diff --git a/sys/dev/usb/input/ukbd.c b/sys/dev/usb/input/ukbd.c
index e058a55cc661..cf1c11069ffc 100644
--- a/sys/dev/usb/input/ukbd.c
+++ b/sys/dev/usb/input/ukbd.c
@@ -1,2194 +1,2197 @@
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 
 /*-
  * SPDX-License-Identifier: BSD-2-Clause-NetBSD
  *
  * Copyright (c) 1998 The NetBSD Foundation, Inc.
  * All rights reserved.
  *
  * This code is derived from software contributed to The NetBSD Foundation
  * by Lennart Augustsson (lennart@augustsson.net) at
  * Carlstedt Research & Technology.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  * POSSIBILITY OF SUCH DAMAGE.
  *
  */
 
 /*
  * HID spec: http://www.usb.org/developers/devclass_docs/HID1_11.pdf
  */
 
 #include "opt_kbd.h"
 #include "opt_ukbd.h"
 #include "opt_evdev.h"
 
 #include <sys/stdint.h>
 #include <sys/stddef.h>
 #include <sys/param.h>
 #include <sys/queue.h>
 #include <sys/types.h>
 #include <sys/systm.h>
 #include <sys/kernel.h>
 #include <sys/bus.h>
 #include <sys/module.h>
 #include <sys/lock.h>
 #include <sys/mutex.h>
 #include <sys/condvar.h>
 #include <sys/sysctl.h>
 #include <sys/sx.h>
 #include <sys/unistd.h>
 #include <sys/callout.h>
 #include <sys/malloc.h>
 #include <sys/priv.h>
 #include <sys/proc.h>
 
 #include <dev/usb/usb.h>
 #include <dev/usb/usbdi.h>
 #include <dev/usb/usbdi_util.h>
 #include <dev/usb/usbhid.h>
 
 #define	USB_DEBUG_VAR ukbd_debug
 #include <dev/usb/usb_debug.h>
 
 #include <dev/usb/quirk/usb_quirk.h>
 
 #ifdef EVDEV_SUPPORT
 #include <dev/evdev/input.h>
 #include <dev/evdev/evdev.h>
 #endif
 
 #include <sys/ioccom.h>
 #include <sys/filio.h>
 #include <sys/kbio.h>
 
 #include <dev/kbd/kbdreg.h>
 
 /* the initial key map, accent map and fkey strings */
 #if defined(UKBD_DFLT_KEYMAP) && !defined(KLD_MODULE)
 #define	KBD_DFLT_KEYMAP
 #include "ukbdmap.h"
 #endif
 
 /* the following file must be included after "ukbdmap.h" */
 #include <dev/kbd/kbdtables.h>
 
 #ifdef USB_DEBUG
 static int ukbd_debug = 0;
 static int ukbd_no_leds = 0;
 static int ukbd_pollrate = 0;
 
 static SYSCTL_NODE(_hw_usb, OID_AUTO, ukbd, CTLFLAG_RW, 0, "USB keyboard");
 SYSCTL_INT(_hw_usb_ukbd, OID_AUTO, debug, CTLFLAG_RWTUN,
     &ukbd_debug, 0, "Debug level");
 SYSCTL_INT(_hw_usb_ukbd, OID_AUTO, no_leds, CTLFLAG_RWTUN,
     &ukbd_no_leds, 0, "Disables setting of keyboard leds");
 SYSCTL_INT(_hw_usb_ukbd, OID_AUTO, pollrate, CTLFLAG_RWTUN,
     &ukbd_pollrate, 0, "Force this polling rate, 1-1000Hz");
 #endif
 
 #define	UKBD_EMULATE_ATSCANCODE	       1
 #define	UKBD_DRIVER_NAME          "ukbd"
 #define	UKBD_NKEYCODE                 256 /* units */
 #define	UKBD_IN_BUF_SIZE  (4 * UKBD_NKEYCODE) /* scancodes */
 #define	UKBD_IN_BUF_FULL  ((UKBD_IN_BUF_SIZE / 2) - 1)	/* scancodes */
 #define	UKBD_NFKEY        (sizeof(fkey_tab)/sizeof(fkey_tab[0]))	/* units */
 #define	UKBD_BUFFER_SIZE	      64	/* bytes */
 #define	UKBD_KEY_PRESSED(map, key) ({ \
 	CTASSERT((key) >= 0 && (key) < UKBD_NKEYCODE); \
 	((map)[(key) / 64] & (1ULL << ((key) % 64))); \
 })
 
 #define	MOD_EJECT	0x01
 #define	MOD_FN		0x02
 
 struct ukbd_data {
 	uint64_t bitmap[howmany(UKBD_NKEYCODE, 64)];
 };
 
 enum {
 	UKBD_INTR_DT_0,
 	UKBD_INTR_DT_1,
 	UKBD_CTRL_LED,
 	UKBD_N_TRANSFER,
 };
 
 struct ukbd_softc {
 	keyboard_t sc_kbd;
 	keymap_t sc_keymap;
 	accentmap_t sc_accmap;
 	fkeytab_t sc_fkeymap[UKBD_NFKEY];
 	uint64_t sc_loc_key_valid[howmany(UKBD_NKEYCODE, 64)];
 	struct hid_location sc_loc_apple_eject;
 	struct hid_location sc_loc_apple_fn;
 	struct hid_location sc_loc_key[UKBD_NKEYCODE];
 	struct hid_location sc_loc_numlock;
 	struct hid_location sc_loc_capslock;
 	struct hid_location sc_loc_scrolllock;
 	struct usb_callout sc_callout;
 	struct ukbd_data sc_ndata;
 	struct ukbd_data sc_odata;
 
 	struct thread *sc_poll_thread;
 	struct usb_device *sc_udev;
 	struct usb_interface *sc_iface;
 	struct usb_xfer *sc_xfer[UKBD_N_TRANSFER];
 #ifdef EVDEV_SUPPORT
 	struct evdev_dev *sc_evdev;
 #endif
 
 	sbintime_t sc_co_basetime;
 	int	sc_delay;
 	uint32_t sc_repeat_time;
 	uint32_t sc_input[UKBD_IN_BUF_SIZE];	/* input buffer */
 	uint32_t sc_time_ms;
 	uint32_t sc_composed_char;	/* composed char code, if non-zero */
 #ifdef UKBD_EMULATE_ATSCANCODE
 	uint32_t sc_buffered_char[2];
 #endif
 	uint32_t sc_flags;		/* flags */
 #define	UKBD_FLAG_COMPOSE	0x00000001
 #define	UKBD_FLAG_POLLING	0x00000002
 #define	UKBD_FLAG_SET_LEDS	0x00000004
 #define	UKBD_FLAG_ATTACHED	0x00000010
 #define	UKBD_FLAG_GONE		0x00000020
 
 #define	UKBD_FLAG_HID_MASK	0x003fffc0
 #define	UKBD_FLAG_APPLE_EJECT	0x00000040
 #define	UKBD_FLAG_APPLE_FN	0x00000080
 #define	UKBD_FLAG_APPLE_SWAP	0x00000100
 #define	UKBD_FLAG_NUMLOCK	0x00080000
 #define	UKBD_FLAG_CAPSLOCK	0x00100000
 #define	UKBD_FLAG_SCROLLLOCK 	0x00200000
 
 	int	sc_mode;		/* input mode (K_XLATE,K_RAW,K_CODE) */
 	int	sc_state;		/* shift/lock key state */
 	int	sc_accents;		/* accent key index (> 0) */
 	int	sc_polling;		/* polling recursion count */
 	int	sc_led_size;
 	int	sc_kbd_size;
 
 	uint16_t sc_inputs;
 	uint16_t sc_inputhead;
 	uint16_t sc_inputtail;
 
 	uint8_t	sc_leds;		/* store for async led requests */
 	uint8_t	sc_iface_index;
 	uint8_t	sc_iface_no;
 	uint8_t sc_id_apple_eject;
 	uint8_t sc_id_apple_fn;
 	uint8_t sc_id_loc_key[UKBD_NKEYCODE];
 	uint8_t sc_id_numlock;
 	uint8_t sc_id_capslock;
 	uint8_t sc_id_scrolllock;
 	uint8_t sc_kbd_id;
 	uint8_t sc_repeat_key;
 
 	uint8_t sc_buffer[UKBD_BUFFER_SIZE];
 };
 
 #define	KEY_NONE	  0x00
 #define	KEY_ERROR	  0x01
 
 #define	KEY_PRESS	  0
 #define	KEY_RELEASE	  0x400
 #define	KEY_INDEX(c)	  ((c) & 0xFF)
 
 #define	SCAN_PRESS	  0
 #define	SCAN_RELEASE	  0x80
 #define	SCAN_PREFIX_E0	  0x100
 #define	SCAN_PREFIX_E1	  0x200
 #define	SCAN_PREFIX_CTL	  0x400
 #define	SCAN_PREFIX_SHIFT 0x800
 #define	SCAN_PREFIX	(SCAN_PREFIX_E0  | SCAN_PREFIX_E1 | \
 			 SCAN_PREFIX_CTL | SCAN_PREFIX_SHIFT)
 #define	SCAN_CHAR(c)	((c) & 0x7f)
 
 #define	UKBD_LOCK()	USB_MTX_LOCK(&Giant)
 #define	UKBD_UNLOCK()	USB_MTX_UNLOCK(&Giant)
 #define	UKBD_LOCK_ASSERT()	USB_MTX_ASSERT(&Giant, MA_OWNED)
 
