diff --git a/sys/kern/kern_prot.c b/sys/kern/kern_prot.c
index 682754dd7687..e6c11d2ea74b 100644
--- a/sys/kern/kern_prot.c
+++ b/sys/kern/kern_prot.c
@@ -1,2520 +1,2533 @@
 /*-
  * SPDX-License-Identifier: BSD-3-Clause
  *
  * Copyright (c) 1982, 1986, 1989, 1990, 1991, 1993
  *	The Regents of the University of California.
  * (c) UNIX System Laboratories, Inc.
  * Copyright (c) 2000-2001 Robert N. M. Watson.
  * All rights reserved.
  *
  * All or some portions of this file are derived from material licensed
  * to the University of California by American Telephone and Telegraph
  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
  * the permission of UNIX System Laboratories, Inc.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  *	@(#)kern_prot.c	8.6 (Berkeley) 1/21/94
  */
 
 /*
  * System calls related to processes and protection
  */
 
 #include <sys/cdefs.h>
 #include "opt_inet.h"
 #include "opt_inet6.h"
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/acct.h>
 #include <sys/kdb.h>
 #include <sys/kernel.h>
 #include <sys/lock.h>
 #include <sys/loginclass.h>
 #include <sys/malloc.h>
 #include <sys/mutex.h>
 #include <sys/ptrace.h>
 #include <sys/refcount.h>
 #include <sys/sx.h>
 #include <sys/priv.h>
 #include <sys/proc.h>
 #ifdef COMPAT_43
 #include <sys/sysent.h>
 #endif
 #include <sys/sysproto.h>
 #include <sys/jail.h>
 #include <sys/racct.h>
 #include <sys/rctl.h>
 #include <sys/resourcevar.h>
 #include <sys/socket.h>
 #include <sys/socketvar.h>
 #include <sys/syscallsubr.h>
 #include <sys/sysctl.h>
 
 #ifdef REGRESSION
 FEATURE(regression,
     "Kernel support for interfaces necessary for regression testing (SECURITY RISK!)");
 #endif
 
 #include <security/audit/audit.h>
 #include <security/mac/mac_framework.h>
 
 static MALLOC_DEFINE(M_CRED, "cred", "credentials");
 
 SYSCTL_NODE(_security, OID_AUTO, bsd, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
     "BSD security policy");
 
 static void crfree_final(struct ucred *cr);
 static void crsetgroups_locked(struct ucred *cr, int ngrp,
     gid_t *groups);
 
 #ifndef _SYS_SYSPROTO_H_
 struct getpid_args {
 	int	dummy;
 };
 #endif
 /* ARGSUSED */
 int
 sys_getpid(struct thread *td, struct getpid_args *uap)
 {
 	struct proc *p = td->td_proc;
 
 	td->td_retval[0] = p->p_pid;
 #if defined(COMPAT_43)
 	if (SV_PROC_FLAG(p, SV_AOUT))
 		td->td_retval[1] = kern_getppid(td);
 #endif
 	return (0);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct getppid_args {
         int     dummy;
 };
 #endif
 /* ARGSUSED */
 int
 sys_getppid(struct thread *td, struct getppid_args *uap)
 {
 
 	td->td_retval[0] = kern_getppid(td);
 	return (0);
 }
 
 int
 kern_getppid(struct thread *td)
 {
 	struct proc *p = td->td_proc;
 
 	return (p->p_oppid);
 }
 
 /*
  * Get process group ID; note that POSIX getpgrp takes no parameter.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct getpgrp_args {
         int     dummy;
 };
 #endif
 int
 sys_getpgrp(struct thread *td, struct getpgrp_args *uap)
 {
 	struct proc *p = td->td_proc;
 
 	PROC_LOCK(p);
 	td->td_retval[0] = p->p_pgrp->pg_id;
 	PROC_UNLOCK(p);
 	return (0);
 }
 
 /* Get an arbitrary pid's process group id */
 #ifndef _SYS_SYSPROTO_H_
 struct getpgid_args {
 	pid_t	pid;
 };
 #endif
 int
 sys_getpgid(struct thread *td, struct getpgid_args *uap)
 {
 	struct proc *p;
 	int error;
 
 	if (uap->pid == 0) {
 		p = td->td_proc;
 		PROC_LOCK(p);
 	} else {
 		p = pfind(uap->pid);
 		if (p == NULL)
 			return (ESRCH);
 		error = p_cansee(td, p);
 		if (error) {
 			PROC_UNLOCK(p);
 			return (error);
 		}
 	}
 	td->td_retval[0] = p->p_pgrp->pg_id;
 	PROC_UNLOCK(p);
 	return (0);
 }
 
 /*
  * Get an arbitrary pid's session id.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct getsid_args {
 	pid_t	pid;
 };
 #endif
 int
 sys_getsid(struct thread *td, struct getsid_args *uap)
 {
 
 	return (kern_getsid(td, uap->pid));
 }
 
 int
 kern_getsid(struct thread *td, pid_t pid)
 {
 	struct proc *p;
 	int error;
 
 	if (pid == 0) {
 		p = td->td_proc;
 		PROC_LOCK(p);
 	} else {
 		p = pfind(pid);
 		if (p == NULL)
 			return (ESRCH);
 		error = p_cansee(td, p);
 		if (error) {
 			PROC_UNLOCK(p);
 			return (error);
 		}
 	}
 	td->td_retval[0] = p->p_session->s_sid;
 	PROC_UNLOCK(p);
 	return (0);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct getuid_args {
         int     dummy;
 };
 #endif
 /* ARGSUSED */
 int
 sys_getuid(struct thread *td, struct getuid_args *uap)
 {
 
 	td->td_retval[0] = td->td_ucred->cr_ruid;
 #if defined(COMPAT_43)
 	td->td_retval[1] = td->td_ucred->cr_uid;
 #endif
 	return (0);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct geteuid_args {
         int     dummy;
 };
 #endif
 /* ARGSUSED */
 int
 sys_geteuid(struct thread *td, struct geteuid_args *uap)
 {
 
 	td->td_retval[0] = td->td_ucred->cr_uid;
 	return (0);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct getgid_args {
         int     dummy;
 };
 #endif
 /* ARGSUSED */
 int
 sys_getgid(struct thread *td, struct getgid_args *uap)
 {
 
 	td->td_retval[0] = td->td_ucred->cr_rgid;
 #if defined(COMPAT_43)
 	td->td_retval[1] = td->td_ucred->cr_groups[0];
 #endif
 	return (0);
 }
 
 /*
  * Get effective group ID.  The "egid" is groups[0], and could be obtained
  * via getgroups.  This syscall exists because it is somewhat painful to do
  * correctly in a library function.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct getegid_args {
         int     dummy;
 };
 #endif
 /* ARGSUSED */
 int
 sys_getegid(struct thread *td, struct getegid_args *uap)
 {
 
 	td->td_retval[0] = td->td_ucred->cr_groups[0];
 	return (0);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct getgroups_args {
 	int	gidsetsize;
 	gid_t	*gidset;
 };
 #endif
 int
 sys_getgroups(struct thread *td, struct getgroups_args *uap)
 {
 	struct ucred *cred;
 	int ngrp, error;
 
 	cred = td->td_ucred;
 	ngrp = cred->cr_ngroups;
 
 	if (uap->gidsetsize == 0) {
 		error = 0;
 		goto out;
 	}
 	if (uap->gidsetsize < ngrp)
 		return (EINVAL);
 
 	error = copyout(cred->cr_groups, uap->gidset, ngrp * sizeof(gid_t));
 out:
 	td->td_retval[0] = ngrp;
 	return (error);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct setsid_args {
         int     dummy;
 };
 #endif
 /* ARGSUSED */
 int
 sys_setsid(struct thread *td, struct setsid_args *uap)
 {
 	struct pgrp *pgrp;
 	int error;
 	struct proc *p = td->td_proc;
 	struct pgrp *newpgrp;
 	struct session *newsess;
 
 	pgrp = NULL;
 
 	newpgrp = uma_zalloc(pgrp_zone, M_WAITOK);
 	newsess = malloc(sizeof(struct session), M_SESSION, M_WAITOK | M_ZERO);
 
 again:
 	error = 0;
 	sx_xlock(&proctree_lock);
 
 	if (p->p_pgid == p->p_pid || (pgrp = pgfind(p->p_pid)) != NULL) {
 		if (pgrp != NULL)
 			PGRP_UNLOCK(pgrp);
 		error = EPERM;
 	} else {
 		error = enterpgrp(p, p->p_pid, newpgrp, newsess);
 		if (error == ERESTART) {
 			sx_xunlock(&proctree_lock);
 			goto again;
 		}
 		MPASS(error == 0);
 		td->td_retval[0] = p->p_pid;
 		newpgrp = NULL;
 		newsess = NULL;
 	}
 
 	sx_xunlock(&proctree_lock);
 
 	uma_zfree(pgrp_zone, newpgrp);
 	free(newsess, M_SESSION);
 
 	return (error);
 }
 
 /*
  * set process group (setpgid/old setpgrp)
  *
  * caller does setpgid(targpid, targpgid)
  *
  * pid must be caller or child of caller (ESRCH)
  * if a child
  *	pid must be in same session (EPERM)
  *	pid can't have done an exec (EACCES)
  * if pgid != pid
  * 	there must exist some pid in same session having pgid (EPERM)
  * pid must not be session leader (EPERM)
  */
 #ifndef _SYS_SYSPROTO_H_
 struct setpgid_args {
 	int	pid;		/* target process id */
 	int	pgid;		/* target pgrp id */
 };
 #endif
 /* ARGSUSED */
 int
 sys_setpgid(struct thread *td, struct setpgid_args *uap)
 {
 	struct proc *curp = td->td_proc;
 	struct proc *targp;	/* target process */
 	struct pgrp *pgrp;	/* target pgrp */
 	int error;
 	struct pgrp *newpgrp;
 
 	if (uap->pgid < 0)
 		return (EINVAL);
 
 	newpgrp = uma_zalloc(pgrp_zone, M_WAITOK);
 
 again:
 	error = 0;
 
