diff --git a/share/man/man9/zone.9 b/share/man/man9/zone.9 index cae76dbc6ff7..e26b29976807 100644 --- a/share/man/man9/zone.9 +++ b/share/man/man9/zone.9 @@ -1,597 +1,603 @@ .\"- .\" Copyright (c) 2001 Dag-Erling Coïdan Smørgrav .\" All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" .\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" $FreeBSD$ .\" -.Dd April 14, 2021 +.Dd February 15, 2022 .Dt UMA 9 .Os .Sh NAME .Nm UMA .Nd general-purpose kernel object allocator .Sh SYNOPSIS .In sys/param.h .In sys/queue.h .In vm/uma.h .Bd -literal typedef int (*uma_ctor)(void *mem, int size, void *arg, int flags); typedef void (*uma_dtor)(void *mem, int size, void *arg); typedef int (*uma_init)(void *mem, int size, int flags); typedef void (*uma_fini)(void *mem, int size); typedef int (*uma_import)(void *arg, void **store, int count, int domain, int flags); typedef void (*uma_release)(void *arg, void **store, int count); typedef void *(*uma_alloc)(uma_zone_t zone, vm_size_t size, int domain, uint8_t *pflag, int wait); typedef void (*uma_free)(void *item, vm_size_t size, uint8_t pflag); .Ed .Ft uma_zone_t .Fo uma_zcreate .Fa "char *name" "int size" .Fa "uma_ctor ctor" "uma_dtor dtor" "uma_init zinit" "uma_fini zfini" .Fa "int align" "uint16_t flags" .Fc .Ft uma_zone_t .Fo uma_zcache_create .Fa "char *name" "int size" .Fa "uma_ctor ctor" "uma_dtor dtor" "uma_init zinit" "uma_fini zfini" .Fa "uma_import zimport" "uma_release zrelease" .Fa "void *arg" "int flags" .Fc .Ft uma_zone_t .Fo uma_zsecond_create .Fa "char *name" .Fa "uma_ctor ctor" "uma_dtor dtor" "uma_init zinit" "uma_fini zfini" .Fa "uma_zone_t master" .Fc .Ft void .Fn uma_zdestroy "uma_zone_t zone" .Ft "void *" .Fn uma_zalloc "uma_zone_t zone" "int flags" .Ft "void *" .Fn uma_zalloc_arg "uma_zone_t zone" "void *arg" "int flags" .Ft "void *" .Fn uma_zalloc_domain "uma_zone_t zone" "void *arg" "int domain" "int flags" .Ft "void *" .Fn uma_zalloc_pcpu "uma_zone_t zone" "int flags" .Ft "void *" .Fn uma_zalloc_pcpu_arg "uma_zone_t zone" "void *arg" "int flags" .Ft void .Fn uma_zfree "uma_zone_t zone" "void *item" .Ft void .Fn uma_zfree_arg "uma_zone_t zone" "void *item" "void *arg" .Ft void .Fn uma_zfree_pcpu "uma_zone_t zone" "void *item" .Ft void .Fn uma_zfree_pcpu_arg "uma_zone_t zone" "void *item" "void *arg" .Ft void .Fn uma_prealloc "uma_zone_t zone" "int nitems" .Ft void .Fn uma_zone_reserve "uma_zone_t zone" "int nitems" .Ft void .Fn uma_zone_reserve_kva "uma_zone_t zone" "int nitems" .Ft void .Fn uma_reclaim "int req" .Ft void .Fn uma_reclaim_domain "int req" "int domain" .Ft void .Fn uma_zone_reclaim "uma_zone_t zone" "int req" .Ft void .Fn uma_zone_reclaim_domain "uma_zone_t zone" "int req" "int domain" .Ft void .Fn uma_zone_set_allocf "uma_zone_t zone" "uma_alloc allocf" .Ft void .Fn uma_zone_set_freef "uma_zone_t zone" "uma_free freef" .Ft int .Fn uma_zone_set_max "uma_zone_t zone" "int nitems" .Ft void .Fn uma_zone_set_maxcache "uma_zone_t zone" "int nitems" .Ft int .Fn uma_zone_get_max "uma_zone_t zone" .Ft int .Fn uma_zone_get_cur "uma_zone_t zone" .Ft void .Fn uma_zone_set_warning "uma_zone_t zone" "const char *warning" .Ft void .Fn uma_zone_set_maxaction "uma_zone_t zone" "void (*maxaction)(uma_zone_t)" .In sys/sysctl.h .Fn SYSCTL_UMA_MAX parent nbr name access zone descr .Fn SYSCTL_ADD_UMA_MAX ctx parent nbr name access zone descr .Fn SYSCTL_UMA_CUR parent nbr name access zone descr .Fn SYSCTL_ADD_UMA_CUR ctx parent nbr name access zone descr .Sh DESCRIPTION UMA (Universal Memory Allocator) provides an efficient interface for managing dynamically-sized collections of items of identical size, referred to as zones. Zones keep track of which items are in use and which are not, and UMA provides functions for allocating items from a zone and for releasing them back, making them available for subsequent allocation requests. Zones maintain per-CPU caches with linear scalability on SMP systems as well as round-robin and first-touch policies for NUMA systems. The number of items cached per CPU is bounded, and each zone additionally maintains an unbounded cache of items that is used to quickly satisfy per-CPU cache allocation misses. .Pp Two types of zones exist: regular zones and cache zones. In a regular zone, items are allocated from a slab, which is one or more virtually contiguous memory pages that have been allocated from the kernel's page allocator. Internally, slabs are managed by a UMA keg, which is responsible for allocating slabs and keeping track of their usage by one or more zones. In typical usage, there is one keg per zone, so slabs are not shared among multiple zones. .Pp Normal zones import items from a keg, and release items back to that keg if requested. Cache zones do not have a keg, and instead use custom import and release methods. For example, some collections of kernel objects are statically allocated at boot-time, and the size of the collection does not change. A cache zone can be used to implement an efficient allocator for the objects in such a collection. .Pp The .Fn uma_zcreate and .Fn uma_zcache_create functions create a new regular zone and cache zone, respectively. The .Fn uma_zsecond_create function creates a regular zone which shares the keg of the zone specified by the .Fa master argument. The .Fa name argument is a text name of the zone for debugging and stats; this memory should not be freed until the zone has been deallocated. .Pp The .Fa ctor and .Fa dtor arguments are callback functions that are called by the UMA subsystem at the time of the call to .Fn uma_zalloc and .Fn uma_zfree respectively. Their purpose is to provide hooks for initializing or destroying things that need to be done at the time of the allocation or release of a resource. A good usage for the .Fa ctor and .Fa dtor callbacks might be to initialize a data structure embedded in the item, such as a .Xr queue 3 head. .Pp The .Fa zinit and .Fa zfini arguments are used to optimize the allocation of items from the zone. They are called by the UMA subsystem whenever it needs to allocate or free items to satisfy requests or memory pressure. A good use for the .Fa zinit and .Fa zfini callbacks might be to initialize and destroy a mutex contained within an item. This would allow one to avoid destroying and re-initializing the mutex each time the item is freed and re-allocated. They are not called on each call to .Fn uma_zalloc and .Fn uma_zfree but rather when an item is imported into a zone's cache, and when a zone releases an item to the slab allocator, typically as a response to memory pressure. .Pp For .Fn uma_zcache_create , the .Fa zimport and .Fa zrelease functions are called to import items into the zone and to release items from the zone, respectively. The .Fa zimport function should store pointers to items in the .Fa store array, which contains a maximum of .Fa count entries. The function must return the number of imported items, which may be less than the maximum. Similarly, the .Fa store parameter to the .Fa zrelease function contains an array of .Fa count pointers to items. The .Fa arg parameter passed to .Fn uma_zcache_create is provided to the import and release functions. The .Fa domain parameter to .Fa zimport specifies the requested .Xr numa 4 domain for the allocation. It is either a NUMA domain number or the special value .Dv UMA_ANYDOMAIN . .Pp The .Fa flags argument of .Fn uma_zcreate and .Fn uma_zcache_create is a subset of the following flags: .Bl -tag -width "foo" .It Dv UMA_ZONE_NOFREE Slabs allocated to the zone's keg are never freed. .It Dv UMA_ZONE_NODUMP Pages belonging to the zone will not be included in minidumps. .It Dv UMA_ZONE_PCPU An allocation from zone would have .Va mp_ncpu shadow copies, that are privately assigned to CPUs. A CPU can address its private copy using base the allocation address plus a multiple of the current CPU ID and .Fn sizeof "struct pcpu" : .Bd -literal -offset indent foo_zone = uma_zcreate(..., UMA_ZONE_PCPU); ... foo_base = uma_zalloc(foo_zone, ...); ... critical_enter(); foo_pcpu = (foo_t *)zpcpu_get(foo_base); /* do something with foo_pcpu */ critical_exit(); .Ed Note that .Dv M_ZERO cannot be used when allocating items from a PCPU zone. To obtain zeroed memory from a PCPU zone, use the .Fn uma_zalloc_pcpu function and its variants instead, and pass .Dv M_ZERO . .It Dv UMA_ZONE_NOTOUCH The UMA subsystem may not directly touch (i.e. read or write) the slab memory. Otherwise, by default, book-keeping of items within a slab may be done in the slab page itself, and .Dv INVARIANTS kernels may also do use-after-free checking by accessing the slab memory. .It Dv UMA_ZONE_ZINIT The zone will have its .Ft uma_init method set to internal method that initializes a new allocated slab to all zeros. Do not mistake .Ft uma_init method with .Ft uma_ctor . A zone with .Dv UMA_ZONE_ZINIT flag would not return zeroed memory on every .Fn uma_zalloc . .It Dv UMA_ZONE_NOTPAGE An allocator function will be supplied with .Fn uma_zone_set_allocf and the memory that it returns may not be kernel virtual memory backed by VM pages in the page array. .It Dv UMA_ZONE_MALLOC The zone is for the .Xr malloc 9 subsystem. .It Dv UMA_ZONE_VM The zone is for the VM subsystem. .It Dv UMA_ZONE_CONTIG Items in this zone must be contiguous in physical address space. Items will follow normal alignment constraints and may span page boundaries between pages with contiguous physical addresses. +.It Dv UMA_ZONE_UNMANAGED +By default, UMA zone caches are shrunk to help resolve free page shortages. +Cached items that have not been used for a long period may also be freed from +zone. +When this flag is set, the system will not reclaim memory from the zone's +caches. .El .Pp Zones can be destroyed using .Fn uma_zdestroy , freeing all memory that is cached in the zone. All items allocated from the zone must be freed to the zone before the zone may be safely destroyed. .Pp To allocate an item from a zone, simply call .Fn uma_zalloc with a pointer to that zone and set the .Fa flags argument to selected flags as documented in .Xr malloc 9 . It will return a pointer to an item if successful, or .Dv NULL in the rare case where all items in the zone are in use and the allocator is unable to grow the zone and .Dv M_NOWAIT is specified. .Pp Items are released back to the zone from which they were allocated by calling .Fn uma_zfree with a pointer to the zone and a pointer to the item. If .Fa item is .Dv NULL , then .Fn uma_zfree does nothing. .Pp The variants .Fn uma_zalloc_arg and .Fn uma_zfree_arg allow callers to specify an argument for the .Dv ctor and .Dv dtor functions of the zone, respectively. The variants .Fn uma_zalloc_pcpu and .Fn uma_zfree_pcpu allocate and free .Va mp_ncpu shadow copies as described for .Dv UMA_ZONE_PCPU . If .Fa item is .Dv NULL , then .Fn uma_zfree_pcpu does nothing. .Pp The .Fn uma_zalloc_domain function allows callers to specify a fixed .Xr numa 4 domain to allocate from. This uses a guaranteed but slow path in the allocator which reduces concurrency. .Pp The .Fn uma_prealloc function allocates slabs for the requested number of items, typically following the initial creation of a zone. Subsequent allocations from the zone will be satisfied using the pre-allocated slabs. Note that slab allocation is performed with the .Dv M_WAITOK flag, so .Fn uma_prealloc may sleep. .Pp The .Fn uma_zone_reserve function sets the number of reserved items for the zone. .Fn uma_zalloc and variants will ensure that the zone contains at least the reserved number of free items. Reserved items may be allocated by specifying .Dv M_USE_RESERVE in the allocation request flags. .Fn uma_zone_reserve does not perform any pre-allocation by itself. .Pp The .Fn uma_zone_reserve_kva function pre-allocates kernel virtual address space for the requested number of items. Subsequent allocations from the zone will be satisfied using the pre-allocated address space. Note that unlike .Fn uma_zone_reserve , .Fn uma_zone_reserve_kva does not restrict the use of the pre-allocation to .Dv M_USE_RESERVE requests. .Pp The .Fn uma_reclaim and .Fn uma_zone_reclaim functions reclaim cached items from UMA zones, releasing unused memory. The .Fn uma_reclaim function reclaims items from all regular zones, while .Fn uma_zone_reclaim reclaims items only from the specified zone. The .Fa req parameter must be one of three values which specify how aggressively items are to be reclaimed: .Bl -tag -width indent .It Dv UMA_RECLAIM_TRIM Reclaim items only in excess of the zone's estimated working set size. The working set size is periodically updated and tracks the recent history of the zone's usage. .It Dv UMA_RECLAIM_DRAIN Reclaim all items from the unbounded cache. Free items in the per-CPU caches are left alone. .It Dv UMA_RECLAIM_DRAIN_CPU Reclaim all cached items. .El The .Fn uma_reclaim_domain and .Fn uma_zone_reclaim_domain functions apply only to items allocated from the specified domain. In the case of domains using a round-robin NUMA policy, cached items from all domains are freed to the keg, but only slabs from the specific domain will be freed. .Pp The .Fn uma_zone_set_allocf and .Fn uma_zone_set_freef functions allow a zone's default slab allocation and free functions to be overridden. This is useful if memory with special constraints such as attributes, alignment, or address ranges must be used. .Pp The .Fn uma_zone_set_max function limits the number of items .Pq and therefore memory that can be allocated to .Fa zone . The .Fa nitems argument specifies the requested upper limit number of items. The effective limit is returned to the caller, as it may end up being higher than requested due to the implementation rounding up to ensure all memory pages allocated to the zone are utilised to capacity. The limit applies to the total number of items in the zone, which includes allocated items, free items and free items in the per-cpu caches. On systems with more than one CPU it may not be possible to allocate the specified number of items even when there is no shortage of memory, because all of the remaining free items may be in the caches of the other CPUs when the limit is hit. .Pp The .Fn uma_zone_set_maxcache function limits the number of free items which may be cached in the zone. This limit applies to both the per-CPU caches and the cache of free buckets. .Pp The .Fn uma_zone_get_max function returns the effective upper limit number of items for a zone. .Pp The .Fn uma_zone_get_cur function returns an approximation of the number of items currently allocated from the zone. The returned value is approximate because appropriate synchronisation to determine an exact value is not performed by the implementation. This ensures low overhead at the expense of potentially stale data being used in the calculation. .Pp The .Fn uma_zone_set_warning function sets a warning that will be printed on the system console when the given zone becomes full and fails to allocate an item. The warning will be printed no more often than every five minutes. Warnings can be turned off globally by setting the .Va vm.zone_warnings sysctl tunable to .Va 0 . .Pp The .Fn uma_zone_set_maxaction function sets a function that will be called when the given zone becomes full and fails to allocate an item. The function will be called with the zone locked. Also, the function that called the allocation function may have held additional locks. Therefore, this function should do very little work (similar to a signal handler). .Pp The .Fn SYSCTL_UMA_MAX parent nbr name access zone descr macro declares a static .Xr sysctl 9 oid that exports the effective upper limit number of items for a zone. The .Fa zone argument should be a pointer to .Vt uma_zone_t . A read of the oid returns value obtained through .Fn uma_zone_get_max . A write to the oid sets new value via .Fn uma_zone_set_max . The .Fn SYSCTL_ADD_UMA_MAX ctx parent nbr name access zone descr macro is provided to create this type of oid dynamically. .Pp The .Fn SYSCTL_UMA_CUR parent nbr name access zone descr macro declares a static read-only .Xr sysctl 9 oid that exports the approximate current occupancy of the zone. The .Fa zone argument should be a pointer to .Vt uma_zone_t . A read of the oid returns value obtained through .Fn uma_zone_get_cur . The .Fn SYSCTL_ADD_UMA_CUR ctx parent nbr name zone descr macro is provided to create this type of oid dynamically. .Sh IMPLEMENTATION NOTES The memory that these allocation calls return is not executable. The .Fn uma_zalloc function does not support the .Dv M_EXEC flag to allocate executable memory. Not all platforms enforce a distinction between executable and non-executable memory. .Sh SEE ALSO .Xr numa 4 , .Xr vmstat 8 , .Xr malloc 9 .Rs .%A Jeff Bonwick .%T "The Slab Allocator: An Object-Caching Kernel Memory Allocator" .%D 1994 .Re .Sh HISTORY The zone allocator first appeared in .Fx 3.0 . It was radically changed in .Fx 5.0 to function as a slab allocator. .Sh AUTHORS .An -nosplit The zone allocator was written by .An John S. Dyson . The zone allocator was rewritten in large parts by .An Jeff Roberson Aq Mt jeff@FreeBSD.org to function as a slab allocator. .Pp This manual page was written by .An Dag-Erling Sm\(/orgrav Aq Mt des@FreeBSD.org . Changes for UMA by .An Jeroen Ruigrok van der Werven Aq Mt asmodai@FreeBSD.org . diff --git a/sys/vm/uma.h b/sys/vm/uma.h index 743e02cdddf9..bcf6a038dc55 100644 --- a/sys/vm/uma.h +++ b/sys/vm/uma.h @@ -1,744 +1,748 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002, 2003, 2004, 2005 Jeffrey Roberson * Copyright (c) 2004, 2005 Bosko Milekic * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ * */ /* * uma.h - External definitions for the Universal Memory Allocator * */ #ifndef _VM_UMA_H_ #define _VM_UMA_H_ #include /* For NULL */ #include /* For M_* */ #include /* User visible parameters */ #define UMA_SMALLEST_UNIT 8 /* Smallest item allocated */ /* Types and type defs */ struct uma_zone; /* Opaque type used as a handle to the zone */ typedef struct uma_zone * uma_zone_t; /* * Item constructor * * Arguments: * item A pointer to the memory which has been allocated. * arg The arg field passed to uma_zalloc_arg * size The size of the allocated item * flags See zalloc flags * * Returns: * 0 on success * errno on failure * * Discussion: * The constructor is called just before the memory is returned * to the user. It may block if necessary. */ typedef int (*uma_ctor)(void *mem, int size, void *arg, int flags); /* * Item destructor * * Arguments: * item A pointer to the memory which has been allocated. * size The size of the item being destructed. * arg Argument passed through uma_zfree_arg * * Returns: * Nothing * * Discussion: * The destructor may perform operations that differ from those performed * by the initializer, but it must leave the object in the same state. * This IS type stable storage. This is called after EVERY zfree call. */ typedef void (*uma_dtor)(void *mem, int size, void *arg); /* * Item initializer * * Arguments: * item A pointer to the memory which has been allocated. * size The size of the item being initialized. * flags See zalloc flags * * Returns: * 0 on success * errno on failure * * Discussion: * The initializer is called when the memory is cached in the uma zone. * The initializer and the destructor should leave the object in the same * state. */ typedef int (*uma_init)(void *mem, int size, int flags); /* * Item discard function * * Arguments: * item A pointer to memory which has been 'freed' but has not left the * zone's cache. * size The size of the item being discarded. * * Returns: * Nothing * * Discussion: * This routine is called when memory leaves a zone and is returned to the * system for other uses. It is the counter-part to the init function. */ typedef void (*uma_fini)(void *mem, int size); /* * Import new memory into a cache zone. */ typedef int (*uma_import)(void *arg, void **store, int count, int domain, int flags); /* * Free memory from a cache zone. */ typedef void (*uma_release)(void *arg, void **store, int count); /* * What's the difference between initializing and constructing? * * The item is initialized when it is cached, and this is the state that the * object should be in when returned to the allocator. The purpose of this is * to remove some code which would otherwise be called on each allocation by * utilizing a known, stable state. This differs from the constructor which * will be called on EVERY allocation. * * For example, in the initializer you may want to initialize embedded locks, * NULL list pointers, set up initial states, magic numbers, etc. This way if * the object is held in the allocator and re-used it won't be necessary to * re-initialize it. * * The constructor may be used to lock a data structure, link it on to lists, * bump reference counts or total counts of outstanding structures, etc. * */ /* Function proto types */ /* * Create a new uma zone * * Arguments: * name The text name of the zone for debugging and stats. This memory * should not be freed until the zone has been deallocated. * size The size of the object that is being created. * ctor The constructor that is called when the object is allocated. * dtor The destructor that is called when the object is freed. * init An initializer that sets up the initial state of the memory. * fini A discard function that undoes initialization done by init. * ctor/dtor/init/fini may all be null, see notes above. * align A bitmask that corresponds to the requested alignment * eg 4 would be 0x3 * flags A set of parameters that control the behavior of the zone. * * Returns: * A pointer to a structure which is intended to be opaque to users of * the interface. The value may be null if the wait flag is not set. */ uma_zone_t uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, uma_init uminit, uma_fini fini, int align, uint32_t flags); /* * Create a secondary uma zone * * Arguments: * name The text name of the zone for debugging and stats. This memory * should not be freed until the zone has been deallocated. * ctor The constructor that is called when the object is allocated. * dtor The destructor that is called when the object is freed. * zinit An