diff --git a/module/zfs/dsl_dataset.c b/module/zfs/dsl_dataset.c index 4639a43df143..5ed3e8e8722c 100644 --- a/module/zfs/dsl_dataset.c +++ b/module/zfs/dsl_dataset.c @@ -1,2948 +1,2950 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013 by Delphix. All rights reserved. * Copyright (c) 2012, Joyent, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SWITCH64(x, y) \ { \ uint64_t __tmp = (x); \ (x) = (y); \ (y) = __tmp; \ } #define DS_REF_MAX (1ULL << 62) #define DSL_DEADLIST_BLOCKSIZE SPA_MAXBLOCKSIZE /* * Figure out how much of this delta should be propogated to the dsl_dir * layer. If there's a refreservation, that space has already been * partially accounted for in our ancestors. */ static int64_t parent_delta(dsl_dataset_t *ds, int64_t delta) { uint64_t old_bytes, new_bytes; if (ds->ds_reserved == 0) return (delta); old_bytes = MAX(ds->ds_phys->ds_unique_bytes, ds->ds_reserved); new_bytes = MAX(ds->ds_phys->ds_unique_bytes + delta, ds->ds_reserved); ASSERT3U(ABS((int64_t)(new_bytes - old_bytes)), <=, ABS(delta)); return (new_bytes - old_bytes); } void dsl_dataset_block_born(dsl_dataset_t *ds, const blkptr_t *bp, dmu_tx_t *tx) { int used, compressed, uncompressed; int64_t delta; used = bp_get_dsize_sync(tx->tx_pool->dp_spa, bp); compressed = BP_GET_PSIZE(bp); uncompressed = BP_GET_UCSIZE(bp); dprintf_bp(bp, "ds=%p", ds); ASSERT(dmu_tx_is_syncing(tx)); /* It could have been compressed away to nothing */ if (BP_IS_HOLE(bp)) return; ASSERT(BP_GET_TYPE(bp) != DMU_OT_NONE); ASSERT(DMU_OT_IS_VALID(BP_GET_TYPE(bp))); if (ds == NULL) { dsl_pool_mos_diduse_space(tx->tx_pool, used, compressed, uncompressed); return; } dmu_buf_will_dirty(ds->ds_dbuf, tx); mutex_enter(&ds->ds_dir->dd_lock); mutex_enter(&ds->ds_lock); delta = parent_delta(ds, used); ds->ds_phys->ds_referenced_bytes += used; ds->ds_phys->ds_compressed_bytes += compressed; ds->ds_phys->ds_uncompressed_bytes += uncompressed; ds->ds_phys->ds_unique_bytes += used; mutex_exit(&ds->ds_lock); dsl_dir_diduse_space(ds->ds_dir, DD_USED_HEAD, delta, compressed, uncompressed, tx); dsl_dir_transfer_space(ds->ds_dir, used - delta, DD_USED_REFRSRV, DD_USED_HEAD, tx); mutex_exit(&ds->ds_dir->dd_lock); } int dsl_dataset_block_kill(dsl_dataset_t *ds, const blkptr_t *bp, dmu_tx_t *tx, boolean_t async) { int used, compressed, uncompressed; if (BP_IS_HOLE(bp)) return (0); ASSERT(dmu_tx_is_syncing(tx)); ASSERT(bp->blk_birth <= tx->tx_txg); used = bp_get_dsize_sync(tx->tx_pool->dp_spa, bp); compressed = BP_GET_PSIZE(bp); uncompressed = BP_GET_UCSIZE(bp); ASSERT(used > 0); if (ds == NULL) { dsl_free(tx->tx_pool, tx->tx_txg, bp); dsl_pool_mos_diduse_space(tx->tx_pool, -used, -compressed, -uncompressed); return (used); } ASSERT3P(tx->tx_pool, ==, ds->ds_dir->dd_pool); ASSERT(!dsl_dataset_is_snapshot(ds)); dmu_buf_will_dirty(ds->ds_dbuf, tx); if (bp->blk_birth > ds->ds_phys->ds_prev_snap_txg) { int64_t delta; dprintf_bp(bp, "freeing ds=%llu", ds->ds_object); dsl_free(tx->tx_pool, tx->tx_txg, bp); mutex_enter(&ds->ds_dir->dd_lock); mutex_enter(&ds->ds_lock); ASSERT(ds->ds_phys->ds_unique_bytes >= used || !DS_UNIQUE_IS_ACCURATE(ds)); delta = parent_delta(ds, -used); ds->ds_phys->ds_unique_bytes -= used; mutex_exit(&ds->ds_lock); dsl_dir_diduse_space(ds->ds_dir, DD_USED_HEAD, delta, -compressed, -uncompressed, tx); dsl_dir_transfer_space(ds->ds_dir, -used - delta, DD_USED_REFRSRV, DD_USED_HEAD, tx); mutex_exit(&ds->ds_dir->dd_lock); } else { dprintf_bp(bp, "putting on dead list: %s", ""); if (async) { /* * We are here as part of zio's write done callback, * which means we're a zio interrupt thread. We can't * call dsl_deadlist_insert() now because it may block * waiting for I/O. Instead, put bp on the deferred * queue and let dsl_pool_sync() finish the job. */ bplist_append(&ds->ds_pending_deadlist, bp); } else { dsl_deadlist_insert(&ds->ds_deadlist, bp, tx); } ASSERT3U(ds->ds_prev->ds_object, ==, ds->ds_phys->ds_prev_snap_obj); ASSERT(ds->ds_prev->ds_phys->ds_num_children > 0); /* if (bp->blk_birth > prev prev snap txg) prev unique += bs */ if (ds->ds_prev->ds_phys->ds_next_snap_obj == ds->ds_object && bp->blk_birth > ds->ds_prev->ds_phys->ds_prev_snap_txg) { dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); mutex_enter(&ds->ds_prev->ds_lock); ds->ds_prev->ds_phys->ds_unique_bytes += used; mutex_exit(&ds->ds_prev->ds_lock); } if (bp->blk_birth > ds->ds_dir->dd_origin_txg) { dsl_dir_transfer_space(ds->ds_dir, used, DD_USED_HEAD, DD_USED_SNAP, tx); } } mutex_enter(&ds->ds_lock); ASSERT3U(ds->ds_phys->ds_referenced_bytes, >=, used); ds->ds_phys->ds_referenced_bytes -= used; ASSERT3U(ds->ds_phys->ds_compressed_bytes, >=, compressed); ds->ds_phys->ds_compressed_bytes -= compressed; ASSERT3U(ds->ds_phys->ds_uncompressed_bytes, >=, uncompressed); ds->ds_phys->ds_uncompressed_bytes -= uncompressed; mutex_exit(&ds->ds_lock); return (used); } uint64_t dsl_dataset_prev_snap_txg(dsl_dataset_t *ds) { uint64_t trysnap = 0; if (ds == NULL) return (0); /* * The snapshot creation could fail, but that would cause an * incorrect FALSE return, which would only result in an * overestimation of the amount of space that an operation would * consume, which is OK. * * There's also a small window where we could miss a pending * snapshot, because we could set the sync task in the quiescing * phase. So this should only be used as a guess. */ if (ds->ds_trysnap_txg > spa_last_synced_txg(ds->ds_dir->dd_pool->dp_spa)) trysnap = ds->ds_trysnap_txg; return (MAX(ds->ds_phys->ds_prev_snap_txg, trysnap)); } boolean_t dsl_dataset_block_freeable(dsl_dataset_t *ds, const blkptr_t *bp, uint64_t blk_birth) { if (blk_birth <= dsl_dataset_prev_snap_txg(ds)) return (B_FALSE); ddt_prefetch(dsl_dataset_get_spa(ds), bp); return (B_TRUE); } /* ARGSUSED */ static void dsl_dataset_evict(dmu_buf_t *db, void *dsv) { dsl_dataset_t *ds = dsv; ASSERT(ds->ds_owner == NULL); unique_remove(ds->ds_fsid_guid); if (ds->ds_objset != NULL) dmu_objset_evict(ds->ds_objset); if (ds->ds_prev) { dsl_dataset_rele(ds->ds_prev, ds); ds->ds_prev = NULL; } bplist_destroy(&ds->ds_pending_deadlist); if (ds->ds_phys->ds_deadlist_obj != 0) dsl_deadlist_close(&ds->ds_deadlist); if (ds->ds_dir) dsl_dir_rele(ds->ds_dir, ds); ASSERT(!list_link_active(&ds->ds_synced_link)); mutex_destroy(&ds->ds_lock); mutex_destroy(&ds->ds_opening_lock); refcount_destroy(&ds->ds_longholds); kmem_free(ds, sizeof (dsl_dataset_t)); } int dsl_dataset_get_snapname(dsl_dataset_t *ds) { dsl_dataset_phys_t *headphys; int err; dmu_buf_t *headdbuf; dsl_pool_t *dp = ds->ds_dir->dd_pool; objset_t *mos = dp->dp_meta_objset; if (ds->ds_snapname[0]) return (0); if (ds->ds_phys->ds_next_snap_obj == 0) return (0); err = dmu_bonus_hold(mos, ds->ds_dir->dd_phys->dd_head_dataset_obj, FTAG, &headdbuf); if (err != 0) return (err); headphys = headdbuf->db_data; err = zap_value_search(dp->dp_meta_objset, headphys->ds_snapnames_zapobj, ds->ds_object, 0, ds->ds_snapname); dmu_buf_rele(headdbuf, FTAG); return (err); } int dsl_dataset_snap_lookup(dsl_dataset_t *ds, const char *name, uint64_t *value) { objset_t *mos = ds->ds_dir->dd_pool->dp_meta_objset; uint64_t snapobj = ds->ds_phys->ds_snapnames_zapobj; matchtype_t mt; int err; if (ds->ds_phys->ds_flags & DS_FLAG_CI_DATASET) mt = MT_FIRST; else mt = MT_EXACT; err = zap_lookup_norm(mos, snapobj, name, 8, 1, value, mt, NULL, 0, NULL); if (err == ENOTSUP && mt == MT_FIRST) err = zap_lookup(mos, snapobj, name, 8, 1, value); return (err); } int dsl_dataset_snap_remove(dsl_dataset_t *ds, const char *name, dmu_tx_t *tx) { objset_t *mos = ds->ds_dir->dd_pool->dp_meta_objset; uint64_t snapobj = ds->ds_phys->ds_snapnames_zapobj; matchtype_t mt; int err; dsl_dir_snap_cmtime_update(ds->ds_dir); if (ds->ds_phys->ds_flags & DS_FLAG_CI_DATASET) mt = MT_FIRST; else mt = MT_EXACT; err = zap_remove_norm(mos, snapobj, name, mt, tx); if (err == ENOTSUP && mt == MT_FIRST) err = zap_remove(mos, snapobj, name, tx); return (err); } int dsl_dataset_hold_obj(dsl_pool_t *dp, uint64_t dsobj, void *tag, dsl_dataset_t **dsp) { objset_t *mos = dp->dp_meta_objset; dmu_buf_t *dbuf; dsl_dataset_t *ds; int err; dmu_object_info_t doi; ASSERT(dsl_pool_config_held(dp)); err = dmu_bonus_hold(mos, dsobj, tag, &dbuf); if (err != 0) return (err); /* Make sure dsobj has the correct object type. */ dmu_object_info_from_db(dbuf, &doi); - if (doi.doi_type != DMU_OT_DSL_DATASET) + if (doi.doi_type != DMU_OT_DSL_DATASET) { + dmu_buf_rele(dbuf, tag); return (SET_ERROR(EINVAL)); + } ds = dmu_buf_get_user(dbuf); if (ds == NULL) { dsl_dataset_t *winner = NULL; ds = kmem_zalloc(sizeof (dsl_dataset_t), KM_PUSHPAGE); ds->ds_dbuf = dbuf; ds->ds_object = dsobj; ds->ds_phys = dbuf->db_data; list_link_init(&ds->ds_synced_link); mutex_init(&ds->ds_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&ds->ds_opening_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&ds->ds_sendstream_lock, NULL, MUTEX_DEFAULT, NULL); refcount_create(&ds->ds_longholds); bplist_create(&ds->ds_pending_deadlist); dsl_deadlist_open(&ds->ds_deadlist, mos, ds->ds_phys->ds_deadlist_obj); list_create(&ds->ds_sendstreams, sizeof (dmu_sendarg_t), offsetof(dmu_sendarg_t, dsa_link)); if (err == 0) { err = dsl_dir_hold_obj(dp, ds->ds_phys->ds_dir_obj, NULL, ds, &ds->ds_dir); } if (err != 0) { mutex_destroy(&ds->ds_lock); mutex_destroy(&ds->ds_opening_lock); refcount_destroy(&ds->ds_longholds); bplist_destroy(&ds->ds_pending_deadlist); dsl_deadlist_close(&ds->ds_deadlist); kmem_free(ds, sizeof (dsl_dataset_t)); dmu_buf_rele(dbuf, tag); return (err); } if (!dsl_dataset_is_snapshot(ds)) { ds->ds_snapname[0] = '\0'; if (ds->ds_phys->ds_prev_snap_obj != 0) { err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev); } } else { if (zfs_flags & ZFS_DEBUG_SNAPNAMES) err = dsl_dataset_get_snapname(ds); if (err == 0 && ds->ds_phys->ds_userrefs_obj != 0) { err = zap_count( ds->ds_dir->dd_pool->dp_meta_objset, ds->ds_phys->ds_userrefs_obj, &ds->ds_userrefs); } } if (err == 0 && !dsl_dataset_is_snapshot(ds)) { err = dsl_prop_get_int_ds(ds, zfs_prop_to_name(ZFS_PROP_REFRESERVATION), &ds->ds_reserved); if (err == 0) { err = dsl_prop_get_int_ds(ds, zfs_prop_to_name(ZFS_PROP_REFQUOTA), &ds->ds_quota); } } else { ds->ds_reserved = ds->ds_quota = 0; } if (err != 0 || (winner = dmu_buf_set_user_ie(dbuf, ds, &ds->ds_phys, dsl_dataset_evict)) != NULL) { bplist_destroy(&ds->ds_pending_deadlist); dsl_deadlist_close(&ds->ds_deadlist); if (ds->ds_prev) dsl_dataset_rele(ds->ds_prev, ds); dsl_dir_rele(ds->ds_dir, ds); mutex_destroy(&ds->ds_lock); mutex_destroy(&ds->ds_opening_lock); refcount_destroy(&ds->ds_longholds); kmem_free(ds, sizeof (dsl_dataset_t)); if (err != 0) { dmu_buf_rele(dbuf, tag); return (err); } ds = winner; } else { ds->ds_fsid_guid = unique_insert(ds->ds_phys->ds_fsid_guid); } } ASSERT3P(ds->ds_dbuf, ==, dbuf); ASSERT3P(ds->ds_phys, ==, dbuf->db_data); ASSERT(ds->ds_phys->ds_prev_snap_obj != 0 || spa_version(dp->dp_spa) < SPA_VERSION_ORIGIN || dp->dp_origin_snap == NULL || ds == dp->dp_origin_snap); *dsp = ds; return (0); } int dsl_dataset_hold(dsl_pool_t *dp, const char *name, void *tag, dsl_dataset_t **dsp) { dsl_dir_t *dd; const char *snapname; uint64_t obj; int err = 0; err = dsl_dir_hold(dp, name, FTAG, &dd, &snapname); if (err != 0) return (err); ASSERT(dsl_pool_config_held(dp)); obj = dd->dd_phys->dd_head_dataset_obj; if (obj != 0) err = dsl_dataset_hold_obj(dp, obj, tag, dsp); else err = SET_ERROR(ENOENT); /* we may be looking for a snapshot */ if (err == 0 && snapname != NULL) { dsl_dataset_t *ds; if (*snapname++ != '@') { dsl_dataset_rele(*dsp, tag); dsl_dir_rele(dd, FTAG); return (SET_ERROR(ENOENT)); } dprintf("looking for snapshot '%s'\n", snapname); err = dsl_dataset_snap_lookup(*dsp, snapname, &obj); if (err == 0) err = dsl_dataset_hold_obj(dp, obj, tag, &ds); dsl_dataset_rele(*dsp, tag); if (err == 0) { mutex_enter(&ds->ds_lock); if (ds->ds_snapname[0] == 0) (void) strlcpy(ds->ds_snapname, snapname, sizeof (ds->ds_snapname)); mutex_exit(&ds->ds_lock); *dsp = ds; } } dsl_dir_rele(dd, FTAG); return (err); } int dsl_dataset_own_obj(dsl_pool_t *dp, uint64_t dsobj, void *tag, dsl_dataset_t **dsp) { int err = dsl_dataset_hold_obj(dp, dsobj, tag, dsp); if (err != 0) return (err); if (!dsl_dataset_tryown(*dsp, tag)) { dsl_dataset_rele(*dsp, tag); *dsp = NULL; return (SET_ERROR(EBUSY)); } return (0); } int dsl_dataset_own(dsl_pool_t *dp, const char *name, void *tag, dsl_dataset_t **dsp) { int err = dsl_dataset_hold(dp, name, tag, dsp); if (err != 0) return (err); if (!dsl_dataset_tryown(*dsp, tag)) { dsl_dataset_rele(*dsp, tag); return (SET_ERROR(EBUSY)); } return (0); } /* * See the comment above dsl_pool_hold() for details. In summary, a long * hold is used to prevent destruction of a dataset while the pool hold * is dropped, allowing other concurrent operations (e.g. spa_sync()). * * The dataset and pool must be held when this function is called. After it * is called, the pool hold may be released while the dataset is still held * and accessed. */ void dsl_dataset_long_hold(dsl_dataset_t *ds, void *tag) { ASSERT(dsl_pool_config_held(ds->ds_dir->dd_pool)); (void) refcount_add(&ds->ds_longholds, tag); } void dsl_dataset_long_rele(dsl_dataset_t *ds, void *tag) { (void) refcount_remove(&ds->ds_longholds, tag); } /* Return B_TRUE if there are any long holds on this dataset. */ boolean_t dsl_dataset_long_held(dsl_dataset_t *ds) { return (!refcount_is_zero(&ds->ds_longholds)); } void dsl_dataset_name(dsl_dataset_t *ds, char *name) { if (ds == NULL) { (void) strcpy(name, "mos"); } else { dsl_dir_name(ds->ds_dir, name); VERIFY0(dsl_dataset_get_snapname(ds)); if (ds->ds_snapname[0]) { (void) strcat(name, "@"); /* * We use a "recursive" mutex so that we * can call dprintf_ds() with ds_lock held. */ if (!MUTEX_HELD(&ds->ds_lock)) { mutex_enter(&ds->ds_lock); (void) strcat(name, ds->ds_snapname); mutex_exit(&ds->ds_lock); } else { (void) strcat(name, ds->ds_snapname); } } } } void dsl_dataset_rele(dsl_dataset_t *ds, void *tag) { dmu_buf_rele(ds->ds_dbuf, tag); } void dsl_dataset_disown(dsl_dataset_t *ds, void *tag) { ASSERT(ds->ds_owner == tag && ds->ds_dbuf != NULL); mutex_enter(&ds->ds_lock); ds->ds_owner = NULL; mutex_exit(&ds->ds_lock); dsl_dataset_long_rele(ds, tag); if (ds->ds_dbuf != NULL) dsl_dataset_rele(ds, tag); else dsl_dataset_evict(NULL, ds); } boolean_t dsl_dataset_tryown(dsl_dataset_t *ds, void *tag) { boolean_t gotit = FALSE; mutex_enter(&ds->ds_lock); if (ds->ds_owner == NULL && !DS_IS_INCONSISTENT(ds)) { ds->ds_owner = tag; dsl_dataset_long_hold(ds, tag); gotit = TRUE; } mutex_exit(&ds->ds_lock); return (gotit); } uint64_t dsl_dataset_create_sync_dd(dsl_dir_t *dd, dsl_dataset_t *origin, uint64_t flags, dmu_tx_t *tx) { dsl_pool_t *dp = dd->dd_pool; dmu_buf_t *dbuf; dsl_dataset_phys_t *dsphys; uint64_t dsobj; objset_t *mos = dp->dp_meta_objset; if (origin == NULL) origin = dp->dp_origin_snap; ASSERT(origin == NULL || origin->ds_dir->dd_pool == dp); ASSERT(origin == NULL || origin->ds_phys->ds_num_children > 0); ASSERT(dmu_tx_is_syncing(tx)); ASSERT(dd->dd_phys->dd_head_dataset_obj == 0); dsobj = dmu_object_alloc(mos, DMU_OT_DSL_DATASET, 0, DMU_OT_DSL_DATASET, sizeof (dsl_dataset_phys_t), tx); VERIFY0(dmu_bonus_hold(mos, dsobj, FTAG, &dbuf)); dmu_buf_will_dirty(dbuf, tx); dsphys = dbuf->db_data; bzero(dsphys, sizeof (dsl_dataset_phys_t)); dsphys->ds_dir_obj = dd->dd_object; dsphys->ds_flags = flags; dsphys->ds_fsid_guid = unique_create(); (void) random_get_pseudo_bytes((void*)&dsphys->ds_guid, sizeof (dsphys->ds_guid)); dsphys->ds_snapnames_zapobj = zap_create_norm(mos, U8_TEXTPREP_TOUPPER, DMU_OT_DSL_DS_SNAP_MAP, DMU_OT_NONE, 0, tx); dsphys->ds_creation_time = gethrestime_sec(); dsphys->ds_creation_txg = tx->tx_txg == TXG_INITIAL ? 