diff --git a/sys/security/audit/audit.c b/sys/security/audit/audit.c index 0a3a711c0464..97da0dffc6f5 100644 --- a/sys/security/audit/audit.c +++ b/sys/security/audit/audit.c @@ -1,636 +1,635 @@ /* * Copyright (c) 1999-2005 Apple Computer, Inc. * Copyright (c) 2006 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static uma_zone_t audit_record_zone; static MALLOC_DEFINE(M_AUDITPROC, "audit_proc", "Audit process storage"); MALLOC_DEFINE(M_AUDITDATA, "audit_data", "Audit data storage"); MALLOC_DEFINE(M_AUDITPATH, "audit_path", "Audit path storage"); MALLOC_DEFINE(M_AUDITTEXT, "audit_text", "Audit text storage"); /* * Audit control settings that are set/read by system calls and are * hence non-static. */ /* * Define the audit control flags. */ int audit_enabled; int audit_suspended; /* * Flags controlling behavior in low storage situations. Should we panic if * a write fails? Should we fail stop if we're out of disk space? */ int audit_panic_on_write_fail; int audit_fail_stop; int audit_argv; int audit_arge; /* * Are we currently "failing stop" due to out of disk space? */ int audit_in_failure; /* * Global audit statistiscs. */ struct audit_fstat audit_fstat; /* * Preselection mask for non-attributable events. */ struct au_mask audit_nae_mask; /* * Mutex to protect global variables shared between various threads and * processes. */ struct mtx audit_mtx; /* * Queue of audit records ready for delivery to disk. We insert new * records at the tail, and remove records from the head. Also, * a count of the number of records used for checking queue depth. * In addition, a counter of records that we have allocated but are * not yet in the queue, which is needed to estimate the total * size of the combined set of records outstanding in the system. */ struct kaudit_queue audit_q; int audit_q_len; int audit_pre_q_len; /* * Audit queue control settings (minimum free, low/high water marks, etc.) */ struct au_qctrl audit_qctrl; /* * Condition variable to signal to the worker that it has work to do: * either new records are in the queue, or a log replacement is taking * place. */ struct cv audit_worker_cv; /* * Condition variable to flag when crossing the low watermark, meaning that * threads blocked due to hitting the high watermark can wake up and continue * to commit records. */ struct cv audit_watermark_cv; /* * Condition variable for auditing threads wait on when in fail-stop mode. * Threads wait on this CV forever (and ever), never seeing the light of * day again. */ static struct cv audit_fail_cv; /* * Construct an audit record for the passed thread. */ static int audit_record_ctor(void *mem, int size, void *arg, int flags) { struct kaudit_record *ar; struct thread *td; KASSERT(sizeof(*ar) == size, ("audit_record_ctor: wrong size")); td = arg; ar = mem; bzero(ar, sizeof(*ar)); ar->k_ar.ar_magic = AUDIT_RECORD_MAGIC; nanotime(&ar->k_ar.ar_starttime); /* * Export the subject credential. */ cru2x(td->td_ucred, &ar->k_ar.ar_subj_cred); ar->k_ar.ar_subj_ruid = td->td_ucred->cr_ruid; ar->k_ar.ar_subj_rgid = td->td_ucred->cr_rgid; ar->k_ar.ar_subj_egid = td->td_ucred->cr_groups[0]; PROC_LOCK(td->td_proc); ar->k_ar.ar_subj_auid = td->td_proc->p_au->ai_auid; ar->k_ar.ar_subj_asid = td->td_proc->p_au->ai_asid; ar->k_ar.ar_subj_pid = td->td_proc->p_pid; ar->k_ar.ar_subj_amask = td->td_proc->p_au->ai_mask; ar->k_ar.ar_subj_term_addr = td->td_proc->p_au->ai_termid; - bcopy(td->td_proc->p_comm, ar->k_ar.ar_subj_comm, MAXCOMLEN); PROC_UNLOCK(td->td_proc); return (0); } static void audit_record_dtor(void *mem, int size, void *arg) { struct kaudit_record *ar; KASSERT(sizeof(*ar) == size, ("audit_record_dtor: wrong size")); ar = mem; if (ar->k_ar.ar_arg_upath1 != NULL) free(ar->k_ar.ar_arg_upath1, M_AUDITPATH); if (ar->k_ar.ar_arg_upath2 != NULL) free(ar->k_ar.ar_arg_upath2, M_AUDITPATH); if (ar->k_ar.ar_arg_text != NULL) free(ar->k_ar.ar_arg_text, M_AUDITTEXT); if (ar->k_udata != NULL) free(ar->k_udata, M_AUDITDATA); if (ar->k_ar.ar_arg_argv != NULL) free(ar->k_ar.ar_arg_argv, M_AUDITTEXT); if (ar->k_ar.ar_arg_envv != NULL) free(ar->k_ar.ar_arg_envv, M_AUDITTEXT); } /* * Initialize the Audit subsystem: configuration state, work queue, * synchronization primitives, worker thread, and trigger device node. Also * call into the BSM assembly code to initialize it. */ static void audit_init(void) { printf("Security auditing service present\n"); audit_enabled = 0; audit_suspended = 0; audit_panic_on_write_fail = 0; audit_fail_stop = 0; audit_in_failure = 0; audit_argv = 0; audit_arge = 0; audit_fstat.af_filesz = 0; /* '0' means unset, unbounded */ audit_fstat.af_currsz = 0; audit_nae_mask.am_success = AU_NULL; audit_nae_mask.am_failure = AU_NULL; TAILQ_INIT(&audit_q); audit_q_len = 0; audit_pre_q_len = 0; audit_qctrl.aq_hiwater = AQ_HIWATER; audit_qctrl.aq_lowater = AQ_LOWATER; audit_qctrl.aq_bufsz = AQ_BUFSZ; audit_qctrl.aq_minfree = AU_FS_MINFREE; mtx_init(&audit_mtx, "audit_mtx", NULL, MTX_DEF); cv_init(&audit_worker_cv, "audit_worker_cv"); cv_init(&audit_watermark_cv, "audit_watermark_cv"); cv_init(&audit_fail_cv, "audit_fail_cv"); audit_record_zone = uma_zcreate("audit_record", sizeof(struct kaudit_record), audit_record_ctor, audit_record_dtor, NULL, NULL, UMA_ALIGN_PTR, 0); /* Initialize the BSM audit subsystem. */ kau_init(); audit_trigger_init(); /* Register shutdown handler. */ EVENTHANDLER_REGISTER(shutdown_pre_sync, audit_shutdown, NULL, SHUTDOWN_PRI_FIRST); /* Start audit worker thread. */ audit_worker_init(); } SYSINIT(audit_init, SI_SUB_AUDIT, SI_ORDER_FIRST, audit_init, NULL) /* * Drain the audit queue and close the log at shutdown. Note that this can * be called both from the system shutdown path and also from audit * configuration syscalls, so 'arg' and 'howto' are ignored. */ void audit_shutdown(void *arg, int howto) { audit_rotate_vnode(NULL, NULL); } /* * Return the current thread's audit record, if any. */ struct kaudit_record * currecord(void) { return (curthread->td_ar); } /* * XXXAUDIT: There are a number of races present in the code below due to * release and re-grab of the mutex. The code should be revised to become * slightly less racy. * * XXXAUDIT: Shouldn't there be logic here to sleep waiting on available * pre_q space, suspending the system call until there is room? */ struct kaudit_record * audit_new(int event, struct thread *td) { struct kaudit_record *ar; int no_record; mtx_lock(&audit_mtx); no_record = (audit_suspended || !audit_enabled); mtx_unlock(&audit_mtx); if (no_record) return (NULL); /* * Note: the number of outstanding uncommitted audit records is * limited to the number of concurrent threads servicing system calls * in the kernel. */ ar = uma_zalloc_arg(audit_record_zone, td, M_WAITOK); ar->k_ar.ar_event = event; mtx_lock(&audit_mtx); audit_pre_q_len++; mtx_unlock(&audit_mtx); return (ar); } void audit_free(struct kaudit_record *ar) { uma_zfree(audit_record_zone, ar); } void audit_commit(struct kaudit_record *ar, int error, int retval) { au_event_t event; au_class_t class; au_id_t auid; int sorf; struct au_mask *aumask; if (ar == NULL) return; /* * Decide whether to commit the audit record by checking the * error value from the system call and using the appropriate * audit mask. * * XXXAUDIT: Synchronize access to audit_nae_mask? */ if (ar->k_ar.ar_subj_auid == AU_DEFAUDITID) aumask = &audit_nae_mask; else aumask = &ar->k_ar.ar_subj_amask; if (error) sorf = AU_PRS_FAILURE; else sorf = AU_PRS_SUCCESS; switch(ar->k_ar.ar_event) { case AUE_OPEN_RWTC: /* The open syscall always writes a AUE_OPEN_RWTC event; change * it to the proper type of event based on the flags and the * error value. */ ar->k_ar.ar_event = flags_and_error_to_openevent( ar->k_ar.ar_arg_fflags, error); break; case AUE_SYSCTL: ar->k_ar.ar_event = ctlname_to_sysctlevent( ar->k_ar.ar_arg_ctlname, ar->k_ar.ar_valid_arg); break; case AUE_AUDITON: /* Convert the auditon() command to an event */ ar->k_ar.ar_event = auditon_command_event(ar->k_ar.ar_arg_cmd); break; } auid = ar->k_ar.ar_subj_auid; event = ar->k_ar.ar_event; class = au_event_class(event); ar->k_ar_commit |= AR_COMMIT_KERNEL; if (au_preselect(event, class, aumask, sorf) != 0) ar->k_ar_commit |= AR_PRESELECT_TRAIL; if (audit_pipe_preselect(auid, event, class, sorf, ar->k_ar_commit & AR_PRESELECT_TRAIL) != 0) ar->k_ar_commit |= AR_PRESELECT_PIPE; if ((ar->k_ar_commit & (AR_PRESELECT_TRAIL | AR_PRESELECT_PIPE | AR_PRESELECT_USER_TRAIL | AR_PRESELECT_USER_PIPE)) == 0) { mtx_lock(&audit_mtx); audit_pre_q_len--; mtx_unlock(&audit_mtx); audit_free(ar); return; } ar->k_ar.ar_errno = error; ar->k_ar.ar_retval = retval; /* * We might want to do some system-wide post-filtering * here at some point. */ /* * Timestamp system call end. */ nanotime(&ar->k_ar.ar_endtime); mtx_lock(&audit_mtx); /* * Note: it could be that some records initiated while audit was * enabled should still be committed? */ if (audit_suspended || !audit_enabled) { audit_pre_q_len--; mtx_unlock(&audit_mtx); audit_free(ar); return; } /* * Constrain the number of committed audit records based on * the configurable parameter. */ while (audit_q_len >= audit_qctrl.aq_hiwater) { AUDIT_PRINTF(("audit_commit: sleeping to wait for " "audit queue to drain below high water mark\n")); cv_wait(&audit_watermark_cv, &audit_mtx); AUDIT_PRINTF(("audit_commit: woke up waiting for " "audit queue draining\n")); } TAILQ_INSERT_TAIL(&audit_q, ar, k_q); audit_q_len++; audit_pre_q_len--; cv_signal(&audit_worker_cv); mtx_unlock(&audit_mtx); } /* * audit_syscall_enter() is called on entry to each system call. It is * responsible for deciding whether or not to audit the call (preselection), * and if so, allocating a per-thread audit record. audit_new() will fill in * basic thread/credential properties. */ void audit_syscall_enter(unsigned short code, struct thread *td) { struct au_mask *aumask; au_class_t class; au_event_t event; au_id_t auid; KASSERT(td->td_ar == NULL, ("audit_syscall_enter: td->td_ar != NULL")); /* * In FreeBSD, each ABI has its own system call table, and hence * mapping of system call codes to audit events. Convert the code to * an audit event identifier using the process system call table * reference. In Darwin, there's only one, so we use the global * symbol for the system call table. No audit record is generated * for bad system calls, as no operation has been performed. */ if (code >= td->td_proc->p_sysent->sv_size) return; event = td->td_proc->p_sysent->sv_table[code].sy_auevent; if (event == AUE_NULL) return; /* * Check which audit mask to use; either the kernel non-attributable * event mask or the process audit mask. */ auid = td->td_proc->p_au->ai_auid; if (auid == AU_DEFAUDITID) aumask = &audit_nae_mask; else aumask = &td->td_proc->p_au->ai_mask; /* * Allocate an audit record, if preselection allows it, and store * in the thread for later use. */ class = au_event_class(event); if (au_preselect(event, class, aumask, AU_PRS_BOTH)) { /* * If we're out of space and need to suspend unprivileged * processes, do that here rather than trying to allocate * another audit record. * * Note: we might wish to be able to continue here in the * future, if the system recovers. That should be possible * by means of checking the condition in a loop around * cv_wait(). It might be desirable to reevaluate whether an * audit record is still required for this event by * re-calling au_preselect(). */ if (audit_in_failure && priv_check(td, PRIV_AUDIT_FAILSTOP) != 0) { cv_wait(&audit_fail_cv, &audit_mtx); panic("audit_failing_stop: thread continued"); } td->td_ar = audit_new(event, td); } else if (audit_pipe_preselect(auid, event, class, AU_PRS_BOTH, 0)) td->td_ar = audit_new(event, td); else td->td_ar = NULL; } /* * audit_syscall_exit() is called from the return of every system call, or in * the event of exit1(), during the execution of exit1(). It is responsible * for committing the audit record, if any, along with return condition. */ void audit_syscall_exit(int error, struct thread *td) { int retval; /* * Commit the audit record as desired; once we pass the record * into audit_commit(), the memory is owned by the audit * subsystem. * The return value from the system call is stored on the user * thread. If there was an error, the return value is set to -1, * imitating the behavior of the cerror routine. */ if (error) retval = -1; else retval = td->td_retval[0]; audit_commit(td->td_ar, error, retval); if (td->td_ar != NULL) AUDIT_PRINTF(("audit record committed by pid %d\n", td->td_proc->p_pid)); td->td_ar = NULL; } /* * Allocate storage for a new process (init, or otherwise). */ void audit_proc_alloc(struct proc *p) { KASSERT(p->p_au == NULL, ("audit_proc_alloc: p->p_au != NULL (%d)", p->p_pid)); p->p_au = malloc(sizeof(*(p->p_au)), M_AUDITPROC, M_WAITOK); } /* * Allocate storage for a new thread. */ void audit_thread_alloc(struct thread *td) { td->td_ar = NULL; } /* * Thread destruction. */ void audit_thread_free(struct thread *td) { KASSERT(td->td_ar == NULL, ("audit_thread_free: td_ar != NULL")); } /* * Initialize audit information for the first kernel process (proc 0) and for * the first user process (init). * * XXX It is not clear what the initial values should be for audit ID, * session ID, etc. */ void audit_proc_kproc0(struct proc *p) { KASSERT(p->p_au != NULL, ("audit_proc_kproc0: p->p_au == NULL (%d)", p->p_pid)); bzero(p->p_au, sizeof(*(p)->p_au)); } void audit_proc_init(struct proc *p) { KASSERT(p->p_au != NULL, ("audit_proc_init: p->p_au == NULL (%d)", p->p_pid)); bzero(p->p_au, sizeof(*(p)->p_au)); p->p_au->ai_auid = AU_DEFAUDITID; } /* * Copy the audit info from the parent process to the child process when * a fork takes place. */ void audit_proc_fork(struct proc *parent, struct proc *child) { PROC_LOCK_ASSERT(parent, MA_OWNED); PROC_LOCK_ASSERT(child, MA_OWNED); KASSERT(parent->p_au != NULL, ("audit_proc_fork: parent->p_au == NULL (%d)", parent->p_pid)); KASSERT(child->p_au != NULL, ("audit_proc_fork: child->p_au == NULL (%d)", child->p_pid)); bcopy(parent->p_au, child->p_au, sizeof(*child->p_au)); } /* * Free the auditing structure for the process. */ void audit_proc_free(struct proc *p) { KASSERT(p->p_au != NULL, ("p->p_au == NULL (%d)", p->p_pid)); free(p->p_au, M_AUDITPROC); p->p_au = NULL; } diff --git a/sys/security/audit/audit_private.h b/sys/security/audit/audit_private.h index fd8a4e9d2206..497c4e3c765d 100644 --- a/sys/security/audit/audit_private.h +++ b/sys/security/audit/audit_private.h @@ -1,353 +1,352 @@ /* * Copyright (c) 1999-2005 Apple Computer, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ /* * This include file contains function prototypes and type definitions used * within the audit implementation. */ #ifndef _SECURITY_AUDIT_PRIVATE_H_ #define _SECURITY_AUDIT_PRIVATE_H_ #ifndef _KERNEL #error "no user-serviceable parts inside" #endif #include #include #include #ifdef MALLOC_DECLARE MALLOC_DECLARE(M_AUDITBSM); MALLOC_DECLARE(M_AUDITDATA); MALLOC_DECLARE(M_AUDITPATH); MALLOC_DECLARE(M_AUDITTEXT); #endif /* * The AUDIT_EXCESSIVELY_VERBOSE define enables a number of gratuitously * noisy printf's to the console. Due to the volume, it should be left off * unless you want your system to churn a lot whenever the audit record flow * gets high. */ //#define AUDIT_EXCESSIVELY_VERBOSE #ifdef AUDIT_EXCESSIVELY_VERBOSE #define