diff --git a/include/sys/abd.h b/include/sys/abd.h index b48dc36423f7..3a500e2c9ae7 100644 --- a/include/sys/abd.h +++ b/include/sys/abd.h @@ -1,226 +1,233 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2014 by Chunwei Chen. All rights reserved. * Copyright (c) 2016, 2019 by Delphix. All rights reserved. */ #ifndef _ABD_H #define _ABD_H #include #include #include #include #ifdef __cplusplus extern "C" { #endif typedef enum abd_flags { ABD_FLAG_LINEAR = 1 << 0, /* is buffer linear (or scattered)? */ ABD_FLAG_OWNER = 1 << 1, /* does it own its data buffers? */ ABD_FLAG_META = 1 << 2, /* does this represent FS metadata? */ ABD_FLAG_MULTI_ZONE = 1 << 3, /* pages split over memory zones */ ABD_FLAG_MULTI_CHUNK = 1 << 4, /* pages split over multiple chunks */ ABD_FLAG_LINEAR_PAGE = 1 << 5, /* linear but allocd from page */ ABD_FLAG_GANG = 1 << 6, /* mult ABDs chained together */ ABD_FLAG_GANG_FREE = 1 << 7, /* gang ABD is responsible for mem */ ABD_FLAG_ZEROS = 1 << 8, /* ABD for zero-filled buffer */ ABD_FLAG_ALLOCD = 1 << 9, /* we allocated the abd_t */ } abd_flags_t; typedef struct abd { abd_flags_t abd_flags; uint_t abd_size; /* excludes scattered abd_offset */ list_node_t abd_gang_link; #ifdef ZFS_DEBUG struct abd *abd_parent; zfs_refcount_t abd_children; #endif kmutex_t abd_mtx; union { struct abd_scatter { uint_t abd_offset; #if defined(__FreeBSD__) && defined(_KERNEL) void *abd_chunks[1]; /* actually variable-length */ #else uint_t abd_nents; struct scatterlist *abd_sgl; #endif } abd_scatter; struct abd_linear { void *abd_buf; struct scatterlist *abd_sgl; /* for LINEAR_PAGE */ } abd_linear; struct abd_gang { list_t abd_gang_chain; } abd_gang; } abd_u; } abd_t; typedef int abd_iter_func_t(void *buf, size_t len, void *priv); typedef int abd_iter_func2_t(void *bufa, void *bufb, size_t len, void *priv); +#if defined(__linux__) && defined(_KERNEL) +typedef int abd_iter_page_func_t(struct page *, size_t, size_t, void *); +#endif extern int zfs_abd_scatter_enabled; /* * Allocations and deallocations */ __attribute__((malloc)) abd_t *abd_alloc(size_t, boolean_t); __attribute__((malloc)) abd_t *abd_alloc_linear(size_t, boolean_t); __attribute__((malloc)) abd_t *abd_alloc_gang(void); __attribute__((malloc)) abd_t *abd_alloc_for_io(size_t, boolean_t); __attribute__((malloc)) abd_t *abd_alloc_sametype(abd_t *, size_t); boolean_t abd_size_alloc_linear(size_t); void abd_gang_add(abd_t *, abd_t *, boolean_t); void abd_free(abd_t *); abd_t *abd_get_offset(abd_t *, size_t); abd_t *abd_get_offset_size(abd_t *, size_t, size_t); abd_t *abd_get_offset_struct(abd_t *, abd_t *, size_t, size_t); abd_t *abd_get_zeros(size_t); abd_t *abd_get_from_buf(void *, size_t); void abd_cache_reap_now(void); /* * Conversion to and from a normal buffer */ void *abd_to_buf(abd_t *); void *abd_borrow_buf(abd_t *, size_t); void *abd_borrow_buf_copy(abd_t *, size_t); void abd_return_buf(abd_t *, void *, size_t); void abd_return_buf_copy(abd_t *, void *, size_t); void abd_take_ownership_of_buf(abd_t *, boolean_t); void abd_release_ownership_of_buf(abd_t *); /* * ABD operations */ int abd_iterate_func(abd_t *, size_t, size_t, abd_iter_func_t *, void *); int abd_iterate_func2(abd_t *, abd_t *, size_t, size_t, size_t, abd_iter_func2_t *, void *); +#if defined(__linux__) && defined(_KERNEL) +int abd_iterate_page_func(abd_t *, size_t, size_t, abd_iter_page_func_t *, + void *); +#endif void abd_copy_off(abd_t *, abd_t *, size_t, size_t, size_t); void abd_copy_from_buf_off(abd_t *, const void *, size_t, size_t); void abd_copy_to_buf_off(void *, abd_t *, size_t, size_t); int abd_cmp(abd_t *, abd_t *); int abd_cmp_buf_off(abd_t *, const void *, size_t, size_t); void abd_zero_off(abd_t *, size_t, size_t); void abd_verify(abd_t *); void abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd, size_t off, size_t csize, size_t dsize, const unsigned parity, void (*func_raidz_gen)(void **, const void *, size_t, size_t)); void abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds, size_t tsize, const unsigned parity, void (*func_raidz_rec)(void **t, const size_t tsize, void **c, const unsigned *mul), const unsigned *mul); /* * Wrappers for calls with offsets of 0 */ static inline void abd_copy(abd_t *dabd, abd_t *sabd, size_t size) { abd_copy_off(dabd, sabd, 0, 0, size); } static inline void abd_copy_from_buf(abd_t *abd, const void *buf, size_t size) { abd_copy_from_buf_off(abd, buf, 0, size); } static inline void abd_copy_to_buf(void* buf, abd_t *abd, size_t size) { abd_copy_to_buf_off(buf, abd, 0, size); } static inline int abd_cmp_buf(abd_t *abd, const void *buf, size_t size) { return (abd_cmp_buf_off(abd, buf, 0, size)); } static inline void abd_zero(abd_t *abd, size_t size) { abd_zero_off(abd, 0, size); } /* * ABD type check functions */ static inline boolean_t abd_is_linear(abd_t *abd) { return ((abd->abd_flags & ABD_FLAG_LINEAR) ? B_TRUE : B_FALSE); } static inline boolean_t abd_is_linear_page(abd_t *abd) { return ((abd->abd_flags & ABD_FLAG_LINEAR_PAGE) ? B_TRUE : B_FALSE); } static inline boolean_t abd_is_gang(abd_t *abd) { return ((abd->abd_flags & ABD_FLAG_GANG) ? B_TRUE : B_FALSE); } static inline uint_t abd_get_size(abd_t *abd) { return (abd->abd_size); } /* * Module lifecycle * Defined in each specific OS's abd_os.c */ void abd_init(void); void abd_fini(void); /* * Linux ABD bio functions */ #if defined(__linux__) && defined(_KERNEL) unsigned int abd_bio_map_off(struct bio *, abd_t *, unsigned int, size_t); unsigned long abd_nr_pages_off(abd_t *, unsigned int, size_t); #endif #ifdef __cplusplus } #endif #endif /* _ABD_H */ diff --git a/include/sys/abd_impl.h b/include/sys/abd_impl.h index 40546d4af137..f88ea25e245d 100644 --- a/include/sys/abd_impl.h +++ b/include/sys/abd_impl.h @@ -1,111 +1,131 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2014 by Chunwei Chen. All rights reserved. * Copyright (c) 2016, 2019 by Delphix. All rights reserved. + * Copyright (c) 2023, 2024, Klara Inc. */ #ifndef _ABD_IMPL_H #define _ABD_IMPL_H #include #include #ifdef __cplusplus extern "C" { #endif typedef enum abd_stats_op { ABDSTAT_INCR, /* Increase abdstat values */ ABDSTAT_DECR /* Decrease abdstat values */ } abd_stats_op_t; -struct scatterlist; /* forward declaration */ +/* forward declarations */ +struct scatterlist; +struct page; struct abd_iter { /* public interface */ - void *iter_mapaddr; /* addr corresponding to iter_pos */ - size_t iter_mapsize; /* length of data valid at mapaddr */ + union { + /* for abd_iter_map()/abd_iter_unmap() */ + struct { + /* addr corresponding to iter_pos */ + void *iter_mapaddr; + /* length of data valid at mapaddr */ + size_t iter_mapsize; + }; + /* for abd_iter_page() */ + struct { + /* current page */ + struct page *iter_page; + /* offset of data in page */ + size_t iter_page_doff; + /* size of data in page */ + size_t iter_page_dsize; + }; + }; /* private */ abd_t *iter_abd; /* ABD being iterated through */ size_t iter_pos; size_t iter_offset; /* offset in current sg/abd_buf, */ /* abd_offset included */ struct scatterlist *iter_sg; /* current sg */ }; extern abd_t *abd_zero_scatter; abd_t *abd_gang_get_offset(abd_t *, size_t *); abd_t *abd_alloc_struct(size_t); void abd_free_struct(abd_t *); /* * OS specific functions */ abd_t *abd_alloc_struct_impl(size_t); abd_t *abd_get_offset_scatter(abd_t *, abd_t *, size_t, size_t); void abd_free_struct_impl(abd_t *); void abd_alloc_chunks(abd_t *, size_t); void abd_free_chunks(abd_t *); void abd_update_scatter_stats(abd_t *, abd_stats_op_t); void abd_update_linear_stats(abd_t *, abd_stats_op_t); void abd_verify_scatter(abd_t *); void abd_free_linear_page(abd_t *); /* OS specific abd_iter functions */ void abd_iter_init(struct abd_iter *, abd_t *); boolean_t abd_iter_at_end(struct abd_iter *); void abd_iter_advance(struct abd_iter *, size_t); void abd_iter_map(struct abd_iter *); void abd_iter_unmap(struct abd_iter *); +void abd_iter_page(struct abd_iter *); /* * Helper macros */ #define ABDSTAT_INCR(stat, val) \ wmsum_add(&abd_sums.stat, (val)) #define ABDSTAT_BUMP(stat) ABDSTAT_INCR(stat, 1) #define ABDSTAT_BUMPDOWN(stat) ABDSTAT_INCR(stat, -1) #define ABD_SCATTER(abd) (abd->abd_u.abd_scatter) #define ABD_LINEAR_BUF(abd) (abd->abd_u.abd_linear.abd_buf) #define ABD_GANG(abd) (abd->abd_u.abd_gang) #if defined(_KERNEL) #if defined(__FreeBSD__) #define abd_enter_critical(flags) critical_enter() #define abd_exit_critical(flags) critical_exit() #else #define abd_enter_critical(flags) local_irq_save(flags) #define abd_exit_critical(flags) local_irq_restore(flags) #endif #else /* !_KERNEL */ #define abd_enter_critical(flags) ((void)0) #define abd_exit_critical(flags) ((void)0) #endif #ifdef __cplusplus } #endif #endif /* _ABD_IMPL_H */ diff --git a/module/os/freebsd/zfs/abd_os.c b/module/os/freebsd/zfs/abd_os.c index 58a37df62b69..3b812271f98b 100644 --- a/module/os/freebsd/zfs/abd_os.c +++ b/module/os/freebsd/zfs/abd_os.c @@ -1,505 +1,503 @@ /* * This file and its contents are supplied under the terms of the * Common Development and Distribution License ("CDDL"), version 1.0. * You may only use this file in accordance with the terms of version * 1.0 of the CDDL. * * A full copy of the text of the CDDL should have accompanied this * source. A copy of the CDDL is also available via the Internet at * http://www.illumos.org/license/CDDL. */ /* * Copyright (c) 2014 by Chunwei Chen. All rights reserved. * Copyright (c) 2016 by Delphix. All rights reserved. */ /* * See abd.c for a general overview of the arc buffered data (ABD). * * Using a large proportion of scattered ABDs decreases ARC fragmentation since * when we are at the limit of allocatable space, using equal-size chunks will * allow us to quickly reclaim enough space for a new large allocation (assuming * it is also scattered). * * ABDs are allocated scattered by default unless the caller uses * abd_alloc_linear() or zfs_abd_scatter_enabled is disabled. */ #include #include #include #include #include #include typedef struct abd_stats { kstat_named_t abdstat_struct_size; kstat_named_t abdstat_scatter_cnt; kstat_named_t abdstat_scatter_data_size; kstat_named_t abdstat_scatter_chunk_waste; kstat_named_t abdstat_linear_cnt; kstat_named_t abdstat_linear_data_size; } abd_stats_t; static abd_stats_t abd_stats = { /* Amount of memory occupied by all of the abd_t struct allocations */ { "struct_size", KSTAT_DATA_UINT64 }, /* * The number of scatter ABDs which are currently allocated, excluding * ABDs which don't own their data (for instance the ones which were * allocated through abd_get_offset()). */ { "scatter_cnt", KSTAT_DATA_UINT64 }, /* Amount of data stored in all scatter ABDs tracked by scatter_cnt */ { "scatter_data_size", KSTAT_DATA_UINT64 }, /* * The amount of space wasted at the end of the last chunk across all * scatter ABDs tracked by scatter_cnt. */ { "scatter_chunk_waste", KSTAT_DATA_UINT64 }, /* * The