diff --git a/module/zfs/dsl_dataset.c b/module/zfs/dsl_dataset.c index aac8bf76e44e..c5143ac5a94c 100644 --- a/module/zfs/dsl_dataset.c +++ b/module/zfs/dsl_dataset.c @@ -1,4944 +1,4944 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2020 by Delphix. All rights reserved. * Copyright (c) 2014, Joyent, Inc. All rights reserved. * Copyright (c) 2014 RackTop Systems. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright (c) 2016 Actifio, Inc. All rights reserved. * Copyright 2016, OmniTI Computer Consulting, Inc. All rights reserved. * Copyright 2017 Nexenta Systems, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The SPA supports block sizes up to 16MB. However, very large blocks * can have an impact on i/o latency (e.g. tying up a spinning disk for * ~300ms), and also potentially on the memory allocator. Therefore, * we do not allow the recordsize to be set larger than zfs_max_recordsize * (default 1MB). Larger blocks can be created by changing this tunable, * and pools with larger blocks can always be imported and used, regardless * of this setting. */ int zfs_max_recordsize = 1 * 1024 * 1024; int zfs_allow_redacted_dataset_mount = 0; #define SWITCH64(x, y) \ { \ uint64_t __tmp = (x); \ (x) = (y); \ (y) = __tmp; \ } #define DS_REF_MAX (1ULL << 62) extern inline dsl_dataset_phys_t *dsl_dataset_phys(dsl_dataset_t *ds); static void dsl_dataset_set_remap_deadlist_object(dsl_dataset_t *ds, uint64_t obj, dmu_tx_t *tx); static void dsl_dataset_unset_remap_deadlist_object(dsl_dataset_t *ds, dmu_tx_t *tx); static void unload_zfeature(dsl_dataset_t *ds, spa_feature_t f); extern int spa_asize_inflation; static zil_header_t zero_zil; /* * Figure out how much of this delta should be propagated to the dsl_dir * layer. If there's a refreservation, that space has already been * partially accounted for in our ancestors. */ static int64_t parent_delta(dsl_dataset_t *ds, int64_t delta) { dsl_dataset_phys_t *ds_phys; uint64_t old_bytes, new_bytes; if (ds->ds_reserved == 0) return (delta); ds_phys = dsl_dataset_phys(ds); old_bytes = MAX(ds_phys->ds_unique_bytes, ds->ds_reserved); new_bytes = MAX(ds_phys->ds_unique_bytes + delta, ds->ds_reserved); ASSERT3U(ABS((int64_t)(new_bytes - old_bytes)), <=, ABS(delta)); return (new_bytes - old_bytes); } void dsl_dataset_block_born(dsl_dataset_t *ds, const blkptr_t *bp, dmu_tx_t *tx) { spa_t *spa = dmu_tx_pool(tx)->dp_spa; int used = bp_get_dsize_sync(spa, bp); int compressed = BP_GET_PSIZE(bp); int uncompressed = BP_GET_UCSIZE(bp); int64_t delta; dprintf_bp(bp, "ds=%p", ds); ASSERT(dmu_tx_is_syncing(tx)); /* It could have been compressed away to nothing */ if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) return; ASSERT(BP_GET_TYPE(bp) != DMU_OT_NONE); ASSERT(DMU_OT_IS_VALID(BP_GET_TYPE(bp))); if (ds == NULL) { dsl_pool_mos_diduse_space(tx->tx_pool, used, compressed, uncompressed); return; } ASSERT3U(bp->blk_birth, >, dsl_dataset_phys(ds)->ds_prev_snap_txg); dmu_buf_will_dirty(ds->ds_dbuf, tx); mutex_enter(&ds->ds_lock); delta = parent_delta(ds, used); dsl_dataset_phys(ds)->ds_referenced_bytes += used; dsl_dataset_phys(ds)->ds_compressed_bytes += compressed; dsl_dataset_phys(ds)->ds_uncompressed_bytes += uncompressed; dsl_dataset_phys(ds)->ds_unique_bytes += used; if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE) { ds->ds_feature_activation[SPA_FEATURE_LARGE_BLOCKS] = (void *)B_TRUE; } spa_feature_t f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp)); if (f != SPA_FEATURE_NONE) { ASSERT3S(spa_feature_table[f].fi_type, ==, ZFEATURE_TYPE_BOOLEAN); ds->ds_feature_activation[f] = (void *)B_TRUE; } /* * Track block for livelist, but ignore embedded blocks because * they do not need to be freed. */ if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && bp->blk_birth > ds->ds_dir->dd_origin_txg && !(BP_IS_EMBEDDED(bp))) { ASSERT(dsl_dir_is_clone(ds->ds_dir)); ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LIVELIST)); bplist_append(&ds->ds_dir->dd_pending_allocs, bp); } mutex_exit(&ds->ds_lock); dsl_dir_diduse_space(ds->ds_dir, DD_USED_HEAD, delta, compressed, uncompressed, tx); dsl_dir_transfer_space(ds->ds_dir, used - delta, DD_USED_REFRSRV, DD_USED_HEAD, tx); } /* * Called when the specified segment has been remapped, and is thus no * longer referenced in the head dataset. The vdev must be indirect. * * If the segment is referenced by a snapshot, put it on the remap deadlist. * Otherwise, add this segment to the obsolete spacemap. */ void dsl_dataset_block_remapped(dsl_dataset_t *ds, uint64_t vdev, uint64_t offset, uint64_t size, uint64_t birth, dmu_tx_t *tx) { spa_t *spa = ds->ds_dir->dd_pool->dp_spa; ASSERT(dmu_tx_is_syncing(tx)); ASSERT(birth <= tx->tx_txg); ASSERT(!ds->ds_is_snapshot); if (birth > dsl_dataset_phys(ds)->ds_prev_snap_txg) { spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); } else { blkptr_t fakebp; dva_t *dva = &fakebp.blk_dva[0]; ASSERT(ds != NULL); mutex_enter(&ds->ds_remap_deadlist_lock); if (!dsl_dataset_remap_deadlist_exists(ds)) { dsl_dataset_create_remap_deadlist(ds, tx); } mutex_exit(&ds->ds_remap_deadlist_lock); BP_ZERO(&fakebp); fakebp.blk_birth = birth; DVA_SET_VDEV(dva, vdev); DVA_SET_OFFSET(dva, offset); DVA_SET_ASIZE(dva, size); dsl_deadlist_insert(&ds->ds_remap_deadlist, &fakebp, B_FALSE, tx); } } int dsl_dataset_block_kill(dsl_dataset_t *ds, const blkptr_t *bp, dmu_tx_t *tx, boolean_t async) { spa_t *spa = dmu_tx_pool(tx)->dp_spa; int used = bp_get_dsize_sync(spa, bp); int compressed = BP_GET_PSIZE(bp); int uncompressed = BP_GET_UCSIZE(bp); if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) return (0); ASSERT(dmu_tx_is_syncing(tx)); ASSERT(bp->blk_birth <= tx->tx_txg); if (ds == NULL) { dsl_free(tx->tx_pool, tx->tx_txg, bp); dsl_pool_mos_diduse_space(tx->tx_pool, -used, -compressed, -uncompressed); return (used); } ASSERT3P(tx->tx_pool, ==, ds->ds_dir->dd_pool); ASSERT(!ds->ds_is_snapshot); dmu_buf_will_dirty(ds->ds_dbuf, tx); /* * Track block for livelist, but ignore embedded blocks because * they do not need to be freed. */ if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && bp->blk_birth > ds->ds_dir->dd_origin_txg && !(BP_IS_EMBEDDED(bp))) { ASSERT(dsl_dir_is_clone(ds->ds_dir)); ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LIVELIST)); bplist_append(&ds->ds_dir->dd_pending_frees, bp); } if (bp->blk_birth > dsl_dataset_phys(ds)->ds_prev_snap_txg) { int64_t delta; dprintf_bp(bp, "freeing ds=%llu", ds->ds_object); dsl_free(tx->tx_pool, tx->tx_txg, bp); mutex_enter(&ds->ds_lock); ASSERT(dsl_dataset_phys(ds)->ds_unique_bytes >= used || !DS_UNIQUE_IS_ACCURATE(ds)); delta = parent_delta(ds, -used); dsl_dataset_phys(ds)->ds_unique_bytes -= used; mutex_exit(&ds->ds_lock); dsl_dir_diduse_space(ds->ds_dir, DD_USED_HEAD, delta, -compressed, -uncompressed, tx); dsl_dir_transfer_space(ds->ds_dir, -used - delta, DD_USED_REFRSRV, DD_USED_HEAD, tx); } else { dprintf_bp(bp, "putting on dead list: %s", ""); if (async) { /* * We are here as part of zio's write done callback, * which means we're a zio interrupt thread. We can't * call dsl_deadlist_insert() now because it may block * waiting for I/O. Instead, put bp on the deferred * queue and let dsl_pool_sync() finish the job. */ bplist_append(&ds->ds_pending_deadlist, bp); } else { dsl_deadlist_insert(&ds->ds_deadlist, bp, B_FALSE, tx); } ASSERT3U(ds->ds_prev->ds_object, ==, dsl_dataset_phys(ds)->ds_prev_snap_obj); ASSERT(dsl_dataset_phys(ds->ds_prev)->ds_num_children > 0); /* if (bp->blk_birth > prev prev snap txg) prev unique += bs */ if (dsl_dataset_phys(ds->ds_prev)->ds_next_snap_obj == ds->ds_object && bp->blk_birth > dsl_dataset_phys(ds->ds_prev)->ds_prev_snap_txg) { dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); mutex_enter(&ds->ds_prev->ds_lock); dsl_dataset_phys(ds->ds_prev)->ds_unique_bytes += used; mutex_exit(&ds->ds_prev->ds_lock); } if (bp->blk_birth > ds->ds_dir->dd_origin_txg) { dsl_dir_transfer_space(ds->ds_dir, used, DD_USED_HEAD, DD_USED_SNAP, tx); } } dsl_bookmark_block_killed(ds, bp, tx); mutex_enter(&ds->ds_lock); ASSERT3U(dsl_dataset_phys(ds)->ds_referenced_bytes, >=, used); dsl_dataset_phys(ds)->ds_referenced_bytes -= used; ASSERT3U(dsl_dataset_phys(ds)->ds_compressed_bytes, >=, compressed); dsl_dataset_phys(ds)->ds_compressed_bytes -= compressed; ASSERT3U(dsl_dataset_phys(ds)->ds_uncompressed_bytes, >=, uncompressed); dsl_dataset_phys(ds)->ds_uncompressed_bytes -= uncompressed; mutex_exit(&ds->ds_lock); return (used); } struct feature_type_uint64_array_arg { uint64_t length; uint64_t *array; }; static void unload_zfeature(dsl_dataset_t *ds, spa_feature_t f) { switch (spa_feature_table[f].fi_type) { case ZFEATURE_TYPE_BOOLEAN: break; case ZFEATURE_TYPE_UINT64_ARRAY: { struct feature_type_uint64_array_arg *ftuaa = ds->ds_feature[f]; kmem_free(ftuaa->array, ftuaa->length * sizeof (uint64_t)); kmem_free(ftuaa, sizeof (*ftuaa)); break; } default: panic("Invalid zfeature type %d", spa_feature_table[f].fi_type); } } static int load_zfeature(objset_t *mos, dsl_dataset_t *ds, spa_feature_t f) { int err = 0; switch (spa_feature_table[f].fi_type) { case ZFEATURE_TYPE_BOOLEAN: err = zap_contains(mos, ds->ds_object, spa_feature_table[f].fi_guid); if (err == 0) { ds->ds_feature[f] = (void *)B_TRUE; } else { ASSERT3U(err, ==, ENOENT); err = 0; } break; case ZFEATURE_TYPE_UINT64_ARRAY: { uint64_t int_size, num_int; uint64_t *data; err = zap_length(mos, ds->ds_object, spa_feature_table[f].fi_guid, &int_size, &num_int); if (err != 0) { ASSERT3U(err, ==, ENOENT); err = 0; break; } ASSERT3U(int_size, ==, sizeof (uint64_t)); data = kmem_alloc(int_size * num_int, KM_SLEEP); VERIFY0(zap_lookup(mos, ds->ds_object, spa_feature_table[f].fi_guid, int_size, num_int, data)); struct feature_type_uint64_array_arg *ftuaa = kmem_alloc(sizeof (*ftuaa), KM_SLEEP); ftuaa->length = num_int; ftuaa->array = data; ds->ds_feature[f] = ftuaa; break; } default: panic("Invalid zfeature type %d", spa_feature_table[f].fi_type); } return (err); } /* * We have to release the fsid synchronously or we risk that a subsequent * mount of the same dataset will fail to unique_insert the fsid. This * failure would manifest itself as the fsid of this dataset changing * between mounts which makes NFS clients quite unhappy. */ static void dsl_dataset_evict_sync(void *dbu) { dsl_dataset_t *ds = dbu; ASSERT(ds->ds_owner == NULL); unique_remove(ds->ds_fsid_guid); } static void dsl_dataset_evict_async(void *dbu) { dsl_dataset_t *ds = dbu; ASSERT(ds->ds_owner == NULL); ds->ds_dbuf = NULL; if (ds->ds_objset != NULL) dmu_objset_evict(ds->ds_objset); if (ds->ds_prev) { dsl_dataset_rele(ds->ds_prev, ds); ds->ds_prev = NULL; } dsl_bookmark_fini_ds(ds); bplist_destroy(&ds->ds_pending_deadlist); if (dsl_deadlist_is_open(&ds->ds_deadlist)) dsl_deadlist_close(&ds->ds_deadlist); if (dsl_deadlist_is_open(&ds->ds_remap_deadlist)) dsl_deadlist_close(&ds->ds_remap_deadlist); if (ds->ds_dir) dsl_dir_async_rele(ds->ds_dir, ds); ASSERT(!list_link_active(&ds->ds_synced_link)); for (spa_feature_t f = 0; f < SPA_FEATURES; f++) { if (dsl_dataset_feature_is_active(ds, f)) unload_zfeature(ds, f); } list_destroy(&ds->ds_prop_cbs); mutex_destroy(&ds->ds_lock); mutex_destroy(&ds->ds_opening_lock); mutex_destroy(&ds->ds_sendstream_lock); mutex_destroy(&ds->ds_remap_deadlist_lock); zfs_refcount_destroy(&ds->ds_longholds); rrw_destroy(&ds->ds_bp_rwlock); kmem_free(ds, sizeof (dsl_dataset_t)); } int dsl_dataset_get_snapname(dsl_dataset_t *ds) { dsl_dataset_phys_t *headphys; int err; dmu_buf_t *headdbuf; dsl_pool_t *dp = ds->ds_dir->dd_pool; objset_t *mos = dp->dp_meta_objset; if (ds->ds_snapname[0]) return (0); if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) return (0); err = dmu_bonus_hold(mos, dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj, FTAG, &headdbuf); if (err != 0) return (err); headphys = headdbuf->db_data; err = zap_value_search(dp->dp_meta_objset, headphys->ds_snapnames_zapobj, ds->ds_object, 0, ds->ds_snapname); if (err != 0 && zfs_recover == B_TRUE) { err = 0; (void) snprintf(ds->ds_snapname, sizeof (ds->ds_snapname), "SNAPOBJ=%llu-ERR=%d", (unsigned long long)ds->ds_object, err); } dmu_buf_rele(headdbuf, FTAG); return (err); } int dsl_dataset_snap_lookup(dsl_dataset_t *ds, const char *name, uint64_t *value) { objset_t *mos = ds->ds_dir->dd_pool->dp_meta_objset; uint64_t snapobj = dsl_dataset_phys(ds)->ds_snapnames_zapobj; matchtype_t mt = 0; int err; if (dsl_dataset_phys(ds)->ds_flags & DS_FLAG_CI_DATASET) mt = MT_NORMALIZE; err = zap_lookup_norm(mos, snapobj, name, 8, 1, value, mt, NULL, 0, NULL); if (err == ENOTSUP && (mt & MT_NORMALIZE)) err = zap_lookup(mos, snapobj, name, 8, 1, value); return (err); } int dsl_dataset_snap_remove(dsl_dataset_t *ds, const char *name, dmu_tx_t *tx, boolean_t adj_cnt) { objset_t *mos = ds->ds_dir->dd_pool->dp_meta_objset; uint64_t snapobj = dsl_dataset_phys(ds)->ds_snapnames_zapobj; matchtype_t mt = 0; int err; dsl_dir_snap_cmtime_update(ds->ds_dir); if (dsl_dataset_phys(ds)->ds_flags & DS_FLAG_CI_DATASET) mt = MT_NORMALIZE; err = zap_remove_norm(mos, snapobj, name, mt, tx); if (err == ENOTSUP && (mt & MT_NORMALIZE)) err = zap_remove(mos, snapobj, name, tx); if (err == 0 && adj_cnt) dsl_fs_ss_count_adjust(ds->ds_dir, -1, DD_FIELD_SNAPSHOT_COUNT, tx); return (err); } boolean_t dsl_dataset_try_add_ref(dsl_pool_t *dp, dsl_dataset_t *ds, void *tag) { dmu_buf_t *dbuf = ds->ds_dbuf; boolean_t result = B_FALSE; if (dbuf != NULL && dmu_buf_try_add_ref(dbuf, dp->dp_meta_objset, ds->ds_object, DMU_BONUS_BLKID, tag)) { if (ds == dmu_buf_get_user(dbuf)) result = B_TRUE; else dmu_buf_rele(dbuf, tag); } return (result); } int dsl_dataset_hold_obj(dsl_pool_t *dp, uint64_t dsobj, void *tag, dsl_dataset_t **dsp) { objset_t *mos = dp->dp_meta_objset; dmu_buf_t *dbuf; dsl_dataset_t *ds; int err; dmu_object_info_t doi; ASSERT(dsl_pool_config_held(dp)); err = dmu_bonus_hold(mos, dsobj, tag, &dbuf); if (err != 0) return (err); /* Make sure dsobj has the correct object type. */ dmu_object_info_from_db(dbuf, &doi); if (doi.doi_bonus_type != DMU_OT_DSL_DATASET) { dmu_buf_rele(dbuf, tag); return (SET_ERROR(EINVAL)); } ds = dmu_buf_get_user(dbuf); if (ds == NULL) { dsl_dataset_t *winner = NULL; ds = kmem_zalloc(sizeof (dsl_dataset_t), KM_SLEEP); ds->ds_dbuf = dbuf; ds->ds_object = dsobj; ds->ds_is_snapshot = dsl_dataset_phys(ds)->ds_num_children != 0; list_link_init(&ds->ds_synced_link); err = dsl_dir_hold_obj(dp, dsl_dataset_phys(ds)->ds_dir_obj, NULL, ds, &ds->ds_dir); if (err != 0) { kmem_free(ds, sizeof (dsl_dataset_t)); dmu_buf_rele(dbuf, tag); return (err); } mutex_init(&ds->ds_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&ds->ds_opening_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&ds->ds_sendstream_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&ds->ds_remap_deadlist_lock, NULL, MUTEX_DEFAULT, NULL); rrw_init(&ds->ds_bp_rwlock, B_FALSE); zfs_refcount_create(&ds->ds_longholds); bplist_create(&ds->ds_pending_deadlist); list_create(&ds->ds_sendstreams, sizeof (dmu_sendstatus_t), offsetof(dmu_sendstatus_t, dss_link)); list_create(&ds->ds_prop_cbs, sizeof (dsl_prop_cb_record_t), offsetof(dsl_prop_cb_record_t, cbr_ds_node)); if (doi.doi_type == DMU_OTN_ZAP_METADATA) { spa_feature_t f; for (f = 0; f < SPA_FEATURES; f++) { if (!(spa_feature_table[f].fi_flags & ZFEATURE_FLAG_PER_DATASET)) continue; err = load_zfeature(mos, ds, f); } } if (!ds->ds_is_snapshot) { ds->ds_snapname[0] = '\0'; if (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { err = dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj, ds, &ds->ds_prev); } err = dsl_bookmark_init_ds(ds); } else { if (zfs_flags & ZFS_DEBUG_SNAPNAMES) err = dsl_dataset_get_snapname(ds); if (err == 0 && dsl_dataset_phys(ds)->ds_userrefs_obj != 0) { err = zap_count( ds->ds_dir->dd_pool->dp_meta_objset, dsl_dataset_phys(ds)->ds_userrefs_obj, &ds->ds_userrefs); } } if (err == 0 && !ds->ds_is_snapshot) { err = dsl_prop_get_int_ds(ds, zfs_prop_to_name(ZFS_PROP_REFRESERVATION), &ds->ds_reserved); if (err == 0) { err = dsl_prop_get_int_ds(ds, zfs_prop_to_name(ZFS_PROP_REFQUOTA), &ds->ds_quota); } } else { ds->ds_reserved = ds->ds_quota = 0; } if (err == 0 && ds->ds_dir->dd_crypto_obj != 0 && ds->ds_is_snapshot && zap_contains(mos, dsobj, DS_FIELD_IVSET_GUID) != 0) { dp->dp_spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION; } dsl_deadlist_open(&ds->ds_deadlist, mos, dsl_dataset_phys(ds)->ds_deadlist_obj); uint64_t remap_deadlist_obj = dsl_dataset_get_remap_deadlist_object(ds); if (remap_deadlist_obj != 0) { dsl_deadlist_open(&ds->ds_remap_deadlist, mos, remap_deadlist_obj); } dmu_buf_init_user(&ds->ds_dbu, dsl_dataset_evict_sync, dsl_dataset_evict_async, &ds->ds_dbuf); if (err == 0) winner = dmu_buf_set_user_ie(dbuf, &ds->ds_dbu); if (err != 0 || winner != NULL) { bplist_destroy(&ds->ds_pending_deadlist); dsl_deadlist_close(&ds->ds_deadlist); if (dsl_deadlist_is_open(&ds->ds_remap_deadlist)) dsl_deadlist_close(&ds->ds_remap_deadlist); dsl_bookmark_fini_ds(ds); if (ds->ds_prev) dsl_dataset_rele(ds->ds_prev, ds); dsl_dir_rele(ds->ds_dir, ds); for (spa_feature_t f = 0; f < SPA_FEATURES; f++) { if (dsl_dataset_feature_is_active(ds, f)) unload_zfeature(ds, f); } list_destroy(&ds->ds_prop_cbs); list_destroy(&ds->ds_sendstreams); mutex_destroy(&ds->ds_lock); mutex_destroy(&ds->ds_opening_lock); mutex_destroy(&ds->ds_sendstream_lock); mutex_destroy(&ds->ds_remap_deadlist_lock); zfs_refcount_destroy(&ds->ds_longholds); rrw_destroy(&ds->ds_bp_rwlock); kmem_free(ds, sizeof (dsl_dataset_t)); if (err != 0) { dmu_buf_rele(dbuf, tag); return (err); } ds = winner; } else { ds->ds_fsid_guid = unique_insert(dsl_dataset_phys(ds)->ds_fsid_guid); if (ds->ds_fsid_guid != dsl_dataset_phys(ds)->ds_fsid_guid) { zfs_dbgmsg("ds_fsid_guid changed from " "%llx to %llx for pool %s dataset id %llu", (long long) dsl_dataset_phys(ds)->ds_fsid_guid, (long long)ds->ds_fsid_guid, spa_name(dp->dp_spa), dsobj); } } } ASSERT3P(ds->ds_dbuf, ==, dbuf); ASSERT3P(dsl_dataset_phys(ds), ==, dbuf->db_data); ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0 || spa_version(dp->dp_spa) < SPA_VERSION_ORIGIN || dp->dp_origin_snap == NULL || ds == dp->dp_origin_snap); *dsp = ds; return (0); } int dsl_dataset_create_key_mapping(dsl_dataset_t *ds) { dsl_dir_t *dd = ds->ds_dir; if (dd->dd_crypto_obj == 0) return (0); return (spa_keystore_create_mapping(dd->dd_pool->dp_spa, ds, ds, &ds->ds_key_mapping)); } int dsl_dataset_hold_obj_flags(dsl_pool_t *dp, uint64_t dsobj, ds_hold_flags_t flags, void *tag, dsl_dataset_t **dsp) { int err; err = dsl_dataset_hold_obj(dp, dsobj, tag, dsp); if (err != 0) return (err); ASSERT3P(*dsp, !=, NULL); if (flags & DS_HOLD_FLAG_DECRYPT) { err = dsl_dataset_create_key_mapping(*dsp); if (err != 0) dsl_dataset_rele(*dsp, tag); } return (err); } int dsl_dataset_hold_flags(dsl_pool_t *dp, const char *name, ds_hold_flags_t flags, void *tag, dsl_dataset_t **dsp) { dsl_dir_t *dd; const char *snapname; uint64_t obj; int err = 0; dsl_dataset_t *ds; err = dsl_dir_hold(dp, name, FTAG, &dd, &snapname); if (err != 0) return (err); ASSERT(dsl_pool_config_held(dp)); obj = dsl_dir_phys(dd)->dd_head_dataset_obj; if (obj != 0) err = dsl_dataset_hold_obj_flags(dp, obj, flags, tag, &ds); else err = SET_ERROR(ENOENT); /* we may be looking for a snapshot */ if (err == 0 && snapname != NULL) { dsl_dataset_t *snap_ds; if (*snapname++ != '@') { dsl_dataset_rele_flags(ds, flags, tag); dsl_dir_rele(dd, FTAG); return (SET_ERROR(ENOENT)); } dprintf("looking for snapshot '%s'\n", snapname); err = dsl_dataset_snap_lookup(ds, snapname, &obj); if (err == 0) { err = dsl_dataset_hold_obj_flags(dp, obj, flags, tag, &snap_ds); } dsl_dataset_rele_flags(ds, flags, tag); if (err == 0) { mutex_enter(&snap_ds->ds_lock); if (snap_ds->ds_snapname[0] == 0) (void) strlcpy(snap_ds->ds_snapname, snapname, sizeof (snap_ds->ds_snapname)); mutex_exit(&snap_ds->ds_lock); ds = snap_ds; } } if (err == 0) *dsp = ds; dsl_dir_rele(dd, FTAG); return (err); } int dsl_dataset_hold(dsl_pool_t *dp, const char *name, void *tag, dsl_dataset_t **dsp) { return (dsl_dataset_hold_flags(dp, name, 0, tag, dsp)); } static int dsl_dataset_own_obj_impl(dsl_pool_t *dp, uint64_t dsobj, ds_hold_flags_t flags, void *tag, boolean_t override, dsl_dataset_t **dsp) { int err = dsl_dataset_hold_obj_flags(dp, dsobj, flags, tag, dsp); if (err != 0) return (err); if (!dsl_dataset_tryown(*dsp, tag, override)) { dsl_dataset_rele_flags(*dsp, flags, tag); *dsp = NULL; return (SET_ERROR(EBUSY)); } return (0); } int dsl_dataset_own_obj(dsl_pool_t *dp, uint64_t dsobj, ds_hold_flags_t flags, void *tag, dsl_dataset_t **dsp) { return (dsl_dataset_own_obj_impl(dp, dsobj, flags, tag, B_FALSE, dsp)); } int dsl_dataset_own_obj_force(dsl_pool_t *dp, uint64_t dsobj, ds_hold_flags_t flags, void *tag, dsl_dataset_t **dsp) { return (dsl_dataset_own_obj_impl(dp, dsobj, flags, tag, B_TRUE, dsp)); } static int dsl_dataset_own_impl(dsl_pool_t *dp, const char *name, ds_hold_flags_t flags, void *tag, boolean_t override, dsl_dataset_t **dsp) { int err = dsl_dataset_hold_flags(dp, name, flags, tag, dsp); if (err != 0) return (err); if (!dsl_dataset_tryown(*dsp, tag, override)) { dsl_dataset_rele_flags(*dsp, flags, tag); return (SET_ERROR(EBUSY)); } return (0); } int dsl_dataset_own_force(dsl_pool_t *dp, const char *name, ds_hold_flags_t flags, void *tag, dsl_dataset_t **dsp) { return (dsl_dataset_own_impl(dp, name, flags, tag, B_TRUE, dsp)); } int dsl_dataset_own(dsl_pool_t *dp, const char *name, ds_hold_flags_t flags, void *tag, dsl_dataset_t **dsp) { return (dsl_dataset_own_impl(dp, name, flags, tag, B_FALSE, dsp)); } /* * See the comment above dsl_pool_hold() for details. In summary, a long * hold is used to prevent destruction of a dataset while the pool hold * is dropped, allowing other concurrent operations (e.g. spa_sync()). * * The dataset and pool must be held when this function is called. After it * is called, the pool hold may be released while the dataset is still held * and accessed. */ void dsl_dataset_long_hold(dsl_dataset_t *ds, void *tag) { ASSERT(dsl_pool_config_held(ds->ds_dir->dd_pool)); (void) zfs_refcount_add(&ds->ds_longholds, tag); } void dsl_dataset_long_rele(dsl_dataset_t *ds, void *tag) { (void) zfs_refcount_remove(&ds->ds_longholds, tag); } /* Return B_TRUE if there are any long holds on this dataset. */ boolean_t dsl_dataset_long_held(dsl_dataset_t *ds) { return (!zfs_refcount_is_zero(&ds->ds_longholds)); } void dsl_dataset_name(dsl_dataset_t *ds, char *name) { if (ds == NULL) { (void) strlcpy(name, "mos", ZFS_MAX_DATASET_NAME_LEN); } else { dsl_dir_name(ds->ds_dir, name); VERIFY0(dsl_dataset_get_snapname(ds)); if (ds->ds_snapname[0]) { VERIFY3U(strlcat(name, "@", ZFS_MAX_DATASET_NAME_LEN), <, ZFS_MAX_DATASET_NAME_LEN); /* * We use a "recursive" mutex so that we * can call dprintf_ds() with ds_lock held. */ if (!MUTEX_HELD(&ds->ds_lock)) { mutex_enter(&ds->ds_lock); VERIFY3U(strlcat(name, ds->ds_snapname, ZFS_MAX_DATASET_NAME_LEN), <, ZFS_MAX_DATASET_NAME_LEN); mutex_exit(&ds->ds_lock); } else { VERIFY3U(strlcat(name, ds->ds_snapname, ZFS_MAX_DATASET_NAME_LEN), <, ZFS_MAX_DATASET_NAME_LEN); } } } } int dsl_dataset_namelen(dsl_dataset_t *ds) { VERIFY0(dsl_dataset_get_snapname(ds)); mutex_enter(&ds->ds_lock); int len = strlen(ds->ds_snapname); mutex_exit(&ds->ds_lock); /* add '@' if ds is a snap */ if (len > 0) len++; len += dsl_dir_namelen(ds->ds_dir); return (len); } void dsl_dataset_rele(dsl_dataset_t *ds, void *tag) { dmu_buf_rele(ds->ds_dbuf, tag); } void dsl_dataset_remove_key_mapping(dsl_dataset_t *ds) { dsl_dir_t *dd = ds->ds_dir; if (dd == NULL || dd->dd_crypto_obj == 0) return; (void) spa_keystore_remove_mapping(dd->dd_pool->dp_spa, ds->ds_object, ds); } void dsl_dataset_rele_flags(dsl_dataset_t *ds, ds_hold_flags_t flags, void *tag) { if (flags & DS_HOLD_FLAG_DECRYPT) dsl_dataset_remove_key_mapping(ds); dsl_dataset_rele(ds, tag); } void dsl_dataset_disown(dsl_dataset_t *ds, ds_hold_flags_t flags, void *tag) { ASSERT3P(ds->ds_owner, ==, tag); ASSERT(ds->ds_dbuf != NULL); mutex_enter(&ds->ds_lock); ds->ds_owner = NULL; mutex_exit(&ds->ds_lock); dsl_dataset_long_rele(ds, tag); dsl_dataset_rele_flags(ds, flags, tag); } boolean_t dsl_dataset_tryown(dsl_dataset_t *ds, void *tag, boolean_t override) { boolean_t gotit = FALSE; ASSERT(dsl_pool_config_held(ds->ds_dir->dd_pool)); mutex_enter(&ds->ds_lock); if (ds->ds_owner == NULL && (override || !(DS_IS_INCONSISTENT(ds) || (dsl_dataset_feature_is_active(ds, SPA_FEATURE_REDACTED_DATASETS) && !zfs_allow_redacted_dataset_mount)))) { ds->ds_owner = tag; dsl_dataset_long_hold(ds, tag); gotit = TRUE; } mutex_exit(&ds->ds_lock); return (gotit); } boolean_t dsl_dataset_has_owner(dsl_dataset_t *ds) { boolean_t rv; mutex_enter(&ds->ds_lock); rv = (ds->ds_owner != NULL); mutex_exit(&ds->ds_lock); return (rv); } static boolean_t zfeature_active(spa_feature_t f, void *arg) { switch (spa_feature_table[f].fi_type) { case ZFEATURE_TYPE_BOOLEAN: { - boolean_t val = (boolean_t)arg; + boolean_t val = (boolean_t)(uintptr_t)arg; ASSERT(val == B_FALSE || val == B_TRUE); return (val); } case ZFEATURE_TYPE_UINT64_ARRAY: /* * In this case, arg is a uint64_t array. The feature is active * if the array is non-null. */ return (arg != NULL); default: panic("Invalid zfeature type %d", spa_feature_table[f].fi_type); return (B_FALSE); } } boolean_t dsl_dataset_feature_is_active(dsl_dataset_t *ds, spa_feature_t f) { return (zfeature_active(f, ds->ds_feature[f])); } /* * The buffers passed out by this function are references to internal buffers; * they should not be freed by callers of this function, and they should not be * used after the dataset has been released. */ boolean_t dsl_dataset_get_uint64_array_feature(dsl_dataset_t *ds, spa_feature_t f, uint64_t *outlength, uint64_t **outp) { VERIFY(spa_feature_table[f].fi_type & ZFEATURE_TYPE_UINT64_ARRAY); if (!dsl_dataset_feature_is_active(ds, f)) { return (B_FALSE); } struct feature_type_uint64_array_arg *ftuaa = ds->ds_feature[f]; *outp = ftuaa->array; *outlength = ftuaa->length; return (B_TRUE); } void dsl_dataset_activate_feature(uint64_t dsobj, spa_feature_t f, void *arg, dmu_tx_t *tx) { spa_t *spa = dmu_tx_pool(tx)->dp_spa; objset_t *mos = dmu_tx_pool(tx)->dp_meta_objset; uint64_t zero = 0; VERIFY(spa_feature_table[f].fi_flags & ZFEATURE_FLAG_PER_DATASET); spa_feature_incr(spa, f, tx); dmu_object_zapify(mos, dsobj, DMU_OT_DSL_DATASET, tx); switch (spa_feature_table[f].fi_type) { case ZFEATURE_TYPE_BOOLEAN: - ASSERT3S((boolean_t)arg, ==, B_TRUE); + ASSERT3S((boolean_t)(uintptr_t)arg, ==, B_TRUE); VERIFY0(zap_add(mos, dsobj, spa_feature_table[f].fi_guid, sizeof (zero), 1, &zero, tx)); break; case ZFEATURE_TYPE_UINT64_ARRAY: { struct feature_type_uint64_array_arg *ftuaa = arg; VERIFY0(zap_add(mos, dsobj, spa_feature_table[f].fi_guid, sizeof (uint64_t), ftuaa->length, ftuaa->array, tx)); break; } default: panic("Invalid zfeature type %d", spa_feature_table[f].fi_type); } } static void dsl_dataset_deactivate_feature_impl(dsl_dataset_t *ds, spa_feature_t f, dmu_tx_t *tx) { spa_t *spa = dmu_tx_pool(tx)->dp_spa; objset_t *mos = dmu_tx_pool(tx)->dp_meta_objset; uint64_t dsobj = ds->ds_object; VERIFY(spa_feature_table[f].fi_flags & ZFEATURE_FLAG_PER_DATASET); VERIFY0(zap_remove(mos, dsobj, spa_feature_table[f].fi_guid, tx)); spa_feature_decr(spa, f, tx); ds->ds_feature[f] = NULL; } void dsl_dataset_deactivate_feature(dsl_dataset_t *ds, spa_feature_t f, dmu_tx_t *tx) { unload_zfeature(ds, f); dsl_dataset_deactivate_feature_impl(ds, f, tx); } uint64_t dsl_dataset_create_sync_dd(dsl_dir_t *dd, dsl_dataset_t *origin, dsl_crypto_params_t *dcp, uint64_t flags, dmu_tx_t *tx) { dsl_pool_t *dp = dd->dd_pool; dmu_buf_t *dbuf; dsl_dataset_phys_t *dsphys; uint64_t dsobj; objset_t *mos = dp->dp_meta_objset; if (origin == NULL) origin = dp->dp_origin_snap; ASSERT(origin == NULL || origin->ds_dir->dd_pool == dp); ASSERT(origin == NULL || dsl_dataset_phys(origin)->ds_num_children > 0); ASSERT(dmu_tx_is_syncing(tx)); ASSERT(dsl_dir_phys(dd)->dd_head_dataset_obj == 0); dsobj = dmu_object_alloc(mos, DMU_OT_DSL_DATASET, 0, DMU_OT_DSL_DATASET, sizeof (dsl_dataset_phys_t), tx); VERIFY0(dmu_bonus_hold(mos, dsobj, FTAG, &dbuf)); dmu_buf_will_dirty(dbuf, tx); dsphys = dbuf->db_data; bzero(dsphys, sizeof (dsl_dataset_phys_t)); dsphys->ds_dir_obj = dd->dd_object; dsphys->ds_flags = flags; dsphys->ds_fsid_guid = unique_create(); (void) random_get_pseudo_bytes((void*)&dsphys->ds_guid, sizeof (dsphys->ds_guid)); dsphys->ds_snapnames_zapobj = zap_create_norm(mos, U8_TEXTPREP_TOUPPER, DMU_OT_DSL_DS_SNAP_MAP, DMU_OT_NONE, 0, tx); dsphys->ds_creation_time = gethrestime_sec(); dsphys->ds_creation_txg = tx->tx_txg == TXG_INITIAL ? 