diff --git a/sys/amd64/amd64/mp_machdep.c b/sys/amd64/amd64/mp_machdep.c
index 91737637b714..12abb8b6bf8b 100644
--- a/sys/amd64/amd64/mp_machdep.c
+++ b/sys/amd64/amd64/mp_machdep.c
@@ -1,1070 +1,1124 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause
  *
  * Copyright (c) 1996, by Steve Passe
  * Copyright (c) 2003, by Peter Wemm
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. The name of the developer may NOT be used to endorse or promote products
  *    derived from this software without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 #include "opt_acpi.h"
 #include "opt_cpu.h"
 #include "opt_ddb.h"
 #include "opt_kstack_pages.h"
 #include "opt_sched.h"
 #include "opt_smp.h"
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/bus.h>
 #include <sys/cpuset.h>
 #include <sys/domainset.h>
 #include <sys/kdb.h>
 #include <sys/kernel.h>
 #include <sys/ktr.h>
 #include <sys/lock.h>
 #include <sys/malloc.h>
 #include <sys/memrange.h>
 #include <sys/mutex.h>
 #include <sys/pcpu.h>
 #include <sys/proc.h>
 #include <sys/sched.h>
 #include <sys/smp.h>
 #include <sys/sysctl.h>
 
 #include <vm/vm.h>
 #include <vm/vm_param.h>
 #include <vm/pmap.h>
 #include <vm/vm_kern.h>
 #include <vm/vm_extern.h>
 #include <vm/vm_page.h>
 #include <vm/vm_phys.h>
 
 #include <x86/apicreg.h>
 #include <machine/clock.h>
 #include <machine/cputypes.h>
 #include <machine/cpufunc.h>
 #include <x86/mca.h>
 #include <machine/md_var.h>
 #include <machine/pcb.h>
 #include <machine/psl.h>
 #include <machine/smp.h>
 #include <machine/specialreg.h>
 #include <machine/tss.h>
 #include <x86/ucode.h>
 #include <machine/cpu.h>
 #include <x86/init.h>
 
 #ifdef DEV_ACPI
 #include <contrib/dev/acpica/include/acpi.h>
 #include <dev/acpica/acpivar.h>
 #endif
 
 #define WARMBOOT_TARGET		0
 #define WARMBOOT_OFF		(KERNBASE + 0x0467)
 #define WARMBOOT_SEG		(KERNBASE + 0x0469)
 
 #define CMOS_REG		(0x70)
 #define CMOS_DATA		(0x71)
 #define BIOS_RESET		(0x0f)
 #define BIOS_WARM		(0x0a)
 
 #define GiB(v)			(v ## ULL << 30)
 
 #define	AP_BOOTPT_SZ		(PAGE_SIZE * 4)
 
 /* Temporary variables for init_secondary()  */
 static char *doublefault_stack;
 static char *mce_stack;
 static char *nmi_stack;
 static char *dbg_stack;
 void *bootpcpu;
 
 extern u_int mptramp_la57;
 extern u_int mptramp_nx;
 smp_targeted_tlb_shootdown_t smp_targeted_tlb_shootdown = &smp_targeted_tlb_shootdown_native;
 /*
  * Local data and functions.
  */
 
 static int start_ap(int apic_id, vm_paddr_t boot_address);
 
 void
 smp_targeted_tlb_shootdown_native(pmap_t pmap, vm_offset_t addr1, vm_offset_t addr2,
     smp_invl_cb_t curcpu_cb, enum invl_op_codes op);
 /*
  * Initialize the IPI handlers and start up the AP's.
  */
 void
 cpu_mp_start(void)
 {
 	int i;
 
 	/* Initialize the logical ID to APIC ID table. */
 	for (i = 0; i < MAXCPU; i++) {
 		cpu_apic_ids[i] = -1;
 	}
 
 	/* Install an inter-CPU IPI for cache and TLB invalidations. */
 	setidt(IPI_INVLOP, pti ? IDTVEC(invlop_pti) : IDTVEC(invlop),
 	    SDT_SYSIGT, SEL_KPL, 0);
 
 	/* Install an inter-CPU IPI for all-CPU rendezvous */
 	setidt(IPI_RENDEZVOUS, pti ? IDTVEC(rendezvous_pti) :
 	    IDTVEC(rendezvous), SDT_SYSIGT, SEL_KPL, 0);
 
 	/* Install generic inter-CPU IPI handler */
 	setidt(IPI_BITMAP_VECTOR, pti ? IDTVEC(ipi_intr_bitmap_handler_pti) :
 	    IDTVEC(ipi_intr_bitmap_handler), SDT_SYSIGT, SEL_KPL, 0);
 
 	/* Install an inter-CPU IPI for CPU stop/restart */
 	setidt(IPI_STOP, pti ? IDTVEC(cpustop_pti) : IDTVEC(cpustop),
 	    SDT_SYSIGT, SEL_KPL, 0);
 
 	/* Install an inter-CPU IPI for CPU suspend/resume */
 	setidt(IPI_SUSPEND, pti ? IDTVEC(cpususpend_pti) : IDTVEC(cpususpend),
 	    SDT_SYSIGT, SEL_KPL, 0);
 
 	/* Install an IPI for calling delayed SWI */
 	setidt(IPI_SWI, pti ? IDTVEC(ipi_swi_pti) : IDTVEC(ipi_swi),
 	    SDT_SYSIGT, SEL_KPL, 0);
 
 	/* Set boot_cpu_id if needed. */
 	if (boot_cpu_id == -1) {
 		boot_cpu_id = PCPU_GET(apic_id);
 		cpu_info[boot_cpu_id].cpu_bsp = 1;
 	} else
 		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
 		    ("BSP's APIC ID doesn't match boot_cpu_id"));
 