 	sx_xlock(&proctree_lock);
 	if (uap->pid != 0 && uap->pid != curp->p_pid) {
 		if ((targp = pfind(uap->pid)) == NULL) {
 			error = ESRCH;
 			goto done;
 		}
 		if (!inferior(targp)) {
 			PROC_UNLOCK(targp);
 			error = ESRCH;
 			goto done;
 		}
 		if ((error = p_cansee(td, targp))) {
 			PROC_UNLOCK(targp);
 			goto done;
 		}
 		if (targp->p_pgrp == NULL ||
 		    targp->p_session != curp->p_session) {
 			PROC_UNLOCK(targp);
 			error = EPERM;
 			goto done;
 		}
 		if (targp->p_flag & P_EXEC) {
 			PROC_UNLOCK(targp);
 			error = EACCES;
 			goto done;
 		}
 		PROC_UNLOCK(targp);
 	} else
 		targp = curp;
 	if (SESS_LEADER(targp)) {
 		error = EPERM;
 		goto done;
 	}
 	if (uap->pgid == 0)
 		uap->pgid = targp->p_pid;
 	if ((pgrp = pgfind(uap->pgid)) == NULL) {
 		if (uap->pgid == targp->p_pid) {
 			error = enterpgrp(targp, uap->pgid, newpgrp,
 			    NULL);
 			if (error == 0)
 				newpgrp = NULL;
 		} else
 			error = EPERM;
 	} else {
 		if (pgrp == targp->p_pgrp) {
 			PGRP_UNLOCK(pgrp);
 			goto done;
 		}
 		if (pgrp->pg_id != targp->p_pid &&
 		    pgrp->pg_session != curp->p_session) {
 			PGRP_UNLOCK(pgrp);
 			error = EPERM;
 			goto done;
 		}
 		PGRP_UNLOCK(pgrp);
 		error = enterthispgrp(targp, pgrp);
 	}
 done:
 	sx_xunlock(&proctree_lock);
 	KASSERT(error == 0 || newpgrp != NULL,
 	    ("setpgid failed and newpgrp is NULL"));
 	if (error == ERESTART)
 		goto again;
 	uma_zfree(pgrp_zone, newpgrp);
 	return (error);
 }
 
 /*
  * Use the clause in B.4.2.2 that allows setuid/setgid to be 4.2/4.3BSD
  * compatible.  It says that setting the uid/gid to euid/egid is a special
  * case of "appropriate privilege".  Once the rules are expanded out, this
  * basically means that setuid(nnn) sets all three id's, in all permitted
  * cases unless _POSIX_SAVED_IDS is enabled.  In that case, setuid(getuid())
  * does not set the saved id - this is dangerous for traditional BSD
  * programs.  For this reason, we *really* do not want to set
  * _POSIX_SAVED_IDS and do not want to clear POSIX_APPENDIX_B_4_2_2.
  */
 #define POSIX_APPENDIX_B_4_2_2
 
 #ifndef _SYS_SYSPROTO_H_
 struct setuid_args {
 	uid_t	uid;
 };
 #endif
 /* ARGSUSED */
 int
 sys_setuid(struct thread *td, struct setuid_args *uap)
 {
 	struct proc *p = td->td_proc;
 	struct ucred *newcred, *oldcred;
 	uid_t uid;
 	struct uidinfo *uip;
 	int error;
 
 	uid = uap->uid;
 	AUDIT_ARG_UID(uid);
 	newcred = crget();
 	uip = uifind(uid);
 	PROC_LOCK(p);
 	/*
 	 * Copy credentials so other references do not see our changes.
 	 */
 	oldcred = crcopysafe(p, newcred);
 
 #ifdef MAC
 	error = mac_cred_check_setuid(oldcred, uid);
 	if (error)
 		goto fail;
 #endif
 
 	/*
 	 * See if we have "permission" by POSIX 1003.1 rules.
 	 *
 	 * Note that setuid(geteuid()) is a special case of
 	 * "appropriate privileges" in appendix B.4.2.2.  We need
 	 * to use this clause to be compatible with traditional BSD
 	 * semantics.  Basically, it means that "setuid(xx)" sets all
 	 * three id's (assuming you have privs).
 	 *
 	 * Notes on the logic.  We do things in three steps.
 	 * 1: We determine if the euid is going to change, and do EPERM
 	 *    right away.  We unconditionally change the euid later if this
 	 *    test is satisfied, simplifying that part of the logic.
 	 * 2: We determine if the real and/or saved uids are going to
 	 *    change.  Determined by compile options.
 	 * 3: Change euid last. (after tests in #2 for "appropriate privs")
 	 */
 	if (uid != oldcred->cr_ruid &&		/* allow setuid(getuid()) */
 #ifdef _POSIX_SAVED_IDS
 	    uid != oldcred->cr_svuid &&		/* allow setuid(saved gid) */
 #endif
 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
 	    uid != oldcred->cr_uid &&		/* allow setuid(geteuid()) */
 #endif
 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETUID)) != 0)
 		goto fail;
 
 #ifdef _POSIX_SAVED_IDS
 	/*
 	 * Do we have "appropriate privileges" (are we root or uid == euid)
 	 * If so, we are changing the real uid and/or saved uid.
 	 */
 	if (
 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use the clause from B.4.2.2 */
 	    uid == oldcred->cr_uid ||
 #endif
 	    /* We are using privs. */
 	    priv_check_cred(oldcred, PRIV_CRED_SETUID) == 0)
 #endif
 	{
 		/*
 		 * Set the real uid and transfer proc count to new user.
 		 */
 		if (uid != oldcred->cr_ruid) {
 			change_ruid(newcred, uip);
 			setsugid(p);
 		}
 		/*
 		 * Set saved uid
 		 *
 		 * XXX always set saved uid even if not _POSIX_SAVED_IDS, as
 		 * the security of seteuid() depends on it.  B.4.2.2 says it
 		 * is important that we should do this.
 		 */
 		if (uid != oldcred->cr_svuid) {
 			change_svuid(newcred, uid);
 			setsugid(p);
 		}
 	}
 
 	/*
 	 * In all permitted cases, we are changing the euid.
 	 */
 	if (uid != oldcred->cr_uid) {
 		change_euid(newcred, uip);
 		setsugid(p);
 	}
 	proc_set_cred(p, newcred);
 #ifdef RACCT
 	racct_proc_ucred_changed(p, oldcred, newcred);
 	crhold(newcred);
 #endif
 	PROC_UNLOCK(p);
 #ifdef RCTL
 	rctl_proc_ucred_changed(p, newcred);
 	crfree(newcred);
 #endif
 	uifree(uip);
 	crfree(oldcred);
 	return (0);
 
 fail:
 	PROC_UNLOCK(p);
 	uifree(uip);
 	crfree(newcred);
 	return (error);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct seteuid_args {
 	uid_t	euid;
 };
 #endif
 /* ARGSUSED */
 int
 sys_seteuid(struct thread *td, struct seteuid_args *uap)
 {
 	struct proc *p = td->td_proc;
 	struct ucred *newcred, *oldcred;
 	uid_t euid;
 	struct uidinfo *euip;
 	int error;
 
 	euid = uap->euid;
 	AUDIT_ARG_EUID(euid);
 	newcred = crget();
 	euip = uifind(euid);
 	PROC_LOCK(p);
 	/*
 	 * Copy credentials so other references do not see our changes.
 	 */
 	oldcred = crcopysafe(p, newcred);
 
 #ifdef MAC
 	error = mac_cred_check_seteuid(oldcred, euid);
 	if (error)
 		goto fail;
 #endif
 
 	if (euid != oldcred->cr_ruid &&		/* allow seteuid(getuid()) */
 	    euid != oldcred->cr_svuid &&	/* allow seteuid(saved uid) */
 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEUID)) != 0)
 		goto fail;
 
 	/*
 	 * Everything's okay, do it.
 	 */
 	if (oldcred->cr_uid != euid) {
 		change_euid(newcred, euip);
 		setsugid(p);
 	}
 	proc_set_cred(p, newcred);
 	PROC_UNLOCK(p);
 	uifree(euip);
 	crfree(oldcred);
 	return (0);
 
 fail:
 	PROC_UNLOCK(p);
 	uifree(euip);
 	crfree(newcred);
 	return (error);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct setgid_args {
 	gid_t	gid;
 };
 #endif
 /* ARGSUSED */
 int
 sys_setgid(struct thread *td, struct setgid_args *uap)
 {
 	struct proc *p = td->td_proc;
 	struct ucred *newcred, *oldcred;
 	gid_t gid;
 	int error;
 
 	gid = uap->gid;
 	AUDIT_ARG_GID(gid);
 	newcred = crget();
 	PROC_LOCK(p);
 	oldcred = crcopysafe(p, newcred);
 
 #ifdef MAC
 	error = mac_cred_check_setgid(oldcred, gid);
 	if (error)
 		goto fail;
 #endif
 
 	/*
 	 * See if we have "permission" by POSIX 1003.1 rules.
 	 *
 	 * Note that setgid(getegid()) is a special case of
 	 * "appropriate privileges" in appendix B.4.2.2.  We need
 	 * to use this clause to be compatible with traditional BSD
 	 * semantics.  Basically, it means that "setgid(xx)" sets all
 	 * three id's (assuming you have privs).
 	 *
 	 * For notes on the logic here, see setuid() above.
 	 */
 	if (gid != oldcred->cr_rgid &&		/* allow setgid(getgid()) */
 #ifdef _POSIX_SAVED_IDS
 	    gid != oldcred->cr_svgid &&		/* allow setgid(saved gid) */
 #endif
 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
 	    gid != oldcred->cr_groups[0] && /* allow setgid(getegid()) */
 #endif
 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETGID)) != 0)
 		goto fail;
 