 #define	NN 0				/* no translation */
 /*
  * Translate USB keycodes to AT keyboard scancodes.
  */
 /*
  * FIXME: Mac USB keyboard generates:
  * 0x53: keypad NumLock/Clear
  * 0x66: Power
  * 0x67: keypad =
  * 0x68: F13
  * 0x69: F14
  * 0x6a: F15
  * 
  * USB Apple Keyboard JIS generates:
  * 0x90: Kana
  * 0x91: Eisu
  */
 static const uint8_t ukbd_trtab[256] = {
 	0, 0, 0, 0, 30, 48, 46, 32,	/* 00 - 07 */
 	18, 33, 34, 35, 23, 36, 37, 38,	/* 08 - 0F */
 	50, 49, 24, 25, 16, 19, 31, 20,	/* 10 - 17 */
 	22, 47, 17, 45, 21, 44, 2, 3,	/* 18 - 1F */
 	4, 5, 6, 7, 8, 9, 10, 11,	/* 20 - 27 */
 	28, 1, 14, 15, 57, 12, 13, 26,	/* 28 - 2F */
 	27, 43, 43, 39, 40, 41, 51, 52,	/* 30 - 37 */
 	53, 58, 59, 60, 61, 62, 63, 64,	/* 38 - 3F */
 	65, 66, 67, 68, 87, 88, 92, 70,	/* 40 - 47 */
 	104, 102, 94, 96, 103, 99, 101, 98,	/* 48 - 4F */
 	97, 100, 95, 69, 91, 55, 74, 78,/* 50 - 57 */
 	89, 79, 80, 81, 75, 76, 77, 71,	/* 58 - 5F */
 	72, 73, 82, 83, 86, 107, 122, NN,	/* 60 - 67 */
 	NN, NN, NN, NN, NN, NN, NN, NN,	/* 68 - 6F */
 	NN, NN, NN, NN, 115, 108, 111, 113,	/* 70 - 77 */
 	109, 110, 112, 118, 114, 116, 117, 119,	/* 78 - 7F */
 	121, 120, NN, NN, NN, NN, NN, 123,	/* 80 - 87 */
 	124, 125, 126, 127, 128, NN, NN, NN,	/* 88 - 8F */
 	129, 130, NN, NN, NN, NN, NN, NN,	/* 90 - 97 */
 	NN, NN, NN, NN, NN, NN, NN, NN,	/* 98 - 9F */
 	NN, NN, NN, NN, NN, NN, NN, NN,	/* A0 - A7 */
 	NN, NN, NN, NN, NN, NN, NN, NN,	/* A8 - AF */
 	NN, NN, NN, NN, NN, NN, NN, NN,	/* B0 - B7 */
 	NN, NN, NN, NN, NN, NN, NN, NN,	/* B8 - BF */
 	NN, NN, NN, NN, NN, NN, NN, NN,	/* C0 - C7 */
 	NN, NN, NN, NN, NN, NN, NN, NN,	/* C8 - CF */
 	NN, NN, NN, NN, NN, NN, NN, NN,	/* D0 - D7 */
 	NN, NN, NN, NN, NN, NN, NN, NN,	/* D8 - DF */
 	29, 42, 56, 105, 90, 54, 93, 106,	/* E0 - E7 */
 	NN, NN, NN, NN, NN, NN, NN, NN,	/* E8 - EF */
 	NN, NN, NN, NN, NN, NN, NN, NN,	/* F0 - F7 */
 	NN, NN, NN, NN, NN, NN, NN, NN,	/* F8 - FF */
 };
 
 static const uint8_t ukbd_boot_desc[] = {
 	0x05, 0x01, 0x09, 0x06, 0xa1,
 	0x01, 0x05, 0x07, 0x19, 0xe0,
 	0x29, 0xe7, 0x15, 0x00, 0x25,
 	0x01, 0x75, 0x01, 0x95, 0x08,
 	0x81, 0x02, 0x95, 0x01, 0x75,
 	0x08, 0x81, 0x01, 0x95, 0x03,
 	0x75, 0x01, 0x05, 0x08, 0x19,
 	0x01, 0x29, 0x03, 0x91, 0x02,
 	0x95, 0x05, 0x75, 0x01, 0x91,
 	0x01, 0x95, 0x06, 0x75, 0x08,
 	0x15, 0x00, 0x26, 0xff, 0x00,
 	0x05, 0x07, 0x19, 0x00, 0x2a,
 	0xff, 0x00, 0x81, 0x00, 0xc0
 };
 
 /* prototypes */
 static void	ukbd_timeout(void *);
 static void	ukbd_set_leds(struct ukbd_softc *, uint8_t);
 static int	ukbd_set_typematic(keyboard_t *, int);
 #ifdef UKBD_EMULATE_ATSCANCODE
 static uint32_t	ukbd_atkeycode(int, const uint64_t *);
 static int	ukbd_key2scan(struct ukbd_softc *, int, const uint64_t *, int);
 #endif
 static uint32_t	ukbd_read_char(keyboard_t *, int);
 static void	ukbd_clear_state(keyboard_t *);
 static int	ukbd_ioctl(keyboard_t *, u_long, caddr_t);
 static int	ukbd_enable(keyboard_t *);
 static int	ukbd_disable(keyboard_t *);
 static void	ukbd_interrupt(struct ukbd_softc *);
 static void	ukbd_event_keyinput(struct ukbd_softc *);
 
 static device_probe_t ukbd_probe;
 static device_attach_t ukbd_attach;
 static device_detach_t ukbd_detach;
 static device_resume_t ukbd_resume;
 
 #ifdef EVDEV_SUPPORT
 static evdev_event_t ukbd_ev_event;
 
 static const struct evdev_methods ukbd_evdev_methods = {
 	.ev_event = ukbd_ev_event,
 };
 #endif
 
 static bool
 ukbd_any_key_pressed(struct ukbd_softc *sc)
 {
 	bool ret = false;
 	unsigned i;
 
 	for (i = 0; i != howmany(UKBD_NKEYCODE, 64); i++)
 		ret |= (sc->sc_odata.bitmap[i] != 0);
 	return (ret);
 }
 
 static bool
 ukbd_any_key_valid(struct ukbd_softc *sc)
 {
 	bool ret = false;
 	unsigned i;
 
 	for (i = 0; i != howmany(UKBD_NKEYCODE, 64); i++)
 		ret |= (sc->sc_loc_key_valid[i] != 0);
 	return (ret);
 }
 
 static bool
 ukbd_is_modifier_key(uint32_t key)
 {
 
 	return (key >= 0xe0 && key <= 0xe7);
 }
 
 static void
 ukbd_start_timer(struct ukbd_softc *sc)
 {
 	sbintime_t delay, now, prec;
 
 	now = sbinuptime();
 
 	/* check if initial delay passed and fallback to key repeat delay */
 	if (sc->sc_delay == 0)
 		sc->sc_delay = sc->sc_kbd.kb_delay2;
 
 	/* compute timeout */
 	delay = SBT_1MS * sc->sc_delay;
 	sc->sc_co_basetime += delay;
 
 	/* check if we are running behind */
 	if (sc->sc_co_basetime < now)
 		sc->sc_co_basetime = now;
 
 	/* This is rarely called, so prefer precision to efficiency. */
 	prec = qmin(delay >> 7, SBT_1MS * 10);
 	usb_callout_reset_sbt(&sc->sc_callout, sc->sc_co_basetime, prec,
 	    ukbd_timeout, sc, C_ABSOLUTE);
 }
 
 static void
 ukbd_put_key(struct ukbd_softc *sc, uint32_t key)
 {
 
 	UKBD_LOCK_ASSERT();
 
 	DPRINTF("0x%02x (%d) %s\n", key, key,
 	    (key & KEY_RELEASE) ? "released" : "pressed");
 
 #ifdef EVDEV_SUPPORT
-	if (evdev_rcpt_mask & EVDEV_RCPT_HW_KBD && sc->sc_evdev != NULL) {
+	if (evdev_rcpt_mask & EVDEV_RCPT_HW_KBD && sc->sc_evdev != NULL)
 		evdev_push_event(sc->sc_evdev, EV_KEY,
 		    evdev_hid2key(KEY_INDEX(key)), !(key & KEY_RELEASE));
-		evdev_sync(sc->sc_evdev);
-	}
 #endif
 
 	if (sc->sc_inputs < UKBD_IN_BUF_SIZE) {
 		sc->sc_input[sc->sc_inputtail] = key;
 		++(sc->sc_inputs);
 		++(sc->sc_inputtail);
 		if (sc->sc_inputtail >= UKBD_IN_BUF_SIZE) {
 			sc->sc_inputtail = 0;
 		}
 	} else {
 		DPRINTF("input buffer is full\n");
 	}
 }
 
 static void
 ukbd_do_poll(struct ukbd_softc *sc, uint8_t wait)
 {
 
 	UKBD_LOCK_ASSERT();
 	KASSERT((sc->sc_flags & UKBD_FLAG_POLLING) != 0,
 	    ("ukbd_do_poll called when not polling\n"));
 	DPRINTFN(2, "polling\n");
 
 	if (USB_IN_POLLING_MODE_FUNC() == 0) {
 		/*
 		 * In this context the kernel is polling for input,
 		 * but the USB subsystem works in normal interrupt-driven
 		 * mode, so we just wait on the USB threads to do the job.
 		 * Note that we currently hold the Giant, but it's also used
 		 * as the transfer mtx, so we must release it while waiting.
 		 */
 		while (sc->sc_inputs == 0) {
 			/*
 			 * Give USB threads a chance to run.  Note that
 			 * kern_yield performs DROP_GIANT + PICKUP_GIANT.
 			 */
 			kern_yield(PRI_UNCHANGED);
 			if (!wait)
 				break;
 		}
 		return;
 	}
 
 	while (sc->sc_inputs == 0) {
 
 		usbd_transfer_poll(sc->sc_xfer, UKBD_N_TRANSFER);
 
 		/* Delay-optimised support for repetition of keys */
 		if (ukbd_any_key_pressed(sc)) {
 			/* a key is pressed - need timekeeping */
 			DELAY(1000);
 
 			/* 1 millisecond has passed */
 			sc->sc_time_ms += 1;
 		}
 
 		ukbd_interrupt(sc);
 
 		if (!wait)
 			break;
 	}
 }
 
 static int32_t
 ukbd_get_key(struct ukbd_softc *sc, uint8_t wait)
 {
 	int32_t c;
 
 	UKBD_LOCK_ASSERT();
 	KASSERT((USB_IN_POLLING_MODE_FUNC() == 0) ||
 	    (sc->sc_flags & UKBD_FLAG_POLLING) != 0,
 	    ("not polling in kdb or panic\n"));
 
 	if (sc->sc_inputs == 0 &&
 	    (sc->sc_flags & UKBD_FLAG_GONE) == 0) {
 		/* start transfer, if not already started */
 		usbd_transfer_start(sc->sc_xfer[UKBD_INTR_DT_0]);
 		usbd_transfer_start(sc->sc_xfer[UKBD_INTR_DT_1]);
 	}
 
 	if (sc->sc_flags & UKBD_FLAG_POLLING)
 		ukbd_do_poll(sc, wait);
 
 	if (sc->sc_inputs == 0) {
 		c = -1;
 	} else {
 		c = sc->sc_input[sc->sc_inputhead];
 		--(sc->sc_inputs);
 		++(sc->sc_inputhead);
 		if (sc->sc_inputhead >= UKBD_IN_BUF_SIZE) {
 			sc->sc_inputhead = 0;
 		}
 	}
 	return (c);
 }
 
 static void
 ukbd_interrupt(struct ukbd_softc *sc)
 {
 	const uint32_t now = sc->sc_time_ms;
 	unsigned key;
 