number of linear ABDs which are currently allocated, excluding * ABDs which don't own their data (for instance the ones which were * allocated through abd_get_offset() and abd_get_from_buf()). If an * ABD takes ownership of its buf then it will become tracked. */ { "linear_cnt", KSTAT_DATA_UINT64 }, /* Amount of data stored in all linear ABDs tracked by linear_cnt */ { "linear_data_size", KSTAT_DATA_UINT64 }, }; struct { wmsum_t abdstat_struct_size; wmsum_t abdstat_scatter_cnt; wmsum_t abdstat_scatter_data_size; wmsum_t abdstat_scatter_chunk_waste; wmsum_t abdstat_linear_cnt; wmsum_t abdstat_linear_data_size; } abd_sums; /* * zfs_abd_scatter_min_size is the minimum allocation size to use scatter * ABD's for. Smaller allocations will use linear ABD's which use * zio_[data_]buf_alloc(). * * Scatter ABD's use at least one page each, so sub-page allocations waste * some space when allocated as scatter (e.g. 2KB scatter allocation wastes * half of each page). Using linear ABD's for small allocations means that * they will be put on slabs which contain many allocations. * * Linear ABDs for multi-page allocations are easier to use, and in some cases * it allows to avoid buffer copying. But allocation and especially free * of multi-page linear ABDs are expensive operations due to KVA mapping and * unmapping, and with time they cause KVA fragmentations. */ static size_t zfs_abd_scatter_min_size = PAGE_SIZE + 1; #if defined(_KERNEL) SYSCTL_DECL(_vfs_zfs); SYSCTL_INT(_vfs_zfs, OID_AUTO, abd_scatter_enabled, CTLFLAG_RWTUN, &zfs_abd_scatter_enabled, 0, "Enable scattered ARC data buffers"); SYSCTL_ULONG(_vfs_zfs, OID_AUTO, abd_scatter_min_size, CTLFLAG_RWTUN, &zfs_abd_scatter_min_size, 0, "Minimum size of scatter allocations."); #endif kmem_cache_t *abd_chunk_cache; static kstat_t *abd_ksp; /* * We use a scattered SPA_MAXBLOCKSIZE sized ABD whose chunks are * just a single zero'd page-sized buffer. This allows us to conserve * memory by only using a single zero buffer for the scatter chunks. */ abd_t *abd_zero_scatter = NULL; static uint_t abd_chunkcnt_for_bytes(size_t size) { return ((size + PAGE_MASK) >> PAGE_SHIFT); } static inline uint_t abd_scatter_chunkcnt(abd_t *abd) { ASSERT(!abd_is_linear(abd)); return (abd_chunkcnt_for_bytes( ABD_SCATTER(abd).abd_offset + abd->abd_size)); } boolean_t abd_size_alloc_linear(size_t size) { return (!zfs_abd_scatter_enabled || size < zfs_abd_scatter_min_size); } void abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op) { uint_t n = abd_scatter_chunkcnt(abd); ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR); int waste = (n << PAGE_SHIFT) - abd->abd_size; if (op == ABDSTAT_INCR) { ABDSTAT_BUMP(abdstat_scatter_cnt); ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size); ABDSTAT_INCR(abdstat_scatter_chunk_waste, waste); arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE); } else { ABDSTAT_BUMPDOWN(abdstat_scatter_cnt); ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size); ABDSTAT_INCR(abdstat_scatter_chunk_waste, -waste); arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE); } } void abd_update_linear_stats(abd_t *abd, abd_stats_op_t op) { ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR); if (op == ABDSTAT_INCR) { ABDSTAT_BUMP(abdstat_linear_cnt); ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size); } else { ABDSTAT_BUMPDOWN(abdstat_linear_cnt); ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size); } } void abd_verify_scatter(abd_t *abd) { uint_t i, n; /* * There is no scatter linear pages in FreeBSD so there is * an error if the ABD has been marked as a linear page. */ ASSERT(!abd_is_linear_page(abd)); ASSERT3U(ABD_SCATTER(abd).abd_offset, <, PAGE_SIZE); n = abd_scatter_chunkcnt(abd); for (i = 0; i < n; i++) { ASSERT3P(ABD_SCATTER(abd).abd_chunks[i], !=, NULL); } } void abd_alloc_chunks(abd_t *abd, size_t size) { uint_t i, n; n = abd_chunkcnt_for_bytes(size); for (i = 0; i < n; i++) { ABD_SCATTER(abd).abd_chunks[i] = kmem_cache_alloc(abd_chunk_cache, KM_PUSHPAGE); } } void abd_free_chunks(abd_t *abd) { uint_t i, n; n = abd_scatter_chunkcnt(abd); for (i = 0; i < n; i++) { kmem_cache_free(abd_chunk_cache, ABD_SCATTER(abd).abd_chunks[i]); } } abd_t * abd_alloc_struct_impl(size_t size) { uint_t chunkcnt = abd_chunkcnt_for_bytes(size); /* * In the event we are allocating a gang ABD, the size passed in * will be 0. We must make sure to set abd_size to the size of an * ABD struct as opposed to an ABD scatter with 0 chunks. The gang * ABD struct allocation accounts for an additional 24 bytes over * a scatter ABD with 0 chunks. */ size_t abd_size = MAX(sizeof (abd_t), offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt])); abd_t *abd = kmem_alloc(abd_size, KM_PUSHPAGE); ASSERT3P(abd, !=, NULL); ABDSTAT_INCR(abdstat_struct_size, abd_size); return (abd); } void abd_free_struct_impl(abd_t *abd) { uint_t chunkcnt = abd_is_linear(abd) || abd_is_gang(abd) ? 0 : abd_scatter_chunkcnt(abd); ssize_t size = MAX(sizeof (abd_t), offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt])); kmem_free(abd, size); ABDSTAT_INCR(abdstat_struct_size, -size); } /* * Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where * each chunk in the scatterlist will be set to the same area. */ _Static_assert(ZERO_REGION_SIZE >= PAGE_SIZE, "zero_region too small"); static void abd_alloc_zero_scatter(void) { uint_t i, n; n = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE); abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE); abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER | ABD_FLAG_ZEROS; abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE; ABD_SCATTER(abd_zero_scatter).abd_offset = 0; for (i = 0; i < n; i++) { ABD_SCATTER(abd_zero_scatter).abd_chunks[i] = __DECONST(void *, zero_region); } ABDSTAT_BUMP(abdstat_scatter_cnt); ABDSTAT_INCR(abdstat_scatter_data_size, PAGE_SIZE); } static void abd_free_zero_scatter(void) { ABDSTAT_BUMPDOWN(abdstat_scatter_cnt); ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGE_SIZE); abd_free_struct(abd_zero_scatter); abd_zero_scatter = NULL; } static int abd_kstats_update(kstat_t *ksp, int rw) { abd_stats_t *as = ksp->ks_data; if (rw == KSTAT_WRITE) return (EACCES); as->abdstat_struct_size.value.ui64 = wmsum_value(&abd_sums.abdstat_struct_size); as->abdstat_scatter_cnt.value.ui64 = wmsum_value(&abd_sums.abdstat_scatter_cnt); as->abdstat_scatter_data_size.value.ui64 = wmsum_value(&abd_sums.abdstat_scatter_data_size); as->abdstat_scatter_chunk_waste.value.ui64 = wmsum_value(&abd_sums.abdstat_scatter_chunk_waste); as->abdstat_linear_cnt.value.ui64 = wmsum_value(&abd_sums.abdstat_linear_cnt); as->abdstat_linear_data_size.value.ui64 = wmsum_value(&abd_sums.abdstat_linear_data_size); return (0); } void abd_init(void) { abd_chunk_cache = kmem_cache_create("abd_chunk", PAGE_SIZE, 0, NULL, NULL, NULL, NULL, 0, KMC_NODEBUG); wmsum_init(&abd_sums.abdstat_struct_size, 0); wmsum_init(&abd_sums.abdstat_scatter_cnt, 0); wmsum_init(&abd_sums.abdstat_scatter_data_size, 0); wmsum_init(&abd_sums.abdstat_scatter_chunk_waste, 0); wmsum_init(&abd_sums.abdstat_linear_cnt, 0); wmsum_init(&abd_sums.abdstat_linear_data_size, 0); abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED, sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); if (abd_ksp != NULL) { abd_ksp->ks_data = &abd_stats; abd_ksp->ks_update = abd_kstats_update; kstat_install(abd_ksp); } abd_alloc_zero_scatter(); } void abd_fini(void) { abd_free_zero_scatter(); if (abd_ksp != NULL) { kstat_delete(abd_ksp); abd_ksp = NULL; } wmsum_fini(&abd_sums.abdstat_struct_size); wmsum_fini(&abd_sums.abdstat_scatter_cnt); wmsum_fini(&abd_sums.abdstat_scatter_data_size); wmsum_fini(&abd_sums.abdstat_scatter_chunk_waste); wmsum_fini(&abd_sums.abdstat_linear_cnt); wmsum_fini(&abd_sums.abdstat_linear_data_size); kmem_cache_destroy(abd_chunk_cache); abd_chunk_cache = NULL; } void abd_free_linear_page(abd_t *abd) { /* * FreeBSD does not have scatter linear pages * so there is an error. */ VERIFY(0); } /* * If we're going to use this ABD for doing I/O using the block layer, the * consumer of the ABD data doesn't care if it's scattered or not, and we don't * plan to store this ABD in memory for a long period of time, we should * allocate the ABD type that requires the least data copying to do the I/O. * * Currently this is linear ABDs, however if ldi_strategy() can ever issue I/Os * using a scatter/gather list we should switch to that and replace this call * with vanilla abd_alloc(). */ abd_t * abd_alloc_for_io(size_t size, boolean_t is_metadata) { return (abd_alloc_linear(size, is_metadata)); } abd_t * abd_get_offset_scatter(abd_t *abd, abd_t *sabd, size_t off, size_t size) { abd_verify(sabd); ASSERT3U(off, <=, sabd->abd_size); size_t new_offset = ABD_SCATTER(sabd).abd_offset + off; size_t chunkcnt = abd_chunkcnt_for_bytes( (new_offset & PAGE_MASK) + size); ASSERT3U(chunkcnt, <=, abd_scatter_chunkcnt(sabd)); /* * If an abd struct is provided, it is only the minimum size. If we * need additional chunks, we need to allocate a new struct. */ if (abd != NULL && offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]) > sizeof (abd_t)) { abd = NULL; } if (abd == NULL) abd = abd_alloc_struct(chunkcnt << PAGE_SHIFT); /* * Even if this buf is filesystem metadata, we only track that * if we own the underlying data buffer, which is not true in * this case. Therefore, we don't ever use ABD_FLAG_META here. */ ABD_SCATTER(abd).abd_offset = new_offset & PAGE_MASK; /* Copy the scatterlist starting at the correct offset */ (void) memcpy(&ABD_SCATTER(abd).abd_chunks, &ABD_SCATTER(sabd).abd_chunks[new_offset >> PAGE_SHIFT], chunkcnt * sizeof (void *)); return (abd); } /* * Initialize the abd_iter. */ void abd_iter_init(struct abd_iter *aiter, abd_t *abd) { ASSERT(!abd_is_gang(abd)); abd_verify(abd); + memset(aiter, 0, sizeof (struct abd_iter)); aiter->iter_abd = abd; - aiter->iter_pos = 0; - aiter->iter_mapaddr = NULL; - aiter->iter_mapsize = 0; } /* * This is just a helper function to see if we have exhausted the * abd_iter and reached the end. */ boolean_t abd_iter_at_end(struct abd_iter *aiter) { return (aiter->iter_pos == aiter->iter_abd->abd_size); } /* * Advance the iterator by a certain amount. Cannot be called when a chunk is * in use. This can be safely called when the aiter has already exhausted, in * which case this does nothing. */ void abd_iter_advance(struct abd_iter *aiter, size_t amount) { ASSERT3P(aiter->iter_mapaddr, ==, NULL); ASSERT0(aiter->iter_mapsize); /* There's nothing left to advance to, so do nothing */ if (abd_iter_at_end(aiter)) return; aiter->iter_pos += amount; } /* * Map the current chunk into aiter. This can be safely called when the aiter * has already exhausted, in which case this does nothing. */ void abd_iter_map(struct abd_iter *aiter) { void *paddr; ASSERT3P(aiter->iter_mapaddr, ==, NULL); ASSERT0(aiter->iter_mapsize); /* There's nothing left to iterate over, so do nothing */ if (abd_iter_at_end(aiter)) return; abd_t *abd = aiter->iter_abd; size_t offset = aiter->iter_pos; if (abd_is_linear(abd)) { aiter->iter_mapsize = abd->abd_size - offset; paddr = ABD_LINEAR_BUF(abd); } else { offset += ABD_SCATTER(abd).abd_offset; paddr = ABD_SCATTER(abd).abd_chunks[offset >> PAGE_SHIFT]; offset &= PAGE_MASK; aiter->iter_mapsize = MIN(PAGE_SIZE - offset, abd->abd_size - aiter->iter_pos); } aiter->iter_mapaddr = (char *)paddr + offset; } /* * Unmap the current chunk from aiter. This can be safely called when the aiter * has already exhausted, in which case this does nothing. */ void abd_iter_unmap(struct abd_iter *aiter) { if (!abd_iter_at_end(aiter)) { ASSERT3P(aiter->iter_mapaddr, !