1 : tx->tx_txg; if (origin == NULL) { dsphys->ds_deadlist_obj = dsl_deadlist_alloc(mos, tx); } else { dsl_dataset_t *ohds; /* head of the origin snapshot */ dsphys->ds_prev_snap_obj = origin->ds_object; dsphys->ds_prev_snap_txg = dsl_dataset_phys(origin)->ds_creation_txg; dsphys->ds_referenced_bytes = dsl_dataset_phys(origin)->ds_referenced_bytes; dsphys->ds_compressed_bytes = dsl_dataset_phys(origin)->ds_compressed_bytes; dsphys->ds_uncompressed_bytes = dsl_dataset_phys(origin)->ds_uncompressed_bytes; rrw_enter(&origin->ds_bp_rwlock, RW_READER, FTAG); dsphys->ds_bp = dsl_dataset_phys(origin)->ds_bp; rrw_exit(&origin->ds_bp_rwlock, FTAG); /* * Inherit flags that describe the dataset's contents * (INCONSISTENT) or properties (Case Insensitive). */ dsphys->ds_flags |= dsl_dataset_phys(origin)->ds_flags & (DS_FLAG_INCONSISTENT | DS_FLAG_CI_DATASET); for (spa_feature_t f = 0; f < SPA_FEATURES; f++) { if (zfeature_active(f, origin->ds_feature[f])) { dsl_dataset_activate_feature(dsobj, f, origin->ds_feature[f], tx); } } dmu_buf_will_dirty(origin->ds_dbuf, tx); dsl_dataset_phys(origin)->ds_num_children++; VERIFY0(dsl_dataset_hold_obj(dp, dsl_dir_phys(origin->ds_dir)->dd_head_dataset_obj, FTAG, &ohds)); dsphys->ds_deadlist_obj = dsl_deadlist_clone(&ohds->ds_deadlist, dsphys->ds_prev_snap_txg, dsphys->ds_prev_snap_obj, tx); dsl_dataset_rele(ohds, FTAG); if (spa_version(dp->dp_spa) >= SPA_VERSION_NEXT_CLONES) { if (dsl_dataset_phys(origin)->ds_next_clones_obj == 0) { dsl_dataset_phys(origin)->ds_next_clones_obj = zap_create(mos, DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx); } VERIFY0(zap_add_int(mos, dsl_dataset_phys(origin)->ds_next_clones_obj, dsobj, tx)); } dmu_buf_will_dirty(dd->dd_dbuf, tx); dsl_dir_phys(dd)->dd_origin_obj = origin->ds_object; if (spa_version(dp->dp_spa) >= SPA_VERSION_DIR_CLONES) { if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) { dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx); dsl_dir_phys(origin->ds_dir)->dd_clones = zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx); } VERIFY0(zap_add_int(mos, dsl_dir_phys(origin->ds_dir)->dd_clones, dsobj, tx)); } } /* handle encryption */ dsl_dataset_create_crypt_sync(dsobj, dd, origin, dcp, tx); if (spa_version(dp->dp_spa) >= SPA_VERSION_UNIQUE_ACCURATE) dsphys->ds_flags |= DS_FLAG_UNIQUE_ACCURATE; dmu_buf_rele(dbuf, FTAG); dmu_buf_will_dirty(dd->dd_dbuf, tx); dsl_dir_phys(dd)->dd_head_dataset_obj = dsobj; return (dsobj); } static void dsl_dataset_zero_zil(dsl_dataset_t *ds, dmu_tx_t *tx) { objset_t *os; VERIFY0(dmu_objset_from_ds(ds, &os)); if (bcmp(&os->os_zil_header, &zero_zil, sizeof (zero_zil)) != 0) { dsl_pool_t *dp = ds->ds_dir->dd_pool; zio_t *zio; bzero(&os->os_zil_header, sizeof (os->os_zil_header)); if (os->os_encrypted) os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); dsl_dataset_sync(ds, zio, tx); VERIFY0(zio_wait(zio)); /* dsl_dataset_sync_done will drop this reference. */ dmu_buf_add_ref(ds->ds_dbuf, ds); dsl_dataset_sync_done(ds, tx); } } uint64_t dsl_dataset_create_sync(dsl_dir_t *pdd, const char *lastname, dsl_dataset_t *origin, uint64_t flags, cred_t *cr, dsl_crypto_params_t *dcp, dmu_tx_t *tx) { dsl_pool_t *dp = pdd->dd_pool; uint64_t dsobj, ddobj; dsl_dir_t *dd; ASSERT(dmu_tx_is_syncing(tx)); ASSERT(lastname[0] != '@'); /* * Filesystems will eventually have their origin set to dp_origin_snap, * but that's taken care of in dsl_dataset_create_sync_dd. When * creating a filesystem, this function is called with origin equal to * NULL. */ if (origin != NULL) ASSERT3P(origin, !=, dp->dp_origin_snap); ddobj = dsl_dir_create_sync(dp, pdd, lastname, tx); VERIFY0(dsl_dir_hold_obj(dp, ddobj, lastname, FTAG, &dd)); dsobj = dsl_dataset_create_sync_dd(dd, origin, dcp, flags & ~DS_CREATE_FLAG_NODIRTY, tx); dsl_deleg_set_create_perms(dd, tx, cr); /* * If we are creating a clone and the livelist feature is enabled, * add the entry DD_FIELD_LIVELIST to ZAP. */ if (origin != NULL && spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LIVELIST)) { objset_t *mos = dd->dd_pool->dp_meta_objset; dsl_dir_zapify(dd, tx); uint64_t obj = dsl_deadlist_alloc(mos, tx); VERIFY0(zap_add(mos, dd->dd_object, DD_FIELD_LIVELIST, sizeof (uint64_t), 1, &obj, tx)); spa_feature_incr(dp->dp_spa, SPA_FEATURE_LIVELIST, tx); } /* * Since we're creating a new node we know it's a leaf, so we can * initialize the counts if the limit feature is active. */ if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) { uint64_t cnt = 0; objset_t *os = dd->dd_pool->dp_meta_objset; dsl_dir_zapify(dd, tx); VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, sizeof (cnt), 1, &cnt, tx)); VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, sizeof (cnt), 1, &cnt, tx)); } dsl_dir_rele(dd, FTAG); /* * If we are creating a clone, make sure we zero out any stale * data from the origin snapshots zil header. */ if (origin != NULL && !(flags & DS_CREATE_FLAG_NODIRTY)) { dsl_dataset_t *ds; VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); dsl_dataset_zero_zil(ds, tx); dsl_dataset_rele(ds, FTAG); } return (dsobj); } /* * The unique space in the head dataset can be calculated by subtracting * the space used in the most recent snapshot, that is still being used * in this file system, from the space currently in use. To figure out * the space in the most recent snapshot still in use, we need to take * the total space used in the snapshot and subtract out the space that * has been freed up since the snapshot was taken. */ void dsl_dataset_recalc_head_uniq(dsl_dataset_t *ds) { uint64_t mrs_used; uint64_t dlused, dlcomp, dluncomp; ASSERT(!ds->ds_is_snapshot); if (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) mrs_used = dsl_dataset_phys(ds->ds_prev)->ds_referenced_bytes; else mrs_used = 0; dsl_deadlist_space(&ds->ds_deadlist, &dlused, &dlcomp, &dluncomp); ASSERT3U(dlused, <=, mrs_used); dsl_dataset_phys(ds)->ds_unique_bytes = dsl_dataset_phys(ds)->ds_referenced_bytes - (mrs_used - dlused); if (spa_version(ds->ds_dir->dd_pool->dp_spa) >= SPA_VERSION_UNIQUE_ACCURATE) dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_UNIQUE_ACCURATE; } void dsl_dataset_remove_from_next_clones(dsl_dataset_t *ds, uint64_t obj, dmu_tx_t *tx) { objset_t *mos = ds->ds_dir->dd_pool->dp_meta_objset; uint64_t count __maybe_unused; int err; ASSERT(dsl_dataset_phys(ds)->ds_num_children >= 2); err = zap_remove_int(mos, dsl_dataset_phys(ds)->ds_next_clones_obj, obj, tx); /* * The err should not be ENOENT, but a bug in a previous version * of the code could cause upgrade_clones_cb() to not set * ds_next_snap_obj when it should, leading to a missing entry. * If we knew that the pool was created after * SPA_VERSION_NEXT_CLONES, we could assert that it isn't * ENOENT. However, at least we can check that we don't have * too many entries in the next_clones_obj even after failing to * remove this one. */ if (err != ENOENT) VERIFY0(err); ASSERT0(zap_count(mos, dsl_dataset_phys(ds)->ds_next_clones_obj, &count)); ASSERT3U(count, <=, dsl_dataset_phys(ds)->ds_num_children - 2); } blkptr_t * dsl_dataset_get_blkptr(dsl_dataset_t *ds) { return (&dsl_dataset_phys(ds)->ds_bp); } spa_t * dsl_dataset_get_spa(dsl_dataset_t *ds) { return (ds->ds_dir->dd_pool->dp_spa); } void dsl_dataset_dirty(dsl_dataset_t *ds, dmu_tx_t *tx) { dsl_pool_t *dp; if (ds == NULL) /* this is the meta-objset */ return; ASSERT(ds->ds_objset != NULL); if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) panic("dirtying snapshot!"); /* Must not dirty a dataset in the same txg where it got snapshotted. */ ASSERT3U(tx->tx_txg, >, dsl_dataset_phys(ds)->ds_prev_snap_txg); dp = ds->ds_dir->dd_pool; if (txg_list_add(&dp->dp_dirty_datasets, ds, tx->tx_txg)) { objset_t *os = ds->ds_objset; /* up the hold count until we can be written out */ dmu_buf_add_ref(ds->ds_dbuf, ds); /* if this dataset is encrypted, grab a reference to the DCK */ if (ds->ds_dir->dd_crypto_obj != 0 && !os->os_raw_receive && !os->os_next_write_raw[tx->tx_txg & TXG_MASK]) { ASSERT3P(ds->ds_key_mapping, !=, NULL); key_mapping_add_ref(ds->ds_key_mapping, ds); } } } static int dsl_dataset_snapshot_reserve_space(dsl_dataset_t *ds, dmu_tx_t *tx) { uint64_t asize; if (!dmu_tx_is_syncing(tx)) return (0); /* * If there's an fs-only reservation, any blocks that might become * owned by the snapshot dataset must be accommodated by space * outside of the reservation. */ ASSERT(ds->ds_reserved == 0 || DS_UNIQUE_IS_ACCURATE(ds)); asize = MIN(dsl_dataset_phys(ds)->ds_unique_bytes, ds->ds_reserved); if (asize > dsl_dir_space_available(ds->ds_dir, NULL, 0, TRUE)) return (SET_ERROR(ENOSPC)); /* * Propagate any reserved space for this snapshot to other * snapshot checks in this sync group. */ if (asize > 0) dsl_dir_willuse_space(ds->ds_dir, asize, tx); return (0); } int dsl_dataset_snapshot_check_impl(dsl_dataset_t *ds, const char *snapname, dmu_tx_t *tx, boolean_t recv, uint64_t cnt, cred_t *cr, proc_t *proc) { int error; uint64_t value; ds->ds_trysnap_txg = tx->tx_txg; if (!dmu_tx_is_syncing(tx)) return (0); /* * We don't allow multiple snapshots of the same txg. If there * is already one, try again. */ if (dsl_dataset_phys(ds)->ds_prev_snap_txg >= tx->tx_txg) return (SET_ERROR(EAGAIN)); /* * Check for conflicting snapshot name. */ error = dsl_dataset_snap_lookup(ds, snapname, &value); if (error == 0) return (SET_ERROR(EEXIST)); if (error != ENOENT) return (error); /* * We don't allow taking snapshots of inconsistent datasets, such as * those into which we are currently receiving. However, if we are * creating this snapshot as part of a receive, this check will be * executed atomically with respect to the completion of the receive * itself but prior to the clearing of DS_FLAG_INCONSISTENT; in this * case we ignore this, knowing it will be fixed up for us shortly in * dmu_recv_end_sync(). */ if (!recv && DS_IS_INCONSISTENT(ds)) return (SET_ERROR(EBUSY)); /* * Skip the check for temporary snapshots or if we have already checked * the counts in dsl_dataset_snapshot_check. This means we really only * check the count here when we're receiving a stream. */ if (cnt != 0 && cr != NULL) { error = dsl_fs_ss_limit_check(ds->ds_dir, cnt, ZFS_PROP_SNAPSHOT_LIMIT, NULL, cr, proc); if (error != 0) return (error); } error = dsl_dataset_snapshot_reserve_space(ds, tx); if (error != 0) return (error); return (0); } int dsl_dataset_snapshot_check(void *arg, dmu_tx_t *tx) { dsl_dataset_snapshot_arg_t *ddsa = arg; dsl_pool_t *dp = dmu_tx_pool(tx); nvpair_t *pair; int rv = 0; /* * Pre-compute how many total new snapshots will be created for each * level in the tree and below. This is needed for validating the * snapshot limit when either taking a recursive snapshot or when * taking multiple snapshots. * * The problem is that the counts are not actually adjusted when * we are checking, only when we finally sync. For a single snapshot, * this is easy, the count will increase by 1 at each node up the tree, * but its more complicated for the recursive/multiple snapshot case. * * The dsl_fs_ss_limit_check function does recursively check the count * at each level up the tree but since it is validating each snapshot * independently we need to be sure that we are validating the complete * count for the entire set of snapshots. We do this by rolling up the * counts for each component of the name into an nvlist and then * checking each of those cases with the aggregated count. * * This approach properly handles not only the recursive snapshot * case (where we get all of those on the ddsa_snaps list) but also * the sibling case (e.g. snapshot a/b and a/c so that we will also * validate the limit on 'a' using a count of 2). * * We validate the snapshot names in the third loop and only report * name errors once. */ if (dmu_tx_is_syncing(tx)) { char *nm; nvlist_t *cnt_track = NULL; cnt_track = fnvlist_alloc(); nm = kmem_alloc(MAXPATHLEN, KM_SLEEP); /* Rollup aggregated counts into the cnt_track list */ for (pair = nvlist_next_nvpair(ddsa->ddsa_snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(ddsa->ddsa_snaps, pair)) { char *pdelim; uint64_t val; (void) strlcpy(nm, nvpair_name(pair), MAXPATHLEN); pdelim = strchr(nm, '@'); if (pdelim == NULL) continue; *pdelim = '\0'; do { if (nvlist_lookup_uint64(cnt_track, nm, &val) == 0) { /* update existing entry */ fnvlist_add_uint64(cnt_track, nm, val + 1); } else { /* add to list */ fnvlist_add_uint64(cnt_track, nm, 1); } pdelim = strrchr(nm, '/'); if (pdelim != NULL) *pdelim = '\0'; } while (pdelim != NULL); } kmem_free(nm, MAXPATHLEN); /* Check aggregated counts at each level */ for (pair = nvlist_next_nvpair(cnt_track, NULL); pair != NULL; pair = nvlist_next_nvpair(cnt_track, pair)) { int error = 0; char *name; uint64_t cnt = 0; dsl_dataset_t *ds; name = nvpair_name(pair); cnt = fnvpair_value_uint64(pair); ASSERT(cnt > 0); error = dsl_dataset_hold(dp, name, FTAG, &ds); if (error == 0) { error = dsl_fs_ss_limit_check(ds->ds_dir, cnt, ZFS_PROP_SNAPSHOT_LIMIT, NULL, ddsa->ddsa_cr, ddsa->ddsa_proc); dsl_dataset_rele(ds, FTAG); } if (error != 0) { if (ddsa->ddsa_errors != NULL) fnvlist_add_int32(ddsa->ddsa_errors, name, error); rv = error; /* only report one error for this check */ break; } } nvlist_free(cnt_track); } for (pair = nvlist_next_nvpair(ddsa->ddsa_snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(ddsa->ddsa_snaps, pair)) { int error = 0; dsl_dataset_t *ds; char *name, *atp = NULL; char dsname[ZFS_MAX_DATASET_NAME_LEN]; name = nvpair_name(pair); if (strlen(name) >= ZFS_MAX_DATASET_NAME_LEN) error = SET_ERROR(ENAMETOOLONG); if (error == 0) { atp = strchr(name, '@'); if (atp == NULL) error = SET_ERROR(EINVAL); if (error == 0) (void) strlcpy(dsname, name, atp - name + 1); } if (error == 0) error = dsl_dataset_hold(dp, dsname, FTAG, &ds); if (error == 0) { /* passing 0/NULL skips dsl_fs_ss_limit_check */ error = dsl_dataset_snapshot_check_impl(ds, atp + 1, tx, B_FALSE, 0, NULL, NULL); dsl_dataset_rele(ds, FTAG); } if (error != 0) { if (ddsa->ddsa_errors != NULL) { fnvlist_add_int32(ddsa->ddsa_errors, name, error); } rv = error; } } return (rv); } void dsl_dataset_snapshot_sync_impl(dsl_dataset_t *ds, const char *snapname, dmu_tx_t *tx) { dsl_pool_t *dp = ds->ds_dir->dd_pool; dmu_buf_t *dbuf; dsl_dataset_phys_t *dsphys; uint64_t dsobj, crtxg; objset_t *mos = dp->dp_meta_objset; static zil_header_t zero_zil __maybe_unused; objset_t *os __maybe_unused; ASSERT(RRW_WRITE_HELD(&dp->dp_config_rwlock)); /* * If we are on an old pool, the zil must not be active, in which * case it will be zeroed. Usually zil_suspend() accomplishes this. */ ASSERT(spa_version(dmu_tx_pool(tx)->dp_spa) >= SPA_VERSION_FAST_SNAP || dmu_objset_from_ds(ds, &os) != 0 || bcmp(&os->os_phys->os_zil_header, &zero_zil, sizeof (zero_zil)) == 0); /* Should not snapshot a dirty dataset. */ ASSERT(!txg_list_member(&ds->ds_dir->dd_pool->dp_dirty_datasets, ds, tx->tx_txg)); dsl_fs_ss_count_adjust(ds->ds_dir, 1, DD_FIELD_SNAPSHOT_COUNT, tx); /* * The origin's ds_creation_txg has to be < TXG_INITIAL */ if (strcmp(snapname, ORIGIN_DIR_NAME) == 0) crtxg = 1; else crtxg = tx->tx_txg; dsobj = dmu_object_alloc(mos, DMU_OT_DSL_DATASET, 0, DMU_OT_DSL_DATASET, sizeof (dsl_dataset_phys_t), tx); VERIFY0(dmu_bonus_hold(mos, dsobj, FTAG, &dbuf)); dmu_buf_will_dirty(dbuf, tx); dsphys = dbuf->db_data; bzero(dsphys, sizeof (dsl_dataset_phys_t)); dsphys->ds_dir_obj = ds->ds_dir->dd_object; dsphys->ds_fsid_guid = unique_create(); (void) random_get_pseudo_bytes((void*)&dsphys->ds_guid, sizeof (dsphys->ds_guid)); dsphys->ds_prev_snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; dsphys->ds_prev_snap_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg; dsphys->ds_next_snap_obj = ds->ds_object; dsphys->ds_num_children = 1; dsphys->ds_creation_time = gethrestime_sec(); dsphys->ds_creation_txg = crtxg; dsphys->ds_deadlist_obj = dsl_dataset_phys(ds)->ds_deadlist_obj; dsphys->ds_referenced_bytes = dsl_dataset_phys(ds)->ds_referenced_bytes; dsphys->ds_compressed_bytes = dsl_dataset_phys(ds)->ds_compressed_bytes; dsphys->ds_uncompressed_bytes = dsl_dataset_phys(ds)->ds_uncompressed_bytes; dsphys->ds_flags = dsl_dataset_phys(ds)->ds_flags; rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); dsphys->ds_bp = dsl_dataset_phys(ds)->ds_bp; rrw_exit(&ds->ds_bp_rwlock, FTAG); dmu_buf_rele(dbuf, FTAG); for (spa_feature_t f = 0; f < SPA_FEATURES; f++) { if (zfeature_active(f, ds->ds_feature[f])) { dsl_dataset_activate_feature(dsobj, f, ds->ds_feature[f], tx); } } ASSERT3U(ds->ds_prev != 0, ==, dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); if (ds->ds_prev) { uint64_t next_clones_obj = dsl_dataset_phys(ds->ds_prev)->ds_next_clones_obj; ASSERT(dsl_dataset_phys(ds->ds_prev)->ds_next_snap_obj == ds->ds_object || dsl_dataset_phys(ds->ds_prev)->ds_num_children > 1); if (dsl_dataset_phys(ds->ds_prev)->ds_next_snap_obj == ds->ds_object) { dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_txg, ==, dsl_dataset_phys(ds->ds_prev)->ds_creation_txg); dsl_dataset_phys(ds->ds_prev)->ds_next_snap_obj = dsobj; } else if (next_clones_obj != 0) { dsl_dataset_remove_from_next_clones(ds->ds_prev, dsphys->ds_next_snap_obj, tx); VERIFY0(zap_add_int(mos, next_clones_obj, dsobj, tx)); } } /* * If we have a reference-reservation on this dataset, we will * need to increase the amount of refreservation being charged * since our unique space is going to zero. */ if (ds->ds_reserved) { int64_t delta; ASSERT(DS_UNIQUE_IS_ACCURATE(ds)); delta = MIN(dsl_dataset_phys(ds)->ds_unique_bytes, ds->ds_reserved); dsl_dir_diduse_space(ds->ds_dir, DD_USED_REFRSRV, delta, 0, 0, tx); } dmu_buf_will_dirty(ds->ds_dbuf, tx); dsl_dataset_phys(ds)->ds_deadlist_obj = dsl_deadlist_clone(&ds->ds_deadlist, UINT64_MAX, dsl_dataset_phys(ds)->ds_prev_snap_obj, tx); dsl_deadlist_close(&ds->ds_deadlist); dsl_deadlist_open(&ds->ds_deadlist, mos, dsl_dataset_phys(ds)->ds_deadlist_obj); dsl_deadlist_add_key(&ds->ds_deadlist, dsl_dataset_phys(ds)->ds_prev_snap_txg, tx); dsl_bookmark_snapshotted(ds, tx); if (dsl_dataset_remap_deadlist_exists(ds)) { uint64_t remap_deadlist_obj = dsl_dataset_get_remap_deadlist_object(ds); /* * Move the remap_deadlist to the snapshot. The head * will create a new remap deadlist on demand, from * dsl_dataset_block_remapped(). */ dsl_dataset_unset_remap_deadlist_object(ds, tx); dsl_deadlist_close(&ds->ds_remap_deadlist); dmu_object_zapify(mos, dsobj, DMU_OT_DSL_DATASET, tx); VERIFY0(zap_add(mos, dsobj, DS_FIELD_REMAP_DEADLIST, sizeof (remap_deadlist_obj), 1, &remap_deadlist_obj, tx)); } /* * Create a ivset guid for this snapshot if the dataset is * encrypted. This may be overridden by a raw receive. A * previous implementation of this code did not have this * field as part of the on-disk format for ZFS encryption * (see errata #4). As part of the remediation for this * issue, we ask the user to enable the bookmark_v2 feature * which is now a dependency of the encryption feature. We * use this as a heuristic to determine when the user has * elected to correct any datasets created with the old code. * As a result, we only do this step if the bookmark_v2 * feature is enabled, which limits the number of states a * given pool / dataset can be in with regards to terms of * correcting the issue. */ if (ds->ds_dir->dd_crypto_obj != 0 && spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_BOOKMARK_V2)) { uint64_t ivset_guid = unique_create(); dmu_object_zapify(mos, dsobj, DMU_OT_DSL_DATASET, tx); VERIFY0(zap_add(mos, dsobj, DS_FIELD_IVSET_GUID, sizeof (ivset_guid), 1, &ivset_guid, tx)); } ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_txg, <, tx->tx_txg); dsl_dataset_phys(ds)->ds_prev_snap_obj = dsobj; dsl_dataset_phys(ds)->ds_prev_snap_txg = crtxg; dsl_dataset_phys(ds)->ds_unique_bytes = 0; if (spa_version(dp->dp_spa) >= SPA_VERSION_UNIQUE_ACCURATE) dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_UNIQUE_ACCURATE; VERIFY0(zap_add(mos, dsl_dataset_phys(ds)->ds_snapnames_zapobj, snapname, 8, 1, &dsobj, tx)); if (ds->ds_prev) dsl_dataset_rele(ds->ds_prev, ds); VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj, ds, &ds->ds_prev)); dsl_scan_ds_snapshotted(ds, tx); dsl_dir_snap_cmtime_update(ds->ds_dir); spa_history_log_internal_ds(ds->ds_prev, "snapshot", tx, " "); } void dsl_dataset_snapshot_sync(void *arg, dmu_tx_t *tx) { dsl_dataset_snapshot_arg_t *ddsa = arg; dsl_pool_t *dp = dmu_tx_pool(tx); nvpair_t *pair; for (pair = nvlist_next_nvpair(ddsa->ddsa_snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(ddsa->ddsa_snaps, pair)) { dsl_dataset_t *ds; char *name, *atp; char dsname[ZFS_MAX_DATASET_NAME_LEN]; name = nvpair_name(pair); atp = strchr(name, '@'); (void) strlcpy(dsname, name, atp - name + 1); VERIFY0(dsl_dataset_hold(dp, dsname, FTAG, &ds)); dsl_dataset_snapshot_sync_impl(ds, atp + 1, tx); if (ddsa->ddsa_props != NULL) { dsl_props_set_sync_impl(ds->ds_prev, ZPROP_SRC_LOCAL, ddsa->ddsa_props, tx); } dsl_dataset_rele(ds, FTAG); } } /* * The snapshots must all be in the same pool. * All-or-nothing: if there are any failures, nothing will be modified. */ int dsl_dataset_snapshot(nvlist_t *snaps, nvlist_t *props, nvlist_t *errors) { dsl_dataset_snapshot_arg_t ddsa; nvpair_t *pair; boolean_t needsuspend; int error; spa_t *spa; char *firstname; nvlist_t *suspended = NULL; pair = nvlist_next_nvpair(snaps, NULL); if (pair == NULL) return (0); firstname = nvpair_name(pair); error = spa_open(firstname, &spa, FTAG); if (error != 0) return (error); needsuspend = (spa_version(spa) < SPA_VERSION_FAST_SNAP); spa_close(spa, FTAG); if (needsuspend) { suspended = fnvlist_alloc(); for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(snaps, pair)) { char fsname[ZFS_MAX_DATASET_NAME_LEN]; char *snapname = nvpair_name(pair); char *atp; void *cookie; atp = strchr(snapname, '@'); if (atp == NULL) { error = SET_ERROR(EINVAL); break; } (void) strlcpy(fsname, snapname, atp - snapname + 1); error = zil_suspend(fsname, &cookie); if (error != 0) break; fnvlist_add_uint64(suspended, fsname, (uintptr_t)cookie); } } ddsa.ddsa_snaps = snaps; ddsa.ddsa_props = props; ddsa.ddsa_errors = errors; ddsa.ddsa_cr = CRED(); ddsa.ddsa_proc = curproc; if (error == 0) { error = dsl_sync_task(firstname, dsl_dataset_snapshot_check, dsl_dataset_snapshot_sync, &ddsa, fnvlist_num_pairs(snaps) * 3, ZFS_SPACE_CHECK_NORMAL); } if (suspended != NULL) { for (pair = nvlist_next_nvpair(suspended, NULL); pair != NULL; pair = nvlist_next_nvpair(suspended, pair)) { zil_resume((void *)(uintptr_t) fnvpair_value_uint64(pair)); } fnvlist_free(suspended); } if (error == 0) { for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(snaps, pair)) { zvol_create_minor(nvpair_name(pair)); } } return (error); } typedef struct dsl_dataset_snapshot_tmp_arg { const char *ddsta_fsname; const char *ddsta_snapname; minor_t ddsta_cleanup_minor; const char *ddsta_htag; } dsl_dataset_snapshot_tmp_arg_t; static int dsl_dataset_snapshot_tmp_check(void *arg, dmu_tx_t *tx) { dsl_dataset_snapshot_tmp_arg_t *ddsta = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds; int error; error = dsl_dataset_hold(dp, ddsta->ddsta_fsname, FTAG, &ds); if (error != 0) return (error); /* NULL cred means no limit check for tmp snapshot */ error = dsl_dataset_snapshot_check_impl(ds, ddsta->ddsta_snapname, tx, B_FALSE, 0, NULL, NULL); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } if (spa_version(dp->dp_spa) < SPA_VERSION_USERREFS) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(ENOTSUP)); } error = dsl_dataset_user_hold_check_one(NULL, ddsta->ddsta_htag, B_TRUE, tx); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } dsl_dataset_rele(ds, FTAG); return (0); } static void dsl_dataset_snapshot_tmp_sync(void *arg, dmu_tx_t *tx) { dsl_dataset_snapshot_tmp_arg_t *ddsta = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds = NULL; VERIFY0(dsl_dataset_hold(dp, ddsta->ddsta_fsname, FTAG, &ds)); dsl_dataset_snapshot_sync_impl(ds, ddsta->ddsta_snapname, tx); dsl_dataset_user_hold_sync_one(ds->ds_prev, ddsta->ddsta_htag, ddsta->ddsta_cleanup_minor, gethrestime_sec(), tx); dsl_destroy_snapshot_sync_impl(ds->ds_prev, B_TRUE, tx); dsl_dataset_rele(ds, FTAG); } int dsl_dataset_snapshot_tmp(const char *fsname, const char *snapname, minor_t cleanup_minor, const char *htag) { dsl_dataset_snapshot_tmp_arg_t ddsta; int error; spa_t *spa; boolean_t needsuspend; void *cookie; ddsta.ddsta_fsname = fsname; ddsta.ddsta_snapname = snapname; ddsta.ddsta_cleanup_minor = cleanup_minor; ddsta.ddsta_htag = htag; error = spa_open(fsname, &spa, FTAG); if (error != 0) return (error); needsuspend = (spa_version(spa) < SPA_VERSION_FAST_SNAP); spa_close(spa, FTAG); if (needsuspend) { error = zil_suspend(fsname, &cookie); if (error != 0) return (error); } error = dsl_sync_task(fsname, dsl_dataset_snapshot_tmp_check, dsl_dataset_snapshot_tmp_sync, &ddsta, 3, ZFS_SPACE_CHECK_RESERVED); if (needsuspend) zil_resume(cookie); return (error); } void dsl_dataset_sync(dsl_dataset_t *ds, zio_t *zio, dmu_tx_t *tx) { ASSERT(dmu_tx_is_syncing(tx)); ASSERT(ds->ds_objset != NULL); ASSERT(dsl_dataset_phys(ds)->ds_next_snap_obj == 0); /* * in case we had to change ds_fsid_guid when we opened it, * sync it out now. */ dmu_buf_will_dirty(ds->ds_dbuf, tx); dsl_dataset_phys(ds)->ds_fsid_guid = ds->ds_fsid_guid; if (ds->ds_resume_bytes[tx->tx_txg & TXG_MASK] != 0) { VERIFY0(zap_update(tx->tx_pool->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_OBJECT, 8, 1, &ds->ds_resume_object[tx->tx_txg & TXG_MASK], tx)); VERIFY0(zap_update(tx->tx_pool->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_OFFSET, 8, 1, &ds->ds_resume_offset[tx->tx_txg & TXG_MASK], tx)); VERIFY0(zap_update(tx->tx_pool->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_BYTES, 8, 1, &ds->ds_resume_bytes[tx->tx_txg & TXG_MASK], tx)); ds->ds_resume_object[tx->tx_txg & TXG_MASK] = 0; ds->ds_resume_offset[tx->tx_txg & TXG_MASK] = 0; ds->ds_resume_bytes[tx->tx_txg & TXG_MASK] = 0; } dmu_objset_sync(ds->ds_objset, zio, tx); for (spa_feature_t f = 0; f < SPA_FEATURES; f++) { if (zfeature_active(f, ds->ds_feature_activation[f])) { if (zfeature_active(f, ds->ds_feature[f])) continue; dsl_dataset_activate_feature(ds->ds_object, f, ds->ds_feature_activation[f], tx); ds->ds_feature[f] = ds->ds_feature_activation[f]; } } } /* * Check if the percentage of blocks shared between the clone and the * snapshot (as opposed to those that are clone only) is below a certain * threshold */ static boolean_t dsl_livelist_should_disable(dsl_dataset_t *ds) { uint64_t used, referenced; int percent_shared; used = dsl_dir_get_usedds(ds->ds_dir); referenced = dsl_get_referenced(ds); ASSERT3U(referenced, >=, 0); ASSERT3U(used, >=, 0); if (referenced == 0) return (B_FALSE); percent_shared = (100 * (referenced - used)) / referenced; if (percent_shared <= zfs_livelist_min_percent_shared) return (B_TRUE); return (B_FALSE); } /* * Check if it is possible to combine two livelist entries into one. * This is the case if the combined number of 'live' blkptrs (ALLOCs that * don't have a matching FREE) is under the maximum sublist size. * We check this by subtracting twice the total number of frees from the total * number of blkptrs. FREEs are counted twice because each FREE blkptr * will cancel out an ALLOC blkptr when the livelist is processed. */ static boolean_t dsl_livelist_should_condense(dsl_deadlist_entry_t *first, dsl_deadlist_entry_t *next) { uint64_t total_free = first->dle_bpobj.bpo_phys->bpo_num_freed + next->dle_bpobj.bpo_phys->bpo_num_freed; uint64_t total_entries = first->dle_bpobj.bpo_phys->bpo_num_blkptrs + next->dle_bpobj.bpo_phys->bpo_num_blkptrs; if ((total_entries - (2 * total_free)) < zfs_livelist_max_entries) return (B_TRUE); return (B_FALSE); } typedef struct try_condense_arg { spa_t *spa; dsl_dataset_t *ds; } try_condense_arg_t; /* * Iterate over the livelist entries, searching for a pair to condense. * A nonzero return value means stop, 0 means keep looking. */ static int dsl_livelist_try_condense(void *arg, dsl_deadlist_entry_t *first) { try_condense_arg_t *tca = arg; spa_t *spa = tca->spa; dsl_dataset_t *ds = tca->ds; dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist; dsl_deadlist_entry_t *next; /* The condense thread has not yet been created at import */ if (spa->spa_livelist_condense_zthr == NULL) return (1); /* A condense is already in progress */ if (spa->spa_to_condense.ds != NULL) return (1); next = AVL_NEXT(&ll->dl_tree, &first->dle_node); /* The livelist has only one entry - don't condense it */ if (next == NULL) return (1); /* Next is the newest entry - don't condense it */ if (AVL_NEXT(&ll->dl_tree, &next->dle_node) == NULL) return (1); /* This pair is not ready to condense but keep looking */ if (!dsl_livelist_should_condense(first, next)) return (0); /* * Add a ref to prevent the dataset from being evicted while * the condense zthr or synctask are running. Ref will be * released at the end of the condense synctask */ dmu_buf_add_ref(ds->ds_dbuf, spa); spa->spa_to_condense.ds = ds; spa->spa_to_condense.first = first; spa->spa_to_condense.next = next; spa->spa_to_condense.syncing = B_FALSE; spa->spa_to_condense.cancelled = B_FALSE; zthr_wakeup(spa->spa_livelist_condense_zthr); return (1); } static void dsl_flush_pending_livelist(dsl_dataset_t *ds, dmu_tx_t *tx) { dsl_dir_t *dd = ds->ds_dir; spa_t *spa = ds->ds_dir->dd_pool->dp_spa; dsl_deadlist_entry_t *last = dsl_deadlist_last(&dd->dd_livelist); /* Check if we need to add a new sub-livelist */ if (last == NULL) { /* The livelist is empty */ dsl_deadlist_add_key(&dd->dd_livelist, tx->tx_txg - 1, tx); } else if (spa_sync_pass(spa) == 1) { /* * Check if the newest entry is full. If it is, make a new one. * We only do this once per sync because we could overfill a * sublist in one sync pass and don't want to add another entry * for a txg that is already represented. This ensures that * blkptrs born in the same txg are stored in the same sublist. */ bpobj_t bpobj = last->dle_bpobj; uint64_t all = bpobj.bpo_phys->bpo_num_blkptrs; uint64_t free = bpobj.bpo_phys->bpo_num_freed; uint64_t alloc = all - free; if (alloc > zfs_livelist_max_entries) { dsl_deadlist_add_key(&dd->dd_livelist, tx->tx_txg - 1, tx); } } /* Insert each entry into the on-disk livelist */ bplist_iterate(&dd->dd_pending_allocs, dsl_deadlist_insert_alloc_cb, &dd->dd_livelist, tx); bplist_iterate(&dd->dd_pending_frees, dsl_deadlist_insert_free_cb, &dd->dd_livelist, tx); /* Attempt to condense every pair of adjacent entries */ try_condense_arg_t arg = { .spa = spa, .ds = ds }; dsl_deadlist_iterate(&dd->dd_livelist, dsl_livelist_try_condense, &arg); } void dsl_dataset_sync_done(dsl_dataset_t *ds, dmu_tx_t *tx) { objset_t *os = ds->ds_objset; bplist_iterate(&ds->ds_pending_deadlist, dsl_deadlist_insert_alloc_cb, &ds->ds_deadlist, tx); if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist)) { dsl_flush_pending_livelist(ds, tx); if (dsl_livelist_should_disable(ds)) { dsl_dir_remove_livelist(ds->ds_dir, tx, B_TRUE); } } dsl_bookmark_sync_done(ds, tx); if (os->os_synced_dnodes != NULL) { multilist_destroy(os->os_synced_dnodes); os->os_synced_dnodes = NULL; } if (os->os_encrypted) os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_FALSE; else ASSERT0(os->os_next_write_raw[tx->tx_txg & TXG_MASK]); ASSERT(!dmu_objset_is_dirty(os, dmu_tx_get_txg(tx))); dmu_buf_rele(ds->ds_dbuf, ds); } int get_clones_stat_impl(dsl_dataset_t *ds, nvlist_t *val) { uint64_t count = 0; objset_t *mos = ds->ds_dir->dd_pool->dp_meta_objset; zap_cursor_t zc; zap_attribute_t za; ASSERT(dsl_pool_config_held(ds->ds_dir->dd_pool)); /* * There may be missing entries in ds_next_clones_obj * due to a bug in a previous version of the code. * Only trust it if it has the right number of entries. */ if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { VERIFY0(zap_count(mos, dsl_dataset_phys(ds)->ds_next_clones_obj, &count)); } if (count != dsl_dataset_phys(ds)->ds_num_children - 1) { return (SET_ERROR(ENOENT)); } for (zap_cursor_init(&zc, mos, dsl_dataset_phys(ds)->ds_next_clones_obj); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { dsl_dataset_t *clone; char buf[ZFS_MAX_DATASET_NAME_LEN]; VERIFY0(dsl_dataset_hold_obj(ds->ds_dir->dd_pool, za.za_first_integer, FTAG, &clone)); dsl_dir_name(clone->ds_dir, buf); fnvlist_add_boolean(val, buf); dsl_dataset_rele(clone, FTAG); } zap_cursor_fini(&zc); return (0); } void get_clones_stat(dsl_dataset_t *ds, nvlist_t *nv) { nvlist_t *propval = fnvlist_alloc(); nvlist_t *val; /* * We use nvlist_alloc() instead of fnvlist_alloc() because the * latter would allocate the list with NV_UNIQUE_NAME flag. * As a result, every time a clone name is appended to the list * it would be (linearly) searched for a duplicate name. * We already know that all clone names must be unique and we * want avoid the quadratic complexity of double-checking that * because we can have a large number of clones. */ VERIFY0(nvlist_alloc(&val, 0, KM_SLEEP)); if (get_clones_stat_impl(ds, val) == 0) { fnvlist_add_nvlist(propval, ZPROP_VALUE, val); fnvlist_add_nvlist(nv, zfs_prop_to_name(ZFS_PROP_CLONES), propval); } nvlist_free(val); nvlist_free(propval); } /* * Returns a string that represents the receive resume stats token. It should * be freed with strfree(). */ char * get_receive_resume_stats_impl(dsl_dataset_t *ds) { dsl_pool_t *dp = ds->ds_dir->dd_pool; if (dsl_dataset_has_resume_receive_state(ds)) { char *str; void *packed; uint8_t *compressed; uint64_t val; nvlist_t *token_nv = fnvlist_alloc(); size_t packed_size, compressed_size; if (zap_lookup(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val) == 0) { fnvlist_add_uint64(token_nv, "fromguid", val); } if (zap_lookup(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val) == 0) { fnvlist_add_uint64(token_nv, "object", val); } if (zap_lookup(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val) == 0) { fnvlist_add_uint64(token_nv, "offset", val); } if (zap_lookup(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_BYTES, sizeof (val), 1, &val) == 0) { fnvlist_add_uint64(token_nv, "bytes", val); } if (zap_lookup(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val) == 0) { fnvlist_add_uint64(token_nv, "toguid", val); } char buf[MAXNAMELEN]; if (zap_lookup(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_TONAME, 1, sizeof (buf), buf) == 0) { fnvlist_add_string(token_nv, "toname", buf); } if (zap_contains(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_LARGEBLOCK) == 0) { fnvlist_add_boolean(token_nv, "largeblockok"); } if (zap_contains(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_EMBEDOK) == 0) { fnvlist_add_boolean(token_nv, "embedok"); } if (zap_contains(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_COMPRESSOK) == 0) { fnvlist_add_boolean(token_nv, "compressok"); } if (zap_contains(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_RAWOK) == 0) { fnvlist_add_boolean(token_nv, "rawok"); } if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_REDACTED_DATASETS)) { uint64_t num_redact_snaps; uint64_t *redact_snaps; VERIFY(dsl_dataset_get_uint64_array_feature(ds, SPA_FEATURE_REDACTED_DATASETS, &num_redact_snaps, &redact_snaps)); fnvlist_add_uint64_array(token_nv, "redact_snaps", redact_snaps, num_redact_snaps); } if (zap_contains(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS) == 0) { uint64_t num_redact_snaps, int_size; uint64_t *redact_snaps; VERIFY0(zap_length(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, &int_size, &num_redact_snaps)); ASSERT3U(int_size, ==, sizeof (uint64_t)); redact_snaps = kmem_alloc(int_size * num_redact_snaps, KM_SLEEP); VERIFY0(zap_lookup(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, int_size, num_redact_snaps, redact_snaps)); fnvlist_add_uint64_array(token_nv, "book_redact_snaps", redact_snaps, num_redact_snaps); kmem_free(redact_snaps, int_size * num_redact_snaps); } packed = fnvlist_pack(token_nv, &packed_size); fnvlist_free(token_nv); compressed = kmem_alloc(packed_size, KM_SLEEP); compressed_size = gzip_compress(packed, compressed, packed_size, packed_size, 6); zio_cksum_t cksum; fletcher_4_native_varsize(compressed, compressed_size, &cksum); size_t alloc_size = compressed_size * 2 + 1; str = kmem_alloc(alloc_size, KM_SLEEP); for (int i = 0; i < compressed_size; i++) { size_t offset = i * 2; (void) snprintf(str + offset, alloc_size - offset, "%02x", compressed[i]); } str[compressed_size * 2] = '\0'; char *propval = kmem_asprintf("%u-%llx-%llx-%s", ZFS_SEND_RESUME_TOKEN_VERSION, (longlong_t)cksum.zc_word[0], (longlong_t)packed_size, str); kmem_free(packed, packed_size); kmem_free(str, alloc_size); kmem_free(compressed, packed_size); return (propval); } return (kmem_strdup("")); } /* * Returns a string that represents the receive resume stats token of the * dataset's child. It should be freed with strfree(). */ char * get_child_receive_stats(dsl_dataset_t *ds) { char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; dsl_dataset_t *recv_ds; dsl_dataset_name(ds, recvname); if (strlcat(recvname, "/", sizeof (recvname)) < sizeof (recvname) && strlcat(recvname, recv_clone_name, sizeof (recvname)) < sizeof (recvname) && dsl_dataset_hold(ds->ds_dir->dd_pool, recvname, FTAG, &recv_ds) == 0) { char *propval = get_receive_resume_stats_impl(recv_ds); dsl_dataset_rele(recv_ds, FTAG); return (propval); } return (kmem_strdup("")); } static void get_receive_resume_stats(dsl_dataset_t *ds, nvlist_t *nv) { char *propval = get_receive_resume_stats_impl(ds); if (strcmp(propval, "") != 0) { dsl_prop_nvlist_add_string(nv, ZFS_PROP_RECEIVE_RESUME_TOKEN, propval); } else { char *childval = get_child_receive_stats(ds); if (strcmp(childval, "") != 0) { dsl_prop_nvlist_add_string(nv, ZFS_PROP_RECEIVE_RESUME_TOKEN, childval); } kmem_strfree(childval); } kmem_strfree(propval); } uint64_t dsl_get_refratio(dsl_dataset_t *ds) { uint64_t ratio = dsl_dataset_phys(ds)->ds_compressed_bytes == 0 ? 100 : (dsl_dataset_phys(ds)->ds_uncompressed_bytes * 100 / dsl_dataset_phys(ds)->ds_compressed_bytes); return (ratio); } uint64_t dsl_get_logicalreferenced(dsl_dataset_t *ds) { return (dsl_dataset_phys(ds)->ds_uncompressed_bytes); } uint64_t dsl_get_compressratio(dsl_dataset_t *ds) { if (ds->ds_is_snapshot) { return (dsl_get_refratio(ds)); } else { dsl_dir_t *dd = ds->ds_dir; mutex_enter(&dd->dd_lock); uint64_t val = dsl_dir_get_compressratio(dd); mutex_exit(&dd->dd_lock); return (val); } } uint64_t dsl_get_used(dsl_dataset_t *ds) { if (ds->ds_is_snapshot) { return (dsl_dataset_phys(ds)->ds_unique_bytes); } else { dsl_dir_t *dd = ds->ds_dir; mutex_enter(&dd->dd_lock); uint64_t val = dsl_dir_get_used(dd); mutex_exit(&dd->dd_lock); return (val); } } uint64_t dsl_get_creation(dsl_dataset_t *ds) { return (dsl_dataset_phys(ds)->ds_creation_time); } uint64_t dsl_get_creationtxg(dsl_dataset_t *ds) { return (dsl_dataset_phys(ds)->ds_creation_txg); } uint64_t dsl_get_refquota(dsl_dataset_t *ds) { return (ds->ds_quota); } uint64_t dsl_get_refreservation(dsl_dataset_t *ds) { return (ds->ds_reserved); } uint64_t dsl_get_guid(dsl_dataset_t *ds) { return (dsl_dataset_phys(ds)->ds_guid); } uint64_t dsl_get_unique(dsl_dataset_t *ds) { return (dsl_dataset_phys(ds)->ds_unique_bytes); } uint64_t dsl_get_objsetid(dsl_dataset_t *ds) { return (ds->ds_object); } uint64_t dsl_get_userrefs(dsl_dataset_t *ds) { return (ds->ds_userrefs); } uint64_t dsl_get_defer_destroy(dsl_dataset_t *ds) { return (DS_IS_DEFER_DESTROY(ds) ? 1 : 0); } uint64_t dsl_get_referenced(dsl_dataset_t *ds) { return (dsl_dataset_phys(ds)->ds_referenced_bytes); } uint64_t dsl_get_numclones(dsl_dataset_t *ds) { ASSERT(ds->ds_is_snapshot); return (dsl_dataset_phys(ds)->ds_num_children - 1); } uint64_t dsl_get_inconsistent(dsl_dataset_t *ds) { return ((dsl_dataset_phys(ds)->ds_flags & DS_FLAG_INCONSISTENT) ? 1 : 0); } uint64_t dsl_get_redacted(dsl_dataset_t *ds) { return (dsl_dataset_feature_is_active(ds, SPA_FEATURE_REDACTED_DATASETS)); } uint64_t dsl_get_available(dsl_dataset_t *ds) { uint64_t refdbytes = dsl_get_referenced(ds); uint64_t availbytes = dsl_dir_space_available(ds->ds_dir, NULL, 0, TRUE); if (ds->ds_reserved > dsl_dataset_phys(ds)->ds_unique_bytes) { availbytes += ds->ds_reserved - dsl_dataset_phys(ds)->ds_unique_bytes; } if (ds->ds_quota != 0) { /* * Adjust available bytes according to refquota */ if (refdbytes < ds->ds_quota) { availbytes = MIN(availbytes, ds->ds_quota - refdbytes); } else { availbytes = 0; } } return (availbytes); } int dsl_get_written(dsl_dataset_t *ds, uint64_t *written) { dsl_pool_t *dp = ds->ds_dir->dd_pool; dsl_dataset_t *prev; int err = dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); if (err == 0) { uint64_t comp, uncomp; err = dsl_dataset_space_written(prev, ds, written, &comp, &uncomp); dsl_dataset_rele(prev, FTAG); } return (err); } /* * 'snap' should be a buffer of size ZFS_MAX_DATASET_NAME_LEN. */ int dsl_get_prev_snap(dsl_dataset_t *ds, char *snap) { dsl_pool_t *dp = ds->ds_dir->dd_pool; if (ds->ds_prev != NULL && ds->ds_prev != dp->dp_origin_snap) { dsl_dataset_name(ds->ds_prev, snap); return (0); } else { return (SET_ERROR(ENOENT)); } } void dsl_get_redact_snaps(dsl_dataset_t *ds, nvlist_t *propval) { uint64_t nsnaps; uint64_t *snaps; if (dsl_dataset_get_uint64_array_feature(ds, SPA_FEATURE_REDACTED_DATASETS, &nsnaps, &snaps)) { fnvlist_add_uint64_array(propval, ZPROP_VALUE, snaps, nsnaps); } } /* * Returns the mountpoint property and source for the given dataset in the value * and source buffers. The value buffer must be at least as large as MAXPATHLEN * and the source buffer as least as large a ZFS_MAX_DATASET_NAME_LEN. * Returns 0 on success and an error on failure. */ int dsl_get_mountpoint(dsl_dataset_t *ds, const char *dsname, char *value, char *source) { int error; dsl_pool_t *dp = ds->ds_dir->dd_pool; /* Retrieve the mountpoint value stored in the zap object */ error = dsl_prop_get_ds(ds, zfs_prop_to_name(ZFS_PROP_MOUNTPOINT), 1, ZAP_MAXVALUELEN, value, source); if (error != 0) { return (error); } /* * Process the dsname and source to find the full mountpoint string. * Can be skipped for 'legacy' or 'none'. */ if (value[0] == '/') { char *buf = kmem_alloc(ZAP_MAXVALUELEN, KM_SLEEP); char *root = buf; const char *relpath; /* * If we inherit the mountpoint, even from a dataset * with a received value, the source will be the path of * the dataset we inherit from. If source is * ZPROP_SOURCE_VAL_RECVD, the received value is not * inherited. */ if (strcmp(source, ZPROP_SOURCE_VAL_RECVD) == 0) { relpath = ""; } else { ASSERT0(strncmp(dsname, source, strlen(source))); relpath = dsname + strlen(source); if (relpath[0] == '/') relpath++; } spa_altroot(dp->dp_spa, root, ZAP_MAXVALUELEN); /* * Special case an alternate root of '/'. This will * avoid having multiple leading slashes in the * mountpoint path. */ if (strcmp(root, "/") == 0) root++; /* * If the mountpoint is '/' then skip over this * if we are obtaining either an alternate root or * an inherited mountpoint. */ char *mnt = value; if (value[1] == '\0' && (root[0] != '\0' || relpath[0] != '\0')) mnt = value + 1; if (relpath[0] == '\0') { (void) snprintf(value, ZAP_MAXVALUELEN, "%s%s", root, mnt); } else { (void) snprintf(value, ZAP_MAXVALUELEN, "%s%s%s%s", root, mnt, relpath[0] == '@' ? "" : "/", relpath); } kmem_free(buf, ZAP_MAXVALUELEN); } return (0); } void dsl_dataset_stats(dsl_dataset_t *ds, nvlist_t *nv) { dsl_pool_t *dp = ds->ds_dir->dd_pool; ASSERT(dsl_pool_config_held(dp)); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_REFRATIO, dsl_get_refratio(ds)); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALREFERENCED, dsl_get_logicalreferenced(ds)); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_COMPRESSRATIO, dsl_get_compressratio(ds)); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USED, dsl_get_used(ds)); if (ds->ds_is_snapshot) { get_clones_stat(ds, nv); } else { char buf[ZFS_MAX_DATASET_NAME_LEN]; if (dsl_get_prev_snap(ds, buf) == 0) dsl_prop_nvlist_add_string(nv, ZFS_PROP_PREV_SNAP, buf); dsl_dir_stats(ds->ds_dir, nv); } nvlist_t *propval = fnvlist_alloc(); dsl_get_redact_snaps(ds, propval); fnvlist_add_nvlist(nv, zfs_prop_to_name(ZFS_PROP_REDACT_SNAPS), propval); nvlist_free(propval); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_AVAILABLE, dsl_get_available(ds)); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_REFERENCED, dsl_get_referenced(ds)); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_CREATION, dsl_get_creation(ds)); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_CREATETXG, dsl_get_creationtxg(ds)); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_REFQUOTA, dsl_get_refquota(ds)); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_REFRESERVATION, dsl_get_refreservation(ds)); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_GUID, dsl_get_guid(ds)); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_UNIQUE, dsl_get_unique(ds)); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_OBJSETID, dsl_get_objsetid(ds)); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USERREFS, dsl_get_userrefs(ds)); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_DEFER_DESTROY, dsl_get_defer_destroy(ds)); dsl_dataset_crypt_stats(ds, nv); if (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { uint64_t written; if (dsl_get_written(ds, &written) == 0) { dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_WRITTEN, written); } } if (!dsl_dataset_is_snapshot(ds)) { /* * A failed "newfs" (e.g. full) resumable receive leaves * the stats set on this dataset. Check here for the prop. */ get_receive_resume_stats(ds, nv); /* * A failed incremental resumable receive leaves the * stats set on our child named "%recv". Check the child * for the prop. */ /* 6 extra bytes for /%recv */ char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; dsl_dataset_t *recv_ds; dsl_dataset_name(ds, recvname); if (strlcat(recvname, "/", sizeof (recvname)) < sizeof (recvname) && strlcat(recvname, recv_clone_name, sizeof (recvname)) < sizeof (recvname) && dsl_dataset_hold(dp, recvname, FTAG, &recv_ds) == 0) { get_receive_resume_stats(recv_ds, nv); dsl_dataset_rele(recv_ds, FTAG); } } } void dsl_dataset_fast_stat(dsl_dataset_t *ds, dmu_objset_stats_t *stat) { dsl_pool_t *dp __maybe_unused = ds->ds_dir->dd_pool; ASSERT(dsl_pool_config_held(dp)); stat->dds_creation_txg = dsl_get_creationtxg(ds); stat->dds_inconsistent = dsl_get_inconsistent(ds); stat->dds_guid = dsl_get_guid(ds); stat->dds_redacted = dsl_get_redacted(ds); stat->dds_origin[0] = '\0'; if (ds->ds_is_snapshot) { stat->dds_is_snapshot = B_TRUE; stat->dds_num_clones = dsl_get_numclones(ds); } else { stat->dds_is_snapshot = B_FALSE; stat->dds_num_clones = 0; if (dsl_dir_is_clone(ds->ds_dir)) { dsl_dir_get_origin(ds->ds_dir, stat->dds_origin); } } } uint64_t dsl_dataset_fsid_guid(dsl_dataset_t *ds) { return (ds->ds_fsid_guid); } void dsl_dataset_space(dsl_dataset_t *ds, uint64_t *refdbytesp, uint64_t *availbytesp, uint64_t *usedobjsp, uint64_t *availobjsp) { *refdbytesp = dsl_dataset_phys(ds)->ds_referenced_bytes; *availbytesp = dsl_dir_space_available(ds->ds_dir, NULL, 0, TRUE); if (ds->ds_reserved > dsl_dataset_phys(ds)->ds_unique_bytes) *availbytesp += ds->ds_reserved - dsl_dataset_phys(ds)->ds_unique_bytes; if (ds->ds_quota != 0) { /* * Adjust available bytes according to refquota */ if (*refdbytesp < ds->ds_quota) *availbytesp = MIN(*availbytesp, ds->ds_quota - *refdbytesp); else *availbytesp = 0; } rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); *usedobjsp = BP_GET_FILL(&dsl_dataset_phys(ds)->ds_bp); rrw_exit(&ds->ds_bp_rwlock, FTAG); *availobjsp = DN_MAX_OBJECT - *usedobjsp; } boolean_t dsl_dataset_modified_since_snap(dsl_dataset_t *ds, dsl_dataset_t *snap) { dsl_pool_t *dp __maybe_unused = ds->ds_dir->dd_pool; uint64_t birth; ASSERT(dsl_pool_config_held(dp)); if (snap == NULL) return (B_FALSE); rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); birth = dsl_dataset_get_blkptr(ds)->blk_birth; rrw_exit(&ds->ds_bp_rwlock, FTAG); if (birth > dsl_dataset_phys(snap)->ds_creation_txg) { objset_t *os, *os_snap; /* * It may be that only the ZIL differs, because it was * reset in the head. Don't count that as being * modified. */ if (dmu_objset_from_ds(ds, &os) != 0) return (B_TRUE); if (dmu_objset_from_ds(snap, &os_snap) != 0) return (B_TRUE); return (bcmp(&os->os_phys->os_meta_dnode, &os_snap->os_phys->os_meta_dnode, sizeof (os->os_phys->os_meta_dnode)) != 0); } return (B_FALSE); } typedef struct dsl_dataset_rename_snapshot_arg { const char *ddrsa_fsname; const char *ddrsa_oldsnapname; const char *ddrsa_newsnapname; boolean_t ddrsa_recursive; dmu_tx_t *ddrsa_tx; } dsl_dataset_rename_snapshot_arg_t; /* ARGSUSED */ static int dsl_dataset_rename_snapshot_check_impl(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) { dsl_dataset_rename_snapshot_arg_t *ddrsa = arg; int error; uint64_t val; error = dsl_dataset_snap_lookup(hds, ddrsa->ddrsa_oldsnapname, &val); if (error != 0) { /* ignore nonexistent snapshots */ return (error == ENOENT ? 0 : error); } /* new name should not exist */ error = dsl_dataset_snap_lookup(hds, ddrsa->ddrsa_newsnapname, &val); if (error == 0) error = SET_ERROR(EEXIST); else if (error == ENOENT) error = 0; /* dataset name + 1 for the "@" + the new snapshot name must fit */ if (dsl_dir_namelen(hds->ds_dir) + 1 + strlen(ddrsa->ddrsa_newsnapname) >= ZFS_MAX_DATASET_NAME_LEN) error = SET_ERROR(ENAMETOOLONG); return (error); } static int dsl_dataset_rename_snapshot_check(void *arg, dmu_tx_t *tx) { dsl_dataset_rename_snapshot_arg_t *ddrsa = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *hds; int error; error = dsl_dataset_hold(dp, ddrsa->ddrsa_fsname, FTAG, &hds); if (error != 0) return (error); if (ddrsa->ddrsa_recursive) { error = dmu_objset_find_dp(dp, hds->ds_dir->dd_object, dsl_dataset_rename_snapshot_check_impl, ddrsa, DS_FIND_CHILDREN); } else { error = dsl_dataset_rename_snapshot_check_impl(dp, hds, ddrsa); } dsl_dataset_rele(hds, FTAG); return (error); } static int dsl_dataset_rename_snapshot_sync_impl(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) { dsl_dataset_rename_snapshot_arg_t *ddrsa = arg; dsl_dataset_t *ds; uint64_t val; dmu_tx_t *tx = ddrsa->ddrsa_tx; int error; error = dsl_dataset_snap_lookup(hds, ddrsa->ddrsa_oldsnapname, &val); ASSERT(error == 0 || error == ENOENT); if (error == ENOENT) { /* ignore nonexistent snapshots */ return (0); } VERIFY0(dsl_dataset_hold_obj(dp, val, FTAG, &ds)); /* log before we change the name */ spa_history_log_internal_ds(ds, "rename", tx, "-> @%s", ddrsa->ddrsa_newsnapname); VERIFY0(dsl_dataset_snap_remove(hds, ddrsa->ddrsa_oldsnapname, tx, B_FALSE)); mutex_enter(&ds->ds_lock); (void) strlcpy(ds->ds_snapname, ddrsa->ddrsa_newsnapname, sizeof (ds->ds_snapname)); mutex_exit(&ds->ds_lock); VERIFY0(zap_add(dp->dp_meta_objset, dsl_dataset_phys(hds)->ds_snapnames_zapobj, ds->ds_snapname, 8, 1, &ds->ds_object, tx)); zvol_rename_minors(dp->dp_spa, ddrsa->ddrsa_oldsnapname, ddrsa->ddrsa_newsnapname, B_TRUE); dsl_dataset_rele(ds, FTAG); return (0); } static void dsl_dataset_rename_snapshot_sync(void *arg, dmu_tx_t *tx) { dsl_dataset_rename_snapshot_arg_t *ddrsa = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *hds = NULL; VERIFY0(dsl_dataset_hold(dp, ddrsa->ddrsa_fsname, FTAG, &hds)); ddrsa->ddrsa_tx = tx; if (ddrsa->ddrsa_recursive) { VERIFY0(dmu_objset_find_dp(dp, hds->ds_dir->dd_object, dsl_dataset_rename_snapshot_sync_impl, ddrsa, DS_FIND_CHILDREN)); } else { VERIFY0(dsl_dataset_rename_snapshot_sync_impl(dp, hds, ddrsa)); } dsl_dataset_rele(hds, FTAG); } int dsl_dataset_rename_snapshot(const char *fsname, const char *oldsnapname, const char *newsnapname, boolean_t recursive) { dsl_dataset_rename_snapshot_arg_t ddrsa; ddrsa.ddrsa_fsname = fsname; ddrsa.ddrsa_oldsnapname = oldsnapname; ddrsa.ddrsa_newsnapname = newsnapname; ddrsa.ddrsa_recursive = recursive; return (dsl_sync_task(fsname, dsl_dataset_rename_snapshot_check, dsl_dataset_rename_snapshot_sync, &ddrsa, 1, ZFS_SPACE_CHECK_RESERVED)); } /* * If we're doing an ownership handoff, we need to make sure that there is * only one long hold on the dataset. We're not allowed to change anything here * so we don't permanently release the long hold or regular hold here. We want * to do this only when syncing to avoid the dataset unexpectedly going away * when we release the long hold. */ static int dsl_dataset_handoff_check(dsl_dataset_t *ds, void *owner, dmu_tx_t *tx) { boolean_t held = B_FALSE; if (!dmu_tx_is_syncing(tx)) return (0); dsl_dir_t *dd = ds->ds_dir; mutex_enter(&dd->dd_activity_lock); uint64_t holds = zfs_refcount_count(&ds->ds_longholds) - (owner != NULL ? 