;
}
}
}
phys = PTE_TO_PHYS(pmap_load(l1));
l2 = (pd_entry_t *)PHYS_TO_DMAP(phys);
l2 = &l2[ptepindex & Ln_ADDR_MASK];
KASSERT((pmap_load(l2) & PTE_V) == 0,
("%s: L2 entry %#lx is valid", __func__, pmap_load(l2)));
entry = PTE_V | (pn << PTE_PPN0_S);
pmap_store(l2, entry);
}
pmap_resident_count_inc(pmap, 1);
return (m);
fail:
vm_page_unwire_noq(m);
vm_page_free_zero(m);
return (NULL);
}
static vm_page_t
pmap_alloc_l2(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
{
pd_entry_t *l1;
vm_page_t l2pg;
vm_pindex_t pindex;
retry:
l1 = pmap_l1(pmap, va);
if (l1 != NULL && (pmap_load(l1) & PTE_V) != 0) {
KASSERT((pmap_load(l1) & PTE_RWX) == 0,
("%s: L1 entry %#lx for VA %#lx is a leaf", __func__,
pmap_load(l1), va));
/* Add a reference to the L2 page. */
l2pg = PTE_TO_VM_PAGE(pmap_load(l1));
l2pg->ref_count++;
} else {
/* Allocate a L2 page. */
pindex = pmap_l1_pindex(va);
l2pg = _pmap_alloc_l3(pmap, pindex, lockp);
if (l2pg == NULL && lockp != NULL)
goto retry;
}
return (l2pg);
}
static vm_page_t
pmap_alloc_l3(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
{
vm_pindex_t ptepindex;
pd_entry_t *l2;
vm_page_t m;
/*
* Calculate pagetable page index
*/
ptepindex = pmap_l2_pindex(va);
retry:
/*
* Get the page directory entry
*/
l2 = pmap_l2(pmap, va);
/*
* If the page table page is mapped, we just increment the
* hold count, and activate it.
*/
if (l2 != NULL && pmap_load(l2) != 0) {
m = PTE_TO_VM_PAGE(pmap_load(l2));
m->ref_count++;
} else {
/*
* Here if the pte page isn't mapped, or if it has been
* deallocated.
*/
m = _pmap_alloc_l3(pmap, ptepindex, lockp);
if (m == NULL && lockp != NULL)
goto retry;
}
return (m);
}
/***************************************************
* Pmap allocation/deallocation routines.
***************************************************/
/*
* Release any resources held by the given physical map.
* Called when a pmap initialized by pmap_pinit is being released.
* Should only be called if the map contains no valid mappings.
*/
void
pmap_release(pmap_t pmap)
{
vm_page_t m;
int npages;
int i;
KASSERT(pmap->pm_stats.resident_count == 0,
("pmap_release: pmap resident count %ld != 0",
pmap->pm_stats.resident_count));
KASSERT(CPU_EMPTY(&pmap->pm_active),
("releasing active pmap %p", pmap));
if (pmap->pm_stage == PM_STAGE2)
goto finish;
if (pmap_mode == PMAP_MODE_SV39) {
mtx_lock(&allpmaps_lock);
LIST_REMOVE(pmap, pm_list);
mtx_unlock(&allpmaps_lock);
}
finish:
npages = pmap->pm_stage == PM_STAGE2 ? 4 : 1;
m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_top));
for (i = 0; i < npages; i++) {
vm_page_unwire_noq(m);
vm_page_free(m);
m++;
}
}
static int
kvm_size(SYSCTL_HANDLER_ARGS)
{
unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
return sysctl_handle_long(oidp, &ksize, 0, req);
}
SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
0, 0, kvm_size, "LU",
"Size of KVM");
static int
kvm_free(SYSCTL_HANDLER_ARGS)
{
unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
return sysctl_handle_long(oidp, &kfree, 0, req);
}
SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
0, 0, kvm_free, "LU",
"Amount of KVM free");
/*
* grow the number of kernel page table entries, if needed
*/
void
pmap_growkernel(vm_offset_t addr)
{
vm_paddr_t paddr;
vm_page_t nkpg;
pd_entry_t *l1, *l2;
pt_entry_t entry;
pn_t pn;
mtx_assert(&kernel_map->system_mtx, MA_OWNED);
addr = roundup2(addr, L2_SIZE);
if (addr - 1 >= vm_map_max(kernel_map))
addr = vm_map_max(kernel_map);
while (kernel_vm_end < addr) {
l1 = pmap_l1(kernel_pmap, kernel_vm_end);
if (pmap_load(l1) == 0) {
/* We need a new PDP entry */
nkpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT |
VM_ALLOC_NOFREE | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
if (nkpg == NULL)
panic("%s: no memory to grow kernel", __func__);
nkpg->pindex = pmap_l1_pindex(kernel_vm_end);
paddr = VM_PAGE_TO_PHYS(nkpg);
pn = (paddr / PAGE_SIZE);
entry = (PTE_V);
entry |= (pn << PTE_PPN0_S);
pmap_store(l1, entry);
pmap_distribute_l1(kernel_pmap,
pmap_l1_index(kernel_vm_end), entry);
continue; /* try again */
}
l2 = pmap_l1_to_l2(l1, kernel_vm_end);
if ((pmap_load(l2) & PTE_V) != 0 &&
(pmap_load(l2) & PTE_RWX) == 0) {
kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
kernel_vm_end = vm_map_max(kernel_map);
break;
}
continue;
}
nkpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT |
VM_ALLOC_NOFREE | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
if (nkpg == NULL)
panic("%s: no memory to grow kernel", __func__);
nkpg->pindex = pmap_l2_pindex(kernel_vm_end);
paddr = VM_PAGE_TO_PHYS(nkpg);
pn = (paddr / PAGE_SIZE);
entry = (PTE_V);
entry |= (pn << PTE_PPN0_S);
pmap_store(l2, entry);
pmap_invalidate_page(kernel_pmap, kernel_vm_end);
kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
kernel_vm_end = vm_map_max(kernel_map);
break;
}
}
}
/***************************************************
* page management routines.
***************************************************/
static const uint64_t pc_freemask[_NPCM] = {
[0 ... _NPCM - 2] = PC_FREEN,
[_NPCM - 1] = PC_FREEL
};
#ifdef PV_STATS
static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
"Current number of pv entry chunks");
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
"Current number of pv entry chunks allocated");
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
"Current number of pv entry chunks frees");
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
"Number of times tried to get a chunk page but failed.");
static long pv_entry_frees, pv_entry_allocs, pv_entry_count;
static int pv_entry_spare;
SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
"Current number of pv entry frees");
SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
"Current number of pv entry allocs");
SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
"Current number of pv entries");
SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
"Current number of spare pv entries");
#endif
/*
* We are in a serious low memory condition. Resort to
* drastic measures to free some pages so we can allocate
* another pv entry chunk.
*
* Returns NULL if PV entries were reclaimed from the specified pmap.
*
* We do not, however, unmap 2mpages because subsequent accesses will
* allocate per-page pv entries until repromotion occurs, thereby
* exacerbating the shortage of free pv entries.
*/
static vm_page_t
reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
{
panic("RISCVTODO: reclaim_pv_chunk");
}
/*
* free the pv_entry back to the free list
*/
static void
free_pv_entry(pmap_t pmap, pv_entry_t pv)
{
struct pv_chunk *pc;
int idx, field, bit;
rw_assert(&pvh_global_lock, RA_LOCKED);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
PV_STAT(atomic_add_long(&pv_entry_frees, 1));
PV_STAT(atomic_add_int(&pv_entry_spare, 1));
PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
pc = pv_to_chunk(pv);
idx = pv - &pc->pc_pventry[0];
field = idx / 64;
bit = idx % 64;
pc->pc_map[field] |= 1ul << bit;
if (!pc_is_free(pc)) {
/* 98% of the time, pc is already at the head of the list. */
if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
}
return;
}
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
free_pv_chunk(pc);
}
static void
free_pv_chunk(struct pv_chunk *pc)
{
vm_page_t m;
mtx_lock(&pv_chunks_mutex);
TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
mtx_unlock(&pv_chunks_mutex);
PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
/* entire chunk is free, return it */
m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
dump_drop_page(m->phys_addr);
vm_page_unwire_noq(m);
vm_page_free(m);
}
/*
* Returns a new PV entry, allocating a new PV chunk from the system when
* needed. If this PV chunk allocation fails and a PV list lock pointer was
* given, a PV chunk is reclaimed from an arbitrary pmap. Otherwise, NULL is
* returned.
*
* The given PV list lock may be released.
*/
static pv_entry_t
get_pv_entry(pmap_t pmap, struct rwlock **lockp)
{
int bit, field;
pv_entry_t pv;
struct pv_chunk *pc;
vm_page_t m;
rw_assert(&pvh_global_lock, RA_LOCKED);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
retry:
pc = TAILQ_FIRST(&pmap->pm_pvchunk);
if (pc != NULL) {
for (field = 0; field < _NPCM; field++) {
if (pc->pc_map[field]) {
bit = ffsl(pc->pc_map[field]) - 1;
break;
}
}
if (field < _NPCM) {
pv = &pc->pc_pventry[field * 64 + bit];
pc->pc_map[field] &= ~(1ul << bit);
/* If this was the last item, move it to tail */
if (pc_is_full(pc)) {
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
pc_list);
}
PV_STAT(atomic_add_long(&pv_entry_count, 1));
PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
return (pv);
}
}
/* No free items, allocate another chunk */
m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
if (m == NULL) {
if (lockp == NULL) {
PV_STAT(pc_chunk_tryfail++);
return (NULL);
}
m = reclaim_pv_chunk(pmap, lockp);
if (m == NULL)
goto retry;
}
PV_STAT(atomic_add_int(&pc_chunk_count, 1));
PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
dump_add_page(m->phys_addr);
pc = (void *)PHYS_TO_DMAP(m->phys_addr);
pc->pc_pmap = pmap;
pc->pc_map[0] = PC_FREEN & ~1ul; /* preallocated bit 0 */
pc->pc_map[1] = PC_FREEN;
pc->pc_map[2] = PC_FREEL;
mtx_lock(&pv_chunks_mutex);
TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
mtx_unlock(&pv_chunks_mutex);
pv = &pc->pc_pventry[0];
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
PV_STAT(atomic_add_long(&pv_entry_count, 1));
PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
return (pv);
}
/*
* Ensure that the number of spare PV entries in the specified pmap meets or
* exceeds the given count, "needed".
*
* The given PV list lock may be released.
*/
static void
reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
{
struct pch new_tail;
struct pv_chunk *pc;
vm_page_t m;
int avail, free;
bool reclaimed;
rw_assert(&pvh_global_lock, RA_LOCKED);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
/*
* Newly allocated PV chunks must be stored in a private list until
* the required number of PV chunks have been allocated. Otherwise,
* reclaim_pv_chunk() could recycle one of these chunks. In
* contrast, these chunks must be added to the pmap upon allocation.
*/
TAILQ_INIT(&new_tail);
retry:
avail = 0;
TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
bit_count((bitstr_t *)pc->pc_map, 0,
sizeof(pc->pc_map) * NBBY, &free);
if (free == 0)
break;
avail += free;
if (avail >= needed)
break;
}
for (reclaimed = false; avail < needed; avail += _NPCPV) {
m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
if (m == NULL) {
m = reclaim_pv_chunk(pmap, lockp);
if (m == NULL)
goto retry;
reclaimed = true;
}
PV_STAT(atomic_add_int(&pc_chunk_count, 1));
PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
dump_add_page(m->phys_addr);
pc = (void *)PHYS_TO_DMAP(m->phys_addr);
pc->pc_pmap = pmap;
pc->pc_map[0] = PC_FREEN;
pc->pc_map[1] = PC_FREEN;
pc->pc_map[2] = PC_FREEL;
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
/*
* The reclaim might have freed a chunk from the current pmap.
* If that chunk contained available entries, we need to
* re-count the number of available entries.
*/
if (reclaimed)
goto retry;
}
if (!TAILQ_EMPTY(&new_tail)) {
mtx_lock(&pv_chunks_mutex);
TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
mtx_unlock(&pv_chunks_mutex);
}
}
/*
* First find and then remove the pv entry for the specified pmap and virtual
* address from the specified pv list. Returns the pv entry if found and NULL
* otherwise. This operation can be performed on pv lists for either 4KB or
* 2MB page mappings.
*/
static __inline pv_entry_t
pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
{
pv_entry_t pv;
rw_assert(&pvh_global_lock, RA_LOCKED);
TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
pvh->pv_gen++;
break;
}
}
return (pv);
}
/*
* First find and then destroy the pv entry for the specified pmap and virtual
* address. This operation can be performed on pv lists for either 4KB or 2MB
* page mappings.
*/
static void
pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
{
pv_entry_t pv;
pv = pmap_pvh_remove(pvh, pmap, va);
KASSERT(pv != NULL, ("pmap_pvh_free: pv not found for %#lx", va));
free_pv_entry(pmap, pv);
}
/*
* Conditionally create the PV entry for a 4KB page mapping if the required
* memory can be allocated without resorting to reclamation.
*/
static bool
pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
struct rwlock **lockp)
{
pv_entry_t pv;
rw_assert(&pvh_global_lock, RA_LOCKED);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
/* Pass NULL instead of the lock pointer to disable reclamation. */
if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
pv->pv_va = va;
CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
m->md.pv_gen++;
return (true);
} else
return (false);
}
/*
* After demotion from a 2MB page mapping to 512 4KB page mappings,
* destroy the pv entry for the 2MB page mapping and reinstantiate the pv
* entries for each of the 4KB page mappings.