 	UKBD_LOCK_ASSERT();
 
 	/* Check for modifier key changes first */
 	for (key = 0xe0; key != 0xe8; key++) {
 		const uint64_t mask = 1ULL << (key % 64);
 		const uint64_t delta =
 		    sc->sc_odata.bitmap[key / 64] ^
 		    sc->sc_ndata.bitmap[key / 64];
 
 		if (delta & mask) {
 			if (sc->sc_odata.bitmap[key / 64] & mask)
 				ukbd_put_key(sc, key | KEY_RELEASE);
 			else
 				ukbd_put_key(sc, key | KEY_PRESS);
 		}
 	}
 
 	/* Check for key changes */
 	for (key = 0; key != UKBD_NKEYCODE; key++) {
 		const uint64_t mask = 1ULL << (key % 64);
 		const uint64_t delta =
 		    sc->sc_odata.bitmap[key / 64] ^
 		    sc->sc_ndata.bitmap[key / 64];
 
 		if (mask == 1 && delta == 0) {
 			key += 63;
 			continue;	/* skip empty areas */
 		} else if (ukbd_is_modifier_key(key)) {
 			continue;
 		} else if (delta & mask) {
 			if (sc->sc_odata.bitmap[key / 64] & mask) {
 				ukbd_put_key(sc, key | KEY_RELEASE);
 
 				/* clear repeating key, if any */
 				if (sc->sc_repeat_key == key)
 					sc->sc_repeat_key = 0;
 			} else {
 				ukbd_put_key(sc, key | KEY_PRESS);
 
 				sc->sc_co_basetime = sbinuptime();
 				sc->sc_delay = sc->sc_kbd.kb_delay1;
 				ukbd_start_timer(sc);
 
 				/* set repeat time for last key */
 				sc->sc_repeat_time = now + sc->sc_kbd.kb_delay1;
 				sc->sc_repeat_key = key;
 			}
 		}
 	}
 
 	/* synchronize old data with new data */
 	sc->sc_odata = sc->sc_ndata;
 	
 	/* check if last key is still pressed */
 	if (sc->sc_repeat_key != 0) {
 		const int32_t dtime = (sc->sc_repeat_time - now);
 
 		/* check if time has elapsed */
 		if (dtime <= 0) {
 			ukbd_put_key(sc, sc->sc_repeat_key | KEY_PRESS);
 			sc->sc_repeat_time = now + sc->sc_kbd.kb_delay2;
 		}
 	}
 
+#ifdef EVDEV_SUPPORT
+	if (evdev_rcpt_mask & EVDEV_RCPT_HW_KBD && sc->sc_evdev != NULL)
+		evdev_sync(sc->sc_evdev);
+#endif
+
 	/* wakeup keyboard system */
 	ukbd_event_keyinput(sc);
 }
 
 static void
 ukbd_event_keyinput(struct ukbd_softc *sc)
 {
 	int c;
 
 	UKBD_LOCK_ASSERT();
 
 	if ((sc->sc_flags & UKBD_FLAG_POLLING) != 0)
 		return;
 
 	if (sc->sc_inputs == 0)
 		return;
 
 	if (KBD_IS_ACTIVE(&sc->sc_kbd) &&
 	    KBD_IS_BUSY(&sc->sc_kbd)) {
 		/* let the callback function process the input */
 		(sc->sc_kbd.kb_callback.kc_func) (&sc->sc_kbd, KBDIO_KEYINPUT,
 		    sc->sc_kbd.kb_callback.kc_arg);
 	} else {
 		/* read and discard the input, no one is waiting for it */
 		do {
 			c = ukbd_read_char(&sc->sc_kbd, 0);
 		} while (c != NOKEY);
 	}
 }
 
 static void
 ukbd_timeout(void *arg)
 {
 	struct ukbd_softc *sc = arg;
 
 	UKBD_LOCK_ASSERT();
 
 	sc->sc_time_ms += sc->sc_delay;
 	sc->sc_delay = 0;
 
 	ukbd_interrupt(sc);
 
 	/* Make sure any leftover key events gets read out */
 	ukbd_event_keyinput(sc);
 
 	if (ukbd_any_key_pressed(sc) || (sc->sc_inputs != 0)) {
 		ukbd_start_timer(sc);
 	}
 }
 
 static uint32_t
 ukbd_apple_fn(uint32_t keycode)
 {
 	switch (keycode) {
 	case 0x28: return 0x49; /* RETURN -> INSERT */
 	case 0x2a: return 0x4c; /* BACKSPACE -> DEL */
 	case 0x50: return 0x4a; /* LEFT ARROW -> HOME */
 	case 0x4f: return 0x4d; /* RIGHT ARROW -> END */
 	case 0x52: return 0x4b; /* UP ARROW -> PGUP */
 	case 0x51: return 0x4e; /* DOWN ARROW -> PGDN */
 	default: return keycode;
 	}
 }
 
 static uint32_t
 ukbd_apple_swap(uint32_t keycode)
 {
 	switch (keycode) {
 	case 0x35: return 0x64;
 	case 0x64: return 0x35;
 	default: return keycode;
 	}
 }
 
 static void
 ukbd_intr_callback(struct usb_xfer *xfer, usb_error_t error)
 {
 	struct ukbd_softc *sc = usbd_xfer_softc(xfer);
 	struct usb_page_cache *pc;
 	uint32_t i;
 	uint8_t id;
 	uint8_t modifiers;
 	int offset;
 	int len;
 
 	UKBD_LOCK_ASSERT();
 
 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
 	pc = usbd_xfer_get_frame(xfer, 0);
 
 	switch (USB_GET_STATE(xfer)) {
 	case USB_ST_TRANSFERRED:
 		DPRINTF("actlen=%d bytes\n", len);
 
 		if (len == 0) {
 			DPRINTF("zero length data\n");
 			goto tr_setup;
 		}
 
 		if (sc->sc_kbd_id != 0) {
 			/* check and remove HID ID byte */
 			usbd_copy_out(pc, 0, &id, 1);
 			offset = 1;
 			len--;
 			if (len == 0) {
 				DPRINTF("zero length data\n");
 				goto tr_setup;
 			}
 		} else {
 			offset = 0;
 			id = 0;
 		}
 
 		if (len > UKBD_BUFFER_SIZE)
 			len = UKBD_BUFFER_SIZE;
 
 		/* get data */
 		usbd_copy_out(pc, offset, sc->sc_buffer, len);
 
 		/* clear temporary storage */
 		memset(&sc->sc_ndata, 0, sizeof(sc->sc_ndata));
 
 		/* clear modifiers */
 		modifiers = 0;
 
 		/* scan through HID data */
 		if ((sc->sc_flags & UKBD_FLAG_APPLE_EJECT) &&
 		    (id == sc->sc_id_apple_eject)) {
 			if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_apple_eject))
 				modifiers |= MOD_EJECT;
 		}
 		if ((sc->sc_flags & UKBD_FLAG_APPLE_FN) &&
 		    (id == sc->sc_id_apple_fn)) {
 			if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_apple_fn))
 				modifiers |= MOD_FN;
 		}
 
 		for (i = 0; i != UKBD_NKEYCODE; i++) {
 			const uint64_t valid = sc->sc_loc_key_valid[i / 64];
 			const uint64_t mask = 1ULL << (i % 64);
 
 			if (mask == 1 && valid == 0) {
 				i += 63;
 				continue;	/* skip empty areas */
 			} else if (~valid & mask) {
 				continue;	/* location is not valid */
 			} else if (id != sc->sc_id_loc_key[i]) {
 				continue;	/* invalid HID ID */
 			} else if (i == 0) {
 				struct hid_location tmp_loc = sc->sc_loc_key[0];
 				/* range check array size */
 				if (tmp_loc.count > UKBD_NKEYCODE)
 					tmp_loc.count = UKBD_NKEYCODE;
 				while (tmp_loc.count--) {
 					uint32_t key =
 					    hid_get_data_unsigned(sc->sc_buffer, len, &tmp_loc);
 					/* advance to next location */
 					tmp_loc.pos += tmp_loc.size;
 					if (modifiers & MOD_FN)
 						key = ukbd_apple_fn(key);
 					if (sc->sc_flags & UKBD_FLAG_APPLE_SWAP)
 						key = ukbd_apple_swap(key);
 					if (key == KEY_NONE || key == KEY_ERROR || key >= UKBD_NKEYCODE)
 						continue;
 					/* set key in bitmap */
 					sc->sc_ndata.bitmap[key / 64] |= 1ULL << (key % 64);
 				}
 			} else if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_key[i])) {
 				uint32_t key = i;
 
 				if (modifiers & MOD_FN)
 					key = ukbd_apple_fn(key);
 				if (sc->sc_flags & UKBD_FLAG_APPLE_SWAP)
 					key = ukbd_apple_swap(key);
 				if (key == KEY_NONE || key == KEY_ERROR || key >= UKBD_NKEYCODE)
 					continue;
 				/* set key in bitmap */
 				sc->sc_ndata.bitmap[key / 64] |= 1ULL << (key % 64);
 			}
 		}
 #ifdef USB_DEBUG
 		DPRINTF("modifiers = 0x%04x\n", modifiers);
 		for (i = 0; i != UKBD_NKEYCODE; i++) {
 			const uint64_t valid = sc->sc_ndata.bitmap[i / 64];
 			const uint64_t mask = 1ULL << (i % 64);
 
 			if (valid & mask)
 				DPRINTF("Key 0x%02x pressed\n", i);
 		}
 #endif
 		ukbd_interrupt(sc);
 
 	case USB_ST_SETUP:
 tr_setup:
 		if (sc->sc_inputs < UKBD_IN_BUF_FULL) {
 			usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
 			usbd_transfer_submit(xfer);
 		} else {
 			DPRINTF("input queue is full!\n");
 		}
 		break;
 
 	default:			/* Error */
 		DPRINTF("error=%s\n", usbd_errstr(error));
 
 		if (error != USB_ERR_CANCELLED) {
 			/* try to clear stall first */
 			usbd_xfer_set_stall(xfer);
 			goto tr_setup;
 		}
 		break;
 	}
 }
 
 static void
 ukbd_set_leds_callback(struct usb_xfer *xfer, usb_error_t error)
 {
 	struct ukbd_softc *sc = usbd_xfer_softc(xfer);
 	struct usb_device_request req;
 	struct usb_page_cache *pc;
 	uint8_t id;
 	uint8_t any;
 	int len;
 
