diff --git a/sys/dev/usb/wlan/if_rsu.c b/sys/dev/usb/wlan/if_rsu.c index f2dc6657026e..4dd1c624b9d0 100644 --- a/sys/dev/usb/wlan/if_rsu.c +++ b/sys/dev/usb/wlan/if_rsu.c @@ -1,3765 +1,3766 @@ /* $OpenBSD: if_rsu.c,v 1.17 2013/04/15 09:23:01 mglocker Exp $ */ /*- * Copyright (c) 2010 Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); /* * Driver for Realtek RTL8188SU/RTL8191SU/RTL8192SU. * * TODO: * o tx a-mpdu * o hostap / ibss / mesh * o power-save operation */ #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "usbdevs.h" #include /* XXX */ #include #define RSU_RATE_IS_CCK RTWN_RATE_IS_CCK #ifdef USB_DEBUG static int rsu_debug = 0; SYSCTL_NODE(_hw_usb, OID_AUTO, rsu, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "USB rsu"); SYSCTL_INT(_hw_usb_rsu, OID_AUTO, debug, CTLFLAG_RWTUN, &rsu_debug, 0, "Debug level"); #define RSU_DPRINTF(_sc, _flg, ...) \ do \ if (((_flg) == (RSU_DEBUG_ANY)) || (rsu_debug & (_flg))) \ device_printf((_sc)->sc_dev, __VA_ARGS__); \ while (0) #else #define RSU_DPRINTF(_sc, _flg, ...) #endif static int rsu_enable_11n = 1; TUNABLE_INT("hw.usb.rsu.enable_11n", &rsu_enable_11n); #define RSU_DEBUG_ANY 0xffffffff #define RSU_DEBUG_TX 0x00000001 #define RSU_DEBUG_RX 0x00000002 #define RSU_DEBUG_RESET 0x00000004 #define RSU_DEBUG_CALIB 0x00000008 #define RSU_DEBUG_STATE 0x00000010 #define RSU_DEBUG_SCAN 0x00000020 #define RSU_DEBUG_FWCMD 0x00000040 #define RSU_DEBUG_TXDONE 0x00000080 #define RSU_DEBUG_FW 0x00000100 #define RSU_DEBUG_FWDBG 0x00000200 #define RSU_DEBUG_AMPDU 0x00000400 #define RSU_DEBUG_KEY 0x00000800 #define RSU_DEBUG_USB 0x00001000 static const STRUCT_USB_HOST_ID rsu_devs[] = { #define RSU_HT_NOT_SUPPORTED 0 #define RSU_HT_SUPPORTED 1 #define RSU_DEV_HT(v,p) { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, \ RSU_HT_SUPPORTED) } #define RSU_DEV(v,p) { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, \ RSU_HT_NOT_SUPPORTED) } RSU_DEV(ASUS, RTL8192SU), RSU_DEV(AZUREWAVE, RTL8192SU_4), RSU_DEV(SITECOMEU, WLA1000), RSU_DEV_HT(ACCTON, RTL8192SU), RSU_DEV_HT(ASUS, USBN10), RSU_DEV_HT(AZUREWAVE, RTL8192SU_1), RSU_DEV_HT(AZUREWAVE, RTL8192SU_2), RSU_DEV_HT(AZUREWAVE, RTL8192SU_3), RSU_DEV_HT(AZUREWAVE, RTL8192SU_5), RSU_DEV_HT(BELKIN, RTL8192SU_1), RSU_DEV_HT(BELKIN, RTL8192SU_2), RSU_DEV_HT(BELKIN, RTL8192SU_3), RSU_DEV_HT(CONCEPTRONIC2, RTL8192SU_1), RSU_DEV_HT(CONCEPTRONIC2, RTL8192SU_2), RSU_DEV_HT(CONCEPTRONIC2, RTL8192SU_3), RSU_DEV_HT(COREGA, RTL8192SU), RSU_DEV_HT(DLINK2, DWA131A1), RSU_DEV_HT(DLINK2, RTL8192SU_1), RSU_DEV_HT(DLINK2, RTL8192SU_2), RSU_DEV_HT(EDIMAX, RTL8192SU_1), RSU_DEV_HT(EDIMAX, RTL8192SU_2), RSU_DEV_HT(EDIMAX, EW7622UMN), RSU_DEV_HT(GUILLEMOT, HWGUN54), RSU_DEV_HT(GUILLEMOT, HWNUM300), RSU_DEV_HT(HAWKING, RTL8192SU_1), RSU_DEV_HT(HAWKING, RTL8192SU_2), RSU_DEV_HT(PLANEX2, GWUSNANO), RSU_DEV_HT(REALTEK, RTL8171), RSU_DEV_HT(REALTEK, RTL8172), RSU_DEV_HT(REALTEK, RTL8173), RSU_DEV_HT(REALTEK, RTL8174), RSU_DEV_HT(REALTEK, RTL8192SU), RSU_DEV_HT(REALTEK, RTL8712), RSU_DEV_HT(REALTEK, RTL8713), RSU_DEV_HT(SENAO, RTL8192SU_1), RSU_DEV_HT(SENAO, RTL8192SU_2), RSU_DEV_HT(SITECOMEU, WL349V1), RSU_DEV_HT(SITECOMEU, WL353), RSU_DEV_HT(SWEEX2, LW154), RSU_DEV_HT(TRENDNET, TEW646UBH), #undef RSU_DEV_HT #undef RSU_DEV }; static device_probe_t rsu_match; static device_attach_t rsu_attach; static device_detach_t rsu_detach; static usb_callback_t rsu_bulk_tx_callback_be_bk; static usb_callback_t rsu_bulk_tx_callback_vi_vo; static usb_callback_t rsu_bulk_tx_callback_h2c; static usb_callback_t rsu_bulk_rx_callback; static usb_error_t rsu_do_request(struct rsu_softc *, struct usb_device_request *, void *); static struct ieee80211vap * rsu_vap_create(struct ieee80211com *, const char name[], int, enum ieee80211_opmode, int, const uint8_t bssid[], const uint8_t mac[]); static void rsu_vap_delete(struct ieee80211vap *); static void rsu_scan_start(struct ieee80211com *); static void rsu_scan_end(struct ieee80211com *); static void rsu_getradiocaps(struct ieee80211com *, int, int *, struct ieee80211_channel[]); static void rsu_set_channel(struct ieee80211com *); static void rsu_scan_curchan(struct ieee80211_scan_state *, unsigned long); static void rsu_scan_mindwell(struct ieee80211_scan_state *); static void rsu_update_promisc(struct ieee80211com *); static uint8_t rsu_get_multi_pos(const uint8_t[]); static void rsu_set_multi(struct rsu_softc *); static void rsu_update_mcast(struct ieee80211com *); static int rsu_alloc_rx_list(struct rsu_softc *); static void rsu_free_rx_list(struct rsu_softc *); static int rsu_alloc_tx_list(struct rsu_softc *); static void rsu_free_tx_list(struct rsu_softc *); static void rsu_free_list(struct rsu_softc *, struct rsu_data [], int); static struct rsu_data *_rsu_getbuf(struct rsu_softc *); static struct rsu_data *rsu_getbuf(struct rsu_softc *); static void rsu_freebuf(struct rsu_softc *, struct rsu_data *); static int rsu_write_region_1(struct rsu_softc *, uint16_t, uint8_t *, int); static void rsu_write_1(struct rsu_softc *, uint16_t, uint8_t); static void rsu_write_2(struct rsu_softc *, uint16_t, uint16_t); static void rsu_write_4(struct rsu_softc *, uint16_t, uint32_t); static int rsu_read_region_1(struct rsu_softc *, uint16_t, uint8_t *, int); static uint8_t rsu_read_1(struct rsu_softc *, uint16_t); static uint16_t rsu_read_2(struct rsu_softc *, uint16_t); static uint32_t rsu_read_4(struct rsu_softc *, uint16_t); static int rsu_fw_iocmd(struct rsu_softc *, uint32_t); static uint8_t rsu_efuse_read_1(struct rsu_softc *, uint16_t); static int rsu_read_rom(struct rsu_softc *); static int rsu_fw_cmd(struct rsu_softc *, uint8_t, void *, int); static void rsu_calib_task(void *, int); static void rsu_tx_task(void *, int); static void rsu_set_led(struct rsu_softc *, int); static int rsu_monitor_newstate(struct ieee80211vap *, enum ieee80211_state, int); static int rsu_newstate(struct ieee80211vap *, enum ieee80211_state, int); static int rsu_key_alloc(struct ieee80211vap *, struct ieee80211_key *, ieee80211_keyix *, ieee80211_keyix *); static int rsu_process_key(struct ieee80211vap *, const struct ieee80211_key *, int); static int rsu_key_set(struct ieee80211vap *, const struct ieee80211_key *); static int rsu_key_delete(struct ieee80211vap *, const struct ieee80211_key *); static int rsu_cam_read(struct rsu_softc *, uint8_t, uint32_t *); static void rsu_cam_write(struct rsu_softc *, uint8_t, uint32_t); static int rsu_key_check(struct rsu_softc *, ieee80211_keyix, int); static uint8_t rsu_crypto_mode(struct rsu_softc *, u_int, int); static int rsu_set_key_group(struct rsu_softc *, const struct ieee80211_key *); static int rsu_set_key_pair(struct rsu_softc *, const struct ieee80211_key *); static int rsu_reinit_static_keys(struct rsu_softc *); static int rsu_delete_key(struct rsu_softc *sc, ieee80211_keyix); static void rsu_delete_key_pair_cb(void *, int); static int rsu_site_survey(struct rsu_softc *, struct ieee80211_scan_ssid *); static int rsu_join_bss(struct rsu_softc *, struct ieee80211_node *); static int rsu_disconnect(struct rsu_softc *); static int rsu_hwrssi_to_rssi(struct rsu_softc *, int hw_rssi); static void rsu_event_survey(struct rsu_softc *, uint8_t *, int); static void rsu_event_join_bss(struct rsu_softc *, uint8_t *, int); static void rsu_rx_event(struct rsu_softc *, uint8_t, uint8_t *, int); static void rsu_rx_multi_event(struct rsu_softc *, uint8_t *, int); static int8_t rsu_get_rssi(struct rsu_softc *, int, void *); static struct mbuf * rsu_rx_copy_to_mbuf(struct rsu_softc *, struct r92s_rx_stat *, int); static uint32_t rsu_get_tsf_low(struct rsu_softc *); static uint32_t rsu_get_tsf_high(struct rsu_softc *); static struct ieee80211_node * rsu_rx_frame(struct rsu_softc *, struct mbuf *); static struct mbuf * rsu_rx_multi_frame(struct rsu_softc *, uint8_t *, int); static struct mbuf * rsu_rxeof(struct usb_xfer *, struct rsu_data *); static void rsu_txeof(struct usb_xfer *, struct rsu_data *); static int rsu_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void rsu_rxfilter_init(struct rsu_softc *); static void rsu_rxfilter_set(struct rsu_softc *, uint32_t, uint32_t); static void rsu_rxfilter_refresh(struct rsu_softc *); static int rsu_init(struct rsu_softc *); static int rsu_tx_start(struct rsu_softc *, struct ieee80211_node *, struct mbuf *, struct rsu_data *); static int rsu_transmit(struct ieee80211com *, struct mbuf *); static void rsu_start(struct rsu_softc *); static void _rsu_start(struct rsu_softc *); static int rsu_ioctl_net(struct ieee80211com *, u_long, void *); static void rsu_parent(struct ieee80211com *); static void rsu_stop(struct rsu_softc *); static void rsu_ms_delay(struct rsu_softc *, int); static device_method_t rsu_methods[] = { DEVMETHOD(device_probe, rsu_match), DEVMETHOD(device_attach, rsu_attach), DEVMETHOD(device_detach, rsu_detach), DEVMETHOD_END }; static driver_t rsu_driver = { .name = "rsu", .methods = rsu_methods, .size = sizeof(struct rsu_softc) }; static devclass_t rsu_devclass; DRIVER_MODULE(rsu, uhub, rsu_driver, rsu_devclass, NULL, 0); MODULE_DEPEND(rsu, wlan, 1, 1, 1); MODULE_DEPEND(rsu, usb, 1, 1, 1); MODULE_DEPEND(rsu, firmware, 1, 1, 1); MODULE_VERSION(rsu, 1); USB_PNP_HOST_INFO(rsu_devs); static uint8_t rsu_wme_ac_xfer_map[4] = { [WME_AC_BE] = RSU_BULK_TX_BE_BK, [WME_AC_BK] = RSU_BULK_TX_BE_BK, [WME_AC_VI] = RSU_BULK_TX_VI_VO, [WME_AC_VO] = RSU_BULK_TX_VI_VO, }; /* XXX hard-coded */ #define RSU_H2C_ENDPOINT 3 static const struct usb_config rsu_config[RSU_N_TRANSFER] = { [RSU_BULK_RX] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = RSU_RXBUFSZ, .flags = { .pipe_bof = 1, .short_xfer_ok = 1 }, .callback = rsu_bulk_rx_callback }, [RSU_BULK_TX_BE_BK] = { .type = UE_BULK, .endpoint = 0x06, .direction = UE_DIR_OUT, .bufsize = RSU_TXBUFSZ, .flags = { .ext_buffer = 1, .pipe_bof = 1, .force_short_xfer = 1 }, .callback = rsu_bulk_tx_callback_be_bk, .timeout = RSU_TX_TIMEOUT }, [RSU_BULK_TX_VI_VO] = { .type = UE_BULK, .endpoint = 0x04, .direction = UE_DIR_OUT, .bufsize = RSU_TXBUFSZ, .flags = { .ext_buffer = 1, .pipe_bof = 1, .force_short_xfer = 1 }, .callback = rsu_bulk_tx_callback_vi_vo, .timeout = RSU_TX_TIMEOUT }, [RSU_BULK_TX_H2C] = { .type = UE_BULK, .endpoint = 0x0d, .direction = UE_DIR_OUT, .bufsize = RSU_TXBUFSZ, .flags = { .ext_buffer = 1, .pipe_bof = 1, .short_xfer_ok = 1 }, .callback = rsu_bulk_tx_callback_h2c, .timeout = RSU_TX_TIMEOUT }, }; static int rsu_match(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); if (uaa->usb_mode != USB_MODE_HOST || uaa->info.bIfaceIndex != 0 || uaa->info.bConfigIndex != 0) return (ENXIO); return (usbd_lookup_id_by_uaa(rsu_devs, sizeof(rsu_devs), uaa)); } static int rsu_send_mgmt(struct ieee80211_node *ni, int type, int arg) { return (ENOTSUP); } static void rsu_update_chw(struct ieee80211com *ic) { } /* * notification from net80211 that it'd like to do A-MPDU on the given TID. * * Note: this actually hangs traffic at the present moment, so don't use it. * The firmware debug does indiciate it's sending and establishing a TX AMPDU * session, but then no traffic flows. */ static int rsu_ampdu_enable(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) { #if 0 struct rsu_softc *sc = ni->ni_ic->ic_softc; struct r92s_add_ba_req req; /* Don't enable if it's requested or running */ if (IEEE80211_AMPDU_REQUESTED(tap)) return (0); if (IEEE80211_AMPDU_RUNNING(tap)) return (0); /* We've decided to send addba; so send it */ req.tid = htole32(tap->txa_tid); /* Attempt net80211 state */ if (ieee80211_ampdu_tx_request_ext(ni, tap->txa_tid) != 1) return (0); /* Send the firmware command */ RSU_DPRINTF(sc, RSU_DEBUG_AMPDU, "%s: establishing AMPDU TX for TID %d\n", __func__, tap->txa_tid); RSU_LOCK(sc); if (rsu_fw_cmd(sc, R92S_CMD_ADDBA_REQ, &req, sizeof(req)) != 1) { RSU_UNLOCK(sc); /* Mark failure */ (void) ieee80211_ampdu_tx_request_active_ext(ni, tap->txa_tid, 0); return (0); } RSU_UNLOCK(sc); /* Mark success; we don't get any further notifications */ (void) ieee80211_ampdu_tx_request_active_ext(ni, tap->txa_tid, 1); #endif /* Return 0, we're driving this ourselves */ return (0); } static int rsu_wme_update(struct ieee80211com *ic) { /* Firmware handles this; not our problem */ return (0); } static int rsu_attach(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); struct rsu_softc *sc = device_get_softc(self); struct ieee80211com *ic = &sc->sc_ic; int error; uint8_t iface_index; struct usb_interface *iface; const char *rft; device_set_usb_desc(self); sc->sc_udev = uaa->device; sc->sc_dev = self; sc->sc_rx_checksum_enable = 1; if (rsu_enable_11n) sc->sc_ht = !! (USB_GET_DRIVER_INFO(uaa) & RSU_HT_SUPPORTED); /* Get number of endpoints */ iface = usbd_get_iface(sc->sc_udev, 0); sc->sc_nendpoints = iface->idesc->bNumEndpoints; /* Endpoints are hard-coded for now, so enforce 4-endpoint only */ if (sc->sc_nendpoints != 4) { device_printf(sc->sc_dev, "the driver currently only supports 4-endpoint devices\n"); return (ENXIO); } mtx_init(&sc->sc_mtx, device_get_nameunit(self), MTX_NETWORK_LOCK, MTX_DEF); RSU_DELKEY_BMAP_LOCK_INIT(sc); TIMEOUT_TASK_INIT(taskqueue_thread, &sc->calib_task, 0, rsu_calib_task, sc); TASK_INIT(&sc->del_key_task, 0, rsu_delete_key_pair_cb, sc); TASK_INIT(&sc->tx_task, 0, rsu_tx_task, sc); mbufq_init(&sc->sc_snd, ifqmaxlen); /* Allocate Tx/Rx buffers. */ error = rsu_alloc_rx_list(sc); if (error != 0) { device_printf(sc->sc_dev, "could not allocate Rx buffers\n"); goto fail_usb; } error = rsu_alloc_tx_list(sc); if (error != 0) { device_printf(sc->sc_dev, "could not allocate Tx buffers\n"); rsu_free_rx_list(sc); goto fail_usb; } iface_index = 0; error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, rsu_config, RSU_N_TRANSFER, sc, &sc->sc_mtx); if (error) { device_printf(sc->sc_dev, "could not allocate USB transfers, err=%s\n", usbd_errstr(error)); goto fail_usb; } RSU_LOCK(sc); /* Read chip revision. */ sc->cut = MS(rsu_read_4(sc, R92S_PMC_FSM), R92S_PMC_FSM_CUT); if (sc->cut != 3) sc->cut = (sc->cut >> 1) + 1; error = rsu_read_rom(sc); RSU_UNLOCK(sc); if (error != 0) { device_printf(self, "could not read ROM\n"); goto fail_rom; } /* Figure out TX/RX streams */ switch (sc->rom[84]) { case 0x0: sc->sc_rftype = RTL8712_RFCONFIG_1T1R; sc->sc_nrxstream = 1; sc->sc_ntxstream = 1; rft = "1T1R"; break; case 0x1: sc->sc_rftype = RTL8712_RFCONFIG_1T2R; sc->sc_nrxstream = 2; sc->sc_ntxstream = 1; rft = "1T2R"; break; case 0x2: sc->sc_rftype = RTL8712_RFCONFIG_2T2R; sc->sc_nrxstream = 2; sc->sc_ntxstream = 2; rft = "2T2R"; break; case 0x3: /* "green" NIC */ sc->sc_rftype = RTL8712_RFCONFIG_1T2R; sc->sc_nrxstream = 2; sc->sc_ntxstream = 1; rft = "1T2R ('green')"; break; default: device_printf(sc->sc_dev, "%s: unknown board type (rfconfig=0x%02x)\n", __func__, sc->rom[84]); goto fail_rom; } IEEE80211_ADDR_COPY(ic->ic_macaddr, &sc->rom[0x12]); device_printf(self, "MAC/BB RTL8712 cut %d %s\n", sc->cut, rft); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(self); ic->ic_phytype = IEEE80211_T_OFDM; /* Not only, but not used. */ ic->ic_opmode = IEEE80211_M_STA; /* Default to BSS mode. */ /* Set device capabilities. */ ic->ic_caps = IEEE80211_C_STA | /* station mode */ IEEE80211_C_MONITOR | /* monitor mode supported */ #if 0 IEEE80211_C_BGSCAN | /* Background scan. */ #endif IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */ IEEE80211_C_WME | /* WME/QoS */ IEEE80211_C_SHSLOT | /* Short slot time supported. */ IEEE80211_C_WPA; /* WPA/RSN. */ ic->ic_cryptocaps = IEEE80211_CRYPTO_WEP | IEEE80211_CRYPTO_TKIP | IEEE80211_CRYPTO_AES_CCM; /* Check if HT support is present. */ if (sc->sc_ht) { device_printf(sc->sc_dev, "%s: enabling 11n\n", __func__); /* Enable basic HT */ ic->ic_htcaps = IEEE80211_HTC_HT | #if 0 IEEE80211_HTC_AMPDU | #endif IEEE80211_HTC_AMSDU | IEEE80211_HTCAP_MAXAMSDU_3839 | IEEE80211_HTCAP_SMPS_OFF; ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40; /* set number of spatial streams */ ic->ic_txstream = sc->sc_ntxstream; ic->ic_rxstream = sc->sc_nrxstream; } ic->ic_flags_ext |= IEEE80211_FEXT_SCAN_OFFLOAD; rsu_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, ic->ic_channels); ieee80211_ifattach(ic); ic->ic_raw_xmit = rsu_raw_xmit; ic->ic_scan_start = rsu_scan_start; ic->ic_scan_end = rsu_scan_end; ic->ic_getradiocaps = rsu_getradiocaps; ic->ic_set_channel = rsu_set_channel; ic->ic_scan_curchan = rsu_scan_curchan; ic->ic_scan_mindwell = rsu_scan_mindwell; ic->ic_vap_create = rsu_vap_create; ic->ic_vap_delete = rsu_vap_delete; ic->ic_update_promisc = rsu_update_promisc; ic->ic_update_mcast = rsu_update_mcast; ic->ic_ioctl = rsu_ioctl_net; ic->ic_parent = rsu_parent; ic->ic_transmit = rsu_transmit; ic->ic_send_mgmt = rsu_send_mgmt; ic->ic_update_chw = rsu_update_chw; ic->ic_ampdu_enable = rsu_ampdu_enable; ic->ic_wme.wme_update = rsu_wme_update; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), RSU_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), RSU_RX_RADIOTAP_PRESENT); if (bootverbose) ieee80211_announce(ic); return (0); fail_rom: usbd_transfer_unsetup(sc->sc_xfer, RSU_N_TRANSFER); fail_usb: mtx_destroy(&sc->sc_mtx); return (ENXIO); } static int rsu_detach(device_t self) { struct rsu_softc *sc = device_get_softc(self); struct ieee80211com *ic = &sc->sc_ic; rsu_stop(sc); usbd_transfer_unsetup(sc->sc_xfer, RSU_N_TRANSFER); /* * Free buffers /before/ we detach from net80211, else node * references to destroyed vaps will lead to a panic. */ /* Free Tx/Rx buffers. */ RSU_LOCK(sc); rsu_free_tx_list(sc); rsu_free_rx_list(sc); RSU_UNLOCK(sc); /* Frames are freed; detach from net80211 */ ieee80211_ifdetach(ic); taskqueue_drain_timeout(taskqueue_thread, &sc->calib_task); taskqueue_drain(taskqueue_thread, &sc->del_key_task); taskqueue_drain(taskqueue_thread, &sc->tx_task); RSU_DELKEY_BMAP_LOCK_DESTROY(sc); mtx_destroy(&sc->sc_mtx); return (0); } static usb_error_t rsu_do_request(struct rsu_softc *sc, struct usb_device_request *req, void *data) { usb_error_t err; int ntries = 10; RSU_ASSERT_LOCKED(sc); while (ntries--) { err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, req, data, 0, NULL, 250 /* ms */); if (err == 0 || err == USB_ERR_NOT_CONFIGURED) break; RSU_DPRINTF(sc, RSU_DEBUG_USB, "Control request failed, %s (retries left: %d)\n", usbd_errstr(err), ntries); rsu_ms_delay(sc, 10); } return (err); } static struct ieee80211vap * rsu_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct rsu_softc *sc = ic->ic_softc; struct rsu_vap *uvp; struct ieee80211vap *vap; struct ifnet *ifp; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return (NULL); uvp = malloc(sizeof(struct rsu_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &uvp->vap; if (ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid) != 0) { /* out of memory */ free(uvp, M_80211_VAP); return (NULL); } ifp = vap->iv_ifp; ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6; RSU_LOCK(sc); if (sc->sc_rx_checksum_enable) ifp->if_capenable |= IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6; RSU_UNLOCK(sc); /* override state transition machine */ uvp->newstate = vap->iv_newstate; if (opmode == IEEE80211_M_MONITOR) vap->iv_newstate = rsu_monitor_newstate; else vap->iv_newstate = rsu_newstate; vap->iv_key_alloc = rsu_key_alloc; vap->iv_key_set = rsu_key_set; vap->iv_key_delete = rsu_key_delete; /* Limits from the r92su driver */ vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_16; vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_32K; /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); ic->ic_opmode = opmode; return (vap); } static void rsu_vap_delete(struct ieee80211vap *vap) { struct rsu_vap *uvp = RSU_VAP(vap); ieee80211_vap_detach(vap); free(uvp, M_80211_VAP); } static void rsu_scan_start(struct ieee80211com *ic) { struct rsu_softc *sc = ic->ic_softc; struct ieee80211_scan_state *ss = ic->ic_scan; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); int error; /* Scanning is done by the firmware. */ RSU_LOCK(sc); sc->sc_active_scan = !!(ss->ss_flags & IEEE80211_SCAN_ACTIVE); /* XXX TODO: force awake if in network-sleep? */ error = rsu_site_survey(sc, ss->ss_nssid > 0 ? &ss->ss_ssid[0] : NULL); RSU_UNLOCK(sc); if (error != 0) { device_printf(sc->sc_dev, "could not send site survey command\n"); ieee80211_cancel_scan(vap); } } static void rsu_scan_end(struct ieee80211com *ic) { /* Nothing to do here. */ } static void rsu_getradiocaps(struct ieee80211com *ic, int maxchans, int *nchans, struct ieee80211_channel chans[]) { struct rsu_softc *sc = ic->ic_softc; uint8_t bands[IEEE80211_MODE_BYTES]; /* Set supported .11b and .11g rates. */ memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); if (sc->sc_ht) setbit(bands, IEEE80211_MODE_11NG); ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) ? NET80211_CBW_FLAG_HT40 : 0); } static void rsu_set_channel(struct ieee80211com *ic) { struct rsu_softc *sc = ic->ic_softc; /* * Only need to set the channel in Monitor mode. AP scanning and auth * are already taken care of by their respective firmware commands. */ if (ic->ic_opmode == IEEE80211_M_MONITOR) { struct r92s_set_channel cmd; int error; cmd.channel = IEEE80211_CHAN2IEEE(ic->ic_curchan); RSU_LOCK(sc); error = rsu_fw_cmd(sc, R92S_CMD_SET_CHANNEL, &cmd, sizeof(cmd)); if (error != 0) { device_printf(sc->sc_dev, "%s: error %d setting channel\n", __func__, error); } RSU_UNLOCK(sc); } } static void rsu_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) { /* Scan is done in rsu_scan_start(). */ } /** * Called by the net80211 framework to indicate * the minimum dwell time has been met, terminate the scan. * We don't actually terminate the scan as the firmware will notify * us when it's finished and we have no way to interrupt it. */ static void rsu_scan_mindwell(struct ieee80211_scan_state *ss) { /* NB: don't try to abort scan; wait for firmware to finish */ } static void rsu_update_promisc(struct ieee80211com *ic) { struct rsu_softc *sc = ic->ic_softc; RSU_LOCK(sc); if (sc->sc_running) rsu_rxfilter_refresh(sc); RSU_UNLOCK(sc); } /* * The same as rtwn_get_multi_pos() / rtwn_set_multi(). */ static uint8_t rsu_get_multi_pos(const uint8_t maddr[]) { uint64_t mask = 0x00004d101df481b4; uint8_t pos = 0x27; /* initial value */ int i, j; for (i = 0; i < IEEE80211_ADDR_LEN; i++) for (j = (i == 0) ? 