1 : 0); /* * The value of dd_activity_waiters can chance as soon as we drop the * lock, but we're fine with that; new waiters coming in or old * waiters leaving doesn't cause problems, since we're going to cancel * waiters later anyway. The goal of this check is to verify that no * non-waiters have long-holds, and all new long-holds will be * prevented because we're holding the pool config as writer. */ if (holds != dd->dd_activity_waiters) held = B_TRUE; mutex_exit(&dd->dd_activity_lock); if (held) return (SET_ERROR(EBUSY)); return (0); } int dsl_dataset_rollback_check(void *arg, dmu_tx_t *tx) { dsl_dataset_rollback_arg_t *ddra = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds; int64_t unused_refres_delta; int error; error = dsl_dataset_hold(dp, ddra->ddra_fsname, FTAG, &ds); if (error != 0) return (error); /* must not be a snapshot */ if (ds->ds_is_snapshot) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } /* must have a most recent snapshot */ if (dsl_dataset_phys(ds)->ds_prev_snap_txg < TXG_INITIAL) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(ESRCH)); } /* * No rollback to a snapshot created in the current txg, because * the rollback may dirty the dataset and create blocks that are * not reachable from the rootbp while having a birth txg that * falls into the snapshot's range. */ if (dmu_tx_is_syncing(tx) && dsl_dataset_phys(ds)->ds_prev_snap_txg >= tx->tx_txg) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EAGAIN)); } /* * If the expected target snapshot is specified, then check that * the latest snapshot is it. */ if (ddra->ddra_tosnap != NULL) { dsl_dataset_t *snapds; /* Check if the target snapshot exists at all. */ error = dsl_dataset_hold(dp, ddra->ddra_tosnap, FTAG, &snapds); if (error != 0) { /* * ESRCH is used to signal that the target snapshot does * not exist, while ENOENT is used to report that * the rolled back dataset does not exist. * ESRCH is also used to cover other cases where the * target snapshot is not related to the dataset being * rolled back such as being in a different pool. */ if (error == ENOENT || error == EXDEV) error = SET_ERROR(ESRCH); dsl_dataset_rele(ds, FTAG); return (error); } ASSERT(snapds->ds_is_snapshot); /* Check if the snapshot is the latest snapshot indeed. */ if (snapds != ds->ds_prev) { /* * Distinguish between the case where the only problem * is intervening snapshots (EEXIST) vs the snapshot * not being a valid target for rollback (ESRCH). */ if (snapds->ds_dir == ds->ds_dir || (dsl_dir_is_clone(ds->ds_dir) && dsl_dir_phys(ds->ds_dir)->dd_origin_obj == snapds->ds_object)) { error = SET_ERROR(EEXIST); } else { error = SET_ERROR(ESRCH); } dsl_dataset_rele(snapds, FTAG); dsl_dataset_rele(ds, FTAG); return (error); } dsl_dataset_rele(snapds, FTAG); } /* must not have any bookmarks after the most recent snapshot */ if (dsl_bookmark_latest_txg(ds) > dsl_dataset_phys(ds)->ds_prev_snap_txg) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EEXIST)); } error = dsl_dataset_handoff_check(ds, ddra->ddra_owner, tx); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } /* * Check if the snap we are rolling back to uses more than * the refquota. */ if (ds->ds_quota != 0 && dsl_dataset_phys(ds->ds_prev)->ds_referenced_bytes > ds->ds_quota) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EDQUOT)); } /* * When we do the clone swap, we will temporarily use more space * due to the refreservation (the head will no longer have any * unique space, so the entire amount of the refreservation will need * to be free). We will immediately destroy the clone, freeing * this space, but the freeing happens over many txg's. */ unused_refres_delta = (int64_t)MIN(ds->ds_reserved, dsl_dataset_phys(ds)->ds_unique_bytes); if (unused_refres_delta > 0 && unused_refres_delta > dsl_dir_space_available(ds->ds_dir, NULL, 0, TRUE)) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(ENOSPC)); } dsl_dataset_rele(ds, FTAG); return (0); } void dsl_dataset_rollback_sync(void *arg, dmu_tx_t *tx) { dsl_dataset_rollback_arg_t *ddra = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds, *clone; uint64_t cloneobj; char namebuf[ZFS_MAX_DATASET_NAME_LEN]; VERIFY0(dsl_dataset_hold(dp, ddra->ddra_fsname, FTAG, &ds)); dsl_dataset_name(ds->ds_prev, namebuf); fnvlist_add_string(ddra->ddra_result, "target", namebuf); cloneobj = dsl_dataset_create_sync(ds->ds_dir, "%rollback", ds->ds_prev, DS_CREATE_FLAG_NODIRTY, kcred, NULL, tx); VERIFY0(dsl_dataset_hold_obj(dp, cloneobj, FTAG, &clone)); dsl_dataset_clone_swap_sync_impl(clone, ds, tx); dsl_dataset_zero_zil(ds, tx); dsl_destroy_head_sync_impl(clone, tx); dsl_dataset_rele(clone, FTAG); dsl_dataset_rele(ds, FTAG); } /* * Rolls back the given filesystem or volume to the most recent snapshot. * The name of the most recent snapshot will be returned under key "target" * in the result nvlist. * * If owner != NULL: * - The existing dataset MUST be owned by the specified owner at entry * - Upon return, dataset will still be held by the same owner, whether we * succeed or not. * * This mode is required any time the existing filesystem is mounted. See * notes above zfs_suspend_fs() for further details. */ int dsl_dataset_rollback(const char *fsname, const char *tosnap, void *owner, nvlist_t *result) { dsl_dataset_rollback_arg_t ddra; ddra.ddra_fsname = fsname; ddra.ddra_tosnap = tosnap; ddra.ddra_owner = owner; ddra.ddra_result = result; return (dsl_sync_task(fsname, dsl_dataset_rollback_check, dsl_dataset_rollback_sync, &ddra, 1, ZFS_SPACE_CHECK_RESERVED)); } struct promotenode { list_node_t link; dsl_dataset_t *ds; }; static int snaplist_space(list_t *l, uint64_t mintxg, uint64_t *spacep); static int promote_hold(dsl_dataset_promote_arg_t *ddpa, dsl_pool_t *dp, void *tag); static void promote_rele(dsl_dataset_promote_arg_t *ddpa, void *tag); int dsl_dataset_promote_check(void *arg, dmu_tx_t *tx) { dsl_dataset_promote_arg_t *ddpa = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *hds; struct promotenode *snap; dsl_dataset_t *origin_ds, *origin_head; int err; uint64_t unused; uint64_t ss_mv_cnt; size_t max_snap_len; boolean_t conflicting_snaps; err = promote_hold(ddpa, dp, FTAG); if (err != 0) return (err); hds = ddpa->ddpa_clone; max_snap_len = MAXNAMELEN - strlen(ddpa->ddpa_clonename) - 1; if (dsl_dataset_phys(hds)->ds_flags & DS_FLAG_NOPROMOTE) { promote_rele(ddpa, FTAG); return (SET_ERROR(EXDEV)); } snap = list_head(&ddpa->shared_snaps); origin_head = snap->ds; if (snap == NULL) { err = SET_ERROR(ENOENT); goto out; } origin_ds = snap->ds; /* * Encrypted clones share a DSL Crypto Key with their origin's dsl dir. * When doing a promote we must make sure the encryption root for * both the target and the target's origin does not change to avoid * needing to rewrap encryption keys */ err = dsl_dataset_promote_crypt_check(hds->ds_dir, origin_ds->ds_dir); if (err != 0) goto out; /* * Compute and check the amount of space to transfer. Since this is * so expensive, don't do the preliminary check. */ if (!dmu_tx_is_syncing(tx)) { promote_rele(ddpa, FTAG); return (0); } /* compute origin's new unique space */ snap = list_tail(&ddpa->clone_snaps); ASSERT(snap != NULL); ASSERT3U(dsl_dataset_phys(snap->ds)->ds_prev_snap_obj, ==, origin_ds->ds_object); dsl_deadlist_space_range(&snap->ds->ds_deadlist, dsl_dataset_phys(origin_ds)->ds_prev_snap_txg, UINT64_MAX, &ddpa->unique, &unused, &unused); /* * Walk the snapshots that we are moving * * Compute space to transfer. Consider the incremental changes * to used by each snapshot: * (my used) = (prev's used) + (blocks born) - (blocks killed) * So each snapshot gave birth to: * (blocks born) = (my used) - (prev's used) + (blocks killed) * So a sequence would look like: * (uN - u(N-1) + kN) + ... + (u1 - u0 + k1) + (u0 - 0 + k0) * Which simplifies to: * uN + kN + kN-1 + ... + k1 + k0 * Note however, if we stop before we reach the ORIGIN we get: * uN + kN + kN-1 + ... + kM - uM-1 */ conflicting_snaps = B_FALSE; ss_mv_cnt = 0; ddpa->used = dsl_dataset_phys(origin_ds)->ds_referenced_bytes; ddpa->comp = dsl_dataset_phys(origin_ds)->ds_compressed_bytes; ddpa->uncomp = dsl_dataset_phys(origin_ds)->ds_uncompressed_bytes; for (snap = list_head(&ddpa->shared_snaps); snap; snap = list_next(&ddpa->shared_snaps, snap)) { uint64_t val, dlused, dlcomp, dluncomp; dsl_dataset_t *ds = snap->ds; ss_mv_cnt++; /* * If there are long holds, we won't be able to evict * the objset. */ if (dsl_dataset_long_held(ds)) { err = SET_ERROR(EBUSY); goto out; } /* Check that the snapshot name does not conflict */ VERIFY0(dsl_dataset_get_snapname(ds)); if (strlen(ds->ds_snapname) >= max_snap_len) { err = SET_ERROR(ENAMETOOLONG); goto out; } err = dsl_dataset_snap_lookup(hds, ds->ds_snapname, &val); if (err == 0) { fnvlist_add_boolean(ddpa->err_ds, snap->ds->ds_snapname); conflicting_snaps = B_TRUE; } else if (err != ENOENT) { goto out; } /* The very first snapshot does not have a deadlist */ if (dsl_dataset_phys(ds)->ds_prev_snap_obj == 0) continue; dsl_deadlist_space(&ds->ds_deadlist, &dlused, &dlcomp, &dluncomp); ddpa->used += dlused; ddpa->comp += dlcomp; ddpa->uncomp += dluncomp; } /* * Check that bookmarks that are being transferred don't have * name conflicts. */ for (dsl_bookmark_node_t *dbn = avl_first(&origin_head->ds_bookmarks); dbn != NULL && dbn->dbn_phys.zbm_creation_txg <= dsl_dataset_phys(origin_ds)->ds_creation_txg; dbn = AVL_NEXT(&origin_head->ds_bookmarks, dbn)) { if (strlen(dbn->dbn_name) >= max_snap_len) { err = SET_ERROR(ENAMETOOLONG); goto out; } zfs_bookmark_phys_t bm; err = dsl_bookmark_lookup_impl(ddpa->ddpa_clone, dbn->dbn_name, &bm); if (err == 0) { fnvlist_add_boolean(ddpa->err_ds, dbn->dbn_name); conflicting_snaps = B_TRUE; } else if (err == ESRCH) { err = 0; } else if (err != 0) { goto out; } } /* * In order to return the full list of conflicting snapshots, we check * whether there was a conflict after traversing all of them. */ if (conflicting_snaps) { err = SET_ERROR(EEXIST); goto out; } /* * If we are a clone of a clone then we never reached ORIGIN, * so we need to subtract out the clone origin's used space. */ if (ddpa->origin_origin) { ddpa->used -= dsl_dataset_phys(ddpa->origin_origin)->ds_referenced_bytes; ddpa->comp -= dsl_dataset_phys(ddpa->origin_origin)->ds_compressed_bytes; ddpa->uncomp -= dsl_dataset_phys(ddpa->origin_origin)-> ds_uncompressed_bytes; } /* Check that there is enough space and limit headroom here */ err = dsl_dir_transfer_possible(origin_ds->ds_dir, hds->ds_dir, 0, ss_mv_cnt, ddpa->used, ddpa->cr, ddpa->proc); if (err != 0) goto out; /* * Compute the amounts of space that will be used by snapshots * after the promotion (for both origin and clone). For each, * it is the amount of space that will be on all of their * deadlists (that was not born before their new origin). */ if (dsl_dir_phys(hds->ds_dir)->dd_flags & DD_FLAG_USED_BREAKDOWN) { uint64_t space; /* * Note, typically this will not be a clone of a clone, * so dd_origin_txg will be < TXG_INITIAL, so * these snaplist_space() -> dsl_deadlist_space_range() * calls will be fast because they do not have to * iterate over all bps. */ snap = list_head(&ddpa->origin_snaps); if (snap == NULL) { err = SET_ERROR(ENOENT); goto out; } err = snaplist_space(&ddpa->shared_snaps, snap->ds->ds_dir->dd_origin_txg, &ddpa->cloneusedsnap); if (err != 0) goto out; err = snaplist_space(&ddpa->clone_snaps, snap->ds->ds_dir->dd_origin_txg, &space); if (err != 0) goto out; ddpa->cloneusedsnap += space; } if (dsl_dir_phys(origin_ds->ds_dir)->dd_flags & DD_FLAG_USED_BREAKDOWN) { err = snaplist_space(&ddpa->origin_snaps, dsl_dataset_phys(origin_ds)->ds_creation_txg, &ddpa->originusedsnap); if (err != 0) goto out; } out: promote_rele(ddpa, FTAG); return (err); } void dsl_dataset_promote_sync(void *arg, dmu_tx_t *tx) { dsl_dataset_promote_arg_t *ddpa = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *hds; struct promotenode *snap; dsl_dataset_t *origin_ds; dsl_dataset_t *origin_head; dsl_dir_t *dd; dsl_dir_t *odd = NULL; uint64_t oldnext_obj; int64_t delta; ASSERT(nvlist_empty(ddpa->err_ds)); VERIFY0(promote_hold(ddpa, dp, FTAG)); hds = ddpa->ddpa_clone; ASSERT0(dsl_dataset_phys(hds)->ds_flags & DS_FLAG_NOPROMOTE); snap = list_head(&ddpa->shared_snaps); origin_ds = snap->ds; dd = hds->ds_dir; snap = list_head(&ddpa->origin_snaps); origin_head = snap->ds; /* * We need to explicitly open odd, since origin_ds's dd will be * changing. */ VERIFY0(dsl_dir_hold_obj(dp, origin_ds->ds_dir->dd_object, NULL, FTAG, &odd)); dsl_dataset_promote_crypt_sync(hds->ds_dir, odd, tx); /* change origin's next snap */ dmu_buf_will_dirty(origin_ds->ds_dbuf, tx); oldnext_obj = dsl_dataset_phys(origin_ds)->ds_next_snap_obj; snap = list_tail(&ddpa->clone_snaps); ASSERT3U(dsl_dataset_phys(snap->ds)->ds_prev_snap_obj, ==, origin_ds->ds_object); dsl_dataset_phys(origin_ds)->ds_next_snap_obj = snap->ds->ds_object; /* change the origin's next clone */ if (dsl_dataset_phys(origin_ds)->ds_next_clones_obj) { dsl_dataset_remove_from_next_clones(origin_ds, snap->ds->ds_object, tx); VERIFY0(zap_add_int(dp->dp_meta_objset, dsl_dataset_phys(origin_ds)->ds_next_clones_obj, oldnext_obj, tx)); } /* change origin */ dmu_buf_will_dirty(dd->dd_dbuf, tx); ASSERT3U(dsl_dir_phys(dd)->dd_origin_obj, ==, origin_ds->ds_object); dsl_dir_phys(dd)->dd_origin_obj = dsl_dir_phys(odd)->dd_origin_obj; dd->dd_origin_txg = origin_head->ds_dir->dd_origin_txg; dmu_buf_will_dirty(odd->dd_dbuf, tx); dsl_dir_phys(odd)->dd_origin_obj = origin_ds->ds_object; origin_head->ds_dir->dd_origin_txg = dsl_dataset_phys(origin_ds)->ds_creation_txg; /* change dd_clone entries */ if (spa_version(dp->dp_spa) >= SPA_VERSION_DIR_CLONES) { VERIFY0(zap_remove_int(dp->dp_meta_objset, dsl_dir_phys(odd)->dd_clones, hds->ds_object, tx)); VERIFY0(zap_add_int(dp->dp_meta_objset, dsl_dir_phys(ddpa->origin_origin->ds_dir)->dd_clones, hds->ds_object, tx)); VERIFY0(zap_remove_int(dp->dp_meta_objset, dsl_dir_phys(ddpa->origin_origin->ds_dir)->dd_clones, origin_head->ds_object, tx)); if (dsl_dir_phys(dd)->dd_clones == 0) { dsl_dir_phys(dd)->dd_clones = zap_create(dp->dp_meta_objset, DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx); } VERIFY0(zap_add_int(dp->dp_meta_objset, dsl_dir_phys(dd)->dd_clones, origin_head->ds_object, tx)); } /* * Move bookmarks to this dir. */ dsl_bookmark_node_t *dbn_next; for (dsl_bookmark_node_t *dbn = avl_first(&origin_head->ds_bookmarks); dbn != NULL && dbn->dbn_phys.zbm_creation_txg <= dsl_dataset_phys(origin_ds)->ds_creation_txg; dbn = dbn_next) { dbn_next = AVL_NEXT(&origin_head->ds_bookmarks, dbn); avl_remove(&origin_head->ds_bookmarks, dbn); VERIFY0(zap_remove(dp->dp_meta_objset, origin_head->ds_bookmarks_obj, dbn->dbn_name, tx)); dsl_bookmark_node_add(hds, dbn, tx); } dsl_bookmark_next_changed(hds, origin_ds, tx); /* move snapshots to this dir */ for (snap = list_head(&ddpa->shared_snaps); snap; snap = list_next(&ddpa->shared_snaps, snap)) { dsl_dataset_t *ds = snap->ds; /* * Property callbacks are registered to a particular * dsl_dir. Since ours is changing, evict the objset * so that they will be unregistered from the old dsl_dir. */ if (ds->ds_objset) { dmu_objset_evict(ds->ds_objset); ds->ds_objset = NULL; } /* move snap name entry */ VERIFY0(dsl_dataset_get_snapname(ds)); VERIFY0(dsl_dataset_snap_remove(origin_head, ds->ds_snapname, tx, B_TRUE)); VERIFY0(zap_add(dp->dp_meta_objset, dsl_dataset_phys(hds)->ds_snapnames_zapobj, ds->ds_snapname, 8, 1, &ds->ds_object, tx)); dsl_fs_ss_count_adjust(hds->ds_dir, 1, DD_FIELD_SNAPSHOT_COUNT, tx); /* change containing dsl_dir */ dmu_buf_will_dirty(ds->ds_dbuf, tx); ASSERT3U(dsl_dataset_phys(ds)->ds_dir_obj, ==, odd->dd_object); dsl_dataset_phys(ds)->ds_dir_obj = dd->dd_object; ASSERT3P(ds->ds_dir, ==, odd); dsl_dir_rele(ds->ds_dir, ds); VERIFY0(dsl_dir_hold_obj(dp, dd->dd_object, NULL, ds, &ds->ds_dir)); /* move any clone references */ if (dsl_dataset_phys(ds)->ds_next_clones_obj && spa_version(dp->dp_spa) >= SPA_VERSION_DIR_CLONES) { zap_cursor_t zc; zap_attribute_t za; for (zap_cursor_init(&zc, dp->dp_meta_objset, dsl_dataset_phys(ds)->ds_next_clones_obj); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { dsl_dataset_t *cnds; uint64_t o; if (za.za_first_integer == oldnext_obj) { /* * We've already moved the * origin's reference. */ continue; } VERIFY0(dsl_dataset_hold_obj(dp, za.za_first_integer, FTAG, &cnds)); o = dsl_dir_phys(cnds->ds_dir)-> dd_head_dataset_obj; VERIFY0(zap_remove_int(dp->dp_meta_objset, dsl_dir_phys(odd)->dd_clones, o, tx)); VERIFY0(zap_add_int(dp->dp_meta_objset, dsl_dir_phys(dd)->dd_clones, o, tx)); dsl_dataset_rele(cnds, FTAG); } zap_cursor_fini(&zc); } ASSERT(!dsl_prop_hascb(ds)); } /* * Change space accounting. * Note, pa->*usedsnap and dd_used_breakdown[SNAP] will either * both be valid, or both be 0 (resulting in delta == 0). This * is true for each of {clone,origin} independently. */ delta = ddpa->cloneusedsnap - dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]; ASSERT3S(delta, >=, 0); ASSERT3U(ddpa->used, >=, delta); dsl_dir_diduse_space(dd, DD_USED_SNAP, delta, 0, 0, tx); dsl_dir_diduse_space(dd, DD_USED_HEAD, ddpa->used - delta, ddpa->comp, ddpa->uncomp, tx); delta = ddpa->originusedsnap - dsl_dir_phys(odd)->dd_used_breakdown[DD_USED_SNAP]; ASSERT3S(delta, <=, 0); ASSERT3U(ddpa->used, >=, -delta); dsl_dir_diduse_space(odd, DD_USED_SNAP, delta, 0, 0, tx); dsl_dir_diduse_space(odd, DD_USED_HEAD, -ddpa->used - delta, -ddpa->comp, -ddpa->uncomp, tx); dsl_dataset_phys(origin_ds)->ds_unique_bytes = ddpa->unique; /* * Since livelists are specific to a clone's origin txg, they * are no longer accurate. Destroy the livelist from the clone being * promoted. If the origin dataset is a clone, destroy its livelist * as well. */ dsl_dir_remove_livelist(dd, tx, B_TRUE); dsl_dir_remove_livelist(odd, tx, B_TRUE); /* log history record */ spa_history_log_internal_ds(hds, "promote", tx, " "); dsl_dir_rele(odd, FTAG); promote_rele(ddpa, FTAG); } /* * Make a list of dsl_dataset_t's for the snapshots between first_obj * (exclusive) and last_obj (inclusive). The list will be in reverse * order (last_obj will be the list_head()). If first_obj == 0, do all * snapshots back to this dataset's origin. */ static int snaplist_make(dsl_pool_t *dp, uint64_t first_obj, uint64_t last_obj, list_t *l, void *tag) { uint64_t obj = last_obj; list_create(l, sizeof (struct promotenode), offsetof(struct promotenode, link)); while (obj != first_obj) { dsl_dataset_t *ds; struct promotenode *snap; int err; err = dsl_dataset_hold_obj(dp, obj, tag, &ds); ASSERT(err != ENOENT); if (err != 0) return (err); if (first_obj == 0) first_obj = dsl_dir_phys(ds->ds_dir)->dd_origin_obj; snap = kmem_alloc(sizeof (*snap), KM_SLEEP); snap->ds = ds; list_insert_tail(l, snap); obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; } return (0); } static int snaplist_space(list_t *l, uint64_t mintxg, uint64_t *spacep) { struct promotenode *snap; *spacep = 0; for (snap = list_head(l); snap; snap = list_next(l, snap)) { uint64_t used, comp, uncomp; dsl_deadlist_space_range(&snap->ds->ds_deadlist, mintxg, UINT64_MAX, &used, &comp, &uncomp); *spacep += used; } return (0); } static void snaplist_destroy(list_t *l, void *tag) { struct promotenode *snap; if (l == NULL || !list_link_active(&l->list_head)) return; while ((snap = list_tail(l)) != NULL) { list_remove(l, snap); dsl_dataset_rele(snap->ds, tag); kmem_free(snap, sizeof (*snap)); } list_destroy(l); } static int promote_hold(dsl_dataset_promote_arg_t *ddpa, dsl_pool_t *dp, void *tag) { int error; dsl_dir_t *dd; struct promotenode *snap; error = dsl_dataset_hold(dp, ddpa->ddpa_clonename, tag, &ddpa->ddpa_clone); if (error != 0) return (error); dd = ddpa->ddpa_clone->ds_dir; if (ddpa->ddpa_clone->ds_is_snapshot || !dsl_dir_is_clone(dd)) { dsl_dataset_rele(ddpa->ddpa_clone, tag); return (SET_ERROR(EINVAL)); } error = snaplist_make(dp, 0, dsl_dir_phys(dd)->dd_origin_obj, &ddpa->shared_snaps, tag); if (error != 0) goto out; error = snaplist_make(dp, 0, ddpa->ddpa_clone->ds_object, &ddpa->clone_snaps, tag); if (error != 0) goto out; snap = list_head(&ddpa->shared_snaps); ASSERT3U(snap->ds->ds_object, ==, dsl_dir_phys(dd)->dd_origin_obj); error = snaplist_make(dp, dsl_dir_phys(dd)->dd_origin_obj, dsl_dir_phys(snap->ds->ds_dir)->dd_head_dataset_obj, &ddpa->origin_snaps, tag); if (error != 0) goto out; if (dsl_dir_phys(snap->ds->ds_dir)->dd_origin_obj != 0) { error = dsl_dataset_hold_obj(dp, dsl_dir_phys(snap->ds->ds_dir)->dd_origin_obj, tag, &ddpa->origin_origin); if (error != 0) goto out; } out: if (error != 0) promote_rele(ddpa, tag); return (error); } static void promote_rele(dsl_dataset_promote_arg_t *ddpa, void *tag) { snaplist_destroy(&ddpa->shared_snaps, tag); snaplist_destroy(&ddpa->clone_snaps, tag); snaplist_destroy(&ddpa->origin_snaps, tag); if (ddpa->origin_origin != NULL) dsl_dataset_rele(ddpa->origin_origin, tag); dsl_dataset_rele(ddpa->ddpa_clone, tag); } /* * Promote a clone. * * If it fails due to a conflicting snapshot name, "conflsnap" will be filled * in with the name. (It must be at least ZFS_MAX_DATASET_NAME_LEN bytes long.) */ int dsl_dataset_promote(const char *name, char *conflsnap) { dsl_dataset_promote_arg_t ddpa = { 0 }; uint64_t numsnaps; int error; nvpair_t *snap_pair; objset_t *os; /* * We will modify space proportional to the number of * snapshots. Compute numsnaps. */ error = dmu_objset_hold(name, FTAG, &os); if (error != 0) return (error); error = zap_count(dmu_objset_pool(os)->dp_meta_objset, dsl_dataset_phys(dmu_objset_ds(os))->ds_snapnames_zapobj, &numsnaps); dmu_objset_rele(os, FTAG); if (error != 0) return (error); ddpa.ddpa_clonename = name; ddpa.err_ds = fnvlist_alloc(); ddpa.cr = CRED(); ddpa.proc = curproc; error = dsl_sync_task(name, dsl_dataset_promote_check, dsl_dataset_promote_sync, &ddpa, 2 + numsnaps, ZFS_SPACE_CHECK_RESERVED); /* * Return the first conflicting snapshot found. */ snap_pair = nvlist_next_nvpair(ddpa.err_ds, NULL); if (snap_pair != NULL && conflsnap != NULL) (void) strlcpy(conflsnap, nvpair_name(snap_pair), ZFS_MAX_DATASET_NAME_LEN); fnvlist_free(ddpa.err_ds); return (error); } int dsl_dataset_clone_swap_check_impl(dsl_dataset_t *clone, dsl_dataset_t *origin_head, boolean_t force, void *owner, dmu_tx_t *tx) { /* * "slack" factor for received datasets with refquota set on them. * See the bottom of this function for details on its use. */ uint64_t refquota_slack = (uint64_t)DMU_MAX_ACCESS * spa_asize_inflation; int64_t unused_refres_delta; /* they should both be heads */ if (clone->ds_is_snapshot || origin_head->ds_is_snapshot) return (SET_ERROR(EINVAL)); /* if we are not forcing, the branch point should be just before them */ if (!force && clone->ds_prev != origin_head->ds_prev) return (SET_ERROR(EINVAL)); /* clone should be the clone (unless they are unrelated) */ if (clone->ds_prev != NULL && clone->ds_prev != clone->ds_dir->dd_pool->dp_origin_snap && origin_head->ds_dir != clone->ds_prev->ds_dir) return (SET_ERROR(EINVAL)); /* the clone should be a child of the origin */ if (clone->ds_dir->dd_parent != origin_head->ds_dir) return (SET_ERROR(EINVAL)); /* origin_head shouldn't be modified unless 'force' */ if (!force && dsl_dataset_modified_since_snap(origin_head, origin_head->ds_prev)) return (SET_ERROR(ETXTBSY)); /* origin_head should have no long holds (e.g. is not mounted) */ if (dsl_dataset_handoff_check(origin_head, owner, tx)) return (SET_ERROR(EBUSY)); /* check amount of any unconsumed refreservation */ unused_refres_delta = (int64_t)MIN(origin_head->ds_reserved, dsl_dataset_phys(origin_head)->ds_unique_bytes) - (int64_t)MIN(origin_head->ds_reserved, dsl_dataset_phys(clone)->ds_unique_bytes); if (unused_refres_delta > 0 && unused_refres_delta > dsl_dir_space_available(origin_head->ds_dir, NULL, 0, TRUE)) return (SET_ERROR(ENOSPC)); /* * The clone can't be too much over the head's refquota. * * To ensure that the entire refquota can be used, we allow one * transaction to exceed the refquota. Therefore, this check * needs to also allow for the space referenced to be more than the * refquota. The maximum amount of space that one transaction can use * on disk is DMU_MAX_ACCESS * spa_asize_inflation. Allowing this * overage ensures that we are able to receive a filesystem that * exceeds the refquota on the source system. * * So that overage is the refquota_slack we use below. */ if (origin_head->ds_quota != 0 && dsl_dataset_phys(clone)->ds_referenced_bytes > origin_head->ds_quota + refquota_slack) return (SET_ERROR(EDQUOT)); return (0); } static void dsl_dataset_swap_remap_deadlists(dsl_dataset_t *clone, dsl_dataset_t *origin, dmu_tx_t *tx) { uint64_t clone_remap_dl_obj, origin_remap_dl_obj; dsl_pool_t *dp = dmu_tx_pool(tx); ASSERT(dsl_pool_sync_context(dp)); clone_remap_dl_obj = dsl_dataset_get_remap_deadlist_object(clone); origin_remap_dl_obj = dsl_dataset_get_remap_deadlist_object(origin); if (clone_remap_dl_obj != 0) { dsl_deadlist_close(&clone->ds_remap_deadlist); dsl_dataset_unset_remap_deadlist_object(clone, tx); } if (origin_remap_dl_obj != 0) { dsl_deadlist_close(&origin->ds_remap_deadlist); dsl_dataset_unset_remap_deadlist_object(origin, tx); } if (clone_remap_dl_obj != 0) { dsl_dataset_set_remap_deadlist_object(origin, clone_remap_dl_obj, tx); dsl_deadlist_open(&origin->ds_remap_deadlist, dp->dp_meta_objset, clone_remap_dl_obj); } if (origin_remap_dl_obj != 0) { dsl_dataset_set_remap_deadlist_object(clone, origin_remap_dl_obj, tx); dsl_deadlist_open(&clone->ds_remap_deadlist, dp->dp_meta_objset, origin_remap_dl_obj); } } void dsl_dataset_clone_swap_sync_impl(dsl_dataset_t *clone, dsl_dataset_t *origin_head, dmu_tx_t *tx) { dsl_pool_t *dp = dmu_tx_pool(tx); int64_t unused_refres_delta; ASSERT(clone->ds_reserved == 0); /* * NOTE: On DEBUG kernels there could be a race between this and * the check function if spa_asize_inflation is adjusted... */ ASSERT(origin_head->ds_quota == 0 || dsl_dataset_phys(clone)->ds_unique_bytes <= origin_head->ds_quota + DMU_MAX_ACCESS * spa_asize_inflation); ASSERT3P(clone->ds_prev, ==, origin_head->ds_prev); dsl_dir_cancel_waiters(origin_head->ds_dir); /* * Swap per-dataset feature flags. */ for (spa_feature_t f = 0; f < SPA_FEATURES; f++) { if (!(spa_feature_table[f].fi_flags & ZFEATURE_FLAG_PER_DATASET)) { ASSERT(!dsl_dataset_feature_is_active(clone, f)); ASSERT(!dsl_dataset_feature_is_active(origin_head, f)); continue; } boolean_t clone_inuse = dsl_dataset_feature_is_active(clone, f); void *clone_feature = clone->ds_feature[f]; boolean_t origin_head_inuse = dsl_dataset_feature_is_active(origin_head, f); void *origin_head_feature = origin_head->ds_feature[f]; if (clone_inuse) dsl_dataset_deactivate_feature_impl(clone, f, tx); if (origin_head_inuse) dsl_dataset_deactivate_feature_impl(origin_head, f, tx); if (clone_inuse) { dsl_dataset_activate_feature(origin_head->ds_object, f, clone_feature, tx); origin_head->ds_feature[f] = clone_feature; } if (origin_head_inuse) { dsl_dataset_activate_feature(clone->ds_object, f, origin_head_feature, tx); clone->ds_feature[f] = origin_head_feature; } } dmu_buf_will_dirty(clone->ds_dbuf, tx); dmu_buf_will_dirty(origin_head->ds_dbuf, tx); if (clone->ds_objset != NULL) { dmu_objset_evict(clone->ds_objset); clone->ds_objset = NULL; } if (origin_head->ds_objset != NULL) { dmu_objset_evict(origin_head->ds_objset); origin_head->ds_objset = NULL; } unused_refres_delta = (int64_t)MIN(origin_head->ds_reserved, dsl_dataset_phys(origin_head)->ds_unique_bytes) - (int64_t)MIN(origin_head->ds_reserved, dsl_dataset_phys(clone)->ds_unique_bytes); /* * Reset origin's unique bytes. */ { dsl_dataset_t *origin = clone->ds_prev; uint64_t comp, uncomp; dmu_buf_will_dirty(origin->ds_dbuf, tx); dsl_deadlist_space_range(&clone->ds_deadlist, dsl_dataset_phys(origin)->ds_prev_snap_txg, UINT64_MAX, &dsl_dataset_phys(origin)->ds_unique_bytes, &comp, &uncomp); } /* swap blkptrs */ { rrw_enter(&clone->ds_bp_rwlock, RW_WRITER, FTAG); rrw_enter(&origin_head->ds_bp_rwlock, RW_WRITER, FTAG); blkptr_t tmp; tmp = dsl_dataset_phys(origin_head)->ds_bp; dsl_dataset_phys(origin_head)->ds_bp = dsl_dataset_phys(clone)->ds_bp; dsl_dataset_phys(clone)->ds_bp = tmp; rrw_exit(&origin_head->ds_bp_rwlock, FTAG); rrw_exit(&clone->ds_bp_rwlock, FTAG); } /* set dd_*_bytes */ { int64_t dused, dcomp, duncomp; uint64_t cdl_used, cdl_comp, cdl_uncomp; uint64_t odl_used, odl_comp, odl_uncomp; ASSERT3U(dsl_dir_phys(clone->ds_dir)-> dd_used_breakdown[DD_USED_SNAP], ==, 0); dsl_deadlist_space(&clone->ds_deadlist, &cdl_used, &cdl_comp, &cdl_uncomp); dsl_deadlist_space(&origin_head->ds_deadlist, &odl_used, &odl_comp, &odl_uncomp); dused = dsl_dataset_phys(clone)->ds_referenced_bytes + cdl_used - (dsl_dataset_phys(origin_head)->ds_referenced_bytes + odl_used); dcomp = dsl_dataset_phys(clone)->ds_compressed_bytes + cdl_comp - (dsl_dataset_phys(origin_head)->ds_compressed_bytes + odl_comp); duncomp = dsl_dataset_phys(clone)->ds_uncompressed_bytes + cdl_uncomp - (dsl_dataset_phys(origin_head)->ds_uncompressed_bytes + odl_uncomp); dsl_dir_diduse_space(origin_head->ds_dir, DD_USED_HEAD, dused, dcomp, duncomp, tx); dsl_dir_diduse_space(clone->ds_dir, DD_USED_HEAD, -dused, -dcomp, -duncomp, tx); /* * The difference in the space used by snapshots is the * difference in snapshot space due to the head's * deadlist (since that's the only thing that's * changing that affects the snapused). */ dsl_deadlist_space_range(&clone->ds_deadlist, origin_head->ds_dir->dd_origin_txg, UINT64_MAX, &cdl_used, &cdl_comp, &cdl_uncomp); dsl_deadlist_space_range(&origin_head->ds_deadlist, origin_head->ds_dir->dd_origin_txg, UINT64_MAX, &odl_used, &odl_comp, &odl_uncomp); dsl_dir_transfer_space(origin_head->ds_dir, cdl_used - odl_used, DD_USED_HEAD, DD_USED_SNAP, tx); } /* swap ds_*_bytes */ SWITCH64(dsl_dataset_phys(origin_head)->ds_referenced_bytes, dsl_dataset_phys(clone)->ds_referenced_bytes); SWITCH64(dsl_dataset_phys(origin_head)->ds_compressed_bytes, dsl_dataset_phys(clone)->ds_compressed_bytes); SWITCH64(dsl_dataset_phys(origin_head)->ds_uncompressed_bytes, dsl_dataset_phys(clone)->ds_uncompressed_bytes); SWITCH64(dsl_dataset_phys(origin_head)->ds_unique_bytes, dsl_dataset_phys(clone)->ds_unique_bytes); /* apply any parent delta for change in unconsumed refreservation */ dsl_dir_diduse_space(origin_head->ds_dir, DD_USED_REFRSRV, unused_refres_delta, 0, 0, tx); /* * Swap deadlists. */ dsl_deadlist_close(&clone->ds_deadlist); dsl_deadlist_close(&origin_head->ds_deadlist); SWITCH64(dsl_dataset_phys(origin_head)->ds_deadlist_obj, dsl_dataset_phys(clone)->ds_deadlist_obj); dsl_deadlist_open(&clone->ds_deadlist, dp->dp_meta_objset, dsl_dataset_phys(clone)->ds_deadlist_obj); dsl_deadlist_open(&origin_head->ds_deadlist, dp->dp_meta_objset, dsl_dataset_phys(origin_head)->ds_deadlist_obj); dsl_dataset_swap_remap_deadlists(clone, origin_head, tx); /* * If there is a bookmark at the origin, its "next dataset" is * changing, so we need to reset its FBN. */ dsl_bookmark_next_changed(origin_head, origin_head->ds_prev, tx); dsl_scan_ds_clone_swapped(origin_head, clone, tx); /* * Destroy any livelists associated with the clone or the origin, * since after the swap the corresponding livelists are no longer * valid. */ dsl_dir_remove_livelist(clone->ds_dir, tx, B_TRUE); dsl_dir_remove_livelist(origin_head->ds_dir, tx, B_TRUE); spa_history_log_internal_ds(clone, "clone swap", tx, "parent=%s", origin_head->ds_dir->dd_myname); } /* * Given a pool name and a dataset object number in that pool, * return the name of that dataset. */ int dsl_dsobj_to_dsname(char *pname, uint64_t obj, char *buf) { dsl_pool_t *dp; dsl_dataset_t *ds; int error; error = dsl_pool_hold(pname, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold_obj(dp, obj, FTAG, &ds); if (error == 0) { dsl_dataset_name(ds, buf); dsl_dataset_rele(ds, FTAG); } dsl_pool_rele(dp, FTAG); return (error); } int dsl_dataset_check_quota(dsl_dataset_t *ds, boolean_t check_quota, uint64_t asize, uint64_t inflight, uint64_t *used, uint64_t *ref_rsrv) { int error = 0; ASSERT3S(asize, >, 0); /* * *ref_rsrv is the portion of asize that will come from any * unconsumed refreservation space. */ *ref_rsrv = 0; mutex_enter(&ds->ds_lock); /* * Make a space adjustment for reserved bytes. */ if (ds->ds_reserved > dsl_dataset_phys(ds)->ds_unique_bytes) { ASSERT3U(*used, >=, ds->ds_reserved - dsl_dataset_phys(ds)->ds_unique_bytes); *used -= (ds->ds_reserved - dsl_dataset_phys(ds)->ds_unique_bytes); *ref_rsrv = asize - MIN(asize, parent_delta(ds, asize + inflight)); } if (!check_quota || ds->ds_quota == 0) { mutex_exit(&ds->ds_lock); return (0); } /* * If they are requesting more space, and our current estimate * is over quota, they get to try again unless the actual * on-disk is over quota and there are no pending changes (which * may free up space for us). */ if (dsl_dataset_phys(ds)->ds_referenced_bytes + inflight >= ds->ds_quota) { if (inflight > 0 || dsl_dataset_phys(ds)->ds_referenced_bytes < ds->ds_quota) error = SET_ERROR(ERESTART); else error = SET_ERROR(EDQUOT); } mutex_exit(&ds->ds_lock); return (error); } typedef struct dsl_dataset_set_qr_arg { const char *ddsqra_name; zprop_source_t ddsqra_source; uint64_t ddsqra_value; } dsl_dataset_set_qr_arg_t; /* ARGSUSED */ static int dsl_dataset_set_refquota_check(void *arg, dmu_tx_t *tx) { dsl_dataset_set_qr_arg_t *ddsqra = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds; int error; uint64_t newval; if (spa_version(dp->dp_spa) < SPA_VERSION_REFQUOTA) return (SET_ERROR(ENOTSUP)); error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); if (error != 0) return (error); if (ds->ds_is_snapshot) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } error = dsl_prop_predict(ds->ds_dir, zfs_prop_to_name(ZFS_PROP_REFQUOTA), ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } if (newval == 0) { dsl_dataset_rele(ds, FTAG); return (0); } if (newval < dsl_dataset_phys(ds)->ds_referenced_bytes || newval < ds->ds_reserved) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(ENOSPC)); } dsl_dataset_rele(ds, FTAG); return (0); } static void dsl_dataset_set_refquota_sync(void *arg, dmu_tx_t *tx) { dsl_dataset_set_qr_arg_t *ddsqra = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds = NULL; uint64_t newval; VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_REFQUOTA), ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, &ddsqra->ddsqra_value, tx); VERIFY0(dsl_prop_get_int_ds(ds, zfs_prop_to_name(ZFS_PROP_REFQUOTA), &newval)); if (ds->ds_quota != newval) { dmu_buf_will_dirty(ds->ds_dbuf, tx); ds->ds_quota = newval; } dsl_dataset_rele(ds, FTAG); } int dsl_dataset_set_refquota(const char *dsname, zprop_source_t source, uint64_t refquota) { dsl_dataset_set_qr_arg_t ddsqra; ddsqra.ddsqra_name = dsname; ddsqra.ddsqra_source = source; ddsqra.ddsqra_value = refquota; return (dsl_sync_task(dsname, dsl_dataset_set_refquota_check, dsl_dataset_set_refquota_sync, &ddsqra, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED)); } static int dsl_dataset_set_refreservation_check(void *arg, dmu_tx_t *tx) { dsl_dataset_set_qr_arg_t *ddsqra = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds; int error; uint64_t newval, unique; if (spa_version(dp->dp_spa) < SPA_VERSION_REFRESERVATION) return (SET_ERROR(ENOTSUP)); error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); if (error != 0) return (error); if (ds->ds_is_snapshot) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } error = dsl_prop_predict(ds->ds_dir, zfs_prop_to_name(ZFS_PROP_REFRESERVATION), ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } /* * If we are doing the preliminary check in open context, the * space estimates may be inaccurate. */ if (!dmu_tx_is_syncing(tx)) { dsl_dataset_rele(ds, FTAG); return (0); } mutex_enter(&ds->ds_lock); if (!DS_UNIQUE_IS_ACCURATE(ds)) dsl_dataset_recalc_head_uniq(ds); unique = dsl_dataset_phys(ds)->ds_unique_bytes; mutex_exit(&ds->ds_lock); if (MAX(unique, newval) > MAX(unique, ds->ds_reserved)) { uint64_t delta = MAX(unique, newval) - MAX(unique, ds->ds_reserved); if (delta > dsl_dir_space_available(ds->ds_dir, NULL, 0, B_TRUE) || (ds->ds_quota > 0 && newval > ds->ds_quota)) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(ENOSPC)); } } dsl_dataset_rele(ds, FTAG); return (0); } void dsl_dataset_set_refreservation_sync_impl(dsl_dataset_t *ds, zprop_source_t source, uint64_t value, dmu_tx_t *tx) { uint64_t newval; uint64_t unique; int64_t delta; dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_REFRESERVATION), source, sizeof (value), 1, &value, tx); VERIFY0(dsl_prop_get_int_ds(ds, zfs_prop_to_name(ZFS_PROP_REFRESERVATION), &newval)); dmu_buf_will_dirty(ds->ds_dbuf, tx); mutex_enter(&ds->ds_dir->dd_lock); mutex_enter(&ds->ds_lock); ASSERT(DS_UNIQUE_IS_ACCURATE(ds)); unique = dsl_dataset_phys(ds)->ds_unique_bytes; delta = MAX(0, (int64_t)(newval - unique)) - MAX(0, (int64_t)(ds->ds_reserved - unique)); ds->ds_reserved = newval; mutex_exit(&ds->ds_lock); dsl_dir_diduse_space(ds->ds_dir, DD_USED_REFRSRV, delta, 0, 0, tx); mutex_exit(&ds->ds_dir->dd_lock); } static void dsl_dataset_set_refreservation_sync(void *arg, dmu_tx_t *tx) { dsl_dataset_set_qr_arg_t *ddsqra = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds = NULL; VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); dsl_dataset_set_refreservation_sync_impl(ds, ddsqra->ddsqra_source, ddsqra->ddsqra_value, tx); dsl_dataset_rele(ds, FTAG); } int dsl_dataset_set_refreservation(const char *dsname, zprop_source_t source, uint64_t refreservation) { dsl_dataset_set_qr_arg_t ddsqra; ddsqra.ddsqra_name = dsname; ddsqra.ddsqra_source = source; ddsqra.ddsqra_value = refreservation; return (dsl_sync_task(dsname, dsl_dataset_set_refreservation_check, dsl_dataset_set_refreservation_sync, &ddsqra, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED)); } /* * Return (in *usedp) the amount of space referenced by "new" that was not * referenced at the time the bookmark corresponds to. "New" may be a * snapshot or a head. The bookmark must be before new, in * new's filesystem (or its origin) -- caller verifies this. * * The written space is calculated by considering two components: First, we * ignore any freed space, and calculate the written as new's used space * minus old's used space. Next, we add in the amount of space that was freed * between the two time points, thus reducing new's used space relative to * old's. Specifically, this is the space that was born before * zbm_creation_txg, and freed before new (ie. on new's deadlist or a * previous deadlist). * * space freed [---------------------] * snapshots ---O-------O--------O-------O------ * bookmark new * * Note, the bookmark's zbm_*_bytes_refd must be valid, but if the HAS_FBN * flag is not set, we will calculate the freed_before_next based on the * next snapshot's deadlist, rather than using zbm_*_freed_before_next_snap. */ static int dsl_dataset_space_written_impl(zfs_bookmark_phys_t *bmp, dsl_dataset_t *new, uint64_t *usedp, uint64_t *compp, uint64_t *uncompp) { int err = 0; dsl_pool_t *dp = new->ds_dir->dd_pool; ASSERT(dsl_pool_config_held(dp)); if (dsl_dataset_is_snapshot(new)) { ASSERT3U(bmp->zbm_creation_txg, <, dsl_dataset_phys(new)->ds_creation_txg); } *usedp = 0; *usedp += dsl_dataset_phys(new)->ds_referenced_bytes; *usedp -= bmp->zbm_referenced_bytes_refd; *compp = 0; *compp += dsl_dataset_phys(new)->ds_compressed_bytes; *compp -= bmp->zbm_compressed_bytes_refd; *uncompp = 0; *uncompp += dsl_dataset_phys(new)->ds_uncompressed_bytes; *uncompp -= bmp->zbm_uncompressed_bytes_refd; dsl_dataset_t *snap = new; while (dsl_dataset_phys(snap)->ds_prev_snap_txg > bmp->zbm_creation_txg) { uint64_t used, comp, uncomp; dsl_deadlist_space_range(&snap->ds_deadlist, 0, bmp->zbm_creation_txg, &used, &comp, &uncomp); *usedp += used; *compp += comp; *uncompp += uncomp; uint64_t snapobj = dsl_dataset_phys(snap)->ds_prev_snap_obj; if (snap != new) dsl_dataset_rele(snap, FTAG); err = dsl_dataset_hold_obj(dp, snapobj, FTAG, &snap); if (err != 0) break; } /* * We might not have the FBN if we are calculating written from * a snapshot (because we didn't know the correct "next" snapshot * until now). */ if (bmp->zbm_flags & ZBM_FLAG_HAS_FBN) { *usedp += bmp->zbm_referenced_freed_before_next_snap; *compp += bmp->zbm_compressed_freed_before_next_snap; *uncompp += bmp->zbm_uncompressed_freed_before_next_snap; } else { ASSERT3U(dsl_dataset_phys(snap)->ds_prev_snap_txg, ==, bmp->zbm_creation_txg); uint64_t used, comp, uncomp; dsl_deadlist_space(&snap->ds_deadlist, &used, &comp, &uncomp); *usedp += used; *compp += comp; *uncompp += uncomp; } if (snap != new) dsl_dataset_rele(snap, FTAG); return (err); } /* * Return (in *usedp) the amount of space written in new that was not * present at the time the bookmark corresponds to. New may be a * snapshot or the head. Old must be a bookmark before new, in * new's filesystem (or its origin) -- caller verifies this. */ int dsl_dataset_space_written_bookmark(zfs_bookmark_phys_t *bmp, dsl_dataset_t *new, uint64_t *usedp, uint64_t *compp, uint64_t *uncompp) { if (!(bmp->zbm_flags & ZBM_FLAG_HAS_FBN)) return (SET_ERROR(ENOTSUP)); return (dsl_dataset_space_written_impl(bmp, new, usedp, compp, uncompp)); } /* * Return (in *usedp) the amount of space written in new that is not * present in oldsnap. New may be a snapshot or the head. Old must be * a snapshot before new, in new's filesystem (or its origin). If not then * fail and return EINVAL. */ int dsl_dataset_space_written(dsl_dataset_t *oldsnap, dsl_dataset_t *new, uint64_t *usedp, uint64_t *compp, uint64_t *uncompp) { if (!dsl_dataset_is_before(new, oldsnap, 0)) return (SET_ERROR(EINVAL)); zfs_bookmark_phys_t zbm = { 0 }; dsl_dataset_phys_t *dsp = dsl_dataset_phys(oldsnap); zbm.zbm_guid = dsp->ds_guid; zbm.zbm_creation_txg = dsp->ds_creation_txg; zbm.zbm_creation_time = dsp->ds_creation_time; zbm.zbm_referenced_bytes_refd = dsp->ds_referenced_bytes; zbm.zbm_compressed_bytes_refd = dsp->ds_compressed_bytes; zbm.zbm_uncompressed_bytes_refd = dsp->ds_uncompressed_bytes; /* * If oldsnap is the origin (or origin's origin, ...) of new, * we can't easily calculate the effective FBN. Therefore, * we do not set ZBM_FLAG_HAS_FBN, so that the _impl will calculate * it relative to the correct "next": the next snapshot towards "new", * rather than the next snapshot in oldsnap's dsl_dir. */ return (dsl_dataset_space_written_impl(&zbm, new, usedp, compp, uncompp)); } /* * Return (in *usedp) the amount of space that will be reclaimed if firstsnap, * lastsnap, and all snapshots in between are deleted. * * blocks that would be freed [---------------------------] * snapshots ---O-------O--------O-------O--------O * firstsnap lastsnap * * This is the set of blocks that were born after the snap before firstsnap, * (birth > firstsnap->prev_snap_txg) and died before the snap after the * last snap (ie, is on lastsnap->ds_next->ds_deadlist or an earlier deadlist). * We calculate this by iterating over the relevant deadlists (from the snap * after lastsnap, backward to the snap after firstsnap), summing up the * space on the deadlist that was born after the snap before firstsnap. */ int dsl_dataset_space_wouldfree(dsl_dataset_t *firstsnap, dsl_dataset_t *lastsnap, uint64_t *usedp, uint64_t *compp, uint64_t *uncompp) { int err = 0; uint64_t snapobj; dsl_pool_t *dp = firstsnap->ds_dir->dd_pool; ASSERT(firstsnap->ds_is_snapshot); ASSERT(lastsnap->ds_is_snapshot); /* * Check that the snapshots are in the same dsl_dir, and firstsnap * is before lastsnap. */ if (firstsnap->ds_dir != lastsnap->ds_dir || dsl_dataset_phys(firstsnap)->ds_creation_txg > dsl_dataset_phys(lastsnap)->ds_creation_txg) return (SET_ERROR(EINVAL)); *usedp = *compp = *uncompp = 0; snapobj = dsl_dataset_phys(lastsnap)->ds_next_snap_obj; while (snapobj != firstsnap->ds_object) { dsl_dataset_t *ds; uint64_t used, comp, uncomp; err = dsl_dataset_hold_obj(dp, snapobj, FTAG, &ds); if (err != 0) break; dsl_deadlist_space_range(&ds->ds_deadlist, dsl_dataset_phys(firstsnap)->ds_prev_snap_txg, UINT64_MAX, &used, &comp, &uncomp); *usedp += used; *compp += comp; *uncompp += uncomp; snapobj = dsl_dataset_phys(ds)->ds_prev_snap_obj; ASSERT3U(snapobj, !=, 0); dsl_dataset_rele(ds, FTAG); } return (err); } /* * Return TRUE if 'earlier' is an earlier snapshot in 'later's timeline. * For example, they could both be snapshots of the same filesystem, and * 'earlier' is before 'later'. Or 'earlier' could be the origin of * 'later's filesystem. Or 'earlier' could be an older snapshot in the origin's * filesystem. Or 'earlier' could be the origin's origin. * * If non-zero, earlier_txg is used instead of earlier's ds_creation_txg. */ boolean_t dsl_dataset_is_before(dsl_dataset_t *later, dsl_dataset_t *earlier, uint64_t earlier_txg) { dsl_pool_t *dp = later->ds_dir->dd_pool; int error; boolean_t ret; ASSERT(dsl_pool_config_held(dp)); ASSERT(earlier->ds_is_snapshot || earlier_txg != 0); if (earlier_txg == 0) earlier_txg = dsl_dataset_phys(earlier)->ds_creation_txg; if (later->ds_is_snapshot && earlier_txg >= dsl_dataset_phys(later)->ds_creation_txg) return (B_FALSE); if (later->ds_dir == earlier->ds_dir) return (B_TRUE); /* * We check dd_origin_obj explicitly here rather than using * dsl_dir_is_clone() so that we will return TRUE if "earlier" * is $ORIGIN@$ORIGIN. dsl_dataset_space_written() depends on * this behavior. */ if (dsl_dir_phys(later->ds_dir)->dd_origin_obj == 0) return (B_FALSE); dsl_dataset_t *origin; error = dsl_dataset_hold_obj(dp, dsl_dir_phys(later->ds_dir)->dd_origin_obj, FTAG, &origin); if (error != 0) return (B_FALSE); if (dsl_dataset_phys(origin)->ds_creation_txg == earlier_txg && origin->ds_dir == earlier->ds_dir) { dsl_dataset_rele(origin, FTAG); return (B_TRUE); } ret = dsl_dataset_is_before(origin, earlier, earlier_txg); dsl_dataset_rele(origin, FTAG); return (ret); } void dsl_dataset_zapify(dsl_dataset_t *ds, dmu_tx_t *tx) { objset_t *mos = ds->ds_dir->dd_pool->dp_meta_objset; dmu_object_zapify(mos, ds->ds_object, DMU_OT_DSL_DATASET, tx); } boolean_t dsl_dataset_is_zapified(dsl_dataset_t *ds) { dmu_object_info_t doi; dmu_object_info_from_db(ds->ds_dbuf, &doi); return (doi.doi_type == DMU_OTN_ZAP_METADATA); } boolean_t dsl_dataset_has_resume_receive_state(dsl_dataset_t *ds) { return (dsl_dataset_is_zapified(ds) && zap_contains(ds->ds_dir->dd_pool->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_TOGUID) == 0); } uint64_t dsl_dataset_get_remap_deadlist_object(dsl_dataset_t *ds) { uint64_t remap_deadlist_obj; int err; if (!dsl_dataset_is_zapified(ds)) return (0); err = zap_lookup(ds->ds_dir->dd_pool->dp_meta_objset, ds->ds_object, DS_FIELD_REMAP_DEADLIST, sizeof (remap_deadlist_obj), 1, &remap_deadlist_obj); if (err != 0) { VERIFY3S(err, ==, ENOENT); return (0); } ASSERT(remap_deadlist_obj != 0); return (remap_deadlist_obj); } boolean_t dsl_dataset_remap_deadlist_exists(dsl_dataset_t *ds) { EQUIV(dsl_deadlist_is_open(&ds->ds_remap_deadlist), dsl_dataset_get_remap_deadlist_object(ds) != 0); return (dsl_deadlist_is_open(&ds->ds_remap_deadlist)); } static void dsl_dataset_set_remap_deadlist_object(dsl_dataset_t *ds, uint64_t obj, dmu_tx_t *tx) { ASSERT(obj != 0); dsl_dataset_zapify(ds, tx); VERIFY0(zap_add(ds->ds_dir->dd_pool->dp_meta_objset, ds->ds_object, DS_FIELD_REMAP_DEADLIST, sizeof (obj), 1, &obj, tx)); } static void dsl_dataset_unset_remap_deadlist_object(dsl_dataset_t *ds, dmu_tx_t *tx) { VERIFY0(zap_remove(ds->ds_dir->dd_pool->dp_meta_objset, ds->ds_object, DS_FIELD_REMAP_DEADLIST, tx)); } void dsl_dataset_destroy_remap_deadlist(dsl_dataset_t *ds, dmu_tx_t *tx) { uint64_t remap_deadlist_object; spa_t *spa = ds->ds_dir->dd_pool->dp_spa; ASSERT(dmu_tx_is_syncing(tx)); ASSERT(dsl_dataset_remap_deadlist_exists(ds)); remap_deadlist_object = ds->ds_remap_deadlist.dl_object; dsl_deadlist_close(&ds->ds_remap_deadlist); dsl_deadlist_free(spa_meta_objset(spa), remap_deadlist_object, tx); dsl_dataset_unset_remap_deadlist_object(ds, tx); spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); } void dsl_dataset_create_remap_deadlist(dsl_dataset_t *ds, dmu_tx_t *tx) { uint64_t remap_deadlist_obj; spa_t *spa = ds->ds_dir->dd_pool->dp_spa; ASSERT(dmu_tx_is_syncing(tx)); ASSERT(MUTEX_HELD(&ds->ds_remap_deadlist_lock)); /* * Currently we only create remap deadlists when there are indirect * vdevs with referenced mappings. */ ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); remap_deadlist_obj = dsl_deadlist_clone( &ds->ds_deadlist, UINT64_MAX, dsl_dataset_phys(ds)->ds_prev_snap_obj, tx); dsl_dataset_set_remap_deadlist_object(ds, remap_deadlist_obj, tx); dsl_deadlist_open(&ds->ds_remap_deadlist, spa_meta_objset(spa), remap_deadlist_obj); spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); } void dsl_dataset_activate_redaction(dsl_dataset_t *ds, uint64_t *redact_snaps, uint64_t num_redact_snaps, dmu_tx_t *tx) { uint64_t dsobj = ds->ds_object; struct feature_type_uint64_array_arg *ftuaa = kmem_zalloc(sizeof (*ftuaa), KM_SLEEP); ftuaa->length = (int64_t)num_redact_snaps; if (num_redact_snaps > 0) { ftuaa->array = kmem_alloc(num_redact_snaps * sizeof (uint64_t), KM_SLEEP); bcopy(redact_snaps, ftuaa->array, num_redact_snaps * sizeof (uint64_t)); } dsl_dataset_activate_feature(dsobj, SPA_FEATURE_REDACTED_DATASETS, ftuaa, tx); ds->ds_feature[SPA_FEATURE_REDACTED_DATASETS] = ftuaa; } /* BEGIN CSTYLED */ #if defined(_LP64) #define RECORDSIZE_PERM ZMOD_RW #else /* Limited to 1M on 32-bit platforms due to lack of virtual address space */ #define RECORDSIZE_PERM ZMOD_RD #endif ZFS_MODULE_PARAM(zfs, zfs_, max_recordsize, INT, RECORDSIZE_PERM, "Max allowed record size"); ZFS_MODULE_PARAM(zfs, zfs_, allow_redacted_dataset_mount, INT, ZMOD_RW, "Allow mounting of redacted datasets"); /* END CSTYLED */ EXPORT_SYMBOL(dsl_dataset_hold); EXPORT_SYMBOL(dsl_dataset_hold_flags); EXPORT_SYMBOL(dsl_dataset_hold_obj); EXPORT_SYMBOL(dsl_dataset_hold_obj_flags); EXPORT_SYMBOL(dsl_dataset_own); EXPORT_SYMBOL(dsl_dataset_own_obj); EXPORT_SYMBOL(dsl_dataset_name); EXPORT_SYMBOL(dsl_dataset_rele); EXPORT_SYMBOL(dsl_dataset_rele_flags); EXPORT_SYMBOL(dsl_dataset_disown); EXPORT_SYMBOL(dsl_dataset_tryown); EXPORT_SYMBOL(dsl_dataset_create_sync); EXPORT_SYMBOL(dsl_dataset_create_sync_dd); EXPORT_SYMBOL(dsl_dataset_snapshot_check); EXPORT_SYMBOL(dsl_dataset_snapshot_sync); EXPORT_SYMBOL(dsl_dataset_promote); EXPORT_SYMBOL(dsl_dataset_user_hold); EXPORT_SYMBOL(dsl_dataset_user_release); EXPORT_SYMBOL(dsl_dataset_get_holds); EXPORT_SYMBOL(dsl_dataset_get_blkptr); EXPORT_SYMBOL(dsl_dataset_get_spa); EXPORT_SYMBOL(dsl_dataset_modified_since_snap); EXPORT_SYMBOL(dsl_dataset_space_written); EXPORT_SYMBOL(dsl_dataset_space_wouldfree); EXPORT_SYMBOL(dsl_dataset_sync); EXPORT_SYMBOL(dsl_dataset_block_born); EXPORT_SYMBOL(dsl_dataset_block_kill); EXPORT_SYMBOL(dsl_dataset_dirty); EXPORT_SYMBOL(dsl_dataset_stats); EXPORT_SYMBOL(dsl_dataset_fast_stat); EXPORT_SYMBOL(dsl_dataset_space); EXPORT_SYMBOL(dsl_dataset_fsid_guid); EXPORT_SYMBOL(dsl_dsobj_to_dsname); EXPORT_SYMBOL(dsl_dataset_check_quota); EXPORT_SYMBOL(dsl_dataset_clone_swap_check_impl); EXPORT_SYMBOL(dsl_dataset_clone_swap_sync_impl); diff --git a/module/zfs/vdev_raidz_math_aarch64_neon_common.h b/module/zfs/vdev_raidz_math_aarch64_neon_common.h index 92a50b3a0076..e46b2536546c 100644 --- a/module/zfs/vdev_raidz_math_aarch64_neon_common.h +++ b/module/zfs/vdev_raidz_math_aarch64_neon_common.h @@ -1,682 +1,684 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (C) 2016 Romain Dolbeau. All rights reserved. */ #include #include +#ifdef __linux__ #define __asm __asm__ __volatile__ +#endif #define _REG_CNT(_0, _1, _2, _3, _4, _5, _6, _7, N, ...) N #define REG_CNT(r...) _REG_CNT(r, 8, 7, 6, 5, 4, 3, 2, 1) #define VR0_(REG, ...) "%[w"#REG"]" #define VR1_(_1, REG, ...) "%[w"#REG"]" #define VR2_(_1, _2, REG, ...) "%[w"#REG"]" #define VR3_(_1, _2, _3, REG, ...) "%[w"#REG"]" #define VR4_(_1, _2, _3, _4, REG, ...) "%[w"#REG"]" #define VR5_(_1, _2, _3, _4, _5, REG, ...) "%[w"#REG"]" #define VR6_(_1, _2, _3, _4, _5, _6, REG, ...) "%[w"#REG"]" #define VR7_(_1, _2, _3, _4, _5, _6, _7, REG, ...) "%[w"#REG"]" /* * Here we need registers not used otherwise. * They will be used in unused ASM for the case * with more registers than required... but GCC * will still need to make sure the constraints * are correct, and duplicate constraints are illegal * ... and we use the "register" number as a name */ #define VR0(r...) VR0_(r) #define VR1(r...) VR1_(r) #define VR2(r...) VR2_(r, 36) #define VR3(r...) VR3_(r, 36, 35) #define VR4(r...) VR4_(r, 36, 35, 34, 33) #define VR5(r...) VR5_(r, 36, 35, 34, 33, 32) #define VR6(r...) VR6_(r, 36, 35, 34, 33, 32, 31) #define VR7(r...) VR7_(r, 36, 35, 34, 33, 32, 31, 30) #define VR(X) "%[w"#X"]" #define RVR0_(REG, ...) [w##REG] "w" (w##REG) #define RVR1_(_1, REG, ...) [w##REG] "w" (w##REG) #define RVR2_(_1, _2, REG, ...) [w##REG] "w" (w##REG) #define RVR3_(_1, _2, _3, REG, ...) [w##REG] "w" (w##REG) #define RVR4_(_1, _2, _3, _4, REG, ...) [w##REG] "w" (w##REG) #define RVR5_(_1, _2, _3, _4, _5, REG, ...) [w##REG] "w" (w##REG) #define RVR6_(_1, _2, _3, _4, _5, _6, REG, ...) [w##REG] "w" (w##REG) #define RVR7_(_1, _2, _3, _4, _5, _6, _7, REG, ...) [w##REG] "w" (w##REG) #define RVR0(r...) RVR0_(r) #define RVR1(r...) RVR1_(r) #define RVR2(r...) RVR2_(r, 36) #define RVR3(r...) RVR3_(r, 36, 35) #define RVR4(r...) RVR4_(r, 36, 35, 34, 33) #define RVR5(r...) RVR5_(r, 36, 35, 34, 33, 32) #define RVR6(r...) RVR6_(r, 36, 35, 34, 33, 32, 31) #define RVR7(r...) RVR7_(r, 36, 35, 34, 33, 32, 31, 30) #define RVR(X) [w##X] "w" (w##X) #define WVR0_(REG, ...) [w##REG] "=w" (w##REG) #define WVR1_(_1, REG, ...) [w##REG] "=w" (w##REG) #define WVR2_(_1, _2, REG, ...) [w##REG] "=w" (w##REG) #define WVR3_(_1, _2, _3, REG, ...) [w##REG] "=w" (w##REG) #define WVR4_(_1, _2, _3, _4, REG, ...) [w##REG] "=w" (w##REG) #define WVR5_(_1, _2, _3, _4, _5, REG, ...) [w##REG] "=w" (w##REG) #define WVR6_(_1, _2, _3, _4, _5, _6, REG, ...) [w##REG] "=w" (w##REG) #define WVR7_(_1, _2, _3, _4, _5, _6, _7, REG, ...) [w##REG] "=w" (w##REG) #define WVR0(r...) WVR0_(r) #define WVR1(r...) WVR1_(r) #define WVR2(r...) WVR2_(r, 36) #define WVR3(r...) WVR3_(r, 36, 35) #define WVR4(r...) WVR4_(r, 36, 35, 34, 33) #define WVR5(r...) WVR5_(r, 36, 35, 34, 33, 32) #define WVR6(r...) WVR6_(r, 36, 35, 34, 33, 32, 31) #define WVR7(r...) WVR7_(r, 36, 35, 34, 33, 32, 31, 30) #define WVR(X) [w##X] "=w" (w##X) #define UVR0_(REG, ...) [w##REG] "+&w" (w##REG) #define UVR1_(_1, REG, ...) [w##REG] "+&w" (w##REG) #define UVR2_(_1, _2, REG, ...) [w##REG] "+&w" (w##REG) #define UVR3_(_1, _2, _3, REG, ...) [w##REG] "+&w" (w##REG) #define UVR4_(_1, _2, _3, _4, REG, ...) [w##REG] "+&w" (w##REG) #define UVR5_(_1, _2, _3, _4, _5, REG, ...) [w##REG] "+&w" (w##REG) #define UVR6_(_1, _2, _3, _4, _5, _6, REG, ...) [w##REG] "+&w" (w##REG) #define UVR7_(_1, _2, _3, _4, _5, _6, _7, REG, ...) [w##REG] "+&w" (w##REG) #define UVR0(r...) UVR0_(r) #define UVR1(r...) UVR1_(r) #define UVR2(r...) UVR2_(r, 36) #define UVR3(r...) UVR3_(r, 36, 35) #define UVR4(r...) UVR4_(r, 36, 35, 34, 33) #define UVR5(r...) UVR5_(r, 36, 35, 34, 33, 32) #define UVR6(r...) UVR6_(r, 36, 35, 34, 33, 32, 31) #define UVR7(r...) UVR7_(r, 36, 35, 34, 33, 32, 31, 30) #define UVR(X) [w##X] "+&w" (w##X) #define R_01(REG1, REG2, ...) REG1, REG2 #define _R_23(_0, _1, REG2, REG3, ...) REG2, REG3 #define R_23(REG...) _R_23(REG, 1, 2, 3) #define ZFS_ASM_BUG() ASSERT(0) #define OFFSET(ptr, val) (((unsigned char *)(ptr))+val) extern const uint8_t gf_clmul_mod_lt[4*256][16]; #define ELEM_SIZE 16 typedef struct v { uint8_t b[ELEM_SIZE] __attribute__((aligned(ELEM_SIZE))); } v_t; #define XOR_ACC(src, r...) \ { \ switch (REG_CNT(r)) { \ case 8: \ __asm( \ "ld1 { v21.4s },%[SRC0]\n" \ "ld1 { v20.4s },%[SRC1]\n" \ "ld1 { v19.4s },%[SRC2]\n" \ "ld1 { v18.4s },%[SRC3]\n" \ "eor " VR0(r) ".16b," VR0(r) ".16b,v21.16b\n" \ "eor " VR1(r) ".16b," VR1(r) ".16b,v20.16b\n" \ "eor " VR2(r) ".16b," VR2(r) ".16b,v19.16b\n" \ "eor " VR3(r) ".16b," VR3(r) ".16b,v18.16b\n" \ "ld1 { v21.4s },%[SRC4]\n" \ "ld1 { v20.4s },%[SRC5]\n" \ "ld1 { v19.4s },%[SRC6]\n" \ "ld1 { v18.4s },%[SRC7]\n" \ "eor " VR4(r) ".16b," VR4(r) ".16b,v21.16b\n" \ "eor " VR5(r) ".16b," VR5(r) ".16b,v20.16b\n" \ "eor " VR6(r) ".16b," VR6(r) ".16b,v19.16b\n" \ "eor " VR7(r) ".16b," VR7(r) ".16b,v18.16b\n" \ : UVR0(r), UVR1(r), UVR2(r), UVR3(r), \ UVR4(r), UVR5(r), UVR6(r), UVR7(r) \ : [SRC0] "Q" (*(OFFSET(src, 0))), \ [SRC1] "Q" (*(OFFSET(src, 16))), \ [SRC2] "Q" (*(OFFSET(src, 32))), \ [SRC3] "Q" (*(OFFSET(src, 48))), \ [SRC4] "Q" (*(OFFSET(src, 64))), \ [SRC5] "Q" (*(OFFSET(src, 80))), \ [SRC6] "Q" (*(OFFSET(src, 96))), \ [SRC7] "Q" (*(OFFSET(src, 112))) \ : "v18", "v19", "v20", "v21"); \ break; \ case 4: \ __asm( \ "ld1 { v21.4s },%[SRC0]\n" \ "ld1 { v20.4s },%[SRC1]\n" \ "ld1 { v19.4s },%[SRC2]\n" \ "ld1 { v18.4s },%[SRC3]\n" \ "eor " VR0(r) ".16b," VR0(r) ".16b,v21.16b\n" \ "eor " VR1(r) ".16b," VR1(r) ".16b,v20.16b\n" \ "eor " VR2(r) ".16b," VR2(r) ".16b,v19.16b\n" \ "eor " VR3(r) ".16b," VR3(r) ".16b,v18.16b\n" \ : UVR0(r), UVR1(r), UVR2(r), UVR3(r) \ : [SRC0] "Q" (*(OFFSET(src, 0))), \ [SRC1] "Q" (*(OFFSET(src, 16))), \ [SRC2] "Q" (*(OFFSET(src, 32))), \ [SRC3] "Q" (*(OFFSET(src, 48))) \ : "v18", "v19", "v20", "v21"); \ break; \ case 2: \ __asm( \ "ld1 { v21.4s },%[SRC0]\n" \ "ld1 { v20.4s },%[SRC1]\n" \ "eor " VR0(r) ".16b," VR0(r) ".16b,v21.16b\n" \ "eor " VR1(r) ".16b," VR1(r) ".16b,v20.16b\n" \ : UVR0(r), UVR1(r) \ : [SRC0] "Q" (*(OFFSET(src, 0))), \ [SRC1] "Q" (*(OFFSET(src, 16))) \ : "v20", "v21"); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } #define XOR(r...) \ { \ switch (REG_CNT(r)) { \ case 8: \ __asm( \ "eor " VR4(r) ".16b," VR4(r) ".16b," VR0(r) ".16b\n" \ "eor " VR5(r) ".16b," VR5(r) ".16b," VR1(r) ".16b\n" \ "eor " VR6(r) ".16b," VR6(r) ".16b," VR2(r) ".16b\n" \ "eor " VR7(r) ".16b," VR7(r) ".16b," VR3(r) ".16b\n" \ : UVR4(r), UVR5(r), UVR6(r), UVR7(r) \ : RVR0(r), RVR1(r), RVR2(r), RVR3(r)); \ break; \ case 4: \ __asm( \ "eor " VR2(r) ".16b," VR2(r) ".16b," VR0(r) ".16b\n" \ "eor " VR3(r) ".16b," VR3(r) ".16b," VR1(r) ".16b\n" \ : UVR2(r), UVR3(r) \ : RVR0(r), RVR1(r)); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } #define ZERO(r...) \ { \ switch (REG_CNT(r)) { \ case 8: \ __asm( \ "eor " VR0(r) ".16b," VR0(r) ".16b," VR0(r) ".16b\n" \ "eor " VR1(r) ".16b," VR1(r) ".16b," VR1(r) ".16b\n" \ "eor " VR2(r) ".16b," VR2(r) ".16b," VR2(r) ".16b\n" \ "eor " VR3(r) ".16b," VR3(r) ".16b," VR3(r) ".16b\n" \ "eor " VR4(r) ".16b," VR4(r) ".16b," VR4(r) ".16b\n" \ "eor " VR5(r) ".16b," VR5(r) ".16b," VR5(r) ".16b\n" \ "eor " VR6(r) ".16b," VR6(r) ".16b," VR6(r) ".16b\n" \ "eor " VR7(r) ".16b," VR7(r) ".16b," VR7(r) ".16b\n" \ : WVR0(r), WVR1(r), WVR2(r), WVR3(r), \ WVR4(r), WVR5(r), WVR6(r), WVR7(r)); \ break; \ case 4: \ __asm( \ "eor " VR0(r) ".16b," VR0(r) ".16b," VR0(r) ".16b\n" \ "eor " VR1(r) ".16b," VR1(r) ".16b," VR1(r) ".16b\n" \ "eor " VR2(r) ".16b," VR2(r) ".16b," VR2(r) ".16b\n" \ "eor " VR3(r) ".16b," VR3(r) ".16b," VR3(r) ".16b\n" \ : WVR0(r), WVR1(r), WVR2(r), WVR3(r)); \ break; \ case 2: \ __asm( \ "eor " VR0(r) ".16b," VR0(r) ".16b," VR0(r) ".16b\n" \ "eor " VR1(r) ".16b," VR1(r) ".16b," VR1(r) ".16b\n" \ : WVR0(r), WVR1(r)); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } #define COPY(r...) \ { \ switch (REG_CNT(r)) { \ case 8: \ __asm( \ "mov " VR4(r) ".16b," VR0(r) ".16b\n" \ "mov " VR5(r) ".16b," VR1(r) ".16b\n" \ "mov " VR6(r) ".16b," VR2(r) ".16b\n" \ "mov " VR7(r) ".16b," VR3(r) ".16b\n" \ : WVR4(r), WVR5(r), WVR6(r), WVR7(r) \ : RVR0(r), RVR1(r), RVR2(r), RVR3(r)); \ break; \ case 4: \ __asm( \ "mov " VR2(r) ".16b," VR0(r) ".16b\n" \ "mov " VR3(r) ".16b," VR1(r) ".16b\n" \ : WVR2(r), WVR3(r) \ : RVR0(r), RVR1(r)); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } #define LOAD(src, r...) \ { \ switch (REG_CNT(r)) { \ case 8: \ __asm( \ "ld1 { " VR0(r) ".4s },%[SRC0]\n" \ "ld1 { " VR1(r) ".4s },%[SRC1]\n" \ "ld1 { " VR2(r) ".4s },%[SRC2]\n" \ "ld1 { " VR3(r) ".4s },%[SRC3]\n" \ "ld1 { " VR4(r) ".4s },%[SRC4]\n" \ "ld1 { " VR5(r) ".4s },%[SRC5]\n" \ "ld1 { " VR6(r) ".4s },%[SRC6]\n" \ "ld1 { " VR7(r) ".4s },%[SRC7]\n" \ : WVR0(r), WVR1(r), WVR2(r), WVR3(r), \ WVR4(r), WVR5(r), WVR6(r), WVR7(r) \ : [SRC0] "Q" (*(OFFSET(src, 0))), \ [SRC1] "Q" (*(OFFSET(src, 16))), \ [SRC2] "Q" (*(OFFSET(src, 32))), \ [SRC3] "Q" (*(OFFSET(src, 48))), \ [SRC4] "Q" (*(OFFSET(src, 64))), \ [SRC5] "Q" (*(OFFSET(src, 80))), \ [SRC6] "Q" (*(OFFSET(src, 96))), \ [SRC7] "Q" (*(OFFSET(src, 112)))); \ break; \ case 4: \ __asm( \ "ld1 { " VR0(r) ".4s },%[SRC0]\n" \ "ld1 { " VR1(r) ".4s },%[SRC1]\n" \ "ld1 { " VR2(r) ".4s },%[SRC2]\n" \ "ld1 { " VR3(r) ".4s },%[SRC3]\n" \ : WVR0(r), WVR1(r), WVR2(r), WVR3(r) \ : [SRC0] "Q" (*(OFFSET(src, 0))), \ [SRC1] "Q" (*(OFFSET(src, 16))), \ [SRC2] "Q" (*(OFFSET(src, 32))), \ [SRC3] "Q" (*(OFFSET(src, 48)))); \ break; \ case 2: \ __asm( \ "ld1 { " VR0(r) ".4s },%[SRC0]\n" \ "ld1 { " VR1(r) ".4s },%[SRC1]\n" \ : WVR0(r), WVR1(r) \ : [SRC0] "Q" (*(OFFSET(src, 0))), \ [SRC1] "Q" (*(OFFSET(src, 16)))); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } #define STORE(dst, r...) \ { \ switch (REG_CNT(r)) { \ case 8: \ __asm( \ "st1 { " VR0(r) ".4s },%[DST0]\n" \ "st1 { " VR1(r) ".4s },%[DST1]\n" \ "st1 { " VR2(r) ".4s },%[DST2]\n" \ "st1 { " VR3(r) ".4s },%[DST3]\n" \ "st1 { " VR4(r) ".4s },%[DST4]\n" \ "st1 { " VR5(r) ".4s },%[DST5]\n" \ "st1 { " VR6(r) ".4s },%[DST6]\n" \ "st1 { " VR7(r) ".4s },%[DST7]\n" \ : [DST0] "=Q" (*(OFFSET(dst, 0))), \ [DST1] "=Q" (*(OFFSET(dst, 16))), \ [DST2] "=Q" (*(OFFSET(dst, 32))), \ [DST3] "=Q" (*(OFFSET(dst, 48))), \ [DST4] "=Q" (*(OFFSET(dst, 64))), \ [DST5] "=Q" (*(OFFSET(dst, 80))), \ [DST6] "=Q" (*(OFFSET(dst, 96))), \ [DST7] "=Q" (*(OFFSET(dst, 112))) \ : RVR0(r), RVR1(r), RVR2(r), RVR3(r), \ RVR4(r), RVR5(r), RVR6(r), RVR7(r)); \ break; \ case 4: \ __asm( \ "st1 { " VR0(r) ".4s },%[DST0]\n" \ "st1 { " VR1(r) ".4s },%[DST1]\n" \ "st1 { " VR2(r) ".4s },%[DST2]\n" \ "st1 { " VR3(r) ".4s },%[DST3]\n" \ : [DST0] "=Q" (*(OFFSET(dst, 0))), \ [DST1] "=Q" (*(OFFSET(dst, 16))), \ [DST2] "=Q" (*(OFFSET(dst, 32))), \ [DST3] "=Q" (*(OFFSET(dst, 48))) \ : RVR0(r), RVR1(r), RVR2(r), RVR3(r)); \ break; \ case 2: \ __asm( \ "st1 { " VR0(r) ".4s },%[DST0]\n" \ "st1 { " VR1(r) ".4s },%[DST1]\n" \ : [DST0] "=Q" (*(OFFSET(dst, 0))), \ [DST1] "=Q" (*(OFFSET(dst, 16))) \ : RVR0(r), RVR1(r)); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } /* * Unfortunately cannot use the macro, because GCC * will try to use the macro name and not value * later on... * Kept as a reference to what a numbered variable is */ #define _00 "v17" #define _1d "v16" #define _temp0 "v19" #define _temp1 "v18" #define MUL2_SETUP() \ { \ __asm( \ "eor " VR(17) ".16b," VR(17) ".16b," VR(17) ".16b\n" \ "movi " VR(16) ".16b,#0x1d\n" \ : WVR(16), WVR(17)); \ } #define MUL2(r...) \ { \ switch (REG_CNT(r)) { \ case 4: \ __asm( \ "cmgt v19.16b," VR(17) ".16b," VR0(r) ".16b\n" \ "cmgt v18.16b," VR(17) ".16b," VR1(r) ".16b\n" \ "cmgt v21.16b," VR(17) ".16b," VR2(r) ".16b\n" \ "cmgt v20.16b," VR(17) ".16b," VR3(r) ".16b\n" \ "and v19.16b,v19.16b," VR(16) ".16b\n" \ "and v18.16b,v18.16b," VR(16) ".16b\n" \ "and v21.16b,v21.16b," VR(16) ".16b\n" \ "and v20.16b,v20.16b," VR(16) ".16b\n" \ "shl " VR0(r) ".16b," VR0(r) ".16b,#1\n" \ "shl " VR1(r) ".16b," VR1(r) ".16b,#1\n" \ "shl " VR2(r) ".16b," VR2(r) ".16b,#1\n" \ "shl " VR3(r) ".16b," VR3(r) ".16b,#1\n" \ "eor " VR0(r) ".16b,v19.16b," VR0(r) ".16b\n" \ "eor " VR1(r) ".16b,v18.16b," VR1(r) ".16b\n" \ "eor " VR2(r) ".16b,v21.16b," VR2(r) ".16b\n" \ "eor " VR3(r) ".16b,v20.16b," VR3(r) ".16b\n" \ : UVR0(r), UVR1(r), UVR2(r), UVR3(r) \ : RVR(17), RVR(16) \ : "v18", "v19", "v20", "v21"); \ break; \ case 2: \ __asm( \ "cmgt v19.16b," VR(17) ".16b," VR0(r) ".16b\n" \ "cmgt v18.16b," VR(17) ".16b," VR1(r) ".16b\n" \ "and v19.16b,v19.16b," VR(16) ".16b\n" \ "and v18.16b,v18.16b," VR(16) ".16b\n" \ "shl " VR0(r) ".16b," VR0(r) ".16b,#1\n" \ "shl " VR1(r) ".16b," VR1(r) ".16b,#1\n" \ "eor " VR0(r) ".16b,v19.16b," VR0(r) ".16b\n" \ "eor " VR1(r) ".16b,v18.16b," VR1(r) ".16b\n" \ : UVR0(r), UVR1(r) \ : RVR(17), RVR(16) \ : "v18", "v19"); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } #define MUL4(r...) \ { \ MUL2(r); \ MUL2(r); \ } /* * Unfortunately cannot use the macro, because GCC * will try to use the macro name and not value * later on... * Kept as a reference to what a register is * (here we're using actual registers for the * clobbered ones) */ #define _0f "v15" #define _a_save "v14" #define _b_save "v13" #define _lt_mod_a "v12" #define _lt_clmul_a "v11" #define _lt_mod_b "v10" #define _lt_clmul_b "v15" #define _MULx2(c, r...) \ { \ switch (REG_CNT(r)) { \ case 2: \ __asm( \ /* lts for upper part */ \ "movi v15.16b,#0x0f\n" \ "ld1 { v10.4s },%[lt0]\n" \ "ld1 { v11.4s },%[lt1]\n" \ /* upper part */ \ "and v14.16b," VR0(r) ".16b,v15.16b\n" \ "and v13.16b," VR1(r) ".16b,v15.16b\n" \ "ushr " VR0(r) ".16b," VR0(r) ".16b,#4\n" \ "ushr " VR1(r) ".16b," VR1(r) ".16b,#4\n" \ \ "tbl v12.16b,{v10.16b}," VR0(r) ".16b\n" \ "tbl v10.16b,{v10.16b}," VR1(r) ".16b\n" \ "tbl v15.16b,{v11.16b}," VR0(r) ".16b\n" \ "tbl v11.16b,{v11.16b}," VR1(r) ".16b\n" \ \ "eor " VR0(r) ".16b,v15.16b,v12.16b\n" \ "eor " VR1(r) ".16b,v11.16b,v10.16b\n" \ /* lts for lower part */ \ "ld1 { v10.4s },%[lt2]\n" \ "ld1 { v15.4s },%[lt3]\n" \ /* lower part */ \ "tbl v12.16b,{v10.16b},v14.16b\n" \ "tbl v10.16b,{v10.16b},v13.16b\n" \ "tbl v11.16b,{v15.16b},v14.16b\n" \ "tbl v15.16b,{v15.16b},v13.16b\n" \ \ "eor " VR0(r) ".16b," VR0(r) ".16b,v12.16b\n" \ "eor " VR1(r) ".16b," VR1(r) ".16b,v10.16b\n" \ "eor " VR0(r) ".16b," VR0(r) ".16b,v11.16b\n" \ "eor " VR1(r) ".16b," VR1(r) ".16b,v15.16b\n" \ : UVR0(r), UVR1(r) \ : [lt0] "Q" ((gf_clmul_mod_lt[4*(c)+0][0])), \ [lt1] "Q" ((gf_clmul_mod_lt[4*(c)+1][0])), \ [lt2] "Q" ((gf_clmul_mod_lt[4*(c)+2][0])), \ [lt3] "Q" ((gf_clmul_mod_lt[4*(c)+3][0])) \ : "v10", "v11", "v12", "v13", "v14", "v15"); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } #define MUL(c, r...) \ { \ switch (REG_CNT(r)) { \ case 4: \ _MULx2(c, R_23(r)); \ _MULx2(c, R_01(r)); \ break; \ case 2: \ _MULx2(c, R_01(r)); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } #define raidz_math_begin() kfpu_begin() #define raidz_math_end() kfpu_end() /* Overkill... */ #if defined(_KERNEL) #define GEN_X_DEFINE_0_3() \ register unsigned char w0 asm("v0") __attribute__((vector_size(16))); \ register unsigned char w1 asm("v1") __attribute__((vector_size(16))); \ register unsigned char w2 asm("v2") __attribute__((vector_size(16))); \ register unsigned char w3 asm("v3") __attribute__((vector_size(16))); #define GEN_X_DEFINE_4_5() \ register unsigned char w4 asm("v4") __attribute__((vector_size(16))); \ register unsigned char w5 asm("v5") __attribute__((vector_size(16))); #define GEN_X_DEFINE_6_7() \ register unsigned char w6 asm("v6") __attribute__((vector_size(16))); \ register unsigned char w7 asm("v7") __attribute__((vector_size(16))); #define GEN_X_DEFINE_8_9() \ register unsigned char w8 asm("v8") __attribute__((vector_size(16))); \ register unsigned char w9 asm("v9") __attribute__((vector_size(16))); #define GEN_X_DEFINE_10_11() \ register unsigned char w10 asm("v10") __attribute__((vector_size(16))); \ register unsigned char w11 asm("v11") __attribute__((vector_size(16))); #define GEN_X_DEFINE_12_15() \ register unsigned char w12 asm("v12") __attribute__((vector_size(16))); \ register unsigned char w13 asm("v13") __attribute__((vector_size(16))); \ register unsigned char w14 asm("v14") __attribute__((vector_size(16))); \ register unsigned char w15 asm("v15") __attribute__((vector_size(16))); #define GEN_X_DEFINE_16() \ register unsigned char w16 asm("v16") __attribute__((vector_size(16))); #define GEN_X_DEFINE_17() \ register unsigned char w17 asm("v17") __attribute__((vector_size(16))); #define GEN_X_DEFINE_18_21() \ register unsigned char w18 asm("v18") __attribute__((vector_size(16))); \ register unsigned char w19 asm("v19") __attribute__((vector_size(16))); \ register unsigned char w20 asm("v20") __attribute__((vector_size(16))); \ register unsigned char w21 asm("v21") __attribute__((vector_size(16))); #define GEN_X_DEFINE_22_23() \ register unsigned char w22 asm("v22") __attribute__((vector_size(16))); \ register unsigned char w23 asm("v23") __attribute__((vector_size(16))); #define GEN_X_DEFINE_24_27() \ register unsigned char w24 asm("v24") __attribute__((vector_size(16))); \ register unsigned char w25 asm("v25") __attribute__((vector_size(16))); \ register unsigned char w26 asm("v26") __attribute__((vector_size(16))); \ register unsigned char w27 asm("v27") __attribute__((vector_size(16))); #define GEN_X_DEFINE_28_30() \ register unsigned char w28 asm("v28") __attribute__((vector_size(16))); \ register unsigned char w29 asm("v29") __attribute__((vector_size(16))); \ register unsigned char w30 asm("v30") __attribute__((vector_size(16))); #define GEN_X_DEFINE_31() \ register unsigned char w31 asm("v31") __attribute__((vector_size(16))); #define GEN_X_DEFINE_32() \ register unsigned char w32 asm("v31") __attribute__((vector_size(16))); #define GEN_X_DEFINE_33_36() \ register unsigned char w33 asm("v31") __attribute__((vector_size(16))); \ register unsigned char w34 asm("v31") __attribute__((vector_size(16))); \ register unsigned char w35 asm("v31") __attribute__((vector_size(16))); \ register unsigned char w36 asm("v31") __attribute__((vector_size(16))); #define GEN_X_DEFINE_37_38() \ register unsigned char w37 asm("v31") __attribute__((vector_size(16))); \ register unsigned char w38 asm("v31") __attribute__((vector_size(16))); #define GEN_X_DEFINE_ALL() \ GEN_X_DEFINE_0_3() \ GEN_X_DEFINE_4_5() \ GEN_X_DEFINE_6_7() \ GEN_X_DEFINE_8_9() \ GEN_X_DEFINE_10_11() \ GEN_X_DEFINE_12_15() \ GEN_X_DEFINE_16() \ GEN_X_DEFINE_17() \ GEN_X_DEFINE_18_21() \ GEN_X_DEFINE_22_23() \ GEN_X_DEFINE_24_27() \ GEN_X_DEFINE_28_30() \ GEN_X_DEFINE_31() \ GEN_X_DEFINE_32() \ GEN_X_DEFINE_33_36() \ GEN_X_DEFINE_37_38() #else #define GEN_X_DEFINE_0_3() \ unsigned char w0 __attribute__((vector_size(16))); \ unsigned char w1 __attribute__((vector_size(16))); \ unsigned char w2 __attribute__((vector_size(16))); \ unsigned char w3 __attribute__((vector_size(16))); #define GEN_X_DEFINE_4_5() \ unsigned char w4 __attribute__((vector_size(16))); \ unsigned char w5 __attribute__((vector_size(16))); #define GEN_X_DEFINE_6_7() \ unsigned char w6 __attribute__((vector_size(16))); \ unsigned char w7 __attribute__((vector_size(16))); #define GEN_X_DEFINE_8_9() \ unsigned char w8 __attribute__((vector_size(16))); \ unsigned char w9 __attribute__((vector_size(16))); #define GEN_X_DEFINE_10_11() \ unsigned char w10 __attribute__((vector_size(16))); \ unsigned char w11 __attribute__((vector_size(16))); #define GEN_X_DEFINE_12_15() \ unsigned char w12 __attribute__((vector_size(16))); \ unsigned char w13 __attribute__((vector_size(16))); \ unsigned char w14 __attribute__((vector_size(16))); \ unsigned char w15 __attribute__((vector_size(16))); #define GEN_X_DEFINE_16() \ unsigned char w16 __attribute__((vector_size(16))); #define GEN_X_DEFINE_17() \ unsigned char w17 __attribute__((vector_size(16))); #define GEN_X_DEFINE_18_21() \ unsigned char w18 __attribute__((vector_size(16))); \ unsigned char w19 __attribute__((vector_size(16))); \ unsigned char w20 __attribute__((vector_size(16))); \ unsigned char w21 __attribute__((vector_size(16))); #define GEN_X_DEFINE_22_23() \ unsigned char w22 __attribute__((vector_size(16))); \ unsigned char w23 __attribute__((vector_size(16))); #define GEN_X_DEFINE_24_27() \ unsigned char w24 __attribute__((vector_size(16))); \ unsigned char w25 __attribute__((vector_size(16))); \ unsigned char w26 __attribute__((vector_size(16))); \ unsigned char w27 __attribute__((vector_size(16))); #define GEN_X_DEFINE_28_30() \ unsigned char w28 __attribute__((vector_size(16))); \ unsigned char w29 __attribute__((vector_size(16))); \ unsigned char w30 __attribute__((vector_size(16))); #define GEN_X_DEFINE_31() \ unsigned char w31 __attribute__((vector_size(16))); #define GEN_X_DEFINE_32() \ unsigned char w32 __attribute__((vector_size(16))); #define GEN_X_DEFINE_33_36() \ unsigned char w33 __attribute__((vector_size(16))); \ unsigned char w34 __attribute__((vector_size(16))); \ unsigned char w35 __attribute__((vector_size(16))); \ unsigned char w36 __attribute__((vector_size(16))); #define GEN_X_DEFINE_37_38() \ unsigned char w37 __attribute__((vector_size(16))); \ unsigned char w38 __attribute__((vector_size(16))); #define GEN_X_DEFINE_ALL() \ GEN_X_DEFINE_0_3() \ GEN_X_DEFINE_4_5() \ GEN_X_DEFINE_6_7() \ GEN_X_DEFINE_8_9() \ GEN_X_DEFINE_10_11() \ GEN_X_DEFINE_12_15() \ GEN_X_DEFINE_16() \ GEN_X_DEFINE_17() \ GEN_X_DEFINE_18_21() \ GEN_X_DEFINE_22_23() \ GEN_X_DEFINE_24_27() \ GEN_X_DEFINE_28_30() \ GEN_X_DEFINE_31() \ GEN_X_DEFINE_32() \ GEN_X_DEFINE_33_36() \ GEN_X_DEFINE_37_38() #endif diff --git a/module/zfs/vdev_raidz_math_avx2.c b/module/zfs/vdev_raidz_math_avx2.c index 008e848d4c5e..65e4bebce8fa 100644 --- a/module/zfs/vdev_raidz_math_avx2.c +++ b/module/zfs/vdev_raidz_math_avx2.c @@ -1,411 +1,413 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (C) 2016 Gvozden Nešković. All rights reserved. */ #include #if defined(__x86_64) && defined(HAVE_AVX2) #include #include +#ifdef __linux__ #define __asm __asm__ __volatile__ +#endif #define _REG_CNT(_0, _1, _2, _3, _4, _5, _6, _7, N, ...) N #define REG_CNT(r...) _REG_CNT(r, 8, 7, 6, 5, 4, 3, 2, 1) #define VR0_(REG, ...) "ymm"#REG #define VR1_(_1, REG, ...) "ymm"#REG #define VR2_(_1, _2, REG, ...) "ymm"#REG #define VR3_(_1, _2, _3, REG, ...) "ymm"#REG #define VR4_(_1, _2, _3, _4, REG, ...) "ymm"#REG #define VR5_(_1, _2, _3, _4, _5, REG, ...) "ymm"#REG #define VR6_(_1, _2, _3, _4, _5, _6, REG, ...) "ymm"#REG #define VR7_(_1, _2, _3, _4, _5, _6, _7, REG, ...) "ymm"#REG #define VR0(r...) VR0_(r) #define VR1(r...) VR1_(r) #define VR2(r...) VR2_(r, 1) #define VR3(r...) VR3_(r, 1, 2) #define VR4(r...) VR4_(r, 1, 2) #define VR5(r...) VR5_(r, 1, 2, 3) #define VR6(r...) VR6_(r, 1, 2, 3, 4) #define VR7(r...) VR7_(r, 1, 2, 3, 4, 5) #define R_01(REG1, REG2, ...) REG1, REG2 #define _R_23(_0, _1, REG2, REG3, ...) REG2, REG3 #define R_23(REG...) _R_23(REG, 1, 2, 3) #define ZFS_ASM_BUG() ASSERT(0) extern const uint8_t gf_clmul_mod_lt[4*256][16]; #define ELEM_SIZE 32 typedef struct v { uint8_t b[ELEM_SIZE] __attribute__((aligned(ELEM_SIZE))); } v_t; #define XOR_ACC(src, r...) \ { \ switch (REG_CNT(r)) { \ case 4: \ __asm( \ "vpxor 0x00(%[SRC]), %%" VR0(r)", %%" VR0(r) "\n" \ "vpxor 0x20(%[SRC]), %%" VR1(r)", %%" VR1(r) "\n" \ "vpxor 0x40(%[SRC]), %%" VR2(r)", %%" VR2(r) "\n" \ "vpxor 0x60(%[SRC]), %%" VR3(r)", %%" VR3(r) "\n" \ : : [SRC] "r" (src)); \ break; \ case 2: \ __asm( \ "vpxor 0x00(%[SRC]), %%" VR0(r)", %%" VR0(r) "\n" \ "vpxor 0x20(%[SRC]), %%" VR1(r)", %%" VR1(r) "\n" \ : : [SRC] "r" (src)); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } #define XOR(r...) \ { \ switch (REG_CNT(r)) { \ case 8: \ __asm( \ "vpxor %" VR0(r) ", %" VR4(r)", %" VR4(r) "\n" \ "vpxor %" VR1(r) ", %" VR5(r)", %" VR5(r) "\n" \ "vpxor %" VR2(r) ", %" VR6(r)", %" VR6(r) "\n" \ "vpxor %" VR3(r) ", %" VR7(r)", %" VR7(r)); \ break; \ case 4: \ __asm( \ "vpxor %" VR0(r) ", %" VR2(r)", %" VR2(r) "\n" \ "vpxor %" VR1(r) ", %" VR3(r)", %" VR3(r)); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } #define ZERO(r...) XOR(r, r) #define COPY(r...) \ { \ switch (REG_CNT(r)) { \ case 8: \ __asm( \ "vmovdqa %" VR0(r) ", %" VR4(r) "\n" \ "vmovdqa %" VR1(r) ", %" VR5(r) "\n" \ "vmovdqa %" VR2(r) ", %" VR6(r) "\n" \ "vmovdqa %" VR3(r) ", %" VR7(r)); \ break; \ case 4: \ __asm( \ "vmovdqa %" VR0(r) ", %" VR2(r) "\n" \ "vmovdqa %" VR1(r) ", %" VR3(r)); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } #define LOAD(src, r...) \ { \ switch (REG_CNT(r)) { \ case 4: \ __asm( \ "vmovdqa 0x00(%[SRC]), %%" VR0(r) "\n" \ "vmovdqa 0x20(%[SRC]), %%" VR1(r) "\n" \ "vmovdqa 0x40(%[SRC]), %%" VR2(r) "\n" \ "vmovdqa 0x60(%[SRC]), %%" VR3(r) "\n" \ : : [SRC] "r" (src)); \ break; \ case 2: \ __asm( \ "vmovdqa 0x00(%[SRC]), %%" VR0(r) "\n" \ "vmovdqa 0x20(%[SRC]), %%" VR1(r) "\n" \ : : [SRC] "r" (src)); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } #define STORE(dst, r...) \ { \ switch (REG_CNT(r)) { \ case 4: \ __asm( \ "vmovdqa %%" VR0(r) ", 0x00(%[DST])\n" \ "vmovdqa %%" VR1(r) ", 0x20(%[DST])\n" \ "vmovdqa %%" VR2(r) ", 0x40(%[DST])\n" \ "vmovdqa %%" VR3(r) ", 0x60(%[DST])\n" \ : : [DST] "r" (dst)); \ break; \ case 2: \ __asm( \ "vmovdqa %%" VR0(r) ", 0x00(%[DST])\n" \ "vmovdqa %%" VR1(r) ", 0x20(%[DST])\n" \ : : [DST] "r" (dst)); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } #define FLUSH() \ { \ __asm("vzeroupper"); \ } #define MUL2_SETUP() \ { \ __asm("vmovq %0, %%xmm14" :: "r"(0x1d1d1d1d1d1d1d1d)); \ __asm("vpbroadcastq %xmm14, %ymm14"); \ __asm("vpxor %ymm15, %ymm15 ,%ymm15"); \ } #define _MUL2(r...) \ { \ switch (REG_CNT(r)) { \ case 2: \ __asm( \ "vpcmpgtb %" VR0(r)", %ymm15, %ymm12\n" \ "vpcmpgtb %" VR1(r)", %ymm15, %ymm13\n" \ "vpaddb %" VR0(r)", %" VR0(r)", %" VR0(r) "\n" \ "vpaddb %" VR1(r)", %" VR1(r)", %" VR1(r) "\n" \ "vpand %ymm14, %ymm12, %ymm12\n" \ "vpand %ymm14, %ymm13, %ymm13\n" \ "vpxor %ymm12, %" VR0(r)", %" VR0(r) "\n" \ "vpxor %ymm13, %" VR1(r)", %" VR1(r)); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } #define MUL2(r...) \ { \ switch (REG_CNT(r)) { \ case 4: \ _MUL2(R_01(r)); \ _MUL2(R_23(r)); \ break; \ case 2: \ _MUL2(r); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } #define MUL4(r...) \ { \ MUL2(r); \ MUL2(r); \ } #define _0f "ymm15" #define _as "ymm14" #define _bs "ymm13" #define _ltmod "ymm12" #define _ltmul "ymm11" #define _ta "ymm10" #define _tb "ymm15" static const uint8_t __attribute__((aligned(32))) _mul_mask = 0x0F; #define _MULx2(c, r...) \ { \ switch (REG_CNT(r)) { \ case 2: \ __asm( \ "vpbroadcastb (%[mask]), %%" _0f "\n" \ /* upper bits */ \ "vbroadcasti128 0x00(%[lt]), %%" _ltmod "\n" \ "vbroadcasti128 0x10(%[lt]), %%" _ltmul "\n" \ \ "vpsraw $0x4, %%" VR0(r) ", %%"_as "\n" \ "vpsraw $0x4, %%" VR1(r) ", %%"_bs "\n" \ "vpand %%" _0f ", %%" VR0(r) ", %%" VR0(r) "\n" \ "vpand %%" _0f ", %%" VR1(r) ", %%" VR1(r) "\n" \ "vpand %%" _0f ", %%" _as ", %%" _as "\n" \ "vpand %%" _0f ", %%" _bs ", %%" _bs "\n" \ \ "vpshufb %%" _as ", %%" _ltmod ", %%" _ta "\n" \ "vpshufb %%" _bs ", %%" _ltmod ", %%" _tb "\n" \ "vpshufb %%" _as ", %%" _ltmul ", %%" _as "\n" \ "vpshufb %%" _bs ", %%" _ltmul ", %%" _bs "\n" \ /* lower bits */ \ "vbroadcasti128 0x20(%[lt]), %%" _ltmod "\n" \ "vbroadcasti128 0x30(%[lt]), %%" _ltmul "\n" \ \ "vpxor %%" _ta ", %%" _as ", %%" _as "\n" \ "vpxor %%" _tb ", %%" _bs ", %%" _bs "\n" \ \ "vpshufb %%" VR0(r) ", %%" _ltmod ", %%" _ta "\n" \ "vpshufb %%" VR1(r) ", %%" _ltmod ", %%" _tb "\n" \ "vpshufb %%" VR0(r) ", %%" _ltmul ", %%" VR0(r) "\n"\ "vpshufb %%" VR1(r) ", %%" _ltmul ", %%" VR1(r) "\n"\ \ "vpxor %%" _ta ", %%" VR0(r) ", %%" VR0(r) "\n" \ "vpxor %%" _as ", %%" VR0(r) ", %%" VR0(r) "\n" \ "vpxor %%" _tb ", %%" VR1(r) ", %%" VR1(r) "\n" \ "vpxor %%" _bs ", %%" VR1(r) ", %%" VR1(r) "\n" \ : : [mask] "r" (&_mul_mask), \ [lt] "r" (gf_clmul_mod_lt[4*(c)])); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } #define MUL(c, r...) \ { \ switch (REG_CNT(r)) { \ case 4: \ _MULx2(c, R_01(r)); \ _MULx2(c, R_23(r)); \ break; \ case 2: \ _MULx2(c, R_01(r)); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } #define raidz_math_begin() kfpu_begin() #define raidz_math_end() \ { \ FLUSH(); \ kfpu_end(); \ } #define SYN_STRIDE 4 #define ZERO_STRIDE 4 #define ZERO_DEFINE() {} #define ZERO_D 0, 1, 2, 3 #define COPY_STRIDE 4 #define COPY_DEFINE() {} #define COPY_D 0, 1, 2, 3 #define ADD_STRIDE 4 #define ADD_DEFINE() {} #define ADD_D 0, 1, 2, 3 #define MUL_STRIDE 4 #define MUL_DEFINE() {} #define MUL_D 0, 1, 2, 3 #define GEN_P_STRIDE 4 #define GEN_P_DEFINE() {} #define GEN_P_P 0, 1, 2, 3 #define GEN_PQ_STRIDE 4 #define GEN_PQ_DEFINE() {} #define GEN_PQ_D 0, 1, 2, 3 #define GEN_PQ_C 4, 5, 6, 7 #define GEN_PQR_STRIDE 4 #define GEN_PQR_DEFINE() {} #define GEN_PQR_D 0, 1, 2, 3 #define GEN_PQR_C 4, 5, 6, 7 #define SYN_Q_DEFINE() {} #define SYN_Q_D 0, 1, 2, 3 #define SYN_Q_X 4, 5, 6, 7 #define SYN_R_DEFINE() {} #define SYN_R_D 0, 1, 2, 3 #define SYN_R_X 4, 5, 6, 7 #define SYN_PQ_DEFINE() {} #define SYN_PQ_D 0, 1, 2, 3 #define SYN_PQ_X 4, 5, 6, 7 #define REC_PQ_STRIDE 2 #define REC_PQ_DEFINE() {} #define REC_PQ_X 0, 1 #define REC_PQ_Y 2, 3 #define REC_PQ_T 4, 5 #define SYN_PR_DEFINE() {} #define SYN_PR_D 0, 1, 2, 3 #define SYN_PR_X 4, 5, 6, 7 #define REC_PR_STRIDE 2 #define REC_PR_DEFINE() {} #define REC_PR_X 0, 1 #define REC_PR_Y 2, 3 #define REC_PR_T 4, 5 #define SYN_QR_DEFINE() {} #define SYN_QR_D 0, 1, 2, 3 #define SYN_QR_X 4, 5, 6, 7 #define REC_QR_STRIDE 2 #define REC_QR_DEFINE() {} #define REC_QR_X 0, 1 #define REC_QR_Y 2, 3 #define REC_QR_T 4, 5 #define SYN_PQR_DEFINE() {} #define SYN_PQR_D 0, 1, 2, 3 #define SYN_PQR_X 4, 5, 6, 7 #define REC_PQR_STRIDE 2 #define REC_PQR_DEFINE() {} #define REC_PQR_X 0, 1 #define REC_PQR_Y 2, 3 #define REC_PQR_Z 4, 5 #define REC_PQR_XS 6, 7 #define REC_PQR_YS 8, 9 #include #include "vdev_raidz_math_impl.h" DEFINE_GEN_METHODS(avx2); DEFINE_REC_METHODS(avx2); static boolean_t raidz_will_avx2_work(void) { return (kfpu_allowed() && zfs_avx_available() && zfs_avx2_available()); } const raidz_impl_ops_t vdev_raidz_avx2_impl = { .init = NULL, .fini = NULL, .gen = RAIDZ_GEN_METHODS(avx2), .rec = RAIDZ_REC_METHODS(avx2), .is_supported = &raidz_will_avx2_work, .name = "avx2" }; #endif /* defined(__x86_64) && defined(HAVE_AVX2) */ diff --git a/module/zfs/vdev_raidz_math_avx512f.c b/module/zfs/vdev_raidz_math_avx512f.c index b89e18c0c9c7..aab653b77491 100644 --- a/module/zfs/vdev_raidz_math_avx512f.c +++ b/module/zfs/vdev_raidz_math_avx512f.c @@ -1,492 +1,494 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (C) 2016 Romain Dolbeau. All rights reserved. * Copyright (C) 2016 Gvozden Nešković. All rights reserved. */ #include #if defined(__x86_64) && defined(HAVE_AVX512F) #include #include #include +#ifdef __linux__ #define __asm __asm__ __volatile__ +#endif #define _REG_CNT(_0, _1, _2, _3, _4, _5, _6, _7, N, ...) N #define REG_CNT(r...) _REG_CNT(r, 8, 7, 6, 5, 4, 3, 2, 1) #define VR0_(REG, ...) "zmm"#REG #define VR1_(_1, REG, ...) "zmm"#REG #define VR2_(_1, _2, REG, ...) "zmm"#REG #define VR3_(_1, _2, _3, REG, ...) "zmm"#REG #define VR4_(_1, _2, _3, _4, REG, ...) "zmm"#REG #define VR5_(_1, _2, _3, _4, _5, REG, ...) "zmm"#REG #define VR6_(_1, _2, _3, _4, _5, _6, REG, ...) "zmm"#REG #define VR7_(_1, _2, _3, _4, _5, _6, _7, REG, ...) "zmm"#REG #define VR0(r...) VR0_(r) #define VR1(r...) VR1_(r) #define VR2(r...) VR2_(r, 1) #define VR3(r...) VR3_(r, 1, 2) #define VR4(r...) VR4_(r, 1, 2) #define VR5(r...) VR5_(r, 1, 2, 3) #define VR6(r...) VR6_(r, 1, 2, 3, 4) #define VR7(r...) VR7_(r, 1, 2, 3, 4, 5) #define VRy0_(REG, ...) "ymm"#REG #define VRy1_(_1, REG, ...) "ymm"#REG #define VRy2_(_1, _2, REG, ...) "ymm"#REG #define VRy3_(_1, _2, _3, REG, ...) "ymm"#REG #define VRy4_(_1, _2, _3, _4, REG, ...) "ymm"#REG #define VRy5_(_1, _2, _3, _4, _5, REG, ...) "ymm"#REG #define VRy6_(_1, _2, _3, _4, _5, _6, REG, ...) "ymm"#REG #define VRy7_(_1, _2, _3, _4, _5, _6, _7, REG, ...) "ymm"#REG #define VRy0(r...) VRy0_(r) #define VRy1(r...) VRy1_(r) #define VRy2(r...) VRy2_(r, 1) #define VRy3(r...) VRy3_(r, 1, 2) #define VRy4(r...) VRy4_(r, 1, 2) #define VRy5(r...) VRy5_(r, 1, 2, 3) #define VRy6(r...) VRy6_(r, 1, 2, 3, 4) #define VRy7(r...) VRy7_(r, 1, 2, 3, 4, 5) #define R_01(REG1, REG2, ...) REG1, REG2 #define _R_23(_0, _1, REG2, REG3, ...) REG2, REG3 #define R_23(REG...) _R_23(REG, 1, 2, 3) #define ELEM_SIZE 64 typedef struct v { uint8_t b[ELEM_SIZE] __attribute__((aligned(ELEM_SIZE))); } v_t; #define XOR_ACC(src, r...) \ { \ switch (REG_CNT(r)) { \ case 4: \ __asm( \ "vpxorq 0x00(%[SRC]), %%" VR0(r)", %%" VR0(r) "\n" \ "vpxorq 0x40(%[SRC]), %%" VR1(r)", %%" VR1(r) "\n" \ "vpxorq 0x80(%[SRC]), %%" VR2(r)", %%" VR2(r) "\n" \ "vpxorq 0xc0(%[SRC]), %%" VR3(r)", %%" VR3(r) "\n" \ : : [SRC] "r" (src)); \ break; \ } \ } #define XOR(r...) \ { \ switch (REG_CNT(r)) { \ case 8: \ __asm( \ "vpxorq %" VR0(r) ", %" VR4(r)", %" VR4(r) "\n" \ "vpxorq %" VR1(r) ", %" VR5(r)", %" VR5(r) "\n" \ "vpxorq %" VR2(r) ", %" VR6(r)", %" VR6(r) "\n" \ "vpxorq %" VR3(r) ", %" VR7(r)", %" VR7(r)); \ break; \ case 4: \ __asm( \ "vpxorq %" VR0(r) ", %" VR2(r)", %" VR2(r) "\n" \ "vpxorq %" VR1(r) ", %" VR3(r)", %" VR3(r)); \ break; \ } \ } #define ZERO(r...) XOR(r, r) #define COPY(r...) \ { \ switch (REG_CNT(r)) { \ case 8: \ __asm( \ "vmovdqa64 %" VR0(r) ", %" VR4(r) "\n" \ "vmovdqa64 %" VR1(r) ", %" VR5(r) "\n" \ "vmovdqa64 %" VR2(r) ", %" VR6(r) "\n" \ "vmovdqa64 %" VR3(r) ", %" VR7(r)); \ break; \ case 4: \ __asm( \ "vmovdqa64 %" VR0(r) ", %" VR2(r) "\n" \ "vmovdqa64 %" VR1(r) ", %" VR3(r)); \ break; \ } \ } #define LOAD(src, r...) \ { \ switch (REG_CNT(r)) { \ case 4: \ __asm( \ "vmovdqa64 0x00(%[SRC]), %%" VR0(r) "\n" \ "vmovdqa64 0x40(%[SRC]), %%" VR1(r) "\n" \ "vmovdqa64 0x80(%[SRC]), %%" VR2(r) "\n" \ "vmovdqa64 0xc0(%[SRC]), %%" VR3(r) "\n" \ : : [SRC] "r" (src)); \ break; \ } \ } #define STORE(dst, r...) \ { \ switch (REG_CNT(r)) { \ case 4: \ __asm( \ "vmovdqa64 %%" VR0(r) ", 0x00(%[DST])\n" \ "vmovdqa64 %%" VR1(r) ", 0x40(%[DST])\n" \ "vmovdqa64 %%" VR2(r) ", 0x80(%[DST])\n" \ "vmovdqa64 %%" VR3(r) ", 0xc0(%[DST])\n" \ : : [DST] "r" (dst)); \ break; \ } \ } #define MUL2_SETUP() \ { \ __asm("vmovq %0, %%xmm31" :: "r"(0x1d1d1d1d1d1d1d1d)); \ __asm("vpbroadcastq %xmm31, %zmm31"); \ __asm("vmovq %0, %%xmm30" :: "r"(0x8080808080808080)); \ __asm("vpbroadcastq %xmm30, %zmm30"); \ __asm("vmovq %0, %%xmm29" :: "r"(0xfefefefefefefefe)); \ __asm("vpbroadcastq %xmm29, %zmm29"); \ } #define _MUL2(r...) \ { \ switch (REG_CNT(r)) { \ case 2: \ __asm( \ "vpandq %" VR0(r)", %zmm30, %zmm26\n" \ "vpandq %" VR1(r)", %zmm30, %zmm25\n" \ "vpsrlq $7, %zmm26, %zmm28\n" \ "vpsrlq $7, %zmm25, %zmm27\n" \ "vpsllq $1, %zmm26, %zmm26\n" \ "vpsllq $1, %zmm25, %zmm25\n" \ "vpsubq %zmm28, %zmm26, %zmm26\n" \ "vpsubq %zmm27, %zmm25, %zmm25\n" \ "vpsllq $1, %" VR0(r)", %" VR0(r) "\n" \ "vpsllq $1, %" VR1(r)", %" VR1(r) "\n" \ "vpandq %zmm26, %zmm31, %zmm26\n" \ "vpandq %zmm25, %zmm31, %zmm25\n" \ "vpternlogd $0x6c,%zmm29, %zmm26, %" VR0(r) "\n" \ "vpternlogd $0x6c,%zmm29, %zmm25, %" VR1(r)); \ break; \ default: \ VERIFY(0); \ } \ } #define MUL2(r...) \ { \ switch (REG_CNT(r)) { \ case 4: \ _MUL2(R_01(r)); \ _MUL2(R_23(r)); \ break; \ case 2: \ _MUL2(r); \ break; \ } \ } #define MUL4(r...) \ { \ MUL2(r); \ MUL2(r); \ } /* General multiplication by adding powers of two */ #define _mul_x2_in 21, 22 #define _mul_x2_acc 23, 24 #define _MUL_PARAM(x, in, acc) \ { \ if (x & 0x01) { COPY(in, acc); } else { ZERO(acc); } \ if (x & 0xfe) { MUL2(in); } \ if (x & 0x02) { XOR(in, acc); } \ if (x & 0xfc) { MUL2(in); } \ if (x & 0x04) { XOR(in, acc); } \ if (x & 0xf8) { MUL2(in); } \ if (x & 0x08) { XOR(in, acc); } \ if (x & 0xf0) { MUL2(in); } \ if (x & 0x10) { XOR(in, acc); } \ if (x & 0xe0) { MUL2(in); } \ if (x & 0x20) { XOR(in, acc); } \ if (x & 0xc0) { MUL2(in); } \ if (x & 0x40) { XOR(in, acc); } \ if (x & 0x80) { MUL2(in); XOR(in, acc); } \ } #define MUL_x2_DEFINE(x) \ static void \ mul_x2_ ## x(void) { _MUL_PARAM(x, _mul_x2_in, _mul_x2_acc); } MUL_x2_DEFINE(0); MUL_x2_DEFINE(1); MUL_x2_DEFINE(2); MUL_x2_DEFINE(3); MUL_x2_DEFINE(4); MUL_x2_DEFINE(5); MUL_x2_DEFINE(6); MUL_x2_DEFINE(7); MUL_x2_DEFINE(8); MUL_x2_DEFINE(9); MUL_x2_DEFINE(10); MUL_x2_DEFINE(11); MUL_x2_DEFINE(12); MUL_x2_DEFINE(13); MUL_x2_DEFINE(14); MUL_x2_DEFINE(15); MUL_x2_DEFINE(16); MUL_x2_DEFINE(17); MUL_x2_DEFINE(18); MUL_x2_DEFINE(19); MUL_x2_DEFINE(20); MUL_x2_DEFINE(21); MUL_x2_DEFINE(22); MUL_x2_DEFINE(23); MUL_x2_DEFINE(24); MUL_x2_DEFINE(25); MUL_x2_DEFINE(26); MUL_x2_DEFINE(27); MUL_x2_DEFINE(28); MUL_x2_DEFINE(29); MUL_x2_DEFINE(30); MUL_x2_DEFINE(31); MUL_x2_DEFINE(32); MUL_x2_DEFINE(33); MUL_x2_DEFINE(34); MUL_x2_DEFINE(35); MUL_x2_DEFINE(36); MUL_x2_DEFINE(37); MUL_x2_DEFINE(38); MUL_x2_DEFINE(39); MUL_x2_DEFINE(40); MUL_x2_DEFINE(41); MUL_x2_DEFINE(42); MUL_x2_DEFINE(43); MUL_x2_DEFINE(44); MUL_x2_DEFINE(45); MUL_x2_DEFINE(46); MUL_x2_DEFINE(47); MUL_x2_DEFINE(48); MUL_x2_DEFINE(49); MUL_x2_DEFINE(50); MUL_x2_DEFINE(51); MUL_x2_DEFINE(52); MUL_x2_DEFINE(53); MUL_x2_DEFINE(54); MUL_x2_DEFINE(55); MUL_x2_DEFINE(56); MUL_x2_DEFINE(57); MUL_x2_DEFINE(58); MUL_x2_DEFINE(59); MUL_x2_DEFINE(60); MUL_x2_DEFINE(61); MUL_x2_DEFINE(62); MUL_x2_DEFINE(63); MUL_x2_DEFINE(64); MUL_x2_DEFINE(65); MUL_x2_DEFINE(66); MUL_x2_DEFINE(67); MUL_x2_DEFINE(68); MUL_x2_DEFINE(69); MUL_x2_DEFINE(70); MUL_x2_DEFINE(71); MUL_x2_DEFINE(72); MUL_x2_DEFINE(73); MUL_x2_DEFINE(74); MUL_x2_DEFINE(75); MUL_x2_DEFINE(76); MUL_x2_DEFINE(77); MUL_x2_DEFINE(78); MUL_x2_DEFINE(79); MUL_x2_DEFINE(80); MUL_x2_DEFINE(81); MUL_x2_DEFINE(82); MUL_x2_DEFINE(83); MUL_x2_DEFINE(84); MUL_x2_DEFINE(85); MUL_x2_DEFINE(86); MUL_x2_DEFINE(87); MUL_x2_DEFINE(88); MUL_x2_DEFINE(89); MUL_x2_DEFINE(90); MUL_x2_DEFINE(91); MUL_x2_DEFINE(92); MUL_x2_DEFINE(93); MUL_x2_DEFINE(94); MUL_x2_DEFINE(95); MUL_x2_DEFINE(96); MUL_x2_DEFINE(97); MUL_x2_DEFINE(98); MUL_x2_DEFINE(99); MUL_x2_DEFINE(100); MUL_x2_DEFINE(101); MUL_x2_DEFINE(102); MUL_x2_DEFINE(103); MUL_x2_DEFINE(104); MUL_x2_DEFINE(105); MUL_x2_DEFINE(106); MUL_x2_DEFINE(107); MUL_x2_DEFINE(108); MUL_x2_DEFINE(109); MUL_x2_DEFINE(110); MUL_x2_DEFINE(111); MUL_x2_DEFINE(112); MUL_x2_DEFINE(113); MUL_x2_DEFINE(114); MUL_x2_DEFINE(115); MUL_x2_DEFINE(116); MUL_x2_DEFINE(117); MUL_x2_DEFINE(118); MUL_x2_DEFINE(119); MUL_x2_DEFINE(120); MUL_x2_DEFINE(121); MUL_x2_DEFINE(122); MUL_x2_DEFINE(123); MUL_x2_DEFINE(124); MUL_x2_DEFINE(125); MUL_x2_DEFINE(126); MUL_x2_DEFINE(127); MUL_x2_DEFINE(128); MUL_x2_DEFINE(129); MUL_x2_DEFINE(130); MUL_x2_DEFINE(131); MUL_x2_DEFINE(132); MUL_x2_DEFINE(133); MUL_x2_DEFINE(134); MUL_x2_DEFINE(135); MUL_x2_DEFINE(136); MUL_x2_DEFINE(137); MUL_x2_DEFINE(138); MUL_x2_DEFINE(139); MUL_x2_DEFINE(140); MUL_x2_DEFINE(141); MUL_x2_DEFINE(142); MUL_x2_DEFINE(143); MUL_x2_DEFINE(144); MUL_x2_DEFINE(145); MUL_x2_DEFINE(146); MUL_x2_DEFINE(147); MUL_x2_DEFINE(148); MUL_x2_DEFINE(149); MUL_x2_DEFINE(150); MUL_x2_DEFINE(151); MUL_x2_DEFINE(152); MUL_x2_DEFINE(153); MUL_x2_DEFINE(154); MUL_x2_DEFINE(155); MUL_x2_DEFINE(156); MUL_x2_DEFINE(157); MUL_x2_DEFINE(158); MUL_x2_DEFINE(159); MUL_x2_DEFINE(160); MUL_x2_DEFINE(161); MUL_x2_DEFINE(162); MUL_x2_DEFINE(163); MUL_x2_DEFINE(164); MUL_x2_DEFINE(165); MUL_x2_DEFINE(166); MUL_x2_DEFINE(167); MUL_x2_DEFINE(168); MUL_x2_DEFINE(169); MUL_x2_DEFINE(170); MUL_x2_DEFINE(171); MUL_x2_DEFINE(172); MUL_x2_DEFINE(173); MUL_x2_DEFINE(174); MUL_x2_DEFINE(175); MUL_x2_DEFINE(176); MUL_x2_DEFINE(177); MUL_x2_DEFINE(178); MUL_x2_DEFINE(179); MUL_x2_DEFINE(180); MUL_x2_DEFINE(181); MUL_x2_DEFINE(182); MUL_x2_DEFINE(183); MUL_x2_DEFINE(184); MUL_x2_DEFINE(185); MUL_x2_DEFINE(186); MUL_x2_DEFINE(187); MUL_x2_DEFINE(188); MUL_x2_DEFINE(189); MUL_x2_DEFINE(190); MUL_x2_DEFINE(191); MUL_x2_DEFINE(192); MUL_x2_DEFINE(193); MUL_x2_DEFINE(194); MUL_x2_DEFINE(195); MUL_x2_DEFINE(196); MUL_x2_DEFINE(197); MUL_x2_DEFINE(198); MUL_x2_DEFINE(199); MUL_x2_DEFINE(200); MUL_x2_DEFINE(201); MUL_x2_DEFINE(202); MUL_x2_DEFINE(203); MUL_x2_DEFINE(204); MUL_x2_DEFINE(205); MUL_x2_DEFINE(206); MUL_x2_DEFINE(207); MUL_x2_DEFINE(208); MUL_x2_DEFINE(209); MUL_x2_DEFINE(210); MUL_x2_DEFINE(211); MUL_x2_DEFINE(212); MUL_x2_DEFINE(213); MUL_x2_DEFINE(214); MUL_x2_DEFINE(215); MUL_x2_DEFINE(216); MUL_x2_DEFINE(217); MUL_x2_DEFINE(218); MUL_x2_DEFINE(219); MUL_x2_DEFINE(220); MUL_x2_DEFINE(221); MUL_x2_DEFINE(222); MUL_x2_DEFINE(223); MUL_x2_DEFINE(224); MUL_x2_DEFINE(225); MUL_x2_DEFINE(226); MUL_x2_DEFINE(227); MUL_x2_DEFINE(228); MUL_x2_DEFINE(229); MUL_x2_DEFINE(230); MUL_x2_DEFINE(231); MUL_x2_DEFINE(232); MUL_x2_DEFINE(233); MUL_x2_DEFINE(234); MUL_x2_DEFINE(235); MUL_x2_DEFINE(236); MUL_x2_DEFINE(237); MUL_x2_DEFINE(238); MUL_x2_DEFINE(239); MUL_x2_DEFINE(240); MUL_x2_DEFINE(241); MUL_x2_DEFINE(242); MUL_x2_DEFINE(243); MUL_x2_DEFINE(244); MUL_x2_DEFINE(245); MUL_x2_DEFINE(246); MUL_x2_DEFINE(247); MUL_x2_DEFINE(248); MUL_x2_DEFINE(249); MUL_x2_DEFINE(250); MUL_x2_DEFINE(251); MUL_x2_DEFINE(252); MUL_x2_DEFINE(253); MUL_x2_DEFINE(254); MUL_x2_DEFINE(255); typedef void (*mul_fn_ptr_t)(void); static const mul_fn_ptr_t __attribute__((aligned(256))) gf_x2_mul_fns[256] = { mul_x2_0, mul_x2_1, mul_x2_2, mul_x2_3, mul_x2_4, mul_x2_5, mul_x2_6, mul_x2_7, mul_x2_8, mul_x2_9, mul_x2_10, mul_x2_11, mul_x2_12, mul_x2_13, mul_x2_14, mul_x2_15, mul_x2_16, mul_x2_17, mul_x2_18, mul_x2_19, mul_x2_20, mul_x2_21, mul_x2_22, mul_x2_23, mul_x2_24, mul_x2_25, mul_x2_26, mul_x2_27, mul_x2_28, mul_x2_29, mul_x2_30, mul_x2_31, mul_x2_32, mul_x2_33, mul_x2_34, mul_x2_35, mul_x2_36, mul_x2_37, mul_x2_38, mul_x2_39, mul_x2_40, mul_x2_41, mul_x2_42, mul_x2_43, mul_x2_44, mul_x2_45, mul_x2_46, mul_x2_47, mul_x2_48, mul_x2_49, mul_x2_50, mul_x2_51, mul_x2_52, mul_x2_53, mul_x2_54, mul_x2_55, mul_x2_56, mul_x2_57, mul_x2_58, mul_x2_59, mul_x2_60, mul_x2_61, mul_x2_62, mul_x2_63, mul_x2_64, mul_x2_65, mul_x2_66, mul_x2_67, mul_x2_68, mul_x2_69, mul_x2_70, mul_x2_71, mul_x2_72, mul_x2_73, mul_x2_74, mul_x2_75, mul_x2_76, mul_x2_77, mul_x2_78, mul_x2_79, mul_x2_80, mul_x2_81, mul_x2_82, mul_x2_83, mul_x2_84, mul_x2_85, mul_x2_86, mul_x2_87, mul_x2_88, mul_x2_89, mul_x2_90, mul_x2_91, mul_x2_92, mul_x2_93, mul_x2_94, mul_x2_95, mul_x2_96, mul_x2_97, mul_x2_98, mul_x2_99, mul_x2_100, mul_x2_101, mul_x2_102, mul_x2_103, mul_x2_104, mul_x2_105, mul_x2_106, mul_x2_107, mul_x2_108, mul_x2_109, mul_x2_110, mul_x2_111, mul_x2_112, mul_x2_113, mul_x2_114, mul_x2_115, mul_x2_116, mul_x2_117, mul_x2_118, mul_x2_119, mul_x2_120, mul_x2_121, mul_x2_122, mul_x2_123, mul_x2_124, mul_x2_125, mul_x2_126, mul_x2_127, mul_x2_128, mul_x2_129, mul_x2_130, mul_x2_131, mul_x2_132, mul_x2_133, mul_x2_134, mul_x2_135, mul_x2_136, mul_x2_137, mul_x2_138, mul_x2_139, mul_x2_140, mul_x2_141, mul_x2_142, mul_x2_143, mul_x2_144, mul_x2_145, mul_x2_146, mul_x2_147, mul_x2_148, mul_x2_149, mul_x2_150, mul_x2_151, mul_x2_152, mul_x2_153, mul_x2_154, mul_x2_155, mul_x2_156, mul_x2_157, mul_x2_158, mul_x2_159, mul_x2_160, mul_x2_161, mul_x2_162, mul_x2_163, mul_x2_164, mul_x2_165, mul_x2_166, mul_x2_167, mul_x2_168, mul_x2_169, mul_x2_170, mul_x2_171, mul_x2_172, mul_x2_173, mul_x2_174, mul_x2_175, mul_x2_176, mul_x2_177, mul_x2_178, mul_x2_179, mul_x2_180, mul_x2_181, mul_x2_182, mul_x2_183, mul_x2_184, mul_x2_185, mul_x2_186, mul_x2_187, mul_x2_188, mul_x2_189, mul_x2_190, mul_x2_191, mul_x2_192, mul_x2_193, mul_x2_194, mul_x2_195, mul_x2_196, mul_x2_197, mul_x2_198, mul_x2_199, mul_x2_200, mul_x2_201, mul_x2_202, mul_x2_203, mul_x2_204, mul_x2_205, mul_x2_206, mul_x2_207, mul_x2_208, mul_x2_209, mul_x2_210, mul_x2_211, mul_x2_212, mul_x2_213, mul_x2_214, mul_x2_215, mul_x2_216, mul_x2_217, mul_x2_218, mul_x2_219, mul_x2_220, mul_x2_221, mul_x2_222, mul_x2_223, mul_x2_224, mul_x2_225, mul_x2_226, mul_x2_227, mul_x2_228, mul_x2_229, mul_x2_230, mul_x2_231, mul_x2_232, mul_x2_233, mul_x2_234, mul_x2_235, mul_x2_236, mul_x2_237, mul_x2_238, mul_x2_239, mul_x2_240, mul_x2_241, mul_x2_242, mul_x2_243, mul_x2_244, mul_x2_245, mul_x2_246, mul_x2_247, mul_x2_248, mul_x2_249, mul_x2_250, mul_x2_251, mul_x2_252, mul_x2_253, mul_x2_254, mul_x2_255 }; #define MUL(c, r...) \ { \ switch (REG_CNT(r)) { \ case 4: \ COPY(R_01(r), _mul_x2_in); \ gf_x2_mul_fns[c](); \ COPY(_mul_x2_acc, R_01(r)); \ COPY(R_23(r), _mul_x2_in); \ gf_x2_mul_fns[c](); \ COPY(_mul_x2_acc, R_23(r)); \ break; \ default: \ VERIFY(0); \ } \ } #define raidz_math_begin() kfpu_begin() #define raidz_math_end() kfpu_end() #define SYN_STRIDE 4 #define ZERO_STRIDE 4 #define ZERO_DEFINE() {} #define ZERO_D 0, 1, 2, 3 #define COPY_STRIDE 4 #define COPY_DEFINE() {} #define COPY_D 0, 1, 2, 3 #define ADD_STRIDE 4 #define ADD_DEFINE() {} #define ADD_D 0, 1, 2, 3 #define MUL_STRIDE 4 #define MUL_DEFINE() MUL2_SETUP() #define MUL_D 0, 1, 2, 3 #define GEN_P_STRIDE 4 #define GEN_P_DEFINE() {} #define GEN_P_P 0, 1, 2, 3 #define GEN_PQ_STRIDE 4 #define GEN_PQ_DEFINE() {} #define GEN_PQ_D 0, 1, 2, 3 #define GEN_PQ_C 4, 5, 6, 7 #define GEN_PQR_STRIDE 4 #define GEN_PQR_DEFINE() {} #define GEN_PQR_D 0, 1, 2, 3 #define GEN_PQR_C 4, 5, 6, 7 #define SYN_Q_DEFINE() {} #define SYN_Q_D 0, 1, 2, 3 #define SYN_Q_X 4, 5, 6, 7 #define SYN_R_DEFINE() {} #define SYN_R_D 0, 1, 2, 3 #define SYN_R_X 4, 5, 6, 7 #define SYN_PQ_DEFINE() {} #define SYN_PQ_D 0, 1, 2, 3 #define SYN_PQ_X 4, 5, 6, 7 #define REC_PQ_STRIDE 4 #define REC_PQ_DEFINE() MUL2_SETUP() #define REC_PQ_X 0, 1, 2, 3 #define REC_PQ_Y 4, 5, 6, 7 #define REC_PQ_T 8, 9, 10, 11 #define SYN_PR_DEFINE() {} #define SYN_PR_D 0, 1, 2, 3 #define SYN_PR_X 4, 5, 6, 7 #define REC_PR_STRIDE 4 #define REC_PR_DEFINE() MUL2_SETUP() #define REC_PR_X 0, 1, 2, 3 #define REC_PR_Y 4, 5, 6, 7 #define REC_PR_T 8, 9, 10, 11 #define SYN_QR_DEFINE() {} #define SYN_QR_D 0, 1, 2, 3 #define SYN_QR_X 4, 5, 6, 7 #define REC_QR_STRIDE 4 #define REC_QR_DEFINE() MUL2_SETUP() #define REC_QR_X 0, 1, 2, 3 #define REC_QR_Y 4, 5, 6, 7 #define REC_QR_T 8, 9, 10, 11 #define SYN_PQR_DEFINE() {} #define SYN_PQR_D 0, 1, 2, 3 #define SYN_PQR_X 4, 5, 6, 7 #define REC_PQR_STRIDE 4 #define REC_PQR_DEFINE() MUL2_SETUP() #define REC_PQR_X 0, 1, 2, 3 #define REC_PQR_Y 4, 5, 6, 7 #define REC_PQR_Z 8, 9, 10, 11 #define REC_PQR_XS 12, 13, 14, 15 #define REC_PQR_YS 16, 17, 18, 19 #include #include "vdev_raidz_math_impl.h" DEFINE_GEN_METHODS(avx512f); DEFINE_REC_METHODS(avx512f); static boolean_t raidz_will_avx512f_work(void) { return (kfpu_allowed() && zfs_avx_available() && zfs_avx2_available() && zfs_avx512f_available()); } const raidz_impl_ops_t vdev_raidz_avx512f_impl = { .init = NULL, .fini = NULL, .gen = RAIDZ_GEN_METHODS(avx512f), .rec = RAIDZ_REC_METHODS(avx512f), .is_supported = &raidz_will_avx512f_work, .name = "avx512f" }; #endif /* defined(__x86_64) && defined(HAVE_AVX512F) */ diff --git a/module/zfs/vdev_raidz_math_powerpc_altivec_common.h b/module/zfs/vdev_raidz_math_powerpc_altivec_common.h index 1e574895299a..3842f5fd637c 100644 --- a/module/zfs/vdev_raidz_math_powerpc_altivec_common.h +++ b/module/zfs/vdev_raidz_math_powerpc_altivec_common.h @@ -1,688 +1,690 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (C) 2019 Romain Dolbeau. All rights reserved. * */ #include #include +#ifdef __linux__ #define __asm __asm__ __volatile__ +#endif #define _REG_CNT(_0, _1, _2, _3, _4, _5, _6, _7, N, ...) N #define REG_CNT(r...) _REG_CNT(r, 8, 7, 6, 5, 4, 3, 2, 1) #define VR0_(REG, ...) "%[w"#REG"]" #define VR1_(_1, REG, ...) "%[w"#REG"]" #define VR2_(_1, _2, REG, ...) "%[w"#REG"]" #define VR3_(_1, _2, _3, REG, ...) "%[w"#REG"]" #define VR4_(_1, _2, _3, _4, REG, ...) "%[w"#REG"]" #define VR5_(_1, _2, _3, _4, _5, REG, ...) "%[w"#REG"]" #define VR6_(_1, _2, _3, _4, _5, _6, REG, ...) "%[w"#REG"]" #define VR7_(_1, _2, _3, _4, _5, _6, _7, REG, ...) "%[w"#REG"]" /* * Here we need registers not used otherwise. * They will be used in unused ASM for the case * with more registers than required... but GCC * will still need to make sure the constraints * are correct, and duplicate constraints are illegal * ... and we use the "register" number as a name */ #define VR0(r...) VR0_(r) #define VR1(r...) VR1_(r) #define VR2(r...) VR2_(r, 36) #define VR3(r...) VR3_(r, 36, 35) #define VR4(r...) VR4_(r, 36, 35, 34, 33) #define VR5(r...) VR5_(r, 36, 35, 34, 33, 32) #define VR6(r...) VR6_(r, 36, 35, 34, 33, 32, 31) #define VR7(r...) VR7_(r, 36, 35, 34, 33, 32, 31, 30) #define VR(X) "%[w"#X"]" #define RVR0_(REG, ...) [w##REG] "v" (w##REG) #define RVR1_(_1, REG, ...) [w##REG] "v" (w##REG) #define RVR2_(_1, _2, REG, ...) [w##REG] "v" (w##REG) #define RVR3_(_1, _2, _3, REG, ...) [w##REG] "v" (w##REG) #define RVR4_(_1, _2, _3, _4, REG, ...) [w##REG] "v" (w##REG) #define RVR5_(_1, _2, _3, _4, _5, REG, ...) [w##REG] "v" (w##REG) #define RVR6_(_1, _2, _3, _4, _5, _6, REG, ...) [w##REG] "v" (w##REG) #define RVR7_(_1, _2, _3, _4, _5, _6, _7, REG, ...) [w##REG] "v" (w##REG) #define RVR0(r...) RVR0_(r) #define RVR1(r...) RVR1_(r) #define RVR2(r...) RVR2_(r, 36) #define RVR3(r...) RVR3_(r, 36, 35) #define RVR4(r...) RVR4_(r, 36, 35, 34, 33) #define RVR5(r...) RVR5_(r, 36, 35, 34, 33, 32) #define RVR6(r...) RVR6_(r, 36, 35, 34, 33, 32, 31) #define RVR7(r...) RVR7_(r, 36, 35, 34, 33, 32, 31, 30) #define RVR(X) [w##X] "v" (w##X) #define WVR0_(REG, ...) [w##REG] "=v" (w##REG) #define WVR1_(_1, REG, ...) [w##REG] "=v" (w##REG) #define WVR2_(_1, _2, REG, ...) [w##REG] "=v" (w##REG) #define WVR3_(_1, _2, _3, REG, ...) [w##REG] "=v" (w##REG) #define WVR4_(_1, _2, _3, _4, REG, ...) [w##REG] "=v" (w##REG) #define WVR5_(_1, _2, _3, _4, _5, REG, ...) [w##REG] "=v" (w##REG) #define WVR6_(_1, _2, _3, _4, _5, _6, REG, ...) [w##REG] "=v" (w##REG) #define WVR7_(_1, _2, _3, _4, _5, _6, _7, REG, ...) [w##REG] "=v" (w##REG) #define WVR0(r...) WVR0_(r) #define WVR1(r...) WVR1_(r) #define WVR2(r...) WVR2_(r, 36) #define WVR3(r...) WVR3_(r, 36, 35) #define WVR4(r...) WVR4_(r, 36, 35, 34, 33) #define WVR5(r...) WVR5_(r, 36, 35, 34, 33, 32) #define WVR6(r...) WVR6_(r, 36, 35, 34, 33, 32, 31) #define WVR7(r...) WVR7_(r, 36, 35, 34, 33, 32, 31, 30) #define WVR(X) [w##X] "=v" (w##X) #define UVR0_(REG, ...) [w##REG] "+&v" (w##REG) #define UVR1_(_1, REG, ...) [w##REG] "+&v" (w##REG) #define UVR2_(_1, _2, REG, ...) [w##REG] "+&v" (w##REG) #define UVR3_(_1, _2, _3, REG, ...) [w##REG] "+&v" (w##REG) #define UVR4_(_1, _2, _3, _4, REG, ...) [w##REG] "+&v" (w##REG) #define UVR5_(_1, _2, _3, _4, _5, REG, ...) [w##REG] "+&v" (w##REG) #define UVR6_(_1, _2, _3, _4, _5, _6, REG, ...) [w##REG] "+&v" (w##REG) #define UVR7_(_1, _2, _3, _4, _5, _6, _7, REG, ...) [w##REG] "+&v" (w##REG) #define UVR0(r...) UVR0_(r) #define UVR1(r...) UVR1_(r) #define UVR2(r...) UVR2_(r, 36) #define UVR3(r...) UVR3_(r, 36, 35) #define UVR4(r...) UVR4_(r, 36, 35, 34, 33) #define UVR5(r...) UVR5_(r, 36, 35, 34, 33, 32) #define UVR6(r...) UVR6_(r, 36, 35, 34, 33, 32, 31) #define UVR7(r...) UVR7_(r, 36, 35, 34, 33, 32, 31, 30) #define UVR(X) [w##X] "+&v" (w##X) #define R_01(REG1, REG2, ...) REG1, REG2 #define _R_23(_0, _1, REG2, REG3, ...) REG2, REG3 #define R_23(REG...) _R_23(REG, 1, 2, 3) #define ZFS_ASM_BUG() ASSERT(0) #define OFFSET(ptr, val) (((unsigned char *)(ptr))+val) extern const uint8_t gf_clmul_mod_lt[4*256][16]; #define ELEM_SIZE 16 typedef struct v { uint8_t b[ELEM_SIZE] __attribute__((aligned(ELEM_SIZE))); } v_t; #define XOR_ACC(src, r...) \ { \ switch (REG_CNT(r)) { \ case 8: \ __asm( \ "lvx 21,0,%[SRC0]\n" \ "lvx 20,0,%[SRC1]\n" \ "lvx 19,0,%[SRC2]\n" \ "lvx 18,0,%[SRC3]\n" \ "vxor " VR0(r) "," VR0(r) ",21\n" \ "vxor " VR1(r) "," VR1(r) ",20\n" \ "vxor " VR2(r) "," VR2(r) ",19\n" \ "vxor " VR3(r) "," VR3(r) ",18\n" \ "lvx 21,0,%[SRC4]\n" \ "lvx 20,0,%[SRC5]\n" \ "lvx 19,0,%[SRC6]\n" \ "lvx 18,0,%[SRC7]\n" \ "vxor " VR4(r) "," VR4(r) ",21\n" \ "vxor " VR5(r) "," VR5(r) ",20\n" \ "vxor " VR6(r) "," VR6(r) ",19\n" \ "vxor " VR7(r) "," VR7(r) ",18\n" \ : UVR0(r), UVR1(r), UVR2(r), UVR3(r), \ UVR4(r), UVR5(r), UVR6(r), UVR7(r) \ : [SRC0] "r" ((OFFSET(src, 0))), \ [SRC1] "r" ((OFFSET(src, 16))), \ [SRC2] "r" ((OFFSET(src, 32))), \ [SRC3] "r" ((OFFSET(src, 48))), \ [SRC4] "r" ((OFFSET(src, 64))), \ [SRC5] "r" ((OFFSET(src, 80))), \ [SRC6] "r" ((OFFSET(src, 96))), \ [SRC7] "r" ((OFFSET(src, 112))) \ : "v18", "v19", "v20", "v21"); \ break; \ case 4: \ __asm( \ "lvx 21,0,%[SRC0]\n" \ "lvx 20,0,%[SRC1]\n" \ "lvx 19,0,%[SRC2]\n" \ "lvx 18,0,%[SRC3]\n" \ "vxor " VR0(r) "," VR0(r) ",21\n" \ "vxor " VR1(r) "," VR1(r) ",20\n" \ "vxor " VR2(r) "," VR2(r) ",19\n" \ "vxor " VR3(r) "," VR3(r) ",18\n" \ : UVR0(r), UVR1(r), UVR2(r), UVR3(r) \ : [SRC0] "r" ((OFFSET(src, 0))), \ [SRC1] "r" ((OFFSET(src, 16))), \ [SRC2] "r" ((OFFSET(src, 32))), \ [SRC3] "r" ((OFFSET(src, 48))) \ : "v18", "v19", "v20", "v21"); \ break; \ case 2: \ __asm( \ "lvx 21,0,%[SRC0]\n" \ "lvx 20,0,%[SRC1]\n" \ "vxor " VR0(r) "," VR0(r) ",21\n" \ "vxor " VR1(r) "," VR1(r) ",20\n" \ : UVR0(r), UVR1(r) \ : [SRC0] "r" ((OFFSET(src, 0))), \ [SRC1] "r" ((OFFSET(src, 16))) \ : "v20", "v21"); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } #define XOR(r...) \ { \ switch (REG_CNT(r)) { \ case 8: \ __asm( \ "vxor " VR4(r) "," VR4(r) "," VR0(r) "\n" \ "vxor " VR5(r) "," VR5(r) "," VR1(r) "\n" \ "vxor " VR6(r) "," VR6(r) "," VR2(r) "\n" \ "vxor " VR7(r) "," VR7(r) "," VR3(r) "\n" \ : UVR4(r), UVR5(r), UVR6(r), UVR7(r) \ : RVR0(r), RVR1(r), RVR2(r), RVR3(r)); \ break; \ case 4: \ __asm( \ "vxor " VR2(r) "," VR2(r) "," VR0(r) "\n" \ "vxor " VR3(r) "," VR3(r) "," VR1(r) "\n" \ : UVR2(r), UVR3(r) \ : RVR0(r), RVR1(r)); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } #define ZERO(r...) \ { \ switch (REG_CNT(r)) { \ case 8: \ __asm( \ "vxor " VR0(r) "," VR0(r) "," VR0(r) "\n" \ "vxor " VR1(r) "," VR1(r) "," VR1(r) "\n" \ "vxor " VR2(r) "," VR2(r) "," VR2(r) "\n" \ "vxor " VR3(r) "," VR3(r) "," VR3(r) "\n" \ "vxor " VR4(r) "," VR4(r) "," VR4(r) "\n" \ "vxor " VR5(r) "," VR5(r) "," VR5(r) "\n" \ "vxor " VR6(r) "," VR6(r) "," VR6(r) "\n" \ "vxor " VR7(r) "," VR7(r) "," VR7(r) "\n" \ : WVR0(r), WVR1(r), WVR2(r), WVR3(r), \ WVR4(r), WVR5(r), WVR6(r), WVR7(r)); \ break; \ case 4: \ __asm( \ "vxor " VR0(r) "," VR0(r) "," VR0(r) "\n" \ "vxor " VR1(r) "," VR1(r) "," VR1(r) "\n" \ "vxor " VR2(r) "," VR2(r) "," VR2(r) "\n" \ "vxor " VR3(r) "," VR3(r) "," VR3(r) "\n" \ : WVR0(r), WVR1(r), WVR2(r), WVR3(r)); \ break; \ case 2: \ __asm( \ "vxor " VR0(r) "," VR0(r) "," VR0(r) "\n" \ "vxor " VR1(r) "," VR1(r) "," VR1(r) "\n" \ : WVR0(r), WVR1(r)); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } #define COPY(r...) \ { \ switch (REG_CNT(r)) { \ case 8: \ __asm( \ "vor " VR4(r) "," VR0(r) "," VR0(r) "\n" \ "vor " VR5(r) "," VR1(r) "," VR1(r) "\n" \ "vor " VR6(r) "," VR2(r) "," VR2(r) "\n" \ "vor " VR7(r) "," VR3(r) "," VR3(r) "\n" \ : WVR4(r), WVR5(r), WVR6(r), WVR7(r) \ : RVR0(r), RVR1(r), RVR2(r), RVR3(r)); \ break; \ case 4: \ __asm( \ "vor " VR2(r) "," VR0(r) "," VR0(r) "\n" \ "vor " VR3(r) "," VR1(r) "," VR1(r) "\n" \ : WVR2(r), WVR3(r) \ : RVR0(r), RVR1(r)); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } #define LOAD(src, r...) \ { \ switch (REG_CNT(r)) { \ case 8: \ __asm( \ "lvx " VR0(r) " ,0,%[SRC0]\n" \ "lvx " VR1(r) " ,0,%[SRC1]\n" \ "lvx " VR2(r) " ,0,%[SRC2]\n" \ "lvx " VR3(r) " ,0,%[SRC3]\n" \ "lvx " VR4(r) " ,0,%[SRC4]\n" \ "lvx " VR5(r) " ,0,%[SRC5]\n" \ "lvx " VR6(r) " ,0,%[SRC6]\n" \ "lvx " VR7(r) " ,0,%[SRC7]\n" \ : WVR0(r), WVR1(r), WVR2(r), WVR3(r), \ WVR4(r), WVR5(r), WVR6(r), WVR7(r) \ : [SRC0] "r" ((OFFSET(src, 0))), \ [SRC1] "r" ((OFFSET(src, 16))), \ [SRC2] "r" ((OFFSET(src, 32))), \ [SRC3] "r" ((OFFSET(src, 48))), \ [SRC4] "r" ((OFFSET(src, 64))), \ [SRC5] "r" ((OFFSET(src, 80))), \ [SRC6] "r" ((OFFSET(src, 96))), \ [SRC7] "r" ((OFFSET(src, 112)))); \ break; \ case 4: \ __asm( \ "lvx " VR0(r) " ,0,%[SRC0]\n" \ "lvx " VR1(r) " ,0,%[SRC1]\n" \ "lvx " VR2(r) " ,0,%[SRC2]\n" \ "lvx " VR3(r) " ,0,%[SRC3]\n" \ : WVR0(r), WVR1(r), WVR2(r), WVR3(r) \ : [SRC0] "r" ((OFFSET(src, 0))), \ [SRC1] "r" ((OFFSET(src, 16))), \ [SRC2] "r" ((OFFSET(src, 32))), \ [SRC3] "r" ((OFFSET(src, 48)))); \ break; \ case 2: \ __asm( \ "lvx " VR0(r) " ,0,%[SRC0]\n" \ "lvx " VR1(r) " ,0,%[SRC1]\n" \ : WVR0(r), WVR1(r) \ : [SRC0] "r" ((OFFSET(src, 0))), \ [SRC1] "r" ((OFFSET(src, 16)))); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } #define STORE(dst, r...) \ { \ switch (REG_CNT(r)) { \ case 8: \ __asm( \ "stvx " VR0(r) " ,0,%[DST0]\n" \ "stvx " VR1(r) " ,0,%[DST1]\n" \ "stvx " VR2(r) " ,0,%[DST2]\n" \ "stvx " VR3(r) " ,0,%[DST3]\n" \ "stvx " VR4(r) " ,0,%[DST4]\n" \ "stvx " VR5(r) " ,0,%[DST5]\n" \ "stvx " VR6(r) " ,0,%[DST6]\n" \ "stvx " VR7(r) " ,0,%[DST7]\n" \ : : [DST0] "r" ((OFFSET(dst, 0))), \ [DST1] "r" ((OFFSET(dst, 16))), \ [DST2] "r" ((OFFSET(dst, 32))), \ [DST3] "r" ((OFFSET(dst, 48))), \ [DST4] "r" ((OFFSET(dst, 64))), \ [DST5] "r" ((OFFSET(dst, 80))), \ [DST6] "r" ((OFFSET(dst, 96))), \ [DST7] "r" ((OFFSET(dst, 112))), \ RVR0(r), RVR1(r), RVR2(r), RVR3(r), \ RVR4(r), RVR5(r), RVR6(r), RVR7(r) \ : "memory"); \ break; \ case 4: \ __asm( \ "stvx " VR0(r) " ,0,%[DST0]\n" \ "stvx " VR1(r) " ,0,%[DST1]\n" \ "stvx " VR2(r) " ,0,%[DST2]\n" \ "stvx " VR3(r) " ,0,%[DST3]\n" \ : : [DST0] "r" ((OFFSET(dst, 0))), \ [DST1] "r" ((OFFSET(dst, 16))), \ [DST2] "r" ((OFFSET(dst, 32))), \ [DST3] "r" ((OFFSET(dst, 48))), \ RVR0(r), RVR1(r), RVR2(r), RVR3(r) \ : "memory"); \ break; \ case 2: \ __asm( \ "stvx " VR0(r) " ,0,%[DST0]\n" \ "stvx " VR1(r) " ,0,%[DST1]\n" \ : : [DST0] "r" ((OFFSET(dst, 0))), \ [DST1] "r" ((OFFSET(dst, 16))), \ RVR0(r), RVR1(r) : "memory"); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } /* * Unfortunately cannot use the macro, because GCC * will try to use the macro name and not value * later on... * Kept as a reference to what a numbered variable is */ #define _00 "17" #define _1d "16" #define _temp0 "19" #define _temp1 "18" #define MUL2_SETUP() \ { \ __asm( \ "vspltisb " VR(16) ",14\n" \ "vspltisb " VR(17) ",15\n" \ "vaddubm " VR(16) "," VR(17) "," VR(16) "\n" \ "vxor " VR(17) "," VR(17) "," VR(17) "\n" \ : WVR(16), WVR(17)); \ } #define MUL2(r...) \ { \ switch (REG_CNT(r)) { \ case 4: \ __asm( \ "vcmpgtsb 19," VR(17) "," VR0(r) "\n" \ "vcmpgtsb 18," VR(17) "," VR1(r) "\n" \ "vcmpgtsb 21," VR(17) "," VR2(r) "\n" \ "vcmpgtsb 20," VR(17) "," VR3(r) "\n" \ "vand 19,19," VR(16) "\n" \ "vand 18,18," VR(16) "\n" \ "vand 21,21," VR(16) "\n" \ "vand 20,20," VR(16) "\n" \ "vaddubm " VR0(r) "," VR0(r) "," VR0(r) "\n" \ "vaddubm " VR1(r) "," VR1(r) "," VR1(r) "\n" \ "vaddubm " VR2(r) "," VR2(r) "," VR2(r) "\n" \ "vaddubm " VR3(r) "," VR3(r) "," VR3(r) "\n" \ "vxor " VR0(r) ",19," VR0(r) "\n" \ "vxor " VR1(r) ",18," VR1(r) "\n" \ "vxor " VR2(r) ",21," VR2(r) "\n" \ "vxor " VR3(r) ",20," VR3(r) "\n" \ : UVR0(r), UVR1(r), UVR2(r), UVR3(r) \ : RVR(17), RVR(16) \ : "v18", "v19", "v20", "v21"); \ break; \ case 2: \ __asm( \ "vcmpgtsb 19," VR(17) "," VR0(r) "\n" \ "vcmpgtsb 18," VR(17) "," VR1(r) "\n" \ "vand 19,19," VR(16) "\n" \ "vand 18,18," VR(16) "\n" \ "vaddubm " VR0(r) "," VR0(r) "," VR0(r) "\n" \ "vaddubm " VR1(r) "," VR1(r) "," VR1(r) "\n" \ "vxor " VR0(r) ",19," VR0(r) "\n" \ "vxor " VR1(r) ",18," VR1(r) "\n" \ : UVR0(r), UVR1(r) \ : RVR(17), RVR(16) \ : "v18", "v19"); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } #define MUL4(r...) \ { \ MUL2(r); \ MUL2(r); \ } /* * Unfortunately cannot use the macro, because GCC * will try to use the macro name and not value * later on... * Kept as a reference to what a register is * (here we're using actual registers for the * clobbered ones) */ #define _0f "15" #define _a_save "14" #define _b_save "13" #define _lt_mod_a "12" #define _lt_clmul_a "11" #define _lt_mod_b "10" #define _lt_clmul_b "15" #define _MULx2(c, r...) \ { \ switch (REG_CNT(r)) { \ case 2: \ __asm( \ /* lts for upper part */ \ "vspltisb 15,15\n" \ "lvx 10,0,%[lt0]\n" \ "lvx 11,0,%[lt1]\n" \ /* upper part */ \ "vand 14," VR0(r) ",15\n" \ "vand 13," VR1(r) ",15\n" \ "vspltisb 15,4\n" \ "vsrab " VR0(r) "," VR0(r) ",15\n" \ "vsrab " VR1(r) "," VR1(r) ",15\n" \ \ "vperm 12,10,10," VR0(r) "\n" \ "vperm 10,10,10," VR1(r) "\n" \ "vperm 15,11,11," VR0(r) "\n" \ "vperm 11,11,11," VR1(r) "\n" \ \ "vxor " VR0(r) ",15,12\n" \ "vxor " VR1(r) ",11,10\n" \ /* lts for lower part */ \ "lvx 10,0,%[lt2]\n" \ "lvx 15,0,%[lt3]\n" \ /* lower part */ \ "vperm 12,10,10,14\n" \ "vperm 10,10,10,13\n" \ "vperm 11,15,15,14\n" \ "vperm 15,15,15,13\n" \ \ "vxor " VR0(r) "," VR0(r) ",12\n" \ "vxor " VR1(r) "," VR1(r) ",10\n" \ "vxor " VR0(r) "," VR0(r) ",11\n" \ "vxor " VR1(r) "," VR1(r) ",15\n" \ : UVR0(r), UVR1(r) \ : [lt0] "r" (&(gf_clmul_mod_lt[4*(c)+0][0])), \ [lt1] "r" (&(gf_clmul_mod_lt[4*(c)+1][0])), \ [lt2] "r" (&(gf_clmul_mod_lt[4*(c)+2][0])), \ [lt3] "r" (&(gf_clmul_mod_lt[4*(c)+3][0])) \ : "v10", "v11", "v12", "v13", "v14", "v15"); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } #define MUL(c, r...) \ { \ switch (REG_CNT(r)) { \ case 4: \ _MULx2(c, R_23(r)); \ _MULx2(c, R_01(r)); \ break; \ case 2: \ _MULx2(c, R_01(r)); \ break; \ default: \ ZFS_ASM_BUG(); \ } \ } #define raidz_math_begin() kfpu_begin() #define raidz_math_end() kfpu_end() /* Overkill... */ #if 0 // defined(_KERNEL) #define GEN_X_DEFINE_0_3() \ register unsigned char w0 asm("0") __attribute__((vector_size(16))); \ register unsigned char w1 asm("1") __attribute__((vector_size(16))); \ register unsigned char w2 asm("2") __attribute__((vector_size(16))); \ register unsigned char w3 asm("3") __attribute__((vector_size(16))); #define GEN_X_DEFINE_4_5() \ register unsigned char w4 asm("4") __attribute__((vector_size(16))); \ register unsigned char w5 asm("5") __attribute__((vector_size(16))); #define GEN_X_DEFINE_6_7() \ register unsigned char w6 asm("6") __attribute__((vector_size(16))); \ register unsigned char w7 asm("7") __attribute__((vector_size(16))); #define GEN_X_DEFINE_8_9() \ register unsigned char w8 asm("8") __attribute__((vector_size(16))); \ register unsigned char w9 asm("9") __attribute__((vector_size(16))); #define GEN_X_DEFINE_10_11() \ register unsigned char w10 asm("10") __attribute__((vector_size(16))); \ register unsigned char w11 asm("11") __attribute__((vector_size(16))); #define GEN_X_DEFINE_12_15() \ register unsigned char w12 asm("12") __attribute__((vector_size(16))); \ register unsigned char w13 asm("13") __attribute__((vector_size(16))); \ register unsigned char w14 asm("14") __attribute__((vector_size(16))); \ register unsigned char w15 asm("15") __attribute__((vector_size(16))); #define GEN_X_DEFINE_16() \ register unsigned char w16 asm("16") __attribute__((vector_size(16))); #define GEN_X_DEFINE_17() \ register unsigned char w17 asm("17") __attribute__((vector_size(16))); #define GEN_X_DEFINE_18_21() \ register unsigned char w18 asm("18") __attribute__((vector_size(16))); \ register unsigned char w19 asm("19") __attribute__((vector_size(16))); \ register unsigned char w20 asm("20") __attribute__((vector_size(16))); \ register unsigned char w21 asm("21") __attribute__((vector_size(16))); #define GEN_X_DEFINE_22_23() \ register unsigned char w22 asm("22") __attribute__((vector_size(16))); \ register unsigned char w23 asm("23") __attribute__((vector_size(16))); #define GEN_X_DEFINE_24_27() \ register unsigned char w24 asm("24") __attribute__((vector_size(16))); \ register unsigned char w25 asm("25") __attribute__((vector_size(16))); \ register unsigned char w26 asm("26") __attribute__((vector_size(16))); \ register unsigned char w27 asm("27") __attribute__((vector_size(16))); #define GEN_X_DEFINE_28_30() \ register unsigned char w28 asm("28") __attribute__((vector_size(16))); \ register unsigned char w29 asm("29") __attribute__((vector_size(16))); \ register unsigned char w30 asm("30") __attribute__((vector_size(16))); #define