 	UKBD_LOCK_ASSERT();
 
 #ifdef USB_DEBUG
 	if (ukbd_no_leds)
 		return;
 #endif
 
 	switch (USB_GET_STATE(xfer)) {
 	case USB_ST_TRANSFERRED:
 	case USB_ST_SETUP:
 		if (!(sc->sc_flags & UKBD_FLAG_SET_LEDS))
 			break;
 		sc->sc_flags &= ~UKBD_FLAG_SET_LEDS;
 
 		req.bmRequestType = UT_WRITE_CLASS_INTERFACE;
 		req.bRequest = UR_SET_REPORT;
 		USETW2(req.wValue, UHID_OUTPUT_REPORT, 0);
 		req.wIndex[0] = sc->sc_iface_no;
 		req.wIndex[1] = 0;
 		req.wLength[1] = 0;
 
 		memset(sc->sc_buffer, 0, UKBD_BUFFER_SIZE);
 
 		id = 0;
 		any = 0;
 
 		/* Assumption: All led bits must be in the same ID. */
 
 		if (sc->sc_flags & UKBD_FLAG_NUMLOCK) {
 			if (sc->sc_leds & NLKED) {
 				hid_put_data_unsigned(sc->sc_buffer + 1, UKBD_BUFFER_SIZE - 1,
 				    &sc->sc_loc_numlock, 1);
 			}
 			id = sc->sc_id_numlock;
 			any = 1;
 		}
 
 		if (sc->sc_flags & UKBD_FLAG_SCROLLLOCK) {
 			if (sc->sc_leds & SLKED) {
 				hid_put_data_unsigned(sc->sc_buffer + 1, UKBD_BUFFER_SIZE - 1,
 				    &sc->sc_loc_scrolllock, 1);
 			}
 			id = sc->sc_id_scrolllock;
 			any = 1;
 		}
 
 		if (sc->sc_flags & UKBD_FLAG_CAPSLOCK) {
 			if (sc->sc_leds & CLKED) {
 				hid_put_data_unsigned(sc->sc_buffer + 1, UKBD_BUFFER_SIZE - 1,
 				    &sc->sc_loc_capslock, 1);
 			}
 			id = sc->sc_id_capslock;
 			any = 1;
 		}
 
 		/* if no leds, nothing to do */
 		if (!any)
 			break;
 
 #ifdef EVDEV_SUPPORT
 		if (sc->sc_evdev != NULL)
 			evdev_push_leds(sc->sc_evdev, sc->sc_leds);
 #endif
 
 		/* range check output report length */
 		len = sc->sc_led_size;
 		if (len > (UKBD_BUFFER_SIZE - 1))
 			len = (UKBD_BUFFER_SIZE - 1);
 
 		/* check if we need to prefix an ID byte */
 		sc->sc_buffer[0] = id;
 
 		pc = usbd_xfer_get_frame(xfer, 1);
 		if (id != 0) {
 			len++;
 			usbd_copy_in(pc, 0, sc->sc_buffer, len);
 		} else {
 			usbd_copy_in(pc, 0, sc->sc_buffer + 1, len);
 		}
 		req.wLength[0] = len;
 		usbd_xfer_set_frame_len(xfer, 1, len);
 
 		DPRINTF("len=%d, id=%d\n", len, id);
 
 		/* setup control request last */
 		pc = usbd_xfer_get_frame(xfer, 0);
 		usbd_copy_in(pc, 0, &req, sizeof(req));
 		usbd_xfer_set_frame_len(xfer, 0, sizeof(req));
 
 		/* start data transfer */
 		usbd_xfer_set_frames(xfer, 2);
 		usbd_transfer_submit(xfer);
 		break;
 
 	default:			/* Error */
 		DPRINTFN(1, "error=%s\n", usbd_errstr(error));
 		break;
 	}
 }
 
 static const struct usb_config ukbd_config[UKBD_N_TRANSFER] = {
 
 	[UKBD_INTR_DT_0] = {
 		.type = UE_INTERRUPT,
 		.endpoint = UE_ADDR_ANY,
 		.direction = UE_DIR_IN,
 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
 		.bufsize = 0,	/* use wMaxPacketSize */
 		.callback = &ukbd_intr_callback,
 	},
 
 	[UKBD_INTR_DT_1] = {
 		.type = UE_INTERRUPT,
 		.endpoint = UE_ADDR_ANY,
 		.direction = UE_DIR_IN,
 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
 		.bufsize = 0,	/* use wMaxPacketSize */
 		.callback = &ukbd_intr_callback,
 	},
 
 	[UKBD_CTRL_LED] = {
 		.type = UE_CONTROL,
 		.endpoint = 0x00,	/* Control pipe */
 		.direction = UE_DIR_ANY,
 		.bufsize = sizeof(struct usb_device_request) + UKBD_BUFFER_SIZE,
 		.callback = &ukbd_set_leds_callback,
 		.timeout = 1000,	/* 1 second */
 	},
 };
 
 /* A match on these entries will load ukbd */
 static const STRUCT_USB_HOST_ID __used ukbd_devs[] = {
 	{USB_IFACE_CLASS(UICLASS_HID),
 	 USB_IFACE_SUBCLASS(UISUBCLASS_BOOT),
 	 USB_IFACE_PROTOCOL(UIPROTO_BOOT_KEYBOARD),},
 };
 
 static int
 ukbd_probe(device_t dev)
 {
 	keyboard_switch_t *sw = kbd_get_switch(UKBD_DRIVER_NAME);
 	struct usb_attach_arg *uaa = device_get_ivars(dev);
 	void *d_ptr;
 	int error;
 	uint16_t d_len;
 
 	UKBD_LOCK_ASSERT();
 	DPRINTFN(11, "\n");
 
 	if (sw == NULL) {
 		return (ENXIO);
 	}
 	if (uaa->usb_mode != USB_MODE_HOST) {
 		return (ENXIO);
 	}
 
 	if (uaa->info.bInterfaceClass != UICLASS_HID)
 		return (ENXIO);
 
 	if (usb_test_quirk(uaa, UQ_KBD_IGNORE))
 		return (ENXIO);
 
 	if ((uaa->info.bInterfaceSubClass == UISUBCLASS_BOOT) &&
 	    (uaa->info.bInterfaceProtocol == UIPROTO_BOOT_KEYBOARD))
 		return (BUS_PROBE_DEFAULT);
 
 	error = usbd_req_get_hid_desc(uaa->device, NULL,
 	    &d_ptr, &d_len, M_TEMP, uaa->info.bIfaceIndex);
 
 	if (error)
 		return (ENXIO);
 
 	if (hid_is_keyboard(d_ptr, d_len)) {
 		if (hid_is_mouse(d_ptr, d_len)) {
 			/*
 			 * NOTE: We currently don't support USB mouse
 			 * and USB keyboard on the same USB endpoint.
 			 * Let "ums" driver win.
 			 */
 			error = ENXIO;
 		} else {
 			error = BUS_PROBE_DEFAULT;
 		}
 	} else {
 		error = ENXIO;
 	}
 	free(d_ptr, M_TEMP);
 	return (error);
 }
 
 static void
 ukbd_parse_hid(struct ukbd_softc *sc, const uint8_t *ptr, uint32_t len)
 {
 	uint32_t flags;
 	uint32_t key;
 
 	/* reset detected bits */
 	sc->sc_flags &= ~UKBD_FLAG_HID_MASK;
 
 	/* reset detected keys */
 	memset(sc->sc_loc_key_valid, 0, sizeof(sc->sc_loc_key_valid));
 
 	/* check if there is an ID byte */
 	sc->sc_kbd_size = hid_report_size(ptr, len,
 	    hid_input, &sc->sc_kbd_id);
 
 	/* investigate if this is an Apple Keyboard */
 	if (hid_locate(ptr, len,
 	    HID_USAGE2(HUP_CONSUMER, HUG_APPLE_EJECT),
 	    hid_input, 0, &sc->sc_loc_apple_eject, &flags,
 	    &sc->sc_id_apple_eject)) {
 		if (flags & HIO_VARIABLE)
 			sc->sc_flags |= UKBD_FLAG_APPLE_EJECT | 
 			    UKBD_FLAG_APPLE_SWAP;
 		DPRINTFN(1, "Found Apple eject-key\n");
 	}
 	if (hid_locate(ptr, len,
 	    HID_USAGE2(0xFFFF, 0x0003),
 	    hid_input, 0, &sc->sc_loc_apple_fn, &flags,
 	    &sc->sc_id_apple_fn)) {
 		if (flags & HIO_VARIABLE)
 			sc->sc_flags |= UKBD_FLAG_APPLE_FN;
 		DPRINTFN(1, "Found Apple FN-key\n");
 	}
 
 	/* figure out event buffer */
 	if (hid_locate(ptr, len,
 	    HID_USAGE2(HUP_KEYBOARD, 0x00),
 	    hid_input, 0, &sc->sc_loc_key[0], &flags,
 	    &sc->sc_id_loc_key[0])) {
 		if (flags & HIO_VARIABLE) {
 			DPRINTFN(1, "Ignoring keyboard event control\n");
 		} else {
 			sc->sc_loc_key_valid[0] |= 1;
 			DPRINTFN(1, "Found keyboard event array\n");
 		}
 	}
 
 	/* figure out the keys */
 	for (key = 1; key != UKBD_NKEYCODE; key++) {
 		if (hid_locate(ptr, len,
 		    HID_USAGE2(HUP_KEYBOARD, key),
 		    hid_input, 0, &sc->sc_loc_key[key], &flags,
 		    &sc->sc_id_loc_key[key])) {
 			if (flags & HIO_VARIABLE) {
 				sc->sc_loc_key_valid[key / 64] |=
 				    1ULL << (key % 64);
 				DPRINTFN(1, "Found key 0x%02x\n", key);
 			}
 		}
 	}
 
