diff --git a/sys/kern/sys_generic.c b/sys/kern/sys_generic.c index 0fcb93545e86..541c9f910df1 100644 --- a/sys/kern/sys_generic.c +++ b/sys/kern/sys_generic.c @@ -1,1994 +1,2009 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)sys_generic.c 8.5 (Berkeley) 1/21/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_capsicum.h" #include "opt_ktrace.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KTRACE #include #endif #include /* * The following macro defines how many bytes will be allocated from * the stack instead of memory allocated when passing the IOCTL data * structures from userspace and to the kernel. Some IOCTLs having * small data structures are used very frequently and this small * buffer on the stack gives a significant speedup improvement for * those requests. The value of this define should be greater or equal * to 64 bytes and should also be power of two. The data structure is * currently hard-aligned to a 8-byte boundary on the stack. This * should currently be sufficient for all supported platforms. */ #define SYS_IOCTL_SMALL_SIZE 128 /* bytes */ #define SYS_IOCTL_SMALL_ALIGN 8 /* bytes */ #ifdef __LP64__ static int iosize_max_clamp = 0; SYSCTL_INT(_debug, OID_AUTO, iosize_max_clamp, CTLFLAG_RW, &iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX"); static int devfs_iosize_max_clamp = 1; SYSCTL_INT(_debug, OID_AUTO, devfs_iosize_max_clamp, CTLFLAG_RW, &devfs_iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX for devices"); #endif /* * Assert that the return value of read(2) and write(2) syscalls fits * into a register. If not, an architecture will need to provide the * usermode wrappers to reconstruct the result. */ CTASSERT(sizeof(register_t) >= sizeof(size_t)); static MALLOC_DEFINE(M_IOCTLOPS, "ioctlops", "ioctl data buffer"); static MALLOC_DEFINE(M_SELECT, "select", "select() buffer"); MALLOC_DEFINE(M_IOV, "iov", "large iov's"); static int pollout(struct thread *, struct pollfd *, struct pollfd *, u_int); static int pollscan(struct thread *, struct pollfd *, u_int); static int pollrescan(struct thread *); static int selscan(struct thread *, fd_mask **, fd_mask **, int); static int selrescan(struct thread *, fd_mask **, fd_mask **); static void selfdalloc(struct thread *, void *); static void selfdfree(struct seltd *, struct selfd *); static int dofileread(struct thread *, int, struct file *, struct uio *, off_t, int); static int dofilewrite(struct thread *, int, struct file *, struct uio *, off_t, int); static void doselwakeup(struct selinfo *, int); static void seltdinit(struct thread *); static int seltdwait(struct thread *, sbintime_t, sbintime_t); static void seltdclear(struct thread *); /* * One seltd per-thread allocated on demand as needed. * * t - protected by st_mtx * k - Only accessed by curthread or read-only */ struct seltd { STAILQ_HEAD(, selfd) st_selq; /* (k) List of selfds. */ struct selfd *st_free1; /* (k) free fd for read set. */ struct selfd *st_free2; /* (k) free fd for write set. */ struct mtx st_mtx; /* Protects struct seltd */ struct cv st_wait; /* (t) Wait channel. */ int st_flags; /* (t) SELTD_ flags. */ }; #define SELTD_PENDING 0x0001 /* We have pending events. */ #define SELTD_RESCAN 0x0002 /* Doing a rescan. */ /* * One selfd allocated per-thread per-file-descriptor. * f - protected by sf_mtx */ struct selfd { STAILQ_ENTRY(selfd) sf_link; /* (k) fds owned by this td. */ TAILQ_ENTRY(selfd) sf_threads; /* (f) fds on this selinfo. */ struct selinfo *sf_si; /* (f) selinfo when linked. */ struct mtx *sf_mtx; /* Pointer to selinfo mtx. */ struct seltd *sf_td; /* (k) owning seltd. */ void *sf_cookie; /* (k) fd or pollfd. */ }; MALLOC_DEFINE(M_SELFD, "selfd", "selfd"); static struct mtx_pool *mtxpool_select; #ifdef __LP64__ size_t devfs_iosize_max(void) { return (devfs_iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ? INT_MAX : SSIZE_MAX); } size_t iosize_max(void) { return (iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ? INT_MAX : SSIZE_MAX); } #endif #ifndef _SYS_SYSPROTO_H_ struct read_args { int fd; void *buf; size_t nbyte; }; #endif int sys_read(struct thread *td, struct read_args *uap) { struct uio auio; struct iovec aiov; int error; if (uap->nbyte > IOSIZE_MAX) return (EINVAL); aiov.iov_base = uap->buf; aiov.iov_len = uap->nbyte; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_resid = uap->nbyte; auio.uio_segflg = UIO_USERSPACE; error = kern_readv(td, uap->fd, &auio); return (error); } /* * Positioned read system call */ #ifndef _SYS_SYSPROTO_H_ struct pread_args { int fd; void *buf; size_t nbyte; int pad; off_t offset; }; #endif int sys_pread(struct thread *td, struct pread_args *uap) { return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset)); } int kern_pread(struct thread *td, int fd, void *buf, size_t nbyte, off_t offset) { struct uio auio; struct iovec aiov; int error; if (nbyte > IOSIZE_MAX) return (EINVAL); aiov.iov_base = buf; aiov.iov_len = nbyte; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_resid = nbyte; auio.uio_segflg = UIO_USERSPACE; error = kern_preadv(td, fd, &auio, offset); return (error); } #if defined(COMPAT_FREEBSD6) int freebsd6_pread(struct thread *td, struct freebsd6_pread_args *uap) { return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset)); } #endif /* * Scatter read system call. */ #ifndef _SYS_SYSPROTO_H_ struct readv_args { int fd; struct iovec *iovp; u_int iovcnt; }; #endif int sys_readv(struct thread *td, struct readv_args *uap) { struct uio *auio; int error; error = copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_readv(td, uap->fd, auio); free(auio, M_IOV); return (error); } int kern_readv(struct thread *td, int fd, struct uio *auio) { struct file *fp; int error; error = fget_read(td, fd, &cap_read_rights, &fp); if (error) return (error); error = dofileread(td, fd, fp, auio, (off_t)-1, 0); fdrop(fp, td); return (error); } /* * Scatter positioned read system call. */ #ifndef _SYS_SYSPROTO_H_ struct preadv_args { int fd; struct iovec *iovp; u_int iovcnt; off_t offset; }; #endif int sys_preadv(struct thread *td, struct preadv_args *uap) { struct uio *auio; int error; error = copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_preadv(td, uap->fd, auio, uap->offset); free(auio, M_IOV); return (error); } int kern_preadv(struct thread *td, int fd, struct uio *auio, off_t offset) { struct file *fp; int error; error = fget_read(td, fd, &cap_pread_rights, &fp); if (error) return (error); if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE)) error = ESPIPE; else if (offset < 0 && (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) error = EINVAL; else error = dofileread(td, fd, fp, auio, offset, FOF_OFFSET); fdrop(fp, td); return (error); } /* * Common code for readv and preadv that reads data in * from a file using the passed in uio, offset, and flags. */ static int dofileread(struct thread *td, int fd, struct file *fp, struct uio *auio, off_t offset, int flags) { ssize_t cnt; int error; #ifdef KTRACE struct uio *ktruio = NULL; #endif AUDIT_ARG_FD(fd); /* Finish zero length reads right here */ if (auio->uio_resid == 0) { td->td_retval[0] = 