diff --git a/sys/dev/iwm/if_iwm.c b/sys/dev/iwm/if_iwm.c index f994e8e75307..3e34c3cac98e 100644 --- a/sys/dev/iwm/if_iwm.c +++ b/sys/dev/iwm/if_iwm.c @@ -1,6689 +1,6597 @@ /* $OpenBSD: if_iwm.c,v 1.167 2017/04/04 00:40:52 claudio Exp $ */ /* * Copyright (c) 2014 genua mbh * Copyright (c) 2014 Fixup Software Ltd. * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /*- * Based on BSD-licensed source modules in the Linux iwlwifi driver, * which were used as the reference documentation for this implementation. * * Driver version we are currently based off of is * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd) * *********************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called COPYING. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * * BSD LICENSE * * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 2007-2010 Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); #include "opt_wlan.h" #include "opt_iwm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* From DragonflyBSD */ #define mtodoff(m, t, off) ((t)((m)->m_data + (off))) const uint8_t iwm_nvm_channels[] = { /* 2.4 GHz */ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 5 GHz */ 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 149, 153, 157, 161, 165 }; _Static_assert(nitems(iwm_nvm_channels) <= IWM_NUM_CHANNELS, "IWM_NUM_CHANNELS is too small"); const uint8_t iwm_nvm_channels_8000[] = { /* 2.4 GHz */ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 5 GHz */ 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 149, 153, 157, 161, 165, 169, 173, 177, 181 }; _Static_assert(nitems(iwm_nvm_channels_8000) <= IWM_NUM_CHANNELS_8000, "IWM_NUM_CHANNELS_8000 is too small"); #define IWM_NUM_2GHZ_CHANNELS 14 #define IWM_N_HW_ADDR_MASK 0xF /* * XXX For now, there's simply a fixed set of rate table entries * that are populated. */ const struct iwm_rate { uint8_t rate; uint8_t plcp; } iwm_rates[] = { { 2, IWM_RATE_1M_PLCP }, { 4, IWM_RATE_2M_PLCP }, { 11, IWM_RATE_5M_PLCP }, { 22, IWM_RATE_11M_PLCP }, { 12, IWM_RATE_6M_PLCP }, { 18, IWM_RATE_9M_PLCP }, { 24, IWM_RATE_12M_PLCP }, { 36, IWM_RATE_18M_PLCP }, { 48, IWM_RATE_24M_PLCP }, { 72, IWM_RATE_36M_PLCP }, { 96, IWM_RATE_48M_PLCP }, { 108, IWM_RATE_54M_PLCP }, }; #define IWM_RIDX_CCK 0 #define IWM_RIDX_OFDM 4 #define IWM_RIDX_MAX (nitems(iwm_rates)-1) #define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM) #define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM) struct iwm_nvm_section { uint16_t length; uint8_t *data; }; #define IWM_UCODE_ALIVE_TIMEOUT hz #define IWM_UCODE_CALIB_TIMEOUT (2*hz) struct iwm_alive_data { int valid; uint32_t scd_base_addr; }; static int iwm_store_cscheme(struct iwm_softc *, const uint8_t *, size_t); static int iwm_firmware_store_section(struct iwm_softc *, enum iwm_ucode_type, const uint8_t *, size_t); static int iwm_set_default_calib(struct iwm_softc *, const void *); static void iwm_fw_info_free(struct iwm_fw_info *); static int iwm_read_firmware(struct iwm_softc *); static int iwm_alloc_fwmem(struct iwm_softc *); static int iwm_alloc_sched(struct iwm_softc *); static int iwm_alloc_kw(struct iwm_softc *); static int iwm_alloc_ict(struct iwm_softc *); static int iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); static void iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); static void iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); static int iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *, int); static void iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *); static void iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *); static void iwm_enable_interrupts(struct iwm_softc *); static void iwm_restore_interrupts(struct iwm_softc *); static void iwm_disable_interrupts(struct iwm_softc *); static void iwm_ict_reset(struct iwm_softc *); static int iwm_allow_mcast(struct ieee80211vap *, struct iwm_softc *); static void iwm_stop_device(struct iwm_softc *); static void iwm_nic_config(struct iwm_softc *); static int iwm_nic_rx_init(struct iwm_softc *); static int iwm_nic_tx_init(struct iwm_softc *); static int iwm_nic_init(struct iwm_softc *); static int iwm_trans_pcie_fw_alive(struct iwm_softc *, uint32_t); static int iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t, uint16_t, uint8_t *, uint16_t *); static int iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *, uint16_t *, uint32_t); static uint32_t iwm_eeprom_channel_flags(uint16_t); static void iwm_add_channel_band(struct iwm_softc *, struct ieee80211_channel[], int, int *, int, size_t, const uint8_t[]); static void iwm_init_channel_map(struct ieee80211com *, int, int *, struct ieee80211_channel[]); static struct iwm_nvm_data * iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *, const uint16_t *, const uint16_t *, const uint16_t *, const uint16_t *, const uint16_t *); static void iwm_free_nvm_data(struct iwm_nvm_data *); static void iwm_set_hw_address_family_8000(struct iwm_softc *, struct iwm_nvm_data *, const uint16_t *, const uint16_t *); static int iwm_get_sku(const struct iwm_softc *, const uint16_t *, const uint16_t *); static int iwm_get_nvm_version(const struct iwm_softc *, const uint16_t *); static int iwm_get_radio_cfg(const struct iwm_softc *, const uint16_t *, const uint16_t *); static int iwm_get_n_hw_addrs(const struct iwm_softc *, const uint16_t *); static void iwm_set_radio_cfg(const struct iwm_softc *, struct iwm_nvm_data *, uint32_t); static struct iwm_nvm_data * iwm_parse_nvm_sections(struct iwm_softc *, struct iwm_nvm_section *); static int iwm_nvm_init(struct iwm_softc *); static int iwm_pcie_load_section(struct iwm_softc *, uint8_t, const struct iwm_fw_desc *); static int iwm_pcie_load_firmware_chunk(struct iwm_softc *, uint32_t, bus_addr_t, uint32_t); static int iwm_pcie_load_cpu_sections_8000(struct iwm_softc *sc, const struct iwm_fw_img *, int, int *); static int iwm_pcie_load_cpu_sections(struct iwm_softc *, const struct iwm_fw_img *, int, int *); static int iwm_pcie_load_given_ucode_8000(struct iwm_softc *, const struct iwm_fw_img *); static int iwm_pcie_load_given_ucode(struct iwm_softc *, const struct iwm_fw_img *); static int iwm_start_fw(struct iwm_softc *, const struct iwm_fw_img *); static int iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t); static int iwm_send_phy_cfg_cmd(struct iwm_softc *); static int iwm_load_ucode_wait_alive(struct iwm_softc *, enum iwm_ucode_type); static int iwm_run_init_ucode(struct iwm_softc *, int); static int iwm_config_ltr(struct iwm_softc *sc); static int iwm_rx_addbuf(struct iwm_softc *, int, int); static void iwm_rx_rx_phy_cmd(struct iwm_softc *, struct iwm_rx_packet *); static int iwm_get_noise(struct iwm_softc *, const struct iwm_statistics_rx_non_phy *); static void iwm_handle_rx_statistics(struct iwm_softc *, struct iwm_rx_packet *); static bool iwm_rx_mpdu(struct iwm_softc *, struct mbuf *, uint32_t, bool); static int iwm_rx_tx_cmd_single(struct iwm_softc *, struct iwm_rx_packet *, struct iwm_node *); static void iwm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *); static void iwm_cmd_done(struct iwm_softc *, struct iwm_rx_packet *); #if 0 static void iwm_update_sched(struct iwm_softc *, int, int, uint8_t, uint16_t); #endif static const struct iwm_rate * iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *, struct mbuf *, struct iwm_tx_cmd *); static int iwm_tx(struct iwm_softc *, struct mbuf *, struct ieee80211_node *, int); static int iwm_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static int iwm_update_quotas(struct iwm_softc *, struct iwm_vap *); static int iwm_auth(struct ieee80211vap *, struct iwm_softc *); static struct ieee80211_node * iwm_node_alloc(struct ieee80211vap *, const uint8_t[IEEE80211_ADDR_LEN]); static uint8_t iwm_rate_from_ucode_rate(uint32_t); static int iwm_rate2ridx(struct iwm_softc *, uint8_t); static void iwm_setrates(struct iwm_softc *, struct iwm_node *, int); static int iwm_newstate(struct ieee80211vap *, enum ieee80211_state, int); static void iwm_endscan_cb(void *, int); static int iwm_send_bt_init_conf(struct iwm_softc *); static boolean_t iwm_is_lar_supported(struct iwm_softc *); static boolean_t iwm_is_wifi_mcc_supported(struct iwm_softc *); static int iwm_send_update_mcc_cmd(struct iwm_softc *, const char *); static void iwm_tt_tx_backoff(struct iwm_softc *, uint32_t); static int iwm_init_hw(struct iwm_softc *); static void iwm_init(struct iwm_softc *); static void iwm_start(struct iwm_softc *); static void iwm_stop(struct iwm_softc *); static void iwm_watchdog(void *); static void iwm_parent(struct ieee80211com *); #ifdef IWM_DEBUG static const char * iwm_desc_lookup(uint32_t); static void iwm_nic_error(struct iwm_softc *); static void iwm_nic_umac_error(struct iwm_softc *); #endif static void iwm_handle_rxb(struct iwm_softc *, struct mbuf *); static void iwm_notif_intr(struct iwm_softc *); static void iwm_intr(void *); static int iwm_attach(device_t); static int iwm_is_valid_ether_addr(uint8_t *); static void iwm_preinit(void *); static int iwm_detach_local(struct iwm_softc *sc, int); static void iwm_init_task(void *); static void iwm_radiotap_attach(struct iwm_softc *); static struct ieee80211vap * iwm_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void iwm_vap_delete(struct ieee80211vap *); static void iwm_xmit_queue_drain(struct iwm_softc *); static void iwm_scan_start(struct ieee80211com *); static void iwm_scan_end(struct ieee80211com *); static void iwm_update_mcast(struct ieee80211com *); static void iwm_set_channel(struct ieee80211com *); static void iwm_scan_curchan(struct ieee80211_scan_state *, unsigned long); static void iwm_scan_mindwell(struct ieee80211_scan_state *); static int iwm_detach(device_t); static int iwm_lar_disable = 0; TUNABLE_INT("hw.iwm.lar.disable", &iwm_lar_disable); /* * Firmware parser. */ static int iwm_store_cscheme(struct iwm_softc *sc, const uint8_t *data, size_t dlen) { const struct iwm_fw_cscheme_list *l = (const void *)data; if (dlen < sizeof(*l) || dlen < sizeof(l->size) + l->size * sizeof(*l->cs)) return EINVAL; /* we don't actually store anything for now, always use s/w crypto */ return 0; } static int iwm_firmware_store_section(struct iwm_softc *sc, enum iwm_ucode_type type, const uint8_t *data, size_t dlen) { struct iwm_fw_img *fws; struct iwm_fw_desc *fwone; if (type >= IWM_UCODE_TYPE_MAX) return EINVAL; if (dlen < sizeof(uint32_t)) return EINVAL; fws = &sc->sc_fw.img[type]; if (fws->fw_count >= IWM_UCODE_SECTION_MAX) return EINVAL; fwone = &fws->sec[fws->fw_count]; /* first 32bit are device load offset */ memcpy(&fwone->offset, data, sizeof(uint32_t)); /* rest is data */ fwone->data = data + sizeof(uint32_t); fwone->len = dlen - sizeof(uint32_t); fws->fw_count++; return 0; } #define IWM_DEFAULT_SCAN_CHANNELS 40 /* iwlwifi: iwl-drv.c */ struct iwm_tlv_calib_data { uint32_t ucode_type; struct iwm_tlv_calib_ctrl calib; } __packed; static int iwm_set_default_calib(struct iwm_softc *sc, const void *data) { const struct iwm_tlv_calib_data *def_calib = data; uint32_t ucode_type = le32toh(def_calib->ucode_type); if (ucode_type >= IWM_UCODE_TYPE_MAX) { device_printf(sc->sc_dev, "Wrong ucode_type %u for default " "calibration.\n", ucode_type); return EINVAL; } sc->sc_default_calib[ucode_type].flow_trigger = def_calib->calib.flow_trigger; sc->sc_default_calib[ucode_type].event_trigger = def_calib->calib.event_trigger; return 0; } static int iwm_set_ucode_api_flags(struct iwm_softc *sc, const uint8_t *data, struct iwm_ucode_capabilities *capa) { const struct iwm_ucode_api *ucode_api = (const void *)data; uint32_t api_index = le32toh(ucode_api->api_index); uint32_t api_flags = le32toh(ucode_api->api_flags); int i; if (api_index >= howmany(IWM_NUM_UCODE_TLV_API, 32)) { device_printf(sc->sc_dev, "api flags index %d larger than supported by driver\n", api_index); /* don't return an error so we can load FW that has more bits */ return 0; } for (i = 0; i < 32; i++) { if (api_flags & (1U << i)) setbit(capa->enabled_api, i + 32 * api_index); } return 0; } static int iwm_set_ucode_capabilities(struct iwm_softc *sc, const uint8_t *data, struct iwm_ucode_capabilities *capa) { const struct iwm_ucode_capa *ucode_capa = (const void *)data; uint32_t api_index = le32toh(ucode_capa->api_index); uint32_t api_flags = le32toh(ucode_capa->api_capa); int i; if (api_index >= howmany(IWM_NUM_UCODE_TLV_CAPA, 32)) { device_printf(sc->sc_dev, "capa flags index %d larger than supported by driver\n", api_index); /* don't return an error so we can load FW that has more bits */ return 0; } for (i = 0; i < 32; i++) { if (api_flags & (1U << i)) setbit(capa->enabled_capa, i + 32 * api_index); } return 0; } static void iwm_fw_info_free(struct iwm_fw_info *fw) { firmware_put(fw->fw_fp, FIRMWARE_UNLOAD); fw->fw_fp = NULL; memset(fw->img, 0, sizeof(fw->img)); } static int iwm_read_firmware(struct iwm_softc *sc) { struct iwm_fw_info *fw = &sc->sc_fw; const struct iwm_tlv_ucode_header *uhdr; const struct iwm_ucode_tlv *tlv; struct iwm_ucode_capabilities *capa = &sc->sc_fw.ucode_capa; enum iwm_ucode_tlv_type tlv_type; const struct firmware *fwp; const uint8_t *data; uint32_t tlv_len; uint32_t usniffer_img; const uint8_t *tlv_data; uint32_t paging_mem_size; int num_of_cpus; int error = 0; size_t len; /* * Load firmware into driver memory. * fw_fp will be set. */ fwp = firmware_get(sc->cfg->fw_name); if (fwp == NULL) { device_printf(sc->sc_dev, "could not read firmware %s (error %d)\n", sc->cfg->fw_name, error); goto out; } fw->fw_fp = fwp; /* (Re-)Initialize default values. */ capa->flags = 0; capa->max_probe_length = IWM_DEFAULT_MAX_PROBE_LENGTH; capa->n_scan_channels = IWM_DEFAULT_SCAN_CHANNELS; memset(capa->enabled_capa, 0, sizeof(capa->enabled_capa)); memset(capa->enabled_api, 0, sizeof(capa->enabled_api)); memset(sc->sc_fw_mcc, 0, sizeof(sc->sc_fw_mcc)); /* * Parse firmware contents */ uhdr = (const void *)fw->fw_fp->data; if (*(const uint32_t *)fw->fw_fp->data != 0 || le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) { device_printf(sc->sc_dev, "invalid firmware %s\n", sc->cfg->fw_name); error = EINVAL; goto out; } snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), "%u.%u (API ver %u)", IWM_UCODE_MAJOR(le32toh(uhdr->ver)), IWM_UCODE_MINOR(le32toh(uhdr->ver)), IWM_UCODE_API(le32toh(uhdr->ver))); data = uhdr->data; len = fw->fw_fp->datasize - sizeof(*uhdr); while (len >= sizeof(*tlv)) { len -= sizeof(*tlv); tlv = (const void *)data; tlv_len = le32toh(tlv->length); tlv_type = le32toh(tlv->type); tlv_data = tlv->data; if (len < tlv_len) { device_printf(sc->sc_dev, "firmware too short: %zu bytes\n", len); error = EINVAL; goto parse_out; } len -= roundup2(tlv_len, 4); data += sizeof(*tlv) + roundup2(tlv_len, 4); switch ((int)tlv_type) { case IWM_UCODE_TLV_PROBE_MAX_LEN: if (tlv_len != sizeof(uint32_t)) { device_printf(sc->sc_dev, "%s: PROBE_MAX_LEN (%u) != sizeof(uint32_t)\n", __func__, tlv_len); error = EINVAL; goto parse_out; } capa->max_probe_length = le32_to_cpup((const uint32_t *)tlv_data); /* limit it to something sensible */ if (capa->max_probe_length > IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE) { IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV, "%s: IWM_UCODE_TLV_PROBE_MAX_LEN " "ridiculous\n", __func__); error = EINVAL; goto parse_out; } break; case IWM_UCODE_TLV_PAN: if (tlv_len) { device_printf(sc->sc_dev, "%s: IWM_UCODE_TLV_PAN: tlv_len (%u) > 0\n", __func__, tlv_len); error = EINVAL; goto parse_out; } capa->flags |= IWM_UCODE_TLV_FLAGS_PAN; break; case IWM_UCODE_TLV_FLAGS: if (tlv_len < sizeof(uint32_t)) { device_printf(sc->sc_dev, "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%u) < sizeof(uint32_t)\n", __func__, tlv_len); error = EINVAL; goto parse_out; } if (tlv_len % sizeof(uint32_t)) { device_printf(sc->sc_dev, "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%u) %% sizeof(uint32_t)\n", __func__, tlv_len); error = EINVAL; goto parse_out; } /* * Apparently there can be many flags, but Linux driver * parses only the first one, and so do we. * * XXX: why does this override IWM_UCODE_TLV_PAN? * Intentional or a bug? Observations from * current firmware file: * 1) TLV_PAN is parsed first * 2) TLV_FLAGS contains TLV_FLAGS_PAN * ==> this resets TLV_PAN to itself... hnnnk */ capa->flags = le32_to_cpup((const uint32_t *)tlv_data); break; case IWM_UCODE_TLV_CSCHEME: if ((error = iwm_store_cscheme(sc, tlv_data, tlv_len)) != 0) { device_printf(sc->sc_dev, "%s: iwm_store_cscheme(): returned %d\n", __func__, error); goto parse_out; } break; case IWM_UCODE_TLV_NUM_OF_CPU: if (tlv_len != sizeof(uint32_t)) { device_printf(sc->sc_dev, "%s: IWM_UCODE_TLV_NUM_OF_CPU: tlv_len (%u) != sizeof(uint32_t)\n", __func__, tlv_len); error = EINVAL; goto parse_out; } num_of_cpus = le32_to_cpup((const uint32_t *)tlv_data); if (num_of_cpus == 2) { fw->img[IWM_UCODE_REGULAR].is_dual_cpus = TRUE; fw->img[IWM_UCODE_INIT].is_dual_cpus = TRUE; fw->img[IWM_UCODE_WOWLAN].is_dual_cpus = TRUE; } else if ((num_of_cpus > 2) || (num_of_cpus < 1)) { device_printf(sc->sc_dev, "%s: Driver supports only 1 or 2 CPUs\n", __func__); error = EINVAL; goto parse_out; } break; case IWM_UCODE_TLV_SEC_RT: if ((error = iwm_firmware_store_section(sc, IWM_UCODE_REGULAR, tlv_data, tlv_len)) != 0) { device_printf(sc->sc_dev, "%s: IWM_UCODE_REGULAR: iwm_firmware_store_section() failed; %d\n", __func__, error); goto parse_out; } break; case IWM_UCODE_TLV_SEC_INIT: if ((error = iwm_firmware_store_section(sc, IWM_UCODE_INIT, tlv_data, tlv_len)) != 0) { device_printf(sc->sc_dev, "%s: IWM_UCODE_INIT: iwm_firmware_store_section() failed; %d\n", __func__, error); goto parse_out; } break; case IWM_UCODE_TLV_SEC_WOWLAN: if ((error = iwm_firmware_store_section(sc, IWM_UCODE_WOWLAN, tlv_data, tlv_len)) != 0) { device_printf(sc->sc_dev, "%s: IWM_UCODE_WOWLAN: iwm_firmware_store_section() failed; %d\n", __func__, error); goto parse_out; } break; case IWM_UCODE_TLV_DEF_CALIB: if (tlv_len != sizeof(struct iwm_tlv_calib_data)) { device_printf(sc->sc_dev, "%s: IWM_UCODE_TLV_DEV_CALIB: tlv_len (%u) < sizeof(iwm_tlv_calib_data) (%zu)\n", __func__, tlv_len, sizeof(struct iwm_tlv_calib_data)); error = EINVAL; goto parse_out; } if ((error = iwm_set_default_calib(sc, tlv_data)) != 0) { device_printf(sc->sc_dev, "%s: iwm_set_default_calib() failed: %d\n", __func__, error); goto parse_out; } break; case IWM_UCODE_TLV_PHY_SKU: if (tlv_len != sizeof(uint32_t)) { error = EINVAL; device_printf(sc->sc_dev, "%s: IWM_UCODE_TLV_PHY_SKU: tlv_len (%u) < sizeof(uint32_t)\n", __func__, tlv_len); goto parse_out; } sc->sc_fw.phy_config = le32_to_cpup((const uint32_t *)tlv_data); sc->sc_fw.valid_tx_ant = (sc->sc_fw.phy_config & IWM_FW_PHY_CFG_TX_CHAIN) >> IWM_FW_PHY_CFG_TX_CHAIN_POS; sc->sc_fw.valid_rx_ant = (sc->sc_fw.phy_config & IWM_FW_PHY_CFG_RX_CHAIN) >> IWM_FW_PHY_CFG_RX_CHAIN_POS; break; case IWM_UCODE_TLV_API_CHANGES_SET: { if (tlv_len != sizeof(struct iwm_ucode_api)) { error = EINVAL; goto parse_out; } if (iwm_set_ucode_api_flags(sc, tlv_data, capa)) { error = EINVAL; goto parse_out; } break; } case IWM_UCODE_TLV_ENABLED_CAPABILITIES: { if (tlv_len != sizeof(struct iwm_ucode_capa)) { error = EINVAL; goto parse_out; } if (iwm_set_ucode_capabilities(sc, tlv_data, capa)) { error = EINVAL; goto parse_out; } break; } case IWM_UCODE_TLV_CMD_VERSIONS: case IWM_UCODE_TLV_SDIO_ADMA_ADDR: case IWM_UCODE_TLV_FW_GSCAN_CAPA: /* ignore, not used by current driver */ break; case IWM_UCODE_TLV_SEC_RT_USNIFFER: if ((error = iwm_firmware_store_section(sc, IWM_UCODE_REGULAR_USNIFFER, tlv_data, tlv_len)) != 0) goto parse_out; break; case IWM_UCODE_TLV_PAGING: if (tlv_len != sizeof(uint32_t)) { error = EINVAL; goto parse_out; } paging_mem_size = le32_to_cpup((const uint32_t *)tlv_data); IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV, "%s: Paging: paging enabled (size = %u bytes)\n", __func__, paging_mem_size); if (paging_mem_size > IWM_MAX_PAGING_IMAGE_SIZE) { device_printf(sc->sc_dev, "%s: Paging: driver supports up to %u bytes for paging image\n", __func__, IWM_MAX_PAGING_IMAGE_SIZE); error = EINVAL; goto out; } if (paging_mem_size & (IWM_FW_PAGING_SIZE - 1)) { device_printf(sc->sc_dev, "%s: Paging: image isn't multiple %u\n", __func__, IWM_FW_PAGING_SIZE); error = EINVAL; goto out; } sc->sc_fw.img[IWM_UCODE_REGULAR].paging_mem_size = paging_mem_size; usniffer_img = IWM_UCODE_REGULAR_USNIFFER; sc->sc_fw.img[usniffer_img].paging_mem_size = paging_mem_size; break; case IWM_UCODE_TLV_N_SCAN_CHANNELS: if (tlv_len != sizeof(uint32_t)) { error = EINVAL; goto parse_out; } capa->n_scan_channels = le32_to_cpup((const uint32_t *)tlv_data); break; case IWM_UCODE_TLV_FW_VERSION: if (tlv_len != sizeof(uint32_t) * 3) { error = EINVAL; goto parse_out; } snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), "%u.%u.%u", le32toh(((const uint32_t *)tlv_data)[0]), le32toh(((const uint32_t *)tlv_data)[1]), le32toh(((const uint32_t *)tlv_data)[2])); break; case IWM_UCODE_TLV_FW_MEM_SEG: break; default: device_printf(sc->sc_dev, "%s: unknown firmware section %d, abort\n", __func__, tlv_type); error = EINVAL; goto parse_out; } } KASSERT(error == 0, ("unhandled error")); parse_out: if (error) { device_printf(sc->sc_dev, "firmware parse error %d, " "section type %d\n", error, tlv_type); } out: if (error) { if (fw->fw_fp != NULL) iwm_fw_info_free(fw); } return error; } /* * DMA resource routines */ /* fwmem is used to load firmware onto the card */ static int iwm_alloc_fwmem(struct iwm_softc *sc) { /* Must be aligned on a 16-byte boundary. */ return iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, IWM_FH_MEM_TB_MAX_LENGTH, 16); } /* tx scheduler rings. not used? */ static int iwm_alloc_sched(struct iwm_softc *sc) { /* TX scheduler rings must be aligned on a 1KB boundary. */ return iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma, nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024); } /* keep-warm page is used internally by the card. see iwl-fh.h for more info */ static int iwm_alloc_kw(struct iwm_softc *sc) { return iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096); } /* interrupt cause table */ static int iwm_alloc_ict(struct iwm_softc *sc) { return iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma, IWM_ICT_SIZE, 1<cur = 0; if (sc->cfg->mqrx_supported) { count = IWM_RX_MQ_RING_COUNT; descsz = sizeof(uint64_t); } else { count = IWM_RX_LEGACY_RING_COUNT; descsz = sizeof(uint32_t); } /* Allocate RX descriptors (256-byte aligned). */ size = count * descsz; error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->free_desc_dma, size, 256); if (error != 0) { device_printf(sc->sc_dev, "could not allocate RX ring DMA memory\n"); goto fail; } ring->desc = ring->free_desc_dma.vaddr; /* Allocate RX status area (16-byte aligned). */ error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma, sizeof(*ring->stat), 16); if (error != 0) { device_printf(sc->sc_dev, "could not allocate RX status DMA memory\n"); goto fail; } ring->stat = ring->stat_dma.vaddr; if (sc->cfg->mqrx_supported) { size = count * sizeof(uint32_t); error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->used_desc_dma, size, 256); if (error != 0) { device_printf(sc->sc_dev, "could not allocate RX ring DMA memory\n"); goto fail; } } /* Create RX buffer DMA tag. */ error = bus_dma_tag_create(sc->sc_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, IWM_RBUF_SIZE, 1, IWM_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "%s: could not create RX buf DMA tag, error %d\n", __func__, error); goto fail; } /* Allocate spare bus_dmamap_t for iwm_rx_addbuf() */ error = bus_dmamap_create(ring->data_dmat, 0, &ring->spare_map); if (error != 0) { device_printf(sc->sc_dev, "%s: could not create RX buf DMA map, error %d\n", __func__, error); goto fail; } /* * Allocate and map RX buffers. */ for (i = 0; i < count; i++) { struct iwm_rx_data *data = &ring->data[i]; error = bus_dmamap_create(ring->data_dmat, 0, &data->map); if (error != 0) { device_printf(sc->sc_dev, "%s: could not create RX buf DMA map, error %d\n", __func__, error); goto fail; } data->m = NULL; if ((error = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i)) != 0) { goto fail; } } return 0; fail: iwm_free_rx_ring(sc, ring); return error; } static void iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring) { /* Reset the ring state */ ring->cur = 0; /* * The hw rx ring index in shared memory must also be cleared, * otherwise the discrepancy can cause reprocessing chaos. */ if (sc->rxq.stat) memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat)); } static void iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring) { int count, i; iwm_dma_contig_free(&ring->free_desc_dma); iwm_dma_contig_free(&ring->stat_dma); iwm_dma_contig_free(&ring->used_desc_dma); count = sc->cfg->mqrx_supported ? IWM_RX_MQ_RING_COUNT : IWM_RX_LEGACY_RING_COUNT; for (i = 0; i < count; i++) { struct iwm_rx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } if (data->map != NULL) { bus_dmamap_destroy(ring->data_dmat, data->map); data->map = NULL; } } if (ring->spare_map != NULL) { bus_dmamap_destroy(ring->data_dmat, ring->spare_map); ring->spare_map = NULL; } if (ring->data_dmat != NULL) { bus_dma_tag_destroy(ring->data_dmat); ring->data_dmat = NULL; } } static int iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid) { bus_addr_t paddr; bus_size_t size; size_t maxsize; int nsegments; int i, error; ring->qid = qid; ring->queued = 0; ring->cur = 0; /* Allocate TX descriptors (256-byte aligned). */ size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd); error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256); if (error != 0) { device_printf(sc->sc_dev, "could not allocate TX ring DMA memory\n"); goto fail; } ring->desc = ring->desc_dma.vaddr; /* * We only use rings 0 through 9 (4 EDCA + cmd) so there is no need * to allocate commands space for other rings. */ if (qid > IWM_CMD_QUEUE) return 0; size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd); error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4); if (error != 0) { device_printf(sc->sc_dev, "could not allocate TX cmd DMA memory\n"); goto fail; } ring->cmd = ring->cmd_dma.vaddr; /* FW commands may require more mapped space than packets. */ if (qid == IWM_CMD_QUEUE) { maxsize = IWM_RBUF_SIZE; nsegments = 1; } else { maxsize = MCLBYTES; nsegments = IWM_MAX_SCATTER - 2; } error = bus_dma_tag_create(sc->sc_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, maxsize, nsegments, maxsize, 0, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create TX buf DMA tag\n"); goto fail; } paddr = ring->cmd_dma.paddr; for (i = 0; i < IWM_TX_RING_COUNT; i++) { struct iwm_tx_data *data = &ring->data[i]; data->cmd_paddr = paddr; data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header) + offsetof(struct iwm_tx_cmd, scratch); paddr += sizeof(struct iwm_device_cmd); error = bus_dmamap_create(ring->data_dmat, 0, &data->map); if (error != 0) { device_printf(sc->sc_dev, "could not create TX buf DMA map\n"); goto fail; } } KASSERT(paddr == ring->cmd_dma.paddr + size, ("invalid physical address")); return 0; fail: iwm_free_tx_ring(sc, ring); return error; } static void iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring) { int i; for (i = 0; i < IWM_TX_RING_COUNT; i++) { struct iwm_tx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } } /* Clear TX descriptors. */ memset(ring->desc, 0, ring->desc_dma.size); bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, BUS_DMASYNC_PREWRITE); sc->qfullmsk &= ~(1 << ring->qid); ring->queued = 0; ring->cur = 0; if (ring->qid == IWM_CMD_QUEUE && sc->cmd_hold_nic_awake) iwm_pcie_clear_cmd_in_flight(sc); } static void iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring) { int i; iwm_dma_contig_free(&ring->desc_dma); iwm_dma_contig_free(&ring->cmd_dma); for (i = 0; i < IWM_TX_RING_COUNT; i++) { struct iwm_tx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } if (data->map != NULL) { bus_dmamap_destroy(ring->data_dmat, data->map); data->map = NULL; } } if (ring->data_dmat != NULL) { bus_dma_tag_destroy(ring->data_dmat); ring->data_dmat = NULL; } } /* * High-level hardware frobbing routines */ static void iwm_enable_interrupts(struct iwm_softc *sc) { sc->sc_intmask = IWM_CSR_INI_SET_MASK; IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask); } static void iwm_restore_interrupts(struct iwm_softc *sc) { IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask); } static void iwm_disable_interrupts(struct iwm_softc *sc) { /* disable interrupts */ IWM_WRITE(sc, IWM_CSR_INT_MASK, 0); /* acknowledge all interrupts */ IWM_WRITE(sc, IWM_CSR_INT, ~0); IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0); } static void iwm_ict_reset(struct iwm_softc *sc) { iwm_disable_interrupts(sc); /* Reset ICT table. */ memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE); sc->ict_cur = 0; /* Set physical address of ICT table (4KB aligned). */ IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG, IWM_CSR_DRAM_INT_TBL_ENABLE | IWM_CSR_DRAM_INIT_TBL_WRITE_POINTER | IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT); /* Switch to ICT interrupt mode in driver. */ sc->sc_flags |= IWM_FLAG_USE_ICT; /* Re-enable interrupts. */ IWM_WRITE(sc, IWM_CSR_INT, ~0); iwm_enable_interrupts(sc); } /* iwlwifi pcie/trans.c */ /* * Since this .. hard-resets things, it's time to actually * mark the first vap (if any) as having no mac context. * It's annoying, but since the driver is potentially being * stop/start'ed whilst active (thanks openbsd port!) we * have to correctly track this. */ static void iwm_stop_device(struct iwm_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); int chnl, qid; uint32_t mask = 0; /* tell the device to stop sending interrupts */ iwm_disable_interrupts(sc); /* * FreeBSD-local: mark the first vap as not-uploaded, * so the next transition through auth/assoc * will correctly populate the MAC context. */ if (vap) { struct iwm_vap *iv = IWM_VAP(vap); iv->phy_ctxt = NULL; iv->is_uploaded = 0; } sc->sc_firmware_state = 0; sc->sc_flags &= ~IWM_FLAG_TE_ACTIVE; /* device going down, Stop using ICT table */ sc->sc_flags &= ~IWM_FLAG_USE_ICT; /* stop tx and rx. tx and rx bits, as usual, are from if_iwn */ if (iwm_nic_lock(sc)) { iwm_write_prph(sc, IWM_SCD_TXFACT, 0); /* Stop each Tx DMA channel */ for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) { IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0); mask |= IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(chnl); } /* Wait for DMA channels to be idle */ if (!iwm_poll_bit(sc, IWM_FH_TSSR_TX_STATUS_REG, mask, mask, 5000)) { device_printf(sc->sc_dev, "Failing on timeout while stopping DMA channel: [0x%08x]\n", IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG)); } iwm_nic_unlock(sc); } iwm_pcie_rx_stop(sc); /* Stop RX ring. */ iwm_reset_rx_ring(sc, &sc->rxq); /* Reset all TX rings. */ for (qid = 0; qid < nitems(sc->txq); qid++) iwm_reset_tx_ring(sc, &sc->txq[qid]); if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) { /* Power-down device's busmaster DMA clocks */ if (iwm_nic_lock(sc)) { iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG, IWM_APMG_CLK_VAL_DMA_CLK_RQT); iwm_nic_unlock(sc); } DELAY(5); } /* Make sure (redundant) we've released our request to stay awake */ IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); /* Stop the device, and put it in low power state */ iwm_apm_stop(sc); /* stop and reset the on-board processor */ IWM_SETBITS(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET); DELAY(5000); /* * Upon stop, the APM issues an interrupt if HW RF kill is set. */ iwm_disable_interrupts(sc); /* * Even if we stop the HW, we still want the RF kill * interrupt */ iwm_enable_rfkill_int(sc); iwm_check_rfkill(sc); iwm_prepare_card_hw(sc); } /* iwlwifi: mvm/ops.c */ static void iwm_nic_config(struct iwm_softc *sc) { uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash; uint32_t reg_val = 0; uint32_t phy_config = iwm_get_phy_config(sc); radio_cfg_type = (phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >> IWM_FW_PHY_CFG_RADIO_TYPE_POS; radio_cfg_step = (phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >> IWM_FW_PHY_CFG_RADIO_STEP_POS; radio_cfg_dash = (phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >> IWM_FW_PHY_CFG_RADIO_DASH_POS; /* SKU control */ reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) << IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP; reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) << IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH; /* radio configuration */ reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE; reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP; reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH; IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, IWM_CSR_HW_IF_CONFIG_REG_MSK_MAC_DASH | IWM_CSR_HW_IF_CONFIG_REG_MSK_MAC_STEP | IWM_CSR_HW_IF_CONFIG_REG_MSK_PHY_STEP | IWM_CSR_HW_IF_CONFIG_REG_MSK_PHY_DASH | IWM_CSR_HW_IF_CONFIG_REG_MSK_PHY_TYPE | IWM_CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI | IWM_CSR_HW_IF_CONFIG_REG_BIT_MAC_SI | reg_val); IWM_DPRINTF(sc, IWM_DEBUG_RESET, "Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type, radio_cfg_step, radio_cfg_dash); /* * W/A : NIC is stuck in a reset state after Early PCIe power off * (PCIe power is lost before PERST# is asserted), causing ME FW * to lose ownership and not being able to obtain it back. */ if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) { iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG, IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS, ~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS); } } static int iwm_nic_rx_mq_init(struct iwm_softc *sc) { int enabled; if (!iwm_nic_lock(sc)) return EBUSY; /* Stop RX DMA. */ iwm_write_prph(sc, IWM_RFH_RXF_DMA_CFG, 0); /* Disable RX used and free queue operation. */ iwm_write_prph(sc, IWM_RFH_RXF_RXQ_ACTIVE, 0); iwm_write_prph64(sc, IWM_RFH_Q0_FRBDCB_BA_LSB, sc->rxq.free_desc_dma.paddr); iwm_write_prph64(sc, IWM_RFH_Q0_URBDCB_BA_LSB, sc->rxq.used_desc_dma.paddr); iwm_write_prph64(sc, IWM_RFH_Q0_URBD_STTS_WPTR_LSB, sc->rxq.stat_dma.paddr); iwm_write_prph(sc, IWM_RFH_Q0_FRBDCB_WIDX, 0); iwm_write_prph(sc, IWM_RFH_Q0_FRBDCB_RIDX, 0); iwm_write_prph(sc, IWM_RFH_Q0_URBDCB_WIDX, 0); /* We configure only queue 0 for now. */ enabled = ((1 << 0) << 16) | (1 << 0); /* Enable RX DMA, 4KB buffer size. */ iwm_write_prph(sc, IWM_RFH_RXF_DMA_CFG, IWM_RFH_DMA_EN_ENABLE_VAL | IWM_RFH_RXF_DMA_RB_SIZE_4K | IWM_RFH_RXF_DMA_MIN_RB_4_8 | IWM_RFH_RXF_DMA_DROP_TOO_LARGE_MASK | IWM_RFH_RXF_DMA_RBDCB_SIZE_512); /* Enable RX DMA snooping. */ iwm_write_prph(sc, IWM_RFH_GEN_CFG, IWM_RFH_GEN_CFG_RFH_DMA_SNOOP | IWM_RFH_GEN_CFG_SERVICE_DMA_SNOOP | (sc->cfg->integrated ? IWM_RFH_GEN_CFG_RB_CHUNK_SIZE_64 : IWM_RFH_GEN_CFG_RB_CHUNK_SIZE_128)); /* Enable the configured queue(s). */ iwm_write_prph(sc, IWM_RFH_RXF_RXQ_ACTIVE, enabled); iwm_nic_unlock(sc); IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF); IWM_WRITE(sc, IWM_RFH_Q0_FRBDCB_WIDX_TRG, 8); return (0); } static int iwm_nic_rx_legacy_init(struct iwm_softc *sc) { /* Stop Rx DMA */ iwm_pcie_rx_stop(sc); if (!iwm_nic_lock(sc)) return EBUSY; /* reset and flush pointers */ IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0); IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0); IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0); IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0); /* Set physical address of RX ring (256-byte aligned). */ IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.free_desc_dma.paddr >> 8); /* Set physical address of RX status (16-byte aligned). */ IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4); /* Enable Rx DMA * XXX 5000 HW isn't supported by the iwm(4) driver. * IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in * the credit mechanism in 5000 HW RX FIFO * Direct rx interrupts to hosts * Rx buffer size 4 or 8k or 12k * RB timeout 0x10 * 256 RBDs */ IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG, IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL | IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | /* HW bug */ IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL | IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K | (IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) | IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS); IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF); /* W/A for interrupt coalescing bug in 7260 and 3160 */ if (sc->cfg->host_interrupt_operation_mode) IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE); iwm_nic_unlock(sc); IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8); return 0; } static int iwm_nic_rx_init(struct iwm_softc *sc) { if (sc->cfg->mqrx_supported) return iwm_nic_rx_mq_init(sc); else return iwm_nic_rx_legacy_init(sc); } static int iwm_nic_tx_init(struct iwm_softc *sc) { int qid; if (!iwm_nic_lock(sc)) return EBUSY; /* Deactivate TX scheduler. */ iwm_write_prph(sc, IWM_SCD_TXFACT, 0); /* Set physical address of "keep warm" page (16-byte aligned). */ IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4); /* Initialize TX rings. */ for (qid = 0; qid < nitems(sc->txq); qid++) { struct iwm_tx_ring *txq = &sc->txq[qid]; /* Set physical address of TX ring (256-byte aligned). */ IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid), txq->desc_dma.paddr >> 8); IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: loading ring %d descriptors (%p) at %lx\n", __func__, qid, txq->desc, (unsigned long) (txq->desc_dma.paddr >> 8)); } iwm_set_bits_prph(sc, IWM_SCD_GP_CTRL, IWM_SCD_GP_CTRL_AUTO_ACTIVE_MODE | IWM_SCD_GP_CTRL_ENABLE_31_QUEUES); iwm_nic_unlock(sc); return 0; } static int iwm_nic_init(struct iwm_softc *sc) { int error; iwm_apm_init(sc); if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) iwm_set_pwr(sc); iwm_nic_config(sc); if ((error = iwm_nic_rx_init(sc)) != 0) return error; /* * Ditto for TX, from iwn */ if ((error = iwm_nic_tx_init(sc)) != 0) return error; IWM_DPRINTF(sc, IWM_DEBUG_RESET, "%s: shadow registers enabled\n", __func__); IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff); return 0; } int iwm_enable_txq(struct iwm_softc *sc, int sta_id, int qid, int fifo) { int qmsk; qmsk = 1 << qid; if (!iwm_nic_lock(sc)) { device_printf(sc->sc_dev, "%s: cannot enable txq %d\n", __func__, qid); return EBUSY; } IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0); if (qid == IWM_CMD_QUEUE) { /* Disable the scheduler. */ iwm_write_prph(sc, IWM_SCD_EN_CTRL, 0); /* Stop the TX queue prior to configuration. */ iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid), (0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) | (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN)); iwm_nic_unlock(sc); /* Disable aggregations for this queue. */ iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, qmsk); if (!iwm_nic_lock(sc)) { device_printf(sc->sc_dev, "%s: cannot enable txq %d\n", __func__, qid); return EBUSY; } iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0); iwm_nic_unlock(sc); iwm_write_mem32(sc, sc->scd_base_addr + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0); /* Set scheduler window size and frame limit. */ iwm_write_mem32(sc, sc->scd_base_addr + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) + sizeof(uint32_t), ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) & IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) | ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) & IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK)); if (!iwm_nic_lock(sc)) { device_printf(sc->sc_dev, "%s: cannot enable txq %d\n", __func__, qid); return EBUSY; } iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid), (1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) | (fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) | (1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) | IWM_SCD_QUEUE_STTS_REG_MSK); /* Enable the scheduler for this queue. */ iwm_write_prph(sc, IWM_SCD_EN_CTRL, qmsk); } else { struct iwm_scd_txq_cfg_cmd cmd; int error; iwm_nic_unlock(sc); memset(&cmd, 0, sizeof(cmd)); cmd.scd_queue = qid; cmd.enable = 1; cmd.sta_id = sta_id; cmd.tx_fifo = fifo; cmd.aggregate = 0; cmd.window = IWM_FRAME_LIMIT; error = iwm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG, IWM_CMD_SYNC, sizeof(cmd), &cmd); if (error) { device_printf(sc->sc_dev, "cannot enable txq %d\n", qid); return error; } if (!iwm_nic_lock(sc)) return EBUSY; } iwm_nic_unlock(sc); IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: enabled txq %d FIFO %d\n", __func__, qid, fifo); return 0; } static int iwm_trans_pcie_fw_alive(struct iwm_softc *sc, uint32_t scd_base_addr) { int error, chnl; int clear_dwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND - IWM_SCD_CONTEXT_MEM_LOWER_BOUND) / sizeof(uint32_t); if (!iwm_nic_lock(sc)) return EBUSY; iwm_ict_reset(sc); sc->scd_base_addr = iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR); if (scd_base_addr != 0 && scd_base_addr != sc->scd_base_addr) { device_printf(sc->sc_dev, "%s: sched addr mismatch: alive: 0x%x prph: 0x%x\n", __func__, sc->scd_base_addr, scd_base_addr); } iwm_nic_unlock(sc); /* reset context data, TX status and translation data */ error = iwm_write_mem(sc, sc->scd_base_addr + IWM_SCD_CONTEXT_MEM_LOWER_BOUND, NULL, clear_dwords); if (error) return EBUSY; if (!iwm_nic_lock(sc)) return EBUSY; /* Set physical address of TX scheduler rings (1KB aligned). */ iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10); iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0); iwm_nic_unlock(sc); /* enable command channel */ error = iwm_enable_txq(sc, 0 /* unused */, IWM_CMD_QUEUE, 7); if (error) return error; if (!iwm_nic_lock(sc)) return EBUSY; iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff); /* Enable DMA channels. */ for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) { IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE); } IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG, IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN); iwm_nic_unlock(sc); /* Enable L1-Active */ if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) { iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG, IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS); } return error; } /* * NVM read access and content parsing. We do not support * external NVM or writing NVM. * iwlwifi/mvm/nvm.c */ /* Default NVM size to read */ #define IWM_NVM_DEFAULT_CHUNK_SIZE (2*1024) #define IWM_NVM_WRITE_OPCODE 1 #define IWM_NVM_READ_OPCODE 0 /* load nvm chunk response */ enum { IWM_READ_NVM_CHUNK_SUCCEED = 0, IWM_READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1 }; static int iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section, uint16_t offset, uint16_t length, uint8_t *data, uint16_t *len) { struct iwm_nvm_access_cmd nvm_access_cmd = { .offset = htole16(offset), .length = htole16(length), .type = htole16(section), .op_code = IWM_NVM_READ_OPCODE, }; struct iwm_nvm_access_resp *nvm_resp; struct iwm_rx_packet *pkt; struct iwm_host_cmd cmd = { .id = IWM_NVM_ACCESS_CMD, .flags = IWM_CMD_WANT_SKB | IWM_CMD_SEND_IN_RFKILL, .data = { &nvm_access_cmd, }, }; int ret, bytes_read, offset_read; uint8_t *resp_data; cmd.len[0] = sizeof(struct iwm_nvm_access_cmd); ret = iwm_send_cmd(sc, &cmd); if (ret) { device_printf(sc->sc_dev, "Could not send NVM_ACCESS command (error=%d)\n", ret); return ret; } pkt = cmd.resp_pkt; /* Extract NVM response */ nvm_resp = (void *)pkt->data; ret = le16toh(nvm_resp->status); bytes_read = le16toh(nvm_resp->length); offset_read = le16toh(nvm_resp->offset); resp_data = nvm_resp->data; if (ret) { if ((offset != 0) && (ret == IWM_READ_NVM_CHUNK_NOT_VALID_ADDRESS)) { /* * meaning of NOT_VALID_ADDRESS: * driver try to read chunk from address that is * multiple of 2K and got an error since addr is empty. * meaning of (offset != 0): driver already * read valid data from another chunk so this case * is not an error. */ IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET, "NVM access command failed on offset 0x%x since that section size is multiple 2K\n", offset); *len = 0; ret = 0; } else { IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET, "NVM access command failed with status %d\n", ret); ret = EIO; } goto exit; } if (offset_read != offset) { device_printf(sc->sc_dev, "NVM ACCESS response with invalid offset %d\n", offset_read); ret = EINVAL; goto exit; } if (bytes_read > length) { device_printf(sc->sc_dev, "NVM ACCESS response with too much data " "(%d bytes requested, %d bytes received)\n", length, bytes_read); ret = EINVAL; goto exit; } /* Write data to NVM */ memcpy(data + offset, resp_data, bytes_read); *len = bytes_read; exit: iwm_free_resp(sc, &cmd); return ret; } /* * Reads an NVM section completely. * NICs prior to 7000 family don't have a real NVM, but just read * section 0 which is the EEPROM. Because the EEPROM reading is unlimited * by uCode, we need to manually check in this case that we don't * overflow and try to read more than the EEPROM size. * For 7000 family NICs, we supply the maximal size we can read, and * the uCode fills the response with as much data as we can, * without overflowing, so no check is needed. */ static int iwm_nvm_read_section(struct iwm_softc *sc, uint16_t section, uint8_t *data, uint16_t *len, uint32_t size_read) { uint16_t seglen, length, offset = 0; int ret; /* Set nvm section read length */ length = IWM_NVM_DEFAULT_CHUNK_SIZE; seglen = length; /* Read the NVM until exhausted (reading less than requested) */ while (seglen == length) { /* Check no memory assumptions fail and cause an overflow */ if ((size_read + offset + length) > sc->cfg->eeprom_size) { device_printf(sc->sc_dev, "EEPROM size is too small for NVM\n"); return ENOBUFS; } ret = iwm_nvm_read_chunk(sc, section, offset, length, data, &seglen); if (ret) { IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET, "Cannot read NVM from section %d offset %d, length %d\n", section, offset, length); return ret; } offset += seglen; } IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET, "NVM section %d read completed\n", section); *len = offset; return 0; } /* * BEGIN IWM_NVM_PARSE */ /* iwlwifi/iwl-nvm-parse.c */ -/* NVM offsets (in words) definitions */ -enum iwm_nvm_offsets { - /* NVM HW-Section offset (in words) definitions */ - IWM_HW_ADDR = 0x15, - -/* NVM SW-Section offset (in words) definitions */ - IWM_NVM_SW_SECTION = 0x1C0, - IWM_NVM_VERSION = 0, - IWM_RADIO_CFG = 1, - IWM_SKU = 2, - IWM_N_HW_ADDRS = 3, - IWM_NVM_CHANNELS = 0x1E0 - IWM_NVM_SW_SECTION, - -/* NVM calibration section offset (in words) definitions */ - IWM_NVM_CALIB_SECTION = 0x2B8, - IWM_XTAL_CALIB = 0x316 - IWM_NVM_CALIB_SECTION -}; - -enum iwm_8000_nvm_offsets { - /* NVM HW-Section offset (in words) definitions */ - IWM_HW_ADDR0_WFPM_8000 = 0x12, - IWM_HW_ADDR1_WFPM_8000 = 0x16, - IWM_HW_ADDR0_PCIE_8000 = 0x8A, - IWM_HW_ADDR1_PCIE_8000 = 0x8E, - IWM_MAC_ADDRESS_OVERRIDE_8000 = 1, - - /* NVM SW-Section offset (in words) definitions */ - IWM_NVM_SW_SECTION_8000 = 0x1C0, - IWM_NVM_VERSION_8000 = 0, - IWM_RADIO_CFG_8000 = 0, - IWM_SKU_8000 = 2, - IWM_N_HW_ADDRS_8000 = 3, - - /* NVM REGULATORY -Section offset (in words) definitions */ - IWM_NVM_CHANNELS_8000 = 0, - IWM_NVM_LAR_OFFSET_8000_OLD = 0x4C7, - IWM_NVM_LAR_OFFSET_8000 = 0x507, - IWM_NVM_LAR_ENABLED_8000 = 0x7, - - /* NVM calibration section offset (in words) definitions */ - IWM_NVM_CALIB_SECTION_8000 = 0x2B8, - IWM_XTAL_CALIB_8000 = 0x316 - IWM_NVM_CALIB_SECTION_8000 -}; - -/* SKU Capabilities (actual values from NVM definition) */ -enum nvm_sku_bits { - IWM_NVM_SKU_CAP_BAND_24GHZ = (1 << 0), - IWM_NVM_SKU_CAP_BAND_52GHZ = (1 << 1), - IWM_NVM_SKU_CAP_11N_ENABLE = (1 << 2), - IWM_NVM_SKU_CAP_11AC_ENABLE = (1 << 3), -}; - -/* radio config bits (actual values from NVM definition) */ -#define IWM_NVM_RF_CFG_DASH_MSK(x) (x & 0x3) /* bits 0-1 */ -#define IWM_NVM_RF_CFG_STEP_MSK(x) ((x >> 2) & 0x3) /* bits 2-3 */ -#define IWM_NVM_RF_CFG_TYPE_MSK(x) ((x >> 4) & 0x3) /* bits 4-5 */ -#define IWM_NVM_RF_CFG_PNUM_MSK(x) ((x >> 6) & 0x3) /* bits 6-7 */ -#define IWM_NVM_RF_CFG_TX_ANT_MSK(x) ((x >> 8) & 0xF) /* bits 8-11 */ -#define IWM_NVM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */ - -#define IWM_NVM_RF_CFG_FLAVOR_MSK_8000(x) (x & 0xF) -#define IWM_NVM_RF_CFG_DASH_MSK_8000(x) ((x >> 4) & 0xF) -#define IWM_NVM_RF_CFG_STEP_MSK_8000(x) ((x >> 8) & 0xF) -#define IWM_NVM_RF_CFG_TYPE_MSK_8000(x) ((x >> 12) & 0xFFF) -#define IWM_NVM_RF_CFG_TX_ANT_MSK_8000(x) ((x >> 24) & 0xF) -#define IWM_NVM_RF_CFG_RX_ANT_MSK_8000(x) ((x >> 28) & 0xF) - -/** - * enum iwm_nvm_channel_flags - channel flags in NVM - * @IWM_NVM_CHANNEL_VALID: channel is usable for this SKU/geo - * @IWM_NVM_CHANNEL_IBSS: usable as an IBSS channel - * @IWM_NVM_CHANNEL_ACTIVE: active scanning allowed - * @IWM_NVM_CHANNEL_RADAR: radar detection required - * XXX cannot find this (DFS) flag in iwm-nvm-parse.c - * @IWM_NVM_CHANNEL_DFS: dynamic freq selection candidate - * @IWM_NVM_CHANNEL_WIDE: 20 MHz channel okay (?) - * @IWM_NVM_CHANNEL_40MHZ: 40 MHz channel okay (?) - * @IWM_NVM_CHANNEL_80MHZ: 80 MHz channel okay (?) - * @IWM_NVM_CHANNEL_160MHZ: 160 MHz channel okay (?) - */ -enum iwm_nvm_channel_flags { - IWM_NVM_CHANNEL_VALID = (1 << 0), - IWM_NVM_CHANNEL_IBSS = (1 << 1), - IWM_NVM_CHANNEL_ACTIVE = (1 << 3), - IWM_NVM_CHANNEL_RADAR = (1 << 4), - IWM_NVM_CHANNEL_DFS = (1 << 7), - IWM_NVM_CHANNEL_WIDE = (1 << 8), - IWM_NVM_CHANNEL_40MHZ = (1 << 9), - IWM_NVM_CHANNEL_80MHZ = (1 << 10), - IWM_NVM_CHANNEL_160MHZ = (1 << 11), -}; - /* * Translate EEPROM flags to net80211. */ static uint32_t iwm_eeprom_channel_flags(uint16_t ch_flags) { uint32_t nflags; nflags = 0; if ((ch_flags & IWM_NVM_CHANNEL_ACTIVE) == 0) nflags |= IEEE80211_CHAN_PASSIVE; if ((ch_flags & IWM_NVM_CHANNEL_IBSS) == 0) nflags |= IEEE80211_CHAN_NOADHOC; if (ch_flags & IWM_NVM_CHANNEL_RADAR) { nflags |= IEEE80211_CHAN_DFS; /* Just in case. */ nflags |= IEEE80211_CHAN_NOADHOC; } return (nflags); } static void iwm_add_channel_band(struct iwm_softc *sc, struct ieee80211_channel chans[], int maxchans, int *nchans, int ch_idx, size_t ch_num, const uint8_t bands[]) { const uint16_t * const nvm_ch_flags = sc->nvm_data->nvm_ch_flags; uint32_t nflags; uint16_t ch_flags; uint8_t ieee; int error; for (; ch_idx < ch_num; ch_idx++) { ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx); if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) ieee = iwm_nvm_channels[ch_idx]; else ieee = iwm_nvm_channels_8000[ch_idx]; if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) { IWM_DPRINTF(sc, IWM_DEBUG_EEPROM, "Ch. %d Flags %x [%sGHz] - No traffic\n", ieee, ch_flags, (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ? "5.2" : "2.4"); continue; } nflags = iwm_eeprom_channel_flags(ch_flags); error = ieee80211_add_channel(chans, maxchans, nchans, ieee, 0, 0, nflags, bands); if (error != 0) break; IWM_DPRINTF(sc, IWM_DEBUG_EEPROM, "Ch. %d Flags %x [%sGHz] - Added\n", ieee, ch_flags, (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ? "5.2" : "2.4"); } } static void iwm_init_channel_map(struct ieee80211com *ic, int maxchans, int *nchans, struct ieee80211_channel chans[]) { struct iwm_softc *sc = ic->ic_softc; struct iwm_nvm_data *data = sc->nvm_data; uint8_t bands[IEEE80211_MODE_BYTES]; size_t ch_num; memset(bands, 0, sizeof(bands)); /* 1-13: 11b/g channels. */ setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); iwm_add_channel_band(sc, chans, maxchans, nchans, 0, IWM_NUM_2GHZ_CHANNELS - 1, bands); /* 14: 11b channel only. */ clrbit(bands, IEEE80211_MODE_11G); iwm_add_channel_band(sc, chans, maxchans, nchans, IWM_NUM_2GHZ_CHANNELS - 1, IWM_NUM_2GHZ_CHANNELS, bands); if (data->sku_cap_band_52GHz_enable) { if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) ch_num = nitems(iwm_nvm_channels); else ch_num = nitems(iwm_nvm_channels_8000); memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11A); iwm_add_channel_band(sc, chans, maxchans, nchans, IWM_NUM_2GHZ_CHANNELS, ch_num, bands); } } static void iwm_set_hw_address_family_8000(struct iwm_softc *sc, struct iwm_nvm_data *data, const uint16_t *mac_override, const uint16_t *nvm_hw) { const uint8_t *hw_addr; if (mac_override) { static const uint8_t reserved_mac[] = { 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00 }; hw_addr = (const uint8_t *)(mac_override + IWM_MAC_ADDRESS_OVERRIDE_8000); /* * Store the MAC address from MAO section. * No byte swapping is required in MAO section */ IEEE80211_ADDR_COPY(data->hw_addr, hw_addr); /* * Force the use of the OTP MAC address in case of reserved MAC * address in the NVM, or if address is given but invalid. */ if (!IEEE80211_ADDR_EQ(reserved_mac, hw_addr) && !IEEE80211_ADDR_EQ(ieee80211broadcastaddr, data->hw_addr) && iwm_is_valid_ether_addr(data->hw_addr) && !IEEE80211_IS_MULTICAST(data->hw_addr)) return; IWM_DPRINTF(sc, IWM_DEBUG_RESET, "%s: mac address from nvm override section invalid\n", __func__); } if (nvm_hw) { /* read the mac address from WFMP registers */ uint32_t mac_addr0 = htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_0)); uint32_t mac_addr1 = htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_1)); hw_addr = (const uint8_t *)&mac_addr0; data->hw_addr[0] = hw_addr[3]; data->hw_addr[1] = hw_addr[2]; data->hw_addr[2] = hw_addr[1]; data->hw_addr[3] = hw_addr[0]; hw_addr = (const uint8_t *)&mac_addr1; data->hw_addr[4] = hw_addr[1]; data->hw_addr[5] = hw_addr[0]; return; } device_printf(sc->sc_dev, "%s: mac address not found\n", __func__); memset(data->hw_addr, 0, sizeof(data->hw_addr)); } static int iwm_get_sku(const struct iwm_softc *sc, const uint16_t *nvm_sw, const uint16_t *phy_sku) { if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) return le16_to_cpup(nvm_sw + IWM_SKU); return le32_to_cpup((const uint32_t *)(phy_sku + IWM_SKU_8000)); } static int iwm_get_nvm_version(const struct iwm_softc *sc, const uint16_t *nvm_sw) { if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) return le16_to_cpup(nvm_sw + IWM_NVM_VERSION); else return le32_to_cpup((const uint32_t *)(nvm_sw + IWM_NVM_VERSION_8000)); } static int iwm_get_radio_cfg(const struct iwm_softc *sc, const uint16_t *nvm_sw, const uint16_t *phy_sku) { if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) return le16_to_cpup(nvm_sw + IWM_RADIO_CFG); return le32_to_cpup((const uint32_t *)(phy_sku + IWM_RADIO_CFG_8000)); } static int iwm_get_n_hw_addrs(const struct iwm_softc *sc, const uint16_t *nvm_sw) { int n_hw_addr; if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) return le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS); n_hw_addr = le32_to_cpup((const uint32_t *)(nvm_sw + IWM_N_HW_ADDRS_8000)); return n_hw_addr & IWM_N_HW_ADDR_MASK; } static void iwm_set_radio_cfg(const struct iwm_softc *sc, struct iwm_nvm_data *data, uint32_t radio_cfg) { if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) { data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg); data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg); data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg); data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg); return; } /* set the radio configuration for family 8000 */ data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK_8000(radio_cfg); data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK_8000(radio_cfg); data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK_8000(radio_cfg); - data->radio_cfg_pnum = IWM_NVM_RF_CFG_FLAVOR_MSK_8000(radio_cfg); + data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK_8000(radio_cfg); data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK_8000(radio_cfg); data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK_8000(radio_cfg); } static int iwm_set_hw_address(struct iwm_softc *sc, struct iwm_nvm_data *data, const uint16_t *nvm_hw, const uint16_t *mac_override) { #ifdef notyet /* for FAMILY 9000 */ if (cfg->mac_addr_from_csr) { iwm_set_hw_address_from_csr(sc, data); } else #endif if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) { const uint8_t *hw_addr = (const uint8_t *)(nvm_hw + IWM_HW_ADDR); /* The byte order is little endian 16 bit, meaning 214365 */ data->hw_addr[0] = hw_addr[1]; data->hw_addr[1] = hw_addr[0]; data->hw_addr[2] = hw_addr[3]; data->hw_addr[3] = hw_addr[2]; data->hw_addr[4] = hw_addr[5]; data->hw_addr[5] = hw_addr[4]; } else { iwm_set_hw_address_family_8000(sc, data, mac_override, nvm_hw); } if (!iwm_is_valid_ether_addr(data->hw_addr)) { device_printf(sc->sc_dev, "no valid mac address was found\n"); return EINVAL; } return 0; } static struct iwm_nvm_data * iwm_parse_nvm_data(struct iwm_softc *sc, const uint16_t *nvm_hw, const uint16_t *nvm_sw, const uint16_t *nvm_calib, const uint16_t *mac_override, const uint16_t *phy_sku, const uint16_t *regulatory) { struct iwm_nvm_data *data; uint32_t sku, radio_cfg; uint16_t lar_config; if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) { data = malloc(sizeof(*data) + IWM_NUM_CHANNELS * sizeof(uint16_t), M_DEVBUF, M_NOWAIT | M_ZERO); } else { data = malloc(sizeof(*data) + IWM_NUM_CHANNELS_8000 * sizeof(uint16_t), M_DEVBUF, M_NOWAIT | M_ZERO); } if (!data) return NULL; data->nvm_version = iwm_get_nvm_version(sc, nvm_sw); radio_cfg = iwm_get_radio_cfg(sc, nvm_sw, phy_sku); iwm_set_radio_cfg(sc, data, radio_cfg); sku = iwm_get_sku(sc, nvm_sw, phy_sku); data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ; data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ; data->sku_cap_11n_enable = 0; data->n_hw_addrs = iwm_get_n_hw_addrs(sc, nvm_sw); if (sc->cfg->device_family >= IWM_DEVICE_FAMILY_8000) { /* TODO: use IWL_NVM_EXT */ uint16_t lar_offset = data->nvm_version < 0xE39 ? IWM_NVM_LAR_OFFSET_8000_OLD : IWM_NVM_LAR_OFFSET_8000; lar_config = le16_to_cpup(regulatory + lar_offset); data->lar_enabled = !!(lar_config & IWM_NVM_LAR_ENABLED_8000); } /* If no valid mac address was found - bail out */ if (iwm_set_hw_address(sc, data, nvm_hw, mac_override)) { free(data, M_DEVBUF); return NULL; } if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) { memcpy(data->nvm_ch_flags, sc->cfg->nvm_type == IWM_NVM_SDP ? ®ulatory[0] : &nvm_sw[IWM_NVM_CHANNELS], IWM_NUM_CHANNELS * sizeof(uint16_t)); } else { memcpy(data->nvm_ch_flags, ®ulatory[IWM_NVM_CHANNELS_8000], IWM_NUM_CHANNELS_8000 * sizeof(uint16_t)); } return data; } static void iwm_free_nvm_data(struct iwm_nvm_data *data) { if (data != NULL) free(data, M_DEVBUF); } static struct iwm_nvm_data * iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections) { const uint16_t *hw, *sw, *calib, *regulatory, *mac_override, *phy_sku; /* Checking for required sections */ if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) { if (!sections[IWM_NVM_SECTION_TYPE_SW].data || !sections[sc->cfg->nvm_hw_section_num].data) { device_printf(sc->sc_dev, "Can't parse empty OTP/NVM sections\n"); return NULL; } } else if (sc->cfg->device_family >= IWM_DEVICE_FAMILY_8000) { /* SW and REGULATORY sections are mandatory */ if (!sections[IWM_NVM_SECTION_TYPE_SW].data || !sections[IWM_NVM_SECTION_TYPE_REGULATORY].data) { device_printf(sc->sc_dev, "Can't parse empty OTP/NVM sections\n"); return NULL; } /* MAC_OVERRIDE or at least HW section must exist */ if (!sections[sc->cfg->nvm_hw_section_num].data && !sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data) { device_printf(sc->sc_dev, "Can't parse mac_address, empty sections\n"); return NULL; } /* PHY_SKU section is mandatory in B0 */ if (!sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data) { device_printf(sc->sc_dev, "Can't parse phy_sku in B0, empty sections\n"); return NULL; } } else { panic("unknown device family %d\n", sc->cfg->device_family); } hw = (const uint16_t *) sections[sc->cfg->nvm_hw_section_num].data; sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data; calib = (const uint16_t *) sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data; regulatory = sc->cfg->nvm_type == IWM_NVM_SDP ? (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_REGULATORY_SDP].data : (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_REGULATORY].data; mac_override = (const uint16_t *) sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data; phy_sku = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data; return iwm_parse_nvm_data(sc, hw, sw, calib, mac_override, phy_sku, regulatory); } static int iwm_nvm_init(struct iwm_softc *sc) { - struct iwm_nvm_section nvm_sections[IWM_NVM_MAX_NUM_SECTIONS]; + struct iwm_nvm_section nvm_sections[IWM_NVM_NUM_OF_SECTIONS]; int i, ret, section; uint32_t size_read = 0; uint8_t *nvm_buffer, *temp; uint16_t len; memset(nvm_sections, 0, sizeof(nvm_sections)); - if (sc->cfg->nvm_hw_section_num >= IWM_NVM_MAX_NUM_SECTIONS) + if (sc->cfg->nvm_hw_section_num >= IWM_NVM_NUM_OF_SECTIONS) return EINVAL; /* load NVM values from nic */ /* Read From FW NVM */ IWM_DPRINTF(sc, IWM_DEBUG_EEPROM, "Read from NVM\n"); nvm_buffer = malloc(sc->cfg->eeprom_size, M_DEVBUF, M_NOWAIT | M_ZERO); if (!nvm_buffer) return ENOMEM; - for (section = 0; section < IWM_NVM_MAX_NUM_SECTIONS; section++) { + for (section = 0; section < IWM_NVM_NUM_OF_SECTIONS; section++) { /* we override the constness for initial read */ ret = iwm_nvm_read_section(sc, section, nvm_buffer, &len, size_read); if (ret) continue; size_read += len; temp = malloc(len, M_DEVBUF, M_NOWAIT); if (!temp) { ret = ENOMEM; break; } memcpy(temp, nvm_buffer, len); nvm_sections[section].data = temp; nvm_sections[section].length = len; } if (!size_read) device_printf(sc->sc_dev, "OTP is blank\n"); free(nvm_buffer, M_DEVBUF); sc->nvm_data = iwm_parse_nvm_sections(sc, nvm_sections); if (!sc->nvm_data) return EINVAL; IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET, "nvm version = %x\n", sc->nvm_data->nvm_version); - for (i = 0; i < IWM_NVM_MAX_NUM_SECTIONS; i++) { + for (i = 0; i < IWM_NVM_NUM_OF_SECTIONS; i++) { if (nvm_sections[i].data != NULL) free(nvm_sections[i].data, M_DEVBUF); } return 0; } static int iwm_pcie_load_section(struct iwm_softc *sc, uint8_t section_num, const struct iwm_fw_desc *section) { struct iwm_dma_info *dma = &sc->fw_dma; uint8_t *v_addr; bus_addr_t p_addr; uint32_t offset, chunk_sz = MIN(IWM_FH_MEM_TB_MAX_LENGTH, section->len); int ret = 0; IWM_DPRINTF(sc, IWM_DEBUG_RESET, "%s: [%d] uCode section being loaded...