 	/* figure out leds on keyboard */
 	sc->sc_led_size = hid_report_size(ptr, len,
 	    hid_output, NULL);
 
 	if (hid_locate(ptr, len,
 	    HID_USAGE2(HUP_LEDS, 0x01),
 	    hid_output, 0, &sc->sc_loc_numlock, &flags,
 	    &sc->sc_id_numlock)) {
 		if (flags & HIO_VARIABLE)
 			sc->sc_flags |= UKBD_FLAG_NUMLOCK;
 		DPRINTFN(1, "Found keyboard numlock\n");
 	}
 	if (hid_locate(ptr, len,
 	    HID_USAGE2(HUP_LEDS, 0x02),
 	    hid_output, 0, &sc->sc_loc_capslock, &flags,
 	    &sc->sc_id_capslock)) {
 		if (flags & HIO_VARIABLE)
 			sc->sc_flags |= UKBD_FLAG_CAPSLOCK;
 		DPRINTFN(1, "Found keyboard capslock\n");
 	}
 	if (hid_locate(ptr, len,
 	    HID_USAGE2(HUP_LEDS, 0x03),
 	    hid_output, 0, &sc->sc_loc_scrolllock, &flags,
 	    &sc->sc_id_scrolllock)) {
 		if (flags & HIO_VARIABLE)
 			sc->sc_flags |= UKBD_FLAG_SCROLLLOCK;
 		DPRINTFN(1, "Found keyboard scrolllock\n");
 	}
 }
 
 static int
 ukbd_attach(device_t dev)
 {
 	struct ukbd_softc *sc = device_get_softc(dev);
 	struct usb_attach_arg *uaa = device_get_ivars(dev);
 	int unit = device_get_unit(dev);
 	keyboard_t *kbd = &sc->sc_kbd;
 	void *hid_ptr = NULL;
 	usb_error_t err;
 	uint16_t n;
 	uint16_t hid_len;
 #ifdef EVDEV_SUPPORT
 	struct evdev_dev *evdev;
 	int i;
 #endif
 #ifdef USB_DEBUG
 	int rate;
 #endif
 	UKBD_LOCK_ASSERT();
 
 	kbd_init_struct(kbd, UKBD_DRIVER_NAME, KB_OTHER, unit, 0, 0, 0);
 
 	kbd->kb_data = (void *)sc;
 
 	device_set_usb_desc(dev);
 
 	sc->sc_udev = uaa->device;
 	sc->sc_iface = uaa->iface;
 	sc->sc_iface_index = uaa->info.bIfaceIndex;
 	sc->sc_iface_no = uaa->info.bIfaceNum;
 	sc->sc_mode = K_XLATE;
 
 	usb_callout_init_mtx(&sc->sc_callout, &Giant, 0);
 
 #ifdef UKBD_NO_POLLING
 	err = usbd_transfer_setup(uaa->device,
 	    &uaa->info.bIfaceIndex, sc->sc_xfer, ukbd_config,
 	    UKBD_N_TRANSFER, sc, &Giant);
 #else
 	/*
 	 * Setup the UKBD USB transfers one by one, so they are memory
 	 * independent which allows for handling panics triggered by
 	 * the keyboard driver itself, typically via CTRL+ALT+ESC
 	 * sequences. Or if the USB keyboard driver was processing a
 	 * key at the moment of panic.
 	 */
 	for (n = 0; n != UKBD_N_TRANSFER; n++) {
 		err = usbd_transfer_setup(uaa->device,
 		    &uaa->info.bIfaceIndex, sc->sc_xfer + n, ukbd_config + n,
 		    1, sc, &Giant);
 		if (err)
 			break;
 	}
 #endif
 
 	if (err) {
 		DPRINTF("error=%s\n", usbd_errstr(err));
 		goto detach;
 	}
 	/* setup default keyboard maps */
 
 	sc->sc_keymap = key_map;
 	sc->sc_accmap = accent_map;
 	for (n = 0; n < UKBD_NFKEY; n++) {
 		sc->sc_fkeymap[n] = fkey_tab[n];
 	}
 
 	kbd_set_maps(kbd, &sc->sc_keymap, &sc->sc_accmap,
 	    sc->sc_fkeymap, UKBD_NFKEY);
 
 	KBD_FOUND_DEVICE(kbd);
 
 	ukbd_clear_state(kbd);
 
 	/*
 	 * FIXME: set the initial value for lock keys in "sc_state"
 	 * according to the BIOS data?
 	 */
 	KBD_PROBE_DONE(kbd);
 
 	/* get HID descriptor */
 	err = usbd_req_get_hid_desc(uaa->device, NULL, &hid_ptr,
 	    &hid_len, M_TEMP, uaa->info.bIfaceIndex);
 
 	if (err == 0) {
 		DPRINTF("Parsing HID descriptor of %d bytes\n",
 		    (int)hid_len);
 
 		ukbd_parse_hid(sc, hid_ptr, hid_len);
 
 		free(hid_ptr, M_TEMP);
 	}
 
 	/* check if we should use the boot protocol */
 	if (usb_test_quirk(uaa, UQ_KBD_BOOTPROTO) ||
 	    (err != 0) || ukbd_any_key_valid(sc) == false) {
 
 		DPRINTF("Forcing boot protocol\n");
 
 		err = usbd_req_set_protocol(sc->sc_udev, NULL, 
 			sc->sc_iface_index, 0);
 
 		if (err != 0) {
 			DPRINTF("Set protocol error=%s (ignored)\n",
 			    usbd_errstr(err));
 		}
 
 		ukbd_parse_hid(sc, ukbd_boot_desc, sizeof(ukbd_boot_desc));
 	}
 
 	/* ignore if SETIDLE fails, hence it is not crucial */
 	usbd_req_set_idle(sc->sc_udev, NULL, sc->sc_iface_index, 0, 0);
 
 	ukbd_ioctl(kbd, KDSETLED, (caddr_t)&sc->sc_state);
 
 	KBD_INIT_DONE(kbd);
 
 	if (kbd_register(kbd) < 0) {
 		goto detach;
 	}
 	KBD_CONFIG_DONE(kbd);
 
 	ukbd_enable(kbd);
 
 #ifdef KBD_INSTALL_CDEV
 	if (kbd_attach(kbd)) {
 		goto detach;
 	}
 #endif
 
 #ifdef EVDEV_SUPPORT
 	evdev = evdev_alloc();
 	evdev_set_name(evdev, device_get_desc(dev));
 	evdev_set_phys(evdev, device_get_nameunit(dev));
 	evdev_set_id(evdev, BUS_USB, uaa->info.idVendor,
 	   uaa->info.idProduct, 0);
 	evdev_set_serial(evdev, usb_get_serial(uaa->device));
 	evdev_set_methods(evdev, kbd, &ukbd_evdev_methods);
 	evdev_support_event(evdev, EV_SYN);
 	evdev_support_event(evdev, EV_KEY);
 	if (sc->sc_flags & (UKBD_FLAG_NUMLOCK | UKBD_FLAG_CAPSLOCK |
 			    UKBD_FLAG_SCROLLLOCK))
 		evdev_support_event(evdev, EV_LED);
 	evdev_support_event(evdev, EV_REP);
 
 	for (i = 0x00; i <= 0xFF; i++)
 		evdev_support_key(evdev, evdev_hid2key(i));
 	if (sc->sc_flags & UKBD_FLAG_NUMLOCK)
 		evdev_support_led(evdev, LED_NUML);
 	if (sc->sc_flags & UKBD_FLAG_CAPSLOCK)
 		evdev_support_led(evdev, LED_CAPSL);
 	if (sc->sc_flags & UKBD_FLAG_SCROLLLOCK)
 		evdev_support_led(evdev, LED_SCROLLL);
 
 	if (evdev_register_mtx(evdev, &Giant))
 		evdev_free(evdev);
 	else
 		sc->sc_evdev = evdev;
 #endif
 
 	sc->sc_flags |= UKBD_FLAG_ATTACHED;
 
 	if (bootverbose) {
 		kbdd_diag(kbd, bootverbose);
 	}
 
 #ifdef USB_DEBUG
 	/* check for polling rate override */
 	rate = ukbd_pollrate;
 	if (rate > 0) {
 		if (rate > 1000)
 			rate = 1;
 		else
 			rate = 1000 / rate;
 
 		/* set new polling interval in ms */
 		usbd_xfer_set_interval(sc->sc_xfer[UKBD_INTR_DT_0], rate);
 		usbd_xfer_set_interval(sc->sc_xfer[UKBD_INTR_DT_1], rate);
 	}
 #endif
 	/* start the keyboard */
 	usbd_transfer_start(sc->sc_xfer[UKBD_INTR_DT_0]);
 	usbd_transfer_start(sc->sc_xfer[UKBD_INTR_DT_1]);
 
 	return (0);			/* success */
 
 detach:
 	ukbd_detach(dev);
 	return (ENXIO);			/* error */
 }
 
 static int
 ukbd_detach(device_t dev)
 {
 	struct ukbd_softc *sc = device_get_softc(dev);
 	int error;
 
 	UKBD_LOCK_ASSERT();
 
 	DPRINTF("\n");
 
 	sc->sc_flags |= UKBD_FLAG_GONE;
 
 	usb_callout_stop(&sc->sc_callout);
 
 	/* kill any stuck keys */
 	if (sc->sc_flags & UKBD_FLAG_ATTACHED) {
 		/* stop receiving events from the USB keyboard */
 		usbd_transfer_stop(sc->sc_xfer[UKBD_INTR_DT_0]);
 		usbd_transfer_stop(sc->sc_xfer[UKBD_INTR_DT_1]);
 
 		/* release all leftover keys, if any */
 		memset(&sc->sc_ndata, 0, sizeof(sc->sc_ndata));
 
 		/* process releasing of all keys */
 		ukbd_interrupt(sc);
 	}
 
 	ukbd_disable(&sc->sc_kbd);
 
 #ifdef KBD_INSTALL_CDEV
 	if (sc->sc_flags & UKBD_FLAG_ATTACHED) {
 		error = kbd_detach(&sc->sc_kbd);
 		if (error) {
 			/* usb attach cannot return an error */
 			device_printf(dev, "WARNING: kbd_detach() "
 			    "returned non-zero! (ignored)\n");
 		}
 	}
 #endif
 