=, NULL); ASSERT3U(aiter->iter_mapsize, >, 0); } aiter->iter_mapaddr = NULL; aiter->iter_mapsize = 0; } void abd_cache_reap_now(void) { kmem_cache_reap_soon(abd_chunk_cache); } diff --git a/module/os/linux/zfs/abd_os.c b/module/os/linux/zfs/abd_os.c index 24390fbbf125..dae1280121da 100644 --- a/module/os/linux/zfs/abd_os.c +++ b/module/os/linux/zfs/abd_os.c @@ -1,1166 +1,1254 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2014 by Chunwei Chen. All rights reserved. * Copyright (c) 2019 by Delphix. All rights reserved. + * Copyright (c) 2023, 2024, Klara Inc. */ /* * See abd.c for a general overview of the arc buffered data (ABD). * * Linear buffers act exactly like normal buffers and are always mapped into the * kernel's virtual memory space, while scattered ABD data chunks are allocated * as physical pages and then mapped in only while they are actually being * accessed through one of the abd_* library functions. Using scattered ABDs * provides several benefits: * * (1) They avoid use of kmem_*, preventing performance problems where running * kmem_reap on very large memory systems never finishes and causes * constant TLB shootdowns. * * (2) Fragmentation is less of an issue since when we are at the limit of * allocatable space, we won't have to search around for a long free * hole in the VA space for large ARC allocations. Each chunk is mapped in * individually, so even if we are using HIGHMEM (see next point) we * wouldn't need to worry about finding a contiguous address range. * * (3) If we are not using HIGHMEM, then all physical memory is always * mapped into the kernel's address space, so we also avoid the map / * unmap costs on each ABD access. * * If we are not using HIGHMEM, scattered buffers which have only one chunk * can be treated as linear buffers, because they are contiguous in the * kernel's virtual address space. See abd_alloc_chunks() for details. */ #include #include #include #include #include #include #ifdef _KERNEL #include +#include #include #endif #ifdef _KERNEL #if defined(MAX_ORDER) #define ABD_MAX_ORDER (MAX_ORDER) #elif defined(MAX_PAGE_ORDER) #define ABD_MAX_ORDER (MAX_PAGE_ORDER) #endif #else #define ABD_MAX_ORDER (1) #endif typedef struct abd_stats { kstat_named_t abdstat_struct_size; kstat_named_t abdstat_linear_cnt; kstat_named_t abdstat_linear_data_size; kstat_named_t abdstat_scatter_cnt; kstat_named_t abdstat_scatter_data_size; kstat_named_t abdstat_scatter_chunk_waste; kstat_named_t abdstat_scatter_orders[ABD_MAX_ORDER]; kstat_named_t abdstat_scatter_page_multi_chunk; kstat_named_t abdstat_scatter_page_multi_zone; kstat_named_t abdstat_scatter_page_alloc_retry; kstat_named_t abdstat_scatter_sg_table_retry; } abd_stats_t; static abd_stats_t abd_stats = { /* Amount of memory occupied by all of the abd_t struct allocations */ { "struct_size", KSTAT_DATA_UINT64 }, /* * The number of linear ABDs which are currently allocated, excluding * ABDs which don't own their data (for instance the ones which were * allocated through abd_get_offset() and abd_get_from_buf()). If an * ABD takes ownership of its buf then it will become tracked. */ { "linear_cnt", KSTAT_DATA_UINT64 }, /* Amount of data stored in all linear ABDs tracked by linear_cnt */ { "linear_data_size", KSTAT_DATA_UINT64 }, /* * The number of scatter ABDs which are currently allocated, excluding * ABDs which don't own their data (for instance the ones which were * allocated through abd_get_offset()). */ { "scatter_cnt", KSTAT_DATA_UINT64 }, /* Amount of data stored in all scatter ABDs tracked by scatter_cnt */ { "scatter_data_size", KSTAT_DATA_UINT64 }, /* * The amount of space wasted at the end of the last chunk across all * scatter ABDs tracked by scatter_cnt. */ { "scatter_chunk_waste", KSTAT_DATA_UINT64 }, /* * The number of compound allocations of a given order. These * allocations are spread over all currently allocated ABDs, and * act as a measure of memory fragmentation. */ { { "scatter_order_N", KSTAT_DATA_UINT64 } }, /* * The number of scatter ABDs which contain multiple chunks. * ABDs are preferentially allocated from the minimum number of * contiguous multi-page chunks, a single chunk is optimal. */ { "scatter_page_multi_chunk", KSTAT_DATA_UINT64 }, /* * The number of scatter ABDs which are split across memory zones. * ABDs are preferentially allocated using pages from a single zone. */ { "scatter_page_multi_zone", KSTAT_DATA_UINT64 }, /* * The total number of retries encountered when attempting to * allocate the pages to populate the scatter ABD. */ { "scatter_page_alloc_retry", KSTAT_DATA_UINT64 }, /* * The total number of retries encountered when attempting to * allocate the sg table for an ABD. */ { "scatter_sg_table_retry", KSTAT_DATA_UINT64 }, }; static struct { wmsum_t abdstat_struct_size; wmsum_t abdstat_linear_cnt; wmsum_t abdstat_linear_data_size; wmsum_t abdstat_scatter_cnt; wmsum_t abdstat_scatter_data_size; wmsum_t abdstat_scatter_chunk_waste; wmsum_t abdstat_scatter_orders[ABD_MAX_ORDER]; wmsum_t abdstat_scatter_page_multi_chunk; wmsum_t abdstat_scatter_page_multi_zone; wmsum_t abdstat_scatter_page_alloc_retry; wmsum_t abdstat_scatter_sg_table_retry; } abd_sums; #define abd_for_each_sg(abd, sg, n, i) \ for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i) /* * zfs_abd_scatter_min_size is the minimum allocation size to use scatter * ABD's. Smaller allocations will use linear ABD's which uses * zio_[data_]buf_alloc(). * * Scatter ABD's use at least one page each, so sub-page allocations waste * some space when allocated as scatter (e.g. 2KB scatter allocation wastes * half of each page). Using linear ABD's for small allocations means that * they will be put on slabs which contain many allocations. This can * improve memory efficiency, but it also makes it much harder for ARC * evictions to actually free pages, because all the buffers on one slab need * to be freed in order for the slab (and underlying pages) to be freed. * Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's * possible for them to actually waste more memory than scatter (one page per * buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th). * * Spill blocks are typically 512B and are heavily used on systems running * selinux with the default dnode size and the `xattr=sa` property set. * * By default we use linear allocations for 512B and 1KB, and scatter * allocations for larger (1.5KB and up). */ static int zfs_abd_scatter_min_size = 512 * 3; /* * We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are * just a single zero'd page. This allows us to conserve memory by * only using a single zero page for the scatterlist. */ abd_t *abd_zero_scatter = NULL; struct page; /* * _KERNEL - Will point to ZERO_PAGE if it is available or it will be * an allocated zero'd PAGESIZE buffer. * Userspace - Will be an allocated zero'ed PAGESIZE buffer. * * abd_zero_page is assigned to each of the pages of abd_zero_scatter. */ static struct page *abd_zero_page = NULL; static kmem_cache_t *abd_cache = NULL; static kstat_t *abd_ksp; static uint_t abd_chunkcnt_for_bytes(size_t size) { return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE); } abd_t * abd_alloc_struct_impl(size_t size) { /* * In Linux we do not use the size passed in during ABD * allocation, so we just ignore it. */ (void) size; abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE); ASSERT3P(abd, !=, NULL); ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t)); return (abd); } void abd_free_struct_impl(abd_t *abd) { kmem_cache_free(abd_cache, abd); ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t)); } #ifdef _KERNEL static unsigned zfs_abd_scatter_max_order = ABD_MAX_ORDER - 1; /* * Mark zfs data pages so they can be excluded from kernel crash dumps */ #ifdef _LP64 #define ABD_FILE_CACHE_PAGE 0x2F5ABDF11ECAC4E static inline void abd_mark_zfs_page(struct page *page) { get_page(page); SetPagePrivate(page); set_page_private(page, ABD_FILE_CACHE_PAGE); } static inline void abd_unmark_zfs_page(struct page *page) { set_page_private(page, 0UL); ClearPagePrivate(page); put_page(page); } #else #define abd_mark_zfs_page(page) #define abd_unmark_zfs_page(page) #endif /* _LP64 */ #ifndef CONFIG_HIGHMEM #ifndef __GFP_RECLAIM #define __GFP_RECLAIM __GFP_WAIT #endif /* * The goal is to minimize fragmentation by preferentially populating ABDs * with higher order compound pages from a single zone. Allocation size is * progressively decreased until it can be satisfied without performing * reclaim or compaction. When necessary this function will degenerate to * allocating individual pages and allowing reclaim to satisfy allocations. */ void abd_alloc_chunks(abd_t *abd, size_t size) { struct list_head pages; struct sg_table table; struct scatterlist *sg; struct page *page, *tmp_page = NULL; gfp_t gfp = __GFP_NOWARN | GFP_NOIO; gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM; unsigned int max_order = MIN(zfs_abd_scatter_max_order, ABD_MAX_ORDER - 1); unsigned int nr_pages = abd_chunkcnt_for_bytes(size); unsigned int chunks = 0, zones = 0; size_t remaining_size; int nid = NUMA_NO_NODE; unsigned int alloc_pages = 0; INIT_LIST_HEAD(&pages); ASSERT3U(alloc_pages, <, nr_pages); while (alloc_pages < nr_pages) { unsigned int chunk_pages; unsigned int order; order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order); chunk_pages = (1U << order); page = alloc_pages_node(nid, order ? gfp_comp : gfp, order); if (page == NULL) { if (order == 0) { ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); schedule_timeout_interruptible(1); } else { max_order = MAX(0, order - 1); } continue; } list_add_tail(&page->lru, &pages); if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid)) zones++; nid = page_to_nid(page); ABDSTAT_BUMP(abdstat_scatter_orders[order]); chunks++; alloc_pages += chunk_pages; } ASSERT3S(alloc_pages, ==, nr_pages); while (sg_alloc_table(&table, chunks, gfp)) { ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); schedule_timeout_interruptible(1); } sg = table.sgl; remaining_size = size; list_for_each_entry_safe(page, tmp_page, &pages, lru) { size_t sg_size = MIN(PAGESIZE << compound_order(page), remaining_size); sg_set_page(sg, page, sg_size, 