diff --git a/module/zfs/ddt.c b/module/zfs/ddt.c index bd1941f43adf..11fd10fb769d 100644 --- a/module/zfs/ddt.c +++ b/module/zfs/ddt.c @@ -1,2405 +1,2408 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2016 by Delphix. All rights reserved. * Copyright (c) 2022 by Pawel Jakub Dawidek * Copyright (c) 2019, 2023, Klara Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * # DDT: Deduplication tables * * The dedup subsystem provides block-level deduplication. When enabled, blocks * to be written will have the dedup (D) bit set, which causes them to be * tracked in a "dedup table", or DDT. If a block has been seen before (exists * in the DDT), instead of being written, it will instead be made to reference * the existing on-disk data, and a refcount bumped in the DDT instead. * * ## Dedup tables and entries * * Conceptually, a DDT is a dictionary or map. Each entry has a "key" * (ddt_key_t) made up a block's checksum and certian properties, and a "value" * (one or more ddt_phys_t) containing valid DVAs for the block's data, birth * time and refcount. Together these are enough to track references to a * specific block, to build a valid block pointer to reference that block (for * freeing, scrubbing, etc), and to fill a new block pointer with the missing * pieces to make it seem like it was written. * * There's a single DDT (ddt_t) for each checksum type, held in spa_ddt[]. * Within each DDT, there can be multiple storage "types" (ddt_type_t, on-disk * object data formats, each with their own implementations) and "classes" * (ddt_class_t, instance of a storage type object, for entries with a specific * characteristic). An entry (key) will only ever exist on one of these objects * at any given time, but may be moved from one to another if their type or * class changes. * * The DDT is driven by the write IO pipeline (zio_ddt_write()). When a block * is to be written, before DVAs have been allocated, ddt_lookup() is called to * see if the block has been seen before. If its not found, the write proceeds * as normal, and after it succeeds, a new entry is created. If it is found, we * fill the BP with the DVAs from the entry, increment the refcount and cause * the write IO to return immediately. * * Traditionally, each ddt_phys_t slot in the entry represents a separate dedup * block for the same content/checksum. The slot is selected based on the * zp_copies parameter the block is written with, that is, the number of DVAs * in the block. The "ditto" slot (DDT_PHYS_DITTO) used to be used for * now-removed "dedupditto" feature. These are no longer written, and will be * freed if encountered on old pools. * * If the "fast_dedup" feature is enabled, new dedup tables will be created * with the "flat phys" option. In this mode, there is only one ddt_phys_t * slot. If a write is issued for an entry that exists, but has fewer DVAs, * then only as many new DVAs are allocated and written to make up the * shortfall. The existing entry is then extended (ddt_phys_extend()) with the * new DVAs. * * ## Lifetime of an entry * * A DDT can be enormous, and typically is not held in memory all at once. * Instead, the changes to an entry are tracked in memory, and written down to * disk at the end of each txg. * * A "live" in-memory entry (ddt_entry_t) is a node on the live tree * (ddt_tree). At the start of a txg, ddt_tree is empty. When an entry is * required for IO, ddt_lookup() is called. If an entry already exists on * ddt_tree, it is returned. Otherwise, a new one is created, and the * type/class objects for the DDT are searched for that key. If its found, its * value is copied into the live entry. If not, an empty entry is created. * * The live entry will be modified during the txg, usually by modifying the * refcount, but sometimes by adding or updating DVAs. At the end of the txg * (during spa_sync()), type and class are recalculated for entry (see * ddt_sync_entry()), and the entry is written to the appropriate storage * object and (if necessary), removed from an old one. ddt_tree is cleared and * the next txg can start. * * ## Dedup quota * * A maximum size for all DDTs on the pool can be set with the * dedup_table_quota property. This is determined in ddt_over_quota() and * enforced during ddt_lookup(). If the pool is at or over its quota limit, * ddt_lookup() will only return entries for existing blocks, as updates are * still possible. New entries will not be created; instead, ddt_lookup() will * return NULL. In response, the DDT write stage (zio_ddt_write()) will remove * the D bit on the block and reissue the IO as a regular write. The block will * not be deduplicated. * * Note that this is based on the on-disk size of the dedup store. Reclaiming * this space after deleting entries relies on the ZAP "shrinking" behaviour, * without which, no space would be recovered and the DDT would continue to be * considered "over quota". See zap_shrink_enabled. * * ## Dedup log * * Historically, all entries modified on a txg were written back to dedup * storage objects at the end of every txg. This could cause significant * overheads, as each entry only takes up a tiny portion of a ZAP leaf node, * and so required reading the whole node, updating the entry, and writing it * back. On busy pools, this could add serious IO and memory overheads. * * To address this, the dedup log was added. If the "fast_dedup" feature is * enabled, at the end of each txg, modified entries will be copied to an * in-memory "log" object (ddt_log_t), and appended to an on-disk log. If the * same block is requested again, the in-memory object will be checked first, * and if its there, the entry inflated back onto the live tree without going * to storage. The on-disk log is only read at pool import time, to reload the * in-memory log. * * Each txg, some amount of the in-memory log will be flushed out to a DDT * storage object (ie ZAP) as normal. OpenZFS will try hard to flush enough to * keep up with the rate of change on dedup entries, but not so much that it * would impact overall throughput, and not using too much memory. See the * zfs_dedup_log_* tuneables in zfs(4) for more details. * * ## Repair IO * * If a read on a dedup block fails, but there are other copies of the block in * the other ddt_phys_t slots, reads will be issued for those instead * (zio_ddt_read_start()). If one of those succeeds, the read is returned to * the caller, and a copy is stashed on the entry's dde_repair_abd. * * During the end-of-txg sync, any entries with a dde_repair_abd get a * "rewrite" write issued for the original block pointer, with the data read * from the alternate block. If the block is actually damaged, this will invoke * the pool's "self-healing" mechanism, and repair the block. * * If the "fast_dedup" feature is enabled, the "flat phys" option will be in * use, so there is only ever one ddt_phys_t slot. The repair process will * still happen in this case, though it is unlikely to succeed as there will * usually be no other equivalent blocks to fall back on (though there might * be, if this was an early version of a dedup'd block that has since been * extended). * * Note that this repair mechanism is in addition to and separate from the * regular OpenZFS scrub and self-healing mechanisms. * * ## Scanning (scrub/resilver) * * If dedup is active, the scrub machinery will walk the dedup table first, and * scrub all blocks with refcnt > 1 first. After that it will move on to the * regular top-down scrub, and exclude the refcnt > 1 blocks when it sees them. * In this way, heavily deduplicated blocks are only scrubbed once. See the * commentary on dsl_scan_ddt() for more details. * * Walking the DDT is done via ddt_walk(). The current position is stored in a * ddt_bookmark_t, which represents a stable position in the storage object. * This bookmark is stored by the scan machinery, and must reference the same * position on the object even if the object changes, the pool is exported, or * OpenZFS is upgraded. * * If the "fast_dedup" feature is enabled and the table has a log, the scan * cannot begin until entries on the log are flushed, as the on-disk log has no * concept of a "stable