diff --git a/sys/vm/vm_kern.c b/sys/vm/vm_kern.c index a04044463fe2..fb7c80b767ed 100644 --- a/sys/vm/vm_kern.c +++ b/sys/vm/vm_kern.c @@ -1,1044 +1,1055 @@ /*- * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) * * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Authors: Avadis Tevanian, Jr., Michael Wayne Young * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* * Kernel memory management. */ #include #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct vm_map kernel_map_store; struct vm_map exec_map_store; struct vm_map pipe_map_store; const void *zero_region; CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0); /* NB: Used by kernel debuggers. */ const u_long vm_maxuser_address = VM_MAXUSER_ADDRESS; u_int exec_map_entry_size; u_int exec_map_entries; SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD, SYSCTL_NULL_ULONG_PTR, VM_MIN_KERNEL_ADDRESS, "Min kernel address"); SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD, #if defined(__arm__) &vm_max_kernel_address, 0, #else SYSCTL_NULL_ULONG_PTR, VM_MAX_KERNEL_ADDRESS, #endif "Max kernel address"); #if VM_NRESERVLEVEL > 1 #define KVA_QUANTUM_SHIFT (VM_LEVEL_1_ORDER + VM_LEVEL_0_ORDER + \ PAGE_SHIFT) #elif VM_NRESERVLEVEL > 0 #define KVA_QUANTUM_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT) #else /* On non-superpage architectures we want large import sizes. */ #define KVA_QUANTUM_SHIFT (8 + PAGE_SHIFT) #endif #define KVA_QUANTUM (1ul << KVA_QUANTUM_SHIFT) #define KVA_NUMA_IMPORT_QUANTUM (KVA_QUANTUM * 128) extern void uma_startup2(void); /* * kva_alloc: * * Allocate a virtual address range with no underlying object and * no initial mapping to physical memory. Any mapping from this * range to physical memory must be explicitly created prior to * its use, typically with pmap_qenter(). Any attempt to create * a mapping on demand through vm_fault() will result in a panic. */ vm_offset_t kva_alloc(vm_size_t size) { vm_offset_t addr; TSENTER(); size = round_page(size); if (vmem_xalloc(kernel_arena, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX, M_BESTFIT | M_NOWAIT, &addr)) return (0); TSEXIT(); return (addr); } /* * kva_alloc_aligned: * * Allocate a virtual address range as in kva_alloc where the base * address is aligned to align. */ vm_offset_t kva_alloc_aligned(vm_size_t size, vm_size_t align) { vm_offset_t addr; TSENTER(); size = round_page(size); if (vmem_xalloc(kernel_arena, size, align, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX, M_BESTFIT | M_NOWAIT, &addr)) return (0); TSEXIT(); return (addr); } /* * kva_free: * * Release a region of kernel virtual memory allocated * with kva_alloc, and return the physical pages * associated with that region. * * This routine may not block on kernel maps. */ void kva_free(vm_offset_t addr, vm_size_t size) { size = round_page(size); vmem_xfree(kernel_arena, addr, size); } /* * Update sanitizer shadow state to reflect a new allocation. Force inlining to * help make KMSAN origin tracking more precise. */ static __always_inline void kmem_alloc_san(vm_offset_t addr, vm_size_t size, vm_size_t asize, int flags) { if ((flags & M_ZERO) == 0) { kmsan_mark((void *)addr, asize, KMSAN_STATE_UNINIT); kmsan_orig((void *)addr, asize, KMSAN_TYPE_KMEM, KMSAN_RET_ADDR); } else { kmsan_mark((void *)addr, asize, KMSAN_STATE_INITED); } kasan_mark((void *)addr, size, asize, KASAN_KMEM_REDZONE); } static vm_page_t kmem_alloc_contig_pages(vm_object_t object, vm_pindex_t pindex, int domain, int pflags, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr) { vm_page_t m; int tries; bool wait, reclaim; VM_OBJECT_ASSERT_WLOCKED(object); wait = (pflags & VM_ALLOC_WAITOK) != 0; reclaim = (pflags & VM_ALLOC_NORECLAIM) == 0; pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL); pflags |= VM_ALLOC_NOWAIT; for (tries = wait ? 3 : 1;; tries--) { m = vm_page_alloc_contig_domain(object, pindex, domain, pflags, npages, low, high, alignment, boundary, memattr); if (m != NULL || tries == 0 || !reclaim) break; VM_OBJECT_WUNLOCK(object); if (vm_page_reclaim_contig_domain(domain, pflags, npages, low, high, alignment, boundary) == ENOMEM && wait) vm_wait_domain(domain); VM_OBJECT_WLOCK(object); } return (m); } /* * Allocates a region from the kernel address map and physical pages * within the specified address range to the kernel object. Creates a * wired mapping from this region to these pages, and returns the * region's starting virtual address. The allocated pages are not * necessarily physically contiguous. If M_ZERO is specified through the * given flags, then the pages are zeroed before they are mapped. */ static void * kmem_alloc_attr_domain(int domain, vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high, vm_memattr_t memattr) { vmem_t *vmem; vm_object_t object; vm_offset_t addr, i, offset; vm_page_t m; vm_size_t asize; int pflags; vm_prot_t prot; object = kernel_object; asize = round_page(size); vmem = vm_dom[domain].vmd_kernel_arena; if (vmem_alloc(vmem, asize, M_BESTFIT | flags, &addr)) return (0); offset = addr - VM_MIN_KERNEL_ADDRESS; pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED; prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW; VM_OBJECT_WLOCK(object); for (i = 0; i < asize; i += PAGE_SIZE) { m = kmem_alloc_contig_pages(object, atop(offset + i), domain, pflags, 1, low, high, PAGE_SIZE, 0, memattr); if (m == NULL) { VM_OBJECT_WUNLOCK(object); kmem_unback(object, addr, i); vmem_free(vmem, addr, asize); return (0); } KASSERT(vm_page_domain(m) == domain, ("kmem_alloc_attr_domain: Domain mismatch %d != %d", vm_page_domain(m), domain)); if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0) pmap_zero_page(m); vm_page_valid(m); pmap_enter(kernel_pmap, addr + i, m, prot, prot | PMAP_ENTER_WIRED, 0); } VM_OBJECT_WUNLOCK(object); kmem_alloc_san(addr, size, asize, flags); return ((void *)addr); } void * kmem_alloc_attr(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high, vm_memattr_t memattr) { return (kmem_alloc_attr_domainset(DOMAINSET_RR(), size, flags, low, high, memattr)); } void * kmem_alloc_attr_domainset(struct domainset *ds, vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high, vm_memattr_t memattr) { struct vm_domainset_iter di; vm_page_t bounds[2]; void *addr; int domain; int start_segind; start_segind = -1; vm_domainset_iter_policy_init(&di, ds, &domain, &flags); do { addr = kmem_alloc_attr_domain(domain, size, flags, low, high, memattr); if (addr != NULL) break; if (start_segind == -1) start_segind = vm_phys_lookup_segind(low); if (vm_phys_find_range(bounds, start_segind, domain, atop(round_page(size)), low, high) == -1) { vm_domainset_iter_ignore(&di, domain); } } while (vm_domainset_iter_policy(&di, &domain) == 0); return (addr); } /* * Allocates a region from the kernel address map and physically * contiguous pages within the specified address range to the kernel * object. Creates a wired mapping from this region to these pages, and * returns the region's starting virtual address. If M_ZERO is specified * through the given flags, then the pages are zeroed before they are * mapped. */ static void * kmem_alloc_contig_domain(int domain, vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr) { vmem_t *vmem; vm_object_t object; vm_offset_t addr, offset, tmp; vm_page_t end_m, m; vm_size_t asize; u_long npages; int pflags; object = kernel_object; asize = round_page(size); vmem = vm_dom[domain].vmd_kernel_arena; if (vmem_alloc(vmem, asize, flags | M_BESTFIT, &addr)) return (NULL); offset = addr - VM_MIN_KERNEL_ADDRESS; pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED; npages = atop(asize); VM_OBJECT_WLOCK(object); m = kmem_alloc_contig_pages(object, atop(offset), domain, pflags, npages, low, high, alignment, boundary, memattr); if (m == NULL) { VM_OBJECT_WUNLOCK(object); vmem_free(vmem, addr, asize); return (NULL); } KASSERT(vm_page_domain(m) == domain, ("kmem_alloc_contig_domain: Domain mismatch %d != %d", vm_page_domain(m), domain)); end_m = m + npages; tmp = addr; for (; m < end_m; m++) { if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0) pmap_zero_page(m); vm_page_valid(m); pmap_enter(kernel_pmap, tmp, m, VM_PROT_RW, VM_PROT_RW | PMAP_ENTER_WIRED, 0); tmp += PAGE_SIZE; } VM_OBJECT_WUNLOCK(object); kmem_alloc_san(addr, size, asize, flags); return ((void *)addr); } void * kmem_alloc_contig(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr) { return (kmem_alloc_contig_domainset(DOMAINSET_RR(), size, flags, low, high, alignment, boundary, memattr)); } void * kmem_alloc_contig_domainset(struct domainset *ds, vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr) { struct vm_domainset_iter di; vm_page_t bounds[2]; void *addr; int domain; int start_segind; start_segind = -1; vm_domainset_iter_policy_init(&di, ds, &domain, &flags); do { addr = kmem_alloc_contig_domain(domain, size, flags, low, high, alignment, boundary, memattr); if (addr != NULL) break; if (start_segind == -1) start_segind = vm_phys_lookup_segind(low); if (vm_phys_find_range(bounds, start_segind, domain, atop(round_page(size)), low, high) == -1) { vm_domainset_iter_ignore(&di, domain); } } while (vm_domainset_iter_policy(&di, &domain) == 0); return (addr); } /* * kmem_subinit: * * Initializes a map to manage a subrange * of the kernel virtual address space. * * Arguments are as follows: * * parent Map to take range from * min, max Returned endpoints of map * size Size of range to find * superpage_align Request that min is superpage aligned */ void kmem_subinit(vm_map_t map, vm_map_t parent, vm_offset_t *min, vm_offset_t *max, vm_size_t size, bool superpage_align) { int ret; size = round_page(size); *min = vm_map_min(parent); ret = vm_map_find(parent, NULL, 0, min, size, 0, superpage_align ? VMFS_SUPER_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL, MAP_ACC_NO_CHARGE); if (ret != KERN_SUCCESS) panic("kmem_subinit: bad status return of %d", ret); *max = *min + size; vm_map_init(map, vm_map_pmap(parent), *min, *max); if (vm_map_submap(parent, *min, *max, map) != KERN_SUCCESS) panic("kmem_subinit: unable to change range to submap"); } /* * kmem_malloc_domain: * * Allocate wired-down pages in the kernel's address space. */ static void * kmem_malloc_domain(int domain, vm_size_t size, int flags) { vmem_t *arena; vm_offset_t addr; vm_size_t asize; int rv; - if (__predict_true((flags & M_EXEC) == 0)) + if (__predict_true((flags & (M_EXEC | M_NEVERFREED)) == 0)) arena = vm_dom[domain].vmd_kernel_arena; - else + else if ((flags & M_EXEC) != 0) arena = vm_dom[domain].vmd_kernel_rwx_arena; + else + arena = vm_dom[domain].vmd_kernel_nofree_arena; asize = round_page(size); if (vmem_alloc(arena, asize, flags | M_BESTFIT, &addr)) return (0); rv = kmem_back_domain(domain, kernel_object, addr, asize, flags); if (rv != KERN_SUCCESS) { vmem_free(arena, addr, asize); return (0); } kasan_mark((void *)addr, size, asize, KASAN_KMEM_REDZONE); return ((void *)addr); } void * kmem_malloc(vm_size_t size, int flags) { void * p; TSENTER(); p = kmem_malloc_domainset(DOMAINSET_RR(), size, flags); TSEXIT(); return (p); } void * kmem_malloc_domainset(struct domainset *ds, vm_size_t size, int flags) { struct vm_domainset_iter di; void *addr; int domain; vm_domainset_iter_policy_init(&di, ds, &domain, &flags); do { addr = kmem_malloc_domain(domain, size, flags); if (addr != NULL) break; } while (vm_domainset_iter_policy(&di, &domain) == 0); return (addr); } /* * kmem_back_domain: * * Allocate physical pages from the specified domain for the specified * virtual address range. */ int kmem_back_domain(int domain, vm_object_t object, vm_offset_t addr, vm_size_t size, int flags) { vm_offset_t offset, i; vm_page_t m, mpred; vm_prot_t prot; int pflags; KASSERT(object == kernel_object, ("kmem_back_domain: only supports kernel object.")); offset = addr - VM_MIN_KERNEL_ADDRESS; pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED; pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL); if (flags & M_WAITOK) pflags |= VM_ALLOC_WAITFAIL; prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW; i = 0; VM_OBJECT_WLOCK(object); retry: mpred = vm_radix_lookup_le(&object->rtree, atop(offset + i)); for (; i < size; i += PAGE_SIZE, mpred = m) { m = vm_page_alloc_domain_after(object, atop(offset + i), domain, pflags, mpred); /* * Ran out of space, free everything up and return. Don't need * to lock page queues here as we know that the pages we got * aren't on any queues. */ if (m == NULL) { if ((flags & M_NOWAIT) == 0) goto retry; VM_OBJECT_WUNLOCK(object); kmem_unback(object, addr, i); return (KERN_NO_SPACE); } KASSERT(vm_page_domain(m) == domain, ("kmem_back_domain: Domain mismatch %d != %d", vm_page_domain(m), domain)); if (flags & M_ZERO && (m->flags & PG_ZERO) == 0) pmap_zero_page(m); KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("kmem_malloc: page %p is managed", m)); vm_page_valid(m); pmap_enter(kernel_pmap, addr + i, m, prot, prot | PMAP_ENTER_WIRED, 0); if (__predict_false((prot & VM_PROT_EXECUTE) != 0)) m->oflags |= VPO_KMEM_EXEC; } VM_OBJECT_WUNLOCK(object); kmem_alloc_san(addr, size, size, flags); return (KERN_SUCCESS); } /* * kmem_back: * * Allocate physical pages for the specified virtual address range. */ int kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags) { vm_offset_t end, next, start; int domain, rv; KASSERT(object == kernel_object, ("kmem_back: only supports kernel object.")); for (start = addr, end = addr + size; addr < end; addr = next) { /* * We must ensure that pages backing a given large virtual page * all come from the same physical domain. */ if (vm_ndomains > 1) { domain = (addr >> KVA_QUANTUM_SHIFT) % vm_ndomains; while (VM_DOMAIN_EMPTY(domain)) domain++; next = roundup2(addr + 1, KVA_QUANTUM); if (next > end || next < start) next = end; } else { domain = 0; next = end; } rv = kmem_back_domain(domain, object, addr, next - addr, flags); if (rv != KERN_SUCCESS) { kmem_unback(object, start, addr - start); break; } } return (rv); } /* * kmem_unback: * * Unmap and free the physical pages underlying the specified virtual * address range. * * A physical page must exist within the specified object at each index * that is being unmapped. */ static struct vmem * _kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size) { struct vmem *arena; vm_page_t m, next; vm_offset_t end, offset; int domain; KASSERT(object == kernel_object, ("kmem_unback: only supports kernel object.")); if (size == 0) return (NULL); pmap_remove(kernel_pmap, addr, addr + size); offset = addr - VM_MIN_KERNEL_ADDRESS; end = offset + size; VM_OBJECT_WLOCK(object); m = vm_page_lookup(object, atop(offset)); domain = vm_page_domain(m); if (__predict_true((m->oflags & VPO_KMEM_EXEC) == 0)) arena = vm_dom[domain].vmd_kernel_arena; else arena = vm_dom[domain].vmd_kernel_rwx_arena; for (; offset < end; offset += PAGE_SIZE, m = next) { next = vm_page_next(m); vm_page_xbusy_claim(m); vm_page_unwire_noq(m); vm_page_free(m); } VM_OBJECT_WUNLOCK(object); return (arena); } void kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size) { (void)_kmem_unback(object, addr, size); } /* * kmem_free: * * Free memory allocated with kmem_malloc. The size must match the * original allocation. */ void kmem_free(void *addr, vm_size_t size) { struct vmem *arena; size = round_page(size); kasan_mark(addr, size, size, 0); arena = _kmem_unback(kernel_object, (uintptr_t)addr, size); if (arena != NULL) vmem_free(arena, (uintptr_t)addr, size); } /* * kmap_alloc_wait: * * Allocates pageable memory from a sub-map of the kernel. If the submap * has no room, the caller sleeps waiting for more memory in the submap. * * This routine may block. */ vm_offset_t kmap_alloc_wait(vm_map_t map, vm_size_t size) { vm_offset_t addr; size = round_page(size); if (!swap_reserve(size)) return (0); for (;;) { /* * To make this work for more than one map, use the map's lock * to lock out sleepers/wakers. */ vm_map_lock(map); addr = vm_map_findspace(map, vm_map_min(map), size); if (addr + size <= vm_map_max(map)) break; /* no space now; see if we can ever get space */ if (vm_map_max(map) - vm_map_min(map) < size) { vm_map_unlock(map); swap_release(size); return (0); } map->needs_wakeup = TRUE; vm_map_unlock_and_wait(map, 0); } vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_RW, VM_PROT_RW, MAP_ACC_CHARGED); vm_map_unlock(map); return (addr); } /* * kmap_free_wakeup: * * Returns memory to a submap of the kernel, and wakes up any processes * waiting for memory in that map. */ void kmap_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size) { vm_map_lock(map); (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); if (map->needs_wakeup) { map->needs_wakeup = FALSE; vm_map_wakeup(map); } vm_map_unlock(map); } void kmem_init_zero_region(void) { vm_offset_t addr, i; vm_page_t m; /* * Map a single physical page of zeros to a larger virtual range. * This requires less looping in places that want large amounts of * zeros, while not using much more physical resources. */ addr = kva_alloc(ZERO_REGION_SIZE); m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO); for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE) pmap_qenter(addr + i, &m, 1); pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ); zero_region = (const void *)addr; } /* * Import KVA from the kernel map into the kernel arena. */ static int kva_import(void *unused, vmem_size_t size, int flags, vmem_addr_t *addrp) { vm_offset_t addr; int result; TSENTER(); KASSERT((size % KVA_QUANTUM) == 0, ("kva_import: Size %jd is not a multiple of %d", (intmax_t)size, (int)KVA_QUANTUM)); addr = vm_map_min(kernel_map); result = vm_map_find(kernel_map, NULL, 0, &addr, size, 0, VMFS_SUPER_SPACE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); if (result != KERN_SUCCESS) { TSEXIT(); return (ENOMEM); } *addrp = addr; TSEXIT(); return (0); } /* * Import KVA from a parent arena into a per-domain arena. Imports must be * KVA_QUANTUM-aligned and a multiple of KVA_QUANTUM in size. */ static int kva_import_domain(void *arena, vmem_size_t size, int flags, vmem_addr_t *addrp) { KASSERT((size % KVA_QUANTUM) == 0, ("kva_import_domain: Size %jd is not a multiple of %d", (intmax_t)size, (int)KVA_QUANTUM)); return (vmem_xalloc(arena, size, KVA_QUANTUM, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX, flags, addrp)); } /* * kmem_init: * * Create the kernel map; insert a mapping covering kernel text, * data, bss, and all space allocated thus far (`boostrap' data). The * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and * `start' as allocated, and the range between `start' and `end' as free. * Create the kernel vmem arena and its per-domain children. */ void kmem_init(vm_offset_t start, vm_offset_t end) { vm_size_t quantum; int domain; vm_map_init(kernel_map, kernel_pmap, VM_MIN_KERNEL_ADDRESS, end); kernel_map->system_map = 1; vm_map_lock(kernel_map); /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ (void)vm_map_insert(kernel_map, NULL, 0, #ifdef __amd64__ KERNBASE, #else VM_MIN_KERNEL_ADDRESS, #endif start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); /* ... and ending with the completion of the above `insert' */ #ifdef __amd64__ /* * Mark KVA used for the page array as allocated. Other platforms * that handle vm_page_array allocation can simply adjust virtual_avail * instead. */ (void)vm_map_insert(kernel_map, NULL, 0, (vm_offset_t)vm_page_array, (vm_offset_t)vm_page_array + round_2mpage(vm_page_array_size * sizeof(struct vm_page)), VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); #endif vm_map_unlock(kernel_map); /* * Use a large import quantum on NUMA systems. This helps minimize * interleaving of superpages, reducing internal fragmentation within * the per-domain arenas. */ if (vm_ndomains > 1 && PMAP_HAS_DMAP) quantum = KVA_NUMA_IMPORT_QUANTUM; else quantum = KVA_QUANTUM; /* * Initialize the kernel_arena. This can grow on demand. */ vmem_init(kernel_arena, "kernel arena", 0, 0, PAGE_SIZE, 0, 0); vmem_set_import(kernel_arena, kva_import, NULL, NULL, quantum); for (domain = 0; domain < vm_ndomains; domain++) { /* * Initialize the per-domain arenas. These are used to color * the KVA space in a way that ensures that virtual large pages * are backed by memory from the same physical domain, * maximizing the potential for superpage promotion. */ vm_dom[domain].vmd_kernel_arena = vmem_create( "kernel arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK); vmem_set_import(vm_dom[domain].vmd_kernel_arena, kva_import_domain, NULL, kernel_arena, quantum); /* * In architectures with superpages, maintain separate arenas * for allocations with permissions that differ from the - * "standard" read/write permissions used for kernel memory, - * so as not to inhibit superpage promotion. + * "standard" read/write permissions used for kernel memory + * and pages that are never released, so as not to inhibit + * superpage promotion. * - * Use the base import quantum since this arena is rarely used. + * Use the base import quantum since these arenas are rarely + * used. */ #if VM_NRESERVLEVEL > 0 vm_dom[domain].vmd_kernel_rwx_arena = vmem_create( "kernel rwx arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK); + vm_dom[domain].vmd_kernel_nofree_arena = vmem_create( + "kernel NOFREE arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK); vmem_set_import(vm_dom[domain].vmd_kernel_rwx_arena, kva_import_domain, (vmem_release_t *)vmem_xfree, kernel_arena, KVA_QUANTUM); + vmem_set_import(vm_dom[domain].vmd_kernel_nofree_arena, + kva_import_domain, (vmem_release_t *)vmem_xfree, + kernel_arena, KVA_QUANTUM); #else vm_dom[domain].vmd_kernel_rwx_arena = vm_dom[domain].vmd_kernel_arena; + vm_dom[domain].vmd_kernel_nofree_arena = + vm_dom[domain].vmd_kernel_arena; #endif } /* * This must be the very first call so that the virtual address * space used for early allocations is properly marked used in * the map. */ uma_startup2(); } /* * kmem_bootstrap_free: * * Free pages backing preloaded data (e.g., kernel modules) to the * system. Currently only supported on platforms that create a * vm_phys segment for preloaded data. */ void kmem_bootstrap_free(vm_offset_t start, vm_size_t size) { #if defined(__i386__) || defined(__amd64__) struct vm_domain *vmd; vm_offset_t end, va; vm_paddr_t pa; vm_page_t m; end = trunc_page(start + size); start = round_page(start); #ifdef __amd64__ /* * Preloaded files do not have execute permissions by default on amd64. * Restore the default permissions to ensure that the direct map alias * is updated. */ pmap_change_prot(start, end - start, VM_PROT_RW); #endif for (va = start; va < end; va += PAGE_SIZE) { pa = pmap_kextract(va); m = PHYS_TO_VM_PAGE(pa); vmd = vm_pagequeue_domain(m); vm_domain_free_lock(vmd); vm_phys_free_pages(m, 0); vm_domain_free_unlock(vmd); vm_domain_freecnt_inc(vmd, 1); vm_cnt.v_page_count++; } pmap_remove(kernel_pmap, start, end); (void)vmem_add(kernel_arena, start, end - start, M_WAITOK); #endif } #ifdef PMAP_WANT_ACTIVE_CPUS_NAIVE void pmap_active_cpus(pmap_t pmap, cpuset_t *res) { struct thread *td; struct proc *p; struct vmspace *vm; int c; CPU_ZERO(res); CPU_FOREACH(c) { td = cpuid_to_pcpu[c]->pc_curthread; p = td->td_proc; if (p == NULL) continue; vm = vmspace_acquire_ref(p); if (vm == NULL) continue; if (pmap == vmspace_pmap(vm)) CPU_SET(c, res); vmspace_free(vm); } } #endif /* * Allow userspace to directly trigger the VM drain routine for testing * purposes. */ static int debug_vm_lowmem(SYSCTL_HANDLER_ARGS) { int error, i; i = 0; error = sysctl_handle_int(oidp, &i, 0, req); if (error != 0) return (error); if ((i & ~(VM_LOW_KMEM | VM_LOW_PAGES)) != 0) return (EINVAL); if (i != 0) EVENTHANDLER_INVOKE(vm_lowmem, i); return (0); } SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, debug_vm_lowmem, "I", "set to trigger vm_lowmem event with given flags"); static int debug_uma_reclaim(SYSCTL_HANDLER_ARGS) { int error, i; i = 0; error = sysctl_handle_int(oidp, &i, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (i != UMA_RECLAIM_TRIM && i != UMA_RECLAIM_DRAIN && i != UMA_RECLAIM_DRAIN_CPU) return (EINVAL); uma_reclaim(i); return (0); } SYSCTL_PROC(_debug, OID_AUTO, uma_reclaim, CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, debug_uma_reclaim, "I", "set to generate request to reclaim uma caches"); static int debug_uma_reclaim_domain(SYSCTL_HANDLER_ARGS) { int domain, error, request; request = 0; error = sysctl_handle_int(oidp, &request, 0, req); if (error != 0 || req->newptr == NULL) return (error); domain = request >> 4; request &= 0xf; if (request != UMA_RECLAIM_TRIM && request != UMA_RECLAIM_DRAIN && request != UMA_RECLAIM_DRAIN_CPU) return (EINVAL); if (domain < 0 || domain >= vm_ndomains) return (EINVAL); uma_reclaim_domain(request, domain); return (0); } SYSCTL_PROC(_debug, OID_AUTO, uma_reclaim_domain, CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, debug_uma_reclaim_domain, "I", ""); diff --git a/sys/vm/vm_pagequeue.h b/sys/vm/vm_pagequeue.h index 86863a0a6400..af1183e63e53 100644 --- a/sys/vm/vm_pagequeue.h +++ b/sys/vm/vm_pagequeue.h @@ -1,478 +1,479 @@ /*- * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) * * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Authors: Avadis Tevanian, Jr., Michael Wayne Young * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ #ifndef _VM_PAGEQUEUE_ #define _VM_PAGEQUEUE_ #ifdef _KERNEL struct vm_pagequeue { struct mtx pq_mutex; struct pglist pq_pl; int pq_cnt; const char * const pq_name; uint64_t pq_pdpages; } __aligned(CACHE_LINE_SIZE); #if __SIZEOF_LONG__ == 8 #define VM_BATCHQUEUE_SIZE 63 #else #define VM_BATCHQUEUE_SIZE 15 #endif struct vm_batchqueue { vm_page_t bq_pa[VM_BATCHQUEUE_SIZE]; int bq_cnt; } __aligned(CACHE_LINE_SIZE); #include #include #include struct sysctl_oid; /* * One vm_domain per NUMA domain. Contains pagequeues, free page structures, * and accounting. * * Lock Key: * f vmd_free_mtx * p vmd_pageout_mtx * d vm_domainset_lock * a atomic * c const after boot * q page queue lock * * A unique page daemon thread manages each vm_domain structure and is * responsible for ensuring that some free memory is available by freeing * inactive pages and aging active pages. To decide how many pages to process, * it uses thresholds derived from the number of pages in the domain: * * vmd_page_count * --- * | * |-> vmd_inactive_target (~3%) * | - The active queue scan target is given by * | (vmd_inactive_target + vmd_free_target - vmd_free_count). * | * | * |-> vmd_free_target (~2%) * | - Target for page reclamation. * | * |-> vmd_pageout_wakeup_thresh (~1.8%) * | - Threshold for waking up the page daemon. * | * | * |-> vmd_free_min (~0.5%) * | - First low memory threshold. * | - Causes per-CPU caching to be lazily disabled in UMA. * | - vm_wait() sleeps below this threshold. * | * |-> vmd_free_severe (~0.25%) * | - Second low memory threshold. * | - Triggers aggressive UMA reclamation, disables delayed buffer * | writes. * | * |-> vmd_free_reserved (~0.13%) * | - Minimum for VM_ALLOC_NORMAL page allocations. * |-> vmd_pageout_free_min (32 + 2 pages) * | - Minimum for waking a page daemon thread sleeping in vm_wait(). * |-> vmd_interrupt_free_min (2 pages) * | - Minimum for VM_ALLOC_SYSTEM page allocations. * --- * *-- * Free page count regulation: * * The page daemon attempts to ensure that the free page count is above the free * target. It wakes up periodically (every 100ms) to input the current free * page shortage (free_target - free_count) to a PID controller, which in * response outputs the number of pages to attempt to reclaim. The shortage's * current magnitude, rate of change, and cumulative value are together used to * determine the controller's output. The page daemon target thus adapts * dynamically to the system's demand for free pages, resulting in less * burstiness than a simple hysteresis loop. * * When the free page count drops below the wakeup threshold, * vm_domain_allocate() proactively wakes up the page daemon. This helps ensure * that the system responds promptly to a large instantaneous free page * shortage. * * The page daemon also attempts to ensure that some fraction of the system's * memory is present in the inactive (I) and laundry (L) page queues, so that it * can respond promptly to a sudden free page shortage. In particular, the page * daemon thread aggressively scans active pages so long as the following * condition holds: * * len(I) + len(L) + free_target - free_count < inactive_target * * Otherwise, when the inactive target is met, the page daemon periodically * scans a small portion of the active queue in order to maintain up-to-date * per-page access history. Unreferenced pages in the active queue thus * eventually migrate to the inactive queue. * * The per-domain laundry thread periodically launders dirty pages based on the * number of clean pages freed by the page daemon since the last laundering. If * the page daemon fails to meet its scan target (i.e., the PID controller * output) because of a shortage of clean inactive pages, the laundry thread * attempts to launder enough pages to meet the free page target. * *-- * Page allocation priorities: * * The system defines three page allocation priorities: VM_ALLOC_NORMAL, * VM_ALLOC_SYSTEM and VM_ALLOC_INTERRUPT. An interrupt-priority allocation can * claim any free page. This priority is used in the pmap layer when attempting * to allocate a page for the kernel page tables; in such cases an allocation * failure will usually result in a kernel panic. The system priority is used * for most other kernel memory allocations, for instance by UMA's slab * allocator or the buffer cache. Such allocations will fail if the free count * is below interrupt_free_min. All other allocations occur