 #ifdef EVDEV_SUPPORT
 	evdev_free(sc->sc_evdev);
 #endif
 
 	if (KBD_IS_CONFIGURED(&sc->sc_kbd)) {
 		error = kbd_unregister(&sc->sc_kbd);
 		if (error) {
 			/* usb attach cannot return an error */
 			device_printf(dev, "WARNING: kbd_unregister() "
 			    "returned non-zero! (ignored)\n");
 		}
 	}
 	sc->sc_kbd.kb_flags = 0;
 
 	usbd_transfer_unsetup(sc->sc_xfer, UKBD_N_TRANSFER);
 
 	usb_callout_drain(&sc->sc_callout);
 
 	DPRINTF("%s: disconnected\n",
 	    device_get_nameunit(dev));
 
 	return (0);
 }
 
 static int
 ukbd_resume(device_t dev)
 {
 	struct ukbd_softc *sc = device_get_softc(dev);
 
 	UKBD_LOCK_ASSERT();
 
 	ukbd_clear_state(&sc->sc_kbd);
 
 	return (0);
 }
 
 #ifdef EVDEV_SUPPORT
 static void
 ukbd_ev_event(struct evdev_dev *evdev, uint16_t type, uint16_t code,
     int32_t value)
 {
 	keyboard_t *kbd = evdev_get_softc(evdev);
 
 	if (evdev_rcpt_mask & EVDEV_RCPT_HW_KBD &&
 	    (type == EV_LED || type == EV_REP)) {
 		mtx_lock(&Giant);
 		kbd_ev_event(kbd, type, code, value);
 		mtx_unlock(&Giant);
 	}
 }
 #endif
 
 /* early keyboard probe, not supported */
 static int
 ukbd_configure(int flags)
 {
 	return (0);
 }
 
 /* detect a keyboard, not used */
 static int
 ukbd__probe(int unit, void *arg, int flags)
 {
 	return (ENXIO);
 }
 
 /* reset and initialize the device, not used */
 static int
 ukbd_init(int unit, keyboard_t **kbdp, void *arg, int flags)
 {
 	return (ENXIO);
 }
 
 /* test the interface to the device, not used */
 static int
 ukbd_test_if(keyboard_t *kbd)
 {
 	return (0);
 }
 
 /* finish using this keyboard, not used */
 static int
 ukbd_term(keyboard_t *kbd)
 {
 	return (ENXIO);
 }
 
 /* keyboard interrupt routine, not used */
 static int
 ukbd_intr(keyboard_t *kbd, void *arg)
 {
 	return (0);
 }
 
 /* lock the access to the keyboard, not used */
 static int
 ukbd_lock(keyboard_t *kbd, int lock)
 {
 	return (1);
 }
 
 /*
  * Enable the access to the device; until this function is called,
  * the client cannot read from the keyboard.
  */
 static int
 ukbd_enable(keyboard_t *kbd)
 {
 
 	UKBD_LOCK();
 	KBD_ACTIVATE(kbd);
 	UKBD_UNLOCK();
 
 	return (0);
 }
 
 /* disallow the access to the device */
 static int
 ukbd_disable(keyboard_t *kbd)
 {
 
 	UKBD_LOCK();
 	KBD_DEACTIVATE(kbd);
 	UKBD_UNLOCK();
 
 	return (0);
 }
 
 /* check if data is waiting */
 /* Currently unused. */
 static int
 ukbd_check(keyboard_t *kbd)
 {
 	struct ukbd_softc *sc = kbd->kb_data;
 
 	UKBD_LOCK_ASSERT();
 
 	if (!KBD_IS_ACTIVE(kbd))
 		return (0);
 
 	if (sc->sc_flags & UKBD_FLAG_POLLING)
 		ukbd_do_poll(sc, 0);
 
 #ifdef UKBD_EMULATE_ATSCANCODE
 	if (sc->sc_buffered_char[0]) {
 		return (1);
 	}
 #endif
 	if (sc->sc_inputs > 0) {
 		return (1);
 	}
 	return (0);
 }
 
 /* check if char is waiting */
 static int
 ukbd_check_char_locked(keyboard_t *kbd)
 {
 	struct ukbd_softc *sc = kbd->kb_data;
 
 	UKBD_LOCK_ASSERT();
 
 	if (!KBD_IS_ACTIVE(kbd))
 		return (0);
 
 	if ((sc->sc_composed_char > 0) &&
 	    (!(sc->sc_flags & UKBD_FLAG_COMPOSE))) {
 		return (1);
 	}
 	return (ukbd_check(kbd));
 }
 
 static int
 ukbd_check_char(keyboard_t *kbd)
 {
 	int result;
 
 	UKBD_LOCK();
 	result = ukbd_check_char_locked(kbd);
 	UKBD_UNLOCK();
 
 	return (result);
 }
 
 /* read one byte from the keyboard if it's allowed */
 /* Currently unused. */
 static int
 ukbd_read(keyboard_t *kbd, int wait)
 {
 	struct ukbd_softc *sc = kbd->kb_data;
 	int32_t usbcode;
 #ifdef UKBD_EMULATE_ATSCANCODE
 	uint32_t keycode;
 	uint32_t scancode;
 
 #endif
 
 	UKBD_LOCK_ASSERT();
 
 	if (!KBD_IS_ACTIVE(kbd))
 		return (-1);
 
 #ifdef UKBD_EMULATE_ATSCANCODE
 	if (sc->sc_buffered_char[0]) {
 		scancode = sc->sc_buffered_char[0];
 		if (scancode & SCAN_PREFIX) {
 			sc->sc_buffered_char[0] &= ~SCAN_PREFIX;
 			return ((scancode & SCAN_PREFIX_E0) ? 0xe0 : 0xe1);
 		}
 		sc->sc_buffered_char[0] = sc->sc_buffered_char[1];
 		sc->sc_buffered_char[1] = 0;
 		return (scancode);
 	}
 #endif					/* UKBD_EMULATE_ATSCANCODE */
 
 	/* XXX */
 	usbcode = ukbd_get_key(sc, (wait == FALSE) ? 0 : 1);
 	if (!KBD_IS_ACTIVE(kbd) || (usbcode == -1))
 		return (-1);
 
 	++(kbd->kb_count);
 
 #ifdef UKBD_EMULATE_ATSCANCODE
 	keycode = ukbd_atkeycode(usbcode, sc->sc_ndata.bitmap);
 	if (keycode == NN) {
 		return -1;
 	}
 	return (ukbd_key2scan(sc, keycode, sc->sc_ndata.bitmap,
 	    (usbcode & KEY_RELEASE)));
 #else					/* !UKBD_EMULATE_ATSCANCODE */
 	return (usbcode);
 #endif					/* UKBD_EMULATE_ATSCANCODE */
 }
 
 /* read char from the keyboard */
 static uint32_t
 ukbd_read_char_locked(keyboard_t *kbd, int wait)
 {
 	struct ukbd_softc *sc = kbd->kb_data;
 	uint32_t action;
 	uint32_t keycode;
 	int32_t usbcode;
 #ifdef UKBD_EMULATE_ATSCANCODE
 	uint32_t scancode;
 #endif
 
 	UKBD_LOCK_ASSERT();
 
 	if (!KBD_IS_ACTIVE(kbd))
 		return (NOKEY);
 
 next_code:
 
 	/* do we have a composed char to return ? */
 
 	if ((sc->sc_composed_char > 0) &&
 	    (!(sc->sc_flags & UKBD_FLAG_COMPOSE))) {
 
 		action = sc->sc_composed_char;
 		sc->sc_composed_char = 0;
 
 		if (action > 0xFF) {
 			goto errkey;
 		}
 		goto done;
 	}
 #ifdef UKBD_EMULATE_ATSCANCODE
 
 	/* do we have a pending raw scan code? */
 
 	if (sc->sc_mode == K_RAW) {
 		scancode = sc->sc_buffered_char[0];
 		if (scancode) {
 			if (scancode & SCAN_PREFIX) {
 				sc->sc_buffered_char[0] = (scancode & ~SCAN_PREFIX);
 				return ((scancode & SCAN_PREFIX_E0) ? 0xe0 : 0xe1);
 			}
 			sc->sc_buffered_char[0] = sc->sc_buffered_char[1];
 			sc->sc_buffered_char[1] = 0;
 			return (scancode);
 		}
 	}
 #endif					/* UKBD_EMULATE_ATSCANCODE */
 
 	/* see if there is something in the keyboard port */
 	/* XXX */
 	usbcode = ukbd_get_key(sc, (wait == FALSE) ? 0 : 1);
 	if (usbcode == -1) {
 		return (NOKEY);
 	}
 	++kbd->kb_count;
 
 #ifdef UKBD_EMULATE_ATSCANCODE
 	/* USB key index -> key code -> AT scan code */
 	keycode = ukbd_atkeycode(usbcode, sc->sc_ndata.bitmap);
 	if (keycode == NN) {
 		return (NOKEY);
 	}
 	/* return an AT scan code for the K_RAW mode */
 	if (sc->sc_mode == K_RAW) {
 		return (ukbd_key2scan(sc, keycode, sc->sc_ndata.bitmap,
 		    (usbcode & KEY_RELEASE)));
 	}
 #else					/* !UKBD_EMULATE_ATSCANCODE */
 
 	/* return the byte as is for the K_RAW mode */
 	if (sc->sc_mode == K_RAW) {
 		return (usbcode);
 	}
 	/* USB key index -> key code */
 	keycode = ukbd_trtab[KEY_INDEX(usbcode)];
 	if (keycode == NN) {
 		return (NOKEY);
 	}
 #endif					/* UKBD_EMULATE_ATSCANCODE */
 
 	switch (keycode) {
 	case 0x38:			/* left alt (compose key) */
 		if (usbcode & KEY_RELEASE) {
 			if (sc->sc_flags & UKBD_FLAG_COMPOSE) {
 				sc->sc_flags &= ~UKBD_FLAG_COMPOSE;
 
 				if (sc->sc_composed_char > 0xFF) {
 					sc->sc_composed_char = 0;
 				}
 			}
 		} else {
 			if (!(sc->sc_flags & UKBD_FLAG_COMPOSE)) {
 				sc->sc_flags |= UKBD_FLAG_COMPOSE;
 				sc->sc_composed_char = 0;
 			}
 		}
 		break;
 	}
 