\n", __func__, section_num); v_addr = dma->vaddr; p_addr = dma->paddr; for (offset = 0; offset < section->len; offset += chunk_sz) { uint32_t copy_size, dst_addr; int extended_addr = FALSE; copy_size = MIN(chunk_sz, section->len - offset); dst_addr = section->offset + offset; if (dst_addr >= IWM_FW_MEM_EXTENDED_START && dst_addr <= IWM_FW_MEM_EXTENDED_END) extended_addr = TRUE; if (extended_addr) iwm_set_bits_prph(sc, IWM_LMPM_CHICK, IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE); memcpy(v_addr, (const uint8_t *)section->data + offset, copy_size); bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); ret = iwm_pcie_load_firmware_chunk(sc, dst_addr, p_addr, copy_size); if (extended_addr) iwm_clear_bits_prph(sc, IWM_LMPM_CHICK, IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE); if (ret) { device_printf(sc->sc_dev, "%s: Could not load the [%d] uCode section\n", __func__, section_num); break; } } return ret; } /* * ucode */ static int iwm_pcie_load_firmware_chunk(struct iwm_softc *sc, uint32_t dst_addr, bus_addr_t phy_addr, uint32_t byte_cnt) { sc->sc_fw_chunk_done = 0; if (!iwm_nic_lock(sc)) return EBUSY; IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL), IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE); IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL), dst_addr); IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL), phy_addr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK); IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL), (iwm_get_dma_hi_addr(phy_addr) << IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt); IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL), 1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM | 1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX | IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID); IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL), IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE | IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD); iwm_nic_unlock(sc); /* wait up to 5s for this segment to load */ msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfw", hz * 5); if (!sc->sc_fw_chunk_done) { device_printf(sc->sc_dev, "fw chunk addr 0x%x len %d failed to load\n", dst_addr, byte_cnt); return ETIMEDOUT; } return 0; } static int iwm_pcie_load_cpu_sections_8000(struct iwm_softc *sc, const struct iwm_fw_img *image, int cpu, int *first_ucode_section) { int shift_param; int i, ret = 0, sec_num = 0x1; uint32_t val, last_read_idx = 0; if (cpu == 1) { shift_param = 0; *first_ucode_section = 0; } else { shift_param = 16; (*first_ucode_section)++; } for (i = *first_ucode_section; i < IWM_UCODE_SECTION_MAX; i++) { last_read_idx = i; /* * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between * CPU1 to CPU2. * PAGING_SEPARATOR_SECTION delimiter - separate between * CPU2 non paged to CPU2 paging sec. */ if (!image->sec[i].data || image->sec[i].offset == IWM_CPU1_CPU2_SEPARATOR_SECTION || image->sec[i].offset == IWM_PAGING_SEPARATOR_SECTION) { IWM_DPRINTF(sc, IWM_DEBUG_RESET, "Break since Data not valid or Empty section, sec = %d\n", i); break; } ret = iwm_pcie_load_section(sc, i, &image->sec[i]); if (ret) return ret; /* Notify the ucode of the loaded section number and status */ if (iwm_nic_lock(sc)) { val = IWM_READ(sc, IWM_FH_UCODE_LOAD_STATUS); val = val | (sec_num << shift_param); IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, val); sec_num = (sec_num << 1) | 0x1; iwm_nic_unlock(sc); } } *first_ucode_section = last_read_idx; iwm_enable_interrupts(sc); if (iwm_nic_lock(sc)) { if (cpu == 1) IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFF); else IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFFFFFF); iwm_nic_unlock(sc); } return 0; } static int iwm_pcie_load_cpu_sections(struct iwm_softc *sc, const struct iwm_fw_img *image, int cpu, int *first_ucode_section) { int shift_param; int i, ret = 0; uint32_t last_read_idx = 0; if (cpu == 1) { shift_param = 0; *first_ucode_section = 0; } else { shift_param = 16; (*first_ucode_section)++; } for (i = *first_ucode_section; i < IWM_UCODE_SECTION_MAX; i++) { last_read_idx = i; /* * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between * CPU1 to CPU2. * PAGING_SEPARATOR_SECTION delimiter - separate between * CPU2 non paged to CPU2 paging sec. */ if (!image->sec[i].data || image->sec[i].offset == IWM_CPU1_CPU2_SEPARATOR_SECTION || image->sec[i].offset == IWM_PAGING_SEPARATOR_SECTION) { IWM_DPRINTF(sc, IWM_DEBUG_RESET, "Break since Data not valid or Empty section, sec = %d\n", i); break; } ret = iwm_pcie_load_section(sc, i, &image->sec[i]); if (ret) return ret; } *first_ucode_section = last_read_idx; return 0; } static int iwm_pcie_load_given_ucode(struct iwm_softc *sc, const struct iwm_fw_img *image) { int ret = 0; int first_ucode_section; IWM_DPRINTF(sc, IWM_DEBUG_RESET, "working with %s CPU\n", image->is_dual_cpus ? "Dual" : "Single"); /* load to FW the binary non secured sections of CPU1 */ ret = iwm_pcie_load_cpu_sections(sc, image, 1, &first_ucode_section); if (ret) return ret; if (image->is_dual_cpus) { /* set CPU2 header address */ if (iwm_nic_lock(sc)) { iwm_write_prph(sc, IWM_LMPM_SECURE_UCODE_LOAD_CPU2_HDR_ADDR, IWM_LMPM_SECURE_CPU2_HDR_MEM_SPACE); iwm_nic_unlock(sc); } /* load to FW the binary sections of CPU2 */ ret = iwm_pcie_load_cpu_sections(sc, image, 2, &first_ucode_section); if (ret) return ret; } iwm_enable_interrupts(sc); /* release CPU reset */ IWM_WRITE(sc, IWM_CSR_RESET, 0); return 0; } int iwm_pcie_load_given_ucode_8000(struct iwm_softc *sc, const struct iwm_fw_img *image) { int ret = 0; int first_ucode_section; IWM_DPRINTF(sc, IWM_DEBUG_RESET, "working with %s CPU\n", image->is_dual_cpus ? "Dual" : "Single"); /* configure the ucode to be ready to get the secured image */ /* release CPU reset */ if (iwm_nic_lock(sc)) { iwm_write_prph(sc, IWM_RELEASE_CPU_RESET, IWM_RELEASE_CPU_RESET_BIT); iwm_nic_unlock(sc); } /* load to FW the binary Secured sections of CPU1 */ ret = iwm_pcie_load_cpu_sections_8000(sc, image, 1, &first_ucode_section); if (ret) return ret; /* load to FW the binary sections of CPU2 */ return iwm_pcie_load_cpu_sections_8000(sc, image, 2, &first_ucode_section); } /* XXX Get rid of this definition */ static inline void iwm_enable_fw_load_int(struct iwm_softc *sc) { IWM_DPRINTF(sc, IWM_DEBUG_INTR, "Enabling FW load interrupt\n"); sc->sc_intmask = IWM_CSR_INT_BIT_FH_TX; IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask); } /* XXX Add proper rfkill support code */ static int iwm_start_fw(struct iwm_softc *sc, const struct iwm_fw_img *fw) { int ret; /* This may fail if AMT took ownership of the device */ if (iwm_prepare_card_hw(sc)) { device_printf(sc->sc_dev, "%s: Exit HW not ready\n", __func__); ret = EIO; goto out; } IWM_WRITE(sc, IWM_CSR_INT, 0xFFFFFFFF); iwm_disable_interrupts(sc); /* make sure rfkill handshake bits are cleared */ IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL); IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED); /* clear (again), then enable host interrupts */ IWM_WRITE(sc, IWM_CSR_INT, 0xFFFFFFFF); ret = iwm_nic_init(sc); if (ret) { device_printf(sc->sc_dev, "%s: Unable to init nic\n", __func__); goto out; } /* * Now, we load the firmware and don't want to be interrupted, even * by the RF-Kill interrupt (hence mask all the interrupt besides the * FH_TX interrupt which is needed to load the firmware). If the * RF-Kill switch is toggled, we will find out after having loaded * the firmware and return the proper value to the caller. */ iwm_enable_fw_load_int(sc); /* really make sure rfkill handshake bits are cleared */ /* maybe we should write a few times more? just to make sure */ IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL); IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL); /* Load the given image to the HW */ if (sc->cfg->device_family >= IWM_DEVICE_FAMILY_8000) ret = iwm_pcie_load_given_ucode_8000(sc, fw); else ret = iwm_pcie_load_given_ucode(sc, fw); /* XXX re-check RF-Kill state */ out: return ret; } static int iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant) { struct iwm_tx_ant_cfg_cmd tx_ant_cmd = { .valid = htole32(valid_tx_ant), }; return iwm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD, IWM_CMD_SYNC, sizeof(tx_ant_cmd), &tx_ant_cmd); } /* iwlwifi: mvm/fw.c */ static int iwm_send_phy_cfg_cmd(struct iwm_softc *sc) { struct iwm_phy_cfg_cmd phy_cfg_cmd; enum iwm_ucode_type ucode_type = sc->cur_ucode; /* Set parameters */ phy_cfg_cmd.phy_cfg = htole32(iwm_get_phy_config(sc)); phy_cfg_cmd.calib_control.event_trigger = sc->sc_default_calib[ucode_type].event_trigger; phy_cfg_cmd.calib_control.flow_trigger = sc->sc_default_calib[ucode_type].flow_trigger; IWM_DPRINTF(sc, IWM_DEBUG_CMD | IWM_DEBUG_RESET, "Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg); return iwm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, IWM_CMD_SYNC, sizeof(phy_cfg_cmd), &phy_cfg_cmd); } static int iwm_alive_fn(struct iwm_softc *sc, struct iwm_rx_packet *pkt, void *data) { struct iwm_alive_data *alive_data = data; struct iwm_alive_resp_v3 *palive3; struct iwm_alive_resp *palive; struct iwm_umac_alive *umac; struct iwm_lmac_alive *lmac1; struct iwm_lmac_alive *lmac2 = NULL; uint16_t status; if (iwm_rx_packet_payload_len(pkt) == sizeof(*palive)) { palive = (void *)pkt->data; umac = &palive->umac_data; lmac1 = &palive->lmac_data[0]; lmac2 = &palive->lmac_data[1]; status = le16toh(palive->status); } else { palive3 = (void *)pkt->data; umac = &palive3->umac_data; lmac1 = &palive3->lmac_data; status = le16toh(palive3->status); } sc->error_event_table[0] = le32toh(lmac1->error_event_table_ptr); if (lmac2) sc->error_event_table[1] = le32toh(lmac2->error_event_table_ptr); sc->log_event_table = le32toh(lmac1->log_event_table_ptr); sc->umac_error_event_table = le32toh(umac->error_info_addr); alive_data->scd_base_addr = le32toh(lmac1->scd_base_ptr); alive_data->valid = status == IWM_ALIVE_STATUS_OK; if (sc->umac_error_event_table) sc->support_umac_log = TRUE; IWM_DPRINTF(sc, IWM_DEBUG_FW, "Alive ucode status 0x%04x revision 0x%01X 0x%01X\n", status, lmac1->ver_type, lmac1->ver_subtype); if (lmac2) IWM_DPRINTF(sc, IWM_DEBUG_FW, "Alive ucode CDB\n"); IWM_DPRINTF(sc, IWM_DEBUG_FW, "UMAC version: Major - 0x%x, Minor - 0x%x\n", le32toh(umac->umac_major), le32toh(umac->umac_minor)); return TRUE; } static int iwm_wait_phy_db_entry(struct iwm_softc *sc, struct iwm_rx_packet *pkt, void *data) { struct iwm_phy_db *phy_db = data; if (pkt->hdr.code != IWM_CALIB_RES_NOTIF_PHY_DB) { if(pkt->hdr.code != IWM_INIT_COMPLETE_NOTIF) { device_printf(sc->sc_dev, "%s: Unexpected cmd: %d\n", __func__, pkt->hdr.code); } return TRUE; } if (iwm_phy_db_set_section(phy_db, pkt)) { device_printf(sc->sc_dev, "%s: iwm_phy_db_set_section failed\n", __func__); } return FALSE; } static int iwm_load_ucode_wait_alive(struct iwm_softc *sc, enum iwm_ucode_type ucode_type) { struct iwm_notification_wait alive_wait; struct iwm_alive_data alive_data; const struct iwm_fw_img *fw; enum iwm_ucode_type old_type = sc->cur_ucode; int error; static const uint16_t alive_cmd[] = { IWM_ALIVE }; fw = &sc->sc_fw.img[ucode_type]; sc->cur_ucode = ucode_type; sc->ucode_loaded = FALSE; memset(&alive_data, 0, sizeof(alive_data)); iwm_init_notification_wait(sc->sc_notif_wait, &alive_wait, alive_cmd, nitems(alive_cmd), iwm_alive_fn, &alive_data); error = iwm_start_fw(sc, fw); if (error) { device_printf(sc->sc_dev, "iwm_start_fw: failed %d\n", error); sc->cur_ucode = old_type; iwm_remove_notification(sc->sc_notif_wait, &alive_wait); return error; } /* * Some things may run in the background now, but we * just wait for the ALIVE notification here. */ IWM_UNLOCK(sc); error = iwm_wait_notification(sc->sc_notif_wait, &alive_wait, IWM_UCODE_ALIVE_TIMEOUT); IWM_LOCK(sc); if (error) { if (sc->cfg->device_family >= IWM_DEVICE_FAMILY_8000) { uint32_t a = 0x5a5a5a5a, b = 0x5a5a5a5a; if (iwm_nic_lock(sc)) { a = iwm_read_prph(sc, IWM_SB_CPU_1_STATUS); b = iwm_read_prph(sc, IWM_SB_CPU_2_STATUS); iwm_nic_unlock(sc); } device_printf(sc->sc_dev, "SecBoot CPU1 Status: 0x%x, CPU2 Status: 0x%x\n", a, b); } sc->cur_ucode = old_type; return error; } if (!alive_data.valid) { device_printf(sc->sc_dev, "%s: Loaded ucode is not valid\n", __func__); sc->cur_ucode = old_type; return EIO; } iwm_trans_pcie_fw_alive(sc, alive_data.scd_base_addr); /* * configure and operate fw paging mechanism. * driver configures the paging flow only once, CPU2 paging image * included in the IWM_UCODE_INIT image. */ if (fw->paging_mem_size) { error = iwm_save_fw_paging(sc, fw); if (error) { device_printf(sc->sc_dev, "%s: failed to save the FW paging image\n", __func__); return error; } error = iwm_send_paging_cmd(sc, fw); if (error) { device_printf(sc->sc_dev, "%s: failed to send the paging cmd\n", __func__); iwm_free_fw_paging(sc); return error; } } if (!error) sc->ucode_loaded = TRUE; return error; } /* * mvm misc bits */ /* * follows iwlwifi/fw.c */ static int iwm_run_init_ucode(struct iwm_softc *sc, int justnvm) { struct iwm_notification_wait calib_wait; static const uint16_t init_complete[] = { IWM_INIT_COMPLETE_NOTIF, IWM_CALIB_RES_NOTIF_PHY_DB }; int ret; /* do not operate with rfkill switch turned on */ if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) { device_printf(sc->sc_dev, "radio is disabled by hardware switch\n"); return EPERM; } iwm_init_notification_wait(sc->sc_notif_wait, &calib_wait, init_complete, nitems(init_complete), iwm_wait_phy_db_entry, sc->sc_phy_db); /* Will also start the device */ ret = iwm_load_ucode_wait_alive(sc, IWM_UCODE_INIT); if (ret) { device_printf(sc->sc_dev, "Failed to start INIT ucode: %d\n", ret); goto error; } if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) { ret = iwm_send_bt_init_conf(sc); if (ret) { device_printf(sc->sc_dev, "failed to send bt coex configuration: %d\n", ret); goto error; } } if (justnvm) { /* Read nvm */ ret = iwm_nvm_init(sc); if (ret) { device_printf(sc->sc_dev, "failed to read nvm\n"); goto error; } IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, sc->nvm_data->hw_addr); goto error; } /* Send TX valid antennas before triggering calibrations */ ret = iwm_send_tx_ant_cfg(sc, iwm_get_valid_tx_ant(sc)); if (ret) { device_printf(sc->sc_dev, "failed to send antennas before calibration: %d\n", ret); goto error; } /* * Send phy configurations command to init uCode * to start the 16.0 uCode init image internal calibrations. */ ret = iwm_send_phy_cfg_cmd(sc); if (ret) { device_printf(sc->sc_dev, "%s: Failed to run INIT calibrations: %d\n", __func__, ret); goto error; } /* * Nothing to do but wait for the init complete notification * from the firmware. */ IWM_UNLOCK(sc); ret = iwm_wait_notification(sc->sc_notif_wait, &calib_wait, IWM_UCODE_CALIB_TIMEOUT); IWM_LOCK(sc); goto out; error: iwm_remove_notification(sc->sc_notif_wait, &calib_wait); out: return ret; } static int iwm_config_ltr(struct iwm_softc *sc) { struct iwm_ltr_config_cmd cmd = { .flags = htole32(IWM_LTR_CFG_FLAG_FEATURE_ENABLE), }; if (!sc->sc_ltr_enabled) return 0; return iwm_send_cmd_pdu(sc, IWM_LTR_CONFIG, 0, sizeof(cmd), &cmd); } /* * receive side */ /* (re)stock rx ring, called at init-time and at runtime */ static int iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx) { struct iwm_rx_ring *ring = &sc->rxq; struct iwm_rx_data *data = &ring->data[idx]; struct mbuf *m; bus_dmamap_t dmamap; bus_dma_segment_t seg; int nsegs, error; m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWM_RBUF_SIZE); if (m == NULL) return ENOBUFS; m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; error = bus_dmamap_load_mbuf_sg(ring->data_dmat, ring->spare_map, m, &seg, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->sc_dev, "%s: can't map mbuf, error %d\n", __func__, error); m_freem(m); return error; } if (data->m != NULL) bus_dmamap_unload(ring->data_dmat, data->map); /* Swap ring->spare_map with data->map */ dmamap = data->map; data->map = ring->spare_map; ring->spare_map = dmamap; bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD); data->m = m; /* Update RX descriptor. */ KASSERT((seg.ds_addr & 255) == 0, ("seg.ds_addr not aligned")); if (sc->cfg->mqrx_supported) ((uint64_t *)ring->desc)[idx] = htole64(seg.ds_addr); else ((uint32_t *)ring->desc)[idx] = htole32(seg.ds_addr >> 8); bus_dmamap_sync(ring->free_desc_dma.tag, ring->free_desc_dma.map, BUS_DMASYNC_PREWRITE); return 0; } static void iwm_rx_rx_phy_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt) { struct iwm_rx_phy_info *phy_info = (void *)pkt->data; IWM_DPRINTF(sc, IWM_DEBUG_RECV, "received PHY stats\n"); memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info)); } /* * Retrieve the average noise (in dBm) among receivers. */ static int iwm_get_noise(struct iwm_softc *sc, const struct iwm_statistics_rx_non_phy *stats) { int i, total, nbant, noise; total = nbant = noise = 0; for (i = 0; i < 3; i++) { noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff; IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: i=%d, noise=%d\n", __func__, i, noise); if (noise) { total += noise; nbant++; } } IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: nbant=%d, total=%d\n", __func__, nbant, total); #if 0 /* There should be at least one antenna but check anyway. */ return (nbant == 0) ? -127 : (total / nbant) - 107; #else /* For now, just hard-code it to -96 to be safe */ return (-96); #endif } static void iwm_handle_rx_statistics(struct iwm_softc *sc, struct iwm_rx_packet *pkt) { - struct iwm_notif_statistics_v10 *stats = (void *)&pkt->data; + struct iwm_notif_statistics *stats = (void *)&pkt->data; memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats)); sc->sc_noise = iwm_get_noise(sc, &stats->rx.general); } /* iwlwifi: mvm/rx.c */ /* * iwm_get_signal_strength - use new rx PHY INFO API * values are reported by the fw as positive values - need to negate * to obtain their dBM. Account for missing antennas by replacing 0 * values by -256dBm: practically 0 power and a non-feasible 8 bit value. */ static int iwm_rx_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info) { int energy_a, energy_b, energy_c, max_energy; uint32_t val; val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]); energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >> IWM_RX_INFO_ENERGY_ANT_A_POS; energy_a = energy_a ? -energy_a : -256; energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >> IWM_RX_INFO_ENERGY_ANT_B_POS; energy_b = energy_b ? -energy_b : -256; energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >> IWM_RX_INFO_ENERGY_ANT_C_POS; energy_c = energy_c ? -energy_c : -256; max_energy = MAX(energy_a, energy_b); max_energy = MAX(max_energy, energy_c); IWM_DPRINTF(sc, IWM_DEBUG_RECV, "energy In A %d B %d C %d , and max %d\n", energy_a, energy_b, energy_c, max_energy); return max_energy; } static int iwm_rxmq_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_mpdu_desc *desc) { int energy_a, energy_b; energy_a = desc->v1.energy_a; energy_b = desc->v1.energy_b; energy_a = energy_a ? -energy_a : -256; energy_b = energy_b ? -energy_b : -256; return MAX(energy_a, energy_b); } /* * iwm_rx_rx_mpdu - IWM_REPLY_RX_MPDU_CMD handler * * Handles the actual data of the Rx packet from the fw */ static bool iwm_rx_rx_mpdu(struct iwm_softc *sc, struct mbuf *m, uint32_t offset, bool stolen) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct ieee80211_frame *wh; struct ieee80211_rx_stats rxs; struct iwm_rx_phy_info *phy_info; struct iwm_rx_mpdu_res_start *rx_res; struct iwm_rx_packet *pkt = mtodoff(m, struct iwm_rx_packet *, offset); uint32_t len; uint32_t rx_pkt_status; int rssi; phy_info = &sc->sc_last_phy_info; rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data; wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res)); len = le16toh(rx_res->byte_count); rx_pkt_status = le32toh(*(uint32_t *)(pkt->data + sizeof(*rx_res) + len)); if (__predict_false(phy_info->cfg_phy_cnt > 20)) { device_printf(sc->sc_dev, "dsp size out of range [0,20]: %d\n", phy_info->cfg_phy_cnt); return false; } if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) || !(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) { IWM_DPRINTF(sc, IWM_DEBUG_RECV, "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status); return false; } rssi = iwm_rx_get_signal_strength(sc, phy_info); /* Map it to relative value */ rssi = rssi - sc->sc_noise; /* replenish ring for the buffer we're going to feed to the sharks */ if (!stolen && iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) { device_printf(sc->sc_dev, "%s: unable to add more buffers\n", __func__); return false; } m->m_data = pkt->data + sizeof(*rx_res); m->m_pkthdr.len = m->m_len = len; IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: rssi=%d, noise=%d\n", __func__, rssi, sc->sc_noise); IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: phy_info: channel=%d, flags=0x%08x\n", __func__, le16toh(phy_info->channel), le16toh(phy_info->phy_flags)); /* * Populate an RX state struct with the provided information. */ bzero(&rxs, sizeof(rxs)); rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ; rxs.r_flags |= IEEE80211_R_BAND; rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI; rxs.c_ieee = le16toh(phy_info->channel); if (le16toh(phy_info->phy_flags & IWM_RX_RES_PHY_FLAGS_BAND_24)) { rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ); rxs.c_band = IEEE80211_CHAN_2GHZ; } else { rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_5GHZ); rxs.c_band = IEEE80211_CHAN_5GHZ; } /* rssi is in 1/2db units */ rxs.c_rssi = rssi * 2; rxs.c_nf = sc->sc_noise; if (ieee80211_add_rx_params(m, &rxs) == 0) return false; if (ieee80211_radiotap_active_vap(vap)) { struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE)) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; tap->wr_chan_freq = htole16(rxs.c_freq); /* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */ tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); tap->wr_dbm_antsignal = (int8_t)rssi; tap->wr_dbm_antnoise = (int8_t)sc->sc_noise; tap->wr_tsft = phy_info->system_timestamp; switch (phy_info->rate) { /* CCK rates. */ case 10: tap->wr_rate = 2; break; case 20: tap->wr_rate = 4; break; case 55: tap->wr_rate = 11; break; case 110: tap->wr_rate = 22; break; /* OFDM rates. */ case 0xd: tap->wr_rate = 12; break; case 0xf: tap->wr_rate = 18; break; case 0x5: tap->wr_rate = 24; break; case 0x7: tap->wr_rate = 36; break; case 0x9: tap->wr_rate = 48; break; case 0xb: tap->wr_rate = 72; break; case 0x1: tap->wr_rate = 96; break; case 0x3: tap->wr_rate = 108; break; /* Unknown rate: should not happen. */ default: tap->wr_rate = 0; } } return true; } static bool iwm_rx_mpdu_mq(struct iwm_softc *sc, struct mbuf *m, uint32_t offset, bool stolen) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct ieee80211_frame *wh; struct ieee80211_rx_stats rxs; struct iwm_rx_mpdu_desc *desc; struct iwm_rx_packet *pkt; int rssi; uint32_t hdrlen, len, rate_n_flags; uint16_t phy_info; uint8_t channel; pkt = mtodo(m, offset); desc = (void *)pkt->data; if (!(desc->status & htole16(IWM_RX_MPDU_RES_STATUS_CRC_OK)) || !(desc->status & htole16(IWM_RX_MPDU_RES_STATUS_OVERRUN_OK))) { IWM_DPRINTF(sc, IWM_DEBUG_RECV, "Bad CRC or FIFO: 0x%08X.\n", desc->status); return false; } channel = desc->v1.channel; len = le16toh(desc->mpdu_len); phy_info = le16toh(desc->phy_info); rate_n_flags = desc->v1.rate_n_flags; wh = mtodo(m, sizeof(*desc)); m->m_data = pkt->data + sizeof(*desc); m->m_pkthdr.len = m->m_len = len; m->m_len = len; /* Account for padding following the frame header. */ if ((desc->mac_flags2 & IWM_RX_MPDU_MFLG2_PAD)) { hdrlen = ieee80211_anyhdrsize(wh); memmove(mtodo(m, 2), mtodo(m, 0), hdrlen); m->m_data = mtodo(m, 2); wh = mtod(m, struct ieee80211_frame *); } /* Map it to relative value */ rssi = iwm_rxmq_get_signal_strength(sc, desc); rssi = rssi - sc->sc_noise; /* replenish ring for the buffer we're going to feed to the sharks */ if (!stolen && iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) { device_printf(sc->sc_dev, "%s: unable to add more buffers\n", __func__); return false; } IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: rssi=%d, noise=%d\n", __func__, rssi, sc->sc_noise); /* * Populate an RX state struct with the provided information. */ bzero(&rxs, sizeof(rxs)); rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ; rxs.r_flags |= IEEE80211_R_BAND; rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI; rxs.c_ieee = channel; rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, channel <= 14 ? IEEE80211_CHAN_2GHZ : IEEE80211_CHAN_5GHZ); rxs.c_band = channel <= 14 ? IEEE80211_CHAN_2GHZ : IEEE80211_CHAN_5GHZ; /* rssi is in 1/2db units */ rxs.c_rssi = rssi * 2; rxs.c_nf = sc->sc_noise; if (ieee80211_add_rx_params(m, &rxs) == 0) return false; if (ieee80211_radiotap_active_vap(vap)) { struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; if ((phy_info & IWM_RX_MPDU_PHY_SHORT_PREAMBLE) != 0) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; tap->wr_chan_freq = htole16(rxs.c_freq); /* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */ tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); tap->wr_dbm_antsignal = (int8_t)rssi; tap->wr_dbm_antnoise = (int8_t)sc->sc_noise; tap->wr_tsft = desc->v1.gp2_on_air_rise; switch ((rate_n_flags & 0xff)) { /* CCK rates. */ case 10: tap->wr_rate = 2; break; case 20: tap->wr_rate = 4; break; case 55: tap->wr_rate = 11; break; case 110: tap->wr_rate = 22; break; /* OFDM rates. */ case 0xd: tap->wr_rate = 12; break; case 0xf: tap->wr_rate = 18; break; case 0x5: tap->wr_rate = 24; break; case 0x7: tap->wr_rate = 36; break; case 0x9: tap->wr_rate = 48; break; case 0xb: tap->wr_rate = 72; break; case 0x1: tap->wr_rate = 96; break; case 0x3: tap->wr_rate = 108; break; /* Unknown rate: should not happen. */ default: tap->wr_rate = 0; } } return true; } static bool iwm_rx_mpdu(struct iwm_softc *sc, struct mbuf *m, uint32_t offset, bool stolen) { struct epoch_tracker et; struct ieee80211com *ic; struct ieee80211_frame *wh; struct ieee80211_node *ni; bool ret; ic = &sc->sc_ic; ret = sc->cfg->mqrx_supported ? iwm_rx_mpdu_mq(sc, m, offset, stolen) : iwm_rx_rx_mpdu(sc, m, offset, stolen); if (!ret) { counter_u64_add(ic->ic_ierrors, 1); return (ret); } wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); IWM_UNLOCK(sc); NET_EPOCH_ENTER(et); if (ni != NULL) { IWM_DPRINTF(sc, IWM_DEBUG_RECV, "input m %p\n", m); ieee80211_input_mimo(ni, m); ieee80211_free_node(ni); } else { IWM_DPRINTF(sc, IWM_DEBUG_RECV, "inputall m %p\n", m); ieee80211_input_mimo_all(ic, m); } NET_EPOCH_EXIT(et); IWM_LOCK(sc); return true; } static int iwm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt, struct iwm_node *in) { struct iwm_tx_resp *tx_resp = (void *)pkt->data; struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs; struct ieee80211_node *ni = &in->in_ni; struct ieee80211vap *vap = ni->ni_vap; int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK; int new_rate, cur_rate = vap->iv_bss->ni_txrate; boolean_t rate_matched; uint8_t tx_resp_rate; KASSERT(tx_resp->frame_count == 1, ("too many frames")); /* Update rate control statistics. */ IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: status=0x%04x, seq=%d, fc=%d, btc=%d, frts=%d, ff=%d, irate=%08x, wmt=%d\n", __func__, (int) le16toh(tx_resp->status.status), (int) le16toh(tx_resp->status.sequence), tx_resp->frame_count, tx_resp->bt_kill_count, tx_resp->failure_rts, tx_resp->failure_frame, le32toh(tx_resp->initial_rate), (int) le16toh(tx_resp->wireless_media_time)); tx_resp_rate = iwm_rate_from_ucode_rate(le32toh(tx_resp->initial_rate)); /* For rate control, ignore frames sent at different initial rate */ rate_matched = (tx_resp_rate != 0 && tx_resp_rate == cur_rate); if (tx_resp_rate != 0 && cur_rate != 0 && !rate_matched) { IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "tx_resp_rate doesn't match ni_txrate (tx_resp_rate=%u " "ni_txrate=%d)\n", tx_resp_rate, cur_rate); } txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY | IEEE80211_RATECTL_STATUS_LONG_RETRY; txs->short_retries = tx_resp->failure_rts; txs->long_retries = tx_resp->failure_frame; if (status != IWM_TX_STATUS_SUCCESS && status != IWM_TX_STATUS_DIRECT_DONE) { switch (status) { case IWM_TX_STATUS_FAIL_SHORT_LIMIT: txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT; break; case IWM_TX_STATUS_FAIL_LONG_LIMIT: txs->status = IEEE80211_RATECTL_TX_FAIL_LONG; break; case IWM_TX_STATUS_FAIL_LIFE_EXPIRE: txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED; break; default: txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED; break; } } else { txs->status = IEEE80211_RATECTL_TX_SUCCESS; } if (rate_matched) { ieee80211_ratectl_tx_complete(ni, txs); int rix = ieee80211_ratectl_rate(vap->iv_bss, NULL, 0); new_rate = vap->iv_bss->ni_txrate; if (new_rate != 0 && new_rate != cur_rate) { struct iwm_node *in = IWM_NODE(vap->iv_bss); iwm_setrates(sc, in, rix); iwm_send_lq_cmd(sc, &in->in_lq, FALSE); } } return (txs->status != IEEE80211_RATECTL_TX_SUCCESS); } static void iwm_rx_tx_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt) { struct iwm_cmd_header *cmd_hdr; struct iwm_tx_ring *ring; struct iwm_tx_data *txd; struct iwm_node *in; struct mbuf *m; int idx, qid, qmsk, status; cmd_hdr = &pkt->hdr; idx = cmd_hdr->idx; qid = cmd_hdr->qid; ring = &sc->txq[qid]; txd = &ring->data[idx]; in = txd->in; m = txd->m; KASSERT(txd->done == 0, ("txd not done")); KASSERT(txd->in != NULL, ("txd without node")); KASSERT(txd->m != NULL, ("txd without mbuf")); sc->sc_tx_timer = 0; status = iwm_rx_tx_cmd_single(sc, pkt, in); /* Unmap and free mbuf. */ bus_dmamap_sync(ring->data_dmat, txd->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, txd->map); IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "free txd %p, in %p\n", txd, txd->in); txd->done = 1; txd->m = NULL; txd->in = NULL; ieee80211_tx_complete(&in->in_ni, m, status); qmsk = 1 << qid; if (--ring->queued < IWM_TX_RING_LOMARK && (sc->qfullmsk & qmsk) != 0) { sc->qfullmsk &= ~qmsk; if (sc->qfullmsk == 0) iwm_start(sc); } } /* * transmit side */ /* * Process a "command done" firmware notification. This is where we wakeup * processes waiting for a synchronous command completion. * from if_iwn */ static void iwm_cmd_done(struct iwm_softc *sc, struct iwm_rx_packet *pkt) { struct iwm_tx_ring *ring = &sc->txq[IWM_CMD_QUEUE]; struct iwm_tx_data *data; if (pkt->hdr.qid != IWM_CMD_QUEUE) { return; /* Not a command ack. */ } /* XXX wide commands? */ IWM_DPRINTF(sc, IWM_DEBUG_CMD, "cmd notification type 0x%x qid %d idx %d\n", pkt->hdr.code, pkt->hdr.qid, pkt->hdr.idx); data = &ring->data[pkt->hdr.idx]; /* If the command was mapped in an mbuf, free it. */ if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } wakeup(&ring->desc[pkt->hdr.idx]); if (((pkt->hdr.idx + ring->queued) % IWM_TX_RING_COUNT) != ring->cur) { device_printf(sc->sc_dev, "%s: Some HCMDs skipped?: idx=%d queued=%d cur=%d\n", __func__, pkt->hdr.idx, ring->queued, ring->cur); /* XXX call iwm_force_nmi() */ } KASSERT(ring->queued > 0, ("ring->queued is empty?")); ring->queued--; if (ring->queued == 0) iwm_pcie_clear_cmd_in_flight(sc); } #if 0 /* * necessary only for block ack mode */ void iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id, uint16_t len) { struct iwm_agn_scd_bc_tbl *scd_bc_tbl; uint16_t w_val; scd_bc_tbl = sc->sched_dma.vaddr; len += 8; /* magic numbers came naturally from paris */ len = roundup(len, 4) / 4; w_val = htole16(sta_id << 12 | len); /* Update TX scheduler. */ scd_bc_tbl[qid].tfd_offset[idx] = w_val; bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, BUS_DMASYNC_PREWRITE); /* I really wonder what this is ?!? */ if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) { scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val; bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, BUS_DMASYNC_PREWRITE); } } #endif static int iwm_tx_rateidx_global_lookup(struct iwm_softc *sc, uint8_t rate) { int i; for (i = 0; i < nitems(iwm_rates); i++) { if (iwm_rates[i].rate == rate) return (i); } /* XXX error? */ IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE, "%s: couldn't find an entry for rate=%d\n", __func__, rate); return (0); } /* * Fill in the rate related information for a transmit command. */ static const struct iwm_rate * iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in, struct mbuf *m, struct iwm_tx_cmd *tx) { struct ieee80211_node *ni = &in->in_ni; struct ieee80211_frame *wh; const struct ieee80211_txparam *tp = ni->ni_txparms; const struct iwm_rate *rinfo; int type; int ridx, rate_flags; wh = mtod(m, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT; tx->data_retry_limit = IWM_DEFAULT_TX_RETRY; if (type == IEEE80211_FC0_TYPE_MGT || type == IEEE80211_FC0_TYPE_CTL || (m->m_flags & M_EAPOL) != 0) { ridx = iwm_tx_rateidx_global_lookup(sc, tp->mgmtrate); IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: MGT (%d)\n", __func__, tp->mgmtrate); } else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { ridx = iwm_tx_rateidx_global_lookup(sc, tp->mcastrate); IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: MCAST (%d)\n", __func__, tp->mcastrate); } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { ridx = iwm_tx_rateidx_global_lookup(sc, tp->ucastrate); IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: FIXED_RATE (%d)\n", __func__, tp->ucastrate); } else { /* for data frames, use RS table */ IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: DATA\n", __func__); ridx = iwm_rate2ridx(sc, ni->ni_txrate); if (ridx == -1) ridx = 0; /* This is the index into the programmed table */ tx->initial_rate_index = 0; tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE); } IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE, "%s: frame type=%d txrate %d\n", __func__, type, iwm_rates[ridx].rate); rinfo = &iwm_rates[ridx]; IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: ridx=%d; rate=%d, CCK=%d\n", __func__, ridx, rinfo->rate, !! (IWM_RIDX_IS_CCK(ridx)) ); /* XXX TODO: hard-coded TX antenna? */ if (sc->cfg->device_family == IWM_DEVICE_FAMILY_9000) rate_flags = IWM_RATE_MCS_ANT_B_MSK; else rate_flags = IWM_RATE_MCS_ANT_A_MSK; if (IWM_RIDX_IS_CCK(ridx)) rate_flags |= IWM_RATE_MCS_CCK_MSK; tx->rate_n_flags = htole32(rate_flags | rinfo->plcp); return rinfo; } #define TB0_SIZE 16 static int iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct iwm_node *in = IWM_NODE(ni); struct iwm_tx_ring *ring; struct iwm_tx_data *data; struct iwm_tfd *desc; struct iwm_device_cmd *cmd; struct iwm_tx_cmd *tx; struct ieee80211_frame *wh; struct ieee80211_key *k = NULL; struct mbuf *m1; const struct iwm_rate *rinfo; uint32_t flags; u_int hdrlen; bus_dma_segment_t *seg, segs[IWM_MAX_SCATTER]; int nsegs; uint8_t tid, type; int i, totlen, error, pad; wh = mtod(m, struct ieee80211_frame *); hdrlen = ieee80211_anyhdrsize(wh); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; tid = 0; ring = &sc->txq[ac]; desc = &ring->desc[ring->cur]; data = &ring->data[ring->cur]; /* Fill out iwm_tx_cmd to send to the firmware */ cmd = &ring->cmd[ring->cur]; cmd->hdr.code = IWM_TX_CMD; cmd->hdr.flags = 0; cmd->hdr.qid = ring->qid; cmd->hdr.idx = ring->cur; tx = (void *)cmd->data; memset(tx, 0, sizeof(*tx)); rinfo = iwm_tx_fill_cmd(sc, in, m, tx); /* Encrypt the frame if need be. */ if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { /* Retrieve key for TX && do software encryption. */ k = ieee80211_crypto_encap(ni, m); if (k == NULL) { m_freem(m); return (ENOBUFS); } /* 802.11 header may have moved. */ wh = mtod(m, struct ieee80211_frame *); } if (ieee80211_radiotap_active_vap(vap)) { struct iwm_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); tap->wt_rate = rinfo->rate; if (k != NULL) tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; ieee80211_radiotap_tx(vap, m); } flags = 0; totlen = m->m_pkthdr.len; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= IWM_TX_CMD_FLG_ACK; } if (type == IEEE80211_FC0_TYPE_DATA && totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold && !IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= IWM_TX_CMD_FLG_PROT_REQUIRE; } tx->sta_id = IWM_STATION_ID; if (type == IEEE80211_FC0_TYPE_MGT) { uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { tx->pm_frame_timeout = htole16(IWM_PM_FRAME_ASSOC); } else if (subtype == IEEE80211_FC0_SUBTYPE_ACTION) { tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE); } else { tx->pm_frame_timeout = htole16(IWM_PM_FRAME_MGMT); } } else { tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE); } if (hdrlen & 3) { /* First segment length must be a multiple of 4. */ flags |= IWM_TX_CMD_FLG_MH_PAD; - tx->offload_assist |= htole16(1 << IWM_TX_CMD_OFFLD_PAD); + tx->offload_assist |= htole16(IWM_TX_CMD_OFFLD_PAD); pad = 4 - (hdrlen & 3); } else { tx->offload_assist = 0; pad = 0; } tx->len = htole16(totlen); tx->tid_tspec = tid; tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE); /* Set physical address of "scratch area". */ tx->dram_lsb_ptr = htole32(data->scratch_paddr); tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr); /* Copy 802.11 header in TX command. */ memcpy((uint8_t *)tx + sizeof(*tx), wh, hdrlen); flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL; tx->sec_ctl = 0; tx->tx_flags |= htole32(flags); /* Trim 802.11 header. */ m_adj(m, hdrlen); error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { if (error != EFBIG) { device_printf(sc->sc_dev, "can't map mbuf (error %d)\n", error); m_freem(m); return error; } /* Too many DMA segments, linearize mbuf. */ m1 = m_collapse(m, M_NOWAIT, IWM_MAX_SCATTER - 2); if (m1 == NULL) { device_printf(sc->sc_dev, "%s: could not defrag mbuf\n", __func__); m_freem(m); return (ENOBUFS); } m = m1; error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->sc_dev, "can't map mbuf (error %d)\n", error); m_freem(m); return error; } } data->m = m; data->in = in; data->done = 0; IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "sending txd %p, in %p\n", data, data->in); KASSERT(data->in != NULL, ("node is NULL")); IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "sending data: qid=%d idx=%d len=%d nsegs=%d txflags=0x%08x rate_n_flags=0x%08x rateidx=%u\n", ring->qid, ring->cur, totlen, nsegs, le32toh(tx->tx_flags), le32toh(tx->rate_n_flags), tx->initial_rate_index ); /* Fill TX descriptor. */ memset(desc, 0, sizeof(*desc)); desc->num_tbs = 2 + nsegs; desc->tbs[0].lo = htole32(data->cmd_paddr); desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr) | (TB0_SIZE << 4)); desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE); desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr) | ((sizeof(struct iwm_cmd_header) + sizeof(*tx) + hdrlen + pad - TB0_SIZE) << 4)); /* Other DMA segments are for data payload. */ for (i = 0; i < nsegs; i++) { seg = &segs[i]; desc->tbs[i + 2].lo = htole32(seg->ds_addr); desc->tbs[i + 2].hi_n_len = htole16(iwm_get_dma_hi_addr(seg->ds_addr)) | (seg->ds_len << 4); } bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, BUS_DMASYNC_PREWRITE); #if 0 iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, le16toh(tx->len)); #endif /* Kick TX ring. */ ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT; IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); /* Mark TX ring as full if we reach a certain threshold. */ if (++ring->queued > IWM_TX_RING_HIMARK) { sc->qfullmsk |= 1 << ring->qid; } return 0; } static int iwm_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct iwm_softc *sc = ic->ic_softc; int error = 0; IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "->%s begin\n", __func__); if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) { m_freem(m); IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "<-%s not RUNNING\n", __func__); return (ENETDOWN); } IWM_LOCK(sc); /* XXX fix this */ if (params == NULL) { error = iwm_tx(sc, m, ni, 0); } else { error = iwm_tx(sc, m, ni, 0); } if (sc->sc_tx_timer == 0) callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc); sc->sc_tx_timer = 5; IWM_UNLOCK(sc); return (error); } /* * mvm/tx.c */ /* * Note that there are transports that buffer frames before they reach * the firmware. This means that after flush_tx_path is called, the * queue might not be empty. The race-free way to handle this is to: * 1) set the station as draining * 2) flush the Tx path * 3) wait for the transport queues to be empty */ int iwm_flush_tx_path(struct iwm_softc *sc, uint32_t tfd_msk, uint32_t flags) { int ret; - struct iwm_tx_path_flush_cmd flush_cmd = { + struct iwm_tx_path_flush_cmd_v1 flush_cmd = { .queues_ctl = htole32(tfd_msk), .flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH), }; ret = iwm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH, flags, sizeof(flush_cmd), &flush_cmd); if (ret) device_printf(sc->sc_dev, "Flushing tx queue failed: %d\n", ret); return ret; } /* * BEGIN mvm/quota.c */ static int iwm_update_quotas(struct iwm_softc *sc, struct iwm_vap *ivp) { - struct iwm_time_quota_cmd cmd; + struct iwm_time_quota_cmd_v1 cmd; int i, idx, ret, num_active_macs, quota, quota_rem; int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, }; int n_ifs[IWM_MAX_BINDINGS] = {0, }; uint16_t id; memset(&cmd, 0, sizeof(cmd)); /* currently, PHY ID == binding ID */ if (ivp) { id = ivp->phy_ctxt->id; KASSERT(id < IWM_MAX_BINDINGS, ("invalid id")); colors[id] = ivp->phy_ctxt->color; if (1) n_ifs[id] = 1; } /* * The FW's scheduling session consists of * IWM_MAX_QUOTA fragments. Divide these fragments * equally between all the bindings that require quota */ num_active_macs = 0; for (i = 0; i < IWM_MAX_BINDINGS; i++) { cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID); num_active_macs += n_ifs[i]; } quota = 0; quota_rem = 0; if (num_active_macs) { quota = IWM_MAX_QUOTA / num_active_macs; quota_rem = IWM_MAX_QUOTA % num_active_macs; } for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) { if (colors[i] < 0) continue; cmd.quotas[idx].id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i])); if (n_ifs[i] <= 0) { cmd.quotas[idx].quota = htole32(0); cmd.quotas[idx].max_duration = htole32(0); } else { cmd.quotas[idx].quota = htole32(quota * n_ifs[i]); cmd.quotas[idx].max_duration = htole32(0); } idx++; } /* Give the remainder of the session to the first binding */ cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem); ret = iwm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, IWM_CMD_SYNC, sizeof(cmd), &cmd); if (ret) device_printf(sc->sc_dev, "%s: Failed to send quota: %d\n", __func__, ret); return ret; } /* * END mvm/quota.c */ /* * ieee80211 routines */ /* * Change to AUTH state in 80211 state machine. Roughly matches what * Linux does in bss_info_changed(). */ static int iwm_auth(struct ieee80211vap *vap, struct iwm_softc *sc) { struct ieee80211_node *ni; struct iwm_node *in; struct iwm_vap *iv = IWM_VAP(vap); uint32_t duration; int error; /* * XXX i have a feeling that the vap node is being * freed from underneath us. Grr. */ ni = ieee80211_ref_node(vap->iv_bss); in = IWM_NODE(ni); IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_STATE, "%s: called; vap=%p, bss ni=%p\n", __func__, vap, ni); IWM_DPRINTF(sc, IWM_DEBUG_STATE, "%s: Current node bssid: %s\n", __func__, ether_sprintf(ni->ni_bssid)); in->in_assoc = 0; iv->iv_auth = 1; /* * Firmware bug - it'll crash if the beacon interval is less * than 16. We can't avoid connecting at all, so refuse the * station state change, this will cause net80211 to abandon * attempts to connect to this AP, and eventually wpa_s will * blacklist the AP... */ if (ni->ni_intval < 16) { device_printf(sc->sc_dev, "AP %s beacon interval is %d, refusing due to firmware bug!\n", ether_sprintf(ni->ni_bssid), ni->ni_intval); error = EINVAL; goto out; } error = iwm_allow_mcast(vap, sc); if (error) { device_printf(sc->sc_dev, "%s: failed to set multicast\n", __func__); goto out; } /* * This is where it deviates from what Linux does. * * Linux iwlwifi doesn't reset the nic each time, nor does it * call ctxt_add() here. Instead, it adds it during vap creation, * and always does a mac_ctx_changed(). * * The openbsd port doesn't attempt to do that - it reset things * at odd states and does the add here. * * So, until the state handling is fixed (ie, we never reset * the NIC except for a firmware failure, which should drag * the NIC back to IDLE, re-setup and re-add all the mac/phy * contexts that are required), let's do a dirty hack here. */ if (iv->is_uploaded) { if ((error = iwm_mac_ctxt_changed(sc, vap)) != 0) { device_printf(sc->sc_dev, "%s: failed to update MAC\n", __func__); goto out; } } else { if ((error = iwm_mac_ctxt_add(sc, vap)) != 0) { device_printf(sc->sc_dev, "%s: failed to add MAC\n", __func__); goto out; } } sc->sc_firmware_state = 1; if ((error = iwm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0], in->in_ni.ni_chan, 1, 1)) != 0) { device_printf(sc->sc_dev, "%s: failed update phy ctxt\n", __func__); goto out; } iv->phy_ctxt = &sc->sc_phyctxt[0]; if ((error = iwm_binding_add_vif(sc, iv)) != 0) { device_printf(sc->sc_dev, "%s: binding update cmd\n", __func__); goto out; } sc->sc_firmware_state = 2; /* * Authentication becomes unreliable when powersaving is left enabled * here. Powersaving will be activated again when association has * finished or is aborted. */ iv->ps_disabled = TRUE; error = iwm_power_update_mac(sc); iv->ps_disabled = FALSE; if (error != 0) { device_printf(sc->sc_dev, "%s: failed to update power management\n", __func__); goto out; } if ((error = iwm_add_sta(sc, in)) != 0) { device_printf(sc->sc_dev, "%s: failed to add sta\n", __func__); goto out; } sc->sc_firmware_state = 3; /* * Prevent the FW from wandering off channel during association * by "protecting" the session with a time event. */ /* XXX duration is in units of TU, not MS */ duration = IWM_TE_SESSION_PROTECTION_MAX_TIME_MS; iwm_protect_session(sc, iv, duration, 500 /* XXX magic number */, TRUE); error = 0; out: if (error != 0) iv->iv_auth = 0; ieee80211_free_node(ni); return (error); } static struct ieee80211_node * iwm_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) { return malloc(sizeof (struct iwm_node), M_80211_NODE, M_NOWAIT | M_ZERO); } static uint8_t iwm_rate_from_ucode_rate(uint32_t rate_n_flags) { uint8_t plcp = rate_n_flags & 0xff; int i; for (i = 0; i <= IWM_RIDX_MAX; i++) { if (iwm_rates[i].plcp == plcp) return iwm_rates[i].rate; } return 0; } uint8_t iwm_ridx2rate(struct ieee80211_rateset *rs, int ridx) { int i; uint8_t rval; for (i = 0; i < rs->rs_nrates; i++) { rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL); if (rval == iwm_rates[ridx].rate) return rs->rs_rates[i]; } return 0; } static int iwm_rate2ridx(struct iwm_softc *sc, uint8_t rate) { int i; for (i = 0; i <= IWM_RIDX_MAX; i++) { if (iwm_rates[i].rate == rate) return i; } device_printf(sc->sc_dev, "%s: WARNING: device rate for %u not found!\n", __func__, rate); return -1; } static void iwm_setrates(struct iwm_softc *sc, struct iwm_node *in, int rix) { struct ieee80211_node *ni = &in->in_ni; struct iwm_lq_cmd *lq = &in->in_lq; struct ieee80211_rateset *rs = &ni->ni_rates; int nrates = rs->rs_nrates; int i, ridx, tab = 0; // int txant = 0; KASSERT(rix >= 0 && rix < nrates, ("invalid rix")); if (nrates > nitems(lq->rs_table)) { device_printf(sc->sc_dev, "%s: node supports %d rates, driver handles " "only %zu\n", __func__, nrates, nitems(lq->rs_table)); return; } if (nrates == 0) { device_printf(sc->sc_dev, "%s: node supports 0 rates, odd!\n", __func__); return; } nrates = imin(rix + 1, nrates); IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: nrates=%d\n", __func__, nrates); /* then construct a lq_cmd based on those */ memset(lq, 0, sizeof(*lq)); lq->sta_id = IWM_STATION_ID; /* For HT, always enable RTS/CTS to avoid excessive retries. */ if (ni->ni_flags & IEEE80211_NODE_HT) lq->flags |= IWM_LQ_FLAG_USE_RTS_MSK; /* * are these used? (we don't do SISO or MIMO) * need to set them to non-zero, though, or we get an error. */ lq->single_stream_ant_msk = 1; lq->dual_stream_ant_msk = 1; /* * Build the actual rate selection table. * The lowest bits are the rates. Additionally, * CCK needs bit 9 to be set. The rest of the bits * we add to the table select the tx antenna * Note that we add the rates in the highest rate first * (opposite of ni_rates). */ for (i = 0; i < nrates; i++) { int rate = rs->rs_rates[rix - i] & IEEE80211_RATE_VAL; int nextant; /* Map 802.11 rate to HW rate index. */ ridx = iwm_rate2ridx(sc, rate); if (ridx == -1) continue; #if 0 if (txant == 0) txant = iwm_get_valid_tx_ant(sc); nextant = 1<<(ffs(txant)-1); txant &= ~nextant; #else nextant = iwm_get_valid_tx_ant(sc); #endif tab = iwm_rates[ridx].plcp; tab |= nextant << IWM_RATE_MCS_ANT_POS; if (IWM_RIDX_IS_CCK(ridx)) tab |= IWM_RATE_MCS_CCK_MSK; IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "station rate i=%d, rate=%d, hw=%x\n", i, iwm_rates[ridx].rate, tab); lq->rs_table[i] = htole32(tab); } /* then fill the rest with the lowest possible rate */ for (i = nrates; i < nitems(lq->rs_table); i++) { KASSERT(tab != 0, ("invalid tab")); lq->rs_table[i] = htole32(tab); } } static void iwm_bring_down_firmware(struct iwm_softc *sc, struct ieee80211vap *vap) { struct iwm_vap *ivp = IWM_VAP(vap); int error; /* Avoid Tx watchdog triggering, when transfers get dropped here. */ sc->sc_tx_timer = 0; ivp->iv_auth = 0; if (sc->sc_firmware_state == 3) { iwm_xmit_queue_drain(sc); // iwm_flush_tx_path(sc, 0xf, IWM_CMD_SYNC); error = iwm_rm_sta(sc, vap, TRUE); if (error) { device_printf(sc->sc_dev, "%s: Failed to remove station: %d\n", __func__, error); } } if (sc->sc_firmware_state == 3) { error = iwm_mac_ctxt_changed(sc, vap); if (error) { device_printf(sc->sc_dev, "%s: Failed to change mac context: %d\n", __func__, error); } } if (sc->sc_firmware_state == 3) { error = iwm_sf_update(sc, vap, FALSE); if (error) { device_printf(sc->sc_dev, "%s: Failed to update smart FIFO: %d\n", __func__, error); } } if (sc->sc_firmware_state == 3) { error = iwm_rm_sta_id(sc, vap); if (error) { device_printf(sc->sc_dev, "%s: Failed to remove station id: %d\n", __func__, error); } } if (sc->sc_firmware_state == 3) { error = iwm_update_quotas(sc, NULL); if (error) { device_printf(sc->sc_dev, "%s: Failed to update PHY quota: %d\n", __func__, error); } } if (sc->sc_firmware_state == 3) { /* XXX Might need to specify bssid correctly. */ error = iwm_mac_ctxt_changed(sc, vap); if (error) { device_printf(sc->sc_dev, "%s: Failed to change mac context: %d\n", __func__, error); } } if (sc->sc_firmware_state == 3) { sc->sc_firmware_state = 2; } if (sc->sc_firmware_state > 1) { error = iwm_binding_remove_vif(sc, ivp); if (error) { device_printf(sc->sc_dev, "%s: Failed to remove channel ctx: %d\n", __func__, error); } } if (sc->sc_firmware_state > 1) { sc->sc_firmware_state = 1; } ivp->phy_ctxt = NULL; if (sc->sc_firmware_state > 0) { error = iwm_mac_ctxt_changed(sc, vap); if (error) { device_printf(sc->sc_dev, "%s: Failed to change mac context: %d\n", __func__, error); } } if (sc->sc_firmware_state > 0) { error = iwm_power_update_mac(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: failed to update power management\n", __func__); } } sc->sc_firmware_state = 0; } static int iwm_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct iwm_vap *ivp = IWM_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct iwm_softc *sc = ic->ic_softc; struct iwm_node *in; int error; IWM_DPRINTF(sc, IWM_DEBUG_STATE, "switching state %s -> %s arg=0x%x\n", ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate], arg); IEEE80211_UNLOCK(ic); IWM_LOCK(sc); if ((sc->sc_flags & IWM_FLAG_SCAN_RUNNING) && (nstate == IEEE80211_S_AUTH || nstate == IEEE80211_S_ASSOC || nstate == IEEE80211_S_RUN)) { /* Stop blinking for a scan, when authenticating. */ iwm_led_blink_stop(sc); } if (vap->iv_state == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) { iwm_led_disable(sc); /* disable beacon filtering if we're hopping out of RUN */ iwm_disable_beacon_filter(sc); if (((in = IWM_NODE(vap->iv_bss)) != NULL)) in->in_assoc = 0; } if ((vap->iv_state == IEEE80211_S_AUTH || vap->iv_state == IEEE80211_S_ASSOC || vap->iv_state == IEEE80211_S_RUN) && (nstate == IEEE80211_S_INIT || nstate == IEEE80211_S_SCAN || nstate == IEEE80211_S_AUTH)) { iwm_stop_session_protection(sc, ivp); } if ((vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_ASSOC) && nstate == IEEE80211_S_INIT) { /* * In this case, iv_newstate() wants to send an 80211 frame on * the network that we are leaving. So we need to call it, * before tearing down all the firmware state. */ IWM_UNLOCK(sc); IEEE80211_LOCK(ic); ivp->iv_newstate(vap, nstate, arg); IEEE80211_UNLOCK(ic); IWM_LOCK(sc); iwm_bring_down_firmware(sc, vap); IWM_UNLOCK(sc); IEEE80211_LOCK(ic); return 0; } switch (nstate) { case IEEE80211_S_INIT: case IEEE80211_S_SCAN: break; case IEEE80211_S_AUTH: iwm_bring_down_firmware(sc, vap); if ((error = iwm_auth(vap, sc)) != 0) { device_printf(sc->sc_dev, "%s: could not move to auth state: %d\n", __func__, error); iwm_bring_down_firmware(sc, vap); IWM_UNLOCK(sc); IEEE80211_LOCK(ic); return 1; } break; case IEEE80211_S_ASSOC: /* * EBS may be disabled due to previous failures reported by FW. * Reset EBS status here assuming environment has been changed. */ sc->last_ebs_successful = TRUE; break; case IEEE80211_S_RUN: in = IWM_NODE(vap->iv_bss); /* Update the association state, now we have it all */ /* (eg associd comes in at this point */ error = iwm_update_sta(sc, in); if (error != 0) { device_printf(sc->sc_dev, "%s: failed to update STA\n", __func__); IWM_UNLOCK(sc); IEEE80211_LOCK(ic); return error; } in->in_assoc = 1; error = iwm_mac_ctxt_changed(sc, vap); if (error != 0) { device_printf(sc->sc_dev, "%s: failed to update MAC: %d\n", __func__, error); } iwm_sf_update(sc, vap, FALSE); iwm_enable_beacon_filter(sc, ivp); iwm_power_update_mac(sc); iwm_update_quotas(sc, ivp); int rix = ieee80211_ratectl_rate(&in->in_ni, NULL, 0); iwm_setrates(sc, in, rix); if ((error = iwm_send_lq_cmd(sc, &in->in_lq, TRUE)) != 0) { device_printf(sc->sc_dev, "%s: IWM_LQ_CMD failed: %d\n", __func__, error); } iwm_led_enable(sc); break; default: break; } IWM_UNLOCK(sc); IEEE80211_LOCK(ic); return (ivp->iv_newstate(vap, nstate, arg)); } void iwm_endscan_cb(void *arg, int pending) { struct iwm_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; IWM_DPRINTF(sc, IWM_DEBUG_SCAN | IWM_DEBUG_TRACE, "%s: scan ended\n", __func__); ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps)); } static int iwm_send_bt_init_conf(struct iwm_softc *sc) { struct iwm_bt_coex_cmd bt_cmd; bt_cmd.mode = htole32(IWM_BT_COEX_WIFI); bt_cmd.enabled_modules = htole32(IWM_BT_COEX_HIGH_BAND_RET); return iwm_send_cmd_pdu(sc, IWM_BT_CONFIG, 0, sizeof(bt_cmd), &bt_cmd); } static boolean_t iwm_is_lar_supported(struct iwm_softc *sc) { boolean_t nvm_lar = sc->nvm_data->lar_enabled; boolean_t tlv_lar = iwm_fw_has_capa(sc, IWM_UCODE_TLV_CAPA_LAR_SUPPORT); if (iwm_lar_disable) return FALSE; /* * Enable LAR only if it is supported by the FW (TLV) && * enabled in the NVM */ if (sc->cfg->device_family >= IWM_DEVICE_FAMILY_8000) return nvm_lar && tlv_lar; else return tlv_lar; } static boolean_t iwm_is_wifi_mcc_supported(struct iwm_softc *sc) { return iwm_fw_has_api(sc, IWM_UCODE_TLV_API_WIFI_MCC_UPDATE) || iwm_fw_has_capa(sc, IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC); } static int iwm_send_update_mcc_cmd(struct iwm_softc *sc, const char *alpha2) { struct iwm_mcc_update_cmd mcc_cmd; struct iwm_host_cmd hcmd = { .id = IWM_MCC_UPDATE_CMD, .flags = (IWM_CMD_SYNC | IWM_CMD_WANT_SKB), .data = { &mcc_cmd }, }; int ret; #ifdef IWM_DEBUG struct iwm_rx_packet *pkt; struct iwm_mcc_update_resp_v1 *mcc_resp_v1 = NULL; - struct iwm_mcc_update_resp *mcc_resp; + struct iwm_mcc_update_resp_v2 *mcc_resp; int n_channels; uint16_t mcc; #endif int resp_v2 = iwm_fw_has_capa(sc, IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V2); if (!iwm_is_lar_supported(sc)) { IWM_DPRINTF(sc, IWM_DEBUG_LAR, "%s: no LAR support\n", __func__); return 0; } memset(&mcc_cmd, 0, sizeof(mcc_cmd)); mcc_cmd.mcc = htole16(alpha2[0] << 8 | alpha2[1]); if (iwm_is_wifi_mcc_supported(sc)) mcc_cmd.source_id = IWM_MCC_SOURCE_GET_CURRENT; else mcc_cmd.source_id = IWM_MCC_SOURCE_OLD_FW; if (resp_v2) hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd); else hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd_v1); IWM_DPRINTF(sc, IWM_DEBUG_LAR, "send MCC update to FW with '%c%c' src = %d\n", alpha2[0], alpha2[1], mcc_cmd.source_id); ret = iwm_send_cmd(sc, &hcmd); if (ret) return ret; #ifdef IWM_DEBUG pkt = hcmd.resp_pkt; /* Extract MCC response */ if (resp_v2) { mcc_resp = (void *)pkt->data; mcc = mcc_resp->mcc; n_channels = le32toh(mcc_resp->n_channels); } else { mcc_resp_v1 = (void *)pkt->data; mcc = mcc_resp_v1->mcc; n_channels = le32toh(mcc_resp_v1->n_channels); } /* W/A for a FW/NVM issue - returns 0x00 for the world domain */ if (mcc == 0) mcc = 0x3030; /* "00" - world */ IWM_DPRINTF(sc, IWM_DEBUG_LAR, "regulatory domain '%c%c' (%d channels available)\n", mcc >> 8, mcc & 0xff, n_channels); #endif iwm_free_resp(sc, &hcmd); return 0; } static void iwm_tt_tx_backoff(struct iwm_softc *sc, uint32_t backoff) { struct iwm_host_cmd cmd = { .id = IWM_REPLY_THERMAL_MNG_BACKOFF, .len = { sizeof(uint32_t), }, .data = { &backoff, }, }; if (iwm_send_cmd(sc, &cmd) != 0) { device_printf(sc->sc_dev, "failed to change thermal tx backoff\n"); } } static int iwm_init_hw(struct iwm_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; int error, i, ac; sc->sf_state = IWM_SF_UNINIT; if ((error = iwm_start_hw(sc)) != 0) { printf("iwm_start_hw: failed %d\n", error); return error; } if ((error = iwm_run_init_ucode(sc, 0)) != 0) { printf("iwm_run_init_ucode: failed %d\n", error); return error; } /* * should stop and start HW since that INIT * image just loaded */ iwm_stop_device(sc); sc->sc_ps_disabled = FALSE; if ((error = iwm_start_hw(sc)) != 0) { device_printf(sc->sc_dev, "could not initialize hardware\n"); return error; } /* omstart, this time with the regular firmware */ error = iwm_load_ucode_wait_alive(sc, IWM_UCODE_REGULAR); if (error) { device_printf(sc->sc_dev, "could not load firmware\n"); goto error; } error = iwm_sf_update(sc, NULL, FALSE); if (error) device_printf(sc->sc_dev, "Failed to initialize Smart Fifo\n"); if ((error = iwm_send_bt_init_conf(sc)) != 0) { device_printf(sc->sc_dev, "bt init conf failed\n"); goto error; } error = iwm_send_tx_ant_cfg(sc, iwm_get_valid_tx_ant(sc)); if (error != 0) { device_printf(sc->sc_dev, "antenna config failed\n"); goto error; } /* Send phy db control command and then phy db calibration */ if ((error = iwm_send_phy_db_data(sc->sc_phy_db)) != 0) goto error; if ((error = iwm_send_phy_cfg_cmd(sc)) != 0) { device_printf(sc->sc_dev, "phy_cfg_cmd failed\n"); goto error; } /* Add auxiliary station for scanning */ if ((error = iwm_add_aux_sta(sc)) != 0) { device_printf(sc->sc_dev, "add_aux_sta failed\n"); goto error; } for (i = 0; i < IWM_NUM_PHY_CTX; i++) { /* * The channel used here isn't relevant as it's * going to be overwritten in the other flows. * For now use the first channel we have. */ if ((error = iwm_phy_ctxt_add(sc, &sc->sc_phyctxt[i], &ic->ic_channels[1], 1, 1)) != 0) goto error; } /* Initialize tx backoffs to the minimum. */ if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) iwm_tt_tx_backoff(sc, 0); if (iwm_config_ltr(sc) != 0) device_printf(sc->sc_dev, "PCIe LTR configuration failed\n"); error = iwm_power_update_device(sc); if (error) goto error; if ((error = iwm_send_update_mcc_cmd(sc, "ZZ")) != 0) goto error; if (iwm_fw_has_capa(sc, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) { if ((error = iwm_config_umac_scan(sc)) != 0) goto error; } /* Enable Tx queues. */ for (ac = 0; ac < WME_NUM_AC; ac++) { error = iwm_enable_txq(sc, IWM_STATION_ID, ac, iwm_ac_to_tx_fifo[ac]); if (error) goto error; } if ((error = iwm_disable_beacon_filter(sc)) != 0) { device_printf(sc->sc_dev, "failed to disable beacon filter\n"); goto error; } return 0; error: iwm_stop_device(sc); return error; } /* Allow multicast from our BSSID. */ static int iwm_allow_mcast(struct ieee80211vap *vap, struct iwm_softc *sc) { struct ieee80211_node *ni = vap->iv_bss; struct iwm_mcast_filter_cmd *cmd; size_t size; int error; size = roundup(sizeof(*cmd), 4); cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); if (cmd == NULL) return ENOMEM; cmd->filter_own = 1; cmd->port_id = 0; cmd->count = 0; cmd->pass_all = 1; IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid); error = iwm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD, IWM_CMD_SYNC, size, cmd); free(cmd, M_DEVBUF); return (error); } /* * ifnet interfaces */ static void iwm_init(struct iwm_softc *sc) { int error; if (sc->sc_flags & IWM_FLAG_HW_INITED) { return; } sc->sc_generation++; sc->sc_flags &= ~IWM_FLAG_STOPPED; if ((error = iwm_init_hw(sc)) != 0) { printf("iwm_init_hw failed %d\n", error); iwm_stop(sc); return; } /* * Ok, firmware loaded and we are jogging */ sc->sc_flags |= IWM_FLAG_HW_INITED; } static int iwm_transmit(struct ieee80211com *ic, struct mbuf *m) { struct iwm_softc *sc; int error; sc = ic->ic_softc; IWM_LOCK(sc); if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) { IWM_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->sc_snd, m); if (error) { IWM_UNLOCK(sc); return (error); } iwm_start(sc); IWM_UNLOCK(sc); return (0); } /* * Dequeue packets from sendq and call send. */ static void iwm_start(struct iwm_softc *sc) { struct ieee80211_node *ni; struct mbuf *m; int ac = 0; IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "->%s\n", __func__); while (sc->qfullmsk == 0 && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; if (iwm_tx(sc, m, ni, ac) != 0) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); continue; } if (sc->sc_tx_timer == 0) { callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc); } sc->sc_tx_timer = 15; } IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "<-%s\n", __func__); } static void iwm_stop(struct iwm_softc *sc) { sc->sc_flags &= ~IWM_FLAG_HW_INITED; sc->sc_flags |= IWM_FLAG_STOPPED; sc->sc_generation++; iwm_led_blink_stop(sc); sc->sc_tx_timer = 0; iwm_stop_device(sc); sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING; } static void iwm_watchdog(void *arg) { struct iwm_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; if (sc->sc_attached == 0) return; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { device_printf(sc->sc_dev, "device timeout\n"); #ifdef IWM_DEBUG iwm_nic_error(sc); #endif ieee80211_restart_all(ic); counter_u64_add(sc->sc_ic.ic_oerrors, 1); return; } callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc); } } static void iwm_parent(struct ieee80211com *ic) { struct iwm_softc *sc = ic->ic_softc; int startall = 0; int rfkill = 0; IWM_LOCK(sc); if (ic->ic_nrunning > 0) { if (!