initializer that sets up the initial state of the memory * as the object passes from the Keg's slab to the Zone's cache. * zfini A discard function that undoes initialization done by init * as the object passes from the Zone's cache to the Keg's slab. * * ctor/dtor/zinit/zfini may all be null, see notes above. * Note that the zinit and zfini specified here are NOT * exactly the same as the init/fini specified to uma_zcreate() * when creating a primary zone. These zinit/zfini are called * on the TRANSITION from keg to zone (and vice-versa). Once * these are set, the primary zone may alter its init/fini * (which are called when the object passes from VM to keg) * using uma_zone_set_init/fini()) as well as its own * zinit/zfini (unset by default for primary zone) with * uma_zone_set_zinit/zfini() (note subtle 'z' prefix). * * primary A reference to this zone's Primary Zone which contains the * backing Keg for the Secondary Zone being added. * * Returns: * A pointer to a structure which is intended to be opaque to users of * the interface. The value may be null if the wait flag is not set. */ uma_zone_t uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor, uma_init zinit, uma_fini zfini, uma_zone_t primary); /* * Create cache-only zones. * * This allows uma's per-cpu cache facilities to handle arbitrary * pointers. Consumers must specify the import and release functions to * fill and destroy caches. UMA does not allocate any memory for these * zones. The 'arg' parameter is passed to import/release and is caller * specific. */ uma_zone_t uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor, uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease, void *arg, int flags); /* * Definitions for uma_zcreate flags * * These flags share space with UMA_ZFLAGs in uma_int.h. Be careful not to * overlap when adding new features. */ +#define UMA_ZONE_UNMANAGED 0x0001 /* + * Don't regulate the cache size, even + * under memory pressure. + */ #define UMA_ZONE_ZINIT 0x0002 /* Initialize with zeros */ #define UMA_ZONE_CONTIG 0x0004 /* * Physical memory underlying an object * must be contiguous. */ #define UMA_ZONE_NOTOUCH 0x0008 /* UMA may not access the memory */ #define UMA_ZONE_MALLOC 0x0010 /* For use by malloc(9) only! */ #define UMA_ZONE_NOFREE 0x0020 /* Do not free slabs of this type! */ #define UMA_ZONE_MTXCLASS 0x0040 /* Create a new lock class */ #define UMA_ZONE_VM 0x0080 /* * Used for internal vm datastructures * only. */ #define UMA_ZONE_NOTPAGE 0x0100 /* allocf memory not vm pages */ #define UMA_ZONE_SECONDARY 0x0200 /* Zone is a Secondary Zone */ #define UMA_ZONE_NOBUCKET 0x0400 /* Do not use buckets. */ #define UMA_ZONE_MAXBUCKET 0x0800 /* Use largest buckets. */ #define UMA_ZONE_CACHESPREAD 0x2000 /* * Spread memory start locations across * all possible cache lines. May * require many virtually contiguous * backend pages and can fail early. */ #define UMA_ZONE_NODUMP 0x4000 /* * Zone's pages will not be included in * mini-dumps. */ #define UMA_ZONE_PCPU 0x8000 /* * Allocates mp_maxid + 1 slabs of * PAGE_SIZE */ #define UMA_ZONE_FIRSTTOUCH 0x10000 /* First touch NUMA policy */ #define UMA_ZONE_ROUNDROBIN 0x20000 /* Round-robin NUMA policy. */ #define UMA_ZONE_SMR 0x40000 /* * Safe memory reclamation defers * frees until all read sections * have exited. This flag creates * a unique SMR context for this * zone. To share contexts see * uma_zone_set_smr() below. * * See sys/smr.h for more details. */ #define UMA_ZONE_NOKASAN 0x80000 /* * Disable KASAN verification. This is * implied by NOFREE. Cache zones are * not verified by default. */ /* In use by UMA_ZFLAGs: 0xffe00000 */ /* * These flags are shared between the keg and zone. Some are determined * based on physical parameters of the request and may not be provided by * the consumer. */ #define UMA_ZONE_INHERIT \ (UMA_ZONE_NOTOUCH | UMA_ZONE_MALLOC | UMA_ZONE_NOFREE | \ UMA_ZONE_VM | UMA_ZONE_NOTPAGE | UMA_ZONE_PCPU | \ UMA_ZONE_FIRSTTOUCH | UMA_ZONE_ROUNDROBIN | UMA_ZONE_NOKASAN) /* Definitions for align */ #define UMA_ALIGN_PTR (sizeof(void *) - 1) /* Alignment fit for ptr */ #define UMA_ALIGN_LONG (sizeof(long) - 1) /* "" long */ #define UMA_ALIGN_INT (sizeof(int) - 1) /* "" int */ #define UMA_ALIGN_SHORT (sizeof(short) - 1) /* "" short */ #define UMA_ALIGN_CHAR (sizeof(char) - 1) /* "" char */ #define UMA_ALIGN_CACHE (0 - 1) /* Cache line size align */ #define UMA_ALIGNOF(type) (_Alignof(type) - 1) /* Alignment fit for 'type' */ #define UMA_ANYDOMAIN -1 /* Special value for domain search. */ /* * Destroys an empty uma zone. If the zone is not empty uma complains loudly. * * Arguments: * zone The zone we want to destroy. * */ void uma_zdestroy(uma_zone_t zone); /* * Allocates an item out of a zone * * Arguments: * zone The zone we are allocating from * arg This data is passed to the ctor function * flags See sys/malloc.h for available flags. * * Returns: * A non-null pointer to an initialized element from the zone is * guaranteed if the wait flag is M_WAITOK. Otherwise a null pointer * may be returned if the zone is empty or the ctor failed. */ void *uma_zalloc_arg(uma_zone_t zone, void *arg, int flags); /* Allocate per-cpu data. Access the correct data with zpcpu_get(). */ void *uma_zalloc_pcpu_arg(uma_zone_t zone, void *arg, int flags); /* Use with SMR zones. */ void *uma_zalloc_smr(uma_zone_t zone, int flags); /* * Allocate an item from a specific NUMA domain. This uses a slow path in * the allocator but is guaranteed to allocate memory from the requested * domain if M_WAITOK is set. * * Arguments: * zone The zone we are allocating from * arg This data is passed to the ctor function * domain The domain to allocate from. * flags See sys/malloc.h for available flags. */ void *uma_zalloc_domain(uma_zone_t zone, void *arg, int domain, int flags); /* * Allocates an item out of a zone without supplying an argument * * This is just a wrapper for uma_zalloc_arg for convenience. * */ static __inline void *uma_zalloc(uma_zone_t zone, int flags); static __inline void *uma_zalloc_pcpu(uma_zone_t zone, int flags); static __inline void * uma_zalloc(uma_zone_t zone, int flags) { return uma_zalloc_arg(zone, NULL, flags); } static __inline void * uma_zalloc_pcpu(uma_zone_t zone, int flags) { return uma_zalloc_pcpu_arg(zone, NULL, flags); } /* * Frees an item back into the specified zone. * * Arguments: * zone The zone the item was originally allocated out of. * item The memory to be freed. * arg Argument passed to the destructor * * Returns: * Nothing. */ void uma_zfree_arg(uma_zone_t zone, void *item, void *arg); /* Use with PCPU zones. */ void uma_zfree_pcpu_arg(uma_zone_t zone, void *item, void *arg); /* Use with SMR zones. */ void uma_zfree_smr(uma_zone_t zone, void *item); /* * Frees an item back to a zone without supplying an argument * * This is just a wrapper for uma_zfree_arg for convenience. * */ static __inline void uma_zfree(uma_zone_t zone, void *item); static __inline void uma_zfree_pcpu(uma_zone_t zone, void *item); static __inline void uma_zfree(uma_zone_t zone, void *item) { uma_zfree_arg(zone, item, NULL); } static __inline void uma_zfree_pcpu(uma_zone_t zone, void *item) { uma_zfree_pcpu_arg(zone, item, NULL); } /* * Wait until the specified zone can allocate an item. */ void uma_zwait(uma_zone_t zone); /* * Backend page supplier routines * * Arguments: * zone The zone that is requesting pages. * size The number of bytes being requested. * pflag Flags for these memory pages, see below. * domain The NUMA domain that we prefer for this allocation. * wait Indicates our willingness to block. * * Returns: * A pointer to the allocated memory or NULL on failure. */ typedef void *(*uma_alloc)(uma_zone_t zone, vm_size_t size, int domain, uint8_t *pflag, int wait); /* * Backend page free routines * * Arguments: * item A pointer to the previously allocated pages. * size The original size of the allocation. * pflag The flags for the slab. See UMA_SLAB_* below. * * Returns: * None */ typedef void (*uma_free)(void *item, vm_size_t size, uint8_t pflag); /* * Reclaims unused memory. If no NUMA domain is specified, memory from all * domains is reclaimed. * * Arguments: * req Reclamation request type. * domain The target NUMA domain. * Returns: * None */ #define UMA_RECLAIM_DRAIN 1 /* release bucket cache */ #define UMA_RECLAIM_DRAIN_CPU 2 /* release bucket and per-CPU caches */ #define UMA_RECLAIM_TRIM 3 /* trim bucket cache to WSS */ void uma_reclaim(int req); void uma_reclaim_domain(int req, int domain); void uma_zone_reclaim(uma_zone_t, int req); void uma_zone_reclaim_domain(uma_zone_t, int req, int domain); /* * Sets the alignment mask to be used for all zones requesting cache * alignment. Should be called by MD boot code prior to starting VM/UMA. * * Arguments: * align The alignment mask * * Returns: * Nothing */ void uma_set_align(int align); /* * Set a reserved number of items to hold for M_USE_RESERVE allocations. All * other requests must allocate new backing pages. */ void uma_zone_reserve(uma_zone_t zone, int nitems); /* * Reserves the maximum KVA space required by the zone and configures the zone * to use a backend that allocates physical memory and maps it using the * reserved KVA. * * Arguments: * zone The zone to update. * nitems The upper limit on the number of items that can be allocated. * * Returns: * 0 if KVA space can not be allocated * 1 if successful * * Discussion: * When the machine supports a direct map and the zone's items are smaller * than a page, the zone will use the direct map instead of allocating KVA * space. */ int uma_zone_reserve_kva(uma_zone_t zone, int nitems); /* * Sets an upper limit on the number of items allocated from a zone * * Arguments: * zone The zone to limit * nitems The requested upper limit on the number of items allowed * * Returns: * int The effective value of nitems */ int uma_zone_set_max(uma_zone_t zone, int nitems); /* * Sets an upper limit on the number of items allowed in zone's caches * * Arguments: * zone The zone to limit * nitems The requested upper limit on the number of items allowed */ void uma_zone_set_maxcache(uma_zone_t zone, int nitems); /* * Obtains the effective limit on the number of items in a zone * * Arguments: * zone The zone to obtain the effective limit from * * Return: * 0 No limit * int The effective limit of the zone */ int uma_zone_get_max(uma_zone_t zone); /* * Sets a warning to be printed when limit is reached * * Arguments: * zone The zone we will warn about * warning Warning content * * Returns: * Nothing */ void uma_zone_set_warning(uma_zone_t zone, const char *warning); /* * Sets a function to run when limit is reached * * Arguments: * zone The zone to which this applies * fx The function ro run * * Returns: * Nothing */ typedef void (*uma_maxaction_t)(uma_zone_t, int); void uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t); /* * Obtains the approximate current number of items allocated from a zone * * Arguments: * zone The zone to obtain the current allocation count from * * Return: * int The approximate current number of items allocated from the zone */ int uma_zone_get_cur(uma_zone_t zone); /* * The following two routines (uma_zone_set_init/fini) * are used to set the backend init/fini pair which acts on an * object as it becomes allocated and is placed in a slab within * the specified zone's backing keg. These should probably not * be changed once allocations have already begun, but only be set * immediately upon zone creation. */ void uma_zone_set_init(uma_zone_t zone, uma_init uminit); void uma_zone_set_fini(uma_zone_t zone, uma_fini fini); /* * The following two routines (uma_zone_set_zinit/zfini) are * used to set the zinit/zfini pair which acts on an object as * it passes from the backing Keg's slab cache to the * specified Zone's bucket cache. These should probably not * be changed once allocations have already begun, but only be set * immediately upon zone creation. */ void uma_zone_set_zinit(uma_zone_t zone, uma_init zinit); void uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini); /* * Replaces the standard backend allocator for this zone. * * Arguments: * zone The zone whose backend allocator is being changed. * allocf A pointer to the allocation function * * Returns: * Nothing * * Discussion: * This could be used to implement pageable allocation, or perhaps * even DMA allocators if used in conjunction with the OFFPAGE * zone flag. */ void uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf); /* * Used for freeing memory provided by the allocf above * * Arguments: * zone The zone that intends to use this free routine. * freef The page freeing routine. * * Returns: * Nothing */ void uma_zone_set_freef(uma_zone_t zone, uma_free freef); /* * Associate a zone with a smr context that is allocated after creation * so that multiple zones may share the same context. */ void uma_zone_set_smr(uma_zone_t zone, smr_t smr); /* * Fetch the smr context that was set or made in uma_zcreate(). */ smr_t uma_zone_get_smr(uma_zone_t zone); /* * These flags are setable in the allocf and visible in the freef. */ #define UMA_SLAB_BOOT 0x01 /* Slab alloced from boot pages */ #define UMA_SLAB_KERNEL 0x04 /* Slab alloced from kmem */ #define UMA_SLAB_PRIV 0x08 /* Slab alloced from priv allocator */ /* 0x02, 0x10, 0x40, and 0x80 are available */ /* * Used to pre-fill a zone with some number of items * * Arguments: * zone The zone to fill * itemcnt The number of items to reserve * * Returns: * Nothing * * NOTE: This is blocking and should only be done at startup */ void uma_prealloc(uma_zone_t zone, int itemcnt); /* * Used to determine if a fixed-size zone is exhausted. * * Arguments: * zone The zone to check * * Returns: * Non-zero if zone is exhausted. */ int uma_zone_exhausted(uma_zone_t zone); /* * Returns the bytes of memory consumed by the zone. */ size_t uma_zone_memory(uma_zone_t zone); /* * Common UMA_ZONE_PCPU zones. */ extern uma_zone_t pcpu_zone_4; extern uma_zone_t pcpu_zone_8; extern uma_zone_t pcpu_zone_16; extern uma_zone_t pcpu_zone_32; extern uma_zone_t pcpu_zone_64; /* * Exported statistics structures to be used by user space monitoring tools. * Statistics stream consists of a uma_stream_header, followed by a series of * alternative uma_type_header and uma_type_stat structures. */ #define UMA_STREAM_VERSION 0x00000001 struct uma_stream_header { uint32_t ush_version; /* Stream format version. */ uint32_t ush_maxcpus; /* Value of MAXCPU for stream. */ uint32_t ush_count; /* Number of records. */ uint32_t _ush_pad; /* Pad/reserved field. */ }; #define UTH_MAX_NAME 32 #define UTH_ZONE_SECONDARY 0x00000001 struct uma_type_header { /* * Static per-zone data, some extracted from the supporting keg. */ char uth_name[UTH_MAX_NAME]; uint32_t uth_align; /* Keg: alignment. */ uint32_t uth_size; /* Keg: requested size of item. */ uint32_t uth_rsize; /* Keg: real size of item. */ uint32_t uth_maxpages; /* Keg: maximum number of pages. */ uint32_t uth_limit; /* Keg: max items to allocate. */ /* * Current dynamic zone/keg-derived statistics. */ uint32_t uth_pages; /* Keg: pages allocated. */ uint32_t uth_keg_free; /* Keg: items free. */ uint32_t uth_zone_free; /* Zone: items free. */ uint32_t uth_bucketsize; /* Zone: desired bucket size. */ uint32_t uth_zone_flags; /* Zone: flags. */ uint64_t uth_allocs; /* Zone: number of allocations. */ uint64_t uth_frees; /* Zone: number of frees. */ uint64_t uth_fails; /* Zone: number of alloc failures. */ uint64_t uth_sleeps; /* Zone: number of alloc sleeps. */ uint64_t uth_xdomain; /* Zone: Number of cross domain frees. */ uint64_t _uth_reserved1[1]; /* Reserved. */ }; struct uma_percpu_stat { uint64_t ups_allocs; /* Cache: number of allocations. */ uint64_t ups_frees; /* Cache: number of frees. */ uint64_t ups_cache_free; /* Cache: free items in cache. */ uint64_t _ups_reserved[5]; /* Reserved. */ }; void uma_reclaim_wakeup(void); void uma_reclaim_worker(void *); unsigned long uma_limit(void); /* Return the amount of memory managed by UMA. */ unsigned long uma_size(void); /* Return the amount of memory remaining. May be negative. */ long uma_avail(void); #endif /* _VM_UMA_H_ */ diff --git a/sys/vm/uma_core.c b/sys/vm/uma_core.c index f6f7b083133a..341b12209f9d 100644 --- a/sys/vm/uma_core.c +++ b/sys/vm/uma_core.c @@ -1,5878 +1,5875 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002-2019 Jeffrey Roberson * Copyright (c) 2004, 2005 Bosko Milekic * Copyright (c) 2004-2006 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * uma_core.c Implementation of the Universal Memory allocator * * This allocator is intended to replace the multitude of similar object caches * in the standard FreeBSD kernel. The intent is to be flexible as well as * efficient. A primary design goal is to return unused memory to the rest of * the system. This will make the system as a whole more flexible due to the * ability to move memory to subsystems which most need it instead of leaving * pools of reserved memory unused. * * The basic ideas stem from similar slab/zone based allocators whose algorithms * are well known. * */ /* * TODO: * - Improve memory usage for large allocations * - Investigate cache size adjustments */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_param.h" #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEBUG_MEMGUARD #include #endif #include #ifdef INVARIANTS #define UMA_ALWAYS_CTORDTOR 1 #else #define UMA_ALWAYS_CTORDTOR 0 #endif /* * This is the zone and keg from which all zones are spawned. */ static uma_zone_t kegs; static uma_zone_t zones; /* * On INVARIANTS builds, the slab contains a second bitset of the same size, * "dbg_bits", which is laid out immediately after us_free. */ #ifdef INVARIANTS #define SLAB_BITSETS 2 #else #define SLAB_BITSETS 1 #endif /* * These are the two zones from which all offpage uma_slab_ts are allocated. * * One zone is for slab headers that can represent a larger number of items, * making the slabs themselves more efficient, and the other zone is for * headers that are smaller and represent fewer items, making the headers more * efficient. */ #define SLABZONE_SIZE(setsize) \ (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS) #define SLABZONE0_SETSIZE (PAGE_SIZE / 16) #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE) #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE) static uma_zone_t slabzones[2]; /* * The initial hash tables come out of this zone so they can be allocated * prior to malloc coming up. */ static uma_zone_t hashzone; /* The boot-time adjusted value for cache line alignment. */ int uma_align_cache = 64 - 1; static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); /* * Are we allowed to allocate buckets? */ static int bucketdisable = 1; /* Linked list of all kegs in the system */ static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); /* Linked list of all cache-only zones in the system */ static LIST_HEAD(,uma_zone) uma_cachezones = LIST_HEAD_INITIALIZER(uma_cachezones); /* * Mutex for global lists: uma_kegs, uma_cachezones, and the per-keg list of * zones. */ static struct rwlock_padalign __exclusive_cache_line uma_rwlock; static struct sx uma_reclaim_lock; /* * First available virual address for boot time allocations. */ static vm_offset_t bootstart; static vm_offset_t bootmem; /* * kmem soft limit, initialized by uma_set_limit(). Ensure that early * allocations don't trigger a wakeup of the reclaim thread. */ unsigned long uma_kmem_limit = LONG_MAX; SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, "UMA kernel memory soft limit"); unsigned long uma_kmem_total; SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, "UMA kernel memory usage"); /* Is the VM done starting up? */ static enum { BOOT_COLD, BOOT_KVA, BOOT_PCPU, BOOT_RUNNING, BOOT_SHUTDOWN, } booted = BOOT_COLD; /* * This is the handle used to schedule events that need to happen * outside of the allocation fast path. */ static struct callout uma_callout; #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ /* * This structure is passed as the zone ctor arg so that I don't have to create * a special allocation function just for zones. */ struct uma_zctor_args { const char *name; size_t size; uma_ctor ctor; uma_dtor dtor; uma_init uminit; uma_fini fini; uma_import import; uma_release release; void *arg; uma_keg_t keg; int align; uint32_t flags; }; struct uma_kctor_args { uma_zone_t zone; size_t size; uma_init uminit; uma_fini fini; int align; uint32_t flags; }; struct uma_bucket_zone { uma_zone_t ubz_zone; const char *ubz_name; int ubz_entries; /* Number of items it can hold. */ int ubz_maxsize; /* Maximum allocation size per-item. */ }; /* * Compute the actual number of bucket entries to pack them in power * of two sizes for more efficient space utilization. */ #define BUCKET_SIZE(n) \ (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) #define BUCKET_MAX BUCKET_SIZE(256) struct uma_bucket_zone bucket_zones[] = { /* Literal bucket sizes. */ { NULL, "2 Bucket", 2, 4096 }, { NULL, "4 Bucket", 4, 3072 }, { NULL, "8 Bucket", 8, 2048 }, { NULL, "16 Bucket", 16, 1024 }, /* Rounded down power of 2 sizes for efficiency. */ { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, { NULL, NULL, 0} }; /* * Flags and enumerations to be passed to internal functions. */ enum zfreeskip { SKIP_NONE = 0, SKIP_CNT = 0x00000001, SKIP_DTOR = 0x00010000, SKIP_FINI = 0x00020000, }; /* Prototypes.. */ void uma_startup1(vm_offset_t); void uma_startup2(void); static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); static void page_free(void *, vm_size_t, uint8_t); static void pcpu_page_free(void *, vm_size_t, uint8_t); static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); static void cache_drain(uma_zone_t); static void bucket_drain(uma_zone_t, uma_bucket_t); static void bucket_cache_reclaim(uma_zone_t zone, bool, int); static bool bucket_cache_reclaim_domain(uma_zone_t, bool, bool, int); static int keg_ctor(void *, int, void *, int); static void keg_dtor(void *, int, void *); static void keg_drain(uma_keg_t keg, int domain); static int zone_ctor(void *, int, void *, int); static void zone_dtor(void *, int, void *); static inline void item_dtor(uma_zone_t zone, void *item, int