diff --git a/sys/amd64/amd64/trap.c b/sys/amd64/amd64/trap.c
index 4ce31ce47a45..cc0b8fcf6c17 100644
--- a/sys/amd64/amd64/trap.c
+++ b/sys/amd64/amd64/trap.c
@@ -1,1196 +1,1204 @@
 /*-
  * SPDX-License-Identifier: BSD-4-Clause
  *
  * Copyright (C) 1994, David Greenman
  * Copyright (c) 1990, 1993
  *	The Regents of the University of California.  All rights reserved.
  *
  * This code is derived from software contributed to Berkeley by
  * the University of Utah, and William Jolitz.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. All advertising materials mentioning features or use of this software
  *    must display the following acknowledgement:
  *	This product includes software developed by the University of
  *	California, Berkeley and its contributors.
  * 4. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  *	from: @(#)trap.c	7.4 (Berkeley) 5/13/91
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 /*
  * AMD64 Trap and System call handling
  */
 
 #include "opt_clock.h"
 #include "opt_compat.h"
 #include "opt_cpu.h"
 #include "opt_hwpmc_hooks.h"
 #include "opt_isa.h"
 #include "opt_kdb.h"
 
 #include <sys/param.h>
 #include <sys/bus.h>
 #include <sys/systm.h>
 #include <sys/proc.h>
 #include <sys/ptrace.h>
 #include <sys/kdb.h>
 #include <sys/kernel.h>
 #include <sys/ktr.h>
 #include <sys/lock.h>
 #include <sys/mutex.h>
 #include <sys/resourcevar.h>
 #include <sys/signalvar.h>
 #include <sys/syscall.h>
 #include <sys/sysctl.h>
 #include <sys/sysent.h>
 #include <sys/uio.h>
 #include <sys/vmmeter.h>
 #ifdef HWPMC_HOOKS
 #include <sys/pmckern.h>
 PMC_SOFT_DEFINE( , , page_fault, all);
 PMC_SOFT_DEFINE( , , page_fault, read);
 PMC_SOFT_DEFINE( , , page_fault, write);
 #endif
 
 #include <vm/vm.h>
 #include <vm/vm_param.h>
 #include <vm/pmap.h>
 #include <vm/vm_kern.h>
 #include <vm/vm_map.h>
 #include <vm/vm_page.h>
 #include <vm/vm_extern.h>
 
 #include <machine/cpu.h>
 #include <machine/intr_machdep.h>
 #include <x86/mca.h>
 #include <machine/md_var.h>
 #include <machine/pcb.h>
 #ifdef SMP
 #include <machine/smp.h>
 #endif
 #include <machine/stack.h>
 #include <machine/trap.h>
 #include <machine/tss.h>
 
 #ifdef KDTRACE_HOOKS
 #include <sys/dtrace_bsd.h>
 #endif
 
 extern inthand_t IDTVEC(bpt), IDTVEC(bpt_pti), IDTVEC(dbg),
     IDTVEC(fast_syscall), IDTVEC(fast_syscall_pti), IDTVEC(fast_syscall32),
     IDTVEC(int0x80_syscall_pti), IDTVEC(int0x80_syscall);
 
 void __noinline trap(struct trapframe *frame);
 void trap_check(struct trapframe *frame);
 void dblfault_handler(struct trapframe *frame);
 
 static int trap_pfault(struct trapframe *, bool, int *, int *);
 static void trap_fatal(struct trapframe *, vm_offset_t);
 #ifdef KDTRACE_HOOKS
 static bool trap_user_dtrace(struct trapframe *,
     int (**hook)(struct trapframe *));
 #endif
 
 static const char UNKNOWN[] = "unknown";
 static const char *const trap_msg[] = {
 	[0] =			UNKNOWN,			/* unused */
 	[T_PRIVINFLT] =		"privileged instruction fault",
 	[2] =			UNKNOWN,			/* unused */
 	[T_BPTFLT] =		"breakpoint instruction fault",
 	[4] =			UNKNOWN,			/* unused */
 	[5] =			UNKNOWN,			/* unused */
 	[T_ARITHTRAP] =		"arithmetic trap",
 	[7] =			UNKNOWN,			/* unused */
 	[8] =			UNKNOWN,			/* unused */
 	[T_PROTFLT] =		"general protection fault",
 	[T_TRCTRAP] =		"debug exception",
 	[11] =			UNKNOWN,			/* unused */
 	[T_PAGEFLT] =		"page fault",
 	[13] =			UNKNOWN,			/* unused */
 	[T_ALIGNFLT] =		"alignment fault",
 	[15] =			UNKNOWN,			/* unused */
 	[16] =			UNKNOWN,			/* unused */
 	[17] =			UNKNOWN,			/* unused */
 	[T_DIVIDE] =		"integer divide fault",
 	[T_NMI] =		"non-maskable interrupt trap",
 	[T_OFLOW] =		"overflow trap",
 	[T_BOUND] =		"FPU bounds check fault",
 	[T_DNA] =		"FPU device not available",
 	[T_DOUBLEFLT] =		"double fault",
 	[T_FPOPFLT] =		"FPU operand fetch fault",
 	[T_TSSFLT] =		"invalid TSS fault",
 	[T_SEGNPFLT] =		"segment not present fault",
 	[T_STKFLT] =		"stack fault",
 	[T_MCHK] =		"machine check trap",
 	[T_XMMFLT] =		"SIMD floating-point exception",
 	[T_RESERVED] =		"reserved (unknown) fault",
 	[31] =			UNKNOWN,			/* reserved */
 	[T_DTRACE_RET] =	"DTrace pid return trap",
 };
 
 static int uprintf_signal;
 SYSCTL_INT(_machdep, OID_AUTO, uprintf_signal, CTLFLAG_RWTUN,
     &uprintf_signal, 0,
     "Print debugging information on trap signal to ctty");
 
