diff --git a/sys/kern/vfs_cache.c b/sys/kern/vfs_cache.c
index fa6b23fe3d6f..c4b4d59f3b40 100644
--- a/sys/kern/vfs_cache.c
+++ b/sys/kern/vfs_cache.c
@@ -1,6387 +1,6389 @@
 /*-
  * SPDX-License-Identifier: BSD-3-Clause
  *
  * Copyright (c) 1989, 1993, 1995
  *	The Regents of the University of California.  All rights reserved.
  *
  * This code is derived from software contributed to Berkeley by
  * Poul-Henning Kamp of the FreeBSD Project.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 #include "opt_ddb.h"
 #include "opt_ktrace.h"
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/capsicum.h>
 #include <sys/counter.h>
 #include <sys/filedesc.h>
 #include <sys/fnv_hash.h>
 #include <sys/kernel.h>
 #include <sys/ktr.h>
 #include <sys/lock.h>
 #include <sys/malloc.h>
 #include <sys/fcntl.h>
 #include <sys/jail.h>
 #include <sys/mount.h>
 #include <sys/namei.h>
 #include <sys/proc.h>
 #include <sys/seqc.h>
 #include <sys/sdt.h>
 #include <sys/smr.h>
 #include <sys/smp.h>
 #include <sys/syscallsubr.h>
 #include <sys/sysctl.h>
 #include <sys/sysproto.h>
 #include <sys/vnode.h>
 #include <ck_queue.h>
 #ifdef KTRACE
 #include <sys/ktrace.h>
 #endif
 #ifdef INVARIANTS
 #include <machine/_inttypes.h>
 #endif
 
 #include <security/audit/audit.h>
 #include <security/mac/mac_framework.h>
 
 #ifdef DDB
 #include <ddb/ddb.h>
 #endif
 
 #include <vm/uma.h>
 
 /*
  * High level overview of name caching in the VFS layer.
  *
  * Originally caching was implemented as part of UFS, later extracted to allow
  * use by other filesystems. A decision was made to make it optional and
  * completely detached from the rest of the kernel, which comes with limitations
  * outlined near the end of this comment block.
  *
  * This fundamental choice needs to be revisited. In the meantime, the current
  * state is described below. Significance of all notable routines is explained
  * in comments placed above their implementation. Scattered thoroughout the
  * file are TODO comments indicating shortcomings which can be fixed without
  * reworking everything (most of the fixes will likely be reusable). Various
  * details are omitted from this explanation to not clutter the overview, they
  * have to be checked by reading the code and associated commentary.
  *
  * Keep in mind that it's individual path components which are cached, not full
  * paths. That is, for a fully cached path "foo/bar/baz" there are 3 entries,
  * one for each name.
  *
  * I. Data organization
  *
  * Entries are described by "struct namecache" objects and stored in a hash
  * table. See cache_get_hash for more information.
  *
  * "struct vnode" contains pointers to source entries (names which can be found
  * when traversing through said vnode), destination entries (names of that
  * vnode (see "Limitations" for a breakdown on the subject) and a pointer to
  * the parent vnode.
  *
  * The (directory vnode; name) tuple reliably determines the target entry if
  * it exists.
  *
  * Since there are no small locks at this time (all are 32 bytes in size on
  * LP64), the code works around the problem by introducing lock arrays to
  * protect hash buckets and vnode lists.
  *
  * II. Filesystem integration
  *
  * Filesystems participating in name caching do the following:
  * - set vop_lookup routine to vfs_cache_lookup
  * - set vop_cachedlookup to whatever can perform the lookup if the above fails
  * - if they support lockless lookup (see below), vop_fplookup_vexec and
  *   vop_fplookup_symlink are set along with the MNTK_FPLOOKUP flag on the
  *   mount point
  * - call cache_purge or cache_vop_* routines to eliminate stale entries as
  *   applicable
  * - call cache_enter to add entries depending on the MAKEENTRY flag
  *
  * With the above in mind, there are 2 entry points when doing lookups:
  * - ... -> namei -> cache_fplookup -- this is the default
  * - ... -> VOP_LOOKUP -> vfs_cache_lookup -- normally only called by namei
  *   should the above fail
  *
  * Example code flow how an entry is added:
  * ... -> namei -> cache_fplookup -> cache_fplookup_noentry -> VOP_LOOKUP ->
  * vfs_cache_lookup -> VOP_CACHEDLOOKUP -> ufs_lookup_ino -> cache_enter
  *
  * III. Performance considerations
  *
  * For lockless case forward lookup avoids any writes to shared areas apart
  * from the terminal path component. In other words non-modifying lookups of
  * different files don't suffer any scalability problems in the namecache.
  * Looking up the same file is limited by VFS and goes beyond the scope of this
  * file.
  *
  * At least on amd64 the single-threaded bottleneck for long paths is hashing
  * (see cache_get_hash). There are cases where the code issues acquire fence
  * multiple times, they can be combined on architectures which suffer from it.
  *
  * For locked case each encountered vnode has to be referenced and locked in
  * order to be handed out to the caller (normally that's namei). This
  * introduces significant hit single-threaded and serialization multi-threaded.
  *
  * Reverse lookup (e.g., "getcwd") fully scales provided it is fully cached --
  * avoids any writes to shared areas to any components.
  *
  * Unrelated insertions are partially serialized on updating the global entry
  * counter and possibly serialized on colliding bucket or vnode locks.
  *
  * IV. Observability
  *
  * Note not everything has an explicit dtrace probe nor it should have, thus
  * some of the one-liners below depend on implementation details.
  *
  * Examples:
  *
  * # Check what lookups failed to be handled in a lockless manner. Column 1 is
  * # line number, column 2 is status code (see cache_fpl_status)
  * dtrace -n 'vfs:fplookup:lookup:done { @[arg1, arg2] = count(); }'
  *
  * # Lengths of names added by binary name
  * dtrace -n 'fbt::cache_enter_time:entry { @[execname] = quantize(args[2]->cn_namelen); }'
  *
  * # Same as above but only those which exceed 64 characters
  * dtrace -n 'fbt::cache_enter_time:entry /args[2]->cn_namelen > 64/ { @[execname] = quantize(args[2]->cn_namelen); }'
  *
  * # Who is performing lookups with spurious slashes (e.g., "foo//bar") and what
  * # path is it
  * dtrace -n 'fbt::cache_fplookup_skip_slashes:entry { @[execname, stringof(args[0]->cnp->cn_pnbuf)] = count(); }'
  *
  * V. Limitations and implementation defects
  *
  * - since it is possible there is no entry for an open file, tools like
  *   "procstat" may fail to resolve fd -> vnode -> path to anything
  * - even if a filesystem adds an entry, it may get purged (e.g., due to memory
  *   shortage) in which case the above problem applies
  * - hardlinks are not tracked, thus if a vnode is reachable in more than one
  *   way, resolving a name may return a different path than the one used to
  *   open it (even if said path is still valid)
  * - by default entries are not added for newly created files
  * - adding an entry may need to evict negative entry first, which happens in 2
  *   distinct places (evicting on lookup, adding in a later VOP) making it
  *   impossible to simply reuse it
  * - there is a simple scheme to evict negative entries as the cache is approaching
  *   its capacity, but it is very unclear if doing so is a good idea to begin with
  * - vnodes are subject to being recycled even if target inode is left in memory,
  *   which loses the name cache entries when it perhaps should not. in case of tmpfs
  *   names get duplicated -- kept by filesystem itself and namecache separately
  * - struct namecache has a fixed size and comes in 2 variants, often wasting
  *   space.  now hard to replace with malloc due to dependence on SMR, which
  *   requires UMA zones to opt in
  * - lack of better integration with the kernel also turns nullfs into a layered
  *   filesystem instead of something which can take advantage of caching
  *
  * Appendix A: where is the time lost, expanding on paragraph III
  *
  * While some care went into optimizing lookups, there is still plenty of
  * performance left on the table, most notably from single-threaded standpoint.
  * Below is a woefully incomplete list of changes which can help.  Ideas are
  * mostly sketched out, no claim is made all kinks or prerequisites are laid
  * out.
  *
  * Note there is performance lost all over VFS.
  *
  * === SMR-only lookup
  *
  * For commonly used ops like stat(2), when the terminal vnode *is* cached,
  * lockless lookup could refrain from refing/locking the found vnode and
  * instead return while within the SMR section. Then a call to, say,
  * vop_stat_smr could do the work (or fail with EAGAIN), finally the result
  * would be validated with seqc not changing. This would be faster
  * single-threaded as it dodges atomics and would provide full scalability for
  * multicore uses. This would *not* work for open(2) or other calls which need
  * the vnode to hang around for the long haul, but would work for aforementioned
  * stat(2) but also access(2), readlink(2), realpathat(2) and probably more.
  *
  * === hotpatching for sdt probes
  *
  * They result in *tons* of branches all over with rather regrettable codegen
  * at times. Removing sdt probes altogether gives over 2% boost in lookup rate.
  * Reworking the code to patch itself at runtime with asm goto would solve it.
  * asm goto is fully supported by gcc and clang.
  *
  * === copyinstr
  *
  * On all architectures it operates one byte at a time, while it could be
  * word-sized instead thanks to the Mycroft trick.
  *
  * API itself is rather pessimal for path lookup, accepting arbitrary sizes and
  * *optionally* filling in the length parameter.
  *
  * Instead a new routine (copyinpath?) could be introduced, demanding a buffer
  * size which is a multiply of the word (and never zero), with the length
  * always returned. On top of it the routine could be allowed to transform the
  * buffer in arbitrary ways, most notably writing past the found length (not to
  * be confused with writing past buffer size) -- this would allow word-sized
  * movs while checking for '\0' later.
  *
  * === detour through namei
  *
  * Currently one suffers being called from namei, which then has to check if
  * things worked out locklessly. Instead the lockless lookup could be the
  * actual entry point which calls what is currently namei as a fallback.
  *
  * === avoidable branches in cache_can_fplookup
  *
  * The cache_fast_lookup_enabled flag check could be hotpatchable (in fact if
  * this is off, none of fplookup code should execute).
  *
  * Both audit and capsicum branches can be combined into one, but it requires
  * paying off a lot of tech debt first.
  *
  * ni_startdir could be indicated with a flag in cn_flags, eliminating the
  * branch.
  *
  * === mount stacks
  *
  * Crossing a mount requires checking if perhaps something is mounted on top.
  * Instead, an additional entry could be added to struct mount with a pointer
  * to the final mount on the stack. This would be recalculated on each
  * mount/unmount.
  *
  * === root vnodes
  *
  * It could become part of the API contract to *always* have a rootvnode set in
  * mnt_rootvnode. Such vnodes are annotated with VV_ROOT and vnlru would have
  * to be modified to always skip them.
  *
  * === inactive on v_usecount reaching 0
  *
  * VOP_NEED_INACTIVE should not exist. Filesystems would indicate need for such
  * processing with a bit in usecount.
  *
  * === v_holdcnt
  *
  * Hold count should probably get eliminated, but one can argue it is a useful
  * feature. Even if so, handling of v_usecount could be decoupled from it --
  * vnlru et al would consider the vnode not-freeable if has either hold or
  * usecount on it.
  *
  * This would eliminate 2 atomics.
  */
 
 static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
     "Name cache");
 
 SDT_PROVIDER_DECLARE(vfs);
 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *",
     "struct vnode *");
 SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *",
     "struct vnode *");
 SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *",
     "char *");
 SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *",
     "const char *");
 SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *",
     "struct namecache *", "int", "int");
 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *");
 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *",
     "char *", "struct vnode *");
 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *");
 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int",
     "struct vnode *", "char *");
 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *",
     "struct vnode *");
 SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative,
     "struct vnode *", "char *");
 SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *",
     "char *");
 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *",
     "struct componentname *");
 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *",
     "struct componentname *");
 SDT_PROBE_DEFINE3(vfs, namecache, purge, done, "struct vnode *", "size_t", "size_t");
 SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int");
 SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *");
 SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *");
 SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *",
     "struct vnode *");
 SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *",
     "char *");
 SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *",
     "char *");
 SDT_PROBE_DEFINE1(vfs, namecache, symlink, alloc__fail, "size_t");
 
 SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool");
 SDT_PROBE_DECLARE(vfs, namei, lookup, entry);
 SDT_PROBE_DECLARE(vfs, namei, lookup, return);
 
 static char __read_frequently cache_fast_lookup_enabled = true;
 
 /*
  * This structure describes the elements in the cache of recent
  * names looked up by namei.
  */
 struct negstate {
 	u_char neg_flag;
 	u_char neg_hit;
 };
 _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *),
     "the state must fit in a union with a pointer without growing it");
 
 struct	namecache {
 	LIST_ENTRY(namecache) nc_src;	/* source vnode list */
 	TAILQ_ENTRY(namecache) nc_dst;	/* destination vnode list */
 	CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */
 	struct	vnode *nc_dvp;		/* vnode of parent of name */
 	union {
 		struct	vnode *nu_vp;	/* vnode the name refers to */
 		struct	negstate nu_neg;/* negative entry state */
 	} n_un;
 	u_char	nc_flag;		/* flag bits */
 	u_char	nc_nlen;		/* length of name */
 	char	nc_name[];		/* segment name + nul */
 };
 
 /*
  * struct namecache_ts repeats struct namecache layout up to the
  * nc_nlen member.
  * struct namecache_ts is used in place of struct namecache when time(s) need
  * to be stored.  The nc_dotdottime field is used when a cache entry is mapping
  * both a non-dotdot directory name plus dotdot for the directory's
  * parent.
  *
  * See below for alignment requirement.
  */
 struct	namecache_ts {
 	struct	timespec nc_time;	/* timespec provided by fs */
 	struct	timespec nc_dotdottime;	/* dotdot timespec provided by fs */
 	int	nc_ticks;		/* ticks value when entry was added */
 	int	nc_pad;
 	struct namecache nc_nc;
 };
 
 TAILQ_HEAD(cache_freebatch, namecache);
 
 /*
  * At least mips n32 performs 64-bit accesses to timespec as found
  * in namecache_ts and requires them to be aligned. Since others
  * may be in the same spot suffer a little bit and enforce the
  * alignment for everyone. Note this is a nop for 64-bit platforms.
  */
 #define CACHE_ZONE_ALIGNMENT	UMA_ALIGNOF(time_t)
 
 /*
  * TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the
  * 4.4 BSD codebase. Later on struct namecache was tweaked to become
  * smaller and the value was bumped to retain the total size, but it
  * was never re-evaluated for suitability. A simple test counting
  * lengths during package building shows that the value of 45 covers
  * about 86% of all added entries, reaching 99% at 65.
  *
  * Regardless of the above, use of dedicated zones instead of malloc may be
  * inducing additional waste. This may be hard to address as said zones are
  * tied to VFS SMR. Even if retaining them, the current split should be
  * re-evaluated.
  */
 #ifdef __LP64__
 #define	CACHE_PATH_CUTOFF	45
 #define	CACHE_LARGE_PAD		6
 #else
 #define	CACHE_PATH_CUTOFF	41
 #define	CACHE_LARGE_PAD		2
 #endif
 
 #define CACHE_ZONE_SMALL_SIZE		(offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1)
 #define CACHE_ZONE_SMALL_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE)
 #define CACHE_ZONE_LARGE_SIZE		(offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD)
 #define CACHE_ZONE_LARGE_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE)
 
 _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
 _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
 _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
 _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
 
 #define	nc_vp		n_un.nu_vp
 #define	nc_neg		n_un.nu_neg
 
 /*
  * Flags in namecache.nc_flag
  */
 #define NCF_WHITE	0x01
 #define NCF_ISDOTDOT	0x02
 #define	NCF_TS		0x04
 #define	NCF_DTS		0x08
 #define	NCF_DVDROP	0x10
 #define	NCF_NEGATIVE	0x20
 #define	NCF_INVALID	0x40
 #define	NCF_WIP		0x80
 
 /*
  * Flags in negstate.neg_flag
  */
 #define NEG_HOT		0x01
 
 static bool	cache_neg_evict_cond(u_long lnumcache);
 
 /*
  * Mark an entry as invalid.
  *
  * This is called before it starts getting deconstructed.
  */
 static void
 cache_ncp_invalidate(struct namecache *ncp)
 {
 
 	KASSERT((ncp->nc_flag & NCF_INVALID) == 0,
 	    ("%s: entry %p already invalid", __func__, ncp));
 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID);
 	atomic_thread_fence_rel();
 }
 
 /*
  * Check whether the entry can be safely used.
  *
  * All places which elide locks are supposed to call this after they are
  * done with reading from an entry.
  */
 #define cache_ncp_canuse(ncp)	({					\
 	struct namecache *_ncp = (ncp);					\
 	u_char _nc_flag;						\
 									\
 	atomic_thread_fence_acq();					\
 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0);	\
 })
 
 /*
  * Like the above but also checks NCF_WHITE.
  */
 #define cache_fpl_neg_ncp_canuse(ncp)	({				\
 	struct namecache *_ncp = (ncp);					\
 	u_char _nc_flag;						\
 									\
 	atomic_thread_fence_acq();					\
 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP | NCF_WHITE)) == 0);	\
 })
 
 VFS_SMR_DECLARE;
 
 static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
     "Name cache parameters");
 
 static u_int __read_mostly	ncsize; /* the size as computed on creation or resizing */
 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RD, &ncsize, 0,
     "Total namecache capacity");
 
 u_int ncsizefactor = 2;
 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0,
     "Size factor for namecache");
 
 static u_long __read_mostly	ncnegfactor = 5; /* ratio of negative entries */
 SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0,
     "Ratio of negative namecache entries");
 
 /*
  * Negative entry % of namecache capacity above which automatic eviction is allowed.
  *
  * Check cache_neg_evict_cond for details.
  */
 static u_int ncnegminpct = 3;
 
 static u_int __read_mostly     neg_min; /* the above recomputed against ncsize */
 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0,
     "Negative entry count above which automatic eviction is allowed");
 
 /*
  * Structures associated with name caching.
  */
 #define NCHHASH(hash) \
 	(&nchashtbl[(hash) & nchash])
 static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */
 static u_long __read_mostly	nchash;			/* size of hash table */
 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
     "Size of namecache hash table");
 static u_long __exclusive_cache_line	numneg;	/* number of negative entries allocated */
 static u_long __exclusive_cache_line	numcache;/* number of cache entries allocated */
 
 struct nchstats	nchstats;		/* cache effectiveness statistics */
 
 static u_int __exclusive_cache_line neg_cycle;
 
 #define ncneghash	3
 #define	numneglists	(ncneghash + 1)
 
 struct neglist {
 	struct mtx		nl_evict_lock;
 	struct mtx		nl_lock __aligned(CACHE_LINE_SIZE);
 	TAILQ_HEAD(, namecache) nl_list;
 	TAILQ_HEAD(, namecache) nl_hotlist;
 	u_long			nl_hotnum;
 } __aligned(CACHE_LINE_SIZE);
 
 static struct neglist neglists[numneglists];
 
 static inline struct neglist *
 NCP2NEGLIST(struct namecache *ncp)
 {
 
 	return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]);
 }
 
 static inline struct negstate *
 NCP2NEGSTATE(struct namecache *ncp)
 {
 
 	MPASS(atomic_load_char(&ncp->nc_flag) & NCF_NEGATIVE);
 	return (&ncp->nc_neg);
 }
 
 #define	numbucketlocks (ncbuckethash + 1)
 static u_int __read_mostly  ncbuckethash;
 static struct mtx_padalign __read_mostly  *bucketlocks;
 #define	HASH2BUCKETLOCK(hash) \
 	((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)]))
 
 #define	numvnodelocks (ncvnodehash + 1)
 static u_int __read_mostly  ncvnodehash;
 static struct mtx __read_mostly *vnodelocks;
 static inline struct mtx *
 VP2VNODELOCK(struct vnode *vp)
 {
 
 	return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]);
 }
 
 static void
 cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp)
 {
 	struct namecache_ts *ncp_ts;
 
 	KASSERT((ncp->nc_flag & NCF_TS) != 0 ||
 	    (tsp == NULL && ticksp == NULL),
 	    ("No NCF_TS"));
 
 	if (tsp == NULL)
 		return;
 
 	ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
 	*tsp = ncp_ts->nc_time;
 	*ticksp = ncp_ts->nc_ticks;
 }
 
 #ifdef DEBUG_CACHE
 static int __read_mostly	doingcache = 1;	/* 1 => enable the cache */
 SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0,
     "VFS namecache enabled");
 #endif
 
 /* Export size information to userland */
 SYSCTL_INT(_debug_sizeof, OID_AUTO, namecache, CTLFLAG_RD, SYSCTL_NULL_INT_PTR,
     sizeof(struct namecache), "sizeof(struct namecache)");
 
 /*
  * The new name cache statistics
  */
 static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
     "Name cache statistics");
 
 #define STATNODE_ULONG(name, varname, descr)					\
 	SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
 #define STATNODE_COUNTER(name, varname, descr)					\
 	static COUNTER_U64_DEFINE_EARLY(varname);				\
 	SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \
 	    descr);
 STATNODE_ULONG(neg, numneg, "Number of negative cache entries");
 STATNODE_ULONG(count, numcache, "Number of cache entries");
 STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held");
 STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit");
 STATNODE_COUNTER(miss, nummiss, "Number of cache misses");
 STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache");
 STATNODE_COUNTER(poszaps, numposzaps,
     "Number of cache hits (positive) we do not want to cache");
 STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)");
 STATNODE_COUNTER(negzaps, numnegzaps,
     "Number of cache hits (negative) we do not want to cache");
 STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)");
 /* These count for vn_getcwd(), too. */
 STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls");
 STATNODE_COUNTER(fullpathfail2, numfullpathfail2,
     "Number of fullpath search errors (VOP_VPTOCNP failures)");
 STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)");
 STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls");
 STATNODE_COUNTER(symlinktoobig, symlinktoobig, "Number of times symlink did not fit the cache");
 
 /*
  * Debug or developer statistics.
  */
 static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
     "Name cache debugging");
 #define DEBUGNODE_ULONG(name, varname, descr)					\
 	SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
 static u_long zap_bucket_relock_success;
 DEBUGNODE_ULONG(zap_bucket_relock_success, zap_bucket_relock_success,
     "Number of successful removals after relocking");
 static u_long zap_bucket_fail;
 DEBUGNODE_ULONG(zap_bucket_fail, zap_bucket_fail, "");
 static u_long zap_bucket_fail2;
 DEBUGNODE_ULONG(zap_bucket_fail2, zap_bucket_fail2, "");
 static u_long cache_lock_vnodes_cel_3_failures;
 DEBUGNODE_ULONG(vnodes_cel_3_failures, cache_lock_vnodes_cel_3_failures,
     "Number of times 3-way vnode locking failed");
 
 static void cache_zap_locked(struct namecache *ncp);
 static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
     char **retbuf, size_t *buflen, size_t addend);
 static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf,
     char **retbuf, size_t *buflen);
 static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf,
     char **retbuf, size_t *len, size_t addend);
 
 static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
 
 static inline void
 cache_assert_vlp_locked(struct mtx *vlp)
 {
 
 	if (vlp != NULL)
 		mtx_assert(vlp, MA_OWNED);
 }
 
 static inline void
 cache_assert_vnode_locked(struct vnode *vp)
 {
 	struct mtx *vlp;
 
 	vlp = VP2VNODELOCK(vp);
 	cache_assert_vlp_locked(vlp);
 }
 
 /*
  * Directory vnodes with entries are held for two reasons:
  * 1. make them less of a target for reclamation in vnlru
  * 2. suffer smaller performance penalty in locked lookup as requeieing is avoided
  *
  * It will be feasible to stop doing it altogether if all filesystems start
  * supporting lockless lookup.
  */
 static void
 cache_hold_vnode(struct vnode *vp)
 {
 
 	cache_assert_vnode_locked(vp);
 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
 	vhold(vp);
 	counter_u64_add(numcachehv, 1);
 }
 
 static void
 cache_drop_vnode(struct vnode *vp)
 {
 
 	/*
 	 * Called after all locks are dropped, meaning we can't assert
 	 * on the state of v_cache_src.
 	 */
 	vdrop(vp);
 	counter_u64_add(numcachehv, -1);
 }
 