 #ifdef _POSIX_SAVED_IDS
 	/*
 	 * Do we have "appropriate privileges" (are we root or gid == egid)
 	 * If so, we are changing the real uid and saved gid.
 	 */
 	if (
 #ifdef POSIX_APPENDIX_B_4_2_2	/* use the clause from B.4.2.2 */
 	    gid == oldcred->cr_groups[0] ||
 #endif
 	    /* We are using privs. */
 	    priv_check_cred(oldcred, PRIV_CRED_SETGID) == 0)
 #endif
 	{
 		/*
 		 * Set real gid
 		 */
 		if (oldcred->cr_rgid != gid) {
 			change_rgid(newcred, gid);
 			setsugid(p);
 		}
 		/*
 		 * Set saved gid
 		 *
 		 * XXX always set saved gid even if not _POSIX_SAVED_IDS, as
 		 * the security of setegid() depends on it.  B.4.2.2 says it
 		 * is important that we should do this.
 		 */
 		if (oldcred->cr_svgid != gid) {
 			change_svgid(newcred, gid);
 			setsugid(p);
 		}
 	}
 	/*
 	 * In all cases permitted cases, we are changing the egid.
 	 * Copy credentials so other references do not see our changes.
 	 */
 	if (oldcred->cr_groups[0] != gid) {
 		change_egid(newcred, gid);
 		setsugid(p);
 	}
 	proc_set_cred(p, newcred);
 	PROC_UNLOCK(p);
 	crfree(oldcred);
 	return (0);
 
 fail:
 	PROC_UNLOCK(p);
 	crfree(newcred);
 	return (error);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct setegid_args {
 	gid_t	egid;
 };
 #endif
 /* ARGSUSED */
 int
 sys_setegid(struct thread *td, struct setegid_args *uap)
 {
 	struct proc *p = td->td_proc;
 	struct ucred *newcred, *oldcred;
 	gid_t egid;
 	int error;
 
 	egid = uap->egid;
 	AUDIT_ARG_EGID(egid);
 	newcred = crget();
 	PROC_LOCK(p);
 	oldcred = crcopysafe(p, newcred);
 
 #ifdef MAC
 	error = mac_cred_check_setegid(oldcred, egid);
 	if (error)
 		goto fail;
 #endif
 
 	if (egid != oldcred->cr_rgid &&		/* allow setegid(getgid()) */
 	    egid != oldcred->cr_svgid &&	/* allow setegid(saved gid) */
 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEGID)) != 0)
 		goto fail;
 
 	if (oldcred->cr_groups[0] != egid) {
 		change_egid(newcred, egid);
 		setsugid(p);
 	}
 	proc_set_cred(p, newcred);
 	PROC_UNLOCK(p);
 	crfree(oldcred);
 	return (0);
 
 fail:
 	PROC_UNLOCK(p);
 	crfree(newcred);
 	return (error);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct setgroups_args {
 	int	gidsetsize;
 	gid_t	*gidset;
 };
 #endif
 /* ARGSUSED */
 int
 sys_setgroups(struct thread *td, struct setgroups_args *uap)
 {
 	gid_t smallgroups[XU_NGROUPS];
 	gid_t *groups;
 	int gidsetsize, error;
 
 	gidsetsize = uap->gidsetsize;
 	if (gidsetsize > ngroups_max + 1 || gidsetsize < 0)
 		return (EINVAL);
 
 	if (gidsetsize > XU_NGROUPS)
 		groups = malloc(gidsetsize * sizeof(gid_t), M_TEMP, M_WAITOK);
 	else
 		groups = smallgroups;
 
 	error = copyin(uap->gidset, groups, gidsetsize * sizeof(gid_t));
 	if (error == 0)
 		error = kern_setgroups(td, gidsetsize, groups);
 
 	if (gidsetsize > XU_NGROUPS)
 		free(groups, M_TEMP);
 	return (error);
 }
 
 int
 kern_setgroups(struct thread *td, u_int ngrp, gid_t *groups)
 {
 	struct proc *p = td->td_proc;
 	struct ucred *newcred, *oldcred;
 	int error;
 
 	MPASS(ngrp <= ngroups_max + 1);
 	AUDIT_ARG_GROUPSET(groups, ngrp);
 	newcred = crget();
 	crextend(newcred, ngrp);
 	PROC_LOCK(p);
 	oldcred = crcopysafe(p, newcred);
 
 #ifdef MAC
 	error = mac_cred_check_setgroups(oldcred, ngrp, groups);
 	if (error)
 		goto fail;
 #endif
 
 	error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS);
 	if (error)
 		goto fail;
 
 	if (ngrp == 0) {
 		/*
 		 * setgroups(0, NULL) is a legitimate way of clearing the
 		 * groups vector on non-BSD systems (which generally do not
 		 * have the egid in the groups[0]).  We risk security holes
 		 * when running non-BSD software if we do not do the same.
 		 */
 		newcred->cr_ngroups = 1;
 	} else {
 		crsetgroups_locked(newcred, ngrp, groups);
 	}
 	setsugid(p);
 	proc_set_cred(p, newcred);
 	PROC_UNLOCK(p);
 	crfree(oldcred);
 	return (0);
 
 fail:
 	PROC_UNLOCK(p);
 	crfree(newcred);
 	return (error);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct setreuid_args {
 	uid_t	ruid;
 	uid_t	euid;
 };
 #endif
 /* ARGSUSED */
 int
 sys_setreuid(struct thread *td, struct setreuid_args *uap)
 {
 	struct proc *p = td->td_proc;
 	struct ucred *newcred, *oldcred;
 	uid_t euid, ruid;
 	struct uidinfo *euip, *ruip;
 	int error;
 
 	euid = uap->euid;
 	ruid = uap->ruid;
 	AUDIT_ARG_EUID(euid);
 	AUDIT_ARG_RUID(ruid);
 	newcred = crget();
 	euip = uifind(euid);
 	ruip = uifind(ruid);
 	PROC_LOCK(p);
 	oldcred = crcopysafe(p, newcred);
 
 #ifdef MAC
 	error = mac_cred_check_setreuid(oldcred, ruid, euid);
 	if (error)
 		goto fail;
 #endif
 
 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
 	      ruid != oldcred->cr_svuid) ||
 	     (euid != (uid_t)-1 && euid != oldcred->cr_uid &&
 	      euid != oldcred->cr_ruid && euid != oldcred->cr_svuid)) &&
 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREUID)) != 0)
 		goto fail;
 
 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
 		change_euid(newcred, euip);
 		setsugid(p);
 	}
 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
 		change_ruid(newcred, ruip);
 		setsugid(p);
 	}
 	if ((ruid != (uid_t)-1 || newcred->cr_uid != newcred->cr_ruid) &&
 	    newcred->cr_svuid != newcred->cr_uid) {
 		change_svuid(newcred, newcred->cr_uid);
 		setsugid(p);
 	}
 	proc_set_cred(p, newcred);
 #ifdef RACCT
 	racct_proc_ucred_changed(p, oldcred, newcred);
 	crhold(newcred);
 #endif
 	PROC_UNLOCK(p);
 #ifdef RCTL
 	rctl_proc_ucred_changed(p, newcred);
 	crfree(newcred);
 #endif
 	uifree(ruip);
 	uifree(euip);
 	crfree(oldcred);
 	return (0);
 
 fail:
 	PROC_UNLOCK(p);
 	uifree(ruip);
 	uifree(euip);
 	crfree(newcred);
 	return (error);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct setregid_args {
 	gid_t	rgid;
 	gid_t	egid;
 };
 #endif
 /* ARGSUSED */
 int
 sys_setregid(struct thread *td, struct setregid_args *uap)
 {
 	struct proc *p = td->td_proc;
 	struct ucred *newcred, *oldcred;
 	gid_t egid, rgid;
 	int error;
 
 	egid = uap->egid;
 	rgid = uap->rgid;
 	AUDIT_ARG_EGID(egid);
 	AUDIT_ARG_RGID(rgid);
 	newcred = crget();
 	PROC_LOCK(p);
 	oldcred = crcopysafe(p, newcred);
 
 #ifdef MAC
 	error = mac_cred_check_setregid(oldcred, rgid, egid);
 	if (error)
 		goto fail;
 #endif
 
 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
 	    rgid != oldcred->cr_svgid) ||
 	     (egid != (gid_t)-1 && egid != oldcred->cr_groups[0] &&
 	     egid != oldcred->cr_rgid && egid != oldcred->cr_svgid)) &&
 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREGID)) != 0)
 		goto fail;
 
 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
 		change_egid(newcred, egid);
 		setsugid(p);
 	}
 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
 		change_rgid(newcred, rgid);
 		setsugid(p);
 	}
 	if ((rgid != (gid_t)-1 || newcred->cr_groups[0] != newcred->cr_rgid) &&
 	    newcred->cr_svgid != newcred->cr_groups[0]) {
 		change_svgid(newcred, newcred->cr_groups[0]);
 		setsugid(p);
 	}
 	proc_set_cred(p, newcred);
 	PROC_UNLOCK(p);
 	crfree(oldcred);
 	return (0);
 
 fail:
 	PROC_UNLOCK(p);
 	crfree(newcred);
 	return (error);
 }
 
 /*
  * setresuid(ruid, euid, suid) is like setreuid except control over the saved
  * uid is explicit.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct setresuid_args {
 	uid_t	ruid;
 	uid_t	euid;
 	uid_t	suid;
 };
 #endif
 /* ARGSUSED */
 int
 sys_setresuid(struct thread *td, struct setresuid_args *uap)
 {
 	struct proc *p = td->td_proc;
 	struct ucred *newcred, *oldcred;
 	uid_t euid, ruid, suid;
 	struct uidinfo *euip, *ruip;
 	int error;
 
 	euid = uap->euid;
 	ruid = uap->ruid;
 	suid = uap->suid;
 	AUDIT_ARG_EUID(euid);
 	AUDIT_ARG_RUID(ruid);
 	AUDIT_ARG_SUID(suid);
 	newcred = crget();
 	euip = uifind(euid);
 	ruip = uifind(ruid);
 	PROC_LOCK(p);
 	oldcred = crcopysafe(p, newcred);
 
 #ifdef MAC
 	error = mac_cred_check_setresuid(oldcred, ruid, euid, suid);
 	if (error)
 		goto fail;
 #endif
 
 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
 	     ruid != oldcred->cr_svuid &&
 	      ruid != oldcred->cr_uid) ||
 	     (euid != (uid_t)-1 && euid != oldcred->cr_ruid &&
 	    euid != oldcred->cr_svuid &&
 	      euid != oldcred->cr_uid) ||
 	     (suid != (uid_t)-1 && suid != oldcred->cr_ruid &&
 	    suid != oldcred->cr_svuid &&
 	      suid != oldcred->cr_uid)) &&
 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESUID)) != 0)
 		goto fail;
 