1 : 0; j < 8; j++) if ((maddr[i] >> j) & 1) pos ^= (mask >> (i * 8 + j - 1)); pos &= 0x3f; return (pos); } static u_int rsu_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) { uint32_t *mfilt = arg; uint8_t pos; pos = rsu_get_multi_pos(LLADDR(sdl)); mfilt[pos / 32] |= (1 << (pos % 32)); return (1); } static void rsu_set_multi(struct rsu_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t mfilt[2]; RSU_ASSERT_LOCKED(sc); /* general structure was copied from ath(4). */ if (ic->ic_allmulti == 0) { struct ieee80211vap *vap; /* * Merge multicast addresses to form the hardware filter. */ mfilt[0] = mfilt[1] = 0; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) if_foreach_llmaddr(vap->iv_ifp, rsu_hash_maddr, &mfilt); } else mfilt[0] = mfilt[1] = ~0; rsu_write_4(sc, R92S_MAR + 0, mfilt[0]); rsu_write_4(sc, R92S_MAR + 4, mfilt[1]); RSU_DPRINTF(sc, RSU_DEBUG_STATE, "%s: MC filter %08x:%08x\n", __func__, mfilt[0], mfilt[1]); } static void rsu_update_mcast(struct ieee80211com *ic) { struct rsu_softc *sc = ic->ic_softc; RSU_LOCK(sc); if (sc->sc_running) rsu_set_multi(sc); RSU_UNLOCK(sc); } static int rsu_alloc_list(struct rsu_softc *sc, struct rsu_data data[], int ndata, int maxsz) { int i, error; for (i = 0; i < ndata; i++) { struct rsu_data *dp = &data[i]; dp->sc = sc; dp->m = NULL; dp->buf = malloc(maxsz, M_USBDEV, M_NOWAIT); if (dp->buf == NULL) { device_printf(sc->sc_dev, "could not allocate buffer\n"); error = ENOMEM; goto fail; } dp->ni = NULL; } return (0); fail: rsu_free_list(sc, data, ndata); return (error); } static int rsu_alloc_rx_list(struct rsu_softc *sc) { int error, i; error = rsu_alloc_list(sc, sc->sc_rx, RSU_RX_LIST_COUNT, RSU_RXBUFSZ); if (error != 0) return (error); STAILQ_INIT(&sc->sc_rx_active); STAILQ_INIT(&sc->sc_rx_inactive); for (i = 0; i < RSU_RX_LIST_COUNT; i++) STAILQ_INSERT_HEAD(&sc->sc_rx_inactive, &sc->sc_rx[i], next); return (0); } static int rsu_alloc_tx_list(struct rsu_softc *sc) { int error, i; error = rsu_alloc_list(sc, sc->sc_tx, RSU_TX_LIST_COUNT, RSU_TXBUFSZ); if (error != 0) return (error); STAILQ_INIT(&sc->sc_tx_inactive); for (i = 0; i != RSU_N_TRANSFER; i++) { STAILQ_INIT(&sc->sc_tx_active[i]); STAILQ_INIT(&sc->sc_tx_pending[i]); } for (i = 0; i < RSU_TX_LIST_COUNT; i++) { STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, &sc->sc_tx[i], next); } return (0); } static void rsu_free_tx_list(struct rsu_softc *sc) { int i; /* prevent further allocations from TX list(s) */ STAILQ_INIT(&sc->sc_tx_inactive); for (i = 0; i != RSU_N_TRANSFER; i++) { STAILQ_INIT(&sc->sc_tx_active[i]); STAILQ_INIT(&sc->sc_tx_pending[i]); } rsu_free_list(sc, sc->sc_tx, RSU_TX_LIST_COUNT); } static void rsu_free_rx_list(struct rsu_softc *sc) { /* prevent further allocations from RX list(s) */ STAILQ_INIT(&sc->sc_rx_inactive); STAILQ_INIT(&sc->sc_rx_active); rsu_free_list(sc, sc->sc_rx, RSU_RX_LIST_COUNT); } static void rsu_free_list(struct rsu_softc *sc, struct rsu_data data[], int ndata) { int i; for (i = 0; i < ndata; i++) { struct rsu_data *dp = &data[i]; if (dp->buf != NULL) { free(dp->buf, M_USBDEV); dp->buf = NULL; } if (dp->ni != NULL) { ieee80211_free_node(dp->ni); dp->ni = NULL; } } } static struct rsu_data * _rsu_getbuf(struct rsu_softc *sc) { struct rsu_data *bf; bf = STAILQ_FIRST(&sc->sc_tx_inactive); if (bf != NULL) STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next); else bf = NULL; return (bf); } static struct rsu_data * rsu_getbuf(struct rsu_softc *sc) { struct rsu_data *bf; RSU_ASSERT_LOCKED(sc); bf = _rsu_getbuf(sc); if (bf == NULL) { RSU_DPRINTF(sc, RSU_DEBUG_TX, "%s: no buffers\n", __func__); } return (bf); } static void rsu_freebuf(struct rsu_softc *sc, struct rsu_data *bf) { RSU_ASSERT_LOCKED(sc); STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, bf, next); } static int rsu_write_region_1(struct rsu_softc *sc, uint16_t addr, uint8_t *buf, int len) { usb_device_request_t req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = R92S_REQ_REGS; USETW(req.wValue, addr); USETW(req.wIndex, 0); USETW(req.wLength, len); return (rsu_do_request(sc, &req, buf)); } static void rsu_write_1(struct rsu_softc *sc, uint16_t addr, uint8_t val) { rsu_write_region_1(sc, addr, &val, 1); } static void rsu_write_2(struct rsu_softc *sc, uint16_t addr, uint16_t val) { val = htole16(val); rsu_write_region_1(sc, addr, (uint8_t *)&val, 2); } static void rsu_write_4(struct rsu_softc *sc, uint16_t addr, uint32_t val) { val = htole32(val); rsu_write_region_1(sc, addr, (uint8_t *)&val, 4); } static int rsu_read_region_1(struct rsu_softc *sc, uint16_t addr, uint8_t *buf, int len) { usb_device_request_t req; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = R92S_REQ_REGS; USETW(req.wValue, addr); USETW(req.wIndex, 0); USETW(req.wLength, len); return (rsu_do_request(sc, &req, buf)); } static uint8_t rsu_read_1(struct rsu_softc *sc, uint16_t addr) { uint8_t val; if (rsu_read_region_1(sc, addr, &val, 1) != 0) return (0xff); return (val); } static uint16_t rsu_read_2(struct rsu_softc *sc, uint16_t addr) { uint16_t val; if (rsu_read_region_1(sc, addr, (uint8_t *)&val, 2) != 0) return (0xffff); return (le16toh(val)); } static uint32_t rsu_read_4(struct rsu_softc *sc, uint16_t addr) { uint32_t val; if (rsu_read_region_1(sc, addr, (uint8_t *)&val, 4) != 0) return (0xffffffff); return (le32toh(val)); } static int rsu_fw_iocmd(struct rsu_softc *sc, uint32_t iocmd) { int ntries; rsu_write_4(sc, R92S_IOCMD_CTRL, iocmd); rsu_ms_delay(sc, 1); for (ntries = 0; ntries < 50; ntries++) { if (rsu_read_4(sc, R92S_IOCMD_CTRL) == 0) return (0); rsu_ms_delay(sc, 1); } return (ETIMEDOUT); } static uint8_t rsu_efuse_read_1(struct rsu_softc *sc, uint16_t addr) { uint32_t reg; int ntries; reg = rsu_read_4(sc, R92S_EFUSE_CTRL); reg = RW(reg, R92S_EFUSE_CTRL_ADDR, addr); reg &= ~R92S_EFUSE_CTRL_VALID; rsu_write_4(sc, R92S_EFUSE_CTRL, reg); /* Wait for read operation to complete. */ for (ntries = 0; ntries < 100; ntries++) { reg = rsu_read_4(sc, R92S_EFUSE_CTRL); if (reg & R92S_EFUSE_CTRL_VALID) return (MS(reg, R92S_EFUSE_CTRL_DATA)); rsu_ms_delay(sc, 1); } device_printf(sc->sc_dev, "could not read efuse byte at address 0x%x\n", addr); return (0xff); } static int rsu_read_rom(struct rsu_softc *sc) { uint8_t *rom = sc->rom; uint16_t addr = 0; uint32_t reg; uint8_t off, msk; int i; /* Make sure that ROM type is eFuse and that autoload succeeded. */ reg = rsu_read_1(sc, R92S_EE_9346CR); if ((reg & (R92S_9356SEL | R92S_EEPROM_EN)) != R92S_EEPROM_EN) return (EIO); /* Turn on 2.5V to prevent eFuse leakage. */ reg = rsu_read_1(sc, R92S_EFUSE_TEST + 3); rsu_write_1(sc, R92S_EFUSE_TEST + 3, reg | 0x80); rsu_ms_delay(sc, 1); rsu_write_1(sc, R92S_EFUSE_TEST + 3, reg & ~0x80); /* Read full ROM image. */ memset(&sc->rom, 0xff, sizeof(sc->rom)); while (addr < 512) { reg = rsu_efuse_read_1(sc, addr); if (reg == 0xff) break; addr++; off = reg >> 4; msk = reg & 0xf; for (i = 0; i < 4; i++) { if (msk & (1 << i)) continue; rom[off * 8 + i * 2 + 0] = rsu_efuse_read_1(sc, addr); addr++; rom[off * 8 + i * 2 + 1] = rsu_efuse_read_1(sc, addr); addr++; } } #ifdef USB_DEBUG if (rsu_debug & RSU_DEBUG_RESET) { /* Dump ROM content. */ printf("\n"); for (i = 0; i < sizeof(sc->rom); i++) printf("%02x:", rom[i]); printf("\n"); } #endif return (0); } static int rsu_fw_cmd(struct rsu_softc *sc, uint8_t code, void *buf, int len) { const uint8_t which = RSU_H2C_ENDPOINT; struct rsu_data *data; struct r92s_tx_desc *txd; struct r92s_fw_cmd_hdr *cmd; int cmdsz; int xferlen; RSU_ASSERT_LOCKED(sc); data = rsu_getbuf(sc); if (data == NULL) return (ENOMEM); /* Blank the entire payload, just to be safe */ memset(data->buf, '\0', RSU_TXBUFSZ); /* Round-up command length to a multiple of 8 bytes. */ /* XXX TODO: is this required? */ cmdsz = (len + 7) & ~7; xferlen = sizeof(*txd) + sizeof(*cmd) + cmdsz; KASSERT(xferlen <= RSU_TXBUFSZ, ("%s: invalid length", __func__)); memset(data->buf, 0, xferlen); /* Setup Tx descriptor. */ txd = (struct r92s_tx_desc *)data->buf; txd->txdw0 = htole32( SM(R92S_TXDW0_OFFSET, sizeof(*txd)) | SM(R92S_TXDW0_PKTLEN, sizeof(*cmd) + cmdsz) | R92S_TXDW0_OWN | R92S_TXDW0_FSG | R92S_TXDW0_LSG); txd->txdw1 = htole32(SM(R92S_TXDW1_QSEL, R92S_TXDW1_QSEL_H2C)); /* Setup command header. */ cmd = (struct r92s_fw_cmd_hdr *)&txd[1]; cmd->len = htole16(cmdsz); cmd->code = code; cmd->seq = sc->cmd_seq; sc->cmd_seq = (sc->cmd_seq + 1) & 0x7f; /* Copy command payload. */ memcpy(&cmd[1], buf, len); RSU_DPRINTF(sc, RSU_DEBUG_TX | RSU_DEBUG_FWCMD, "%s: Tx cmd code=0x%x len=0x%x\n", __func__, code, cmdsz); data->buflen = xferlen; STAILQ_INSERT_TAIL(&sc->sc_tx_pending[which], data, next); usbd_transfer_start(sc->sc_xfer[which]); return (0); } /* ARGSUSED */ static void rsu_calib_task(void *arg, int pending __unused) { struct rsu_softc *sc = arg; #ifdef notyet uint32_t reg; #endif RSU_DPRINTF(sc, RSU_DEBUG_CALIB, "%s: running calibration task\n", __func__); RSU_LOCK(sc); #ifdef notyet /* Read WPS PBC status. */ rsu_write_1(sc, R92S_MAC_PINMUX_CTRL, R92S_GPIOMUX_EN | SM(R92S_GPIOSEL_GPIO, R92S_GPIOSEL_GPIO_JTAG)); rsu_write_1(sc, R92S_GPIO_IO_SEL, rsu_read_1(sc, R92S_GPIO_IO_SEL) & ~R92S_GPIO_WPS); reg = rsu_read_1(sc, R92S_GPIO_CTRL); if (reg != 0xff && (reg & R92S_GPIO_WPS)) RSU_DPRINTF(sc, RSU_DEBUG_CALIB, "WPS PBC is pushed\n"); #endif /* Read current signal level. */ if (rsu_fw_iocmd(sc, 0xf4000001) == 0) { sc->sc_currssi = rsu_read_4(sc, R92S_IOCMD_DATA); RSU_DPRINTF(sc, RSU_DEBUG_CALIB, "%s: RSSI=%d (%d)\n", __func__, sc->sc_currssi, rsu_hwrssi_to_rssi(sc, sc->sc_currssi)); } if (sc->sc_calibrating) taskqueue_enqueue_timeout(taskqueue_thread, &sc->calib_task, hz); RSU_UNLOCK(sc); } static void rsu_tx_task(void *arg, int pending __unused) { struct rsu_softc *sc = arg; RSU_LOCK(sc); _rsu_start(sc); RSU_UNLOCK(sc); } #define RSU_PWR_UNKNOWN 0x0 #define RSU_PWR_ACTIVE 0x1 #define RSU_PWR_OFF 0x2 #define RSU_PWR_SLEEP 0x3 /* * Set the current power state. * * The rtlwifi code doesn't do this so aggressively; it * waits for an idle period after association with * no traffic before doing this. * * For now - it's on in all states except RUN, and * in RUN it'll transition to allow sleep. */ struct r92s_pwr_cmd { uint8_t mode; uint8_t smart_ps; uint8_t bcn_pass_time; }; static int rsu_set_fw_power_state(struct rsu_softc *sc, int state) { struct r92s_set_pwr_mode cmd; //struct r92s_pwr_cmd cmd; int error; RSU_ASSERT_LOCKED(sc); /* only change state if required */ if (sc->sc_curpwrstate == state) return (0); memset(&cmd, 0, sizeof(cmd)); switch (state) { case RSU_PWR_ACTIVE: /* Force the hardware awake */ rsu_write_1(sc, R92S_USB_HRPWM, R92S_USB_HRPWM_PS_ST_ACTIVE | R92S_USB_HRPWM_PS_ALL_ON); cmd.mode = R92S_PS_MODE_ACTIVE; break; case RSU_PWR_SLEEP: cmd.mode = R92S_PS_MODE_DTIM; /* XXX configurable? */ cmd.smart_ps = 1; /* XXX 2 if doing p2p */ cmd.bcn_pass_time = 5; /* in 100mS usb.c, linux/rtlwifi */ break; case RSU_PWR_OFF: cmd.mode = R92S_PS_MODE_RADIOOFF; break; default: device_printf(sc->sc_dev, "%s: unknown ps mode (%d)\n", __func__, state); return (ENXIO); } RSU_DPRINTF(sc, RSU_DEBUG_RESET, "%s: setting ps mode to %d (mode %d)\n", __func__, state, cmd.mode); error = rsu_fw_cmd(sc, R92S_CMD_SET_PWR_MODE, &cmd, sizeof(cmd)); if (error == 0) sc->sc_curpwrstate = state; return (error); } static void rsu_set_led(struct rsu_softc *sc, int