 /*
  * UMA zones.
  */
 static uma_zone_t __read_mostly cache_zone_small;
 static uma_zone_t __read_mostly cache_zone_small_ts;
 static uma_zone_t __read_mostly cache_zone_large;
 static uma_zone_t __read_mostly cache_zone_large_ts;
 
 char *
 cache_symlink_alloc(size_t size, int flags)
 {
 
 	if (size < CACHE_ZONE_SMALL_SIZE) {
 		return (uma_zalloc_smr(cache_zone_small, flags));
 	}
 	if (size < CACHE_ZONE_LARGE_SIZE) {
 		return (uma_zalloc_smr(cache_zone_large, flags));
 	}
 	counter_u64_add(symlinktoobig, 1);
 	SDT_PROBE1(vfs, namecache, symlink, alloc__fail, size);
 	return (NULL);
 }
 
 void
 cache_symlink_free(char *string, size_t size)
 {
 
 	MPASS(string != NULL);
 	KASSERT(size < CACHE_ZONE_LARGE_SIZE,
 	    ("%s: size %zu too big", __func__, size));
 
 	if (size < CACHE_ZONE_SMALL_SIZE) {
 		uma_zfree_smr(cache_zone_small, string);
 		return;
 	}
 	if (size < CACHE_ZONE_LARGE_SIZE) {
 		uma_zfree_smr(cache_zone_large, string);
 		return;
 	}
 	__assert_unreachable();
 }
 
 static struct namecache *
 cache_alloc_uma(int len, bool ts)
 {
 	struct namecache_ts *ncp_ts;
 	struct namecache *ncp;
 
 	if (__predict_false(ts)) {
 		if (len <= CACHE_PATH_CUTOFF)
 			ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK);
 		else
 			ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK);
 		ncp = &ncp_ts->nc_nc;
 	} else {
 		if (len <= CACHE_PATH_CUTOFF)
 			ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK);
 		else
 			ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK);
 	}
 	return (ncp);
 }
 
 static void
 cache_free_uma(struct namecache *ncp)
 {
 	struct namecache_ts *ncp_ts;
 
 	if (__predict_false(ncp->nc_flag & NCF_TS)) {
 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
 			uma_zfree_smr(cache_zone_small_ts, ncp_ts);
 		else
 			uma_zfree_smr(cache_zone_large_ts, ncp_ts);
 	} else {
 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
 			uma_zfree_smr(cache_zone_small, ncp);
 		else
 			uma_zfree_smr(cache_zone_large, ncp);
 	}
 }
 
 static struct namecache *
 cache_alloc(int len, bool ts)
 {
 	u_long lnumcache;
 
 	/*
 	 * Avoid blowout in namecache entries.
 	 *
 	 * Bugs:
 	 * 1. filesystems may end up trying to add an already existing entry
 	 * (for example this can happen after a cache miss during concurrent
 	 * lookup), in which case we will call cache_neg_evict despite not
 	 * adding anything.
 	 * 2. the routine may fail to free anything and no provisions are made
 	 * to make it try harder (see the inside for failure modes)
 	 * 3. it only ever looks at negative entries.
 	 */
 	lnumcache = atomic_fetchadd_long(&numcache, 1) + 1;
 	if (cache_neg_evict_cond(lnumcache)) {
 		lnumcache = atomic_load_long(&numcache);
 	}
 	if (__predict_false(lnumcache >= ncsize)) {
 		atomic_subtract_long(&numcache, 1);
 		counter_u64_add(numdrops, 1);
 		return (NULL);
 	}
 	return (cache_alloc_uma(len, ts));
 }
 
 static void
 cache_free(struct namecache *ncp)
 {
 
 	MPASS(ncp != NULL);
 	if ((ncp->nc_flag & NCF_DVDROP) != 0) {
 		cache_drop_vnode(ncp->nc_dvp);
 	}
 	cache_free_uma(ncp);
 	atomic_subtract_long(&numcache, 1);
 }
 
 static void
 cache_free_batch(struct cache_freebatch *batch)
 {
 	struct namecache *ncp, *nnp;
 	int i;
 
 	i = 0;
 	if (TAILQ_EMPTY(batch))
 		goto out;
 	TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) {
 		if ((ncp->nc_flag & NCF_DVDROP) != 0) {
 			cache_drop_vnode(ncp->nc_dvp);
 		}
 		cache_free_uma(ncp);
 		i++;
 	}
 	atomic_subtract_long(&numcache, i);
 out:
 	SDT_PROBE1(vfs, namecache, purge, batch, i);
 }
 
 /*
  * Hashing.
  *
  * The code was made to use FNV in 2001 and this choice needs to be revisited.
  *
  * Short summary of the difficulty:
  * The longest name which can be inserted is NAME_MAX characters in length (or
  * 255 at the time of writing this comment), while majority of names used in
  * practice are significantly shorter (mostly below 10). More importantly
  * majority of lookups performed find names are even shorter than that.
  *
  * This poses a problem where hashes which do better than FNV past word size
  * (or so) tend to come with additional overhead when finalizing the result,
  * making them noticeably slower for the most commonly used range.
  *
  * Consider a path like: /usr/obj/usr/src/sys/amd64/GENERIC/vnode_if.c
  *
  * When looking it up the most time consuming part by a large margin (at least
  * on amd64) is hashing.  Replacing FNV with something which pessimizes short
  * input would make the slowest part stand out even more.
  */
 
 /*
  * TODO: With the value stored we can do better than computing the hash based
  * on the address.
  */
 static void
 cache_prehash(struct vnode *vp)
 {
 
 	vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT);
 }
 
 static uint32_t
 cache_get_hash(char *name, u_char len, struct vnode *dvp)
 {
 
 	return (fnv_32_buf(name, len, dvp->v_nchash));
 }
 
 static uint32_t
 cache_get_hash_iter_start(struct vnode *dvp)
 {
 
 	return (dvp->v_nchash);
 }
 
 static uint32_t
 cache_get_hash_iter(char c, uint32_t hash)
 {
 
 	return (fnv_32_buf(&c, 1, hash));
 }
 
 static uint32_t
 cache_get_hash_iter_finish(uint32_t hash)
 {
 
 	return (hash);
 }
 
 static inline struct nchashhead *
 NCP2BUCKET(struct namecache *ncp)
 {
 	uint32_t hash;
 
 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
 	return (NCHHASH(hash));
 }
 
 static inline struct mtx *
 NCP2BUCKETLOCK(struct namecache *ncp)
 {
 	uint32_t hash;
 
 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
 	return (HASH2BUCKETLOCK(hash));
 }
 
 #ifdef INVARIANTS
 static void
 cache_assert_bucket_locked(struct namecache *ncp)
 {
 	struct mtx *blp;
 
 	blp = NCP2BUCKETLOCK(ncp);
 	mtx_assert(blp, MA_OWNED);
 }
 
 static void
 cache_assert_bucket_unlocked(struct namecache *ncp)
 {
 	struct mtx *blp;
 
 	blp = NCP2BUCKETLOCK(ncp);
 	mtx_assert(blp, MA_NOTOWNED);
 }
 #else
 #define cache_assert_bucket_locked(x) do { } while (0)
 #define cache_assert_bucket_unlocked(x) do { } while (0)
 #endif
 
 #define cache_sort_vnodes(x, y)	_cache_sort_vnodes((void **)(x), (void **)(y))
 static void
 _cache_sort_vnodes(void **p1, void **p2)
 {
 	void *tmp;
 
 	MPASS(*p1 != NULL || *p2 != NULL);
 
 	if (*p1 > *p2) {
 		tmp = *p2;
 		*p2 = *p1;
 		*p1 = tmp;
 	}
 }
 
 static void
 cache_lock_all_buckets(void)
 {
 	u_int i;
 
 	for (i = 0; i < numbucketlocks; i++)
 		mtx_lock(&bucketlocks[i]);
 }
 
 static void
 cache_unlock_all_buckets(void)
 {
 	u_int i;
 
 	for (i = 0; i < numbucketlocks; i++)
 		mtx_unlock(&bucketlocks[i]);
 }
 
 static void
 cache_lock_all_vnodes(void)
 {
 	u_int i;
 
 	for (i = 0; i < numvnodelocks; i++)
 		mtx_lock(&vnodelocks[i]);
 }
 
 static void
 cache_unlock_all_vnodes(void)
 {
 	u_int i;
 
 	for (i = 0; i < numvnodelocks; i++)
 		mtx_unlock(&vnodelocks[i]);
 }
 
 static int
 cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
 {
 
 	cache_sort_vnodes(&vlp1, &vlp2);
 
 	if (vlp1 != NULL) {
 		if (!mtx_trylock(vlp1))
 			return (EAGAIN);
 	}
 	if (!mtx_trylock(vlp2)) {
 		if (vlp1 != NULL)
 			mtx_unlock(vlp1);
 		return (EAGAIN);
 	}
 
 	return (0);
 }
 
 static void
 cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
 {
 
 	MPASS(vlp1 != NULL || vlp2 != NULL);
 	MPASS(vlp1 <= vlp2);
 
 	if (vlp1 != NULL)
 		mtx_lock(vlp1);
 	if (vlp2 != NULL)
 		mtx_lock(vlp2);
 }
 
 static void
 cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
 {
 
 	MPASS(vlp1 != NULL || vlp2 != NULL);
 
 	if (vlp1 != NULL)
 		mtx_unlock(vlp1);
 	if (vlp2 != NULL)
 		mtx_unlock(vlp2);
 }
 
 static int
 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
 {
 	struct nchstats snap;
 
 	if (req->oldptr == NULL)
 		return (SYSCTL_OUT(req, 0, sizeof(snap)));
 
 	snap = nchstats;
 	snap.ncs_goodhits = counter_u64_fetch(numposhits);
 	snap.ncs_neghits = counter_u64_fetch(numneghits);
 	snap.ncs_badhits = counter_u64_fetch(numposzaps) +
 	    counter_u64_fetch(numnegzaps);
 	snap.ncs_miss = counter_u64_fetch(nummisszap) +
 	    counter_u64_fetch(nummiss);
 
 	return (SYSCTL_OUT(req, &snap, sizeof(snap)));
 }
 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD |
     CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU",
     "VFS cache effectiveness statistics");
 
 static int
 sysctl_hitpct(SYSCTL_HANDLER_ARGS)
 {
 	long poshits, neghits, miss, total;
 	long pct;
 
 	poshits = counter_u64_fetch(numposhits);
 	neghits = counter_u64_fetch(numneghits);
 	miss = counter_u64_fetch(nummiss);
 	total = poshits + neghits + miss;
 
 	pct = 0;
 	if (total != 0)
 		pct = ((poshits + neghits) * 100) / total;
 	return (sysctl_handle_int(oidp, 0, pct, req));
 }
 SYSCTL_PROC(_vfs_cache_stats, OID_AUTO, hitpct,
     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_hitpct,
     "I", "Percentage of hits");
 
 static void
 cache_recalc_neg_min(void)
 {
 
 	neg_min = (ncsize * ncnegminpct) / 100;
 }
 
 static int
 sysctl_negminpct(SYSCTL_HANDLER_ARGS)
 {
 	u_int val;
 	int error;
 
 	val = ncnegminpct;
 	error = sysctl_handle_int(oidp, &val, 0, req);
 	if (error != 0 || req->newptr == NULL)
 		return (error);
 
 	if (val == ncnegminpct)
 		return (0);
 	if (val < 0 || val > 99)
 		return (EINVAL);
 	ncnegminpct = val;
 	cache_recalc_neg_min();
 	return (0);
 }
 
 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct,
     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct,
     "I", "Negative entry \% of namecache capacity above which automatic eviction is allowed");
 
 #ifdef DEBUG_CACHE
 /*
  * Grab an atomic snapshot of the name cache hash chain lengths
  */
 static SYSCTL_NODE(_debug, OID_AUTO, hashstat,
     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
     "hash table stats");
 
 static int
 sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)
 {
 	struct nchashhead *ncpp;
 	struct namecache *ncp;
 	int i, error, n_nchash, *cntbuf;
 
 retry:
 	n_nchash = nchash + 1;	/* nchash is max index, not count */
 	if (req->oldptr == NULL)
 		return SYSCTL_OUT(req, 0, n_nchash * sizeof(int));
 	cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK);
 	cache_lock_all_buckets();
 	if (n_nchash != nchash + 1) {
 		cache_unlock_all_buckets();
 		free(cntbuf, M_TEMP);
 		goto retry;
 	}
 	/* Scan hash tables counting entries */
 	for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++)
 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash)
 			cntbuf[i]++;
 	cache_unlock_all_buckets();
 	for (error = 0, i = 0; i < n_nchash; i++)
 		if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0)
 			break;
 	free(cntbuf, M_TEMP);
 	return (error);
 }
 SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD|
     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int",
     "nchash chain lengths");
 
 static int
 sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)
 {
 	int error;
 	struct nchashhead *ncpp;
 	struct namecache *ncp;
 	int n_nchash;
 	int count, maxlength, used, pct;
 
 	if (!req->oldptr)
 		return SYSCTL_OUT(req, 0, 4 * sizeof(int));
 
 	cache_lock_all_buckets();
 	n_nchash = nchash + 1;	/* nchash is max index, not count */
 	used = 0;
 	maxlength = 0;
 
 	/* Scan hash tables for applicable entries */
 	for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) {
 		count = 0;
 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash) {
 			count++;
 		}
 		if (count)
 			used++;
 		if (maxlength < count)
 			maxlength = count;
 	}
 	n_nchash = nchash + 1;
 	cache_unlock_all_buckets();
 	pct = (used * 100) / (n_nchash / 100);
 	error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash));
 	if (error)
 		return (error);
 	error = SYSCTL_OUT(req, &used, sizeof(used));
 	if (error)
 		return (error);
 	error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength));
 	if (error)
 		return (error);
 	error = SYSCTL_OUT(req, &pct, sizeof(pct));
 	if (error)
 		return (error);
 	return (0);
 }
 SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD|
     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I",
     "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)");
 #endif
 
 /*
  * Negative entries management
  *
  * Various workloads create plenty of negative entries and barely use them
  * afterwards. Moreover malicious users can keep performing bogus lookups
  * adding even more entries. For example "make tinderbox" as of writing this
  * comment ends up with 2.6M namecache entries in total, 1.2M of which are
  * negative.
  *
  * As such, a rather aggressive eviction method is needed. The currently
  * employed method is a placeholder.
  *
  * Entries are split over numneglists separate lists, each of which is further
  * split into hot and cold entries. Entries get promoted after getting a hit.
  * Eviction happens on addition of new entry.
  */
 static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
     "Name cache negative entry statistics");
 
 SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0,
     "Number of negative cache entries");
 
 static COUNTER_U64_DEFINE_EARLY(neg_created);
 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created,
     "Number of created negative entries");
 
 static COUNTER_U64_DEFINE_EARLY(neg_evicted);
 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted,
     "Number of evicted negative entries");
 
 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty);
 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD,
     &neg_evict_skipped_empty,
     "Number of times evicting failed due to lack of entries");
 
 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed);
 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD,
     &neg_evict_skipped_missed,
     "Number of times evicting failed due to target entry disappearing");
 
 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended);
 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD,
     &neg_evict_skipped_contended,
     "Number of times evicting failed due to contention");
 
 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits,
     "Number of cache hits (negative)");
 
 static int
 sysctl_neg_hot(SYSCTL_HANDLER_ARGS)
 {
 	int i, out;
 
 	out = 0;
 	for (i = 0; i < numneglists; i++)
 		out += neglists[i].nl_hotnum;
 
 	return (SYSCTL_OUT(req, &out, sizeof(out)));
 }
 SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD |
     CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I",
     "Number of hot negative entries");
 
 static void
 cache_neg_init(struct namecache *ncp)
 {
 	struct negstate *ns;
 
 	ncp->nc_flag |= NCF_NEGATIVE;
 	ns = NCP2NEGSTATE(ncp);
 	ns->neg_flag = 0;
 	ns->neg_hit = 0;
 	counter_u64_add(neg_created, 1);
 }
 
 #define CACHE_NEG_PROMOTION_THRESH 2
 
 static bool
 cache_neg_hit_prep(struct namecache *ncp)
 {
 	struct negstate *ns;
 	u_char n;
 
 	ns = NCP2NEGSTATE(ncp);
 	n = atomic_load_char(&ns->neg_hit);
 	for (;;) {
 		if (n >= CACHE_NEG_PROMOTION_THRESH)
 			return (false);
 		if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1))
 			break;
 	}
 	return (n + 1 == CACHE_NEG_PROMOTION_THRESH);
 }
 
 /*
  * Nothing to do here but it is provided for completeness as some
  * cache_neg_hit_prep callers may end up returning without even
  * trying to promote.
  */
 #define cache_neg_hit_abort(ncp)	do { } while (0)
 
 static void
 cache_neg_hit_finish(struct namecache *ncp)
 {
 
 	SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name);
 	counter_u64_add(numneghits, 1);
 }
 
 /*
  * Move a negative entry to the hot list.
  */
 static void
 cache_neg_promote_locked(struct namecache *ncp)
 {
 	struct neglist *nl;
 	struct negstate *ns;
 
 	ns = NCP2NEGSTATE(ncp);
 	nl = NCP2NEGLIST(ncp);
 	mtx_assert(&nl->nl_lock, MA_OWNED);
 	if ((ns->neg_flag & NEG_HOT) == 0) {
 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
 		TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst);
 		nl->nl_hotnum++;
 		ns->neg_flag |= NEG_HOT;
 	}
 }
 
 /*
  * Move a hot negative entry to the cold list.
  */
 static void
 cache_neg_demote_locked(struct namecache *ncp)
 {
 	struct neglist *nl;
 	struct negstate *ns;
 
 	ns = NCP2NEGSTATE(ncp);
 	nl = NCP2NEGLIST(ncp);
 	mtx_assert(&nl->nl_lock, MA_OWNED);
 	MPASS(ns->neg_flag & NEG_HOT);
 	TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
 	nl->nl_hotnum--;
 	ns->neg_flag &= ~NEG_HOT;
 	atomic_store_char(&ns->neg_hit, 0);
 }
 
 /*
  * Move a negative entry to the hot list if it matches the lookup.
  *
  * We have to take locks, but they may be contended and in the worst
  * case we may need to go off CPU. We don't want to spin within the
  * smr section and we can't block with it. Exiting the section means
  * the found entry could have been evicted. We are going to look it
  * up again.
  */
 static bool
 cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp,
     struct namecache *oncp, uint32_t hash)
 {
 	struct namecache *ncp;
 	struct neglist *nl;
 	u_char nc_flag;
 
 	nl = NCP2NEGLIST(oncp);
 
 	mtx_lock(&nl->nl_lock);
 	/*
 	 * For hash iteration.
 	 */
 	vfs_smr_enter();
 
 	/*
 	 * Avoid all surprises by only succeeding if we got the same entry and
 	 * bailing completely otherwise.
 	 * XXX There are no provisions to keep the vnode around, meaning we may
 	 * end up promoting a negative entry for a *new* vnode and returning
 	 * ENOENT on its account. This is the error we want to return anyway
 	 * and promotion is harmless.
 	 *
 	 * In particular at this point there can be a new ncp which matches the
 	 * search but hashes to a different neglist.
 	 */
 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
 		if (ncp == oncp)
 			break;
 	}
 
 	/*
 	 * No match to begin with.
 	 */
 	if (__predict_false(ncp == NULL)) {
 		goto out_abort;
 	}
 
 	/*
 	 * The newly found entry may be something different...
 	 */
 	if (!(ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
 	    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))) {
 		goto out_abort;
 	}
 
 	/*
 	 * ... and not even negative.
 	 */
 	nc_flag = atomic_load_char(&ncp->nc_flag);
 	if ((nc_flag & NCF_NEGATIVE) == 0) {
 		goto out_abort;
 	}
 
 	if (!cache_ncp_canuse(ncp)) {
 		goto out_abort;
 	}
 
 	cache_neg_promote_locked(ncp);
 	cache_neg_hit_finish(ncp);
 	vfs_smr_exit();
 	mtx_unlock(&nl->nl_lock);
 	return (true);
 out_abort:
 	vfs_smr_exit();
 	mtx_unlock(&nl->nl_lock);
 	return (false);
 }
 
 static void
 cache_neg_promote(struct namecache *ncp)
 {
 	struct neglist *nl;
 
 	nl = NCP2NEGLIST(ncp);
 	mtx_lock(&nl->nl_lock);
 	cache_neg_promote_locked(ncp);
 	mtx_unlock(&nl->nl_lock);
 }
 
 static void
 cache_neg_insert(struct namecache *ncp)
 {
 	struct neglist *nl;
 
 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
 	cache_assert_bucket_locked(ncp);
 	nl = NCP2NEGLIST(ncp);
 	mtx_lock(&nl->nl_lock);
 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
 	mtx_unlock(&nl->nl_lock);
 	atomic_add_long(&numneg, 1);
 }
 
 static void
 cache_neg_remove(struct namecache *ncp)
 {
 	struct neglist *nl;
 	struct negstate *ns;
 
 	cache_assert_bucket_locked(ncp);
 	nl = NCP2NEGLIST(ncp);
 	ns = NCP2NEGSTATE(ncp);
 	mtx_lock(&nl->nl_lock);
 	if ((ns->neg_flag & NEG_HOT) != 0) {
 		TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
 		nl->nl_hotnum--;
 	} else {
 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
 	}
 	mtx_unlock(&nl->nl_lock);
 	atomic_subtract_long(&numneg, 1);
 }
 
 static struct neglist *
 cache_neg_evict_select_list(void)
 {
 	struct neglist *nl;
 	u_int c;
 
 	c = atomic_fetchadd_int(&neg_cycle, 1) + 1;
 	nl = &neglists[c % numneglists];
 	if (!mtx_trylock(&nl->nl_evict_lock)) {
 		counter_u64_add(neg_evict_skipped_contended, 1);
 		return (NULL);
 	}
 	return (nl);
 }
 
 static struct namecache *
 cache_neg_evict_select_entry(struct neglist *nl)
 {
 	struct namecache *ncp, *lncp;
 	struct negstate *ns, *lns;
 	int i;
 
 	mtx_assert(&nl->nl_evict_lock, MA_OWNED);
 	mtx_assert(&nl->nl_lock, MA_OWNED);
 	ncp = TAILQ_FIRST(&nl->nl_list);
 	if (ncp == NULL)
 		return (NULL);
 	lncp = ncp;
 	lns = NCP2NEGSTATE(lncp);
 	for (i = 1; i < 4; i++) {
 		ncp = TAILQ_NEXT(ncp, nc_dst);
 		if (ncp == NULL)
 			break;
 		ns = NCP2NEGSTATE(ncp);
 		if (ns->neg_hit < lns->neg_hit) {
 			lncp = ncp;
 			lns = ns;
 		}
 	}
 	return (lncp);
 }
 
 static bool
 cache_neg_evict(void)
 {
 	struct namecache *ncp, *ncp2;
 	struct neglist *nl;
 	struct vnode *dvp;
 	struct mtx *dvlp;
 	struct mtx *blp;
 	uint32_t hash;
 	u_char nlen;
 	bool evicted;
 
 	nl = cache_neg_evict_select_list();
 	if (nl == NULL) {
 		return (false);
 	}
 
 	mtx_lock(&nl->nl_lock);
 	ncp = TAILQ_FIRST(&nl->nl_hotlist);
 	if (ncp != NULL) {
 		cache_neg_demote_locked(ncp);
 	}
 	ncp = cache_neg_evict_select_entry(nl);
 	if (ncp == NULL) {
 		counter_u64_add(neg_evict_skipped_empty, 1);
 		mtx_unlock(&nl->nl_lock);
 		mtx_unlock(&nl->nl_evict_lock);
 		return (false);
 	}
 	nlen = ncp->nc_nlen;
 	dvp = ncp->nc_dvp;
 	hash = cache_get_hash(ncp->nc_name, nlen, dvp);
 	dvlp = VP2VNODELOCK(dvp);
 	blp = HASH2BUCKETLOCK(hash);
 	mtx_unlock(&nl->nl_lock);
 	mtx_unlock(&nl->nl_evict_lock);
 	mtx_lock(dvlp);
 	mtx_lock(blp);
 	/*
 	 * Note that since all locks were dropped above, the entry may be
 	 * gone or reallocated to be something else.
 	 */
 	CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) {
 		if (ncp2 == ncp && ncp2->nc_dvp == dvp &&
 		    ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0)
 			break;
 	}
 	if (ncp2 == NULL) {
 		counter_u64_add(neg_evict_skipped_missed, 1);
 		ncp = NULL;
 		evicted = false;
 	} else {
 		MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp));
 		MPASS(blp == NCP2BUCKETLOCK(ncp));
 		SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp,
 		    ncp->nc_name);
 		cache_zap_locked(ncp);
 		counter_u64_add(neg_evicted, 1);
 		evicted = true;
 	}
 	mtx_unlock(blp);
 	mtx_unlock(dvlp);
 	if (ncp != NULL)
 		cache_free(ncp);
 	return (evicted);
 }
 