*/
static void __unused
pmap_pv_demote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
struct rwlock **lockp)
{
struct md_page *pvh;
struct pv_chunk *pc;
pv_entry_t pv;
vm_page_t m;
vm_offset_t va_last;
int bit, field;
rw_assert(&pvh_global_lock, RA_LOCKED);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
/*
* Transfer the 2mpage's pv entry for this mapping to the first
* page's pv list. Once this transfer begins, the pv list lock
* must not be released until the last pv entry is reinstantiated.
*/
pvh = pa_to_pvh(pa);
va &= ~L2_OFFSET;
pv = pmap_pvh_remove(pvh, pmap, va);
KASSERT(pv != NULL, ("pmap_pv_demote_l2: pv not found"));
m = PHYS_TO_VM_PAGE(pa);
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
m->md.pv_gen++;
/* Instantiate the remaining 511 pv entries. */
PV_STAT(atomic_add_long(&pv_entry_allocs, Ln_ENTRIES - 1));
va_last = va + L2_SIZE - PAGE_SIZE;
for (;;) {
pc = TAILQ_FIRST(&pmap->pm_pvchunk);
KASSERT(!pc_is_full(pc), ("pmap_pv_demote_l2: missing spare"));
for (field = 0; field < _NPCM; field++) {
while (pc->pc_map[field] != 0) {
bit = ffsl(pc->pc_map[field]) - 1;
pc->pc_map[field] &= ~(1ul << bit);
pv = &pc->pc_pventry[field * 64 + bit];
va += PAGE_SIZE;
pv->pv_va = va;
m++;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_pv_demote_l2: page %p is not managed", m));
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
m->md.pv_gen++;
if (va == va_last)
goto out;
}
}
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
}
out:
if (pc_is_full(pc)) {
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
}
PV_STAT(atomic_add_long(&pv_entry_count, Ln_ENTRIES - 1));
PV_STAT(atomic_add_int(&pv_entry_spare, -(Ln_ENTRIES - 1)));
}
#if VM_NRESERVLEVEL > 0
static void
pmap_pv_promote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
struct rwlock **lockp)
{
struct md_page *pvh;
pv_entry_t pv;
vm_page_t m;
vm_offset_t va_last;
rw_assert(&pvh_global_lock, RA_LOCKED);
KASSERT((pa & L2_OFFSET) == 0,
("pmap_pv_promote_l2: misaligned pa %#lx", pa));
CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
m = PHYS_TO_VM_PAGE(pa);
va = va & ~L2_OFFSET;
pv = pmap_pvh_remove(&m->md, pmap, va);
KASSERT(pv != NULL, ("pmap_pv_promote_l2: pv for %#lx not found", va));
pvh = pa_to_pvh(pa);
TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
pvh->pv_gen++;
va_last = va + L2_SIZE - PAGE_SIZE;
do {
m++;
va += PAGE_SIZE;
pmap_pvh_free(&m->md, pmap, va);
} while (va < va_last);
}
#endif /* VM_NRESERVLEVEL > 0 */
/*
* Create the PV entry for a 2MB page mapping. Always returns true unless the
* flag PMAP_ENTER_NORECLAIM is specified. If that flag is specified, returns
* false if the PV entry cannot be allocated without resorting to reclamation.
*/
static bool
pmap_pv_insert_l2(pmap_t pmap, vm_offset_t va, pd_entry_t l2e, u_int flags,
struct rwlock **lockp)
{
struct md_page *pvh;
pv_entry_t pv;
vm_paddr_t pa;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
/* Pass NULL instead of the lock pointer to disable reclamation. */
if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
NULL : lockp)) == NULL)
return (false);
pv->pv_va = va;
pa = PTE_TO_PHYS(l2e);
CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
pvh = pa_to_pvh(pa);
TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
pvh->pv_gen++;
return (true);
}
static void
pmap_remove_kernel_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va)
{
pt_entry_t newl2, oldl2 __diagused;
vm_page_t ml3;
vm_paddr_t ml3pa;
KASSERT(!VIRT_IN_DMAP(va), ("removing direct mapping of %#lx", va));
KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
ml3 = pmap_remove_pt_page(pmap, va);
if (ml3 == NULL)
panic("pmap_remove_kernel_l2: Missing pt page");
ml3pa = VM_PAGE_TO_PHYS(ml3);
newl2 = ml3pa | PTE_V;
/*
* If this page table page was unmapped by a promotion, then it
* contains valid mappings. Zero it to invalidate those mappings.
*/
if (vm_page_any_valid(ml3))
pagezero((void *)PHYS_TO_DMAP(ml3pa));
/*
* Demote the mapping.
*/
oldl2 = pmap_load_store(l2, newl2);
KASSERT(oldl2 == 0, ("%s: found existing mapping at %p: %#lx",
__func__, l2, oldl2));
}
/*
* pmap_remove_l2: Do the things to unmap a level 2 superpage.
*/
static int
pmap_remove_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva,
pd_entry_t l1e, struct spglist *free, struct rwlock **lockp)
{
struct md_page *pvh;
pt_entry_t oldl2;
vm_offset_t eva, va;
vm_page_t m, ml3;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
KASSERT((sva & L2_OFFSET) == 0, ("pmap_remove_l2: sva is not aligned"));
oldl2 = pmap_load_clear(l2);
KASSERT((oldl2 & PTE_RWX) != 0,
("pmap_remove_l2: L2e %lx is not a superpage mapping", oldl2));
/*
* The sfence.vma documentation states that it is sufficient to specify
* a single address within a superpage mapping. However, since we do
* not perform any invalidation upon promotion, TLBs may still be
* caching 4KB mappings within the superpage, so we must invalidate the
* entire range.
*/
pmap_invalidate_range(pmap, sva, sva + L2_SIZE);
if ((oldl2 & PTE_SW_WIRED) != 0)
pmap->pm_stats.wired_count -= L2_SIZE / PAGE_SIZE;
pmap_resident_count_dec(pmap, L2_SIZE / PAGE_SIZE);
if ((oldl2 & PTE_SW_MANAGED) != 0) {
CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, PTE_TO_PHYS(oldl2));
pvh = pa_to_pvh(PTE_TO_PHYS(oldl2));
pmap_pvh_free(pvh, pmap, sva);
eva = sva + L2_SIZE;
for (va = sva, m = PTE_TO_VM_PAGE(oldl2);
va < eva; va += PAGE_SIZE, m++) {
if ((oldl2 & PTE_D) != 0)
vm_page_dirty(m);
if ((oldl2 & PTE_A) != 0)
vm_page_aflag_set(m, PGA_REFERENCED);
if (TAILQ_EMPTY(&m->md.pv_list) &&
TAILQ_EMPTY(&pvh->pv_list))
vm_page_aflag_clear(m, PGA_WRITEABLE);
}
}
if (pmap == kernel_pmap) {
pmap_remove_kernel_l2(pmap, l2, sva);
} else {
ml3 = pmap_remove_pt_page(pmap, sva);
if (ml3 != NULL) {
KASSERT(vm_page_any_valid(ml3),
("pmap_remove_l2: l3 page not promoted"));
pmap_resident_count_dec(pmap, 1);
KASSERT(ml3->ref_count == Ln_ENTRIES,
("pmap_remove_l2: l3 page ref count error"));
ml3->ref_count = 1;
vm_page_unwire_noq(ml3);
pmap_add_delayed_free_list(ml3, free, false);
}
}
return (pmap_unuse_pt(pmap, sva, l1e, free));
}
/*
* pmap_remove_l3: do the things to unmap a page in a process
*/
static int
pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t va,
pd_entry_t l2e, struct spglist *free, struct rwlock **lockp)
{
struct md_page *pvh;
pt_entry_t old_l3;
vm_page_t m;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
old_l3 = pmap_load_clear(l3);
pmap_invalidate_page(pmap, va);
if (old_l3 & PTE_SW_WIRED)
pmap->pm_stats.wired_count -= 1;
pmap_resident_count_dec(pmap, 1);
if (old_l3 & PTE_SW_MANAGED) {
m = PTE_TO_VM_PAGE(old_l3);
if ((old_l3 & PTE_D) != 0)
vm_page_dirty(m);
if (old_l3 & PTE_A)
vm_page_aflag_set(m, PGA_REFERENCED);
CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
pmap_pvh_free(&m->md, pmap, va);
if (TAILQ_EMPTY(&m->md.pv_list) &&
(m->flags & PG_FICTITIOUS) == 0) {
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
if (TAILQ_EMPTY(&pvh->pv_list))
vm_page_aflag_clear(m, PGA_WRITEABLE);
}
}
return (pmap_unuse_pt(pmap, va, l2e, free));
}
/*
* Remove the given range of addresses from the specified map.
*
* It is assumed that the start and end are properly
* rounded to the page size.
*/
void
pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
struct spglist free;
struct rwlock *lock;
vm_offset_t va, va_next;
pd_entry_t *l0, *l1, *l2, l2e;
pt_entry_t *l3;
/*
* Perform an unsynchronized read. This is, however, safe.
*/
if (pmap->pm_stats.resident_count == 0)
return;
SLIST_INIT(&free);
rw_rlock(&pvh_global_lock);
PMAP_LOCK(pmap);
lock = NULL;
for (; sva < eva; sva = va_next) {
if (pmap->pm_stats.resident_count == 0)
break;
if (pmap_mode == PMAP_MODE_SV48) {
l0 = pmap_l0(pmap, sva);
if (pmap_load(l0) == 0) {
va_next = (sva + L0_SIZE) & ~L0_OFFSET;
if (va_next < sva)
va_next = eva;
continue;
}
l1 = pmap_l0_to_l1(l0, sva);
} else {
l1 = pmap_l1(pmap, sva);
}
if (pmap_load(l1) == 0) {
va_next = (sva + L1_SIZE) & ~L1_OFFSET;
if (va_next < sva)
va_next = eva;
continue;
}
/*
* Calculate index for next page table.
*/
va_next = (sva + L2_SIZE) & ~L2_OFFSET;
if (va_next < sva)
va_next = eva;
l2 = pmap_l1_to_l2(l1, sva);
if ((l2e = pmap_load(l2)) == 0)
continue;
if ((l2e & PTE_RWX) != 0) {
if (sva + L2_SIZE == va_next && eva >= va_next) {
(void)pmap_remove_l2(pmap, l2, sva,
pmap_load(l1), &free, &lock);
continue;
} else if (!pmap_demote_l2_locked(pmap, l2, sva,
&lock)) {
/*
* The large page mapping was destroyed.
*/
continue;
}
l2e = pmap_load(l2);
}
/*
* Limit our scan to either the end of the va represented
* by the current page table page, or to the end of the
* range being removed.
*/
if (va_next > eva)
va_next = eva;
va = va_next;
for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
sva += L3_SIZE) {
if (pmap_load(l3) == 0) {
if (va != va_next) {
pmap_invalidate_range(pmap, va, sva);
va = va_next;
}
continue;
}
if (va == va_next)
va = sva;
if (pmap_remove_l3(pmap, l3, sva, l2e, &free, &lock)) {
sva += L3_SIZE;
break;
}
}
if (va != va_next)
pmap_invalidate_range(pmap, va, sva);
}
if (lock != NULL)
rw_wunlock(lock);
rw_runlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
vm_page_free_pages_toq(&free, false);
}
/*
* Routine: pmap_remove_all
* Function:
* Removes this physical page from
* all physical maps in which it resides.
* Reflects back modify bits to the pager.
*
* Notes:
* Original versions of this routine were very
* inefficient because they iteratively called
* pmap_remove (slow...)
*/
void
pmap_remove_all(vm_page_t m)
{
struct spglist free;
struct md_page *pvh;
pmap_t pmap;
pt_entry_t *l3, l3e;
pd_entry_t *l2, l2e __diagused;
pv_entry_t pv;
vm_offset_t va;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_remove_all: page %p is not managed", m));
SLIST_INIT(&free);
pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
pa_to_pvh(VM_PAGE_TO_PHYS(m));
rw_wlock(&pvh_global_lock);
while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
pmap = PV_PMAP(pv);
PMAP_LOCK(pmap);
va = pv->pv_va;
l2 = pmap_l2(pmap, va);
(void)pmap_demote_l2(pmap, l2, va);
PMAP_UNLOCK(pmap);
}
while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
pmap = PV_PMAP(pv);
PMAP_LOCK(pmap);
pmap_resident_count_dec(pmap, 1);
l2 = pmap_l2(pmap, pv->pv_va);
KASSERT(l2 != NULL, ("pmap_remove_all: no l2 table found"));
l2e = pmap_load(l2);
KASSERT((l2e & PTE_RX) == 0,
("pmap_remove_all: found a superpage in %p's pv list", m));
l3 = pmap_l2_to_l3(l2, pv->pv_va);
l3e = pmap_load_clear(l3);
pmap_invalidate_page(pmap, pv->pv_va);
if (l3e & PTE_SW_WIRED)
pmap->pm_stats.wired_count--;
if ((l3e & PTE_A) != 0)
vm_page_aflag_set(m, PGA_REFERENCED);
/*
* Update the vm_page_t clean and reference bits.
*/
if ((l3e & PTE_D) != 0)
vm_page_dirty(m);
pmap_unuse_pt(pmap, pv->pv_va, pmap_load(l2), &free);
TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
m->md.pv_gen++;
free_pv_entry(pmap, pv);
PMAP_UNLOCK(pmap);
}
vm_page_aflag_clear(m, PGA_WRITEABLE);
rw_wunlock(&pvh_global_lock);
vm_page_free_pages_toq(&free, false);
}
/*
* Set the physical protection on the
* specified range of this map as requested.