 	/* Probe logical/physical core configuration. */
 	topo_probe();
 
 	assign_cpu_ids();
 
 	mptramp_la57 = la57;
 	mptramp_nx = pg_nx != 0;
 	MPASS(kernel_pmap->pm_cr3 < (1UL << 32));
 	mptramp_pagetables = kernel_pmap->pm_cr3;
 
 	/* Start each Application Processor */
 	start_all_aps();
 
 	set_interrupt_apic_ids();
 
 #if defined(DEV_ACPI) && MAXMEMDOM > 1
 	acpi_pxm_set_cpu_locality();
 #endif
 }
 
 /*
  * AP CPU's call this to initialize themselves.
  */
 void
 init_secondary(void)
 {
 	struct pcpu *pc;
 	struct nmi_pcpu *np;
 	struct user_segment_descriptor *gdt;
 	struct region_descriptor ap_gdt;
 	u_int64_t cr0;
 	int cpu, gsel_tss, x;
 
 	/* Set by the startup code for us to use */
 	cpu = bootAP;
 
 	/* Update microcode before doing anything else. */
 	ucode_load_ap(cpu);
 
 	/* Initialize the PCPU area. */
 	pc = bootpcpu;
 	pcpu_init(pc, cpu, sizeof(struct pcpu));
 	dpcpu_init(dpcpu, cpu);
 	pc->pc_apic_id = cpu_apic_ids[cpu];
 	pc->pc_prvspace = pc;
 	pc->pc_curthread = 0;
 	pc->pc_tssp = &pc->pc_common_tss;
 	pc->pc_rsp0 = 0;
 	pc->pc_pti_rsp0 = (((vm_offset_t)&pc->pc_pti_stack +
 	    PC_PTI_STACK_SZ * sizeof(uint64_t)) & ~0xful);
 	gdt = pc->pc_gdt;
 	pc->pc_tss = (struct system_segment_descriptor *)&gdt[GPROC0_SEL];
 	pc->pc_fs32p = &gdt[GUFS32_SEL];
 	pc->pc_gs32p = &gdt[GUGS32_SEL];
 	pc->pc_ldt = (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL];
 	pc->pc_ucr3_load_mask = PMAP_UCR3_NOMASK;
 	/* See comment in pmap_bootstrap(). */
 	pc->pc_pcid_next = PMAP_PCID_KERN + 2;
 	pc->pc_pcid_gen = 1;
 	pc->pc_kpmap_store.pm_pcid = PMAP_PCID_KERN;
 	pc->pc_kpmap_store.pm_gen = 1;
 
 	pc->pc_smp_tlb_gen = 1;
 
 	/* Init tss */
 	pc->pc_common_tss = __pcpu[0].pc_common_tss;
 	pc->pc_common_tss.tss_iobase = sizeof(struct amd64tss) +
 	    IOPERM_BITMAP_SIZE;
 	pc->pc_common_tss.tss_rsp0 = 0;
 
 	/* The doublefault stack runs on IST1. */
 	np = ((struct nmi_pcpu *)&doublefault_stack[DBLFAULT_STACK_SIZE]) - 1;
 	np->np_pcpu = (register_t)pc;
 	pc->pc_common_tss.tss_ist1 = (long)np;
 
 	/* The NMI stack runs on IST2. */
 	np = ((struct nmi_pcpu *)&nmi_stack[NMI_STACK_SIZE]) - 1;
 	np->np_pcpu = (register_t)pc;
 	pc->pc_common_tss.tss_ist2 = (long)np;
 
 	/* The MC# stack runs on IST3. */
 	np = ((struct nmi_pcpu *)&mce_stack[MCE_STACK_SIZE]) - 1;
 	np->np_pcpu = (register_t)pc;
 	pc->pc_common_tss.tss_ist3 = (long)np;
 
 	/* The DB# stack runs on IST4. */
 	np = ((struct nmi_pcpu *)&dbg_stack[DBG_STACK_SIZE]) - 1;
 	np->np_pcpu = (register_t)pc;
 	pc->pc_common_tss.tss_ist4 = (long)np;
 
 	/* Prepare private GDT */
 	gdt_segs[GPROC0_SEL].ssd_base = (long)&pc->pc_common_tss;
 	for (x = 0; x < NGDT; x++) {
 		if (x != GPROC0_SEL && x != GPROC0_SEL + 1 &&
 		    x != GUSERLDT_SEL && x != GUSERLDT_SEL + 1)
 			ssdtosd(&gdt_segs[x], &gdt[x]);
 	}
 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
 	ap_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
 	ap_gdt.rd_base = (u_long)gdt;
 	lgdt(&ap_gdt);			/* does magic intra-segment return */
 
 	wrmsr(MSR_FSBASE, 0);		/* User value */
 	wrmsr(MSR_GSBASE, (uint64_t)pc);
 	wrmsr(MSR_KGSBASE, 0);		/* User value */
 	fix_cpuid();
 
 	lidt(&r_idt);
 
 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 	ltr(gsel_tss);
 
 	/*
 	 * Set to a known state:
 	 * Set by mpboot.s: CR0_PG, CR0_PE
 	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
 	 */
 	cr0 = rcr0();
 	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
 	load_cr0(cr0);
 
 	amd64_conf_fast_syscall();
 
 	/* signal our startup to the BSP. */
 	mp_naps++;
 
 	/* Spin until the BSP releases the AP's. */
 	while (atomic_load_acq_int(&aps_ready) == 0)
 		ia32_pause();
 
 	init_secondary_tail();
 }
 
 static void
 amd64_mp_alloc_pcpu(void)
 {
 	vm_page_t m;
 	int cpu;
 