(sc->sc_flags & IWM_FLAG_HW_INITED)) { iwm_init(sc); rfkill = iwm_check_rfkill(sc); if (!rfkill) startall = 1; } } else if (sc->sc_flags & IWM_FLAG_HW_INITED) iwm_stop(sc); IWM_UNLOCK(sc); if (startall) ieee80211_start_all(ic); else if (rfkill) taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task); } static void iwm_rftoggle_task(void *arg, int npending __unused) { struct iwm_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; int rfkill; IWM_LOCK(sc); rfkill = iwm_check_rfkill(sc); IWM_UNLOCK(sc); if (rfkill) { device_printf(sc->sc_dev, "%s: rfkill switch, disabling interface\n", __func__); ieee80211_suspend_all(ic); ieee80211_notify_radio(ic, 0); } else { device_printf(sc->sc_dev, "%s: rfkill cleared, re-enabling interface\n", __func__); ieee80211_resume_all(ic); ieee80211_notify_radio(ic, 1); } } /* * The interrupt side of things */ /* * error dumping routines are from iwlwifi/mvm/utils.c */ /* * Note: This structure is read from the device with IO accesses, * and the reading already does the endian conversion. As it is * read with uint32_t-sized accesses, any members with a different size * need to be ordered correctly though! */ struct iwm_error_event_table { uint32_t valid; /* (nonzero) valid, (0) log is empty */ uint32_t error_id; /* type of error */ uint32_t trm_hw_status0; /* TRM HW status */ uint32_t trm_hw_status1; /* TRM HW status */ uint32_t blink2; /* branch link */ uint32_t ilink1; /* interrupt link */ uint32_t ilink2; /* interrupt link */ uint32_t data1; /* error-specific data */ uint32_t data2; /* error-specific data */ uint32_t data3; /* error-specific data */ uint32_t bcon_time; /* beacon timer */ uint32_t tsf_low; /* network timestamp function timer */ uint32_t tsf_hi; /* network timestamp function timer */ uint32_t gp1; /* GP1 timer register */ uint32_t gp2; /* GP2 timer register */ uint32_t fw_rev_type; /* firmware revision type */ uint32_t major; /* uCode version major */ uint32_t minor; /* uCode version minor */ uint32_t hw_ver; /* HW Silicon version */ uint32_t brd_ver; /* HW board version */ uint32_t log_pc; /* log program counter */ uint32_t frame_ptr; /* frame pointer */ uint32_t stack_ptr; /* stack pointer */ uint32_t hcmd; /* last host command header */ uint32_t isr0; /* isr status register LMPM_NIC_ISR0: * rxtx_flag */ uint32_t isr1; /* isr status register LMPM_NIC_ISR1: * host_flag */ uint32_t isr2; /* isr status register LMPM_NIC_ISR2: * enc_flag */ uint32_t isr3; /* isr status register LMPM_NIC_ISR3: * time_flag */ uint32_t isr4; /* isr status register LMPM_NIC_ISR4: * wico interrupt */ uint32_t last_cmd_id; /* last HCMD id handled by the firmware */ uint32_t wait_event; /* wait event() caller address */ uint32_t l2p_control; /* L2pControlField */ uint32_t l2p_duration; /* L2pDurationField */ uint32_t l2p_mhvalid; /* L2pMhValidBits */ uint32_t l2p_addr_match; /* L2pAddrMatchStat */ uint32_t lmpm_pmg_sel; /* indicate which clocks are turned on * (LMPM_PMG_SEL) */ uint32_t u_timestamp; /* indicate when the date and time of the * compilation */ uint32_t flow_handler; /* FH read/write pointers, RX credit */ } __packed /* LOG_ERROR_TABLE_API_S_VER_3 */; /* * UMAC error struct - relevant starting from family 8000 chip. * Note: This structure is read from the device with IO accesses, * and the reading already does the endian conversion. As it is * read with u32-sized accesses, any members with a different size * need to be ordered correctly though! */ struct iwm_umac_error_event_table { uint32_t valid; /* (nonzero) valid, (0) log is empty */ uint32_t error_id; /* type of error */ uint32_t blink1; /* branch link */ uint32_t blink2; /* branch link */ uint32_t ilink1; /* interrupt link */ uint32_t ilink2; /* interrupt link */ uint32_t data1; /* error-specific data */ uint32_t data2; /* error-specific data */ uint32_t data3; /* error-specific data */ uint32_t umac_major; uint32_t umac_minor; uint32_t frame_pointer; /* core register 27*/ uint32_t stack_pointer; /* core register 28 */ uint32_t cmd_header; /* latest host cmd sent to UMAC */ uint32_t nic_isr_pref; /* ISR status register */ } __packed; #define ERROR_START_OFFSET (1 * sizeof(uint32_t)) #define ERROR_ELEM_SIZE (7 * sizeof(uint32_t)) #ifdef IWM_DEBUG struct { const char *name; uint8_t num; } advanced_lookup[] = { { "NMI_INTERRUPT_WDG", 0x34 }, { "SYSASSERT", 0x35 }, { "UCODE_VERSION_MISMATCH", 0x37 }, { "BAD_COMMAND", 0x38 }, { "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C }, { "FATAL_ERROR", 0x3D }, { "NMI_TRM_HW_ERR", 0x46 }, { "NMI_INTERRUPT_TRM", 0x4C }, { "NMI_INTERRUPT_BREAK_POINT", 0x54 }, { "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C }, { "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 }, { "NMI_INTERRUPT_HOST", 0x66 }, { "NMI_INTERRUPT_ACTION_PT", 0x7C }, { "NMI_INTERRUPT_UNKNOWN", 0x84 }, { "NMI_INTERRUPT_INST_ACTION_PT", 0x86 }, { "ADVANCED_SYSASSERT", 0 }, }; static const char * iwm_desc_lookup(uint32_t num) { int i; for (i = 0; i < nitems(advanced_lookup) - 1; i++) if (advanced_lookup[i].num == num) return advanced_lookup[i].name; /* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */ return advanced_lookup[i].name; } static void iwm_nic_umac_error(struct iwm_softc *sc) { struct iwm_umac_error_event_table table; uint32_t base; base = sc->umac_error_event_table; if (base < 0x800000) { device_printf(sc->sc_dev, "Invalid error log pointer 0x%08x\n", base); return; } if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) { device_printf(sc->sc_dev, "reading errlog failed\n"); return; } if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) { device_printf(sc->sc_dev, "Start UMAC Error Log Dump:\n"); device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n", sc->sc_flags, table.valid); } device_printf(sc->sc_dev, "0x%08X | %s\n", table.error_id, iwm_desc_lookup(table.error_id)); device_printf(sc->sc_dev, "0x%08X | umac branchlink1\n", table.blink1); device_printf(sc->sc_dev, "0x%08X | umac branchlink2\n", table.blink2); device_printf(sc->sc_dev, "0x%08X | umac interruptlink1\n", table.ilink1); device_printf(sc->sc_dev, "0x%08X | umac interruptlink2\n", table.ilink2); device_printf(sc->sc_dev, "0x%08X | umac data1\n", table.data1); device_printf(sc->sc_dev, "0x%08X | umac data2\n", table.data2); device_printf(sc->sc_dev, "0x%08X | umac data3\n", table.data3); device_printf(sc->sc_dev, "0x%08X | umac major\n", table.umac_major); device_printf(sc->sc_dev, "0x%08X | umac minor\n", table.umac_minor); device_printf(sc->sc_dev, "0x%08X | frame pointer\n", table.frame_pointer); device_printf(sc->sc_dev, "0x%08X | stack pointer\n", table.stack_pointer); device_printf(sc->sc_dev, "0x%08X | last host cmd\n", table.cmd_header); device_printf(sc->sc_dev, "0x%08X | isr status reg\n", table.nic_isr_pref); } /* * Support for dumping the error log seemed like a good idea ... * but it's mostly hex junk and the only sensible thing is the * hw/ucode revision (which we know anyway). Since it's here, * I'll just leave it in, just in case e.g. the Intel guys want to * help us decipher some "ADVANCED_SYSASSERT" later. */ static void iwm_nic_error(struct iwm_softc *sc) { struct iwm_error_event_table table; uint32_t base; device_printf(sc->sc_dev, "dumping device error log\n"); base = sc->error_event_table[0]; if (base < 0x800000) { device_printf(sc->sc_dev, "Invalid error log pointer 0x%08x\n", base); return; } if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) { device_printf(sc->sc_dev, "reading errlog failed\n"); return; } if (!table.valid) { device_printf(sc->sc_dev, "errlog not found, skipping\n"); return; } if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) { device_printf(sc->sc_dev, "Start Error Log Dump:\n"); device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n", sc->sc_flags, table.valid); } device_printf(sc->sc_dev, "0x%08X | %-28s\n", table.error_id, iwm_desc_lookup(table.error_id)); device_printf(sc->sc_dev, "%08X | trm_hw_status0\n", table.trm_hw_status0); device_printf(sc->sc_dev, "%08X | trm_hw_status1\n", table.trm_hw_status1); device_printf(sc->sc_dev, "%08X | branchlink2\n", table.blink2); device_printf(sc->sc_dev, "%08X | interruptlink1\n", table.ilink1); device_printf(sc->sc_dev, "%08X | interruptlink2\n", table.ilink2); device_printf(sc->sc_dev, "%08X | data1\n", table.data1); device_printf(sc->sc_dev, "%08X | data2\n", table.data2); device_printf(sc->sc_dev, "%08X | data3\n", table.data3); device_printf(sc->sc_dev, "%08X | beacon time\n", table.bcon_time); device_printf(sc->sc_dev, "%08X | tsf low\n", table.tsf_low); device_printf(sc->sc_dev, "%08X | tsf hi\n", table.tsf_hi); device_printf(sc->sc_dev, "%08X | time gp1\n", table.gp1); device_printf(sc->sc_dev, "%08X | time gp2\n", table.gp2); device_printf(sc->sc_dev, "%08X | uCode revision type\n", table.fw_rev_type); device_printf(sc->sc_dev, "%08X | uCode version major\n", table.major); device_printf(sc->sc_dev, "%08X | uCode version minor\n", table.minor); device_printf(sc->sc_dev, "%08X | hw version\n", table.hw_ver); device_printf(sc->sc_dev, "%08X | board version\n", table.brd_ver); device_printf(sc->sc_dev, "%08X | hcmd\n", table.hcmd); device_printf(sc->sc_dev, "%08X | isr0\n", table.isr0); device_printf(sc->sc_dev, "%08X | isr1\n", table.isr1); device_printf(sc->sc_dev, "%08X | isr2\n", table.isr2); device_printf(sc->sc_dev, "%08X | isr3\n", table.isr3); device_printf(sc->sc_dev, "%08X | isr4\n", table.isr4); device_printf(sc->sc_dev, "%08X | last cmd Id\n", table.last_cmd_id); device_printf(sc->sc_dev, "%08X | wait_event\n", table.wait_event); device_printf(sc->sc_dev, "%08X | l2p_control\n", table.l2p_control); device_printf(sc->sc_dev, "%08X | l2p_duration\n", table.l2p_duration); device_printf(sc->sc_dev, "%08X | l2p_mhvalid\n", table.l2p_mhvalid); device_printf(sc->sc_dev, "%08X | l2p_addr_match\n", table.l2p_addr_match); device_printf(sc->sc_dev, "%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel); device_printf(sc->sc_dev, "%08X | timestamp\n", table.u_timestamp); device_printf(sc->sc_dev, "%08X | flow_handler\n", table.flow_handler); if (sc->umac_error_event_table) iwm_nic_umac_error(sc); } #endif static void iwm_handle_rxb(struct iwm_softc *sc, struct mbuf *m) { struct ieee80211com *ic = &sc->sc_ic; struct iwm_cmd_response *cresp; struct mbuf *m1; uint32_t offset = 0; uint32_t maxoff = IWM_RBUF_SIZE; uint32_t nextoff; boolean_t stolen = FALSE; #define HAVEROOM(a) \ ((a) + sizeof(uint32_t) + sizeof(struct iwm_cmd_header) < maxoff) while (HAVEROOM(offset)) { struct iwm_rx_packet *pkt = mtodoff(m, struct iwm_rx_packet *, offset); int qid, idx, code, len; qid = pkt->hdr.qid; idx = pkt->hdr.idx; code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code); /* * randomly get these from the firmware, no idea why. * they at least seem harmless, so just ignore them for now */ if ((pkt->hdr.code == 0 && (qid & ~0x80) == 0 && idx == 0) || pkt->len_n_flags == htole32(IWM_FH_RSCSR_FRAME_INVALID)) { break; } IWM_DPRINTF(sc, IWM_DEBUG_INTR, "rx packet qid=%d idx=%d type=%x\n", qid & ~0x80, pkt->hdr.idx, code); len = iwm_rx_packet_len(pkt); len += sizeof(uint32_t); /* account for status word */ nextoff = offset + roundup2(len, IWM_FH_RSCSR_FRAME_ALIGN); iwm_notification_wait_notify(sc->sc_notif_wait, code, pkt); switch (code) { case IWM_REPLY_RX_PHY_CMD: iwm_rx_rx_phy_cmd(sc, pkt); break; case IWM_REPLY_RX_MPDU_CMD: { /* * If this is the last frame in the RX buffer, we * can directly feed the mbuf to the sharks here. */ struct iwm_rx_packet *nextpkt = mtodoff(m, struct iwm_rx_packet *, nextoff); if (!HAVEROOM(nextoff) || (nextpkt->hdr.code == 0 && (nextpkt->hdr.qid & ~0x80) == 0 && nextpkt->hdr.idx == 0) || (nextpkt->len_n_flags == htole32(IWM_FH_RSCSR_FRAME_INVALID))) { if (iwm_rx_mpdu(sc, m, offset, stolen)) { stolen = FALSE; /* Make sure we abort the loop */ nextoff = maxoff; } break; } /* * Use m_copym instead of m_split, because that * makes it easier to keep a valid rx buffer in * the ring, when iwm_rx_mpdu() fails. * * We need to start m_copym() at offset 0, to get the * M_PKTHDR flag preserved. */ m1 = m_copym(m, 0, M_COPYALL, M_NOWAIT); if (m1) { if (iwm_rx_mpdu(sc, m1, offset, stolen)) stolen = TRUE; else m_freem(m1); } break; } case IWM_TX_CMD: iwm_rx_tx_cmd(sc, pkt); break; case IWM_MISSED_BEACONS_NOTIFICATION: { struct iwm_missed_beacons_notif *resp; int missed; /* XXX look at mac_id to determine interface ID */ struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); resp = (void *)pkt->data; missed = le32toh(resp->consec_missed_beacons); IWM_DPRINTF(sc, IWM_DEBUG_BEACON | IWM_DEBUG_STATE, "%s: MISSED_BEACON: mac_id=%d, " "consec_since_last_rx=%d, consec=%d, num_expect=%d " "num_rx=%d\n", __func__, le32toh(resp->mac_id), le32toh(resp->consec_missed_beacons_since_last_rx), le32toh(resp->consec_missed_beacons), le32toh(resp->num_expected_beacons), le32toh(resp->num_recvd_beacons)); /* Be paranoid */ if (vap == NULL) break; /* XXX no net80211 locking? */ if (vap->iv_state == IEEE80211_S_RUN && (ic->ic_flags & IEEE80211_F_SCAN) == 0) { if (missed > vap->iv_bmissthreshold) { /* XXX bad locking; turn into task */ IWM_UNLOCK(sc); ieee80211_beacon_miss(ic); IWM_LOCK(sc); } } break; } case IWM_MFUART_LOAD_NOTIFICATION: break; case IWM_ALIVE: break; case IWM_CALIB_RES_NOTIF_PHY_DB: break; case IWM_STATISTICS_NOTIFICATION: iwm_handle_rx_statistics(sc, pkt); break; case IWM_NVM_ACCESS_CMD: case IWM_MCC_UPDATE_CMD: if (sc->sc_wantresp == (((qid & ~0x80) << 16) | idx)) { memcpy(sc->sc_cmd_resp, pkt, sizeof(sc->sc_cmd_resp)); } break; case IWM_MCC_CHUB_UPDATE_CMD: { struct iwm_mcc_chub_notif *notif; notif = (void *)pkt->data; sc->sc_fw_mcc[0] = (notif->mcc & 0xff00) >> 8; sc->sc_fw_mcc[1] = notif->mcc & 0xff; sc->sc_fw_mcc[2] = '\0'; IWM_DPRINTF(sc, IWM_DEBUG_LAR, "fw source %d sent CC '%s'\n", notif->source_id, sc->sc_fw_mcc); break; } case IWM_DTS_MEASUREMENT_NOTIFICATION: case IWM_WIDE_ID(IWM_PHY_OPS_GROUP, IWM_DTS_MEASUREMENT_NOTIF_WIDE): { struct iwm_dts_measurement_notif_v1 *notif; if (iwm_rx_packet_payload_len(pkt) < sizeof(*notif)) { device_printf(sc->sc_dev, "Invalid DTS_MEASUREMENT_NOTIFICATION\n"); break; } notif = (void *)pkt->data; IWM_DPRINTF(sc, IWM_DEBUG_TEMP, "IWM_DTS_MEASUREMENT_NOTIFICATION - %d\n", notif->temp); break; } case IWM_PHY_CONFIGURATION_CMD: case IWM_TX_ANT_CONFIGURATION_CMD: case IWM_ADD_STA: case IWM_MAC_CONTEXT_CMD: case IWM_REPLY_SF_CFG_CMD: case IWM_POWER_TABLE_CMD: case IWM_LTR_CONFIG: case IWM_PHY_CONTEXT_CMD: case IWM_BINDING_CONTEXT_CMD: case IWM_TIME_EVENT_CMD: case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_CFG_CMD): case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_REQ_UMAC): case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_ABORT_UMAC): case IWM_SCAN_OFFLOAD_REQUEST_CMD: case IWM_SCAN_OFFLOAD_ABORT_CMD: case IWM_REPLY_BEACON_FILTERING_CMD: case IWM_MAC_PM_POWER_TABLE: case IWM_TIME_QUOTA_CMD: case IWM_REMOVE_STA: case IWM_TXPATH_FLUSH: case IWM_LQ_CMD: case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_FW_PAGING_BLOCK_CMD): case IWM_BT_CONFIG: case IWM_REPLY_THERMAL_MNG_BACKOFF: cresp = (void *)pkt->data; if (sc->sc_wantresp == (((qid & ~0x80) << 16) | idx)) { memcpy(sc->sc_cmd_resp, pkt, sizeof(*pkt)+sizeof(*cresp)); } break; /* ignore */ case IWM_PHY_DB_CMD: break; case IWM_INIT_COMPLETE_NOTIF: break; case IWM_SCAN_OFFLOAD_COMPLETE: iwm_rx_lmac_scan_complete_notif(sc, pkt); if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) { sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING; ieee80211_runtask(ic, &sc->sc_es_task); } break; case IWM_SCAN_ITERATION_COMPLETE: { struct iwm_lmac_scan_complete_notif *notif; notif = (void *)pkt->data; break; } case IWM_SCAN_COMPLETE_UMAC: iwm_rx_umac_scan_complete_notif(sc, pkt); if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) { sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING; ieee80211_runtask(ic, &sc->sc_es_task); } break; case IWM_SCAN_ITERATION_COMPLETE_UMAC: { struct iwm_umac_scan_iter_complete_notif *notif; notif = (void *)pkt->data; IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "UMAC scan iteration " "complete, status=0x%x, %d channels scanned\n", notif->status, notif->scanned_channels); break; } case IWM_REPLY_ERROR: { struct iwm_error_resp *resp; resp = (void *)pkt->data; device_printf(sc->sc_dev, "firmware error 0x%x, cmd 0x%x\n", le32toh(resp->error_type), resp->cmd_id); break; } case IWM_TIME_EVENT_NOTIFICATION: iwm_rx_time_event_notif(sc, pkt); break; /* * Firmware versions 21 and 22 generate some DEBUG_LOG_MSG * messages. Just ignore them for now. */ case IWM_DEBUG_LOG_MSG: break; case IWM_MCAST_FILTER_CMD: break; case IWM_SCD_QUEUE_CFG: { struct iwm_scd_txq_cfg_rsp *rsp; rsp = (void *)pkt->data; IWM_DPRINTF(sc, IWM_DEBUG_CMD, "queue cfg token=0x%x sta_id=%d " "tid=%d scd_queue=%d\n", rsp->token, rsp->sta_id, rsp->tid, rsp->scd_queue); break; } default: device_printf(sc->sc_dev, "code %x, frame %d/%d %x unhandled\n", code, qid & ~0x80, idx, pkt->len_n_flags); break; } /* * Why test bit 0x80? The Linux driver: * * There is one exception: uCode sets bit 15 when it * originates the response/notification, i.e. when the * response/notification is not a direct response to a * command sent by the driver. For example, uCode issues * IWM_REPLY_RX when it sends a received frame to the driver; * it is not a direct response to any driver command. * * Ok, so since when is 7 == 15? Well, the Linux driver * uses a slightly different format for pkt->hdr, and "qid" * is actually the upper byte of a two-byte field. */ if (!(qid & (1 << 7))) iwm_cmd_done(sc, pkt); offset = nextoff; } if (stolen) m_freem(m); #undef HAVEROOM } /* * Process an IWM_CSR_INT_BIT_FH_RX or IWM_CSR_INT_BIT_SW_RX interrupt. * Basic structure from if_iwn */ static void iwm_notif_intr(struct iwm_softc *sc) { int count; uint32_t wreg; uint16_t hw; bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map, BUS_DMASYNC_POSTREAD); if (sc->cfg->mqrx_supported) { count = IWM_RX_MQ_RING_COUNT; wreg = IWM_RFH_Q0_FRBDCB_WIDX_TRG; } else { count = IWM_RX_LEGACY_RING_COUNT; wreg = IWM_FH_RSCSR_CHNL0_WPTR; } hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff; /* * Process responses */ while (sc->rxq.cur != hw) { struct iwm_rx_ring *ring = &sc->rxq; struct iwm_rx_data *data = &ring->data[ring->cur]; bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); IWM_DPRINTF(sc, IWM_DEBUG_INTR, "%s: hw = %d cur = %d\n", __func__, hw, ring->cur); iwm_handle_rxb(sc, data->m); ring->cur = (ring->cur + 1) % count; } /* * Tell the firmware that it can reuse the ring entries that * we have just processed. * Seems like the hardware gets upset unless we align * the write by 8?? */ hw = (hw == 0) ? count - 1 : hw - 1; IWM_WRITE(sc, wreg, rounddown2(hw, 8)); } static void iwm_intr(void *arg) { struct iwm_softc *sc = arg; int handled = 0; int r1, r2, rv = 0; int isperiodic = 0; IWM_LOCK(sc); IWM_WRITE(sc, IWM_CSR_INT_MASK, 0); if (sc->sc_flags & IWM_FLAG_USE_ICT) { uint32_t *ict = sc->ict_dma.vaddr; int tmp; tmp = htole32(ict[sc->ict_cur]); if (!tmp) goto out_ena; /* * ok, there was something. keep plowing until we have all. */ r1 = r2 = 0; while (tmp) { r1 |= tmp; ict[sc->ict_cur] = 0; sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT; tmp = htole32(ict[sc->ict_cur]); } /* this is where the fun begins. don't ask */ if (r1 == 0xffffffff) r1 = 0; /* i am not expected to understand this */ if (r1 & 0xc0000) r1 |= 0x8000; r1 = (0xff & r1) | ((0xff00 & r1) << 16); } else { r1 = IWM_READ(sc, IWM_CSR_INT); /* "hardware gone" (where, fishing?) */ if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) goto out; r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS); } if (r1 == 0 && r2 == 0) { goto out_ena; } IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask); /* Safely ignore these bits for debug checks below */ r1 &= ~(IWM_CSR_INT_BIT_ALIVE | IWM_CSR_INT_BIT_SCD); if (r1 & IWM_CSR_INT_BIT_SW_ERR) { int i; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); #ifdef IWM_DEBUG iwm_nic_error(sc); #endif /* Dump driver status (TX and RX rings) while we're here. */ device_printf(sc->sc_dev, "driver status:\n"); for (i = 0; i < IWM_MAX_QUEUES; i++) { struct iwm_tx_ring *ring = &sc->txq[i]; device_printf(sc->sc_dev, " tx ring %2d: qid=%-2d cur=%-3d " "queued=%-3d\n", i, ring->qid, ring->cur, ring->queued); } device_printf(sc->sc_dev, " rx ring: cur=%d\n", sc->rxq.cur); device_printf(sc->sc_dev, " 802.11 state %d\n", (vap == NULL) ? -1 : vap->iv_state); /* Reset our firmware state tracking. */ sc->sc_firmware_state = 0; /* Don't stop the device; just do a VAP restart */ IWM_UNLOCK(sc); if (vap == NULL) { printf("%s: null vap\n", __func__); return; } device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; " "restarting\n", __func__, vap->iv_state); ieee80211_restart_all(ic); return; } if (r1 & IWM_CSR_INT_BIT_HW_ERR) { handled |= IWM_CSR_INT_BIT_HW_ERR; device_printf(sc->sc_dev, "hardware error, stopping device\n"); iwm_stop(sc); rv = 1; goto out; } /* firmware chunk loaded */ if (r1 & IWM_CSR_INT_BIT_FH_TX) { IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK); handled |= IWM_CSR_INT_BIT_FH_TX; sc->sc_fw_chunk_done = 1; wakeup(&sc->sc_fw); } if (r1 & IWM_CSR_INT_BIT_RF_KILL) { handled |= IWM_CSR_INT_BIT_RF_KILL; taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task); } /* * The Linux driver uses periodic interrupts to avoid races. * We cargo-cult like it's going out of fashion. */ if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) { handled |= IWM_CSR_INT_BIT_RX_PERIODIC; IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC); if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0) IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS); isperiodic = 1; } if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) || isperiodic) { handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX); IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK); iwm_notif_intr(sc); /* enable periodic interrupt, see above */ if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) && !isperiodic) IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_ENA); } if (__predict_false(r1 & ~handled)) IWM_DPRINTF(sc, IWM_DEBUG_INTR, "%s: unhandled interrupts: %x\n", __func__, r1); rv = 1; out_ena: iwm_restore_interrupts(sc); out: IWM_UNLOCK(sc); return; } /* * Autoconf glue-sniffing */ #define PCI_VENDOR_INTEL 0x8086 #define PCI_PRODUCT_INTEL_WL_3160_1 0x08b3 #define PCI_PRODUCT_INTEL_WL_3160_2 0x08b4 #define PCI_PRODUCT_INTEL_WL_3165_1 0x3165 #define PCI_PRODUCT_INTEL_WL_3165_2 0x3166 #define PCI_PRODUCT_INTEL_WL_3168_1 0x24fb #define PCI_PRODUCT_INTEL_WL_7260_1 0x08b1 #define PCI_PRODUCT_INTEL_WL_7260_2 0x08b2 #define PCI_PRODUCT_INTEL_WL_7265_1 0x095a #define PCI_PRODUCT_INTEL_WL_7265_2 0x095b #define PCI_PRODUCT_INTEL_WL_8260_1 0x24f3 #define PCI_PRODUCT_INTEL_WL_8260_2 0x24f4 #define PCI_PRODUCT_INTEL_WL_8265_1 0x24fd #define PCI_PRODUCT_INTEL_WL_9560_1 0x9df0 #define PCI_PRODUCT_INTEL_WL_9560_2 0xa370 #define PCI_PRODUCT_INTEL_WL_9560_3 0x31dc #define PCI_PRODUCT_INTEL_WL_9260_1 0x2526 static const struct iwm_devices { uint16_t device; const struct iwm_cfg *cfg; } iwm_devices[] = { { PCI_PRODUCT_INTEL_WL_3160_1, &iwm3160_cfg }, { PCI_PRODUCT_INTEL_WL_3160_2, &iwm3160_cfg }, { PCI_PRODUCT_INTEL_WL_3165_1, &iwm3165_cfg }, { PCI_PRODUCT_INTEL_WL_3165_2, &iwm3165_cfg }, { PCI_PRODUCT_INTEL_WL_3168_1, &iwm3168_cfg }, { PCI_PRODUCT_INTEL_WL_7260_1, &iwm7260_cfg }, { PCI_PRODUCT_INTEL_WL_7260_2, &iwm7260_cfg }, { PCI_PRODUCT_INTEL_WL_7265_1, &iwm7265_cfg }, { PCI_PRODUCT_INTEL_WL_7265_2, &iwm7265_cfg }, { PCI_PRODUCT_INTEL_WL_8260_1, &iwm8260_cfg }, { PCI_PRODUCT_INTEL_WL_8260_2, &iwm8260_cfg }, { PCI_PRODUCT_INTEL_WL_8265_1, &iwm8265_cfg }, { PCI_PRODUCT_INTEL_WL_9560_1, &iwm9560_cfg }, { PCI_PRODUCT_INTEL_WL_9560_2, &iwm9560_cfg }, { PCI_PRODUCT_INTEL_WL_9560_3, &iwm9560_cfg }, { PCI_PRODUCT_INTEL_WL_9260_1, &iwm9260_cfg }, }; static int iwm_probe(device_t dev) { int i; for (i = 0; i < nitems(iwm_devices); i++) { if (pci_get_vendor(dev) == PCI_VENDOR_INTEL && pci_get_device(dev) == iwm_devices[i].device) { device_set_desc(dev, iwm_devices[i].cfg->name); return (BUS_PROBE_DEFAULT); } } return (ENXIO); } static int iwm_dev_check(device_t dev) { struct iwm_softc *sc; uint16_t devid; int i; sc = device_get_softc(dev); devid = pci_get_device(dev); for (i = 0; i < nitems(iwm_devices); i++) { if (iwm_devices[i].device == devid) { sc->cfg = iwm_devices[i].cfg; return (0); } } device_printf(dev, "unknown adapter type\n"); return ENXIO; } /* PCI registers */ #define PCI_CFG_RETRY_TIMEOUT 0x041 static int iwm_pci_attach(device_t dev) { struct iwm_softc *sc; int count, error, rid; uint16_t reg; sc = device_get_softc(dev); /* We disable the RETRY_TIMEOUT register (0x41) to keep * PCI Tx retries from interfering with C3 CPU state */ pci_write_config(dev, PCI_CFG_RETRY_TIMEOUT, 0x00, 1); /* Enable bus-mastering and hardware bug workaround. */ pci_enable_busmaster(dev); reg = pci_read_config(dev, PCIR_STATUS, sizeof(reg)); /* if !MSI */ if (reg & PCIM_STATUS_INTxSTATE) { reg &= ~PCIM_STATUS_INTxSTATE; } pci_write_config(dev, PCIR_STATUS, reg, sizeof(reg)); rid = PCIR_BAR(0); sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->sc_mem == NULL) { device_printf(sc->sc_dev, "can't map mem space\n"); return (ENXIO); } sc->sc_st = rman_get_bustag(sc->sc_mem); sc->sc_sh = rman_get_bushandle(sc->sc_mem); /* Install interrupt handler. */ count = 1; rid = 0; if (pci_alloc_msi(dev, &count) == 0) rid = 1; sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE)); if (sc->sc_irq == NULL) { device_printf(dev, "can't map interrupt\n"); return (ENXIO); } error = bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, iwm_intr, sc, &sc->sc_ih); if (sc->sc_ih == NULL) { device_printf(dev, "can't establish interrupt"); return (ENXIO); } sc->sc_dmat = bus_get_dma_tag(sc->sc_dev); return (0); } static void iwm_pci_detach(device_t dev) { struct iwm_softc *sc = device_get_softc(dev); if (sc->sc_irq != NULL) { bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih); bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->sc_irq), sc->sc_irq); pci_release_msi(dev); } if (sc->sc_mem != NULL) bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->sc_mem), sc->sc_mem); } static int iwm_attach(device_t dev) { struct iwm_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; int error; int txq_i, i; sc->sc_dev = dev; sc->sc_attached = 1; IWM_LOCK_INIT(sc); mbufq_init(&sc->sc_snd, ifqmaxlen); callout_init_mtx(&sc->sc_watchdog_to, &sc->sc_mtx, 0); callout_init_mtx(&sc->sc_led_blink_to, &sc->sc_mtx, 0); TASK_INIT(&sc->sc_es_task, 0, iwm_endscan_cb, sc); TASK_INIT(&sc->sc_rftoggle_task, 0, iwm_rftoggle_task, sc); sc->sc_tq = taskqueue_create("iwm_taskq", M_WAITOK, taskqueue_thread_enqueue, &sc->sc_tq); error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwm_taskq"); if (error != 0) { device_printf(dev, "can't start taskq thread, error %d\n", error); goto fail; } error = iwm_dev_check(dev); if (error != 0) goto fail; sc->sc_notif_wait = iwm_notification_wait_init(sc); if (sc->sc_notif_wait == NULL) { device_printf(dev, "failed to init notification wait struct\n"); goto fail; } sc->sf_state = IWM_SF_UNINIT; /* Init phy db */ sc->sc_phy_db = iwm_phy_db_init(sc); if (!sc->sc_phy_db) { device_printf(dev, "Cannot init phy_db\n"); goto fail; } /* Set EBS as successful as long as not stated otherwise by the FW. */ sc->last_ebs_successful = TRUE; /* PCI attach */ error = iwm_pci_attach(dev); if (error != 0) goto fail; sc->sc_wantresp = -1; sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV); /* * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have * changed, and now the revision step also includes bit 0-1 (no more * "dash" value). To keep hw_rev backwards compatible - we'll store it * in the old format. */ if (sc->cfg->device_family >= IWM_DEVICE_FAMILY_8000) { int ret; uint32_t hw_step; sc->sc_hw_rev = (sc->sc_hw_rev & 0xfff0) | (IWM_CSR_HW_REV_STEP(sc->sc_hw_rev << 2) << 2); if (iwm_prepare_card_hw(sc) != 0) { device_printf(dev, "could not initialize hardware\n"); goto fail; } /* * In order to recognize C step the driver should read the * chip version id located at the AUX bus MISC address. */ IWM_SETBITS(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE); DELAY(2); ret = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000); if (!ret) { device_printf(sc->sc_dev, "Failed to wake up the nic\n"); goto fail; } if (iwm_nic_lock(sc)) { hw_step = iwm_read_prph(sc, IWM_WFPM_CTRL_REG); hw_step |= IWM_ENABLE_WFPM; iwm_write_prph(sc, IWM_WFPM_CTRL_REG, hw_step); hw_step = iwm_read_prph(sc, IWM_AUX_MISC_REG); hw_step = (hw_step >> IWM_HW_STEP_LOCATION_BITS) & 0xF; if (hw_step == 0x3) sc->sc_hw_rev = (sc->sc_hw_rev & 0xFFFFFFF3) | (IWM_SILICON_C_STEP << 2); iwm_nic_unlock(sc); } else { device_printf(sc->sc_dev, "Failed to lock the nic\n"); goto fail; } } /* special-case 7265D, it has the same PCI IDs. */ if (sc->cfg == &iwm7265_cfg && (sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK) == IWM_CSR_HW_REV_TYPE_7265D) { sc->cfg = &iwm7265d_cfg; } /* Allocate DMA memory for firmware transfers. */ if ((error = iwm_alloc_fwmem(sc)) != 0) { device_printf(dev, "could not allocate memory for firmware\n"); goto fail; } /* Allocate "Keep Warm" page. */ if ((error = iwm_alloc_kw(sc)) != 0) { device_printf(dev, "could not allocate keep warm page\n"); goto fail; } /* We use ICT interrupts */ if ((error = iwm_alloc_ict(sc)) != 0) { device_printf(dev, "could not allocate ICT table\n"); goto fail; } /* Allocate TX scheduler "rings". */ if ((error = iwm_alloc_sched(sc)) != 0) { device_printf(dev, "could not allocate TX scheduler rings\n"); goto fail; } /* Allocate TX rings */ for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) { if ((error = iwm_alloc_tx_ring(sc, &sc->txq[txq_i], txq_i)) != 0) { device_printf(dev, "could not allocate TX ring %d\n", txq_i); goto fail; } } /* Allocate RX ring. */ if ((error = iwm_alloc_rx_ring(sc, &sc->rxq)) != 0) { device_printf(dev, "could not allocate RX ring\n"); goto fail; } /* Clear pending interrupts. */ IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(sc->sc_dev); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ /* Set device capabilities. */ ic->ic_caps = IEEE80211_C_STA | IEEE80211_C_WPA | /* WPA/RSN */ IEEE80211_C_WME | IEEE80211_C_PMGT | IEEE80211_C_SHSLOT | /* short slot time supported */ IEEE80211_C_SHPREAMBLE /* short preamble supported */ // IEEE80211_C_BGSCAN /* capable of bg scanning */ ; /* Advertise full-offload scanning */ ic->ic_flags_ext = IEEE80211_FEXT_SCAN_OFFLOAD; for (i = 0; i < nitems(sc->sc_phyctxt); i++) { sc->sc_phyctxt[i].id = i; sc->sc_phyctxt[i].color = 0; sc->sc_phyctxt[i].ref = 0; sc->sc_phyctxt[i].channel = NULL; } /* Default noise floor */ sc->sc_noise = -96; /* Max RSSI */ sc->sc_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM; #ifdef IWM_DEBUG SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging"); #endif error = iwm_read_firmware(sc); if (error) { goto fail; } else if (sc->sc_fw.fw_fp == NULL) { /* * XXX Add a solution for properly deferring firmware load * during bootup. */ goto fail; } else { sc->sc_preinit_hook.ich_func = iwm_preinit; sc->sc_preinit_hook.ich_arg = sc; if (config_intrhook_establish(&sc->sc_preinit_hook) != 0) { device_printf(dev, "config_intrhook_establish failed\n"); goto fail; } } IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, "<-%s\n", __func__); return 0; /* Free allocated memory if something failed during attachment. */ fail: iwm_detach_local(sc, 0); return ENXIO; } static int iwm_is_valid_ether_addr(uint8_t *addr) { char zero_addr[IEEE80211_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 }; if ((addr[0] & 1) || IEEE80211_ADDR_EQ(zero_addr, addr)) return (FALSE); return (TRUE); } static int iwm_wme_update(struct ieee80211com *ic) { #define IWM_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ struct iwm_softc *sc = ic->ic_softc; struct chanAccParams chp; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct iwm_vap *ivp = IWM_VAP(vap); struct iwm_node *in; struct wmeParams tmp[WME_NUM_AC]; int aci, error; if (vap == NULL) return (0); ieee80211_wme_ic_getparams(ic, &chp); IEEE80211_LOCK(ic); for (aci = 0; aci < WME_NUM_AC; aci++) tmp[aci] = chp.cap_wmeParams[aci]; IEEE80211_UNLOCK(ic); IWM_LOCK(sc); for (aci = 0; aci < WME_NUM_AC; aci++) { const struct wmeParams *ac = &tmp[aci]; ivp->queue_params[aci].aifsn = ac->wmep_aifsn; ivp->queue_params[aci].cw_min = IWM_EXP2(ac->wmep_logcwmin); ivp->queue_params[aci].cw_max = IWM_EXP2(ac->wmep_logcwmax); ivp->queue_params[aci].edca_txop = IEEE80211_TXOP_TO_US(ac->wmep_txopLimit); } ivp->have_wme = TRUE; if (ivp->is_uploaded && vap->iv_bss != NULL) { in = IWM_NODE(vap->iv_bss); if (in->in_assoc) { if ((error = iwm_mac_ctxt_changed(sc, vap)) != 0) { device_printf(sc->sc_dev, "%s: failed to update MAC\n", __func__); } } } IWM_UNLOCK(sc); return (0); #undef IWM_EXP2 } static void iwm_preinit(void *arg) { struct iwm_softc *sc = arg; device_t dev = sc->sc_dev; struct ieee80211com *ic = &sc->sc_ic; int error; IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, "->%s\n", __func__); IWM_LOCK(sc); if ((error = iwm_start_hw(sc)) != 0) { device_printf(dev, "could not initialize hardware\n"); IWM_UNLOCK(sc); goto fail; } error = iwm_run_init_ucode(sc, 1); iwm_stop_device(sc); if (error) { IWM_UNLOCK(sc); goto fail; } device_printf(dev, "hw rev 0x%x, fw ver %s, address %s\n", sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK, sc->sc_fwver, ether_sprintf(sc->nvm_data->hw_addr)); /* not all hardware can do 5GHz band */ if (!sc->nvm_data->sku_cap_band_52GHz_enable) memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0, sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A])); IWM_UNLOCK(sc); iwm_init_channel_map(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, ic->ic_channels); /* * At this point we've committed - if we fail to do setup, * we now also have to tear down the net80211 state. */ ieee80211_ifattach(ic); ic->ic_vap_create = iwm_vap_create; ic->ic_vap_delete = iwm_vap_delete; ic->ic_raw_xmit = iwm_raw_xmit; ic->ic_node_alloc = iwm_node_alloc; ic->ic_scan_start = iwm_scan_start; ic->ic_scan_end = iwm_scan_end; ic->ic_update_mcast = iwm_update_mcast; ic->ic_getradiocaps = iwm_init_channel_map; ic->ic_set_channel = iwm_set_channel; ic->ic_scan_curchan = iwm_scan_curchan; ic->ic_scan_mindwell = iwm_scan_mindwell; ic->ic_wme.wme_update = iwm_wme_update; ic->ic_parent = iwm_parent; ic->ic_transmit = iwm_transmit; iwm_radiotap_attach(sc); if (bootverbose) ieee80211_announce(ic); IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, "<-%s\n", __func__); config_intrhook_disestablish(&sc->sc_preinit_hook); return; fail: config_intrhook_disestablish(&sc->sc_preinit_hook); iwm_detach_local(sc, 0); } /* * Attach the interface to 802.11 radiotap. */ static void iwm_radiotap_attach(struct iwm_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, "->%s begin\n", __func__); ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), IWM_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), IWM_RX_RADIOTAP_PRESENT); IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, "->%s end\n", __func__); } static struct ieee80211vap * iwm_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct iwm_vap *ivp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return NULL; ivp = malloc(sizeof(struct iwm_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &ivp->iv_vap; ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); vap->iv_bmissthreshold = 10; /* override default */ /* Override with driver methods. */ ivp->iv_newstate = vap->iv_newstate; vap->iv_newstate = iwm_newstate; ivp->id = IWM_DEFAULT_MACID; ivp->color = IWM_DEFAULT_COLOR; ivp->have_wme = FALSE; ivp->ps_disabled = FALSE; ieee80211_ratectl_init(vap); /* Complete setup. */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); ic->ic_opmode = opmode; return vap; } static void iwm_vap_delete(struct ieee80211vap *vap) { struct iwm_vap *ivp = IWM_VAP(vap); ieee80211_ratectl_deinit(vap); ieee80211_vap_detach(vap); free(ivp, M_80211_VAP); } static void iwm_xmit_queue_drain(struct iwm_softc *sc) { struct mbuf *m; struct ieee80211_node *ni; while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; ieee80211_free_node(ni); m_freem(m); } } static void iwm_scan_start(struct ieee80211com *ic) { struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct iwm_softc *sc = ic->ic_softc; int error; IWM_LOCK(sc); if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) { /* This should not be possible */ device_printf(sc->sc_dev, "%s: Previous scan not completed yet\n", __func__); } if (iwm_fw_has_capa(sc, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) error = iwm_umac_scan(sc); else error = iwm_lmac_scan(sc); if (error != 0) { device_printf(sc->sc_dev, "could not initiate scan\n"); IWM_UNLOCK(sc); ieee80211_cancel_scan(vap); } else { sc->sc_flags |= IWM_FLAG_SCAN_RUNNING; iwm_led_blink_start(sc); IWM_UNLOCK(sc); } } static void iwm_scan_end(struct ieee80211com *ic) { struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct iwm_softc *sc = ic->ic_softc; IWM_LOCK(sc); iwm_led_blink_stop(sc); if (vap->iv_state == IEEE80211_S_RUN) iwm_led_enable(sc); if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) { /* * Removing IWM_FLAG_SCAN_RUNNING now, is fine because * both iwm_scan_end and iwm_scan_start run in the ic->ic_tq * taskqueue. */ sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING; iwm_scan_stop_wait(sc); } IWM_UNLOCK(sc); /* * Make sure we don't race, if sc_es_task is still enqueued here. * This is to make sure that it won't call ieee80211_scan_done * when we have already started the next scan. */ taskqueue_cancel(ic->ic_tq, &sc->sc_es_task, NULL); } static void iwm_update_mcast(struct ieee80211com *ic) { } static void iwm_set_channel(struct ieee80211com *ic) { } static void iwm_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) { } static void iwm_scan_mindwell(struct ieee80211_scan_state *ss) { } void iwm_init_task(void *arg1) { struct iwm_softc *sc = arg1; IWM_LOCK(sc); while (sc->sc_flags & IWM_FLAG_BUSY) msleep(&sc->sc_flags, &sc->sc_mtx, 0, "iwmpwr", 0); sc->sc_flags |= IWM_FLAG_BUSY; iwm_stop(sc); if (sc->sc_ic.ic_nrunning > 0) iwm_init(sc); sc->sc_flags &= ~IWM_FLAG_BUSY; wakeup(&sc->sc_flags); IWM_UNLOCK(sc); } static int iwm_resume(device_t dev) { struct iwm_softc *sc = device_get_softc(dev); int do_reinit = 0; /* * We disable the RETRY_TIMEOUT register (0x41) to keep * PCI Tx retries from interfering with C3 CPU state. */ pci_write_config(dev, PCI_CFG_RETRY_TIMEOUT, 0x00, 1); if (!sc->sc_attached) return 0; iwm_init_task(device_get_softc(dev)); IWM_LOCK(sc); if (sc->sc_flags & IWM_FLAG_SCANNING) { sc->sc_flags &= ~IWM_FLAG_SCANNING; do_reinit = 1; } IWM_UNLOCK(sc); if (do_reinit) ieee80211_resume_all(&sc->sc_ic); return 0; } static int iwm_suspend(device_t dev) { int do_stop = 0; struct iwm_softc *sc = device_get_softc(dev); do_stop = !! (sc->sc_ic.ic_nrunning > 0); if (!sc->sc_attached) return (0); ieee80211_suspend_all(&sc->sc_ic); if (do_stop) { IWM_LOCK(sc); iwm_stop(sc); sc->sc_flags |= IWM_FLAG_SCANNING; IWM_UNLOCK(sc); } return (0); } static int iwm_detach_local(struct iwm_softc *sc, int do_net80211) { struct iwm_fw_info *fw = &sc->sc_fw; device_t dev = sc->sc_dev; int i; if (!sc->sc_attached) return 0; sc->sc_attached = 0; if (do_net80211) { ieee80211_draintask(&sc->sc_ic, &sc->sc_es_task); } iwm_stop_device(sc); taskqueue_drain_all(sc->sc_tq); taskqueue_free(sc->sc_tq); if (do_net80211) { IWM_LOCK(sc); iwm_xmit_queue_drain(sc); IWM_UNLOCK(sc); ieee80211_ifdetach(&sc->sc_ic); } callout_drain(&sc->sc_led_blink_to); callout_drain(&sc->sc_watchdog_to); iwm_phy_db_free(sc->sc_phy_db); sc->sc_phy_db = NULL; iwm_free_nvm_data(sc->nvm_data); /* Free descriptor rings */ iwm_free_rx_ring(sc, &sc->rxq); for (i = 0; i < nitems(sc->txq); i++) iwm_free_tx_ring(sc, &sc->txq[i]); /* Free firmware */ if (fw->fw_fp != NULL) iwm_fw_info_free(fw); /* Free scheduler */ iwm_dma_contig_free(&sc->sched_dma); iwm_dma_contig_free(&sc->ict_dma); iwm_dma_contig_free(&sc->kw_dma); iwm_dma_contig_free(&sc->fw_dma); iwm_free_fw_paging(sc); /* Finished with the hardware - detach things */ iwm_pci_detach(dev); if (sc->sc_notif_wait != NULL) { iwm_notification_wait_free(sc->sc_notif_wait); sc->sc_notif_wait = NULL; } IWM_LOCK_DESTROY(sc); return (0); } static int iwm_detach(device_t dev) { struct iwm_softc *sc = device_get_softc(dev); return (iwm_detach_local(sc, 1)); } static device_method_t iwm_pci_methods[] = { /* Device interface */ DEVMETHOD(device_probe, iwm_probe), DEVMETHOD(device_attach, iwm_attach), DEVMETHOD(device_detach, iwm_detach), DEVMETHOD(device_suspend, iwm_suspend), DEVMETHOD(device_resume, iwm_resume), DEVMETHOD_END }; static driver_t iwm_pci_driver = { "iwm", iwm_pci_methods, sizeof (struct iwm_softc) }; static devclass_t iwm_devclass; DRIVER_MODULE(iwm, pci, iwm_pci_driver, iwm_devclass, NULL, NULL); MODULE_PNP_INFO("U16:device;P:#;T:vendor=0x8086", pci, iwm_pci_driver, iwm_devices, nitems(iwm_devices)); MODULE_DEPEND(iwm, firmware, 1, 1, 1); MODULE_DEPEND(iwm, pci, 1, 1, 1); MODULE_DEPEND(iwm, wlan, 1, 1, 1); diff --git a/sys/dev/iwm/if_iwm_binding.c b/sys/dev/iwm/if_iwm_binding.c index 28207c998d77..6b0b19b7515c 100644 --- a/sys/dev/iwm/if_iwm_binding.c +++ b/sys/dev/iwm/if_iwm_binding.c @@ -1,254 +1,254 @@ /* $OpenBSD: if_iwm.c,v 1.39 2015/03/23 00:35:19 jsg Exp $ */ /* * Copyright (c) 2014 genua mbh * Copyright (c) 2014 Fixup Software Ltd. * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /*- * Based on BSD-licensed source modules in the Linux iwlwifi driver, * which were used as the reference documentation for this implementation. * * Driver version we are currently based off of is * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd) * *********************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called COPYING. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * BSD LICENSE * * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_wlan.h" #include "opt_iwm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * BEGIN iwlwifi/mvm/binding.c */ struct iwm_iface_iterator_data { int idx; struct iwm_phy_ctxt *phyctxt; uint16_t ids[IWM_MAX_MACS_IN_BINDING]; int16_t colors[IWM_MAX_MACS_IN_BINDING]; }; static int iwm_binding_cmd(struct iwm_softc *sc, uint32_t action, struct iwm_iface_iterator_data *data) { - struct iwm_binding_cmd cmd; + struct iwm_binding_cmd_v1 cmd; struct iwm_phy_ctxt *phyctxt = data->phyctxt; int i, ret; uint32_t status; memset(&cmd, 0, sizeof(cmd)); cmd.id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(phyctxt->id, phyctxt->color)); cmd.action = htole32(action); cmd.phy = htole32(IWM_FW_CMD_ID_AND_COLOR(phyctxt->id, phyctxt->color)); for (i = 0; i < IWM_MAX_MACS_IN_BINDING; i++) cmd.macs[i] = htole32(IWM_FW_CTXT_INVALID); for (i = 0; i < data->idx; i++) cmd.macs[i] = htole32(IWM_FW_CMD_ID_AND_COLOR(data->ids[i], data->colors[i])); status = 0; ret = iwm_send_cmd_pdu_status(sc, IWM_BINDING_CONTEXT_CMD, sizeof(cmd), &cmd, &status); if (ret) { device_printf(sc->sc_dev, "Failed to send binding (action:%d): %d\n", action, ret); return ret; } if (status) { device_printf(sc->sc_dev, "Binding command failed: %u\n", status); ret = EIO; } return ret; } static int iwm_binding_update(struct iwm_softc *sc, struct iwm_vap *ivp, struct iwm_phy_ctxt *phyctxt, boolean_t add) { struct iwm_iface_iterator_data data = { .phyctxt = phyctxt, }; uint32_t action; if (add) action = IWM_FW_CTXT_ACTION_ADD; else action = IWM_FW_CTXT_ACTION_REMOVE; if (add) { data.ids[0] = ivp->id; data.colors[0] = ivp->color; data.idx++; } return iwm_binding_cmd(sc, action, &data); } int iwm_binding_add_vif(struct iwm_softc *sc, struct iwm_vap *ivp) { if (!ivp->phy_ctxt) return EINVAL; /* * Update SF - Disable if needed. if this fails, SF might still be on * while many macs are bound, which is forbidden - so fail the binding. */ if (iwm_sf_update(sc, &ivp->iv_vap, FALSE)) return EINVAL; return iwm_binding_update(sc, ivp, ivp->phy_ctxt, TRUE); } int iwm_binding_remove_vif(struct iwm_softc *sc, struct iwm_vap *ivp) { int ret; if (!ivp->phy_ctxt) return EINVAL; ret = iwm_binding_update(sc, ivp, ivp->phy_ctxt, FALSE); if (!ret) { if (iwm_sf_update(sc, &ivp->iv_vap, TRUE)) device_printf(sc->sc_dev, "Failed to update SF state\n"); } return ret; } diff --git a/sys/dev/iwm/if_iwm_phy_db.c b/sys/dev/iwm/if_iwm_phy_db.c index 40a0a05adb15..08ded1121d03 100644 --- a/sys/dev/iwm/if_iwm_phy_db.c +++ b/sys/dev/iwm/if_iwm_phy_db.c @@ -1,612 +1,577 @@ /* $OpenBSD: if_iwm.c,v 1.39 2015/03/23 00:35:19 jsg Exp $ */ /* * Copyright (c) 2014 genua mbh * Copyright (c) 2014 Fixup Software Ltd. * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /*- * Based on BSD-licensed source modules in the Linux iwlwifi driver, * which were used as the reference documentation for this implementation. * * Driver version we are currently based off of is * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd) * *********************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called COPYING. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * * BSD LICENSE * * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 2007-2010 Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); #include "opt_wlan.h" #include "opt_iwm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "if_iwmreg.h" #include "if_iwmvar.h" #include "if_iwm_debug.h" #include "if_iwm_util.h" #include "if_iwm_phy_db.h" #define CHANNEL_NUM_SIZE 4 /* num of channels in calib_ch size */ struct iwm_phy_db_entry { uint16_t size; uint8_t *data; }; /** * struct iwm_phy_db - stores phy configuration and calibration data. * * @cfg: phy configuration. * @calib_nch: non channel specific calibration data. * @calib_ch: channel specific calibration data. * @n_group_papd: number of entries in papd channel group. * @calib_ch_group_papd: calibration data related to papd channel group. * @n_group_txp: number of entries in tx power channel group. * @calib_ch_group_txp: calibration data related to tx power chanel group. */ struct iwm_phy_db { struct iwm_phy_db_entry cfg; struct iwm_phy_db_entry calib_nch; int n_group_papd; struct iwm_phy_db_entry *calib_ch_group_papd; int n_group_txp; struct iwm_phy_db_entry *calib_ch_group_txp; struct iwm_softc *sc; }; -enum iwm_phy_db_section_type { - IWM_PHY_DB_CFG = 1, - IWM_PHY_DB_CALIB_NCH, - IWM_PHY_DB_UNUSED, - IWM_PHY_DB_CALIB_CHG_PAPD, - IWM_PHY_DB_CALIB_CHG_TXP, - IWM_PHY_DB_MAX -}; - -#define PHY_DB_CMD 0x6c - -/* - * phy db - configure operational ucode - */ -struct iwm_phy_db_cmd { - uint16_t type; - uint16_t length; - uint8_t data[]; -} __packed; - -/* for parsing of tx power channel group data that comes from the firmware*/ -struct iwm_phy_db_chg_txp { - uint32_t space; - uint16_t max_channel_idx; -} __packed; - -/* - * phy db - Receive phy db chunk after calibrations - */ -struct iwm_calib_res_notif_phy_db { - uint16_t type; - uint16_t length; - uint8_t data[]; -} __packed; - struct iwm_phy_db * iwm_phy_db_init(struct iwm_softc *sc) { struct iwm_phy_db *phy_db = malloc(sizeof(struct iwm_phy_db), M_DEVBUF, M_NOWAIT | M_ZERO); if (!phy_db) return phy_db; phy_db->sc = sc; phy_db->n_group_txp = -1; phy_db->n_group_papd = -1; /* TODO: add default values of the phy db. */ return phy_db; } /* * get phy db section: returns a pointer to a phy db section specified by * type and channel group id. */ static struct iwm_phy_db_entry * iwm_phy_db_get_section(struct iwm_phy_db *phy_db, enum iwm_phy_db_section_type type, uint16_t chg_id) { if (!phy_db || type >= IWM_PHY_DB_MAX) return NULL; switch (type) { case IWM_PHY_DB_CFG: return &phy_db->cfg; case IWM_PHY_DB_CALIB_NCH: return &phy_db->calib_nch; case IWM_PHY_DB_CALIB_CHG_PAPD: if (chg_id >= phy_db->n_group_papd) return NULL; return &phy_db->calib_ch_group_papd[chg_id]; case IWM_PHY_DB_CALIB_CHG_TXP: if (chg_id >= phy_db->n_group_txp) return NULL; return &phy_db->calib_ch_group_txp[chg_id]; default: return NULL; } return NULL; } static void iwm_phy_db_free_section(struct iwm_phy_db *phy_db, enum iwm_phy_db_section_type type, uint16_t chg_id) { struct iwm_phy_db_entry *entry = iwm_phy_db_get_section(phy_db, type, chg_id); if (!entry) return; if (entry->data != NULL) free(entry->data, M_DEVBUF); entry->data = NULL; entry->size = 0; } void iwm_phy_db_free(struct iwm_phy_db *phy_db) { int i; if (!phy_db) return; iwm_phy_db_free_section(phy_db, IWM_PHY_DB_CFG, 0); iwm_phy_db_free_section(phy_db, IWM_PHY_DB_CALIB_NCH, 0); for (i = 0; i < phy_db->n_group_papd; i++) iwm_phy_db_free_section(phy_db, IWM_PHY_DB_CALIB_CHG_PAPD, i); if (phy_db->calib_ch_group_papd != NULL) free(phy_db->calib_ch_group_papd, M_DEVBUF); for (i = 0; i < phy_db->n_group_txp; i++) iwm_phy_db_free_section(phy_db, IWM_PHY_DB_CALIB_CHG_TXP, i); if (phy_db->calib_ch_group_txp != NULL) free(phy_db->calib_ch_group_txp, M_DEVBUF); free(phy_db, M_DEVBUF); } int iwm_phy_db_set_section(struct iwm_phy_db *phy_db, struct iwm_rx_packet *pkt) { struct iwm_calib_res_notif_phy_db *phy_db_notif = (struct iwm_calib_res_notif_phy_db *)pkt->data; enum iwm_phy_db_section_type type = le16toh(phy_db_notif->type); uint16_t size = le16toh(phy_db_notif->length); struct iwm_phy_db_entry *entry; uint16_t chg_id = 0; if (!phy_db) return EINVAL; if (type == IWM_PHY_DB_CALIB_CHG_PAPD) { chg_id = le16toh(*(uint16_t *)phy_db_notif->data); if (phy_db && !phy_db->calib_ch_group_papd) { /* * Firmware sends the largest index first, so we can use * it to know how much we should allocate. */ phy_db->calib_ch_group_papd = malloc( (chg_id + 1) * sizeof(struct iwm_phy_db_entry), M_DEVBUF, M_NOWAIT | M_ZERO); if (!phy_db->calib_ch_group_papd) return ENOMEM; phy_db->n_group_papd = chg_id + 1; } } else if (type == IWM_PHY_DB_CALIB_CHG_TXP) { chg_id = le16toh(*(uint16_t *)phy_db_notif->data); if (phy_db && !phy_db->calib_ch_group_txp) { /* * Firmware sends the largest index first, so we can use * it to know how much we should allocate. */ phy_db->calib_ch_group_txp = malloc( (chg_id + 1) * sizeof(struct iwm_phy_db_entry), M_DEVBUF, M_NOWAIT | M_ZERO); if (!phy_db->calib_ch_group_txp) return ENOMEM; phy_db->n_group_txp = chg_id + 1; } } entry = iwm_phy_db_get_section(phy_db, type, chg_id); if (!entry) return EINVAL; if (entry->data != NULL) free(entry->data, M_DEVBUF); entry->data = malloc(size, M_DEVBUF, M_NOWAIT); if (!entry->data) { entry->size = 0; return ENOMEM; } memcpy(entry->data, phy_db_notif->data, size); entry->size = size; IWM_DPRINTF(phy_db->sc, IWM_DEBUG_RESET, "%s(%d): [PHYDB]SET: Type %d , Size: %d\n", __func__, __LINE__, type, size); return 0; } static int is_valid_channel(uint16_t ch_id) { if (ch_id <= 14 || (36 <= ch_id && ch_id <= 64 && ch_id % 4 == 0) || (100 <= ch_id && ch_id <= 140 && ch_id % 4 == 0) || (145 <= ch_id && ch_id <= 165 && ch_id % 4 == 1)) return 1; return 0; } static uint8_t ch_id_to_ch_index(uint16_t ch_id) { if (!is_valid_channel(ch_id)) return 0xff; if (ch_id <= 14) return ch_id - 1; if (ch_id <= 64) return (ch_id + 20) / 4; if (ch_id <= 140) return (ch_id - 12) / 4; return (ch_id - 13) / 4; } static uint16_t channel_id_to_papd(uint16_t ch_id) { if (!is_valid_channel(ch_id)) return 0xff; if (1 <= ch_id && ch_id <= 14) return 0; if (36 <= ch_id && ch_id <= 64) return 1; if (100 <= ch_id && ch_id <= 140) return 2; return 3; } static uint16_t channel_id_to_txp(struct iwm_phy_db *phy_db, uint16_t ch_id) { struct iwm_phy_db_chg_txp *txp_chg; int i; uint8_t ch_index = ch_id_to_ch_index(ch_id); if (ch_index == 0xff) return 0xff; for (i = 0; i < phy_db->n_group_txp; i++) { txp_chg = (void *)phy_db->calib_ch_group_txp[i].data; if (!txp_chg) return 0xff; /* * Looking for the first channel group that its max channel is * higher then wanted channel. */ if (le16toh(txp_chg->max_channel_idx) >= ch_index) return i; } return 0xff; } static int iwm_phy_db_get_section_data(struct iwm_phy_db *phy_db, uint32_t type, uint8_t **data, uint16_t *size, uint16_t ch_id) { struct iwm_phy_db_entry *entry; uint16_t ch_group_id = 0; if (!phy_db) return EINVAL; /* find wanted channel group */ if (type == IWM_PHY_DB_CALIB_CHG_PAPD) ch_group_id = channel_id_to_papd(ch_id); else if (type == IWM_PHY_DB_CALIB_CHG_TXP) ch_group_id = channel_id_to_txp(phy_db, ch_id); entry = iwm_phy_db_get_section(phy_db, type, ch_group_id); if (!entry) return EINVAL; *data = entry->data; *size = entry->size; IWM_DPRINTF(phy_db->sc, IWM_DEBUG_RESET, "%s(%d): [PHYDB] GET: Type %d , Size: %d\n", __func__, __LINE__, type, *size); return 0; } static int iwm_send_phy_db_cmd(struct iwm_phy_db *phy_db, uint16_t type, uint16_t length, void *data) { struct iwm_phy_db_cmd phy_db_cmd; struct iwm_host_cmd cmd = { - .id = PHY_DB_CMD, + .id = IWM_PHY_DB_CMD, }; IWM_DPRINTF(phy_db->sc, IWM_DEBUG_RESET, "Sending PHY-DB hcmd of type %d, of length %d\n", type, length); /* Set phy db cmd variables */ phy_db_cmd.type = htole16(type); phy_db_cmd.length = htole16(length); /* Set hcmd variables */ cmd.data[0] = &phy_db_cmd; cmd.len[0] = sizeof(struct iwm_phy_db_cmd); cmd.data[1] = data; cmd.len[1] = length; #ifdef notyet cmd.dataflags[1] = IWM_HCMD_DFL_NOCOPY; #endif return iwm_send_cmd(phy_db->sc, &cmd); } static int iwm_phy_db_send_all_channel_groups(struct iwm_phy_db *phy_db, enum iwm_phy_db_section_type type, uint8_t max_ch_groups) { uint16_t i; int err; struct iwm_phy_db_entry *entry; /* Send all the channel specific groups to operational fw */ for (i = 0; i < max_ch_groups; i++) { entry = iwm_phy_db_get_section(phy_db, type, i); if (!entry) return EINVAL; if (!entry->size) continue; /* Send the requested PHY DB section */ err = iwm_send_phy_db_cmd(phy_db, type, entry->size, entry->data); if (err) { device_printf(phy_db->sc->sc_dev, "Can't SEND phy_db section %d (%d), err %d\n", type, i, err); return err; } IWM_DPRINTF(phy_db->sc, IWM_DEBUG_CMD, "Sent PHY_DB HCMD, type = %d num = %d\n", type, i); } return 0; } int iwm_send_phy_db_data(struct iwm_phy_db *phy_db) { uint8_t *data = NULL; uint16_t size = 0; int err; IWM_DPRINTF(phy_db->sc, IWM_DEBUG_CMD | IWM_DEBUG_RESET, "%s: Sending phy db data and configuration to runtime image\n", __func__); /* Send PHY DB CFG section */ err = iwm_phy_db_get_section_data(phy_db, IWM_PHY_DB_CFG, &data, &size, 0); if (err) { device_printf(phy_db->sc->sc_dev, "%s: Cannot get Phy DB cfg section, %d\n", __func__, err); return err; } err = iwm_send_phy_db_cmd(phy_db, IWM_PHY_DB_CFG, size, data); if (err) { device_printf(phy_db->sc->sc_dev, "%s: Cannot send HCMD of Phy DB cfg section, %d\n", __func__, err); return err; } err = iwm_phy_db_get_section_data(phy_db, IWM_PHY_DB_CALIB_NCH, &data, &size, 0); if (err) { device_printf(phy_db->sc->sc_dev, "%s: Cannot get Phy DB non specific channel section, " "%d\n", __func__, err); return err; } err = iwm_send_phy_db_cmd(phy_db, IWM_PHY_DB_CALIB_NCH, size, data); if (err) { device_printf(phy_db->sc->sc_dev, "%s: Cannot send HCMD of Phy DB non specific channel " "sect, %d\n", __func__, err); return err; } /* Send all the TXP channel specific data */ err = iwm_phy_db_send_all_channel_groups(phy_db, IWM_PHY_DB_CALIB_CHG_PAPD, phy_db->n_group_papd); if (err) { device_printf(phy_db->sc->sc_dev, "%s: Cannot send channel specific PAPD groups, %d\n", __func__, err); return err; } /* Send all the TXP channel specific data */ err = iwm_phy_db_send_all_channel_groups(phy_db, IWM_PHY_DB_CALIB_CHG_TXP, phy_db->n_group_txp); if (err) { device_printf(phy_db->sc->sc_dev, "%s: Cannot send channel specific TX power groups, " "%d\n", __func__, err); return err; } IWM_DPRINTF(phy_db->sc, IWM_DEBUG_CMD | IWM_DEBUG_RESET, "%s: Finished sending phy db non channel data\n", __func__); return 0; } diff --git a/sys/dev/iwm/if_iwm_scan.c b/sys/dev/iwm/if_iwm_scan.c index cdf7985d9a97..efba76ad502a 100644 --- a/sys/dev/iwm/if_iwm_scan.c +++ b/sys/dev/iwm/if_iwm_scan.c @@ -1,919 +1,919 @@ /* $OpenBSD: if_iwm.c,v 1.39 2015/03/23 00:35:19 jsg Exp $ */ /* * Copyright (c) 2014 genua mbh * Copyright (c) 2014 Fixup Software Ltd. * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /*- * Based on BSD-licensed source modules in the Linux iwlwifi driver, * which were used as the reference documentation for this implementation. * * Driver version we are currently based off of is * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd) * *********************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called COPYING. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * * BSD LICENSE * * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 2007-2010 Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); #include "opt_wlan.h" #include "opt_iwm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * BEGIN mvm/scan.c */ #define IWM_DENSE_EBS_SCAN_RATIO 5 #define IWM_SPARSE_EBS_SCAN_RATIO 1 static uint16_t iwm_scan_rx_chain(struct iwm_softc *sc) { uint16_t rx_chain; uint8_t rx_ant; rx_ant = iwm_get_valid_rx_ant(sc); rx_chain = rx_ant << IWM_PHY_RX_CHAIN_VALID_POS; rx_chain |= rx_ant << IWM_PHY_RX_CHAIN_FORCE_MIMO_SEL_POS; rx_chain |= rx_ant << IWM_PHY_RX_CHAIN_FORCE_SEL_POS; rx_chain |= 0x1 << IWM_PHY_RX_CHAIN_DRIVER_FORCE_POS; return htole16(rx_chain); } static uint32_t iwm_scan_rxon_flags(struct ieee80211_channel *c) { if (IEEE80211_IS_CHAN_2GHZ(c)) return htole32(IWM_PHY_BAND_24); else return htole32(IWM_PHY_BAND_5); } static uint32_t iwm_scan_rate_n_flags(struct iwm_softc *sc, int flags, int no_cck) { uint32_t tx_ant; int i, ind; for (i = 0, ind = sc->sc_scan_last_antenna; i < IWM_RATE_MCS_ANT_NUM; i++) { ind = (ind + 1) % IWM_RATE_MCS_ANT_NUM; if (iwm_get_valid_tx_ant(sc) & (1 << ind)) { sc->sc_scan_last_antenna = ind; break; } } tx_ant = (1 << sc->sc_scan_last_antenna) << IWM_RATE_MCS_ANT_POS; if ((flags & IEEE80211_CHAN_2GHZ) && !no_cck) return htole32(IWM_RATE_1M_PLCP | IWM_RATE_MCS_CCK_MSK | tx_ant); else return htole32(IWM_RATE_6M_PLCP | tx_ant); } static inline boolean_t iwm_rrm_scan_needed(struct iwm_softc *sc) { /* require rrm scan whenever the fw supports it */ return iwm_fw_has_capa(sc, IWM_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT); } #ifdef IWM_DEBUG static const char * iwm_ebs_status_str(enum iwm_scan_ebs_status status) { switch (status) { case IWM_SCAN_EBS_SUCCESS: return "successful"; case IWM_SCAN_EBS_INACTIVE: return "inactive"; case IWM_SCAN_EBS_FAILED: case IWM_SCAN_EBS_CHAN_NOT_FOUND: default: return "failed"; } } static const char * iwm_offload_status_str(enum iwm_scan_offload_complete_status status) { return (status == IWM_SCAN_OFFLOAD_ABORTED) ? "aborted" : "completed"; } #endif void iwm_rx_lmac_scan_complete_notif(struct iwm_softc *sc, struct iwm_rx_packet *pkt) { struct iwm_periodic_scan_complete *scan_notif = (void *)pkt->data; /* If this happens, the firmware has mistakenly sent an LMAC * notification during UMAC scans -- warn and ignore it. */ if (iwm_fw_has_capa(sc, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) { device_printf(sc->sc_dev, "%s: Mistakenly got LMAC notification during UMAC scan\n", __func__); return; } IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "Regular scan %s, EBS status %s (FW)\n", iwm_offload_status_str(scan_notif->status), iwm_ebs_status_str(scan_notif->ebs_status)); sc->last_ebs_successful = scan_notif->ebs_status == IWM_SCAN_EBS_SUCCESS || scan_notif->ebs_status == IWM_SCAN_EBS_INACTIVE; } void iwm_rx_umac_scan_complete_notif(struct iwm_softc *sc, struct iwm_rx_packet *pkt) { struct iwm_umac_scan_complete *notif = (void *)pkt->data; IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "Scan completed, uid %u, status %s, EBS status %s\n", le32toh(notif->uid), iwm_offload_status_str(notif->status), iwm_ebs_status_str(notif->ebs_status)); if (notif->ebs_status != IWM_SCAN_EBS_SUCCESS && notif->ebs_status != IWM_SCAN_EBS_INACTIVE) sc->last_ebs_successful = FALSE; } static int iwm_scan_skip_channel(struct ieee80211_channel *c) { if (IEEE80211_IS_CHAN_2GHZ(c) && IEEE80211_IS_CHAN_B(c)) return 0; else if (IEEE80211_IS_CHAN_5GHZ(c) && IEEE80211_IS_CHAN_A(c)) return 0; else return 1; } static uint8_t iwm_lmac_scan_fill_channels(struct iwm_softc *sc, struct iwm_scan_channel_cfg_lmac *chan, int n_ssids) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_scan_state *ss = ic->ic_scan; struct ieee80211_channel *c; uint8_t nchan; int j; for (nchan = j = 0; j < ss->ss_last && nchan < sc->sc_fw.ucode_capa.n_scan_channels; j++) { c = ss->ss_chans[j]; /* * Catch other channels, in case we have 900MHz channels or * something in the chanlist. */ if (!IEEE80211_IS_CHAN_2GHZ(c) && !IEEE80211_IS_CHAN_5GHZ(c)) { IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_EEPROM, "%s: skipping channel (freq=%d, ieee=%d, flags=0x%08x)\n", __func__, c->ic_freq, c->ic_ieee, c->ic_flags); continue; } IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_EEPROM, "Adding channel %d (%d Mhz) to the list\n", nchan, c->ic_freq); chan->channel_num = htole16(ieee80211_mhz2ieee(c->ic_freq, 0)); chan->iter_count = htole16(1); chan->iter_interval = htole32(0); chan->flags = htole32(IWM_UNIFIED_SCAN_CHANNEL_PARTIAL); chan->flags |= htole32(IWM_SCAN_CHANNEL_NSSIDS(n_ssids)); /* XXX IEEE80211_SCAN_NOBCAST flag is never set. */ if (!IEEE80211_IS_CHAN_PASSIVE(c) && (!