*/
void
pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
{
pd_entry_t *l0, *l1, *l2, l2e;
pt_entry_t *l3, l3e, mask;
vm_page_t m, mt;
vm_offset_t va_next;
bool anychanged, pv_lists_locked;
if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
pmap_remove(pmap, sva, eva);
return;
}
if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
(VM_PROT_WRITE | VM_PROT_EXECUTE))
return;
anychanged = false;
pv_lists_locked = false;
mask = 0;
if ((prot & VM_PROT_WRITE) == 0)
mask |= PTE_W | PTE_D;
if ((prot & VM_PROT_EXECUTE) == 0)
mask |= PTE_X;
resume:
PMAP_LOCK(pmap);
for (; sva < eva; sva = va_next) {
if (pmap_mode == PMAP_MODE_SV48) {
l0 = pmap_l0(pmap, sva);
if (pmap_load(l0) == 0) {
va_next = (sva + L0_SIZE) & ~L0_OFFSET;
if (va_next < sva)
va_next = eva;
continue;
}
l1 = pmap_l0_to_l1(l0, sva);
} else {
l1 = pmap_l1(pmap, sva);
}
if (pmap_load(l1) == 0) {
va_next = (sva + L1_SIZE) & ~L1_OFFSET;
if (va_next < sva)
va_next = eva;
continue;
}
va_next = (sva + L2_SIZE) & ~L2_OFFSET;
if (va_next < sva)
va_next = eva;
l2 = pmap_l1_to_l2(l1, sva);
if ((l2e = pmap_load(l2)) == 0)
continue;
if ((l2e & PTE_RWX) != 0) {
if (sva + L2_SIZE == va_next && eva >= va_next) {
retryl2:
if ((prot & VM_PROT_WRITE) == 0 &&
(l2e & (PTE_SW_MANAGED | PTE_D)) ==
(PTE_SW_MANAGED | PTE_D)) {
m = PTE_TO_VM_PAGE(l2e);
for (mt = m; mt < &m[Ln_ENTRIES]; mt++)
vm_page_dirty(mt);
}
if (!atomic_fcmpset_long(l2, &l2e, l2e & ~mask))
goto retryl2;
anychanged = true;
continue;
} else {
if (!pv_lists_locked) {
pv_lists_locked = true;
if (!rw_try_rlock(&pvh_global_lock)) {
if (anychanged)
pmap_invalidate_all(
pmap);
PMAP_UNLOCK(pmap);
rw_rlock(&pvh_global_lock);
goto resume;
}
}
if (!pmap_demote_l2(pmap, l2, sva)) {
/*
* The large page mapping was destroyed.
*/
continue;
}
}
}
if (va_next > eva)
va_next = eva;
for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
sva += L3_SIZE) {
l3e = pmap_load(l3);
retryl3:
if ((l3e & PTE_V) == 0)
continue;
if ((prot & VM_PROT_WRITE) == 0 &&
(l3e & (PTE_SW_MANAGED | PTE_D)) ==
(PTE_SW_MANAGED | PTE_D)) {
m = PTE_TO_VM_PAGE(l3e);
vm_page_dirty(m);
}
if (!atomic_fcmpset_long(l3, &l3e, l3e & ~mask))
goto retryl3;
anychanged = true;
}
}
if (anychanged)
pmap_invalidate_all(pmap);
if (pv_lists_locked)
rw_runlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
}
int
pmap_fault(pmap_t pmap, vm_offset_t va, vm_prot_t ftype)
{
pd_entry_t *l2, l2e;
pt_entry_t bits, *pte, oldpte;
int rv;
KASSERT(VIRT_IS_VALID(va), ("pmap_fault: invalid va %#lx", va));
rv = 0;
PMAP_LOCK(pmap);
l2 = pmap_l2(pmap, va);
if (l2 == NULL || ((l2e = pmap_load(l2)) & PTE_V) == 0)
goto done;
if ((l2e & PTE_RWX) == 0) {
pte = pmap_l2_to_l3(l2, va);
if (((oldpte = pmap_load(pte)) & PTE_V) == 0)
goto done;
} else {
pte = l2;
oldpte = l2e;
}
if ((pmap != kernel_pmap && (oldpte & PTE_U) == 0) ||
(ftype == VM_PROT_WRITE && (oldpte & PTE_W) == 0) ||
(ftype == VM_PROT_EXECUTE && (oldpte & PTE_X) == 0) ||
(ftype == VM_PROT_READ && (oldpte & PTE_R) == 0))
goto done;
bits = PTE_A;
if (ftype == VM_PROT_WRITE)
bits |= PTE_D;
/*
* Spurious faults can occur if the implementation caches invalid
* entries in the TLB, or if simultaneous accesses on multiple CPUs
* race with each other.
*/
if ((oldpte & bits) != bits)
pmap_store_bits(pte, bits);
sfence_vma();
rv = 1;
done:
PMAP_UNLOCK(pmap);
return (rv);
}
/*
* Demote the specified L1 page to separate L2 pages.
* Currently only used for DMAP entries.
*/
static bool
pmap_demote_l1(pmap_t pmap, pd_entry_t *l1, vm_offset_t va)
{
vm_page_t m;
pt_entry_t *l2, oldl1, newl2;
pd_entry_t newl1;
vm_paddr_t l2phys;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
oldl1 = pmap_load(l1);
KASSERT((oldl1 & PTE_RWX) != 0,
("pmap_demote_l1: oldl1 is not a leaf PTE"));
KASSERT((oldl1 & PTE_A) != 0,
("pmap_demote_l1: oldl1 is missing PTE_A"));
KASSERT((oldl1 & (PTE_D | PTE_W)) != PTE_W,
("pmap_demote_l1: not dirty!"));
KASSERT((oldl1 & PTE_SW_MANAGED) == 0,
("pmap_demote_l1: L1 table shouldn't be managed"));
KASSERT(VIRT_IN_DMAP(va),
("pmap_demote_l1: is unsupported for non-DMAP va=%#lx", va));
/* Demoting L1 means we need to allocate a new page-table page. */
m = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED);
if (m == NULL) {
CTR2(KTR_PMAP, "pmap_demote_l1: failure for va %#lx in pmap %p",
va, pmap);
return (false);
}
l2phys = VM_PAGE_TO_PHYS(m);
l2 = (pt_entry_t *)PHYS_TO_DMAP(l2phys);
/*
* Create new entries, relying on the fact that only the low bits
* (index) of the physical address are changing.
*/
newl2 = oldl1;
for (int i = 0; i < Ln_ENTRIES; i++)
pmap_store(&l2[i], newl2 | (i << PTE_PPN1_S));
/*
* And update the L1 entry.
*
* NB: flushing the TLB is the responsibility of the caller. Cached
* translations are still "correct" for demoted mappings until some
* subset of the demoted range is modified.
*/
newl1 = ((l2phys / PAGE_SIZE) << PTE_PPN0_S) | PTE_V;
pmap_store(l1, newl1);
counter_u64_add(pmap_l1_demotions, 1);
CTR2(KTR_PMAP, "pmap_demote_l1: success for va %#lx in pmap %p",
va, pmap);
return (true);
}
static bool
pmap_demote_l2(pmap_t pmap, pd_entry_t *l2, vm_offset_t va)
{
struct rwlock *lock;
bool rv;
lock = NULL;
rv = pmap_demote_l2_locked(pmap, l2, va, &lock);
if (lock != NULL)
rw_wunlock(lock);
return (rv);
}
/*
* Tries to demote a 2MB page mapping. If demotion fails, the 2MB page
* mapping is invalidated.
*/
static bool
pmap_demote_l2_locked(pmap_t pmap, pd_entry_t *l2, vm_offset_t va,
struct rwlock **lockp)
{
struct spglist free;
vm_page_t mpte;
pd_entry_t newl2, oldl2;
pt_entry_t *firstl3, newl3;
vm_paddr_t mptepa;
int i;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
oldl2 = pmap_load(l2);
KASSERT((oldl2 & PTE_RWX) != 0,
("pmap_demote_l2_locked: oldl2 is not a leaf entry"));
if ((oldl2 & PTE_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
NULL) {
KASSERT((oldl2 & PTE_SW_WIRED) == 0,
("pmap_demote_l2_locked: page table page for a wired mapping is missing"));
if ((oldl2 & PTE_A) == 0 || (mpte = vm_page_alloc_noobj(
(VIRT_IN_DMAP(va) ? VM_ALLOC_INTERRUPT : 0) |
VM_ALLOC_WIRED)) == NULL) {
SLIST_INIT(&free);
(void)pmap_remove_l2(pmap, l2, va & ~L2_OFFSET,
pmap_load(pmap_l1(pmap, va)), &free, lockp);
vm_page_free_pages_toq(&free, true);
CTR2(KTR_PMAP, "pmap_demote_l2_locked: "
"failure for va %#lx in pmap %p", va, pmap);
return (false);
}
mpte->pindex = pmap_l2_pindex(va);
if (va < VM_MAXUSER_ADDRESS) {
mpte->ref_count = Ln_ENTRIES;
pmap_resident_count_inc(pmap, 1);
}
}
mptepa = VM_PAGE_TO_PHYS(mpte);
firstl3 = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
newl2 = ((mptepa / PAGE_SIZE) << PTE_PPN0_S) | PTE_V;
KASSERT((oldl2 & PTE_A) != 0,
("pmap_demote_l2_locked: oldl2 is missing PTE_A"));
KASSERT((oldl2 & (PTE_D | PTE_W)) != PTE_W,
("pmap_demote_l2_locked: oldl2 is missing PTE_D"));
newl3 = oldl2;
/*
* If the page table page is not leftover from an earlier promotion,
* initialize it.
*/
if (!vm_page_all_valid(mpte)) {
for (i = 0; i < Ln_ENTRIES; i++)
pmap_store(firstl3 + i, newl3 + (i << PTE_PPN0_S));
}
KASSERT(PTE_TO_PHYS(pmap_load(firstl3)) == PTE_TO_PHYS(newl3),
("pmap_demote_l2_locked: firstl3 and newl3 map different physical "
"addresses"));
/*
* If the mapping has changed attributes, update the PTEs.
*/
if ((pmap_load(firstl3) & PTE_PROMOTE) != (newl3 & PTE_PROMOTE))
for (i = 0; i < Ln_ENTRIES; i++)
pmap_store(firstl3 + i, newl3 + (i << PTE_PPN0_S));
/*
* The spare PV entries must be reserved prior to demoting the
* mapping, that is, prior to changing the L2 entry. Otherwise, the
* state of the L2 entry and the PV lists will be inconsistent, which
* can result in reclaim_pv_chunk() attempting to remove a PV entry from
* the wrong PV list and pmap_pv_demote_l2() failing to find the
* expected PV entry for the 2MB page mapping that is being demoted.
*/
if ((oldl2 & PTE_SW_MANAGED) != 0)
reserve_pv_entries(pmap, Ln_ENTRIES - 1, lockp);
/*
* Demote the mapping.
*/
pmap_store(l2, newl2);
/*
* Demote the PV entry.
*/
if ((oldl2 & PTE_SW_MANAGED) != 0)
pmap_pv_demote_l2(pmap, va, PTE_TO_PHYS(oldl2), lockp);
atomic_add_long(&pmap_l2_demotions, 1);
CTR2(KTR_PMAP, "pmap_demote_l2_locked: success for va %#lx in pmap %p",
va, pmap);
return (true);
}
#if VM_NRESERVLEVEL > 0
static bool
pmap_promote_l2(pmap_t pmap, pd_entry_t *l2, vm_offset_t va, vm_page_t ml3,
struct rwlock **lockp)
{
pt_entry_t all_l3e_PTE_A, *firstl3, firstl3e, *l3, l3e;
vm_paddr_t pa;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
if (!pmap_ps_enabled(pmap))
return (false);
KASSERT((pmap_load(l2) & PTE_RWX) == 0,
("pmap_promote_l2: invalid l2 entry %p", l2));
/*
* Examine the first L3E in the specified PTP. Abort if this L3E is
* ineligible for promotion or does not map the first 4KB physical page
* within a 2MB page.
*/
firstl3 = (pt_entry_t *)PHYS_TO_DMAP(PTE_TO_PHYS(pmap_load(l2)));
firstl3e = pmap_load(firstl3);
pa = PTE_TO_PHYS(firstl3e);
if ((pa & L2_OFFSET) != 0) {
CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx pmap %p",
va, pmap);
atomic_add_long(&pmap_l2_p_failures, 1);
return (false);
}
/*
* Downgrade a clean, writable mapping to read-only to ensure that the
* hardware does not set PTE_D while we are comparing PTEs.
*
* Upon a write access to a clean mapping, the implementation will
* either atomically check protections and set PTE_D, or raise a page
* fault. In the latter case, the pmap lock provides atomicity. Thus,
* we do not issue an sfence.vma here and instead rely on pmap_fault()
* to do so lazily.
*/
while ((firstl3e & (PTE_W | PTE_D)) == PTE_W) {
if (atomic_fcmpset_64(firstl3, &firstl3e, firstl3e & ~PTE_W)) {
firstl3e &= ~PTE_W;
break;
}
}
/*
* Examine each of the other PTEs in the specified PTP. Abort if this
* PTE maps an unexpected 4KB physical page or does not have identical
* characteristics to the first PTE.
*/
all_l3e_PTE_A = firstl3e & PTE_A;
pa += L2_SIZE - PAGE_SIZE;
for (l3 = firstl3 + Ln_ENTRIES - 1; l3 > firstl3; l3--) {
l3e = pmap_load(l3);
if (PTE_TO_PHYS(l3e) != pa) {
CTR2(KTR_PMAP,
"pmap_promote_l2: failure for va %#lx pmap %p",
va, pmap);
atomic_add_long(&pmap_l2_p_failures, 1);
return (false);
}
while ((l3e & (PTE_W | PTE_D)) == PTE_W) {
if (atomic_fcmpset_64(l3, &l3e, l3e & ~PTE_W)) {
l3e &= ~PTE_W;
break;
}
}
if ((l3e & PTE_PROMOTE) != (firstl3e & PTE_PROMOTE)) {
CTR2(KTR_PMAP,
"pmap_promote_l2: failure for va %#lx pmap %p",
va, pmap);
atomic_add_long(&pmap_l2_p_failures, 1);
return (false);
}
all_l3e_PTE_A &= l3e;
pa -= PAGE_SIZE;
}
/*
* Unless all PTEs have PTE_A set, clear it from the superpage
* mapping, so that promotions triggered by speculative mappings,
* such as pmap_enter_quick(), don't automatically mark the
* underlying pages as referenced.