 	/* Allocate pcpu areas to the correct domain. */
 	for (cpu = 1; cpu < mp_ncpus; cpu++) {
 #ifdef NUMA
 		m = NULL;
 		if (vm_ndomains > 1) {
 			m = vm_page_alloc_noobj_domain(
 			    acpi_pxm_get_cpu_locality(cpu_apic_ids[cpu]),
 			    VM_ALLOC_ZERO);
 		}
 		if (m == NULL)
 #endif
 			m = vm_page_alloc_noobj(VM_ALLOC_ZERO);
 		if (m == NULL)
 			panic("cannot alloc pcpu page for cpu %d", cpu);
 		pmap_qenter((vm_offset_t)&__pcpu[cpu], &m, 1);
 	}
 }
 
 /*
  * start each AP in our list
  */
 int
 start_all_aps(void)
 {
 	vm_page_t m_boottramp, m_pml4, m_pdp, m_pd[4];
 	pml5_entry_t old_pml45;
 	pml4_entry_t *v_pml4;
 	pdp_entry_t *v_pdp;
 	pd_entry_t *v_pd;
 	vm_paddr_t boot_address;
 	u_int32_t mpbioswarmvec;
 	int apic_id, cpu, domain, i;
 	u_char mpbiosreason;
 
 	amd64_mp_alloc_pcpu();
 	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
 
 	MPASS(bootMP_size <= PAGE_SIZE);
 	m_boottramp = vm_page_alloc_noobj_contig(0, 1, 0,
 	    (1ULL << 20), /* Trampoline should be below 1M for real mode */
 	    PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
 	boot_address = VM_PAGE_TO_PHYS(m_boottramp);
 
 	/* Create a transient 1:1 mapping of low 4G */
 	if (la57) {
 		m_pml4 = pmap_page_alloc_below_4g(true);
 		v_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pml4));
 	} else {
 		v_pml4 = &kernel_pmap->pm_pmltop[0];
 	}
 	m_pdp = pmap_page_alloc_below_4g(true);
 	v_pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pdp));
 	m_pd[0] = pmap_page_alloc_below_4g(false);
 	v_pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd[0]));
 	for (i = 0; i < NPDEPG; i++)
 		v_pd[i] = (i << PDRSHIFT) | X86_PG_V | X86_PG_RW | X86_PG_A |
 		    X86_PG_M | PG_PS;
 	m_pd[1] = pmap_page_alloc_below_4g(false);
 	v_pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd[1]));
 	for (i = 0; i < NPDEPG; i++)
 		v_pd[i] = (NBPDP + (i << PDRSHIFT)) | X86_PG_V | X86_PG_RW |
 		    X86_PG_A | X86_PG_M | PG_PS;
 	m_pd[2] = pmap_page_alloc_below_4g(false);
 	v_pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd[2]));
 	for (i = 0; i < NPDEPG; i++)
 		v_pd[i] = (2UL * NBPDP + (i << PDRSHIFT)) | X86_PG_V |
 		    X86_PG_RW | X86_PG_A | X86_PG_M | PG_PS;
 	m_pd[3] = pmap_page_alloc_below_4g(false);
 	v_pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd[3]));
 	for (i = 0; i < NPDEPG; i++)
 		v_pd[i] = (3UL * NBPDP + (i << PDRSHIFT)) | X86_PG_V |
 		    X86_PG_RW | X86_PG_A | X86_PG_M | PG_PS;
 	v_pdp[0] = VM_PAGE_TO_PHYS(m_pd[0]) | X86_PG_V |
 	    X86_PG_RW | X86_PG_A | X86_PG_M;
 	v_pdp[1] = VM_PAGE_TO_PHYS(m_pd[1]) | X86_PG_V |
 	    X86_PG_RW | X86_PG_A | X86_PG_M;
 	v_pdp[2] = VM_PAGE_TO_PHYS(m_pd[2]) | X86_PG_V |
 	    X86_PG_RW | X86_PG_A | X86_PG_M;
 	v_pdp[3] = VM_PAGE_TO_PHYS(m_pd[3]) | X86_PG_V |
 	    X86_PG_RW | X86_PG_A | X86_PG_M;
 	old_pml45 = kernel_pmap->pm_pmltop[0];
 	if (la57) {
 		kernel_pmap->pm_pmltop[0] = VM_PAGE_TO_PHYS(m_pml4) |
 		    X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
 	}
 	v_pml4[0] = VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V |
 	    X86_PG_RW | X86_PG_A | X86_PG_M;
 	pmap_invalidate_all(kernel_pmap);
 
 	/* copy the AP 1st level boot code */
 	bcopy(mptramp_start, (void *)PHYS_TO_DMAP(boot_address), bootMP_size);
 	if (bootverbose)
 		printf("AP boot address %#lx\n", boot_address);
 
 	/* save the current value of the warm-start vector */
 	if (!efi_boot)
 		mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
 	outb(CMOS_REG, BIOS_RESET);
 	mpbiosreason = inb(CMOS_DATA);
 
 	/* setup a vector to our boot code */
 	if (!efi_boot) {
 		*((volatile u_short *)WARMBOOT_OFF) = WARMBOOT_TARGET;
 		*((volatile u_short *)WARMBOOT_SEG) = (boot_address >> 4);
 	}
 	outb(CMOS_REG, BIOS_RESET);
 	outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
 