 /*
  * Maybe evict a negative entry to create more room.
  *
  * The ncnegfactor parameter limits what fraction of the total count
  * can comprise of negative entries. However, if the cache is just
  * warming up this leads to excessive evictions.  As such, ncnegminpct
  * (recomputed to neg_min) dictates whether the above should be
  * applied.
  *
  * Try evicting if the cache is close to full capacity regardless of
  * other considerations.
  */
 static bool
 cache_neg_evict_cond(u_long lnumcache)
 {
 	u_long lnumneg;
 
 	if (ncsize - 1000 < lnumcache)
 		goto out_evict;
 	lnumneg = atomic_load_long(&numneg);
 	if (lnumneg < neg_min)
 		return (false);
 	if (lnumneg * ncnegfactor < lnumcache)
 		return (false);
 out_evict:
 	return (cache_neg_evict());
 }
 
 /*
  * cache_zap_locked():
  *
  *   Removes a namecache entry from cache, whether it contains an actual
  *   pointer to a vnode or if it is just a negative cache entry.
  */
 static void
 cache_zap_locked(struct namecache *ncp)
 {
 	struct nchashhead *ncpp;
 	struct vnode *dvp, *vp;
 
 	dvp = ncp->nc_dvp;
 	vp = ncp->nc_vp;
 
 	if (!(ncp->nc_flag & NCF_NEGATIVE))
 		cache_assert_vnode_locked(vp);
 	cache_assert_vnode_locked(dvp);
 	cache_assert_bucket_locked(ncp);
 
 	cache_ncp_invalidate(ncp);
 
 	ncpp = NCP2BUCKET(ncp);
 	CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash);
 	if (!(ncp->nc_flag & NCF_NEGATIVE)) {
 		SDT_PROBE3(vfs, namecache, zap, done, dvp, ncp->nc_name, vp);
 		TAILQ_REMOVE(&vp->v_cache_dst, ncp, nc_dst);
 		if (ncp == vp->v_cache_dd) {
 			atomic_store_ptr(&vp->v_cache_dd, NULL);
 		}
 	} else {
 		SDT_PROBE2(vfs, namecache, zap_negative, done, dvp, ncp->nc_name);
 		cache_neg_remove(ncp);
 	}
 	if (ncp->nc_flag & NCF_ISDOTDOT) {
 		if (ncp == dvp->v_cache_dd) {
 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
 		}
 	} else {
 		LIST_REMOVE(ncp, nc_src);
 		if (LIST_EMPTY(&dvp->v_cache_src)) {
 			ncp->nc_flag |= NCF_DVDROP;
 		}
 	}
 }
 
 static void
 cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp)
 {
 	struct mtx *blp;
 
 	MPASS(ncp->nc_dvp == vp);
 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
 	cache_assert_vnode_locked(vp);
 
 	blp = NCP2BUCKETLOCK(ncp);
 	mtx_lock(blp);
 	cache_zap_locked(ncp);
 	mtx_unlock(blp);
 }
 
 static bool
 cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp,
     struct mtx **vlpp)
 {
 	struct mtx *pvlp, *vlp1, *vlp2, *to_unlock;
 	struct mtx *blp;
 
 	MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp);
 	cache_assert_vnode_locked(vp);
 
 	if (ncp->nc_flag & NCF_NEGATIVE) {
 		if (*vlpp != NULL) {
 			mtx_unlock(*vlpp);
 			*vlpp = NULL;
 		}
 		cache_zap_negative_locked_vnode_kl(ncp, vp);
 		return (true);
 	}
 
 	pvlp = VP2VNODELOCK(vp);
 	blp = NCP2BUCKETLOCK(ncp);
 	vlp1 = VP2VNODELOCK(ncp->nc_dvp);
 	vlp2 = VP2VNODELOCK(ncp->nc_vp);
 
 	if (*vlpp == vlp1 || *vlpp == vlp2) {
 		to_unlock = *vlpp;
 		*vlpp = NULL;
 	} else {
 		if (*vlpp != NULL) {
 			mtx_unlock(*vlpp);
 			*vlpp = NULL;
 		}
 		cache_sort_vnodes(&vlp1, &vlp2);
 		if (vlp1 == pvlp) {
 			mtx_lock(vlp2);
 			to_unlock = vlp2;
 		} else {
 			if (!mtx_trylock(vlp1))
 				goto out_relock;
 			to_unlock = vlp1;
 		}
 	}
 	mtx_lock(blp);
 	cache_zap_locked(ncp);
 	mtx_unlock(blp);
 	if (to_unlock != NULL)
 		mtx_unlock(to_unlock);
 	return (true);
 
 out_relock:
 	mtx_unlock(vlp2);
 	mtx_lock(vlp1);
 	mtx_lock(vlp2);
 	MPASS(*vlpp == NULL);
 	*vlpp = vlp1;
 	return (false);
 }
 
 /*
  * If trylocking failed we can get here. We know enough to take all needed locks
  * in the right order and re-lookup the entry.
  */
 static int
 cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp,
     struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash,
     struct mtx *blp)
 {
 	struct namecache *rncp;
 	struct mtx *rvlp;
 
 	cache_assert_bucket_unlocked(ncp);
 
 	cache_sort_vnodes(&dvlp, &vlp);
 	cache_lock_vnodes(dvlp, vlp);
 	mtx_lock(blp);
 	CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) {
 		if (rncp == ncp && rncp->nc_dvp == dvp &&
 		    rncp->nc_nlen == cnp->cn_namelen &&
 		    !bcmp(rncp->nc_name, cnp->cn_nameptr, rncp->nc_nlen))
 			break;
 	}
 
 	if (rncp == NULL)
 		goto out_mismatch;
 
 	if (!(ncp->nc_flag & NCF_NEGATIVE))
 		rvlp = VP2VNODELOCK(rncp->nc_vp);
 	else
 		rvlp = NULL;
 	if (rvlp != vlp)
 		goto out_mismatch;
 
 	cache_zap_locked(rncp);
 	mtx_unlock(blp);
 	cache_unlock_vnodes(dvlp, vlp);
 	atomic_add_long(&zap_bucket_relock_success, 1);
 	return (0);
 
 out_mismatch:
 	mtx_unlock(blp);
 	cache_unlock_vnodes(dvlp, vlp);
 	return (EAGAIN);
 }
 
 static int __noinline
 cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp,
     uint32_t hash, struct mtx *blp)
 {
 	struct mtx *dvlp, *vlp;
 	struct vnode *dvp;
 
 	cache_assert_bucket_locked(ncp);
 
 	dvlp = VP2VNODELOCK(ncp->nc_dvp);
 	vlp = NULL;
 	if (!(ncp->nc_flag & NCF_NEGATIVE))
 		vlp = VP2VNODELOCK(ncp->nc_vp);
 	if (cache_trylock_vnodes(dvlp, vlp) == 0) {
 		cache_zap_locked(ncp);
 		mtx_unlock(blp);
 		cache_unlock_vnodes(dvlp, vlp);
 		return (0);
 	}
 
 	dvp = ncp->nc_dvp;
 	mtx_unlock(blp);
 	return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp));
 }
 
 static __noinline int
 cache_remove_cnp(struct vnode *dvp, struct componentname *cnp)
 {
 	struct namecache *ncp;
 	struct mtx *blp;
 	struct mtx *dvlp, *dvlp2;
 	uint32_t hash;
 	int error;
 
 	if (cnp->cn_namelen == 2 &&
 	    cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') {
 		dvlp = VP2VNODELOCK(dvp);
 		dvlp2 = NULL;
 		mtx_lock(dvlp);
 retry_dotdot:
 		ncp = dvp->v_cache_dd;
 		if (ncp == NULL) {
 			mtx_unlock(dvlp);
 			if (dvlp2 != NULL)
 				mtx_unlock(dvlp2);
 			SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
 			return (0);
 		}
 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
 			if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2))
 				goto retry_dotdot;
 			MPASS(dvp->v_cache_dd == NULL);
 			mtx_unlock(dvlp);
 			if (dvlp2 != NULL)
 				mtx_unlock(dvlp2);
 			cache_free(ncp);
 		} else {
 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
 			mtx_unlock(dvlp);
 			if (dvlp2 != NULL)
 				mtx_unlock(dvlp2);
 		}
 		SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
 		return (1);
 	}
 
 	/*
 	 * XXX note that access here is completely unlocked with no provisions
 	 * to keep the hash allocated. If one is sufficiently unlucky a
 	 * parallel cache resize can reallocate the hash, unmap backing pages
 	 * and cause the empty check below to fault.
 	 *
 	 * Fixing this has epsilon priority, but can be done with no overhead
 	 * for this codepath with sufficient effort.
 	 */
 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
 	blp = HASH2BUCKETLOCK(hash);
 retry:
 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
 		goto out_no_entry;
 
 	mtx_lock(blp);
 
 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
 			break;
 	}
 
 	if (ncp == NULL) {
 		mtx_unlock(blp);
 		goto out_no_entry;
 	}
 
 	error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
 	if (__predict_false(error != 0)) {
 		atomic_add_long(&zap_bucket_fail, 1);
 		goto retry;
 	}
 	counter_u64_add(numposzaps, 1);
 	SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
 	cache_free(ncp);
 	return (1);
 out_no_entry:
 	counter_u64_add(nummisszap, 1);
 	SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
 	return (0);
 }
 
 static int __noinline
 cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
     struct timespec *tsp, int *ticksp)
 {
 	int ltype;
 
 	*vpp = dvp;
 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp);
 	if (tsp != NULL)
 		timespecclear(tsp);
 	if (ticksp != NULL)
 		*ticksp = ticks;
 	vrefact(*vpp);
 	/*
 	 * When we lookup "." we still can be asked to lock it
 	 * differently...
 	 */
 	ltype = cnp->cn_lkflags & LK_TYPE_MASK;
 	if (ltype != VOP_ISLOCKED(*vpp)) {
 		if (ltype == LK_EXCLUSIVE) {
 			vn_lock(*vpp, LK_UPGRADE | LK_RETRY);
 			if (VN_IS_DOOMED((*vpp))) {
 				/* forced unmount */
 				vrele(*vpp);
 				*vpp = NULL;
 				return (ENOENT);
 			}
 		} else
 			vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY);
 	}
 	return (-1);
 }
 
 static int __noinline
 cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
     struct timespec *tsp, int *ticksp)
 {
 	struct namecache_ts *ncp_ts;
 	struct namecache *ncp;
 	struct mtx *dvlp;
 	enum vgetstate vs;
 	int error, ltype;
 	bool whiteout;
 
 	MPASS((cnp->cn_flags & ISDOTDOT) != 0);
 
 	if ((cnp->cn_flags & MAKEENTRY) == 0) {
 		cache_remove_cnp(dvp, cnp);
 		return (0);
 	}
 
 retry:
 	dvlp = VP2VNODELOCK(dvp);
 	mtx_lock(dvlp);
 	ncp = dvp->v_cache_dd;
 	if (ncp == NULL) {
 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, "..");
 		mtx_unlock(dvlp);
 		return (0);
 	}
 	if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
 		if (ncp->nc_flag & NCF_NEGATIVE)
 			*vpp = NULL;
 		else
 			*vpp = ncp->nc_vp;
 	} else
 		*vpp = ncp->nc_dvp;
 	if (*vpp == NULL)
 		goto negative_success;
 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp);
 	cache_out_ts(ncp, tsp, ticksp);
 	if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) ==
 	    NCF_DTS && tsp != NULL) {
 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
 		*tsp = ncp_ts->nc_dotdottime;
 	}
 
 	MPASS(dvp != *vpp);
 	ltype = VOP_ISLOCKED(dvp);
 	VOP_UNLOCK(dvp);
 	vs = vget_prep(*vpp);
 	mtx_unlock(dvlp);
 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
 	vn_lock(dvp, ltype | LK_RETRY);
 	if (VN_IS_DOOMED(dvp)) {
 		if (error == 0)
 			vput(*vpp);
 		*vpp = NULL;
 		return (ENOENT);
 	}
 	if (error) {
 		*vpp = NULL;
 		goto retry;
 	}
 	return (-1);
 negative_success:
 	if (__predict_false(cnp->cn_nameiop == CREATE)) {
 		if (cnp->cn_flags & ISLASTCN) {
 			counter_u64_add(numnegzaps, 1);
 			cache_zap_negative_locked_vnode_kl(ncp, dvp);
 			mtx_unlock(dvlp);
 			cache_free(ncp);
 			return (0);
 		}
 	}
 
 	whiteout = (ncp->nc_flag & NCF_WHITE);
 	cache_out_ts(ncp, tsp, ticksp);
 	if (cache_neg_hit_prep(ncp))
 		cache_neg_promote(ncp);
 	else
 		cache_neg_hit_finish(ncp);
 	mtx_unlock(dvlp);
 	if (whiteout)
 		cnp->cn_flags |= ISWHITEOUT;
 	return (ENOENT);
 }
 
 /**
  * Lookup a name in the name cache
  *
  * # Arguments
  *
  * - dvp:	Parent directory in which to search.
  * - vpp:	Return argument.  Will contain desired vnode on cache hit.
  * - cnp:	Parameters of the name search.  The most interesting bits of
  *   		the cn_flags field have the following meanings:
  *   	- MAKEENTRY:	If clear, free an entry from the cache rather than look
  *   			it up.
  *   	- ISDOTDOT:	Must be set if and only if cn_nameptr == ".."
  * - tsp:	Return storage for cache timestamp.  On a successful (positive
  *   		or negative) lookup, tsp will be filled with any timespec that
  *   		was stored when this cache entry was created.  However, it will
  *   		be clear for "." entries.
  * - ticks:	Return storage for alternate cache timestamp.  On a successful
  *   		(positive or negative) lookup, it will contain the ticks value
  *   		that was current when the cache entry was created, unless cnp
  *   		was ".".
  *
  * Either both tsp and ticks have to be provided or neither of them.
  *
  * # Returns
  *
  * - -1:	A positive cache hit.  vpp will contain the desired vnode.
  * - ENOENT:	A negative cache hit, or dvp was recycled out from under us due
  *		to a forced unmount.  vpp will not be modified.  If the entry
  *		is a whiteout, then the ISWHITEOUT flag will be set in
  *		cnp->cn_flags.
  * - 0:		A cache miss.  vpp will not be modified.
  *
  * # Locking
  *
  * On a cache hit, vpp will be returned locked and ref'd.  If we're looking up
  * .., dvp is unlocked.  If we're looking up . an extra ref is taken, but the
  * lock is not recursively acquired.
  */
 static int __noinline
 cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
     struct timespec *tsp, int *ticksp)
 {
 	struct namecache *ncp;
 	struct mtx *blp;
 	uint32_t hash;
 	enum vgetstate vs;
 	int error;
 	bool whiteout;
 
 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
 	MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0);
 
 retry:
 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
 	blp = HASH2BUCKETLOCK(hash);
 	mtx_lock(blp);
 
 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
 			break;
 	}
 
 	if (__predict_false(ncp == NULL)) {
 		mtx_unlock(blp);
 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
 		counter_u64_add(nummiss, 1);
 		return (0);
 	}
 
 	if (ncp->nc_flag & NCF_NEGATIVE)
 		goto negative_success;
 
 	counter_u64_add(numposhits, 1);
 	*vpp = ncp->nc_vp;
 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
 	cache_out_ts(ncp, tsp, ticksp);
 	MPASS(dvp != *vpp);
 	vs = vget_prep(*vpp);
 	mtx_unlock(blp);
 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
 	if (error) {
 		*vpp = NULL;
 		goto retry;
 	}
 	return (-1);
 negative_success:
 	/*
 	 * We don't get here with regular lookup apart from corner cases.
 	 */
 	if (__predict_true(cnp->cn_nameiop == CREATE)) {
 		if (cnp->cn_flags & ISLASTCN) {
 			counter_u64_add(numnegzaps, 1);
 			error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
 			if (__predict_false(error != 0)) {
 				atomic_add_long(&zap_bucket_fail2, 1);
 				goto retry;
 			}
 			cache_free(ncp);
 			return (0);
 		}
 	}
 
 	whiteout = (ncp->nc_flag & NCF_WHITE);
 	cache_out_ts(ncp, tsp, ticksp);
 	if (cache_neg_hit_prep(ncp))
 		cache_neg_promote(ncp);
 	else
 		cache_neg_hit_finish(ncp);
 	mtx_unlock(blp);
 	if (whiteout)
 		cnp->cn_flags |= ISWHITEOUT;
 	return (ENOENT);
 }
 
 int
 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
     struct timespec *tsp, int *ticksp)
 {
 	struct namecache *ncp;
 	uint32_t hash;
 	enum vgetstate vs;
 	int error;
 	bool whiteout, neg_promote;
 	u_short nc_flag;
 
 	MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL));
 
 #ifdef DEBUG_CACHE
 	if (__predict_false(!doingcache)) {
 		cnp->cn_flags &= ~MAKEENTRY;
 		return (0);
 	}
 #endif
 
 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
 		if (cnp->cn_namelen == 1)
 			return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp));
 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.')
 			return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp));
 	}
 
 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
 
 	if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) {
 		cache_remove_cnp(dvp, cnp);
 		return (0);
 	}
 
 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
 	vfs_smr_enter();
 
 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
 			break;
 	}
 
 	if (__predict_false(ncp == NULL)) {
 		vfs_smr_exit();
 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
 		counter_u64_add(nummiss, 1);
 		return (0);
 	}
 
 	nc_flag = atomic_load_char(&ncp->nc_flag);
 	if (nc_flag & NCF_NEGATIVE)
 		goto negative_success;
 
 	counter_u64_add(numposhits, 1);
 	*vpp = ncp->nc_vp;
 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
 	cache_out_ts(ncp, tsp, ticksp);
 	MPASS(dvp != *vpp);
 	if (!cache_ncp_canuse(ncp)) {
 		vfs_smr_exit();
 		*vpp = NULL;
 		goto out_fallback;
 	}
 	vs = vget_prep_smr(*vpp);
 	vfs_smr_exit();
 	if (__predict_false(vs == VGET_NONE)) {
 		*vpp = NULL;
 		goto out_fallback;
 	}
 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
 	if (error) {
 		*vpp = NULL;
 		goto out_fallback;
 	}
 	return (-1);
 negative_success:
 	if (cnp->cn_nameiop == CREATE) {
 		if (cnp->cn_flags & ISLASTCN) {
 			vfs_smr_exit();
 			goto out_fallback;
 		}
 	}
 
 	cache_out_ts(ncp, tsp, ticksp);
 	whiteout = (atomic_load_char(&ncp->nc_flag) & NCF_WHITE);
 	neg_promote = cache_neg_hit_prep(ncp);
 	if (!cache_ncp_canuse(ncp)) {
 		cache_neg_hit_abort(ncp);
 		vfs_smr_exit();
 		goto out_fallback;
 	}
 	if (neg_promote) {
 		vfs_smr_exit();
 		if (!cache_neg_promote_cond(dvp, cnp, ncp, hash))
 			goto out_fallback;
 	} else {
 		cache_neg_hit_finish(ncp);
 		vfs_smr_exit();
 	}
 	if (whiteout)
 		cnp->cn_flags |= ISWHITEOUT;
 	return (ENOENT);
 out_fallback:
 	return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp));
 }
 
 struct celockstate {
 	struct mtx *vlp[3];
 	struct mtx *blp[2];
 };
 CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3));
 CTASSERT((nitems(((struct celockstate *)0)->blp) == 2));
 
 static inline void
 cache_celockstate_init(struct celockstate *cel)
 {
 
 	bzero(cel, sizeof(*cel));
 }
 
 static void
 cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp,
     struct vnode *dvp)
 {
 	struct mtx *vlp1, *vlp2;
 
 	MPASS(cel->vlp[0] == NULL);
 	MPASS(cel->vlp[1] == NULL);
 	MPASS(cel->vlp[2] == NULL);
 
 	MPASS(vp != NULL || dvp != NULL);
 
 	vlp1 = VP2VNODELOCK(vp);
 	vlp2 = VP2VNODELOCK(dvp);
 	cache_sort_vnodes(&vlp1, &vlp2);
 
 	if (vlp1 != NULL) {
 		mtx_lock(vlp1);
 		cel->vlp[0] = vlp1;
 	}
 	mtx_lock(vlp2);
 	cel->vlp[1] = vlp2;
 }
 
 static void
 cache_unlock_vnodes_cel(struct celockstate *cel)
 {
 
 	MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL);
 
 	if (cel->vlp[0] != NULL)
 		mtx_unlock(cel->vlp[0]);
 	if (cel->vlp[1] != NULL)
 		mtx_unlock(cel->vlp[1]);
 	if (cel->vlp[2] != NULL)
 		mtx_unlock(cel->vlp[2]);
 }
 
 static bool
 cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp)
 {
 	struct mtx *vlp;
 	bool ret;
 
 	cache_assert_vlp_locked(cel->vlp[0]);
 	cache_assert_vlp_locked(cel->vlp[1]);
 	MPASS(cel->vlp[2] == NULL);
 
 	MPASS(vp != NULL);
 	vlp = VP2VNODELOCK(vp);
 
 	ret = true;
 	if (vlp >= cel->vlp[1]) {
 		mtx_lock(vlp);
 	} else {
 		if (mtx_trylock(vlp))
 			goto out;
 		cache_unlock_vnodes_cel(cel);
 		atomic_add_long(&cache_lock_vnodes_cel_3_failures, 1);
 		if (vlp < cel->vlp[0]) {
 			mtx_lock(vlp);
 			mtx_lock(cel->vlp[0]);
 			mtx_lock(cel->vlp[1]);
 		} else {
 			if (cel->vlp[0] != NULL)
 				mtx_lock(cel->vlp[0]);
 			mtx_lock(vlp);
 			mtx_lock(cel->vlp[1]);
 		}
 		ret = false;
 	}
 out:
 	cel->vlp[2] = vlp;
 	return (ret);
 }
 
 static void
 cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1,
     struct mtx *blp2)
 {
 
 	MPASS(cel->blp[0] == NULL);
 	MPASS(cel->blp[1] == NULL);
 
 	cache_sort_vnodes(&blp1, &blp2);
 
 	if (blp1 != NULL) {
 		mtx_lock(blp1);
 		cel->blp[0] = blp1;
 	}
 	mtx_lock(blp2);
 	cel->blp[1] = blp2;
 }
 
 static void
 cache_unlock_buckets_cel(struct celockstate *cel)
 {
 
 	if (cel->blp[0] != NULL)
 		mtx_unlock(cel->blp[0]);
 	mtx_unlock(cel->blp[1]);
 }
 
 /*
  * Lock part of the cache affected by the insertion.
  *
  * This means vnodelocks for dvp, vp and the relevant bucketlock.
  * However, insertion can result in removal of an old entry. In this
  * case we have an additional vnode and bucketlock pair to lock.
  *
  * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while
  * preserving the locking order (smaller address first).
  */
 static void
 cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
     uint32_t hash)
 {
 	struct namecache *ncp;
 	struct mtx *blps[2];
 	u_char nc_flag;
 
 	blps[0] = HASH2BUCKETLOCK(hash);
 	for (;;) {
 		blps[1] = NULL;
 		cache_lock_vnodes_cel(cel, dvp, vp);
 		if (vp == NULL || vp->v_type != VDIR)
 			break;
 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
 		if (ncp == NULL)
 			break;
 		nc_flag = atomic_load_char(&ncp->nc_flag);
 		if ((nc_flag & NCF_ISDOTDOT) == 0)
 			break;
 		MPASS(ncp->nc_dvp == vp);
 		blps[1] = NCP2BUCKETLOCK(ncp);
 		if ((nc_flag & NCF_NEGATIVE) != 0)
 			break;
 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
 			break;
 		/*
 		 * All vnodes got re-locked. Re-validate the state and if
 		 * nothing changed we are done. Otherwise restart.
 		 */
 		if (ncp == vp->v_cache_dd &&
 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
 			break;
 		cache_unlock_vnodes_cel(cel);
 		cel->vlp[0] = NULL;
 		cel->vlp[1] = NULL;
 		cel->vlp[2] = NULL;
 	}
 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
 }
 
 static void
 cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
     uint32_t hash)
 {
 	struct namecache *ncp;
 	struct mtx *blps[2];
 	u_char nc_flag;
 
 	blps[0] = HASH2BUCKETLOCK(hash);
 	for (;;) {
 		blps[1] = NULL;
 		cache_lock_vnodes_cel(cel, dvp, vp);
 		ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
 		if (ncp == NULL)
 			break;
 		nc_flag = atomic_load_char(&ncp->nc_flag);
 		if ((nc_flag & NCF_ISDOTDOT) == 0)
 			break;
 		MPASS(ncp->nc_dvp == dvp);
 		blps[1] = NCP2BUCKETLOCK(ncp);
 		if ((nc_flag & NCF_NEGATIVE) != 0)
 			break;
 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
 			break;
 		if (ncp == dvp->v_cache_dd &&
 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
 			break;
 		cache_unlock_vnodes_cel(cel);
 		cel->vlp[0] = NULL;
 		cel->vlp[1] = NULL;
 		cel->vlp[2] = NULL;
 	}
 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
 }
 
 static void
 cache_enter_unlock(struct celockstate *cel)
 {
 
 	cache_unlock_buckets_cel(cel);
 	cache_unlock_vnodes_cel(cel);
 }
 
 static void __noinline
 cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp,
     struct componentname *cnp)
 {
 	struct celockstate cel;
 	struct namecache *ncp;
 	uint32_t hash;
 	int len;
 
 	if (atomic_load_ptr(&dvp->v_cache_dd) == NULL)
 		return;
 	len = cnp->cn_namelen;
 	cache_celockstate_init(&cel);
 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
 	cache_enter_lock_dd(&cel, dvp, vp, hash);
 	ncp = dvp->v_cache_dd;
 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) {
 		KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent"));
 		cache_zap_locked(ncp);
 	} else {
 		ncp = NULL;
 	}
 	atomic_store_ptr(&dvp->v_cache_dd, NULL);
 	cache_enter_unlock(&cel);
 	if (ncp != NULL)
 		cache_free(ncp);
 }
 