 /*
  * Control L1D flush on return from NMI.
  *
  * Tunable  can be set to the following values:
  * 0 - only enable flush on return from NMI if required by vmm.ko (default)
  * >1 - always flush on return from NMI.
  *
  * Post-boot, the sysctl indicates if flushing is currently enabled.
  */
 int nmi_flush_l1d_sw;
 SYSCTL_INT(_machdep, OID_AUTO, nmi_flush_l1d_sw, CTLFLAG_RWTUN,
     &nmi_flush_l1d_sw, 0,
     "Flush L1 Data Cache on NMI exit, software bhyve L1TF mitigation assist");
 
 /*
  * Exception, fault, and trap interface to the FreeBSD kernel.
  * This common code is called from assembly language IDT gate entry
  * routines that prepare a suitable stack frame, and restore this
  * frame after the exception has been processed.
  */
 
 void
 trap(struct trapframe *frame)
 {
 	ksiginfo_t ksi;
 	struct thread *td;
 	struct proc *p;
 	register_t addr, dr6;
 	int pf, signo, ucode;
 	u_int type;
 
 	td = curthread;
 	p = td->td_proc;
 	dr6 = 0;
 
 	VM_CNT_INC(v_trap);
 	type = frame->tf_trapno;
 
 #ifdef SMP
 	/* Handler for NMI IPIs used for stopping CPUs. */
 	if (type == T_NMI && ipi_nmi_handler() == 0)
 		return;
 #endif
 
 #ifdef KDB
 	if (kdb_active) {
 		kdb_reenter();
 		return;
 	}
 #endif
 
 	if (type == T_RESERVED) {
 		trap_fatal(frame, 0);
 		return;
 	}
 
 	if (type == T_NMI) {
 #ifdef HWPMC_HOOKS
 		/*
 		 * CPU PMCs interrupt using an NMI.  If the PMC module is
 		 * active, pass the 'rip' value to the PMC module's interrupt
 		 * handler.  A non-zero return value from the handler means that
 		 * the NMI was consumed by it and we can return immediately.
 		 */
 		if (pmc_intr != NULL &&
 		    (*pmc_intr)(frame) != 0)
 			return;
 #endif
 	}
 
 	if ((frame->tf_rflags & PSL_I) == 0) {
 		/*
 		 * Buggy application or kernel code has disabled
 		 * interrupts and then trapped.  Enabling interrupts
 		 * now is wrong, but it is better than running with
 		 * interrupts disabled until they are accidentally
 		 * enabled later.
 		 */
-		if (TRAPF_USERMODE(frame))
+		if (TRAPF_USERMODE(frame)) {
 			uprintf(
 			    "pid %ld (%s): trap %d with interrupts disabled\n",
 			    (long)curproc->p_pid, curthread->td_name, type);
-		else if (type != T_NMI && type != T_BPTFLT &&
-		    type != T_TRCTRAP) {
-			/*
-			 * XXX not quite right, since this may be for a
-			 * multiple fault in user mode.
-			 */
-			printf("kernel trap %d with interrupts disabled\n",
-			    type);
-
-			/*
-			 * We shouldn't enable interrupts while holding a
-			 * spin lock.
-			 */
-			if (td->td_md.md_spinlock_count == 0)
-				enable_intr();
+		} else {
+			switch (type) {
+			case T_NMI:
+			case T_BPTFLT:
+			case T_TRCTRAP:
+			case T_PROTFLT:
+			case T_SEGNPFLT:
+			case T_STKFLT:
+				break;
+			default:
+				printf(
+				    "kernel trap %d with interrupts disabled\n",
+				    type);
+
+				/*
+				 * We shouldn't enable interrupts while holding a
+				 * spin lock.
+				 */
+				if (td->td_md.md_spinlock_count == 0)
+					enable_intr();
+			}
 		}
 	}
 
 	if (TRAPF_USERMODE(frame)) {
 		/* user trap */
 
 		td->td_pticks = 0;
 		td->td_frame = frame;
 		addr = frame->tf_rip;
 		if (td->td_cowgen != p->p_cowgen)
 			thread_cow_update(td);
 
 		switch (type) {
 		case T_PRIVINFLT:	/* privileged instruction fault */
 			signo = SIGILL;
 			ucode = ILL_PRVOPC;
 			break;
 
 		case T_BPTFLT:		/* bpt instruction fault */
 #ifdef KDTRACE_HOOKS
 			if (trap_user_dtrace(frame, &dtrace_pid_probe_ptr))
 				return;
 #else
 			enable_intr();
 #endif
 			signo = SIGTRAP;
 			ucode = TRAP_BRKPT;
 			break;
 
 		case T_TRCTRAP:		/* debug exception */
 			enable_intr();
 			signo = SIGTRAP;
 			ucode = TRAP_TRACE;
 			dr6 = rdr6();
 			if ((dr6 & DBREG_DR6_BS) != 0) {
 				PROC_LOCK(td->td_proc);
 				if ((td->td_dbgflags & TDB_STEP) != 0) {
 					td->td_frame->tf_rflags &= ~PSL_T;
 					td->td_dbgflags &= ~TDB_STEP;
 				}
 				PROC_UNLOCK(td->td_proc);
 			}
 			break;
 
 		case T_ARITHTRAP:	/* arithmetic trap */
 			ucode = fputrap_x87();
 			if (ucode == -1)
 				return;
 			signo = SIGFPE;
 			break;
 