1 : tx->tx_txg; if (origin == NULL) { dsphys->ds_deadlist_obj = dsl_deadlist_alloc(mos, tx); } else { dsl_dataset_t *ohds; /* head of the origin snapshot */ dsphys->ds_prev_snap_obj = origin->ds_object; dsphys->ds_prev_snap_txg = origin->ds_phys->ds_creation_txg; dsphys->ds_referenced_bytes = origin->ds_phys->ds_referenced_bytes; dsphys->ds_compressed_bytes = origin->ds_phys->ds_compressed_bytes; dsphys->ds_uncompressed_bytes = origin->ds_phys->ds_uncompressed_bytes; dsphys->ds_bp = origin->ds_phys->ds_bp; dsphys->ds_flags |= origin->ds_phys->ds_flags; dmu_buf_will_dirty(origin->ds_dbuf, tx); origin->ds_phys->ds_num_children++; VERIFY0(dsl_dataset_hold_obj(dp, origin->ds_dir->dd_phys->dd_head_dataset_obj, FTAG, &ohds)); dsphys->ds_deadlist_obj = dsl_deadlist_clone(&ohds->ds_deadlist, dsphys->ds_prev_snap_txg, dsphys->ds_prev_snap_obj, tx); dsl_dataset_rele(ohds, FTAG); if (spa_version(dp->dp_spa) >= SPA_VERSION_NEXT_CLONES) { if (origin->ds_phys->ds_next_clones_obj == 0) { origin->ds_phys->ds_next_clones_obj = zap_create(mos, DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx); } VERIFY0(zap_add_int(mos, origin->ds_phys->ds_next_clones_obj, dsobj, tx)); } dmu_buf_will_dirty(dd->dd_dbuf, tx); dd->dd_phys->dd_origin_obj = origin->ds_object; if (spa_version(dp->dp_spa) >= SPA_VERSION_DIR_CLONES) { if (origin->ds_dir->dd_phys->dd_clones == 0) { dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx); origin->ds_dir->dd_phys->dd_clones = zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx); } VERIFY0(zap_add_int(mos, origin->ds_dir->dd_phys->dd_clones, dsobj, tx)); } } if (spa_version(dp->dp_spa) >= SPA_VERSION_UNIQUE_ACCURATE) dsphys->ds_flags |= DS_FLAG_UNIQUE_ACCURATE; dmu_buf_rele(dbuf, FTAG); dmu_buf_will_dirty(dd->dd_dbuf, tx); dd->dd_phys->dd_head_dataset_obj = dsobj; return (dsobj); } static void dsl_dataset_zero_zil(dsl_dataset_t *ds, dmu_tx_t *tx) { objset_t *os; VERIFY0(dmu_objset_from_ds(ds, &os)); bzero(&os->os_zil_header, sizeof (os->os_zil_header)); dsl_dataset_dirty(ds, tx); } uint64_t dsl_dataset_create_sync(dsl_dir_t *pdd, const char *lastname, dsl_dataset_t *origin, uint64_t flags, cred_t *cr, dmu_tx_t *tx) { dsl_pool_t *dp = pdd->dd_pool; uint64_t dsobj, ddobj; dsl_dir_t *dd; ASSERT(dmu_tx_is_syncing(tx)); ASSERT(lastname[0] != '@'); ddobj = dsl_dir_create_sync(dp, pdd, lastname, tx); VERIFY0(dsl_dir_hold_obj(dp, ddobj, lastname, FTAG, &dd)); dsobj = dsl_dataset_create_sync_dd(dd, origin, flags & ~DS_CREATE_FLAG_NODIRTY, tx); dsl_deleg_set_create_perms(dd, tx, cr); dsl_dir_rele(dd, FTAG); /* * If we are creating a clone, make sure we zero out any stale * data from the origin snapshots zil header. */ if (origin != NULL && !(flags & DS_CREATE_FLAG_NODIRTY)) { dsl_dataset_t *ds; VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); dsl_dataset_zero_zil(ds, tx); dsl_dataset_rele(ds, FTAG); } return (dsobj); } /* * The unique space in the head dataset can be calculated by subtracting * the space used in the most recent snapshot, that is still being used * in this file system, from the space currently in use. To figure out * the space in the most recent snapshot still in use, we need to take * the total space used in the snapshot and subtract out the space that * has been freed up since the snapshot was taken. */ void dsl_dataset_recalc_head_uniq(dsl_dataset_t *ds) { uint64_t mrs_used; uint64_t dlused, dlcomp, dluncomp; ASSERT(!dsl_dataset_is_snapshot(ds)); if (ds->ds_phys->ds_prev_snap_obj != 0) mrs_used = ds->ds_prev->ds_phys->ds_referenced_bytes; else mrs_used = 0; dsl_deadlist_space(&ds->ds_deadlist, &dlused, &dlcomp, &dluncomp); ASSERT3U(dlused, <=, mrs_used); ds->ds_phys->ds_unique_bytes = ds->ds_phys->ds_referenced_bytes - (mrs_used - dlused); if (spa_version(ds->ds_dir->dd_pool->dp_spa) >= SPA_VERSION_UNIQUE_ACCURATE) ds->ds_phys->ds_flags |= DS_FLAG_UNIQUE_ACCURATE; } void dsl_dataset_remove_from_next_clones(dsl_dataset_t *ds, uint64_t obj, dmu_tx_t *tx) { objset_t *mos = ds->ds_dir->dd_pool->dp_meta_objset; int err; ASSERTV(uint64_t count); ASSERT(ds->ds_phys->ds_num_children >= 2); err = zap_remove_int(mos, ds->ds_phys->ds_next_clones_obj, obj, tx); /* * The err should not be ENOENT, but a bug in a previous version * of the code could cause upgrade_clones_cb() to not set * ds_next_snap_obj when it should, leading to a missing entry. * If we knew that the pool was created after * SPA_VERSION_NEXT_CLONES, we could assert that it isn't * ENOENT. However, at least we can check that we don't have * too many entries in the next_clones_obj even after failing to * remove this one. */ if (err != ENOENT) VERIFY0(err); ASSERT0(zap_count(mos, ds->ds_phys->ds_next_clones_obj, &count)); ASSERT3U(count, <=, ds->ds_phys->ds_num_children - 2); } blkptr_t * dsl_dataset_get_blkptr(dsl_dataset_t *ds) { return (&ds->ds_phys->ds_bp); } void dsl_dataset_set_blkptr(dsl_dataset_t *ds, blkptr_t *bp, dmu_tx_t *tx) { ASSERT(dmu_tx_is_syncing(tx)); /* If it's the meta-objset, set dp_meta_rootbp */ if (ds == NULL) { tx->tx_pool->dp_meta_rootbp = *bp; } else { dmu_buf_will_dirty(ds->ds_dbuf, tx); ds->ds_phys->ds_bp = *bp; } } spa_t * dsl_dataset_get_spa(dsl_dataset_t *ds) { return (ds->ds_dir->dd_pool->dp_spa); } void dsl_dataset_dirty(dsl_dataset_t *ds, dmu_tx_t *tx) { dsl_pool_t *dp; if (ds == NULL) /* this is the meta-objset */ return; ASSERT(ds->ds_objset != NULL); if (ds->ds_phys->ds_next_snap_obj != 0) panic("dirtying snapshot!"); dp = ds->ds_dir->dd_pool; if (txg_list_add(&dp->dp_dirty_datasets, ds, tx->tx_txg)) { /* up the hold count until we can be written out */ dmu_buf_add_ref(ds->ds_dbuf, ds); } } boolean_t dsl_dataset_is_dirty(dsl_dataset_t *ds) { int t; for (t = 0; t < TXG_SIZE; t++) { if (txg_list_member(&ds->ds_dir->dd_pool->dp_dirty_datasets, ds, t)) return (B_TRUE); } return (B_FALSE); } static int dsl_dataset_snapshot_reserve_space(dsl_dataset_t *ds, dmu_tx_t *tx) { uint64_t asize; if (!dmu_tx_is_syncing(tx)) return (0); /* * If there's an fs-only reservation, any blocks that might become * owned by the snapshot dataset must be accommodated by space * outside of the reservation. */ ASSERT(ds->ds_reserved == 0 || DS_UNIQUE_IS_ACCURATE(ds)); asize = MIN(ds->ds_phys->ds_unique_bytes, ds->ds_reserved); if (asize > dsl_dir_space_available(ds->ds_dir, NULL, 0, TRUE)) return (SET_ERROR(ENOSPC)); /* * Propagate any reserved space for this snapshot to other * snapshot checks in this sync group. */ if (asize > 0) dsl_dir_willuse_space(ds->ds_dir, asize, tx); return (0); } typedef struct dsl_dataset_snapshot_arg { nvlist_t *ddsa_snaps; nvlist_t *ddsa_props; nvlist_t *ddsa_errors; } dsl_dataset_snapshot_arg_t; int dsl_dataset_snapshot_check_impl(dsl_dataset_t *ds, const char *snapname, dmu_tx_t *tx) { int error; uint64_t value; ds->ds_trysnap_txg = tx->tx_txg; if (!dmu_tx_is_syncing(tx)) return (0); /* * We don't allow multiple snapshots of the same txg. If there * is already one, try again. */ if (ds->ds_phys->ds_prev_snap_txg >= tx->tx_txg) return (SET_ERROR(EAGAIN)); /* * Check for conflicting snapshot name. */ error = dsl_dataset_snap_lookup(ds, snapname, &value); if (error == 0) return (SET_ERROR(EEXIST)); if (error != ENOENT) return (error); error = dsl_dataset_snapshot_reserve_space(ds, tx); if (error != 0) return (error); return (0); } static int dsl_dataset_snapshot_check(void *arg, dmu_tx_t *tx) { dsl_dataset_snapshot_arg_t *ddsa = arg; dsl_pool_t *dp = dmu_tx_pool(tx); nvpair_t *pair; int rv = 0; for (pair = nvlist_next_nvpair(ddsa->ddsa_snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(ddsa->ddsa_snaps, pair)) { int error = 0; dsl_dataset_t *ds; char *name, *atp; char dsname[MAXNAMELEN]; name = nvpair_name(pair); if (strlen(name) >= MAXNAMELEN) error = SET_ERROR(ENAMETOOLONG); if (error == 0) { atp = strchr(name, '@'); if (atp == NULL) error = SET_ERROR(EINVAL); if (error == 0) (void) strlcpy(dsname, name, atp - name + 1); } if (error == 0) error = dsl_dataset_hold(dp, dsname, FTAG, &ds); if (error == 0) { error = dsl_dataset_snapshot_check_impl(ds, atp + 1, tx); dsl_dataset_rele(ds, FTAG); } if (error != 0) { if (ddsa->ddsa_errors != NULL) { fnvlist_add_int32(ddsa->ddsa_errors, name, error); } rv = error; } } return (rv); } void dsl_dataset_snapshot_sync_impl(dsl_dataset_t *ds, const char *snapname, dmu_tx_t *tx) { dsl_pool_t *dp = ds->ds_dir->dd_pool; dmu_buf_t *dbuf; dsl_dataset_phys_t *dsphys; uint64_t dsobj, crtxg; objset_t *mos = dp->dp_meta_objset; ASSERTV(static zil_header_t zero_zil); ASSERTV(objset_t *os); ASSERT(RRW_WRITE_HELD(&dp->dp_config_rwlock)); /* * If we are on an old pool, the zil must not be active, in which * case it will be zeroed. Usually zil_suspend() accomplishes this. */ ASSERT(spa_version(dmu_tx_pool(tx)->dp_spa) >= SPA_VERSION_FAST_SNAP || dmu_objset_from_ds(ds, &os) != 0 || bcmp(&os->os_phys->os_zil_header, &zero_zil, sizeof (zero_zil)) == 0); /* * The origin's ds_creation_txg has to be < TXG_INITIAL */ if (strcmp(snapname, ORIGIN_DIR_NAME) == 0) crtxg = 1; else crtxg = tx->tx_txg; dsobj = dmu_object_alloc(mos, DMU_OT_DSL_DATASET, 0, DMU_OT_DSL_DATASET, sizeof (dsl_dataset_phys_t), tx); VERIFY0(dmu_bonus_hold(mos, dsobj, FTAG, &dbuf)); dmu_buf_will_dirty(dbuf, tx); dsphys = dbuf->db_data; bzero(dsphys, sizeof (dsl_dataset_phys_t)); dsphys->ds_dir_obj = ds->ds_dir->dd_object; dsphys->ds_fsid_guid = unique_create(); (void) random_get_pseudo_bytes((void*)&dsphys->ds_guid, sizeof (dsphys->ds_guid)); dsphys->ds_prev_snap_obj = ds->ds_phys->ds_prev_snap_obj; dsphys->ds_prev_snap_txg = ds->ds_phys->ds_prev_snap_txg; dsphys->ds_next_snap_obj = ds->ds_object; dsphys->ds_num_children = 1; dsphys->ds_creation_time = gethrestime_sec(); dsphys->ds_creation_txg = crtxg; dsphys->ds_deadlist_obj = ds->ds_phys->ds_deadlist_obj; dsphys->ds_referenced_bytes = ds->ds_phys->ds_referenced_bytes; dsphys->ds_compressed_bytes = ds->ds_phys->ds_compressed_bytes; dsphys->ds_uncompressed_bytes = ds->ds_phys->ds_uncompressed_bytes; dsphys->ds_flags = ds->ds_phys->ds_flags; dsphys->ds_bp = ds->ds_phys->ds_bp; dmu_buf_rele(dbuf, FTAG); ASSERT3U(ds->ds_prev != 0, ==, ds->ds_phys->ds_prev_snap_obj != 0); if (ds->ds_prev) { uint64_t next_clones_obj = ds->ds_prev->ds_phys->ds_next_clones_obj; ASSERT(ds->ds_prev->ds_phys->ds_next_snap_obj == ds->ds_object || ds->ds_prev->ds_phys->ds_num_children > 1); if (ds->ds_prev->ds_phys->ds_next_snap_obj == ds->ds_object) { dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); ASSERT3U(ds->ds_phys->ds_prev_snap_txg, ==, ds->ds_prev->ds_phys->ds_creation_txg); ds->ds_prev->ds_phys->ds_next_snap_obj = dsobj; } else if (next_clones_obj != 0) { dsl_dataset_remove_from_next_clones(ds->ds_prev, dsphys->ds_next_snap_obj, tx); VERIFY0(zap_add_int(mos, next_clones_obj, dsobj, tx)); } } /* * If we have a reference-reservation on this dataset, we will * need to increase the amount of refreservation being charged * since our unique space is going to zero. */ if (ds->ds_reserved) { int64_t delta; ASSERT(DS_UNIQUE_IS_ACCURATE(ds)); delta = MIN(ds->ds_phys->ds_unique_bytes, ds->ds_reserved); dsl_dir_diduse_space(ds->ds_dir, DD_USED_REFRSRV, delta, 0, 0, tx); } dmu_buf_will_dirty(ds->ds_dbuf, tx); ds->ds_phys->ds_deadlist_obj = dsl_deadlist_clone(&ds->ds_deadlist, UINT64_MAX, ds->ds_phys->ds_prev_snap_obj, tx); dsl_deadlist_close(&ds->ds_deadlist); dsl_deadlist_open(&ds->ds_deadlist, mos, ds->ds_phys->ds_deadlist_obj); dsl_deadlist_add_key(&ds->ds_deadlist, ds->ds_phys->ds_prev_snap_txg, tx); ASSERT3U(ds->ds_phys->ds_prev_snap_txg, <, tx->tx_txg); ds->ds_phys->ds_prev_snap_obj = dsobj; ds->ds_phys->ds_prev_snap_txg = crtxg; ds->ds_phys->ds_unique_bytes = 0; if (spa_version(dp->dp_spa) >= SPA_VERSION_UNIQUE_ACCURATE) ds->ds_phys->ds_flags |= DS_FLAG_UNIQUE_ACCURATE; VERIFY0(zap_add(mos, ds->ds_phys->ds_snapnames_zapobj, snapname, 8, 1, &dsobj, tx)); if (ds->ds_prev) dsl_dataset_rele(ds->ds_prev, ds); VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev)); dsl_scan_ds_snapshotted(ds, tx); dsl_dir_snap_cmtime_update(ds->ds_dir); spa_history_log_internal_ds(ds->ds_prev, "snapshot", tx, ""); } static void dsl_dataset_snapshot_sync(void *arg, dmu_tx_t *tx) { dsl_dataset_snapshot_arg_t *ddsa = arg; dsl_pool_t *dp = dmu_tx_pool(tx); nvpair_t *pair; for (pair = nvlist_next_nvpair(ddsa->ddsa_snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(ddsa->ddsa_snaps, pair)) { dsl_dataset_t *ds; char *name, *atp; char dsname[MAXNAMELEN]; name = nvpair_name(pair); atp = strchr(name, '@'); (void) strlcpy(dsname, name, atp - name + 1); VERIFY0(dsl_dataset_hold(dp, dsname, FTAG, &ds)); dsl_dataset_snapshot_sync_impl(ds, atp + 1, tx); if (ddsa->ddsa_props != NULL) { dsl_props_set_sync_impl(ds->ds_prev, ZPROP_SRC_LOCAL, ddsa->ddsa_props, tx); } dsl_dataset_rele(ds, FTAG); } } /* * The snapshots must all be in the same pool. * All-or-nothing: if there are any failures, nothing will be modified. */ int dsl_dataset_snapshot(nvlist_t *snaps, nvlist_t *props, nvlist_t *errors) { dsl_dataset_snapshot_arg_t ddsa; nvpair_t *pair; boolean_t needsuspend; int error; spa_t *spa; char *firstname; nvlist_t *suspended = NULL; pair = nvlist_next_nvpair(snaps, NULL); if (pair == NULL) return (0); firstname = nvpair_name(pair); error = spa_open(firstname, &spa, FTAG); if (error != 0) return (error); needsuspend = (spa_version(spa) < SPA_VERSION_FAST_SNAP); spa_close(spa, FTAG); if (needsuspend) { suspended = fnvlist_alloc(); for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(snaps, pair)) { char fsname[MAXNAMELEN]; char *snapname = nvpair_name(pair); char *atp; void *cookie; atp = strchr(snapname, '@'); if (atp == NULL) { error = SET_ERROR(EINVAL); break; } (void) strlcpy(fsname, snapname, atp - snapname + 1); error = zil_suspend(fsname, &cookie); if (error != 0) break; fnvlist_add_uint64(suspended, fsname, (uintptr_t)cookie); } } ddsa.ddsa_snaps = snaps; ddsa.ddsa_props = props; ddsa.ddsa_errors = errors; if (error == 0) { error = dsl_sync_task(firstname, dsl_dataset_snapshot_check, dsl_dataset_snapshot_sync, &ddsa, fnvlist_num_pairs(snaps) * 3); } if (suspended != NULL) { for (pair = nvlist_next_nvpair(suspended, NULL); pair != NULL; pair = nvlist_next_nvpair(suspended, pair)) { zil_resume((void *)(uintptr_t) fnvpair_value_uint64(pair)); } fnvlist_free(suspended); } return (error); } typedef struct dsl_dataset_snapshot_tmp_arg { const char *ddsta_fsname; const char *ddsta_snapname; minor_t ddsta_cleanup_minor; const char *ddsta_htag; } dsl_dataset_snapshot_tmp_arg_t; static int dsl_dataset_snapshot_tmp_check(void *arg, dmu_tx_t *tx) { dsl_dataset_snapshot_tmp_arg_t *ddsta = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds; int error; error = dsl_dataset_hold(dp, ddsta->ddsta_fsname, FTAG, &ds); if (error != 0) return (error); error = dsl_dataset_snapshot_check_impl(ds, ddsta->ddsta_snapname, tx); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } if (spa_version(dp->dp_spa) < SPA_VERSION_USERREFS) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(ENOTSUP)); } error = dsl_dataset_user_hold_check_one(NULL, ddsta->ddsta_htag, B_TRUE, tx); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } dsl_dataset_rele(ds, FTAG); return (0); } static void dsl_dataset_snapshot_tmp_sync(void *arg, dmu_tx_t *tx) { dsl_dataset_snapshot_tmp_arg_t *ddsta = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds; VERIFY0(dsl_dataset_hold(dp, ddsta->ddsta_fsname, FTAG, &ds)); dsl_dataset_snapshot_sync_impl(ds, ddsta->ddsta_snapname, tx); dsl_dataset_user_hold_sync_one(ds->ds_prev, ddsta->ddsta_htag, ddsta->ddsta_cleanup_minor, gethrestime_sec(), tx); dsl_destroy_snapshot_sync_impl(ds->ds_prev, B_TRUE, tx); dsl_dataset_rele(ds, FTAG); } int dsl_dataset_snapshot_tmp(const char *fsname, const char *snapname, minor_t cleanup_minor, const char *htag) { dsl_dataset_snapshot_tmp_arg_t ddsta; int error; spa_t *spa; boolean_t needsuspend; void *cookie; ddsta.ddsta_fsname = fsname; ddsta.ddsta_snapname = snapname; ddsta.ddsta_cleanup_minor = cleanup_minor; ddsta.ddsta_htag = htag; error = spa_open(fsname, &spa, FTAG); if (error != 0) return (error); needsuspend = (spa_version(spa) < SPA_VERSION_FAST_SNAP); spa_close(spa, FTAG); if (needsuspend) { error = zil_suspend(fsname, &cookie); if (error != 0) return (error); } error = dsl_sync_task(fsname, dsl_dataset_snapshot_tmp_check, dsl_dataset_snapshot_tmp_sync, &ddsta, 3); if (needsuspend) zil_resume(cookie); return (error); } void dsl_dataset_sync(dsl_dataset_t *ds, zio_t *zio, dmu_tx_t *tx) { ASSERT(dmu_tx_is_syncing(tx)); ASSERT(ds->ds_objset != NULL); ASSERT(ds->ds_phys->ds_next_snap_obj == 0); /* * in case we had to change ds_fsid_guid when we opened it, * sync it out now. */ dmu_buf_will_dirty(ds->ds_dbuf, tx); ds->ds_phys->ds_fsid_guid = ds->ds_fsid_guid; dmu_objset_sync(ds->ds_objset, zio, tx); } static void get_clones_stat(dsl_dataset_t *ds, nvlist_t *nv) { uint64_t count = 0; objset_t *mos = ds->ds_dir->dd_pool->dp_meta_objset; zap_cursor_t zc; zap_attribute_t za; nvlist_t *propval = fnvlist_alloc(); nvlist_t *val = fnvlist_alloc(); ASSERT(dsl_pool_config_held(ds->ds_dir->dd_pool)); /* * There may be missing entries in ds_next_clones_obj * due to a bug in a previous version of the code. * Only trust it if it has the right number of entries. */ if (ds->ds_phys->ds_next_clones_obj != 0) { ASSERT0(zap_count(mos, ds->ds_phys->ds_next_clones_obj, &count)); } if (count != ds->ds_phys->ds_num_children - 1) goto fail; for (zap_cursor_init(&zc, mos, ds->ds_phys->ds_next_clones_obj); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { dsl_dataset_t *clone; char buf[ZFS_MAXNAMELEN]; VERIFY0(dsl_dataset_hold_obj(ds->ds_dir->dd_pool, za.za_first_integer, FTAG, &clone)); dsl_dir_name(clone->ds_dir, buf); fnvlist_add_boolean(val, buf); dsl_dataset_rele(clone, FTAG); } zap_cursor_fini(&zc); fnvlist_add_nvlist(propval, ZPROP_VALUE, val); fnvlist_add_nvlist(nv, zfs_prop_to_name(ZFS_PROP_CLONES), propval); fail: nvlist_free(val); nvlist_free(propval); } void dsl_dataset_stats(dsl_dataset_t *ds, nvlist_t *nv) { uint64_t refd, avail, uobjs, aobjs, ratio; ASSERTV(dsl_pool_t *dp = ds->ds_dir->dd_pool); ASSERT(dsl_pool_config_held(dp)); ratio = ds->ds_phys->ds_compressed_bytes == 0 ? 100 : (ds->ds_phys->ds_uncompressed_bytes * 100 / ds->ds_phys->ds_compressed_bytes); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_REFRATIO, ratio); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALREFERENCED, ds->ds_phys->ds_uncompressed_bytes); if (dsl_dataset_is_snapshot(ds)) { dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_COMPRESSRATIO, ratio); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USED, ds->ds_phys->ds_unique_bytes); get_clones_stat(ds, nv); } else { dsl_dir_stats(ds->ds_dir, nv); } dsl_dataset_space(ds, &refd, &avail, &uobjs, &aobjs); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_AVAILABLE, avail); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_REFERENCED, refd); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_CREATION, ds->ds_phys->ds_creation_time); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_CREATETXG, ds->ds_phys->ds_creation_txg); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_REFQUOTA, ds->ds_quota); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_REFRESERVATION, ds->ds_reserved); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_GUID, ds->ds_phys->ds_guid); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_UNIQUE, ds->ds_phys->ds_unique_bytes); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_OBJSETID, ds->ds_object); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USERREFS, ds->ds_userrefs); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_DEFER_DESTROY, DS_IS_DEFER_DESTROY(ds) ? 1 : 0); if (ds->ds_phys->ds_prev_snap_obj != 0) { uint64_t written, comp, uncomp; dsl_pool_t *dp = ds->ds_dir->dd_pool; dsl_dataset_t *prev; int err; err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, FTAG, &prev); if (err == 0) { err = dsl_dataset_space_written(prev, ds, &written, &comp, &uncomp); dsl_dataset_rele(prev, FTAG); if (err == 0) { dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_WRITTEN, written); } } } } void dsl_dataset_fast_stat(dsl_dataset_t *ds, dmu_objset_stats_t *stat) { dsl_pool_t *dp = ds->ds_dir->dd_pool; ASSERT(dsl_pool_config_held(dp)); stat->dds_creation_txg = ds->ds_phys->ds_creation_txg; stat->dds_inconsistent = ds->ds_phys->ds_flags & DS_FLAG_INCONSISTENT; stat->dds_guid = ds->ds_phys->ds_guid; stat->dds_origin[0] = '\0'; if (dsl_dataset_is_snapshot(ds)) { stat->dds_is_snapshot = B_TRUE; stat->dds_num_clones = ds->ds_phys->ds_num_children - 1; } else { stat->dds_is_snapshot = B_FALSE; stat->dds_num_clones = 0; if (dsl_dir_is_clone(ds->ds_dir)) { dsl_dataset_t *ods; VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &ods)); dsl_dataset_name(ods, stat->dds_origin); dsl_dataset_rele(ods, FTAG); } } } uint64_t dsl_dataset_fsid_guid(dsl_dataset_t *ds) { return (ds->ds_fsid_guid); } void dsl_dataset_space(dsl_dataset_t *ds, uint64_t *refdbytesp, uint64_t *availbytesp, uint64_t *usedobjsp, uint64_t *availobjsp) { *refdbytesp = ds->ds_phys->ds_referenced_bytes; *availbytesp = dsl_dir_space_available(ds->ds_dir, NULL, 0, TRUE); if (ds->ds_reserved > ds->ds_phys->ds_unique_bytes) *availbytesp += ds->ds_reserved - ds->ds_phys->ds_unique_bytes; if (ds->ds_quota != 0) { /* * Adjust available bytes according to refquota */ if (*refdbytesp < ds->ds_quota) *availbytesp = MIN(*availbytesp, ds->ds_quota - *refdbytesp); else *availbytesp = 0; } *usedobjsp = ds->ds_phys->ds_bp.blk_fill; *availobjsp = DN_MAX_OBJECT - *usedobjsp; } boolean_t dsl_dataset_modified_since_lastsnap(dsl_dataset_t *ds) { ASSERTV(dsl_pool_t *dp = ds->ds_dir->dd_pool); ASSERT(dsl_pool_config_held(dp)); if (ds->ds_prev == NULL) return (B_FALSE); if (ds->ds_phys->ds_bp.blk_birth > ds->ds_prev->ds_phys->ds_creation_txg) { objset_t *os, *os_prev; /* * It may be that only the ZIL differs, because it was * reset in the head. Don't count that as being * modified. */ if (dmu_objset_from_ds(ds, &os) != 0) return (B_TRUE); if (dmu_objset_from_ds(ds->ds_prev, &os_prev) != 0) return (B_TRUE); return (bcmp(&os->os_phys->os_meta_dnode, &os_prev->os_phys->os_meta_dnode, sizeof (os->os_phys->os_meta_dnode)) != 0); } return (B_FALSE); } typedef struct dsl_dataset_rename_snapshot_arg { const char *ddrsa_fsname; const char *ddrsa_oldsnapname; const char *ddrsa_newsnapname; boolean_t ddrsa_recursive; dmu_tx_t *ddrsa_tx; } dsl_dataset_rename_snapshot_arg_t; /* ARGSUSED */ static int dsl_dataset_rename_snapshot_check_impl(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) { dsl_dataset_rename_snapshot_arg_t *ddrsa = arg; int error; uint64_t val; error = dsl_dataset_snap_lookup(hds, ddrsa->ddrsa_oldsnapname, &val); if (error != 0) { /* ignore nonexistent snapshots */ return (error == ENOENT ? 0 : error); } /* new name should not exist */ error = dsl_dataset_snap_lookup(hds, ddrsa->ddrsa_newsnapname, &val); if (error == 0) error = SET_ERROR(EEXIST); else if (error == ENOENT) error = 0; /* dataset name + 1 for the "@" + the new snapshot name must fit */ if (dsl_dir_namelen(hds->ds_dir) + 1 + strlen(ddrsa->ddrsa_newsnapname) >= MAXNAMELEN) error = SET_ERROR(ENAMETOOLONG); return (error); } static int dsl_dataset_rename_snapshot_check(void *arg, dmu_tx_t *tx) { dsl_dataset_rename_snapshot_arg_t *ddrsa = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *hds; int error; error = dsl_dataset_hold(dp, ddrsa->ddrsa_fsname, FTAG, &hds); if (error != 0) return (error); if (ddrsa->ddrsa_recursive) { error = dmu_objset_find_dp(dp, hds->ds_dir->dd_object, dsl_dataset_rename_snapshot_check_impl, ddrsa, DS_FIND_CHILDREN); } else { error = dsl_dataset_rename_snapshot_check_impl(dp, hds, ddrsa); } dsl_dataset_rele(hds, FTAG); return (error); } static int dsl_dataset_rename_snapshot_sync_impl(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) { dsl_dataset_rename_snapshot_arg_t *ddrsa = arg; dsl_dataset_t *ds; uint64_t val; dmu_tx_t *tx = ddrsa->ddrsa_tx; int error; error = dsl_dataset_snap_lookup(hds, ddrsa->ddrsa_oldsnapname, &val); ASSERT(error == 0 || error == ENOENT); if (error == ENOENT) { /* ignore nonexistent snapshots */ return (0); } VERIFY0(dsl_dataset_hold_obj(dp, val, FTAG, &ds)); /* log before we change the name */ spa_history_log_internal_ds(ds, "rename", tx, "-> @%s", ddrsa->ddrsa_newsnapname); VERIFY0(dsl_dataset_snap_remove(hds, ddrsa->ddrsa_oldsnapname, tx)); mutex_enter(&ds->ds_lock); (void) strcpy(ds->ds_snapname, ddrsa->ddrsa_newsnapname); mutex_exit(&ds->ds_lock); VERIFY0(zap_add(dp->dp_meta_objset, hds->ds_phys->ds_snapnames_zapobj, ds->ds_snapname, 8, 1, &ds->ds_object, tx)); dsl_dataset_rele(ds, FTAG); return (0); } static void dsl_dataset_rename_snapshot_sync(void *arg, dmu_tx_t *tx) { dsl_dataset_rename_snapshot_arg_t *ddrsa = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *hds; VERIFY0(dsl_dataset_hold(dp, ddrsa->ddrsa_fsname, FTAG, &hds)); ddrsa->ddrsa_tx = tx; if (ddrsa->ddrsa_recursive) { VERIFY0(dmu_objset_find_dp(dp, hds->ds_dir->dd_object, dsl_dataset_rename_snapshot_sync_impl, ddrsa, DS_FIND_CHILDREN)); } else { VERIFY0(dsl_dataset_rename_snapshot_sync_impl(dp, hds, ddrsa)); } dsl_dataset_rele(hds, FTAG); } int dsl_dataset_rename_snapshot(const char *fsname, const char *oldsnapname, const char *newsnapname, boolean_t recursive) { dsl_dataset_rename_snapshot_arg_t ddrsa; ddrsa.ddrsa_fsname = fsname; ddrsa.ddrsa_oldsnapname = oldsnapname; ddrsa.ddrsa_newsnapname = newsnapname; ddrsa.ddrsa_recursive = recursive; return (dsl_sync_task(fsname, dsl_dataset_rename_snapshot_check, dsl_dataset_rename_snapshot_sync, &ddrsa, 1)); } static int dsl_dataset_rollback_check(void *arg, dmu_tx_t *tx) { const char *fsname = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds; int64_t unused_refres_delta; int error; error = dsl_dataset_hold(dp, fsname, FTAG, &ds); if (error != 0) return (error); /* must not be a snapshot */ if (dsl_dataset_is_snapshot(ds)) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } /* must have a most recent snapshot */ if (ds->ds_phys->ds_prev_snap_txg < TXG_INITIAL) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } if (dsl_dataset_long_held(ds)) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EBUSY)); } /* * Check if the snap we are rolling back to uses more than * the refquota. */ if (ds->ds_quota != 0 && ds->ds_prev->ds_phys->ds_referenced_bytes > ds->ds_quota) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EDQUOT)); } /* * When we do the clone swap, we will temporarily use more space * due to the refreservation (the head will no longer have any * unique space, so the entire amount of the refreservation will need * to be free). We will immediately destroy the clone, freeing * this space, but the freeing happens over many txg's. */ unused_refres_delta = (int64_t)MIN(ds->ds_reserved, ds->ds_phys->ds_unique_bytes); if (unused_refres_delta > 0 && unused_refres_delta > dsl_dir_space_available(ds->ds_dir, NULL, 0, TRUE)) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(ENOSPC)); } dsl_dataset_rele(ds, FTAG); return (0); } static void dsl_dataset_rollback_sync(void *arg, dmu_tx_t *tx) { const char *fsname = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds, *clone; uint64_t cloneobj; VERIFY0(dsl_dataset_hold(dp, fsname, FTAG, &ds)); cloneobj = dsl_dataset_create_sync(ds->ds_dir, "%rollback", ds->ds_prev, DS_CREATE_FLAG_NODIRTY, kcred, tx); VERIFY0(dsl_dataset_hold_obj(dp, cloneobj, FTAG, &clone)); dsl_dataset_clone_swap_sync_impl(clone, ds, tx); dsl_dataset_zero_zil(ds, tx); dsl_destroy_head_sync_impl(clone, tx); dsl_dataset_rele(clone, FTAG); dsl_dataset_rele(ds, FTAG); } int dsl_dataset_rollback(const char *fsname) { return (dsl_sync_task(fsname, dsl_dataset_rollback_check, dsl_dataset_rollback_sync, (void *)fsname, 1)); } struct promotenode { list_node_t link; dsl_dataset_t *ds; }; typedef struct dsl_dataset_promote_arg { const char *ddpa_clonename; dsl_dataset_t *ddpa_clone; list_t shared_snaps, origin_snaps, clone_snaps; dsl_dataset_t *origin_origin; /* origin of the origin */ uint64_t used, comp, uncomp, unique, cloneusedsnap, originusedsnap; char *err_ds; } dsl_dataset_promote_arg_t; static int