 /*
  * Add an entry to the cache.
  */
 void
 cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
     struct timespec *tsp, struct timespec *dtsp)
 {
 	struct celockstate cel;
 	struct namecache *ncp, *n2, *ndd;
 	struct namecache_ts *ncp_ts;
 	struct nchashhead *ncpp;
 	uint32_t hash;
 	int flag;
 	int len;
 
 	KASSERT(cnp->cn_namelen <= NAME_MAX,
 	    ("%s: passed len %ld exceeds NAME_MAX (%d)", __func__, cnp->cn_namelen,
 	    NAME_MAX));
 	VNPASS(!VN_IS_DOOMED(dvp), dvp);
 	VNPASS(dvp->v_type != VNON, dvp);
 	if (vp != NULL) {
 		VNPASS(!VN_IS_DOOMED(vp), vp);
 		VNPASS(vp->v_type != VNON, vp);
 	}
 	if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
 		KASSERT(dvp == vp,
 		    ("%s: different vnodes for dot entry (%p; %p)\n", __func__,
 		    dvp, vp));
 	} else {
 		KASSERT(dvp != vp,
 		    ("%s: same vnode for non-dot entry [%s] (%p)\n", __func__,
 		    cnp->cn_nameptr, dvp));
 	}
 
 #ifdef DEBUG_CACHE
 	if (__predict_false(!doingcache))
 		return;
 #endif
 
 	flag = 0;
 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
 		if (cnp->cn_namelen == 1)
 			return;
 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
 			cache_enter_dotdot_prep(dvp, vp, cnp);
 			flag = NCF_ISDOTDOT;
 		}
 	}
 
 	ncp = cache_alloc(cnp->cn_namelen, tsp != NULL);
 	if (ncp == NULL)
 		return;
 
 	cache_celockstate_init(&cel);
 	ndd = NULL;
 	ncp_ts = NULL;
 
 	/*
 	 * Calculate the hash key and setup as much of the new
 	 * namecache entry as possible before acquiring the lock.
 	 */
 	ncp->nc_flag = flag | NCF_WIP;
 	ncp->nc_vp = vp;
 	if (vp == NULL)
 		cache_neg_init(ncp);
 	ncp->nc_dvp = dvp;
 	if (tsp != NULL) {
 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
 		ncp_ts->nc_time = *tsp;
 		ncp_ts->nc_ticks = ticks;
 		ncp_ts->nc_nc.nc_flag |= NCF_TS;
 		if (dtsp != NULL) {
 			ncp_ts->nc_dotdottime = *dtsp;
 			ncp_ts->nc_nc.nc_flag |= NCF_DTS;
 		}
 	}
 	len = ncp->nc_nlen = cnp->cn_namelen;
 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
 	memcpy(ncp->nc_name, cnp->cn_nameptr, len);
 	ncp->nc_name[len] = '\0';
 	cache_enter_lock(&cel, dvp, vp, hash);
 
 	/*
 	 * See if this vnode or negative entry is already in the cache
 	 * with this name.  This can happen with concurrent lookups of
 	 * the same path name.
 	 */
 	ncpp = NCHHASH(hash);
 	CK_SLIST_FOREACH(n2, ncpp, nc_hash) {
 		if (n2->nc_dvp == dvp &&
 		    n2->nc_nlen == cnp->cn_namelen &&
 		    !bcmp(n2->nc_name, cnp->cn_nameptr, n2->nc_nlen)) {
 			MPASS(cache_ncp_canuse(n2));
 			if ((n2->nc_flag & NCF_NEGATIVE) != 0)
 				KASSERT(vp == NULL,
 				    ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]",
 				    __func__, NULL, vp, cnp->cn_nameptr));
 			else
 				KASSERT(n2->nc_vp == vp,
 				    ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]",
 				    __func__, n2->nc_vp, vp, cnp->cn_nameptr));
 			/*
 			 * Entries are supposed to be immutable unless in the
 			 * process of getting destroyed. Accommodating for
 			 * changing timestamps is possible but not worth it.
 			 * This should be harmless in terms of correctness, in
 			 * the worst case resulting in an earlier expiration.
 			 * Alternatively, the found entry can be replaced
 			 * altogether.
 			 */
 			MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) == (ncp->nc_flag & (NCF_TS | NCF_DTS)));
 #if 0
 			if (tsp != NULL) {
 				KASSERT((n2->nc_flag & NCF_TS) != 0,
 				    ("no NCF_TS"));
 				n2_ts = __containerof(n2, struct namecache_ts, nc_nc);
 				n2_ts->nc_time = ncp_ts->nc_time;
 				n2_ts->nc_ticks = ncp_ts->nc_ticks;
 				if (dtsp != NULL) {
 					n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime;
 					n2_ts->nc_nc.nc_flag |= NCF_DTS;
 				}
 			}
 #endif
 			SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name,
 			    vp);
 			goto out_unlock_free;
 		}
 	}
 
 	if (flag == NCF_ISDOTDOT) {
 		/*
 		 * See if we are trying to add .. entry, but some other lookup
 		 * has populated v_cache_dd pointer already.
 		 */
 		if (dvp->v_cache_dd != NULL)
 			goto out_unlock_free;
 		KASSERT(vp == NULL || vp->v_type == VDIR,
 		    ("wrong vnode type %p", vp));
 		atomic_thread_fence_rel();
 		atomic_store_ptr(&dvp->v_cache_dd, ncp);
 	}
 
 	if (vp != NULL) {
 		if (flag != NCF_ISDOTDOT) {
 			/*
 			 * For this case, the cache entry maps both the
 			 * directory name in it and the name ".." for the
 			 * directory's parent.
 			 */
 			if ((ndd = vp->v_cache_dd) != NULL) {
 				if ((ndd->nc_flag & NCF_ISDOTDOT) != 0)
 					cache_zap_locked(ndd);
 				else
 					ndd = NULL;
 			}
 			atomic_thread_fence_rel();
 			atomic_store_ptr(&vp->v_cache_dd, ncp);
 		} else if (vp->v_type != VDIR) {
 			if (vp->v_cache_dd != NULL) {
 				atomic_store_ptr(&vp->v_cache_dd, NULL);
 			}
 		}
 	}
 
 	if (flag != NCF_ISDOTDOT) {
 		if (LIST_EMPTY(&dvp->v_cache_src)) {
 			cache_hold_vnode(dvp);
 		}
 		LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src);
 	}
 
 	/*
 	 * If the entry is "negative", we place it into the
 	 * "negative" cache queue, otherwise, we place it into the
 	 * destination vnode's cache entries queue.
 	 */
 	if (vp != NULL) {
 		TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst);
 		SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name,
 		    vp);
 	} else {
 		if (cnp->cn_flags & ISWHITEOUT)
 			atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_WHITE);
 		cache_neg_insert(ncp);
 		SDT_PROBE2(vfs, namecache, enter_negative, done, dvp,
 		    ncp->nc_name);
 	}
 
 	/*
 	 * Insert the new namecache entry into the appropriate chain
 	 * within the cache entries table.
 	 */
 	CK_SLIST_INSERT_HEAD(ncpp, ncp, nc_hash);
 
 	atomic_thread_fence_rel();
 	/*
 	 * Mark the entry as fully constructed.
 	 * It is immutable past this point until its removal.
 	 */
 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP);
 
 	cache_enter_unlock(&cel);
 	if (ndd != NULL)
 		cache_free(ndd);
 	return;
 out_unlock_free:
 	cache_enter_unlock(&cel);
 	cache_free(ncp);
 	return;
 }
 
 /*
  * A variant of the above accepting flags.
  *
  * - VFS_CACHE_DROPOLD -- if a conflicting entry is found, drop it.
  *
  * TODO: this routine is a hack. It blindly removes the old entry, even if it
  * happens to match and it is doing it in an inefficient manner. It was added
  * to accommodate NFS which runs into a case where the target for a given name
  * may change from under it. Note this does nothing to solve the following
  * race: 2 callers of cache_enter_time_flags pass a different target vnode for
  * the same [dvp, cnp]. It may be argued that code doing this is broken.
  */
 void
 cache_enter_time_flags(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
     struct timespec *tsp, struct timespec *dtsp, int flags)
 {
 
 	MPASS((flags & ~(VFS_CACHE_DROPOLD)) == 0);
 
 	if (flags & VFS_CACHE_DROPOLD)
 		cache_remove_cnp(dvp, cnp);
 	cache_enter_time(dvp, vp, cnp, tsp, dtsp);
 }
 
 static u_long
 cache_roundup_2(u_long val)
 {
 	u_long res;
 
 	for (res = 1; res <= val; res <<= 1)
 		continue;
 
 	return (res);
 }
 
 static struct nchashhead *
 nchinittbl(u_long elements, u_long *hashmask)
 {
 	struct nchashhead *hashtbl;
 	u_long hashsize, i;
 
 	hashsize = cache_roundup_2(elements) / 2;
 
 	hashtbl = malloc(hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK);
 	for (i = 0; i < hashsize; i++)
 		CK_SLIST_INIT(&hashtbl[i]);
 	*hashmask = hashsize - 1;
 	return (hashtbl);
 }
 
 static void
 ncfreetbl(struct nchashhead *hashtbl)
 {
 
 	free(hashtbl, M_VFSCACHE);
 }
 
 /*
  * Name cache initialization, from vfs_init() when we are booting
  */
 static void
 nchinit(void *dummy __unused)
 {
 	u_int i;
 
 	cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE,
 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
 	cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE,
 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
 	cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE,
 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
 	cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE,
 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
 
 	VFS_SMR_ZONE_SET(cache_zone_small);
 	VFS_SMR_ZONE_SET(cache_zone_small_ts);
 	VFS_SMR_ZONE_SET(cache_zone_large);
 	VFS_SMR_ZONE_SET(cache_zone_large_ts);
 
 	ncsize = desiredvnodes * ncsizefactor;
 	cache_recalc_neg_min();
 	nchashtbl = nchinittbl(desiredvnodes * 2, &nchash);
 	ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1;
 	if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */
 		ncbuckethash = 7;
 	if (ncbuckethash > nchash)
 		ncbuckethash = nchash;
 	bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE,
 	    M_WAITOK | M_ZERO);
 	for (i = 0; i < numbucketlocks; i++)
 		mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE);
 	ncvnodehash = ncbuckethash;
 	vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE,
 	    M_WAITOK | M_ZERO);
 	for (i = 0; i < numvnodelocks; i++)
 		mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE);
 
 	for (i = 0; i < numneglists; i++) {
 		mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF);
 		mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF);
 		TAILQ_INIT(&neglists[i].nl_list);
 		TAILQ_INIT(&neglists[i].nl_hotlist);
 	}
 }
 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL);
 
 void
 cache_vnode_init(struct vnode *vp)
 {
 
 	LIST_INIT(&vp->v_cache_src);
 	TAILQ_INIT(&vp->v_cache_dst);
 	vp->v_cache_dd = NULL;
 	cache_prehash(vp);
 }
 
 /*
  * Induce transient cache misses for lockless operation in cache_lookup() by
  * using a temporary hash table.
  *
  * This will force a fs lookup.
  *
  * Synchronisation is done in 2 steps, calling vfs_smr_synchronize each time
  * to observe all CPUs not performing the lookup.
  */
 static void
 cache_changesize_set_temp(struct nchashhead *temptbl, u_long temphash)
 {
 
 	MPASS(temphash < nchash);
 	/*
 	 * Change the size. The new size is smaller and can safely be used
 	 * against the existing table. All lookups which now hash wrong will
 	 * result in a cache miss, which all callers are supposed to know how
 	 * to handle.
 	 */
 	atomic_store_long(&nchash, temphash);
 	atomic_thread_fence_rel();
 	vfs_smr_synchronize();
 	/*
 	 * At this point everyone sees the updated hash value, but they still
 	 * see the old table.
 	 */
 	atomic_store_ptr(&nchashtbl, temptbl);
 	atomic_thread_fence_rel();
 	vfs_smr_synchronize();
 	/*
 	 * At this point everyone sees the updated table pointer and size pair.
 	 */
 }
 
 /*
  * Set the new hash table.
  *
  * Similarly to cache_changesize_set_temp(), this has to synchronize against
  * lockless operation in cache_lookup().
  */
 static void
 cache_changesize_set_new(struct nchashhead *new_tbl, u_long new_hash)
 {
 
 	MPASS(nchash < new_hash);
 	/*
 	 * Change the pointer first. This wont result in out of bounds access
 	 * since the temporary table is guaranteed to be smaller.
 	 */
 	atomic_store_ptr(&nchashtbl, new_tbl);
 	atomic_thread_fence_rel();
 	vfs_smr_synchronize();
 	/*
 	 * At this point everyone sees the updated pointer value, but they
 	 * still see the old size.
 	 */
 	atomic_store_long(&nchash, new_hash);
 	atomic_thread_fence_rel();
 	vfs_smr_synchronize();
 	/*
 	 * At this point everyone sees the updated table pointer and size pair.
 	 */
 }
 
 void
 cache_changesize(u_long newmaxvnodes)
 {
 	struct nchashhead *new_nchashtbl, *old_nchashtbl, *temptbl;
 	u_long new_nchash, old_nchash, temphash;
 	struct namecache *ncp;
 	uint32_t hash;
 	u_long newncsize;
 	u_long i;
 
 	newncsize = newmaxvnodes * ncsizefactor;
 	newmaxvnodes = cache_roundup_2(newmaxvnodes * 2);
 	if (newmaxvnodes < numbucketlocks)
 		newmaxvnodes = numbucketlocks;
 
 	new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash);
 	/* If same hash table size, nothing to do */
 	if (nchash == new_nchash) {
 		ncfreetbl(new_nchashtbl);
 		return;
 	}
 
 	temptbl = nchinittbl(1, &temphash);
 
 	/*
 	 * Move everything from the old hash table to the new table.
 	 * None of the namecache entries in the table can be removed
 	 * because to do so, they have to be removed from the hash table.
 	 */
 	cache_lock_all_vnodes();
 	cache_lock_all_buckets();
 	old_nchashtbl = nchashtbl;
 	old_nchash = nchash;
 	cache_changesize_set_temp(temptbl, temphash);
 	for (i = 0; i <= old_nchash; i++) {
 		while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) {
 			hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen,
 			    ncp->nc_dvp);
 			CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash);
 			CK_SLIST_INSERT_HEAD(&new_nchashtbl[hash & new_nchash], ncp, nc_hash);
 		}
 	}
 	ncsize = newncsize;
 	cache_recalc_neg_min();
 	cache_changesize_set_new(new_nchashtbl, new_nchash);
 	cache_unlock_all_buckets();
 	cache_unlock_all_vnodes();
 	ncfreetbl(old_nchashtbl);
 	ncfreetbl(temptbl);
 }
 
 /*
  * Remove all entries from and to a particular vnode.
  */
 static void
 cache_purge_impl(struct vnode *vp)
 {
 	struct cache_freebatch batch;
 	struct namecache *ncp;
 	struct mtx *vlp, *vlp2;
 
 	TAILQ_INIT(&batch);
 	vlp = VP2VNODELOCK(vp);
 	vlp2 = NULL;
 	mtx_lock(vlp);
 retry:
 	while (!LIST_EMPTY(&vp->v_cache_src)) {
 		ncp = LIST_FIRST(&vp->v_cache_src);
 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
 			goto retry;
 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
 	}
 	while (!TAILQ_EMPTY(&vp->v_cache_dst)) {
 		ncp = TAILQ_FIRST(&vp->v_cache_dst);
 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
 			goto retry;
 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
 	}
 	ncp = vp->v_cache_dd;
 	if (ncp != NULL) {
 		KASSERT(ncp->nc_flag & NCF_ISDOTDOT,
 		   ("lost dotdot link"));
 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
 			goto retry;
 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
 	}
 	KASSERT(vp->v_cache_dd == NULL, ("incomplete purge"));
 	mtx_unlock(vlp);
 	if (vlp2 != NULL)
 		mtx_unlock(vlp2);
 	cache_free_batch(&batch);
 }
 
 /*
  * Opportunistic check to see if there is anything to do.
  */
 static bool
 cache_has_entries(struct vnode *vp)
 {
 
 	if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) &&
 	    atomic_load_ptr(&vp->v_cache_dd) == NULL)
 		return (false);
 	return (true);
 }
 
 void
 cache_purge(struct vnode *vp)
 {
 
 	SDT_PROBE1(vfs, namecache, purge, done, vp);
 	if (!cache_has_entries(vp))
 		return;
 	cache_purge_impl(vp);
 }
 
 /*
  * Only to be used by vgone.
  */
 void
 cache_purge_vgone(struct vnode *vp)
 {
 	struct mtx *vlp;
 
 	VNPASS(VN_IS_DOOMED(vp), vp);
 	if (cache_has_entries(vp)) {
 		cache_purge_impl(vp);
 		return;
 	}
 
 	/*
 	 * Serialize against a potential thread doing cache_purge.
 	 */
 	vlp = VP2VNODELOCK(vp);
 	mtx_wait_unlocked(vlp);
 	if (cache_has_entries(vp)) {
 		cache_purge_impl(vp);
 		return;
 	}
 	return;
 }
 
 /*
  * Remove all negative entries for a particular directory vnode.
  */
 void
 cache_purge_negative(struct vnode *vp)
 {
 	struct cache_freebatch batch;
 	struct namecache *ncp, *nnp;
 	struct mtx *vlp;
 
 	SDT_PROBE1(vfs, namecache, purge_negative, done, vp);
 	if (LIST_EMPTY(&vp->v_cache_src))
 		return;
 	TAILQ_INIT(&batch);
 	vlp = VP2VNODELOCK(vp);
 	mtx_lock(vlp);
 	LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) {
 		if (!(ncp->nc_flag & NCF_NEGATIVE))
 			continue;
 		cache_zap_negative_locked_vnode_kl(ncp, vp);
 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
 	}
 	mtx_unlock(vlp);
 	cache_free_batch(&batch);
 }
 
 /*
  * Entry points for modifying VOP operations.
  */
 void
 cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp,
     struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp)
 {
 
 	ASSERT_VOP_IN_SEQC(fdvp);
 	ASSERT_VOP_IN_SEQC(fvp);
 	ASSERT_VOP_IN_SEQC(tdvp);
 	if (tvp != NULL)
 		ASSERT_VOP_IN_SEQC(tvp);
 
 	cache_purge(fvp);
 	if (tvp != NULL) {
 		cache_purge(tvp);
 		KASSERT(!cache_remove_cnp(tdvp, tcnp),
 		    ("%s: lingering negative entry", __func__));
 	} else {
 		cache_remove_cnp(tdvp, tcnp);
 	}
 
 	/*
 	 * TODO
 	 *
 	 * Historically renaming was always purging all revelang entries,
 	 * but that's quite wasteful. In particular turns out that in many cases
 	 * the target file is immediately accessed after rename, inducing a cache
 	 * miss.
 	 *
 	 * Recode this to reduce relocking and reuse the existing entry (if any)
 	 * instead of just removing it above and allocating a new one here.
 	 */
 	cache_enter(tdvp, fvp, tcnp);
 }
 
 void
 cache_vop_rmdir(struct vnode *dvp, struct vnode *vp)
 {
 
 	ASSERT_VOP_IN_SEQC(dvp);
 	ASSERT_VOP_IN_SEQC(vp);
 	cache_purge(vp);
 }
 
 #ifdef INVARIANTS
 /*
  * Validate that if an entry exists it matches.
  */
 void
 cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
 {
 	struct namecache *ncp;
 	struct mtx *blp;
 	uint32_t hash;
 
 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
 		return;
 	blp = HASH2BUCKETLOCK(hash);
 	mtx_lock(blp);
 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) {
 			if (ncp->nc_vp != vp)
 				panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p\n",
 				    __func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp);
 		}
 	}
 	mtx_unlock(blp);
 }
 
 void
 cache_assert_no_entries(struct vnode *vp)
 {
 
 	VNPASS(TAILQ_EMPTY(&vp->v_cache_dst), vp);
 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
 	VNPASS(vp->v_cache_dd == NULL, vp);
 }
 #endif
 
 /*
  * Flush all entries referencing a particular filesystem.
  */
 void
 cache_purgevfs(struct mount *mp)
 {
 	struct vnode *vp, *mvp;
 	size_t visited __sdt_used, purged __sdt_used;
 
 	visited = purged = 0;
 	/*
 	 * Somewhat wasteful iteration over all vnodes. Would be better to
 	 * support filtering and avoid the interlock to begin with.
 	 */
 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
 		visited++;
 		if (!cache_has_entries(vp)) {
 			VI_UNLOCK(vp);
 			continue;
 		}
 		vholdl(vp);
 		VI_UNLOCK(vp);
 		cache_purge(vp);
 		purged++;
 		vdrop(vp);
 	}
 
 	SDT_PROBE3(vfs, namecache, purgevfs, done, mp, visited, purged);
 }
 
 /*
  * Perform canonical checks and cache lookup and pass on to filesystem
  * through the vop_cachedlookup only if needed.
  */
 
 int
 vfs_cache_lookup(struct vop_lookup_args *ap)
 {
 	struct vnode *dvp;
 	int error;
 	struct vnode **vpp = ap->a_vpp;
 	struct componentname *cnp = ap->a_cnp;
 	int flags = cnp->cn_flags;
 
 	*vpp = NULL;
 	dvp = ap->a_dvp;
 
 	if (dvp->v_type != VDIR)
 		return (ENOTDIR);
 
 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
 		return (EROFS);
 
 	error = vn_dir_check_exec(dvp, cnp);
 	if (error != 0)
 		return (error);
 
 	error = cache_lookup(dvp, vpp, cnp, NULL, NULL);
 	if (error == 0)
 		return (VOP_CACHEDLOOKUP(dvp, vpp, cnp));
 	if (error == -1)
 		return (0);
 	return (error);
 }
 
 /* Implementation of the getcwd syscall. */
 int
 sys___getcwd(struct thread *td, struct __getcwd_args *uap)
 {
 	char *buf, *retbuf;
 	size_t buflen;
 	int error;
 
 	buflen = uap->buflen;
 	if (__predict_false(buflen < 2))
 		return (EINVAL);
 	if (buflen > MAXPATHLEN)
 		buflen = MAXPATHLEN;
 
 	buf = uma_zalloc(namei_zone, M_WAITOK);
 	error = vn_getcwd(buf, &retbuf, &buflen);
 	if (error == 0)
 		error = copyout(retbuf, uap->buf, buflen);
 	uma_zfree(namei_zone, buf);
 	return (error);
 }
 
 int
 vn_getcwd(char *buf, char **retbuf, size_t *buflen)
 {
 	struct pwd *pwd;
 	int error;
 
 	vfs_smr_enter();
 	pwd = pwd_get_smr();
 	error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf,
 	    buflen, 0);
 	VFS_SMR_ASSERT_NOT_ENTERED();
 	if (error < 0) {
 		pwd = pwd_hold(curthread);
 		error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf,
 		    retbuf, buflen);
 		pwd_drop(pwd);
 	}
 