 		case T_PROTFLT:		/* general protection fault */
 			signo = SIGBUS;
 			ucode = BUS_OBJERR;
 			break;
 		case T_STKFLT:		/* stack fault */
 		case T_SEGNPFLT:	/* segment not present fault */
 			signo = SIGBUS;
 			ucode = BUS_ADRERR;
 			break;
 		case T_TSSFLT:		/* invalid TSS fault */
 			signo = SIGBUS;
 			ucode = BUS_OBJERR;
 			break;
 		case T_ALIGNFLT:
 			signo = SIGBUS;
 			ucode = BUS_ADRALN;
 			break;
 		case T_DOUBLEFLT:	/* double fault */
 		default:
 			signo = SIGBUS;
 			ucode = BUS_OBJERR;
 			break;
 
 		case T_PAGEFLT:		/* page fault */
 			/*
 			 * Can emulator handle this trap?
 			 */
 			if (*p->p_sysent->sv_trap != NULL &&
 			    (*p->p_sysent->sv_trap)(td) == 0)
 				return;
 
 			pf = trap_pfault(frame, true, &signo, &ucode);
 			if (pf == -1)
 				return;
 			if (pf == 0)
 				goto userret;
 			addr = frame->tf_addr;
 			break;
 
 		case T_DIVIDE:		/* integer divide fault */
 			ucode = FPE_INTDIV;
 			signo = SIGFPE;
 			break;
 
 		case T_NMI:
 			nmi_handle_intr(type, frame);
 			return;
 
 		case T_OFLOW:		/* integer overflow fault */
 			ucode = FPE_INTOVF;
 			signo = SIGFPE;
 			break;
 
 		case T_BOUND:		/* bounds check fault */
 			ucode = FPE_FLTSUB;
 			signo = SIGFPE;
 			break;
 
 		case T_DNA:
 			/* transparent fault (due to context switch "late") */
 			KASSERT(PCB_USER_FPU(td->td_pcb),
 			    ("kernel FPU ctx has leaked"));
 			fpudna();
 			return;
 
 		case T_FPOPFLT:		/* FPU operand fetch fault */
 			ucode = ILL_COPROC;
 			signo = SIGILL;
 			break;
 
 		case T_XMMFLT:		/* SIMD floating-point exception */
 			ucode = fputrap_sse();
 			if (ucode == -1)
 				return;
 			signo = SIGFPE;
 			break;
 #ifdef KDTRACE_HOOKS
 		case T_DTRACE_RET:
 			(void)trap_user_dtrace(frame, &dtrace_return_probe_ptr);
 			return;
 #endif
 		}
 	} else {
 		/* kernel trap */
 
 		KASSERT(cold || td->td_ucred != NULL,
 		    ("kernel trap doesn't have ucred"));
 		switch (type) {
 		case T_PAGEFLT:			/* page fault */
 			(void)trap_pfault(frame, false, NULL, NULL);
 			return;
 
 		case T_DNA:
 			if (PCB_USER_FPU(td->td_pcb))
 				panic("Unregistered use of FPU in kernel");
 			fpudna();
 			return;
 
 		case T_ARITHTRAP:	/* arithmetic trap */
 		case T_XMMFLT:		/* SIMD floating-point exception */
 		case T_FPOPFLT:		/* FPU operand fetch fault */
 			/*
 			 * For now, supporting kernel handler
 			 * registration for FPU traps is overkill.
 			 */
 			trap_fatal(frame, 0);
 			return;
 
 		case T_STKFLT:		/* stack fault */
 		case T_PROTFLT:		/* general protection fault */
 		case T_SEGNPFLT:	/* segment not present fault */
 			if (td->td_intr_nesting_level != 0)
 				break;
 
 			/*
 			 * Invalid segment selectors and out of bounds
 			 * %rip's and %rsp's can be set up in user mode.
 			 * This causes a fault in kernel mode when the
 			 * kernel tries to return to user mode.  We want
 			 * to get this fault so that we can fix the
 			 * problem here and not have to check all the
 			 * selectors and pointers when the user changes
 			 * them.
 			 *
 			 * In case of PTI, the IRETQ faulted while the
 			 * kernel used the pti stack, and exception
 			 * frame records %rsp value pointing to that
 			 * stack.  If we return normally to
 			 * doreti_iret_fault, the trapframe is
 			 * reconstructed on pti stack, and calltrap()
 			 * called on it as well.  Due to the very
 			 * limited pti stack size, kernel does not
 			 * survive for too long.  Switch to the normal
 			 * thread stack for the trap handling.
 			 *
 			 * Magic '5' is the number of qwords occupied by
 			 * the hardware trap frame.
 			 */
+			KASSERT((read_rflags() & PSL_I) == 0,
+			    ("interrupts enabled"));
 			if (frame->tf_rip == (long)doreti_iret) {
 				frame->tf_rip = (long)doreti_iret_fault;
 				if ((PCPU_GET(curpmap)->pm_ucr3 !=
 				    PMAP_NO_CR3) &&
 				    (frame->tf_rsp == (uintptr_t)PCPU_GET(
 				    pti_rsp0) - 5 * sizeof(register_t))) {
 					frame->tf_rsp = PCPU_GET(rsp0) - 5 *
 					    sizeof(register_t);
 				}
 				return;
 			}
 			if (frame->tf_rip == (long)ld_ds) {
 				frame->tf_rip = (long)ds_load_fault;
 				return;
 			}
 			if (frame->tf_rip == (long)ld_es) {
 				frame->tf_rip = (long)es_load_fault;
 				return;
 			}
 			if (frame->tf_rip == (long)ld_fs) {
 				frame->tf_rip = (long)fs_load_fault;
 				return;
 			}
 			if (frame->tf_rip == (long)ld_gs) {
 				frame->tf_rip = (long)gs_load_fault;
 				return;
 			}
 			if (frame->tf_rip == (long)ld_gsbase) {
 				frame->tf_rip = (long)gsbase_load_fault;
 				return;
 			}
 			if (frame->tf_rip == (long)ld_fsbase) {
 				frame->tf_rip = (long)fsbase_load_fault;
 				return;
 			}
 			if (curpcb->pcb_onfault != NULL) {
 				frame->tf_rip = (long)curpcb->pcb_onfault;
 				return;
 			}
 			break;
 