on) { rsu_write_1(sc, R92S_LEDCFG, (rsu_read_1(sc, R92S_LEDCFG) & 0xf0) | (!on << 3)); } static int rsu_monitor_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct ieee80211com *ic = vap->iv_ic; struct rsu_softc *sc = ic->ic_softc; struct rsu_vap *uvp = RSU_VAP(vap); if (vap->iv_state != nstate) { IEEE80211_UNLOCK(ic); RSU_LOCK(sc); switch (nstate) { case IEEE80211_S_INIT: sc->sc_vap_is_running = 0; rsu_set_led(sc, 0); break; case IEEE80211_S_RUN: sc->sc_vap_is_running = 1; rsu_set_led(sc, 1); break; default: /* NOTREACHED */ break; } rsu_rxfilter_refresh(sc); RSU_UNLOCK(sc); IEEE80211_LOCK(ic); } return (uvp->newstate(vap, nstate, arg)); } static int rsu_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct rsu_vap *uvp = RSU_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct rsu_softc *sc = ic->ic_softc; struct ieee80211_node *ni; struct ieee80211_rateset *rs; enum ieee80211_state ostate; int error, startcal = 0; ostate = vap->iv_state; RSU_DPRINTF(sc, RSU_DEBUG_STATE, "%s: %s -> %s\n", __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate]); IEEE80211_UNLOCK(ic); if (ostate == IEEE80211_S_RUN) { RSU_LOCK(sc); /* Stop calibration. */ sc->sc_calibrating = 0; /* Pause Tx for AC queues. */ rsu_write_1(sc, R92S_TXPAUSE, R92S_TXPAUSE_AC); usb_pause_mtx(&sc->sc_mtx, USB_MS_TO_TICKS(10)); RSU_UNLOCK(sc); taskqueue_drain_timeout(taskqueue_thread, &sc->calib_task); taskqueue_drain(taskqueue_thread, &sc->tx_task); RSU_LOCK(sc); /* Disassociate from our current BSS. */ rsu_disconnect(sc); usb_pause_mtx(&sc->sc_mtx, USB_MS_TO_TICKS(10)); /* Refresh Rx filter (may be modified by firmware). */ sc->sc_vap_is_running = 0; rsu_rxfilter_refresh(sc); /* Reinstall static keys. */ if (sc->sc_running) rsu_reinit_static_keys(sc); } else RSU_LOCK(sc); switch (nstate) { case IEEE80211_S_INIT: (void) rsu_set_fw_power_state(sc, RSU_PWR_ACTIVE); break; case IEEE80211_S_AUTH: ni = ieee80211_ref_node(vap->iv_bss); (void) rsu_set_fw_power_state(sc, RSU_PWR_ACTIVE); error = rsu_join_bss(sc, ni); ieee80211_free_node(ni); if (error != 0) { device_printf(sc->sc_dev, "could not send join command\n"); } break; case IEEE80211_S_RUN: /* Flush all AC queues. */ rsu_write_1(sc, R92S_TXPAUSE, 0); ni = ieee80211_ref_node(vap->iv_bss); rs = &ni->ni_rates; /* Indicate highest supported rate. */ ni->ni_txrate = rs->rs_rates[rs->rs_nrates - 1]; (void) rsu_set_fw_power_state(sc, RSU_PWR_SLEEP); ieee80211_free_node(ni); startcal = 1; break; default: break; } if (startcal != 0) { sc->sc_calibrating = 1; /* Start periodic calibration. */ taskqueue_enqueue_timeout(taskqueue_thread, &sc->calib_task, hz); } RSU_UNLOCK(sc); IEEE80211_LOCK(ic); return (uvp->newstate(vap, nstate, arg)); } static int rsu_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k, ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) { struct rsu_softc *sc = vap->iv_ic->ic_softc; int is_checked = 0; if (&vap->iv_nw_keys[0] <= k && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) { *keyix = ieee80211_crypto_get_key_wepidx(vap, k); } else { if (vap->iv_opmode != IEEE80211_M_STA) { *keyix = 0; /* TODO: obtain keyix from node id */ is_checked = 1; k->wk_flags |= IEEE80211_KEY_SWCRYPT; } else *keyix = R92S_MACID_BSS; } if (!is_checked) { RSU_LOCK(sc); if (isset(sc->keys_bmap, *keyix)) { device_printf(sc->sc_dev, "%s: key slot %d is already used!\n", __func__, *keyix); RSU_UNLOCK(sc); return (0); } setbit(sc->keys_bmap, *keyix); RSU_UNLOCK(sc); } *rxkeyix = *keyix; return (1); } static int rsu_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k, int set) { struct rsu_softc *sc = vap->iv_ic->ic_softc; int ret; if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { /* Not for us. */ return (1); } /* Handle group keys. */ if (&vap->iv_nw_keys[0] <= k && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) { KASSERT(k->wk_keyix < nitems(sc->group_keys), ("keyix %u > %zu\n", k->wk_keyix, nitems(sc->group_keys))); RSU_LOCK(sc); sc->group_keys[k->wk_keyix] = (set ? k : NULL); if (!sc->sc_running) { /* Static keys will be set during device startup. */ RSU_UNLOCK(sc); return (1); } if (set) ret = rsu_set_key_group(sc, k); else ret = rsu_delete_key(sc, k->wk_keyix); RSU_UNLOCK(sc); return (!ret); } if (set) { /* wait for pending key removal */ taskqueue_drain(taskqueue_thread, &sc->del_key_task); RSU_LOCK(sc); ret = rsu_set_key_pair(sc, k); RSU_UNLOCK(sc); } else { RSU_DELKEY_BMAP_LOCK(sc); setbit(sc->free_keys_bmap, k->wk_keyix); RSU_DELKEY_BMAP_UNLOCK(sc); /* workaround ieee80211_node_delucastkey() locking */ taskqueue_enqueue(taskqueue_thread, &sc->del_key_task); ret = 0; /* fake success */ } return (!ret); } static int rsu_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k) { return (rsu_process_key(vap, k, 1)); } static int rsu_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) { return (rsu_process_key(vap, k, 0)); } static int rsu_cam_read(struct rsu_softc *sc, uint8_t addr, uint32_t *val) { int ntries; rsu_write_4(sc, R92S_CAMCMD, R92S_CAMCMD_POLLING | SM(R92S_CAMCMD_ADDR, addr)); for (ntries = 0; ntries < 10; ntries++) { if (!(rsu_read_4(sc, R92S_CAMCMD) & R92S_CAMCMD_POLLING)) break; usb_pause_mtx(&sc->sc_mtx, USB_MS_TO_TICKS(1)); } if (ntries == 10) { device_printf(sc->sc_dev, "%s: cannot read CAM entry at address %02X\n", __func__, addr); return (ETIMEDOUT); } *val = rsu_read_4(sc, R92S_CAMREAD); return (0); } static void rsu_cam_write(struct rsu_softc *sc, uint8_t addr, uint32_t data) { rsu_write_4(sc, R92S_CAMWRITE, data); rsu_write_4(sc, R92S_CAMCMD, R92S_CAMCMD_POLLING | R92S_CAMCMD_WRITE | SM(R92S_CAMCMD_ADDR, addr)); } static int rsu_key_check(struct rsu_softc *sc, ieee80211_keyix keyix, int is_valid) { uint32_t val; int error, ntries; for (ntries = 0; ntries < 20; ntries++) { usb_pause_mtx(&sc->sc_mtx, USB_MS_TO_TICKS(1)); error = rsu_cam_read(sc, R92S_CAM_CTL0(keyix), &val); if (error != 0) { device_printf(sc->sc_dev, "%s: cannot check key status!\n", __func__); return (error); } if (((val & R92S_CAM_VALID) == 0) ^ is_valid) break; } if (ntries == 20) { device_printf(sc->sc_dev, "%s: key %d is %s marked as valid, rejecting request\n", __func__, keyix, is_valid ? "not" : "still"); return (EIO); } return (0); } /* * Map net80211 cipher to RTL8712 security mode. */ static uint8_t rsu_crypto_mode(struct rsu_softc *sc, u_int cipher, int keylen) { switch (cipher) { case IEEE80211_CIPHER_WEP: return keylen < 8 ? R92S_KEY_ALGO_WEP40 : R92S_KEY_ALGO_WEP104; case IEEE80211_CIPHER_TKIP: return R92S_KEY_ALGO_TKIP; case IEEE80211_CIPHER_AES_CCM: return R92S_KEY_ALGO_AES; default: device_printf(sc->sc_dev, "unknown cipher %d\n", cipher); return R92S_KEY_ALGO_INVALID; } } static int rsu_set_key_group(struct rsu_softc *sc, const struct ieee80211_key *k) { struct r92s_fw_cmd_set_key key; uint8_t algo; int error; RSU_ASSERT_LOCKED(sc); /* Map net80211 cipher to HW crypto algorithm. */ algo = rsu_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen); if (algo == R92S_KEY_ALGO_INVALID) return (EINVAL); memset(&key, 0, sizeof(key)); key.algo = algo; key.cam_id = k->wk_keyix; key.grpkey = (k->wk_flags & IEEE80211_KEY_GROUP) != 0; memcpy(key.key, k->wk_key, MIN(k->wk_keylen, sizeof(key.key))); RSU_DPRINTF(sc, RSU_DEBUG_KEY | RSU_DEBUG_FWCMD, "%s: keyix %u, group %u, algo %u/%u, flags %04X, len %u, " "macaddr %s\n", __func__, key.cam_id, key.grpkey, k->wk_cipher->ic_cipher, key.algo, k->wk_flags, k->wk_keylen, ether_sprintf(k->wk_macaddr)); error = rsu_fw_cmd(sc, R92S_CMD_SET_KEY, &key, sizeof(key)); if (error != 0) { device_printf(sc->sc_dev, "%s: cannot send firmware command, error %d\n", __func__, error); return (error); } return (rsu_key_check(sc, k->wk_keyix, 1)); } static int rsu_set_key_pair(struct rsu_softc *sc, const struct ieee80211_key *k) { struct r92s_fw_cmd_set_key_mac key; uint8_t algo; int error; RSU_ASSERT_LOCKED(sc); if (!sc->sc_running) return (ESHUTDOWN); /* Map net80211 cipher to HW crypto algorithm. */ algo = rsu_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen); if (algo == R92S_KEY_ALGO_INVALID) return (EINVAL); memset(&key, 0, sizeof(key)); key.algo = algo; memcpy(key.macaddr, k->wk_macaddr, sizeof(key.macaddr)); memcpy(key.key, k->wk_key, MIN(k->wk_keylen, sizeof(key.key))); RSU_DPRINTF(sc, RSU_DEBUG_KEY | RSU_DEBUG_FWCMD, "%s: keyix %u, algo %u/%u, flags %04X, len %u, macaddr %s\n", __func__, k->wk_keyix, k->wk_cipher->ic_cipher, key.algo, k->wk_flags, k->wk_keylen, ether_sprintf(key.macaddr)); error = rsu_fw_cmd(sc, R92S_CMD_SET_STA_KEY, &key, sizeof(key)); if (error != 0) { device_printf(sc->sc_dev, "%s: cannot send firmware command, error %d\n", __func__, error); return (error); } return (rsu_key_check(sc, k->wk_keyix, 1)); } static int rsu_reinit_static_keys(struct rsu_softc *sc) { int i, error; for (i = 0; i < nitems(sc->group_keys); i++) { if (sc->group_keys[i] != NULL) { error = rsu_set_key_group(sc, sc->group_keys[i]); if (error != 0) { device_printf(sc->sc_dev, "%s: failed to set static key %d, " "error %d\n", __func__, i, error); return (error); } } } return (0); } static int rsu_delete_key(struct rsu_softc *sc, ieee80211_keyix keyix) { struct r92s_fw_cmd_set_key key; uint32_t val; int error; RSU_ASSERT_LOCKED(sc); if (!sc->sc_running) return (0); /* check if it was automatically removed by firmware */ error = rsu_cam_read(sc, R92S_CAM_CTL0(keyix), &val); if (error == 0 && (val & R92S_CAM_VALID) == 0) { RSU_DPRINTF(sc, RSU_DEBUG_KEY, "%s: key %u does not exist\n", __func__, keyix); clrbit(sc->keys_bmap, keyix); return (0); } memset(&key, 0, sizeof(key)); key.cam_id = keyix; RSU_DPRINTF(sc, RSU_DEBUG_KEY | RSU_DEBUG_FWCMD, "%s: removing key %u\n", __func__, key.cam_id); error = rsu_fw_cmd(sc, R92S_CMD_SET_KEY, &key, sizeof(key)); if (error != 0) { device_printf(sc->sc_dev, "%s: cannot send firmware command, error %d\n", __func__, error); goto finish; } usb_pause_mtx(&sc->sc_mtx, USB_MS_TO_TICKS(5)); /* * Clear 'valid' bit manually (cannot be done via firmware command). * Used for key check + when firmware command cannot be sent. */ finish: rsu_cam_write(sc, R92S_CAM_CTL0(keyix), 0); clrbit(sc->keys_bmap, keyix); return (rsu_key_check(sc, keyix, 0)); } static void rsu_delete_key_pair_cb(void *arg, int pending __unused) { struct rsu_softc *sc = arg; int i; RSU_DELKEY_BMAP_LOCK(sc); for (i = IEEE80211_WEP_NKID; i < R92S_CAM_ENTRY_LIMIT; i++) { if (isset(sc->free_keys_bmap, i)) { RSU_DELKEY_BMAP_UNLOCK(sc); RSU_LOCK(sc); RSU_DPRINTF(sc, RSU_DEBUG_KEY, "%s: calling rsu_delete_key() with keyix = %d\n", __func__, i); (void) rsu_delete_key(sc, i); RSU_UNLOCK(sc); RSU_DELKEY_BMAP_LOCK(sc); clrbit(sc->free_keys_bmap, i); /* bmap can be changed */ i = IEEE80211_WEP_NKID - 1; continue; } } RSU_DELKEY_BMAP_UNLOCK(sc); } static int rsu_site_survey(struct rsu_softc *sc, struct ieee80211_scan_ssid *ssid) { struct r92s_fw_cmd_sitesurvey cmd; RSU_ASSERT_LOCKED(sc); memset(&cmd, 0, sizeof(cmd)); /* TODO: passive channels? */ if (sc->sc_active_scan) cmd.active = htole32(1); cmd.limit = htole32(48); if (ssid != NULL) { sc->sc_extra_scan = 1; cmd.ssidlen = htole32(ssid->len); memcpy(cmd.ssid, ssid->ssid, ssid->len); } #ifdef USB_DEBUG if (rsu_debug & (RSU_DEBUG_SCAN | RSU_DEBUG_FWCMD)) { device_printf(sc->sc_dev, "sending site survey