 #ifdef KTRACE
 	if (KTRPOINT(curthread, KTR_NAMEI) && error == 0)
 		ktrnamei(*retbuf);
 #endif
 	return (error);
 }
 
 /*
  * Canonicalize a path by walking it forward and back.
  *
  * BUGS:
  * - Nothing guarantees the integrity of the entire chain. Consider the case
  *   where the path "foo/bar/baz/qux" is passed, but "bar" is moved out of
  *   "foo" into "quux" during the backwards walk. The result will be
  *   "quux/bar/baz/qux", which could not have been obtained by an incremental
  *   walk in userspace. Moreover, the path we return is inaccessible if the
  *   calling thread lacks permission to traverse "quux".
  */
 static int
 kern___realpathat(struct thread *td, int fd, const char *path, char *buf,
     size_t size, int flags, enum uio_seg pathseg)
 {
 	struct nameidata nd;
 	char *retbuf, *freebuf;
 	int error;
 
 	if (flags != 0)
 		return (EINVAL);
 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | WANTPARENT | AUDITVNODE1,
 	    pathseg, path, fd, &cap_fstat_rights);
 	if ((error = namei(&nd)) != 0)
 		return (error);
 
 	if (nd.ni_vp->v_type == VREG && nd.ni_dvp->v_type != VDIR &&
 	    (nd.ni_vp->v_vflag & VV_ROOT) != 0) {
+		struct vnode *covered_vp;
+
 		/*
 		 * This happens if vp is a file mount. The call to
 		 * vn_fullpath_hardlink can panic if path resolution can't be
 		 * handled without the directory.
 		 *
 		 * To resolve this, we find the vnode which was mounted on -
 		 * this should have a unique global path since we disallow
 		 * mounting on linked files.
 		 */
-		struct vnode *covered_vp;
 		error = vn_lock(nd.ni_vp, LK_SHARED);
 		if (error != 0)
 			goto out;
 		covered_vp = nd.ni_vp->v_mount->mnt_vnodecovered;
 		vref(covered_vp);
 		VOP_UNLOCK(nd.ni_vp);
 		error = vn_fullpath(covered_vp, &retbuf, &freebuf);
 		vrele(covered_vp);
 	} else {
-		error = vn_fullpath_hardlink(nd.ni_vp, nd.ni_dvp, nd.ni_cnd.cn_nameptr,
-		    nd.ni_cnd.cn_namelen, &retbuf, &freebuf, &size);
+		error = vn_fullpath_hardlink(nd.ni_vp, nd.ni_dvp,
+		    nd.ni_cnd.cn_nameptr, nd.ni_cnd.cn_namelen, &retbuf,
+		    &freebuf, &size);
 	}
 	if (error == 0) {
 		error = copyout(retbuf, buf, size);
 		free(freebuf, M_TEMP);
 	}
 out:
 	vrele(nd.ni_vp);
 	vrele(nd.ni_dvp);
 	NDFREE_PNBUF(&nd);
 	return (error);
 }
 
 int
 sys___realpathat(struct thread *td, struct __realpathat_args *uap)
 {
 
 	return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size,
 	    uap->flags, UIO_USERSPACE));
 }
 
 /*
  * Retrieve the full filesystem path that correspond to a vnode from the name
  * cache (if available)
  */
 int
 vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf)
 {
 	struct pwd *pwd;
 	char *buf;
 	size_t buflen;
 	int error;
 
 	if (__predict_false(vp == NULL))
 		return (EINVAL);
 
 	buflen = MAXPATHLEN;
 	buf = malloc(buflen, M_TEMP, M_WAITOK);
 	vfs_smr_enter();
 	pwd = pwd_get_smr();
 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, 0);
 	VFS_SMR_ASSERT_NOT_ENTERED();
 	if (error < 0) {
 		pwd = pwd_hold(curthread);
 		error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen);
 		pwd_drop(pwd);
 	}
 	if (error == 0)
 		*freebuf = buf;
 	else
 		free(buf, M_TEMP);
 	return (error);
 }
 
 /*
  * This function is similar to vn_fullpath, but it attempts to lookup the
  * pathname relative to the global root mount point.  This is required for the
  * auditing sub-system, as audited pathnames must be absolute, relative to the
  * global root mount point.
  */
 int
 vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf)
 {
 	char *buf;
 	size_t buflen;
 	int error;
 
 	if (__predict_false(vp == NULL))
 		return (EINVAL);
 	buflen = MAXPATHLEN;
 	buf = malloc(buflen, M_TEMP, M_WAITOK);
 	vfs_smr_enter();
 	error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0);
 	VFS_SMR_ASSERT_NOT_ENTERED();
 	if (error < 0) {
 		error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen);
 	}
 	if (error == 0)
 		*freebuf = buf;
 	else
 		free(buf, M_TEMP);
 	return (error);
 }
 
 static struct namecache *
 vn_dd_from_dst(struct vnode *vp)
 {
 	struct namecache *ncp;
 
 	cache_assert_vnode_locked(vp);
 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) {
 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
 			return (ncp);
 	}
 	return (NULL);
 }
 
 int
 vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen)
 {
 	struct vnode *dvp;
 	struct namecache *ncp;
 	struct mtx *vlp;
 	int error;
 
 	vlp = VP2VNODELOCK(*vp);
 	mtx_lock(vlp);
 	ncp = (*vp)->v_cache_dd;
 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) {
 		KASSERT(ncp == vn_dd_from_dst(*vp),
 		    ("%s: mismatch for dd entry (%p != %p)", __func__,
 		    ncp, vn_dd_from_dst(*vp)));
 	} else {
 		ncp = vn_dd_from_dst(*vp);
 	}
 	if (ncp != NULL) {
 		if (*buflen < ncp->nc_nlen) {
 			mtx_unlock(vlp);
 			vrele(*vp);
 			counter_u64_add(numfullpathfail4, 1);
 			error = ENOMEM;
 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
 			    vp, NULL);
 			return (error);
 		}
 		*buflen -= ncp->nc_nlen;
 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
 		SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp,
 		    ncp->nc_name, vp);
 		dvp = *vp;
 		*vp = ncp->nc_dvp;
 		vref(*vp);
 		mtx_unlock(vlp);
 		vrele(dvp);
 		return (0);
 	}
 	SDT_PROBE1(vfs, namecache, fullpath, miss, vp);
 
 	mtx_unlock(vlp);
 	vn_lock(*vp, LK_SHARED | LK_RETRY);
 	error = VOP_VPTOCNP(*vp, &dvp, buf, buflen);
 	vput(*vp);
 	if (error) {
 		counter_u64_add(numfullpathfail2, 1);
 		SDT_PROBE3(vfs, namecache, fullpath, return,  error, vp, NULL);
 		return (error);
 	}
 
 	*vp = dvp;
 	if (VN_IS_DOOMED(dvp)) {
 		/* forced unmount */
 		vrele(dvp);
 		error = ENOENT;
 		SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL);
 		return (error);
 	}
 	/*
 	 * *vp has its use count incremented still.
 	 */
 
 	return (0);
 }
 
 /*
  * Resolve a directory to a pathname.
  *
  * The name of the directory can always be found in the namecache or fetched
  * from the filesystem. There is also guaranteed to be only one parent, meaning
  * we can just follow vnodes up until we find the root.
  *
  * The vnode must be referenced.
  */
 static int
 vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
     size_t *len, size_t addend)
 {
 #ifdef KDTRACE_HOOKS
 	struct vnode *startvp = vp;
 #endif
 	struct vnode *vp1;
 	size_t buflen;
 	int error;
 	bool slash_prefixed;
 
 	VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
 	VNPASS(vp->v_usecount > 0, vp);
 
 	buflen = *len;
 
 	slash_prefixed = true;
 	if (addend == 0) {
 		MPASS(*len >= 2);
 		buflen--;
 		buf[buflen] = '\0';
 		slash_prefixed = false;
 	}
 
 	error = 0;
 
 	SDT_PROBE1(vfs, namecache, fullpath, entry, vp);
 	counter_u64_add(numfullpathcalls, 1);
 	while (vp != rdir && vp != rootvnode) {
 		/*
 		 * The vp vnode must be already fully constructed,
 		 * since it is either found in namecache or obtained
 		 * from VOP_VPTOCNP().  We may test for VV_ROOT safely
 		 * without obtaining the vnode lock.
 		 */
 		if ((vp->v_vflag & VV_ROOT) != 0) {
 			vn_lock(vp, LK_RETRY | LK_SHARED);
 
 			/*
 			 * With the vnode locked, check for races with
 			 * unmount, forced or not.  Note that we
 			 * already verified that vp is not equal to
 			 * the root vnode, which means that
 			 * mnt_vnodecovered can be NULL only for the
 			 * case of unmount.
 			 */
 			if (VN_IS_DOOMED(vp) ||
 			    (vp1 = vp->v_mount->mnt_vnodecovered) == NULL ||
 			    vp1->v_mountedhere != vp->v_mount) {
 				vput(vp);
 				error = ENOENT;
 				SDT_PROBE3(vfs, namecache, fullpath, return,
 				    error, vp, NULL);
 				break;
 			}
 
 			vref(vp1);
 			vput(vp);
 			vp = vp1;
 			continue;
 		}
 		VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
 		error = vn_vptocnp(&vp, buf, &buflen);
 		if (error)
 			break;
 		if (buflen == 0) {
 			vrele(vp);
 			error = ENOMEM;
 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
 			    startvp, NULL);
 			break;
 		}
 		buf[--buflen] = '/';
 		slash_prefixed = true;
 	}
 	if (error)
 		return (error);
 	if (!slash_prefixed) {
 		if (buflen == 0) {
 			vrele(vp);
 			counter_u64_add(numfullpathfail4, 1);
 			SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM,
 			    startvp, NULL);
 			return (ENOMEM);
 		}
 		buf[--buflen] = '/';
 	}
 	counter_u64_add(numfullpathfound, 1);
 	vrele(vp);
 
 	*retbuf = buf + buflen;
 	SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf);
 	*len -= buflen;
 	*len += addend;
 	return (0);
 }
 
 /*
  * Resolve an arbitrary vnode to a pathname.
  *
  * Note 2 caveats:
  * - hardlinks are not tracked, thus if the vnode is not a directory this can
  *   resolve to a different path than the one used to find it
  * - namecache is not mandatory, meaning names are not guaranteed to be added
  *   (in which case resolving fails)
  */
 static void __inline
 cache_rev_failed_impl(int *reason, int line)
 {
 
 	*reason = line;
 }
 #define cache_rev_failed(var)	cache_rev_failed_impl((var), __LINE__)
 
 static int
 vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
     char **retbuf, size_t *buflen, size_t addend)
 {
 #ifdef KDTRACE_HOOKS
 	struct vnode *startvp = vp;
 #endif
 	struct vnode *tvp;
 	struct mount *mp;
 	struct namecache *ncp;
 	size_t orig_buflen;
 	int reason;
 	int error;
 #ifdef KDTRACE_HOOKS
 	int i;
 #endif
 	seqc_t vp_seqc, tvp_seqc;
 	u_char nc_flag;
 
 	VFS_SMR_ASSERT_ENTERED();
 
 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
 		vfs_smr_exit();
 		return (-1);
 	}
 
 	orig_buflen = *buflen;
 
 	if (addend == 0) {
 		MPASS(*buflen >= 2);
 		*buflen -= 1;
 		buf[*buflen] = '\0';
 	}
 
 	if (vp == rdir || vp == rootvnode) {
 		if (addend == 0) {
 			*buflen -= 1;
 			buf[*buflen] = '/';
 		}
 		goto out_ok;
 	}
 
 #ifdef KDTRACE_HOOKS
 	i = 0;
 #endif
 	error = -1;
 	ncp = NULL; /* for sdt probe down below */
 	vp_seqc = vn_seqc_read_any(vp);
 	if (seqc_in_modify(vp_seqc)) {
 		cache_rev_failed(&reason);
 		goto out_abort;
 	}
 
 	for (;;) {
 #ifdef KDTRACE_HOOKS
 		i++;
 #endif
 		if ((vp->v_vflag & VV_ROOT) != 0) {
 			mp = atomic_load_ptr(&vp->v_mount);
 			if (mp == NULL) {
 				cache_rev_failed(&reason);
 				goto out_abort;
 			}
 			tvp = atomic_load_ptr(&mp->mnt_vnodecovered);
 			tvp_seqc = vn_seqc_read_any(tvp);
 			if (seqc_in_modify(tvp_seqc)) {
 				cache_rev_failed(&reason);
 				goto out_abort;
 			}
 			if (!vn_seqc_consistent(vp, vp_seqc)) {
 				cache_rev_failed(&reason);
 				goto out_abort;
 			}
 			vp = tvp;
 			vp_seqc = tvp_seqc;
 			continue;
 		}
 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
 		if (ncp == NULL) {
 			cache_rev_failed(&reason);
 			goto out_abort;
 		}
 		nc_flag = atomic_load_char(&ncp->nc_flag);
 		if ((nc_flag & NCF_ISDOTDOT) != 0) {
 			cache_rev_failed(&reason);
 			goto out_abort;
 		}
 		if (ncp->nc_nlen >= *buflen) {
 			cache_rev_failed(&reason);
 			error = ENOMEM;
 			goto out_abort;
 		}
 		*buflen -= ncp->nc_nlen;
 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
 		*buflen -= 1;
 		buf[*buflen] = '/';
 		tvp = ncp->nc_dvp;
 		tvp_seqc = vn_seqc_read_any(tvp);
 		if (seqc_in_modify(tvp_seqc)) {
 			cache_rev_failed(&reason);
 			goto out_abort;
 		}
 		if (!vn_seqc_consistent(vp, vp_seqc)) {
 			cache_rev_failed(&reason);
 			goto out_abort;
 		}
 		/*
 		 * Acquire fence provided by vn_seqc_read_any above.
 		 */
 		if (__predict_false(atomic_load_ptr(&vp->v_cache_dd) != ncp)) {
 			cache_rev_failed(&reason);
 			goto out_abort;
 		}
 		if (!cache_ncp_canuse(ncp)) {
 			cache_rev_failed(&reason);
 			goto out_abort;
 		}
 		vp = tvp;
 		vp_seqc = tvp_seqc;
 		if (vp == rdir || vp == rootvnode)
 			break;
 	}
 out_ok:
 	vfs_smr_exit();
 	*retbuf = buf + *buflen;
 	*buflen = orig_buflen - *buflen + addend;
 	SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf);
 	return (0);
 
 out_abort:
 	*buflen = orig_buflen;
 	SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i);
 	vfs_smr_exit();
 	return (error);
 }
 
 static int
 vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
     size_t *buflen)
 {
 	size_t orig_buflen, addend;
 	int error;
 
 	if (*buflen < 2)
 		return (EINVAL);
 
 	orig_buflen = *buflen;
 
 	vref(vp);
 	addend = 0;
 	if (vp->v_type != VDIR) {
 		*buflen -= 1;
 		buf[*buflen] = '\0';
 		error = vn_vptocnp(&vp, buf, buflen);
 		if (error)
 			return (error);
 		if (*buflen == 0) {
 			vrele(vp);
 			return (ENOMEM);
 		}
 		*buflen -= 1;
 		buf[*buflen] = '/';
 		addend = orig_buflen - *buflen;
 	}
 
 	return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend));
 }
 
 /*
  * Resolve an arbitrary vnode to a pathname (taking care of hardlinks).
  *
  * Since the namecache does not track hardlinks, the caller is expected to
  * first look up the target vnode with WANTPARENT flag passed to namei to get
  * dvp and vp.
  *
  * Then we have 2 cases:
  * - if the found vnode is a directory, the path can be constructed just by
  *   following names up the chain
  * - otherwise we populate the buffer with the saved name and start resolving
  *   from the parent
  */
 int
 vn_fullpath_hardlink(struct vnode *vp, struct vnode *dvp,
     const char *hrdl_name, size_t hrdl_name_length,
     char **retbuf, char **freebuf, size_t *buflen)
 {
 	char *buf, *tmpbuf;
 	struct pwd *pwd;
 	size_t addend;
 	int error;
 	__enum_uint8(vtype) type;
 
 	if (*buflen < 2)
 		return (EINVAL);
 	if (*buflen > MAXPATHLEN)
 		*buflen = MAXPATHLEN;
 
 	buf = malloc(*buflen, M_TEMP, M_WAITOK);
 
 	addend = 0;
 
 	/*
 	 * Check for VBAD to work around the vp_crossmp bug in lookup().
 	 *
 	 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be
 	 * set to mount point's root vnode while ni_dvp will be vp_crossmp.
 	 * If the type is VDIR (like in this very case) we can skip looking
 	 * at ni_dvp in the first place. However, since vnodes get passed here
 	 * unlocked the target may transition to doomed state (type == VBAD)
 	 * before we get to evaluate the condition. If this happens, we will
 	 * populate part of the buffer and descend to vn_fullpath_dir with
 	 * vp == vp_crossmp. Prevent the problem by checking for VBAD.
 	 */
 	type = atomic_load_8(&vp->v_type);
 	if (type == VBAD) {
 		error = ENOENT;
 		goto out_bad;
 	}
 	if (type != VDIR) {
 		addend = hrdl_name_length + 2;
 		if (*buflen < addend) {
 			error = ENOMEM;
 			goto out_bad;
 		}
 		*buflen -= addend;
 		tmpbuf = buf + *buflen;
 		tmpbuf[0] = '/';
 		memcpy(&tmpbuf[1], hrdl_name, hrdl_name_length);
 		tmpbuf[addend - 1] = '\0';
 		vp = dvp;
 	}
 
 	vfs_smr_enter();
 	pwd = pwd_get_smr();
 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen,
 	    addend);
 	VFS_SMR_ASSERT_NOT_ENTERED();
 	if (error < 0) {
 		pwd = pwd_hold(curthread);
 		vref(vp);
 		error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen,
 		    addend);
 		pwd_drop(pwd);
 	}
 	if (error != 0)
 		goto out_bad;
 
 	*freebuf = buf;
 
 	return (0);
 out_bad:
 	free(buf, M_TEMP);
 	return (error);
 }
 
 struct vnode *
 vn_dir_dd_ino(struct vnode *vp)
 {
 	struct namecache *ncp;
 	struct vnode *ddvp;
 	struct mtx *vlp;
 	enum vgetstate vs;
 
 	ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino");
 	vlp = VP2VNODELOCK(vp);
 	mtx_lock(vlp);
 	TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) {
 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0)
 			continue;
 		ddvp = ncp->nc_dvp;
 		vs = vget_prep(ddvp);
 		mtx_unlock(vlp);
 		if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs))
 			return (NULL);
 		return (ddvp);
 	}
 	mtx_unlock(vlp);
 	return (NULL);
 }
 
 int
 vn_commname(struct vnode *vp, char *buf, u_int buflen)
 {
 	struct namecache *ncp;
 	struct mtx *vlp;
 	int l;
 
 	vlp = VP2VNODELOCK(vp);
 	mtx_lock(vlp);
 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst)
 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
 			break;
 	if (ncp == NULL) {
 		mtx_unlock(vlp);
 		return (ENOENT);
 	}
 	l = min(ncp->nc_nlen, buflen - 1);
 	memcpy(buf, ncp->nc_name, l);
 	mtx_unlock(vlp);
 	buf[l] = '\0';
 	return (0);
 }
 
 /*
  * This function updates path string to vnode's full global path
  * and checks the size of the new path string against the pathlen argument.
  *
  * Requires a locked, referenced vnode.
  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
  *
  * If vp is a directory, the call to vn_fullpath_global() always succeeds
  * because it falls back to the ".." lookup if the namecache lookup fails.
  */
 int
 vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path,
     u_int pathlen)
 {
 	struct nameidata nd;
 	struct vnode *vp1;
 	char *rpath, *fbuf;
 	int error;
 
 	ASSERT_VOP_ELOCKED(vp, __func__);
 
 	/* Construct global filesystem path from vp. */
 	VOP_UNLOCK(vp);
 	error = vn_fullpath_global(vp, &rpath, &fbuf);
 
 	if (error != 0) {
 		vrele(vp);
 		return (error);
 	}
 
 	if (strlen(rpath) >= pathlen) {
 		vrele(vp);
 		error = ENAMETOOLONG;
 		goto out;
 	}
 
 	/*
 	 * Re-lookup the vnode by path to detect a possible rename.
 	 * As a side effect, the vnode is relocked.
 	 * If vnode was renamed, return ENOENT.
 	 */
 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
 	error = namei(&nd);
 	if (error != 0) {
 		vrele(vp);
 		goto out;
 	}
 	NDFREE_PNBUF(&nd);
 	vp1 = nd.ni_vp;
 	vrele(vp);
 	if (vp1 == vp)
 		strcpy(path, rpath);
 	else {
 		vput(vp1);
 		error = ENOENT;
 	}
 
 out:
 	free(fbuf, M_TEMP);
 	return (error);
 }
 
 /*
  * This is similar to vn_path_to_global_path but allows for regular
  * files which may not be present in the cache.
  *
  * Requires a locked, referenced vnode.
  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
  */
 int
 vn_path_to_global_path_hardlink(struct thread *td, struct vnode *vp,
     struct vnode *dvp, char *path, u_int pathlen, const char *leaf_name,
     size_t leaf_length)
 {
 	struct nameidata nd;
 	struct vnode *vp1;
 	char *rpath, *fbuf;
 	size_t len;
 	int error;
 
 	ASSERT_VOP_ELOCKED(vp, __func__);
 
 	/*
 	 * Construct global filesystem path from dvp, vp and leaf
 	 * name.
 	 */
 	VOP_UNLOCK(vp);
 	len = pathlen;
 	error = vn_fullpath_hardlink(vp, dvp, leaf_name, leaf_length,
 	    &rpath, &fbuf, &len);
 
 	if (error != 0) {
 		vrele(vp);
 		return (error);
 	}
 
 	if (strlen(rpath) >= pathlen) {
 		vrele(vp);
 		error = ENAMETOOLONG;
 		goto out;
 	}
 
 	/*
 	 * Re-lookup the vnode by path to detect a possible rename.
 	 * As a side effect, the vnode is relocked.
 	 * If vnode was renamed, return ENOENT.
 	 */
 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
 	error = namei(&nd);
 	if (error != 0) {
 		vrele(vp);
 		goto out;
 	}
 	NDFREE_PNBUF(&nd);
 	vp1 = nd.ni_vp;
 	vrele(vp);
 	if (vp1 == vp)
 		strcpy(path, rpath);
 	else {
 		vput(vp1);
 		error = ENOENT;
 	}
 
 out:
 	free(fbuf, M_TEMP);
 	return (error);
 }
 
 #ifdef DDB
 static void
 db_print_vpath(struct vnode *vp)
 {
 
 	while (vp != NULL) {
 		db_printf("%p: ", vp);
 		if (vp == rootvnode) {
 			db_printf("/");
 			vp = NULL;
 		} else {
 			if (vp->v_vflag & VV_ROOT) {
 				db_printf("<mount point>");
 				vp = vp->v_mount->mnt_vnodecovered;
 			} else {
 				struct namecache *ncp;
 				char *ncn;
 				int i;
 
 				ncp = TAILQ_FIRST(&vp->v_cache_dst);
 				if (ncp != NULL) {
 					ncn = ncp->nc_name;
 					for (i = 0; i < ncp->nc_nlen; i++)
 						db_printf("%c", *ncn++);
 					vp = ncp->nc_dvp;
 				} else {
 					vp = NULL;
 				}
 			}
 		}
 		db_printf("\n");
 	}
 
 	return;
 }
 
 DB_SHOW_COMMAND(vpath, db_show_vpath)
 {
 	struct vnode *vp;
 
 	if (!have_addr) {
 		db_printf("usage: show vpath <struct vnode *>\n");
 		return;
 	}
 
 	vp = (struct vnode *)addr;
 	db_print_vpath(vp);
 }
 
 #endif
 
 static int cache_fast_lookup = 1;
 