0); abd_mark_zfs_page(page); remaining_size -= sg_size; sg = sg_next(sg); list_del(&page->lru); } /* * These conditions ensure that a possible transformation to a linear * ABD would be valid. */ ASSERT(!PageHighMem(sg_page(table.sgl))); ASSERT0(ABD_SCATTER(abd).abd_offset); if (table.nents == 1) { /* * Since there is only one entry, this ABD can be represented * as a linear buffer. All single-page (4K) ABD's can be * represented this way. Some multi-page ABD's can also be * represented this way, if we were able to allocate a single * "chunk" (higher-order "page" which represents a power-of-2 * series of physically-contiguous pages). This is often the * case for 2-page (8K) ABD's. * * Representing a single-entry scatter ABD as a linear ABD * has the performance advantage of avoiding the copy (and * allocation) in abd_borrow_buf_copy / abd_return_buf_copy. * A performance increase of around 5% has been observed for * ARC-cached reads (of small blocks which can take advantage * of this). * * Note that this optimization is only possible because the * pages are always mapped into the kernel's address space. * This is not the case for highmem pages, so the * optimization can not be made there. */ abd->abd_flags |= ABD_FLAG_LINEAR; abd->abd_flags |= ABD_FLAG_LINEAR_PAGE; abd->abd_u.abd_linear.abd_sgl = table.sgl; ABD_LINEAR_BUF(abd) = page_address(sg_page(table.sgl)); } else if (table.nents > 1) { ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); abd->abd_flags |= ABD_FLAG_MULTI_CHUNK; if (zones) { ABDSTAT_BUMP(abdstat_scatter_page_multi_zone); abd->abd_flags |= ABD_FLAG_MULTI_ZONE; } ABD_SCATTER(abd).abd_sgl = table.sgl; ABD_SCATTER(abd).abd_nents = table.nents; } } #else /* * Allocate N individual pages to construct a scatter ABD. This function * makes no attempt to request contiguous pages and requires the minimal * number of kernel interfaces. It's designed for maximum compatibility. */ void abd_alloc_chunks(abd_t *abd, size_t size) { struct scatterlist *sg = NULL; struct sg_table table; struct page *page; gfp_t gfp = __GFP_NOWARN | GFP_NOIO; int nr_pages = abd_chunkcnt_for_bytes(size); int i = 0; while (sg_alloc_table(&table, nr_pages, gfp)) { ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); schedule_timeout_interruptible(1); } ASSERT3U(table.nents, ==, nr_pages); ABD_SCATTER(abd).abd_sgl = table.sgl; ABD_SCATTER(abd).abd_nents = nr_pages; abd_for_each_sg(abd, sg, nr_pages, i) { while ((page = __page_cache_alloc(gfp)) == NULL) { ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); schedule_timeout_interruptible(1); } ABDSTAT_BUMP(abdstat_scatter_orders[0]); sg_set_page(sg, page, PAGESIZE, 0); abd_mark_zfs_page(page); } if (nr_pages > 1) { ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); abd->abd_flags |= ABD_FLAG_MULTI_CHUNK; } } #endif /* !CONFIG_HIGHMEM */ /* * This must be called if any of the sg_table allocation functions * are called. */ static void abd_free_sg_table(abd_t *abd) { struct sg_table table; table.sgl = ABD_SCATTER(abd).abd_sgl; table.nents = table.orig_nents = ABD_SCATTER(abd).abd_nents; sg_free_table(&table); } void abd_free_chunks(abd_t *abd) { struct scatterlist *sg = NULL; struct page *page; int nr_pages = ABD_SCATTER(abd).abd_nents; int order, i = 0; if (abd->abd_flags & ABD_FLAG_MULTI_ZONE) ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone); if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK) ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk); abd_for_each_sg(abd, sg, nr_pages, i) { page = sg_page(sg); abd_unmark_zfs_page(page); order = compound_order(page); __free_pages(page, order); ASSERT3U(sg->length, <=, PAGE_SIZE << order); ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]); } abd_free_sg_table(abd); } /* * Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in * the scatterlist will be set to the zero'd out buffer abd_zero_page. */ static void abd_alloc_zero_scatter(void) { struct scatterlist *sg = NULL; struct sg_table table; gfp_t gfp = __GFP_NOWARN | GFP_NOIO; int nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE); int i = 0; #if defined(HAVE_ZERO_PAGE_GPL_ONLY) gfp_t gfp_zero_page = gfp | __GFP_ZERO; while ((abd_zero_page = __page_cache_alloc(gfp_zero_page)) == NULL) { ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); schedule_timeout_interruptible(1); } abd_mark_zfs_page(abd_zero_page); #else abd_zero_page = ZERO_PAGE(0); #endif /* HAVE_ZERO_PAGE_GPL_ONLY */ while (sg_alloc_table(&table, nr_pages, gfp)) { ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); schedule_timeout_interruptible(1); } ASSERT3U(table.nents, ==, nr_pages); abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE); abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER; ABD_SCATTER(abd_zero_scatter).abd_offset = 0; ABD_SCATTER(abd_zero_scatter).abd_sgl = table.sgl; ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages; abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE; abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS; abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) { sg_set_page(sg, abd_zero_page, PAGESIZE, 0); } ABDSTAT_BUMP(abdstat_scatter_cnt); ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE); ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); } #else /* _KERNEL */ #ifndef PAGE_SHIFT #define PAGE_SHIFT (highbit64(PAGESIZE)-1) #endif #define zfs_kmap_atomic(chunk) ((void *)chunk) #define zfs_kunmap_atomic(addr) do { (void)(addr); } while (0) #define local_irq_save(flags) do { (void)(flags); } while (0) #define local_irq_restore(flags) do { (void)(flags); } while (0) #define nth_page(pg, i) \ ((struct page *)((void *)(pg) + (i) * PAGESIZE)) struct scatterlist { struct page *page; int length; int end; }; static void sg_init_table(struct scatterlist *sg, int nr) { memset(sg, 0, nr * sizeof (struct scatterlist)); sg[nr - 1].end = 1; } /* * This must be called if any of the sg_table allocation functions * are called. */ static void abd_free_sg_table(abd_t *abd) { int nents = ABD_SCATTER(abd).abd_nents; vmem_free(ABD_SCATTER(abd).abd_sgl, nents * sizeof (struct scatterlist)); } #define for_each_sg(sgl, sg, nr, i) \ for ((i) = 0, (sg) = (sgl); (i) < (nr); (i)++, (sg) = sg_next(sg)) static inline void sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len, unsigned int offset) { /* currently we don't use offset */ ASSERT(offset == 0); sg->page = page; sg->length = len; } static inline struct page * sg_page(struct scatterlist *sg) { return (sg->page); } static inline struct scatterlist * sg_next(struct scatterlist *sg) { if (sg->end) return (NULL); return (sg + 1); } void abd_alloc_chunks(abd_t *abd, size_t size) { unsigned nr_pages = abd_chunkcnt_for_bytes(size); struct scatterlist *sg; int i; ABD_SCATTER(abd).abd_sgl = vmem_alloc(nr_pages * sizeof (struct scatterlist), KM_SLEEP); sg_init_table(ABD_SCATTER(abd).abd_sgl, nr_pages); abd_for_each_sg(abd, sg, nr_pages, i) { struct page *p = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP); sg_set_page(sg, p, PAGESIZE, 0); } ABD_SCATTER(abd).abd_nents = nr_pages; } void abd_free_chunks(abd_t *abd) { int i, n = ABD_SCATTER(abd).abd_nents; struct scatterlist *sg; abd_for_each_sg(abd, sg, n, i) { struct page *p = nth_page(sg_page(sg), 0); umem_free_aligned(p, PAGESIZE); } abd_free_sg_table(abd); } static void abd_alloc_zero_scatter(void) { unsigned nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE); struct scatterlist *sg; int i; abd_zero_page = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP); memset(abd_zero_page, 0, PAGESIZE); abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE); abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER; abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS; ABD_SCATTER(abd_zero_scatter).abd_offset = 0; ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages; abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE; ABD_SCATTER(abd_zero_scatter).abd_sgl = vmem_alloc(nr_pages * sizeof (struct scatterlist), KM_SLEEP); sg_init_table(ABD_SCATTER(abd_zero_scatter).abd_sgl, nr_pages); abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) { sg_set_page(sg, abd_zero_page, PAGESIZE, 0); } ABDSTAT_BUMP(abdstat_scatter_cnt); ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE); ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); } #endif /* _KERNEL */ boolean_t abd_size_alloc_linear(size_t size) { return (!zfs_abd_scatter_enabled || size < zfs_abd_scatter_min_size); } void abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op) { ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR); int waste = P2ROUNDUP(abd->abd_size, PAGESIZE) - abd->abd_size; if (op == ABDSTAT_INCR) { ABDSTAT_BUMP(abdstat_scatter_cnt); ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size); ABDSTAT_INCR(abdstat_scatter_chunk_waste, waste); arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE); } else { ABDSTAT_BUMPDOWN(abdstat_scatter_cnt); ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size); ABDSTAT_INCR(abdstat_scatter_chunk_waste, -waste); arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE); } } void abd_update_linear_stats(abd_t *abd, abd_stats_op_t op) { ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR); if (op == ABDSTAT_INCR) { ABDSTAT_BUMP(abdstat_linear_cnt); ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size); } else { ABDSTAT_BUMPDOWN(abdstat_linear_cnt); ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size); } } void abd_verify_scatter(abd_t *abd) { size_t n; int i = 0; struct scatterlist *sg = NULL; ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0); ASSERT3U(ABD_SCATTER(abd).abd_offset, <, ABD_SCATTER(abd).abd_sgl->length); n = ABD_SCATTER(abd).abd_nents; abd_for_each_sg(abd, sg, n, i) { ASSERT3P(sg_page(sg), !=, NULL); } } static void abd_free_zero_scatter(void) { ABDSTAT_BUMPDOWN(abdstat_scatter_cnt); ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGESIZE); ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk); abd_free_sg_table(abd_zero_scatter); abd_free_struct(abd_zero_scatter); abd_zero_scatter = NULL; ASSERT3P(abd_zero_page, !