 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
 		change_euid(newcred, euip);
 		setsugid(p);
 	}
 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
 		change_ruid(newcred, ruip);
 		setsugid(p);
 	}
 	if (suid != (uid_t)-1 && oldcred->cr_svuid != suid) {
 		change_svuid(newcred, suid);
 		setsugid(p);
 	}
 	proc_set_cred(p, newcred);
 #ifdef RACCT
 	racct_proc_ucred_changed(p, oldcred, newcred);
 	crhold(newcred);
 #endif
 	PROC_UNLOCK(p);
 #ifdef RCTL
 	rctl_proc_ucred_changed(p, newcred);
 	crfree(newcred);
 #endif
 	uifree(ruip);
 	uifree(euip);
 	crfree(oldcred);
 	return (0);
 
 fail:
 	PROC_UNLOCK(p);
 	uifree(ruip);
 	uifree(euip);
 	crfree(newcred);
 	return (error);
 
 }
 
 /*
  * setresgid(rgid, egid, sgid) is like setregid except control over the saved
  * gid is explicit.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct setresgid_args {
 	gid_t	rgid;
 	gid_t	egid;
 	gid_t	sgid;
 };
 #endif
 /* ARGSUSED */
 int
 sys_setresgid(struct thread *td, struct setresgid_args *uap)
 {
 	struct proc *p = td->td_proc;
 	struct ucred *newcred, *oldcred;
 	gid_t egid, rgid, sgid;
 	int error;
 
 	egid = uap->egid;
 	rgid = uap->rgid;
 	sgid = uap->sgid;
 	AUDIT_ARG_EGID(egid);
 	AUDIT_ARG_RGID(rgid);
 	AUDIT_ARG_SGID(sgid);
 	newcred = crget();
 	PROC_LOCK(p);
 	oldcred = crcopysafe(p, newcred);
 
 #ifdef MAC
 	error = mac_cred_check_setresgid(oldcred, rgid, egid, sgid);
 	if (error)
 		goto fail;
 #endif
 
 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
 	      rgid != oldcred->cr_svgid &&
 	      rgid != oldcred->cr_groups[0]) ||
 	     (egid != (gid_t)-1 && egid != oldcred->cr_rgid &&
 	      egid != oldcred->cr_svgid &&
 	      egid != oldcred->cr_groups[0]) ||
 	     (sgid != (gid_t)-1 && sgid != oldcred->cr_rgid &&
 	      sgid != oldcred->cr_svgid &&
 	      sgid != oldcred->cr_groups[0])) &&
 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESGID)) != 0)
 		goto fail;
 
 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
 		change_egid(newcred, egid);
 		setsugid(p);
 	}
 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
 		change_rgid(newcred, rgid);
 		setsugid(p);
 	}
 	if (sgid != (gid_t)-1 && oldcred->cr_svgid != sgid) {
 		change_svgid(newcred, sgid);
 		setsugid(p);
 	}
 	proc_set_cred(p, newcred);
 	PROC_UNLOCK(p);
 	crfree(oldcred);
 	return (0);
 
 fail:
 	PROC_UNLOCK(p);
 	crfree(newcred);
 	return (error);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct getresuid_args {
 	uid_t	*ruid;
 	uid_t	*euid;
 	uid_t	*suid;
 };
 #endif
 /* ARGSUSED */
 int
 sys_getresuid(struct thread *td, struct getresuid_args *uap)
 {
 	struct ucred *cred;
 	int error1 = 0, error2 = 0, error3 = 0;
 
 	cred = td->td_ucred;
 	if (uap->ruid)
 		error1 = copyout(&cred->cr_ruid,
 		    uap->ruid, sizeof(cred->cr_ruid));
 	if (uap->euid)
 		error2 = copyout(&cred->cr_uid,
 		    uap->euid, sizeof(cred->cr_uid));
 	if (uap->suid)
 		error3 = copyout(&cred->cr_svuid,
 		    uap->suid, sizeof(cred->cr_svuid));
 	return (error1 ? error1 : error2 ? error2 : error3);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct getresgid_args {
 	gid_t	*rgid;
 	gid_t	*egid;
 	gid_t	*sgid;
 };
 #endif
 /* ARGSUSED */
 int
 sys_getresgid(struct thread *td, struct getresgid_args *uap)
 {
 	struct ucred *cred;
 	int error1 = 0, error2 = 0, error3 = 0;
 
 	cred = td->td_ucred;
 	if (uap->rgid)
 		error1 = copyout(&cred->cr_rgid,
 		    uap->rgid, sizeof(cred->cr_rgid));
 	if (uap->egid)
 		error2 = copyout(&cred->cr_groups[0],
 		    uap->egid, sizeof(cred->cr_groups[0]));
 	if (uap->sgid)
 		error3 = copyout(&cred->cr_svgid,
 		    uap->sgid, sizeof(cred->cr_svgid));
 	return (error1 ? error1 : error2 ? error2 : error3);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct issetugid_args {
 	int dummy;
 };
 #endif
 /* ARGSUSED */
 int
 sys_issetugid(struct thread *td, struct issetugid_args *uap)
 {
 	struct proc *p = td->td_proc;
 
 	/*
 	 * Note: OpenBSD sets a P_SUGIDEXEC flag set at execve() time,
 	 * we use P_SUGID because we consider changing the owners as
 	 * "tainting" as well.
 	 * This is significant for procs that start as root and "become"
 	 * a user without an exec - programs cannot know *everything*
 	 * that libc *might* have put in their data segment.
 	 */
 	td->td_retval[0] = (p->p_flag & P_SUGID) ? 1 : 0;
 	return (0);
 }
 
 int
 sys___setugid(struct thread *td, struct __setugid_args *uap)
 {
 #ifdef REGRESSION
 	struct proc *p;
 
 	p = td->td_proc;
 	switch (uap->flag) {
 	case 0:
 		PROC_LOCK(p);
 		p->p_flag &= ~P_SUGID;
 		PROC_UNLOCK(p);
 		return (0);
 	case 1:
 		PROC_LOCK(p);
 		p->p_flag |= P_SUGID;
 		PROC_UNLOCK(p);
 		return (0);
 	default:
 		return (EINVAL);
 	}
 #else /* !REGRESSION */
 
 	return (ENOSYS);
 #endif /* REGRESSION */
 }
 
 /*
  * Returns whether gid designates a supplementary group in cred.
  */
 static int
 supplementary_group_member(gid_t gid, struct ucred *cred)
 {
 	int l, h, m;
 
 	/*
 	 * Perform a binary search of the supplemental groups.  This is possible
 	 * because we sort the groups in crsetgroups().
 	 */
 	l = 1;
 	h = cred->cr_ngroups;
 
 	while (l < h) {
 		m = l + (h - l) / 2;
 		if (cred->cr_groups[m] < gid)
 			l = m + 1;
 		else
 			h = m;
 	}
 
 	return (l < cred->cr_ngroups && cred->cr_groups[l] == gid);
 }
 
 /*
  * Check if gid is a member of the (effective) group set (i.e., effective and
  * supplementary groups).
  */
 int
 groupmember(gid_t gid, struct ucred *cred)
 {
 
 	if (cred->cr_groups[0] == gid)
 		return (1);
 
 	return (supplementary_group_member(gid, cred));
 }
 
+/*
+ * Check if gid is a member of the real group set (i.e., real and supplementary
+ * groups).
+ */
+int
+realgroupmember(gid_t gid, struct ucred *cred)
+{
+	if (gid == cred->cr_rgid)
+		return (1);
+
+	return (supplementary_group_member(gid, cred));
+}
+
 /*
  * Test the active securelevel against a given level.  securelevel_gt()
  * implements (securelevel > level).  securelevel_ge() implements
  * (securelevel >= level).  Note that the logic is inverted -- these
  * functions return EPERM on "success" and 0 on "failure".
  *
  * Due to care taken when setting the securelevel, we know that no jail will
  * be less secure that its parent (or the physical system), so it is sufficient
  * to test the current jail only.
  *
  * XXXRW: Possibly since this has to do with privilege, it should move to
  * kern_priv.c.
  */
 int
 securelevel_gt(struct ucred *cr, int level)
 {
 
 	return (cr->cr_prison->pr_securelevel > level ? EPERM : 0);
 }
 
 int
 securelevel_ge(struct ucred *cr, int level)
 {
 
 	return (cr->cr_prison->pr_securelevel >= level ? EPERM : 0);
 }
 
 /*
  * 'see_other_uids' determines whether or not visibility of processes
  * and sockets with credentials holding different real uids is possible
  * using a variety of system MIBs.
  * XXX: data declarations should be together near the beginning of the file.
  */
 static int	see_other_uids = 1;
 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_uids, CTLFLAG_RW,
     &see_other_uids, 0,
     "Unprivileged processes may see subjects/objects with different real uid");
 
 /*-
  * Determine if u1 "can see" the subject specified by u2, according to the
  * 'see_other_uids' policy.
  * Returns: 0 for permitted, ESRCH otherwise
  * Locks: none
  * References: *u1 and *u2 must not change during the call
  *             u1 may equal u2, in which case only one reference is required
  */
 int
 cr_canseeotheruids(struct ucred *u1, struct ucred *u2)
 {
 
 	if (!see_other_uids && u1->cr_ruid != u2->cr_ruid) {
 		if (priv_check_cred(u1, PRIV_SEEOTHERUIDS) != 0)
 			return (ESRCH);
 	}
 	return (0);
 }
 
 /*
  * 'see_other_gids' determines whether or not visibility of processes
  * and sockets with credentials holding different real gids is possible
  * using a variety of system MIBs.
  * XXX: data declarations should be together near the beginning of the file.
  */
 static int	see_other_gids = 1;
 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_gids, CTLFLAG_RW,
     &see_other_gids, 0,
     "Unprivileged processes may see subjects/objects with different real gid");
 
 /*
  * Determine if u1 can "see" the subject specified by u2, according to the
  * 'see_other_gids' policy.
  * Returns: 0 for permitted, ESRCH otherwise
  * Locks: none
  * References: *u1 and *u2 must not change during the call
  *             u1 may equal u2, in which case only one reference is required
  */
 int
 cr_canseeothergids(struct ucred *u1, struct ucred *u2)
 {
 	int i, match;
 
 	if (!see_other_gids) {
 		match = 0;
 		for (i = 0; i < u1->cr_ngroups; i++) {
 			if (groupmember(u1->cr_groups[i], u2))
 				match = 1;
 			if (match)
 				break;
 		}
 		if (!match) {
 			if (priv_check_cred(u1, PRIV_SEEOTHERGIDS) != 0)
 				return (ESRCH);
 		}
 	}
 	return (0);
 }
 