snaplist_space(list_t *l, uint64_t mintxg, uint64_t *spacep); static int promote_hold(dsl_dataset_promote_arg_t *ddpa, dsl_pool_t *dp, void *tag); static void promote_rele(dsl_dataset_promote_arg_t *ddpa, void *tag); static int dsl_dataset_promote_check(void *arg, dmu_tx_t *tx) { dsl_dataset_promote_arg_t *ddpa = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *hds; struct promotenode *snap; dsl_dataset_t *origin_ds; int err; uint64_t unused; err = promote_hold(ddpa, dp, FTAG); if (err != 0) return (err); hds = ddpa->ddpa_clone; if (hds->ds_phys->ds_flags & DS_FLAG_NOPROMOTE) { promote_rele(ddpa, FTAG); return (SET_ERROR(EXDEV)); } /* * Compute and check the amount of space to transfer. Since this is * so expensive, don't do the preliminary check. */ if (!dmu_tx_is_syncing(tx)) { promote_rele(ddpa, FTAG); return (0); } snap = list_head(&ddpa->shared_snaps); origin_ds = snap->ds; /* compute origin's new unique space */ snap = list_tail(&ddpa->clone_snaps); ASSERT3U(snap->ds->ds_phys->ds_prev_snap_obj, ==, origin_ds->ds_object); dsl_deadlist_space_range(&snap->ds->ds_deadlist, origin_ds->ds_phys->ds_prev_snap_txg, UINT64_MAX, &ddpa->unique, &unused, &unused); /* * Walk the snapshots that we are moving * * Compute space to transfer. Consider the incremental changes * to used by each snapshot: * (my used) = (prev's used) + (blocks born) - (blocks killed) * So each snapshot gave birth to: * (blocks born) = (my used) - (prev's used) + (blocks killed) * So a sequence would look like: * (uN - u(N-1) + kN) + ... + (u1 - u0 + k1) + (u0 - 0 + k0) * Which simplifies to: * uN + kN + kN-1 + ... + k1 + k0 * Note however, if we stop before we reach the ORIGIN we get: * uN + kN + kN-1 + ... + kM - uM-1 */ ddpa->used = origin_ds->ds_phys->ds_referenced_bytes; ddpa->comp = origin_ds->ds_phys->ds_compressed_bytes; ddpa->uncomp = origin_ds->ds_phys->ds_uncompressed_bytes; for (snap = list_head(&ddpa->shared_snaps); snap; snap = list_next(&ddpa->shared_snaps, snap)) { uint64_t val, dlused, dlcomp, dluncomp; dsl_dataset_t *ds = snap->ds; /* * If there are long holds, we won't be able to evict * the objset. */ if (dsl_dataset_long_held(ds)) { err = SET_ERROR(EBUSY); goto out; } /* Check that the snapshot name does not conflict */ VERIFY0(dsl_dataset_get_snapname(ds)); err = dsl_dataset_snap_lookup(hds, ds->ds_snapname, &val); if (err == 0) { (void) strcpy(ddpa->err_ds, snap->ds->ds_snapname); err = SET_ERROR(EEXIST); goto out; } if (err != ENOENT) goto out; /* The very first snapshot does not have a deadlist */ if (ds->ds_phys->ds_prev_snap_obj == 0) continue; dsl_deadlist_space(&ds->ds_deadlist, &dlused, &dlcomp, &dluncomp); ddpa->used += dlused; ddpa->comp += dlcomp; ddpa->uncomp += dluncomp; } /* * If we are a clone of a clone then we never reached ORIGIN, * so we need to subtract out the clone origin's used space. */ if (ddpa->origin_origin) { ddpa->used -= ddpa->origin_origin->ds_phys->ds_referenced_bytes; ddpa->comp -= ddpa->origin_origin->ds_phys->ds_compressed_bytes; ddpa->uncomp -= ddpa->origin_origin->ds_phys->ds_uncompressed_bytes; } /* Check that there is enough space here */ err = dsl_dir_transfer_possible(origin_ds->ds_dir, hds->ds_dir, ddpa->used); if (err != 0) goto out; /* * Compute the amounts of space that will be used by snapshots * after the promotion (for both origin and clone). For each, * it is the amount of space that will be on all of their * deadlists (that was not born before their new origin). */ if (hds->ds_dir->dd_phys->dd_flags & DD_FLAG_USED_BREAKDOWN) { uint64_t space; /* * Note, typically this will not be a clone of a clone, * so dd_origin_txg will be < TXG_INITIAL, so * these snaplist_space() -> dsl_deadlist_space_range() * calls will be fast because they do not have to * iterate over all bps. */ snap = list_head(&ddpa->origin_snaps); err = snaplist_space(&ddpa->shared_snaps, snap->ds->ds_dir->dd_origin_txg, &ddpa->cloneusedsnap); if (err != 0) goto out; err = snaplist_space(&ddpa->clone_snaps, snap->ds->ds_dir->dd_origin_txg, &space); if (err != 0) goto out; ddpa->cloneusedsnap += space; } if (origin_ds->ds_dir->dd_phys->dd_flags & DD_FLAG_USED_BREAKDOWN) { err = snaplist_space(&ddpa->origin_snaps, origin_ds->ds_phys->ds_creation_txg, &ddpa->originusedsnap); if (err != 0) goto out; } out: promote_rele(ddpa, FTAG); return (err); } static void dsl_dataset_promote_sync(void *arg, dmu_tx_t *tx) { dsl_dataset_promote_arg_t *ddpa = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *hds; struct promotenode *snap; dsl_dataset_t *origin_ds; dsl_dataset_t *origin_head; dsl_dir_t *dd; dsl_dir_t *odd = NULL; uint64_t oldnext_obj; int64_t delta; VERIFY0(promote_hold(ddpa, dp, FTAG)); hds = ddpa->ddpa_clone; ASSERT0(hds->ds_phys->ds_flags & DS_FLAG_NOPROMOTE); snap = list_head(&ddpa->shared_snaps); origin_ds = snap->ds; dd = hds->ds_dir; snap = list_head(&ddpa->origin_snaps); origin_head = snap->ds; /* * We need to explicitly open odd, since origin_ds's dd will be * changing. */ VERIFY0(dsl_dir_hold_obj(dp, origin_ds->ds_dir->dd_object, NULL, FTAG, &odd)); /* change origin's next snap */ dmu_buf_will_dirty(origin_ds->ds_dbuf, tx); oldnext_obj = origin_ds->ds_phys->ds_next_snap_obj; snap = list_tail(&ddpa->clone_snaps); ASSERT3U(snap->ds->ds_phys->ds_prev_snap_obj, ==, origin_ds->ds_object); origin_ds->ds_phys->ds_next_snap_obj = snap->ds->ds_object; /* change the origin's next clone */ if (origin_ds->ds_phys->ds_next_clones_obj) { dsl_dataset_remove_from_next_clones(origin_ds, snap->ds->ds_object, tx); VERIFY0(zap_add_int(dp->dp_meta_objset, origin_ds->ds_phys->ds_next_clones_obj, oldnext_obj, tx)); } /* change origin */ dmu_buf_will_dirty(dd->dd_dbuf, tx); ASSERT3U(dd->dd_phys->dd_origin_obj, ==, origin_ds->ds_object); dd->dd_phys->dd_origin_obj = odd->dd_phys->dd_origin_obj; dd->dd_origin_txg = origin_head->ds_dir->dd_origin_txg; dmu_buf_will_dirty(odd->dd_dbuf, tx); odd->dd_phys->dd_origin_obj = origin_ds->ds_object; origin_head->ds_dir->dd_origin_txg = origin_ds->ds_phys->ds_creation_txg; /* change dd_clone entries */ if (spa_version(dp->dp_spa) >= SPA_VERSION_DIR_CLONES) { VERIFY0(zap_remove_int(dp->dp_meta_objset, odd->dd_phys->dd_clones, hds->ds_object, tx)); VERIFY0(zap_add_int(dp->dp_meta_objset, ddpa->origin_origin->ds_dir->dd_phys->dd_clones, hds->ds_object, tx)); VERIFY0(zap_remove_int(dp->dp_meta_objset, ddpa->origin_origin->ds_dir->dd_phys->dd_clones, origin_head->ds_object, tx)); if (dd->dd_phys->dd_clones == 0) { dd->dd_phys->dd_clones = zap_create(dp->dp_meta_objset, DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx); } VERIFY0(zap_add_int(dp->dp_meta_objset, dd->dd_phys->dd_clones, origin_head->ds_object, tx)); } /* move snapshots to this dir */ for (snap = list_head(&ddpa->shared_snaps); snap; snap = list_next(&ddpa->shared_snaps, snap)) { dsl_dataset_t *ds = snap->ds; /* * Property callbacks are registered to a particular * dsl_dir. Since ours is changing, evict the objset * so that they will be unregistered from the old dsl_dir. */ if (ds->ds_objset) { dmu_objset_evict(ds->ds_objset); ds->ds_objset = NULL; } /* move snap name entry */ VERIFY0(dsl_dataset_get_snapname(ds)); VERIFY0(dsl_dataset_snap_remove(origin_head, ds->ds_snapname, tx)); VERIFY0(zap_add(dp->dp_meta_objset, hds->ds_phys->ds_snapnames_zapobj, ds->ds_snapname, 8, 1, &ds->ds_object, tx)); /* change containing dsl_dir */ dmu_buf_will_dirty(ds->ds_dbuf, tx); ASSERT3U(ds->ds_phys->ds_dir_obj, ==, odd->dd_object); ds->ds_phys->ds_dir_obj = dd->dd_object; ASSERT3P(ds->ds_dir, ==, odd); dsl_dir_rele(ds->ds_dir, ds); VERIFY0(dsl_dir_hold_obj(dp, dd->dd_object, NULL, ds, &ds->ds_dir)); /* move any clone references */ if (ds->ds_phys->ds_next_clones_obj && spa_version(dp->dp_spa) >= SPA_VERSION_DIR_CLONES) { zap_cursor_t zc; zap_attribute_t za; for (zap_cursor_init(&zc, dp->dp_meta_objset, ds->ds_phys->ds_next_clones_obj); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { dsl_dataset_t *cnds; uint64_t o; if (za.za_first_integer == oldnext_obj) { /* * We've already moved the * origin's reference. */ continue; } VERIFY0(dsl_dataset_hold_obj(dp, za.za_first_integer, FTAG, &cnds)); o = cnds->ds_dir->dd_phys->dd_head_dataset_obj; VERIFY0(zap_remove_int(dp->dp_meta_objset, odd->dd_phys->dd_clones, o, tx)); VERIFY0(zap_add_int(dp->dp_meta_objset, dd->dd_phys->dd_clones, o, tx)); dsl_dataset_rele(cnds, FTAG); } zap_cursor_fini(&zc); } ASSERT(!dsl_prop_hascb(ds)); } /* * Change space accounting. * Note, pa->*usedsnap and dd_used_breakdown[SNAP] will either * both be valid, or both be 0 (resulting in delta == 0). This * is true for each of {clone,origin} independently. */ delta = ddpa->cloneusedsnap - dd->dd_phys->dd_used_breakdown[DD_USED_SNAP]; ASSERT3S(delta, >=, 0); ASSERT3U(ddpa->used, >=, delta); dsl_dir_diduse_space(dd, DD_USED_SNAP, delta, 0, 0, tx); dsl_dir_diduse_space(dd, DD_USED_HEAD, ddpa->used - delta, ddpa->comp, ddpa->uncomp, tx); delta = ddpa->originusedsnap - odd->dd_phys->dd_used_breakdown[DD_USED_SNAP]; ASSERT3S(delta, <=, 0); ASSERT3U(ddpa->used, >=, -delta); dsl_dir_diduse_space(odd, DD_USED_SNAP, delta, 0, 0, tx); dsl_dir_diduse_space(odd, DD_USED_HEAD, -ddpa->used - delta, -ddpa->comp, -ddpa->uncomp, tx); origin_ds->ds_phys->ds_unique_bytes = ddpa->unique; /* log history record */ spa_history_log_internal_ds(hds, "promote", tx, ""); dsl_dir_rele(odd, FTAG); promote_rele(ddpa, FTAG); } /* * Make a list of dsl_dataset_t's for the snapshots between first_obj * (exclusive) and last_obj (inclusive). The list will be in reverse * order (last_obj will be the list_head()). If first_obj == 0, do all * snapshots back to this dataset's origin. */ static int snaplist_make(dsl_pool_t *dp, uint64_t first_obj, uint64_t last_obj, list_t *l, void *tag) { uint64_t obj = last_obj; list_create(l, sizeof (struct promotenode), offsetof(struct promotenode, link)); while (obj != first_obj) { dsl_dataset_t *ds; struct promotenode *snap; int err; err = dsl_dataset_hold_obj(dp, obj, tag, &ds); ASSERT(err != ENOENT); if (err != 0) return (err); if (first_obj == 0) first_obj = ds->ds_dir->dd_phys->dd_origin_obj; snap = kmem_alloc(sizeof (*snap), KM_SLEEP); snap->ds = ds; list_insert_tail(l, snap); obj = ds->ds_phys->ds_prev_snap_obj; } return (0); } static int snaplist_space(list_t *l, uint64_t mintxg, uint64_t *spacep) { struct promotenode *snap; *spacep = 0; for (snap = list_head(l); snap; snap = list_next(l, snap)) { uint64_t used, comp, uncomp; dsl_deadlist_space_range(&snap->ds->ds_deadlist, mintxg, UINT64_MAX, &used, &comp, &uncomp); *spacep += used; } return (0); } static void snaplist_destroy(list_t *l, void *tag) { struct promotenode *snap; if (l == NULL || !list_link_active(&l->list_head)) return; while ((snap = list_tail(l)) != NULL) { list_remove(l, snap); dsl_dataset_rele(snap->ds, tag); kmem_free(snap, sizeof (*snap)); } list_destroy(l); } static int promote_hold(dsl_dataset_promote_arg_t *ddpa, dsl_pool_t *dp, void *tag) { int error; dsl_dir_t *dd; struct promotenode *snap; error = dsl_dataset_hold(dp, ddpa->ddpa_clonename, tag, &ddpa->ddpa_clone); if (error != 0) return (error); dd = ddpa->ddpa_clone->ds_dir; if (dsl_dataset_is_snapshot(ddpa->ddpa_clone) || !dsl_dir_is_clone(dd)) { dsl_dataset_rele(ddpa->ddpa_clone, tag); return (SET_ERROR(EINVAL)); } error = snaplist_make(dp, 0, dd->dd_phys->dd_origin_obj, &ddpa->shared_snaps, tag); if (error != 0) goto out; error = snaplist_make(dp, 0, ddpa->ddpa_clone->ds_object, &ddpa->clone_snaps, tag); if (error != 0) goto out; snap = list_head(&ddpa->shared_snaps); ASSERT3U(snap->ds->ds_object, ==, dd->dd_phys->dd_origin_obj); error = snaplist_make(dp, dd->dd_phys->dd_origin_obj, snap->ds->ds_dir->dd_phys->dd_head_dataset_obj, &ddpa->origin_snaps, tag); if (error != 0) goto out; if (snap->ds->ds_dir->dd_phys->dd_origin_obj != 0) { error = dsl_dataset_hold_obj(dp, snap->ds->ds_dir->dd_phys->dd_origin_obj, tag, &ddpa->origin_origin); if (error != 0) goto out; } out: if (error != 0) promote_rele(ddpa, tag); return (error); } static void promote_rele(dsl_dataset_promote_arg_t *ddpa, void *tag) { snaplist_destroy(&ddpa->shared_snaps, tag); snaplist_destroy(&ddpa->clone_snaps, tag); snaplist_destroy(&ddpa->origin_snaps, tag); if (ddpa->origin_origin != NULL) dsl_dataset_rele(ddpa->origin_origin, tag); dsl_dataset_rele(ddpa->ddpa_clone, tag); } /* * Promote a clone. * * If it fails due to a conflicting snapshot name, "conflsnap" will be filled * in with the name. (It must be at least MAXNAMELEN bytes long.) */ int dsl_dataset_promote(const char *name, char *conflsnap) { dsl_dataset_promote_arg_t ddpa = { 0 }; uint64_t numsnaps; int error; objset_t *os; /* * We will modify space proportional to the number of * snapshots. Compute numsnaps. */ error = dmu_objset_hold(name, FTAG, &os); if (error != 0) return (error); error = zap_count(dmu_objset_pool(os)->dp_meta_objset, dmu_objset_ds(os)->ds_phys->ds_snapnames_zapobj, &numsnaps); dmu_objset_rele(os, FTAG); if (error != 0) return (error); ddpa.ddpa_clonename = name; ddpa.err_ds = conflsnap; return (dsl_sync_task(name, dsl_dataset_promote_check, dsl_dataset_promote_sync, &ddpa, 2 + numsnaps)); } int dsl_dataset_clone_swap_check_impl(dsl_dataset_t *clone, dsl_dataset_t *origin_head, boolean_t force) { int64_t unused_refres_delta; /* they should both be heads */ if (dsl_dataset_is_snapshot(clone) || dsl_dataset_is_snapshot(origin_head)) return (SET_ERROR(EINVAL)); /* the branch point should be just before them */ if (clone->ds_prev != origin_head->ds_prev) return (SET_ERROR(EINVAL)); /* clone should be the clone (unless they are unrelated) */ if (clone->ds_prev != NULL && clone->ds_prev != clone->ds_dir->dd_pool->dp_origin_snap && origin_head->ds_object != clone->ds_prev->ds_phys->ds_next_snap_obj) return (SET_ERROR(EINVAL)); /* the clone should be a child of the origin */ if (clone->ds_dir->dd_parent != origin_head->ds_dir) return (SET_ERROR(EINVAL)); /* origin_head shouldn't be modified unless 'force' */ if (!force && dsl_dataset_modified_since_lastsnap(origin_head)) return (SET_ERROR(ETXTBSY)); /* origin_head should have no long holds (e.g. is not mounted) */ if (dsl_dataset_long_held(origin_head)) return (SET_ERROR(EBUSY)); /* check amount of any unconsumed refreservation */ unused_refres_delta = (int64_t)MIN(origin_head->ds_reserved, origin_head->ds_phys->ds_unique_bytes) - (int64_t)MIN(origin_head->ds_reserved, clone->ds_phys->ds_unique_bytes); if (unused_refres_delta > 0 && unused_refres_delta > dsl_dir_space_available(origin_head->ds_dir, NULL, 0, TRUE)) return (SET_ERROR(ENOSPC)); /* clone can't be over the head's refquota */ if (origin_head->ds_quota != 0 && clone->ds_phys->ds_referenced_bytes > origin_head->ds_quota) return (SET_ERROR(EDQUOT)); return (0); } void dsl_dataset_clone_swap_sync_impl(dsl_dataset_t *clone, dsl_dataset_t *origin_head, dmu_tx_t *tx) { dsl_pool_t *dp = dmu_tx_pool(tx); int64_t unused_refres_delta; ASSERT(clone->ds_reserved == 0); ASSERT(origin_head->ds_quota == 0 || clone->ds_phys->ds_unique_bytes <= origin_head->ds_quota); dmu_buf_will_dirty(clone->ds_dbuf, tx); dmu_buf_will_dirty(origin_head->ds_dbuf, tx); if (clone->ds_objset != NULL) { dmu_objset_evict(clone->ds_objset); clone->ds_objset = NULL; } if (origin_head->ds_objset != NULL) { dmu_objset_evict(origin_head->ds_objset); origin_head->ds_objset = NULL; } unused_refres_delta = (int64_t)MIN(origin_head->ds_reserved, origin_head->ds_phys->ds_unique_bytes) - (int64_t)MIN(origin_head->ds_reserved, clone->ds_phys->ds_unique_bytes); /* * Reset origin's unique bytes, if it exists. */ if (clone->ds_prev) { dsl_dataset_t *origin = clone->ds_prev; uint64_t comp, uncomp; dmu_buf_will_dirty(origin->ds_dbuf, tx); dsl_deadlist_space_range(&clone->ds_deadlist, origin->ds_phys->ds_prev_snap_txg, UINT64_MAX, &origin->ds_phys->ds_unique_bytes, &comp, &uncomp); } /* swap blkptrs */ { blkptr_t tmp; tmp = origin_head->ds_phys->ds_bp; origin_head->ds_phys->ds_bp = clone->ds_phys->ds_bp; clone->ds_phys->ds_bp = tmp; } /* set dd_*_bytes */ { int64_t dused, dcomp, duncomp; uint64_t cdl_used, cdl_comp, cdl_uncomp; uint64_t odl_used, odl_comp, odl_uncomp; ASSERT3U(clone->ds_dir->dd_phys-> dd_used_breakdown[DD_USED_SNAP], ==, 0); dsl_deadlist_space(&clone->ds_deadlist, &cdl_used, &cdl_comp, &cdl_uncomp); dsl_deadlist_space(&origin_head->ds_deadlist, &odl_used, &odl_comp, &odl_uncomp); dused = clone->ds_phys->ds_referenced_bytes + cdl_used - (origin_head->ds_phys->ds_referenced_bytes + odl_used); dcomp = clone->ds_phys->ds_compressed_bytes + cdl_comp - (origin_head->ds_phys->ds_compressed_bytes + odl_comp); duncomp = clone->ds_phys->ds_uncompressed_bytes + cdl_uncomp - (origin_head->ds_phys->ds_uncompressed_bytes + odl_uncomp); dsl_dir_diduse_space(origin_head->ds_dir, DD_USED_HEAD, dused, dcomp, duncomp, tx); dsl_dir_diduse_space(clone->ds_dir, DD_USED_HEAD, -dused, -dcomp, -duncomp, tx); /* * The difference in the space used by snapshots is the * difference in snapshot space due to the head's * deadlist (since that's the only thing that's * changing that affects the snapused). */ dsl_deadlist_space_range(&clone->ds_deadlist, origin_head->ds_dir->dd_origin_txg, UINT64_MAX, &cdl_used, &cdl_comp, &cdl_uncomp); dsl_deadlist_space_range(&origin_head->ds_deadlist, origin_head->ds_dir->dd_origin_txg, UINT64_MAX, &odl_used, &odl_comp, &odl_uncomp); dsl_dir_transfer_space(origin_head->ds_dir, cdl_used - odl_used, DD_USED_HEAD, DD_USED_SNAP, tx); } /* swap ds_*_bytes */ SWITCH64(origin_head->ds_phys->ds_referenced_bytes, clone->ds_phys->ds_referenced_bytes); SWITCH64(origin_head->ds_phys->ds_compressed_bytes, clone->ds_phys->ds_compressed_bytes); SWITCH64(origin_head->ds_phys->ds_uncompressed_bytes, clone->ds_phys->ds_uncompressed_bytes); SWITCH64(origin_head->ds_phys->ds_unique_bytes, clone->ds_phys->ds_unique_bytes); /* apply any parent delta for change in unconsumed refreservation */ dsl_dir_diduse_space(origin_head->ds_dir, DD_USED_REFRSRV, unused_refres_delta, 0, 0, tx); /* * Swap deadlists. */ dsl_deadlist_close(&clone->ds_deadlist); dsl_deadlist_close(&origin_head->ds_deadlist); SWITCH64(origin_head->ds_phys->ds_deadlist_obj, clone->ds_phys->ds_deadlist_obj); dsl_deadlist_open(&clone->ds_deadlist, dp->dp_meta_objset, clone->ds_phys->ds_deadlist_obj); dsl_deadlist_open(&origin_head->ds_deadlist, dp->dp_meta_objset, origin_head->ds_phys->ds_deadlist_obj); dsl_scan_ds_clone_swapped(origin_head, clone, tx); spa_history_log_internal_ds(clone, "clone swap", tx, "parent=%s", origin_head->ds_dir->dd_myname); } /* * Given a pool name and a dataset object number in that pool, * return the name of that dataset. */ int dsl_dsobj_to_dsname(char *pname, uint64_t obj, char *buf) { dsl_pool_t *dp; dsl_dataset_t *ds; int error; error = dsl_pool_hold(pname, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold_obj(dp, obj, FTAG, &ds); if (error == 0) { dsl_dataset_name(ds, buf); dsl_dataset_rele(ds, FTAG); } dsl_pool_rele(dp, FTAG); return (error); } int dsl_dataset_check_quota(dsl_dataset_t *ds, boolean_t check_quota, uint64_t asize, uint64_t inflight, uint64_t *used, uint64_t *ref_rsrv) { int error = 0; ASSERT3S(asize, >, 0); /* * *ref_rsrv is the portion of asize that will come from any * unconsumed refreservation space. */ *ref_rsrv = 0; mutex_enter(&ds->ds_lock); /* * Make a space adjustment for reserved bytes. */ if (ds->ds_reserved > ds->ds_phys->ds_unique_bytes) { ASSERT3U(*used, >=, ds->ds_reserved - ds->ds_phys->ds_unique_bytes); *used -= (ds->ds_reserved - ds->ds_phys->ds_unique_bytes); *ref_rsrv = asize - MIN(asize, parent_delta(ds, asize + inflight)); } if (!check_quota || ds->ds_quota == 0) { mutex_exit(&ds->ds_lock); return (0); } /* * If they are requesting more space, and our current estimate * is over quota, they get to try again unless the actual * on-disk is over quota and there are no pending changes (which * may free up space for us). */ if (ds->ds_phys->ds_referenced_bytes + inflight >= ds->ds_quota) { if (inflight > 0 || ds->ds_phys->ds_referenced_bytes < ds->ds_quota) error = SET_ERROR(ERESTART); else error = SET_ERROR(EDQUOT); } mutex_exit(&ds->ds_lock); return (error); } typedef struct dsl_dataset_set_qr_arg { const char *ddsqra_name; zprop_source_t ddsqra_source; uint64_t ddsqra_value; } dsl_dataset_set_qr_arg_t; /* ARGSUSED */ static int dsl_dataset_set_refquota_check(void *arg, dmu_tx_t *tx) { dsl_dataset_set_qr_arg_t *ddsqra = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds; int error; uint64_t newval; if (spa_version(dp->dp_spa) < SPA_VERSION_REFQUOTA) return (SET_ERROR(ENOTSUP)); error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); if (error != 0) return (error); if (dsl_dataset_is_snapshot(ds)) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } error = dsl_prop_predict(ds->ds_dir, zfs_prop_to_name(ZFS_PROP_REFQUOTA), ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } if (newval == 0) { dsl_dataset_rele(ds, FTAG); return (0); } if (newval < ds->ds_phys->ds_referenced_bytes || newval < ds->ds_reserved) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(ENOSPC)); } dsl_dataset_rele(ds, FTAG); return (0); } static void dsl_dataset_set_refquota_sync(void *arg, dmu_tx_t *tx) { dsl_dataset_set_qr_arg_t *ddsqra = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds; uint64_t newval; VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_REFQUOTA), ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, &ddsqra->ddsqra_value, tx); VERIFY0(dsl_prop_get_int_ds(ds, zfs_prop_to_name(ZFS_PROP_REFQUOTA), &newval)); if (ds->ds_quota != newval) { dmu_buf_will_dirty(ds->ds_dbuf, tx); ds->ds_quota = newval; } dsl_dataset_rele(ds, FTAG); } int dsl_dataset_set_refquota(const char *dsname, zprop_source_t source, uint64_t refquota) { dsl_dataset_set_qr_arg_t ddsqra; ddsqra.ddsqra_name = dsname; ddsqra.ddsqra_source = source; ddsqra.ddsqra_value = refquota; return (dsl_sync_task(dsname, dsl_dataset_set_refquota_check, dsl_dataset_set_refquota_sync, &ddsqra, 0)); } static int dsl_dataset_set_refreservation_check(void *arg, dmu_tx_t *tx) { dsl_dataset_set_qr_arg_t *ddsqra = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds; int error; uint64_t newval, unique; if (spa_version(dp->dp_spa) < SPA_VERSION_REFRESERVATION) return (SET_ERROR(ENOTSUP)); error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); if (error != 0) return (error); if (dsl_dataset_is_snapshot(ds)) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } error = dsl_prop_predict(ds->ds_dir, zfs_prop_to_name(ZFS_PROP_REFRESERVATION), ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } /* * If we are doing the preliminary check in open context, the * space estimates may be inaccurate. */ if (!dmu_tx_is_syncing(tx)) { dsl_dataset_rele(ds, FTAG); return (0); } mutex_enter(&ds->ds_lock); if (!DS_UNIQUE_IS_ACCURATE(ds)) dsl_dataset_recalc_head_uniq(ds); unique = ds->ds_phys->ds_unique_bytes; mutex_exit(&ds->ds_lock); if (MAX(unique, newval) > MAX(unique, ds->ds_reserved)) { uint64_t delta = MAX(unique, newval) - MAX(unique, ds->ds_reserved); if (delta > dsl_dir_space_available(ds->ds_dir, NULL, 0, B_TRUE) || (ds->ds_quota > 0 && newval > ds->ds_quota)) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(ENOSPC)); } } dsl_dataset_rele(ds, FTAG); return (0); } void dsl_dataset_set_refreservation_sync_impl(dsl_dataset_t *ds, zprop_source_t source, uint64_t value, dmu_tx_t *tx) { uint64_t newval; uint64_t unique; int64_t delta; dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_REFRESERVATION), source, sizeof (value), 1, &value, tx); VERIFY0(dsl_prop_get_int_ds(ds, zfs_prop_to_name(ZFS_PROP_REFRESERVATION), &newval)); dmu_buf_will_dirty(ds->ds_dbuf, tx); mutex_enter(&ds->ds_dir->dd_lock); mutex_enter(&ds->ds_lock); ASSERT(DS_UNIQUE_IS_ACCURATE(ds)); unique = ds->ds_phys->ds_unique_bytes; delta = MAX(0, (int64_t)(newval - unique)) - MAX(0, (int64_t)(ds->ds_reserved - unique)); ds->ds_reserved = newval; mutex_exit(&ds->ds_lock); dsl_dir_diduse_space(ds->ds_dir, DD_USED_REFRSRV, delta, 0, 0, tx); mutex_exit(&ds->ds_dir->dd_lock); } static void dsl_dataset_set_refreservation_sync(void *arg, dmu_tx_t *tx) { dsl_dataset_set_qr_arg_t *ddsqra = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds; VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); dsl_dataset_set_refreservation_sync_impl(ds, ddsqra->ddsqra_source, ddsqra->ddsqra_value, tx); dsl_dataset_rele(ds, FTAG); } int dsl_dataset_set_refreservation(const char *dsname, zprop_source_t source, uint64_t refreservation) { dsl_dataset_set_qr_arg_t ddsqra; ddsqra.ddsqra_name = dsname; ddsqra.ddsqra_source = source; ddsqra.ddsqra_value = refreservation; return (dsl_sync_task(dsname, dsl_dataset_set_refreservation_check, dsl_dataset_set_refreservation_sync, &ddsqra, 0)); } /* * Return (in *usedp) the amount of space written in new that is not * present in oldsnap. New may be a snapshot or the head. Old must be * a snapshot before new, in new's filesystem (or its origin). If not then * fail and return EINVAL. * * The written space is calculated by considering two components: First, we * ignore any freed space, and calculate the written as new's used space * minus old's used space. Next, we add in the amount of space that was freed * between the two snapshots, thus reducing new's used space relative to old's. * Specifically, this is the space that was born before old->ds_creation_txg, * and freed before new (ie. on new's deadlist or a previous deadlist). * * space freed [---------------------] * snapshots ---O-------O--------O-------O------ * oldsnap new */ int dsl_dataset_space_written(dsl_dataset_t *oldsnap, dsl_dataset_t *new, uint64_t *usedp, uint64_t *compp, uint64_t *uncompp) { int err = 0; uint64_t snapobj; dsl_pool_t *dp = new->ds_dir->dd_pool; ASSERT(dsl_pool_config_held(dp)); *usedp = 0; *usedp += new->ds_phys->ds_referenced_bytes; *usedp -= oldsnap->ds_phys->ds_referenced_bytes; *compp = 0; *compp += new->ds_phys->ds_compressed_bytes; *compp -= oldsnap->ds_phys->ds_compressed_bytes; *uncompp = 0; *uncompp += new->ds_phys->ds_uncompressed_bytes; *uncompp -= oldsnap->ds_phys->ds_uncompressed_bytes; snapobj = new->ds_object; while (snapobj != oldsnap->ds_object) { dsl_dataset_t *snap; uint64_t used, comp, uncomp; if (snapobj == new->ds_object) { snap = new; } else { err = dsl_dataset_hold_obj(dp, snapobj, FTAG, &snap); if (err != 0) break; } if (snap->ds_phys->ds_prev_snap_txg == oldsnap->ds_phys->ds_creation_txg) { /* * The blocks in the deadlist can not be born after * ds_prev_snap_txg, so get the whole deadlist space, * which is more efficient (especially for old-format * deadlists). Unfortunately the deadlist code * doesn't have enough information to make this * optimization itself. */ dsl_deadlist_space(&snap->ds_deadlist, &used, &comp, &uncomp); } else { dsl_deadlist_space_range(&snap->ds_deadlist, 0, oldsnap->ds_phys->ds_creation_txg, &used, &comp, &uncomp); } *usedp += used; *compp += comp; *uncompp += uncomp; /* * If we get to the beginning of the chain of snapshots * (ds_prev_snap_obj == 0) before oldsnap, then oldsnap * was not a snapshot of/before new. */ snapobj = snap->ds_phys->ds_prev_snap_obj; if (snap != new) dsl_dataset_rele(snap, FTAG); if (snapobj == 0) { err = SET_ERROR(EINVAL); break; } } return (err); } /* * Return (in *usedp) the amount of space that will be reclaimed if firstsnap, * lastsnap, and all snapshots in between are deleted. * * blocks that would be freed [---------------------------] * snapshots ---O-------O--------O-------O--------O * firstsnap lastsnap * * This is the set of blocks that were born after the snap before firstsnap, * (birth > firstsnap->prev_snap_txg) and died before the snap after the * last snap (ie, is on lastsnap->ds_next->ds_deadlist or an earlier deadlist). * We calculate this by iterating over the relevant deadlists (from the snap * after lastsnap, backward to the snap after firstsnap), summing up the * space on the deadlist that was born after the snap before firstsnap. */ int dsl_dataset_space_wouldfree(dsl_dataset_t *firstsnap, dsl_dataset_t *lastsnap, uint64_t *usedp, uint64_t *compp, uint64_t *uncompp) { int err = 0; uint64_t snapobj; dsl_pool_t *dp = firstsnap->ds_dir->dd_pool; ASSERT(dsl_dataset_is_snapshot(firstsnap)); ASSERT(dsl_dataset_is_snapshot(lastsnap)); /* * Check that the snapshots are in the same dsl_dir, and firstsnap * is before lastsnap. */ if (firstsnap->ds_dir != lastsnap->ds_dir || firstsnap->ds_phys->ds_creation_txg > lastsnap->ds_phys->ds_creation_txg) return (SET_ERROR(EINVAL)); *usedp = *compp = *uncompp = 0; snapobj = lastsnap->ds_phys->ds_next_snap_obj; while (snapobj != firstsnap->ds_object) { dsl_dataset_t *ds; uint64_t used, comp, uncomp; err = dsl_dataset_hold_obj(dp, snapobj, FTAG, &ds); if (err != 0) break; dsl_deadlist_space_range(&ds->ds_deadlist, firstsnap->ds_phys->ds_prev_snap_txg, UINT64_MAX, &used, &comp, &uncomp); *usedp += used; *compp += comp; *uncompp += uncomp; snapobj = ds->ds_phys->ds_prev_snap_obj; ASSERT3U(snapobj, !