=, NULL); #if defined(_KERNEL) #if defined(HAVE_ZERO_PAGE_GPL_ONLY) abd_unmark_zfs_page(abd_zero_page); __free_page(abd_zero_page); #endif /* HAVE_ZERO_PAGE_GPL_ONLY */ #else umem_free_aligned(abd_zero_page, PAGESIZE); #endif /* _KERNEL */ } static int abd_kstats_update(kstat_t *ksp, int rw) { abd_stats_t *as = ksp->ks_data; if (rw == KSTAT_WRITE) return (EACCES); as->abdstat_struct_size.value.ui64 = wmsum_value(&abd_sums.abdstat_struct_size); as->abdstat_linear_cnt.value.ui64 = wmsum_value(&abd_sums.abdstat_linear_cnt); as->abdstat_linear_data_size.value.ui64 = wmsum_value(&abd_sums.abdstat_linear_data_size); as->abdstat_scatter_cnt.value.ui64 = wmsum_value(&abd_sums.abdstat_scatter_cnt); as->abdstat_scatter_data_size.value.ui64 = wmsum_value(&abd_sums.abdstat_scatter_data_size); as->abdstat_scatter_chunk_waste.value.ui64 = wmsum_value(&abd_sums.abdstat_scatter_chunk_waste); for (int i = 0; i < ABD_MAX_ORDER; i++) { as->abdstat_scatter_orders[i].value.ui64 = wmsum_value(&abd_sums.abdstat_scatter_orders[i]); } as->abdstat_scatter_page_multi_chunk.value.ui64 = wmsum_value(&abd_sums.abdstat_scatter_page_multi_chunk); as->abdstat_scatter_page_multi_zone.value.ui64 = wmsum_value(&abd_sums.abdstat_scatter_page_multi_zone); as->abdstat_scatter_page_alloc_retry.value.ui64 = wmsum_value(&abd_sums.abdstat_scatter_page_alloc_retry); as->abdstat_scatter_sg_table_retry.value.ui64 = wmsum_value(&abd_sums.abdstat_scatter_sg_table_retry); return (0); } void abd_init(void) { int i; abd_cache = kmem_cache_create("abd_t", sizeof (abd_t), 0, NULL, NULL, NULL, NULL, NULL, 0); wmsum_init(&abd_sums.abdstat_struct_size, 0); wmsum_init(&abd_sums.abdstat_linear_cnt, 0); wmsum_init(&abd_sums.abdstat_linear_data_size, 0); wmsum_init(&abd_sums.abdstat_scatter_cnt, 0); wmsum_init(&abd_sums.abdstat_scatter_data_size, 0); wmsum_init(&abd_sums.abdstat_scatter_chunk_waste, 0); for (i = 0; i < ABD_MAX_ORDER; i++) wmsum_init(&abd_sums.abdstat_scatter_orders[i], 0); wmsum_init(&abd_sums.abdstat_scatter_page_multi_chunk, 0); wmsum_init(&abd_sums.abdstat_scatter_page_multi_zone, 0); wmsum_init(&abd_sums.abdstat_scatter_page_alloc_retry, 0); wmsum_init(&abd_sums.abdstat_scatter_sg_table_retry, 0); abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED, sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); if (abd_ksp != NULL) { for (i = 0; i < ABD_MAX_ORDER; i++) { snprintf(abd_stats.abdstat_scatter_orders[i].name, KSTAT_STRLEN, "scatter_order_%d", i); abd_stats.abdstat_scatter_orders[i].data_type = KSTAT_DATA_UINT64; } abd_ksp->ks_data = &abd_stats; abd_ksp->ks_update = abd_kstats_update; kstat_install(abd_ksp); } abd_alloc_zero_scatter(); } void abd_fini(void) { abd_free_zero_scatter(); if (abd_ksp != NULL) { kstat_delete(abd_ksp); abd_ksp = NULL; } wmsum_fini(&abd_sums.abdstat_struct_size); wmsum_fini(&abd_sums.abdstat_linear_cnt); wmsum_fini(&abd_sums.abdstat_linear_data_size); wmsum_fini(&abd_sums.abdstat_scatter_cnt); wmsum_fini(&abd_sums.abdstat_scatter_data_size); wmsum_fini(&abd_sums.abdstat_scatter_chunk_waste); for (int i = 0; i < ABD_MAX_ORDER; i++) wmsum_fini(&abd_sums.abdstat_scatter_orders[i]); wmsum_fini(&abd_sums.abdstat_scatter_page_multi_chunk); wmsum_fini(&abd_sums.abdstat_scatter_page_multi_zone); wmsum_fini(&abd_sums.abdstat_scatter_page_alloc_retry); wmsum_fini(&abd_sums.abdstat_scatter_sg_table_retry); if (abd_cache) { kmem_cache_destroy(abd_cache); abd_cache = NULL; } } void abd_free_linear_page(abd_t *abd) { /* Transform it back into a scatter ABD for freeing */ struct scatterlist *sg = abd->abd_u.abd_linear.abd_sgl; abd->abd_flags &= ~ABD_FLAG_LINEAR; abd->abd_flags &= ~ABD_FLAG_LINEAR_PAGE; ABD_SCATTER(abd).abd_nents = 1; ABD_SCATTER(abd).abd_offset = 0; ABD_SCATTER(abd).abd_sgl = sg; abd_free_chunks(abd); abd_update_scatter_stats(abd, ABDSTAT_DECR); } /* * If we're going to use this ABD for doing I/O using the block layer, the * consumer of the ABD data doesn't care if it's scattered or not, and we don't * plan to store this ABD in memory for a long period of time, we should * allocate the ABD type that requires the least data copying to do the I/O. * * On Linux the optimal thing to do would be to use abd_get_offset() and * construct a new ABD which shares the original pages thereby eliminating * the copy. But for the moment a new linear ABD is allocated until this * performance optimization can be implemented. */ abd_t * abd_alloc_for_io(size_t size, boolean_t is_metadata) { return (abd_alloc(size, is_metadata)); } abd_t * abd_get_offset_scatter(abd_t *abd, abd_t *sabd, size_t off, size_t size) { (void) size; int i = 0; struct scatterlist *sg = NULL; abd_verify(sabd); ASSERT3U(off, <=, sabd->abd_size); size_t new_offset = ABD_SCATTER(sabd).abd_offset + off; if (abd == NULL) abd = abd_alloc_struct(0); /* * Even if this buf is filesystem metadata, we only track that * if we own the underlying data buffer, which is not true in * this case. Therefore, we don't ever use ABD_FLAG_META here. */ abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) { if (new_offset < sg->length) break; new_offset -= sg->length; } ABD_SCATTER(abd).abd_sgl = sg; ABD_SCATTER(abd).abd_offset = new_offset; ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i; return (abd); } /* * Initialize the abd_iter. */ void abd_iter_init(struct abd_iter *aiter, abd_t *abd) { ASSERT(!abd_is_gang(abd)); abd_verify(abd); + memset(aiter, 0, sizeof (struct abd_iter)); aiter->iter_abd = abd; - aiter->iter_mapaddr = NULL; - aiter->iter_mapsize = 0; - aiter->iter_pos = 0; - if (abd_is_linear(abd)) { - aiter->iter_offset = 0; - aiter->iter_sg = NULL; - } else { + if (!abd_is_linear(abd)) { aiter->iter_offset = ABD_SCATTER(abd).abd_offset; aiter->iter_sg = ABD_SCATTER(abd).abd_sgl; } } /* * This is just a helper function to see if we have exhausted the * abd_iter and reached the end. */ boolean_t abd_iter_at_end(struct abd_iter *aiter) { + ASSERT3U(aiter->iter_pos, <=, aiter->iter_abd->abd_size); return (aiter->iter_pos == aiter->iter_abd->abd_size); } /* * Advance the iterator by a certain amount. Cannot be called when a chunk is * in use. This can be safely called when the aiter has already exhausted, in * which case this does nothing. */ void abd_iter_advance(struct abd_iter *aiter, size_t amount) { + /* + * Ensure that last chunk is not in use. abd_iterate_*() must clear + * this state (directly or abd_iter_unmap()) before advancing. + */ ASSERT3P(aiter->iter_mapaddr, ==, NULL); ASSERT0(aiter->iter_mapsize); + ASSERT3P(aiter->iter_page, ==, NULL); + ASSERT0(aiter->iter_page_doff); + ASSERT0(aiter->iter_page_dsize); /* There's nothing left to advance to, so do nothing */ if (abd_iter_at_end(aiter)) return; aiter->iter_pos += amount; aiter->iter_offset += amount; if (!abd_is_linear(aiter->iter_abd)) { while (aiter->iter_offset >= aiter->iter_sg->length) { aiter->iter_offset -= aiter->iter_sg->length; aiter->iter_sg = sg_next(aiter->iter_sg); if (aiter->iter_sg == NULL) { ASSERT0(aiter->iter_offset); break; } } } } /* * Map the current chunk into aiter. This can be safely called when the aiter * has already exhausted, in which case this does nothing. */ void abd_iter_map(struct abd_iter *aiter) { void *paddr; size_t offset = 0; ASSERT3P(aiter->iter_mapaddr, ==, NULL); ASSERT0(aiter->iter_mapsize); /* There's nothing left to iterate over, so do nothing */ if (abd_iter_at_end(aiter)) return; if (abd_is_linear(aiter->iter_abd)) { ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset); offset = aiter->iter_offset; aiter->iter_mapsize = aiter->iter_abd->abd_size - offset; paddr = ABD_LINEAR_BUF(aiter->iter_abd); } else { offset = aiter->iter_offset; aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset, aiter->iter_abd->abd_size - aiter->iter_pos); paddr = zfs_kmap_atomic(sg_page(aiter->iter_sg)); } aiter->iter_mapaddr = (char *)paddr + offset; } /* * Unmap the current chunk from aiter. This can be safely called when the aiter * has already exhausted, in which case this does nothing. */ void abd_iter_unmap(struct abd_iter *aiter) { /* There's nothing left to unmap, so do nothing */ if (abd_iter_at_end(aiter)) return; if (!abd_is_linear(aiter->iter_abd)) { /* LINTED E_FUNC_SET_NOT_USED */ zfs_kunmap_atomic(aiter->iter_mapaddr - aiter->iter_offset); } ASSERT3P(aiter->iter_mapaddr, !=, NULL); ASSERT3U(aiter->iter_mapsize, >, 0); aiter->iter_mapaddr = NULL; aiter->iter_mapsize = 0; } void abd_cache_reap_now(void) { } #if defined(_KERNEL) +/* + * Yield the next page struct and data offset and size within it, without + * mapping it into the address space. + */ +void +abd_iter_page(struct abd_iter *aiter) +{ + if (abd_iter_at_end(aiter)) { + aiter->iter_page = NULL; + aiter->iter_page_doff = 0; + aiter->iter_page_dsize = 0; + return; + } + + struct page *page; + size_t doff, dsize; + + if (abd_is_linear(aiter->iter_abd)) { + ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset); + + /* memory address at iter_pos */ + void *paddr = ABD_LINEAR_BUF(aiter->iter_abd) + aiter->iter_pos; + + /* struct page for address */ + page = is_vmalloc_addr(paddr) ? + vmalloc_to_page(paddr) : virt_to_page(paddr); + + /* offset of address within the page */ + doff = offset_in_page(paddr); + + /* total data remaining in abd from this position */ + dsize = aiter->iter_abd->abd_size - aiter->iter_offset; + } else { + ASSERT(!abd_is_gang(aiter->iter_abd)); + + /* current scatter page */ + page = sg_page(aiter->iter_sg); + + /* position within page */ + doff = aiter->iter_offset; + + /* remaining data in scatterlist */ + dsize = MIN(aiter->iter_sg->length - aiter->iter_offset, + aiter->iter_abd->abd_size - aiter->iter_pos); + } + ASSERT(page); + + if (PageTail(page)) { + /* + * This page is part of a "compound page", which is a group of + * pages that can be referenced from a single struct page *. + * Its organised as a "head" page, followed by a series of + * "tail" pages. + * + * In OpenZFS, compound pages are allocated using the + * __GFP_COMP flag, which we get from scatter ABDs and SPL + * vmalloc slabs (ie >16K allocations). So a great many of the + * IO buffers we get are going to be of this type. + * + * The tail pages are just regular PAGE_SIZE pages, and can be + * safely used as-is. However, the head page has length + * covering itself and all the tail pages. If this ABD chunk + * spans multiple pages, then we can use the head page and a + * >PAGE_SIZE length, which is far more efficient. + * + * To do this, we need to adjust the offset to be counted from + * the head page. struct page for compound pages are stored + * contiguously, so we can just adjust by a simple offset. + */ + struct page *head = compound_head(page); + doff += ((page - head) * PAGESIZE); + page = head; + } + + /* final page and position within it */ + aiter->iter_page = page; + aiter->iter_page_doff = doff; + + /* amount of data in the chunk, up to the end of the page */ + aiter->iter_page_dsize = MIN(dsize, page_size(page) - doff); +} + /* * bio_nr_pages for ABD. * @off is the offset in @abd */ unsigned long abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off) { unsigned long pos; if (abd_is_gang(abd)) { unsigned long count = 0; for (abd_t *cabd = abd_gang_get_offset(abd, &off); cabd != NULL && size != 0; cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { ASSERT3U(off, <, cabd->abd_size); int mysize = MIN(size, cabd->abd_size - off); count += abd_nr_pages_off(cabd, mysize, off); size -= mysize; off = 0; } return (count); } if (abd_is_linear(abd)) pos = (unsigned long)abd_to_buf(abd) + off; else pos = ABD_SCATTER(abd).abd_offset + off; return (((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) - (pos >> PAGE_SHIFT)); } static unsigned int bio_map(struct