position". Instead, the log flushing process will enter * a more aggressive mode, to flush out as much as is necesary as soon as * possible, in order to begin the scan as soon as possible. * * ## Interaction with block cloning * * If block cloning and dedup are both enabled on a pool, BRT will look for the * dedup bit on an incoming block pointer. If set, it will call into the DDT * (ddt_addref()) to add a reference to the block, instead of adding a * reference to the BRT. See brt_pending_apply(). */ /* * These are the only checksums valid for dedup. They must match the list * from dedup_table in zfs_prop.c */ #define DDT_CHECKSUM_VALID(c) \ (c == ZIO_CHECKSUM_SHA256 || c == ZIO_CHECKSUM_SHA512 || \ c == ZIO_CHECKSUM_SKEIN || c == ZIO_CHECKSUM_EDONR || \ c == ZIO_CHECKSUM_BLAKE3) static kmem_cache_t *ddt_cache; static kmem_cache_t *ddt_entry_flat_cache; static kmem_cache_t *ddt_entry_trad_cache; #define DDT_ENTRY_FLAT_SIZE (sizeof (ddt_entry_t) + DDT_FLAT_PHYS_SIZE) #define DDT_ENTRY_TRAD_SIZE (sizeof (ddt_entry_t) + DDT_TRAD_PHYS_SIZE) #define DDT_ENTRY_SIZE(ddt) \ _DDT_PHYS_SWITCH(ddt, DDT_ENTRY_FLAT_SIZE, DDT_ENTRY_TRAD_SIZE) /* * Enable/disable prefetching of dedup-ed blocks which are going to be freed. */ int zfs_dedup_prefetch = 0; /* * If the dedup class cannot satisfy a DDT allocation, treat as over quota * for this many TXGs. */ uint_t dedup_class_wait_txgs = 5; /* * Don't do more than this many incremental flush passes per txg. */ uint_t zfs_dedup_log_flush_passes_max = 8; /* * Minimum time to flush per txg. */ uint_t zfs_dedup_log_flush_min_time_ms = 1000; /* * Minimum entries to flush per txg. */ uint_t zfs_dedup_log_flush_entries_min = 1000; /* * Number of txgs to average flow rates across. */ uint_t zfs_dedup_log_flush_flow_rate_txgs = 10; static const ddt_ops_t *const ddt_ops[DDT_TYPES] = { &ddt_zap_ops, }; static const char *const ddt_class_name[DDT_CLASSES] = { "ditto", "duplicate", "unique", }; /* * DDT feature flags automatically enabled for each on-disk version. Note that * versions >0 cannot exist on disk without SPA_FEATURE_FAST_DEDUP enabled. */ static const uint64_t ddt_version_flags[] = { [DDT_VERSION_LEGACY] = 0, [DDT_VERSION_FDT] = DDT_FLAG_FLAT | DDT_FLAG_LOG, }; /* Dummy version to signal that configure is still necessary */ #define DDT_VERSION_UNCONFIGURED (UINT64_MAX) #ifdef _KERNEL /* per-DDT kstats */ typedef struct { /* total lookups and whether they returned new or existing entries */ kstat_named_t dds_lookup; kstat_named_t dds_lookup_new; kstat_named_t dds_lookup_existing; /* entries found on live tree, and if we had to wait for load */ kstat_named_t dds_lookup_live_hit; kstat_named_t dds_lookup_live_wait; kstat_named_t dds_lookup_live_miss; /* entries found on log trees */ kstat_named_t dds_lookup_log_hit; kstat_named_t dds_lookup_log_active_hit; kstat_named_t dds_lookup_log_flushing_hit; kstat_named_t dds_lookup_log_miss; /* entries found on store objects */ kstat_named_t dds_lookup_stored_hit; kstat_named_t dds_lookup_stored_miss; /* number of entries on log trees */ kstat_named_t dds_log_active_entries; kstat_named_t dds_log_flushing_entries; /* avg updated/flushed entries per txg */ kstat_named_t dds_log_ingest_rate; kstat_named_t dds_log_flush_rate; kstat_named_t dds_log_flush_time_rate; } ddt_kstats_t; static const ddt_kstats_t ddt_kstats_template = { { "lookup", KSTAT_DATA_UINT64 }, { "lookup_new", KSTAT_DATA_UINT64 }, { "lookup_existing", KSTAT_DATA_UINT64 }, { "lookup_live_hit", KSTAT_DATA_UINT64 }, { "lookup_live_wait", KSTAT_DATA_UINT64 }, { "lookup_live_miss", KSTAT_DATA_UINT64 }, { "lookup_log_hit", KSTAT_DATA_UINT64 }, { "lookup_log_active_hit", KSTAT_DATA_UINT64 }, { "lookup_log_flushing_hit", KSTAT_DATA_UINT64 }, { "lookup_log_miss", KSTAT_DATA_UINT64 }, { "lookup_stored_hit", KSTAT_DATA_UINT64 }, { "lookup_stored_miss", KSTAT_DATA_UINT64 }, { "log_active_entries", KSTAT_DATA_UINT64 }, { "log_flushing_entries", KSTAT_DATA_UINT64 }, { "log_ingest_rate", KSTAT_DATA_UINT32 }, { "log_flush_rate", KSTAT_DATA_UINT32 }, { "log_flush_time_rate", KSTAT_DATA_UINT32 }, }; #define _DDT_KSTAT_STAT(ddt, stat) \ &((ddt_kstats_t *)(ddt)->ddt_ksp->ks_data)->stat.value.ui64 #define DDT_KSTAT_BUMP(ddt, stat) \ do { atomic_inc_64(_DDT_KSTAT_STAT(ddt, stat)); } while (0) #define DDT_KSTAT_ADD(ddt, stat, val) \ do { atomic_add_64(_DDT_KSTAT_STAT(ddt, stat), val); } while (0) #define DDT_KSTAT_SUB(ddt, stat, val) \ do { atomic_sub_64(_DDT_KSTAT_STAT(ddt, stat), val); } while (0) #define DDT_KSTAT_SET(ddt, stat, val) \ do { atomic_store_64(_DDT_KSTAT_STAT(ddt, stat), val); } while (0) #define DDT_KSTAT_ZERO(ddt, stat) DDT_KSTAT_SET(ddt, stat, 0) #else #define DDT_KSTAT_BUMP(ddt, stat) do {} while (0) #define DDT_KSTAT_ADD(ddt, stat, val) do {} while (0) #define DDT_KSTAT_SUB(ddt, stat, val) do {} while (0) #define DDT_KSTAT_SET(ddt, stat, val) do {} while (0) #define DDT_KSTAT_ZERO(ddt, stat) do {} while (0) #endif /* _KERNEL */ static void ddt_object_create(ddt_t *ddt, ddt_type_t type, ddt_class_t class, dmu_tx_t *tx) { spa_t *spa = ddt->ddt_spa; objset_t *os = ddt->ddt_os; uint64_t *objectp = &ddt->ddt_object[type][class]; boolean_t prehash = zio_checksum_table[ddt->ddt_checksum].ci_flags & ZCHECKSUM_FLAG_DEDUP; char name[DDT_NAMELEN]; ASSERT3U(ddt->ddt_dir_object, >, 0); ddt_object_name(ddt, type, class, name); ASSERT3U(*objectp, ==, 0); VERIFY0(ddt_ops[type]->ddt_op_create(os, objectp, tx, prehash)); ASSERT3U(*objectp, !=, 0); ASSERT3U(ddt->ddt_version, !=, DDT_VERSION_UNCONFIGURED); VERIFY0(zap_add(os, ddt->ddt_dir_object, name, sizeof (uint64_t), 1, objectp, tx)); VERIFY0(zap_add(os, spa->spa_ddt_stat_object, name, sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t), &ddt->ddt_histogram[type][class], tx)); } static void ddt_object_destroy(ddt_t *ddt, ddt_type_t type, ddt_class_t class, dmu_tx_t *tx) { spa_t *spa = ddt->ddt_spa; objset_t *os = ddt->ddt_os; uint64_t *objectp = &ddt->ddt_object[type][class]; uint64_t count; char name[DDT_NAMELEN]; ASSERT3U(ddt->ddt_dir_object, >, 0); ddt_object_name(ddt, type, class, name); ASSERT3U(*objectp, !=, 0); ASSERT(ddt_histogram_empty(&ddt->ddt_histogram[type][class])); VERIFY0(ddt_object_count(ddt, type, class, &count)); VERIFY0(count); VERIFY0(zap_remove(os, ddt->ddt_dir_object, name, tx)); VERIFY0(zap_remove(os, spa->spa_ddt_stat_object, name, tx)); VERIFY0(ddt_ops[type]->ddt_op_destroy(os, *objectp, tx)); memset(&ddt->ddt_object_stats[type][class], 0, sizeof (ddt_object_t)); *objectp = 0; } static int ddt_object_load(ddt_t *ddt, ddt_type_t type, ddt_class_t class) { ddt_object_t *ddo = &ddt->ddt_object_stats[type][class]; dmu_object_info_t doi; uint64_t count; char name[DDT_NAMELEN]; int error; if (ddt->ddt_dir_object == 0) { /* * If we're configured but the containing dir doesn't exist * yet, then this object can't possibly exist either. */ ASSERT3U(ddt->ddt_version, !=, DDT_VERSION_UNCONFIGURED); return (SET_ERROR(ENOENT)); } ddt_object_name(ddt, type, class, name); error = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object, name, sizeof (uint64_t), 1, &ddt->ddt_object[type][class]); if (error != 0) return (error); error = zap_lookup(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name, sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t), &ddt->ddt_histogram[type][class]); if (error != 0) return (error); /* * Seed the cached statistics. */ error = ddt_object_info(ddt, type, class, &doi); if (error) return (error); error = ddt_object_count(ddt, type, class, &count); if (error) return (error); ddo->ddo_count = count; ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9; ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size; return (0); } static void ddt_object_sync(ddt_t *ddt, ddt_type_t type, ddt_class_t class, dmu_tx_t *tx) { ddt_object_t *ddo = &ddt->ddt_object_stats[type][class]; dmu_object_info_t doi; uint64_t count; char name[DDT_NAMELEN]; ddt_object_name(ddt, type, class, name); VERIFY0(zap_update(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name, sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t), &ddt->ddt_histogram[type][class], tx)); /* * Cache DDT statistics; this is the only time