 		case T_TSSFLT:
 			/*
 			 * PSL_NT can be set in user mode and isn't cleared
 			 * automatically when the kernel is entered.  This
 			 * causes a TSS fault when the kernel attempts to
 			 * `iret' because the TSS link is uninitialized.  We
 			 * want to get this fault so that we can fix the
 			 * problem here and not every time the kernel is
 			 * entered.
 			 */
 			if (frame->tf_rflags & PSL_NT) {
 				frame->tf_rflags &= ~PSL_NT;
 				return;
 			}
 			break;
 
 		case T_TRCTRAP:	 /* debug exception */
 			/* Clear any pending debug events. */
 			dr6 = rdr6();
 			load_dr6(0);
 
 			/*
 			 * Ignore debug register exceptions due to
 			 * accesses in the user's address space, which
 			 * can happen under several conditions such as
 			 * if a user sets a watchpoint on a buffer and
 			 * then passes that buffer to a system call.
 			 * We still want to get TRCTRAPS for addresses
 			 * in kernel space because that is useful when
 			 * debugging the kernel.
 			 */
 			if (user_dbreg_trap(dr6))
 				return;
 
 			/*
 			 * Malicious user code can configure a debug
 			 * register watchpoint to trap on data access
 			 * to the top of stack and then execute 'pop
 			 * %ss; int 3'.  Due to exception deferral for
 			 * 'pop %ss', the CPU will not interrupt 'int
 			 * 3' to raise the DB# exception for the debug
 			 * register but will postpone the DB# until
 			 * execution of the first instruction of the
 			 * BP# handler (in kernel mode).  Normally the
 			 * previous check would ignore DB# exceptions
 			 * for watchpoints on user addresses raised in
 			 * kernel mode.  However, some CPU errata
 			 * include cases where DB# exceptions do not
 			 * properly set bits in %dr6, e.g. Haswell
 			 * HSD23 and Skylake-X SKZ24.
 			 *
 			 * A deferred DB# can also be raised on the
 			 * first instructions of system call entry
 			 * points or single-step traps via similar use
 			 * of 'pop %ss' or 'mov xxx, %ss'.
 			 */
 			if (pti) {
 				if (frame->tf_rip ==
 				    (uintptr_t)IDTVEC(fast_syscall_pti) ||
 #ifdef COMPAT_FREEBSD32
 				    frame->tf_rip ==
 				    (uintptr_t)IDTVEC(int0x80_syscall_pti) ||
 #endif
 				    frame->tf_rip == (uintptr_t)IDTVEC(bpt_pti))
 					return;
 			} else {
 				if (frame->tf_rip ==
 				    (uintptr_t)IDTVEC(fast_syscall) ||
 #ifdef COMPAT_FREEBSD32
 				    frame->tf_rip ==
 				    (uintptr_t)IDTVEC(int0x80_syscall) ||
 #endif
 				    frame->tf_rip == (uintptr_t)IDTVEC(bpt))
 					return;
 			}
 			if (frame->tf_rip == (uintptr_t)IDTVEC(dbg) ||
 			    /* Needed for AMD. */
 			    frame->tf_rip == (uintptr_t)IDTVEC(fast_syscall32))
 				return;
 			/*
 			 * FALLTHROUGH (TRCTRAP kernel mode, kernel address)
 			 */
 		case T_BPTFLT:
 			/*
 			 * If KDB is enabled, let it handle the debugger trap.
 			 * Otherwise, debugger traps "can't happen".
 			 */
 #ifdef KDB
 			if (kdb_trap(type, dr6, frame))
 				return;
 #endif
 			break;
 
 		case T_NMI:
 			nmi_handle_intr(type, frame);
 			return;
 		}
 
 		trap_fatal(frame, 0);
 		return;
 	}
 
 	/* Translate fault for emulators (e.g. Linux) */
 	if (*p->p_sysent->sv_transtrap != NULL)
 		signo = (*p->p_sysent->sv_transtrap)(signo, type);
 
 	ksiginfo_init_trap(&ksi);
 	ksi.ksi_signo = signo;
 	ksi.ksi_code = ucode;
 	ksi.ksi_trapno = type;
 	ksi.ksi_addr = (void *)addr;
 	if (uprintf_signal) {
 		uprintf("pid %d comm %s: signal %d err %lx code %d type %d "
 		    "addr 0x%lx rsp 0x%lx rip 0x%lx "
 		    "<%02x %02x %02x %02x %02x %02x %02x %02x>\n",
 		    p->p_pid, p->p_comm, signo, frame->tf_err, ucode, type,
 		    addr, frame->tf_rsp, frame->tf_rip,
 		    fubyte((void *)(frame->tf_rip + 0)),
 		    fubyte((void *)(frame->tf_rip + 1)),
 		    fubyte((void *)(frame->tf_rip + 2)),
 		    fubyte((void *)(frame->tf_rip + 3)),
 		    fubyte((void *)(frame->tf_rip + 4)),
 		    fubyte((void *)(frame->tf_rip + 5)),
 		    fubyte((void *)(frame->tf_rip + 6)),
 		    fubyte((void *)(frame->tf_rip + 7)));
 	}
 	KASSERT((read_rflags() & PSL_I) != 0, ("interrupts disabled"));
 	trapsignal(td, &ksi);
 
 userret:
 	userret(td, frame);
 	KASSERT(PCB_USER_FPU(td->td_pcb),
 	    ("Return from trap with kernel FPU ctx leaked"));
 }
 