bio *bio, void *buf_ptr, unsigned int bio_size) { unsigned int offset, size, i; struct page *page; offset = offset_in_page(buf_ptr); for (i = 0; i < bio->bi_max_vecs; i++) { size = PAGE_SIZE - offset; if (bio_size <= 0) break; if (size > bio_size) size = bio_size; if (is_vmalloc_addr(buf_ptr)) page = vmalloc_to_page(buf_ptr); else page = virt_to_page(buf_ptr); /* * Some network related block device uses tcp_sendpage, which * doesn't behave well when using 0-count page, this is a * safety net to catch them. */ ASSERT3S(page_count(page), >, 0); if (bio_add_page(bio, page, size, offset) != size) break; buf_ptr += size; bio_size -= size; offset = 0; } return (bio_size); } /* * bio_map for gang ABD. */ static unsigned int abd_gang_bio_map_off(struct bio *bio, abd_t *abd, unsigned int io_size, size_t off) { ASSERT(abd_is_gang(abd)); for (abd_t *cabd = abd_gang_get_offset(abd, &off); cabd != NULL; cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { ASSERT3U(off, <, cabd->abd_size); int size = MIN(io_size, cabd->abd_size - off); int remainder = abd_bio_map_off(bio, cabd, size, off); io_size -= (size - remainder); if (io_size == 0 || remainder > 0) return (io_size); off = 0; } ASSERT0(io_size); return (io_size); } /* * bio_map for ABD. * @off is the offset in @abd * Remaining IO size is returned */ unsigned int abd_bio_map_off(struct bio *bio, abd_t *abd, unsigned int io_size, size_t off) { struct abd_iter aiter; ASSERT3U(io_size, <=, abd->abd_size - off); if (abd_is_linear(abd)) return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, io_size)); ASSERT(!abd_is_linear(abd)); if (abd_is_gang(abd)) return (abd_gang_bio_map_off(bio, abd, io_size, off)); abd_iter_init(&aiter, abd); abd_iter_advance(&aiter, off); for (int i = 0; i < bio->bi_max_vecs; i++) { struct page *pg; size_t len, sgoff, pgoff; struct scatterlist *sg; if (io_size <= 0) break; sg = aiter.iter_sg; sgoff = aiter.iter_offset; pgoff = sgoff & (PAGESIZE - 1); len = MIN(io_size, PAGESIZE - pgoff); ASSERT(len > 0); pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT); if (bio_add_page(bio, pg, len, pgoff) != len) break; io_size -= len; abd_iter_advance(&aiter, len); } return (io_size); } /* Tunable Parameters */ module_param(zfs_abd_scatter_enabled, int, 0644); MODULE_PARM_DESC(zfs_abd_scatter_enabled, "Toggle whether ABD allocations must be linear."); module_param(zfs_abd_scatter_min_size, int, 0644); MODULE_PARM_DESC(zfs_abd_scatter_min_size, "Minimum size of scatter allocations."); /* CSTYLED */ module_param(zfs_abd_scatter_max_order, uint, 0644); MODULE_PARM_DESC(zfs_abd_scatter_max_order, "Maximum order allocation used for a scatter ABD."); -#endif + +#endif /* _KERNEL */ diff --git a/module/zfs/abd.c b/module/zfs/abd.c index 0a2411a2d572..2c0cda25dbc6 100644 --- a/module/zfs/abd.c +++ b/module/zfs/abd.c @@ -1,1176 +1,1218 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2014 by Chunwei Chen. All rights reserved. * Copyright (c) 2019 by Delphix. All rights reserved. */ /* * ARC buffer data (ABD). * * ABDs are an abstract data structure for the ARC which can use two * different ways of storing the underlying data: * * (a) Linear buffer. In this case, all the data in the ABD is stored in one * contiguous buffer in memory (from a zio_[data_]buf_* kmem cache). * * +-------------------+ * | ABD (linear) | * | abd_flags = ... | * | abd_size = ... | +--------------------------------+ * | abd_buf ------------->| raw buffer of size abd_size | * +-------------------+ +--------------------------------+ * no abd_chunks * * (b) Scattered buffer. In this case, the data in the ABD is split into * equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers * to the chunks recorded in an array at the end of the ABD structure. * * +-------------------+ * | ABD (scattered) | * | abd_flags = ... | * | abd_size = ... | * | abd_offset = 0 | +-----------+ * | abd_chunks[0] ----------------------------->| chunk 0 | * | abd_chunks[1] ---------------------+ +-----------+ * | ... | | +-----------+ * | abd_chunks[N-1] ---------+ +------->| chunk 1 | * +-------------------+ | +-----------+ * | ... * | +-----------+ * +----------------->| chunk N-1 | * +-----------+ * * In addition to directly allocating a linear or scattered ABD, it is also * possible to create an ABD by requesting the "sub-ABD" starting at an offset * within an existing ABD. In linear buffers this is simple (set abd_buf of * the new ABD to the starting point within the original raw buffer), but * scattered ABDs are a little more complex. The new ABD makes a copy of the * relevant abd_chunks pointers (but not the underlying data). However, to * provide arbitrary rather than only chunk-aligned starting offsets, it also * tracks an abd_offset field which represents the starting point of the data * within the first chunk in abd_chunks. For both linear and scattered ABDs, * creating an offset ABD marks the original ABD as the offset's parent, and the * original ABD's abd_children refcount is incremented. This data allows us to * ensure the root ABD isn't deleted before its children. * * Most consumers should never need to know what type of ABD they're using -- * the ABD public API ensures that it's possible to transparently switch from * using a linear ABD to a scattered one when doing so would be beneficial. * * If you need to use the data within an ABD directly, if you know it's linear * (because you allocated it) you can use abd_to_buf() to access the underlying * raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions * which will allocate a raw buffer if necessary. Use the abd_return_buf* * functions to return any raw buffers that are no longer necessary when you're * done using them. * * There are a variety of ABD APIs that implement basic buffer operations: * compare, copy, read, write, and fill with zeroes. If you need a custom * function which progressively accesses the whole ABD, use the abd_iterate_* * functions. * * As an additional feature, linear and scatter ABD's can be stitched together * by using the gang ABD type (abd_alloc_gang_abd()). This allows for * multiple ABDs to be viewed as a singular ABD. * * It is possible to make all ABDs linear by setting zfs_abd_scatter_enabled to * B_FALSE. */ #include #include #include #include #include /* see block comment above for description */ int zfs_abd_scatter_enabled = B_TRUE; void abd_verify(abd_t *abd) { #ifdef ZFS_DEBUG ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE); ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR | ABD_FLAG_OWNER | ABD_FLAG_META | ABD_FLAG_MULTI_ZONE | ABD_FLAG_MULTI_CHUNK | ABD_FLAG_LINEAR_PAGE | ABD_FLAG_GANG | ABD_FLAG_GANG_FREE | ABD_FLAG_ZEROS | ABD_FLAG_ALLOCD)); IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER)); IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER); if (abd_is_linear(abd)) { ASSERT3U(abd->abd_size, >, 0); ASSERT3P(ABD_LINEAR_BUF(abd), !=, NULL); } else if (abd_is_gang(abd)) { uint_t child_sizes = 0; for (abd_t *cabd = list_head(&ABD_GANG(abd).abd_gang_chain); cabd != NULL; cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { ASSERT(list_link_active(&cabd->abd_gang_link)); child_sizes += cabd->abd_size; abd_verify(cabd); } ASSERT3U(abd->abd_size, ==, child_sizes); } else { ASSERT3U(abd->abd_size, >, 0); abd_verify_scatter(abd); } #endif } static void abd_init_struct(abd_t *abd) { list_link_init(&abd->abd_gang_link); mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL); abd->abd_flags = 0; #ifdef ZFS_DEBUG zfs_refcount_create(&abd->abd_children); abd->abd_parent = NULL; #endif abd->abd_size = 0; } static void abd_fini_struct(abd_t *abd) { mutex_destroy(&abd->abd_mtx); ASSERT(!list_link_active(&abd->abd_gang_link)); #ifdef ZFS_DEBUG zfs_refcount_destroy(&abd->abd_children); #endif } abd_t * abd_alloc_struct(size_t size) { abd_t *abd = abd_alloc_struct_impl(size); abd_init_struct(abd); abd->abd_flags |= ABD_FLAG_ALLOCD; return (abd); } void abd_free_struct(abd_t *abd) { abd_fini_struct(abd); abd_free_struct_impl(abd); } /* * Allocate an ABD, along with its own underlying data buffers. Use this if you * don't care whether the ABD is linear or not. */ abd_t * abd_alloc(size_t size, boolean_t is_metadata) { if (abd_size_alloc_linear(size)) return (abd_alloc_linear(size, is_metadata)); VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); abd_t *abd = abd_alloc_struct(size); abd->abd_flags |= ABD_FLAG_OWNER; abd->abd_u.abd_scatter.abd_offset = 0; abd_alloc_chunks(abd, size); if (is_metadata) { abd->abd_flags |= ABD_FLAG_META; } abd->abd_size = size; abd_update_scatter_stats(abd, ABDSTAT_INCR); return (abd); } /* * Allocate an ABD that must be linear, along with its own underlying data * buffer. Only use this when it would be very annoying to write your ABD * consumer with a scattered ABD. */ abd_t * abd_alloc_linear(size_t size, boolean_t is_metadata) { abd_t *abd = abd_alloc_struct(0); VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); abd->abd_flags |= ABD_FLAG_LINEAR | ABD_FLAG_OWNER; if (is_metadata) { abd->abd_flags |= ABD_FLAG_META; } abd->abd_size = size; if (is_metadata) { ABD_LINEAR_BUF(abd) = zio_buf_alloc(size); } else { ABD_LINEAR_BUF(abd) = zio_data_buf_alloc(size); } abd_update_linear_stats(abd, ABDSTAT_INCR); return (abd); } static void abd_free_linear(abd_t *abd) { if (abd_is_linear_page(abd)) { abd_free_linear_page(abd); return; } if (abd->abd_flags & ABD_FLAG_META) { zio_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size); } else { zio_data_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size); } abd_update_linear_stats(abd, ABDSTAT_DECR); } static void abd_free_gang(abd_t *abd) { ASSERT(abd_is_gang(abd)); abd_t *cabd; while ((cabd = list_head(&ABD_GANG(abd).abd_gang_chain)) != NULL) { /* * We must acquire the child ABDs mutex to ensure that if it * is being added to another gang ABD we will set the link * as inactive when removing it from this gang ABD and before * adding it to the other gang ABD. */ mutex_enter(&cabd->abd_mtx); ASSERT(list_link_active(&cabd->abd_gang_link)); list_remove(&ABD_GANG(abd).abd_gang_chain, cabd); mutex_exit(&cabd->abd_mtx); if (cabd->abd_flags & ABD_FLAG_GANG_FREE) abd_free(cabd); } list_destroy(&ABD_GANG(abd).abd_gang_chain); } static void abd_free_scatter(abd_t *abd) { abd_free_chunks(abd); abd_update_scatter_stats(abd, ABDSTAT_DECR); } /* * Free an ABD. Use with any kind of abd: those created with abd_alloc_*() * and abd_get_*(), including abd_get_offset_struct(). * * If the ABD was created with abd_alloc_*(), the underlying data * (scatterlist or linear buffer) will also be freed. (Subject to ownership * changes via abd_*_ownership_of_buf().) * * Unless the ABD was created with abd_get_offset_struct(), the abd_t will * also be freed. */ void abd_free(abd_t *abd) { if (abd == NULL) return; abd_verify(abd); #ifdef ZFS_DEBUG IMPLY(abd->abd_flags & ABD_FLAG_OWNER, abd->abd_parent == NULL); #endif