GEN_X_DEFINE_31() \ register unsigned char w31 asm("31") __attribute__((vector_size(16))); #define GEN_X_DEFINE_32() \ register unsigned char w32 asm("31") __attribute__((vector_size(16))); #define GEN_X_DEFINE_33_36() \ register unsigned char w33 asm("31") __attribute__((vector_size(16))); \ register unsigned char w34 asm("31") __attribute__((vector_size(16))); \ register unsigned char w35 asm("31") __attribute__((vector_size(16))); \ register unsigned char w36 asm("31") __attribute__((vector_size(16))); #define GEN_X_DEFINE_37_38() \ register unsigned char w37 asm("31") __attribute__((vector_size(16))); \ register unsigned char w38 asm("31") __attribute__((vector_size(16))); #define GEN_X_DEFINE_ALL() \ GEN_X_DEFINE_0_3() \ GEN_X_DEFINE_4_5() \ GEN_X_DEFINE_6_7() \ GEN_X_DEFINE_8_9() \ GEN_X_DEFINE_10_11() \ GEN_X_DEFINE_12_15() \ GEN_X_DEFINE_16() \ GEN_X_DEFINE_17() \ GEN_X_DEFINE_18_21() \ GEN_X_DEFINE_22_23() \ GEN_X_DEFINE_24_27() \ GEN_X_DEFINE_28_30() \ GEN_X_DEFINE_31() \ GEN_X_DEFINE_32() \ GEN_X_DEFINE_33_36() \ GEN_X_DEFINE_37_38() #else #define GEN_X_DEFINE_0_3() \ unsigned char w0 __attribute__((vector_size(16))); \ unsigned char w1 __attribute__((vector_size(16))); \ unsigned char w2 __attribute__((vector_size(16))); \ unsigned char w3 __attribute__((vector_size(16))); #define GEN_X_DEFINE_4_5() \ unsigned char w4 __attribute__((vector_size(16))); \ unsigned char w5 __attribute__((vector_size(16))); #define GEN_X_DEFINE_6_7() \ unsigned char w6 __attribute__((vector_size(16))); \ unsigned char w7 __attribute__((vector_size(16))); #define GEN_X_DEFINE_8_9() \ unsigned char w8 __attribute__((vector_size(16))); \ unsigned char w9 __attribute__((vector_size(16))); #define GEN_X_DEFINE_10_11() \ unsigned char w10 __attribute__((vector_size(16))); \ unsigned char w11 __attribute__((vector_size(16))); #define GEN_X_DEFINE_12_15() \ unsigned char w12 __attribute__((vector_size(16))); \ unsigned char w13 __attribute__((vector_size(16))); \ unsigned char w14 __attribute__((vector_size(16))); \ unsigned char w15 __attribute__((vector_size(16))); #define GEN_X_DEFINE_16() \ unsigned char w16 __attribute__((vector_size(16))); #define GEN_X_DEFINE_17() \ unsigned char w17 __attribute__((vector_size(16))); #define GEN_X_DEFINE_18_21() \ unsigned char w18 __attribute__((vector_size(16))); \ unsigned char w19 __attribute__((vector_size(16))); \ unsigned char w20 __attribute__((vector_size(16))); \ unsigned char w21 __attribute__((vector_size(16))); #define GEN_X_DEFINE_22_23() \ unsigned char w22 __attribute__((vector_size(16))); \ unsigned char w23 __attribute__((vector_size(16))); #define GEN_X_DEFINE_24_27() \ unsigned char w24 __attribute__((vector_size(16))); \ unsigned char w25 __attribute__((vector_size(16))); \ unsigned char w26 __attribute__((vector_size(16))); \ unsigned char w27 __attribute__((vector_size(16))); #define GEN_X_DEFINE_28_30() \ unsigned char w28 __attribute__((vector_size(16))); \ unsigned char w29 __attribute__((vector_size(16))); \ unsigned char w30 __attribute__((vector_size(16))); #define GEN_X_DEFINE_31() \ unsigned char w31 __attribute__((vector_size(16))); #define GEN_X_DEFINE_32() \ unsigned char w32 __attribute__((vector_size(16))); #define GEN_X_DEFINE_33_36() \ unsigned char w33 __attribute__((vector_size(16))); \ unsigned char w34 __attribute__((vector_size(16))); \ unsigned char w35 __attribute__((vector_size(16))); \ unsigned char w36 __attribute__((vector_size(16))); #define GEN_X_DEFINE_37_38() \ unsigned char w37 __attribute__((vector_size(16))); \ unsigned char w38 __attribute__((vector_size(16))); #define GEN_X_DEFINE_ALL() \ GEN_X_DEFINE_0_3() \ GEN_X_DEFINE_4_5() \ GEN_X_DEFINE_6_7() \ GEN_X_DEFINE_8_9() \ GEN_X_DEFINE_10_11() \ GEN_X_DEFINE_12_15() \ GEN_X_DEFINE_16() \ GEN_X_DEFINE_17() \ GEN_X_DEFINE_18_21() \ GEN_X_DEFINE_22_23() \ GEN_X_DEFINE_24_27() \ GEN_X_DEFINE_28_30() \ GEN_X_DEFINE_31() \ GEN_X_DEFINE_32() \ GEN_X_DEFINE_33_36() \ GEN_X_DEFINE_37_38() #endif diff --git a/module/zfs/vdev_raidz_math_sse2.c b/module/zfs/vdev_raidz_math_sse2.c index 12d7bda01a59..56a0b123d952 100644 --- a/module/zfs/vdev_raidz_math_sse2.c +++ b/module/zfs/vdev_raidz_math_sse2.c @@ -1,629 +1,631 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (C) 2016 Gvozden Nešković. All rights reserved. */ #include #if defined(__x86_64) && defined(HAVE_SSE2) #include #include #include +#ifdef __linux__ #define __asm __asm__ __volatile__ +#endif #define _REG_CNT(_0, _1, _2, _3, _4, _5, _6, _7, N, ...) N #define REG_CNT(r...) _REG_CNT(r, 8, 7, 6, 5, 4, 3, 2, 1) #define VR0_(REG, ...) "xmm"#REG #define VR1_(_1, REG, ...) "xmm"#REG #define VR2_(_1, _2, REG, ...) "xmm"#REG #define VR3_(_1, _2, _3, REG, ...) "xmm"#REG #define VR4_(_1, _2, _3, _4, REG, ...) "xmm"#REG #define VR5_(_1, _2, _3, _4, _5, REG, ...) "xmm"#REG #define VR6_(_1, _2, _3, _4, _5, _6, REG, ...) "xmm"#REG #define VR7_(_1, _2, _3, _4, _5, _6, _7, REG, ...) "xmm"#REG #define VR0(r...) VR0_(r, 1, 2, 3, 4, 5, 6) #define VR1(r...) VR1_(r, 1, 2, 3, 4, 5, 6) #define VR2(r...) VR2_(r, 1, 2, 3, 4, 5, 6) #define VR3(r...) VR3_(r, 1, 2, 3, 4, 5, 6) #define VR4(r...) VR4_(r, 1, 2, 3, 4, 5, 6) #define VR5(r...) VR5_(r, 1, 2, 3, 4, 5, 6) #define VR6(r...) VR6_(r, 1, 2, 3, 4, 5, 6) #define VR7(r...) VR7_(r, 1, 2, 3, 4, 5, 6) #define ELEM_SIZE 16 typedef struct v { uint8_t b[ELEM_SIZE] __attribute__((aligned(ELEM_SIZE))); } v_t; #define XOR_ACC(src, r...) \ { \ switch (REG_CNT(r)) { \ case 4: \ __asm( \ "pxor 0x00(%[SRC]), %%" VR0(r) "\n" \ "pxor 0x10(%[SRC]), %%" VR1(r) "\n" \ "pxor 0x20(%[SRC]), %%" VR2(r) "\n" \ "pxor 0x30(%[SRC]), %%" VR3(r) "\n" \ : : [SRC] "r" (src)); \ break; \ case 2: \ __asm( \ "pxor 0x00(%[SRC]), %%" VR0(r) "\n" \ "pxor 0x10(%[SRC]), %%" VR1(r) "\n" \ : : [SRC] "r" (src)); \ break; \ case 1: \ __asm("pxor 0x00(%[SRC]), %%" VR0(r) "\n" \ : : [SRC] "r" (src)); \ break; \ } \ } #define XOR(r...) \ { \ switch (REG_CNT(r)) { \ case 8: \ __asm( \ "pxor %" VR0(r) ", %" VR4(r) "\n" \ "pxor %" VR1(r) ", %" VR5(r) "\n" \ "pxor %" VR2(r) ", %" VR6(r) "\n" \ "pxor %" VR3(r) ", %" VR7(r)); \ break; \ case 4: \ __asm( \ "pxor %" VR0(r) ", %" VR2(r) "\n" \ "pxor %" VR1(r) ", %" VR3(r)); \ break; \ case 2: \ __asm( \ "pxor %" VR0(r) ", %" VR1(r)); \ break; \ } \ } #define ZERO(r...) XOR(r, r) #define COPY(r...) \ { \ switch (REG_CNT(r)) { \ case 8: \ __asm( \ "movdqa %" VR0(r) ", %" VR4(r) "\n" \ "movdqa %" VR1(r) ", %" VR5(r) "\n" \ "movdqa %" VR2(r) ", %" VR6(r) "\n" \ "movdqa %" VR3(r) ", %" VR7(r)); \ break; \ case 4: \ __asm( \ "movdqa %" VR0(r) ", %" VR2(r) "\n" \ "movdqa %" VR1(r) ", %" VR3(r)); \ break; \ case 2: \ __asm( \ "movdqa %" VR0(r) ", %" VR1(r)); \ break; \ default: \ VERIFY(0); \ } \ } #define LOAD(src, r...) \ { \ switch (REG_CNT(r)) { \ case 4: \ __asm( \ "movdqa 0x00(%[SRC]), %%" VR0(r) "\n" \ "movdqa 0x10(%[SRC]), %%" VR1(r) "\n" \ "movdqa 0x20(%[SRC]), %%" VR2(r) "\n" \ "movdqa 0x30(%[SRC]), %%" VR3(r) "\n" \ : : [SRC] "r" (src)); \ break; \ case 2: \ __asm( \ "movdqa 0x00(%[SRC]), %%" VR0(r) "\n" \ "movdqa 0x10(%[SRC]), %%" VR1(r) "\n" \ : : [SRC] "r" (src)); \ break; \ case 1: \ __asm( \ "movdqa 0x00(%[SRC]), %%" VR0(r) "\n" \ : : [SRC] "r" (src)); \ break; \ } \ } #define STORE(dst, r...) \ { \ switch (REG_CNT(r)) { \ case 4: \ __asm( \ "movdqa %%" VR0(r)", 0x00(%[DST])\n" \ "movdqa %%" VR1(r)", 0x10(%[DST])\n" \ "movdqa %%" VR2(r)", 0x20(%[DST])\n" \ "movdqa %%" VR3(r)", 0x30(%[DST])\n" \ : : [DST] "r" (dst)); \ break; \ case 2: \ __asm( \ "movdqa %%" VR0(r)", 0x00(%[DST])\n" \ "movdqa %%" VR1(r)", 0x10(%[DST])\n" \ : : [DST] "r" (dst)); \ break; \ case 1: \ __asm( \ "movdqa %%" VR0(r)", 0x00(%[DST])\n" \ : : [DST] "r" (dst)); \ break; \ default: \ VERIFY(0); \ } \ } #define MUL2_SETUP() \ { \ __asm( \ "movd %[mask], %%xmm15\n" \ "pshufd $0x0, %%xmm15, %%xmm15\n" \ : : [mask] "r" (0x1d1d1d1d)); \ } #define _MUL2_x1(a0) \ { \ __asm( \ "pxor %xmm14, %xmm14\n" \ "pcmpgtb %" a0", %xmm14\n" \ "pand %xmm15, %xmm14\n" \ "paddb %" a0", %" a0 "\n" \ "pxor %xmm14, %" a0); \ } #define _MUL2_x2(a0, a1) \ { \ __asm( \ "pxor %xmm14, %xmm14\n" \ "pxor %xmm13, %xmm13\n" \ "pcmpgtb %" a0", %xmm14\n" \ "pcmpgtb %" a1", %xmm13\n" \ "pand %xmm15, %xmm14\n" \ "pand %xmm15, %xmm13\n" \ "paddb %" a0", %" a0 "\n" \ "paddb %" a1", %" a1 "\n" \ "pxor %xmm14, %" a0 "\n" \ "pxor %xmm13, %" a1); \ } #define MUL2(r...) \ { \ switch (REG_CNT(r)) { \ case 4: \ _MUL2_x2(VR0(r), VR1(r)); \ _MUL2_x2(VR2(r), VR3(r)); \ break; \ case 2: \ _MUL2_x2(VR0(r), VR1(r)); \ break; \ case 1: \ _MUL2_x1(VR0(r)); \ break; \ } \ } #define MUL4(r...) \ { \ MUL2(r); \ MUL2(r); \ } /* General multiplication by adding powers of two */ #define _MUL_PARAM(x, in, acc) \ { \ if (x & 0x01) { COPY(in, acc); } else { ZERO(acc); } \ if (x & 0xfe) { MUL2(in); } \ if (x & 0x02) { XOR(in, acc); } \ if (x & 0xfc) { MUL2(in); } \ if (x & 0x04) { XOR(in, acc); } \ if (x & 0xf8) { MUL2(in); } \ if (x & 0x08) { XOR(in, acc); } \ if (x & 0xf0) { MUL2(in); } \ if (x & 0x10) { XOR(in, acc); } \ if (x & 0xe0) { MUL2(in); } \ if (x & 0x20) { XOR(in, acc); } \ if (x & 0xc0) { MUL2(in); } \ if (x & 0x40) { XOR(in, acc); } \ if (x & 0x80) { MUL2(in); XOR(in, acc); } \ } #define _mul_x1_in 11 #define _mul_x1_acc 12 #define MUL_x1_DEFINE(x) \ static void \ mul_x1_ ## x(void) { _MUL_PARAM(x, _mul_x1_in, _mul_x1_acc); } #define _mul_x2_in 9, 10 #define _mul_x2_acc 11, 12 #define MUL_x2_DEFINE(x) \ static void \ mul_x2_ ## x(void) { _MUL_PARAM(x, _mul_x2_in, _mul_x2_acc); } MUL_x1_DEFINE(0); MUL_x1_DEFINE(1); MUL_x1_DEFINE(2); MUL_x1_DEFINE(3); MUL_x1_DEFINE(4); MUL_x1_DEFINE(5); MUL_x1_DEFINE(6); MUL_x1_DEFINE(7); MUL_x1_DEFINE(8); MUL_x1_DEFINE(9); MUL_x1_DEFINE(10); MUL_x1_DEFINE(11); MUL_x1_DEFINE(12); MUL_x1_DEFINE(13); MUL_x1_DEFINE(14); MUL_x1_DEFINE(15); MUL_x1_DEFINE(16); MUL_x1_DEFINE(17); MUL_x1_DEFINE(18); MUL_x1_DEFINE(19); MUL_x1_DEFINE(20); MUL_x1_DEFINE(21); MUL_x1_DEFINE(22); MUL_x1_DEFINE(23); MUL_x1_DEFINE(24); MUL_x1_DEFINE(25); MUL_x1_DEFINE(26); MUL_x1_DEFINE(27); MUL_x1_DEFINE(28); MUL_x1_DEFINE(29); MUL_x1_DEFINE(30); MUL_x1_DEFINE(31); MUL_x1_DEFINE(32); MUL_x1_DEFINE(33); MUL_x1_DEFINE(34); MUL_x1_DEFINE(35); MUL_x1_DEFINE(36); MUL_x1_DEFINE(37); MUL_x1_DEFINE(38); MUL_x1_DEFINE(39); MUL_x1_DEFINE(40); MUL_x1_DEFINE(41); MUL_x1_DEFINE(42); MUL_x1_DEFINE(43); MUL_x1_DEFINE(44); MUL_x1_DEFINE(45); MUL_x1_DEFINE(46); MUL_x1_DEFINE(47); MUL_x1_DEFINE(48); MUL_x1_DEFINE(49); MUL_x1_DEFINE(50); MUL_x1_DEFINE(51); MUL_x1_DEFINE(52); MUL_x1_DEFINE(53); MUL_x1_DEFINE(54); MUL_x1_DEFINE(55); MUL_x1_DEFINE(56); MUL_x1_DEFINE(57); MUL_x1_DEFINE(58); MUL_x1_DEFINE(59); MUL_x1_DEFINE(60); MUL_x1_DEFINE(61); MUL_x1_DEFINE(62); MUL_x1_DEFINE(63); MUL_x1_DEFINE(64); MUL_x1_DEFINE(65); MUL_x1_DEFINE(66); MUL_x1_DEFINE(67); MUL_x1_DEFINE(68); MUL_x1_DEFINE(69); MUL_x1_DEFINE(70); MUL_x1_DEFINE(71); MUL_x1_DEFINE(72); MUL_x1_DEFINE(73); MUL_x1_DEFINE(74); MUL_x1_DEFINE(75); MUL_x1_DEFINE(76); MUL_x1_DEFINE(77); MUL_x1_DEFINE(78); MUL_x1_DEFINE(79); MUL_x1_DEFINE(80); MUL_x1_DEFINE(81); MUL_x1_DEFINE(82); MUL_x1_DEFINE(83); MUL_x1_DEFINE(84); MUL_x1_DEFINE(85); MUL_x1_DEFINE(86); MUL_x1_DEFINE(87); MUL_x1_DEFINE(88); MUL_x1_DEFINE(89); MUL_x1_DEFINE(90); MUL_x1_DEFINE(91); MUL_x1_DEFINE(92); MUL_x1_DEFINE(93); MUL_x1_DEFINE(94); MUL_x1_DEFINE(95); MUL_x1_DEFINE(96); MUL_x1_DEFINE(97); MUL_x1_DEFINE(98); MUL_x1_DEFINE(99); MUL_x1_DEFINE(100); MUL_x1_DEFINE(101); MUL_x1_DEFINE(102); MUL_x1_DEFINE(103); MUL_x1_DEFINE(104); MUL_x1_DEFINE(105); MUL_x1_DEFINE(106); MUL_x1_DEFINE(107); MUL_x1_DEFINE(108); MUL_x1_DEFINE(109); MUL_x1_DEFINE(110); MUL_x1_DEFINE(111); MUL_x1_DEFINE(112); MUL_x1_DEFINE(113); MUL_x1_DEFINE(114); MUL_x1_DEFINE(115); MUL_x1_DEFINE(116); MUL_x1_DEFINE(117); MUL_x1_DEFINE(118); MUL_x1_DEFINE(119); MUL_x1_DEFINE(120); MUL_x1_DEFINE(121); MUL_x1_DEFINE(122); MUL_x1_DEFINE(123); MUL_x1_DEFINE(124); MUL_x1_DEFINE(125); MUL_x1_DEFINE(126); MUL_x1_DEFINE(127); MUL_x1_DEFINE(128); MUL_x1_DEFINE(129); MUL_x1_DEFINE(130); MUL_x1_DEFINE(131); MUL_x1_DEFINE(132); MUL_x1_DEFINE(133); MUL_x1_DEFINE(134); MUL_x1_DEFINE(135); MUL_x1_DEFINE(136); MUL_x1_DEFINE(137); MUL_x1_DEFINE(138); MUL_x1_DEFINE(139); MUL_x1_DEFINE(140); MUL_x1_DEFINE(141); MUL_x1_DEFINE(142); MUL_x1_DEFINE(143); MUL_x1_DEFINE(144); MUL_x1_DEFINE(145); MUL_x1_DEFINE(146); MUL_x1_DEFINE(147); MUL_x1_DEFINE(148); MUL_x1_DEFINE(149); MUL_x1_DEFINE(150); MUL_x1_DEFINE(151); MUL_x1_DEFINE(152); MUL_x1_DEFINE(153); MUL_x1_DEFINE(154); MUL_x1_DEFINE(155); MUL_x1_DEFINE(156); MUL_x1_DEFINE(157); MUL_x1_DEFINE(158); MUL_x1_DEFINE(159); MUL_x1_DEFINE(160); MUL_x1_DEFINE(161); MUL_x1_DEFINE(162); MUL_x1_DEFINE(163); MUL_x1_DEFINE(164); MUL_x1_DEFINE(165); MUL_x1_DEFINE(166); MUL_x1_DEFINE(167); MUL_x1_DEFINE(168); MUL_x1_DEFINE(169); MUL_x1_DEFINE(170); MUL_x1_DEFINE(171); MUL_x1_DEFINE(172); MUL_x1_DEFINE(173); MUL_x1_DEFINE(174); MUL_x1_DEFINE(175); MUL_x1_DEFINE(176); MUL_x1_DEFINE(177); MUL_x1_DEFINE(178); MUL_x1_DEFINE(179); MUL_x1_DEFINE(180); MUL_x1_DEFINE(181); MUL_x1_DEFINE(182); MUL_x1_DEFINE(183); MUL_x1_DEFINE(184); MUL_x1_DEFINE(185); MUL_x1_DEFINE(186); MUL_x1_DEFINE(187); MUL_x1_DEFINE(188); MUL_x1_DEFINE(189); MUL_x1_DEFINE(190); MUL_x1_DEFINE(191); MUL_x1_DEFINE(192); MUL_x1_DEFINE(193); MUL_x1_DEFINE(194); MUL_x1_DEFINE(195); MUL_x1_DEFINE(196); MUL_x1_DEFINE(197); MUL_x1_DEFINE(198); MUL_x1_DEFINE(199); MUL_x1_DEFINE(200); MUL_x1_DEFINE(201); MUL_x1_DEFINE(202); MUL_x1_DEFINE(203); MUL_x1_DEFINE(204); MUL_x1_DEFINE(205); MUL_x1_DEFINE(206); MUL_x1_DEFINE(207); MUL_x1_DEFINE(208); MUL_x1_DEFINE(209); MUL_x1_DEFINE(210); MUL_x1_DEFINE(211); MUL_x1_DEFINE(212); MUL_x1_DEFINE(213); MUL_x1_DEFINE(214); MUL_x1_DEFINE(215); MUL_x1_DEFINE(216); MUL_x1_DEFINE(217); MUL_x1_DEFINE(218); MUL_x1_DEFINE(219); MUL_x1_DEFINE(220); MUL_x1_DEFINE(221); MUL_x1_DEFINE(222); MUL_x1_DEFINE(223); MUL_x1_DEFINE(224); MUL_x1_DEFINE(225); MUL_x1_DEFINE(226); MUL_x1_DEFINE(227); MUL_x1_DEFINE(228); MUL_x1_DEFINE(229); MUL_x1_DEFINE(230); MUL_x1_DEFINE(231); MUL_x1_DEFINE(232); MUL_x1_DEFINE(233); MUL_x1_DEFINE(234); MUL_x1_DEFINE(235); MUL_x1_DEFINE(236); MUL_x1_DEFINE(237); MUL_x1_DEFINE(238); MUL_x1_DEFINE(239); MUL_x1_DEFINE(240); MUL_x1_DEFINE(241); MUL_x1_DEFINE(242); MUL_x1_DEFINE(243); MUL_x1_DEFINE(244); MUL_x1_DEFINE(245); MUL_x1_DEFINE(246); MUL_x1_DEFINE(247); MUL_x1_DEFINE(248); MUL_x1_DEFINE(249); MUL_x1_DEFINE(250); MUL_x1_DEFINE(251); MUL_x1_DEFINE(252); MUL_x1_DEFINE(253); MUL_x1_DEFINE(254); MUL_x1_DEFINE(255); MUL_x2_DEFINE(0); MUL_x2_DEFINE(1); MUL_x2_DEFINE(2); MUL_x2_DEFINE(3); MUL_x2_DEFINE(4); MUL_x2_DEFINE(5); MUL_x2_DEFINE(6); MUL_x2_DEFINE(7); MUL_x2_DEFINE(8); MUL_x2_DEFINE(9); MUL_x2_DEFINE(10); MUL_x2_DEFINE(11); MUL_x2_DEFINE(12); MUL_x2_DEFINE(13); MUL_x2_DEFINE(14); MUL_x2_DEFINE(15); MUL_x2_DEFINE(16); MUL_x2_DEFINE(17); MUL_x2_DEFINE(18); MUL_x2_DEFINE(19); MUL_x2_DEFINE(20); MUL_x2_DEFINE(21); MUL_x2_DEFINE(22); MUL_x2_DEFINE(23); MUL_x2_DEFINE(24); MUL_x2_DEFINE(25); MUL_x2_DEFINE(26); MUL_x2_DEFINE(27); MUL_x2_DEFINE(28); MUL_x2_DEFINE(29); MUL_x2_DEFINE(30); MUL_x2_DEFINE(31); MUL_x2_DEFINE(32); MUL_x2_DEFINE(33); MUL_x2_DEFINE(34); MUL_x2_DEFINE(35); MUL_x2_DEFINE(36); MUL_x2_DEFINE(37); MUL_x2_DEFINE(38); MUL_x2_DEFINE(39); MUL_x2_DEFINE(40); MUL_x2_DEFINE(41); MUL_x2_DEFINE(42); MUL_x2_DEFINE(43); MUL_x2_DEFINE(44); MUL_x2_DEFINE(45); MUL_x2_DEFINE(46); MUL_x2_DEFINE(47); MUL_x2_DEFINE(48); MUL_x2_DEFINE(49); MUL_x2_DEFINE(50); MUL_x2_DEFINE(51); MUL_x2_DEFINE(52); MUL_x2_DEFINE(53); MUL_x2_DEFINE(54); MUL_x2_DEFINE(55); MUL_x2_DEFINE(56); MUL_x2_DEFINE(57); MUL_x2_DEFINE(58); MUL_x2_DEFINE(59); MUL_x2_DEFINE(60); MUL_x2_DEFINE(61); MUL_x2_DEFINE(62); MUL_x2_DEFINE(63); MUL_x2_DEFINE(64); MUL_x2_DEFINE(65); MUL_x2_DEFINE(66); MUL_x2_DEFINE(67); MUL_x2_DEFINE(68); MUL_x2_DEFINE(69); MUL_x2_DEFINE(70); MUL_x2_DEFINE(71); MUL_x2_DEFINE(72); MUL_x2_DEFINE(73); MUL_x2_DEFINE(74); MUL_x2_DEFINE(75); MUL_x2_DEFINE(76); MUL_x2_DEFINE(77); MUL_x2_DEFINE(78); MUL_x2_DEFINE(79); MUL_x2_DEFINE(80); MUL_x2_DEFINE(81); MUL_x2_DEFINE(82); MUL_x2_DEFINE(83); MUL_x2_DEFINE(84); MUL_x2_DEFINE(85); MUL_x2_DEFINE(86); MUL_x2_DEFINE(87); MUL_x2_DEFINE(88); MUL_x2_DEFINE(89); MUL_x2_DEFINE(90); MUL_x2_DEFINE(91); MUL_x2_DEFINE(92); MUL_x2_DEFINE(93); MUL_x2_DEFINE(94); MUL_x2_DEFINE(95); MUL_x2_DEFINE(96); MUL_x2_DEFINE(97); MUL_x2_DEFINE(98); MUL_x2_DEFINE(99); MUL_x2_DEFINE(100); MUL_x2_DEFINE(101); MUL_x2_DEFINE(102); MUL_x2_DEFINE(103); MUL_x2_DEFINE(104); MUL_x2_DEFINE(105); MUL_x2_DEFINE(106); MUL_x2_DEFINE(107); MUL_x2_DEFINE(108); MUL_x2_DEFINE(109); MUL_x2_DEFINE(110); MUL_x2_DEFINE(111); MUL_x2_DEFINE(112); MUL_x2_DEFINE(113); MUL_x2_DEFINE(114); MUL_x2_DEFINE(115); MUL_x2_DEFINE(116); MUL_x2_DEFINE(117); MUL_x2_DEFINE(118); MUL_x2_DEFINE(119); MUL_x2_DEFINE(120); MUL_x2_DEFINE(121); MUL_x2_DEFINE(122); MUL_x2_DEFINE(123); MUL_x2_DEFINE(124); MUL_x2_DEFINE(125); MUL_x2_DEFINE(126); MUL_x2_DEFINE(127); MUL_x2_DEFINE(128); MUL_x2_DEFINE(129); MUL_x2_DEFINE(130); MUL_x2_DEFINE(131); MUL_x2_DEFINE(132); MUL_x2_DEFINE(133); MUL_x2_DEFINE(134); MUL_x2_DEFINE(135); MUL_x2_DEFINE(136); MUL_x2_DEFINE(137); MUL_x2_DEFINE(138); MUL_x2_DEFINE(139); MUL_x2_DEFINE(140); MUL_x2_DEFINE(141); MUL_x2_DEFINE(142); MUL_x2_DEFINE(143); MUL_x2_DEFINE(144); MUL_x2_DEFINE(145); MUL_x2_DEFINE(146); MUL_x2_DEFINE(147); MUL_x2_DEFINE(148); MUL_x2_DEFINE(149); MUL_x2_DEFINE(150); MUL_x2_DEFINE(151); MUL_x2_DEFINE(152); MUL_x2_DEFINE(153); MUL_x2_DEFINE(154); MUL_x2_DEFINE(155); MUL_x2_DEFINE(156); MUL_x2_DEFINE(157); MUL_x2_DEFINE(158); MUL_x2_DEFINE(159); MUL_x2_DEFINE(160); MUL_x2_DEFINE(161); MUL_x2_DEFINE(162); MUL_x2_DEFINE(163); MUL_x2_DEFINE(164); MUL_x2_DEFINE(165); MUL_x2_DEFINE(166); MUL_x2_DEFINE(167); MUL_x2_DEFINE(168); MUL_x2_DEFINE(169); MUL_x2_DEFINE(170); MUL_x2_DEFINE(171); MUL_x2_DEFINE(172); MUL_x2_DEFINE(173); MUL_x2_DEFINE(174); MUL_x2_DEFINE(175); MUL_x2_DEFINE(176); MUL_x2_DEFINE(177); MUL_x2_DEFINE(178); MUL_x2_DEFINE(179); MUL_x2_DEFINE(180); MUL_x2_DEFINE(181); MUL_x2_DEFINE(182); MUL_x2_DEFINE(183); MUL_x2_DEFINE(184); MUL_x2_DEFINE(185); MUL_x2_DEFINE(186); MUL_x2_DEFINE(187); MUL_x2_DEFINE(188); MUL_x2_DEFINE(189); MUL_x2_DEFINE(190); MUL_x2_DEFINE(191); MUL_x2_DEFINE(192); MUL_x2_DEFINE(193); MUL_x2_DEFINE(194); MUL_x2_DEFINE(195); MUL_x2_DEFINE(196); MUL_x2_DEFINE(197); MUL_x2_DEFINE(198); MUL_x2_DEFINE(199); MUL_x2_DEFINE(200); MUL_x2_DEFINE(201); MUL_x2_DEFINE(202); MUL_x2_DEFINE(203); MUL_x2_DEFINE(204); MUL_x2_DEFINE(205); MUL_x2_DEFINE(206); MUL_x2_DEFINE(207); MUL_x2_DEFINE(208); MUL_x2_DEFINE(209); MUL_x2_DEFINE(210); MUL_x2_DEFINE(211); MUL_x2_DEFINE(212); MUL_x2_DEFINE(213); MUL_x2_DEFINE(214); MUL_x2_DEFINE(215); MUL_x2_DEFINE(216); MUL_x2_DEFINE(217); MUL_x2_DEFINE(218); MUL_x2_DEFINE(219); MUL_x2_DEFINE(220); MUL_x2_DEFINE(221); MUL_x2_DEFINE(222); MUL_x2_DEFINE(223); MUL_x2_DEFINE(224); MUL_x2_DEFINE(225); MUL_x2_DEFINE(226); MUL_x2_DEFINE(227); MUL_x2_DEFINE(228); MUL_x2_DEFINE(229); MUL_x2_DEFINE(230); MUL_x2_DEFINE(231); MUL_x2_DEFINE(232); MUL_x2_DEFINE(233); MUL_x2_DEFINE(234); MUL_x2_DEFINE(235); MUL_x2_DEFINE(236); MUL_x2_DEFINE(237); MUL_x2_DEFINE(238); MUL_x2_DEFINE(239); MUL_x2_DEFINE(240); MUL_x2_DEFINE(241); MUL_x2_DEFINE(242); MUL_x2_DEFINE(243); MUL_x2_DEFINE(244); MUL_x2_DEFINE(245); MUL_x2_DEFINE(246); MUL_x2_DEFINE(247); MUL_x2_DEFINE(248); MUL_x2_DEFINE(249); MUL_x2_DEFINE(250); MUL_x2_DEFINE(251); MUL_x2_DEFINE(252); MUL_x2_DEFINE(253); MUL_x2_DEFINE(254); MUL_x2_DEFINE(255); typedef void (*mul_fn_ptr_t)(void); static const mul_fn_ptr_t __attribute__((aligned(256))) gf_x1_mul_fns[256] = { mul_x1_0, mul_x1_1, mul_x1_2, mul_x1_3, mul_x1_4, mul_x1_5, mul_x1_6, mul_x1_7, mul_x1_8, mul_x1_9, mul_x1_10, mul_x1_11, mul_x1_12, mul_x1_13, mul_x1_14, mul_x1_15, mul_x1_16, mul_x1_17, mul_x1_18, mul_x1_19, mul_x1_20, mul_x1_21, mul_x1_22, mul_x1_23, mul_x1_24, mul_x1_25, mul_x1_26, mul_x1_27, mul_x1_28, mul_x1_29, mul_x1_30, mul_x1_31, mul_x1_32, mul_x1_33, mul_x1_34, mul_x1_35, mul_x1_36, mul_x1_37, mul_x1_38, mul_x1_39, mul_x1_40, mul_x1_41, mul_x1_42, mul_x1_43, mul_x1_44, mul_x1_45, mul_x1_46, mul_x1_47, mul_x1_48, mul_x1_49, mul_x1_50, mul_x1_51, mul_x1_52, mul_x1_53, mul_x1_54, mul_x1_55, mul_x1_56, mul_x1_57, mul_x1_58, mul_x1_59, mul_x1_60, mul_x1_61, mul_x1_62, mul_x1_63, mul_x1_64, mul_x1_65, mul_x1_66, mul_x1_67, mul_x1_68, mul_x1_69, mul_x1_70, mul_x1_71, mul_x1_72, mul_x1_73, mul_x1_74, mul_x1_75, mul_x1_76, mul_x1_77, mul_x1_78, mul_x1_79, mul_x1_80, mul_x1_81, mul_x1_82, mul_x1_83, mul_x1_84, mul_x1_85, mul_x1_86, mul_x1_87, mul_x1_88, mul_x1_89, mul_x1_90, mul_x1_91, mul_x1_92, mul_x1_93, mul_x1_94, mul_x1_95, mul_x1_96, mul_x1_97, mul_x1_98, mul_x1_99, mul_x1_100, mul_x1_101, mul_x1_102, mul_x1_103, mul_x1_104, mul_x1_105, mul_x1_106, mul_x1_107, mul_x1_108, mul_x1_109, mul_x1_110, mul_x1_111, mul_x1_112, mul_x1_113, mul_x1_114, mul_x1_115, mul_x1_116, mul_x1_117, mul_x1_118, mul_x1_119, mul_x1_120, mul_x1_121, mul_x1_122, mul_x1_123, mul_x1_124, mul_x1_125, mul_x1_126, mul_x1_127, mul_x1_128, mul_x1_129, mul_x1_130, mul_x1_131, mul_x1_132, mul_x1_133, mul_x1_134, mul_x1_135, mul_x1_136, mul_x1_137, mul_x1_138, mul_x1_139, mul_x1_140, mul_x1_141, mul_x1_142, mul_x1_143, mul_x1_144, mul_x1_145, mul_x1_146, mul_x1_147, mul_x1_148, mul_x1_149, mul_x1_150, mul_x1_151, mul_x1_152, mul_x1_153, mul_x1_154, mul_x1_155, mul_x1_156, mul_x1_157, mul_x1_158, mul_x1_159, mul_x1_160, mul_x1_161, mul_x1_162, mul_x1_163, mul_x1_164, mul_x1_165, mul_x1_166, mul_x1_167, mul_x1_168, mul_x1_169, mul_x1_170, mul_x1_171, mul_x1_172, mul_x1_173, mul_x1_174, mul_x1_175, mul_x1_176, mul_x1_177, mul_x1_178, mul_x1_179, mul_x1_180, mul_x1_181, mul_x1_182, mul_x1_183, mul_x1_184, mul_x1_185, mul_x1_186, mul_x1_187, mul_x1_188, mul_x1_189, mul_x1_190, mul_x1_191, mul_x1_192, mul_x1_193, mul_x1_194, mul_x1_195, mul_x1_196, mul_x1_197, mul_x1_198, mul_x1_199, mul_x1_200, mul_x1_201, mul_x1_202, mul_x1_203, mul_x1_204, mul_x1_205, mul_x1_206, mul_x1_207, mul_x1_208, mul_x1_209, mul_x1_210, mul_x1_211, mul_x1_212, mul_x1_213, mul_x1_214, mul_x1_215, mul_x1_216, mul_x1_217, mul_x1_218, mul_x1_219, mul_x1_220, mul_x1_221, mul_x1_222, mul_x1_223, mul_x1_224, mul_x1_225, mul_x1_226, mul_x1_227, mul_x1_228, mul_x1_229, mul_x1_230, mul_x1_231, mul_x1_232, mul_x1_233, mul_x1_234, mul_x1_235, mul_x1_236, mul_x1_237, mul_x1_238, mul_x1_239, mul_x1_240, mul_x1_241, mul_x1_242, mul_x1_243, mul_x1_244, mul_x1_245, mul_x1_246, mul_x1_247, mul_x1_248, mul_x1_249, mul_x1_250, mul_x1_251, mul_x1_252, mul_x1_253, mul_x1_254, mul_x1_255 }; static const mul_fn_ptr_t __attribute__((aligned(256))) gf_x2_mul_fns[256] = { mul_x2_0, mul_x2_1, mul_x2_2, mul_x2_3, mul_x2_4, mul_x2_5, mul_x2_6, mul_x2_7, mul_x2_8, mul_x2_9, mul_x2_10, mul_x2_11, mul_x2_12, mul_x2_13, mul_x2_14, mul_x2_15, mul_x2_16, mul_x2_17, mul_x2_18, mul_x2_19, mul_x2_20, mul_x2_21, mul_x2_22, mul_x2_23, mul_x2_24, mul_x2_25, mul_x2_26, mul_x2_27, mul_x2_28, mul_x2_29, mul_x2_30, mul_x2_31, mul_x2_32, mul_x2_33, mul_x2_34, mul_x2_35, mul_x2_36, mul_x2_37, mul_x2_38, mul_x2_39, mul_x2_40, mul_x2_41, mul_x2_42, mul_x2_43, mul_x2_44, mul_x2_45, mul_x2_46, mul_x2_47, mul_x2_48, mul_x2_49, mul_x2_50, mul_x2_51, mul_x2_52, mul_x2_53, mul_x2_54, mul_x2_55, mul_x2_56, mul_x2_57, mul_x2_58, mul_x2_59, mul_x2_60, mul_x2_61, mul_x2_62, mul_x2_63, mul_x2_64, mul_x2_65, mul_x2_66, mul_x2_67, mul_x2_68, mul_x2_69, mul_x2_70, mul_x2_71, mul_x2_72, mul_x2_73, mul_x2_74, mul_x2_75, mul_x2_76, mul_x2_77, mul_x2_78, mul_x2_79, mul_x2_80, mul_x2_81, mul_x2_82, mul_x2_83, mul_x2_84, mul_x2_85, mul_x2_86, mul_x2_87, mul_x2_88, mul_x2_89, mul_x2_90, mul_x2_91, mul_x2_92, mul_x2_93, mul_x2_94, mul_x2_95, mul_x2_96, mul_x2_97, mul_x2_98, mul_x2_99, mul_x2_100, mul_x2_101, mul_x2_102, mul_x2_103, mul_x2_104, mul_x2_105, mul_x2_106, mul_x2_107, mul_x2_108, mul_x2_109, mul_x2_110, mul_x2_111, mul_x2_112, mul_x2_113, mul_x2_114, mul_x2_115, mul_x2_116, mul_x2_117, mul_x2_118, mul_x2_119, mul_x2_120, mul_x2_121, mul_x2_122, mul_x2_123, mul_x2_124, mul_x2_125, mul_x2_126, mul_x2_127, mul_x2_128, mul_x2_129, mul_x2_130, mul_x2_131, mul_x2_132, mul_x2_133, mul_x2_134, mul_x2_135, mul_x2_136, mul_x2_137, mul_x2_138, mul_x2_139, mul_x2_140, mul_x2_141, mul_x2_142, mul_x2_143, mul_x2_144, mul_x2_145, mul_x2_146, mul_x2_147, mul_x2_148, mul_x2_149, mul_x2_150, mul_x2_151, mul_x2_152, mul_x2_153, mul_x2_154, mul_x2_155, mul_x2_156, mul_x2_157, mul_x2_158, mul_x2_159, mul_x2_160, mul_x2_161, mul_x2_162, mul_x2_163, mul_x2_164, mul_x2_165, mul_x2_166, mul_x2_167, mul_x2_168, mul_x2_169, mul_x2_170, mul_x2_171, mul_x2_172, mul_x2_173, mul_x2_174, mul_x2_175, mul_x2_176, mul_x2_177, mul_x2_178, mul_x2_179, mul_x2_180, mul_x2_181, mul_x2_182, mul_x2_183, mul_x2_184, mul_x2_185, mul_x2_186, mul_x2_187, mul_x2_188, mul_x2_189, mul_x2_190, mul_x2_191, mul_x2_192, mul_x2_193, mul_x2_194, mul_x2_195, mul_x2_196, mul_x2_197, mul_x2_198, mul_x2_199, mul_x2_200, mul_x2_201, mul_x2_202, mul_x2_203, mul_x2_204, mul_x2_205, mul_x2_206, mul_x2_207, mul_x2_208, mul_x2_209, mul_x2_210, mul_x2_211, mul_x2_212, mul_x2_213, mul_x2_214, mul_x2_215, mul_x2_216, mul_x2_217, mul_x2_218, mul_x2_219, mul_x2_220, mul_x2_221, mul_x2_222, mul_x2_223, mul_x2_224, mul_x2_225, mul_x2_226, mul_x2_227, mul_x2_228, mul_x2_229, mul_x2_230, mul_x2_231, mul_x2_232, mul_x2_233, mul_x2_234, mul_x2_235, mul_x2_236, mul_x2_237, mul_x2_238, mul_x2_239, mul_x2_240, mul_x2_241, mul_x2_242, mul_x2_243, mul_x2_244, mul_x2_245, mul_x2_246, mul_x2_247, mul_x2_248, mul_x2_249, mul_x2_250, mul_x2_251, mul_x2_252, mul_x2_253, mul_x2_254, mul_x2_255 }; #define MUL(c, r...) \ { \ switch (REG_CNT(r)) { \ case 2: \ COPY(r, _mul_x2_in); \ gf_x2_mul_fns[c](); \ COPY(_mul_x2_acc, r); \ break; \ case 1: \ COPY(r, _mul_x1_in); \ gf_x1_mul_fns[c](); \ COPY(_mul_x1_acc, r); \ break; \ default: \ VERIFY(0); \ } \ } #define raidz_math_begin() kfpu_begin() #define raidz_math_end() kfpu_end() #define SYN_STRIDE 4 #define ZERO_STRIDE 4 #define ZERO_DEFINE() {} #define ZERO_D 0, 1, 2, 3 #define COPY_STRIDE 4 #define COPY_DEFINE() {} #define COPY_D 0, 1, 2, 3 #define ADD_STRIDE 4 #define ADD_DEFINE() {} #define ADD_D 0, 1, 2, 3 #define MUL_STRIDE 2 #define MUL_DEFINE() MUL2_SETUP() #define MUL_D 0, 1 #define GEN_P_STRIDE 4 #define GEN_P_DEFINE() {} #define GEN_P_P 0, 1, 2, 3 #define GEN_PQ_STRIDE 4 #define GEN_PQ_DEFINE() {} #define GEN_PQ_D 0, 1, 2, 3 #define GEN_PQ_C 4, 5, 6, 7 #define GEN_PQR_STRIDE 4 #define GEN_PQR_DEFINE() {} #define GEN_PQR_D 0, 1, 2, 3 #define GEN_PQR_C 4, 5, 6, 7 #define SYN_Q_DEFINE() {} #define SYN_Q_D 0, 1, 2, 3 #define SYN_Q_X 4, 5, 6, 7 #define SYN_R_DEFINE() {} #define SYN_R_D 0, 1, 2, 3 #define SYN_R_X 4, 5, 6, 7 #define SYN_PQ_DEFINE() {} #define SYN_PQ_D 0, 1, 2, 3 #define SYN_PQ_X 4, 5, 6, 7 #define REC_PQ_STRIDE 2 #define REC_PQ_DEFINE() MUL2_SETUP() #define REC_PQ_X 0, 1 #define REC_PQ_Y 2, 3 #define REC_PQ_T 4, 5 #define SYN_PR_DEFINE() {} #define SYN_PR_D 0, 1, 2, 3 #define SYN_PR_X 4, 5, 6, 7 #define REC_PR_STRIDE 2 #define REC_PR_DEFINE() MUL2_SETUP() #define REC_PR_X 0, 1 #define REC_PR_Y 2, 3 #define REC_PR_T 4, 5 #define SYN_QR_DEFINE() {} #define SYN_QR_D 0, 1, 2, 3 #define SYN_QR_X 4, 5, 6, 7 #define REC_QR_STRIDE 2 #define REC_QR_DEFINE() MUL2_SETUP() #define REC_QR_X 0, 1 #define REC_QR_Y 2, 3 #define REC_QR_T 4, 5 #define SYN_PQR_DEFINE() {} #define SYN_PQR_D 0, 1, 2, 3 #define SYN_PQR_X 4, 5, 6, 7 #define REC_PQR_STRIDE 1 #define REC_PQR_DEFINE() MUL2_SETUP() #define REC_PQR_X 0 #define REC_PQR_Y 1 #define REC_PQR_Z 2 #define REC_PQR_XS 3 #define REC_PQR_YS 4 #include #include "vdev_raidz_math_impl.h" DEFINE_GEN_METHODS(sse2); DEFINE_REC_METHODS(sse2); static boolean_t raidz_will_sse2_work(void) { return (kfpu_allowed() && zfs_sse_available() && zfs_sse2_available()); } const raidz_impl_ops_t vdev_raidz_sse2_impl = { .init = NULL, .fini = NULL, .gen = RAIDZ_GEN_METHODS(sse2), .rec = RAIDZ_REC_METHODS(sse2), .is_supported = &raidz_will_sse2_work, .name = "sse2" }; #endif /* defined(__x86_64) && defined(HAVE_SSE2) */