size, void *udata, enum zfreeskip skip); static int zero_init(void *, int, int); static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, int itemdomain, bool ws); static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *); static void zone_timeout(uma_zone_t zone, void *); static int hash_alloc(struct uma_hash *, u_int); static int hash_expand(struct uma_hash *, struct uma_hash *); static void hash_free(struct uma_hash *hash); static void uma_timeout(void *); static void uma_shutdown(void); static void *zone_alloc_item(uma_zone_t, void *, int, int); static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); static int zone_alloc_limit(uma_zone_t zone, int count, int flags); static void zone_free_limit(uma_zone_t zone, int count); static void bucket_enable(void); static void bucket_init(void); static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); static void bucket_zone_drain(int domain); static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); static size_t slab_sizeof(int nitems); static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, int align, uint32_t flags); static int zone_import(void *, void **, int, int, int); static void zone_release(void *, void **, int); static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); static bool cache_free(uma_zone_t, uma_cache_t, void *, int); static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS); static uint64_t uma_zone_get_allocs(uma_zone_t zone); static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Memory allocation debugging"); #ifdef INVARIANTS static uint64_t uma_keg_get_allocs(uma_keg_t zone); static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); static bool uma_dbg_kskip(uma_keg_t keg, void *mem); static bool uma_dbg_zskip(uma_zone_t zone, void *mem); static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); static u_int dbg_divisor = 1; SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, "Debug & thrash every this item in memory allocator"); static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; static counter_u64_t uma_skip_cnt = EARLY_COUNTER; SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, &uma_dbg_cnt, "memory items debugged"); SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, &uma_skip_cnt, "memory items skipped, not debugged"); #endif SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Universal Memory Allocator"); SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT, 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT, 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); static int zone_warnings = 1; SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, "Warn when UMA zones becomes full"); static int multipage_slabs = 1; TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs); SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0, "UMA may choose larger slab sizes for better efficiency"); /* * Select the slab zone for an offpage slab with the given maximum item count. */ static inline uma_zone_t slabzone(int ipers) { return (slabzones[ipers > SLABZONE0_SETSIZE]); } /* * This routine checks to see whether or not it's safe to enable buckets. */ static void bucket_enable(void) { KASSERT(booted >= BOOT_KVA, ("Bucket enable before init")); bucketdisable = vm_page_count_min(); } /* * Initialize bucket_zones, the array of zones of buckets of various sizes. * * For each zone, calculate the memory required for each bucket, consisting * of the header and an array of pointers. */ static void bucket_init(void) { struct uma_bucket_zone *ubz; int size; for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { size = roundup(sizeof(struct uma_bucket), sizeof(void *)); size += sizeof(void *) * ubz->ubz_entries; ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | UMA_ZONE_FIRSTTOUCH); } } /* * Given a desired number of entries for a bucket, return the zone from which * to allocate the bucket. */ static struct uma_bucket_zone * bucket_zone_lookup(int entries) { struct uma_bucket_zone *ubz; for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) if (ubz->ubz_entries >= entries) return (ubz); ubz--; return (ubz); } static int bucket_select(int size) { struct uma_bucket_zone *ubz; ubz = &bucket_zones[0]; if (size > ubz->ubz_maxsize) return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); for (; ubz->ubz_entries != 0; ubz++) if (ubz->ubz_maxsize < size) break; ubz--; return (ubz->ubz_entries); } static uma_bucket_t bucket_alloc(uma_zone_t zone, void *udata, int flags) { struct uma_bucket_zone *ubz; uma_bucket_t bucket; /* * Don't allocate buckets early in boot. */ if (__predict_false(booted < BOOT_KVA)) return (NULL); /* * To limit bucket recursion we store the original zone flags * in a cookie passed via zalloc_arg/zfree_arg. This allows the * NOVM flag to persist even through deep recursions. We also * store ZFLAG_BUCKET once we have recursed attempting to allocate * a bucket for a bucket zone so we do not allow infinite bucket * recursion. This cookie will even persist to frees of unused * buckets via the allocation path or bucket allocations in the * free path. */ if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) udata = (void *)(uintptr_t)zone->uz_flags; else { if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) return (NULL); udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); } if (((uintptr_t)udata & UMA_ZONE_VM) != 0) flags |= M_NOVM; ubz = bucket_zone_lookup(atomic_load_16(&zone->uz_bucket_size)); if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) ubz++; bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); if (bucket) { #ifdef INVARIANTS bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); #endif bucket->ub_cnt = 0; bucket->ub_entries = min(ubz->ubz_entries, zone->uz_bucket_size_max); bucket->ub_seq = SMR_SEQ_INVALID; CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p", zone->uz_name, zone, bucket); } return (bucket); } static void bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) { struct uma_bucket_zone *ubz; if (bucket->ub_cnt != 0) bucket_drain(zone, bucket); KASSERT(bucket->ub_cnt == 0, ("bucket_free: Freeing a non free bucket.")); KASSERT(bucket->ub_seq == SMR_SEQ_INVALID, ("bucket_free: Freeing an SMR bucket.")); if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) udata = (void *)(uintptr_t)zone->uz_flags; ubz = bucket_zone_lookup(bucket->ub_entries); uma_zfree_arg(ubz->ubz_zone, bucket, udata); } static void bucket_zone_drain(int domain) { struct uma_bucket_zone *ubz; for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) uma_zone_reclaim_domain(ubz->ubz_zone, UMA_RECLAIM_DRAIN, domain); } #ifdef KASAN _Static_assert(UMA_SMALLEST_UNIT % KASAN_SHADOW_SCALE == 0, "Base UMA allocation size not a multiple of the KASAN scale factor"); static void kasan_mark_item_valid(uma_zone_t zone, void *item) { void *pcpu_item; size_t sz, rsz; int i; if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0) return; sz = zone->uz_size; rsz = roundup2(sz, KASAN_SHADOW_SCALE); if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { kasan_mark(item, sz, rsz, KASAN_GENERIC_REDZONE); } else { pcpu_item = zpcpu_base_to_offset(item); for (i = 0; i <= mp_maxid; i++) kasan_mark(zpcpu_get_cpu(pcpu_item, i), sz, rsz, KASAN_GENERIC_REDZONE); } } static void kasan_mark_item_invalid(uma_zone_t zone, void *item) { void *pcpu_item; size_t sz; int i; if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0) return; sz = roundup2(zone->uz_size, KASAN_SHADOW_SCALE); if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { kasan_mark(item, 0, sz, KASAN_UMA_FREED); } else { pcpu_item = zpcpu_base_to_offset(item); for (i = 0; i <= mp_maxid; i++) kasan_mark(zpcpu_get_cpu(pcpu_item, i), 0, sz, KASAN_UMA_FREED); } } static void kasan_mark_slab_valid(uma_keg_t keg, void *mem) { size_t sz; if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) { sz = keg->uk_ppera * PAGE_SIZE; kasan_mark(mem, sz, sz, 0); } } static void kasan_mark_slab_invalid(uma_keg_t keg, void *mem) { size_t sz; if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) { if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) sz = keg->uk_ppera * PAGE_SIZE; else sz = keg->uk_pgoff; kasan_mark(mem, 0, sz, KASAN_UMA_FREED); } } #else /* !KASAN */ static void kasan_mark_item_valid(uma_zone_t zone __unused, void *item __unused) { } static void kasan_mark_item_invalid(uma_zone_t zone __unused, void *item __unused) { } static void kasan_mark_slab_valid(uma_keg_t keg __unused, void *mem __unused) { } static void kasan_mark_slab_invalid(uma_keg_t keg __unused, void *mem __unused) { } #endif /* KASAN */ #ifdef KMSAN static inline void kmsan_mark_item_uninitialized(uma_zone_t zone, void *item) { void *pcpu_item; size_t sz; int i; if ((zone->uz_flags & (UMA_ZFLAG_CACHE | UMA_ZONE_SECONDARY | UMA_ZONE_MALLOC)) != 0) { /* * Cache zones should not be instrumented by default, as UMA * does not have enough information to do so correctly. * Consumers can mark items themselves if it makes sense to do * so. * * Items from secondary zones are initialized by the parent * zone and thus cannot safely be marked by UMA. * * malloc zones are handled directly by malloc(9) and friends, * since they can provide more precise origin tracking. */ return; } if (zone->uz_keg->uk_init != NULL) { /* * By definition, initialized items cannot be marked. The * best we can do is mark items from these zones after they * are freed to the keg. */ return; } sz = zone->uz_size; if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { kmsan_orig(item, sz, KMSAN_TYPE_UMA, KMSAN_RET_ADDR); kmsan_mark(item, sz, KMSAN_STATE_UNINIT); } else { pcpu_item = zpcpu_base_to_offset(item); for (i = 0; i <= mp_maxid; i++) { kmsan_orig(zpcpu_get_cpu(pcpu_item, i), sz, KMSAN_TYPE_UMA, KMSAN_RET_ADDR); kmsan_mark(zpcpu_get_cpu(pcpu_item, i), sz, KMSAN_STATE_INITED); } } } #else /* !KMSAN */ static inline void kmsan_mark_item_uninitialized(uma_zone_t zone __unused, void *item __unused) { } #endif /* KMSAN */ /* * Acquire the domain lock and record contention. */ static uma_zone_domain_t zone_domain_lock(uma_zone_t zone, int domain) { uma_zone_domain_t zdom; bool lockfail; zdom = ZDOM_GET(zone, domain); lockfail = false; if (ZDOM_OWNED(zdom)) lockfail = true; ZDOM_LOCK(zdom); /* This is unsynchronized. The counter does not need to be precise. */ if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) zone->uz_bucket_size++; return (zdom); } /* * Search for the domain with the least cached items and return it if it * is out of balance with the preferred domain. */ static __noinline int zone_domain_lowest(uma_zone_t zone, int pref) { long least, nitems, prefitems; int domain; int i; prefitems = least = LONG_MAX; domain = 0; for (i = 0; i < vm_ndomains; i++) { nitems = ZDOM_GET(zone, i)->uzd_nitems; if (nitems < least) { domain = i; least = nitems; } if (domain == pref) prefitems = nitems; } if (prefitems < least * 2) return (pref); return (domain); } /* * Search for the domain with the most cached items and return it or the * preferred domain if it has enough to proceed. */ static __noinline int zone_domain_highest(uma_zone_t zone, int pref) { long most, nitems; int domain; int i; if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX) return (pref); most = 0; domain = 0; for (i = 0; i < vm_ndomains; i++) { nitems = ZDOM_GET(zone, i)->uzd_nitems; if (nitems > most) { domain = i; most = nitems; } } return (domain); } /* * Set the maximum imax value. */ static void zone_domain_imax_set(uma_zone_domain_t zdom, int nitems) { long old; old = zdom->uzd_imax; do { if (old >= nitems) return; } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0); /* * We are at new maximum, so do the last WSS update for the old * bimin and prepare to measure next allocation batch. */ if (zdom->uzd_wss < old - zdom->uzd_bimin) zdom->uzd_wss = old - zdom->uzd_bimin; zdom->uzd_bimin = nitems; } /* * Attempt to satisfy an allocation by retrieving a full bucket from one of the * zone's caches. If a bucket is found the zone is not locked on return. */ static uma_bucket_t zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim) { uma_bucket_t bucket; long cnt; int i; bool dtor = false; ZDOM_LOCK_ASSERT(zdom); if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL) return (NULL); /* SMR Buckets can not be re-used until readers expire. */ if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && bucket->ub_seq != SMR_SEQ_INVALID) { if (!smr_poll(zone->uz_smr, bucket->ub_seq, false)) return (NULL); bucket->ub_seq = SMR_SEQ_INVALID; dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR; if (STAILQ_NEXT(bucket, ub_link) != NULL) zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq; } STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link); KASSERT(zdom->uzd_nitems >= bucket->ub_cnt, ("%s: item count underflow (%ld, %d)", __func__, zdom->uzd_nitems, bucket->ub_cnt)); KASSERT(bucket->ub_cnt > 0, ("%s: empty bucket in bucket cache", __func__)); zdom->uzd_nitems -= bucket->ub_cnt; if (reclaim) { /* * Shift the bounds of the current WSS interval to avoid * perturbing the estimates. */ cnt = lmin(zdom->uzd_bimin, bucket->ub_cnt); atomic_subtract_long(&zdom->uzd_imax, cnt); zdom->uzd_bimin -= cnt; zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt); if (zdom->uzd_limin >= bucket->ub_cnt) { zdom->uzd_limin -= bucket->ub_cnt; } else { zdom->uzd_limin = 0; zdom->uzd_timin = 0; } } else if (zdom->uzd_bimin > zdom->uzd_nitems) { zdom->uzd_bimin = zdom->uzd_nitems; if (zdom->uzd_imin > zdom->uzd_nitems) zdom->uzd_imin = zdom->uzd_nitems; } ZDOM_UNLOCK(zdom); if (dtor) for (i = 0; i < bucket->ub_cnt; i++) item_dtor(zone, bucket->ub_bucket[i], zone->uz_size, NULL, SKIP_NONE); return (bucket); } /* * Insert a full bucket into the specified cache. The "ws" parameter indicates * whether the bucket's contents should be counted as part of the zone's working * set. The bucket may be freed if it exceeds the bucket limit. */ static void zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata, const bool ws) { uma_zone_domain_t zdom; /* We don't cache empty buckets. This can happen after a reclaim. */ if (bucket->ub_cnt == 0) goto out; zdom = zone_domain_lock(zone, domain); /* * Conditionally set the maximum number of items. */ zdom->uzd_nitems += bucket->ub_cnt; if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) { if (ws) { zone_domain_imax_set(zdom, zdom->uzd_nitems); } else { /* * Shift the bounds of the current WSS interval to * avoid perturbing the estimates. */ atomic_add_long(&zdom->uzd_imax, bucket->ub_cnt); zdom->uzd_imin += bucket->ub_cnt; zdom->uzd_bimin += bucket->ub_cnt; zdom->uzd_limin += bucket->ub_cnt; } if (STAILQ_EMPTY(&zdom->uzd_buckets)) zdom->uzd_seq = bucket->ub_seq; /* * Try to promote reuse of recently used items. For items * protected by SMR, try to defer reuse to minimize polling. */ if (bucket->ub_seq == SMR_SEQ_INVALID) STAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); else STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); ZDOM_UNLOCK(zdom); return; } zdom->uzd_nitems -= bucket->ub_cnt; ZDOM_UNLOCK(zdom); out: bucket_free(zone, bucket, udata); } /* Pops an item out of a per-cpu cache bucket. */ static inline void * cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) { void *item; CRITICAL_ASSERT(curthread); bucket->ucb_cnt--; item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; #ifdef INVARIANTS bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); #endif cache->uc_allocs++; return (item); } /* Pushes an item into a per-cpu cache bucket. */ static inline void cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) { CRITICAL_ASSERT(curthread); KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, ("uma_zfree: Freeing to non free bucket index.")); bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; bucket->ucb_cnt++; cache->uc_frees++; } /* * Unload a UMA bucket from a per-cpu cache. */ static inline uma_bucket_t cache_bucket_unload(uma_cache_bucket_t bucket) { uma_bucket_t b; b = bucket->ucb_bucket; if (b != NULL) { MPASS(b->ub_entries == bucket->ucb_entries); b->ub_cnt = bucket->ucb_cnt; bucket->ucb_bucket = NULL; bucket->ucb_entries = bucket->ucb_cnt = 0; } return (b); } static inline uma_bucket_t cache_bucket_unload_alloc(uma_cache_t cache) { return (cache_bucket_unload(&cache->uc_allocbucket)); } static inline uma_bucket_t cache_bucket_unload_free(uma_cache_t cache) { return (cache_bucket_unload(&cache->uc_freebucket)); } static inline uma_bucket_t cache_bucket_unload_cross(uma_cache_t cache) { return (cache_bucket_unload(&cache->uc_crossbucket)); } /* * Load a bucket into a per-cpu cache bucket. */ static inline void cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) { CRITICAL_ASSERT(curthread); MPASS(bucket->ucb_bucket == NULL); MPASS(b->ub_seq == SMR_SEQ_INVALID); bucket->ucb_bucket = b; bucket->ucb_cnt = b->ub_cnt; bucket->ucb_entries = b->ub_entries; } static inline void cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) { cache_bucket_load(&cache->uc_allocbucket, b); } static inline void cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) { cache_bucket_load(&cache->uc_freebucket, b); } #ifdef NUMA static inline void cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) { cache_bucket_load(&cache->uc_crossbucket, b); } #endif /* * Copy and preserve ucb_spare. */ static inline void cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) { b1->ucb_bucket = b2->ucb_bucket; b1->ucb_entries = b2->ucb_entries; b1->ucb_cnt = b2->ucb_cnt; } /* * Swap two cache buckets. */ static inline void cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) { struct uma_cache_bucket b3; CRITICAL_ASSERT(curthread); cache_bucket_copy(&b3, b1); cache_bucket_copy(b1, b2); cache_bucket_copy(b2, &b3); } /* * Attempt to fetch a bucket from a zone on behalf of the current cpu cache. */ static uma_bucket_t cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain) { uma_zone_domain_t zdom; uma_bucket_t bucket; smr_seq_t seq; /* * Avoid the lock if possible. */ zdom = ZDOM_GET(zone, domain); if (zdom->uzd_nitems == 0) return (NULL); if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 && (seq = atomic_load_32(&zdom->uzd_seq)) != SMR_SEQ_INVALID && !smr_poll(zone->uz_smr, seq, false)) return (NULL); /* * Check the zone's cache of buckets. */ zdom = zone_domain_lock(zone, domain); if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) return (bucket); ZDOM_UNLOCK(zdom); return (NULL); } static void zone_log_warning(uma_zone_t zone) { static const struct timeval warninterval = { 300, 0 }; if (!zone_warnings || zone->uz_warning == NULL) return; if (ratecheck(&zone->uz_ratecheck, &warninterval)) printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); } static inline void zone_maxaction(uma_zone_t zone) { if (zone->uz_maxaction.ta_func != NULL) taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); } /* * Routine called by timeout which is used to fire off some time interval * based calculations. (stats, hash size, etc.) * * Arguments: * arg Unused * * Returns: * Nothing */ static void uma_timeout(void *unused) { bucket_enable(); zone_foreach(zone_timeout, NULL); /* Reschedule this event */ callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); } /* * Update the working set size estimates for the zone's bucket cache. * The constants chosen here are somewhat arbitrary. */ static void zone_domain_update_wss(uma_zone_domain_t zdom) { long m; ZDOM_LOCK_ASSERT(zdom); MPASS(zdom->uzd_imax >= zdom->uzd_nitems); MPASS(zdom->uzd_nitems >= zdom->uzd_bimin); MPASS(zdom->uzd_bimin >= zdom->uzd_imin); /* * Estimate WSS as modified moving average of biggest allocation * batches for each period over few minutes (UMA_TIMEOUT of 20s). */ zdom->uzd_wss = lmax(zdom->uzd_wss * 3 / 4, zdom->uzd_imax - zdom->uzd_bimin); /* * Estimate longtime minimum item count as a combination of recent * minimum item count, adjusted by WSS for safety, and the modified * moving average over the last several hours (UMA_TIMEOUT of 20s). * timin measures time since limin tried to go negative, that means * we were dangerously close to or got out of cache. */ m = zdom->uzd_imin - zdom->uzd_wss; if (m >= 0) { if (zdom->uzd_limin >= m) zdom->uzd_limin = m; else zdom->uzd_limin = (m + zdom->uzd_limin * 255) / 256; zdom->uzd_timin++; } else { zdom->uzd_limin = 0; zdom->uzd_timin = 0; } /* To reduce period edge effects on WSS keep half of the imax. */ atomic_subtract_long(&zdom->uzd_imax, (zdom->uzd_imax - zdom->uzd_nitems + 1) / 2); zdom->uzd_imin = zdom->uzd_bimin = zdom->uzd_nitems; } /* * Routine to perform timeout driven calculations. This expands the * hashes and does per cpu statistics aggregation. * * Returns nothing. */ static void zone_timeout(uma_zone_t zone, void *unused) { uma_keg_t keg; u_int slabs, pages; if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) goto trim; keg = zone->uz_keg; /* * Hash zones are non-numa by definition so the first domain * is the only one present. */ KEG_LOCK(keg, 0); pages = keg->uk_domain[0].ud_pages; /* * Expand the keg hash table. * * This is done if the number of slabs is larger than the hash size. * What I'm trying to do here is completely reduce collisions. This * may be a little aggressive. Should I allow for two collisions max? */ if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) { struct uma_hash newhash; struct uma_hash oldhash; int ret; /* * This is so involved because allocating and freeing * while the keg lock is held will lead to deadlock. * I have to do everything in stages and check for * races. */ KEG_UNLOCK(keg, 0); ret = hash_alloc(&newhash, 1 << fls(slabs)); KEG_LOCK(keg, 0); if (ret) { if (hash_expand(&keg->uk_hash, &newhash)) { oldhash = keg->uk_hash; keg->uk_hash = newhash; } else oldhash = newhash; KEG_UNLOCK(keg, 0); hash_free(&oldhash); goto trim; } } KEG_UNLOCK(keg, 0); trim: /* Trim caches not used for a long time. */ - for (int i = 0; i < vm_ndomains; i++) { - if (bucket_cache_reclaim_domain(zone, false, false, i) && - (zone->uz_flags & UMA_ZFLAG_CACHE) == 0) - keg_drain(zone->uz_keg, i); + if ((zone->uz_flags & UMA_ZONE_UNMANAGED) == 0) { + for (int i = 0; i < vm_ndomains; i++) { + if (bucket_cache_reclaim_domain(zone, false, false, i) && + (zone->uz_flags & UMA_ZFLAG_CACHE) == 0) + keg_drain(zone->uz_keg, i); + } } } /* * Allocate and zero fill the next sized hash table from the appropriate * backing store. * * Arguments: * hash A new hash structure with the old hash size in uh_hashsize * * Returns: * 1 on success and 0 on failure. */ static int hash_alloc(struct uma_hash *hash, u_int size) { size_t alloc; KASSERT(powerof2(size), ("hash size must be power of 2")); if (size > UMA_HASH_SIZE_INIT) { hash->uh_hashsize = size; alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); } else { alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, UMA_ANYDOMAIN, M_WAITOK); hash->uh_hashsize = UMA_HASH_SIZE_INIT; } if (hash->uh_slab_hash) { bzero(hash->uh_slab_hash, alloc); hash->uh_hashmask = hash->uh_hashsize - 1; return (1); } return (0); } /* * Expands the hash table for HASH zones. This is done from zone_timeout * to reduce collisions. This must not be done in the regular allocation * path, otherwise, we can recurse on the vm while allocating pages. * * Arguments: * oldhash The hash you want to expand * newhash The hash structure for the new table * * Returns: * Nothing * * Discussion: */ static int hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) { uma_hash_slab_t slab; u_int hval; u_int idx; if (!newhash->uh_slab_hash) return (0); if (oldhash->uh_hashsize >= newhash->uh_hashsize) return (0); /* * I need to investigate hash algorithms for resizing without a * full rehash. */ for (idx = 0; idx < oldhash->uh_hashsize; idx++) while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); LIST_REMOVE(slab, uhs_hlink); hval = UMA_HASH(newhash, slab->uhs_data); LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], slab, uhs_hlink); } return (1); } /* * Free the hash bucket to the appropriate backing store. * * Arguments: * slab_hash The hash bucket we're freeing * hashsize The number of entries in that hash bucket * * Returns: * Nothing */ static void hash_free(struct uma_hash *hash) { if (hash->uh_slab_hash == NULL) return; if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); else free(hash->uh_slab_hash, M_UMAHASH); } /* * Frees all outstanding items in a bucket * * Arguments: * zone The zone to free to, must be unlocked. * bucket The free/alloc bucket with items. * * Returns: * Nothing */ static void bucket_drain(uma_zone_t zone, uma_bucket_t bucket) { int i; if (bucket->ub_cnt == 0) return; if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && bucket->ub_seq != SMR_SEQ_INVALID) { smr_wait(zone->uz_smr, bucket->ub_seq); bucket->ub_seq = SMR_SEQ_INVALID; for (i = 0; i < bucket->ub_cnt; i++) item_dtor(zone, bucket->ub_bucket[i], zone->uz_size, NULL, SKIP_NONE); } if (zone->uz_fini) for (i = 0; i < bucket->ub_cnt; i++) { kasan_mark_item_valid(zone, bucket->ub_bucket[i]); zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); kasan_mark_item_invalid(zone, bucket->ub_bucket[i]); } zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); if (zone->uz_max_items > 0) zone_free_limit(zone, bucket->ub_cnt); #ifdef INVARIANTS bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt); #endif bucket->ub_cnt = 0; } /* * Drains the per cpu caches for a zone. * * NOTE: This may only be called while the zone is being torn down, and not * during normal operation. This is necessary in order that we do not have * to migrate CPUs to drain the per-CPU caches. * * Arguments: * zone The zone to drain, must be unlocked. * * Returns: * Nothing */ static void cache_drain(uma_zone_t zone) { uma_cache_t cache; uma_bucket_t bucket; smr_seq_t seq; int cpu; /* * XXX: It is safe to not lock the per-CPU caches, because we're * tearing down the zone anyway. I.e., there will be no further use * of the caches at this point. * * XXX: It would good to be able to assert that the zone is being * torn down to prevent improper use of cache_drain(). */ seq = SMR_SEQ_INVALID; if ((zone->uz_flags & UMA_ZONE_SMR) != 0) seq = smr_advance(zone->uz_smr); CPU_FOREACH(cpu) { cache = &zone->uz_cpu[cpu]; bucket = cache_bucket_unload_alloc(cache); if (bucket != NULL) bucket_free(zone, bucket, NULL); bucket = cache_bucket_unload_free(cache); if (bucket != NULL) { bucket->ub_seq = seq; bucket_free(zone, bucket, NULL); } bucket = cache_bucket_unload_cross(cache); if (bucket != NULL) { bucket->ub_seq = seq; bucket_free(zone, bucket, NULL); } } bucket_cache_reclaim(zone, true, UMA_ANYDOMAIN); } static void cache_shrink(uma_zone_t zone, void *unused) { if (zone->uz_flags & UMA_ZFLAG_INTERNAL) return; ZONE_LOCK(zone); zone->uz_bucket_size = (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; ZONE_UNLOCK(zone); } static void cache_drain_safe_cpu(uma_zone_t zone, void *unused) { uma_cache_t cache; uma_bucket_t b1, b2, b3; int domain; if (zone->uz_flags & UMA_ZFLAG_INTERNAL) return; b1 = b2 = b3 = NULL; critical_enter(); cache = &zone->uz_cpu[curcpu]; domain = PCPU_GET(domain); b1 = cache_bucket_unload_alloc(cache); /* * Don't flush SMR zone buckets. This leaves the zone without a * bucket and forces every free to synchronize(). */ if ((zone->uz_flags & UMA_ZONE_SMR) == 0) { b2 = cache_bucket_unload_free(cache); b3 = cache_bucket_unload_cross(cache); } critical_exit(); if (b1 != NULL) zone_free_bucket(zone, b1, NULL, domain, false); if (b2 != NULL) zone_free_bucket(zone, b2, NULL, domain, false); if (b3 != NULL) { /* Adjust the domain so it goes to zone_free_cross. */ domain = (domain + 1) % vm_ndomains; zone_free_bucket(zone, b3, NULL, domain, false); } } /* * Safely drain per-CPU caches of a zone(s) to alloc bucket. * This is an expensive call because it needs to bind to all CPUs * one by one and enter a critical section on each of them in order * to safely access their cache buckets. * Zone lock must not be held on call this function. */ static void pcpu_cache_drain_safe(uma_zone_t zone) { int cpu; /* * Polite bucket sizes shrinking was not enough, shrink aggressively. */ if (zone) cache_shrink(zone, NULL); else zone_foreach(cache_shrink, NULL); CPU_FOREACH(cpu) { thread_lock(curthread); sched_bind(curthread, cpu); thread_unlock(curthread); if (zone) cache_drain_safe_cpu(zone, NULL); else zone_foreach(cache_drain_safe_cpu, NULL); } thread_lock(curthread); sched_unbind(curthread); thread_unlock(curthread); } /* * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller * requested a drain, otherwise the per-domain caches are trimmed to either * estimated working set size. */ static bool bucket_cache_reclaim_domain(uma_zone_t zone, bool drain, bool trim, int domain) { uma_zone_domain_t zdom; uma_bucket_t bucket; long target; bool done = false; /* * The cross bucket is partially filled and not part of * the item count. Reclaim it individually here. */ zdom = ZDOM_GET(zone, domain); if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) { ZONE_CROSS_LOCK(zone); bucket = zdom->uzd_cross; zdom->uzd_cross = NULL; ZONE_CROSS_UNLOCK(zone); if (bucket != NULL) bucket_free(zone, bucket, NULL); } /* * If we were asked to drain the zone, we are done only once * this bucket cache is empty. If trim, we reclaim items in * excess of the zone's estimated working set size. Multiple * consecutive calls will shrink the WSS and so reclaim more. * If neither drain nor trim, then voluntarily reclaim 1/4 * (to reduce first spike) of items not used for a long time. */ ZDOM_LOCK(zdom); zone_domain_update_wss(zdom); if (drain) target = 0; else if (trim) target = zdom->uzd_wss; else if (zdom->uzd_timin > 900 / UMA_TIMEOUT) target = zdom->uzd_nitems - zdom->uzd_limin / 4; else { ZDOM_UNLOCK(zdom); return (done); } while ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) != NULL && zdom->uzd_nitems >= target + bucket->ub_cnt) { bucket = zone_fetch_bucket(zone, zdom, true); if (bucket == NULL) break; bucket_free(zone, bucket, NULL); done = true; ZDOM_LOCK(zdom); } ZDOM_UNLOCK(zdom); return (done); } static void bucket_cache_reclaim(uma_zone_t zone, bool drain, int domain) { int i; /* * Shrink the zone bucket size to ensure that the per-CPU caches * don't grow too large. */ if (zone->uz_bucket_size > zone->uz_bucket_size_min) zone->uz_bucket_size--; if (domain != UMA_ANYDOMAIN && (zone->uz_flags & UMA_ZONE_ROUNDROBIN) == 0) { bucket_cache_reclaim_domain(zone, drain, true, domain); } else { for (i = 0; i < vm_ndomains; i++) bucket_cache_reclaim_domain(zone, drain, true, i); } } static void keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) { uint8_t *mem; size_t size; int i; uint8_t flags; CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); mem = slab_data(slab, keg); size = PAGE_SIZE * keg->uk_ppera; kasan_mark_slab_valid(keg, mem); if (keg->uk_fini != NULL) { for (i = start - 1; i > -1; i--) #ifdef INVARIANTS /* * trash_fini implies that dtor was trash_dtor. trash_fini * would check that memory hasn't been modified since free, * which executed trash_dtor. * That's why we need to run uma_dbg_kskip() check here, * albeit we don't make skip check for other init/fini * invocations. */ if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || keg->uk_fini != trash_fini) #endif keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); } flags = slab->us_flags; if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab), NULL, SKIP_NONE); } keg->uk_freef(mem, size, flags); uma_total_dec(size); } static void keg_drain_domain(uma_keg_t keg, int domain) { struct slabhead freeslabs; uma_domain_t dom; uma_slab_t slab, tmp; uint32_t i, stofree, stokeep, partial; dom = &keg->uk_domain[domain]; LIST_INIT(&freeslabs); CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u", keg->uk_name, keg, domain, dom->ud_free_items); KEG_LOCK(keg, domain); /* * Are the free items in partially allocated slabs sufficient to meet * the reserve? If not, compute the number of fully free slabs that must * be kept. */ partial = dom->ud_free_items - dom->ud_free_slabs * keg->uk_ipers; if (partial < keg->uk_reserve) { stokeep = min(dom->ud_free_slabs, howmany(keg->uk_reserve - partial, keg->uk_ipers)); } else { stokeep = 0; } stofree = dom->ud_free_slabs - stokeep; /* * Partition the free slabs into two sets: those that must be kept in * order to maintain the reserve, and those that may be released back to * the system. Since one set may be much larger than the other, * populate the smaller of the two sets and swap them if necessary. */ for (i = min(stofree, stokeep); i > 0; i--) { slab = LIST_FIRST(&dom->ud_free_slab); LIST_REMOVE(slab, us_link); LIST_INSERT_HEAD(&freeslabs, slab, us_link); } if (stofree > stokeep) LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link); if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) { LIST_FOREACH(slab, &freeslabs, us_link) UMA_HASH_REMOVE(&keg->uk_hash, slab); } dom->ud_free_items -= stofree * keg->uk_ipers; dom->ud_free_slabs -= stofree; dom->ud_pages -= stofree * keg->uk_ppera; KEG_UNLOCK(keg, domain); LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp) keg_free_slab(keg, slab, keg->uk_ipers); } /* * Frees pages from a keg back to the system. This is done on demand from * the pageout daemon. * * Returns nothing. */ static void keg_drain(uma_keg_t keg, int domain) { int i; if ((keg->uk_flags & UMA_ZONE_NOFREE) != 0) return; if (domain != UMA_ANYDOMAIN) { keg_drain_domain(keg, domain); } else { for (i = 0; i < vm_ndomains; i++) keg_drain_domain(keg, i); } } static void zone_reclaim(uma_zone_t zone, int domain, int waitok, bool drain) { /* * Count active reclaim operations in order to interlock with * zone_dtor(), which removes the zone from global lists before * attempting to reclaim items itself. * * The zone may be destroyed while sleeping, so only zone_dtor() should * specify M_WAITOK. */ ZONE_LOCK(zone); if (waitok == M_WAITOK) { while (zone->uz_reclaimers > 0) msleep(zone, ZONE_LOCKPTR(zone), PVM, "zonedrain", 1); } zone->uz_reclaimers++; ZONE_UNLOCK(zone); bucket_cache_reclaim(zone, drain, domain); if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) keg_drain(zone->uz_keg, domain); ZONE_LOCK(zone); zone->uz_reclaimers--; if (zone->uz_reclaimers == 0) wakeup(zone); ZONE_UNLOCK(zone); } -static void -zone_drain(uma_zone_t zone, void *arg) -{ - int domain; - - domain = (int)(uintptr_t)arg; - zone_reclaim(zone, domain, M_NOWAIT, true); -} - -static void -zone_trim(uma_zone_t zone, void *arg) -{ - int domain; - - domain = (int)(uintptr_t)arg; - zone_reclaim(zone, domain, M_NOWAIT, false); -} - /* * Allocate a new slab for a keg and inserts it into the partial slab list. * The keg should be unlocked on entry. If the allocation succeeds it will * be locked on return. * * Arguments: * flags Wait flags for the item initialization routine * aflags Wait flags for the slab allocation * * Returns: * The slab that was allocated or NULL if there is no memory and the * caller specified M_NOWAIT. */ static uma_slab_t keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, int aflags) { uma_domain_t dom; uma_slab_t slab; unsigned long size; uint8_t *mem; uint8_t sflags; int i; KASSERT(domain >= 0 && domain < vm_ndomains, ("keg_alloc_slab: domain %d out of range", domain)); slab = NULL; mem = NULL; if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { uma_hash_slab_t hslab; hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL, domain, aflags); if (hslab == NULL) goto fail; slab = &hslab->uhs_slab; } /* * This reproduces the old vm_zone behavior of zero filling pages the * first time they are added to a zone. * * Malloced items are zeroed in uma_zalloc. */ if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) aflags |= M_ZERO; else aflags &= ~M_ZERO; if (keg->uk_flags & UMA_ZONE_NODUMP) aflags |= M_NODUMP; /* zone is passed for legacy reasons. */ size = keg->uk_ppera * PAGE_SIZE; mem = keg->uk_allocf(zone, size, domain, &sflags, aflags); if (mem == NULL) { if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab), NULL, SKIP_NONE); goto fail; } uma_total_inc(size); /* For HASH zones all pages go to the same uma_domain. */ if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) domain = 0; /* Point the slab into the allocated memory */ if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) slab = (uma_slab_t)(mem + keg->uk_pgoff); else slab_tohashslab(slab)->uhs_data = mem; if (keg->uk_flags & UMA_ZFLAG_VTOSLAB) for (i = 0; i < keg->uk_ppera; i++) vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), zone, slab); slab->us_freecount = keg->uk_ipers; slab->us_flags = sflags; slab->us_domain = domain; BIT_FILL(keg->uk_ipers, &slab->us_free); #ifdef INVARIANTS BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); #endif if (keg->uk_init != NULL) { for (i = 0; i < keg->uk_ipers; i++) if (keg->uk_init(slab_item(slab, keg, i), keg->uk_size, flags) != 0) break; if (i != keg->uk_ipers) { keg_free_slab(keg, slab, i); goto fail; } } kasan_mark_slab_invalid(keg, mem); KEG_LOCK(keg, domain); CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", slab, keg->uk_name, keg); if (keg->uk_flags & UMA_ZFLAG_HASH) UMA_HASH_INSERT(&keg->uk_hash, slab, mem); /* * If we got a slab here it's safe to mark it partially used * and return. We assume that the caller is going to remove * at least one item. */ dom = &keg->uk_domain[domain]; LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); dom->ud_pages += keg->uk_ppera; dom->ud_free_items += keg->uk_ipers; return (slab); fail: return (NULL); } /* * This function is intended to be used early on in place of page_alloc(). It * performs contiguous physical memory allocations and uses a bump allocator for * KVA, so is usable before the kernel map is initialized. */ static void * startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, int wait) { vm_paddr_t pa; vm_page_t m; int i, pages; pages = howmany(bytes, PAGE_SIZE); KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); *pflag = UMA_SLAB_BOOT; m = vm_page_alloc_noobj_contig_domain(domain, malloc2vm_flags(wait) | VM_ALLOC_WIRED, pages, (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT); if (m == NULL) return (NULL); pa = VM_PAGE_TO_PHYS(m); for (i = 0; i < pages; i++, pa += PAGE_SIZE) { #if defined(__aarch64__) || defined(__amd64__) || \ defined(__riscv) || defined(__powerpc64__) if ((wait & M_NODUMP) == 0) dump_add_page(pa); #endif } /* Allocate KVA and indirectly advance bootmem. */ return ((void *)pmap_map(&bootmem, m->phys_addr, m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE)); } static void startup_free(void *mem, vm_size_t bytes) { vm_offset_t va; vm_page_t m; va = (vm_offset_t)mem; m = PHYS_TO_VM_PAGE(pmap_kextract(va)); /* * startup_alloc() returns direct-mapped slabs on some platforms. Avoid * unmapping ranges of the direct map. */ if (va >= bootstart && va + bytes <= bootmem) pmap_remove(kernel_pmap, va, va + bytes); for (; bytes != 0; bytes -= PAGE_SIZE, m++) { #if defined(__aarch64__) || defined(__amd64__) || \ defined(__riscv) || defined(__powerpc64__) dump_drop_page(VM_PAGE_TO_PHYS(m)); #endif vm_page_unwire_noq(m); vm_page_free(m); } } /* * Allocates a number of pages from the system * * Arguments: * bytes The number of bytes requested * wait Shall we wait? * * Returns: * A pointer to the alloced memory or possibly * NULL if M_NOWAIT is set. */ static void * page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, int wait) { void *p; /* Returned page */ *pflag = UMA_SLAB_KERNEL; p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); return (p); } static void * pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, int wait) { struct pglist alloctail; vm_offset_t addr, zkva; int cpu, flags; vm_page_t p, p_next; #ifdef NUMA struct pcpu *pc; #endif MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); TAILQ_INIT(&alloctail); flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | malloc2vm_flags(wait); *pflag = UMA_SLAB_KERNEL; for (cpu = 0; cpu <= mp_maxid; cpu++) { if (CPU_ABSENT(cpu)) { p = vm_page_alloc_noobj(flags); } else { #ifndef NUMA p = vm_page_alloc_noobj(flags); #else pc = pcpu_find(cpu); if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain))) p = NULL; else p = vm_page_alloc_noobj_domain(pc->pc_domain, flags); if (__predict_false(p == NULL)) p = vm_page_alloc_noobj(flags); #endif } if (__predict_false(p == NULL)) goto fail; TAILQ_INSERT_TAIL(&alloctail, p, listq); } if ((addr = kva_alloc(bytes)) == 0) goto fail; zkva = addr; TAILQ_FOREACH(p, &alloctail, listq) { pmap_qenter(zkva, &p, 1); zkva += PAGE_SIZE; } return ((void*)addr); fail: TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { vm_page_unwire_noq(p); vm_page_free(p); } return (NULL); } /* * Allocates a number of pages not belonging to a VM object * * Arguments: * bytes The number of bytes requested * wait Shall we wait? * * Returns: * A pointer to the alloced memory or possibly * NULL if M_NOWAIT is set. */ static void * noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, int wait) { TAILQ_HEAD(, vm_page) alloctail; u_long npages; vm_offset_t retkva, zkva; vm_page_t p, p_next; uma_keg_t keg; int req; TAILQ_INIT(&alloctail); keg = zone->uz_keg; req = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED; if ((wait & M_WAITOK) != 0) req |= VM_ALLOC_WAITOK; npages = howmany(bytes, PAGE_SIZE); while (npages > 0) { p = vm_page_alloc_noobj_domain(domain, req); if (p != NULL) { /* * Since the page does not belong to an object, its * listq is unused. */ TAILQ_INSERT_TAIL(&alloctail, p, listq); npages--; continue; } /* * Page allocation failed, free intermediate pages and * exit. */ TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { vm_page_unwire_noq(p); vm_page_free(p); } return (NULL); } *flags = UMA_SLAB_PRIV; zkva = keg->uk_kva + atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); retkva = zkva; TAILQ_FOREACH(p, &alloctail, listq) { pmap_qenter(zkva, &p, 1); zkva += PAGE_SIZE; } return ((void *)retkva); } /* * Allocate physically contiguous pages. */ static void * contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, int wait) { *pflag = UMA_SLAB_KERNEL; return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain), bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT)); } /* * Frees a number of pages to the system * * Arguments: * mem A pointer to the memory to be freed * size The size of the memory being freed * flags The original p->us_flags field * * Returns: * Nothing */ static void page_free(void *mem, vm_size_t size, uint8_t flags) { if ((flags & UMA_SLAB_BOOT) != 0) { startup_free(mem, size); return; } KASSERT((flags & UMA_SLAB_KERNEL) != 0, ("UMA: page_free used with invalid flags %x", flags)); kmem_free((vm_offset_t)mem, size); } /* * Frees pcpu zone allocations * * Arguments: * mem A pointer to the memory to be freed * size The size of the memory being freed * flags The original p->us_flags field * * Returns: * Nothing */ static void pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) { vm_offset_t sva, curva; vm_paddr_t paddr; vm_page_t m; MPASS(size == (mp_maxid+1)*PAGE_SIZE); if ((flags & UMA_SLAB_BOOT) != 0) { startup_free(mem, size); return; } sva = (vm_offset_t)mem; for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { paddr = pmap_kextract(curva); m = PHYS_TO_VM_PAGE(paddr); vm_page_unwire_noq(m); vm_page_free(m); } pmap_qremove(sva, size >> PAGE_SHIFT); kva_free(sva, size); } /* * Zero fill initializer * * Arguments/Returns follow uma_init specifications */ static int zero_init(void *mem, int size, int flags) { bzero(mem, size); return (0); } #ifdef INVARIANTS static struct noslabbits * slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) { return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); } #endif /* * Actual size of embedded struct slab (!OFFPAGE). */ static size_t slab_sizeof(int nitems) { size_t s; s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; return (roundup(s, UMA_ALIGN_PTR + 1)); } #define UMA_FIXPT_SHIFT 31 #define UMA_FRAC_FIXPT(n, d) \ ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d))) #define UMA_FIXPT_PCT(f) \ ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT)) #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100) #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE) /* * Compute the number of items that will fit in a slab. If hdr is true, the * item count may be limited to provide space in the slab for an inline slab * header. Otherwise, all slab space will be provided for item