 	/* start each AP */
 	domain = 0;
 	for (cpu = 1; cpu < mp_ncpus; cpu++) {
 		apic_id = cpu_apic_ids[cpu];
 #ifdef NUMA
 		if (vm_ndomains > 1)
 			domain = acpi_pxm_get_cpu_locality(apic_id);
 #endif
 		/* allocate and set up an idle stack data page */
 		bootstacks[cpu] = kmem_malloc(kstack_pages * PAGE_SIZE,
 		    M_WAITOK | M_ZERO);
 		doublefault_stack = kmem_malloc(DBLFAULT_STACK_SIZE,
 		    M_WAITOK | M_ZERO);
 		mce_stack = kmem_malloc(MCE_STACK_SIZE,
 		    M_WAITOK | M_ZERO);
 		nmi_stack = kmem_malloc_domainset(
 		    DOMAINSET_PREF(domain), NMI_STACK_SIZE, M_WAITOK | M_ZERO);
 		dbg_stack = kmem_malloc_domainset(
 		    DOMAINSET_PREF(domain), DBG_STACK_SIZE, M_WAITOK | M_ZERO);
 		dpcpu = kmem_malloc_domainset(DOMAINSET_PREF(domain),
 		    DPCPU_SIZE, M_WAITOK | M_ZERO);
 
 		bootpcpu = &__pcpu[cpu];
 		bootSTK = (char *)bootstacks[cpu] +
 		    kstack_pages * PAGE_SIZE - 8;
 		bootAP = cpu;
 
 		/* attempt to start the Application Processor */
 		if (!start_ap(apic_id, boot_address)) {
 			/* restore the warmstart vector */
 			if (!efi_boot)
 				*(u_int32_t *)WARMBOOT_OFF = mpbioswarmvec;
 			panic("AP #%d (PHY# %d) failed!", cpu, apic_id);
 		}
 
 		CPU_SET(cpu, &all_cpus);	/* record AP in CPU map */
 	}
 
 	/* restore the warmstart vector */
 	if (!efi_boot)
 		*(u_int32_t *)WARMBOOT_OFF = mpbioswarmvec;
 
 	outb(CMOS_REG, BIOS_RESET);
 	outb(CMOS_DATA, mpbiosreason);
 
 	/* Destroy transient 1:1 mapping */
 	kernel_pmap->pm_pmltop[0] = old_pml45;
 	invlpg(0);
 	if (la57)
 		vm_page_free(m_pml4);
 	vm_page_free(m_pd[3]);
 	vm_page_free(m_pd[2]);
 	vm_page_free(m_pd[1]);
 	vm_page_free(m_pd[0]);
 	vm_page_free(m_pdp);
 	vm_page_free(m_boottramp);
 
 	/* number of APs actually started */
 	return (mp_naps);
 }
 
 /*
  * This function starts the AP (application processor) identified
  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
  * to accomplish this.  This is necessary because of the nuances
  * of the different hardware we might encounter.  It isn't pretty,
  * but it seems to work.
  */
 static int
 start_ap(int apic_id, vm_paddr_t boot_address)
 {
 	int vector, ms;
 	int cpus;
 
 	/* calculate the vector */
 	vector = (boot_address >> 12) & 0xff;
 
 	/* used as a watchpoint to signal AP startup */
 	cpus = mp_naps;
 
 	ipi_startup(apic_id, vector);
 
 	/* Wait up to 5 seconds for it to start. */
 	for (ms = 0; ms < 5000; ms++) {
 		if (mp_naps > cpus)
 			return 1;	/* return SUCCESS */
 		DELAY(1000);
 	}
 	return 0;		/* return FAILURE */
 }
 
 /*
  * Flush the TLB on other CPU's
  */
 
 /*
  * These variables are initialized at startup to reflect how each of
  * the different kinds of invalidations should be performed on the
  * current machine and environment.
  */
 static enum invl_op_codes invl_op_tlb;
 static enum invl_op_codes invl_op_pgrng;
 static enum invl_op_codes invl_op_pg;
 
 /*
  * Scoreboard of IPI completion notifications from target to IPI initiator.
  *
  * Each CPU can initiate shootdown IPI independently from other CPUs.
  * Initiator enters critical section, then fills its local PCPU
  * shootdown info (pc_smp_tlb_ vars), then clears scoreboard generation
  * at location (cpu, my_cpuid) for each target cpu.  After that IPI is
  * sent to all targets which scan for zeroed scoreboard generation
  * words.  Upon finding such word the shootdown data is read from
  * corresponding cpu's pcpu, and generation is set.  Meantime initiator
  * loops waiting for all zeroed generations in scoreboard to update.
  */
 static uint32_t *invl_scoreboard;
 
 static void
 invl_scoreboard_init(void *arg __unused)
 {
 	u_int i;
 
 	invl_scoreboard = malloc(sizeof(uint32_t) * (mp_maxid + 1) *
 	    (mp_maxid + 1), M_DEVBUF, M_WAITOK);
 	for (i = 0; i < (mp_maxid + 1) * (mp_maxid + 1); i++)
 		invl_scoreboard[i] = 1;
 
 	if (pmap_pcid_enabled) {
 		if (invpcid_works) {
 			if (pti)
 				invl_op_tlb = INVL_OP_TLB_INVPCID_PTI;
 			else
 				invl_op_tlb = INVL_OP_TLB_INVPCID;
 			invl_op_pgrng = INVL_OP_PGRNG_INVPCID;
 			invl_op_pg = INVL_OP_PG_INVPCID;
 		} else {
 			invl_op_tlb = INVL_OP_TLB_PCID;
 			invl_op_pgrng = INVL_OP_PGRNG_PCID;
 			invl_op_pg = INVL_OP_PG_PCID;
 		}
 	} else {
 		invl_op_tlb = INVL_OP_TLB;
 		invl_op_pgrng = INVL_OP_PGRNG;
 		invl_op_pg = INVL_OP_PG;
 	}
 }
 SYSINIT(invl_ops, SI_SUB_SMP - 1, SI_ORDER_ANY, invl_scoreboard_init, NULL);
 
 static uint32_t *
 invl_scoreboard_getcpu(u_int cpu)
 {
 	return (invl_scoreboard + cpu * (mp_maxid + 1));
 }
 
 static uint32_t *
 invl_scoreboard_slot(u_int cpu)
 {
 	return (invl_scoreboard_getcpu(cpu) + PCPU_GET(cpuid));
 }
 