 /*
  * 'see_jail_proc' determines whether or not visibility of processes and
  * sockets with credentials holding different jail ids is possible using a
  * variety of system MIBs.
  *
  * XXX: data declarations should be together near the beginning of the file.
  */
 
 static int	see_jail_proc = 1;
 SYSCTL_INT(_security_bsd, OID_AUTO, see_jail_proc, CTLFLAG_RW,
     &see_jail_proc, 0,
     "Unprivileged processes may see subjects/objects with different jail ids");
 
 /*-
  * Determine if u1 "can see" the subject specified by u2, according to the
  * 'see_jail_proc' policy.
  * Returns: 0 for permitted, ESRCH otherwise
  * Locks: none
  * References: *u1 and *u2 must not change during the call
  *             u1 may equal u2, in which case only one reference is required
  */
 int
 cr_canseejailproc(struct ucred *u1, struct ucred *u2)
 {
 	if (see_jail_proc || /* Policy deactivated. */
 	    u1->cr_prison == u2->cr_prison || /* Same jail. */
 	    priv_check_cred(u1, PRIV_SEEJAILPROC) == 0) /* Privileged. */
 		return (0);
 
 	return (ESRCH);
 }
 
 /*
  * Helper for cr_cansee*() functions to abide by system-wide security.bsd.see_*
  * policies.  Determines if u1 "can see" u2 according to these policies.
  * Returns: 0 for permitted, ESRCH otherwise
  */
 int
 cr_bsd_visible(struct ucred *u1, struct ucred *u2)
 {
 	int error;
 
 	if ((error = cr_canseeotheruids(u1, u2)))
 		return (error);
 	if ((error = cr_canseeothergids(u1, u2)))
 		return (error);
 	if ((error = cr_canseejailproc(u1, u2)))
 		return (error);
 	return (0);
 }
 
 /*-
  * Determine if u1 "can see" the subject specified by u2.
  * Returns: 0 for permitted, an errno value otherwise
  * Locks: none
  * References: *u1 and *u2 must not change during the call
  *             u1 may equal u2, in which case only one reference is required
  */
 int
 cr_cansee(struct ucred *u1, struct ucred *u2)
 {
 	int error;
 
 	if ((error = prison_check(u1, u2)))
 		return (error);
 #ifdef MAC
 	if ((error = mac_cred_check_visible(u1, u2)))
 		return (error);
 #endif
 	if ((error = cr_bsd_visible(u1, u2)))
 		return (error);
 	return (0);
 }
 
 /*-
  * Determine if td "can see" the subject specified by p.
  * Returns: 0 for permitted, an errno value otherwise
  * Locks: Sufficient locks to protect p->p_ucred must be held.  td really
  *        should be curthread.
  * References: td and p must be valid for the lifetime of the call
  */
 int
 p_cansee(struct thread *td, struct proc *p)
 {
 	/* Wrap cr_cansee() for all functionality. */
 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	if (td->td_proc == p)
 		return (0);
 	return (cr_cansee(td->td_ucred, p->p_ucred));
 }
 
 /*
  * 'conservative_signals' prevents the delivery of a broad class of
  * signals by unprivileged processes to processes that have changed their
  * credentials since the last invocation of execve().  This can prevent
  * the leakage of cached information or retained privileges as a result
  * of a common class of signal-related vulnerabilities.  However, this
  * may interfere with some applications that expect to be able to
  * deliver these signals to peer processes after having given up
  * privilege.
  */
 static int	conservative_signals = 1;
 SYSCTL_INT(_security_bsd, OID_AUTO, conservative_signals, CTLFLAG_RW,
     &conservative_signals, 0, "Unprivileged processes prevented from "
     "sending certain signals to processes whose credentials have changed");
 /*-
  * Determine whether cred may deliver the specified signal to proc.
  * Returns: 0 for permitted, an errno value otherwise.
  * Locks: A lock must be held for proc.
  * References: cred and proc must be valid for the lifetime of the call.
  */
 int
 cr_cansignal(struct ucred *cred, struct proc *proc, int signum)
 {
 	int error;
 
 	PROC_LOCK_ASSERT(proc, MA_OWNED);
 	/*
 	 * Jail semantics limit the scope of signalling to proc in the
 	 * same jail as cred, if cred is in jail.
 	 */
 	error = prison_check(cred, proc->p_ucred);
 	if (error)
 		return (error);
 #ifdef MAC
 	if ((error = mac_proc_check_signal(cred, proc, signum)))
 		return (error);
 #endif
 	if ((error = cr_bsd_visible(cred, proc->p_ucred)))
 		return (error);
 
 	/*
 	 * UNIX signal semantics depend on the status of the P_SUGID
 	 * bit on the target process.  If the bit is set, then additional
 	 * restrictions are placed on the set of available signals.
 	 */
 	if (conservative_signals && (proc->p_flag & P_SUGID)) {
 		switch (signum) {
 		case 0:
 		case SIGKILL:
 		case SIGINT:
 		case SIGTERM:
 		case SIGALRM:
 		case SIGSTOP:
 		case SIGTTIN:
 		case SIGTTOU:
 		case SIGTSTP:
 		case SIGHUP:
 		case SIGUSR1:
 		case SIGUSR2:
 			/*
 			 * Generally, permit job and terminal control
 			 * signals.
 			 */
 			break;
 		default:
 			/* Not permitted without privilege. */
 			error = priv_check_cred(cred, PRIV_SIGNAL_SUGID);
 			if (error)
 				return (error);
 		}
 	}
 
 	/*
 	 * Generally, the target credential's ruid or svuid must match the
 	 * subject credential's ruid or euid.
 	 */
 	if (cred->cr_ruid != proc->p_ucred->cr_ruid &&
 	    cred->cr_ruid != proc->p_ucred->cr_svuid &&
 	    cred->cr_uid != proc->p_ucred->cr_ruid &&
 	    cred->cr_uid != proc->p_ucred->cr_svuid) {
 		error = priv_check_cred(cred, PRIV_SIGNAL_DIFFCRED);
 		if (error)
 			return (error);
 	}
 
 	return (0);
 }
 
 /*-
  * Determine whether td may deliver the specified signal to p.
  * Returns: 0 for permitted, an errno value otherwise
  * Locks: Sufficient locks to protect various components of td and p
  *        must be held.  td must be curthread, and a lock must be
  *        held for p.
  * References: td and p must be valid for the lifetime of the call
  */
 int
 p_cansignal(struct thread *td, struct proc *p, int signum)
 {
 
 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	if (td->td_proc == p)
 		return (0);
 
 	/*
 	 * UNIX signalling semantics require that processes in the same
 	 * session always be able to deliver SIGCONT to one another,
 	 * overriding the remaining protections.
 	 */
 	/* XXX: This will require an additional lock of some sort. */
 	if (signum == SIGCONT && td->td_proc->p_session == p->p_session)
 		return (0);
 	/*
 	 * Some compat layers use SIGTHR and higher signals for
 	 * communication between different kernel threads of the same
 	 * process, so that they expect that it's always possible to
 	 * deliver them, even for suid applications where cr_cansignal() can
 	 * deny such ability for security consideration.  It should be
 	 * pretty safe to do since the only way to create two processes
 	 * with the same p_leader is via rfork(2).
 	 */
 	if (td->td_proc->p_leader != NULL && signum >= SIGTHR &&
 	    signum < SIGTHR + 4 && td->td_proc->p_leader == p->p_leader)
 		return (0);
 
 	return (cr_cansignal(td->td_ucred, p, signum));
 }
 
 /*-
  * Determine whether td may reschedule p.
  * Returns: 0 for permitted, an errno value otherwise
  * Locks: Sufficient locks to protect various components of td and p
  *        must be held.  td must be curthread, and a lock must
  *        be held for p.
  * References: td and p must be valid for the lifetime of the call
  */
 int
 p_cansched(struct thread *td, struct proc *p)
 {
 	int error;
 
 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	if (td->td_proc == p)
 		return (0);
 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
 		return (error);
 #ifdef MAC
 	if ((error = mac_proc_check_sched(td->td_ucred, p)))
 		return (error);
 #endif
 	if ((error = cr_bsd_visible(td->td_ucred, p->p_ucred)))
 		return (error);
 
 	if (td->td_ucred->cr_ruid != p->p_ucred->cr_ruid &&
 	    td->td_ucred->cr_uid != p->p_ucred->cr_ruid) {
 		error = priv_check(td, PRIV_SCHED_DIFFCRED);
 		if (error)
 			return (error);
 	}
 	return (0);
 }
 
 /*
  * Handle getting or setting the prison's unprivileged_proc_debug
  * value.
  */
 static int
 sysctl_unprivileged_proc_debug(SYSCTL_HANDLER_ARGS)
 {
 	int error, val;
 
 	val = prison_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG);
 	error = sysctl_handle_int(oidp, &val, 0, req);
 	if (error != 0 || req->newptr == NULL)
 		return (error);
 	if (val != 0 && val != 1)
 		return (EINVAL);
 	prison_set_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG, val);
 	return (0);
 }
 
 /*
  * The 'unprivileged_proc_debug' flag may be used to disable a variety of
  * unprivileged inter-process debugging services, including some procfs
  * functionality, ptrace(), and ktrace().  In the past, inter-process
  * debugging has been involved in a variety of security problems, and sites
  * not requiring the service might choose to disable it when hardening
  * systems.
  */
 SYSCTL_PROC(_security_bsd, OID_AUTO, unprivileged_proc_debug,
     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_SECURE |
     CTLFLAG_MPSAFE, 0, 0, sysctl_unprivileged_proc_debug, "I",
     "Unprivileged processes may use process debugging facilities");
 