 /*
  * Ensure that we ignore any DTrace-induced faults. This function cannot
  * be instrumented, so it cannot generate such faults itself.
  */
 void
 trap_check(struct trapframe *frame)
 {
 
 #ifdef KDTRACE_HOOKS
 	if (dtrace_trap_func != NULL &&
 	    (*dtrace_trap_func)(frame, frame->tf_trapno) != 0)
 		return;
 #endif
 	trap(frame);
 }
 
 static bool
 trap_is_smap(struct trapframe *frame)
 {
 
 	/*
 	 * A page fault on a userspace address is classified as
 	 * SMAP-induced if:
 	 * - SMAP is supported;
 	 * - kernel mode accessed present data page;
 	 * - rflags.AC was cleared.
 	 * Kernel must never access user space with rflags.AC cleared
 	 * if SMAP is enabled.
 	 */
 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 &&
 	    (frame->tf_err & (PGEX_P | PGEX_U | PGEX_I | PGEX_RSV)) ==
 	    PGEX_P && (frame->tf_rflags & PSL_AC) == 0);
 }
 
 static bool
 trap_is_pti(struct trapframe *frame)
 {
 
 	return (PCPU_GET(curpmap)->pm_ucr3 != PMAP_NO_CR3 &&
 	    pg_nx != 0 && (frame->tf_err & (PGEX_P | PGEX_W |
 	    PGEX_U | PGEX_I)) == (PGEX_P | PGEX_U | PGEX_I) &&
 	    (curpcb->pcb_saved_ucr3 & ~CR3_PCID_MASK) ==
 	    (PCPU_GET(curpmap)->pm_cr3 & ~CR3_PCID_MASK));
 }
 
 /*
  * Handle all details of a page fault.
  * Returns:
  * -1 if this fault was fatal, typically from kernel mode
  *    (cannot happen, but we need to return something).
  * 0  if this fault was handled by updating either the user or kernel
  *    page table, execution can continue.
  * 1  if this fault was from usermode and it was not handled, a synchronous
  *    signal should be delivered to the thread.  *signo returns the signal
  *    number, *ucode gives si_code.
  */
 static int
 trap_pfault(struct trapframe *frame, bool usermode, int *signo, int *ucode)
 {
 	struct thread *td;
 	struct proc *p;
 	vm_map_t map;
 	vm_offset_t eva;
 	int rv;
 	vm_prot_t ftype;
 
 	MPASS(!usermode || (signo != NULL && ucode != NULL));
 
 	td = curthread;
 	p = td->td_proc;
 	eva = frame->tf_addr;
 
 	if (__predict_false((td->td_pflags & TDP_NOFAULTING) != 0)) {
 		/*
 		 * Due to both processor errata and lazy TLB invalidation when
 		 * access restrictions are removed from virtual pages, memory
 		 * accesses that are allowed by the physical mapping layer may
 		 * nonetheless cause one spurious page fault per virtual page. 
 		 * When the thread is executing a "no faulting" section that
 		 * is bracketed by vm_fault_{disable,enable}_pagefaults(),
 		 * every page fault is treated as a spurious page fault,
 		 * unless it accesses the same virtual address as the most
 		 * recent page fault within the same "no faulting" section.
 		 */
 		if (td->td_md.md_spurflt_addr != eva ||
 		    (td->td_pflags & TDP_RESETSPUR) != 0) {
 			/*
 			 * Do nothing to the TLB.  A stale TLB entry is
 			 * flushed automatically by a page fault.
 			 */
 			td->td_md.md_spurflt_addr = eva;
 			td->td_pflags &= ~TDP_RESETSPUR;
 			return (0);
 		}
 	} else {
 		/*
 		 * If we get a page fault while in a critical section, then
 		 * it is most likely a fatal kernel page fault.  The kernel
 		 * is already going to panic trying to get a sleep lock to
 		 * do the VM lookup, so just consider it a fatal trap so the
 		 * kernel can print out a useful trap message and even get
 		 * to the debugger.
 		 *
 		 * If we get a page fault while holding a non-sleepable
 		 * lock, then it is most likely a fatal kernel page fault.
 		 * If WITNESS is enabled, then it's going to whine about
 		 * bogus LORs with various VM locks, so just skip to the
 		 * fatal trap handling directly.
 		 */
 		if (td->td_critnest != 0 ||
 		    WITNESS_CHECK(WARN_SLEEPOK | WARN_GIANTOK, NULL,
 		    "Kernel page fault") != 0) {
 			trap_fatal(frame, eva);
 			return (-1);
 		}
 	}
 	if (eva >= VM_MIN_KERNEL_ADDRESS) {
 		/*
 		 * Don't allow user-mode faults in kernel address space.
 		 */
 		if (usermode) {
 			*signo = SIGSEGV;
 			*ucode = SEGV_MAPERR;
 			return (1);
 		}
 
 		map = kernel_map;
 	} else {
 		map = &p->p_vmspace->vm_map;
 