command, active %d", le32toh(cmd.active)); if (ssid != NULL) { printf(", ssid: "); ieee80211_print_essid(cmd.ssid, le32toh(cmd.ssidlen)); } printf("\n"); } #endif return (rsu_fw_cmd(sc, R92S_CMD_SITE_SURVEY, &cmd, sizeof(cmd))); } static int rsu_join_bss(struct rsu_softc *sc, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = ni->ni_vap; struct ndis_wlan_bssid_ex *bss; struct ndis_802_11_fixed_ies *fixed; struct r92s_fw_cmd_auth auth; uint8_t buf[sizeof(*bss) + 128] __aligned(4); uint8_t *frm; uint8_t opmode; int error; RSU_ASSERT_LOCKED(sc); /* Let the FW decide the opmode based on the capinfo field. */ opmode = NDIS802_11AUTOUNKNOWN; RSU_DPRINTF(sc, RSU_DEBUG_RESET, "%s: setting operating mode to %d\n", __func__, opmode); error = rsu_fw_cmd(sc, R92S_CMD_SET_OPMODE, &opmode, sizeof(opmode)); if (error != 0) return (error); memset(&auth, 0, sizeof(auth)); if (vap->iv_flags & IEEE80211_F_WPA) { auth.mode = R92S_AUTHMODE_WPA; auth.dot1x = (ni->ni_authmode == IEEE80211_AUTH_8021X); } else auth.mode = R92S_AUTHMODE_OPEN; RSU_DPRINTF(sc, RSU_DEBUG_RESET, "%s: setting auth mode to %d\n", __func__, auth.mode); error = rsu_fw_cmd(sc, R92S_CMD_SET_AUTH, &auth, sizeof(auth)); if (error != 0) return (error); memset(buf, 0, sizeof(buf)); bss = (struct ndis_wlan_bssid_ex *)buf; IEEE80211_ADDR_COPY(bss->macaddr, ni->ni_bssid); bss->ssid.ssidlen = htole32(ni->ni_esslen); memcpy(bss->ssid.ssid, ni->ni_essid, ni->ni_esslen); if (vap->iv_flags & (IEEE80211_F_PRIVACY | IEEE80211_F_WPA)) bss->privacy = htole32(1); bss->rssi = htole32(ni->ni_avgrssi); if (ic->ic_curmode == IEEE80211_MODE_11B) bss->networktype = htole32(NDIS802_11DS); else bss->networktype = htole32(NDIS802_11OFDM24); bss->config.len = htole32(sizeof(bss->config)); bss->config.bintval = htole32(ni->ni_intval); bss->config.dsconfig = htole32(ieee80211_chan2ieee(ic, ni->ni_chan)); bss->inframode = htole32(NDIS802_11INFRASTRUCTURE); /* XXX verify how this is supposed to look! */ memcpy(bss->supprates, ni->ni_rates.rs_rates, ni->ni_rates.rs_nrates); /* Write the fixed fields of the beacon frame. */ fixed = (struct ndis_802_11_fixed_ies *)&bss[1]; memcpy(&fixed->tstamp, ni->ni_tstamp.data, 8); fixed->bintval = htole16(ni->ni_intval); fixed->capabilities = htole16(ni->ni_capinfo); /* Write IEs to be included in the association request. */ frm = (uint8_t *)&fixed[1]; frm = ieee80211_add_rsn(frm, vap); frm = ieee80211_add_wpa(frm, vap); frm = ieee80211_add_qos(frm, ni); if ((ic->ic_flags & IEEE80211_F_WME) && (ni->ni_ies.wme_ie != NULL)) frm = ieee80211_add_wme_info(frm, &ic->ic_wme, ni); if (ni->ni_flags & IEEE80211_NODE_HT) { frm = ieee80211_add_htcap(frm, ni); frm = ieee80211_add_htinfo(frm, ni); } bss->ieslen = htole32(frm - (uint8_t *)fixed); bss->len = htole32(((frm - buf) + 3) & ~3); RSU_DPRINTF(sc, RSU_DEBUG_RESET | RSU_DEBUG_FWCMD, "%s: sending join bss command to %s chan %d\n", __func__, ether_sprintf(bss->macaddr), le32toh(bss->config.dsconfig)); return (rsu_fw_cmd(sc, R92S_CMD_JOIN_BSS, buf, sizeof(buf))); } static int rsu_disconnect(struct rsu_softc *sc) { uint32_t zero = 0; /* :-) */ /* Disassociate from our current BSS. */ RSU_DPRINTF(sc, RSU_DEBUG_STATE | RSU_DEBUG_FWCMD, "%s: sending disconnect command\n", __func__); return (rsu_fw_cmd(sc, R92S_CMD_DISCONNECT, &zero, sizeof(zero))); } /* * Map the hardware provided RSSI value to a signal level. * For the most part it's just something we divide by and cap * so it doesn't overflow the representation by net80211. */ static int rsu_hwrssi_to_rssi(struct rsu_softc *sc, int hw_rssi) { int v; if (hw_rssi == 0) return (0); v = hw_rssi >> 4; if (v > 80) v = 80; return (v); } CTASSERT(MCLBYTES > sizeof(struct ieee80211_frame)); static void rsu_event_survey(struct rsu_softc *sc, uint8_t *buf, int len) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh; struct ndis_wlan_bssid_ex *bss; struct ieee80211_rx_stats rxs; struct mbuf *m; uint32_t ieslen; uint32_t pktlen; if (__predict_false(len < sizeof(*bss))) return; bss = (struct ndis_wlan_bssid_ex *)buf; ieslen = le32toh(bss->ieslen); /* range check length of information element */ if (__predict_false(ieslen > (uint32_t)(len - sizeof(*bss)))) return; RSU_DPRINTF(sc, RSU_DEBUG_SCAN, "%s: found BSS %s: len=%d chan=%d inframode=%d " "networktype=%d privacy=%d, RSSI=%d\n", __func__, ether_sprintf(bss->macaddr), ieslen, le32toh(bss->config.dsconfig), le32toh(bss->inframode), le32toh(bss->networktype), le32toh(bss->privacy), le32toh(bss->rssi)); /* Build a fake beacon frame to let net80211 do all the parsing. */ /* XXX TODO: just call the new scan API methods! */ if (__predict_false(ieslen > (size_t)(MCLBYTES - sizeof(*wh)))) return; pktlen = sizeof(*wh) + ieslen; m = m_get2(pktlen, M_NOWAIT, MT_DATA, M_PKTHDR); if (__predict_false(m == NULL)) return; wh = mtod(m, struct ieee80211_frame *); wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON; wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; USETW(wh->i_dur, 0); IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr); IEEE80211_ADDR_COPY(wh->i_addr2, bss->macaddr); IEEE80211_ADDR_COPY(wh->i_addr3, bss->macaddr); *(uint16_t *)wh->i_seq = 0; memcpy(&wh[1], (uint8_t *)&bss[1], ieslen); /* Finalize mbuf. */ m->m_pkthdr.len = m->m_len = pktlen; /* Set channel flags for input path */ bzero(&rxs, sizeof(rxs)); rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ; rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI; rxs.c_ieee = le32toh(bss->config.dsconfig); rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ); /* This is a number from 0..100; so let's just divide it down a bit */ rxs.c_rssi = le32toh(bss->rssi) / 2; rxs.c_nf = -96; if (ieee80211_add_rx_params(m, &rxs) == 0) return; /* XXX avoid a LOR */ RSU_UNLOCK(sc); ieee80211_input_mimo_all(ic, m); RSU_LOCK(sc); } static void rsu_event_join_bss(struct rsu_softc *sc, uint8_t *buf, int len) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct ieee80211_node *ni = vap->iv_bss; struct r92s_event_join_bss *rsp; uint32_t tmp; int res; if (__predict_false(len < sizeof(*rsp))) return; rsp = (struct r92s_event_join_bss *)buf; res = (int)le32toh(rsp->join_res); RSU_DPRINTF(sc, RSU_DEBUG_STATE | RSU_DEBUG_FWCMD, "%s: Rx join BSS event len=%d res=%d\n", __func__, len, res); /* * XXX Don't do this; there's likely a better way to tell * the caller we failed. */ if (res <= 0) { RSU_UNLOCK(sc); ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); RSU_LOCK(sc); return; } tmp = le32toh(rsp->associd); if (tmp >= vap->iv_max_aid) { RSU_DPRINTF(sc, RSU_DEBUG_ANY, "Assoc ID overflow\n"); tmp = 1; } RSU_DPRINTF(sc, RSU_DEBUG_STATE | RSU_DEBUG_FWCMD, "%s: associated with %s associd=%d\n", __func__, ether_sprintf(rsp->bss.macaddr), tmp); /* XXX is this required? What's the top two bits for again? */ ni->ni_associd = tmp | 0xc000; /* Refresh Rx filter (was changed by firmware). */ sc->sc_vap_is_running = 1; rsu_rxfilter_refresh(sc); RSU_UNLOCK(sc); ieee80211_new_state(vap, IEEE80211_S_RUN, IEEE80211_FC0_SUBTYPE_ASSOC_RESP); RSU_LOCK(sc); } static void rsu_event_addba_req_report(struct rsu_softc *sc, uint8_t *buf, int len) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct r92s_add_ba_event *ba = (void *) buf; struct ieee80211_node *ni; if (len < sizeof(*ba)) { device_printf(sc->sc_dev, "%s: short read (%d)\n", __func__, len); return; } if (vap == NULL) return; RSU_DPRINTF(sc, RSU_DEBUG_AMPDU, "%s: mac=%s, tid=%d, ssn=%d\n", __func__, ether_sprintf(ba->mac_addr), (int) ba->tid, (int) le16toh(ba->ssn)); /* XXX do node lookup; this is STA specific */ ni = ieee80211_ref_node(vap->iv_bss); ieee80211_ampdu_rx_start_ext(ni, ba->tid, le16toh(ba->ssn) >> 4, 32); ieee80211_free_node(ni); } static void rsu_rx_event(struct rsu_softc *sc, uint8_t code, uint8_t *buf, int len) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); RSU_DPRINTF(sc, RSU_DEBUG_RX | RSU_DEBUG_FWCMD, "%s: Rx event code=%d len=%d\n", __func__, code, len); switch (code) { case R92S_EVT_SURVEY: rsu_event_survey(sc, buf, len); break; case R92S_EVT_SURVEY_DONE: RSU_DPRINTF(sc, RSU_DEBUG_SCAN, "%s: %s scan done, found %d BSS\n", __func__, sc->sc_extra_scan ? "direct" : "broadcast", le32toh(*(uint32_t *)buf)); if (sc->sc_extra_scan == 1) { /* Send broadcast probe request. */ sc->sc_extra_scan = 0; if (vap != NULL && rsu_site_survey(sc, NULL) != 0) { RSU_UNLOCK(sc); ieee80211_cancel_scan(vap); RSU_LOCK(sc); } break; } if (vap != NULL) { RSU_UNLOCK(sc); ieee80211_scan_done(vap); RSU_LOCK(sc); } break; case R92S_EVT_JOIN_BSS: if (vap->iv_state == IEEE80211_S_AUTH) rsu_event_join_bss(sc, buf, len); break; case R92S_EVT_DEL_STA: RSU_DPRINTF(sc, RSU_DEBUG_FWCMD | RSU_DEBUG_STATE, "%s: disassociated from %s\n", __func__, ether_sprintf(buf)); if (vap->iv_state == IEEE80211_S_RUN && IEEE80211_ADDR_EQ(vap->iv_bss->ni_bssid, buf)) { RSU_UNLOCK(sc); ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); RSU_LOCK(sc); } break; case R92S_EVT_WPS_PBC: RSU_DPRINTF(sc, RSU_DEBUG_RX | RSU_DEBUG_FWCMD, "%s: WPS PBC pushed.\n", __func__); break; case R92S_EVT_FWDBG: buf[60] = '\0'; RSU_DPRINTF(sc, RSU_DEBUG_FWDBG, "FWDBG: %s\n", (char *)buf); break; case R92S_EVT_ADDBA_REQ_REPORT: rsu_event_addba_req_report(sc, buf, len); break; default: device_printf(sc->sc_dev, "%s: unhandled code (%d)\n", __func__, code); break; } } static void rsu_rx_multi_event(struct rsu_softc *sc, uint8_t *buf, int len) { struct r92s_fw_cmd_hdr *cmd; int cmdsz; RSU_DPRINTF(sc, RSU_DEBUG_RX, "%s: Rx events len=%d\n", __func__, len); /* Skip Rx status. */ buf += sizeof(struct r92s_rx_stat); len -= sizeof(struct r92s_rx_stat); /* Process all events. */ for (;;) { /* Check that command header fits. */ if (__predict_false(len < sizeof(*cmd))) break; cmd = (struct r92s_fw_cmd_hdr *)buf; /* Check that command payload fits. */ cmdsz = le16toh(cmd->len); if (__predict_false(len < sizeof(*cmd) + cmdsz)) break; /* Process firmware event. */ rsu_rx_event(sc, cmd->code, (uint8_t *)&cmd[1], cmdsz); if (!