storage. */ static u_int slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr) { u_int ipers; u_int padpi; /* The padding between items is not needed after the last item. */ padpi = rsize - size; if (hdr) { /* * Start with the maximum item count and remove items until * the slab header first alongside the allocatable memory. */ for (ipers = MIN(SLAB_MAX_SETSIZE, (slabsize + padpi - slab_sizeof(1)) / rsize); ipers > 0 && ipers * rsize - padpi + slab_sizeof(ipers) > slabsize; ipers--) continue; } else { ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE); } return (ipers); } struct keg_layout_result { u_int format; u_int slabsize; u_int ipers; u_int eff; }; static void keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt, struct keg_layout_result *kl) { u_int total; kl->format = fmt; kl->slabsize = slabsize; /* Handle INTERNAL as inline with an extra page. */ if ((fmt & UMA_ZFLAG_INTERNAL) != 0) { kl->format &= ~UMA_ZFLAG_INTERNAL; kl->slabsize += PAGE_SIZE; } kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize, (fmt & UMA_ZFLAG_OFFPAGE) == 0); /* Account for memory used by an offpage slab header. */ total = kl->slabsize; if ((fmt & UMA_ZFLAG_OFFPAGE) != 0) total += slabzone(kl->ipers)->uz_keg->uk_rsize; kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total); } /* * Determine the format of a uma keg. This determines where the slab header * will be placed (inline or offpage) and calculates ipers, rsize, and ppera. * * Arguments * keg The zone we should initialize * * Returns * Nothing */ static void keg_layout(uma_keg_t keg) { struct keg_layout_result kl = {}, kl_tmp; u_int fmts[2]; u_int alignsize; u_int nfmt; u_int pages; u_int rsize; u_int slabsize; u_int i, j; KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || (keg->uk_size <= UMA_PCPU_ALLOC_SIZE && (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0), ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b", __func__, keg->uk_name, keg->uk_size, keg->uk_flags, PRINT_UMA_ZFLAGS)); KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 || (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0, ("%s: incompatible flags 0x%b", __func__, keg->uk_flags, PRINT_UMA_ZFLAGS)); alignsize = keg->uk_align + 1; #ifdef KASAN /* * ASAN requires that each allocation be aligned to the shadow map * scale factor. */ if (alignsize < KASAN_SHADOW_SCALE) alignsize = KASAN_SHADOW_SCALE; #endif /* * Calculate the size of each allocation (rsize) according to * alignment. If the requested size is smaller than we have * allocation bits for we round it up. */ rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT); rsize = roundup2(rsize, alignsize); if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) { /* * We want one item to start on every align boundary in a page. * To do this we will span pages. We will also extend the item * by the size of align if it is an even multiple of align. * Otherwise, it would fall on the same boundary every time. */ if ((rsize & alignsize) == 0) rsize += alignsize; slabsize = rsize * (PAGE_SIZE / alignsize); slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE); slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE); slabsize = round_page(slabsize); } else { /* * Start with a slab size of as many pages as it takes to * represent a single item. We will try to fit as many * additional items into the slab as possible. */ slabsize = round_page(keg->uk_size); } /* Build a list of all of the available formats for this keg. */ nfmt = 0; /* Evaluate an inline slab layout. */ if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0) fmts[nfmt++] = 0; /* TODO: vm_page-embedded slab. */ /* * We can't do OFFPAGE if we're internal or if we've been * asked to not go to the VM for buckets. If we do this we * may end up going to the VM for slabs which we do not want * to do if we're UMA_ZONE_VM, which clearly forbids it. * In those cases, evaluate a pseudo-format called INTERNAL * which has an inline slab header and one extra page to * guarantee that it fits. * * Otherwise, see if using an OFFPAGE slab will improve our * efficiency. */ if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0) fmts[nfmt++] = UMA_ZFLAG_INTERNAL; else fmts[nfmt++] = UMA_ZFLAG_OFFPAGE; /* * Choose a slab size and format which satisfy the minimum efficiency. * Prefer the smallest slab size that meets the constraints. * * Start with a minimum slab size, to accommodate CACHESPREAD. Then, * for small items (up to PAGE_SIZE), the iteration increment is one * page; and for large items, the increment is one item. */ i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize); KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u", keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize, rsize, i)); for ( ; ; i++) { slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) : round_page(rsize * (i - 1) + keg->uk_size); for (j = 0; j < nfmt; j++) { /* Only if we have no viable format yet. */ if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 && kl.ipers > 0) continue; keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp); if (kl_tmp.eff <= kl.eff) continue; kl = kl_tmp; CTR6(KTR_UMA, "keg %s layout: format %#x " "(ipers %u * rsize %u) / slabsize %#x = %u%% eff", keg->uk_name, kl.format, kl.ipers, rsize, kl.slabsize, UMA_FIXPT_PCT(kl.eff)); /* Stop when we reach the minimum efficiency. */ if (kl.eff >= UMA_MIN_EFF) break; } if (kl.eff >= UMA_MIN_EFF || !multipage_slabs || slabsize >= SLAB_MAX_SETSIZE * rsize || (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0) break; } pages = atop(kl.slabsize); if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) pages *= mp_maxid + 1; keg->uk_rsize = rsize; keg->uk_ipers = kl.ipers; keg->uk_ppera = pages; keg->uk_flags |= kl.format; /* * How do we find the slab header if it is offpage or if not all item * start addresses are in the same page? We could solve the latter * case with vaddr alignment, but we don't. */ if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 || (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) { if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0) keg->uk_flags |= UMA_ZFLAG_HASH; else keg->uk_flags |= UMA_ZFLAG_VTOSLAB; } CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u", __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers, pages); KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__, keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize, keg->uk_ipers, pages)); } /* * Keg header ctor. This initializes all fields, locks, etc. And inserts * the keg onto the global keg list. * * Arguments/Returns follow uma_ctor specifications * udata Actually uma_kctor_args */ static int keg_ctor(void *mem, int size, void *udata, int flags) { struct uma_kctor_args *arg = udata; uma_keg_t keg = mem; uma_zone_t zone; int i; bzero(keg, size); keg->uk_size = arg->size; keg->uk_init = arg->uminit; keg->uk_fini = arg->fini; keg->uk_align = arg->align; keg->uk_reserve = 0; keg->uk_flags = arg->flags; /* * We use a global round-robin policy by default. Zones with * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which * case the iterator is never run. */ keg->uk_dr.dr_policy = DOMAINSET_RR(); keg->uk_dr.dr_iter = 0; /* * The primary zone is passed to us at keg-creation time. */ zone = arg->zone; keg->uk_name = zone->uz_name; if (arg->flags & UMA_ZONE_ZINIT) keg->uk_init = zero_init; if (arg->flags & UMA_ZONE_MALLOC) keg->uk_flags |= UMA_ZFLAG_VTOSLAB; #ifndef SMP keg->uk_flags &= ~UMA_ZONE_PCPU; #endif keg_layout(keg); /* * Use a first-touch NUMA policy for kegs that pmap_extract() will * work on. Use round-robin for everything else. * * Zones may override the default by specifying either. */ #ifdef NUMA if ((keg->uk_flags & (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0) keg->uk_flags |= UMA_ZONE_FIRSTTOUCH; else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0) keg->uk_flags |= UMA_ZONE_ROUNDROBIN; #endif /* * If we haven't booted yet we need allocations to go through the * startup cache until the vm is ready. */ #ifdef UMA_MD_SMALL_ALLOC if (keg->uk_ppera == 1) keg->uk_allocf = uma_small_alloc; else #endif if (booted < BOOT_KVA) keg->uk_allocf = startup_alloc; else if (keg->uk_flags & UMA_ZONE_PCPU) keg->uk_allocf = pcpu_page_alloc; else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1) keg->uk_allocf = contig_alloc; else keg->uk_allocf = page_alloc; #ifdef UMA_MD_SMALL_ALLOC if (keg->uk_ppera == 1) keg->uk_freef = uma_small_free; else #endif if (keg->uk_flags & UMA_ZONE_PCPU) keg->uk_freef = pcpu_page_free; else keg->uk_freef = page_free; /* * Initialize keg's locks. */ for (i = 0; i < vm_ndomains; i++) KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS)); /* * If we're putting the slab header in the actual page we need to * figure out where in each page it goes. See slab_sizeof * definition. */ if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) { size_t shsize; shsize = slab_sizeof(keg->uk_ipers); keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; /* * The only way the following is possible is if with our * UMA_ALIGN_PTR adjustments we are now bigger than * UMA_SLAB_SIZE. I haven't checked whether this is * mathematically possible for all cases, so we make * sure here anyway. */ KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, ("zone %s ipers %d rsize %d size %d slab won't fit", zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); } if (keg->uk_flags & UMA_ZFLAG_HASH) hash_alloc(&keg->uk_hash, 0); CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone); LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); rw_wlock(&uma_rwlock); LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); rw_wunlock(&uma_rwlock); return (0); } static void zone_kva_available(uma_zone_t zone, void *unused) { uma_keg_t keg; if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) return; KEG_GET(zone, keg); if (keg->uk_allocf == startup_alloc) { /* Switch to the real allocator. */ if (keg->uk_flags & UMA_ZONE_PCPU) keg->uk_allocf = pcpu_page_alloc; else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1) keg->uk_allocf = contig_alloc; else keg->uk_allocf = page_alloc; } } static void zone_alloc_counters(uma_zone_t zone, void *unused) { zone->uz_allocs = counter_u64_alloc(M_WAITOK); zone->uz_frees = counter_u64_alloc(M_WAITOK); zone->uz_fails = counter_u64_alloc(M_WAITOK); zone->uz_xdomain = counter_u64_alloc(M_WAITOK); } static void zone_alloc_sysctl(uma_zone_t zone, void *unused) { uma_zone_domain_t zdom; uma_domain_t dom; uma_keg_t keg; struct sysctl_oid *oid, *domainoid; int domains, i, cnt; static const char *nokeg = "cache zone"; char *c; /* * Make a sysctl safe copy of the zone name by removing * any special characters and handling dups by appending * an index. */ if (zone->uz_namecnt != 0) { /* Count the number of decimal digits and '_' separator. */ for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) cnt /= 10; zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, M_UMA, M_WAITOK); sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, zone->uz_namecnt); } else zone->uz_ctlname = strdup(zone->uz_name, M_UMA); for (c = zone->uz_ctlname; *c != '\0'; c++) if (strchr("./\\ -", *c) != NULL) *c = '_'; /* * Basic parameters at the root. */ zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); oid = zone->uz_oid; SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, zone, 0, sysctl_handle_uma_zone_flags, "A", "Allocator configuration flags"); SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, "Desired per-cpu cache size"); SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, "Maximum allowed per-cpu cache size"); /* * keg if present. */ if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) domains = vm_ndomains; else domains = 1; oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); keg = zone->uz_keg; if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "name", CTLFLAG_RD, keg->uk_name, "Keg name"); SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, "Real object size with alignment"); SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, "pages per-slab allocation"); SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, "items available per-slab"); SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "align", CTLFLAG_RD, &keg->uk_align, 0, "item alignment mask"); SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "reserve", CTLFLAG_RD, &keg->uk_reserve, 0, "number of reserved items"); SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, keg, 0, sysctl_handle_uma_slab_efficiency, "I", "Slab utilization (100 - internal fragmentation %)"); domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); for (i = 0; i < domains; i++) { dom = &keg->uk_domain[i]; oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), OID_AUTO, VM_DOMAIN(i)->vmd_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "pages", CTLFLAG_RD, &dom->ud_pages, 0, "Total pages currently allocated from VM"); SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "free_items", CTLFLAG_RD, &dom->ud_free_items, 0, "Items free in the slab layer"); SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "free_slabs", CTLFLAG_RD, &dom->ud_free_slabs, 0, "Unused slabs"); } } else SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "name", CTLFLAG_RD, nokeg, "Keg name"); /* * Information about zone limits. */ oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, zone, 0, sysctl_handle_uma_zone_items, "QU", "Current number of allocated items if limit is set"); SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, "Maximum number of allocated and cached items"); SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, "Number of threads sleeping at limit"); SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, "Total zone limit sleeps"); SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0, "Maximum number of items in each domain's bucket cache"); /* * Per-domain zone information. */ domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); for (i = 0; i < domains; i++) { zdom = ZDOM_GET(zone, i); oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), OID_AUTO, VM_DOMAIN(i)->vmd_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "nitems", CTLFLAG_RD, &zdom->uzd_nitems, "number of items in this domain"); SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "imax", CTLFLAG_RD, &zdom->uzd_imax, "maximum item count in this period"); SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "imin", CTLFLAG_RD, &zdom->uzd_imin, "minimum item count in this period"); SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "bimin", CTLFLAG_RD, &zdom->uzd_bimin, "Minimum item count in this batch"); SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wss", CTLFLAG_RD, &zdom->uzd_wss, "Working set size"); SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "limin", CTLFLAG_RD, &zdom->uzd_limin, "Long time minimum item count"); SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "timin", CTLFLAG_RD, &zdom->uzd_timin, 0, "Time since zero long time minimum item count"); } /* * General statistics. */ oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, zone, 1, sysctl_handle_uma_zone_cur, "I", "Current number of allocated items"); SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, zone, 0, sysctl_handle_uma_zone_allocs, "QU", "Total allocation calls"); SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, zone, 0, sysctl_handle_uma_zone_frees, "QU", "Total free calls"); SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "fails", CTLFLAG_RD, &zone->uz_fails, "Number of allocation failures"); SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "xdomain", CTLFLAG_RD, &zone->uz_xdomain, "Free calls from the wrong domain"); } struct uma_zone_count { const char *name; int count; }; static void zone_count(uma_zone_t zone, void *arg) { struct uma_zone_count *cnt; cnt = arg; /* * Some zones are rapidly created with identical names and * destroyed out of order. This can lead to gaps in the count. * Use one greater than the maximum observed for this name. */ if (strcmp(zone->uz_name, cnt->name) == 0) cnt->count = MAX(cnt->count, zone->uz_namecnt + 1); } static void zone_update_caches(uma_zone_t zone) { int i; for (i = 0; i <= mp_maxid; i++) { cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size); cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags); } } /* * Zone header ctor. This initializes all fields, locks, etc. * * Arguments/Returns follow uma_ctor specifications * udata Actually uma_zctor_args */ static int zone_ctor(void *mem, int size, void *udata, int flags) { struct uma_zone_count cnt; struct uma_zctor_args *arg = udata; uma_zone_domain_t zdom; uma_zone_t zone = mem; uma_zone_t z; uma_keg_t keg; int i; bzero(zone, size); zone->uz_name = arg->name; zone->uz_ctor = arg->ctor; zone->uz_dtor = arg->dtor; zone->uz_init = NULL; zone->uz_fini = NULL; zone->uz_sleeps = 0; zone->uz_bucket_size = 0; zone->uz_bucket_size_min = 0; zone->uz_bucket_size_max = BUCKET_MAX; zone->uz_flags = (arg->flags & UMA_ZONE_SMR); zone->uz_warning = NULL; /* The domain structures follow the cpu structures. */ zone->uz_bucket_max = ULONG_MAX; timevalclear(&zone->uz_ratecheck); /* Count the number of duplicate names. */ cnt.name = arg->name; cnt.count = 0; zone_foreach(zone_count, &cnt); zone->uz_namecnt = cnt.count; ZONE_CROSS_LOCK_INIT(zone); for (i = 0; i < vm_ndomains; i++) { zdom = ZDOM_GET(zone, i); ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS)); STAILQ_INIT(&zdom->uzd_buckets); } #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN) if (arg->uminit == trash_init && arg->fini == trash_fini) zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR; #elif defined(KASAN) if ((arg->flags & (UMA_ZONE_NOFREE | UMA_ZFLAG_CACHE)) != 0) arg->flags |= UMA_ZONE_NOKASAN; #endif /* * This is a pure cache zone, no kegs. */ if (arg->import) { KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0, ("zone_ctor: Import specified for non-cache zone.")); zone->uz_flags = arg->flags; zone->uz_size = arg->size; zone->uz_import = arg->import; zone->uz_release = arg->release; zone->uz_arg = arg->arg; #ifdef NUMA /* * Cache zones are round-robin unless a policy is * specified because they may have incompatible * constraints. */ if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0) zone->uz_flags |= UMA_ZONE_ROUNDROBIN; #endif rw_wlock(&uma_rwlock); LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); rw_wunlock(&uma_rwlock); goto out; } /* * Use the regular zone/keg/slab allocator. */ zone->uz_import = zone_import; zone->uz_release = zone_release; zone->uz_arg = zone; keg = arg->keg; if (arg->flags & UMA_ZONE_SECONDARY) { KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, ("Secondary zone requested UMA_ZFLAG_INTERNAL")); KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); zone->uz_init = arg->uminit; zone->uz_fini = arg->fini; zone->uz_flags |= UMA_ZONE_SECONDARY; rw_wlock(&uma_rwlock); ZONE_LOCK(zone); LIST_FOREACH(z, &keg->uk_zones, uz_link) { if (LIST_NEXT(z, uz_link) == NULL) { LIST_INSERT_AFTER(z, zone, uz_link); break; } } ZONE_UNLOCK(zone); rw_wunlock(&uma_rwlock); } else if (keg == NULL) { if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, arg->align, arg->flags)) == NULL) return (ENOMEM); } else { struct uma_kctor_args karg; int error; /* We should only be here from uma_startup() */ karg.size = arg->size; karg.uminit = arg->uminit; karg.fini = arg->fini; karg.align = arg->align; karg.flags = (arg->flags & ~UMA_ZONE_SMR); karg.zone = zone; error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, flags); if (error) return (error); } /* Inherit properties from the keg. */ zone->uz_keg = keg; zone->uz_size = keg->uk_size; zone->uz_flags |= (keg->uk_flags & (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); out: if (booted >= BOOT_PCPU) { zone_alloc_counters(zone, NULL); if (booted >= BOOT_RUNNING) zone_alloc_sysctl(zone, NULL); } else { zone->uz_allocs = EARLY_COUNTER; zone->uz_frees = EARLY_COUNTER; zone->uz_fails = EARLY_COUNTER; } /* Caller requests a private SMR context. */ if ((zone->uz_flags & UMA_ZONE_SMR) != 0) zone->uz_smr = smr_create(zone->uz_name, 0, 0); KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), ("Invalid zone flag combination")); if (arg->flags & UMA_ZFLAG_INTERNAL) zone->uz_bucket_size_max = zone->uz_bucket_size = 0; if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) zone->uz_bucket_size = BUCKET_MAX; else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) zone->uz_bucket_size = 0; else zone->uz_bucket_size = bucket_select(zone->uz_size); zone->uz_bucket_size_min = zone->uz_bucket_size; if (zone->uz_dtor != NULL || zone->uz_ctor != NULL) zone->uz_flags |= UMA_ZFLAG_CTORDTOR; zone_update_caches(zone); return (0); } /* * Keg header dtor. This frees all data, destroys locks, frees the hash * table and removes the keg from the global list. * * Arguments/Returns follow uma_dtor specifications * udata unused */ static void keg_dtor(void *arg, int size, void *udata) { uma_keg_t keg; uint32_t free, pages; int i; keg = (uma_keg_t)arg; free = pages = 0; for (i = 0; i < vm_ndomains; i++) { free += keg->uk_domain[i].ud_free_items; pages += keg->uk_domain[i].ud_pages; KEG_LOCK_FINI(keg, i); } if (pages != 0) printf("Freed UMA keg (%s) was not empty (%u items). " " Lost %u pages of memory.