 		/*
 		 * When accessing a usermode address, kernel must be
 		 * ready to accept the page fault, and provide a
 		 * handling routine.  Since accessing the address
 		 * without the handler is a bug, do not try to handle
 		 * it normally, and panic immediately.
 		 *
 		 * If SMAP is enabled, filter SMAP faults also,
 		 * because illegal access might occur to the mapped
 		 * user address, causing infinite loop.
 		 */
 		if (!usermode && (td->td_intr_nesting_level != 0 ||
 		    trap_is_smap(frame) || curpcb->pcb_onfault == NULL)) {
 			trap_fatal(frame, eva);
 			return (-1);
 		}
 	}
 
 	/*
 	 * If the trap was caused by errant bits in the PTE then panic.
 	 */
 	if (frame->tf_err & PGEX_RSV) {
 		trap_fatal(frame, eva);
 		return (-1);
 	}
 
 	/*
 	 * User-mode protection key violation (PKU).  May happen
 	 * either from usermode or from kernel if copyin accessed
 	 * key-protected mapping.
 	 */
 	if ((frame->tf_err & PGEX_PK) != 0) {
 		if (eva > VM_MAXUSER_ADDRESS) {
 			trap_fatal(frame, eva);
 			return (-1);
 		}
 		if (usermode) {
 			*signo = SIGSEGV;
 			*ucode = SEGV_PKUERR;
 			return (1);
 		}
 		goto after_vmfault;
 	}
 
 	/*
 	 * If nx protection of the usermode portion of kernel page
 	 * tables caused trap, panic.
 	 */
 	if (usermode && trap_is_pti(frame))
 		panic("PTI: pid %d comm %s tf_err %#lx", p->p_pid,
 		    p->p_comm, frame->tf_err);
 
 	/*
 	 * PGEX_I is defined only if the execute disable bit capability is
 	 * supported and enabled.
 	 */
 	if (frame->tf_err & PGEX_W)
 		ftype = VM_PROT_WRITE;
 	else if ((frame->tf_err & PGEX_I) && pg_nx != 0)
 		ftype = VM_PROT_EXECUTE;
 	else
 		ftype = VM_PROT_READ;
 
 	/* Fault in the page. */
 	rv = vm_fault_trap(map, eva, ftype, VM_FAULT_NORMAL, signo, ucode);
 	if (rv == KERN_SUCCESS) {
 #ifdef HWPMC_HOOKS
 		if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
 			PMC_SOFT_CALL_TF( , , page_fault, all, frame);
 			if (ftype == VM_PROT_READ)
 				PMC_SOFT_CALL_TF( , , page_fault, read,
 				    frame);
 			else
 				PMC_SOFT_CALL_TF( , , page_fault, write,
 				    frame);
 		}
 #endif
 		return (0);
 	}
 
 	if (usermode)
 		return (1);
 after_vmfault:
 	if (td->td_intr_nesting_level == 0 &&
 	    curpcb->pcb_onfault != NULL) {
 		frame->tf_rip = (long)curpcb->pcb_onfault;
 		return (0);
 	}
 	trap_fatal(frame, eva);
 	return (-1);
 }
 
 static void
 trap_fatal(frame, eva)
 	struct trapframe *frame;
 	vm_offset_t eva;
 {
 	int code, ss;
 	u_int type;
 	struct soft_segment_descriptor softseg;
 	struct user_segment_descriptor *gdt;
 #ifdef KDB
 	bool handled;
 #endif
 
 	code = frame->tf_err;
 	type = frame->tf_trapno;
 	gdt = *PCPU_PTR(gdt);
 	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)], &softseg);
 
 	printf("\n\nFatal trap %d: %s while in %s mode\n", type,
 	    type < nitems(trap_msg) ? trap_msg[type] : UNKNOWN,
 	    TRAPF_USERMODE(frame) ? "user" : "kernel");
 #ifdef SMP
 	/* two separate prints in case of a trap on an unmapped page */
 	printf("cpuid = %d; ", PCPU_GET(cpuid));
 	printf("apic id = %02x\n", PCPU_GET(apic_id));
 #endif
 	if (type == T_PAGEFLT) {
 		printf("fault virtual address	= 0x%lx\n", eva);
 		printf("fault code		= %s %s %s%s%s, %s\n",
 			code & PGEX_U ? "user" : "supervisor",
 			code & PGEX_W ? "write" : "read",
 			code & PGEX_I ? "instruction" : "data",
 			code & PGEX_PK ? " prot key" : "",
 			code & PGEX_SGX ? " SGX" : "",
 			code & PGEX_RSV ? "reserved bits in PTE" :
 			code & PGEX_P ? "protection violation" : "page not present");
 	}
 	printf("instruction pointer	= 0x%lx:0x%lx\n",
 	       frame->tf_cs & 0xffff, frame->tf_rip);
 	ss = frame->tf_ss & 0xffff;
 	printf("stack pointer	        = 0x%x:0x%lx\n", ss, frame->tf_rsp);
 	printf("frame pointer	        = 0x%x:0x%lx\n", ss, frame->tf_rbp);
 	printf("code segment		= base 0x%lx, limit 0x%lx, type 0x%x\n",
 	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
 	printf("			= DPL %d, pres %d, long %d, def32 %d, gran %d\n",
 	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_long, softseg.ssd_def32,
 	       softseg.ssd_gran);
 	printf("processor eflags	= ");
 	if (frame->tf_rflags & PSL_T)
 		printf("trace trap, ");
 	if (frame->tf_rflags & PSL_I)
 		printf("interrupt enabled, ");
 	if (frame->tf_rflags & PSL_NT)
 		printf("nested task, ");
 	if (frame->tf_rflags & PSL_RF)
 		printf("resume, ");
 	printf("IOPL = %ld\n", (frame->tf_rflags & PSL_IOPL) >> 12);
 	printf("current process		= %d (%s)\n",
 	    curproc->p_pid, curthread->td_name);
 