0; return (0); } auio->uio_rw = UIO_READ; auio->uio_offset = offset; auio->uio_td = td; #ifdef KTRACE if (KTRPOINT(td, KTR_GENIO)) ktruio = cloneuio(auio); #endif cnt = auio->uio_resid; if ((error = fo_read(fp, auio, td->td_ucred, flags, td))) { if (auio->uio_resid != cnt && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; } cnt -= auio->uio_resid; #ifdef KTRACE if (ktruio != NULL) { ktruio->uio_resid = cnt; ktrgenio(fd, UIO_READ, ktruio, error); } #endif td->td_retval[0] = cnt; return (error); } #ifndef _SYS_SYSPROTO_H_ struct write_args { int fd; const void *buf; size_t nbyte; }; #endif int sys_write(struct thread *td, struct write_args *uap) { struct uio auio; struct iovec aiov; int error; if (uap->nbyte > IOSIZE_MAX) return (EINVAL); aiov.iov_base = (void *)(uintptr_t)uap->buf; aiov.iov_len = uap->nbyte; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_resid = uap->nbyte; auio.uio_segflg = UIO_USERSPACE; error = kern_writev(td, uap->fd, &auio); return (error); } /* * Positioned write system call. */ #ifndef _SYS_SYSPROTO_H_ struct pwrite_args { int fd; const void *buf; size_t nbyte; int pad; off_t offset; }; #endif int sys_pwrite(struct thread *td, struct pwrite_args *uap) { return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset)); } int kern_pwrite(struct thread *td, int fd, const void *buf, size_t nbyte, off_t offset) { struct uio auio; struct iovec aiov; int error; if (nbyte > IOSIZE_MAX) return (EINVAL); aiov.iov_base = (void *)(uintptr_t)buf; aiov.iov_len = nbyte; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_resid = nbyte; auio.uio_segflg = UIO_USERSPACE; error = kern_pwritev(td, fd, &auio, offset); return (error); } #if defined(COMPAT_FREEBSD6) int freebsd6_pwrite(struct thread *td, struct freebsd6_pwrite_args *uap) { return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset)); } #endif /* * Gather write system call. */ #ifndef _SYS_SYSPROTO_H_ struct writev_args { int fd; struct iovec *iovp; u_int iovcnt; }; #endif int sys_writev(struct thread *td, struct writev_args *uap) { struct uio *auio; int error; error = copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_writev(td, uap->fd, auio); free(auio, M_IOV); return (error); } int kern_writev(struct thread *td, int fd, struct uio *auio) { struct file *fp; int error; error = fget_write(td, fd, &cap_write_rights, &fp); if (error) return (error); error = dofilewrite(td, fd, fp, auio, (off_t)-1, 0); fdrop(fp, td); return (error); } /* * Gather positioned write system call. */ #ifndef _SYS_SYSPROTO_H_ struct pwritev_args { int fd; struct iovec *iovp; u_int iovcnt; off_t offset; }; #endif int sys_pwritev(struct thread *td, struct pwritev_args *uap) { struct uio *auio; int error; error = copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_pwritev(td, uap->fd, auio, uap->offset); free(auio, M_IOV); return (error); } int kern_pwritev(struct thread *td, int fd, struct uio *auio, off_t offset) { struct file *fp; int error; error = fget_write(td, fd, &cap_pwrite_rights, &fp); if (error) return (error); if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE)) error = ESPIPE; else if (offset < 0 && (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) error = EINVAL; else error = dofilewrite(td, fd, fp, auio, offset, FOF_OFFSET); fdrop(fp, td); return (error); } /* * Common code for writev and pwritev that writes data to * a file using the passed in uio, offset, and flags. */ static int dofilewrite(struct thread *td, int fd, struct file *fp, struct uio *auio, off_t offset, int flags) { ssize_t cnt; int error; #ifdef KTRACE struct uio *ktruio = NULL; #endif AUDIT_ARG_FD(fd); auio->uio_rw = UIO_WRITE; auio->uio_td = td; auio->uio_offset = offset; #ifdef KTRACE if (KTRPOINT(td, KTR_GENIO)) ktruio = cloneuio(auio); #endif cnt = auio->uio_resid; if ((error = fo_write(fp, auio, td->td_ucred, flags, td))) { if (auio->uio_resid != cnt && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; /* Socket layer is responsible for issuing SIGPIPE. */ if (fp->f_type != DTYPE_SOCKET && error == EPIPE) { PROC_LOCK(td->td_proc); tdsignal(td, SIGPIPE); PROC_UNLOCK(td->td_proc); } } cnt -= auio->uio_resid; #ifdef KTRACE if (ktruio != NULL) { ktruio->uio_resid = cnt; ktrgenio(fd, UIO_WRITE, ktruio, error); } #endif td->td_retval[0] = cnt; return (error); } /* * Truncate a file given a file descriptor. * * Can't use fget_write() here, since must return EINVAL and not EBADF if the * descriptor isn't writable. */ int kern_ftruncate(struct thread *td, int fd, off_t length) { struct file *fp; int error; AUDIT_ARG_FD(fd); if (length < 0) return (EINVAL); error = fget(td, fd, &cap_ftruncate_rights, &fp); if (error) return (error); AUDIT_ARG_FILE(td->td_proc, fp); if (!(fp->f_flag & FWRITE)) { fdrop(fp, td); return (EINVAL); } error = fo_truncate(fp, length, td->td_ucred, td); fdrop(fp, td); return (error); } #ifndef _SYS_SYSPROTO_H_ struct ftruncate_args { int fd; int pad; off_t length; }; #endif int sys_ftruncate(struct thread *td, struct ftruncate_args *uap) { return (kern_ftruncate(td, uap->fd, uap->length)); } #if defined(COMPAT_43) #ifndef _SYS_SYSPROTO_H_ struct oftruncate_args { int fd; long length; }; #endif int oftruncate(struct thread *td, struct oftruncate_args *uap) { return (kern_ftruncate(td, uap->fd, uap->length)); } #endif /* COMPAT_43 */ #ifndef _SYS_SYSPROTO_H_ struct ioctl_args { int fd; u_long com; caddr_t data; }; #endif /* ARGSUSED */ int sys_ioctl(struct thread *td, struct ioctl_args *uap) { u_char smalldata[SYS_IOCTL_SMALL_SIZE] __aligned(SYS_IOCTL_SMALL_ALIGN); uint32_t com; int arg, error; u_int size; caddr_t data; #ifdef INVARIANTS if (uap->com > 0xffffffff) { printf( "WARNING pid %d (%s): ioctl sign-extension ioctl %lx\n", td->td_proc->p_pid, td->td_name, uap->com); } #endif com = (uint32_t)uap->com; /* * Interpret high order word to find amount of data to be * copied to/from the user's address space. */ size = IOCPARM_LEN(com); if ((size > IOCPARM_MAX) || ((com & (IOC_VOID | IOC_IN | IOC_OUT)) == 0) || #if defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) || defined(COMPAT_43) ((com & IOC_OUT) && size == 0) || #else ((com & (IOC_IN | IOC_OUT)) && size == 0) || #endif ((com & IOC_VOID) && size > 0 && size != sizeof(int))) return (ENOTTY); if (size > 0) { if (com & IOC_VOID) { /* Integer argument. */ arg = (intptr_t)uap->data; data = (void *)&arg; size = 0; } else { if (size > SYS_IOCTL_SMALL_SIZE) data = malloc((u_long)size, M_IOCTLOPS, M_WAITOK); else data = smalldata; } } else data = (void *)&uap->data; if (com & IOC_IN) { error = copyin(uap->data, data, (u_int)size); if (error != 0) goto out; } else if (com & IOC_OUT) { /* * Zero the buffer so the user always * gets back something deterministic. */ bzero(data, size); } error = kern_ioctl(td, uap->fd, com, data); if (error == 0 && (com & IOC_OUT)) error = copyout(data, uap->data, (u_int)size); out: if (size > SYS_IOCTL_SMALL_SIZE) free(data, M_IOCTLOPS); return (error); } int kern_ioctl(struct thread *td, int fd, u_long com, caddr_t data) { struct file *fp; struct filedesc *fdp; int error, tmp, locked; AUDIT_ARG_FD(fd); AUDIT_ARG_CMD(com); fdp = td->td_proc->p_fd; switch (com) { case FIONCLEX: case FIOCLEX: FILEDESC_XLOCK(fdp); locked = LA_XLOCKED; break; default: #ifdef CAPABILITIES FILEDESC_SLOCK(fdp); locked = LA_SLOCKED; #else locked = LA_UNLOCKED; #endif break; } #ifdef CAPABILITIES if ((fp = fget_locked(fdp, fd)) == NULL) { error = EBADF; goto out; } if ((error = cap_ioctl_check(fdp, fd, com)) != 0) { fp = NULL; /* fhold() was not called yet */ goto out; } if (!fhold(fp)) { error = EBADF; fp = NULL; goto out; } if (locked == LA_SLOCKED) { FILEDESC_SUNLOCK(fdp); locked = LA_UNLOCKED; } #else error = fget(td, fd, &cap_ioctl_rights, &fp); if (error != 0) { fp = NULL; goto out; } #endif if ((fp->f_flag & (FREAD | FWRITE)) == 0) { error = EBADF; goto out; } switch (com) { case FIONCLEX: fdp->fd_ofiles[fd].fde_flags &= ~UF_EXCLOSE; goto out; case FIOCLEX: fdp->fd_ofiles[fd].fde_flags |= UF_EXCLOSE; goto out; case FIONBIO: if ((tmp = *(int *)data)) atomic_set_int(&fp->f_flag, FNONBLOCK); else atomic_clear_int(&fp->f_flag, FNONBLOCK); data = (void *)&tmp; break; case FIOASYNC: if ((tmp = *(int *)data)) atomic_set_int(&fp->f_flag, FASYNC); else atomic_clear_int(&fp->f_flag, FASYNC); data = (void *)&tmp; break; } error = fo_ioctl(fp, com, data, td->td_ucred, td); out: switch (locked) { case LA_XLOCKED: FILEDESC_XUNLOCK(fdp); break; #ifdef CAPABILITIES case LA_SLOCKED: FILEDESC_SUNLOCK(fdp); break; #endif default: FILEDESC_UNLOCK_ASSERT(fdp); break; } if (fp != NULL) fdrop(fp, td); return (error); } int sys_posix_fallocate(struct thread *td, struct posix_fallocate_args *uap) { int error; error = kern_posix_fallocate(td, uap->fd, uap->offset, uap->len); return (kern_posix_error(td, error)); } int kern_posix_fallocate(struct thread *td, int fd, off_t offset, off_t len) { struct file *fp; int error; AUDIT_ARG_FD(fd); if (offset < 0 || len <= 0) return (EINVAL); /* Check for wrap. */ if (offset > OFF_MAX - len) return (EFBIG); AUDIT_ARG_FD(fd); error = fget(td, fd, &cap_pwrite_rights, &fp); if (error != 0) return (error); AUDIT_ARG_FILE(td->td_proc, fp); if ((fp->f_ops->fo_flags & DFLAG_SEEKABLE) == 0) { error = ESPIPE; goto out; } if ((fp->f_flag & FWRITE) == 0) { error = EBADF; goto out; } error = fo_fallocate(fp, offset, len, td); out: fdrop(fp, td); return (error); } int kern_specialfd(struct thread *td, int type, void *arg) { struct file *fp; struct specialfd_eventfd *ae; int error, fd, fflags; fflags = 0; error = falloc_noinstall(td, &fp); if (error != 0) return (error); switch (type) { case SPECIALFD_EVENTFD: ae = arg; if ((ae->flags & EFD_CLOEXEC) != 0) fflags |= O_CLOEXEC; error = eventfd_create_file(td, fp, ae->initval, ae->flags); break; default: error = EINVAL; break; } if (error == 0) error = finstall(td, fp, &fd, fflags, NULL); fdrop(fp, td); if (error == 0) td->td_retval[0] = fd; return (error); } int sys___specialfd(struct thread *td, struct __specialfd_args *args) { struct specialfd_eventfd ae; int error; switch (args->type) { case SPECIALFD_EVENTFD: if (args->len != sizeof(struct specialfd_eventfd)) { error = EINVAL; break; } error = copyin(args->req, &ae, sizeof(ae)); if (error != 0) break; if ((ae.flags & ~(EFD_CLOEXEC | EFD_NONBLOCK | EFD_SEMAPHORE)) != 0) { error = EINVAL; break; } error = kern_specialfd(td, args->type, &ae); break; default: error = EINVAL; break; } return (error); } int poll_no_poll(int events) { /* * Return true for read/write. If the user asked for something * special, return POLLNVAL, so that clients have a way of * determining reliably whether or not the extended * functionality is present without hard-coding knowledge * of specific filesystem implementations. */ if (events & ~POLLSTANDARD) return (POLLNVAL); return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM)); } int sys_pselect(struct thread *td, struct pselect_args *uap) { struct timespec ts; struct timeval tv, *tvp; sigset_t set, *uset; int error; if (uap->ts != NULL) { error = copyin(uap->ts, &ts, sizeof(ts)); if (error != 0) return (error); TIMESPEC_TO_TIMEVAL(&tv, &ts); tvp = &tv; } else tvp = NULL; if (uap->sm != NULL) { error = copyin(uap->sm, &set, sizeof(set)); if (error != 0) return (error); uset = &set; } else uset = NULL; return (kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, uset, NFDBITS)); } int kern_pselect(struct thread *td, int nd, fd_set *in, fd_set *ou, fd_set *ex, struct timeval *tvp, sigset_t *uset, int abi_nfdbits) { int error; if (uset != NULL) { error = kern_sigprocmask(td, SIG_SETMASK, uset, &td->td_oldsigmask, 0); if (error != 0) return (error); td->td_pflags |= TDP_OLDMASK; /* * Make sure that ast() is called on return to * usermode and TDP_OLDMASK is cleared, restoring old * sigmask. */ thread_lock(td); td->td_flags |= TDF_ASTPENDING; thread_unlock(td); } error = kern_select(td, nd, in, ou, ex, tvp, abi_nfdbits); return (error); } #ifndef _SYS_SYSPROTO_H_ struct select_args { int nd; fd_set *in, *ou, *ex; struct timeval *tv; }; #endif int sys_select(struct thread *td, struct select_args *uap) { struct timeval tv, *tvp; int error; if (uap->tv != NULL) { error = copyin(uap->tv, &tv, sizeof(tv)); if (error) return (error); tvp = &tv; } else tvp = NULL; return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, NFDBITS)); } /* * In the unlikely case when user specified n greater then the last * open file descriptor, check that no bits are set after the last * valid fd. We must return EBADF if any is set. * * There are applications that rely on the behaviour. * * nd is fd_nfiles. */ static int select_check_badfd(fd_set *fd_in, int nd, int ndu, int abi_nfdbits) { char *addr, *oaddr; int b, i, res; uint8_t bits; if (nd >= ndu || fd_in == NULL) return (0); oaddr = NULL; bits = 0; /* silence gcc */ for (i = nd; i < ndu; i++) { b = i / NBBY; #if BYTE_ORDER == LITTLE_ENDIAN addr = (char *)fd_in + b; #else addr = (char *)fd_in; if (abi_nfdbits == NFDBITS) { addr += rounddown(b, sizeof(fd_mask)) + sizeof(fd_mask) - 1 - b % sizeof(fd_mask); } else { addr += rounddown(b, sizeof(uint32_t)) + sizeof(uint32_t) - 1 - b % sizeof(uint32_t); } #endif if (addr != oaddr) { res = fubyte(addr); if (res == -1) return (EFAULT); oaddr = addr; bits = res; } if ((bits & (1 << (i % NBBY))) != 0) return (EBADF); } return (0); } int kern_select(struct thread *td, int nd, fd_set *fd_in, fd_set *fd_ou, fd_set *fd_ex, struct timeval *tvp, int abi_nfdbits) { struct filedesc *fdp; /* * The magic 2048 here is chosen to be just enough for FD_SETSIZE * infds with the new FD_SETSIZE of 1024, and more than enough for * FD_SETSIZE infds, outfds and exceptfds with the old FD_SETSIZE * of 256. */ fd_mask s_selbits[howmany(2048, NFDBITS)]; fd_mask *ibits[3], *obits[3], *selbits, *sbp; struct timeval rtv; sbintime_t asbt, precision, rsbt; u_int nbufbytes, ncpbytes, ncpubytes, nfdbits; int error, lf, ndu; if (nd < 0) return (EINVAL); fdp = td->td_proc->p_fd; ndu = nd; lf = fdp->fd_nfiles; if (nd > lf) nd = lf; error = select_check_badfd(fd_in, nd, ndu, abi_nfdbits); if (error != 0) return (error); error = select_check_badfd(fd_ou, nd, ndu, abi_nfdbits); if (error != 0) return (error); error = select_check_badfd(fd_ex, nd, ndu, abi_nfdbits); if (error != 0) return (error); /* * Allocate just enough bits for the non-null fd_sets. Use the * preallocated auto buffer if possible. */ nfdbits = roundup(nd, NFDBITS); ncpbytes = nfdbits / NBBY; ncpubytes = roundup(nd, abi_nfdbits) / NBBY; nbufbytes = 0; if (fd_in != NULL) nbufbytes += 2 * ncpbytes; if (fd_ou != NULL) nbufbytes += 2 * ncpbytes; if (fd_ex != NULL) nbufbytes += 2 * ncpbytes; if (nbufbytes <= sizeof s_selbits) selbits = &s_selbits[0]; else selbits = malloc(nbufbytes, M_SELECT, M_WAITOK); /* * Assign pointers into the bit buffers and fetch the input bits. * Put the output buffers together so that they can be bzeroed * together. */ sbp = selbits; #define getbits(name, x) \ do { \ if (name == NULL) { \ ibits[x] = NULL; \ obits[x] = NULL; \ } else { \ ibits[x] = sbp + nbufbytes / 2 / sizeof *sbp; \ obits[x] = sbp; \ sbp += ncpbytes / sizeof *sbp; \ error = copyin(name, ibits[x], ncpubytes); \ if (error != 0) \ goto done; \ if (ncpbytes != ncpubytes) \ bzero((char *)ibits[x] + ncpubytes, \ ncpbytes - ncpubytes); \ } \ } while (0) getbits(fd_in, 0); getbits(fd_ou, 1); getbits(fd_ex, 2); #undef getbits #if BYTE_ORDER == BIG_ENDIAN && defined(__LP64__) /* * XXX: swizzle_fdset assumes that if abi_nfdbits != NFDBITS, * we are running under 32-bit emulation. This should be more * generic. */ #define swizzle_fdset(bits) \ if (abi_nfdbits != NFDBITS && bits != NULL) { \ int i; \ for (i = 0; i < ncpbytes / sizeof *sbp; i++) \ bits[i] = (bits[i] >> 32) | (bits[i] << 32); \ } #else #define swizzle_fdset(bits) #endif /* Make sure the bit order makes it through an ABI transition */ swizzle_fdset(ibits[0]); swizzle_fdset(ibits[1]); swizzle_fdset(ibits[2]); if (nbufbytes != 0) bzero(selbits, nbufbytes / 2); precision = 0; if (tvp != NULL) { rtv = *tvp; if (rtv.tv_sec < 0 || rtv.tv_usec < 0 || rtv.tv_usec >= 1000000) { error = EINVAL; goto done; } if (!timevalisset(&rtv)) asbt = 0; else if (rtv.tv_sec <= INT32_MAX) { rsbt = tvtosbt(rtv); precision = rsbt; precision >>= tc_precexp; if (TIMESEL(&asbt, rsbt)) asbt += tc_tick_sbt; if (asbt <= SBT_MAX - rsbt) asbt += rsbt; else asbt = -1; } else asbt = -1; } else asbt = -1; seltdinit(td); /* Iterate until the timeout expires or descriptors become ready. */ for (;;) { error = selscan(td, ibits, obits, nd); if (error || td->td_retval[0] != 0) break; error = seltdwait(td, asbt, precision); if (error) break; error = selrescan(td, ibits, obits); if (error || td->td_retval[0] != 0) break; } seltdclear(td); done: /* select is not restarted after signals... */ if (error == ERESTART) error = EINTR; if (error == EWOULDBLOCK) error = 0; /* swizzle bit order back, if necessary */ swizzle_fdset(obits[0]); swizzle_fdset(obits[1]); swizzle_fdset(obits[2]); #undef swizzle_fdset #define putbits(name, x) \ if (name && (error2 = copyout(obits[x], name, ncpubytes))) \ error = error2; if (error == 0) { int error2; putbits(fd_in, 0); putbits(fd_ou, 1); putbits(fd_ex, 2); #undef putbits } if (selbits != &s_selbits[0]) free(selbits, M_SELECT); return (error); } /* * Convert a select bit set to poll flags. * * The backend always returns POLLHUP/POLLERR if appropriate and we * return this as a set bit in any set. */ static const int select_flags[3] = { POLLRDNORM | POLLHUP | POLLERR, POLLWRNORM | POLLHUP | POLLERR, POLLRDBAND | POLLERR }; /* * Compute the fo_poll flags required for a fd given by the index and * bit position in the fd_mask array. */ static __inline int selflags(fd_mask **ibits, int idx, fd_mask bit) { int flags; int msk; flags = 0; for (msk = 0; msk < 3; msk++) { if (ibits[msk] == NULL) continue; if ((ibits[msk][idx] & bit) == 0) continue; flags |= select_flags[msk]; } return (flags); } /* * Set the appropriate output bits given a mask of fired events and the * input bits originally requested. */ static __inline int selsetbits(fd_mask **ibits, fd_mask **obits, int idx, fd_mask bit, int events) { int msk; int n; n = 0; for (msk = 0; msk < 3; msk++) { if ((events & select_flags[msk]) == 0) continue; if (ibits[msk] == NULL) continue; if ((ibits[msk][idx] & bit) == 0) continue; /* * XXX Check for a duplicate set. This can occur because a * socket calls selrecord() twice for each poll() call * resulting in two selfds per real fd. selrescan() will * call selsetbits twice as a result. */ if ((obits[msk][idx] & bit) != 0) continue; obits[msk][idx] |= bit; n++; } return (n); } /* * Traverse the list of fds attached to this thread's seltd and check for * completion. */ static int selrescan(struct thread *td, fd_mask **ibits, fd_mask **obits) { struct filedesc *fdp; struct selinfo *si; struct seltd *stp; struct selfd *sfp; struct selfd *sfn; struct file *fp; fd_mask bit; int fd, ev, n, idx; int error; bool only_user; fdp = td->td_proc->p_fd; stp = td->td_sel; n = 0; only_user = FILEDESC_IS_ONLY_USER(fdp); STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) { fd = (int)(uintptr_t)sfp->sf_cookie; si = sfp->sf_si; selfdfree(stp, sfp); /* If the selinfo wasn't cleared the event didn't fire. */ if (si != NULL) continue; if (only_user) error = fget_only_user(fdp, fd, &cap_event_rights, &fp); else error = fget_unlocked(fdp, fd, &cap_event_rights, &fp); if (__predict_false(error != 0)) return (error); idx = fd / NFDBITS; bit = (fd_mask)1 << (fd % NFDBITS); ev = fo_poll(fp, selflags(ibits, idx, bit), td->td_ucred, td); if (only_user) fput_only_user(fdp, fp); else fdrop(fp, td); if (ev != 0) n += selsetbits(ibits, obits, idx, bit, ev); } stp->st_flags = 0; td->td_retval[0] = n; return (0); } /* * Perform the initial filedescriptor scan and register ourselves with * each selinfo. */ static int selscan(struct thread *td, fd_mask **ibits, fd_mask **obits, int nfd) { struct filedesc *fdp; struct file *fp; fd_mask bit; int ev, flags, end, fd; int n, idx; int error; bool only_user; fdp = td->td_proc->p_fd; n = 0; only_user = FILEDESC_IS_ONLY_USER(fdp); for (idx = 0, fd = 0; fd < nfd; idx++) { end = imin(fd + NFDBITS, nfd); for (bit = 1; fd < end; bit <<= 1, fd++) { /* Compute the list of events we're interested in. */ flags = selflags(ibits, idx, bit); if (flags == 0) continue; if (only_user) error = fget_only_user(fdp, fd, &cap_event_rights, &fp); else error = fget_unlocked(fdp, fd, &cap_event_rights, &fp); if (__predict_false(error != 0)) return (error); selfdalloc(td, (void *)(uintptr_t)fd); ev = fo_poll(fp, flags, td->td_ucred, td); if (only_user) fput_only_user(fdp, fp); else fdrop(fp, td); if (ev != 0) n += selsetbits(ibits, obits, idx, bit, ev); } } td->td_retval[0] = n; return (0); } int sys_poll(struct thread *td, struct poll_args *uap) { struct timespec ts, *tsp; if (uap->timeout != INFTIM) { if (uap->timeout < 0) return (EINVAL); ts.tv_sec = uap->timeout / 1000; ts.tv_nsec = (uap->timeout % 1000) * 1000000; tsp = &ts; } else tsp = NULL; return (kern_poll(td, uap->fds, uap->nfds, tsp, NULL)); } +/* + * kfds points to an array in the kernel. + */ int -kern_poll(struct thread *td, struct pollfd *ufds, u_int nfds, +kern_poll_kfds(struct thread *td, struct pollfd *kfds, u_int nfds, struct timespec *tsp, sigset_t *uset) { - struct pollfd *kfds; - struct pollfd