=, 0); dsl_dataset_rele(ds, FTAG); } return (err); } /* * Return TRUE if 'earlier' is an earlier snapshot in 'later's timeline. * For example, they could both be snapshots of the same filesystem, and * 'earlier' is before 'later'. Or 'earlier' could be the origin of * 'later's filesystem. Or 'earlier' could be an older snapshot in the origin's * filesystem. Or 'earlier' could be the origin's origin. */ boolean_t dsl_dataset_is_before(dsl_dataset_t *later, dsl_dataset_t *earlier) { dsl_pool_t *dp = later->ds_dir->dd_pool; int error; boolean_t ret; dsl_dataset_t *origin; ASSERT(dsl_pool_config_held(dp)); if (earlier->ds_phys->ds_creation_txg >= later->ds_phys->ds_creation_txg) return (B_FALSE); if (later->ds_dir == earlier->ds_dir) return (B_TRUE); if (!dsl_dir_is_clone(later->ds_dir)) return (B_FALSE); if (later->ds_dir->dd_phys->dd_origin_obj == earlier->ds_object) return (B_TRUE); error = dsl_dataset_hold_obj(dp, later->ds_dir->dd_phys->dd_origin_obj, FTAG, &origin); if (error != 0) return (B_FALSE); ret = dsl_dataset_is_before(origin, earlier); dsl_dataset_rele(origin, FTAG); return (ret); } #if defined(_KERNEL) && defined(HAVE_SPL) EXPORT_SYMBOL(dsl_dataset_hold); EXPORT_SYMBOL(dsl_dataset_hold_obj); EXPORT_SYMBOL(dsl_dataset_own); EXPORT_SYMBOL(dsl_dataset_own_obj); EXPORT_SYMBOL(dsl_dataset_name); EXPORT_SYMBOL(dsl_dataset_rele); EXPORT_SYMBOL(dsl_dataset_disown); EXPORT_SYMBOL(dsl_dataset_tryown); EXPORT_SYMBOL(dsl_dataset_create_sync); EXPORT_SYMBOL(dsl_dataset_create_sync_dd); EXPORT_SYMBOL(dsl_dataset_snapshot_check); EXPORT_SYMBOL(dsl_dataset_snapshot_sync); EXPORT_SYMBOL(dsl_dataset_promote); EXPORT_SYMBOL(dsl_dataset_user_hold); EXPORT_SYMBOL(dsl_dataset_user_release); EXPORT_SYMBOL(dsl_dataset_get_holds); EXPORT_SYMBOL(dsl_dataset_get_blkptr); EXPORT_SYMBOL(dsl_dataset_set_blkptr); EXPORT_SYMBOL(dsl_dataset_get_spa); EXPORT_SYMBOL(dsl_dataset_modified_since_lastsnap); EXPORT_SYMBOL(dsl_dataset_space_written); EXPORT_SYMBOL(dsl_dataset_space_wouldfree); EXPORT_SYMBOL(dsl_dataset_sync); EXPORT_SYMBOL(dsl_dataset_block_born); EXPORT_SYMBOL(dsl_dataset_block_kill); EXPORT_SYMBOL(dsl_dataset_block_freeable); EXPORT_SYMBOL(dsl_dataset_prev_snap_txg); EXPORT_SYMBOL(dsl_dataset_dirty); EXPORT_SYMBOL(dsl_dataset_stats); EXPORT_SYMBOL(dsl_dataset_fast_stat); EXPORT_SYMBOL(dsl_dataset_space); EXPORT_SYMBOL(dsl_dataset_fsid_guid); EXPORT_SYMBOL(dsl_dsobj_to_dsname); EXPORT_SYMBOL(dsl_dataset_check_quota); EXPORT_SYMBOL(dsl_dataset_clone_swap_check_impl); EXPORT_SYMBOL(dsl_dataset_clone_swap_sync_impl); #endif diff --git a/module/zfs/spa_errlog.c b/module/zfs/spa_errlog.c index 21abc8339086..35853e282550 100644 --- a/module/zfs/spa_errlog.c +++ b/module/zfs/spa_errlog.c @@ -1,415 +1,417 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013 by Delphix. All rights reserved. */ /* * Routines to manage the on-disk persistent error log. * * Each pool stores a log of all logical data errors seen during normal * operation. This is actually the union of two distinct logs: the last log, * and the current log. All errors seen are logged to the current log. When a * scrub completes, the current log becomes the last log, the last log is thrown * out, and the current log is reinitialized. This way, if an error is somehow * corrected, a new scrub will show that that it no longer exists, and will be * deleted from the log when the scrub completes. * * The log is stored using a ZAP object whose key is a string form of the * zbookmark tuple (objset, object, level, blkid), and whose contents is an * optional 'objset:object' human-readable string describing the data. When an * error is first logged, this string will be empty, indicating that no name is * known. This prevents us from having to issue a potentially large amount of * I/O to discover the object name during an error path. Instead, we do the * calculation when the data is requested, storing the result so future queries * will be faster. * * This log is then shipped into an nvlist where the key is the dataset name and * the value is the object name. Userland is then responsible for uniquifying * this list and displaying it to the user. */ #include #include #include #include #include /* * Convert a bookmark to a string. */ static void bookmark_to_name(zbookmark_t *zb, char *buf, size_t len) { (void) snprintf(buf, len, "%llx:%llx:%llx:%llx", (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid); } /* * Convert a string to a bookmark */ #ifdef _KERNEL static void name_to_bookmark(char *buf, zbookmark_t *zb) { zb->zb_objset = strtonum(buf, &buf); ASSERT(*buf == ':'); zb->zb_object = strtonum(buf + 1, &buf); ASSERT(*buf == ':'); zb->zb_level = (int)strtonum(buf + 1, &buf); ASSERT(*buf == ':'); zb->zb_blkid = strtonum(buf + 1, &buf); ASSERT(*buf == '\0'); } #endif /* * Log an uncorrectable error to the persistent error log. We add it to the * spa's list of pending errors. The changes are actually synced out to disk * during spa_errlog_sync(). */ void spa_log_error(spa_t *spa, zio_t *zio) { zbookmark_t *zb = &zio->io_logical->io_bookmark; spa_error_entry_t search; spa_error_entry_t *new; avl_tree_t *tree; avl_index_t where; /* * If we are trying to import a pool, ignore any errors, as we won't be * writing to the pool any time soon. */ if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT) return; mutex_enter(&spa->spa_errlist_lock); /* * If we have had a request to rotate the log, log it to the next list * instead of the current one. */ if (spa->spa_scrub_active || spa->spa_scrub_finished) tree = &spa->spa_errlist_scrub; else tree = &spa->spa_errlist_last; search.se_bookmark = *zb; if (avl_find(tree, &search, &where) != NULL) { mutex_exit(&spa->spa_errlist_lock); return; } new = kmem_zalloc(sizeof (spa_error_entry_t), KM_SLEEP); new->se_bookmark = *zb; avl_insert(tree, new, where); mutex_exit(&spa->spa_errlist_lock); } /* * Return the number of errors currently in the error log. This is actually the * sum of both the last log and the current log, since we don't know the union * of these logs until we reach userland. */ uint64_t spa_get_errlog_size(spa_t *spa) { uint64_t total = 0, count; mutex_enter(&spa->spa_errlog_lock); if (spa->spa_errlog_scrub != 0 && zap_count(spa->spa_meta_objset, spa->spa_errlog_scrub, &count) == 0) total += count; if (spa->spa_errlog_last != 0 && !spa->spa_scrub_finished && zap_count(spa->spa_meta_objset, spa->spa_errlog_last, &count) == 0) total += count; mutex_exit(&spa->spa_errlog_lock); mutex_enter(&spa->spa_errlist_lock); total += avl_numnodes(&spa->spa_errlist_last); total += avl_numnodes(&spa->spa_errlist_scrub); mutex_exit(&spa->spa_errlist_lock); return (total); } #ifdef _KERNEL static int process_error_log(spa_t *spa, uint64_t obj, void *addr, size_t *count) { zap_cursor_t zc; zap_attribute_t za; zbookmark_t zb; if (obj == 0) return (0); for (zap_cursor_init(&zc, spa->spa_meta_objset, obj); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { if (*count == 0) { zap_cursor_fini(&zc); return (SET_ERROR(ENOMEM)); } name_to_bookmark(za.za_name, &zb); if (copyout(&zb, (char *)addr + (*count - 1) * sizeof (zbookmark_t), - sizeof (zbookmark_t)) != 0) + sizeof (zbookmark_t)) != 0) { + zap_cursor_fini(&zc); return (SET_ERROR(EFAULT)); + } *count -= 1; } zap_cursor_fini(&zc); return (0); } static int process_error_list(avl_tree_t *list, void *addr, size_t *count) { spa_error_entry_t *se; for (se = avl_first(list); se != NULL; se = AVL_NEXT(list, se)) { if (*count == 0) return (SET_ERROR(ENOMEM)); if (copyout(&se->se_bookmark, (char *)addr + (*count - 1) * sizeof (zbookmark_t), sizeof (zbookmark_t)) != 0) return (SET_ERROR(EFAULT)); *count -= 1; } return (0); } #endif /* * Copy all known errors to userland as an array of bookmarks. This is * actually a union of the on-disk last log and current log, as well as any * pending error requests. * * Because the act of reading the on-disk log could cause errors to be * generated, we have two separate locks: one for the error log and one for the * in-core error lists. We only need the error list lock to log and error, so * we grab the error log lock while we read the on-disk logs, and only pick up * the error list lock when we are finished. */ int spa_get_errlog(spa_t *spa, void *uaddr, size_t *count) { int ret = 0; #ifdef _KERNEL mutex_enter(&spa->spa_errlog_lock); ret = process_error_log(spa, spa->spa_errlog_scrub, uaddr, count); if (!ret && !spa->spa_scrub_finished) ret = process_error_log(spa, spa->spa_errlog_last, uaddr, count); mutex_enter(&spa->spa_errlist_lock); if (!ret) ret = process_error_list(&spa->spa_errlist_scrub, uaddr, count); if (!ret) ret = process_error_list(&spa->spa_errlist_last, uaddr, count); mutex_exit(&spa->spa_errlist_lock); mutex_exit(&spa->spa_errlog_lock); #endif return (ret); } /* * Called when a scrub completes. This simply set a bit which tells which AVL * tree to add new errors. spa_errlog_sync() is responsible for actually * syncing the changes to the underlying objects. */ void spa_errlog_rotate(spa_t *spa) { mutex_enter(&spa->spa_errlist_lock); spa->spa_scrub_finished = B_TRUE; mutex_exit(&spa->spa_errlist_lock); } /* * Discard any pending errors from the spa_t. Called when unloading a faulted * pool, as the errors encountered during the open cannot be synced to disk. */ void spa_errlog_drain(spa_t *spa) { spa_error_entry_t *se; void *cookie; mutex_enter(&spa->spa_errlist_lock); cookie = NULL; while ((se = avl_destroy_nodes(&spa->spa_errlist_last, &cookie)) != NULL) kmem_free(se, sizeof (spa_error_entry_t)); cookie = NULL; while ((se = avl_destroy_nodes(&spa->spa_errlist_scrub, &cookie)) != NULL) kmem_free(se, sizeof (spa_error_entry_t)); mutex_exit(&spa->spa_errlist_lock); } /* * Process a list of errors into the current on-disk log. */ static void sync_error_list(spa_t *spa, avl_tree_t *t, uint64_t *obj, dmu_tx_t *tx) { spa_error_entry_t *se; char buf[64]; void *cookie; if (avl_numnodes(t) != 0) { /* create log if necessary */ if (*obj == 0) *obj = zap_create(spa->spa_meta_objset, DMU_OT_ERROR_LOG, DMU_OT_NONE, 0, tx); /* add errors to the current log */ for (se = avl_first(t); se != NULL; se = AVL_NEXT(t, se)) { char *name = se->se_name ? se->se_name : ""; bookmark_to_name(&se->se_bookmark, buf, sizeof (buf)); (void) zap_update(spa->spa_meta_objset, *obj, buf, 1, strlen(name) + 1, name, tx); } /* purge the error list */ cookie = NULL; while ((se = avl_destroy_nodes(t, &cookie)) != NULL) kmem_free(se, sizeof (spa_error_entry_t)); } } /* * Sync the error log out to disk. This is a little tricky because the act of * writing the error log requires the spa_errlist_lock. So, we need to lock the * error lists, take a copy of the lists, and then reinitialize them. Then, we * drop the error list lock and take the error log lock, at which point we * do the errlog processing. Then, if we encounter an I/O error during this * process, we can successfully add the error to the list. Note that this will * result in the perpetual recycling of errors, but it is an unlikely situation * and not a performance critical operation. */ void spa_errlog_sync(spa_t *spa, uint64_t txg) { dmu_tx_t *tx; avl_tree_t scrub, last; int scrub_finished; mutex_enter(&spa->spa_errlist_lock); /* * Bail out early under normal circumstances. */ if (avl_numnodes(&spa->spa_errlist_scrub) == 0 && avl_numnodes(&spa->spa_errlist_last) == 0 && !spa->spa_scrub_finished) { mutex_exit(&spa->spa_errlist_lock); return; } spa_get_errlists(spa, &last, &scrub); scrub_finished = spa->spa_scrub_finished; spa->spa_scrub_finished = B_FALSE; mutex_exit(&spa->spa_errlist_lock); mutex_enter(&spa->spa_errlog_lock); tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); /* * Sync out the current list of errors. */ sync_error_list(spa, &last, &spa->spa_errlog_last, tx); /* * Rotate the log if necessary. */ if (scrub_finished) { if (spa->spa_errlog_last != 0) VERIFY(dmu_object_free(spa->spa_meta_objset, spa->spa_errlog_last, tx) == 0); spa->spa_errlog_last = spa->spa_errlog_scrub; spa->spa_errlog_scrub = 0; sync_error_list(spa, &scrub, &spa->spa_errlog_last, tx); } /* * Sync out any pending scrub errors. */ sync_error_list(spa, &scrub, &spa->spa_errlog_scrub, tx); /* * Update the MOS to reflect the new values. */ (void) zap_update(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST, sizeof (uint64_t), 1, &spa->spa_errlog_last, tx); (void) zap_update(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB, sizeof (uint64_t), 1, &spa->spa_errlog_scrub, tx); dmu_tx_commit(tx); mutex_exit(&spa->spa_errlog_lock); } #if defined(_KERNEL) && defined(HAVE_SPL) /* error handling */ EXPORT_SYMBOL(spa_log_error); EXPORT_SYMBOL(spa_get_errlog_size); EXPORT_SYMBOL(spa_get_errlog); EXPORT_SYMBOL(spa_errlog_rotate); EXPORT_SYMBOL(spa_errlog_drain); EXPORT_SYMBOL(spa_errlog_sync); EXPORT_SYMBOL(spa_get_errlists); #endif diff --git a/module/zfs/zap.c b/module/zfs/zap.c index 66c303eb42c5..cfae26a74999 100644 --- a/module/zfs/zap.c +++ b/module/zfs/zap.c @@ -1,1378 +1,1388 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013 by Delphix. All rights reserved. */ /* * This file contains the top half of the zfs directory structure * implementation. The bottom half is in zap_leaf.c. * * The zdir is an extendable hash data structure. There is a table of * pointers to buckets (zap_t->zd_data->zd_leafs). The buckets are * each a constant size and hold a variable number of directory entries. * The buckets (aka "leaf nodes") are implemented in zap_leaf.c. * * The pointer table holds a power of 2 number of pointers. * (1<zd_data->zd_phys->zd_prefix_len). The bucket pointed to * by the pointer at index i in the table holds entries whose hash value * has a zd_prefix_len - bit prefix */ #include #include #include #include #include #include #include #include #include int fzap_default_block_shift = 14; /* 16k blocksize */ static void zap_leaf_pageout(dmu_buf_t *db, void *vl); static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks); void fzap_byteswap(void *vbuf, size_t size) { uint64_t block_type; block_type = *(uint64_t *)vbuf; if (block_type == ZBT_LEAF || block_type == BSWAP_64(ZBT_LEAF)) zap_leaf_byteswap(vbuf, size); else { /* it's a ptrtbl block */ byteswap_uint64_array(vbuf, size); } } void fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags) { dmu_buf_t *db; zap_leaf_t *l; int i; zap_phys_t *zp; ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); zap->zap_ismicro = FALSE; (void) dmu_buf_update_user(zap->zap_dbuf, zap, zap, &zap->zap_f.zap_phys, zap_evict); mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0); zap->zap_f.zap_block_shift = highbit(zap->zap_dbuf->db_size) - 1; zp = zap->zap_f.zap_phys; /* * explicitly zero it since it might be coming from an * initialized microzap */ bzero(zap->zap_dbuf->db_data, zap->zap_dbuf->db_size); zp->zap_block_type = ZBT_HEADER; zp->zap_magic = ZAP_MAGIC; zp->zap_ptrtbl.zt_shift = ZAP_EMBEDDED_PTRTBL_SHIFT(zap); zp->zap_freeblk = 2; /* block 1 will