\n", keg->uk_name ? keg->uk_name : "", pages / keg->uk_ppera * keg->uk_ipers - free, pages); hash_free(&keg->uk_hash); } /* * Zone header dtor. * * Arguments/Returns follow uma_dtor specifications * udata unused */ static void zone_dtor(void *arg, int size, void *udata) { uma_zone_t zone; uma_keg_t keg; int i; zone = (uma_zone_t)arg; sysctl_remove_oid(zone->uz_oid, 1, 1); if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) cache_drain(zone); rw_wlock(&uma_rwlock); LIST_REMOVE(zone, uz_link); rw_wunlock(&uma_rwlock); if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { keg = zone->uz_keg; keg->uk_reserve = 0; } zone_reclaim(zone, UMA_ANYDOMAIN, M_WAITOK, true); /* * We only destroy kegs from non secondary/non cache zones. */ if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { keg = zone->uz_keg; rw_wlock(&uma_rwlock); LIST_REMOVE(keg, uk_link); rw_wunlock(&uma_rwlock); zone_free_item(kegs, keg, NULL, SKIP_NONE); } counter_u64_free(zone->uz_allocs); counter_u64_free(zone->uz_frees); counter_u64_free(zone->uz_fails); counter_u64_free(zone->uz_xdomain); free(zone->uz_ctlname, M_UMA); for (i = 0; i < vm_ndomains; i++) ZDOM_LOCK_FINI(ZDOM_GET(zone, i)); ZONE_CROSS_LOCK_FINI(zone); } static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg) { uma_keg_t keg; uma_zone_t zone; LIST_FOREACH(keg, &uma_kegs, uk_link) { LIST_FOREACH(zone, &keg->uk_zones, uz_link) zfunc(zone, arg); } LIST_FOREACH(zone, &uma_cachezones, uz_link) zfunc(zone, arg); } /* * Traverses every zone in the system and calls a callback * * Arguments: * zfunc A pointer to a function which accepts a zone * as an argument. * * Returns: * Nothing */ static void zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) { rw_rlock(&uma_rwlock); zone_foreach_unlocked(zfunc, arg); rw_runlock(&uma_rwlock); } /* * Initialize the kernel memory allocator. This is done after pages can be * allocated but before general KVA is available. */ void uma_startup1(vm_offset_t virtual_avail) { struct uma_zctor_args args; size_t ksize, zsize, size; uma_keg_t primarykeg; uintptr_t m; int domain; uint8_t pflag; bootstart = bootmem = virtual_avail; rw_init(&uma_rwlock, "UMA lock"); sx_init(&uma_reclaim_lock, "umareclaim"); ksize = sizeof(struct uma_keg) + (sizeof(struct uma_domain) * vm_ndomains); ksize = roundup(ksize, UMA_SUPER_ALIGN); zsize = sizeof(struct uma_zone) + (sizeof(struct uma_cache) * (mp_maxid + 1)) + (sizeof(struct uma_zone_domain) * vm_ndomains); zsize = roundup(zsize, UMA_SUPER_ALIGN); /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */ size = (zsize * 2) + ksize; for (domain = 0; domain < vm_ndomains; domain++) { m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag, M_NOWAIT | M_ZERO); if (m != 0) break; } zones = (uma_zone_t)m; m += zsize; kegs = (uma_zone_t)m; m += zsize; primarykeg = (uma_keg_t)m; /* "manually" create the initial zone */ memset(&args, 0, sizeof(args)); args.name = "UMA Kegs"; args.size = ksize; args.ctor = keg_ctor; args.dtor = keg_dtor; args.uminit = zero_init; args.fini = NULL; args.keg = primarykeg; args.align = UMA_SUPER_ALIGN - 1; args.flags = UMA_ZFLAG_INTERNAL; zone_ctor(kegs, zsize, &args, M_WAITOK); args.name = "UMA Zones"; args.size = zsize; args.ctor = zone_ctor; args.dtor = zone_dtor; args.uminit = zero_init; args.fini = NULL; args.keg = NULL; args.align = UMA_SUPER_ALIGN - 1; args.flags = UMA_ZFLAG_INTERNAL; zone_ctor(zones, zsize, &args, M_WAITOK); /* Now make zones for slab headers */ slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE, NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE, NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); hashzone = uma_zcreate("UMA Hash", sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); bucket_init(); smr_init(); } #ifndef UMA_MD_SMALL_ALLOC extern void vm_radix_reserve_kva(void); #endif /* * Advertise the availability of normal kva allocations and switch to * the default back-end allocator. Marks the KVA we consumed on startup * as used in the map. */ void uma_startup2(void) { if (bootstart != bootmem) { vm_map_lock(kernel_map); (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem, VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); vm_map_unlock(kernel_map); } #ifndef UMA_MD_SMALL_ALLOC /* Set up radix zone to use noobj_alloc. */ vm_radix_reserve_kva(); #endif booted = BOOT_KVA; zone_foreach_unlocked(zone_kva_available, NULL); bucket_enable(); } /* * Allocate counters as early as possible so that boot-time allocations are * accounted more precisely. */ static void uma_startup_pcpu(void *arg __unused) { zone_foreach_unlocked(zone_alloc_counters, NULL); booted = BOOT_PCPU; } SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL); /* * Finish our initialization steps. */ static void uma_startup3(void *arg __unused) { #ifdef INVARIANTS TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); uma_dbg_cnt = counter_u64_alloc(M_WAITOK); uma_skip_cnt = counter_u64_alloc(M_WAITOK); #endif zone_foreach_unlocked(zone_alloc_sysctl, NULL); callout_init(&uma_callout, 1); callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); booted = BOOT_RUNNING; EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL, EVENTHANDLER_PRI_FIRST); } SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); static void uma_shutdown(void) { booted = BOOT_SHUTDOWN; } static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, int align, uint32_t flags) { struct uma_kctor_args args; args.size = size; args.uminit = uminit; args.fini = fini; args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; args.flags = flags; args.zone = zone; return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); } /* Public functions */ /* See uma.h */ void uma_set_align(int align) { if (align != UMA_ALIGN_CACHE) uma_align_cache = align; } /* See uma.h */ uma_zone_t uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, uma_init uminit, uma_fini fini, int align, uint32_t flags) { struct uma_zctor_args args; uma_zone_t res; KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", align, name)); /* This stuff is essential for the zone ctor */ memset(&args, 0, sizeof(args)); args.name = name; args.size = size; args.ctor = ctor; args.dtor = dtor; args.uminit = uminit; args.fini = fini; #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN) /* * Inject procedures which check for memory use after free if we are * allowed to scramble the memory while it is not allocated. This * requires that: UMA is actually able to access the memory, no init * or fini procedures, no dependency on the initial value of the * memory, and no (legitimate) use of the memory after free. Note, * the ctor and dtor do not need to be empty. */ if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH | UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) { args.uminit = trash_init; args.fini = trash_fini; } #endif args.align = align; args.flags = flags; args.keg = NULL; sx_xlock(&uma_reclaim_lock); res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); sx_xunlock(&uma_reclaim_lock); return (res); } /* See uma.h */ uma_zone_t uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor, uma_init zinit, uma_fini zfini, uma_zone_t primary) { struct uma_zctor_args args; uma_keg_t keg; uma_zone_t res; keg = primary->uz_keg; memset(&args, 0, sizeof(args)); args.name = name; args.size = keg->uk_size; args.ctor = ctor; args.dtor = dtor; args.uminit = zinit; args.fini = zfini; args.align = keg->uk_align; args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; args.keg = keg; sx_xlock(&uma_reclaim_lock); res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); sx_xunlock(&uma_reclaim_lock); return (res); } /* See uma.h */ uma_zone_t uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor, uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease, void *arg, int flags) { struct uma_zctor_args args; memset(&args, 0, sizeof(args)); args.name = name; args.size = size; args.ctor = ctor; args.dtor = dtor; args.uminit = zinit; args.fini = zfini; args.import = zimport; args.release = zrelease; args.arg = arg; args.align = 0; args.flags = flags | UMA_ZFLAG_CACHE; return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); } /* See uma.h */ void uma_zdestroy(uma_zone_t zone) { /* * Large slabs are expensive to reclaim, so don't bother doing * unnecessary work if we're shutting down. */ if (booted == BOOT_SHUTDOWN && zone->uz_fini == NULL && zone->uz_release == zone_release) return; sx_xlock(&uma_reclaim_lock); zone_free_item(zones, zone, NULL, SKIP_NONE); sx_xunlock(&uma_reclaim_lock); } void uma_zwait(uma_zone_t zone) { if ((zone->uz_flags & UMA_ZONE_SMR) != 0) uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK)); else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0) uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK)); else uma_zfree(zone, uma_zalloc(zone, M_WAITOK)); } void * uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) { void *item, *pcpu_item; #ifdef SMP int i; MPASS(zone->uz_flags & UMA_ZONE_PCPU); #endif item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); if (item == NULL) return (NULL); pcpu_item = zpcpu_base_to_offset(item); if (flags & M_ZERO) { #ifdef SMP for (i = 0; i <= mp_maxid; i++) bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size); #else bzero(item, zone->uz_size); #endif } return (pcpu_item); } /* * A stub while both regular and pcpu cases are identical. */ void uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata) { void *item; #ifdef SMP MPASS(zone->uz_flags & UMA_ZONE_PCPU); #endif /* uma_zfree_pcu_*(..., NULL) does nothing, to match free(9). */ if (pcpu_item == NULL) return; item = zpcpu_offset_to_base(pcpu_item); uma_zfree_arg(zone, item, udata); } static inline void * item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags, void *item) { #ifdef INVARIANTS bool skipdbg; #endif kasan_mark_item_valid(zone, item); kmsan_mark_item_uninitialized(zone, item); #ifdef INVARIANTS skipdbg = uma_dbg_zskip(zone, item); if (!skipdbg && (uz_flags & UMA_ZFLAG_TRASH) != 0 && zone->uz_ctor != trash_ctor) trash_ctor(item, size, udata, flags); #endif /* Check flags before loading ctor pointer. */ if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) && __predict_false(zone->uz_ctor != NULL) && zone->uz_ctor(item, size, udata, flags) != 0) { counter_u64_add(zone->uz_fails, 1); zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); return (NULL); } #ifdef INVARIANTS if (!skipdbg) uma_dbg_alloc(zone, NULL, item); #endif if (__predict_false(flags & M_ZERO)) return (memset(item, 0, size)); return (item); } static inline void item_dtor(uma_zone_t zone, void *item, int size, void *udata, enum zfreeskip skip) { #ifdef INVARIANTS bool skipdbg; skipdbg = uma_dbg_zskip(zone, item); if (skip == SKIP_NONE && !skipdbg) { if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) uma_dbg_free(zone, udata, item); else uma_dbg_free(zone, NULL, item); } #endif if (__predict_true(skip < SKIP_DTOR)) { if (zone->uz_dtor != NULL) zone->uz_dtor(item, size, udata); #ifdef INVARIANTS if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && zone->uz_dtor != trash_dtor) trash_dtor(item, size, udata); #endif } kasan_mark_item_invalid(zone, item); } #ifdef NUMA static int item_domain(void *item) { int domain; domain = vm_phys_domain(vtophys(item)); KASSERT(domain >= 0 && domain < vm_ndomains, ("%s: unknown domain for item %p", __func__, item)); return (domain); } #endif #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS) #define UMA_ZALLOC_DEBUG static int uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags) { int error; error = 0; #ifdef WITNESS if (flags & M_WAITOK) { WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "uma_zalloc_debug: zone \"%s\"", zone->uz_name); } #endif #ifdef INVARIANTS KASSERT((flags & M_EXEC) == 0, ("uma_zalloc_debug: called with M_EXEC")); KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), ("uma_zalloc_debug: called within spinlock or critical section")); KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0, ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO")); #endif #ifdef DEBUG_MEMGUARD if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) { void *item; item = memguard_alloc(zone->uz_size, flags); if (item != NULL) { error = EJUSTRETURN; if (zone->uz_init != NULL && zone->uz_init(item, zone->uz_size, flags) != 0) { *itemp = NULL; return (error); } if (zone->uz_ctor != NULL && zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { counter_u64_add(zone->uz_fails, 1); - zone->uz_fini(item, zone->uz_size); + if (zone->uz_fini != NULL) + zone->uz_fini(item, zone->uz_size); *itemp = NULL; return (error); } *itemp = item; return (error); } /* This is unfortunate but should not be fatal. */ } #endif return (error); } static int uma_zfree_debug(uma_zone_t zone, void *item, void *udata) { KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), ("uma_zfree_debug: called with spinlock or critical section held")); #ifdef DEBUG_MEMGUARD if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) { if (zone->uz_dtor != NULL) zone->uz_dtor(item, zone->uz_size, udata); if (zone->uz_fini != NULL) zone->uz_fini(item, zone->uz_size); memguard_free(item); return (EJUSTRETURN); } #endif return (0); } #endif static inline void * cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket, void *udata, int flags) { void *item; int size, uz_flags; item = cache_bucket_pop(cache, bucket); size = cache_uz_size(cache); uz_flags = cache_uz_flags(cache); critical_exit(); return (item_ctor(zone, uz_flags, size, udata, flags, item)); } static __noinline void * cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) { uma_cache_bucket_t bucket; int domain; while (cache_alloc(zone, cache, udata, flags)) { cache = &zone->uz_cpu[curcpu]; bucket = &cache->uc_allocbucket; if (__predict_false(bucket->ucb_cnt == 0)) continue; return (cache_alloc_item(zone, cache, bucket, udata, flags)); } critical_exit(); /* * We can not get a bucket so try to return a single item. */ if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) domain = PCPU_GET(domain); else domain = UMA_ANYDOMAIN; return (zone_alloc_item(zone, udata, domain, flags)); } /* See uma.h */ void * uma_zalloc_smr(uma_zone_t zone, int flags) { uma_cache_bucket_t bucket; uma_cache_t cache; CTR3(KTR_UMA, "uma_zalloc_smr zone %s(%p) flags %d", zone->uz_name, zone, flags); #ifdef UMA_ZALLOC_DEBUG void *item; KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, ("uma_zalloc_arg: called with non-SMR zone.")); if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN) return (item); #endif critical_enter(); cache = &zone->uz_cpu[curcpu]; bucket = &cache->uc_allocbucket; if (__predict_false(bucket->ucb_cnt == 0)) return (cache_alloc_retry(zone, cache, NULL, flags)); return (cache_alloc_item(zone, cache, bucket, NULL, flags)); } /* See uma.h */ void * uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) { uma_cache_bucket_t bucket; uma_cache_t cache; /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); /* This is the fast path allocation */ CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name, zone, flags); #ifdef UMA_ZALLOC_DEBUG void *item; KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, ("uma_zalloc_arg: called with SMR zone.")); if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) return (item); #endif /* * If possible, allocate from the per-CPU cache. There are two * requirements for safe access to the per-CPU cache: (1) the thread * accessing the cache must not be preempted or yield during access, * and (2) the thread must not migrate CPUs without switching which * cache it accesses. We rely on a critical section to prevent * preemption and migration. We release the critical section in * order to acquire the zone mutex if we are unable to allocate from * the current cache; when we re-acquire the critical section, we * must detect and handle migration if it has occurred. */ critical_enter(); cache = &zone->uz_cpu[curcpu]; bucket = &cache->uc_allocbucket; if (__predict_false(bucket->ucb_cnt == 0)) return (cache_alloc_retry(zone, cache, udata, flags)); return (cache_alloc_item(zone, cache, bucket, udata, flags)); } /* * Replenish an alloc bucket and possibly restore an old one. Called in * a critical section. Returns in a critical section. * * A false return value indicates an allocation failure. * A true return value indicates success and the caller should retry. */ static __noinline bool cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) { uma_bucket_t bucket; int curdomain, domain; bool new; CRITICAL_ASSERT(curthread); /* * If we have run out of items in our alloc bucket see * if we can switch with the free bucket. * * SMR Zones can't re-use the free bucket until the sequence has * expired. */ if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 && cache->uc_freebucket.ucb_cnt != 0) { cache_bucket_swap(&cache->uc_freebucket, &cache->uc_allocbucket); return (true); } /* * Discard any empty allocation bucket while we hold no locks. */ bucket = cache_bucket_unload_alloc(cache); critical_exit(); if (bucket != NULL) { KASSERT(bucket->ub_cnt == 0, ("cache_alloc: Entered with non-empty alloc bucket.")); bucket_free(zone, bucket, udata); } /* * Attempt to retrieve the item from the per-CPU cache has failed, so * we must go back to the zone. This requires the zdom lock, so we * must drop the critical section, then re-acquire it when we go back * to the cache. Since the critical section is released, we may be * preempted or migrate. As such, make sure not to maintain any * thread-local state specific to the cache from prior to releasing * the critical section. */ domain = PCPU_GET(domain); if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 || VM_DOMAIN_EMPTY(domain)) domain = zone_domain_highest(zone, domain); bucket = cache_fetch_bucket(zone, cache, domain); if (bucket == NULL && zone->uz_bucket_size != 0 && !bucketdisable) { bucket = zone_alloc_bucket(zone, udata, domain, flags); new = true; } else { new = false; } CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", zone->uz_name, zone, bucket); if (bucket == NULL) { critical_enter(); return (false); } /* * See if we lost the race or were migrated. Cache the * initialized bucket to make this less likely or claim * the memory directly. */ critical_enter(); cache = &zone->uz_cpu[curcpu]; if (cache->uc_allocbucket.ucb_bucket == NULL && ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 || (curdomain = PCPU_GET(domain)) == domain || VM_DOMAIN_EMPTY(curdomain))) { if (new) atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax, bucket->ub_cnt); cache_bucket_load_alloc(cache, bucket); return (true); } /* * We lost the race, release this bucket and start over. */ critical_exit(); zone_put_bucket(zone, domain, bucket, udata, !new); critical_enter(); return (true); } void * uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) { #ifdef NUMA uma_bucket_t bucket; uma_zone_domain_t zdom; void *item; #endif /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); /* This is the fast path allocation */ CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d", zone->uz_name, zone, domain, flags); if (flags & M_WAITOK) { WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "uma_zalloc_domain: zone \"%s\"", zone->uz_name); } KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), ("uma_zalloc_domain: called with spinlock or critical section held")); KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, ("uma_zalloc_domain: called with SMR zone.")); #ifdef NUMA KASSERT((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0, ("uma_zalloc_domain: called with non-FIRSTTOUCH zone.")); if (vm_ndomains == 1) return (uma_zalloc_arg(zone, udata, flags)); /* * Try to allocate from the bucket cache before falling back to the keg. * We could try harder and attempt to allocate from per-CPU caches or * the per-domain cross-domain buckets, but the complexity is probably * not worth it. It is more important that frees of previous * cross-domain allocations do not blow up the cache. */ zdom = zone_domain_lock(zone, domain); if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) { item = bucket->ub_bucket[bucket->ub_cnt - 1]; #ifdef INVARIANTS bucket->ub_bucket[bucket->ub_cnt - 1] = NULL; #endif bucket->ub_cnt--; zone_put_bucket(zone, domain, bucket, udata, true); item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags, item); if (item != NULL) { KASSERT(item_domain(item) == domain, ("%s: bucket cache item %p from wrong domain", __func__, item)); counter_u64_add(zone->uz_allocs, 1); } return (item); } ZDOM_UNLOCK(zdom); return (zone_alloc_item(zone, udata, domain, flags)); #else return (uma_zalloc_arg(zone, udata, flags)); #endif } /* * Find a slab with some space. Prefer slabs that are partially used over those * that are totally full. This helps to reduce fragmentation. * * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check * only 'domain'. */ static uma_slab_t keg_first_slab(uma_keg_t keg, int domain, bool rr) { uma_domain_t dom; uma_slab_t slab; int start; KASSERT(domain >= 0 && domain < vm_ndomains, ("keg_first_slab: domain %d out of range", domain)); KEG_LOCK_ASSERT(keg, domain); slab = NULL; start = domain; do { dom = &keg->uk_domain[domain]; if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL) return (slab); if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) { LIST_REMOVE(slab, us_link); dom->ud_free_slabs--; LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); return (slab); } if (rr) domain = (domain + 1) % vm_ndomains; } while (domain != start); return (NULL); } /* * Fetch an existing slab from a free or partial list. Returns with the * keg domain lock held if a slab was found or unlocked if not. */ static uma_slab_t keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) { uma_slab_t slab; uint32_t reserve; /* HASH has a single free list. */ if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) domain = 0; KEG_LOCK(keg, domain); reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; if (keg->uk_domain[domain].ud_free_items <= reserve || (slab = keg_first_slab(keg, domain, rr)) == NULL) { KEG_UNLOCK(keg, domain); return (NULL); } return (slab); } static uma_slab_t keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) { struct vm_domainset_iter di; uma_slab_t slab; int aflags, domain; bool rr; KASSERT((flags & (M_WAITOK | M_NOVM)) != (M_WAITOK | M_NOVM), ("%s: invalid flags %#x", __func__, flags)); restart: /* * Use the keg's policy if upper layers haven't already specified a * domain (as happens with first-touch zones). * * To avoid races we run the iterator with the keg lock held, but that * means that we cannot allow the vm_domainset layer to sleep. Thus, * clear M_WAITOK and handle low memory conditions locally. */ rr = rdomain == UMA_ANYDOMAIN; if (rr) { aflags = (flags & ~M_WAITOK) | M_NOWAIT; vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, &aflags); } else { aflags = flags; domain = rdomain; } for (;;) { slab = keg_fetch_free_slab(keg, domain, rr, flags); if (slab != NULL) return (slab); /* * M_NOVM is used to break the recursion that can otherwise * occur if low-level