stackfds[32]; sbintime_t sbt, precision, tmp; time_t over; struct timespec ts; int error; precision = 0; if (tsp != NULL) { if (tsp->tv_sec < 0) return (EINVAL); if (tsp->tv_nsec < 0 || tsp->tv_nsec >= 1000000000) return (EINVAL); if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) sbt = 0; else { ts = *tsp; if (ts.tv_sec > INT32_MAX / 2) { over = ts.tv_sec - INT32_MAX / 2; ts.tv_sec -= over; } else over = 0; tmp = tstosbt(ts); precision = tmp; precision >>= tc_precexp; if (TIMESEL(&sbt, tmp)) sbt += tc_tick_sbt; sbt += tmp; } } else sbt = -1; - /* - * This is kinda bogus. We have fd limits, but that is not - * really related to the size of the pollfd array. Make sure - * we let the process use at least FD_SETSIZE entries and at - * least enough for the system-wide limits. We want to be reasonably - * safe, but not overly restrictive. - */ - if (nfds > maxfilesperproc && nfds > FD_SETSIZE) - return (EINVAL); - if (nfds > nitems(stackfds)) - kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK); - else - kfds = stackfds; - error = copyin(ufds, kfds, nfds * sizeof(*kfds)); - if (error) - goto done; - if (uset != NULL) { error = kern_sigprocmask(td, SIG_SETMASK, uset, &td->td_oldsigmask, 0); if (error) - goto done; + return (error); td->td_pflags |= TDP_OLDMASK; /* * Make sure that ast() is called on return to * usermode and TDP_OLDMASK is cleared, restoring old * sigmask. */ thread_lock(td); td->td_flags |= TDF_ASTPENDING; thread_unlock(td); } seltdinit(td); /* Iterate until the timeout expires or descriptors become ready. */ for (;;) { error = pollscan(td, kfds, nfds); if (error || td->td_retval[0] != 0) break; error = seltdwait(td, sbt, precision); if (error) break; error = pollrescan(td); if (error || td->td_retval[0] != 0) break; } seltdclear(td); -done: /* poll is not restarted after signals... */ if (error == ERESTART) error = EINTR; if (error == EWOULDBLOCK) error = 0; - if (error == 0) { - error = pollout(td, kfds, ufds, nfds); - if (error) - goto out; - } -out: - if (nfds > nitems(stackfds)) - free(kfds, M_TEMP); return (error); } int sys_ppoll(struct thread *td, struct ppoll_args *uap) { struct timespec ts, *tsp; sigset_t set, *ssp; int error; if (uap->ts != NULL) { error = copyin(uap->ts, &ts, sizeof(ts)); if (error) return (error); tsp = &ts; } else tsp = NULL; if (uap->set != NULL) { error = copyin(uap->set, &set, sizeof(set)); if (error) return (error); ssp = &set; } else ssp = NULL; + return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); +} + +/* + * ufds points to an array in user space. + */ +int +kern_poll(struct thread *td, struct pollfd *ufds, u_int nfds, + struct timespec *tsp, sigset_t *set) +{ + struct pollfd *kfds; + struct pollfd stackfds[32]; + int error; + + if (kern_poll_maxfds(nfds)) + return (EINVAL); + if (nfds > nitems(stackfds)) + kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK); + else + kfds = stackfds; + error = copyin(ufds, kfds, nfds * sizeof(*kfds)); + if (error != 0) + goto out; + + error = kern_poll_kfds(td, kfds, nfds, tsp, set); + if (error == 0) + error = pollout(td, kfds, ufds, nfds); + +out: + if (nfds > nitems(stackfds)) + free(kfds, M_TEMP); + return (error); +} + +bool +kern_poll_maxfds(u_int nfds) +{ + /* - * fds is still a pointer to user space. kern_poll() will - * take care of copyin that array to the kernel space. + * This is kinda bogus. We have fd limits, but that is not + * really related to the size of the pollfd array. Make sure + * we let the process use at least FD_SETSIZE entries and at + * least enough for the system-wide limits. We want to be reasonably + * safe, but not overly restrictive. */ - - return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); + return (nfds > maxfilesperproc && nfds > FD_SETSIZE); } static int pollrescan(struct thread *td) { struct seltd *stp; struct selfd *sfp; struct selfd *sfn; struct selinfo *si; struct filedesc *fdp; struct file *fp; struct pollfd *fd; int n, error; bool only_user; n = 0; fdp = td->td_proc->p_fd; stp = td->td_sel; only_user = FILEDESC_IS_ONLY_USER(fdp); STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) { fd = (struct pollfd *)sfp->sf_cookie; si = sfp->sf_si; selfdfree(stp, sfp); /* If the selinfo wasn't cleared the event didn't fire. */ if (si != NULL) continue; if (only_user) error = fget_only_user(fdp, fd->fd, &cap_event_rights, &fp); else error = fget_unlocked(fdp, fd->fd, &cap_event_rights, &fp); if (__predict_false(error != 0)) { fd->revents = POLLNVAL; n++; continue; } /* * Note: backend also returns POLLHUP and * POLLERR if appropriate. */ fd->revents = fo_poll(fp, fd->events, td->td_ucred, td); if (only_user) fput_only_user(fdp, fp); else fdrop(fp, td); if (fd->revents != 0) n++; } stp->st_flags = 0; td->td_retval[0] = n; return (0); } static int pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd) { int error = 0; u_int i = 0; u_int n = 0; for (i = 0; i < nfd; i++) { error = copyout(&fds->revents, &ufds->revents, sizeof(ufds->revents)); if (error) return (error); if (fds->revents != 0) n++; fds++; ufds++; } td->td_retval[0] = n; return (0); } static int pollscan(struct thread *td, struct pollfd *fds, u_int nfd) { struct filedesc *fdp; struct file *fp; int i, n, error; bool only_user; n = 0; fdp = td->td_proc->p_fd; only_user = FILEDESC_IS_ONLY_USER(fdp); for (i = 0; i < nfd; i++, fds++) { if (fds->fd < 0) { fds->revents = 0; continue; } if (only_user) error = fget_only_user(fdp, fds->fd, &cap_event_rights, &fp); else error = fget_unlocked(fdp, fds->fd, &cap_event_rights, &fp); if (__predict_false(error != 0)) { fds->revents = POLLNVAL; n++; continue; } /* * Note: backend also returns POLLHUP and * POLLERR if appropriate. */ selfdalloc(td, fds); fds->revents = fo_poll(fp, fds->events, td->td_ucred, td); if (only_user) fput_only_user(fdp, fp); else fdrop(fp, td); /* * POSIX requires POLLOUT to be never * set simultaneously with POLLHUP. */ if ((fds->revents & POLLHUP) != 0) fds->revents &= ~POLLOUT; if (fds->revents != 0) n++; } td->td_retval[0] = n; return (0); } /* * XXX This was created specifically to support netncp and netsmb. This * allows the caller to specify a socket to wait for events on. It returns * 0 if any events matched and an error otherwise. There is no way to * determine which events fired. */ int selsocket(struct socket *so, int events, struct timeval *tvp, struct thread *td) { struct timeval rtv; sbintime_t asbt, precision, rsbt; int error; precision = 0; /* stupid gcc! */ if (tvp != NULL) { rtv = *tvp; if (rtv.tv_sec < 0 || rtv.tv_usec < 0 || rtv.tv_usec >= 1000000) return (EINVAL); if (!timevalisset(&rtv)) asbt = 0; else if (rtv.tv_sec <= INT32_MAX) { rsbt = tvtosbt(rtv); precision = rsbt; precision >>= tc_precexp; if (TIMESEL(&asbt, rsbt)) asbt += tc_tick_sbt; if (asbt <= SBT_MAX - rsbt) asbt += rsbt; else asbt = -1; } else asbt = -1; } else asbt = -1; seltdinit(td); /* * Iterate until the timeout expires or the socket becomes ready. */ for (;;) { selfdalloc(td, NULL); if (sopoll(so, events, NULL, td) != 0) { error = 0; break; } error = seltdwait(td, asbt, precision); if (error) break; } seltdclear(td); /* XXX