*/
firstl3e &= ~PTE_A | all_l3e_PTE_A;
/*
* Save the page table page in its current state until the L2
* mapping the superpage is demoted by pmap_demote_l2() or
* destroyed by pmap_remove_l3().
*/
if (ml3 == NULL)
ml3 = PTE_TO_VM_PAGE(pmap_load(l2));
KASSERT(ml3->pindex == pmap_l2_pindex(va),
("pmap_promote_l2: page table page's pindex is wrong"));
if (pmap_insert_pt_page(pmap, ml3, true, all_l3e_PTE_A != 0)) {
CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx pmap %p",
va, pmap);
atomic_add_long(&pmap_l2_p_failures, 1);
return (false);
}
if ((firstl3e & PTE_SW_MANAGED) != 0)
pmap_pv_promote_l2(pmap, va, PTE_TO_PHYS(firstl3e), lockp);
pmap_store(l2, firstl3e);
atomic_add_long(&pmap_l2_promotions, 1);
CTR2(KTR_PMAP, "pmap_promote_l2: success for va %#lx in pmap %p", va,
pmap);
return (true);
}
#endif
/*
* Insert the given physical page (p) at
* the specified virtual address (v) in the
* target physical map with the protection requested.
*
* If specified, the page will be wired down, meaning
* that the related pte can not be reclaimed.
*
* NB: This is the only routine which MAY NOT lazy-evaluate
* or lose information. That is, this routine must actually
* insert this page into the given map NOW.
*/
int
pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
u_int flags, int8_t psind)
{
struct rwlock *lock;
pd_entry_t *l2, l2e;
pt_entry_t new_l3, orig_l3;
pt_entry_t *l3;
pv_entry_t pv;
vm_paddr_t opa, pa;
vm_page_t mpte, om;
pn_t pn;
int rv;
bool nosleep;
va = trunc_page(va);
if ((m->oflags & VPO_UNMANAGED) == 0)
VM_PAGE_OBJECT_BUSY_ASSERT(m);
pa = VM_PAGE_TO_PHYS(m);
pn = (pa / PAGE_SIZE);
new_l3 = PTE_V | PTE_R | PTE_A;
if (prot & VM_PROT_EXECUTE)
new_l3 |= PTE_X;
if (flags & VM_PROT_WRITE)
new_l3 |= PTE_D;
if (prot & VM_PROT_WRITE)
new_l3 |= PTE_W;
if (va < VM_MAX_USER_ADDRESS)
new_l3 |= PTE_U;
new_l3 |= (pn << PTE_PPN0_S);
if ((flags & PMAP_ENTER_WIRED) != 0)
new_l3 |= PTE_SW_WIRED;
new_l3 |= pmap_memattr_bits(m->md.pv_memattr);
/*
* Set modified bit gratuitously for writeable mappings if
* the page is unmanaged. We do not want to take a fault
* to do the dirty bit accounting for these mappings.
*/
if ((m->oflags & VPO_UNMANAGED) != 0) {
if (prot & VM_PROT_WRITE)
new_l3 |= PTE_D;
} else
new_l3 |= PTE_SW_MANAGED;
CTR2(KTR_PMAP, "pmap_enter: %.16lx -> %.16lx", va, pa);
lock = NULL;
mpte = NULL;
rw_rlock(&pvh_global_lock);
PMAP_LOCK(pmap);
if (psind == 1) {
/* Assert the required virtual and physical alignment. */
KASSERT((va & L2_OFFSET) == 0,
("pmap_enter: va %#lx unaligned", va));
KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
rv = pmap_enter_l2(pmap, va, new_l3, flags, m, &lock);
goto out;
}
l2 = pmap_l2(pmap, va);
if (l2 != NULL && ((l2e = pmap_load(l2)) & PTE_V) != 0 &&
((l2e & PTE_RWX) == 0 || pmap_demote_l2_locked(pmap, l2,
va, &lock))) {
l3 = pmap_l2_to_l3(l2, va);
if (va < VM_MAXUSER_ADDRESS) {
mpte = PTE_TO_VM_PAGE(pmap_load(l2));
mpte->ref_count++;
}
} else if (va < VM_MAXUSER_ADDRESS) {
nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
mpte = pmap_alloc_l3(pmap, va, nosleep ? NULL : &lock);
if (mpte == NULL && nosleep) {
CTR0(KTR_PMAP, "pmap_enter: mpte == NULL");
if (lock != NULL)
rw_wunlock(lock);
rw_runlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
return (KERN_RESOURCE_SHORTAGE);
}
l3 = pmap_l3(pmap, va);
} else {
panic("pmap_enter: missing L3 table for kernel va %#lx", va);
}
orig_l3 = pmap_load(l3);
opa = PTE_TO_PHYS(orig_l3);
pv = NULL;
/*
* Is the specified virtual address already mapped?
*/
if ((orig_l3 & PTE_V) != 0) {
/*
* Wiring change, just update stats. We don't worry about
* wiring PT pages as they remain resident as long as there
* are valid mappings in them. Hence, if a user page is wired,
* the PT page will be also.
*/
if ((flags & PMAP_ENTER_WIRED) != 0 &&
(orig_l3 & PTE_SW_WIRED) == 0)
pmap->pm_stats.wired_count++;
else if ((flags & PMAP_ENTER_WIRED) == 0 &&
(orig_l3 & PTE_SW_WIRED) != 0)
pmap->pm_stats.wired_count--;
/*
* Remove the extra PT page reference.
*/
if (mpte != NULL) {
mpte->ref_count--;
KASSERT(mpte->ref_count > 0,
("pmap_enter: missing reference to page table page,"
" va: 0x%lx", va));
}
/*
* Has the physical page changed?
*/
if (opa == pa) {
/*
* No, might be a protection or wiring change.
*/
if ((orig_l3 & PTE_SW_MANAGED) != 0 &&
(new_l3 & PTE_W) != 0)
vm_page_aflag_set(m, PGA_WRITEABLE);
goto validate;
}
/*
* The physical page has changed. Temporarily invalidate
* the mapping. This ensures that all threads sharing the
* pmap keep a consistent view of the mapping, which is
* necessary for the correct handling of COW faults. It
* also permits reuse of the old mapping's PV entry,
* avoiding an allocation.
*
* For consistency, handle unmanaged mappings the same way.
*/
orig_l3 = pmap_load_clear(l3);
KASSERT(PTE_TO_PHYS(orig_l3) == opa,
("pmap_enter: unexpected pa update for %#lx", va));
if ((orig_l3 & PTE_SW_MANAGED) != 0) {
om = PHYS_TO_VM_PAGE(opa);
/*
* The pmap lock is sufficient to synchronize with
* concurrent calls to pmap_page_test_mappings() and
* pmap_ts_referenced().
*/
if ((orig_l3 & PTE_D) != 0)
vm_page_dirty(om);
if ((orig_l3 & PTE_A) != 0)
vm_page_aflag_set(om, PGA_REFERENCED);
CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
pv = pmap_pvh_remove(&om->md, pmap, va);
KASSERT(pv != NULL,
("pmap_enter: no PV entry for %#lx", va));
if ((new_l3 & PTE_SW_MANAGED) == 0)
free_pv_entry(pmap, pv);
if ((om->a.flags & PGA_WRITEABLE) != 0 &&
TAILQ_EMPTY(&om->md.pv_list) &&
((om->flags & PG_FICTITIOUS) != 0 ||
TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
vm_page_aflag_clear(om, PGA_WRITEABLE);
}
pmap_invalidate_page(pmap, va);
orig_l3 = 0;
} else {
/*
* Increment the counters.
*/
if ((new_l3 & PTE_SW_WIRED) != 0)
pmap->pm_stats.wired_count++;
pmap_resident_count_inc(pmap, 1);
}
/*
* Enter on the PV list if part of our managed memory.
*/
if ((new_l3 & PTE_SW_MANAGED) != 0) {
if (pv == NULL) {
pv = get_pv_entry(pmap, &lock);
pv->pv_va = va;
}
CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
m->md.pv_gen++;
if ((new_l3 & PTE_W) != 0)
vm_page_aflag_set(m, PGA_WRITEABLE);
}
validate:
/*
* Sync the i-cache on all harts before updating the PTE
* if the new PTE is executable.
*/
if (prot & VM_PROT_EXECUTE)
pmap_sync_icache(pmap, va, PAGE_SIZE);
/*
* Update the L3 entry.
*/
if (orig_l3 != 0) {
orig_l3 = pmap_load_store(l3, new_l3);
pmap_invalidate_page(pmap, va);
KASSERT(PTE_TO_PHYS(orig_l3) == pa,
("pmap_enter: invalid update"));
if ((orig_l3 & (PTE_D | PTE_SW_MANAGED)) ==
(PTE_D | PTE_SW_MANAGED))
vm_page_dirty(m);
} else {
pmap_store(l3, new_l3);
}
#if VM_NRESERVLEVEL > 0
if (mpte != NULL && mpte->ref_count == Ln_ENTRIES &&
(m->flags & PG_FICTITIOUS) == 0 &&
vm_reserv_level_iffullpop(m) == 0)
(void)pmap_promote_l2(pmap, l2, va, mpte, &lock);
#endif
rv = KERN_SUCCESS;
out:
if (lock != NULL)
rw_wunlock(lock);
rw_runlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
return (rv);
}
/*
* Release a page table page reference after a failed attempt to create a
* mapping.
*/
static void
pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t l2pg)
{
struct spglist free;
SLIST_INIT(&free);
if (pmap_unwire_ptp(pmap, va, l2pg, &free)) {
/*
* Although "va" is not mapped, paging-structure
* caches could nonetheless have entries that
* refer to the freed page table pages.
* Invalidate those entries.
*/
pmap_invalidate_page(pmap, va);
vm_page_free_pages_toq(&free, true);
}
}
/*
* Tries to create a read- and/or execute-only 2MB page mapping. Returns
* KERN_SUCCESS if the mapping was created. Otherwise, returns an error
* value. See pmap_enter_l2() for the possible error values when "no sleep",
* "no replace", and "no reclaim" are specified.
*/
static int
pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
struct rwlock **lockp)
{
pd_entry_t new_l2;
pn_t pn;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
pn = VM_PAGE_TO_PHYS(m) / PAGE_SIZE;
new_l2 = (pd_entry_t)((pn << PTE_PPN0_S) | PTE_R | PTE_V |
pmap_memattr_bits(m->md.pv_memattr));
if ((m->oflags & VPO_UNMANAGED) == 0)
new_l2 |= PTE_SW_MANAGED;
if ((prot & VM_PROT_EXECUTE) != 0)
new_l2 |= PTE_X;
if (va < VM_MAXUSER_ADDRESS)
new_l2 |= PTE_U;
return (pmap_enter_l2(pmap, va, new_l2, PMAP_ENTER_NOSLEEP |
PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp));
}
/*
* Returns true if every page table entry in the specified page table is
* zero.
*/
static bool
pmap_every_pte_zero(vm_paddr_t pa)
{
pt_entry_t *pt_end, *pte;
KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
for (pt_end = pte + Ln_ENTRIES; pte < pt_end; pte++) {
if (*pte != 0)
return (false);
}
return (true);
}
/*
* Tries to create the specified 2MB page mapping. Returns KERN_SUCCESS if
* the mapping was created, and one of KERN_FAILURE, KERN_NO_SPACE, or
* KERN_RESOURCE_SHORTAGE otherwise. Returns KERN_FAILURE if
* PMAP_ENTER_NOREPLACE was specified and a 4KB page mapping already exists
* within the 2MB virtual address range starting at the specified virtual
* address. Returns KERN_NO_SPACE if PMAP_ENTER_NOREPLACE was specified and a
* 2MB page mapping already exists at the specified virtual address. Returns
* KERN_RESOURCE_SHORTAGE if either (1) PMAP_ENTER_NOSLEEP was specified and a
* page table page allocation failed or (2) PMAP_ENTER_NORECLAIM was specified
* and a PV entry allocation failed.
*
* The parameter "m" is only used when creating a managed, writeable mapping.
*/
static int
pmap_enter_l2(pmap_t pmap, vm_offset_t va, pd_entry_t new_l2, u_int flags,
vm_page_t m, struct rwlock **lockp)
{
struct spglist free;
pd_entry_t *l2, *l3, oldl2;
vm_offset_t sva;
vm_page_t l2pg, mt;
vm_page_t uwptpg;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
if ((l2pg = pmap_alloc_l2(pmap, va, (flags & PMAP_ENTER_NOSLEEP) != 0 ?
NULL : lockp)) == NULL) {
CTR2(KTR_PMAP, "pmap_enter_l2: failed to allocate PT page"
" for va %#lx in pmap %p", va, pmap);
return (KERN_RESOURCE_SHORTAGE);
}
l2 = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(l2pg));
l2 = &l2[pmap_l2_index(va)];
if ((oldl2 = pmap_load(l2)) != 0) {
KASSERT(l2pg->ref_count > 1,
("pmap_enter_l2: l2pg's ref count is too low"));
if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
if ((oldl2 & PTE_RWX) != 0) {
l2pg->ref_count--;
CTR2(KTR_PMAP,
"pmap_enter_l2: no space for va %#lx"
" in pmap %p", va, pmap);
return (KERN_NO_SPACE);
} else if (va < VM_MAXUSER_ADDRESS ||
!pmap_every_pte_zero(L2PTE_TO_PHYS(oldl2))) {
l2pg->ref_count--;
CTR2(KTR_PMAP, "pmap_enter_l2:"
" failed to replace existing mapping"
" for va %#lx in pmap %p", va, pmap);
return (KERN_FAILURE);
}
}
SLIST_INIT(&free);
if ((oldl2 & PTE_RWX) != 0)
(void)pmap_remove_l2(pmap, l2, va,
pmap_load(pmap_l1(pmap, va)), &free, lockp);
else
for (sva = va; sva < va + L2_SIZE; sva += PAGE_SIZE) {
l3 = pmap_l2_to_l3(l2, sva);
if ((pmap_load(l3) & PTE_V) != 0 &&
pmap_remove_l3(pmap, l3, sva, oldl2, &free,
lockp) != 0)
break;
}
vm_page_free_pages_toq(&free, true);
if (va >= VM_MAXUSER_ADDRESS) {
/*
* Both pmap_remove_l2() and pmap_remove_l3() will
* leave the kernel page table page zero filled.