 /*
  * Used by the pmap to request cache or TLB invalidation on local and
  * remote processors.  Mask provides the set of remote CPUs that are
  * to be signalled with the invalidation IPI.  As an optimization, the
  * curcpu_cb callback is invoked on the calling CPU in a critical
  * section while waiting for the remote CPUs to complete the operation.
  *
  * The callback function is called unconditionally on the caller's
  * underlying processor, even when this processor is not set in the
  * mask.  So, the callback function must be prepared to handle such
  * spurious invocations.
  *
  * Interrupts must be enabled when calling the function with smp
  * started, to avoid deadlock with other IPIs that are protected with
  * smp_ipi_mtx spinlock at the initiator side.
  *
  * Function must be called with the thread pinned, and it unpins on
  * completion.
  */
 void
 smp_targeted_tlb_shootdown_native(pmap_t pmap, vm_offset_t addr1, vm_offset_t addr2,
     smp_invl_cb_t curcpu_cb, enum invl_op_codes op)
 {
 	cpuset_t mask;
 	uint32_t generation, *p_cpudone;
 	int cpu;
 	bool is_all;
 
 	/*
 	 * It is not necessary to signal other CPUs while booting or
 	 * when in the debugger.
 	 */
 	if (__predict_false(kdb_active || KERNEL_PANICKED() || !smp_started))
 		goto local_cb;
 
 	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
 
 	/*
 	 * Make a stable copy of the set of CPUs on which the pmap is active.
 	 * See if we have to interrupt other CPUs.
 	 */
 	CPU_COPY(pmap_invalidate_cpu_mask(pmap), &mask);
 	is_all = CPU_CMP(&mask, &all_cpus) == 0;
 	CPU_CLR(curcpu, &mask);
 	if (CPU_EMPTY(&mask))
 		goto local_cb;
 
 	/*
 	 * Initiator must have interrupts enabled, which prevents
 	 * non-invalidation IPIs that take smp_ipi_mtx spinlock,
 	 * from deadlocking with us.  On the other hand, preemption
 	 * must be disabled to pin initiator to the instance of the
 	 * pcpu pc_smp_tlb data and scoreboard line.
 	 */
 	KASSERT((read_rflags() & PSL_I) != 0,
 	    ("smp_targeted_tlb_shootdown: interrupts disabled"));
 	critical_enter();
 
 	PCPU_SET(smp_tlb_addr1, addr1);
 	PCPU_SET(smp_tlb_addr2, addr2);
 	PCPU_SET(smp_tlb_pmap, pmap);
 	generation = PCPU_GET(smp_tlb_gen);
 	if (++generation == 0)
 		generation = 1;
 	PCPU_SET(smp_tlb_gen, generation);
 	PCPU_SET(smp_tlb_op, op);
 	/* Fence between filling smp_tlb fields and clearing scoreboard. */
 	atomic_thread_fence_rel();
 
 	CPU_FOREACH_ISSET(cpu, &mask) {
 		KASSERT(*invl_scoreboard_slot(cpu) != 0,
 		    ("IPI scoreboard is zero, initiator %d target %d",
 		    curcpu, cpu));
 		*invl_scoreboard_slot(cpu) = 0;
 	}
 
 	/*
 	 * IPI acts as a fence between writing to the scoreboard above
 	 * (zeroing slot) and reading from it below (wait for
 	 * acknowledgment).
 	 */
 	if (is_all) {
 		ipi_all_but_self(IPI_INVLOP);
 	} else {
 		ipi_selected(mask, IPI_INVLOP);
 	}
 	curcpu_cb(pmap, addr1, addr2);
 	CPU_FOREACH_ISSET(cpu, &mask) {
 		p_cpudone = invl_scoreboard_slot(cpu);
 		while (atomic_load_int(p_cpudone) != generation)
 			ia32_pause();
 	}
 
 	/*
 	 * Unpin before leaving critical section.  If the thread owes
 	 * preemption, this allows scheduler to select thread on any
 	 * CPU from its cpuset.
 	 */
 	sched_unpin();
 	critical_exit();
 
 	return;
 
 local_cb:
 	critical_enter();
 	curcpu_cb(pmap, addr1, addr2);
 	sched_unpin();
 	critical_exit();
 }
 
 void
 smp_masked_invltlb(pmap_t pmap, smp_invl_cb_t curcpu_cb)
 {
+	if (invlpgb_works && pmap == kernel_pmap) {
+		invlpgb(INVLPGB_GLOB, 0, 0);
+
+		/*
+		 * TLBSYNC syncs only against INVLPGB executed on the
+		 * same CPU.  Since current thread is pinned by
+		 * caller, we do not need to enter critical section to
+		 * prevent migration.
+		 */
+		tlbsync();
+		sched_unpin();
+		return;
+	}
+
 	smp_targeted_tlb_shootdown(pmap, 0, 0, curcpu_cb, invl_op_tlb);
 #ifdef COUNT_XINVLTLB_HITS
 	ipi_global++;
 #endif
 }
 