be the first leaf */ zp->zap_num_leafs = 1; zp->zap_num_entries = 0; zp->zap_salt = zap->zap_salt; zp->zap_normflags = zap->zap_normflags; zp->zap_flags = flags; /* block 1 will be the first leaf */ for (i = 0; i < (1<zap_ptrtbl.zt_shift); i++) ZAP_EMBEDDED_PTRTBL_ENT(zap, i) = 1; /* * set up block 1 - the first leaf */ VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object, 1<l_dbuf = db; l->l_phys = db->db_data; zap_leaf_init(l, zp->zap_normflags != 0); kmem_free(l, sizeof (zap_leaf_t)); dmu_buf_rele(db, FTAG); } static int zap_tryupgradedir(zap_t *zap, dmu_tx_t *tx) { if (RW_WRITE_HELD(&zap->zap_rwlock)) return (1); if (rw_tryupgrade(&zap->zap_rwlock)) { dmu_buf_will_dirty(zap->zap_dbuf, tx); return (1); } return (0); } /* * Generic routines for dealing with the pointer & cookie tables. */ static int zap_table_grow(zap_t *zap, zap_table_phys_t *tbl, void (*transfer_func)(const uint64_t *src, uint64_t *dst, int n), dmu_tx_t *tx) { uint64_t b, newblk; dmu_buf_t *db_old, *db_new; int err; int bs = FZAP_BLOCK_SHIFT(zap); int hepb = 1<<(bs-4); /* hepb = half the number of entries in a block */ ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); ASSERT(tbl->zt_blk != 0); ASSERT(tbl->zt_numblks > 0); if (tbl->zt_nextblk != 0) { newblk = tbl->zt_nextblk; } else { newblk = zap_allocate_blocks(zap, tbl->zt_numblks * 2); tbl->zt_nextblk = newblk; ASSERT0(tbl->zt_blks_copied); dmu_prefetch(zap->zap_objset, zap->zap_object, tbl->zt_blk << bs, tbl->zt_numblks << bs); } /* * Copy the ptrtbl from the old to new location. */ b = tbl->zt_blks_copied; err = dmu_buf_hold(zap->zap_objset, zap->zap_object, (tbl->zt_blk + b) << bs, FTAG, &db_old, DMU_READ_NO_PREFETCH); if (err) return (err); /* first half of entries in old[b] go to new[2*b+0] */ VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object, (newblk + 2*b+0) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH)); dmu_buf_will_dirty(db_new, tx); transfer_func(db_old->db_data, db_new->db_data, hepb); dmu_buf_rele(db_new, FTAG); /* second half of entries in old[b] go to new[2*b+1] */ VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object, (newblk + 2*b+1) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH)); dmu_buf_will_dirty(db_new, tx); transfer_func((uint64_t *)db_old->db_data + hepb, db_new->db_data, hepb); dmu_buf_rele(db_new, FTAG); dmu_buf_rele(db_old, FTAG); tbl->zt_blks_copied++; dprintf("copied block %llu of %llu\n", tbl->zt_blks_copied, tbl->zt_numblks); if (tbl->zt_blks_copied == tbl->zt_numblks) { (void) dmu_free_range(zap->zap_objset, zap->zap_object, tbl->zt_blk << bs, tbl->zt_numblks << bs, tx); tbl->zt_blk = newblk; tbl->zt_numblks *= 2; tbl->zt_shift++; tbl->zt_nextblk = 0; tbl->zt_blks_copied = 0; dprintf("finished; numblocks now %llu (%lluk entries)\n", tbl->zt_numblks, 1<<(tbl->zt_shift-10)); } return (0); } static int zap_table_store(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t val, dmu_tx_t *tx) { int err; uint64_t blk, off; int bs = FZAP_BLOCK_SHIFT(zap); dmu_buf_t *db; ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); ASSERT(tbl->zt_blk != 0); dprintf("storing %llx at index %llx\n", val, idx); blk = idx >> (bs-3); off = idx & ((1<<(bs-3))-1); err = dmu_buf_hold(zap->zap_objset, zap->zap_object, (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); if (err) return (err); dmu_buf_will_dirty(db, tx); if (tbl->zt_nextblk != 0) { uint64_t idx2 = idx * 2; uint64_t blk2 = idx2 >> (bs-3); uint64_t off2 = idx2 & ((1<<(bs-3))-1); dmu_buf_t *db2; err = dmu_buf_hold(zap->zap_objset, zap->zap_object, (tbl->zt_nextblk + blk2) << bs, FTAG, &db2, DMU_READ_NO_PREFETCH); if (err) { dmu_buf_rele(db, FTAG); return (err); } dmu_buf_will_dirty(db2, tx); ((uint64_t *)db2->db_data)[off2] = val; ((uint64_t *)db2->db_data)[off2+1] = val; dmu_buf_rele(db2, FTAG); } ((uint64_t *)db->db_data)[off] = val; dmu_buf_rele(db, FTAG); return (0); } static int zap_table_load(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t *valp) { uint64_t blk, off; int err; dmu_buf_t *db; int bs = FZAP_BLOCK_SHIFT(zap); ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); blk = idx >> (bs-3); off = idx & ((1<<(bs-3))-1); err = dmu_buf_hold(zap->zap_objset, zap->zap_object, (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); if (err) return (err); *valp = ((uint64_t *)db->db_data)[off]; dmu_buf_rele(db, FTAG); if (tbl->zt_nextblk != 0) { /* * read the nextblk for the sake of i/o error checking, * so that zap_table_load() will catch errors for * zap_table_store. */ blk = (idx*2) >> (bs-3); err = dmu_buf_hold(zap->zap_objset, zap->zap_object, (tbl->zt_nextblk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); - dmu_buf_rele(db, FTAG); + if (err == 0) + dmu_buf_rele(db, FTAG); } return (err); } /* * Routines for growing the ptrtbl. */ static void zap_ptrtbl_transfer(const uint64_t *src, uint64_t *dst, int n) { int i; for (i = 0; i < n; i++) { uint64_t lb = src[i]; dst[2*i+0] = lb; dst[2*i+1] = lb; } } static int zap_grow_ptrtbl(zap_t *zap, dmu_tx_t *tx) { /* * The pointer table should never use more hash bits than we * have (otherwise we'd be using useless zero bits to index it). * If we are within 2 bits of running out, stop growing, since * this is already an aberrant condition. */ if (zap->zap_f.zap_phys->zap_ptrtbl.zt_shift >= zap_hashbits(zap) - 2) return (SET_ERROR(ENOSPC)); if (zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks == 0) { /* * We are outgrowing the "embedded" ptrtbl (the one * stored in the header block). Give it its own entire * block, which will double the size of the ptrtbl. */ uint64_t newblk; dmu_buf_t *db_new; int err; ASSERT3U(zap->zap_f.zap_phys->zap_ptrtbl.zt_shift, ==, ZAP_EMBEDDED_PTRTBL_SHIFT(zap)); ASSERT0(zap->zap_f.zap_phys->zap_ptrtbl.zt_blk); newblk = zap_allocate_blocks(zap, 1); err = dmu_buf_hold(zap->zap_objset, zap->zap_object, newblk << FZAP_BLOCK_SHIFT(zap), FTAG, &db_new, DMU_READ_NO_PREFETCH); if (err) return (err); dmu_buf_will_dirty(db_new, tx); zap_ptrtbl_transfer(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), db_new->db_data, 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap)); dmu_buf_rele(db_new, FTAG); zap->zap_f.zap_phys->zap_ptrtbl.zt_blk = newblk; zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks = 1; zap->zap_f.zap_phys->zap_ptrtbl.zt_shift++; ASSERT3U(1ULL << zap->zap_f.zap_phys->zap_ptrtbl.zt_shift, ==, zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks << (FZAP_BLOCK_SHIFT(zap)-3)); return (0); } else { return (zap_table_grow(zap, &zap->zap_f.zap_phys->zap_ptrtbl, zap_ptrtbl_transfer, tx)); } } static void zap_increment_num_entries(zap_t *zap, int delta, dmu_tx_t *tx) { dmu_buf_will_dirty(zap->zap_dbuf, tx); mutex_enter(&zap->zap_f.zap_num_entries_mtx); ASSERT(delta > 0 || zap->zap_f.zap_phys->zap_num_entries >= -delta); zap->zap_f.zap_phys->zap_num_entries += delta; mutex_exit(&zap->zap_f.zap_num_entries_mtx); } static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks) { uint64_t newblk; ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); newblk = zap->zap_f.zap_phys->zap_freeblk; zap->zap_f.zap_phys->zap_freeblk += nblocks; return (newblk); } static zap_leaf_t * zap_create_leaf(zap_t *zap, dmu_tx_t *tx) { void *winner; zap_leaf_t *l = kmem_alloc(sizeof (zap_leaf_t), KM_PUSHPAGE); ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); rw_init(&l->l_rwlock, NULL, RW_DEFAULT, NULL); rw_enter(&l->l_rwlock, RW_WRITER); l->l_blkid = zap_allocate_blocks(zap, 1); l->l_dbuf = NULL; l->l_phys = NULL; VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object, l->l_blkid << FZAP_BLOCK_SHIFT(zap), NULL, &l->l_dbuf, DMU_READ_NO_PREFETCH)); winner = dmu_buf_set_user(l->l_dbuf, l, &l->l_phys, zap_leaf_pageout); ASSERT(winner == NULL); dmu_buf_will_dirty(l->l_dbuf, tx); zap_leaf_init(l, zap->zap_normflags != 0); zap->zap_f.zap_phys->zap_num_leafs++; return (l); } int fzap_count(zap_t *zap, uint64_t *count) { ASSERT(!zap->zap_ismicro); mutex_enter(&zap->zap_f.zap_num_entries_mtx); /* unnecessary */ *count = zap->zap_f.zap_phys->zap_num_entries; mutex_exit(&zap->zap_f.zap_num_entries_mtx); return (0); } /* * Routines for obtaining zap_leaf_t's */ void zap_put_leaf(zap_leaf_t *l) { rw_exit(&l->l_rwlock); dmu_buf_rele(l->l_dbuf, NULL); } _NOTE(ARGSUSED(0)) static void zap_leaf_pageout(dmu_buf_t *db, void *vl) { zap_leaf_t *l = vl; rw_destroy(&l->l_rwlock); kmem_free(l, sizeof (zap_leaf_t)); } static zap_leaf_t * zap_open_leaf(uint64_t blkid, dmu_buf_t *db) { zap_leaf_t *l, *winner; ASSERT(blkid != 0); l = kmem_alloc(sizeof (zap_leaf_t), KM_PUSHPAGE); rw_init(&l->l_rwlock, NULL, RW_DEFAULT, NULL); rw_enter(&l->l_rwlock, RW_WRITER); l->l_blkid = blkid; l->l_bs = highbit(db->db_size)-1; l->l_dbuf = db; l->l_phys = NULL; winner = dmu_buf_set_user(db, l, &l->l_phys, zap_leaf_pageout); rw_exit(&l->l_rwlock); if (winner != NULL) { /* someone else set it first */ zap_leaf_pageout(NULL, l); l = winner; } /* * lhr_pad was previously used for the next leaf in the leaf * chain. There should be no chained leafs (as we have removed * support for them). */ ASSERT0(l->l_phys->l_hdr.lh_pad1); /* * There should be more hash entries than there can be * chunks to put in the hash table */ ASSERT3U(ZAP_LEAF_HASH_NUMENTRIES(l), >, ZAP_LEAF_NUMCHUNKS(l) / 3); /* The chunks should begin at the end of the hash table */ ASSERT3P(&ZAP_LEAF_CHUNK(l, 0), ==, (zap_leaf_chunk_t *) &l->l_phys->l_hash[ZAP_LEAF_HASH_NUMENTRIES(l)]); /* The chunks should end at the end of the block */ ASSERT3U((uintptr_t)&ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)) - (uintptr_t)l->l_phys, ==, l->l_dbuf->db_size); return (l); } static int zap_get_leaf_byblk(zap_t *zap, uint64_t blkid, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp) { dmu_buf_t *db; zap_leaf_t *l; int bs = FZAP_BLOCK_SHIFT(zap); int err; ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); err = dmu_buf_hold(zap->zap_objset, zap->zap_object, blkid << bs, NULL, &db, DMU_READ_NO_PREFETCH); if (err) return (err); ASSERT3U(db->db_object, ==, zap->zap_object); ASSERT3U(db->db_offset, ==, blkid << bs); ASSERT3U(db->db_size, ==, 1 << bs); ASSERT(blkid != 0); l = dmu_buf_get_user(db); if (l == NULL) l = zap_open_leaf(blkid, db); rw_enter(&l->l_rwlock, lt); /* * Must lock before dirtying, otherwise l->l_phys could change, * causing ASSERT below to fail. */ if (lt == RW_WRITER) dmu_buf_will_dirty(db, tx); ASSERT3U(l->l_blkid, ==, blkid); ASSERT3P(l->l_dbuf, ==, db); ASSERT3P(l->l_phys, ==, l->l_dbuf->db_data); ASSERT3U(l->l_phys->l_hdr.lh_block_type, ==, ZBT_LEAF); ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); *lp = l; return (0); } static int zap_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t *valp) { ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); if (zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks == 0) { ASSERT3U(idx, <, (1ULL << zap->zap_f.zap_phys->zap_ptrtbl.zt_shift)); *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx); return (0); } else { return (zap_table_load(zap, &zap->zap_f.zap_phys->zap_ptrtbl, idx, valp)); } } static int zap_set_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t blk, dmu_tx_t *tx) { ASSERT(tx != NULL); ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); if (zap->zap_f.zap_phys->zap_ptrtbl.zt_blk == 0) { ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) = blk; return (0); } else { return (zap_table_store(zap, &zap->zap_f.zap_phys->zap_ptrtbl, idx, blk, tx)); } } static int zap_deref_leaf(zap_t *zap, uint64_t h, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp) { uint64_t idx, blk; int err; ASSERT(zap->zap_dbuf == NULL || zap->zap_f.zap_phys == zap->zap_dbuf->db_data); ASSERT3U(zap->zap_f.zap_phys->zap_magic, ==, ZAP_MAGIC); idx = ZAP_HASH_IDX(h, zap->zap_f.zap_phys->zap_ptrtbl.zt_shift); err = zap_idx_to_blk(zap, idx, &blk); if (err != 0) return (err); err = zap_get_leaf_byblk(zap, blk, tx, lt, lp); ASSERT(err || ZAP_HASH_IDX(h, (*lp)->l_phys->l_hdr.lh_prefix_len) == (*lp)->l_phys->l_hdr.lh_prefix); return (err); } static int zap_expand_leaf(zap_name_t *zn, zap_leaf_t *l, dmu_tx_t *tx, zap_leaf_t **lp) { zap_t *zap = zn->zn_zap; uint64_t hash = zn->zn_hash; zap_leaf_t *nl; int prefix_diff, i, err; uint64_t sibling; int old_prefix_len = l->l_phys->l_hdr.lh_prefix_len; ASSERT3U(old_prefix_len, <=, zap->zap_f.zap_phys->zap_ptrtbl.zt_shift); ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==, l->l_phys->l_hdr.lh_prefix); if (zap_tryupgradedir(zap, tx) == 0 || old_prefix_len == zap->zap_f.zap_phys->zap_ptrtbl.zt_shift) { /* We failed to upgrade, or need to grow the pointer table */ objset_t *os = zap->zap_objset; uint64_t object = zap->zap_object; zap_put_leaf(l); zap_unlockdir(zap); err = zap_lockdir(os, object, tx, RW_WRITER, FALSE, FALSE, &zn->zn_zap); zap = zn->zn_zap; if (err) return (err); ASSERT(!zap->zap_ismicro); while (old_prefix_len == zap->zap_f.zap_phys->zap_ptrtbl.zt_shift) { err = zap_grow_ptrtbl(zap, tx); if (err) return (err); } err = zap_deref_leaf(zap, hash, tx, RW_WRITER, &l); if (err) return (err); if (l->l_phys->l_hdr.lh_prefix_len != old_prefix_len) { /* it split while our locks were down */ *lp = l; return (0); } } ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); ASSERT3U(old_prefix_len, <, zap->zap_f.zap_phys->zap_ptrtbl.zt_shift); ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==, l->l_phys->l_hdr.lh_prefix); prefix_diff = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift - (old_prefix_len + 1); sibling = (ZAP_HASH_IDX(hash, old_prefix_len + 1) | 1) << prefix_diff; /* check for i/o errors before doing zap_leaf_split */ for (i = 0; i < (1ULL<l_blkid); } nl = zap_create_leaf(zap, tx); zap_leaf_split(l, nl, zap->zap_normflags != 0); /* set sibling pointers */ for (i = 0; i < (1ULL << prefix_diff); i++) { err = zap_set_idx_to_blk(zap, sibling+i, nl->l_blkid, tx); ASSERT0(err); /* we checked for i/o errors above */ } if (hash & (1ULL << (64 - l->l_phys->l_hdr.lh_prefix_len))) { /* we want the sibling */ zap_put_leaf(l); *lp = nl; } else { zap_put_leaf(nl); *lp = l; } return (0); } static void zap_put_leaf_maybe_grow_ptrtbl(zap_name_t *zn, zap_leaf_t *l, dmu_tx_t *tx) { zap_t *zap = zn->zn_zap; int shift = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift; int leaffull = (l->l_phys->l_hdr.lh_prefix_len == shift && l->l_phys->l_hdr.lh_nfree < ZAP_LEAF_LOW_WATER); zap_put_leaf(l); if (leaffull || zap->zap_f.zap_phys->zap_ptrtbl.zt_nextblk) { int err; /* * We are in the middle of growing the pointer table, or * this leaf will soon make us grow it. */ if (zap_tryupgradedir(zap, tx) == 0) { objset_t *os = zap->zap_objset; uint64_t zapobj = zap->zap_object; zap_unlockdir(zap); err = zap_lockdir(os, zapobj, tx, RW_WRITER, FALSE, FALSE, &zn->zn_zap); zap = zn->zn_zap; if (err) return; } /* could have finished growing while our locks were down */ if (zap->zap_f.zap_phys->zap_ptrtbl.zt_shift == shift) (void) zap_grow_ptrtbl(zap, tx); } } static int fzap_checkname(zap_name_t *zn) { if (zn->zn_key_orig_numints * zn->zn_key_intlen > ZAP_MAXNAMELEN) return (SET_ERROR(ENAMETOOLONG)); return (0); } static int fzap_checksize(uint64_t integer_size, uint64_t num_integers) { /* Only integer sizes supported by C */ switch (integer_size) { case 1: case 2: case 4: case 8: break; default: return (SET_ERROR(EINVAL)); } if (integer_size * num_integers > ZAP_MAXVALUELEN) return (E2BIG); return (0); } static int fzap_check(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers) { int err; if ((err = fzap_checkname(zn)) != 0) return (err); return (fzap_checksize(integer_size, num_integers)); } /* * Routines for manipulating attributes. */ int fzap_lookup(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers, void *buf, char *realname, int rn_len, boolean_t *ncp) { zap_leaf_t *l; int err; zap_entry_handle_t zeh; if ((err = fzap_checkname(zn)) != 0) return (err); err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l); if (err != 0) return (err); err = zap_leaf_lookup(l, zn, &zeh); if (err == 0) { if ((err = fzap_checksize(integer_size, num_integers)) != 0) { zap_put_leaf(l); return (err); } err = zap_entry_read(&zeh, integer_size, num_integers, buf); (void) zap_entry_read_name(zn->zn_zap, &zeh, rn_len, realname); if (ncp) { *ncp = zap_entry_normalization_conflict(&zeh, zn, NULL, zn->zn_zap); } } zap_put_leaf(l); return (err); } int fzap_add_cd(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers, const void *val, uint32_t cd, dmu_tx_t *tx) { zap_leaf_t *l; int err; zap_entry_handle_t zeh; zap_t *zap = zn->zn_zap; ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); ASSERT(!zap->zap_ismicro); ASSERT(fzap_check(zn, integer_size, num_integers) == 0); err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l); if (err != 0) return (err); retry: err = zap_leaf_lookup(l, zn, &zeh); if (err == 0) { err = SET_ERROR(EEXIST); goto out; } if (err != ENOENT) goto out; err = zap_entry_create(l, zn, cd, integer_size, num_integers, val, &zeh); if (err == 0) { zap_increment_num_entries(zap, 1, tx); } else if (err == EAGAIN) { err = zap_expand_leaf(zn, l, tx, &l); zap = zn->zn_zap; /* zap_expand_leaf() may change zap */ if (err == 0) goto retry; } out: if (zap != NULL) zap_put_leaf_maybe_grow_ptrtbl(zn, l, tx); return (err); } int fzap_add(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) { int err = fzap_check(zn, integer_size, num_integers); if (err != 0) return (err); return (fzap_add_cd(zn, integer_size, num_integers, val, ZAP_NEED_CD, tx)); } int fzap_update(zap_name_t *zn, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) { zap_leaf_t *l; int err, create; zap_entry_handle_t zeh; zap_t *zap = zn->zn_zap; ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); err = fzap_check(zn, integer_size, num_integers); if (err != 0) return (err); err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l); if (err != 0) return (err); retry: err = zap_leaf_lookup(l, zn, &zeh); create = (err == ENOENT); ASSERT(err == 0 || err == ENOENT); if (create) { err = zap_entry_create(l, zn, ZAP_NEED_CD, integer_size, num_integers, val, &zeh); if (err == 0) zap_increment_num_entries(zap, 1, tx); } else { err = zap_entry_update(&zeh, integer_size, num_integers, val); } if (err == EAGAIN) { err = zap_expand_leaf(zn, l, tx, &l); zap = zn->zn_zap; /* zap_expand_leaf() may change zap */ if (err == 0) goto retry; } if (zap != NULL) zap_put_leaf_maybe_grow_ptrtbl(zn, l, tx); return (err); } int fzap_length(zap_name_t *zn, uint64_t *integer_size, uint64_t *num_integers) { zap_leaf_t *l; int err; zap_entry_handle_t zeh; err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l); if (err != 0) return (err); err = zap_leaf_lookup(l, zn, &zeh); if (err != 0) goto out; if (integer_size) *integer_size = zeh.zeh_integer_size; if (num_integers) *num_integers = zeh.zeh_num_integers; out: zap_put_leaf(l); return (err); } int fzap_remove(zap_name_t *zn, dmu_tx_t *tx) { zap_leaf_t *l; int err; zap_entry_handle_t zeh; err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, tx, RW_WRITER, &l); if (err != 0) return (err); err = zap_leaf_lookup(l, zn, &zeh); if (err == 0) { zap_entry_remove(&zeh); zap_increment_num_entries(zn->zn_zap, -1, tx); } zap_put_leaf(l); return (err); } void fzap_prefetch(zap_name_t *zn) { uint64_t idx, blk; zap_t *zap = zn->zn_zap; int bs; idx = ZAP_HASH_IDX(zn->zn_hash, zap->zap_f.zap_phys->zap_ptrtbl.zt_shift); if (zap_idx_to_blk(zap, idx, &blk) != 0) return; bs = FZAP_BLOCK_SHIFT(zap); dmu_prefetch(zap->zap_objset, zap->zap_object, blk << bs, 1 << bs); } /* * Helper functions for consumers. */ uint64_t zap_create_link(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj, const char *name, dmu_tx_t *tx) { uint64_t new_obj; VERIFY((new_obj = zap_create(os, ot, DMU_OT_NONE, 0, tx)) > 0); VERIFY(zap_add(os, parent_obj, name, sizeof (uint64_t), 1, &new_obj, tx) == 0); return (new_obj); } int zap_value_search(objset_t *os, uint64_t zapobj, uint64_t value, uint64_t mask, char *name) { zap_cursor_t zc; zap_attribute_t *za; int err; if (mask == 0) mask = -1ULL; za = kmem_alloc(sizeof (zap_attribute_t), KM_PUSHPAGE); for (zap_cursor_init(&zc, os, zapobj); (err = zap_cursor_retrieve(&zc, za)) == 0; zap_cursor_advance(&zc)) { if ((za->za_first_integer & mask) == (value & mask)) { (void) strcpy(name, za->za_name); break; } } zap_cursor_fini(&zc); kmem_free(za, sizeof (zap_attribute_t)); return (err); } int zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx) { zap_cursor_t zc; zap_attribute_t za; int err; + err = 0; for (zap_cursor_init(&zc, os, fromobj); zap_cursor_retrieve(&zc, &za) == 0; (void) zap_cursor_advance(&zc)) { - if (za.za_integer_length != 8 || za.za_num_integers != 1) - return (SET_ERROR(EINVAL)); + if (za.za_integer_length != 8 || za.za_num_integers != 1) { + err = SET_ERROR(EINVAL); + break; + } err = zap_add(os, intoobj, za.za_name, 8, 1, &za.za_first_integer, tx); if (err) - return (err); + break; } zap_cursor_fini(&zc); - return (0); + return (err); } int zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj, uint64_t value, dmu_tx_t *tx) { zap_cursor_t zc; zap_attribute_t za; int err; + err = 0; for (zap_cursor_init(&zc, os, fromobj); zap_cursor_retrieve(&zc, &za) == 0; (void) zap_cursor_advance(&zc)) { - if (za.za_integer_length != 8 || za.za_num_integers != 1) - return (SET_ERROR(EINVAL)); + if (za.za_integer_length != 8 || za.za_num_integers != 1) { + err = SET_ERROR(EINVAL); + break; + } err = zap_add(os, intoobj, za.za_name, 8, 1, &value, tx); if (err) - return (err); + break; } zap_cursor_fini(&zc); - return (0); + return (err); } int zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx) { zap_cursor_t zc; zap_attribute_t za; int err; + err = 0; for (zap_cursor_init(&zc, os, fromobj); zap_cursor_retrieve(&zc, &za) == 0; (void) zap_cursor_advance(&zc)) { uint64_t delta = 0; - if (za.za_integer_length != 8 || za.za_num_integers != 1) - return (SET_ERROR(EINVAL)); + if (za.za_integer_length != 8 || za.za_num_integers != 1) { + err = SET_ERROR(EINVAL); + break; + } err = zap_lookup(os, intoobj, za.za_name, 8, 1, &delta); if (err != 0 && err != ENOENT) - return (err); + break; delta += za.za_first_integer; err = zap_update(os, intoobj, za.za_name, 8, 1, &delta, tx); if (err) - return (err); + break; } zap_cursor_fini(&zc); - return (0); + return (err); } int zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); return (zap_add(os, obj, name, 8, 1, &value, tx)); } int zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); return (zap_remove(os, obj, name, tx)); } int zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); return (zap_lookup(os, obj, name, 8, 1, &value)); } int zap_add_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t value, dmu_tx_t *tx) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); return (zap_add(os, obj, name, 8, 1, &value, tx)); } int zap_update_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t value, dmu_tx_t *tx) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); return (zap_update(os, obj, name, 8, 1, &value, tx)); } int zap_lookup_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t *valuep) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); return (zap_lookup(os, obj, name, 8, 1, valuep)); } int zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta, dmu_tx_t *tx) { uint64_t value = 0; int err; if (delta == 0) return (0); err = zap_lookup(os, obj, name, 8, 1, &value); if (err != 0 && err != ENOENT) return (err); value += delta; if (value == 0) err = zap_remove(os, obj, name, tx); else err = zap_update(os, obj, name, 8, 1, &value, tx); return (err); } int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta, dmu_tx_t *tx) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); return (zap_increment(os, obj, name, delta, tx)); } /* * Routines for iterating over the attributes. */ int fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za) { int err = ENOENT; zap_entry_handle_t zeh; zap_leaf_t *l; /* retrieve the next entry at or after zc_hash/zc_cd */ /* if no entry, return ENOENT */ if (zc->zc_leaf && (ZAP_HASH_IDX(zc->zc_hash, zc->zc_leaf->l_phys->l_hdr.lh_prefix_len) != zc->zc_leaf->l_phys->l_hdr.lh_prefix)) { rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); zap_put_leaf(zc->zc_leaf); zc->zc_leaf = NULL; } again: if (zc->zc_leaf == NULL) { err = zap_deref_leaf(zap, zc->zc_hash, NULL, RW_READER, &zc->zc_leaf); if (err != 0) return (err); } else { rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); } l = zc->zc_leaf; err = zap_leaf_lookup_closest(l, zc->zc_hash, zc->zc_cd, &zeh); if (err == ENOENT) { uint64_t nocare = (1ULL << (64 - l->l_phys->l_hdr.lh_prefix_len)) - 1; zc->zc_hash = (zc->zc_hash & ~nocare) + nocare + 1; zc->zc_cd = 0; if (l->l_phys->l_hdr.lh_prefix_len == 0 || zc->zc_hash == 0) { zc->zc_hash = -1ULL; } else { zap_put_leaf(zc->zc_leaf); zc->zc_leaf = NULL; goto again; } } if (err == 0) { zc->zc_hash = zeh.zeh_hash; zc->zc_cd = zeh.zeh_cd; za->za_integer_length = zeh.zeh_integer_size; za->za_num_integers = zeh.zeh_num_integers; if (zeh.zeh_num_integers == 0) { za->za_first_integer = 0; } else { err = zap_entry_read(&zeh, 8, 1, &za->za_first_integer); ASSERT(err == 0 || err == EOVERFLOW); } err = zap_entry_read_name(zap, &zeh, sizeof (za->za_name), za->za_name); ASSERT(err == 0); za->za_normalization_conflict = zap_entry_normalization_conflict(&zeh, NULL, za->za_name, zap); } rw_exit(&zc->zc_leaf->l_rwlock); return (err); } static void zap_stats_ptrtbl(zap_t *zap, uint64_t *tbl, int len, zap_stats_t *zs) { int i, err; uint64_t lastblk = 0; /* * NB: if a leaf has more pointers than an entire ptrtbl block * can hold, then it'll be accounted for more than once, since * we won't have lastblk. */ for (i = 0; i < len; i++) { zap_leaf_t *l; if (tbl[i] == lastblk) continue; lastblk = tbl[i]; err = zap_get_leaf_byblk(zap, tbl[i], NULL, RW_READER, &l); if (err == 0) { zap_leaf_stats(zap, l, zs); zap_put_leaf(l); } } } int fzap_cursor_move_to_key(zap_cursor_t *zc, zap_name_t *zn) { int err; zap_leaf_t *l; zap_entry_handle_t zeh; if (zn->zn_key_orig_numints * zn->zn_key_intlen > ZAP_MAXNAMELEN) return (SET_ERROR(ENAMETOOLONG)); err = zap_deref_leaf(zc->zc_zap, zn->zn_hash, NULL, RW_READER, &l); if (err != 0) return (err); err = zap_leaf_lookup(l, zn, &zeh); if (err == 0) { zc->zc_leaf = l; zc->zc_hash = zeh.zeh_hash; zc->zc_cd = zeh.zeh_cd; } rw_exit(&l->l_rwlock); return (err); } void fzap_get_stats(zap_t *zap, zap_stats_t *zs) { int bs = FZAP_BLOCK_SHIFT(zap); zs->zs_blocksize = 1ULL << bs; /* * Set zap_phys_t fields */ zs->zs_num_leafs = zap->zap_f.zap_phys->zap_num_leafs; zs->zs_num_entries = zap->zap_f.zap_phys->zap_num_entries; zs->zs_num_blocks = zap->zap_f.zap_phys->zap_freeblk; zs->zs_block_type = zap->zap_f.zap_phys->zap_block_type; zs->zs_magic = zap->zap_f.zap_phys->zap_magic; zs->zs_salt = zap->zap_f.zap_phys->zap_salt; /* * Set zap_ptrtbl fields */ zs->zs_ptrtbl_len = 1ULL << zap->zap_f.zap_phys->zap_ptrtbl.zt_shift; zs->zs_ptrtbl_nextblk = zap->zap_f.zap_phys->zap_ptrtbl.zt_nextblk; zs->zs_ptrtbl_blks_copied = zap->zap_f.zap_phys->zap_ptrtbl.zt_blks_copied; zs->zs_ptrtbl_zt_blk = zap->zap_f.zap_phys->zap_ptrtbl.zt_blk; zs->zs_ptrtbl_zt_numblks = zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks; zs->zs_ptrtbl_zt_shift = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift; if (zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks == 0) { /* the ptrtbl is entirely in the header block. */ zap_stats_ptrtbl(zap, &ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap), zs); } else { int b; dmu_prefetch(zap->zap_objset, zap->zap_object, zap->zap_f.zap_phys->zap_ptrtbl.zt_blk << bs, zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks << bs); for (b = 0; b < zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks; b++) { dmu_buf_t *db; int err; err = dmu_buf_hold(zap->zap_objset, zap->zap_object, (zap->zap_f.zap_phys->zap_ptrtbl.zt_blk + b) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); if (err == 0) { zap_stats_ptrtbl(zap, db->db_data, 1<<(bs-3), zs); dmu_buf_rele(db, FTAG); } } } } int fzap_count_write(zap_name_t *zn, int add, uint64_t *towrite, uint64_t *tooverwrite) { zap_t *zap = zn->zn_zap; zap_leaf_t *l; int err; /* * Account for the header block of the fatzap. */ if (!add && dmu_buf_freeable(zap->zap_dbuf)) { *tooverwrite += zap->zap_dbuf->db_size; } else { *towrite += zap->zap_dbuf->db_size; } /* * Account for the pointer table blocks. * If we are adding we need to account for the following cases : * - If the pointer table is embedded, this operation could force an * external pointer table. * - If this already has an external pointer table this operation * could extend the table. */ if (add) { if (zap->zap_f.zap_phys->zap_ptrtbl.zt_blk == 0) *towrite += zap->zap_dbuf->db_size; else *towrite += (zap->zap_dbuf->db_size * 3); } /* * Now, check if the block containing leaf is freeable * and account accordingly. */ err = zap_deref_leaf(zap, zn->zn_hash, NULL, RW_READER, &l); if (err != 0) { return (err); } if (!add && dmu_buf_freeable(l->l_dbuf)) { *tooverwrite += l->l_dbuf->db_size; } else { /* * If this an add operation, the leaf block could split. * Hence, we need to account for an additional leaf block. */ *towrite += (add ? 2 : 1) * l->l_dbuf->db_size; } zap_put_leaf(l); return (0); }