memory management routines use UMA. */ if ((flags & M_NOVM) == 0) { slab = keg_alloc_slab(keg, zone, domain, flags, aflags); if (slab != NULL) return (slab); } if (!rr) { if ((flags & M_USE_RESERVE) != 0) { /* * Drain reserves from other domains before * giving up or sleeping. It may be useful to * support per-domain reserves eventually. */ rdomain = UMA_ANYDOMAIN; goto restart; } if ((flags & M_WAITOK) == 0) break; vm_wait_domain(domain); } else if (vm_domainset_iter_policy(&di, &domain) != 0) { if ((flags & M_WAITOK) != 0) { vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); goto restart; } break; } } /* * We might not have been able to get a slab but another cpu * could have while we were unlocked. Check again before we * fail. */ if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) return (slab); return (NULL); } static void * slab_alloc_item(uma_keg_t keg, uma_slab_t slab) { uma_domain_t dom; void *item; int freei; KEG_LOCK_ASSERT(keg, slab->us_domain); dom = &keg->uk_domain[slab->us_domain]; freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; BIT_CLR(keg->uk_ipers, freei, &slab->us_free); item = slab_item(slab, keg, freei); slab->us_freecount--; dom->ud_free_items--; /* * Move this slab to the full list. It must be on the partial list, so * we do not need to update the free slab count. In particular, * keg_fetch_slab() always returns slabs on the partial list. */ if (slab->us_freecount == 0) { LIST_REMOVE(slab, us_link); LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); } return (item); } static int zone_import(void *arg, void **bucket, int max, int domain, int flags) { uma_domain_t dom; uma_zone_t zone; uma_slab_t slab; uma_keg_t keg; #ifdef NUMA int stripe; #endif int i; zone = arg; slab = NULL; keg = zone->uz_keg; /* Try to keep the buckets totally full */ for (i = 0; i < max; ) { if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) break; #ifdef NUMA stripe = howmany(max, vm_ndomains); #endif dom = &keg->uk_domain[slab->us_domain]; do { bucket[i++] = slab_alloc_item(keg, slab); if (keg->uk_reserve > 0 && dom->ud_free_items <= keg->uk_reserve) { /* * Avoid depleting the reserve after a * successful item allocation, even if * M_USE_RESERVE is specified. */ KEG_UNLOCK(keg, slab->us_domain); goto out; } #ifdef NUMA /* * If the zone is striped we pick a new slab for every * N allocations. Eliminating this conditional will * instead pick a new domain for each bucket rather * than stripe within each bucket. The current option * produces more fragmentation and requires more cpu * time but yields better distribution. */ if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 && vm_ndomains > 1 && --stripe == 0) break; #endif } while (slab->us_freecount != 0 && i < max); KEG_UNLOCK(keg, slab->us_domain); /* Don't block if we allocated any successfully. */ flags &= ~M_WAITOK; flags |= M_NOWAIT; } out: return i; } static int zone_alloc_limit_hard(uma_zone_t zone, int count, int flags) { uint64_t old, new, total, max; /* * The hard case. We're going to sleep because there were existing * sleepers or because we ran out of items. This routine enforces * fairness by keeping fifo order. * * First release our ill gotten gains and make some noise. */ for (;;) { zone_free_limit(zone, count); zone_log_warning(zone); zone_maxaction(zone); if (flags & M_NOWAIT) return (0); /* * We need to allocate an item or set ourself as a sleeper * while the sleepq lock is held to avoid wakeup races. This * is essentially a home rolled semaphore. */ sleepq_lock(&zone->uz_max_items); old = zone->uz_items; do { MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX); /* Cache the max since we will evaluate twice. */ max = zone->uz_max_items; if (UZ_ITEMS_SLEEPERS(old) != 0 || UZ_ITEMS_COUNT(old) >= max) new = old + UZ_ITEMS_SLEEPER; else new = old + MIN(count, max - old); } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0); /* We may have successfully allocated under the sleepq lock. */ if (UZ_ITEMS_SLEEPERS(new) == 0) { sleepq_release(&zone->uz_max_items); return (new - old); } /* * This is in a different cacheline from uz_items so that we * don't constantly invalidate the fastpath cacheline when we * adjust item counts. This could be limited to toggling on * transitions. */ atomic_add_32(&zone->uz_sleepers, 1); atomic_add_64(&zone->uz_sleeps, 1); /* * We have added ourselves as a sleeper. The sleepq lock * protects us from wakeup races. Sleep now and then retry. */ sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0); sleepq_wait(&zone->uz_max_items, PVM); /* * After wakeup, remove ourselves as a sleeper and try * again. We no longer have the sleepq lock for protection. * * Subract ourselves as a sleeper while attempting to add * our count. */ atomic_subtract_32(&zone->uz_sleepers, 1); old = atomic_fetchadd_64(&zone->uz_items, -(UZ_ITEMS_SLEEPER - count)); /* We're no longer a sleeper. */ old -= UZ_ITEMS_SLEEPER; /* * If we're still at the limit, restart. Notably do not * block on other sleepers. Cache the max value to protect * against changes via sysctl. */ total = UZ_ITEMS_COUNT(old); max = zone->uz_max_items; if (total >= max) continue; /* Truncate if necessary, otherwise wake other sleepers. */ if (total + count > max) { zone_free_limit(zone, total + count - max); count = max - total; } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0) wakeup_one(&zone->uz_max_items); return (count); } } /* * Allocate 'count' items from our max_items limit. Returns the number * available. If M_NOWAIT is not specified it will sleep until at least * one item can be allocated. */ static int zone_alloc_limit(uma_zone_t zone, int count, int flags) { uint64_t old; uint64_t max; max = zone->uz_max_items; MPASS(max > 0); /* * We expect normal allocations to succeed with a simple * fetchadd. */ old = atomic_fetchadd_64(&zone->uz_items, count); if (__predict_true(old + count <= max)) return (count); /* * If we had some items and no sleepers just return the * truncated value. We have to release the excess space * though because that may wake sleepers who weren't woken * because we were temporarily over the limit. */ if (old < max) { zone_free_limit(zone, (old + count) - max); return (max - old); } return (zone_alloc_limit_hard(zone, count, flags)); } /* * Free a number of items back to the limit. */ static void zone_free_limit(uma_zone_t zone, int count) { uint64_t old; MPASS(count > 0); /* * In the common case we either have no sleepers or * are still over the limit and can just return. */ old = atomic_fetchadd_64(&zone->uz_items, -count); if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 || UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items)) return; /* * Moderate the rate of wakeups. Sleepers will continue * to generate wakeups if necessary. */ wakeup_one(&zone->uz_max_items); } static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) { uma_bucket_t bucket; int error, maxbucket, cnt; CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name, zone, domain); /* Avoid allocs targeting empty domains. */ if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) domain = UMA_ANYDOMAIN; else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) domain = UMA_ANYDOMAIN; if (zone->uz_max_items > 0) maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size, M_NOWAIT); else maxbucket = zone->uz_bucket_size; if (maxbucket == 0) return (false); /* Don't wait for buckets, preserve caller's NOVM setting. */ bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); if (bucket == NULL) { cnt = 0; goto out; } bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, MIN(maxbucket, bucket->ub_entries), domain, flags); /* * Initialize the memory if necessary. */ if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { int i; for (i = 0; i < bucket->ub_cnt; i++) { kasan_mark_item_valid(zone, bucket->ub_bucket[i]); error = zone->uz_init(bucket->ub_bucket[i], zone->uz_size, flags); kasan_mark_item_invalid(zone, bucket->ub_bucket[i]); if (error != 0) break; } /* * If we couldn't initialize the whole bucket, put the * rest back onto the freelist. */ if (i != bucket->ub_cnt) { zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], bucket->ub_cnt - i); #ifdef INVARIANTS bzero(&bucket->ub_bucket[i], sizeof(void *) * (bucket->ub_cnt - i)); #endif bucket->ub_cnt = i; } } cnt = bucket->ub_cnt; if (bucket->ub_cnt == 0) { bucket_free(zone, bucket, udata); counter_u64_add(zone->uz_fails, 1); bucket = NULL; } out: if (zone->uz_max_items > 0 && cnt < maxbucket) zone_free_limit(zone, maxbucket - cnt); return (bucket); } /* * Allocates a single item from a zone. * * Arguments * zone The zone to alloc for. * udata The data to be passed to the constructor. * domain The domain to allocate from or UMA_ANYDOMAIN. * flags M_WAITOK, M_NOWAIT, M_ZERO. * * Returns * NULL if there is no memory and M_NOWAIT is set * An item if successful */ static void * zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) { void *item; if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) { counter_u64_add(zone->uz_fails, 1); return (NULL); } /* Avoid allocs targeting empty domains. */ if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) domain = UMA_ANYDOMAIN; if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) goto fail_cnt; /* * We have to call both the zone's init (not the keg's init) * and the zone's ctor. This is because the item is going from * a keg slab directly to the user, and the user is expecting it * to be both zone-init'd as well as zone-ctor'd. */ if (zone->uz_init != NULL) { int error; kasan_mark_item_valid(zone, item); error = zone->uz_init(item, zone->uz_size, flags); kasan_mark_item_invalid(zone, item); if (error != 0) { zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); goto fail_cnt; } } item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags, item); if (item == NULL) goto fail; counter_u64_add(zone->uz_allocs, 1); CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, zone->uz_name, zone); return (item); fail_cnt: counter_u64_add(zone->uz_fails, 1); fail: if (zone->uz_max_items > 0) zone_free_limit(zone, 1); CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", zone->uz_name, zone); return (NULL); } /* See uma.h */ void uma_zfree_smr(uma_zone_t zone, void *item) { uma_cache_t cache; uma_cache_bucket_t bucket; int itemdomain, uz_flags; CTR3(KTR_UMA, "uma_zfree_smr zone %s(%p) item %p", zone->uz_name, zone, item); #ifdef UMA_ZALLOC_DEBUG KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, ("uma_zfree_smr: called with non-SMR zone.")); KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer.")); SMR_ASSERT_NOT_ENTERED(zone->uz_smr); if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN) return; #endif cache = &zone->uz_cpu[curcpu]; uz_flags = cache_uz_flags(cache); itemdomain = 0; #ifdef NUMA if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) itemdomain = item_domain(item); #endif critical_enter(); do { cache = &zone->uz_cpu[curcpu]; /* SMR Zones must free to the free bucket. */ bucket = &cache->uc_freebucket; #ifdef NUMA if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && PCPU_GET(domain) != itemdomain) { bucket = &cache->uc_crossbucket; } #endif if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { cache_bucket_push(cache, bucket, item); critical_exit(); return; } } while (cache_free(zone, cache, NULL, itemdomain)); critical_exit(); /* * If nothing else caught this, we'll just do an internal free. */ zone_free_item(zone, item, NULL, SKIP_NONE); } /* See uma.h */ void uma_zfree_arg(uma_zone_t zone, void *item, void *udata) { uma_cache_t cache; uma_cache_bucket_t bucket; int itemdomain, uz_flags; /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); CTR3(KTR_UMA, "uma_zfree_arg zone %s(%p) item %p", zone->uz_name, zone, item); #ifdef UMA_ZALLOC_DEBUG KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, ("uma_zfree_arg: called with SMR zone.")); if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN) return; #endif /* uma_zfree(..., NULL) does nothing, to match free(9). */ if (item == NULL) return; /* * We are accessing the per-cpu cache without a critical section to * fetch size and flags. This is acceptable, if we are preempted we * will simply read another cpu's line. */ cache = &zone->uz_cpu[curcpu]; uz_flags = cache_uz_flags(cache); if (UMA_ALWAYS_CTORDTOR || __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0)) item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE); /* * The race here is acceptable. If we miss it we'll just have to wait * a little longer for the limits to be reset. */ if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) { if (atomic_load_32(&zone->uz_sleepers) > 0) goto zfree_item; } /* * If possible, free to the per-CPU cache. There are two * requirements for safe access to the per-CPU cache: (1) the thread * accessing the cache must not be preempted or yield during access, * and (2) the thread must not migrate CPUs without switching which * cache it accesses. We rely on a critical section to prevent * preemption and migration. We release the critical section in * order to acquire the zone mutex if we are unable to free to the * current cache; when we re-acquire the critical section, we must * detect and handle migration if it has occurred. */ itemdomain = 0; #ifdef NUMA if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) itemdomain = item_domain(item); #endif critical_enter(); do { cache = &zone->uz_cpu[curcpu]; /* * Try to free into the allocbucket first to give LIFO * ordering for cache-hot datastructures. Spill over * into the freebucket if necessary. Alloc will swap * them if one runs dry. */ bucket = &cache->uc_allocbucket; #ifdef NUMA if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && PCPU_GET(domain) != itemdomain) { bucket = &cache->uc_crossbucket; } else #endif if (bucket->ucb_cnt == bucket->ucb_entries && cache->uc_freebucket.ucb_cnt < cache->uc_freebucket.ucb_entries) cache_bucket_swap(&cache->uc_freebucket, &cache->uc_allocbucket); if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { cache_bucket_push(cache, bucket, item); critical_exit(); return; } } while (cache_free(zone, cache, udata, itemdomain)); critical_exit(); /* * If nothing else caught this, we'll just do an internal free. */ zfree_item: zone_free_item(zone, item, udata, SKIP_DTOR); } #ifdef NUMA /* * sort crossdomain free buckets to domain correct buckets and cache * them. */ static void zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata) { struct uma_bucketlist emptybuckets, fullbuckets; uma_zone_domain_t zdom; uma_bucket_t b; smr_seq_t seq; void *item; int domain; CTR3(KTR_UMA, "uma_zfree: zone %s(%p) draining cross bucket %p", zone->uz_name, zone, bucket); /* * It is possible for buckets to arrive here out of order so we fetch * the current smr seq rather than accepting the bucket's. */ seq = SMR_SEQ_INVALID; if ((zone->uz_flags & UMA_ZONE_SMR) != 0) seq = smr_advance(zone->uz_smr); /* * To avoid having ndomain * ndomain buckets for sorting we have a * lock on the current crossfree bucket. A full matrix with * per-domain locking could be used if necessary. */ STAILQ_INIT(&emptybuckets); STAILQ_INIT(&fullbuckets); ZONE_CROSS_LOCK(zone); for (; bucket->ub_cnt > 0; bucket->ub_cnt--) { item = bucket->ub_bucket[bucket->ub_cnt - 1]; domain = item_domain(item); zdom = ZDOM_GET(zone, domain); if (zdom->uzd_cross == NULL) { if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) { STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); zdom->uzd_cross = b; } else { /* * Avoid allocating a bucket with the cross lock * held, since allocation can trigger a * cross-domain free and bucket zones may * allocate from each other. */ ZONE_CROSS_UNLOCK(zone); b = bucket_alloc(zone, udata, M_NOWAIT); if (b == NULL) goto out; ZONE_CROSS_LOCK(zone); if (zdom->uzd_cross != NULL) { STAILQ_INSERT_HEAD(&emptybuckets, b, ub_link); } else { zdom->uzd_cross = b; } } } b = zdom->uzd_cross; b->ub_bucket[b->ub_cnt++] = item; b->ub_seq = seq; if (b->ub_cnt == b->ub_entries) { STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link); if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); zdom->uzd_cross = b; } } ZONE_CROSS_UNLOCK(zone); out: if (bucket->ub_cnt == 0) bucket->ub_seq = SMR_SEQ_INVALID; bucket_free(zone, bucket, udata); while ((b = STAILQ_FIRST(&emptybuckets)) != NULL) { STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); bucket_free(zone, b, udata); } while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) { STAILQ_REMOVE_HEAD(&fullbuckets, ub_link); domain = item_domain(b->ub_bucket[0]); zone_put_bucket(zone, domain, b, udata, true); } } #endif static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, int itemdomain, bool ws) { #ifdef NUMA /* * Buckets coming from the wrong domain will be entirely for the * only other domain on two domain systems. In this case we can * simply cache them. Otherwise we need to sort them back to * correct domains. */ if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) { zone_free_cross(zone, bucket, udata); return; } #endif /* * Attempt to save the bucket in the zone's domain bucket cache. */ CTR3(KTR_UMA, "uma_zfree: zone %s(%p) putting bucket %p on free list", zone->uz_name, zone, bucket); /* ub_cnt is pointing to the last free item */ if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) itemdomain = zone_domain_lowest(zone, itemdomain); zone_put_bucket(zone, itemdomain, bucket, udata, ws); } /* * Populate a free or cross bucket for the current cpu cache. Free any * existing full bucket either to the zone cache or back to the slab layer. * * Enters and returns in a critical section. false return indicates that * we can not satisfy this free in the cache layer. true indicates that * the caller should retry. */ static __noinline bool cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, int itemdomain) { uma_cache_bucket_t cbucket; uma_bucket_t newbucket, bucket; CRITICAL_ASSERT(curthread); if (zone->uz_bucket_size == 0) return false; cache = &zone->uz_cpu[curcpu]; newbucket = NULL; /* * FIRSTTOUCH domains need to free to the correct zdom. When * enabled this is the zdom of the item. The bucket is the * cross bucket if the current domain and itemdomain do not match. */ cbucket = &cache->uc_freebucket; #ifdef NUMA if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { if (PCPU_GET(domain) != itemdomain) { cbucket = &cache->uc_crossbucket; if (cbucket->ucb_cnt != 0) counter_u64_add(zone->uz_xdomain, cbucket->ucb_cnt); } } #endif bucket = cache_bucket_unload(cbucket); KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries, ("cache_free: Entered with non-full free bucket.")); /* We are no longer associated with this CPU. */ critical_exit(); /* * Don't let SMR zones operate without a free bucket. Force * a synchronize and re-use this one. We will only degrade * to a synchronize every bucket_size items rather than every * item if we fail to allocate a bucket. */ if ((zone->uz_flags & UMA_ZONE_SMR) != 0) { if (bucket != NULL) bucket->ub_seq = smr_advance(zone->uz_smr); newbucket = bucket_alloc(zone, udata, M_NOWAIT); if (newbucket == NULL && bucket != NULL) { bucket_drain(zone, bucket); newbucket = bucket; bucket = NULL; } } else if (!bucketdisable) newbucket = bucket_alloc(zone, udata, M_NOWAIT); if (bucket != NULL) zone_free_bucket(zone, bucket, udata, itemdomain, true); critical_enter(); if ((bucket = newbucket) == NULL) return (false); cache = &zone->uz_cpu[curcpu]; #ifdef NUMA /* * Check to see if we should be populating the cross bucket. If it * is already populated we will fall through and attempt to populate * the free bucket. */ if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { if (PCPU_GET(domain) != itemdomain && cache->uc_crossbucket.ucb_bucket == NULL) { cache_bucket_load_cross(cache, bucket); return (true); } } #endif /* * We may have lost the race to fill the bucket or switched CPUs. */ if (cache->uc_freebucket.ucb_bucket != NULL) { critical_exit(); bucket_free(zone, bucket, udata); critical_enter(); } else cache_bucket_load_free(cache, bucket); return (true); } static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) { uma_keg_t keg; uma_domain_t dom; int freei; keg = zone->uz_keg; KEG_LOCK_ASSERT(keg, slab->us_domain); /* Do we need to remove from any lists? */ dom = &keg->uk_domain[slab->us_domain]; if (slab->us_freecount + 1 == keg->uk_ipers) { LIST_REMOVE(slab, us_link); LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); dom->ud_free_slabs++; } else if (slab->us_freecount == 0) { LIST_REMOVE(slab, us_link); LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); } /* Slab management. */ freei = slab_item_index(slab, keg, item); BIT_SET(keg->uk_ipers, freei, &slab->us_free); slab->us_freecount++; /* Keg statistics. */ dom->ud_free_items++; } static void zone_release(void *arg, void **bucket, int cnt) { struct mtx *lock; uma_zone_t zone; uma_slab_t slab; uma_keg_t keg; uint8_t *mem; void *item; int i; zone = arg; keg = zone->uz_keg; lock = NULL; if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0)) lock = KEG_LOCK(keg, 0); for (i = 0; i < cnt; i++) { item = bucket[i]; if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) { slab = vtoslab((vm_offset_t)item); } else { mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0) slab = hash_sfind(&keg->uk_hash, mem); else slab = (uma_slab_t)(mem + keg->uk_pgoff); } if (lock != KEG_LOCKPTR(keg, slab->us_domain)) { if (lock != NULL) mtx_unlock(lock); lock = KEG_LOCK(keg, slab->us_domain); } slab_free_item(zone, slab, item); } if (lock != NULL) mtx_unlock(lock); } /* * Frees a single item to any zone. * * Arguments: * zone The zone to free to * item The item we're freeing * udata User supplied data for the dtor * skip Skip dtors and finis */ static __noinline void zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) { /* * If a free is sent directly to an SMR zone we have to * synchronize immediately because the item can instantly * be reallocated. This should only happen in degenerate * cases when no memory is available for per-cpu caches. */ if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE) smr_synchronize(zone->uz_smr); item_dtor(zone, item, zone->uz_size, udata, skip); if (skip < SKIP_FINI && zone->uz_fini) { kasan_mark_item_valid(zone, item); zone->uz_fini(item, zone->uz_size); kasan_mark_item_invalid(zone, item); } zone->uz_release(zone->uz_arg, &item, 1); if (skip & SKIP_CNT) return; counter_u64_add(zone->uz_frees, 1); if (zone->uz_max_items > 0) zone_free_limit(zone, 1); } /* See uma.h */ int uma_zone_set_max(uma_zone_t zone, int nitems) { /* * If the limit is small, we may need to constrain the maximum per-CPU * cache size, or disable caching entirely. */ uma_zone_set_maxcache(zone, nitems); /* * XXX This can misbehave if the zone has any allocations with * no limit and a limit is imposed. There is currently no * way to clear a limit. */ ZONE_LOCK(zone); zone->uz_max_items = nitems; zone->uz_flags |= UMA_ZFLAG_LIMIT; zone_update_caches(zone); /* We may need to wake waiters. */ wakeup(&zone->uz_max_items); ZONE_UNLOCK(zone); return (nitems); } /* See uma.h */ void uma_zone_set_maxcache(uma_zone_t zone, int nitems) { int bpcpu, bpdom, bsize, nb; ZONE_LOCK(zone); /* * Compute a lower bound on the number of items that may be cached in * the zone. Each CPU gets at least two buckets, and for cross-domain * frees we use an additional bucket per CPU and per domain. Select the * largest bucket size that does not exceed half of the requested limit, * with the left over space given to the full bucket cache. */ bpdom = 0; bpcpu = 2; #ifdef NUMA if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && vm_ndomains > 1) { bpcpu++; bpdom++; } #endif nb = bpcpu * mp_ncpus + bpdom * vm_ndomains; bsize = nitems / nb / 2; if (bsize > BUCKET_MAX) bsize = BUCKET_MAX; else if (bsize == 0 && nitems / nb > 0) bsize = 1; zone->uz_bucket_size_max = zone->uz_bucket_size = bsize; if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) zone->uz_bucket_size_min = zone->uz_bucket_size_max; zone->uz_bucket_max = nitems - nb * bsize; ZONE_UNLOCK(zone); } /* See uma.h */ int uma_zone_get_max(uma_zone_t zone) { int nitems; nitems = atomic_load_64(&zone->uz_max_items); return (nitems); } /* See uma.h */ void uma_zone_set_warning(uma_zone_t zone, const char *warning) { ZONE_ASSERT_COLD(zone); zone->uz_warning = warning; } /* See uma.h */ void uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) { ZONE_ASSERT_COLD(zone); TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); } /* See uma.h */ int uma_zone_get_cur(uma_zone_t zone) { int64_t nitems; u_int i; nitems = 0; if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER) nitems = counter_u64_fetch(zone->uz_allocs) - counter_u64_fetch(zone->uz_frees); CPU_FOREACH(i) nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) - atomic_load_64(&zone->uz_cpu[i].uc_frees); return (nitems < 0 ? 