 void
 smp_masked_invlpg(vm_offset_t addr, pmap_t pmap, smp_invl_cb_t curcpu_cb)
 {
+	if (invlpgb_works && pmap == kernel_pmap) {
+		invlpgb(INVLPGB_GLOB | INVLPGB_VA | trunc_page(addr), 0, 0);
+		tlbsync();
+		sched_unpin();
+		return;
+	}
+
 	smp_targeted_tlb_shootdown(pmap, addr, 0, curcpu_cb, invl_op_pg);
 #ifdef COUNT_XINVLTLB_HITS
 	ipi_page++;
 #endif
 }
 
 void
 smp_masked_invlpg_range(vm_offset_t addr1, vm_offset_t addr2, pmap_t pmap,
     smp_invl_cb_t curcpu_cb)
 {
+	if (invlpgb_works && pmap == kernel_pmap) {
+		vm_offset_t va;
+		uint64_t cnt, total;
+
+		addr1 = trunc_page(addr1);
+		addr2 = round_page(addr2);
+		total = atop(addr2 - addr1);
+		for (va = addr1; total > 0;) {
+			if ((va & PDRMASK) != 0 || total < NPDEPG) {
+				cnt = atop(NBPDR - (va & PDRMASK));
+				if (cnt > total)
+					cnt = total;
+				if (cnt > invlpgb_maxcnt + 1)
+					cnt = invlpgb_maxcnt + 1;
+				invlpgb(INVLPGB_GLOB | INVLPGB_VA | va, 0,
+				    cnt - 1);
+				va += ptoa(cnt);
+				total -= cnt;
+			} else {
+				cnt = total / NPTEPG;
+				if (cnt > invlpgb_maxcnt + 1)
+					cnt = invlpgb_maxcnt + 1;
+				invlpgb(INVLPGB_GLOB | INVLPGB_VA | va, 0,
+				    INVLPGB_2M_CNT | (cnt - 1));
+				va += cnt << PDRSHIFT;
+				total -= cnt * NPTEPG;
+			}
+		}
+		tlbsync();
+		sched_unpin();
+		return;
+	}
+
 	smp_targeted_tlb_shootdown(pmap, addr1, addr2, curcpu_cb,
 	    invl_op_pgrng);
 #ifdef COUNT_XINVLTLB_HITS
 	ipi_range++;
 	ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
 #endif
 }
 
 void
 smp_cache_flush(smp_invl_cb_t curcpu_cb)
 {
 	smp_targeted_tlb_shootdown(kernel_pmap, 0, 0, curcpu_cb, INVL_OP_CACHE);
 }
 
 /*
  * Handlers for TLB related IPIs
  */
 static void
 invltlb_handler(pmap_t smp_tlb_pmap)
 {
 #ifdef COUNT_XINVLTLB_HITS
 	xhits_gbl[PCPU_GET(cpuid)]++;
 #endif /* COUNT_XINVLTLB_HITS */
 #ifdef COUNT_IPIS
 	(*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
 #endif /* COUNT_IPIS */
 
 	if (smp_tlb_pmap == kernel_pmap)
 		invltlb_glob();
 	else
 		invltlb();
 }
 
 static void
 invltlb_invpcid_handler(pmap_t smp_tlb_pmap)
 {
 	struct invpcid_descr d;
 
 #ifdef COUNT_XINVLTLB_HITS
 	xhits_gbl[PCPU_GET(cpuid)]++;
 #endif /* COUNT_XINVLTLB_HITS */
 #ifdef COUNT_IPIS
 	(*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
 #endif /* COUNT_IPIS */
 
 	d.pcid = pmap_get_pcid(smp_tlb_pmap);
 	d.pad = 0;
 	d.addr = 0;
 	invpcid(&d, smp_tlb_pmap == kernel_pmap ? INVPCID_CTXGLOB :
 	    INVPCID_CTX);
 }
 
 static void
 invltlb_invpcid_pti_handler(pmap_t smp_tlb_pmap)
 {
 	struct invpcid_descr d;
 
 #ifdef COUNT_XINVLTLB_HITS
 	xhits_gbl[PCPU_GET(cpuid)]++;
 #endif /* COUNT_XINVLTLB_HITS */
 #ifdef COUNT_IPIS
 	(*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
 #endif /* COUNT_IPIS */
 
 	d.pcid = pmap_get_pcid(smp_tlb_pmap);
 	d.pad = 0;
 	d.addr = 0;
 	if (smp_tlb_pmap == kernel_pmap) {
 		/*
 		 * This invalidation actually needs to clear kernel
 		 * mappings from the TLB in the current pmap, but
 		 * since we were asked for the flush in the kernel
 		 * pmap, achieve it by performing global flush.
 		 */
 		invpcid(&d, INVPCID_CTXGLOB);
 	} else {
 		invpcid(&d, INVPCID_CTX);
 		if (smp_tlb_pmap == PCPU_GET(curpmap) &&
 		    smp_tlb_pmap->pm_ucr3 != PMAP_NO_CR3)
 			PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
 	}
 }
 
 static void
 invltlb_pcid_handler(pmap_t smp_tlb_pmap)
 {
 #ifdef COUNT_XINVLTLB_HITS
 	xhits_gbl[PCPU_GET(cpuid)]++;
 #endif /* COUNT_XINVLTLB_HITS */
 #ifdef COUNT_IPIS
 	(*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
 #endif /* COUNT_IPIS */
 
 	if (smp_tlb_pmap == kernel_pmap) {
 		invltlb_glob();
 	} else {
 		/*
 		 * The current pmap might not be equal to
 		 * smp_tlb_pmap.  The clearing of the pm_gen in
 		 * pmap_invalidate_all() takes care of TLB
 		 * invalidation when switching to the pmap on this
 		 * CPU.
 		 */
 		if (smp_tlb_pmap == PCPU_GET(curpmap)) {
 			load_cr3(smp_tlb_pmap->pm_cr3 |
 			    pmap_get_pcid(smp_tlb_pmap));
 			if (smp_tlb_pmap->pm_ucr3 != PMAP_NO_CR3)
 				PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
 		}
 	}
 }
 