Duplicates ncp/smb behavior. */ if (error == ERESTART) error = 0; return (error); } /* * Preallocate two selfds associated with 'cookie'. Some fo_poll routines * have two select sets, one for read and another for write. */ static void selfdalloc(struct thread *td, void *cookie) { struct seltd *stp; stp = td->td_sel; if (stp->st_free1 == NULL) stp->st_free1 = malloc(sizeof(*stp->st_free1), M_SELFD, M_WAITOK|M_ZERO); stp->st_free1->sf_td = stp; stp->st_free1->sf_cookie = cookie; if (stp->st_free2 == NULL) stp->st_free2 = malloc(sizeof(*stp->st_free2), M_SELFD, M_WAITOK|M_ZERO); stp->st_free2->sf_td = stp; stp->st_free2->sf_cookie = cookie; } static void selfdfree(struct seltd *stp, struct selfd *sfp) { STAILQ_REMOVE(&stp->st_selq, sfp, selfd, sf_link); /* * Paired with doselwakeup. */ if (atomic_load_acq_ptr((uintptr_t *)&sfp->sf_si) != (uintptr_t)NULL) { mtx_lock(sfp->sf_mtx); if (sfp->sf_si != NULL) { TAILQ_REMOVE(&sfp->sf_si->si_tdlist, sfp, sf_threads); } mtx_unlock(sfp->sf_mtx); } free(sfp, M_SELFD); } /* Drain the waiters tied to all the selfd belonging the specified selinfo. */ void seldrain(struct selinfo *sip) { /* * This feature is already provided by doselwakeup(), thus it is * enough to go for it. * Eventually, the context, should take care to avoid races * between thread calling select()/poll() and file descriptor * detaching, but, again, the races are just the same as * selwakeup(). */ doselwakeup(sip, -1); } /* * Record a select request. */ void selrecord(struct thread *selector, struct selinfo *sip) { struct selfd *sfp; struct seltd *stp; struct mtx *mtxp; stp = selector->td_sel; /* * Don't record when doing a rescan. */ if (stp->st_flags & SELTD_RESCAN) return; /* * Grab one of the preallocated descriptors. */ sfp = NULL; if ((sfp = stp->st_free1) != NULL) stp->st_free1 = NULL; else if ((sfp = stp->st_free2) != NULL) stp->st_free2 = NULL; else panic("selrecord: No free selfd on selq"); mtxp = sip->si_mtx; if (mtxp == NULL) mtxp = mtx_pool_find(mtxpool_select, sip); /* * Initialize the sfp and queue it in the thread. */ sfp->sf_si = sip; sfp->sf_mtx = mtxp; STAILQ_INSERT_TAIL(&stp->st_selq, sfp, sf_link); /* * Now that we've locked the sip, check for initialization. */ mtx_lock(mtxp); if (sip->si_mtx == NULL) { sip->si_mtx = mtxp; TAILQ_INIT(&sip->si_tdlist); } /* * Add this thread to the list of selfds listening on this selinfo. */ TAILQ_INSERT_TAIL(&sip->si_tdlist, sfp, sf_threads); mtx_unlock(sip->si_mtx); } /* Wake up a selecting thread. */ void selwakeup(struct selinfo *sip) { doselwakeup(sip, -1); } /* Wake up a selecting thread, and set its priority. */ void selwakeuppri(struct selinfo *sip, int pri) { doselwakeup(sip, pri); } /* * Do a wakeup when a selectable event occurs. */ static void doselwakeup(struct selinfo *sip, int pri) { struct selfd *sfp; struct selfd *sfn; struct seltd *stp; /* If it's not initialized there can't be any waiters. */ if (sip->si_mtx == NULL) return; /* * Locking the selinfo locks all selfds associated with it. */ mtx_lock(sip->si_mtx); TAILQ_FOREACH_SAFE(sfp, &sip->si_tdlist, sf_threads, sfn) { /* * Once we remove this sfp from the list and clear the * sf_si seltdclear will know to ignore this si. */ TAILQ_REMOVE(&sip->si_tdlist, sfp, sf_threads); stp = sfp->sf_td; mtx_lock(&stp->st_mtx); stp->st_flags |= SELTD_PENDING; cv_broadcastpri(&stp->st_wait, pri); mtx_unlock(&stp->st_mtx); /* * Paired with selfdfree. * * Storing this only after the wakeup provides an invariant that * stp is not used after selfdfree returns. */ atomic_store_rel_ptr((uintptr_t *)&sfp->sf_si, (uintptr_t)NULL); } mtx_unlock(sip->si_mtx); } static void seltdinit(struct thread *td) { struct seltd *stp; stp = td->td_sel; if (stp != NULL) { MPASS(stp->st_flags == 0); MPASS(STAILQ_EMPTY(&stp->st_selq)); return; } stp = malloc(sizeof(*stp), M_SELECT, M_WAITOK|M_ZERO); mtx_init(&stp->st_mtx, "sellck", NULL, MTX_DEF); cv_init(&stp->st_wait, "select"); stp->st_flags = 0; STAILQ_INIT(&stp->st_selq); td->td_sel = stp; } static int seltdwait(struct thread *td, sbintime_t sbt, sbintime_t precision) { struct seltd *stp; int error; stp = td->td_sel; /* * An event of interest may occur while we do not hold the seltd * locked so check the pending flag before we sleep. */ mtx_lock(&stp->st_mtx); /* * Any further calls to selrecord will be a rescan. */ stp->st_flags |= SELTD_RESCAN; if (stp->st_flags & SELTD_PENDING) { mtx_unlock(&stp->st_mtx); return (0); } if (sbt == 0) error = EWOULDBLOCK; else if (sbt != -1) error = cv_timedwait_sig_sbt(&stp->st_wait, &stp->st_mtx, sbt, precision, C_ABSOLUTE); else error = cv_wait_sig(&stp->st_wait, &stp->st_mtx); mtx_unlock(&stp->st_mtx); return (error); } void seltdfini(struct thread *td) { struct seltd *stp; stp = td->td_sel; if (stp == NULL) return; MPASS(stp->st_flags == 0); MPASS(STAILQ_EMPTY(&stp->st_selq)); if (stp->st_free1) free(stp->st_free1, M_SELFD); if (stp->st_free2) free(stp->st_free2, M_SELFD); td->td_sel = NULL; cv_destroy(&stp->st_wait); mtx_destroy(&stp->st_mtx); free(stp, M_SELECT); } /* * Remove the references to the thread from all of the objects we were * polling. */ static void seltdclear(struct thread *td) { struct seltd *stp; struct selfd *sfp; struct selfd *sfn; stp = td->td_sel; STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) selfdfree(stp, sfp); stp->st_flags = 0; } static void selectinit(void *); SYSINIT(select, SI_SUB_SYSCALLS, SI_ORDER_ANY, selectinit, NULL); static void selectinit(void *dummy __unused) { mtxpool_select = mtx_pool_create("select mtxpool", 128, MTX_DEF); } /* * Set up a syscall return value that follows the convention specified for * posix_* functions. */ int kern_posix_error(struct thread *td, int error) { if (error <= 0) return (error); td->td_errno = error; td->td_pflags |= TDP_NERRNO; td->td_retval[0] = error; return (0); } diff --git a/sys/sys/syscallsubr.h b/sys/sys/syscallsubr.h index b155de1e08bf..09eae475cb2c 100644 --- a/sys/sys/syscallsubr.h +++ b/sys/sys/syscallsubr.h @@ -1,354 +1,357 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002 Ian Dowse. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _SYS_SYSCALLSUBR_H_ #define _SYS_SYSCALLSUBR_H_ #include #include #include #include #include #include #include struct __wrusage; struct cpuset_copy_cb; struct file; struct filecaps; enum idtype; struct itimerval; struct image_args; struct jail; struct kevent; struct kevent_copyops; struct kld_file_stat; struct ksiginfo; struct mbuf; struct msghdr; struct msqid_ds; struct pollfd; struct ogetdirentries_args; struct rlimit; struct rusage; struct sched_param; union semun; struct sockaddr; struct stat; struct thr_param; struct timex; struct uio; struct vm_map; struct vmspace; typedef int (*mmap_check_fp_fn)(struct file *, int, int, int); struct mmap_req { vm_offset_t mr_hint; vm_size_t mr_len; int mr_prot; int mr_flags; int mr_fd; off_t mr_pos; mmap_check_fp_fn mr_check_fp_fn; }; int kern___getcwd(struct thread *td, char *buf, enum uio_seg bufseg, size_t buflen, size_t path_max); int kern_accept(struct thread *td, int s, struct sockaddr **name, socklen_t *namelen, struct file **fp); int kern_accept4(struct thread *td, int s, struct sockaddr **name, socklen_t *namelen, int flags, struct file **fp); int kern_accessat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, int flags, int mode); int kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta); int kern_alternate_path(struct thread *td, const char *prefix, const char *path, enum uio_seg pathseg, char **pathbuf, int create, int dirfd); int kern_bindat(struct thread *td, int dirfd, int fd, struct sockaddr *sa); int kern_break(struct thread *td, uintptr_t *addr); int kern_cap_ioctls_limit(struct thread *td, int fd, u_long *cmds, size_t ncmds); int kern_cap_rights_limit(struct thread *td, int fd, cap_rights_t *rights); int kern_chdir(struct thread *td, const char *path, enum uio_seg pathseg); int kern_clock_getcpuclockid2(struct thread *td, id_t id, int which, clockid_t *clk_id); int kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts); int kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats); int kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, const struct timespec *rqtp, struct timespec *rmtp); int kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats); void kern_thread_cputime(struct thread *targettd, struct timespec *ats); void kern_process_cputime(struct proc *targetp, struct timespec *ats); int kern_close_range(struct thread *td, int flags, u_int lowfd, u_int highfd); int kern_close(struct thread *td, int fd); int kern_connectat(struct thread *td, int dirfd, int fd, struct sockaddr *sa); int kern_copy_file_range(struct thread *td, int infd, off_t *inoffp, int outfd, off_t *outoffp, size_t len, unsigned int flags); int kern_cpuset_getaffinity(struct thread *td, cpulevel_t level, cpuwhich_t which, id_t id, size_t cpusetsize, cpuset_t *maskp, const struct cpuset_copy_cb *cb); int kern_cpuset_setaffinity(struct thread *td, cpulevel_t level, cpuwhich_t which, id_t id, size_t cpusetsize, const cpuset_t *maskp, const struct cpuset_copy_cb *cb); int kern_cpuset_getdomain(struct thread *td, cpulevel_t level, cpuwhich_t which, id_t id, size_t domainsetsize, domainset_t *maskp, int *policyp, const struct cpuset_copy_cb *cb); int kern_cpuset_setdomain(struct thread *td, cpulevel_t level, cpuwhich_t which, id_t id, size_t domainsetsize, const domainset_t *maskp, int policy, const struct cpuset_copy_cb *cb); int kern_cpuset_getid(struct thread *td, cpulevel_t level, cpuwhich_t which, id_t id, cpusetid_t *setid); int kern_cpuset_setid(struct thread *td, cpuwhich_t which, id_t id, cpusetid_t setid); int kern_dup(struct thread *td, u_int mode, int flags, int old, int new); int kern_execve(struct thread *td, struct image_args *args, struct mac *mac_p, struct vmspace *oldvmspace); int kern_fchmodat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, mode_t mode, int flag); int kern_fchownat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, int uid, int gid, int flag); int kern_fcntl(struct thread *td, int fd, int cmd, intptr_t arg); int kern_fcntl_freebsd(struct thread *td, int fd, int cmd, long arg); int kern_fhopen(struct thread *td, const struct fhandle *u_fhp, int flags); int kern_fhstat(struct thread *td, fhandle_t fh, struct stat *buf); int kern_fhstatfs(struct thread *td, fhandle_t fh, struct statfs *buf); int kern_fpathconf(struct thread *td, int fd, int name, long *valuep); int kern_fstat(struct thread *td, int fd, struct stat *sbp); int kern_fstatfs(struct thread *td, int fd, struct statfs *buf); int kern_fsync(struct thread *td, int fd, bool fullsync); int kern_ftruncate(struct thread *td, int fd, off_t length); int kern_futimes(struct thread *td, int fd, struct timeval *tptr, enum uio_seg tptrseg); int kern_futimens(struct thread *td, int fd, struct timespec *tptr, enum uio_seg tptrseg); int kern_getdirentries(struct thread *td, int fd, char *buf, size_t count, off_t *basep, ssize_t *residp, enum uio_seg bufseg); int kern_getfhat(struct thread *td, int flags, int fd, const char *path, enum uio_seg pathseg, fhandle_t *fhp, enum uio_seg fhseg); int kern_getfsstat(struct thread *td, struct statfs **buf, size_t bufsize, size_t *countp, enum uio_seg bufseg, int mode); int kern_getitimer(struct thread *, u_int, struct itimerval *); int kern_getppid(struct thread *); int kern_getpeername(struct thread *td, int fd, struct sockaddr **sa, socklen_t *alen); int kern_getpriority(struct thread *td, int which, int who); int kern_getrusage(struct thread *td, int who, struct rusage *rup); int kern_getsid(struct thread *td, pid_t pid); int kern_getsockname(struct thread *td, int fd, struct sockaddr **sa, socklen_t *alen); int kern_getsockopt(struct thread *td, int s, int level, int name, void *optval, enum uio_seg valseg, socklen_t *valsize); int kern_ioctl(struct thread *td, int fd, u_long com, caddr_t data); int kern_jail(struct thread *td, struct jail *j); int kern_jail_get(struct thread *td, struct uio *options, int flags); int kern_jail_set(struct thread *td, struct uio *options, int flags); int kern_kevent(struct thread *td, int fd, int nchanges, int nevents, struct kevent_copyops *k_ops, const struct timespec *timeout); int kern_kevent_anonymous(struct thread *td, int nevents, struct kevent_copyops *k_ops); int kern_kevent_fp(struct thread *td, struct file *fp, int nchanges, int nevents, struct kevent_copyops *k_ops, const struct timespec *timeout); int kern_kill(struct thread *td, pid_t pid, int signum); int kern_kqueue(struct thread *td, int flags, struct filecaps *fcaps); int kern_kldload(struct thread *td, const char *file, int *fileid); int kern_kldstat(struct thread *td, int fileid, struct kld_file_stat *stat); int kern_kldunload(struct thread *td, int fileid, int flags); int kern_linkat(struct thread *td, int fd1, int fd2, const char *path1, const char *path2, enum uio_seg segflg, int flag); int kern_listen(struct thread *td, int s, int backlog); int kern_lseek(struct thread *td, int fd, off_t offset, int whence); int kern_lutimes(struct thread *td, const char *path, enum uio_seg pathseg, struct timeval *tptr, enum uio_seg tptrseg); int kern_madvise(struct thread *td, uintptr_t addr, size_t len, int behav); int kern_mincore(struct thread *td, uintptr_t addr, size_t len, char *vec); int kern_minherit(struct thread *td, uintptr_t addr, size_t len, int inherit); int kern_mkdirat(struct thread *td, int fd, const char *path, enum uio_seg segflg, int mode); int kern_mkfifoat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, int mode); int kern_mknodat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, int mode, dev_t dev); int kern_mlock(struct proc *proc, struct ucred *cred, uintptr_t addr, size_t len); int kern_mmap(struct thread *td, uintptr_t addr, size_t len, int prot, int flags, int fd, off_t pos); int kern_mmap_racct_check(struct thread *td, struct vm_map *map, vm_size_t size); int kern_mmap_maxprot(struct proc *p, int prot); int kern_mmap_req(struct thread *td, const struct mmap_req *mrp); int kern_mprotect(struct thread *td, uintptr_t addr, size_t size, int prot); int kern_msgctl(struct thread *, int, int, struct msqid_ds *); int kern_msgrcv(struct thread *, int, void *, size_t, long, int, long *); int kern_msgsnd(struct thread *, int, const void *, size_t, int, long); int kern_msync(struct thread *td, uintptr_t addr, size_t size, int flags); int kern_munlock(struct thread *td, uintptr_t addr, size_t size); int kern_munmap(struct thread *td, uintptr_t addr, size_t size); int kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt); int kern_ntp_adjtime(struct thread *td, struct timex *ntv, int *retvalp); int kern_ogetdirentries(struct thread *td, struct ogetdirentries_args *uap, long *ploff); int kern_openat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, int flags, int mode); int kern_pathconf(struct thread *td, const char *path, enum uio_seg pathseg, int name, u_long flags, long *valuep); int kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1, struct filecaps *fcaps2); int kern_poll(struct thread *td, struct pollfd *fds, u_int nfds, struct timespec *tsp, sigset_t *uset); +int kern_poll_kfds(struct thread *td, struct pollfd *fds, u_int nfds, + struct timespec *tsp, sigset_t *uset); +bool kern_poll_maxfds(u_int nfds); int kern_posix_error(struct thread *td, int error); int kern_posix_fadvise(struct thread *td, int fd, off_t offset, off_t len, int advice); int kern_posix_fallocate(struct thread *td, int fd, off_t offset, off_t len); int kern_procctl(struct thread *td, enum idtype idtype, id_t id, int com, void *data); int kern_pread(struct thread *td, int fd, void *buf, size_t nbyte, off_t offset); int kern_preadv(struct thread *td, int fd, struct uio *auio, off_t offset); int kern_pselect(struct thread *td, int nd, fd_set *in, fd_set *ou, fd_set *ex, struct timeval *tvp, sigset_t *uset, int abi_nfdbits); int kern_ptrace(struct thread *td, int req, pid_t pid, void *addr, int data); int kern_pwrite(struct thread *td, int fd, const void *buf, size_t nbyte, off_t offset); int kern_pwritev(struct thread *td, int fd, struct uio *auio, off_t offset); int kern_readlinkat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, char *buf, enum uio_seg bufseg, size_t count); int kern_readv(struct thread *td, int fd, struct uio *auio); int kern_recvit(struct thread *td, int s, struct msghdr *mp, enum uio_seg fromseg, struct mbuf **controlp); int kern_renameat(struct thread *td, int oldfd, const char *old, int newfd, const char *new, enum uio_seg pathseg); int kern_frmdirat(struct thread *td, int dfd, const char *path, int fd, enum uio_seg pathseg, int flag); int kern_sched_getparam(struct thread *td, struct thread *targettd, struct sched_param *param); int kern_sched_getscheduler(struct thread *td, struct thread *targettd, int *policy); int kern_sched_setparam(struct thread *td, struct thread *targettd, struct sched_param *param); int kern_sched_setscheduler(struct thread *td, struct thread *targettd, int policy, struct sched_param *param); int kern_sched_rr_get_interval(struct thread *td, pid_t pid, struct timespec *ts); int kern_sched_rr_get_interval_td(struct thread *td, struct thread *targettd, struct timespec *ts); int kern_semctl(struct thread *td, int semid, int semnum, int cmd, union semun *arg, register_t *rval); int kern_select(struct thread *td, int nd, fd_set *fd_in, fd_set *fd_ou, fd_set *fd_ex, struct timeval *tvp, int abi_nfdbits); int kern_sendit(struct thread *td, int s, struct msghdr *mp, int flags, struct mbuf *control, enum uio_seg segflg); int kern_setgroups(struct thread *td, u_int ngrp, gid_t *groups); int kern_setitimer(struct thread *, u_int, struct itimerval *, struct itimerval *); int kern_setpriority(struct thread *td, int which, int who, int prio); int kern_setrlimit(struct thread *, u_int, struct rlimit *); int kern_setsockopt(struct thread *td, int s, int level, int name, const void *optval, enum uio_seg valseg, socklen_t valsize); int kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp); int kern_shm_open(struct thread *td, const char *userpath, int flags, mode_t mode, struct filecaps *fcaps); int kern_shm_open2(struct thread *td, const char *path, int flags, mode_t mode, int shmflags, struct filecaps *fcaps, const char *name); int kern_shmat(struct thread *td, int shmid, const void *shmaddr, int shmflg); int kern_shmctl(struct thread *td, int shmid, int cmd, void *buf, size_t *bufsz); int kern_shutdown(struct thread *td, int s, int how); int kern_sigaction(struct thread *td, int sig, const struct sigaction *act, struct sigaction *oact, int flags); int kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss); int kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset, int flags); int kern_sigsuspend(struct thread *td, sigset_t mask); int kern_sigtimedwait(struct thread *td, sigset_t waitset, struct ksiginfo *ksi, struct timespec *timeout); int kern_sigqueue(struct thread *td, pid_t pid, int signum, union sigval *value); int kern_socket(struct thread *td, int domain, int type, int protocol); int kern_statat(struct thread *td, int flag, int fd, const char *path, enum uio_seg pathseg, struct stat *sbp, void (*hook)(struct vnode *vp, struct stat *sbp)); int kern_specialfd(struct thread *td, int type, void *arg); int kern_statfs(struct thread *td, const char *path, enum uio_seg pathseg, struct statfs *buf); int kern_symlinkat(struct thread *td, const char *path1, int fd, const char *path2, enum uio_seg segflg); int kern_sync(struct thread *td); int kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp, int *timerid, int preset_id); int kern_ktimer_delete(struct thread *, int); int kern_ktimer_settime(struct thread *td, int timer_id, int flags, struct itimerspec *val, struct itimerspec *oval); int kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val); int kern_ktimer_getoverrun(struct thread *td, int timer_id); int kern_thr_alloc(struct proc *, int pages, struct thread **); int kern_thr_exit(struct thread *td); int kern_thr_new(struct thread *td, struct thr_param *param); int kern_thr_suspend(struct thread *td, struct timespec *tsp); int kern_truncate(struct thread *td, const char *path, enum uio_seg pathseg, off_t length); int kern_funlinkat(struct thread *td, int dfd, const char *path, int fd, enum uio_seg pathseg, int flag, ino_t oldinum); int kern_utimesat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, struct timeval *tptr, enum uio_seg tptrseg); int kern_utimensat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, struct timespec *tptr, enum uio_seg tptrseg, int flag); int kern_wait(struct thread *td, pid_t pid, int *status, int options, struct rusage *rup); int kern_wait6(struct thread *td, enum idtype idtype, id_t id, int *status, int options, struct __wrusage *wrup, siginfo_t *sip); int kern_writev(struct thread *td, int fd, struct uio *auio); int kern_socketpair(struct thread *td, int domain, int type, int protocol, int *rsv); int kern_unmount(struct thread *td, const char *path, int flags); /* flags for kern_sigaction */ #define KSA_OSIGSET 0x0001 /* uses osigact_t */ #define KSA_FREEBSD4 0x0002 /* uses ucontext4 */ struct freebsd11_dirent; int freebsd11_kern_getdirentries(struct thread *td, int fd, char *ubuf, u_int count, long *basep, void (*func)(struct freebsd11_dirent *)); #endif /* !_SYS_SYSCALLSUBR_H_ */