AUDIT_PRINTF(x) printf x #else #define AUDIT_PRINTF(x) #endif /* * Audit control variables that are usually set/read via system calls and * used to control various aspects of auditing. */ extern struct au_qctrl audit_qctrl; extern struct audit_fstat audit_fstat; extern struct au_mask audit_nae_mask; extern int audit_panic_on_write_fail; extern int audit_fail_stop; extern int audit_argv; extern int audit_arge; /* * Success/failure conditions for the conversion of a kernel audit record to * BSM format. */ #define BSM_SUCCESS 0 #define BSM_FAILURE 1 #define BSM_NOAUDIT 2 /* * Defines for the kernel audit record k_ar_commit field. Flags are set to * indicate what sort of record it is, and which preselection mechanism * selected it. */ #define AR_COMMIT_KERNEL 0x00000001U #define AR_COMMIT_USER 0x00000010U #define AR_PRESELECT_TRAIL 0x00001000U #define AR_PRESELECT_PIPE 0x00002000U #define AR_PRESELECT_USER_TRAIL 0x00004000U #define AR_PRESELECT_USER_PIPE 0x00008000U /* * Audit data is generated as a stream of struct audit_record structures, * linked by struct kaudit_record, and contain storage for possible audit so * that it will not need to be allocated during the processing of a system * call, both improving efficiency and avoiding sleeping at untimely moments. * This structure is converted to BSM format before being written to disk. */ struct vnode_au_info { mode_t vn_mode; uid_t vn_uid; gid_t vn_gid; dev_t vn_dev; long vn_fsid; long vn_fileid; long vn_gen; }; struct groupset { gid_t gidset[NGROUPS]; u_int gidset_size; }; struct socket_au_info { int so_domain; int so_type; int so_protocol; in_addr_t so_raddr; /* Remote address if INET socket. */ in_addr_t so_laddr; /* Local address if INET socket. */ u_short so_rport; /* Remote port. */ u_short so_lport; /* Local port. */ }; union auditon_udata { char *au_path; long au_cond; long au_flags; long au_policy; int au_trigger; au_evclass_map_t au_evclass; au_mask_t au_mask; auditinfo_t au_auinfo; auditpinfo_t au_aupinfo; auditpinfo_addr_t au_aupinfo_addr; au_qctrl_t au_qctrl; au_stat_t au_stat; au_fstat_t au_fstat; }; struct posix_ipc_perm { uid_t pipc_uid; gid_t pipc_gid; mode_t pipc_mode; }; struct audit_record { /* Audit record header. */ u_int32_t ar_magic; int ar_event; int ar_retval; /* value returned to the process */ int ar_errno; /* return status of system call */ struct timespec ar_starttime; struct timespec ar_endtime; u_int64_t ar_valid_arg; /* Bitmask of valid arguments */ /* Audit subject information. */ struct xucred ar_subj_cred; uid_t ar_subj_ruid; gid_t ar_subj_rgid; gid_t ar_subj_egid; uid_t ar_subj_auid; /* Audit user ID */ pid_t ar_subj_asid; /* Audit session ID */ pid_t ar_subj_pid; struct au_tid ar_subj_term; struct au_tid_addr ar_subj_term_addr; - char ar_subj_comm[MAXCOMLEN + 1]; struct au_mask ar_subj_amask; /* Operation arguments. */ uid_t ar_arg_euid; uid_t ar_arg_ruid; uid_t ar_arg_suid; gid_t ar_arg_egid; gid_t ar_arg_rgid; gid_t ar_arg_sgid; pid_t ar_arg_pid; pid_t ar_arg_asid; struct au_tid ar_arg_termid; struct au_tid_addr ar_arg_termid_addr; uid_t ar_arg_uid; uid_t ar_arg_auid; gid_t ar_arg_gid; struct groupset ar_arg_groups; int ar_arg_fd; int ar_arg_fflags; mode_t ar_arg_mode; int ar_arg_dev; long ar_arg_value; void * ar_arg_addr; int ar_arg_len; int ar_arg_mask; u_int ar_arg_signum; char ar_arg_login[MAXLOGNAME]; int ar_arg_ctlname[CTL_MAXNAME]; struct socket_au_info ar_arg_sockinfo; char *ar_arg_upath1; char *ar_arg_upath2; char *ar_arg_text; struct au_mask ar_arg_amask; struct vnode_au_info ar_arg_vnode1; struct vnode_au_info ar_arg_vnode2; int ar_arg_cmd; int ar_arg_svipc_cmd; struct ipc_perm ar_arg_svipc_perm; int ar_arg_svipc_id; void * ar_arg_svipc_addr; struct posix_ipc_perm ar_arg_pipc_perm; union auditon_udata ar_arg_auditon; char *ar_arg_argv; int ar_arg_argc; char *ar_arg_envv; int