(cmd->seq & R92S_FW_CMD_MORE)) break; buf += sizeof(*cmd) + cmdsz; len -= sizeof(*cmd) + cmdsz; } } static int8_t rsu_get_rssi(struct rsu_softc *sc, int rate, void *physt) { static const int8_t cckoff[] = { 14, -2, -20, -40 }; struct r92s_rx_phystat *phy; struct r92s_rx_cck *cck; uint8_t rpt; int8_t rssi; if (rate <= 3) { cck = (struct r92s_rx_cck *)physt; rpt = (cck->agc_rpt >> 6) & 0x3; rssi = cck->agc_rpt & 0x3e; rssi = cckoff[rpt] - rssi; } else { /* OFDM/HT. */ phy = (struct r92s_rx_phystat *)physt; rssi = ((le32toh(phy->phydw1) >> 1) & 0x7f) - 106; } return (rssi); } static struct mbuf * rsu_rx_copy_to_mbuf(struct rsu_softc *sc, struct r92s_rx_stat *stat, int totlen) { struct ieee80211com *ic = &sc->sc_ic; struct mbuf *m; uint32_t rxdw0; int pktlen; rxdw0 = le32toh(stat->rxdw0); if (__predict_false(rxdw0 & (R92S_RXDW0_CRCERR | R92S_RXDW0_ICVERR))) { RSU_DPRINTF(sc, RSU_DEBUG_RX, "%s: RX flags error (%s)\n", __func__, rxdw0 & R92S_RXDW0_CRCERR ? "CRC" : "ICV"); goto fail; } pktlen = MS(rxdw0, R92S_RXDW0_PKTLEN); if (__predict_false(pktlen < sizeof (struct ieee80211_frame_ack))) { RSU_DPRINTF(sc, RSU_DEBUG_RX, "%s: frame is too short: %d\n", __func__, pktlen); goto fail; } m = m_get2(totlen, M_NOWAIT, MT_DATA, M_PKTHDR); if (__predict_false(m == NULL)) { device_printf(sc->sc_dev, "%s: could not allocate RX mbuf, totlen %d\n", __func__, totlen); goto fail; } /* Finalize mbuf. */ memcpy(mtod(m, uint8_t *), (uint8_t *)stat, totlen); m->m_pkthdr.len = m->m_len = totlen; return (m); fail: counter_u64_add(ic->ic_ierrors, 1); return (NULL); } static uint32_t rsu_get_tsf_low(struct rsu_softc *sc) { return (rsu_read_4(sc, R92S_TSFTR)); } static uint32_t rsu_get_tsf_high(struct rsu_softc *sc) { return (rsu_read_4(sc, R92S_TSFTR + 4)); } static struct ieee80211_node * rsu_rx_frame(struct rsu_softc *sc, struct mbuf *m) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame_min *wh; struct ieee80211_rx_stats rxs; struct r92s_rx_stat *stat; uint32_t rxdw0, rxdw3; uint8_t cipher, rate; int infosz; int rssi; stat = mtod(m, struct r92s_rx_stat *); rxdw0 = le32toh(stat->rxdw0); rxdw3 = le32toh(stat->rxdw3); rate = MS(rxdw3, R92S_RXDW3_RATE); cipher = MS(rxdw0, R92S_RXDW0_CIPHER); infosz = MS(rxdw0, R92S_RXDW0_INFOSZ) * 8; /* Get RSSI from PHY status descriptor if present. */ if (infosz != 0 && (rxdw0 & R92S_RXDW0_PHYST)) rssi = rsu_get_rssi(sc, rate, &stat[1]); else { /* Cheat and get the last calibrated RSSI */ rssi = rsu_hwrssi_to_rssi(sc, sc->sc_currssi); } /* Hardware does Rx TCP checksum offload. */ /* * This flag can be set for some other * (e.g., EAPOL) frame types, so don't rely on it. */ if (rxdw3 & R92S_RXDW3_TCPCHKVALID) { RSU_DPRINTF(sc, RSU_DEBUG_RX, "%s: TCP/IP checksums: %schecked / %schecked\n", __func__, (rxdw3 & R92S_RXDW3_TCPCHKRPT) ? "" : "not ", (rxdw3 & R92S_RXDW3_IPCHKRPT) ? "" : "not "); /* * 'IP header checksum valid' bit will not be set if * the frame was not checked / has incorrect checksum / * does not have checksum (IPv6). * * NB: if DF bit is not set then frame will not be checked. */ if (rxdw3 & R92S_RXDW3_IPCHKRPT) { m->m_pkthdr.csum_flags = CSUM_IP_CHECKED; m->m_pkthdr.csum_flags |= CSUM_IP_VALID; } /* * This is independent of the above check. */ if (rxdw3 & R92S_RXDW3_TCPCHKRPT) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; m->m_pkthdr.csum_flags |= CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } } /* RX flags */ /* Set channel flags for input path */ bzero(&rxs, sizeof(rxs)); /* normal RSSI */ rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI; rxs.c_rssi = rssi; rxs.c_nf = -96; /* Rate */ if (rate < 12) { rxs.c_rate = ridx2rate[rate]; if (RSU_RATE_IS_CCK(rate)) rxs.c_pktflags |= IEEE80211_RX_F_CCK; else rxs.c_pktflags |= IEEE80211_RX_F_OFDM; } else { rxs.c_rate = IEEE80211_RATE_MCS | (rate - 12); rxs.c_pktflags |= IEEE80211_RX_F_HT; } if (ieee80211_radiotap_active(ic)) { struct rsu_rx_radiotap_header *tap = &sc->sc_rxtap; /* Map HW rate index to 802.11 rate. */ tap->wr_flags = 0; /* TODO */ tap->wr_tsft = rsu_get_tsf_high(sc); if (le32toh(stat->tsf_low) > rsu_get_tsf_low(sc)) tap->wr_tsft--; tap->wr_tsft = (uint64_t)htole32(tap->wr_tsft) << 32; tap->wr_tsft += stat->tsf_low; tap->wr_rate = rxs.c_rate; tap->wr_dbm_antsignal = rssi; }; (void) ieee80211_add_rx_params(m, &rxs); /* Drop descriptor. */ m_adj(m, sizeof(*stat) + infosz); wh = mtod(m, struct ieee80211_frame_min *); if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) && cipher != R92S_KEY_ALGO_NONE) { m->m_flags |= M_WEP; } RSU_DPRINTF(sc, RSU_DEBUG_RX, "%s: Rx frame len %d, rate %d, infosz %d\n", __func__, m->m_len, rate, infosz); if (m->m_len >= sizeof(*wh)) return (ieee80211_find_rxnode(ic, wh)); return (NULL); } static struct mbuf * rsu_rx_multi_frame(struct rsu_softc *sc, uint8_t *buf, int len) { struct r92s_rx_stat *stat; uint32_t rxdw0; int totlen, pktlen, infosz, npkts; struct mbuf *m, *m0 = NULL, *prevm = NULL; /* * don't pass packets to the ieee80211 framework if the driver isn't * RUNNING. */ if (!sc->sc_running) return (NULL); /* Get the number of encapsulated frames. */ stat = (struct r92s_rx_stat *)buf; npkts = MS(le32toh(stat->rxdw2), R92S_RXDW2_PKTCNT); RSU_DPRINTF(sc, RSU_DEBUG_RX, "%s: Rx %d frames in one chunk\n", __func__, npkts); /* Process all of them. */ while (npkts-- > 0) { if (__predict_false(len < sizeof(*stat))) break; stat = (struct r92s_rx_stat *)buf; rxdw0 = le32toh(stat->rxdw0); pktlen = MS(rxdw0, R92S_RXDW0_PKTLEN); if (__predict_false(pktlen == 0)) break; infosz = MS(rxdw0, R92S_RXDW0_INFOSZ) * 8; /* Make sure everything fits in xfer. */ totlen = sizeof(*stat) + infosz + pktlen; if (__predict_false(totlen > len)) break; /* Process 802.11 frame. */ m = rsu_rx_copy_to_mbuf(sc, stat, totlen); if (m0 == NULL) m0 = m; if (prevm == NULL) prevm = m; else { prevm->m_next = m; prevm = m; } /* Next chunk is 128-byte aligned. */ totlen = (totlen + 127) & ~127; buf += totlen; len -= totlen; } return (m0); } static struct mbuf * rsu_rxeof(struct usb_xfer *xfer, struct rsu_data *data) { struct rsu_softc *sc = data->sc; struct ieee80211com *ic = &sc->sc_ic; struct r92s_rx_stat *stat; int len; usbd_xfer_status(xfer, &len, NULL, NULL, NULL); if (__predict_false(len < sizeof(*stat))) { RSU_DPRINTF(sc, RSU_DEBUG_RX, "xfer too short %d\n", len); counter_u64_add(ic->ic_ierrors, 1); return (NULL); } /* Determine if it is a firmware C2H event or an 802.11 frame. */ stat = (struct r92s_rx_stat *)data->buf; if ((le32toh(stat->rxdw1) & 0x1ff) == 0x1ff) { rsu_rx_multi_event(sc, data->buf, len); /* No packets to process. */ return (NULL); } else return (rsu_rx_multi_frame(sc, data->buf, len)); } static void rsu_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) { struct epoch_tracker et; struct rsu_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct mbuf *m = NULL, *next; struct rsu_data *data; RSU_ASSERT_LOCKED(sc); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: data = STAILQ_FIRST(&sc->sc_rx_active); if (data == NULL) goto tr_setup; STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); m = rsu_rxeof(xfer, data); STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: data = STAILQ_FIRST(&sc->sc_rx_inactive); if (data == NULL) { KASSERT(m == NULL, ("mbuf isn't NULL")); return; } STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next); STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next); usbd_xfer_set_frame_data(xfer, 0, data->buf, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); /* * To avoid LOR we should unlock our private mutex here to call * ieee80211_input() because here is at the end of a USB * callback and safe to unlock. */ NET_EPOCH_ENTER(et); while (m != NULL) { next = m->m_next; m->m_next = NULL; ni = rsu_rx_frame(sc, m); RSU_UNLOCK(sc); if (ni != NULL) { if (ni->ni_flags & IEEE80211_NODE_HT) m->m_flags |= M_AMPDU; (void)ieee80211_input_mimo(ni, m); ieee80211_free_node(ni); } else (void)ieee80211_input_mimo_all(ic, m); RSU_LOCK(sc); m = next; } NET_EPOCH_EXIT(et); break; default: /* needs it to the inactive queue due to a error. */ data = STAILQ_FIRST(&sc->sc_rx_active); if (data != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); } if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); counter_u64_add(ic->ic_ierrors, 1); goto tr_setup; } break; } } static void rsu_txeof(struct usb_xfer *xfer, struct rsu_data *data) { #ifdef USB_DEBUG struct rsu_softc *sc = usbd_xfer_softc(xfer); #endif RSU_DPRINTF(sc, RSU_DEBUG_TXDONE, "%s: called; data=%p\n", __func__, data); if (data->m) { /* XXX status? */ ieee80211_tx_complete(data->ni, data->m, 0); data->m = NULL; data->ni = NULL; } } static void rsu_bulk_tx_callback_sub(struct usb_xfer *xfer, usb_error_t error, uint8_t which) { struct rsu_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; struct rsu_data *data; RSU_ASSERT_LOCKED(sc); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: data = STAILQ_FIRST(&sc->sc_tx_active[which]); if (data == NULL) goto tr_setup; RSU_DPRINTF(sc, RSU_DEBUG_TXDONE, "%s: transfer done %p\n", __func__, data); STAILQ_REMOVE_HEAD(&sc->sc_tx_active[which], next); rsu_txeof(xfer, data); rsu_freebuf(sc, data); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: data = STAILQ_FIRST(&sc->sc_tx_pending[which]); if (data == NULL) { RSU_DPRINTF(sc, RSU_DEBUG_TXDONE, "%s: empty pending queue sc %p\n", __func__, sc); return; } STAILQ_REMOVE_HEAD(&sc->sc_tx_pending[which], next); STAILQ_INSERT_TAIL(&sc->sc_tx_active[which], data, next); usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen); RSU_DPRINTF(sc, RSU_DEBUG_TXDONE, "%s: submitting transfer %p\n", __func__, data); usbd_transfer_submit(xfer); break; default: data = STAILQ_FIRST(&sc->sc_tx_active[which]); if (data != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_tx_active[which], next); rsu_txeof(xfer, data); rsu_freebuf(sc, data); } counter_u64_add(ic->ic_oerrors, 1); if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); goto tr_setup; } break; } /* * XXX TODO: if the queue is low, flush out FF TX frames. * Remember to unlock the driver for now; net80211 doesn't * defer it for us. */ } static void rsu_bulk_tx_callback_be_bk(struct usb_xfer *xfer, usb_error_t error) { struct rsu_softc *sc = usbd_xfer_softc(xfer); rsu_bulk_tx_callback_sub(xfer, error, RSU_BULK_TX_BE_BK); /* This kicks the TX taskqueue */ rsu_start(sc); } static void rsu_bulk_tx_callback_vi_vo(struct usb_xfer *xfer, usb_error_t error) { struct rsu_softc *sc = usbd_xfer_softc(xfer); rsu_bulk_tx_callback_sub(xfer, error, RSU_BULK_TX_VI_VO); /* This kicks the TX taskqueue */ rsu_start(sc); } static void rsu_bulk_tx_callback_h2c(struct usb_xfer *xfer, usb_error_t error) { struct rsu_softc *sc = usbd_xfer_softc(xfer); rsu_bulk_tx_callback_sub(xfer, error, RSU_BULK_TX_H2C); /* This kicks the TX taskqueue */ rsu_start(sc); } /* * Transmit the given frame. * * This doesn't free the node or mbuf upon failure. */ static int rsu_tx_start(struct rsu_softc *sc, struct ieee80211_node *ni, struct mbuf *m0, struct rsu_data *data) { const struct ieee80211_txparam *tp = ni->ni_txparms; struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_frame *wh; struct ieee80211_key *k = NULL; struct r92s_tx_desc *txd; uint8_t rate, ridx, type, cipher, qos; int prio = 0; uint8_t which; int hasqos; int ismcast; int xferlen; int qid; RSU_ASSERT_LOCKED(sc); wh = mtod(m0, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); RSU_DPRINTF(sc, RSU_DEBUG_TX, "%s: data=%p, m=%p\n", __func__, data, m0); /* Choose a TX rate index. */ if (type == IEEE80211_FC0_TYPE_MGT || type == IEEE80211_FC0_TYPE_CTL || (m0->m_flags & M_EAPOL) != 0) rate = tp->mgmtrate; else if (ismcast) rate = tp->mcastrate; else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) rate = tp->ucastrate; else rate = 0; if (rate != 0) ridx = rate2ridx(rate); if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { device_printf(sc->sc_dev, "ieee80211_crypto_encap returns NULL.