they'll change. */ VERIFY0(ddt_object_info(ddt, type, class, &doi)); VERIFY0(ddt_object_count(ddt, type, class, &count)); ddo->ddo_count = count; ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9; ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size; } static boolean_t ddt_object_exists(ddt_t *ddt, ddt_type_t type, ddt_class_t class) { return (!!ddt->ddt_object[type][class]); } static int ddt_object_lookup(ddt_t *ddt, ddt_type_t type, ddt_class_t class, ddt_entry_t *dde) { if (!ddt_object_exists(ddt, type, class)) return (SET_ERROR(ENOENT)); return (ddt_ops[type]->ddt_op_lookup(ddt->ddt_os, ddt->ddt_object[type][class], &dde->dde_key, dde->dde_phys, DDT_PHYS_SIZE(ddt))); } static int ddt_object_contains(ddt_t *ddt, ddt_type_t type, ddt_class_t class, const ddt_key_t *ddk) { if (!ddt_object_exists(ddt, type, class)) return (SET_ERROR(ENOENT)); return (ddt_ops[type]->ddt_op_contains(ddt->ddt_os, ddt->ddt_object[type][class], ddk)); } static void ddt_object_prefetch(ddt_t *ddt, ddt_type_t type, ddt_class_t class, const ddt_key_t *ddk) { if (!ddt_object_exists(ddt, type, class)) return; ddt_ops[type]->ddt_op_prefetch(ddt->ddt_os, ddt->ddt_object[type][class], ddk); } static void ddt_object_prefetch_all(ddt_t *ddt, ddt_type_t type, ddt_class_t class) { if (!ddt_object_exists(ddt, type, class)) return; ddt_ops[type]->ddt_op_prefetch_all(ddt->ddt_os, ddt->ddt_object[type][class]); } static int ddt_object_update(ddt_t *ddt, ddt_type_t type, ddt_class_t class, const ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx) { ASSERT(ddt_object_exists(ddt, type, class)); return (ddt_ops[type]->ddt_op_update(ddt->ddt_os, ddt->ddt_object[type][class], &ddlwe->ddlwe_key, &ddlwe->ddlwe_phys, DDT_PHYS_SIZE(ddt), tx)); } static int ddt_object_remove(ddt_t *ddt, ddt_type_t type, ddt_class_t class, const ddt_key_t *ddk, dmu_tx_t *tx) { ASSERT(ddt_object_exists(ddt, type, class)); return (ddt_ops[type]->ddt_op_remove(ddt->ddt_os, ddt->ddt_object[type][class], ddk, tx)); } int ddt_object_walk(ddt_t *ddt, ddt_type_t type, ddt_class_t class, uint64_t *walk, ddt_lightweight_entry_t *ddlwe) { ASSERT(ddt_object_exists(ddt, type, class)); int error = ddt_ops[type]->ddt_op_walk(ddt->ddt_os, ddt->ddt_object[type][class], walk, &ddlwe->ddlwe_key, &ddlwe->ddlwe_phys, DDT_PHYS_SIZE(ddt)); if (error == 0) { ddlwe->ddlwe_type = type; ddlwe->ddlwe_class = class; return (0); } return (error); } int ddt_object_count(ddt_t *ddt, ddt_type_t type, ddt_class_t class, uint64_t *count) { ASSERT(ddt_object_exists(ddt, type, class)); return (ddt_ops[type]->ddt_op_count(ddt->ddt_os, ddt->ddt_object[type][class], count)); } int ddt_object_info(ddt_t *ddt, ddt_type_t type, ddt_class_t class, dmu_object_info_t *doi) { if (!ddt_object_exists(ddt, type, class)) return (SET_ERROR(ENOENT)); return (dmu_object_info(ddt->ddt_os, ddt->ddt_object[type][class], doi)); } void ddt_object_name(ddt_t *ddt, ddt_type_t type, ddt_class_t class, char *name) { (void) snprintf(name, DDT_NAMELEN, DMU_POOL_DDT, zio_checksum_table[ddt->ddt_checksum].ci_name, ddt_ops[type]->ddt_op_name, ddt_class_name[class]); } void ddt_bp_fill(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v, blkptr_t *bp, uint64_t txg) { ASSERT3U(txg, !=, 0); ASSERT3U(v, <, DDT_PHYS_NONE); uint64_t phys_birth; const dva_t *dvap; if (v == DDT_PHYS_FLAT) { phys_birth = ddp->ddp_flat.ddp_phys_birth; dvap = ddp->ddp_flat.ddp_dva; } else { phys_birth = ddp->ddp_trad[v].ddp_phys_birth; dvap = ddp->ddp_trad[v].ddp_dva; } for (int d = 0; d < SPA_DVAS_PER_BP; d++) bp->blk_dva[d] = dvap[d]; BP_SET_BIRTH(bp, txg, phys_birth); } /* * The bp created via this function may be used for repairs and scrub, but it * will be missing the salt / IV required to do a full decrypting read. */ void ddt_bp_create(enum zio_checksum checksum, const ddt_key_t *ddk, const ddt_univ_phys_t *ddp, ddt_phys_variant_t v, blkptr_t *bp) { BP_ZERO(bp); if (ddp != NULL) ddt_bp_fill(ddp, v, bp, ddt_phys_birth(ddp, v)); bp->blk_cksum = ddk->ddk_cksum; BP_SET_LSIZE(bp, DDK_GET_LSIZE(ddk)); BP_SET_PSIZE(bp, DDK_GET_PSIZE(ddk)); BP_SET_COMPRESS(bp, DDK_GET_COMPRESS(ddk)); BP_SET_CRYPT(bp, DDK_GET_CRYPT(ddk)); BP_SET_FILL(bp, 1); BP_SET_CHECKSUM(bp, checksum); BP_SET_TYPE(bp, DMU_OT_DEDUP); BP_SET_LEVEL(bp, 0); BP_SET_DEDUP(bp, 1); BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); } void ddt_key_fill(ddt_key_t *ddk, const blkptr_t *bp) { ddk->ddk_cksum = bp->blk_cksum; ddk->ddk_prop = 0; ASSERT(BP_IS_ENCRYPTED(bp) || !BP_USES_CRYPT(bp)); DDK_SET_LSIZE(ddk, BP_GET_LSIZE(bp)); DDK_SET_PSIZE(ddk, BP_GET_PSIZE(bp)); DDK_SET_COMPRESS(ddk, BP_GET_COMPRESS(bp)); DDK_SET_CRYPT(ddk, BP_USES_CRYPT(bp)); } void ddt_phys_extend(ddt_univ_phys_t *ddp, ddt_phys_variant_t v, const blkptr_t *bp) { ASSERT3U(v, <, DDT_PHYS_NONE); int bp_ndvas = BP_GET_NDVAS(bp); int ddp_max_dvas = BP_IS_ENCRYPTED(bp) ? SPA_DVAS_PER_BP - 1 : SPA_DVAS_PER_BP; dva_t *dvas = (v == DDT_PHYS_FLAT) ? ddp->ddp_flat.ddp_dva : ddp->ddp_trad[v].ddp_dva; int s = 0, d = 0; while (s < bp_ndvas && d < ddp_max_dvas) { if (DVA_IS_VALID(&dvas[d])) { d++; continue; } dvas[d] = bp->blk_dva[s]; s++; d++; } /* * If the caller offered us more DVAs than we can fit, something has * gone wrong in their accounting. zio_ddt_write() should never ask for * more than we need. */ ASSERT3U(s, ==, bp_ndvas); if (BP_IS_ENCRYPTED(bp)) dvas[2] = bp->blk_dva[2]; if (ddt_phys_birth(ddp, v) == 0) { if (v == DDT_PHYS_FLAT) ddp->ddp_flat.ddp_phys_birth = BP_GET_BIRTH(bp); else ddp->ddp_trad[v].ddp_phys_birth = BP_GET_BIRTH(bp); } } void ddt_phys_copy(ddt_univ_phys_t *dst, const ddt_univ_phys_t *src, ddt_phys_variant_t v) { ASSERT3U(v, <, DDT_PHYS_NONE); if (v == DDT_PHYS_FLAT) dst->ddp_flat = src->ddp_flat; else dst->ddp_trad[v] = src->ddp_trad[v]; } void ddt_phys_clear(ddt_univ_phys_t *ddp, ddt_phys_variant_t v) { ASSERT3U(v, <, DDT_PHYS_NONE); if (v == DDT_PHYS_FLAT) memset(&ddp->ddp_flat, 0, DDT_FLAT_PHYS_SIZE); else memset(&ddp->ddp_trad[v], 0, DDT_TRAD_PHYS_SIZE / DDT_PHYS_MAX); } void ddt_phys_addref(ddt_univ_phys_t *ddp, ddt_phys_variant_t v) { ASSERT3U(v, <, DDT_PHYS_NONE); if (v == DDT_PHYS_FLAT) ddp->ddp_flat.ddp_refcnt++; else ddp->ddp_trad[v].ddp_refcnt++; } uint64_t ddt_phys_decref(ddt_univ_phys_t *ddp, ddt_phys_variant_t v) { ASSERT3U(v, <, DDT_PHYS_NONE); uint64_t *refcntp; if (v == DDT_PHYS_FLAT) refcntp = &ddp->ddp_flat.ddp_refcnt; else refcntp = &ddp->ddp_trad[v].ddp_refcnt; ASSERT3U(*refcntp, >, 0); (*refcntp)--; return (*refcntp); } static void ddt_phys_free(ddt_t *ddt, ddt_key_t *ddk, ddt_univ_phys_t *ddp, ddt_phys_variant_t v, uint64_t txg) { blkptr_t blk; ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk); /* * We clear the dedup bit so that zio_free() will actually free the * space, rather than just decrementing the refcount in the DDT. */ BP_SET_DEDUP(&blk, 0); ddt_phys_clear(ddp, v); zio_free(ddt->ddt_spa, txg, &blk); } uint64_t ddt_phys_birth(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v) { ASSERT3U(v, <, DDT_PHYS_NONE); if (v == DDT_PHYS_FLAT) return (ddp->ddp_flat.ddp_phys_birth); else return (ddp->ddp_trad[v].ddp_phys_birth); } int ddt_phys_dva_count(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v, boolean_t encrypted) { ASSERT3U(v, <, DDT_PHYS_NONE); const dva_t *dvas = (v == DDT_PHYS_FLAT) ? ddp->ddp_flat.ddp_dva : ddp->ddp_trad[v].ddp_dva; return (DVA_IS_VALID(&dvas[0]) + DVA_IS_VALID(&dvas[1]) + DVA_IS_VALID(&dvas[2]) * !encrypted); } ddt_phys_variant_t ddt_phys_select(const ddt_t *ddt, const ddt_entry_t *dde, const blkptr_t *bp) { + if (dde == NULL) + return (DDT_PHYS_NONE); + const ddt_univ_phys_t *ddp = dde->dde_phys; if (ddt->ddt_flags & DDT_FLAG_FLAT) { if (DVA_EQUAL(BP_IDENTITY(bp), &ddp->ddp_flat.ddp_dva[0]) && BP_GET_BIRTH(bp) == ddp->ddp_flat.ddp_phys_birth) { return (DDT_PHYS_FLAT); } } else /* traditional phys */ { for (int p = 0; p < DDT_PHYS_MAX; p++) { if (DVA_EQUAL(BP_IDENTITY(bp), &ddp->ddp_trad[p].ddp_dva[0]) && BP_GET_BIRTH(bp) == ddp->ddp_trad[p].ddp_phys_birth) { return (p); } } } return (DDT_PHYS_NONE); } uint64_t ddt_phys_refcnt(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v) { ASSERT3U(v, <, DDT_PHYS_NONE); if (v == DDT_PHYS_FLAT) return (ddp->ddp_flat.ddp_refcnt); else return (ddp->ddp_trad[v].ddp_refcnt); } uint64_t ddt_phys_total_refcnt(const ddt_t *ddt, const ddt_univ_phys_t *ddp) { uint64_t refcnt = 0; if (ddt->ddt_flags & DDT_FLAG_FLAT) refcnt = ddp->ddp_flat.ddp_refcnt; else for (int v = DDT_PHYS_SINGLE; v <= DDT_PHYS_TRIPLE; v++) refcnt += ddp->ddp_trad[v].ddp_refcnt; return (refcnt); } ddt_t * ddt_select(spa_t *spa, const blkptr_t *bp) { ASSERT(DDT_CHECKSUM_VALID(BP_GET_CHECKSUM(bp))); return (spa->spa_ddt[BP_GET_CHECKSUM(bp)]); } void ddt_enter(ddt_t *ddt) { mutex_enter(&ddt->ddt_lock); } void ddt_exit(ddt_t *ddt) { mutex_exit(&ddt->ddt_lock); } void ddt_init(void) { ddt_cache = kmem_cache_create("ddt_cache", sizeof (ddt_t), 0, NULL, NULL, NULL, NULL, NULL, 0); ddt_entry_flat_cache = kmem_cache_create("ddt_entry_flat_cache", DDT_ENTRY_FLAT_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0); ddt_entry_trad_cache = kmem_cache_create("ddt_entry_trad_cache", DDT_ENTRY_TRAD_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0); ddt_log_init(); } void ddt_fini(void) { ddt_log_fini(); kmem_cache_destroy(ddt_entry_trad_cache); kmem_cache_destroy(ddt_entry_flat_cache); kmem_cache_destroy(ddt_cache); } static ddt_entry_t * ddt_alloc(const ddt_t *ddt, const ddt_key_t *ddk) { ddt_entry_t *dde; if (ddt->ddt_flags & DDT_FLAG_FLAT) { dde = kmem_cache_alloc(ddt_entry_flat_cache, KM_SLEEP); memset(dde, 0, DDT_ENTRY_FLAT_SIZE); } else { dde = kmem_cache_alloc(ddt_entry_trad_cache, KM_SLEEP); memset(dde, 0, DDT_ENTRY_TRAD_SIZE); } cv_init(&dde->dde_cv, NULL, CV_DEFAULT, NULL); dde->dde_key = *ddk; return (dde); } void ddt_alloc_entry_io(ddt_entry_t *dde) { if (dde->dde_io != NULL) return; dde->dde_io = kmem_zalloc(sizeof (ddt_entry_io_t), KM_SLEEP); } static void ddt_free(const ddt_t *ddt, ddt_entry_t *dde) { if (dde->dde_io != NULL) { for (int p = 0; p < DDT_NPHYS(ddt); p++) ASSERT3P(dde->dde_io->dde_lead_zio[p], ==, NULL); if (dde->dde_io->dde_repair_abd != NULL) abd_free(dde->dde_io->dde_repair_abd); kmem_free(dde->dde_io, sizeof (ddt_entry_io_t)); } cv_destroy(&dde->dde_cv); kmem_cache_free(ddt->ddt_flags & DDT_FLAG_FLAT ? ddt_entry_flat_cache : ddt_entry_trad_cache, dde); } void ddt_remove(ddt_t *ddt, ddt_entry_t *dde) { ASSERT(MUTEX_HELD(&ddt->ddt_lock)); /* Entry is still in the log, so charge the entry back to it */ if (dde->dde_flags & DDE_FLAG_LOGGED) { ddt_lightweight_entry_t ddlwe; DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe); ddt_histogram_add_entry(ddt, &ddt->ddt_log_histogram, &ddlwe); } avl_remove(&ddt->ddt_tree, dde); ddt_free(ddt, dde); } static boolean_t ddt_special_over_quota(spa_t *spa, metaslab_class_t *mc) { if (mc != NULL && metaslab_class_get_space(mc) > 0) { /* Over quota if allocating outside of this special class */ if (spa_syncing_txg(spa) <= spa->spa_dedup_class_full_txg + dedup_class_wait_txgs) { /* Waiting for some deferred frees to be processed */ return (B_TRUE); } /* * We're considered over quota when we hit 85% full, or for * larger drives, when there is less than 8GB free. */ uint64_t allocated = metaslab_class_get_alloc(mc); uint64_t capacity = metaslab_class_get_space(mc); uint64_t limit = MAX(capacity * 85 / 100, (capacity > (1LL<<33)) ? capacity - (1LL<<33) : 0); return (allocated >= limit); } return (B_FALSE); } /* * Check if the DDT is over its quota. This can be due to a few conditions: * 1. 'dedup_table_quota' property is not 0 (none) and the dedup dsize * exceeds this limit * * 2. 'dedup_table_quota' property is set to automatic and * a. the dedup or special allocation class could not satisfy a DDT * allocation in a recent transaction * b. the dedup or special allocation class has exceeded its 85% limit */ static boolean_t ddt_over_quota(spa_t *spa) { if (spa->spa_dedup_table_quota == 0) return (B_FALSE); if (spa->spa_dedup_table_quota != UINT64_MAX) return (ddt_get_ddt_dsize(spa) > spa->spa_dedup_table_quota); /* * For automatic quota, table size is limited by dedup or special class */ if (ddt_special_over_quota(spa, spa_dedup_class(spa))) return (B_TRUE); else if (spa_special_has_ddt(spa) && ddt_special_over_quota(spa, spa_special_class(spa))) return (B_TRUE); return (B_FALSE); } void ddt_prefetch_all(spa_t *spa) { /* * Load all DDT entries for each type/class combination. This is * indended to perform a prefetch on all such blocks. For the same * reason that ddt_prefetch isn't locked, this is also not locked. */ for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { ddt_t *ddt = spa->spa_ddt[c]; if (!ddt) continue; for (ddt_type_t type = 0; type < DDT_TYPES; type++) { for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { ddt_object_prefetch_all(ddt, type, class); } } } } static int ddt_configure(ddt_t *ddt, boolean_t new); ddt_entry_t * ddt_lookup(ddt_t *ddt, const blkptr_t *bp) { spa_t *spa = ddt->ddt_spa; ddt_key_t search; ddt_entry_t *dde; ddt_type_t type; ddt_class_t class; avl_index_t where; int error; ASSERT(MUTEX_HELD(&ddt->ddt_lock)); if (ddt->ddt_version == DDT_VERSION_UNCONFIGURED) { /* * This is the first use of this DDT since the pool was * created; finish getting it ready for use. */ VERIFY0(ddt_configure(ddt, B_TRUE)); ASSERT3U(ddt->ddt_version, !=, DDT_VERSION_UNCONFIGURED); } DDT_KSTAT_BUMP(ddt, dds_lookup); ddt_key_fill(&search, bp); /* Find an existing live entry */ dde = avl_find(&ddt->ddt_tree, &search, &where); if (dde != NULL) { /* If we went over quota, act like we didn't find it */ if (dde->dde_flags & DDE_FLAG_OVERQUOTA) return (NULL); /* If it's already loaded, we can just return it. */ DDT_KSTAT_BUMP(ddt, dds_lookup_live_hit); if (dde->dde_flags & DDE_FLAG_LOADED) return (dde); /* Someone else is loading it, wait for it. */ dde->dde_waiters++; DDT_KSTAT_BUMP(ddt, dds_lookup_live_wait); while (!(dde->dde_flags & DDE_FLAG_LOADED)) cv_wait(&dde->dde_cv, &ddt->ddt_lock); dde->dde_waiters--; /* Loaded but over quota, forget we were ever here */ if (dde->dde_flags & DDE_FLAG_OVERQUOTA) { if (dde->dde_waiters == 0) { avl_remove(&ddt->ddt_tree, dde); ddt_free(ddt, dde); } return (NULL); } DDT_KSTAT_BUMP(ddt, dds_lookup_existing); return (dde); } else DDT_KSTAT_BUMP(ddt, dds_lookup_live_miss); /* Time to make a new entry. */ dde = ddt_alloc(ddt, &search); /* Record the time this class was created (used by ddt prune) */ if (ddt->ddt_flags & DDT_FLAG_FLAT) dde->dde_phys->ddp_flat.ddp_class_start = gethrestime_sec(); avl_insert(&ddt->ddt_tree, dde, where); /* If its in the log tree, we can "load" it from there */ if (ddt->ddt_flags & DDT_FLAG_LOG) { ddt_lightweight_entry_t ddlwe; boolean_t found = B_FALSE; if (ddt_log_take_key(ddt, ddt->ddt_log_active, &search, &ddlwe)) { DDT_KSTAT_BUMP(ddt, dds_lookup_log_active_hit); found = B_TRUE; } else if (ddt_log_take_key(ddt, ddt->ddt_log_flushing, &search, &ddlwe)) { DDT_KSTAT_BUMP(ddt, dds_lookup_log_flushing_hit); found = B_TRUE; } if (found) { dde->dde_flags = DDE_FLAG_LOADED | DDE_FLAG_LOGGED; dde->dde_type = ddlwe.ddlwe_type; dde->dde_class = ddlwe.ddlwe_class; memcpy(dde->dde_phys, &ddlwe.ddlwe_phys, DDT_PHYS_SIZE(ddt)); DDT_KSTAT_BUMP(ddt, dds_lookup_log_hit); DDT_KSTAT_BUMP(ddt, dds_lookup_existing); return (dde); } DDT_KSTAT_BUMP(ddt, dds_lookup_log_miss); } /* * ddt_tree is now stable, so unlock and let everyone else keep moving. * Anyone landing on this entry will find it without DDE_FLAG_LOADED, * and go to sleep waiting for it above. */ ddt_exit(ddt); /* Search all store objects for the entry. */ error = ENOENT; for (type = 0; type < DDT_TYPES; type++) { for (class = 0; class < DDT_CLASSES; class++) { error = ddt_object_lookup(ddt, type, class, dde); if (error != ENOENT) { ASSERT0(error); break; } } if (error != ENOENT) break; } ddt_enter(ddt); ASSERT(!