(ss->ss_flags & IEEE80211_SCAN_NOBCAST) || n_ssids != 0)) chan->flags |= htole32(IWM_SCAN_CHANNEL_TYPE_ACTIVE); chan++; nchan++; } return nchan; } static uint8_t iwm_umac_scan_fill_channels(struct iwm_softc *sc, struct iwm_scan_channel_cfg_umac *chan, int n_ssids) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_scan_state *ss = ic->ic_scan; struct ieee80211_channel *c; uint8_t nchan; int j; for (nchan = j = 0; j < ss->ss_last && nchan < sc->sc_fw.ucode_capa.n_scan_channels; j++) { c = ss->ss_chans[j]; /* * Catch other channels, in case we have 900MHz channels or * something in the chanlist. */ if (!IEEE80211_IS_CHAN_2GHZ(c) && !IEEE80211_IS_CHAN_5GHZ(c)) { IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_EEPROM, "%s: skipping channel (freq=%d, ieee=%d, flags=0x%08x)\n", __func__, c->ic_freq, c->ic_ieee, c->ic_flags); continue; } IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_EEPROM, "Adding channel %d (%d Mhz) to the list\n", nchan, c->ic_freq); chan->channel_num = ieee80211_mhz2ieee(c->ic_freq, 0); chan->iter_count = 1; chan->iter_interval = htole16(0); chan->flags = htole32(IWM_SCAN_CHANNEL_UMAC_NSSIDS(n_ssids)); chan++; nchan++; } return nchan; } static int -iwm_fill_probe_req(struct iwm_softc *sc, struct iwm_scan_probe_req *preq) +iwm_fill_probe_req(struct iwm_softc *sc, struct iwm_scan_probe_req_v1 *preq) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct ieee80211_frame *wh = (struct ieee80211_frame *)preq->buf; struct ieee80211_rateset *rs; size_t remain = sizeof(preq->buf); uint8_t *frm, *pos; memset(preq, 0, sizeof(*preq)); /* Ensure enough space for header and SSID IE. */ if (remain < sizeof(*wh) + 2) return ENOBUFS; /* * Build a probe request frame. Most of the following code is a * copy & paste of what is done in net80211. */ wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ; wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr); IEEE80211_ADDR_COPY(wh->i_addr2, vap ? vap->iv_myaddr : ic->ic_macaddr); IEEE80211_ADDR_COPY(wh->i_addr3, ieee80211broadcastaddr); *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ frm = (uint8_t *)(wh + 1); frm = ieee80211_add_ssid(frm, NULL, 0); /* Tell the firmware where the MAC header is. */ preq->mac_header.offset = 0; preq->mac_header.len = htole16(frm - (uint8_t *)wh); remain -= frm - (uint8_t *)wh; /* Fill in 2GHz IEs and tell firmware where they are. */ rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; if (rs->rs_nrates > IEEE80211_RATE_SIZE) { if (remain < 4 + rs->rs_nrates) return ENOBUFS; } else if (remain < 2 + rs->rs_nrates) { return ENOBUFS; } preq->band_data[0].offset = htole16(frm - (uint8_t *)wh); pos = frm; frm = ieee80211_add_rates(frm, rs); if (rs->rs_nrates > IEEE80211_RATE_SIZE) frm = ieee80211_add_xrates(frm, rs); preq->band_data[0].len = htole16(frm - pos); remain -= frm - pos; if (iwm_rrm_scan_needed(sc)) { if (remain < 3) return ENOBUFS; *frm++ = IEEE80211_ELEMID_DSPARMS; *frm++ = 1; *frm++ = 0; remain -= 3; } if (sc->nvm_data->sku_cap_band_52GHz_enable) { /* Fill in 5GHz IEs. */ rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; if (rs->rs_nrates > IEEE80211_RATE_SIZE) { if (remain < 4 + rs->rs_nrates) return ENOBUFS; } else if (remain < 2 + rs->rs_nrates) { return ENOBUFS; } preq->band_data[1].offset = htole16(frm - (uint8_t *)wh); pos = frm; frm = ieee80211_add_rates(frm, rs); if (rs->rs_nrates > IEEE80211_RATE_SIZE) frm = ieee80211_add_xrates(frm, rs); preq->band_data[1].len = htole16(frm - pos); remain -= frm - pos; } /* Send 11n IEs on both 2GHz and 5GHz bands. */ preq->common_data.offset = htole16(frm - (uint8_t *)wh); pos = frm; #if 0 if (ic->ic_flags & IEEE80211_F_HTON) { if (remain < 28) return ENOBUFS; frm = ieee80211_add_htcaps(frm, ic); /* XXX add WME info? */ } #endif preq->common_data.len = htole16(frm - pos); return 0; } int iwm_config_umac_scan(struct iwm_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct iwm_scan_config *scan_config; int ret, j, nchan; size_t cmd_size; struct ieee80211_channel *c; struct iwm_host_cmd hcmd = { .id = iwm_cmd_id(IWM_SCAN_CFG_CMD, IWM_ALWAYS_LONG_GROUP, 0), .flags = IWM_CMD_SYNC, }; static const uint32_t rates = (IWM_SCAN_CONFIG_RATE_1M | IWM_SCAN_CONFIG_RATE_2M | IWM_SCAN_CONFIG_RATE_5M | IWM_SCAN_CONFIG_RATE_11M | IWM_SCAN_CONFIG_RATE_6M | IWM_SCAN_CONFIG_RATE_9M | IWM_SCAN_CONFIG_RATE_12M | IWM_SCAN_CONFIG_RATE_18M | IWM_SCAN_CONFIG_RATE_24M | IWM_SCAN_CONFIG_RATE_36M | IWM_SCAN_CONFIG_RATE_48M | IWM_SCAN_CONFIG_RATE_54M); cmd_size = sizeof(*scan_config) + sc->sc_fw.ucode_capa.n_scan_channels; scan_config = malloc(cmd_size, M_DEVBUF, M_NOWAIT | M_ZERO); if (scan_config == NULL) return ENOMEM; scan_config->tx_chains = htole32(iwm_get_valid_tx_ant(sc)); scan_config->rx_chains = htole32(iwm_get_valid_rx_ant(sc)); scan_config->legacy_rates = htole32(rates | IWM_SCAN_CONFIG_SUPPORTED_RATE(rates)); /* These timings correspond to iwlwifi's UNASSOC scan. */ scan_config->dwell_active = 10; scan_config->dwell_passive = 110; scan_config->dwell_fragmented = 44; scan_config->dwell_extended = 90; scan_config->out_of_channel_time = htole32(0); scan_config->suspend_time = htole32(0); IEEE80211_ADDR_COPY(scan_config->mac_addr, vap ? vap->iv_myaddr : ic->ic_macaddr); scan_config->bcast_sta_id = sc->sc_aux_sta.sta_id; scan_config->channel_flags = IWM_CHANNEL_FLAG_EBS | IWM_CHANNEL_FLAG_ACCURATE_EBS | IWM_CHANNEL_FLAG_EBS_ADD | IWM_CHANNEL_FLAG_PRE_SCAN_PASSIVE2ACTIVE; for (nchan = j = 0; j < ic->ic_nchans && nchan < sc->sc_fw.ucode_capa.n_scan_channels; j++) { c = &ic->ic_channels[j]; /* For 2GHz, only populate 11b channels */ /* For 5GHz, only populate 11a channels */ /* * Catch other channels, in case we have 900MHz channels or * something in the chanlist. */ if (iwm_scan_skip_channel(c)) continue; scan_config->channel_array[nchan++] = ieee80211_mhz2ieee(c->ic_freq, 0); } scan_config->flags = htole32(IWM_SCAN_CONFIG_FLAG_ACTIVATE | IWM_SCAN_CONFIG_FLAG_ALLOW_CHUB_REQS | IWM_SCAN_CONFIG_FLAG_SET_TX_CHAINS | IWM_SCAN_CONFIG_FLAG_SET_RX_CHAINS | IWM_SCAN_CONFIG_FLAG_SET_AUX_STA_ID | IWM_SCAN_CONFIG_FLAG_SET_ALL_TIMES | IWM_SCAN_CONFIG_FLAG_SET_LEGACY_RATES | IWM_SCAN_CONFIG_FLAG_SET_MAC_ADDR | IWM_SCAN_CONFIG_FLAG_SET_CHANNEL_FLAGS| IWM_SCAN_CONFIG_N_CHANNELS(nchan) | IWM_SCAN_CONFIG_FLAG_CLEAR_FRAGMENTED); hcmd.data[0] = scan_config; hcmd.len[0] = cmd_size; IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "Sending UMAC scan config\n"); ret = iwm_send_cmd(sc, &hcmd); if (!ret) IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "UMAC scan config was sent successfully\n"); free(scan_config, M_DEVBUF); return ret; } static boolean_t iwm_scan_use_ebs(struct iwm_softc *sc) { const struct iwm_ucode_capabilities *capa = &sc->sc_fw.ucode_capa; /* We can only use EBS if: * 1. the feature is supported; * 2. the last EBS was successful; * 3. if only single scan, the single scan EBS API is supported; * 4. it's not a p2p find operation. */ return ((capa->flags & IWM_UCODE_TLV_FLAGS_EBS_SUPPORT) && sc->last_ebs_successful); } static int iwm_scan_size(struct iwm_softc *sc) { int base_size; if (iwm_fw_has_capa(sc, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) { if (iwm_fw_has_api(sc, IWM_UCODE_TLV_API_ADAPTIVE_DWELL)) base_size = IWM_SCAN_REQ_UMAC_SIZE_V7; else base_size = IWM_SCAN_REQ_UMAC_SIZE_V1; return base_size + sizeof(struct iwm_scan_channel_cfg_umac) * sc->sc_fw.ucode_capa.n_scan_channels + - sizeof(struct iwm_scan_req_umac_tail); + sizeof(struct iwm_scan_req_umac_tail_v1); } else { return sizeof(struct iwm_scan_req_lmac) + sizeof(struct iwm_scan_channel_cfg_lmac) * sc->sc_fw.ucode_capa.n_scan_channels + - sizeof(struct iwm_scan_probe_req); + sizeof(struct iwm_scan_probe_req_v1); } } int iwm_umac_scan(struct iwm_softc *sc) { struct iwm_host_cmd hcmd = { .id = iwm_cmd_id(IWM_SCAN_REQ_UMAC, IWM_ALWAYS_LONG_GROUP, 0), .len = { 0, }, .data = { NULL, }, .flags = IWM_CMD_SYNC, }; struct ieee80211_scan_state *ss = sc->sc_ic.ic_scan; struct iwm_scan_req_umac *req; - struct iwm_scan_req_umac_tail *tail; + struct iwm_scan_req_umac_tail_v1 *tail; size_t req_len; uint16_t general_flags; uint8_t channel_flags, i, nssid; int ret; req_len = iwm_scan_size(sc); if (req_len > IWM_MAX_CMD_PAYLOAD_SIZE) return ENOMEM; req = malloc(req_len, M_DEVBUF, M_NOWAIT | M_ZERO); if (req == NULL) return ENOMEM; hcmd.len[0] = (uint16_t)req_len; hcmd.data[0] = (void *)req; IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "Handling ieee80211 scan request\n"); nssid = MIN(ss->ss_nssid, IWM_PROBE_OPTION_MAX); general_flags = IWM_UMAC_SCAN_GEN_FLAGS_PASS_ALL | IWM_UMAC_SCAN_GEN_FLAGS_ITER_COMPLETE; if (!iwm_fw_has_api(sc, IWM_UCODE_TLV_API_ADAPTIVE_DWELL)) general_flags |= IWM_UMAC_SCAN_GEN_FLAGS_EXTENDED_DWELL; if (iwm_rrm_scan_needed(sc)) general_flags |= IWM_UMAC_SCAN_GEN_FLAGS_RRM_ENABLED; if (nssid != 0) general_flags |= IWM_UMAC_SCAN_GEN_FLAGS_PRE_CONNECT; else general_flags |= IWM_UMAC_SCAN_GEN_FLAGS_PASSIVE; channel_flags = 0; if (iwm_scan_use_ebs(sc)) channel_flags = IWM_SCAN_CHANNEL_FLAG_EBS | IWM_SCAN_CHANNEL_FLAG_EBS_ACCURATE | IWM_SCAN_CHANNEL_FLAG_CACHE_ADD; req->general_flags = htole16(general_flags); req->ooc_priority = htole32(IWM_SCAN_PRIORITY_HIGH); /* These timings correspond to iwlwifi's UNASSOC scan. */ if (iwm_fw_has_api(sc, IWM_UCODE_TLV_API_ADAPTIVE_DWELL)) { req->v7.active_dwell = 10; req->v7.passive_dwell = 110; req->v7.fragmented_dwell = 44; req->v7.adwell_default_n_aps_social = 10; req->v7.adwell_default_n_aps = 2; req->v7.adwell_max_budget = htole16(300); req->v7.scan_priority = htole32(IWM_SCAN_PRIORITY_HIGH); req->v7.channel.flags = channel_flags; req->v7.channel.count = iwm_umac_scan_fill_channels(sc, (struct iwm_scan_channel_cfg_umac *)req->v7.data, nssid); tail = (void *)((char *)&req->v7.data + sizeof(struct iwm_scan_channel_cfg_umac) * sc->sc_fw.ucode_capa.n_scan_channels); } else { req->v1.active_dwell = 10; req->v1.passive_dwell = 110; req->v1.fragmented_dwell = 44; req->v1.extended_dwell = 90; req->v1.scan_priority = htole32(IWM_SCAN_PRIORITY_HIGH); req->v1.channel.flags = channel_flags; req->v1.channel.count = iwm_umac_scan_fill_channels(sc, (struct iwm_scan_channel_cfg_umac *)req->v1.data, nssid); tail = (void *)((char *)&req->v1.data + sizeof(struct iwm_scan_channel_cfg_umac) * sc->sc_fw.ucode_capa.n_scan_channels); } /* Check if we're doing an active directed scan. */ for (i = 0; i < nssid; i++) { tail->direct_scan[i].id = IEEE80211_ELEMID_SSID; tail->direct_scan[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN); memcpy(tail->direct_scan[i].ssid, ss->ss_ssid[i].ssid, tail->direct_scan[i].len); /* XXX debug */ } ret = iwm_fill_probe_req(sc, &tail->preq); if (ret) { free(req, M_DEVBUF); return ret; } /* Specify the scan plan: We'll do one iteration. */ tail->schedule[0].interval = 0; tail->schedule[0].iter_count = 1; ret = iwm_send_cmd(sc, &hcmd); if (!ret) IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "Scan request was sent successfully\n"); free(req, M_DEVBUF); return ret; } int iwm_lmac_scan(struct iwm_softc *sc) { struct iwm_host_cmd hcmd = { .id = IWM_SCAN_OFFLOAD_REQUEST_CMD, .len = { 0, }, .data = { NULL, }, .flags = IWM_CMD_SYNC, }; struct ieee80211_scan_state *ss = sc->sc_ic.ic_scan; struct iwm_scan_req_lmac *req; size_t req_len; uint8_t i, nssid; int ret; IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "Handling ieee80211 scan request\n"); req_len = iwm_scan_size(sc); if (req_len > IWM_MAX_CMD_PAYLOAD_SIZE) return ENOMEM; req = malloc(req_len, M_DEVBUF, M_NOWAIT | M_ZERO); if (req == NULL) return ENOMEM; hcmd.len[0] = (uint16_t)req_len; hcmd.data[0] = (void *)req; /* These timings correspond to iwlwifi's UNASSOC scan. */ req->active_dwell = 10; req->passive_dwell = 110; req->fragmented_dwell = 44; req->extended_dwell = 90; req->max_out_time = 0; req->suspend_time = 0; req->scan_prio = htole32(IWM_SCAN_PRIORITY_HIGH); req->rx_chain_select = iwm_scan_rx_chain(sc); req->iter_num = htole32(1); req->delay = 0; req->scan_flags = htole32(IWM_LMAC_SCAN_FLAG_PASS_ALL | IWM_LMAC_SCAN_FLAG_ITER_COMPLETE | IWM_LMAC_SCAN_FLAG_EXTENDED_DWELL); if (iwm_rrm_scan_needed(sc)) req->scan_flags |= htole32(IWM_LMAC_SCAN_FLAGS_RRM_ENABLED); req->flags = iwm_scan_rxon_flags(sc->sc_ic.ic_scan->ss_chans[0]); req->filter_flags = htole32(IWM_MAC_FILTER_ACCEPT_GRP | IWM_MAC_FILTER_IN_BEACON); /* Tx flags 2 GHz. */ req->tx_cmd[0].tx_flags = htole32(IWM_TX_CMD_FLG_SEQ_CTL | IWM_TX_CMD_FLG_BT_DIS); req->tx_cmd[0].rate_n_flags = iwm_scan_rate_n_flags(sc, IEEE80211_CHAN_2GHZ, 1/*XXX*/); req->tx_cmd[0].sta_id = sc->sc_aux_sta.sta_id; /* Tx flags 5 GHz. */ req->tx_cmd[1].tx_flags = htole32(IWM_TX_CMD_FLG_SEQ_CTL | IWM_TX_CMD_FLG_BT_DIS); req->tx_cmd[1].rate_n_flags = iwm_scan_rate_n_flags(sc, IEEE80211_CHAN_5GHZ, 1/*XXX*/); req->tx_cmd[1].sta_id = sc->sc_aux_sta.sta_id; /* Check if we're doing an active directed scan. */ nssid = MIN(ss->ss_nssid, IWM_PROBE_OPTION_MAX); for (i = 0; i < nssid; i++) { req->direct_scan[i].id = IEEE80211_ELEMID_SSID; req->direct_scan[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN); memcpy(req->direct_scan[i].ssid, ss->ss_ssid[i].ssid, req->direct_scan[i].len); /* XXX debug */ } if (nssid != 0) { req->scan_flags |= htole32(IWM_LMAC_SCAN_FLAG_PRE_CONNECTION); } else req->scan_flags |= htole32(IWM_LMAC_SCAN_FLAG_PASSIVE); req->n_channels = iwm_lmac_scan_fill_channels(sc, (struct iwm_scan_channel_cfg_lmac *)req->data, nssid); ret = iwm_fill_probe_req(sc, - (struct iwm_scan_probe_req *)(req->data + + (struct iwm_scan_probe_req_v1 *)(req->data + (sizeof(struct iwm_scan_channel_cfg_lmac) * sc->sc_fw.ucode_capa.n_scan_channels))); if (ret) { free(req, M_DEVBUF); return ret; } /* Specify the scan plan: We'll do one iteration. */ req->schedule[0].iterations = 1; req->schedule[0].full_scan_mul = 1; if (iwm_scan_use_ebs(sc)) { req->channel_opt[0].flags = htole16(IWM_SCAN_CHANNEL_FLAG_EBS | IWM_SCAN_CHANNEL_FLAG_EBS_ACCURATE | IWM_SCAN_CHANNEL_FLAG_CACHE_ADD); req->channel_opt[0].non_ebs_ratio = htole16(IWM_DENSE_EBS_SCAN_RATIO); req->channel_opt[1].flags = htole16(IWM_SCAN_CHANNEL_FLAG_EBS | IWM_SCAN_CHANNEL_FLAG_EBS_ACCURATE | IWM_SCAN_CHANNEL_FLAG_CACHE_ADD); req->channel_opt[1].non_ebs_ratio = htole16(IWM_SPARSE_EBS_SCAN_RATIO); } ret = iwm_send_cmd(sc, &hcmd); if (!ret) { IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "Scan request was sent successfully\n"); } free(req, M_DEVBUF); return ret; } static int iwm_lmac_scan_abort(struct iwm_softc *sc) { int ret; struct iwm_host_cmd hcmd = { .id = IWM_SCAN_OFFLOAD_ABORT_CMD, .len = { 0, }, .data = { NULL, }, .flags = IWM_CMD_SYNC, }; uint32_t status; ret = iwm_send_cmd_status(sc, &hcmd, &status); if (ret) return ret; if (status != IWM_CAN_ABORT_STATUS) { /* * The scan abort will return 1 for success or * 2 for "failure". A failure condition can be * due to simply not being in an active scan which * can occur if we send the scan abort before the * microcode has notified us that a scan is completed. */ IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "SCAN OFFLOAD ABORT ret %d.\n", status); ret = ENOENT; } return ret; } static int iwm_umac_scan_abort(struct iwm_softc *sc) { struct iwm_umac_scan_abort cmd = {}; int uid, ret; uid = 0; cmd.uid = htole32(uid); IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "Sending scan abort, uid %u\n", uid); ret = iwm_send_cmd_pdu(sc, iwm_cmd_id(IWM_SCAN_ABORT_UMAC, IWM_ALWAYS_LONG_GROUP, 0), 0, sizeof(cmd), &cmd); return ret; } int iwm_scan_stop_wait(struct iwm_softc *sc) { struct iwm_notification_wait wait_scan_done; static const uint16_t scan_done_notif[] = { IWM_SCAN_COMPLETE_UMAC, IWM_SCAN_OFFLOAD_COMPLETE, }; int ret; iwm_init_notification_wait(sc->sc_notif_wait, &wait_scan_done, scan_done_notif, nitems(scan_done_notif), NULL, NULL); IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "Preparing to stop scan\n"); if (iwm_fw_has_capa(sc, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) ret = iwm_umac_scan_abort(sc); else ret = iwm_lmac_scan_abort(sc); if (ret) { IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "couldn't stop scan\n"); iwm_remove_notification(sc->sc_notif_wait, &wait_scan_done); return ret; } IWM_UNLOCK(sc); ret = iwm_wait_notification(sc->sc_notif_wait, &wait_scan_done, hz); IWM_LOCK(sc); return ret; } diff --git a/sys/dev/iwm/if_iwmreg.h b/sys/dev/iwm/if_iwmreg.h index 310b2d53a82e..c3c51a25c4b0 100644 --- a/sys/dev/iwm/if_iwmreg.h +++ b/sys/dev/iwm/if_iwmreg.h @@ -1,6475 +1,6977 @@ -/* $OpenBSD: if_iwmreg.h,v 1.4 2015/06/15 08:06:11 stsp Exp $ */ -/* $FreeBSD$ */ +/* $OpenBSD: if_iwmreg.h,v 1.65 2021/10/11 09:03:22 stsp Exp $ */ /****************************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called COPYING. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * BSD LICENSE * * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * *****************************************************************************/ + #ifndef __IF_IWM_REG_H__ #define __IF_IWM_REG_H__ #define le16_to_cpup(_a_) (le16toh(*(const uint16_t *)(_a_))) #define le32_to_cpup(_a_) (le32toh(*(const uint32_t *)(_a_))) /* * BEGIN iwl-csr.h */ /* * CSR (control and status registers) * * CSR registers are mapped directly into PCI bus space, and are accessible * whenever platform supplies power to device, even when device is in * low power states due to driver-invoked device resets * (e.g. IWM_CSR_RESET_REG_FLAG_SW_RESET) or uCode-driven power-saving modes. * * Use iwl_write32() and iwl_read32() family to access these registers; * these provide simple PCI bus access, without waking up the MAC. * Do not use iwl_write_direct32() family for these registers; * no need to "grab nic access" via IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ. * The MAC (uCode processor, etc.) does not need to be powered up for accessing * the CSR registers. * * NOTE: Device does need to be awake in order to read this memory * via IWM_CSR_EEPROM and IWM_CSR_OTP registers */ #define IWM_CSR_HW_IF_CONFIG_REG (0x000) /* hardware interface config */ #define IWM_CSR_INT_COALESCING (0x004) /* accum ints, 32-usec units */ #define IWM_CSR_INT (0x008) /* host interrupt status/ack */ #define IWM_CSR_INT_MASK (0x00c) /* host interrupt enable */ #define IWM_CSR_FH_INT_STATUS (0x010) /* busmaster int status/ack*/ #define IWM_CSR_GPIO_IN (0x018) /* read external chip pins */ #define IWM_CSR_RESET (0x020) /* busmaster enable, NMI, etc*/ #define IWM_CSR_GP_CNTRL (0x024) /* 2nd byte of IWM_CSR_INT_COALESCING, not accessible via iwl_write32()! */ #define IWM_CSR_INT_PERIODIC_REG (0x005) /* * Hardware revision info * Bit fields: * 31-16: Reserved * 15-4: Type of device: see IWM_CSR_HW_REV_TYPE_xxx definitions * 3-2: Revision step: 0 = A, 1 = B, 2 = C, 3 = D * 1-0: "Dash" (-) value, as in A-1, etc. */ #define IWM_CSR_HW_REV (0x028) /* * EEPROM and OTP (one-time-programmable) memory reads * * NOTE: Device must be awake, initialized via apm_ops.init(), * in order to read. */ #define IWM_CSR_EEPROM_REG (0x02c) #define IWM_CSR_EEPROM_GP (0x030) #define IWM_CSR_OTP_GP_REG (0x034) #define IWM_CSR_GIO_REG (0x03C) #define IWM_CSR_GP_UCODE_REG (0x048) #define IWM_CSR_GP_DRIVER_REG (0x050) /* * UCODE-DRIVER GP (general purpose) mailbox registers. * SET/CLR registers set/clear bit(s) if "1" is written. */ #define IWM_CSR_UCODE_DRV_GP1 (0x054) #define IWM_CSR_UCODE_DRV_GP1_SET (0x058) #define IWM_CSR_UCODE_DRV_GP1_CLR (0x05c) #define IWM_CSR_UCODE_DRV_GP2 (0x060) #define IWM_CSR_MBOX_SET_REG (0x088) #define IWM_CSR_MBOX_SET_REG_OS_ALIVE 0x20 #define IWM_CSR_LED_REG (0x094) #define IWM_CSR_DRAM_INT_TBL_REG (0x0A0) #define IWM_CSR_MAC_SHADOW_REG_CTRL (0x0A8) /* 6000 and up */ /* GIO Chicken Bits (PCI Express bus link power management) */ #define IWM_CSR_GIO_CHICKEN_BITS (0x100) /* Analog phase-lock-loop configuration */ #define IWM_CSR_ANA_PLL_CFG (0x20c) /* * CSR Hardware Revision Workaround Register. Indicates hardware rev; * "step" determines CCK backoff for txpower calculation. Used for 4965 only. * See also IWM_CSR_HW_REV register. * Bit fields: * 3-2: 0 = A, 1 = B, 2 = C, 3 = D step * 1-0: "Dash" (-) value, as in C-1, etc. */ #define IWM_CSR_HW_REV_WA_REG (0x22C) #define IWM_CSR_DBG_HPET_MEM_REG (0x240) #define IWM_CSR_DBG_LINK_PWR_MGMT_REG (0x250) /* Bits for IWM_CSR_HW_IF_CONFIG_REG */ #define IWM_CSR_HW_IF_CONFIG_REG_MSK_MAC_DASH (0x00000003) #define IWM_CSR_HW_IF_CONFIG_REG_MSK_MAC_STEP (0x0000000C) #define IWM_CSR_HW_IF_CONFIG_REG_MSK_BOARD_VER (0x000000C0) #define IWM_CSR_HW_IF_CONFIG_REG_BIT_MAC_SI (0x00000100) #define IWM_CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI (0x00000200) #define IWM_CSR_HW_IF_CONFIG_REG_MSK_PHY_TYPE (0x00000C00) #define IWM_CSR_HW_IF_CONFIG_REG_MSK_PHY_DASH (0x00003000) #define IWM_CSR_HW_IF_CONFIG_REG_MSK_PHY_STEP (0x0000C000) #define IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH (0) #define IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP (2) #define IWM_CSR_HW_IF_CONFIG_REG_POS_BOARD_VER (6) #define IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE (10) #define IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH (12) #define IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP (14) #define IWM_CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A (0x00080000) #define IWM_CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM (0x00200000) #define IWM_CSR_HW_IF_CONFIG_REG_BIT_NIC_READY (0x00400000) /* PCI_OWN_SEM */ #define IWM_CSR_HW_IF_CONFIG_REG_BIT_NIC_PREPARE_DONE (0x02000000) /* ME_OWN */ #define IWM_CSR_HW_IF_CONFIG_REG_PREPARE (0x08000000) /* WAKE_ME */ #define IWM_CSR_HW_IF_CONFIG_REG_ENABLE_PME (0x10000000) #define IWM_CSR_HW_IF_CONFIG_REG_PERSIST_MODE (0x40000000) /* PERSISTENCE */ #define IWM_CSR_INT_PERIODIC_DIS (0x00) /* disable periodic int*/ #define IWM_CSR_INT_PERIODIC_ENA (0xFF) /* 255*32 usec ~ 8 msec*/ /* interrupt flags in INTA, set by uCode or hardware (e.g. dma), * acknowledged (reset) by host writing "1" to flagged bits. */ -#define IWM_CSR_INT_BIT_FH_RX (1 << 31) /* Rx DMA, cmd responses, FH_INT[17:16] */ +#define IWM_CSR_INT_BIT_FH_RX (1U << 31) /* Rx DMA, cmd responses, FH_INT[17:16] */ #define IWM_CSR_INT_BIT_HW_ERR (1 << 29) /* DMA hardware error FH_INT[31] */ #define IWM_CSR_INT_BIT_RX_PERIODIC (1 << 28) /* Rx periodic */ #define IWM_CSR_INT_BIT_FH_TX (1 << 27) /* Tx DMA FH_INT[1:0] */ #define IWM_CSR_INT_BIT_SCD (1 << 26) /* TXQ pointer advanced */ #define IWM_CSR_INT_BIT_SW_ERR (1 << 25) /* uCode error */ #define IWM_CSR_INT_BIT_RF_KILL (1 << 7) /* HW RFKILL switch GP_CNTRL[27] toggled */ #define IWM_CSR_INT_BIT_CT_KILL (1 << 6) /* Critical temp (chip too hot) rfkill */ #define IWM_CSR_INT_BIT_SW_RX (1 << 3) /* Rx, command responses */ #define IWM_CSR_INT_BIT_WAKEUP (1 << 1) /* NIC controller waking up (pwr mgmt) */ #define IWM_CSR_INT_BIT_ALIVE (1 << 0) /* uCode interrupts once it initializes */ #define IWM_CSR_INI_SET_MASK (IWM_CSR_INT_BIT_FH_RX | \ IWM_CSR_INT_BIT_HW_ERR | \ IWM_CSR_INT_BIT_FH_TX | \ IWM_CSR_INT_BIT_SW_ERR | \ IWM_CSR_INT_BIT_RF_KILL | \ IWM_CSR_INT_BIT_SW_RX | \ IWM_CSR_INT_BIT_WAKEUP | \ IWM_CSR_INT_BIT_ALIVE | \ IWM_CSR_INT_BIT_RX_PERIODIC) /* interrupt flags in FH (flow handler) (PCI busmaster DMA) */ -#define IWM_CSR_FH_INT_BIT_ERR (1 << 31) /* Error */ +#define IWM_CSR_FH_INT_BIT_ERR (1U << 31) /* Error */ #define IWM_CSR_FH_INT_BIT_HI_PRIOR (1 << 30) /* High priority Rx, bypass coalescing */ #define IWM_CSR_FH_INT_BIT_RX_CHNL1 (1 << 17) /* Rx channel 1 */ #define IWM_CSR_FH_INT_BIT_RX_CHNL0 (1 << 16) /* Rx channel 0 */ #define IWM_CSR_FH_INT_BIT_TX_CHNL1 (1 << 1) /* Tx channel 1 */ #define IWM_CSR_FH_INT_BIT_TX_CHNL0 (1 << 0) /* Tx channel 0 */ #define IWM_CSR_FH_INT_RX_MASK (IWM_CSR_FH_INT_BIT_HI_PRIOR | \ IWM_CSR_FH_INT_BIT_RX_CHNL1 | \ IWM_CSR_FH_INT_BIT_RX_CHNL0) #define IWM_CSR_FH_INT_TX_MASK (IWM_CSR_FH_INT_BIT_TX_CHNL1 | \ IWM_CSR_FH_INT_BIT_TX_CHNL0) /* GPIO */ #define IWM_CSR_GPIO_IN_BIT_AUX_POWER (0x00000200) #define IWM_CSR_GPIO_IN_VAL_VAUX_PWR_SRC (0x00000000) #define IWM_CSR_GPIO_IN_VAL_VMAIN_PWR_SRC (0x00000200) /* RESET */ #define IWM_CSR_RESET_REG_FLAG_NEVO_RESET (0x00000001) #define IWM_CSR_RESET_REG_FLAG_FORCE_NMI (0x00000002) #define IWM_CSR_RESET_REG_FLAG_SW_RESET (0x00000080) #define IWM_CSR_RESET_REG_FLAG_MASTER_DISABLED (0x00000100) #define IWM_CSR_RESET_REG_FLAG_STOP_MASTER (0x00000200) #define IWM_CSR_RESET_LINK_PWR_MGMT_DISABLED (0x80000000) /* * GP (general purpose) CONTROL REGISTER * Bit fields: * 27: HW_RF_KILL_SW * Indicates state of (platform's) hardware RF-Kill switch * 26-24: POWER_SAVE_TYPE * Indicates current power-saving mode: * 000 -- No power saving * 001 -- MAC power-down * 010 -- PHY (radio) power-down * 011 -- Error * 9-6: SYS_CONFIG * Indicates current system configuration, reflecting pins on chip * as forced high/low by device circuit board. * 4: GOING_TO_SLEEP * Indicates MAC is entering a power-saving sleep power-down. * Not a good time to access device-internal resources. * 3: MAC_ACCESS_REQ * Host sets this to request and maintain MAC wakeup, to allow host * access to device-internal resources. Host must wait for * MAC_CLOCK_READY (and !GOING_TO_SLEEP) before accessing non-CSR * device registers. * 2: INIT_DONE * Host sets this to put device into fully operational D0 power mode. * Host resets this after SW_RESET to put device into low power mode. * 0: MAC_CLOCK_READY * Indicates MAC (ucode processor, etc.) is powered up and can run. * Internal resources are accessible. * NOTE: This does not indicate that the processor is actually running. * NOTE: This does not indicate that device has completed * init or post-power-down restore of internal SRAM memory. * Use IWM_CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP as indication that * SRAM is restored and uCode is in normal operation mode. * Later devices (5xxx/6xxx/1xxx) use non-volatile SRAM, and * do not need to save/restore it. * NOTE: After device reset, this bit remains "0" until host sets * INIT_DONE */ #define IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY (0x00000001) #define IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE (0x00000004) #define IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ (0x00000008) #define IWM_CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP (0x00000010) #define IWM_CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN (0x00000001) #define IWM_CSR_GP_CNTRL_REG_MSK_POWER_SAVE_TYPE (0x07000000) #define IWM_CSR_GP_CNTRL_REG_FLAG_RFKILL_WAKE_L1A_EN (0x04000000) #define IWM_CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW (0x08000000) /* HW REV */ #define IWM_CSR_HW_REV_DASH(_val) (((_val) & 0x0000003) >> 0) #define IWM_CSR_HW_REV_STEP(_val) (((_val) & 0x000000C) >> 2) /** * hw_rev values */ enum { IWM_SILICON_A_STEP = 0, IWM_SILICON_B_STEP, IWM_SILICON_C_STEP, }; - #define IWM_CSR_HW_REV_TYPE_MSK (0x000FFF0) #define IWM_CSR_HW_REV_TYPE_5300 (0x0000020) #define IWM_CSR_HW_REV_TYPE_5350 (0x0000030) #define IWM_CSR_HW_REV_TYPE_5100 (0x0000050) #define IWM_CSR_HW_REV_TYPE_5150 (0x0000040) #define IWM_CSR_HW_REV_TYPE_1000 (0x0000060) #define IWM_CSR_HW_REV_TYPE_6x00 (0x0000070) #define IWM_CSR_HW_REV_TYPE_6x50 (0x0000080) #define IWM_CSR_HW_REV_TYPE_6150 (0x0000084) #define IWM_CSR_HW_REV_TYPE_6x05 (0x00000B0) #define IWM_CSR_HW_REV_TYPE_6x30 IWM_CSR_HW_REV_TYPE_6x05 #define IWM_CSR_HW_REV_TYPE_6x35 IWM_CSR_HW_REV_TYPE_6x05 #define IWM_CSR_HW_REV_TYPE_2x30 (0x00000C0) #define IWM_CSR_HW_REV_TYPE_2x00 (0x0000100) #define IWM_CSR_HW_REV_TYPE_105 (0x0000110) #define IWM_CSR_HW_REV_TYPE_135 (0x0000120) #define IWM_CSR_HW_REV_TYPE_7265D (0x0000210) #define IWM_CSR_HW_REV_TYPE_NONE (0x00001F0) /* EEPROM REG */ #define IWM_CSR_EEPROM_REG_READ_VALID_MSK (0x00000001) #define IWM_CSR_EEPROM_REG_BIT_CMD (0x00000002) #define IWM_CSR_EEPROM_REG_MSK_ADDR (0x0000FFFC) #define IWM_CSR_EEPROM_REG_MSK_DATA (0xFFFF0000) /* EEPROM GP */ #define IWM_CSR_EEPROM_GP_VALID_MSK (0x00000007) /* signature */ #define IWM_CSR_EEPROM_GP_IF_OWNER_MSK (0x00000180) #define IWM_CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP (0x00000000) #define IWM_CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP (0x00000001) #define IWM_CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K (0x00000002) #define IWM_CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K (0x00000004) /* One-time-programmable memory general purpose reg */ #define IWM_CSR_OTP_GP_REG_DEVICE_SELECT (0x00010000) /* 0 - EEPROM, 1 - OTP */ #define IWM_CSR_OTP_GP_REG_OTP_ACCESS_MODE (0x00020000) /* 0 - absolute, 1 - relative */ #define IWM_CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK (0x00100000) /* bit 20 */ #define IWM_CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK (0x00200000) /* bit 21 */ /* GP REG */ #define IWM_CSR_GP_REG_POWER_SAVE_STATUS_MSK (0x03000000) /* bit 24/25 */ #define IWM_CSR_GP_REG_NO_POWER_SAVE (0x00000000) #define IWM_CSR_GP_REG_MAC_POWER_SAVE (0x01000000) #define IWM_CSR_GP_REG_PHY_POWER_SAVE (0x02000000) #define IWM_CSR_GP_REG_POWER_SAVE_ERROR (0x03000000) /* CSR GIO */ #define IWM_CSR_GIO_REG_VAL_L0S_ENABLED (0x00000002) /* * UCODE-DRIVER GP (general purpose) mailbox register 1 * Host driver and uCode write and/or read this register to communicate with * each other. * Bit fields: * 4: UCODE_DISABLE * Host sets this to request permanent halt of uCode, same as * sending CARD_STATE command with "halt" bit set. * 3: CT_KILL_EXIT * Host sets this to request exit from CT_KILL state, i.e. host thinks * device temperature is low enough to continue normal operation. * 2: CMD_BLOCKED * Host sets this during RF KILL power-down sequence (HW, SW, CT KILL) * to release uCode to clear all Tx and command queues, enter * unassociated mode, and power down. * NOTE: Some devices also use HBUS_TARG_MBX_C register for this bit. * 1: SW_BIT_RFKILL * Host sets this when issuing CARD_STATE command to request * device sleep. * 0: MAC_SLEEP * uCode sets this when preparing a power-saving power-down. * uCode resets this when power-up is complete and SRAM is sane. * NOTE: device saves internal SRAM data to host when powering down, * and must restore this data after powering back up. * MAC_SLEEP is the best indication that restore is complete. * Later devices (5xxx/6xxx/1xxx) use non-volatile SRAM, and * do not need to save/restore it. */ #define IWM_CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP (0x00000001) #define IWM_CSR_UCODE_SW_BIT_RFKILL (0x00000002) #define IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED (0x00000004) #define IWM_CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT (0x00000008) #define IWM_CSR_UCODE_DRV_GP1_BIT_D3_CFG_COMPLETE (0x00000020) /* GP Driver */ #define IWM_CSR_GP_DRIVER_REG_BIT_RADIO_SKU_MSK (0x00000003) #define IWM_CSR_GP_DRIVER_REG_BIT_RADIO_SKU_3x3_HYB (0x00000000) #define IWM_CSR_GP_DRIVER_REG_BIT_RADIO_SKU_2x2_HYB (0x00000001) #define IWM_CSR_GP_DRIVER_REG_BIT_RADIO_SKU_2x2_IPA (0x00000002) #define IWM_CSR_GP_DRIVER_REG_BIT_CALIB_VERSION6 (0x00000004) #define IWM_CSR_GP_DRIVER_REG_BIT_6050_1x2 (0x00000008) #define IWM_CSR_GP_DRIVER_REG_BIT_RADIO_IQ_INVER (0x00000080) /* GIO Chicken Bits (PCI Express bus link power management) */ #define IWM_CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX (0x00800000) #define IWM_CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER (0x20000000) /* LED */ #define IWM_CSR_LED_BSM_CTRL_MSK (0xFFFFFFDF) #define IWM_CSR_LED_REG_TURN_ON (0x60) #define IWM_CSR_LED_REG_TURN_OFF (0x20) /* ANA_PLL */ #define IWM_CSR50_ANA_PLL_CFG_VAL (0x00880300) /* HPET MEM debug */ #define IWM_CSR_DBG_HPET_MEM_REG_VAL (0xFFFF0000) /* DRAM INT TABLE */ -#define IWM_CSR_DRAM_INT_TBL_ENABLE (1 << 31) +#define IWM_CSR_DRAM_INT_TBL_ENABLE (1U << 31) #define IWM_CSR_DRAM_INIT_TBL_WRITE_POINTER (1 << 28) #define IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK (1 << 27) /* SECURE boot registers */ #define IWM_CSR_SECURE_BOOT_CONFIG_ADDR (0x100) -enum iwm_secure_boot_config_reg { - IWM_CSR_SECURE_BOOT_CONFIG_INSPECTOR_BURNED_IN_OTP = 0x00000001, - IWM_CSR_SECURE_BOOT_CONFIG_INSPECTOR_NOT_REQ = 0x00000002, -}; - +#define IWM_CSR_SECURE_BOOT_CONFIG_INSPECTOR_BURNED_IN_OTP 0x00000001 +#define IWM_CSR_SECURE_BOOT_CONFIG_INSPECTOR_NOT_REQ 0x00000002 #define IWM_CSR_SECURE_BOOT_CPU1_STATUS_ADDR (0x100) #define IWM_CSR_SECURE_BOOT_CPU2_STATUS_ADDR (0x100) -enum iwm_secure_boot_status_reg { - IWM_CSR_SECURE_BOOT_CPU_STATUS_VERF_STATUS = 0x00000003, - IWM_CSR_SECURE_BOOT_CPU_STATUS_VERF_COMPLETED = 0x00000002, - IWM_CSR_SECURE_BOOT_CPU_STATUS_VERF_SUCCESS = 0x00000004, - IWM_CSR_SECURE_BOOT_CPU_STATUS_VERF_FAIL = 0x00000008, - IWM_CSR_SECURE_BOOT_CPU_STATUS_SIGN_VERF_FAIL = 0x00000010, -}; +#define IWM_CSR_SECURE_BOOT_CPU_STATUS_VERF_STATUS 0x00000003 +#define IWM_CSR_SECURE_BOOT_CPU_STATUS_VERF_COMPLETED 0x00000002 +#define IWM_CSR_SECURE_BOOT_CPU_STATUS_VERF_SUCCESS 0x00000004 +#define IWM_CSR_SECURE_BOOT_CPU_STATUS_VERF_FAIL 0x00000008 +#define IWM_CSR_SECURE_BOOT_CPU_STATUS_SIGN_VERF_FAIL 0x00000010 #define IWM_FH_UCODE_LOAD_STATUS 0x1af0 + #define IWM_FH_MEM_TB_MAX_LENGTH 0x20000 +/* 9000 rx series registers */ + +#define IWM_RFH_Q0_FRBDCB_BA_LSB 0xA08000 /* 64 bit address */ +#define IWM_RFH_Q_FRBDCB_BA_LSB(q) (IWM_RFH_Q0_FRBDCB_BA_LSB + (q) * 8) +/* Write index table */ +#define IWM_RFH_Q0_FRBDCB_WIDX 0xA08080 +#define IWM_RFH_Q_FRBDCB_WIDX(q) (IWM_RFH_Q0_FRBDCB_WIDX + (q) * 4) +/* Write index table - shadow registers */ +#define IWM_RFH_Q0_FRBDCB_WIDX_TRG 0x1C80 +#define IWM_RFH_Q_FRBDCB_WIDX_TRG(q) (IWM_RFH_Q0_FRBDCB_WIDX_TRG + (q) * 4) +/* Read index table */ +#define IWM_RFH_Q0_FRBDCB_RIDX 0xA080C0 +#define IWM_RFH_Q_FRBDCB_RIDX(q) (IWM_RFH_Q0_FRBDCB_RIDX + (q) * 4) +/* Used list table */ +#define IWM_RFH_Q0_URBDCB_BA_LSB 0xA08100 /* 64 bit address */ +#define IWM_RFH_Q_URBDCB_BA_LSB(q) (IWM_RFH_Q0_URBDCB_BA_LSB + (q) * 8) +/* Write index table */ +#define IWM_RFH_Q0_URBDCB_WIDX 0xA08180 +#define IWM_RFH_Q_URBDCB_WIDX(q) (IWM_RFH_Q0_URBDCB_WIDX + (q) * 4) +#define IWM_RFH_Q0_URBDCB_VAID 0xA081C0 +#define IWM_RFH_Q_URBDCB_VAID(q) (IWM_RFH_Q0_URBDCB_VAID + (q) * 4) +/* stts */ +#define IWM_RFH_Q0_URBD_STTS_WPTR_LSB 0xA08200 /*64 bits address */ +#define IWM_RFH_Q_URBD_STTS_WPTR_LSB(q) (IWM_RFH_Q0_URBD_STTS_WPTR_LSB + (q) * 8) + +#define IWM_RFH_Q0_ORB_WPTR_LSB 0xA08280 +#define IWM_RFH_Q_ORB_WPTR_LSB(q) (IWM_RFH_Q0_ORB_WPTR_LSB + (q) * 8) +#define IWM_RFH_RBDBUF_RBD0_LSB 0xA08300 +#define IWM_RFH_RBDBUF_RBD_LSB(q) (IWM_RFH_RBDBUF_RBD0_LSB + (q) * 8) + +/** + * RFH Status Register + * + * Bit fields: + * + * Bit 29: RBD_FETCH_IDLE + * This status flag is set by the RFH when there is no active RBD fetch from + * DRAM. + * Once the RFH RBD controller starts fetching (or when there is a pending + * RBD read response from DRAM), this flag is immediately turned off. + * + * Bit 30: SRAM_DMA_IDLE + * This status flag is set by the RFH when there is no active transaction from + * SRAM to DRAM. + * Once the SRAM to DRAM DMA is active, this flag is immediately turned off. + * + * Bit 31: RXF_DMA_IDLE + * This status flag is set by the RFH when there is no active transaction from + * RXF to DRAM. + * Once the RXF-to-DRAM DMA is active, this flag is immediately turned off. + */ +#define IWM_RFH_GEN_STATUS 0xA09808 +#define IWM_RFH_GEN_STATUS_GEN3 0xA07824 +#define IWM_RBD_FETCH_IDLE (1 << 29) +#define IWM_SRAM_DMA_IDLE (1 << 30) +#define IWM_RXF_DMA_IDLE (1U << 31) + +/* DMA configuration */ +#define IWM_RFH_RXF_DMA_CFG 0xA09820 +#define IWM_RFH_RXF_DMA_CFG_GEN3 0xA07880 +/* RB size */ +#define IWM_RFH_RXF_DMA_RB_SIZE_MASK (0x000F0000) /* bits 16-19 */ +#define IWM_RFH_RXF_DMA_RB_SIZE_POS 16 +#define IWM_RFH_RXF_DMA_RB_SIZE_1K (0x1 << IWM_RFH_RXF_DMA_RB_SIZE_POS) +#define IWM_RFH_RXF_DMA_RB_SIZE_2K (0x2 << IWM_RFH_RXF_DMA_RB_SIZE_POS) +#define IWM_RFH_RXF_DMA_RB_SIZE_4K (0x4 << IWM_RFH_RXF_DMA_RB_SIZE_POS) +#define IWM_RFH_RXF_DMA_RB_SIZE_8K (0x8 << IWM_RFH_RXF_DMA_RB_SIZE_POS) +#define IWM_RFH_RXF_DMA_RB_SIZE_12K (0x9 << IWM_RFH_RXF_DMA_RB_SIZE_POS) +#define IWM_RFH_RXF_DMA_RB_SIZE_16K (0xA << IWM_RFH_RXF_DMA_RB_SIZE_POS) +#define IWM_RFH_RXF_DMA_RB_SIZE_20K (0xB << IWM_RFH_RXF_DMA_RB_SIZE_POS) +#define IWM_RFH_RXF_DMA_RB_SIZE_24K (0xC << IWM_RFH_RXF_DMA_RB_SIZE_POS) +#define IWM_RFH_RXF_DMA_RB_SIZE_28K (0xD << IWM_RFH_RXF_DMA_RB_SIZE_POS) +#define IWM_RFH_RXF_DMA_RB_SIZE_32K (0xE << IWM_RFH_RXF_DMA_RB_SIZE_POS) +/* RB Circular Buffer size:defines the table sizes in RBD units */ +#define IWM_RFH_RXF_DMA_RBDCB_SIZE_MASK (0x00F00000) /* bits 20-23 */ +#define IWM_RFH_RXF_DMA_RBDCB_SIZE_POS 20 +#define IWM_RFH_RXF_DMA_RBDCB_SIZE_8 (0x3 << IWM_RFH_RXF_DMA_RBDCB_SIZE_POS) +#define IWM_RFH_RXF_DMA_RBDCB_SIZE_16 (0x4 << IWM_RFH_RXF_DMA_RBDCB_SIZE_POS) +#define IWM_RFH_RXF_DMA_RBDCB_SIZE_32 (0x5 << IWM_RFH_RXF_DMA_RBDCB_SIZE_POS) +#define IWM_RFH_RXF_DMA_RBDCB_SIZE_64 (0x7 << IWM_RFH_RXF_DMA_RBDCB_SIZE_POS) +#define IWM_RFH_RXF_DMA_RBDCB_SIZE_128 (0x7 << IWM_RFH_RXF_DMA_RBDCB_SIZE_POS) +#define IWM_RFH_RXF_DMA_RBDCB_SIZE_256 (0x8 << IWM_RFH_RXF_DMA_RBDCB_SIZE_POS) +#define IWM_RFH_RXF_DMA_RBDCB_SIZE_512 (0x9 << IWM_RFH_RXF_DMA_RBDCB_SIZE_POS) +#define IWM_RFH_RXF_DMA_RBDCB_SIZE_1024 (0xA << IWM_RFH_RXF_DMA_RBDCB_SIZE_POS) +#define IWM_RFH_RXF_DMA_RBDCB_SIZE_2048 (0xB << IWM_RFH_RXF_DMA_RBDCB_SIZE_POS) +#define IWM_RFH_RXF_DMA_MIN_RB_SIZE_MASK (0x03000000) /* bit 24-25 */ +#define IWM_RFH_RXF_DMA_MIN_RB_SIZE_POS 24 +#define IWM_RFH_RXF_DMA_MIN_RB_4_8 (3 << IWM_RFH_RXF_DMA_MIN_RB_SIZE_POS) +#define IWM_RFH_RXF_DMA_DROP_TOO_LARGE_MASK (0x04000000) /* bit 26 */ +#define IWM_RFH_RXF_DMA_SINGLE_FRAME_MASK (0x20000000) /* bit 29 */ +#define IWM_RFH_DMA_EN_MASK (0xC0000000) /* bits 30-31*/ +#define IWM_RFH_DMA_EN_ENABLE_VAL (1U << 31) + +#define IWM_RFH_RXF_RXQ_ACTIVE 0xA0980C + +#define IWM_RFH_GEN_CFG 0xA09800 +#define IWM_RFH_GEN_CFG_SERVICE_DMA_SNOOP (1 << 0) +#define IWM_RFH_GEN_CFG_RFH_DMA_SNOOP (1 << 1) +#define IWM_RFH_GEN_CFG_RB_CHUNK_SIZE_128 0x00000010 +#define IWM_RFH_GEN_CFG_RB_CHUNK_SIZE_64 0x00000000 +/* the driver assumes everywhere that the default RXQ is 0 */ +#define IWM_RFH_GEN_CFG_DEFAULT_RXQ_NUM 0xF00 + +/* end of 9000 rx series registers */ + #define IWM_LMPM_SECURE_UCODE_LOAD_CPU1_HDR_ADDR 0x1e78 #define IWM_LMPM_SECURE_UCODE_LOAD_CPU2_HDR_ADDR 0x1e7c #define IWM_LMPM_SECURE_CPU1_HDR_MEM_SPACE 0x420000 #define IWM_LMPM_SECURE_CPU2_HDR_MEM_SPACE 0x420400 #define IWM_CSR_SECURE_TIME_OUT (100) /* extended range in FW SRAM */ #define IWM_FW_MEM_EXTENDED_START 0x40000 #define IWM_FW_MEM_EXTENDED_END 0x57FFF /* FW chicken bits */ #define IWM_LMPM_CHICK 0xa01ff8 #define IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE 0x01 -#define IWM_UREG_CHICK 0xa05c00 -#define IWM_UREG_CHICK_MSI_ENABLE 0x01000000 -#define IWM_UREG_CHICK_MSIX_ENABLE 0x02000000 - #define IWM_FH_TCSR_0_REG0 (0x1D00) /* * HBUS (Host-side Bus) * * HBUS registers are mapped directly into PCI bus space, but are used * to indirectly access device's internal memory or registers that * may be powered-down. * * Use iwl_write_direct32()/iwl_read_direct32() family for these registers; * host must "grab nic access" via CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ * to make sure the MAC (uCode processor, etc.) is powered up for accessing * internal resources. * * Do not use iwl_write32()/iwl_read32() family to access these registers; * these provide only simple PCI bus access, without waking up the MAC. */ #define IWM_HBUS_BASE (0x400) /* * Registers for accessing device's internal SRAM memory (e.g. SCD SRAM * structures, error log, event log, verifying uCode load). * First write to address register, then read from or write to data register * to complete the job. Once the address register is set up, accesses to * data registers auto-increment the address by one dword. * Bit usage for address registers (read or write): * 0-31: memory address within device */ #define IWM_HBUS_TARG_MEM_RADDR (IWM_HBUS_BASE+0x00c) #define IWM_HBUS_TARG_MEM_WADDR (IWM_HBUS_BASE+0x010) #define IWM_HBUS_TARG_MEM_WDAT (IWM_HBUS_BASE+0x018) #define IWM_HBUS_TARG_MEM_RDAT (IWM_HBUS_BASE+0x01c) /* Mailbox C, used as workaround alternative to CSR_UCODE_DRV_GP1 mailbox */ #define IWM_HBUS_TARG_MBX_C (IWM_HBUS_BASE+0x030) #define IWM_HBUS_TARG_MBX_C_REG_BIT_CMD_BLOCKED (0x00000004) /* * Registers for accessing device's internal peripheral registers * (e.g. SCD, BSM, etc.). First write to address register, * then read from or write to data register to complete the job. * Bit usage for address registers (read or write): * 0-15: register address (offset) within device * 24-25: (# bytes - 1) to read or write (e.g. 3 for dword) */ #define IWM_HBUS_TARG_PRPH_WADDR (IWM_HBUS_BASE+0x044) #define IWM_HBUS_TARG_PRPH_RADDR (IWM_HBUS_BASE+0x048) #define IWM_HBUS_TARG_PRPH_WDAT (IWM_HBUS_BASE+0x04c) #define IWM_HBUS_TARG_PRPH_RDAT (IWM_HBUS_BASE+0x050) /* enable the ID buf for read */ #define IWM_WFPM_PS_CTL_CLR 0xa0300c #define IWM_WFMP_MAC_ADDR_0 0xa03080 #define IWM_WFMP_MAC_ADDR_1 0xa03084 #define IWM_LMPM_PMG_EN 0xa01cec #define IWM_RADIO_REG_SYS_MANUAL_DFT_0 0xad4078 #define IWM_RFIC_REG_RD 0xad0470 #define IWM_WFPM_CTRL_REG 0xa03030 #define IWM_WFPM_AUX_CTL_AUX_IF_MAC_OWNER_MSK 0x08000000 #define IWM_ENABLE_WFPM 0x80000000 #define IWM_AUX_MISC_REG 0xa200b0 #define IWM_HW_STEP_LOCATION_BITS 24 #define IWM_AUX_MISC_MASTER1_EN 0xa20818 #define IWM_AUX_MISC_MASTER1_EN_SBE_MSK 0x1 #define IWM_AUX_MISC_MASTER1_SMPHR_STATUS 0xa20800 #define IWM_RSA_ENABLE 0xa24b08 #define IWM_PREG_AUX_BUS_WPROT_0 0xa04cc0 +#define IWM_PREG_PRPH_WPROT_9000 0xa04ce0 +#define IWM_PREG_PRPH_WPROT_22000 0xa04d00 #define IWM_SB_CFG_OVERRIDE_ADDR 0xa26c78 #define IWM_SB_CFG_OVERRIDE_ENABLE 0x8000 #define IWM_SB_CFG_BASE_OVERRIDE 0xa20000 #define IWM_SB_MODIFY_CFG_FLAG 0xa03088 #define IWM_SB_CPU_1_STATUS 0xa01e30 #define IWM_SB_CPU_2_STATUS 0Xa01e34 +#define IWM_UREG_CHICK 0xa05c00 +#define IWM_UREG_CHICK_MSI_ENABLE (1 << 24) +#define IWM_UREG_CHICK_MSIX_ENABLE (1 << 25) + +#define IWM_HPM_DEBUG 0xa03440 +#define IWM_HPM_PERSISTENCE_BIT (1 << 12) +#define IWM_PREG_WFPM_ACCESS (1 << 12) + /* Used to enable DBGM */ #define IWM_HBUS_TARG_TEST_REG (IWM_HBUS_BASE+0x05c) /* * Per-Tx-queue write pointer (index, really!) * Indicates index to next TFD that driver will fill (1 past latest filled). * Bit usage: * 0-7: queue write index * 11-8: queue selector */ #define IWM_HBUS_TARG_WRPTR (IWM_HBUS_BASE+0x060) /********************************************************** * CSR values **********************************************************/ /* * host interrupt timeout value * used with setting interrupt coalescing timer * the CSR_INT_COALESCING is an 8 bit register in 32-usec unit * * default interrupt coalescing timer is 64 x 32 = 2048 usecs */ #define IWM_HOST_INT_TIMEOUT_MAX (0xFF) #define IWM_HOST_INT_TIMEOUT_DEF (0x40) #define IWM_HOST_INT_TIMEOUT_MIN (0x0) -#define IWM_HOST_INT_OPER_MODE (1 << 31) +#define IWM_HOST_INT_OPER_MODE (1U << 31) /***************************************************************************** * 7000/3000 series SHR DTS addresses * *****************************************************************************/ /* Diode Results Register Structure: */ -enum iwm_dtd_diode_reg { - IWM_DTS_DIODE_REG_DIG_VAL = 0x000000FF, /* bits [7:0] */ - IWM_DTS_DIODE_REG_VREF_LOW = 0x0000FF00, /* bits [15:8] */ - IWM_DTS_DIODE_REG_VREF_HIGH = 0x00FF0000, /* bits [23:16] */ - IWM_DTS_DIODE_REG_VREF_ID = 0x03000000, /* bits [25:24] */ - IWM_DTS_DIODE_REG_PASS_ONCE = 0x80000000, /* bits [31:31] */ - IWM_DTS_DIODE_REG_FLAGS_MSK = 0xFF000000, /* bits [31:24] */ +#define IWM_DTS_DIODE_REG_DIG_VAL 0x000000FF /* bits [7:0] */ +#define IWM_DTS_DIODE_REG_VREF_LOW 0x0000FF00 /* bits [15:8] */ +#define IWM_DTS_DIODE_REG_VREF_HIGH 0x00FF0000 /* bits [23:16] */ +#define IWM_DTS_DIODE_REG_VREF_ID 0x03000000 /* bits [25:24] */ +#define IWM_DTS_DIODE_REG_PASS_ONCE 0x80000000 /* bits [31:31] */ +#define IWM_DTS_DIODE_REG_FLAGS_MSK 0xFF000000 /* bits [31:24] */ /* Those are the masks INSIDE the flags bit-field: */ - IWM_DTS_DIODE_REG_FLAGS_VREFS_ID_POS = 0, - IWM_DTS_DIODE_REG_FLAGS_VREFS_ID = 0x00000003, /* bits [1:0] */ - IWM_DTS_DIODE_REG_FLAGS_PASS_ONCE_POS = 7, - IWM_DTS_DIODE_REG_FLAGS_PASS_ONCE = 0x00000080, /* bits [7:7] */ +#define IWM_DTS_DIODE_REG_FLAGS_VREFS_ID_POS 0 +#define IWM_DTS_DIODE_REG_FLAGS_VREFS_ID 0x00000003 /* bits [1:0] */ +#define IWM_DTS_DIODE_REG_FLAGS_PASS_ONCE_POS 7 +#define IWM_DTS_DIODE_REG_FLAGS_PASS_ONCE 0x00000080 /* bits [7:7] */ + +/***************************************************************************** + * MSIX related registers * + *****************************************************************************/ + +#define IWM_CSR_MSIX_BASE (0x2000) +#define IWM_CSR_MSIX_FH_INT_CAUSES_AD (IWM_CSR_MSIX_BASE + 0x800) +#define IWM_CSR_MSIX_FH_INT_MASK_AD (IWM_CSR_MSIX_BASE + 0x804) +#define IWM_CSR_MSIX_HW_INT_CAUSES_AD (IWM_CSR_MSIX_BASE + 0x808) +#define IWM_CSR_MSIX_HW_INT_MASK_AD (IWM_CSR_MSIX_BASE + 0x80C) +#define IWM_CSR_MSIX_AUTOMASK_ST_AD (IWM_CSR_MSIX_BASE + 0x810) +#define IWM_CSR_MSIX_RX_IVAR_AD_REG (IWM_CSR_MSIX_BASE + 0x880) +#define IWM_CSR_MSIX_IVAR_AD_REG (IWM_CSR_MSIX_BASE + 0x890) +#define IWM_CSR_MSIX_PENDING_PBA_AD (IWM_CSR_MSIX_BASE + 0x1000) +#define IWM_CSR_MSIX_RX_IVAR(cause) (IWM_CSR_MSIX_RX_IVAR_AD_REG + (cause)) +#define IWM_CSR_MSIX_IVAR(cause) (IWM_CSR_MSIX_IVAR_AD_REG + (cause)) + +/* + * Causes for the FH register interrupts + */ +enum msix_fh_int_causes { + IWM_MSIX_FH_INT_CAUSES_Q0 = (1 << 0), + IWM_MSIX_FH_INT_CAUSES_Q1 = (1 << 1), + IWM_MSIX_FH_INT_CAUSES_D2S_CH0_NUM = (1 << 16), + IWM_MSIX_FH_INT_CAUSES_D2S_CH1_NUM = (1 << 17), + IWM_MSIX_FH_INT_CAUSES_S2D = (1 << 19), + IWM_MSIX_FH_INT_CAUSES_FH_ERR = (1 << 21), }; /* * END iwl-csr.h */ /* * BEGIN iwl-fw.h */ +/* + * Causes for the HW register interrupts + */ +enum msix_hw_int_causes { + IWM_MSIX_HW_INT_CAUSES_REG_ALIVE = (1 << 0), + IWM_MSIX_HW_INT_CAUSES_REG_WAKEUP = (1 << 1), + IWM_MSIX_HW_INT_CAUSES_REG_IPC = (1 << 1), + IWM_MSIX_HW_INT_CAUSES_REG_IML = (1 << 2), + IWM_MSIX_HW_INT_CAUSES_REG_SW_ERR_V2 = (1 << 5), + IWM_MSIX_HW_INT_CAUSES_REG_CT_KILL = (1 << 6), + IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL = (1 << 7), + IWM_MSIX_HW_INT_CAUSES_REG_PERIODIC = (1 << 8), + IWM_MSIX_HW_INT_CAUSES_REG_SW_ERR = (1 << 25), + IWM_MSIX_HW_INT_CAUSES_REG_SCD = (1 << 26), + IWM_MSIX_HW_INT_CAUSES_REG_FH_TX = (1 << 27), + IWM_MSIX_HW_INT_CAUSES_REG_HW_ERR = (1 << 29), + IWM_MSIX_HW_INT_CAUSES_REG_HAP = (1 << 30), +}; + +/* + * Registers to map causes to vectors + */ +enum msix_ivar_for_cause { + IWM_MSIX_IVAR_CAUSE_D2S_CH0_NUM = 0x0, + IWM_MSIX_IVAR_CAUSE_D2S_CH1_NUM = 0x1, + IWM_MSIX_IVAR_CAUSE_S2D = 0x3, + IWM_MSIX_IVAR_CAUSE_FH_ERR = 0x5, + IWM_MSIX_IVAR_CAUSE_REG_ALIVE = 0x10, + IWM_MSIX_IVAR_CAUSE_REG_WAKEUP = 0x11, + IWM_MSIX_IVAR_CAUSE_REG_IML = 0x12, + IWM_MSIX_IVAR_CAUSE_REG_CT_KILL = 0x16, + IWM_MSIX_IVAR_CAUSE_REG_RF_KILL = 0x17, + IWM_MSIX_IVAR_CAUSE_REG_PERIODIC = 0x18, + IWM_MSIX_IVAR_CAUSE_REG_SW_ERR = 0x29, + IWM_MSIX_IVAR_CAUSE_REG_SCD = 0x2a, + IWM_MSIX_IVAR_CAUSE_REG_FH_TX = 0x2b, + IWM_MSIX_IVAR_CAUSE_REG_HW_ERR = 0x2d, + IWM_MSIX_IVAR_CAUSE_REG_HAP = 0x2e, +}; + +#define IWM_MSIX_AUTO_CLEAR_CAUSE (0 << 7) +#define IWM_MSIX_NON_AUTO_CLEAR_CAUSE (1 << 7) + /** - * enum iwm_ucode_tlv_flag - ucode API flags + * uCode API flags * @IWM_UCODE_TLV_FLAGS_PAN: This is PAN capable microcode; this previously * was a separate TLV but moved here to save space. * @IWM_UCODE_TLV_FLAGS_NEWSCAN: new uCode scan behaviour on hidden SSID, * treats good CRC threshold as a boolean * @IWM_UCODE_TLV_FLAGS_MFP: This uCode image supports MFP (802.11w). + * @IWM_UCODE_TLV_FLAGS_P2P: This uCode image supports P2P. + * @IWM_UCODE_TLV_FLAGS_DW_BC_TABLE: The SCD byte count table is in DWORDS * @IWM_UCODE_TLV_FLAGS_UAPSD: This uCode image supports uAPSD * @IWM_UCODE_TLV_FLAGS_SHORT_BL: 16 entries of black list instead of 64 in scan * offload profile config command. * @IWM_UCODE_TLV_FLAGS_D3_6_IPV6_ADDRS: D3 image supports up to six * (rather than two) IPv6 addresses * @IWM_UCODE_TLV_FLAGS_NO_BASIC_SSID: not sending a probe with the SSID element * from the probe request template. * @IWM_UCODE_TLV_FLAGS_NEW_NSOFFL_SMALL: new NS offload (small version) * @IWM_UCODE_TLV_FLAGS_NEW_NSOFFL_LARGE: new NS offload (large version) + * @IWM_UCODE_TLV_FLAGS_P2P_PS: P2P client power save is supported (only on a + * single bound interface). * @IWM_UCODE_TLV_FLAGS_UAPSD_SUPPORT: General support for uAPSD * @IWM_UCODE_TLV_FLAGS_EBS_SUPPORT: this uCode image supports EBS. * @IWM_UCODE_TLV_FLAGS_P2P_PS_UAPSD: P2P client supports uAPSD power save * @IWM_UCODE_TLV_FLAGS_BCAST_FILTERING: uCode supports broadcast filtering. + * @IWM_UCODE_TLV_FLAGS_GO_UAPSD: AP/GO interfaces support uAPSD clients + * */ -enum iwm_ucode_tlv_flag { - IWM_UCODE_TLV_FLAGS_PAN = (1 << 0), - IWM_UCODE_TLV_FLAGS_NEWSCAN = (1 << 1), - IWM_UCODE_TLV_FLAGS_MFP = (1 << 2), - IWM_UCODE_TLV_FLAGS_SHORT_BL = (1 << 7), - IWM_UCODE_TLV_FLAGS_D3_6_IPV6_ADDRS = (1 << 10), - IWM_UCODE_TLV_FLAGS_NO_BASIC_SSID = (1 << 12), - IWM_UCODE_TLV_FLAGS_NEW_NSOFFL_SMALL = (1 << 15), - IWM_UCODE_TLV_FLAGS_NEW_NSOFFL_LARGE = (1 << 16), - IWM_UCODE_TLV_FLAGS_UAPSD_SUPPORT = (1 << 24), - IWM_UCODE_TLV_FLAGS_EBS_SUPPORT = (1 << 25), - IWM_UCODE_TLV_FLAGS_P2P_PS_UAPSD = (1 << 26), - IWM_UCODE_TLV_FLAGS_BCAST_FILTERING = (1 << 29), -}; +#define IWM_UCODE_TLV_FLAGS_PAN (1 << 0) +#define IWM_UCODE_TLV_FLAGS_NEWSCAN (1 << 1) +#define IWM_UCODE_TLV_FLAGS_MFP (1 << 2) +#define IWM_UCODE_TLV_FLAGS_P2P (1 << 3) +#define IWM_UCODE_TLV_FLAGS_DW_BC_TABLE (1 << 4) +#define IWM_UCODE_TLV_FLAGS_SHORT_BL (1 << 7) +#define IWM_UCODE_TLV_FLAGS_D3_6_IPV6_ADDRS (1 << 10) +#define IWM_UCODE_TLV_FLAGS_NO_BASIC_SSID (1 << 12) +#define IWM_UCODE_TLV_FLAGS_NEW_NSOFFL_SMALL (1 << 15) +#define IWM_UCODE_TLV_FLAGS_NEW_NSOFFL_LARGE (1 << 16) +#define IWM_UCODE_TLV_FLAGS_P2P_PS (1 << 21) +#define IWM_UCODE_TLV_FLAGS_BSS_P2P_PS_DCM (1 << 22) +#define IWM_UCODE_TLV_FLAGS_BSS_P2P_PS_SCM (1 << 23) +#define IWM_UCODE_TLV_FLAGS_UAPSD_SUPPORT (1 << 24) +#define IWM_UCODE_TLV_FLAGS_EBS_SUPPORT (1 << 25) +#define IWM_UCODE_TLV_FLAGS_P2P_PS_UAPSD (1 << 26) +#define IWM_UCODE_TLV_FLAGS_BCAST_FILTERING (1 << 29) +#define IWM_UCODE_TLV_FLAGS_GO_UAPSD (1 << 30) +#define IWM_UCODE_TLV_FLAGS_LTE_COEX (1U << 31) #define IWM_UCODE_TLV_FLAG_BITS \ - "\020\1PAN\2NEWSCAN\3MFP\4P2P\5DW_BC_TABLE\6NEWBT_COEX\7PM_CMD\10SHORT_BL\11RX_ENERG \ -Y\12TIME_EVENT_V2\13D3_6_IPV6\14BF_UPDATED\15NO_BASIC_SSID\17D3_CONTINUITY\20NEW_NSOFF \ -L_S\21NEW_NSOFFL_L\22SCHED_SCAN\24STA_KEY_CMD\25DEVICE_PS_CMD\26P2P_PS\27P2P_PS_DCM\30 \ -P2P_PS_SCM\31UAPSD_SUPPORT\32EBS\33P2P_PS_UAPSD\36BCAST_FILTERING\37GO_UAPSD\40LTE_COEX" + "\020\1PAN\2NEWSCAN\3MFP\4P2P\5DW_BC_TABLE\6NEWBT_COEX\7PM_CMD\10SHORT_BL\11RX_ENERGY\12TIME_EVENT_V2\13D3_6_IPV6\14BF_UPDATED\15NO_BASIC_SSID\17D3_CONTINUITY\20NEW_NSOFFL_S\21NEW_NSOFFL_L\22SCHED_SCAN\24STA_KEY_CMD\25DEVICE_PS_CMD\26P2P_PS\27P2P_PS_DCM\30P2P_PS_SCM\31UAPSD_SUPPORT\32EBS\33P2P_PS_UAPSD\36BCAST_FILTERING\37GO_UAPSD\40LTE_COEX" /** - * enum iwm_ucode_tlv_api - ucode api + * uCode TLV api * @IWM_UCODE_TLV_API_FRAGMENTED_SCAN: This ucode supports active dwell time * longer than the passive one, which is essential for fragmented scan. * @IWM_UCODE_TLV_API_WIFI_MCC_UPDATE: ucode supports MCC updates with source. + * @IWM_UCODE_TLV_API_WIDE_CMD_HDR: ucode supports wide command header * @IWM_UCODE_TLV_API_LQ_SS_PARAMS: Configure STBC/BFER via LQ CMD ss_params * @IWM_UCODE_TLV_API_NEW_VERSION: new versioning format + * @IWM_UCODE_TLV_API_TX_POWER_CHAIN: TX power API has larger command size + * (command version 3) that supports per-chain limits * @IWM_UCODE_TLV_API_SCAN_TSF_REPORT: Scan start time reported in scan * iteration complete notification, and the timestamp reported for RX * received during scan, are reported in TSF of the mac specified in the * scan request. * @IWM_UCODE_TLV_API_TKIP_MIC_KEYS: This ucode supports version 2 of * ADD_MODIFY_STA_KEY_API_S_VER_2. * @IWM_UCODE_TLV_API_STA_TYPE: This ucode supports station type assignement. - * @IWM_UCODE_TLV_API_NAN2_VER2: This ucode supports NAN API version 2 + * @IWM_UCODE_TLV_API_EXT_SCAN_PRIORITY: scan APIs use 8-level priority + * instead of 3. * @IWM_UCODE_TLV_API_NEW_RX_STATS: should new RX STATISTICS API be used - * @IWM_UCODE_TLV_API_QUOTA_LOW_LATENCY: Quota command includes a field - * indicating low latency direction. - * @IWM_UCODE_TLV_API_DEPRECATE_TTAK: RX status flag TTAK ok (bit 7) is - * deprecated. - * @IWM_UCODE_TLV_API_ADAPTIVE_DWELL_V2: This ucode supports version 8 - * of scan request: SCAN_REQUEST_CMD_UMAC_API_S_VER_8 - * @IWM_UCODE_TLV_API_FRAG_EBS: This ucode supports fragmented EBS - * @IWM_UCODE_TLV_API_REDUCE_TX_POWER: This ucode supports v5 of - * the REDUCE_TX_POWER_CMD. - * @IWM_UCODE_TLV_API_SHORT_BEACON_NOTIF: This ucode supports the short - * version of the beacon notification. - * @IWM_UCODE_TLV_API_BEACON_FILTER_V4: This ucode supports v4 of - * BEACON_FILTER_CONFIG_API_S_VER_4. - * @IWM_UCODE_TLV_API_REGULATORY_NVM_INFO: This ucode supports v4 of - * REGULATORY_NVM_GET_INFO_RSP_API_S. - * @IWM_UCODE_TLV_API_FTM_NEW_RANGE_REQ: This ucode supports v7 of - * LOCATION_RANGE_REQ_CMD_API_S and v6 of LOCATION_RANGE_RESP_NTFY_API_S. - * @IWM_UCODE_TLV_API_SCAN_OFFLOAD_CHANS: This ucode supports v2 of - * SCAN_OFFLOAD_PROFILE_MATCH_RESULTS_S and v3 of - * SCAN_OFFLOAD_PROFILES_QUERY_RSP_S. - * @IWM_UCODE_TLV_API_MBSSID_HE: This ucode supports v2 of - * STA_CONTEXT_DOT11AX_API_S - * @IWM_UCODE_TLV_CAPA_SAR_TABLE_VER: This ucode supports different sar - * version tables. * * @IWM_NUM_UCODE_TLV_API: number of bits used */ -enum iwm_ucode_tlv_api { - IWM_UCODE_TLV_API_FRAGMENTED_SCAN = 8, - IWM_UCODE_TLV_API_WIFI_MCC_UPDATE = 9, - IWM_UCODE_TLV_API_LQ_SS_PARAMS = 18, - IWM_UCODE_TLV_API_NEW_VERSION = 20, - IWM_UCODE_TLV_API_SCAN_TSF_REPORT = 28, - IWM_UCODE_TLV_API_TKIP_MIC_KEYS = 29, - IWM_UCODE_TLV_API_STA_TYPE = 30, - IWM_UCODE_TLV_API_NAN2_VER2 = 31, - IWM_UCODE_TLV_API_ADAPTIVE_DWELL = 32, - IWM_UCODE_TLV_API_OCE = 33, - IWM_UCODE_TLV_API_NEW_BEACON_TEMPLATE = 34, - IWM_UCODE_TLV_API_NEW_RX_STATS = 35, - IWM_UCODE_TLV_API_WOWLAN_KEY_MATERIAL = 36, - IWM_UCODE_TLV_API_QUOTA_LOW_LATENCY = 38, - IWM_UCODE_TLV_API_DEPRECATE_TTAK = 41, - IWM_UCODE_TLV_API_ADAPTIVE_DWELL_V2 = 42, - IWM_UCODE_TLV_API_FRAG_EBS = 44, - IWM_UCODE_TLV_API_REDUCE_TX_POWER = 45, - IWM_UCODE_TLV_API_SHORT_BEACON_NOTIF = 46, - IWM_UCODE_TLV_API_BEACON_FILTER_V4 = 47, - IWM_UCODE_TLV_API_REGULATORY_NVM_INFO = 48, - IWM_UCODE_TLV_API_FTM_NEW_RANGE_REQ = 49, - IWM_UCODE_TLV_API_SCAN_OFFLOAD_CHANS = 50, - IWM_UCODE_TLV_API_MBSSID_HE = 52, - IWM_UCODE_TLV_API_WOWLAN_TCP_SYN_WAKE = 53, - IWM_UCODE_TLV_API_FTM_RTT_ACCURACY = 54, - IWM_UCODE_TLV_API_SAR_TABLE_VER = 55, - IWM_UCODE_TLV_API_ADWELL_HB_DEF_N_AP = 57, - IWM_UCODE_TLV_API_SCAN_EXT_CHAN_VER = 58, - - IWM_NUM_UCODE_TLV_API = 128, -}; - -/** - * enum iwm_ucode_tlv_capa - ucode capabilities +#define IWM_UCODE_TLV_API_FRAGMENTED_SCAN 8 +#define IWM_UCODE_TLV_API_WIFI_MCC_UPDATE 9 +#define IWM_UCODE_TLV_API_WIDE_CMD_HDR 14 +#define IWM_UCODE_TLV_API_LQ_SS_PARAMS 18 +#define IWM_UCODE_TLV_API_NEW_VERSION 20 +#define IWM_UCODE_TLV_API_EXT_SCAN_PRIORITY 24 +#define IWM_UCODE_TLV_API_TX_POWER_CHAIN 27 +#define IWM_UCODE_TLV_API_SCAN_TSF_REPORT 28 +#define IWM_UCODE_TLV_API_TKIP_MIC_KEYS 29 +#define IWM_UCODE_TLV_API_STA_TYPE 30 +#define IWM_UCODE_TLV_API_NAN2_VER2 31 +#define IWM_UCODE_TLV_API_ADAPTIVE_DWELL 32 +#define IWM_UCODE_TLV_API_NEW_RX_STATS 35 +#define IWM_UCODE_TLV_API_QUOTA_LOW_LATENCY 38 +#define IWM_UCODE_TLV_API_ADAPTIVE_DWELL_V2 42 +#define IWM_UCODE_TLV_API_SCAN_EXT_CHAN_VER 58 +#define IWM_NUM_UCODE_TLV_API 128 + +#define IWM_UCODE_TLV_API_BITS \ + "\020\10FRAGMENTED_SCAN\11WIFI_MCC_UPDATE\16WIDE_CMD_HDR\22LQ_SS_PARAMS\30EXT_SCAN_PRIO\33TX_POWER_CHAIN\35TKIP_MIC_KEYS" + +/** + * uCode capabilities * @IWM_UCODE_TLV_CAPA_D0I3_SUPPORT: supports D0i3 * @IWM_UCODE_TLV_CAPA_LAR_SUPPORT: supports Location Aware Regulatory * @IWM_UCODE_TLV_CAPA_UMAC_SCAN: supports UMAC scan. * @IWM_UCODE_TLV_CAPA_BEAMFORMER: supports Beamformer * @IWM_UCODE_TLV_CAPA_TOF_SUPPORT: supports Time of Flight (802.11mc FTM) * @IWM_UCODE_TLV_CAPA_TDLS_SUPPORT: support basic TDLS functionality * @IWM_UCODE_TLV_CAPA_TXPOWER_INSERTION_SUPPORT: supports insertion of current * tx power value into TPC Report action frame and Link Measurement Report * action frame * @IWM_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT: supports updating current * channel in DS parameter set element in probe requests. * @IWM_UCODE_TLV_CAPA_WFA_TPC_REP_IE_SUPPORT: supports adding TPC Report IE in * probe requests. * @IWM_UCODE_TLV_CAPA_QUIET_PERIOD_SUPPORT: supports Quiet Period requests * @IWM_UCODE_TLV_CAPA_DQA_SUPPORT: supports dynamic queue allocation (DQA), * which also implies support for the scheduler configuration command * @IWM_UCODE_TLV_CAPA_TDLS_CHANNEL_SWITCH: supports TDLS channel switching * @IWM_UCODE_TLV_CAPA_CNSLDTD_D3_D0_IMG: Consolidated D3-D0 image * @IWM_UCODE_TLV_CAPA_HOTSPOT_SUPPORT: supports Hot Spot Command * @IWM_UCODE_TLV_CAPA_DC2DC_SUPPORT: supports DC2DC Command * @IWM_UCODE_TLV_CAPA_2G_COEX_SUPPORT: supports 2G coex Command * @IWM_UCODE_TLV_CAPA_CSUM_SUPPORT: supports TCP Checksum Offload * @IWM_UCODE_TLV_CAPA_RADIO_BEACON_STATS: support radio and beacon statistics * @IWM_UCODE_TLV_CAPA_P2P_STANDALONE_UAPSD: support p2p standalone U-APSD * @IWM_UCODE_TLV_CAPA_BT_COEX_PLCR: enabled BT Coex packet level co-running * @IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC: ucode supports LAR updates with different * sources for the MCC. This TLV bit is a future replacement to * IWM_UCODE_TLV_API_WIFI_MCC_UPDATE. When either is set, multi-source LAR * is supported. * @IWM_UCODE_TLV_CAPA_BT_COEX_RRC: supports BT Coex RRC * @IWM_UCODE_TLV_CAPA_GSCAN_SUPPORT: supports gscan * @IWM_UCODE_TLV_CAPA_NAN_SUPPORT: supports NAN * @IWM_UCODE_TLV_CAPA_UMAC_UPLOAD: supports upload mode in umac (1=supported, * 0=no support) * @IWM_UCODE_TLV_CAPA_EXTENDED_DTS_MEASURE: extended DTS measurement * @IWM_UCODE_TLV_CAPA_SHORT_PM_TIMEOUTS: supports short PM timeouts * @IWM_UCODE_TLV_CAPA_BT_MPLUT_SUPPORT: supports bt-coex Multi-priority LUT * @IWM_UCODE_TLV_CAPA_BEACON_ANT_SELECTION: firmware will decide on what * antenna the beacon should be transmitted * @IWM_UCODE_TLV_CAPA_BEACON_STORING: firmware will store the latest beacon * from AP and will send it upon d0i3 exit. * @IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V2: support LAR API V2 * @IWM_UCODE_TLV_CAPA_CT_KILL_BY_FW: firmware responsible for CT-kill * @IWM_UCODE_TLV_CAPA_TEMP_THS_REPORT_SUPPORT: supports temperature * thresholds reporting * @IWM_UCODE_TLV_CAPA_CTDP_SUPPORT: supports cTDP command * @IWM_UCODE_TLV_CAPA_USNIFFER_UNIFIED: supports usniffer enabled in * regular image. * @IWM_UCODE_TLV_CAPA_EXTEND_SHARED_MEM_CFG: support getting more shared * memory addresses from the firmware. * @IWM_UCODE_TLV_CAPA_LQM_SUPPORT: supports Link Quality Measurement - * @IWM_UCODE_TLV_CAPA_TX_POWER_ACK: reduced TX power API has larger - * command size (command version 4) that supports toggling ACK TX - * power reduction. + * @IWM_UCODE_TLV_CAPA_LMAC_UPLOAD: supports upload mode in lmac (1=supported, + * 0=no support) * * @IWM_NUM_UCODE_TLV_CAPA: number of bits used */ -enum iwm_ucode_tlv_capa { - IWM_UCODE_TLV_CAPA_D0I3_SUPPORT = 0, - IWM_UCODE_TLV_CAPA_LAR_SUPPORT = 1, - IWM_UCODE_TLV_CAPA_UMAC_SCAN = 2, - IWM_UCODE_TLV_CAPA_BEAMFORMER = 3, - IWM_UCODE_TLV_CAPA_TOF_SUPPORT = 5, - IWM_UCODE_TLV_CAPA_TDLS_SUPPORT = 6, - IWM_UCODE_TLV_CAPA_TXPOWER_INSERTION_SUPPORT = 8, - IWM_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT = 9, - IWM_UCODE_TLV_CAPA_WFA_TPC_REP_IE_SUPPORT = 10, - IWM_UCODE_TLV_CAPA_QUIET_PERIOD_SUPPORT = 11, - IWM_UCODE_TLV_CAPA_DQA_SUPPORT = 12, - IWM_UCODE_TLV_CAPA_TDLS_CHANNEL_SWITCH = 13, - IWM_UCODE_TLV_CAPA_CNSLDTD_D3_D0_IMG = 17, - IWM_UCODE_TLV_CAPA_HOTSPOT_SUPPORT = 18, - IWM_UCODE_TLV_CAPA_DC2DC_CONFIG_SUPPORT = 19, - IWM_UCODE_TLV_CAPA_2G_COEX_SUPPORT = 20, - IWM_UCODE_TLV_CAPA_CSUM_SUPPORT = 21, - IWM_UCODE_TLV_CAPA_RADIO_BEACON_STATS = 22, - IWM_UCODE_TLV_CAPA_P2P_STANDALONE_UAPSD = 26, - IWM_UCODE_TLV_CAPA_BT_COEX_PLCR = 28, - IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC = 29, - IWM_UCODE_TLV_CAPA_BT_COEX_RRC = 30, - IWM_UCODE_TLV_CAPA_GSCAN_SUPPORT = 31, - IWM_UCODE_TLV_CAPA_NAN_SUPPORT = 34, - IWM_UCODE_TLV_CAPA_UMAC_UPLOAD = 35, - IWM_UCODE_TLV_CAPA_EXTENDED_DTS_MEASURE = 64, - IWM_UCODE_TLV_CAPA_SHORT_PM_TIMEOUTS = 65, - IWM_UCODE_TLV_CAPA_BT_MPLUT_SUPPORT = 67, - IWM_UCODE_TLV_CAPA_MULTI_QUEUE_RX_SUPPORT = 68, - IWM_UCODE_TLV_CAPA_BEACON_ANT_SELECTION = 71, - IWM_UCODE_TLV_CAPA_BEACON_STORING = 72, - IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V2 = 73, - IWM_UCODE_TLV_CAPA_CT_KILL_BY_FW = 74, - IWM_UCODE_TLV_CAPA_TEMP_THS_REPORT_SUPPORT = 75, - IWM_UCODE_TLV_CAPA_CTDP_SUPPORT = 76, - IWM_UCODE_TLV_CAPA_USNIFFER_UNIFIED = 77, - IWM_UCODE_TLV_CAPA_EXTEND_SHARED_MEM_CFG = 80, - IWM_UCODE_TLV_CAPA_LQM_SUPPORT = 81, - IWM_UCODE_TLV_CAPA_TX_POWER_ACK = 84, - - IWM_NUM_UCODE_TLV_CAPA = 128 -}; +#define IWM_UCODE_TLV_CAPA_D0I3_SUPPORT 0 +#define IWM_UCODE_TLV_CAPA_LAR_SUPPORT 1 +#define IWM_UCODE_TLV_CAPA_UMAC_SCAN 2 +#define IWM_UCODE_TLV_CAPA_BEAMFORMER 3 +#define IWM_UCODE_TLV_CAPA_TOF_SUPPORT 5 +#define IWM_UCODE_TLV_CAPA_TDLS_SUPPORT 6 +#define IWM_UCODE_TLV_CAPA_TXPOWER_INSERTION_SUPPORT 8 +#define IWM_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT 9 +#define IWM_UCODE_TLV_CAPA_WFA_TPC_REP_IE_SUPPORT 10 +#define IWM_UCODE_TLV_CAPA_QUIET_PERIOD_SUPPORT 11 +#define IWM_UCODE_TLV_CAPA_DQA_SUPPORT 12 +#define IWM_UCODE_TLV_CAPA_TDLS_CHANNEL_SWITCH 13 +#define IWM_UCODE_TLV_CAPA_CNSLDTD_D3_D0_IMG 17 +#define IWM_UCODE_TLV_CAPA_HOTSPOT_SUPPORT 18 +#define IWM_UCODE_TLV_CAPA_DC2DC_CONFIG_SUPPORT 19 +#define IWM_UCODE_TLV_CAPA_2G_COEX_SUPPORT 20 +#define IWM_UCODE_TLV_CAPA_CSUM_SUPPORT 21 +#define IWM_UCODE_TLV_CAPA_RADIO_BEACON_STATS 22 +#define IWM_UCODE_TLV_CAPA_P2P_STANDALONE_UAPSD 26 +#define IWM_UCODE_TLV_CAPA_BT_COEX_PLCR 28 +#define IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC 29 +#define IWM_UCODE_TLV_CAPA_BT_COEX_RRC 30 +#define IWM_UCODE_TLV_CAPA_GSCAN_SUPPORT 31 +#define IWM_UCODE_TLV_CAPA_NAN_SUPPORT 34 +#define IWM_UCODE_TLV_CAPA_UMAC_UPLOAD 35 +#define IWM_UCODE_TLV_CAPA_SOC_LATENCY_SUPPORT 37 +#define IWM_UCODE_TLV_CAPA_BINDING_CDB_SUPPORT 39 +#define IWM_UCODE_TLV_CAPA_CDB_SUPPORT 40 +#define IWM_UCODE_TLV_CAPA_DYNAMIC_QUOTA 44 +#define IWM_UCODE_TLV_CAPA_ULTRA_HB_CHANNELS 48 +#define IWM_UCODE_TLV_CAPA_EXTENDED_DTS_MEASURE 64 +#define IWM_UCODE_TLV_CAPA_SHORT_PM_TIMEOUTS 65 +#define IWM_UCODE_TLV_CAPA_BT_MPLUT_SUPPORT 67 +#define IWM_UCODE_TLV_CAPA_MULTI_QUEUE_RX_SUPPORT 68 +#define IWM_UCODE_TLV_CAPA_BEACON_ANT_SELECTION 71 +#define IWM_UCODE_TLV_CAPA_BEACON_STORING 72 +#define IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V2 73 +#define IWM_UCODE_TLV_CAPA_CT_KILL_BY_FW 74 +#define IWM_UCODE_TLV_CAPA_TEMP_THS_REPORT_SUPPORT 75 +#define IWM_UCODE_TLV_CAPA_CTDP_SUPPORT 76 +#define IWM_UCODE_TLV_CAPA_USNIFFER_UNIFIED 77 +#define IWM_UCODE_TLV_CAPA_LMAC_UPLOAD 79 +#define IWM_UCODE_TLV_CAPA_EXTEND_SHARED_MEM_CFG 80 +#define IWM_UCODE_TLV_CAPA_LQM_SUPPORT 81 + +#define IWM_NUM_UCODE_TLV_CAPA 128 /* The default calibrate table size if not specified by firmware file */ #define IWM_DEFAULT_STANDARD_PHY_CALIBRATE_TBL_SIZE 18 #define IWM_MAX_STANDARD_PHY_CALIBRATE_TBL_SIZE 19 #define IWM_MAX_PHY_CALIBRATE_TBL_SIZE 253 /* The default max probe length if not specified by the firmware file */ #define IWM_DEFAULT_MAX_PROBE_LENGTH 200 -/* - * enumeration of ucode section. - * This enumeration is used directly for older firmware (before 16.0). - * For new firmware, there can be up to 4 sections (see below) but the - * first one packaged into the firmware file is the DATA section and - * some debugging code accesses that. - */ -enum iwm_ucode_sec { - IWM_UCODE_SECTION_DATA, - IWM_UCODE_SECTION_INST, -}; /* * For 16.0 uCode and above, there is no differentiation between sections, * just an offset to the HW address. */ #define IWM_CPU1_CPU2_SEPARATOR_SECTION 0xFFFFCCCC #define IWM_PAGING_SEPARATOR_SECTION 0xAAAABBBB /* uCode version contains 4 values: Major/Minor/API/Serial */ #define IWM_UCODE_MAJOR(ver) (((ver) & 0xFF000000) >> 24) #define IWM_UCODE_MINOR(ver) (((ver) & 0x00FF0000) >> 16) #define IWM_UCODE_API(ver) (((ver) & 0x0000FF00) >> 8) #define IWM_UCODE_SERIAL(ver) ((ver) & 0x000000FF) /* * Calibration control struct. * Sent as part of the phy configuration command. * @flow_trigger: bitmap for which calibrations to perform according to * flow triggers. * @event_trigger: bitmap for which calibrations to perform according to * event triggers. */ struct iwm_tlv_calib_ctrl { uint32_t flow_trigger; uint32_t event_trigger; } __packed; -enum iwm_fw_phy_cfg { - IWM_FW_PHY_CFG_RADIO_TYPE_POS = 0, - IWM_FW_PHY_CFG_RADIO_TYPE = 0x3 << IWM_FW_PHY_CFG_RADIO_TYPE_POS, - IWM_FW_PHY_CFG_RADIO_STEP_POS = 2, - IWM_FW_PHY_CFG_RADIO_STEP = 0x3 << IWM_FW_PHY_CFG_RADIO_STEP_POS, - IWM_FW_PHY_CFG_RADIO_DASH_POS = 4, - IWM_FW_PHY_CFG_RADIO_DASH = 0x3 << IWM_FW_PHY_CFG_RADIO_DASH_POS, - IWM_FW_PHY_CFG_TX_CHAIN_POS = 16, - IWM_FW_PHY_CFG_TX_CHAIN = 0xf << IWM_FW_PHY_CFG_TX_CHAIN_POS, - IWM_FW_PHY_CFG_RX_CHAIN_POS = 20, - IWM_FW_PHY_CFG_RX_CHAIN = 0xf << IWM_FW_PHY_CFG_RX_CHAIN_POS, -}; +#define IWM_FW_PHY_CFG_RADIO_TYPE_POS 0 +#define IWM_FW_PHY_CFG_RADIO_TYPE (0x3 << IWM_FW_PHY_CFG_RADIO_TYPE_POS) +#define IWM_FW_PHY_CFG_RADIO_STEP_POS 2 +#define IWM_FW_PHY_CFG_RADIO_STEP (0x3 << IWM_FW_PHY_CFG_RADIO_STEP_POS) +#define IWM_FW_PHY_CFG_RADIO_DASH_POS 4 +#define IWM_FW_PHY_CFG_RADIO_DASH (0x3 << IWM_FW_PHY_CFG_RADIO_DASH_POS) +#define IWM_FW_PHY_CFG_TX_CHAIN_POS 16 +#define IWM_FW_PHY_CFG_TX_CHAIN (0xf << IWM_FW_PHY_CFG_TX_CHAIN_POS) +#define IWM_FW_PHY_CFG_RX_CHAIN_POS 20 +#define IWM_FW_PHY_CFG_RX_CHAIN (0xf << IWM_FW_PHY_CFG_RX_CHAIN_POS) #define IWM_UCODE_MAX_CS 1 /** * struct iwm_fw_cipher_scheme - a cipher scheme supported by FW. * @cipher: a cipher suite selector * @flags: cipher scheme flags (currently reserved for a future use) * @hdr_len: a size of MPDU security header * @pn_len: a size of PN * @pn_off: an offset of pn from the beginning of the security header * @key_idx_off: an offset of key index byte in the security header * @key_idx_mask: a bit mask of key_idx bits * @key_idx_shift: bit shift needed to get key_idx * @mic_len: mic length in bytes * @hw_cipher: a HW cipher index used in host commands */ struct iwm_fw_cipher_scheme { uint32_t cipher; uint8_t flags; uint8_t hdr_len; uint8_t pn_len; uint8_t pn_off; uint8_t key_idx_off; uint8_t key_idx_mask; uint8_t key_idx_shift; uint8_t mic_len; uint8_t hw_cipher; } __packed; /** * struct iwm_fw_cscheme_list - a cipher scheme list * @size: a number of entries * @cs: cipher scheme entries */ struct iwm_fw_cscheme_list { uint8_t size; struct iwm_fw_cipher_scheme cs[]; } __packed; /* * END iwl-fw.h */ /* * BEGIN iwl-fw-file.h */ /* v1/v2 uCode file layout */ struct iwm_ucode_header { uint32_t ver; /* major/minor/API/serial */ union { struct { uint32_t inst_size; /* bytes of runtime code */ uint32_t data_size; /* bytes of runtime data */ uint32_t init_size; /* bytes of init code */ uint32_t init_data_size; /* bytes of init data */ uint32_t boot_size; /* bytes of bootstrap code */ uint8_t data[0]; /* in same order as sizes */ } v1; struct { uint32_t build; /* build number */ uint32_t inst_size; /* bytes of runtime code */ uint32_t data_size; /* bytes of runtime data */ uint32_t init_size; /* bytes of init code */ uint32_t init_data_size; /* bytes of init data */ uint32_t boot_size; /* bytes of bootstrap code */ uint8_t data[0]; /* in same order as sizes */ } v2; } u; }; /* * new TLV uCode file layout * * The new TLV file format contains TLVs, that each specify * some piece of data. */ enum iwm_ucode_tlv_type { IWM_UCODE_TLV_INVALID = 0, /* unused */ IWM_UCODE_TLV_INST = 1, IWM_UCODE_TLV_DATA = 2, IWM_UCODE_TLV_INIT = 3, IWM_UCODE_TLV_INIT_DATA = 4, IWM_UCODE_TLV_BOOT = 5, IWM_UCODE_TLV_PROBE_MAX_LEN = 6, /* a uint32_t value */ IWM_UCODE_TLV_PAN = 7, IWM_UCODE_TLV_RUNT_EVTLOG_PTR = 8, IWM_UCODE_TLV_RUNT_EVTLOG_SIZE = 9, IWM_UCODE_TLV_RUNT_ERRLOG_PTR = 10, IWM_UCODE_TLV_INIT_EVTLOG_PTR = 11, IWM_UCODE_TLV_INIT_EVTLOG_SIZE = 12, IWM_UCODE_TLV_INIT_ERRLOG_PTR = 13, IWM_UCODE_TLV_ENHANCE_SENS_TBL = 14, IWM_UCODE_TLV_PHY_CALIBRATION_SIZE = 15, IWM_UCODE_TLV_WOWLAN_INST = 16, IWM_UCODE_TLV_WOWLAN_DATA = 17, IWM_UCODE_TLV_FLAGS = 18, IWM_UCODE_TLV_SEC_RT = 19, IWM_UCODE_TLV_SEC_INIT = 20, IWM_UCODE_TLV_SEC_WOWLAN = 21, IWM_UCODE_TLV_DEF_CALIB = 22, IWM_UCODE_TLV_PHY_SKU = 23, IWM_UCODE_TLV_SECURE_SEC_RT = 24, IWM_UCODE_TLV_SECURE_SEC_INIT = 25, IWM_UCODE_TLV_SECURE_SEC_WOWLAN = 26, IWM_UCODE_TLV_NUM_OF_CPU = 27, IWM_UCODE_TLV_CSCHEME = 28, - /* * Following two are not in our base tag, but allow * handling ucode version 9. */ IWM_UCODE_TLV_API_CHANGES_SET = 29, IWM_UCODE_TLV_ENABLED_CAPABILITIES = 30, - IWM_UCODE_TLV_N_SCAN_CHANNELS = 31, IWM_UCODE_TLV_PAGING = 32, IWM_UCODE_TLV_SEC_RT_USNIFFER = 34, IWM_UCODE_TLV_SDIO_ADMA_ADDR = 35, IWM_UCODE_TLV_FW_VERSION = 36, IWM_UCODE_TLV_FW_DBG_DEST = 38, IWM_UCODE_TLV_FW_DBG_CONF = 39, IWM_UCODE_TLV_FW_DBG_TRIGGER = 40, IWM_UCODE_TLV_CMD_VERSIONS = 48, IWM_UCODE_TLV_FW_GSCAN_CAPA = 50, IWM_UCODE_TLV_FW_MEM_SEG = 51, + IWM_UCODE_TLV_UMAC_DEBUG_ADDRS = 54, + IWM_UCODE_TLV_LMAC_DEBUG_ADDRS = 55, + IWM_UCODE_TLV_HW_TYPE = 58, }; +#define IWM_UCODE_TLV_DEBUG_BASE 0x1000005 +#define IWM_UCODE_TLV_TYPE_DEBUG_INFO (IWM_UCODE_TLV_DEBUG_BASE + 0) +#define IWM_UCODE_TLV_TYPE_BUFFER_ALLOCATION (IWM_UCODE_TLV_DEBUG_BASE + 1) +#define IWM_UCODE_TLV_TYPE_HCMD (IWM_UCODE_TLV_DEBUG_BASE + 2) +#define IWM_UCODE_TLV_TYPE_REGIONS (IWM_UCODE_TLV_DEBUG_BASE + 3) +#define IWM_UCODE_TLV_TYPE_TRIGGERS (IWM_UCODE_TLV_DEBUG_BASE + 4) +#define IWM_UCODE_TLV_DEBUG_MAX IWM_UCODE_TLV_TYPE_TRIGGERS + struct iwm_ucode_tlv { uint32_t type; /* see above */ uint32_t length; /* not including type/length fields */ uint8_t data[0]; }; struct iwm_ucode_api { uint32_t api_index; uint32_t api_flags; } __packed; struct iwm_ucode_capa { uint32_t api_index; uint32_t api_capa; } __packed; #define IWM_TLV_UCODE_MAGIC 0x0a4c5749 struct iwm_tlv_ucode_header { /* * The TLV style ucode header is distinguished from * the v1/v2 style header by first four bytes being * zero, as such is an invalid combination of * major/minor/API/serial