 #define CACHE_FPL_FAILED	-2020
 
 static int
 cache_vop_bad_vexec(struct vop_fplookup_vexec_args *v)
 {
 	vn_printf(v->a_vp, "no proper vop_fplookup_vexec\n");
 	panic("no proper vop_fplookup_vexec");
 }
 
 static int
 cache_vop_bad_symlink(struct vop_fplookup_symlink_args *v)
 {
 	vn_printf(v->a_vp, "no proper vop_fplookup_symlink\n");
 	panic("no proper vop_fplookup_symlink");
 }
 
 void
 cache_vop_vector_register(struct vop_vector *v)
 {
 	size_t ops;
 
 	ops = 0;
 	if (v->vop_fplookup_vexec != NULL) {
 		ops++;
 	}
 	if (v->vop_fplookup_symlink != NULL) {
 		ops++;
 	}
 
 	if (ops == 2) {
 		return;
 	}
 
 	if (ops == 0) {
 		v->vop_fplookup_vexec = cache_vop_bad_vexec;
 		v->vop_fplookup_symlink = cache_vop_bad_symlink;
 		return;
 	}
 
 	printf("%s: invalid vop vector %p -- either all or none fplookup vops "
 	    "need to be provided",  __func__, v);
 	if (v->vop_fplookup_vexec == NULL) {
 		printf("%s: missing vop_fplookup_vexec\n", __func__);
 	}
 	if (v->vop_fplookup_symlink == NULL) {
 		printf("%s: missing vop_fplookup_symlink\n", __func__);
 	}
 	panic("bad vop vector %p", v);
 }
 
 #ifdef INVARIANTS
 void
 cache_validate_vop_vector(struct mount *mp, struct vop_vector *vops)
 {
 	if (mp == NULL)
 		return;
 
 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
 		return;
 
 	if (vops->vop_fplookup_vexec == NULL ||
 	    vops->vop_fplookup_vexec == cache_vop_bad_vexec)
 		panic("bad vop_fplookup_vexec on vector %p for filesystem %s",
 		    vops, mp->mnt_vfc->vfc_name);
 
 	if (vops->vop_fplookup_symlink == NULL ||
 	    vops->vop_fplookup_symlink == cache_vop_bad_symlink)
 		panic("bad vop_fplookup_symlink on vector %p for filesystem %s",
 		    vops, mp->mnt_vfc->vfc_name);
 }
 #endif
 
 void
 cache_fast_lookup_enabled_recalc(void)
 {
 	int lookup_flag;
 	int mac_on;
 
 #ifdef MAC
 	mac_on = mac_vnode_check_lookup_enabled();
 	mac_on |= mac_vnode_check_readlink_enabled();
 #else
 	mac_on = 0;
 #endif
 
 	lookup_flag = atomic_load_int(&cache_fast_lookup);
 	if (lookup_flag && !mac_on) {
 		atomic_store_char(&cache_fast_lookup_enabled, true);
 	} else {
 		atomic_store_char(&cache_fast_lookup_enabled, false);
 	}
 }
 
 static int
 syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS)
 {
 	int error, old;
 
 	old = atomic_load_int(&cache_fast_lookup);
 	error = sysctl_handle_int(oidp, arg1, arg2, req);
 	if (error == 0 && req->newptr && old != atomic_load_int(&cache_fast_lookup))
 		cache_fast_lookup_enabled_recalc();
 	return (error);
 }
 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, fast_lookup, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE,
     &cache_fast_lookup, 0, syscal_vfs_cache_fast_lookup, "IU", "");
 
 /*
  * Components of nameidata (or objects it can point to) which may
  * need restoring in case fast path lookup fails.
  */
 struct nameidata_outer {
 	size_t ni_pathlen;
 	int cn_flags;
 };
 
 struct nameidata_saved {
 #ifdef INVARIANTS
 	char *cn_nameptr;
 	size_t ni_pathlen;
 #endif
 };
 
 #ifdef INVARIANTS
 struct cache_fpl_debug {
 	size_t ni_pathlen;
 };
 #endif
 
 struct cache_fpl {
 	struct nameidata *ndp;
 	struct componentname *cnp;
 	char *nulchar;
 	struct vnode *dvp;
 	struct vnode *tvp;
 	seqc_t dvp_seqc;
 	seqc_t tvp_seqc;
 	uint32_t hash;
 	struct nameidata_saved snd;
 	struct nameidata_outer snd_outer;
 	int line;
 	enum cache_fpl_status status:8;
 	bool in_smr;
 	bool fsearch;
 	struct pwd **pwd;
 #ifdef INVARIANTS
 	struct cache_fpl_debug debug;
 #endif
 };
 
 static bool cache_fplookup_mp_supported(struct mount *mp);
 static bool cache_fplookup_is_mp(struct cache_fpl *fpl);
 static int cache_fplookup_cross_mount(struct cache_fpl *fpl);
 static int cache_fplookup_partial_setup(struct cache_fpl *fpl);
 static int cache_fplookup_skip_slashes(struct cache_fpl *fpl);
 static int cache_fplookup_trailingslash(struct cache_fpl *fpl);
 static void cache_fpl_pathlen_dec(struct cache_fpl *fpl);
 static void cache_fpl_pathlen_inc(struct cache_fpl *fpl);
 static void cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n);
 static void cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n);
 
 static void
 cache_fpl_cleanup_cnp(struct componentname *cnp)
 {
 
 	uma_zfree(namei_zone, cnp->cn_pnbuf);
 	cnp->cn_pnbuf = NULL;
 	cnp->cn_nameptr = NULL;
 }
 
 static struct vnode *
 cache_fpl_handle_root(struct cache_fpl *fpl)
 {
 	struct nameidata *ndp;
 	struct componentname *cnp;
 
 	ndp = fpl->ndp;
 	cnp = fpl->cnp;
 
 	MPASS(*(cnp->cn_nameptr) == '/');
 	cnp->cn_nameptr++;
 	cache_fpl_pathlen_dec(fpl);
 
 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
 		do {
 			cnp->cn_nameptr++;
 			cache_fpl_pathlen_dec(fpl);
 		} while (*(cnp->cn_nameptr) == '/');
 	}
 
 	return (ndp->ni_rootdir);
 }
 
 static void
 cache_fpl_checkpoint_outer(struct cache_fpl *fpl)
 {
 
 	fpl->snd_outer.ni_pathlen = fpl->ndp->ni_pathlen;
 	fpl->snd_outer.cn_flags = fpl->ndp->ni_cnd.cn_flags;
 }
 
 static void
 cache_fpl_checkpoint(struct cache_fpl *fpl)
 {
 
 #ifdef INVARIANTS
 	fpl->snd.cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr;
 	fpl->snd.ni_pathlen = fpl->debug.ni_pathlen;
 #endif
 }
 
 static void
 cache_fpl_restore_partial(struct cache_fpl *fpl)
 {
 
 	fpl->ndp->ni_cnd.cn_flags = fpl->snd_outer.cn_flags;
 #ifdef INVARIANTS
 	fpl->debug.ni_pathlen = fpl->snd.ni_pathlen;
 #endif
 }
 
 static void
 cache_fpl_restore_abort(struct cache_fpl *fpl)
 {
 
 	cache_fpl_restore_partial(fpl);
 	/*
 	 * It is 0 on entry by API contract.
 	 */
 	fpl->ndp->ni_resflags = 0;
 	fpl->ndp->ni_cnd.cn_nameptr = fpl->ndp->ni_cnd.cn_pnbuf;
 	fpl->ndp->ni_pathlen = fpl->snd_outer.ni_pathlen;
 }
 
 #ifdef INVARIANTS
 #define cache_fpl_smr_assert_entered(fpl) ({			\
 	struct cache_fpl *_fpl = (fpl);				\
 	MPASS(_fpl->in_smr == true);				\
 	VFS_SMR_ASSERT_ENTERED();				\
 })
 #define cache_fpl_smr_assert_not_entered(fpl) ({		\
 	struct cache_fpl *_fpl = (fpl);				\
 	MPASS(_fpl->in_smr == false);				\
 	VFS_SMR_ASSERT_NOT_ENTERED();				\
 })
 static void
 cache_fpl_assert_status(struct cache_fpl *fpl)
 {
 
 	switch (fpl->status) {
 	case CACHE_FPL_STATUS_UNSET:
 		__assert_unreachable();
 		break;
 	case CACHE_FPL_STATUS_DESTROYED:
 	case CACHE_FPL_STATUS_ABORTED:
 	case CACHE_FPL_STATUS_PARTIAL:
 	case CACHE_FPL_STATUS_HANDLED:
 		break;
 	}
 }
 #else
 #define cache_fpl_smr_assert_entered(fpl) do { } while (0)
 #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0)
 #define cache_fpl_assert_status(fpl) do { } while (0)
 #endif
 
 #define cache_fpl_smr_enter_initial(fpl) ({			\
 	struct cache_fpl *_fpl = (fpl);				\
 	vfs_smr_enter();					\
 	_fpl->in_smr = true;					\
 })
 
 #define cache_fpl_smr_enter(fpl) ({				\
 	struct cache_fpl *_fpl = (fpl);				\
 	MPASS(_fpl->in_smr == false);				\
 	vfs_smr_enter();					\
 	_fpl->in_smr = true;					\
 })
 
 #define cache_fpl_smr_exit(fpl) ({				\
 	struct cache_fpl *_fpl = (fpl);				\
 	MPASS(_fpl->in_smr == true);				\
 	vfs_smr_exit();						\
 	_fpl->in_smr = false;					\
 })
 
 static int
 cache_fpl_aborted_early_impl(struct cache_fpl *fpl, int line)
 {
 
 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
 		    ("%s: converting to abort from %d at %d, set at %d\n",
 		    __func__, fpl->status, line, fpl->line));
 	}
 	cache_fpl_smr_assert_not_entered(fpl);
 	fpl->status = CACHE_FPL_STATUS_ABORTED;
 	fpl->line = line;
 	return (CACHE_FPL_FAILED);
 }
 
 #define cache_fpl_aborted_early(x)	cache_fpl_aborted_early_impl((x), __LINE__)
 
 static int __noinline
 cache_fpl_aborted_impl(struct cache_fpl *fpl, int line)
 {
 	struct nameidata *ndp;
 	struct componentname *cnp;
 
 	ndp = fpl->ndp;
 	cnp = fpl->cnp;
 
 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
 		    ("%s: converting to abort from %d at %d, set at %d\n",
 		    __func__, fpl->status, line, fpl->line));
 	}
 	fpl->status = CACHE_FPL_STATUS_ABORTED;
 	fpl->line = line;
 	if (fpl->in_smr)
 		cache_fpl_smr_exit(fpl);
 	cache_fpl_restore_abort(fpl);
 	/*
 	 * Resolving symlinks overwrites data passed by the caller.
 	 * Let namei know.
 	 */
 	if (ndp->ni_loopcnt > 0) {
 		fpl->status = CACHE_FPL_STATUS_DESTROYED;
 		cache_fpl_cleanup_cnp(cnp);
 	}
 	return (CACHE_FPL_FAILED);
 }
 
 #define cache_fpl_aborted(x)	cache_fpl_aborted_impl((x), __LINE__)
 
 static int __noinline
 cache_fpl_partial_impl(struct cache_fpl *fpl, int line)
 {
 
 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
 	    ("%s: setting to partial at %d, but already set to %d at %d\n",
 	    __func__, line, fpl->status, fpl->line));
 	cache_fpl_smr_assert_entered(fpl);
 	fpl->status = CACHE_FPL_STATUS_PARTIAL;
 	fpl->line = line;
 	return (cache_fplookup_partial_setup(fpl));
 }
 
 #define cache_fpl_partial(x)	cache_fpl_partial_impl((x), __LINE__)
 
 static int
 cache_fpl_handled_impl(struct cache_fpl *fpl, int line)
 {
 
 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
 	    __func__, line, fpl->status, fpl->line));
 	cache_fpl_smr_assert_not_entered(fpl);
 	fpl->status = CACHE_FPL_STATUS_HANDLED;
 	fpl->line = line;
 	return (0);
 }
 
 #define cache_fpl_handled(x)	cache_fpl_handled_impl((x), __LINE__)
 
 static int
 cache_fpl_handled_error_impl(struct cache_fpl *fpl, int error, int line)
 {
 
 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
 	    __func__, line, fpl->status, fpl->line));
 	MPASS(error != 0);
 	MPASS(error != CACHE_FPL_FAILED);
 	cache_fpl_smr_assert_not_entered(fpl);
 	fpl->status = CACHE_FPL_STATUS_HANDLED;
 	fpl->line = line;
 	fpl->dvp = NULL;
 	fpl->tvp = NULL;
 	return (error);
 }
 
 #define cache_fpl_handled_error(x, e)	cache_fpl_handled_error_impl((x), (e), __LINE__)
 
 static bool
 cache_fpl_terminated(struct cache_fpl *fpl)
 {
 
 	return (fpl->status != CACHE_FPL_STATUS_UNSET);
 }
 
 #define CACHE_FPL_SUPPORTED_CN_FLAGS \
 	(NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \
 	 FAILIFEXISTS | FOLLOW | EMPTYPATH | LOCKSHARED | ISRESTARTED | WILLBEDIR | \
 	 ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK | OPENREAD | \
 	 OPENWRITE | WANTIOCTLCAPS)
 
 #define CACHE_FPL_INTERNAL_CN_FLAGS \
 	(ISDOTDOT | MAKEENTRY | ISLASTCN)
 
 _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
     "supported and internal flags overlap");
 
 static bool
 cache_fpl_islastcn(struct nameidata *ndp)
 {
 
 	return (*ndp->ni_next == 0);
 }
 
 static bool
 cache_fpl_istrailingslash(struct cache_fpl *fpl)
 {
 
 	MPASS(fpl->nulchar > fpl->cnp->cn_pnbuf);
 	return (*(fpl->nulchar - 1) == '/');
 }
 
 static bool
 cache_fpl_isdotdot(struct componentname *cnp)
 {
 
 	if (cnp->cn_namelen == 2 &&
 	    cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
 		return (true);
 	return (false);
 }
 
 static bool
 cache_can_fplookup(struct cache_fpl *fpl)
 {
 	struct nameidata *ndp;
 	struct componentname *cnp;
 	struct thread *td;
 
 	ndp = fpl->ndp;
 	cnp = fpl->cnp;
 	td = curthread;
 
 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
 		cache_fpl_aborted_early(fpl);
 		return (false);
 	}
 	if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) {
 		cache_fpl_aborted_early(fpl);
 		return (false);
 	}
 	if (IN_CAPABILITY_MODE(td) || CAP_TRACING(td)) {
 		cache_fpl_aborted_early(fpl);
 		return (false);
 	}
 	if (AUDITING_TD(td)) {
 		cache_fpl_aborted_early(fpl);
 		return (false);
 	}
 	if (ndp->ni_startdir != NULL) {
 		cache_fpl_aborted_early(fpl);
 		return (false);
 	}
 	return (true);
 }
 
 static int __noinline
 cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp)
 {
 	struct nameidata *ndp;
 	struct componentname *cnp;
 	int error;
 	bool fsearch;
 
 	ndp = fpl->ndp;
 	cnp = fpl->cnp;
 
 	error = fgetvp_lookup_smr(ndp, vpp, &fsearch);
 	if (__predict_false(error != 0)) {
 		return (cache_fpl_aborted(fpl));
 	}
 	fpl->fsearch = fsearch;
 	if ((*vpp)->v_type != VDIR) {
 		if (!((cnp->cn_flags & EMPTYPATH) != 0 && cnp->cn_pnbuf[0] == '\0')) {
 			cache_fpl_smr_exit(fpl);
 			return (cache_fpl_handled_error(fpl, ENOTDIR));
 		}
 	}
 	return (0);
 }
 
 static int __noinline
 cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp,
     uint32_t hash)
 {
 	struct componentname *cnp;
 	struct vnode *dvp;
 
 	cnp = fpl->cnp;
 	dvp = fpl->dvp;
 
 	cache_fpl_smr_exit(fpl);
 	if (cache_neg_promote_cond(dvp, cnp, oncp, hash))
 		return (cache_fpl_handled_error(fpl, ENOENT));
 	else
 		return (cache_fpl_aborted(fpl));
 }
 
 /*
  * The target vnode is not supported, prepare for the slow path to take over.
  */
 static int __noinline
 cache_fplookup_partial_setup(struct cache_fpl *fpl)
 {
 	struct nameidata *ndp;
 	struct componentname *cnp;
 	enum vgetstate dvs;
 	struct vnode *dvp;
 	struct pwd *pwd;
 	seqc_t dvp_seqc;
 
 	ndp = fpl->ndp;
 	cnp = fpl->cnp;
 	pwd = *(fpl->pwd);
 	dvp = fpl->dvp;
 	dvp_seqc = fpl->dvp_seqc;
 
 	if (!pwd_hold_smr(pwd)) {
 		return (cache_fpl_aborted(fpl));
 	}
 
 	/*
 	 * Note that seqc is checked before the vnode is locked, so by
 	 * the time regular lookup gets to it it may have moved.
 	 *
 	 * Ultimately this does not affect correctness, any lookup errors
 	 * are userspace racing with itself. It is guaranteed that any
 	 * path which ultimately gets found could also have been found
 	 * by regular lookup going all the way in absence of concurrent
 	 * modifications.
 	 */
 	dvs = vget_prep_smr(dvp);
 	cache_fpl_smr_exit(fpl);
 	if (__predict_false(dvs == VGET_NONE)) {
 		pwd_drop(pwd);
 		return (cache_fpl_aborted(fpl));
 	}
 
 	vget_finish_ref(dvp, dvs);
 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
 		vrele(dvp);
 		pwd_drop(pwd);
 		return (cache_fpl_aborted(fpl));
 	}
 
 	cache_fpl_restore_partial(fpl);
 #ifdef INVARIANTS
 	if (cnp->cn_nameptr != fpl->snd.cn_nameptr) {
 		panic("%s: cn_nameptr mismatch (%p != %p) full [%s]\n", __func__,
 		    cnp->cn_nameptr, fpl->snd.cn_nameptr, cnp->cn_pnbuf);
 	}
 #endif
 
 	ndp->ni_startdir = dvp;
 	cnp->cn_flags |= MAKEENTRY;
 	if (cache_fpl_islastcn(ndp))
 		cnp->cn_flags |= ISLASTCN;
 	if (cache_fpl_isdotdot(cnp))
 		cnp->cn_flags |= ISDOTDOT;
 
 	/*
 	 * Skip potential extra slashes parsing did not take care of.
 	 * cache_fplookup_skip_slashes explains the mechanism.
 	 */
 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
 		do {
 			cnp->cn_nameptr++;
 			cache_fpl_pathlen_dec(fpl);
 		} while (*(cnp->cn_nameptr) == '/');
 	}
 
 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
 #ifdef INVARIANTS
 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
 	}
 #endif
 	return (0);
 }
 
 static int
 cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs)
 {
 	struct componentname *cnp;
 	struct vnode *tvp;
 	seqc_t tvp_seqc;
 	int error, lkflags;
 
 	cnp = fpl->cnp;
 	tvp = fpl->tvp;
 	tvp_seqc = fpl->tvp_seqc;
 
 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
 		lkflags = LK_SHARED;
 		if ((cnp->cn_flags & LOCKSHARED) == 0)
 			lkflags = LK_EXCLUSIVE;
 		error = vget_finish(tvp, lkflags, tvs);
 		if (__predict_false(error != 0)) {
 			return (cache_fpl_aborted(fpl));
 		}
 	} else {
 		vget_finish_ref(tvp, tvs);
 	}
 
 	if (!vn_seqc_consistent(tvp, tvp_seqc)) {
 		if ((cnp->cn_flags & LOCKLEAF) != 0)
 			vput(tvp);
 		else
 			vrele(tvp);
 		return (cache_fpl_aborted(fpl));
 	}
 
 	return (cache_fpl_handled(fpl));
 }
 
 /*
  * They want to possibly modify the state of the namecache.
  */
 static int __noinline
 cache_fplookup_final_modifying(struct cache_fpl *fpl)
 {
 	struct nameidata *ndp __diagused;
 	struct componentname *cnp;
 	enum vgetstate dvs;
 	struct vnode *dvp, *tvp;
 	struct mount *mp;
 	seqc_t dvp_seqc;
 	int error;
 	bool docache;
 
 	ndp = fpl->ndp;
 	cnp = fpl->cnp;
 	dvp = fpl->dvp;
 	dvp_seqc = fpl->dvp_seqc;
 
 	MPASS(*(cnp->cn_nameptr) != '/');
 	MPASS(cache_fpl_islastcn(ndp));
 	if ((cnp->cn_flags & LOCKPARENT) == 0)
 		MPASS((cnp->cn_flags & WANTPARENT) != 0);
 	MPASS((cnp->cn_flags & TRAILINGSLASH) == 0);
 	MPASS(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == DELETE ||
 	    cnp->cn_nameiop == RENAME);
 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
 
 	docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE;
 	if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
 		docache = false;
 
 	/*
 	 * Regular lookup nulifies the slash, which we don't do here.
 	 * Don't take chances with filesystem routines seeing it for
 	 * the last entry.
 	 */
 	if (cache_fpl_istrailingslash(fpl)) {
 		return (cache_fpl_partial(fpl));
 	}
 
 	mp = atomic_load_ptr(&dvp->v_mount);
 	if (__predict_false(mp == NULL)) {
 		return (cache_fpl_aborted(fpl));
 	}
 
 	if (__predict_false(mp->mnt_flag & MNT_RDONLY)) {
 		cache_fpl_smr_exit(fpl);
 		/*
 		 * Original code keeps not checking for CREATE which
 		 * might be a bug. For now let the old lookup decide.
 		 */
 		if (cnp->cn_nameiop == CREATE) {
 			return (cache_fpl_aborted(fpl));
 		}
 		return (cache_fpl_handled_error(fpl, EROFS));
 	}
 
 	if (fpl->tvp != NULL && (cnp->cn_flags & FAILIFEXISTS) != 0) {
 		cache_fpl_smr_exit(fpl);
 		return (cache_fpl_handled_error(fpl, EEXIST));
 	}
 
 	/*
 	 * Secure access to dvp; check cache_fplookup_partial_setup for
 	 * reasoning.
 	 *
 	 * XXX At least UFS requires its lookup routine to be called for
 	 * the last path component, which leads to some level of complication
 	 * and inefficiency:
 	 * - the target routine always locks the target vnode, but our caller
 	 *   may not need it locked
 	 * - some of the VOP machinery asserts that the parent is locked, which
 	 *   once more may be not required
 	 *
 	 * TODO: add a flag for filesystems which don't need this.
 	 */
 	dvs = vget_prep_smr(dvp);
 	cache_fpl_smr_exit(fpl);
 	if (__predict_false(dvs == VGET_NONE)) {
 		return (cache_fpl_aborted(fpl));
 	}
 
 	vget_finish_ref(dvp, dvs);
 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
 		vrele(dvp);
 		return (cache_fpl_aborted(fpl));
 	}
 
 	error = vn_lock(dvp, LK_EXCLUSIVE);
 	if (__predict_false(error != 0)) {
 		vrele(dvp);
 		return (cache_fpl_aborted(fpl));
 	}
 
 	tvp = NULL;
 	cnp->cn_flags |= ISLASTCN;
 	if (docache)
 		cnp->cn_flags |= MAKEENTRY;
 	if (cache_fpl_isdotdot(cnp))
 		cnp->cn_flags |= ISDOTDOT;
 	cnp->cn_lkflags = LK_EXCLUSIVE;
 	error = VOP_LOOKUP(dvp, &tvp, cnp);
 	switch (error) {
 	case EJUSTRETURN:
 	case 0:
 		break;
 	case ENOTDIR:
 	case ENOENT:
 		vput(dvp);
 		return (cache_fpl_handled_error(fpl, error));
 	default:
 		vput(dvp);
 		return (cache_fpl_aborted(fpl));
 	}
 
 	fpl->tvp = tvp;
 
 	if (tvp == NULL) {
 		MPASS(error == EJUSTRETURN);
 		if ((cnp->cn_flags & LOCKPARENT) == 0) {
 			VOP_UNLOCK(dvp);
 		}
 		return (cache_fpl_handled(fpl));
 	}
 
 	/*
 	 * There are very hairy corner cases concerning various flag combinations
 	 * and locking state. In particular here we only hold one lock instead of
 	 * two.
 	 *
 	 * Skip the complexity as it is of no significance for normal workloads.
 	 */
 	if (__predict_false(tvp == dvp)) {
 		vput(dvp);
 		vrele(tvp);
 		return (cache_fpl_aborted(fpl));
 	}
 
 	/*
 	 * If they want the symlink itself we are fine, but if they want to
 	 * follow it regular lookup has to be engaged.
 	 */
 	if (tvp->v_type == VLNK) {
 		if ((cnp->cn_flags & FOLLOW) != 0) {
 			vput(dvp);
 			vput(tvp);
 			return (cache_fpl_aborted(fpl));
 		}
 	}
 