(dde->dde_flags & DDE_FLAG_LOADED)); dde->dde_type = type; /* will be DDT_TYPES if no entry found */ dde->dde_class = class; /* will be DDT_CLASSES if no entry found */ if (dde->dde_type == DDT_TYPES && dde->dde_class == DDT_CLASSES && ddt_over_quota(spa)) { /* Over quota. If no one is waiting, clean up right now. */ if (dde->dde_waiters == 0) { avl_remove(&ddt->ddt_tree, dde); ddt_free(ddt, dde); return (NULL); } /* Flag cleanup required */ dde->dde_flags |= DDE_FLAG_OVERQUOTA; } else if (error == 0) { DDT_KSTAT_BUMP(ddt, dds_lookup_stored_hit); DDT_KSTAT_BUMP(ddt, dds_lookup_existing); /* * The histograms only track inactive (stored or logged) blocks. * We've just put an entry onto the live list, so we need to * remove its counts. When its synced back, it'll be re-added * to the right one. * * We only do this when we successfully found it in the store. * error == ENOENT means this is a new entry, and so its already * not counted. */ ddt_histogram_t *ddh = &ddt->ddt_histogram[dde->dde_type][dde->dde_class]; ddt_lightweight_entry_t ddlwe; DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe); ddt_histogram_sub_entry(ddt, ddh, &ddlwe); } else { DDT_KSTAT_BUMP(ddt, dds_lookup_stored_miss); DDT_KSTAT_BUMP(ddt, dds_lookup_new); } /* Entry loaded, everyone can proceed now */ dde->dde_flags |= DDE_FLAG_LOADED; cv_broadcast(&dde->dde_cv); return (dde->dde_flags & DDE_FLAG_OVERQUOTA ? NULL : dde); } void ddt_prefetch(spa_t *spa, const blkptr_t *bp) { ddt_t *ddt; ddt_key_t ddk; if (!zfs_dedup_prefetch || bp == NULL || !BP_GET_DEDUP(bp)) return; /* * We only remove the DDT once all tables are empty and only * prefetch dedup blocks when there are entries in the DDT. * Thus no locking is required as the DDT can't disappear on us. */ ddt = ddt_select(spa, bp); ddt_key_fill(&ddk, bp); for (ddt_type_t type = 0; type < DDT_TYPES; type++) { for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { ddt_object_prefetch(ddt, type, class, &ddk); } } } /* * ddt_key_t comparison. Any struct wanting to make use of this function must * have the key as the first element. Casts it to N uint64_ts, and checks until * we find there's a difference. This is intended to match how ddt_zap.c drives * the ZAPs (first uint64_t as the key prehash), which will minimise the number * of ZAP blocks touched when flushing logged entries from an AVL walk. This is * not an invariant for this function though, should you wish to change it. */ int ddt_key_compare(const void *x1, const void *x2) { const uint64_t *k1 = (const uint64_t *)x1; const uint64_t *k2 = (const uint64_t *)x2; int cmp; for (int i = 0; i < (sizeof (ddt_key_t) / sizeof (uint64_t)); i++) if (likely((cmp = TREE_CMP(k1[i], k2[i])) != 0)) return (cmp); return (0); } /* Create the containing dir for this DDT and bump the feature count */ static void ddt_create_dir(ddt_t *ddt, dmu_tx_t *tx) { ASSERT3U(ddt->ddt_dir_object, ==, 0); ASSERT3U(ddt->ddt_version, ==, DDT_VERSION_FDT); char name[DDT_NAMELEN]; snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_DIR, zio_checksum_table[ddt->ddt_checksum].ci_name); ddt->ddt_dir_object = zap_create_link(ddt->ddt_os, DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, name, tx); VERIFY0(zap_add(ddt->ddt_os, ddt->ddt_dir_object, DDT_DIR_VERSION, sizeof (uint64_t), 1, &ddt->ddt_version, tx)); VERIFY0(zap_add(ddt->ddt_os, ddt->ddt_dir_object, DDT_DIR_FLAGS, sizeof (uint64_t), 1, &ddt->ddt_flags, tx)); spa_feature_incr(ddt->ddt_spa, SPA_FEATURE_FAST_DEDUP, tx); } /* Destroy the containing dir and deactivate the feature */ static void ddt_destroy_dir(ddt_t *ddt, dmu_tx_t *tx) { ASSERT3U(ddt->ddt_dir_object, !=, 0); ASSERT3U(ddt->ddt_dir_object, !=, DMU_POOL_DIRECTORY_OBJECT); ASSERT3U(ddt->ddt_version, ==, DDT_VERSION_FDT); char name[DDT_NAMELEN]; snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_DIR, zio_checksum_table[ddt->ddt_checksum].ci_name); for (ddt_type_t type = 0; type < DDT_TYPES; type++) { for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { ASSERT(!ddt_object_exists(ddt, type, class)); } } ddt_log_destroy(ddt, tx); uint64_t count; ASSERT0(zap_count(ddt->ddt_os, ddt->ddt_dir_object, &count)); ASSERT0(zap_contains(ddt->ddt_os, ddt->ddt_dir_object, DDT_DIR_VERSION)); ASSERT0(zap_contains(ddt->ddt_os, ddt->ddt_dir_object, DDT_DIR_FLAGS)); ASSERT3U(count, ==, 2); VERIFY0(zap_remove(ddt->ddt_os, DMU_POOL_DIRECTORY_OBJECT, name, tx)); VERIFY0(zap_destroy(ddt->ddt_os, ddt->ddt_dir_object, tx)); ddt->ddt_dir_object = 0; spa_feature_decr(ddt->ddt_spa, SPA_FEATURE_FAST_DEDUP, tx); } /* * Determine, flags and on-disk layout from what's already stored. If there's * nothing stored, then if new is false, returns ENOENT, and if true, selects * based on pool config. */ static int ddt_configure(ddt_t *ddt, boolean_t new) { spa_t *spa = ddt->ddt_spa; char name[DDT_NAMELEN]; int error; ASSERT3U(spa_load_state(spa), !=, SPA_LOAD_CREATE); boolean_t fdt_enabled = spa_feature_is_enabled(spa, SPA_FEATURE_FAST_DEDUP); boolean_t fdt_active = spa_feature_is_active(spa, SPA_FEATURE_FAST_DEDUP); /* * First, look for the global DDT stats object. If its not there, then * there's never been a DDT written before ever, and we know we're * starting from scratch. */ error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DDT_STATS, sizeof (uint64_t), 1, &spa->spa_ddt_stat_object); if (error != 0) { if (error != ENOENT) return (error); goto not_found; } if (fdt_active) { /* * Now look for a DDT directory. If it exists, then it has * everything we need. */ snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_DIR, zio_checksum_table[ddt->ddt_checksum].ci_name); error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1, &ddt->ddt_dir_object); if (error == 0) { ASSERT3U(spa->spa_meta_objset, ==, ddt->ddt_os); error = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object, DDT_DIR_VERSION, sizeof (uint64_t), 1, &ddt->ddt_version); if (error != 0) return (error); error = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object, DDT_DIR_FLAGS, sizeof (uint64_t), 1, &ddt->ddt_flags); if (error != 0) return (error); if (ddt->ddt_version != DDT_VERSION_FDT) { zfs_dbgmsg("ddt_configure: spa=%s ddt_dir=%s " "unknown version %llu", spa_name(spa), name, (u_longlong_t)ddt->ddt_version); return (SET_ERROR(EINVAL)); } if ((ddt->ddt_flags & ~DDT_FLAG_MASK) != 0) { zfs_dbgmsg("ddt_configure: spa=%s ddt_dir=%s " "version=%llu unknown flags %llx", spa_name(spa), name, (u_longlong_t)ddt->ddt_flags, (u_longlong_t)ddt->ddt_version); return (SET_ERROR(EINVAL)); } return (0); } if (error != ENOENT) return (error); } /* Any object in the root indicates a traditional setup. */ for (ddt_type_t type = 0; type < DDT_TYPES; type++) { for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { ddt_object_name(ddt, type, class, name); uint64_t obj; error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1, &obj); if (error == ENOENT) continue; if (error != 0) return (error); ddt->ddt_version = DDT_VERSION_LEGACY; ddt->ddt_flags = ddt_version_flags[ddt->ddt_version]; ddt->ddt_dir_object = DMU_POOL_DIRECTORY_OBJECT; return (0); } } not_found: if (!new) return (SET_ERROR(ENOENT)); /* Nothing on disk, so set up for the best version we can */ if (fdt_enabled) { ddt->ddt_version = DDT_VERSION_FDT; ddt->ddt_flags = ddt_version_flags[ddt->ddt_version]; ddt->ddt_dir_object = 0; /* create on first use */ } else { ddt->ddt_version = DDT_VERSION_LEGACY; ddt->ddt_flags = ddt_version_flags[ddt->ddt_version]; ddt->ddt_dir_object = DMU_POOL_DIRECTORY_OBJECT; } return (0); } static void ddt_table_alloc_kstats(ddt_t *ddt) { #ifdef _KERNEL char *mod = kmem_asprintf("zfs/%s", spa_name(ddt->ddt_spa)); char *name = kmem_asprintf("ddt_stats_%s", zio_checksum_table[ddt->ddt_checksum].ci_name); ddt->ddt_ksp = kstat_create(mod, 0, name, "misc", KSTAT_TYPE_NAMED, sizeof (ddt_kstats_t) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); if (ddt->ddt_ksp != NULL) { ddt_kstats_t *dds = kmem_alloc(sizeof (ddt_kstats_t), KM_SLEEP); memcpy(dds, &ddt_kstats_template, sizeof (ddt_kstats_t)); ddt->ddt_ksp->ks_data = dds; kstat_install(ddt->ddt_ksp); } kmem_strfree(name); kmem_strfree(mod); #else (void) ddt; #endif /* _KERNEL */ } static ddt_t * ddt_table_alloc(spa_t *spa, enum zio_checksum c) { ddt_t *ddt; ddt = kmem_cache_alloc(ddt_cache, KM_SLEEP); memset(ddt, 0, sizeof (ddt_t)); mutex_init(&ddt->ddt_lock, NULL, MUTEX_DEFAULT, NULL); avl_create(&ddt->ddt_tree, ddt_key_compare, sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node)); avl_create(&ddt->ddt_repair_tree, ddt_key_compare, sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node)); ddt->ddt_checksum = c; ddt->ddt_spa = spa; ddt->ddt_os = spa->spa_meta_objset; ddt->ddt_version = DDT_VERSION_UNCONFIGURED; ddt_log_alloc(ddt); ddt_table_alloc_kstats(ddt); return (ddt); } static void ddt_table_free(ddt_t *ddt) { #ifdef _KERNEL if (ddt->ddt_ksp != NULL) { kmem_free(ddt->ddt_ksp->ks_data, sizeof (ddt_kstats_t)); ddt->ddt_ksp->ks_data = NULL; kstat_delete(ddt->ddt_ksp); } #endif /* _KERNEL */ ddt_log_free(ddt); ASSERT0(avl_numnodes(&ddt->ddt_tree)); ASSERT0(avl_numnodes(&ddt->ddt_repair_tree)); avl_destroy(&ddt->ddt_tree); avl_destroy(&ddt->ddt_repair_tree); mutex_destroy(&ddt->ddt_lock); kmem_cache_free(ddt_cache, ddt); } void ddt_create(spa_t *spa) { spa->spa_dedup_checksum = ZIO_DEDUPCHECKSUM; for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { if (DDT_CHECKSUM_VALID(c)) spa->spa_ddt[c] = ddt_table_alloc(spa, c); } } int ddt_load(spa_t *spa) { int error; ddt_create(spa); error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DDT_STATS, sizeof (uint64_t), 1, &spa->spa_ddt_stat_object); if (error) return (error == ENOENT ? 