versions. */ uint32_t zero; uint32_t magic; uint8_t human_readable[64]; uint32_t ver; /* major/minor/API/serial */ uint32_t build; uint64_t ignore; /* * The data contained herein has a TLV layout, * see above for the TLV header and types. * Note that each TLV is padded to a length * that is a multiple of 4 for alignment. */ uint8_t data[0]; }; /* * END iwl-fw-file.h */ /* * BEGIN iwl-prph.h */ /* * Registers in this file are internal, not PCI bus memory mapped. * Driver accesses these via IWM_HBUS_TARG_PRPH_* registers. */ #define IWM_PRPH_BASE (0x00000) #define IWM_PRPH_END (0xFFFFF) /* APMG (power management) constants */ #define IWM_APMG_BASE (IWM_PRPH_BASE + 0x3000) #define IWM_APMG_CLK_CTRL_REG (IWM_APMG_BASE + 0x0000) #define IWM_APMG_CLK_EN_REG (IWM_APMG_BASE + 0x0004) #define IWM_APMG_CLK_DIS_REG (IWM_APMG_BASE + 0x0008) #define IWM_APMG_PS_CTRL_REG (IWM_APMG_BASE + 0x000c) #define IWM_APMG_PCIDEV_STT_REG (IWM_APMG_BASE + 0x0010) #define IWM_APMG_RFKILL_REG (IWM_APMG_BASE + 0x0014) #define IWM_APMG_RTC_INT_STT_REG (IWM_APMG_BASE + 0x001c) #define IWM_APMG_RTC_INT_MSK_REG (IWM_APMG_BASE + 0x0020) #define IWM_APMG_DIGITAL_SVR_REG (IWM_APMG_BASE + 0x0058) #define IWM_APMG_ANALOG_SVR_REG (IWM_APMG_BASE + 0x006C) #define IWM_APMS_CLK_VAL_MRB_FUNC_MODE (0x00000001) #define IWM_APMG_CLK_VAL_DMA_CLK_RQT (0x00000200) #define IWM_APMG_CLK_VAL_BSM_CLK_RQT (0x00000800) #define IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS (0x00400000) #define IWM_APMG_PS_CTRL_VAL_RESET_REQ (0x04000000) #define IWM_APMG_PS_CTRL_MSK_PWR_SRC (0x03000000) #define IWM_APMG_PS_CTRL_VAL_PWR_SRC_VMAIN (0x00000000) #define IWM_APMG_PS_CTRL_VAL_PWR_SRC_VAUX (0x02000000) #define IWM_APMG_SVR_VOLTAGE_CONFIG_BIT_MSK (0x000001E0) /* bit 8:5 */ #define IWM_APMG_SVR_DIGITAL_VOLTAGE_1_32 (0x00000060) #define IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS (0x00000800) #define IWM_APMG_RTC_INT_STT_RFKILL (0x10000000) /* Device system time */ #define IWM_DEVICE_SYSTEM_TIME_REG 0xA0206C /* Device NMI register */ #define IWM_DEVICE_SET_NMI_REG 0x00a01c30 #define IWM_DEVICE_SET_NMI_VAL_HW 0x01 #define IWM_DEVICE_SET_NMI_VAL_DRV 0x80 #define IWM_DEVICE_SET_NMI_8000_REG 0x00a01c24 #define IWM_DEVICE_SET_NMI_8000_VAL 0x1000000 /* * Device reset for family 8000 * write to bit 24 in order to reset the CPU - */ +*/ #define IWM_RELEASE_CPU_RESET 0x300c #define IWM_RELEASE_CPU_RESET_BIT 0x1000000 /***************************************************************************** * 7000/3000 series SHR DTS addresses * *****************************************************************************/ #define IWM_SHR_MISC_WFM_DTS_EN (0x00a10024) #define IWM_DTSC_CFG_MODE (0x00a10604) #define IWM_DTSC_VREF_AVG (0x00a10648) #define IWM_DTSC_VREF5_AVG (0x00a1064c) #define IWM_DTSC_CFG_MODE_PERIODIC (0x2) #define IWM_DTSC_PTAT_AVG (0x00a10650) /** * Tx Scheduler * * The Tx Scheduler selects the next frame to be transmitted, choosing TFDs * (Transmit Frame Descriptors) from up to 16 circular Tx queues resident in * host DRAM. It steers each frame's Tx command (which contains the frame * data) into one of up to 7 prioritized Tx DMA FIFO channels within the * device. A queue maps to only one (selectable by driver) Tx DMA channel, * but one DMA channel may take input from several queues. * * Tx DMA FIFOs have dedicated purposes. * * For 5000 series and up, they are used differently * (cf. iwl5000_default_queue_to_tx_fifo in iwl-5000.c): * * 0 -- EDCA BK (background) frames, lowest priority * 1 -- EDCA BE (best effort) frames, normal priority * 2 -- EDCA VI (video) frames, higher priority * 3 -- EDCA VO (voice) and management frames, highest priority * 4 -- unused * 5 -- unused * 6 -- unused * 7 -- Commands * * Driver should normally map queues 0-6 to Tx DMA/FIFO channels 0-6. * In addition, driver can map the remaining queues to Tx DMA/FIFO * channels 0-3 to support 11n aggregation via EDCA DMA channels. * * The driver sets up each queue to work in one of two modes: * * 1) Scheduler-Ack, in which the scheduler automatically supports a * block-ack (BA) window of up to 64 TFDs. In this mode, each queue * contains TFDs for a unique combination of Recipient Address (RA) * and Traffic Identifier (TID), that is, traffic of a given * Quality-Of-Service (QOS) priority, destined for a single station. * * In scheduler-ack mode, the scheduler keeps track of the Tx status of * each frame within the BA window, including whether it's been transmitted, * and whether it's been acknowledged by the receiving station. The device * automatically processes block-acks received from the receiving STA, * and reschedules un-acked frames to be retransmitted (successful * Tx completion may end up being out-of-order). * * The driver must maintain the queue's Byte Count table in host DRAM * for this mode. * This mode does not support fragmentation. * * 2) FIFO (a.k.a. non-Scheduler-ACK), in which each TFD is processed in order. * The device may automatically retry Tx, but will retry only one frame * at a time, until receiving ACK from receiving station, or reaching * retry limit and giving up. * * The command queue (#4/#9) must use this mode! * This mode does not require use of the Byte Count table in host DRAM. * * Driver controls scheduler operation via 3 means: * 1) Scheduler registers * 2) Shared scheduler data base in internal SRAM * 3) Shared data in host DRAM * * Initialization: * * When loading, driver should allocate memory for: * 1) 16 TFD circular buffers, each with space for (typically) 256 TFDs. * 2) 16 Byte Count circular buffers in 16 KBytes contiguous memory * (1024 bytes for each queue). * * After receiving "Alive" response from uCode, driver must initialize * the scheduler (especially for queue #4/#9, the command queue, otherwise * the driver can't issue commands!): */ #define IWM_SCD_MEM_LOWER_BOUND (0x0000) /** * Max Tx window size is the max number of contiguous TFDs that the scheduler * can keep track of at one time when creating block-ack chains of frames. * Note that "64" matches the number of ack bits in a block-ack packet. */ #define IWM_SCD_WIN_SIZE 64 #define IWM_SCD_FRAME_LIMIT 64 #define IWM_SCD_TXFIFO_POS_TID (0) #define IWM_SCD_TXFIFO_POS_RA (4) #define IWM_SCD_QUEUE_RA_TID_MAP_RATID_MSK (0x01FF) /* agn SCD */ #define IWM_SCD_QUEUE_STTS_REG_POS_TXF (0) #define IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE (3) #define IWM_SCD_QUEUE_STTS_REG_POS_WSL (4) #define IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN (19) #define IWM_SCD_QUEUE_STTS_REG_MSK (0x017F0000) #define IWM_SCD_QUEUE_CTX_REG1_CREDIT_POS (8) #define IWM_SCD_QUEUE_CTX_REG1_CREDIT_MSK (0x00FFFF00) #define IWM_SCD_QUEUE_CTX_REG1_SUPER_CREDIT_POS (24) #define IWM_SCD_QUEUE_CTX_REG1_SUPER_CREDIT_MSK (0xFF000000) #define IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS (0) #define IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK (0x0000007F) #define IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS (16) #define IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK (0x007F0000) #define IWM_SCD_GP_CTRL_ENABLE_31_QUEUES (1 << 0) #define IWM_SCD_GP_CTRL_AUTO_ACTIVE_MODE (1 << 18) /* Context Data */ #define IWM_SCD_CONTEXT_MEM_LOWER_BOUND (IWM_SCD_MEM_LOWER_BOUND + 0x600) #define IWM_SCD_CONTEXT_MEM_UPPER_BOUND (IWM_SCD_MEM_LOWER_BOUND + 0x6A0) /* Tx status */ #define IWM_SCD_TX_STTS_MEM_LOWER_BOUND (IWM_SCD_MEM_LOWER_BOUND + 0x6A0) #define IWM_SCD_TX_STTS_MEM_UPPER_BOUND (IWM_SCD_MEM_LOWER_BOUND + 0x7E0) /* Translation Data */ #define IWM_SCD_TRANS_TBL_MEM_LOWER_BOUND (IWM_SCD_MEM_LOWER_BOUND + 0x7E0) #define IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND (IWM_SCD_MEM_LOWER_BOUND + 0x808) #define IWM_SCD_CONTEXT_QUEUE_OFFSET(x)\ (IWM_SCD_CONTEXT_MEM_LOWER_BOUND + ((x) * 8)) #define IWM_SCD_TX_STTS_QUEUE_OFFSET(x)\ (IWM_SCD_TX_STTS_MEM_LOWER_BOUND + ((x) * 16)) #define IWM_SCD_TRANS_TBL_OFFSET_QUEUE(x) \ ((IWM_SCD_TRANS_TBL_MEM_LOWER_BOUND + ((x) * 2)) & 0xfffc) #define IWM_SCD_BASE (IWM_PRPH_BASE + 0xa02c00) #define IWM_SCD_SRAM_BASE_ADDR (IWM_SCD_BASE + 0x0) #define IWM_SCD_DRAM_BASE_ADDR (IWM_SCD_BASE + 0x8) #define IWM_SCD_AIT (IWM_SCD_BASE + 0x0c) #define IWM_SCD_TXFACT (IWM_SCD_BASE + 0x10) #define IWM_SCD_ACTIVE (IWM_SCD_BASE + 0x14) #define IWM_SCD_QUEUECHAIN_SEL (IWM_SCD_BASE + 0xe8) #define IWM_SCD_CHAINEXT_EN (IWM_SCD_BASE + 0x244) #define IWM_SCD_AGGR_SEL (IWM_SCD_BASE + 0x248) #define IWM_SCD_INTERRUPT_MASK (IWM_SCD_BASE + 0x108) #define IWM_SCD_GP_CTRL (IWM_SCD_BASE + 0x1a8) #define IWM_SCD_EN_CTRL (IWM_SCD_BASE + 0x254) static inline unsigned int IWM_SCD_QUEUE_WRPTR(unsigned int chnl) { if (chnl < 20) return IWM_SCD_BASE + 0x18 + chnl * 4; return IWM_SCD_BASE + 0x284 + (chnl - 20) * 4; } static inline unsigned int IWM_SCD_QUEUE_RDPTR(unsigned int chnl) { if (chnl < 20) return IWM_SCD_BASE + 0x68 + chnl * 4; return IWM_SCD_BASE + 0x2B4 + (chnl - 20) * 4; } static inline unsigned int IWM_SCD_QUEUE_STATUS_BITS(unsigned int chnl) { if (chnl < 20) return IWM_SCD_BASE + 0x10c + chnl * 4; return IWM_SCD_BASE + 0x384 + (chnl - 20) * 4; } /*********************** END TX SCHEDULER *************************************/ /* Oscillator clock */ #define IWM_OSC_CLK (0xa04068) #define IWM_OSC_CLK_FORCE_CONTROL (0x8) /* * END iwl-prph.h */ /* * BEGIN iwl-fh.h */ /****************************/ /* Flow Handler Definitions */ /****************************/ /** * This I/O area is directly read/writable by driver (e.g. Linux uses writel()) * Addresses are offsets from device's PCI hardware base address. */ #define IWM_FH_MEM_LOWER_BOUND (0x1000) #define IWM_FH_MEM_UPPER_BOUND (0x2000) /** * Keep-Warm (KW) buffer base address. * * Driver must allocate a 4KByte buffer that is for keeping the * host DRAM powered on (via dummy accesses to DRAM) to maintain low-latency * DRAM access when doing Txing or Rxing. The dummy accesses prevent host * from going into a power-savings mode that would cause higher DRAM latency, * and possible data over/under-runs, before all Tx/Rx is complete. * * Driver loads IWM_FH_KW_MEM_ADDR_REG with the physical address (bits 35:4) * of the buffer, which must be 4K aligned. Once this is set up, the device * automatically invokes keep-warm accesses when normal accesses might not * be sufficient to maintain fast DRAM response. * * Bit fields: * 31-0: Keep-warm buffer physical base address [35:4], must be 4K aligned */ #define IWM_FH_KW_MEM_ADDR_REG (IWM_FH_MEM_LOWER_BOUND + 0x97C) /** * TFD Circular Buffers Base (CBBC) addresses * * Device has 16 base pointer registers, one for each of 16 host-DRAM-resident * circular buffers (CBs/queues) containing Transmit Frame Descriptors (TFDs) * (see struct iwm_tfd_frame). These 16 pointer registers are offset by 0x04 * bytes from one another. Each TFD circular buffer in DRAM must be 256-byte * aligned (address bits 0-7 must be 0). * Later devices have 20 (5000 series) or 30 (higher) queues, but the registers * for them are in different places. * * Bit fields in each pointer register: * 27-0: TFD CB physical base address [35:8], must be 256-byte aligned */ #define IWM_FH_MEM_CBBC_0_15_LOWER_BOUND (IWM_FH_MEM_LOWER_BOUND + 0x9D0) #define IWM_FH_MEM_CBBC_0_15_UPPER_BOUN (IWM_FH_MEM_LOWER_BOUND + 0xA10) #define IWM_FH_MEM_CBBC_16_19_LOWER_BOUND (IWM_FH_MEM_LOWER_BOUND + 0xBF0) #define IWM_FH_MEM_CBBC_16_19_UPPER_BOUND (IWM_FH_MEM_LOWER_BOUND + 0xC00) #define IWM_FH_MEM_CBBC_20_31_LOWER_BOUND (IWM_FH_MEM_LOWER_BOUND + 0xB20) #define IWM_FH_MEM_CBBC_20_31_UPPER_BOUND (IWM_FH_MEM_LOWER_BOUND + 0xB80) /* Find TFD CB base pointer for given queue */ static inline unsigned int IWM_FH_MEM_CBBC_QUEUE(unsigned int chnl) { if (chnl < 16) return IWM_FH_MEM_CBBC_0_15_LOWER_BOUND + 4 * chnl; if (chnl < 20) return IWM_FH_MEM_CBBC_16_19_LOWER_BOUND + 4 * (chnl - 16); return IWM_FH_MEM_CBBC_20_31_LOWER_BOUND + 4 * (chnl - 20); } /** * Rx SRAM Control and Status Registers (RSCSR) * * These registers provide handshake between driver and device for the Rx queue * (this queue handles *all* command responses, notifications, Rx data, etc. * sent from uCode to host driver). Unlike Tx, there is only one Rx * queue, and only one Rx DMA/FIFO channel. Also unlike Tx, which can * concatenate up to 20 DRAM buffers to form a Tx frame, each Receive Buffer * Descriptor (RBD) points to only one Rx Buffer (RB); there is a 1:1 * mapping between RBDs and RBs. * * Driver must allocate host DRAM memory for the following, and set the * physical address of each into device registers: * * 1) Receive Buffer Descriptor (RBD) circular buffer (CB), typically with 256 * entries (although any power of 2, up to 4096, is selectable by driver). * Each entry (1 dword) points to a receive buffer (RB) of consistent size * (typically 4K, although 8K or 16K are also selectable by driver). * Driver sets up RB size and number of RBDs in the CB via Rx config * register IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG. * * Bit fields within one RBD: * 27-0: Receive Buffer physical address bits [35:8], 256-byte aligned * * Driver sets physical address [35:8] of base of RBD circular buffer * into IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG [27:0]. * * 2) Rx status buffer, 8 bytes, in which uCode indicates which Rx Buffers * (RBs) have been filled, via a "write pointer", actually the index of * the RB's corresponding RBD within the circular buffer. Driver sets * physical address [35:4] into IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG [31:0]. * * Bit fields in lower dword of Rx status buffer (upper dword not used * by driver: * 31-12: Not used by driver * 11- 0: Index of last filled Rx buffer descriptor * (device writes, driver reads this value) * * As the driver prepares Receive Buffers (RBs) for device to fill, driver must * enter pointers to these RBs into contiguous RBD circular buffer entries, * and update the device's "write" index register, * IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG. * * This "write" index corresponds to the *next* RBD that the driver will make * available, i.e. one RBD past the tail of the ready-to-fill RBDs within * the circular buffer. This value should initially be 0 (before preparing any * RBs), should be 8 after preparing the first 8 RBs (for example), and must * wrap back to 0 at the end of the circular buffer (but don't wrap before * "read" index has advanced past 1! See below). * NOTE: DEVICE EXPECTS THE WRITE INDEX TO BE INCREMENTED IN MULTIPLES OF 8. * * As the device fills RBs (referenced from contiguous RBDs within the circular * buffer), it updates the Rx status buffer in host DRAM, 2) described above, * to tell the driver the index of the latest filled RBD. The driver must * read this "read" index from DRAM after receiving an Rx interrupt from device * * The driver must also internally keep track of a third index, which is the * next RBD to process. When receiving an Rx interrupt, driver should process * all filled but unprocessed RBs up to, but not including, the RB * corresponding to the "read" index. For example, if "read" index becomes "1", * driver may process the RB pointed to by RBD 0. Depending on volume of * traffic, there may be many RBs to process. * * If read index == write index, device thinks there is no room to put new data. * Due to this, the maximum number of filled RBs is 255, instead of 256. To * be safe, make sure that there is a gap of at least 2 RBDs between "write" * and "read" indexes; that is, make sure that there are no more than 254 * buffers waiting to be filled. */ #define IWM_FH_MEM_RSCSR_LOWER_BOUND (IWM_FH_MEM_LOWER_BOUND + 0xBC0) #define IWM_FH_MEM_RSCSR_UPPER_BOUND (IWM_FH_MEM_LOWER_BOUND + 0xC00) #define IWM_FH_MEM_RSCSR_CHNL0 (IWM_FH_MEM_RSCSR_LOWER_BOUND) /** * Physical base address of 8-byte Rx Status buffer. * Bit fields: * 31-0: Rx status buffer physical base address [35:4], must 16-byte aligned. */ #define IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG (IWM_FH_MEM_RSCSR_CHNL0) /** * Physical base address of Rx Buffer Descriptor Circular Buffer. * Bit fields: * 27-0: RBD CD physical base address [35:8], must be 256-byte aligned. */ #define IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG (IWM_FH_MEM_RSCSR_CHNL0 + 0x004) /** * Rx write pointer (index, really!). * Bit fields: * 11-0: Index of driver's most recent prepared-to-be-filled RBD, + 1. * NOTE: For 256-entry circular buffer, use only bits [7:0]. */ #define IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG (IWM_FH_MEM_RSCSR_CHNL0 + 0x008) #define IWM_FH_RSCSR_CHNL0_WPTR (IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG) #define IWM_FW_RSCSR_CHNL0_RXDCB_RDPTR_REG (IWM_FH_MEM_RSCSR_CHNL0 + 0x00c) #define IWM_FH_RSCSR_CHNL0_RDPTR IWM_FW_RSCSR_CHNL0_RXDCB_RDPTR_REG /** * Rx Config/Status Registers (RCSR) * Rx Config Reg for channel 0 (only channel used) * * Driver must initialize IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG as follows for * normal operation (see bit fields). * * Clearing IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG to 0 turns off Rx DMA. * Driver should poll IWM_FH_MEM_RSSR_RX_STATUS_REG for * IWM_FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE (bit 24) before continuing. * * Bit fields: * 31-30: Rx DMA channel enable: '00' off/pause, '01' pause at end of frame, * '10' operate normally * 29-24: reserved * 23-20: # RBDs in circular buffer = 2^value; use "8" for 256 RBDs (normal), * min "5" for 32 RBDs, max "12" for 4096 RBDs. * 19-18: reserved * 17-16: size of each receive buffer; '00' 4K (normal), '01' 8K, * '10' 12K, '11' 16K. * 15-14: reserved * 13-12: IRQ destination; '00' none, '01' host driver (normal operation) * 11- 4: timeout for closing Rx buffer and interrupting host (units 32 usec) * typical value 0x10 (about 1/2 msec) * 3- 0: reserved */ #define IWM_FH_MEM_RCSR_LOWER_BOUND (IWM_FH_MEM_LOWER_BOUND + 0xC00) #define IWM_FH_MEM_RCSR_UPPER_BOUND (IWM_FH_MEM_LOWER_BOUND + 0xCC0) #define IWM_FH_MEM_RCSR_CHNL0 (IWM_FH_MEM_RCSR_LOWER_BOUND) #define IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG (IWM_FH_MEM_RCSR_CHNL0) #define IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR (IWM_FH_MEM_RCSR_CHNL0 + 0x8) #define IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ (IWM_FH_MEM_RCSR_CHNL0 + 0x10) #define IWM_FH_RCSR_CHNL0_RX_CONFIG_RB_TIMEOUT_MSK (0x00000FF0) /* bits 4-11 */ #define IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_MSK (0x00001000) /* bits 12 */ #define IWM_FH_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MSK (0x00008000) /* bit 15 */ #define IWM_FH_RCSR_CHNL0_RX_CONFIG_RB_SIZE_MSK (0x00030000) /* bits 16-17 */ #define IWM_FH_RCSR_CHNL0_RX_CONFIG_RBDBC_SIZE_MSK (0x00F00000) /* bits 20-23 */ #define IWM_FH_RCSR_CHNL0_RX_CONFIG_DMA_CHNL_EN_MSK (0xC0000000) /* bits 30-31*/ #define IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS (20) #define IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS (4) #define IWM_RX_RB_TIMEOUT (0x11) #define IWM_FH_RCSR_RX_CONFIG_CHNL_EN_PAUSE_VAL (0x00000000) #define IWM_FH_RCSR_RX_CONFIG_CHNL_EN_PAUSE_EOF_VAL (0x40000000) #define IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL (0x80000000) #define IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K (0x00000000) #define IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K (0x00010000) #define IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K (0x00020000) #define IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_16K (0x00030000) #define IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY (0x00000004) #define IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_NO_INT_VAL (0x00000000) #define IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL (0x00001000) /** * Rx Shared Status Registers (RSSR) * * After stopping Rx DMA channel (writing 0 to * IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG), driver must poll * IWM_FH_MEM_RSSR_RX_STATUS_REG until Rx channel is idle. * * Bit fields: * 24: 1 = Channel 0 is idle * * IWM_FH_MEM_RSSR_SHARED_CTRL_REG and IWM_FH_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV * contain default values that should not be altered by the driver. */ #define IWM_FH_MEM_RSSR_LOWER_BOUND (IWM_FH_MEM_LOWER_BOUND + 0xC40) #define IWM_FH_MEM_RSSR_UPPER_BOUND (IWM_FH_MEM_LOWER_BOUND + 0xD00) #define IWM_FH_MEM_RSSR_SHARED_CTRL_REG (IWM_FH_MEM_RSSR_LOWER_BOUND) #define IWM_FH_MEM_RSSR_RX_STATUS_REG (IWM_FH_MEM_RSSR_LOWER_BOUND + 0x004) #define IWM_FH_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV\ (IWM_FH_MEM_RSSR_LOWER_BOUND + 0x008) #define IWM_FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE (0x01000000) #define IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT 28 -/* 9000 rx series registers */ - -#define IWM_RFH_Q0_FRBDCB_BA_LSB 0xa08000 -#define IWM_RFH_Q_FRBDCB_BA_LSB (IWM_RFH_Q0_FRBDCB_BA_LSB + (q) * 8) -/* Write index table */ -#define IWM_RFH_Q0_FRBDCB_WIDX 0xa08080 -#define IWM_RFH_Q_FRBDCB_WIDX (IWM_RFH_Q0_FRBDCB_WIDX + (q) * 4) -/* Write index table - shadow registers */ -#define IWM_RFH_Q0_FRBDCB_WIDX_TRG 0x1c80 -#define IWM_RFH_Q_FRBDCB_WIDX_TRG (IWM_RFH_Q0_FRBDCB_WIDX_TRG + (q) * 4) -/* Read index table */ -#define IWM_RFH_Q0_FRBDCB_RIDX 0xa080c0 -#define IWM_RFH_Q_FRBDCB_RIDX (IWM_RFH_Q0_FRBDCB_RIDX + (q) * 4) -/* Used list table */ -#define IWM_RFH_Q0_URBDCB_BA_LSB 0xa08100 -#define IWM_RFH_Q_URBDCB_BA_LSB (IWM_RFH_Q0_URBDCB_BA_LSB + (q) * 8) -/* Write index table */ -#define IWM_RFH_Q0_URBDCB_WIDX 0xa08180 -#define IWM_RFH_Q_URBDCB_WIDX (IWM_RFH_Q0_URBDCB_WIDX + (q) * 4) -/* stts */ -#define IWM_RFH_Q0_URBD_STTS_WPTR_LSB 0xa08200 -#define IWM_RFH_Q_URBD_STTS_WPTR_LSB (IWM_RFH_Q0_URBD_STTS_WPTR_LSB + (q) * 8) - -#define IWM_RFH_GEN_STATUS 0xa09808 -#define IWM_RXF_DMA_IDLE 0x80000000 - -/* DMA configuration */ -#define IWM_RFH_RXF_DMA_CFG 0xa09820 -#define IWM_RFH_RXF_DMA_RB_SIZE_1K 0x00010000 -#define IWM_RFH_RXF_DMA_RB_SIZE_2K 0x00020000 -#define IWM_RFH_RXF_DMA_RB_SIZE_4K 0x00040000 -#define IWM_RFH_RXF_DMA_RBDCB_SIZE_512 0x00900000 -#define IWM_RFH_RXF_DMA_MIN_RB_4_8 0x03000000 -#define IWM_RFH_RXF_DMA_DROP_TOO_LARGE_MASK 0x04000000 -#define IWM_RFH_DMA_EN_ENABLE_VAL 0x80000000 - -#define IWM_RFH_GEN_CFG 0xa09800 -#define IWM_RFH_GEN_CFG_SERVICE_DMA_SNOOP 0x00000001 -#define IWM_RFH_GEN_CFG_RFH_DMA_SNOOP 0x00000002 -#define IWM_RFH_GEN_CFG_RB_CHUNK_SIZE_128 0x00000010 -#define IWM_RFH_GEN_CFG_RB_CHUNK_SIZE_64 0x00000000 - -#define IWM_RFH_RXF_RXQ_ACTIVE 0xa0980c - -/* end of 9000 rx series registers */ - /* TFDB Area - TFDs buffer table */ #define IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK (0xFFFFFFFF) #define IWM_FH_TFDIB_LOWER_BOUND (IWM_FH_MEM_LOWER_BOUND + 0x900) #define IWM_FH_TFDIB_UPPER_BOUND (IWM_FH_MEM_LOWER_BOUND + 0x958) #define IWM_FH_TFDIB_CTRL0_REG(_chnl) (IWM_FH_TFDIB_LOWER_BOUND + 0x8 * (_chnl)) #define IWM_FH_TFDIB_CTRL1_REG(_chnl) (IWM_FH_TFDIB_LOWER_BOUND + 0x8 * (_chnl) + 0x4) /** * Transmit DMA Channel Control/Status Registers (TCSR) * * Device has one configuration register for each of 8 Tx DMA/FIFO channels * supported in hardware (don't confuse these with the 16 Tx queues in DRAM, * which feed the DMA/FIFO channels); config regs are separated by 0x20 bytes. * * To use a Tx DMA channel, driver must initialize its * IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl) with: * * IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | * IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL * * All other bits should be 0. * * Bit fields: * 31-30: Tx DMA channel enable: '00' off/pause, '01' pause at end of frame, * '10' operate normally * 29- 4: Reserved, set to "0" * 3: Enable internal DMA requests (1, normal operation), disable (0) * 2- 0: Reserved, set to "0" */ #define IWM_FH_TCSR_LOWER_BOUND (IWM_FH_MEM_LOWER_BOUND + 0xD00) #define IWM_FH_TCSR_UPPER_BOUND (IWM_FH_MEM_LOWER_BOUND + 0xE60) /* Find Control/Status reg for given Tx DMA/FIFO channel */ #define IWM_FH_TCSR_CHNL_NUM (8) /* TCSR: tx_config register values */ #define IWM_FH_TCSR_CHNL_TX_CONFIG_REG(_chnl) \ (IWM_FH_TCSR_LOWER_BOUND + 0x20 * (_chnl)) #define IWM_FH_TCSR_CHNL_TX_CREDIT_REG(_chnl) \ (IWM_FH_TCSR_LOWER_BOUND + 0x20 * (_chnl) + 0x4) #define IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(_chnl) \ (IWM_FH_TCSR_LOWER_BOUND + 0x20 * (_chnl) + 0x8) #define IWM_FH_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_TXF (0x00000000) #define IWM_FH_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_DRV (0x00000001) #define IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE (0x00000000) #define IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE (0x00000008) #define IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_NOINT (0x00000000) #define IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD (0x00100000) #define IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_IFTFD (0x00200000) #define IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_NOINT (0x00000000) #define IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_ENDTFD (0x00400000) #define IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_IFTFD (0x00800000) #define IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE (0x00000000) #define IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE_EOF (0x40000000) #define IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE (0x80000000) #define IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_EMPTY (0x00000000) #define IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_WAIT (0x00002000) #define IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID (0x00000003) #define IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM (20) #define IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX (12) /** * Tx Shared Status Registers (TSSR) * * After stopping Tx DMA channel (writing 0 to * IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl)), driver must poll * IWM_FH_TSSR_TX_STATUS_REG until selected Tx channel is idle * (channel's buffers empty | no pending requests). * * Bit fields: * 31-24: 1 = Channel buffers empty (channel 7:0) * 23-16: 1 = No pending requests (channel 7:0) */ #define IWM_FH_TSSR_LOWER_BOUND (IWM_FH_MEM_LOWER_BOUND + 0xEA0) #define IWM_FH_TSSR_UPPER_BOUND (IWM_FH_MEM_LOWER_BOUND + 0xEC0) #define IWM_FH_TSSR_TX_STATUS_REG (IWM_FH_TSSR_LOWER_BOUND + 0x010) /** * Bit fields for TSSR(Tx Shared Status & Control) error status register: * 31: Indicates an address error when accessed to internal memory * uCode/driver must write "1" in order to clear this flag * 30: Indicates that Host did not send the expected number of dwords to FH * uCode/driver must write "1" in order to clear this flag * 16-9:Each status bit is for one channel. Indicates that an (Error) ActDMA * command was received from the scheduler while the TRB was already full * with previous command * uCode/driver must write "1" in order to clear this flag * 7-0: Each status bit indicates a channel's TxCredit error. When an error * bit is set, it indicates that the FH has received a full indication * from the RTC TxFIFO and the current value of the TxCredit counter was * not equal to zero. This mean that the credit mechanism was not * synchronized to the TxFIFO status * uCode/driver must write "1" in order to clear this flag */ #define IWM_FH_TSSR_TX_ERROR_REG (IWM_FH_TSSR_LOWER_BOUND + 0x018) #define IWM_FH_TSSR_TX_MSG_CONFIG_REG (IWM_FH_TSSR_LOWER_BOUND + 0x008) #define IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(_chnl) ((1 << (_chnl)) << 16) /* Tx service channels */ #define IWM_FH_SRVC_CHNL (9) #define IWM_FH_SRVC_LOWER_BOUND (IWM_FH_MEM_LOWER_BOUND + 0x9C8) #define IWM_FH_SRVC_UPPER_BOUND (IWM_FH_MEM_LOWER_BOUND + 0x9D0) #define IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(_chnl) \ (IWM_FH_SRVC_LOWER_BOUND + ((_chnl) - 9) * 0x4) #define IWM_FH_TX_CHICKEN_BITS_REG (IWM_FH_MEM_LOWER_BOUND + 0xE98) #define IWM_FH_TX_TRB_REG(_chan) (IWM_FH_MEM_LOWER_BOUND + 0x958 + \ (_chan) * 4) /* Instruct FH to increment the retry count of a packet when * it is brought from the memory to TX-FIFO */ #define IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN (0x00000002) #define IWM_RX_QUEUE_SIZE 256 #define IWM_RX_QUEUE_MASK 255 #define IWM_RX_QUEUE_SIZE_LOG 8 /* * RX related structures and functions */ #define IWM_RX_FREE_BUFFERS 64 #define IWM_RX_LOW_WATERMARK 8 /** * struct iwm_rb_status - reseve buffer status * host memory mapped FH registers * @closed_rb_num [0:11] - Indicates the index of the RB which was closed * @closed_fr_num [0:11] - Indicates the index of the RX Frame which was closed * @finished_rb_num [0:11] - Indicates the index of the current RB * in which the last frame was written to * @finished_fr_num [0:11] - Indicates the index of the RX Frame * which was transferred */ struct iwm_rb_status { uint16_t closed_rb_num; uint16_t closed_fr_num; uint16_t finished_rb_num; uint16_t finished_fr_nam; uint32_t unused; } __packed; #define IWM_TFD_QUEUE_SIZE_MAX (256) #define IWM_TFD_QUEUE_SIZE_BC_DUP (64) #define IWM_TFD_QUEUE_BC_SIZE (IWM_TFD_QUEUE_SIZE_MAX + \ IWM_TFD_QUEUE_SIZE_BC_DUP) #define IWM_TX_DMA_MASK DMA_BIT_MASK(36) #define IWM_NUM_OF_TBS 20 static inline uint8_t iwm_get_dma_hi_addr(bus_addr_t addr) { return (sizeof(addr) > sizeof(uint32_t) ? (addr >> 16) >> 16 : 0) & 0xF; } /** * struct iwm_tfd_tb transmit buffer descriptor within transmit frame descriptor * * This structure contains dma address and length of transmission address * * @lo: low [31:0] portion of the dma address of TX buffer * every even is unaligned on 16 bit boundary * @hi_n_len 0-3 [35:32] portion of dma * 4-15 length of the tx buffer */ struct iwm_tfd_tb { uint32_t lo; uint16_t hi_n_len; } __packed; /** * struct iwm_tfd * * Transmit Frame Descriptor (TFD) * * @ __reserved1[3] reserved * @ num_tbs 0-4 number of active tbs * 5 reserved * 6-7 padding (not used) * @ tbs[20] transmit frame buffer descriptors * @ __pad padding * * Each Tx queue uses a circular buffer of 256 TFDs stored in host DRAM. * Both driver and device share these circular buffers, each of which must be * contiguous 256 TFDs x 128 bytes-per-TFD = 32 KBytes * * Driver must indicate the physical address of the base of each * circular buffer via the IWM_FH_MEM_CBBC_QUEUE registers. * * Each TFD contains pointer/size information for up to 20 data buffers * in host DRAM. These buffers collectively contain the (one) frame described * by the TFD. Each buffer must be a single contiguous block of memory within * itself, but buffers may be scattered in host DRAM. Each buffer has max size * of (4K - 4). The concatenates all of a TFD's buffers into a single * Tx frame, up to 8 KBytes in size. * * A maximum of 255 (not 256!) TFDs may be on a queue waiting for Tx. */ struct iwm_tfd { uint8_t __reserved1[3]; uint8_t num_tbs; struct iwm_tfd_tb tbs[IWM_NUM_OF_TBS]; uint32_t __pad; } __packed; /* Keep Warm Size */ #define IWM_KW_SIZE 0x1000 /* 4k */ /* Fixed (non-configurable) rx data from phy */ /** * struct iwm_agn_schedq_bc_tbl scheduler byte count table * base physical address provided by IWM_SCD_DRAM_BASE_ADDR * @tfd_offset 0-12 - tx command byte count * 12-16 - station index */ struct iwm_agn_scd_bc_tbl { uint16_t tfd_offset[IWM_TFD_QUEUE_BC_SIZE]; } __packed; + /* * END iwl-fh.h */ /* * BEGIN mvm/fw-api.h */ +#define IWM_TX_CRC_SIZE 4 +#define IWM_TX_DELIMITER_SIZE 4 + /* Maximum number of Tx queues. */ #define IWM_MAX_QUEUES 31 -/* Tx queue numbers */ -enum { - IWM_OFFCHANNEL_QUEUE = 8, - IWM_CMD_QUEUE = 9, - IWM_AUX_QUEUE = 15, -}; - -enum iwm_tx_fifo { - IWM_TX_FIFO_BK = 0, - IWM_TX_FIFO_BE, - IWM_TX_FIFO_VI, - IWM_TX_FIFO_VO, - IWM_TX_FIFO_MCAST = 5, - IWM_TX_FIFO_CMD = 7, -}; +/** + * DQA - Dynamic Queue Allocation -introduction + * + * Dynamic Queue Allocation (AKA "DQA") is a feature implemented in iwlwifi + * to allow dynamic allocation of queues on-demand, rather than allocate them + * statically ahead of time. Ideally, we would like to allocate one queue + * per RA/TID, thus allowing an AP - for example - to send BE traffic to STA2 + * even if it also needs to send traffic to a sleeping STA1, without being + * blocked by the sleeping station. + * + * Although the queues in DQA mode are dynamically allocated, there are still + * some queues that are statically allocated: + * TXQ #0 - command queue + * TXQ #1 - aux frames + * TXQ #2 - P2P device frames + * TXQ #3 - P2P GO/SoftAP GCAST/BCAST frames + * TXQ #4 - BSS DATA frames queue + * TXQ #5-8 - non-QoS data, QoS no-data, and MGMT frames queue pool + * TXQ #9 - P2P GO/SoftAP probe responses + * TXQ #10-31 - QoS DATA frames queue pool (for Tx aggregation) + */ + +/* static DQA Tx queue numbers */ +#define IWM_DQA_CMD_QUEUE 0 +#define IWM_DQA_AUX_QUEUE 1 +#define IWM_DQA_P2P_DEVICE_QUEUE 2 +#define IWM_DQA_INJECT_MONITOR_QUEUE 2 +#define IWM_DQA_GCAST_QUEUE 3 +#define IWM_DQA_BSS_CLIENT_QUEUE 4 +#define IWM_DQA_MIN_MGMT_QUEUE 5 +#define IWM_DQA_MAX_MGMT_QUEUE 8 +#define IWM_DQA_AP_PROBE_RESP_QUEUE 9 +#define IWM_DQA_MIN_DATA_QUEUE 10 +#define IWM_DQA_MAX_DATA_QUEUE 31 + +/* Reserve 8 DQA Tx queues, from 10 up to 17, for A-MPDU aggregation. */ +#define IWM_MAX_TID_COUNT 8 +#define IWM_FIRST_AGG_TX_QUEUE IWM_DQA_MIN_DATA_QUEUE +#define IWM_LAST_AGG_TX_QUEUE (IWM_FIRST_AGG_TX_QUEUE + IWM_MAX_TID_COUNT - 1) + +/* legacy non-DQA queues; the legacy command queue uses a different number! */ +#define IWM_OFFCHANNEL_QUEUE 8 +#define IWM_CMD_QUEUE 9 +#define IWM_AUX_QUEUE 15 + +#define IWM_TX_FIFO_BK 0 +#define IWM_TX_FIFO_BE 1 +#define IWM_TX_FIFO_VI 2 +#define IWM_TX_FIFO_VO 3 +#define IWM_TX_FIFO_MCAST 5 +#define IWM_TX_FIFO_CMD 7 #define IWM_STATION_COUNT 16 -/* commands */ -enum { - IWM_ALIVE = 0x1, - IWM_REPLY_ERROR = 0x2, - - IWM_INIT_COMPLETE_NOTIF = 0x4, - - /* PHY context commands */ - IWM_PHY_CONTEXT_CMD = 0x8, - IWM_DBG_CFG = 0x9, - - /* UMAC scan commands */ - IWM_SCAN_ITERATION_COMPLETE_UMAC = 0xb5, - IWM_SCAN_CFG_CMD = 0xc, - IWM_SCAN_REQ_UMAC = 0xd, - IWM_SCAN_ABORT_UMAC = 0xe, - IWM_SCAN_COMPLETE_UMAC = 0xf, - - /* station table */ - IWM_ADD_STA_KEY = 0x17, - IWM_ADD_STA = 0x18, - IWM_REMOVE_STA = 0x19, - - /* TX */ - IWM_TX_CMD = 0x1c, - IWM_TXPATH_FLUSH = 0x1e, - IWM_MGMT_MCAST_KEY = 0x1f, - - /* scheduler config */ - IWM_SCD_QUEUE_CFG = 0x1d, - - /* global key */ - IWM_WEP_KEY = 0x20, - - /* MAC and Binding commands */ - IWM_MAC_CONTEXT_CMD = 0x28, - IWM_TIME_EVENT_CMD = 0x29, /* both CMD and response */ - IWM_TIME_EVENT_NOTIFICATION = 0x2a, - IWM_BINDING_CONTEXT_CMD = 0x2b, - IWM_TIME_QUOTA_CMD = 0x2c, - IWM_NON_QOS_TX_COUNTER_CMD = 0x2d, - - IWM_LQ_CMD = 0x4e, - - /* paging block to FW cpu2 */ - IWM_FW_PAGING_BLOCK_CMD = 0x4f, - - /* Scan offload */ - IWM_SCAN_OFFLOAD_REQUEST_CMD = 0x51, - IWM_SCAN_OFFLOAD_ABORT_CMD = 0x52, - IWM_HOT_SPOT_CMD = 0x53, - IWM_SCAN_OFFLOAD_COMPLETE = 0x6d, - IWM_SCAN_OFFLOAD_UPDATE_PROFILES_CMD = 0x6e, - IWM_SCAN_OFFLOAD_CONFIG_CMD = 0x6f, - IWM_MATCH_FOUND_NOTIFICATION = 0xd9, - IWM_SCAN_ITERATION_COMPLETE = 0xe7, - - /* Phy */ - IWM_PHY_CONFIGURATION_CMD = 0x6a, - IWM_CALIB_RES_NOTIF_PHY_DB = 0x6b, - IWM_PHY_DB_CMD = 0x6c, - - /* Power - legacy power table command */ - IWM_POWER_TABLE_CMD = 0x77, - IWM_PSM_UAPSD_AP_MISBEHAVING_NOTIFICATION = 0x78, - IWM_LTR_CONFIG = 0xee, - - /* Thermal Throttling*/ - IWM_REPLY_THERMAL_MNG_BACKOFF = 0x7e, - - /* NVM */ - IWM_NVM_ACCESS_CMD = 0x88, - - IWM_SET_CALIB_DEFAULT_CMD = 0x8e, - - IWM_BEACON_NOTIFICATION = 0x90, - IWM_BEACON_TEMPLATE_CMD = 0x91, - IWM_TX_ANT_CONFIGURATION_CMD = 0x98, - IWM_BT_CONFIG = 0x9b, - IWM_STATISTICS_NOTIFICATION = 0x9d, - IWM_REDUCE_TX_POWER_CMD = 0x9f, - - /* RF-KILL commands and notifications */ - IWM_CARD_STATE_CMD = 0xa0, - IWM_CARD_STATE_NOTIFICATION = 0xa1, - - IWM_MISSED_BEACONS_NOTIFICATION = 0xa2, - - IWM_MFUART_LOAD_NOTIFICATION = 0xb1, - - /* Power - new power table command */ - IWM_MAC_PM_POWER_TABLE = 0xa9, - - IWM_REPLY_RX_PHY_CMD = 0xc0, - IWM_REPLY_RX_MPDU_CMD = 0xc1, - IWM_BA_NOTIF = 0xc5, - - /* Location Aware Regulatory */ - IWM_MCC_UPDATE_CMD = 0xc8, - IWM_MCC_CHUB_UPDATE_CMD = 0xc9, - - /* BT Coex */ - IWM_BT_COEX_PRIO_TABLE = 0xcc, - IWM_BT_COEX_PROT_ENV = 0xcd, - IWM_BT_PROFILE_NOTIFICATION = 0xce, - IWM_BT_COEX_CI = 0x5d, - - IWM_REPLY_SF_CFG_CMD = 0xd1, - IWM_REPLY_BEACON_FILTERING_CMD = 0xd2, - - /* DTS measurements */ - IWM_CMD_DTS_MEASUREMENT_TRIGGER = 0xdc, - IWM_DTS_MEASUREMENT_NOTIFICATION = 0xdd, - - IWM_REPLY_DEBUG_CMD = 0xf0, - IWM_DEBUG_LOG_MSG = 0xf7, - - IWM_MCAST_FILTER_CMD = 0xd0, - - /* D3 commands/notifications */ - IWM_D3_CONFIG_CMD = 0xd3, - IWM_PROT_OFFLOAD_CONFIG_CMD = 0xd4, - IWM_OFFLOADS_QUERY_CMD = 0xd5, - IWM_REMOTE_WAKE_CONFIG_CMD = 0xd6, - - /* for WoWLAN in particular */ - IWM_WOWLAN_PATTERNS = 0xe0, - IWM_WOWLAN_CONFIGURATION = 0xe1, - IWM_WOWLAN_TSC_RSC_PARAM = 0xe2, - IWM_WOWLAN_TKIP_PARAM = 0xe3, - IWM_WOWLAN_KEK_KCK_MATERIAL = 0xe4, - IWM_WOWLAN_GET_STATUSES = 0xe5, - IWM_WOWLAN_TX_POWER_PER_DB = 0xe6, - - /* and for NetDetect */ - IWM_NET_DETECT_CONFIG_CMD = 0x54, - IWM_NET_DETECT_PROFILES_QUERY_CMD = 0x56, - IWM_NET_DETECT_PROFILES_CMD = 0x57, - IWM_NET_DETECT_HOTSPOTS_CMD = 0x58, - IWM_NET_DETECT_HOTSPOTS_QUERY_CMD = 0x59, -}; - -enum iwm_phy_ops_subcmd_ids { - IWM_CMD_DTS_MEASUREMENT_TRIGGER_WIDE = 0x0, - IWM_CTDP_CONFIG_CMD = 0x03, - IWM_TEMP_REPORTING_THRESHOLDS_CMD = 0x04, - IWM_CT_KILL_NOTIFICATION = 0xFE, - IWM_DTS_MEASUREMENT_NOTIF_WIDE = 0xFF, -}; +/* + * Commands + */ +#define IWM_ALIVE 0x1 +#define IWM_REPLY_ERROR 0x2 +#define IWM_INIT_COMPLETE_NOTIF 0x4 + +/* PHY context commands */ +#define IWM_PHY_CONTEXT_CMD 0x8 +#define IWM_DBG_CFG 0x9 + +/* UMAC scan commands */ +#define IWM_SCAN_ITERATION_COMPLETE_UMAC 0xb5 +#define IWM_SCAN_CFG_CMD 0xc +#define IWM_SCAN_REQ_UMAC 0xd +#define IWM_SCAN_ABORT_UMAC 0xe +#define IWM_SCAN_COMPLETE_UMAC 0xf + +/* station table */ +#define IWM_ADD_STA_KEY 0x17 +#define IWM_ADD_STA 0x18 +#define IWM_REMOVE_STA 0x19 + +/* TX */ +#define IWM_TX_CMD 0x1c +#define IWM_TXPATH_FLUSH 0x1e +#define IWM_MGMT_MCAST_KEY 0x1f + +/* scheduler config */ +#define IWM_SCD_QUEUE_CFG 0x1d + +/* global key */ +#define IWM_WEP_KEY 0x20 + +/* MAC and Binding commands */ +#define IWM_MAC_CONTEXT_CMD 0x28 +#define IWM_TIME_EVENT_CMD 0x29 /* both CMD and response */ +#define IWM_TIME_EVENT_NOTIFICATION 0x2a +#define IWM_BINDING_CONTEXT_CMD 0x2b +#define IWM_TIME_QUOTA_CMD 0x2c +#define IWM_NON_QOS_TX_COUNTER_CMD 0x2d + +#define IWM_LQ_CMD 0x4e + +/* Calibration */ +#define IWM_TEMPERATURE_NOTIFICATION 0x62 +#define IWM_CALIBRATION_CFG_CMD 0x65 +#define IWM_CALIBRATION_RES_NOTIFICATION 0x66 +#define IWM_CALIBRATION_COMPLETE_NOTIFICATION 0x67 +#define IWM_RADIO_VERSION_NOTIFICATION 0x68 + +/* paging block to FW cpu2 */ +#define IWM_FW_PAGING_BLOCK_CMD 0x4f + +/* Scan offload */ +#define IWM_SCAN_OFFLOAD_REQUEST_CMD 0x51 +#define IWM_SCAN_OFFLOAD_ABORT_CMD 0x52 +#define IWM_HOT_SPOT_CMD 0x53 +#define IWM_SCAN_OFFLOAD_COMPLETE 0x6d +#define IWM_SCAN_OFFLOAD_UPDATE_PROFILES_CMD 0x6e +#define IWM_SCAN_OFFLOAD_CONFIG_CMD 0x6f +#define IWM_MATCH_FOUND_NOTIFICATION 0xd9 +#define IWM_SCAN_ITERATION_COMPLETE 0xe7 + +/* Phy */ +#define IWM_PHY_CONFIGURATION_CMD 0x6a +#define IWM_CALIB_RES_NOTIF_PHY_DB 0x6b +#define IWM_PHY_DB_CMD 0x6c + +/* Power - legacy power table command */ +#define IWM_POWER_TABLE_CMD 0x77 +#define IWM_PSM_UAPSD_AP_MISBEHAVING_NOTIFICATION 0x78 +#define IWM_LTR_CONFIG 0xee + +/* Thermal Throttling*/ +#define IWM_REPLY_THERMAL_MNG_BACKOFF 0x7e + +/* NVM */ +#define IWM_NVM_ACCESS_CMD 0x88 + +#define IWM_SET_CALIB_DEFAULT_CMD 0x8e + +#define IWM_BEACON_NOTIFICATION 0x90 +#define IWM_BEACON_TEMPLATE_CMD 0x91 +#define IWM_TX_ANT_CONFIGURATION_CMD 0x98 +#define IWM_BT_CONFIG 0x9b +#define IWM_STATISTICS_NOTIFICATION 0x9d +#define IWM_REDUCE_TX_POWER_CMD 0x9f + +/* RF-KILL commands and notifications */ +#define IWM_CARD_STATE_CMD 0xa0 +#define IWM_CARD_STATE_NOTIFICATION 0xa1 + +#define IWM_MISSED_BEACONS_NOTIFICATION 0xa2 + +#define IWM_MFUART_LOAD_NOTIFICATION 0xb1 + +/* Power - new power table command */ +#define IWM_MAC_PM_POWER_TABLE 0xa9 + +#define IWM_REPLY_RX_PHY_CMD 0xc0 +#define IWM_REPLY_RX_MPDU_CMD 0xc1 +#define IWM_BA_NOTIF 0xc5 + +/* Location Aware Regulatory */ +#define IWM_MCC_UPDATE_CMD 0xc8 +#define IWM_MCC_CHUB_UPDATE_CMD 0xc9 + +/* BT Coex */ +#define IWM_BT_COEX_PRIO_TABLE 0xcc +#define IWM_BT_COEX_PROT_ENV 0xcd +#define IWM_BT_PROFILE_NOTIFICATION 0xce +#define IWM_BT_COEX_CI 0x5d + +#define IWM_REPLY_SF_CFG_CMD 0xd1 +#define IWM_REPLY_BEACON_FILTERING_CMD 0xd2 + +/* DTS measurements */ +#define IWM_CMD_DTS_MEASUREMENT_TRIGGER 0xdc +#define IWM_DTS_MEASUREMENT_NOTIFICATION 0xdd + +#define IWM_REPLY_DEBUG_CMD 0xf0 +#define IWM_DEBUG_LOG_MSG 0xf7 + +#define IWM_MCAST_FILTER_CMD 0xd0 + +/* D3 commands/notifications */ +#define IWM_D3_CONFIG_CMD 0xd3 +#define IWM_PROT_OFFLOAD_CONFIG_CMD 0xd4 +#define IWM_OFFLOADS_QUERY_CMD 0xd5 +#define IWM_REMOTE_WAKE_CONFIG_CMD 0xd6 + +/* for WoWLAN in particular */ +#define IWM_WOWLAN_PATTERNS 0xe0 +#define IWM_WOWLAN_CONFIGURATION 0xe1 +#define IWM_WOWLAN_TSC_RSC_PARAM 0xe2 +#define IWM_WOWLAN_TKIP_PARAM 0xe3 +#define IWM_WOWLAN_KEK_KCK_MATERIAL 0xe4 +#define IWM_WOWLAN_GET_STATUSES 0xe5 +#define IWM_WOWLAN_TX_POWER_PER_DB 0xe6 + +/* and for NetDetect */ +#define IWM_NET_DETECT_CONFIG_CMD 0x54 +#define IWM_NET_DETECT_PROFILES_QUERY_CMD 0x56 +#define IWM_NET_DETECT_PROFILES_CMD 0x57 +#define IWM_NET_DETECT_HOTSPOTS_CMD 0x58 +#define IWM_NET_DETECT_HOTSPOTS_QUERY_CMD 0x59 + +/* system group command IDs */ +#define IWM_FSEQ_VER_MISMATCH_NOTIFICATION 0xff + +#define IWM_REPLY_MAX 0xff + +/* PHY_OPS subcommand IDs */ +#define IWM_CMD_DTS_MEASUREMENT_TRIGGER_WIDE 0x0 +#define IWM_CTDP_CONFIG_CMD 0x03 +#define IWM_TEMP_REPORTING_THRESHOLDS_CMD 0x04 +#define IWM_CT_KILL_NOTIFICATION 0xFE +#define IWM_DTS_MEASUREMENT_NOTIF_WIDE 0xFF /* command groups */ -enum { - IWM_LEGACY_GROUP = 0x0, - IWM_LONG_GROUP = 0x1, - IWM_SYSTEM_GROUP = 0x2, - IWM_MAC_CONF_GROUP = 0x3, - IWM_PHY_OPS_GROUP = 0x4, - IWM_DATA_PATH_GROUP = 0x5, - IWM_PROT_OFFLOAD_GROUP = 0xb, -}; +#define IWM_LEGACY_GROUP 0x0 +#define IWM_LONG_GROUP 0x1 +#define IWM_SYSTEM_GROUP 0x2 +#define IWM_MAC_CONF_GROUP 0x3 +#define IWM_PHY_OPS_GROUP 0x4 +#define IWM_DATA_PATH_GROUP 0x5 +#define IWM_PROT_OFFLOAD_GROUP 0xb + +/* SYSTEM_GROUP group subcommand IDs */ + +#define IWM_SHARED_MEM_CFG_CMD 0x00 +#define IWM_SOC_CONFIGURATION_CMD 0x01 +#define IWM_INIT_EXTENDED_CFG_CMD 0x03 +#define IWM_FW_ERROR_RECOVERY_CMD 0x07 + +/* DATA_PATH group subcommand IDs */ +#define IWM_DQA_ENABLE_CMD 0x00 + +/* + * struct iwm_dqa_enable_cmd + * @cmd_queue: the TXQ number of the command queue + */ +struct iwm_dqa_enable_cmd { + uint32_t cmd_queue; +} __packed; /* DQA_CONTROL_CMD_API_S_VER_1 */ /** * struct iwm_cmd_response - generic response struct for most commands * @status: status of the command asked, changes for each one */ struct iwm_cmd_response { uint32_t status; }; /* * struct iwm_tx_ant_cfg_cmd * @valid: valid antenna configuration */ struct iwm_tx_ant_cfg_cmd { uint32_t valid; } __packed; /** * struct iwm_reduce_tx_power_cmd - TX power reduction command * IWM_REDUCE_TX_POWER_CMD = 0x9f * @flags: (reserved for future implementation) * @mac_context_id: id of the mac ctx for which we are reducing TX power. * @pwr_restriction: TX power restriction in dBms. */ struct iwm_reduce_tx_power_cmd { uint8_t flags; uint8_t mac_context_id; uint16_t pwr_restriction; } __packed; /* IWM_TX_REDUCED_POWER_API_S_VER_1 */ -enum iwm_dev_tx_power_cmd_mode { - IWM_TX_POWER_MODE_SET_MAC = 0, - IWM_TX_POWER_MODE_SET_DEVICE = 1, - IWM_TX_POWER_MODE_SET_CHAINS = 2, - IWM_TX_POWER_MODE_SET_ACK = 3, -}; /* TX_POWER_REDUCED_FLAGS_TYPE_API_E_VER_4 */; - -#define IWM_NUM_CHAIN_LIMITS 2 -#define IWM_NUM_SUB_BANDS 5 - -/** - * struct iwm_dev_tx_power_cmd - TX power reduction command - * @set_mode: see &enum iwl_dev_tx_power_cmd_mode - * @mac_context_id: id of the mac ctx for which we are reducing TX power. - * @pwr_restriction: TX power restriction in 1/8 dBms. - * @dev_24: device TX power restriction in 1/8 dBms - * @dev_52_low: device TX power restriction upper band - low - * @dev_52_high: device TX power restriction upper band - high - * @per_chain_restriction: per chain restrictions - */ -struct iwm_dev_tx_power_cmd_v3 { - uint32_t set_mode; - uint32_t mac_context_id; - uint16_t pwr_restriction; - uint16_t dev_24; - uint16_t dev_52_low; - uint16_t dev_52_high; - uint16_t per_chain_restriction[IWM_NUM_CHAIN_LIMITS][IWM_NUM_SUB_BANDS]; -} __packed; /* TX_REDUCED_POWER_API_S_VER_3 */ - -#define IWM_DEV_MAX_TX_POWER 0x7FFF - -/** - * struct iwm_dev_tx_power_cmd - TX power reduction command - * @v3: version 3 of the command, embedded here for easier software handling - * @enable_ack_reduction: enable or disable close range ack TX power - * reduction. - */ -struct iwm_dev_tx_power_cmd { - /* v4 is just an extension of v3 - keep this here */ - struct iwm_dev_tx_power_cmd_v3 v3; - uint8_t enable_ack_reduction; - uint8_t reserved[3]; -} __packed; /* TX_REDUCED_POWER_API_S_VER_4 */ - /* * Calibration control struct. * Sent as part of the phy configuration command. * @flow_trigger: bitmap for which calibrations to perform according to * flow triggers. * @event_trigger: bitmap for which calibrations to perform according to * event triggers. */ struct iwm_calib_ctrl { uint32_t flow_trigger; uint32_t event_trigger; } __packed; -/* This enum defines the bitmap of various calibrations to enable in both +/* This defines the bitmap of various calibrations to enable in both * init ucode and runtime ucode through IWM_CALIBRATION_CFG_CMD. */ -enum iwm_calib_cfg { - IWM_CALIB_CFG_XTAL_IDX = (1 << 0), - IWM_CALIB_CFG_TEMPERATURE_IDX = (1 << 1), - IWM_CALIB_CFG_VOLTAGE_READ_IDX = (1 << 2), - IWM_CALIB_CFG_PAPD_IDX = (1 << 3), - IWM_CALIB_CFG_TX_PWR_IDX = (1 << 4), - IWM_CALIB_CFG_DC_IDX = (1 << 5), - IWM_CALIB_CFG_BB_FILTER_IDX = (1 << 6), - IWM_CALIB_CFG_LO_LEAKAGE_IDX = (1 << 7), - IWM_CALIB_CFG_TX_IQ_IDX = (1 << 8), - IWM_CALIB_CFG_TX_IQ_SKEW_IDX = (1 << 9), - IWM_CALIB_CFG_RX_IQ_IDX = (1 << 10), - IWM_CALIB_CFG_RX_IQ_SKEW_IDX = (1 << 11), - IWM_CALIB_CFG_SENSITIVITY_IDX = (1 << 12), - IWM_CALIB_CFG_CHAIN_NOISE_IDX = (1 << 13), - IWM_CALIB_CFG_DISCONNECTED_ANT_IDX = (1 << 14), - IWM_CALIB_CFG_ANT_COUPLING_IDX = (1 << 15), - IWM_CALIB_CFG_DAC_IDX = (1 << 16), - IWM_CALIB_CFG_ABS_IDX = (1 << 17), - IWM_CALIB_CFG_AGC_IDX = (1 << 18), -}; +#define IWM_CALIB_CFG_XTAL_IDX (1 << 0) +#define IWM_CALIB_CFG_TEMPERATURE_IDX (1 << 1) +#define IWM_CALIB_CFG_VOLTAGE_READ_IDX (1 << 2) +#define IWM_CALIB_CFG_PAPD_IDX (1 << 3) +#define IWM_CALIB_CFG_TX_PWR_IDX (1 << 4) +#define IWM_CALIB_CFG_DC_IDX (1 << 5) +#define IWM_CALIB_CFG_BB_FILTER_IDX (1 << 6) +#define IWM_CALIB_CFG_LO_LEAKAGE_IDX (1 << 7) +#define IWM_CALIB_CFG_TX_IQ_IDX (1 << 8) +#define IWM_CALIB_CFG_TX_IQ_SKEW_IDX (1 << 9) +#define IWM_CALIB_CFG_RX_IQ_IDX (1 << 10) +#define IWM_CALIB_CFG_RX_IQ_SKEW_IDX (1 << 11) +#define IWM_CALIB_CFG_SENSITIVITY_IDX (1 << 12) +#define IWM_CALIB_CFG_CHAIN_NOISE_IDX (1 << 13) +#define IWM_CALIB_CFG_DISCONNECTED_ANT_IDX (1 << 14) +#define IWM_CALIB_CFG_ANT_COUPLING_IDX (1 << 15) +#define IWM_CALIB_CFG_DAC_IDX (1 << 16) +#define IWM_CALIB_CFG_ABS_IDX (1 << 17) +#define IWM_CALIB_CFG_AGC_IDX (1 << 18) /* * Phy configuration command. */ struct iwm_phy_cfg_cmd { uint32_t phy_cfg; struct iwm_calib_ctrl calib_control; } __packed; #define IWM_PHY_CFG_RADIO_TYPE ((1 << 0) | (1 << 1)) #define IWM_PHY_CFG_RADIO_STEP ((1 << 2) | (1 << 3)) #define IWM_PHY_CFG_RADIO_DASH ((1 << 4) | (1 << 5)) #define IWM_PHY_CFG_PRODUCT_NUMBER ((1 << 6) | (1 << 7)) #define IWM_PHY_CFG_TX_CHAIN_A (1 << 8) #define IWM_PHY_CFG_TX_CHAIN_B (1 << 9) #define IWM_PHY_CFG_TX_CHAIN_C (1 << 10) #define IWM_PHY_CFG_RX_CHAIN_A (1 << 12) #define IWM_PHY_CFG_RX_CHAIN_B (1 << 13) #define IWM_PHY_CFG_RX_CHAIN_C (1 << 14) +#define IWM_MAX_DTS_TRIPS 8 -/* Target of the IWM_NVM_ACCESS_CMD */ -enum { - IWM_NVM_ACCESS_TARGET_CACHE = 0, - IWM_NVM_ACCESS_TARGET_OTP = 1, - IWM_NVM_ACCESS_TARGET_EEPROM = 2, +/** + * struct iwm_ct_kill_notif - CT-kill entry notification + * + * @temperature: the current temperature in celsius + * @reserved: reserved + */ +struct iwm_ct_kill_notif { + uint16_t temperature; + uint16_t reserved; +} __packed; /* GRP_PHY_CT_KILL_NTF */ + +/** + * struct iwm_temp_report_ths_cmd - set temperature thresholds + * (IWM_TEMP_REPORTING_THRESHOLDS_CMD) + * + * @num_temps: number of temperature thresholds passed + * @thresholds: array with the thresholds to be configured + */ +struct iwm_temp_report_ths_cmd { + uint32_t num_temps; + uint16_t thresholds[IWM_MAX_DTS_TRIPS]; +} __packed; /* GRP_PHY_TEMP_REPORTING_THRESHOLDS_CMD */ + +/* + * PHY db + */ + +enum iwm_phy_db_section_type { + IWM_PHY_DB_CFG = 1, + IWM_PHY_DB_CALIB_NCH, + IWM_PHY_DB_UNUSED, + IWM_PHY_DB_CALIB_CHG_PAPD, + IWM_PHY_DB_CALIB_CHG_TXP, + IWM_PHY_DB_MAX }; +/* + * phy db - configure operational ucode + */ +struct iwm_phy_db_cmd { + uint16_t type; + uint16_t length; + uint8_t data[]; +} __packed; + +/* for parsing of tx power channel group data that comes from the firmware*/ +struct iwm_phy_db_chg_txp { + uint32_t space; + uint16_t max_channel_idx; +} __packed; + +/* + * phy db - Receive phy db chunk after calibrations + */ +struct iwm_calib_res_notif_phy_db { + uint16_t type; + uint16_t length; + uint8_t data[]; +} __packed; + +/* 7k family NVM HW-Section offset (in words) definitions */ +#define IWM_HW_ADDR 0x15 +/* 7k family NVM SW-Section offset (in words) definitions */ +#define IWM_NVM_SW_SECTION 0x1C0 +#define IWM_NVM_VERSION 0 +#define IWM_RADIO_CFG 1 +#define IWM_SKU 2 +#define IWM_N_HW_ADDRS 3 +#define IWM_NVM_CHANNELS 0x1E0 - IWM_NVM_SW_SECTION +/* 7k family NVM calibration section offset (in words) definitions */ +#define IWM_NVM_CALIB_SECTION 0x2B8 +#define IWM_XTAL_CALIB (0x316 - IWM_NVM_CALIB_SECTION) + +/* 8k family NVM HW-Section offset (in words) definitions */ +#define IWM_HW_ADDR0_WFPM_8000 0x12 +#define IWM_HW_ADDR1_WFPM_8000 0x16 +#define IWM_HW_ADDR0_PCIE_8000 0x8A +#define IWM_HW_ADDR1_PCIE_8000 0x8E +#define IWM_MAC_ADDRESS_OVERRIDE_8000 1 + +/* 8k family NVM SW-Section offset (in words) definitions */ +#define IWM_NVM_SW_SECTION_8000 0x1C0 +#define IWM_NVM_VERSION_8000 0 +#define IWM_RADIO_CFG_8000 0 +#define IWM_SKU_8000 2 +#define IWM_N_HW_ADDRS_8000 3 + +/* 8k family NVM REGULATORY -Section offset (in words) definitions */ +#define IWM_NVM_CHANNELS_8000 0 +#define IWM_NVM_LAR_OFFSET_8000_OLD 0x4C7 +#define IWM_NVM_LAR_OFFSET_8000 0x507 +#define IWM_NVM_LAR_ENABLED_8000 0x7 + +/* 8k family NVM calibration section offset (in words) definitions */ +#define IWM_NVM_CALIB_SECTION_8000 0x2B8 +#define IWM_XTAL_CALIB_8000 (0x316 - IWM_NVM_CALIB_SECTION_8000) + +/* SKU Capabilities (actual values from NVM definition) */ +#define IWM_NVM_SKU_CAP_BAND_24GHZ (1 << 0) +#define IWM_NVM_SKU_CAP_BAND_52GHZ (1 << 1) +#define IWM_NVM_SKU_CAP_11N_ENABLE (1 << 2) +#define IWM_NVM_SKU_CAP_11AC_ENABLE (1 << 3) +#define IWM_NVM_SKU_CAP_MIMO_DISABLE (1 << 5) + +/* radio config bits (actual values from NVM definition) */ +#define IWM_NVM_RF_CFG_DASH_MSK(x) (x & 0x3) /* bits 0-1 */ +#define IWM_NVM_RF_CFG_STEP_MSK(x) ((x >> 2) & 0x3) /* bits 2-3 */ +#define IWM_NVM_RF_CFG_TYPE_MSK(x) ((x >> 4) & 0x3) /* bits 4-5 */ +#define IWM_NVM_RF_CFG_PNUM_MSK(x) ((x >> 6) & 0x3) /* bits 6-7 */ +#define IWM_NVM_RF_CFG_TX_ANT_MSK(x) ((x >> 8) & 0xF) /* bits 8-11 */ +#define IWM_NVM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */ + +#define IWM_NVM_RF_CFG_PNUM_MSK_8000(x) (x & 0xF) +#define IWM_NVM_RF_CFG_DASH_MSK_8000(x) ((x >> 4) & 0xF) +#define IWM_NVM_RF_CFG_STEP_MSK_8000(x) ((x >> 8) & 0xF) +#define IWM_NVM_RF_CFG_TYPE_MSK_8000(x) ((x >> 12) & 0xFFF) +#define IWM_NVM_RF_CFG_TX_ANT_MSK_8000(x) ((x >> 24) & 0xF) +#define IWM_NVM_RF_CFG_RX_ANT_MSK_8000(x) ((x >> 28) & 0xF) + +/* + * channel flags in NVM + * @IWM_NVM_CHANNEL_VALID: channel is usable for this SKU/geo + * @IWM_NVM_CHANNEL_IBSS: usable as an IBSS channel + * @IWM_NVM_CHANNEL_ACTIVE: active scanning allowed + * @IWM_NVM_CHANNEL_RADAR: radar detection required + * @IWM_NVM_CHANNEL_DFS: dynamic freq selection candidate + * @IWM_NVM_CHANNEL_WIDE: 20 MHz channel okay (?) + * @IWM_NVM_CHANNEL_40MHZ: 40 MHz channel okay (?) + * @IWM_NVM_CHANNEL_80MHZ: 80 MHz channel okay (?) + * @IWM_NVM_CHANNEL_160MHZ: 160 MHz channel okay (?) + */ +#define IWM_NVM_CHANNEL_VALID (1 << 0) +#define IWM_NVM_CHANNEL_IBSS (1 << 1) +#define IWM_NVM_CHANNEL_ACTIVE (1 << 3) +#define IWM_NVM_CHANNEL_RADAR (1 << 4) +#define IWM_NVM_CHANNEL_DFS (1 << 7) +#define IWM_NVM_CHANNEL_WIDE (1 << 8) +#define IWM_NVM_CHANNEL_40MHZ (1 << 9) +#define IWM_NVM_CHANNEL_80MHZ (1 << 10) +#define IWM_NVM_CHANNEL_160MHZ (1 << 11) + +/* Target of the IWM_NVM_ACCESS_CMD */ +#define IWM_NVM_ACCESS_TARGET_CACHE 0 +#define IWM_NVM_ACCESS_TARGET_OTP 1 +#define IWM_NVM_ACCESS_TARGET_EEPROM 2 + /* Section types for IWM_NVM_ACCESS_CMD */ -enum { - IWM_NVM_SECTION_TYPE_SW = 1, - IWM_NVM_SECTION_TYPE_REGULATORY = 3, - IWM_NVM_SECTION_TYPE_CALIBRATION = 4, - IWM_NVM_SECTION_TYPE_PRODUCTION = 5, - IWM_NVM_SECTION_TYPE_REGULATORY_SDP = 8, - IWM_NVM_SECTION_TYPE_MAC_OVERRIDE = 11, - IWM_NVM_SECTION_TYPE_PHY_SKU = 12, - IWM_NVM_MAX_NUM_SECTIONS = 13, -}; +#define IWM_NVM_SECTION_TYPE_HW 0 +#define IWM_NVM_SECTION_TYPE_SW 1 +#define IWM_NVM_SECTION_TYPE_PAPD 2 +#define IWM_NVM_SECTION_TYPE_REGULATORY 3 +#define IWM_NVM_SECTION_TYPE_CALIBRATION 4 +#define IWM_NVM_SECTION_TYPE_PRODUCTION 5 +#define IWM_NVM_SECTION_TYPE_POST_FCS_CALIB 6 +/* 7 unknown */ +#define IWM_NVM_SECTION_TYPE_REGULATORY_SDP 8 +/* 9 unknown */ +#define IWM_NVM_SECTION_TYPE_HW_8000 10 +#define IWM_NVM_SECTION_TYPE_MAC_OVERRIDE 11 +#define IWM_NVM_SECTION_TYPE_PHY_SKU 12 +#define IWM_NVM_NUM_OF_SECTIONS 13 /** * struct iwm_nvm_access_cmd_ver2 - Request the device to send an NVM section * @op_code: 0 - read, 1 - write * @target: IWM_NVM_ACCESS_TARGET_* * @type: IWM_NVM_SECTION_TYPE_* * @offset: offset in bytes into the section * @length: in bytes, to read/write * @data: if write operation, the data to write. On read its empty */ struct iwm_nvm_access_cmd { uint8_t op_code; uint8_t target; uint16_t type; uint16_t offset; uint16_t length; uint8_t data[]; } __packed; /* IWM_NVM_ACCESS_CMD_API_S_VER_2 */ -#define IWM_NUM_OF_FW_PAGING_BLOCKS 33 /* 32 for data and 1 block for CSS */ +/* + * Block paging calculations + */ +#define IWM_PAGE_2_EXP_SIZE 12 /* 4K == 2^12 */ +#define IWM_FW_PAGING_SIZE (1 << IWM_PAGE_2_EXP_SIZE) /* page size is 4KB */ +#define IWM_PAGE_PER_GROUP_2_EXP_SIZE 3 +/* 8 pages per group */ +#define IWM_NUM_OF_PAGE_PER_GROUP (1 << IWM_PAGE_PER_GROUP_2_EXP_SIZE) +/* don't change, support only 32KB size */ +#define IWM_PAGING_BLOCK_SIZE (IWM_NUM_OF_PAGE_PER_GROUP * IWM_FW_PAGING_SIZE) +/* 32K == 2^15 */ +#define IWM_BLOCK_2_EXP_SIZE (IWM_PAGE_2_EXP_SIZE + IWM_PAGE_PER_GROUP_2_EXP_SIZE) + +/* + * Image paging calculations + */ +#define IWM_BLOCK_PER_IMAGE_2_EXP_SIZE 5 +/* 2^5 == 32 blocks per image */ +#define IWM_NUM_OF_BLOCK_PER_IMAGE (1 << IWM_BLOCK_PER_IMAGE_2_EXP_SIZE) +/* maximum image size 1024KB */ +#define IWM_MAX_PAGING_IMAGE_SIZE (IWM_NUM_OF_BLOCK_PER_IMAGE * IWM_PAGING_BLOCK_SIZE) + +/* Virtual address signature */ +#define IWM_PAGING_ADDR_SIG 0xAA000000 + +#define IWM_PAGING_CMD_IS_SECURED (1 << 9) +#define IWM_PAGING_CMD_IS_ENABLED (1 << 8) +#define IWM_PAGING_CMD_NUM_OF_PAGES_IN_LAST_GRP_POS 0 +#define IWM_PAGING_TLV_SECURE_MASK 1 + +#define IWM_NUM_OF_FW_PAGING_BLOCKS 33 /* 32 for data and 1 block for CSS */ /* * struct iwm_fw_paging_cmd - paging layout * * (IWM_FW_PAGING_BLOCK_CMD = 0x4f) * * Send to FW the paging layout in the driver. * * @flags: various flags for the command * @block_size: the block size in powers of 2 * @block_num: number of blocks specified in the command. * @device_phy_addr: virtual addresses from device side */ struct iwm_fw_paging_cmd { uint32_t flags; uint32_t block_size; uint32_t block_num; uint32_t device_phy_addr[IWM_NUM_OF_FW_PAGING_BLOCKS]; } __packed; /* IWM_FW_PAGING_BLOCK_CMD_API_S_VER_1 */ -/* - * Fw items ID's - * - * @IWM_FW_ITEM_ID_PAGING: Address of the pages that the FW will upload - * download - */ -enum iwm_fw_item_id { - IWM_FW_ITEM_ID_PAGING = 3, -}; - -/* - * struct iwm_fw_get_item_cmd - get an item from the fw - */ -struct iwm_fw_get_item_cmd { - uint32_t item_id; -} __packed; /* IWM_FW_GET_ITEM_CMD_API_S_VER_1 */ - /** * struct iwm_nvm_access_resp_ver2 - response to IWM_NVM_ACCESS_CMD * @offset: offset in bytes into the section * @length: in bytes, either how much was written or read * @type: IWM_NVM_SECTION_TYPE_* * @status: 0 for success, fail otherwise * @data: if read operation, the data returned. Empty on write. */ struct iwm_nvm_access_resp { uint16_t offset; uint16_t length; uint16_t type; uint16_t status; uint8_t data[]; } __packed; /* IWM_NVM_ACCESS_CMD_RESP_API_S_VER_2 */ /* IWM_ALIVE 0x1 */ /* alive response is_valid values */ #define IWM_ALIVE_RESP_UCODE_OK (1 << 0) #define IWM_ALIVE_RESP_RFKILL (1 << 1) /* alive response ver_type values */ -enum { - IWM_FW_TYPE_HW = 0, - IWM_FW_TYPE_PROT = 1, - IWM_FW_TYPE_AP = 2, - IWM_FW_TYPE_WOWLAN = 3, - IWM_FW_TYPE_TIMING = 4, - IWM_FW_TYPE_WIPAN = 5 -}; +#define IWM_FW_TYPE_HW 0 +#define IWM_FW_TYPE_PROT 1 +#define IWM_FW_TYPE_AP 2 +#define IWM_FW_TYPE_WOWLAN 3 +#define IWM_FW_TYPE_TIMING 4 +#define IWM_FW_TYPE_WIPAN 5 /* alive response ver_subtype values */ -enum { - IWM_FW_SUBTYPE_FULL_FEATURE = 0, - IWM_FW_SUBTYPE_BOOTSRAP = 1, /* Not valid */ - IWM_FW_SUBTYPE_REDUCED = 2, - IWM_FW_SUBTYPE_ALIVE_ONLY = 3, - IWM_FW_SUBTYPE_WOWLAN = 4, - IWM_FW_SUBTYPE_AP_SUBTYPE = 5, - IWM_FW_SUBTYPE_WIPAN = 6, - IWM_FW_SUBTYPE_INITIALIZE = 9 -}; +#define IWM_FW_SUBTYPE_FULL_FEATURE 0 +#define IWM_FW_SUBTYPE_BOOTSRAP 1 /* Not valid */ +#define IWM_FW_SUBTYPE_REDUCED 2 +#define IWM_FW_SUBTYPE_ALIVE_ONLY 3 +#define IWM_FW_SUBTYPE_WOWLAN 4 +#define IWM_FW_SUBTYPE_AP_SUBTYPE 5 +#define IWM_FW_SUBTYPE_WIPAN 6 +#define IWM_FW_SUBTYPE_INITIALIZE 9 #define IWM_ALIVE_STATUS_ERR 0xDEAD #define IWM_ALIVE_STATUS_OK 0xCAFE #define IWM_ALIVE_FLG_RFKILL (1 << 0) struct iwm_lmac_alive { uint32_t ucode_major; uint32_t ucode_minor; uint8_t ver_subtype; uint8_t ver_type; uint8_t mac; uint8_t opt; uint32_t timestamp; uint32_t error_event_table_ptr; /* SRAM address for error log */ uint32_t log_event_table_ptr; /* SRAM address for LMAC event log */ uint32_t cpu_register_ptr; uint32_t dbgm_config_ptr; uint32_t alive_counter_ptr; uint32_t scd_base_ptr; /* SRAM address for SCD */ uint32_t st_fwrd_addr; /* pointer to Store and forward */ uint32_t st_fwrd_size; } __packed; /* UCODE_ALIVE_NTFY_API_S_VER_3 */ struct iwm_umac_alive { - uint32_t umac_major; /* UMAC version: major */ - uint32_t umac_minor; /* UMAC version: minor */ - uint32_t error_info_addr; /* SRAM address for UMAC error log */ + uint32_t umac_major; /* UMAC version: major */ + uint32_t umac_minor; /* UMAC version: minor */ + uint32_t error_info_addr; /* SRAM address for UMAC error log */ uint32_t dbg_print_buff_addr; } __packed; /* UMAC_ALIVE_DATA_API_S_VER_2 */ struct iwm_alive_resp_v3 { uint16_t status; uint16_t flags; struct iwm_lmac_alive lmac_data; struct iwm_umac_alive umac_data; } __packed; /* ALIVE_RES_API_S_VER_3 */ struct iwm_alive_resp { uint16_t status; uint16_t flags; struct iwm_lmac_alive lmac_data[2]; struct iwm_umac_alive umac_data; -} __packed; /* ALIVE_RES_API_S_VER_4 */ +}__packed; /* ALIVE_RES_API_S_VER_4 */ + + +#define IWM_SOC_CONFIG_CMD_FLAGS_DISCRETE (1 << 0) +#define IWM_SOC_CONFIG_CMD_FLAGS_LOW_LATENCY (1 << 1) + +#define IWM_SOC_FLAGS_LTR_APPLY_DELAY_MASK 0xc +#define IWM_SOC_FLAGS_LTR_APPLY_DELAY_NONE 0 +#define IWM_SOC_FLAGS_LTR_APPLY_DELAY_200 1 +#define IWM_SOC_FLAGS_LTR_APPLY_DELAY_2500 2 +#define IWM_SOC_FLAGS_LTR_APPLY_DELAY_1820 3 + +/** + * struct iwm_soc_configuration_cmd - Set device stabilization latency + * + * @flags: soc settings flags. In VER_1, we can only set the DISCRETE + * flag, because the FW treats the whole value as an integer. In + * VER_2, we can set the bits independently. + * @latency: time for SOC to ensure stable power & XTAL + */ +struct iwm_soc_configuration_cmd { + uint32_t flags; + uint32_t latency; +} __packed; /* + * SOC_CONFIGURATION_CMD_S_VER_1 (see description above) + * SOC_CONFIGURATION_CMD_S_VER_2 + */ + /* Error response/notification */ -enum { - IWM_FW_ERR_UNKNOWN_CMD = 0x0, - IWM_FW_ERR_INVALID_CMD_PARAM = 0x1, - IWM_FW_ERR_SERVICE = 0x2, - IWM_FW_ERR_ARC_MEMORY = 0x3, - IWM_FW_ERR_ARC_CODE = 0x4, - IWM_FW_ERR_WATCH_DOG = 0x5, - IWM_FW_ERR_WEP_GRP_KEY_INDX = 0x10, - IWM_FW_ERR_WEP_KEY_SIZE = 0x11, - IWM_FW_ERR_OBSOLETE_FUNC = 0x12, - IWM_FW_ERR_UNEXPECTED = 0xFE, - IWM_FW_ERR_FATAL = 0xFF -}; +#define IWM_FW_ERR_UNKNOWN_CMD 0x0 +#define IWM_FW_ERR_INVALID_CMD_PARAM 0x1 +#define IWM_FW_ERR_SERVICE 0x2 +#define IWM_FW_ERR_ARC_MEMORY 0x3 +#define IWM_FW_ERR_ARC_CODE 0x4 +#define IWM_FW_ERR_WATCH_DOG 0x5 +#define IWM_FW_ERR_WEP_GRP_KEY_INDX 0x10 +#define IWM_FW_ERR_WEP_KEY_SIZE 0x11 +#define IWM_FW_ERR_OBSOLETE_FUNC 0x12 +#define IWM_FW_ERR_UNEXPECTED 0xFE +#define IWM_FW_ERR_FATAL 0xFF /** * struct iwm_error_resp - FW error indication * ( IWM_REPLY_ERROR = 0x2 ) * @error_type: one of IWM_FW_ERR_* - * @cmd_id: the command ID for which the error occurred + * @cmd_id: the command ID for which the error occured * @bad_cmd_seq_num: sequence number of the erroneous command * @error_service: which service created the error, applicable only if * error_type = 2, otherwise 0 * @timestamp: TSF in usecs. */ struct iwm_error_resp { uint32_t error_type; uint8_t cmd_id; uint8_t reserved1; uint16_t bad_cmd_seq_num; uint32_t error_service; uint64_t timestamp; } __packed; +#define IWM_FW_CMD_VER_UNKNOWN 99 + +/** + * struct iwm_fw_cmd_version - firmware command version entry + * @cmd: command ID + * @group: group ID + * @cmd_ver: command version + * @notif_ver: notification version + */ +struct iwm_fw_cmd_version { + uint8_t cmd; + uint8_t group; + uint8_t cmd_ver; + uint8_t notif_ver; +} __packed; + /* Common PHY, MAC and Bindings definitions */ #define IWM_MAX_MACS_IN_BINDING (3) -#define IWM_MAX_BINDINGS (4) +#define IWM_MAX_BINDINGS (4) #define IWM_AUX_BINDING_INDEX (3) #define IWM_MAX_PHYS (4) /* Used to extract ID and color from the context dword */ -#define IWM_FW_CTXT_ID_POS (0) -#define IWM_FW_CTXT_ID_MSK (0xff << IWM_FW_CTXT_ID_POS) -#define IWM_FW_CTXT_COLOR_POS (8) -#define IWM_FW_CTXT_COLOR_MSK (0xff << IWM_FW_CTXT_COLOR_POS) -#define IWM_FW_CTXT_INVALID (0xffffffff) +#define IWM_FW_CTXT_ID_POS (0) +#define IWM_FW_CTXT_ID_MSK (0xff << IWM_FW_CTXT_ID_POS) +#define IWM_FW_CTXT_COLOR_POS (8) +#define IWM_FW_CTXT_COLOR_MSK (0xff << IWM_FW_CTXT_COLOR_POS) +#define IWM_FW_CTXT_INVALID (0xffffffff) #define IWM_FW_CMD_ID_AND_COLOR(_id, _color) ((_id << IWM_FW_CTXT_ID_POS) |\ (_color << IWM_FW_CTXT_COLOR_POS)) /* Possible actions on PHYs, MACs and Bindings */ -enum { - IWM_FW_CTXT_ACTION_STUB = 0, - IWM_FW_CTXT_ACTION_ADD, - IWM_FW_CTXT_ACTION_MODIFY, - IWM_FW_CTXT_ACTION_REMOVE, - IWM_FW_CTXT_ACTION_NUM -}; /* COMMON_CONTEXT_ACTION_API_E_VER_1 */ +#define IWM_FW_CTXT_ACTION_STUB 0 +#define IWM_FW_CTXT_ACTION_ADD 1 +#define IWM_FW_CTXT_ACTION_MODIFY 2 +#define IWM_FW_CTXT_ACTION_REMOVE 3 +#define IWM_FW_CTXT_ACTION_NUM 4 +/* COMMON_CONTEXT_ACTION_API_E_VER_1 */ /* Time Events */ /* Time Event types, according to MAC type */ -enum iwm_time_event_type { - /* BSS Station Events */ - IWM_TE_BSS_STA_AGGRESSIVE_ASSOC, - IWM_TE_BSS_STA_ASSOC, - IWM_TE_BSS_EAP_DHCP_PROT, - IWM_TE_BSS_QUIET_PERIOD, - /* P2P Device Events */ - IWM_TE_P2P_DEVICE_DISCOVERABLE, - IWM_TE_P2P_DEVICE_LISTEN, - IWM_TE_P2P_DEVICE_ACTION_SCAN, - IWM_TE_P2P_DEVICE_FULL_SCAN, +/* BSS Station Events */ +#define IWM_TE_BSS_STA_AGGRESSIVE_ASSOC 0 +#define IWM_TE_BSS_STA_ASSOC 1 +#define IWM_TE_BSS_EAP_DHCP_PROT 2 +#define IWM_TE_BSS_QUIET_PERIOD 3 + +/* P2P Device Events */ +#define IWM_TE_P2P_DEVICE_DISCOVERABLE 4 +#define IWM_TE_P2P_DEVICE_LISTEN 5 +#define IWM_TE_P2P_DEVICE_ACTION_SCAN 6 +#define IWM_TE_P2P_DEVICE_FULL_SCAN 7 - /* P2P Client Events */ - IWM_TE_P2P_CLIENT_AGGRESSIVE_ASSOC, - IWM_TE_P2P_CLIENT_ASSOC, - IWM_TE_P2P_CLIENT_QUIET_PERIOD, +/* P2P Client Events */ +#define IWM_TE_P2P_CLIENT_AGGRESSIVE_ASSOC 8 +#define IWM_TE_P2P_CLIENT_ASSOC 9 +#define