*/
mt = PTE_TO_VM_PAGE(pmap_load(l2));
if (pmap_insert_pt_page(pmap, mt, false, false))
panic("pmap_enter_l2: trie insert failed");
} else
KASSERT(pmap_load(l2) == 0,
("pmap_enter_l2: non-zero L2 entry %p", l2));
}
/*
* Allocate leaf ptpage for wired userspace pages.
*/
uwptpg = NULL;
if ((new_l2 & PTE_SW_WIRED) != 0 && pmap != kernel_pmap) {
uwptpg = vm_page_alloc_noobj(VM_ALLOC_WIRED);
if (uwptpg == NULL) {
pmap_abort_ptp(pmap, va, l2pg);
return (KERN_RESOURCE_SHORTAGE);
}
uwptpg->pindex = pmap_l2_pindex(va);
if (pmap_insert_pt_page(pmap, uwptpg, true, false)) {
vm_page_unwire_noq(uwptpg);
vm_page_free(uwptpg);
pmap_abort_ptp(pmap, va, l2pg);
return (KERN_RESOURCE_SHORTAGE);
}
pmap_resident_count_inc(pmap, 1);
uwptpg->ref_count = Ln_ENTRIES;
}
if ((new_l2 & PTE_SW_MANAGED) != 0) {
/*
* Abort this mapping if its PV entry could not be created.
*/
if (!pmap_pv_insert_l2(pmap, va, new_l2, flags, lockp)) {
pmap_abort_ptp(pmap, va, l2pg);
if (uwptpg != NULL) {
mt = pmap_remove_pt_page(pmap, va);
KASSERT(mt == uwptpg,
("removed pt page %p, expected %p", mt,
uwptpg));
pmap_resident_count_dec(pmap, 1);
uwptpg->ref_count = 1;
vm_page_unwire_noq(uwptpg);
vm_page_free(uwptpg);
}
CTR2(KTR_PMAP,
"pmap_enter_l2: failed to create PV entry"
" for va %#lx in pmap %p", va, pmap);
return (KERN_RESOURCE_SHORTAGE);
}
if ((new_l2 & PTE_W) != 0)
for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
vm_page_aflag_set(mt, PGA_WRITEABLE);
}
/*
* Increment counters.
*/
if ((new_l2 & PTE_SW_WIRED) != 0)
pmap->pm_stats.wired_count += L2_SIZE / PAGE_SIZE;
pmap->pm_stats.resident_count += L2_SIZE / PAGE_SIZE;
/*
* Map the superpage.
*/
pmap_store(l2, new_l2);
atomic_add_long(&pmap_l2_mappings, 1);
CTR2(KTR_PMAP, "pmap_enter_l2: success for va %#lx in pmap %p",
va, pmap);
return (KERN_SUCCESS);
}
/*
* Maps a sequence of resident pages belonging to the same object.
* The sequence begins with the given page m_start. This page is
* mapped at the given virtual address start. Each subsequent page is
* mapped at a virtual address that is offset from start by the same
* amount as the page is offset from m_start within the object. The
* last page in the sequence is the page with the largest offset from
* m_start that can be mapped at a virtual address less than the given
* virtual address end. Not every virtual page between start and end
* is mapped; only those for which a resident page exists with the
* corresponding offset from m_start are mapped.
*/
void
pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
vm_page_t m_start, vm_prot_t prot)
{
struct rwlock *lock;
vm_offset_t va;
vm_page_t m, mpte;
vm_pindex_t diff, psize;
int rv;
VM_OBJECT_ASSERT_LOCKED(m_start->object);
psize = atop(end - start);
mpte = NULL;
m = m_start;
lock = NULL;
rw_rlock(&pvh_global_lock);
PMAP_LOCK(pmap);
while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
va = start + ptoa(diff);
if ((va & L2_OFFSET) == 0 && va + L2_SIZE <= end &&
m->psind == 1 && pmap_ps_enabled(pmap) &&
((rv = pmap_enter_2mpage(pmap, va, m, prot, &lock)) ==
KERN_SUCCESS || rv == KERN_NO_SPACE))
m = &m[L2_SIZE / PAGE_SIZE - 1];
else
mpte = pmap_enter_quick_locked(pmap, va, m, prot, mpte,
&lock);
m = TAILQ_NEXT(m, listq);
}
if (lock != NULL)
rw_wunlock(lock);
rw_runlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
}
/*
* this code makes some *MAJOR* assumptions:
* 1. Current pmap & pmap exists.
* 2. Not wired.
* 3. Read access.
* 4. No page table pages.
* but is *MUCH* faster than pmap_enter...
*/
void
pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
{
struct rwlock *lock;
lock = NULL;
rw_rlock(&pvh_global_lock);
PMAP_LOCK(pmap);
(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
if (lock != NULL)
rw_wunlock(lock);
rw_runlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
}
static vm_page_t
pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
{
struct spglist free;
pd_entry_t *l2;
pt_entry_t *l3, newl3;
KASSERT(!VA_IS_CLEANMAP(va) ||
(m->oflags & VPO_UNMANAGED) != 0,
("pmap_enter_quick_locked: managed mapping within the clean submap"));
rw_assert(&pvh_global_lock, RA_LOCKED);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
l2 = NULL;
CTR2(KTR_PMAP, "pmap_enter_quick_locked: %p %lx", pmap, va);
/*
* In the case that a page table page is not
* resident, we are creating it here.
*/
if (va < VM_MAXUSER_ADDRESS) {
vm_pindex_t l2pindex;
/*
* Calculate pagetable page index
*/
l2pindex = pmap_l2_pindex(va);
if (mpte && (mpte->pindex == l2pindex)) {
mpte->ref_count++;
} else {
/*
* Get the l2 entry
*/
l2 = pmap_l2(pmap, va);
/*
* If the page table page is mapped, we just increment
* the hold count, and activate it. Otherwise, we
* attempt to allocate a page table page. If this
* attempt fails, we don't retry. Instead, we give up.
*/
if (l2 != NULL && pmap_load(l2) != 0) {
if ((pmap_load(l2) & PTE_RWX) != 0)
return (NULL);
mpte = PTE_TO_VM_PAGE(pmap_load(l2));
mpte->ref_count++;
} else {
/*
* Pass NULL instead of the PV list lock
* pointer, because we don't intend to sleep.
*/
mpte = _pmap_alloc_l3(pmap, l2pindex, NULL);
if (mpte == NULL)
return (mpte);
}
}
l3 = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
l3 = &l3[pmap_l3_index(va)];
} else {
mpte = NULL;
l3 = pmap_l3(kernel_pmap, va);
}
if (l3 == NULL)
panic("pmap_enter_quick_locked: No l3");
if (pmap_load(l3) != 0) {
if (mpte != NULL)
mpte->ref_count--;
return (NULL);
}
/*
* Enter on the PV list if part of our managed memory.
*/
if ((m->oflags & VPO_UNMANAGED) == 0 &&
!pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
if (mpte != NULL) {
SLIST_INIT(&free);
if (pmap_unwire_ptp(pmap, va, mpte, &free))
vm_page_free_pages_toq(&free, false);
}
return (NULL);
}
/*
* Increment counters
*/
pmap_resident_count_inc(pmap, 1);
newl3 = ((VM_PAGE_TO_PHYS(m) / PAGE_SIZE) << PTE_PPN0_S) |
PTE_V | PTE_R | pmap_memattr_bits(m->md.pv_memattr);
if ((prot & VM_PROT_EXECUTE) != 0)
newl3 |= PTE_X;
if ((m->oflags & VPO_UNMANAGED) == 0)
newl3 |= PTE_SW_MANAGED;
if (va < VM_MAX_USER_ADDRESS)
newl3 |= PTE_U;
/*
* Sync the i-cache on all harts before updating the PTE
* if the new PTE is executable.
*/
if (prot & VM_PROT_EXECUTE)
pmap_sync_icache(pmap, va, PAGE_SIZE);
pmap_store(l3, newl3);
#if VM_NRESERVLEVEL > 0
/*
* If both the PTP and the reservation are fully populated, then attempt
* promotion.
*/
if ((prot & VM_PROT_NO_PROMOTE) == 0 &&
(mpte == NULL || mpte->ref_count == Ln_ENTRIES) &&
(m->flags & PG_FICTITIOUS) == 0 &&
vm_reserv_level_iffullpop(m) == 0) {
if (l2 == NULL)
l2 = pmap_l2(pmap, va);
/*
* If promotion succeeds, then the next call to this function
* should not be given the unmapped PTP as a hint.
*/
if (pmap_promote_l2(pmap, l2, va, mpte, lockp))
mpte = NULL;
}
#endif
return (mpte);
}
/*
* This code maps large physical mmap regions into the
* processor address space. Note that some shortcuts
* are taken, but the code works.
*/
void
pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
vm_pindex_t pindex, vm_size_t size)
{
VM_OBJECT_ASSERT_WLOCKED(object);
KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
("pmap_object_init_pt: non-device object"));
}
/*
* Clear the wired attribute from the mappings for the specified range of
* addresses in the given pmap. Every valid mapping within that range
* must have the wired attribute set. In contrast, invalid mappings
* cannot have the wired attribute set, so they are ignored.
*
* The wired attribute of the page table entry is not a hardware feature,
* so there is no need to invalidate any TLB entries.
*/
void
pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
vm_offset_t va_next;
pd_entry_t *l0, *l1, *l2, l2e;
pt_entry_t *l3, l3e;
bool pv_lists_locked;
pv_lists_locked = false;
retry:
PMAP_LOCK(pmap);
for (; sva < eva; sva = va_next) {
if (pmap_mode == PMAP_MODE_SV48) {
l0 = pmap_l0(pmap, sva);
if (pmap_load(l0) == 0) {
va_next = (sva + L0_SIZE) & ~L0_OFFSET;
if (va_next < sva)
va_next = eva;
continue;
}
l1 = pmap_l0_to_l1(l0, sva);
} else {
l1 = pmap_l1(pmap, sva);
}
if (pmap_load(l1) == 0) {
va_next = (sva + L1_SIZE) & ~L1_OFFSET;
if (va_next < sva)
va_next = eva;
continue;
}
va_next = (sva + L2_SIZE) & ~L2_OFFSET;
if (va_next < sva)
va_next = eva;
l2 = pmap_l1_to_l2(l1, sva);
if ((l2e = pmap_load(l2)) == 0)
continue;
if ((l2e & PTE_RWX) != 0) {
if (sva + L2_SIZE == va_next && eva >= va_next) {
if ((l2e & PTE_SW_WIRED) == 0)
panic("pmap_unwire: l2 %#jx is missing "
"PTE_SW_WIRED", (uintmax_t)l2e);
pmap_clear_bits(l2, PTE_SW_WIRED);
continue;
} else {
if (!pv_lists_locked) {
pv_lists_locked = true;
if (!rw_try_rlock(&pvh_global_lock)) {
PMAP_UNLOCK(pmap);
rw_rlock(&pvh_global_lock);
/* Repeat sva. */
goto retry;
}
}
if (!pmap_demote_l2(pmap, l2, sva))
panic("pmap_unwire: demotion failed");
}
}
if (va_next > eva)
va_next = eva;
for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
sva += L3_SIZE) {
if ((l3e = pmap_load(l3)) == 0)
continue;
if ((l3e & PTE_SW_WIRED) == 0)
panic("pmap_unwire: l3 %#jx is missing "
"PTE_SW_WIRED", (uintmax_t)l3e);
/*
* PG_W must be cleared atomically. Although the pmap
* lock synchronizes access to PG_W, another processor
* could be setting PG_M and/or PG_A concurrently.
*/
pmap_clear_bits(l3, PTE_SW_WIRED);
pmap->pm_stats.wired_count--;
}
}
if (pv_lists_locked)
rw_runlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
}
/*
* Copy the range specified by src_addr/len
* from the source map to the range dst_addr/len
* in the destination map.
*
* This routine is only advisory and need not do anything.
*/
void
pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
vm_offset_t src_addr)
{
}
/*
* pmap_zero_page zeros the specified hardware page by mapping
* the page into KVM and using bzero to clear its contents.
*/
void
pmap_zero_page(vm_page_t m)
{
vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
pagezero((void *)va);
}
/*
* pmap_zero_page_area zeros the specified hardware page by mapping
* the page into KVM and using bzero to clear its contents.
*
* off and size may not cover an area beyond a single hardware page.
*/
void
pmap_zero_page_area(vm_page_t m, int off, int size)
{
vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
if (off == 0 && size == PAGE_SIZE)
pagezero((void *)va);
else
bzero((char *)va + off, size);
}
/*
* pmap_copy_page copies the specified (machine independent)
* page by mapping the page into virtual memory and using
* bcopy to copy the page, one machine dependent page at a
* time.