 /*-
  * Determine whether td may debug p.
  * Returns: 0 for permitted, an errno value otherwise
  * Locks: Sufficient locks to protect various components of td and p
  *        must be held.  td must be curthread, and a lock must
  *        be held for p.
  * References: td and p must be valid for the lifetime of the call
  */
 int
 p_candebug(struct thread *td, struct proc *p)
 {
 	int credentialchanged, error, grpsubset, i, uidsubset;
 
 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	if (td->td_proc == p)
 		return (0);
 	if ((error = priv_check(td, PRIV_DEBUG_UNPRIV)))
 		return (error);
 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
 		return (error);
 #ifdef MAC
 	if ((error = mac_proc_check_debug(td->td_ucred, p)))
 		return (error);
 #endif
 	if ((error = cr_bsd_visible(td->td_ucred, p->p_ucred)))
 		return (error);
 
 	/*
 	 * Is p's group set a subset of td's effective group set?  This
 	 * includes p's egid, group access list, rgid, and svgid.
 	 */
 	grpsubset = 1;
 	for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
 		if (!groupmember(p->p_ucred->cr_groups[i], td->td_ucred)) {
 			grpsubset = 0;
 			break;
 		}
 	}
 	grpsubset = grpsubset &&
 	    groupmember(p->p_ucred->cr_rgid, td->td_ucred) &&
 	    groupmember(p->p_ucred->cr_svgid, td->td_ucred);
 
 	/*
 	 * Are the uids present in p's credential equal to td's
 	 * effective uid?  This includes p's euid, svuid, and ruid.
 	 */
 	uidsubset = (td->td_ucred->cr_uid == p->p_ucred->cr_uid &&
 	    td->td_ucred->cr_uid == p->p_ucred->cr_svuid &&
 	    td->td_ucred->cr_uid == p->p_ucred->cr_ruid);
 
 	/*
 	 * Has the credential of the process changed since the last exec()?
 	 */
 	credentialchanged = (p->p_flag & P_SUGID);
 
 	/*
 	 * If p's gids aren't a subset, or the uids aren't a subset,
 	 * or the credential has changed, require appropriate privilege
 	 * for td to debug p.
 	 */
 	if (!grpsubset || !uidsubset) {
 		error = priv_check(td, PRIV_DEBUG_DIFFCRED);
 		if (error)
 			return (error);
 	}
 
 	if (credentialchanged) {
 		error = priv_check(td, PRIV_DEBUG_SUGID);
 		if (error)
 			return (error);
 	}
 
 	/* Can't trace init when securelevel > 0. */
 	if (p == initproc) {
 		error = securelevel_gt(td->td_ucred, 0);
 		if (error)
 			return (error);
 	}
 
 	/*
 	 * Can't trace a process that's currently exec'ing.
 	 *
 	 * XXX: Note, this is not a security policy decision, it's a
 	 * basic correctness/functionality decision.  Therefore, this check
 	 * should be moved to the caller's of p_candebug().
 	 */
 	if ((p->p_flag & P_INEXEC) != 0)
 		return (EBUSY);
 
 	/* Denied explicitly */
 	if ((p->p_flag2 & P2_NOTRACE) != 0) {
 		error = priv_check(td, PRIV_DEBUG_DENIED);
 		if (error != 0)
 			return (error);
 	}
 
 	return (0);
 }
 
 /*-
  * Determine whether the subject represented by cred can "see" a socket.
  * Returns: 0 for permitted, ENOENT otherwise.
  */
 int
 cr_canseesocket(struct ucred *cred, struct socket *so)
 {
 	int error;
 
 	error = prison_check(cred, so->so_cred);
 	if (error)
 		return (ENOENT);
 #ifdef MAC
 	error = mac_socket_check_visible(cred, so);
 	if (error)
 		return (error);
 #endif
 	if (cr_bsd_visible(cred, so->so_cred))
 		return (ENOENT);
 
 	return (0);
 }
 
 /*-
  * Determine whether td can wait for the exit of p.
  * Returns: 0 for permitted, an errno value otherwise
  * Locks: Sufficient locks to protect various components of td and p
  *        must be held.  td must be curthread, and a lock must
  *        be held for p.
  * References: td and p must be valid for the lifetime of the call
 
  */
 int
 p_canwait(struct thread *td, struct proc *p)
 {
 	int error;
 
 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
 		return (error);
 #ifdef MAC
 	if ((error = mac_proc_check_wait(td->td_ucred, p)))
 		return (error);
 #endif
 #if 0
 	/* XXXMAC: This could have odd effects on some shells. */
 	if ((error = cr_bsd_visible(td->td_ucred, p->p_ucred)))
 		return (error);
 #endif
 
 	return (0);
 }
 
 /*
  * Credential management.
  *
  * struct ucred objects are rarely allocated but gain and lose references all
  * the time (e.g., on struct file alloc/dealloc) turning refcount updates into
  * a significant source of cache-line ping ponging. Common cases are worked
  * around by modifying thread-local counter instead if the cred to operate on
  * matches td_realucred.
  *
  * The counter is split into 2 parts:
  * - cr_users -- total count of all struct proc and struct thread objects
  *   which have given cred in p_ucred and td_ucred respectively
  * - cr_ref -- the actual ref count, only valid if cr_users == 0
  *
  * If users == 0 then cr_ref behaves similarly to refcount(9), in particular if
  * the count reaches 0 the object is freeable.
  * If users > 0 and curthread->td_realucred == cred, then updates are performed
  * against td_ucredref.
  * In other cases updates are performed against cr_ref.
  *
  * Changing td_realucred into something else decrements cr_users and transfers
  * accumulated updates.
  */
 struct ucred *
 crcowget(struct ucred *cr)
 {
 
 	mtx_lock(&cr->cr_mtx);
 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
 	    __func__, cr->cr_users, cr));
 	cr->cr_users++;
 	cr->cr_ref++;
 	mtx_unlock(&cr->cr_mtx);
 	return (cr);
 }
 
 static struct ucred *
 crunuse(struct thread *td)
 {
 	struct ucred *cr, *crold;
 
 	MPASS(td->td_realucred == td->td_ucred);
 	cr = td->td_realucred;
 	mtx_lock(&cr->cr_mtx);
 	cr->cr_ref += td->td_ucredref;
 	td->td_ucredref = 0;
 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
 	    __func__, cr->cr_users, cr));
 	cr->cr_users--;
 	if (cr->cr_users == 0) {
 		KASSERT(cr->cr_ref > 0, ("%s: ref %d not > 0 on cred %p",
 		    __func__, cr->cr_ref, cr));
 		crold = cr;
 	} else {
 		cr->cr_ref--;
 		crold = NULL;
 	}
 	mtx_unlock(&cr->cr_mtx);
 	td->td_realucred = NULL;
 	return (crold);
 }
 
 static void
 crunusebatch(struct ucred *cr, int users, int ref)
 {
 
 	KASSERT(users > 0, ("%s: passed users %d not > 0 ; cred %p",
 	    __func__, users, cr));
 	mtx_lock(&cr->cr_mtx);
 	KASSERT(cr->cr_users >= users, ("%s: users %d not > %d on cred %p",
 	    __func__, cr->cr_users, users, cr));
 	cr->cr_users -= users;
 	cr->cr_ref += ref;
 	cr->cr_ref -= users;
 	if (cr->cr_users > 0) {
 		mtx_unlock(&cr->cr_mtx);
 		return;
 	}
 	KASSERT(cr->cr_ref >= 0, ("%s: ref %d not >= 0 on cred %p",
 	    __func__, cr->cr_ref, cr));
 	if (cr->cr_ref > 0) {
 		mtx_unlock(&cr->cr_mtx);
 		return;
 	}
 	crfree_final(cr);
 }
 
 void
 crcowfree(struct thread *td)
 {
 	struct ucred *cr;
 
 	cr = crunuse(td);
 	if (cr != NULL)
 		crfree(cr);
 }
 
 struct ucred *
 crcowsync(void)
 {
 	struct thread *td;
 	struct proc *p;
 	struct ucred *crnew, *crold;
 
 	td = curthread;
 	p = td->td_proc;
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	MPASS(td->td_realucred == td->td_ucred);
 	if (td->td_realucred == p->p_ucred)
 		return (NULL);
 
 	crnew = crcowget(p->p_ucred);
 	crold = crunuse(td);
 	td->td_realucred = crnew;
 	td->td_ucred = td->td_realucred;
 	return (crold);
 }
 
 /*
  * Batching.
  */
 void
 credbatch_add(struct credbatch *crb, struct thread *td)
 {
 	struct ucred *cr;
 
 	MPASS(td->td_realucred != NULL);
 	MPASS(td->td_realucred == td->td_ucred);
 	MPASS(td->td_state == TDS_INACTIVE);
 	cr = td->td_realucred;
 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
 	    __func__, cr->cr_users, cr));
 	if (crb->cred != cr) {
 		if (crb->users > 0) {
 			MPASS(crb->cred != NULL);
 			crunusebatch(crb->cred, crb->users, crb->ref);
 			crb->users = 0;
 			crb->ref = 0;
 		}
 	}
 	crb->cred = cr;
 	crb->users++;
 	crb->ref += td->td_ucredref;
 	td->td_ucredref = 0;
 	td->td_realucred = NULL;
 }
 
 void
 credbatch_final(struct credbatch *crb)
 {
 
 	MPASS(crb->cred != NULL);
 	MPASS(crb->users > 0);
 	crunusebatch(crb->cred, crb->users, crb->ref);
 }
 
 /*
  * Allocate a zeroed cred structure.
  */
 struct ucred *
 crget(void)
 {
 	struct ucred *cr;
 
 	cr = malloc(sizeof(*cr), M_CRED, M_WAITOK | M_ZERO);
 	mtx_init(&cr->cr_mtx, "cred", NULL, MTX_DEF);
 	cr->cr_ref = 1;
 #ifdef AUDIT
 	audit_cred_init(cr);
 #endif
 #ifdef MAC
 	mac_cred_init(cr);
 #endif
 	cr->cr_groups = cr->cr_smallgroups;
 	cr->cr_agroups =
 	    sizeof(cr->cr_smallgroups) / sizeof(cr->cr_smallgroups[0]);
 	return (cr);
 }
 