IWM_TE_P2P_CLIENT_QUIET_PERIOD 10 - /* P2P GO Events */ - IWM_TE_P2P_GO_ASSOC_PROT, - IWM_TE_P2P_GO_REPETITIVE_NOA, - IWM_TE_P2P_GO_CT_WINDOW, +/* P2P GO Events */ +#define IWM_TE_P2P_GO_ASSOC_PROT 11 +#define IWM_TE_P2P_GO_REPETITIVE_NOA 12 +#define IWM_TE_P2P_GO_CT_WINDOW 13 - /* WiDi Sync Events */ - IWM_TE_WIDI_TX_SYNC, +/* WiDi Sync Events */ +#define IWM_TE_WIDI_TX_SYNC 14 - IWM_TE_MAX -}; /* IWM_MAC_EVENT_TYPE_API_E_VER_1 */ +#define IWM_TE_MAX 15 +/* IWM_MAC_EVENT_TYPE_API_E_VER_1 */ /* Time event - defines for command API v1 */ /* * @IWM_TE_V1_FRAG_NONE: fragmentation of the time event is NOT allowed. * @IWM_TE_V1_FRAG_SINGLE: fragmentation of the time event is allowed, but only * the first fragment is scheduled. * @IWM_TE_V1_FRAG_DUAL: fragmentation of the time event is allowed, but only * the first 2 fragments are scheduled. * @IWM_TE_V1_FRAG_ENDLESS: fragmentation of the time event is allowed, and any * number of fragments are valid. * * Other than the constant defined above, specifying a fragmentation value 'x' * means that the event can be fragmented but only the first 'x' will be * scheduled. */ -enum { - IWM_TE_V1_FRAG_NONE = 0, - IWM_TE_V1_FRAG_SINGLE = 1, - IWM_TE_V1_FRAG_DUAL = 2, - IWM_TE_V1_FRAG_ENDLESS = 0xffffffff -}; +#define IWM_TE_V1_FRAG_NONE 0 +#define IWM_TE_V1_FRAG_SINGLE 1 +#define IWM_TE_V1_FRAG_DUAL 2 +#define IWM_TE_V1_FRAG_ENDLESS 0xffffffff /* If a Time Event can be fragmented, this is the max number of fragments */ #define IWM_TE_V1_FRAG_MAX_MSK 0x0fffffff /* Repeat the time event endlessly (until removed) */ #define IWM_TE_V1_REPEAT_ENDLESS 0xffffffff /* If a Time Event has bounded repetitions, this is the maximal value */ #define IWM_TE_V1_REPEAT_MAX_MSK_V1 0x0fffffff /* Time Event dependencies: none, on another TE, or in a specific time */ -enum { - IWM_TE_V1_INDEPENDENT = 0, - IWM_TE_V1_DEP_OTHER = (1 << 0), - IWM_TE_V1_DEP_TSF = (1 << 1), - IWM_TE_V1_EVENT_SOCIOPATHIC = (1 << 2), -}; /* IWM_MAC_EVENT_DEPENDENCY_POLICY_API_E_VER_2 */ +#define IWM_TE_V1_INDEPENDENT 0 +#define IWM_TE_V1_DEP_OTHER (1 << 0) +#define IWM_TE_V1_DEP_TSF (1 << 1) +#define IWM_TE_V1_EVENT_SOCIOPATHIC (1 << 2) +/* IWM_MAC_EVENT_DEPENDENCY_POLICY_API_E_VER_2 */ /* * @IWM_TE_V1_NOTIF_NONE: no notifications * @IWM_TE_V1_NOTIF_HOST_EVENT_START: request/receive notification on event start * @IWM_TE_V1_NOTIF_HOST_EVENT_END:request/receive notification on event end * @IWM_TE_V1_NOTIF_INTERNAL_EVENT_START: internal FW use * @IWM_TE_V1_NOTIF_INTERNAL_EVENT_END: internal FW use. * @IWM_TE_V1_NOTIF_HOST_FRAG_START: request/receive notification on frag start * @IWM_TE_V1_NOTIF_HOST_FRAG_END:request/receive notification on frag end * @IWM_TE_V1_NOTIF_INTERNAL_FRAG_START: internal FW use. * @IWM_TE_V1_NOTIF_INTERNAL_FRAG_END: internal FW use. * * Supported Time event notifications configuration. * A notification (both event and fragment) includes a status indicating weather * the FW was able to schedule the event or not. For fragment start/end * notification the status is always success. There is no start/end fragment * notification for monolithic events. */ -enum { - IWM_TE_V1_NOTIF_NONE = 0, - IWM_TE_V1_NOTIF_HOST_EVENT_START = (1 << 0), - IWM_TE_V1_NOTIF_HOST_EVENT_END = (1 << 1), - IWM_TE_V1_NOTIF_INTERNAL_EVENT_START = (1 << 2), - IWM_TE_V1_NOTIF_INTERNAL_EVENT_END = (1 << 3), - IWM_TE_V1_NOTIF_HOST_FRAG_START = (1 << 4), - IWM_TE_V1_NOTIF_HOST_FRAG_END = (1 << 5), - IWM_TE_V1_NOTIF_INTERNAL_FRAG_START = (1 << 6), - IWM_TE_V1_NOTIF_INTERNAL_FRAG_END = (1 << 7), - IWM_T2_V2_START_IMMEDIATELY = (1 << 11), -}; /* IWM_MAC_EVENT_ACTION_API_E_VER_2 */ +#define IWM_TE_V1_NOTIF_NONE 0 +#define IWM_TE_V1_NOTIF_HOST_EVENT_START (1 << 0) +#define IWM_TE_V1_NOTIF_HOST_EVENT_END (1 << 1) +#define IWM_TE_V1_NOTIF_INTERNAL_EVENT_START (1 << 2) +#define IWM_TE_V1_NOTIF_INTERNAL_EVENT_END (1 << 3) +#define IWM_TE_V1_NOTIF_HOST_FRAG_START (1 << 4) +#define IWM_TE_V1_NOTIF_HOST_FRAG_END (1 << 5) +#define IWM_TE_V1_NOTIF_INTERNAL_FRAG_START (1 << 6) +#define IWM_TE_V1_NOTIF_INTERNAL_FRAG_END (1 << 7) +/* IWM_MAC_EVENT_ACTION_API_E_VER_2 */ + /* Time event - defines for command API */ +/** + * DOC: Time Events - what is it? + * + * Time Events are a fw feature that allows the driver to control the presence + * of the device on the channel. Since the fw supports multiple channels + * concurrently, the fw may choose to jump to another channel at any time. + * In order to make sure that the fw is on a specific channel at a certain time + * and for a certain duration, the driver needs to issue a time event. + * + * The simplest example is for BSS association. The driver issues a time event, + * waits for it to start, and only then tells mac80211 that we can start the + * association. This way, we make sure that the association will be done + * smoothly and won't be interrupted by channel switch decided within the fw. + */ + + /** + * DOC: The flow against the fw + * + * When the driver needs to make sure we are in a certain channel, at a certain + * time and for a certain duration, it sends a Time Event. The flow against the + * fw goes like this: + * 1) Driver sends a TIME_EVENT_CMD to the fw + * 2) Driver gets the response for that command. This response contains the + * Unique ID (UID) of the event. + * 3) The fw sends notification when the event starts. + * + * Of course the API provides various options that allow to cover parameters + * of the flow. + * What is the duration of the event? + * What is the start time of the event? + * Is there an end-time for the event? + * How much can the event be delayed? + * Can the event be split? + * If yes what is the maximal number of chunks? + * etc... + */ + /* * @IWM_TE_V2_FRAG_NONE: fragmentation of the time event is NOT allowed. * @IWM_TE_V2_FRAG_SINGLE: fragmentation of the time event is allowed, but only * the first fragment is scheduled. * @IWM_TE_V2_FRAG_DUAL: fragmentation of the time event is allowed, but only * the first 2 fragments are scheduled. * @IWM_TE_V2_FRAG_ENDLESS: fragmentation of the time event is allowed, and any * number of fragments are valid. * * Other than the constant defined above, specifying a fragmentation value 'x' * means that the event can be fragmented but only the first 'x' will be * scheduled. */ -enum { - IWM_TE_V2_FRAG_NONE = 0, - IWM_TE_V2_FRAG_SINGLE = 1, - IWM_TE_V2_FRAG_DUAL = 2, - IWM_TE_V2_FRAG_MAX = 0xfe, - IWM_TE_V2_FRAG_ENDLESS = 0xff -}; +#define IWM_TE_V2_FRAG_NONE 0 +#define IWM_TE_V2_FRAG_SINGLE 1 +#define IWM_TE_V2_FRAG_DUAL 2 +#define IWM_TE_V2_FRAG_MAX 0xfe +#define IWM_TE_V2_FRAG_ENDLESS 0xff /* Repeat the time event endlessly (until removed) */ #define IWM_TE_V2_REPEAT_ENDLESS 0xff /* If a Time Event has bounded repetitions, this is the maximal value */ #define IWM_TE_V2_REPEAT_MAX 0xfe #define IWM_TE_V2_PLACEMENT_POS 12 #define IWM_TE_V2_ABSENCE_POS 15 /* Time event policy values * A notification (both event and fragment) includes a status indicating weather * the FW was able to schedule the event or not. For fragment start/end * notification the status is always success. There is no start/end fragment * notification for monolithic events. * * @IWM_TE_V2_DEFAULT_POLICY: independent, social, present, unoticable * @IWM_TE_V2_NOTIF_HOST_EVENT_START: request/receive notification on event start * @IWM_TE_V2_NOTIF_HOST_EVENT_END:request/receive notification on event end * @IWM_TE_V2_NOTIF_INTERNAL_EVENT_START: internal FW use * @IWM_TE_V2_NOTIF_INTERNAL_EVENT_END: internal FW use. * @IWM_TE_V2_NOTIF_HOST_FRAG_START: request/receive notification on frag start * @IWM_TE_V2_NOTIF_HOST_FRAG_END:request/receive notification on frag end * @IWM_TE_V2_NOTIF_INTERNAL_FRAG_START: internal FW use. * @IWM_TE_V2_NOTIF_INTERNAL_FRAG_END: internal FW use. * @IWM_TE_V2_DEP_OTHER: depends on another time event * @IWM_TE_V2_DEP_TSF: depends on a specific time * @IWM_TE_V2_EVENT_SOCIOPATHIC: can't co-exist with other events of tha same MAC * @IWM_TE_V2_ABSENCE: are we present or absent during the Time Event. */ -enum { - IWM_TE_V2_DEFAULT_POLICY = 0x0, +#define IWM_TE_V2_DEFAULT_POLICY 0x0 - /* notifications (event start/stop, fragment start/stop) */ - IWM_TE_V2_NOTIF_HOST_EVENT_START = (1 << 0), - IWM_TE_V2_NOTIF_HOST_EVENT_END = (1 << 1), - IWM_TE_V2_NOTIF_INTERNAL_EVENT_START = (1 << 2), - IWM_TE_V2_NOTIF_INTERNAL_EVENT_END = (1 << 3), +/* notifications (event start/stop, fragment start/stop) */ +#define IWM_TE_V2_NOTIF_HOST_EVENT_START (1 << 0) +#define IWM_TE_V2_NOTIF_HOST_EVENT_END (1 << 1) +#define IWM_TE_V2_NOTIF_INTERNAL_EVENT_START (1 << 2) +#define IWM_TE_V2_NOTIF_INTERNAL_EVENT_END (1 << 3) - IWM_TE_V2_NOTIF_HOST_FRAG_START = (1 << 4), - IWM_TE_V2_NOTIF_HOST_FRAG_END = (1 << 5), - IWM_TE_V2_NOTIF_INTERNAL_FRAG_START = (1 << 6), - IWM_TE_V2_NOTIF_INTERNAL_FRAG_END = (1 << 7), +#define IWM_TE_V2_NOTIF_HOST_FRAG_START (1 << 4) +#define IWM_TE_V2_NOTIF_HOST_FRAG_END (1 << 5) +#define IWM_TE_V2_NOTIF_INTERNAL_FRAG_START (1 << 6) +#define IWM_TE_V2_NOTIF_INTERNAL_FRAG_END (1 << 7) +#define IWM_T2_V2_START_IMMEDIATELY (1 << 11) - IWM_TE_V2_NOTIF_MSK = 0xff, +#define IWM_TE_V2_NOTIF_MSK 0xff - /* placement characteristics */ - IWM_TE_V2_DEP_OTHER = (1 << IWM_TE_V2_PLACEMENT_POS), - IWM_TE_V2_DEP_TSF = (1 << (IWM_TE_V2_PLACEMENT_POS + 1)), - IWM_TE_V2_EVENT_SOCIOPATHIC = (1 << (IWM_TE_V2_PLACEMENT_POS + 2)), +/* placement characteristics */ +#define IWM_TE_V2_DEP_OTHER (1 << IWM_TE_V2_PLACEMENT_POS) +#define IWM_TE_V2_DEP_TSF (1 << (IWM_TE_V2_PLACEMENT_POS + 1)) +#define IWM_TE_V2_EVENT_SOCIOPATHIC (1 << (IWM_TE_V2_PLACEMENT_POS + 2)) - /* are we present or absent during the Time Event. */ - IWM_TE_V2_ABSENCE = (1 << IWM_TE_V2_ABSENCE_POS), -}; +/* are we present or absent during the Time Event. */ +#define IWM_TE_V2_ABSENCE (1 << IWM_TE_V2_ABSENCE_POS) /** * struct iwm_time_event_cmd_api - configuring Time Events * with struct IWM_MAC_TIME_EVENT_DATA_API_S_VER_2 (see also * with version 1. determined by IWM_UCODE_TLV_FLAGS) * ( IWM_TIME_EVENT_CMD = 0x29 ) * @id_and_color: ID and color of the relevant MAC * @action: action to perform, one of IWM_FW_CTXT_ACTION_* * @id: this field has two meanings, depending on the action: * If the action is ADD, then it means the type of event to add. * For all other actions it is the unique event ID assigned when the * event was added by the FW. * @apply_time: When to start the Time Event (in GP2) * @max_delay: maximum delay to event's start (apply time), in TU * @depends_on: the unique ID of the event we depend on (if any) * @interval: interval between repetitions, in TU * @duration: duration of event in TU * @repeat: how many repetitions to do, can be IWM_TE_REPEAT_ENDLESS * @max_frags: maximal number of fragments the Time Event can be divided to * @policy: defines whether uCode shall notify the host or other uCode modules * on event and/or fragment start and/or end * using one of IWM_TE_INDEPENDENT, IWM_TE_DEP_OTHER, IWM_TE_DEP_TSF * IWM_TE_EVENT_SOCIOPATHIC * using IWM_TE_ABSENCE and using IWM_TE_NOTIF_* */ struct iwm_time_event_cmd { /* COMMON_INDEX_HDR_API_S_VER_1 */ uint32_t id_and_color; uint32_t action; uint32_t id; /* IWM_MAC_TIME_EVENT_DATA_API_S_VER_2 */ uint32_t apply_time; uint32_t max_delay; uint32_t depends_on; uint32_t interval; uint32_t duration; uint8_t repeat; uint8_t max_frags; uint16_t policy; } __packed; /* IWM_MAC_TIME_EVENT_CMD_API_S_VER_2 */ /** * struct iwm_time_event_resp - response structure to iwm_time_event_cmd * @status: bit 0 indicates success, all others specify errors * @id: the Time Event type * @unique_id: the unique ID assigned (in ADD) or given (others) to the TE * @id_and_color: ID and color of the relevant MAC */ struct iwm_time_event_resp { uint32_t status; uint32_t id; uint32_t unique_id; uint32_t id_and_color; } __packed; /* IWM_MAC_TIME_EVENT_RSP_API_S_VER_1 */ /** * struct iwm_time_event_notif - notifications of time event start/stop * ( IWM_TIME_EVENT_NOTIFICATION = 0x2a ) * @timestamp: action timestamp in GP2 * @session_id: session's unique id * @unique_id: unique id of the Time Event itself * @id_and_color: ID and color of the relevant MAC * @action: one of IWM_TE_NOTIF_START or IWM_TE_NOTIF_END * @status: true if scheduled, false otherwise (not executed) */ struct iwm_time_event_notif { uint32_t timestamp; uint32_t session_id; uint32_t unique_id; uint32_t id_and_color; uint32_t action; uint32_t status; } __packed; /* IWM_MAC_TIME_EVENT_NTFY_API_S_VER_1 */ /* Bindings and Time Quota */ +/** + * struct iwm_binding_cmd_v1 - configuring bindings + * ( IWM_BINDING_CONTEXT_CMD = 0x2b ) + * @id_and_color: ID and color of the relevant Binding + * @action: action to perform, one of IWM_FW_CTXT_ACTION_* + * @macs: array of MAC id and colors which belong to the binding + * @phy: PHY id and color which belongs to the binding + * @lmac_id: the lmac id the binding belongs to + */ +struct iwm_binding_cmd_v1 { + /* COMMON_INDEX_HDR_API_S_VER_1 */ + uint32_t id_and_color; + uint32_t action; + /* IWM_BINDING_DATA_API_S_VER_1 */ + uint32_t macs[IWM_MAX_MACS_IN_BINDING]; + uint32_t phy; +} __packed; /* IWM_BINDING_CMD_API_S_VER_1 */ + /** * struct iwm_binding_cmd - configuring bindings * ( IWM_BINDING_CONTEXT_CMD = 0x2b ) * @id_and_color: ID and color of the relevant Binding * @action: action to perform, one of IWM_FW_CTXT_ACTION_* * @macs: array of MAC id and colors which belong to the binding * @phy: PHY id and color which belongs to the binding + * @lmac_id: the lmac id the binding belongs to */ struct iwm_binding_cmd { /* COMMON_INDEX_HDR_API_S_VER_1 */ uint32_t id_and_color; uint32_t action; /* IWM_BINDING_DATA_API_S_VER_1 */ uint32_t macs[IWM_MAX_MACS_IN_BINDING]; uint32_t phy; -} __packed; /* IWM_BINDING_CMD_API_S_VER_1 */ + uint32_t lmac_id; +} __packed; /* IWM_BINDING_CMD_API_S_VER_2 */ + +#define IWM_LMAC_24G_INDEX 0 +#define IWM_LMAC_5G_INDEX 1 /* The maximal number of fragments in the FW's schedule session */ #define IWM_MAX_QUOTA 128 /** * struct iwm_time_quota_data - configuration of time quota per binding * @id_and_color: ID and color of the relevant Binding * @quota: absolute time quota in TU. The scheduler will try to divide the * remainig quota (after Time Events) according to this quota. * @max_duration: max uninterrupted context duration in TU */ -struct iwm_time_quota_data { +struct iwm_time_quota_data_v1 { uint32_t id_and_color; uint32_t quota; uint32_t max_duration; } __packed; /* IWM_TIME_QUOTA_DATA_API_S_VER_1 */ /** * struct iwm_time_quota_cmd - configuration of time quota between bindings * ( IWM_TIME_QUOTA_CMD = 0x2c ) * @quotas: allocations per binding */ +struct iwm_time_quota_cmd_v1 { + struct iwm_time_quota_data_v1 quotas[IWM_MAX_BINDINGS]; +} __packed; /* IWM_TIME_QUOTA_ALLOCATION_CMD_API_S_VER_1 */ + +#define IWM_QUOTA_LOW_LATENCY_NONE 0 +#define IWM_QUOTA_LOW_LATENCY_TX (1 << 0) +#define IWM_QUOTA_LOW_LATENCY_RX (1 << 1) + +/** + * struct iwm_time_quota_data - configuration of time quota per binding + * @id_and_color: ID and color of the relevant Binding. + * @quota: absolute time quota in TU. The scheduler will try to divide the + * remainig quota (after Time Events) according to this quota. + * @max_duration: max uninterrupted context duration in TU + * @low_latency: low latency status IWM_QUOTA_LOW_LATENCY_* + */ +struct iwm_time_quota_data { + uint32_t id_and_color; + uint32_t quota; + uint32_t max_duration; + uint32_t low_latency; +}; /* TIME_QUOTA_DATA_API_S_VER_2 */ + +/** + * struct iwm_time_quota_cmd - configuration of time quota between bindings + * ( TIME_QUOTA_CMD = 0x2c ) + * Note: on non-CDB the fourth one is the auxilary mac and is essentially zero. + * On CDB the fourth one is a regular binding. + * + * @quotas: allocations per binding + */ struct iwm_time_quota_cmd { struct iwm_time_quota_data quotas[IWM_MAX_BINDINGS]; -} __packed; /* IWM_TIME_QUOTA_ALLOCATION_CMD_API_S_VER_1 */ +} __packed; /* TIME_QUOTA_ALLOCATION_CMD_API_S_VER_2 */ /* PHY context */ /* Supported bands */ #define IWM_PHY_BAND_5 (0) #define IWM_PHY_BAND_24 (1) /* Supported channel width, vary if there is VHT support */ #define IWM_PHY_VHT_CHANNEL_MODE20 (0x0) #define IWM_PHY_VHT_CHANNEL_MODE40 (0x1) #define IWM_PHY_VHT_CHANNEL_MODE80 (0x2) #define IWM_PHY_VHT_CHANNEL_MODE160 (0x3) /* * Control channel position: * For legacy set bit means upper channel, otherwise lower. * For VHT - bit-2 marks if the control is lower/upper relative to center-freq * bits-1:0 mark the distance from the center freq. for 20Mhz, offset is 0. * center_freq * | * 40Mhz |_______|_______| * 80Mhz |_______|_______|_______|_______| * 160Mhz |_______|_______|_______|_______|_______|_______|_______|_______| * code 011 010 001 000 | 100 101 110 111 */ #define IWM_PHY_VHT_CTRL_POS_1_BELOW (0x0) #define IWM_PHY_VHT_CTRL_POS_2_BELOW (0x1) #define IWM_PHY_VHT_CTRL_POS_3_BELOW (0x2) #define IWM_PHY_VHT_CTRL_POS_4_BELOW (0x3) #define IWM_PHY_VHT_CTRL_POS_1_ABOVE (0x4) #define IWM_PHY_VHT_CTRL_POS_2_ABOVE (0x5) #define IWM_PHY_VHT_CTRL_POS_3_ABOVE (0x6) #define IWM_PHY_VHT_CTRL_POS_4_ABOVE (0x7) /* * @band: IWM_PHY_BAND_* * @channel: channel number * @width: PHY_[VHT|LEGACY]_CHANNEL_* * @ctrl channel: PHY_[VHT|LEGACY]_CTRL_* */ -struct iwm_fw_channel_info { +struct iwm_fw_channel_info_v1 { uint8_t band; uint8_t channel; uint8_t width; uint8_t ctrl_pos; -} __packed; +} __packed; /* CHANNEL_CONFIG_API_S_VER_1 */ + +/* + * struct iwm_fw_channel_info - channel information + * + * @channel: channel number + * @band: PHY_BAND_* + * @width: PHY_[VHT|LEGACY]_CHANNEL_* + * @ctrl channel: PHY_[VHT|LEGACY]_CTRL_* + * @reserved: for future use and alignment + */ +struct iwm_fw_channel_info { + uint32_t channel; + uint8_t band; + uint8_t width; + uint8_t ctrl_pos; + uint8_t reserved; +} __packed; /* CHANNEL_CONFIG_API_S_VER_2 */ #define IWM_PHY_RX_CHAIN_DRIVER_FORCE_POS (0) #define IWM_PHY_RX_CHAIN_DRIVER_FORCE_MSK \ (0x1 << IWM_PHY_RX_CHAIN_DRIVER_FORCE_POS) #define IWM_PHY_RX_CHAIN_VALID_POS (1) #define IWM_PHY_RX_CHAIN_VALID_MSK \ (0x7 << IWM_PHY_RX_CHAIN_VALID_POS) #define IWM_PHY_RX_CHAIN_FORCE_SEL_POS (4) #define IWM_PHY_RX_CHAIN_FORCE_SEL_MSK \ (0x7 << IWM_PHY_RX_CHAIN_FORCE_SEL_POS) #define IWM_PHY_RX_CHAIN_FORCE_MIMO_SEL_POS (7) #define IWM_PHY_RX_CHAIN_FORCE_MIMO_SEL_MSK \ (0x7 << IWM_PHY_RX_CHAIN_FORCE_MIMO_SEL_POS) #define IWM_PHY_RX_CHAIN_CNT_POS (10) #define IWM_PHY_RX_CHAIN_CNT_MSK \ (0x3 << IWM_PHY_RX_CHAIN_CNT_POS) #define IWM_PHY_RX_CHAIN_MIMO_CNT_POS (12) #define IWM_PHY_RX_CHAIN_MIMO_CNT_MSK \ (0x3 << IWM_PHY_RX_CHAIN_MIMO_CNT_POS) #define IWM_PHY_RX_CHAIN_MIMO_FORCE_POS (14) #define IWM_PHY_RX_CHAIN_MIMO_FORCE_MSK \ (0x1 << IWM_PHY_RX_CHAIN_MIMO_FORCE_POS) /* TODO: fix the value, make it depend on firmware at runtime? */ #define IWM_NUM_PHY_CTX 3 /* TODO: complete missing documentation */ /** * struct iwm_phy_context_cmd - config of the PHY context * ( IWM_PHY_CONTEXT_CMD = 0x8 ) * @id_and_color: ID and color of the relevant Binding * @action: action to perform, one of IWM_FW_CTXT_ACTION_* * @apply_time: 0 means immediate apply and context switch. * other value means apply new params after X usecs * @tx_param_color: ??? * @channel_info: * @txchain_info: ??? * @rxchain_info: ??? * @acquisition_data: ??? * @dsp_cfg_flags: set to 0 */ -struct iwm_phy_context_cmd { +/* + * XXX Intel forgot to bump the PHY_CONTEXT command API when they increased + * the size of fw_channel_info from v1 to v2. + * To keep things simple we define two versions of this struct, and both + * are labled as CMD_API_VER_1. (The Linux iwlwifi driver performs dark + * magic with pointers to struct members instead.) + */ +/* This version must be used if IWM_UCODE_TLV_CAPA_ULTRA_HB_CHANNELS is set: */ +struct iwm_phy_context_cmd_uhb { /* COMMON_INDEX_HDR_API_S_VER_1 */ uint32_t id_and_color; uint32_t action; /* IWM_PHY_CONTEXT_DATA_API_S_VER_1 */ uint32_t apply_time; uint32_t tx_param_color; struct iwm_fw_channel_info ci; uint32_t txchain_info; uint32_t rxchain_info; uint32_t acquisition_data; uint32_t dsp_cfg_flags; } __packed; /* IWM_PHY_CONTEXT_CMD_API_VER_1 */ - +/* This version must be used otherwise: */ +struct iwm_phy_context_cmd { + /* COMMON_INDEX_HDR_API_S_VER_1 */ + uint32_t id_and_color; + uint32_t action; + /* IWM_PHY_CONTEXT_DATA_API_S_VER_1 */ + uint32_t apply_time; + uint32_t tx_param_color; + struct iwm_fw_channel_info_v1 ci; + uint32_t txchain_info; + uint32_t rxchain_info; + uint32_t acquisition_data; + uint32_t dsp_cfg_flags; +} __packed; /* IWM_PHY_CONTEXT_CMD_API_VER_1 */ + #define IWM_RX_INFO_PHY_CNT 8 #define IWM_RX_INFO_ENERGY_ANT_ABC_IDX 1 #define IWM_RX_INFO_ENERGY_ANT_A_MSK 0x000000ff #define IWM_RX_INFO_ENERGY_ANT_B_MSK 0x0000ff00 #define IWM_RX_INFO_ENERGY_ANT_C_MSK 0x00ff0000 #define IWM_RX_INFO_ENERGY_ANT_A_POS 0 #define IWM_RX_INFO_ENERGY_ANT_B_POS 8 #define IWM_RX_INFO_ENERGY_ANT_C_POS 16 #define IWM_RX_INFO_AGC_IDX 1 #define IWM_RX_INFO_RSSI_AB_IDX 2 #define IWM_OFDM_AGC_A_MSK 0x0000007f #define IWM_OFDM_AGC_A_POS 0 #define IWM_OFDM_AGC_B_MSK 0x00003f80 #define IWM_OFDM_AGC_B_POS 7 #define IWM_OFDM_AGC_CODE_MSK 0x3fe00000 #define IWM_OFDM_AGC_CODE_POS 20 #define IWM_OFDM_RSSI_INBAND_A_MSK 0x00ff #define IWM_OFDM_RSSI_A_POS 0 #define IWM_OFDM_RSSI_ALLBAND_A_MSK 0xff00 #define IWM_OFDM_RSSI_ALLBAND_A_POS 8 #define IWM_OFDM_RSSI_INBAND_B_MSK 0xff0000 #define IWM_OFDM_RSSI_B_POS 16 #define IWM_OFDM_RSSI_ALLBAND_B_MSK 0xff000000 #define IWM_OFDM_RSSI_ALLBAND_B_POS 24 /** * struct iwm_rx_phy_info - phy info * (IWM_REPLY_RX_PHY_CMD = 0xc0) * @non_cfg_phy_cnt: non configurable DSP phy data byte count * @cfg_phy_cnt: configurable DSP phy data byte count * @stat_id: configurable DSP phy data set ID * @reserved1: * @system_timestamp: GP2 at on air rise * @timestamp: TSF at on air rise * @beacon_time_stamp: beacon at on-air rise * @phy_flags: general phy flags: band, modulation, ... * @channel: channel number * @non_cfg_phy_buf: for various implementations of non_cfg_phy * @rate_n_flags: IWM_RATE_MCS_* * @byte_count: frame's byte-count * @frame_time: frame's time on the air, based on byte count and frame rate * calculation * @mac_active_msk: what MACs were active when the frame was received * * Before each Rx, the device sends this data. It contains PHY information * about the reception of the packet. */ struct iwm_rx_phy_info { uint8_t non_cfg_phy_cnt; uint8_t cfg_phy_cnt; uint8_t stat_id; uint8_t reserved1; uint32_t system_timestamp; uint64_t timestamp; uint32_t beacon_time_stamp; uint16_t phy_flags; #define IWM_PHY_INFO_FLAG_SHPREAMBLE (1 << 2) uint16_t channel; uint32_t non_cfg_phy[IWM_RX_INFO_PHY_CNT]; +#if 0 + /* OpenBSD update; will need to convert code to use this field */ + uint32_t rate_n_flags; +#else uint8_t rate; uint8_t rflags; uint16_t xrflags; +#endif uint32_t byte_count; uint16_t mac_active_msk; uint16_t frame_time; } __packed; struct iwm_rx_mpdu_res_start { uint16_t byte_count; uint16_t reserved; } __packed; /** - * enum iwm_rx_phy_flags - to parse %iwm_rx_phy_info phy_flags + * Values to parse %iwm_rx_phy_info phy_flags * @IWM_RX_RES_PHY_FLAGS_BAND_24: true if the packet was received on 2.4 band * @IWM_RX_RES_PHY_FLAGS_MOD_CCK: * @IWM_RX_RES_PHY_FLAGS_SHORT_PREAMBLE: true if packet's preamble was short * @IWM_RX_RES_PHY_FLAGS_NARROW_BAND: * @IWM_RX_RES_PHY_FLAGS_ANTENNA: antenna on which the packet was received * @IWM_RX_RES_PHY_FLAGS_AGG: set if the packet was part of an A-MPDU * @IWM_RX_RES_PHY_FLAGS_OFDM_HT: The frame was an HT frame * @IWM_RX_RES_PHY_FLAGS_OFDM_GF: The frame used GF preamble * @IWM_RX_RES_PHY_FLAGS_OFDM_VHT: The frame was a VHT frame */ -enum iwm_rx_phy_flags { - IWM_RX_RES_PHY_FLAGS_BAND_24 = (1 << 0), - IWM_RX_RES_PHY_FLAGS_MOD_CCK = (1 << 1), - IWM_RX_RES_PHY_FLAGS_SHORT_PREAMBLE = (1 << 2), - IWM_RX_RES_PHY_FLAGS_NARROW_BAND = (1 << 3), - IWM_RX_RES_PHY_FLAGS_ANTENNA = (0x7 << 4), - IWM_RX_RES_PHY_FLAGS_ANTENNA_POS = 4, - IWM_RX_RES_PHY_FLAGS_AGG = (1 << 7), - IWM_RX_RES_PHY_FLAGS_OFDM_HT = (1 << 8), - IWM_RX_RES_PHY_FLAGS_OFDM_GF = (1 << 9), - IWM_RX_RES_PHY_FLAGS_OFDM_VHT = (1 << 10), -}; +#define IWM_RX_RES_PHY_FLAGS_BAND_24 (1 << 0) +#define IWM_RX_RES_PHY_FLAGS_MOD_CCK (1 << 1) +#define IWM_RX_RES_PHY_FLAGS_SHORT_PREAMBLE (1 << 2) +#define IWM_RX_RES_PHY_FLAGS_NARROW_BAND (1 << 3) +#define IWM_RX_RES_PHY_FLAGS_ANTENNA (0x7 << 4) +#define IWM_RX_RES_PHY_FLAGS_ANTENNA_POS 4 +#define IWM_RX_RES_PHY_FLAGS_AGG (1 << 7) +#define IWM_RX_RES_PHY_FLAGS_OFDM_HT (1 << 8) +#define IWM_RX_RES_PHY_FLAGS_OFDM_GF (1 << 9) +#define IWM_RX_RES_PHY_FLAGS_OFDM_VHT (1 << 10) /** - * enum iwm_rx_status - written by fw for each Rx packet + * Values written by fw for each Rx packet * @IWM_RX_MPDU_RES_STATUS_CRC_OK: CRC is fine * @IWM_RX_MPDU_RES_STATUS_OVERRUN_OK: there was no RXE overflow * @IWM_RX_MPDU_RES_STATUS_SRC_STA_FOUND: * @IWM_RX_MPDU_RES_STATUS_KEY_VALID: * @IWM_RX_MPDU_RES_STATUS_KEY_PARAM_OK: * @IWM_RX_MPDU_RES_STATUS_ICV_OK: ICV is fine, if not, the packet is destroyed * @IWM_RX_MPDU_RES_STATUS_MIC_OK: used for CCM alg only. TKIP MIC is checked * in the driver. * @IWM_RX_MPDU_RES_STATUS_TTAK_OK: TTAK is fine * @IWM_RX_MPDU_RES_STATUS_MNG_FRAME_REPLAY_ERR: valid for alg = CCM_CMAC or * alg = CCM only. Checks replay attack for 11w frames. Relevant only if * %IWM_RX_MPDU_RES_STATUS_ROBUST_MNG_FRAME is set. * @IWM_RX_MPDU_RES_STATUS_SEC_NO_ENC: this frame is not encrypted * @IWM_RX_MPDU_RES_STATUS_SEC_WEP_ENC: this frame is encrypted using WEP * @IWM_RX_MPDU_RES_STATUS_SEC_CCM_ENC: this frame is encrypted using CCM * @IWM_RX_MPDU_RES_STATUS_SEC_TKIP_ENC: this frame is encrypted using TKIP * @IWM_RX_MPDU_RES_STATUS_SEC_CCM_CMAC_ENC: this frame is encrypted using CCM_CMAC * @IWM_RX_MPDU_RES_STATUS_SEC_ENC_ERR: this frame couldn't be decrypted * @IWM_RX_MPDU_RES_STATUS_SEC_ENC_MSK: bitmask of the encryption algorithm * @IWM_RX_MPDU_RES_STATUS_DEC_DONE: this frame has been successfully decrypted * @IWM_RX_MPDU_RES_STATUS_PROTECT_FRAME_BIT_CMP: * @IWM_RX_MPDU_RES_STATUS_EXT_IV_BIT_CMP: * @IWM_RX_MPDU_RES_STATUS_KEY_ID_CMP_BIT: * @IWM_RX_MPDU_RES_STATUS_ROBUST_MNG_FRAME: this frame is an 11w management frame * @IWM_RX_MPDU_RES_STATUS_HASH_INDEX_MSK: * @IWM_RX_MPDU_RES_STATUS_STA_ID_MSK: * @IWM_RX_MPDU_RES_STATUS_RRF_KILL: * @IWM_RX_MPDU_RES_STATUS_FILTERING_MSK: * @IWM_RX_MPDU_RES_STATUS2_FILTERING_MSK: */ -enum iwm_rx_status { - IWM_RX_MPDU_RES_STATUS_CRC_OK = (1 << 0), - IWM_RX_MPDU_RES_STATUS_OVERRUN_OK = (1 << 1), - IWM_RX_MPDU_RES_STATUS_SRC_STA_FOUND = (1 << 2), - IWM_RX_MPDU_RES_STATUS_KEY_VALID = (1 << 3), - IWM_RX_MPDU_RES_STATUS_KEY_PARAM_OK = (1 << 4), - IWM_RX_MPDU_RES_STATUS_ICV_OK = (1 << 5), - IWM_RX_MPDU_RES_STATUS_MIC_OK = (1 << 6), - IWM_RX_MPDU_RES_STATUS_TTAK_OK = (1 << 7), - IWM_RX_MPDU_RES_STATUS_MNG_FRAME_REPLAY_ERR = (1 << 7), - IWM_RX_MPDU_RES_STATUS_SEC_NO_ENC = (0 << 8), - IWM_RX_MPDU_RES_STATUS_SEC_WEP_ENC = (1 << 8), - IWM_RX_MPDU_RES_STATUS_SEC_CCM_ENC = (2 << 8), - IWM_RX_MPDU_RES_STATUS_SEC_TKIP_ENC = (3 << 8), - IWM_RX_MPDU_RES_STATUS_SEC_EXT_ENC = (4 << 8), - IWM_RX_MPDU_RES_STATUS_SEC_CCM_CMAC_ENC = (6 << 8), - IWM_RX_MPDU_RES_STATUS_SEC_ENC_ERR = (7 << 8), - IWM_RX_MPDU_RES_STATUS_SEC_ENC_MSK = (7 << 8), - IWM_RX_MPDU_RES_STATUS_DEC_DONE = (1 << 11), - IWM_RX_MPDU_RES_STATUS_PROTECT_FRAME_BIT_CMP = (1 << 12), - IWM_RX_MPDU_RES_STATUS_EXT_IV_BIT_CMP = (1 << 13), - IWM_RX_MPDU_RES_STATUS_KEY_ID_CMP_BIT = (1 << 14), - IWM_RX_MPDU_RES_STATUS_ROBUST_MNG_FRAME = (1 << 15), - IWM_RX_MPDU_RES_STATUS_HASH_INDEX_MSK = (0x3F0000), - IWM_RX_MPDU_RES_STATUS_STA_ID_MSK = (0x1f000000), - IWM_RX_MPDU_RES_STATUS_RRF_KILL = (1 << 29), - IWM_RX_MPDU_RES_STATUS_FILTERING_MSK = (0xc00000), - IWM_RX_MPDU_RES_STATUS2_FILTERING_MSK = (0xc0000000), -}; - -enum iwm_rx_mpdu_mac_flags1 { - IWM_RX_MPDU_MFLG1_ADDRTYPE_MASK = 0x03, - IWM_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK = 0xf0, - IWM_RX_MPDU_MFLG1_MIC_CRC_LEN_SHIFT = 3, -}; - -enum iwm_rx_mpdu_mac_flags2 { - IWM_RX_MPDU_MFLG2_HDR_LEN_MASK = 0x1f, - IWM_RX_MPDU_MFLG2_PAD = 0x20, - IWM_RX_MPDU_MFLG2_AMSDU = 0x40, -}; - -enum iwm_rx_mpdu_phy_info { - IWM_RX_MPDU_PHY_AMPDU = (1 << 5), - IWM_RX_MPDU_PHY_AMPDU_TOGGLE = (1 << 6), - IWM_RX_MPDU_PHY_SHORT_PREAMBLE = (1 << 7), - IWM_RX_MPDU_PHY_NCCK_ADDTL_NTFY = (1 << 7), - IWM_RX_MPDU_PHY_TSF_OVERLOAD = (1 << 8), -}; +#define IWM_RX_MPDU_RES_STATUS_CRC_OK (1 << 0) +#define IWM_RX_MPDU_RES_STATUS_OVERRUN_OK (1 << 1) +#define IWM_RX_MPDU_RES_STATUS_SRC_STA_FOUND (1 << 2) +#define IWM_RX_MPDU_RES_STATUS_KEY_VALID (1 << 3) +#define IWM_RX_MPDU_RES_STATUS_KEY_PARAM_OK (1 << 4) +#define IWM_RX_MPDU_RES_STATUS_ICV_OK (1 << 5) +#define IWM_RX_MPDU_RES_STATUS_MIC_OK (1 << 6) +#define IWM_RX_MPDU_RES_STATUS_TTAK_OK (1 << 7) +#define IWM_RX_MPDU_RES_STATUS_MNG_FRAME_REPLAY_ERR (1 << 7) +#define IWM_RX_MPDU_RES_STATUS_SEC_NO_ENC (0 << 8) +#define IWM_RX_MPDU_RES_STATUS_SEC_WEP_ENC (1 << 8) +#define IWM_RX_MPDU_RES_STATUS_SEC_CCM_ENC (2 << 8) +#define IWM_RX_MPDU_RES_STATUS_SEC_TKIP_ENC (3 << 8) +#define IWM_RX_MPDU_RES_STATUS_SEC_EXT_ENC (4 << 8) +#define IWM_RX_MPDU_RES_STATUS_SEC_CCM_CMAC_ENC (6 << 8) +#define IWM_RX_MPDU_RES_STATUS_SEC_ENC_ERR (7 << 8) +#define IWM_RX_MPDU_RES_STATUS_SEC_ENC_MSK (7 << 8) +#define IWM_RX_MPDU_RES_STATUS_DEC_DONE (1 << 11) +#define IWM_RX_MPDU_RES_STATUS_PROTECT_FRAME_BIT_CMP (1 << 12) +#define IWM_RX_MPDU_RES_STATUS_EXT_IV_BIT_CMP (1 << 13) +#define IWM_RX_MPDU_RES_STATUS_KEY_ID_CMP_BIT (1 << 14) +#define IWM_RX_MPDU_RES_STATUS_ROBUST_MNG_FRAME (1 << 15) +#define IWM_RX_MPDU_RES_STATUS_HASH_INDEX_MSK (0x3F0000) +#define IWM_RX_MPDU_RES_STATUS_STA_ID_MSK (0x1f000000) +#define IWM_RX_MPDU_RES_STATUS_RRF_KILL (1 << 29) +#define IWM_RX_MPDU_RES_STATUS_FILTERING_MSK (0xc00000) +#define IWM_RX_MPDU_RES_STATUS2_FILTERING_MSK (0xc0000000) + +#define IWM_RX_MPDU_MFLG1_ADDRTYPE_MASK 0x03 +#define IWM_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK 0xf0 +#define IWM_RX_MPDU_MFLG1_MIC_CRC_LEN_SHIFT 3 + +#define IWM_RX_MPDU_MFLG2_HDR_LEN_MASK 0x1f +#define IWM_RX_MPDU_MFLG2_PAD 0x20 +#define IWM_RX_MPDU_MFLG2_AMSDU 0x40 + +#define IWM_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK 0x7f +#define IWM_RX_MPDU_AMSDU_LAST_SUBFRAME 0x80 + +#define IWM_RX_MPDU_PHY_AMPDU (1 << 5) +#define IWM_RX_MPDU_PHY_AMPDU_TOGGLE (1 << 6) +#define IWM_RX_MPDU_PHY_SHORT_PREAMBLE (1 << 7) +#define IWM_RX_MPDU_PHY_NCCK_ADDTL_NTFY (1 << 7) +#define IWM_RX_MPDU_PHY_TSF_OVERLOAD (1 << 8) struct iwm_rx_mpdu_desc_v1 { union { uint32_t rss_hash; uint32_t phy_data2; }; union { uint32_t filter_match; uint32_t phy_data3; }; uint32_t rate_n_flags; uint8_t energy_a; uint8_t energy_b; uint8_t channel; uint8_t mac_context; uint32_t gp2_on_air_rise; union { uint64_t tsf_on_air_rise; struct { uint32_t phy_data0; uint32_t phy_data1; }; }; } __packed; +#define IWM_RX_REORDER_DATA_INVALID_BAID 0x7f + +#define IWM_RX_MPDU_REORDER_NSSN_MASK 0x00000fff +#define IWM_RX_MPDU_REORDER_SN_MASK 0x00fff000 +#define IWM_RX_MPDU_REORDER_SN_SHIFT 12 +#define IWM_RX_MPDU_REORDER_BAID_MASK 0x7f000000 +#define IWM_RX_MPDU_REORDER_BAID_SHIFT 24 +#define IWM_RX_MPDU_REORDER_BA_OLD_SN 0x80000000 + struct iwm_rx_mpdu_desc { uint16_t mpdu_len; uint8_t mac_flags1; uint8_t mac_flags2; uint8_t amsdu_info; uint16_t phy_info; uint8_t mac_phy_idx; uint16_t raw_csum; union { uint16_t l3l4_flags; uint16_t phy_data4; }; uint16_t status; uint8_t hash_filter; uint8_t sta_id_flags; uint32_t reorder_data; struct iwm_rx_mpdu_desc_v1 v1; } __packed; /** * struct iwm_radio_version_notif - information on the radio version * ( IWM_RADIO_VERSION_NOTIFICATION = 0x68 ) * @radio_flavor: * @radio_step: * @radio_dash: */ struct iwm_radio_version_notif { uint32_t radio_flavor; uint32_t radio_step; uint32_t radio_dash; } __packed; /* IWM_RADIO_VERSION_NOTOFICATION_S_VER_1 */ -enum iwm_card_state_flags { - IWM_CARD_ENABLED = 0x00, - IWM_HW_CARD_DISABLED = 0x01, - IWM_SW_CARD_DISABLED = 0x02, - IWM_CT_KILL_CARD_DISABLED = 0x04, - IWM_HALT_CARD_DISABLED = 0x08, - IWM_CARD_DISABLED_MSK = 0x0f, - IWM_CARD_IS_RX_ON = 0x10, -}; +#define IWM_CARD_ENABLED 0x00 +#define IWM_HW_CARD_DISABLED 0x01 +#define IWM_SW_CARD_DISABLED 0x02 +#define IWM_CT_KILL_CARD_DISABLED 0x04 +#define IWM_HALT_CARD_DISABLED 0x08 +#define IWM_CARD_DISABLED_MSK 0x0f +#define IWM_CARD_IS_RX_ON 0x10 /** * struct iwm_radio_version_notif - information on the radio version * (IWM_CARD_STATE_NOTIFICATION = 0xa1 ) * @flags: %iwm_card_state_flags */ struct iwm_card_state_notif { uint32_t flags; } __packed; /* CARD_STATE_NTFY_API_S_VER_1 */ /** * struct iwm_missed_beacons_notif - information on missed beacons * ( IWM_MISSED_BEACONS_NOTIFICATION = 0xa2 ) * @mac_id: interface ID * @consec_missed_beacons_since_last_rx: number of consecutive missed * beacons since last RX. * @consec_missed_beacons: number of consecutive missed beacons * @num_expected_beacons: * @num_recvd_beacons: */ struct iwm_missed_beacons_notif { uint32_t mac_id; uint32_t consec_missed_beacons_since_last_rx; uint32_t consec_missed_beacons; uint32_t num_expected_beacons; uint32_t num_recvd_beacons; } __packed; /* IWM_MISSED_BEACON_NTFY_API_S_VER_3 */ /** * struct iwm_mfuart_load_notif - mfuart image version & status * ( IWM_MFUART_LOAD_NOTIFICATION = 0xb1 ) * @installed_ver: installed image version * @external_ver: external image version * @status: MFUART loading status * @duration: MFUART loading time */ struct iwm_mfuart_load_notif { uint32_t installed_ver; uint32_t external_ver; uint32_t status; uint32_t duration; } __packed; /*MFU_LOADER_NTFY_API_S_VER_1*/ /** * struct iwm_set_calib_default_cmd - set default value for calibration. * ( IWM_SET_CALIB_DEFAULT_CMD = 0x8e ) * @calib_index: the calibration to set value for * @length: of data * @data: the value to set for the calibration result */ struct iwm_set_calib_default_cmd { uint16_t calib_index; uint16_t length; uint8_t data[0]; } __packed; /* IWM_PHY_CALIB_OVERRIDE_VALUES_S */ #define IWM_MAX_PORT_ID_NUM 2 #define IWM_MAX_MCAST_FILTERING_ADDRESSES 256 /** * struct iwm_mcast_filter_cmd - configure multicast filter. * @filter_own: Set 1 to filter out multicast packets sent by station itself * @port_id: Multicast MAC addresses array specifier. This is a strange way * to identify network interface adopted in host-device IF. * It is used by FW as index in array of addresses. This array has * IWM_MAX_PORT_ID_NUM members. * @count: Number of MAC addresses in the array * @pass_all: Set 1 to pass all multicast packets. * @bssid: current association BSSID. * @addr_list: Place holder for array of MAC addresses. * IMPORTANT: add padding if necessary to ensure DWORD alignment. */ struct iwm_mcast_filter_cmd { uint8_t filter_own; uint8_t port_id; uint8_t count; uint8_t pass_all; uint8_t bssid[6]; uint8_t reserved[2]; uint8_t addr_list[0]; } __packed; /* IWM_MCAST_FILTERING_CMD_API_S_VER_1 */ -/* - * The first MAC indices (starting from 0) - * are available to the driver, AUX follows - */ -#define IWM_MAC_INDEX_AUX 4 -#define IWM_MAC_INDEX_MIN_DRIVER 0 -#define IWM_NUM_MAC_INDEX_DRIVER IWM_MAC_INDEX_AUX -#define IWM_NUM_MAC_INDEX (IWM_MAC_INDEX_AUX + 1) - -/*********************************** - * Statistics API - ***********************************/ struct iwm_statistics_dbg { uint32_t burst_check; uint32_t burst_count; uint32_t wait_for_silence_timeout_cnt; uint32_t reserved[3]; } __packed; /* IWM_STATISTICS_DEBUG_API_S_VER_2 */ struct iwm_statistics_div { uint32_t tx_on_a; uint32_t tx_on_b; uint32_t exec_time; uint32_t probe_time; uint32_t rssi_ant; uint32_t reserved2; } __packed; /* IWM_STATISTICS_SLOW_DIV_API_S_VER_2 */ +struct iwm_statistics_general_common { + uint32_t temperature; /* radio temperature */ + uint32_t temperature_m; /* radio voltage */ + struct iwm_statistics_dbg dbg; + uint32_t sleep_time; + uint32_t slots_out; + uint32_t slots_idle; + uint32_t ttl_timestamp; + struct iwm_statistics_div div; + uint32_t rx_enable_counter; + /* + * num_of_sos_states: + * count the number of times we have to re-tune + * in order to get out of bad PHY status + */ + uint32_t num_of_sos_states; +} __packed; /* IWM_STATISTICS_GENERAL_API_S_VER_5 */ + struct iwm_statistics_rx_non_phy { uint32_t bogus_cts; /* CTS received when not expecting CTS */ uint32_t bogus_ack; /* ACK received when not expecting ACK */ uint32_t non_bssid_frames; /* number of frames with BSSID that * doesn't belong to the STA BSSID */ uint32_t filtered_frames; /* count frames that were dumped in the * filtering process */ uint32_t non_channel_beacons; /* beacons with our bss id but not on * our serving channel */ uint32_t channel_beacons; /* beacons with our bss id and in our * serving channel */ uint32_t num_missed_bcon; /* number of missed beacons */ uint32_t adc_rx_saturation_time; /* count in 0.8us units the time the * ADC was in saturation */ uint32_t ina_detection_search_time;/* total time (in 0.8us) searched * for INA */ uint32_t beacon_silence_rssi[3];/* RSSI silence after beacon frame */ uint32_t interference_data_flag; /* flag for interference data * availability. 1 when data is * available. */ uint32_t channel_load; /* counts RX Enable time in uSec */ uint32_t dsp_false_alarms; /* DSP false alarm (both OFDM * and CCK) counter */ uint32_t beacon_rssi_a; uint32_t beacon_rssi_b; uint32_t beacon_rssi_c; uint32_t beacon_energy_a; uint32_t beacon_energy_b; uint32_t beacon_energy_c; uint32_t num_bt_kills; uint32_t mac_id; uint32_t directed_data_mpdu; } __packed; /* IWM_STATISTICS_RX_NON_PHY_API_S_VER_3 */ struct iwm_statistics_rx_phy { uint32_t ina_cnt; uint32_t fina_cnt; uint32_t plcp_err; uint32_t crc32_err; uint32_t overrun_err; uint32_t early_overrun_err; uint32_t crc32_good; uint32_t false_alarm_cnt; uint32_t fina_sync_err_cnt; uint32_t sfd_timeout; uint32_t fina_timeout; uint32_t unresponded_rts; uint32_t rxe_frame_limit_overrun; uint32_t sent_ack_cnt; uint32_t sent_cts_cnt; uint32_t sent_ba_rsp_cnt; uint32_t dsp_self_kill; uint32_t mh_format_err; uint32_t re_acq_main_rssi_sum; uint32_t reserved; } __packed; /* IWM_STATISTICS_RX_PHY_API_S_VER_2 */ struct iwm_statistics_rx_ht_phy { uint32_t plcp_err; uint32_t overrun_err; uint32_t early_overrun_err; uint32_t crc32_good; uint32_t crc32_err; uint32_t mh_format_err; uint32_t agg_crc32_good; uint32_t agg_mpdu_cnt; uint32_t agg_cnt; uint32_t unsupport_mcs; } __packed; /* IWM_STATISTICS_HT_RX_PHY_API_S_VER_1 */ -struct iwm_statistics_tx_non_phy { - uint32_t preamble_cnt; - uint32_t rx_detected_cnt; - uint32_t bt_prio_defer_cnt; - uint32_t bt_prio_kill_cnt; - uint32_t few_bytes_cnt; - uint32_t cts_timeout; - uint32_t ack_timeout; - uint32_t expected_ack_cnt; - uint32_t actual_ack_cnt; - uint32_t dump_msdu_cnt; - uint32_t burst_abort_next_frame_mismatch_cnt; - uint32_t burst_abort_missing_next_frame_cnt; - uint32_t cts_timeout_collision; - uint32_t ack_or_ba_timeout_collision; -} __packed; /* IWM_STATISTICS_TX_NON_PHY_API_S_VER_3 */ - #define IWM_MAX_CHAINS 3 struct iwm_statistics_tx_non_phy_agg { uint32_t ba_timeout; uint32_t ba_reschedule_frames; uint32_t scd_query_agg_frame_cnt; uint32_t scd_query_no_agg; uint32_t scd_query_agg; uint32_t scd_query_mismatch; uint32_t frame_not_ready; uint32_t underrun; uint32_t bt_prio_kill; uint32_t rx_ba_rsp_cnt; int8_t txpower[IWM_MAX_CHAINS]; int8_t reserved; uint32_t reserved2; } __packed; /* IWM_STATISTICS_TX_NON_PHY_AGG_API_S_VER_1 */ struct iwm_statistics_tx_channel_width { uint32_t ext_cca_narrow_ch20[1]; uint32_t ext_cca_narrow_ch40[2]; uint32_t ext_cca_narrow_ch80[3]; uint32_t ext_cca_narrow_ch160[4]; uint32_t last_tx_ch_width_indx; uint32_t rx_detected_per_ch_width[4]; uint32_t success_per_ch_width[4]; uint32_t fail_per_ch_width[4]; }; /* IWM_STATISTICS_TX_CHANNEL_WIDTH_API_S_VER_1 */ struct iwm_statistics_tx { - struct iwm_statistics_tx_non_phy general; + uint32_t preamble_cnt; + uint32_t rx_detected_cnt; + uint32_t bt_prio_defer_cnt; + uint32_t bt_prio_kill_cnt; + uint32_t few_bytes_cnt; + uint32_t cts_timeout; + uint32_t ack_timeout; + uint32_t expected_ack_cnt; + uint32_t actual_ack_cnt; + uint32_t dump_msdu_cnt; + uint32_t burst_abort_next_frame_mismatch_cnt; + uint32_t burst_abort_missing_next_frame_cnt; + uint32_t cts_timeout_collision; + uint32_t ack_or_ba_timeout_collision; struct iwm_statistics_tx_non_phy_agg agg; struct iwm_statistics_tx_channel_width channel_width; } __packed; /* IWM_STATISTICS_TX_API_S_VER_4 */ struct iwm_statistics_bt_activity { uint32_t hi_priority_tx_req_cnt; uint32_t hi_priority_tx_denied_cnt; uint32_t lo_priority_tx_req_cnt; uint32_t lo_priority_tx_denied_cnt; uint32_t hi_priority_rx_req_cnt; uint32_t hi_priority_rx_denied_cnt; uint32_t lo_priority_rx_req_cnt; uint32_t lo_priority_rx_denied_cnt; } __packed; /* IWM_STATISTICS_BT_ACTIVITY_API_S_VER_1 */ -struct iwm_statistics_general_v8 { - uint32_t radio_temperature; - uint32_t radio_voltage; - struct iwm_statistics_dbg dbg; - uint32_t sleep_time; - uint32_t slots_out; - uint32_t slots_idle; - uint32_t ttl_timestamp; - struct iwm_statistics_div slow_div; - uint32_t rx_enable_counter; - /* - * num_of_sos_states: - * count the number of times we have to re-tune - * in order to get out of bad PHY status - */ - uint32_t num_of_sos_states; +struct iwm_statistics_general { + struct iwm_statistics_general_common common; uint32_t beacon_filtered; uint32_t missed_beacons; - uint8_t beacon_filter_average_energy; - uint8_t beacon_filter_reason; - uint8_t beacon_filter_current_energy; - uint8_t beacon_filter_reserved; + int8_t beacon_filter_average_energy; + int8_t beacon_filter_reason; + int8_t beacon_filter_current_energy; + int8_t beacon_filter_reserved; uint32_t beacon_filter_delta_time; struct iwm_statistics_bt_activity bt_activity; - uint64_t rx_time; - uint64_t on_time_rf; - uint64_t on_time_scan; - uint64_t tx_time; - uint32_t beacon_counter[IWM_NUM_MAC_INDEX]; - uint8_t beacon_average_energy[IWM_NUM_MAC_INDEX]; - uint8_t reserved[4 - (IWM_NUM_MAC_INDEX % 4)]; -} __packed; /* IWM_STATISTICS_GENERAL_API_S_VER_8 */ +} __packed; /* IWM_STATISTICS_GENERAL_API_S_VER_5 */ struct iwm_statistics_rx { struct iwm_statistics_rx_phy ofdm; struct iwm_statistics_rx_phy cck; struct iwm_statistics_rx_non_phy general; struct iwm_statistics_rx_ht_phy ofdm_ht; } __packed; /* IWM_STATISTICS_RX_API_S_VER_3 */ /* * IWM_STATISTICS_NOTIFICATION = 0x9d (notification only, not a command) * * By default, uCode issues this notification after receiving a beacon * while associated. To disable this behavior, set DISABLE_NOTIF flag in the - * IWM_STATISTICS_CMD (0x9c), below. + * IWM_REPLY_STATISTICS_CMD 0x9c, above. + * + * Statistics counters continue to increment beacon after beacon, but are + * cleared when changing channels or when driver issues IWM_REPLY_STATISTICS_CMD + * 0x9c with CLEAR_STATS bit set (see above). + * + * uCode also issues this notification during scans. uCode clears statistics + * appropriately so that each notification contains statistics for only the + * one channel that has just been scanned. */ -struct iwm_notif_statistics_v10 { +struct iwm_notif_statistics { /* IWM_STATISTICS_NTFY_API_S_VER_8 */ uint32_t flag; struct iwm_statistics_rx rx; struct iwm_statistics_tx tx; - struct iwm_statistics_general_v8 general; -} __packed; /* IWM_STATISTICS_NTFY_API_S_VER_10 */ - -#define IWM_STATISTICS_FLG_CLEAR 0x1 -#define IWM_STATISTICS_FLG_DISABLE_NOTIF 0x2 - -struct iwm_statistics_cmd { - uint32_t flags; -} __packed; /* IWM_STATISTICS_CMD_API_S_VER_1 */ + struct iwm_statistics_general general; +} __packed; /*********************************** * Smart Fifo API ***********************************/ /* Smart Fifo state */ + enum iwm_sf_state { IWM_SF_LONG_DELAY_ON = 0, /* should never be called by driver */ IWM_SF_FULL_ON, IWM_SF_UNINIT, IWM_SF_INIT_OFF, IWM_SF_HW_NUM_STATES }; /* Smart Fifo possible scenario */ enum iwm_sf_scenario { IWM_SF_SCENARIO_SINGLE_UNICAST, IWM_SF_SCENARIO_AGG_UNICAST, IWM_SF_SCENARIO_MULTICAST, IWM_SF_SCENARIO_BA_RESP, IWM_SF_SCENARIO_TX_RESP, IWM_SF_NUM_SCENARIO }; #define IWM_SF_TRANSIENT_STATES_NUMBER 2 /* IWM_SF_LONG_DELAY_ON and IWM_SF_FULL_ON */ #define IWM_SF_NUM_TIMEOUT_TYPES 2 /* Aging timer and Idle timer */ /* smart FIFO default values */ #define IWM_SF_W_MARK_SISO 4096 #define IWM_SF_W_MARK_MIMO2 8192 #define IWM_SF_W_MARK_MIMO3 6144 #define IWM_SF_W_MARK_LEGACY 4096 #define IWM_SF_W_MARK_SCAN 4096 /* SF Scenarios timers for default configuration (aligned to 32 uSec) */ #define IWM_SF_SINGLE_UNICAST_IDLE_TIMER_DEF 160 /* 150 uSec */ #define IWM_SF_SINGLE_UNICAST_AGING_TIMER_DEF 400 /* 0.4 mSec */ #define IWM_SF_AGG_UNICAST_IDLE_TIMER_DEF 160 /* 150 uSec */ #define IWM_SF_AGG_UNICAST_AGING_TIMER_DEF 400 /* 0.4 mSec */ -#define IWM_SF_MCAST_IDLE_TIMER_DEF 160 /* 150 uSec */ +#define IWM_SF_MCAST_IDLE_TIMER_DEF 160 /* 150 mSec */ #define IWM_SF_MCAST_AGING_TIMER_DEF 400 /* 0.4 mSec */ #define IWM_SF_BA_IDLE_TIMER_DEF 160 /* 150 uSec */ #define IWM_SF_BA_AGING_TIMER_DEF 400 /* 0.4 mSec */ #define IWM_SF_TX_RE_IDLE_TIMER_DEF 160 /* 150 uSec */ #define IWM_SF_TX_RE_AGING_TIMER_DEF 400 /* 0.4 mSec */ /* SF Scenarios timers for FULL_ON state (aligned to 32 uSec) */ #define IWM_SF_SINGLE_UNICAST_IDLE_TIMER 320 /* 300 uSec */ #define IWM_SF_SINGLE_UNICAST_AGING_TIMER 2016 /* 2 mSec */ #define IWM_SF_AGG_UNICAST_IDLE_TIMER 320 /* 300 uSec */ #define IWM_SF_AGG_UNICAST_AGING_TIMER 2016 /* 2 mSec */ #define IWM_SF_MCAST_IDLE_TIMER 2016 /* 2 mSec */ #define IWM_SF_MCAST_AGING_TIMER 10016 /* 10 mSec */ #define IWM_SF_BA_IDLE_TIMER 320 /* 300 uSec */ #define IWM_SF_BA_AGING_TIMER 2016 /* 2 mSec */ #define IWM_SF_TX_RE_IDLE_TIMER 320 /* 300 uSec */ #define IWM_SF_TX_RE_AGING_TIMER 2016 /* 2 mSec */ #define IWM_SF_LONG_DELAY_AGING_TIMER 1000000 /* 1 Sec */ #define IWM_SF_CFG_DUMMY_NOTIF_OFF (1 << 16) /** * Smart Fifo configuration command. - * @state: smart fifo state, types listed in iwm_sf_state. - * @watermark: Minimum allowed available free space in RXF for transient state. + * @state: smart fifo state, types listed in enum %iwm_sf_state. + * @watermark: Minimum allowed availabe free space in RXF for transient state. * @long_delay_timeouts: aging and idle timer values for each scenario * in long delay state. * @full_on_timeouts: timer values for each scenario in full on state. */ struct iwm_sf_cfg_cmd { uint32_t state; uint32_t watermark[IWM_SF_TRANSIENT_STATES_NUMBER]; uint32_t long_delay_timeouts[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES]; uint32_t full_on_timeouts[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES]; } __packed; /* IWM_SF_CFG_API_S_VER_2 */ /* * END mvm/fw-api.h */ /* * BEGIN mvm/fw-api-mac.h */ -enum iwm_ac { - IWM_AC_BK, - IWM_AC_BE, - IWM_AC_VI, - IWM_AC_VO, - IWM_AC_NUM, -}; +/* + * The first MAC indices (starting from 0) + * are available to the driver, AUX follows + */ +#define IWM_MAC_INDEX_AUX 4 +#define IWM_MAC_INDEX_MIN_DRIVER 0 +#define IWM_NUM_MAC_INDEX_DRIVER IWM_MAC_INDEX_AUX + +#define IWM_AC_BK 0 +#define IWM_AC_BE 1 +#define IWM_AC_VI 2 +#define IWM_AC_VO 3 +#define IWM_AC_NUM 4 /** - * enum iwm_mac_protection_flags - MAC context flags + * MAC context flags * @IWM_MAC_PROT_FLG_TGG_PROTECT: 11g protection when transmitting OFDM frames, * this will require CCK RTS/CTS2self. * RTS/CTS will protect full burst time. * @IWM_MAC_PROT_FLG_HT_PROT: enable HT protection * @IWM_MAC_PROT_FLG_FAT_PROT: protect 40 MHz transmissions * @IWM_MAC_PROT_FLG_SELF_CTS_EN: allow CTS2self */ -enum iwm_mac_protection_flags { - IWM_MAC_PROT_FLG_TGG_PROTECT = (1 << 3), - IWM_MAC_PROT_FLG_HT_PROT = (1 << 23), - IWM_MAC_PROT_FLG_FAT_PROT = (1 << 24), - IWM_MAC_PROT_FLG_SELF_CTS_EN = (1 << 30), -}; +#define IWM_MAC_PROT_FLG_TGG_PROTECT (1 << 3) +#define IWM_MAC_PROT_FLG_HT_PROT (1 << 23) +#define IWM_MAC_PROT_FLG_FAT_PROT (1 << 24) +#define IWM_MAC_PROT_FLG_SELF_CTS_EN (1 << 30) #define IWM_MAC_FLG_SHORT_SLOT (1 << 4) -#define IWM_MAC_FLG_SHORT_PREAMBLE (1 << 5) +#define IWM_MAC_FLG_SHORT_PREAMBLE (1 << 5) /** - * enum iwm_mac_types - Supported MAC types + * Supported MAC types * @IWM_FW_MAC_TYPE_FIRST: lowest supported MAC type * @IWM_FW_MAC_TYPE_AUX: Auxiliary MAC (internal) * @IWM_FW_MAC_TYPE_LISTENER: monitor MAC type (?) * @IWM_FW_MAC_TYPE_PIBSS: Pseudo-IBSS * @IWM_FW_MAC_TYPE_IBSS: IBSS * @IWM_FW_MAC_TYPE_BSS_STA: BSS (managed) station * @IWM_FW_MAC_TYPE_P2P_DEVICE: P2P Device * @IWM_FW_MAC_TYPE_P2P_STA: P2P client * @IWM_FW_MAC_TYPE_GO: P2P GO * @IWM_FW_MAC_TYPE_TEST: ? * @IWM_FW_MAC_TYPE_MAX: highest support MAC type */ -enum iwm_mac_types { - IWM_FW_MAC_TYPE_FIRST = 1, - IWM_FW_MAC_TYPE_AUX = IWM_FW_MAC_TYPE_FIRST, - IWM_FW_MAC_TYPE_LISTENER, - IWM_FW_MAC_TYPE_PIBSS, - IWM_FW_MAC_TYPE_IBSS, - IWM_FW_MAC_TYPE_BSS_STA, - IWM_FW_MAC_TYPE_P2P_DEVICE, - IWM_FW_MAC_TYPE_P2P_STA, - IWM_FW_MAC_TYPE_GO, - IWM_FW_MAC_TYPE_TEST, - IWM_FW_MAC_TYPE_MAX = IWM_FW_MAC_TYPE_TEST -}; /* IWM_MAC_CONTEXT_TYPE_API_E_VER_1 */ - -/** - * enum iwm_tsf_id - TSF hw timer ID +#define IWM_FW_MAC_TYPE_FIRST 1 +#define IWM_FW_MAC_TYPE_AUX IWM_FW_MAC_TYPE_FIRST +#define IWM_FW_MAC_TYPE_LISTENER 2 +#define IWM_FW_MAC_TYPE_PIBSS 3 +#define IWM_FW_MAC_TYPE_IBSS 4 +#define IWM_FW_MAC_TYPE_BSS_STA 5 +#define IWM_FW_MAC_TYPE_P2P_DEVICE 6 +#define IWM_FW_MAC_TYPE_P2P_STA 7 +#define IWM_FW_MAC_TYPE_GO 8 +#define IWM_FW_MAC_TYPE_TEST 9 +#define IWM_FW_MAC_TYPE_MAX IWM_FW_MAC_TYPE_TEST +/* IWM_MAC_CONTEXT_TYPE_API_E_VER_1 */ + +/** + * TSF hw timer ID * @IWM_TSF_ID_A: use TSF A * @IWM_TSF_ID_B: use TSF B * @IWM_TSF_ID_C: use TSF C * @IWM_TSF_ID_D: use TSF D * @IWM_NUM_TSF_IDS: number of TSF timers available */ -enum iwm_tsf_id { - IWM_TSF_ID_A = 0, - IWM_TSF_ID_B = 1, - IWM_TSF_ID_C = 2, - IWM_TSF_ID_D = 3, - IWM_NUM_TSF_IDS = 4, -}; /* IWM_TSF_ID_API_E_VER_1 */ +#define IWM_TSF_ID_A 0 +#define IWM_TSF_ID_B 1 +#define IWM_TSF_ID_C 2 +#define IWM_TSF_ID_D 3 +#define IWM_NUM_TSF_IDS 4 +/* IWM_TSF_ID_API_E_VER_1 */ /** * struct iwm_mac_data_ap - configuration data for AP MAC context * @beacon_time: beacon transmit time in system time * @beacon_tsf: beacon transmit time in TSF * @bi: beacon interval in TU * @bi_reciprocal: 2^32 / bi * @dtim_interval: dtim transmit time in TU * @dtim_reciprocal: 2^32 / dtim_interval * @mcast_qid: queue ID for multicast traffic + * NOTE: obsolete from VER2 and on * @beacon_template: beacon template ID */ struct iwm_mac_data_ap { uint32_t beacon_time; uint64_t beacon_tsf; uint32_t bi; uint32_t bi_reciprocal; uint32_t dtim_interval; uint32_t dtim_reciprocal; uint32_t mcast_qid; uint32_t beacon_template; -} __packed; /* AP_MAC_DATA_API_S_VER_1 */ +} __packed; /* AP_MAC_DATA_API_S_VER_2 */ /** * struct iwm_mac_data_ibss - configuration data for IBSS MAC context * @beacon_time: beacon transmit time in system time * @beacon_tsf: beacon transmit time in TSF * @bi: beacon interval in TU * @bi_reciprocal: 2^32 / bi * @beacon_template: beacon template ID */ struct iwm_mac_data_ibss { uint32_t beacon_time; uint64_t beacon_tsf; uint32_t bi; uint32_t bi_reciprocal; uint32_t beacon_template; } __packed; /* IBSS_MAC_DATA_API_S_VER_1 */ /** * struct iwm_mac_data_sta - configuration data for station MAC context * @is_assoc: 1 for associated state, 0 otherwise * @dtim_time: DTIM arrival time in system time * @dtim_tsf: DTIM arrival time in TSF * @bi: beacon interval in TU, applicable only when associated * @bi_reciprocal: 2^32 / bi , applicable only when associated * @dtim_interval: DTIM interval in TU, applicable only when associated * @dtim_reciprocal: 2^32 / dtim_interval , applicable only when associated * @listen_interval: in beacon intervals, applicable only when associated * @assoc_id: unique ID assigned by the AP during association */ struct iwm_mac_data_sta { uint32_t is_assoc; uint32_t dtim_time; uint64_t dtim_tsf; uint32_t bi; uint32_t bi_reciprocal; uint32_t dtim_interval; uint32_t dtim_reciprocal; uint32_t listen_interval; uint32_t assoc_id; uint32_t assoc_beacon_arrive_time; } __packed; /* IWM_STA_MAC_DATA_API_S_VER_1 */ /** * struct iwm_mac_data_go - configuration data for P2P GO MAC context * @ap: iwm_mac_data_ap struct with most config data * @ctwin: client traffic window in TU (period after TBTT when GO is present). * 0 indicates that there is no CT window. * @opp_ps_enabled: indicate that opportunistic PS allowed */ struct iwm_mac_data_go { struct iwm_mac_data_ap ap; uint32_t ctwin; uint32_t opp_ps_enabled; } __packed; /* GO_MAC_DATA_API_S_VER_1 */ /** * struct iwm_mac_data_p2p_sta - configuration data for P2P client MAC context * @sta: iwm_mac_data_sta struct with most config data * @ctwin: client traffic window in TU (period after TBTT when GO is present). * 0 indicates that there is no CT window. */ struct iwm_mac_data_p2p_sta { struct iwm_mac_data_sta sta; uint32_t ctwin; } __packed; /* P2P_STA_MAC_DATA_API_S_VER_1 */ /** * struct iwm_mac_data_pibss - Pseudo IBSS config data * @stats_interval: interval in TU between statistics notifications to host. */ struct iwm_mac_data_pibss { uint32_t stats_interval; } __packed; /* PIBSS_MAC_DATA_API_S_VER_1 */ /* * struct iwm_mac_data_p2p_dev - configuration data for the P2P Device MAC * context. * @is_disc_extended: if set to true, P2P Device discoverability is enabled on * other channels as well. This should be to true only in case that the * device is discoverable and there is an active GO. Note that setting this * field when not needed, will increase the number of interrupts and have * effect on the platform power, as this setting opens the Rx filters on * all macs. */ struct iwm_mac_data_p2p_dev { uint32_t is_disc_extended; } __packed; /* _P2P_DEV_MAC_DATA_API_S_VER_1 */ /** - * enum iwm_mac_filter_flags - MAC context filter flags + * MAC context filter flags * @IWM_MAC_FILTER_IN_PROMISC: accept all data frames * @IWM_MAC_FILTER_IN_CONTROL_AND_MGMT: pass all mangement and * control frames to the host * @IWM_MAC_FILTER_ACCEPT_GRP: accept multicast frames * @IWM_MAC_FILTER_DIS_DECRYPT: don't decrypt unicast frames * @IWM_MAC_FILTER_DIS_GRP_DECRYPT: don't decrypt multicast frames * @IWM_MAC_FILTER_IN_BEACON: transfer foreign BSS's beacons to host * (in station mode when associated) * @IWM_MAC_FILTER_OUT_BCAST: filter out all broadcast frames * @IWM_MAC_FILTER_IN_CRC32: extract FCS and append it to frames * @IWM_MAC_FILTER_IN_PROBE_REQUEST: pass probe requests to host */ -enum iwm_mac_filter_flags { - IWM_MAC_FILTER_IN_PROMISC = (1 << 0), - IWM_MAC_FILTER_IN_CONTROL_AND_MGMT = (1 << 1), - IWM_MAC_FILTER_ACCEPT_GRP = (1 << 2), - IWM_MAC_FILTER_DIS_DECRYPT = (1 << 3), - IWM_MAC_FILTER_DIS_GRP_DECRYPT = (1 << 4), - IWM_MAC_FILTER_IN_BEACON = (1 << 6), - IWM_MAC_FILTER_OUT_BCAST = (1 << 8), - IWM_MAC_FILTER_IN_CRC32 = (1 << 11), - IWM_MAC_FILTER_IN_PROBE_REQUEST = (1 << 12), -}; +#define IWM_MAC_FILTER_IN_PROMISC (1 << 0) +#define IWM_MAC_FILTER_IN_CONTROL_AND_MGMT (1 << 1) +#define IWM_MAC_FILTER_ACCEPT_GRP (1 << 2) +#define IWM_MAC_FILTER_DIS_DECRYPT (1 << 3) +#define IWM_MAC_FILTER_DIS_GRP_DECRYPT (1 << 4) +#define IWM_MAC_FILTER_IN_BEACON (1 << 6) +#define IWM_MAC_FILTER_OUT_BCAST (1 << 8) +#define IWM_MAC_FILTER_IN_CRC32 (1 << 11) +#define IWM_MAC_FILTER_IN_PROBE_REQUEST (1 << 12) /** - * enum iwm_mac_qos_flags - QoS flags + * QoS flags * @IWM_MAC_QOS_FLG_UPDATE_EDCA: ? * @IWM_MAC_QOS_FLG_TGN: HT is enabled * @IWM_MAC_QOS_FLG_TXOP_TYPE: ? * */ -enum iwm_mac_qos_flags { - IWM_MAC_QOS_FLG_UPDATE_EDCA = (1 << 0), - IWM_MAC_QOS_FLG_TGN = (1 << 1), - IWM_MAC_QOS_FLG_TXOP_TYPE = (1 << 4), -}; +#define IWM_MAC_QOS_FLG_UPDATE_EDCA (1 << 0) +#define IWM_MAC_QOS_FLG_TGN (1 << 1) +#define IWM_MAC_QOS_FLG_TXOP_TYPE (1 << 4) /** * struct iwm_ac_qos - QOS timing params for IWM_MAC_CONTEXT_CMD * @cw_min: Contention window, start value in numbers of slots. * Should be a power-of-2, minus 1. Device's default is 0x0f. * @cw_max: Contention window, max value in numbers of slots. * Should be a power-of-2, minus 1. Device's default is 0x3f. * @aifsn: Number of slots in Arbitration Interframe Space (before * performing random backoff timing prior to Tx). Device default 1. * @fifos_mask: FIFOs used by this MAC for this AC * @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0. * * One instance of this config struct for each of 4 EDCA access categories * in struct iwm_qosparam_cmd. * * Device will automatically increase contention window by (2*CW) + 1 for each * transmission retry. Device uses cw_max as a bit mask, ANDed with new CW * value, to cap the CW value. */ struct iwm_ac_qos { uint16_t cw_min; uint16_t cw_max; uint8_t aifsn; uint8_t fifos_mask; uint16_t edca_txop; } __packed; /* IWM_AC_QOS_API_S_VER_2 */ /** * struct iwm_mac_ctx_cmd - command structure to configure MAC contexts * ( IWM_MAC_CONTEXT_CMD = 0x28 ) * @id_and_color: ID and color of the MAC * @action: action to perform, one of IWM_FW_CTXT_ACTION_* * @mac_type: one of IWM_FW_MAC_TYPE_* - * @tsd_id: TSF HW timer, one of IWM_TSF_ID_* + * @tsf_id: TSF HW timer, one of IWM_TSF_ID_* * @node_addr: MAC address * @bssid_addr: BSSID * @cck_rates: basic rates available for CCK * @ofdm_rates: basic rates available for OFDM * @protection_flags: combination of IWM_MAC_PROT_FLG_FLAG_* * @cck_short_preamble: 0x20 for enabling short preamble, 0 otherwise * @short_slot: 0x10 for enabling short slots, 0 otherwise * @filter_flags: combination of IWM_MAC_FILTER_* * @qos_flags: from IWM_MAC_QOS_FLG_* * @ac: one iwm_mac_qos configuration for each AC * @mac_specific: one of struct iwm_mac_data_*, according to mac_type */ struct iwm_mac_ctx_cmd { /* COMMON_INDEX_HDR_API_S_VER_1 */ uint32_t id_and_color; uint32_t action; /* IWM_MAC_CONTEXT_COMMON_DATA_API_S_VER_1 */ uint32_t mac_type; uint32_t tsf_id; uint8_t node_addr[6]; uint16_t reserved_for_node_addr; uint8_t bssid_addr[6]; uint16_t reserved_for_bssid_addr; uint32_t cck_rates; uint32_t ofdm_rates; uint32_t protection_flags; uint32_t cck_short_preamble; uint32_t short_slot; uint32_t filter_flags; /* IWM_MAC_QOS_PARAM_API_S_VER_1 */ uint32_t qos_flags; struct iwm_ac_qos ac[IWM_AC_NUM+1]; /* IWM_MAC_CONTEXT_COMMON_DATA_API_S */ union { struct iwm_mac_data_ap ap; struct iwm_mac_data_go go; struct iwm_mac_data_sta sta; struct iwm_mac_data_p2p_sta p2p_sta; struct iwm_mac_data_p2p_dev p2p_dev; struct iwm_mac_data_pibss pibss; struct iwm_mac_data_ibss ibss; }; } __packed; /* IWM_MAC_CONTEXT_CMD_API_S_VER_1 */ static inline uint32_t iwm_reciprocal(uint32_t v) { if (!v) return 0; return 0xFFFFFFFF / v; } #define IWM_NONQOS_SEQ_GET 0x1 #define IWM_NONQOS_SEQ_SET 0x2 struct iwm_nonqos_seq_query_cmd { uint32_t get_set_flag; uint32_t mac_id_n_color; uint16_t value; uint16_t reserved; } __packed; /* IWM_NON_QOS_TX_COUNTER_GET_SET_API_S_VER_1 */ /* * END mvm/fw-api-mac.h */ /* * BEGIN mvm/fw-api-power.h */ /* Power Management Commands, Responses, Notifications */ /** - * enum iwm_ltr_config_flags - masks for LTR config command flags + * masks for LTR config command flags * @IWM_LTR_CFG_FLAG_FEATURE_ENABLE: Feature operational status * @IWM_LTR_CFG_FLAG_HW_DIS_ON_SHADOW_REG_ACCESS: allow LTR change on shadow * memory access * @IWM_LTR_CFG_FLAG_HW_EN_SHRT_WR_THROUGH: allow LTR msg send on ANY LTR * reg change * @IWM_LTR_CFG_FLAG_HW_DIS_ON_D0_2_D3: allow LTR msg send on transition from * D0 to D3 * @IWM_LTR_CFG_FLAG_SW_SET_SHORT: fixed static short LTR register * @IWM_LTR_CFG_FLAG_SW_SET_LONG: fixed static short LONG register * @IWM_LTR_CFG_FLAG_DENIE_C10_ON_PD: allow going into C10 on PD */ -enum iwm_ltr_config_flags { - IWM_LTR_CFG_FLAG_FEATURE_ENABLE = (1 << 0), - IWM_LTR_CFG_FLAG_HW_DIS_ON_SHADOW_REG_ACCESS = (1 << 1), - IWM_LTR_CFG_FLAG_HW_EN_SHRT_WR_THROUGH = (1 << 2), - IWM_LTR_CFG_FLAG_HW_DIS_ON_D0_2_D3 = (1 << 3), - IWM_LTR_CFG_FLAG_SW_SET_SHORT = (1 << 4), - IWM_LTR_CFG_FLAG_SW_SET_LONG = (1 << 5), - IWM_LTR_CFG_FLAG_DENIE_C10_ON_PD = (1 << 6), -}; +#define IWM_LTR_CFG_FLAG_FEATURE_ENABLE 0x00000001 +#define IWM_LTR_CFG_FLAG_HW_DIS_ON_SHADOW_REG_ACCESS 0x00000002 +#define IWM_LTR_CFG_FLAG_HW_EN_SHRT_WR_THROUGH 0x00000004 +#define IWM_LTR_CFG_FLAG_HW_DIS_ON_D0_2_D3 0x00000008 +#define IWM_LTR_CFG_FLAG_SW_SET_SHORT 0x00000010 +#define IWM_LTR_CFG_FLAG_SW_SET_LONG 0x00000020 +#define IWM_LTR_CFG_FLAG_DENIE_C10_ON_PD 0x00000040 /** * struct iwm_ltr_config_cmd_v1 - configures the LTR * @flags: See %enum iwm_ltr_config_flags */ struct iwm_ltr_config_cmd_v1 { uint32_t flags; uint32_t static_long; uint32_t static_short; } __packed; /* LTR_CAPABLE_API_S_VER_1 */ #define IWM_LTR_VALID_STATES_NUM 4 /** * struct iwm_ltr_config_cmd - configures the LTR * @flags: See %enum iwm_ltr_config_flags * @static_long: * @static_short: * @ltr_cfg_values: * @ltr_short_idle_timeout: */ struct iwm_ltr_config_cmd { uint32_t flags; uint32_t static_long; uint32_t static_short; uint32_t ltr_cfg_values[IWM_LTR_VALID_STATES_NUM]; uint32_t ltr_short_idle_timeout; } __packed; /* LTR_CAPABLE_API_S_VER_2 */ /* Radio LP RX Energy Threshold measured in dBm */ #define IWM_POWER_LPRX_RSSI_THRESHOLD 75 #define IWM_POWER_LPRX_RSSI_THRESHOLD_MAX 94 #define IWM_POWER_LPRX_RSSI_THRESHOLD_MIN 30 /** - * enum iwm_scan_flags - masks for power table command flags + * Masks for iwm_mac_power_cmd command flags * @IWM_POWER_FLAGS_POWER_SAVE_ENA_MSK: '1' Allow to save power by turning off * receiver and transmitter. '0' - does not allow. * @IWM_POWER_FLAGS_POWER_MANAGEMENT_ENA_MSK: '0' Driver disables power management, * '1' Driver enables PM (use rest of parameters) * @IWM_POWER_FLAGS_SKIP_OVER_DTIM_MSK: '0' PM have to walk up every DTIM, * '1' PM could sleep over DTIM till listen Interval. * @IWM_POWER_FLAGS_SNOOZE_ENA_MSK: Enable snoozing only if uAPSD is enabled and all * access categories are both delivery and trigger enabled. * @IWM_POWER_FLAGS_BT_SCO_ENA: Enable BT SCO coex only if uAPSD and * PBW Snoozing enabled * @IWM_POWER_FLAGS_ADVANCE_PM_ENA_MSK: Advanced PM (uAPSD) enable mask * @IWM_POWER_FLAGS_LPRX_ENA_MSK: Low Power RX enable. * @IWM_POWER_FLAGS_AP_UAPSD_MISBEHAVING_ENA_MSK: AP/GO's uAPSD misbehaving * detection enablement */ -enum iwm_power_flags { - IWM_POWER_FLAGS_POWER_SAVE_ENA_MSK = (1 << 0), - IWM_POWER_FLAGS_POWER_MANAGEMENT_ENA_MSK = (1 << 1), - IWM_POWER_FLAGS_SKIP_OVER_DTIM_MSK = (1 << 2), - IWM_POWER_FLAGS_SNOOZE_ENA_MSK = (1 << 5), - IWM_POWER_FLAGS_BT_SCO_ENA = (1 << 8), - IWM_POWER_FLAGS_ADVANCE_PM_ENA_MSK = (1 << 9), - IWM_POWER_FLAGS_LPRX_ENA_MSK = (1 << 11), - IWM_POWER_FLAGS_UAPSD_MISBEHAVING_ENA_MSK = (1 << 12), -}; +#define IWM_POWER_FLAGS_POWER_SAVE_ENA_MSK (1 << 0) +#define IWM_POWER_FLAGS_POWER_MANAGEMENT_ENA_MSK (1 << 1) +#define IWM_POWER_FLAGS_SKIP_OVER_DTIM_MSK (1 << 2) +#define IWM_POWER_FLAGS_SNOOZE_ENA_MSK (1 << 5) +#define IWM_POWER_FLAGS_BT_SCO_ENA (1 << 8) +#define IWM_POWER_FLAGS_ADVANCE_PM_ENA_MSK (1 << 9) +#define IWM_POWER_FLAGS_LPRX_ENA_MSK (1 << 11) +#define IWM_POWER_FLAGS_UAPSD_MISBEHAVING_ENA_MSK (1 << 12) #define IWM_POWER_VEC_SIZE 5 /** - * struct iwm_powertable_cmd - legacy power command. Beside old API support this - * is used also with a new power API for device wide power settings. - * IWM_POWER_TABLE_CMD = 0x77 (command, has simple generic response) - * - * @flags: Power table command flags from IWM_POWER_FLAGS_* - * @keep_alive_seconds: Keep alive period in seconds. Default - 25 sec. - * Minimum allowed:- 3 * DTIM. Keep alive period must be - * set regardless of power scheme or current power state. - * FW use this value also when PM is disabled. - * @rx_data_timeout: Minimum time (usec) from last Rx packet for AM to - * PSM transition - legacy PM - * @tx_data_timeout: Minimum time (usec) from last Tx packet for AM to - * PSM transition - legacy PM - * @sleep_interval: not in use - * @skip_dtim_periods: Number of DTIM periods to skip if Skip over DTIM flag - * is set. For example, if it is required to skip over - * one DTIM, this value need to be set to 2 (DTIM periods). - * @lprx_rssi_threshold: Signal strength up to which LP RX can be enabled. - * Default: 80dbm + * Masks for device power command flags + * @IWM_DEVICE_POWER_FLAGS_POWER_SAVE_ENA_MSK: + * '1' Allow to save power by turning off receiver and transmitter. + * '0' Do not allow. This flag should be always set to '1' unless + * one needs to disable actual power down for debug purposes. + * @IWM_DEVICE_POWER_FLAGS_CAM_MSK: + * '1' CAM (Continuous Active Mode) is set, power management is disabled. + * '0' Power management is enabled, one of the power schemes is applied. */ -struct iwm_powertable_cmd { - /* PM_POWER_TABLE_CMD_API_S_VER_6 */ - uint16_t flags; - uint8_t keep_alive_seconds; - uint8_t debug_flags; - uint32_t