 #ifdef KDB
 	if (debugger_on_trap) {
 		kdb_why = KDB_WHY_TRAP;
 		handled = kdb_trap(type, 0, frame);
 		kdb_why = KDB_WHY_UNSET;
 		if (handled)
 			return;
 	}
 #endif
 	printf("trap number		= %d\n", type);
 	panic("%s", type < nitems(trap_msg) ? trap_msg[type] :
 	    "unknown/reserved trap");
 }
 
 #ifdef KDTRACE_HOOKS
 /*
  * Invoke a userspace DTrace hook.  The hook pointer is cleared when no
  * userspace probes are enabled, so we must synchronize with DTrace to ensure
  * that a trapping thread is able to call the hook before it is cleared.
  */
 static bool
 trap_user_dtrace(struct trapframe *frame, int (**hookp)(struct trapframe *))
 {
 	int (*hook)(struct trapframe *);
 
 	hook = atomic_load_ptr(hookp);
 	enable_intr();
 	if (hook != NULL)
 		return ((hook)(frame) == 0);
 	return (false);
 }
 #endif
 
 /*
  * Double fault handler. Called when a fault occurs while writing
  * a frame for a trap/exception onto the stack. This usually occurs
  * when the stack overflows (such is the case with infinite recursion,
  * for example).
  */
 void
 dblfault_handler(struct trapframe *frame)
 {
 #ifdef KDTRACE_HOOKS
 	if (dtrace_doubletrap_func != NULL)
 		(*dtrace_doubletrap_func)();
 #endif
 	printf("\nFatal double fault\n"
 	    "rip %#lx rsp %#lx rbp %#lx\n"
 	    "rax %#lx rdx %#lx rbx %#lx\n"
 	    "rcx %#lx rsi %#lx rdi %#lx\n"
 	    "r8 %#lx r9 %#lx r10 %#lx\n"
 	    "r11 %#lx r12 %#lx r13 %#lx\n"
 	    "r14 %#lx r15 %#lx rflags %#lx\n"
 	    "cs %#lx ss %#lx ds %#hx es %#hx fs %#hx gs %#hx\n"
 	    "fsbase %#lx gsbase %#lx kgsbase %#lx\n",
 	    frame->tf_rip, frame->tf_rsp, frame->tf_rbp,
 	    frame->tf_rax, frame->tf_rdx, frame->tf_rbx,
 	    frame->tf_rcx, frame->tf_rdi, frame->tf_rsi,
 	    frame->tf_r8, frame->tf_r9, frame->tf_r10,
 	    frame->tf_r11, frame->tf_r12, frame->tf_r13,
 	    frame->tf_r14, frame->tf_r15, frame->tf_rflags,
 	    frame->tf_cs, frame->tf_ss, frame->tf_ds, frame->tf_es,
 	    frame->tf_fs, frame->tf_gs,
 	    rdmsr(MSR_FSBASE), rdmsr(MSR_GSBASE), rdmsr(MSR_KGSBASE));
 #ifdef SMP
 	/* two separate prints in case of a trap on an unmapped page */
 	printf("cpuid = %d; ", PCPU_GET(cpuid));
 	printf("apic id = %02x\n", PCPU_GET(apic_id));
 #endif
 	panic("double fault");
 }
 
 static int __noinline
 cpu_fetch_syscall_args_fallback(struct thread *td, struct syscall_args *sa)
 {
 	struct proc *p;
 	struct trapframe *frame;
 	register_t *argp;
 	caddr_t params;
 	int reg, regcnt, error;
 
 	p = td->td_proc;
 	frame = td->td_frame;
 	reg = 0;
 	regcnt = NARGREGS;
 
 	if (sa->code == SYS_syscall || sa->code == SYS___syscall) {
 		sa->code = frame->tf_rdi;
 		reg++;
 		regcnt--;
 	}
 
  	if (sa->code >= p->p_sysent->sv_size)
  		sa->callp = &p->p_sysent->sv_table[0];
   	else
  		sa->callp = &p->p_sysent->sv_table[sa->code];
 
 	KASSERT(sa->callp->sy_narg <= nitems(sa->args),
 	    ("Too many syscall arguments!"));
 	argp = &frame->tf_rdi;
 	argp += reg;
 	memcpy(sa->args, argp, sizeof(sa->args[0]) * NARGREGS);
 	if (sa->callp->sy_narg > regcnt) {
 		params = (caddr_t)frame->tf_rsp + sizeof(register_t);
 		error = copyin(params, &sa->args[regcnt],
 	    	    (sa->callp->sy_narg - regcnt) * sizeof(sa->args[0]));
 		if (__predict_false(error != 0))
 			return (error);
 	}
 
 	td->td_retval[0] = 0;
 	td->td_retval[1] = frame->tf_rdx;
 
 	return (0);
 }
 
 int
 cpu_fetch_syscall_args(struct thread *td)
 {
 	struct proc *p;
 	struct trapframe *frame;
 	struct syscall_args *sa;
 
 	p = td->td_proc;
 	frame = td->td_frame;
 	sa = &td->td_sa;
 
 	sa->code = frame->tf_rax;
 
 	if (__predict_false(sa->code == SYS_syscall ||
 	    sa->code == SYS___syscall ||
 	    sa->code >= p->p_sysent->sv_size))
 		return (cpu_fetch_syscall_args_fallback(td, sa));
 