0 : error); for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { if (!DDT_CHECKSUM_VALID(c)) continue; ddt_t *ddt = spa->spa_ddt[c]; error = ddt_configure(ddt, B_FALSE); if (error == ENOENT) continue; if (error != 0) return (error); for (ddt_type_t type = 0; type < DDT_TYPES; type++) { for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { error = ddt_object_load(ddt, type, class); if (error != 0 && error != ENOENT) return (error); } } error = ddt_log_load(ddt); if (error != 0 && error != ENOENT) return (error); DDT_KSTAT_SET(ddt, dds_log_active_entries, avl_numnodes(&ddt->ddt_log_active->ddl_tree)); DDT_KSTAT_SET(ddt, dds_log_flushing_entries, avl_numnodes(&ddt->ddt_log_flushing->ddl_tree)); /* * Seed the cached histograms. */ memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram, sizeof (ddt->ddt_histogram)); } spa->spa_dedup_dspace = ~0ULL; spa->spa_dedup_dsize = ~0ULL; return (0); } void ddt_unload(spa_t *spa) { for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { if (spa->spa_ddt[c]) { ddt_table_free(spa->spa_ddt[c]); spa->spa_ddt[c] = NULL; } } } boolean_t ddt_class_contains(spa_t *spa, ddt_class_t max_class, const blkptr_t *bp) { ddt_t *ddt; ddt_key_t ddk; if (!BP_GET_DEDUP(bp)) return (B_FALSE); if (max_class == DDT_CLASS_UNIQUE) return (B_TRUE); ddt = spa->spa_ddt[BP_GET_CHECKSUM(bp)]; ddt_key_fill(&ddk, bp); for (ddt_type_t type = 0; type < DDT_TYPES; type++) { for (ddt_class_t class = 0; class <= max_class; class++) { if (ddt_object_contains(ddt, type, class, &ddk) == 0) return (B_TRUE); } } return (B_FALSE); } ddt_entry_t * ddt_repair_start(ddt_t *ddt, const blkptr_t *bp) { ddt_key_t ddk; ddt_entry_t *dde; ddt_key_fill(&ddk, bp); dde = ddt_alloc(ddt, &ddk); ddt_alloc_entry_io(dde); for (ddt_type_t type = 0; type < DDT_TYPES; type++) { for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { /* * We can only do repair if there are multiple copies * of the block. For anything in the UNIQUE class, * there's definitely only one copy, so don't even try. */ if (class != DDT_CLASS_UNIQUE && ddt_object_lookup(ddt, type, class, dde) == 0) return (dde); } } memset(dde->dde_phys, 0, DDT_PHYS_SIZE(ddt)); return (dde); } void ddt_repair_done(ddt_t *ddt, ddt_entry_t *dde) { avl_index_t where; ddt_enter(ddt); if (dde->dde_io->dde_repair_abd != NULL && spa_writeable(ddt->ddt_spa) && avl_find(&ddt->ddt_repair_tree, dde, &where) == NULL) avl_insert(&ddt->ddt_repair_tree, dde, where); else ddt_free(ddt, dde); ddt_exit(ddt); } static void ddt_repair_entry_done(zio_t *zio) { ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); ddt_entry_t *rdde = zio->io_private; ddt_free(ddt, rdde); } static void ddt_repair_entry(ddt_t *ddt, ddt_entry_t *dde, ddt_entry_t *rdde, zio_t *rio) { ddt_key_t *ddk = &dde->dde_key; ddt_key_t *rddk = &rdde->dde_key; zio_t *zio; blkptr_t blk; zio = zio_null(rio, rio->io_spa, NULL, ddt_repair_entry_done, rdde, rio->io_flags); for (int p = 0; p < DDT_NPHYS(ddt); p++) { ddt_univ_phys_t *ddp = dde->dde_phys; ddt_univ_phys_t *rddp = rdde->dde_phys; ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); uint64_t phys_birth = ddt_phys_birth(ddp, v); const dva_t *dvas, *rdvas; if (ddt->ddt_flags & DDT_FLAG_FLAT) { dvas = ddp->ddp_flat.ddp_dva; rdvas = rddp->ddp_flat.ddp_dva; } else { dvas = ddp->ddp_trad[p].ddp_dva; rdvas = rddp->ddp_trad[p].ddp_dva; } if (phys_birth == 0 || phys_birth != ddt_phys_birth(rddp, v) || memcmp(dvas, rdvas, sizeof (dva_t) * SPA_DVAS_PER_BP)) continue; ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk); zio_nowait(zio_rewrite(zio, zio->io_spa, 0, &blk, rdde->dde_io->dde_repair_abd, DDK_GET_PSIZE(rddk), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, ZIO_DDT_CHILD_FLAGS(zio), NULL)); } zio_nowait(zio); } static void ddt_repair_table(ddt_t *ddt, zio_t *rio) { spa_t *spa = ddt->ddt_spa; ddt_entry_t *dde, *rdde_next, *rdde; avl_tree_t *t = &ddt->ddt_repair_tree; blkptr_t blk; if (spa_sync_pass(spa) > 1) return; ddt_enter(ddt); for (rdde = avl_first(t); rdde != NULL; rdde = rdde_next) { rdde_next = AVL_NEXT(t, rdde); avl_remove(&ddt->ddt_repair_tree, rdde); ddt_exit(ddt); ddt_bp_create(ddt->ddt_checksum, &rdde->dde_key, NULL, DDT_PHYS_NONE, &blk); dde = ddt_repair_start(ddt, &blk); ddt_repair_entry(ddt, dde, rdde, rio); ddt_repair_done(ddt, dde); ddt_enter(ddt); } ddt_exit(ddt); } static void ddt_sync_update_stats(ddt_t *ddt, dmu_tx_t *tx) { /* * Count all the entries stored for each type/class, and updates the * stats within (ddt_object_sync()). If there's no entries for the * type/class, the whole object is removed. If all objects for the DDT * are removed, its containing dir is removed, effectively resetting * the entire DDT to an empty slate. */ uint64_t count = 0; for (ddt_type_t type = 0; type < DDT_TYPES; type++) { uint64_t add, tcount = 0; for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { if (ddt_object_exists(ddt, type, class)) { ddt_object_sync(ddt, type, class, tx); VERIFY0(ddt_object_count(ddt, type, class, &add)); tcount += add; } } for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { if (tcount == 0 && ddt_object_exists(ddt, type, class)) ddt_object_destroy(ddt, type, class, tx); } count += tcount; } if (ddt->ddt_flags & DDT_FLAG_LOG) { /* Include logged entries in the total count */ count += avl_numnodes(&ddt->ddt_log_active->ddl_tree); count += avl_numnodes(&ddt->ddt_log_flushing->ddl_tree); } if (count == 0) { /* * No entries left on the DDT, so reset the version for next * time. This allows us to handle the feature being changed * since the DDT was originally created. New entries should get * whatever the feature currently demands. */ if (ddt->ddt_version == DDT_VERSION_FDT) ddt_destroy_dir(ddt, tx); ddt->ddt_version = DDT_VERSION_UNCONFIGURED; ddt->ddt_flags = 0; } memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram, sizeof (ddt->ddt_histogram)); ddt->ddt_spa->spa_dedup_dspace = ~0ULL; ddt->ddt_spa->spa_dedup_dsize = ~0ULL; } static void ddt_sync_scan_entry(ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx) { dsl_pool_t *dp = ddt->ddt_spa->spa_dsl_pool; /* * Compute the target class, so we can decide whether or not to inform * the scrub traversal (below). Note that we don't store this in the * entry, as it might change multiple times before finally being * committed (if we're logging). Instead, we recompute it in * ddt_sync_entry(). */ uint64_t refcnt = ddt_phys_total_refcnt(ddt, &ddlwe->ddlwe_phys); ddt_class_t nclass = (refcnt > 1) ? DDT_CLASS_DUPLICATE : DDT_CLASS_UNIQUE; /* * If the class changes, the order that we scan this bp changes. If it * decreases, we could miss it, so scan it right now. (This covers both * class changing while we are doing ddt_walk(), and when we are * traversing.) * * We also do this when the refcnt goes to zero, because that change is * only in the log so far; the blocks on disk won't be freed until * the log is flushed, and the refcnt might increase before that. If it * does, then we could miss it in the same way. */ if (refcnt == 0 || nclass < ddlwe->ddlwe_class) dsl_scan_ddt_entry(dp->dp_scan, ddt->ddt_checksum, ddt, ddlwe, tx); } static void