rx_data_timeout; - uint32_t tx_data_timeout; - uint32_t sleep_interval[IWM_POWER_VEC_SIZE]; - uint32_t skip_dtim_periods; - uint32_t lprx_rssi_threshold; -} __packed; - -/** - * enum iwm_device_power_flags - masks for device power command flags - * @IWM_DEVICE_POWER_FLAGS_POWER_SAVE_ENA_MSK: '1' Allow to save power by turning off - * receiver and transmitter. '0' - does not allow. - */ -enum iwm_device_power_flags { - IWM_DEVICE_POWER_FLAGS_POWER_SAVE_ENA_MSK = (1 << 0), -}; +#define IWM_DEVICE_POWER_FLAGS_POWER_SAVE_ENA_MSK (1 << 0) +#define IWM_DEVICE_POWER_FLAGS_CAM_MSK (1 << 13) /** * struct iwm_device_power_cmd - device wide power command. - * IWM_DEVICE_POWER_CMD = 0x77 (command, has simple generic response) + * IWM_POWER_TABLE_CMD = 0x77 (command, has simple generic response) * * @flags: Power table command flags from IWM_DEVICE_POWER_FLAGS_* */ struct iwm_device_power_cmd { /* PM_POWER_TABLE_CMD_API_S_VER_6 */ uint16_t flags; uint16_t reserved; } __packed; /** * struct iwm_mac_power_cmd - New power command containing uAPSD support * IWM_MAC_PM_POWER_TABLE = 0xA9 (command, has simple generic response) * @id_and_color: MAC contex identifier * @flags: Power table command flags from POWER_FLAGS_* * @keep_alive_seconds: Keep alive period in seconds. Default - 25 sec. * Minimum allowed:- 3 * DTIM. Keep alive period must be * set regardless of power scheme or current power state. * FW use this value also when PM is disabled. * @rx_data_timeout: Minimum time (usec) from last Rx packet for AM to * PSM transition - legacy PM * @tx_data_timeout: Minimum time (usec) from last Tx packet for AM to * PSM transition - legacy PM * @sleep_interval: not in use * @skip_dtim_periods: Number of DTIM periods to skip if Skip over DTIM flag * is set. For example, if it is required to skip over * one DTIM, this value need to be set to 2 (DTIM periods). * @rx_data_timeout_uapsd: Minimum time (usec) from last Rx packet for AM to * PSM transition - uAPSD * @tx_data_timeout_uapsd: Minimum time (usec) from last Tx packet for AM to * PSM transition - uAPSD * @lprx_rssi_threshold: Signal strength up to which LP RX can be enabled. * Default: 80dbm * @num_skip_dtim: Number of DTIMs to skip if Skip over DTIM flag is set * @snooze_interval: Maximum time between attempts to retrieve buffered data * from the AP [msec] * @snooze_window: A window of time in which PBW snoozing insures that all * packets received. It is also the minimum time from last * received unicast RX packet, before client stops snoozing * for data. [msec] * @snooze_step: TBD * @qndp_tid: TID client shall use for uAPSD QNDP triggers * @uapsd_ac_flags: Set trigger-enabled and delivery-enabled indication for * each corresponding AC. * Use IEEE80211_WMM_IE_STA_QOSINFO_AC* for correct values. * @uapsd_max_sp: Use IEEE80211_WMM_IE_STA_QOSINFO_SP_* for correct * values. * @heavy_tx_thld_packets: TX threshold measured in number of packets * @heavy_rx_thld_packets: RX threshold measured in number of packets * @heavy_tx_thld_percentage: TX threshold measured in load's percentage * @heavy_rx_thld_percentage: RX threshold measured in load's percentage * @limited_ps_threshold: */ struct iwm_mac_power_cmd { /* CONTEXT_DESC_API_T_VER_1 */ uint32_t id_and_color; /* CLIENT_PM_POWER_TABLE_S_VER_1 */ uint16_t flags; uint16_t keep_alive_seconds; uint32_t rx_data_timeout; uint32_t tx_data_timeout; uint32_t rx_data_timeout_uapsd; uint32_t tx_data_timeout_uapsd; uint8_t lprx_rssi_threshold; uint8_t skip_dtim_periods; uint16_t snooze_interval; uint16_t snooze_window; uint8_t snooze_step; uint8_t qndp_tid; uint8_t uapsd_ac_flags; uint8_t uapsd_max_sp; uint8_t heavy_tx_thld_packets; uint8_t heavy_rx_thld_packets; uint8_t heavy_tx_thld_percentage; uint8_t heavy_rx_thld_percentage; uint8_t limited_ps_threshold; uint8_t reserved; } __packed; +#define IWM_DEFAULT_PS_TX_DATA_TIMEOUT (100 * 1000) +#define IWM_DEFAULT_PS_RX_DATA_TIMEOUT (100 * 1000) + /* * struct iwm_uapsd_misbehaving_ap_notif - FW sends this notification when * associated AP is identified as improperly implementing uAPSD protocol. * IWM_PSM_UAPSD_AP_MISBEHAVING_NOTIFICATION = 0x78 * @sta_id: index of station in uCode's station table - associated AP ID in * this context. */ struct iwm_uapsd_misbehaving_ap_notif { uint32_t sta_id; uint8_t mac_id; uint8_t reserved[3]; } __packed; /** * struct iwm_beacon_filter_cmd * IWM_REPLY_BEACON_FILTERING_CMD = 0xd2 (command) * @id_and_color: MAC contex identifier * @bf_energy_delta: Used for RSSI filtering, if in 'normal' state. Send beacon * to driver if delta in Energy values calculated for this and last * passed beacon is greater than this threshold. Zero value means that * the Energy change is ignored for beacon filtering, and beacon will * not be forced to be sent to driver regardless of this delta. Typical * energy delta 5dB. * @bf_roaming_energy_delta: Used for RSSI filtering, if in 'roaming' state. * Send beacon to driver if delta in Energy values calculated for this * and last passed beacon is greater than this threshold. Zero value * means that the Energy change is ignored for beacon filtering while in * Roaming state, typical energy delta 1dB. * @bf_roaming_state: Used for RSSI filtering. If absolute Energy values * calculated for current beacon is less than the threshold, use * Roaming Energy Delta Threshold, otherwise use normal Energy Delta * Threshold. Typical energy threshold is -72dBm. * @bf_temp_threshold: This threshold determines the type of temperature * filtering (Slow or Fast) that is selected (Units are in Celsuis): * If the current temperature is above this threshold - Fast filter * will be used, If the current temperature is below this threshold - * Slow filter will be used. * @bf_temp_fast_filter: Send Beacon to driver if delta in temperature values * calculated for this and the last passed beacon is greater than this * threshold. Zero value means that the temperature change is ignored for * beacon filtering; beacons will not be forced to be sent to driver - * regardless of whether its temperature has been changed. + * regardless of whether its temerature has been changed. * @bf_temp_slow_filter: Send Beacon to driver if delta in temperature values * calculated for this and the last passed beacon is greater than this * threshold. Zero value means that the temperature change is ignored for * beacon filtering; beacons will not be forced to be sent to driver - * regardless of whether its temperature has been changed. + * regardless of whether its temerature has been changed. * @bf_enable_beacon_filter: 1, beacon filtering is enabled; 0, disabled. - * @bf_filter_escape_timer: Send beacons to the driver if no beacons were passed + * @bf_escape_timer: Send beacons to driver if no beacons were passed * for a specific period of time. Units: Beacons. * @ba_escape_timer: Fully receive and parse beacon if no beacons were passed * for a longer period of time then this escape-timeout. Units: Beacons. * @ba_enable_beacon_abort: 1, beacon abort is enabled; 0, disabled. */ struct iwm_beacon_filter_cmd { uint32_t bf_energy_delta; uint32_t bf_roaming_energy_delta; uint32_t bf_roaming_state; uint32_t bf_temp_threshold; uint32_t bf_temp_fast_filter; uint32_t bf_temp_slow_filter; uint32_t bf_enable_beacon_filter; uint32_t bf_debug_flag; uint32_t bf_escape_timer; uint32_t ba_escape_timer; uint32_t ba_enable_beacon_abort; } __packed; /* Beacon filtering and beacon abort */ #define IWM_BF_ENERGY_DELTA_DEFAULT 5 #define IWM_BF_ENERGY_DELTA_MAX 255 #define IWM_BF_ENERGY_DELTA_MIN 0 #define IWM_BF_ROAMING_ENERGY_DELTA_DEFAULT 1 #define IWM_BF_ROAMING_ENERGY_DELTA_MAX 255 #define IWM_BF_ROAMING_ENERGY_DELTA_MIN 0 #define IWM_BF_ROAMING_STATE_DEFAULT 72 #define IWM_BF_ROAMING_STATE_MAX 255 #define IWM_BF_ROAMING_STATE_MIN 0 #define IWM_BF_TEMP_THRESHOLD_DEFAULT 112 #define IWM_BF_TEMP_THRESHOLD_MAX 255 #define IWM_BF_TEMP_THRESHOLD_MIN 0 #define IWM_BF_TEMP_FAST_FILTER_DEFAULT 1 #define IWM_BF_TEMP_FAST_FILTER_MAX 255 #define IWM_BF_TEMP_FAST_FILTER_MIN 0 #define IWM_BF_TEMP_SLOW_FILTER_DEFAULT 5 #define IWM_BF_TEMP_SLOW_FILTER_MAX 255 #define IWM_BF_TEMP_SLOW_FILTER_MIN 0 #define IWM_BF_ENABLE_BEACON_FILTER_DEFAULT 1 #define IWM_BF_DEBUG_FLAG_DEFAULT 0 #define IWM_BF_ESCAPE_TIMER_DEFAULT 50 #define IWM_BF_ESCAPE_TIMER_MAX 1024 #define IWM_BF_ESCAPE_TIMER_MIN 0 #define IWM_BA_ESCAPE_TIMER_DEFAULT 6 #define IWM_BA_ESCAPE_TIMER_D3 9 #define IWM_BA_ESCAPE_TIMER_MAX 1024 #define IWM_BA_ESCAPE_TIMER_MIN 0 #define IWM_BA_ENABLE_BEACON_ABORT_DEFAULT 1 #define IWM_BF_CMD_CONFIG_DEFAULTS \ .bf_energy_delta = htole32(IWM_BF_ENERGY_DELTA_DEFAULT), \ .bf_roaming_energy_delta = \ htole32(IWM_BF_ROAMING_ENERGY_DELTA_DEFAULT), \ .bf_roaming_state = htole32(IWM_BF_ROAMING_STATE_DEFAULT), \ .bf_temp_threshold = htole32(IWM_BF_TEMP_THRESHOLD_DEFAULT), \ .bf_temp_fast_filter = htole32(IWM_BF_TEMP_FAST_FILTER_DEFAULT), \ .bf_temp_slow_filter = htole32(IWM_BF_TEMP_SLOW_FILTER_DEFAULT), \ .bf_debug_flag = htole32(IWM_BF_DEBUG_FLAG_DEFAULT), \ .bf_escape_timer = htole32(IWM_BF_ESCAPE_TIMER_DEFAULT), \ .ba_escape_timer = htole32(IWM_BA_ESCAPE_TIMER_DEFAULT) /* * END mvm/fw-api-power.h */ /* * BEGIN mvm/fw-api-rs.h */ + +/* uCode API values for HT/VHT bit rates */ +#define IWM_RATE_HT_SISO_MCS_0_PLCP 0 +#define IWM_RATE_HT_SISO_MCS_1_PLCP 1 +#define IWM_RATE_HT_SISO_MCS_2_PLCP 2 +#define IWM_RATE_HT_SISO_MCS_3_PLCP 3 +#define IWM_RATE_HT_SISO_MCS_4_PLCP 4 +#define IWM_RATE_HT_SISO_MCS_5_PLCP 5 +#define IWM_RATE_HT_SISO_MCS_6_PLCP 6 +#define IWM_RATE_HT_SISO_MCS_7_PLCP 7 +#define IWM_RATE_HT_MIMO2_MCS_8_PLCP 0x8 +#define IWM_RATE_HT_MIMO2_MCS_9_PLCP 0x9 +#define IWM_RATE_HT_MIMO2_MCS_10_PLCP 0xA +#define IWM_RATE_HT_MIMO2_MCS_11_PLCP 0xB +#define IWM_RATE_HT_MIMO2_MCS_12_PLCP 0xC +#define IWM_RATE_HT_MIMO2_MCS_13_PLCP 0xD +#define IWM_RATE_HT_MIMO2_MCS_14_PLCP 0xE +#define IWM_RATE_HT_MIMO2_MCS_15_PLCP 0xF +#define IWM_RATE_VHT_SISO_MCS_0_PLCP 0 +#define IWM_RATE_VHT_SISO_MCS_1_PLCP 1 +#define IWM_RATE_VHT_SISO_MCS_2_PLCP 2 +#define IWM_RATE_VHT_SISO_MCS_3_PLCP 3 +#define IWM_RATE_VHT_SISO_MCS_4_PLCP 4 +#define IWM_RATE_VHT_SISO_MCS_5_PLCP 5 +#define IWM_RATE_VHT_SISO_MCS_6_PLCP 6 +#define IWM_RATE_VHT_SISO_MCS_7_PLCP 7 +#define IWM_RATE_VHT_SISO_MCS_8_PLCP 8 +#define IWM_RATE_VHT_SISO_MCS_9_PLCP 9 +#define IWM_RATE_VHT_MIMO2_MCS_0_PLCP 0x10 +#define IWM_RATE_VHT_MIMO2_MCS_1_PLCP 0x11 +#define IWM_RATE_VHT_MIMO2_MCS_2_PLCP 0x12 +#define IWM_RATE_VHT_MIMO2_MCS_3_PLCP 0x13 +#define IWM_RATE_VHT_MIMO2_MCS_4_PLCP 0x14 +#define IWM_RATE_VHT_MIMO2_MCS_5_PLCP 0x15 +#define IWM_RATE_VHT_MIMO2_MCS_6_PLCP 0x16 +#define IWM_RATE_VHT_MIMO2_MCS_7_PLCP 0x17 +#define IWM_RATE_VHT_MIMO2_MCS_8_PLCP 0x18 +#define IWM_RATE_VHT_MIMO2_MCS_9_PLCP 0x19 +#define IWM_RATE_HT_SISO_MCS_INV_PLCP 0x20 +#define IWM_RATE_HT_MIMO2_MCS_INV_PLCP IWM_RATE_HT_SISO_MCS_INV_PLCP +#define IWM_RATE_VHT_SISO_MCS_INV_PLCP IWM_RATE_HT_SISO_MCS_INV_PLCP +#define IWM_RATE_VHT_MIMO2_MCS_INV_PLCP IWM_RATE_HT_SISO_MCS_INV_PLCP +#define IWM_RATE_HT_SISO_MCS_8_PLCP IWM_RATE_HT_SISO_MCS_INV_PLCP +#define IWM_RATE_HT_SISO_MCS_9_PLCP IWM_RATE_HT_SISO_MCS_INV_PLCP + /* * These serve as indexes into * struct iwm_rate_info fw_rate_idx_to_plcp[IWM_RATE_COUNT]; * TODO: avoid overlap between legacy and HT rates */ enum { IWM_RATE_1M_INDEX = 0, IWM_FIRST_CCK_RATE = IWM_RATE_1M_INDEX, IWM_RATE_2M_INDEX, IWM_RATE_5M_INDEX, IWM_RATE_11M_INDEX, IWM_LAST_CCK_RATE = IWM_RATE_11M_INDEX, IWM_RATE_6M_INDEX, IWM_FIRST_OFDM_RATE = IWM_RATE_6M_INDEX, IWM_RATE_MCS_0_INDEX = IWM_RATE_6M_INDEX, IWM_FIRST_HT_RATE = IWM_RATE_MCS_0_INDEX, IWM_FIRST_VHT_RATE = IWM_RATE_MCS_0_INDEX, IWM_RATE_9M_INDEX, IWM_RATE_12M_INDEX, IWM_RATE_MCS_1_INDEX = IWM_RATE_12M_INDEX, IWM_RATE_18M_INDEX, IWM_RATE_MCS_2_INDEX = IWM_RATE_18M_INDEX, IWM_RATE_24M_INDEX, IWM_RATE_MCS_3_INDEX = IWM_RATE_24M_INDEX, IWM_RATE_36M_INDEX, IWM_RATE_MCS_4_INDEX = IWM_RATE_36M_INDEX, IWM_RATE_48M_INDEX, IWM_RATE_MCS_5_INDEX = IWM_RATE_48M_INDEX, IWM_RATE_54M_INDEX, IWM_RATE_MCS_6_INDEX = IWM_RATE_54M_INDEX, IWM_LAST_NON_HT_RATE = IWM_RATE_54M_INDEX, IWM_RATE_60M_INDEX, IWM_RATE_MCS_7_INDEX = IWM_RATE_60M_INDEX, IWM_LAST_HT_RATE = IWM_RATE_MCS_7_INDEX, IWM_RATE_MCS_8_INDEX, IWM_RATE_MCS_9_INDEX, IWM_LAST_VHT_RATE = IWM_RATE_MCS_9_INDEX, IWM_RATE_COUNT_LEGACY = IWM_LAST_NON_HT_RATE + 1, IWM_RATE_COUNT = IWM_LAST_VHT_RATE + 1, }; + #define IWM_RATE_BIT_MSK(r) (1 << (IWM_RATE_##r##M_INDEX)) /* fw API values for legacy bit rates, both OFDM and CCK */ -enum { - IWM_RATE_6M_PLCP = 13, - IWM_RATE_9M_PLCP = 15, - IWM_RATE_12M_PLCP = 5, - IWM_RATE_18M_PLCP = 7, - IWM_RATE_24M_PLCP = 9, - IWM_RATE_36M_PLCP = 11, - IWM_RATE_48M_PLCP = 1, - IWM_RATE_54M_PLCP = 3, - IWM_RATE_1M_PLCP = 10, - IWM_RATE_2M_PLCP = 20, - IWM_RATE_5M_PLCP = 55, - IWM_RATE_11M_PLCP = 110, - IWM_RATE_INVM_PLCP = -1, -}; +#define IWM_RATE_6M_PLCP 13 +#define IWM_RATE_9M_PLCP 15 +#define IWM_RATE_12M_PLCP 5 +#define IWM_RATE_18M_PLCP 7 +#define IWM_RATE_24M_PLCP 9 +#define IWM_RATE_36M_PLCP 11 +#define IWM_RATE_48M_PLCP 1 +#define IWM_RATE_54M_PLCP 3 +#define IWM_RATE_1M_PLCP 10 +#define IWM_RATE_2M_PLCP 20 +#define IWM_RATE_5M_PLCP 55 +#define IWM_RATE_11M_PLCP 110 +#define IWM_RATE_INVM_PLCP 0xff /* * rate_n_flags bit fields * * The 32-bit value has different layouts in the low 8 bites depending on the * format. There are three formats, HT, VHT and legacy (11abg, with subformats * for CCK and OFDM). * * High-throughput (HT) rate format * bit 8 is 1, bit 26 is 0, bit 9 is 0 (OFDM) * Very High-throughput (VHT) rate format * bit 8 is 0, bit 26 is 1, bit 9 is 0 (OFDM) * Legacy OFDM rate format for bits 7:0 * bit 8 is 0, bit 26 is 0, bit 9 is 0 (OFDM) * Legacy CCK rate format for bits 7:0: * bit 8 is 0, bit 26 is 0, bit 9 is 1 (CCK) */ /* Bit 8: (1) HT format, (0) legacy or VHT format */ #define IWM_RATE_MCS_HT_POS 8 #define IWM_RATE_MCS_HT_MSK (1 << IWM_RATE_MCS_HT_POS) /* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */ #define IWM_RATE_MCS_CCK_POS 9 #define IWM_RATE_MCS_CCK_MSK (1 << IWM_RATE_MCS_CCK_POS) /* Bit 26: (1) VHT format, (0) legacy format in bits 8:0 */ #define IWM_RATE_MCS_VHT_POS 26 #define IWM_RATE_MCS_VHT_MSK (1 << IWM_RATE_MCS_VHT_POS) +/* Bit 31: (1) RTS (2) CTS */ +#define IWM_RATE_MCS_RTS_REQUIRED_POS 30 +#define IWM_RATE_MCS_RTS_REQUIRED_MSK (1 << IWM_RATE_MCS_RTS_REQUIRED_POS) /* * High-throughput (HT) rate format for bits 7:0 * * 2-0: MCS rate base * 0) 6 Mbps * 1) 12 Mbps * 2) 18 Mbps * 3) 24 Mbps * 4) 36 Mbps * 5) 48 Mbps * 6) 54 Mbps * 7) 60 Mbps * 4-3: 0) Single stream (SISO) * 1) Dual stream (MIMO) * 2) Triple stream (MIMO) * 5: Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data * (bits 7-6 are zero) * * Together the low 5 bits work out to the MCS index because we don't * support MCSes above 15/23, and 0-7 have one stream, 8-15 have two * streams and 16-23 have three streams. We could also support MCS 32 * which is the duplicate 20 MHz MCS (bit 5 set, all others zero.) */ #define IWM_RATE_HT_MCS_RATE_CODE_MSK 0x7 #define IWM_RATE_HT_MCS_NSS_POS 3 #define IWM_RATE_HT_MCS_NSS_MSK (3 << IWM_RATE_HT_MCS_NSS_POS) /* Bit 10: (1) Use Green Field preamble */ #define IWM_RATE_HT_MCS_GF_POS 10 #define IWM_RATE_HT_MCS_GF_MSK (1 << IWM_RATE_HT_MCS_GF_POS) #define IWM_RATE_HT_MCS_INDEX_MSK 0x3f /* * Very High-throughput (VHT) rate format for bits 7:0 * * 3-0: VHT MCS (0-9) * 5-4: number of streams - 1: * 0) Single stream (SISO) * 1) Dual stream (MIMO) * 2) Triple stream (MIMO) */ /* Bit 4-5: (0) SISO, (1) MIMO2 (2) MIMO3 */ #define IWM_RATE_VHT_MCS_RATE_CODE_MSK 0xf #define IWM_RATE_VHT_MCS_NSS_POS 4 #define IWM_RATE_VHT_MCS_NSS_MSK (3 << IWM_RATE_VHT_MCS_NSS_POS) /* * Legacy OFDM rate format for bits 7:0 * * 3-0: 0xD) 6 Mbps * 0xF) 9 Mbps * 0x5) 12 Mbps * 0x7) 18 Mbps * 0x9) 24 Mbps * 0xB) 36 Mbps * 0x1) 48 Mbps * 0x3) 54 Mbps * (bits 7-4 are 0) * * Legacy CCK rate format for bits 7:0: * bit 8 is 0, bit 26 is 0, bit 9 is 1 (CCK): * * 6-0: 10) 1 Mbps * 20) 2 Mbps * 55) 5.5 Mbps * 110) 11 Mbps * (bit 7 is 0) */ #define IWM_RATE_LEGACY_RATE_MSK 0xff /* * Bit 11-12: (0) 20MHz, (1) 40MHz, (2) 80MHz, (3) 160MHz * 0 and 1 are valid for HT and VHT, 2 and 3 only for VHT */ -#define IWM_RATE_MCS_CHAN_WIDTH_POS 11 -#define IWM_RATE_MCS_CHAN_WIDTH_MSK (3 << IWM_RATE_MCS_CHAN_WIDTH_POS) -#define IWM_RATE_MCS_CHAN_WIDTH_20 (0 << IWM_RATE_MCS_CHAN_WIDTH_POS) -#define IWM_RATE_MCS_CHAN_WIDTH_40 (1 << IWM_RATE_MCS_CHAN_WIDTH_POS) -#define IWM_RATE_MCS_CHAN_WIDTH_80 (2 << IWM_RATE_MCS_CHAN_WIDTH_POS) -#define IWM_RATE_MCS_CHAN_WIDTH_160 (3 << IWM_RATE_MCS_CHAN_WIDTH_POS) +#define IWM_RATE_MCS_CHAN_WIDTH_POS 11 +#define IWM_RATE_MCS_CHAN_WIDTH_MSK (3 << IWM_RATE_MCS_CHAN_WIDTH_POS) +#define IWM_RATE_MCS_CHAN_WIDTH_20 (0 << IWM_RATE_MCS_CHAN_WIDTH_POS) +#define IWM_RATE_MCS_CHAN_WIDTH_40 (1 << IWM_RATE_MCS_CHAN_WIDTH_POS) +#define IWM_RATE_MCS_CHAN_WIDTH_80 (2 << IWM_RATE_MCS_CHAN_WIDTH_POS) +#define IWM_RATE_MCS_CHAN_WIDTH_160 (3 << IWM_RATE_MCS_CHAN_WIDTH_POS) /* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */ #define IWM_RATE_MCS_SGI_POS 13 #define IWM_RATE_MCS_SGI_MSK (1 << IWM_RATE_MCS_SGI_POS) /* Bit 14-16: Antenna selection (1) Ant A, (2) Ant B, (4) Ant C */ #define IWM_RATE_MCS_ANT_POS 14 #define IWM_RATE_MCS_ANT_A_MSK (1 << IWM_RATE_MCS_ANT_POS) #define IWM_RATE_MCS_ANT_B_MSK (2 << IWM_RATE_MCS_ANT_POS) #define IWM_RATE_MCS_ANT_C_MSK (4 << IWM_RATE_MCS_ANT_POS) #define IWM_RATE_MCS_ANT_AB_MSK (IWM_RATE_MCS_ANT_A_MSK | \ IWM_RATE_MCS_ANT_B_MSK) -#define IWM_RATE_MCS_ANT_ABC_MSK (IWM_RATE_MCS_ANT_AB_MSK | \ +#define IWM_RATE_MCS_ANT_ABC_MSK (IWM_RATE_MCS_ANT_AB_MSK | \ IWM_RATE_MCS_ANT_C_MSK) #define IWM_RATE_MCS_ANT_MSK IWM_RATE_MCS_ANT_ABC_MSK #define IWM_RATE_MCS_ANT_NUM 3 /* Bit 17-18: (0) SS, (1) SS*2 */ #define IWM_RATE_MCS_STBC_POS 17 #define IWM_RATE_MCS_STBC_MSK (1 << IWM_RATE_MCS_STBC_POS) /* Bit 19: (0) Beamforming is off, (1) Beamforming is on */ -#define IWM_RATE_MCS_BF_POS 19 -#define IWM_RATE_MCS_BF_MSK (1 << IWM_RATE_MCS_BF_POS) +#define IWM_RATE_MCS_BF_POS 19 +#define IWM_RATE_MCS_BF_MSK (1 << IWM_RATE_MCS_BF_POS) /* Bit 20: (0) ZLF is off, (1) ZLF is on */ #define IWM_RATE_MCS_ZLF_POS 20 #define IWM_RATE_MCS_ZLF_MSK (1 << IWM_RATE_MCS_ZLF_POS) /* Bit 24-25: (0) 20MHz (no dup), (1) 2x20MHz, (2) 4x20MHz, 3 8x20MHz */ #define IWM_RATE_MCS_DUP_POS 24 #define IWM_RATE_MCS_DUP_MSK (3 << IWM_RATE_MCS_DUP_POS) /* Bit 27: (1) LDPC enabled, (0) LDPC disabled */ #define IWM_RATE_MCS_LDPC_POS 27 #define IWM_RATE_MCS_LDPC_MSK (1 << IWM_RATE_MCS_LDPC_POS) /* Link Quality definitions */ /* # entries in rate scale table to support Tx retries */ #define IWM_LQ_MAX_RETRY_NUM 16 /* Link quality command flags bit fields */ /* Bit 0: (0) Don't use RTS (1) Use RTS */ -#define IWM_LQ_FLAG_USE_RTS_POS 0 -#define IWM_LQ_FLAG_USE_RTS_MSK (1 << IWM_LQ_FLAG_USE_RTS_POS) +#define IWM_LQ_FLAG_USE_RTS_POS 0 +#define IWM_LQ_FLAG_USE_RTS_MSK (1 << IWM_LQ_FLAG_USE_RTS_POS) /* Bit 1-3: LQ command color. Used to match responses to LQ commands */ -#define IWM_LQ_FLAG_COLOR_POS 1 -#define IWM_LQ_FLAG_COLOR_MSK (7 << IWM_LQ_FLAG_COLOR_POS) +#define IWM_LQ_FLAG_COLOR_POS 1 +#define IWM_LQ_FLAG_COLOR_MSK (7 << IWM_LQ_FLAG_COLOR_POS) /* Bit 4-5: Tx RTS BW Signalling * (0) No RTS BW signalling * (1) Static BW signalling * (2) Dynamic BW signalling */ -#define IWM_LQ_FLAG_RTS_BW_SIG_POS 4 -#define IWM_LQ_FLAG_RTS_BW_SIG_NONE (0 << IWM_LQ_FLAG_RTS_BW_SIG_POS) -#define IWM_LQ_FLAG_RTS_BW_SIG_STATIC (1 << IWM_LQ_FLAG_RTS_BW_SIG_POS) -#define IWM_LQ_FLAG_RTS_BW_SIG_DYNAMIC (2 << IWM_LQ_FLAG_RTS_BW_SIG_POS) +#define IWM_LQ_FLAG_RTS_BW_SIG_POS 4 +#define IWM_LQ_FLAG_RTS_BW_SIG_NONE (0 << IWM_LQ_FLAG_RTS_BW_SIG_POS) +#define IWM_LQ_FLAG_RTS_BW_SIG_STATIC (1 << IWM_LQ_FLAG_RTS_BW_SIG_POS) +#define IWM_LQ_FLAG_RTS_BW_SIG_DYNAMIC (2 << IWM_LQ_FLAG_RTS_BW_SIG_POS) /* Bit 6: (0) No dynamic BW selection (1) Allow dynamic BW selection * Dyanmic BW selection allows Tx with narrower BW then requested in rates */ -#define IWM_LQ_FLAG_DYNAMIC_BW_POS 6 -#define IWM_LQ_FLAG_DYNAMIC_BW_MSK (1 << IWM_LQ_FLAG_DYNAMIC_BW_POS) - -/* Single Stream Tx Parameters (lq_cmd->ss_params) - * Flags to control a smart FW decision about whether BFER/STBC/SISO will be - * used for single stream Tx. - */ - -/* Bit 0-1: Max STBC streams allowed. Can be 0-3. - * (0) - No STBC allowed - * (1) - 2x1 STBC allowed (HT/VHT) - * (2) - 4x2 STBC allowed (HT/VHT) - * (3) - 3x2 STBC allowed (HT only) - * All our chips are at most 2 antennas so only (1) is valid for now. - */ -#define IWM_LQ_SS_STBC_ALLOWED_POS 0 -#define IWM_LQ_SS_STBC_ALLOWED_MSK (3 << IWM_LQ_SS_STBC_ALLOWED_MSK) - -/* 2x1 STBC is allowed */ -#define IWM_LQ_SS_STBC_1SS_ALLOWED (1 << IWM_LQ_SS_STBC_ALLOWED_POS) - -/* Bit 2: Beamformer (VHT only) is allowed */ -#define IWM_LQ_SS_BFER_ALLOWED_POS 2 -#define IWM_LQ_SS_BFER_ALLOWED (1 << IWM_LQ_SS_BFER_ALLOWED_POS) - -/* Bit 3: Force BFER or STBC for testing - * If this is set: - * If BFER is allowed then force the ucode to choose BFER else - * If STBC is allowed then force the ucode to choose STBC over SISO - */ -#define IWM_LQ_SS_FORCE_POS 3 -#define IWM_LQ_SS_FORCE (1 << IWM_LQ_SS_FORCE_POS) +#define IWM_LQ_FLAG_DYNAMIC_BW_POS 6 +#define IWM_LQ_FLAG_DYNAMIC_BW_MSK (1 << IWM_LQ_FLAG_DYNAMIC_BW_POS) -/* Bit 31: ss_params field is valid. Used for FW backward compatibility - * with other drivers which don't support the ss_params API yet - */ -#define IWM_LQ_SS_PARAMS_VALID_POS 31 -#define IWM_LQ_SS_PARAMS_VALID (1 << IWM_LQ_SS_PARAMS_VALID_POS) +/* Antenna flags. */ +#define IWM_ANT_A (1 << 0) +#define IWM_ANT_B (1 << 1) +#define IWM_ANT_C (1 << 2) +/* Shortcuts. */ +#define IWM_ANT_AB (IWM_ANT_A | IWM_ANT_B) +#define IWM_ANT_BC (IWM_ANT_B | IWM_ANT_C) +#define IWM_ANT_ABC (IWM_ANT_A | IWM_ANT_B | IWM_ANT_C) /** * struct iwm_lq_cmd - link quality command * @sta_id: station to update * @control: not used * @flags: combination of IWM_LQ_FLAG_* * @mimo_delim: the first SISO index in rs_table, which separates MIMO * and SISO rates * @single_stream_ant_msk: best antenna for SISO (can be dual in CDD). - * Should be ANT_[ABC] - * @dual_stream_ant_msk: best antennas for MIMO, combination of ANT_[ABC] + * Should be IWM_ANT_[ABC] + * @dual_stream_ant_msk: best antennas for MIMO, combination of IWM_ANT_[ABC] * @initial_rate_index: first index from rs_table per AC category * @agg_time_limit: aggregation max time threshold in usec/100, meaning * value of 100 is one usec. Range is 100 to 8000 * @agg_disable_start_th: try-count threshold for starting aggregation. * If a frame has higher try-count, it should not be selected for * starting an aggregation sequence. * @agg_frame_cnt_limit: max frame count in an aggregation. * 0: no limit * 1: no aggregation (one frame per aggregation) * 2 - 0x3f: maximal number of frames (up to 3f == 63) * @rs_table: array of rates for each TX try, each is rate_n_flags, * meaning it is a combination of IWM_RATE_MCS_* and IWM_RATE_*_PLCP - * @ss_params: single stream features. declare whether STBC or BFER are allowed. + * @bf_params: beam forming params, currently not used */ struct iwm_lq_cmd { uint8_t sta_id; - uint8_t reduced_tpc; + uint8_t reserved1; uint16_t control; /* LINK_QUAL_GENERAL_PARAMS_API_S_VER_1 */ uint8_t flags; uint8_t mimo_delim; uint8_t single_stream_ant_msk; uint8_t dual_stream_ant_msk; uint8_t initial_rate_index[IWM_AC_NUM]; /* LINK_QUAL_AGG_PARAMS_API_S_VER_1 */ uint16_t agg_time_limit; uint8_t agg_disable_start_th; uint8_t agg_frame_cnt_limit; uint32_t reserved2; uint32_t rs_table[IWM_LQ_MAX_RETRY_NUM]; - uint32_t ss_params; + uint32_t bf_params; }; /* LINK_QUALITY_CMD_API_S_VER_1 */ /* * END mvm/fw-api-rs.h */ /* * BEGIN mvm/fw-api-tx.h */ /** - * enum iwm_tx_flags - bitmasks for tx_flags in TX command + * bitmasks for tx_flags in TX command * @IWM_TX_CMD_FLG_PROT_REQUIRE: use RTS or CTS-to-self to protect the frame * @IWM_TX_CMD_FLG_ACK: expect ACK from receiving station * @IWM_TX_CMD_FLG_STA_RATE: use RS table with initial index from the TX command. * Otherwise, use rate_n_flags from the TX command * @IWM_TX_CMD_FLG_BA: this frame is a block ack * @IWM_TX_CMD_FLG_BAR: this frame is a BA request, immediate BAR is expected * Must set IWM_TX_CMD_FLG_ACK with this flag. * @IWM_TX_CMD_FLG_TXOP_PROT: protect frame with full TXOP protection * @IWM_TX_CMD_FLG_VHT_NDPA: mark frame is NDPA for VHT beamformer sequence * @IWM_TX_CMD_FLG_HT_NDPA: mark frame is NDPA for HT beamformer sequence * @IWM_TX_CMD_FLG_CSI_FDBK2HOST: mark to send feedback to host (only if good CRC) * @IWM_TX_CMD_FLG_BT_DIS: disable BT priority for this frame * @IWM_TX_CMD_FLG_SEQ_CTL: set if FW should override the sequence control. * Should be set for mgmt, non-QOS data, mcast, bcast and in scan command * @IWM_TX_CMD_FLG_MORE_FRAG: this frame is non-last MPDU * @IWM_TX_CMD_FLG_NEXT_FRAME: this frame includes information of the next frame * @IWM_TX_CMD_FLG_TSF: FW should calculate and insert TSF in the frame * Should be set for beacons and probe responses * @IWM_TX_CMD_FLG_CALIB: activate PA TX power calibrations * @IWM_TX_CMD_FLG_KEEP_SEQ_CTL: if seq_ctl is set, don't increase inner seq count * @IWM_TX_CMD_FLG_AGG_START: allow this frame to start aggregation * @IWM_TX_CMD_FLG_MH_PAD: driver inserted 2 byte padding after MAC header. * Should be set for 26/30 length MAC headers * @IWM_TX_CMD_FLG_RESP_TO_DRV: zero this if the response should go only to FW + * @IWM_TX_CMD_FLG_CCMP_AGG: this frame uses CCMP for aggregation acceleration * @IWM_TX_CMD_FLG_TKIP_MIC_DONE: FW already performed TKIP MIC calculation * @IWM_TX_CMD_FLG_DUR: disable duration overwriting used in PS-Poll Assoc-id * @IWM_TX_CMD_FLG_FW_DROP: FW should mark frame to be dropped * @IWM_TX_CMD_FLG_EXEC_PAPD: execute PAPD * @IWM_TX_CMD_FLG_PAPD_TYPE: 0 for reference power, 1 for nominal power * @IWM_TX_CMD_FLG_HCCA_CHUNK: mark start of TSPEC chunk */ -enum iwm_tx_flags { - IWM_TX_CMD_FLG_PROT_REQUIRE = (1 << 0), - IWM_TX_CMD_FLG_ACK = (1 << 3), - IWM_TX_CMD_FLG_STA_RATE = (1 << 4), - IWM_TX_CMD_FLG_BA = (1 << 5), - IWM_TX_CMD_FLG_BAR = (1 << 6), - IWM_TX_CMD_FLG_TXOP_PROT = (1 << 7), - IWM_TX_CMD_FLG_VHT_NDPA = (1 << 8), - IWM_TX_CMD_FLG_HT_NDPA = (1 << 9), - IWM_TX_CMD_FLG_CSI_FDBK2HOST = (1 << 10), - IWM_TX_CMD_FLG_BT_DIS = (1 << 12), - IWM_TX_CMD_FLG_SEQ_CTL = (1 << 13), - IWM_TX_CMD_FLG_MORE_FRAG = (1 << 14), - IWM_TX_CMD_FLG_NEXT_FRAME = (1 << 15), - IWM_TX_CMD_FLG_TSF = (1 << 16), - IWM_TX_CMD_FLG_CALIB = (1 << 17), - IWM_TX_CMD_FLG_KEEP_SEQ_CTL = (1 << 18), - IWM_TX_CMD_FLG_AGG_START = (1 << 19), - IWM_TX_CMD_FLG_MH_PAD = (1 << 20), - IWM_TX_CMD_FLG_RESP_TO_DRV = (1 << 21), - IWM_TX_CMD_FLG_TKIP_MIC_DONE = (1 << 23), - IWM_TX_CMD_FLG_DUR = (1 << 25), - IWM_TX_CMD_FLG_FW_DROP = (1 << 26), - IWM_TX_CMD_FLG_EXEC_PAPD = (1 << 27), - IWM_TX_CMD_FLG_PAPD_TYPE = (1 << 28), - IWM_TX_CMD_FLG_HCCA_CHUNK = (1 << 31) -}; /* IWM_TX_FLAGS_BITS_API_S_VER_1 */ +#define IWM_TX_CMD_FLG_PROT_REQUIRE (1 << 0) +#define IWM_TX_CMD_FLG_ACK (1 << 3) +#define IWM_TX_CMD_FLG_STA_RATE (1 << 4) +#define IWM_TX_CMD_FLG_BA (1 << 5) +#define IWM_TX_CMD_FLG_BAR (1 << 6) +#define IWM_TX_CMD_FLG_TXOP_PROT (1 << 7) +#define IWM_TX_CMD_FLG_VHT_NDPA (1 << 8) +#define IWM_TX_CMD_FLG_HT_NDPA (1 << 9) +#define IWM_TX_CMD_FLG_CSI_FDBK2HOST (1 << 10) +#define IWM_TX_CMD_FLG_BT_DIS (1 << 12) +#define IWM_TX_CMD_FLG_SEQ_CTL (1 << 13) +#define IWM_TX_CMD_FLG_MORE_FRAG (1 << 14) +#define IWM_TX_CMD_FLG_NEXT_FRAME (1 << 15) +#define IWM_TX_CMD_FLG_TSF (1 << 16) +#define IWM_TX_CMD_FLG_CALIB (1 << 17) +#define IWM_TX_CMD_FLG_KEEP_SEQ_CTL (1 << 18) +#define IWM_TX_CMD_FLG_AGG_START (1 << 19) +#define IWM_TX_CMD_FLG_MH_PAD (1 << 20) +#define IWM_TX_CMD_FLG_RESP_TO_DRV (1 << 21) +#define IWM_TX_CMD_FLG_CCMP_AGG (1 << 22) +#define IWM_TX_CMD_FLG_TKIP_MIC_DONE (1 << 23) +#define IWM_TX_CMD_FLG_DUR (1 << 25) +#define IWM_TX_CMD_FLG_FW_DROP (1 << 26) +#define IWM_TX_CMD_FLG_EXEC_PAPD (1 << 27) +#define IWM_TX_CMD_FLG_PAPD_TYPE (1 << 28) +#define IWM_TX_CMD_FLG_HCCA_CHUNK (1U << 31) +/* IWM_TX_FLAGS_BITS_API_S_VER_1 */ /** * enum iwm_tx_pm_timeouts - pm timeout values in TX command * @IWM_PM_FRAME_NONE: no need to suspend sleep mode * @IWM_PM_FRAME_MGMT: fw suspend sleep mode for 100TU * @IWM_PM_FRAME_ASSOC: fw suspend sleep mode for 10sec */ enum iwm_tx_pm_timeouts { - IWM_PM_FRAME_NONE = 0, - IWM_PM_FRAME_MGMT = 2, - IWM_PM_FRAME_ASSOC = 3, + IWM_PM_FRAME_NONE = 0, + IWM_PM_FRAME_MGMT = 2, + IWM_PM_FRAME_ASSOC = 3, }; /* * TX command security control */ #define IWM_TX_CMD_SEC_WEP 0x01 #define IWM_TX_CMD_SEC_CCM 0x02 #define IWM_TX_CMD_SEC_TKIP 0x03 #define IWM_TX_CMD_SEC_EXT 0x04 #define IWM_TX_CMD_SEC_MSK 0x07 #define IWM_TX_CMD_SEC_WEP_KEY_IDX_POS 6 #define IWM_TX_CMD_SEC_WEP_KEY_IDX_MSK 0xc0 #define IWM_TX_CMD_SEC_KEY128 0x08 +/* TODO: how does these values are OK with only 16 bit variable??? */ +/* + * TX command next frame info + * + * bits 0:2 - security control (IWM_TX_CMD_SEC_*) + * bit 3 - immediate ACK required + * bit 4 - rate is taken from STA table + * bit 5 - frame belongs to BA stream + * bit 6 - immediate BA response expected + * bit 7 - unused + * bits 8:15 - Station ID + * bits 16:31 - rate + */ +#define IWM_TX_CMD_NEXT_FRAME_ACK_MSK (0x8) +#define IWM_TX_CMD_NEXT_FRAME_STA_RATE_MSK (0x10) +#define IWM_TX_CMD_NEXT_FRAME_BA_MSK (0x20) +#define IWM_TX_CMD_NEXT_FRAME_IMM_BA_RSP_MSK (0x40) +#define IWM_TX_CMD_NEXT_FRAME_FLAGS_MSK (0xf8) +#define IWM_TX_CMD_NEXT_FRAME_STA_ID_MSK (0xff00) +#define IWM_TX_CMD_NEXT_FRAME_STA_ID_POS (8) +#define IWM_TX_CMD_NEXT_FRAME_RATE_MSK (0xffff0000) +#define IWM_TX_CMD_NEXT_FRAME_RATE_POS (16) + /* * TX command Frame life time in us - to be written in pm_frame_timeout */ #define IWM_TX_CMD_LIFE_TIME_INFINITE 0xFFFFFFFF #define IWM_TX_CMD_LIFE_TIME_DEFAULT 2000000 /* 2000 ms*/ #define IWM_TX_CMD_LIFE_TIME_PROBE_RESP 40000 /* 40 ms */ #define IWM_TX_CMD_LIFE_TIME_EXPIRED_FRAME 0 /* * TID for non QoS frames - to be written in tid_tspec */ -#define IWM_TID_NON_QOS IWM_MAX_TID_COUNT +#define IWM_MAX_TID_COUNT 8 +#define IWM_TID_NON_QOS 0 +#define IWM_TID_MGMT 15 /* * Limits on the retransmissions - to be written in {data,rts}_retry_limit */ #define IWM_DEFAULT_TX_RETRY 15 #define IWM_MGMT_DFAULT_RETRY_LIMIT 3 -#define IWM_RTS_DFAULT_RETRY_LIMIT 60 +#define IWM_RTS_DFAULT_RETRY_LIMIT 3 #define IWM_BAR_DFAULT_RETRY_LIMIT 60 #define IWM_LOW_RETRY_LIMIT 7 /** * enum iwm_tx_offload_assist_flags_pos - set %iwm_tx_cmd offload_assist values - * @IWM_TX_CMD_OFFLD_IP_HDR: offset to start of IP header (in words) + * @TX_CMD_OFFLD_IP_HDR: offset to start of IP header (in words) * from mac header end. For normal case it is 4 words for SNAP. * note: tx_cmd, mac header and pad are not counted in the offset. * This is used to help the offload in case there is tunneling such as * IPv6 in IPv4, in such case the ip header offset should point to the * inner ip header and IPv4 checksum of the external header should be * calculated by driver. - * @IWM_TX_CMD_OFFLD_L4_EN: enable TCP/UDP checksum - * @IWM_TX_CMD_OFFLD_L3_EN: enable IP header checksum - * @IWM_TX_CMD_OFFLD_MH_SIZE: size of the mac header in words. Includes the IV + * @TX_CMD_OFFLD_L4_EN: enable TCP/UDP checksum + * @TX_CMD_OFFLD_L3_EN: enable IP header checksum + * @TX_CMD_OFFLD_MH_SIZE: size of the mac header in words. Includes the IV * field. Doesn't include the pad. - * @IWM_TX_CMD_OFFLD_PAD: mark 2-byte pad was inserted after the mac header for + * @TX_CMD_OFFLD_PAD: mark 2-byte pad was inserted after the mac header for * alignment - * @IWM_TX_CMD_OFFLD_AMSDU: mark TX command is A-MSDU - */ -enum iwm_tx_offload_assist_flags_pos { - IWM_TX_CMD_OFFLD_IP_HDR = 0, - IWM_TX_CMD_OFFLD_L4_EN = 6, - IWM_TX_CMD_OFFLD_L3_EN = 7, - IWM_TX_CMD_OFFLD_MH_SIZE = 8, - IWM_TX_CMD_OFFLD_PAD = 13, - IWM_TX_CMD_OFFLD_AMSDU = 14, -}; - -#define IWM_TX_CMD_OFFLD_MH_MASK 0x1f -#define IWM_TX_CMD_OFFLD_IP_HDR_MASK 0x3f + * @TX_CMD_OFFLD_AMSDU: mark TX command is A-MSDU + */ +#define IWM_TX_CMD_OFFLD_IP_HDR (1 << 0) +#define IWM_TX_CMD_OFFLD_L4_EN (1 << 6) +#define IWM_TX_CMD_OFFLD_L3_EN (1 << 7) +#define IWM_TX_CMD_OFFLD_MH_SIZE (1 << 8) +#define IWM_TX_CMD_OFFLD_PAD (1 << 13) +#define IWM_TX_CMD_OFFLD_AMSDU (1 << 14) /* TODO: complete documentation for try_cnt and btkill_cnt */ /** * struct iwm_tx_cmd - TX command struct to FW * ( IWM_TX_CMD = 0x1c ) * @len: in bytes of the payload, see below for details * @offload_assist: TX offload configuration * @tx_flags: combination of IWM_TX_CMD_FLG_* * @rate_n_flags: rate for *all* Tx attempts, if IWM_TX_CMD_FLG_STA_RATE_MSK is * cleared. Combination of IWM_RATE_MCS_* * @sta_id: index of destination station in FW station table * @sec_ctl: security control, IWM_TX_CMD_SEC_* * @initial_rate_index: index into the rate table for initial TX attempt. * Applied if IWM_TX_CMD_FLG_STA_RATE_MSK is set, normally 0 for data frames. * @key: security key - * @reserved3: reserved + * @next_frame_flags: IWM_TX_CMD_SEC_* and IWM_TX_CMD_NEXT_FRAME_* * @life_time: frame life time (usecs??) * @dram_lsb_ptr: Physical address of scratch area in the command (try_cnt + * btkill_cnd + reserved), first 32 bits. "0" disables usage. * @dram_msb_ptr: upper bits of the scratch physical address * @rts_retry_limit: max attempts for RTS * @data_retry_limit: max attempts to send the data packet * @tid_spec: TID/tspec * @pm_frame_timeout: PM TX frame timeout * @driver_txop: duration od EDCA TXOP, in 32-usec units. Set this if not * specified by HCCA protocol * * The byte count (both len and next_frame_len) includes MAC header * (24/26/30/32 bytes) * + 2 bytes pad if 26/30 header size * + 8 byte IV for CCM or TKIP (not used for WEP) * + Data payload * + 8-byte MIC (not used for CCM/WEP) * It does not include post-MAC padding, i.e., * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes. * Range of len: 14-2342 bytes. * * After the struct fields the MAC header is placed, plus any padding, * and then the actial payload. */ struct iwm_tx_cmd { uint16_t len; uint16_t offload_assist; uint32_t tx_flags; struct { uint8_t try_cnt; uint8_t btkill_cnt; uint16_t reserved; } scratch; /* DRAM_SCRATCH_API_U_VER_1 */ uint32_t rate_n_flags; uint8_t sta_id; uint8_t sec_ctl; uint8_t initial_rate_index; uint8_t reserved2; uint8_t key[16]; uint32_t reserved3; uint32_t life_time; uint32_t dram_lsb_ptr; uint8_t dram_msb_ptr; uint8_t rts_retry_limit; uint8_t data_retry_limit; uint8_t tid_tspec; uint16_t pm_frame_timeout; uint16_t reserved4; uint8_t payload[0]; struct ieee80211_frame hdr[0]; -} __packed; /* IWM_TX_CMD_API_S_VER_3 */ +} __packed; /* IWM_TX_CMD_API_S_VER_6 */ /* * TX response related data */ /* - * enum iwm_tx_status - status that is returned by the fw after attempts to Tx - * @IWM_TX_STATUS_SUCCESS: - * @IWM_TX_STATUS_DIRECT_DONE: - * @IWM_TX_STATUS_POSTPONE_DELAY: - * @IWM_TX_STATUS_POSTPONE_FEW_BYTES: - * @IWM_TX_STATUS_POSTPONE_BT_PRIO: - * @IWM_TX_STATUS_POSTPONE_QUIET_PERIOD: - * @IWM_TX_STATUS_POSTPONE_CALC_TTAK: - * @IWM_TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY: - * @IWM_TX_STATUS_FAIL_SHORT_LIMIT: - * @IWM_TX_STATUS_FAIL_LONG_LIMIT: - * @IWM_TX_STATUS_FAIL_UNDERRUN: - * @IWM_TX_STATUS_FAIL_DRAIN_FLOW: - * @IWM_TX_STATUS_FAIL_RFKILL_FLUSH: - * @IWM_TX_STATUS_FAIL_LIFE_EXPIRE: - * @IWM_TX_STATUS_FAIL_DEST_PS: - * @IWM_TX_STATUS_FAIL_HOST_ABORTED: - * @IWM_TX_STATUS_FAIL_BT_RETRY: - * @IWM_TX_STATUS_FAIL_STA_INVALID: - * @IWM_TX_TATUS_FAIL_FRAG_DROPPED: - * @IWM_TX_STATUS_FAIL_TID_DISABLE: - * @IWM_TX_STATUS_FAIL_FIFO_FLUSHED: - * @IWM_TX_STATUS_FAIL_SMALL_CF_POLL: - * @IWM_TX_STATUS_FAIL_FW_DROP: + * status that is returned by the fw after attempts to Tx * @IWM_TX_STATUS_FAIL_STA_COLOR_MISMATCH: mismatch between color of Tx cmd and * STA table - * @IWM_TX_FRAME_STATUS_INTERNAL_ABORT: - * @IWM_TX_MODE_MSK: - * @IWM_TX_MODE_NO_BURST: - * @IWM_TX_MODE_IN_BURST_SEQ: - * @IWM_TX_MODE_FIRST_IN_BURST: - * @IWM_TX_QUEUE_NUM_MSK: - * * Valid only if frame_count =1 - * TODO: complete documentation - */ -enum iwm_tx_status { - IWM_TX_STATUS_MSK = 0x000000ff, - IWM_TX_STATUS_SUCCESS = 0x01, - IWM_TX_STATUS_DIRECT_DONE = 0x02, - /* postpone TX */ - IWM_TX_STATUS_POSTPONE_DELAY = 0x40, - IWM_TX_STATUS_POSTPONE_FEW_BYTES = 0x41, - IWM_TX_STATUS_POSTPONE_BT_PRIO = 0x42, - IWM_TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43, - IWM_TX_STATUS_POSTPONE_CALC_TTAK = 0x44, - /* abort TX */ - IWM_TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81, - IWM_TX_STATUS_FAIL_SHORT_LIMIT = 0x82, - IWM_TX_STATUS_FAIL_LONG_LIMIT = 0x83, - IWM_TX_STATUS_FAIL_UNDERRUN = 0x84, - IWM_TX_STATUS_FAIL_DRAIN_FLOW = 0x85, - IWM_TX_STATUS_FAIL_RFKILL_FLUSH = 0x86, - IWM_TX_STATUS_FAIL_LIFE_EXPIRE = 0x87, - IWM_TX_STATUS_FAIL_DEST_PS = 0x88, - IWM_TX_STATUS_FAIL_HOST_ABORTED = 0x89, - IWM_TX_STATUS_FAIL_BT_RETRY = 0x8a, - IWM_TX_STATUS_FAIL_STA_INVALID = 0x8b, - IWM_TX_STATUS_FAIL_FRAG_DROPPED = 0x8c, - IWM_TX_STATUS_FAIL_TID_DISABLE = 0x8d, - IWM_TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e, - IWM_TX_STATUS_FAIL_SMALL_CF_POLL = 0x8f, - IWM_TX_STATUS_FAIL_FW_DROP = 0x90, - IWM_TX_STATUS_FAIL_STA_COLOR_MISMATCH = 0x91, - IWM_TX_STATUS_INTERNAL_ABORT = 0x92, - IWM_TX_MODE_MSK = 0x00000f00, - IWM_TX_MODE_NO_BURST = 0x00000000, - IWM_TX_MODE_IN_BURST_SEQ = 0x00000100, - IWM_TX_MODE_FIRST_IN_BURST = 0x00000200, - IWM_TX_QUEUE_NUM_MSK = 0x0001f000, - IWM_TX_NARROW_BW_MSK = 0x00060000, - IWM_TX_NARROW_BW_1DIV2 = 0x00020000, - IWM_TX_NARROW_BW_1DIV4 = 0x00040000, - IWM_TX_NARROW_BW_1DIV8 = 0x00060000, -}; + */ +#define IWM_TX_STATUS_MSK 0x000000ff +#define IWM_TX_STATUS_SUCCESS 0x01 +#define IWM_TX_STATUS_DIRECT_DONE 0x02 +/* postpone TX */ +#define IWM_TX_STATUS_POSTPONE_DELAY 0x40 +#define IWM_TX_STATUS_POSTPONE_FEW_BYTES 0x41 +#define IWM_TX_STATUS_POSTPONE_BT_PRIO 0x42 +#define IWM_TX_STATUS_POSTPONE_QUIET_PERIOD 0x43 +#define IWM_TX_STATUS_POSTPONE_CALC_TTAK 0x44 +/* abort TX */ +#define IWM_TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY 0x81 +#define IWM_TX_STATUS_FAIL_SHORT_LIMIT 0x82 +#define IWM_TX_STATUS_FAIL_LONG_LIMIT 0x83 +#define IWM_TX_STATUS_FAIL_UNDERRUN 0x84 +#define IWM_TX_STATUS_FAIL_DRAIN_FLOW 0x85 +#define IWM_TX_STATUS_FAIL_RFKILL_FLUSH 0x86 +#define IWM_TX_STATUS_FAIL_LIFE_EXPIRE 0x87 +#define IWM_TX_STATUS_FAIL_DEST_PS 0x88 +#define IWM_TX_STATUS_FAIL_HOST_ABORTED 0x89 +#define IWM_TX_STATUS_FAIL_BT_RETRY 0x8a +#define IWM_TX_STATUS_FAIL_STA_INVALID 0x8b +#define IWM_TX_STATUS_FAIL_FRAG_DROPPED 0x8c +#define IWM_TX_STATUS_FAIL_TID_DISABLE 0x8d +#define IWM_TX_STATUS_FAIL_FIFO_FLUSHED 0x8e +#define IWM_TX_STATUS_FAIL_SMALL_CF_POLL 0x8f +#define IWM_TX_STATUS_FAIL_FW_DROP 0x90 +#define IWM_TX_STATUS_FAIL_STA_COLOR_MISMATCH 0x91 +#define IWM_TX_STATUS_INTERNAL_ABORT 0x92 +#define IWM_TX_MODE_MSK 0x00000f00 +#define IWM_TX_MODE_NO_BURST 0x00000000 +#define IWM_TX_MODE_IN_BURST_SEQ 0x00000100 +#define IWM_TX_MODE_FIRST_IN_BURST 0x00000200 +#define IWM_TX_QUEUE_NUM_MSK 0x0001f000 +#define IWM_TX_NARROW_BW_MSK 0x00060000 +#define IWM_TX_NARROW_BW_1DIV2 0x00020000 +#define IWM_TX_NARROW_BW_1DIV4 0x00040000 +#define IWM_TX_NARROW_BW_1DIV8 0x00060000 /* - * enum iwm_tx_agg_status - TX aggregation status - * @IWM_AGG_TX_STATE_STATUS_MSK: - * @IWM_AGG_TX_STATE_TRANSMITTED: - * @IWM_AGG_TX_STATE_UNDERRUN: - * @IWM_AGG_TX_STATE_BT_PRIO: - * @IWM_AGG_TX_STATE_FEW_BYTES: - * @IWM_AGG_TX_STATE_ABORT: - * @IWM_AGG_TX_STATE_LAST_SENT_TTL: - * @IWM_AGG_TX_STATE_LAST_SENT_TRY_CNT: - * @IWM_AGG_TX_STATE_LAST_SENT_BT_KILL: - * @IWM_AGG_TX_STATE_SCD_QUERY: - * @IWM_AGG_TX_STATE_TEST_BAD_CRC32: - * @IWM_AGG_TX_STATE_RESPONSE: - * @IWM_AGG_TX_STATE_DUMP_TX: - * @IWM_AGG_TX_STATE_DELAY_TX: + * TX aggregation status * @IWM_AGG_TX_STATE_TRY_CNT_MSK: Retry count for 1st frame in aggregation (retries * occur if tx failed for this frame when it was a member of a previous * aggregation block). If rate scaling is used, retry count indicates the * rate table entry used for all frames in the new agg. - *@ IWM_AGG_TX_STATE_SEQ_NUM_MSK: Command ID and sequence number of Tx command for - * this frame - * - * TODO: complete documentation - */ -enum iwm_tx_agg_status { - IWM_AGG_TX_STATE_STATUS_MSK = 0x00fff, - IWM_AGG_TX_STATE_TRANSMITTED = 0x000, - IWM_AGG_TX_STATE_UNDERRUN = 0x001, - IWM_AGG_TX_STATE_BT_PRIO = 0x002, - IWM_AGG_TX_STATE_FEW_BYTES = 0x004, - IWM_AGG_TX_STATE_ABORT = 0x008, - IWM_AGG_TX_STATE_LAST_SENT_TTL = 0x010, - IWM_AGG_TX_STATE_LAST_SENT_TRY_CNT = 0x020, - IWM_AGG_TX_STATE_LAST_SENT_BT_KILL = 0x040, - IWM_AGG_TX_STATE_SCD_QUERY = 0x080, - IWM_AGG_TX_STATE_TEST_BAD_CRC32 = 0x0100, - IWM_AGG_TX_STATE_RESPONSE = 0x1ff, - IWM_AGG_TX_STATE_DUMP_TX = 0x200, - IWM_AGG_TX_STATE_DELAY_TX = 0x400, - IWM_AGG_TX_STATE_TRY_CNT_POS = 12, - IWM_AGG_TX_STATE_TRY_CNT_MSK = 0xf << IWM_AGG_TX_STATE_TRY_CNT_POS, -}; + */ +#define IWM_AGG_TX_STATE_STATUS_MSK 0x0fff +#define IWM_AGG_TX_STATE_TRANSMITTED 0x0000 +#define IWM_AGG_TX_STATE_UNDERRUN 0x0001 +#define IWM_AGG_TX_STATE_BT_PRIO 0x0002 +#define IWM_AGG_TX_STATE_FEW_BYTES 0x0004 +#define IWM_AGG_TX_STATE_ABORT 0x0008 +#define IWM_AGG_TX_STATE_LAST_SENT_TTL 0x0010 +#define IWM_AGG_TX_STATE_LAST_SENT_TRY_CNT 0x0020 +#define IWM_AGG_TX_STATE_LAST_SENT_BT_KILL 0x0040 +#define IWM_AGG_TX_STATE_SCD_QUERY 0x0080 +#define IWM_AGG_TX_STATE_TEST_BAD_CRC32 0x0100 +#define IWM_AGG_TX_STATE_RESPONSE 0x01ff +#define IWM_AGG_TX_STATE_DUMP_TX 0x0200 +#define IWM_AGG_TX_STATE_DELAY_TX 0x0400 +#define IWM_AGG_TX_STATE_TRY_CNT_POS 12 +#define IWM_AGG_TX_STATE_TRY_CNT_MSK (0xf << IWM_AGG_TX_STATE_TRY_CNT_POS) #define IWM_AGG_TX_STATE_LAST_SENT_MSK (IWM_AGG_TX_STATE_LAST_SENT_TTL| \ IWM_AGG_TX_STATE_LAST_SENT_TRY_CNT| \ IWM_AGG_TX_STATE_LAST_SENT_BT_KILL) /* * The mask below describes a status where we are absolutely sure that the MPDU * wasn't sent. For BA/Underrun we cannot be that sure. All we know that we've * written the bytes to the TXE, but we know nothing about what the DSP did. */ #define IWM_AGG_TX_STAT_FRAME_NOT_SENT (IWM_AGG_TX_STATE_FEW_BYTES | \ IWM_AGG_TX_STATE_ABORT | \ IWM_AGG_TX_STATE_SCD_QUERY) /* * IWM_REPLY_TX = 0x1c (response) * * This response may be in one of two slightly different formats, indicated * by the frame_count field: * * 1) No aggregation (frame_count == 1). This reports Tx results for a single * frame. Multiple attempts, at various bit rates, may have been made for * this frame. * * 2) Aggregation (frame_count > 1). This reports Tx results for two or more * frames that used block-acknowledge. All frames were transmitted at * same rate. Rate scaling may have been used if first frame in this new * agg block failed in previous agg block(s). * * Note that, for aggregation, ACK (block-ack) status is not delivered * here; block-ack has not been received by the time the device records * this status. * This status relates to reasons the tx might have been blocked or aborted * within the device, rather than whether it was received successfully by * the destination station. */ /** * struct iwm_agg_tx_status - per packet TX aggregation status - * @status: enum iwm_tx_agg_status - * @sequence: Sequence # for this frame's Tx cmd (not SSN!) + * @status: IWM_AGG_TX_STATE_* + * @idx: Tx queue index of this frame + * @qid: Tx queue ID of this frame */ struct iwm_agg_tx_status { uint16_t status; +#if 0 + /* OpenBSD update - convert code to use this */ + uint8_t idx; + uint8_t qid; +#else uint16_t sequence; +#endif } __packed; /* * definitions for initial rate index field * bits [3:0] initial rate index * bits [6:4] rate table color, used for the initial rate * bit-7 invalid rate indication */ #define IWM_TX_RES_INIT_RATE_INDEX_MSK 0x0f #define IWM_TX_RES_RATE_TABLE_COLOR_MSK 0x70 #define IWM_TX_RES_INV_RATE_INDEX_MSK 0x80 #define IWM_TX_RES_GET_TID(_ra_tid) ((_ra_tid) & 0x0f) #define IWM_TX_RES_GET_RA(_ra_tid) ((_ra_tid) >> 4) /** * struct iwm_tx_resp - notifies that fw is TXing a packet * ( IWM_REPLY_TX = 0x1c ) * @frame_count: 1 no aggregation, >1 aggregation * @bt_kill_count: num of times blocked by bluetooth (unused for agg) * @failure_rts: num of failures due to unsuccessful RTS * @failure_frame: num failures due to no ACK (unused for agg) * @initial_rate: for non-agg: rate of the successful Tx. For agg: rate of the * Tx of all the batch. IWM_RATE_MCS_* * @wireless_media_time: for non-agg: RTS + CTS + frame tx attempts time + ACK. * for agg: RTS + CTS + aggregation tx time + block-ack time. * in usec. * @pa_status: tx power info * @pa_integ_res_a: tx power info * @pa_integ_res_b: tx power info * @pa_integ_res_c: tx power info * @measurement_req_id: tx power info * @tfd_info: TFD information set by the FH - * @seq_ctl: sequence control from the Tx cmd + * @seq_ctl: sequence control field from IEEE80211 frame header * @byte_cnt: byte count from the Tx cmd * @tlc_info: TLC rate info * @ra_tid: bits [3:0] = ra, bits [7:4] = tid * @frame_ctrl: frame control * @status: for non-agg: frame status IWM_TX_STATUS_* * for agg: status of 1st frame, IWM_AGG_TX_STATE_*; other frame status fields * follow this one, up to frame_count. * * After the array of statuses comes the SSN of the SCD. Look at * %iwm_get_scd_ssn for more details. */ struct iwm_tx_resp { uint8_t frame_count; uint8_t bt_kill_count; uint8_t failure_rts; uint8_t failure_frame; uint32_t initial_rate; uint16_t wireless_media_time; uint8_t pa_status; uint8_t pa_integ_res_a[3]; uint8_t pa_integ_res_b[3]; uint8_t pa_integ_res_c[3]; uint16_t measurement_req_id; - uint8_t reduced_tpc; - uint8_t reserved; + uint16_t reserved; uint32_t tfd_info; uint16_t seq_ctl; uint16_t byte_cnt; uint8_t tlc_info; uint8_t ra_tid; uint16_t frame_ctrl; struct iwm_agg_tx_status status; } __packed; /* IWM_TX_RSP_API_S_VER_3 */ /** * struct iwm_ba_notif - notifies about reception of BA * ( IWM_BA_NOTIF = 0xc5 ) - * @sta_addr_lo32: lower 32 bits of the MAC address - * @sta_addr_hi16: upper 16 bits of the MAC address + * @sta_addr: MAC address * @sta_id: Index of recipient (BA-sending) station in fw's station table * @tid: tid of the session - * @seq_ctl: + * @seq_ctl: sequence control field from IEEE80211 frame header (the first + * bit in @bitmap corresponds to the sequence number stored here) * @bitmap: the bitmap of the BA notification as seen in the air * @scd_flow: the tx queue this BA relates to * @scd_ssn: the index of the last contiguously sent packet * @txed: number of Txed frames in this batch * @txed_2_done: number of Acked frames in this batch + * @reduced_txp: power reduced according to TPC. This is the actual value and + * not a copy from the LQ command. Thus, if not the first rate was used + * for Tx-ing then this value will be set to 0 by FW. + * @reserved1: reserved */ struct iwm_ba_notif { - uint32_t sta_addr_lo32; - uint16_t sta_addr_hi16; + uint8_t sta_addr[ETHER_ADDR_LEN]; uint16_t reserved; uint8_t sta_id; uint8_t tid; uint16_t seq_ctl; uint64_t bitmap; uint16_t scd_flow; uint16_t scd_ssn; uint8_t txed; uint8_t txed_2_done; - uint16_t reserved1; + uint8_t reduced_txp; + uint8_t reserved1; } __packed; /* * struct iwm_mac_beacon_cmd - beacon template command * @tx: the tx commands associated with the beacon frame * @template_id: currently equal to the mac context id of the coresponding * mac. * @tim_idx: the offset of the tim IE in the beacon * @tim_size: the length of the tim IE * @frame: the template of the beacon frame */ struct iwm_mac_beacon_cmd { struct iwm_tx_cmd tx; uint32_t template_id; uint32_t tim_idx; uint32_t tim_size; struct ieee80211_frame frame[0]; } __packed; struct iwm_beacon_notif { struct iwm_tx_resp beacon_notify_hdr; uint64_t tsf; uint32_t ibss_mgr_status; } __packed; /** - * enum iwm_dump_control - dump (flush) control flags + * dump (flush) control flags * @IWM_DUMP_TX_FIFO_FLUSH: Dump MSDUs until the FIFO is empty * and the TFD queues are empty. */ -enum iwm_dump_control { - IWM_DUMP_TX_FIFO_FLUSH = (1 << 1), -}; +#define IWM_DUMP_TX_FIFO_FLUSH (1 << 1) /** * struct iwm_tx_path_flush_cmd -- queue/FIFO flush command * @queues_ctl: bitmap of queues to flush * @flush_ctl: control flags * @reserved: reserved */ -struct iwm_tx_path_flush_cmd { +struct iwm_tx_path_flush_cmd_v1 { uint32_t queues_ctl; uint16_t flush_ctl; uint16_t reserved; } __packed; /* IWM_TX_PATH_FLUSH_CMD_API_S_VER_1 */ +/** + * struct iwl_tx_path_flush_cmd -- queue/FIFO flush command + * @sta_id: station ID to flush + * @tid_mask: TID mask to flush + * @reserved: reserved + */ +struct iwm_tx_path_flush_cmd { + uint32_t sta_id; + uint16_t tid_mask; + uint16_t reserved; +} __packed; /* TX_PATH_FLUSH_CMD_API_S_VER_2 */ + /** * iwm_get_scd_ssn - returns the SSN of the SCD * @tx_resp: the Tx response from the fw (agg or non-agg) * * When the fw sends an AMPDU, it fetches the MPDUs one after the other. Since * it can't know that everything will go well until the end of the AMPDU, it * can't know in advance the number of MPDUs that will be sent in the current * batch. This is why it writes the agg Tx response while it fetches the MPDUs. * Hence, it can't know in advance what the SSN of the SCD will be at the end * of the batch. This is why the SSN of the SCD is written at the end of the * whole struct at a variable offset. This function knows how to cope with the * variable offset and returns the SSN of the SCD. */ static inline uint32_t iwm_get_scd_ssn(struct iwm_tx_resp *tx_resp) { return le32_to_cpup((uint32_t *)&tx_resp->status + tx_resp->frame_count) & 0xfff; } /* * END mvm/fw-api-tx.h */ /* * BEGIN mvm/fw-api-scan.h */ /** * struct iwm_scd_txq_cfg_cmd - New txq hw scheduler config command * @token: * @sta_id: station id * @tid: * @scd_queue: scheduler queue to confiug * @enable: 1 queue enable, 0 queue disable * @aggregate: 1 aggregated queue, 0 otherwise * @tx_fifo: %enum iwm_tx_fifo * @window: BA window size * @ssn: SSN for the BA agreement */ struct iwm_scd_txq_cfg_cmd { uint8_t token; uint8_t sta_id; uint8_t tid; uint8_t scd_queue; uint8_t enable; uint8_t aggregate; uint8_t tx_fifo; uint8_t window; uint16_t ssn; uint16_t reserved; } __packed; /* SCD_QUEUE_CFG_CMD_API_S_VER_1 */ /** * struct iwm_scd_txq_cfg_rsp * @token: taken from the command * @sta_id: station id from the command * @tid: tid from the command * @scd_queue: scd_queue from the command */ struct iwm_scd_txq_cfg_rsp { uint8_t token; uint8_t sta_id; uint8_t tid; uint8_t scd_queue; } __packed; /* SCD_QUEUE_CFG_RSP_API_S_VER_1 */ /* Scan Commands, Responses, Notifications */ /* Masks for iwm_scan_channel.type flags */ #define IWM_SCAN_CHANNEL_TYPE_ACTIVE (1 << 0) #define IWM_SCAN_CHANNEL_NSSIDS(x) (((1 << (x)) - 1) << 1) /* Max number of IEs for direct SSID scans in a command */ #define IWM_PROBE_OPTION_MAX 20 /** * struct iwm_ssid_ie - directed scan network information element * * Up to 20 of these may appear in IWM_REPLY_SCAN_CMD, * selected by "type" bit field in struct iwm_scan_channel; * each channel may select different ssids from among the 20 entries. * SSID IEs get transmitted in reverse order of entry. */ struct iwm_ssid_ie { uint8_t id; uint8_t len; uint8_t ssid[IEEE80211_NWID_LEN]; } __packed; /* IWM_SCAN_DIRECT_SSID_IE_API_S_VER_1 */ /* scan offload */ #define IWM_SCAN_MAX_BLACKLIST_LEN 64 #define IWM_SCAN_SHORT_BLACKLIST_LEN 16 #define IWM_SCAN_MAX_PROFILES 11 #define IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE 512 /* Default watchdog (in MS) for scheduled scan iteration */ #define IWM_SCHED_SCAN_WATCHDOG cpu_to_le16(15000) #define IWM_GOOD_CRC_TH_DEFAULT cpu_to_le16(1) #define IWM_CAN_ABORT_STATUS 1 #define IWM_FULL_SCAN_MULTIPLIER 5 #define IWM_FAST_SCHED_SCAN_ITERATIONS 3 #define IWM_MAX_SCHED_SCAN_PLANS 2 /** * iwm_scan_schedule_lmac - schedule of scan offload * @delay: delay between iterations, in seconds. * @iterations: num of scan iterations * @full_scan_mul: number of partial scans before each full scan */ struct iwm_scan_schedule_lmac { uint16_t delay; uint8_t iterations; uint8_t full_scan_mul; } __packed; /* SCAN_SCHEDULE_API_S */ /** * iwm_scan_req_tx_cmd - SCAN_REQ_TX_CMD_API_S * @tx_flags: combination of TX_CMD_FLG_* * @rate_n_flags: rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is * cleared. Combination of RATE_MCS_* * @sta_id: index of destination station in FW station table * @reserved: for alignment and future use */ struct iwm_scan_req_tx_cmd { uint32_t tx_flags; uint32_t rate_n_flags; uint8_t sta_id; uint8_t reserved[3]; } __packed; -enum iwm_scan_channel_flags_lmac { - IWM_UNIFIED_SCAN_CHANNEL_FULL = (1 << 27), - IWM_UNIFIED_SCAN_CHANNEL_PARTIAL = (1 << 28), -}; +#define IWM_UNIFIED_SCAN_CHANNEL_FULL (1 << 27) +#define IWM_UNIFIED_SCAN_CHANNEL_PARTIAL (1 << 28) /** * iwm_scan_channel_cfg_lmac - SCAN_CHANNEL_CFG_S_VER2 * @flags: bits 1-20: directed scan to i'th ssid * other bits &enum iwm_scan_channel_flags_lmac * @channel_number: channel number 1-13 etc * @iter_count: scan iteration on this channel * @iter_interval: interval in seconds between iterations on one channel */ struct iwm_scan_channel_cfg_lmac { uint32_t flags; uint16_t channel_num; uint16_t iter_count; uint32_t iter_interval; } __packed; /* * iwm_scan_probe_segment - PROBE_SEGMENT_API_S_VER_1 * @offset: offset in the data block * @len: length of the segment */ struct iwm_scan_probe_segment { uint16_t offset; uint16_t len; } __packed; /* iwm_scan_probe_req - PROBE_REQUEST_FRAME_API_S_VER_2 * @mac_header: first (and common) part of the probe * @band_data: band specific data * @common_data: last (and common) part of the probe * @buf: raw data block */ -struct iwm_scan_probe_req { +struct iwm_scan_probe_req_v1 { struct iwm_scan_probe_segment mac_header; struct iwm_scan_probe_segment band_data[2]; struct iwm_scan_probe_segment common_data; uint8_t buf[IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE]; } __packed; -enum iwm_scan_channel_flags { - IWM_SCAN_CHANNEL_FLAG_EBS = (1 << 0), - IWM_SCAN_CHANNEL_FLAG_EBS_ACCURATE = (1 << 1), - IWM_SCAN_CHANNEL_FLAG_CACHE_ADD = (1 << 2), -}; +/* iwl_scan_probe_req - PROBE_REQUEST_FRAME_API_S_VER_v2 + * @mac_header: first (and common) part of the probe + * @band_data: band specific data + * @common_data: last (and common) part of the probe + * @buf: raw data block + */ +struct iwm_scan_probe_req { + struct iwm_scan_probe_segment mac_header; + struct iwm_scan_probe_segment band_data[3]; + struct iwm_scan_probe_segment common_data; + uint8_t buf[IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE]; +} __packed; + + +#define IWM_SCAN_CHANNEL_FLAG_EBS (1 << 0) +#define IWM_SCAN_CHANNEL_FLAG_EBS_ACCURATE (1 << 1) +#define IWM_SCAN_CHANNEL_FLAG_CACHE_ADD (1 << 2) /* iwm_scan_channel_opt - CHANNEL_OPTIMIZATION_API_S * @flags: enum iwm_scan_channel_flags * @non_ebs_ratio: defines the ratio of number of scan iterations where EBS is * involved. * 1 - EBS is disabled. * 2 - every second scan will be full scan(and so on). */ struct iwm_scan_channel_opt { uint16_t flags; uint16_t non_ebs_ratio; } __packed; /** - * iwm_lmac_scan_flags + * LMAC scan flags * @IWM_LMAC_SCAN_FLAG_PASS_ALL: pass all beacons and probe responses * without filtering. * @IWM_LMAC_SCAN_FLAG_PASSIVE: force passive scan on all channels * @IWM_LMAC_SCAN_FLAG_PRE_CONNECTION: single channel scan * @IWM_LMAC_SCAN_FLAG_ITER_COMPLETE: send iteration complete notification * @IWM_LMAC_SCAN_FLAG_MULTIPLE_SSIDS multiple SSID matching * @IWM_LMAC_SCAN_FLAG_FRAGMENTED: all passive scans will be fragmented * @IWM_LMAC_SCAN_FLAGS_RRM_ENABLED: insert WFA vendor-specific TPC report * and DS parameter set IEs into probe requests. * @IWM_LMAC_SCAN_FLAG_EXTENDED_DWELL: use extended dwell time on channels * 1, 6 and 11. * @IWM_LMAC_SCAN_FLAG_MATCH: Send match found notification on matches */ -enum iwm_lmac_scan_flags { - IWM_LMAC_SCAN_FLAG_PASS_ALL = (1 << 0), - IWM_LMAC_SCAN_FLAG_PASSIVE = (1 << 1), - IWM_LMAC_SCAN_FLAG_PRE_CONNECTION = (1 << 2), - IWM_LMAC_SCAN_FLAG_ITER_COMPLETE = (1 << 3), - IWM_LMAC_SCAN_FLAG_MULTIPLE_SSIDS = (1 << 4), - IWM_LMAC_SCAN_FLAG_FRAGMENTED = (1 << 5), - IWM_LMAC_SCAN_FLAGS_RRM_ENABLED = (1 << 6), - IWM_LMAC_SCAN_FLAG_EXTENDED_DWELL = (1 << 7), - IWM_LMAC_SCAN_FLAG_MATCH = (1 << 9), -}; +#define IWM_LMAC_SCAN_FLAG_PASS_ALL (1 << 0) +#define IWM_LMAC_SCAN_FLAG_PASSIVE (1 << 1) +#define IWM_LMAC_SCAN_FLAG_PRE_CONNECTION (1 << 2) +#define IWM_LMAC_SCAN_FLAG_ITER_COMPLETE (1 << 3) +#define IWM_LMAC_SCAN_FLAG_MULTIPLE_SSIDS (1 << 4) +#define IWM_LMAC_SCAN_FLAG_FRAGMENTED (1 << 5) +#define IWM_LMAC_SCAN_FLAGS_RRM_ENABLED (1 << 6) +#define IWM_LMAC_SCAN_FLAG_EXTENDED_DWELL (1 << 7) +#define IWM_LMAC_SCAN_FLAG_MATCH (1 << 9) -enum iwm_scan_priority { - IWM_SCAN_PRIORITY_LOW, - IWM_SCAN_PRIORITY_MEDIUM, - IWM_SCAN_PRIORITY_HIGH, -}; +#define IWM_SCAN_PRIORITY_LOW 0 +#define IWM_SCAN_PRIORITY_MEDIUM 1 +#define IWM_SCAN_PRIORITY_HIGH 2 /** * iwm_scan_req_lmac - SCAN_REQUEST_CMD_API_S_VER_1 * @reserved1: for alignment and future use * @channel_num: num of channels to scan * @active-dwell: dwell time for active channels * @passive-dwell: dwell time for passive channels * @fragmented-dwell: dwell time for fragmented passive scan * @extended_dwell: dwell time for channels 1, 6 and 11 (in certain cases) * @reserved2: for alignment and future use * @rx_chain_selct: PHY_RX_CHAIN_* flags * @scan_flags: &enum iwm_lmac_scan_flags * @max_out_time: max time (in TU) to be out of associated channel * @suspend_time: pause scan this long (TUs) when returning to service channel * @flags: RXON flags * @filter_flags: RXON filter * @tx_cmd: tx command for active scan; for 2GHz and for 5GHz * @direct_scan: list of SSIDs for directed active scan * @scan_prio: enum iwm_scan_priority * @iter_num: number of scan iterations * @delay: delay in seconds before first iteration * @schedule: two scheduling plans. The first one is finite, the second one can * be infinite. * @channel_opt: channel optimization options, for full and partial scan * @data: channel configuration and probe request packet. */ struct iwm_scan_req_lmac { /* SCAN_REQUEST_FIXED_PART_API_S_VER_7 */ uint32_t reserved1; uint8_t n_channels; uint8_t active_dwell; uint8_t passive_dwell; uint8_t fragmented_dwell; uint8_t extended_dwell; uint8_t reserved2; uint16_t rx_chain_select; uint32_t scan_flags; uint32_t max_out_time; uint32_t suspend_time; /* RX_ON_FLAGS_API_S_VER_1 */ uint32_t flags; uint32_t filter_flags; struct iwm_scan_req_tx_cmd tx_cmd[2]; struct iwm_ssid_ie direct_scan[IWM_PROBE_OPTION_MAX]; uint32_t scan_prio; /* SCAN_REQ_PERIODIC_PARAMS_API_S */ uint32_t iter_num; uint32_t delay; struct iwm_scan_schedule_lmac schedule[IWM_MAX_SCHED_SCAN_PLANS]; struct iwm_scan_channel_opt channel_opt[2]; uint8_t data[]; } __packed; /** * iwm_scan_offload_complete - PERIODIC_SCAN_COMPLETE_NTF_API_S_VER_2 * @last_schedule_line: last schedule line executed (fast or regular) * @last_schedule_iteration: last scan iteration executed before scan abort * @status: enum iwm_scan_offload_complete_status * @ebs_status: EBS success status &enum iwm_scan_ebs_status * @time_after_last_iter; time in seconds elapsed after last iteration */ struct iwm_periodic_scan_complete { uint8_t last_schedule_line; uint8_t last_schedule_iteration; uint8_t status; uint8_t ebs_status; uint32_t time_after_last_iter; uint32_t reserved; } __packed; /** * struct iwm_scan_results_notif - scan results for one channel - * SCAN_RESULT_NTF_API_S_VER_3 * @channel: which channel the results are from * @band: 0 for 5.2 GHz, 1 for 2.4 GHz * @probe_status: IWM_SCAN_PROBE_STATUS_*, indicates success of probe request * @num_probe_not_sent: # of request that weren't sent due to not enough time * @duration: duration spent in channel, in usecs */ struct iwm_scan_results_notif { uint8_t channel; uint8_t band; uint8_t probe_status; uint8_t num_probe_not_sent; uint32_t duration; } __packed; -enum iwm_scan_framework_client { - IWM_SCAN_CLIENT_SCHED_SCAN = (1 << 0), - IWM_SCAN_CLIENT_NETDETECT = (1 << 1), - IWM_SCAN_CLIENT_ASSET_TRACKING = (1 << 2), -}; +#define IWM_SCAN_CLIENT_SCHED_SCAN (1 << 0) +#define IWM_SCAN_CLIENT_NETDETECT (1 << 1) +#define IWM_SCAN_CLIENT_ASSET_TRACKING (1 << 2) /** * iwm_scan_offload_blacklist - IWM_SCAN_OFFLOAD_BLACKLIST_S * @ssid: MAC address to filter out * @reported_rssi: AP rssi reported to the host * @client_bitmap: clients ignore this entry - enum scan_framework_client */ struct iwm_scan_offload_blacklist { - uint8_t ssid[IEEE80211_ADDR_LEN]; + uint8_t ssid[ETHER_ADDR_LEN]; uint8_t reported_rssi; uint8_t client_bitmap; } __packed; -enum iwm_scan_offload_network_type { - IWM_NETWORK_TYPE_BSS = 1, - IWM_NETWORK_TYPE_IBSS = 2, - IWM_NETWORK_TYPE_ANY = 3, -}; +#define IWM_NETWORK_TYPE_BSS 1 +#define IWM_NETWORK_TYPE_IBSS 2 +#define IWM_NETWORK_TYPE_ANY 3 -enum iwm_scan_offload_band_selection { - IWM_SCAN_OFFLOAD_SELECT_2_4 = 0x4, - IWM_SCAN_OFFLOAD_SELECT_5_2 = 0x8, - IWM_SCAN_OFFLOAD_SELECT_ANY = 0xc, -}; +#define IWM_SCAN_OFFLOAD_SELECT_2_4 0x4 +#define IWM_SCAN_OFFLOAD_SELECT_5_2 0x8 +#define IWM_SCAN_OFFLOAD_SELECT_ANY 0xc /** * iwm_scan_offload_profile - IWM_SCAN_OFFLOAD_PROFILE_S * @ssid_index: index to ssid list in fixed part * @unicast_cipher: encryption olgorithm to match - bitmap * @aut_alg: authentication olgorithm to match - bitmap * @network_type: enum iwm_scan_offload_network_type * @band_selection: enum iwm_scan_offload_band_selection * @client_bitmap: clients waiting for match - enum scan_framework_client */ struct iwm_scan_offload_profile { uint8_t ssid_index; uint8_t unicast_cipher; uint8_t auth_alg; uint8_t network_type; uint8_t band_selection; uint8_t client_bitmap; uint8_t reserved[2]; } __packed; /** * iwm_scan_offload_profile_cfg - IWM_SCAN_OFFLOAD_PROFILES_CFG_API_S_VER_1 * @blaclist: AP list to filter off from scan results * @profiles: profiles to search for match * @blacklist_len: length of blacklist * @num_profiles: num of profiles in the list * @match_notify: clients waiting for match found notification * @pass_match: clients waiting for the results * @active_clients: active clients bitmap - enum scan_framework_client * @any_beacon_notify: clients waiting for match notification without match */ struct iwm_scan_offload_profile_cfg { struct iwm_scan_offload_profile profiles[IWM_SCAN_MAX_PROFILES]; uint8_t blacklist_len; uint8_t num_profiles; uint8_t match_notify; uint8_t pass_match; uint8_t active_clients; uint8_t any_beacon_notify; uint8_t reserved[2]; } __packed; enum iwm_scan_offload_complete_status { IWM_SCAN_OFFLOAD_COMPLETED = 1, IWM_SCAN_OFFLOAD_ABORTED = 2, }; enum iwm_scan_ebs_status { IWM_SCAN_EBS_SUCCESS, IWM_SCAN_EBS_FAILED, IWM_SCAN_EBS_CHAN_NOT_FOUND, IWM_SCAN_EBS_INACTIVE, }; /** * struct iwm_lmac_scan_complete_notif - notifies end of scanning (all channels) * SCAN_COMPLETE_NTF_API_S_VER_3 * @scanned_channels: number of channels scanned (and number of valid results) * @status: one of SCAN_COMP_STATUS_* * @bt_status: BT on/off status * @last_channel: last channel that was scanned * @tsf_low: TSF timer (lower half) in usecs * @tsf_high: TSF timer (higher half) in usecs * @results: an array of scan results, only "scanned_channels" of them are valid */ struct iwm_lmac_scan_complete_notif { uint8_t scanned_channels; uint8_t status; uint8_t bt_status; uint8_t last_channel; uint32_t tsf_low; uint32_t tsf_high; struct iwm_scan_results_notif results[]; } __packed; -/* - * END mvm/fw-api-scan.h - */ - -/* - * BEGIN mvm/fw-api-sta.h - */ - /* UMAC Scan API */ /* The maximum of either of these cannot exceed 8, because we use an * 8-bit mask (see IWM_SCAN_MASK). */ #define IWM_MAX_UMAC_SCANS 8 #define IWM_MAX_LMAC_SCANS 1 -enum iwm_scan_config_flags { - IWM_SCAN_CONFIG_FLAG_ACTIVATE = (1 << 0), - IWM_SCAN_CONFIG_FLAG_DEACTIVATE = (1 << 1), - IWM_SCAN_CONFIG_FLAG_FORBID_CHUB_REQS = (1 << 2), - IWM_SCAN_CONFIG_FLAG_ALLOW_CHUB_REQS = (1 << 3), - IWM_SCAN_CONFIG_FLAG_SET_TX_CHAINS = (1 << 8), - IWM_SCAN_CONFIG_FLAG_SET_RX_CHAINS = (1 << 9), - IWM_SCAN_CONFIG_FLAG_SET_AUX_STA_ID = (1 << 10), - IWM_SCAN_CONFIG_FLAG_SET_ALL_TIMES = (1 << 11), - IWM_SCAN_CONFIG_FLAG_SET_EFFECTIVE_TIMES = (1 << 12), - IWM_SCAN_CONFIG_FLAG_SET_CHANNEL_FLAGS = (1 << 13), - IWM_SCAN_CONFIG_FLAG_SET_LEGACY_RATES = (1 << 14), - IWM_SCAN_CONFIG_FLAG_SET_MAC_ADDR = (1 << 15), - IWM_SCAN_CONFIG_FLAG_SET_FRAGMENTED = (1 << 16), - IWM_SCAN_CONFIG_FLAG_CLEAR_FRAGMENTED = (1 << 17), - IWM_SCAN_CONFIG_FLAG_SET_CAM_MODE = (1 << 18), - IWM_SCAN_CONFIG_FLAG_CLEAR_CAM_MODE = (1 << 19), - IWM_SCAN_CONFIG_FLAG_SET_PROMISC_MODE = (1 << 20), - IWM_SCAN_CONFIG_FLAG_CLEAR_PROMISC_MODE = (1 << 