\n"); /* XXX we don't expect the fragmented frames */ return (ENOBUFS); } wh = mtod(m0, struct ieee80211_frame *); } /* If we have QoS then use it */ /* XXX TODO: mbuf WME/PRI versus TID? */ if (IEEE80211_QOS_HAS_SEQ(wh)) { /* Has QoS */ prio = M_WME_GETAC(m0); which = rsu_wme_ac_xfer_map[prio]; hasqos = 1; qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; } else { /* Non-QoS TID */ /* XXX TODO: tid=0 for non-qos TID? */ which = rsu_wme_ac_xfer_map[WME_AC_BE]; hasqos = 0; prio = 0; qos = 0; } qid = rsu_ac2qid[prio]; #if 0 switch (type) { case IEEE80211_FC0_TYPE_CTL: case IEEE80211_FC0_TYPE_MGT: which = rsu_wme_ac_xfer_map[WME_AC_VO]; break; default: which = rsu_wme_ac_xfer_map[M_WME_GETAC(m0)]; break; } hasqos = 0; #endif RSU_DPRINTF(sc, RSU_DEBUG_TX, "%s: pri=%d, which=%d, hasqos=%d\n", __func__, prio, which, hasqos); /* Fill Tx descriptor. */ txd = (struct r92s_tx_desc *)data->buf; memset(txd, 0, sizeof(*txd)); txd->txdw0 |= htole32( SM(R92S_TXDW0_PKTLEN, m0->m_pkthdr.len) | SM(R92S_TXDW0_OFFSET, sizeof(*txd)) | R92S_TXDW0_OWN | R92S_TXDW0_FSG | R92S_TXDW0_LSG); txd->txdw1 |= htole32( SM(R92S_TXDW1_MACID, R92S_MACID_BSS) | SM(R92S_TXDW1_QSEL, qid)); if (!hasqos) txd->txdw1 |= htole32(R92S_TXDW1_NONQOS); if (k != NULL && !(k->wk_flags & IEEE80211_KEY_SWENCRYPT)) { switch (k->wk_cipher->ic_cipher) { case IEEE80211_CIPHER_WEP: cipher = R92S_TXDW1_CIPHER_WEP; break; case IEEE80211_CIPHER_TKIP: cipher = R92S_TXDW1_CIPHER_TKIP; break; case IEEE80211_CIPHER_AES_CCM: cipher = R92S_TXDW1_CIPHER_AES; break; default: cipher = R92S_TXDW1_CIPHER_NONE; } txd->txdw1 |= htole32( SM(R92S_TXDW1_CIPHER, cipher) | SM(R92S_TXDW1_KEYIDX, k->wk_keyix)); } /* XXX todo: set AGGEN bit if appropriate? */ txd->txdw2 |= htole32(R92S_TXDW2_BK); if (ismcast) txd->txdw2 |= htole32(R92S_TXDW2_BMCAST); if (!ismcast && (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != IEEE80211_QOS_ACKPOLICY_NOACK)) { txd->txdw2 |= htole32(R92S_TXDW2_RTY_LMT_ENA); txd->txdw2 |= htole32(SM(R92S_TXDW2_RTY_LMT, tp->maxretry)); } /* Force mgmt / mcast / ucast rate if needed. */ if (rate != 0) { /* Data rate fallback limit (max). */ txd->txdw5 |= htole32(SM(R92S_TXDW5_DATARATE_FB_LMT, 0x1f)); txd->txdw5 |= htole32(SM(R92S_TXDW5_DATARATE, ridx)); txd->txdw4 |= htole32(R92S_TXDW4_DRVRATE); } /* * Firmware will use and increment the sequence number for the * specified priority. */ txd->txdw3 |= htole32(SM(R92S_TXDW3_SEQ, prio)); if (ieee80211_radiotap_active_vap(vap)) { struct rsu_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; ieee80211_radiotap_tx(vap, m0); } xferlen = sizeof(*txd) + m0->m_pkthdr.len; + KASSERT(xferlen <= RSU_TXBUFSZ, ("%s: invalid length", __func__)); m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&txd[1]); data->buflen = xferlen; data->ni = ni; data->m = m0; STAILQ_INSERT_TAIL(&sc->sc_tx_pending[which], data, next); /* start transfer, if any */ usbd_transfer_start(sc->sc_xfer[which]); return (0); } static int rsu_transmit(struct ieee80211com *ic, struct mbuf *m) { struct rsu_softc *sc = ic->ic_softc; int error; RSU_LOCK(sc); if (!sc->sc_running) { RSU_UNLOCK(sc); return (ENXIO); } /* * XXX TODO: ensure that we treat 'm' as a list of frames * to transmit! */ error = mbufq_enqueue(&sc->sc_snd, m); if (error) { RSU_DPRINTF(sc, RSU_DEBUG_TX, "%s: mbufq_enable: failed (%d)\n", __func__, error); RSU_UNLOCK(sc); return (error); } RSU_UNLOCK(sc); /* This kicks the TX taskqueue */ rsu_start(sc); return (0); } static void rsu_drain_mbufq(struct rsu_softc *sc) { struct mbuf *m; struct ieee80211_node *ni; RSU_ASSERT_LOCKED(sc); while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; m->m_pkthdr.rcvif = NULL; ieee80211_free_node(ni); m_freem(m); } } static void _rsu_start(struct rsu_softc *sc) { struct ieee80211_node *ni; struct rsu_data *bf; struct mbuf *m; RSU_ASSERT_LOCKED(sc); while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { bf = rsu_getbuf(sc); if (bf == NULL) { RSU_DPRINTF(sc, RSU_DEBUG_TX, "%s: failed to get buffer\n", __func__); mbufq_prepend(&sc->sc_snd, m); break; } ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; m->m_pkthdr.rcvif = NULL; if (rsu_tx_start(sc, ni, m, bf) != 0) { RSU_DPRINTF(sc, RSU_DEBUG_TX, "%s: failed to transmit\n", __func__); if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); rsu_freebuf(sc, bf); ieee80211_free_node(ni); m_freem(m); break; } } } static void rsu_start(struct rsu_softc *sc) { taskqueue_enqueue(taskqueue_thread, &sc->tx_task); } static int rsu_ioctl_net(struct ieee80211com *ic, u_long cmd, void *data) { struct rsu_softc *sc = ic->ic_softc; struct ifreq *ifr = (struct ifreq *)data; int error; error = 0; switch (cmd) { case SIOCSIFCAP: { struct ieee80211vap *vap; int rxmask; rxmask = ifr->ifr_reqcap & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6); RSU_LOCK(sc); /* Both RXCSUM bits must be set (or unset). */ if (sc->sc_rx_checksum_enable && rxmask != (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6)) { rxmask = 0; sc->sc_rx_checksum_enable = 0; rsu_rxfilter_set(sc, R92S_RCR_TCP_OFFLD_EN, 0); } else if (!sc->sc_rx_checksum_enable && rxmask != 0) { rxmask = IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6; sc->sc_rx_checksum_enable = 1; rsu_rxfilter_set(sc, 0, R92S_RCR_TCP_OFFLD_EN); } else { /* Nothing to do. */ RSU_UNLOCK(sc); break; } RSU_UNLOCK(sc); IEEE80211_LOCK(ic); /* XXX */ TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { struct ifnet *ifp = vap->iv_ifp; ifp->if_capenable &= ~(IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6); ifp->if_capenable |= rxmask; } IEEE80211_UNLOCK(ic); break; } default: error = ENOTTY; /* for net80211 */ break; } return (error); } static void rsu_parent(struct ieee80211com *ic) { struct rsu_softc *sc = ic->ic_softc; if (ic->ic_nrunning > 0) { if (rsu_init(sc) == 0) ieee80211_start_all(ic); else { struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); if (vap != NULL) ieee80211_stop(vap); } } else rsu_stop(sc); } /* * Power on sequence for A-cut adapters. */ static void rsu_power_on_acut(struct rsu_softc *sc) { uint32_t reg; rsu_write_1(sc, R92S_SPS0_CTRL + 1, 0x53); rsu_write_1(sc, R92S_SPS0_CTRL + 0, 0x57); /* Enable AFE macro block's bandgap and Mbias. */ rsu_write_1(sc, R92S_AFE_MISC, rsu_read_1(sc, R92S_AFE_MISC) | R92S_AFE_MISC_BGEN | R92S_AFE_MISC_MBEN); /* Enable LDOA15 block. */ rsu_write_1(sc, R92S_LDOA15_CTRL, rsu_read_1(sc, R92S_LDOA15_CTRL) | R92S_LDA15_EN); rsu_write_1(sc, R92S_SPS1_CTRL, rsu_read_1(sc, R92S_SPS1_CTRL) | R92S_SPS1_LDEN); rsu_ms_delay(sc, 2000); /* Enable switch regulator block. */ rsu_write_1(sc, R92S_SPS1_CTRL, rsu_read_1(sc, R92S_SPS1_CTRL) | R92S_SPS1_SWEN); rsu_write_4(sc, R92S_SPS1_CTRL, 0x00a7b267); rsu_write_1(sc, R92S_SYS_ISO_CTRL + 1, rsu_read_1(sc, R92S_SYS_ISO_CTRL + 1) | 0x08); rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x20); rsu_write_1(sc, R92S_SYS_ISO_CTRL + 1, rsu_read_1(sc, R92S_SYS_ISO_CTRL + 1) & ~0x90); /* Enable AFE clock. */ rsu_write_1(sc, R92S_AFE_XTAL_CTRL + 1, rsu_read_1(sc, R92S_AFE_XTAL_CTRL + 1) & ~0x04); /* Enable AFE PLL macro block. */ rsu_write_1(sc, R92S_AFE_PLL_CTRL, rsu_read_1(sc, R92S_AFE_PLL_CTRL) | 0x11); /* Attach AFE PLL to MACTOP/BB. */ rsu_write_1(sc, R92S_SYS_ISO_CTRL, rsu_read_1(sc, R92S_SYS_ISO_CTRL) & ~0x11); /* Switch to 40MHz clock instead of 80MHz. */ rsu_write_2(sc, R92S_SYS_CLKR, rsu_read_2(sc, R92S_SYS_CLKR) & ~R92S_SYS_CLKSEL); /* Enable MAC clock. */ rsu_write_2(sc, R92S_SYS_CLKR, rsu_read_2(sc, R92S_SYS_CLKR) | R92S_MAC_CLK_EN | R92S_SYS_CLK_EN); rsu_write_1(sc, R92S_PMC_FSM, 0x02); /* Enable digital core and IOREG R/W. */ rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x08); rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x80); /* Switch the control path to firmware. */ reg = rsu_read_2(sc, R92S_SYS_CLKR); reg = (reg & ~R92S_SWHW_SEL) | R92S_FWHW_SEL; rsu_write_2(sc, R92S_SYS_CLKR, reg); rsu_write_2(sc, R92S_CR, 0x37fc); /* Fix USB RX FIFO issue. */ rsu_write_1(sc, 0xfe5c, rsu_read_1(sc, 0xfe5c) | 0x80); rsu_write_1(sc, 0x00ab, rsu_read_1(sc, 0x00ab) | 0xc0); rsu_write_1(sc, R92S_SYS_CLKR, rsu_read_1(sc, R92S_SYS_CLKR) & ~R92S_SYS_CPU_CLKSEL); } /* * Power on sequence for B-cut and C-cut adapters. */ static void rsu_power_on_bcut(struct rsu_softc *sc) { uint32_t reg; int ntries; /* Prevent eFuse leakage. */ rsu_write_1(sc, 0x37, 0xb0); rsu_ms_delay(sc, 10); rsu_write_1(sc, 0x37, 0x30); /* Switch the control path to hardware. */ reg = rsu_read_2(sc, R92S_SYS_CLKR); if (reg & R92S_FWHW_SEL) { rsu_write_2(sc, R92S_SYS_CLKR, reg & ~(R92S_SWHW_SEL | R92S_FWHW_SEL)); } rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) & ~0x8c); rsu_ms_delay(sc, 1); rsu_write_1(sc, R92S_SPS0_CTRL + 1, 0x53); rsu_write_1(sc, R92S_SPS0_CTRL + 0, 0x57); reg = rsu_read_1(sc, R92S_AFE_MISC); rsu_write_1(sc, R92S_AFE_MISC, reg | R92S_AFE_MISC_BGEN); rsu_write_1(sc, R92S_AFE_MISC, reg | R92S_AFE_MISC_BGEN | R92S_AFE_MISC_MBEN | R92S_AFE_MISC_I32_EN); /* Enable PLL. */ rsu_write_1(sc, R92S_LDOA15_CTRL, rsu_read_1(sc, R92S_LDOA15_CTRL) | R92S_LDA15_EN); rsu_write_1(sc, R92S_LDOV12D_CTRL, rsu_read_1(sc, R92S_LDOV12D_CTRL) | R92S_LDV12_EN); rsu_write_1(sc, R92S_SYS_ISO_CTRL + 1, rsu_read_1(sc, R92S_SYS_ISO_CTRL + 1) | 0x08); rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x20); /* Support 64KB IMEM. */ rsu_write_1(sc, R92S_SYS_ISO_CTRL + 1, rsu_read_1(sc, R92S_SYS_ISO_CTRL + 1) & ~0x97); /* Enable AFE clock. */ rsu_write_1(sc, R92S_AFE_XTAL_CTRL + 1, rsu_read_1(sc, R92S_AFE_XTAL_CTRL + 1) & ~0x04); /* Enable AFE PLL macro block. */ reg = rsu_read_1(sc, R92S_AFE_PLL_CTRL); rsu_write_1(sc, R92S_AFE_PLL_CTRL, reg | 0x11); rsu_ms_delay(sc, 1); rsu_write_1(sc, R92S_AFE_PLL_CTRL, reg | 0x51); rsu_ms_delay(sc, 1); rsu_write_1(sc, R92S_AFE_PLL_CTRL, reg | 0x11); rsu_ms_delay(sc, 1); /* Attach AFE PLL to MACTOP/BB. */ rsu_write_1(sc, R92S_SYS_ISO_CTRL, rsu_read_1(sc, R92S_SYS_ISO_CTRL) & ~0x11); /* Switch to 40MHz clock. */ rsu_write_1(sc, R92S_SYS_CLKR, 0x00); /* Disable CPU clock and 80MHz SSC. */ rsu_write_1(sc, R92S_SYS_CLKR, rsu_read_1(sc, R92S_SYS_CLKR) | 0xa0); /* Enable MAC clock. */ rsu_write_2(sc, R92S_SYS_CLKR, rsu_read_2(sc, R92S_SYS_CLKR) | R92S_MAC_CLK_EN | R92S_SYS_CLK_EN); rsu_write_1(sc, R92S_PMC_FSM, 0x02); /* Enable digital core and IOREG R/W. */ rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x08); rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x80); /* Switch the control path to firmware. */ reg = rsu_read_2(sc, R92S_SYS_CLKR); reg = (reg & ~R92S_SWHW_SEL) | R92S_FWHW_SEL; rsu_write_2(sc, R92S_SYS_CLKR, reg); rsu_write_2(sc, R92S_CR, 0x37fc); /* Fix USB RX FIFO issue. */ rsu_write_1(sc, 0xfe5c, rsu_read_1(sc, 0xfe5c) | 0x80); rsu_write_1(sc, R92S_SYS_CLKR, rsu_read_1(sc, R92S_SYS_CLKR) & ~R92S_SYS_CPU_CLKSEL); rsu_write_1(sc, 0xfe1c, 0x80); /* Make sure TxDMA is ready to download firmware. */ for (ntries = 0; ntries < 20; ntries++) { reg = rsu_read_1(sc, R92S_TCR); if ((reg & (R92S_TCR_IMEM_CHK_RPT | R92S_TCR_EMEM_CHK_RPT)) == (R92S_TCR_IMEM_CHK_RPT | R92S_TCR_EMEM_CHK_RPT)) break; rsu_ms_delay(sc, 1); } if (ntries == 20) { RSU_DPRINTF(sc, RSU_DEBUG_RESET | RSU_DEBUG_TX, "%s: TxDMA is not ready\n", __func__); /* Reset TxDMA. */ reg = rsu_read_1(sc, R92S_CR); rsu_write_1(sc, R92S_CR, reg & ~R92S_CR_TXDMA_EN); rsu_ms_delay(sc, 1); rsu_write_1(sc, R92S_CR, reg | R92S_CR_TXDMA_EN); } } static void rsu_power_off(struct rsu_softc *sc) { /* Turn RF off. */ rsu_write_1(sc, R92S_RF_CTRL, 0x00); rsu_ms_delay(sc, 5); /* Turn MAC off. */ /* Switch control path. */ rsu_write_1(sc, R92S_SYS_CLKR + 1, 0x38); /* Reset MACTOP. */ rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, 0x70); rsu_write_1(sc, R92S_PMC_FSM, 0x06); rsu_write_1(sc, R92S_SYS_ISO_CTRL + 0, 0xf9); rsu_write_1(sc, R92S_SYS_ISO_CTRL + 1, 0xe8); /* Disable AFE PLL. */ rsu_write_1(sc, R92S_AFE_PLL_CTRL, 0x00); /* Disable A15V. */ rsu_write_1(sc, R92S_LDOA15_CTRL, 0x54); /* Disable eFuse 1.2V. */ rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, 0x50); rsu_write_1(sc, R92S_LDOV12D_CTRL, 0x24); /* Enable AFE macro block's bandgap and Mbias. */ rsu_write_1(sc, R92S_AFE_MISC, 0x30); /* Disable 1.6V LDO. */ rsu_write_1(sc, R92S_SPS0_CTRL + 0, 0x56); rsu_write_1(sc, R92S_SPS0_CTRL + 1, 0x43); /* Firmware - tell it to switch things off */ (void) rsu_set_fw_power_state(sc, RSU_PWR_OFF); } static int rsu_fw_loadsection(struct rsu_softc *sc, const uint8_t *buf, int len) { const uint8_t which = rsu_wme_ac_xfer_map[WME_AC_VO]; struct rsu_data *data; struct r92s_tx_desc *txd; int mlen; while (len > 0) { data = rsu_getbuf(sc); if (data == NULL) return (ENOMEM); txd = (struct r92s_tx_desc *)data->buf; memset(txd, 0, sizeof(*txd)); if (len <= RSU_TXBUFSZ - sizeof(*txd)) { /* Last chunk. */ txd->txdw0 |= htole32(R92S_TXDW0_LINIP); mlen = len; } else mlen = RSU_TXBUFSZ - sizeof(*txd); txd->txdw0 |= htole32(SM(R92S_TXDW0_PKTLEN, mlen)); memcpy(&txd[1], buf, mlen); data->buflen = sizeof(*txd) + mlen; RSU_DPRINTF(sc, RSU_DEBUG_TX | RSU_DEBUG_FW | RSU_DEBUG_RESET, "%s: starting transfer %p\n", __func__, data); STAILQ_INSERT_TAIL(&sc->sc_tx_pending[which], data, next); buf += mlen; len -= mlen; } usbd_transfer_start(sc->sc_xfer[which]); return (0); } CTASSERT(sizeof(size_t) >= sizeof(uint32_t)); static int rsu_load_firmware(struct rsu_softc *sc) { const struct r92s_fw_hdr *hdr; struct r92s_fw_priv dmem; struct ieee80211com *ic = &sc->sc_ic; const uint8_t *imem, *emem; uint32_t imemsz, ememsz; const struct firmware *fw; size_t size; uint32_t reg; int ntries, error; if (rsu_read_1(sc, R92S_TCR) & R92S_TCR_FWRDY) { RSU_DPRINTF(sc, RSU_DEBUG_ANY, "%s: Firmware already loaded\n", __func__); return (0); } RSU_UNLOCK(sc); /* Read firmware image from the filesystem. */ if ((fw = firmware_get("rsu-rtl8712fw")) == NULL) { device_printf(sc->sc_dev, "%s: failed load firmware of file rsu-rtl8712fw\n", __func__); RSU_LOCK(sc); return (ENXIO); } RSU_LOCK(sc); size = fw->datasize; if (size < sizeof(*hdr)) { device_printf(sc->sc_dev, "firmware too short\n"); error = EINVAL; goto fail; } hdr = (const struct r92s_fw_hdr *)fw->data; if (hdr->signature != htole16(0x8712) && hdr->signature != htole16(0x8192)) { device_printf(sc->sc_dev, "invalid firmware signature 0x%x\n", le16toh(hdr->signature)); error = EINVAL; goto fail; } RSU_DPRINTF(sc, RSU_DEBUG_FW, "FW V%d %02x-%02x %02x:%02x\n", le16toh(hdr->version), hdr->month, hdr->day, hdr->hour, hdr->minute); /* Make sure that driver and firmware are in sync. */ if (hdr->privsz != htole32(sizeof(dmem))) { device_printf(sc->sc_dev, "unsupported firmware image\n"); error = EINVAL; goto fail; } /* Get FW sections sizes. */ imemsz = le32toh(hdr->imemsz); ememsz = le32toh(hdr->sramsz); /* Check that all FW sections fit in image. */ if (imemsz > (size_t)(size - sizeof(*hdr)) || ememsz > (size_t)(size - sizeof(*hdr) - imemsz)) { device_printf(sc->sc_dev, "firmware too short\n"); error = EINVAL; goto fail; } imem = (const uint8_t *)&hdr[1]; emem = imem + imemsz; /* Load IMEM section. */ error = rsu_fw_loadsection(sc, imem, imemsz); if (error != 0) { device_printf(sc->sc_dev, "could not load firmware section %s\n", "IMEM"); goto fail; } /* Wait for load to complete. */ for (ntries = 0; ntries != 50; ntries++) { rsu_ms_delay(sc, 10); reg = rsu_read_1(sc, R92S_TCR); if (reg & R92S_TCR_IMEM_CODE_DONE) break; } if (ntries == 50) { device_printf(sc->sc_dev, "timeout waiting for IMEM transfer\n"); error = ETIMEDOUT; goto fail; } /* Load EMEM section. */ error = rsu_fw_loadsection(sc, emem, ememsz); if (error != 0) { device_printf(sc->sc_dev, "could not load firmware section %s\n", "EMEM"); goto fail; } /* Wait for load to complete. */ for (ntries = 0; ntries != 50; ntries++) { rsu_ms_delay(sc, 10); reg = rsu_read_2(sc, R92S_TCR); if (reg & R92S_TCR_EMEM_CODE_DONE) break; } if (ntries == 50) { device_printf(sc->sc_dev, "timeout waiting for EMEM transfer\n"); error = ETIMEDOUT; goto fail; } /* Enable CPU. */ rsu_write_1(sc, R92S_SYS_CLKR, rsu_read_1(sc, R92S_SYS_CLKR) | R92S_SYS_CPU_CLKSEL); if (!(rsu_read_1(sc, R92S_SYS_CLKR) & R92S_SYS_CPU_CLKSEL)) { device_printf(sc->sc_dev, "could not enable system clock\n"); error = EIO; goto fail; } rsu_write_2(sc, R92S_SYS_FUNC_EN, rsu_read_2(sc, R92S_SYS_FUNC_EN) | R92S_FEN_CPUEN); if (!(rsu_read_2(sc, R92S_SYS_FUNC_EN) & R92S_FEN_CPUEN)) { device_printf(sc->sc_dev, "could not enable microcontroller\n"); error = EIO; goto fail; } /* Wait for CPU to initialize. */ for (ntries = 0; ntries < 100; ntries++) { if (rsu_read_1(sc, R92S_TCR) & R92S_TCR_IMEM_RDY) break; rsu_ms_delay(sc, 1); } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for microcontroller\n"); error = ETIMEDOUT; goto fail; } /* Update DMEM section before loading. */ memset(&dmem, 0, sizeof(dmem)); dmem.hci_sel = R92S_HCI_SEL_USB | R92S_HCI_SEL_8172; dmem.nendpoints = sc->sc_nendpoints; dmem.chip_version = sc->cut; dmem.rf_config = sc->sc_rftype; dmem.vcs_type = R92S_VCS_TYPE_AUTO; dmem.vcs_mode = R92S_VCS_MODE_RTS_CTS; dmem.turbo_mode = 0; dmem.bw40_en = !! (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40); dmem.amsdu2ampdu_en = !! (sc->sc_ht); dmem.ampdu_en = !! (sc->sc_ht); dmem.agg_offload = !! (sc->sc_ht); dmem.qos_en = 1; dmem.ps_offload = 1; dmem.lowpower_mode = 1; /* XXX TODO: configurable? */ /* Load DMEM section. */ error = rsu_fw_loadsection(sc, (uint8_t *)&dmem, sizeof(dmem)); if (error != 0) { device_printf(sc->sc_dev, "could not load firmware section %s\n", "DMEM"); goto fail; } /* Wait for load to complete. */ for (ntries = 0; ntries < 100; ntries++) { if (rsu_read_1(sc, R92S_TCR) & R92S_TCR_DMEM_CODE_DONE) break; rsu_ms_delay(sc, 1); } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for %s transfer\n", "DMEM"); error = ETIMEDOUT; goto fail; } /* Wait for firmware readiness. */ for (ntries = 0; ntries < 60; ntries++) { if (!(rsu_read_1(sc, R92S_TCR) & R92S_TCR_FWRDY)) break; rsu_ms_delay(sc, 1); } if (ntries == 60) { device_printf(sc->sc_dev, "timeout waiting for firmware readiness\n"); error = ETIMEDOUT; goto fail; } fail: firmware_put(fw, FIRMWARE_UNLOAD); return (error); } static int rsu_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct rsu_softc *sc = ic->ic_softc; struct rsu_data *bf; /* prevent management frames from being sent if we're not ready */ if (!sc->sc_running) { m_freem(m); return (ENETDOWN); } RSU_LOCK(sc); bf = rsu_getbuf(sc); if (bf == NULL) { m_freem(m); RSU_UNLOCK(sc); return (ENOBUFS); } if (rsu_tx_start(sc, ni, m, bf) != 0) { m_freem(m); rsu_freebuf(sc, bf); RSU_UNLOCK(sc); return (EIO); } RSU_UNLOCK(sc); return (0); } static void rsu_rxfilter_init(struct rsu_softc *sc) { uint32_t reg; RSU_ASSERT_LOCKED(sc); /* Setup multicast filter. */ rsu_set_multi(sc); /* Adjust Rx filter. */ reg = rsu_read_4(sc, R92S_RCR); reg &= ~R92S_RCR_AICV; reg |= R92S_RCR_APP_PHYSTS; if (sc->sc_rx_checksum_enable) reg |= R92S_RCR_TCP_OFFLD_EN; rsu_write_4(sc, R92S_RCR, reg); /* Update dynamic Rx filter parts. */ rsu_rxfilter_refresh(sc); } static void rsu_rxfilter_set(struct rsu_softc *sc, uint32_t clear, uint32_t set) { /* NB: firmware can touch this register too. */ rsu_write_4(sc, R92S_RCR, (rsu_read_4(sc, R92S_RCR) & ~clear) | set); } static void rsu_rxfilter_refresh(struct rsu_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t mask_all, mask_min; RSU_ASSERT_LOCKED(sc); /* NB: RCR_AMF / RXFLTMAP_MGT are used by firmware. */ mask_all = R92S_RCR_ACF | R92S_RCR_AAP; mask_min = R92S_RCR_APM; if (sc->sc_vap_is_running) mask_min |= R92S_RCR_CBSSID; else mask_all |= R92S_RCR_ADF; if (ic->ic_opmode == IEEE80211_M_MONITOR) { uint16_t rxfltmap; if (sc->sc_vap_is_running) rxfltmap = 0; else rxfltmap = R92S_RXFLTMAP_MGT_DEF; rsu_write_2(sc, R92S_RXFLTMAP_MGT, rxfltmap); } if (ic->ic_promisc == 0 && ic->ic_opmode != IEEE80211_M_MONITOR) rsu_rxfilter_set(sc, mask_all, mask_min); else rsu_rxfilter_set(sc, mask_min, mask_all); } static int rsu_init(struct rsu_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint8_t macaddr[IEEE80211_ADDR_LEN]; int error; int i; RSU_LOCK(sc); if (sc->sc_running) { RSU_UNLOCK(sc); return (0); } /* Ensure the mbuf queue is drained */ rsu_drain_mbufq(sc); /* Reset power management state. */ rsu_write_1(sc, R92S_USB_HRPWM, 0); /* Power on adapter. */ if (sc->cut == 1) rsu_power_on_acut(sc); else rsu_power_on_bcut(sc); /* Load firmware. */ error = rsu_load_firmware(sc); if (error != 0) goto fail; rsu_write_4(sc, R92S_CR, rsu_read_4(sc, R92S_CR) & ~0xff000000); /* Use 128 bytes pages. */ rsu_write_1(sc, 0x00b5, rsu_read_1(sc, 0x00b5) | 0x01); /* Enable USB Rx aggregation. */ rsu_write_1(sc, 0x00bd, rsu_read_1(sc, 0x00bd) | 0x80); /* Set USB Rx aggregation threshold. */ rsu_write_1(sc, 0x00d9, 0x01); /* Set USB Rx aggregation timeout (1.7ms/4). */ rsu_write_1(sc, 0xfe5b, 0x04); /* Fix USB Rx FIFO issue. */ rsu_write_1(sc, 0xfe5c, rsu_read_1(sc, 0xfe5c) | 0x80); /* Set MAC address. */ IEEE80211_ADDR_COPY(macaddr, vap ? vap->iv_myaddr : ic->ic_macaddr); rsu_write_region_1(sc, R92S_MACID, macaddr, IEEE80211_ADDR_LEN); /* It really takes 1.5 seconds for the firmware to boot: */ usb_pause_mtx(&sc->sc_mtx, USB_MS_TO_TICKS(2000)); RSU_DPRINTF(sc, RSU_DEBUG_RESET, "%s: setting MAC address to %s\n", __func__, ether_sprintf(macaddr)); error = rsu_fw_cmd(sc, R92S_CMD_SET_MAC_ADDRESS, macaddr, IEEE80211_ADDR_LEN); if (error != 0) { device_printf(sc->sc_dev, "could not set MAC address\n"); goto fail; } /* Initialize Rx filter. */ rsu_rxfilter_init(sc); /* Set PS mode fully active */ error = rsu_set_fw_power_state(sc, RSU_PWR_ACTIVE); if (error != 0) { device_printf(sc->sc_dev, "could not set PS mode\n"); goto fail; } /* Install static keys (if any). */ error = rsu_reinit_static_keys(sc); if (error != 0) goto fail; sc->sc_extra_scan = 0; usbd_transfer_start(sc->sc_xfer[RSU_BULK_RX]); /* We're ready to go. */ sc->sc_running = 1; RSU_UNLOCK(sc); return (0); fail: /* Need to stop all failed transfers, if any */ for (i = 0; i != RSU_N_TRANSFER; i++) usbd_transfer_stop(sc->sc_xfer[i]); RSU_UNLOCK(sc); return (error); } static void rsu_stop(struct rsu_softc *sc) { int i; RSU_LOCK(sc); if (!sc->sc_running) { RSU_UNLOCK(sc); return; } sc->sc_running = 0; sc->sc_vap_is_running = 0; sc->sc_calibrating = 0; taskqueue_cancel_timeout(taskqueue_thread, &sc->calib_task, NULL); taskqueue_cancel(taskqueue_thread, &sc->tx_task, NULL); /* Power off adapter. */ rsu_power_off(sc); /* * CAM is not accessible after shutdown; * all entries are marked (by firmware?) as invalid. */ memset(sc->free_keys_bmap, 0, sizeof(sc->free_keys_bmap)); memset(sc->keys_bmap, 0, sizeof(sc->keys_bmap)); for (i = 0; i < RSU_N_TRANSFER; i++) usbd_transfer_stop(sc->sc_xfer[i]); /* Ensure the mbuf queue is drained */ rsu_drain_mbufq(sc); RSU_UNLOCK(sc); } /* * Note: usb_pause_mtx() actually releases the mutex before calling pause(), * which breaks any kind of driver serialisation. */ static void rsu_ms_delay(struct rsu_softc *sc, int ms) { //usb_pause_mtx(&sc->sc_mtx, hz / 1000); DELAY(ms * 1000); }