 static void
 invlpg_handler(vm_offset_t smp_tlb_addr1)
 {
 #ifdef COUNT_XINVLTLB_HITS
 	xhits_pg[PCPU_GET(cpuid)]++;
 #endif /* COUNT_XINVLTLB_HITS */
 #ifdef COUNT_IPIS
 	(*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
 #endif /* COUNT_IPIS */
 
 	invlpg(smp_tlb_addr1);
 }
 
 static void
 invlpg_invpcid_handler(pmap_t smp_tlb_pmap, vm_offset_t smp_tlb_addr1)
 {
 	struct invpcid_descr d;
 
 #ifdef COUNT_XINVLTLB_HITS
 	xhits_pg[PCPU_GET(cpuid)]++;
 #endif /* COUNT_XINVLTLB_HITS */
 #ifdef COUNT_IPIS
 	(*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
 #endif /* COUNT_IPIS */
 
 	pmap_invlpg(smp_tlb_pmap, smp_tlb_addr1);
 	if (smp_tlb_pmap == PCPU_GET(curpmap) &&
 	    smp_tlb_pmap->pm_ucr3 != PMAP_NO_CR3 &&
 	    PCPU_GET(ucr3_load_mask) == PMAP_UCR3_NOMASK) {
 		d.pcid = pmap_get_pcid(smp_tlb_pmap) | PMAP_PCID_USER_PT;
 		d.pad = 0;
 		d.addr = smp_tlb_addr1;
 		invpcid(&d, INVPCID_ADDR);
 	}
 }
 
 static void
 invlpg_pcid_handler(pmap_t smp_tlb_pmap, vm_offset_t smp_tlb_addr1)
 {
 	uint64_t kcr3, ucr3;
 	uint32_t pcid;
 
 #ifdef COUNT_XINVLTLB_HITS
 	xhits_pg[PCPU_GET(cpuid)]++;
 #endif /* COUNT_XINVLTLB_HITS */
 #ifdef COUNT_IPIS
 	(*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
 #endif /* COUNT_IPIS */
 
 	invlpg(smp_tlb_addr1);
 	if (smp_tlb_pmap == PCPU_GET(curpmap) &&
 	    (ucr3 = smp_tlb_pmap->pm_ucr3) != PMAP_NO_CR3 &&
 	    PCPU_GET(ucr3_load_mask) == PMAP_UCR3_NOMASK) {
 		pcid = pmap_get_pcid(smp_tlb_pmap);
 		kcr3 = smp_tlb_pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
 		ucr3 |= pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
 		pmap_pti_pcid_invlpg(ucr3, kcr3, smp_tlb_addr1);
 	}
 }
 
 static void
 invlrng_handler(vm_offset_t smp_tlb_addr1, vm_offset_t smp_tlb_addr2)
 {
 	vm_offset_t addr;
 
 #ifdef COUNT_XINVLTLB_HITS
 	xhits_rng[PCPU_GET(cpuid)]++;
 #endif /* COUNT_XINVLTLB_HITS */
 #ifdef COUNT_IPIS
 	(*ipi_invlrng_counts[PCPU_GET(cpuid)])++;
 #endif /* COUNT_IPIS */
 
 	addr = smp_tlb_addr1;
 	do {
 		invlpg(addr);
 		addr += PAGE_SIZE;
 	} while (addr < smp_tlb_addr2);
 }
 
 static void
 invlrng_invpcid_handler(pmap_t smp_tlb_pmap, vm_offset_t smp_tlb_addr1,
     vm_offset_t smp_tlb_addr2)
 {
 	struct invpcid_descr d;
 	vm_offset_t addr;
 
 #ifdef COUNT_XINVLTLB_HITS
 	xhits_rng[PCPU_GET(cpuid)]++;
 #endif /* COUNT_XINVLTLB_HITS */
 #ifdef COUNT_IPIS
 	(*ipi_invlrng_counts[PCPU_GET(cpuid)])++;
 #endif /* COUNT_IPIS */
 
 	addr = smp_tlb_addr1;
 	if (smp_tlb_pmap == kernel_pmap && PCPU_GET(pcid_invlpg_workaround)) {
 		struct invpcid_descr d = { 0 };
 
 		invpcid(&d, INVPCID_CTXGLOB);
 	} else {
 		do {
 			invlpg(addr);
 			addr += PAGE_SIZE;
 		} while (addr < smp_tlb_addr2);
 	}
 	if (smp_tlb_pmap == PCPU_GET(curpmap) &&
 	    smp_tlb_pmap->pm_ucr3 != PMAP_NO_CR3 &&
 	    PCPU_GET(ucr3_load_mask) == PMAP_UCR3_NOMASK) {
 		d.pcid = pmap_get_pcid(smp_tlb_pmap) | PMAP_PCID_USER_PT;
 		d.pad = 0;
 		d.addr = smp_tlb_addr1;
 		do {
 			invpcid(&d, INVPCID_ADDR);
 			d.addr += PAGE_SIZE;
 		} while (d.addr < smp_tlb_addr2);
 	}
 }
 
 static void
 invlrng_pcid_handler(pmap_t smp_tlb_pmap, vm_offset_t smp_tlb_addr1,
     vm_offset_t smp_tlb_addr2)
 {
 	vm_offset_t addr;
 	uint64_t kcr3, ucr3;
 	uint32_t pcid;
 