 	sa->callp = &p->p_sysent->sv_table[sa->code];
 	KASSERT(sa->callp->sy_narg <= nitems(sa->args),
 	    ("Too many syscall arguments!"));
 
 	if (__predict_false(sa->callp->sy_narg > NARGREGS))
 		return (cpu_fetch_syscall_args_fallback(td, sa));
 
 	memcpy(sa->args, &frame->tf_rdi, sizeof(sa->args[0]) * NARGREGS);
 
 	td->td_retval[0] = 0;
 	td->td_retval[1] = frame->tf_rdx;
 
 	return (0);
 }
 
 #include "../../kern/subr_syscall.c"
 
 static void (*syscall_ret_l1d_flush)(void);
 int syscall_ret_l1d_flush_mode;
 
 static void
 flush_l1d_hw(void)
 {
 
 	wrmsr(MSR_IA32_FLUSH_CMD, IA32_FLUSH_CMD_L1D);
 }
 
 static void __noinline
 amd64_syscall_ret_flush_l1d_check(int error)
 {
 	void (*p)(void);
 
 	if (error != EEXIST && error != EAGAIN && error != EXDEV &&
 	    error != ENOENT && error != ENOTCONN && error != EINPROGRESS) {
 		p = atomic_load_ptr(&syscall_ret_l1d_flush);
 		if (p != NULL)
 			p();
 	}
 }
 
 static void __inline
 amd64_syscall_ret_flush_l1d_check_inline(int error)
 {
 
 	if (__predict_false(error != 0))
 		amd64_syscall_ret_flush_l1d_check(error);
 }
 
 void
 amd64_syscall_ret_flush_l1d(int error)
 {
 
 	amd64_syscall_ret_flush_l1d_check_inline(error);
 }
 
 void
 amd64_syscall_ret_flush_l1d_recalc(void)
 {
 	bool l1d_hw;
 
 	l1d_hw = (cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) != 0;
 again:
 	switch (syscall_ret_l1d_flush_mode) {
 	case 0:
 		syscall_ret_l1d_flush = NULL;
 		break;
 	case 1:
 		syscall_ret_l1d_flush = l1d_hw ? flush_l1d_hw :
 		    flush_l1d_sw_abi;
 		break;
 	case 2:
 		syscall_ret_l1d_flush = l1d_hw ? flush_l1d_hw : NULL;
 		break;
 	case 3:
 		syscall_ret_l1d_flush = flush_l1d_sw_abi;
 		break;
 	default:
 		syscall_ret_l1d_flush_mode = 1;
 		goto again;
 	}
 }
 
 static int
 machdep_syscall_ret_flush_l1d(SYSCTL_HANDLER_ARGS)
 {
 	int error, val;
 
 	val = syscall_ret_l1d_flush_mode;
 	error = sysctl_handle_int(oidp, &val, 0, req);
 	if (error != 0 || req->newptr == NULL)
 		return (error);
 	syscall_ret_l1d_flush_mode = val;
 	amd64_syscall_ret_flush_l1d_recalc();
 	return (0);
 }
 SYSCTL_PROC(_machdep, OID_AUTO, syscall_ret_flush_l1d, CTLTYPE_INT |
     CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0,
     machdep_syscall_ret_flush_l1d, "I",
     "Flush L1D on syscall return with error (0 - off, 1 - on, "
     "2 - use hw only, 3 - use sw only)");
 
 /*
  * System call handler for native binaries.  The trap frame is already
  * set up by the assembler trampoline and a pointer to it is saved in
  * td_frame.
  */
 void
 amd64_syscall(struct thread *td, int traced)
 {
 	ksiginfo_t ksi;
 
 #ifdef DIAGNOSTIC
 	if (!TRAPF_USERMODE(td->td_frame)) {
 		panic("syscall");
 		/* NOT REACHED */
 	}
 #endif
 	syscallenter(td);
 
 	/*
 	 * Traced syscall.
 	 */
 	if (__predict_false(traced)) {
 		td->td_frame->tf_rflags &= ~PSL_T;
 		ksiginfo_init_trap(&ksi);
 		ksi.ksi_signo = SIGTRAP;
 		ksi.ksi_code = TRAP_TRACE;
 		ksi.ksi_addr = (void *)td->td_frame->tf_rip;
 		trapsignal(td, &ksi);
 	}
 
 	KASSERT(PCB_USER_FPU(td->td_pcb),
 	    ("System call %s returning with kernel FPU ctx leaked",
 	     syscallname(td->td_proc, td->td_sa.code)));
 	KASSERT(td->td_pcb->pcb_save == get_pcb_user_save_td(td),
 	    ("System call %s returning with mangled pcb_save",
 	     syscallname(td->td_proc, td->td_sa.code)));
 	KASSERT(pmap_not_in_di(),
 	    ("System call %s returning with leaked invl_gen %lu",
 	    syscallname(td->td_proc, td->td_sa.code),
 	    td->td_md.md_invl_gen.gen));
 
 	syscallret(td);
 
 	/*
 	 * If the user-supplied value of %rip is not a canonical
 	 * address, then some CPUs will trigger a ring 0 #GP during
 	 * the sysret instruction.  However, the fault handler would
 	 * execute in ring 0 with the user's %gs and %rsp which would
 	 * not be safe.  Instead, use the full return path which
 	 * catches the problem safely.
 	 */
 	if (__predict_false(td->td_frame->tf_rip >= (la57 ?
 	    VM_MAXUSER_ADDRESS_LA57 : VM_MAXUSER_ADDRESS_LA48)))
 		set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
 
 	amd64_syscall_ret_flush_l1d_check_inline(td->td_errno);
 }