21), - - /* Bits 26-31 are for num of channels in channel_array */ +#define IWM_SCAN_CONFIG_FLAG_ACTIVATE (1 << 0) +#define IWM_SCAN_CONFIG_FLAG_DEACTIVATE (1 << 1) +#define IWM_SCAN_CONFIG_FLAG_FORBID_CHUB_REQS (1 << 2) +#define IWM_SCAN_CONFIG_FLAG_ALLOW_CHUB_REQS (1 << 3) +#define IWM_SCAN_CONFIG_FLAG_SET_TX_CHAINS (1 << 8) +#define IWM_SCAN_CONFIG_FLAG_SET_RX_CHAINS (1 << 9) +#define IWM_SCAN_CONFIG_FLAG_SET_AUX_STA_ID (1 << 10) +#define IWM_SCAN_CONFIG_FLAG_SET_ALL_TIMES (1 << 11) +#define IWM_SCAN_CONFIG_FLAG_SET_EFFECTIVE_TIMES (1 << 12) +#define IWM_SCAN_CONFIG_FLAG_SET_CHANNEL_FLAGS (1 << 13) +#define IWM_SCAN_CONFIG_FLAG_SET_LEGACY_RATES (1 << 14) +#define IWM_SCAN_CONFIG_FLAG_SET_MAC_ADDR (1 << 15) +#define IWM_SCAN_CONFIG_FLAG_SET_FRAGMENTED (1 << 16) +#define IWM_SCAN_CONFIG_FLAG_CLEAR_FRAGMENTED (1 << 17) +#define IWM_SCAN_CONFIG_FLAG_SET_CAM_MODE (1 << 18) +#define IWM_SCAN_CONFIG_FLAG_CLEAR_CAM_MODE (1 << 19) +#define IWM_SCAN_CONFIG_FLAG_SET_PROMISC_MODE (1 << 20) +#define IWM_SCAN_CONFIG_FLAG_CLEAR_PROMISC_MODE (1 << 21) + +/* Bits 26-31 are for num of channels in channel_array */ #define IWM_SCAN_CONFIG_N_CHANNELS(n) ((n) << 26) -}; -enum iwm_scan_config_rates { - /* OFDM basic rates */ - IWM_SCAN_CONFIG_RATE_6M = (1 << 0), - IWM_SCAN_CONFIG_RATE_9M = (1 << 1), - IWM_SCAN_CONFIG_RATE_12M = (1 << 2), - IWM_SCAN_CONFIG_RATE_18M = (1 << 3), - IWM_SCAN_CONFIG_RATE_24M = (1 << 4), - IWM_SCAN_CONFIG_RATE_36M = (1 << 5), - IWM_SCAN_CONFIG_RATE_48M = (1 << 6), - IWM_SCAN_CONFIG_RATE_54M = (1 << 7), - /* CCK basic rates */ - IWM_SCAN_CONFIG_RATE_1M = (1 << 8), - IWM_SCAN_CONFIG_RATE_2M = (1 << 9), - IWM_SCAN_CONFIG_RATE_5M = (1 << 10), - IWM_SCAN_CONFIG_RATE_11M = (1 << 11), - - /* Bits 16-27 are for supported rates */ +/* OFDM basic rates */ +#define IWM_SCAN_CONFIG_RATE_6M (1 << 0) +#define IWM_SCAN_CONFIG_RATE_9M (1 << 1) +#define IWM_SCAN_CONFIG_RATE_12M (1 << 2) +#define IWM_SCAN_CONFIG_RATE_18M (1 << 3) +#define IWM_SCAN_CONFIG_RATE_24M (1 << 4) +#define IWM_SCAN_CONFIG_RATE_36M (1 << 5) +#define IWM_SCAN_CONFIG_RATE_48M (1 << 6) +#define IWM_SCAN_CONFIG_RATE_54M (1 << 7) +/* CCK basic rates */ +#define IWM_SCAN_CONFIG_RATE_1M (1 << 8) +#define IWM_SCAN_CONFIG_RATE_2M (1 << 9) +#define IWM_SCAN_CONFIG_RATE_5M (1 << 10) +#define IWM_SCAN_CONFIG_RATE_11M (1 << 11) + +/* Bits 16-27 are for supported rates */ #define IWM_SCAN_CONFIG_SUPPORTED_RATE(rate) ((rate) << 16) -}; -enum iwm_channel_flags { - IWM_CHANNEL_FLAG_EBS = (1 << 0), - IWM_CHANNEL_FLAG_ACCURATE_EBS = (1 << 1), - IWM_CHANNEL_FLAG_EBS_ADD = (1 << 2), - IWM_CHANNEL_FLAG_PRE_SCAN_PASSIVE2ACTIVE = (1 << 3), -}; +#define IWM_CHANNEL_FLAG_EBS (1 << 0) +#define IWM_CHANNEL_FLAG_ACCURATE_EBS (1 << 1) +#define IWM_CHANNEL_FLAG_EBS_ADD (1 << 2) +#define IWM_CHANNEL_FLAG_PRE_SCAN_PASSIVE2ACTIVE (1 << 3) /** * struct iwm_scan_config * @flags: enum scan_config_flags * @tx_chains: valid_tx antenna - ANT_* definitions * @rx_chains: valid_rx antenna - ANT_* definitions * @legacy_rates: default legacy rates - enum scan_config_rates * @out_of_channel_time: default max out of serving channel time * @suspend_time: default max suspend time * @dwell_active: default dwell time for active scan * @dwell_passive: default dwell time for passive scan * @dwell_fragmented: default dwell time for fragmented scan * @dwell_extended: default dwell time for channels 1, 6 and 11 * @mac_addr: default mac address to be used in probes * @bcast_sta_id: the index of the station in the fw * @channel_flags: default channel flags - enum iwm_channel_flags * scan_config_channel_flag * @channel_array: default supported channels */ struct iwm_scan_config { uint32_t flags; uint32_t tx_chains; uint32_t rx_chains; uint32_t legacy_rates; uint32_t out_of_channel_time; uint32_t suspend_time; uint8_t dwell_active; uint8_t dwell_passive; uint8_t dwell_fragmented; uint8_t dwell_extended; - uint8_t mac_addr[IEEE80211_ADDR_LEN]; + uint8_t mac_addr[ETHER_ADDR_LEN]; uint8_t bcast_sta_id; uint8_t channel_flags; uint8_t channel_array[]; } __packed; /* SCAN_CONFIG_DB_CMD_API_S */ /** * iwm_umac_scan_flags *@IWM_UMAC_SCAN_FLAG_PREEMPTIVE: scan process triggered by this scan request * can be preempted by other scan requests with higher priority. * The low priority scan will be resumed when the higher proirity scan is * completed. *@IWM_UMAC_SCAN_FLAG_START_NOTIF: notification will be sent to the driver * when scan starts. */ -enum iwm_umac_scan_flags { - IWM_UMAC_SCAN_FLAG_PREEMPTIVE = (1 << 0), - IWM_UMAC_SCAN_FLAG_START_NOTIF = (1 << 1), -}; - -enum iwm_umac_scan_uid_offsets { - IWM_UMAC_SCAN_UID_TYPE_OFFSET = 0, - IWM_UMAC_SCAN_UID_SEQ_OFFSET = 8, -}; - -enum iwm_umac_scan_general_flags { - IWM_UMAC_SCAN_GEN_FLAGS_PERIODIC = (1 << 0), - IWM_UMAC_SCAN_GEN_FLAGS_OVER_BT = (1 << 1), - IWM_UMAC_SCAN_GEN_FLAGS_PASS_ALL = (1 << 2), - IWM_UMAC_SCAN_GEN_FLAGS_PASSIVE = (1 << 3), - IWM_UMAC_SCAN_GEN_FLAGS_PRE_CONNECT = (1 << 4), - IWM_UMAC_SCAN_GEN_FLAGS_ITER_COMPLETE = (1 << 5), - IWM_UMAC_SCAN_GEN_FLAGS_MULTIPLE_SSID = (1 << 6), - IWM_UMAC_SCAN_GEN_FLAGS_FRAGMENTED = (1 << 7), - IWM_UMAC_SCAN_GEN_FLAGS_RRM_ENABLED = (1 << 8), - IWM_UMAC_SCAN_GEN_FLAGS_MATCH = (1 << 9), - IWM_UMAC_SCAN_GEN_FLAGS_EXTENDED_DWELL = (1 << 10), -}; +#define IWM_UMAC_SCAN_FLAG_PREEMPTIVE (1 << 0) +#define IWM_UMAC_SCAN_FLAG_START_NOTIF (1 << 1) + +#define IWM_UMAC_SCAN_UID_TYPE_OFFSET 0 +#define IWM_UMAC_SCAN_UID_SEQ_OFFSET 8 + +#define IWM_UMAC_SCAN_GEN_FLAGS_PERIODIC (1 << 0) +#define IWM_UMAC_SCAN_GEN_FLAGS_OVER_BT (1 << 1) +#define IWM_UMAC_SCAN_GEN_FLAGS_PASS_ALL (1 << 2) +#define IWM_UMAC_SCAN_GEN_FLAGS_PASSIVE (1 << 3) +#define IWM_UMAC_SCAN_GEN_FLAGS_PRE_CONNECT (1 << 4) +#define IWM_UMAC_SCAN_GEN_FLAGS_ITER_COMPLETE (1 << 5) +#define IWM_UMAC_SCAN_GEN_FLAGS_MULTIPLE_SSID (1 << 6) +#define IWM_UMAC_SCAN_GEN_FLAGS_FRAGMENTED (1 << 7) +#define IWM_UMAC_SCAN_GEN_FLAGS_RRM_ENABLED (1 << 8) +#define IWM_UMAC_SCAN_GEN_FLAGS_MATCH (1 << 9) +#define IWM_UMAC_SCAN_GEN_FLAGS_EXTENDED_DWELL (1 << 10) +/* Extended dwell is obselete when adaptive dwell is used, making this + * bit reusable. Hence, probe request defer is used only when adaptive + * dwell is supported. */ +#define IWM_UMAC_SCAN_GEN_FLAGS_PROB_REQ_DEFER_SUPP (1 << 10) +#define IWM_UMAC_SCAN_GEN_FLAGS_LMAC2_FRAGMENTED (1 << 11) +#define IWM_UMAC_SCAN_GEN_FLAGS_ADAPTIVE_DWELL (1 << 13) +#define IWM_UMAC_SCAN_GEN_FLAGS_MAX_CHNL_TIME (1 << 14) +#define IWM_UMAC_SCAN_GEN_FLAGS_PROB_REQ_HIGH_TX_RATE (1 << 15) + +/** + * UMAC scan general flags #2 + * @IWM_UMAC_SCAN_GEN_FLAGS2_NOTIF_PER_CHNL: Whether to send a complete + * notification per channel or not. + * @IWM_UMAC_SCAN_GEN_FLAGS2_ALLOW_CHNL_REORDER: Whether to allow channel + * reorder optimization or not. + */ +#define IWM_UMAC_SCAN_GEN_FLAGS2_NOTIF_PER_CHNL (1 << 0) +#define IWM_UMAC_SCAN_GEN_FLAGS2_ALLOW_CHNL_REORDER (1 << 1) /** * struct iwm_scan_channel_cfg_umac * @flags: bitmap - 0-19: directed scan to i'th ssid. * @channel_num: channel number 1-13 etc. * @iter_count: repetition count for the channel. * @iter_interval: interval between two scan iterations on one channel. */ struct iwm_scan_channel_cfg_umac { uint32_t flags; -#define IWM_SCAN_CHANNEL_UMAC_NSSIDS(x) ((1 << (x)) - 1) - +#define IWM_SCAN_CHANNEL_UMAC_NSSIDS(x) ((1 << (x)) - 1) uint8_t channel_num; uint8_t iter_count; uint16_t iter_interval; -} __packed; /* SCAN_CHANNEL_CFG_S_VER2 */ +} __packed; /* SCAN_CHANNEL_CFG_S_VER1 */ /** * struct iwm_scan_umac_schedule * @interval: interval in seconds between scan iterations * @iter_count: num of scan iterations for schedule plan, 0xff for infinite loop * @reserved: for alignment and future use */ struct iwm_scan_umac_schedule { uint16_t interval; uint8_t iter_count; uint8_t reserved; } __packed; /* SCAN_SCHED_PARAM_API_S_VER_1 */ /** * struct iwm_scan_req_umac_tail - the rest of the UMAC scan request command * parameters following channels configuration array. * @schedule: two scheduling plans. * @delay: delay in TUs before starting the first scan iteration * @reserved: for future use and alignment * @preq: probe request with IEs blocks * @direct_scan: list of SSIDs for directed active scan */ -struct iwm_scan_req_umac_tail { +struct iwm_scan_req_umac_tail_v1 { /* SCAN_PERIODIC_PARAMS_API_S_VER_1 */ struct iwm_scan_umac_schedule schedule[IWM_MAX_SCHED_SCAN_PLANS]; uint16_t delay; uint16_t reserved; /* SCAN_PROBE_PARAMS_API_S_VER_1 */ + struct iwm_scan_probe_req_v1 preq; + struct iwm_ssid_ie direct_scan[IWM_PROBE_OPTION_MAX]; +} __packed; + +/** + * struct iwm_scan_req_umac_tail - the rest of the UMAC scan request command + * parameters following channels configuration array. + * @schedule: two scheduling plans. + * @delay: delay in TUs before starting the first scan iteration + * @reserved: for future use and alignment + * @preq: probe request with IEs blocks + * @direct_scan: list of SSIDs for directed active scan + */ +struct iwm_scan_req_umac_tail_v2 { + /* SCAN_PERIODIC_PARAMS_API_S_VER_1 */ + struct iwm_scan_umac_schedule schedule[IWM_MAX_SCHED_SCAN_PLANS]; + uint16_t delay; + uint16_t reserved; + /* SCAN_PROBE_PARAMS_API_S_VER_2 */ struct iwm_scan_probe_req preq; struct iwm_ssid_ie direct_scan[IWM_PROBE_OPTION_MAX]; } __packed; /** - * struct iwm_scan_uma_chan_param - * @flags: channel flags &enum iwm_scan_channel_flags + * struct iwm_scan_umac_chan_param + * @flags: channel flags &enum iwl_scan_channel_flags * @count: num of channels in scan request * @reserved: for future use and alignment */ struct iwm_scan_umac_chan_param { uint8_t flags; uint8_t count; uint16_t reserved; -} __packed; +} __packed; /* SCAN_CHANNEL_PARAMS_API_S_VER_1 */ + +#define IWM_SCAN_LB_LMAC_IDX 0 +#define IWM_SCAN_HB_LMAC_IDX 1 /** * struct iwm_scan_req_umac - * @flags: &enum iwm_umac_scan_flags - * @uid: scan id, &enum iwm_umac_scan_uid_offsets - * @ooc_priority: out of channel priority - &enum iwm_scan_priority - * @general_flags: &enum iwm_umac_scan_general_flags + * @flags: &enum iwl_umac_scan_flags + * @uid: scan id, &enum iwl_umac_scan_uid_offsets + * @ooc_priority: out of channel priority - &enum iwl_scan_priority + * @general_flags: &enum iwl_umac_scan_general_flags * @scan_start_mac_id: report the scan start TSF time according to this mac TSF * @extended_dwell: dwell time for channels 1, 6 and 11 * @active_dwell: dwell time for active scan per LMAC * @passive_dwell: dwell time for passive scan per LMAC * @fragmented_dwell: dwell time for fragmented passive scan * @adwell_default_n_aps: for adaptive dwell the default number of APs * per channel * @adwell_default_n_aps_social: for adaptive dwell the default * number of APs per social (1,6,11) channel * @general_flags2: &enum iwl_umac_scan_general_flags2 * @adwell_max_budget: for adaptive dwell the maximal budget of TU to be added * to total scan time * @max_out_time: max out of serving channel time, per LMAC - for CDB there - * are 2 LMACs + * are 2 LMACs (high band and low band) * @suspend_time: max suspend time, per LMAC - for CDB there are 2 LMACs * @scan_priority: scan internal prioritization &enum iwl_scan_priority * @num_of_fragments: Number of fragments needed for full coverage per band. * Relevant only for fragmented scan. - * @channel: &struct iwl_scan_umac_chan_param + * @channel: &struct iwm_scan_umac_chan_param * @reserved: for future use and alignment * @reserved3: for future use and alignment * @data: &struct iwm_scan_channel_cfg_umac and * &struct iwm_scan_req_umac_tail */ struct iwm_scan_req_umac { uint32_t flags; uint32_t uid; uint32_t ooc_priority; + /* SCAN_GENERAL_PARAMS_API_S_VER_1 */ uint16_t general_flags; uint8_t reserved; uint8_t scan_start_mac_id; union { struct { uint8_t extended_dwell; uint8_t active_dwell; uint8_t passive_dwell; uint8_t fragmented_dwell; uint32_t max_out_time; uint32_t suspend_time; uint32_t scan_priority; struct iwm_scan_umac_chan_param channel; uint8_t data[]; - } v1; + } v1; /* SCAN_REQUEST_CMD_UMAC_API_S_VER_1 */ + struct { + uint8_t extended_dwell; + uint8_t active_dwell; + uint8_t passive_dwell; + uint8_t fragmented_dwell; + uint32_t max_out_time[2]; + uint32_t suspend_time[2]; + uint32_t scan_priority; + struct iwm_scan_umac_chan_param channel; + uint8_t data[]; + } v6; /* SCAN_REQUEST_CMD_UMAC_API_S_VER_6 */ struct { uint8_t active_dwell; uint8_t passive_dwell; uint8_t fragmented_dwell; uint8_t adwell_default_n_aps; uint8_t adwell_default_n_aps_social; uint8_t reserved3; uint16_t adwell_max_budget; uint32_t max_out_time[2]; uint32_t suspend_time[2]; uint32_t scan_priority; struct iwm_scan_umac_chan_param channel; uint8_t data[]; - } v7; + } v7; /* SCAN_REQUEST_CMD_UMAC_API_S_VER_7 */ + struct { + uint8_t active_dwell[2]; + uint8_t reserved2; + uint8_t adwell_default_n_aps; + uint8_t adwell_default_n_aps_social; + uint8_t general_flags2; + uint16_t adwell_max_budget; + uint32_t max_out_time[2]; + uint32_t suspend_time[2]; + uint32_t scan_priority; + uint8_t passive_dwell[2]; + uint8_t num_of_fragments[2]; + struct iwm_scan_umac_chan_param channel; + uint8_t data[]; + } v8; /* SCAN_REQUEST_CMD_UMAC_API_S_VER_8 */ + struct { + uint8_t active_dwell[2]; + uint8_t adwell_default_hb_n_aps; + uint8_t adwell_default_lb_n_aps; + uint8_t adwell_default_n_aps_social; + uint8_t general_flags2; + uint16_t adwell_max_budget; + uint32_t max_out_time[2]; + uint32_t suspend_time[2]; + uint32_t scan_priority; + uint8_t passive_dwell[2]; + uint8_t num_of_fragments[2]; + struct iwm_scan_umac_chan_param channel; + uint8_t data[]; + } v9; /* SCAN_REQUEST_CMD_UMAC_API_S_VER_9 */ }; } __packed; +#define IWM_SCAN_REQ_UMAC_SIZE_V8 sizeof(struct iwm_scan_req_umac) #define IWM_SCAN_REQ_UMAC_SIZE_V7 48 +#define IWM_SCAN_REQ_UMAC_SIZE_V6 44 #define IWM_SCAN_REQ_UMAC_SIZE_V1 36 /** * struct iwm_umac_scan_abort * @uid: scan id, &enum iwm_umac_scan_uid_offsets * @flags: reserved */ struct iwm_umac_scan_abort { uint32_t uid; uint32_t flags; } __packed; /* SCAN_ABORT_CMD_UMAC_API_S_VER_1 */ /** * struct iwm_umac_scan_complete * @uid: scan id, &enum iwm_umac_scan_uid_offsets * @last_schedule: last scheduling line * @last_iter: last scan iteration number * @scan status: &enum iwm_scan_offload_complete_status * @ebs_status: &enum iwm_scan_ebs_status * @time_from_last_iter: time elapsed from last iteration * @reserved: for future use */ struct iwm_umac_scan_complete { uint32_t uid; uint8_t last_schedule; uint8_t last_iter; uint8_t status; uint8_t ebs_status; uint32_t time_from_last_iter; uint32_t reserved; } __packed; /* SCAN_COMPLETE_NTF_UMAC_API_S_VER_1 */ #define IWM_SCAN_OFFLOAD_MATCHING_CHANNELS_LEN 5 /** * struct iwm_scan_offload_profile_match - match information * @bssid: matched bssid * @channel: channel where the match occurred * @energy: * @matching_feature: * @matching_channels: bitmap of channels that matched, referencing * the channels passed in tue scan offload request */ struct iwm_scan_offload_profile_match { - uint8_t bssid[IEEE80211_ADDR_LEN]; + uint8_t bssid[ETHER_ADDR_LEN]; uint16_t reserved; uint8_t channel; uint8_t energy; uint8_t matching_feature; uint8_t matching_channels[IWM_SCAN_OFFLOAD_MATCHING_CHANNELS_LEN]; } __packed; /* SCAN_OFFLOAD_PROFILE_MATCH_RESULTS_S_VER_1 */ /** * struct iwm_scan_offload_profiles_query - match results query response * @matched_profiles: bitmap of matched profiles, referencing the * matches passed in the scan offload request * @last_scan_age: age of the last offloaded scan * @n_scans_done: number of offloaded scans done * @gp2_d0u: GP2 when D0U occurred * @gp2_invoked: GP2 when scan offload was invoked * @resume_while_scanning: not used * @self_recovery: obsolete * @reserved: reserved * @matches: array of match information, one for each match */ struct iwm_scan_offload_profiles_query { uint32_t matched_profiles; uint32_t last_scan_age; uint32_t n_scans_done; uint32_t gp2_d0u; uint32_t gp2_invoked; uint8_t resume_while_scanning; uint8_t self_recovery; uint16_t reserved; struct iwm_scan_offload_profile_match matches[IWM_SCAN_MAX_PROFILES]; } __packed; /* SCAN_OFFLOAD_PROFILES_QUERY_RSP_S_VER_2 */ /** * struct iwm_umac_scan_iter_complete_notif - notifies end of scanning iteration * @uid: scan id, &enum iwm_umac_scan_uid_offsets * @scanned_channels: number of channels scanned and number of valid elements in * results array * @status: one of SCAN_COMP_STATUS_* * @bt_status: BT on/off status * @last_channel: last channel that was scanned * @tsf_low: TSF timer (lower half) in usecs * @tsf_high: TSF timer (higher half) in usecs * @results: array of scan results, only "scanned_channels" of them are valid */ struct iwm_umac_scan_iter_complete_notif { uint32_t uid; uint8_t scanned_channels; uint8_t status; uint8_t bt_status; uint8_t last_channel; uint32_t tsf_low; uint32_t tsf_high; struct iwm_scan_results_notif results[]; } __packed; /* SCAN_ITER_COMPLETE_NTF_UMAC_API_S_VER_1 */ -/* Please keep this enum *SORTED* by hex value. - * Needed for binary search, otherwise a warning will be triggered. - */ -enum iwm_scan_subcmd_ids { - IWM_GSCAN_START_CMD = 0x0, - IWM_GSCAN_STOP_CMD = 0x1, - IWM_GSCAN_SET_HOTLIST_CMD = 0x2, - IWM_GSCAN_RESET_HOTLIST_CMD = 0x3, - IWM_GSCAN_SET_SIGNIFICANT_CHANGE_CMD = 0x4, - IWM_GSCAN_RESET_SIGNIFICANT_CHANGE_CMD = 0x5, - IWM_GSCAN_SIGNIFICANT_CHANGE_EVENT = 0xFD, - IWM_GSCAN_HOTLIST_CHANGE_EVENT = 0xFE, - IWM_GSCAN_RESULTS_AVAILABLE_EVENT = 0xFF, -}; +#define IWM_GSCAN_START_CMD 0x0 +#define IWM_GSCAN_STOP_CMD 0x1 +#define IWM_GSCAN_SET_HOTLIST_CMD 0x2 +#define IWM_GSCAN_RESET_HOTLIST_CMD 0x3 +#define IWM_GSCAN_SET_SIGNIFICANT_CHANGE_CMD 0x4 +#define IWM_GSCAN_RESET_SIGNIFICANT_CHANGE_CMD 0x5 +#define IWM_GSCAN_SIGNIFICANT_CHANGE_EVENT 0xFD +#define IWM_GSCAN_HOTLIST_CHANGE_EVENT 0xFE +#define IWM_GSCAN_RESULTS_AVAILABLE_EVENT 0xFF + +/* + * END mvm/fw-api-scan.h + */ + +/* + * BEGIN mvm/fw-api-sta.h + */ /* STA API */ /** - * enum iwm_sta_flags - flags for the ADD_STA host command + * flags for the ADD_STA host command * @IWM_STA_FLG_REDUCED_TX_PWR_CTRL: * @IWM_STA_FLG_REDUCED_TX_PWR_DATA: * @IWM_STA_FLG_DISABLE_TX: set if TX should be disabled * @IWM_STA_FLG_PS: set if STA is in Power Save * @IWM_STA_FLG_INVALID: set if STA is invalid * @IWM_STA_FLG_DLP_EN: Direct Link Protocol is enabled * @IWM_STA_FLG_SET_ALL_KEYS: the current key applies to all key IDs * @IWM_STA_FLG_DRAIN_FLOW: drain flow * @IWM_STA_FLG_PAN: STA is for PAN interface * @IWM_STA_FLG_CLASS_AUTH: * @IWM_STA_FLG_CLASS_ASSOC: * @IWM_STA_FLG_CLASS_MIMO_PROT: * @IWM_STA_FLG_MAX_AGG_SIZE_MSK: maximal size for A-MPDU * @IWM_STA_FLG_AGG_MPDU_DENS_MSK: maximal MPDU density for Tx aggregation * @IWM_STA_FLG_FAT_EN_MSK: support for channel width (for Tx). This flag is * initialised by driver and can be updated by fw upon reception of * action frames that can change the channel width. When cleared the fw * will send all the frames in 20MHz even when FAT channel is requested. * @IWM_STA_FLG_MIMO_EN_MSK: support for MIMO. This flag is initialised by the * driver and can be updated by fw upon reception of action frames. * @IWM_STA_FLG_MFP_EN: Management Frame Protection */ -enum iwm_sta_flags { - IWM_STA_FLG_REDUCED_TX_PWR_CTRL = (1 << 3), - IWM_STA_FLG_REDUCED_TX_PWR_DATA = (1 << 6), - - IWM_STA_FLG_DISABLE_TX = (1 << 4), - - IWM_STA_FLG_PS = (1 << 8), - IWM_STA_FLG_DRAIN_FLOW = (1 << 12), - IWM_STA_FLG_PAN = (1 << 13), - IWM_STA_FLG_CLASS_AUTH = (1 << 14), - IWM_STA_FLG_CLASS_ASSOC = (1 << 15), - IWM_STA_FLG_RTS_MIMO_PROT = (1 << 17), - - IWM_STA_FLG_MAX_AGG_SIZE_SHIFT = 19, - IWM_STA_FLG_MAX_AGG_SIZE_8K = (0 << IWM_STA_FLG_MAX_AGG_SIZE_SHIFT), - IWM_STA_FLG_MAX_AGG_SIZE_16K = (1 << IWM_STA_FLG_MAX_AGG_SIZE_SHIFT), - IWM_STA_FLG_MAX_AGG_SIZE_32K = (2 << IWM_STA_FLG_MAX_AGG_SIZE_SHIFT), - IWM_STA_FLG_MAX_AGG_SIZE_64K = (3 << IWM_STA_FLG_MAX_AGG_SIZE_SHIFT), - IWM_STA_FLG_MAX_AGG_SIZE_128K = (4 << IWM_STA_FLG_MAX_AGG_SIZE_SHIFT), - IWM_STA_FLG_MAX_AGG_SIZE_256K = (5 << IWM_STA_FLG_MAX_AGG_SIZE_SHIFT), - IWM_STA_FLG_MAX_AGG_SIZE_512K = (6 << IWM_STA_FLG_MAX_AGG_SIZE_SHIFT), - IWM_STA_FLG_MAX_AGG_SIZE_1024K = (7 << IWM_STA_FLG_MAX_AGG_SIZE_SHIFT), - IWM_STA_FLG_MAX_AGG_SIZE_MSK = (7 << IWM_STA_FLG_MAX_AGG_SIZE_SHIFT), - - IWM_STA_FLG_AGG_MPDU_DENS_SHIFT = 23, - IWM_STA_FLG_AGG_MPDU_DENS_2US = (4 << IWM_STA_FLG_AGG_MPDU_DENS_SHIFT), - IWM_STA_FLG_AGG_MPDU_DENS_4US = (5 << IWM_STA_FLG_AGG_MPDU_DENS_SHIFT), - IWM_STA_FLG_AGG_MPDU_DENS_8US = (6 << IWM_STA_FLG_AGG_MPDU_DENS_SHIFT), - IWM_STA_FLG_AGG_MPDU_DENS_16US = (7 << IWM_STA_FLG_AGG_MPDU_DENS_SHIFT), - IWM_STA_FLG_AGG_MPDU_DENS_MSK = (7 << IWM_STA_FLG_AGG_MPDU_DENS_SHIFT), - - IWM_STA_FLG_FAT_EN_20MHZ = (0 << 26), - IWM_STA_FLG_FAT_EN_40MHZ = (1 << 26), - IWM_STA_FLG_FAT_EN_80MHZ = (2 << 26), - IWM_STA_FLG_FAT_EN_160MHZ = (3 << 26), - IWM_STA_FLG_FAT_EN_MSK = (3 << 26), - - IWM_STA_FLG_MIMO_EN_SISO = (0 << 28), - IWM_STA_FLG_MIMO_EN_MIMO2 = (1 << 28), - IWM_STA_FLG_MIMO_EN_MIMO3 = (2 << 28), - IWM_STA_FLG_MIMO_EN_MSK = (3 << 28), -}; - -/** - * enum iwm_sta_key_flag - key flags for the ADD_STA host command +#define IWM_STA_FLG_REDUCED_TX_PWR_CTRL (1 << 3) +#define IWM_STA_FLG_REDUCED_TX_PWR_DATA (1 << 6) + +#define IWM_STA_FLG_DISABLE_TX (1 << 4) + +#define IWM_STA_FLG_PS (1 << 8) +#define IWM_STA_FLG_DRAIN_FLOW (1 << 12) +#define IWM_STA_FLG_PAN (1 << 13) +#define IWM_STA_FLG_CLASS_AUTH (1 << 14) +#define IWM_STA_FLG_CLASS_ASSOC (1 << 15) +#define IWM_STA_FLG_RTS_MIMO_PROT (1 << 17) + +#define IWM_STA_FLG_MAX_AGG_SIZE_SHIFT 19 +#define IWM_STA_FLG_MAX_AGG_SIZE_8K (0 << IWM_STA_FLG_MAX_AGG_SIZE_SHIFT) +#define IWM_STA_FLG_MAX_AGG_SIZE_16K (1 << IWM_STA_FLG_MAX_AGG_SIZE_SHIFT) +#define IWM_STA_FLG_MAX_AGG_SIZE_32K (2 << IWM_STA_FLG_MAX_AGG_SIZE_SHIFT) +#define IWM_STA_FLG_MAX_AGG_SIZE_64K (3 << IWM_STA_FLG_MAX_AGG_SIZE_SHIFT) +#define IWM_STA_FLG_MAX_AGG_SIZE_128K (4 << IWM_STA_FLG_MAX_AGG_SIZE_SHIFT) +#define IWM_STA_FLG_MAX_AGG_SIZE_256K (5 << IWM_STA_FLG_MAX_AGG_SIZE_SHIFT) +#define IWM_STA_FLG_MAX_AGG_SIZE_512K (6 << IWM_STA_FLG_MAX_AGG_SIZE_SHIFT) +#define IWM_STA_FLG_MAX_AGG_SIZE_1024K (7 << IWM_STA_FLG_MAX_AGG_SIZE_SHIFT) +#define IWM_STA_FLG_MAX_AGG_SIZE_MSK (7 << IWM_STA_FLG_MAX_AGG_SIZE_SHIFT) + +#define IWM_STA_FLG_AGG_MPDU_DENS_SHIFT 23 +#define IWM_STA_FLG_AGG_MPDU_DENS_2US (4 << IWM_STA_FLG_AGG_MPDU_DENS_SHIFT) +#define IWM_STA_FLG_AGG_MPDU_DENS_4US (5 << IWM_STA_FLG_AGG_MPDU_DENS_SHIFT) +#define IWM_STA_FLG_AGG_MPDU_DENS_8US (6 << IWM_STA_FLG_AGG_MPDU_DENS_SHIFT) +#define IWM_STA_FLG_AGG_MPDU_DENS_16US (7 << IWM_STA_FLG_AGG_MPDU_DENS_SHIFT) +#define IWM_STA_FLG_AGG_MPDU_DENS_MSK (7 << IWM_STA_FLG_AGG_MPDU_DENS_SHIFT) + +#define IWM_STA_FLG_FAT_EN_20MHZ (0 << 26) +#define IWM_STA_FLG_FAT_EN_40MHZ (1 << 26) +#define IWM_STA_FLG_FAT_EN_80MHZ (2 << 26) +#define IWM_STA_FLG_FAT_EN_160MHZ (3 << 26) +#define IWM_STA_FLG_FAT_EN_MSK (3 << 26) + +#define IWM_STA_FLG_MIMO_EN_SISO (0 << 28) +#define IWM_STA_FLG_MIMO_EN_MIMO2 (1 << 28) +#define IWM_STA_FLG_MIMO_EN_MIMO3 (2 << 28) +#define IWM_STA_FLG_MIMO_EN_MSK (3 << 28) + +/** + * key flags for the ADD_STA host command * @IWM_STA_KEY_FLG_NO_ENC: no encryption * @IWM_STA_KEY_FLG_WEP: WEP encryption algorithm * @IWM_STA_KEY_FLG_CCM: CCMP encryption algorithm * @IWM_STA_KEY_FLG_TKIP: TKIP encryption algorithm * @IWM_STA_KEY_FLG_EXT: extended cipher algorithm (depends on the FW support) * @IWM_STA_KEY_FLG_CMAC: CMAC encryption algorithm * @IWM_STA_KEY_FLG_ENC_UNKNOWN: unknown encryption algorithm * @IWM_STA_KEY_FLG_EN_MSK: mask for encryption algorithmi value * @IWM_STA_KEY_FLG_WEP_KEY_MAP: wep is either a group key (0 - legacy WEP) or from * station info array (1 - n 1X mode) * @IWM_STA_KEY_FLG_KEYID_MSK: the index of the key * @IWM_STA_KEY_NOT_VALID: key is invalid * @IWM_STA_KEY_FLG_WEP_13BYTES: set for 13 bytes WEP key - * @IWM_STA_KEY_MULTICAST: set for multical key + * @IWM_STA_KEY_MULTICAST: set for multicast key * @IWM_STA_KEY_MFP: key is used for Management Frame Protection */ -enum iwm_sta_key_flag { - IWM_STA_KEY_FLG_NO_ENC = (0 << 0), - IWM_STA_KEY_FLG_WEP = (1 << 0), - IWM_STA_KEY_FLG_CCM = (2 << 0), - IWM_STA_KEY_FLG_TKIP = (3 << 0), - IWM_STA_KEY_FLG_EXT = (4 << 0), - IWM_STA_KEY_FLG_CMAC = (6 << 0), - IWM_STA_KEY_FLG_ENC_UNKNOWN = (7 << 0), - IWM_STA_KEY_FLG_EN_MSK = (7 << 0), - - IWM_STA_KEY_FLG_WEP_KEY_MAP = (1 << 3), - IWM_STA_KEY_FLG_KEYID_POS = 8, - IWM_STA_KEY_FLG_KEYID_MSK = (3 << IWM_STA_KEY_FLG_KEYID_POS), - IWM_STA_KEY_NOT_VALID = (1 << 11), - IWM_STA_KEY_FLG_WEP_13BYTES = (1 << 12), - IWM_STA_KEY_MULTICAST = (1 << 14), - IWM_STA_KEY_MFP = (1 << 15), -}; - -/** - * enum iwm_sta_modify_flag - indicate to the fw what flag are being changed +#define IWM_STA_KEY_FLG_NO_ENC (0 << 0) +#define IWM_STA_KEY_FLG_WEP (1 << 0) +#define IWM_STA_KEY_FLG_CCM (2 << 0) +#define IWM_STA_KEY_FLG_TKIP (3 << 0) +#define IWM_STA_KEY_FLG_EXT (4 << 0) +#define IWM_STA_KEY_FLG_CMAC (6 << 0) +#define IWM_STA_KEY_FLG_ENC_UNKNOWN (7 << 0) +#define IWM_STA_KEY_FLG_EN_MSK (7 << 0) +#define IWM_STA_KEY_FLG_WEP_KEY_MAP (1 << 3) +#define IWM_STA_KEY_FLG_KEYID_POS 8 +#define IWM_STA_KEY_FLG_KEYID_MSK (3 << IWM_STA_KEY_FLG_KEYID_POS) +#define IWM_STA_KEY_NOT_VALID (1 << 11) +#define IWM_STA_KEY_FLG_WEP_13BYTES (1 << 12) +#define IWM_STA_KEY_MULTICAST (1 << 14) +#define IWM_STA_KEY_MFP (1 << 15) + +/** + * indicate to the fw what flag are being changed * @IWM_STA_MODIFY_QUEUE_REMOVAL: this command removes a queue * @IWM_STA_MODIFY_TID_DISABLE_TX: this command modifies %tid_disable_tx * @IWM_STA_MODIFY_TX_RATE: unused * @IWM_STA_MODIFY_ADD_BA_TID: this command modifies %add_immediate_ba_tid * @IWM_STA_MODIFY_REMOVE_BA_TID: this command modifies %remove_immediate_ba_tid * @IWM_STA_MODIFY_SLEEPING_STA_TX_COUNT: this command modifies %sleep_tx_count * @IWM_STA_MODIFY_PROT_TH: * @IWM_STA_MODIFY_QUEUES: modify the queues used by this station */ -enum iwm_sta_modify_flag { - IWM_STA_MODIFY_QUEUE_REMOVAL = (1 << 0), - IWM_STA_MODIFY_TID_DISABLE_TX = (1 << 1), - IWM_STA_MODIFY_TX_RATE = (1 << 2), - IWM_STA_MODIFY_ADD_BA_TID = (1 << 3), - IWM_STA_MODIFY_REMOVE_BA_TID = (1 << 4), - IWM_STA_MODIFY_SLEEPING_STA_TX_COUNT = (1 << 5), - IWM_STA_MODIFY_PROT_TH = (1 << 6), - IWM_STA_MODIFY_QUEUES = (1 << 7), -}; +#define IWM_STA_MODIFY_QUEUE_REMOVAL (1 << 0) +#define IWM_STA_MODIFY_TID_DISABLE_TX (1 << 1) +#define IWM_STA_MODIFY_TX_RATE (1 << 2) +#define IWM_STA_MODIFY_ADD_BA_TID (1 << 3) +#define IWM_STA_MODIFY_REMOVE_BA_TID (1 << 4) +#define IWM_STA_MODIFY_SLEEPING_STA_TX_COUNT (1 << 5) +#define IWM_STA_MODIFY_PROT_TH (1 << 6) +#define IWM_STA_MODIFY_QUEUES (1 << 7) #define IWM_STA_MODE_MODIFY 1 /** - * enum iwm_sta_sleep_flag - type of sleep of the station + * type of sleep of the station * @IWM_STA_SLEEP_STATE_AWAKE: * @IWM_STA_SLEEP_STATE_PS_POLL: * @IWM_STA_SLEEP_STATE_UAPSD: * @IWM_STA_SLEEP_STATE_MOREDATA: set more-data bit on * (last) released frame */ -enum iwm_sta_sleep_flag { - IWM_STA_SLEEP_STATE_AWAKE = 0, - IWM_STA_SLEEP_STATE_PS_POLL = (1 << 0), - IWM_STA_SLEEP_STATE_UAPSD = (1 << 1), - IWM_STA_SLEEP_STATE_MOREDATA = (1 << 2), -}; +#define IWM_STA_SLEEP_STATE_AWAKE 0 +#define IWM_STA_SLEEP_STATE_PS_POLL (1 << 0) +#define IWM_STA_SLEEP_STATE_UAPSD (1 << 1) +#define IWM_STA_SLEEP_STATE_MOREDATA (1 << 2) /* STA ID and color bits definitions */ #define IWM_STA_ID_SEED (0x0f) #define IWM_STA_ID_POS (0) #define IWM_STA_ID_MSK (IWM_STA_ID_SEED << IWM_STA_ID_POS) #define IWM_STA_COLOR_SEED (0x7) #define IWM_STA_COLOR_POS (4) #define IWM_STA_COLOR_MSK (IWM_STA_COLOR_SEED << IWM_STA_COLOR_POS) #define IWM_STA_ID_N_COLOR_GET_COLOR(id_n_color) \ (((id_n_color) & IWM_STA_COLOR_MSK) >> IWM_STA_COLOR_POS) #define IWM_STA_ID_N_COLOR_GET_ID(id_n_color) \ (((id_n_color) & IWM_STA_ID_MSK) >> IWM_STA_ID_POS) #define IWM_STA_KEY_MAX_NUM (16) #define IWM_STA_KEY_IDX_INVALID (0xff) #define IWM_STA_KEY_MAX_DATA_KEY_NUM (4) #define IWM_MAX_GLOBAL_KEYS (4) #define IWM_STA_KEY_LEN_WEP40 (5) #define IWM_STA_KEY_LEN_WEP104 (13) /** * struct iwm_keyinfo - key information * @key_flags: type %iwm_sta_key_flag * @tkip_rx_tsc_byte2: TSC[2] for key mix ph1 detection * @tkip_rx_ttak: 10-byte unicast TKIP TTAK for Rx * @key_offset: key offset in the fw's key table * @key: 16-byte unicast decryption key * @tx_secur_seq_cnt: initial RSC / PN needed for replay check * @hw_tkip_mic_rx_key: byte: MIC Rx Key - used for TKIP only * @hw_tkip_mic_tx_key: byte: MIC Tx Key - used for TKIP only */ struct iwm_keyinfo { uint16_t key_flags; uint8_t tkip_rx_tsc_byte2; uint8_t reserved1; uint16_t tkip_rx_ttak[5]; uint8_t key_offset; uint8_t reserved2; uint8_t key[16]; uint64_t tx_secur_seq_cnt; uint64_t hw_tkip_mic_rx_key; uint64_t hw_tkip_mic_tx_key; } __packed; #define IWM_ADD_STA_STATUS_MASK 0xFF #define IWM_ADD_STA_BAID_VALID_MASK 0x8000 #define IWM_ADD_STA_BAID_MASK 0x7F00 #define IWM_ADD_STA_BAID_SHIFT 8 /** - * struct iwl_add_sta_cmd_v7 - Add/modify a station in the fw's sta table. + * struct iwm_add_sta_cmd_v7 - Add/modify a station in the fw's sta table. * ( REPLY_ADD_STA = 0x18 ) - * @add_modify: see &enum iwl_sta_mode - * @awake_acs: ACs to transmit data on while station is sleeping (for U-APSD) + * @add_modify: 1: modify existing, 0: add new station + * @awake_acs: * @tid_disable_tx: is tid BIT(tid) enabled for Tx. Clear BIT(x) to enable - * AMPDU for tid x. Set %STA_MODIFY_TID_DISABLE_TX to change this field. - * @mac_id_n_color: the Mac context this station belongs to, - * see &enum iwl_ctxt_id_and_color - * @addr: station's MAC address - * @reserved2: reserved + * AMPDU for tid x. Set %IWM_STA_MODIFY_TID_DISABLE_TX to change this field. + * @mac_id_n_color: the Mac context this station belongs to + * @addr[ETHER_ADDR_LEN]: station's MAC address * @sta_id: index of station in uCode's station table - * @modify_mask: STA_MODIFY_*, selects which parameters to modify vs. leave + * @modify_mask: IWM_STA_MODIFY_*, selects which parameters to modify vs. leave * alone. 1 - modify, 0 - don't change. - * @reserved3: reserved - * @station_flags: look at &enum iwl_sta_flags - * @station_flags_msk: what of %station_flags have changed, - * also &enum iwl_sta_flags + * @station_flags: look at %iwm_sta_flags + * @station_flags_msk: what of %station_flags have changed * @add_immediate_ba_tid: tid for which to add block-ack support (Rx) - * Set %STA_MODIFY_ADD_BA_TID to use this field, and also set + * Set %IWM_STA_MODIFY_ADD_BA_TID to use this field, and also set * add_immediate_ba_ssn. * @remove_immediate_ba_tid: tid for which to remove block-ack support (Rx) - * Set %STA_MODIFY_REMOVE_BA_TID to use this field + * Set %IWM_STA_MODIFY_REMOVE_BA_TID to use this field * @add_immediate_ba_ssn: ssn for the Rx block-ack session. Used together with * add_immediate_ba_tid. * @sleep_tx_count: number of packets to transmit to station even though it is * asleep. Used to synchronise PS-poll and u-APSD responses while ucode * keeps track of STA sleep state. - * @sleep_state_flags: Look at &enum iwl_sta_sleep_flag. + * @sleep_state_flags: Look at %iwm_sta_sleep_flag. * @assoc_id: assoc_id to be sent in VHT PLCP (9-bit), for grp use 0, for AP * mac-addr. * @beamform_flags: beam forming controls * @tfd_queue_msk: tfd queues used by this station * * The device contains an internal table of per-station information, with info * on security keys, aggregation parameters, and Tx rates for initial Tx - * attempt and any retries (set by REPLY_TX_LINK_QUALITY_CMD). + * attempt and any retries (set by IWM_REPLY_TX_LINK_QUALITY_CMD). * * ADD_STA sets up the table entry for one station, either creating a new * entry, or modifying a pre-existing one. */ struct iwm_add_sta_cmd_v7 { uint8_t add_modify; uint8_t awake_acs; uint16_t tid_disable_tx; uint32_t mac_id_n_color; - uint8_t addr[IEEE80211_ADDR_LEN]; /* _STA_ID_MODIFY_INFO_API_S_VER_1 */ + uint8_t addr[ETHER_ADDR_LEN]; /* _STA_ID_MODIFY_INFO_API_S_VER_1 */ uint16_t reserved2; uint8_t sta_id; uint8_t modify_mask; uint16_t reserved3; uint32_t station_flags; uint32_t station_flags_msk; uint8_t add_immediate_ba_tid; uint8_t remove_immediate_ba_tid; uint16_t add_immediate_ba_ssn; uint16_t sleep_tx_count; uint16_t sleep_state_flags; uint16_t assoc_id; uint16_t beamform_flags; uint32_t tfd_queue_msk; } __packed; /* ADD_STA_CMD_API_S_VER_7 */ -/** - * enum iwm_sta_type - FW station types - * ( REPLY_ADD_STA = 0x18 ) - * @IWM_STA_LINK: Link station - normal RX and TX traffic. - * @IWM_STA_GENERAL_PURPOSE: General purpose. In AP mode used for beacons - * and probe responses. - * @IWM_STA_MULTICAST: multicast traffic, - * @IWM_STA_TDLS_LINK: TDLS link station - * @IWM_STA_AUX_ACTIVITY: auxilary station (scan, ROC and so on). - */ -enum iwm_sta_type { - IWM_STA_LINK, - IWM_STA_GENERAL_PURPOSE, - IWM_STA_MULTICAST, - IWM_STA_TDLS_LINK, - IWM_STA_AUX_ACTIVITY, -}; - /** * struct iwm_add_sta_cmd - Add/modify a station in the fw's sta table. * ( REPLY_ADD_STA = 0x18 ) - * @add_modify: see &enum iwm_sta_mode + * @add_modify: see &enum iwl_sta_mode * @awake_acs: ACs to transmit data on while station is sleeping (for U-APSD) * @tid_disable_tx: is tid BIT(tid) enabled for Tx. Clear BIT(x) to enable * AMPDU for tid x. Set %STA_MODIFY_TID_DISABLE_TX to change this field. * @mac_id_n_color: the Mac context this station belongs to, * see &enum iwl_ctxt_id_and_color * @addr: station's MAC address * @reserved2: reserved * @sta_id: index of station in uCode's station table * @modify_mask: STA_MODIFY_*, selects which parameters to modify vs. leave * alone. 1 - modify, 0 - don't change. * @reserved3: reserved - * @station_flags: look at &enum iwm_sta_flags + * @station_flags: look at &enum iwl_sta_flags * @station_flags_msk: what of %station_flags have changed, - * also &enum iwm_sta_flags + * also &enum iwl_sta_flags * @add_immediate_ba_tid: tid for which to add block-ack support (Rx) * Set %STA_MODIFY_ADD_BA_TID to use this field, and also set * add_immediate_ba_ssn. * @remove_immediate_ba_tid: tid for which to remove block-ack support (Rx) * Set %STA_MODIFY_REMOVE_BA_TID to use this field * @add_immediate_ba_ssn: ssn for the Rx block-ack session. Used together with * add_immediate_ba_tid. * @sleep_tx_count: number of packets to transmit to station even though it is * asleep. Used to synchronise PS-poll and u-APSD responses while ucode * keeps track of STA sleep state. * @station_type: type of this station. See &enum iwl_sta_type. * @sleep_state_flags: Look at &enum iwl_sta_sleep_flag. * @assoc_id: assoc_id to be sent in VHT PLCP (9-bit), for grp use 0, for AP * mac-addr. * @beamform_flags: beam forming controls * @tfd_queue_msk: tfd queues used by this station. * Obselete for new TX API (9 and above). * @rx_ba_window: aggregation window size * @sp_length: the size of the SP in actual number of frames * @uapsd_acs: 4 LS bits are trigger enabled ACs, 4 MS bits are the deliver * enabled ACs. * * The device contains an internal table of per-station information, with info * on security keys, aggregation parameters, and Tx rates for initial Tx * attempt and any retries (set by REPLY_TX_LINK_QUALITY_CMD). * * ADD_STA sets up the table entry for one station, either creating a new * entry, or modifying a pre-existing one. */ struct iwm_add_sta_cmd { uint8_t add_modify; uint8_t awake_acs; uint16_t tid_disable_tx; uint32_t mac_id_n_color; - uint8_t addr[IEEE80211_ADDR_LEN]; /* _STA_ID_MODIFY_INFO_API_S_VER_1 */ + uint8_t addr[ETHER_ADDR_LEN]; /* _STA_ID_MODIFY_INFO_API_S_VER_1 */ uint16_t reserved2; uint8_t sta_id; uint8_t modify_mask; uint16_t reserved3; uint32_t station_flags; uint32_t station_flags_msk; uint8_t add_immediate_ba_tid; uint8_t remove_immediate_ba_tid; uint16_t add_immediate_ba_ssn; uint16_t sleep_tx_count; uint8_t sleep_state_flags; uint8_t station_type; uint16_t assoc_id; uint16_t beamform_flags; uint32_t tfd_queue_msk; uint16_t rx_ba_window; uint8_t sp_length; uint8_t uapsd_acs; } __packed; /* ADD_STA_CMD_API_S_VER_10 */ /** - * struct iwm_add_sta_key_cmd - add/modify sta key - * ( IWM_REPLY_ADD_STA_KEY = 0x17 ) + * FW station types + * ( REPLY_ADD_STA = 0x18 ) + * @IWM_STA_LINK: Link station - normal RX and TX traffic. + * @IWM_STA_GENERAL_PURPOSE: General purpose. In AP mode used for beacons + * and probe responses. + * @IWM_STA_MULTICAST: multicast traffic, + * @IWM_STA_TDLS_LINK: TDLS link station + * @IWM_STA_AUX_ACTIVITY: auxilary station (scan, ROC and so on). + */ +#define IWM_STA_LINK 0 +#define IWM_STA_GENERAL_PURPOSE 1 +#define IWM_STA_MULTICAST 2 +#define IWM_STA_TDLS_LINK 3 +#define IWM_STA_AUX_ACTIVITY 4 + +/** + * struct iwm_add_sta_key_common - add/modify sta key common part + * ( REPLY_ADD_STA_KEY = 0x17 ) * @sta_id: index of station in uCode's station table * @key_offset: key offset in key storage - * @key_flags: type %iwm_sta_key_flag + * @key_flags: IWM_STA_KEY_FLG_* * @key: key material data - * @key2: key material data * @rx_secur_seq_cnt: RX security sequence counter for the key - * @tkip_rx_tsc_byte2: TSC[2] for key mix ph1 detection - * @tkip_rx_ttak: 10-byte unicast TKIP TTAK for Rx */ -struct iwm_add_sta_key_cmd { +struct iwm_add_sta_key_common { uint8_t sta_id; uint8_t key_offset; uint16_t key_flags; - uint8_t key[16]; - uint8_t key2[16]; + uint8_t key[32]; uint8_t rx_secur_seq_cnt[16]; +} __packed; + +/** + * struct iwm_add_sta_key_cmd_v1 - add/modify sta key + * @common: see &struct iwm_add_sta_key_common + * @tkip_rx_tsc_byte2: TSC[2] for key mix ph1 detection + * @reserved: reserved + * @tkip_rx_ttak: 10-byte unicast TKIP TTAK for Rx + */ +struct iwm_add_sta_key_cmd_v1 { + struct iwm_add_sta_key_common common; uint8_t tkip_rx_tsc_byte2; uint8_t reserved; uint16_t tkip_rx_ttak[5]; -} __packed; /* IWM_ADD_MODIFY_STA_KEY_API_S_VER_1 */ +} __packed; /* ADD_MODIFY_STA_KEY_API_S_VER_1 */ /** - * enum iwm_add_sta_rsp_status - status in the response to ADD_STA command + * struct iwm_add_sta_key_cmd - add/modify sta key + * @common: see &struct iwm_add_sta_key_common + * @rx_mic_key: TKIP RX unicast or multicast key + * @tx_mic_key: TKIP TX key + * @transmit_seq_cnt: TSC, transmit packet number + */ +struct iwm_add_sta_key_cmd { + struct iwm_add_sta_key_common common; + uint64_t rx_mic_key; + uint64_t tx_mic_key; + uint64_t transmit_seq_cnt; +} __packed; /* ADD_MODIFY_STA_KEY_API_S_VER_2 */ + +/** + * status in the response to ADD_STA command * @IWM_ADD_STA_SUCCESS: operation was executed successfully * @IWM_ADD_STA_STATIONS_OVERLOAD: no room left in the fw's station table * @IWM_ADD_STA_IMMEDIATE_BA_FAILURE: can't add Rx block ack session * @IWM_ADD_STA_MODIFY_NON_EXISTING_STA: driver requested to modify a station * that doesn't exist. */ -enum iwm_add_sta_rsp_status { - IWM_ADD_STA_SUCCESS = 0x1, - IWM_ADD_STA_STATIONS_OVERLOAD = 0x2, - IWM_ADD_STA_IMMEDIATE_BA_FAILURE = 0x4, - IWM_ADD_STA_MODIFY_NON_EXISTING_STA = 0x8, -}; +#define IWM_ADD_STA_SUCCESS 0x1 +#define IWM_ADD_STA_STATIONS_OVERLOAD 0x2 +#define IWM_ADD_STA_IMMEDIATE_BA_FAILURE 0x4 +#define IWM_ADD_STA_MODIFY_NON_EXISTING_STA 0x8 /** * struct iwm_rm_sta_cmd - Add / modify a station in the fw's station table * ( IWM_REMOVE_STA = 0x19 ) * @sta_id: the station id of the station to be removed */ struct iwm_rm_sta_cmd { uint8_t sta_id; uint8_t reserved[3]; } __packed; /* IWM_REMOVE_STA_CMD_API_S_VER_2 */ /** * struct iwm_mgmt_mcast_key_cmd * ( IWM_MGMT_MCAST_KEY = 0x1f ) * @ctrl_flags: %iwm_sta_key_flag * @IGTK: * @K1: IGTK master key * @K2: IGTK sub key * @sta_id: station ID that support IGTK * @key_id: * @receive_seq_cnt: initial RSC/PN needed for replay check */ struct iwm_mgmt_mcast_key_cmd { uint32_t ctrl_flags; uint8_t IGTK[16]; uint8_t K1[16]; uint8_t K2[16]; uint32_t key_id; uint32_t sta_id; uint64_t receive_seq_cnt; } __packed; /* SEC_MGMT_MULTICAST_KEY_CMD_API_S_VER_1 */ struct iwm_wep_key { uint8_t key_index; uint8_t key_offset; uint16_t reserved1; uint8_t key_size; uint8_t reserved2[3]; uint8_t key[16]; } __packed; struct iwm_wep_key_cmd { uint32_t mac_id_n_color; uint8_t num_keys; uint8_t decryption_type; uint8_t flags; uint8_t reserved; struct iwm_wep_key wep_key[0]; } __packed; /* SEC_CURR_WEP_KEY_CMD_API_S_VER_2 */ -/* - * END mvm/fw-api-sta.h - */ - -/* +/* * BT coex */ -enum iwm_bt_coex_mode { - IWM_BT_COEX_DISABLE = 0x0, - IWM_BT_COEX_NW = 0x1, - IWM_BT_COEX_BT = 0x2, - IWM_BT_COEX_WIFI = 0x3, -}; /* BT_COEX_MODES_E */ +#define IWM_BT_COEX_DISABLE 0x0 +#define IWM_BT_COEX_NW 0x1 +#define IWM_BT_COEX_BT 0x2 +#define IWM_BT_COEX_WIFI 0x3 +/* BT_COEX_MODES_E */ -enum iwm_bt_coex_enabled_modules { - IWM_BT_COEX_MPLUT_ENABLED = (1 << 0), - IWM_BT_COEX_MPLUT_BOOST_ENABLED = (1 << 1), - IWM_BT_COEX_SYNC2SCO_ENABLED = (1 << 2), - IWM_BT_COEX_CORUN_ENABLED = (1 << 3), - IWM_BT_COEX_HIGH_BAND_RET = (1 << 4), -}; /* BT_COEX_MODULES_ENABLE_E_VER_1 */ +#define IWM_BT_COEX_MPLUT_ENABLED (1 << 0) +#define IWM_BT_COEX_MPLUT_BOOST_ENABLED (1 << 1) +#define IWM_BT_COEX_SYNC2SCO_ENABLED (1 << 2) +#define IWM_BT_COEX_CORUN_ENABLED (1 << 3) +#define IWM_BT_COEX_HIGH_BAND_RET (1 << 4) +/* BT_COEX_MODULES_ENABLE_E_VER_1 */ /** * struct iwm_bt_coex_cmd - bt coex configuration command * @mode: enum %iwm_bt_coex_mode * @enabled_modules: enum %iwm_bt_coex_enabled_modules * * The structure is used for the BT_COEX command. */ struct iwm_bt_coex_cmd { uint32_t mode; uint32_t enabled_modules; } __packed; /* BT_COEX_CMD_API_S_VER_6 */ /* * Location Aware Regulatory (LAR) API - MCC updates */ /** * struct iwm_mcc_update_cmd_v1 - Request the device to update geographic * regulatory profile according to the given MCC (Mobile Country Code). * The MCC is two letter-code, ascii upper case[A-Z] or '00' for world domain. * 'ZZ' MCC will be used to switch to NVM default profile; in this case, the * MCC in the cmd response will be the relevant MCC in the NVM. * @mcc: given mobile country code * @source_id: the source from where we got the MCC, see iwm_mcc_source * @reserved: reserved for alignment */ struct iwm_mcc_update_cmd_v1 { uint16_t mcc; uint8_t source_id; uint8_t reserved; } __packed; /* LAR_UPDATE_MCC_CMD_API_S_VER_1 */ /** * struct iwm_mcc_update_cmd - Request the device to update geographic * regulatory profile according to the given MCC (Mobile Country Code). * The MCC is two letter-code, ascii upper case[A-Z] or '00' for world domain. * 'ZZ' MCC will be used to switch to NVM default profile; in this case, the * MCC in the cmd response will be the relevant MCC in the NVM. * @mcc: given mobile country code * @source_id: the source from where we got the MCC, see iwm_mcc_source * @reserved: reserved for alignment * @key: integrity key for MCC API OEM testing * @reserved2: reserved */ struct iwm_mcc_update_cmd { uint16_t mcc; uint8_t source_id; uint8_t reserved; uint32_t key; uint32_t reserved2[5]; } __packed; /* LAR_UPDATE_MCC_CMD_API_S_VER_2 */ /** * iwm_mcc_update_resp_v1 - response to MCC_UPDATE_CMD. * Contains the new channel control profile map, if changed, and the new MCC * (mobile country code). * The new MCC may be different than what was requested in MCC_UPDATE_CMD. * @status: see &enum iwm_mcc_update_status * @mcc: the new applied MCC * @cap: capabilities for all channels which matches the MCC * @source_id: the MCC source, see iwm_mcc_source * @n_channels: number of channels in @channels_data (may be 14, 39, 50 or 51 * channels, depending on platform) * @channels: channel control data map, DWORD for each channel. Only the first * 16bits are used. */ struct iwm_mcc_update_resp_v1 { uint32_t status; uint16_t mcc; uint8_t cap; uint8_t source_id; uint32_t n_channels; uint32_t channels[0]; } __packed; /* LAR_UPDATE_MCC_CMD_RESP_S_VER_1 */ /** - * iwm_mcc_update_resp - response to MCC_UPDATE_CMD. + * iwm_mcc_update_resp_v2 - response to MCC_UPDATE_CMD. * Contains the new channel control profile map, if changed, and the new MCC * (mobile country code). * The new MCC may be different than what was requested in MCC_UPDATE_CMD. * @status: see &enum iwm_mcc_update_status * @mcc: the new applied MCC * @cap: capabilities for all channels which matches the MCC * @source_id: the MCC source, see iwm_mcc_source * @time: time elapsed from the MCC test start (in 30 seconds TU) * @reserved: reserved. * @n_channels: number of channels in @channels_data (may be 14, 39, 50 or 51 * channels, depending on platform) * @channels: channel control data map, DWORD for each channel. Only the first * 16bits are used. */ -struct iwm_mcc_update_resp { +struct iwm_mcc_update_resp_v2 { uint32_t status; uint16_t mcc; uint8_t cap; uint8_t source_id; uint16_t time; uint16_t reserved; uint32_t n_channels; uint32_t channels[0]; } __packed; /* LAR_UPDATE_MCC_CMD_RESP_S_VER_2 */ +#define IWM_GEO_NO_INFO 0 +#define IWM_GEO_WMM_ETSI_5GHZ_INFO (1 << 0) + +/** + * iwm_mcc_update_resp_v3 - response to MCC_UPDATE_CMD. + * Contains the new channel control profile map, if changed, and the new MCC + * (mobile country code). + * The new MCC may be different than what was requested in MCC_UPDATE_CMD. + * @status: see &enum iwm_mcc_update_status + * @mcc: the new applied MCC + * @cap: capabilities for all channels which matches the MCC + * @source_id: the MCC source, see IWM_MCC_SOURCE_* + * @time: time elapsed from the MCC test start (in 30 seconds TU) + * @geo_info: geographic specific profile information + * @n_channels: number of channels in @channels_data (may be 14, 39, 50 or 51 + * channels, depending on platform) + * @channels: channel control data map, DWORD for each channel. Only the first + * 16bits are used. + */ +struct iwm_mcc_update_resp_v3 { + uint32_t status; + uint16_t mcc; + uint8_t cap; + uint8_t source_id; + uint16_t time; + uint16_t geo_info; + uint32_t n_channels; + uint32_t channels[0]; +} __packed; /* LAR_UPDATE_MCC_CMD_RESP_S_VER_3 */ + /** * struct iwm_mcc_chub_notif - chub notifies of mcc change * (MCC_CHUB_UPDATE_CMD = 0xc9) * The Chub (Communication Hub, CommsHUB) is a HW component that connects to * the cellular and connectivity cores that gets updates of the mcc, and * notifies the ucode directly of any mcc change. * The ucode requests the driver to request the device to update geographic * regulatory profile according to the given MCC (Mobile Country Code). * The MCC is two letter-code, ascii upper case[A-Z] or '00' for world domain. * 'ZZ' MCC will be used to switch to NVM default profile; in this case, the * MCC in the cmd response will be the relevant MCC in the NVM. * @mcc: given mobile country code * @source_id: identity of the change originator, see iwm_mcc_source * @reserved1: reserved for alignment */ struct iwm_mcc_chub_notif { uint16_t mcc; uint8_t source_id; uint8_t reserved1; } __packed; /* LAR_MCC_NOTIFY_S */ -enum iwm_mcc_update_status { - IWM_MCC_RESP_NEW_CHAN_PROFILE, - IWM_MCC_RESP_SAME_CHAN_PROFILE, - IWM_MCC_RESP_INVALID, - IWM_MCC_RESP_NVM_DISABLED, - IWM_MCC_RESP_ILLEGAL, - IWM_MCC_RESP_LOW_PRIORITY, - IWM_MCC_RESP_TEST_MODE_ACTIVE, - IWM_MCC_RESP_TEST_MODE_NOT_ACTIVE, - IWM_MCC_RESP_TEST_MODE_DENIAL_OF_SERVICE, -}; - -enum iwm_mcc_source { - IWM_MCC_SOURCE_OLD_FW = 0, - IWM_MCC_SOURCE_ME = 1, - IWM_MCC_SOURCE_BIOS = 2, - IWM_MCC_SOURCE_3G_LTE_HOST = 3, - IWM_MCC_SOURCE_3G_LTE_DEVICE = 4, - IWM_MCC_SOURCE_WIFI = 5, - IWM_MCC_SOURCE_RESERVED = 6, - IWM_MCC_SOURCE_DEFAULT = 7, - IWM_MCC_SOURCE_UNINITIALIZED = 8, - IWM_MCC_SOURCE_MCC_API = 9, - IWM_MCC_SOURCE_GET_CURRENT = 0x10, - IWM_MCC_SOURCE_GETTING_MCC_TEST_MODE = 0x11, -}; +#define IWM_MCC_RESP_NEW_CHAN_PROFILE 0 +#define IWM_MCC_RESP_SAME_CHAN_PROFILE 1 +#define IWM_MCC_RESP_INVALID 2 +#define IWM_MCC_RESP_NVM_DISABLED 3 +#define IWM_MCC_RESP_ILLEGAL 4 +#define IWM_MCC_RESP_LOW_PRIORITY 5 +#define IWM_MCC_RESP_TEST_MODE_ACTIVE 6 +#define IWM_MCC_RESP_TEST_MODE_NOT_ACTIVE 7 +#define IWM_MCC_RESP_TEST_MODE_DENIAL_OF_SERVICE 8 + +#define IWM_MCC_SOURCE_OLD_FW 0 +#define IWM_MCC_SOURCE_ME 1 +#define IWM_MCC_SOURCE_BIOS 2 +#define IWM_MCC_SOURCE_3G_LTE_HOST 3 +#define IWM_MCC_SOURCE_3G_LTE_DEVICE 4 +#define IWM_MCC_SOURCE_WIFI 5 +#define IWM_MCC_SOURCE_RESERVED 6 +#define IWM_MCC_SOURCE_DEFAULT 7 +#define IWM_MCC_SOURCE_UNINITIALIZED 8 +#define IWM_MCC_SOURCE_MCC_API 9 +#define IWM_MCC_SOURCE_GET_CURRENT 0x10 +#define IWM_MCC_SOURCE_GETTING_MCC_TEST_MODE 0x11 /** * struct iwm_dts_measurement_notif_v1 - measurements notification * * @temp: the measured temperature * @voltage: the measured voltage */ struct iwm_dts_measurement_notif_v1 { int32_t temp; int32_t voltage; } __packed; /* TEMPERATURE_MEASUREMENT_TRIGGER_NTFY_S_VER_1*/ /** * struct iwm_dts_measurement_notif_v2 - measurements notification * * @temp: the measured temperature * @voltage: the measured voltage * @threshold_idx: the trip index that was crossed */ struct iwm_dts_measurement_notif_v2 { int32_t temp; int32_t voltage; int32_t threshold_idx; } __packed; /* TEMPERATURE_MEASUREMENT_TRIGGER_NTFY_S_VER_2 */ + /* * Some cherry-picked definitions */ #define IWM_FRAME_LIMIT 64 /* + * From Linux commit ab02165ccec4c78162501acedeef1a768acdb811: + * As the firmware is slowly running out of command IDs and grouping of + * commands is desirable anyway, the firmware is extending the command + * header from 4 bytes to 8 bytes to introduce a group (in place of the + * former flags field, since that's always 0 on commands and thus can + * be easily used to distinguish between the two). + * * These functions retrieve specific information from the id field in * the iwm_host_cmd struct which contains the command id, the group id, - * and the version of the command and vice versa. + * and the version of the command. */ static inline uint8_t iwm_cmd_opcode(uint32_t cmdid) { return cmdid & 0xff; } static inline uint8_t iwm_cmd_groupid(uint32_t cmdid) { return ((cmdid & 0xff00) >> 8); } static inline uint8_t iwm_cmd_version(uint32_t cmdid) { return ((cmdid & 0xff0000) >> 16); } static inline uint32_t iwm_cmd_id(uint8_t opcode, uint8_t groupid, uint8_t version) { return opcode + (groupid << 8) + (version << 16); } /* make uint16_t wide id out of uint8_t group and opcode */ #define IWM_WIDE_ID(grp, opcode) ((grp << 8) | opcode) /* due to the conversion, this group is special */ -#define IWM_ALWAYS_LONG_GROUP 1 +#define IWM_ALWAYS_LONG_GROUP 1 struct iwm_cmd_header { uint8_t code; uint8_t flags; uint8_t idx; uint8_t qid; } __packed; struct iwm_cmd_header_wide { uint8_t opcode; uint8_t group_id; uint8_t idx; uint8_t qid; uint16_t length; uint8_t reserved; uint8_t version; } __packed; -/** - * enum iwm_power_scheme - * @IWM_POWER_LEVEL_CAM - Continuously Active Mode - * @IWM_POWER_LEVEL_BPS - Balanced Power Save (default) - * @IWM_POWER_LEVEL_LP - Low Power - */ -enum iwm_power_scheme { - IWM_POWER_SCHEME_CAM = 1, - IWM_POWER_SCHEME_BPS, - IWM_POWER_SCHEME_LP -}; +#define IWM_POWER_SCHEME_CAM 1 +#define IWM_POWER_SCHEME_BPS 2 +#define IWM_POWER_SCHEME_LP 3 #define IWM_DEF_CMD_PAYLOAD_SIZE 320 #define IWM_MAX_CMD_PAYLOAD_SIZE ((4096 - 4) - sizeof(struct iwm_cmd_header)) #define IWM_CMD_FAILED_MSK 0x40 /** * struct iwm_device_cmd * * For allocation of the command and tx queues, this establishes the overall * size of the largest command we send to uCode, except for commands that * aren't fully copied and use other TFD space. */ struct iwm_device_cmd { union { struct { struct iwm_cmd_header hdr; uint8_t data[IWM_DEF_CMD_PAYLOAD_SIZE]; }; struct { struct iwm_cmd_header_wide hdr_wide; uint8_t data_wide[IWM_DEF_CMD_PAYLOAD_SIZE - sizeof(struct iwm_cmd_header_wide) + sizeof(struct iwm_cmd_header)]; }; }; } __packed; struct iwm_rx_packet { /* * The first 4 bytes of the RX frame header contain both the RX frame * size and some flags. * Bit fields: * 31: flag flush RB request * 30: flag ignore TC (terminal counter) request * 29: flag fast IRQ request - * 28-14: Reserved + * 28-26: Reserved + * 25: Offload enabled + * 24: RPF enabled + * 23: RSS enabled + * 22: Checksum enabled + * 21-16: RX queue + * 15-14: Reserved * 13-00: RX frame size */ uint32_t len_n_flags; struct iwm_cmd_header hdr; uint8_t data[]; } __packed; #define IWM_FH_RSCSR_FRAME_SIZE_MSK 0x00003fff -#define IWM_FH_RSCSR_FRAME_INVALID 0x55550000 -#define IWM_FH_RSCSR_FRAME_ALIGN 0x40 +#define IWM_FH_RSCSR_FRAME_INVALID 0x55550000 +#define IWM_FH_RSCSR_FRAME_ALIGN 0x40 +#define IWM_FH_RSCSR_RPA_EN (1 << 25) +#define IWM_FH_RSCSR_RADA_EN (1 << 26) +#define IWM_FH_RSCSR_RXQ_POS 16 +#define IWM_FH_RSCSR_RXQ_MASK 0x3F0000 static inline uint32_t iwm_rx_packet_len(const struct iwm_rx_packet *pkt) { return le32toh(pkt->len_n_flags) & IWM_FH_RSCSR_FRAME_SIZE_MSK; } static inline uint32_t iwm_rx_packet_payload_len(const struct iwm_rx_packet *pkt) { return iwm_rx_packet_len(pkt) - sizeof(pkt->hdr); } #define IWM_MIN_DBM -100 #define IWM_MAX_DBM -33 /* realistic guess */ #define IWM_READ(sc, reg) \ bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg)) #define IWM_WRITE(sc, reg, val) \ bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val)) #define IWM_WRITE_1(sc, reg, val) \ bus_space_write_1((sc)->sc_st, (sc)->sc_sh, (reg), (val)) #define IWM_SETBITS(sc, reg, mask) \ IWM_WRITE(sc, reg, IWM_READ(sc, reg) | (mask)) #define IWM_CLRBITS(sc, reg, mask) \ IWM_WRITE(sc, reg, IWM_READ(sc, reg) & ~(mask)) #define IWM_BARRIER_WRITE(sc) \ bus_space_barrier((sc)->sc_st, (sc)->sc_sh, 0, (sc)->sc_sz, \ BUS_SPACE_BARRIER_WRITE) #define IWM_BARRIER_READ_WRITE(sc) \ bus_space_barrier((sc)->sc_st, (sc)->sc_sh, 0, (sc)->sc_sz, \ BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE) #endif /* __IF_IWM_REG_H__ */ diff --git a/sys/dev/iwm/if_iwmvar.h b/sys/dev/iwm/if_iwmvar.h index ea15f90064a4..ad5e5cc36348 100644 --- a/sys/dev/iwm/if_iwmvar.h +++ b/sys/dev/iwm/if_iwmvar.h @@ -1,580 +1,580 @@ /* $OpenBSD: if_iwmvar.h,v 1.7 2015/03/02 13:51:10 jsg Exp $ */ /* $FreeBSD$ */ /* * Copyright (c) 2014 genua mbh * Copyright (c) 2014 Fixup Software Ltd. * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /*- * Based on BSD-licensed source modules in the Linux iwlwifi driver, * which were used as the reference documentation for this implementation. * * Driver version we are currently based off of is * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd) * *********************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called COPYING. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * * BSD LICENSE * * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 2007-2010 Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ struct iwm_rx_radiotap_header { struct ieee80211_radiotap_header wr_ihdr; uint64_t wr_tsft; uint8_t wr_flags; uint8_t wr_rate; uint16_t wr_chan_freq; uint16_t wr_chan_flags; int8_t wr_dbm_antsignal; int8_t wr_dbm_antnoise; } __packed __aligned(8); #define IWM_RX_RADIOTAP_PRESENT \ ((1 << IEEE80211_RADIOTAP_TSFT) | \ (1 << IEEE80211_RADIOTAP_FLAGS) | \ (1 << IEEE80211_RADIOTAP_RATE) | \ (1 << IEEE80211_RADIOTAP_CHANNEL) | \ (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) | \ (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE)) struct iwm_tx_radiotap_header { struct ieee80211_radiotap_header wt_ihdr; uint8_t wt_flags; uint8_t wt_rate; uint16_t wt_chan_freq; uint16_t wt_chan_flags; } __packed; #define IWM_TX_RADIOTAP_PRESENT \ ((1 << IEEE80211_RADIOTAP_FLAGS) | \ (1 << IEEE80211_RADIOTAP_RATE) | \ (1 << IEEE80211_RADIOTAP_CHANNEL)) #define IWM_UCODE_SECTION_MAX 16 /** * enum iwm_ucode_type * * The type of ucode. * * @IWM_UCODE_REGULAR: Normal runtime ucode * @IWM_UCODE_INIT: Initial ucode * @IWM_UCODE_WOWLAN: Wake on Wireless enabled ucode * @IWM_UCODE_REGULAR_USNIFFER: Normal runtime ucode when using usniffer image */ enum iwm_ucode_type { IWM_UCODE_REGULAR, IWM_UCODE_INIT, IWM_UCODE_WOWLAN, IWM_UCODE_REGULAR_USNIFFER, IWM_UCODE_TYPE_MAX }; struct iwm_ucode_capabilities { uint32_t max_probe_length; uint32_t n_scan_channels; uint32_t flags; uint8_t enabled_api[howmany(IWM_NUM_UCODE_TLV_API, NBBY)]; uint8_t enabled_capa[howmany(IWM_NUM_UCODE_TLV_CAPA, NBBY)]; }; /* one for each uCode image (inst/data, init/runtime/wowlan) */ struct iwm_fw_desc { const void *data; /* vmalloc'ed data */ uint32_t len; /* size in bytes */ uint32_t offset; /* offset in the device */ }; struct iwm_fw_img { struct iwm_fw_desc sec[IWM_UCODE_SECTION_MAX]; int fw_count; int is_dual_cpus; uint32_t paging_mem_size; }; struct iwm_fw_info { const struct firmware *fw_fp; /* ucode images */ struct iwm_fw_img img[IWM_UCODE_TYPE_MAX]; struct iwm_ucode_capabilities ucode_capa; uint32_t phy_config; uint8_t valid_tx_ant; uint8_t valid_rx_ant; }; struct iwm_nvm_data { int n_hw_addrs; uint8_t hw_addr[IEEE80211_ADDR_LEN]; int sku_cap_band_24GHz_enable; int sku_cap_band_52GHz_enable; int sku_cap_11n_enable; int sku_cap_amt_enable; int sku_cap_ipan_enable; uint8_t radio_cfg_type; uint8_t radio_cfg_step; uint8_t radio_cfg_dash; uint8_t radio_cfg_pnum; uint8_t valid_tx_ant, valid_rx_ant; #define IWM_NUM_CHANNELS 39 #define IWM_NUM_CHANNELS_8000 51 uint16_t nvm_version; uint8_t max_tx_pwr_half_dbm; boolean_t lar_enabled; uint16_t nvm_ch_flags[]; }; /* max bufs per tfd the driver will use */ #define IWM_MAX_CMD_TBS_PER_TFD 2 struct iwm_rx_packet; struct iwm_host_cmd { const void *data[IWM_MAX_CMD_TBS_PER_TFD]; struct iwm_rx_packet *resp_pkt; unsigned long _rx_page_addr; uint32_t _rx_page_order; int handler_status; uint32_t flags; uint32_t id; uint16_t len[IWM_MAX_CMD_TBS_PER_TFD]; uint8_t dataflags[IWM_MAX_CMD_TBS_PER_TFD]; }; /* * DMA glue is from iwn */ typedef caddr_t iwm_caddr_t; typedef void *iwm_hookarg_t; struct iwm_dma_info { bus_dma_tag_t tag; bus_dmamap_t map; bus_dma_segment_t seg; bus_addr_t paddr; void *vaddr; bus_size_t size; }; /** * struct iwm_fw_paging * @fw_paging_block: dma memory info * @fw_paging_size: page size */ struct iwm_fw_paging { struct iwm_dma_info fw_paging_block; uint32_t fw_paging_size; }; #define IWM_TX_RING_COUNT 256 #define IWM_TX_RING_LOMARK 192 #define IWM_TX_RING_HIMARK 224 struct iwm_tx_data { bus_dmamap_t map; bus_addr_t cmd_paddr; bus_addr_t scratch_paddr; struct mbuf *m; struct iwm_node *in; int done; }; struct iwm_tx_ring { struct iwm_dma_info desc_dma; struct iwm_dma_info cmd_dma; struct iwm_tfd *desc; struct iwm_device_cmd *cmd; bus_dma_tag_t data_dmat; struct iwm_tx_data data[IWM_TX_RING_COUNT]; int qid; int queued; int cur; }; #define IWM_RX_LEGACY_RING_COUNT 256 #define IWM_RX_MQ_RING_COUNT 512 #define IWM_RBUF_SIZE 4096 #define IWM_MAX_SCATTER 20 struct iwm_rx_data { struct mbuf *m; bus_dmamap_t map; }; struct iwm_rx_ring { struct iwm_dma_info free_desc_dma; struct iwm_dma_info used_desc_dma; struct iwm_dma_info stat_dma; struct iwm_dma_info buf_dma; void *desc; struct iwm_rb_status *stat; struct iwm_rx_data data[512]; bus_dmamap_t spare_map; /* for iwm_rx_addbuf() */ bus_dma_tag_t data_dmat; int cur; }; #define IWM_CMD_RESP_MAX PAGE_SIZE #define IWM_TE_SESSION_PROTECTION_MAX_TIME_MS 500 #define IWM_TE_SESSION_PROTECTION_MIN_TIME_MS 400 /* * Command headers are in iwl-trans.h, which is full of all * kinds of other junk, so we just replicate the structures here. * First the software bits: */ enum IWM_CMD_MODE { IWM_CMD_SYNC = 0, IWM_CMD_ASYNC = (1 << 0), IWM_CMD_WANT_SKB = (1 << 1), IWM_CMD_SEND_IN_RFKILL = (1 << 2), }; enum iwm_hcmd_dataflag { IWM_HCMD_DFL_NOCOPY = (1 << 0), IWM_HCMD_DFL_DUP = (1 << 1), }; struct iwm_int_sta { uint32_t sta_id; uint32_t tfd_queue_msk; }; struct iwm_phy_ctxt { uint16_t id; uint16_t color; uint32_t ref; struct ieee80211_channel *channel; }; struct iwm_bf_data { int bf_enabled; /* filtering */ int ba_enabled; /* abort */ int ave_beacon_signal; int last_cqm_event; }; struct iwm_vap { struct ieee80211vap iv_vap; int is_uploaded; int iv_auth; int (*iv_newstate)(struct ieee80211vap *, enum ieee80211_state, int); struct iwm_phy_ctxt *phy_ctxt; uint16_t id; uint16_t color; boolean_t have_wme; /* * QoS data from net80211, need to store this here * as net80211 has a separate callback but we need * to have the data for the MAC context */ struct { uint16_t cw_min; uint16_t cw_max; uint16_t edca_txop; uint8_t aifsn; } queue_params[WME_NUM_AC]; /* indicates that this interface requires PS to be disabled */ boolean_t ps_disabled; }; #define IWM_VAP(_vap) ((struct iwm_vap *)(_vap)) struct iwm_node { struct ieee80211_node in_ni; /* status "bits" */ int in_assoc; struct iwm_lq_cmd in_lq; }; #define IWM_NODE(_ni) ((struct iwm_node *)(_ni)) #define IWM_STATION_ID 0 #define IWM_AUX_STA_ID 1 #define IWM_DEFAULT_MACID 0 #define IWM_DEFAULT_COLOR 0 #define IWM_DEFAULT_TSFID 0 #define IWM_ICT_SIZE 4096 #define IWM_ICT_COUNT (IWM_ICT_SIZE / sizeof (uint32_t)) #define IWM_ICT_PADDR_SHIFT 12 struct iwm_cfg; struct iwm_softc { device_t sc_dev; uint32_t sc_debug; int sc_attached; struct mtx sc_mtx; struct mbufq sc_snd; struct ieee80211com sc_ic; struct ieee80211_ratectl_tx_status sc_txs; int sc_flags; #define IWM_FLAG_USE_ICT (1 << 0) #define IWM_FLAG_HW_INITED (1 << 1) #define IWM_FLAG_STOPPED (1 << 2) #define IWM_FLAG_RFKILL (1 << 3) #define IWM_FLAG_BUSY (1 << 4) #define IWM_FLAG_SCANNING (1 << 5) #define IWM_FLAG_SCAN_RUNNING (1 << 6) #define IWM_FLAG_TE_ACTIVE (1 << 7) struct intr_config_hook sc_preinit_hook; struct callout sc_watchdog_to; struct callout sc_led_blink_to; struct task init_task; struct resource *sc_irq; struct resource *sc_mem; bus_space_tag_t sc_st; bus_space_handle_t sc_sh; bus_size_t sc_sz; bus_dma_tag_t sc_dmat; void *sc_ih; /* TX scheduler rings. */ struct iwm_dma_info sched_dma; uint32_t scd_base_addr; /* TX/RX rings. */ struct iwm_tx_ring txq[IWM_MAX_QUEUES]; struct iwm_rx_ring rxq; int qfullmsk; /* ICT table. */ struct iwm_dma_info ict_dma; int ict_cur; int sc_hw_rev; int sc_hw_id; struct iwm_dma_info kw_dma; struct iwm_dma_info fw_dma; int sc_fw_chunk_done; enum iwm_ucode_type cur_ucode; int ucode_loaded; char sc_fwver[32]; char sc_fw_mcc[3]; int sc_intmask; /* * So why do we need a separate stopped flag and a generation? * the former protects the device from issuing commands when it's * stopped (duh). The latter protects against race from a very * fast stop/unstop cycle where threads waiting for responses do * not have a chance to run in between. Notably: we want to stop * the device from interrupt context when it craps out, so we * don't have the luxury of waiting for quiescense. */ int sc_generation; struct iwm_fw_info sc_fw; struct iwm_tlv_calib_ctrl sc_default_calib[IWM_UCODE_TYPE_MAX]; const struct iwm_cfg *cfg; struct iwm_nvm_data *nvm_data; struct iwm_phy_db *sc_phy_db; struct iwm_bf_data sc_bf; int sc_tx_timer; int sc_scan_last_antenna; int sc_fixed_ridx; int sc_staid; int sc_nodecolor; uint8_t sc_cmd_resp[IWM_CMD_RESP_MAX]; int sc_wantresp; struct taskqueue *sc_tq; struct task sc_es_task; struct task sc_rftoggle_task; struct iwm_rx_phy_info sc_last_phy_info; int sc_ampdu_ref; struct iwm_int_sta sc_aux_sta; /* phy contexts. we only use the first one */ struct iwm_phy_ctxt sc_phyctxt[IWM_NUM_PHY_CTX]; - struct iwm_notif_statistics_v10 sc_stats; + struct iwm_notif_statistics sc_stats; int sc_noise; struct iwm_rx_radiotap_header sc_rxtap; struct iwm_tx_radiotap_header sc_txtap; int sc_max_rssi; struct iwm_notif_wait_data *sc_notif_wait; int cmd_hold_nic_awake; /* Firmware status */ uint32_t error_event_table[2]; uint32_t log_event_table; uint32_t umac_error_event_table; int support_umac_log; /* * Paging parameters - All of the parameters should be set by the * opmode when paging is enabled */ struct iwm_fw_paging fw_paging_db[IWM_NUM_OF_FW_PAGING_BLOCKS]; uint16_t num_of_paging_blk; uint16_t num_of_pages_in_last_blk; boolean_t last_ebs_successful; /* last smart fifo state that was successfully sent to firmware */ enum iwm_sf_state sf_state; /* Indicate if device power save is allowed */ boolean_t sc_ps_disabled; int sc_ltr_enabled; /* Track firmware state for STA association. */ int sc_firmware_state; /* Unique ID (assigned by the firmware) of the current Time Event. */ uint32_t sc_time_event_uid; /* Duration of the Time Event in TU. */ uint32_t sc_time_event_duration; /* Expected end of the Time Event in HZ ticks. */ int sc_time_event_end_ticks; }; #define IWM_LOCK_INIT(_sc) \ mtx_init(&(_sc)->sc_mtx, device_get_nameunit((_sc)->sc_dev), \ MTX_NETWORK_LOCK, MTX_DEF); #define IWM_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx) #define IWM_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx) #define IWM_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->sc_mtx) static inline bool iwm_fw_has_api(struct iwm_softc *sc, unsigned int api) { return isset(sc->sc_fw.ucode_capa.enabled_api, api); } static inline bool iwm_fw_has_capa(struct iwm_softc *sc, unsigned int capa) { return isset(sc->sc_fw.ucode_capa.enabled_capa, capa); }