 #ifdef COUNT_XINVLTLB_HITS
 	xhits_rng[PCPU_GET(cpuid)]++;
 #endif /* COUNT_XINVLTLB_HITS */
 #ifdef COUNT_IPIS
 	(*ipi_invlrng_counts[PCPU_GET(cpuid)])++;
 #endif /* COUNT_IPIS */
 
 	addr = smp_tlb_addr1;
 	do {
 		invlpg(addr);
 		addr += PAGE_SIZE;
 	} while (addr < smp_tlb_addr2);
 	if (smp_tlb_pmap == PCPU_GET(curpmap) &&
 	    (ucr3 = smp_tlb_pmap->pm_ucr3) != PMAP_NO_CR3 &&
 	    PCPU_GET(ucr3_load_mask) == PMAP_UCR3_NOMASK) {
 		pcid = pmap_get_pcid(smp_tlb_pmap);
 		kcr3 = smp_tlb_pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
 		ucr3 |= pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
 		pmap_pti_pcid_invlrng(ucr3, kcr3, smp_tlb_addr1, smp_tlb_addr2);
 	}
 }
 
 static void
 invlcache_handler(void)
 {
 #ifdef COUNT_IPIS
 	(*ipi_invlcache_counts[PCPU_GET(cpuid)])++;
 #endif /* COUNT_IPIS */
 	wbinvd();
 }
 
 static void
 invlop_handler_one_req(enum invl_op_codes smp_tlb_op, pmap_t smp_tlb_pmap,
     vm_offset_t smp_tlb_addr1, vm_offset_t smp_tlb_addr2)
 {
 	switch (smp_tlb_op) {
 	case INVL_OP_TLB:
 		invltlb_handler(smp_tlb_pmap);
 		break;
 	case INVL_OP_TLB_INVPCID:
 		invltlb_invpcid_handler(smp_tlb_pmap);
 		break;
 	case INVL_OP_TLB_INVPCID_PTI:
 		invltlb_invpcid_pti_handler(smp_tlb_pmap);
 		break;
 	case INVL_OP_TLB_PCID:
 		invltlb_pcid_handler(smp_tlb_pmap);
 		break;
 	case INVL_OP_PGRNG:
 		invlrng_handler(smp_tlb_addr1, smp_tlb_addr2);
 		break;
 	case INVL_OP_PGRNG_INVPCID:
 		invlrng_invpcid_handler(smp_tlb_pmap, smp_tlb_addr1,
 		    smp_tlb_addr2);
 		break;
 	case INVL_OP_PGRNG_PCID:
 		invlrng_pcid_handler(smp_tlb_pmap, smp_tlb_addr1,
 		    smp_tlb_addr2);
 		break;
 	case INVL_OP_PG:
 		invlpg_handler(smp_tlb_addr1);
 		break;
 	case INVL_OP_PG_INVPCID:
 		invlpg_invpcid_handler(smp_tlb_pmap, smp_tlb_addr1);
 		break;
 	case INVL_OP_PG_PCID:
 		invlpg_pcid_handler(smp_tlb_pmap, smp_tlb_addr1);
 		break;
 	case INVL_OP_CACHE:
 		invlcache_handler();
 		break;
 	default:
 		__assert_unreachable();
 		break;
 	}
 }
 
 void
 invlop_handler(void)
 {
 	struct pcpu *initiator_pc;
 	pmap_t smp_tlb_pmap;
 	vm_offset_t smp_tlb_addr1, smp_tlb_addr2;
 	u_int initiator_cpu_id;
 	enum invl_op_codes smp_tlb_op;
 	uint32_t *scoreboard, smp_tlb_gen;
 
 	scoreboard = invl_scoreboard_getcpu(PCPU_GET(cpuid));
 	for (;;) {
 		for (initiator_cpu_id = 0; initiator_cpu_id <= mp_maxid;
 		    initiator_cpu_id++) {
 			if (atomic_load_int(&scoreboard[initiator_cpu_id]) == 0)
 				break;
 		}
 		if (initiator_cpu_id > mp_maxid)
 			break;
 		initiator_pc = cpuid_to_pcpu[initiator_cpu_id];
 
 		/*
 		 * This acquire fence and its corresponding release
 		 * fence in smp_targeted_tlb_shootdown() is between
 		 * reading zero scoreboard slot and accessing PCPU of
 		 * initiator for pc_smp_tlb values.
 		 */
 		atomic_thread_fence_acq();
 		smp_tlb_pmap = initiator_pc->pc_smp_tlb_pmap;
 		smp_tlb_addr1 = initiator_pc->pc_smp_tlb_addr1;
 		smp_tlb_addr2 = initiator_pc->pc_smp_tlb_addr2;
 		smp_tlb_op = initiator_pc->pc_smp_tlb_op;
 		smp_tlb_gen = initiator_pc->pc_smp_tlb_gen;
 
 		/*
 		 * Ensure that we do not make our scoreboard
 		 * notification visible to the initiator until the
 		 * pc_smp_tlb values are read.  The corresponding
 		 * fence is implicitly provided by the barrier in the
 		 * IPI send operation before the APIC ICR register
 		 * write.
 		 *
 		 * As an optimization, the request is acknowledged
 		 * before the actual invalidation is performed.  It is
 		 * safe because target CPU cannot return to userspace
 		 * before handler finishes. Only NMI can preempt the
 		 * handler, but NMI would see the kernel handler frame
 		 * and not touch not-invalidated user page table.
 		 */
 		atomic_thread_fence_acq();
 		atomic_store_int(&scoreboard[initiator_cpu_id], smp_tlb_gen);
 
 		invlop_handler_one_req(smp_tlb_op, smp_tlb_pmap, smp_tlb_addr1,
 		    smp_tlb_addr2);
 	}
 }