0 : nitems); } static uint64_t uma_zone_get_allocs(uma_zone_t zone) { uint64_t nitems; u_int i; nitems = 0; if (zone->uz_allocs != EARLY_COUNTER) nitems = counter_u64_fetch(zone->uz_allocs); CPU_FOREACH(i) nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs); return (nitems); } static uint64_t uma_zone_get_frees(uma_zone_t zone) { uint64_t nitems; u_int i; nitems = 0; if (zone->uz_frees != EARLY_COUNTER) nitems = counter_u64_fetch(zone->uz_frees); CPU_FOREACH(i) nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees); return (nitems); } #ifdef INVARIANTS /* Used only for KEG_ASSERT_COLD(). */ static uint64_t uma_keg_get_allocs(uma_keg_t keg) { uma_zone_t z; uint64_t nitems; nitems = 0; LIST_FOREACH(z, &keg->uk_zones, uz_link) nitems += uma_zone_get_allocs(z); return (nitems); } #endif /* See uma.h */ void uma_zone_set_init(uma_zone_t zone, uma_init uminit) { uma_keg_t keg; KEG_GET(zone, keg); KEG_ASSERT_COLD(keg); keg->uk_init = uminit; } /* See uma.h */ void uma_zone_set_fini(uma_zone_t zone, uma_fini fini) { uma_keg_t keg; KEG_GET(zone, keg); KEG_ASSERT_COLD(keg); keg->uk_fini = fini; } /* See uma.h */ void uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) { ZONE_ASSERT_COLD(zone); zone->uz_init = zinit; } /* See uma.h */ void uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) { ZONE_ASSERT_COLD(zone); zone->uz_fini = zfini; } /* See uma.h */ void uma_zone_set_freef(uma_zone_t zone, uma_free freef) { uma_keg_t keg; KEG_GET(zone, keg); KEG_ASSERT_COLD(keg); keg->uk_freef = freef; } /* See uma.h */ void uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) { uma_keg_t keg; KEG_GET(zone, keg); KEG_ASSERT_COLD(keg); keg->uk_allocf = allocf; } /* See uma.h */ void uma_zone_set_smr(uma_zone_t zone, smr_t smr) { ZONE_ASSERT_COLD(zone); KASSERT(smr != NULL, ("Got NULL smr")); KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, ("zone %p (%s) already uses SMR", zone, zone->uz_name)); zone->uz_flags |= UMA_ZONE_SMR; zone->uz_smr = smr; zone_update_caches(zone); } smr_t uma_zone_get_smr(uma_zone_t zone) { return (zone->uz_smr); } /* See uma.h */ void uma_zone_reserve(uma_zone_t zone, int items) { uma_keg_t keg; KEG_GET(zone, keg); KEG_ASSERT_COLD(keg); keg->uk_reserve = items; } /* See uma.h */ int uma_zone_reserve_kva(uma_zone_t zone, int count) { uma_keg_t keg; vm_offset_t kva; u_int pages; KEG_GET(zone, keg); KEG_ASSERT_COLD(keg); ZONE_ASSERT_COLD(zone); pages = howmany(count, keg->uk_ipers) * keg->uk_ppera; #ifdef UMA_MD_SMALL_ALLOC if (keg->uk_ppera > 1) { #else if (1) { #endif kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); if (kva == 0) return (0); } else kva = 0; MPASS(keg->uk_kva == 0); keg->uk_kva = kva; keg->uk_offset = 0; zone->uz_max_items = pages * keg->uk_ipers; #ifdef UMA_MD_SMALL_ALLOC keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; #else keg->uk_allocf = noobj_alloc; #endif keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; zone_update_caches(zone); return (1); } /* See uma.h */ void uma_prealloc(uma_zone_t zone, int items) { struct vm_domainset_iter di; uma_domain_t dom; uma_slab_t slab; uma_keg_t keg; int aflags, domain, slabs; KEG_GET(zone, keg); slabs = howmany(items, keg->uk_ipers); while (slabs-- > 0) { aflags = M_NOWAIT; vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, &aflags); for (;;) { slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, aflags); if (slab != NULL) { dom = &keg->uk_domain[slab->us_domain]; /* * keg_alloc_slab() always returns a slab on the * partial list. */ LIST_REMOVE(slab, us_link); LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); dom->ud_free_slabs++; KEG_UNLOCK(keg, slab->us_domain); break; } if (vm_domainset_iter_policy(&di, &domain) != 0) vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); } } } /* * Returns a snapshot of memory consumption in bytes. */ size_t uma_zone_memory(uma_zone_t zone) { size_t sz; int i; sz = 0; if (zone->uz_flags & UMA_ZFLAG_CACHE) { for (i = 0; i < vm_ndomains; i++) sz += ZDOM_GET(zone, i)->uzd_nitems; return (sz * zone->uz_size); } for (i = 0; i < vm_ndomains; i++) sz += zone->uz_keg->uk_domain[i].ud_pages; return (sz * PAGE_SIZE); } +struct uma_reclaim_args { + int domain; + int req; +}; + +static void +uma_reclaim_domain_cb(uma_zone_t zone, void *arg) +{ + struct uma_reclaim_args *args; + + args = arg; + if ((zone->uz_flags & UMA_ZONE_UNMANAGED) == 0) + uma_zone_reclaim_domain(zone, args->req, args->domain); +} + /* See uma.h */ void uma_reclaim(int req) { uma_reclaim_domain(req, UMA_ANYDOMAIN); } void uma_reclaim_domain(int req, int domain) { - void *arg; + struct uma_reclaim_args args; bucket_enable(); - arg = (void *)(uintptr_t)domain; + args.domain = domain; + args.req = req; + sx_slock(&uma_reclaim_lock); switch (req) { case UMA_RECLAIM_TRIM: - zone_foreach(zone_trim, arg); - break; case UMA_RECLAIM_DRAIN: - zone_foreach(zone_drain, arg); + zone_foreach(uma_reclaim_domain_cb, &args); break; case UMA_RECLAIM_DRAIN_CPU: - zone_foreach(zone_drain, arg); + zone_foreach(uma_reclaim_domain_cb, &args); pcpu_cache_drain_safe(NULL); - zone_foreach(zone_drain, arg); + zone_foreach(uma_reclaim_domain_cb, &args); break; default: panic("unhandled reclamation request %d", req); } /* * Some slabs may have been freed but this zone will be visited early * we visit again so that we can free pages that are empty once other * zones are drained. We have to do the same for buckets. */ - zone_drain(slabzones[0], arg); - zone_drain(slabzones[1], arg); + uma_zone_reclaim_domain(slabzones[0], UMA_RECLAIM_DRAIN, domain); + uma_zone_reclaim_domain(slabzones[1], UMA_RECLAIM_DRAIN, domain); bucket_zone_drain(domain); sx_sunlock(&uma_reclaim_lock); } static volatile int uma_reclaim_needed; void uma_reclaim_wakeup(void) { if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) wakeup(uma_reclaim); } void uma_reclaim_worker(void *arg __unused) { for (;;) { sx_xlock(&uma_reclaim_lock); while (atomic_load_int(&uma_reclaim_needed) == 0) sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", hz); sx_xunlock(&uma_reclaim_lock); EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); uma_reclaim(UMA_RECLAIM_DRAIN_CPU); atomic_store_int(&uma_reclaim_needed, 0); /* Don't fire more than once per-second. */ pause("umarclslp", hz); } } /* See uma.h */ void uma_zone_reclaim(uma_zone_t zone, int req) { uma_zone_reclaim_domain(zone, req, UMA_ANYDOMAIN); } void uma_zone_reclaim_domain(uma_zone_t zone, int req, int domain) { - void *arg; - - arg = (void *)(uintptr_t)domain; switch (req) { case UMA_RECLAIM_TRIM: - zone_trim(zone, arg); + zone_reclaim(zone, domain, M_NOWAIT, false); break; case UMA_RECLAIM_DRAIN: - zone_drain(zone, arg); + zone_reclaim(zone, domain, M_NOWAIT, true); break; case UMA_RECLAIM_DRAIN_CPU: pcpu_cache_drain_safe(zone); - zone_drain(zone, arg); + zone_reclaim(zone, domain, M_NOWAIT, true); break; default: panic("unhandled reclamation request %d", req); } } /* See uma.h */ int uma_zone_exhausted(uma_zone_t zone) { return (atomic_load_32(&zone->uz_sleepers) > 0); } unsigned long uma_limit(void) { return (uma_kmem_limit); } void uma_set_limit(unsigned long limit) { uma_kmem_limit = limit; } unsigned long uma_size(void) { return (atomic_load_long(&uma_kmem_total)); } long uma_avail(void) { return (uma_kmem_limit - uma_size()); } #ifdef DDB /* * Generate statistics across both the zone and its per-cpu cache's. Return * desired statistics if the pointer is non-NULL for that statistic. * * Note: does not update the zone statistics, as it can't safely clear the * per-CPU cache statistic. * */ static void uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) { uma_cache_t cache; uint64_t allocs, frees, sleeps, xdomain; int cachefree, cpu; allocs = frees = sleeps = xdomain = 0; cachefree = 0; CPU_FOREACH(cpu) { cache = &z->uz_cpu[cpu]; cachefree += cache->uc_allocbucket.ucb_cnt; cachefree += cache->uc_freebucket.ucb_cnt; xdomain += cache->uc_crossbucket.ucb_cnt; cachefree += cache->uc_crossbucket.ucb_cnt; allocs += cache->uc_allocs; frees += cache->uc_frees; } allocs += counter_u64_fetch(z->uz_allocs); frees += counter_u64_fetch(z->uz_frees); xdomain += counter_u64_fetch(z->uz_xdomain); sleeps += z->uz_sleeps; if (cachefreep != NULL) *cachefreep = cachefree; if (allocsp != NULL) *allocsp = allocs; if (freesp != NULL) *freesp = frees; if (sleepsp != NULL) *sleepsp = sleeps; if (xdomainp != NULL) *xdomainp = xdomain; } #endif /* DDB */ static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) { uma_keg_t kz; uma_zone_t z; int count; count = 0; rw_rlock(&uma_rwlock); LIST_FOREACH(kz, &uma_kegs, uk_link) { LIST_FOREACH(z, &kz->uk_zones, uz_link) count++; } LIST_FOREACH(z, &uma_cachezones, uz_link) count++; rw_runlock(&uma_rwlock); return (sysctl_handle_int(oidp, &count, 0, req)); } static void uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, struct uma_percpu_stat *ups, bool internal) { uma_zone_domain_t zdom; uma_cache_t cache; int i; for (i = 0; i < vm_ndomains; i++) { zdom = ZDOM_GET(z, i); uth->uth_zone_free += zdom->uzd_nitems; } uth->uth_allocs = counter_u64_fetch(z->uz_allocs); uth->uth_frees = counter_u64_fetch(z->uz_frees); uth->uth_fails = counter_u64_fetch(z->uz_fails); uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain); uth->uth_sleeps = z->uz_sleeps; for (i = 0; i < mp_maxid + 1; i++) { bzero(&ups[i], sizeof(*ups)); if (internal || CPU_ABSENT(i)) continue; cache = &z->uz_cpu[i]; ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; ups[i].ups_allocs = cache->uc_allocs; ups[i].ups_frees = cache->uc_frees; } } static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) { struct uma_stream_header ush; struct uma_type_header uth; struct uma_percpu_stat *ups; struct sbuf sbuf; uma_keg_t kz; uma_zone_t z; uint64_t items; uint32_t kfree, pages; int count, error, i; error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); sbuf_new_for_sysctl(&sbuf, NULL, 128, req); sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); count = 0; rw_rlock(&uma_rwlock); LIST_FOREACH(kz, &uma_kegs, uk_link) { LIST_FOREACH(z, &kz->uk_zones, uz_link) count++; } LIST_FOREACH(z, &uma_cachezones, uz_link) count++; /* * Insert stream header. */ bzero(&ush, sizeof(ush)); ush.ush_version = UMA_STREAM_VERSION; ush.ush_maxcpus = (mp_maxid + 1); ush.ush_count = count; (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); LIST_FOREACH(kz, &uma_kegs, uk_link) { kfree = pages = 0; for (i = 0; i < vm_ndomains; i++) { kfree += kz->uk_domain[i].ud_free_items; pages += kz->uk_domain[i].ud_pages; } LIST_FOREACH(z, &kz->uk_zones, uz_link) { bzero(&uth, sizeof(uth)); strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); uth.uth_align = kz->uk_align; uth.uth_size = kz->uk_size; uth.uth_rsize = kz->uk_rsize; if (z->uz_max_items > 0) { items = UZ_ITEMS_COUNT(z->uz_items); uth.uth_pages = (items / kz->uk_ipers) * kz->uk_ppera; } else uth.uth_pages = pages; uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * kz->uk_ppera; uth.uth_limit = z->uz_max_items; uth.uth_keg_free = kfree; /* * A zone is secondary is it is not the first entry * on the keg's zone list. */ if ((z->uz_flags & UMA_ZONE_SECONDARY) && (LIST_FIRST(&kz->uk_zones) != z)) uth.uth_zone_flags = UTH_ZONE_SECONDARY; uma_vm_zone_stats(&uth, z, &sbuf, ups, kz->uk_flags & UMA_ZFLAG_INTERNAL); (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); for (i = 0; i < mp_maxid + 1; i++) (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); } } LIST_FOREACH(z, &uma_cachezones, uz_link) { bzero(&uth, sizeof(uth)); strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); uth.uth_size = z->uz_size; uma_vm_zone_stats(&uth, z, &sbuf, ups, false); (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); for (i = 0; i < mp_maxid + 1; i++) (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); } rw_runlock(&uma_rwlock); error = sbuf_finish(&sbuf); sbuf_delete(&sbuf); free(ups, M_TEMP); return (error); } int sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) { uma_zone_t zone = *(uma_zone_t *)arg1; int error, max; max = uma_zone_get_max(zone); error = sysctl_handle_int(oidp, &max, 0, req); if (error || !req->newptr) return (error); uma_zone_set_max(zone, max); return (0); } int sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) { uma_zone_t zone; int cur; /* * Some callers want to add sysctls for global zones that * may not yet exist so they pass a pointer to a pointer. */ if (arg2 == 0) zone = *(uma_zone_t *)arg1; else zone = arg1; cur = uma_zone_get_cur(zone); return (sysctl_handle_int(oidp, &cur, 0, req)); } static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) { uma_zone_t zone = arg1; uint64_t cur; cur = uma_zone_get_allocs(zone); return (sysctl_handle_64(oidp, &cur, 0, req)); } static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) { uma_zone_t zone = arg1; uint64_t cur; cur = uma_zone_get_frees(zone); return (sysctl_handle_64(oidp, &cur, 0, req)); } static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) { struct sbuf sbuf; uma_zone_t zone = arg1; int error; sbuf_new_for_sysctl(&sbuf, NULL, 0, req); if (zone->uz_flags != 0) sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); else sbuf_printf(&sbuf, "0"); error = sbuf_finish(&sbuf); sbuf_delete(&sbuf); return (error); } static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) { uma_keg_t keg = arg1; int avail, effpct, total; total = keg->uk_ppera * PAGE_SIZE; if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize; /* * We consider the client's requested size and alignment here, not the * real size determination uk_rsize, because we also adjust the real * size for internal implementation reasons (max bitset size). */ avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) avail *= mp_maxid + 1; effpct = 100 * avail / total; return (sysctl_handle_int(oidp, &effpct, 0, req)); } static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS) { uma_zone_t zone = arg1; uint64_t cur; cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items)); return (sysctl_handle_64(oidp, &cur, 0, req)); } #ifdef INVARIANTS static uma_slab_t uma_dbg_getslab(uma_zone_t zone, void *item) { uma_slab_t slab; uma_keg_t keg; uint8_t *mem; /* * It is safe to return the slab here even though the * zone is unlocked because the item's allocation state * essentially holds a reference. */ mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) return (NULL); if (zone->uz_flags & UMA_ZFLAG_VTOSLAB) return (vtoslab((vm_offset_t)mem)); keg = zone->uz_keg; if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0) return ((uma_slab_t)(mem + keg->uk_pgoff)); KEG_LOCK(keg, 0); slab = hash_sfind(&keg->uk_hash, mem); KEG_UNLOCK(keg, 0); return (slab); } static bool uma_dbg_zskip(uma_zone_t zone, void *mem) { if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) return (true); return (uma_dbg_kskip(zone->uz_keg, mem)); } static bool uma_dbg_kskip(uma_keg_t keg, void *mem) { uintptr_t idx; if (dbg_divisor == 0) return (true); if (dbg_divisor == 1) return (false); idx = (uintptr_t)mem >> PAGE_SHIFT; if (keg->uk_ipers > 1) { idx *= keg->uk_ipers; idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; } if ((idx / dbg_divisor) * dbg_divisor != idx) { counter_u64_add(uma_skip_cnt, 1); return (true); } counter_u64_add(uma_dbg_cnt, 1); return (false); } /* * Set up the slab's freei data such that uma_dbg_free can function. * */ static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) { uma_keg_t keg; int freei; if (slab == NULL) { slab = uma_dbg_getslab(zone, item); if (slab == NULL) panic("uma: item %p did not belong to zone %s", item, zone->uz_name); } keg = zone->uz_keg; freei = slab_item_index(slab, keg, item); if (BIT_TEST_SET_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)", item, zone, zone->uz_name, slab, freei); } /* * Verifies freed addresses. Checks for alignment, valid slab membership * and duplicate frees. * */ static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) { uma_keg_t keg; int freei; if (slab == NULL) { slab = uma_dbg_getslab(zone, item); if (slab == NULL) panic("uma: Freed item %p did not belong to zone %s", item, zone->uz_name); } keg = zone->uz_keg; freei = slab_item_index(slab, keg, item); if (freei >= keg->uk_ipers) panic("Invalid free of %p from zone %p(%s) slab %p(%d)", item, zone, zone->uz_name, slab, freei); if (slab_item(slab, keg, freei) != item) panic("Unaligned free of %p from zone %p(%s) slab %p(%d)", item, zone, zone->uz_name, slab, freei); if (!BIT_TEST_CLR_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) panic("Duplicate free of %p from zone %p(%s) slab %p(%d)", item, zone, zone->uz_name, slab, freei); } #endif /* INVARIANTS */ #ifdef DDB static int64_t get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, uint64_t *sleeps, long *cachefree, uint64_t *xdomain) { uint64_t frees; int i; if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { *allocs = counter_u64_fetch(z->uz_allocs); frees = counter_u64_fetch(z->uz_frees); *sleeps = z->uz_sleeps; *cachefree = 0; *xdomain = 0; } else uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, xdomain); for (i = 0; i < vm_ndomains; i++) { *cachefree += ZDOM_GET(z, i)->uzd_nitems; if (!((z->uz_flags & UMA_ZONE_SECONDARY) && (LIST_FIRST(&kz->uk_zones) != z))) *cachefree += kz->uk_domain[i].ud_free_items; } *used = *allocs - frees; return (((int64_t)*used + *cachefree) * kz->uk_size); } DB_SHOW_COMMAND(uma, db_show_uma) { const char *fmt_hdr, *fmt_entry; uma_keg_t kz; uma_zone_t z; uint64_t allocs, used, sleeps, xdomain; long cachefree; /* variables for sorting */ uma_keg_t cur_keg; uma_zone_t cur_zone, last_zone; int64_t cur_size, last_size, size; int ties; /* /i option produces machine-parseable CSV output */ if (modif[0] == 'i') { fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; } else { fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; } db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", "Sleeps", "Bucket", "Total Mem", "XFree"); /* Sort the zones with largest size first. */ last_zone = NULL; last_size = INT64_MAX; for (;;) { cur_zone = NULL; cur_size = -1; ties = 0; LIST_FOREACH(kz, &uma_kegs, uk_link) { LIST_FOREACH(z, &kz->uk_zones, uz_link) { /* * In the case of size ties, print out zones * in the order they are encountered. That is, * when we encounter the most recently output * zone, we have already printed all preceding * ties, and we must print all following ties. */ if (z == last_zone) { ties = 1; continue; } size = get_uma_stats(kz, z, &allocs, &used, &sleeps, &cachefree, &xdomain); if (size > cur_size && size < last_size + ties) { cur_size = size; cur_zone = z; cur_keg = kz; } } } if (cur_zone == NULL) break; size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, &sleeps, &cachefree, &xdomain); db_printf(fmt_entry, cur_zone->uz_name, (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, (uintmax_t)allocs, (uintmax_t)sleeps, (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, xdomain); if (db_pager_quit) return; last_zone = cur_zone; last_size = cur_size; } } DB_SHOW_COMMAND(umacache, db_show_umacache) { uma_zone_t z; uint64_t allocs, frees; long cachefree; int i; db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", "Requests", "Bucket"); LIST_FOREACH(z, &uma_cachezones, uz_link) { uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); for (i = 0; i < vm_ndomains; i++) cachefree += ZDOM_GET(z, i)->uzd_nitems; db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", z->uz_name, (uintmax_t)z->uz_size, (intmax_t)(allocs - frees), cachefree, (uintmax_t)allocs, z->uz_bucket_size); if (db_pager_quit) return; } } #endif /* DDB */