*/
void
pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
{
vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
pagecopy((void *)src, (void *)dst);
}
int unmapped_buf_allowed = 1;
void
pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
vm_offset_t b_offset, int xfersize)
{
void *a_cp, *b_cp;
vm_page_t m_a, m_b;
vm_paddr_t p_a, p_b;
vm_offset_t a_pg_offset, b_pg_offset;
int cnt;
while (xfersize > 0) {
a_pg_offset = a_offset & PAGE_MASK;
m_a = ma[a_offset >> PAGE_SHIFT];
p_a = m_a->phys_addr;
b_pg_offset = b_offset & PAGE_MASK;
m_b = mb[b_offset >> PAGE_SHIFT];
p_b = m_b->phys_addr;
cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
cnt = min(cnt, PAGE_SIZE - b_pg_offset);
if (__predict_false(!PHYS_IN_DMAP(p_a))) {
panic("!DMAP a %lx", p_a);
} else {
a_cp = (char *)PHYS_TO_DMAP(p_a) + a_pg_offset;
}
if (__predict_false(!PHYS_IN_DMAP(p_b))) {
panic("!DMAP b %lx", p_b);
} else {
b_cp = (char *)PHYS_TO_DMAP(p_b) + b_pg_offset;
}
bcopy(a_cp, b_cp, cnt);
a_offset += cnt;
b_offset += cnt;
xfersize -= cnt;
}
}
vm_offset_t
pmap_quick_enter_page(vm_page_t m)
{
return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
}
void
pmap_quick_remove_page(vm_offset_t addr)
{
}
/*
* Returns true if the pmap's pv is one of the first
* 16 pvs linked to from this page. This count may
* be changed upwards or downwards in the future; it
* is only necessary that true be returned for a small
* subset of pmaps for proper page aging.
*/
bool
pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
{
struct md_page *pvh;
struct rwlock *lock;
pv_entry_t pv;
int loops = 0;
bool rv;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_page_exists_quick: page %p is not managed", m));
rv = false;
rw_rlock(&pvh_global_lock);
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
rw_rlock(lock);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
if (PV_PMAP(pv) == pmap) {
rv = true;
break;
}
loops++;
if (loops >= 16)
break;
}
if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
if (PV_PMAP(pv) == pmap) {
rv = true;
break;
}
loops++;
if (loops >= 16)
break;
}
}
rw_runlock(lock);
rw_runlock(&pvh_global_lock);
return (rv);
}
/*
* pmap_page_wired_mappings:
*
* Return the number of managed mappings to the given physical page
* that are wired.
*/
int
pmap_page_wired_mappings(vm_page_t m)
{
struct md_page *pvh;
struct rwlock *lock;
pmap_t pmap;
pd_entry_t *l2;
pt_entry_t *l3;
pv_entry_t pv;
int count, md_gen, pvh_gen;
if ((m->oflags & VPO_UNMANAGED) != 0)
return (0);
rw_rlock(&pvh_global_lock);
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
rw_rlock(lock);
restart:
count = 0;
TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
md_gen = m->md.pv_gen;
rw_runlock(lock);
PMAP_LOCK(pmap);
rw_rlock(lock);
if (md_gen != m->md.pv_gen) {
PMAP_UNLOCK(pmap);
goto restart;
}
}
l2 = pmap_l2(pmap, pv->pv_va);
KASSERT((pmap_load(l2) & PTE_RWX) == 0,
("%s: found a 2mpage in page %p's pv list", __func__, m));
l3 = pmap_l2_to_l3(l2, pv->pv_va);
if ((pmap_load(l3) & PTE_SW_WIRED) != 0)
count++;
PMAP_UNLOCK(pmap);
}
if ((m->flags & PG_FICTITIOUS) == 0) {
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
md_gen = m->md.pv_gen;
pvh_gen = pvh->pv_gen;
rw_runlock(lock);
PMAP_LOCK(pmap);
rw_rlock(lock);
if (md_gen != m->md.pv_gen ||
pvh_gen != pvh->pv_gen) {
PMAP_UNLOCK(pmap);
goto restart;
}
}
l2 = pmap_l2(pmap, pv->pv_va);
if ((pmap_load(l2) & PTE_SW_WIRED) != 0)
count++;
PMAP_UNLOCK(pmap);
}
}
rw_runlock(lock);
rw_runlock(&pvh_global_lock);
return (count);
}
/*
* Returns true if the given page is mapped individually or as part of
* a 2mpage. Otherwise, returns false.
*/
bool
pmap_page_is_mapped(vm_page_t m)
{
struct rwlock *lock;
bool rv;
if ((m->oflags & VPO_UNMANAGED) != 0)
return (false);
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
rw_rlock(lock);
rv = !TAILQ_EMPTY(&m->md.pv_list) ||
((m->flags & PG_FICTITIOUS) == 0 &&
!TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
rw_runlock(lock);
return (rv);
}
static void
pmap_remove_pages_pv(pmap_t pmap, vm_page_t m, pv_entry_t pv,
struct spglist *free, bool superpage)
{
struct md_page *pvh;
vm_page_t mpte, mt;
if (superpage) {
pmap_resident_count_dec(pmap, Ln_ENTRIES);
pvh = pa_to_pvh(m->phys_addr);
TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
pvh->pv_gen++;
if (TAILQ_EMPTY(&pvh->pv_list)) {
for (mt = m; mt < &m[Ln_ENTRIES]; mt++)
if (TAILQ_EMPTY(&mt->md.pv_list) &&
(mt->a.flags & PGA_WRITEABLE) != 0)
vm_page_aflag_clear(mt, PGA_WRITEABLE);
}
mpte = pmap_remove_pt_page(pmap, pv->pv_va);
if (mpte != NULL) {
KASSERT(vm_page_any_valid(mpte),
("pmap_remove_pages: pte page not promoted"));
pmap_resident_count_dec(pmap, 1);
KASSERT(mpte->ref_count == Ln_ENTRIES,
("pmap_remove_pages: pte page ref count error"));
mpte->ref_count = 0;
pmap_add_delayed_free_list(mpte, free, false);
}
} else {
pmap_resident_count_dec(pmap, 1);
TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
m->md.pv_gen++;
if (TAILQ_EMPTY(&m->md.pv_list) &&
(m->a.flags & PGA_WRITEABLE) != 0) {
pvh = pa_to_pvh(m->phys_addr);
if (TAILQ_EMPTY(&pvh->pv_list))
vm_page_aflag_clear(m, PGA_WRITEABLE);
}
}
}
/*
* Destroy all managed, non-wired mappings in the given user-space
* pmap. This pmap cannot be active on any processor besides the
* caller.
*
* This function cannot be applied to the kernel pmap. Moreover, it
* is not intended for general use. It is only to be used during
* process termination. Consequently, it can be implemented in ways
* that make it faster than pmap_remove(). First, it can more quickly
* destroy mappings by iterating over the pmap's collection of PV
* entries, rather than searching the page table. Second, it doesn't
* have to test and clear the page table entries atomically, because
* no processor is currently accessing the user address space. In
* particular, a page table entry's dirty bit won't change state once
* this function starts.
*/
void
pmap_remove_pages(pmap_t pmap)
{
struct spglist free;
pd_entry_t ptepde;
pt_entry_t *pte, tpte;
vm_page_t m, mt;
pv_entry_t pv;
struct pv_chunk *pc, *npc;
struct rwlock *lock;
int64_t bit;
uint64_t inuse, bitmask;
int allfree, field, freed __pv_stat_used, idx;
bool superpage;
lock = NULL;
SLIST_INIT(&free);
rw_rlock(&pvh_global_lock);
PMAP_LOCK(pmap);
TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
allfree = 1;
freed = 0;
for (field = 0; field < _NPCM; field++) {
inuse = ~pc->pc_map[field] & pc_freemask[field];
while (inuse != 0) {
bit = ffsl(inuse) - 1;
bitmask = 1UL << bit;
idx = field * 64 + bit;
pv = &pc->pc_pventry[idx];
inuse &= ~bitmask;
pte = pmap_l1(pmap, pv->pv_va);
ptepde = pmap_load(pte);
pte = pmap_l1_to_l2(pte, pv->pv_va);
tpte = pmap_load(pte);
KASSERT((tpte & PTE_V) != 0,
("L2 PTE is invalid... bogus PV entry? "
"va=%#lx, pte=%#lx", pv->pv_va, tpte));
if ((tpte & PTE_RWX) != 0) {
superpage = true;
} else {
ptepde = tpte;
pte = pmap_l2_to_l3(pte, pv->pv_va);
tpte = pmap_load(pte);
superpage = false;
}
/*
* We cannot remove wired pages from a
* process' mapping at this time.
*/
if (tpte & PTE_SW_WIRED) {
allfree = 0;
continue;
}
m = PTE_TO_VM_PAGE(tpte);
KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
m < &vm_page_array[vm_page_array_size],
("pmap_remove_pages: bad pte %#jx",
(uintmax_t)tpte));
pmap_clear(pte);
/*
* Update the vm_page_t clean/reference bits.
*/
if ((tpte & (PTE_D | PTE_W)) ==
(PTE_D | PTE_W)) {
if (superpage)
for (mt = m;
mt < &m[Ln_ENTRIES]; mt++)
vm_page_dirty(mt);
else
vm_page_dirty(m);
}
CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
/* Mark free */
pc->pc_map[field] |= bitmask;
pmap_remove_pages_pv(pmap, m, pv, &free,
superpage);
pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
freed++;
}
}
PV_STAT(atomic_add_long(&pv_entry_frees, freed));
PV_STAT(atomic_add_int(&pv_entry_spare, freed));
PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
if (allfree) {
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
free_pv_chunk(pc);
}
}
if (lock != NULL)
rw_wunlock(lock);
pmap_invalidate_all(pmap);
rw_runlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
vm_page_free_pages_toq(&free, false);
}
static bool
pmap_page_test_mappings(vm_page_t m, bool accessed, bool modified)
{
struct md_page *pvh;
struct rwlock *lock;
pd_entry_t *l2;
pt_entry_t *l3, mask;
pv_entry_t pv;
pmap_t pmap;
int md_gen, pvh_gen;
bool rv;
mask = 0;
if (modified)
mask |= PTE_D;
if (accessed)
mask |= PTE_A;
rv = false;
rw_rlock(&pvh_global_lock);
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
rw_rlock(lock);
restart:
TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
md_gen = m->md.pv_gen;
rw_runlock(lock);
PMAP_LOCK(pmap);
rw_rlock(lock);
if (md_gen != m->md.pv_gen) {
PMAP_UNLOCK(pmap);
goto restart;
}
}
l2 = pmap_l2(pmap, pv->pv_va);
KASSERT((pmap_load(l2) & PTE_RWX) == 0,
("%s: found a 2mpage in page %p's pv list", __func__, m));
l3 = pmap_l2_to_l3(l2, pv->pv_va);
rv = (pmap_load(l3) & mask) == mask;
PMAP_UNLOCK(pmap);
if (rv)
goto out;
}
if ((m->flags & PG_FICTITIOUS) == 0) {
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
md_gen = m->md.pv_gen;
pvh_gen = pvh->pv_gen;
rw_runlock(lock);
PMAP_LOCK(pmap);
rw_rlock(lock);
if (md_gen != m->md.pv_gen ||
pvh_gen != pvh->pv_gen) {
PMAP_UNLOCK(pmap);
goto restart;
}
}
l2 = pmap_l2(pmap, pv->pv_va);
rv = (pmap_load(l2) & mask) == mask;
PMAP_UNLOCK(pmap);
if (rv)
goto out;
}
}
out:
rw_runlock(lock);
rw_runlock(&pvh_global_lock);
return (rv);
}
/*
* pmap_is_modified:
*
* Return whether or not the specified physical page was modified
* in any physical maps.
*/
bool
pmap_is_modified(vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_is_modified: page %p is not managed", m));
/*
* If the page is not busied then this check is racy.
*/
if (!pmap_page_is_write_mapped(m))
return (false);
return (pmap_page_test_mappings(m, false, true));
}
/*
* pmap_is_prefaultable:
*
* Return whether or not the specified virtual address is eligible
* for prefault.
*/
bool
pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
{
pt_entry_t *l3;
bool rv;
/*
* Return true if and only if the L3 entry for the specified virtual
* address is allocated but invalid.
*/
rv = false;
PMAP_LOCK(pmap);
l3 = pmap_l3(pmap, addr);
if (l3 != NULL && pmap_load(l3) == 0) {
rv = true;
}
PMAP_UNLOCK(pmap);
return (rv);
}
/*
* pmap_is_referenced:
*
* Return whether or not the specified physical page was referenced
* in any physical maps.
*/
bool
pmap_is_referenced(vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_is_referenced: page %p is not managed", m));
return (pmap_page_test_mappings(m, true, false));
}
/*
* Clear the write and modified bits in each of the given page's mappings.
*/
void
pmap_remove_write(vm_page_t m)
{
struct md_page *pvh;
struct rwlock *lock;
pmap_t pmap;
pd_entry_t *l2;
pt_entry_t *l3, oldl3, newl3;
pv_entry_t next_pv, pv;
vm_offset_t va;
int md_gen, pvh_gen;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_remove_write: page %p is not managed", m));
vm_page_assert_busied(m);
if (!pmap_page_is_write_mapped(m))
return;
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
pa_to_pvh(VM_PAGE_TO_PHYS(m));
rw_rlock(&pvh_global_lock);
retry_pv_loop:
rw_wlock(lock);
TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
pvh_gen = pvh->pv_gen;
rw_wunlock(lock);
PMAP_LOCK(pmap);
rw_wlock(lock);
if (pvh_gen != pvh->pv_gen) {
PMAP_UNLOCK(pmap);
rw_wunlock(lock);
goto retry_pv_loop;
}
}
va = pv->pv_va;
l2 = pmap_l2(pmap, va);
if ((pmap_load(l2) & PTE_W) != 0)
(void)pmap_demote_l2_locked(pmap, l2, va, &lock);
KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
("inconsistent pv lock %p %p for page %p",
lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
PMAP_UNLOCK(pmap);
}
TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
pvh_gen = pvh->pv_gen;
md_gen = m->md.pv_gen;
rw_wunlock(lock);
PMAP_LOCK(pmap);
rw_wlock(lock);
if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
PMAP_UNLOCK(pmap);
rw_wunlock(lock);
goto retry_pv_loop;
}
}
l2 = pmap_l2(pmap, pv->pv_va);
KASSERT((pmap_load(l2) & PTE_RWX) == 0,
("%s: found a 2mpage in page %p's pv list", __func__, m));
l3 = pmap_l2_to_l3(l2, pv->pv_va);
oldl3 = pmap_load(l3);
retry:
if ((oldl3 & PTE_W) != 0) {
newl3 = oldl3 & ~(PTE_D | PTE_W);
if (!atomic_fcmpset_long(l3, &oldl3, newl3))
goto retry;
if ((oldl3 & PTE_D) != 0)
vm_page_dirty(m);
pmap_invalidate_page(pmap, pv->pv_va);
}
PMAP_UNLOCK(pmap);
}
rw_wunlock(lock);
vm_page_aflag_clear(m, PGA_WRITEABLE);
rw_runlock(&pvh_global_lock);
}
/*
* pmap_ts_referenced:
*
* Return a count of reference bits for a page, clearing those bits.