 /*
  * Claim another reference to a ucred structure.
  */
 struct ucred *
 crhold(struct ucred *cr)
 {
 	struct thread *td;
 
 	td = curthread;
 	if (__predict_true(td->td_realucred == cr)) {
 		KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
 		    __func__, cr->cr_users, cr));
 		td->td_ucredref++;
 		return (cr);
 	}
 	mtx_lock(&cr->cr_mtx);
 	cr->cr_ref++;
 	mtx_unlock(&cr->cr_mtx);
 	return (cr);
 }
 
 /*
  * Free a cred structure.  Throws away space when ref count gets to 0.
  */
 void
 crfree(struct ucred *cr)
 {
 	struct thread *td;
 
 	td = curthread;
 	if (__predict_true(td->td_realucred == cr)) {
 		KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
 		    __func__, cr->cr_users, cr));
 		td->td_ucredref--;
 		return;
 	}
 	mtx_lock(&cr->cr_mtx);
 	KASSERT(cr->cr_users >= 0, ("%s: users %d not >= 0 on cred %p",
 	    __func__, cr->cr_users, cr));
 	cr->cr_ref--;
 	if (cr->cr_users > 0) {
 		mtx_unlock(&cr->cr_mtx);
 		return;
 	}
 	KASSERT(cr->cr_ref >= 0, ("%s: ref %d not >= 0 on cred %p",
 	    __func__, cr->cr_ref, cr));
 	if (cr->cr_ref > 0) {
 		mtx_unlock(&cr->cr_mtx);
 		return;
 	}
 	crfree_final(cr);
 }
 
 static void
 crfree_final(struct ucred *cr)
 {
 
 	KASSERT(cr->cr_users == 0, ("%s: users %d not == 0 on cred %p",
 	    __func__, cr->cr_users, cr));
 	KASSERT(cr->cr_ref == 0, ("%s: ref %d not == 0 on cred %p",
 	    __func__, cr->cr_ref, cr));
 
 	/*
 	 * Some callers of crget(), such as nfs_statfs(), allocate a temporary
 	 * credential, but don't allocate a uidinfo structure.
 	 */
 	if (cr->cr_uidinfo != NULL)
 		uifree(cr->cr_uidinfo);
 	if (cr->cr_ruidinfo != NULL)
 		uifree(cr->cr_ruidinfo);
 	if (cr->cr_prison != NULL)
 		prison_free(cr->cr_prison);
 	if (cr->cr_loginclass != NULL)
 		loginclass_free(cr->cr_loginclass);
 #ifdef AUDIT
 	audit_cred_destroy(cr);
 #endif
 #ifdef MAC
 	mac_cred_destroy(cr);
 #endif
 	mtx_destroy(&cr->cr_mtx);
 	if (cr->cr_groups != cr->cr_smallgroups)
 		free(cr->cr_groups, M_CRED);
 	free(cr, M_CRED);
 }
 
 /*
  * Copy a ucred's contents from a template.  Does not block.
  */
 void
 crcopy(struct ucred *dest, struct ucred *src)
 {
 
 	KASSERT(dest->cr_ref == 1, ("crcopy of shared ucred"));
 	bcopy(&src->cr_startcopy, &dest->cr_startcopy,
 	    (unsigned)((caddr_t)&src->cr_endcopy -
 		(caddr_t)&src->cr_startcopy));
 	crsetgroups(dest, src->cr_ngroups, src->cr_groups);
 	uihold(dest->cr_uidinfo);
 	uihold(dest->cr_ruidinfo);
 	prison_hold(dest->cr_prison);
 	loginclass_hold(dest->cr_loginclass);
 #ifdef AUDIT
 	audit_cred_copy(src, dest);
 #endif
 #ifdef MAC
 	mac_cred_copy(src, dest);
 #endif
 }
 
 /*
  * Dup cred struct to a new held one.
  */
 struct ucred *
 crdup(struct ucred *cr)
 {
 	struct ucred *newcr;
 
 	newcr = crget();
 	crcopy(newcr, cr);
 	return (newcr);
 }
 
 /*
  * Fill in a struct xucred based on a struct ucred.
  */
 void
 cru2x(struct ucred *cr, struct xucred *xcr)
 {
 	int ngroups;
 
 	bzero(xcr, sizeof(*xcr));
 	xcr->cr_version = XUCRED_VERSION;
 	xcr->cr_uid = cr->cr_uid;
 
 	ngroups = MIN(cr->cr_ngroups, XU_NGROUPS);
 	xcr->cr_ngroups = ngroups;
 	bcopy(cr->cr_groups, xcr->cr_groups,
 	    ngroups * sizeof(*cr->cr_groups));
 }
 
 void
 cru2xt(struct thread *td, struct xucred *xcr)
 {
 
 	cru2x(td->td_ucred, xcr);
 	xcr->cr_pid = td->td_proc->p_pid;
 }
 
 /*
  * Set initial process credentials.
  * Callers are responsible for providing the reference for provided credentials.
  */
 void
 proc_set_cred_init(struct proc *p, struct ucred *newcred)
 {
 
 	p->p_ucred = crcowget(newcred);
 }
 
 /*
  * Change process credentials.
  * Callers are responsible for providing the reference for passed credentials
  * and for freeing old ones.
  *
  * Process has to be locked except when it does not have credentials (as it
  * should not be visible just yet) or when newcred is NULL (as this can be
  * only used when the process is about to be freed, at which point it should
  * not be visible anymore).
  */
 void
 proc_set_cred(struct proc *p, struct ucred *newcred)
 {
 	struct ucred *cr;
 
 	cr = p->p_ucred;
 	MPASS(cr != NULL);
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	KASSERT(newcred->cr_users == 0, ("%s: users %d not 0 on cred %p",
 	    __func__, newcred->cr_users, newcred));
 	mtx_lock(&cr->cr_mtx);
 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
 	    __func__, cr->cr_users, cr));
 	cr->cr_users--;
 	mtx_unlock(&cr->cr_mtx);
 	p->p_ucred = newcred;
 	newcred->cr_users = 1;
 	PROC_UPDATE_COW(p);
 }
 
 void
 proc_unset_cred(struct proc *p)
 {
 	struct ucred *cr;
 
 	MPASS(p->p_state == PRS_ZOMBIE || p->p_state == PRS_NEW);
 	cr = p->p_ucred;
 	p->p_ucred = NULL;
 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
 	    __func__, cr->cr_users, cr));
 	mtx_lock(&cr->cr_mtx);
 	cr->cr_users--;
 	if (cr->cr_users == 0)
 		KASSERT(cr->cr_ref > 0, ("%s: ref %d not > 0 on cred %p",
 		    __func__, cr->cr_ref, cr));
 	mtx_unlock(&cr->cr_mtx);
 	crfree(cr);
 }
 
 struct ucred *
 crcopysafe(struct proc *p, struct ucred *cr)
 {
 	struct ucred *oldcred;
 	int groups;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	oldcred = p->p_ucred;
 	while (cr->cr_agroups < oldcred->cr_agroups) {
 		groups = oldcred->cr_agroups;
 		PROC_UNLOCK(p);
 		crextend(cr, groups);
 		PROC_LOCK(p);
 		oldcred = p->p_ucred;
 	}
 	crcopy(cr, oldcred);
 
 	return (oldcred);
 }
 
 /*
  * Extend the passed in credential to hold n items.
  */
 void
 crextend(struct ucred *cr, int n)
 {
 	int cnt;
 
 	/* Truncate? */
 	if (n <= cr->cr_agroups)
 		return;
 
 	/*
 	 * We extend by 2 each time since we're using a power of two
 	 * allocator until we need enough groups to fill a page.
 	 * Once we're allocating multiple pages, only allocate as many
 	 * as we actually need.  The case of processes needing a
 	 * non-power of two number of pages seems more likely than
 	 * a real world process that adds thousands of groups one at a
 	 * time.
 	 */
 	if ( n < PAGE_SIZE / sizeof(gid_t) ) {
 		if (cr->cr_agroups == 0)
 			cnt = MAX(1, MINALLOCSIZE / sizeof(gid_t));
 		else
 			cnt = cr->cr_agroups * 2;
 
 		while (cnt < n)
 			cnt *= 2;
 	} else
 		cnt = roundup2(n, PAGE_SIZE / sizeof(gid_t));
 
 	/* Free the old array. */
 	if (cr->cr_groups != cr->cr_smallgroups)
 		free(cr->cr_groups, M_CRED);
 
 	cr->cr_groups = malloc(cnt * sizeof(gid_t), M_CRED, M_WAITOK | M_ZERO);
 	cr->cr_agroups = cnt;
 }
 
 /*
  * Copy groups in to a credential, preserving any necessary invariants.
  * Currently this includes the sorting of all supplemental gids.
  * crextend() must have been called before hand to ensure sufficient
  * space is available.
  */
 static void
 crsetgroups_locked(struct ucred *cr, int ngrp, gid_t *groups)
 {
 	int i;
 	int j;
 	gid_t g;
 
 	KASSERT(cr->cr_agroups >= ngrp, ("cr_ngroups is too small"));
 
 	bcopy(groups, cr->cr_groups, ngrp * sizeof(gid_t));
 	cr->cr_ngroups = ngrp;
 
 	/*
 	 * Sort all groups except cr_groups[0] to allow groupmember to
 	 * perform a binary search.
 	 *
 	 * XXX: If large numbers of groups become common this should
 	 * be replaced with shell sort like linux uses or possibly
 	 * heap sort.
 	 */
 	for (i = 2; i < ngrp; i++) {
 		g = cr->cr_groups[i];
 		for (j = i-1; j >= 1 && g < cr->cr_groups[j]; j--)
 			cr->cr_groups[j + 1] = cr->cr_groups[j];
 		cr->cr_groups[j + 1] = g;
 	}
 }
 
 /*
  * Copy groups in to a credential after expanding it if required.
  * Truncate the list to (ngroups_max + 1) if it is too large.
  */
 void
 crsetgroups(struct ucred *cr, int ngrp, gid_t *groups)
 {
 
 	if (ngrp > ngroups_max + 1)
 		ngrp = ngroups_max + 1;
 
 	crextend(cr, ngrp);
 	crsetgroups_locked(cr, ngrp, groups);
 }
 
 /*
  * Get login name, if available.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct getlogin_args {
 	char	*namebuf;
 	u_int	namelen;
 };
 #endif
 /* ARGSUSED */
 int
 sys_getlogin(struct thread *td, struct getlogin_args *uap)
 {
 	char login[MAXLOGNAME];
 	struct proc *p = td->td_proc;
 	size_t len;
 
 	if (uap->namelen > MAXLOGNAME)
 		uap->namelen = MAXLOGNAME;
 	PROC_LOCK(p);
 	SESS_LOCK(p->p_session);
 	len = strlcpy(login, p->p_session->s_login, uap->namelen) + 1;
 	SESS_UNLOCK(p->p_session);
 	PROC_UNLOCK(p);
 	if (len > uap->namelen)
 		return (ERANGE);
 	return (copyout(login, uap->namebuf, len));
 }
 