ar_arg_envc; int ar_arg_exitstatus; int ar_arg_exitretval; struct sockaddr_storage ar_arg_sockaddr; }; /* * Arguments in the audit record are initially not defined; flags are set to * indicate if they are present so they can be included in the audit log * stream only if defined. */ #define ARG_IS_VALID(kar, arg) ((kar)->k_ar.ar_valid_arg & (arg)) #define ARG_SET_VALID(kar, arg) do { \ (kar)->k_ar.ar_valid_arg |= (arg); \ } while (0) /* * In-kernel version of audit record; the basic record plus queue meta-data. * This record can also have a pointer set to some opaque data that will be * passed through to the audit writing mechanism. */ struct kaudit_record { struct audit_record k_ar; u_int32_t k_ar_commit; void *k_udata; /* User data. */ u_int k_ulen; /* User data length. */ struct uthread *k_uthread; /* Audited thread. */ TAILQ_ENTRY(kaudit_record) k_q; }; TAILQ_HEAD(kaudit_queue, kaudit_record); /* * Functions to manage the allocation, release, and commit of kernel audit * records. */ void audit_abort(struct kaudit_record *ar); void audit_commit(struct kaudit_record *ar, int error, int retval); struct kaudit_record *audit_new(int event, struct thread *td); /* * Functions relating to the conversion of internal kernel audit records to * the BSM file format. */ struct au_record; int kaudit_to_bsm(struct kaudit_record *kar, struct au_record **pau); int bsm_rec_verify(void *rec); /* * Kernel versions of the libbsm audit record functions. */ void kau_free(struct au_record *rec); void kau_init(void); /* * Return values for pre-selection and post-selection decisions. */ #define AU_PRS_SUCCESS 1 #define AU_PRS_FAILURE 2 #define AU_PRS_BOTH (AU_PRS_SUCCESS|AU_PRS_FAILURE) /* * Data structures relating to the kernel audit queue. Ideally, these might * be abstracted so that only accessor methods are exposed. */ extern struct mtx audit_mtx; extern struct cv audit_watermark_cv; extern struct cv audit_worker_cv; extern struct kaudit_queue audit_q; extern int audit_q_len; extern int audit_pre_q_len; extern int audit_in_failure; /* * Flags to use on audit files when opening and closing. */ #define AUDIT_OPEN_FLAGS (FWRITE | O_APPEND) #define AUDIT_CLOSE_FLAGS (FWRITE | O_APPEND) #include #include #include /* * Some of the BSM tokenizer functions take different parameters in the * kernel implementations in order to save the copying of large kernel data * structures. The prototypes of these functions are declared here. */ token_t *kau_to_socket(struct socket_au_info *soi); /* * audit_klib prototypes */ int au_preselect(au_event_t event, au_class_t class, au_mask_t *mask_p, int sorf); au_event_t flags_and_error_to_openevent(int oflags, int error); void au_evclassmap_init(void); void au_evclassmap_insert(au_event_t event, au_class_t class); au_class_t au_event_class(au_event_t event); au_event_t ctlname_to_sysctlevent(int name[], uint64_t valid_arg); int auditon_command_event(int cmd); int msgctl_to_event(int cmd); int semctl_to_event(int cmr); void canon_path(struct thread *td, char *path, char *cpath); /* * Audit trigger events notify user space of kernel audit conditions * asynchronously. */ void audit_trigger_init(void); int send_trigger(unsigned int trigger); /* * General audit related functions. */ struct kaudit_record *currecord(void); void audit_free(struct kaudit_record *ar); void audit_shutdown(void *arg, int howto); void audit_rotate_vnode(struct ucred *cred, struct vnode *vp); void audit_worker_init(void); /* * Audit pipe functions. */ int audit_pipe_preselect(au_id_t auid, au_event_t event, au_class_t class, int sorf, int trail_select); void audit_pipe_submit(au_id_t auid, au_event_t event, au_class_t class, int sorf, int trail_select, void *record, u_int record_len); void audit_pipe_submit_user(void *record, u_int record_len); #endif /* ! _SECURITY_AUDIT_PRIVATE_H_ */