at the normal * priority, which is typically used for allocation of user pages, for instance * in the page fault handler or when allocating page table pages or pv_entry * structures for user pmaps. Such allocations fail if the free count is below * the free_reserved threshold. * *-- * Free memory shortages: * * The system uses the free_min and free_severe thresholds to apply * back-pressure and give the page daemon a chance to recover. When a page * allocation fails due to a shortage and the allocating thread cannot handle * failure, it may call vm_wait() to sleep until free pages are available. * vm_domain_freecnt_inc() wakes sleeping threads once the free page count rises * above the free_min threshold; the page daemon and laundry threads are given * priority and will wake up once free_count reaches the (much smaller) * pageout_free_min threshold. * * On NUMA systems, the domainset iterators always prefer NUMA domains where the * free page count is above the free_min threshold. This means that given the * choice between two NUMA domains, one above the free_min threshold and one * below, the former will be used to satisfy the allocation request regardless * of the domain selection policy. * * In addition to reclaiming memory from the page queues, the vm_lowmem event * fires every ten seconds so long as the system is under memory pressure (i.e., * vmd_free_count < vmd_free_target). This allows kernel subsystems to register * for notifications of free page shortages, upon which they may shrink their * caches. Following a vm_lowmem event, UMA's caches are pruned to ensure that * they do not contain an excess of unused memory. When a domain is below the * free_min threshold, UMA limits the population of per-CPU caches. When a * domain falls below the free_severe threshold, UMA's caches are completely * drained. * * If the system encounters a global memory shortage, it may resort to the * out-of-memory (OOM) killer, which selects a process and delivers SIGKILL in a * last-ditch attempt to free up some pages. Either of the two following * conditions will activate the OOM killer: * * 1. The page daemons collectively fail to reclaim any pages during their * inactive queue scans. After vm_pageout_oom_seq consecutive scans fail, * the page daemon thread votes for an OOM kill, and an OOM kill is * triggered when all page daemons have voted. This heuristic is strict and * may fail to trigger even when the system is effectively deadlocked. * * 2. Threads in the user fault handler are repeatedly unable to make progress * while allocating a page to satisfy the fault. After * vm_pfault_oom_attempts page allocation failures with intervening * vm_wait() calls, the faulting thread will trigger an OOM kill. */ struct vm_domain { struct vm_pagequeue vmd_pagequeues[PQ_COUNT]; struct mtx_padalign vmd_free_mtx; struct mtx_padalign vmd_pageout_mtx; struct vm_pgcache { int domain; int pool; uma_zone_t zone; } vmd_pgcache[VM_NFREEPOOL]; struct vmem *vmd_kernel_arena; /* (c) per-domain kva R/W arena. */ struct vmem *vmd_kernel_rwx_arena; /* (c) per-domain kva R/W/X arena. */ + struct vmem *vmd_kernel_nofree_arena; /* (c) per-domain kva NOFREE arena. */ u_int vmd_domain; /* (c) Domain number. */ u_int vmd_page_count; /* (c) Total page count. */ long vmd_segs; /* (c) bitmask of the segments */ struct vm_nofreeq { vm_page_t ma; int offs; } vmd_nofreeq; /* (f) NOFREE page bump allocator. */ u_int __aligned(CACHE_LINE_SIZE) vmd_free_count; /* (a,f) free page count */ u_int vmd_pageout_deficit; /* (a) Estimated number of pages deficit */ uint8_t vmd_pad[CACHE_LINE_SIZE - (sizeof(u_int) * 2)]; /* Paging control variables, used within single threaded page daemon. */ struct pidctrl vmd_pid; /* Pageout controller. */ boolean_t vmd_oom; u_int vmd_inactive_threads; u_int vmd_inactive_shortage; /* Per-thread shortage. */ blockcount_t vmd_inactive_running; /* Number of inactive threads. */ blockcount_t vmd_inactive_starting; /* Number of threads started. */ volatile u_int vmd_addl_shortage; /* Shortage accumulator. */ volatile u_int vmd_inactive_freed; /* Successful inactive frees. */ volatile u_int vmd_inactive_us; /* Microseconds for above. */ u_int vmd_inactive_pps; /* Exponential decay frees/second. */ int vmd_oom_seq; int vmd_last_active_scan; struct vm_page vmd_markers[PQ_COUNT]; /* (q) markers for queue scans */ struct vm_page vmd_inacthead; /* marker for LRU-defeating insertions */ struct vm_page vmd_clock[2]; /* markers for active queue scan */ int vmd_pageout_wanted; /* (a, p) pageout daemon wait channel */ int vmd_pageout_pages_needed; /* (d) page daemon waiting for pages? */ bool vmd_minset; /* (d) Are we in vm_min_domains? */ bool vmd_severeset; /* (d) Are we in vm_severe_domains? */ enum { VM_LAUNDRY_IDLE = 0, VM_LAUNDRY_BACKGROUND, VM_LAUNDRY_SHORTFALL } vmd_laundry_request; /* Paging thresholds and targets. */ u_int vmd_clean_pages_freed; /* (q) accumulator for laundry thread */ u_int