 	/*
 	 * Since we expect this to be the terminal vnode it should almost never
 	 * be a mount point.
 	 */
 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
 		vput(dvp);
 		vput(tvp);
 		return (cache_fpl_aborted(fpl));
 	}
 
 	if ((cnp->cn_flags & FAILIFEXISTS) != 0) {
 		vput(dvp);
 		vput(tvp);
 		return (cache_fpl_handled_error(fpl, EEXIST));
 	}
 
 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
 		VOP_UNLOCK(tvp);
 	}
 
 	if ((cnp->cn_flags & LOCKPARENT) == 0) {
 		VOP_UNLOCK(dvp);
 	}
 
 	return (cache_fpl_handled(fpl));
 }
 
 static int __noinline
 cache_fplookup_modifying(struct cache_fpl *fpl)
 {
 	struct nameidata *ndp;
 
 	ndp = fpl->ndp;
 
 	if (!cache_fpl_islastcn(ndp)) {
 		return (cache_fpl_partial(fpl));
 	}
 	return (cache_fplookup_final_modifying(fpl));
 }
 
 static int __noinline
 cache_fplookup_final_withparent(struct cache_fpl *fpl)
 {
 	struct componentname *cnp;
 	enum vgetstate dvs, tvs;
 	struct vnode *dvp, *tvp;
 	seqc_t dvp_seqc;
 	int error;
 
 	cnp = fpl->cnp;
 	dvp = fpl->dvp;
 	dvp_seqc = fpl->dvp_seqc;
 	tvp = fpl->tvp;
 
 	MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0);
 
 	/*
 	 * This is less efficient than it can be for simplicity.
 	 */
 	dvs = vget_prep_smr(dvp);
 	if (__predict_false(dvs == VGET_NONE)) {
 		return (cache_fpl_aborted(fpl));
 	}
 	tvs = vget_prep_smr(tvp);
 	if (__predict_false(tvs == VGET_NONE)) {
 		cache_fpl_smr_exit(fpl);
 		vget_abort(dvp, dvs);
 		return (cache_fpl_aborted(fpl));
 	}
 
 	cache_fpl_smr_exit(fpl);
 
 	if ((cnp->cn_flags & LOCKPARENT) != 0) {
 		error = vget_finish(dvp, LK_EXCLUSIVE, dvs);
 		if (__predict_false(error != 0)) {
 			vget_abort(tvp, tvs);
 			return (cache_fpl_aborted(fpl));
 		}
 	} else {
 		vget_finish_ref(dvp, dvs);
 	}
 
 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
 		vget_abort(tvp, tvs);
 		if ((cnp->cn_flags & LOCKPARENT) != 0)
 			vput(dvp);
 		else
 			vrele(dvp);
 		return (cache_fpl_aborted(fpl));
 	}
 
 	error = cache_fplookup_final_child(fpl, tvs);
 	if (__predict_false(error != 0)) {
 		MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED ||
 		    fpl->status == CACHE_FPL_STATUS_DESTROYED);
 		if ((cnp->cn_flags & LOCKPARENT) != 0)
 			vput(dvp);
 		else
 			vrele(dvp);
 		return (error);
 	}
 
 	MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED);
 	return (0);
 }
 
 static int
 cache_fplookup_final(struct cache_fpl *fpl)
 {
 	struct componentname *cnp;
 	enum vgetstate tvs;
 	struct vnode *dvp, *tvp;
 	seqc_t dvp_seqc;
 
 	cnp = fpl->cnp;
 	dvp = fpl->dvp;
 	dvp_seqc = fpl->dvp_seqc;
 	tvp = fpl->tvp;
 
 	MPASS(*(cnp->cn_nameptr) != '/');
 
 	if (cnp->cn_nameiop != LOOKUP) {
 		return (cache_fplookup_final_modifying(fpl));
 	}
 
 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0)
 		return (cache_fplookup_final_withparent(fpl));
 
 	tvs = vget_prep_smr(tvp);
 	if (__predict_false(tvs == VGET_NONE)) {
 		return (cache_fpl_partial(fpl));
 	}
 
 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
 		cache_fpl_smr_exit(fpl);
 		vget_abort(tvp, tvs);
 		return (cache_fpl_aborted(fpl));
 	}
 
 	cache_fpl_smr_exit(fpl);
 	return (cache_fplookup_final_child(fpl, tvs));
 }
 
 /*
  * Comment from locked lookup:
  * Check for degenerate name (e.g. / or "") which is a way of talking about a
  * directory, e.g. like "/." or ".".
  */
 static int __noinline
 cache_fplookup_degenerate(struct cache_fpl *fpl)
 {
 	struct componentname *cnp;
 	struct vnode *dvp;
 	enum vgetstate dvs;
 	int error, lkflags;
 #ifdef INVARIANTS
 	char *cp;
 #endif
 
 	fpl->tvp = fpl->dvp;
 	fpl->tvp_seqc = fpl->dvp_seqc;
 
 	cnp = fpl->cnp;
 	dvp = fpl->dvp;
 
 #ifdef INVARIANTS
 	for (cp = cnp->cn_pnbuf; *cp != '\0'; cp++) {
 		KASSERT(*cp == '/',
 		    ("%s: encountered non-slash; string [%s]\n", __func__,
 		    cnp->cn_pnbuf));
 	}
 #endif
 
 	if (__predict_false(cnp->cn_nameiop != LOOKUP)) {
 		cache_fpl_smr_exit(fpl);
 		return (cache_fpl_handled_error(fpl, EISDIR));
 	}
 
 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) {
 		return (cache_fplookup_final_withparent(fpl));
 	}
 
 	dvs = vget_prep_smr(dvp);
 	cache_fpl_smr_exit(fpl);
 	if (__predict_false(dvs == VGET_NONE)) {
 		return (cache_fpl_aborted(fpl));
 	}
 
 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
 		lkflags = LK_SHARED;
 		if ((cnp->cn_flags & LOCKSHARED) == 0)
 			lkflags = LK_EXCLUSIVE;
 		error = vget_finish(dvp, lkflags, dvs);
 		if (__predict_false(error != 0)) {
 			return (cache_fpl_aborted(fpl));
 		}
 	} else {
 		vget_finish_ref(dvp, dvs);
 	}
 	return (cache_fpl_handled(fpl));
 }
 
 static int __noinline
 cache_fplookup_emptypath(struct cache_fpl *fpl)
 {
 	struct nameidata *ndp;
 	struct componentname *cnp;
 	enum vgetstate tvs;
 	struct vnode *tvp;
 	int error, lkflags;
 
 	fpl->tvp = fpl->dvp;
 	fpl->tvp_seqc = fpl->dvp_seqc;
 
 	ndp = fpl->ndp;
 	cnp = fpl->cnp;
 	tvp = fpl->tvp;
 
 	MPASS(*cnp->cn_pnbuf == '\0');
 
 	if (__predict_false((cnp->cn_flags & EMPTYPATH) == 0)) {
 		cache_fpl_smr_exit(fpl);
 		return (cache_fpl_handled_error(fpl, ENOENT));
 	}
 
 	MPASS((cnp->cn_flags & (LOCKPARENT | WANTPARENT)) == 0);
 
 	tvs = vget_prep_smr(tvp);
 	cache_fpl_smr_exit(fpl);
 	if (__predict_false(tvs == VGET_NONE)) {
 		return (cache_fpl_aborted(fpl));
 	}
 
 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
 		lkflags = LK_SHARED;
 		if ((cnp->cn_flags & LOCKSHARED) == 0)
 			lkflags = LK_EXCLUSIVE;
 		error = vget_finish(tvp, lkflags, tvs);
 		if (__predict_false(error != 0)) {
 			return (cache_fpl_aborted(fpl));
 		}
 	} else {
 		vget_finish_ref(tvp, tvs);
 	}
 
 	ndp->ni_resflags |= NIRES_EMPTYPATH;
 	return (cache_fpl_handled(fpl));
 }
 
 static int __noinline
 cache_fplookup_noentry(struct cache_fpl *fpl)
 {
 	struct nameidata *ndp;
 	struct componentname *cnp;
 	enum vgetstate dvs;
 	struct vnode *dvp, *tvp;
 	seqc_t dvp_seqc;
 	int error;
 
 	ndp = fpl->ndp;
 	cnp = fpl->cnp;
 	dvp = fpl->dvp;
 	dvp_seqc = fpl->dvp_seqc;
 
 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
 	if (cnp->cn_nameiop == LOOKUP)
 		MPASS((cnp->cn_flags & NOCACHE) == 0);
 	MPASS(!cache_fpl_isdotdot(cnp));
 
 	/*
 	 * Hack: delayed name len checking.
 	 */
 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
 		cache_fpl_smr_exit(fpl);
 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
 	}
 
 	if (cnp->cn_nameptr[0] == '/') {
 		return (cache_fplookup_skip_slashes(fpl));
 	}
 
 	if (cnp->cn_pnbuf[0] == '\0') {
 		return (cache_fplookup_emptypath(fpl));
 	}
 
 	if (cnp->cn_nameptr[0] == '\0') {
 		if (fpl->tvp == NULL) {
 			return (cache_fplookup_degenerate(fpl));
 		}
 		return (cache_fplookup_trailingslash(fpl));
 	}
 
 	if (cnp->cn_nameiop != LOOKUP) {
 		fpl->tvp = NULL;
 		return (cache_fplookup_modifying(fpl));
 	}
 
 	/*
 	 * Only try to fill in the component if it is the last one,
 	 * otherwise not only there may be several to handle but the
 	 * walk may be complicated.
 	 */
 	if (!cache_fpl_islastcn(ndp)) {
 		return (cache_fpl_partial(fpl));
 	}
 
 	/*
 	 * Regular lookup nulifies the slash, which we don't do here.
 	 * Don't take chances with filesystem routines seeing it for
 	 * the last entry.
 	 */
 	if (cache_fpl_istrailingslash(fpl)) {
 		return (cache_fpl_partial(fpl));
 	}
 
 	/*
 	 * Secure access to dvp; check cache_fplookup_partial_setup for
 	 * reasoning.
 	 */
 	dvs = vget_prep_smr(dvp);
 	cache_fpl_smr_exit(fpl);
 	if (__predict_false(dvs == VGET_NONE)) {
 		return (cache_fpl_aborted(fpl));
 	}
 
 	vget_finish_ref(dvp, dvs);
 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
 		vrele(dvp);
 		return (cache_fpl_aborted(fpl));
 	}
 
 	error = vn_lock(dvp, LK_SHARED);
 	if (__predict_false(error != 0)) {
 		vrele(dvp);
 		return (cache_fpl_aborted(fpl));
 	}
 
 	tvp = NULL;
 	/*
 	 * TODO: provide variants which don't require locking either vnode.
 	 */
 	cnp->cn_flags |= ISLASTCN | MAKEENTRY;
 	cnp->cn_lkflags = LK_SHARED;
 	if ((cnp->cn_flags & LOCKSHARED) == 0) {
 		cnp->cn_lkflags = LK_EXCLUSIVE;
 	}
 	error = VOP_LOOKUP(dvp, &tvp, cnp);
 	switch (error) {
 	case EJUSTRETURN:
 	case 0:
 		break;
 	case ENOTDIR:
 	case ENOENT:
 		vput(dvp);
 		return (cache_fpl_handled_error(fpl, error));
 	default:
 		vput(dvp);
 		return (cache_fpl_aborted(fpl));
 	}
 
 	fpl->tvp = tvp;
 
 	if (tvp == NULL) {
 		MPASS(error == EJUSTRETURN);
 		if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
 			vput(dvp);
 		} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
 			VOP_UNLOCK(dvp);
 		}
 		return (cache_fpl_handled(fpl));
 	}
 
 	if (tvp->v_type == VLNK) {
 		if ((cnp->cn_flags & FOLLOW) != 0) {
 			vput(dvp);
 			vput(tvp);
 			return (cache_fpl_aborted(fpl));
 		}
 	}
 
 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
 		vput(dvp);
 		vput(tvp);
 		return (cache_fpl_aborted(fpl));
 	}
 
 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
 		VOP_UNLOCK(tvp);
 	}
 
 	if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
 		vput(dvp);
 	} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
 		VOP_UNLOCK(dvp);
 	}
 	return (cache_fpl_handled(fpl));
 }
 
 static int __noinline
 cache_fplookup_dot(struct cache_fpl *fpl)
 {
 	int error;
 
 	MPASS(!seqc_in_modify(fpl->dvp_seqc));
 
 	if (__predict_false(fpl->dvp->v_type != VDIR)) {
 		cache_fpl_smr_exit(fpl);
 		return (cache_fpl_handled_error(fpl, ENOTDIR));
 	}
 
 	/*
 	 * Just re-assign the value. seqc will be checked later for the first
 	 * non-dot path component in line and/or before deciding to return the
 	 * vnode.
 	 */
 	fpl->tvp = fpl->dvp;
 	fpl->tvp_seqc = fpl->dvp_seqc;
 
 	SDT_PROBE3(vfs, namecache, lookup, hit, fpl->dvp, ".", fpl->dvp);
 
 	error = 0;
 	if (cache_fplookup_is_mp(fpl)) {
 		error = cache_fplookup_cross_mount(fpl);
 	}
 	return (error);
 }
 
 static int __noinline
 cache_fplookup_dotdot(struct cache_fpl *fpl)
 {
 	struct nameidata *ndp;
 	struct componentname *cnp;
 	struct namecache *ncp;
 	struct vnode *dvp;
 	struct prison *pr;
 	u_char nc_flag;
 
 	ndp = fpl->ndp;
 	cnp = fpl->cnp;
 	dvp = fpl->dvp;
 
 	MPASS(cache_fpl_isdotdot(cnp));
 
 	/*
 	 * XXX this is racy the same way regular lookup is
 	 */
 	for (pr = cnp->cn_cred->cr_prison; pr != NULL;
 	    pr = pr->pr_parent)
 		if (dvp == pr->pr_root)
 			break;
 
 	if (dvp == ndp->ni_rootdir ||
 	    dvp == ndp->ni_topdir ||
 	    dvp == rootvnode ||
 	    pr != NULL) {
 		fpl->tvp = dvp;
 		fpl->tvp_seqc = vn_seqc_read_any(dvp);
 		if (seqc_in_modify(fpl->tvp_seqc)) {
 			return (cache_fpl_aborted(fpl));
 		}
 		return (0);
 	}
 
 	if ((dvp->v_vflag & VV_ROOT) != 0) {
 		/*
 		 * TODO
 		 * The opposite of climb mount is needed here.
 		 */
 		return (cache_fpl_partial(fpl));
 	}
 
 	if (__predict_false(dvp->v_type != VDIR)) {
 		cache_fpl_smr_exit(fpl);
 		return (cache_fpl_handled_error(fpl, ENOTDIR));
 	}
 
 	ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
 	if (ncp == NULL) {
 		return (cache_fpl_aborted(fpl));
 	}
 
 	nc_flag = atomic_load_char(&ncp->nc_flag);
 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
 		if ((nc_flag & NCF_NEGATIVE) != 0)
 			return (cache_fpl_aborted(fpl));
 		fpl->tvp = ncp->nc_vp;
 	} else {
 		fpl->tvp = ncp->nc_dvp;
 	}
 
 	fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp);
 	if (seqc_in_modify(fpl->tvp_seqc)) {
 		return (cache_fpl_partial(fpl));
 	}
 
 	/*
 	 * Acquire fence provided by vn_seqc_read_any above.
 	 */
 	if (__predict_false(atomic_load_ptr(&dvp->v_cache_dd) != ncp)) {
 		return (cache_fpl_aborted(fpl));
 	}
 
 	if (!cache_ncp_canuse(ncp)) {
 		return (cache_fpl_aborted(fpl));
 	}
 
 	return (0);
 }
 
 static int __noinline
 cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash)
 {
 	u_char nc_flag __diagused;
 	bool neg_promote;
 
 #ifdef INVARIANTS
 	nc_flag = atomic_load_char(&ncp->nc_flag);
 	MPASS((nc_flag & NCF_NEGATIVE) != 0);
 #endif
 	/*
 	 * If they want to create an entry we need to replace this one.
 	 */
 	if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) {
 		fpl->tvp = NULL;
 		return (cache_fplookup_modifying(fpl));
 	}
 	neg_promote = cache_neg_hit_prep(ncp);
 	if (!cache_fpl_neg_ncp_canuse(ncp)) {
 		cache_neg_hit_abort(ncp);
 		return (cache_fpl_partial(fpl));
 	}
 	if (neg_promote) {
 		return (cache_fplookup_negative_promote(fpl, ncp, hash));
 	}
 	cache_neg_hit_finish(ncp);
 	cache_fpl_smr_exit(fpl);
 	return (cache_fpl_handled_error(fpl, ENOENT));
 }
 
 /*
  * Resolve a symlink. Called by filesystem-specific routines.
  *
  * Code flow is:
  * ... -> cache_fplookup_symlink -> VOP_FPLOOKUP_SYMLINK -> cache_symlink_resolve
  */
 int
 cache_symlink_resolve(struct cache_fpl *fpl, const char *string, size_t len)
 {
 	struct nameidata *ndp;
 	struct componentname *cnp;
 	size_t adjust;
 
 	ndp = fpl->ndp;
 	cnp = fpl->cnp;
 
 	if (__predict_false(len == 0)) {
 		return (ENOENT);
 	}
 
 	if (__predict_false(len > MAXPATHLEN - 2)) {
 		if (cache_fpl_istrailingslash(fpl)) {
 			return (EAGAIN);
 		}
 	}
 
 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr - cnp->cn_namelen + 1;
 #ifdef INVARIANTS
 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
 	}
 #endif
 
 	if (__predict_false(len + ndp->ni_pathlen > MAXPATHLEN)) {
 		return (ENAMETOOLONG);
 	}
 
 	if (__predict_false(ndp->ni_loopcnt++ >= MAXSYMLINKS)) {
 		return (ELOOP);
 	}
 
 	adjust = len;
 	if (ndp->ni_pathlen > 1) {
 		bcopy(ndp->ni_next, cnp->cn_pnbuf + len, ndp->ni_pathlen);
 	} else {
 		if (cache_fpl_istrailingslash(fpl)) {
 			adjust = len + 1;
 			cnp->cn_pnbuf[len] = '/';
 			cnp->cn_pnbuf[len + 1] = '\0';
 		} else {
 			cnp->cn_pnbuf[len] = '\0';
 		}
 	}
 	bcopy(string, cnp->cn_pnbuf, len);
 
 	ndp->ni_pathlen += adjust;
 	cache_fpl_pathlen_add(fpl, adjust);
 	cnp->cn_nameptr = cnp->cn_pnbuf;
 	fpl->nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
 	fpl->tvp = NULL;
 	return (0);
 }
 
 static int __noinline
 cache_fplookup_symlink(struct cache_fpl *fpl)
 {
 	struct mount *mp;
 	struct nameidata *ndp;
 	struct componentname *cnp;
 	struct vnode *dvp, *tvp;
 	struct pwd *pwd;
 	int error;
 
 	ndp = fpl->ndp;
 	cnp = fpl->cnp;
 	dvp = fpl->dvp;
 	tvp = fpl->tvp;
 	pwd = *(fpl->pwd);
 
 	if (cache_fpl_islastcn(ndp)) {
 		if ((cnp->cn_flags & FOLLOW) == 0) {
 			return (cache_fplookup_final(fpl));
 		}
 	}
 
 	mp = atomic_load_ptr(&dvp->v_mount);
 	if (__predict_false(mp == NULL)) {
 		return (cache_fpl_aborted(fpl));
 	}
 
 	/*
 	 * Note this check races against setting the flag just like regular
 	 * lookup.
 	 */
 	if (__predict_false((mp->mnt_flag & MNT_NOSYMFOLLOW) != 0)) {
 		cache_fpl_smr_exit(fpl);
 		return (cache_fpl_handled_error(fpl, EACCES));
 	}
 
 	error = VOP_FPLOOKUP_SYMLINK(tvp, fpl);
 	if (__predict_false(error != 0)) {
 		switch (error) {
 		case EAGAIN:
 			return (cache_fpl_partial(fpl));
 		case ENOENT:
 		case ENAMETOOLONG:
 		case ELOOP:
 			cache_fpl_smr_exit(fpl);
 			return (cache_fpl_handled_error(fpl, error));
 		default:
 			return (cache_fpl_aborted(fpl));
 		}
 	}
 
 	if (*(cnp->cn_nameptr) == '/') {
 		fpl->dvp = cache_fpl_handle_root(fpl);
 		fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
 		if (seqc_in_modify(fpl->dvp_seqc)) {
 			return (cache_fpl_aborted(fpl));
 		}
 		/*
 		 * The main loop assumes that ->dvp points to a vnode belonging
 		 * to a filesystem which can do lockless lookup, but the absolute
 		 * symlink can be wandering off to one which does not.
 		 */
 		mp = atomic_load_ptr(&fpl->dvp->v_mount);
 		if (__predict_false(mp == NULL)) {
 			return (cache_fpl_aborted(fpl));
 		}
 		if (!cache_fplookup_mp_supported(mp)) {
 			cache_fpl_checkpoint(fpl);
 			return (cache_fpl_partial(fpl));
 		}
 		if (__predict_false(pwd->pwd_adir != pwd->pwd_rdir)) {
 			return (cache_fpl_aborted(fpl));
 		}
 	}
 	return (0);
 }
 
 static int
 cache_fplookup_next(struct cache_fpl *fpl)
 {
 	struct componentname *cnp;
 	struct namecache *ncp;
 	struct vnode *dvp, *tvp;
 	u_char nc_flag;
 	uint32_t hash;
 	int error;
 
 	cnp = fpl->cnp;
 	dvp = fpl->dvp;
 	hash = fpl->hash;
 
 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
 		if (cnp->cn_namelen == 1) {
 			return (cache_fplookup_dot(fpl));
 		}
 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
 			return (cache_fplookup_dotdot(fpl));
 		}
 	}
 
 	MPASS(!cache_fpl_isdotdot(cnp));
 
 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
 			break;
 	}
 
 	if (__predict_false(ncp == NULL)) {
 		return (cache_fplookup_noentry(fpl));
 	}
 
 	tvp = atomic_load_ptr(&ncp->nc_vp);
 	nc_flag = atomic_load_char(&ncp->nc_flag);
 	if ((nc_flag & NCF_NEGATIVE) != 0) {
 		return (cache_fplookup_neg(fpl, ncp, hash));
 	}
 
 	if (!cache_ncp_canuse(ncp)) {
 		return (cache_fpl_partial(fpl));
 	}
 
 	fpl->tvp = tvp;
 	fpl->tvp_seqc = vn_seqc_read_any(tvp);
 	if (seqc_in_modify(fpl->tvp_seqc)) {
 		return (cache_fpl_partial(fpl));
 	}
 
 	counter_u64_add(numposhits, 1);
 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp);
 
 	error = 0;
 	if (cache_fplookup_is_mp(fpl)) {
 		error = cache_fplookup_cross_mount(fpl);
 	}
 	return (error);
 }
 
 static bool
 cache_fplookup_mp_supported(struct mount *mp)
 {
 
 	MPASS(mp != NULL);
 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
 		return (false);
 	return (true);
 }
 
 /*
  * Walk up the mount stack (if any).
  *
  * Correctness is provided in the following ways:
  * - all vnodes are protected from freeing with SMR
  * - struct mount objects are type stable making them always safe to access
  * - stability of the particular mount is provided by busying it
  * - relationship between the vnode which is mounted on and the mount is
  *   verified with the vnode sequence counter after busying
  * - association between root vnode of the mount and the mount is protected
  *   by busy
  *
  * From that point on we can read the sequence counter of the root vnode
  * and get the next mount on the stack (if any) using the same protection.
  *
  * By the end of successful walk we are guaranteed the reached state was
  * indeed present at least at some point which matches the regular lookup.
  */
 static int __noinline
 cache_fplookup_climb_mount(struct cache_fpl *fpl)
 {
 	struct mount *mp, *prev_mp;
 	struct mount_pcpu *mpcpu, *prev_mpcpu;
 	struct vnode *vp;
 	seqc_t vp_seqc;
 
 	vp = fpl->tvp;
 	vp_seqc = fpl->tvp_seqc;
 