 /*
  * Set login name.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct setlogin_args {
 	char	*namebuf;
 };
 #endif
 /* ARGSUSED */
 int
 sys_setlogin(struct thread *td, struct setlogin_args *uap)
 {
 	struct proc *p = td->td_proc;
 	int error;
 	char logintmp[MAXLOGNAME];
 
 	CTASSERT(sizeof(p->p_session->s_login) >= sizeof(logintmp));
 
 	error = priv_check(td, PRIV_PROC_SETLOGIN);
 	if (error)
 		return (error);
 	error = copyinstr(uap->namebuf, logintmp, sizeof(logintmp), NULL);
 	if (error != 0) {
 		if (error == ENAMETOOLONG)
 			error = EINVAL;
 		return (error);
 	}
 	AUDIT_ARG_LOGIN(logintmp);
 	PROC_LOCK(p);
 	SESS_LOCK(p->p_session);
 	strcpy(p->p_session->s_login, logintmp);
 	SESS_UNLOCK(p->p_session);
 	PROC_UNLOCK(p);
 	return (0);
 }
 
 void
 setsugid(struct proc *p)
 {
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	p->p_flag |= P_SUGID;
 }
 
 /*-
  * Change a process's effective uid.
  * Side effects: newcred->cr_uid and newcred->cr_uidinfo will be modified.
  * References: newcred must be an exclusive credential reference for the
  *             duration of the call.
  */
 void
 change_euid(struct ucred *newcred, struct uidinfo *euip)
 {
 
 	newcred->cr_uid = euip->ui_uid;
 	uihold(euip);
 	uifree(newcred->cr_uidinfo);
 	newcred->cr_uidinfo = euip;
 }
 
 /*-
  * Change a process's effective gid.
  * Side effects: newcred->cr_gid will be modified.
  * References: newcred must be an exclusive credential reference for the
  *             duration of the call.
  */
 void
 change_egid(struct ucred *newcred, gid_t egid)
 {
 
 	newcred->cr_groups[0] = egid;
 }
 
 /*-
  * Change a process's real uid.
  * Side effects: newcred->cr_ruid will be updated, newcred->cr_ruidinfo
  *               will be updated, and the old and new cr_ruidinfo proc
  *               counts will be updated.
  * References: newcred must be an exclusive credential reference for the
  *             duration of the call.
  */
 void
 change_ruid(struct ucred *newcred, struct uidinfo *ruip)
 {
 
 	(void)chgproccnt(newcred->cr_ruidinfo, -1, 0);
 	newcred->cr_ruid = ruip->ui_uid;
 	uihold(ruip);
 	uifree(newcred->cr_ruidinfo);
 	newcred->cr_ruidinfo = ruip;
 	(void)chgproccnt(newcred->cr_ruidinfo, 1, 0);
 }
 
 /*-
  * Change a process's real gid.
  * Side effects: newcred->cr_rgid will be updated.
  * References: newcred must be an exclusive credential reference for the
  *             duration of the call.
  */
 void
 change_rgid(struct ucred *newcred, gid_t rgid)
 {
 
 	newcred->cr_rgid = rgid;
 }
 
 /*-
  * Change a process's saved uid.
  * Side effects: newcred->cr_svuid will be updated.
  * References: newcred must be an exclusive credential reference for the
  *             duration of the call.
  */
 void
 change_svuid(struct ucred *newcred, uid_t svuid)
 {
 
 	newcred->cr_svuid = svuid;
 }
 
 /*-
  * Change a process's saved gid.
  * Side effects: newcred->cr_svgid will be updated.
  * References: newcred must be an exclusive credential reference for the
  *             duration of the call.
  */
 void
 change_svgid(struct ucred *newcred, gid_t svgid)
 {
 
 	newcred->cr_svgid = svgid;
 }
 
 bool allow_ptrace = true;
 SYSCTL_BOOL(_security_bsd, OID_AUTO, allow_ptrace, CTLFLAG_RWTUN,
     &allow_ptrace, 0,
     "Deny ptrace(2) use by returning ENOSYS");
diff --git a/sys/sys/ucred.h b/sys/sys/ucred.h
index b17dccada4d8..837c33757317 100644
--- a/sys/sys/ucred.h
+++ b/sys/sys/ucred.h
@@ -1,164 +1,165 @@
 /*-
  * SPDX-License-Identifier: BSD-3-Clause
  *
  * Copyright (c) 1989, 1993
  *	The Regents of the University of California.  All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  *	@(#)ucred.h	8.4 (Berkeley) 1/9/95
  */
 
 #ifndef _SYS_UCRED_H_
 #define	_SYS_UCRED_H_
 
 #if defined(_KERNEL) || defined(_WANT_UCRED)
 #include <sys/_lock.h>
 #include <sys/_mutex.h>
 #endif
 #include <bsm/audit.h>
 
 struct loginclass;
 
 #define	XU_NGROUPS	16
 
 /*
  * Credentials.
  *
  * Please do not inspect cr_uid directly to determine superuserness.  The
  * priv(9) interface should be used to check for privilege.
  *
  * Lock reference:
  *      c - cr_mtx
  *
  * Unmarked fields are constant after creation.
  *
  * See "Credential management" comment in kern_prot.c for more information.
  */
 #if defined(_KERNEL) || defined(_WANT_UCRED)
 struct ucred {
 	struct mtx cr_mtx;
 	u_int	cr_ref;			/* (c) reference count */
 	u_int	cr_users;		/* (c) proc + thread using this cred */
 	struct auditinfo_addr	cr_audit;	/* Audit properties. */
 #define	cr_startcopy cr_uid
 	uid_t	cr_uid;			/* effective user id */
 	uid_t	cr_ruid;		/* real user id */
 	uid_t	cr_svuid;		/* saved user id */
 	int	cr_ngroups;		/* number of groups */
 	gid_t	cr_rgid;		/* real group id */
 	gid_t	cr_svgid;		/* saved group id */
 	struct uidinfo	*cr_uidinfo;	/* per euid resource consumption */
 	struct uidinfo	*cr_ruidinfo;	/* per ruid resource consumption */
 	struct prison	*cr_prison;	/* jail(2) */
 	struct loginclass	*cr_loginclass; /* login class */
 	u_int		cr_flags;	/* credential flags */
 	void 		*cr_pspare2[2];	/* general use 2 */
 #define	cr_endcopy	cr_label
 	struct label	*cr_label;	/* MAC label */
 	gid_t	*cr_groups;		/* groups */
 	int	cr_agroups;		/* Available groups */
 	gid_t   cr_smallgroups[XU_NGROUPS];	/* storage for small groups */
 };
 #define	NOCRED	((struct ucred *)0)	/* no credential available */
 #define	FSCRED	((struct ucred *)-1)	/* filesystem credential */
 #endif /* _KERNEL || _WANT_UCRED */
 
 /*
  * Flags for cr_flags.
  */
 #define	CRED_FLAG_CAPMODE	0x00000001	/* In capability mode. */
 
 /*
  * This is the external representation of struct ucred.
  */
 struct xucred {
 	u_int	cr_version;		/* structure layout version */
 	uid_t	cr_uid;			/* effective user id */
 	short	cr_ngroups;		/* number of groups */
 	gid_t	cr_groups[XU_NGROUPS];	/* groups */
 	union {
 		void	*_cr_unused1;	/* compatibility with old ucred */
 		pid_t	cr_pid;
 	};
 };
 #define	XUCRED_VERSION	0
 
 /* This can be used for both ucred and xucred structures. */
 #define	cr_gid cr_groups[0]
 
 #ifdef _KERNEL
 struct proc;
 struct thread;
 
 struct credbatch {
 	struct ucred *cred;
 	int users;
 	int ref;
 };
 
 static inline void
 credbatch_prep(struct credbatch *crb)
 {
 	crb->cred = NULL;
 	crb->users = 0;
 	crb->ref = 0;
 }
 void	credbatch_add(struct credbatch *crb, struct thread *td);
 
 static inline void
 credbatch_process(struct credbatch *crb __unused)
 {
 
 }
 
 void	credbatch_final(struct credbatch *crb);
 
 void	change_egid(struct ucred *newcred, gid_t egid);
 void	change_euid(struct ucred *newcred, struct uidinfo *euip);
 void	change_rgid(struct ucred *newcred, gid_t rgid);
 void	change_ruid(struct ucred *newcred, struct uidinfo *ruip);
 void	change_svgid(struct ucred *newcred, gid_t svgid);
 void	change_svuid(struct ucred *newcred, uid_t svuid);
 void	crcopy(struct ucred *dest, struct ucred *src);
 struct ucred	*crcopysafe(struct proc *p, struct ucred *cr);
 struct ucred	*crdup(struct ucred *cr);
 void	crextend(struct ucred *cr, int n);
 void	proc_set_cred_init(struct proc *p, struct ucred *cr);
 void	proc_set_cred(struct proc *p, struct ucred *cr);
 void	proc_unset_cred(struct proc *p);
 void	crfree(struct ucred *cr);
 struct ucred	*crcowsync(void);
 struct ucred	*crget(void);
 struct ucred	*crhold(struct ucred *cr);
 struct ucred	*crcowget(struct ucred *cr);
 void	crcowfree(struct thread *td);
 void	cru2x(struct ucred *cr, struct xucred *xcr);
 void	cru2xt(struct thread *td, struct xucred *xcr);
 void	crsetgroups(struct ucred *cr, int n, gid_t *groups);
 int	groupmember(gid_t gid, struct ucred *cred);
+int	realgroupmember(gid_t gid, struct ucred *cred);
 #endif /* _KERNEL */
 
 #endif /* !_SYS_UCRED_H_ */