ddt_sync_flush_entry(ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, ddt_type_t otype, ddt_class_t oclass, dmu_tx_t *tx) { ddt_key_t *ddk = &ddlwe->ddlwe_key; ddt_type_t ntype = DDT_TYPE_DEFAULT; uint64_t refcnt = 0; /* * Compute the total refcnt. Along the way, issue frees for any DVAs * we no longer want. */ for (int p = 0; p < DDT_NPHYS(ddt); p++) { ddt_univ_phys_t *ddp = &ddlwe->ddlwe_phys; ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); uint64_t phys_refcnt = ddt_phys_refcnt(ddp, v); if (ddt_phys_birth(ddp, v) == 0) { ASSERT3U(phys_refcnt, ==, 0); continue; } if (DDT_PHYS_IS_DITTO(ddt, p)) { /* * We don't want to keep any obsolete slots (eg ditto), * regardless of their refcount, but we don't want to * leak them either. So, free them. */ ddt_phys_free(ddt, ddk, ddp, v, tx->tx_txg); continue; } if (phys_refcnt == 0) /* No remaining references, free it! */ ddt_phys_free(ddt, ddk, ddp, v, tx->tx_txg); refcnt += phys_refcnt; } /* Select the best class for the entry. */ ddt_class_t nclass = (refcnt > 1) ? DDT_CLASS_DUPLICATE : DDT_CLASS_UNIQUE; /* * If an existing entry changed type or class, or its refcount reached * zero, delete it from the DDT object */ if (otype != DDT_TYPES && (otype != ntype || oclass != nclass || refcnt == 0)) { VERIFY0(ddt_object_remove(ddt, otype, oclass, ddk, tx)); ASSERT(ddt_object_contains(ddt, otype, oclass, ddk) == ENOENT); } /* * Add or update the entry */ if (refcnt != 0) { ddt_histogram_t *ddh = &ddt->ddt_histogram[ntype][nclass]; ddt_histogram_add_entry(ddt, ddh, ddlwe); if (!ddt_object_exists(ddt, ntype, nclass)) ddt_object_create(ddt, ntype, nclass, tx); VERIFY0(ddt_object_update(ddt, ntype, nclass, ddlwe, tx)); } } /* Calculate an exponential weighted moving average, lower limited to zero */ static inline int32_t _ewma(int32_t val, int32_t prev, uint32_t weight) { ASSERT3U(val, >=, 0); ASSERT3U(prev, >=, 0); const int32_t new = MAX(0, prev + (val-prev) / (int32_t)MAX(weight, 1)); ASSERT3U(new, >=, 0); return (new); } /* Returns true if done for this txg */ static boolean_t ddt_sync_flush_log_incremental(ddt_t *ddt, dmu_tx_t *tx) { if (ddt->ddt_flush_pass == 0) { if (spa_sync_pass(ddt->ddt_spa) == 1) { /* First run this txg, get set up */ ddt->ddt_flush_start = gethrtime(); ddt->ddt_flush_count = 0; /* * How many entries we need to flush. We want to at * least match the ingest rate. */ ddt->ddt_flush_min = MAX( ddt->ddt_log_ingest_rate, zfs_dedup_log_flush_entries_min); /* * If we've been asked to flush everything in a hurry, * try to dump as much as possible on this txg. In * this case we're only limited by time, not amount. */ if (ddt->ddt_flush_force_txg > 0) ddt->ddt_flush_min = MAX(ddt->ddt_flush_min, avl_numnodes( &ddt->ddt_log_flushing->ddl_tree)); } else { /* We already decided we're done for this txg */ return (B_FALSE); } } else if (ddt->ddt_flush_pass == spa_sync_pass(ddt->ddt_spa)) { /* * We already did some flushing on this pass, skip it. This * happens when dsl_process_async_destroys() runs during a scan * (on pass 1) and does an additional ddt_sync() to update * freed blocks. */ return (B_FALSE); } if (spa_sync_pass(ddt->ddt_spa) > MAX(zfs_dedup_log_flush_passes_max, 1)) { /* Too many passes this txg, defer until next. */ ddt->ddt_flush_pass = 0; return (B_TRUE); } if (avl_is_empty(&ddt->ddt_log_flushing->ddl_tree)) { /* Nothing to flush, done for this txg. */ ddt->ddt_flush_pass = 0; return (B_TRUE); } uint64_t target_time = txg_sync_waiting(ddt->ddt_spa->spa_dsl_pool) ? MIN(MSEC2NSEC(zfs_dedup_log_flush_min_time_ms), SEC2NSEC(zfs_txg_timeout)) : SEC2NSEC(zfs_txg_timeout); uint64_t elapsed_time = gethrtime() - ddt->ddt_flush_start; if (elapsed_time >= target_time) { /* Too long since we started, done for this txg. */ ddt->ddt_flush_pass = 0; return (B_TRUE); } ddt->ddt_flush_pass++; ASSERT3U(spa_sync_pass(ddt->ddt_spa), ==, ddt->ddt_flush_pass); /* * Estimate how much time we'll need to flush the remaining entries * based on how long it normally takes. */ uint32_t want_time; if (ddt->ddt_flush_pass == 1) { /* First pass, use the average time/entries */ if (ddt->ddt_log_flush_rate == 0) /* Zero rate, just assume the whole time */ want_time = target_time; else want_time = ddt->ddt_flush_min * ddt->ddt_log_flush_time_rate / ddt->ddt_log_flush_rate; } else { /* Later pass, calculate from this txg so far */ want_time = ddt->ddt_flush_min * elapsed_time / ddt->ddt_flush_count; } /* Figure out how much time we have left */ uint32_t remain_time = target_time - elapsed_time; /* Smear the remaining entries over the remaining passes. */ uint32_t nentries = ddt->ddt_flush_min / (MAX(1, zfs_dedup_log_flush_passes_max) + 1 - ddt->ddt_flush_pass); if (want_time > remain_time) { /* * We're behind; try to catch up a bit by doubling the amount * this pass. If we're behind that means we're in a later * pass and likely have most of the remaining time to * ourselves. If we're in the last couple of passes, then * doubling might just take us over the timeout, but probably * not be much, and it stops us falling behind. If we're * in the middle passes, there'll be more to do, but it * might just help us catch up a bit and we'll recalculate on * the next pass anyway. */ nentries = MIN(ddt->ddt_flush_min, nentries*2); } ddt_lightweight_entry_t ddlwe; uint32_t count = 0; while (ddt_log_take_first(ddt, ddt->ddt_log_flushing, &ddlwe)) { ddt_sync_flush_entry(ddt, &ddlwe, ddlwe.ddlwe_type, ddlwe.ddlwe_class, tx); /* End this pass if we've synced as much as we need to. */ if (++count >= nentries) break; } ddt->ddt_flush_count += count; ddt->ddt_flush_min -= count; if (avl_is_empty(&ddt->ddt_log_flushing->ddl_tree)) { /* We emptied it, so truncate on-disk */ DDT_KSTAT_ZERO(ddt, dds_log_flushing_entries); ddt_log_truncate(ddt, tx); /* No more passes needed this txg */ ddt->ddt_flush_pass = 0; } else { /* More to do next time, save checkpoint */ DDT_KSTAT_SUB(ddt, dds_log_flushing_entries, count); ddt_log_checkpoint(ddt, &ddlwe, tx); } ddt_sync_update_stats(ddt, tx); return (ddt->ddt_flush_pass == 0); } static inline void ddt_flush_force_update_txg(ddt_t *ddt, uint64_t txg) { /* * If we're not forcing flush, and not being asked to start, then * there's nothing more to do. */ if (txg == 0) { /* Update requested, are we currently forcing flush? */ if (ddt->ddt_flush_force_txg == 0) return; txg = ddt->ddt_flush_force_txg; } /* * If either of the logs have entries unflushed entries before * the wanted txg, set the force txg, otherwise clear it. */ if ((!avl_is_empty(&ddt->ddt_log_active->ddl_tree) && ddt->ddt_log_active->ddl_first_txg <= txg) || (!avl_is_empty(&ddt->ddt_log_flushing->ddl_tree) && ddt->ddt_log_flushing->ddl_first_txg <= txg)) { ddt->ddt_flush_force_txg = txg; return; } /* * Nothing to flush behind the given txg, so we can clear force flush * state. */ ddt->ddt_flush_force_txg = 0; } static void ddt_sync_flush_log(ddt_t *ddt, dmu_tx_t *tx) { ASSERT(avl_is_empty(&ddt->ddt_tree)); /* Don't do any flushing when the pool is ready to shut down */ if (tx->tx_txg > spa_final_dirty_txg(ddt->ddt_spa)) return; /* Try to flush some. */ if (!ddt_sync_flush_log_incremental(ddt, tx)) /* More to do next time */ return; /* No more flushing this txg, so we can do end-of-txg housekeeping */ if (avl_is_empty(&ddt->ddt_log_flushing->ddl_tree) && !avl_is_empty(&ddt->ddt_log_active->ddl_tree)) { /* * No more to flush, and the active list has stuff, so * try to swap the logs for next time. */ if (ddt_log_swap(ddt, tx)) { DDT_KSTAT_ZERO(ddt, dds_log_active_entries); DDT_KSTAT_SET(ddt, dds_log_flushing_entries, avl_numnodes(&ddt->ddt_log_flushing->ddl_tree)); } } /* If force flush is no longer necessary, turn it off. */ ddt_flush_force_update_txg(ddt, 0); /* * Update flush rate. This is an exponential weighted moving average of * the number of entries flushed over recent txgs. */ ddt->ddt_log_flush_rate = _ewma( ddt->ddt_flush_count, ddt->ddt_log_flush_rate, zfs_dedup_log_flush_flow_rate_txgs); DDT_KSTAT_SET(ddt, dds_log_flush_rate, ddt->ddt_log_flush_rate); /* * Update flush time rate. This is an exponential weighted moving * average of the total time taken to flush over recent txgs. */ ddt->ddt_log_flush_time_rate = _ewma( ddt->ddt_log_flush_time_rate, ((int32_t)(NSEC2MSEC(gethrtime() - ddt->ddt_flush_start))), zfs_dedup_log_flush_flow_rate_txgs); DDT_KSTAT_SET(ddt, dds_log_flush_time_rate, ddt->ddt_log_flush_time_rate); } static void ddt_sync_table_log(ddt_t *ddt, dmu_tx_t *tx) { uint64_t count = avl_numnodes(&ddt->ddt_tree); if (count > 0) { ddt_log_update_t dlu = {0}; ddt_log_begin(ddt, count, tx, &dlu); ddt_entry_t *dde; void *cookie = NULL; ddt_lightweight_entry_t ddlwe; while ((dde = avl_destroy_nodes(&ddt->ddt_tree, &cookie)) != NULL) { ASSERT(dde->dde_flags & DDE_FLAG_LOADED); DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe); ddt_log_entry(ddt, &ddlwe, &dlu); ddt_sync_scan_entry(ddt, &ddlwe, tx); ddt_free(ddt, dde); } ddt_log_commit(ddt, &dlu); DDT_KSTAT_SET(ddt, dds_log_active_entries, avl_numnodes(&ddt->ddt_log_active->ddl_tree)); /* * Sync the stats for the store objects. Even though we haven't * modified anything on those objects, they're no longer the * source of truth for entries that are now in the log, and we * need the on-disk counts to reflect that, otherwise we'll * miscount later when importing. */ for (ddt_type_t type = 0; type < DDT_TYPES; type++) { for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { if (ddt_object_exists(ddt, type, class)) ddt_object_sync(ddt, type, class, tx); } } memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram, sizeof (ddt->ddt_histogram)); ddt->ddt_spa->spa_dedup_dspace = ~0ULL; ddt->ddt_spa->spa_dedup_dsize = ~0ULL; } if (spa_sync_pass(ddt->ddt_spa) == 1) { /* * Update ingest rate. This is an exponential weighted moving * average of the number of entries changed over recent txgs. * The ramp-up cost shouldn't matter too much because the * flusher will be trying to take at least the minimum anyway. */ ddt->ddt_log_ingest_rate = _ewma( count, ddt->ddt_log_ingest_rate, zfs_dedup_log_flush_flow_rate_txgs); DDT_KSTAT_SET(ddt, dds_log_ingest_rate, ddt->ddt_log_ingest_rate); } } static void ddt_sync_table_flush(ddt_t *ddt, dmu_tx_t *tx) { if (avl_numnodes(&ddt->ddt_tree) == 0) return; ddt_entry_t *dde; void *cookie = NULL; while ((dde = avl_destroy_nodes( &ddt->ddt_tree, &cookie)) != NULL) { ASSERT(dde->dde_flags & DDE_FLAG_LOADED); ddt_lightweight_entry_t ddlwe; DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe); ddt_sync_flush_entry(ddt, &ddlwe, dde->dde_type, dde->dde_class, tx); ddt_sync_scan_entry(ddt, &ddlwe, tx); ddt_free(ddt, dde); } memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram, sizeof (ddt->ddt_histogram)); ddt->ddt_spa->spa_dedup_dspace = ~0ULL; ddt->ddt_spa->spa_dedup_dsize = ~0ULL; ddt_sync_update_stats(ddt, tx); } static void ddt_sync_table(ddt_t *ddt, dmu_tx_t *tx) { spa_t *spa = ddt->ddt_spa; if (ddt->ddt_version == UINT64_MAX) return; if (spa->spa_uberblock.ub_version < SPA_VERSION_DEDUP) { ASSERT0(avl_numnodes(&ddt->ddt_tree)); return; } if (spa->spa_ddt_stat_object == 0) { spa->spa_ddt_stat_object = zap_create_link(ddt->ddt_os, DMU_OT_DDT_STATS, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DDT_STATS, tx); } if (ddt->ddt_version == DDT_VERSION_FDT && ddt->ddt_dir_object == 0) ddt_create_dir(ddt, tx); if (ddt->ddt_flags & DDT_FLAG_LOG) ddt_sync_table_log(ddt, tx); else ddt_sync_table_flush(ddt, tx); } void ddt_sync(spa_t *spa, uint64_t txg) { dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; dmu_tx_t *tx; zio_t *rio; ASSERT3U(spa_syncing_txg(spa), ==, txg); tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); rio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SELF_HEAL); /* * This function may cause an immediate scan of ddt blocks (see * the comment above dsl_scan_ddt() for details). We set the * scan's root zio here so that we can wait for any scan IOs in * addition to the regular ddt IOs. */ ASSERT3P(scn->scn_zio_root, ==, NULL); scn->scn_zio_root = rio; for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { ddt_t *ddt = spa->spa_ddt[c]; if (ddt == NULL) continue; ddt_sync_table(ddt, tx); if (ddt->ddt_flags & DDT_FLAG_LOG) ddt_sync_flush_log(ddt, tx); ddt_repair_table(ddt, rio); } (void) zio_wait(rio); scn->scn_zio_root = NULL; dmu_tx_commit(tx); } void ddt_walk_init(spa_t *spa, uint64_t txg) { if (txg == 0) txg = spa_syncing_txg(spa); for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { ddt_t *ddt = spa->spa_ddt[c]; if (ddt == NULL || !(ddt->ddt_flags & DDT_FLAG_LOG)) continue; ddt_enter(ddt); ddt_flush_force_update_txg(ddt, txg); ddt_exit(ddt); } } boolean_t ddt_walk_ready(spa_t *spa) { for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { ddt_t *ddt = spa->spa_ddt[c]; if (ddt == NULL || !(ddt->ddt_flags & DDT_FLAG_LOG)) continue; if (ddt->ddt_flush_force_txg > 0) return (B_FALSE); } return (B_TRUE); } int ddt_walk(spa_t *spa, ddt_bookmark_t *ddb, ddt_lightweight_entry_t *ddlwe) { do { do { do { ddt_t *ddt = spa->spa_ddt[ddb->ddb_checksum]; if (ddt == NULL) continue; if (ddt->ddt_flush_force_txg > 0) return (EAGAIN); int error = ENOENT; if (ddt_object_exists(ddt, ddb->ddb_type, ddb->ddb_class)) { error = ddt_object_walk(ddt, ddb->ddb_type, ddb->ddb_class, &ddb->ddb_cursor, ddlwe); } if (error == 0) return (0); if (error != ENOENT) return (error); ddb->ddb_cursor = 0; } while (++ddb->ddb_checksum < ZIO_CHECKSUM_FUNCTIONS); ddb->ddb_checksum = 0; } while (++ddb->ddb_type < DDT_TYPES); ddb->ddb_type = 0; } while (++ddb->ddb_class < DDT_CLASSES); return (SET_ERROR(ENOENT)); } /* * This function is used by Block Cloning (brt.c) to increase reference * counter for the DDT entry if the block is already in DDT. * * Return false if the block, despite having the D bit set, is not present * in the DDT. Currently this is not possible but might be in the future. * See the comment below. */ boolean_t ddt_addref(spa_t *spa, const blkptr_t *bp) { ddt_t *ddt; ddt_entry_t *dde; boolean_t result; spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); ddt = ddt_select(spa, bp); ddt_enter(ddt); dde = ddt_lookup(ddt, bp); /* Can be NULL if the entry for this block was pruned. */ if (dde == NULL) { ddt_exit(ddt); spa_config_exit(spa, SCL_ZIO, FTAG); return (B_FALSE); } if ((dde->dde_type < DDT_TYPES) || (dde->dde_flags & DDE_FLAG_LOGGED)) { /* * This entry was either synced to a store object (dde_type is * real) or was logged. It must be properly on disk at this * point, so we can just bump its refcount. */ int p = DDT_PHYS_FOR_COPIES(ddt, BP_GET_NDVAS(bp)); ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); /* * This entry already existed (dde_type is real), so it must * have refcnt >0 at the start of this txg. We are called from * brt_pending_apply(), before frees are issued, so the refcnt * can't be lowered yet. Therefore, it must be >0. We assert * this because if the order of BRT and DDT interactions were * ever to change and the refcnt was ever zero here, then * likely further action is required to fill out the DDT entry, * and this is a place that is likely to be missed in testing. */ ASSERT3U(ddt_phys_refcnt(dde->dde_phys, v), >, 0); ddt_phys_addref(dde->dde_phys, v); result = B_TRUE; } else { /* * At the time of implementating this if the block has the * DEDUP flag set it must exist in the DEDUP table, but * there are many advocates that want ability to remove * entries from DDT with refcnt=1. If this will happen, * we may have a block with the DEDUP set, but which doesn't * have a corresponding entry in the DDT. Be ready. */ ddt_remove(ddt, dde); result = B_FALSE; } ddt_exit(ddt); spa_config_exit(spa, SCL_ZIO, FTAG); return (result); } ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, prefetch, INT, ZMOD_RW, "Enable prefetching dedup-ed blks"); ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_passes_max, UINT, ZMOD_RW, "Max number of incremental dedup log flush passes per transaction"); ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_min_time_ms, UINT, ZMOD_RW, "Min time to spend on incremental dedup log flush each transaction"); ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_entries_min, UINT, ZMOD_RW, "Min number of log entries to flush each transaction"); ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_flow_rate_txgs, UINT, ZMOD_RW, "Number of txgs to average flow rates across");