if (abd_is_gang(abd)) { abd_free_gang(abd); } else if (abd_is_linear(abd)) { if (abd->abd_flags & ABD_FLAG_OWNER) abd_free_linear(abd); } else { if (abd->abd_flags & ABD_FLAG_OWNER) abd_free_scatter(abd); } #ifdef ZFS_DEBUG if (abd->abd_parent != NULL) { (void) zfs_refcount_remove_many(&abd->abd_parent->abd_children, abd->abd_size, abd); } #endif abd_fini_struct(abd); if (abd->abd_flags & ABD_FLAG_ALLOCD) abd_free_struct_impl(abd); } /* * Allocate an ABD of the same format (same metadata flag, same scatterize * setting) as another ABD. */ abd_t * abd_alloc_sametype(abd_t *sabd, size_t size) { boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0; if (abd_is_linear(sabd) && !abd_is_linear_page(sabd)) { return (abd_alloc_linear(size, is_metadata)); } else { return (abd_alloc(size, is_metadata)); } } /* * Create gang ABD that will be the head of a list of ABD's. This is used * to "chain" scatter/gather lists together when constructing aggregated * IO's. To free this abd, abd_free() must be called. */ abd_t * abd_alloc_gang(void) { abd_t *abd = abd_alloc_struct(0); abd->abd_flags |= ABD_FLAG_GANG | ABD_FLAG_OWNER; list_create(&ABD_GANG(abd).abd_gang_chain, sizeof (abd_t), offsetof(abd_t, abd_gang_link)); return (abd); } /* * Add a child gang ABD to a parent gang ABDs chained list. */ static void abd_gang_add_gang(abd_t *pabd, abd_t *cabd, boolean_t free_on_free) { ASSERT(abd_is_gang(pabd)); ASSERT(abd_is_gang(cabd)); if (free_on_free) { /* * If the parent is responsible for freeing the child gang * ABD we will just splice the child's children ABD list to * the parent's list and immediately free the child gang ABD * struct. The parent gang ABDs children from the child gang * will retain all the free_on_free settings after being * added to the parents list. */ #ifdef ZFS_DEBUG /* * If cabd had abd_parent, we have to drop it here. We can't * transfer it to pabd, nor we can clear abd_size leaving it. */ if (cabd->abd_parent != NULL) { (void) zfs_refcount_remove_many( &cabd->abd_parent->abd_children, cabd->abd_size, cabd); cabd->abd_parent = NULL; } #endif pabd->abd_size += cabd->abd_size; cabd->abd_size = 0; list_move_tail(&ABD_GANG(pabd).abd_gang_chain, &ABD_GANG(cabd).abd_gang_chain); ASSERT(list_is_empty(&ABD_GANG(cabd).abd_gang_chain)); abd_verify(pabd); abd_free(cabd); } else { for (abd_t *child = list_head(&ABD_GANG(cabd).abd_gang_chain); child != NULL; child = list_next(&ABD_GANG(cabd).abd_gang_chain, child)) { /* * We always pass B_FALSE for free_on_free as it is the * original child gang ABDs responsibility to determine * if any of its child ABDs should be free'd on the call * to abd_free(). */ abd_gang_add(pabd, child, B_FALSE); } abd_verify(pabd); } } /* * Add a child ABD to a gang ABD's chained list. */ void abd_gang_add(abd_t *pabd, abd_t *cabd, boolean_t free_on_free) { ASSERT(abd_is_gang(pabd)); abd_t *child_abd = NULL; /* * If the child being added is a gang ABD, we will add the * child's ABDs to the parent gang ABD. This allows us to account * for the offset correctly in the parent gang ABD. */ if (abd_is_gang(cabd)) { ASSERT(!list_link_active(&cabd->abd_gang_link)); return (abd_gang_add_gang(pabd, cabd, free_on_free)); } ASSERT(!abd_is_gang(cabd)); /* * In order to verify that an ABD is not already part of * another gang ABD, we must lock the child ABD's abd_mtx * to check its abd_gang_link status. We unlock the abd_mtx * only after it is has been added to a gang ABD, which * will update the abd_gang_link's status. See comment below * for how an ABD can be in multiple gang ABD's simultaneously. */ mutex_enter(&cabd->abd_mtx); if (list_link_active(&cabd->abd_gang_link)) { /* * If the child ABD is already part of another * gang ABD then we must allocate a new * ABD to use a separate link. We mark the newly * allocated ABD with ABD_FLAG_GANG_FREE, before * adding it to the gang ABD's list, to make the * gang ABD aware that it is responsible to call * abd_free(). We use abd_get_offset() in order * to just allocate a new ABD but avoid copying the * data over into the newly allocated ABD. * * An ABD may become part of multiple gang ABD's. For * example, when writing ditto bocks, the same ABD * is used to write 2 or 3 locations with 2 or 3 * zio_t's. Each of the zio's may be aggregated with * different adjacent zio's. zio aggregation uses gang * zio's, so the single ABD can become part of multiple * gang zio's. * * The ASSERT below is to make sure that if * free_on_free is passed as B_TRUE, the ABD can * not be in multiple gang ABD's. The gang ABD * can not be responsible for cleaning up the child * ABD memory allocation if the ABD can be in * multiple gang ABD's at one time. */ ASSERT3B(free_on_free, ==, B_FALSE); child_abd = abd_get_offset(cabd, 0); child_abd->abd_flags |= ABD_FLAG_GANG_FREE; } else { child_abd = cabd; if (free_on_free) child_abd->abd_flags |= ABD_FLAG_GANG_FREE; } ASSERT3P(child_abd, !=, NULL); list_insert_tail(&ABD_GANG(pabd).abd_gang_chain, child_abd); mutex_exit(&cabd->abd_mtx); pabd->abd_size += child_abd->abd_size; } /* * Locate the ABD for the supplied offset in the gang ABD. * Return a new offset relative to the returned ABD. */ abd_t * abd_gang_get_offset(abd_t *abd, size_t *off) { abd_t *cabd; ASSERT(abd_is_gang(abd)); ASSERT3U(*off, <, abd->abd_size); for (cabd = list_head(&ABD_GANG(abd).abd_gang_chain); cabd != NULL; cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { if (*off >= cabd->abd_size) *off -= cabd->abd_size; else return (cabd); } VERIFY3P(cabd, !=, NULL); return (cabd); } /* * Allocate a new ABD, using the provided struct (if non-NULL, and if * circumstances allow - otherwise allocate the struct). The returned ABD will * point to offset off of sabd. It shares the underlying buffer data with sabd. * Use abd_free() to free. sabd must not be freed while any derived ABDs exist. */ static abd_t * abd_get_offset_impl(abd_t *abd, abd_t *sabd, size_t off, size_t size) { abd_verify(sabd); ASSERT3U(off + size, <=, sabd->abd_size); if (abd_is_linear(sabd)) { if (abd == NULL) abd = abd_alloc_struct(0); /* * Even if this buf is filesystem metadata, we only track that * if we own the underlying data buffer, which is not true in * this case. Therefore, we don't ever use ABD_FLAG_META here. */ abd->abd_flags |= ABD_FLAG_LINEAR; ABD_LINEAR_BUF(abd) = (char *)ABD_LINEAR_BUF(sabd) + off; } else if (abd_is_gang(sabd)) { size_t left = size; if (abd == NULL) { abd = abd_alloc_gang(); } else { abd->abd_flags |= ABD_FLAG_GANG; list_create(&ABD_GANG(abd).abd_gang_chain, sizeof (abd_t), offsetof(abd_t, abd_gang_link)); } abd->abd_flags &= ~ABD_FLAG_OWNER; for (abd_t *cabd = abd_gang_get_offset(sabd, &off); cabd != NULL && left > 0; cabd = list_next(&ABD_GANG(sabd).abd_gang_chain, cabd)) { int csize = MIN(left, cabd->abd_size - off); abd_t *nabd = abd_get_offset_size(cabd, off, csize); abd_gang_add(abd, nabd, B_TRUE); left -= csize; off = 0; } ASSERT3U(left, ==, 0); } else { abd = abd_get_offset_scatter(abd, sabd, off, size); } ASSERT3P(abd, !=, NULL); abd->abd_size = size; #ifdef ZFS_DEBUG abd->abd_parent = sabd; (void) zfs_refcount_add_many(&sabd->abd_children, abd->abd_size, abd); #endif return (abd); } /* * Like abd_get_offset_size(), but memory for the abd_t is provided by the * caller. Using this routine can improve performance by avoiding the cost * of allocating memory for the abd_t struct, and updating the abd stats. * Usually, the provided abd is returned, but in some circumstances (FreeBSD, * if sabd is scatter and size is more than 2 pages) a new abd_t may need to * be allocated. Therefore callers should be careful to use the returned * abd_t*. */ abd_t * abd_get_offset_struct(abd_t *abd, abd_t *sabd, size_t off, size_t size) { abd_t *result; abd_init_struct(abd); result = abd_get_offset_impl(abd, sabd, off, size); if (result != abd) abd_fini_struct(abd); return (result); } abd_t * abd_get_offset(abd_t *sabd, size_t off) { size_t size = sabd->abd_size > off ? sabd->abd_size - off : 0; VERIFY3U(size, >, 0); return (abd_get_offset_impl(NULL, sabd, off, size)); } abd_t * abd_get_offset_size(abd_t *sabd, size_t off, size_t size) { ASSERT3U(off + size, <=, sabd->abd_size); return (abd_get_offset_impl(NULL, sabd, off, size)); } /* * Return a size scatter ABD containing only zeros. */ abd_t * abd_get_zeros(size_t size) { ASSERT3P(abd_zero_scatter, !=, NULL); ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); return (abd_get_offset_size(abd_zero_scatter, 0, size)); } /* * Allocate a linear ABD structure for buf. */ abd_t * abd_get_from_buf(void *buf, size_t size) { abd_t *abd = abd_alloc_struct(0); VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); /* * Even if this buf is filesystem metadata, we only track that if we * own the underlying data buffer, which is not true in this case. * Therefore, we don't ever use ABD_FLAG_META here. */ abd->abd_flags |= ABD_FLAG_LINEAR; abd->abd_size = size; ABD_LINEAR_BUF(abd) = buf; return (abd); } /* * Get the raw buffer associated with a linear ABD. */ void * abd_to_buf(abd_t *abd) { ASSERT(abd_is_linear(abd)); abd_verify(abd); return (ABD_LINEAR_BUF(abd)); } /* * Borrow a raw buffer from an ABD without copying the contents of the ABD * into the buffer. If the ABD is scattered, this will allocate a raw buffer * whose contents are undefined. To copy over the existing data in the ABD, use * abd_borrow_buf_copy() instead. */ void * abd_borrow_buf(abd_t *abd, size_t n) { void *buf; abd_verify(abd); ASSERT3U(abd->abd_size, >=, n); if (abd_is_linear(abd)) { buf = abd_to_buf(abd); } else { buf = zio_buf_alloc(n); } #ifdef ZFS_DEBUG (void) zfs_refcount_add_many(&abd->abd_children, n, buf); #endif return (buf); } void * abd_borrow_buf_copy(abd_t *abd, size_t n) { void *buf = abd_borrow_buf(abd, n); if (!abd_is_linear(abd)) { abd_copy_to_buf(buf, abd, n); } return (buf); } /* * Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will * not change the contents of the ABD and will ASSERT that you didn't modify * the buffer since it was borrowed. If you want any changes you made to buf to * be copied back to abd, use abd_return_buf_copy() instead. */ void abd_return_buf(abd_t *abd, void *buf, size_t n) { abd_verify(abd); ASSERT3U(abd->abd_size, >=, n); #ifdef ZFS_DEBUG (void) zfs_refcount_remove_many(&abd->abd_children, n, buf); #endif if (abd_is_linear(abd)) { ASSERT3P(buf, ==, abd_to_buf(abd)); } else { ASSERT0(abd_cmp_buf(abd, buf, n)); zio_buf_free(buf, n); } } void abd_return_buf_copy(abd_t *abd, void *buf, size_t n) { if (!abd_is_linear(abd)) { abd_copy_from_buf(abd, buf, n); } abd_return_buf(abd, buf, n); } void abd_release_ownership_of_buf(abd_t *abd) { ASSERT(abd_is_linear(abd)); ASSERT(abd->abd_flags & ABD_FLAG_OWNER); /* * abd_free() needs to handle LINEAR_PAGE ABD's specially. * Since that flag does not survive the * abd_release_ownership_of_buf() -> abd_get_from_buf() -> * abd_take_ownership_of_buf() sequence, we