* It is not necessary for every reference bit to be cleared, but it
* is necessary that 0 only be returned when there are truly no
* reference bits set.
*
* As an optimization, update the page's dirty field if a modified bit is
* found while counting reference bits. This opportunistic update can be
* performed at low cost and can eliminate the need for some future calls
* to pmap_is_modified(). However, since this function stops after
* finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
* dirty pages. Those dirty pages will only be detected by a future call
* to pmap_is_modified().
*/
int
pmap_ts_referenced(vm_page_t m)
{
struct spglist free;
struct md_page *pvh;
struct rwlock *lock;
pv_entry_t pv, pvf;
pmap_t pmap;
pd_entry_t *l2, l2e;
pt_entry_t *l3, l3e;
vm_paddr_t pa;
vm_offset_t va;
int cleared, md_gen, not_cleared, pvh_gen;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_ts_referenced: page %p is not managed", m));
SLIST_INIT(&free);
cleared = 0;
pa = VM_PAGE_TO_PHYS(m);
pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
lock = PHYS_TO_PV_LIST_LOCK(pa);
rw_rlock(&pvh_global_lock);
rw_wlock(lock);
retry:
not_cleared = 0;
if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
goto small_mappings;
pv = pvf;
do {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
pvh_gen = pvh->pv_gen;
rw_wunlock(lock);
PMAP_LOCK(pmap);
rw_wlock(lock);
if (pvh_gen != pvh->pv_gen) {
PMAP_UNLOCK(pmap);
goto retry;
}
}
va = pv->pv_va;
l2 = pmap_l2(pmap, va);
l2e = pmap_load(l2);
if ((l2e & (PTE_W | PTE_D)) == (PTE_W | PTE_D)) {
/*
* Although l2e is mapping a 2MB page, because
* this function is called at a 4KB page granularity,
* we only update the 4KB page under test.
*/
vm_page_dirty(m);
}
if ((l2e & PTE_A) != 0) {
/*
* Since this reference bit is shared by 512 4KB
* pages, it should not be cleared every time it is
* tested. Apply a simple "hash" function on the
* physical page number, the virtual superpage number,
* and the pmap address to select one 4KB page out of
* the 512 on which testing the reference bit will
* result in clearing that reference bit. This
* function is designed to avoid the selection of the
* same 4KB page for every 2MB page mapping.
*
* On demotion, a mapping that hasn't been referenced
* is simply destroyed. To avoid the possibility of a
* subsequent page fault on a demoted wired mapping,
* always leave its reference bit set. Moreover,
* since the superpage is wired, the current state of
* its reference bit won't affect page replacement.
*/
if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> L2_SHIFT) ^
(uintptr_t)pmap) & (Ln_ENTRIES - 1)) == 0 &&
(l2e & PTE_SW_WIRED) == 0) {
pmap_clear_bits(l2, PTE_A);
pmap_invalidate_page(pmap, va);
cleared++;
} else
not_cleared++;
}
PMAP_UNLOCK(pmap);
/* Rotate the PV list if it has more than one entry. */
if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
pvh->pv_gen++;
}
if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
goto out;
} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
small_mappings:
if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
goto out;
pv = pvf;
do {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
pvh_gen = pvh->pv_gen;
md_gen = m->md.pv_gen;
rw_wunlock(lock);
PMAP_LOCK(pmap);
rw_wlock(lock);
if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
PMAP_UNLOCK(pmap);
goto retry;
}
}
l2 = pmap_l2(pmap, pv->pv_va);
KASSERT((pmap_load(l2) & PTE_RX) == 0,
("pmap_ts_referenced: found an invalid l2 table"));
l3 = pmap_l2_to_l3(l2, pv->pv_va);
l3e = pmap_load(l3);
if ((l3e & PTE_D) != 0)
vm_page_dirty(m);
if ((l3e & PTE_A) != 0) {
if ((l3e & PTE_SW_WIRED) == 0) {
/*
* Wired pages cannot be paged out so
* doing accessed bit emulation for
* them is wasted effort. We do the
* hard work for unwired pages only.
*/
pmap_clear_bits(l3, PTE_A);
pmap_invalidate_page(pmap, pv->pv_va);
cleared++;
} else
not_cleared++;
}
PMAP_UNLOCK(pmap);
/* Rotate the PV list if it has more than one entry. */
if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
m->md.pv_gen++;
}
} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
not_cleared < PMAP_TS_REFERENCED_MAX);
out:
rw_wunlock(lock);
rw_runlock(&pvh_global_lock);
vm_page_free_pages_toq(&free, false);
return (cleared + not_cleared);
}
/*
* Apply the given advice to the specified range of addresses within the
* given pmap. Depending on the advice, clear the referenced and/or
* modified flags in each mapping and set the mapped page's dirty field.
*/
void
pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
{
}
/*
* Clear the modify bits on the specified physical page.
*/
void
pmap_clear_modify(vm_page_t m)
{
struct md_page *pvh;
struct rwlock *lock;
pmap_t pmap;
pv_entry_t next_pv, pv;
pd_entry_t *l2, oldl2;
pt_entry_t *l3;
vm_offset_t va;
int md_gen, pvh_gen;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("%s: page %p is not managed", __func__, m));
vm_page_assert_busied(m);
if (!pmap_page_is_write_mapped(m))
return;
pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
pa_to_pvh(VM_PAGE_TO_PHYS(m));
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
rw_rlock(&pvh_global_lock);
rw_wlock(lock);
restart:
TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
pvh_gen = pvh->pv_gen;
rw_wunlock(lock);
PMAP_LOCK(pmap);
rw_wlock(lock);
if (pvh_gen != pvh->pv_gen) {
PMAP_UNLOCK(pmap);
goto restart;
}
}
va = pv->pv_va;
l2 = pmap_l2(pmap, va);
oldl2 = pmap_load(l2);
/* If oldl2 has PTE_W set, then it also has PTE_D set. */
if ((oldl2 & PTE_W) != 0 &&
pmap_demote_l2_locked(pmap, l2, va, &lock) &&
(oldl2 & PTE_SW_WIRED) == 0) {
/*
* Write protect the mapping to a single page so that
* a subsequent write access may repromote.
*/
va += VM_PAGE_TO_PHYS(m) - PTE_TO_PHYS(oldl2);
l3 = pmap_l2_to_l3(l2, va);
pmap_clear_bits(l3, PTE_D | PTE_W);
vm_page_dirty(m);
pmap_invalidate_page(pmap, va);
}
PMAP_UNLOCK(pmap);
}
TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
md_gen = m->md.pv_gen;
pvh_gen = pvh->pv_gen;
rw_wunlock(lock);
PMAP_LOCK(pmap);
rw_wlock(lock);
if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
PMAP_UNLOCK(pmap);
goto restart;
}
}
l2 = pmap_l2(pmap, pv->pv_va);
KASSERT((pmap_load(l2) & PTE_RWX) == 0,
("%s: found a 2mpage in page %p's pv list", __func__, m));
l3 = pmap_l2_to_l3(l2, pv->pv_va);
if ((pmap_load(l3) & (PTE_D | PTE_W)) == (PTE_D | PTE_W)) {
pmap_clear_bits(l3, PTE_D | PTE_W);
pmap_invalidate_page(pmap, pv->pv_va);
}
PMAP_UNLOCK(pmap);
}
rw_wunlock(lock);
rw_runlock(&pvh_global_lock);
}
void *
pmap_mapbios(vm_paddr_t pa, vm_size_t size)
{
return ((void *)PHYS_TO_DMAP(pa));
}
void
pmap_unmapbios(void *p, vm_size_t size)
{
}
/*
* Sets the memory attribute for the specified page.
*/
void
pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
{
m->md.pv_memattr = ma;
/*
* If "m" is a normal page, update its direct mapping. This update
* can be relied upon to perform any cache operations that are
* required for data coherence.
*/
if ((m->flags & PG_FICTITIOUS) == 0 &&
pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
m->md.pv_memattr) != 0)
panic("memory attribute change on the direct map failed");
}
/*
* Changes the specified virtual address range's memory type to that given by
* the parameter "mode". The specified virtual address range must be
* completely contained within either the direct map or the kernel map.
*
* Returns zero if the change completed successfully, and either EINVAL or
* ENOMEM if the change failed. Specifically, EINVAL is returned if some part
* of the virtual address range was not mapped, and ENOMEM is returned if
* there was insufficient memory available to complete the change. In the
* latter case, the memory type may have been changed on some part of the
* virtual address range.
*/
int
pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
{
int error;
PMAP_LOCK(kernel_pmap);
error = pmap_change_attr_locked(va, size, mode);
PMAP_UNLOCK(kernel_pmap);
return (error);
}
static int
pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode)
{
vm_offset_t base, offset, tmpva;
vm_paddr_t phys;
pd_entry_t *l1, l1e;
pd_entry_t *l2, l2e;
pt_entry_t *l3, l3e;
pt_entry_t bits, mask;
bool anychanged = false;
int error = 0;
PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
base = trunc_page(va);
offset = va & PAGE_MASK;
size = round_page(offset + size);
if (!VIRT_IN_DMAP(base) &&
!(base >= VM_MIN_KERNEL_ADDRESS && base < VM_MAX_KERNEL_ADDRESS))
return (EINVAL);
bits = pmap_memattr_bits(mode);
mask = memattr_mask;
/* First loop: perform PTE validation and demotions as necessary. */
for (tmpva = base; tmpva < base + size; ) {
l1 = pmap_l1(kernel_pmap, tmpva);
if (l1 == NULL || ((l1e = pmap_load(l1)) & PTE_V) == 0)
return (EINVAL);
if ((l1e & PTE_RWX) != 0) {
/*
* If the existing PTE has the correct attributes, then
* no need to demote.
*/
if ((l1e & mask) == bits) {
tmpva = (tmpva & ~L1_OFFSET) + L1_SIZE;
continue;
}
/*
* If the 1GB page fits in the remaining range, we
* don't need to demote.
*/
if ((tmpva & L1_OFFSET) == 0 &&
tmpva + L1_SIZE <= base + size) {
tmpva += L1_SIZE;
continue;
}
if (!pmap_demote_l1(kernel_pmap, l1, tmpva))
return (EINVAL);
}
l2 = pmap_l1_to_l2(l1, tmpva);
if (((l2e = pmap_load(l2)) & PTE_V) == 0)
return (EINVAL);
if ((l2e & PTE_RWX) != 0) {
/*
* If the existing PTE has the correct attributes, then
* no need to demote.
*/
if ((l2e & mask) == bits) {
tmpva = (tmpva & ~L2_OFFSET) + L2_SIZE;
continue;
}
/*
* If the 2MB page fits in the remaining range, we
* don't need to demote.
*/
if ((tmpva & L2_OFFSET) == 0 &&
tmpva + L2_SIZE <= base + size) {
tmpva += L2_SIZE;
continue;
}
if (!pmap_demote_l2(kernel_pmap, l2, tmpva))
panic("l2 demotion failed");
}
l3 = pmap_l2_to_l3(l2, tmpva);
if (((l3e = pmap_load(l3)) & PTE_V) == 0)
return (EINVAL);
tmpva += PAGE_SIZE;
}
/* Second loop: perform PTE updates. */
for (tmpva = base; tmpva < base + size; ) {
l1 = pmap_l1(kernel_pmap, tmpva);
l1e = pmap_load(l1);
if ((l1e & PTE_RWX) != 0) {
/* Unchanged. */
if ((l1e & mask) == bits) {
tmpva += L1_SIZE;
continue;
}
l1e &= ~mask;
l1e |= bits;
pmap_store(l1, l1e);
anychanged = true;
/* Update corresponding DMAP entry */
phys = L1PTE_TO_PHYS(l1e);
if (!VIRT_IN_DMAP(tmpva) && PHYS_IN_DMAP(phys)) {
error = pmap_change_attr_locked(
PHYS_TO_DMAP(phys), L1_SIZE, mode);
if (error != 0)
break;
}
tmpva += L1_SIZE;
continue;
}
l2 = pmap_l1_to_l2(l1, tmpva);
l2e = pmap_load(l2);
if ((l2e & PTE_RWX) != 0) {
/* Unchanged. */
if ((l2e & mask) == bits) {
tmpva += L2_SIZE;
continue;
}
l2e &= ~mask;
l2e |= bits;
pmap_store(l2, l2e);
anychanged = true;
/* Update corresponding DMAP entry */
phys = L2PTE_TO_PHYS(l2e);
if (!VIRT_IN_DMAP(tmpva) && PHYS_IN_DMAP(phys)) {
error = pmap_change_attr_locked(
PHYS_TO_DMAP(phys), L2_SIZE, mode);
if (error != 0)
break;
}
tmpva += L2_SIZE;
continue;
}
l3 = pmap_l2_to_l3(l2, tmpva);
l3e = pmap_load(l3);
/* Unchanged. */
if ((l3e & mask) == bits) {
tmpva += PAGE_SIZE;
continue;
}
l3e &= ~mask;
l3e |= bits;
pmap_store(l3, l3e);
anychanged = true;
phys = PTE_TO_PHYS(l3e);
if (!VIRT_IN_DMAP(tmpva) && PHYS_IN_DMAP(phys)) {
error = pmap_change_attr_locked(PHYS_TO_DMAP(phys),
L3_SIZE, mode);
if (error != 0)
break;
}
tmpva += PAGE_SIZE;
}
if (anychanged) {
pmap_invalidate_range(kernel_pmap, base, tmpva);
if (mode == VM_MEMATTR_UNCACHEABLE)
- cpu_dcache_wbinv_range((void *)base, size);
+ cpu_dcache_wbinv_range(base, size);
}
return (error);
}
/*
* Perform the pmap work for mincore(2). If the page is not both referenced and
* modified by this pmap, returns its physical address so that the caller can
* find other mappings.