 	/* return the key code in the K_CODE mode */
 	if (usbcode & KEY_RELEASE) {
 		keycode |= SCAN_RELEASE;
 	}
 	if (sc->sc_mode == K_CODE) {
 		return (keycode);
 	}
 	/* compose a character code */
 	if (sc->sc_flags & UKBD_FLAG_COMPOSE) {
 		switch (keycode) {
 			/* key pressed, process it */
 		case 0x47:
 		case 0x48:
 		case 0x49:		/* keypad 7,8,9 */
 			sc->sc_composed_char *= 10;
 			sc->sc_composed_char += keycode - 0x40;
 			goto check_composed;
 
 		case 0x4B:
 		case 0x4C:
 		case 0x4D:		/* keypad 4,5,6 */
 			sc->sc_composed_char *= 10;
 			sc->sc_composed_char += keycode - 0x47;
 			goto check_composed;
 
 		case 0x4F:
 		case 0x50:
 		case 0x51:		/* keypad 1,2,3 */
 			sc->sc_composed_char *= 10;
 			sc->sc_composed_char += keycode - 0x4E;
 			goto check_composed;
 
 		case 0x52:		/* keypad 0 */
 			sc->sc_composed_char *= 10;
 			goto check_composed;
 
 			/* key released, no interest here */
 		case SCAN_RELEASE | 0x47:
 		case SCAN_RELEASE | 0x48:
 		case SCAN_RELEASE | 0x49:	/* keypad 7,8,9 */
 		case SCAN_RELEASE | 0x4B:
 		case SCAN_RELEASE | 0x4C:
 		case SCAN_RELEASE | 0x4D:	/* keypad 4,5,6 */
 		case SCAN_RELEASE | 0x4F:
 		case SCAN_RELEASE | 0x50:
 		case SCAN_RELEASE | 0x51:	/* keypad 1,2,3 */
 		case SCAN_RELEASE | 0x52:	/* keypad 0 */
 			goto next_code;
 
 		case 0x38:		/* left alt key */
 			break;
 
 		default:
 			if (sc->sc_composed_char > 0) {
 				sc->sc_flags &= ~UKBD_FLAG_COMPOSE;
 				sc->sc_composed_char = 0;
 				goto errkey;
 			}
 			break;
 		}
 	}
 	/* keycode to key action */
 	action = genkbd_keyaction(kbd, SCAN_CHAR(keycode),
 	    (keycode & SCAN_RELEASE),
 	    &sc->sc_state, &sc->sc_accents);
 	if (action == NOKEY) {
 		goto next_code;
 	}
 done:
 	return (action);
 
 check_composed:
 	if (sc->sc_composed_char <= 0xFF) {
 		goto next_code;
 	}
 errkey:
 	return (ERRKEY);
 }
 
 /* Currently wait is always false. */
 static uint32_t
 ukbd_read_char(keyboard_t *kbd, int wait)
 {
 	uint32_t keycode;
 
 	UKBD_LOCK();
 	keycode = ukbd_read_char_locked(kbd, wait);
 	UKBD_UNLOCK();
 
 	return (keycode);
 }
 
 /* some useful control functions */
 static int
 ukbd_ioctl_locked(keyboard_t *kbd, u_long cmd, caddr_t arg)
 {
 	struct ukbd_softc *sc = kbd->kb_data;
 	int i;
 #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \
     defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
 	int ival;
 
 #endif
 
 	UKBD_LOCK_ASSERT();
 
 	switch (cmd) {
 	case KDGKBMODE:		/* get keyboard mode */
 		*(int *)arg = sc->sc_mode;
 		break;
 #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \
     defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
 	case _IO('K', 7):
 		ival = IOCPARM_IVAL(arg);
 		arg = (caddr_t)&ival;
 		/* FALLTHROUGH */
 #endif
 	case KDSKBMODE:		/* set keyboard mode */
 		switch (*(int *)arg) {
 		case K_XLATE:
 			if (sc->sc_mode != K_XLATE) {
 				/* make lock key state and LED state match */
 				sc->sc_state &= ~LOCK_MASK;
 				sc->sc_state |= KBD_LED_VAL(kbd);
 			}
 			/* FALLTHROUGH */
 		case K_RAW:
 		case K_CODE:
 			if (sc->sc_mode != *(int *)arg) {
 				if ((sc->sc_flags & UKBD_FLAG_POLLING) == 0)
 					ukbd_clear_state(kbd);
 				sc->sc_mode = *(int *)arg;
 			}
 			break;
 		default:
 			return (EINVAL);
 		}
 		break;
 
 	case KDGETLED:			/* get keyboard LED */
 		*(int *)arg = KBD_LED_VAL(kbd);
 		break;
 #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \
     defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
 	case _IO('K', 66):
 		ival = IOCPARM_IVAL(arg);
 		arg = (caddr_t)&ival;
 		/* FALLTHROUGH */
 #endif
 	case KDSETLED:			/* set keyboard LED */
 		/* NOTE: lock key state in "sc_state" won't be changed */
 		if (*(int *)arg & ~LOCK_MASK)
 			return (EINVAL);
 
 		i = *(int *)arg;
 
 		/* replace CAPS LED with ALTGR LED for ALTGR keyboards */
 		if (sc->sc_mode == K_XLATE &&
 		    kbd->kb_keymap->n_keys > ALTGR_OFFSET) {
 			if (i & ALKED)
 				i |= CLKED;
 			else
 				i &= ~CLKED;
 		}
 		if (KBD_HAS_DEVICE(kbd))
 			ukbd_set_leds(sc, i);
 
 		KBD_LED_VAL(kbd) = *(int *)arg;
 		break;
 	case KDGKBSTATE:		/* get lock key state */
 		*(int *)arg = sc->sc_state & LOCK_MASK;
 		break;
 #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \
     defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
 	case _IO('K', 20):
 		ival = IOCPARM_IVAL(arg);
 		arg = (caddr_t)&ival;
 		/* FALLTHROUGH */
 #endif
 	case KDSKBSTATE:		/* set lock key state */
 		if (*(int *)arg & ~LOCK_MASK) {
 			return (EINVAL);
 		}
 		sc->sc_state &= ~LOCK_MASK;
 		sc->sc_state |= *(int *)arg;
 
 		/* set LEDs and quit */
 		return (ukbd_ioctl(kbd, KDSETLED, arg));
 
 	case KDSETREPEAT:		/* set keyboard repeat rate (new
 					 * interface) */
 		if (!KBD_HAS_DEVICE(kbd)) {
 			return (0);
 		}
 		/*
 		 * Convert negative, zero and tiny args to the same limits
 		 * as atkbd.  We could support delays of 1 msec, but
 		 * anything much shorter than the shortest atkbd value
 		 * of 250.34 is almost unusable as well as incompatible.
 		 */
 		kbd->kb_delay1 = imax(((int *)arg)[0], 250);
 		kbd->kb_delay2 = imax(((int *)arg)[1], 34);
 #ifdef EVDEV_SUPPORT
 		if (sc->sc_evdev != NULL)
 			evdev_push_repeats(sc->sc_evdev, kbd);
 #endif
 		return (0);
 
 #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \
     defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
 	case _IO('K', 67):
 		ival = IOCPARM_IVAL(arg);
 		arg = (caddr_t)&ival;
 		/* FALLTHROUGH */
 #endif
 	case KDSETRAD:			/* set keyboard repeat rate (old
 					 * interface) */
 		return (ukbd_set_typematic(kbd, *(int *)arg));
 
 	case PIO_KEYMAP:		/* set keyboard translation table */
 	case OPIO_KEYMAP:		/* set keyboard translation table
 					 * (compat) */
 	case PIO_KEYMAPENT:		/* set keyboard translation table
 					 * entry */
 	case PIO_DEADKEYMAP:		/* set accent key translation table */
 		sc->sc_accents = 0;
 		/* FALLTHROUGH */
 	default:
 		return (genkbd_commonioctl(kbd, cmd, arg));
 	}
 
 	return (0);
 }
 
 static int
 ukbd_ioctl(keyboard_t *kbd, u_long cmd, caddr_t arg)
 {
 	int result;
 
 	/*
 	 * XXX Check if someone is calling us from a critical section:
 	 */
 	if (curthread->td_critnest != 0)
 		return (EDEADLK);
 
 	/*
 	 * XXX KDGKBSTATE, KDSKBSTATE and KDSETLED can be called from any
 	 * context where printf(9) can be called, which among other things
 	 * includes interrupt filters and threads with any kinds of locks
 	 * already held.  For this reason it would be dangerous to acquire
 	 * the Giant here unconditionally.  On the other hand we have to
 	 * have it to handle the ioctl.
 	 * So we make our best effort to auto-detect whether we can grab
 	 * the Giant or not.  Blame syscons(4) for this.
 	 */
 	switch (cmd) {
 	case KDGKBSTATE:
 	case KDSKBSTATE:
 	case KDSETLED:
 		if (!mtx_owned(&Giant) && !USB_IN_POLLING_MODE_FUNC())
 			return (EDEADLK);	/* best I could come up with */
 		/* FALLTHROUGH */
 	default:
 		UKBD_LOCK();
 		result = ukbd_ioctl_locked(kbd, cmd, arg);
 		UKBD_UNLOCK();
 		return (result);
 	}
 }
 
 
 /* clear the internal state of the keyboard */
 static void
 ukbd_clear_state(keyboard_t *kbd)
 {
 	struct ukbd_softc *sc = kbd->kb_data;
 
 	UKBD_LOCK_ASSERT();
 
 	sc->sc_flags &= ~(UKBD_FLAG_COMPOSE | UKBD_FLAG_POLLING);
 	sc->sc_state &= LOCK_MASK;	/* preserve locking key state */
 	sc->sc_accents = 0;
 	sc->sc_composed_char = 0;
 #ifdef UKBD_EMULATE_ATSCANCODE
 	sc->sc_buffered_char[0] = 0;
 	sc->sc_buffered_char[1] = 0;
 #endif
 	memset(&sc->sc_ndata, 0, sizeof(sc->sc_ndata));
 	memset(&sc->sc_odata, 0, sizeof(sc->sc_odata));
 	sc->sc_repeat_time = 0;
 	sc->sc_repeat_key = 0;
 }
 
 /* save the internal state, not used */
 static int
 ukbd_get_state(keyboard_t *kbd, void *buf, size_t len)
 {
 	return (len == 0) ? 1 : -1;
 }
 
 /* set the internal state, not used */
 static int
 ukbd_set_state(keyboard_t *kbd, void *buf, size_t len)
 {
 	return (EINVAL);
 }
 
 static int
 ukbd_poll(keyboard_t *kbd, int on)
 {
 	struct ukbd_softc *sc = kbd->kb_data;
 