 	VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
 	mp = atomic_load_ptr(&vp->v_mountedhere);
 	if (__predict_false(mp == NULL)) {
 		return (0);
 	}
 
 	prev_mp = NULL;
 	for (;;) {
 		if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
 			if (prev_mp != NULL)
 				vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
 			return (cache_fpl_partial(fpl));
 		}
 		if (prev_mp != NULL)
 			vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
 		if (!vn_seqc_consistent(vp, vp_seqc)) {
 			vfs_op_thread_exit_crit(mp, mpcpu);
 			return (cache_fpl_partial(fpl));
 		}
 		if (!cache_fplookup_mp_supported(mp)) {
 			vfs_op_thread_exit_crit(mp, mpcpu);
 			return (cache_fpl_partial(fpl));
 		}
 		vp = atomic_load_ptr(&mp->mnt_rootvnode);
 		if (vp == NULL) {
 			vfs_op_thread_exit_crit(mp, mpcpu);
 			return (cache_fpl_partial(fpl));
 		}
 		vp_seqc = vn_seqc_read_any(vp);
 		if (seqc_in_modify(vp_seqc)) {
 			vfs_op_thread_exit_crit(mp, mpcpu);
 			return (cache_fpl_partial(fpl));
 		}
 		prev_mp = mp;
 		prev_mpcpu = mpcpu;
 		mp = atomic_load_ptr(&vp->v_mountedhere);
 		if (mp == NULL)
 			break;
 	}
 
 	vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
 	fpl->tvp = vp;
 	fpl->tvp_seqc = vp_seqc;
 	return (0);
 }
 
 static int __noinline
 cache_fplookup_cross_mount(struct cache_fpl *fpl)
 {
 	struct mount *mp;
 	struct mount_pcpu *mpcpu;
 	struct vnode *vp;
 	seqc_t vp_seqc;
 
 	vp = fpl->tvp;
 	vp_seqc = fpl->tvp_seqc;
 
 	VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
 	mp = atomic_load_ptr(&vp->v_mountedhere);
 	if (__predict_false(mp == NULL)) {
 		return (0);
 	}
 
 	if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
 		return (cache_fpl_partial(fpl));
 	}
 	if (!vn_seqc_consistent(vp, vp_seqc)) {
 		vfs_op_thread_exit_crit(mp, mpcpu);
 		return (cache_fpl_partial(fpl));
 	}
 	if (!cache_fplookup_mp_supported(mp)) {
 		vfs_op_thread_exit_crit(mp, mpcpu);
 		return (cache_fpl_partial(fpl));
 	}
 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
 	if (__predict_false(vp == NULL)) {
 		vfs_op_thread_exit_crit(mp, mpcpu);
 		return (cache_fpl_partial(fpl));
 	}
 	vp_seqc = vn_seqc_read_any(vp);
 	vfs_op_thread_exit_crit(mp, mpcpu);
 	if (seqc_in_modify(vp_seqc)) {
 		return (cache_fpl_partial(fpl));
 	}
 	mp = atomic_load_ptr(&vp->v_mountedhere);
 	if (__predict_false(mp != NULL)) {
 		/*
 		 * There are possibly more mount points on top.
 		 * Normally this does not happen so for simplicity just start
 		 * over.
 		 */
 		return (cache_fplookup_climb_mount(fpl));
 	}
 
 	fpl->tvp = vp;
 	fpl->tvp_seqc = vp_seqc;
 	return (0);
 }
 
 /*
  * Check if a vnode is mounted on.
  */
 static bool
 cache_fplookup_is_mp(struct cache_fpl *fpl)
 {
 	struct vnode *vp;
 
 	vp = fpl->tvp;
 	return ((vn_irflag_read(vp) & VIRF_MOUNTPOINT) != 0);
 }
 
 /*
  * Parse the path.
  *
  * The code was originally copy-pasted from regular lookup and despite
  * clean ups leaves performance on the table. Any modifications here
  * must take into account that in case off fallback the resulting
  * nameidata state has to be compatible with the original.
  */
 
 /*
  * Debug ni_pathlen tracking.
  */
 #ifdef INVARIANTS
 static void
 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
 {
 
 	fpl->debug.ni_pathlen += n;
 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
 	    ("%s: pathlen overflow to %zd\n", __func__, fpl->debug.ni_pathlen));
 }
 
 static void
 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
 {
 
 	fpl->debug.ni_pathlen -= n;
 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
 	    ("%s: pathlen underflow to %zd\n", __func__, fpl->debug.ni_pathlen));
 }
 
 static void
 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
 {
 
 	cache_fpl_pathlen_add(fpl, 1);
 }
 
 static void
 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
 {
 
 	cache_fpl_pathlen_sub(fpl, 1);
 }
 #else
 static void
 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
 {
 }
 
 static void
 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
 {
 }
 
 static void
 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
 {
 }
 
 static void
 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
 {
 }
 #endif
 
 static void
 cache_fplookup_parse(struct cache_fpl *fpl)
 {
 	struct nameidata *ndp;
 	struct componentname *cnp;
 	struct vnode *dvp;
 	char *cp;
 	uint32_t hash;
 
 	ndp = fpl->ndp;
 	cnp = fpl->cnp;
 	dvp = fpl->dvp;
 
 	/*
 	 * Find the end of this path component, it is either / or nul.
 	 *
 	 * Store / as a temporary sentinel so that we only have one character
 	 * to test for. Pathnames tend to be short so this should not be
 	 * resulting in cache misses.
 	 *
 	 * TODO: fix this to be word-sized.
 	 */
 	MPASS(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] >= cnp->cn_pnbuf);
 	KASSERT(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] == fpl->nulchar,
 	    ("%s: mismatch between pathlen (%zu) and nulchar (%p != %p), string [%s]\n",
 	    __func__, fpl->debug.ni_pathlen, &cnp->cn_nameptr[fpl->debug.ni_pathlen - 1],
 	    fpl->nulchar, cnp->cn_pnbuf));
 	KASSERT(*fpl->nulchar == '\0',
 	    ("%s: expected nul at %p; string [%s]\n", __func__, fpl->nulchar,
 	    cnp->cn_pnbuf));
 	hash = cache_get_hash_iter_start(dvp);
 	*fpl->nulchar = '/';
 	for (cp = cnp->cn_nameptr; *cp != '/'; cp++) {
 		KASSERT(*cp != '\0',
 		    ("%s: encountered unexpected nul; string [%s]\n", __func__,
 		    cnp->cn_nameptr));
 		hash = cache_get_hash_iter(*cp, hash);
 		continue;
 	}
 	*fpl->nulchar = '\0';
 	fpl->hash = cache_get_hash_iter_finish(hash);
 
 	cnp->cn_namelen = cp - cnp->cn_nameptr;
 	cache_fpl_pathlen_sub(fpl, cnp->cn_namelen);
 
 #ifdef INVARIANTS
 	/*
 	 * cache_get_hash only accepts lengths up to NAME_MAX. This is fine since
 	 * we are going to fail this lookup with ENAMETOOLONG (see below).
 	 */
 	if (cnp->cn_namelen <= NAME_MAX) {
 		if (fpl->hash != cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp)) {
 			panic("%s: mismatched hash for [%s] len %ld", __func__,
 			    cnp->cn_nameptr, cnp->cn_namelen);
 		}
 	}
 #endif
 
 	/*
 	 * Hack: we have to check if the found path component's length exceeds
 	 * NAME_MAX. However, the condition is very rarely true and check can
 	 * be elided in the common case -- if an entry was found in the cache,
 	 * then it could not have been too long to begin with.
 	 */
 	ndp->ni_next = cp;
 }
 
 static void
 cache_fplookup_parse_advance(struct cache_fpl *fpl)
 {
 	struct nameidata *ndp;
 	struct componentname *cnp;
 
 	ndp = fpl->ndp;
 	cnp = fpl->cnp;
 
 	cnp->cn_nameptr = ndp->ni_next;
 	KASSERT(*(cnp->cn_nameptr) == '/',
 	    ("%s: should have seen slash at %p ; buf %p [%s]\n", __func__,
 	    cnp->cn_nameptr, cnp->cn_pnbuf, cnp->cn_pnbuf));
 	cnp->cn_nameptr++;
 	cache_fpl_pathlen_dec(fpl);
 }
 
 /*
  * Skip spurious slashes in a pathname (e.g., "foo///bar") and retry.
  *
  * Lockless lookup tries to elide checking for spurious slashes and should they
  * be present is guaranteed to fail to find an entry. In this case the caller
  * must check if the name starts with a slash and call this routine.  It is
  * going to fast forward across the spurious slashes and set the state up for
  * retry.
  */
 static int __noinline
 cache_fplookup_skip_slashes(struct cache_fpl *fpl)
 {
 	struct nameidata *ndp;
 	struct componentname *cnp;
 
 	ndp = fpl->ndp;
 	cnp = fpl->cnp;
 
 	MPASS(*(cnp->cn_nameptr) == '/');
 	do {
 		cnp->cn_nameptr++;
 		cache_fpl_pathlen_dec(fpl);
 	} while (*(cnp->cn_nameptr) == '/');
 
 	/*
 	 * Go back to one slash so that cache_fplookup_parse_advance has
 	 * something to skip.
 	 */
 	cnp->cn_nameptr--;
 	cache_fpl_pathlen_inc(fpl);
 
 	/*
 	 * cache_fplookup_parse_advance starts from ndp->ni_next
 	 */
 	ndp->ni_next = cnp->cn_nameptr;
 
 	/*
 	 * See cache_fplookup_dot.
 	 */
 	fpl->tvp = fpl->dvp;
 	fpl->tvp_seqc = fpl->dvp_seqc;
 
 	return (0);
 }
 
 /*
  * Handle trailing slashes (e.g., "foo/").
  *
  * If a trailing slash is found the terminal vnode must be a directory.
  * Regular lookup shortens the path by nulifying the first trailing slash and
  * sets the TRAILINGSLASH flag to denote this took place. There are several
  * checks on it performed later.
  *
  * Similarly to spurious slashes, lockless lookup handles this in a speculative
  * manner relying on an invariant that a non-directory vnode will get a miss.
  * In this case cn_nameptr[0] == '\0' and cn_namelen == 0.
  *
  * Thus for a path like "foo/bar/" the code unwinds the state back to "bar/"
  * and denotes this is the last path component, which avoids looping back.
  *
  * Only plain lookups are supported for now to restrict corner cases to handle.
  */
 static int __noinline
 cache_fplookup_trailingslash(struct cache_fpl *fpl)
 {
 #ifdef INVARIANTS
 	size_t ni_pathlen;
 #endif
 	struct nameidata *ndp;
 	struct componentname *cnp;
 	struct namecache *ncp;
 	struct vnode *tvp;
 	char *cn_nameptr_orig, *cn_nameptr_slash;
 	seqc_t tvp_seqc;
 	u_char nc_flag;
 
 	ndp = fpl->ndp;
 	cnp = fpl->cnp;
 	tvp = fpl->tvp;
 	tvp_seqc = fpl->tvp_seqc;
 
 	MPASS(fpl->dvp == fpl->tvp);
 	KASSERT(cache_fpl_istrailingslash(fpl),
 	    ("%s: expected trailing slash at %p; string [%s]\n", __func__, fpl->nulchar - 1,
 	    cnp->cn_pnbuf));
 	KASSERT(cnp->cn_nameptr[0] == '\0',
 	    ("%s: expected nul char at %p; string [%s]\n", __func__, &cnp->cn_nameptr[0],
 	    cnp->cn_pnbuf));
 	KASSERT(cnp->cn_namelen == 0,
 	    ("%s: namelen 0 but got %ld; string [%s]\n", __func__, cnp->cn_namelen,
 	    cnp->cn_pnbuf));
 	MPASS(cnp->cn_nameptr > cnp->cn_pnbuf);
 
 	if (cnp->cn_nameiop != LOOKUP) {
 		return (cache_fpl_aborted(fpl));
 	}
 
 	if (__predict_false(tvp->v_type != VDIR)) {
 		if (!vn_seqc_consistent(tvp, tvp_seqc)) {
 			return (cache_fpl_aborted(fpl));
 		}
 		cache_fpl_smr_exit(fpl);
 		return (cache_fpl_handled_error(fpl, ENOTDIR));
 	}
 
 	/*
 	 * Denote the last component.
 	 */
 	ndp->ni_next = &cnp->cn_nameptr[0];
 	MPASS(cache_fpl_islastcn(ndp));
 
 	/*
 	 * Unwind trailing slashes.
 	 */
 	cn_nameptr_orig = cnp->cn_nameptr;
 	while (cnp->cn_nameptr >= cnp->cn_pnbuf) {
 		cnp->cn_nameptr--;
 		if (cnp->cn_nameptr[0] != '/') {
 			break;
 		}
 	}
 
 	/*
 	 * Unwind to the beginning of the path component.
 	 *
 	 * Note the path may or may not have started with a slash.
 	 */
 	cn_nameptr_slash = cnp->cn_nameptr;
 	while (cnp->cn_nameptr > cnp->cn_pnbuf) {
 		cnp->cn_nameptr--;
 		if (cnp->cn_nameptr[0] == '/') {
 			break;
 		}
 	}
 	if (cnp->cn_nameptr[0] == '/') {
 		cnp->cn_nameptr++;
 	}
 
 	cnp->cn_namelen = cn_nameptr_slash - cnp->cn_nameptr + 1;
 	cache_fpl_pathlen_add(fpl, cn_nameptr_orig - cnp->cn_nameptr);
 	cache_fpl_checkpoint(fpl);
 
 #ifdef INVARIANTS
 	ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
 	if (ni_pathlen != fpl->debug.ni_pathlen) {
 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
 		    __func__, ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
 	}
 #endif
 
 	/*
 	 * If this was a "./" lookup the parent directory is already correct.
 	 */
 	if (cnp->cn_nameptr[0] == '.' && cnp->cn_namelen == 1) {
 		return (0);
 	}
 
 	/*
 	 * Otherwise we need to look it up.
 	 */
 	tvp = fpl->tvp;
 	ncp = atomic_load_consume_ptr(&tvp->v_cache_dd);
 	if (__predict_false(ncp == NULL)) {
 		return (cache_fpl_aborted(fpl));
 	}
 	nc_flag = atomic_load_char(&ncp->nc_flag);
 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
 		return (cache_fpl_aborted(fpl));
 	}
 	fpl->dvp = ncp->nc_dvp;
 	fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
 	if (seqc_in_modify(fpl->dvp_seqc)) {
 		return (cache_fpl_aborted(fpl));
 	}
 	return (0);
 }
 
 /*
  * See the API contract for VOP_FPLOOKUP_VEXEC.
  */
 static int __noinline
 cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error)
 {
 	struct componentname *cnp;
 	struct vnode *dvp;
 	seqc_t dvp_seqc;
 
 	cnp = fpl->cnp;
 	dvp = fpl->dvp;
 	dvp_seqc = fpl->dvp_seqc;
 
 	/*
 	 * Hack: delayed empty path checking.
 	 */
 	if (cnp->cn_pnbuf[0] == '\0') {
 		return (cache_fplookup_emptypath(fpl));
 	}
 
 	/*
 	 * TODO: Due to ignoring trailing slashes lookup will perform a
 	 * permission check on the last dir when it should not be doing it.  It
 	 * may fail, but said failure should be ignored. It is possible to fix
 	 * it up fully without resorting to regular lookup, but for now just
 	 * abort.
 	 */
 	if (cache_fpl_istrailingslash(fpl)) {
 		return (cache_fpl_aborted(fpl));
 	}
 
 	/*
 	 * Hack: delayed degenerate path checking.
 	 */
 	if (cnp->cn_nameptr[0] == '\0' && fpl->tvp == NULL) {
 		return (cache_fplookup_degenerate(fpl));
 	}
 
 	/*
 	 * Hack: delayed name len checking.
 	 */
 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
 		cache_fpl_smr_exit(fpl);
 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
 	}
 
 	/*
 	 * Hack: they may be looking up foo/bar, where foo is not a directory.
 	 * In such a case we need to return ENOTDIR, but we may happen to get
 	 * here with a different error.
 	 */
 	if (dvp->v_type != VDIR) {
 		error = ENOTDIR;
 	}
 
 	/*
 	 * Hack: handle O_SEARCH.
 	 *
 	 * Open Group Base Specifications Issue 7, 2018 edition states:
 	 * <quote>
 	 * If the access mode of the open file description associated with the
 	 * file descriptor is not O_SEARCH, the function shall check whether
 	 * directory searches are permitted using the current permissions of
 	 * the directory underlying the file descriptor. If the access mode is
 	 * O_SEARCH, the function shall not perform the check.
 	 * </quote>
 	 *
 	 * Regular lookup tests for the NOEXECCHECK flag for every path
 	 * component to decide whether to do the permission check. However,
 	 * since most lookups never have the flag (and when they do it is only
 	 * present for the first path component), lockless lookup only acts on
 	 * it if there is a permission problem. Here the flag is represented
 	 * with a boolean so that we don't have to clear it on the way out.
 	 *
 	 * For simplicity this always aborts.
 	 * TODO: check if this is the first lookup and ignore the permission
 	 * problem. Note the flag has to survive fallback (if it happens to be
 	 * performed).
 	 */
 	if (fpl->fsearch) {
 		return (cache_fpl_aborted(fpl));
 	}
 
 	switch (error) {
 	case EAGAIN:
 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
 			error = cache_fpl_aborted(fpl);
 		} else {
 			cache_fpl_partial(fpl);
 		}
 		break;
 	default:
 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
 			error = cache_fpl_aborted(fpl);
 		} else {
 			cache_fpl_smr_exit(fpl);
 			cache_fpl_handled_error(fpl, error);
 		}
 		break;
 	}
 	return (error);
 }
 
 static int
 cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl)
 {
 	struct nameidata *ndp;
 	struct componentname *cnp;
 	struct mount *mp;
 	int error;
 
 	ndp = fpl->ndp;
 	cnp = fpl->cnp;
 
 	cache_fpl_checkpoint(fpl);
 
 	/*
 	 * The vnode at hand is almost always stable, skip checking for it.
 	 * Worst case this postpones the check towards the end of the iteration
 	 * of the main loop.
 	 */
 	fpl->dvp = dvp;
 	fpl->dvp_seqc = vn_seqc_read_notmodify(fpl->dvp);
 
 	mp = atomic_load_ptr(&dvp->v_mount);
 	if (__predict_false(mp == NULL || !cache_fplookup_mp_supported(mp))) {
 		return (cache_fpl_aborted(fpl));
 	}
 
 	MPASS(fpl->tvp == NULL);
 
 	for (;;) {
 		cache_fplookup_parse(fpl);
 
 		error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred);
 		if (__predict_false(error != 0)) {
 			error = cache_fplookup_failed_vexec(fpl, error);
 			break;
 		}
 
 		error = cache_fplookup_next(fpl);
 		if (__predict_false(cache_fpl_terminated(fpl))) {
 			break;
 		}
 
 		VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp);
 
 		if (fpl->tvp->v_type == VLNK) {
 			error = cache_fplookup_symlink(fpl);
 			if (cache_fpl_terminated(fpl)) {
 				break;
 			}
 		} else {
 			if (cache_fpl_islastcn(ndp)) {
 				error = cache_fplookup_final(fpl);
 				break;
 			}
 
 			if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) {
 				error = cache_fpl_aborted(fpl);
 				break;
 			}
 
 			fpl->dvp = fpl->tvp;
 			fpl->dvp_seqc = fpl->tvp_seqc;
 			cache_fplookup_parse_advance(fpl);
 		}
 
 		cache_fpl_checkpoint(fpl);
 	}
 
 	return (error);
 }
 
 /*
  * Fast path lookup protected with SMR and sequence counters.
  *
  * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one.
  *
  * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria
  * outlined below.
  *
  * Traditional vnode lookup conceptually looks like this:
  *
  * vn_lock(current);
  * for (;;) {
  *	next = find();
  *	vn_lock(next);
  *	vn_unlock(current);
  *	current = next;
  *	if (last)
  *	    break;
  * }
  * return (current);
  *
  * Each jump to the next vnode is safe memory-wise and atomic with respect to
  * any modifications thanks to holding respective locks.
  *
  * The same guarantee can be provided with a combination of safe memory
  * reclamation and sequence counters instead. If all operations which affect
  * the relationship between the current vnode and the one we are looking for
  * also modify the counter, we can verify whether all the conditions held as
  * we made the jump. This includes things like permissions, mount points etc.
  * Counter modification is provided by enclosing relevant places in
  * vn_seqc_write_begin()/end() calls.
  *
  * Thus this translates to:
  *
  * vfs_smr_enter();
  * dvp_seqc = seqc_read_any(dvp);
  * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode
  *     abort();
  * for (;;) {
  * 	tvp = find();
  * 	tvp_seqc = seqc_read_any(tvp);
  * 	if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode
  * 	    abort();
  * 	if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode
  * 	    abort();
  * 	dvp = tvp; // we know nothing of importance has changed
  * 	dvp_seqc = tvp_seqc; // store the counter for the tvp iteration
  * 	if (last)
  * 	    break;
  * }
  * vget(); // secure the vnode
  * if (!seqc_consistent(tvp, tvp_seqc) // final check
  * 	    abort();
  * // at this point we know nothing has changed for any parent<->child pair
  * // as they were crossed during the lookup, meaning we matched the guarantee
  * // of the locked variant
  * return (tvp);
  *
  * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows:
  * - they are called while within vfs_smr protection which they must never exit
  * - EAGAIN can be returned to denote checking could not be performed, it is
  *   always valid to return it
  * - if the sequence counter has not changed the result must be valid
  * - if the sequence counter has changed both false positives and false negatives
  *   are permitted (since the result will be rejected later)
  * - for simple cases of unix permission checks vaccess_vexec_smr can be used
  *
  * Caveats to watch out for:
  * - vnodes are passed unlocked and unreferenced with nothing stopping
  *   VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised
  *   to use atomic_load_ptr to fetch it.
  * - the aforementioned object can also get freed, meaning absent other means it
  *   should be protected with vfs_smr
  * - either safely checking permissions as they are modified or guaranteeing
  *   their stability is left to the routine
  */
 int
 cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status,
     struct pwd **pwdp)
 {
 	struct cache_fpl fpl;
 	struct pwd *pwd;
 	struct vnode *dvp;
 	struct componentname *cnp;
 	int error;
 
 	fpl.status = CACHE_FPL_STATUS_UNSET;
 	fpl.in_smr = false;
 	fpl.ndp = ndp;
 	fpl.cnp = cnp = &ndp->ni_cnd;
 	MPASS(ndp->ni_lcf == 0);
 	KASSERT ((cnp->cn_flags & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
 	    ("%s: internal flags found in cn_flags %" PRIx64, __func__,
 	    cnp->cn_flags));
 	MPASS(cnp->cn_nameptr == cnp->cn_pnbuf);
 	MPASS(ndp->ni_resflags == 0);
 
 	if (__predict_false(!cache_can_fplookup(&fpl))) {
 		*status = fpl.status;
 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
 		return (EOPNOTSUPP);
 	}
 
 	cache_fpl_checkpoint_outer(&fpl);
 
 	cache_fpl_smr_enter_initial(&fpl);
 #ifdef INVARIANTS
 	fpl.debug.ni_pathlen = ndp->ni_pathlen;
 #endif
 	fpl.nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
 	fpl.fsearch = false;
 	fpl.tvp = NULL; /* for degenerate path handling */
 	fpl.pwd = pwdp;
 	pwd = pwd_get_smr();
 	*(fpl.pwd) = pwd;
 	namei_setup_rootdir(ndp, cnp, pwd);
 	ndp->ni_topdir = pwd->pwd_jdir;
 
 	if (cnp->cn_pnbuf[0] == '/') {
 		dvp = cache_fpl_handle_root(&fpl);
 		ndp->ni_resflags = NIRES_ABS;
 	} else {
 		if (ndp->ni_dirfd == AT_FDCWD) {
 			dvp = pwd->pwd_cdir;
 		} else {
 			error = cache_fplookup_dirfd(&fpl, &dvp);
 			if (__predict_false(error != 0)) {
 				goto out;
 			}
 		}
 	}
 
 	SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true);
 	error = cache_fplookup_impl(dvp, &fpl);
 out:
 	cache_fpl_smr_assert_not_entered(&fpl);
 	cache_fpl_assert_status(&fpl);
 	*status = fpl.status;
 	if (SDT_PROBES_ENABLED()) {
 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
 		if (fpl.status == CACHE_FPL_STATUS_HANDLED)
 			SDT_PROBE4(vfs, namei, lookup, return, error, ndp->ni_vp, true,
 			    ndp);
 	}
 
 	if (__predict_true(fpl.status == CACHE_FPL_STATUS_HANDLED)) {
 		MPASS(error != CACHE_FPL_FAILED);
 		if (error != 0) {
 			cache_fpl_cleanup_cnp(fpl.cnp);
 			MPASS(fpl.dvp == NULL);
 			MPASS(fpl.tvp == NULL);
 		}
 		ndp->ni_dvp = fpl.dvp;
 		ndp->ni_vp = fpl.tvp;
 	}
 	return (error);
 }