vmd_background_launder_target; /* (c) */ u_int vmd_free_reserved; /* (c) pages reserved for deadlock */ u_int vmd_free_target; /* (c) pages desired free */ u_int vmd_free_min; /* (c) pages desired free */ u_int vmd_inactive_target; /* (c) pages desired inactive */ u_int vmd_pageout_free_min; /* (c) min pages reserved for kernel */ u_int vmd_pageout_wakeup_thresh;/* (c) min pages to wake pagedaemon */ u_int vmd_interrupt_free_min; /* (c) reserved pages for int code */ u_int vmd_free_severe; /* (c) severe page depletion point */ /* Name for sysctl etc. */ struct sysctl_oid *vmd_oid; char vmd_name[sizeof(__XSTRING(MAXMEMDOM))]; } __aligned(CACHE_LINE_SIZE); extern struct vm_domain vm_dom[MAXMEMDOM]; #define VM_DOMAIN(n) (&vm_dom[(n)]) #define VM_DOMAIN_EMPTY(n) (vm_dom[(n)].vmd_page_count == 0) #define vm_pagequeue_assert_locked(pq) mtx_assert(&(pq)->pq_mutex, MA_OWNED) #define vm_pagequeue_lock(pq) mtx_lock(&(pq)->pq_mutex) #define vm_pagequeue_lockptr(pq) (&(pq)->pq_mutex) #define vm_pagequeue_trylock(pq) mtx_trylock(&(pq)->pq_mutex) #define vm_pagequeue_unlock(pq) mtx_unlock(&(pq)->pq_mutex) #define vm_domain_free_assert_locked(n) \ mtx_assert(vm_domain_free_lockptr((n)), MA_OWNED) #define vm_domain_free_assert_unlocked(n) \ mtx_assert(vm_domain_free_lockptr((n)), MA_NOTOWNED) #define vm_domain_free_lock(d) \ mtx_lock(vm_domain_free_lockptr((d))) #define vm_domain_free_lockptr(d) \ (&(d)->vmd_free_mtx) #define vm_domain_free_trylock(d) \ mtx_trylock(vm_domain_free_lockptr((d))) #define vm_domain_free_unlock(d) \ mtx_unlock(vm_domain_free_lockptr((d))) #define vm_domain_pageout_lockptr(d) \ (&(d)->vmd_pageout_mtx) #define vm_domain_pageout_assert_locked(n) \ mtx_assert(vm_domain_pageout_lockptr((n)), MA_OWNED) #define vm_domain_pageout_assert_unlocked(n) \ mtx_assert(vm_domain_pageout_lockptr((n)), MA_NOTOWNED) #define vm_domain_pageout_lock(d) \ mtx_lock(vm_domain_pageout_lockptr((d))) #define vm_domain_pageout_unlock(d) \ mtx_unlock(vm_domain_pageout_lockptr((d))) static __inline void vm_pagequeue_cnt_add(struct vm_pagequeue *pq, int addend) { vm_pagequeue_assert_locked(pq); pq->pq_cnt += addend; } #define vm_pagequeue_cnt_inc(pq) vm_pagequeue_cnt_add((pq), 1) #define vm_pagequeue_cnt_dec(pq) vm_pagequeue_cnt_add((pq), -1) static inline void vm_pagequeue_remove(struct vm_pagequeue *pq, vm_page_t m) { TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); vm_pagequeue_cnt_dec(pq); } static inline void vm_batchqueue_init(struct vm_batchqueue *bq) { bq->bq_cnt = 0; } static inline bool vm_batchqueue_empty(const struct vm_batchqueue *bq) { return (bq->bq_cnt == 0); } static inline int vm_batchqueue_insert(struct vm_batchqueue *bq, vm_page_t m) { int slots_free; slots_free = nitems(bq->bq_pa) - bq->bq_cnt; if (slots_free > 0) { bq->bq_pa[bq->bq_cnt++] = m; return (slots_free); } return (slots_free); } static inline vm_page_t vm_batchqueue_pop(struct vm_batchqueue *bq) { if (bq->bq_cnt == 0) return (NULL); return (bq->bq_pa[--bq->bq_cnt]); } void vm_domain_set(struct vm_domain *vmd); void vm_domain_clear(struct vm_domain *vmd); int vm_domain_allocate(struct vm_domain *vmd, int req, int npages); /* * vm_pagequeue_domain: * * Return the memory domain the page belongs to. */ static inline struct vm_domain * vm_pagequeue_domain(vm_page_t m) { return (VM_DOMAIN(vm_page_domain(m))); } /* * Return the number of pages we need to free-up or cache * A positive number indicates that we do not have enough free pages. */ static inline int vm_paging_target(struct vm_domain *vmd) { return (vmd->vmd_free_target - vmd->vmd_free_count); } /* * Returns TRUE if the pagedaemon needs to be woken up. */ static inline int vm_paging_needed(struct vm_domain *vmd, u_int free_count) { return (free_count < vmd->vmd_pageout_wakeup_thresh); } /* * Returns TRUE if the domain is below the min paging target. */ static inline int vm_paging_min(struct vm_domain *vmd) { return (vmd->vmd_free_min > vmd->vmd_free_count); } /* * Returns TRUE if the domain is below the severe paging target. */ static inline int vm_paging_severe(struct vm_domain *vmd) { return (vmd->vmd_free_severe > vmd->vmd_free_count); } /* * Return the number of pages we need to launder. * A positive number indicates that we have a shortfall of clean pages. */ static inline int vm_laundry_target(struct vm_domain *vmd) { return (vm_paging_target(vmd)); } void pagedaemon_wakeup(int domain); static inline void vm_domain_freecnt_inc(struct vm_domain *vmd, int adj) { u_int old, new; old = atomic_fetchadd_int(&vmd->vmd_free_count, adj); new = old + adj; /* * Only update bitsets on transitions. Notice we short-circuit the * rest of the checks if we're above min already. */ if (old < vmd->vmd_free_min && (new >= vmd->vmd_free_min || (old < vmd->vmd_free_severe && new >= vmd->vmd_free_severe) || (old < vmd->vmd_pageout_free_min && new >= vmd->vmd_pageout_free_min))) vm_domain_clear(vmd); } #endif /* _KERNEL */ #endif /* !_VM_PAGEQUEUE_ */