 	UKBD_LOCK();
 	/*
 	 * Keep a reference count on polling to allow recursive
 	 * cngrab() during a panic for example.
 	 */
 	if (on)
 		sc->sc_polling++;
 	else if (sc->sc_polling > 0)
 		sc->sc_polling--;
 
 	if (sc->sc_polling != 0) {
 		sc->sc_flags |= UKBD_FLAG_POLLING;
 		sc->sc_poll_thread = curthread;
 	} else {
 		sc->sc_flags &= ~UKBD_FLAG_POLLING;
 		sc->sc_delay = 0;
 	}
 	UKBD_UNLOCK();
 
 	return (0);
 }
 
 /* local functions */
 
 static void
 ukbd_set_leds(struct ukbd_softc *sc, uint8_t leds)
 {
 
 	UKBD_LOCK_ASSERT();
 	DPRINTF("leds=0x%02x\n", leds);
 
 	sc->sc_leds = leds;
 	sc->sc_flags |= UKBD_FLAG_SET_LEDS;
 
 	/* start transfer, if not already started */
 
 	usbd_transfer_start(sc->sc_xfer[UKBD_CTRL_LED]);
 }
 
 static int
 ukbd_set_typematic(keyboard_t *kbd, int code)
 {
 #ifdef EVDEV_SUPPORT
 	struct ukbd_softc *sc = kbd->kb_data;
 #endif
 	static const int delays[] = {250, 500, 750, 1000};
 	static const int rates[] = {34, 38, 42, 46, 50, 55, 59, 63,
 		68, 76, 84, 92, 100, 110, 118, 126,
 		136, 152, 168, 184, 200, 220, 236, 252,
 	272, 304, 336, 368, 400, 440, 472, 504};
 
 	if (code & ~0x7f) {
 		return (EINVAL);
 	}
 	kbd->kb_delay1 = delays[(code >> 5) & 3];
 	kbd->kb_delay2 = rates[code & 0x1f];
 #ifdef EVDEV_SUPPORT
 	if (sc->sc_evdev != NULL)
 		evdev_push_repeats(sc->sc_evdev, kbd);
 #endif
 	return (0);
 }
 
 #ifdef UKBD_EMULATE_ATSCANCODE
 static uint32_t
 ukbd_atkeycode(int usbcode, const uint64_t *bitmap)
 {
 	uint32_t keycode;
 
 	keycode = ukbd_trtab[KEY_INDEX(usbcode)];
 
 	/*
 	 * Translate Alt-PrintScreen to SysRq.
 	 *
 	 * Some or all AT keyboards connected through USB have already
 	 * mapped Alted PrintScreens to an unusual usbcode (0x8a).
 	 * ukbd_trtab translates this to 0x7e, and key2scan() would
 	 * translate that to 0x79 (Intl' 4).  Assume that if we have
 	 * an Alted 0x7e here then it actually is an Alted PrintScreen.
 	 *
 	 * The usual usbcode for all PrintScreens is 0x46.  ukbd_trtab
 	 * translates this to 0x5c, so the Alt check to classify 0x5c
 	 * is routine.
 	 */
 	if ((keycode == 0x5c || keycode == 0x7e) &&
 	    (UKBD_KEY_PRESSED(bitmap, 0xe2 /* ALT-L */) ||
 	     UKBD_KEY_PRESSED(bitmap, 0xe6 /* ALT-R */)))
 		return (0x54);
 	return (keycode);
 }
 
 static int
 ukbd_key2scan(struct ukbd_softc *sc, int code, const uint64_t *bitmap, int up)
 {
 	static const int scan[] = {
 		/* 89 */
 		0x11c,	/* Enter */
 		/* 90-99 */
 		0x11d,	/* Ctrl-R */
 		0x135,	/* Divide */
 		0x137,	/* PrintScreen */
 		0x138,	/* Alt-R */
 		0x147,	/* Home */
 		0x148,	/* Up */
 		0x149,	/* PageUp */
 		0x14b,	/* Left */
 		0x14d,	/* Right */
 		0x14f,	/* End */
 		/* 100-109 */
 		0x150,	/* Down */
 		0x151,	/* PageDown */
 		0x152,	/* Insert */
 		0x153,	/* Delete */
 		0x146,	/* Pause/Break */
 		0x15b,	/* Win_L(Super_L) */
 		0x15c,	/* Win_R(Super_R) */
 		0x15d,	/* Application(Menu) */
 
 		/* SUN TYPE 6 USB KEYBOARD */
 		0x168,	/* Sun Type 6 Help */
 		0x15e,	/* Sun Type 6 Stop */
 		/* 110 - 119 */
 		0x15f,	/* Sun Type 6 Again */
 		0x160,	/* Sun Type 6 Props */
 		0x161,	/* Sun Type 6 Undo */
 		0x162,	/* Sun Type 6 Front */
 		0x163,	/* Sun Type 6 Copy */
 		0x164,	/* Sun Type 6 Open */
 		0x165,	/* Sun Type 6 Paste */
 		0x166,	/* Sun Type 6 Find */
 		0x167,	/* Sun Type 6 Cut */
 		0x125,	/* Sun Type 6 Mute */
 		/* 120 - 130 */
 		0x11f,	/* Sun Type 6 VolumeDown */
 		0x11e,	/* Sun Type 6 VolumeUp */
 		0x120,	/* Sun Type 6 PowerDown */
 
 		/* Japanese 106/109 keyboard */
 		0x73,	/* Keyboard Intl' 1 (backslash / underscore) */
 		0x70,	/* Keyboard Intl' 2 (Katakana / Hiragana) */
 		0x7d,	/* Keyboard Intl' 3 (Yen sign) (Not using in jp106/109) */
 		0x79,	/* Keyboard Intl' 4 (Henkan) */
 		0x7b,	/* Keyboard Intl' 5 (Muhenkan) */
 		0x5c,	/* Keyboard Intl' 6 (Keypad ,) (For PC-9821 layout) */
 		0x71,   /* Apple Keyboard JIS (Kana) */
 		0x72,   /* Apple Keyboard JIS (Eisu) */
 	};
 
 	if ((code >= 89) && (code < (int)(89 + nitems(scan)))) {
 		code = scan[code - 89];
 	}
 	/* PrintScreen */
 	if (code == 0x137 && (!(
 	    UKBD_KEY_PRESSED(bitmap, 0xe0 /* CTRL-L */) ||
 	    UKBD_KEY_PRESSED(bitmap, 0xe4 /* CTRL-R */) ||
 	    UKBD_KEY_PRESSED(bitmap, 0xe1 /* SHIFT-L */) ||
 	    UKBD_KEY_PRESSED(bitmap, 0xe5 /* SHIFT-R */)))) {
 		code |= SCAN_PREFIX_SHIFT;
 	}
 	/* Pause/Break */
 	if ((code == 0x146) && (!(
 	    UKBD_KEY_PRESSED(bitmap, 0xe0 /* CTRL-L */) ||
 	    UKBD_KEY_PRESSED(bitmap, 0xe4 /* CTRL-R */)))) {
 		code = (0x45 | SCAN_PREFIX_E1 | SCAN_PREFIX_CTL);
 	}
 	code |= (up ? SCAN_RELEASE : SCAN_PRESS);
 
 	if (code & SCAN_PREFIX) {
 		if (code & SCAN_PREFIX_CTL) {
 			/* Ctrl */
 			sc->sc_buffered_char[0] = (0x1d | (code & SCAN_RELEASE));
 			sc->sc_buffered_char[1] = (code & ~SCAN_PREFIX);
 		} else if (code & SCAN_PREFIX_SHIFT) {
 			/* Shift */
 			sc->sc_buffered_char[0] = (0x2a | (code & SCAN_RELEASE));
 			sc->sc_buffered_char[1] = (code & ~SCAN_PREFIX_SHIFT);
 		} else {
 			sc->sc_buffered_char[0] = (code & ~SCAN_PREFIX);
 			sc->sc_buffered_char[1] = 0;
 		}
 		return ((code & SCAN_PREFIX_E0) ? 0xe0 : 0xe1);
 	}
 	return (code);
 
 }
 
 #endif					/* UKBD_EMULATE_ATSCANCODE */
 
 static keyboard_switch_t ukbdsw = {
 	.probe = &ukbd__probe,
 	.init = &ukbd_init,
 	.term = &ukbd_term,
 	.intr = &ukbd_intr,
 	.test_if = &ukbd_test_if,
 	.enable = &ukbd_enable,
 	.disable = &ukbd_disable,
 	.read = &ukbd_read,
 	.check = &ukbd_check,
 	.read_char = &ukbd_read_char,
 	.check_char = &ukbd_check_char,
 	.ioctl = &ukbd_ioctl,
 	.lock = &ukbd_lock,
 	.clear_state = &ukbd_clear_state,
 	.get_state = &ukbd_get_state,
 	.set_state = &ukbd_set_state,
 	.poll = &ukbd_poll,
 };
 
 KEYBOARD_DRIVER(ukbd, ukbdsw, ukbd_configure);
 
 static int
 ukbd_driver_load(module_t mod, int what, void *arg)
 {
 	switch (what) {
 	case MOD_LOAD:
 		kbd_add_driver(&ukbd_kbd_driver);
 		break;
 	case MOD_UNLOAD:
 		kbd_delete_driver(&ukbd_kbd_driver);
 		break;
 	}
 	return (0);
 }
 
 static devclass_t ukbd_devclass;
 
 static device_method_t ukbd_methods[] = {
 	DEVMETHOD(device_probe, ukbd_probe),
 	DEVMETHOD(device_attach, ukbd_attach),
 	DEVMETHOD(device_detach, ukbd_detach),
 	DEVMETHOD(device_resume, ukbd_resume),
 
 	DEVMETHOD_END
 };
 
 static driver_t ukbd_driver = {
 	.name = "ukbd",
 	.methods = ukbd_methods,
 	.size = sizeof(struct ukbd_softc),
 };
 
 DRIVER_MODULE(ukbd, uhub, ukbd_driver, ukbd_devclass, ukbd_driver_load, 0);
 MODULE_DEPEND(ukbd, usb, 1, 1, 1);
 #ifdef EVDEV_SUPPORT
 MODULE_DEPEND(ukbd, evdev, 1, 1, 1);
 #endif
 MODULE_VERSION(ukbd, 1);
 USB_PNP_HOST_INFO(ukbd_devs);