*/
int
pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
{
pt_entry_t *l2, *l3, tpte;
vm_paddr_t pa;
int val;
bool managed;
PMAP_LOCK(pmap);
l2 = pmap_l2(pmap, addr);
if (l2 != NULL && ((tpte = pmap_load(l2)) & PTE_V) != 0) {
if ((tpte & PTE_RWX) != 0) {
pa = PTE_TO_PHYS(tpte) | (addr & L2_OFFSET);
val = MINCORE_INCORE | MINCORE_PSIND(1);
} else {
l3 = pmap_l2_to_l3(l2, addr);
tpte = pmap_load(l3);
if ((tpte & PTE_V) == 0) {
PMAP_UNLOCK(pmap);
return (0);
}
pa = PTE_TO_PHYS(tpte) | (addr & L3_OFFSET);
val = MINCORE_INCORE;
}
if ((tpte & PTE_D) != 0)
val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
if ((tpte & PTE_A) != 0)
val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
managed = (tpte & PTE_SW_MANAGED) == PTE_SW_MANAGED;
} else {
managed = false;
val = 0;
}
if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
(MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
*pap = pa;
}
PMAP_UNLOCK(pmap);
return (val);
}
void
pmap_activate_sw(struct thread *td)
{
pmap_t oldpmap, pmap;
u_int hart;
oldpmap = PCPU_GET(curpmap);
pmap = vmspace_pmap(td->td_proc->p_vmspace);
if (pmap == oldpmap)
return;
csr_write(satp, pmap->pm_satp);
hart = PCPU_GET(hart);
#ifdef SMP
CPU_SET_ATOMIC(hart, &pmap->pm_active);
CPU_CLR_ATOMIC(hart, &oldpmap->pm_active);
#else
CPU_SET(hart, &pmap->pm_active);
CPU_CLR(hart, &oldpmap->pm_active);
#endif
PCPU_SET(curpmap, pmap);
sfence_vma();
}
void
pmap_activate(struct thread *td)
{
critical_enter();
pmap_activate_sw(td);
critical_exit();
}
void
pmap_activate_boot(pmap_t pmap)
{
u_int hart;
hart = PCPU_GET(hart);
#ifdef SMP
CPU_SET_ATOMIC(hart, &pmap->pm_active);
#else
CPU_SET(hart, &pmap->pm_active);
#endif
PCPU_SET(curpmap, pmap);
}
void
pmap_active_cpus(pmap_t pmap, cpuset_t *res)
{
*res = pmap->pm_active;
}
void
pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t sz)
{
cpuset_t mask;
/*
* From the RISC-V User-Level ISA V2.2:
*
* "To make a store to instruction memory visible to all
* RISC-V harts, the writing hart has to execute a data FENCE
* before requesting that all remote RISC-V harts execute a
* FENCE.I."
*
* However, this is slightly misleading; we still need to
* perform a FENCE.I for the local hart, as FENCE does nothing
* for its icache. FENCE.I alone is also sufficient for the
* local hart.
*/
sched_pin();
mask = all_harts;
CPU_CLR(PCPU_GET(hart), &mask);
fence_i();
if (!CPU_EMPTY(&mask) && smp_started) {
fence();
sbi_remote_fence_i(mask.__bits);
}
sched_unpin();
}
/*
* Increase the starting virtual address of the given mapping if a
* different alignment might result in more superpage mappings.
*/
void
pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
vm_offset_t *addr, vm_size_t size)
{
vm_offset_t superpage_offset;
if (size < L2_SIZE)
return;
if (object != NULL && (object->flags & OBJ_COLORED) != 0)
offset += ptoa(object->pg_color);
superpage_offset = offset & L2_OFFSET;
if (size - ((L2_SIZE - superpage_offset) & L2_OFFSET) < L2_SIZE ||
(*addr & L2_OFFSET) == superpage_offset)
return;
if ((*addr & L2_OFFSET) < superpage_offset)
*addr = (*addr & ~L2_OFFSET) + superpage_offset;
else
*addr = ((*addr + L2_OFFSET) & ~L2_OFFSET) + superpage_offset;
}
/**
* Get the kernel virtual address of a set of physical pages. If there are
* physical addresses not covered by the DMAP perform a transient mapping
* that will be removed when calling pmap_unmap_io_transient.
*
* \param page The pages the caller wishes to obtain the virtual
* address on the kernel memory map.
* \param vaddr On return contains the kernel virtual memory address
* of the pages passed in the page parameter.
* \param count Number of pages passed in.
* \param can_fault true if the thread using the mapped pages can take
* page faults, false otherwise.
*
* \returns true if the caller must call pmap_unmap_io_transient when
* finished or false otherwise.
*
*/
bool
pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
bool can_fault)
{
vm_paddr_t paddr;
bool needs_mapping;
int error __diagused, i;
/*
* Allocate any KVA space that we need, this is done in a separate
* loop to prevent calling vmem_alloc while pinned.
*/
needs_mapping = false;
for (i = 0; i < count; i++) {
paddr = VM_PAGE_TO_PHYS(page[i]);
if (__predict_false(paddr >= DMAP_MAX_PHYSADDR)) {
error = vmem_alloc(kernel_arena, PAGE_SIZE,
M_BESTFIT | M_WAITOK, &vaddr[i]);
KASSERT(error == 0, ("vmem_alloc failed: %d", error));
needs_mapping = true;
} else {
vaddr[i] = PHYS_TO_DMAP(paddr);
}
}
/* Exit early if everything is covered by the DMAP */
if (!needs_mapping)
return (false);
if (!can_fault)
sched_pin();
for (i = 0; i < count; i++) {
paddr = VM_PAGE_TO_PHYS(page[i]);
if (paddr >= DMAP_MAX_PHYSADDR) {
panic(
"pmap_map_io_transient: TODO: Map out of DMAP data");
}
}
return (needs_mapping);
}
void
pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
bool can_fault)
{
vm_paddr_t paddr;
int i;
if (!can_fault)
sched_unpin();
for (i = 0; i < count; i++) {
paddr = VM_PAGE_TO_PHYS(page[i]);
if (paddr >= DMAP_MAX_PHYSADDR) {
panic("RISCVTODO: pmap_unmap_io_transient: Unmap data");
}
}
}
bool
pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
{
return (mode >= VM_MEMATTR_DEFAULT && mode <= VM_MEMATTR_LAST);
}
bool
pmap_get_tables(pmap_t pmap, vm_offset_t va, pd_entry_t **l1, pd_entry_t **l2,
pt_entry_t **l3)
{
pd_entry_t *l1p, *l2p;
/* Get l1 directory entry. */
l1p = pmap_l1(pmap, va);
*l1 = l1p;
if (l1p == NULL || (pmap_load(l1p) & PTE_V) == 0)
return (false);
if ((pmap_load(l1p) & PTE_RX) != 0) {
*l2 = NULL;
*l3 = NULL;
return (true);
}
/* Get l2 directory entry. */
l2p = pmap_l1_to_l2(l1p, va);
*l2 = l2p;
if (l2p == NULL || (pmap_load(l2p) & PTE_V) == 0)
return (false);
if ((pmap_load(l2p) & PTE_RX) != 0) {
*l3 = NULL;
return (true);
}
/* Get l3 page table entry. */
*l3 = pmap_l2_to_l3(l2p, va);
return (true);
}
/*
* Track a range of the kernel's virtual address space that is contiguous
* in various mapping attributes.
*/
struct pmap_kernel_map_range {
vm_offset_t sva;
pt_entry_t attrs;
int l3pages;
int l2pages;
int l1pages;
};
static void
sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
vm_offset_t eva)
{
char *mode;
int i;
if (eva <= range->sva)
return;
for (i = 0; i < nitems(memattr_bits); i++)
if ((range->attrs & memattr_mask) == memattr_bits[i])
break;
switch (i) {
case VM_MEMATTR_PMA:
mode = "PMA";
break;
case VM_MEMATTR_UNCACHEABLE:
mode = "NC ";
break;
case VM_MEMATTR_DEVICE:
mode = "IO ";
break;
default:
mode = "???";
break;
}
sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c%c %s %d %d %d\n",
range->sva, eva,
(range->attrs & PTE_W) == PTE_W ? 'w' : '-',
(range->attrs & PTE_X) == PTE_X ? 'x' : '-',
(range->attrs & PTE_U) == PTE_U ? 'u' : 's',
(range->attrs & PTE_G) == PTE_G ? 'g' : '-',
mode, range->l1pages, range->l2pages, range->l3pages);
/* Reset to sentinel value. */
range->sva = 0xfffffffffffffffful;
}
/*
* Determine whether the attributes specified by a page table entry match those
* being tracked by the current range.
*/
static bool
sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
{
return (range->attrs == attrs);
}
static void
sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
pt_entry_t attrs)
{
memset(range, 0, sizeof(*range));
range->sva = va;
range->attrs = attrs;
}
/*
* Given a leaf PTE, derive the mapping's attributes. If they do not match
* those of the current run, dump the address range and its attributes, and
* begin a new run.
*/
static void
sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
vm_offset_t va, pd_entry_t l1e, pd_entry_t l2e, pt_entry_t l3e)
{
pt_entry_t attrs;
/* The PTE global bit is inherited by lower levels. */
attrs = l1e & PTE_G;
if ((l1e & PTE_RWX) != 0) {
attrs |= l1e & (PTE_RWX | PTE_U);
attrs |= l1e & memattr_mask;
} else if (l2e != 0)
attrs |= l2e & PTE_G;
if ((l2e & PTE_RWX) != 0) {
attrs |= l2e & (PTE_RWX | PTE_U);
attrs |= l2e & memattr_mask;
} else if (l3e != 0) {
attrs |= l3e & (PTE_RWX | PTE_U | PTE_G);
attrs |= l3e & memattr_mask;
}
if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
sysctl_kmaps_dump(sb, range, va);
sysctl_kmaps_reinit(range, va, attrs);
}
}
static int
sysctl_kmaps(SYSCTL_HANDLER_ARGS)
{
struct pmap_kernel_map_range range;
struct sbuf sbuf, *sb;
pd_entry_t *l1, l1e, *l2, l2e;
pt_entry_t *l3, l3e;
vm_offset_t sva;
vm_paddr_t pa;
int error, i, j, k;
error = sysctl_wire_old_buffer(req, 0);
if (error != 0)
return (error);
sb = &sbuf;
sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
/* Sentinel value. */
range.sva = 0xfffffffffffffffful;
/*
* Iterate over the kernel page tables without holding the kernel pmap
* lock. Kernel page table pages are never freed, so at worst we will
* observe inconsistencies in the output.
*/
sva = VM_MIN_KERNEL_ADDRESS;
for (i = pmap_l1_index(sva); i < Ln_ENTRIES; i++) {
if (i == pmap_l1_index(DMAP_MIN_ADDRESS))
sbuf_printf(sb, "\nDirect map:\n");
else if (i == pmap_l1_index(VM_MIN_KERNEL_ADDRESS))
sbuf_printf(sb, "\nKernel map:\n");
l1 = pmap_l1(kernel_pmap, sva);
l1e = pmap_load(l1);
if ((l1e & PTE_V) == 0) {
sysctl_kmaps_dump(sb, &range, sva);
sva += L1_SIZE;
continue;
}
if ((l1e & PTE_RWX) != 0) {
sysctl_kmaps_check(sb, &range, sva, l1e, 0, 0);
range.l1pages++;
sva += L1_SIZE;
continue;
}
pa = PTE_TO_PHYS(l1e);
l2 = (pd_entry_t *)PHYS_TO_DMAP(pa);
for (j = pmap_l2_index(sva); j < Ln_ENTRIES; j++) {
l2e = l2[j];
if ((l2e & PTE_V) == 0) {
sysctl_kmaps_dump(sb, &range, sva);
sva += L2_SIZE;
continue;
}
if ((l2e & PTE_RWX) != 0) {
sysctl_kmaps_check(sb, &range, sva, l1e, l2e, 0);
range.l2pages++;
sva += L2_SIZE;
continue;
}
pa = PTE_TO_PHYS(l2e);
l3 = (pd_entry_t *)PHYS_TO_DMAP(pa);
for (k = pmap_l3_index(sva); k < Ln_ENTRIES; k++,
sva += L3_SIZE) {
l3e = l3[k];
if ((l3e & PTE_V) == 0) {
sysctl_kmaps_dump(sb, &range, sva);
continue;
}
sysctl_kmaps_check(sb, &range, sva,
l1e, l2e, l3e);
range.l3pages++;
}
}
}
error = sbuf_finish(sb);
sbuf_delete(sb);
return (error);
}
SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
NULL, 0, sysctl_kmaps, "A",
"Dump kernel address layout");