don't allow releasing * these "linear but not zio_[data_]buf_alloc()'ed" ABD's. */ ASSERT(!abd_is_linear_page(abd)); abd_verify(abd); abd->abd_flags &= ~ABD_FLAG_OWNER; /* Disable this flag since we no longer own the data buffer */ abd->abd_flags &= ~ABD_FLAG_META; abd_update_linear_stats(abd, ABDSTAT_DECR); } /* * Give this ABD ownership of the buffer that it's storing. Can only be used on * linear ABDs which were allocated via abd_get_from_buf(), or ones allocated * with abd_alloc_linear() which subsequently released ownership of their buf * with abd_release_ownership_of_buf(). */ void abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata) { ASSERT(abd_is_linear(abd)); ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER)); abd_verify(abd); abd->abd_flags |= ABD_FLAG_OWNER; if (is_metadata) { abd->abd_flags |= ABD_FLAG_META; } abd_update_linear_stats(abd, ABDSTAT_INCR); } /* * Initializes an abd_iter based on whether the abd is a gang ABD * or just a single ABD. */ static inline abd_t * abd_init_abd_iter(abd_t *abd, struct abd_iter *aiter, size_t off) { abd_t *cabd = NULL; if (abd_is_gang(abd)) { cabd = abd_gang_get_offset(abd, &off); if (cabd) { abd_iter_init(aiter, cabd); abd_iter_advance(aiter, off); } } else { abd_iter_init(aiter, abd); abd_iter_advance(aiter, off); } return (cabd); } /* * Advances an abd_iter. We have to be careful with gang ABD as * advancing could mean that we are at the end of a particular ABD and * must grab the ABD in the gang ABD's list. */ static inline abd_t * abd_advance_abd_iter(abd_t *abd, abd_t *cabd, struct abd_iter *aiter, size_t len) { abd_iter_advance(aiter, len); if (abd_is_gang(abd) && abd_iter_at_end(aiter)) { ASSERT3P(cabd, !=, NULL); cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd); if (cabd) { abd_iter_init(aiter, cabd); abd_iter_advance(aiter, 0); } } return (cabd); } int abd_iterate_func(abd_t *abd, size_t off, size_t size, abd_iter_func_t *func, void *private) { struct abd_iter aiter; int ret = 0; if (size == 0) return (0); abd_verify(abd); ASSERT3U(off + size, <=, abd->abd_size); abd_t *c_abd = abd_init_abd_iter(abd, &aiter, off); while (size > 0) { IMPLY(abd_is_gang(abd), c_abd != NULL); abd_iter_map(&aiter); size_t len = MIN(aiter.iter_mapsize, size); ASSERT3U(len, >, 0); ret = func(aiter.iter_mapaddr, len, private); abd_iter_unmap(&aiter); if (ret != 0) break; size -= len; c_abd = abd_advance_abd_iter(abd, c_abd, &aiter, len); } return (ret); } +#if defined(__linux__) && defined(_KERNEL) +int +abd_iterate_page_func(abd_t *abd, size_t off, size_t size, + abd_iter_page_func_t *func, void *private) +{ + struct abd_iter aiter; + int ret = 0; + + if (size == 0) + return (0); + + abd_verify(abd); + ASSERT3U(off + size, <=, abd->abd_size); + + abd_t *c_abd = abd_init_abd_iter(abd, &aiter, off); + + while (size > 0) { + IMPLY(abd_is_gang(abd), c_abd != NULL); + + abd_iter_page(&aiter); + + size_t len = MIN(aiter.iter_page_dsize, size); + ASSERT3U(len, >, 0); + + ret = func(aiter.iter_page, aiter.iter_page_doff, + len, private); + + aiter.iter_page = NULL; + aiter.iter_page_doff = 0; + aiter.iter_page_dsize = 0; + + if (ret != 0) + break; + + size -= len; + c_abd = abd_advance_abd_iter(abd, c_abd, &aiter, len); + } + + return (ret); +} +#endif + struct buf_arg { void *arg_buf; }; static int abd_copy_to_buf_off_cb(void *buf, size_t size, void *private) { struct buf_arg *ba_ptr = private; (void) memcpy(ba_ptr->arg_buf, buf, size); ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; return (0); } /* * Copy abd to buf. (off is the offset in abd.) */ void abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size) { struct buf_arg ba_ptr = { buf }; (void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb, &ba_ptr); } static int abd_cmp_buf_off_cb(void *buf, size_t size, void *private) { int ret; struct buf_arg *ba_ptr = private; ret = memcmp(buf, ba_ptr->arg_buf, size); ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; return (ret); } /* * Compare the contents of abd to buf. (off is the offset in abd.) */ int abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size) { struct buf_arg ba_ptr = { (void *) buf }; return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr)); } static int abd_copy_from_buf_off_cb(void *buf, size_t size, void *private) { struct buf_arg *ba_ptr = private; (void) memcpy(buf, ba_ptr->arg_buf, size); ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; return (0); } /* * Copy from buf to abd. (off is the offset in abd.) */ void abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size) { struct buf_arg ba_ptr = { (void *) buf }; (void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb, &ba_ptr); } static int abd_zero_off_cb(void *buf, size_t size, void *private) { (void) private; (void) memset(buf, 0, size); return (0); } /* * Zero out the abd from a particular offset to the end. */ void abd_zero_off(abd_t *abd, size_t off, size_t size) { (void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL); } /* * Iterate over two ABDs and call func incrementally on the two ABDs' data in * equal-sized chunks (passed to func as raw buffers). func could be called many * times during this iteration. */ int abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size, abd_iter_func2_t *func, void *private) { int ret = 0; struct abd_iter daiter, saiter; abd_t *c_dabd, *c_sabd; if (size == 0) return (0); abd_verify(dabd); abd_verify(sabd); ASSERT3U(doff + size, <=, dabd->abd_size); ASSERT3U(soff + size, <=, sabd->abd_size); c_dabd = abd_init_abd_iter(dabd, &daiter, doff); c_sabd = abd_init_abd_iter(sabd, &saiter, soff); while (size > 0) { IMPLY(abd_is_gang(dabd), c_dabd != NULL); IMPLY(abd_is_gang(sabd), c_sabd != NULL); abd_iter_map(&daiter); abd_iter_map(&saiter); size_t dlen = MIN(daiter.iter_mapsize, size); size_t slen = MIN(saiter.iter_mapsize, size); size_t len = MIN(dlen, slen); ASSERT(dlen > 0 || slen > 0); ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len, private); abd_iter_unmap(&saiter); abd_iter_unmap(&daiter); if (ret != 0) break; size -= len; c_dabd = abd_advance_abd_iter(dabd, c_dabd, &daiter, len); c_sabd = abd_advance_abd_iter(sabd, c_sabd, &saiter, len); } return (ret); } static int abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private) { (void) private; (void) memcpy(dbuf, sbuf, size); return (0); } /* * Copy from sabd to dabd starting from soff and doff. */ void abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size) { (void) abd_iterate_func2(dabd, sabd, doff, soff, size, abd_copy_off_cb, NULL); } static int abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private) { (void) private; return (memcmp(bufa, bufb, size)); } /* * Compares the contents of two ABDs. */ int abd_cmp(abd_t *dabd, abd_t *sabd) { ASSERT3U(dabd->abd_size, ==, sabd->abd_size); return (abd_iterate_func2(dabd, sabd, 0, 0, dabd->abd_size, abd_cmp_cb, NULL)); } /* * Iterate over code ABDs and a data ABD and call @func_raidz_gen. * * @cabds parity ABDs, must have equal size * @dabd data ABD. Can be NULL (in this case @dsize = 0) * @func_raidz_gen should be implemented so that its behaviour * is the same when taking linear and when taking scatter */ void abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd, size_t off, size_t csize, size_t dsize, const unsigned parity, void (*func_raidz_gen)(void **, const void *, size_t, size_t)) { int i; size_t len, dlen; struct abd_iter caiters[3]; struct abd_iter daiter; void *caddrs[3], *daddr; unsigned long flags __maybe_unused = 0; abd_t *c_cabds[3]; abd_t *c_dabd = NULL; ASSERT3U(parity, <=, 3); for (i = 0; i < parity; i++) { abd_verify(cabds[i]); ASSERT3U(off + csize, <=, cabds[i]->abd_size); c_cabds[i] = abd_init_abd_iter(cabds[i], &caiters[i], off); } if (dsize > 0) { ASSERT(dabd); abd_verify(dabd); ASSERT3U(off + dsize, <=, dabd->abd_size); c_dabd = abd_init_abd_iter(dabd, &daiter, off); } abd_enter_critical(flags); while (csize > 0) { len = csize; for (i = 0; i < parity; i++) { IMPLY(abd_is_gang(cabds[i]), c_cabds[i] != NULL); abd_iter_map(&caiters[i]); caddrs[i] = caiters[i].iter_mapaddr; len = MIN(caiters[i].iter_mapsize, len); } if (dsize > 0) { IMPLY(abd_is_gang(dabd), c_dabd != NULL); abd_iter_map(&daiter); daddr = daiter.iter_mapaddr; len = MIN(daiter.iter_mapsize, len); dlen = len; } else { daddr = NULL; dlen = 0; } /* must be progressive */ ASSERT3U(len, >, 0); /* * The iterated function likely will not do well if each * segment except the last one is not multiple of 512 (raidz). */ ASSERT3U(((uint64_t)len & 511ULL), ==, 0); func_raidz_gen(caddrs, daddr, len, dlen); for (i = parity-1; i >= 0; i--) { abd_iter_unmap(&caiters[i]); c_cabds[i] = abd_advance_abd_iter(cabds[i], c_cabds[i], &caiters[i], len); } if (dsize > 0) { abd_iter_unmap(&daiter); c_dabd = abd_advance_abd_iter(dabd, c_dabd, &daiter, dlen); dsize -= dlen; } csize -= len; } abd_exit_critical(flags); } /* * Iterate over code ABDs and data reconstruction target ABDs and call * @func_raidz_rec. Function maps at most 6 pages atomically. * * @cabds parity ABDs, must have equal size * @tabds rec target ABDs, at most 3 * @tsize size of data target columns * @func_raidz_rec expects syndrome data in target columns. Function * reconstructs data and overwrites target columns. */ void abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds, size_t tsize, const unsigned parity, void (*func_raidz_rec)(void **t, const size_t tsize, void **c, const unsigned *mul), const unsigned *mul) { int i; size_t len; struct abd_iter citers[3]; struct abd_iter xiters[3]; void *caddrs[3], *xaddrs[3]; unsigned long flags __maybe_unused = 0; abd_t *c_cabds[3]; abd_t *c_tabds[3]; ASSERT3U(parity, <=, 3); for (i = 0; i < parity; i++) { abd_verify(cabds[i]); abd_verify(tabds[i]); ASSERT3U(tsize, <=, cabds[i]->abd_size); ASSERT3U(tsize, <=, tabds[i]->abd_size); c_cabds[i] = abd_init_abd_iter(cabds[i], &citers[i], 0); c_tabds[i] = abd_init_abd_iter(tabds[i], &xiters[i], 0); } abd_enter_critical(flags); while (tsize > 0) { len = tsize; for (i = 0; i < parity; i++) { IMPLY(abd_is_gang(cabds[i]), c_cabds[i] != NULL); IMPLY(abd_is_gang(tabds[i]), c_tabds[i] != NULL); abd_iter_map(&citers[i]); abd_iter_map(&xiters[i]); caddrs[i] = citers[i].iter_mapaddr; xaddrs[i] = xiters[i].iter_mapaddr; len = MIN(citers[i].iter_mapsize, len); len = MIN(xiters[i].iter_mapsize, len); } /* must be progressive */ ASSERT3S(len, >, 0); /* * The iterated function likely will not do well if each * segment except the last one is not multiple of 512 (raidz). */ ASSERT3U(((uint64_t)len & 511ULL), ==, 0); func_raidz_rec(xaddrs, len, caddrs, mul); for (i = parity-1; i >= 0; i--) { abd_iter_unmap(&xiters[i]); abd_iter_unmap(&citers[i]); c_tabds[i] = abd_advance_abd_iter(tabds[i], c_tabds[i], &xiters[i], len); c_cabds[i] = abd_advance_abd_iter(cabds[i], c_cabds[i], &citers[i], len); } tsize -= len; ASSERT3S(tsize, >=, 0); } abd_exit_critical(flags); }